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 122 5.4Example of a transposed convolution turned into a traditional convolution [START_REF] Dumoulin | A guide to convolution arithmetic for deep learning[END_REF].

The original variables are an input feature map of shape 3ˆ3 (represented by blue color), a filter of size 3 ˆ3, a padding τ " 1, and a stride e " 2. The transposed convolution is turned into a traditional convolution using new variables defined as follows: padding τ 1 " 3 ´1 ´1 " 1, strides e 1 " 1, ē " 2 ´1 " 1, fractionally strided version of the input obtained by inserting ē " 1 row and ē " 1 column of zero's between rows and columns of the initial input, new filter obtained by performing a rotation of angle π of the initial filter. . . . . . . . . . . . . . . . . . Ce chapitre présente les motivations de la thèse ainsi que ses principales orientations. Il fait aussi office de "résumé en français" requis par l' École Doctorale. Nous commençons par décrire en §1.1 la situation actuelle en matière de durées d'entraînement des réseaux et de méthodes d'optimisation employées en apprentissage. Nous nous intéressons ensuite dans §1.2 plus particulièrement aux méthodes de type gradient naturel, pour lesquelles nous dressons état des lieux avant de formuler les objectifs de travail. La dernière section §1.3 récapitule nos contributions tout en servant de guide de lecture du mémoire complet.

Contexte et motivation 1.Allongement du temps d'entraînement des réseaux

On assiste ces dernières années à une véritable explosion de la quantité de données disponibles pour l'entraînement des modèles d'apprentissage, ainsi qu'à une croissance vertigineuse de la taille des réseaux toujours plus complexes définissant ces modèles. Cette évolution vers le gigantesque, favorisée par les avancées en matière de ressources informatiques, a permis d'accomplir des progrès spectaculaires ayant abouti à moult applications innovantes. Elle n'est toutefois pas sans incidence pratique sur la mise en oeuvre même de ces modèles : le temps de calcul nécessaire à l'entraînement d'un réseau est lui aussi en constante augmentation ! À titre d'illustration, rappelons quelques ordres de grandeur 1 :

1 Les chiffres sont donnés à titre indicatif et peuvent varier énormément selon divers facteurs.

• Un réseau de neurones convolutif (CNN) simple pour la classification d'images avec environ un million de paramètres peut être entraîné en quelques heures à quelques jours sur un ensemble de données de quelques milliers à quelques dizaines de milliers d'images.

• Un réseau de neurones récurrent (RNN) complexe de type LSTM ou GRU avec plusieurs couches et des milliers de paramètres, est plus coûteux en raison de sa nature séquentielle. Un entraînement peut prendre plusieurs jours ou plusieurs semaines.

• Un réseau de neurones profond (DNN) pré-entraîné comme ResNet, VGG ou Inception a des dizaines de millions de paramètres. Son entraînement nécessite plusieurs semaines ou plusieurs mois sur de grandes bases de données contenant des millions d'images.

• Un réseau de neurones auto-attentif (Transformer) pour le traitement du langage naturel tel que GPT-3, qui contient 175 milliards de paramètres, requiert pour son entraînement plusieurs semaines ou même plusieurs mois sur des infrastructures hautement optimisées.

• Les réseaux de neurones génératifs antagonistes pour la génération d'images nécessitent en fonction des spécificités du modèle, des ressources informatiques disponibles et de la taille du jeu un temps d'entraînement considérable, allant de plusieurs semaines à plusieurs mois.

Ces exemples montrent qu'il est vital de chercher à réduire le temps de calcul de la phase d'entraînement d'un réseau. La réussite d'une telle entreprise apporterait les atouts suivants :

1. Efficacité des ressources : les utilisateurs pourront libérer plus rapidement la puissance de calcul, la mémoire et l'espace de stockage afin de les allouer à d'autres tâches.

2. Gain en productivité : les ingénieurs pourront itérer plus rapidement sur les modèles envisagés, tester de nouvelles idées, ajuster les hyperparamètres, expérimenter différentes architectures de réseau et explorer des ensembles de données plus vastes.

3. Diminution des coûts : les factures liées aux ressources informatiques, comme la location de serveurs cloud ou de l'achat d'infrastructures matérielles seront moins élevées.

4. Rapiditié de déploiement : une fois entraîné, le modèle est déployé dans un environnement de production pour effectuer des prédictions en temps réel ; plus court est l'entraînement, plus vite peut-on le mettre à jour en le ré-entraînant sur de nouvelles données.

La réduction du temps de calcul peut être réalisée par la "force brute", qui mise sur des accélérations matérielles (comme les GPU dédiés) et les techniques de parallélisation. Conjointement, il convient aussi d'élaborer des algorithmes d'optimisation sinon plus sophistiqués, du moins mieux adaptés au cadre de l'apprentissage. Ce travail s'inscrit dans cette catégorie.

Popularité des méthodes d'optimisation du premier ordre

La technologie actuellement prédominante pour effectuer la phase d'entraînement des réseaux de neurones est celle des méthodes du premier ordre issues du gradient stochastique (SGD, Stochastic Gradient Descent). Proposée historiquement dans les années 1950 par Robbins et Monro [START_REF] Robbins | A stochastic approximation method[END_REF], la méthode SGD a donné naissance à de multiples variantes (cf. §2) dont certaines sont aujourd'hui largement adoptées par la communauté. Pour discuter de leurs avantages et inconvénients, il est utile de revenir sur l'idée même du gradient stochastique.

La méthode SGD exploite la structure spécifique de la fonction objectif à minimiser, qui est le risque empirique en apprentissage. Celle-ci prend en effet la forme d'une moyenne sur les données, à savoir

hpθq " 1 n n ÿ b"1
Lpy pbq , f px pbq , θqq,

où n est le nombre de données de la base d'entraînement, θ P R p regroupe l'ensemble des poids du réseau, et h b pθq :" Lpy pbq , f px pbq , θqq

représente une mesure de l'écart entre la prédiction f px pbq , θq du modèle à partir de l'entrée x pbq et l'observation en sortie y pbq pour la b-ème donnée. Pour trouver une solution du problème min θPR p hpθq, la méthode SGD préconise les itérations

θ k`1 " θ k ´αk ∇ θ h bpkq pθ k q, (1.3) 
dans lesquelles α k ą 0 est le taux d'apprentissage et bpkq P t1, . . . , nu est un indice tiré aléatoirement à chaque itération k. Par rapport à une vraie méthode de descente de gradient

θ k`1 " θ k ´αk ∇ θ hpθ k q, (1.4) 
on constate que le vrai gradient

∇ θ hpθ k q " 1 n n ÿ b"1 ∇ θ h b pθ k q, (1.5) 
qui est une moyenne, a été remplacé par un élément arbitraire de la somme. En présence de beaucoup de données, cette approximation audacieuse présente l'avantage de diminuer drastiquement le nombre d'évaluations de gradients élémentaires ∇ θ h b pθ k q. Par ailleurs la complexité algorithmique de la méthode SGD est linéaire par rapport à n et à p, ce qui est a priori favorable pour s'attaquer aux données massives (n grand) avec les réseaux profonds (p grand). En contrepartie, le défaut principal de SGD réside dans la mauvaise qualité de l'approximation stochastique du gradient, qui certes est non biaisée mais fortement bruitée Il n'est pas du tout certain que la direction proposée ∇ θ h bpkq pθ k q soit encore une direction de descente vis-à-vis de la fonction h. Aussi, il est prudent de fixer le taux d'apprentissage α k très "petit". Même avec cela, les itérés peuvent osciller énormément. Pour réduire la variance, il y a essentiellement trois approches [START_REF] Bottou | Optimization methods for large-scale machine learning[END_REF] : (i) échantillonnage dynamique ; (ii) agrégation de gradients ; (iii) moyennage sur les itérés. La première [START_REF] Byrd | Sample size selection in optimization methods for machine learning[END_REF] consiste à calculer un gradient mini-lot

2 gpS k , θ k q " 1 |S k | ÿ bPS k ∇ θ h b pθ k q, (1.6) 
obtenu en moyennant les gradients élémentaires sur un petit échantillon de données S k Ă t1, . . . , nu. Ceci améliore la situation, à condition de bien savoir choisir la taille de S k et le taux d'apprentissage α k au cours des itérations. La deuxième, avec notamment SVRG [START_REF] Johnson | Accelerating stochastic gradient descent using predictive variance reduction[END_REF] et SAGA [START_REF] Defazio | SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives[END_REF], tente de reconstituer un gradient complet à partir des gradients élémentaires qui ont été déjà évalués pour des arguments différents, stockés en mémoire et réutilisés de manière judicieuse. La troisième [START_REF] Polyak | Acceleration of stochastic approximation by averaging[END_REF] lisse sur tous les itérés θ k obtenus, à l'instar d'une moyenne de Cesàro, en combinaison avec une stratégie de diminution du pas α k . Nous référons le lecteur à l'article de Bottou et al. [START_REF] Bottou | Optimization methods for large-scale machine learning[END_REF] pour les résultats théoriques de ces raffinements de SGD.

De façon "orthogonale" à ceux-ci, il existe trois autres familles de méthodes très appréciées chez les praticiens, qui accélèrent plus ou moins SGD sans s'attaquer directement à la variance 3 . Il s'agit de gradient avec : (i) élan ; (ii) accélération de Nesterov ; (ii) adaptativité. La première [START_REF] Sutskever | On the importance of initialization and momentum in deep learning[END_REF], inspirée de la physique, simule l'effet de frottement dans une équation du mouvement d'ordre 2, ce qui amortit les oscillations. La seconde [START_REF] Nesterov | A method for solving the convex programming problem with convergence rate Op1{k 2 q[END_REF] est une version évoluée de la première, avec un frottement plus "intelligent". La troisième prône un taux d'apprentissage différent pour chaque composante du vecteur inconnu. Elle rassemble un grand nombre de méthodes aux acronymes attrayants comme AdaGrad [START_REF] Duchi | Adaptive subgradient methods for online learning and stochastic optimization[END_REF], RMSProp [START_REF] Tieleman | Lecture 6.5 RMSProp: Divide the gradient by a running average of its recent magnitude[END_REF], Adam [START_REF] Kingma | A method for stochastic optimization[END_REF], Adadelta [START_REF] Zeiler | ADADELTA: An adaptive learning rate method[END_REF] et Nadam [START_REF] Dozat | Incorporating Nesterov momentum into Adam[END_REF]. Ces familles de méthodes sont décrites plus amplement en §2.2.2.

Une autre critique plus fondamentale qu'on peut adresser à SGD, comme d'ailleurs à toutes les variantes du premier ordre, est que celles-ci font intervenir seulement les dérivées premières de la fonction objectif et non pas les dérivées secondes. Dans ces conditions, les itérations ne sont pas invariantes par rapport à un changement de variables affine. Autrement dit, un changement d'unités en θ produit des itérés qui ne se correspondent pas, à moins qu'on soit capable de le répercuter correctement sur le taux d'apprentissage. À cet égard, signalons l'exception notoire de la méthode de Barzilai-Borwein [START_REF] Barzilai | Two-point step size gradient methods[END_REF], dans laquelle le taux d'apprentissage est fourni par l'une des deux formules α k " xθ k ´θk´1 , ∇ θ hpθ k q ´∇θ hpθ k´1 qy }∇ θ hpθ k q ´∇θ hpθ k´1 } 2 ou α k " }θ k ´θk´1 } 2 xθ k ´θk´1 , ∇ θ hpθ k q ´∇θ hpθ k´1 qy , (1.7)

de sorte à minimiser }θ k ´θk´1 ´αp∇ θ hpθ k q ´∇θ hpθ k´1 qq} 2 ou }∇ θ hpθ k q ´∇θ hpθ k´1 q ´α´1 pθ k ´θk´1 q} 2 . (1.8)

Avec les coefficients (1.7), la formule d'itération (1.4) est homogène du point de vue des unités, ce qui assure l'invariance par rapport à un changement d'échelle. Cette propriété agréable confère à Barzila-Borwein un "goût" de méthode du second ordre, où l'approximation de la matrice hessienne ∇ 2 θθ hpθ k q par α ´1 k I est "optimal" au sens de (1.8). La transposition de Barzilai-Borwein au cadre stochastique de l'apprentissage a été tentée par plusieurs auteurs, en particulier [START_REF] Liang | Barzilai-Borwein-based adaptive learning rate for deep learning[END_REF][START_REF] Tan | Barzilai-Borwein step size for stochastic gradient descent[END_REF]. Nous avons nous-mêmes passé les premiers mois de thèse à étudier cette méthode pour nous familiariser avec ce domaine de l'optimisation et son environnement informatique. Malheureusement, la performance numérique de Barzilai-Borwein n'est pas tout à fait à la hauteur de nos attentes. C'est pourquoi nous ne présenterons pas les résultats correspondants.

Un dernier désavantage des méthodes du premier ordre est qu'elles sont intrinsèquement séquentielles et ne se prêtent pas facilement au parallélisme. Certes, il existe des techniques assez rudimentaires pour exploiter la parallélisme dans les méthodes d'optimisation du premier ordre comme la parallélisation du calcul du gradient (l'ensemble ou le mini-lot des données est réparti en plusieurs sous-ensembles ou sous-lots plus petits, sur chacun desquels l'estimation partielle du gradient est assurée par un processeur) et la parallélisation de la mise à jour des paramètres (les composantes de θ sont divisées en plusieurs sous-ensembles, chacun desquels est actualisé par un processeur différent). Ces techniques doivent toutefois surmonter des défis supplémentaires, tels que la synchronisation entre les tâches parallèles et l'optimisation de l'utilisation des ressources matérielles pour éviter les goulots d'étranglement.

Malgré toutes ces faiblesses, les méthodes d'optimisation du premier ordre (SGD et ses variantes) sont couramment utilisées en apprentissage automatique. Elles sont nettement préférées aux méthodes du second ordre que nous allons maintenant évoquer avant de revenir sur les raisons du succès des méthodes du premier ordre.

Potentiel des méthodes d'optimisation du second ordre

En optimisation classique, c'est-à-dire en dehors du cadre de l'apprentissage, il est connu [START_REF] Nocedal | Numerical Optimization[END_REF] que les méthodes à recommander sont celles du second ordre. À la place de la descente de gradient (1.4), on considère les itérations θ k`1 " θ k ´αk rCpθ k qs ´1∇ θ hpθ k q, (1.9)

où Cpθ k q est une matrice p ˆp contenant des informations de courbure sur h. Par exemple, si

Cpθ k q " ∇ 2 θθ hpθ k q (1.10) est la matrice hessienne de h, alors on retombe sur la méthode de Newton avec un contrôle du pas de descente. Avec α k " 1 et sous certaines hypothèses convenables sur h et le point initial, on peut établir la convergence quadratique [START_REF] Dennis | Numerical Methods for Unconstrained Optimization and Nonlinear Equations[END_REF] de la méthode de Newton, ce qui surpasse la convergence sous-linéaire d'une descente de gradient du premier ordre. Pour un problème issu de l'apprentissage, la Hessienne peut être stochastique ou estimée par

HpS 1 k , θ k q " 1 |S 1 k | ÿ bPS 1 k ∇ 2 θθ h b pθ k q (1.11)
sur un mini-lot S 1 k P t1, . . . , nu, lequel peut être différent de S k , celui utilisé pour le gradient. L'assemblage et le stockage de la matrice hessienne sont onéreux en termes de mémoire et de temps de calcul. Pour y remédier, il a été suggéré [START_REF] Martens | Deep learning via Hessian-free optimization[END_REF] des méthodes sans Hessienne (Hessianfree), qui exploitent les informations exactes de la matrice hessienne sans jamais avoir à la former et la stocker. Pour cela, on remarque que l'incrément θ k`1 ´θk est solution du système linéaire

∇ 2
θθ hpθ k qpθ k`1 ´θk q " ´∇θ hpθ k q.

(1.12)

Ce système peut être résolu par des techniques inexactes [START_REF] Dembo | Inexact Newton methods[END_REF] impliquant le gradient conjugué (CG) [START_REF] Golub | Matrix Computations[END_REF], lequel n'exige que la connaissance du produit matrice-vecteur. Or, pour un réseau de neurones, chaque produit matrice-vecteur impliquant une hessienne ∇ 2 θθ h b pθ k q correspondant à une donnée b peut être effectué à travers un enchaînement de propagation et de rétropropagation [START_REF] Pearlmutter | Fast exact multiplication by the Hessian[END_REF]. Le nombre d'itérations du gradient conjugué doit être limité pour assurer une certaine rapidité, tout en demeurant suffisamment élevé pour ne pas trop dégrader la vitesse de convergence de ce Newton inexact. Notons enfin que la matrice hessienne peut ne pas être (semi-)positive, ce qui pose problème au CG.

Une alternative à la méthode sans Hessienne consiste à approcher la matrice hessienne par des mises à jour de rang 2 au cours des itérations, ce qui donne lieu à la méthode dite BFGS (Broyden-Fletcher-Goldfarb-Shanno) [START_REF] Broyden | The convergence of a class of double-rank minimization algorithms 1. General considerations[END_REF][START_REF] Fletcher | A new approach to variable metric algorithms[END_REF][START_REF] Goldfarb | A family of variable-metric methods derived by variational means[END_REF][START_REF] Shanno | Conditioning of quasi-Newton methods for function minimization[END_REF]]

H k`1 « H k `∆g k ∆g T k ∆g T k ∆θ k ´Hk ∆θ k ∆θ T k H T k ∆θ T k H k ∆θ k
(1.13a) avec ∆θ k " θ k`1 ´θk , ∆g k " ∇ θ hpθ k`1 q ´∇θ hpθ k q.

(1.13b)

Grâce à la formule de Sherman-Morrison-Woodbury, on peut aisément mettre à jour les inverses comme [START_REF] Nocedal | Numerical Optimization[END_REF] 

H ´1 k`1 « ˆI ´∆g k ∆θ T k ∆θ T k ∆g k ˙TH ´1 k ˆI ´∆g k ∆θ T k ∆θ T k ∆g k ˙`∆θ k ∆θ T k ∆θ T k ∆g k . (1.14) 
L'approximation (1.13) de la Hessienne, qui n'utilise que des informations du premier ordre, est "bonne" en ce sens qu'elle est symétrique semi-positive (si H 0 l'est) et vérifie l'équation de la sécante H k`1 ∆θ k " ∆g k . Cette propriété permet de garantir un taux de convergence locale superlinéaire en déterministe. Malheureusement, les matrices données par (1.13)-(1.14) sont denses, même quand les Hessiennes exactes sont creuses. De surcroît, il faut bien stocker les H ´1 k pour pouvoir passer d'une itération à la suivante. Une version plus économique en mémoire existe sous la dénomination L-BFGS (limited memory BFGS ) [START_REF] Liu | On the limited memory BFGS method for large scale optimization[END_REF], dans laquelle on évite le stockage en calculant les produits H ´1 k ∇ θ hpθ k q par une formule approchée ne faisant intervenir que les incréments p∆θ k , ∆g k q les plus récemment sauvegardés. La méthode L-BFGS apparaît comme mieux adéquate au contexte de l'apprentissage, où d'autres variantes ont été développées comme L-BFGS-B (L-BFGS box constraints) [START_REF] Byrd | A limited memory algorithm for bound constrained optimization[END_REF] et O-LBFGS (online L-BFGS ) [START_REF] Schraudolph | A stochastic quasi-newton method for online convex optimization[END_REF].

La méthode BFGS et ses variantes appartiennent à famille des méthodes quasi-Newton, où l'on renonce à l'idéal de la matrice hessienne en lui substituant des approximations plus simples avec certaines propriétés plus favorables. Une autre classe importante de la famille quasi-Newton est celle des méthodes de Gauss-Newton généralisé (GGN). Appelons z le deuxième argument de l'écart Lpy, zq, de sorte que h b pθq " Lpy pbq , z pbq q, z pbq " f px pbq , θq.

(1.15)

Alors, la matrice de courbre Cpθ k q est choisie comme la matrice GGN, définie par [START_REF] Schraudolph | Fast curvature matrix-vector products for second-order gradient descent[END_REF] GpS 1 k , θ k q "

1 |S 1 k | ÿ bPS 1
k rJ f θ px pbq q s T ∇ 2 zz Lpy pbq , f px pbq , θqq rJ f θ px pbq q s (1. [START_REF] Borji | Pros and cons of GAN evaluation measures[END_REF] sur un mini-lot S 1 k . Il convient de noter que J f θ px pbq q désigne la matrice jacobienne de f px pbq , θq par rapport à θ. L'idée de la construction, expliquée en §2.2.3, est de ne garder dans la Hessienne que les informations correspondant aux "carrés" des dérivées premières par rapport à θ, négligeant ainsi celles en provenance des dérivées secondes. Le résultat obtenu (1.16) est une matrice symétrique semi-positive, dont le produit avec un vecteur peut être effectué à l'aide d'un enchaînement de propagation et de rétropropagation à travers le réseau [START_REF] Schraudolph | Fast curvature matrix-vector products for second-order gradient descent[END_REF] sans qu'on ait à la former explicitement. Pour un écart quadratique Lpy, zq " 1 2 }y ´z} 2 , on a ∇ 2 zz L " I et retrouve la matrice de Gauss-Newton classique. D'autres propriétés de la matrice GGN sont exposées dans [START_REF] Martens | New insights and perspectives on the natural gradient method[END_REF][START_REF] Pascanu | Revisiting natural gradient for deep networks[END_REF], notamment en lien avec celle de Fisher dont il va être question ci-après.

La dernière catégorie de ce bref aperçu des méthodes du second ordre est celle du gradient naturel, initiée par Amari [START_REF] Amari | Natural gradient works efficiently in learning[END_REF]. Sans entrer dans le cadre formel qui sera esquissé en §1.2.1, l'idée de base est de formuler une descente de gradient non pas dans l'espace euclidien des paramètres θ mais sur la variété des distributions de probabilités liées à la prédiction, munie d'une métrique convenable. De par sa signification géométrique intrinsèque, la nouvelle notion de gradient est plus "naturelle". La descente jouit alors en un sens de la propriété d'invariance par rapport à tout changement de variables qui préserve les distributions de probabilité. Au niveau concret, on peut aussi dire très prosaïquement que le gradient naturel est une méthode quasi-Newton dans laquelle la matrice de courbure Cpθ k q est prise égale à une matrice symétrique semi-positive dite de Fisher F pθ k q, dont l'expression sera précisée en §1.2.1. Cette matrice de Fisher étant pleine et de grande taille, on se retrouve face aux mêmes difficultés qu'avec les précédentes méthodes du second ordre. Les premières approximations de la matrice de Fisher par des structures plus simples [START_REF] Le Cun | Gradient-based learning applied to document recognition[END_REF][START_REF] Le Roux | Topmoumoute online natural gradient algorithm[END_REF][START_REF] Ollivier | Riemannian metrics for neural networks I: feedforward networks[END_REF][START_REF] Povey | Parallel training of DNNs with natural gradient and parameter averaging[END_REF] n'ont pas donné de résultats satisfaisants. L'arrivée de KFAC (Kronecker-Factored Approximate Curvature) [START_REF] Martens | Optimizing neural networks with Kronecker-factored approximate curvature[END_REF] constitue un progrès majeur et suscite beaucoup d'espoir. Nous y reviendrons en §1.2.2.

Malgré leur supériorité théorique (homogénéité, robustesse et vitesse de convergence), force est de constater que les méthodes d'optimisation du second ordre n'ont pour le moment pas rencontré le succès escompté dans l'usage au quotidien en apprentissage automatique 4 . La principale raison en est que chaque itération du second ordre a un coût exorbitant en mémoire et en temps de calcul par rapport à une itération du premier ordre, et ce même quand on a déployé toutes les astuces pour se dispenser de l'assemblage et du stockage de la matrice de courbure. Lorsque les ressources en mémoire et en calcul sont limitées, les méthodes du premier ordre sont préférées pour leur moindre complexité. Certes, globalement on a besoin de moins d'itérations, mais cela ne suffit pas pour rendre compétitives les méthodes du second ordre. Cette observation confirme l'un des paradoxes [START_REF] Bottou | Optimization methods for large-scale machine learning[END_REF] de l'apprentissage automatique : "Les bonnes méthodes d'optimisation ne sont pas toujours des bonnes méthodes de machine learning".

Un autre facteur explicatif à ce paradoxe est que les méthodes d'optimisation du premier ordre, outre leur simplicité de mise en oeuvre, s'adaptent plus facilement à une évolution de l'architecture du réseau. Les méthodes du premier ordre peuvent converger plus rapidement que les méthodes du second ordre au début de l'entraînement. Cela est particulièrement avantageux lorsque le modèle est initialisé avec des poids aléatoires, car elles peuvent rapidement améliorer les performances initiales et trouver des régions de l'espace de recherche qui fournissent des gradients plus riches en information. Cependant, les méthodes du second ordre peuvent être utiles dans certains scénarios, notamment lorsque les données sont rares ou lorsque la forme de la fonction objectif est très courbée. Dans ces cas, les méthodes du second ordre peuvent converger plus rapidement vers des optima locaux de meilleure qualité.

L'objectif de cette thèse est de contribuer à résorber le goulot d'étranglement dû à la matrice de courbure et au système linéaire associé dans les méthodes du second ordre afin d'accroître leur efficacité en grande dimension, notamment sur des réseaux profonds. À cette fin, la piste que nous souhaitons explorer est celle du gradient naturel, qui semble bénéficier d'un fondement mathématique mieux approprié au contexte de l'apprentissage. La conviction qu'une telle entreprise est possible s'appuie sur la performance annoncée pour certaines approximations récentes de la matrice de Fisher, qui sont de type KFAC [START_REF] Grosse | A Kronecker-factored approximate Fisher matrix for convolution layers[END_REF][START_REF] Martens | Kronecker-factored curvature approximations for recurrent neural networks[END_REF][START_REF] Martens | Optimizing neural networks with Kronecker-factored approximate curvature[END_REF] ou des versions plus évoluées [START_REF] Gao | Eigenvaluecorrected natural gradient based on a new approximation[END_REF][START_REF] Gao | A tracerestricted Kronecker-factored approximation to natural gradient[END_REF][START_REF] George | Fast approximate natural gradient descent in a Kronecker-factored eigenbasis[END_REF][START_REF] Ren | Tensor normal training for deep learning models[END_REF]. Avant d'exposer notre démarche et de récapituler nos contributions, il est nécessaire de procéder à une revue plus approfondie des méthodes de type gradient naturel.

1.2 État de l'art sur les méthodes de type gradient naturel 1.2.1 Matrice de Fisher et descente de gradient naturel La philosophie générale des méthodes de type gradient naturel est d'associer à chaque paramètre θ P R p une distribution de probabilité représentant l'écart entre la prédiction du modèle et la donnée. Chaque distribution de probabilité est ensuite considérée comme un point d'une structure riemannienne 'naturelle" sur laquelle on peut alors raisonner au lieu de rester dans l'espace euclidien "artificiel" des paramètres. Une telle démarche d'application des techniques de géométrie différentielle à l'étude des objets statistiques relève de la géométrie de l'information [START_REF] Amari | Methods of Information Geometry[END_REF][START_REF] Ay | Information Geometry[END_REF], discipline aux multiples applications [START_REF] Amari | Information Geometry and Its Applications[END_REF][START_REF] Nielsen | The many faces of information geometry[END_REF].

Pour qu'une telle association soit possible, il faut supposer qu'à une constante additive près, la fonction écart L coïncide avec une log-vraisemblance : autrement dit, il existe une densité de probabilité ℘ et une constante ν telle que Lpy, zq " ´log ℘py|zq `ν.

(1.17 où chaque espérance de la somme doit s'effectuer en générant les y selon P x,y pθq, Il est erroné [START_REF] Kunstner | Limitations of the empirical Fisher approximation for natural gradient descent[END_REF] de prendre les données y de sortie, ce qui conduirait à la matrice de Fisher empirique

F pθq « F pθq " 1 |S| ÿ px pbq ,y pbq qPS
∇ θ log ppy pbq |x pbq , θqr∇ θ log ppy pbq |x pbq , θqs T .

(1.25)

Comme pour la matrice hessienne et celle de GGN, le produit de la matrice de Fisher par un vecteur quelconque peut être réalisé par le réseau par propagation et rétropropagation [START_REF] Schraudolph | Fast curvature matrix-vector products for second-order gradient descent[END_REF], ce qui peut être exploité pour la résolution d'un système linéaire avec la matrice de Fisher. Un tel système linéaire apparaît lors d'une descente de gradient naturel, qui est de la forme

θ k`1 " θ k ´αk rF pθ k qs ´1∇ θ hpθ k q, α k ą 0, (1.26) 
en supposant que les matrices F pθ k q sont définies, donc inversibles. La nouvelle direction de descente s'interprète comme la limite des meilleures directions issues des problèmes de région de confiance de tailles décroissantes autour du point courant, à savoir

´rF pθqs ´1∇ θ hpθq }rF pθqs ´1∇ θ hpθq} F pθq " lim cÓ0 1 c argmin }δ} F pθq "c hpθ `δq, (1.27) 
où

}δ} F pθq " rδ T F pθqδs 1{2 (1.28)
est la norme associée à F pθq. Par conséquent, une descente de gradient naturel est en réalité une descente de plus grande pente -donc, du premier ordre -utilisant une notion plus subtile de gradient, même si au niveau pratique on peut aussi l'appréhender comme une méthode de quasi-Newton -donc, du second ordre -dans l'espace euclidien. [START_REF] Ollivier | Information-geometric optimization algorithms: A unifying picture via invariance principles[END_REF]. Signalons qu'à l'instar de [START_REF] Song | Accelerating natural gradient with higher-order invariance[END_REF], on peut essayer d'atténuer la perte d'invariance en discrétisant par un schéma d'ordre plus élevé une version modifiée de (1.29) qui incorpore une correction géodésique afin de garantir que la trajectoire reste en permanence sur la variété, rejoignant ainsi les techniques d'optimisation riemannienne [START_REF]An Introduction to Optimization on Smooth Manifolds[END_REF]. Mais le calcul des symboles de Christoffel intervenant dans la connection de Levi-Civita étant extrêmement lourd pour un réseau, le jeu n'en vaut pas toujours la chandelle. Les travaux précurseurs d'Amari [START_REF] Amari | Natural gradient works efficiently in learning[END_REF][START_REF] Park | Adaptive natural gradient learning algorithms for various stochastic models[END_REF][START_REF] Yang | Complexity issues in natural gradient descent method for training multilayer perceptrons[END_REF] ont mis en évidence l'intérêt des méthodes de gradient naturel pour l'apprentissage. Cependant, dès que le nombre de paramètres atteint un certain seuil, on se retrouve avec les mêmes difficultés qu'avant : l'inversion de la matrice de Fisher, qui est pleine, devient l'obstruction principale entravant la performance de la méthode.

Approximation KFAC, avant et après

L'approximation de la matrice de Fisher par sa diagonale, suggérée par [START_REF] Le Cun | Gradient-based learning applied to document recognition[END_REF] ou inspirée de [START_REF] Duchi | Adaptive subgradient methods for online learning and stochastic optimization[END_REF][START_REF] Kingma | A method for stochastic optimization[END_REF][START_REF] Tieleman | Lecture 6.5 RMSProp: Divide the gradient by a running average of its recent magnitude[END_REF] pour la matrice de Fisher empirique, s'avère trop grossière et ne retient pas suffisamment d'informations contenues dans la matrice d'origine. Les tentatives suivantes, cherchant à approcher respectivement la matrice de Fisher empirique (méthode TONGA [START_REF] Le Roux | Topmoumoute online natural gradient algorithm[END_REF]) et la matrice de Fisher exacte [START_REF] Ollivier | Riemannian metrics for neural networks I: feedforward networks[END_REF] par une structure bloc-diagonale avec un bloc par neurone, n'ont pas apporté d'amélioration significative. Pour rendre la matrice de Fisher plus creuse, certains auteurs optent pour des reparamétrages dynamiques du réseau [START_REF] Raiko | Deep learning made easier by linear transformations in perceptrons[END_REF][START_REF] Vatanen | Pushing stochastic gradient towards second-order methods -backpropagation learning with transformations in nonlinearities[END_REF][START_REF] Wiesler | Mean-normalized stochastic gradient for large-scale deep learning[END_REF] afin que la plupart des quatités scalaires associées aux unités comme l'activité et la dérivée locale soient nulles en moyennes. Une autre idée dans la même veine consiste modifier adaptativement la représentation interne du réseau au cours de la phase d'apprentissage, dans le but de contrôler le conditionnement de la matrice de Fisher (méthode PRONG [START_REF] Desjardins | Natural neural networks[END_REF]).

Les premières approximations au moyen d'un produit de Kronecker sont apparues avec [START_REF] Grosse | Scaling up natural gradient by sparsely factorizing the inverse Fisher matrix[END_REF][START_REF] Heskes | On "natural" learning and pruning in multilayered perceptrons[END_REF][START_REF] Povey | Parallel training of DNNs with natural gradient and parameter averaging[END_REF], où la matrice de Fisher est remplacée une matrice bloc-diagonale. Cette fois, chaque bloc représente une couche du réseau. Si la couche i possède d i´1 entrées et d i sorties, alors il y a p i " pd i´1 `1qd i poids et le bloc F i,i P R p i ˆpi de la matrice de Fisher est approchée par

F i,i « Āi´1 b G i , (1.30) 
où b désigne le produit de Kronecker (cf. Définition 3.1) et où les matrices

Āi´1 P R pd i´1 `1qˆpd i´1 `1q et G i P R d i ˆdi
sont de dimensions bien plus petites que celle de F i,i . Ces facteurs sont beaucoup moins chers à stocker et à inverser. Leur produit est aussi facile et peu coûteux à inverser, grâce à la formule

p Āi´1 b G i q ´1 " Ā´1 i´1 b G ´1 i . (1.31) 
L'approximation KFAC de Martens et Grosse [START_REF] Martens | Optimizing neural networks with Kronecker-factored approximate curvature[END_REF] s'inscrit dans la même lignée (1.30), avec une définition spécifique pour les facteurs Āi´1 et G i permettant un calcul plus rapide. Ce qui a aussi concouru à son grand succès face à ses prédécesseurs, c'est sa stratégie permettant de préserver la forme factorisée en vue d'une inversion semblable à (1.31) pour l'indispensable régularization de Tikhonov F ' :" F `λI p , λ ą 0.

(1.32)

Plus précisément, chaque bloc diagonal de la matrice de Fisher régularisée est approché par

rF ' s i,i « `Ā i´1 `πi ? λ I d i´1 `1˘b `Gi `π´1 i ? λ I d i ˘": rF 'KFAC s i,i , (1.33) 
avec un coefficient de répartition π i ajusté "optimalement" en fonction des données, par exemple

π i " d trp Āi´1 q{d i´1 trp Ḡi q{d i . (1.34)
De surcroît, le poids λ est adapté au fur et à mesure selon le comportement des itérés. L'ensemble de ces ingrédients fait de KFAC une méthode puissante et efficace qui a marqué un tournant dans le développement des méthodes du gradient naturel. Conçu initialement pour un perceptron multicouche, KFAC a été généralisé à d'autres architectures de réseau comme CNN [START_REF] Grosse | A Kronecker-factored approximate Fisher matrix for convolution layers[END_REF] (la méthode s'appelle alors KFC) et RNN [START_REF] Martens | Kronecker-factored curvature approximations for recurrent neural networks[END_REF]. Pour chaque nouvelle architecture, de nouvelles hypothèses plus ou moins légitimes sont émises pour définir les facteurs Āi´1 et G i .

De par ses caractéristiques prometteuses, KFAC a suscité beaucoup de travaux ultérieurs. D'une part, il a été déployé avec succès dans le contexte de l'apprentissage profond bayésien [START_REF] Zhang | Noisy natural gradient as variational inference[END_REF], de l'apprentissage par renforcement profond [START_REF] Wu | Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation[END_REF] et de l'approximation de Laplace [START_REF] Ritter | A scalable Laplace approximation for neural networks[END_REF]. D'autre part, son implantation parallèle dans la perspective des très grands modèles a fait l'objet de nombreuses recherches. Citons d'abord la version distribuée de [START_REF] Ba | Distributed second-order optimization using Kroneckerfactored approximations[END_REF], où le calcul des gradients est réparti sur plusieurs GPU en utilisant le modèle SGD synchrone standard, tandis que les blocs de la matrice de Fisher et leurs inverses sont calculés avec des CPU de manière asynchrone (pendant que le réseau est toujours en cours d'apprentissage). Dans une autre approche [START_REF] Osawa | Large-scale distributed second-order optimization using Kronecker-factored approximate curvature for deep convolutional neural networks[END_REF], tous les calculs sont effectués de manière synchrone avec les GPU en veillant à communiquer les résultats entre les GPU de manière optimale. Ces deux paradigmes distribués revendiquent une réduction du temps de calcul d'un facteur d'au moins 2 par rapport à un SGD séquentiel.

Au niveau algorithmique, plusieurs tentatives de raffinement de KFAC ont vu le jour. La méthode EKFAC [START_REF] George | Fast approximate natural gradient descent in a Kronecker-factored eigenbasis[END_REF] remet à l'échelle les facteurs de Kronecker avec une variance diagonale calculée dans une base de vecteurs propres obtenue par une factorisation de Kronecker. La méthode TKFAC [START_REF] Gao | A tracerestricted Kronecker-factored approximation to natural gradient[END_REF] préserve l'invariance de la trace entre la matrice de Fisher approchée et la matrice de Fisher exacte. En supposant que chaque bloc de celle-ci correspond à la covariance d'une distribution normale tensorielle dans le modèle, la méthode TNT [START_REF] Ren | Tensor normal training for deep learning models[END_REF] met en avant une approximation bloc-diagonale qui présente l'avantage de s'affranchir de la structure des couches. Au-delà de la matrice de Fisher, l'idée de la factorisation de Kronecker peut également être appliquée à l'approximation de la matrice hessienne, comme dans KBFGS [START_REF] Goldfarb | Practical quasi-Newton methods for training deep neural networks[END_REF], où la complexité du calcul de l'inverse des facteurs de Kronecker est atténuée par des mises à jour de rang faible. Elle se généralise aussi à l'approximation de la matrice GGN, comme l'atteste [START_REF] Goldfarb | Practical quasi-Newton methods for training deep neural networks[END_REF].

Pistes d'amélioration et objectifs de la thèse

De cette revue, on tire les observations suivantes sur les méthodes développées autour de KFAC : Les questions soulevées méritent examen au regard des enjeux plus vastes déjà énumérés. Les deux premières touchent à la robustesse et la vitesse de convergence des méthodes. La dernière ne constitue certes pas un défi du même ordre, mais son intérêt réside dans l'aspect applicatif. 

F i,i « ĀKFAC i´1 b G KFAC i , (1.36a) avec ĀKFAC i´1 " Erā i´1 āT i´1 s P R pd i´1 `1qˆpd i´1 `1q , G KFAC i " Erg i g T i s P R d i ˆdi . (1.36b) 
Elle se "justifie" par une hypothèse d'indépendance entre les activations āi´1 et les dérivées par rapport aux préactivations g i , ce qui se traduit par la distributivité de l'espérance par rapport au produit de Kronecker. Aussi commode soit-elle, cette hypothèse est tout à fait contestable. Il est souhaitable de s'en dispenser. Pour cela, nous nous efforçons dans le chapitre 3 d'asseoir l'approximation des F i,i sur une base plus solide.

Par nouveau produit de Kronecker. Une idée naturelle est de considérer le produit

F i,i « ĀKPSVD i´1 b G KPSVD i , (1.37a) 
dont les facteurs sont choisis de sorte à réaliser la meilleure approximation (cf. §3.2.2)

p ĀKPSVD i´1 , G KPSVD i q " argmin RPR d i ˆdi , SPR pd i´1 `1qˆpd i´1 `1q }F i,i ´R b S} F (1.37b)
" argmin

RPR d i ˆdi , SPR pd i´1 `1qˆpd i´1 `1q }Erā i´1 āT i´1 b g i g T i s ´R b S} F , (1.37c) 
dans la norme de Frobenius } ¨}F . Nous appelons cette première méthode KPSVD, car le problème de minimisation (1.37c) peut être résolu au moyen d'une décomposition en valeurs singulière au sens du produit de Kronecker [START_REF] Van Loan | Approximation with Kronecker products[END_REF]. La clé de cette résolution est de se ramener à la recherche de la meilleure approximation de rang 1 d'une matrice. Concrètement, toute solution de (1.37) est aussi solution de (Théorème 3.14)

pvecp ĀKPSVD i´1 q, vecpG KPSVD i qq " argmin RPR d i ˆdi , SPR pd i´1 `1qˆpd i´1 `1q }ZpF i,i q ´vecpRq vecpSq T } F , (1.38) 

où

• l'opérateur "vec", défini par (3.14), ordonne les colonnes successvies d'une matrice en un vecteur, si bien que les inconnues deviennent vecpRq P R d 2 i et vecpSq P R pd i´1 `1q 2 ;

• l'opérateur Z, défini par (3.23), réarrange une matrice par bloc de R pd i´1 `1qd i ˆpd i´1 `1qd i pour en faire une matrice de

R d 2 i ˆpd i´1 `1q 2 .
Dès lors, il est connu qu'une solution de (1.38) peut être extraite de la SVD ordinaire

ZpF i,i q " U ΣV T , Σ " diagpσ 1 , σ 2 , . . .q, σ 1 ě σ 2 ě . . . ě 0 (1.39) de ZpF i,i q par vecp ĀKPSVD i´1 q " ? σ 1 u 1 , vecpG KPSVD i q " ? σ 1 v 1 , (1.40) 
où u 1 (première colonne de U ) et v 1 (première colonne de V ) sont les vecteurs propres à gauche et à droite associés à la plus grande valeur singulière σ 1 . Toute la question est de savoir si l'on peut calculer pσ 1 , u 1 , v 1 q efficacement. La réponse est affirmative, grâce à l'algorithme des puissances itérées (cf. §3.B.1 et [START_REF] Saad | Numerical Methods for Large Eigenvalue Problems[END_REF]) dans lequel les produits matrice-vecteur ZpF i,i qv et ZpF i,i q T u peuvent être effectuées sans former F i,i ou ZpF i,i q par l'intermédiaire des formules (Proposition 3.1)

ZpF i,i qv " Er g T i MATpvqg i vecpā i´1 āT i´1 q s, (1.41a) 
ZpF i,i q T u " Er āT i´1 MATpuqā i´1 vecpg i g T i q s, (1.41b) 
où l'opérateur "MAT" fait l'inverse de "vec" en convertissant un (long) vecteur en une matrice. En appliquant cet opérateur "MAT" au couple de vecteurs de type (1.40), on obtient les facteurs p ĀKPSVD i´1 , G KPSVD i q désirés. Ici surgit un doute concernant la symétrie et le caractère semi-défini positif de ces matrices. Nous montrons (Proposition 3.2) que la symétrie découle automatiquement de la procédure indiquée, tandis qu'il est possible de modifier le minimiseur obtenu pour passer à un autre minimiseur de (1.37c) pour lequel les matrices p Āi´1 , G i q sont semi-définies positives. En présence d'une régularisation de Tikhonov, l'approximation de la matrice de Fisher régularisée se fait de manière analogue à (1.33)-(1.34), à savoir

rF ' s i,i « `Ā KPSVD i´1 `πi ? λ I d i´1 `1˘b `GKPSVD i `π´1 i ? λ I d i ˘": rF 'KPSVD s i,i , (1.42) 
avec par exemple

π i " d trp ĀKPSVD i´1 q{d i´1 trp ḠKPSVD i q{d i . (1.43)
Par une somme de deux produits de Kronecker. Dans le prolongement de KPSVD, on peut envisager de chercher la meilleure approximation de F i,i par une somme de deux produits de Kronecker, c'est-à-dire Là encore, les opérateurs de vectorialisation "vec" et de réarrangement Z permettent de ramener le problème (1.44b) à celui de l'approximation de rang 2 pvecp Āp1q i´1 q, vecpG p1q i q, vecp Āp2q i´1 q, vecpG p2q i q " argmin R,S,P,Q }ZpF i,i q ´pvecpRq vecpSq T `vecpP q vecpQq T q} F . (1.45) À nouveau, la décomposition en valeurs singulières de ZpF i,i q fournit un minimiseur, cette fois en ne gardant que les deux premiers modes singuliers. Autrement dit,

F i,i « Āp1q i´1 b G p1q i `Ā p2q i´1 b G p2q i , (1.44a) avec (cf. §3.2.3) p Āp1q i´1 , G p1q i , Āp2q i´1 , G p2q i q " argmin
vecp Āp1q i´1 q " ? σ 1 u 1 , vecpG p1q i q " ? σ 1 v 1 , (1.46a) vecp Āp2q i´1 q " ? σ 2 u 2 , vecpG p2q i q " ? σ 2 v 2 . (1.46b)
Quant à la détermination effective des deux premiers modes singuliers, elle peut se faire par deux algorithmes :

1. Déflation. Puisque le premier mode singulier est le même que dans KPSVD, on a

pvecp Āp1q i´1 q, vecpG p1q i qq " pvecp ĀKPSVD i´1 q, vecpG KPSVD i qq, (1.47) 
qu'on calcule par les puissances itérées comme décrite précédemment. Une fois cette étape accomplie, on applique les puissances itérées pour trouver la meilleure approximation P bQ de la différence F i,i ´Ā 2. Bidiagonalisation. On applique l'algorithme de bidiagonalisation de Golub-Kahan-Lanczos [START_REF] Golub | Calculating the singular values and pseudo-inverse of a matrix[END_REF] ou une version avec redémarrage [START_REF] Saad | Numerical Methods for Large Eigenvalue Problems[END_REF] pour calculer les deux premiers modes singuliers simultanément.

Enfin, une variante de (1.44) consiste à figer le terme d'ordre 1 à la valeur de l'approximation KFAC et de calculer le terme d'ordre 2 comme étant la meilleure correction ad hoc possible. En d'autres termes,

F i,i « ĀKFAC i´1 b G KFAC i `Ā corr i´1 b G corr i , (1.49a) avec (cf. §3.2.4) p Ācorr i´1 , G corr i q " argmin P,Q }F i,i ´Ā KFAC i´1 b G KFAC i ´P b Q} F . (1.49b)
Comme avant, un minimiseur de (1.49b) peut être obtenu en appliquant l'algorithme des puissances itérées à la matrice ZpF i,i ´Ā KFAC i´1 b G KFAC i q. Nous appelons cette dernière méthode KFAC-Corrigé. Pour celle-ci comme pour les autres variantes impliquant une somme de deux produits de Kronecker, il faut noter que : ▷ La prise en compte d'une régularisation de Tikhonov se fait uniquement à travers le premier produit de Kronecker, c'est-à-dire

rF ' s i,i « `Ā p0q i´1 `πi ? λ I ˘b `Gp0q i `π´1 i ? λ I ˘`Ā p1q i´1 b G p1q i ": rF 'variante s i,i , (1.50) 
avec π i donné par une formule analogue à (1.34).

▷ L'inversion de rF 'variante s i,i doit suivre un procédé différent de (1.31). Bien qu'il y ait plusieurs possibilités, celle que nous adoptons en §3.2.5 semble être la mieux adaptée au problème, dans la mesure où elle tire profit de la symétrie et du caractère défini positif des facteurs du premier produit de Kronecker.

Les méthodes KPVSD, Déflation, Bidiagonalisation et KFAC-Corrigé ont été étudiées sur trois types d'autoencodeurs utilisant respectivement les données CURVES, MNIST et FACE (cf. §3.D). Les résultats, présentés et commentés en §3.3, ont fait l'objet d'un article [START_REF] Koroko | Efficient approximations of the Fisher matrix in neural networks using Kronecker product singular value decomposition[END_REF] à paraître dans ESAIM: Proceedings and Surveys. Le chapitre 3 reproduit cet article en ajoutant une section (cf. §3.4) consacrée au cas des réseaux de neurones convolutifs (CNN).

Par des hypothèses minimales pour les CNN. Lorsque la couche i est une convolution avec plusieurs canaux d'entrée et de sortie, les paramètres inconnus les coefficients des filtres, sont partagés et donc en petit nombre. Depuis [START_REF] Chellapilla | High performance convolutional neural networks for document processing[END_REF], il est coutume de dupliquer les activations et les dérivées par rapport aux préactivations autour de chaque position de l'image afin de bénéficier d'une plus grande localité. On se retrouve pour chaque emplacement t P T i avec des vecteurs āi´1,t et g i,t regroupant les quantités correspondantes dans un voisinage de t et concaténant les canaux. Le i-ème bloc diagonal de la matrice de Fisher est alors égal à

F i,i " ÿ tPT i ÿ t 1 PT i E " āi´1,t āT i´1,t 1 b g i,t g T i,t 1 ‰ . (1.51) 
L'approximation KFC [START_REF] Grosse | A Kronecker-factored approximate Fisher matrix for convolution layers[END_REF], qui généralise KFAC aux CNN, fait appel à trois hypothèses. Outre l'indépendance entre les activations et les dérivées par rapport aux préactivations (IAD) qui a déjà servi dans KFAC, les deux hypothèses supplémentaires portent sur l'homogénéité spatiale (SH) et des dérivées spatialement décorrélées (SUD). Sans s'attarder sur leurs contenus, il suffit de savoir que leur but ultime est de simplifier le calcul du second-membre de (1.51) en réduisant la double somme à une seule somme, puis à un unique produit de Kronecker.

Pour nous émanciper de ces hypothèses elles aussi discutables, nous commençons par remarquer dans les approximations alternatives proposées, l'essentiel de la lourdeur des calculs se trouve dans l'évaluation des produits matrice-vecteur ZpF i,i qv et ZpF i,i q T u pour l'algorithme des puissances itérées. En l'occurrence, ceux-ci valent exactement ZpF i,i qv "

ÿ tPT i ÿ t 1 PT i E "`g T i,t MATpvqg i,t 1 ˘ā i´1,t āT i´1,t 1 ‰ , (1.52a) ZpF i,i q T u " ÿ tPT i ÿ t 1 PT i E "`ā T i´1,t MATpuqā i´1,t 1 ˘gi,t g T i,t 1 ‰ , (1.52b) 
et c'est la double somme sur les positions pt, t 1 q P T 2 i qui coûte cher. De cette observation naît l'espoir qu'une approximation raisonnable de la double somme peut émerger en sommant seulement sur une bande

T 2 i prq " ␣ pt, t 1 q P T i ˆTi : }t ´t1 } 8 ď r ( (1.53) 
contenant les couples pt, t 1 q dont les éléments ne sont pas trop éloignés l'un de l'autre. Physiquement, cela correspond à l'intuition que plus deux pixels sont proches, plus ils sont fortement corrélés. Au-delà d'une distance critique r, on peut négliger leur corrélation. Cette hypothèse, qui paraît plus facile à accepter que (SH) et (SUD), mène finalement aux approximations

ZpF i,i qv « ÿ pt,t 1 qPT 2 i prq E "`g T i,t MATpvqg i,t 1 ˘ā i´1,t āT i´1,t 1 ‰ , (1.54a 
)

ZpF i,i q T u « ÿ pt,t 1 qPT 2 i prq E "`ā T i´1,t MATpuqā i´1,t 1 ˘gi,t g T i,t 1 ‰ . (1.54b)
Les résultats de cet essai sont présentés et commentés en §3.4.3.

Réintégration partielle de l'interaction entre les couches

Repartons de l'approximation

F ' KFAC " diagprF ' KFAC s 1,1 , rF ' KFAC s 2,2 , . . . , rF ' KFAC s ℓ,ℓ q.
(1.55)

de la matrice de Fisher régularisée F ' , où ℓ représente le nombre de couches, et essayons de l'affiner dans une autre direction. Puisque la nature bloc-diagonale de (1.55) induit la perte totale des informations concernant la corrélation entre les couches, on peut se demander s'il serait opportun de récupérer une partie des informations perdues dans l'espoir de faire évoluer la matrice approchée vers la vraie matrice F ' . La voie que nous empruntons est celle d'une correction "grossière", qui consiste à ajouter dans la matrice inverse F ´1 'KFAC un terme représentant la corrélation entre les couches à une échelle "macroscopique", par opposition à l'échelle "microscopique" des interactions entre les neurones au sein d'une couche. Elle procède par analogie avec les stratégies de préconditionnement à deux niveaux en décomposition de domaines [START_REF] Dolean | An Introduction to Domain Decomposition Methods: Algorithms, Theory, and Parallel Implementation[END_REF], avec toutefois des différences notoires sur lesquelles nous reviendrons. À notre connaissance, la première et unique application d'une telle technique au contexte de l'apprentissage automatique est due à Tselepidis et al. [START_REF] Tselepidis | Two-level K-FAC preconditioning for deep learning[END_REF], qui cherchaient justement à améliorer l'approximation KFAC. Nous souligerons également les différences entre notre contribution et celle de [START_REF] Tselepidis | Two-level K-FAC preconditioning for deep learning[END_REF].

Auparavant, il est nécessaire d'introduire quelques notations. Pour chaque i P t1, . . . , ℓu, soit R i P R p i ˆp l'opérateur de restriction

pR i q ξη " # 1 si η " p 1 `. . . `pi´1 `ξ, 0 sinon. (1.56)
Cette notion permet d'exprimer F ´1 ' KFAC de manière globale par

F ´1 ' KFAC " ℓ ÿ i"1 R T i rF ' KFAC s ´1 i,i R i . (1.57)
Cette écriture peut sembler artificielle, mais est courante en décomposition de domaines où chaque indice i correspond à un sous-domaine 5 . En poursuivant l'analogie6 , on peut voir chaque rF ' KFAC s ´1 i,i comme un solveur local.

Un problème bien connu avec les préconditionneurs de la forme (1.57), dits à un niveau, est leur scalabilité parallèle [START_REF] Dolean | An Introduction to Domain Decomposition Methods: Algorithms, Theory, and Parallel Implementation[END_REF] : le facteur d'accélération ne croît pas proportionnellement par rapport au nombre de sous-domaines (donc, de processeurs). La raison en est que, quand le nombre de sous-domaines augmente, il faut davantage d'itérations pour qu'une information locale à un sous-domaine puisse être propagée aux autres sous-domaines. Le remède habituel à cette difficulté est d'ajouter une correction globale afin que les sous-domaines puissent communiquer entre eux plus rapidement. Les nouveaux préconditionneurs sont dits à deux niveaux.

Par une correction grossière consistante. À la place de F ´1 ' KFAC , nous proposons de considérer (cf. §4.2.2)

F ´1 ' KFAC-2L " F ´1 ' KFAC `RT 0 F ´1 coarse R 0 pI ´F' F ´1 ' KFAC q, (1.58) où 
• La matrice R 0 P R N ˆp est à choisir convenablement, avec N ě ℓ. Le sous-espace de R p engendré par les N colonnes de R T 0 est appelé espace grossier. Plusieurs possibilités pour R 0 sont résumées ci-dessous (cf. §4.2.3).

• Le solveur grossier

F coarse " R 0 F ' R T 0 (1.59)
correspond à la "projection" sur R 0 de la matrice F ' .

La valeur du dernier terme au second-membre de (1.58) provient de la minimisation d'une norme de résidu associé à la résolution du système linéaire

F ' ζ " ∇ θ h (1.60)
dans lequel ζ représente θ k ´θk`1 , l'opposé de l'incrément d'une itération de l'optimiseur. En partant de la solution résultant de l'approximation KFAC

ζ KFAC " F ´1 'KFAC ∇ θ h, (1.61) 
nous cherchons la meilleure correction possible par un vecteur de l'espace grossier

ζ KFAC-2L " ζ KFAC `RT 0 β ˚, (1.62) 
de sorte à réaliser

β ˚" argmin βPR ℓ }pζ KFAC `RT 0 βq ´ζ} 2 F' " argmin βPR ℓ }F ' pζ KFAC `RT 0 βq ´∇θ h} 2 F ´1 ' . (1.63)
La solution du problème de moindres carrées (1.63) est donnée par

β ˚" pR 0 F ' R T 0 q ´1R 0 p∇ θ h ´F' ζ KFAC q.
(1.64)

En combinant avec (1.61), on obtient la correction de l'incrément

R T 0 β ˚" R T 0 F ´1 coarse R T 0 pI ´F' F ´1 'KFAC q∇ θ h, (1.65) 
d'où la matrice inverse corrigée (1.58).

Par rapport à la corection proposée par Tselepidis, Kohler et Orvieto [START_REF] Tselepidis | Two-level K-FAC preconditioning for deep learning[END_REF], qui s'écrit

F ´1 'TKO " F ´1 'KFAC `RT 0 F ´1 coarse R 0 , (1.66) 
il y a deux différences. La première, mineure, concerne la définition de l'opérateur grossier. Les auteurs de [START_REF] Tselepidis | Two-level K-FAC preconditioning for deep learning[END_REF] utilisent Fcoarse " R 0 F' R T 0 avec r F' s i,j "

# Erā i´1 āT j´1 s b Erg i g T j s si i ‰ j, p Āi´1 `πi λ 1{2 Iq b pG i `π´1 i λ 1{2 Iq si i " j.
( 

!

En décomposition de domaines, un correcteur de type (1.66) est appelé additif, tandis qu'un correcteur de type (1.58) est appelé multiplicatif. Le fait qu'un correcteur additif n'est pas consistant avec l'inverse de la matrice considérée n'est pas gênant, tant qu'on utilise la matrice inverse corrigée seulement comme préconditionneur : lors de la résolution du système, on fait encore appel à la matrice exacte (via la multiplication avec un vecteur) et la solution obtenue demeure exacte. Dans notre cas, les règles du jeu sont différentes : il s'agit d'oublier la matrice exacte en remplaçant d'emblée son inverse par une approximation avant la résolution du système linéaire. Cette résolution n'étant pas exacte, toute inconsistance dans l'approximation de l'inverse peut avoir de graves conséquences sur la validité de la solution approchée.

Par des espaces grossiers plus variés. Quel que soit le choix de l'espace grossier R T 0 , la construction précédente diminue l'erreur par rapport à la solution exacte, à savoir

}ζ KFAC-2L ´ζ} 2 F' ď }ζ KFAC ´ζ} 2 F' . (1.68) 
Le choix effectif de R T 0 est un compromis entre deux injonctions contraires : réduire significativement l'erreur et garder une faible dimension N . Nous préconisons la forme a priori 

R T 0 " » - - - - V 1 0 . . . . . . 0 0 V 2 .
V i " rF ' KFAC s ´1 i,i r KFAC ris P R p i , r KFAC ris " ∇ θ hris ´pF ' ζ KFAC qris, (1.72) 
où ξris " ξpp i´1 `1 : p i q désigne la portion du vecteur ξ P R p relative à la couche i.

Les résultats de cette étude sont présentés et commentés en §4.3.

Application de KFAC aux réseaux antagonistes génératifs

En moins d'une décennie, les réseaux antagonistes génératifs (GANs) [START_REF] Goodfellow | NIPS 2016 tutorial: Generative adversarial networks[END_REF] se sont imposés comme un paradigme élégant et puissant pour générer des données synthétiques atteignant un très haut degré de "ressemblance" avec des échantillons réels. Ils sont utilisés dans de nombreuses applications à IFPEN.

L'originalité de leur fonctionnement réside dans la compétition entre deux réseaux neuronaux : un générateur G qui crée de "faux" échantillons, et un discriminateur D dont le rôle est de les détecter. En jouant l'un contre l'autre, les deux s'améliorent jusqu'à ce que le discriminateur ne soit plus en mesure de distinguer "le bon grain de l'ivraie". L'entraînement des GANs peut ainsi être formulé comme un problème d'optimisation minimax de la forme min À cause la présence de nombreuses singularités (point-selle, optimum local, plateau) dans le paysage de la fonction objectif, les méthodes du premier ordre couramment utilisées pour les problèmes de type minimax comme le gradient descendant ascendant (GDA) ou sa version stochastique (SGDA) présentent de sérieuses limites dans le cas des GANs. En accédant aux informations de courbure, les méthodes du second ordre peuvent échapper à ces singularités et avoir une meilleure chance de converger, constituant ainsi un remède aux difficultés rencontrées.

θ G max θ D E x"Qx " logpDpx; θ D qq ‰ `Ez"Pz " logp1 ´DpGpz; θ G q; θ D qq ‰ , (1.73 
Dans le contexte des GANs, les méthodes de gradient adaptatif comme Adam ont démontré leur efficacité par rapport à SGDA et restent donc des méthodes privilégiées par les praticiens. Plusieurs auteurs [START_REF] Jelassi | Dissecting adaptive methods in GANs[END_REF][START_REF] Liu | Towards better understanding of adaptive gradient algorithms in generative adversarial nets[END_REF] attribuent les performances supérieures de Adam par rapport à SGDA à sa vitesse de convergence plus élevée. Cependant, les performances des méthodes du second ordre dans le cadre de l'optimisation des GANs n'ont pas encore été étudiées de manière approfondie. Des travaux récents [START_REF] Berard | A closer look at the optimization landscapes of generative adversarial networks[END_REF][START_REF] Durall | Combating mode collapse in GAN training: An empirical analysis using Hessian eigenvalues[END_REF][START_REF] Fiez | Convergence of learning dynamics in Stackelberg games[END_REF] ont étudié le comportement de l'entraînement des GANs en utilisant uniquement les valeurs propres de matrice hessience et sont parvenus à la conclusion que les informations de courbure peuvent aider à améliorer l'entraînement des GANs.

Nous proposons d'examiner au chapitre 5 la performance de la méthode de type gradient naturel pour l'entraînement des GANs, ce qui semble n'avoir jamais entrepris dans la littérature. À cette fin, nous choisissons la version de base de KFAC plutôt que les variantes développées en §3- §4, car nous avons vu que les premières ont généralement des performances inférieures à KFAC sur les réseaux neuronaux convolutionnels, tandis que les secondes ont des performances comparables à KFAC malgré des coûts de calcul supplémentaires.

Extension de KFAC à une convolution transposée. Étant donné que les convolutions transposées constituent un élément essentiel dans l'architecture des GANs, nous commençons par étendre la méthode KFAC aux couches de convolution transposée. À notre connaissance, une telle extension n'a jamais été envisagée jusqu'à présent.

Pour cela, nous procédons par analogie avec les convolutions traditionnelles. En effet, une convolution transposée peut être implémentée en utilisant une approche similaire à celle d'une convolution traditionnelle, dont nous allons rappeler brièvement le principe. Lors d'une convolution, un noyau (ou filtre) est appliqué à une entrée (par exemple, une image) pour produire une sortie de dimensions spatiales inférieures à celles de l'entrée. Le noyau glisse sur l'entrée en multipliant les valeurs d'entrée par les poids correspondants du noyau, puis en sommant les résultats pour produire une valeur de sortie dans le résultat convolué. Dans une convolution transposée, le processus est essentiellement inversé. Au lieu de réduire la dimension de l'entrée, une convolution transposée l'augmente. En partant d'une entrée de taille réduite (par exemple, une image avec une dimension faible), elle applique un filtre à cette entrée de manière similaire à une convolution traditionnelle. Cependant, au lieu de sommer les résultats, elle effectue une opération de dilatation pour produire une sortie de taille supérieure à l'entrée.

Au regard de ce qui précède et à quelques adaptations près, ces deux opérations peuvent être implémentées de manière analogue. Concrètement, on dilate l'entrée en insérant des zéros entre ses éléments et en reformattant le tenseur des filtres. Une fois ces modifications faites, on implémente la couche de convolution transposée en utilisant le même procédé qu'une convolution traditionnelle. En un langage plus formel, si nous avons une couche de convolution transposée avec une entrée A, un tenseur de filtre F, un padding τ et un pas e, alors convolution transposéepA, F, τ, eq " convolutionpA 1 , F 1 , τ 1 , e 1 , ēq, où A 1 , F 1 , τ 1 et pe 1 , ēq correspondent à des modifications de A, F, τ et e respectivement (cf. §5.2.2 pour plus de détails).

Pour mettre en oeuvre KFAC, rappelons d'abord que pour une couche de convolution traditionnelle ayant pour poids W 1 (qui représente la version matricielle du tenseur des filres F 1 ), l'itération KFAC associée à la couche (cf. §3.4.1) est donnée par This chapter introduces some elementary notions that will be used throughout the manuscript. Most of the materials can be skipped by readers who are familiar with the domain of machine learning. We first provide, in §2.1, a short beginner's guide to deep learning and to the popular architectures associated with it. Then, in §2.2, we review the state of the art regarding the optimization methods prominently used in the context of deep learning. We take this opportunity to discuss about the advantages and drawbacks of first-order methods ( §2.2.2) in comparison with second-order methods ( §2.2.3). In the latter category, we place particular emphasis on natural gradient methods ( §2.2.4) and most notably the KFAC approximation of the Fisher matrix as well as its variants.

W 1 k`1 " W 1 k ´αk pG 1 k q ´1∇ W 1 k hpθ 1 k qp Ā1 k q ´1, (1.74) 
avec Ā1 k " E " ÿ tPT 1 pā 1 t q k pā 1 t q T k ı , G 1 k " 1 |T 1 | E " ÿ tPT 1 pg 1 t q k pg 1 t q T k ı . ( 1 

Network architectures for deep learning

Deep learning (DL) is a subfield of machine learning (ML) that involves the use of multiple layers of artificial neurons to learn and create nonlinear hierarchical representations from input data. As the backbone of DL, artificial neural networks (ANN) are computational models inspired by the structure and the low-level functioning of biological neurons in the human brain [START_REF] Rumelhart | Learning representations by backpropagating errors[END_REF]. They constitute flexible and very powerful function approximators [START_REF] Csáji | Approximation with artificial neural networks[END_REF]. Thanks to recent advances in the design of ANN models and also to the availability of larger datasets and powerful computing resources, deep learning has shown tremendous success in solving many complex problems (in various domains) which were difficult or even impossible to solve with conventional ML techniques. This includes tasks from computer vision [START_REF] He | Deep residual learning for image recognition[END_REF][START_REF] Krizhevsky | ImageNet classification with deep convolutional neural networks[END_REF], speech recognition [START_REF] Sak | Long short-term memory recurrent neural network architectures for large scale acoustic modeling[END_REF][START_REF] Sercu | Very deep multilingual convolutional neural networks for LVCSR[END_REF], natural language processing [START_REF] Bahdanau | Neural machine translation by jointly learning to align and translate[END_REF][START_REF] Gehring | Convolutional sequence to sequence learning[END_REF], self driving cars, and robotics, among others, where DL models have produced results comparable to human performance.

The main types of artificial neural network architectures are multi-layer perceptrons (MLP), convolutional neural networks (CNN), recurrent neural networks (RNN) and graph neural networks (GNN). In the following subsections, we will provide an introduction and overview of the first three types. For a detailed explanation of GNNs, we recommend referring to [START_REF] Scarselli | The graph neural network model[END_REF].

Multi-layer perceptrons

A perceptron or neuron [START_REF] Rosenblatt | The perceptron: a probabilistic model for information storage and organization in the brain[END_REF] is the first and simplest model proposed in DL. It acts as a binary classifier: it takes as input a vector x P R d and computes a binary output a (so called activation) of it. The perceptron is said to be activated if the activation value is equal to 1 otherwise (activation value equal to 0), it is said to be non-activated. Figure 2.1 depicts the architecture of a perceptron. The vector w " pw 1 , . . . , w d q represents the weights, b denotes the bias and σ is a nonlinear monotonous and differentiable function called activation function. Activation functions are a critical component of neural networks and remain one of the most important elements which enable the great successes of DNNs [START_REF] Ding | Activation functions and their characteristics in deep neural networks[END_REF]. They help to introduce nonlinearity into the model and make it possible for the network to learn complex patterns and relationships in the data. Without activation functions, a neural network would simply be a series of linear transformations, which would severely limit its learning capacities. Each activation function has its own characteristics, and some are better suited for certain types of problems than others. Thus, the choice of an activation function depends on the specific problem being solved. For example, the sigmoid function [START_REF] Hinton | Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups[END_REF] is a common choice for binary classification problems because it maps outputs of neurons to probabilities between 0 and 1, which can be interpreted as the likelihoods of the inputs belonging to certain classes. The hyperbolic tangent functions (tanh) [START_REF] Glorot | Deep sparse rectifier neural networks[END_REF] is similar to the sigmoid function but maps the output to a range between ´1 and 1. On the other hand, the rectified linear unit (ReLU) [START_REF] Glorot | Deep sparse rectifier neural networks[END_REF][START_REF] He | Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification[END_REF] has become increasingly fashionable in recent years because of its simplicity and effectiveness. It simply returns the input if it is positive, and 0 if it is negative. This helps to prevent the vanishing gradient problem, which can occur when using sigmoid or tanh activations in deep networks.

A feed-forward neural network (FNN) is a type of artificial neural network organized in several layers in which information flows in one direction, from the input layer to the output layer only, i.e., there are no cycles or loops in the network. A multi-layer perceptron (MLP) or fully connected network (FCN) belongs to the class of FNN and is a stack of several layers of neurons connected to each other (Figure 2.2). Except for the neurons of input layer, each neuron in the network uses an activation function. Neurons of a hidden layer receive as inputs the outputs of neurons of the layer which precedes this layer and send their outputs to the neurons of the next layer through the synaptic weights.

Input layer

Output layer Hidden layers Similarly, neurons of the output layer receive as inputs the outputs of the last hidden layer. Formally, for an ℓ-layer MLP f θ parametrized by θ, the output

W1 W2 W3 W4 W5 d0 " 4 d1 " 5 d2 " 4 d3 " 5 d4 " 3 d5 " 3
z :" a ℓ " f θ pxq P R d ℓ (2.1) from input x P R d 0 is computed as a 0 :" x, s i " W i āi´1 , a i " σ i ps i q, for i from 1 to ℓ, (2.2) 
where

W i P R d i ˆpd i´1 `1q
is the weights matrix associated to layer i. s i is referred to as preactivation of the layer. āi´1 " p1, a T i q T is the augmented activation vector (value 1 is used for the bias) and σ i the activation function at layer i. The number of neurons at layer i is d i and the total number of parameters is p "

ř ℓ i"1 d i pd i´1 `1q.
The MLP is parameterised by θ containing all its weights, θ " rvecpW 1 q T , vecpW 2 q T , . . . , vecpW ℓ q T s T P R p ,

where "vec" the operator that transforms a matrix into a vector according to Definition 3.2.

In spite of their simple architectures, MLPs have proven to be excellent in modeling with tabular data. However, when considering unstructured data such as images or texts, MLPs turn to be inefficient, and it is therefore necessary to consider different architectures.

Convolutional neural networks

As mentioned in the previous subsection, MLPs have very limited capabilities when it comes to processing unstructured and high dimensional input data such as images. One reason for this is that the number of parameters of MLPs is intrinsically dependent on the dimension of the input data and increases dramatically as the input dimension becomes larger. Furthermore, MLPs do not take into account the spatial structure of images i.e. relationships between pixels, which is essential for image processing tasks. On the other side, convolutional neural networks (CNN) [START_REF] Lecun | Convolutional networks for images, speech, and time-series[END_REF][START_REF] Lecun | Backpropagation applied to handwritten zip code recognition[END_REF][START_REF] Lecun | Object recognition with gradient-based learning, in Shape, Contour and Grouping in Computer Vision[END_REF] are convenient for image data because not only their number of parameters is not related to the dimension of the input data, but they also have a property of weights sharing between units [START_REF] Takahashi | Scale-invariant recognition by weight-shared CNNs in parallel[END_REF] (this means that the same set of weights is applied to different parts of the input images, which significantly reduces the number of parameters). The most critical feature that explains the great success of CNNs for object recognition tasks is the spatial invariance property [START_REF] Lecun | Backpropagation applied to handwritten zip code recognition[END_REF][START_REF] Takahashi | Scale-invariant recognition by weight-shared CNNs in parallel[END_REF]. This property gives them the ability to recognize patterns that are shifted, tilted or warped within the input images.

A convolution layer is a fundamental building block of CNNs and performs a convolution operation on the input data. The convolution operation involves sliding a set of small matrices, called filters or kernels (which represent the weights of the layer), with a defined stride e, over the input data, computing the dot product between the filters and the input at each position, and producing output feature maps. For instance, the convolution operation between a twodimensional input A i´1 P R h i´1 ˆwi´1 (h i´1 and w i´1 denote the height and width respectively) and a filter F i of size m i ˆmi , with a stride e gives a two dimensional output S i P R h i ˆwi . For pt 1 , t 2 q P t1, . . . , h i u ˆt1, . . . , w i u,

rS i s t 1 ,t 2 " pA i´1 ˚Fi q t 1 ,t 2 " ÿ ς 1 ÿ ς 2 rF i s ς 1 ,ς 2 rA i´1 s t 1 ´ς1 ,t 2 ´ς2 , (2.3a 
)

h i " Z h i´1 ´mi e `1^, (2.3b 
)

w i " Z w i´1 ´mi e `1^, (2.3c) 
where t¨u designates the integer part.

Often some number τ of rows and columns containing zero values are added around the boundaries of the input before performing convolution operations. This technique under the name padding is used to address the problem of information loss due to the fact that convolution operations considerably shrink the spatial dimensions of the input and therefore consider less the features contained in the borders of the input. When padding τ is applied to both of spatial dimensions, the output is of shape

h i " Z h i´1 `2τ ´mi e `1^, w i " Z w i´1 `2τ ´mi e `1^. (2.4)
When the input is three dimensional, e.g., red, green and blue (RGB) images, the filters must also be three dimensional (this third dimension is referred as channel number). In this case, the convolution operation in equation ( 2.3) remains valid only that one must also sum over the channel number. Note that the final output of a convolution layer is the concatenation of different results obtained by convolving the input with each of the set of filters. As with an MLP layer, after the convolutional filters are applied to the input, a bias term is added, and a nonlinear activation function is applied.

Implementing a convolution operation using the traditional formula as described in equation (2.3) can be computational expensive, especially for high-resolution input images. So in practice, in order to speed up computations, traditional convolution operations are turned into matrix-matrix or matrix-vector multiplications using the unrolling approach [START_REF] Chellapilla | High performance convolutional neural networks for document processing[END_REF], whereby the input/output data are copied and rearranged into new matrices (see Figure 2.3). Assume a convolution layer which receives an input A i´1 P R c i´1 ˆhi´1 ˆwi´1 (c i´1 denotes the number of input channels). Let consider c i filters, each of shape c i´1 ˆmi ˆmi . Let denote by T i´1 " t1, . . . , h i´1 u ˆt1, . . . , w i´1 u and ∆ i " t1, . . . , m i u ˆt1, . . . , m i u the spacial positions of the input and the filters respectively. We form a weight matrix W i of shape c i ˆpc i´1 |∆ i | `1q, where each row corresponds to a single filter flattened into a vector. Note that the additional 1 in the column dimension of W i is required for the bias parameter. Around each position t P T i´1 , we define the local column vector a i´1,t P R c i´1 |∆ i | by extracting the patch data from A i´1 (cf. [START_REF] Grosse | A Kronecker-factored approximate Fisher matrix for convolution layers[END_REF] for explicit formulas). The output A i P R c i ˆ|T i | is computed as follows: for t P T i , the column r a i,t of A i associated to position t is given by

s i,t " W i āi´1,t , r a i,t " σ i ps i,t q, (2.5) 
where āi´1,t P R c i´1 ∆ i `1 is a i´1 concatenated with 1 in order to capture the bias. In matrix form, let rrA i´1 ss P R pc i´1 ∆ i `1qˆ|T i | be the matrix whose columns are āi´1,t 's. Then we have

S i " W i rrA i´1 ss, A i " σ i pS i q.
(2.6)

A CNN belongs to the family of FNNs and is a successive stack of several convolution layers that progressively detect high level features from the input image. A toy FCN located at the head of the CNN then uses the detected features to compute the prediction (see Figure 2.4). Sometimes, pooling layers [START_REF] Scherer | Evaluation of pooling operations in convolutional architectures for object recognition[END_REF] are used just after convolution layers. Their role is to shrink the spatial size of the output, to speed up computation, and to make features detection more robust. Pooling operators consist of a fixed-shape window that is slided over all regions in the input according to a certain stride and for each position, one takes either the maximum value (Max pooling) or the average (Average pooling). Note that a pooling layer has no learnable parameters but instead has hyper-parameters (size of the sliding window, the stride number, Max or Average pooling) which have to be carefully chosen.

When considering very deep CNN architectures, the gradient of the loss function w.r.t to the parameters of earlier layers becomes very small. This problem, known as vanishing gradient, is prohibitive for training such architectures [START_REF] Glorot | Understanding the difficulty of training deep feedforward neural networks[END_REF]. Thankfully, the vanishing gradient problem has been tackled with the introduction of residual blocks [START_REF] He | Deep residual learning for image recognition[END_REF][START_REF] Huang | Densely connected convolutional networks[END_REF]. Architectures using residual blocks back-propagate the gradient through shortcut connections and overcome the gradient vanishing problem. Over the last decade, CNNs have achieved state-of-the-art results for different computer vision tasks including image classification [START_REF] He | Deep residual learning for image recognition[END_REF][START_REF] Krizhevsky | ImageNet classification with deep convolutional neural networks[END_REF][START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF], object detection [START_REF] Girshick | Rich feature hierarchies for accurate object detection and semantic segmentation[END_REF][START_REF] Redmon | You only look once: Unified, real-time object detection[END_REF], semantic and instance segmentation [START_REF] He | IEEE International Conference on Computer Vision[END_REF][START_REF] Ronneberger | U-Net: Convolutional networks for biomedical image segmentation[END_REF].
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An example of a CNN, the standard VGG16 [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF] network architecture.

Recurrent neural networks

So far, we have exposed two types of data (tabular data and images) and presented the appropriate network architectures for each. However, when it comes to processing sequential or temporal data like text or audio signal, it is necessary to consider another architecture. There are two main problems that make standard feed-forward architectures (MLPs and CNNs) not work for modelling sequential data. The first is that the inputs and outputs can be different lengths in different training samples and it is very difficult to handle such type of data with network architectures with fixed-length inputs/outputs. And then the second and the most serious problem is that these types of architectures do not share features learned across different temporal positions.

Recurrent neural networks (RNN) were introduced as an extension of FNNs for sequential data. In contrast to FNNs, they use recurrent connections between hidden units and map their input sequences into output sequences. As represented in Figure 2.5, the output at a time step is computed using the inputs at this time step and hidden state at the previous time step. The hidden state is assumed to store all necessary information from previous time steps to the current time step. Formally, a standard RNN transforms its input x " px p1q , x p2q , . . . , x pT q q to an output z " pz p1q , z p2q , . . . , z pT q q through the sequential computations a p0q :" 0, a ptq " σpW x x ptq `Wa a pt´1q `ba q, z ptq " σpW z a ptq `bz q, (2.7)

for t from 1 to T , where W x is a matrix of weights connecting the inputs to the hidden layer, W a is the weights matrix of recurrent connections, W z the weights matrix used to compute the predictions, b a , b z denote bias vectors and σ a nonlinear activation function. An important property of an RNN is that parameters are shared accross time steps, i.e., W x , W a and W z are the same for every time step t. RNNs can be classified into several types of architecture depending on the time step lengths T x of the inputs and T z of the outputs [START_REF] Karpathy | The unreasonable effectiveness of recurrent neural networks[END_REF] (see Figure 2.6). The RNN architectures presented so far are unidirectional or forward directional only. To compute the prediction at a time step t, they only use information from previous states and current state. For certain classes of problem such as Named-entity recognition, information from future states is also needed to calculate the prediction at the current state. To address this issue, an extension to RNNs called bidirectional recurrent neural networks (BRNNs) has been proposed in [START_REF] Schuster | Bidirectional recurrent neural networks[END_REF]. BRNNs are trained using all available input information in the past and future of a specific time step and are proven to be efficient for problems requiring information to be processed in the two directions [START_REF] Schuster | Bidirectional recurrent neural networks[END_REF].

Despite their undisputed effectiveness in learning with sequential data, it turns out that one of the main problems of standard RNNs is that they run into vanishing gradient problems. Some data such as texts can have long sequences with very long-term dependencies i.e. information from earlier states can significantly affect the prediction in much later states. But it has been empirically observed that the basic RNN architectures we have seen so far are not very good at capturing very long-term dependencies (memorizing information for a very long time). To address this issue, sophisticated RNN architectures using units that implement a gating mechanism to control the flow of information have been proposed, namely, long-short term memory (LSTM) [START_REF] Hochreiter | Long short-term memory[END_REF] and gated recurrent unit (GRU) [START_REF] Cho | On the properties of neural machine translation: Encoder-decoder approaches[END_REF]. They have been proven to be capable to learn very long range connections in a sequence and they outperform standard RNNs on various tricky tasks such as music modeling and speech signal modeling [START_REF] Chung | Empirical evaluation of gated recurrent neural networks on sequence modeling[END_REF]. Very sophisticated sequential data processing models that do not use any of the standard RNN, GRU or LSTM units have been developed in recent years. These models called transformers are based on a self-attention mechanism [START_REF] Vaswani | Attention is all you need[END_REF] and have been proven to outperform LSTM and GRU based-architectures in many natural language processing tasks [START_REF] Brown | Language models are few-shot learners[END_REF][START_REF] Devlin | BERT: Pre-training of deep bidirectional transformers for language understanding[END_REF]. Transformer models have also been successfully applied to computer vision tasks such as image recognition [START_REF] Dosovitskiy | An image is worth 16 ˆ16 words: Transformers for image recognition at scale[END_REF][START_REF] Touvron | Training data-efficient image transformers & distillation through attention[END_REF], object detection [START_REF] Carion | Endto-end object detection with transformers[END_REF][START_REF] Chen | Pix2seq: A language modeling framework for object detection[END_REF][START_REF] Fang | You only look at one sequence: Rethinking transformer in vision through object detection[END_REF][START_REF] Wang | Anchor DETR: Query design for transformer-based object detection[END_REF][START_REF] Zhu | Deformable DETR: Deformable transformers for end-to-end object detection[END_REF], image segmentation [START_REF] Strudel | Segmenter: Transformer for semantic segmentation[END_REF][START_REF] Xie | SegFormer: Simple and efficient design for semantic segmentation with transformers[END_REF][START_REF] Zheng | Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers[END_REF], etc.

Optimization algorithms 2.2.1 Relationship between deep learning and optimization

Supervised learning is a branch of statistical learning where data composed of inputs x P X and targets y P Y (labelled data) is given. The inputs are supposed to have some influence on the targets and the goal is to learn correlations between the inputs and targets so that targets can be predicted for future inputs that the model has never seen [START_REF] Goodfellow | Deep Learning, Adaptive Computation and Machine Learning series[END_REF]. In contrast, in an unsupervised learning task, we are given a data of inputs without any labels, and the goal is to extract classes or groups of individuals with common characteristics. Although there are many unsupervised deep learning problems, in this work we only consider those that are supervised. For simplicity and without any ambiguity, we will simply say deep learning instead of supervised deep learning.

A deep learning problem can be decomposed into three steps: modeling, optimization and generalization [START_REF] Sun | Optimization for deep learning: theory and algorithms[END_REF]. Modeling consists of choosing or defining a family of parameterized models e.g. neural networks that best describe the problem. Formally, we consider the family of prediction functions M " tf θ : X Ñ Y, θ P R p u.

Then comes the optimization step, the aim of which is to find the prediction function in this family that best fits the problem. This is equivalent to finding the best value of parameter θ that minimizes the expected error induced by a certain defined loss function

L : Y ˆY Ñ R,
that given an input-output pair px, yq, yields the quantity Lpz, yq, which corresponds to the disagreement between the model prediction z :" f θ pxq and the actual target y. The generalization step consists in using the function found at the end of the first two steps to make predictions on unseen data. Each step has a corresponding error, i.e. modelling or representation error for step 1, optimization or training error for step 2 and generalization error for step 3. In DL and more generally in ML, these three steps are studied independently [START_REF] Benzing | Gradient descent on neurons and its link to approximate second-order optimization[END_REF][START_REF] Zhang | Three mechanisms of weight decay regularization[END_REF][START_REF] Zhang | Gradient descent based optimization algorithms for deep learning models training[END_REF].

The second step which is the main focus of this work is where optimization and deep learning intersect. From now on, X and Y are supposed to be real vector spaces i.e. X " R dx and Y " R dy with pd x , d y q P N ˚ˆN ˚.

Expected risk. The input-target space R dx ˆRdy is supposed to be equipped with a probability distribution Q x,y representing the true relationship between inputs and targets. Optimally, we seek to find the parameter θ that minimizes the excepted error yielded by any input-target pair px, yq " Q x,y . The error to be minimized is thus given by

Rpθq " E px,yq"Qx,y rLpy, f θ pxqqs " ż R dx ˆRdy Lpy, f θ pxqq dqpx, yq, (2.8) 
where qpx, yq is the density function of Q x,y . Rpθq is referred as the expected risk.

Empirical risk. In general, the expected risk is inaccessible due to the fact that the distribution Q x,y is unknown. In practice, we are given n P N ˚observations of input-target pairs supposed to be independently drawn from Q x,y . These observations define the training data D " ␣ px p1q , y p1q q, px p2q , y p2q q, . . . , px pnq , y pnq q | px pbq , y pbq q P R dxˆdy , 1 ď b ď n ( , from which we compute an estimate of the expected risk

hpθq :" 1 n n ÿ b"1
Lpy pbq , f θ px pbq qq, (2.9) also referred to as the empirical risk. This is the objective function of the optimization problem.

In deep learning, the activation functions and the loss function are generally chosen such that the objective function is differentiable with respect to the network parameter θ. Most of optimization problems involved in deep learning are complex and do not have analytical solutions. So numerical optimization algorithms are used to compute approximate solutions. There are two main classes of numerical optimization algorithms used in deep learning: firstorder and second-order methods.

First-order optimization methods

First-order or gradient descent (GD) based algorithms are the most commonly used methods for neural network optimization. As their name suggests, these algorithms only use first order information i.e. the first derivatives or the gradient. Starting from an initial point θ 0 P R p , the standard or batch GD method iterately computes updates through the equation

θ k`1 " θ k ´αk ∇ θ hpθ k q, (2.10) 
where α k is the step-size (the so-called learning rate) and

∇ θ hpθ k q " 1 n n ÿ b"1 ∇ θ Lpy pbq , f θ k px pbq qq (2.11)
the full gradient of the objective function calculated at the iteration k. The GD algorithm is motivated by the fact that by definition, the gradient gives the direction of steepest ascent of the objective function, and therefore, to minimize the function, it seems natural to move in the opposite direction of the gradient. When the objective function is strongly convex and if the learning rate is appropriately chosen (lower than 1{L, where L denotes the constant of Lipschitz continuousness of the gradient), then GD converges linearly [START_REF] Bottou | Optimization methods for large-scale machine learning[END_REF]. While GD is convenient for problems with small or medium-sized data, it is computationally prohibitive for problems involving large datasets, because at each iteration, it requires that the model be evaluated on each example in the dataset.

Stochastic gradient descent.

A more practical version of GD is the stochastic gradient descent (SGD) method [START_REF] Robbins | A stochastic approximation method[END_REF]. The idea of SGD is to estimate at each iteration the full gradient by the gradient calculated with an example randomly drawn from the dataset. Each iteration of the optimization process becomes therefore very cheap, involving only the calculation of the quantity ∇h b k pθ k q , b k " U p 1; n q1 , corresponding to one sample. This makes SGD the prevailing method for large scale machine learning. When the objective function is strongly convex, the SGD algorithm converges to the global optimum with a sublinear rate of convergence. And for general nonconvex objective functions, when the sequence of learning rates tα k u kPN satisfies Robbins and Monro conditions [START_REF] Robbins | A stochastic approximation method[END_REF] 8 ÿ k"0 α k " 8 and

8 ÿ k"0 α 2 k ă 8, (2.12) 
the SGD method is guaranteed to converge to a local minimum [START_REF] Bottou | Optimization methods for large-scale machine learning[END_REF]. One of the remarkable properties of SGD that could explain its success in many complex problems is that, unlike GD, the sequence of iterates tθ k u kPN is not deterministic, i.e. it is not uniquely determined by the initial parameter θ 0 and the sequence of learning rates tα k u kPN , but rather is a stochastic process driven by the sequence of random variables tb k u kPN [START_REF] Bottou | Optimization methods for large-scale machine learning[END_REF].

Notwithstanding its advantages, one of the main shortcomings of SGD lies in the poor approximation quality of the full gradient. In fact, although the stochastic gradient ∇h b k pθ k q is an unbiased estimator of the full gradient thanks to

E b k "U p 1;n q r∇h b k pθ k qs " 1 n n ÿ b"1 ∇ θ Lpy pbq , f θ k px pbq qq " ∇ θ hpθ k q, (2.13) 
it introduces a high variance. To address this issue, many noise reduction methods have been introduced in the literature. The proposed methods reduce errors in the gradient estimates by either aggregating gradients, averaging iterates or dynamically increasing the size of examples used to estimate the gradient. The aim of such methods is to improve convergence rate from sublinear to linear [START_REF] Bottou | Optimization methods for large-scale machine learning[END_REF]. They have been proven to be effective in practice and have interesting theoretical properties [START_REF] Bottou | Optimization methods for large-scale machine learning[END_REF][START_REF] Defazio | SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives[END_REF][START_REF] Johnson | Accelerating stochastic gradient descent using predictive variance reduction[END_REF][START_REF] Polyak | Acceleration of stochastic approximation by averaging[END_REF][START_REF] Schmidt | Minimizing finite sums with the stochastic average gradient[END_REF]. Another reduction technique which, due to its simplicity, is the most used in the community is the mini-batch SGD approach. Instead of estimating the gradient with a single sample as SGD does, this approach which is a trade-off between standard GD and SGD, uses a random subset S k drawn from the training dataset to compute an estimate

∇ θ hpS k , θ k q " 1 |S k | ÿ px pbq ,y pbq qPS k ∇ θ Lpy pbq , f θ k px pbq qq (2.14)
of the full gradient. In addition to variance reduction, mini-batch SGD has the additional advantage of resolving SGD's intrinsic problem of non-parallelization. In the following, we will use SGD to refer to both SGD and mini-batch SGD noting that SGD is a special case of minibatch SGD with

|S k | " 1.
Momentum and Nesterov accelerated SGD. Other variants of GD that are widely used in the deep learning community are the stochastic versions of the heavy-ball method [START_REF] Polyak | Some methods of speeding up the convergence of iteration methods[END_REF] (SGD with momentum) and Nesterov Accelerated Gradient method [START_REF] Nesterov | A method for solving the convex programming problem with convergence rate Op1{k 2 q[END_REF] (NAG SGD). Both methods were introduced in order to smooth fluctuations encountered with SGD and therefore achieve a faster convergence rate [START_REF] Bottou | Optimization methods for large-scale machine learning[END_REF][START_REF] Sutskever | On the importance of initialization and momentum in deep learning[END_REF][START_REF] Zhang | Gradient descent based optimization algorithms for deep learning models training[END_REF]. Momentum SGD updates iterates with both the current gradient as well as the past gradients via the equation

m k`1 " βm k `p1 ´βq∇ θ hpS k , θ k q, (2.15a) 
θ k`1 " θ k ´αk m k`1 . (2.15b) 
As for NAG SGD, the parameter is updated by

m k`1 " βm k `p1 ´βq∇ θ hpS k , θ k ´βα k m k q, (2.16a) θ k`1 " θ k ´αk m k`1 .
(2.16b)

In both systems, β P r0, 1s and denotes the momentum coefficient. With the right choice of learning rate and momentum parameter, such methods have proven to be very efficient and achieve state-of-the-art results in many deep learning optimization problems [START_REF] Sutskever | On the importance of initialization and momentum in deep learning[END_REF].

Adaptive gradient methods. In all versions of GD presented so far, the learning rate α k at iteration k is identical for all components of the parameter. However, due to the variation of the curvature of the objective function in different directions, various components of the parameter may require dinstinct learning rates. A high fixed learning rate will lead to a faster progress in directions with low curvature, while it will lead to fluctuations in directions with high curvature.

In contrast, a small learning rate will lead to a faster progress in regions of high curvature, but will cause small steps in regions of low curvature [START_REF] Martens | Second-order optimization for neural networks[END_REF][START_REF] Zhang | Gradient descent based optimization algorithms for deep learning models training[END_REF]. This has motivated many adaptive gradient methods2 which compute component-wise learning rates in the updating process. AdaGrad [START_REF] Duchi | Adaptive subgradient methods for online learning and stochastic optimization[END_REF] computes the learning rate for each component of the parameter by scaling the initial constant learning rate with the inverse of the square root of the sum of all of the historical squared values of the gradient in the direction of that component. Mathematically,

D k`1 " diag ´k ÿ j"0 ∇ θ hpS j , θ j q∇ θ hpS j , θ j q T ¯`εI, (2.17a) θ k`1 " θ k ´α0 D ´1{2 k ∇ θ hpS k , θ k q, (2.17b) 
where α 0 is the initial constant learning rate, "diag" is the operator that convert a matrix into a diagonal matrix by conversing only the diagonal, I identity matrix and ε a small value used to avoid divisions by zero. Despite its effectiveness for solving convex optimization problems [START_REF] Goodfellow | Deep Learning, Adaptive Computation and Machine Learning series[END_REF], it has been empirically observed that AdaGrad struggles in neural network optimization. This is due by the fact that gradient accumulation since the beginning of the optimization process can lead to D k`1 with exponentially large values resulting in vanishing learning rates. RMSProp [START_REF] Tieleman | Lecture 6.5 RMSProp: Divide the gradient by a running average of its recent magnitude[END_REF] was introduced to address the problem of monotonically decreasing learning rates encountered in AdaGrad. The core idea of RMSProp is to decrease the weight of the past accumulated gradients in D k`1 . With RMSProp algorithm, the parameter is updated via the equation

G k`1 " βG k `p1 ´βq∇ θ hpS k , θ k q∇ θ hpS k , θ k q T , (2.18a) 
D k`1 " diagpG k`1 q `εI, (2.18b) 
θ k`1 " θ k ´α0 D ´1{2 k ∇ θ hpS k , θ k q. (2.18c)
Adaptive Moment Estimation (Adam) [START_REF] Kingma | A method for stochastic optimization[END_REF] uses both the ideas behind momentum and adaptive learning rate methods. Specifically, it combines the RMSProp algorithm and the Momentum algorithm through the iterations

m k`1 " β 1 m k `p1 ´β1 q∇ θ hpS k , θ k q, (2.19a) v k`1 " β 2 v k `p1 ´β2 q∇ θ hpS k , θ k q d ∇ θ hpS k , θ k q, (2.19b) mk`1 " m k`1 1 ´βk 1 , (2.19c) vk`1 " v k`1 1 ´βk 2 , (2.19d) 
θ k`1 " θ k ´α0 a vk`1 `ε d mk`1 .
(2.19e)

In the above equations, d denotes Hadamard product (element-wise product) operation of two vectors, and pβ 1 , β 2 q P r0, 1s 2 is a pair of hyperparameters. There are a few other adaptive methods such as Adadelta [START_REF] Zeiler | ADADELTA: An adaptive learning rate method[END_REF] and Nadam [START_REF] Dozat | Incorporating Nesterov momentum into Adam[END_REF]. Interested readers are referred to [START_REF] Zhang | Gradient descent based optimization algorithms for deep learning models training[END_REF] for more details. In practice, adaptive gradient methods perform very well, but it has been observed that in some complex neural network optimization problems, such methods perform poorly compared to a well-tuned SGD with momentum.

Limitations of first-order methods. Although first-order methods are straightforward to implement, they have several limitations when used to train DNNs. To begin with, almost all optimization problems arising in DL are nonconvex and highly nonlinear. The objective function usually has many local optima and saddle points. A first-order gradient descent may be more easily trapped into a local minimum or a saddle point. The optimization process then gets stuck at such a location, even though it is not a global minimum.

Moreover, the landscape of the objective function may contain huge variations in curvature along different directions. Although the stochastic nature of SGD and a careful random initialization of the initial parameter such as LeCun initialization [START_REF] Lecun | Efficient backprop[END_REF] or Xavier initialization [START_REF] Glorot | Understanding the difficulty of training deep feedforward neural networks[END_REF] can help with local minimum and saddle points problems [START_REF] Sutskever | On the importance of initialization and momentum in deep learning[END_REF], a first-order method remains very sensitive to the problem of large curvature variations along the surface of the objective function [START_REF] Martens | Second-order optimization for neural networks[END_REF].

Most embarrassing of all, first-order methods are inconsistent with the homogeneity of the units of the parameters [START_REF] Zhang | Gradient descent based optimization algorithms for deep learning models training[END_REF]. Indeed, if θ has a specific unit, then the increment θ k`1 ´θk should have the same unit as well. However, from equation (2.10) it can be seen that unit of α k ∇ θ hpθ k q 9

unit of L unit of θ , where 9 stands for "proportional" and α k is regarded as dimensionless. As a consequence, a change of unit in θ will produce iterates that no longer match, unless we are able to reflect this correctly on the learning rate. A more sophisticated formulation of this is to state that first-order methods are not invariant to affine transformations of the variable [START_REF] Bottou | Optimization methods for large-scale machine learning[END_REF]. Indeed, if we apply the reparametrization

θ " A p θ, (2.20) 
where A is a p ˆp invertible matrix, then the gradient descent in the new parameter reads

p θ k`1 " p θ k ´αk ∇ p θ hpA p θ k q " p θ k ´αk A T ∇ θ hpA p θ k q. (2.21)
Multiplying the last equality by A, we obtain

θ k`1 " θ k ´αk AA T ∇ θ hpθ k q. (2.22)
It is obvious that algorithm (2.22) will behave differently from algorithm (2.10).

Another downside of first-order methods is that they are very sensitive to the learning rate or step size. They require careful tuning of that hyper-parameter to ensure convergence. If the step size is too large, the algorithm may diverge, and if it is too small, the algorithm may converge slowly. Last but not least, first-order methods are inherently sequential and do not lend themselves easily to parallelism, as pointed out earlier for SGD.

Second-order optimization methods

Second-order methods attempt to circumvent the above-mentioned difficulties through the use of second-order information. At each iteration k, they seek the best update δ k to be added to θ k by solving the sub-problem involving a local quadratic approximation to the objective function h at θ k , namely,

δ k " argmin δPR p hpθ k q `∇θ hpθ k q T δ `1 2 δ T Cpθ k qδ, (2.23) 
where Cpθ k q denotes a positive semi-definite matrix, referred to as curvature matrix and supposed to capture local curvature information of h at θ k . The solution to problem (2.23) is

δ k " ´rCpθ k qs ´1∇ θ hpθ k q. (2.24)
Thus, a second-order iterate takes the form

θ k`1 " θ k ´αk rCpθ k qs ´1∇ θ hpθ k q, (2.25)
where the step-size α k ą 0 has been reintroduced to enforce safety whenever necessary. Unlike first-order methods, second-order methods have the great virtue of being invariant to any linear or affine reparametrization of the parameter [START_REF] Bottou | Optimization methods for large-scale machine learning[END_REF][START_REF] Deuflhard | Affine invariant convergence theorems for Newton's method and extensions to related methods[END_REF]. They offer a powerful solution to the problem of variations in curvature along different directions by rescaling the gradient components individually along directions of eigenvectors of the curvature matrix [START_REF] Martens | Second-order optimization for neural networks[END_REF].

Newton, Hessian-free and BFGS. Newton-Raphson's method [START_REF] Dennis | Numerical Methods for Unconstrained Optimization and Nonlinear Equations[END_REF] is the most widely used second-order method and serves as the basis for all other second-order methods. It amounts to setting Cpθ k q as the Hessian matrix

Hpθ k q " ∇ 2 θθ hpθ k q (2.26)
in (2.25). In this case, the quadratic model defined in equation (2.23) coincides with the secondorder Taylor approximation of h at θ k . For a problem arising from machine learning, the Hessian matrix can be estimated by

HpS 1 k , θ k q " 1 |S 1 k | ÿ bPS 1 k ∇ 2 θθ h b pθ k q (2.27)
over a mini-batch S 1 k P t1, . . . , nu which can differ from S k , the one used for the gradient. In the spirit of its design, Newton's method computes updates based on minimization of an exact second-order Taylor model of the objective function at each iteration, while gradient descent based algorithms rely on a model that is only first-order accurate. Thus, Newton's method usually achieves a higher rate of convergence. For instance, with α k " 1 and under certain suitable assumptions about h and the starting point, we can establish quadratic convergence [START_REF] Dennis | Numerical Methods for Unconstrained Optimization and Nonlinear Equations[END_REF] of Newton's method, which outperforms the sublinear convergence of a first-order gradient descent. The extreme example is when the function h is a convex quadratic function, e.g., hpθq " 1 2 }Aθ ´b} 2 . In this case, Newton's method converges in just one iteration. As an exercise, let us check that Newton's method is invariant with respect to the linear reparametrization (2.20). In the new variable p θ " A ´1θ and the new function p hp p θq " hpθq, a Newton iteration reads

p θ k`1 " p θ k ´αk " ∇ 2 p θ p θ p hp p θ k q ‰ ´1∇ p θ hp p θ k q " p θ k ´αk " A T ∇ 2 θθ hpAθ k qA ‰ ´1" A T ∇ θ hpA p θ k q ‰ " p θ k ´αk A ´1" ∇ 2 θθ hpA θk q ‰ ´1∇ θ hpA θk q.
Multiplying the last equality by A, we end up with

θ k`1 " θ k ´αk r∇ 2 θθ hpθ k qs ´1∇ θ hpθ k q.
(2.28)

Put another way, the sequences tθ k u kě0 and t p θ k u kě0 produced by the algorithm match with each other through the transformation.

However, the main concern with Newton's method is that in the non-convex configuration as in deep learning, the Hessian matrix is not necessarily positive semi-definite, which can give rise to an update in the wrong direction, i.e., direction of increase in the objective function [START_REF] Nocedal | Numerical Optimization[END_REF]. This issue can be addressed with regularization techniques such as trust region [START_REF] Conn | Trust-Region Methods[END_REF] or Levenberg-Marquardt damping [START_REF] Levenberg | A method for the solution of certain non-linear problems in least squares[END_REF][START_REF] Marquardt | An algorithm for least-squares estimation of nonlinear parameters[END_REF]. Besides, assembling and storing the Hessian matrix is costly in terms of memory and computing time. Simple-minded recipes such as direction inversion of a diagonal approximation [START_REF] Becker | Improving the convergence of back-propagation learning with secondorder methods[END_REF] are very rough.

To address this cost issue, Hessian-free methods [START_REF] Martens | Deep learning via Hessian-free optimization[END_REF][START_REF] Martens | Learning recurrent neural networks with Hessian-free optimization[END_REF] were suggested, which rely on the information of the Hessian matrix without ever having to form and store it. To this end, we note that the increment θ k`1 ´θk is a solution of the linear system ∇ 2 θθ hpθ k qpθ k`1 ´θk q " ´∇θ hpθ k q.

(2.29)

This system can be solved by means of inexact techniques [START_REF] Dembo | Inexact Newton methods[END_REF] using a Krylov subspace-based conjugate gradient (CG) [START_REF] Golub | Matrix Computations[END_REF], which only requires knowledge of the matrix-vector product. However, for a neural network, each matrix-vector product involving an elementary Hessian of a single datum can be performed through a sequence of propagation and backpropagation [START_REF] Pearlmutter | Fast exact multiplication by the Hessian[END_REF].

The number of CG iterations must be limited to ensure some speed, while remaining sufficiently high not to degrade too much the convergence speed of this inexact Newton.

An alternative to the Hessian-free method is to approximate the Hessian matrix with rank-1 updates during iterations, which gives rise to the BFGS method (Broyden-Fletcher-Goldfarb-Shanno) [START_REF] Broyden | The convergence of a class of double-rank minimization algorithms 1. General considerations[END_REF][START_REF] Fletcher | A new approach to variable metric algorithms[END_REF][START_REF] Goldfarb | A family of variable-metric methods derived by variational means[END_REF][START_REF] Shanno | Conditioning of quasi-Newton methods for function minimization[END_REF]]

H k`1 « H k `∆g k ∆g T k ∆g T k ∆θ T k ´Hk ∆θ k ∆θ T k H T k ∆θ T k H k ∆θ k (2.30a) with ∆θ k " θ k`1 ´θk , ∆g k " ∇ θ hpθ k`1 q ´∇θ hpθ k q. (2.30b)
Thanks to Sherman-Morrison-Woodbury's formula, the inverse can be easily updated as [START_REF] Nocedal | Numerical Optimization[END_REF] 

H ´1 k`1 « ˆI ´∆g k ∆θ T k ∆θ T k ∆g k ˙TH ´1 k ˆI ´∆g k ∆θ T k ∆θ T k ∆g k ˙`∆θ k ∆θ T k ∆θ T k ∆g k . (2.31) 
The Hessian approximation (2.30), which uses only first-order information, is "good" on the grounds that it is semi-positive symmetric (if H 0 is) and verifies the secant equation

H k`1 ∆θ k " ∆g k .
This property guarantees a superlinear local convergence rate in deterministic mode. Unfortunately, matrices given by (2.30)-(2.31) are dense, even when the exact Hessian is sparse. Additionally, we need to store the H ´1 k to be able to move from one iteration to the next. A more memory-efficient version exists under the name L-BFGS (limited memory BFGS ) [START_REF] Liu | On the limited memory BFGS method for large scale optimization[END_REF], in which storage is avoided by calculating the products H ´1 k ∇ θ hpθ k q by an approximate formula involving only the most recently saved increments p∆θ k , ∆g k q. The L-BFGS method appears to be better suited to the learning context, where other variants have been developed such as L-BFGS-B (L-BFGS box constraints) [START_REF] Byrd | A limited memory algorithm for bound constrained optimization[END_REF] and O-LBFGS (online L-BFGS ) [START_REF] Schraudolph | A stochastic quasi-newton method for online convex optimization[END_REF].

Gauss-Newton and generalized Gauss-Newton. The BFGS method and its variants belong to the family of quasi-Newton methods, where the ideal Hessian matrix is abandoned in favor of simpler approximations with more favorable properties. Another important class in the quasi-Newton family are the Gauss-Newton methods [START_REF] Schraudolph | Fast curvature matrix-vector products for second-order gradient descent[END_REF]. Originally, it was introduced in classical optimization to approximate the Hessian matrix in nonlinear least squares problems.

Assuming a least-squares loss Lpy, zq " 1 2 }y ´z} 2 , the contribution to the objective function of a single training sample px, yq is hpθq " Lpy, f θ pxqq " 1 2 }f θ pxq ´y} 2 2 .

(2.32)

By virtue of the chain rule, the gradient is given by

∇ θ hpθq " rJ f θ pxq s T pf θ pxq ´yq, (2.33) 
where J f θ pxq " ∇ θ f θ pxq is the Jacobian of f θ pxq with respect to θ. The Hessian is also obtained by chain rule

∇ 2 θθ hpθq " rJ f θ pxq s T J f θ pxq `dy ÿ ν"1 pf θ pxq ´yq rνs ∇ 2 θθ f rνs θ pxq, (2.34) 
where v rνs designates the ν th entry of vector v. The Gauss-Newton method is tantamount to ignoring the second term in (2.34) and therefore to approximating the Hessian by

Gpθq " rJ f θ pxq s T J f θ pxq , (2.35) 
called Gauss-Newton matrix. When the residual rpθq " f θ pxq ´y is small, that is, the model fits well with data, the Gauss-Newton matrix is very close to the true Hessian. Another way to derive the Gauss-Newton matrix is to plug the first-order expansion The advantage of the Gauss-Newton matrix over the Hessian is that it is computationally less expensive, since it only requires first derivatives of the predictive function. On top of that, the Gauss-Newton matrix is always positive semi-definite even if the problem is non-convex and the related Hessian is indefinite. When the Gauss-Newton matrix is singular, it can be regularized by Gpθq `λI, λ ą 0 to become positive definite. A shortcoming of the Gauss-Newton approach is that the quality of the approximation is strongly related to the residual rpθq. A large residue will result in an approximation, which is far from the Hessian. In addition, the approximation disregards all second derivatives of the predictive function and this seems contradictory for a matrix that is supposed to provide information on the curvature of the objective function.

f θ pxq " f θ k pxq `Jf θ k pxq pθ ´θk q (2.
The Gauss-Newton approximation can be extended to any type of loss function Lpy, zq [START_REF] Schraudolph | Fast curvature matrix-vector products for second-order gradient descent[END_REF]. Starting from the objective function of a single training pair hpθq " Lpy, f θ pxqq " Lpy, zq |z"f θ pxq , (

we have

∇ θ h " rJ f θ pxq s T ∇ z Lpy, zq |z"f θ pxq (2.39)
for the gradient and

∇ 2 θθ hpθq " rJ f θ pxq s T H L pzqJ f θ pxq `dy ÿ ν"1 ∇ z L rνs py, zq |z"f θ pxq ∇ 2 θθ f rνs θ pxq (2.40)
for the Hessian, with H L pzq " ∇ 2 zz Lpz, yq |z"f θ pxq . The generalized Gauss-Newton (GGN) matrix is then defined as Gpθq " rJ f θ pxq s T H L pzqJ f θ pxq .

(2.41)

We recover (2.35) when H L pzq " I. If the loss function Lpz, yq is convex with respect to z, the GGN matrix is always positive semi-definite, making it the ideal choice as a curvature matrix in neural network optimisation. Using a mini-batch S 1 , expression (2.41) can be estimated by

GpS 1 , θq " 1 |S 1 | ÿ px pbq ,y pbq qPS 1 rJ f θ px pbq q s T H L pz b qJ f θ px pbq q .
(2.42)

Limitations of second-order methods. Despite their theoretical superiority (homogeneity, robustness and speed of convergence), we must admit that second-order optimization methods

have not yet met with the expected success in everyday use in machine learning 3 . The main reason for this is that each second-order iteration is prohibitively more expensive in terms of memory and computing time than a first-order iteration, even when all the tricks have been deployed to dispense with the assembly and storage of the curvature matrix. When memory and computing resources are limited, first-order methods are preferred for their lower complexity. While fewer iterations are needed overall, this is not enough to make second-order methods competitive. This observation corroborates one of the paradoxes of machine learning: "Good optimization methods are not always good machine learning methods". Another explanation for this paradox is that first-order optimization methods, in addition to their simplicity of implementation, are more easily adaptable to changes in network architecture. First-order methods can converge faster than second-order methods at the beginning of training. This is particularly valuable when the model is initialized with random weights, as they can quickly improve initial performance and find regions of the search space that provide more informative gradients. However, second-order methods can be useful in certain scenarios, notably when data is sparse or when the shape of the objective function is highly curved. In these cases, second-order methods can converge more quickly to local optima of higher quality.

In this thesis, we wish to investigate some original ideas that could alleviate the bottleneck caused by the curvature matrix and the associated linear system. The path we wish to explore is that of the natural gradient, the mathematical foundation of which seems to be better suited to the context of learning. The feeling that such an undertaking should be possible is based on the performance claimed for more recent approximations of the Fisher matrix, which are of the KFAC type [START_REF] Grosse | A Kronecker-factored approximate Fisher matrix for convolution layers[END_REF][START_REF] Martens | Kronecker-factored curvature approximations for recurrent neural networks[END_REF][START_REF] Martens | Optimizing neural networks with Kronecker-factored approximate curvature[END_REF]. To understand what this is about, a thorough review of natural gradient methods is in order.

Focus on natural gradient descent methods

Very prosaically, the natural gradient descent can be thought of as a quasi-Newton method in which the curvature matrix Cpθ k q is taken to be a so-called Fisher information matrix F pθ k q. At a deeper level, the philosophy is to formulate a gradient descent not in the Euclidean space of parameters, but on the manifold of probability distributions related to the prediction, equipped with a suitable metric. Thanks to its intrinsic geometric meaning, the new notion of gradient is more "natural". In the following, we are going to outline the corresponding formal framework.

To each parameter θ P R p we associate a probability distribution P x,y pθq representing the discrepancy between the model's prediction f θ pxq and the data y. Each probability distribution is then considered as a point of a "natural" Riemannian structure, the metric tensor of which is the Fisher matrix F pθq. The use of differential geometry techniques to the study of statistical objects is at the heart of information geometry [START_REF] Amari | Methods of Information Geometry[END_REF][START_REF] Ay | Information Geometry[END_REF], a discipline with a wide range of applications [START_REF] Amari | Information Geometry and Its Applications[END_REF][START_REF] Nielsen | The many faces of information geometry[END_REF].

Hypothesis on the loss function. For such an association to be possible, it must be assumed that, up to an additive constant, the loss function L coincides with a log-likelihood: in other words, there is a probability density ℘ and a real constant ν such that Lpy, zq " ´log ℘py|zq `ν.

( 

where qpxq is the density of data distribution Q x over inputs x P R dx .

Kullback-Leibler divergence. Given two probability distributions P and Q over R dx ˆRdy , there is a standard mathematical tool to measure how much the former is dissimilar from the latter. The Kullback-Leibler (KL) divergence between two distributions P and Q of continuous random variables over R dx ˆRdy is defined to be

KLrP } Qs " ż R dx ˆRdy ppx, yq log ppx, yq qpx, yq dx dy, (2.47) 
where ppx, yq and qpx, yq denote the probability densities of P and Q. This notion, also known as relative entropy, quantifies the expected excess surprise from using Q as a model when the actual distribution is P. It is not a distance because KLrP } Qs ‰ KLrQ } Ps, but it satisfies the axioms of a divergence. But what will be most helpful to us is its infinitesimal version when setting P " P x,y pθq and Q " P x,y pθ `δq and letting δ Ñ 0. Before deriving a local quadratic approximation for KLrP x,y pθq } P x,y pθ `δqs (cf. Lemma 2.1), we need to introduce a new object.

Fisher information matrix. For all θ P R p , the Fisher information matrix (FIM) is defined to be F pθq " E px,yq"Px,ypθq t∇ θ log ppx, y|θqr∇ θ log ppx, y|θqs T u.

(2.48)

This notion, also known as Fisher information or simply information, is a way of measuring the amount of information that an observable random variable carries about an unknown parameter of a distribution that models the random variable. Formally, the FIM is a covariance matrix. The following statement gives two other formulas for the FIM, one of which reveals that it can also be seen as the expectation of elementary Hessian matrices.

Proposition 2.1. The FIM (2.48) can also be expressed as 1. the expectation with respect to P x,y of the Hessian matrices of ´log p, that is, F pθq " E px,yq"Px,ypθq t∇ 2 θθ r´log ppx, y|θqsu;

(2.49)

2. the expectation with respect to Q x of the conditional expectation with respect to P y|x of the Hessian matrices of L " ´log p, that is, 

F pθq " E x"
" ∇ θ log ppy|x, θq, (2.56) 
the last equality being due to the fact that qpxq does not depend on θ.

Equation (2.50a) shows that the FIM is always positive semi-definite, since it is defined as the expectation of positive semi-definite matrices. From equation (2.50b), the FIM can be interpreted as being the expectation over the model distribution of the Hessian of an elementary loss function. This makes the FIM "homogeneous" to a Hessian matrix of the loss function.

We are now in a position to connect the KL divergence to the FIM and to highlight the role of the latter in the local behavior of the former.

Lemma 2.1. The FIM (2.48) defines the local quadratic approximation of the KL divergence. In other words, for all δ P R p , KLrP x,y pθq } P x,y pθ `δqs " Natural gradient descent. Let us go back to the problem of minimizing the empirical risk hpθq. Assuming that F pθq is invertible for all θ, the natural gradient descent (NGD) method [START_REF] Amari | Natural gradient works efficiently in learning[END_REF] is defined as

1 2 δ T F pθqδ `Op}δ} 3 q. ( 2 
θ k`1 " θ k ´αk rF pθ k qs ´1∇ θ hpθ k q, (2.63) 
where α k ą 0 is a dimensionless learning rate. In practice, we will of course need to consider a regularized FIM

F ' pθ k q " F pθ k q `λk I, λ k ą 0, (2.64) 
and to perform instead θ k`1 " θ k ´αk rF ' pθ k qs ´1∇ θ hpθ k q.

(2.65)

But for the time being, we shall stay with the unregularized version (2.63) in order to better understand the essence of NGD.

The NGD (2.63) can be trivially seen as a second-order method in which the curvature matrix Cpθ k q is set to be the Fisher matrix F pθ k q. According to the next Proposition, NGD can also be regarded as a first-order method using the natural descent direction ´rF pθqs ´1∇ θ hpθq, which is the steepest descent direction in the sense of the KL divergence. Proposition 2.2. Let } ¨}F pθq be the norm defined by the FIM, that is, Formula (2.67), which clarifies the meaning to be given to the natural gradient descent direction ´rF pθqs ´1∇ θ hpθq, is to be compared with Undeniably, invariance with respect to any nonlinear reparametrization is a strongly favorable property that singles out the continous NGD method from its competitors. The Euclidean gradient is highly sensitive to the choice of θ, since it is unable to reflect the underlying structure of the objects represented by the parameters. By complying with the intrinsic geometry of probability distributions, the natural gradient benefits from a more solid mathematical foundation and offers a better chance of tackling high dimensional problems.

}δ} F pθq " rδ T F pθqδs 1{2 , δ P R p . ( 2 
´∇hpθ k q }∇hpθ k q} 2 " lim cÓ0 1 c argmin }δ} 2 "c hpθ k `δq, ( 2 
It is however worth noting that as soon as a discretization such as (2.63) is applied to the continuous NGD, invariance with respect to nonlinear reparametrization is definitely lost, although invariance with respect to linear or affine changes of variables still holds true. Consequently, it cannot be rigourously claimed that the NGD (2.63) is invariant with respect to nonlinear reparametrization. Nevertheless, the existence of invariance at the continuous level remains a theoretical advantage that supports the method. This phenomenon is also frequently encountered in other optimization methods built on invariance principles [START_REF] Ollivier | Information-geometric optimization algorithms: A unifying picture via invariance principles[END_REF].

Following [START_REF] Song | Accelerating natural gradient with higher-order invariance[END_REF] and resorting to Riemannian optimization techniques [START_REF]An Introduction to Optimization on Smooth Manifolds[END_REF], we can try to mitigate the loss of invariance by discretizing with a higher-order scheme a modified version of (1.29) that incorporates a geodesic correction to guarantee that the trajectory remains on the manifold. But since the calculation of the Christoffel symbols involved in the Levi-Civita connection is extremely heavy for a network, it is not always worth the effort.

Fisher efficiency. Another attractive feature of NGD that is often mentioned in the literature is its asymptotic Fisher efficiency property [START_REF] Amari | Natural gradient works efficiently in learning[END_REF][START_REF] Martens | Second-order optimization for neural networks[END_REF][START_REF] Martens | New insights and perspectives on the natural gradient method[END_REF]. In other words, the solution produced by (2.63) will be an unbiased estimator of the global optimum θ opt and its asymptotic variance will reach the Cramer-Rao bound [START_REF] Cramér | Mathematical Methods of Statistics[END_REF][START_REF] Rao | Information and accuracy attainable in the estimation of statistical parameters[END_REF]. Owing to this property, NGD seems to be the best possible method for optimizing the model parameter θ. Unfortunately, the "Fisher efficiency" property is based on several assumptions (convergence of iterates to the global optimum, computation of the FIM with full training data, "realizability" of the model) that are very unlikely to be hold in neural network optimization [START_REF] Martens | Second-order optimization for neural networks[END_REF]. Still, the NGD method remains very attractive and many authors [START_REF] Bottou | On-line learning for very large data sets[END_REF][START_REF] Martens | Second-order optimization for neural networks[END_REF][START_REF] Murata | A statistical study of on-line learning[END_REF] have proposed results similar to the Fisher efficiency property and which are not or less restrictive.

True versus empirical FIM. In general, the true distribution Q x of the inputs x is unknown. The FIM is therefore approximated using the empirical distribution Qx through a mini-batch S 1 by

F pθq « 1 |S 1 | ÿ x pbq PS 1
E y"P y|x pbq pθq t∇ θ log ppy|x pbq , θqr∇ θ log ppy|x pbq , θqs T u.

(2.84)

This expression can be viewed as a Monte-Carlo approximation of the FIM according to the distribution Q x . Sometimes, F pθq is approximated using both the empirical distribution of inputs and targets from training data. This yields the expression

F pθq « 1 |S 1 | ÿ px pbq ,y pbq qPS 1
∇ θ log ppy pbq |x pbq , θqr∇ θ log ppy pbq |x pbq , θqs T ": r F pθq.

(2.85)

This matrix r F pθq, referred to as the empirical FIM, has been used in many works [START_REF] George | Fast approximate natural gradient descent in a Kronecker-factored eigenbasis[END_REF][START_REF] Le Roux | Topmoumoute online natural gradient algorithm[END_REF][START_REF] Povey | Parallel training of DNNs with natural gradient and parameter averaging[END_REF]. However, this approximation is not a Monte-Carlo estimate of the FIM insofar as the targets y are not sampled according to the model conditional distribution P y|x pθq, but rather according to the data conditional distribution Q y|x . Two conditions must be met in order for the empirical Fisher to converge to the FIM [START_REF] Kunstner | Limitations of the empirical Fisher approximation for natural gradient descent[END_REF]. Firstly, the model must be "realizable", that is, there exists an optimum parameter θ opt such that P y|x pθ opt q " Q y|x . Secondly, the number of data points used to estimate r F pθq must be sufficiently large to allow r F pθq to converge to the FIM. These unlikely conditions undermine the quality of empirical Fisher and its use is therefore not recommended [START_REF] Kunstner | Limitations of the empirical Fisher approximation for natural gradient descent[END_REF][START_REF] Martens | New insights and perspectives on the natural gradient method[END_REF]. A more relevant approximation to the FIM advocated by various authors [START_REF] Grosse | A Kronecker-factored approximate Fisher matrix for convolution layers[END_REF][START_REF] Martens | Optimizing neural networks with Kronecker-factored approximate curvature[END_REF] is to keep the same expression as r F pθq, but instead use targets y sampled according to the conditional distribution of the model P y|x pθq. However, the main drawback of this approach is that it requires to explicitly define P y|x pθq and sample targets y's according to it. While the definition of P y|x pθq is straightforward for most use cases, sampling according to it can be very costly, especially when inputs and targets are high-dimensional vectors.

Relationship with GGN matrix. As shown by (2.49), the FIM is an average of elementary Hessian matrices. The density with respect to which the expectation is carried out acts in such a way that the result no longer contains any second derivative. This reminds us of the GGN matrix (2.41) and makes us wonder about the relationship between them. The statement below says that for some distributions P y|x pθq, these two matrices are identical to each other.

Theorem 2.1 (Martens [START_REF] Martens | New insights and perspectives on the natural gradient method[END_REF]). If ppy|zq is an exponential family distribution with natural parameters z, namely, log ppy|zq " z T T pyq ´Ξpzq `log Υpyq, (

where T pyq is a sufficient statistic, Ξpzq is the cumulant generating function and Υpyq is the normalizing constant, then the FIM coincides with the GGN matrix.

Proof. We are going to derive the equality for a single sample px, yq but the proof remains valid in the case of a mini-batch. By the chain rule, we have

∇ θ log pppy|zq z"f θ pxq " rJ f θ pxq s T ∇ z log pppy|zq |z"f θ pxq (2.87)
and so, F pθq " E y"P y|x pθq t∇ θ log ppy|x, θqr∇ θ log ppy|x, θqs T u " E y"P y|x pθq trJ f θ pxq s T ∇ z log ppy|zq |z"f θ pxq r∇ z log ppy|zqs T |z"f θ pxq J f θ pxq u " rJ f θ pxq s T E y"P y|x pθq t∇ z log ppy|zq |z"f θ pxq ∇ z log ppy|zqs T |z"f θ pxq uJ f θ pxq " rJ f θ pxq s T E y"P y|x pθq t´∇ 2 zz log ppy|zq |z"f θ pxq uJ f θ pxq .

(2.88)

The last equality results from E y"P y|x pθq t∇ z log ppy|zq |z"f θ pxq r∇ z log ppy|zqs T |z"f θ pxq u " E y"P y|x pθq t´∇ 2 zz log ppy|zq |z"f θ pxq u, which can be proven by following the same process as in the proof Proposition 2.1.

Let us now consider the GGN expression (2.41) with Lpz, yq " ´log ppy|zq |z"f θ pxq . We have Approximation of the Fisher matrix. The pioneering works of Amari [START_REF] Amari | Natural gradient works efficiently in learning[END_REF][START_REF] Park | Adaptive natural gradient learning algorithms for various stochastic models[END_REF][START_REF] Yang | Complexity issues in natural gradient descent method for training multilayer perceptrons[END_REF] highlighted the value of natural gradient methods for learning. However, as soon as the number of parameters reaches a certain threshold, we are faced with the same difficulties as for other second-order methods: the inversion of the FIM, which is full, becomes the main obstruction hampering the method's performance.

Gpθq " rJ f θ pxq s T H L pzqJ f θ pxq , ( 2 
The approximation of the FIM by its diagonal, suggested by [START_REF] Le Cun | Gradient-based learning applied to document recognition[END_REF] or inspired from [START_REF] Duchi | Adaptive subgradient methods for online learning and stochastic optimization[END_REF][START_REF] Kingma | A method for stochastic optimization[END_REF][START_REF] Tieleman | Lecture 6.5 RMSProp: Divide the gradient by a running average of its recent magnitude[END_REF] for the empirical FIM, turns out to be too coarse and does not retain enough of the information contained in the original matrix. The next attempts, to approximate respectively the empirical Fisher matrix (TONGA method [START_REF] Le Roux | Topmoumoute online natural gradient algorithm[END_REF]) and the exact Fisher matrix [START_REF] Ollivier | Riemannian metrics for neural networks I: feedforward networks[END_REF] by a block-diagonal structure with one block per neuron, brought no significant improvement. To make the FIM sparser, some authors opt for dynamic reparametrizations of the network [START_REF] Raiko | Deep learning made easier by linear transformations in perceptrons[END_REF][START_REF] Vatanen | Pushing stochastic gradient towards second-order methods -backpropagation learning with transformations in nonlinearities[END_REF][START_REF] Wiesler | Mean-normalized stochastic gradient for large-scale deep learning[END_REF] so that most of the scalar quantities associated with units such as activity and local derivative are zero on average. Another idea in the same vein is to adaptively modify the internal representation of the network during the learning phase, with the aim of controlling the FIM's condition number (PRONG method [START_REF] Desjardins | Natural neural networks[END_REF]).

The first approximations using a Kronecker product appeared with [START_REF] Grosse | Scaling up natural gradient by sparsely factorizing the inverse Fisher matrix[END_REF][START_REF] Heskes | On "natural" learning and pruning in multilayered perceptrons[END_REF][START_REF] Povey | Parallel training of DNNs with natural gradient and parameter averaging[END_REF], where the Fisher matrix is replaced by a block-diagonal matrix. This time, each block represents a network layer. If layer i has d i´1 inputs and d i outputs, then there are p i " pd i´1 `1qd i weights and block F i,i P R p i ˆpi of the Fisher matrix is approximated by

F i,i « Āi´1 b G i , (2.92) 
where b denotes the Kronecker product (see Definition 3.1) and the matrices

Āi´1 P R pd i´1 `1qˆpd i´1 `1q et G i P R d i ˆdi
are much smaller than F i,i . These factors are much cheaper to store and reverse. Their product is also easy and inexpensive to invert, thanks to the formula

p Āi´1 b G i q ´1 " Ā´1 i´1 b G ´1 i . (2.93) 
The KFAC approximation introduced by Martens and Grosse [START_REF] Martens | Optimizing neural networks with Kronecker-factored approximate curvature[END_REF] follows the same line as (2.92), with a specific definition for the factors Āi´1 and G i enabling faster computation. What also contributed to its great success over its predecessors was its strategy of preserving the factorized form for the much-needed Tikhonov regularization

F ' :" F `λI p , λ ą 0. (2.94)
More specifically, each diagonal block of the regularized FIM is approximated by

rF ' s i,i « `Ā i´1 `πi ? λ I d i´1 `1˘b `Gi `π´1 i ? λ I d i ˘": rF 'KFAC s i,i , (2.95) 
where the coefficient π i is "optimally" adjusted according to the data, for instance

π i " d trp Āi´1 q{d i´1 trp Ḡi q{d i . (2.96)
Furthermore, the lambda weight is gradually adjusted according to the behavior of the iterates. All these ingredients make KFAC a powerful and efficient method that marked a turning point in the development of natural gradient methods. Initially designed for a multilayer perceptron, KFAC has been generalized to other network architectures such as CNN [START_REF] Grosse | A Kronecker-factored approximate Fisher matrix for convolution layers[END_REF] (the method is then called KFC) and RNN [START_REF] Martens | Kronecker-factored curvature approximations for recurrent neural networks[END_REF]. For each new architecture, new more or less legitimate assumptions are made to define the factors Āi´1 and G i . KFAC's promising features have prompted a great many subsequent work. On the one hand, it has been successfully deployed in the context of Bayesian deep learning [START_REF] Zhang | Noisy natural gradient as variational inference[END_REF], deep reinforcement learning [START_REF] Wu | Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation[END_REF] and Laplace approximation [START_REF] Ritter | A scalable Laplace approximation for neural networks[END_REF]. On the other hand, its parallel implementation in the perspective of very large models has been the subject of much research. One example is the distributed version of [START_REF] Ba | Distributed second-order optimization using Kroneckerfactored approximations[END_REF], where the gradient computation is distributed over several GPUs using the standard synchronous SGD model, while the FIM blocks and their inverses are computed with CPUs asynchronously (while the network is still learning). In another approach [START_REF] Osawa | Large-scale distributed second-order optimization using Kronecker-factored approximate curvature for deep convolutional neural networks[END_REF], all computations are carried out synchronously with GPUs, with results communicated optimally between GPUs. Both these distributed paradigms claim a reduction in computation time by a factor of at least 2 compared with a sequential SGD.

At the algorithmic level, several attempts have been made to refine KFAC. The EKFAC [START_REF] George | Fast approximate natural gradient descent in a Kronecker-factored eigenbasis[END_REF] method rescales Kronecker factors with a diagonal variance computed in a Kronecker-factored eigenbasis. The TKFAC method [START_REF] Gao | A tracerestricted Kronecker-factored approximation to natural gradient[END_REF] preserves trace invariance relationship between the approximate and the exact FIM. By assuming that each block of the latter corresponds to the covariance of a tensor normal distribution in the model, the TNT method [START_REF] Ren | Tensor normal training for deep learning models[END_REF] puts forward a Kronecker block-diagonal approximation that has the advantage of being free of the layer structure. Beyond the Fisher matrix, the idea of Kronecker factorization can also be applied to the approximation of the Hessian matrix, as in KBFGS [START_REF] Goldfarb | Practical quasi-Newton methods for training deep neural networks[END_REF], where the complexity of computing the inverse of the Kronecker factors is mitigated by low-rank updates. It also generalizes to the approximation of the GGN matrix of MLPs, as shown in [START_REF] Goldfarb | Practical quasi-Newton methods for training deep neural networks[END_REF].

2.A Experimental evaluation of first-order methods

Here, we evaluate and compare the performance of different first-order optimization methods described in subsection 2.2.2. To do so, we consider the optimization of two CNN architectures in a classification task; Resnet-18 [START_REF] He | Deep residual learning for image recognition[END_REF] and Resnet-50 [START_REF] He | Deep residual learning for image recognition[END_REF], with two datasets, one of which, CIFAR-10 [92] is of medium size and the other, ImageNet [START_REF] Deng | ImageNet: A large-scale hierarchical image database[END_REF] is of very large size. All experiments were performed with PyTorch framework [START_REF] Paszke | PyTorch: An imperative style, high-performance deep learning library[END_REF] on Topaze supercomputer with Nividia Ampere A100 GPU and AMD Milan@2.45GHz CPU. In both experiments, the loss function used is the cross-entropy and the metric used is the top-1 accuracy. For Imagenet, due to large number of classes (1000), we also measured the top-5 accuracy. When considering a classification task with C classes, the predicted output is a vector of size C containing probabilities of different classes. In the case of top-1 accuracy, a prediction is correct when the highest probability in the predicted vector corresponds to the target class. As for the top-5 accuracy, a prediction is said to be correct when one at least of the 5 highest probabilities in the predicted vector corresponds to the target class. In both cases, the accuracy is defined as the number of correct predictions divided by the number of data points evaluated.

2.A.1 CIFAR10

CIFAR-10 (Canadian Institute For Advanced Research) [START_REF] Krizhevsky | Learning multiple layers of features from tiny images[END_REF] is a dataset of images commonly used to benchmark deep learning algorithms. It consists of 60000 32 ˆ32 colour images in 10 classes, with 6000 images per class. It is divided into two parts: 50000 training images and 10000 validation images. For this dataset, we used Resnet-18 [START_REF] He | Deep residual learning for image recognition[END_REF] which is a CNN with 18 layers. For data augmentation, we used the same techniques as in [START_REF] Goyal | Accurate, large minibatch SGD: Training ImageNet in 1 hour[END_REF] i.e. the input image is 224 ˆ224 randomly resized-crop and also randomly flipped horizontally. For each optimizer, we selected the best hyper-parameters that give the best results on the validation set (see Table 2.1 for such hyper-parameters). We found that the learning rate has a large impact on the performance of each optimizer. Finally for each optimizer, we trained for 90 epochs and used a batch size of 256.

Figure 2.7 shows the performance of the optimizers on the considered problem. As we can see on the figure, for each measured quantity (loss and accuracy), either on training or validation data, SGD shows the best performance, then comes Adam, followed by AdaGrad and finally comes RMSProp. 

2.A.2 ImageNet

The ImageNet dataset [START_REF] Russakovsky | ImageNet large scale visual recognition challenge[END_REF] consists of 1.2 million training images and 50000 validation images and contains 1000 classes. We used the Resnet-50 architecture and the same data augmentation techniques as for CIFAR-10. For the choice of learning rates, we used a learning rate schedule as suggested in [START_REF] Goyal | Accurate, large minibatch SGD: Training ImageNet in 1 hour[END_REF]. To this end, we adopted for each optimizer, the learning schedule that we found to work best for it (see Figure 2.8). The other hyper-parameters are the same as in the CIFAR-10 experiments. As the size of the training set is very large, we adopted the distributed synchronous data-parallel approach [START_REF] Goyal | Accurate, large minibatch SGD: Training ImageNet in 1 hour[END_REF], where data is distributed across different GPU workers and the model is replicated across them. We used 64 GPU workers and a total batch size of 2048, which corresponds to a batch size of 32 per GPU worker. Similarly to CIFAR10 experiments, we trained the model for 90 epochs with each optimizer. Note that with this distributed approach and the 64 GPUs, training of the network with each optimizer lasted for about 3 hours. With such a large amount of data, the training could last several days or even weeks without the distributed approach.

As we can see in Figure 2.9, like in the case of CIFAR10, SGD shows the best performance, followed by Adam, AdaGrad and RMSProp in decreasing order of performance. The two performed experiments support a well known fact in the literature: a well-tuned SGD generally outperforms adaptive gradient optimizers. In this chapter, we present our first contribution to the subject of natural gradient methods for neural networks. More specifically, we propose a few alternative approximations of the Fisher matrix that do not rely on any objectionable statistical assumptions, while keeping the spirit of KFAC [START_REF] Martens | Optimizing neural networks with Kronecker-factored approximate curvature[END_REF] and KFC [START_REF] Grosse | A Kronecker-factored approximate Fisher matrix for convolution layers[END_REF].

The preliminary backgrounds regarding the Kronecker product and the KFAC approximation are first recalled in §3.1. Next, in §3.2, we design four novel methods all of which are based solely on the principle of minimizing some error between two matrices in the Frobenius norm. The calculation of these approximations involves the Kronecker-product SVD and their computational efficiency is carefully inspected. Several numerical experiments for autoencoders are described and commented on in §3.3. Finally, in §3.4, we investigate a new extension of our methods to convolutional layers. Except for the last section §3.4 on CNNs, the text below is a replica of the article [START_REF] Koroko | Efficient approximations of the Fisher matrix in neural networks using Kronecker product singular value decomposition[END_REF], which was accepted for publication in ESAIM: Proceedings and Surveys.

Preliminary backgrounds

In addition to key concepts presented in the previous chapter, we introduce in this section new prerequisites necessary to elaborate the four novels approximations.

We consider a feed forward neural network (MLP) that maps its input x to an output z according to equation (2.2). For a given input-target pair px, yq, the gradient of the loss Lpy, f θ pxqq w.r.t to the weights is computed by the back-propagation algorithm [START_REF] Lecun | A theoretical framework for back-propagation[END_REF]. For convenience, we adopt the shorthand notation Dv " ∇ v L for the derivative of L w.r.t any variable v, as well as the special symbol g i " Ds i for the preactivation derivative. Starting from Da ℓ " B z Lpy, z " a ℓ q, we perform

g i " Da i d σ 1 i ps i q, DW i " g i āT i´1 , Da i´1 " W T i g i , (3.1) 
for i from ℓ to 1, where d denotes the component-wise product. Finally, the gradient ∇ θ L is retrieved as Dθ " rvecpDW 1 q T , vecpDW 2 q T , . . . , vecpDW ℓ q T s T .

(3.

2)

The FIM associated to the network parameter θ is therefore defined as F pθq "E x"Qx,y"P y|x pθq rDθpDθq T s "

» - - F 1,1 . . . F 1,ℓ . . . . . . F ℓ,1 . . . F ℓ,ℓ fi ffi fl , (3.3) 
in which the block F i,j " E x"Qx,y"P y|x pθq rvecpDW i qvecpDW j q T s " E x"Qx,y"P y|x pθq rvecpg i āT i´1 qvecpg j āT j´1 q T s (3.4) is a d i pd i´1 `1q ˆdj pd j´1 `1q matrix with d i being the number of neurons at layer i. For brevity and without any risk of ambiguity, we will omit the subscripts for the expectation and write E instead of E x"Qx,y"P y|x pθq.

The blocks of F can be given the following meaning: F i,i contains second-order statistics of weight derivatives on layer i, while F i,j,i‰j represents correlation between weight derivatives of layers i and j.

Kronecker product

The Kronecker product and its related properties are an essential ingredient for different types of FIM approximation we will be presenting throughout this manuscript. It is therefore necessary to become familiar with this notion and some of its properties. Definition 3.1. Let A P R m A ˆnA and B P R m B ˆnB . Then the Kronecker Product of A and B is defined as the matrix

A b B " » - - A 1,1 B . . . A 1,n A B . . . . . . A m A ,1 B . . . A m A ,n A B fi ffi fl P R m A m B ˆnA n B . (3.5) 
The very first properties to be mentioned are concerned with associativity and distributivity of b with respect to addition. Note, however, that the Kronecker product is not commutative, i.e., A b B ‰ B b A in general. This completes the proof.

Theorem 3.3. The Kronecker product of two diagonal matrices yields a diagonal matrix.

Proof. Directly follows from Definition 3.1.

The upcoming assertion, known as mixed-product property, is a handy result that expresses the ordinary matrix product of two Kronecker products.

Theorem 3.4. Let A P R m A ˆnA , B P R m B ˆnB , C P R m C ˆnC , D P R m D ˆnD with n A " m C and n B " m D . Then, pA b BqpC b Dq " AC b BD P R m A m B ˆnC n D . (3.7) 
Proof. We have

pA b BqpC b Dq " » - - A 1,1 B . . . A 1,n A B . . . . . . A m A ,1 B . . . A m A ,n A B fi ffi fl » - - C 1,1 D . . . C 1,n C D . . . . . . C m C ,1 D . . . C m C ,n C D fi ffi fl " » - - ř n A k"1 A 1,k C k,1 BD . . . ř n A k"1 A 1,k C k,n C BD . . . . . . ř n A k"1 A m A ,k C k,1 BD . . . ř n A k"1 A m A ,k C k,n C BD fi ffi fl
" pACq b pBDq which concludes the proof.

As a consequence of the previous theorem, the power operator is distributive with respect to the Kronecker product, as stated by the the following corollary. Let us assume the statement is true for n ě 2 (induction hypothesis). Using the induction hypothesis and again Theorem 3.4, we have

pA b Bq n`1 " pA b Bq n pA b Bq " pA n b B n qpA b Bq " pA n Aq b pB n Bq " A n`1 b B n`1 .
Also very useful is the transpose of a Kronecker product, with two consequences regarding the preservation of symmetry and orthogonality by the Kronecker product. Similarly, the inverse of a Kronecker product between two matrices is the Kronecker product of the inverse of each matrix in the same order. To put it another way, the inverse of a Kronecker product can be easily deduced from those of the (smaller) matrices involved. From this, we infer that

A ´1 b B ´1 is the inverse of A b B.
Likewise, the singular value decomposition (SVD) of a Kronecker product can be deduced from those of the (smaller) matrices involved.

Theorem 3.7. Let A P R m A ˆnA , B P R m B ˆnB be two matrices whose singular value decompositions are

A " U A Σ A V T A , B " U B Σ B V T B , (3.10) 
where

U A P R m A ˆRm A , U B P R m B ˆRm B are orthogonal, V A P R n A ˆRn A , V B P R n B ˆRn B are orthogonal, Σ A P R m A ˆRn A , Σ B P R m B ˆRn B diagonal. Then, A b B " pU A b U B qpΣ A b Σ B qpV A b V B q T (3.11)
is the SVD of A b B.

Proof. We have

A b B " pU A Σ A V T A q b pU B Σ B V T B q. Thanks to Theorem 3.4, we can write A b B " pU A b U B qpΣ A b Σ B qpV A b V B q T . Since U A b U B and V A b V B are orthogonal matrices (Corollary 3.3), and Σ A b Σ B is diagonal (Theorem 3.3), then pU A b U B qpΣ A b Σ B qpV A b V B q T is the SVD of A b B.
A direct consequence of the above theorem is the distributivity of rank with respect to b; as is clarified by the following corollary. Proof. Simply use Theorem 3.7 with the fact that the rank of a matrix is the number of its non-zero singular values.

Similar to the SVD, if it exists, the eigenvalue decomposition of a Kronecker product can be derived from those the two smaller matrices. A direct and interesting consequence regards the preservation of positive semi-definiteness with respect to the Kronecker product. The following two statements indicate how to obtain the determinant/trace of a Kronecker product from the traces/determinants of the matrices involved. Theorem 3.9. Let A P R m A ˆmA and B P R m B ˆmB be two square matrices. Then, detpA b Bq " pdetAq m B pdetBq m A .

(3.12)

Proof. From Theorem 3.7, it follows that

detpA b Bq " det pΣ A b Σ B q , with Σ A b Σ B " » - - rΣ A s 1,1 Σ B . . . rΣ A s m A ,m A Σ B fi ffi fl
a block-diagonal matrix. Thus, we have detpA b Bq " Proof. The trace can be computed as

m A ź k"1 detprΣ A s k,k Σ B q " m A ź k"1 rΣ A s m B k,k detpΣ B q " pdetΣ B q m A ˆmA ź k"1 rΣ A s k,k ˙mB " pdetΣ B q m A pdetΣ A q m B " pdetBq m A pdetAq m B
trpA b Bq " tr ¨» - - A 1,1 B . . . A 1,m A B . . . . . . A m A ,1 B . . . A m A ,m A B fi ffi fl ‹ ' " m A ÿ k"1 trpA k,k Bq " m A ÿ k"1 A k,k ptrBq " ptrBq m A ÿ k"1 A k,k
" ptrBqptrAq which is the desired result.

It is sometimes more convenient to deal with vectors rather than matrices. For this purpose, we wil consider the vectorization operator introduced in the upcoming definition.

Definition 3.2. For a matrix

A " » - - - - A 1,1 A 1,2 ¨¨¨A 1,n A A 2,1 A 2,2 ¨¨¨A 2,n A . . . . . . . . . . . . A m A ,1 A m A ,2 ¨¨¨A m A ,n A fi ffi ffi ffi fl P R m A ˆnA ,
vecpAq is the vector obtained by stacking the columns of A together, i.e.,

vecpAq

" rA 1,1 , A 2,1 , . . . , A m A ,1 , A 1,2 , . . . , A m A ,2 , . . . , A 1,n A , . . . A m A ,n A s T P R m A n A . (3.14) 
The forthcoming theorems highlight interesting properties of "vec" operator that will serve us throughout the thesis. Theorem 3.11. Let A 1 , A 2 , . . . , A k be k matrices of same size. Then, for any scalars λ 1 , . . . , λ k , we have

vec ˆk ÿ j"1 λ j A j ˙" k ÿ j"1 λ j vec pA j q . (3.15)
Proof. Directly follows from Definition 3.2.

Theorem 3.12. Let x P R mx and y P R my be two vectors. Then, vecpxy T q " y b x. vecpAb j e T j Cq

" n B ÿ j"1 pC T e j b Ab j q " n B ÿ j"1 pC T b Aqpe j b b j q " pC T b Aq n B ÿ j"1 vecpb j e T j q " pC T b Aqvecp n B ÿ j"1
b j e T j q " pC T b AqvecpBq.

This completes the proof.

KFAC method

Let's go back to the FIM F expression defined by the equation (3.3). Using the properties of the Kronecker product, each block can be written as

F i,j " ErvecpDW i qvecpDW j q T s " Ervecpg i āT i´1 qvecpg j āT j´1 q T s " Erpā i´1 b g i qpā j´1 b g j q T s " Erpā i´1 b g i qpā T j´1 b g T j qs " Erā i´1 āT j´1 b g i g T j s. (3.18) 
The Kronecker-factored approximate curvature (KFAC) method introduced in [START_REF] Martens | Optimizing neural networks with Kronecker-factored approximate curvature[END_REF] is grounded on two assumptions that provide a computationally efficient approximation of F . The first assumption is that F i,j " 0 for i ‰ j. In other words, weight derivatives in two different layers are uncorrelated. This results in block-diagonal approximation F « diagpF 1,1 , F 2,2 , . . . F ℓ,ℓ q, with @i P 1; ℓ , F i,i P R pd i´1 `1qd i ˆpd i´1 `1qd i . This first approximation is insufficient, insofar as the blocks of F i,i are very large for neural networks with high number of units in layers. A further approximation is in order.

The second assumption is that of independent activations and derivatives (IAD): activations and pre-activation derivatives are independent. i.e. @i, a i´1 K K g i . This allows each block F i,i to be factorized into a Kronecker product of two smaller matrices, i.e.,

F i,i " Erā i´1 āT i´1 b g i g T i s « Erā i´1 āT i´1 s b Erg i g T i s ": ĀKFAC i´1 b G KFAC i , (3.19) with ĀKFAC i´1 " Erā i´1 āT i´1 s P R pd i´1 `1qˆpd i´1 `1q and G KFAC i " Erg i g T i s P R d i ˆdi
. These two assumptions yield the KFAC approximation

F « F KFAC " diagprF KFAC s 1,1 , . . . , rF KFAC s ℓ,ℓ q, (3.20) with @i P 1; ℓ , rF KFAC s i,i " ĀKFAC i´1 b G KFAC i .
The decisive advantage of F KFAC is that it can be inverted in a very economical way. Indeed, owing to the properties 3.6 and 3.13 of the Kronecker product, the approximate natural gradient F ´1 KFAC ∇h can be evaluated as

F ´1 KFAC ∇h " » - - vecpG ´1 1 p∇ W 1 hq Ā´1 0 q . . . vecpG ´1 ℓ p∇ W ℓ hq Ā´1 ℓ´1 q fi ffi fl , (3.21) 
where the KFAC superscripts are dropped from now on to alleviate notations. This drastically reduces computations and memory requirements, since we only need to store, invert and multiply the smaller matrices Āi´1 's and G i 's.

In practice, because the curvature changes relatively slowly [START_REF] Martens | Optimizing neural networks with Kronecker-factored approximate curvature[END_REF], the factors p Āi´1 , G i q are computed at every T 1 iterations and their inverses at every T 2 iterations. Moreover, p Āi´1 , G i q are estimated using exponentially decaying moving average. At iteration k, let p Āold i´1 , G old i q be the factors previously computed at iteration k ´T1 and p Ānew i´1 , G new i q be those computed with the current mini-batch. Then, setting ρ " minp1 ´1{k, γq with γ P r0, 1s, we have

Āi´1 " ρ Āold i´1 `p1 ´ρq Ānew i´1 , G i " ρG old i `p1 ´ρqG new i .
Another crucial ingredient of KFAC is the Tikhonov regularization to enforce invertibility of F KFAC . The straightforward damping F KFAC `λI deprives us of the possibility of applying the formula of Theorem 3.6.

To overcome this issue, Martens & Grosse [START_REF] Martens | Optimizing neural networks with Kronecker-factored approximate curvature[END_REF] advocated the more judicious Kronecker product regularization

rF ' KFAC s i,i " p Āi´1 `πi λ 1{2 I Āi´1 q b pG i `π´1 i λ 1{2 I G i q,
where I Āi´1 and I G i denote identity matrices of same size as Āi´1 and G i respectively, λ ą 0 denotes regularization or damping parameter and

π i " d trp Āi´1 q{pd i´1 `1q trpG i q{d i .

Four novel methods

Motivation

The fundamental assumption on which KFAC hinges is the independence between activations and pre-activation derivatives. We believe that this premise, which has no theoretical foundation, is at the root of a poor quality of the FIM approximation. This is why, we wish to put forward four Kronecker-factored block-diagonal approximations that aim at more accurately representing the FIM by removing this assumption. To this end, we minimize the Frobenius norm of the difference between the original matrix and a prescribed form for the approximation, which is achievable through the Kronecker product singular value decomposition. While staying within the framework of the first assumption (block-diagonal approximation), we now design four new methods that break free from the second hypothesis (IAD) in order to achieve a better accuracy: KPSVD, Deflation, Lanczos-bidiagonalization and KFAC-corrected.

KPSVD

In our first method, called KPSVD, the factors p Āi´1 , G i q are specified as the arguments of the best possible approximation of F i,i by a single Kronecker product. Thus,

p Āi´1 , G i q " argmin pR,Sq }F i,i ´R b S} F " argmin pR,Sq }Erā i´1 āT i´1 b g i g T i s ´R b S} F , (3.22) 
where } ¨}F denotes Frobenius norm. Although the minimization problem (3.22) has already been introduced in abstract linear algebra by van Loan [START_REF] Van Loan | The ubiquitous Kronecker product[END_REF][START_REF] Van Loan | Approximation with Kronecker products[END_REF], it has never been considered in the context of neural networks, at least to the best of our knowledge. Anyhow, it can be solved at a low cost by means of the Kronecker product singular value decomposition technique [START_REF] Van Loan | The ubiquitous Kronecker product[END_REF].

To write down the solution, we need the following notion.

Definition 3.3. Let M " » - - - - M 1,1 . . . M 1,d M 2,1 . . . M 2,d . . . . . . M d,1 . . . M d,d fi ffi ffi ffi fl P R d 1 dˆd 1 d
be a uniform block matrix, that is, M µ,ν P R d 1 ˆd1 for all pµ, νq P t1, . . . du 2 . The zigzag rearrangement operator Z converts M into the matrix

ZpM q " » - - - - - - - - - - - - vecpM 1,1 q T . . . vecpM d,1 q T . . . vecpM 1,d q T . . . vecpM d,d q T fi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi fl P R d 2 ˆpd 1 q 2 , (3.23) 
by flattening out each block in a column-wise order and by transposing the resulting vector. This operator is to be applied to each M " F i,i with d " d i´1 `1 and d 1 " d i .

The following theorem testifies that problem (3.22) is equivalent to a classical low rank approximation problem. Theorem 3.14. Any solution of (3.22) is also a solution of the ordinary rank-1 matrix approximation problem pvecp ĀKPSVD i´1 q, vecpG KPSVD i qq " argmin pR,Sq }ZpF i,i q ´vecpRq vecpSq T } F .

(3.24)

Proof. See appendix 3.A.1.

Problem (3.24) is solved as follows. Let U T ZpF i,i qV " Σ be the singular value decomposition (SVD) of ZpF i,i q. Let σ 1 be the greatest singular value of ZpF i,i q and pu 1 , v 1 q be the associated left and right singular vectors. A solution to (3.24) is

ĀKPSVD i´1 " ? σ 1 MATpu 1 q, G KPSVD i " ? σ 1 MATpv 1 q,
where "MAT," the converse of "vec," turns a vector into a matrix. The question to be addressed now is how to efficiently compute u 1 , v 1 and σ 1 . We recommend the power SVD algorithm (see appendix 3.B.1), which only requires the matrix-vector multiplications ZpF i,i qv and ZpF i,i q T u. These operations can be performed without explicitly forming F i,i nor ZpF i,i q, as elaborated on in the upcoming Proposition.

Proposition 3.1. For all u P R pd i´1 `1q 2 and v P R d 2 i , ZpF i,i qv " Er g T i V g i vecpā i´1 āT i´1 q s, ZpF i,i q T u " Er āT i´1 U āi´1 vecpg i g T i q s, with U " MATpuq and V " MATpvq.

Proof. See appendix 3.A.2.

Estimating ZpF i,i qv and ZpF i,i q T u Let us consider a batch S " tpx p1q , y p1q q, . . . px pmq , y pmq qu drawn from the training data D. We recall that the expectation is taken with respect to both Q x (data distribution over inputs x) and P y|x pθq (predictive distribution of the network). To estimate Z pF i,i q v and Z pF i,i q T u, we use the Monte-Carlo method as suggested by Martens & Grosse [START_REF] Martens | Optimizing neural networks with Kronecker-factored approximate curvature[END_REF]: we first compute the āi´1 's and g i 's during an additional back-propagation performed using targets y's sampled from P y|x pθq and then set

ZpF i,i qv « 1 m m ÿ b"1 pg pbq i q T V g pbq i vecpā pbq i´1 pā pbq i´1 q T q and ZpF i,i q T u « 1 m m ÿ b"1 āpbq i´1 q T U pā pbq i´1 vecpg pbq i pg pbq i q T q,
where the subscript b loops over the number m of data points in the batch S. In practice, it is more economical (in terms of implementation cost) to compute ZpF i,i qv and ZpF i,i q T u using matrix forms rather than previous expressions. To derive these matrix expressions, let us define the matrices Âi´1 " pā p1q i´1 , . . . , āpmq i´1 q P R d i´1 ˆm and Ĝi " pg p1q i , . . . , g

pmq i q P R d i ˆm,
where the b th column of Âi´1 and that of Ĝi correspond respectively to the activation and preactivation derivative computed with the b th sample in S. Then, using basic matrix operations, it is straightforward to show that

MAT `ZpF i,i qv ˘" 1 m ˆdiag ´Ĝ T i V Ĝi ¯T ˚Â i´1 ˙Â T i´1 and MAT `ZpF i,i q T u ˘" 1 m ˆdiag ´Â T i´1 U Âi´1 ¯T ˚Ĝ i ˙Ĝ T i ,
where ˚defines the operator that, given a row vector z " pz r1s , . . . , z rms q P R 1ˆm and a matrix A " pa 1 , . . . , a m q P R d A ˆm multiplies the j th column of A with the j th component of z:

z ˚A " pz r1s a 1 , . . . , z rms a m q.

So far, we have not paid attention to the symmetry and positive semi-definiteness of the matrices p ĀKPSVD i´1 , G KPSVD i q in problem (3.22). It turns out that symmetry is automatic, while positive semi-definiteness occurs for some solutions to be selected. 

Kronecker rank-2 approximation to F i,i

Since the KPSVD method of §3.2.2 is merely a Kronecker rank-1 approximation of F i,i , it is most natural to look for higher order approximations. The two methods presented in this section are based on seeking a Kronecker rank-2 approximation R b S `P b Q of F i,i that achieves min pR,S,P,Qq }F i,i ´pR b S `P b Qq} F .

(3.25)

Again, the zigzag rearrangement operator Z enables us to reformulate (3.25) as an ordinary rank-2 matrix approximation problem. To determine a solution of the latter, there are two techniques in practice: deflation [START_REF] Saad | Numerical Methods for Large Eigenvalue Problems[END_REF] and Lanczos bi-diagonalization [START_REF] Golub | Calculating the singular values and pseudo-inverse of a matrix[END_REF].

Deflation

The rank-1 factors pR, Sq and the rank-2 factors pP, Qq are computed successively, one after another:

1. Apply the power SVD algorithm to ZpF i,i q to compute pR, Sq so as to minimize }F i,i Ŕ b S} F . The solution is known to be pR, Sq " p ĀKPSVD i´1 , G KPSVD i q.

Let p

F i,i " F i,i ´R b S. Apply the power SVD algorithm to Zp p F i,i q to compute pP, Qq so as to minimize } p

F i,i ´P b Q} F . 3. Set F i,i « R b S `P b Q.
In step 2, we need to calculate the matrix-vector products Zp p F i,i qv and Zp p F i,i q T u. These operations can be done efficiently without explicitly forming p F i,i or Zp p F i,i q. Indeed, Zp p F i,i qv " ZpF i,i qv ´ZpR b Sqv, Zp p F i,i q T u " ZpF i,i q T u ´ZpR b Sq T u.

On one hand, we know how compute ZpF i,i qv and ZpF i,i q T u from Proposition 3.1. On the other hand, it is not difficult to show that ZpR b Sqv " ⟨vecpSq, v⟩ vecpRq, ZpR b Sq T u " ⟨vecpRq, u⟩ vecpSq, where ⟨¨, ¨⟩ stands for the dot product.

Lanczos bi-diagonalization

In contrast to deflation, the Lanczos bi-diagonalization algorithm (see appendix 3.B.2) computes pR, Sq and pP, Qq at the same time. It does so by simultaneously computing the two largest singular values σ 1 ě σ 2 of ZpF i,i q with the associated singular vectors pu 1 , v 1 q and pu 2 , v 2 q. Once these singular elements are determined, it remains to set

R " ? σ 1 MATpu 1 q, S " ? σ 1 MATpv 1 q, P " ? σ 2 MATpu 2 q, Q " ? σ 2 MATpv 2 q.
Similarly to KPSVD, we only have to perform the matrix-vector multiplications ZpF i,i qv and ZpF i,i q T u without forming and storing F i,i or ZpF i,i q.

In pratice, it is advisable to implement the restarted version of the algorithm [START_REF] Saad | Numerical Methods for Large Eigenvalue Problems[END_REF], which consists of three steps:

1. Start: Choose an initial vector q p0q and a dimension K for the Krylov subspace.

2. Iterate: Perform Lanczos bidiagonalization algorithm (appendix 3.B.2).

3.

Restart: Compute the desired singular vectors. If stopping criterion satisfied, stop. Else set q p0q equal to linear combination of singular vectors and go to 2.

KFAC-CORRECTED

Another idea is to simply add an ad hoc correction to the KFAC approximation. Put another way, we consider

F i,i « ĀKFAC i´1 b G KFAC i `Ā corr. i´1 b G corr. i ,
using the best possible correctors, that is,

p Ācorr. i´1 , G corr. i q " argmin pP,Qq }F i,i ´Ā KFAC i´1 b G KFAC i ´P b Q} F . (3.26)
Again, the solution of (3.26) can be computed by applying the power SVD algorithm to the matrix ZpF i,i ´Ā KFAC i´1 b G KFAC i q. The matrix-vector multiplications required can be done in the same way as in the deflation method without explicitly forming and storing the matrices.

Efficient inversion of A b B `C b D

For each of the last three methods, we need to solve a linear system of the form pAbB`CbDqu " v in an efficient way. This is far from obvious, since due to the sum, the well-known and powerful identities pA b Bq ´1 " A ´1 b B ´1 and pA b Bq ´1vecpX q " vecpB ´1X A ´T q can no longer be applied. There are many good methods to compute u, but the most appropriate for our problem is that of Martens & Grosse [START_REF] Martens | Optimizing neural networks with Kronecker-factored approximate curvature[END_REF], since it takes advantage of symmetry and definiteness of the matrices. Below is a summary of the algorithm, the full details of which are in [START_REF] Martens | Optimizing neural networks with Kronecker-factored approximate curvature[END_REF].

1. Compute A ´1{2 , B ´1{2 and the symmetric eigen/SVD-decompositions

A ´1{2 CA ´1{2 " E 1 S 1 E T 1 , B ´1{2 DB ´1{2 " E 2 S 2 E T 2 ,
where S j:jP 1;2 are diagonal and E j:jP 1;2 are orthogonal.

Set K

1 " A ´1{2 E 1 , K 2 " B ´1{2 E 2 . Then, u " vecpK 2 rpK T 2 V K 1 q m p11 T `s2 s T 1 qsK T 1 q,
where E m F denotes the Hadamard or element-wise division of E by F , s j:jP 1;2 " diagpS j:jP 1;2 q, 1 vector of ones and V " MATpvq. Note that K j:jP 1;2 , s j:jP 1;2 can be stored and reused for different choices of v.

Despite the numerous steps involved, the inversion of A b B `C b D is much cheaper than that of F i,i . Indeed, if d denotes the number of neurons in the current layer, then the matrices A, B, C, D are of size d ˆd each, and therefore the inversion of A b B `C b D has Opd 2 q memory requirement and Opd 3 q computational cost. Meanwhile, since F i,i is a matrix size d 2 ˆd2 , its inversion requires Opd 4 q memory and Opd 6 q flops.

Experiments

We have evaluated our proposed methods as well as KFAC, SGD and ADAM on the three standard deep-auto-encoder problems used for benchmarking neural network optimization methods in deep learning community [START_REF] Botev | Practical Gauss-Newton optimisation for deep learning[END_REF][START_REF] Martens | Deep learning via Hessian-free optimization[END_REF][START_REF] Martens | Optimizing neural networks with Kronecker-factored approximate curvature[END_REF][START_REF] Sutskever | On the importance of initialization and momentum in deep learning[END_REF]. The benchmarks consist of training three different auto-encoder architectures with CURVES, MNIST and FACES datasets respectively. See appendix 3.D for a complete description of the network architectures and datasets. In our experiments, all our proposed methods as well as KFAC use approximations of the true FIM F i.e. the FIM computed with targets sampled from the model's conditional distribution. Experiments were performed with PyTorch framework [START_REF] Paszke | PyTorch: An imperative style, high-performance deep learning library[END_REF] on supercomputer with Nividia Ampere A100 GPU and AMD Milan@2.45GHz CPU. The precision value ϵ for power SVD and Lanczos bi-diagonalization algorithm was set to 10 ´6. Also for these two algorithms, we used a warm-start technique which means that the final results of the previous iteration are used as a starting point (instead of a random point) for the current iteration. This has resulted in a faster convergence. In all experiments, the batch sizes used are 256, 512 and 1024 for CURVES, MNIST and FACES datasets respectively.

We first evaluate the approximation qualities of the FIM and then report the results on performance of the optimization objective.

Approximation qualities of the FIM

We investigated how well our proposed methods and KFAC approximate blocks of the exact FIM. To do so, we computed for each of the problems the exact FIM and its different approximations of the 5th layer of the network. For a fair comparison, the exact FIM as well as its different approximations were computed during the same optimization process with an independent optimizer (SGD or ADAM). We ran two independent tests with SGD and ADAM optimizers respectively and ended up with the same results. We therefore decided to report only the results obtained with ADAM. Let F be the exact FIM of the 5th layer of the network and F be any approximation to F ( F is in the form A b B for KFAC and KPSVD, and R b S `P b Q for KFAC corrected, Deflation and Lanczos). We measured the following two types of error:

• Error 1: Frobenius norm error between F and F : }F ´F } F {}F } F ;

• Error 2: ℓ 2 norm error between the spectra of F and F : }specpF q ´specp F q} 2 {}specpF q} 2

where specpM q denotes the spectrum of M and } ¨}2 is the ℓ 2 norm.

Note that here the Fisher matrices were estimated without the exponentially decaying averaging scheme which means that only the mini-batch at iteration k is used to compute the Fisher matrices at this iteration. As we can see in Figure 3.1, for each of the problems, the Deflation method gives the best approximation, followed by the other methods. Although Deflation and Lanczos bi-diagonalization may appear as two implementations of the same idea (i.e., computing the two largest singular vectors), the former turns out to be more robust than the latter, in the sense that it converges much faster to the two dominant pairs and also produces a much smaller error. This accounts for the difference in performance between the two methods. The Error 1 and Error 2 made by our different methods remain lower than those caused by KFAC throughout the optimization process. This suggests that our methods give a better approximation to the Fisher than KFAC, and that increasing the rank does improve the quality of approximation.

One can go further in this direction if there is no prohibitive extra cost.

Optimization performance

We now consider the network optimization in each of the three problems. We have evaluated our methods against KFAC and the baselines (SGD and ADAM). Here the different approximations to the FIM were computed using the exponentially decaying technique as described in §3.1.2.

The decay factor γ was set to 0.95 as in [START_REF] Martens | Optimizing neural networks with Kronecker-factored approximate curvature[END_REF]. Since the goal of KFAC as well as our methods is optimization performance rather than generalization, we performed Grid Search for each method and selected hyperparameters that gave a better reduction to the training loss. The learning rate α and the damping parameter λ are in range t10 ´1, 10 ´2, 10 ´3, 10 ´4, 3 ¨10 ´1, 3 ¨10 ´2, 3 ¨10 ´3, 3 10 ´4u, and the clipping parameter c belongs to t10 ´2, 10 ´3u (see appendix 3.E for definition of c). Note that damping and clipping are used only in KFAC and our proposed methods. Update frequencies T 1 and T 2 were set to 100. The momentum parameters were β " 0.9 for SGD and pβ 1 , β 2 q " p0.9, 0.999q for ADAM.

Figure 3.2 shows the performance of the different optimizers on the three studied problems. The first observation is that in each problem, KFAC as well as our methods optimize the training loss function faster than SGD and ADAM both with respect to epoch and time. Although our methods may seem much more computationally expensive than KFAC since at each iteration we perform the power SVD or Lanczos bi-diagonalization to estimate the Fisher matrix, they actually have the same order of magnitude in computational cost as KFAC. See appendix 3.C for a comparison of the computational costs. For each of the three problems, we observe that KFAC and KPSVD perform about the same while the DEFLATION, LANCZOS and KFAC-CORRECTED methods have the ability to optimize the objective function much faster both with respect to epoch and time.

Although this is not our object of study, we observe that for each of the three problems, our proposed methods also maintain a good generalization (see Figure 3.3).

Case study of convolutional neural networks 3.4.1 KFAC for convolution layers

Grosse and Martens [START_REF] Grosse | A Kronecker-factored approximate Fisher matrix for convolution layers[END_REF] extended KFAC to CNNs, where it was renamed KFC. However, due to weight sharing in convolutional layers, it was necessary to add two extra assumptions regarding spatial homogeneity and spatially uncorrelated derivatives.

Using the back propagation algorithm combined with equation (2.5), the gradient of the loss function with respect to the parameters of a convolutional layer i is computed as g i,t " Dr a i,t d σ 1 i ps i,t q, DW i " for t P T i , where the special symbol g i,t :" Ds i,t stands for the pre-activation derivative. The diagonal block of the FIM associated to layer i can be thus formulated as

ÿ tPT i g i,t āT i´1,t , Da i´1,t " W T i g i,t , (3.27) 
F i,i " E " vecpDW i qvecpDW i q T ‰ " E " vec ´ÿ tPT i g i,t āT i´1,t ¯vec ´ÿ tPT i g i,t āT i´1,t ¯T ı " E " ÿ tPT i ÿ t 1 PT i pā i´1,t b g i,t qpā i´1,t 1 b g i,t 1 q T ı " E " ÿ tPT i ÿ t 1 PT i āi´1,t āT i´1,t 1 b g i,t g T i,t 1 ı " E " ÿ tPT i ÿ t 1 PT i Ω i pt, t 1 q b Γ i pt, t 1 q ı , (3.28) 
with Ω i pt, t 1 q " āi´1,t āT i´1,t 1 and Γ i pt, t 1 q " g i,t g T i,t 1 . Note that F i,i P R c i pc i´1 |∆ i |`1qˆc i pc i´1 |∆ i |`1q (we recall that c i´1 and c i denote input and output channel respectively and ∆ i corresponds to spatial locations of filters). In order to factorize F i,i into a Kronecker product of two smaller matrices, Grosse & Martens [START_REF] Grosse | A Kronecker-factored approximate Fisher matrix for convolution layers[END_REF] resort to three hypotheses. First, similarly to MLP layers, activations and pre-activation derivatives are assumed to be independent (IAD). Secondly, postulating spatial homogeneity (SH), the second-order statistics of the activations and pre-activation derivatives at any two spatial locations t and t 1 depend only on the difference t ´t1 . Finally, the pre-activation derivatives at any two distinct spatial locations are declared to be uncorrelated (SUD), i.e., Γ i pt, t 1 q " 0 for t ‰ t 1 . Combining these three assumptions yields the approximation

F i,i « rF KFAC s i,i " E " ÿ tPT i Ω i pt, tq ı b 1 |T i | E " ÿ tPT i Γ i pt, tq ı ": ĀKFAC i´1 b G KFAC i , (3.29) with ĀKFAC i´1 " E " ÿ tPPT i Ω i pt, tq ı P R pc i´1 |∆ i |`1qˆpc i´1 |∆ i |`1q , (3.30a) 
G KFAC i " 1 |T i | E " ÿ tPT i Γ i pt, tq ı P R c i ˆci . (3.30b)
Note that in above equations, |T i | denotes the cardinality of T i i.e. the number of spatial locations in layer i.

Remark 3.1. It should be mentioned that, in the same spirit, a KFAC-type approximation has been developed for the RNN (Recurrent Neural Network), but with much more assumptions.

In this work, we do not consider recurrent layers. The readers interested in KFAC for RNN are referred to [START_REF] Martens | Kronecker-factored curvature approximations for recurrent neural networks[END_REF].

Extension of the new methods to convolution layers

While one can believe that SH hypothesis is a fairly reasonable approximation because of the spatial invariance property of convolutional layers, one can not say the same for SUD and IAD assumptions, which do not have any theoretical or heuristic justification. Similarly to the case of MLP layers, with the aim of getting a better approximation of F i,i , we remove the three assumptions and minimize the Frobenius norm of the difference between F i,i and a Kronecker-factored form. To this end, we use the same methods derived in §3.2, which only require to perform matrix-vector multiplications ZpF i,i qv and ZpF i,i q T u with the new expression (3.28) of F i,i . Let v P R c 2 i , then ZpF i,i qv is given by

ZpF i,i qv " E " ÿ tPT i ÿ t 1 PT i Z `ā i´1,t āT i´1,t 1 b g i,t g T i,t 1 ˘vı (3.31) " ÿ tPT i ÿ t 1 PT i E " `gT i,t V g i,t 1 ˘ā i´1,t āT i´1,t 1 ı , (3.32) with V " MATpvq. Similarly, for u P R pc i´1 |∆ i |`1q 2 , ZpF i,i q T u " E " ÿ tPT i ÿ t 1 PT i Z `ā i´1,t āT i´1,t 1 b g i,t g T i,t 1 ˘T u ı (3.33) " ÿ tPT i ÿ t 1 PT i E " `ā T i´1,t U āi´1,t 1 ˘gi,t g T i,t 1 ı , (3.34) 
with U " MATpuq. From these expressions, in order to compute ZpF i,i qv and ZpF i,i q T u , we must compute a double sum containing |T i | 2 terms where each term is an expectation of matrix multiplication. This is computationally prohibitive, even for moderate size layers. We therefore propose to use approximations of ZpF i,i qv and ZpF i,i q T u. For this purpose, for r ą 0, we define

T 2 i prq " ␣ pt, t 1 q P T i ˆTi : }t ´t1 } 8 ď r ( , (3.35) 
where the infinity norm of the difference between t and t 1 is given by }t ´t1 } 8 " maxp|t x ´t1

x |, |t y ´t1 y |q.

Using this notion, we derive approximations to ZpF i,i qv and ZpF i,i q T u as follows:

ZpF i,i qv « ÿ pt,t 1 qPT 2 i prq E " `gT i,t V g i,t 1 ˘ā i´1,t āT i´1,t 1 ı , (3.36a) ZpF i,i q T u « ÿ pt,t 1 qPT 2 i prq E " `ā T i´1,t U āi´1,t 1 ˘gi,t g T i,t 1 ı . (3.36b)
The idea behind these approximations is that there is no a significant interaction between two pixels that are far from each other, and therefore we can neglect the term corresponding to that interaction. This seems reasonable since intrinsically, convolution operations act locally (in a neighborhood defined by the size of the filter).

Numerical results

To test how well our proposed methods perform on convolutional architectures against KFAC, we consider the optimization of three different CNNs namely ResNet 18 [START_REF] He | Deep residual learning for image recognition[END_REF], Cuda-convnet and ResNet 34 [START_REF] He | Deep residual learning for image recognition[END_REF]. Note that Cuda-convnet is the architecture used to evaluate the original KFAC method for convolutional layers in [START_REF] Grosse | A Kronecker-factored approximate Fisher matrix for convolution layers[END_REF]. It must be mentioned that it contains 3 convolution layers and one MLP layer.

We train Cuda-convnet on CIFAR10 dataset [START_REF] Krizhevsky | Learning multiple layers of features from tiny images[END_REF] with a batch size equal to 256, and ResNet 18 on CIFAR100 [START_REF] Krizhevsky | Learning multiple layers of features from tiny images[END_REF] with a batch size equal to 128. Finally, we train ResNet 34 on the SVHN dataset [START_REF] Netzer | Reading digits in natural images with unsupervised feature learning[END_REF] with a batch size equal to 512.

In each layer i, in order to define T 2 i prq (see equation (3.35)), we set r equal to the size of the filter used in that layer. This choice is driven by the assumption that pixels that do not belong to the same region defined by the filter do not interact significantly.

Figure 3.4 shows the results obtained for the three considered architectures. Except the case of ResNet 34 where one of our methods (KFAC-CORRECTED) outperforms KFAC, in the other cases, KFAC converges faster than our methods both with respect to number of iterations (epoch) and time. This is unfortunate because the assumptions used in our methods seem less severe than those used in KFAC, and we therefore expected to obtain better optimization performance than KFAC. For a thorough study, we have extended the interaction area defined by T 2 i prq by choosing a radius r larger than the size of the filter. We even considered the case where we take all the terms of the double sums (thus no approximation). The results we obtained remain unsatisfactory insofar as in most cases, despite the additional costs, our methods do not outperform KFAC.This suggests that the IAD, SH and SUD approximations used in KFAC for convolutional neural networks, despite their lack of theoretical foundations, do not hurt the optimization performance.

Conclusion

In this chapter, we proposed a series of novel Kronecker factorizations to the diagonal blocks of the Fisher matrix of muli-layer perceptrons using the Kronecker product Singular Value Decomposition technique. Tests realized on the three standard deep auto-encoder problems showed that 3 out of 4 of our proposed methods (DEFLATION, LANCZOS, KFAC-CORRECTED) outperform KFAC both in terms of Fisher approximation quality and in terms of optimization speed of the objective function. This ranking, which goes from the most efficient one to the least efficient one, testifies to the fact that higher-rank approximations yield better results than lower-rank ones.

We also extended our proposed methods to convolutional layers. However, we did not observe any gain in performance compared to KFAC. Our methods are more theoretically sound than KFAC and should therefore outperform it. The fact that we don't do better, or often even worse than KFAC on convolutional layers, is unexpected and deserves clarification. We leave it for future work. Proof. We are going to derive the identity

}F i,i ´R b S} F " }ZpF i,i q ´vecpRqvecpSq T } F (3.37)
for all R P R pd i´1 `1qˆpd i´1 `1q and S P R d i ˆdi , from which Theorem 3.14 will follow. For notational convenience, let

M " F i,i , d " d i´1 `1, d 1 " d i .
We recall that M has the block structure

M " » - - - - M 1,1 . . . M 1,d M 2,1 . . . M 2,d . . . . . . M d,1 . . . M d,d fi ffi ffi ffi fl P R d 1 dˆd 1 d ,
where each block M µ,ν , pµ, νq P t1, . . . , du 2 , is of size d 1 ˆd1 . By definition of the Frobenius norm,

}M ´R b S} 2 F " d ÿ µ"1 d ÿ ν"1 }M µ,ν ´Rµ,ν S} 2 F " d ÿ µ"1 d ÿ ν"1 }vecpM µ,ν q ´Rµ,ν vecpSq} 2 2 " d ÿ µ"1 d ÿ ν"1 }vecpM µ,ν q T ´Rµ,ν vecpSq T } 2 2 , (3.38) 
where R µ,ν is the pµ, νq-scalar entry of R and } ¨}2 denotes the Euclidean norm. By virtue of

ZpM q " » - - - - - - - - - - - - vecpM 1,1 q T . . . vecpM d,1 q T . . . vecpM 1,d q T . . . vecpM d,d q T fi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi fl , vecpRqvecpSq T " » - - - - - - - - - - - - R 1,1 vecpSq T . . . R d,1 vecpSq T . . . R 1,d vecpSq T . . . R d,d vecpSq T fi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi fl
, the last equality of (3.38) also reads }M ´R b S} 2 F " }ZpM q ´vecpRqvecpSq T } 2 F , which proves (3.37).

3.A.2 Proof of Proposition 3.1

Proof. Using the shorthand notations

A " āi´1 āT i´1 , G " g i g T i , d " d i´1 `1, d 1 " d i we have F i,i " ErA b Gs " E ¨» - - A 1,1 G . . . A 1,d G . . . . . . A d,1 G . . . A d,d G fi ffi fl ‹ 'P R d 1 dˆd 1 d .
Hence,

ZpF i,i q " E ¨» - - - - - - - - - - - - vecpA 1,1 Gq T . . . vecpA d,1 Gq T . . . vecpA 1,d Gq T . . . vecpA d,d Gq T fi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi fl ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ' P R d 2 ˆpd 1 q 2 For all v P R pd 1 q 2 , ZpF i,i qv " E ¨» - - - - - - - - - - - - vecpA 1,1 Gq T . . . vecpA d,1 Gq T . . . vecpA 1,d Gq T . . . vecpA d,d Gq T fi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi fl ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ' v " E ¨» - - - - - - - - - - - - A 1,1 vecpGq T v . . . A d,1 vecpGq T v . . . A 1,d vecpGq T v . . . A d,d vecpGq T v fi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi fl ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ '
" Er pvecpGq T vq vecpAqs.

The scalar quantity vecpGq T v can be further detailed as

vecpGq T v " pvecpg i g T i qq T v " pg i b g i q T v " pg T i b g T i q vecpMATpvqq,
owing to the identities vecpxy T q " ybx and pAbBq T " A T bB T . Invoking now pAbBq vecpXq " vecpBXA T q, we end up with

vecpGq T v " vecpg T i MATpvq g i q " vecpg T i V g i q.
Therefore, ZpF i,i qv " Erpg T i V g i q vecpAqs. The proof of ZpF i,i q T u " Erpā T i´1 U āi´1 q vecpG i qs for all u P R d 2 goes along the same lines.

3.A.3 Proof of Proposition 3.2

Proof. ▷ Symmetry. By construction and up to a choice of sign,

vecp ĀKPSVD i´1 q " ? σ 1 u 1 , vecpG KPSVD i q " ? σ 1 v 1 ,
where σ 1 is the largest singular value of ZpF i,i q associated with left and right singular vectors pu 1 , v 1 q. From the standard SVD properties

ZpF i,i qv 1 " σ 1 u 1 , ZpF i,i q T u 1 " σ 1 v 1 ,
we infer that ? σ 1 vecp ĀKPSVD i´1 q " ZpF i,i qv 1 " Er pg T i MATpv 1 qg i q vecpā i´1 āT i´1 q s, the last equality being a consequence of Proposition 3.1. The scalar quantity g T i MATpv 1 qg i can be moved into the argument of the "vec" operator, after which we can permute E and "vec" to obtain

? σ 1 vecp ĀKPSVD i´1 q " Er vecppg T i MATpv 1 qg i q āi´1 āT i´1 q s " vecpEr pg T i MATpv 1 qg i q āi´1 āT i´1 sq.
Hence, upon taking the "MAT" operator,

? σ 1 ĀKPSVD i´1 " Er pg T i MATpv 1 qg i q āi´1 āT i´1 s.
Since each pg T i MATpv 1 qg i q āi´1 āT i´1 is a symmetric matrix, their expectation is also symmetric. The symmetry of G KPSVD i is proven in a similar fashion. ▷ Positive and semi-definiteness. The proof of this part is inspired from [START_REF] Van Loan | Approximation with Kronecker products[END_REF]Theorem 5.8]. Since ĀKPSVD i´1 and G KPSVD i are symmetric, they can be diagonalized as

ĀKPSVD i´1 " U T DU, D " diagpα 1 , α 2 , . . . , α d i´1 `1q, G KPSVD i " V T EV, E " diagpβ 1 , β 2 , . . . , β d i q,
with orthogonal matrices U and V . We are going to show that it is possible to modify the matrices, while preserving minimality of the Frobenius norm, so that the α's and the β's all have the same sign. To this end, we first observe that

ĀKPSVD i´1 b G KPSVD i " pU T DU q b pV T EV q " pU b V q T pD b EqpU b V q, which leads us to introduce C " pU b V qF i,i pU b V q T .
By unitary invariance of the Frobenius norm, we have

}F i,i ´Ā KPSVD i´1 b G KPSVD i } 2 F " }pU b V q T pC ´D b EqpU b V q} 2 F " }C ´D b E} 2 F .
The last quantity can be expressed as

}C ´D b E} 2 F " d i pd i´1 `1q ÿ ω"1 pC ω,ω ´pD b Eq ω q 2 `ÿ ξ‰η C 2 ξ,η " d i pd i´1 `1q ÿ ω"1 pC ω,ω ´αµpωq β τ pωq q 2 `ÿ ξ‰η C 2 ξ,η ,
where µpωq P t1, . . . , d i´1 `1u and τ pωq P t1, . . . , d i u can be uniquely determined1 from ω P t1, . . . , d i pd i´1 `1qu in such a way that ω " pµpωq ´1qd i `τ pωq. Because F i,i is positive semi-definite, C is also positive semi-definite, which implies that C ω,ω ě 0. Thus, for all ω, pC ω,ω ´αµpωq β τ pωq q 2 ´pC ω,ω ´|α µpωq ||β τ pωq |q 2 " 2C ω,ω p|α µpωq β τ pωq | ´αµpωq β τ pωq q ě 0.

This means that if we set, for instance,

R " U T |D|U, S " V T |E|V, with |D| " diagp|α 1 |, α 2 |, . . . , |α d i´1 `1|q and |E| " diagp|β 1 |, |β 2 |, . . . , |β d i |q, then }F i,i ´R b S} 2 F ď }F i,i ´Ā KPSVD i´1 b G KPSVD i } 2 F .
If the inequality were strict, minimality of p ĀKPSVD i´1 , G KPSVD i q would be contradicted. Therefore, we must have equality. This entails that pR, Sq is another minimizer for which the eigenvalues of R, as well as those of S, are all non-negative. In such a case, we select this pair pR, Sq for the factors p ĀKPSVD i´1 , G KPSVD i q.

3.B Algorithms

3.B.1 Power SVD algorithm

The Power SVD algorithm is an extension of the well-known Power Method [START_REF] Saad | Numerical Methods for Large Eigenvalue Problems[END_REF] and is used to approximate the dominant singular value σ 1 " σ max of a real rectangular matrix and associated right and left singular vectors. We provide here an overview of the algorithm. Readers interested in a thorough description such as convergence analysis of the method are referred to [START_REF] Saad | Numerical Methods for Large Eigenvalue Problems[END_REF].

Algorithm 1: SVD Power algorithm

Input: A P R m A ˆnA , v p0q P R m A , ϵ (precision), k max (maximum iteration). Output: σ 1 , u 1 and v 1 (Av 1 " σ 1 u 1 , A T u 1 " σ 1 v 1 for k " 1, 2, . . . , k max do
w pkq " Av pk´1q ; u pkq " w pkq {}w pkq } 2 ; z pkq " A T u pkq ; v pkq " z pkq {}z pkq } 2 ; σ pkq " }z pkq } 2 ; error " }Av pkq ´σpkq u pkq } 2 ; if error ď ϵ then Break; end end

3.B.2 Lanczos bi-diagonalization algorithm

The Lanczos bi-diagonalization algorithm [START_REF] Golub | Calculating the singular values and pseudo-inverse of a matrix[END_REF] is an iterative method used to decompose an input matrix

A P R m A ˆnA into the form A " U BV T , (3.39) 
where U P R m A ˆmA and V P R n A ˆnA are orthogonal matrices and B P R m A ˆnA is an upper bi-diagonal matrix. The algorithm can be used to find the k most highest singular values with associated singular vectors. Formally, to build a rank-k approximation

A « A K " U K Σ K V T K (3.40)
of A, where Σ K P R KˆK is a diagonal matrix and U K P R n A ˆK , V K P R m A ˆK are rectangular passage matrices, we first apply Algorithm 2 to obtain the outputs

P P R n A ˆK , Q P R m A ˆK , H P R KˆK .
The matrix H represents a truncated version of B and P, Q represent truncated versions of U and V from equation (3.39). The key observation here is that H is an upper bi-diagonal matrix of small size, therefore its SVD

H " X K Σ K Y T K " K ÿ i"1 σ i x i y T i , with σ 1 ě σ 2 ě . . . ě σ K , X K P R KˆK , Y K P R KˆK ,
is not expensive to compute. Going back to the initial basis by the left and right multiplications

A K :" P HQ T " P X K Σ K Y T K Q T ,
we end up with the desired approximation (3.40) by noticing that

U K " P X K , V K " QY K .
Algorithm 2: Lanczos bi-diagonalization algorithm

Input: A P R m A ˆnA , q p0q P R m A , }q p0q } " 1, K (dimension of Krylov subspace), ϵ (precision) Output: Matrices P P R n A ˆK , Q P R m A ˆK , H P R KˆK Start:
w p0q " Aq p0q α p0q " }w p0q } p p0q " w p0q {α p0q Hr0, 0s " α 0 P r:, 0s " p p0q Qr:, 0s " q p0q for k " 0, 1, . . . , K ´1 do z pkq " A T p pkq ´αpkq q pkq β pkq " }z pkq } if β pkq ď ϵ then Break else q pk`1q " z pkq {β pkq ; w pk`1q " Aq pk`1q ´βpkq p pkq ; α pk`1q " }w pk`1q }; p pk`1q " w pk`1q {α pk`1q ; Hrk `1, k `1s " α pk`1q ; Hrk, k `1s " β pkq ; P r:, k `1s " p pk`1q ; Qr:, k `1s " q pk`1q ; end end

3.C Computational costs

Here we estimate the computation costs required to compute F (estimate of F ), F ´1 and F ´1∇h of our proposed methods compared to KFAC. We recall that here d denotes the number of neurons in each layer, ℓ denotes the number of network layers and m the mini-batch size. Table 3.1 summarizes orders of computational costs required by each method. We did not include forwards and backwards/additional backwards costs as they are the same for all methods. K is the dimension of Krylov subspace in Lanczos bi-diagonalization algorithm (see §3.B.2). k 1 and k 2 represent the number of iterations at which the corresponding algorithm has converged (power SVD or Lanczos bi-diagonalization algorithm). In our experiments, we found that they are of the order of tens. As for c 1 and c 2 they denote implementation constants.

As we can see in Table 3.1, our proposed methods are of the same order of magnitude as KFAC in terms of computation costs. Table 3.1: Range of the computational costs per update.

F F ´1 F ´1∇h KFAC 2ℓmd 2 2ℓd 3 2ℓd 3 KPSVD 4k 1 ℓmd 2 2ℓd 3 2ℓd 3 Deflation 4k 1 ℓmd 2 `4k 1 ℓmd 2 c 1 ℓd 3 c 2 ℓd 3 Lanczos 4k 2 ℓmd 2 `ℓK 3 `2ℓKd 2 c 1 ℓd 3 c 2 ℓd 3 KFAC-corrected 2ℓmd 2 `4k 1 ℓmd 2 c 1 ℓd 3 c 2 ℓd 3
Explanation of the entries of Table 3.1

• KFAC: To compute F , we need to compute 2ℓ terms Āi´1 " Erā i´1 āT i´1 s and G i " Erg i g T i s of computational costs Opmd 2 q each. For F ´1, the inverses of the ℓ pairs Āi´1 and G i are required. The computational cost of each Ā´1 i´1 or G ´1 i is Opd 3 q. As for F ´1∇h, we need to perform ℓ matrix-matrix multiplications G ´1 i ∇ W hA ´1 i´1 (see equation (3.21)).

• KPSVD: The computation of F requires to apply the power SVD algorithm. If k 1 is the iteration number of convergence, then for each layer i, we need to perform k 1 matrix-vector multiplications

ZpF i,i qv " Erpg T i V g i qvecpā i´1 āT i´1 qs and ZpF i,i q T u " Erpā T i´1 U āi´1 qvecpg i g T i qs.
The computational cost of ZpF i,i qv or ZpF i,i q T u is Opmd 2 q. The computational costs required for F ´1 and F ´1∇h are the same as in KFAC.

• KFAC-CORRECTED: The computation of F is a combination of the computation of F in KFAC and in KPSVD so the complexity is the sum of the complexity in KFAC and KPSVD. As for F ´1 and F ´1∇h the technique described in §3.2.5 is used and the complexities are Opc 1 ℓd 3 q for F ´1 (SVD and matrix-matrix multiplications) and Opc 2 ℓd 3 q for F ´1∇h (matrix-matrix multiplications).

• DEFLATION: To compute F for a single layer, we have applied twice the power SVD algorithm and each application has the same cost as in KPSVD. So the total computational cost of computing F in DEFLATION is twice the total computational cost of computing F in KPSVD. The computational costs required for F ´1 and F ´1∇h are the same as in KFAC-CORRECTED.

• LANCZOS: To compute F , the Lanczos bi-diagonalization algorithm is applied for each layer. Like in KPSVD, if k 2 is the iteration number of convergence then k 2 ZpF i,i qv and ZpF i,i q T u (in Opmd 2 q each) were necessary for each layer. At the end of the Lanczos bidiagonalization algorithm, we need to perform for each layer, the SVD of matrix H P R KˆK (in OpK 3 q) and matrix-matrix operations P X k (in OpKd 2 q) and QY k (in OpKd 2 q).The computational costs required for F ´1 and F ´1∇h are the same as in DEFLATION or KFAC-CORRECTED.

3.D Activation, loss functions, network architectures and datasets

An auto-encoder is a particular type of feed forward neural network used to learn data encoding in an unsupervised way. The aim of such a network is to build a low-dimensional representation of a high-dimensional input data while capturing the most important part of information contained in the input data. An auto-encoder is composed of two modules: the encoder and decoder networks (Figure 3.5). The encoder compresses the input data from the initial space to the encoded or latent space. As for the decoder, it decompresses the encoded data back to initial space. Formally if e θ 1 and d θ 2 denote the encoder and decoder respectively, then the auto-encoder is defined as

f θ pxq " d θ 1 ˝eθ 1 pxq
where ˝denotes the composition operator and θ is the auto-encoder's parameter and is a concatenation of θ 1 and θ 2 . The training process of an auto-encoder consists of minimizing the gap between the input vector x and output x " z " f θ pxq of the decoder. The loss function is thus defined as Lpz, yq " Lpz, xq " Lpx, xq " L pf θ pxq, xq " L pd θ 1 ˝eθ 1 pxq, xq .

Auto-encoders have been extended to variational auto-encoders (VAEs) [START_REF] Bengio | Generalized denoising auto-encoders as generative models[END_REF]. Unlike classical auto-encoders which encode the input data as a vector, VAEs learn the latent distribution of the training data. This feature of VAEs allows them to generate new data of the same type as training data.

The two activation functions considered in our work are

• the ReLU function σ : R Ñ R z Þ Ñ maxp0, zq.
• the Sigmoid function

σ : R Ñ r0, 1s z Þ Ñ 1 1 `expp´zq .
The two loss functions considered in our work are

• The binary cross entropy

L : r0, 1s ˆr0, 1s Ñ R pz,
yq Þ Ñ ´py log pzq `p1 ´yq log p1 ´zqq .

• The mean square error (MSE)

L : R ˆR Ñ R pz, yq Þ Ñ }z ´y} 2 2 " dy ÿ j"1 pz rjs ´yrjs q 2 .
The datasets and network architectures [START_REF] Hinton | Reducing the dimensionality of data with neural netwoks[END_REF] used in our tests are described below.

• Auto-encoder problem 1 -Network architecture: 784 ´1000 ´500 ´250 ´30 ´250 ´500 ´1000 ´784

-Activations functions: ReLU´ReLU´ReLU´ReLU´ReLU´ReLU´ReLU´Sigmoid -Data : MNIST (images of shape 28 ˆ28 of handwritten digits. 50000 training images and 10000 validation images).

-Loss function: binary cross entropy

• Auto-encoder problem 2 -Network architecture: 625 ´2000 ´1000 ´500 ´30 ´500 ´1000 ´2000 ´625

-Activation functions: ReLU´ReLU´ReLU´ReLU´ReLU´ReLU´ReLU´Linear -Data : FACES (images of shape 25 ˆ25 people. 82800 training images and 20700 validation images).

-Loss function: mean square error.

• Auto-encoder problem 3 -Network architecture: 784´400´200´100´50´25´6´25´50´100´200´400´784

-Activations functions: ReLU ´ReLU ´ReLU ´ReLU ´ReLU ´ReLU ´ReLU ŔeLU ´ReLU ´ReLU ´ReLU ´Sigmoid -Data : CURVES (images of shape 28 ˆ28 of simulated handdrawn curves. 16000 training images and 4000 validation images).

-Loss function: binary cross entropy. 

3.E Gradient clipping

The KL-clipping technique [START_REF] Ba | Distributed second-order optimization using Kroneckerfactored approximations[END_REF] is a method used for step size selection and is an alternative to learning rate schedules. It uses local curvature information to control the amount by which the predictive distribution is allowed to change after each update. In particular, after preconditioning the gradients, one scales them by a factor ν given by

ν " min ˆ1, d c ř ℓ i"1 |G T i ∇hpW i q| ˙,
where G i denotes the preconditioned gradient and c is a constant that represents the clipping parameter (the clipping parameter can be interpreted as the maximum value allowed for the squared Fisher norm). Using this normalization, the learning rate α is selected as

α " min ˆαmax , d c ř ℓ i"1 |G T i ∇hpW i q| ˙,
where α max ą 0 is a constant number and denotes the maximum step size allowed. This chapter is devoted to our second contribution to natural gradient methods for neural networks. Calling into question the validity of the block approximation in KFAC, we seek to restore some lowfrequency interactions between the layers into the approximation of the Fisher matrix.

We elaborate on the motivations and discuss about the previous works in this direction in §4.1. In §4.2, we work out a series of novel two-level KFAC methods. Inspired from domain decomposition, these are based on several choices of coarse space. In §4.3, we present and comment on several experimental results, which include various test cases and analysis in order to assess the new correctors as fairly as possible. The results obtained in §4.3 lead us to compare KFAC against exact natural gradient in §4. [START_REF] Amari | Information Geometry and Its Applications[END_REF].

Except for the last section §4.4, the text below is a replica of the paper [START_REF] Koroko | Analysis and comparison of two-level KFAC methods for training deep neural networks[END_REF], which was submitted to Optimization Methods and Software.

Towards more accuracy by rough layer interactions?

For computation and memory purposes, KFAC as well as all related variants use only a blockdiagonal approximation of the curvature matrix, where each block corresponds to a layer. This results in a loss of information about the correlations between different layers. The question then naturally arises as to whether it is worth trying to recover some of the lost information in hope of making the approximate FIM closer to the true one, thus improving the convergence speed of the optimizer without paying an excessive price.

To this question, Tselepidis et al. [START_REF] Tselepidis | Two-level K-FAC preconditioning for deep learning[END_REF] provided an element of answer by considering a "coarse" correction to the inverse of the approximate FIM. This additional term is meant to represent the interaction between layers at a "macroscopic" scale, in contrast with the "microscopic" scale of the interaction between neurons inside each layer. Their approach proceeds by formal analogy with the two-level preconditioning technique in domain decomposition [START_REF] Dolean | An Introduction to Domain Decomposition Methods: Algorithms, Theory, and Parallel Implementation[END_REF], substituting the notion of layer for that of subdomain. The difference with domain decomposition, however, lies in the fact that the matrix at hand does not stem from the discretization of any PDE system, and this prevents the construction of coarse spaces from being correctly guided by any physical sense. Notwithstanding this concern, some ready-made recipes can be blindly borrowed from two-level domain decomposition. In this way, Tselepidis et al. [START_REF] Tselepidis | Two-level K-FAC preconditioning for deep learning[END_REF] reached a positive conclusion regarding the advisability of enriching the approximate FIM with some reduced information about interactions between layers. Nevertheless, their coarse correction is objectionable in some respects, most notably because of inconsistency in the formula for the new matrix (see §4.2 for a full discussion), while for the single favorable case on which is based their conclusion, the network architecture selected is a little too simplistic (see §4.5 for details). Therefore, their claim should not be taken at face value.

Although he did not initially intend to look at the question as formulated above, Benzing [START_REF] Benzing | Gradient descent on neurons and its link to approximate second-order optimization[END_REF] recently brought another element of answer that runs counter to the former. By carefully comparing KFAC and the exact natural gradient (as well as FOOF, a method of his own), he came to the astonishingly counterintuitive conclusion that KFAC outperforms the exact natural gradient in terms of optimization performance. In other words, there is no benefit whatsoever in trying to embed any kind of information about the interaction between layers into the curvature matrix, since even the full FIM seems to worsen the situation. While one may not be convinced by his heuristical explanation (whereby KFAC is argued to be a firstorder method), his numerical results eloquently speak for themselves. Because Benzing explored a wide variety of networks, it is more difficult to mitigate his findings.

In light of these two contradictory sets of results, we undertook this work in an effort to clarify the matter. To this end, our objective is first to design a family of coarse corrections to KFAC that do not suffer from the mathematical flaws of Tselepidis et al.'s one. This gives rise to a theoretically sound family of approximate FIMs that will next be compared to the original KFAC.

Two-level KFAC methods

Let us recall the natural gradient descent (NGD) iteration

θ k`1 " θ k ´αk F ´1 ' ∇ θ hpS k , θ k q, (4.1) 
where

F ' " F `λI p , λ ą 0. (4.2)
is a regularized version of F . Likewise, the regularized version of KFAC iteration is given by

θ k`1 " θ k ´αk F ´1 ' KFAC ∇ θ hpS k , θ k q, (4.3a) 
with

F ' KFAC " diagprF ' KFAC s 1,1 , rF ' KFAC s 2,2 , . . . , rF ' KFAC s ℓ,ℓ q. ( 4.3b) 
Henceforth, for simplicity and without any loss of generality, the learning rate is assumed to be

α k " 1. Let ζ k " θ k ´θk`1 " rCpθ k qs ´1∇ θ hpS k , θ k q (4.4)
be the negative increment of θ at iteration k of the generic descent algorithm (2.25). To further alleviate notations, we shall drop the subscript k and omit the dependence on θ k . For the regularized NGD (4.1), we have

ζ " F ´1 ' ∇ θ h, (4.5) 
while for the regularized KFAC method (4.3a), we have

ζ KFAC " F ´1 ' KFAC ∇ θ h, (4.6) 
being understood that the matrices are regularized whenever necessary. We want to build a new matrix

F ´1 ' KFAC-2L , an augmented version of F ´1 ' KFAC , such that the solution ζ KFAC-2L " F ´1 ' KFAC-2L ∇ θ h, (4.7) 
is a better approximation to ζ than ζ KFAC , namely,

}ζ KFAC-2L ´ζ} F ! }ζ KFAC ´ζ} F . (4.8) 
By "augmented" we mean that, at least partially and at some rough scale, F ´1 KFAC-2L takes into account the information about layer interactions that was discarded by the block-diagonal approximation KFAC. The basic tenet underlying this initiative is the belief that a more accurate approximation to the NGD solution ζ at each descent iteration will help the global optimization process to converge faster.

Analogy and dissimilarity with domain decomposition

The construction philosophy of F ´1 ' KFAC-2L proceeds by analogy with insights from domain decomposition. To properly explain the analogy, we first need to cast the matrix F ´1 ' KFAC under a slightly different form.

For each i P t1, . . . , ℓu, let R i P R p i ˆp be the matrix of the restriction operator from R p , the total space of all parameters, to the subspace of parameters pertaining to layer i, whose dimension is p i . In other words, for pξ, ηq P t1, . . . , p i u ˆt1, . . . , pu,

pR i q ξη " # 1 if η " p 1 `. . . `pi´1 `ξ, 0 otherwise. (4.9) 
The transpose R T i P R pˆp i then represents the prolongation operator from the subspace of parameters in layer i to the total space of all parameters. Obviously, the i-th diagonal block of the regularized FIM can be expressed as

rF ' s i,i " R i F ' R T i .
If there were no approximation of each diagonal block by a Kronecker product, then the blockdiagonal approximation of F would give rise to the inverse matrix

F ´1 ' block-diag " ℓ ÿ i"1 R T i rF ' s ´1 i,i R i " ℓ ÿ i"1 R T i pR i F ' R T i q ´1R i . (4.10) 
In the case of KFAC, it follows from (3.20)-(3.21) that

F ´1 ' KFAC " ℓ ÿ i"1 R T i rF ' KFAC s ´1 i,i R i " ℓ ÿ i"1 R T i p Āi´1 `πi λ 1{2 Iq ´1 b pG i `π´1 i λ 1{2 Iq ´1R i .
In the context of the domain decomposition methods to solve linear systems arising from the discretization of PDEs, the spatial domain of the initial problem is divided into several subdomains. The system is then projected onto the subdomains and the local subproblems are solved independently of each other as smaller systems. In this stage, parallelism can be fully taken advantage of by assigning a processor to each subdomain. This produces a local solution on each subdomain. These local solutions are next combined to create an approximate global solution on the overall domain. Algebraically, the whole process is tantamount to using an inverse matrix of a form similar to (4.10)-(4.11) either within a Schwarz-like iterative procedure or as a preconditioner [START_REF] Dolean | An Introduction to Domain Decomposition Methods: Algorithms, Theory, and Parallel Implementation[END_REF]. The counterparts of rF ' s ´1 i,i or rF ' KFAC s ´1 i,i are referred to as local solvers.

Remark 4.1. The above analogy is not a perfect one. In domain decomposition, the subdomains are allowed (and even recommended!) to overlap each other, so that an unknown can belong to two or more subdomains. In this case, the restriction operators R i can be much more intricate than the one trivially defined in (4.9).

A well-known issue with domain decomposition methods of the form (4.10)-(4.11) is the disappointingly slow rate of convergence, which results in a lack of scalability [START_REF] Dolean | An Introduction to Domain Decomposition Methods: Algorithms, Theory, and Parallel Implementation[END_REF]: the speed-up factor does not grow proportionally with the number of subdomains (and therefore of processors). The reason is that, as the number of subdomains increases, it takes more iterations for an information local to one subdomain to be propagated and taken into account by the others. The common remedy to this problem is to append a "coarse" correction that enables subdomains to communicate with each other in a faster way. The information exchanged in this way is certainly not complete, but only concerns the low frequencies. Remark 4.2. In domain decomposition, there is a physical problem (represented by the PDE at the continuous level) that serves as a support for the mathematical and numerical reasoning. This is not the case here, where we have to think in a purely algebraic way.

Multiplicative vs. additive coarse correction

We are going to present the idea of two-level KFAC in a very elementary fashion. Let N ě ℓ be an integer and R 0 P R N ˆp be a given matrix. The subspace of R p spanned by the columns of R T 0 P R pˆN is called the coarse space. The choice of the coarse space will be discussed later on. For the moment, we can assume that it is known.

The idea is to add to ζ KFAC a correction term that lives in the coarse space, in such a way that the new vector minimizes the error in the F ' -norm with respect to the FIM solution ζ " F ´1 ' ∇ θ h. More concretely, this means that for the negative increment, we consider

ζ KFAC-2L " ζ KFAC `RT 0 β ˚, (4.11) 
where

β ˚" argmin βPR ℓ }pζ KFAC `RT 0 βq ´ζ} 2 F' " argmin βPR ℓ }pζ KFAC `RT 0 βq ´F ´1 ' ∇ θ h} 2 F' . (4.12) 
The solution of the quadratic minimization problem (4.12) is given by

β ˚" pR 0 F ' R T 0 q ´1R 0 p∇ θ h ´F' ζ KFAC q, (4.13) 
provided that the matrix

F coarse :" R 0 F ' R T 0 P R N ˆN , (4.14) 
representing the coarse operator, be invertible. This is a small size matrix, insofar as N will be in practice taken to be equal to ℓ or 2ℓ, and will in any case remain much smaller than p. This is in agreement with domain decomposition where the size of the coarse system is usually equal to the number of subdomains.

As for the vector

r KFAC :" ∇ θ h ´F' ζ KFAC , (4.15) 
it is referred to as the residual associated to the approximate solution ζ KFAC . Plugging (4.13) into (4.11) and recalling that ζ KFAC " F ´1 ' KFAC ∇ θ h, we end up with

ζ KFAC-2L " F ´1 ' KFAC-2L ∇ θ h, (4.16) 
with

F ´1 ' KFAC-2L " F ´1 ' KFAC `RT 0 F ´1 coarse R 0 pI ´F' F ´1 ' KFAC q. ( 4.17) 
The matrix (4.17) that we propose can be checked to be consistent: if

F ´1 ' KFAC and R T 0 F ´1 coarse R 0 are both homogeneous to F ´1 ' , then F ´1 ' KFAC-2L is homogenous to F ´1 ' `F ´1 ' ´F ´1 ' F ' F ´1 ' " F ´1 ' too.
In the language of domain decomposition, the coarse corrector of (4.17) is said to act multiplicatively, to the extent that

I ´F ´1 ' KFAC-2L F ' " rI ´pR T 0 F ´1 coarse R 0 qF ' srI ´F ´1 ' KFAC F ' s. (4.18) 
as can be straightforwarldy verified. If G is an approximation of F ´1 ' , the matrix I ´GF ' measures the quality of this approximation. Equality (4.18) shows that the approximation quality of F ´1 ' KFAC-2L is the product of those of R T 0 F ´1 coarse R 0 and F ´1 ' KFAC . A common practice in domain decomposition is to drop the factor I ´F' F ´1 ' KFAC (which is equivalent to replacing the residual r KFAC " ∇ θ h ´F' θ KFAC by ∇ θ h). This amounts to approximating F ´1 ' KFAC-2L as

F ´1 ' KFAC-2L « F ´1 ' KFAC `RT 0 F ´1 coarse R 0 . (4.19) 
The coarse corrector of (4. [START_REF] Bottou | On-line learning for very large data sets[END_REF]) is said to act additively in domain decomposition. Clearly, the resulting matrix is inconsistent with F ´1 ' : in fact, it is consistent with 2F ´1 ' ! No matter how crude it is, this coarse corrector is actually valid as long as F ´1 ' KFAC-2L is used only as a preconditioner in the resolution of the system F ' ζ " ∇ θ h, which means that we solve instead

F ´1 ' KFAC-2L F ' ζ " F ´1 ' KFAC-2L ∇ θ h
to benefit from a more favorable conditioning but the solution we seek remains the same.

Here, in our problem, F ´1 ' is directly approximated by F ´1 ' KFAC-2L and therefore the inconsistent additive coarse corrector (4.19) is not acceptable. Note that Tselepidis et al. [START_REF] Tselepidis | Two-level K-FAC preconditioning for deep learning[END_REF] adopted this additive coarse correction, in which F coarse is approximated as

F coarse « R 0 F' R T 0 , (4.20a) 
where F' is the block-diagonal matrix whose blocks r F' s i,j are given by

r F' s i,j " # Erā i´1 āT j´1 s b Erg i g T j s if i ‰ j, p Āi´1 `πi λ 1{2 Iq b pG i `π´1 i λ 1{2 Iq if i " j. (4.20b) 
In this work, we focus to the consistent multiplicative coarse corrector (4.17) and also consider the exact value (4.14) for F coarse .

Choice of the coarse space R T 0

By the construction (4.11)-(4.12), we are guaranteed that

}ζ KFAC-2L ´ζ} 2 F' ď }ζ KFAC ´ζ} 2 F' (4.21) 
for any coarse space R T 0 , since the right-hand side corresponds to β " 0. The choice of R T 0 is a compromise between having a small dimension N ! p and lowering the new error

› › ζ KFAC-2L ´ζ› › 2 F' " › › ´rI ´RT 0 pR 0 F ' R T 0 q ´1R 0 F ' srI ´F ´1 ' KFAC F ' sζ › › 2 F' (4.22)
as much as possible. But it seems out of reach to carry out the minimization of the latter with respect to the entries of R T 0 . In the context of the preconditioner, the idea behind a two-level method is to remove first the influence of very large eigenvalues which correspond to high-frequency modes, then remove the smallest eigenvalues thanks to the second level, which affect greatly the convergence. To do so, we need a suitable coarse space to efficiently deal with this second level [START_REF] Nataf | A coarse space construction based on local Dirichlet-to-Neumann maps[END_REF]. Ideally, we would like to choose the deflation subspace which consists of the eigenvectors associated with the small eigenvalues of the preconditioned operator. However, this computation is more costly than solving a linear system itself.

This leads us to choose the coarse space in an a priori way. We consider the a priori form

R T 0 " » - - - - V 1 0 . . . . . . 0 0 V 2 . . . . . . 0 . . . . . . . . . . . . 0 0 . . . . . . V ℓ fi ffi ffi ffi fl P R pˆN , (4.23) 
where each block V i P R p i ˆNi has N i columns with N i ! p i , and

N 1 `N2 `. . . `Nℓ " N. (4.24) 
To provide a comparative study, we propose to evaluate several coarse space choices of the form (4.23) that are discussed below.

Nicolaides coarse space. Historically, this is the first [START_REF] Nicolaides | Deflation of conjugate gradients with applications to boundary value problems[END_REF] coarse space ever proposed in domain decomposition. Transposed to our case, it corresponds to

N 1 " . . . " N ℓ " 1, N " ℓ, (4.25) 
and for all i P t1, . . . , ℓu, V i " " 1, . . . , 1

‰ T P R p i . (4.26) 
Originally, the motivation for selecting the vector whose all components are equal to 1 is that it is the discrete version of a continuous constant field, which is the eigenvector associated with the eigenvalue 0 of the operator ´∇ ¨pκ∇q (boundary conditions being set aside). Inserting it into the coarse space helps the solver take care of the lowest frequency mode. In our problem, however, there is no reason for 0 to be an eigenvalue of F , nor for 1 to be an eigenvector if this is the case. Hence, there is no justification for the Nicolaides coarse space. Still, this choice remains convenient and practical. This is probably the reason why Tselepidis et al. [START_REF] Tselepidis | Two-level K-FAC preconditioning for deep learning[END_REF] have opted for it.

Spectral coarse space. This is a slightly refined version of the Nicolaides coarse space. The idea is always to capture the lowest mode [START_REF] Nataf | A coarse space construction based on local Dirichlet-to-Neumann maps[END_REF], but since the lowest eigenvalue and eigenvector are not known in advance, we have to compute them. More specifically, we keep the values (4.25) for the column sizes within R T 0 , while prescribing V i " eigenvector associated to the smallest eigenvalue of rF ' KFAC s i,i

for all i P t1, . . . , ℓu. In our case, an advantageous feature of this definition is that the cost of computing the eigenvectors is "amortized" by that of the inverses of rF KFAC s i,i , in the sense that these two calculations can be carried out simultaneously. Indeed, let

Āi´1 `πi λ 1{2 I " U Āi´1 Σ Āi´1 V T Āi´1 , G i `π´1 i λ 1{2 I " U G i Σ G i V T G i (4.28) 
be the singular value decompositions of Āi´1 `πi λ 1{2 I and G i `π´1 i λ 1{2 I respectively. Then, we have

rF ' KFAC s ´1 i,i " p Āi´1 `πi λ 1{2 Iq ´1 b pG i `π´1 i λ 1{2 Iq ´1 " pU Āi´1 Σ Āi´1 V T Āi´1 q ´1 b pU G i Σ G i V T G i q ´1 " pU Āi´1 Σ ´1 Āi´1 V T Āi´1 q b pU G i Σ ´1 G i V T G i q. ( 4.29) 
Since Σ Āi´1 and Σ G i are diagonal matrices, their inverses are easy to compute. Now, if V Āi´1 and V G i are the eigenvectors associated to the smallest eigenvalues of Āi´1 and G i respectively, then the eigenvector associated to the smallest eigenvalue of rF ' KFAC s i,i is given by

V i " V Āi´1 b V G i . (4.30) 
Krylov coarse space. If we do not wish to compute the eigenvector associated to the smallest eigenvalue of rF ' KFAC s i,i , then a variant of the spectral coarse space could be the following. We know that this eigenvector can be obtained by the inverse power method. The idea is then to perform a few iterations of this method, even barely one or two, and to include the iterates into the the coarse subspace. If N i ´1 ě 1 is the number of inverse power iterations performed for rF ' KFAC s i,i , then we take

V i " rv i , rF ' KFAC s ´1 i,i v i , . . . , rF ' KFAC s ´pN i ´1q i,i v i s P R p i ˆNi (4.31) 
where v i P R p i is an arbitrary vector, assumed to not be an eigenvector of rF ' KFAC s i,i to ensure that the columns of V i are not collinear. By appropriately selecting v i , we are in a position to use this approach to enrich the Nicolaides coarse space and the residuals coarse space (cf. next construction).

The increase in the number of columns for V i is not the price to be paid to avoid the eigenvector calculation: we could have put only the last iterate rF ' KFAC s

´pN i ´1q i,i v i into V i .
But since we have computed the previous ones, it seems more cost-effective to use them all to enlarge the coarse space. The larger the latter is, the lower is the minimum value of the objective function. In this work, we consider the simplest case

N 1 " . . . " N ℓ " 2, N " 2ℓ. (4.32) 
Residuals coarse space. We now introduce a very different philosophy of coarse space, which to our knowledge has never been envisioned before. From the construction (4.11)-(4.12), it is obvious that if the error ζ ´ζKFAC belongs to the coarse space R T 0 , that is, if it can be written as a linear combination R T 0 β 7 of the coarse matrix columns, then the vector ζ KFAC `RT 0 β 7 coincides with the exact solution ζ and the correction would be ideally optimal. Although this error ζ ´ζKFAC is unknown, it is connected to the residual (4.15) by

ζ ´ζKFAC " F ´1 ' r KFAC . (4.33) 
The residual r KFAC is not too expensive to compute. as it consists of a direct matrix-product F ζ KFAC . Unfortunately, solving a linear system involving F as required by (4.33) is what we want to avoid. But we can just approximate this error by inverting with F ´1 ' KFAC instead of F ´1 ' . Therefore, we propose to build a coarse space that contains F ´1 ' KFAC r KFAC instead of F ´1 ' r KFAC . To this end, we split F ´1 ' KFAC r KFAC into ℓ segments, each corresponding to a layer. This amounts to choosing the values (4.25) for the column sizes and set the columns of R T 0 as

V i " rF ' KFAC s ´1 i,i r KFAC ris P R p i , r KFAC ris " vecpDW i q ´pF ' ζ KFAC qris (4.34) 
for i P t1, . . . , ℓu, where for a vector ξ P R p the notation ξris " ξpp i´1 `1 : p i q designates the portion related to layer i. Formulas (4.34) ensure that F ´1 ' KFAC r KFAC belongs to the coarse space. Indeed, taking β " r1, . . . , 1s

T P R ℓ , we find R T 0 β " F ´1 ' KFAC r KFAC .
Taylor coarse space. The previous coarse space is the zeroth-order representative of a family of more sophisticated constructions based on a formal Taylor expansion of F ´1 ' , which we now present but which will not be implemented. Setting

E " I ´F ´1 ' KFAC F ' (4.35) 
and observing that F ' " F ' KFAC pI ´Eq, we have

F ´1 ' " pI ´Eq ´1F ´1 ' KFAC " pI `E `. . . `Eq´1 `. . .qF ´1 ' KFAC . (4.36) 
The formal series expansion in the last equality rests upon the intuition that E measures the approximation quality of F ´1 ' by F ´1 ' KFAC and therefore can be assumed to be small. Multiplying both sides by the residual r KFAC and stopping the expansion at order q ´1 ě 0, we obtain the approximation pI `E `. . . `Eq´1 qF ´1 ' KFAC r KFAC (4.37)

for the error F ´1 ' r KFAC " ζ ´ζFAC , which is also the ideal correction term. As earlier, we impose that this approximate correction vector (4.37) must be contained in the coarse space R T 0 . This suggests to extract the components in layer i of the vectors

␣ F ´1 ' KFAC r KFAC , EF ´1 ' KFAC r KFAC , . . . , E q´1 F ´1 ' KFAC r KFAC (
and assign them to the columns of V i . In view of (4.35), the space spanned by the above vectors is the same as the one spanned by

␣ F ´1 ' KFAC r KFAC , pF ´1 ' KFAC F ' qF ´1 ' KFAC r KFAC , . . . , pF ´1 ' KFAC F ' q q´1 F ´1 ' KFAC r KFAC ( .
Consequently, we can take

N 1 " . . . " N ℓ " q, N " qℓ, (4.38) 
and V i " rw 1 ris, w 2 ris, . . . , w q riss P R p i ˆNi (

where

w 1 " F ´1 ' KFAC r KFAC P R p , w j`1 " F ´1 ' KFAC F ' w j P R p , (4.40) 
for 1 ď j ď q ´1. The case q " 1 degenerates to the residuals coarse space. From (4.40), we see that upgrading to the next order is done by multiplying by F ' , an operation that mixes the layers.

For the practical implementation of these coarse spaces, we need efficient computational methods for two essential building blocks, namely, the matrix-vector product F ' u and the coarse operator F coarse . These will be described in appendix §4.A.

Pseudo-code for two-level KFAC methods

Algorithm 3 summarizes the steps for setting up a two-level KFAC method.

Algorithm 3: High-level pseudo-code for a two-level KFAC method

Input: θ 0 (Initial point), k max (maximum number of iterations), and α (learning rate) Output: θ kmax for k " 0, 1, . . . , k max ´1 do ' Compute an estimate ∇ θ hpS k , θ k q of the gradient on a mini-batch S k randomly sampled from the training data; ' Compute θ KFAC " F ´1 ' KFAC ∇ θ hpS k , θ k q; ' Choose a coarse space R T 0 and compute the associated coarse correction

R 0 β ˚" R T 0 pF coarse q ´1R 0 r KFAC ; ' Compute θ KFAC-2L " θ KFAC `R0 β ˚; ' Update θ k`1 " θ k ´αθ KFAC-2L ; end

Numerical results

In this section, we compare the new two-level KFAC methods designed in §4.2 with the standard KFAC from the standpoint of convergence speed. For a thorough analysis, we also include the two-level KFAC version of Tselepidis et al. [START_REF] Tselepidis | Two-level K-FAC preconditioning for deep learning[END_REF] and baseline optimizers (ADAM and SGD).

We run a series of experiments to investigate the optimization performance of deep autoencoders, CNNs, and deep linear networks. Since our primary focus is on convergence speed rather than generalization, we shall only be concerned with the ability of optimizers to minimize the objective function. In particular, we report only training losses for each optimizer. To equally treat all methods, we adopt the following rules. We perform a Grid Search and select hyper-parameters that give the best reduction to the training loss. Learning rates for all methods and damping parameters for KFAC and two-level KFAC methods are searched in the range t10 ´4, 10 ´3, 10 ´2, 10 ´1, 10 0 , 10 1 , 10 2 , 10 3 , 10 4 u.

For each optimizer, we apply the Early Stopping technique with patience of 10 epochs i.e. we stop training the network when there is no decrease in the training loss during 10 consecutive epochs). We also include weight decay with a coefficient of 10 ´3 for all optimizers.

All experiments presented in this work are performed with PyTorch framework [START_REF] Paszke | PyTorch: An imperative style, high-performance deep learning library[END_REF] on a supercomputer with Nvidia Ampere A100 GPU and AMD Milan@2.45GHz CPU. For ease of reading, the following table explains all abbreviations of two-level KFAC methods that we will use in the figure legends. Table 4.1: Name abbreviations of two-level KFAC optimizers.

Optimizer

Name abbreviation Two-level KFAC with Nicolaides coarse space NICO Two-level KFAC with spectral coarse space SPECTRAL Two-level KFAC with residuals coarse space RESIDU Two-level KFAC with Krylov Nicolaides coarse space KRY-NICO Two-level KFAC with Krylov residuals coarse space KRY-RESIDU Two-level KFAC of Tselepidis et al. [START_REF] Tselepidis | Two-level K-FAC preconditioning for deep learning[END_REF] PREVIOUS

Deep auto-encoder problems

The first set of experimental tests consists in optimizing the three deep auto-encoder problems (see appendix 3.D, chapter 3 for the description of the problems i.e. network architectures and datasets). For each problem, we train the network with three different batch sizes. Figure 4.1 shows the obtained results. The first observation is that, as expected, natural gradient-based methods (KFAC and two-level KFAC methods) outperform baseline optimizers (ADAM and SGD). The second and most important observation is that, for each of the three problems, regardless of the batch size, the training curve of KFAC and those of all two-level KFAC methods (the one of Tselepidis et al. [START_REF] Tselepidis | Two-level K-FAC preconditioning for deep learning[END_REF] and those proposed in this work) are overlaid, which means that taking into account the extra-diagonal terms of the Fisher matrix through two-level decomposition methods does not improve the convergence speed of KFAC method.

This second observation is quite puzzling, since theoretically two-level methods are supposed to offer a better approximation to the exact natural gradient than KFAC does and therefore should at least slightly outperform KFAC in terms of optimization performance. Note that we repeated these experiments on three different random seeds and obtained very similar results.

These surprising results are in line with the findings of Benzing [START_REF] Benzing | Gradient descent on neurons and its link to approximate second-order optimization[END_REF], according to which KFAC outperforms the exact natural gradient in terms of optimization performance (see §4.4 for an in-depth discussion of this statement). This suggests that extra-diagonal blocks of the FIM do not contribute to improving the optimization performance, and sometimes even affect it negatively.

Convolution neural networks

The second set of experiments concerns the optimization of three different CNNs namely Resnet 18 [START_REF] He | Deep residual learning for image recognition[END_REF], Cuda-convnet and Resnet 34 [START_REF] He | Deep residual learning for image recognition[END_REF]. We consider in particular Cuda-convnet which is the architecture used to evaluate the original KFAC method in [START_REF] Grosse | A Kronecker-factored approximate Fisher matrix for convolution layers[END_REF]. We train Cuda-convnet on CIFAR10 dataset [START_REF] Krizhevsky | Learning multiple layers of features from tiny images[END_REF] with a batch size equal to 256, and Resnet 18 on CIFAR100 [START_REF] Krizhevsky | Learning multiple layers of features from tiny images[END_REF] with a batch size equal to 128. Finally, we train Resnet 34 on the SVHN dataset [START_REF] Netzer | Reading digits in natural images with unsupervised feature learning[END_REF] with a batch size equal to 512.

For these CNNs (see Figure 4.2), we arrive at quite similar observations and conclusions to those we mention for deep auto-encoder problems. In particular, like in [START_REF] Tselepidis | Two-level K-FAC preconditioning for deep learning[END_REF], when considering CNNs, we do not observe any significant gain in the convergence speed of KFAC when we enrich it with cross-layer information through two-level decomposition methods. Once again, these results corroborate the claims of Benzing [START_REF] Benzing | Gradient descent on neurons and its link to approximate second-order optimization[END_REF] and suggest that we do not need to take into account the extra diagonal blocks of the FIM. 

Deep linear networks

The last experiments concern relatively simple optimization problems: linear networks optimization. A deep linear network refers to a neural network architecture that consists of multiple layers of linear units without any non-linear activation functions. In other words, each layer in a deep linear network performs a linear transformation on its inputs, and the output of one layer becomes the input for the next layer without introducing non-linearities. We consider two deep linear networks. These tests are motivated by the results obtained by Tselepidis et al. [START_REF] Tselepidis | Two-level K-FAC preconditioning for deep learning[END_REF] for their two-level method. Indeed, for an extremely simple linear network with 64 layers (each layer contains 10 neurons and a batch normalization layer) trained with randomly generated ten-size input vectors, they outperform KFAC in terms of optimization performance. Here, we first consider the same architecture but train the network on the Fashion MNIST dataset [START_REF] Xiao | Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms[END_REF] (since we could not use the same dataset). Then, we consider another linear network that contains 14 layers with batch normalization, with this time much larger layers. More precisely we consider the following architecture: 784´1000´900´800´700´600´500´400´300´200´100´50´20´10. We train this second network on the MNIST dataset. As in [START_REF] Tselepidis | Two-level K-FAC preconditioning for deep learning[END_REF], both networks are trained with a batch size of 512.

Figure 4.3 shows the training curves obtained in both cases. Here, we observe like in [START_REF] Tselepidis | Two-level K-FAC preconditioning for deep learning[END_REF] an improvement in the optimization performance of two-level optimizers over KFAC. However, this gain remains too small and only concerns simple linear networks that are not used for practical applications. We therefore do not encourage enriching KFAC with two-level methods that require additional computational costs. 

Verification of error reduction for linear systems

In the above experiments, two-level methods do not seem to outperform KFAC in terms of optimization performance. We, therefore, wish to verify that at each descent iteration, the negative increment of KFAC-2L, ζ KFAC-2L , which is obtained by the coarse correction, is closer to the regularized natural gradient one ζ, than the negative increment ζ KFAC which corresponds to the original KFAC. In other words, in this section, we verify the inequality (4.21) by evaluating first the error reduction at each descent iteration and validating the expected behaviour.

For β P R m , let

Epβq " }ζ KFAC `RT 0 β ´ζ} is the squared F ' -distance between the KFAC increment and that natural gradient one, regardless of R T 0 . Meanwhile, if β ˚is taken to be the optimal value (4.13), then

Epβ ˚q " }ζ KFAC-2L ´ζ} 2 F' . (4.43) 
To see whether (4.21) is satisfied, the idea is to compute the difference Epβ ˚q ´Ep0q and check that it is negative. The goal of the game, however, is to avoid using the unknown natural gradient solution ζ. Owing to the identity }a} 2 ´}b} 2 " pa ´b, a `bq for the F ' -dot product, this difference can be transformed into

Epβ ˚q ´Ep0q " }ζ KFAC-2L ´ζ} 2 F' ´}ζ KFAC ´ζ} 2 F' " pζ KFAC-2L ´ζKFAC , ζ KFAC-2L `ζKFAC ´2ζq F' " }ζ KFAC-2L ´ζKFAC } 2 F' `2pζ KFAC-2L ´ζKFAC , ζ KFAC ´ζq F' " }R T 0 β ˚}2 F' `2pR T 0 β ˚, ζ KFAC ´ζq F' " @ F ' R T 0 β ˚, R T 0 β ˚D `2@ R T 0 β ˚, F ' pζ KFAC ´ζq D , (4.44) 
where x¨, ¨y denotes the Euclidean dot product. But

F ' pζ KFAC ´ζq " F ' ζ KFAC ´∇θ h " ´rKFAC (4.45)
is the opposite of the residual (4.15), which can be computed without knowing ζ. Finally, the desired difference can also be computed as

Epβ ˚q ´Ep0q " @ R 0 F ' R T 0 β ˚, β ˚D ´2@ R T 0 β ˚, r KFAC D . (4.46) 
For the two-level method of Tselepidis-Kohler-Orvieto [START_REF] Tselepidis | Two-level K-FAC preconditioning for deep learning[END_REF], the correction reads

ζ TKO " ζ KFAC `RT 0 β TKO (4.47a) with β TKO " pR 0 F ' R T 0 q ´1R 0 ∇ θ h (4.47b)
instead of β ˚, the KFAC-2L value (4.13). The difference Epβ T KO q ´Ep0q is then given by a formula similar to (4.46) in which β ˚is simply replaced by β TKO . We compute the error Epβ ˚q´Ep0q associated to various two-level methods in the experiments conducted above. More specifically, we do it for the three deep auto-encoder problems and also for a CNN (cuda-convnet). The results obtained are shown in Figure 4.4. The observation is that all two-level methods proposed in this work as well as the TKO two-level method [START_REF] Tselepidis | Two-level K-FAC preconditioning for deep learning[END_REF] have negative gaps Epβ ˚q ´Ep0q throughout the optimization process. This implies that twolevel methods solve the linear system (4.5) more accurately than KFAC does. It also means that the approximate natural gradients obtained with Two-level methods are closer to the exact natural gradient than the one obtained with KFAC. These results reveal that closeness to the exact natural gradient instigated with the inclusion of extra-diagonal blocks of the FIM does not necessarily results in a more efficient algorithm. 

Comparison of KFAC against exact natural gradient

From §4.3.4, we come to the conclusion that despite the fact that two-level methods do not outperform KFAC in terms of optimization performance, they offer an increment much closer to the exact natural gradient (NG) than that obtained with KFAC. In this section, we propose to investigate more this study. This leads us to wonder about the effectiveness of exact NG compared to KFAC.

To our concerns, Benzig states in [START_REF] Benzing | Gradient descent on neurons and its link to approximate second-order optimization[END_REF] that KFAC outperforms exact NG in terms of optimization performance. Here we wish to corroborate this statement which a priori seems contradictory, since KFAC is an approximation of the natural gradient. To do so, we implement the exact NG with the whole FIM. We also include the exact block natural gradient (block-diagonal NG) using the diagonal blocks of the FIM, without Kronecker-factored approximation.

As in [START_REF] Benzing | Gradient descent on neurons and its link to approximate second-order optimization[END_REF], to design the exact NG and block-diagonal NG, we make use of the Sherman-Morrison-Woodbury inversion formula [START_REF] Duncan | Some devices for the solution of large sets of simultaneous equations (with an appendix on the reciprocation of partitioned matrices)[END_REF].

Design of exact NG and block-diagonal NG via matrix inversion lemma

Exact NG. The decisive step for setting up the exact NG algorithm (4.1) is the computation of the negative increment ζ " F ´1 ' ∇ θ h " pF `λI p q ´1∇ θ h, where F is computed with a batch of samples S Ă D, using Monte-Carlo estimation i.e.

F " ErDθpDθq T s « 1 m m ÿ b"1 pDθq pbq ppDθq pbq q T " 1 m JJ T , (4.48) 
where J P R pˆm is the matrix whose b-th column is pDθq pbq . We will derive the formulas for any vector u. One just needs to take u equal to ∇ θ h in the case of the exact NG. Let us consider u P R p , and ζ u " pF `λI p q ´1u " pλI p `1 m JJ T q ´1u. (4.49)

Applying the Sherman-Morrison-Woodbury inversion formula to right hand side of (4.49), one obtains

ζ u " λ ´1u ´λ´2 m ´1J pI m `1 λm J T Jq ´1J T u. (4.50)
The decisive advantage of (4.50) is that unlike in (4.49) where it was necessary to solve a linear system of size p (the number of parameters of the model), now we just need solve a system of size m (batch size). This new formulation makes the implementation of the exact NG possible, even for very deep networks, since the batch size m is independent of the model size and is usually small (up to a few thousand). From (4.50), the computation of ζ u can be performed in three main steps:

1. Computation of matrix-vector product J T u P R m .

2. Computation of the matrix J T J P R mˆm .

3. computation of matrix-vector product Jv P R p , for a vector v P R m .

Steps 1 ´3 can be performed in an economical way, without explicitly forming J or J T . The reader is referred to appendix 4.B for details about these steps.

Block-diagonal NG. In the case of block-diagonal NG, we independently apply the natural gradient algorithm to each layer. Concretely, for any layer i P 1; ℓ , we update the weights associated to that layer through the equation pθ ris q k`1 " pθ ris q k ´αk rF ' ppθ ris q k qs ´1∇ θ h ris , (4.51) with θ ris " vecpW i q, F ' ppθ ris q k q " F i,i `λI p i and ∇ θ h ris " ∇ pθ ris q k h is the part of the gradient corresponding to layer i. As in the case of the exact NG, we need to estimate the negative increment with a batch S of samples, namely

ζ i " pF i,i `λI p i q ´1∇ θ h ris " pλI p i `1 m J i J T i q ´1∇ θ h ris , (4.52) 
where J i " `vecpDW i q p1q , vecpDW i q p2q , . . . , vecpDW i q pmq ˘P R p i ˆm is the matrix containing the batch of gradients related to layer i. Comparing (4.52) to (4.49), it is obvious that the rest of computations are performed exactly in the same way as in the case of exact NG. Experiments. To empirically compare the optimization performances of exact NG and blockdiagonal NG against KFAC, we consider the three deep auto-encoder problems. We also consider two different CNNs optimization problems, namely Cuda-convnet trained with CIFAR10 and VGG 11 trained with SVHN dataset. Figures 4.6 and 4.5 show the obtained results for the three deep auto-encoder problems and CNNs respectively. The first observation is that in all cases, as stated by Benzig [START_REF] Benzing | Gradient descent on neurons and its link to approximate second-order optimization[END_REF], KFAC performs better than exact NG and block-diagonal NG. The second observation is that, in general, block-diagonal NG performs slightly better than exact NG. The fact that KFAC and block-diagonal NG outperform exact NG in terms of optimization performance suggests that the layers of the network interact negatively with each other and this hurts the performance of the resulting optimizer. This could in fact be an empirical explanation for the fact that two-level methods designed in §4.2 do not improve KFAC.

As for the fact that KFAC is more efficient than the exact block-diagonal, this remains puzzling since both (KFAC and exact block-diagonal) ignore extra-diagonal blocks and KFAC is an approximation of the exact block-diagonal. To understand this unexpected observation, we propose to further investigate the comparison between KFAC and block-diagonal NG. We find that these two methods do not use the same regularization technique. This leads us to study the impact of regularization in the next subsection.

Impact of regularization

Here, we seek to understand why KFAC outperforms block-diagonal NG in terms of optimization performance. Since KFAC uses a heuristic regularization technique that is different from the normal regularization used for block-diagonal NG, we propose to study the impact of this type of regularization on KFAC.

In the KFAC method (see §3. This regularization technique is purely heuristic (no theoretical basis) and is solely motivated by computation purposes. In the case of the classical damping technique, each block of KFAC should be regularized as follows

rF ' KFAC s i,i " Āi´1 b G i `λI p i . (4.54) 
The heuristic technique used in KFAC therefore adds the following two additional terms

λ Āi´1 I b G i and Āi´1 b λ G i I
to the original curvature matrix. To evaluate whether these additional terms explain the success of KFAC over block-diagonal NG, we implement KFAC with normal damping and compare its performance against block-diagonal NG. To do so, we consider the optimization of two toy networks, namely a shallow MLP of 5 layers trained with a subset of 5000 images from MNIST dataset and a CNN containing 2 convolution layers and 1 MLP layer trained with subset of 1000 images from CIFAR10 dataset. For each network, we consider two different batch sizes and the case of full batch (i.e. deterministic optimization). Figures 4.7 and 4.8 illustrate the results obtained for the MLP and CNN respectively. We observe that in each problem, regardless of the size of the batch, KFAC with heuristic damping outperforms significantly block-diagonal NG, which in turn does better than KFAC with normal damping. These results explain that the success of KFAC over block-diagonal NG relies on the heuristic damping technique used for it. This is not surprising because both KFAC and block-diagonal NG rely on the block-diagonal approximation of the FIM and KFAC is a further approximation of block-diagonal NG. And therefore, the success of KFAC compared with blockdiagonal NG could only be attributed to the regularization technique used.

These findings suggest regularizing KFAC-type methods using heuristic damping instead of normal damping.

Conclusion

In this study, we sought to improve KFAC by incorporating extra-diagonal blocks using two-level decomposition methods. To this end, we proposed several two-level KFAC methods, carefully designing coarse corrections. Through several experiments, we came to the conclusion that two-level KFAC methods do not generally outperform the original KFAC method in terms of optimization performance of the objective function. This implies that taking into account the interactions between the layers is not useful for the optimization process.

We also numerically verified that, at the level of the linear system of each iteration, the increment provided by any two-level method is much closer to the exact natural gradient solution than that obtained with KFAC, in a norm naturally associated with the FIM. This reveals that closeness to the exact natural gradient does not necessarily results in a more efficient algorithm. This observation is consistent with Benzing's previous claim [START_REF] Benzing | Gradient descent on neurons and its link to approximate second-order optimization[END_REF] (corroborated by our experiments in §4.4) that KFAC outperforms the exact natural gradient in terms of optimization performance.

The fact that incorporating extra-diagonal blocks does not improve or often even hurts the optimization performance of the initial diagonal approximation could be explained by a negative interaction between different layers of the neural network. This suggests ignoring extra-diagonal blocks of the FIM and keeping the block-diagonal approximation, and if one seeks to improve the block-diagonal approximation, one should focus on diagonal blocks as attempted in chapter 3 and in many recent works [START_REF] Botev | Practical Gauss-Newton optimisation for deep learning[END_REF][START_REF] Gao | A tracerestricted Kronecker-factored approximation to natural gradient[END_REF][START_REF] George | Fast approximate natural gradient descent in a Kronecker-factored eigenbasis[END_REF].

It is worth pointing out that the conclusion of Tpselepedis et al. [START_REF] Tselepidis | Two-level K-FAC preconditioning for deep learning[END_REF] on the performance of their proposed two-level method seems a little hasty. Indeed, the authors only ran two different experiments: the optimization of a CNN and a simple linear network. For the CNN network, they did not observe any improvement. For the linear network, they obtain some improvement in the optimization performance. Their conclusion is therefore based on this single observation.

4.A Efficient computation of F ' u and F coarse

4.A.1 Notations

We consider the same network architectures (MLP and CNN) and notations introduced in chapter 1. For two matrices A and B of same sizes, A d B denotes the Hadamard (element-wise) product of A and B. We will also write ⟨u, v⟩ for the inner (dot) product between vectors u and v. We recall that "vec" is the operator that turns a matrix into a vector by stacking its columns together and "MAT," the converse of "vec," turns a vector into a matrix.

For a big vector u P R p , where p is the number of parameters contained in θ, the notation uris P R p i stands for the part of u corresponding to layer i, whose number of parameters is p i . For example, if u " θ " rvecpW 1 q T , vecpW 2 q T , . . . , vecpW ℓ q T s T , then uris " vecpW i q for all i P t1, . . . , ℓu.

Finally, We recall that m is the number of data points in a mini-batch S.

4.A.2 Computation of F ' u

In view of the regularization (4.2), it is plain that

F ' u " F u `λu. (4.55) 
Since the regularization term does not cause any trouble, we only have to deal with F u. It is notoriously knwon that the matrix-vector product involving the Fisher matrix can be carried out without explicitly forming F thanks to an algorithm by Schraudolph [START_REF] Schraudolph | Fast curvature matrix-vector products for second-order gradient descent[END_REF]. However, this approach requires to perform additional forward/backward passes. Here, we present an efficient way to evaluate F u by re-using the quantities computed during the traditional backward/forward pass.

Suppose that we have a mini-batch S " tpx p1q , y p1q q, . . . , px pmq , y pmq qu sampled from the training set D where targets y's are sampled from the model predictive distribution P y|x pθq. Then, F is computed using a Monte Carlo estimation, i.e.,

F " rDθpDθq T s « 1 m m ÿ b"1 pDθq pbq ppDθq pbq q T " 1 m JJ T , (4.56) 
where J P R pˆm is the matrix whose b-th column is pDθq pbq . Thus,

F u " 1 m JJ T u. (4.57)
The computation of F u can therefore be divided into two steps: (1) matrix-vector product v " J T u; (2) matrix-vector product 1 m Jv.

Step 1: multiplying by J T . Since J T P R mˆp and u P R p , we have v " J T u P R m . For all b P t1, . . . , mu, the b-th entry v b of v is none other than the dot product between the b-th column pDθq pbq of J and u. This dot product can be split into layer-wise dot products and then summed up together. Formally, we have

v b " @ pDθq pbq , u D " ℓ ÿ i"1 @ vecppDW i q pbq q, uris D . (4.58) 
We now distinguish two cases according to the type of layer i.

1. If layer i is an MLP, we have DW i " g i āT i´1 and then vecppDW i q pbq q, u ris " vecpg pbq i pā pbq i´1 q T q, u ris " āpbq i´1 b g pbq i , u ris " `pā pbq i´1 q T b pg pbq i q T ˘uris " pg pbq i q T MATpu ris qā pbq i´1 .

(4.59)

We obtain thus in matrix form We therefore obtain is the matrix containing pre-activations derivatives corresponding to t.

J T u " ℓ ÿ i"1 diag `Ĝ T i MATpu ris q Âi´1 ˘, where 
J T u " ℓ ÿ i"1 ÿ tPT i diag `Ĝ T i,
Step 2: multiplying by J. Here, we detail how to compute Jv, but one should not forget to multiply the result by the scaling factor 1{m. Let v P R m . Jv is a weighted sum of the columns of J with the weight coefficients corresponding to the entries of v. In other words,

Jv " m ÿ b"1 v b pDθq pbq . (4.65)
For all i P t1, . . . , ℓu, the part of Jv corresponding to layer i is a linear combination of those of columns of J corresponding to layer i, that is,

pJvqris " m ÿ b"1 v b vecppDW i q pbq q. (4.66)
As in step 1, we have to distinguish two cases according the type of layer i.

1. If layer i is an MLP, we have pJvqris "

m ÿ b"1 v b vecpg pbq i pā pbq i´1 q T q " vec ´m ÿ b"1 v b g pbq i pā pbq i´1 q T ¯, (4.67) 
and then

MAT `pJvq ris ˘" m ÿ b"1 v b g pbq i pā pbq i´1 q T " " p1v T q d Ĝi ‰ ÂT i´1 , (4.68) 
where 1 P R d i is a vector of all one's, Âi´1 and Ĝi are matrices defined respectively in (4.60) and (4.61). Note that the last equality in (4.68) is due to the fact that for two matrices A " rA 1 , . . . , A m s and B " rB 1 , . . . , B m s, we have

AB T " ÿ k A k B T k . (4.69)
2. If layer i is a CNN, we have

pJvq ris " m ÿ b"1 v b vec ´ÿ tPT i g pbq i,t pā pbq i´1,t q T " m ÿ b"1 vec ´ÿ tPT i v b g pbq i,t pā pbq i´1,t q T ¯, (4.70) 
and then

MAT `pJvq ris ˘" m ÿ b"1 v b ÿ tPT i g pbq i,t pā pbq i´1,t q T " " p1V T q d Ĝi ‰ rr Âi´1 ss T , (4.71) 
where here 1 is a vector of all one's of size c i (the number of output channels), whereas 

4.A.3 Computation of F coarse

From definition (4.14) of the coarse operator and the a priori form (4.23) of the coarse space, it follows that rF coarse s i,j " V T i rF ' s i,j V j (4.73) for all pi, jq P t1, . . . , ℓu ˆt1, . . . , ℓu. In view of the regularization (4.2), the entry (4.73) becomes

rF coarse s i,j " # V T i F i,j V j if i ‰ j, V T i F i,i V i `λV T i V i if i " j. (4.74) 
Since the regularization term λV T i V i does not cause any trouble, we only have to deal with the elementary products v T F i,j w, where v P R p i (a column of V i ) and w P R p j (a column of V j ). We reall that F i,j P R p i ˆpj is computed using a Monte Carlo estimation on a mini-batch, i.e.,

F i,j « 1 m m ÿ b"1 vecpDW i q pbq pvecpDW j q pbq q T " 1 m J i J T j , (4.75) 
with J i " `vecpDW i q p1q , vecpDW i q p2q , . . . , vecpDW i q pmq ˘P R p i ˆm, (

J j " `vecpDW j q p1q , vecpDW j q p2q , . . . , vecpDW j q pmq ˘P R p j ˆm.

Then, v T F i,j w is given by

v T F i,j w " 1 m v T J i J T j w. (4.77)
The computation of v T F i,j w can therefore be performed in three steps: (1) matrix-vector product µ " J T j w;

(2) matrix-vector product γ " J i µ;

(3) dot product 1 m xv, γy. The computation of µ " J T j v is done in the same way as J T u in the previous subsection §4.A.2. The only difference is that here we do not sum over layers. Likewise, the computation of γ " J i µ is done exactly in the same way as pJvqris in §4.A.2. Finally, step 3 is the classical dot product and is straightforward.

4.B Details about the computation of exact natural gradient

Here, we give details on the calculation of J T u, J T J and Jv from §4.4.1. The computations of J T u and Jv are already detailed in §4.A.2. As for J T J, let pb 1 , b 2 q P 1; m 2 , then it is easy to notice that the pb 1 , b 2 q entry of J T J is given by the dot product between the b th 1 column and b th 2 column of J. Formally, 2.q @pb 1 , b 2 q P 1; m 2 , pJ T Jq b 1 ,b 2 " pDθq pb 1 q , pDθq pb 2 q " ℓ ÿ i"1 vecppDW i q pb 1 q q, vecppDW i q pb 2 q q " ℓ ÿ i"1 µ i , with µ i " vecppDW i q pb 1 q q, vecppDW i q pb 2 q q . For the computation of µ i , we need to distinguish to cases according the type of layer i.

1. If layer i is an MLP, we have µ i " vecpg pb 1 q i pā pb 1 q i´1 q T q, vecpg pb 2 q i pā pb 2 q i´1 q T q " `vecpg pb 1 q i pā pb 1 q i´1 q T q ˘T vecpg pb 2 q i pā pb 2 q i´1 q T q " `pā

pb 1 q i´1 q T b pg pb 1 q i q T ˘`ā pb 2 q i´1 b g pb 2 q i "rpā pb 1 q i´1 q T āpb 2 q i´1 srpg pb 1 q i q T g pb 2 q i s.
Thus in matrix form, we obtain

J T J " ℓ ÿ i"1 p ÂT i´1 Âi´1 q d p ĜT i Ĝi q, (4.78) 
where Âi´1 is the matrix of activations defined by (4.60), and Ĝi is the matrix containing pre-activations derivatives defined by equation (4.61).

2. If layer i is a convolution layer, we have

µ i " vec `ÿ tPT i g pb 1 q i,t pā pb 1 q i´1,t q T ˘, vec `Ti ÿ tPT i g pb 2 q i,t pā pb 2 q i´1,t q T ˘ " ÿ tPT i ÿ t 1 PT i " pā pb 1 q i´1,t q T āpb 2 q i´1,t 1 ‰" pg pb 1 q i,t q T g pb 2 q i,t 1 ‰ .
Therefore, we obtain This chapter is concerned with the application of the KFAC method to the training of generative adversarial networks (GANs). Our goal is to empirically analyze the impact of incorporating curvature information on convergence speed, stability and overall performance for various datasets. We consider only the basic KFAC approximation, without any of the enhancements suggested in §3- §4.

J T J " ℓ ÿ i"1 ÿ tPT i ÿ t 1 PT i p ÂT i´1,t Âi´1,t 1 q d p ĜT i,t Ĝi,t 1 q, ( 4 
The mathematical framework of GANs is sketched out in §5.1, at the end of which we describe the DCGAN (deep convolutional GAN) architecture that will be of interest to us. The latter involves the crucial notion of transposed convolution layers, which we shall elaborate on in §5.2 and to which we shall extend to KFAC approximation in §5.2.3. Finally, numerical tests are provided in §5.3 along with observations on the effectiveness of the proposed method.

Generative adversarial networks

Continuous framework

In less than a decade, generative adversarial networks (GANs) have established themselves as an elegant and powerful paradigm for generating synthetic data achieving a very high degree of "resemblance" to real samples. Initially proposed by Goodfellow [START_REF] Goodfellow | NIPS 2016 tutorial: Generative adversarial networks[END_REF][START_REF] Goodfellow | Generative adversarial nets[END_REF] and improved by many subsequent authors [START_REF] Arjovsky | Wasserstein generative adversarial networks[END_REF][START_REF] Gulrajani | Improved training of Wasserstein GANs[END_REF][START_REF] Mirza | Conditional generative adversarial nets[END_REF][START_REF] Radford | Unsupervised representation learning with deep convolutional generative adversarial networks[END_REF][START_REF] Zhang | Self-attention generative adversarial networks[END_REF][START_REF] Zhu | Unpaired image-to-image translation using cycle-consistent adversarial networks[END_REF], GANs have met with tremendous success in many applications such as image-to-image translation [START_REF] Abdal | Image2StyleGAN: How to embed images into the StyleGAN latent space?[END_REF][START_REF] Karras | Analyzing and improving the image quality of StyleGAN[END_REF], image in-painting [START_REF] Iizuka | Globally and locally consistent image completion[END_REF][START_REF] Yu | Free-form image inpainting with gated convolution[END_REF], image super-resolution [START_REF] Ledig | Photo-realistic single image super-resolution using a generative adversarial network[END_REF][START_REF] Wang | ESRGAN: Enhanced super-resolution generative adversarial networks[END_REF], text-to-image generation [START_REF] Xu | AttnGAN: Fine-grained text to image generation with attentional generative adversarial networks[END_REF][START_REF] Zhang | StackGAN: Text to photo-realistic image synthesis with stacked generative adversarial networks[END_REF] and many more. Mention should be made that GANs are part of a wider family of generative models including variational autoencoders [START_REF] Kingma | Auto-encoding variational Bayes[END_REF] and autoregressive models [START_REF] Van Den Oord | WaveNet: A generative model for raw audio[END_REF][START_REF] Van Den Oord | Pixel recurrent neural networks[END_REF].

Let X be the (finite-dimensional) space of real data samples. These objects have some degree of consistency, insofar as they are generated as samples from a common probability distribution P r defined over X . We assume that P r has a density function p r pxq. We do not know either P r or p r pxq. The only information available to us is the data samples. This is why we would like to find a probability distribution P G with density p G pxq, also defined on X , to approximate P r and p r pxq. Once this is done, we can take samples from the distribution P G to generate other "similar" objects in X .

To build P G , we can start from an initial probability distribution P z , with density p z pzq, defined on another (finite-dimensional) space Z whose dimension may not be the same as that of X . This initial distribution P z governs the random noise that will be later used to create samples. For instance, we can set p z to be the standard normal distribution, although other choices are possible. The idea of GANs is to determine a mapping G : Z Ñ X , called generator, such that if a random variable Z has distribution P z , then the random variable GpZq has distribution P G . In other words, P G " P z ˝G´1 .

Vanilla GAN. For P G to satisfactorily mimick P r , the vanilla GAN sets up an adversarial system from which G receives feedback to improve itself. More specifically, in addition to G, it introduces another function D : X Ñ r0, 1s, called discriminator, whose role is

• to demote the samples generated by G by assigning a low score to objects of the form Gpzq; thus DpGpzqq must be close to 0;

• to promote the samples coming from P r by assigning a high score to them; thus, Dpxq must be close to 1.

Simultaneously, the generator G tries to fool the discriminator D by maximizing DpGpzqq. One approach to attaining all these goals, depicted in with respect to all functions pG, Dq. Plainly, the minimax problem (5.1) can be reformulated as min

P G max D E x"Pr " log `Dpxq ˘‰ `Ex"P G " log `1 ´Dpxq ˘‰, (5.2) 
the interest of which is to work directly with the distribution P G P tP z ˝G´1 , G : Z Ñ X u. The following result sheds new light on (5.2) and paves the way for its generalization.

Theorem 5.1 (Goodfellow et al. [START_REF] Goodfellow | Generative adversarial nets[END_REF]). The minimax problem (5.2) of the vanilla GAN has the same minimizers as min

P G JS " P r } P G ‰ , (5.3) 
where the Jensen-Shannon divergence

JS " P } Q ‰ " 1 2 KL " P › › › P `Q 2 ȷ `1 2 KL " Q › › › P `Q 2 ȷ (5.4)
is a symmetrized version of the Kullback-Leibler divergence (2.47). For any pp, qq P R 2 zp0, 0q, the function d Þ Ñ p log d `q logp1 ´dq reaches its maximum over r0, 1s at p{pp `qq. Since the discriminator does not need to be defined when both p r and p G vanish, we can consider D ˚rP G spxq " p r pxq p r pxq `pG pxq (5.6) and see that it achieves the maximum with respect to D of V at fixed P G . The maximal value

V pP G , D ˚rP G sq " sup D V pP G , Dq (5.7) 
can be evaluated as

V ˚pP G q :" ż X " p r pxq log p r pxq p r pxq `pG pxq `pG pxq log p G pxq p r pxq `pG pxq * dx (5.8a) " KL " P r › › › P r `PG 2 ȷ ´log 1 2 `KL " P G › › › P r `PG 2 ȷ ´log 1 2 (5.8b) " 2 JS " P r } P G ‰ ´2 log 1 2 . ( 5 

.8c)

This implies that arg min

P G V ˚pP G q " arg min P G JSrP r } P G s, (5.9) 
hence the desired equivalence.

Theorem 5.1 certifies the appropriateness of formulation (5.2). Indeed, let us relax the constraint P G " P z ˝G´1 and assume that P G can be any probability distribution over X . Then, the solution of (5.3) is obviously P G " P r , because JSrP } Qs ě 0 for all pair of probability distributions pP, Qq and equality holds if and only if P " Q. This is exactly what we have set out to accomplish (except for the fact that since we do not know P r , this solution has a purely theoretical value). Inserting then p G " p r into (5.6), we end up with the optimal discriminator Dpxq " 1 2 for all x P supp p G .

(5.10)

Put another way, we have reached a Nash equilibrium [START_REF] Ratliff | Characterization and computation of local Nash equilibria in continuous games[END_REF] at which the discriminator D is no longer able to tell apart generated samples from training ones.

f-GAN. As a straightforward generalization of the vanilla GAN, we can replace the Jensen-Shannon divergence in (5.4) by another notion of divergence between probability distributions. Let f be a strictly convex with domain I Ă R such that f p1q " 0. The f -divergence [START_REF] Ali | A general class of coefficients of divergence of one distribution from another[END_REF] between two probability distributions pP, Qq on X with densities pp, qq is defined as

div f rP } Qs " E x"Q " f ´p q ¯ı " ż X f ´ppxq qpxq ¯qpxq dx, (5.11) 
where we agree on the convention that the integrand in the integral of the last equality (5.11) is zero whenever qpxq " 0. The Kullback-Leibler and Jensen-Shannon divergences are both special cases of the f -divergence [START_REF] Wang | A mathematical introduction to generative adversarial nets (GAN)[END_REF]. Given an f -divergence, the f -GAN problem is defined as min

P G div f rP r } P G s. (5.12) 
Again, if the implicit form P G " γ˝G ´1 were put aside, the solution of this minimization problem would be P G " P r , since an f -divergence is always non-negative and vanishes only when the two probability distributions are equal almost everywhere. For computational purpose, however, formulation (5.12) has no practical value. Fortunately, under some mild restrictions, we can express it in an equivalent way that is reminiscent of a minimax problem.

Theorem 5.2. Let f be strictly convex and continuously differentiable on I Ă R. The f-GAN problem (5.12) subject to the additional constraint P G " P r , that is, P r be absolutely continuous with respect to P G , has the same minimizers as

min P G "Pr sup T E x"Pr rT pxqs ´Ex"P G rf ˚pT pxqqs, (5.13) 
where f ˚denotes the Legendre-Fenchel transform of f , the sup being taken over all measurable function T : X Ñ Dompf ˚q Ă R.

Proof. Nguyen et al. [START_REF] Nguyen | Estimating divergence functionals and the likelihood ratio by convex risk minimization[END_REF] showed that if f meets the stated assumptions and if P r ! P G , then div f rP r } P G s " sup T E x"Pr rT pxqs ´Ex"P G rf ˚pT pxqqs, (5.14) where the sup is taken over all measurable function T : X Ñ Dompf ˚q. Minimizing div f rP r } P G s over P G " P r therefore yields the same minimizers as (5.13).

In the f -GAN approach, a function T appearing in (5.13) is called a critic. With a slight abuse, it is also referred to as the discriminator. An alternative but similar formulation, in which the absolute continuity constraint P r ! P G is removed, gives rise to the category of variational divergence minimization [START_REF] Wang | A mathematical introduction to generative adversarial nets (GAN)[END_REF].

Wasserstein GAN (WGAN).

A common pitfall with vanilla GAN and f -GAN is the lack of continuity of the divergence, which causes the optimizer to stagnate. To illustrate this point, let us consider the following example, due to Arjovsky et al. [START_REF] Arjovsky | Wasserstein generative adversarial networks[END_REF] where W denotes the Wasserstein-1 distance, also known as the Earth-mover distance. The latter is defined as

W " P } Q ‰ " inf πPΠpP,Qq ż X ˆX }x ´y} dπpx, yq " inf πPΠpP,Qq E px,yq"π r}x ´y}s, (5.19) 
where ΠpP, Qq stands for the set of all probability distributions πpx, yq on X ˆX whose marginals of π coincide with P and Q. Intuitively, πpx, yq indicates how much "mass" must be transported from x to y in order to transform distribution P into distribution Q. The minimal value WrP } Qs quantifies the least amount of work required to do the overall transport. Note that the notion of Wasserstein distance hinges upon a preexisting vector norm } ¨} in X .

For the example given in (5.15), it can be verified that

W " P } P ζ ‰ " |ζ| for all ζ P R, (5.20) 
which ensures continuity for ζ Ó 0 and gives the optimizer a better chance to converge. More generally, it can be shown [START_REF] Arjovsky | Wasserstein generative adversarial networks[END_REF][START_REF] Barnett | Convergence problems with generative adversarial networks[END_REF] that the topology associated to the Wasserstein distance is weaker than the one associated with the JS or KL divergence in the following sense.

Proposition 5.1. Let tP n u nPN be a sequence probability distributions on X and P a possible limit. Then, 1. If JSrP } P n s Ñ 0, then WrP } P n s Ñ 0.

2. If KLrP } P n s Ñ 0 or KLrP n } Ps Ñ 0, then WrP } P n s Ñ 0. Proof. See Barnett [START_REF] Barnett | Convergence problems with generative adversarial networks[END_REF].

Proposition 5.1 and example (5.15) suggest that the Wasserstein distance is likety to be a more suitable loss function for training GANs. But, as was the case for f -GANs, this loss function W " P r } P G ‰ cannot be computed in practice, since we do not know P r . It turns out that we can recast it under a computable "adversarial" form. where Lip 1 pX q is the set of all Lipschitz functions T : X Ñ R with Lipschitz constant 1.

Proof. According to the Kantorovich-Rubinstein duality [START_REF] Villani | Optimal Transport: Old and New[END_REF], we have

W " P } Q ‰ " sup
T PLip 1 pX q E x"P rT pxqs ´Ex"Q rT pxqs (5.22) for all pairs of probability distributions pP, Qq on X .

Similarly to f -GANs, although a function T appearing in (5.22) should be called critic in all rigor, it is common to refer to it as discriminator and even to write D in place of T .

WGAN with gradient penalty (WGAN-GP). The trouble with WGAN lies in the constraint T P Lip 1 pX q, which also reads

}∇ x T pxq} 2 ď 1 (5.23)
and which is really delicate to enforce, especially when T is approximated by a neural network. The authors of [START_REF] Arjovsky | Wasserstein generative adversarial networks[END_REF] recommended to clip the weights of the discriminator, that is, all weights of the discriminator are restricted to remain in a certain interval r´c, cs, where c ą 0 is a hyperparameter. However, clipping the weights severely damages the capacity of the discriminator to learn correctly. Gulrajani et al. [START_REF] Gulrajani | Improved training of Wasserstein GANs[END_REF] came up with a more subtle way to handle this problem. Their method rests upon a constraint saturation property of the optimal critic. Lemma 5.1. Let T 7 P Lip 1 pX q be an optimal solution of max }∇T } 2 ď1 E x"Pr rT pxqs ´Ex"P G rT pxqs.

(5.24)

If T 7 is differentiable and if π 7 px " yq " 01 , where π 5 is the optimal joint distribution arising in the definition of WrP r } P g s, then

}∇ x T 7 pxq} 2 " 1 (5.25)
almost everywhere in the sense of both P r and P G .

Proof. where λ ą 0 is the regularization weight and p

x " ϵx `p1 ´ϵqr x, ϵ " Upr0, 1sq.

(5.27) is a mixture of real pxq and generated pr xq images. Note that we have used the symbol D instead of T and that the minus sign in front of the penalty term is due to the fact that we are maximizing with respect to D. WGAN-GP has significantly improved the stability of GANs by fully unleashing the potential of WGAN. Nowadays, it is used in almost all modern GAN architectures. It should be kept in mind that training a GAN remains a difficult task. The two most frequently encountered issues are [START_REF] Barnett | Convergence problems with generative adversarial networks[END_REF][START_REF] Wang | A mathematical introduction to generative adversarial nets (GAN)[END_REF]:

• Vanishing gradient. Illustrated by example (5.15), this also occurs when the discriminator becomes too good at telling fake from real. As a result, the generator receives too weak gradient information, which impedes its improvement.

• Mode collapse. This refers to the phenomenon by which the generator fails to capture the full diversity of the target distribution and produces a small set of outputs over and over again or collapses to just a few modes while the target distribution is multi-modal.

By acting on the continuous level, WGAN-GP helps to fight the above plagues. Nevertheless, there are other failure modes which are associated to the discrete level. Finally, we would like to point out that several approaches other than modifying the loss function have been developed with the aim of stabilizing GANs training. Such methods include new network architectures design [START_REF] Radford | Unsupervised representation learning with deep convolutional generative adversarial networks[END_REF][START_REF] Zhang | Self-attention generative adversarial networks[END_REF], regularization [START_REF] Gulrajani | Improved training of Wasserstein GANs[END_REF][START_REF] Miyato | Spectral normalization for generative adversarial networks[END_REF] and heuristic tricks [START_REF] Salimans | Improved techniques for training GANs[END_REF].

Approximation by networks and optimization

So far, we have been working in the continuous framkework where minimization and maximization are carried out with respect to all possible functions G and D. In practice, the generator and the discriminator/critic must be restricted to be neural networks G θ G : Z Ñ X and D θ D : X Ñ R parametrized by θ G and θ D . The WGAN-GP problem (5.26) is now approximated by min

θ G max θ D V pθ G , θ D q, (5.28) 
where V pθ G , θ D q represents an approximation of the loss function in (5.26). To work out such an approximation, we consider

• S x " tx p1q , . . . , x pmq u a minibatch of real samples from the training data in X ;

• S z " tz p1q , . . . , z pmq u a minibatch of samples in Z drawn from the distribution γ.

Note that the two sets have the same size m. Then, we set

V pθ G , θ D q " 1 m m ÿ b"1 D θ D px pbq q ´1 m m ÿ b"1 D θ D pG θ G pz pbq qq ´λ m m ÿ b"1 `}∇ x D θ D pp x pbq q} 2 ´1˘2 , (5.29) 
in which p x pbq " ϵ pbq x pbq `p1 ´ϵpbq qG θ G pz pbq q (5.30) with ϵ pbq randomly drawn from Upr0, 1sq. When it comes to minimax problems, the gradient descent ascent (GDA) or the stochastic gradient descent ascent (SGDA) are workhorse methods. The basic tenet is to alternate between maximizing in θ D and minimizing in θ G , so that the two players are trained simultaneously and improve together. Algorithm 4 describes the minibatch SGDA method for solving (5.28). This algorithm depends on an integer hyperparameter K, which is the number of gradient ascent steps to be applied to the discriminator before an gradient descent step is performed to update the generator. Indeed, it is quite usual that the discriminator needs to be trained faster than the generator. The reason for this seems to be that the feedback of the discriminator is crucial for the performance of the whole GAN. However, it was said earlier that the vanishing gradient issue may occur when the discriminator is too good. Therefore, there is a balance to be struck between training the discriminator faster then the generator and overtraining it! 

θ D Ð θ D `αD m ∇ θ D ! m ÿ b"1 D θ D px pbq q ´Dθ D pG θ G pz pbq qq ´λ`} ∇ x D θ D pp x pbq q} 2 ´1˘2 )
end Sample minibatch of m noise samples tz p1q , . . . , z pmq u from distribution γ; Update the generator by descending gradient with respect to θ

G θ G Ð θ G ´αG m ∇ θ G ! m ÿ b"1 ´Dθ D pG θ G pz pbq qq
) (neglecting the penalty term so that the generator does not see the real data) end

In the context of GANs training, adaptive gradient methods such as Adam [START_REF] Kingma | A method for stochastic optimization[END_REF] have demonstrated their effectiveness compared to SGDA and remain therefore the methods of choice for many practitioners. Several previous works [START_REF] Jelassi | Dissecting adaptive methods in GANs[END_REF][START_REF] Liu | Towards better understanding of adaptive gradient algorithms in generative adversarial nets[END_REF] attributed Adam's superior performance over SGDA to its higher convergence speed. Meanwhile, more recent works [START_REF] Berard | A closer look at the optimization landscapes of generative adversarial networks[END_REF][START_REF] Durall | Combating mode collapse in GAN training: An empirical analysis using Hessian eigenvalues[END_REF][START_REF] Fiez | Convergence of learning dynamics in Stackelberg games[END_REF] studied the training behavior of GANs using only eigenvalues of the Hessian and reached to the conclusion that curvature information can help with GANs training. However, the performance of second-order methods for GANs training has not been investigated in depth.

We believe that second-order methods are worth considering for GANs. Indeed, it has empirically been observed that the limitations of first-order methods for GANs were caused by the presence of irregularities (saddle points, local optima, plateaus) in the loss landscape of GANs, which account for the non-convexity and non-concavity of the objective function. Through the curvature matrix, second-order methods gain access to some pieces of information about the landscape of the loss function and can hopefully escape saddle points and achieve a faster convergence to an optimal solution. In light of Algorithm 4, a second-order descent ascent algorithm takes a similar form, with

θ D Ð θ D ´αD m rC D pθ G , θ D qs ´1∇ θ D V pθ G , θ D q (5.31)
for the discriminator update and

θ G Ð θ G ´αG m rC G pθ G , θ D qs ´1 r ∇ θ G V pθ G , θ D q (5.32)
for the generator update (with r ∇ θ G V approximating ∇ θ G V by neglecting the penalty term). Here, the curvature matrix C D is an approximation of the partial Hessian ∇ 2 θ D θ D V and is expected to be negative semi-definite, while the curvature matrix C G is an approximation of the partial Hessian ∇ 2 θ G θ G V and is expected to be positive semi-definite. The SGDA algorithm is recovered by setting C D " ´I and C G " I.

In this chapter, we propose to investigate the performance of a natural gradient optimizer, in which C D and C G result from the KFAC approximation of the corresponding Fisher matrices. We consider the original KFAC instead of the KPSVD-like methods developed in Chapter 3 or the two-level methods in Chapter 4, because we have seen that the former generally perform worse than KFAC on convolutional neural networks, while the latter have comparable performance to KFAC despite incurring additional computational costs.

Before doing so, we need to know about two features of the GAN under study.

Characteristics of the GAN under study

Evaluation of GANs. Despite the overwhelming success of GANs in numerous applications, it is challenging to correctly evaluate them. This is because in GANs, and more generally in generative models, there is no explicit ground truth labels with which one can quantitatively and objectively compare the quality of generated samples. On top of that, there is a lack of meaningful metrics that allow users to measure similarity between images (or pixels). Evaluation of GANs is based on two important properties: fidelity (quality of generated images, i.e., how realistic they look) and diversity (variety of images the generator is able to produce, i.e., how well the generated images cover all classes presented in the training data). Several metrics for evaluating GANs have been introduced in the literature, but there is no consensus as to which measure best captures the model's strength and weakness and should be used for fair comparison [START_REF] Borji | Pros and cons of GAN evaluation measures[END_REF].

Here, we present the Fréchet inception distance (FID) [START_REF] Heusel | GANs trained by a two time-scale update rule converge to a local Nash equilibrium[END_REF], which is the most widely used metric in the community. FID is based on Wasserstein-2 distance between generated samples distribution and the distribution of training samples. Concretely, FID embeds generated samples and training samples into a feature space using the inception network, a convolutional neural network introduced in [START_REF] Szegedy | Going deeper with convolutions[END_REF]. Assuming that both generated and real embedded features follow multivariate normal distributions N pµ G , Σ G q and N pµ r , Σ r q, FID is defined as the Wasserstein-2 distance between these two Gaussians, given by Since transposed convolution are an essential part of GAN architectures, we first extend the KFAC method to transposed convolution layers. Then, we evaluate the performance of the obtained optimizer on GANs training tasks. To the best of our knowledge, we are the first to consider KFAC for transposed convolution layers and also to study its performance for GANs training.

FID " W 2 " N pµ G , Σ G q } N pµ r , Σ r q ‰ (5.33a) " }µ G ´µr } 2 2 `tr `ΣG `Σr ´2a Σ G Σ r ˘. ( 5 

Extension of KFAC to transposed convolution layers

Transposed convolution layers

Transposed convolution layers [START_REF] Dumoulin | A guide to convolution arithmetic for deep learning[END_REF], also referred as fractionally strided convolution or deconvolution2 layers are a fundamental block in many deep learning models, including GANs, convolutional auto-encoder, etc. They are thus crucial for many computer vision tasks such as image segmentation, image generation, and image-to-image translation. Their role is to upsample or increase the spatial dimensions of the inputs.

In a standard convolutional layer, a set of filters are applied to input feature maps to produce output feature maps with reduced spatial dimensions. Transposed convolutions work in the opposite direction. Instead of reducing the spatial dimensions of input feature maps, they aim to expand them. The idea behind a transposed convolution is to learn to increase the spatial resolution of the input feature maps using a set of learnable parameters. Transposed convolutions are closely related to classical convolutions. They use the same concepts such as filters, padding and stride (see Figure 5.3). A transposed convolution operation can be viewed of as the gradient of some traditional convolution with respect to its input, which is usually how a transposed convolution is implemented in practice [START_REF] Dumoulin | A guide to convolution arithmetic for deep learning[END_REF]. Finally, applying some transformation to the input, with a proper reshape of filters, a transposed convolution can be turned into traditional convolution operation (cf. §5.2.2).

Reformulation as traditional convolution

A transposed convolution can be performed using a traditional convolution operation [START_REF] Dumoulin | A guide to convolution arithmetic for deep learning[END_REF]. This requires a few modifications to the original inputs of the transposed convolution, as shown in the following relationship.

Relationship 1 (Dumoulin et Visin [START_REF] Dumoulin | A guide to convolution arithmetic for deep learning[END_REF]). Suppose we want to perform a transposed convolution operation between an input features map A i´1 P R c i´1 ˆhi´1 ˆwi´1 and a set of filters F P R c i ˆci´1 ˆmi ˆmi , using a padding τ and a stride e. Then, considering new versions

A 1 i´1 P R c i´1 ˆh1 i´1 ˆc1
i´1 , F 1 P R c i ˆci´1 ˆmi ˆmi , τ 1 and pe 1 , ēq of the initial input features map, filters, padding and stride respectively, we can perform a traditional convolution on the new variables and obtain the same result as if we performed a transposed convolution operation on [START_REF] Dumoulin | A guide to convolution arithmetic for deep learning[END_REF]. The original variables are an input feature map of shape 3 ˆ3 (represented by blue color), a filter of size 3 ˆ3, a padding τ " 1, and a stride e " 2. The transposed convolution is turned into a traditional convolution using new variables defined as follows: padding τ 1 " 3 ´1 ´1 " 1, strides e 1 " 1, ē " 2 ´1 " 1, fractionally strided version of the input obtained by inserting ē " 1 row and ē " 1 column of zero's between rows and columns of the initial input, new filter obtained by performing a rotation of angle π of the initial filter.

the original variables, i.e., transposed convolution `Ai´1 , F, τ, e ˘" convolution `A1 i´1 , F 1 , τ 1 , e 1 , ē˘.

The new variables are defined as follows:

• τ 1 " m i ´τ ´1.

• e 1 " 1, ē " e ´1.

• F 1 is obtained by performing a rotation of angle π of F from the axis corresponding to the height of a kernel (penultimate axis) towards the axis corresponding to the width the kernel (last axis). This operation is a kind of reflection of the values of each matrix constituting the tensor F (see Figure 5.5 for an illustration). We will denotes by R this operation and by R ´1 its inverse (i.e., rotation of angle ´π) such that R : R c i ˆci´1 ˆmi ˆmi ÝÑ R c i ˆci´1 ˆmi ˆmi F Þ ÝÑ F 1 , and R ´1 : R c i ˆci´1 ˆmi ˆmi ÝÑ R c i ˆci´1 ˆmi ˆmi

F 1 Þ ÝÑ F.
• A 1 i´1 is obtained by inserting ē number of rows and columns of zero's between rows and columns of A i´1 respectively. A 1 i´1 is said to be a fractionally strided version of A i´1 . This is why transposed convolutions are also called fractionally strided convolutions. 

KFAC approximation

To establish KFAC for transposed convolutions, we will proceed by analogy with the case of KFAC for traditional convolutions. From now on, to simplify notation, we will omit the the subscript i relating to a layer. Let us consider a traditional convolution layer which receives as input a features map A 1 P R cˆh 1 ˆw1 and has a set of kernels represented by a tensor F 1 P R coˆc ˆmˆm . Let call by V the reshape operator that turns the tensor F 1 into a weight matrix W 1 P R coˆpcm 2 `1q (cf. §2.1.2) and V ´1 its inverse such that V : R coˆc ˆmˆm ÝÑ R coˆpcm 2 `1q

F 1 Þ ÝÑ W 1 ,
and

V ´1 : R coˆpcm 2 `1q ÝÑ R coˆc ˆmˆm W 1 Þ ÝÑ F 1 .
The KFAC iteration for that convolution layer is given by (cf. §3.4.1)

vecpW 1 k`1 q " vecpW 1 k q ´αk `Ā 1 k b G 1 k ˘´1 ∇ vecpW 1 k q hpθ 1 k q, (5.35) 
We recall that "vec" is the operator that turns a matrix in a vector by stacking its columns all together. Iteration (5.35) can be expressed in matrix form as

W 1 k`1 " W 1 k ´αk pG 1 k q ´1∇ W 1 k hpθ 1 k qp Ā1 k q ´1.
(5.36)

The Kronecker factors are defined as (cf. §3.4.1)

Ā1 k " E " ÿ tPT 1 pā 1 t q k pā 1 t q T k ı , G 1 k " 1 |T 1 | E " ÿ tPT 1 pg 1 t q k pg 1 t q T k ı .
(5.37)

Using the unrolling approach presented in §2.1.2, and the matrix implementation of a convolution operation (see equation (2.6)), the Kronecker factors can be rewritten as .38) We recall that in (5.38), L denotes the loss function, S 1 k refers to the matrix of pre-activations and rrA 1 k ss is the unrolled version of the matrix of activations A 1 k . Note that S 1 k " S k (this is because S k is the output of the direct transposed convolution and S 1 k is the output of a convolution which is equivalent to the transposed convolution)

Ā1 k " E " rrA 1 k ssrrA 1 k ss T ‰ , G 1 k " E " ∇ S 1 k Lr∇ S 1 k Ls T ‰ . ( 5 
Now, suppose we have a transposed convolution layer i, which receives as input a features map A, a set of filters F, a padding τ and a stride e. To derive a KFAC iteration to that layer, we follow the steps below:

1. We build new versions A 1 , F 1 , τ 1 and (e 1 , ē) of the inputs as defined by Relationship 1.

2. We treat layer i as a traditional convolution by applying the KFAC iteration to the new variables as defined by (5.36).

3. We go back to the original variables by setting W k`1 " VpF k`1 q (5.39a)

" VpR ´1pF 1 k`1 qq (5.39b) 
" VpR ´1pV ´1pW 1 k`1 qqq (5.39c)

" VpR ´1pV ´1pW 1 k ´αk pG 1 k q ´1∇ W 1 k hpθ 1 k qp Ā1 k q ´1qqq.

(5.39d)

Operators R and V and their inverses are obviously linear. We thus obtain W k`1 " VpR ´1pV ´1pW 1 k qqq ´αk VpR ´1pV ´1ppG 1 k q ´1∇ W 1 k hpθ 1 k qp Ā1 k q ´1qqq (5.40a)

" W k ´αk VpR ´1pV ´1ppG 1 k q ´1∇ W 1 k hpθ 1 k qp Ā1 k q ´1qqq.
(5.40b) Noticing that hpθ k q " hpθ 1 k q, we have ∇ W 1 k hpθ 1 k q " ∇ W 1 k hpθ k q. Since W 1 k " VpRpV ´1pW k qqq, we obtain ∇ W 1 k hpθ 1 k q " VpRpV ´1p∇ W k hpθ k qqqq. The KFAC iteration for the transposed convolution is therefore given by W k`1 " W k ´αk VpR ´1pV ´1ppG 1 k q ´1rV pRpV ´1p∇ W k hpθ k qqqqsp Ā1 k q ´1qqq.

(5.41)

Numerical tests

Deep convolutional auto-encoders

In this subsection, we evaluate our extension of KFAC for transposed convolution layers on deep convolutional auto-encoders. Before considering GANs, we first test the optimization performance on the objective function of the proposed method using convolutional deep autoencoders. This is because, in GANs, because of the nature of the optimization problem, it is difficult to evaluate the optimization speed of an optimizer. Furthermore, in GANs, the metric of interest is FID rather than the value of the objective function.

The basic structure of a convolutional auto-encoder consists of an encoder and a decoder. The encoder takes an input image and gradually reduces its spatial dimensions while increasing the number of channels or feature maps. This process captures hierarchical representations of the input image, with higher-level features representing more abstract concepts. The encoder typically consists of convolutional layers followed by pooling layers. The decoder performs the inverse operation, taking the learned encoded representation and reconstructing an output image that is as close as possible to the original input. It uses transposed convolution to progressively upsample the features and reconstruct the image. The number of channels or feature maps is reduced in the decoder to match the original input. See Figure 5.6 for an illustration. In our experiments, we consider three different convolutional auto-encoders, each trained with a different dataset (MNIST, CIFAR10 and SVHN). All three architectures are four layers deep and contain batch normalizations. For each problem, we train the network with three different batch sizes. Hyper-parameters (learning rate, damping) are selected according to the lowest value of the training loss. We apply early stopping with a patience of 10 epochs which means that we stop training if there is no an improvement of the training loss after 10 consecutive epochs. Figures 5.7, 5.8, 5.9 show the results obtained for MNIST, CIFAR10 and SVHN datasets respectively. We observe that for each problem, regardless of the batch size, KFAC outperforms SGD and ADAM both with respect to epoch and time. This implies that our extension of KFAC for transposed convolution is efficient both in terms of optimization performance and computational cost. We also observe that, in each problem, the gap between KFAC and baseline optimizers (ADAM and SGD) increases as the batch size increases. This is a desirable property insofar as models can be trained faster by considering larger batches.

Generative adversarial networks

Here, we present a set of experiments that empirically evaluate the performance of GANs trained using curvature information. Our aim is not to achieve state-of-the-art performance, but rather to evaluate how KFAC-type methods perform on GANs compared to baselines (SGDA and Adam). In our experiments, we consider two different GANs, each trained with a different dataset. The first one trained with MNIST dataset, consists of a generator and a discriminator containing both 5 layers and batch normalizations. For the second one, we use the ResNet GAN as in [START_REF] Jelassi | Dissecting adaptive methods in GANs[END_REF] and train it with CIFAR10. It should be noted that both generator and discriminator of ResNet GAN contain 11 layers each and use residual blocks and batch normalizations. In both problems, we use Wasserstein loss with gradient penality. We choose FID to quantitatively assess the performance of each model. Note that for each optimizer, we apply Grid-Search and choose hyperparameters that give the best FID score. We also apply an early-stop procedure using FID as criterion. This means that we stop training the model if the FID score starts to deteriorate after a few consecutive epochs. For KFAC optimizer, in order to conduct a comprehensive analysis of the impact of curvature information on each player (generator or discriminator), we consider the following optimization settings:

• KFAC1: the generator is trained with KFAC optimizer and the discriminator is trained with Adam optimizer.

• KFAC2: both generator and discriminator networks are trained with KFAC optimizer.

• KFAC3: the generator is trained with Adam optimizer while the discriminator is trained with KFAC optimizer.

Figures 5.10 and 5.11 show the obtained results for MNIST and CIFAR10 problems respectively. For MNIST, we observe that KFAC3 significantly outperforms other optimizers and the performance gap widens as batch size increases. It is followed by KFAC2 and KFAC1 which globally do better than baseline optimizers. Adam outperforms SGDA on batch sizes 128 and 256 but underperforms on batch sizes 512 and 1024. As for CIFAR10, again KFAC3 displays a better performance than other optimizers, regardless of batch size. But here, Adam is better than KFAC1 and KFAC2 which in turn outperform SGDA.

The conclusion from these two experiments is that KFAC3 is the most effective method among the considered optimizers. As for the other optimizers, there is no defined order of performance, as the performance of one optimizer compared to another depends on the network architecture, data, batch size, and can reverse if the configuration is changed.

The fact that KFAC3 consistently displays a good performance is an expected result. Indeed, several studies [START_REF] Fiez | Gradient descent-ascent provably converges to strict local minmax equilibria with a finite timescale separation[END_REF][START_REF] Jelassi | Dissecting adaptive methods in GANs[END_REF][START_REF] Jin | What is local optimality in nonconvex-nonconcave minimax optimization?[END_REF] have shown that in order to achieve a better performance for a GAN, it is necessary to keep the discriminator relatively well-trained compared to the generator. This requirement is met with KFAC3 since the discriminator is trained with the KFAC optimizer, allowing it to converge relatively faster than the generator, which is trained with Adam. This argument could be used to explain why KFAC1 has unstable performance and sometimes performs worse than standard optimizers. In fact, in the case of KFAC1, unlike KFAC3, it is the generator that is trained with KFAC while the discriminator is trained with Adam, contradicting the condition of effectively training the discriminator more than the generator. Regarding KFAC2, it is difficult to find a precise explanation for its unstable performance, as both players have been trained with KFAC. Nevertheless, the case of KFAC2 proves that optimizing GANs remains highly a complex task and that it is not sufficient to simply train both players with efficient optimizers to achieve better performance.

Figures 5.12, 5.13, 5.14, 5.15 and 5.16 display MNIST generated images for the first 10 epochs of training using SGDA, Adam, KFAC1, KFAC2 and KFAC3 optimizers respectively. Every optimizer uses batch size of 128, and in each epoch, 25 images are generated. By analyzing these early results, we aim to assess the ability of optimization methods to facilitate rapid generation of meaningful and visually appealing images. The early-stage images generated by the GANs using the SGDA, Adam, KFAC1 and KFAC2 optimizers show moderate progress in quality. While the initial images lack clarity, there is a discernible improvement over the first 10 epochs. However, GANs tarined with SGDA and KFAC1 demonstrate a slower improvement compared to Adam and KFAC2 optimizers. As for KFAC3 optimizer, the GAN trained with it exhibits a great performance right from the early stages. The images generated during the first epoch show remarkable detail and realism. As training progresses, the quality continues to improve significantly compared to other optimizers, demonstrating the effectiveness of KFAC3 in rapidly producing relevant images. This implies that one can train a GAN with KFAC3 for a short time and be able to generate high-quality images, thereby saving time. Furthermore, a careful observation of the generated images of each optimizer and FID curves associated with it corroborates the positive correlation between the FID score and the quality of the generated images.

In a nutshell, these experiments suggest that to achieve a better GAN performance, one can train the discriminator with a second-order optimizer like KFAC and train the generator with an adaptive method such as Adam. It is important to note that these results need to be confirmed on large scale datasets such as ImageNet [START_REF] Deng | ImageNet: A large-scale hierarchical image database[END_REF] using more complex state-of-the-art architectures such as StyleGAN [START_REF] Karras | A style-based generator architecture for generative adversarial networks[END_REF], BigGAN [START_REF] Brock | Large scale GAN training for high fidelity natural image synthesis[END_REF], Self-attention GAN [START_REF] Zhang | Self-attention generative adversarial networks[END_REF], etc.

Conclusion

In this chapter, the objective was to investigate the performance of the KFAC optimizer in the context of GANs training. We introduced an extension to the KFAC method to handle transposed convolution layers, which are important components of GAN architectures.

To evaluate the effectiveness of the proposed optimizer, three different convolutional autoencoder problems were considered, each trained with a different dataset. The results showed that the extended KFAC optimizer outperformed baseline optimizers such as SGD and Adam in terms of optimization performance, both in terms of iterations and time. This demonstrates the effectiveness of the proposed method for optimizing the objective function.

Moving on to GAN training, the findings revealed promising results regarding the effectiveness of the KFAC optimizer. Indeed, when the generator was trained with Adam optimizer and the discriminator with KFAC, the model achieved faster convergence, as indicated by a good FID score, and its ability to generate high-quality images early in the training process. However, experiments also highlighted a concern when both players (generator and discriminator) were trained with the KFAC optimizer. This resulted in an unstable performance of the model and sometimes led to worse performance compared to models where both players were trained with baseline optimizers like SGD or Adam. This emphasizes the difficulty of effectively training GANs and raises questions about how to effectively incorporate curvature information in GAN optimization to achieve better performance. 

Summary of key results

As stated in §1.2.3, the objective of this thesis was to bring some improvements to KFAC-related methods for DNNs. More precisely, it was about breaking free from the assumptions underlying the KFAC approximation and extending it to new network architectures. In a broader sense, we wished to design more robust and computationally efficient natural gradient methods that would ultimately converge faster than baseline optimizers such as SGD and ADAM.

Literature review. We started by conducting a review of the existing literature regarding DNN optimization, of which §2 is a summary. This demonstrated the crucial role of algorithms in the context of deep learning and highlighted the specific difficulties associated with training of DNNs. The overview also shed light on the limitations of first-order methods, such as their slow rate of convergence, their sensitivity to the choice of learning rate and their inherent inefficiency in navigating the parameter space.

This motivated us to consider second-order methods with a special emphasis on natural gradient methods, for which there are sound theoretical arguments for their being able to circumvent the difficulties encountered with first-order method. It soon appeared that the bottleneck lies in finding efficient approximations to the curvature matrix. The breakthrough achieved by KFAC for the Fisher matrix naturally led us to work on improving it further.

Alternative block-diagonal approximations of the FIM. In §3.2, we proposed four novel approximations to the diagonal blocks of the Fisher matrix for MLP, called KPSVD, Deflation, Bi-diagonalization and KFAC-CORRECTED. All of them take the form of a Kronecker product or the sum of two Kronecker products, but unlike KFAC, the factors are not inferred from any statistical assumption. Instead, they are defined more rigorously as minimizers of a least Frobenius-norm error between the original block and the approximant. The four minimization problems can all be solved efficiently using the Kronecker-product singular value decomposition. The numerical results obtained in §3.3 with three standard deep auto-encoders testified to the superiority of the proposed methods over KFAC, both in terms of Fisher approximation quality and optimization speed of the objective function.

We also applied the same approximation paradigm to convolutional layers in §3. [START_REF] Amari | Information Geometry and Its Applications[END_REF], where three hypotheses are required for KFC. This time, for the sake of computational time, we had to make one single assumption in order to turn a double sum into a sum over a diagonal band. However, it turned out that even with quite large band widths, our methods did not generally outperform KFC.

Correction by coarse layer interactions. In §4.2, we put forward four coarse corrections to the KFAC approximation, called Nicolaides, spectral, Krylov and residuals. The first three are inspired from two-level domain decomposition, while the last one stems from a slightly different philosophy. All of them aim to enrich the KFAC matrix with macroscopic information about the interaction between the layers, so as to make it closer to the true FIM. Through several numerical tests in §4.3, we came to the rather disappointing conclusion that two-level KFAC methods does not generally outperform the original KFAC method in terms of optimization performance of the objective function. In other words, enhancing the solution of the linear system at each iteration (as carefully checked in §4.3.4) as a reference does not necessarily produce a more efficient optimization process.

To push the analysis to the extreme, we compared KFAC with the exact natural gradient (using the true and full FIM) and the block diagonal natural gradient in §4.4.1. Much to our surprise, KFAC does better than the block diagonal natural gradient, which in turn outperforms the exact natural gradient. These unexpected results corroborate Benzing's claim [START_REF] Benzing | Gradient descent on neurons and its link to approximate second-order optimization[END_REF] that KFAC outperforms the exact natural gradient. So far, we do not have a clear explanation for this negative interlayer correlation which degrades the optimization performance. But at least this goes in the same direction as what occurred for two-level methods. Finally, in order to understand the superiority of KFAC over block natural gradient, the study undertaken in §4.4.2 showed that KFAC owes its success to its very peculiar regularization technique.

Application of KFAC to the training of GANs. In §5.2, we introduced an extension of the KFAC method to transposed convolution layers, which are core components of GAN models. This was successfully handled by recasting a transposed convolution as a traditional convolution. Numerical results obtained in §5.3.1 on three different deep convolutional autoencoders demonstrated a superior performance of the proposed method compared to baseline optimizers such as SGD and Adam.

Moving on to GANs training, the experiments conducted in §5.3.2 revealed promising results regarding the effectiveness of the KFAC optimizer. Indeed, when the generator was trained with Adam optimizer and the discriminator with KFAC, the model achieved faster convergence, as indicated by a good FID score and the ability of the model to generate relevant images early in the training process. However, the experiments also highlighted a concern when both players (generator and discriminator) were trained with the KFAC optimizer: such a set-up resulted in an unstable performance of the model and sometimes led to worse performance compared to models where both players were trained with baseline optimizers like SGD or Adam. This underlines the challenge of effectively training GANs and calls for further investigations into better ways of incorporating curvature information.

Recommendations for future research

The insights gained from this work lay the groundwork for further exploration and offer potential directions for future research. Here, we outline some perspectives that might be considered.

Theoretical investigations. While this thesis and many previous works supplied compelling numerical results on the behavior of KFAC-related methods, there is a real need to comprehend such methods on a theoretical level. Future works could for instance focus on analyzing their convergence properties and assessing the impact of network architectures and activation functions, so as to solidify their theoretical foundation.

As a concrete case of study, it is most urgent to find a convincing explanation to the fact that KFAC, which is an approximation of the natural gradient, outperforms the latter in terms of optimization performance. It would also be highly valuable to develop arguments to account for the success of the heuristic damping technique used in the KFAC method.

Generalization properties. As was the case for almost every previous work related to natural gradient and KFAC methods [START_REF] Benzing | Gradient descent on neurons and its link to approximate second-order optimization[END_REF][START_REF] Botev | Practical Gauss-Newton optimisation for deep learning[END_REF][START_REF] Grosse | A Kronecker-factored approximate Fisher matrix for convolution layers[END_REF][START_REF] Martens | Optimizing neural networks with Kronecker-factored approximate curvature[END_REF], the one in this thesis is limited to the optimization performance of the objective function. More precisely, all our endeavors were targeted at achieving the lowest value for the training loss. Of course, the question arises as to the generalization capacity of these methods. Since the study of generalization requires a different experimental framework [START_REF] Benzing | Gradient descent on neurons and its link to approximate second-order optimization[END_REF][START_REF] Zhang | Three mechanisms of weight decay regularization[END_REF][START_REF] Zhang | Gradient descent based optimization algorithms for deep learning models training[END_REF], we leave it as a prospect.

Scalability and freedom from network architecture. The scalability of natural gradient methods to large-scale datasets and complex neural network architectures such as transformers and diffusion models is an important area for future research. Furthermore, KFAC and all methods based on a Kronecker block-diagonal approximation to a curvature matrix strongly depend on the network architecture. This has the shortcoming of users having to modify and to adapt these methods every time they switch to another network architecture. It would therefore be a major advance to design a new method that is free from the assumption about the nature of the network to be optimized, and that works fine for all models of interest.

Such an idea has recently been scrutinized. Indeed, by assuming that each block of the FIM corresponds to the covariance of a tensor normal distribution in the model, the TNT methods [START_REF] Ren | Tensor normal training for deep learning models[END_REF] proposes a Kronecker block-diagonal approximation to the FIM that has the advantage to be free from the structure of layers. However, their evaluation was limited to MLPs and CNNs. It would therefore be interesting to study this promising novel method for more complex architectures such as RNNs, transformers and diffusion models. 
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 p1q . Dans cette seconde étape, les produits matrice-vecteur ZpF i,i ´Ā p1q i´1 b G p1q i qv et ZpF i,i ´Ā p1q i´1 b G p1q i q T u peuvent encore être évalués efficacement en exploitant les relations ZpR b Sqv " ⟨vecpSq, v⟩ vecpRq, ZpR b Sq T u " ⟨vecpRq, u⟩ vecpSq. (1.48)
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 21 Figure 2.1: Architecture of a perceptron or neuron.

Figure 2 . 2 :

 22 Figure 2.2: An example of MLP architecture with ℓ " 5 layers. It contains an input layer, 4 hidden layers and an output layer.
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 23 Figure 2.3: Traditional convolution turned into matrix-matrix multiplication with the unrolling approach.
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 25 Figure 2.5: A standard RNN architecture.

  (a) One to one: T x " T z " 1 (b) One to many: T x " 1, T z ą 1 (c) Many to one: T x ą 1, T z " 1 (d) Many to many: T x ą 1, T z ą 1 (e) Many to many: T x ą 1, T z ą 1
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 26 Figure 2.6: Different types of RNNs as presented in [85].
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 27 Figure 2.7: Error and accuracy curves of different first-order optimizers in CIFAR10 experiments. In the first row, first figure displays training loss vs epoch while the second one represents training top-1 accuracy vs epoch. In the second row, the first figure depicts validation loss vs epoch and the last displays validation top-1 accuracy vs epoch.
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 28 Figure 2.8: Learning schedule used for each optimizer in Imagenet experiments.
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 29 Figure 2.9: Error and accuracy curves of different first-order optimizers in Imagenet experiments. In the first row, from right to left, first figure shows training loss vs epoch, second one displays training top-1 accuracy vs epoch and the third depicts training top-5 accuracy vs epoch. As for the second row, from left to right, first, second and last figures display respectively validation lossvs epoch, validation top-1 accuracy vs epoch and validation top-5 accuracy vs epoch.
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 31 For matrices A, B, C, D, and a scalar value γ, the following associativity properties hold1. pA `Bq b C " A b C `B b C, 2. C b pA `Bq " C b A `C b B,3. pγAq b B " A b pγBq " γpA b Bq, 4. pA b Bq b C " A b pB b Cq. Proof. All identities directly follow from Definition 3.1. The next two statements clarify the Kronecker product in two special cases, when the matrices involved are vectors and when they are diagonal. Theorem 3.2. Let x P R mx and y P R my . Then x b y T " y T b x " xy T . (3.6)Proof. On the one hand,x b y T " " x r1s y, . . . , x rmxs y ı T " » --x r1s y r1s . . . x r1s y rmys . . . . . .x rmxs y r1s . . . x rmxs y rmys fi ffi fl " xy T .On the other hand, y T b x " " y r1s x, . . . , y rmys x r1s y r1s . . . x r1s y rmys . . . . . .x rmxs y r1s . . . x rmxs y rmys fi ffi fl " xy T .
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 31 For two square matrices A and B and an integer n, the following equality holds pA b Bq n " A n b B n . Proof. By induction. For n " 2, using Theorem 3.4, we have pA b Bq 2 " pA b BqpA b Bq " AA b BB " A 2 b B 2 .
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 35132 For all matrices A and B, we have pA b Bq T " A T b B T . (3.8) Proof. Directly follows from definition of transpose and Definition 3.Corollary Let A and B be two matrices. If A and B are symmetric, then A b B is symmetric. Proof. pA b Bq T " A T b B T " A b B Corollary 3.3. Let A and B be two square matrices. If A and B are both orthogonal, then A b B is also orthogonal. Proof. pA b Bq T pA b Bq " pA T b B T qpA b Bq " pA T Aq b pB T Bq " I b I " I.

Theorem 3 . 6 .

 36 Let A and B be two square matrices. If A and B are both invertible, then A b B is also invertible and its inverse is given as pA b Bq ´1 " A ´1 b B ´1. (3.9) Proof. By Theorem 3.4, we have pA b BqpA ´1 b B ´1q " pAA ´1q b pBB ´1q " I b I " I.
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 34 For two square matrices A and B and an integer n, the following identity holds rank pA b Bq " rank pB b Aq " rankpAqrankpBq.

Theorem 3 . 8 .Corollary 3 . 5 .

 3835 Let A and B be two square matrices. Let pµ, xq and pλ, yq be any pairs of eigenvalue-eigenvector of A and B respectively. Then µλ is an eigenvalue of A b B and x b y is its corresponding eigenvector. Proof. pA b Bqpx b yq " pAxq b pByq " pµxq b pλyq " µλpx b yq. If two square matrices A and B are positive (semi) definite, then A b B is a positive (semi) definite matrix.
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 310 Let A P R m A ˆmA and B P R m B ˆmB be two square matrices. Then, trpA b Bq " ptrAqptrBq.(3.13)

(3. 16 ) 1 b

 161 Proof. Directly follows from Definition 3.2.Theorem 3.13. LetA P R m A ˆnA , B P R m B ˆnB and C P R m C ˆnC with m C " n B . Then, pC T b AqvecpBq " vecpABCq (3.17)Proof. Let B " rb 1 , . . . , b n B s , b j P R m B denotes the j-th column of B. We haveB " j e T j ,where e j is the j-th column of the identity matrix I m B . Then, by applying Theorems 3.11, 3
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 32 All solutions p ĀKPSVD i´1 , G KPSVD i q of problem (3.22) are symmetric. Besides, we can select solutions for which these matrices are positive semi-definite. Proof. See appendix 3.A.3.
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 31 Figure 3.1: Comparison between FIM approximation qualities of our methods and KFAC. For each problem, at each training iteration of the network with ADAM optimizer, the exact FIM and its different approximations are computed for layer 5 of the network. Error 1 and Error 2 described in §3.3.1 are measured. For the sake of visual comparison between different methods, the display scale in the axis of ordinates was deliberately restricted to r0, 1s for the MNIST problem. It thus seems that the error curves for KFAC, whose peak amplitudes are about 6.5, are truncated.
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 32 Figure 3.2: Comparison of optimization performance of different algorithms on each of the 3 problems (CURVES top row, MNIST middle row and FACES last row). For each problem, first figure displays training loss vs epoch and second one represents training loss vs time.
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 33 Figure 3.3: Validation losses of different algorithms on each of the 3 problems (CURVES first row, MNIST second row and FACES third row). For each problem, first figure depicts validation loss vs epoch while the second one displays validation loss vs time.
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 34 Figure 3.4: Optimization performance of our different algorithms against KFAC on three convolutional neural networks (CUDA-CONVNET top row, RESNET 18 middle row and RESNET 34 last row). In each row, first figure displays training loss vs epoch and second one represents training loss vs time.
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 35 Figure 3.5: A standard auto-encoder architecture.
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 41 Figure 4.1: Comparison of KFAC against two-level KFAC methods on the three deep autoencoder problems (CURVES first column, MNIST middle column and FACES last column). Three different batch sizes are considered for each problem (each row corresponds to a different batch size).
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 42 Figure 4.2: Optimization performance evaluation of KFAC and two-level KFAC methods on three different CNNs.

  (a) Deep linear network of 64 layers, each layer containing 10 neurons, trained on Fashion MNIST. (b) Deep linear network of 14 larger layers, trained on MNIST.

Figure 4 . 3 :

 43 Figure 4.3: Optimization performance evaluation of KFAC and Tow-level KFAC optimizers on two different deep linear networks.

  (a) CURVES, batch size " 256 (b) MNIST, batch size " 512 (c) FACES, batch size=1024 (d) Cuda-convnet, batch size=256

Figure 4 . 4 :

 44 Figure 4.4: Evolution of Epβ ˚q ´Ep0q during training for each of the two-level methods considered. All methods proposed in this work as well as the TKO two-level method [167] have the gap Epβ ˚q ´Ep0q negative throughout the training process.

  (a) Cuda-Convnet trained on CIFAR10 with a batch size equal to 256. (b) VGG 11 trained on SVHN with a batch size equal to 512.
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 45 Figure 4.5: Optimization performance evaluation Exact NG, block-diagonal NG and KFAC on two different CNNs.
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 46 Figure 4.6: Comparison of Exact NG and block-diagonal NG against KFAC on the three deep auto-encoder problems (CURVES first column, MNIST middle column and FACES last column). Three different batch sizes are considered for each problem (each row corresponds to a different batch size).
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 47 Figure 4.7: Evaluation of the impact of damping techniques on KFAC with an MLP optimization problem.
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 48 Figure 4.8: Evaluation of the impact of damping techniques on KFAC with a CNN optimization problem.
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 51 is to solve the minimax problem min G max D E x"Pr " log `Dpxq ˘‰ `Ez"Pz " log `1 ´DpGpzqq ˘‰ (5.1)

Figure 5 . 1 :

 51 Figure 5.1: GAN diagram.

3 .

 3 WrP } P n s Ñ 0 if and only if P n d Ñ P, where d Ñ denotes convergence in distribution.

Theorem 5 . 3 .

 53 The WGAN problem(5.18) has the same minimizers as min P G sup T PLip 1 pX q E x"Pr rT pxqs ´Ex"P G rT pxqs,(5.21) 

Algorithm 4 :

 4 Minibatch SGDA for WGAN-GP Input: K P N ˚, α D ą 0, α G ą 0 for number of training iterations do for K steps do Sample minibatch of m noise samples tz p1q , . . . , z pmq u from distribution γ; Sample minibatch of m real data samples tx p1q , . . . , x pmq u from training set; Update the discriminator by ascending gradient with respect to θ D

  .33b) These architectural choices help address the common challenges faced by traditional GANs, such as training instability, mode collapse and low-quality or blurry generated images.DCGANs have been successfully applied to various image generation tasks, including generating realistic human faces, creating artistic images, and synthesizing new objects. They have also been used in domain adaptation, image super-resolution, and other applications that involve generating or transforming images.
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 52 Figure 5.2: DCGAN architecture as proposed in [134]. The input noise z is usually a vector of size 100.
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 53 Figure 5.3: Comparison of transposed convolution against traditional convolution.
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 54 Figure 5.4: Example of a transposed convolution turned into a traditional convolution[START_REF] Dumoulin | A guide to convolution arithmetic for deep learning[END_REF]. The original variables are an input feature map of shape 3 ˆ3 (represented by blue color), a filter of size 3 ˆ3, a padding τ " 1, and a stride e " 2. The transposed convolution is turned into a traditional convolution using new variables defined as follows: padding τ 1 " 3 ´1 ´1 " 1, strides e 1 " 1, ē " 2 ´1 " 1, fractionally strided version of the input obtained by inserting ē " 1 row and ē " 1 column of zero's between rows and columns of the initial input, new filter obtained by performing a rotation of angle π of the initial filter.
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 55 Figure 5.5: An illustration of R operator. Here both input and output channels are equal to 1.
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 56 Figure 5.6: Architecture of a standard convolutional auto-encoder [71].
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 575859 Figure 5.7: Comparison of KFAC against SGD and ADAM on a deep convolutional auto-encoder trained with MNIST dataset. Three different batch sizes are considered (128 first column, 256 middle column and 512 last column). In each column, first Figure displays training loss vs epoch while second ones depicts training loss vs time.
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 510511 Figure 5.10: Performance evaluation of different optimizers on a GAN model trained with MNIST dataset. Four different batch sizes are considered.
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 5 Figure 5.12: MNIST images randomly generated by a GAN trained with SGDA optimizer for the first 10 epochs.
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 5 Figure 5.13: MNIST images randomly generated by a GAN trained with ADAM optimizer for the first 10 epochs.
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 5 Figure 5.14: MNIST images randomly generated by a GAN trained with KFAC1 optimizer for the first 10 epochs.
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 5 Figure 5.15: MNIST images randomly generated by a GAN trained with KFAC2 optimizer for the first 10 epochs.
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 5 Figure 5.16: MNIST images randomly generated by a GAN trained with KFAC3 optimizer for the first 10 epochs.
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)

  En composant avec le modèle de prédiction f , on définit la distribution prédictive conditionnelle P y|x pθq par sa densité ppy|x, θq vérifiant

	R dx ˆRdy ppx, yq log	ppx, yq qpx, yq	dxdy	(1.20)

Lpy, f px, θqq " ´log ppy|x, θq `ν,

(1.18) 

ainsi que la distribution prédictive P x,y pθq par sa densité ppx, y|θq " qpxqppy|x, θq,

(1.19)

où q est la densité de la distribution Q x des entrées x.

En théorie de l'information, la divergence de Kullback-Leibler (ou l'entropie relative) est une mesure de dissimilarité entre deux distributions de probabilités. Dans notre cas, elle s'écrit KLrP } Qs " ż pour deux distributions de probabilités portant sur les entrées x et les sorties y, et peut être perçue comme une "distance" bien qu'elle ne soit pas symétrique. Beaucoup plus utile est sa version infinitésimale entre deux distribtions prédictives définies par (1.18)-

(1.19)

. On montre que pour une perturbation paramétrique δ P R p suffisamment petite, son comportement est en KLrP x,y pθq } P x,y pθ `δqs "

1 2 δ T F pθqδ `Op}δ} 3 q, (

1

.21) où F pθq " E px,yq"Px,ypθq t∇ θ log ppx, y|θqr∇ θ log ppx, y|θqs T u (1.22) est la matrice d'information de Fisher (FIM) relative au paramètre θ. L'information de Fisher est une matrice de covariance. Elle est encore égale à F pθq " E x"Qx,y"P y|x pθq t∇ θ log ppy|x, θqr∇ θ log ppy|x, θqs T u (1.23a) " E x"Qx,y"P y|x pθq t∇ 2 θθ r´log ppy|x, θqsu. (1.23b) La dernière ligne signifie qu'elle est l'espérance de la matrice hessienne par rapport à la distribution prédictive P x,y pθq. Ceci est assez remarquable dans la mesure où la matrice de Fisher ne fait intervenir que les dérivées premières en θ, tandis que la matrice hessienne contient aussi les dérivées secondes (lesquelles ont une moyenne nulle selon la distribution considérée). Il convient d'évaluer la matrice de Fisher sur un mini-lot S par F pθq « 1 |S| ÿ x pbq PS E y"P y|x pbq pθq t∇ θ log ppy|x pbq , θqr∇ θ log ppy|x pbq , θqs T u, (1.24)

  R d i´1 `1 est le vecteur des activations de la couche précédente i ´1, g i P R d i est le vecteur des dérivées par rapport aux préactivations de la couche i. À ce stade, il n'est pas capital de connaître les définitions exactes de āi´1 et de g i , qui seront données en §3.1. Ce qu'il importe est de voir est la structure abstraite de (1.35), avec le produit de Kronecker b (Définition 3.1) à l'intérieur du symbole E, notation abrégée pour l'espérance E x"Qx,y"P y|x pθq introduite en(1.23).

	1.3 Contributions et plan du mémoire	
	1.3.1 Approximations alternatives de la matrice de Fisher	
	Le point de départ de l'approximation KFAC est l'expression d'un bloc diagonal de la matrice
	de Fisher comme l'espérance d'un produit de Kronecker. Plus précisément, pour chaque couche
	i d'un perceptron multicouche (voir §2.1.1 pour la description d'un perceptron multicouche), on
	a		
	F i,i " Erā i´1	āT i´1 b g i g T i s.	(1.35)
	où āi´1 P		

L'approximation KFAC revient à stipuler

  On prend donc N 1 " . . . " N ℓ " 1 et V i " vecteur propre associé à la plus petite valeur propre de rF 'KFAC s i,i . Dans notre cas, il est possible d'exploiter la structure du produit de Kronecker de rF 'KFAC s i,i pour faciliter le calcul du vecteur propre.▷ Krylov. Une variante de l'espace grossier spectral est envisageable si l'on souhaite éviter le calcul du vecteur propre associé à la plus petite valeur propre de rF 'KFAC s i,i . En effet, on sait que ce vecteur propre peut être obtenu par la méthode des puissances inverses. L'idée est alors d'effectuer quelques itérations de cette méthode, voire une ou deux, et de mettre les itérés dans la base grossière. Ainsi, si N i ´1 ě 1 est le nombre d'itérations de la méthode des puissances inverses appliquées à rF 'KFAC s i,i , alorsV i " rv i , rF ' KFAC s ´1 i,i v i , .. . , rF ' KFAC s P R p i est un vecteur arbitraire, supposé ne pas être colinéaire à un vecteur propre de rF 'KFAC s i,i pour que les colonnes de V i soient indépendantes.

	continu ´∇ ¨pκ∇q. L'incorporer dans R T 0 permet de prendre en compte le mode de plus
	basse fréquence. Dans notre problème, cependant, il n'y aucune raison ni pour que 0 soit
	valeur propre, ni pour que 1 soit vecteur propre. Le choix de l'espace grossier de Nicolaides
	par Tselepidis et al. [167] est donc simplement motivé par le fait qu'il est commode.
	▷ Spectral. Le principe est toujours de capter le mode de plus basse fréquence [117], mais
	comme la plus petite valeur propre et son vecteur propre ne sont pas connus à l'avance,
	il faut les calculer. ´pN i ´1q i,i	v i s T P R p i ˆNi	(1.70)
	où v i ▷ Résiduel. Une philosophie radicalement différente que nous souhaitons promouvoir est la
	suivante. Au lieu de nous focaliser sur le vecteur propre associé à la plus petite propre,
	nous portons l'attention sur la qualité de l'approximation de pζ KFAC remarquons que si ζ ´ζKFAC appartenait au sous-espace engendré par les colonnes de R T `RT 0 βq ´ζ. Nous 0 ,
	alors le minimiseur de (1.63) serait idéal. Malheureusement, nous ne pouvons pas ajouter
	directement ζ ´ζKFAC dans R T 0 car ζ n'est pas connu. Toutefois, nous savons que	
	ζ ´ζKFAC " F ´1 ' r KFAC ,		(1.71)
	où le résidu r KFAC " ∇ θ h ´F' ζ KFAC n'est pas trop cher à calculer puisqu'il n'implique
	fi que le produit matrice-vecteur direct. C'est l'inversion par F ´1 ' qui constitue l'obstacle au calcul de ζ ´ζKFAC . Mais nous pouvons approcher cette erreur en inversant avec F ´1 'KFAC au lieu de F ´1 ' . Par conséquent, nous proposons de construire R T 0 de sorte que ses colonnes puissent engendrer le vecteur F ´1 'KFAC r KFAC . Pour cela, nous découpons ce dernier en ℓ
	. . . morceaux, chacun correspondant à une couche. Cela revient à prescrire . . . . . . fl . . . ffi ffi ffi P R pˆN , . . . . . 0	(1.69)
	0 0 . . . . . . V ℓ		
	où chaque V i P R p i ˆNi possède N i colonnes avec N i ! p i . Autrement dit, chaque bloc i suggère un
	petit nombre N i de directions à explorer, le long desquelles sont condensées les interactions entre
	les couches. Ci-dessous nous décrivons les 4 choix d'espace grossier, fondés sur des justifications
	plus ou moins heuristiques (cf. §4.2.3).		
	▷ Nicolaides. Historiquement, c'est le premier espace grossier introduit en décomposition de
	domaines [121]. Il correspond à N 1 " . . . " N ℓ " 1 et V i " r1, . . . , 1s T P R p i . Ce vecteur
	est la discrétisation d'un état propre correspondant à la valeur propre 0 de l'opérateur

  ) où θ G et θ D désignent respectivement les poids du générateur et discriminateur. Q x représente la distribution des données réelles. Quant à P z , il désigne une distribution définie a priori régissant les bruits utilisés par le générateur.Malgré leur succès remarquable, les GANs sont malheureusement réputés difficiles et instables à entraîner. Cela s'explique par le fait que la résolution du problème (1.73) dans le cadre des GANs équivaut à trouver un équilibre de Nash[START_REF] Ratliff | Characterization and computation of local Nash equilibria in continuous games[END_REF] dans un problème d'optimisation mini-max non convexe, non concave et en grande dimension. Plusieurs évolutions se sont succédé dans le but de stabiliser l'entraînement des GANs, notamment fGAN (cf. §5.1.1) et WGAN (cf. 5.1.3), mais peu s'intéressent aux méthodes d'optimisation utilisées pour résoudre le problème (1.73).
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  2.43)For instance, if the elementary loss corresponds to the least-squares function

	Lpy, zq "	1 2	}y ´z} 2 2 ,	(2.44a)
	then we can take the normal density			
	℘py|zq " p2πq ´dy{2 expp´1 2 }y ´z} 2 2 q,	(2.44b)
	so that			
	Lpy, zq " ´log ℘py|zq	´dy 2	logp2πq.	(2.44c)

Introduce the notation ppy|x, θq " ℘py|f θ pxqq. Then, the composite loss function Lpy, zq " Lpy, f θ pxqq " ´log ppy|x, θq

(2.45) 

derives from the density function ppy|x, θq of the model's conditional predictive distribution P y|x pθq.

In this case, the objective function coincides with the negative Log-likelihood. As shown above, P y|x pθq is multivariate normal for the standard square loss function. It can also be proved that P y|x pθq is multinomial for the cross-entropy one. The learned distribution is therefore P x,y pθq with density ppx, y|θq " qpxqppy|x, θq,

  Qx,y"P y|x pθq t∇ θ log ppy|x, θqr∇ θ log ppy|x, θqs T u Px,ypθq t∇ θ log ppx, y|θqr∇ θ log ppx, y|θqs T u " ´Epx,yq"Px,ypθq t∇ 2 θθ log ppx, y|θqu.(2.55) 

		(2.50a)
	" E x"Qx,y"P y|x pθq t∇ 2 θθ r´log ppy|x, θqsu.	(2.50b)
		(2.54)
	From (2.52), it follows that	
	E px,yq"This proves (2.49). To derive (2.50), we notice that	
	∇	

Proof. We first observe that E px,yq"Px,ypθq t∇ θ log ppx, y|θqu " ż R dx ˆRdy ppx, y|θq∇ θ log ppx, y|θq dxdy

" ż R dx ˆRdy ppx, y|θq ∇ θ ppx, y|θq ppx, y|θq dxdy " ∇ θ ż R dx ˆRdy ppx, y|θq dx dy " ∇ θ 1 " 0.

(2.51)

Transposing and taking the gradient with respect to θ, we have

∇ θ E px,

yq"Px,ypθq tr∇ θ log ppx, y|θqs T u " 0. (2.52) However, ∇ θ E px,yq"Px,ypθq tr∇ θ log ppx, y|θqs T u " ∇ θ ż R dx ˆRdy ppx, y|θqr∇ θ log ppx, y|θqs T dxdy " ż R dx ˆRdy ∇ θ ppx, y|θqr∇ θ log ppx, y|θqs T dxdy `żR dx ˆRdy ppx, y|θq∇ 2 θθ log ppx, y|θq dxdy. (2.53) Because ∇ θ p " p∇ θ log p, the last equality can be reformulated as ∇ θ E px,yq"Px,ypθq tr∇ θ log ppx, y|θqs T u " E px,yq"Px,ypθq t∇ θ log ppx, y|θqr∇ θ log ppx, y|θqs T u `Epx,yq"Px,ypθq t∇ 2 θθ log ppx, y|θqsu. θ log ppx, y|θq " ∇ θ logrqpxqppy|x, θqs " ∇ θ log qpxq `∇θ log ppy|x, θq

  .[START_REF] Heusel | GANs trained by a two time-scale update rule converge to a local Nash equilibrium[END_REF] which shows that the ordinary descent gradient ´∇θ hpθq is the steepest descent direction in the sense of the Euclidean norm. In short, we have merely switched from the Euclidean metric to the local metric associated with the FIM.

									and
	functions						
			θ " Ψp p θq,	p hp p θq " hpθq,	p F p p θq " F pθq,	(2.78)
	the trajectory of					
				d p θ dτ	pτ q " ´r p F p p θpτ qqs ´1∇	p θ p hp p θpτ qq	(2.79)
	Proof. Owing to the chain rule, we have
			d p θ dτ	" r∇	p θ Ψs ´1 dθ dτ	,	∇	p θ p hp p θq " r∇	p θ Ψs T ∇ θ hpθq.	(2.80)
	To compute p F p p θq, let us write				
						p F p p θq " Ep∇	p θ Lp p p θq r∇	p θ Lp p p θqqs T q,	(2.81)
	where p Lp p θq " Lpθq. Plugging ∇	p θ Lp p p θq " r∇	p θ Ψs T ∇ θ Lpθq into (2.81) yields
								p F p p θq " r∇	p θ Ψs T F pθq∇	p θ Ψ.	(2.82)
	Inserting (2.80) and (2.82) into (2.79), we get
	r∇	p θ Ψs ´1 dθ dτ	" ´␣r∇					

Continuous NGD and invariance. The natural gradient descent

(2.63) 

can be envisioned as the discretization by Euler's explicit scheme of the differential equation dθ dτ pτ q " ´rF pθpτ qqs ´1∇ θ hpθpτ qq, (2.77) in which τ plays the role of a fictitious time and α k can be thought of as a time-step. The ODE (2.77), said to be the continuous NGD, has the remarkable following feature. Proposition 2.3. The continuous NGD (2.77) is invariant to all differentiable and invertible transformations. In other words, for any differentiable and invertible change of variable matches pointwise that of (2.63) by θpτ q " Ψp p θpτ qq. p θ Ψs T F pθq∇ p θ Ψ ( ´1r∇ p θ Ψs T ∇ θ hpθq " ´r∇ p θ Ψs ´1rF pθqs ´1∇ θ hpθq. (2.83) Multiplying by ∇ p θ Ψ, we recover (2.77).
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t

  MATpu ris q Âi´1,t

					˘,
	where for a spatial position t P T i ,			
	Âi´1,t " pā	p1q i´1,t , . . . ,	āpmq i´1,t q P R d i´1 ˆm	(4.63)
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								(4.72a)
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	with Âi´1,t and Ĝi,t are defined according to (4.63) and (4.64) respectively.
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  . Let Z " Upp0, 1qq be the uniform distribution on the open interval p0, 1q. For ζ P R, define Therefore, for a positive sequence ζ n Ó 0, P ζn does not converge to P in the sense of these two divergences. If we train the vanilla GAN with an intial source distribution P ζ 0 with ζ 0 ‰ 0, we would be stuck with a flat gradient.To address this issue, Arjovsky et al.[START_REF] Arjovsky | Wasserstein generative adversarial networks[END_REF] advocated to replace (5.3) by the new formulation

	P " p0, Zq,	P ζ " pζ, Zq,	(5.15)
	on R 2 . Then, P and P ζ are singular distributions with disjoint support if ζ ‰ 0. It is then easy
	to check that	#			
	JSrP } P ζ s "	log 2 if ζ ‰ 0; 0 if ζ " 0,	(5.16)
	and	#			
	KLrP } P ζ s "	`8 if ζ ‰ 0; 0 if ζ " 0,	(5.17)
	min P G	W "	P r } P G	‰	(5.18)

L'idée du mini-lot est en fait indépendante des techniques d'échantillonnage et peut être employée de manière plus statique en guise d'alternative à SGD.

Par "orthogonal" nous entendons que les trois nouvelles familles de méthodes agissent par dessus la mise à jour (1.4) en faisant intervenir une notion de gradient qui peut être le gradient complet, stochastique ou mini-lot.

Nous excluons dans ce constat le monde de la recherche où le second ordre fait l'objet d'intenses activités.

Les sous-domaines peuvent avoir des recouvrements et les matrices Ri peuvent être moins triviales que(1.56).

L'analogie n'est pas parfaite car ici on ne peut pas raisonner sur un problème physique continu, modélisé par une EDP dont la discrétisation donne lieu à la matrice.

1; n " r1; ns X N

Adaptive gradient methods are commonly presented as first-order methods, but can also be interpreted as stochastic versions of the natural gradient descent with a diagonal approximation of the empirical Fisher matrix.

This does not apply to the field of research, where second-order methods are the subject of intense activities.

The solution is given by µpωq " 1 `tpω ´1q{diu and τ pωq " ditpω ´1q{diu, where t¨u is the integer part, but this does not matter here.

(a) CURVES (b) MNIST (c) FACES

This technical assumption aims to exclude the case when the matching point of sample x is x itself. It is satisfied in the case that Pr and PG have supports that intersect in a set of measure 0.

The term deconvolution is sometimes wrongly used as a synonym of transposed convolution. A deconvolution is the inverse of a convolution. A deconvolution is thus applied to the output of some convolution to recover its input. This is not the case of a transposed convolution, which only recovers the shape, but not the input itself.
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In practical computations, the quantities pµ g , Σ g q and pµ r , Σ r q must be estimated using Monte-Carlo method. To this end, let us consider • S x " tx p1q , . . . , x pmq u a minibatch of real samples from the training data in X ;

• S z " tz p1q , . . . , z pmq u a minibatch of samples in Z drawn from the distribution γ;

• the inception network [START_REF] Szegedy | Going deeper with convolutions[END_REF] F : X Ñ R N , which embeds an image from X to the space of features R N .

Then, we set

rF px pbq q ´µr srF px pbq q ´µr s T , (5.34a)

rF pG θ G pz pbq qq ´µG srF pG θ G pz pbq qq ´µG s T . (5.34b)

Lower FID means smaller distance between learned and real data distributions. The major concern with FID is its presumption that embedded features obey Gaussian distributions, which is far from being granted. Furthermore, it takes into account only the first two moments of the distributions. Notwithstanding these concerns, FID appears to be a relevant measure of fidelity and diversity. It has been observed that FID is consistent with qualitative evaluation by human judgment [START_REF] Borji | Pros and cons of GAN evaluation measures[END_REF]. This explains why FID is widely adopted in the community.

Deep convolutional generative adversarial networks (DCGAN). This extension of the original GAN framework was introduced by Radford et al. [START_REF] Radford | Unsupervised representation learning with deep convolutional generative adversarial networks[END_REF] in order to improve the quality and stability of generated samples, particularly in the domain of image generation. The primary innovation of DCGANs lies in their architecture, which incorporates convolutional layers into the GAN framework. Convolutional neural networks (CNNs) have demonstrated exceptional performance in various image processing tasks, by effectively capturing spatial hierarchies and extracting meaningful features from images. By leveraging the power of CNNs, DCGANs enhance the capability of GANs to generate realistic and high-quality images.

DCGANs introduce several architectural guidelines and design choices to ensure stable training and better sample generation:

• Transposed convolution layers: DCGANs utilize transposed convolutional layers in the generator network. These layers help upsample the low-resolution input noise into highresolution image-like outputs.

• Strided convolutions: in the discriminator network, DCGANs use strided convolutions instead of pooling layers to downsample the input images. This helps in preserving spatial information while reducing the image resolution.

• Batch normalization: DCGANs apply batch normalization to both the generator and discriminator networks. This technique normalizes the inputs to each layer, which helps in mitigating issues related to internal covariate shift and contributes to more stable training.

• Activation functions: DCGANs use Rectified Linear Units (ReLU) as the activation function for the generator network, except for the output layer, which typically employs a hyperbolic tangent (tanh) activation function. In the discriminator network, Leaky ReLU is used to introduce non-linearity and prevent sparse gradients.