
HAL Id: tel-04276382
https://theses.hal.science/tel-04276382v1

Submitted on 9 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Early classification of temporal sequences with Deep
Reinforcement Learning

Coralie Martinez

To cite this version:
Coralie Martinez. Early classification of temporal sequences with Deep Reinforcement Learning. Sig-
nal and Image processing. Université Grenoble Alpes, 2019. English. �NNT : 2019GREAT123�.
�tel-04276382�

https://theses.hal.science/tel-04276382v1
https://hal.archives-ouvertes.fr

THÈSE

Pour obtenir le grade de

DOCTEUR DE LA COMMUNAUTE UNIVERSITE GRENOBLE
ALPES

Spécialité : SIGNAL IMAGE PAROLE TELECOMS

Arrêté ministériel : 25 mai 2016

Présentée par

Coralie MARTINEZ

Thèse dirigée par Michèle ROMBAUT, UGA
et codirigée par Emmanuel RAMASSO, FEMTO-ST Institute
préparée au sein du Laboratoire Grenoble Images Parole Signal
Automatique
dans l'École Doctorale Electronique, Electrotechnique,
Automatique, Traitement du Signal (EEATS)

Classification précoce de séquences
temporelles par de l’apprentissage par
renforcement profond

Early classification of temporal sequences
with Deep Reinforcement Learning

Thèse soutenue à huit clos le « 4 décembre 2019 »,
devant le jury composé de :

Monsieur Germain FORESTIER
Professeur des Universités, Université de Haute-Alsace, Rapporteur

Monsieur Marc SEBBAN
Professeur des Universités, Université Jean Monnet, Rapporteur

Madame Latifa OUKHELLOU
Directrice de Recherche, Institut Français des Sciences et Technologies des
Transports, de l’Aménagement et des Réseaux, Présidente du jury

Monsieur Christian WOLF
Maitre de conférences, Institut National des Sciences Appliquées de Lyon,
Examinateur

Madame Michèle ROMBAUT
Professeur des Universités, Communauté Université Grenoble Alpes, Directrice
de thèse

Monsieur Emmanuel RAMASSO
Maitre de conférences, FEMTO-ST Institute, Co-directeur de thèse

Monsieur Guillaume PERRIN
Lead Engineer, bioMérieux, Co-encadrant de thèse

Acknowledgements

First of all, I would like to thank all the people who, from near or far, through their advice or
support, helped in the development of this thesis. I am grateful for the help and encouragement
I have received over the past three years. Without it, the work would not have been the same,
and the thought of getting up every morning to conduct this research study would have been
less pleasant.

I especially thank my supervisors. Thank you Michèle for the kindness and availability
you showed during this thesis. In particular, I appreciated your many advice and remarks on
the writing of my various thesis documents. You always pointed out valuable improvements,
which I hope have allowed me to improve my writing of scienti�c documents, and increase their
understanding and pedagogy. I also appreciated your pointed questions about the method,
which always led me to step back and get a clearer overview of the work.

Thank you Emmanuel for the energy, curiosity and encouragement that you have brought
to this work. Coming to work with you in Besançon was always a source of inspiration and
(re)motivation in my work. Your enthusiasm for the work carried out also allowed me to
regain my con�dence several times. I am grateful for that. Moreover, I want to thank you for
sharing your scienti�c curiosity with me. You always asked precious questions and pointed to
interesting articles that contributed to the work of this thesis.

Thank you Guillaume for your supervision, your advice and your practical help in the work
done in thesis. You have always been there when needed and I enjoyed being able to count on
you. In particular, I enjoyed analyzing the graphs with you, and racking our brains trying to
understand what's going on and why the agent does what it does. These re�ections greatly
contributed to the work of this thesis and allowed to improve it. Thanks also for the jokes,
which immediately relaxed the working atmosphere.

Thank you to all three of you for allowing me to conduct this research work, for giving me
great con�dence and freedom in my work. I'm delighted that I was able to learn with you by
sharing our passion and knowledge.

And �nally, I can not �nish these acknowledgments without mentioning a few names.
Thank you Meriem for being my neighbor o�ce, my friend and for all the co�ee/tea breaks
shared with me. Thank you Magali and Nathalie for being my partners of the drawing club.
Thank you Aurélien for the board games moments and the daily encouragement. Thank you
Romain and Gael for climbing sessions, tips, and simply for those moments that allowed me to
take a break on the work. Thanks to colleagues Maud, Pierre, Philippine, Magali and Meriem
for your help, questions, time and encouragement! Your help has been precious and reassured
me in my work. Finally, I thank my close relatives, friends and parents who encouraged me
from the beginning and who are always present for me.

3

4

Abstract

Early classi�cation (EC) of time series is a recent research topic in the �eld of sequential
data analysis [5, 20, 36, 107, 109, 113]. It consists in assigning a label to some data that
is sequentially collected with new data points arriving over time, and the prediction of a
label has to be made using as few data points as possible in the sequence. The EC problem
is of paramount importance for supporting decision-makers in many real-world applications,
ranging from process control to fraud detection. It is particularly interesting for applications
concerned with the costs induced by the acquisition of data points, or for applications which
seek for rapid label prediction in order to take early actions. This is for example the case in
the �eld of health, where it is necessary to provide a medical diagnosis as soon as possible
from the sequence of medical observations collected over time. Another example is predictive
maintenance with the objective to anticipate the breakdown of a machine from its sensor
signals.

In this doctoral work, we developed a new approach for this problem, based on the formu-
lation of a sequential decision-making problem, that is the EC model has to decide between
classifying an incomplete sequence or delaying the prediction to collect additional data points.
Speci�cally, we described this problem as a Partially Observable Markov Decision Process
noted EC-POMDP. The approach consists in training an EC agent with Deep Reinforcement
Learning (DRL) in an environment characterized by the EC-POMDP. The main motivation
for this approach was to o�er an end-to-end model for EC which is able to simultaneously
learn optimal patterns in the sequences for classi�cation and optimal strategic decisions for the
time of prediction. Also, the method allows to set the importance of time against accuracy of
the classi�cation in the de�nition of rewards, according to the application and its willingness
to make this compromise.

In order to solve the EC-POMDP and model the policy of the EC agent, we applied an
existing DRL algorithm, the Double Deep-Q-Network algorithm [100], whose general principle
is to update the policy of the agent during training episodes, using a replay memory of past
experiences. We showed that the application of the original algorithm to the EC problem lead
to imbalanced memory issues which can weaken the training of the agent. Consequently, to
cope with those issues and o�er a more robust training of the agent, we adapted the algo-
rithm to the EC-POMDP speci�cities and we introduced strategies of memory management
and episode management. In experiments, we showed that these contributions improved the
performance of the agent over the original algorithm, and that we were able to train an EC
agent which compromised between speed and accuracy, on each sequence individually. We
were also able to train EC agents on public datasets for which we have no expertise, showing
that the method is applicable to various domains. Finally, we proposed some strategies to
interpret the decisions of the agent, validate or reject them. In experiments, we showed how
these solutions can help gain insight in the choice of action made by the agent.

5

6

Résumé étendu

La classi�cation précoce (CP) des séquences temporelles est un sujet de recherche récent dans
le domaine de l'analyse des séquences temporelles [5, 20, 36, 107, 109, 113]. Le problème
consiste à assigner une étiquette de classe à des données acquises de manière séquentielle, avec
de nouvelles observations arrivant au cours du temps. L'étiquette de classe doit être prédite
le plus rapidement possible, c.-à-d. en utilisant un nombre minimal d'observations dans la
séquence.

La CP est un problème d'une importance capitale dans de nombreuses applications du
monde réel, allant du contrôle des processus à la détection des fraudes. Il est particulièrement
intéressant pour les applications où l'acquisition des observations dans la séquence engendre un
coût que l'on souhaiterait minimiser. Il est également adapté aux applications qui recherchent
une prédiction rapide des étiquettes a�n d'entreprendre des actions précoces. C'est par ex-
emple le cas dans le domaine de la santé, où il est nécessaire de fournir un diagnostic médical
dans les meilleurs délais à partir de la séquence des observations médicales collectées dans le
temps. Un autre exemple est la maintenance prédictive où l'objectif est d'anticiper la panne
d'une machine à partir des signaux enregistrés par ses capteurs.

Dans ce travail de doctorat, nous avons développé une nouvelle approche pour ce problème,
basée sur la formulation d'un problème de prise de décision séquentielle. Nous dé�nissons un
classi�eur précoce comme un modèle qui doit décider entre classer une séquence incomplète
ou retarder la prédiction pour collecter des observations supplémentaires dans la séquence.
Plus précisément, nous avons décrit ce problème comme un processus de décision de Markov
partiellement observable noté CP-POMDP. L'approche consiste à former un agent classi�eur
précoce avec de l'apprentissage par renforcement profond dans un environnement caractérisé
par le CP-POMDP. La principale motivation est de proposer un modèle bout-en-bout, c.-à-
d. capable d'apprendre simultanément des descripteurs optimaux dans les séquences pour
la classi�cation et des décisions stratégiques optimales pour le moment de la prédiction. De
plus, la méthode permet à l'utilisateur de régler l'importance du temps par rapport à la
précision de la classi�cation suivant son application et le compromis visé, dans la dé�nition
des récompenses.

Dans le but de résoudre le CP-POMDP et de trouver la politique optimale de l'agent,
nous avons appliqué un algorithme existant d'apprentissage par renforcement profond de la
littérature, l'algorithme Double Deep-Q-Network [100]. Le principe général de cet algorithme
est de mettre à jour la politique de l'agent durant des épisodes d'entrainement entre l'agent et
l'environnement, en utilisant une mémoire de rejeu dans laquelle sont stockées les interactions
passées vécues par l'agent.

Nous avons montré que l'application de l'algorithme d'origine au problème de la CP mène
à des déséquilibres dans la mémoire de rejeu de l'agent, causant une perte de qualité dans
son entraînement. Par conséquent, pour résoudre les problèmes cités ci-avant et permettre un

7

8

entraînement plus robuste de l'agent, nous avons adapté l'algorithme en prenant en compte
les spéci�cités du CP-POMDP et en introduisant des stratégies de gestion de la mémoire et
des épisodes. Dans les expériences, nous avons montré que ces contributions améliorent les
performances de l'agent. Nous avons également montré que cette méthode permet d'entrainer
un agent classi�eur précoce capable de faire un compromis entre la rapidité de ses prédictions
et leur précision, en prenant des décisions individuellement sur chaque séquence. Nous avons
démontré que la méthode est applicable à de nombreux domaines, en entrainant l'agent sur
des jeux de données publics variés sur lesquels nous n'avions aucune expertise.

En�n, nous avons proposé des stratégies pour l'interprétation des décisions prises par
l'agent, mais aussi pour permettre de les valider ou de les rejeter. Dans les expériences,
nous avons montré que ces solutions peuvent aider à mieux comprendre les choix d'actions de
l'agent.

Contents

Acknowledgements 3

Abstract 5

Résumé étendu 7

List of acronyms 13

List of symbols 15

List of Figures 19

List of Tables 21

Prelude 23

1 Introduction 25
1.1 The importance of sequential data analysis . 25

1.1.1 Sequential data taxonomy . 25
1.1.2 Application �elds . 26
1.1.3 Some challenges of sequential data analysis 26

1.2 A rising need for early classi�cation of temporal sequences 27
1.3 General objectives of the thesis . 28
1.4 Research hypothesis . 28
1.5 Plan of the manuscript . 29

2 Analysis of the early classi�cation problem of multivariate time series 31
2.1 Data de�nition . 31

2.1.1 Multivariate time series . 32
2.1.2 Partial time series . 32
2.1.3 Related work on time series analysis . 33

2.2 De�nition of the classi�cation problem . 36
2.2.1 Generalities about the classi�cation model 36
2.2.2 Speci�cities of the classi�cation problem 37
2.2.3 Related work on the classi�cation problem 39

2.3 De�nition of the early classi�cation problem . 42
2.3.1 Time-sensitive classi�cation . 42
2.3.2 General objectives of early classi�cation 43

9

10 CONTENTS

2.3.3 The early classi�cation trade-o� . 43
2.4 Related work on early classi�cation of temporal sequences 44

2.4.1 The �rst research paper on early classi�cation 44
2.4.2 Shapelet-based methods . 45
2.4.3 Distance-based methods . 46
2.4.4 Probabilistic methods . 46
2.4.5 Ensemble methods . 47
2.4.6 Non-myopic methods . 47
2.4.7 Methods with Neural Networks . 48
2.4.8 Early classi�cation on other types of dynamic data 48

2.5 Conclusion . 49

3 EC formalization as a Partially Observable Markov Decision Process 51

3.1 Formalization of a sequential decision-making problem 51
3.1.1 De�nition of the end-to-end decision model 51
3.1.2 Synthesis of the thesis objectives . 52

3.2 Limitations of Supervised Learning . 54
3.2.1 Background on Supervised Learning . 54
3.2.2 EC: a problem with incomplete supervision 54
3.2.3 Related work on Supervised Learning with incomplete supervision . . . 56
3.2.4 Conclusion . 57

3.3 Assets of Reinforcement Learning . 58
3.3.1 Background on Reinforcement Learning 58
3.3.2 Temporal sequence acquisition: a Markov Process 62
3.3.3 EC problem: a Markov Process with actions 63
3.3.4 EC trade-o�: rewards in a Markov Decision Process 63

3.4 Proposition of EC-POMDP . 64
3.4.1 States, observations, actions . 64
3.4.2 Rewards . 67
3.4.3 Speci�cities of the EC-POMDP . 72

3.5 Conclusion . 72

4 EC-POMDP solving with Deep Reinforcement Learning 75

4.1 Motivation . 76
4.2 Double Deep-Q-Network algorithm . 77

4.2.1 Application of Deep-Q-Network algorithm to EC 77
4.2.2 DDQN loss function . 80
4.2.3 Hyper-parameters . 81
4.2.4 Related work on DQN variants . 82

4.3 Experimental evaluation . 82
4.3.1 UCR dataset . 82
4.3.2 EC-POMDP model . 83
4.3.3 Experimental pipeline . 83
4.3.4 Results . 86
4.3.5 Imbalanced replay memory . 88

4.4 Conclusion . 95

CONTENTS 11

5 Optimized EC-POMDP solving with robust memory management 97

5.1 Related work on memory management in RL 98
5.2 Optimized EC-POMDP solving in online learning 98

5.2.1 Prioritized sampling . 100
5.2.2 Prioritized storing . 100
5.2.3 Random episode initialization . 101
5.2.4 Algorithm . 101

5.3 Optimized EC-POMDP solving in batch learning 103
5.3.1 Motivation . 103
5.3.2 Algorithm . 104

5.4 Experimental comparison between memory management strategies 105
5.4.1 Industrial dataset . 106
5.4.2 EC-POMDP model . 107
5.4.3 Experimental pipeline . 108
5.4.4 Results . 112

5.5 Experimental comparison between early classi�er and naive static classi�er . . . 114
5.5.1 Experimental pipeline . 115
5.5.2 Results . 116
5.5.3 Remark on external analysis . 117

5.6 Conclusion . 117

6 Policies interpretation 119

6.1 Visualization of Class Activation Map . 119
6.1.1 Method presentation . 119
6.1.2 Motivation . 121
6.1.3 CAM application to EC . 121
6.1.4 CAM illustrations on the industrial dataset 123
6.1.5 Conclusion . 127

6.2 Visualization of Q-values . 128
6.3 Perspectives on calculating policy uncertainty 134

6.3.1 Motivation . 134
6.3.2 Related work . 134
6.3.3 Method presentation . 136
6.3.4 Application to EC . 138
6.3.5 Preliminary experimental evaluation . 141
6.3.6 Conclusion and perspectives . 145

7 Conclusion and perspectives 147

7.1 Synthesis of the doctoral research . 147
7.2 Main contributions and results . 149
7.3 Limits & Perspectives . 151

7.3.1 In relation to the policy and optimization 151
7.3.2 In relation to the EC-POMDP de�nition 152

Synthèse par chapitre 155

Appendices 165

12 CONTENTS

A Experimental comparison between EC-POMDP models 167
A.1 EC-POMDP models . 167
A.2 Experimental evaluation . 167

A.2.1 Experimental pipeline . 168
A.2.2 Results . 168

B Experimental evaluation on EC-POMDP solving with a policy-based ap-
proach 171

C Illustrations of Class Activation Map 173

D List of hyper-parameters and their values 177

E Examples of Deep Neural Network architectures 179

Bibliography 183

List of acronyms & abbreviations

Acronyms

CNN Convolutional Neural Network

DDQN Double Deep Q-Network

DNN Deep Neural Network

DQN Deep Q-Network

EC Early classi�cation

EC-POMDP Partially Observable Markov Decision Process for Early Classi�cation

HMM Hidden Markov Model

MDP Markov Decision Process

MP Markov Process

MTS Multivariate time series

NN Neural Network

PAA Piecewise Aggregate Approximation

POMDP Partially Observable Markov Decision Process

RL Reinforcement Learning

SL Supervised Learning

TS Time series

UCR University of California, Riverside

UTS Univariate time series

Abbreviations

e.g. exempli gratia ("for the sake of example")

i.e. id est ("that is to say")

13

14 CHAPTER 0. LIST OF ACRONYMS

List of symbols

We use the following conventions. Bold uppercase letters represent matrices. Bold lowercase
letters are used for vectors. Italic capital letters represent sets.

a is an action.

ad is the delay action.

A is the set of actions.

Ac is the set of classi�cation actions.

Acc is the accuracy metric.

clj ,li is the cost of predicting label li on a sample with true label lj .

cn,lj ,li is the cost of predicting label li when the true label is lj regarding the n-th individual of D.
Cclassif is the cost of misclassi�cation.

Ctime is the cost of time (or sequence acquisition cost).

Ctotal is the total cost of time-sensitive classi�cation.

D is the training dataset.

Dsup is the training dataset for Supervised Learning.

e is the vector of evidence.

ε is the exploration rate.

fclassif is a classi�er.

f is an end-to-end early classi�er.

F is the last convolutional layer in QΘ.

fb is the b-th convolution �lter in F .

gt is the return from time step t.

γ is the discount factor.

15

16 CHAPTER 0. LIST OF SYMBOLS

h is a set of hyper-parameters.

H is the combinatorial space of hyper-parameters.

K is the number of distinct labels.

κ is the penalty coe�cient.

l is a label.

lk is the k-th label.

ln is the label of the n-th sample.

l̂pred is the predicted label.

L is the set of labels.

L is a loss function.

λ is the trade-o� parameter balancing between classi�cation quality and earliness.

M is the replay memory.

M̃ is the exhaustive replay memory.

M is the number of training episodes in DDQN algorithm in online learning.

Ma is the Class Activation Map for action a.

µ is the prioritized sampling parameter.

N is the number of training samples.

o is an observation.

O is the set of observations.

π is the policy.

π∗ is the optimal policy.

πΘ is the policy associated to QΘ.

P is the number of features observed in a sequence X.

P is the state transition model.

Q is the action value function (or Q-function).

Q∗ is the optimal action value function.

QΘ is the Deep Neural Network for the Q-function with parameters Θ.

r is a scalar reward.

17

R is the reward function.

Rd is the reward function for delay.

Rd,shape is the reward function for delay with reward shaping.

Rd,discount is the reward function for delay with reward discounting.

Rc is the reward function for classi�cation.

Rc,ins is the reward function for cost-insensitive classi�cation.

Rc,sen is the reward function for cost-sensitive classi�cation.

Rc,ed−sen is the reward function for example-dependent cost-sensitive classi�cation.

ρ is the prioritized storing parameter.

s is a state.

S is the state space.

t is a time step.

tpred is the time of prediction.

T is the maximal length of a sequence X.

Θ is the Deep Neural Network parameters.

u is the DNN uncertainty.

U is the number of parameters updates in DDQN algorithm in batch learning.

V is the value function.

xt is the vector of data point from X collected at time step t.

xpt is the p-th feature from X collected at time step t.

X is a complete temporal sequence.

Xn is the complete temporal sequence of the n-th individual.

X:t is a pre�x of temporal sequence X acquired until time step t.

y is an action label (de�ned for Supervised Learning).

yn:t is the optimal action to take at time step t on the pre�x Xn
:t.

Ψ is the emission observation probabilities.

18 CHAPTER 0. LIST OF SYMBOLS

List of Figures

2.1 Illustration of a MTS X ∈ RP×T . 33
2.2 PAA representation of a time series . 35
2.3 CNN architecture for multi-sensor signals . 36
2.4 Competitive costs of prediction time and classi�cation quality 45

3.1 Early classi�er as an end-to-end decision-maker model 53
3.2 Building of a training dataset Dsup for SL from the training dataset D 55
3.3 Interaction at time t between the agent and the environment 59
3.4 EC-POMDP . 65

4.1 DNN QΘ for the Q-function with parameters Θ 76
4.2 DQN and DDQN algorithms . 78
4.3 Evolution of the agent's policy on Gun-Point training dataset during training . 86
4.4 Labels distribution in ECG dataset . 89
4.5 Evolution of the agent's policy during training example n°1 90
4.6 Evolution of actions a ∈ A in the replay memoryM during training example n°1 90
4.7 Sequence acquisition time in the replay memoryM during training example n°1 91
4.8 Evolution of the agent's policy during training example n°2 92
4.9 Sequence acquisition time in the replay memoryM during training example n°2 92
4.10 Evolution of actions a ∈ A in the replay memoryM during training example n°2 93
4.11 Evolution of the agent's policy during training example n°3 94
4.12 Evolution of actions a ∈ A in the replay memoryM during training example n°3 94
4.13 Sequence acquisition time in the replay memoryM during training example n°3 95

5.1 Prioritized storing and prioritized sampling management strategies. 101
5.2 Optimized DDQN algorithm for EC in online learning 103
5.3 Optimized DDQN algorithm for EC in batch learning 106
5.4 Labels distribution in the industrial sets of training, validation and testing . . . 108
5.5 Two-dimensional t-SNE embedding of the indutrial training set 109
5.6 Example of performance metrics from one training of the agent 110
5.7 Distribution of performance metrics from DDQN-baseline, DDQN-ps, DDQN-ei

and DDQN-ps-ei on the validation set . 112
5.8 Evaluation of top-5 policies from DDQN-baseline, DDQN-ei, DDQN-ps and

DDQN-ps-ei on the test set . 114
5.9 Set of DNNs {f1,Θ, · · · , fT,Θ} with parameters Θ trained for static classi�cation

at all time steps . 116

19

20 LIST OF FIGURES

5.10 Evaluation of top-5 policies of the early classi�er agent and top-5 static DNN
classi�ers . 117

6.1 Class Activation Map . 120
6.2 DNN QΘ for the Q-function with parameters Θ 122
6.3 Labels distribution in the industrial sets of training, validation and testing . . . 124
6.4 Two-dimensional t-SNE embedding of the training dataset 124
6.5 CAMs on a partial test MTS X:46 with reference label l5 126
6.6 CAMs on a partial test MTS X:34 with reference label l1 127
6.7 CAMs on a partial test MTS X:77 with reference label l1 128
6.8 Q-values on a partial test MTS X:46 with true label l5 131
6.9 Q-values on a partial test MTS X:48 with true label l1 132
6.10 Q-values on a partial test MTS X:55 with true label l3 133
6.11 Bayesian Neural Network . 135
6.12 Bootstrapped Neural Network . 135
6.13 Learned value distribution during an episode of Space Invaders 136
6.14 Classi�cation of the rotated digit 1 at di�erent angles between 0 and 180 degrees137
6.15 DNN classi�er with softmax activation vs. prediction of evidence 138
6.16 DNN QΘ with a multi-branch architecture for prediction of evidence and Q-values140
6.17 Labels distribution in the simpli�ed industrial sets of training, validation and

testing . 141
6.18 Two-dimensional t-SNE embedding of the simpli�ed training set. 142
6.19 Q-values and evidence prediction on a test MTS X:28 with true label l4 143
6.20 Q-values and evidence prediction on a test MTS X:12 with true label l2. 144
6.21 Q-values and evidence prediction on a test MTS X:48 with true label l2 146

A.1 Evaluation of top-5 policies from Mshaping and Mdiscount on the test set 169
A.2 Distribution of performance metrics from Mshaping and Mdiscount on the vali-

dation set . 170

C.1 CAMs on a partial test MTS X:40 with reference label l1 173
C.2 CAMs on a partial test MTS X:16 with reference label l7 174
C.3 CAMs on a partial test MTS X:77 with reference label l2 175

E.1 Example of a DNN architecture for the policy of the agent 180
E.2 Example of a multi-branch architecture . 181

List of Tables

2.1 Confusion matrix of a multi-class classi�cation problem 37
2.2 Cost matrix of a multi-class classi�er . 38

3.1 Reward function de�nition Rc for classi�cation actions a ∈ Ac 70
3.2 Reward function de�nition Rd for delay action ad. 72

4.1 Composition of ECG, Gun-Point and Wafer datasets from UCR archive 82
4.2 Evaluation of optimal policies on Gun-Point, Wafer and ECG testing sets . . . 88

5.1 Memory and episode management strategies of original DDQN and optimized
DDQN algorithms in online learning . 99

5.2 Memory and episode management strategies of original DDQN and optimized
DDQN algorithms in batch learning . 105

5.3 Statistical comparison between DDQN-baseline, DDQN-ps, DDQN-ei and
DDQN-ps-ei . 113

A.1 Statistical comparison between Mshaping and Mdiscount performance metrics . . 169

B.1 Evaluation of optimal policies trained with A3C algorithm on testing sets from
UCR Archive. 172

21

22 LIST OF TABLES

Prelude

The thesis topic is about early classi�cation of temporal sequences with reinforcement learning
methods. This chapter is dedicated to those of you who frowned excessively or tilted their
head from one side while reading the thesis title. We want to demonstrate that the thesis
topic is easy to understand. It is neither barbaric nor wacky. It relates to something humans
experience everyday, without realizing it. Before we go through a long journey of thoughts,
experiments and analysis together, let's demystify the thesis' main components: temporal
sequences, classi�cation, early classi�cation and reinforcement learning. In the following, we
explain and illustrate each one of these components so that you can relate to the thesis topic.
For this purpose let us make a few demonstrations.

You daily process temporal sequences.

A temporal sequence is a sequence of information collected over time. Temporal sequences are
everywhere, recorded or simply processed as they go. We daily collect and process information
over time. This information can be of various type. For example, it can be sequences of sounds
� when we listen to people, to music, to the news. It can be sequences of words � when we
read a book. It can be sequences of images � when we watch a movie or when sitting in a
train and watching the landscape passing by. It can be sequences of numbers � when we look
at the evolution of the score in a basketball game.

What makes a temporal sequence di�erent from other data is that the order of the infor-
mation makes sense and is critical for our overall understanding. Mixing the items in your
shopping list won't have the same impact as mixing the words in a book.

You daily classify temporal sequences.

Temporal sequences can be associated to some labels. For example, a music can be associated
to its title, its singers, its time, its style. A piece of news can relate to education, politics,
media, public health or society. The evolution of the score in a basketball game leads to a
winner. To classify a temporal sequence means to assign a label. So the last time you listened
to a song and recognized the band, you classi�ed a temporal sequence.

You daily early classify temporal sequences.

To early classify a temporal sequence means to classify before you get the full content of the
sequence. You early classify temporal sequences when you associate a label to an incomplete

23

24 CHAPTER 0. PRELUDE

data. The last time you listened to a song and recognized the band before the end of the song,
you early classi�ed a temporal sequence.

You daily learn by reinforcement.

To learn by reinforcement means to take some actions in an uncertain environment, to ob-
serve the consequences of your actions and hopefully to learn from it. Humans experience
reinforcement learning everyday. They seek to behave optimally so that they get the most out
of a situation. Their choice of action is often dictated by past experiences. For example, when
you learned to ride a bike, you experienced a lot of feedback and rewards from your decisions.
You felt excited when you stayed on the bike for long distances or when you rode towards
your target destination, leading to large rewards. You felt frustrated or even hurt when you
fell from the bike, leading to poor rewards. All the attempts made you learn the right way
to hold your bike, the right speed to put, the right orientation for the handlebar, etc. with
always the same natural objective in mind: to get the most out of the situation, which here
can mean holding for the longest time without falling and reaching your target destination.

The last and all-in-one argument.

This chapter aimed at explaining each one of the thesis' main components. But actually, there
is no need to, because you already are familiar with temporal sequences, classi�cation, early
classi�cation and reinforcement learning. And we could have done an all-in-one demonstration.
Whether you once played to the Miming Game, to the Pictionary game, or made a sports
bet, you used reinforcement learning to early classify temporal sequences during these times.
Putting a label on your friend's drawing or imitation, predicting the winner: these all are
classi�cation tasks. Remember, to classify means to assign a label to a data. What about the
data you used? All the predictions you made were based on incoming evidence brought by
your friend and by your favorite sports team. At Pictionary, it was the sequence of movements
of your friend leading to the progressive elaboration of the drawing. For the sports bet, it
was a series of match results. All these data are temporal sequences. And the decisions you
made, the precise time at which you �nally took your chance, arise from a succession of past
experiences. You might have experienced games when you hurried too much and made bad
guesses. Or at the opposite you might have experienced games when you had the right answer
in mind but took too long and missed the win for a few seconds. These past experiences made
you learn to compromise between speed and con�dence.

What about the thesis objectives?

The thesis objective is to design algorithms capable of early classifying temporal sequences.
Such algorithms have to be able to analyze and �nd meaningful information in sequences even
if they are not complete. They have to be able to associate some labels to the sequences. They
have to determine the labels as quickly as possible, using the fewest number of observations.
They have to compromise between delaying their predictions to be more con�dent, or rushing
to make fast guesses. Given some sets of examples to learn from, the algorithm has to be able
to specialize in all applications and classi�cation tasks.

Chapter 1

Introduction

This thesis investigates the use of Reinforcement Learning to solve the problem of early clas-
si�cation (EC) of temporal sequences. It was conducted through a CIFRE agreement signed
between GIPSA-lab, FEMTO-ST and the industrial partner bioMérieux.

1.1 The importance of sequential data analysis

Over the past few years, more and more data have been produced and stored everyday in
all business domains. Extracting knowledge from data has thus become one of the hottest
research topic of the century. Data can come with di�erent formats. It can be available
all at once, as a set of independent data points, each one being attached to quantitative or
qualitative features. Or data can be a set of ordered data points, and the order plays an
important role. These are referred to as sequential data and are at the core of this
thesis. A sequence is de�ned as a succession of data points appearing in a speci�c order.
Contrary to other data types, sequences have complex temporal dependencies and the position
of a data point in the sequence matters. Stock market, sensor data, speech signals, video, text,
genes � all are sequential data.

1.1.1 Sequential data taxonomy

In the literature, several appellations are employed and the taxonomy depends on the type,
dimension, and indexing of data points in the sequence [108].

According to the indexing. In many application �elds, data arrive sequentially over time.
The sequences are so called temporal sequences or time series. The features are indexed by
time and the time index can relate to minutes, hours, years, etc. Well-known examples of time
series are records of air pollution, electricity consumption, or sales statistics which are often
monitored over time. Other application �elds collect sequential data that are not indexed
by time, such as texts and genomic data which are respectively a succession of words and
nucleotides.

According to the dimension. When a single value is collected at each time step (or at each
index), the sequence is quali�ed as univariate. Otherwise, when the sequence records a vector
of values at each time step, it is multivariate.

According to the type. Depending on the type of data points, the sequence is described
as categorical or symbolic when they take value in a �nite set (e.g. a DNA sequence with

25

26 CHAPTER 1. INTRODUCTION

nucleotide as data points). It is quali�ed as continuous or numeric when they are real values.
As an example, a text is an ordered set of words � it is an univariate symbolic sequence.

A video an ordered set of frames, each frame being a set of numerical pixels with values
between 0 and 255 � it is a multivariate time series.

In this doctoral work, we mainly focus on multivariate time series, but we seek
to develop a method that can be generalized to other types of sequential data.

1.1.2 Application �elds

Finance, medicine, statistics, econometric, seismology, meteorology, geophysics � all business
domains are concerned. Traders daily process �nancial time series such as stock prices.
Cardiologists handle electrocardiograms which are recordings of the electrical activity of
the heart over time [40]. Network security engineers analyze sequences of log �les from the
machines. Moreover, over the last years, streaming data has been gaining an increasing
attention both in industry and in academia due to its wide range of applications (e.g. transac-
tions monitoring for fraud detection, sensor measurements for predictive maintenance, social
networks feeds for corporate reputation management, mobile applications for geolocation
systems, IoT for health monitoring, etc.), and these data are a form of never-ending sequences.

In this doctoral work, we aim to develop a methodology that is not restricted to
one application in particular, but rather which can easily be transposed to various
applications involving temporal sequences.

1.1.3 Some challenges of sequential data analysis

Because temporal sequences are widely produced in all business domains, sequential data
analysis has been largely studied over the past decades [2, 30, 54, 56]. A wide range of
methods were proposed in order to extract knowledge from sequences, either for exploratory
or predictive approaches such as classi�cation, forecasting, regression or clustering. Despite
many years of research on this topic, sequential data analysis still remains a highly topical
subject with a lot of challenges � from the representation of these high-dimensional data
into smaller representation space (in order to ease data visualization or model learning), to
time-sensitive classi�cation, also called early classi�cation.

Regardless of the objective, sequences are challenging data for which many questions can
arise. First, sequential data are generally collected dynamically over time, with new data
points completing the sequence progressively. Knowing that sequential data can therefore be
of variable length, and even incomplete, the question is how to handle this dynamic temporal
dimension.

Second, sequential data are high-dimensional data [30]. Each successive data point can be
considered as an additional dimension in the representation space. Consequently, a sequence
easily becomes very large as the number of time step (or more generally index) increases.
Being able to extract meaningful information from these high-dimensional data, also called
feature extraction, is fundamental in many Machine Learning algorithms. Some of them indeed
necessitate to transform the data into a more representative and smaller space.

1.2. A RISING NEED FOR EARLY CLASSIFICATION OF TEMPORAL SEQUENCES27

Finally and as presented before, the data points in sequential data are highly correlated due
to temporal dependencies. This particularity requires speci�c methods of features extraction
that can learn these dependencies in the data points. As a result, many studies in the literature
address the problem of temporal sequence analysis and features selection, such as k-gram
for DNA and protein sequences [108], shapelets for time series [36, 107, 110, 113], Fourier
transform for periodic signals [3], etc.

1.2 A rising need for early classi�cation of temporal sequences

In many applications, sequences can be associated to a label. For example, electrocardiograms
can come from a healthy or sick patient. A sequence of log �les can correspond to a regular
normal use of the system or to a cyber attack. The objective then becomes to model the
relationship between the data points evolution over time and its label, known as sequence
classi�cation problem. The model mapping from the sequence to the label is called a classi�er.
A popular example in the literature is the classi�cation of Electroencephalograph (EEG)
signals in order to identify mental states of the patients [63].

For decades, researchers were interested in conventional sequence classi�cation for which
the classi�er is given the entire sequence before predicting the label. From the 2000s, new
motivations appeared. Temporal sequences are high dimensional data with a lot of data points.
Generally, data points arrive sequentially over time and their acquisition can be costly. Using
fewer data points during the analysis could reduce the cost of acquisition. Moreover, it is
critical for some applications to infer labels as early as possible so that early actions can be
initiated. Such time sensitive applications are for example related to medical diagnosis for
which early treatments have to be adopted [51, 80], disaster prediction to anticipate security
measures, intrusion detection to protect against computer attacks, etc.

Generally, motivation for EC lies in the fact that it is not always required to observe an
entire sequence in order to predict its label. The meaningful information can be contained early
in the sequence and additional data points are valueless for classi�cation. As an example, the
authors in [40] argue that "newborn infants who had abrupt clinical deterioration as a result of
sepsis and sepsis-like illness had abnormal HRC and SNAP that worsened over 24 hours before
the clinical suspicion of sepsis. A strategy for monitoring these parameters in infants at risk
for sepsis and sepsis-like illness might lead to earlier diagnosis and more e�ective therapy".

As a conclusion, EC of temporal sequences with measurements collected dynamically over
time is of prime importance in time-sensitive applications. When each measurement can be
costly or when it is critical to act as early as possible, there is a need for methods to
make fast online predictions, and this is the topic research that will be addressed
in this thesis.

The EC problem is challenging. First, it di�ers from conventional sequence classi�cation
in its necessity to both predict a label and choose the length of sequence that is needed
to perform classi�cation. Second, it faces a trade-o�. The more data points are used for
classi�cation, the more accurate it can be. Nevertheless, the acquisition is more expensive
and the prediction is delayed. Consequently EC is an optimization problem with con�icting
objectives. In this doctoral work, we aim at proposing a method for EC that can
handle this trade-o� and adjust the relative importance of classi�cation accuracy
vs. speed, independently for each application.

28 CHAPTER 1. INTRODUCTION

1.3 General objectives of the thesis

In this doctoral work, we aim at solving the EC problem and it is assumed that a training
dataset is available, with a set of complete sequences and their label. The objective is to
propose an early classi�er capable of performing classi�cation using as few data points in a
sequence as possible. In the remainder of the document, we refer to an early classi�er as a
solution to the EC problem.

We focus on proposing an end-to-end early classi�er, i.e. a single model that can
directly map an incoming incomplete sequence to the decision to predict, and in particular to
a classi�cation label. We therefore discard the strategies which decompose feature extraction
from classi�cation and prediction decision, as traditionally addressed in methods from the
literature [7, 8, 20, 38, 39, 41, 70, 71, 79, 107, 110].

Industrial application The thesis is related to an industrial application which involves
some speci�cities regarding the classi�cation problem:

� Data are multivariate time series,

� There are more than two labels and they are ordered,

� Labels are unequally represented in the training set,

� Classi�cation errors carry some costs, depending on the true and predicted label. The
costs can vary between the samples, depending on additional information on the data.

While the objective is to solve the general problem of EC of temporal sequences,
we will develop a method that can address the industrial application speci�cities.

1.4 Research hypothesis

In this doctoral work, we address the EC problem as a decision to classify an incomplete
sequence or a decision to postpone the prediction. Consequently, we address EC from a
sequential decision-making point of view. The early classi�er becomes a model which
receives and analyses incoming (yet incomplete) sequences, and sequentially takes some
actions: either to classify or to wait for additional data points. Moreover, we frame EC as an
optimization problem between two competitive objectives: to classify using fewer data points
and to make accurate predictions. An early classi�er has to make a decision compromising
between the classi�cation accuracy and its earliness, and the decision has to be adapted to
each sample individually.

We base this doctoral work on the research hypothesis that the EC problem
formalized as a sequential decision-making problem can be solved with Deep Re-
inforcement Learning, a popular discipline for solving complex decision-making problems
such as playing video games [42, 44, 47, 68, 73, 100], robot navigation [11], medical diagnosis
[80], and autonomous vehicle driving [91].

1.5. PLAN OF THE MANUSCRIPT 29

1.5 Plan of the manuscript

The plan of the manuscript is the following:

� In Chap. 2, we �rst introduce temporal sequences and speci�cally multivariate time
series. We then de�ne classi�cation and speci�cally multi-class, imbalanced, ordinal
and cost-sensitive classi�cation. Finally, we de�ne the objectives of EC, introduce its
trade-o� and formalize an optimization problem. Throughout the chapter, we propose
a literature review on how existing methods address the data and the problem.

� In Chap. 3, we frame EC as a sequential decision-making problem. We then argue why
Supervised Learning is not appropriate for the problem and we show that the latter can
be addressed with Reinforcement Learning. Speci�cally, we de�ne a Partially Observable
Markov Decision Process (POMDP) �tting the competitive objectives of classi�cation
earliness and accuracy. We propose a strategy to address cost-sensitive learning and to
set the trade-o� of classi�cation accuracy vs. speed through rewards de�nition.

� In Chap. 4, we solve the POMDP by training an early classi�er agent, an end-to-
end Reinforcement Learning agent. The agent has to learn to make adaptive decisions
between classifying incomplete sequences now or delaying its prediction to gather more
data points. It is trained with a value-based approach, the Double Deep-Q-Network
(DDQN) algorithm [100], which aims at approximating the agent's behavior function
(its policy) with a Deep Neural Network (DNN) combined with Q-learning [104] and the
use of a replay memory. We evaluate the method on a time series benchmark [21] and
we show some illustrations on the problem of imbalanced replay memory when training
the agent.

� In Chap. 5, we adapt the existing DDQN algorithm to train the agent with both online
and batch Reinforcement Learning. To that end, we introduce three strategies in relation
to a more robust replay memory management. Speci�cally, we make use of an adapted
prioritized sampling and prioritized storing when performing experience replay and we
rede�ne episode initialization. We then conduct experiments on an industrial dataset
composed of multivariate time series. In experiments, we also compare how a static
naive DNN trained to classify at static times performs in terms of accuracy vs. speed
compared to the equivalent network trained with adaptive decision-making capabilities.

� In Chap. 6, we propose tools to interpret the decisions made by the agent, i.e. its policy.
First, we apply the Class Activation Map method [116] to highlight the data points in
a test sequence that contribute the most to the agent's predictions. We then provide
visualizations on the predictions made by the agent, on test sequences, and show some
of their dynamics. Finally and as a perspective for future work, we apply the method
introduced in [89] to measure the uncertainty of a DNN prediction in the context of a
classi�cation problem, and we adapt it to the EC problem.

� In Chap. 7, we conclude on the doctoral work and give some perspectives for future
studies.

30 CHAPTER 1. INTRODUCTION

Chapter 2

Analysis of the early classi�cation

problem of multivariate time series

This chapter aims to de�ne the EC problem raised by this doctoral work and to present main
notations. Literature related to the problem is presented throughout the chapter. A major
focus of this doctoral work involves studying input data described by multivariate time series
(MTS) generated dynamically, which means that input data are progressively enriched by
additional multivariate data points. Sec. 2.1 de�nes the data to be processed. Additionally,
this work raises a classi�cation problem described in Sec. 2.2 and which is:

� multi-class (i.e. there are two or more labels),
� class-imbalanced (i.e. some labels in the training set are under-represented),
� ordinal (i.e. labels are ordered),
� example-dependent cost-sensitive (i.e. misclassi�cation involves some costs that depend
on the true label, the predicted label and additional information on the data) and

� time-sensitive (i.e. collecting data points in the time series is costly and therefore the
amount of acquisitions required to make a prediction has to be minimized).

The classi�cation problem being time-sensitive, the �nal objective of this work is to early
classify input time series (TS) with as few data points as possible while ensuring the quality
of the classi�cation. The objectives of EC are presented in Sec. 2.3 which introduces the
competitive costs of early and accurate classi�cation, and describes the optimization problem
to be solved. In Sec. 2.4, we review related work from the literature on the EC problem on TS.

This chapter focuses on the de�nition of the EC problem applied to MTS which will be at
the core of this thesis. However, we specify that one of the general objectives of the thesis is
to be able to apply the developed method on other type of sequential data and on which we
might not have expertise.

2.1 Data de�nition

The problem of the thesis involves temporal sequences as input data. A temporal sequence is
a vector of data points indexed by time. It can be of various type depending on the nature
of the data (see Chap. 1). In the following of this section, we speci�cally de�ne MTS which
are the type of temporal sequences at the core of the industrial problem. We nevertheless
specify that, in order to be able to generalize the method to sequences of images in a future

31

32 CHAPTER 2. PROBLEM ANALYSIS

industrial study, we will propose in Chap. 3 a method that can be easily generalized
to various types of temporal sequences.

2.1.1 Multivariate time series

De�nition 2.1.1 (Time series). Let X = (x1, · · · ,xT) be a time series with maximal length
T ∈ N+. At each time step t ∈ [1, T], the data point xt in a sequence X is a vector of P ∈ N+

features, such that xt = (x1
t · · ·xPt)ᵀ, with aᵀ being the transpose of a vector a.

TS are a certain type of data with one or several time-dependent features. Contrary to
basic machine learning problems on static data, TS are a particular type of data having
speci�c characteristics that need to be taken into consideration. First, TS are data for
which the features are observed over time. The temporal order of the data points is of prime
importance. Data points in these dynamic data are no longer independent: each data point in
a TS is dependent on previous data points. Second, when analyzed in its raw representation,
that is to say in time domain, each data point in the sequence can be considered as one
dimension of the representation space. This often leads to very large representation space.

When P = 1 the TS is univariate (UTS) and there is a single time-dependant feature.
When P > 1, it is multivariate and there are more than one time-dependant features.
The P features are observed simultaneously at each time step and they are not necessarily
independent. Therefore, MTS are more complex data than UTS because they involve two
types of relationships: the temporal relationship between successive data points and the
relationship between the di�erent features.

We focus on MTS X ∈ RP×T such that P > 1:

X =


x1

1 · · · x1
T

...
. . .

...

xP1 · · · xPT

 (2.1)

Because data from the industrial application are measured on a biological process that
evolves over time, we focus on MTS that are non-stationary (see Def. 2.1.2).

De�nition 2.1.2 (Stationary and non-stationary time series). A stationary time series is a
time series which has statistical properties such as the mean, variance and auto-correlation all
constant over time. A non-stationary time series is one for which statistical properties change
over time.

In Sec. 2.1.3, we will review existing work on TS analysis. Speci�cally, we will discuss how
to analyze those time-dependent features that can easily reach high dimensions, how to reduce
their representation space and how to learn the temporal dependencies. We will discuss the
application of standard methods on the data and we will motivate the interest of Deep Neural
Networks to learn both temporal and features relationships in the multivariate sequences.

2.1.2 Partial time series

A speci�city of the problem is that we do not observe all the data points in the MTS at once.
Rather, the problem involves temporal sequences that are generated dynamically, meaning

2.1. DATA DEFINITION 33

that the data points arrive sequentially. When the temporal sequence is not fully acquired,
we say that we observe a partial sequence, or a pre�x of the sequence (see Def. 2.1.3).

De�nition 2.1.3 (Partial time series, or pre�x). At time step t ≤ T , we observe the pre�x
X:t ∈ RP×t which is the �rst t data points in the sequence X, such that X:t = (x1, · · · ,xt).

Following the previous de�nition of X as a MTS, such that X ∈ RP×T , its pre�x X:t can
be written in the matrix form:

X:t =


x1

1 · · · x1
t

...
. . .

...

xP1 · · · xPt


t≤T

(2.2)

Given previous notations, we have X = X:T and X refers to a complete sequence for which
all its data points have been collected. In other words, X has been observed until time T .
Fig. 2.1 summarizes the notations introduced in this section.

𝑿:𝑡 (𝒙𝑡+1, … , 𝒙𝑇)

t

(𝒙1, … , 𝒙𝑡 , … , 𝒙𝑇)

𝒙𝑡 = (𝑥𝑡
1, … , 𝑥𝑡

𝑃)

Figure 2.1: Illustration of a MTS X ∈ RP×T . In this example, the maximal length is
T = 77 and the number of features is P = 5.

In conclusion, the method of this doctoral work has to analyze input data which have a
�xed number of features, P , but which can have a variable temporal dimension depending on
the pre�xes length t ∈ [1, T]. However, the temporal dimension is bounded by T .

2.1.3 Related work on time series analysis

Generalities TS analysis has been widely studied over the past decades. Many domains
collect measures over time leading to sequential data in �nance, meteorology, seismology,

34 CHAPTER 2. PROBLEM ANALYSIS

econometric, medicine, etc. Literature on TS analysis and more generally on temporal se-
quence analysis is large and depends the nature of the sequence (univariate/multivariate,
stationary/non-stationary, symbolic/numeric, etc.) and on the problem to be solved (classi�-
cation, forecasting, regression, clustering etc.) [2, 26, 30, 54, 56].

TS are high-dimensional data with time-dependent features (see Sec. 2.1). There is a
need for TS representation in order to both condense information contained in the sequences
in lower dimensional spaces, and extract temporal dependencies from the data. First, and
outside the methods from the literature, a solution is to use expert knowledge and extract
some speci�c hand-crafted features on the TS. These features are application-dependent and
often discovered once the data have been widely manipulated. Nevertheless, this approach
is based on data knowledge and is not always possible depending on the application. In the
following, we conduct a literature review on methods from the literature for TS representation
and features extraction.

Frequency approaches Some traditional approaches focus on re�ecting global and local
characteristics in the data. Discrete Fourier Transform is a popular method in the signal
processing community. It seeks to capture the overall shape of a sequence [3] by decomposing
it into a set of sine and cosine waves therefore allowing a representation in the frequency
domain. The �rst Fourier coe�cients (low frequencies) represent the main characteristics of
the sequence while the last coe�cients (high frequencies) model details and noise. A major
limitation of this approach is that Fourier coe�cients are meaningful when the sequences have
periodic trends, which is often not the case in many real-life applications. We remind that
the thesis involves non-stationary MTS and consequently they are not adapted to this
transformation.

Another approach is the Discrete Wavelet Transform which seeks to capture both the overall
shape of the sequence and the position of its patterns in time [16]. The transformation applies
to non-stationary data and is highly �exible due to a large class of wavelets. However, the
choice of a wavelet class is essential and requires some data expertise. In this doctoral work,
we seek to develop a method that can be applied to data on which the knowledge
of the user is minimal, which leads us to exclude the use of this transformation.

Nevertheless, we emphasize that applications that could easily bene�t from these transfor-
mations can transform their input data into these new domains, and then apply the thesis
methodology proposed in Chap. 3.

Window-based approaches The literature also o�ers a lot of research on window-based
representation [2, 52, 53, 59, 62]:

� Piecewise Aggregate Approximation (PAA) consists in segmenting a TS into windows of
equal size and averaging the subsequences [52], as illustrated in Fig. 2.2 extracted from
[62].

� Adaptive Piecewise Constant Approximation is an alternative to PAA for which the
windows can have variable length [53].

� Symbolic Aggregate Approximation consists in applying a PAA to the TS and then
mapping the segments into symbols in order to be more memory e�cient [59].

� As for Piecewise Linear Representation, it approximates a TS by pieces of linear functions
[2].

These transformations allow to see the general trend in data and to reduce dimension space

2.1. DATA DEFINITION 35

in a very simple way. They are very useful when the sequences are large and when their data
points belong to the same ranges of values between consecutive time steps. In the particular
case of the thesis, we focus on sequences with less than a thousand data points
and for which signi�cant changes can be observed between two consecutive time
steps, limiting the interest of window-based representation.

Figure 2.2: PAA representation of a time series [62]. A time series C (shown in black
curve) is represented by the mean values of equal segments (shown in red segments). The
dimensionality of C is reduced to 6 segments (bounded by the dashed lines).

Model approaches Other traditional approaches aim to �t a model on TS data and then
summarize the data by the model parameters. The choice of a model depends on the nature
of the TS. A known example is the Hidden Markov Model (HMM), a type of generative
model which supposes that a sequence is made of observed variables generated by hidden
variables [83]. HMMs can deal with variable length sequences but they cannot take into
account long-term dependencies because of the Markov assumption on the hidden variables.
Another example is the Auto-regressive Integrated Moving Averages (ARIMA) model which
aims to estimate the trend and seasonality in a TS [50], by making the assumption of data
stationary. The thesis applies to complex non-stationary data with high variability
which can not be summarized by those models.

More recent research papers seek to apply deep learning on TS data [26, 33, 57, 103]. In
the past few years, due to the increasing amount of available public data and the development
of processing power, Deep Neural Networks (DNNs) have largely been used to �t various
types of data through complex non-linear models. For instance, DNNs have been used as
generative models to learn data representation [13, 57]. This is the purpose of auto-encoders,
a type of DNNs which seek to encode data into a small latent space and then to reconstruct it
from its latent representation. Once trained, an auto-encoder can be used to summarize the
information in a sample data, and reduce its dimension, by taking its latent representation.

One of the main advantage of DNNs is that they can be used on raw complex data directly,
for classi�cation or regression tasks, without the need to reduce the representation space nor
pre-compute features. In the particular case of sequences, Recurrent Neural Networks are a
popular type of Neural Network that can learn temporal dependencies in its input data, such
as Long Short Term Memory networks [35]. Convolutional Neural Networks (CNN) have also
been used to learn sequential patterns in the sequences such as [111], in which the authors learn
temporal convolutions from raw human activity signals, as illustrated in Fig. 2.3 extracted

36 CHAPTER 2. PROBLEM ANALYSIS

from their publication. In this work, we will propose to learn EC models represented
by DNN (see Chap. 4). Speci�cally, we will use CNN to learn both temporal
relationships in data points, and relationships between the di�erent features of
the multivariate sequence.

Figure 2.3: CNN architecture for human activity recognition problems [111]. Input
data to the CNN are multichannel time series signals.

Public benchmarks Due to the popularity of TS data in many application �elds, public
archives of benchmark datasets are available. The University of California, Riverside (UCR)
archive [21] is composed of 128 datasets with UTS. The University of East Anglia (UEA)
archive [9] is composed of 30 datasets with MTS. In this work, we will evaluate the
proposed method on a public benchmark and we will demonstrate its applicability
to datasets for which we have no expertise.

2.2 De�nition of the classi�cation problem

2.2.1 Generalities about the classi�cation model

In this doctoral work, we address a classi�cation problem on the temporal sequences. We
therefore suppose that each temporal sequence X is associated to a label l ∈ L, where L is
a �nite set of K ∈ N+ distinct labels. Let D be an available training dataset composed of
N ∈ N+ pairs of (complete) temporal sequences X and their label l:

D = {(Xn, ln)}n=1..N (2.3)

The sample pair (X, l) is referred to as an individual, example, or sample from the dataset.
(Xn, ln) is the n-th individual of D. Furthermore, we distinguish between l supported by a
superscript (such as ln), referring to the label of an individual, and l supported by a subscript
(such as lk), referring to a label from L.

The objective is to build a classi�er (see Def. 2.2.1) which is able to associate a temporal
sequence X to its label l. Speci�cally and following Def. 2.2.1, the classi�cation problem is to
learn a model which best estimates the function fclassif from training data.

De�nition 2.2.1 (Classi�er). A classi�er is a mathematical function fclassif mapping a tem-
poral sequence X to its label l, such that fclassif : {X} → L. We note l̂ the prediction made
by the classi�er on the temporal sequence X, such that l̂ = fclassif (X).

2.2. DEFINITION OF THE CLASSIFICATION PROBLEM 37

In this document, we refer to l̂ as the predicted label on X, while l is the true or refer-
ence label ofX. Also, l̂n refers to the classi�er prediction on the n-th individual of the dataset.

In traditional machine learning, once the model is learned on a training dataset, it is then
evaluated on a testing dataset to assess its performance on new unknown data. To that end,
evaluation metrics can be calculated given ground truth (i.e. the reference labels) and the
predicted labels. The selection of a metric for performance evaluation highly depends on the
nature of the classi�cation problem: binary vs. multiclass, balanced vs. imbalanced, cost-
insensitive vs. cost sensitive. In all cases, it can be useful to look at the confusion matrix
(see Def. 2.2.2) on the test dataset to quickly highlight the weaknesses of the classi�er. The
confusion matrix reports the classi�er's performance on each label, as illustrated in Tab. 2.1.
It can help to visually detect drop in performance on certain labels. The task is then to
carefully derive a metric from the confusion matrix to summarize the general performance of
the model.

De�nition 2.2.2 (Confusion matrix). A confusion matrix is a two-dimensional table where
each row represents an instance of the predicted label and each column represents an instance
of the true label. Incrementing the confusion matrix at row i and column j means that the
classi�er predicted label li on a sample with true label lj .

True label

l1 · · · lK Total

Predicted label

l1 n11 · · · nK1
∑K

k=1 nk1

· · · · · · · · · · · ·

lK n1K · · · nKK
∑K

k=1 nkK

Total
∑K

k=1 n1k
∑K

k=1 nKk N

Table 2.1: Confusion matrix of a multi-class classi�cation problem with
L = {l1, · · · , lK} and N samples in the dataset. The total number of correct predictions
is
∑K

k=1 nkk.

Both model learning and model evaluation have to take into account the nature of the
classi�cation problem. In the next section, we will de�ne the speci�cities of that of the thesis
(in relation to the industrial application), namely multi-class, ordinal, imbalanced, example-
dependent cost sensitive and time-sensitive classi�cation. In Sec. 2.2.3, we will review existing
methods on how to learn and evaluate a classi�cation model coping with those speci�cities.

2.2.2 Speci�cities of the classi�cation problem

2.2.2.1 Multi-class classi�cation

The problem involves a multi-class set of labels L:

L = {l1, ..., lK} such that K ≥ 2 (2.4)

When L is a set of two values, the classi�er is binary. In the particular scope of the thesis, L
is a set two or more labels and the classi�er is multi-class.

38 CHAPTER 2. PROBLEM ANALYSIS

2.2.2.2 Ordinal classi�cation

The set of labels L is supposed to be ordinal :

L = {l1, ..., lK} such that l1 < l2 < ... < lK (2.5)

Having ordinal labels means that data associated to a label lk are closer to data with labels
lk−1 or lk+1, than data with more distant labels (lk−2, lk+2, etc.).

2.2.2.3 Class-imbalanced classi�cation

One of the thesis speci�cation is that the datasetD from the application is imbalanced, meaning
that the labels are not equally represented in the training dataset, as illustrated in Fig. 5.4.

2.2.2.4 Example-dependent cost-sensitive classi�cation

Misclassi�cation costs A classi�er fclassif makes a classi�cation error, or misclassi�es,
when it predicts a wrong label on a sample pair (X, l), such that fclassif (X) 6= l. Let clj ,li be
the cost of predicting label li on a sample with true label lj . The cost matrix (see Def. 2.2.3 and
Tab. 2.2) represents the set of classi�cation costs for all possible predictions. The de�nition
of these costs depend on the nature of the classi�cation problem, namely cost-insensitive (see
Def. 2.2.4) or cost-sensitive (see Def. 2.2.5).

De�nition 2.2.3 (Cost matrix). A cost matrix is a two-dimensional table where each row
represents an instance of the predicted label and each column represents an instance of the
true label. The value clj ,li at row i and column j represents the cost of predicting label li on
a sample with true label lj .

True label

l1 · · · lK

Predicted label

l1 0 · · · clK ,l1
... · · · 0 · · ·

lK cl1,lK · · · 0

Table 2.2: Cost matrix of a multi-class classi�er with L = {l1, · · · , lK}.

De�nition 2.2.4 (Cost-insensitive classi�cation). In a cost-insensitive learning context, all
types of classi�cation errors are assumed to be equally important:

∀li, lj ∈ L, clj ,li =

{
1 if li 6= lj

0 if li = lj

De�nition 2.2.5 (Cost-sensitive classi�cation). In a cost-sensitive learning context, the type
of errors made by the classi�er is more or less penalized depending on the label:

∃li, lj , lk ∈ L, clj ,li 6= clj ,lk (2.6)

2.2. DEFINITION OF THE CLASSIFICATION PROBLEM 39

In relation to the industrial application, the thesis problem involves a cost-sensitive
classi�cation problem. An example of cost-sensitive application is given in [61] with cancer
prediction in medical diagnosis. The classi�cation error of declaring a patient with cancer
as a healthy patient is far more serious than rising a false alarm. Because of a missed
opportunity for treatment, the cancer patient risk dying and therefore the "cost" induced by
this classi�cation error is large. Other examples of cost-sensitive classi�cation problems are
those dealing with class-imbalanced datasets and ordinal labels. As with the cancer predic-
tion example, cost-sensitive classi�cation problems can intuitively imply a rank between the
classi�cation errors. However, deducing the true cost of an error is not always straightforward.

As part of this thesis work, the classi�cation problem addresses an ordinal set of labels.
We know that l1 < l2 < ... < lK , meaning that label l1 is closer to label l2 than label lK . As
a result, the classi�cation problem introduces an order of importance into the classi�cation
errors and thus in the misclassi�cation costs. For example, for the label l1, the costs are
ordered such that:

cl1,l1 ≤ cl1,l2 ≤ cl1,l3 ≤ · · · ≤ cl1,lK (2.7)

Example-dependent cost-sensitive classi�cation In addition to class-dependent costs,
the thesis application also addresses varying cost errors depending on the data itself. To
illustrate an example of example-dependent cost-sensitive classi�cation problem, we use the
same example of cancer prediction in medical diagnosis as presented above. We can suppose
that the classi�cation error of declaring a patient with advanced cancer as a healthy patient is
more serious than declaring a patient with cancer at its early stages as a healthy patient. In
this example, the misclassi�cation is the same: the predicted label is healthy while the true
label is cancer. Nevertheless, the misclassi�cation severity di�ers between the two patients,
and the misclassi�cation cost is therefore dependent on both the type of error and the data.

Let cn,lj ,li be the cost of predicting label li when the true label is lj regarding the n-th
individual of D. The costs due to misclassi�cation vary between samples (each sample has its
own cost matrix) such that:

∃n, ñ ∈ [1, N], ∃li ∈ L :

{
ln = lñ

cn,ln,li 6= cñ,lñ,li
(2.8)

These example-dependent costs of misclassi�cation are de�ned by the industrial application,
from a business expertise and not by learning. They will be used in the application of the
method from Chap. 3 (see Eq. 3.32). In Sec. 2.2.3, we will review existing methods on
cost-sensitive learning to involve the example-dependent costs during both model learning
and evaluation.

2.2.3 Related work on the classi�cation problem

2.2.3.1 Time series classi�cation

TS classi�cation is a major topic of research in the literature on TS analysis [26, 103, 108].
A popular classi�cation problem is the classi�cation of Electroencephalograph (EEG) signals
in order to identify mental states of the patients [34, 63]. In Sec. 2.1.3, we introduced

40 CHAPTER 2. PROBLEM ANALYSIS

some models to learn temporal relationships in TS and we motivated the use of DNN. More
information about TS classi�cation models can be found in [6].

2.2.3.2 Performance metrics for multi-class classi�cation

For binary classi�cation problems, methods from the literature use di�erent performance met-
rics in order to evaluate the classi�ers, such as accuracy, sensitivity, speci�city and precision
for which de�nitions can be found in [95]. Some performance metrics for binary classi�cation
problems can be extended to the multi-class case, by measuring performance individually on
each label and summarizing it into a confusion matrix, illustrated in Tab. 2.1. Combining
performances on each label into a single metric can then be assessed through macro-averaging
or micro-averaging [95].

Micro-averaging gives each prediction an equal contribution to the overall score and con-
sequently re�ects the classi�er performance on large classes. For example, accuracy Accmicro
computed by micro-averaging on a dataset D = {(Xn, ln)}n=1..N and with l̂n the classi�er
prediction on the n-th individual is de�ned by:

Accmicro =

N∑
n=1

1(l̂n = ln)/N (2.9)

On the opposite, macro-averaging computes the performance scores on each label lk ∈
{l1, · · · , lK} and then averages these scores. For example, we de�ne the accuracy score Acck
on a label lk ∈ {l1, · · · , lK} by:

Acck =

∑N
n=1 1(l̂n = ln)× 1(ln = lk)∑N

n=1 1(ln = lk)
(2.10)

and accuracy Accmacro computed with macro-averaging is calculated over accuracy scores Acck
on each label lk ∈ {l1, · · · , lK}:

Accmacro =
K∑
k=1

Acck/K (2.11)

As a consequence, macro-averaging then gives each class an equal contribution to the overall
score. It re�ects the classi�er performance on each class, then giving more weight to small
classes than micro-averaging. During experimental evaluations, we will either measure
performance through macro or micro accuracy depending on the dataset. In the
industrial application, we will complete the model evaluation with performance metrics related
to the application.

2.2.3.3 Class-imbalanced classi�cation

The literature o�ers several solutions for the class-imbalanced classi�cation problem. First,
the imbalance issue can be taken into account at the data-level [18, 61, 65]. The simplest
strategies are to re-sample the dataset, either by under-sampling (i.e. removing samples from
the majority labels) or by over-sampling (i.e. adding samples from the minority labels).
Under-sampling may cause potential useful samples to be removed from the training set and
therefore loss of information for the classi�er to train on. In opposition, by replicating samples

2.2. DEFINITION OF THE CLASSIFICATION PROBLEM 41

from the minority class in the dataset, over-sampling can cause the classi�er to �t too well on
these replicates and then cause over-�tting.

Second, the imbalance issue can be taken into account at the algorithm-level. Some algo-
rithms are known to perform well on classes with few samples, such as ensemble techniques
which refer to the combination of several classi�ers [32]. AdaBoost is a popular ensemble
method which combines weak classi�ers trained on a dataset with modi�ed distribution [29].
The idea is to iteratively train a classi�er on the dataset and then re-weight the samples on
which the classi�er performed badly. The next classi�er is trained on a modi�ed distribution
of the dataset, with previously misclassi�ed samples being more represented.

Another approach is to solve the class-imbalanced classi�cation problem through cost-
sensitive learning, introduced in Sec.2.2.2.4, by imposing a higher cost penalty on the minority
class.

In this thesis work, we will be inspired by resampling methods from the lit-
erature which seek to achieve a class equilibrium in the data. In Chap. 3, we will
propose a method based on the training of a classi�cation model whose learning base evolves
during its training, and we will ensure in Chap. 5 that the learning base remains balanced in
its representation of the labels with a resampling strategy at the data level.

2.2.3.4 Ordinal classi�cation

When the classi�cation problem is ordinal, a naive approach is to assign an increasing numeric
value to each class in the order of the classes, and then to solve a regression task with metrics
such as Mean Square Error or Mean Absolute Error for which de�nitions can be found in [15].

[28] proposes to transform the multi-class ordinal classi�cation problem for which there
are K ordered classes into K − 1 binary classi�cation problems. The k-th binary problem
seeks to predict on a sample data if its label is higher or lower than the label lk. The �nal
prediction is then performed by combining each of the K − 1 probabilities.

In this doctoral work, we address a classi�cation problem which is not only
ordinal but also cost-sensitive and, therefore, we propose to take into account
the order of labels in the de�nition of misclassi�cation costs. The more two labels
are distant from each other, the higher the cost of misclassi�cation between these two labels
(Eq. 2.7). As for the costs of misclassi�cation, we will choose to integrate them during model
learning, as mentioned below.

2.2.3.5 Cost-sensitive learning

Similarly to class-imbalanced problems, the literature propose balancing strategies [25, 61] for
cost-sensitive applications. The methods aim at resampling the training dataset accordingly
to the misclassi�cation costs at the data level. Then, the newly distributed training dataset
can be used to learn a classi�er with conventional cost-insensitive classi�cation algorithms.

Other literature studies [61, 92] propose a solution to cost-sensitive learning, speci�cally for
classi�cation models which can predict a probability on the label. They seek to determine an
optimal probability threshold from which the class has to be predicted. To that end, empirical
thresholding allows to determine on the training dataset the threshold values to select in order
to achieve optimal classi�cation costs.

42 CHAPTER 2. PROBLEM ANALYSIS

Example-dependent cost-sensitive learning Literature on classi�cation problems with
varying misclassi�cation costs across the data itself is recent and limited to a few applications,
such as credit card fraud. In [10], the authors propose a method which incorporates the
misclassi�cation costs during training of a decision tree. They modify the impurity measure
and the pruning strategy used to build the tree, making them consider a new splitting criterion
which takes into account the misclassi�cation costs.

Other approaches consist modifying the training dataset before training the algorithm,
either through over-sampling or under-sampling [115]. A sample from the training dataset is
either copied or rejected according to its normalized misclassi�cation cost.

In this doctoral work, we will propose a method which consists in training a
classi�cation model that seeks to maximize a cost function related to misclassi�-
cation costs (see Chap. 3, Eq. 3.32, Eq. 3.33). The method will be based on costs which
are de�ned in advance and not learned.

2.3 De�nition of the early classi�cation problem

2.3.1 Time-sensitive classi�cation

The thesis problem addresses time-sensitive classi�cation, that is, acquiring or waiting for an
additional data point xt+1 to complete a pre�xX:t is costly. For example, in microbiological di-
agnostics, each data acquisition is expensive because of the experiments it requires to conduct.

Let fclassif be a classi�cation model and l̂ its prediction on the pre�x X:t, such that
l̂ = fclassif (X:t). In other words, we consider that the model classi�ed the sequence at time
t, using its �rst t data points (x1, · · · ,xt). We de�ne the total cost Ctotal of classifying the
sequence X from the sample (X, l) into a label l̂ and at time t by:

Ctotal((X, l), l̂, t) = Ctime(t) + Cclassif ((X, l), l̂) (2.12)

where:

� Ctime(t) is the cost of acquiring or waiting for the t �rst consecutive data points
(x1, · · · ,xt) in the sequenceX, before classifyingX:t. It is determined by the application
and will be referred to as the cost of time.

� Cclassif ((X, l), l̂) is the cost of predicting label l̂ on data X with true label l, also referred
to as the cost of classi�cation. It depends on the nature of the classi�cation problem,
either cost-sensitive or cost-insensitive, and may be example-dependent. As explained
in Sec. 2.2.2.4, the thesis addresses an example-dependent cost-sensitive classi�cation
problem and we de�ned the cost of classi�cation on the n-th sample (Xn, ln) from D as
Cclassif ((Xn, ln), l̂) = cn,ln,l̂.

In conventional classi�cation problems, the response time does not matter and therefore the
cost of time is zero, Ctime(t) = 0. By contrast, in the context of time-sensitive classi�cation,
there is a non-zero cost of delay or feature acquisition, Ctime(t) 6= 0, and the time of classi-
�cation therefore becomes a target to optimize. The objective is then to early classify input
data with as few data points as possible while ensuring the quality of the classi�cation. We
will detail the EC objectives in the next section.

2.3. DEFINITION OF THE EARLY CLASSIFICATION PROBLEM 43

2.3.2 General objectives of early classi�cation

Classi�cation of incomplete sequences We �rst de�ne an early classi�er as a model
capable of analyzing incomplete temporal sequences. It has to be able to classify a TS
at any time, from the beginning of its acquisition to its completion. An early classi�er is
then a function fclassif capable of performing classi�cation on any pre�xes of the sequences
{X:1,X:2, ...,X:t, ...,X:T }:

∀t ∈ [1, T], fclassif : {X:t} → L (2.13)

Minimization of prediction time Second, we choose to de�ne an early classi�er as a
model seeking to optimize the time of prediction. It has to perform the classi�cation as early
as possible, i.e. using the smallest pre�xes of sequences. In Sec. 2.4, we will review how
methods from the literature address the EC problem, and we will show that time does not
always appear in the objectives de�nition nor in the methods optimization. By contrast, in
this work, we want time to both appear in the optimization of the method, and be a criterion
whose importance is adjustable by the user.

Adaptive prediction time Additionally, we consider that the time of prediction has to
be individually decided on each sample, and not globally on the entire training set. Indeed,
some sequential data might need more time than others to be accurately classi�ed. On these
complex data, the early classi�er has to perform classi�cation later (using more data points)
than on easier data. Therefore, the time of classi�cation has to be adapted and optimized
individually on each sample.

Multiple optimization In this work, we consider that an early classi�er simultaneously
seeks to minimize the two competitive costs of classi�cation and earliness. It aims at predicting
as quickly as possible so that it lowers the cost induced by prediction time. It also aims at
classifying as accurately as possible so that it achieves the lowest misclassi�cation costs. These
two competing objectives and the cost associated are presented in more details in Sec. 2.3.3.

2.3.3 The early classi�cation trade-o�

Formulation of EC as an optimization problem We de�ne an early classi�er as a
model capable of individually analyzing pre�xes of sequences, predicting the optimal time of
prediction t∗ and optimal label l̂∗ de�ned by:

(t∗, l̂∗) = argmin
t∈[1,T],l̂∈L

Ctotal((X, l), l̂, t) (2.14)

= argmin
t∈[1,T],l̂∈L

(Ctime(t) + Cclassif ((X, l), l̂)) (2.15)

where:

� l̂∗ is the predicted label using the pre�xX:t∗ , such that l̂∗ = fclassif (X:t∗). Consequently,
the predicted label depends on the time of prediction, and an increase or decrease in
this time may change the predicted label.

44 CHAPTER 2. PROBLEM ANALYSIS

� Ctime is the cost of time introduced in Eq. 2.12. It is dependent of time and independent
of the predicted label.

� Cclassif is the classi�cation cost introduced in Eq. 2.12. It is dependent of the predicted
label, and therefore indirectly of time.

Following this de�nition, EC is an optimization problem involving a joint optimization of two
costs.

Competitive costs An early classi�er has to simultaneously optimize the two competitive
objectives of classifying accurately while using the smallest pre�xes. The objectives of accurate
and fast classi�cation involve competitive costs. Indeed, a classi�cation performed at an earlier
time step costs less in data points acquisition, or in waiting time, but is likely to cost more
(or equally) in classi�cation quality due to fewer information in the shortest pre�x.
Ctime is the cost related to the time of the prediction. The origin of this cost comes either

from the acquisition cost of new data points in the sequence, or more generally from the delay
of classi�cation, speci�c to each application. We consider that Ctime increases during the
sequence acquisition, such that for two time steps t1, t2 ∈ [1, T] with t1 < t2, predicting a
label at time step t2 is more expensive than at time step t1, regardless of the predicted label:

Ctime(t1) ≤ Ctime(t2) (2.16)

Indeed, at time step t2, the pre�x X:t2 is composed of more data points than the pre�x X:t1

at time step t1, which means that the user waited longer and/or required more data points
for X:t2 leading to an increase in Ctime.

On the opposite, X:t2 is supposed to be a richer sequence than X:t1 . We can suppose
that performing classi�cation on the pre�x X:t2 is made easier by the presence of more data
points. We then suppose that the result of classi�cation fclassif (X:t2) is more accurate than
fclassif (X:t1). Cclassif is the cost related to misclassi�cation. We consider that Cclassif de-
creases during the sequence acquisition:

Cclassif ((X, l), fclassif (X:t1) ≥ Cclassif ((X, l), fclassif (X:t2)) (2.17)

We note that this assertion may not always be true for applications where noise is added to
the data from a certain amount of data points. However, we hypothesize that up to a certain
amount, the acquisition of new data points makes the classi�cation problem simpler. We
therefore consider that generally, when Ctime increases, then Cclassif decreases, and conversely,
which makes the costs competitive, as illustrated in Fig. 2.4.

2.4 Related work on early classi�cation of temporal sequences

2.4.1 The �rst research paper on early classi�cation

Before 2002, researchers on the topic of sequence classi�cation focused on optimizing accuracy
of classi�cation models for temporal data. The topic of early classi�cation �rst appears in [5]
with a method capable of making predictions on variable length sequences and consequently on
pre�xes of TS. The authors use an ensemble of simple literals (the base classi�ers) indicating
if the TS increases, decreases or remains in a speci�c range of value given some time intervals.

2.4. RELATED WORK ON EARLY CLASSIFICATION OF TEMPORAL SEQUENCES45

t
(Acquisition time in the sequence)

𝐶𝑡𝑖𝑚𝑒

𝐶𝑐𝑙𝑎𝑠𝑠𝑖𝑓

Amount of data points
in the sequence

Figure 2.4: Competitive costs of prediction time and classi�cation quality. The more
data points are acquired in the sequence (shown in light green curve), the more expensive the
acquisition or delay (shown in blue curve). Nevertheless, the classi�cation is likely to be more
accurate and its cost decreases (shown in dark green curve).

These base classi�ers are combined together through an adaptation of boosting algorithm
which results in a �nal classi�er being a linear combination of the literals.

By omitting the literals with unknown results in the linear combination, this approach
enables incomplete examples to be classi�ed and the authors manage to classify partial TS.
However they are not interested in �nding the shortest pre�x which will ensure a reliable
prediction and their method does not consider earliness as a factor to optimize,
contrary to the thesis objective.

2.4.2 Shapelet-based methods

The authors in [107] are the �rst to propose a method which takes into account the trade-o�
between earliness and accuracy of classi�cation. Their method focuses on symbolic sequences,
i.e. sequences for which the data points are symbols (e.g. a DNA sequence with nucleotide).
It is based on the identi�cation of optimal patterns in the sequences that are frequent, early
and distinctive. These patterns are then used in an association rule classi�er or a decision
tree classi�er. The authors showed that their method is e�cient when applied to symbolic
sequences, however it does not give good results on numerical sequences which need to be
discretized, often responsible for information loss.

The problem of extracting sub-sequences in numerical sequences that would be relevant for
classi�cation is addressed in [113]. In this paper, the authors seek for useful "shapelets" which
correspond to a sub-sequence associated to a distance threshold, with a high discriminative
power between labels. The shapelets are then used as nodes of a decision tree for classi�cation.

An adaption of this work was proposed by [110] who sought for local shapelets that were not
only distinctive but also early. Their method is called Early Distinctive Shapelet Classi�cation
(EDSC) and it classi�es a sequence as soon as it matches with one of the most useful pre-
selected shapelets. [38] proposes to complete this approach with measures of con�dence on the

46 CHAPTER 2. PROBLEM ANALYSIS

shapelets' capacity to classify input examples. When a sequence matches several shapelets,
their method estimates the classi�cation uncertainty for each class represented by the matched
shapelets and assign the label of the class with lowest uncertainty.

In [36], the authors generalize the use of local shapelets proposed in [110] for the problem
of EC on MTS. They introduce a method called Multivariate Shapelets Detection. Just as
univariate shapelets, multivariate shapelets are multiple subsequences of the MTS, where each
subsequence is extracted from exactly one feature. Contrary to [36] where all segments of a
multivariate shapelet have to be extracted in the same sliding time window at the same time,
the authors in [43] are interested in �nding useful shapelets for each feature independently.
Their goal is to �nd, for each feature independently, distinctive shapelets that are early in the
sequences. These shapelets are then used as core features in classi�ers.

The advantage of shapelet-based solutions [36, 38, 43, 60, 107, 110, 112, 113] is that the
classi�cation is based on real patterns extracted from the sequences, which facilitates the
interpretation of the classi�cation results. However, these solutions are often time consuming
and they are suitable for applications where classes can be easily discriminated by some typical
patterns in the sequences.

In this doctoral work, we want to develop a method that can be used on complex
data for which there might be no discriminating patterns in raw data without
transformation. Moreover, in the industrial application, we are dealing with complex data
with a large pattern diversity and for which classes overlap (see Fig. 5.5).

2.4.3 Distance-based methods

In [109], the authors aims at adapting the highly competitive nearest neighbors approach
on sequence classi�cation to EC with a method called Early Classi�cation on Time Series
(ECTS). During the training phase and for each sequence in the training set, the method
�nds the earliest time from which the sequence becomes stable in terms of neighbors. During
the testing phase, a partial sequence is classi�ed as soon as it has a neighbor which was stable
at that time during training.

The method proposed in [109] involves univariate data and it does not propose adaptation
for multivariate data. To adapt this solution to multivariate data, the user has to �nd a
distance metric adapted to his problem and his data. In the industrial application of the
thesis, we would have to adapt the solution to our complex dataset for which the sequences
can be shifted in time and for which some features are more important. A related work can be
found in [66] where the authors classify MTS with the Dynamic Time Warping measure to �nd
the best alignment in time between two sequences and by combining it with the Mahalanobis
Distance to assign non-constant weight to each feature of the sequence. In [66], the authors
outlined the high computational cost of their framework.

In this doctoral work, we want to develop a method which allows the user
to adjust the relative importance of prediction time compared to classi�cation
quality, which is not proposed in the method from [109].

2.4.4 Probabilistic methods

In [7, 79], the authors address EC as a problem of classi�cation with con�dence from in-
complete information. Their solution is based on probability forecasting and on linear and
quadratic discriminant functions as classi�ers. They de�ne the reliability of a prediction as

2.4. RELATED WORK ON EARLY CLASSIFICATION OF TEMPORAL SEQUENCES47

the probability that the prediction on a incomplete example would be the same than the one
on the complete example. During the prediction phase, the method classi�es a partial TS as
soon as the estimated reliability of the prediction exceeds some user-de�ned threshold.

In [39], the authors propose a hybrid approach for the task of EC. They generate mem-
bership likelihoods on all segments of the sequence with Hidden Markov Models and then
use those membership likelihoods as input to Support Vector Machines to predict the class
probabilities. At test time, if the estimated class probabilities reach a user-de�ned threshold
of con�dence, the TS is classi�ed.

Although in [7, 39, 79] and other probabilistic approaches [72] the user can have an impact
on the earliness of the prediction by releasing the amount of con�dence requested to the
classi�er, these methods do not explicitly take time into account in the classi�cation decision.
In this doctoral work, we want the prediction time to directly appear as a criteria
to minimize in the method.

In [70, 71], the authors combine a set of probabilistic classi�ers trained for each time step
in the sequence with a stopping rule. Their stopping rule indicates if the classi�cation can be
trusted or delayed. It is based on time and on the probabilities estimated by the classi�er.
Speci�cally, it takes into account the amplitude of the greatest probability and at the di�erence
between the two largest probabilities, re�ecting if the label with largest probability is highly
trusted and if this label stand out from other possibilities. The stopping rule's parameters are
learned with a genetic algorithm by minimizing a cost function which takes into account the
costs of accuracy and earliness.

In this paper, the authors can directly balance the importance of earliness over accuracy
with the expression of a cost function taking into account the two objectives of an early
classi�er. However, since the classi�ers are trained at each time step, this method requires
that the training and testing sequences are aligned in time. In this doctoral work, we do
not want to train a set of classi�ers where each classi�er is dedicated to sequences
of speci�c length. Instead, we want a method that can simultaneously analyze
pre�xes of any size.

Additionally and in opposition to the authors' strategy of �rst optimizing the problem of
classi�cation, then that of the prediction time, we aim at developing a method which
can simultaneously solve these two sub-problems.

2.4.5 Ensemble methods

In [41], the authors introduce a method for EC which uses an ensemble of classi�ers. The
idea is to label a TS as soon as a pair of classi�ers agrees on the label. If the predicted label
di�er from a classi�er to another, the classi�cation results are rejected and the TS with a new
data point will be treated by a new pair of classi�er. By using a voting system, this method
ensures a certain con�dence in the classi�cation but it does not optimize the earliness of
the prediction.

2.4.6 Non-myopic methods

In opposition to the above mentioned methods which decide at each time step whether to
make a prediction or to wait for more measures in sequential data, the authors in [20] propose
a framework characterized as �non-myopic� which forecasts the (future) earliest time from

48 CHAPTER 2. PROBLEM ANALYSIS

which classi�cation can be made. The framework is built around a distance based method
combined with clustering and a series of classi�er trained at each time step.

The main disadvantage of the method lies in the clustering step which requires setting a
number of parameters and which can greatly a�ect the performance of the method if it is not
performed well. The same authors replace the clustering step with a segmentation method in
[8] but they argue that their method is suitable for large training datasets only.

2.4.7 Methods with Neural Networks

In [4], the authors analyze videos and want to infer the action represented in the sequence of
frames. Their goal is to infer the action label as soon as possible by using a portion of the
frames only. To do so, they train a Long Short-Term Memory (LSTM) neural network with a
modi�ed version of the entropy loss. Their loss takes into account time and aims at penalizing
false positives linearly over time.

At inference, they �x in advance the number of frames they will use for classi�cation and
they make use of an average pooling of predictions made by the network on these frames.
There is no decision of acquiring more frames or not in order to predict the action label.
In this doctoral work, we seek to provide prediction times individually on each
sample depending on their complexity and not globally on the entire training set.

2.4.8 Early classi�cation on other types of dynamic data

As opposed to static data, temporal sequences are dynamic data that can be sequentially
completed with new measurements. Classi�cation on other types of dynamic data has been
proposed by several authors which turned the problem of dynamic data classi�cation as a se-
quential decision problem, such as early or fast text classi�cation in [23, 114] and classi�cation
with costly features in [49, 80].

Formulated as "learning when to stop thinking and do something" in [81], this problem
was tackled by Reinforcement Learning. The authors are interested in "anytime algorithms"
that can be interrupted at any time and for which we assume that the longer they "think",
the better the quality of their response. In particular, the authors seek to build a policy that
decides if an anytime algorithm should continue thinking or if it should return its current best
answer. Their approach is policy-gradient-based and uses REINFORCE algorithm from [105].

In some applications featuring dynamic data, the acquisition of more data can be costly
or unnecessary. In text classi�cation for example, it is not always necessary to read an entire
document to classify its content. In [23], a Markov decision process (MDP) is formulated for
the problem of text classi�cation where it is not always necessary to read an entire document
to classify its content. By Reinforcement Learning using approximate policy iteration, the
authors propose a method that either continues reading a document sentence by sentence, or
classi�es it (using a support vector machine). Their method is shown to better accomodate to
small training datasets than standard non-sequential classi�ers. In [114] the authors train an
agent to classify texts as fast as possible and the agent is allowed to reread a sentence, read
sequentially, and skip one or several token in the text.

The approach proposed in [23] consists in deciding between the collection of a single feature
(the sentence) or the classi�cation. This work was extended to multiple features selection by
the same authors in [24]. The key idea is that some data points can easily be classi�ed using few
features while others would require more features to achieve an accurate classi�cation. This can

2.5. CONCLUSION 49

be of practical interest in various domains. In medicine for example, online symptom checking
for disease diagnosis requires such an algorithm to �nd key positive symptoms. REFUEL
algorithm proposed in [80] is a policy-based method using REINFORCE algorithm which
encourages a Reinforcement Learning agent to discover positive symptoms more quickly. The
authors incorporated a potential-based reward shaping in order to adapt the reward according
to the data points collected by the agent before and after making an action.

The problem of costly feature acquisition in the medical domain is also tackled in [48, 49]
where the authors propose to optimize the trade-o� between classi�cation accuracy and the
total feature cost using a Deep Reinforcement Learning based on Double Deep-Q-Network
algorithm from [100]. The authors demonstrate the capability of their algorithm to solve
classi�cation problems e�ciently. We will see that the solution proposed in Chap. 3 is close
to the research work from [48] published at the same time as this doctoral work.

2.5 Conclusion

In this chapter, we introduced the data to be processed during the thesis, the classi�cation
problem to be solved, and the objectives of EC.

We showed that temporal sequences are speci�c data for which it is necessary to use models
that can take into account the temporal relations in the data points. In the speci�c case of
MTS, the models must also take into account the relationships between the di�erent features
of the sequence. For this purpose and as part of a method that can be applied to data on
which we have no expertise, we identi�ed the interest of DNNs, among which CNNs are a
possible choice of model. We also showed that the data are all the more complex as they
arrive sequentially and therefore have variable lengths.

We de�ned the classi�cation problem of this doctoral work and we reviewed related work
from the literature. We presented methods for calculating classi�cation performance for multi-
class and imbalanced problems, especially with macro and micro-averaging on usual binary
classi�cation metrics. For the problem of imbalanced class, we will be able to draw on resam-
pling strategies from the literature that seek to create a balance in the data. For the problem
of ordinal and cost-sensitive classi�cation, we will propose in Chap. 3 a solution which di�ers
from those of the literature.

We showed that EC is an optimization problem that implies a trade-o� between classi�ca-
tion quality and earliness. Among the methods from the literature, we showed that none can
take into account all the speci�cities of the classi�cation problem. In the rest of this study,
we will therefore propose a method adapted to the precise problem of EC on MTS (and more
generally on temporal sequences of various types) when labels are multi-class, imbalanced,
ordinal and when classi�cation is example-dependent cost-sensitive.

50 CHAPTER 2. PROBLEM ANALYSIS

Chapter 3

EC formalization as a Partially

Observable Markov Decision Process

In Chap. 2, we de�ned and analyzed the problem of early classi�cation (EC) on multivariate
time series (MTS) which are the core data of the industrial application. We showed that
the thesis addresses time-sensitive applications (Sec. 2.3.1) for which EC is of primordial
importance. Indeed, time-sensitive applications seek to get a classi�cation result as early as
possible on incomplete data either to take early actions or to minimize some acquisition cost.
This is for example the case of medical diagnosis [37, 51, 80] which seeks to early identify
diseases in order to adopt early treatments, and the case of predictive maintenance [45] which
seeks to anticipate a machine's breakdown in order to minimize downtime.

In this doctoral work, we associate the problem of EC to applications which sequentially
collect temporal sequences with new data points arriving at each time step. We consider that
these applications are interested in making online decision, at each time step t, to perform
classi�cation on the partial sequence X:t (Eq. 2.2) or to delay classi�cation in order to get an
additional data point xt+1.

In this chapter, we propose a mathematical framework for the general problem of EC on
temporal sequences. We formalize EC as a sequential decision-making problem in Sec. 3.1. We
evaluate the suitability of both Supervised Learning (SL) and Reinforcement Learning (RL)
to solve the problem in Sec. 3.2 and Sec. 3.3. We show that the problem can be transposed
into a RL framework by de�ning a Partially Observable Markov Decision Process (POMDP)
for EC, noted EC-POMDP, in Sec. 3.4.

3.1 Formalization of a sequential decision-making problem

3.1.1 De�nition of the end-to-end decision model

We address EC as a sequential decision-making problem for which some actions have to be
taken: to classify or to wait. From an incomplete sequence X:t, the early classi�er can decide
to perform classi�cation now (at time t) or to delay prediction for at least one more time step
and get X:t+1 as an updated sequence.

51

52 CHAPTER 3. EC FORMALIZATION AS A POMDP

We propose to de�ne A as the set of possible actions. An action a ∈ A is de�ned over the
set Ac of classi�cation actions plus an additional action ad for delay:

A = Ac ∪ ad (3.1)

In this work, the set Ac of classi�cation actions is de�ned over the set L of labels lk, k = 1..K:

Ac = L (3.2)

If a = lk, then the action is to predict label lk.

We de�ne an early classi�er as an end-to-end decision-maker f which directly maps from
pre�xes of sequences to actions of classi�cation or delay (Fig. 3.1):

f : {X:t}t∈[1,T] → A (3.3)

The time of prediction on a sequence X is tpred. It is de�ned as the �rst time at which the
decision-maker f chooses a classi�cation action:

tpred = min
t∈[1,T]

{t | f(X:t) ∈ Ac} (3.4)

The predicted label on a sequence X is l̂pred. It is de�ned as the classi�cation action taken by
the decision-maker f at the time of prediction tpred:

l̂pred = f(X:tpred) (3.5)

We point out the di�erences between this problem de�nition and a classi�cation problem. A
classi�er fclassif : {X} → L maps a complete sequence to a label, while an early classi�er (a
decision-maker) f : {X:t}t∈[1,T] → A maps the pre�x of a sequence to an action.

3.1.2 Synthesis of the thesis objectives

Following the problem de�nition from Chap. 2 and its formalization as an end-to-end sequen-
tial decision-making problem, the aim of the thesis is to propose a methodology addressing
the following objectives:

� The task is to train an end-to-end decision-maker model f for EC. For that purpose,
the model has to directly map from pre�xes of sequences to classi�cation or delay, as
de�ned in Eq. 3.3.

� With tpred de�ned in Eq. 3.4 and l̂pred de�ned in Eq. 3.5, the model has to be a solution
of the optimization problem from Sec. 2.3.3:

(t∗pred, l̂
∗
pred) = argmin

t∈[1,T],l̂∈L
(Ctime(t) + Cclassif ((X, l), l̂))

with Ctime(t) is the cost of acquiring or waiting for the t consecutive data points
X:t = (x1, · · · ,xt) to perform classi�cation and Cclassif ((X, l), l̂) the cost of predicting
label l̂ on data X with true label l.

3.1. SEQUENTIAL DECISION-MAKING PROBLEM 53

� The user must be able to specify the relative importance of prediction time compared
to classi�cation quality.

� The model f has to be optimized simultaneously for the two sub-problems of classi�ca-
tion and prediction time, i.e. we will not optimize each sub-problem separately.

� The method has to address the thesis speci�cation detailed in Chap. 2. We remind
that data X:t are pre�xes of non-stationary MTS with P features and maximal length
T (Sec. 2.1). The set of labels L = {l1, ..., lK} is a �nite and ordered set of K ∈ N+

distinct labels with l1 < l2 < ... < lK . Labels are not equally represented in the training
dataset and classi�cation costs are both class-dependent and example-dependent (Sec.
2.2).

� In order to generalize the method to other applications, it has to be adapted to other
types of temporal sequences (other than MTS) and for which we have no expertise.

Partial sequence

𝑿:𝑡
at time t

Action at time t

Wait

Predict label 𝑙𝐾

…

Predict label 𝑙1

t t+1
End-

to-end
decision
model

 𝒇

t

𝑿:𝑡

Future (unknown)

data points
(𝒙𝑡+1, … , 𝒙𝑇)

𝑎𝑑

𝐴𝑐 End of sequence
acquisition

𝑿:𝑡+1

Figure 3.1: Early classi�er as an end-to-end decision-maker model. At time t of the
sequence acquisition process, the early classi�er receives a pre�x X:t (see Fig. 2.1) and chooses
an action a ∈ A, either to wait for an additional data point xt+1 in the incomplete sequence,
or to predict a label l ∈ L. Once the early classi�er chooses a classi�cation action a ∈ Ac, the
sequence is no longer acquired and the process ends.

54 CHAPTER 3. EC FORMALIZATION AS A POMDP

3.2 Limitations of Supervised Learning

In this section, we will investigate whether the decision-making problem of EC can be solved
with SL and we will show that it su�ers from incomplete supervision.

3.2.1 Background on Supervised Learning

SL is a branch of Machine Learning used to learn a model f that maps some data X to some
output variable y [14]. When the output variable y belongs to a �nite set of label, the task
is known as classi�cation. On the contrary, when the output variable y is a numerical value,
the task is known as regression. In both cases, learning a model f : X → y with SL requires
a training dataset of labelled data {(X, y)}, that is to say a set of samples with data X and
their true output variable outcome y. In order to evaluate how well a model f �ts the training
samples, its error is measured through a loss function L, such that L : {y} × {y} → R. With
ŷ = f(X) the model prediction on a sample pair (X, y), the loss on this sample is L(y, ŷ).

3.2.2 EC: a problem with incomplete supervision

The problem introduced in Sec. 3.1 is to learn an end-to-end decision-maker f for EC, such
that f : {X:t}t∈[1,T] → A, with A de�ned in Eq. 3.1. In this section, we investigate the
solution which consists in learning a model for f with SL. As mentioned above, SL algorithms
require a training set of sample pairs with input data and their output variable. The question
is therefore the following: how to build a training dataset for supervised learning of an
end-to-end early classi�cation model?

Given the de�nition of f (Eq. 3.3) as a model mapping sequence pre�xes to actions, a
training dataset to learn a model with SL has to be composed of sample pairs (X:t, y) with
X:t a partial sequence and y ∈ A the optimal action to take on this pre�x. We note this
dataset Dsup:

Dsup = {(X1
:1, y

1
:1), · · · , (X1

:T , y
1
:T), · · · , (XN

:1 , y
N
:1), · · · , (XN

:T , y
N
:T)} (3.6)

with yn:t ∈ A the optimal action to take at time t on the pre�x Xn
:t. We remind that we have

a training dataset D = {(Xn, ln)}n=1..N with pairs of complete temporal sequences X and
their reference label l. In the following, we will show that turning D into a dataset Dsup
for SL is not straightforward. It requires to �nd optimal action labels y ∈ A for each pre�x
{X:t}t∈[1,T], as illustrated in Fig. 3.2.

A trivial labelling is to associate all complete sequences X:T to the classi�cation action
associated to their true label l such that:

∀n ∈ [1, N], yn:T = ln (3.7)

Indeed, once the sequence is fully completed, there are no more additional data points to collect
and the only possible action is to classify the sequence. The optimal action is then to predict
the label associated to the sequence. We deduce that {(X1

:T , l
1), · · · , (XN

:T , l
N)} ⊂ Dsup.

What about optimal action labels on pre�xes of sequences? A �rst idea is to assign the
action of predicting the true label ln to each pre�x of the complete sequence Xn, regardless

3.2. LIMITATIONS OF SUPERVISED LEARNING 55

.

.

.

.

.

.

.

.

.

.

.

.

(𝑿𝑛, 𝑙𝑛)

𝐷

(𝑿1, 𝑙1)

(𝑿𝑁, 𝑙𝑁)

𝑛 = 1. . 𝑁

.

.

.
(𝑿𝑛

:𝑡, ?)

𝐷𝑠𝑢𝑝

(𝑿1
:1, ?)

(𝑿𝑁
:1, ?)

𝑛 = 1. . 𝑁
𝑡 = 1. . 𝑇

(𝑿1
:𝑇 , 𝑙1)

(𝑿𝑁
:𝑇 , 𝑙𝑁)

.

.

.

(𝑿1
:𝑡, ?)

(𝑿𝑁
:𝑡, ?)

𝑦𝑛
:𝑡

= 𝑎𝑑 ?

or
𝑦𝑛

:𝑡 = 𝑙𝑛?

Building of a
training dataset for
Supervised Learning

∀ 𝑛 = 1. . 𝑁
∀ 𝑡 = 1. . 𝑇,

Figure 3.2: Building of a training dataset Dsup for SL from the training dataset D.
D is composed of N pairs of complete sequences X and their true label l. In order to build
Dsup (of size N ×T), the problem is to label each pre�x Xn

:t with an action label yn:t ∈ Ac∪ad.
Trivial labelling is to associate complete temporal sequences X:T to their true label.

of its length. By doing so, we suppose that the model f is able to predict the true label at all
time steps in the sequence, which goes against the de�nition of the EC problem. Moreover, the
EC problem is not to classify a pre�x, but rather to make the decision to classify this partial
data (and consequently to stop its acquisition process) or continue to collect data points.

The challenge associated to partial sequences labelling for SL is the following. If we assign
the action of predicting label ln on pre�xes from Xn that are too short, we "ask" for the
model f to �nd a mapping between the partial data and the label, whereas the data has no
discriminative pattern for classi�cation yet. In other words, we "ask" for a mapping that does
not exists yet. Conversely, if we assign the action of correct label prediction on pre�xes that
are too long (and if we assign the action of delay for the time steps that precede), the risk
is to encourage the model f to provide slow predictions. Indeed, the model might learn to
recognize discriminative patterns that appear at late times in the sequences only. For this
reason, �nding the optimal time step from which the action of correct label prediction has to
be assigned is di�cult. It depends on each data and can vary between samples. It requires to
recognize from which time step the pre�x is composed of a discriminative pattern.

Generally, we consider that adding a sample pair (X:t, l) to Dsup means that X:t contains
a discriminant classi�cation pattern allowing to identify the label l. If not, the pre�x X:t has
to be labelled to the action of delay ad. Unfortunately these information are not available
without further e�orts.

In conclusion, the task of �nding when to assign the action of predicting the true label

56 CHAPTER 3. EC FORMALIZATION AS A POMDP

is not an straightforward. Finding optimal action labels on partial sequences {X:t}t<T is a
more di�cult task because, on these incomplete sequences, the model can chose an action
between delay and classi�cation.

The general conclusion is that we can transform the available dataset D into a dataset Dsup
for SL with N labelled samples (all related to complete sequences {X:T }) and N × (T − 1)
unlabelled instances (all related to partial sequences {X:t}t<T):

Dsup = {(X1
:T , l

1), · · · , (XN
:T , l

N),X1
:1, · · · ,X1

:T−1, · · · ,XN
:1 , · · · ,XN

:T−1} (3.8)

The training dataset for SL Dsup is therefore composed of samples for which labels are missing.
Given that we can not bring supervision on those samples, we have an incomplete supervision
on the problem.

3.2.3 Related work on Supervised Learning with incomplete supervision

3.2.3.1 Learning from domain knowledge

When the user has a good knowledge of the application and data, he can establish hand-
engineered rules and apply them to unlabelled samples for automated data tagging. As an
example, assuming that no valuable information are available in the pre�xes before time steps
below a threshold (t ≤ tthresh), the user can annotate the pre�xes {X:t}∀t≤tthresh with the
action label for delay ad such that {(X:t, ad)}∀t≤tthresh ⊂ Dsup.

This solution is however limited and presents drawbacks. First, �nding rules for automated
annotation depends on the application and requires a good knowledge of data. It does not
apply on complex data which are not easily understandable. Then, tagging samples with
hand-engineered rules can insert some errors or sub-optimal labelling in the training dataset.
This can lead to learning a model that is not optimal and consequently that does not solve
the optimization problem posed in Sec. 2.3.3. In the following, we review existing work from
the literature to train a model with SL when the dataset has unlabelled samples.

3.2.3.2 Learning from expert demonstrations

Some work in the literature propose solutions when an expert is available to demonstrate a
task or annotate unlabelled samples.

Behavior cloning Behavior Cloning [58, 77, 86] consists in learning from demonstration
and is used in applications for which humans can demonstrate the task of interest, such as
Autonomous Land Vehicle Navigation [82] or �ying an aircraft [69]. It supposes that an expert
is available and it learns a policy (Sec. 3.3.1) with SL using the expert's demonstrations.
More precisely, the idea is to observe some expert performing the task at stake, to collect its
demonstrations and then to learn to replicate its behavior. The expert is assumed to behave
optimally by picking the optimal action in every circumstances.

Behavior Cloning brings several limitations. First, the cost induced by the collection of
demonstrations from experts can be prohibitive in some applications. Second, it is possible
that we can not get demonstrations because we do not know how to behave optimally on the
task at issue. In both cases, setting a training dataset is not possible. Furthermore, another
limitation relates to performance. Behavior Cloning is used to replicate a behavior and not to
improve it, whereas for some applications we might want to perform better than the expert.

3.2. LIMITATIONS OF SUPERVISED LEARNING 57

Active learning Applications for which annotations and/or demonstrations from expert
can be collected under a limited budget can address the incomplete supervision issue with
Active Learning [76, 117]. The principle is that the learning algorithm can query an expert
to annotate some new data points. The algorithm selects unlabelled data or generates new
samples it wants to learn from [90]. In particular, it estimates which samples are the most
useful to improve the model.

As with Behavior Cloning, a limitation of Active Learning is the query cost along with
the assumption that an expert can optimally perform the task at hand. In the case of the
thesis, we have no annotations or demonstrations from experts. Behavior Cloning
and Active learning are not possible solutions to the problem.

3.2.3.3 Semi-Supervised Learning

Incomplete supervision can be solved with semi-Supervised Learning [17, 117, 118] which is a
form of classi�cation that can learn from datasets with unlabelled samples (without querying
experts). In general, semi-supervised algorithms are highly used in applications for which
unlabelled data are easy to collect while collecting labelled data is harder, expensive or time-
consuming. These algorithms make the assumption that labelled and unlabelled data come
from the same data distribution. They assume that clusters can be found in the data and
that two data points belonging to the same cluster have the same output variable.

In the particular case of the EC problem, labelled data are complete sequences while un-
labelled data are partial sequences. It is therefore expected that, because complete sequences
contain more data points than partial sequences, short pre�xes of sequences are unlikely to
belong to the same cluster data points than labelled data. Also, labelled data are restricted
to classi�cation actions. Action for delay is not annotated in the training dataset. As a con-
clusion, we think that semi-Supervised Learning is not a suitable solution for the
particular problem of incomplete supervision from Sec. 3.2.2, because labelled
samples exclude a whole class and are restricted to a sub-category of the data.

3.2.4 Conclusion

In this section, we showed that solving the end-to-end decision-making problem of EC with
SL necessitated to build a dataset Dsup with supervision on both actions of delay and classi-
�cation at all time steps in the sequences. We then argued that an optimal supervision can
be given on the complete sequences only, for which the decision-making problem is reduced to
a classi�cation problem. Without further e�orts, we lack supervision regarding the optimal
choice of action on partial sequences and, therefore, the problem of EC goes along with a
training dataset Dsup with unlabelled samples. Finally, we showed that addressing the incom-
plete supervision issue with SL is not straightforward. Either the solutions require an expert
for cloning or for annotations, or they are not applicable to the thesis problem, or they may
result in sub-optimal supervision by imprecise or false annotations.

In previous chapter, we showed that some approaches from the literature addressed the
EC problem in two steps, by isolating classi�cation from the decision to predict a label, and
used SL to solve the classi�cation problem. However, as argued before, we seek to optimize
the EC model in an end-to-end fashion, i.e. by optimizing the problems of classi�cation and
decision-making simultaneously.

58 CHAPTER 3. EC FORMALIZATION AS A POMDP

In the remainder of the study, we will seek for another solution than SL and we will show
that we can solve the decision-making problem of EC with RL in a more straightforward way.

3.3 Assets of Reinforcement Learning

In this section, we will show that the decision-making problem of EC can be solved within a
RL framework going through the de�nition of a Markov Decision Process (MDP).

3.3.1 Background on Reinforcement Learning

RL is an active �eld of research for sequential decision-making [97]. It is traditionally used
in games environment and has recently exhibited state-of-the-art results in these challenging
tasks [44, 68, 100, 102]. It is also highly used in robotics for various tasks, from navigation in
a room to grabbing objects [58].

RL refers to training an agent, also called a "decision-maker", to act optimally in an
environment so that it maximizes its rewards. The agent's behavior is dictated by its policy,
π, and the objective in RL is to �nd the optimal policy π∗ the agent has to follow in order
to maximize its rewards. To this end, the principle is to let the agent learn by successive
interactions with the environment, as described in the following.

3.3.1.1 Interaction between the agent and the environment

At each time step t ∈ N+, the agent receives the state st ∈ S of the environment among the
state space S. Then, the agent chooses an action at ∈ A among the action space A. The
choice of action at is dictated by its policy π:

at = π(st) (3.9)

with the policy π being a behavior function which returns the action a ∈ A to choose for each
state s ∈ S:

π : S → A (3.10)

As a response, the agent receives a reward rt from the environment according to the reward
function R:

rt = R(st, at) (3.11)

It also receives the new state of the environment st+1 ∈ S according to the state transition
model P :

st+1 ∼ P (st, at, .) (3.12)

Fig. 3.3 illustrates an interaction < st, at, rt, st+1 > at time t between the agent and the
environment. Generally speaking, an interaction refers to the tuple <state, action, reward,
new state>. The interactions between the agent and the environment go on until the agent
reaches a terminal state, noted sT .

The set of interactions between an agent and the environment, starting from an initial
state s1 to a terminal state sT is an episode e:

e =< s1, a1, r1, s2, a2, r2, s3, · · · , st, at, rt, st+1, at+1, rt+1, st+2, · · · , sT > (3.13)

In RL, the agent learns through trial and error during episodes of training.

3.3. ASSETS OF REINFORCEMENT LEARNING 59

2

Policy
𝝅

Agent

Environment

3

4

1

State 𝑠𝑡
at time t

Reward 𝑟𝑡
at time t

State 𝑠𝑡+1
at time t+1

Action 𝑎𝑡
at time t

Figure 3.3: Interaction at time t between the agent and the environment in a RL
framework. (1) The environment gives state st to the agent. (2) The policy π of the agent
determines the action at to choose. In response, the environment simutaneously gives (3) a
reward rt and (4) the new state st+1. The sequence of steps 1-2-3-4 forms one interaction.

3.3.1.2 Return, value, action value

In the RL framework, we de�ne the return gt at each time step t ∈ N+ as the sum of immediate
reward rt plus future discounted rewards γrt+1 + γ2rt+2 + · · ·:

gt =
∞∑
k=0

γkrt+k (3.14)

γ ∈ [0, 1] is the discount factor balancing immediate rewards versus future rewards.

The value of a state s ∈ S is de�ned as the expectation of return gt the agent can hope to
get starting from that particular state s and following its policy π:

Vπ(s) = Eπ[gt | st = s] (3.15)

The action value (or Q-value) of a state s ∈ S conditioned on an action a is de�ned as
the expectation of return gt the agent can hope to get by picking action a in state s and then
following its policy π:

Qπ(s, a) = Eπ[gt|st = s, at = a] (3.16)

60 CHAPTER 3. EC FORMALIZATION AS A POMDP

The Q-function indicates, for a given policy π, if selecting an action a in a particular state s
is likely to have good repercussions in the following steps by getting large rewards or not. For
two actions a1 and a2, the Q-function indicates which action is the optimal choice to make.
If Qπ(s, a1) > Qπ(s, a2), then action a1 is a better choice to make when the agent is in state
s than action a2 because it is expected to lead to larger rewards. Another possible expression
of the Q-value Qπ(s, a) is given by the Bellman equation [97]:

Qπ(s, a) = Eπ[rt + γQπ(st+1, π(st+1))|st = s, at = a] (3.17)

This expression allows to express the action value of a state st in function of the action value
of its following state st+1 in a recursive form. If the action value of st+1 is known, then the
action value of st can easily be calculated by only knowing the reward rt received in st for
choosing at. This expression is at the basis of many RL algorithms [67, 68, 97, 104].

3.3.1.3 Environment description as a Markov Decision Process

An environment for RL is formally described by a Markov Decision Process (MDP). To learn
an optimal policy π∗ in an environment means to solve its MDP.

De�nition 3.3.1 (Markov Process). A Markov Process is a stochastic model which describes
a sequence of random variables s1, s2, s3, · · · that are related to each other.
A �rst-order Markov Process veri�es the Markov property: it assumes that the future
is independent of the past given the present, such that P(st|st−1, , · · · , s1) = P(st|st−1).
A m-order Markov Process assumes that the future depends on the m past states:
P(st|st−1, · · · , st−m, · · · , s1) = P(st|st−1, · · · , st−m).

De�nition 3.3.2 (Markov Decision Process). A Markov Decision Process is de�ned by the
tuple (S,A, R, P, γ) with:

� S the state space. It contains all the possible states of the environment. The state of
the environment at time t is st ∈ S. In a MDP, all states are Markov (Def. 3.3.1, such
that P(st+1|st) = P(st+1|s1, · · · , st).

� A the action space. It contains all the possible actions that can be chosen in the
environment.

� R : S ×A → R the reward function. It gives the received reward according to the state
of the environment and the action chosen in this state.

� P : S×A×S −→ [0, 1] the state transition model. It gives the probability of transitioning
from a state to another in the environment depending on the choice of action. P (s, a, s′)
gives the probability of transitioning from state s to state s′ when the action is a.

� γ ∈ [0, 1] the discount factor. It is used to discount the future rewards when calculating
the value of a state (Eq. 3.15). It represents the importance that is given to the present
compared to the future. If γ = 0, only the present matters.

3.3. ASSETS OF REINFORCEMENT LEARNING 61

3.3.1.4 Environment description as a Partially Observable Markov Decision Pro-
cess

A particular case of MDPs are Partially Observable Markov Decision Processes (POMDPs).

De�nition 3.3.3 (Partially Observable Markov Decision Process). A POMDP is de�ned by
the tuple {S,A, R, P, γ,O,Ψ}. It has two more components than a MDP:

� O the set of observations,

� Ψ : S × O → [0, 1] the emission observation probabilities. Ψ(o|s) gives the probability
of observing o ∈ O when the state is s ∈ S.

In a POMDP, the agent can not access all the information about the state s ∈ S of the
environment [46, 97]. Instead, it receives partial or noisy information about the state. This
partial information is an observation o ∈ O.

Common examples of partially observable applications are robot navigation [11] and video
games. For example in Atari games [42, 47, 68, 100], a single frame of the game screen contains
information about the position of elements of interest (the player, the enemies, the obstacles,
etc.) but it does not provide information about their movement. Using a single frame, it is
not possible to know the direction and speed. To reduce partial observation, methods from
the literature generally concatenate the current frame with several previous frames so that
the agent can infer additional information about movement and speed.

On the subject of partial observability in Mario video game, Guillaume exclaims "It is
always annoying to fall on the Hammer brothers and receive their projectiles. If I had known
earlier, I would have sent a �reball".

In POMDPs, the policy π of the agent is no longer de�ned over the state space S (because
the agent can not access all information about the states) but rather over the observation
space O:

π : O → A (3.18)

3.3.1.5 RL methods to learn an optimal policy

The optimal policy π∗ is the policy which maximizes the rewards collected by the agent. In
other words, it is de�ned as the policy maximizing the value V (see Eq. 3.15) of all states:

π∗ = arg max
π

Vπ(s) ∀s ∈ S (3.19)

There are many RL algorithms to learn an optimal policy π∗. [97] gives an exhaustive re-
view of basic RL approaches. The choice of algorithm depends on the nature of the MDP.
Synthetically, there are two families of methods to learn an optimal policy. The �rst family
relates to policy-based methods [67, 98, 105] which seek to learn the policy function π (Eq.
3.9) directly. The second family relates to value-based methods [44, 68, 102, 104] which seek
to learn the optimal action-value function Q∗, de�ned as the maximum action-value function
Q (Eq. 3.16) over all policies:

Q∗(s, a) = max
π

Qπ(s, a) ∀s ∈ S, a ∈ A (3.20)

62 CHAPTER 3. EC FORMALIZATION AS A POMDP

Value-based methods use the fact that, if the optimal action value function Q∗ is known, then
an optimal policy π∗ can be inferred by acting greedily over Q∗, i.e. by choosing the actions
maximizing the Q-values:

π∗(s) = arg max
a∈A

Q∗(s, a) ∀s ∈ S (3.21)

3.3.1.6 Deep Reinforcement Learning

A MDP is �nite when both its set of state S and set of actions A have a �nite number of
elements. Additionally, a MDP is small when the number of elements is small. When the
MDP is �nite and small, the policy π of the agent is a lookup table with as many rows as there
are states in S and as many columns as there are actions in A [97]. The table can contain
all possible combination of state and action pairs. However in many real-world applications,
MDPs are large or in�nite [58]: there are a large or in�nite number of elements either in the
state space or in the action space. The policy can not be represented by a table and it is
necessary to approximate the policy (resp. the action value) with a parametrized function πΘ

(resp. QΘ) de�ned over some parameters Θ [97, 98].
Deep Reinforcement Learning (DRL) relates to the speci�c case of RL using function ap-

proximator where the policy π or the action-value function Q are approximated by a Deep
Neural Network [58, 67, 68]. In the literature, DRL is used to solve various types of prob-
lems. [58] gives a review on DRL. A few examples of DRL applications are video games
[42, 44, 47, 68, 73, 100], robot navigation [11], medical diagnosis [80], and vehicle driving [91].

3.3.2 Temporal sequence acquisition: a Markov Process

Random variable Sequential data are generally derived from a stochastic variable. Given
the value of a data point at a speci�c time step, we cannot be sure of the next value that will
be collected. A same data point can lead to various future acquisitions and the distribution
of the random variable is unknown. This is for example the case in predictive maintenance,
for which the signals from the machines' sensors are not deterministic. In particular, the
industrial application of the thesis is derived from a biological process which involves biological
variability, and also non-deterministic evolution of the MTS that represent the living organisms
behavior over time.

Markov property Temporal sequences X = (x1, · · · ,xT) (Def. 2.1.1) are dynamic
data for which data points xt are acquired over time t ∈ N+. They are sequences of
data points that are time-dependent and each data point xt can be dependent on the
previous data points {xt−1,xt−2, · · · }. Because of the time dependence in data, it is natural
to assume that recent past data points in a temporal sequence are more relevant than
distant past data points to predict the future of the sequence. Consequently, temporal
sequence acquisition is close to a Markov Process and we consider that temporal sequences
can be expressed as high-order discrete-time Markov Processes (Def. 3.3.1) such that
∃η ≥ 1,P(xt|xt−1, · · · ,x1) = P(xt|xt−1, · · · ,xt−η).

Rather that considering single data points xt at each time step t, if we consider that the
process is described by the pre�xes X:t = (x1, · · · ,xt) at each time step t, then the process

3.3. ASSETS OF REINFORCEMENT LEARNING 63

veri�es the �rst order Markov assumption (Def. 3.3.1):

P(X:t|X:t−1, · · · ,X:1) = P(X:t|X:t−1) (3.22)

where the pre�x X:t contains all the information about the past. The process of temporal
sequence acquisition veri�es the Markov Property and is therefore a Markov Process (Def.
3.3.1).

3.3.3 EC problem: a Markov Process with actions

In this work, we frame EC as a sequential decision-making problem. We consider an early
classi�er as an algorithm allowed to make decisions. While sequentially receiving data points
in the sequence, the algorithm analyzes the partial sequence and has to take an action. It
can predict a label based on the consideration that it collected enough information to identify
discriminant patterns in the sequence, or it can wait for additional information in the future
data points.

At time step t ∈ N+, the pre�x X:t continue to be observed if and only if:

1. the action at is to wait (at = ad), and,

2. the sequence is not fully completed yet (t < T with T the maximal length of sequences).

Otherwise, the early classi�er predicts a label, at ∈ Ac and the process reaches a terminal
state, as illustrated in Fig. 3.1. At each time step t ∈ N+, the Markov Process of temporal
sequence acquisition is then conditioned on the choice of action at. The future of a state is
dependent on its present and on the action. EC can be described as a Markov Process with
actions.

3.3.4 EC trade-o�: rewards in a Markov Decision Process

In Sec. 3.3.2 and Sec. 3.3.3, we showed that EC can be described as a Markov Process with
actions. Since a MDP is a Markov Process with actions and rewards (De�nition 3.3.2), we can
de�ne rewards associated to the EC problem and it will be described by a MDP. Consequently,
we will be able to solve it with RL (Sec. 3.3.1). In the following of this work, we propose
to complete the description of EC as MDP which is partially observable (Sec. 3.4), noted
EC-POMDP, and train an agent for EC with DRL (Chap. 4).

The advantage of describing EC by a MDP is that we can set the rewards de�nition that
best describes our objectives while taking into account the thesis speci�cities. We remind that
the classi�cation problem is time-sensitive (Sec. 2.3.1) and example-dependent cost-sensitive
(Sec. 2.2.2.4). We will show in Sec. 3.4.2 how to encode the competitive objectives of early
cost-sensitive classi�cation into the reward function de�nition of the MDP:

� We will introduce a reward function R = Rc + λRd (Eq. 3.28) balancing the competing
costs of accuracy and earliness.

� We will de�ne Rd as the reward function dedicated to delay actions and used to motivate
early actions of classi�cation.

� We will de�ne Rc as the reward function dedicated to classi�cation actions and used to
assess the quality of classi�cation. We will show how to handle the exemple-dependent
costs of classi�cation (Eq. 2.8) in the rewards for classi�cation.

64 CHAPTER 3. EC FORMALIZATION AS A POMDP

� We will de�ne λ as the trade-o� parameter allowing the user to directly set the degree
of importance of time in the �nal prediction for his application.

3.3.4.1 Conclusion

In this section, we showed that the EC problem can be transposed into a RL framework
through the de�nition of a MDP. We introduced the strategy of balancing the competitive
objectives of EC in the reward de�nition of the MDP.

3.4 Proposition of EC-POMDP

In this section we de�ne a Partially Observable Markov Decision Process for EC (EC-
POMDP). We remind that a POMDP (Def. 3.3.3) is a mathematical description of an envi-
ronment for RL, and is de�ned by the tuple {S,A, P,R,O,Ψ, γ} where:

� S is the state space,

� A is the action space,

� P is the transition model,

� R is the reward function,

� O is the observation space,

� Ψ gives the emission observation probabilities, and

� γ is the discount factor.

The environment here refers to the process of acquiring a sequence over time until classi�ca-
tion, and each element of the EC-POMDP is de�ned below.

Fig. 3.4 adapts the EC problem described as a sequential decision-making problem in Fig.
3.1 to its formalization as an EC-POMDP.

3.4.1 States, observations, actions

States The state s ∈ S of the environment is characterized by the tuple (X, l, t):

s = (X, l, t) (3.23)

where:

� (X, l) ∈ D is a pair of temporal sequence X = (x1, · · · ,xT) and its true label l from
the training dataset D. X is the complete sequence that is being acquired and which is
sampled from a random variable with an unknown distribution.

� t ∈ [1, T] is the number of time steps observed in the sequence, such that (x1, · · · ,xt)
has been observed, and (xt+1, · · · ,xT) is still non-observed. In other words, it is the
acquisition time of the process.

3.4. PROPOSITION OF EC-POMDP 65

Observation

𝑜𝑡 = 𝑿:𝑡
at time t

Action
𝑎𝑡

at time t

t

𝑿:𝑡
Future (unknown)

data points
(𝒙𝑡+1, … , 𝒙𝑇)

Wait

Predict label 𝑙𝐾

…

Predict label 𝑙1

𝑎𝑑

𝐴𝑐

t t+1

End of
sequence

acquisition

𝑿:𝑡+1

Policy
𝝅

Reward

 𝑟𝑡

at time t

Observation

𝑜𝑡+1

at time t+1

Reward
for delay

Reward
for

classification

𝜆𝑅𝑑

𝑅𝑐

Figure 3.4: EC-POMDP. Illustration of the decision-making process for EC at time t. The
agent observes ot, i.e. the partial sequence composed of its �rst t data points. Following its
policy π, it chooses an action at between delay or one of the K possible predictions of label.
As a consequence, it receives a reward rt. Either the process terminates or it receives next
observation ot+1, i.e. the partial sequence with an additionnal data point.

In the speci�c case of the industrial application, given the nature of the data which are
continuous real-valued MTS, there is an in�nite number of states.

Since the objective is to predict labels l ∈ L as early as possible, in real-life applica-
tions we do not have access to the full state information. Indeed, the label l and future data
points (xt+1, · · · ,xT) are unknown to the agent. We say that the states s ∈ S are hidden
and we only observe partial information on the states. Consequently, the MDP is said to
be partially observable (POMDP, see Sec. 3.3.1.4) and the agent will receive observations
instead of full state information.

Observations The state s = (X, l, t) issues the observation o which is the partial sequence
of data points X:t = (x1, · · · ,xt) collected from X until time t:

o = X:t (3.24)

The emission observation probabilities Ψ is therefore de�ned by:

Ψ(o|s = (X, l, t)) =

{
1 if o = X:t

0 elsewise
(3.25)

66 CHAPTER 3. EC FORMALIZATION AS A POMDP

As a consequence, the policy π of the agent is no longer de�ned over the state space S but
rather over the observation space O which is composed of pre�xes of temporal sequences X
and is therefore continuous. We will see in the next chapter that this particularity will lead
us towards the choice of DRL in order to solve the EC-POMDP.

Actions A is the action space. It is de�ned in Eq. 3.1, such that A = Ac ∪ ad with ad
the action of delaying the prediction to collect an additional data point and Ac the set of
classi�cation actions. We precise that the action of delay ad can only be chosen if there are
some data points that are still not observed in the sequence X, i.e. if the pre�x did not reach
the maximal length T :

A(s) =

{
Ac ∪ ad if s = (X, l, t), t < T

Ac if s = (X, l, t), t = T
(3.26)

In Eq. 3.2, we de�ned the set of classi�cation actions over the set of labels, such that Ac = L.
The model can therefore predict all labels lk, k = 1..K from the label set L. If a = lk, then
the action is to predict label lk from L. However, we point out that the user can de�ne the
set of classi�cation actions di�erently. He may wish to merge some labels into a single class
or not to predict certain classes at all: Ac ⊂ P(L) with P(L) the powerset of L.

In all cases, the action space is �nite and small because there is a small number of possible
actions. We will see in the next chapter that this particularity will lead us towards a value-
based method for the EC-POMDP resolution.

Dynamics In real-life EC applications, the acquisition of data points is often costly and
has to be shortened as much as possible. Once the system decides to perform classi�cation
(a ∈ Ac), data points are no longer collected. We therefore de�ne the state transition model
P : S ×A −→ S by:

P ((X, l, t), a) =

{
∅ if {a ∈ Ac} ∪ {t = T}
(X, l, t+ 1) if a = ad

(3.27)

If the agent chooses to wait and if the sequence is not completed yet, the next state of the
environment is characterized by the pair (X, l) and incremented time step t + 1. Otherwise,
the agent reaches a terminal state and the process is ended.

By de�nition, state transitions are deterministic because the states contain all the in-
formation about the sequence that is being acquired. However, we wish to point out that, in
real-life applications at test time, we do not have access to the full state information. The
label and future data points are unknown and consequently the agent receives the partial
incomplete sequence only. It cannot know for sure the next observations it will receive,
because it does not know the distribution of the random variables that contribute to the
data collection. Observation transitions are therefore stochastic and the environment is also
stochastic.

Discount factor We remind that the discount factor γ is de�ned between 0 and 1. When
γ < 1, rewards are discounted and more importance is given to immediate rewards. Also, for
episodic environments with short horizons, the cumulative reward is �nite and γ can be set

3.4. PROPOSITION OF EC-POMDP 67

to 1. In the particular case of the thesis, environments for EC have horizon of size T which is
the maximal length of sequences. When setting a value for the discount factor in experiments,
we will therefore consider values both equal or inferior to 1.

3.4.2 Rewards

The reward function is part of the environment and is de�ned in the POMDP (Def. 3.3.3). Its
de�nition is a major task in the formalization of the EC-POMDP and it has to represent the
competitive objectives of classi�cation earliness and quality. Indeed, when an agent is trained
with RL, its behavior evolves according to the rewards it receives because the agent tries to
maximize them. Since there is no direct supervision in RL � no supervisor tells the agent
which action to choose � the only feedback is brought by the scalar rewards [97]. A wrong
reward function de�nition can cause the agent to behave sub-optimally such as the bicycle
problem [84] presented below. In this section, we review some major work from the literature
related to the de�nition of rewards in RL. We then propose a de�nition of rewards for the EC
problem which allows to encode the EC trade-o�.

3.4.2.1 Related work on rewards in Reinforcement Learning

The de�nition of rewards in a MDP describing a sequential decision-making problem is not
always straightforward. In the context of game environments, scalar scores are often provided
by the emulator to the player during a game, and it is a common practice to use these scalar
scores as rewards for the RL framework [42, 47, 67, 68, 100]. However, many real-world
applications do not have innate rewards and there is a need to design a reward function for
the task at hand, and therefore the problem description as a MDP. Furthermore, some real-
world applications involve complex tasks which can hardly be described by simple reward
functions. In the following, we present two major strategies from the literature commonly
employed to de�ne reward functions in a RL framework.

Learning from human demonstrations and/or feedback In some cases, the tasks can
be performed by humans and a solution from the literature is Inverse Reinforcement Learning
(IRL) [1, 27, 91, 106]. This approach refers to learning from experts. The idea is to observe an
expert acting in the environment, collect a dataset of human demonstrations, and �rst learn
the reward function that could explain the behavior of the expert and his objectives. The
behavior of the expert is supposed to be near optimal and has to represent a target policy for
the agent. Then, once the reward function is learned, the MDP can be solved with standard RL
algorithms. IRL therefore di�ers from Behavior Cloning which uses human demonstrations
for SL and does not seek to learn a reward function. In [27], the authors propose an IRL
framework able to handle large MDPs with unknown dynamics.

Among alternative approaches to IRL, the authors in [19] introduce a method for the
speci�c cases where there is no demonstrator of the task in question, but it is possible to
compare two behaviors of the agent and indicate which is the best. However, both IRL
and the solution from [19] are limited by the need for human demonstrations or
feedback which are not available in the case of the thesis.

68 CHAPTER 3. EC FORMALIZATION AS A POMDP

Potential-based reward shaping When the application involves complex tasks for which
the reward function is not easy to design, a solution is to use potential-based reward shap-
ing [75]. This method allows to incorporate domain knowledge into rewards de�nition and
traditionally uses intermediate rewards to guide an agent towards its goal, and avoid sparse
feedback from the environment. These intermediate rewards are related to a change of po-
tential when moving from a state in the environment to another state. In [22], the authors
investigate the use of potential functions that can vary over time. In [99], the authors give an
online feedback to the agent during its training through reward shaping.

The use of potential-based reward shaping leads to hand-engineered de�nition of rewards
which is generally tuned through experiments until the agent reaches a satisfying behavior
for the application. As an example, in [84], the authors teach an agent to drive a bicycle
towards a goal. They experimentally observed that by rewarding the agent to approach the
goal, it learned to drive in cycle around the goal. They modi�ed rewards by incorporating
a punishment for driving away from the goal and the agent learned to reach the goal. This
solution can thus take time and resources to be properly used.

In Sec. 3.4.2, we will introduce a reward function inspired by reward shaping
where sparse rewards are replaced by smaller rewards given at each choice of action.

3.4.2.2 Reward function: trade-o� between classi�cation quality and earliness

In this work, the objective is to predict labels on incomplete sequences as early as possible
while maintaining an acceptable quality of classi�cation (Sec. 2.3). To this end, we propose to
encode the trade-o� between classi�cation quality and earliness in the de�nition of the reward
function R associated to the EC-POMDP. We seek to de�ne rewards in a way that they guide
the agent towards fast and accurate predictions.

Following previous de�nitions of states and actions, R(s, a) is the scalar reward given to
the agent for taking action a ∈ Ac ∪ ad in state s = (X, l, t). In order to balance between
the two competitive objectives, we choose to reward the agent separately for its actions of
classi�cation a ∈ Ac and the delay action ad:

R((X, l, t), a) = Rc((X, l, t), a) + λRd((X, l, t), a) (3.28)

Rd is the reward function for the delay action. Rc is the reward function for classi�cation
actions. In other words, the delay action ad is ignored in Rc, and classi�cation actions a ∈ Ac
are ignored in Rd:

Rc((X, l, t), a = ad) = 0 (3.29)

Rd((X, l, t), a ∈ Ac) = 0 (3.30)

λ ∈ R+ is a parameter setting the trade-o� between the two objectives of classi�cation
earliness and quality. It allows the user to control the compromise he is willing to make
between speed and accuracy. The more earliness is important in comparison to accuracy, the
larger λ has to be. Generally, the will to compromise is application-dependent and the user
can set λ to his preference.

In the following, we will give some possible de�nitions of Rd and Rc. The general propo-
sition is to give null or negative rewards in Rd when the agent delays the prediction (Sec.
3.4.2.4), and to give rewards that are related to the quality of its classi�cation in Rc when the
agent predicts a label (Sec. 3.4.2.3).

3.4. PROPOSITION OF EC-POMDP 69

3.4.2.3 Reward function for classi�cation actions

We �rst de�ne rewards when a ∈ Ac is an action of classi�cation. In Sec. 2.2.2.4, we made
the distinction between classi�cation problems that are cost-sensitive (i.e. misclassi�cation
induces costs depending on the true label and the predicted label), example-dependent cost-
sensitive (i.e. misclassi�cation induces costs depending on the true label, the predicted label
and some additional information on the data) and those that are cost-insensitive (i.e. all types
of classi�cation errors are equally important). In this work, we de�ne a reward function for
each of these cases.

Cost-insensitive learning We de�ne Rc,ins as the reward function for classi�cation
actions in a cost-insensitive learning framework. We choose to reward the classi�cation actions
according to the accuracy of the predicted label. When the predicted label in a matches the
true label l associated to a sequence X, we give a positive or null reward r+. On the contrary
when the predicted label in a di�ers from the true label l, we give a negative reward r−:

Rc,ins((X, l, t), a) =

{
r+ ≥ 0 if a = l

r− < 0 if a ∈ Ac \ {l}
(3.31)

We point out that an objective can be encoded by several reward functions. Indeed, for a same
objective of fast prediction using as few features as possible, the agent is rewarded positively
with a score r+ = +1 if the classi�cation is correct in [80] while it receives null reward, r+ = 0,
for correction classi�cation and negative rewards, r− = −1, for incorrect classi�cation in [49].
In future chapters, during experimental evaluations, we will use several values of r+ and r−,
and these values will become hyper-parameters of the method that need to be tuned.

Cost-sensitive learning We de�ne Rc,sen as the reward function for classi�cation ac-
tions in a cost-sensitive learning framework. We choose to reward misclassi�cation actions
depending on the cost carried by classi�cation errors:

Rc,sen((X, l, t), a) =

{
r+ ≥ 0 if a = l

−cl,a if a ∈ Ac \ {l}
(3.32)

with cl,a the cost of predicting label a on a sample with true label l, de�ned in Sec. 2.2.2.4.
When the predicted label in amatches the true label l associated to the sequenceX, we employ
the same strategy than with cost-insensitive learning and give a positive or null reward r+ ≥ 0.

Example-dependent cost-sensitive learning We de�ne Rc,ed−sen as the reward func-
tion for classi�cation actions in an example-dependent cost-sensitive learning framework, and
we consider that the costs of classi�cation may vary between samples:

Rc,ed−sen((Xn, ln, t), a) =

{
r+ ≥ 0 if a = ln

−cn,ln,a if a ∈ Ac \ {ln}
(3.33)

with cn,ln,a the cost of predicting label a on the n-th sample with true label l, de�ned in Sec.
2.2.2.4. A correct classi�cation yields a positive or null reward r+ ≥ 0.

Depending on the application, we will use one of the above de�nition:
Rc ∈ {Rc,ins, Rc,sen, Rc,ed−sen}. Rewards for classi�cation actions are summarized in
Tab. 3.1.

70 CHAPTER 3. EC FORMALIZATION AS A POMDP

Rc De�nition Rc((X
n, ln, t), a ∈ Ac \ {ln}) Rc((X

n, ln, t), a = ln)

Rc,ins

(Cost-insensitive)
All classi�cations er-
rors are equally im-
portant.

r− < 0 r+ ≥ 0

Rc,sen

(Cost-sensitive)
cln,a is the cost of
predicting label a
when the true label
is ln.

−cln,a r+ ≥ 0

Rc,ed−sen

(Example-dependent

cost-sensitive)

cn,ln,a is the cost
of predicting label a
when the true label is
ln regarding the n-th
individual of D.

−cn,ln,a r+ ≥ 0

Table 3.1: Reward function de�nition Rc for classi�cation actions a ∈ Ac. (Xn, ln)
is the n-th sample pair from D.

3.4.2.4 Reward function for delay action

We then de�ne rewards when the actions is delay ad. To encode the objective of earliness, we
propose the two following strategies.

Reward shaping First, we propose to shape the rewards for delay with a score depending
on time. If the rewards for delay are given all at once at the time of classi�cation, the agent
will get sparse rewards which are often di�cult to train on as explained in [75, 97]. Therefore,
to avoid sparse rewards, the agent will be given negative rewards at each decision of delay
instead of a single reward at the end of delay.

We de�ne Rd,shape as the reward function for delay under the shaping strategy:

Rd,shape((X, l, t), ad) = −c(t) (3.34)

with c : [0, T]→ R+ the cost function of delaying the prediction at time t.
We want the penalization for delay to take into account the amount of information the

agent has collected so far. The idea is that the more data points and knowledge the agent
has about the sequence, the worst it is to delay. As a consequence, we propose that the cost
function c is a monotonic non-decreasing function of time. Moreover, we seek to de�ne a simple
parametrization of the cost function c, in order to derive a minimum of hyper-parameters to
be optimized later. To that end, we propose a penalty increasing in time t, in the form of
tκ with κ ≥ 0 the penalty coe�cient. We normalize the delay reward function so that it is
bounded independently of the sequence maximal length T :

c(t) = tκ/T κ (3.35)

We point out that many other function de�nitions could achieve the same objective. Also,
if available, including domain knowledge into the reward function can guide the agent towards

3.4. PROPOSITION OF EC-POMDP 71

a better or faster learning. For example, if the user knows that no relevant appears before
time tthresh, he can set ∀t < tthresh, c(t) = 0.

Reward discounting In the speci�c case where the agent is given strictly positive re-
wards for correct classi�cation, such that Rc((X, l, t), a = l) > 0 (or r+ > 0), we could reward
the agent based on classi�cation actions only and use a discount factor γ < 1 to motivate the
agent to get early rewards. We de�ne Rd,discount as the reward function for delay under the
discounting strategy, that is the action of delay is not rewarded:

Rd,discount((X, l, t), a = ad) = 0 (3.36)

In the following, we illustrate the e�ect of the discount factor γ on the policy π of the agent
when it is given strictly positive rewards for correct classi�cation, such that r+ > 0. We
suppose that the policy is π(s) = arg maxaQ(s, a) (Eq. 3.21) and that the environment is
associated to the sample pair (X, l). We consider three possible sequences of interactions
between the agent and the environment, noted i1, i2, i3, starting from time t and until the
end of the episode:

� At time t, the agent chooses the delay action ad which is not rewarded by de�nition of
Rd,discount. It then continues to follow its policy π and we suppose that ∃k ∈ N+ for
which, at time t+ k, the agent chooses to predict the correct label l, yielding a positive
reward r+, and leading to the end of the episode.

The �rst possible sequence of interactions is i1 =< st, ad, 0, st+1, ad, 0, · · · , st+k, l, r+ >.

� At time t, the agent predicts the correct label l, yielding a positive reward r+ and leading
to the end of the episode.

The second possible sequence of interactions is i2 =< st, l, r+ >.

� At time t, the agent predicts a wrong label in Ac \ {l}, yielding a negative reward r−
and leading to the end of the episode.

The third possible sequence of interactions is i3 =< st, at ∈ Ac \ {l}, r− >.

In Eq. 3.16, we de�ned the action value function Qπ(s, a) as the expected return
gt =

∑∞
k=0 γ

krt+k, starting from state s, taking action a and then following policy π such
that Qπ(s, a) = Eπ[gt|st = s, at = a]. As a consequence, in the �rst possible sequence of
interactions i1, the return is gt = γkr+. In the second possible sequence of interactions i2, the
return is gt = r+. In the third possible sequence of interactions i3, the return is gt = r−. The
Q-values associated to each action at at time t are then:

Q(st, at) =


γkr+ if at = ad

r+ if at = l

r− if at ∈ Ac \ {l}

If γ < 1, then Q(st, at ∈ Ac \ {l}) < Q(st, ad) < Q(st, l) and therefore π(st) = l. Setting the
discount factor strictly lower than 1 (γ < 1) causes γkr+ < r+ and consequently motivates
the agent to take early actions of classi�cation.

72 CHAPTER 3. EC FORMALIZATION AS A POMDP

Rd De�nition Discount factor γ Rd((X, l, t), ad)

Rd,shape (Shaping) Delay is penalized in-
creasingly over time. c(t)
is the cost function of
delaying the prediction
at time t, a monotonic
non-decreasing function
of time.

γ ≤ 1 −c(t)

Rd,discount (Discounting) Delay is not penalized.
Rewards are discounted
in the MDP de�nition.
The agent must be given
positive rewards for
correct classi�cation,
Rc((X, l, t), a = l) > 0.

γ < 1 0

Table 3.2: Reward function de�nition Rd for delay action ad.

Rewards for delay action are summarized in Tab. 3.2, with Rd ∈ {Rd,discount, Rd,shape}. In
Appendix A, we conduct an experimental evaluation to compare the proposed de�nitions of
the delay reward function, i.e. reward shaping against reward discounting.

3.4.3 Speci�cities of the EC-POMDP

All but one of the actions terminate the episode. Actions are either to predict a label
l ∈ Ac or to delay prediction: A = Ac ∪ ad. Since we terminate the acquisition of new data
points once the classi�cation is performed, all but one of the actions lead to a terminal state.
The probability of reaching time t in an episode tends to zero as t increases:

P(st 6= terminal) = P(a1 = ad)︸ ︷︷ ︸
≤1

P(a2 = ad)︸ ︷︷ ︸
≤1

...P(at−1 = ad)︸ ︷︷ ︸
≤1

=

t−1∏
j=1

P(aj = ad)︸ ︷︷ ︸
≤1

(3.37)

Actions of classi�cation are rarer than the delay action. When the agent classi�es at
time t, the episode is composed of t− 1 actions of delay for one action of classi�cation. This
results in getting interactions that are mostly composed of delay action.

3.5 Conclusion

In this chapter, we framed EC as a sequential decision-making problem where the model can
decide at all time steps t ∈ [1, T] to perform classi�cation on the partial sequence X:t or to
delay classi�cation in order to get additional data points.

We showed that solving the sequential decision-making problem with SL brought along
a new challenge: to build a training labelled dataset with supervision on both classi�cation
and delay actions at all time steps in the sequences. We argued that the methods from the

3.5. CONCLUSION 73

literature were not directly applicable and therefore the resolution of the problem with SL was
a major research topic.

We showed that EC can be described as a Markov Process with actions. We de�ned
rewards associated to EC so that the decision-making problem can be described by a MDP
and then solved within a RL framework. We proposed several strategies in the reward function
de�nition to compromise between classi�cation earliness and accuracy, through strategies of
reward shaping and reward discounting. The solution allows the user to set the relative
importance of time compared to classi�cation quality for his application. Several de�nitions
of rewards were proposed depending on the nature of the classi�cation problem (cost-sensitive
versus cost-insensitive) and the solution allows to involve the classi�cation costs introduced
in Sec. 2.2.2.4.

We showed that the MDP for EC was actually partially observable because during the
online acquisition of sequences, we do not have access to future data points or the label to
predict, while these information will be used by the environment during the training of the
agent.

The mathematical framework has been proposed for the general problem of EC on temporal
sequences and it can therefore be applied to di�erent types of sequences. In the following,
we will propose a solution to the EC-POMDP resolution and we will evaluate if the solution
policy achieves the objectives of EC.

74 CHAPTER 3. EC FORMALIZATION AS A POMDP

Chapter 4

EC-POMDP solving with Deep

Reinforcement Learning

In Chap. 3, we de�ned early classi�cation (EC) as a sequential decision-making problem
and we described it by a Partially Observable Markov Decision Process (POMDP), noted
EC-POMDP.

In this chapter, we aim at solving the EC-POMDP by �nding its optimal policy π∗

(Eq. 3.19). Speci�cally, we will train an agent with Reinforcement Learning (RL) in an
environment described by the EC-POMDP � an early classi�er agent. We seek to assess
whether the early classi�er agent can achieve objectives of EC as de�ned in Sec. 2.3.

In order to train the early classi�er agent with RL, the �rst question to answer is whether
to use a policy-based approach or a value-based approach (see Sec. 3.3.1.5). The action space
A (Eq. 3.26) of the EC-POMDP is �nite and small (K + 1 actions), which makes it possible
to learn the action value for each action a ∈ A. As a consequence, in the following of this
doctoral work, we choose to learn the policy π of the early classi�er agent with a value-based
approach, i.e. by learning its Q-function (see Sec. 3.3.1.5).

In order to �nd the optimal policy π∗ of the agent, the objective is to learn the optimal
Q-function Q∗ (Eq. 3.20):

π∗(o) = arg max
a∈A

Q∗(o, a) ∀o ∈ O

As explained is Sec. 3.4, the environment for EC in a RL framework is partially observable.
The action value function Q is then de�ned over the set O of observations (Eq. 3.25) which
is composed of pre�xes of temporal sequences X. Because O is continuous, the action
value function Q cannot be represented by a �nite table with action values on all pairs of
observations and actions. There is a need to estimate the action value function Q with
function approximation [97].

In this doctoral work, we use a solution for action value approximation which is Deep
Reinforcement Learning (DRL, see Sec. 3.3.1.6). We motivate our choice for DRL in Sec.
4.1. DRL consists in approximating the agent's action value function Q(o, a) with a Deep
Neural Network (DNN) QΘ(o, a) with parameters Θ, as illustrated in Fig. 4.1. The policy πΘ

75

76 CHAPTER 4. EC-POMDP SOLVING WITH DRL

associated to this DNN is then de�ned as:

πΘ(o) = arg max
a∈A

QΘ(o, a) ∀o ∈ O (4.1)

The objective in DRL is to �nd the optimal parameters Θ∗ of the DNN that lead to optimal
action value function Q∗:

Q∗ = QΘ∗ (4.2)

Several research papers from the literature aim at �nding the optimal parameters Θ∗ of
the DNN QΘ and, in this doctoral work, we apply an existing DRL algorithm called the
Double Deep-Q-Network (DDQN) algorithm [100], presented in Sec. 4.2.

In Sec. 4.3, we conduct some experimental evaluations to evaluate the method and to
compare its performance to state-of-the-art EC algorithms. We present the experimental
pipeline used during this work to solve the EC-POMDP with DRL and to train an end-to-end
early classi�er agent.

𝑄Θ(𝑿:𝑡, 𝑎𝑑)

𝑄Θ(𝑿:𝑡, 𝑙1)

𝑄Θ(𝑿:𝑡, 𝑙𝐾)

.

.

.

Deep Neural Network 𝑄Θ for the Q-function

argmax
𝑎 ∈ 𝐴

𝑄Θ(𝑿:𝑡 , 𝑎)

𝜋Θ(𝑿:𝑡)

Policy 𝝅Θ

𝑿:𝑡

Future (unknown)

data points
(𝒙𝑡+1, … , 𝒙𝑇)

t

Figure 4.1: DNN QΘ for the Q-function with parameters Θ. It is de�ned over the set of
observations O (Eq. 3.25). The output layer has one neuron per action a ∈ A. Each output
neuron predicts the Q-values of an observation o = X:t for that action a. It is fully-connected
to its previous layer and has a linear activation. The �rst layers are convolutional layers. The
policy resulting from this DNN is πΘ(o) = arg maxa∈AQΘ(o, a).

4.1 Motivation

We choose to approximate and learn the action value function Q with DRL for the following
reasons. First, unlike policy tables which are only applicable to the states it learned from,
DNNs (and more generally policies approximated by functions) are able to generalize from

4.2. DOUBLE DEEP-Q-NETWORK ALGORITHM 77

seen states to unseen states. As a consequence, the use of a DNN allows to apply the policy
on new data which were never seen during training.

Second, the industrial application of this thesis currently involves data of size 77× 5 (with
maximal length T = 77 and P = 5 features) but we wish to develop a method that could
be transposed to complex sequences of images in a future work. When the observations of
the environment are complex (multi-components, high-dimensional, etc.), DRL is particularly
useful because the use of a DNN allows to learn a policy π on raw observations o ∈ O directly.
As an example, in [68] the authors successfully learn a policy on images of size 84 × 84 × 4
from video games.

Finally, DRL set the user free from a feature extraction step. Because of their ability to
compose functions, DNNs can learn both low-level and high-level features on raw data and
there is no need to use hand-crafted features or rules designed by experts. The autonomous
learning of features for decision-making and classi�cation makes the proposed method appli-
cable to new data on which we have no features expertise. In Sec. 4.3, we will evaluate the
method on public datasets for which we do not have any prior knowledge.

4.2 Double Deep-Q-Network algorithm

In this work, we de�ne the agent's policy π through the Q-function and we approximate Q
by a DNN QΘ(o, a) with parameters Θ. The objective is to �nd the optimal parameters Θ∗

that lead to the optimal action value function Q∗ (Eq. 3.20) and consequently the optimal
policy π∗. To �nd optimal parameters Θ∗, we train the DNN QΘ with the Double Deep-Q-
Network (DDQN) algorithm from [100], which is an adaptation of the Deep-Q-Network (DQN)
algorithm from [68], itself being an evolution of the Q-learning algorithm [104].

In the following, we show how to apply DQN algorithm to the EC-POMDP, and we detail
what di�ers in DDQN algorithm, namely the loss function used for the updates of the DNN's
parameters.

4.2.1 Application of Deep-Q-Network algorithm to EC

DQN algorithm aims at approximating the optimal Q-function Q∗ from episodes of training
between an agent and its environment (see Sec. 3.3.1.1), when the Q-function is approximated
by a DNN. It involves a RL framework such as the one presented in Fig. 3.3. The algorithm is
introduced for online learning, with successive repetitions of interaction collection and policy
optimization, as illustrated in Fig. 4.2.

The general principle of the algorithm is the following. The Q-function is learned from
an integrated database of interactions which is built online, called the replay memory. After
each interaction between an agent and its environment, the latter is stored in the replay
memory and the Q-function is updated.

In particular, the application of the DQN algorithm to the EC-POMDP is the following.
First, the agent's policy πΘ is initialized with random parameters Θ. Then, the training of
the agent starts (and lasts for a �xed number of training episodes) in order to update the
parameters Θ. In each training episode, the environment is associated to a sample pair (X, l)
with X a temporal sequence and l its reference label from the training dataset D (Eq. 2.3).

78 CHAPTER 4. EC-POMDP SOLVING WITH DRL

Interaction collection Policy optimization

2

Deep Neural Network 𝑄Θ

Agent

Environment

3

4

1

Observation 𝑜𝑡

Reward 𝑟𝑡

Action 𝑎𝑡

Observation 𝑜𝑡+1

Policy 𝝅Θ

Replay
memory

𝑀

5

< 𝑜𝑡, 𝑎𝑡, 𝑟𝑡, 𝑜𝑡+1 >
Store interaction

6

Compute loss
𝐿(Θ)

7

Update
parameters Θ

8

Mini-batch

Uniform sampling
of mini-batch

{< 𝑜, 𝑎, 𝑟, 𝑜′ >}

Figure 4.2: DQN and DDQN algorithms. Both algorithms follow the same scheme and
only di�er at step 7 (for the loss calculation). Steps 1 to 8 form one iteration of the algorithms.
The sequence of steps 1-2-3-4 corresponds to one interaction collection between the agent and
its environment in a RL framework, as illustrated in Fig. 3.3. The sequence of steps 5-6-7-8
corresponds to one update of the policy parameters Θ.
In this schematic illustration, the agent interacts at time t of the sequence acquisition process
with the environment.
1: The agent receives observation ot = X:t (Eq. 3.25, Fig. 2.1).
2: Following its policy πΘ(ot) = arg maxa∈AQΘ(ot, a) (Fig. 4.1), it chooses action at = πΘ(ot)
with probability 1− ε or random action at ∈ A (Eq. 3.26) with probability ε.
3: The agent receives a reward rt (Eq. 3.28, Fig. 3.4).
4: The agent receives next observation ot+1.
5: The interaction < ot, at, rt, ot+1 > is stored inside the replay memoryM of the agent.
6: A mini-batch of past interactions {< o, a, r, o′ >} is uniformly sampled from the replay
memoryM.
7: In DQN (resp. DDQN) algorithm, the loss from Eq. 4.3 (resp. Eq. 4.4) is computed on
the mini-batch.
8: Parameters Θ of the DNN QΘ are updated.
The process is repeated from steps 1 to 8 starting with the new observation ot+1 at time t+ 1.

As illustrated in Fig. 4.2, at time step t of the training episode:

� The agent receives as observation the partial time series ot = X:t (Eq. 3.25).

� It has to decide between delaying the prediction (at = ad) in order to gather more
data points or making a label prediction (at ∈ Ac), as de�ned in Eq. 3.26. Given its
exploration rate ε ∈ [0, 1], the agent can explore and choose a random action from the
set of actions A with probability ε. Or it can exploit and select the action at dictated

4.2. DOUBLE DEEP-Q-NETWORK ALGORITHM 79

by its policy πΘ, such that at = πΘ(ot), with probability 1− ε.

� After each interaction, the exploration rate ε is annealed in order to encourage the agent
to exploit more, the more it trains.

� Following its choice of action at, the agent receives a reward rt = R((X, l, t), at) (Eq.
3.28).

� The episode terminates if there are no additional data points to collect in the sequence
or if the agent chose to predict a label, at ∈ Ac. Otherwise the episode continues and
the agent receives a new observation ot+1 = X:t+1 (Eq. 3.27).

The interaction at time step t of the training episode is then < ot, at, rt, ot+1 >. It is stored
into a replay memoryM allowing to reuse this experience later.

After each interaction, DQN algorithm applies a stochastic gradient descent to the DNN
parameters Θ, with the following steps:

� It uniformly samples a mini-batch of past interactions {< o, a, r, o′ >} from the re-
play memory M, with o′ being the observation following the choice of action a given
observation o.

� For each past interactions < o, a, r, o′ > from the mini-batch, the Q-value QΘ(o, a) for
the action a on the observation o is calculated. Since this interaction has already been
experienced by the agent in the past, it is known that the environment rewarded the
agent by r and that the latter also received o′ as a new observation. Consequently, it is
possible to use this interaction to get a better estimate of the true Q-value following the
Bellman equation (Eq. 3.17).

Using the Bellman equation, DQN algorithm computes the loss function:

L(Θ) = (r + γmax
a′

QΘ−(o′, a′)−QΘ(o, a))2 (4.3)

where γ is the discount factor (Sec. 3.3.1), QΘ the current Q-network and QΘ− the
target Q-network (see below).

The loss L(Θ) seeks to minimize the di�erence between the Q-value predicted by the
DNN, QΘ(o, a), and the true Q-value.

However, the true Q-value is not known and is therefore estimated by the Q-learning
target, r+ γmaxa′ QΘ−(o′, a′), which is the sum of true reward r received by the agent,
plus the maximal action value maxa′ QΘ−(o′, a′) estimated by the target DNN QΘ− on
the next observation o′.

� It then updates the DNN parameters Θ by back-propagation of the gradient calculated
on the loss L(Θ).

After an update of parameters Θ, the training episode continues. Speci�cally, it moves to
time step t+ 1 with a new observation ot+1, and the process is repeated, with the generation
of a new interaction < ot+1, at+1, rt+1, ot+2 > followed by the update of parameters Θ. If
the agent reaches a terminal state, the episode ends and a new episode starts with another
training sample (X, l) from D.

80 CHAPTER 4. EC-POMDP SOLVING WITH DRL

Q-learning algorithm The DQN algorithm is a variant of the Q-learning algorithm [104].
In the original Q-learning algorithm [104], the Q-learning target is r + γmaxa′ QΘ(o′, a′). It
is computed with the current parameters Θ that are being updated, and not with a target
Q-network QΘ− . Also, in the original Q-learning algorithm, there is no replay memory M,
and interactions < ot, at, rt, ot+1 > are immediately used to update the parameters Θ.

In the following, we detail the strategies proposed in the DQN algorithm to adapt Q-
learning to policies approximated by DNNs:

Experience replay First, experience replay allows to sample mini-batches of past interac-
tions {< o, a, r, o′ >} from a replay memoryM to perform stochastic gradient descent.
Samples within a batch are likely to come from independent or distant interactions over
time. As a consequence, it further reduces correlations in the DNN updates than the
original Q-learning algorithm. Another advantage of experience replay is data e�ciency.
Experiences can be re-used several times in the DNN updates. It avoids to discard an
experience immediately after an update.

Target Q-network Second, Q-learning targets in Eq. 4.3 are computed with a target Q-
network QΘ−(o, a) which parameters Θ−. While parameters Θ of the DNN QΘ are
updated after each interaction, the parameters Θ− of the target Q-network QΘ− are
periodically updated after a �xed number of interactions. The authors in [68] argue
that the use of a target network QΘ− reduces correlations in the parameters update and
improves the algorithm convergence.

Using these two strategies, the authors in [68] are the �rst to successfully approximate the
agent's action value Q with a DNN combined with Q-learning [104]. They are able to train
an agent which surpasses the performance of a professional human player across many Atari
games.

4.2.2 DDQN loss function

In [100], the authors show that the action values are over-estimated when using DQN algorithm
because of the maximization step involving the target Q-network from Eq. 4.3. In order to
reduce DQN over-estimations of the action values, they modify the loss function used to update
the DNN parameters:

L(Θ) = (r + γQΘ−(o′, arg max
a′

QΘ(o′, a′))−QΘ(o, a))2 (4.4)

where γ is the discount factor (Sec. 3.3.1), QΘ the current Q-network and QΘ− the target
Q-network. Contrary to the loss from Eq. 4.3, the authors propose to decouple the steps of
selecting the next action a′ and its evaluation. They use the current network QΘ to select the
next action a′ and the target network QΘ− to evaluate its value. With the exception of the
loss calculation, the algorithm is the same as DQN. In Algo. 1 and Fig. 4.2, we summarize
DDQN algorithm applied to EC.

4.2. DOUBLE DEEP-Q-NETWORK ALGORITHM 81

Algorithm 1 DDQN algorithm applied to EC-POMDP

Require: Environment described by an EC-POMDP {S,A, P,R,O,Ψ, γ} as de�ned in Sec.
3.4 and corresponding training dataset D = {(Xn, ln)}n=1..N .
A parameterization of DDQN hyperparameters h ∈ H de�ned in [100].
Number of training episodes M ∈ N+ (if M > N , the agent will play several episodes of
training on the same training sequences).

Ensure: Action value function QΘ∗(o, a) with optimal parameters Θ∗

Randomly initialize parameters Θ.
Set Θ− = Θ.
Initialize replay memoryM: pre-�ll a fraction ofM with random policy.
for episode = 1 ... M do
Select a training sequence (X, l) ∈ D.
Initialize episode state st = (X, l, t) and observation ot = X:t with t = 1.
while episode is not terminated (i.e. t < T and the agent has not classi�ed the sequence
yet) do
1: The agent receives observation ot.
2: It chooses action at = arg maxa∈AQΘ(ot, a) with probability ε or random action
with probability 1− ε.
3: The environment computes reward rt = R((X, l, t), at).
4: It moves to next state st+1 = (X, l, t+ 1) and gives next observation ot+1 = X:t+1.
5: Store interaction < ot, at, rt, ot+1 > into replay memoryM.
6: Sample mini-batch of interactions {< o, a, r, o′ >} ∼ M.
7-8: Update parameters Θ with gradient descent on loss function from Eq. 4.4 com-
puted on the mini-batch {< o, a, r, o′ >}.
Periodically update Θ− = Θ
Increment time t = t+ 1

end while
end for

4.2.3 Hyper-parameters

The neural network training with both DQN and DDQN algorithms depends on a set of
hyper-parameters h ∈ H, with H the combinatorial space of hyper-parameters. We mention
the following:

� Some hyper-parameters of the DQN algorithm are related to the exploration rate ε of
the agent, such as its initial and �nal values, as well as its annealing coe�cient.

� Others are related to the loss L calculation, such as the mini-batch size and the discount
factor γ.

� The implementation of the stochastic gradient descent can be performed with various
algorithms [85], such as Adam and RMSprop algorithms. Each algorithm has its own
set of hyper-parameters.

� The agent's replay memoryM has a �xed size which value is an hyper-parameter.

� The number of interactions between each update of the target network's parameters Θ−

is also an hyper-parameter.

82 CHAPTER 4. EC-POMDP SOLVING WITH DRL

Optimal values for these hyper-parameters vary according to the dataset and must therefore
be optimized for each application. We will detail in Sec. 4.3.3.1 how we optimize these hyper-
parameters for a speci�c training dataset.

4.2.4 Related work on DQN variants

More work has been proposed to improve DQN algorithm, as reviewed in [44]. The authors
in [102] introduce a dueling architecture of the DNN. A part of the DNN is dedicated to
the state value V (Eq. 3.15) estimation while another part is dedicated to the advantage A
estimation de�ned byQ(s, a) = V (s)−A(s, a). They show that their method is useful when the
environment has some "valuable" and "non-valuable" states. States are "non-valuable" when
no choice of actions a�ect neither the transitions nor the rewards emitted by the environment.

In the EC problem, all classi�cation actions terminate the episode regardless of the state
of the environment. There are no states for which any action impact the environment. As
a consequence, estimating the advantage A is not useful for the problem and we chose to
evaluate the method with DDQN algorithm.

4.3 Experimental evaluation

In the following, we seek to evaluate the suitability of the method for the EC problem through
experimental evaluation. More precisely, we evaluate if an agent trained with DDQN algo-
rithm in an environment described by the EC-POMDP (Sec. 3.4) can achieve the objectives
introduced in Chap. 2: to classify incomplete sequences as early as possible, with prediction
time adapted individually to each data, and with a decision taken from end to end.

4.3.1 UCR dataset

To measure the agent's performance compared to state-of-the-art methods, we conduct ex-
perimental evaluation on The University of California, Riverside (UCR) archive [21]. The
latter is a popular benchmark for classi�cation and clustering of time series, and especially
EC [7, 20, 36, 43, 70, 79, 87, 101, 109, 110].

We evaluate the solution on Gun-Point, Wafer and ECG datasets. These datasets are
derived from various applications. They have various amount of training data and allow
to evaluate the suitability of the solution when few training samples are available. To our
knowledge these datasets are related to cost-insensitive classi�cation problems. Tab. 4.1
summarizes information about these datasets.

Name Type Time series
length T

Number of
classes K

Size of train-
ing set

Size of test-
ing set

ECG ECG 1 96 2 100 100

Gun-Point Motion 150 2 50 150

Wafer Sensor 152 2 1000 6174

Table 4.1: Composition of ECG, Gun-Point and Wafer datasets from UCR archive
[21].

4.3. EXPERIMENTAL EVALUATION 83

4.3.2 EC-POMDP model

In Chap. 3 we de�ned an EC-POMDP {S,A, P,R,O,Ψ, γ} for the EC problem such that
rewards were de�ned in Eq. 3.28 by:

R((X, l, t), a) = Rc((X, l, t), a) + λRd((X, l, t), a)

We encoded the objectives of fast and accurate predictions through several de�nitions of
rewards according to the problem speci�cities (Sec. 3.4.2):

Rd ∈ {Rd,discount, Rd,shape}, Rc ∈ {Rc,ins, Rc,sen, Rc,ed−sen}

In this experimental evaluation, datasets from UCR are cost-insensitive and we de�ne rewards
for classi�cation actions using Eq. 3.31, Rc = Rc,ins, such that the agent receives negative
rewards of r− = −1 for classi�cation error and a positive reward of r+ = +1 for accurate
predictions:

Rc,ins((X, l, t), a) =

{
+1 if a = l

−1 if a ∈ Ac \ {l}

In addition, we de�ne rewards for the delay action using Eq. 3.34, Rd = Rd,shape, such that
the agent receives negative rewards at each decision of delay, with a penalty increasing in the
number of data points collected in the sequence:

Rd,shape((X, l, t), ad) = −tκ/T κ

The penalty coe�cient κ (Eq. 3.35) and the trade-o� parameter λ are reward-related hyper-
parameters of the agent's training (Sec. 4.3.3.1). We will �ne-tune them experimentally.

4.3.3 Experimental pipeline

In this section, we introduce metrics and procedures used to (1) train the agent, (2) select
optimal policies, (3) evaluate the agent and (4) monitor its training.

4.3.3.1 Training pipeline

Hyper-parameters setting: In Sec. 4.2, the agent's policy πΘ(o) = arg maxa∈AQΘ(o, a)
is de�ned by the DNN for the Q-function, QΘ(o, a), with parameters Θ. The DNN
is trained with DDQN algorithm which requires to set a number of hyper-parameters
h ∈ H (described in [68] and Sec. 4.2.3) before the training of the agent, with H the
combinatorial space of hyper-parameters.

The combinatorial space H of the hyper-parameters being too large, we cannot perform
an exhaustive search ∀h ∈ H. Instead, we de�ne a search zone H̃ for optimal hyper-
parameters by selecting a set of hyper-parameters H̃ ⊂ H in a restricted combinatorial
space near optimal parameters presented in [68].

From this reduced space H̃, we manually �ne-tuned the hyper-parameter values on
the training set, by observing the ones that worked best during training (according to
performance metrics de�ned below).

84 CHAPTER 4. EC-POMDP SOLVING WITH DRL

Neural network setting: We approximate the Q-function with a DNN composed of con-
volution �lters. Convolutions allow to learn both time dependencies and features de-
pendencies in the sequences [103]. We add dropout to the DNN to prevent over-�tting
[96].

The output layer of the DNN QΘ has K + 1 neurons, one for each classi�cation action
a ∈ Ac and one for delay action ad (see Eq. 3.26). It is fully-connected to its previous
layer and has a linear activation function (because Q-values take values in R).

The amount of layers, �lters and dropout vary from a dataset to another depending
on its complexity and amount of training data. Candidate architectures of DNNs are
hyper-parameters of H and are manually tuned through the di�erent experiments.

Input data pre-processing: In the practical implementation of the method, the DNN QΘ

receives input data with �xed size, which are matrices of size P × T . Indeed, for an
input data X:t, we replace the future unknown data points (xt+1, · · · ,xT) by zeros:

x1
1 · · · x1

t 0 · · · 0
...

...
...

... · · ·
...

xP1 · · · xPt 0 · · · 0


t≤T

In experiments, we found useless to add a binary mask denoting if the data points were
collected or not as proposed in [48].

Agent's training: Each dataset in the UCR archive is originally split into a training and
a testing set. We use time series from the training set as episodes of training for the
agent.

We run the DDQN algorithm for 100,000 iterations (updates of the DNN's parameters
Θ with gradient descent on the loss from Eq 4.4). We experienced that this number of
iterations was su�cient for the agent to learn to classify UCR datasets.

Because of the small size of UCR datasets (M < N , see Algo. 1), samples from the
training set were passed several times as episodes to the agent during training.

4.3.3.2 Evaluation pipeline

Performance metrics: The time of prediction on the sequence Xn is tnpred. It is de�ned
as the earliest time step for which the action value of a classi�cation action a ∈ Ac
outreaches the action value of delay ad:

tnpred = min
t∈[1,T]

{πΘ(Xn
:t) ∈ Ac} (4.5)

= min
t∈[1,T]

{arg max
a∈A

QΘ(Xn
:t, a) ∈ Ac} (4.6)

The label predicted by the agent on the sequence Xn is l̂n:

l̂n = πΘ(Xn
:tnpred

) (4.7)

4.3. EXPERIMENTAL EVALUATION 85

UCR datasets are cost-insensitive, i.e. classi�cation errors are equally important, and
we chose to evaluate the classi�cation quality on the dataset D = {(Xn, ln)}n=1..N by
the accuracy Acc:

Acc =

N∑
n=1

1(l̂n = ln)/N (4.8)

Classi�cation earliness is measured through the average prediction time tpred:

tpred =
N∑
n=1

tnpred/N (4.9)

Trade-o� between classi�cation quality and earliness during training: To assess
the agent's performance on both competitive objectives of accurate and fast predictions,
we visualize Acc versus tpred during training. At regular training intervals (every 5000
updates of the agent's DNN in Fig. 4.3), we evaluate the agent's policy on the entire
training set. We compute Acc and tpred on the training samples.

Optimal policy π∗ selection: In [68], the authors evaluate the agent's policies during
training and select the optimal policy π∗ as the one with the highest score of reward. In
the special case of EC for which two competitive objectives are optimized one against
the other, the optimal policy π∗ selection can be application-dependant.

We manually select the model that compromises best in terms of classi�cation quality
versus speed: we visualize the trade-o� performed by the agent during its training and
we keep the policy that �ts best to the compromise allowed by the application.

The UCR archive is a benchmark for time series analysis. It was not built speci�cally
for the EC problem and we do not have information about trade-o� allowed by the
applications. We use the following strategy for optimal policy π∗ selection: among all
policies with maximal Acc performance during training, we select the one with smallest
prediction time tpred, as illustrated in Fig. 4.3.

Remark: In these experiments, because of the small dataset sizes, we did not split the training
sets into training and validation as it should be done. We are therefore aware of exposing
ourselves to model selection biases by selecting a model from its results on its training
data.

4.3.3.3 Monitoring pipeline

In order to monitor that the training of the agent goes well, we visualize the composition of
its replay memory M during training. Speci�cally, we look at which actions a are the most
represented in the stored interactions {< o, a, r, o′ >} in M, as illustrated in Fig. 4.6, Fig.
4.10 and Fig. 4.12. We also monitor the length t of the pre�xes represented in the replay
memoryM, in other words the sequence acquisition time, as illustrated in Fig. 4.7, Fig. 4.9
and Fig. 4.13.

86 CHAPTER 4. EC-POMDP SOLVING WITH DRL

4.3.4 Results

4.3.4.1 Performance on UCR dataset

Figure 4.3: Evolution of the agent's policy on Gun-Point training dataset during
training. The scatter plot shows the policy trade-o� between accuracy Acc (in %, Eq. 4.8)
in the y-axis and prediction time tpred (Eq. 4.9) in the x-axis. The policy is evaluated on the
complete training set every 5,000 iterations of DDQN algorithm. Blue dots correspond to the
policy evaluation at early training (from 1 to 40,000 updates of the parameters Θ). Yellow
dots correspond to the policy evaluation at a more advanced training (from 80,000 to 100,000
updates). In this experiment, the agent learned to slow its predictions down and improved
its accuracy during training. The policy surrounded by the red star is selected as the optimal
policy π∗. We evaluate π∗ on the testing set and report its performance in Tab. 4.2.

Fig. 4.3 shows the evolution of the agent's policy during its training on Gun-Point training
set. At the beginning of its training and until 20,000 updates of the parameters Θ (dark
blue dots), the agent chose to classify the sequences with less than 10 data points in average,
tpred < 10, leading to a poor Acc (Eq. 4.8) around 70%. After 40,000 training iterations, it
chose to acquire between 15 to 30 data points (out of the 96 available) before classifying leading
to an increase in accuracy between 80% to 90%. After 80,000 training iterations (yellow dots),
it learned to slow its prediction down to tpred = 35 and reached an Acc superior to 95% on
the training set.

This evolution of the policy is a consequence of the agent's training based on RL. It shows
that the agent is able to continually adapt its behavior without human intervention, by RL.
It can o�er a variety of policies which are solutions to the EC problem and which propose
variable compromises between accuracy and speed.

As explained in Sec. 4.3.3.2, one advantage of the proposed solution is that the user can

4.3. EXPERIMENTAL EVALUATION 87

evaluate the agent's performance regularly during its training and then select the policy that
performed best according to his compromise criterion. To save computational resources, the
user can also stop the training of the agent at any time, once it reached a "good" compromise
between earliness and accuracy according to his application's criteria.

From the training illustrated in Fig. 4.3, we chose to keep as the output of the learning
process the policy that performed best on training set: among the most accurate policies, we
selected the fastest one. We point out that the strategy of policy selection from the perfor-
mance results on the training dataset is exceptional. It is due to the absence of a validation
set and the small size of the training set. The selected optimal policy π∗ is surrounded by a
red star in Fig. 4.3. In Tab. 4.2, we report the performance of π∗ on Gun-Point testing set.

Following the same procedure as for Gun-Point (detailed in Sec. 4.3.3), we also trained
agents on Wafer and ECG training sets. We visualized the speed vs. accuracy classi�cation
trade-o� during their training and we selected policies that performed best on the training
sets. Then we reported their performance on Wafer and ECG testing sets in Tab. 4.2.

To compare the early classi�er agent trained with RL with state-of-the-art methods for
EC, we report in Tab. 4.2 the performance of Early Classi�cation on Time Series (ECTS)
[109] and Early Distinctive Shapelet Classi�cation (EDSC) [110] methods. We did not
reproduce their experiments but simply reported results mentioned in the original papers.
We also indicate the performance of a 1 Nearest Neighbor (1NN) classi�er on full time series
with results provided in UCR archive.

On Gun-Point dataset, the agent stopped the acquisition of data points in the sequences
and predicted labels once it received 22% of the full sequence in average. With less than a
quarter of the sequences' data points, it managed to reach an accuracy superior to that of
1NN method on full sequences. The average prediction time is reduced by a factor two over
the state-of-the-art methods ECTS and EDSC. Also, the agent's accuracy outperforms these
methods.

On Wafer dataset, the reduction in predictive speed of the agent is signi�cant compared
to other methods, by at least a factor 7. It predicted labels once it received 4% of the full
sequence in average. We found that the predictive speed was due to the identi�cation of a
very early discriminant pattern in sequences from the second label. The agent's accuracy is
better than ECTS and EDSC methods and slightly inferior to that obtained by the full length
1NN method.

On ECG dataset, the agent gave fast predictions: it collected 17% of the sequences' data
points. The predictive speed is reduced by a factor ≥ 1.9 compared to ECTS and EDSC. The
agent achieved an accuracy comparable to these methods and the full length 1NN method.

From these experiments, we showed that the proposed solution can achieve EC
while retaining an accuracy comparable to that of the full length 1NN classi�er.

In Appendix B, we seek to experimentally evaluate if solving the EC-POMDP with a
policy-based approach (Sec. 3.3.1.5) instead of this value-based approach leads to better
policy performances on UCR datasets.

88 CHAPTER 4. EC-POMDP SOLVING WITH DRL

Dataset RL agent
trained on
EC-POMDP

ECTS EDSC 1NN
Full

Gun-Point:
2 classes, T = 150
50 train. samples
150 test. samples

Acc 96% 86.67% 94.67% 91.33%

tpred 32.47 70.39 69.3 150

Coverage 100% 100% 100% 100%

Wafer:
2 classes, T = 152
1000 train. samples
6174 test. samples

Acc 99.32% 99.08% 98.87% 99.55%

tpred 5.73 67.39 38.97 152

Coverage 100% 100% 100% 100%

ECG:
2 classes, T = 96
100 train. samples
100 test. samples

Acc 89% 89% 88% 88%

tpred 16.09 57.71 30.93 96

Coverage 100% 100% 100% 100%

Table 4.2: Evaluation of optimal policies on Gun-Point, Wafer and ECG testing
sets. Optimal policies were selected following procedure from Sec. 4.3.3.2 on the training set.
Acc is de�ned in Eq. 4.8. tpred is de�ned in Eq. 4.9. Coverage is the percentage of classi�ed
time series in the dataset. T is the maximal length of the time series. Best performances are
written in bold. ECTS is the Early Classi�cation on Time Series method from [109]. EDSC
is the Early Distinctive Shapelet Classi�cation method from [110]. 1NN Full is the 1 Nearest
Neighbor method provided in UCR archive [21].

4.3.4.2 Sensitivity of the agent's training to hyper-parameters

During experiments and in general on all datasets, an e�ect of reward-related hyper-parameters
has been observed on the behavior of the agent. A bad setting of the trade-o� parameter λ
(Eq. 3.28) and the penalty coe�cient κ (Eq. 3.35) in the reward function de�nition can cause
the agent to learn a sub-optimal policy. As an example, a low value of λ reduces the relative
importance of rewards for delay compared to rewards for classi�cation and it caused the agent
to predict at the end of the sequences. A high value of λ gives more weight to rewards for
delay (which are negative) and it caused the agent to predict immediately at the expense of
accuracy.

To tune these reward-related hyper-parameters, we conducted a grid search and selected
those achieving best performance on the training set. We observed that optimal values for λ
and κ varied from a dataset to another depending on the complexity of the sequences.

Finally, on all three datasets and because of their small size, we experienced over-�tting
when the DNN architecture was not appropriately sized.

4.3.5 Imbalanced replay memory

In the following experiments, we show some examples of the agent's training on ECG dataset
from UCR Time Series Archive [21]. Fig. 4.4 shows labels distribution in the training and
testing sets, illustrating the over-representation of label l2 in comparison to label l1. We apply
the monitoring pipeline from Sec. 4.3.3.3 to observe the replay memoryM of the agent during
those trainings.

4.3. EXPERIMENTAL EVALUATION 89

Figure 4.4: Labels distribution in ECG training and testing sets. ECG is a dataset
from UCR Time Series Archive [21].

4.3.5.1 Example of rapid prediction biased toward the majority label

Fig. 4.5 illustrates one training of the agent during which its predictions are more and more
accelerated at the expense of accuracy. When analyzing the results of this experiment, we
saw that the agent fell into a sub-optimal policy of predicting more and more rapidly and
exclusively the majority label l2. Fig. 4.6 and Fig. 4.7 show the content of the agent's replay
memoryM during this experiment.

Fig. 4.6 shows that, at all times during training, the agent's replay memory is composed of
more than 60% interactions associated to the delay action. At the beginning of its training,
both labels are equally represented in the memory, by approximately 10% of the interactions.
After 50,000 training iterations, the percentage of interactions associated to the prediction of
the majority label l2 increase up to 40% while those associated to the minority label l1 drop
to almost 0%.

Consequently, by only predicting the majority label at some point during its training,
the agent stops experiencing the prediction of the minority label and its replay memory M
becomes empty of these rare past experiences. The agent can no longer learn the Q-value of
predicting label l1, because past interactions associated to this action have been overwritten
by more recent interactions. In other words, the learning base of the agent (its replay memory
M) gets reduced to two actions only, that of delay and that of predicting label l2.

As shown in Fig. 4.7, after 5000 training iterations, 50% of the interactions in the re-
play memory are associated to partial sequences with 10 to 60 data points (shown by the
interquartile range of the boxes). From 45000 updates of the policy, 75% of the interactions
involve pre�xes of sequences with less than 20 data points. Gradually as the agent learns to
accelerate its prediction during training, its replay memory gets represented by short pre�xes
of sequences only. After 90000 training iterations, almost all interactions illustrate sequences
with less than 5 data points.

Consequently, the more its training progresses and the less the agent can train on medium
(and late) acquisition times, i.e. on medium size sequences. Its learning base gets exclusively
represented by very short sequences.

90 CHAPTER 4. EC-POMDP SOLVING WITH DRL

Figure 4.5: Evolution of the agent's policy during training example n°1. The scatter
plot shows the policy trade-o� between Acc (in %, Eq. 4.8) in the y-axis and tpred (Eq. 4.9)
in the x-axis. The policy is evaluated on the complete training set every 5,000 iterations of
DDQN algorithm. Blue dots correspond to the policy evaluation at early training. Yellow
dots correspond to the policy evaluation after 100,000 iterations of training.

Figure 4.6: Evolution of actions a ∈ A in the replay memory M during the agent's
training example n°1. The percentages of interactions representing each action are shown
in the y-axis, every 5000 iterations of training.

4.3. EXPERIMENTAL EVALUATION 91

Figure 4.7: Boxplot of sequence acquisition time t ∈ [1, T] in the replay memory
M during the agent's training example n°1. Distributions of acquisition times are
represented in the y-axis, every 5000 iterations of training. Outliers are represented by circles.
The maximal length of sequences is T = 96.

In conclusion of this experiment, we observe some imbalance issues in the memory. The
latter becomes essentially associated to very short sequences along training. Interactions with
the action of predicting the minority label are overwritten and disappear from the memory.
The agent can no longer learn the Q-value for this action which gets excluded from its learning
base.

Finally, we can see that the more the replay memory M of the agent gets imbalanced
during training, the more its performance degrades (and possibly inversely).

4.3.5.2 Example of medium speed prediction biased toward the majority label

In this experiment, we show a sub-optimal policy for which predictions are performed at
various time steps (and no longer too rapidly as illustrated in the previous experiment) but
still towards the majority label l2. The evolution of the policy is illustrated in Fig. 4.8 and
shows that the agent predicted at all times steps during training, from 1 to 98, nevertheless
with a low accuracy that never exceeds 85%. Fig. 4.6 and Fig. 4.7 show the content over the
agent's replay memory during this experiment.

As shown in Fig. 4.9, the distribution of acquisition times represented by the interactions
in memory is stable during training. At all times during training, 75% of the interactions
involve partial sequences with length inferior to 30, of which 25% are associated to pre�xes of
sequences with only a few data points. The remaining 25% involve longer sequences, ranging
from 35 to 70 data points approximately. From 70 data points, there are only a few interactions
in the memory associated with these acquisition times that appear as outliers in the �gure.
As a result, this shows that, even when the agent predicts at various times during training,
much of its memory is associated with early acquisition times. Medium acquisition times are
represented in a minority, and late acquisition times are exceptionally represented (if not at
all).

A consequence of the agent's predictions at various times is shown in Fig. 4.10. At

92 CHAPTER 4. EC-POMDP SOLVING WITH DRL

Figure 4.8: Evolution of the agent's policy during training example n°2. The scatter
plot shows the policy trade-o� between Acc (in %, Eq. 4.8) in the y-axis and tpred (Eq. 4.9)
in the x-axis. The policy is evaluated on the complete training set every 5,000 iterations of
DDQN algorithm. Blue dots correspond to the policy evaluation at early training. Yellow
dots correspond to the policy evaluation after 100,000 iterations of training.

Figure 4.9: Boxplot of sequence acquisition time t ∈ [1, T] in the replay memory
M during training example n°2. Distributions of acquisition times are represented in the
y-axis, every 5000 iterations of training. Outliers are represented by circles. The maximal
length of sequences is T = 96.

4.3. EXPERIMENTAL EVALUATION 93

early training, the memory equally represents all three actions. Then, from 10000 training
iterations, the number of interactions associated to the delay action increase while that of
classi�cation actions decrease. From 60000 updates of the policy's parameters, more than
80% of the memory gets dedicated to delay interactions. In other words, the action of delay
becomes over-represented in the replay memoryM. Also, from 80000 training iterations, the
replay memory gets represented by two actions only, because the agent stopped predicting the
minority label l1.

Figure 4.10: Evolution of actions a ∈ A in the replay memoryM during the agent's
training example n°2. Action percentages are represented in the y-axis, every 5000 itera-
tions of training.

As a conclusion of this experiment, problems of imbalance in the memory are again ob-
served. While the delay action is over-represented, that of the minority label prediction
completely disappears. Also, the memory tends to essentially represent early to medium
acquisition times.

4.3.5.3 Example of medium speed prediction

Fig. 4.12, Fig. 4.13 and Fig. 4.11 show another example of over-writing of the delay action
in the replay memoryM.

As illustrated in Fig. 4.11, at some point during its training, the agent predicts in average
around time step 20, on sequences of maximal length 96, in other words using approximately
20% of available data-points.

For a prediction at time step 20, the agent stores 19 interactions of delay and 1 interaction
of classi�cation. An episode of length 20 is therefore composed of 95% of delay actions for 5%
of classi�cation actions. Consequently and as shown in Fig. 4.12, its replay memory becomes
empty of classi�cation actions during training because these interactions are the rarest.

Fig. 4.11 shows that the agent's performance improves despite the imbalance in its replay
memory, but it does not reach the optimal performance reported in Tab. 4.2 which has been
obtained with the same amount of training time.

94 CHAPTER 4. EC-POMDP SOLVING WITH DRL

Figure 4.11: Evolution of the agent's policy during training example n°3. The scatter
plot shows the policy trade-o� between Acc (in %, Eq. 4.8) in the y-axis and tpred (Eq. 4.9)
in the x-axis. The policy is evaluated on the complete training set every 5,000 iterations of
DDQN algorithm. Blue dots correspond to the policy evaluation at early training. Yellow
dots correspond to the policy evaluation after 100,000 iterations of training.

Figure 4.12: Evolution of actions a ∈ A in the replay memoryM during the agent's
training example n°3. Action percentages are represented in the y-axis, every 5000 itera-
tions of training.

4.4. CONCLUSION 95

Figure 4.13: Boxplot of sequence acquisition time t ∈ [1, T] in the replay memory
M during the agent's training example n°3. Distributions of acquisition times are
represented in the y-axis, every 5000 iterations of training. Outliers are represented by circles.
The maximal length of sequences is T = 96.

4.4 Conclusion

In this chapter we proposed to solve the EC-POMDP from Chap. 3 with a value-based
approach. We proposed a pipeline to train an agent with the DDQN algorithm and to select
an optimal policy π∗ for EC.

In experiments, we showed on UCR time series benchmark [21] that the EC problem can
be solved with an end-to-end RL agent. The agent achieves EC objectives: to compromise be-
tween classi�cation quality and its earliness. Moreover, it simultaneously learns classi�cation
features and decision-making rules on prediction times.

We showed that the agent is able to continually adapt its behavior without human inter-
vention. By learning to �nd a better trade-o� for the EC-POMDP, the agent goes through
various policies for which the relative importance of accuracy vs. speed evolves. Therefore,
the method o�ers a set of models with a wide range of possible compromises, and the user
can select the one that best �ts his application.

Also, we experimentally showed that the agent achieves similar or better results in accuracy
and prediction time compared to state-of-the-art methods from the literature. In Appendix
B, we will solve the EC-POMDP with a policy-based approach (Sec. 3.3.1.5) and report the
performances on UCR time series benchmark.

We identi�ed limits to apply the DDQN algorithm in its original form on the EC-POMDP.
We showed that the replay memory of the agent can become imbalanced during its training
because the agent falls into sub-optimal policies, weakening its overall learning. The question
is now how to optimize DDQN for the EC problem. Speci�cally, we want to know if the
resolution of the problem of poorly balanced replay memory can improve the training of the
agent, which is the subject of the next chapter.

96 CHAPTER 4. EC-POMDP SOLVING WITH DRL

Chapter 5

Optimized EC-POMDP solving with

robust memory management

In Chap. 4, we solved the Partially Observable Markov Decision Process (POMDP) for early
classi�cation (EC), noted EC-POMDP, by training an agent with the DDQN algorithm [100].
In experiments, we put forward limits to apply the DDQN algorithm in its original version.
Some trainings showed that the replay memoryM of the agent (which has a �xed size) can
become imbalanced with respect to the stored actions at and the length of the observations
ot. This imbalance is naturally caused by the EC-POMDP speci�cities detailed in Sec. 3.4.3,
namely (a) all but one of the actions terminate episodes and (b) actions of classi�cation are
rarer than the delay action. We argued that a negative consequence of this imbalance is the
deterioration of the agent's training which is sensitive to the composition of its replay memory
M. The latter forms the learning base of the agent and poorly managed memory can lead to
sub-optimal training.

In this chapter, we seek to optimize the EC-POMDP solving with robust replay memory
management when applying DDQN algorithm. We raise three questions in relation to replay
memory management and one question in relation to episode management:

(1) Which interactions should be stored?

(2) Which interactions should be sampled?

(3) Which interactions should be discarded (when the replay memory is full)?

(4) How to initialize an episode of training?

We study how to answer these questions while addressing the speci�cities of the EC-
POMDP, and we propose revisions to the DDQN algorithm to �x the agent's imbalanced
memory issue. In addition, we propose two adaptions of DDQN algorithm to the EC-POMDP
depending on whether the EC application comes with a �nite training dataset (batch
learning) or, on the opposite, can generate new training data over time (online learning).
In experiments, we evaluate if the contributions have a positive e�ect on the agent's overall
training and performance.

Sec. 5.1 provides a literature review on the problem of memory management in Reinforce-
ment Learning (RL).

In Sec. 5.2, we optimize DDQN algorithm for online learning (i.e. when there are succes-
sive repetitions of interaction collection and policy optimization) by proposing strategies of
prioritized sampling, prioritized storing and random episode initialization.

97

98 CHAPTER 5. OPTIMIZED POMDP SOLVING

In Sec. 5.3, we adapt DDQN algorithm for batch learning, i.e. for applications having a
maximum number of possible interactions to collect between the agent and the environment,
caused by a �nite training set. We propose to decouple interaction collection from policy
optimization and we apply the prioritized sampling strategy.

In Sec. 5.4, we introduce an evaluation pipeline to compare the di�erent versions of the
algorithm, with and without the proposed strategies. We then evaluate the e�ects of prioritized
sampling, prioritized storing and random episode initialization on a dataset related to the
thesis industrial application.

In Sec. 5.5, we train a set of static Deep Neural Networks (DNNs) to classify at each time
step during the sequence acquisition. These static DNNs have an architecture equivalent to
that of the agent. We evaluate how these static DNNs perform in terms of accuracy vs. speed
compared to the EC agent trained with RL.

5.1 Related work on memory management in RL

In the original version of the DQN algorithm [68] (from which the DDQN algorithm [100] has
been adapted), the authors uniformly sample past interactions from the replay memory M
in order to update the parameters Θ of the DNN (see step 6 in Fig. 4.2). A consequence of
this uniform sampling is that all type of interactions are sampled with the same probability,
regardless of their importance. Later, some work in the literature adapt the algorithm to
e�ciently manage the agent's replay memoryM.

In [88], the authors propose an adaptation of the DQN algorithm [68] with prioritized
experience replay (PER). The method seeks to sample "important" interactions more fre-
quently than "non important" interactions. To that end, the method samples in priority the
interactions < o, a, r, o′ > on which the agent's Q-value estimates QΘ(o, a) were far from the
Q-learning targets r + γmaxa′ QΘ−(o′, a′) used to compute the loss from Eq. 4.3. To avoid
sampling exclusively the interactions with biggest priority, the authors introduce a stochastic
prioritization. As a result, their method allows to learn on di�cult or rare interactions on
which the agent struggles predicting accurate Q-values, by re-sampling them more often.

In [73], the authors use the DQN algorithm and force that a fraction of the mini-batch
used for loss update (Eq. 4.3) is associated to interactions with positive rewards. In others
words, they give higher priority to interactions with positive rewards and they seek to learn
more e�ciently from these rewarding interactions.

In this work, we leave aside PER [88] which can be computationally expensive and we
propose a less expensive solution inspired by [73]. We choose to exploit the fact that the
interactions between the agent and the environment can be easily categorized into subgroups,
according to the type of actions selected. Contrary to [73] where sampling is prioritized
according to the scalar rewards received in the interactions, we propose to use prioritize
sampling by focusing on particular state�action pairs.

5.2 Optimized EC-POMDP solving in online learning

In previous chapter, we detailed the application of DDQN algorithm [100] to the EC prob-
lem (see Algo. 1). In its original version, the algorithm is introduced for online learning,
with successive repetitions of a) collecting training interactions between the agent and the
environment, and b) updating the agent's policy. This is due to the fact that video games

5.2. OPTIMIZED EC-POMDP SOLVING IN ONLINE LEARNING 99

usually come with an emulator which can generate an in�nite number of training episodes
and therefore the number of interactions is not bounded. In relation to EC applications, we
point out that training an EC agent with online learning is suitable for applications allowing
for streaming or multi-phases data collection. For example in predictive maintenance, the
machine sensor signals are daily monitored and the training dataset for this application could
regularly be increased.

Regarding the questions of memory and episode management, when applied to the EC
problem, the DDQN algorithm uses the following strategies:

� The environment initializes the training episode at the �rst stage of the process, i.e. at
t = 1. For the EC problem, the �rst observation given to the agent during a training
episode is the �rst vector of data points x1 in the sequence X associated to the episode.

� The agent stores every new interaction into a replay memory of a �xed size.

� In order to update the parameters Θ of its policy πΘ, the agent uniformly samples a
mini-batch of past interactions {< o, a, r, o′ >} ∼ M from the replay memory (and then
applies a stochastic gradient descent with respect to the loss function from Eq. 4.4).

� When the replay memory is full, the agent applies a seniority system and replaces its
oldest interactions by the most recent ones, such as a "First In First Out" queue.

In this doctoral work, we propose a di�erent memory and episode management to address
the EC-POMDP speci�cities presented in Sec. 3.4.3. With regard to interaction sampling,
we propose a prioritized sampling strategy (Sec. 5.2.1). Then, for the questions of interac-
tion storing and memory update, we propose a prioritized storing strategy (Sec. 5.2.2). We
also address the issue of time imbalance with a simple random episode initialization strategy
(Sec. 5.2.3). Tab. 5.1 summarizes the strategies applied by the original algorithm and those
proposed in this thesis.

DDQN

Proposition of

optimized DDQN

in online learning

Memory management

(1) Which interactions

should be stored?

All new interaction

is stored
Prioritized storing

(2) Which interactions

should be sampled?
Uniform sampling Prioritized sampling

(3) Which interactions

should be discarded?

Oldest interactions

are discarded (seniority system)
Prioritized storing

Episode management

How to initialize an episode? At time t=1
Random

episode initialization

Table 5.1: Memory and episode management strategies of original DDQN and
optimized DDQN algorithms in online learning. Comparison between DDQN original
algorithm and the optimized algorithm proposed in this thesis.

100 CHAPTER 5. OPTIMIZED POMDP SOLVING

5.2.1 Prioritized sampling

The EC-POMDP su�ers from the over-representation of the delay action ad compared to
classi�cation actions a ∈ Ac (Sec. 3.4.3). With DDQN uniform sampling in the replay memory
M, batches of interactions {< o, a, r, o′ >} ∼ M are highly imbalanced (mostly composed of
delay interactions) and the agent may experience learning troubles or sub-optimal training.
We therefore adapt DDQN to the EC problem with a simple prioritized sampling strategy
presented in Algo. 2 to improve sample e�ciency and to address the second question on
memory management (2) Which interactions should be sampled?

The strategy is the following. To ensure that the agent can learn from classi�cation in-
teractions, which are rarer than delay interactions, we force that a fraction µ ∈ [0, 1] of the
interactions within a mini-batch {< o, a, r, o′ >} ∼ M is associated with classi�cation actions
a ∈ Ac, , as illustrated in Fig. 5.1.

Moreover, in order to be robust to class-imbalanced classi�cation problems such as the one
from the industrial application (Sec. 2.2), we force that the mini-batch is uniformly balanced
among the di�erent labels.

Algorithm 2 PrioritizedSampling

Require: Replay memoryM.
Prioritized sampling parameter µ ∈ [0, 1].

Ensure: Mini-batch of interactions {< o, a, r, o′ >} of size b ∈ N+

for l ∈ L do
Sample a random mini-batch of interactions {< o, a, r, o′ >} ∼ M of size b/K such that
the observations o are associated to temporal sequences X of label l, with fraction µ of
the mini-batch having a ∈ Ac.

end for

5.2.2 Prioritized storing

The EC-POMDP results in interactions of the agent with the environment that are mainly
composed of delay action (Sec. 3.4.3): a prediction at time t results in t− 1 delay actions for
one classi�cation action. Using a seniority system for in-memory updates is not appropriate
when there are rare or under-represented actions because these interactions should be kept in
priority. We therefore address the questions on memory management (1) Which interactions
should be stored? and (3) Which interactions should be discarded? with a simple prioritized
storing strategy.

The strategy is the following. To prevent the replay memoryM from being over-represented
by delay interactions, we allocate a fraction ρ of the replay memoryM to classi�cation inter-
actions, and a fraction 1−ρ to delay interactions. ρ ∈ [0, 1] is the prioritized storing parameter
and is an hyper-parameter of the method that need to be �xed before the training of the agent.
When the replay memoryM is full, we discard the oldest interaction with the same action as
the current interaction to store. This strategy is equivalent to considering two memories: one
for delay and one for classi�cation, as illustrated in Fig. 5.1.

If the problem involves a highly class-imbalanced training dataset, the prioritized storing
strategy can also consider an additional division of the memory allocated for classi�cation
interactions. Indeed, a fraction of the classi�cation memory can be reserved for each label, so

5.2. OPTIMIZED EC-POMDP SOLVING IN ONLINE LEARNING 101

𝑎𝑑

𝐴𝑐

Prioritized sampling

𝑎𝑑

𝐴𝑐 𝜇

1 − 𝜇 1 − 𝜌

𝜌

of mini-batch
{< 𝑜, 𝑎, 𝑟, 𝑜′ >}

Replay memory
𝑀

Mini-batch

Figure 5.1: Prioritized storing and prioritized sampling strategies. Interactions are
stored in the replay memory M with prioritized storing strategy with parameter ρ. The
mini-batch {< o, a, r, o′ >} of past interactions is sampled from the replay memory M with
prioritized sampling strategy with parameter µ.

that interactions associated with rare labels are not quickly over-written by those associated
with dominant labels.

5.2.3 Random episode initialization

To answer the objective of fast decision-making, the agent has little interest in postponing
prediction and reaching the end of temporal sequences. Therefore, a static episode initial-
ization at time t = 1 causes the replay memory M to be over-represented by interactions
with classi�cation performed at early time steps. We therefore adapt DDQN algorithm to the
EC-POMDP with a random episode initialization strategy presented in Algo. 3.

The strategy is the following. During the training episodes, we initialize the beginning
of the episode at a random time t ∼ U [1, T] in the temporal sequence. Consequently, the
agent receives the �rst t data points (x1, · · · ,xt) all at once from the sequence X, as a �rst
observation of the training episode. If it chooses to delay prediction, its second observation
will be the vector of data points (x1, · · · ,xt,xt+1), and so on. We emphasize that the agent
could not act on the �rst t acquisition of data points. By doing so, we compel the agent
to explore and train on all times of the sequence acquisition. The agent can receive partial
sequences acquired until late times of the process.

In Algo. 3, the �rst time of the training episode is sampled from a uniform distribution
between time 1 and time T . Nevertheless, we point out that other distributions could have
been used, while ensuring that the agent can train on various times.

5.2.4 Algorithm

Algo. 4 summarizes the proposed adaptation of DDQN algorithm to EC. The algorithm is
presented for online learning, i.e. with simultaneous interaction collection and policy opti-

102 CHAPTER 5. OPTIMIZED POMDP SOLVING

Algorithm 3 EpisodeInitialization

Require: Training dataset D = {(Xn, ln)}n=1..N with pairs of temporal sequences X and
their associated label l ∈ L, described in Sec. 2.1.

Ensure: An initial observation o of a training episode
Sample training pair (X, l) ∼ D
Sample time t ∼ U [1, T]
Return observation o = X:t

mization. It uses the three strategies of prioritized sampling, prioritized storing and random
episode initialization presented in Sec. 5.2.3, Sec. 5.2.1 and Sec. 5.2.2. The algorithm is
illustrated in Fig. 5.2.

In addition to initial DDQN hyper-parameters de�ned in [100], the optimized algorithm
involves two additional hyper-parameters: the prioritized sampling parameter µ ∈ [0, 1] from
Sec. 5.2.1, and the prioritized storing parameter ρ ∈ [0, 1] from Sec. 5.2.2.

Algorithm 4 DDQN algorithm optimized for EC in online learning

Require: Environment described by an EC-POMDP {S,A, P,R,O,Ψ, γ} (de�ned in Sec.
3.4) and corresponding training dataset D = {(Xn, ln)}n=1..N (de�ned in Sec. 2.1).
Number of training episodes M ∈ N+ (if M > N , the agent will play several episodes of
training on the same training sequences).
Prioritized sampling parameter µ ∈ [0, 1] from Sec. 5.2.1.
Prioritized storing parameter ρ ∈ [0, 1] from Sec. 5.2.2.
A parametrization of DDQN hyper-parameters h ∈ H de�ned in [100].

Ensure: Action value function QΘ(o, a) with optimal parameters Θ∗

Randomly initialize parameters Θ. Set Θ− = Θ.
Initialize replay memoryM: pre-�ll a fraction ofM with random policy.
for episode = 1 ... M do
Initialize episode with observation: ot =EpisodeInitialization(D) from Algo. 3.
while episode is not terminated (i.e. t < T and the agent has not classi�ed the sequence
yet) do
1: The agent receives observation ot.
2: It chooses action at = arg maxa∈AQΘ(ot, a) with probability ε or random action
with probability 1− ε.
3: The environment computes reward rt = R((X, l, t), at).
4: It gives next observation ot+1 = P ((X, l, t), at).
5: Store interaction =< ot, at, rt, ot+1 > into replay memoryM:
M← PrioritizedStoring(M, interaction, µ) from Sec. 5.2.2.
6: Sample a mini-batch of interactions from memory:
{< o, a, r, o′ >} = PrioritizedSampling(M, µ) from Algo. 2.
7-8: Update parameters Θ with gradient descent on loss function from Eq. 4.4 com-
puted on the mini-batch {< o, a, r, o′ >}.
Periodically update Θ− = Θ
Increment time t = t+ 1

end while
end for

5.3. OPTIMIZED EC-POMDP SOLVING IN BATCH LEARNING 103

2

Agent

Deep Neural Network 𝑄Θ

Environment

3

4

1

Observation 𝑜𝑡

Reward 𝑟𝑡

Action 𝑎𝑡

Observation 𝑜𝑡+1

Policy 𝝅Θ

Replay
memory

𝑀

5

< 𝑜𝑡, 𝑎𝑡, 𝑟𝑡, 𝑜𝑡+1 >
of interaction

6

Compute loss
𝐿(Θ)

7

Update
parameters Θ

8

Prioritized storing Prioritized sampling

Interaction collection Policy optimization

Random episode
initialization

Mini-batch

of mini-batch
{< 𝑜, 𝑎, 𝑟, 𝑜′ >}

Figure 5.2: Optimized DDQN algorithm for EC in online learning with prioritized

sampling, prioritized storing and random episode initialization. Steps 1 to 8 form
one iteration of the algorithm.
1: Instead of initializing an episode of training at time t = 1, we apply random episode
initialization from Algo. 3.
2-4: see Fig. 4.2.
5: Instead of applying a seniority system to the replay memoryM, we apply prioritized storing
from Sec. 5.2.2.
6: Instead of applying uniform sampling from the replay memory M, we apply prioritized
sampling presented in Algo. 2.
7-8: see Fig. 4.2.

Sec. 5.4 conduct an experimental evaluation to compare the original DDQN algorithm
in online learning (Algo. 1), and the proposed adaption of the algorithm (Algo. 4) with
strategies of prioritized sampling, prioritized storing and random episode initialization. The
results show that these strategies improve the performance achieved by an EC agent, compared
to the original algorithm.

5.3 Optimized EC-POMDP solving in batch learning

5.3.1 Motivation

In recent years, the main applications of Deep Reinforcement Learning (DRL) were derived
from video games and, consequently, DRL algorithms were designed for these applications

104 CHAPTER 5. OPTIMIZED POMDP SOLVING

[44, 67, 68]. Video games come with an emulator which can generate an in�nite number of
episodes, leading to successive repetitions of interaction collection and policy optimization.

On the opposite, EC applications can not usually generate new interactions with the envi-
ronment along the agent's training. Indeed, many real-life EC applications come with a �nite
training dataset, either because there was a single data acquisition phase or because data
acquisition is expensive and can not exceed a certain amount of samples. For example, in mi-
crobiological diagnostics, data acquisition is expensive because of the experiments it requires
to conduct, and it is common to be limited in the amount of data that can be collected.

Also, in some cases, the agent's policy can not be tested on the real environment while
training and we must wait until we �nd the optimal policy before applying it to real cases.
This is for example the case of medical diagnoses for which the agent can only train from a
database of past interactions and for which we can not test its policy during training on real
patients.

As a consequence, these applications are characterized by a POMDP for which there are
a �nite number of interactions to train on. For example, in the case of Gun-Point dataset
from the UCR archive [21], there are 50 training sequences with length 150 and associated to
two possible labels, and consequently the total number of possible interactions for training is
50 ∗ 3 ∗ 150 = 22500.

We suggest to develop a batch version of DDQN algorithm where the interaction collection
is decoupled from the training of the agent. We argue that all possible training interactions
between the agent and the environment can be simulated and stored in an exhaustive replay
memory before updating the agent's policy. We therefore propose a simpli�cation of DDQN
algorithm for batch learning, by �rst building the exhaustive replay memory of all possible
training interactions and then optimizing the agent's policy.

5.3.2 Algorithm

Given a �nite training dataset D = {(Xn, ln)}n=1..N (Eq. 2.3), the batch version of DDQN
algorithm is the following. The �rst step is to build an exhaustive replay memory M̃. To
that end, we simulate all possible interactions between the agent and the environment, on all
sequences from the �nite training dataset D. In other words, we simulate interactions on all
pre�xes of sequences from the training dataset and for all action choices.

The second step is to update the parameters Θ of the DNN QΘ. To that end, we repeat
the sub-steps of:

1. sampling a mini-batch of interactions with the prioritized sampling strategy proposed
in Sec. 5.2.1, and

2. updating parameters Θ with gradient descent on loss function from Eq. 4.4 computed
on the mini-batch.

During the second step, the agent no longer generates training episodes. Instead, all the
possible episodes were simulated during the construction of the exhaustive memory M̃ in the
�rst step. In other words, once M̃ is built, the agent only updates the parameters Θ of its
policy.

We point out that, by storing all the possible choices of action for all the acquisition times
of the training sequences, the memory is balanced in action and time. The only imbalance
that can arise concerns the labels represented in the memory and which is taken into account
in the prioritized sampling strategy. Contrary to Algo. 4 in online learning, the method with

5.4. EXPERIMENTAL COMPARISON BETWEENMEMORYMANAGEMENT STRATEGIES105

batch learning no longer necessitates the strategies of prioritized storing and random episode
initialization introduced to balance the memory, as summarized in Tab. 5.2.

In addition to initial DDQN hyper-parameters de�ned in [100], the method involves the
prioritized sampling parameter µ ∈ [0, 1] from Sec. 5.2.1. On the other hand, it no longer
requires optimizing the hyper-parameters related to the exploration of the agent. We present
in Algo. 5 and illustrate in Fig. 5.3 the adaptation of DDQN algorithm to EC in a batch
learning.

DDQN
Optimized DDQN

for batch learning

Memory management

(1) Which interactions

should be stored?

All new interaction

is stored

Exhaustive

replay memory

(2) Which interactions

should be sampled?
Uniform sampling Prioritized sampling

(3) Which interactions

should be discarded?

Oldest interactions

are discarded (seniority system)

Exhaustive

replay memory

Episode management

How to initialize an episode? At time t=1 No episodes

Table 5.2: Memory and episode management strategies of original DDQN and
optimized DDQN algorithms in batch learning.

Batch learning or online learning? We point out that the two versions of the algorithm
can be combined in the speci�c case where the user has a �nite training dataset at �rst and
will later collect additional training samples. It is possible to �rst build an exhaustive memory
from the �nite training dataset, learn a policy in batch learning, and then update the policy
in online learning while processing newly collected data as they arrive.

5.4 Experimental comparison between memory management

strategies

Experiments were conducted in Sec. 4.3 to evaluate the suitability of the method, i.e. if an
agent could behave as an early classi�er. We now seek to experimentally evaluate the bene�ts
of the memory and episode management strategies proposed in this chapter. To assess the
impact of prioritized sampling (Sec. 5.2.1), prioritized storing (Sec. 5.2.2) and random episode
initialization (Sec. 5.2.3) on the agent's training, we will train early classi�er agents with the
original DDQN algorithm in online learning and with three adaptations of the algorithm:

� DDQN-baseline refers to original DDQN algorithm [100], as described in Algo. 1.

� DDQN-ps refers to DDQN with prioritized sampling and prioritized storing proposed in
Sec. 5.2.1 and Sec. 5.2.2.

� DDQN-ei refers to DDQN with random episode initialization proposed in Sec. 5.2.3.

106 CHAPTER 5. OPTIMIZED POMDP SOLVING

Deep Neural Network 𝑄Θ

Policy 𝝅Θ

Exhaustive
replay

memory
𝑀

1

Compute loss
𝐿(Θ)

2

Update
parameters Θ

3

Build exhaustive replay memory 𝑀 Policy optimization

(𝑋, 𝑙)

Training dataset 𝐷

(𝑋, 𝑙)

𝑋:1
.
.
.
.

𝑋:𝑇

𝑎𝑑

Predict label 𝑙𝐾

…

Predict label 𝑙1

𝑎𝑑

Predict label 𝑙𝐾

…

Predict label 𝑙1

Environment

< 𝑜, 𝑎, 𝑟, 𝑜′ >
< 𝑜, 𝑎, 𝑟, 𝑜′ >

…
< 𝑜, 𝑎, 𝑟, 𝑜′ >

< 𝑜, 𝑎, 𝑟, 𝑜′ >
< 𝑜, 𝑎, 𝑟, 𝑜′ >

…
< 𝑜, 𝑎, 𝑟, 𝑜′ >

Exhaustive
replay

memory
𝑀

𝑜

𝑎

𝑎

𝑟, 𝑜′

Prioritized sampling

Mini-batch

of mini-batch
{< 𝑜, 𝑎, 𝑟, 𝑜′ >}

Figure 5.3: Optimized DDQN algorithm for EC in batch learning with prioritized

sampling. The �rst step is to build exhaustive replay memory M̃. Then the policy πΘ is
optimized.

� DDQN-ps-ei refers to DDQN with simultaneously prioritized sampling, prioritized stor-
ing and random episode initialization as synthesized in Algo. 4.

DDQN-baseline, DDQN-ei, DDQN-ps and DDQN-ps-ei di�er by their methods of memory
and episode management. The objective is to compare the four methods and to determine if
one of them results in a better training of the agent.

5.4.1 Industrial dataset

Data We conduct experimental evaluations on a dataset collected from a private project
carried out by bioMérieux company. Data are multivariate time series derived from living
organisms. The N = 3155 temporal sequences X = (x1, ...,xT) have length T = 77 and each
data point xi∈[1,T] is a 5-dimensional array (P = 5). With previous notations from Sec. 2.1,
X ∈ R5×77.

Labels Sequences are associated to labels in L = {a, b, c, d} depicting four classes of living
organisms. Fig. 5.4 gives the distribution of the labels among the training, validation and
testing sets. It shows that label c is under-represented in comparison to labels a and b.

t-SNE projection In Fig. 5.5, we represent the training set with a two-dimensional t-SNE
(t-distributed stochastic neighbour embedding) of the (complete) temporal sequences using

5.4. EXPERIMENTS ON MEMORY MANAGEMENT STRATEGIES 107

Algorithm 5 DDQN algorithm applied to EC in batch learning

Require: Environment described by an EC-POMDP {S,A, P,R,O,Ψ, γ} as de�ned in Sec.
3.4 and corresponding training dataset D = {(Xn, ln)}n=1..N as de�ned in 2.1.
Number of parameters updates U ∈ N+.
Prioritized sampling parameter µ ∈ [0, 1].
A parameterization of DDQN hyper-parameters h ∈ H de�ned in [100].

Ensure: Action value function QΘ(o, a) with optimal parameters Θ∗

Store all possible interactions in exhaustive replay memory M̃:
for n = 1 ... N do
Select a training pair (Xn, ln) ∈ D.
for t = 1 ... T do
Compute observation o = Xn

:t

for a ∈ A do
Compute reward r = R((Xn, ln, t), a)
Compute next observation o′ = P ((Xn, ln, t), a).
Store interaction < o, a, r, o′ > into exhaustive replay memory M̃.

end for
end for

end for
Randomly initialize parameters Θ. Set Θ− = Θ.
for update = 1 ... U do
1: Sample a mini-batch of interactions from memory:
{< o, a, r, o′ >} = PrioritizedSampling(M̃, µ) from Algo. 2.
2-3: Update parameters Θ with gradient descent on loss function from Eq. 4.4 computed
on the mini-batch {< o, a, r, o′ >}.
Periodically update Θ− = Θ

end for

algorithm from [64]. We observe overlapping clusters of points from di�erent labels. Samples
from class b and c are often mixed among the same clusters of points. This illustrates the
complexity of the dataset in which sequences from di�erent classes are very similar due to the
biological variability in the dataset.

5.4.2 EC-POMDP model

We use the same EC-POMDP model as in Sec. 4.3, except for the classi�cation rewards.
We vary rewards for correct classi�cation Rc,ins((X, l, t), a = l) ∈ {0,+1} in order to obtain
policies with slow decision-making and to be able to compare the methods DDQN-baseline,
DDQN-ei, DDQN-ps and DDQN-ps-ei in late prediction times.

We point out that in the practical use of the method for the cost-sensitive industrial ap-
plication (Sec. 2.2.2.4), we use the reward function de�nition Rc,sen (Eq. 3.32) that involves
the di�erent costs of misclassi�cation. However, in this experiment, we seek to evaluate the
bene�ts of the memory management strategies for the general problem of EC.

108 CHAPTER 5. OPTIMIZED POMDP SOLVING

Figure 5.4: Labels distribution in the industrial sets of training, validation and
testing. The set of labels is L = {a, b, c, d}.

5.4.3 Experimental pipeline

The experimental evaluation consists in the following steps.
(a) We launch a set of trainings on the training set for each method DDQN-baseline,

DDQN-ei, DDQN-ps and DDQN-ps-ei (Sec. 5.4.3.1).
(b) At the same time that the agent is training, we regularly evaluate its policies on the

validation set (Sec. 5.4.3.2).
(c) Once the trainings are completed and the agent has been evaluated on the validation

set, we statistically compare its performances between each method on the validation set. This
step allows us to compare the overall performance of each method (Sec. 5.4.3.3).

(d) We then select top-5 optimal policies on the validation set for each method. We evaluate
and compare the performance of these optimal policies on the testing set. This step allows us
to compare the best performances of each method (Sec. 5.4.3.4).

5.4.3.1 Training pipeline

The following training pipeline is applied for each method of memory and episode management.

Neural network setting and input data pre-processing: As detailed in Sec. 4.3.3.1,
we zero-pad the sequences (i.e. the data points that are still not collected by the agent
are replaced with zero values).

We approximate the Q-function with a DNN composed of convolution �lters, with
dropout applied at training time. The amount of layers, �lters and dropout are hyper-
parameters of the method (see below). An example of architecture used during experi-
ments for the DNN is given in Appendix E.

Hyper-parameters setting: The DNN training depends on a set of hyper-parameters [100]
which combinatorial space is too large for an exhaustive search of optimal parameters.
We note H the combinatorial space of all hyper-parameters.

5.4. EXPERIMENTS ON MEMORY MANAGEMENT STRATEGIES 109

a
b
c
d

-30 -20 -10 0 10 20 30

tsne1

-60

-40

-20

0

20

40

60

ts
ne

2

tsne1 vs. tsne2

Figure 5.5: Two-dimensional t-SNE embedding of the training set. Each dot repre-
sents a complete temporal sequence Xn

:T , n ∈ [1, N] from the training set. Dots are coloured
according to their label a, b, c or d.

We �rst perform a rough optimization of the method by pre-tuning the hyper-parameters
near optimal parameters presented in [68]. We then select a set of hyper-parameters in
a restricted combinatorial space H̃ ⊂ H near those pre-tuned parameters. We also
sample the EC-POMDP reward de�nition in Rc,ins((X, l, t), a = l) ∼ {0,+1} to vary
the learning dynamics of the agent.

In experiments from Sec. 5.4.4, we evaluate the methods for 100 combinations of hyper-
parameters (H̃ = {h1, · · · , h100}) and we train as many independent agents. We dedicate
one agent per setting of hyper-parameters h ∈ H̃ and each agent is trained separately
between all settings h.

Agent's training: When a DNN is trained under supervision (for static classi�cation or
regression tasks), its parameters Θ are generally updated until the loss function stops
decreasing on the validation set. As a consequence, the selection of the best DNN
parameters Θ∗ is straightforward: the selected parameters are the ones with lowest loss
on the validation set.

At the opposite, when a DNN is trained with RL and speci�cally with the DDQN
algorithm, the loss function from Eq. 4.4 on an interaction < o, a, r, o′ > is based on
the Q-learning target, r + γQΘ−(o′, arg maxa′ QΘ(o′, a′)), which is an approximation of
future cumulated rewards. The loss is then estimated and it is generally not used either
to stop the training procedure or to select optimal parameters Θ∗.

Instead, for each hyper-parameter setting h ∈ H̃, we independently train an agent for a
�xed number of episodes in the environment, until it reaches 100000 updates of its DNN
parameters Θ with gradient descent on the loss from Eq 4.4.

110 CHAPTER 5. OPTIMIZED POMDP SOLVING

Figure 5.6: Example of performance metrics from one training of the agent. The
scatter plot shows the policy trade-o� between Acc (in %, Eq. 4.8) in the y-axis and tpred
(Eq. 4.9) in the x-axis during training. The policy is evaluated on the validation set every
1000 updates of the DNN parameters Θ. Blue dots correspond to the policy evaluation at
early training. Yellow dots correspond to the policy evaluation after 100,000 iterations of
training. The black vertical line (resp. band) gives the agent's mean (resp. stdev) tpred during
training. The black horizontal line (resp. band) gives the agent's mean (resp. stdev) Acc
during training. The red horizontal line gives the agent's maximal Acc during training.

5.4.3.2 Evaluation pipeline

The following evaluation pipeline is applied simultaneously to each training, for each method
of memory and episode management.

Performance metrics: We use the same performance metrics Acc and tpred than Sec.
4.3.3.2 except that the accuracy Acc is computed with macro-averaging (Eq. 2.11)
to handle the class-imbalanced nature of the dataset.

We point out that the industrial application of the thesis is cost-sensitive (Sec. 2.2.2.4)
and in the practical use of the method for industrial application, we use application-
speci�c criteria that take into account the di�erent costs of misclassi�cation in addition
to macro accuracy.

Agent's evaluation: During training, we simultaneously evaluate the agent on the valida-
tion set every 1000 updates of Θ. As a consequence, for each training dedicated to a set
of hyper-parameter h ∈ H̃, we obtain a set of 100 (=100000/100) policies, noted {πΘ}h,
which will be used for subsequent evaluations.

Fig. 5.6 reports the evaluations performed during one training of the agent, for one
particular setting of hyper-parameter h ∈ H̃. As illustrated in the �gure, we evaluate
the trade-o� between classi�cation quality and earliness at regular training intervals: we
compute Acc versus tpred.

5.4. EXPERIMENTS ON MEMORY MANAGEMENT STRATEGIES 111

5.4.3.3 Comparison pipeline

Once the trainings are completed and the agent has been evaluated on the validation set, we
seek to measure if some of the proposed methods for memory and episode management have
a positive e�ect on the agent overall training. The following comparison pipeline is applied at
the end of all the method evaluations.

Comparison metrics: For each completed training, we compute the following criteria
assessing its quality.

Best performance: To assess an agent's best classi�cation performance during its
training, we compute max Acc independently of the prediction time, as illustrated
in Fig. 5.6.

Mean performance: To overcome that max Acc only re�ects an agent's behavior
at a single time step in its training and to globally assess an agent's performance
during its entire training, we compute mean Acc and mean tpred over all the agent's
evaluations, that is to say on the 100 policies that were evaluated every 1000 updates
of Θ, as illustrated in Fig. 5.6. A large score of mean Acc means that the agent
was globally highly accurate all along its training.

Stability: We measure the stability of a training through the variation in Acc and
tpred with the standard deviation (stdev) metric, as illustrated in Fig. 5.6. A high
score of stdev Acc means that the policies evaluated along training were not equally
accurate and very unstable.

Methods comparison: Once quality criteria have been measured, we are interested in
assessing the robustness of each method regarding the hyper-parameter setting.

For each method, we compute the metrics max Acc, mean Acc, stdev Acc, mean
tpred and stdev tpred on each training dedicated to a set of hyper-parameters h ∈ H̃.
We visualize the distribution of these metric scores for each method, as illustrated
in Fig. 5.7.

We then statistically compare the distribution of the metrics between each method
two-by-two and we report the p-values of Mann-Whitney rank statistical tests on
the null hypothesis that the two compared methods are equivalent, as reported in
Tab. 5.3.

5.4.3.4 Optimal policies comparison pipeline

Once the methods have been statistically compared in relation to their overall performances,
we aim at comparing the best policies achieved by each method.

Optimal policy selection: Contrary to UCR benchmark used in experiments from Sec.
4.3, the dataset of this experimental evaluation o�ers a validation set which can be used
to select optimal policies.

For all trainings (each one being dedicated to a set of hyper-parameters h ∈ H̃), we
obtain sets of policies {{πΘ}h, ∀h ∈ H̃} that were evaluated on the validation set, with
variable performances in Acc and tpred. For regular time ranges [tinf , tsup[⊂ [1, T],
we �rst select the policies from {{πΘ},∀h ∈ H̃} which have an average prediction time
tpred ∈ [tinf , tsup[on the validation set. We then select among this restricted set of

112 CHAPTER 5. OPTIMIZED POMDP SOLVING

policies the top-5 policies with best classi�cation performance on the validation set. It
is up to the user to set the time intervals according to the evaluation detail he wishes to
obtain.

From this pre-selection, we then have as many optimal policy candidates as time ranges
considered for tpred. Among all candidates, we can then choose the optimal policy as
the one satisfying the most our will to compromise between accuracy and speed.

Optimal policy evaluation: We report and compare the performances in Acc and tpred of
these top-5 policies on the testing set, as illustrated in Fig. 5.10 and Fig. 5.8. This
allow to visualize the best classi�cation results obtained by the agent for all earliness
trade-o�.

5.4.4 Results

On each method (DDQN-baseline, DDQN-ei, DDQN-ps and DDQN-ps-ei), we perform 100
independent trainings of the agent (Sec. 5.4.3.1) on the training set. During training, we
regularly evaluate the policies on the validation set (Sec. 5.4.3.2). Once trainings are termi-
nated, we thus obtain a set of evaluations on the validation set for all four methods which we
then compare with statistical tests (Sec. 5.4.3.3). In addition, we select top-5 policies on the
validation set for all four methods (Sec. 5.4.3.4). We evaluate those top-5 policies on the test
set and we report performances.

5.4.4.1 Statistical comparison between all four methods

The distributions of performance metrics from Sec. 5.4.3.3 are shown in Fig. 5.7 and statisti-
cally compared in Tab. 5.3.

Figure 5.7: Distribution of performance metrics on the validation set for each
method of memory and episode management: DDQN-baseline, DDQN-ps-ei,
DDQN-ps and DDQN-ei.
(a) Max Acc. (b) Mean Acc. (c) Stdev Acc. (d) Mean tpred. (e) Stdev tpred. For each method,
the distribution is calculated on all the evaluations that were performed on the validation set,
for each set of hyper-parameters tested.

First, we compare the best classi�cation performance achieved by the agent during its
training sessions, on each method of memory and episode management. That is to say, on

5.4. EXPERIMENTS ON MEMORY MANAGEMENT STRATEGIES 113

Performance Stability

Methods Max Acc Mean Acc Mean tpred Stdev Acc Stdev tpred

DDQN-baseline vs. DDQN-ei 0.0023 0.1467 0.0430 0.8227 0.6270

DDQN-baseline vs. DDQN-ps 0.2464 0.0001 0.8067 1.7212e−5 0.1090

DDQN-baseline vs. DDQN-ps-ei 0.0001 0.0036 0.0286 0.2263 0.5418

Table 5.3: Statistical comparison between DDQN-baseline, DDQN-ps, DDQN-ei

and DDQN-ps-ei performance metrics. The table reports p-values of Mann-Whitney
rank tests on the null hypothesis that DDQN-baseline have a score comparable to DDQN-ps
and DDQN-ps-ei for each performance metric (max Acc, mean Acc, stdev Acc, mean tpred
and stdev tpred) from Fig. 5.7. The null hypothesis is rejected in favor of the alternative
hypothesis on tests with a p-value below 0.05, shown in bold. The alternative hypothesis is
that the metric performance is di�erent between the methods. Fig. 5.7 shows which method
has the greatest score.

each of training of the agent, we keep the policy that was the most accurate in classi�cation.
Tests from Tab. 5.3 show that both DDQN-ei and DDQN-ps-ei improve max Acc over DDQN-
baseline. In other words, these methods result in policies with the best classi�cation quality.

Then, we compare the average performance of the agent during its training sessions, by
averaging the performance of each of its policies from the same training session. This allows
to illustrate the overall performance of the agent throughout its training, and not at a speci�c
moment of its training. Tests from Tab. 5.3 show that both DDQN-ps and DDQN-ps-ei
improve mean Acc over DDQN-baseline which means that these methods improve the overall
classi�cation quality of the agent compared to the baseline. Also, both DDQN-ei and DDQN-
ps-ei shorten mean tpred over DDQN-baseline which means that these methods result in earliest
classi�cation times compared to the baseline. DDQN-ps-ei is then the method that leads to
both best classi�cation quality and earliest prediction times simultaneously. Both competitive
EC costs are improved with this method.

In terms of stability, measured through the metrics of stdev tpred and stdevAcc, the di�erent
methods are comparable except for DDQN-ps which is statistically less variable in terms of
accuracy compared to DDQN-baseline.

As a conclusion, DDQN-ps-ei, which refers to DDQN combined with all of the proposed
strategies (prioritized sampling, prioritized storing and random episode initialization), is the
best memory and episode management method because it simultaneously improves the clas-
si�cation performance of the agent and fastens its prediction time.

5.4.4.2 Evaluation of top-5 policies for all four methods

Top-5 policies (Sec. 5.4.3.4) on all four versions of DDQN algorithm are shown in Fig. 5.8.
For each method, accuracy rapidly increases when prediction time reaches tpred = 30. Then,
accuracy slightly gets better when prediction time increases up to tpred = 40. We can observe
that accuracy stops increasing (and even slightly decreases in some cases) when the prediction
is performed approximately at tpred > 50. This is due to the particularity of the application

114 CHAPTER 5. OPTIMIZED POMDP SOLVING

for which more time passes and more the biological processes associated with di�erent classes
will have similar states.

Figure 5.8: Evaluation of top-5 policies from DDQN-baseline, DDQN-ei, DDQN-

ps and DDQN-ps-ei on the test set. The evaluation involves 8 distinct time intervals
[tinf , tsup[between [1, T]. For each time interval [tinf , tsup[, the top-5 policies (which have an
average prediction time tpred ∈ [tinf , tsup[and highest Acc) were selected from the validation
set. The full line represents mean accuracy and the band is the accuracy standard deviation
on the 5 policies on the test set.

From Fig. 5.8, we observe that DDQN-baseline top-5 policies are globally the least accurate
under all trade-o�s of prediction time tpred. Top-5 policies with highest Acc for di�erent trade-
o� of tpred are produced by DDQN-ei and DDQN-ps-ei. We can see that the di�erent proposed
methods of memory and episode management lead to optimal policies which are at least as
good or better than those obtained with the original DDQN algorithm.

5.5 Experimental comparison between early classi�er and naive

static classi�er

We seek to experimentally measure the added value of the proposed RL method for EC in
comparison to static classi�cation. Speci�cally, the objective of this evaluation is to measure if
a DNN gives similar performances of EC (accuracy vs. speed) when trained with two di�erent
approaches:

� a common static classi�cation training, carried out at �xed time steps, i.e. without
decision-making on the prediction time,

� an early classi�cation training based on RL, i.e. the network has the ability to adapt its
prediction time.

5.5. EXPERIMENTS ON EARLY CLASSIFIER VS. NAIVE STATIC CLASSIFIER 115

We wish to compare the RL approach with the static classi�cation approach on equal terms,
that is when the DNNs have equivalent architectures.

The principle of the evaluation is the following. For an agent that would predict on average
at tpred, we seek to evaluate whether a static DNN classi�er that would make the prediction
with the same average speed (but always at the same time step tpred) would achieve a better
classi�cation quality than the proposed agent. To perform the evaluation, we deactivate the
decision-making capability of the model, i.e. the RL part, and train a set of equivalent static
DNNs to classify at a list of prede�ned (static) time steps.

5.5.1 Experimental pipeline

Dataset We use the industrial dataset from Sec. 5.4.1, illustrated in Fig. 5.4 and Fig. 5.5.

Early classi�er We perform 50 trainings of an EC agent, each being dedicated to set of
hyper-parameters h ∈ H̃, on the same EC-POMDP de�nition than Sec. 5.4. We apply DDQN
algorithm in batch learning and with prioritized sampling, as introduced in Algo. 5. We use
the same training pipeline as in Sec. 5.4.3.1 to obtain early classi�er agents enhanced with
decision-making capabilities. We simultaneously evaluate the agent's policies on the validation
set with the same evaluation pipeline as in Sec. 5.4.3.2. As output of the 50 trainings of the
agent, we then obtain a set of policies {{πΘ}h, ∀h ∈ H̃} with variable performances in Acc and
tpred on the validation set. On this set of policies, we apply the same pipeline as in Sec. 5.4.3.4
to select and evaluate the agent's optimal policies. We report in Fig. 5.10 the performances
in Acc and tpred of these optimal policies on the testing set. Therefore, we visualize the best
classi�cation results obtained by the agent for all earliness trade-o�.

Static classi�er For all time steps t ∈ [1, T], we train a DNN ft,Θ with parameters Θ to
map between the partial temporal sequences X:t and the labels l ∈ L, as illustrated in Fig.
5.9:

ft,Θ : {X:t} → L (5.1)

Each DNN ft,Θ is trained on the training dataset Dt = {(Xn
:t, l

n)}n=1..N built from D. The
DNNs {f1,Θ, · · · , fT,Θ} are trained separately until the loss function stops decreasing on
the validation set. As output of the trainings of the static classi�ers, we obtain sets of
classi�cation models {{f1,Θ}, · · · , {fT,Θ}}. For all time steps t ∈ [1, T], we select among the
set of classi�cation models {ft,Θ} the top-5 models with best classi�cation performance on
the validation set. We then report in Fig. 5.10 the performances in Acc of these models on
the testing set.

As illustrated in Fig. 4.1 and Fig. 5.9, the neural network architectures used for both
static classi�ers {f1,Θ, · · · , fT,Θ} and the agent's policy {πΘ} are similar, with identical
convolutional layer architectures. The DNN architectures only di�er in the output layer.
Indeed, the output layer of the static classi�ers has as many neurons as labels and a softmax
activation while the output layer of the agent's policy is linear and has an additional neuron
for the delay action.

116 CHAPTER 5. OPTIMIZED POMDP SOLVING

𝑧1

𝑧𝐾

.

.

.

Deep Neural Network 𝑓𝑠𝑐,Θ for the static classifier

argmax
𝑘 ∈ 𝐾

𝑒𝑧𝑘

 𝑒𝑧𝑘′𝐾
𝑘′=1

𝑓𝑠𝑐,Θ(𝑿:𝑇)

𝑿:𝑇

Future (unknown)

data points
(𝒙𝑡+1, … , 𝒙𝑇)

T

Static classifier for time 𝑻

𝑒𝑧1

 𝑒𝑧𝑘𝐾
𝑘=1

𝑒𝑧𝐾

 𝑒𝑧𝑘𝐾
𝑘=1

Softmax

𝒕 = 𝟏…𝑻

Static classifier for time 𝑻 − 𝟏

Static classifier for time 𝒕 + 𝟏

𝑧1

𝑧𝐾

.

.

.

Deep Neural Network 𝑓𝑡,Θ for the static classifier

argmax
𝑘 ∈ 𝐾

𝑒𝑧𝑘

 𝑒𝑧𝑘′𝐾
𝑘′=1

𝑓𝑡,Θ(𝑿:𝑡)

𝑿:𝑡

Future (unknown)

data points
(𝒙𝑡+1, … , 𝒙𝑇)

t

Static classifier for time 𝒕

𝑒𝑧1

 𝑒𝑧𝑘𝐾
𝑘=1

𝑒𝑧𝐾

 𝑒𝑧𝑘𝐾
𝑘=1

Softmax

Figure 5.9: Set of DNNs {f1,Θ, · · · , fT,Θ} with parameters Θ trained for static clas-
si�cation at all time steps t ∈ [1, T]. Each DNN ft,Θ receives as input data the partial
sequences X:t. The DNNs have the same architecture than the policy DNN from Fig. 4.1,
except for the output layer which has a softmax activation and K output neurons associated
to the K labels (there is no longer a neuron associated with the delay action).

5.5.2 Results

In Fig. 5.10, we report top-5 policies performance for di�erent ranges of tpred (Sec. 5.4.3.2).
Both static DNN and early classi�er have poor Acc in early times (tpred < 20) due to lack
of information in the partial temporal sequences. Then the early classi�er provides top-5
policies with higher Acc than static classi�ers. The improvement in Acc for equivalent
tpred is due to the capability of the agent to adapt its classi�cation individually
on each temporal sequence. The agent can choose to quickly classify sequences that
can easily been categorized or to require more data points on sequences lacking discriminant
patterns. As a consequence, the early classi�er's capacity to individually compromise makes
the classi�cation more e�cient than static networks using the same amount of data points in
all sequences independently of their complexity. In the next chapter, we will illustrate some
of the agent's predictions on test data and we will seek to interpret its decisions, individually
on each data.

Interestingly, we cannot evaluate the early classi�er in late prediction times (tpred > 55).
To reach its objective of fast decision-making, the agent did not choose to classify at the end
of the sequences and it always provided fastest policies.

5.6. CONCLUSION 117

early classifier
early classifier
static classifier

10 20 30 40 50 60 70

Time of prediction

50

55

60

65

70

75

80

A
cc

ur
ac

y

early classifier
early classifier
static classifier

10 20 30 40 50 60 70

Time of prediction

55

60

65

70

75

80

A
cc

ur
ac

y

early classifier
early classifier
static classifier

10 20 30 40 50 60 70

Time of prediction

55

60

65

70

75

80

A
cc

ur
ac

y

early classifier
early classifier
static classifier

10 20 30 40 50 60 70

Time of prediction

55

60

65

70

75

80

A
cc

ur
ac

y

early classifier
early classifier
static classifier

10 20 30 40 50 60 70

Time of prediction

55

60

65

70

75

80

A
cc

ur
ac

y

early classifier
early classifier
static classifier

10 20 30 40 50 60 70

Time of prediction

55

60

65

70

75

80

A
cc

ur
ac

y

early classifier
early classifier
static classifier

10 20 30 40 50 60 70

Time of prediction

55

60

65

70

75

80

A
cc

ur
ac

y

early classifier
early classifier
static classifier

10 20 30 40 50 60 70

Time of prediction

55

60

65

70

75

80

A
cc

ur
ac

y

early classifier
early classifier
static classifier

10 20 30 40 50 60 70

Time of prediction

55

60

65

70

75

80

A
cc

ur
ac

y

early classifier
early classifier
static classifier

10 20 30 40 50 60 70

Time of prediction

55

60

65

70

75

80

A
cc

ur
ac

y

early classifier
early classifier
static classifier

10 20 30 40 50 60 70

Time of prediction

55

60

65

70

75

80

A
cc

ur
ac

y

early classifier
early classifier
static classifier

10 20 30 40 50 60 70

Time of prediction

55

60

65

70

75

80

A
cc

ur
ac

y

early classifier
early classifier
static classifier

10 20 30 40 50 60 70

Time of prediction

55

60

65

70

75

80

A
cc

ur
ac

y

early classifier
early classifier
static classifier

10 20 30 40 50 60 70

Time of prediction

55

60

65

70

75

80

A
cc

ur
ac

y

early classifier
early classifier
static classifier

10 20 30 40 50 60 70

Time of prediction

55

60

65

70

75

80

A
cc

ur
ac

y

early classifier
early classifier
static classifier

10 20 30 40 50 60 70

Time of prediction

55

60

65

70

75

80

A
cc

ur
ac

y

early classifier
early classifier
static classifier

10 20 30 40 50 60 70

Time of prediction

55

60

65

70

75

80

A
cc

ur
ac

y

early classifier
early classifier
static classifier

10 20 30 40 50 60 70

Time of prediction

55

60

65

70

75

80

A
cc

ur
ac

y

early classifier
early classifier
static classifier

10 20 30 40 50 60 70

Time of prediction

55

60

65

70

75

80

A
cc

ur
ac

y

early classifier
early classifier
static classifier

10 20 30 40 50 60 70

Time of prediction

55

60

65

70

75

80

A
cc

ur
ac

y

early classifier
early classifier
static classifier

10 20 30 40 50 60 70

Time of prediction

55

60

65

70

75

80

A
cc

ur
ac

y

early classifier
early classifier
static classifier

10 20 30 40 50 60 70

Time of prediction

55

60

65

70

75

80

A
cc

ur
ac

y

early classifier
early classifier
static classifier

10 20 30 40 50 60 70

Time of prediction

55

60

65

70

75

80

A
cc

ur
ac

y

Figure 5.10: Evaluation of top-5 policies of the early classi�er agent and top-5
static DNN classi�ers. The early classi�er agent is trained with Algo. 5. We select the
top-5 policies and top-5 static classi�ers in Acc on the validation set for several ranges of tpred.
We evaluate those policies and static classi�ers on the test set. The full line represents mean
Acc and the band is the stdev Acc.

5.5.3 Remark on external analysis

We emphasize that other types of neural networks are suitable for the EC problem on temporal
sequences, other than Convolutional Neural Networks (CNNs) as used in this experimental
evaluation. In an external analysis that is not presented in this document, we compared
di�erent DNN architectures for the EC problem on the industrial dataset. Speci�cally, we
evaluated DNNs with Long Short Term Memory units [35], a type of Recurrent Neural Network
(RNN). We experimentally observed that these RNNs did not bring signi�cant improvement
over the tested CNNs. Our intuition behind this result is that MTS are 2D matrices that o�er
the opportunity to treat them as images, a data type on which CNNs are known to be e�cient
prediction models. Indeed, one dimension of the 2D matrix relates to the time in the temporal
sequence and the other dimension relates to the di�erent features. From their convolution
operations, CNNs can identify discriminant groups of contiguous data points which, in the
case of sequences, are data points that are collected at consecutive time steps. Given these
convolution operations applied both in the feature and time axes, CNNs are therefore able
to learn temporal dependencies and features dependencies in MTS. We point out that other
work from the literature [103] classify temporal sequences with CNNs and show satisfying
classi�cation performance on the UCR public benchmark, experimentally demonstrating that
these networks can learn discriminant temporal features.

5.6 Conclusion

In this chapter, we optimized the DDQN algorithm which has imbalanced memory issues
when applied to the problem of EC. We proposed di�erent strategies for robust memory
management: prioritized sampling, prioritized storing and random episode initialization. In
experiments, we showed that the di�erent strategies for memory management statistically

118 CHAPTER 5. OPTIMIZED POMDP SOLVING

improved the performance of the agent in terms of accuracy and speed. Finally, we compared
early classi�ers trained with RL to static DNNs and we showed that the early classi�ers
capacities of adaptive prediction time improved the general trade-o� of accuracy versus speed.

Chapter 6

Policies interpretation

In previous chapters, we de�ned early classi�cation (EC) as a sequential decision-making
problem and we described it by a Partially Observable Markov Decision Process (POMDP),
noted EC-POMDP. We solved the EC-POMDP by training an agent with Reinforcement
Learning (RL) and we showed that it can propose a range of policies illustrating the trade-o�
between classi�cation accuracy and earliness. We remind that the agent's policy is a Deep
Neural Network (DNN) QΘ(o, a) with parameters Θ which aims at approximating the action
value function Q(o, a) (Eq. 3.16).

In this chapter, we are interested in interpreting the policy of the agent and explaining its
predictions and choice of actions. A �rst interpretation tool is given in Sec. 6.1 where we apply
a method from the literature to identify the data points in partial sequences that in�uenced
the most the agent's predictions. Illustrations are given on the industrial EC dataset. To
enrich the policies interpretations, we visualize the Q-values estimated by the agent over the
sequence acquisition in Sec. 6.2. Finally, in Sec. 6.3, we apply a method from the literature
to estimate the uncertainty of the agent's predictions. A �rst experimental study is given on
a simpli�ed version of the industrial dataset for which there are less labels to predict.

6.1 Visualization of Class Activation Map

6.1.1 Method presentation

In [116], the authors introduce the Class Activation Map (CAM) method which seeks to
interpret the predictions of a neural network (NN). A CAM is a matrix of value which allows
to detect the data points in an input data that activate the most a speci�c output neuron of
the NN. Speci�cally, it allows to decompose the �nal value predicted by an output neuron in
relation to the data points identi�ed in the input data. A CAM has as many values as data
points in the input data, and each value gives the contribution produced by the associated
input data point on the value predicted by the output neuron.

In Fig. 6.1 from [116], the authors apply the CAM method on the problem of images
classi�cation. As illustrated in the �gure, in the case of classi�cation problems, each output
neuron of the NN is associated with a label and predicts a probability score for this label.

The CAM method therefore makes it possible to identify the data points in a sample that
contributes to increase or decrease the probability associated to a speci�c label. We refer to
a contribution that increases (resp. decreases) the �nal value of the output neuron of interest

119

120 CHAPTER 6. POLICIES INTERPRETATION

as a positive contribution (resp. negative contribution). In other words, a positive (resp.
negative) contribution implies that the odds of choosing this label increase (resp. decrease).

On a test data representing a child sitting in a car next to a dog, the authors manage to
highlight the discriminating pixels that are used by the NN to predict a probability score for
the label Australian terrier. The CAM (which is the image to the right of the equation) shows
that the pixels contributing the most positively to the label prediction are those representing
the dog's face, and speci�cally its muzzle. A part of the dog's body also contribute positively
to the label prediction. On the contrary, the rest of the pixels including the child and the car
contribute negatively to the label prediction.

Figure 6.1: Class Activation Map [116]. The predicted probability of the label Australian
terrier is mapped back to the previous convolutional layer to generate the CAM which high-
lights the class-speci�c discriminating regions. Pixels highlighted in red are the most positively
contributing ones for the prediction of label Australian terrier.

The calculation of the CAM on the example shown in the �gure is the following:

� First, the authors train a NN for the problem at hand (classi�cation in the example).
Speci�cally, a restriction of the CAM method is to use a NN for which its last convolu-
tional layer is connected to a Global Average Pooling (GAP) layer, itself fully-connected
to the output layer.

� Then, they feed-forward the input test data (an image of the child sitting next to his
dog in the example) to the trained NN.

� They collect the feature maps from the last convolution layer of the NN, when applied
to the test data. There are as many feature maps as convolution �lters in the layer, and
they are the convolution results of these �lters.

� For an output neuron of interest (the one associated to the label Australian terrier in
the example), they collect the weights which bind each neuron in the GAP layer to the
output neuron. For this output neuron, there are as many weights as feature maps in
the last convolutional layer.

6.1. VISUALIZATION OF CLASS ACTIVATION MAP 121

� For each feature map in the last convolutional layer, they multiply it by the weight
associated with it for the output neuron of interest.

� Finally, they compute the weighted sum of the feature maps to obtain the CAM.

� In practice, if the features maps in the last convolution layer are smaller than the original
input data (because of pooling operations), they up-sample the CAM to the size of the
input data.

As a result, in the �nal map, there is one activation value per data point in the input data.
Mathematical formulations can be found in [116] and will be given for the EC problem in the
following.

6.1.2 Motivation

In this doctoral work, we use a DNN QΘ with parameters Θ for the approximation of the
Q-value and for the de�nition of the agent's policy πΘ (Eq. 4.1). The network di�ers from
the ones used in [116] for classi�cation, because QΘ is trained to predict Q-values of actions
a ∈ A and not to predict probabilities on labels l ∈ L directly. As shown in Fig. 6.2, each
neuron in the last layer of QΘ is associated with an action a ∈ A and predicts its Q-value. We
remind that the action space A is de�ned over the set of labels L plus an additional action
for delay ad, A = L∪ ad (Eq. 3.1, Eq. 3.2). QΘ has therefore an output neuron for each label
of the classi�cation problem, plus a neuron for the delay action.

In this work, we argue that applying the CAM method on QΘ allows to explain the Q-
value predictions for each action, and speci�cally for the ones associated to labels prediction.
We remind that input data to the DNN are pre�xes X:t ∈ RP×t of MTS X (Eq. 2.1, Fig.
2.1), with P ∈ N+ features and length t ∈ [1, T] (T ∈ N+ being the maximal length of the
sequences):

X:t =


x1

1 · · · x1
t

...
. . .

...

xP1 · · · xPt


t≤T

Each pre�x X:t is then a 2D matrix that can then be treated similarly to images in [116]
for the application of the CAM method. Instead of identifying discriminating pixels, the
method makes it possible to identify discriminating data points xpt ∈ X, p ∈ [1, P], t ∈ [1, T]
in the sequences. Speci�cally, because the DNN QΘ uses convolutional �lters, the method
can identify a discriminant group of contiguous data points and, in the case of sequences,
discriminant data points that are collected at consecutive time steps.

In the remainder of the study, we propose to apply the CAM method on test MTS, as part
of the agent's policy πΘ evaluation. The objective is to interpret the choice of action made
by the agent on the partial sequences at test time. In particular, we seek to identify which
data points xpt ∈ X, p ∈ [1, P], t ∈ [1, T] have the most e�ect on the Q-values predicted by the
DNN QΘ.

6.1.3 CAM application to EC

Policy Let πΘ be the policy of the agent that we wish to apply on test data, and QΘ the
DNN associated to πΘ following Eq. 4.1. As mentioned above, a restriction of the CAM

122 CHAPTER 6. POLICIES INTERPRETATION

𝑓1

𝑓2

𝑓3

𝑓4

…

𝑓𝐵−1

𝑓𝐵

Convolutional layers

𝑄Θ(𝑿:𝑡, 𝑎𝑑)

𝑄Θ(𝑿:𝑡, 𝑙1)

𝑄Θ(𝑿:𝑡, 𝑙𝐾)

.

.

.

GAP layer

Deep Neural Network 𝑄Θ for the Q-function

Output layer

𝑤𝑎𝑑,1

𝑤𝑙𝐾,𝐵

𝑤𝑙1,𝐵

𝑿:𝑡

Future (unknown)

data points
(𝒙𝑡+1, … , 𝒙𝑇)

t

argmax
𝑎 ∈ 𝐴

𝑄Θ(𝑿:𝑡 , 𝑎)

𝜋Θ(𝑿:𝑡)

Policy 𝝅𝚯

Figure 6.2: DNN QΘ for the Q-function with parameters Θ. It is de�ned over the set of
observations O (Eq. 3.25). Given an input observation o = X:t, the output layer of the DNN
predicts the Q-values for all actions a ∈ A. The output layer is fully-connected to a GAP
layer which reduces each feature map from the previous convolutional layer F = {f1, · · · , fB}
to a single number representing the average of the feature map.

method is to use a DNN for which its last convolutional layer F is connected to a GAP layer,
itself fully-connected to the output layer. As a consequence, the DNN architectures used in
this doctoral work verify this condition, as illustrated in Fig. 6.2.

The output layer of QΘ di�ers from those used in [116]. Instead of fully-connecting the
GAP layer to a softmax layer for classi�cation, we fully-connect the GAP layer to an output
layer with a linear activation in order to predict Q-values that can take values in R.

The last convolutional layer in QΘ is noted F and is composed of B convolution �lters:

F = {f1, · · · , fB} (6.1)

with fb the b-th convolution �lter, as illustrated in Fig. 6.2. The value of B is part of the
hyper-parameters of the method, as well as the size of convolution �lters and the operations
to apply in relation to convolutions (padding, pooling, etc.).

Test data Let X ∈ RP×T be a test MTS on which we seek to interpret the agent's predic-
tions. At each time step t of the testing episode, the agent observes the pre�x X:t, predicts
Q-values for each action a ∈ A and chooses the action with maximal Q-value. We note tpred
the time of prediction and l̂pred ∈ L the label predicted by the agent at that time, using the
pre�x X:tpred . The objective is to �nd the data points in X:tpred that contributed the most to

the prediction of label l̂pred.

6.1. VISUALIZATION OF CLASS ACTIVATION MAP 123

CAM calculation Following the CAM method from [116], we compute the map Ma for
action a ∈ A on the pre�x X:tpred as follows:

Ma(X:tpred) =

B∑
b=1

wa,b ∗ fb(X:tpred) (6.2)

where

� fb(X:tpred) is the feature map of the b-th convolution �lter from F layer, given input data
X:tpred . Each feature map is a matrix whose size depends on the convolution operations
performed in previous layers.

� wa,b is the scalar weight of the fully-connected layer which binds the GAP neuron of fb
to the Q-value of action a, as illustrated in Fig. 6.2.

At that stage, the map Ma is the size of convolution �lters from F . The map Ma is then
upsampled to the size of the input data X:tpred , so that Ma(X:tpred) ∈ RP×tpred :

Ma(X:tpred) =


m1

1 · · · m1
tpred

...
. . .

...

mP
1 · · · mP

tpred

 (6.3)

with mp
t the map value for the data point xpt ∈ X:tpred . In order to obtain a map easily

interpretable by the user, we average the map values on all features p ∈ [1, P], at each time
step t ∈ [1, tpred]:

Ma(X:tpred) =
(P∑
p=1

mp
1/P, · · · ,

P∑
p=1

mp
tpred

/P
)

(6.4)

Consequently the map becomes a vector of length tpred and allows to identify important time
steps in the sequence. Finally, in order to compare the CAMs of each action, the maps are
normalized:

Ma(X:tpred) = Ma(X:tpred)/max
ã∈A
‖Mã(X:tpred)‖∞ (6.5)

6.1.4 CAM illustrations on the industrial dataset

Dataset In this experimental evaluation, we apply the CAM method for EC presented above
on the industrial dataset of the thesis. It involves a set of MTSX ∈ R5×77 associated to ordinal
labels in L = {l1, · · · , l7} such that l1 < l2 < ... < l7. Its distribution between the di�erent
labels is shown in Fig. 6.3

In Fig. 6.4, the training set is represented with a two-dimensional t-SNE embedding of the
(complete) temporal sequences using algorithm from [64]. We observe overlapping clusters
of points from di�erent labels which illustrates the dataset complexity. In the industrial
EC application, samples within a same class can be more or less distant due to biological
variability, leading to an overlap with other classes that can sometimes be important.

124 CHAPTER 6. POLICIES INTERPRETATION

Figure 6.3: Labels distribution in the industrial sets of training, validation and
testing. The set of labels is L = {l1, · · · , l7}

1
2
3
4
5
6
7

-40 -20 0 20 40

tsne1

-20

-10

0

10

20

30

ts
ne

2

tsne1 vs. tsne2

Figure 6.4: Two-dimensional t-SNE embedding of the training dataset. Each dot
represents a complete temporal sequence Xn

:T , n ∈ [1, N] from the industrial training set asso-
ciated to an ordinal label in L = {l1, · · · , l7}. Each dot is colored according to the label.

6.1. VISUALIZATION OF CLASS ACTIVATION MAP 125

Agent's training As in previous chapters, we train a set of agents on the training set, each
one being dedicated to a set of hyper-parameters (see Sec. 5.4.3.1). We regularly evaluate
the independent agents on the validation set (see Sec. 5.4.3.2). Among all the evaluated
policies, we select one which satis�es our will to compromise between classi�cation quality
and earliness on the validation set. In the case of the industrial application, the classi�cation
quality is assessed with application-speci�c performance criteria that measure the severity
of misclassi�cation. The goal is now to apply this selected optimal policy on test data and
interpret its predictions. Using the CAM calculation method presented previously, we calculate
the CAM on test data in order to interpret the Q-values predicted by the agent. In Figs. 6.6,
6.7, 6.5, we visualize some input partial sequences analyzed by the agent and we superpose
the CAMs for each action for these sequences.

Results In Fig. 6.5, the test data is associated with a true label l5. It is acquired until time
step tpred = 46, time at which the agent correctly predicts label l5. The explanation given by
the CAM method for this prediction is as follows:

� The CAM shows that a pattern in the data points (x39, · · · ,x46) contribute the most
negatively to the Q-value of labels l1 and l2. It also contributes negatively, but with less
importance, to the Q-value of label l3. It slightly contributes positively to the Q-value
of label l4, and largely positively to those of labels l5, l6 and l7.

� We also identify that a pattern before the data points x39, around (x20, · · · ,x38), slightly
decreases the Q-value of label l7.

� Previous data points (x1, · · · ,x20) have a zero contribution to the predicted action
values for all actions. This is also the case of unknown future data points (x50, · · · ,x77)
that have been replaced by zeros: they do not contribute positively nor negatively to
the Q-values of all actions.

In Fig. 6.6, the test data is associated with a reference label l1. It is acquired until time
step tpred = 34, time at which the agent misclassi�es the data by predicting label l7. The
CAM shows that the DNN QΘ identi�es a pattern in the data points (x26, · · · ,x34) that
largely reduces the Q-value of labels l1, l2, and moderately reduces the Q-value of label l3. It
also increases the Q-value of label l5, and even more those of labels l6 and l7.

From this CAM and its identi�ed patterns, the user is guided towards the explanation of
the DNN misclassi�cation. He can conclude on a bad training of the DNN if he recognizes a
usual pattern for data labelled l1. Otherwise, he can question the adequacy of the reference
label on this test data, in the presence of the recognized pattern. On this industrial data
and from our data expertise, we recognize that the pattern identi�ed by the DNN is indeed
atypical for a sample data labelled l1, and is more generally characteristic of data associated
with larger labels.

126 CHAPTER 6. POLICIES INTERPRETATION

Figure 6.5: CAMs for each action a ∈ A, on a partial test MTS X:46 with reference
label l5. The agent predicted label l5 at tpred = 46. CAMs in red (resp. blue) highlight the
patterns in the MTS that contribute positively (resp. negatively) to the predicted Q-values.
In full line are the data points (x1, · · · ,xtpred) that have been observed until the prediction
of a label by the agent. In dashed line are the data points (xtpred+1, · · · ,xT) that would have
been observed if sequence acquisition had continued.

In Fig. 6.7, the test data is associated with a reference label l1. It is acquired until the
end of the sequence, at time step tpred = 77, time at which the agent is forced to predict a
label. It predicts label l1. The CAM globally shows that several patterns are identi�ed in the
sequence and contribute negatively to the Q-value of classi�cation actions, which therefore
remain lower than the Q-value for delay. Indeed:

� The data points (x10, · · · ,x20) make a large negative contribution to the Q-values of
labels l2 and l3 and l4. The latter are not increased by the identi�cation of positive
patterns.

� The same data points (x10, · · · ,x20) contribute negatively to the Q-value of label l1.
The latter is however increased by a pattern in (x60, · · · ,x70) but not enough to exceed
the Q-value of delay.

� The data points (x10, · · · ,x77) contribute negatively to the Q-value of labels l5 and l6.
The data points (x18, · · · ,x77) contribute negatively to the Q-value of label l7.

We globally observe that the shape of the whole sequence (that we know atypical) contributes

6.1. VISUALIZATION OF CLASS ACTIVATION MAP 127

Figure 6.6: CAMs for each action a ∈ A, on a partial test MTS X:34 with reference
label l1. The agent predicted label l7 at tpred = 34. CAMs in red (resp. blue) highlight the
patterns in the MTS that contribute positively (resp. negatively) to the predicted Q-values.
In full line is what has been observed until the prediction of a label by the agent. In dashed
line is what would have been observed if sequence acquisition had continued.

to the Q-value estimations. In previous examples, where the agent predicted before the end
of the sequence, it was often the last collected data points that were the most meaningful in
the decisions. Appendix C gives more illustrations of CAMs on test data from the industrial
application.

6.1.5 Conclusion

As illustrated during the experimental evaluation, the application the CAM method on QΘ

allows to identify how data points in sequences contribute to the Q-value predictions. We
were able to draw some interpretations on the decisions made by the agent. This method
can be used for two purposes. First, it can be used when applying a policy on test data, in
order to provide a rationale for the agent's decisions. Or it can be used as a second stage of
optimal policy selection, to compare several successful policies and select the one for which
the decisions are most consistent with the application, based on our data expertise.

128 CHAPTER 6. POLICIES INTERPRETATION

Figure 6.7: CAMs for each action a ∈ A on a partial test MTS X:77 with reference
label l1. The agent is forced to predict a class label at the end of the sequence acquisition.
It predicts label l1 at tpred = 77. CAMs in red (resp. blue) highlight the patterns in the MTS
that contribute positively (resp. negatively) to the predicted Q-values. In full line is what has
been observed until the prediction of a label by the agent. In dashed line is what would have
been observed if sequence acquisition had continued.

6.2 Visualization of Q-values

In parallel to CAMs, we propose to visualize the Q-values predicted by the agent on test data,
in order to go further in the evaluation of a policy and the interpretation of its decisions. In
the following, we visualize the Q-values estimations made by the agent for each action a ∈ A
over the sequence acquisition, on test data from the same industrial dataset as in Sec. 6.1 and
on the same policy.

We remind that the agent, whose policy is given by the DNN QΘ, has been trained for an
EC problem involving a set of MTS X ∈ R5×77 associated to ordinal labels in L = {l1, · · · , l7}
such that l1 < l2 < ... < l7. We point out that a cost-sensitive reward function (Eq. 3.32) has
been used in these experiments, due to the cost-sensitive nature of the classi�cation problem
(Sec. 2.2.2.4). Rewards used for this cost-sensitive learning are shown in the following �gures
(see the "Rewards" graph in Fig. 6.8, Fig. 6.9, Fig. 6.10). When the agent misclassi�es,
rewards vary according to the true and predicted labels.

6.2. VISUALIZATION OF Q-VALUES 129

Fig. 6.8 involves the same test data as in Fig. 6.5 where we applied the CAM method.
This test data is associated with a reference label l5. It is acquired until time step tpred = 46,
time at which the agent correctly predicts label l5. We observe that:

� From time step 10, the Q-values of labels l2, l3 and l4 increase and seem to stand
out compared to other classi�cation actions, but not su�ciently to make a prediction.
In other words, the data points (x10, · · · ,x20) encourage the prediction of a label in
{l2, l3, l4}.

� From time step 25, the Q-values of labels l2 and l3 start decreasing. Those of labels l4,
l5 and l6 �nally exceed them from time step 35. The Q-value of label l5 remains higher
to the others and is the �rst to exceed that of delay, at time step 46.

Globally, from time step 35, the agent manages to predict Q-values that are ordered, as in
the reward function de�nition represented in the bottom �gure.

In Fig. 6.9, the test data is associated with a reference label l1. It is acquired until time
step tpred = 48, time at which the agent correctly predicts label l1. We observe that:

� From time step 20, the Q-values of labels l5, l6 and l7 get closer to the true rewards
for these actions, represented in the bottom �gure, which are the worst rewards that
the agent can receive. Consequently the agent manages to eliminate these labels from
possible predictions.

� Also, from time step 20, the Q-values associated to labels l1, l2 and l3 increase, with
that of label l1 being always superior to the two others.

Globally, the agent manages to predict Q-values that are ordered, as de�ned in the reward
function. Moreover, the di�erence between the predicted Q-values is close to the di�erence
between the true classi�cation rewards, which shows that the agent manages to learn an
ordinal relationship between the labels.

The Q-values show that, from time 20, the agent predicts a Q-value for label l1 which is
very close to that of the delay action, but does not exceed it until time 48.

Given the predicted order in Q-values for each label, and given the shape of the Q-value
curve for label l1, we can see that the agent manages to identify the correct label early in
the sequence, from time step 20. However, it does not make its predictions until later, after
almost 30 additional acquisitions in the sequence, due to a late crossing of the Q-value for
label l1 on that ot the delay action.

In Fig. 6.10, the test data is associated with a reference label l3. It is acquired until time
step tpred = 55, time at which the agent misclassi�es by predicting label l2. We observe that:

� From time step 25, the Q-values of labels l1, l4, l5, l6 and l7 get closer to the true rewards
for these actions, which are the worst that the agent can receive. Consequently the agent
manages to eliminate these labels from possible predictions.

� Also, from time step 25, the Q-values of labels l2 and l3 increase and are almost similar,
showing that the agent hesitates between these two labels.

130 CHAPTER 6. POLICIES INTERPRETATION

� At time step 55, the Q-value of labels l2 and l3 exceed that of delay. The agent predicts
label l2 for which the Q-value is slightly superior.

Given the predicted order in Q-values for each label, and given the shape of the curves for
labels l2 and l3, we can see that the agent manages to reduce its classi�cation problem to two
labels, early in the sequence, around time step 35. From that time, it hesitates between two
labels and never seems to clearly distinguish between the two. This hesitation is not surprising
because data associated to labels l2 and l3 can be very alike, as illustrated in Fig. 6.4.

6.2. VISUALIZATION OF Q-VALUES 131

Figure 6.8: Top: A test MTS X:46 with true label l5.
Middle: Q-values predicted by the agent for each action a ∈ A over the sequence
acquisition. The sequence acquisition stops at time tpred = 46 when the Q-value of the
classi�cation action for the label l5 outreaches the Q-value of the delay action ad.
Bottom: Rewards de�nition for each action a ∈ A. Rewards for classi�cation actions
are independent of time. Rewards for the delay action decrease over the sequence acquisition.
In full line is what has been observed until the prediction of a label by the agent. In dashed
line is what would have been observed if sequence acquisition continued.

132 CHAPTER 6. POLICIES INTERPRETATION

Figure 6.9: Top: A test MTS X:48 with true label l1.
Middle: Q-values predicted by the agent for each action a ∈ A over the sequence
acquisition. The sequence acquisition stops at time tpred = 48 when the Q-value of the
classi�cation action for the label l1 outreaches the Q-value of the delay action ad.
Bottom: Rewards de�nition for each action a ∈ A. Rewards for classi�cation actions
are independent of time. Rewards for the delay action decrease over the sequence acquisition.
In full line is what has been observed until the prediction of a label by the agent. In dashed
line is what would have been observed if sequence acquisition continued.

6.2. VISUALIZATION OF Q-VALUES 133

Figure 6.10: Top: A test MTS X:55 with true label l3.
Middle: Q-values predicted by the agent for each action a ∈ A over the sequence
acquisition. The sequence acquisition stops at time tpred = 55 when the Q-value of the
classi�cation action for the label l2 outreaches the Q-value of the delay action ad.
Bottom: Rewards de�nition for each action a ∈ A. Rewards for classi�cation actions
are independent of time. Rewards for the delay action decrease over the sequence acquisition.
In full line is what has been observed until the prediction of a label by the agent. In dashed
line is what would have been observed if sequence acquisition continued.

134 CHAPTER 6. POLICIES INTERPRETATION

6.3 Perspectives on calculating policy uncertainty

6.3.1 Motivation

In previous experimental evaluation, we visualized the predictions of Q-value made by the
agent on test data from the industrial application, and we observed the following cases. First,
it can be observed that the Q-value of the delay action is often close to the highest classi�cation
Q-value. In some cases, the greatest Q-value of classi�cation remains slightly lower than the
Q-value of delay, for many successive time steps, as illustrated in Fig. 6.9. As a consequence,
during these time steps, the agent continues to choose the delay action while its Q-value
predictions show that it has successfully managed to discriminate the labels. It is therefore
a waste of time on the part of the agent, since a good classi�cation could have taken place
more quickly. Second, it can be observed that the agent manages to predict Q-values that are
ordered, as de�ned in the reward function, but yet sometimes hesitates between several labels,
as illustrated in 6.10. For these particular cases of Q-value predictions, we would like to justify
if the agent keeps waiting because it is uncertain in the label for the test data or because of a
sub-optimal training. We therefore seek to measure the DNN uncertainty in order to provide
additional interpretation in the decisions of the agent.

Moreover and as a secondary objective for a future work, our motivation behind uncertainty
estimation is the possibility of using it during complementary rules, to validate or reject
some of the agent's predictions, and to eventually accelerate some predictions, in relation
to the scenarios mentioned above. We think that it is possible to trigger prediction when
uncertainty is low and when the highest Q-value of classi�cation is close to that of delay for
several consecutive time steps. In addition, we believe that some hasty decisions made by
the agent can be rejected when uncertainty is too high. In conclusion, we aim at proposing
a solution to further analyze the predictions made by the agent on test data, and possibly
validate or reject them.

6.3.2 Related work

Bayesian Neural Networks [74] are a �rst family of method that can estimate DNNs uncer-
tainty. They are NNs which learn probability distributions over the weights, as illustrated
in Fig. 6.11 extracted from [93]. Their main drawback is to be computationally expensive
notably because they increase the number of model parameters. In the case of the thesis, we
can not a�ord to increase calculation time for the method training.

In [31], the authors propose an uncertainty estimation method for all DNNs with a dropout
layer applied before every weight layer in their architecture. On a sample data at test time,
they perform W stochastic forward passes through the DNN while enabling dropout. Each
forward pass then di�ers from another because of dropout use. In order to get a prediction
on the test sample, they compute the W predictions mean, and they estimate uncertainty by
the W predictions variance.

In [78], the authors adapt DQN algorithm with a bootstrap strategy in order to improve
exploration of the agent and they argue that their method, Bootstrapped DQN, can also be
used to provide uncertainty estimates. Instead of a Q-network with a single output layer,
they train a Q-network with K independent heads, as illustrated in Fig. 6.12 extracted from
[78]. Each head is trained on a bootstrapped sub-sample of the training set, i.e. on a number

6.3. PERSPECTIVES ON CALCULATING POLICY UNCERTAINTY 135

Figure 6.11: Di�erence between traditional and Bayesian Neural Networks. Input
image with exemplary pixel values, �lters, and corresponding output. Left: Traditional Neural
Network with point estimates of the weights. Right: Bayesian Neural Network. The point
estimates of the neural network's parameters are replaced by probability distributions [93].

of training samples that have been sampled with replacement. At test time, the distribution
of predictions over each head can be used to measure uncertainty. In both [31] and [78]
methods, uncertainty is measured through variance of predictions and we seek for a method
with more interpretation elements.

Figure 6.12: Bootstrapped Neural Network with a shared network architecture.
[78]

In [12], the authors adapt DQN algorithm in order to learn the Q-values distributions for
each action instead of their expectations. In Fig. 6.13 extracted from [12], the authors show
on a frame of the Space Invaders game at test time that the agent manages to predict for each
action a distribution of possible rewards. This approach allows to provide more interpretation
on what the agent has learned during training, and on what it thinks it can earn for each action
selection. Also, by looking at the rewards distribution for each action, it allows to detect if
the distribution is wide and uniform (in that case, there are multiple possible outcomes for
the action selection, and rewards are uncertain), or if the distribution forms a peak placed
on a single value (in that case, the agent is certain of its reward prediction). In the case of

136 CHAPTER 6. POLICIES INTERPRETATION

the thesis, it can be interesting to compare two actions with similar expected Q-values, and
look at their predicted distributions in more detail, instead of their mean value. We leave this
study for future work.

Figure 6.13: Learned value distribution during an episode of Space Invaders. Di�er-
ent actions are shaded di�erent colours. [12]

In this work, we will rather choose to implement the method from [89] where the authors
measure the uncertainty of a DNN prediction in the context of a classi�cation problem. The
method is detailed below.

6.3.3 Method presentation

Motivation In [89], the authors argue that DNNs trained for classi�cation are usually built
with a softmax activation in their output layer, as illustrated in Fig. 6.15. In Fig. 6.14 from
[89], they illustrate the classi�cation results of a digit 1 from the MNIST database when it
is rotated, under two strategies. In the left �gure, they illustrate how a softmax activation
in the output layer of a DNN tends to return high probabilities estimates, even when the
data is far from what was observed during training. They show that the softmax-based DNN
misclassi�es a rotated image of digit 1, with high probabilities estimates for digits 2 and 5.
Moreover, other work on DNNs uncertainty [31] asserts that the probability scores calculated
by a softmax activation are not a good metric to estimate the con�dence of a DNN. From
this observation, the authors seek an alternative to the usual softmax activation to derive
probabilities estimates on labels for classi�cation problems. In particular, they aim at solving
classi�cation problems with DNNs while evaluating their uncertainty.

General principle and main results Their strategy is the following. Instead of predicting
a probability on the labels using a softmax activation, the authors predict a value of evidence
on each label, this value being positive or null, and not bounded. From the values of evidence
on each label, the authors propose to derive both probabilities scores on the labels, and an
uncertainty score on the predictions. The mathematical formulas are given below.

In the right �gure of Fig. 6.14, they show that their method allows to identify uncertainty
in the DNN predictions when the digit is rotated, instead of high false probabilities estimates.
Consequently, their method makes it possible to reject classi�cation results, given uncertainty
estimation.

In the experiments illustrated in this �gure, the authors used the same DNN architectures
to make a comparison between their approach and the traditional softmax-based approach.

6.3. PERSPECTIVES ON CALCULATING POLICY UNCERTAINTY 137

They only modi�ed the output layer of the DNN, as well as the loss function to be minimized,
as illustrated in Fig. 6.15.

Figure 6.14: Classi�cation of a rotated digit 1 from MNIST dataset at di�erent
angles between 0 and 180 degrees. The classi�cation problem involves 10 labels in rela-
tion to handwritten digits from 0 to 9. Left: Classi�cation probability is calculated using the
softmax function. The digit 1 can be misclassi�ed as digit 2 or digit 5 with high probabilities
based on the degree of rotation. Right: Classi�cation probability and uncertainty are calcu-
lated using the method from [89]. The digit 1 is either correctly classi�ed or all predicted
probabilities are low based on the degree of rotation. The method enables to predict a large
uncertainty when the digit has a 90° rotation angle.

Mathematical background Standard DNNs predict labels probabilities using a softmax
activation in the output layer. In [89], the authors propose to replace the softmax activation
by an activation function ensuring a non-negative output. Speci�cally, they associate the
predictions in the output layer of the DNN to a vector e of evidence on each label:

e = (e1, · · · , eK) , ∀k ∈ [1,K] , ek ≥ 0 (6.6)

with K the number of labels in the classi�cation problem, L = {l1, · · · , lK}, and ek the
evidence on label lk. Evidence is positive or null.

With en = (en1 , · · · , enK) the vector of evidence predicted by the DNN on a sequence Xn,
the authors de�ne the uncertainty un of the predictions on Xn such that:

un =
K∑K

k=1 e
n
k + 1

(6.7)

Uncertainty u is bounded between 0 and 1. The higher the evidences ek,∀k ∈ [1,K], the
more uncertainty u tends to 0. Conversely, the lower the evidences ek, ∀k ∈ [1,K], the more
uncertainty u tends to 1.

The authors de�ne the expected probability p̂nk that a sample data Xn is associated to the
k-th label such that:

p̂nk =
enk + 1∑K
j=1 e

n
j + 1

(6.8)

138 CHAPTER 6. POLICIES INTERPRETATION

𝑧1

𝑧𝐾

.

.

.

Deep Neural Network

Classifier with Softmax

𝑒𝑧1

 𝑒𝑧𝑘𝐾
𝑘=1

𝑒𝑧𝐾

 𝑒𝑧𝑘𝐾
𝑘=1

Probability estimate
(Softmax)

𝑒1

𝑒𝐾

.

.

.

Deep Neural Network

Classifier with Evidence
Evidence

Probability estimate

𝑒1 + 1

 𝑒𝑘 + 1
𝐾
𝑘=1

𝑒𝐾 + 1

 𝑒𝑘 + 1
𝐾
𝑘=1

.

.

.

Uncertainty estimate

𝐾

 𝑒𝑘 + 1
𝐾
𝑘=1

Figure 6.15: (Top) Illustration of a DNN classi�er with softmax activation in the
output layer. (Bottom) Illustration of a DNN classi�er with prediction of evidence
in the output layer.

With ln the true label of Xn, such that (Xn, ln) ∈ D, they de�ne the loss Lnev of the DNN
with parameters Θ such that:

Lnev(Θ) =
K∑
k=1

1ln=lk

(
ψ(

K∑
j=1

enj)− ψ(enk)
)

(6.9)

with enj the evidence predicted by the DNN on data Xn for label lj and ψ the digamma
function. Given the loss de�nition, the loss increases on a sample Xn with true label ln

if evidence is added on all labels except ln, and/or evidence is removed from label ln only.
Conversely, the loss decreases if evidence is removed from all labels except ln, and/or evidence
is added on label ln only.

6.3.4 Application to EC

In this work, our objective is to compute the vector of evidence e (Eq. 6.6) for each label
l ∈ L (Eq. 2.5) of the classi�cation problem, in addition to the Q-values for each action a ∈ A
(Eq. 3.26) of the EC-POMDP. From the vector of evidence e, we will be able to derive a
probability score of each label l ∈ L, and an uncertainty estimate of the DNN predictions of
evidence. Moreover, we continue to obtain a policy for EC from the predicted Q-values, as
done so far.

6.3. PERSPECTIVES ON CALCULATING POLICY UNCERTAINTY 139

Multi-branch architecture To this end, we propose to use a multi-branch architecture of
the DNN QΘ, as illustrated in Fig. 6.16, where:

� In the upper branch of the DNN, we compute the vector of evidence following the method
from [89]. The upper output layer has then as K output neurons, one for each label
l ∈ L of the classi�cation problem. It is fully-connected to its previous layer and has a
positive activation function (because evidence is positive or null).

� In the lower branch of the DNN, we compute the Q-values using the same loss function
than DDQN algorithm ([100], Eq. 4.4). The lower branch has K + 1 output neurons,
one for each classi�cation action a ∈ Ac and one for delay action ad (see Eq. 3.26).
It is fully-connected to its previous layer and has a linear activation function (because
Q-values take values in R).

The choice of where and how to set up the DNN branch for evidence calculation is up to the
user, and becomes the source of additional hyper-parameters. In our case, we chose to set the
DNN division into two sub-branchs at the end of the architecture, before the output layers of
Q-values and evidence, as shown in Fig. 6.16. In this way, evidence and Q-value calculation
is made upon a majority of shared lower-level features.

Moreover, we point out that evidence is positive and unbounded while Q-values can be
small (in some cases < 1 in absolute value depending on rewards settings). Each sub-branch
of the DNN therefore has to predict output values that di�er in orders of magnitude.
Consequently, in order to allow each sub-branch of the DNN to predict output values close
to their de�nition space, we have injected a fully-connected layer before each output layer,
following the separation of the main architecture into the two sub-branches. In Appendix E,
we give an example of a multi-branch architecture used during experiments.

Notation. In the following, we continue to refer to the DNN of the agent as QΘ, even
if it now includes predictions for both Q-values and evidence.

Training To train the DNN QΘ and �nd optimal parameters Θ∗, the RL method proposed
in previous chapters is maintained and remains valid. We use the same RL algorithm as in
Chap. 4 and we can keep applying the strategies of memory management and episode initial-
ization introduced in Chap. 5. Also, we can train the DNN with both online learning (Algo.
4) and batch learning (Algo 5), depending on the what is most suitable for the application.
The only di�erence to oper is in the loss calculation, when parameters Θ are updated (see step
7 in Fig. 5.2, and step 2 in Fig. 5.3). Indeed, in Algo. 4 and Algo 5, a single loss function was
computed, that of the DDQN algorithm (see Eq. 4.4). We now seek to simultaneously min-
imize two loss functions: the one for the Q-values (Eq. 4.4) and the one for evidence (Eq. 6.9).

In practice, at each update of the DNN parameters Θ, we apply the following steps:

� We sample a mini-batch of past interactions {< o, a, r, o′ >} from the replay memory
M, with the prioritized sampling strategy introduced in Algo. 2.

� For each past interactions < o, a, r, o′ > from the mini-batch, with o being an observation
generated by a training sequence Xn with true label ln (such that (Xn, ln) ∈ D), we
compute two losses.

140 CHAPTER 6. POLICIES INTERPRETATION

𝐾

 𝑒𝑘 + 1
𝐾
𝑘=1

𝑄Θ(𝑿:𝑡, 𝑎𝑑)

𝑄Θ(𝑿:𝑡, 𝑙1)

𝑄Θ(𝑿:𝑡, 𝑙𝐾)

.

.

.

Deep Neural Network 𝑄Θ for the Q-function

argmax
𝑎 ∈ 𝐴

𝑄Θ(𝑿:𝑡 , 𝑎)
𝜋Θ(𝑿:𝑡)

𝑿:𝑡

Future (unknown)

data points
(𝒙𝑡+1, … , 𝒙𝑇)

t

Policy 𝝅

𝑒1

𝑒2

𝑒𝐾

.

.

.

Probability estimate

𝑒1 + 1

 𝑒𝑘 + 1
𝐾
𝑘=1

𝑒𝐾 + 1

 𝑒𝑘 + 1
𝐾
𝑘=1

.

.

.

Uncertainty estimate

Figure 6.16: DNN QΘ with a multi-branch architecture and parameters Θ for pre-
diction of evidence and Q-values. It is de�ned over the set of observations O (Eq. 3.25).
The lower branch of the DNN predicts the Q-values on an observation o = X:t and for all
actions a ∈ A. Its output layer has K + 1 output neurons, is fully-connected to its previous
layer and has a linear activation. The upper branch of the DNN predicts the evidence on
an observation o = X:t and for all labels l ∈ L. Its output layer has K output neurons, is
fully-connected to its previous layer and has a positive activation.

We �rst compute the DDQN loss (Eq. 4.4):

LnDDQN (Θ) = (r + γQΘ−(o′, arg max
a′

QΘ(o′, a′))−QΘ(o, a))2

where γ is the discount factor, QΘ the current Q-network and QΘ− the target Q-network
(see Sec. 4.2).

We then compute the evidence loss (Eq. 6.9):

Lnev(Θ) =

K∑
k=1

1ln=lk

(
ψ(

K∑
j=1

enj)− ψ(enk)
)

with enj the evidence predicted by the DNN on data Xn for label lj and ψ the digamma
function.

Finally, we compute a weighted sum of the two losses:

Lntot(Θ) = LnDDQN (Θ) + µLnev(Θ) (6.10)

6.3. PERSPECTIVES ON CALCULATING POLICY UNCERTAINTY 141

with µ the weight associated to the evidence loss in comparison to the DDQN loss. µ
is an additional hyper-parameter of the method that need to be �xed before the agent's
training.

� We update the DNN parameters Θ by back-propagation of the gradient calculated on
the total loss Ltot(Θ) on the mini-batch of past interactions.

6.3.5 Preliminary experimental evaluation

Dataset We conduct a preliminary evaluation of the method on a simpli�ed version of the
industrial dataset, with 3 labels instead of 7. The DNN QΘ of the agent has been trained on
a dataset involving a set of MTS X ∈ R5×77 associated to ordinal labels in L̃ = {l2, l4, l7},
such that L̃ ⊂ L and l2 < l4 < l7. Labels distribution is given in Fig. 6.17. In Fig. 6.18,
the training set is represented with a two-dimensional t-SNE embedding of the (complete)
temporal sequences using algorithm from [64]. We observe less overlapping clusters of points
from di�erent labels than in Fig. 6.4 which illustrates the dataset complexity has been reduced.

Figure 6.17: Labels distribution in the simpli�ed industrial sets of training, valida-
tion and testing. The simpli�ed set of labels is L̃ = {l2, l4, l7}

EC-POMDP model As in previous analysis, we use a cost-sensitive reward function (Eq.
3.32) to address the natural costs of the industrial classi�cation problem. We point out that
in these experiments, we did not necessarily restricted rewards with values between -1 and
1, so that Q-values and evidence predicted in the DNN output layers can have similar order
of magnitude. The following �gures (entitled "Rewards" in Fig. 6.19, Fig. 6.20, Fig. 6.21)
illustrate how misclassi�cation is penalized depending on the true and predicted labels.

142 CHAPTER 6. POLICIES INTERPRETATION

2
4
7

-15 -10 -5 0 5 10 15

tsne1

-15

-10

-5

0

5

10

15

ts
ne

2
tsne1 vs. tsne2

2
4
7

-15 -10 -5 0 5 10 15

tsne1

-15

-10

-5

0

5

10

15

ts
ne

2
tsne1 vs. tsne2

Figure 6.18: Two-dimensional t-SNE embedding of the simpli�ed industrial training
set. Each dot represent a complete temporal sequence X:T from the simpli�ed industrial
training set associated to an ordinal label in L̃ = {l2, l4, l7}. Dots are colored according to
labels.

Results In Fig. 6.19, the test data is associated with a reference label l4. It is acquired
until time step tpred = 28, time at which the agent correctly classi�es by predicting label l4
(we can see that the Q-value of label l4 outreaches that of delay at this time, as shown by the
green and red curves in the "Q-values" graph). Also, we can see that the time of prediction
caused by the Q-values estimations from the lower branch of the DNN is consistent with the
prediction of evidence from its upper branch. Indeed, as shown by the green curve of the
"Labels evidence" graph, from time step 20, the DNN starts predicting evidence on label l4.
Consequently, the expected probability for this label increases (see the green curve in the
"Labels probability" graph) and uncertainty starts decreasing (see the orange curve in the
"Labels probability" graph). At the time of prediction, tpred = 28, the expected probability
for the predicted label is almost up to 1, while uncertainty is almost down to 0. This is an
example of prediction for which the evidence predicted by the DNN is consistent with the
choice of action made by the agent.

In Fig. 6.20, the test data is associated with a reference label l2. It is acquired until time
step tpred = 12, time at which the agent misclassi�es by predicting label l7 (as shown by the
purple curve in the "Q-values" graph). From the computation of evidence for each label l ∈ L̃,
represented in the "Labels evidence" graph, we can see that low evidence was predicted for
the label l7 at the time of prediction tpred. Consequently, the uncertainty at that time was
still high, as illustrated in the "Labels probability" graph by the orange curve. Moreover, after
time step tpred, if the sequence acquisition had continued, the Q-value estimation for label l7

6.3. PERSPECTIVES ON CALCULATING POLICY UNCERTAINTY 143

Figure 6.19: (Top left) A test MTS X:28 with true label l4.
(Middle left)Q-values predicted by the agent for each action a ∈ A over the sequence
acquisition.
(Middle right) Reward de�nition for each action a ∈ A.
(Bottom left) Probabilities estimates for each label l ∈ L and uncertainty estimation,
computed from the evidence predicted by the DNN upper branch.
(Bottom left) Evidence for each label l ∈ L. It is predicted by the DNN upper branch.
In full line is what has been observed until the prediction of a label by the agent. In dashed
line is what would have been observed if sequence acquisition continued.

would have decreased, and that of label l2 would have increased. Also, evidence on label l2
would have increased, leading to an increase in expected probability for this label up to almost
1, and uncertainty would have decreased down to almost 0.

In this example, misclassi�cation is due to a too early prediction. It could have been

144 CHAPTER 6. POLICIES INTERPRETATION

avoided if the agent had waited for a few more time steps. Through this uncertainty
evaluation method, predictions of evidence (and underlying uncertainty estimation) from the
upper branch of the DNN could have been used during the application of the policy on the
test data to raise an alarm on high uncertainty or to postpone the prediction.

Figure 6.20: (Top left) A test MTS X:12 with true label l2.
(Middle left)Q-values predicted by the agent for each action a ∈ A over the sequence
acquisition.
(Middle right) Reward de�nition for each action a ∈ A.
(Bottom left) Probabilities estimates for each label l ∈ L and uncertainty estimation,
computed from the evidence predicted by the DNN upper branch.
(Bottom right) Evidence for each label l ∈ L. It is predicted by the DNN upper branch.
In full line is what has been observed until the prediction of a label by the agent. In dashed
line is what would have been observed if sequence acquisition continued.

6.3. PERSPECTIVES ON CALCULATING POLICY UNCERTAINTY 145

In Fig. 6.21, the test data is associated with a reference label l2. It is acquired until time
step tpred = 48, time at which the agent correctly classi�es by predicting label l2 (as shown by
the blue curve in the "Q-values" graph). As illustrated in the "Q-values" graph, the Q-value
for the correct classi�cation action becomes close to that of delay from time 30, and does not
exceed it until time 48. This is an example close to the one from Fig. 6.9, where the greatest
Q-value of classi�cation remains slightly lower than that of delay, for many successive time
steps.

As illustrated in the bottom �gures, evidence slightly increases on label l2 from time 30,
and uncertainty decreases. Then, these two values remain on a plateau until time step 50,
with the expected probability of label l2 being larger than uncertainty. From time step 50,
the expected probability increases up to 1, and uncertainty decreases down to 0.

In this particular case, for the same level of uncertainty in the predictions, the time of
prediction could have been accelerated from at least 10 time steps.

6.3.6 Conclusion and perspectives

In this section, we showed how to apply the method from [89] for uncertainty estimation in
order to interpret or validate the predictions made by the agent on test data. The existing
work has been adapted to the EC problem when a RL agent is trained to predict Q-values with
a DNN. Speci�cally, we showed how to compute evidence on the labels of the classi�cation
problem, and how to derive both probability estimates for each label and uncertainty estimates.

The drawbacks of the method are related to a larger number of hyper-parameters to tune.
They are caused by the multi-branch architecture of the DNN, and the weight associated to
the two losses for parameter updates.

Following the �rst experimental results, we believe that uncertainty estimation can allow to
reach the initial objectives of this additional work, namely to improve the time of prediction
of the agent and to make decision-making more robust. First, we illustrated that it can be
used as a monitoring step to prevent label predictions when uncertainty remains high. To that
end, the user must set an additional hyper-parameter for uncertainty threshold. Second, we
illustrated how uncertainty can be used to accelerate the prediction, in some speci�c cases.
Typically, when the greatest Q-value of classi�cation action for a label l is very close to that of
delay, for consecutive steps, and when the probability estimate on that same label l is high with
low uncertainty, the user can put a trigger rule and predict the label in advance. Nevertheless,
the setting of this trigger rule requires the user to set additional hyper-parameters (related to
the number of consecutive steps, the high probability threshold, the low uncertainty threshold
and the distance between the Q-value). These two possible applications of the method are
left for future work.

The perspectives in relation to this preliminary study are the following. In experiments,
we applied the method on a simpli�ed version of the industrial dataset which has fewer labels
to predict. In future work, the method should be validated on the complete dataset with more
labels. Finally, we point out that the loss function related to evidence prediction does not
take into account the fact that labels are ordinal (see Eq. 6.9). When evidence is added to
a wrong label, the loss equally penalizes this addition, whether the label is near or far from
the true label. In our case, the addition of evidence on a label close to the true label is less
serious than adding evidence on a distant label. The loss can therefore be optimized for this
problem in a future work.

146 CHAPTER 6. POLICIES INTERPRETATION

Figure 6.21: (Top left) A test MTS X:48 with true label l2.
(Middle left)Q-values predicted by the agent for each action a ∈ A over the sequence
acquisition.
(Middle right) Reward de�nition for each action a ∈ A.
(Bottom left) Probabilities estimates for each label l ∈ L and uncertainty estimation,
computed from the evidence predicted by the DNN upper branch.
(Bottom right) Evidence for each label l ∈ L. It is predicted by the DNN upper branch.
In full line is what has been observed until the prediction of a label by the agent. In dashed
line is what would have been observed if sequence acquisition continued.

Chapter 7

Conclusion and perspectives

The objective of this doctoral work was to propose a method for early classi�cation (EC) of
temporal sequences. Speci�cally, the method had to deal with an industrial application for
which data are multivariate time series (MTS) and the classi�cation problem is multi-class,
ordinal, class-imbalanced and cost-sensitive.

7.1 Synthesis of the doctoral research

In Chap. 2, we de�ned the EC problem as the task of assigning a label to some data that is
sequentially collected, with new data points arriving over time. The data can be incomplete
depending on the state of the acquisition process and therefore it can have variable length.
Speci�cally, we de�ned an early classi�er as a model which has to decide during the sequence
acquisition when to stop the acquisition in order to predict a label, with the objective to use
as few data points as possible on each sequence. It has to adapt its prediction time on each
sequence individually, depending on its complexity. It has to require more data points on
sequences that can hardly be classi�ed, before making its prediction. At the opposite, on easy
sequences with early discriminant patterns, it has to quickly stop the acquisition process and
render a prediction result.

Following the formulation of EC as an optimization problem, we outlined the EC trade-o�
which is to ensure optimal classi�cation while minimizing the prediction time. We argued
that EC is of major interest for applications concerned with the costs induced by the data
points acquisition. It is also a major research topic for applications which seek for rapid label
prediction in order to take early actions, such as predictive maintenance, medical diagnosis,
etc.

Regarding the data to be processed, we argued that temporal sequences are speci�c data
for which it is necessary to use models that can take into account the temporal relations in
the data points. We pointed out that, in the speci�c case of MTS, the models must also
take into account the relationships between the di�erent features of the sequence. Due to the
dynamic temporal dimension of the data, the models have to be able to analyze incomplete
data. As a consequence and as part of a method that can be applied to data on which we
have no expertise, we identi�ed the interest of Deep Neural Networks (DNNs), among which
Convolutional Neural Networks (CNNs) are a possible choice of model.

Throughout the chapter, we showed that there are no method in the literature that can
take into account all the speci�cities related to the data and the classi�cation problem.

147

148 CHAPTER 7. CONCLUSION AND PERSPECTIVES

In Chap. 3, we developed a method around the formalization of the EC problem as a
sequential decision-making problem. We considered that the data are received online, with
new data points arriving over time, and that the problem is to decide between waiting in order
to gather more data points, or predicting a label on the incomplete sequence received so far.
Following this formalization, we sought for a solution that can provide an end-to-end result,
from the incomplete data to the decision of delay or label prediction.

First, we showed that solving the sequential decision-making problem with Supervised
Learning (SL) brought along a new challenge: to build a training labelled dataset with super-
vision on both classi�cation and delay actions at all time steps in the sequences. We argued
that the methods from the literature were not directly applicable and therefore the resolution
of the problem with SL was a major research topic.

Then, we showed that EC can be described as a Markov Process with actions. We de�ned
rewards associated to EC so that the decision-making problem can be described by a Markov
Decision Process (MDP) and then solved within a Reinforcement Learning (RL) framework.
We proposed several strategies to compromise between classi�cation earliness and accuracy in
the reward function de�nition, through strategies of reward shaping and reward discounting.
The solution allows the user to set the relative importance of time compared to classi�cation
quality for his application. Also, several de�nitions of rewards were proposed depending on
the nature of the classi�cation problem (cost-sensitive versus cost-insensitive) and the solution
allows to involve the misclassi�cation costs de�ned by the applications. We showed that the
MDP for EC, noted EC-POMDP, was actually partially observable because, during the online
acquisition of sequences, we do not have access to future data points nor the label to predict,
while these information will be used by the environment during the training of the agent.

In this doctoral work, we speci�cally addressed the problem of EC on time series, both
multivariate and univariate, depending on the experiments. However, the mathematical
framework has been proposed for the general problem of EC on temporal sequences and it
can therefore be applied to di�erent types of sequences.

In Chap. 4, we proposed to solve the EC-POMDP with a value-based approach. Specif-
ically, we aimed at approximating its action value function Q with a DNN leading to the
selection of a Deep Reinforcement Learning (DRL) algorithm. We proposed a pipeline to
train an agent with DDQN algorithm [100] and select an optimal policy for EC.

In experiments, we showed on UCR time series benchmark [21] that the EC problem can
be solved with an end-to-end RL agent. The agent achieved EC objectives: to compromise
between classi�cation quality and its earliness. We showed that the agent is able to continually
adapt its behavior without human intervention. It simultaneously learns classi�cation features
and decision-making rules on prediction times. Also, we experimentally showed that the agent
achieved similar or better results in accuracy and prediction time compared to state-of-the-art
methods from the literature.

We identi�ed limits to apply DDQN algorithm in its original form on the EC-POMDP.
We showed that the replay memory of the agent can become imbalanced during its training,
weakening its overall learning. In the remainder of the study, we therefore aimed at optimizing
DDQN algorithm for the EC problem and investigating if the resolution of poorly balanced
memory improves the training and performance of the agent.

In Chap. 5, in order to optimize DDQN algorithm, we proposed di�erent strategies for

7.2. MAIN CONTRIBUTIONS AND RESULTS 149

robust episode and memory management: prioritized sampling, prioritized storing and ran-
dom episode initialization. In experiments, we showed that the di�erent proposed strategies
statistically improved the performance of the agent in terms of accuracy and speed.

Finally, we compared early classi�ers trained with RL to static DNNs, and we showed
that the capacities of early classi�ers to adapt their time of prediction individually on each
sample improved the general trade-o� of accuracy versus speed.

In Chap. 6, we then sought to provide interpretations about the decisions made by the
agent. We applied and adapted the Class Activation Map method [116] for EC. It allowed to
identify the data points in a sequence that contribute to the Q-value predictions, and to draw
some interpretations on the choice of action made by the agent. The method can be used
when applying an optimal policy on test data, in order to provide a rationale for the decisions
of the agent. Or it can be used as a second stage of optimal policy selection, to compare
several successful policies, and select the one for which the detected patterns in sequences are
most consistent with the application, based on our data expertise. In this chapter, we also
proposed a method to estimate the DNN uncertainty, based on prediction of evidence [89] on
each label of the classi�cation problem.

7.2 Main contributions and results

The main contribution of this doctoral work was to formalize the problem of EC of temporal
sequences as a sequential decision-making problem where the EC model has to decide
between classifying an incomplete sequence or delaying the prediction to collect additional
data points. Speci�cally, we described the EC problem by a POMDP, the EC-POMDP, by
de�ning a suitable set of states, actions and observations and by setting a reward function
which encodes the EC trade-o�. The second major contribution of this work was to adapt
and optimize an existing DRL algorithm to the EC-POMDP speci�cities, with episode
and memory management strategies. We initiated these strategies to solve the imbalanced
memory issue caused by the original algorithm, and we showed that they improved the overall
training of the agent. Finally, other secondary contributions were to propose solutions for
policy interpretations.

To our knowledge and contrary to methods from the literature [7, 8, 20, 38, 39, 41, 70, 71,
79, 107, 110], the proposed method is the �rst that can simultaneously address both problems
of classi�cation and prediction time with an end-to-end model, be generic for various types
of sequential data, directly minimize a criteria based on time, and address all speci�cities of
the classi�cation problem (multi-class, class imbalanced, ordinal and cost-sensitive). Indeed,
following our work, we were able to show that DRL was a possible solution to the EC problem
with many advantages:

� The method simultaneously solves the two sub-problems of EC: classifying incomplete
sequences and predicting the optimal earliest time to perform classi�cation. Indeed, the
method o�ers a single model which is able to simultaneously learn optimal patterns in
the sequences for classi�cation and optimal strategic decisions for the time of prediction.
There is no need to optimize each sub-problem separately. Instead, the method involves
a single optimization phase. Therefore it allows for end-to-end learning of classi�cation
and decision rules, with simultaneous optimization of the two sub-problems.

150 CHAPTER 7. CONCLUSION AND PERSPECTIVES

� The method o�ers an end-to-end model for EC which does not require expertise on
the data to be analyzed, and the method does not involve a preliminary step of feature
extraction. Instead, the DNN is given input raw data, without dimension reduction
nor pre-processing. The DNN is thus in charge of summarizing information in the data
points, extracting relevant features and learning optimal decisions. As a consequence,
the method does not necessitate to perform prior exploratory analysis, and it can be
applied on external data on which we have no expertise.

� The method does not make assumptions about the input data. It is generic and can
be applied to various types of sequential data, such as time series, symbolic sequences,
images sequences, texts, etc. Moreover, in the speci�c case of time series, the sequences
can be highly non-stationary. The user simply has to choose a DNN architecture that
can be adjusted to its input data, with suitable layers, �lters and activation.

� In the proposed approach, time directly appears as a criteria to minimize and the user
can set its relative importance in comparison to classi�cation quality. The method can
therefore o�er an ensemble of EC models, more or less rapid, and more or less accurate,
according to the will of the application to make a compromise. In addition, the cost of
time, if known, can be directly formalized in the de�nition of the EC-POMDP.

� The method allows to solve EC problems which are cost-sensitive, and also example-
dependent cost-sensitive. Indeed, misclassi�cation costs can be taken into account di-
rectly into the de�nition of the EC-POMDP, through the reward function. Consequently,
the proposed approach can solve a large variety of EC problems, such as medical diag-
nosis which is known to be cost-sensitive due to the gravity of non-detecting a severe
disease in comparison to raising a false alarm.

� The method can handle both binary and multi-class classi�cation problems.

� The method can handle classi�cation problems that are ordinal, by setting a reward
function which penalizes misclassi�cation even more when the predicted label is far
from the true label. More generally, the solution is to de�ne misclassi�cation costs, and
use these costs in the reward function de�nition, as suggested above for cost-sensitive
classi�cation problems.

� The method is robust to classi�cation problems with an imbalanced training dataset,
thanks to the memory management strategies proposed in the thesis. The user can
indeed allocate a fraction of the replay memory of the agent to samples with under-
represented labels, so that these samples are kept longer in memory and not over-written
by those with over-represented labels.

� During training, the user bene�ts from a range of possible EC solutions with di�erent
trade-o�s between classi�cation quality and speed. Consequently, the user can choose
the EC solution that best satis�es his application domain. At any time during training,
the user can judge that he is satis�ed with one of the EC solutions obtained so far and
stop the training of the agent.

Future studies on the EC problem can continue this work and address one of the following
perspectives.

7.3. LIMITS & PERSPECTIVES 151

7.3 Limits & Perspectives

7.3.1 In relation to the policy and optimization

7.3.1.1 Approximation of the policy by a Deep Neural Network

In this doctoral work, we aimed at proposing a generic method which can be applied to
external data for which we do not have expertise. To this end, the method developed during
the thesis makes use of DNNs in order to allow autonomous learning of features in the data.

We showed on UCR datasets that the method can achieve similar or better performances
than state-of-the-art methods, even on small training sets (≤ 100 training samples). Never-
theless, because of the easily large number of parameters generated by DNN models, we faced
some over-�tting issues on these datasets, and tuning the method was made harder. Addi-
tionally, most real-life applications involve �nite (often small) training datasets due to limited
budget constraints. We therefore argue that the use of Deep Learning in this method has some
limits. It necessitates a training set with a su�cient number of training samples, this number
being dependent on the quality of the samples, their diversity, their representativeness of the
whole population, etc.

The perspectives related to this limit are multiple. First, the most obvious but not always
possible is to employ data augmentation strategies. In the case of sequences, it can for exam-
ple relate to scaling, shifting, adding noise to the data or applying generative models if the
application allows it. Second, the DNN can also use more dropout or a lighter architecture
(less layer, less convolution �lters, etc.), helping to reduce the number of parameters in the
model. Finally, for applications with few training samples but available expertise on feature
selection, the user can replace the use of DNNs by more simple function approximators that
are di�erentiable, such as linear combination of features. These more simple functions (with
fewer parameters than DNNs) can play the role of the policy, and can analyze input data with
pre-computed features, instead of raw data. They still aim at estimating the Q-values for all
actions, and the policy remains to act greedily over these predicted action values. The user
can then keep solving the EC-POMDP with the same method as in the thesis.

7.3.1.2 Hyper-parameters tuning

By the use of DNNs and the description of the problem as an EC-POMDP, the method
proposed in this thesis requires a large number of hyper-parameters to be tune. These hyper-
parameters are related to the architecture of the DNN (type of layer, number of layers, number
of neurons/�lters, size of �lters, type of activation function, etc.), the gradient descent algo-
rithm (learning rate, batch size, etc.), the replay memory of the agent (size), the exploration
rate of the agent (initial value, �nal value, decay coe�cient), the EC-POMDP (discount fac-
tor, rewards, trade-o� parameter, etc.), DDQN algorithm (update frequency for the target
network) and more. In this doctoral work, we employed a tuning strategy based on grid-
search where several combination of hyper-parameters were tested independently and the best
combination was kept as output of the method optimization.

This approach was computationally expensive and, we therefore proposed, at the end of
the thesis, to use a more resource-e�cient method. We initiated the use of Bayesian methods
[55, 94] which consist in iteratively optimizing the method by testing new combinations of
hyper-parameters. The principle is to select the next set of hyper-parameters to be tested
from previous evaluations of the method. The results obtained with the previous sets of

152 CHAPTER 7. CONCLUSION AND PERSPECTIVES

hyper-parameters are used to estimate which combination of hyper-parameters will optimize
the method, according to an objective function. By doing so, Bayesian methods seek to reduce
the number of training and evaluation of the method. The di�culty lies in the de�nition of
an objective function which allows to evaluate one training of the agent in a single metric
score. The evaluation has to re�ect the multi-objectives of the EC problem, by measuring
both performance of accuracy and time of prediction. Moreover, another question in relation
to the de�nition of an objective function is: should the objective function represents the best
or average performance of EC achieved by the agent during its training?

7.3.1.3 Policies interpretation

In Chap. 6, we showed that the complexity of the industrial dataset was due to strong simi-
larities between data with di�erent labels (see Fig. 6.4). We therefore propose an additional
interpretation tool for future work with regard to this speci�city. In order to justify if the
agent misclassi�es (or hesitates) between two labels on a test data because of sub-optimal
training, or because of the dataset complexity, we propose the following solution. We propose
to provide a low dimension representation (e.g. t-SNE) of all training pre�xes and of the test
data, computed from their features representation in the Global Average Pooling layer of the
DNN. In this way, by looking at the neighbors of a test data in the t-SNE representation, we
will be able to visualize if the test data is close to training pre�xes with discording labels,
according to the feature representation learned by the DNN. This is a way to justify that the
agent hesitates between several labels if, during training, it learned on pre�xes with similar
patterns (according to its representation) but di�erent labels. In other words, it allows to see
which training pre�xes the test data is closest to, according to features learned by the DNN.

7.3.1.4 Uncertainty estimation

In Chap. 6, we proposed a method to evaluate the DNN uncertainty on test data, based on
evidence prediction for all labels of the classi�cation problem. As explained in Sec. 6.3.6, the
loss function related to evidence prediction does not take into account the fact that labels
are ordinal (see Eq. 6.9). It equally penalizes the addition of evidence on a wrong label,
independently of its distance to the true label. A perspective is to modify the loss function for
ordinal classi�cation problems, and address the distance between true and predicted labels.
When evidence is added to a wrong label, the loss has to further penalize this addition when
the label is far from the true label. We think that this modi�cation can facilitate the training
and optimization of the method.

Another perspective is to predict evidence on subsets of labels rather than (or in addition
to) singletons, in order to be able to quantify the uncertainty of the model between several
consecutive labels. We think that this solution can allow the DNN to express its hesitation
between several labels while predicting large evidence on a subset if it is sure that the true
label belongs to this subset in particular.

7.3.2 In relation to the EC-POMDP de�nition

7.3.2.1 Rewards de�nition

Dynamic rewards One of the most important hyper-parameter to tune is the reward func-
tion of the EC-POMDP. We observed that too gentle penalties for delay encourages the agent

7.3. LIMITS & PERSPECTIVES 153

to classify at the end of sequences while too severe penalties lead to immediate predictions.
In experiments, we tuned rewards through a grid search by launching independent trainings.
Rather than training several independent agents on di�erent reward de�nitions, a perspective
is to modify rewards during training, in other words to de�ne dynamic rewards. Starting with
gentle penalties for delay, so that the agent is encouraged to discover the complete sequences
and learn classi�cation rules �rst, the user can then progressively increase the penalties for
delay during training, so that the agent progressively fastens its predictions on shorter pre�xes
of sequences. We wonder if such a strategy can:

1. facilitate the training of the agent by progressively making it more di�cult to reach a
trade-o�. Indeed, the solution is equivalent to gradually complicate the task of the agent,
since during training it will receive less and less rewards (or more and more punishment
depending on the strategy) for a prediction made at the same time step.

2. o�er a wider range of EC solutions, with more diverse trade-o�s of classi�cation quality
vs. speed. Indeed, early training should result in slow policies with accurate predictions,
while more advanced training should result in faster policies with equal or less accurate
predictions.

Nevertheless this perspective requires to choose how to dynamically adjust rewards for delay
during training. A possible solution is to take inspiration from what is currently done with
the exploration coe�cient ε, i.e. to start with an initial value of penalty coe�cient κ (see Eq.
3.35) or trade-o� parameter λ (see Eq. 3.28) for example, and to decay/multiply this value
at each iteration until reaching a �nal value �xed in advance. These initial, �nal and decay
values would be additional hyper-parameters to the method.

Rewards based on data complexity Another more general perspective is to de�ne re-
wards from the data. Indeed, in the industrial application of the thesis, we observed that some
data were more complex than others, and we wanted the agent to wait longer on these data.
Given expertise on data, we could de�ne rewards from data, so that delay is not penalized by
time only, but also according to data complexity. Nevertheless, this perspective requires to
de�ne the complexity of data, and can be at the origin of new hyper-parameters to tune in
relation to the calculation of data complexity and de�nition of a new reward function.

7.3.2.2 Macro-actions

In this doctoral work, we de�ned EC as the sequential decision-making problem between
postponing the prediction, or predicting a label on the incomplete sequence received so far,
such that A = Ac∪ad. Consequently, there is an intrinsic hierarchy in the action de�nition and
we wonder about the bene�ts that can be brought by the decomposition of the problem into
two macro-actions: to delay or to classify, and then to choose a label when the macro-action
is to classify.

A similar work is proposed in [51] where the objective is to diagnose a disease by querying as
few symptoms as possible. The authors propose a RL approach for the problem. Speci�cally,
they use Hierarchical Reinforcement Learning and they propose a hierarchy at the anatomic
part. They segment the symptoms queries by anatomic part. The agent �rst selects an
anatomic part and then selects a symptom on this part speci�cally.

154 CHAPTER 7. CONCLUSION AND PERSPECTIVES

7.3.2.3 Regression action

In the industrial application of the thesis, the classi�cation problem is to predict labels that
are ordinal. A perspective is to de�ne a continuous action which is to make a regression on
the label, such that Ac = R. The solution is then to infer a label among the �nite set of
labels L from the regression result. The resolution of the EC-POMDP would consequently be
addressed with a policy based approach [98] or an actor-critic approach [67] which allow to
learn continuous actions.

A bene�t of performing regression instead of classi�cation is to give more �exibility to the
agent and to provide more interpretation. Instead of forcing the agent to select a label when it
hesitates between two, the agent can predict an average value and consequently the user can
deduct that the agent hesitates. Nevertheless this approach necessitates to set a mapping rule
from the regression result to the label, and therefore involves additional hyper-parameters.

7.3.2.4 Observations de�nition

In this doctoral work, we de�ned observations given to the agent based on pre�xes of sequences,
such that:

o = X:t

A perspective is to augment these observations with more information. For example, obser-
vations could be completed with the DNN prediction of evidence e on the pre�x X:t−1 at a
time step before, such that:

o = (X:t, e)

In this way, the user can de�ne a reward function that penalizes even more the choice of delay
action when evidence was predicted on the true label, and inversely, decreases the penalization
when evidence was predicted on a wrong label.

Otherwise, observations could be completed with the Q-values predictions of the DNN on
the pre�x X:t−1 at a time step before, QΘ(X:t−1, a) ∀a ∈ A, such that:

o = (X:t, QΘ(X:t−1, ad), QΘ(X:t−1, l1), · · · , QΘ(X:t−1, lK))

In this way, the user can de�ne a reward function that allows to give a feedback on the Q-
values. For example, he can penalize even more the choice of delay action when the Q-value
of delay was close to the Q-value of the true label. Nevertheless this perspective makes the
EC-POMDP de�nition more complex, especially for the de�nition of a reward function, and
necessitates additional hyper-parameters.

Synthèse par chapitre

Cette thèse porte sur la résolution du problème de classi�cation précoce des séquences tem-
porelles par de l'apprentissage par renforcement profond. Elle a été réalisée dans le cadre d'une
convention CIFRE entre les laboratoires GIPSA-lab, FEMTO-ST et le partenaire industriel
bioMérieux.

Chapitre 1: Introduction

Dans le Chap. 1, nous introduisons le problème et les objectifs de la thèse et mettons en avant
son intérêt pour de nombreuses applications du monde réel.

L'importance de la classi�cation précoce des données séquentielles

Au cours des dernières années, de plus en plus de données ont été produites et stockées tous les
jours dans tous les domaines d'activité. L'extraction des connaissances à partir des données est
ainsi devenue l'un des sujets de recherche les plus en vogue du siècle. Les données peuvent avoir
di�érents formats. Elles peuvent être disponible en une seule fois, sous la forme d'un ensemble
de points indépendants ou non nécessairement structurés. Ou elles peuvent être un ensemble
de points ordonnés, où l'ordre joue un rôle important dans la compréhension de la donnée.
Ces données sont appelées des séquences et sont au c÷ur de cette thèse. Enregistrements
vocaux, vidéos, textes, génomes, signaux de capteurs - toutes sont des données séquentielles.
Les séquences étant largement produites dans tous les domaines d'activité (�nance, médecine,
statistiques, économétrie, sismologie, météorologie, géophysique, etc.), elles ont été largement
étudiées au cours des dernières décennies [2, 30, 54, 56].

Dans de nombreuses applications, les séquences peuvent être associées à une étiquette. Par
exemple, les électrocardiogrammes peuvent provenir d'un patient en bonne santé ou malade.
Une séquence de �chiers log d'une machine peut correspondre à une utilisation normale du sys-
tème ou à une cyberattaque. L'objectif est alors de modéliser la relation entre l'évolution des
points dans la séquence et son étiquette, ce qu'on appelle un problème de classi�cation. Un ex-
emple populaire dans la littérature est la classi�cation des signaux d'électroencéphalogrammes
(EEG) a�n d'identi�er les états mentaux des patients [63].

Pendant des décennies, les chercheurs se sont intéressés au problème conventionnel de clas-
si�cation des séquences, c.-à-d. lorsque le classi�eur reçoit la séquence entière avant de prédire
l'étiquette. A partir des années 2000, de nouvelles motivations sont apparues. Les séquences
sont des données de grande dimension avec beaucoup de points. Généralement, les points
arrivent séquentiellement dans le temps et leur acquisition peut être coûteuse. L'utilisation
de moins de points pendant l'analyse réduit alors le coût d'acquisition total. De plus, il est
essentiel pour certaines applications de déduire les étiquettes le plus tôt possible a�n que des

155

156 CHAPTER 7. SYNTHÈSE PAR CHAPITRE

actions précoces puissent être envisagées. De telles applications sensibles au facteur temps sont
par exemple le diagnostic médical pour adopter des traitements précoces [51, 80], la prévision
des catastrophes pour anticiper les mesures de sécurité, la détection des intrusions pour se
protéger contre les attaques informatiques, etc.

Généralement, la motivation pour la classi�cation précoce (CP) réside dans le fait qu'il
n'est pas toujours nécessaire d'observer une séquence entière pour prédire son étiquette. Les
informations signi�catives peuvent être contenues au début de la séquence et les points sup-
plémentaires sont alors inutiles pour la classi�cation [40]. Le problème de CP est complexe.
Premièrement, il di�ère du problème conventionnel de classi�cation des séquences par son
double objectif de prédire l'étiquette et de choisir la longueur de séquence nécessaire pour
e�ectuer la classi�cation. Deuxièmement, il doit faire un compromis. Plus il y a de points
utilisés pour la classi�cation, plus celle-ci peut être précise. Néanmoins, l'acquisition est plus
coûteuse et la prédiction est retardée. La CP est par conséquent un problème d'optimisation
avec des objectifs contradictoires.

Objectifs généraux de la thèse

Dans ce travail de doctorat, nous visons à résoudre le problème de la CP et nous supposons
qu'un jeu de données d'apprentissage est disponible, avec un ensemble de séquences complètes
et leur étiquette. L'objectif est de proposer un classi�eur précoce capable d'e�ectuer une
prédiction en utilisant le moins de points possible. Nous nous concentrons sur la propo-
sition d'un classi�eur précoce bout-en-bout , c.-à-d. un modèle unique qui peut à la fois
identi�er le temps de prédiction optimal sur une séquence incomplète entrante, mais aussi son
étiquette de classi�cation. Nous rejetons donc les stratégies qui optimisent les problèmes de
classi�cation et de temps de prédiction séparément, comme traditionnellement abordé dans
les méthodes de la littérature [7, 8, 20, 38, 39, 41, 70, 71, 79, 107, 110].

Application industrielle La thèse est liée à une application industrielle qui implique cer-
taines spéci�cités concernant le problème de classi�cation:

� Les données sont des séries temporelles multivariées (MTS),

� Il y a plus de deux étiquettes de classe et elles sont ordonnées,

� Les étiquettes de classe sont inégalement représentées dans le jeu de données
d'apprentissage,

� Les erreurs de classi�cation entraînent certains coûts, variables selon l'étiquette réelle
et prédite. Les coûts peuvent varier entre les échantillons, en fonction d'informations
supplémentaires sur ces données.

Alors que l'objectif est de résoudre le problème général de la CP des séquences
temporelles, nous développerons une méthode qui pourra répondre aux spéci�cités
de l'application industrielle.

Hypothèse de recherche

Dans ce travail de doctorat, nous abordons le problème de la CP comme une décision de
classer une séquence incomplète ou de reporter la prédiction. Le classi�eur précoce devient

157

un modèle qui reçoit et analyse les séquences entrantes (mais incomplètes), et choisit séquen-
tiellement certaines actions: soit classer, soit attendre des points supplémentaires. De plus,
un classi�eur précoce doit faire un compromis entre la précision et précocité de sa prédiction,
et ce compromis doit être adapté à chaque échantillon individuellement.

Nous basons ce travail de doctorat sur l'hypothèse de recherche selon laquelle
le problème peut être résolu avec de l'apprentissage par renforcement profond
(DRL), une discipline populaire pour résoudre des problèmes de prise de décision complexes
tels que les jeux vidéo [42, 44, 47, 68, 73, 100], la navigation des robots [11], le diagnostic
médical [80], et la conduite de véhicule autonome [91].

Chapitre 2: Analyse du problème de classi�cation précoce des

séries temporelles multivariées

Dans le Chap. 2, nous introduisons les séquences temporelles et dé�nissons la classi�cation,
en particulier la classi�cation multi-classe, déséquilibrée, ordinale et sensible aux coûts. De
plus, nous dé�nissons les objectifs de la CP, introduisons son compromis et formalisons un
problème d'optimisation. Tout au long du chapitre, nous introduisons les principales notations
et proposons une revue de la littérature sur la manière dont les méthodes existantes abordent
les données et le problème.

Classi�cation précoce des séquences

Dans la Sec. 2.3, nous dé�nissons la CP des séquences temporelles comme le problème
d'assigner une étiquette de classe à des données collectées séquentiellement, c.-à-d. pour
lesquelles des nouveaux points arrivent au cours du temps. Suivant l'état du processus
d'acquisition, la séquence à classer peut être incomplète et par conséquent les séquences à
analyser ont des longueurs variables. Plus précisément, nous dé�nissons un classi�eur précoce
comme un modèle qui doit décider quand arrêter l'acquisition de la séquence a�n de prédire
une étiquette, avec l'objectif d'utiliser le moins de points possible sur chaque séquence. Le
modèle doit adapter son temps de prédiction sur chaque séquence individuellement, suivant
la complexité de la donnée. En particulier, il doit collecter plus de points sur les séquences
di�cilement discriminable et, à l'opposé, il doit rapidement arrêter l'acquisition des séquences
plus "simples" dans lesquelles des motifs discriminants précoces peuvent être identi�és.

A la suite de la formulation d'un problème d'optimisation entre deux objectifs contradic-
toires (classer une séquence rapidement mais précisément), nous introduisons le compromis de
la CP. Ce dernier consiste à assurer une prédiction d'étiquette optimale tout en minimisant le
temps de prédiction (soit le nombre de points utilisés dans chaque séquence pour la classi�ca-
tion).

Enjeux des séries temporelles multivariées

Concernant les données à traiter, nous mettons en avant dans la Sec. 2.1 que les séquences
temporelles sont des données particulières pour lesquelles il est nécessaire d'utiliser des modèles
pouvant prendre en compte les relations temporelles dans les points successifs. Dans le cas
spéci�que des séries temporelles multivariées (MTS, Def. 2.1.1), les modèles doivent également
prendre en compte les relations entre les di�érentes caractéristiques mesurées dans chaque
vecteur de points de la séquence. En raison de la dimension temporelle dynamique des données,

158 CHAPTER 7. SYNTHÈSE PAR CHAPITRE

les modèles doivent pouvoir analyser des séquences incomplètes (Def. 2.1.3) et de longueur
variables. En conséquence et dans le but de proposer une méthode applicable à des données
sur lesquelles nous avons aucune expertise, nous identi�ons l'intérêt des réseaux de neurones
profonds (DNN), parmi lesquels les réseaux de neurones convolutifs (CNN) sont un choix
possible de modèle.

Particularités du problème de classi�cation

En plus d'un type de données spéci�que à traiter, nous décrivons le problème de classi�cation
répondant aux contraintes de l'application industrielle dans la Sec. 2.2, à savoir:

� multi-classe (c.-à-d. qu'il y a deux ou plusieurs étiquettes),
� déséquilibré en classe (c.-à-d. que certaines étiquettes sont sous ou sur-représentées dans
le jeu de données d'apprentissage),

� ordinal (c.-à-d. qu'il y a une relation d'ordre entre les étiquettes),
� sensible aux coûts (c.-à-d. que les erreurs de classi�cation impliquent certains coûts qui
dépendent de l'étiquette réelle, de l'étiquette prédite et d'autres informations supplé-
mentaires sur les données) et

� sensible au temps (c.-à-d. que la collecte de points dans la série chronologique est
coûteuse et que le nombre d'acquisitions nécessaires pour faire une prédiction doit être
minimisé).

Nous examinons les travaux connexes de la littérature pour ce problème de classi�cation. No-
tamment, nous présentons des méthodes de calcul des performances de classi�cation pour
les problèmes multi-classes et déséquilibrés. Pour le problème de la classe déséquilibrée,
nous serons en mesure de tirer parti des stratégies de ré-échantillonnage de la littérature
qui cherchent à créer un équilibre dans les données. Pour le problème de la classi�cation
ordinale et sensible au coût, nous proposerons au Chap. 3 une solution qui di�ère de celles de
la littérature.

Revue de la littérature

Dans la Sec. 2.4, nous faisons une revue de la littérature sur le problème de la thèse et nous
montrons qu'il n'y a pas de solution existante qui puisse prendre en compte toutes les spéci-
�cités liées aux données MTS et au problème de classi�cation. De plus, les solutions proposées
dans la littérature présentent plusieurs inconvénients, parmi lesquels: certaines solutions ne
sont pas applicables à des données MTS complexes, d'autres optimisent séparément le prob-
lème de classi�cation de celui du temps de prédiction, ou ne prennent pas explicitement en
compte le temps dans la décision de classer, etc.

Dans la suite de cette étude, nous proposerons donc une méthode adaptée au problème
précis de la CP sur MTS (et plus généralement sur des séquences temporelles de types divers)
lorsque les étiquettes sont multi-classes, déséquilibrées, ordinales et lorsque la classi�cation
est sensible aux coûts.

Chapitre 3: Formalisation de la CP par un processus décisionnel

de Markov partiellement observable

Au Chap. 3, nous développons une méthode autour de la formalisation d'un problème de
prise de décision séquentielle. Nous considérons que les séquences X (Def. 2.1.1) sont reçues

159

en ligne, avec de nouveaux points arrivant au cours du temps t ∈ [1, T]. Le problème est de
choisir une action a ∈ A (Eq. 3.1) à tout moment t ∈ [1, T] à partir des séquences partielles
X:t (Def. 2.1.3). Les actions possibles sont:

� attendre a�n de rassembler plus de points, notée ad,
� ou prédire une étiquette l ∈ L sur la séquence incomplète reçue jusqu'à présent.

Suite à cette formalisation (Sec. 3.1), nous cherchons une solution pouvant fournir un résultat
de bout-en-bout, c.-à-d. des séquences incomplètes à la décision d'attente ou de prédiction
d'étiquette.

Dans la Sec. 3.2, nous montrons que la résolution du problème de prise de décision séquen-
tielle par apprentissage supervisé (SL) entraîne un nouveau dé�: construire un jeu de données
d'apprentissage étiqueté, avec une supervision sur les actions optimales à tous les pas de temps
de la séquence. Nous montrons que les méthodes de la littérature ne sont pas directement
applicables et donc la résolution du problème avec SL est un sujet de recherche majeur.

Dans la Sec. 3.3, nous montrons que la CP peut être décrite comme un processus de
Markov avec des actions. Dans la Sec. 3.4, nous dé�nissons les récompenses associées à la
CP a�n que le problème de prise de décision puisse être décrit par un processus de décision
de Markov (MDP) puis résolu dans un cadre d'apprentissage par renforcement (RL). Nous
proposons plusieurs stratégies pour trouver un compromis entre la précocité et la précision de
la classi�cation dans la dé�nition de la fonction de récompense. La méthode proposée permet
à l'utilisateur de dé�nir l'importance relative du temps par rapport à la qualité de classi�cation
pour son application. De plus, plusieurs dé�nitions de récompenses sont proposées en fonction
de la nature du problème de classi�cation (sensible aux coûts versus insensible aux coûts)
et la solution permet de prendre en compte les coûts de mauvaise classi�cation dé�nis par
l'application s'ils existent. Nous montrons que le MDP décrivant le problème de CP, noté CP-
POMDP, est en fait partiellement observable car, lors de l'acquisition en ligne des séquences,
nous n'avons pas accès aux futurs points ni à l'étiquette à prévoir, alors que ces informations
seront utilisées par l'environnement lors de la formation de l'agent.

Dans ce travail de doctorat, nous évaluons la méthode sur des séries temporelles à la
fois multivariées et univariées, selon les expériences. Cependant, le cadre mathématique est
proposé pour le problème général de la CP des séquences et il peut donc être appliqué à
di�érents types de séquences (image, texte, etc.).

Chapitre 4: Résolution du CP-POMDP avec de l'apprentissage

par renforcement profond

Dans le Chap. 4, nous cherchons à résoudre le CP-POMDP, c.-à-d. à trouver sa politique
optimale π∗ (Eq. 3.19). En particulier, nous cherchons à former un agent classi�eur précoce
avec de l'apprentissage par renforcement (RL) dans un environnement caractérisé par le CP-
POMDP. L'objectif est alors d'évaluer si l'agent peut atteindre les objectifs de CP dé�nis dans
la Sec. 2.3.

Dans la Sec. 4.1, nous proposons de résoudre le CP-POMDP avec une approche
d'apprentissage par renforcement basée sur la valeur. En e�et, l'espace d'actions A (Eq. 3.26)
du CP-POMDP est �ni et petit (K+1 actions), ce qui signi�e qu'il est possible d'apprendre la
valeur Q (Eq. 3.20) de chaque action a ∈ A. L'objectif devient alors d'apprendre la fonction

160 CHAPTER 7. SYNTHÈSE PAR CHAPITRE

Q optimale, notée Q∗, de telle sorte que la politique optimale π∗ puisse être déduite par:

π∗(o) = arg max
a∈A

Q∗(o, a) ∀o ∈ O

Comme expliqué dans la Sec. 3.4, l'environnement caractérisé par le CP-POMDP est par-
tiellement observable. La fonction Q est dé�nie sur l'espace des observations O (Eq. 3.25)
représentant l'ensemble des séquences partielles X:t,∀t ∈ [1, T] qui est continu. Du fait que O
soit continu, la fonction de valeur d'action Q ne peut pas être représentée par une table pour
chaque couple d'observations et d'actions. Au lieu de cela, la fonction Q doit être approximée
par une fonction [97]. Dans ce travail de doctorat, nous utilisons de l'apprentissage par ren-
forcement profond (DRL) pour former l'agent classi�eur précoce, ce qui consiste à approximer
Q par un réseau neuronal profond (DNN) QΘ dé�ni sur des paramètres Θ. L'objectif est de
trouver les paramètres optimaux Θ∗ du DNN tels que:

Q∗ = QΘ∗ (7.1)

Dans la Sec. 4.2, nous proposons un pipeline pour résoudre le CP-POMDP avec du DRL et
apprendre les paramètres optimaux Θ∗, en formant un agent avec l'algorithme Double Deep-
Q-Network (DDQN) [100]. Le pipeline permet aussi de sélectionner la politique optimale de
l'agent classi�eur précoce.

Dans la Sec. 4.3, nous menons une étude expérimentale pour évaluer la méthode proposée
et la comparer à d'autres solutions de la littérature. Nous montrons sur le jeu de données
public UCR [21] que le problème de CP peut être résolu avec un agent par DRL et en o�rant
un modèle de bout-en-bout. Sur di�érents jeu de données, l'agent atteint les objectifs de CP:
trouver un compromis entre la qualité de la classi�cation et sa précocité. Nous montrons
que l'agent peut continuellement adapter son comportement sans intervention humaine. Il
apprend simultanément les descripteurs dans les séquences pour le problème de classi�cation
et les règles de prise de décision sur les temps de prédiction. En outre, nous montrons expéri-
mentalement que l'agent obtient des résultats similaires ou meilleurs en termes de précision
et de temps de prédiction par rapport aux méthodes de la littérature.

Nous identi�ons néanmoins des limites quant à l'application de l'algorithme DDQN pour la
résolution du CP-POMDP. Nous montrons que la mémoire de relecture de l'agent peut devenir
déséquilibrée au cours de sa formation, a�aiblissant ainsi son apprentissage global. Dans la
suite de l'étude, nous chercherons donc à optimiser l'algorithme DDQN pour la CP et à évaluer
si la résolution d'une mémoire mal équilibrée améliore l'entraînement et les performances de
l'agent.

Chapitre 5: Stratégies de gestion de la mémoire pour optimiser

la résolution du CP-POMDP

Dans le Chap. 5, nous cherchons à optimiser la résolution du CP-POMDP avec une gestion
robuste de la mémoire de l'agent lors de l'application de l'algorithme DDQN. Nous soulevons
trois questions sur la gestion de la mémoire et une question sur la gestion des épisodes:

(1) Quelles interactions doivent être stockées?
(2) Quelles interactions doivent être échantillonnées?
(3) Quelles interactions doivent être supprimées (lorsque la mémoire est pleine)?
(4) Comment initialiser un épisode d'entraînement?

161

Nous étudions comment répondre à ces questions tout en abordant les spéci�cités du CP-
POMDP, et nous proposons des révisions de l'algorithme DDQN pour corriger le problème de
mémoire déséquilibrée de l'agent. De plus, nous proposons deux adaptations de l'algorithme
DDQN, selon que l'application est livrée avec un jeu de données d'apprentissage �ni (appren-
tissage par lots) ou, au contraire, peut générer de nouvelles données d'apprentissage au �l du
temps (apprentissage en ligne). Dans les expériences, nous évaluons si les contributions ont
un e�et positif sur la formation et les performances globales de l'agent.

Dans la Sec. 5.1, nous faisons une revue de la littérature sur la gestion de la mémoire de
l'agent dans le domaine du DRL.

Dans la Sec. 5.2, nous optimisons l'algorithme DDQN pour l'apprentissage en ligne, c.-à-d.
lorsqu'il y a des répétitions successives entre (a) collecte d'interaction et (b) optimisation de
la politique. Nous proposons des stratégies d'échantillonnage prioritaire, stockage prioritaire
et initialisation d'épisode aléatoire.

Dans la Sec. 5.3, nous adaptons l'algorithme DDQN pour l'apprentissage par lots, c.-à-
d. pour les applications ayant un jeu de données d'apprentissage �ni, entraînant un nombre
maximum d'interactions possibles à collecter entre l'agent et l'environnement. Nous proposons
de dissocier la collecte des interactions de l'optimisation de la politique, et nous appliquons la
stratégie d'échantillonnage prioritaire.

Dans la Sec. 5.4, nous introduisons un pipeline d'évaluation pour comparer les di�érentes
versions de l'algorithme, avec ou sans les stratégies proposées. Nous évaluons ensuite les e�ets
d'échantillonnage prioritaire, stockage prioritaire et initialisation d'épisode aléatoire sur un
jeu de données lié à l'application industrielle. Nous montrons que les di�érentes stratégies
améliorent statistiquement les performances de l'agent en termes de précision et de vitesse.

Dans la Sec. 5.5, nous entraînons un ensemble de réseaux neuronaux profonds (DNNs)
statiques à classer les séquences partielles à chaque pas de temps. Ces DNNs statiques ont une
architecture équivalente à celle de l'agent. Nous évaluons la performance des DNNs statiques
en termes de précision et vitesse par rapport à l'agent formé par DRL. Nous montrons que
l'agent classi�eur précoce (pour lequel le temps de prédiction est adaptatif, contrairement aux
DNNs statiques) améliore le compromis général de la CP entre précision et vitesse.

Chapitre 6: Interprétation des politiques

Au Chap. 6, nous proposons des outils pour interpréter les décisions prises par l'agent, c.-à-d.
sa politique. Tout d'abord, nous appliquons la méthode Class Activation Map [116] pour
mettre en évidence les points d'une séquence de test qui contribuent le plus aux prédictions
de l'agent. Nous fournissons ensuite des visualisations sur les prédictions faites par l'agent,
sur des séquences de test, et montrons certaines de leurs dynamiques. En�n et dans une
perspective de travaux futurs, nous appliquons la méthode introduite dans [89] pour mesurer
l'incertitude des prédictions du réseau neuronal profond, et nous l'adaptons au problème de
CP.

Class Activation Map

Un premier outil d'interprétation est donné dans la Sec. 6.1 où nous appliquons une méthode
de la littérature a�n d'identi�er les points dans des séquences partielles qui in�uencent le plus
les prédictions de l'agent. Nous appliquons la méthode Class Activation Map (CAM) [116] sur

162 CHAPTER 7. SYNTHÈSE PAR CHAPITRE

le réseau neuronal QΘ et nous montrons, lors d'évaluations expérimentales, que la méthode
permet d'identi�er comment les points dans les séquences contribuent aux prédictions des Q-
valeurs. Des illustrations sont fournies sur le jeu de données issu de l'application industrielle.
Elles montrent comment nous avons pu tirer quelques interprétations des décisions prises par
l'agent, notamment en mettant en évidence les motifs dans les séquences partielles identi�és
comme les plus pertinents par l'agent lors de sa prédiction. A l'issue de l'évaluation, nous avons
conclu que cette méthode peut être utilisée à deux �ns. Premièrement, elle peut être utilisée
lors de l'application d'une politique sur des données de test, a�n de fournir une justi�cation sur
les décisions de l'agent. Ensuite, elle peut être utilisée comme une deuxième étape de sélection
des politiques optimales, pour comparer plusieurs politiques entre elles et sélectionner celle
pour laquelle les décisions sont les plus cohérentes avec l'application, sur la base de notre
expertise des données.

Q-valeurs

Pour enrichir les interprétations des politiques, nous visualisons en Sec. 6.2 les Q-valeurs
estimées par l'agent durant l'acquisition des séquences. Lors d'une évaluation expérimentale,
nous avons visualisé les prédictions des Q-valeurs faites par l'agent sur les données de test
issues de l'application industrielle, et nous avons observé les cas suivants.

Tout d'abord, nous avons observé que la Q-valeur de l'action d'attente est souvent proche
de la Q-valeur de classi�cation la plus élevée. Dans certains cas, la plus grande Q-valeur
de classi�cation reste légèrement inférieure à la Q-valeur d'attente, pour de nombreux pas de
temps successifs, comme illustré sur la Fig. 6.9. Par conséquent, au cours de ces pas de temps,
l'agent continue d'attendre tandis que ses prédictions de Q-valeurs montrent qu'il a réussi à
identi�er la bonne étiquette. C'est donc une perte de temps de la part de l'agent, puisqu'un
bon classement aurait pu se faire plus rapidement.

Deuxièmement, on peut observer que l'agent parvient à prédire les Q-valeurs qui sont
ordonnées, comme dé�ni dans la fonction de récompense, mais hésite parfois entre plusieurs
étiquettes, comme illustré dans la Fig. 6.10. Pour ces cas particuliers, nous voudrions justi�er
si l'agent continue d'attendre parce qu'il est incertain dans l'étiquette des données de test
ou en raison d'une politique sous-optimale. Dans la suite du chapitre, nous cherchons donc
à mesurer l'incertitude du DNN a�n d'apporter une interprétation supplémentaire dans les
décisions de l'agent.

De plus et comme objectif secondaire d'un travail futur, notre motivation derrière
l'estimation de l'incertitude est de l'utiliser pour valider ou rejeter certaines prédictions de
l'agent, et éventuellement accélérer certaines prédictions, par rapport aux scénarios évoqués
ci-dessus. Nous pensons qu'il est possible de déclencher une prédiction lorsque l'incertitude
est faible et lorsque la Q-valeur de classi�cation la plus élevée est proche de celle de l'attente
pendant plusieurs pas de temps consécutifs. De plus, nous pensons que certaines décisions
hâtives prises par l'agent peuvent être rejetées lorsque l'incertitude est trop élevée.

Estimation de l'incertitude du DNN

Dans la Sec. 6.3, nous appliquons une méthode issue de la littérature pour estimer l'incertitude
des prédictions de l'agent. Une première étude expérimentale est donnée sur une version
simpli�ée du jeu de données industriel pour lequel il y a moins d'étiquettes à prédire.

Dans cette section, nous avons montré comment appliquer la méthode de [89] pour

163

l'estimation de l'incertitude du DNN, a�n d'interpréter les prédictions faites par l'agent sur les
données de test. Nous avons montré comment calculer l'évidence sur les étiquettes du prob-
lème de classi�cation et comment en retirer à la fois des estimations de probabilité pour chaque
étiquette et une estimation d'incertitude. Les inconvénients de la méthode sont liés à un plus
grand nombre d'hyper-paramètres à régler. Ils sont causés par l'architecture multi-branches
du DNN.

Chapitre 7: Conclusion

Au Chap. 7, nous concluons sur le travail doctoral et donnons quelques perspectives pour
de futures études. La principale contribution de ce travail de doctorat a été de formaliser
le problème de la CP des séquences temporelles en tant que problème de prise de décision
séquentielle. Le classi�eur précoce doit décider entre classer une séquence incomplète ou
retarder la prédiction pour collecter des points supplémentaires. Plus précisément, nous
avons décrit la CP par un POMDP, noté CP-POMDP, en dé�nissant un ensemble d'états,
d'actions et d'observations associés au problème et en dé�nissant une fonction de récompense
qui représente le compromis de la CP. La deuxième contribution majeure de ce travail a été
d'adapter et d'optimiser un algorithme de DRL existant aux spéci�cités du CP-POMDP.
Pour cela, nous avons proposé des stratégies de gestion des épisodes et de la mémoire. Nous
avons initié ces stratégies pour résoudre le problème de mémoire déséquilibrée de l'agent
causé par l'algorithme d'origine, et nous avons montré qu'elles amélioraient la formation
globale de l'agent. En�n, d'autres contributions secondaires ont été de proposer des solutions
pour l'interprétation des politiques de l'agent.

À notre connaissance et contrairement aux méthodes de la littérature [7, 8, 20, 38, 39, 41,
70, 71, 79, 107, 110], la méthode proposée est la première à véri�er tous les avantages suivants:

� La méthode traite simultanément les problèmes de classi�cation et de temps de prédic-
tion. Le modèle unique est capable d'apprendre simultanément des descripteurs opti-
maux dans les séquences pour la classi�cation et des décisions stratégiques optimales
pour le temps de prédiction. La méthode implique une seule phase d'optimisation et il
n'est pas nécessaire d'optimiser chaque sous-problème séparément.

� La méthode o�re un modèle de bout-en-bout qui ne nécessite pas d'expertise sur les
données à analyser et qui n'implique pas une étape préliminaire d'extraction des de-
scripteurs. Au lieu de cela, le DNN reçoit des données d'entrée brutes, ayant subi ni
réduction de dimension ni pré-traitement. Le DNN est ainsi en charge de synthétiser les
informations contenues dans les points de données, d'extraire les descripteurs les plus
pertinents et d'apprendre les décisions optimales.

� La méthode ne fait pas d'hypothèses sur les données d'entrée. Elle est générique et peut
être appliqué à di�érents types de données séquentielles, telles que des séries temporelles
numériques, des séquences symboliques, des séquences d'images, des textes, etc.

� La méthode minimise directement un critère basé sur le temps et l'utilisateur peut ajuster
son importance par rapport à la qualité de la classi�cation.

� La méthode permet de résoudre des problèmes de classi�cation qui sont sensibles au coût.
En e�et, les coûts de mauvaise classi�cation peuvent être pris en compte directement

164 CHAPTER 7. SYNTHÈSE PAR CHAPITRE

dans la dé�nition du CP-POMDP, via la fonction de récompense. Par conséquent,
l'approche proposée peut résoudre une grande variété de problèmes de CP. Par exemple,
le diagnostic médical est connu pour être un problème de classi�cation sensible aux
coûts en raison de la gravité de la non-détection d'une maladie grave par rapport au
déclenchement d'une fausse alarme.

� La méthode peut gérer à la fois les problèmes de classi�cation binaires et multi-classes.

� La méthode peut gérer les problèmes de classi�cation qui sont ordinaux, en dé�nissant
une fonction de récompense qui pénalise davantage les erreurs de classi�cation lorsque
l'étiquette prédite est éloignée de la véritable étiquette.

� La méthode est robuste aux problèmes de classi�cation pour lesquels le jeu de données
d'apprentissage est déséquilibré, grâce aux stratégies de gestion de la mémoire proposées
dans la thèse.

� Pendant la formation de l'agent, l'utilisateur béné�cie d'une gamme de modèles pour la
CP avec di�érents compromis entre qualité de classi�cation et vitesse. Par conséquent,
l'utilisateur peut choisir le modèle qui correspond le mieux à son domaine d'application,
mais aussi arrêter la formation de l'agent dès qu'il est satisfait par un modèle obtenu.

Dans la Sec. 7.3, nous présentons des perspectives en relation avec ce travail de thèse.

Appendices

165

Appendix A

Experimental comparison between

EC-POMDP models

In Chap. 3, we formalized the early classi�cation (EC) problem as a Partially Observable
Markov Decision Process (POMDP), noted EC-POMDP, and we proposed several de�nitions
of rewards Rd for the delay action ad (see Tab. 3.2):

Rd ∈ {Rd,shaping, Rd,discount}

In this study, we seek to assess the impact of delay reward shaping Rd,shaping vs. reward
discounting Rd,discount in the reward de�nition of the EC-POMDP. We are interested in com-
paring if one of the above de�nition leads to better policies. To this end, we carry out an
experiment using the same experimental pipeline as in Sec. 5.4.3.

A.1 EC-POMDP models

From reward de�nitions proposed in Tab. 3.2, we de�ne two models of EC-POMDP:

� Mshaping = {S,A, P,R,O,Ψ, γ} is an EC-POMDP where the delay action ad is rewarded
negatively over time with Rd = Rd,shape and rewards are not discounted, γ = 1.

� Mdiscount = {S,A, P,R,O,Ψ, γ} is an EC-POMDP where rewards are discounted, γ < 1.
The action of delay ad is not rewarded, Rd = Rd,discount. The agent collects rewards
(positive or negative) from classi�cation actions only.

Both Mshaping and Mdiscount use cost-insensitive classi�cation rewards, such that Rc = Rc,ins
(Eq. 3.31) with r+ = +1 and r− = −1:

Rc,ins((X, l, t), a) =

{
+1 if a = l

−1 if a ∈ Ac \ {l}

A.2 Experimental evaluation

Dataset We use the industrial dataset from Sec. 5.4.1, illustrated in Fig. 5.5 and Fig. 5.4.

167

168APPENDIX A. EXPERIMENTAL COMPARISON BETWEEN EC-POMDP MODELS

A.2.1 Experimental pipeline

We train early classi�er agents on the two EC-POMDP de�nitions, Mshaping and Mdiscount,
with DDQN algorithm in batch learning and with prioritized sampling, as introduced in Algo.
5. We carry out an experiment using the same experimental pipeline as in Sec. 5.4.3. We
remind that this experimental pipeline initially aimed at comparing several versions of DDQN
algorithm, with and without the di�erent strategies of episode and memory management
proposed in Chap. 5. The objective of the experimental pipeline was to statistically evaluate
if some versions of the algorithm resulted in policies with better EC performance compared to
the other versions. More generally, this same experimental pipeline can be used to compare
two sets of trainings, and to statistically evaluate if one of the two sets results in better
policies than the other.

We perform 50 trainings of the agent on each model of EC-POMDP, following the same
training pipeline as in Sec. 5.4.3.1. Simultaneously, to evaluate if both EC-POMDP models
achieve comparable best classi�cation accuracy under di�erent trade-o�s, we apply the eval-
uation pipeline from Sec. 5.4.3.2 for each training, on the validation set. Finally, we compare
the two sets of training, each one being dedicated to a model of the EC-POMDP, with the
comparison pipeline from Sec. 5.4.3.3 and Sec. 5.4.3.4.

A.2.2 Results

Comparison of best performance We report in Fig. A.1 the top-5 optimal policies
obtained within several ranges of prediction times for each EC-POMDP model. For each
model, accuracy rapidly increases when prediction time reaches tpred = 30. Then, accuracy
slightly gets better and stabilizes over the acquisition process. From Fig. A.1, we observe
that Mshaping results in top-5 policies that are the most accurate, i.e. with higher Acc than
Mdiscount, under all trade-o�s of prediction time tpred. Also, tests from Tab. A.1 allow to reject
the null hypothesis that both POMDP models achieve comparable max Acc along training.
Indeed, Fig. A.2 show thatMshaping improve max Acc overMdiscount. In other words,Mshaping

results in policies with the best classi�cation quality. As a conclusion, the best (and top-5)
classi�cation performance is achieved when the agent is trained under Mshaping.

Comparison of average performance Then, instead of comparing the best performance,
we seek to compare the average performance of the agent when trained under the di�erent
models Mshaping and Mdiscount. To do so, we average the performance of each of its policies
from the same training session, allowing to illustrate the overall performance of the agent
throughout its training and not at a speci�c moment of its training. Tests from Tab. A.1
show thatMshaping andMdiscount models have statistically comparable mean Acc, which means
that no model improves the overall classi�cation quality of the agent compared to the other
model. Nevertheless, Mdiscount shorten mean tpred over Mshaping which means that Mdiscount

results in earliest classi�cation times compared to Mshaping.

Comparison of stability In terms of stability, measured through the metrics of stdev tpred
and stdev Acc, the statistical tests from Tab. A.1 lead to the conclusion thatMshaping is more
uneven than Mdiscount during its trainings. As shown in Fig. A.2, the accuracy performance

A.2. EXPERIMENTAL EVALUATION 169

shaping
discount

20 30 40 50 60

Time of prediction

55

60

65

70

75

80

A
cc

ur
ac

y

Figure A.1: Evaluation of top-5 policies from Mshaping and Mdiscount on the test set.
The evaluation involves 9 distinct time intervals [tinf , tsup[between [1, T]. For each time
interval [tinf , tsup[, the top-5 policies (which have an average prediction time tpred ∈ [tinf , tsup[
and highest Acc) were selected from the validation set. The full line represents mean accuracy
and the band is the accuracy standard deviation on the 5 policies on the test set.

and prediction time of the agent's policies are more irregular during the trainings of Mshaping

compared to those of Mdiscount.

Performance Stability

Max Acc Mean Acc Mean tpred Std Acc Std tpred

0.0228 0.1962 0.0018 0.0016 1.3162e−8

Table A.1: Statistical comparison between Mshaping and Mdiscount performance met-
rics. The table reports p-values of Mann-Whitney rank tests on the null hypothesis that
Mshaping and Mdiscount have comparable score for each performance metric (max Acc, mean
Acc, stdev Acc, mean tpred and stdev tpred) from Fig. A.2. The null hypothesis is rejected
in favor of the alternative hypothesis on tests with a p-value below 0.05, shown in bold. The
alternative hypothesis is that the metric performance is di�erent between the two models.
Fig. A.2 shows which model has the greatest score.

170APPENDIX A. EXPERIMENTAL COMPARISON BETWEEN EC-POMDP MODELS

Figure A.2: Distribution of performance metrics from Mshaping and Mdiscount on the
validation set. (a) Max Acc. (b) Mean Acc. (c) Stdev Acc. (d) Mean tpred. (e) Stdev tpred.
For each model, the distribution is calculated on all the evaluations that were performed on
the validation set, for each set of hyper-parameters tested.

Appendix B

Experimental evaluation on

EC-POMDP solving with a

policy-based approach

We present a study conducted as part of an internship and which was intended to directly
approximate the policy π of the agent by a DNN πΘ with parameters Θ, and not through the
approximation of the Q-function as proposed in Chap. 4.

Motivation We proposed to solve the EC-POMDP with a policy-based approach, and
speci�cally with the state-of-the-art algorithm at the moment: Asynchronous Advantage Actor
Critic (A3C) algorithm [67]. The objectives were to evaluate if the policies learned using this
algorithm achieved better performance of early classi�cation than those learned with DDQN
algorithm from [100].

Algorithm The A3C algorithm is a policy-based approach which seeks to directly approx-
imate the policy π with a DNN πΘ with parameters Θ. A3C algorithm updates the policy
parameters Θ asynchronously using independent agents that each train on their copy of the
environment. The algorithm is given in [67].

Experimental evaluation We use the same EC-POMDP model as in Sec. 4.3.2. Also, the
experimental pipeline used for the training of the agent, its evaluation, and the selection of
its optimal policy is the same as in Sec. 4.3.3.

Tab. B.1 reports the performance in accuracy Acc and prediction time tpred of Early Clas-
si�cation on Time Series (ECTS) [109] and Early Distinctive Shapelet Classi�cation (EDSC)
[110] methods, on testing datasets from the UCR Time Series Archive [21]. It compares these
performances to those achieved by the optimal policies trained on the EC-POMDP with both
A3C and DDQN algorithms.

On ECG dataset, A3C algorithm provides a policy with faster prediction time tpred than
DDQN but with lower accuracy Acc. On Gun-Point and Wafer datasets, A3C algorithm
provides policies with almost similar Acc than DDQN but with slower tpred. Consequently,
these experiments did not show any signi�cant performance improvements with the policies
trained using A3C algorithm compared to those trained using DDQN algorithm.

171

172 APPENDIX B. POLICY-BASED APPROACH

Dataset ECTS
[109]

EDSC
[110]

Full 1NN
[21]

A3C [67] DQN [68]

ECG Acc 89 88 88 85 89

tpred 57,71 30,93 96 11,98 16,09

CBF Acc 85,2 87 85,2 93,44

tpred 91,73 44,84 128 38,76

Gun-Point Acc 86,67 94,67 91,33 96,67 96
tpred 70,39 69,3 150 42,1 32,47

Synthetic
Control

Acc 89 87,66 88 98

tpred 53,98 33,36 60 24,4

Wafer Acc 99,08 98,87 99,55 99,82 99,32
tpred 67,39 38,97 152 26.11 5,73

Two
Patterns

Acc 86,48 80,6 91 99,98

tpred 111,1 82,33 128 86,55

OliveOil Acc 90 76,67 86,7 90

tpred 497,83 213,48 570 249

Table B.1: Evaluation of optimal policies trained with A3C algorithm and DDQN
algorithm, on testing sets from UCR Time Series Archive [21]. Optimal policies
were selected following procedure from Sec. 5.4.3.4 on the training set. They are compared
to the Early Classi�cation on Time Series (ECTS) method from [109], the Early Distinctive
Shapelet Classi�cation (EDSC) method from [110], and the 1 Nearest Neighbor (1NN Full)
method provided in UCR archive [21]. Acc is de�ned in Eq. 4.8. tpred is de�ned in Eq. 4.9.
Best performances are written in bold. DQN algorithm has not been tested on CBF, Synthetic
Control, Two Patterns and Olive Oil datasets.

Appendix C

Illustrations of Class Activation Map

Figure C.1: CAMs for each action a ∈ A, on a partial test MTS X:40 with reference
label l1. The agent predicted label l1 at tpred = 40.
CAMs in red highlight the patterns in the MTS that contribute positively to the action
selection. CAMs in blue highlight the patterns in the MTS that contribute negatively to the
action selection.
At time step 40 of the acquisition process, time at which the agent chooses to classify, the
DNN QΘ identi�es a pattern in the data points (x20, · · · ,x40) that contributes positively to
the Q-value of label l1, with the most signi�cant data points being (x35, · · · ,x40). These last
points also slightly contribute positively to the Q-value of label l2. The Q-values for labels l5,
l6 and l7 are negatively a�ected by a pattern identi�ed in the data points (x20, · · · ,x40).

173

174 APPENDIX C. ILLUSTRATIONS OF CLASS ACTIVATION MAP

Figure C.2: CAMs on a partial test MTS X:16 with reference label l7. The agent
predicted label l7 at tpred = 16.
CAMs in red highlight the patterns in the MTS that contribute positively to the action
selection. CAMs in blue highlight the patterns in the MTS that contribute negatively to the
action selection.
At time step 16 of the acquisition process, time at which the agent chooses to classify, the
DNN QΘ identi�es a pattern in the data points (x9, · · · ,x16) that decreases the Q-values of
labels l1, l2, l3 (and slightly that of label l4), and increases the Q-values of labels l6 and l7
(and slightly that of label l5). Previous data points (x1, · · · ,x8) have a zero contribution
to the predicted action values for all actions. This is also the case of unknown future data
points (x17, · · · ,x77) that have been replaced by zeros: they do not contribute positively nor
negatively to the Q-values of all actions.

175

Figure C.3: CAMs for each action a ∈ A, on a partial test MTS X:77 with reference
label l2. The agent is forced to predict a label at the end of the sequence acquisition. It
predicted label l3 at tpred = 77.
CAMs in red highlight the patterns in the MTS that contribute positively to the action
selection. CAMs in blue highlight the patterns in the MTS that contribute negatively to the
action selection. At time step 77 of the acquisition process, the data points (x1, · · · ,x20) and
(x70, · · · ,x77) make a large negative contribution to the Q-values of labels l1, l2, and l3. Also,
data points (x1, · · · ,x20) decrease the Q-value of label l4. The Q-values of these labels are not
increased by the identi�cation of any positive patterns in the sequence. Also, the data points
(x20, · · · ,x70) make a large negative contribution to the Q-values of labels l5, l6, l7. Despite
the identi�cation of a pattern in the data points (x10, · · · ,x18) that contribute positively to
the Q-value of label l7, this Q-value is decreased by the pattern in data points (x20, · · · ,x70).
The average contribution of each data point in the sequence to the Q-value of label l3 is larger
than that of label l7.

176 APPENDIX C. ILLUSTRATIONS OF CLASS ACTIVATION MAP

Appendix D

List of hyper-parameters and their

values

In this appendix, we present the list of hyper-parameters and the range of values tested during
the experimental evaluations of Chap. 4 and Chap. 5. We remind that the method was to train
an early classi�er agent with Deep Reinforcement Learning, and speci�cally with the Double
Deep-Q-Network algorithm from [100]. This algorithm involves a list of hyper-parameters
that need to be set and optimized. Moreover, in Chap. 5, we introduced strategies of memory
management that involved additional hyper-parameters to the method.

177

178 APPENDIX D. LIST OF HYPER-PARAMETERS AND THEIR VALUES

Hyper-parameter Values Description

mini-batch size 18-32-64-128 Number of transitions sampled from the
replay memory to perform one update of
the DNN's parameters.

learning rate λ from 10−2 to 10−6 The learning rate used for the stochastic
gradient descent.

replay memory size from 103 to 106 Size of the agent's replay memory.

replay memory start size
10% of the replay

memory size
A random policy is run for this number of
interactions to pre-�ll the agent's replay
memory.

target network

update frequency
from 1000 to 10000 Steps at which the parameters of the tar-

get network are updated.

discount factor γ from 0.5 to 1 Used in the EC-POMDP de�nition.

initial exploration ε 1 The exploration rate initial value at the
beginning of an episode.

�nal exploration ε 0.1 The exploration rate �nal value at the end
of an episode.

exploration decay from 0.9 to 0.99999 Multiplying factor applied after each in-
teraction to the exploration rate.

Prioritized sampling

parameter µ
from 0.2 to 0.8 Hyper-parameter of the prioritized sam-

pling strategy (see Sec. 5.2.1)

Prioritized storing

parameter ρ
from 0.2 to 0.8 Hyper-parameter of the prioritized stor-

ing strategy (see Sec. 5.2.2)

Appendix E

Examples of Deep Neural Network

architectures

In this appendix, we illustrate some architectures of Deep Neural Networks (DNNs) used
during experimental evaluations of Chap. 4, Chap. 5 and Chap. 6. The DNNs aimed at
approximating the policy of the agent from the action value function QΘ (Eq. 3.16) with
parameters Θ.

Input data In all cases, input data to the DNNs are temporal sequences X = (x1, ...,xT)
with length T = 77 and for which each data point xi∈[1,T] is a 5-dimensional array (P = 5).
In other words they are multivariate time series (MTS) such that X ∈ R5×77. We remind
that, for reasons of DNNs implementations, when the agent receives the partial sequence X:t,
all unknown future data points (xt+1, ...,xT) are replaced by zeros. In this way, the DNN
receives �xed size input data.

Output layer In Fig. E.1, the output of the DNN has 8 neurons: 7 output neurons are
dedicated to actions of classi�cation for each label in L (the set of labels L being composed
of 7 distinct labels) and one output neuron is dedicated to the action of delay.

In Fig. E.2, there are two output layers. The output layer in the right branch of the DNN
has 4 neurons: 3 output neurons are dedicated to actions of classi�cation for each label in L̃
(we remind that the dataset has been reduced to three distinct labels instead of the initial
seven: L̃ ⊂ L) and one output neuron for the action of delay. The output layer in the left
branch of the DNN has 3 neurons dedicated to evidence calculation for labels in L̃.

179

180 APPENDIX E. EXAMPLES OF DEEP NEURAL NETWORK ARCHITECTURES

?×77×5×1

Conv2D

kernel_size = 5, 5

padding = same

filters = 32

LeakyReLU

alpha = 0.30000001192092896

MaxPooling2D

padding = same

strides = 2, 1

pool_size = 5, 1

Dropout

rate = 0.1

Conv2D

kernel_size = 5, 5

padding = same

filters = 64

LeakyReLU

alpha = 0.30000001192092896

Dropout

rate = 0.1

Conv2D

kernel_size = 5, 5

padding = same

filters = 128

LeakyReLU

alpha = 0.30000001192092896

GlobalAveragePooling2D

Dense

units = 8

input

main_output

Figure E.1: Example of a DNN architecture for the policy of the agent. The DNN
computes the Q-values from Eq. 3.17. It has been trained on a set of MTS X ∈ R5×77

associated to ordinal labels in L = {l1, · · · , l7}.

181

?×77×5×1

Conv2D

filters = 32

padding = same

kernel_size = 3, 3

LeakyReLU

alpha = 0.30000001192092896

MaxPooling2D

padding = same

strides = 2, 1

pool_size = 3, 1

Dropout

rate = 0.1

Conv2D

filters = 64

padding = same

kernel_size = 3, 3

LeakyReLU

alpha = 0.30000001192092896

MaxPooling2D

strides = 2, 1

pool_size = 3, 3

Dropout

rate = 0.1

Conv2D

filters = 128

padding = same

kernel_size = 3, 3

LeakyReLU

alpha = 0.30000001192092896

MaxPooling2D

strides = 2, 1

pool_size = 3, 3

Flatten

Dropout

rate = 0.1

Dense

units = 50

Activation

activation = relu

Dense

units = 50

activation = relu

Dense

units = 10

activation = relu

Dense

units = 10

activation = relu

Dense

units = 3

activation = softplus

Dense

units = 4

main_outputaux_output

input

Figure E.2: Example of a multi-branch DNN architecture for the policy of the
agent. The DNN computes the Q-values from Eq. 3.17 (right output layer) and vector of
evidence e from Eq. 6.6 (left output layer). It has been trained on a dataset involving a set
of MTS X ∈ R5×77 associated to ordinal labels in L̃ = {l2, l4, l7}.

182 APPENDIX E. EXAMPLES OF DEEP NEURAL NETWORK ARCHITECTURES

Bibliography

[1] Abbeel, P. and Ng, A. Y. (2004). Apprenticeship learning via inverse reinforcement learn-
ing. In Proceedings of the twenty-�rst International Conference on Machine Learning,
page 1.

[2] Aghabozorgi, S., Shirkhorshidi, A. S., and Wah, T. Y. (2015). Time-series clustering�a
decade review. Information Systems, 53:16�38.

[3] Agrawal, R., Faloutsos, C., and Swami, A. (1993). E�cient similarity search in sequence
databases. In International Conference on Foundations of Data Organization and Algo-
rithms, pages 69�84. Springer.

[4] Aliakbarian, M. S., Saleh, F. S., Salzmann, M., Fernando, B., Petersson, L., and Andersson,
L. (2017). Encouraging lstms to anticipate actions very early. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 280�289.

[5] Alonso González, C. J. and Diez, J. J. R. (2004). Boosting interval-based literals: Variable
length and early classi�cation. In Data Mining in Time Series Databases, pages 149�171.
World Scienti�c.

[6] Aly, M. (2005). Survey on multiclass classi�cation methods. Neural Networks, 19:1�9.

[7] Anderson, H. S., Parrish, N., Tsukida, K., and Gupta, M. R. (2012). Reliable early
classi�cation of time series. In IEEE International Conference on Acoustics, Speech and
Signal Processing, pages 2073�2076.

[8] Asma, N., Cornuéjols, A., and Bondu, A. (2016). A novel algorithm for online classi�cation
of time series when delaying decision is costly. In Conférence francophone sur l'Apprentissage
Automatique.

[9] Bagnall, A., Dau, H. A., Lines, J., Flynn, M., Large, J., Bostrom, A., Southam, P., and
Keogh, E. (2018). The uea multivariate time series classi�cation archive, 2018. arXiv
preprint arXiv:1811.00075.

[10] Bahnsen, A. C., Aouada, D., and Ottersten, B. (2015). Example-dependent cost-sensitive
decision trees. Expert Systems with Applications, 42(19):6609�6619.

[11] Bakker, B., Zhumatiy, V., Gruener, G., and Schmidhuber, J. (2003). A robot that
reinforcement-learns to identify and memorize important previous observations. In Proceed-
ings of IEEE/RSJ International Conference on Intelligent Robots and Systems, volume 1,
pages 430�435.

183

184 BIBLIOGRAPHY

[12] Bellemare, M. G., Dabney, W., and Munos, R. (2017). A distributional perspective on
reinforcement learning. In Proceedings of the 34th International Conference on Machine
Learning, pages 449�458.

[13] Bengio, Y., Courville, A., and Vincent, P. (2013). Representation learning: A review
and new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence,
35(8):1798�1828.

[14] Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.

[15] Cardoso, J. S. and Sousa, R. (2011). Measuring the performance of ordinal classi�cation.
International Journal of Pattern Recognition and Arti�cial Intelligence, 25(08):1173�1195.

[16] Chan, K.-P. and Fu, A. W.-C. (1999). E�cient time series matching by wavelets. In Pro-
ceedings of the 15th International Conference on Data Engineering, pages 126�133. IEEE.

[17] Chapelle, O., Scholkopf, B., and Zien, A. (2009). Semi-supervised learning. IEEE Trans-
actions on Neural Networks, 20(3):542�542.

[18] Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2002). Smote:
synthetic minority over-sampling technique. Journal of Arti�cial Intelligence Research,
16:321�357.

[19] Christiano, P. F., Leike, J., Brown, T., Martic, M., Legg, S., and Amodei, D. (2017).
Deep reinforcement learning from human preferences. In Advances in Neural Information
Processing Systems, pages 4299�4307.

[20] Dachraoui, A., Bondu, A., and Cornuéjols, A. (2015). Early classi�cation of time series
as a non myopic sequential decision making problem. In Joint European Conference on
Machine Learning and Knowledge Discovery in Databases, pages 433�447. Springer.

[21] Dau, H. A., Bagnall, A., Kamgar, K., Yeh, C.-C. M., Zhu, Y., Gharghabi, S., Ratanama-
hatana, C. A., and Keogh, E. (2018). The ucr time series archive. arXiv preprint
arXiv:1810.07758.

[22] Devlin, S. M. and Kudenko, D. (2012). Dynamic potential-based reward shaping. In
Proceedings of the 11th International Conference on Autonomous Agents and Multiagent
Systems, pages 433�440.

[23] Dulac-Arnold, G., Denoyer, L., and Gallinari, P. (2011a). Text classi�cation: A sequen-
tial reading approach. In European Conference on Information Retrieval, pages 411�423.
Springer.

[24] Dulac-Arnold, G., Denoyer, L., Preux, P., and Gallinari, P. (2011b). Datum-wise clas-
si�cation: a sequential approach to sparsity. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pages 375�390. Springer.

[25] Elkan, C. (2001). The foundations of cost-sensitive learning. In International Joint
Conference on Arti�cial Intelligence, volume 17, pages 973�978.

[26] Fawaz, H. I., Forestier, G., Weber, J., Idoumghar, L., and Muller, P.-A. (2019). Deep
learning for time series classi�cation: a review. Data Mining and Knowledge Discovery,
pages 1�47.

BIBLIOGRAPHY 185

[27] Finn, C., Levine, S., and Abbeel, P. (2016). Guided cost learning: Deep inverse optimal
control via policy optimization. In International Conference on Machine Learning, pages
49�58.

[28] Frank, E. and Hall, M. (2001). A simple approach to ordinal classi�cation. In European
Conference on Machine Learning, pages 145�156. Springer.

[29] Freund, Y., Schapire, R., and Abe, N. (1999). A short introduction to boosting. Journal
of Japanese Society For Arti�cial Intelligence, 14(771-780):1612.

[30] Fu, T.-c. (2011). A review on time series data mining. Engineering Applications of
Arti�cial Intelligence, 24(1):164�181.

[31] Gal, Y. and Ghahramani, Z. (2016). Dropout as a bayesian approximation: Representing
model uncertainty in deep learning. In International Conference on Machine Learning,
pages 1050�1059.

[32] Galar, M., Fernandez, A., Barrenechea, E., Bustince, H., and Herrera, F. (2011). A
review on ensembles for the class imbalance problem: bagging, boosting, and hybrid-based
approaches. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews), 42(4):463�484.

[33] Gamboa, J. C. B. (2017). Deep learning for time-series analysis. arXiv preprint
arXiv:1701.01887.

[34] Garrett, D., Peterson, D. A., Anderson, C. W., and Thaut, M. H. (2003). Compari-
son of linear, nonlinear, and feature selection methods for eeg signal classi�cation. IEEE
Transactions on Neural Systems and Rehabilitation Engineering, 11(2):141�144.

[35] Gers, F. A., Schmidhuber, J., and Cummins, F. (1999). Learning to forget: Continual
prediction with lstm. In 9th International Conference on Arti�cial Neural Networks.

[36] Ghalwash, M. F. and Obradovic, Z. (2012). Early classi�cation of multivariate temporal
observations by extraction of interpretable shapelets. BMC bioinformatics, 13(1):195.

[37] Ghalwash, M. F., Radosavljevic, V., and Obradovic, Z. (2013). Extraction of interpretable
multivariate patterns for early diagnostics. In IEEE 13th International Conference on Data
Mining, pages 201�210.

[38] Ghalwash, M. F., Radosavljevic, V., and Obradovic, Z. (2014). Utilizing temporal pat-
terns for estimating uncertainty in interpretable early decision making. In Proceedings of the
20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 402�411.

[39] Ghalwash, M. F., Ramljak, D., and Obradovi¢, Z. (2012). Early classi�cation of multi-
variate time series using a hybrid hmm/svm model. In IEEE International Conference on
Bioinformatics and Biomedicine, pages 1�6.

[40] Gri�n, M. P. and Moorman, J. R. (2001). Toward the early diagnosis of neonatal sepsis
and sepsis-like illness using novel heart rate analysis. Pediatrics, 107(1):97�104.

186 BIBLIOGRAPHY

[41] Hatami, N. and Chira, C. (2013). Classi�ers with a reject option for early time-series
classi�cation. In IEEE Symposium on Computational Intelligence and Ensemble Learning,
pages 9�16.

[42] Hausknecht, M. and Stone, P. (2015). Deep recurrent q-learning for partially observable
mdps. In 2015 AAAI Fall Symposium Series.

[43] He, G., Duan, Y., Peng, R., Jing, X., Qian, T., and Wang, L. (2015). Early classi�cation
on multivariate time series. Neurocomputing, 149:777�787.

[44] Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W., Horgan,
D., Piot, B., Azar, M., and Silver, D. (2018). Rainbow: Combining improvements in deep
reinforcement learning. In Thirty-Second AAAI Conference on Arti�cial Intelligence.

[45] Huda, A. N. and Taib, S. (2013). Application of infrared thermography for predictive/pre-
ventive maintenance of thermal defect in electrical equipment. Applied Thermal Engineer-
ing, 61(2):220�227.

[46] Jaakkola, T., Singh, S. P., and Jordan, M. I. (1995). Reinforcement learning algorithm
for partially observable markov decision problems. In Advances in Neural Information
Processing Systems, pages 345�352.

[47] Jaderberg, M., Mnih, V., Czarnecki, W. M., Schaul, T., Leibo, J. Z., Silver, D., and
Kavukcuoglu, K. (2016). Reinforcement learning with unsupervised auxiliary tasks. arXiv
preprint arXiv:1611.05397.

[48] Janisch, J., Pevn�y, T., and Lis�y, V. (2017). Classi�cation with costly features using deep
reinforcement learning. arXiv preprint arXiv:1711.07364.

[49] Janisch, J., Pevn�y, T., and Lis�y, V. (2019). Classi�cation with costly features using deep
reinforcement learning. In AAAI Conference on Arti�cial Intelligence.

[50] Kalpakis, K., Gada, D., and Puttagunta, V. (2001). Distance measures for e�ective
clustering of arima time-series. In Proceedings of the IEEE International Conference on
Data Mining, pages 273�280.

[51] Kao, H.-C., Tang, K.-F., and Chang, E. Y. (2018). Context-aware symptom checking
for disease diagnosis using hierarchical reinforcement learning. In Thirty-Second AAAI
Conference on Arti�cial Intelligence.

[52] Keogh, E., Chakrabarti, K., Pazzani, M., and Mehrotra, S. (2001a). Dimensionality re-
duction for fast similarity search in large time series databases. Knowledge and Information
Systems, 3(3):263�286.

[53] Keogh, E., Chakrabarti, K., Pazzani, M., and Mehrotra, S. (2001b). Locally adaptive
dimensionality reduction for indexing large time series databases. ACM Sigmod Record,
30(2):151�162.

[54] Keogh, E. and Kasetty, S. (2003). On the need for time series data mining benchmarks: a
survey and empirical demonstration. Data Mining and Knowledge Discovery, 7(4):349�371.

BIBLIOGRAPHY 187

[55] Klein, A., Falkner, S., Bartels, S., Hennig, P., and Hutter, F. (2016). Fast bayesian
optimization of machine learning hyperparameters on large datasets. arXiv preprint
arXiv:1605.07079.

[56] Kleist, C. (2015). Time series data mining methods. Master's thesis, Humboldt-
Universität zu Berlin, Wirtschaftswissenschaftliche Fakultät.

[57] Längkvist, M., Karlsson, L., and Lout�, A. (2014). A review of unsupervised feature
learning and deep learning for time-series modeling. Pattern Recognition Letters, 42:11�24.

[58] Li, Y. (2017). Deep reinforcement learning: An overview. arXiv preprint
arXiv:1701.07274.

[59] Lin, J., Keogh, E., Wei, L., and Lonardi, S. (2007). Experiencing sax: a novel symbolic
representation of time series. Data Mining and Knowledge Discovery, 15(2):107�144.

[60] Lin, Y.-F., Chen, H.-H., Tseng, V. S., and Pei, J. (2015). Reliable early classi�cation on
multivariate time series with numerical and categorical attributes. In Paci�c-Asia Confer-
ence on Knowledge Discovery and Data Mining, pages 199�211. Springer.

[61] Ling, C. X. and Sheng, V. S. (2010). Cost-sensitive learning. Encyclopedia of Machine
Learning, pages 231�235.

[62] Lkhagva, B., Suzuki, Y., and Kawagoe, K. (2006). Extended sax: Extension of symbolic
aggregate approximation for �nancial time series data representation. 22nd International
Conference on Data Engineering Workshops, 7.

[63] Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F., and Arnaldi, B. (2007). A review of
classi�cation algorithms for eeg-based brain�computer interfaces. Journal of Neural Engi-
neering, 4:R1.

[64] Maaten, L. v. d. and Hinton, G. (2008). Visualizing data using t-sne. Journal of Machine
Learning Research, 9:2579�2605.

[65] Maheshwari, S., Agrawal, J., and Sharma, S. (2011). New approach for classi�cation of
highly imbalanced datasets using evolutionary algorithms. International Journal of Scien-
ti�c & Engineering Research, 2(7):1�5.

[66] Mei, J., Liu, M., Wang, Y.-F., and Gao, H. (2015). Learning a mahalanobis distance-based
dynamic time warping measure for multivariate time series classi�cation. IEEE Transactions
on Cybernetics, 46(6):1363�1374.

[67] Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D.,
and Kavukcuoglu, K. (2016). Asynchronous methods for deep reinforcement learning. In
International Conference on Machine Learning, pages 1928�1937.

[68] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves,
A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-level control
through deep reinforcement learning. Nature, 518(7540):529.

[69] Morales, E. F. and Sammut, C. (2004). Learning to �y by combining reinforcement learn-
ing with behavioural cloning. In Proceedings of the twenty-�rst International Conference
on Machine Learning, page 76.

188 BIBLIOGRAPHY

[70] Mori, U., Mendiburu, A., Dasgupta, S., and Lozano, J. A. (2015). Early classi�cation of
time series from a cost minimization point of view. In Proceedings of the Neural Information
Processing Systems Time Series Workshop.

[71] Mori, U., Mendiburu, A., Dasgupta, S., and Lozano, J. A. (2017a). Early classi�cation
of time series by simultaneously optimizing the accuracy and earliness. IEEE Transactions
on Neural Networks and Learning Systems, 29(10):4569�4578.

[72] Mori, U., Mendiburu, A., Keogh, E., and Lozano, J. A. (2017b). Reliable early clas-
si�cation of time series based on discriminating the classes over time. Data Mining and
Knowledge Discovery, 31(1):233�263.

[73] Narasimhan, K., Kulkarni, T., and Barzilay, R. (2015). Language understanding for
text-based games using deep reinforcement learning. arXiv preprint arXiv:1506.08941.

[74] Neal, R. M. (2012). Bayesian learning for neural networks, volume 118. Springer Science
& Business Media.

[75] Ng, A. Y., Harada, D., and Russell, S. (1999). Policy invariance under reward transforma-
tions: Theory and application to reward shaping. In International Conference on Machine
Learning, volume 99, pages 278�287.

[76] Nguyen, H. T. and Smeulders, A. (2004). Active learning using pre-clustering. In Pro-
ceedings of the twenty-�rst International Conference on Machine Learning, page 79.

[77] Osa, T., Pajarinen, J., Neumann, G., Bagnell, J. A., Abbeel, P., Peters, J., et al. (2018).
An algorithmic perspective on imitation learning. Foundations and Trends® in Robotics,
7(1-2):1�179.

[78] Osband, I., Blundell, C., Pritzel, A., and Van Roy, B. (2016). Deep exploration via
bootstrapped dqn. In Advances in Neural Information Processing Systems, pages 4026�
4034.

[79] Parrish, N., Anderson, H. S., Gupta, M. R., and Hsiao, D. Y. (2013). Classifying
with con�dence from incomplete information. The Journal of Machine Learning Research,
14(1):3561�3589.

[80] Peng, Y.-S., Tang, K.-F., Lin, H.-T., and Chang, E. (2018). Refuel: Exploring sparse
features in deep reinforcement learning for fast disease diagnosis. In Advances in Neural
Information Processing Systems, pages 7333�7342.

[81] Póczos, B., Abbasi-Yadkori, Y., Szepesvári, C., Greiner, R., and Sturtevant, N. (2009).
Learning when to stop thinking and do something! In Proceedings of the 26th Annual
International Conference on Machine Learning, pages 825�832.

[82] Pomerleau, D. A. (1991). E�cient training of arti�cial neural networks for autonomous
navigation. Neural Computation, 3:88�97.

[83] Rabiner, L. R. (1989). A tutorial on hidden markov models and selected applications in
speech recognition. Proceedings of the IEEE, 77(2):257�286.

BIBLIOGRAPHY 189

[84] Randløv, J. and Alstrøm, P. (1998). Learning to drive a bicycle using reinforcement
learning and shaping. In International Conference on Machine Learning, volume 98, pages
463�471.

[85] Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747.

[86] Sammut, C. (2010). Behavioral cloning. Encyclopedia of Machine Learning, pages 93�97.

[87] Santos, T. and Kern, R. (2016). A literature survey of early time series classi�cation and
deep learning. In The International Conference on Knowledge Technologies and Data-driven
Business.

[88] Schaul, T., Quan, J., Antonoglou, I., and Silver, D. (2015). Prioritized experience replay.
arXiv preprint arXiv:1511.05952.

[89] Sensoy, M., Kaplan, L., and Kandemir, M. (2018). Evidential deep learning to quantify
classi�cation uncertainty. In Advances in Neural Information Processing Systems, pages
3179�3189.

[90] Settles, B. (2009). Active learning literature survey. Technical report, University of
Wisconsin-Madison Department of Computer Sciences.

[91] Sharifzadeh, S., Chiotellis, I., Triebel, R., and Cremers, D. (2016). Learning to drive using
inverse reinforcement learning and deep q-networks. arXiv preprint arXiv:1612.03653.

[92] Sheng, V. S. and Ling, C. X. (2006). Thresholding for making classi�ers cost-sensitive.
In AAAI, pages 476�481.

[93] Shridhar, K., Laumann, F., and Liwicki, M. (2018). Uncertainty estimations by softplus
normalization in bayesian convolutional neural networks with variational inference. arXiv
preprint arXiv:1806.05978.

[94] Snoek, J., Larochelle, H., and Adams, R. P. (2012). Practical bayesian optimization of
machine learning algorithms. In Advances in Neural Information Processing Systems, pages
2951�2959.

[95] Sokolova, M. and Lapalme, G. (2009). A systematic analysis of performance measures
for classi�cation tasks. Information Processing & Management, 45(4):427�437.

[96] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014).
Dropout: a simple way to prevent neural networks from over�tting. The Journal of Machine
Learning Research, 15(1):1929�1958.

[97] Sutton, R. S., Barto, A. G., et al. (1998). Introduction to reinforcement learning, volume
135. MIT Press Cambridge.

[98] Sutton, R. S., McAllester, D. A., Singh, S. P., and Mansour, Y. (2000). Policy gradient
methods for reinforcement learning with function approximation. In Advances in Neural
Information Processing Systems, pages 1057�1063.

190 BIBLIOGRAPHY

[99] Tenorio-Gonzalez, A. C., Morales, E. F., and Villaseñor-Pineda, L. (2010). Dynamic
reward shaping: training a robot by voice. In Ibero-American Conference on Arti�cial
Intelligence, pages 483�492. Springer.

[100] Van Hasselt, H., Guez, A., and Silver, D. (2016). Deep reinforcement learning with
double q-learning. In Thirtieth AAAI Conference on Arti�cial Intelligence.

[101] Wang, W., Chen, C., Wang, W., Rai, P., and Carin, L. (2016). Earliness-aware deep
convolutional networks for early time series classi�cation. arXiv preprint arXiv:1611.04578.

[102] Wang, Z., Schaul, T., Hessel, M., Van Hasselt, H., Lanctot, M., and De Freitas, N.
(2015). Dueling network architectures for deep reinforcement learning. arXiv preprint
arXiv:1511.06581.

[103] Wang, Z., Yan, W., and Oates, T. (2017). Time series classi�cation from scratch with
deep neural networks: A strong baseline. In International Joint Conference on Neural
Networks, pages 1578�1585. IEEE.

[104] Watkins, C. J. and Dayan, P. (1992). Q-learning. Machine Learning, 8(3-4):279�292.

[105] Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine Learning, 8(3-4):229�256.

[106] Wulfmeier, M., Ondruska, P., and Posner, I. (2015). Maximum entropy deep inverse
reinforcement learning. arXiv preprint arXiv:1507.04888.

[107] Xing, Z., Pei, J., Dong, G., and Yu, P. S. (2008). Mining sequence classi�ers for early
prediction. In Proceedings of the 2008 SIAM International Conference on Data Mining,
pages 644�655.

[108] Xing, Z., Pei, J., and Keogh, E. (2010). A brief survey on sequence classi�cation. ACM
Sigkdd Explorations Newsletter, 12(1):40�48.

[109] Xing, Z., Pei, J., and Philip, S. Y. (2009). Early prediction on time series: a nearest
neighbor approach. In Twenty-First International Joint Conference on Arti�cial Intelli-
gence.

[110] Xing, Z., Pei, J., Yu, P. S., and Wang, K. (2011). Extracting interpretable features for
early classi�cation on time series. In Proceedings of the 2011 SIAM International Conference
on Data Mining, pages 247�258.

[111] Yang, J., Nguyen, M. N., San, P. P., Li, X. L., and Krishnaswamy, S. (2015). Deep
convolutional neural networks on multichannel time series for human activity recognition.
In Twenty-Fourth International Joint Conference on Arti�cial Intelligence.

[112] Yao, L., Li, Y., Li, Y., Zhang, H., Huai, M., Gao, J., and Zhang, A. (2019). Dtec:
Distance transformation based early time series classi�cation. In Proceedings of the 2019
SIAM International Conference on Data Mining, pages 486�494.

[113] Ye, L. and Keogh, E. (2009). Time series shapelets: a new primitive for data mining. In
Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 947�956.

BIBLIOGRAPHY 191

[114] Yu, K., Liu, Y., Schwing, A. G., and Peng, J. (2018). Fast and accurate text classi�-
cation: Skimming, rereading and early stopping. In International Conference on Learning
Representations.

[115] Zadrozny, B., Langford, J., and Abe, N. (2003). Cost-sensitive learning by cost-
proportionate example weighting. In IEEE International Conference on Data Mining, vol-
ume 3, page 435.

[116] Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., and Torralba, A. (2016). Learning deep
features for discriminative localization. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2921�2929.

[117] Zhou, Z.-H. (2017). A brief introduction to weakly supervised learning. National Science
Review, 5(1):44�53.

[118] Zhu, X. J. (2005). Semi-supervised learning literature survey. Technical report, Univer-
sity of Wisconsin-Madison Department of Computer Sciences.

	Acknowledgements
	Abstract
	Résumé étendu
	List of acronyms
	List of symbols
	List of Figures
	List of Tables
	Prelude
	Introduction
	The importance of sequential data analysis
	Sequential data taxonomy
	Application fields
	Some challenges of sequential data analysis

	A rising need for early classification of temporal sequences
	General objectives of the thesis
	Research hypothesis
	Plan of the manuscript

	Analysis of the early classification problem of multivariate time series
	Data definition
	Multivariate time series
	Partial time series
	Related work on time series analysis

	Definition of the classification problem
	Generalities about the classification model
	Specificities of the classification problem
	Related work on the classification problem

	Definition of the early classification problem
	Time-sensitive classification
	General objectives of early classification
	The early classification trade-off

	Related work on early classification of temporal sequences
	The first research paper on early classification
	Shapelet-based methods
	Distance-based methods
	Probabilistic methods
	Ensemble methods
	Non-myopic methods
	Methods with Neural Networks
	Early classification on other types of dynamic data

	Conclusion

	EC formalization as a Partially Observable Markov Decision Process
	Formalization of a sequential decision-making problem
	Definition of the end-to-end decision model
	Synthesis of the thesis objectives

	Limitations of Supervised Learning
	Background on Supervised Learning
	EC: a problem with incomplete supervision
	Related work on Supervised Learning with incomplete supervision
	Conclusion

	Assets of Reinforcement Learning
	Background on Reinforcement Learning
	Temporal sequence acquisition: a Markov Process
	EC problem: a Markov Process with actions
	EC trade-off: rewards in a Markov Decision Process

	Proposition of EC-POMDP
	States, observations, actions
	Rewards
	Specificities of the EC-POMDP

	Conclusion

	EC-POMDP solving with Deep Reinforcement Learning
	Motivation
	Double Deep-Q-Network algorithm
	Application of Deep-Q-Network algorithm to EC
	DDQN loss function
	Hyper-parameters
	Related work on DQN variants

	Experimental evaluation
	UCR dataset
	EC-POMDP model
	Experimental pipeline
	Results
	Imbalanced replay memory

	Conclusion

	Optimized EC-POMDP solving with robust memory management
	Related work on memory management in RL
	Optimized EC-POMDP solving in online learning
	Prioritized sampling
	Prioritized storing
	Random episode initialization
	Algorithm

	Optimized EC-POMDP solving in batch learning
	Motivation
	Algorithm

	Experimental comparison between memory management strategies
	Industrial dataset
	EC-POMDP model
	Experimental pipeline
	Results

	Experimental comparison between early classifier and naive static classifier
	Experimental pipeline
	Results
	Remark on external analysis

	Conclusion

	Policies interpretation
	Visualization of Class Activation Map
	Method presentation
	Motivation
	CAM application to EC
	CAM illustrations on the industrial dataset
	Conclusion

	Visualization of Q-values
	Perspectives on calculating policy uncertainty
	Motivation
	Related work
	Method presentation
	Application to EC
	Preliminary experimental evaluation
	Conclusion and perspectives

	Conclusion and perspectives
	Synthesis of the doctoral research
	Main contributions and results
	Limits & Perspectives
	In relation to the policy and optimization
	In relation to the EC-POMDP definition

	Synthèse par chapitre
	Appendices
	Experimental comparison between EC-POMDP models
	EC-POMDP models
	Experimental evaluation
	Experimental pipeline
	Results

	Experimental evaluation on EC-POMDP solving with a policy-based approach
	Illustrations of Class Activation Map
	List of hyper-parameters and their values
	Examples of Deep Neural Network architectures
	Bibliography

