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Chapter 1

General Context

As robotic systems become more prevalent in numerous aspects of our society, they
are designed to support or supplant human involvement in a wide range of tasks, such
as industrial operations. A robotic system is an intricate assembly of components
– hardware and software for managing its operations – that need to be flawlessly
integrated to ensure the robotic system functions as intended. In pursuit of a world
driven by robotics, academic research, industry, and open-source solutions are working
together to offer cost-effective and efficient options for creating, evolving, and operating
robotic systems.

Ahmad and Babar (2016) conducted an extensive analysis of research trends
within the robotics community, emphasizing that researchers and practitioners are
progressively focusing on utilizing software engineering methodologies to simplify
complexities and boost efficiency in modeling, developing, maintaining, and evolving
robotic systems in a cost-effective manner. Researchers from diverse fields (such as
robotics, software engineering, industrial engineering, and artificial intelligence) have
employed architectural models to design, rationalize, and construct robotic software.
Although robotic hardware modeling and design pose significant challenges in the
research community, these issues are systematically tackled by the software system. To
preserve the integrity of the software system and adhere to ISO standards, industrial
practitioners must follow guidelines such as ISO 250101, which is titled "Systems and
software engineering – Systems and software Quality Requirements and Evaluation
(SQuaRE) – System and software quality models." This standard outlines models with
characteristics and sub-characteristics for both system product quality and software
quality in use, along with practical advice on employing these quality models.

ISO 25010 Standard Overview

ISO/IEC 25010 categorizes software quality into two primary dimensions:

1. Product Quality: A product quality model comprising eight characteristics (fur-
ther divided into sub-characteristics) that pertain to the static properties of

1https://iso25000.com/index.php/en/
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software and dynamic properties of the software or computing system. Figure A.1
illustrates the product quality model characteristics.

2. Quality in use: The quality in use model composed of five characteristics (some of
which are further sub-divided into sub-characteristics) that relate to the outcome
of interaction when a product is used in a particular context of use. Figure A.2
shows the quality in use model.

These models’ characteristics and sub-characteristics offer a consistent vocabulary
for defining, measuring, and assessing system and software product quality. Additionally,
they provide a set of quality characteristics that can be compared to stated quality
requirements to ensure completeness.

Despite the growing importance of software in robotics, current software engineering
(SE) practices are considered inadequate, frequently resulting in error-prone software
that is difficult to maintain and evolve. García et al. (2020) surveyed and interviewed
industrial practitioners in the robotics domain regarding the current state of SE.
They discovered that 90% of participants answered "Don’t know" about deterministic
execution, a widely recognized and addressed term in the real-time computing system
community. In essence, determinism ensures that the same input consistently results
in the same output. This dissertation will concentrate on employing approaches used
by the real-time computing society within a robotic system, specifically focusing on
autonomous mobile robots. Among all the categories in the software system model for
mobile robotic systems, resource constraints are the primary factor that affects the
functionality of the mobile robotic system.

Energy constraints in mobile robotics

This dissertation primarily aims to address the crucial constraint of energy management
in mobile robot, a challenge that has substantial implications for the successful operation
of the device. Mobile robots are inherently limited by their finite energy supply, and any
inefficiencies in energy utilization can considerably hinder their performance, potentially
compromising their autonomous function. These issues are further compounded by the
limitations of the processing platform’s computing power. The specific objective of this
dissertation is to investigate and propose solutions for these challenges, with a special
emphasis on energy management for mobile robots. The purpose is to enhance their
operational efficiency and ensure the effective execution of their autonomous function.
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1.1 Dissertation Goal

This dissertation aims to address the identified open challenges faced by industrial
mobile robotic systems. These open challenges are divided into three distinct research
themes, as illustrated in Figure 1.1.

HW and SW Architecture for Mobile Robot

Robotic Development Robotic Usability

Hardware Model

Software Model and Design

Dynamic Reconfiguration

Re-programming

Objective 1

Robotic Operation

Critical Mission

Quality of Service (QoS)

Energy-neutral operation

Objective 2

Figure 1.1 Three main themes which are the goals of this dissertation. Highlighted
with energy-neutral robotic operation as the primary goal.

1. Robotic Development: This theme focuses on the system architecture that
supports, adapts, and runs the software architecture, exhibiting performance effi-
ciency. It involves identifying the most suitable system and software architectures
to satisfy the product quality model.

(a) Hardware Model: This aspect involves identifying an appropriate processing
platform that is capable of handling the computational load and supporting
the software architecture. Moreover, it is crucial to meet the peripheral
requirements; that is, the computing platform must contain the necessary
peripherals to interface with the components comprising a mobile robot.

(b) Software Model and Design: We propose a software design for the comput-
ing system that exhibits deterministic behavior, ensuring the functional
correctness of the system.

2. Robotic Usability: This theme concentrates on the system’s usability with
human interaction. It builds upon robotic development, aiming to provide an
easy-to-use system design that satisfies user requirements.
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(a) Dynamic Reconfiguration: Specifically, this refers to the ease with which
users can reconfigure the system to meet specific requirements without the
need to reboot or reprogram.

(b) (Re)Programming: The system design should accommodate users or inte-
grators to (re)program the system without physically reaching the system.

3. Robotic Operation: Robotic operation is related to solving the problem of
functional and performance efficiency in Figure A.1 of the system. The primary
focus of this thesis is to meet system requirements by addressing the energy
resource constraints. We define three major sub-themes under robotic operation:

(a) Energy-neutral: This term, relatively new in the context of robotic systems,
focuses on incorporating energy harvesting techniques into mobile robotic
systems. This approach allows the robot to recharge its energy storage
unit without relying on a charging station. Careful energy management is
crucial for making decisions about the robot’s activities so as to prevent
energy storage depletion, ultimately leading to the so called energy-neutral
operation.

(b) Quality of Service (QoS): In the context of robotic applications, QoS rep-
resents a critical performance metric that orchestrates mission scheduling
under the constraints of time and energy. This implies that QoS ensures
the use of resources while guaranteeing that missions are completed within
their respective deadlines.

(c) Critical Mission: Industrial robots are often assigned specific tasks, known
as critical missions. The successful execution of these tasks is crucial to the
operation of the industry they serve. Simultaneously, these robots must
operate within defined energy constraints, making efficient use of energy
source to prevent disruption in service. Balancing the successful completion
of critical missions with the necessity of energy conservation is a high-priority
challenge in industrial robotics.

"Energy neutrality for mobile robots refers to the state in which a robot’s energy
consumption is perfectly balanced by the energy it harvests or generates from
ambient sources, ensuring continuous operation without depleting its energy
resources, and ultimately enhancing its performance, longevity, and mission
success."
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In approaching these three themes, our goal is to create a deterministic and
energy-efficient mobile robotic system. To ensure that the mobile collaborative robotic
system meets industrial demands, it is vital to thoroughly examine and integrate these
themes. We have structured the themes hierarchically. We begin with selecting a
suitable framework, then we investigate operation sub-themes, and finally we analyze
development and usability. This strategy will foster a complete understanding of the
challenges and opportunities in designing a robust and efficient mobile collaborative
robotic system for industrial use.

1.2 Problem Statement

In this research, we focus on industrial mobile robotic architecture, as highlighted in
the motivation. Mobile robots must guarantee deterministic execution while managing
time and energy constraints. Consequently, the requirements are categorized into two
sub-themes: functional requirements (FR), which pertain to the primary functionality
of mobile robots, such as navigation, and non-functional requirements (NFR), which
relates to deterministic, performance, reliability, and energy utilization.

Mobile robots must respond to dynamic environments in real-time to ensure safe
operation. By integrating real-time systems, robots can manage tasks with deter-
ministic execution and adherence to deadlines, which are crucial for system stability,
safety, and responsiveness. Energy efficiency is vital for mobile robots due to limited
power supply. In this dissertation, we investigate strategies for optimizing energy
utilization without compromising real-time performance. We examine various real-time
system aspects, such as energy-aware scheduling algorithm, and its applicability to
mobile robot applications. Additionally, we explore challenges and opportunities in
implementing energy-aware real-time systems in mobile robots, assessing trade-offs
between performance, reliability, and power consumption.

We outline the major challenges:

1. Development of a mobile robotic architecture, i.e., providing an architecture that
satisfies both FR and NFRs.

2. Support for real-time task dependency for realistic applications, i.e., enhancement
of energy-aware scheduling algorithms for real-time energy harvesting systems to
incorporate task dependency applications.

3. Implementation of energy-aware scheduling algorithms within a real-time operat-
ing system, i.e., achieving energy-neutral operation.
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Ultimately, this research aims to provide valuable insights and contribute to the
development of efficient, reliable, and energy-aware robotic architecture capable of
meeting the non-functional requirements while satisfying their functional requirements.
Although our focus is on addressing the challenges faced by the specific industrial
mobile robot developed by E-COBOT, named HUSKY2, the contributions made in
this work can be extended to other robotic systems with appropriate modifications.

Challenges

Numerous challenges have been identified through the review of the current state of
the art and during the course of this research. In this section, we will highlight these
challenges, emphasizing their importance as the primary focus of this dissertation. The
ultimate goal of our contributions is to address the goals listed in Section 1.1, which
involves designing and developing a mobile robotic architecture that satisfies robotic
operations through an energy-aware and deterministic approach, meeting industrial
standard requirements.

Challenge 1

Designing the Hardware/Software Architecture for a Mobile Robot with Real-
Time Capabilities

Designing the hardware and software architecture of a mobile robots with real-time
capabilities requires careful consideration of various factors that influence the overall
performance and reliability. These factors include selecting suitable processing platform
that can handle real-time processing, computational load, and compatibility with the
chosen operating system and middlewares. Additionally, the use of a Real-Time Oper-
ating System (RTOS) that provides deterministic execution and allows for effective task
scheduling is essential. Implementing a suitable task scheduling algorithm that meets
the real-time requirements of the robotic device and developing a modular software
architecture that separates the device into independent, interchangeable components or
modules are also crucial. This modular approach enables easier maintenance, testing,
and future upgrades of the robotic device.

Many mobile robot architectures utilize a distributed computing platform. Here,
separate units manage hardware control, while others handle computations for nav-
igation. However, this approach can lead to delays in data processing and control,
which can limit the real-time capabilities of the robot. For instance, in traditional

2https://e-cobot.com/en/husky-smart-mobile-cobot-3/

https://e-cobot.com/en/husky-smart-mobile-cobot-3/
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architectures, sensor data acquisition and processing may be handled by separate
units, introducing latency and making it challenging to ensure timely and accurate
decision-making. This latency can lead to safety issues in critical applications, such as
in industrial environments, where robots are expected to operate in real-time to avoid
accidents and ensure productivity.

Challenge 2

Dynamic Reconfigurability and Re-programmability for Enhanced Usability
According to User Requirements

Dynamic reconfigurability and re-programmability can be challenging in mobile
robotic architectures. Physically accessing the robot to make changes can lead to
a complete shutdown, requiring a complete restart, which is not ideal for industrial
integration. This issue can be critical, especially in applications that require fast
reconfiguration or redeployment of the robot’s tasks. Therefore, there is a need for a
thorough guide to designing mobile robots with real-time capabilities. Such a guide
should ensure dynamic reconfigurability and re-programmability, enabling real-time
changes in the robot’s tasks without requiring a complete shutdown or access to device
physically.

Challenge 3

Incorporating Energy-Aware Scheduling Algorithm with Shared Resource Con-
straints

One of the significant challenges related to mobile robots is the energy constraint, as
these systems carry limited energy sources. Energy management in the architecture of
mobile robots is essential. The focus of our research is on energy-aware real-time task
scheduling, which enables the robotic device to function in an energy-neutral manner.
An energy-neutral operation balances its energy demand with the energy scavenged
from renewable sources. This approach is superior to energy-saving approaches, which
still rely on conventional energy sources where the mobile robots must rest at charging
stations. An energy-neutral operation makes the robot completely autonomous and
free from charging station halts, increasing the productivity of the industrial sector.

To address this challenge, we will investigate optimal energy-aware real-time schedul-
ing algorithm namely Earliest Deadline Harvest (ED-H) to implement within the mobile
robotic architecture. However, one shortcoming of this algorithm is that it initially
considers only independent real-time tasks, limiting their applicability for more realistic
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applications like mobile robots. Therefore, it is essential to incorporate methods to
consider dependent tasks, particularly tasks with shared resource constraints.

Challenge 4

Implementing the Optimal ED-H Energy-Aware Scheduling Algorithm within a
RTOS

Implementing the energy-aware scheduling algorithm within a Real-Time Operating
System (RTOS) is an open challenge. The integration of such algorithms into a RTOS
will require a clear understanding of the existing scheduling policies and mechanisms.
Additionally, it is crucial to ensure that the energy-aware scheduling algorithm can
coexist with other scheduling policies without negatively impacting the real-time
performance of the system.

During the course of the research, we have identified new challenges that must be
investigated to develop a mobile robotic device capable of satisfying real-time constraints
and achieving energy neutrality. The challenges previously discussed address both
timing and energy constraints. However, the granularity of the energy focused on these
challenges may not be completely effective for larger systems like mobile robots. In
mobile robots, maximum current is often drawn when the robot is actively performing
navigation tasks called missions, consuming energy at varying rates depending on the
complexity and duration of the operation.

Challenge 5

Implementing the Energy-Aware Scheduling Algorithm to Ensure Mission Appli-
cations of Mobile Robots Operate within Energy Constraints while Maintaining
Performance and Reliability

Ensuring energy constraints, or the efficient management and allocation of energy
resources, is a significant challenge that must be addressed for the successful completion
of missions. This challenge becomes more pronounced as the complexity and number
of missions increase. One of the key factors contributing to the energy consumption of
mobile robots is the nature of the work being performed. For example, mobile robots in
warehouse automation are often required to operate continuously, picking and placing
items, transporting goods, and navigating through complex warehouse layouts. These
works necessitate numerous complex movements and decisions, which can lead to high
energy consumption. In this context, energy constraints becomes vital not only for
the successful completion of individual mission but also for maintaining the overall
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efficiency and cost-effectiveness of warehouse operations. This challenge is exacerbated
by the increasing complexity and number of missions, necessitating the development of
energy-neutral solutions to extend the robots’ performance and longevity.

Challenge 6

Estimating the Duration and Energy Consumption of Mobile Robots Missions

Harmonizing real-time intelligent mission scheduling for mobile robots presents a
formidable challenge due to several interrelated factors. The first challenge arises from
determining the energy consumption of the robot during a mission, which depends
on the hardware design and the navigation strategies employed. The next major
challenge emerges when integrating energy harvesting solutions, as the intelligent
mission scheduling algorithm must rely on predictions of future energy availability
during the mission, making it difficult to accurately estimate the harvested energy.

This dissertation aims to address these key challenges and contribute to the field by
providing a thorough guide for designing and integrating a real-time deterministic mobile
robot capable of energy-neutral operation. By tackling the complexities of intelligent
mission scheduling, energy harvesting, and resource constraints, this work will serve as a
valuable guide for researchers and practitioners seeking to develop energy-aware mobile
robot solutions that enhance both the functional and non-functional requirements of
the mobile robots. The dissertation will present a clear and well-structured analysis
of each challenge, along with proposed solutions, supported by experimental results
and performance evaluations. This holistic approach will demonstrate the effectiveness
of the proposed solutions in achieving energy neutrality and improving the overall
system performance, thereby solidifying the mobile robot’s ability to meet industrial
standards.

1.3 Contributions

In this dissertation, we have identified the key challenges that must be emphasized
in order to develop a mobile robotic architecture that adheres to both non-functional
and functional requirements, encompassing industrial standards. These challenges
stem from the complex interplay between two domains: real-time systems and mobile
robotics. Our approach to tackle these challenges will be structured around four
concrete contributions, each focusing on a specific aspect of the problem.
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Contribution 1 - Architecture

Hardware and Software Design of Industrial Mobile Robot Architecture with
Real-time Capabilities.
Addresses : Challenge 1 and 2
In : Chapter 4

The first contribution of this dissertation encompasses the overall hardware and
software architecture design considerations for developing a mobile robot that meets
industrial requirements. This contribution will focus on an architecture that brings
real-time capabilities to mobile robots. This architecture must satisfy not only the
functional requirements, which are typically the requirements of mobile robots, but
also the non-functional requirements that ensure the behavior and reliability of mobile
robots in robust environments. Furthermore, the architectural design will incorporate
dynamically configurable and re-programmable features to meet user requirements.

Contribution 2 - Theoretical Contribution

ED-H Energy-Aware Real-Time Scheduling Algorithm with Shared Resource
Constraints
Addresses : Challenge 3
In : Chapter 5

The second contribution of this dissertation examines the integration of shared
resource constraints in the context of energy-aware real-time scheduling algorithms.
Shared resources, such as critical sections, present challenges that need to be addressed
to ensure efficient management of these resources. By addressing these challenges, we
aim to develop a robust scheduling scheme that accounts for resource constraints while
guaranteeing time and energy constraints.

Contribution 3 - System Level

Implementation of ED-H Scheduling Algorithm under Xenomai, a real-time
co-kernel for Linux distribution
Addresses : Challenge 4
In : Chapter 6

The third contribution of this dissertation focuses on the implementation of the
ED-H energy-aware scheduling scheme. We will offer an extensive guide detailing
the implementation of the ED-H scheduling scheme within the scheduler class of the
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Xenomai-patched Linux kernel. We will discuss the specific APIs that must be used to
schedule real-time tasks under the ED-H scheduling scheme. Moreover, we will present
a simulation of this scheduling scheme, incorporating simulated battery and energy
harvesting modules.

During our research, we identified that treating the energy-neutral concept at the
operating system level of embedded computing devices in mobile robots does not
have a significant impact. Therefore, we aim to address this at the application level,
encompassing the missions that mobile robots typically perform. This approach will
enable the energy-neutral operation of the robotic device, ensuring its operation for
mission completion.

Contribution 4 - Application Level

Implementation of ED-H Scheduling Algorithm for Energy-Aware Mobile Robotic
Operation
Addresses : Challenge 5 and 6
In : Chapter 7

The final contribution of this dissertation encompasses the implementation of energy-
aware scheduling algorithm for mission scheduling. We will provide a complete account
of the implementation of the ED-H scheduling algorithm at the application level. We
will discuss the characterization of uncertainties, such as mission duration and energy
estimation for the mission. We will validate the proposed algorithm through simulation
and real-world experiments. An extensive guide for developers and integrators to utilize
the mission scheduling algorithm will be provided. Additionally, we will examine the
energy harvesting problem, its limitations, and other challenges, such as calibration
procedures to estimate energy consumption.

1.4 Dissertation Overview

The rest of the dissertation is organized as follows:

Chapter 2: This chapter offers a thorough theoretical background in two domains: mobile
robots and real-time systems. We present the generic architecture of mobile
robots and the middleware ROS (Robot Operating System) to address functional
requirements. Subsequently, we delve into the concept of Real-Time Systems, elab-
orating on all relevant aspects, including software architecture. This foundation
provides a solid understanding for the remainder of the dissertation.
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Chapter 3: This chapter presents the state-of-the-art foundation for our research in energy
management for mobile robots. We encapsulate the energy-efficient approaches
employed in mobile robots to achieve energy savings. Then, we delve into
the concept of energy-neutral operation, detailing the optimal energy-aware
scheduling algorithm ED-H. Additionally, we also discuss the energy harvesting
techniques that are commonly utilized, followed by an examination of energy
storage systems for mobile robots. This extensive overview sets the stage for a
deeper understanding of energy management throughout the dissertation.

Chapter 4: In this chapter, we present a detailed architectural design for a robust mobile
robot with real-time capabilities. Furthermore, we provide guidance for developers
to identify and create real-time applications that implement deterministic mobile
robot applications. We also discuss the applicability of robotic middleware,
specifically ROS2, to ensure real-time constraints. This thorough exploration
lays the groundwork for understanding and implementing real-time capabilities
for industrial mobile robotics.

Chapter 5: In this chapter, we delve into the details of shared resource constraints, discussing
the complexities associated with them. Our novel contribution within this chapter
is the development of a schedulability test for the ED-H scheduling algorithm,
which incorporates shared resource constraints. This in-depth examination and
contribution advance our understanding of how to effectively manage shared
resources by incorporating resource access protocols with energy-aware scheduling
algorithm.

Chapter 6: In this chapter, we present the simulation of the ED-H scheduling algorithm.
We describe the scheduling classes of the Xenomai kernel. We then provide the
implementation details and limitation of energy-aware scheduling algorithm in
our framework.

Chapter 7: In this chapter, we address the context of robotic missions. We outline a
methodology based on decision-making techniques for scheduling robotic missions.
We describe the implementation of the energy-aware scheduling algorithm for
decision-making in mission scheduling. We present the simulation and real-
world limitations. Furthermore, we discuss the technology barriers that must be
overcome to achieve complete energy-neutral operation.

Finally, we present the conclusion of this research work and discuss future perspectives
in the field. This will be followed by a summary of the dissertation in French.



Chapter 2

Background: Mobile Robots and
Real-time Systems

This chapter discusses the fundamental background that serves as the foundation
for our research. The topics presented are multidisciplinary, spanning from mobile
robots to real-time systems, with an emphasis on non-functional requirements for
mobile robotic systems. Section 2.1 presents an architectural overview of mobile
robotic systems, covering both functional and non-functional requirements. This is
followed by an examination of the mobile robot software framework in Section 2.2.
Section 2.3 presents the definition of real-time systems, along with essential concepts
that emphasize the real-time workload, which provides the real-time task model used
in this research. The processing platform encompasses the computing system software
framework designed to satisfy the non-functional requirements of the mobile robotic
system. Additionally, the scheduling algorithm highlights the classification and details
the priority-based scheduling algorithm. Finally, we conclude this chapter in Section 2.4.

2.1 Mobile Robots

Autonomous Mobile Robots (AMRs) [Siegwart et al. (2011)], equipped with diverse
sensor arrays and control systems, have become pivotal in areas like manufacturing,
healthcare, and exploration. First designed for navigation and artificial intelligence (AI)
capabilities [Nilsson (1969)], they now play a significant role in modern manufacturing
by performing repetitive tasks like assembly and material handling, thereby improving
productivity and reducing costs. In particular, mobile collaborative robots (cobots),
designed for Industry 4.0, work alongside humans to enhance safety and provide
operational flexibility [Vitolo et al. (2022), Sorell (2022)]. The forthcoming Industry
5.0, focusing on a more human-centric, sustainable, and resilient approach, is expected
to boost human-robot collaboration, with humans guiding robots in more complex
processes [Maddikunta et al. (2022), Maciaszczyk et al. (2023)].

For cobots to succeed in the future, they must effectively learn from human input,
adapt to evolving tasks, and comply with industrial standards [De Ryck et al. (2020)].
Such progress relies heavily on advancements in AI, sensing, and control systems.
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Importantly, these cobots should also optimize resource utilization while meeting user
requirements, ensuring system and software quality. Throughout this dissertation, we
will use the term "mobile robots" to refer to these collaborative robots or cobots.

2.1.1 Mobile Robot Architecture

The generic architecture of an autonomous mobile robotic system, as depicted in
Figure 2.1, can be categorized into four distinct subcategories:

Computing Subsystem

Sensing Subsystem

(Lidar, Camera, Obstacle detectors, encoders, ...)

Acting Subsystem

(Motors, Arms, ....)

Power Supply
Subsystem

Battery

Low-Level Processing Unit

Hardware 
(CPU, Memory, ...)

Software 
(OS, App, ...)

microcontrollers, automation PC..,

Hardware 
(CPU, GPU, Memory, ...)

Software 
(OS, App, ...)

x86, arm.., machine

High-Level Processing Unit

Figure 2.1 Architecture of Mobile Robotic System.

1. Computing Subsystem: Encompassing both high-level and low-level computing
systems, this subsystem is responsible for decision-making, artificial intelligence,
and controlling the robot’s hardware components to facilitate interaction with
the environment.

2. Acting Subsystem: This subsystem is responsible for the robot’s locomotion,
consisting of the actuation system. It may also interface with supplementary
systems containing actuators, such as arm manipulators, to perform a diverse
range of tasks.

3. Sensing Subsystem: By collecting and processing data from various sensors, the
sensing subsystem enables the robotic system to perceive and understand its
surroundings.
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4. Power Supply Subsystem: As an essential component of mobile systems, the pow-
ering subsystem provides a finite power supply that requires periodic recharging.
Batteries are the most prevalent power source for autonomous vehicles.

The core of a functional mobile robotic system is formed by these foundational systems.
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Figure 2.2 Abstraction Level of Mobile Robotic Systems.

As depicted in Figure 2.2, the abstraction levels of the mobile robotic system
are divided into two categories: Hardware and Software abstractions. These levels
are hierarchical, with Missions representing the topmost level. A mission consists
of a predefined set of tasks or objectives for the robot to accomplish, serving as an
encapsulator that enables other layers to interact with the real world. Each layer
is dedicated to specific functionalities within the system. Reducing the system’s
complexity can be achieved by addressing both abstractions, rather than individual
layers, resulting in a more cohesive and efficient approach to problem-solving.

During the design phase of the robot, the hardware abstraction is addressed, focusing
on the robot’s taxonomy, which is defined by its degree of freedom (e.g., differential
drive with 2 degrees of freedom or omnidirectional drive robot with 3 degrees of
freedom) [Siegwart et al. (2011)]. A mathematical representation of the robot is then
established, encompassing the kinematic and dynamic models of the robot to maximize
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the system’s usefulness in terms of motion [Yun and Yamamoto (1993)]. This process
aids in defining control algorithms and calculating energy consumption.

2.1.2 Mobile Robotics Software Requirements

System software architecture serves as the bridge between commercial goals and software
systems. The requirements of a mobile robotic system software architecture can be
categorized into two: Functional Requirements (FR) and Non-Functional Requirements
(NFR).

1. Functional Requirements: Localization, Planning, Motion Control, etc., which
are essential for the mobile robotic system to navigate and operate in the real
world.

2. Non-Functional Requirements: Performance, Resource utilization (time and
energy), Reliability, Adaptability, Interoperability, etc., are the requirements that
the system/software framework should satisfy to meet user requirements.

Based on system requirements, various components are selected during the design
phase. The design phase problem is prevalent in robotics research [Ahmad and Babar
(2016)]. Historically, the software abstraction layer exhibited high complexity, with
researchers developing their own solutions. Over time, there has been a push towards
universal software architectures in the robotics community to address challenges such
as software reusability and lack of standardization [García et al. (2020)]. Several generic
middleware systems have been developed by research groups and communities, which
operate on operating systems.

2.2 Mobile Robotic Framework

The paramount challenge in mobile robotics is ensuring robustness in both the software
and hardware components of a system, enabling them to operate continuously without
critical failures regardless of the context, including mission and environment [García
et al. (2020)]. To address this challenge, it is essential to investigate widely accepted
standards, guidelines, best practices, and methodologies for architecture, design, and
operating systems of mobile robots. The question of architecture is particularly
important for achieving the highest level of robot competence, termed navigation
competence, which involves robust navigation, data interpretation, localization, and
motion control.
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A key feature of robotic middleware is its ability to bring different components
together, facilitating communication and interoperability [Andreasson et al. (2023)].
Additionally, middleware provides interfaces to sensors and actuators, often requiring
low-level access and operating system-specific calls. An effective robotic middleware
should not only meet the requirements of a complex robotic system but also provide a
well-structured Application Programming Interface (API) for functionality at various
interaction levels. Depending on the application, users may require precise control over
communication flow or a simple high-level API call.

There are a vast number of different frameworks for robotics. They are actively
developed and maintained, both by the open source community, as well as by the
commercial sector listed in [Elkady and Sobh (2012), Iigo-Blasco et al. (2012)]. We
outline the most influential and commonly used frameworks in Table 2.1.

Middleware Foundation Year Open Source Active
OROCOS [Bruyninckx (2001)] 2001 ✓ ✓

Player [Gerkey et al. (2001)] 2001 ✓ ✗

CARMEN [Montemerlo et al. (2003)] 2003 ✓ ✗

OpenRTM [Siekmann and Wahlster (2008)] 2008 ✓ ✓

ROS [Quigley et al. (2009)] 2009 ✓ ✓

ROS2 [Thomas D, Woodall W (2014)] 2014 ✓ ✓

Table 2.1 Frameworks for robotics. The table highlights the active and popular
frameworks [Elkady and Sobh (2012), Iigo-Blasco et al. (2012), Andreasson et al.
(2023)].

The most popular and widely-used open-source middleware in both research and
industry is the Robot Operating System (ROS). ROS effectively satisfies the functional
requirements of a mobile robotic system. In this work, we will consider ROS middleware,
since the mobile robotic system in our company, utilizes ROS.

2.2.1 Robot Operating System (ROS)

The Robot Operating System (ROS) serves as a comprehensive operating system
for service robotics, functioning as a meta-operating system that bridges the gap
between an operating system and middleware [Koubaa (2016)]. It offers a suite of
open-source software libraries to facilitate robotics application development. ROS
streamlines the development and implementation of robotics software through its
modular, node-based architecture, enabling the integration of complex robot behaviors,
such as localization, mapping, path planning, and autonomous navigation. These
capabilities are particularly relevant for mobile robots.
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Figure 2.3 Comparison of ROS with ROS2 architecture.

ROS21, the successor to ROS, introduces several key improvements, including
a redesigned communication layer based on the Data Distribution Service (DDS)2

standard, which enhances performance, security, and Quality of Service (QoS) settings.
Figure 2.3 illustrates the architecture of ROS and ROS2.

For mobile robot navigation, ROS2’s advancements offer significant benefits. The
improved communication layer allows for more reliable and efficient data exchange
among the robot’s system components, improving coordination and responsiveness
during navigation tasks. ROS2’s capabilities facilitate more accurate and prompt
control of robot motion, essential for navigating dynamic environments safely and
efficiently. Furthermore, ROS2’s modularity and robustness empower developers to
create scalable, fault-tolerant solutions for various applications and scenarios.

In the subsequent section, we will explore navigation concepts, emphasizing how
ROS2’s features and enhancements can be effectively leveraged to boost mobile robots’
navigation capabilities. We will examine localization, mapping, and path planning
techniques. We will discuss these components within the ROS2 framework to achieve
advanced, reliable navigation performance.

1https://docs.ros.org/en/humble/index.html
2https://fast-dds.docs.eprosima.com/en/latest/fastdds/ros2/ros2.html

https://docs.ros.org/en/humble/index.html
https://fast-dds.docs.eprosima.com/en/latest/fastdds/ros2/ros2.html
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2.2.2 Mobile Robot Navigation

Mobile robot navigation is a crucial element of autonomous robot operation, enabling
robots to move purposefully and efficiently within their environment. To successfully
navigate, a robot must address several challenges, similar to how humans navigate from
one place to another. These challenges can be broken down into four main components:

1. Mapping: The robot needs to create a representation of its environment to
understand the context in which it operates.

2. Localization: The robot must determine its position within the environment to
make informed navigation decisions.

3. Path Planning: The robot must develop an optimal route from its current position
to its destination, considering any constraints or obstacles.

4. Robot Control and Obstacle Avoidance: The robot must execute the planned path
while adjusting its motion to avoid obstacles and ensure smooth navigation.

Building these components from scratch can be complex and time-consuming.
ROS2, provides pre-built package Nav2 [Macenski et al. (2020)] that simplifies the
development process and facilitates efficient navigation. These components work in
harmony to ensure optimal performance of mobile robots during navigation tasks,
which is further facilitated by the lifecycle manager of ROS2. The lifecycle manager
provides a structured approach to managing the various components and their states,
ensuring a consistent and well-organized execution of the navigation process. By
effectively handling the initialization, configuration, activation, and deactivation of
each component, the ROS2 lifecycle manager contributes to the overall reliability,
stability, and efficiency of the mobile robot’s navigation system.

An architectural overview of ROS reveals that it does not function as a traditional
operating system responsible for process management and scheduling. Instead, it
operates on top of the host operating system of the computing system. As shown in
Figure 2.3, ROS2 can run on a variety of operating systems, including Linux, Windows,
Mac, and RTOS. In this work, we will employ the Linux operating system due to
its compatibility with the industrial framework. Intrinsically, Linux does not display
real-time characteristics such as deterministic execution. As a result, understanding the
concept of a real-time system is essential for adapting the software architecture of the
robotic system to satisfy both the Functional Requirements (FR) and Non-Functional
Requirements (NFR).
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2.3 Real-time Systems: Deterministic Performance

The term "real-time" is frequently employed in various application fields and is subject
to different interpretations, not always accurate. Often, a control system is considered
to operate in real-time if it can quickly respond to external events. According to
this interpretation, a system is deemed real-time if it is fast. However, the term
"fast" is relative and fails to encapsulate the primary properties that define these
systems. Instead of being merely fast, a real-time computing system should prioritize
predictability. Stankovic (1988) provides a comprehensive definition of a real-time
system, stating that:

"A real-time system is a system in which the correctness of the system
depends not only on the logical result of the computation but also on the
time at which the results are produced". [Stankovic (1988)]

Temporal determinism in a system is the primary requirement to ensure time-
predictable task execution. Although throughput and low latencies are desirable,
they are considered secondary attributes. Consequently, "real-time" does not imply
computing at the fastest possible speed but rather computing as fast as required.

Determinism in real-time systems is defined by the system’s consistent and pre-
dictable behavior, especially concerning task execution and response times to events.
In deterministic real-time systems, tasks are structured to consistently meet deadlines
by adhering to predefined time constraints.

Timing characteristics hold significant importance in real-time computing systems,
particularly for specific applications such as mobile robot operation. These systems
must complete computations within a predefined time interval, which is characterized
by a release time and a deadline. These critical parameters dictate the system’s
behavior, and missed deadlines can lead to severe consequences, including degraded
performance, system failure, or even catastrophic failure.

When developing real-time computing systems, it is crucial to carefully assess
timing requirements and ensure that the system will operate within the defined
constraints. In subsequent sub-sections, we will explore real-time concepts in greater
details, highlighting their importance in the design and implementation of real-time
principles in robotics applications, ultimately contributing to more accurate and reliable
performance.



2.3 Real-time Systems: Deterministic Performance | 21

2.3.1 Fundamental Concepts of Real-Time Systems

Real-time systems can be analyzed and optimized based on three primary aspects that
need to be considered in order to ensure that the system meets its requirements and
behaves as expected.

• Real-time Workload: This aspect pertains to the computational workload of
the system, encompassing task parameters such as release time, execution time,
and deadline. Additionally, the workload model describes the classification, types,
and dependencies of real-time tasks.

• Processing Platform: This aspect pertains to the combination of hardware
and software elements that make up the platform where the workload tasks are
performed. Essential resources include processor(s) (CPUs), memory, cache, and
the connections among them. The platform’s architecture is of great importance,
as its performance has a direct effect on the system’s timing characteristics.

• Scheduling Algorithm: This aspect pertains to the method employed in a
system with multiple tasks and varying deadlines, where numerous jobs might be
ready for execution simultaneously and require completion as soon as possible
to meet their deadlines. In such situations, a scheduling algorithm is necessary
to determine which jobs are executed on the processing platform at any given
time. The selection of a scheduling policy is a crucial factor that influences the
temporal behavior of the system.

Optimizing real-time systems involves analyzing and refining these three aspects
to ensure that the system can meet its performance objectives. This process requires
a thorough understanding of the system’s workload model, processing platform, and
scheduling algorithm, as well as the interactions between them. By optimizing these
three aspects, it is possible to improve the predictability, reliability, and performance,
which contribute to the Non-Functional Requirements (NFR) of the system.

2.3.2 Real-time Workload

The Workload of a real-time system is a formal representation of the computational
workload of the system, including the tasks that must be executed, their timing
characteristics, and their dependencies. This model is a critical aspect of real-time
system design because it provides insight into the characteristics of the workload and
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enables the system to be analyzed and optimized for performance, reliability, and
safety.

Tasks in a real-time system are the individual units of work that the computing
system is designed to perform. Most commonly they are referred to as threads in the
operating system. They are typically composed of a set of instructions that are executed
by the system’s processor. They can involve input/output operations, data processing,
and communication with other systems. Examples are obtaining the obstacle sensor
value and sending speed data to control the motors.

Generic Real-Time Task

Applications that implement real-time tasks require to specify these tasks through
distinct parameters. Generally, a real-time task, denoted as τi, may generate an
unbounded sequence of jobs throughout its lifespan. The jth job associated with task
τi can be denoted as τi,j . To effectively characterize the task and its jobs, multiple
parameters are utilized:

tai,j di,j

  ci,j   

si,j fi,j

τi

Figure 2.4 Typical parameters of a Real-Time Task from Buttazzo (2011).

• Arrival/Release time (ai,j): This is the moment when a job becomes ready for
execution (triggered by some event or condition).

• Computation time (ci,j): This represents the time duration required by the proces-
sor to execute the job completely without interruption. The actual computation
time of a job is by definition always less than or equal to the WCET (Worst-Case
Execution Time) of the task which gives an upper bound for the execution time
of any job of the same task.

• Start time (si,j): This is the time at which a job begins its execution.

• Finishing time (fi,j): This is the time at which a job completes its execution.

• Relative Deadline (Di): The time interval within which the job execution should
be completed in relation to its release time and absolute deadline. Typically, a
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single value is assigned for every job of a certain task, denoted as Di, as it refers
to task τi.

• Absolute Deadline (di,j): The specific instant in time by which a job should be
completed to maintain the timeliness properties of the system. It is calculated
based on the relative deadline and the release time:: di,j = ai,j +Di,j .

• Laxity or Slack time (Li,j): Li,j = ai,j +Di,j−Ci,j refers to the maximum time
a job of a task can be delayed upon activation while still completing within its
deadline.

• Response time (Ri,j): The difference between the finishing time and the release
time: Ri,j = fi,j−ai,j .

Some of the above parameters are illustrated in Figure 2.4. Typically, upward
arrows represent new arrivals, and downward arrows indicate absolute deadlines.

Classification of Real-Time Tasks

The primary distinction between real-time and non-real-time tasks at the process level
is the presence of a (relative) deadline for completing the execution of the tasks. The
deadline signifies the maximum allowable time for task completion. Data resulting from
the execution of tasks are crucial for controlling the robot. When a task misses its
deadline, the usefulness or utility of the output result changes. This variable utility
value can be represented by a function that varies along time after a deadline miss.
Figure 2.5 illustrates the utility function u(t) for different task classifications, including
non-real-time tasks i.e., tasks with no deadline constraints.

Non real-time task Soft real-time task Firm real-time task

0 0 00
d ddt

u(t) u(t) u(t)u(t)

t tt

Hard real-time task

-∞

Figure 2.5 Classification of task in terms of utility function adapted from Buttazzo
(1997). The real-time tasks have deadline constraint d.
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1. Hard real-time task: A task is considered hard if delivering results after its
deadline could lead to catastrophic consequences for the controlled system. A
hard task’s value is only realized if completed within its deadline; otherwise, the
value may be considered −∞ in many situations, as missing the deadline could
jeopardize the entire system.

2. Soft real-time task: A task is deemed soft if producing results after its deadline
still offers some utility for the system, although the value may decrease over time,
resulting in performance degradation.

3. Firm real-time task: A task is classified as firm if producing results after its
deadline is useless for the system and does not cause any damage. These tasks do
not jeopardize the system but offer zero value if completed after their deadline.

A mobile robotic system may comprise tasks from all these categories. The real-
time computing system must be designed to manage them using various strategies.
For instance, tasks associated with actuator control and sensor data reading should
be treated as hard real-time tasks, primarily due to their safety-critical nature. By
treating these tasks as such, the system can ensure proper functioning and maintain
the required level of safety and reliability.

Real-time tasks can be categorized based on the consistency of their activation,
specifically as periodic, aperiodic, or sporadic tasks. Figure 2.6 showcases the three
types and differentiates their activation patterns. Periodic tasks are composed of an
infinite series of identical actions, known as instances or jobs, which are activated at
a consistent rate. In practical situations, a periodic process can be described by its
offset Φi (first periodic instance), worst-case execution time Ci, period Ti, and relative
deadline Di. Conversely, aperiodic tasks involve an infinite series of identical jobs
that have irregularly spaced activation’s. A sporadic task, a type of aperiodic task, is
characterized by consecutive jobs separated by a minimum inter-arrival time (Ti).

In this dissertation, we will focus exclusively on periodic tasks. We will delve
into the detailed characterization of periodic tasks, which will be consistently utilized
throughout this dissertation.

Periodic Task Model

We will employ the periodic task model widely adopted in real-time computing research,
as presented in the seminal work by Liu and Layland (1973). We consider a set of
tasks denoted by τ , comprised of n tasks, where τ = {τ1, τ2, ..., τn}. The jth job of a
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Figure 2.6 Classification of real-time tasks based on activation adapted from Buttazzo
(2011). Sequence of instance for a periodic task, an aperiodic task, and a sporadic task.

periodic task τi will be denoted as τi,j . The activation time of the first job (τi,0) of
the periodic task is represented by the offset Φi. If all tasks have the same offset,
they are called synchronous tasks; otherwise, if they have different activation times,
they are asynchronous tasks. The release time of the jth job of the task is given
by ai,j = Φi + (j.Ti), where period (Ti) is the time interval between two consecutive
releases of the task. In most real-time system research, the computation time of the
task τi is considered as worst-case execution time (WCET), representing the maximum
amount of time for which each job generated by τi may need to execute, denoted by
Ci. The relative deadline, denoted by Di, refers to the length of the time interval in
which the task must complete execution. The absolute deadline of a job τi,j is denoted
di,j = ai,j + Di, respectively. A job’s absolute deadline is the date by which the job
should complete execution. If Di = Ti (resp., Di < Ti) holds, then τi and its jobs are
said to have implicit deadlines (resp., constrained deadlines). A task system in which
Di = Ti (resp., Di ≤ Ti) holds for every task is said to be an implicit-deadline system
(resp., constrained deadline), and one in which Di > Ti holds for one or more tasks is
said to be an arbitrary-deadline system. The ratio of the WCET to the period of a
task is referred to as its utilization and corresponds to ui

def= Ci
Ti

. The total processor
utilization of the periodic task set is the sum of all the task utilizations, which is
Up

def= ∑n
i=1 ui.

In this work, a periodic task τi will be represented by τi(Φi,Ci,Di,Ti) with (Di = Ti).
Having discussed the timing constraints of tasks, we will now examine dependency

constraints.
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Dependency Constraints

In typical real-time systems, tasks need to cooperate so as to complete their execution.
They are said to be dependent tasks. To the contrary, tasks that do not require
cooperation are referred to as independent tasks. Many research studies consider only
independent tasks, for simplicity. However, it is essential to consider dependencies
in modelization since numerous tasks in mobile robots execute collaboratively and
have to synchronize their computations. Consider, for instance, a task responsible
for reading sensor values from an obstacle avoidance sensor. The data retrieved by
this task is crucial for a control task, which communicates via a shared variable that
requires protection. Consequently, the tasks are interdependent - the output of one
forms the input for the other. Tasks interact in explicit and/or implicit ways resulting
in the so-called precedence contraints and resource constraints:

• Precedence Constraints: These constraints represent the need for computational
activities to adhere to a specific order, as established during the design phase,
rather than allowing arbitrary execution sequences. Precedence relations are
typically illustrated by directed acyclic graphs (DAGs), with tasks as nodes and
precedence relations as arrows.

• Resource Constraints: In the context of process perspectives, resource constraints
refer to limitations associated with data structures, sets of variables, main memory
areas, or registers of peripheral devices. A resource dedicated to a specific process
is classified as private, while a shared resource is one that can be used by multiple
tasks. Resource constraints, specifically those arising from the mutual exclusion
of access to critical resources, play a significant role in real-time systems. Mutual
exclusion is a mechanism that ensures exclusive access to shared resources,
preventing simultaneous execution of tasks that require the same resource. In
the context of task execution, resources required by a task may not always be
available when requested, necessitating proper management and coordination to
guarantee that tasks are executed without conflicts or interference.

Mutual Exclusion Problems

The notion of priority signifies the relative importance or urgency assigned to tasks con-
cerning their execution sequence. Priority not only plays a crucial role in managing task
execution order but also directly influences the resolution of synchronization challenges
such as priority inversion. Priority Inversion is a widely recognized synchronization
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challenge that affects real-time systems [Lampson and Redell (1980)]. This problem
occurs when a task with a lower priority unintentionally executes while a task with
a higher priority is waiting for execution. To further clarify this concept, τl, τm, τh,
respectively, with low, medium, and high priority, as depicted in Figure 2.7.

Time

Priority

τl

τm

τh

R R

Lock  
R

Lock  
R

Lock  
R

Unlock  
R

   Blocked   

Priority inversion

R

Unlock  
R

Figure 2.7 Priority inversion scenario. Task τl and Task τh share same resource R. In
this situation medium priority task τm blocks the execution of higher priority task τh.

Initially, τl is running and locks a shared resource R. Subsequently, task τm arrives
and preempts τl execution. When task τh becomes ready, it preempts τm, and attempts
to acquire shared resource R. However, since τl has already locked by R, τh is unable
to execute and is therefore blocked. Consequently, task τm is resumed and executed. In
this scenario, the medium-priority task τm indirectly preempts the high-priority task
τh, by preventing τl from executing and releasing the resource R. This leads to priority
inversion, which prevents the high-priority task from executing.

Numerous solutions have been proposed to tackle this issue. One prominent
approach is known as priority inheritance [Sha et al. (1990)]. The fundamental idea
of this solution involves temporarily raising the priority of the low-priority tasks (τl)
that have locked resources needed by higher-priority tasks (such as τh in this example).
In this special case, priority of lower-priority tasks would be temporarily increased to
match the priority of higher-priority task. In this research, we will resolve the priority
inversion problem by utilizing resource access protocols [Sha et al. (1990)].

2.3.3 Processing Platform

The platform represents the hardware and software architecture of a computing system,
and numerous computing systems exist to explore. This study will primarily concentrate
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on the computational platforms utilized in mobile robots. As demonstrated in Figure 2.1,
architecture reveals that two computational systems are present in autonomous mobile
robots, which exchange data to operate the robots locomotion and other activities.
High-level processing units, like onboard multi-core processors such as x86 or arm64
devices running General-Purpose Operating System (GPOSs), manage middleware and
robotic applications. Conversely, low-level processing units, including microcontrollers
that operate using real-time operating systems (RTOS) like MbedOS3, FreeRTOS4,
NuttX5, or automation PCs that run the Windows operating system, handles actuation
and sensing systems.

From a deployment perspective, real-time programs can either operate without
an operating system (referred to as bare metal) or on an RTOS. The latter is more
appropriate when addressing the simultaneous execution of multiple tasks within the
system. The system memory can be arranged either as a single shared address space
among tasks or as multiple virtual address spaces to ensure task isolation. In the
second scenario, applications often need operating system services through system
calls. This necessitates a transition from user space to kernel space, which entails
an execution mode change that permits software to run privileged instructions and
access the entire memory space without constraints. As a result, RTOS-based real-time
applications with time-predictable execution must also maintain temporal determinism
at the kernel-space level. In general, the objectives of RTOSs and GPOSs diverge,
with the former focusing on setting a maximum limit for execution time and the latter
aiming to enhance average performance.

This research will emphasize the high-level onboard processing units in mobile
robotic systems utilizing GPOS Linux6. Linux has become an attractive option for
the embedded world due to its numerous advantages. However, the kernel’s real-time
performance doesn’t fully meet the requirements for all real-time classes, as it was
primarily developed for general-purpose systems. In response, the Linux Foundation
initiated the Real-Time Linux collaborative project7 in 2016, focusing on coordinating
kernel development specifically for real-time environments, with an emphasis on the
PREEMPT_RT patch. Developed in 2005, this patch sought to improve determinism
and minimize latencies in the Linux kernel. Additionally, the Open-Source Automation
Development Lab (OSADL)8 is a significant contributor to real-time Linux, serving as

3https://os.mbed.com/mbed-os/
4https://www.freertos.org/
5https://nuttx.apache.org/
6https://www.kernel.org/
7https://wiki.linuxfoundation.org/realtime/start
8https://www.osadl.org/

https://os.mbed.com/mbed-os/
https://www.freertos.org/
https://nuttx.apache.org/
https://www.kernel.org/
https://wiki.linuxfoundation.org/realtime/start
https://www.osadl.org/
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an organization committed to advocating for and facilitating the use of open-source
software in embedded environments.

In Linux environments, it’s important to note that a process consists of one or more
threads sharing the same address space, and a thread is a sequence of instructions. A job
refers to a single unit of work performed by a single thread, and a task is synonymous
with a thread.

Co-kernel or dual kernel-based approaches, such as Xenomai9, provide an alternative
to the PREEMPT_RT patch by utilizing an additional OS for managing real-time
threads. Xenomai’s latest version (version 4) with EVL core10 improves Linux’s real-
time capabilities by embedding a companion core, making it SMP-scalable, easier to
integrate and maintain. Linux-based dual kernel systems typically require an interface
layer like the I-pipe11 to couple the secondary real-time core with the kernel’s logic.
However, maintaining the I-pipe has been proven challenging due to conflicts with
mainline kernel changes. Dovetail12, I-pipe’s successor, aims to introduce a high-priority
execution stage for time-critical operations, provide a straightforward interface for
autonomous cores, enables a common Linux programming model for ultra-low latency
applications, and facilitates Dovetail and EVL core maintenance with common kernel
development knowledge, all while integrating the interrupt pipeline logic directly into
the generic interrupt handling (IRQ) layer. Figure 2.8 illustrates the architecture of
both PREEMPT_RT Linux Kernel Figure 2.8a and Xenomai-4 patched Linux kernel
Figure 2.8b.

Selecting the appropriate platform model and real-time operating system is crucial
for the successful implementation of real-time systems in robotic applications. Un-
derstanding the interplay between platform models, operating systems, and real-time
extensions is essential for developing efficient and reliable real-time systems. This
understanding is highly required to satisfy the non-functional properties in correlation
with the functional properties of robotic systems.

2.3.4 Scheduling Algorithm

Tasks generally execute concurrently on the same processing unit such as a microcon-
troller. Consequently, the operating system should be equiped with a specific software
in charge of deciding which task to execute at every time instant. In other terms,

9https://source.denx.de/Xenomai
10https://evlproject.org/overview/
11https://lwn.net/Articles/140374/
12https://evlproject.org/dovetail/

https://source.denx.de/Xenomai
https://evlproject.org/overview/
https://lwn.net/Articles/140374/
https://evlproject.org/dovetail/
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Figure 2.8 Architecture of PREEMPT_RT Linux Kernel and Xenomai-4 (EVL core)
patched Linux Kernel.

the question is to decide how to assign priorities to the task so that their timing
requirements be satisfied, whenever possible. The scheduler serves this purpose by
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implementing a scheduling algorithm. It determines the sequence of task execution
and allocates the necessary resources. Real-time scheduling has been an active topic
of research from the beginning of the 70’s, leading to important results that will be
described in the following.

Real-Time Task State Transitions

Most of the time, the number of tasks to be executed is lower than the number of
processing units available for embedded applications due to various reasons such as
cost, weight, etc. Consequently, the processor becomes the most critical resource that
needs to be managed. In any multi-tasking system, a task can be, either not executing
since it is waiting for the event that will release it, waiting for the processor which
is occupied by another task, or actively executing on the processor. This leads us to
define the states of a real-time task as follows:

READY

RUNNING

WAITINGINACTIVE

created

completed blocked

unblocked

preempted selected

Figure 2.9 Real-time Tasks life cycle.

• Inactive: In this state, the task has not yet been created or initialized. It is not
eligible for execution and is not running.

• Ready: When a task is created and initialized, it enters the ready state. In this
state, the task is eligible for execution but is waiting for the scheduler to allocate
processor time to it.
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• Running: When the scheduler selects a task for execution, it enters the running
state. In this state, the task is actively executing its code and performing the
required operations.

• Waiting: If a task is interrupted or blocked during its execution, it enters the
waiting state. In this state, the task is not running, but is waiting for some event,
such as the release of a shared resource or the completion of an I/O operation,
to start/resume execution.

The life cycle of a real-time task is described using a state diagram in Figure 2.9,
which shows the transitions between these different states. These states can be used to
describe the current state of the task, and the scheduler can use this information to
decide which task to execute next. Each state of the task is important for the scheduler
to understand the task’s status and for the developer to understand how the system
behaves. The scheduler uses this information to determine the order in which tasks
are executed and to allocate the necessary resources to the tasks.

Classification of Scheduling Algorithms

A scheduling algorithm is responsible for assigning processor resources to tasks, meaning
it establishes the execution time intervals and processors for each job while considering
any limitations, such as concurrency restrictions. In real-time systems, the primary goal
of processor allocation methods is to satisfy timing constraints. Numerous scheduling
algorithms have been proposed for managing real-time tasks. For this research, we will
focus on several key classes [Buttazzo (2011)]:

• Preemptive vs. Non-preemptive

– Preemptive scheduling algorithms allow task interruptions to allocate the
processor to a different active task based on a predefined scheduling policy.
This approach enables the system to quickly respond to environmental
changes and meet timing constraints.

– Non-preemptive scheduling algorithms require a task to execute without
interruption until completion. Although this approach may simplify imple-
mentation with lower overhead (due to the absence of context switching
caused by preemptions) in comparison to preemptive scheduling, it results
in lower-priority tasks obstructing higher-priority ones (priority inversion).
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• Static vs. Dynamic

– Static scheduling algorithms utilize fixed parameters assigned to tasks before
activation for scheduling decisions.

– Dynamic scheduling algorithms are those in which scheduling decisions are
based on dynamic parameters that may change during system runtime.

• Off-line vs. Online.

– Off-line scheduling algorithms generate schedules for the entire task set
before the system initialization. These schedules are stored in a table and
later executed by a dispatcher, making them suitable for systems with fixed
workloads or predictable behavior.

– Online scheduling algorithms make decisions at runtime while the system
is in operation. These algorithms adapt quickly to environmental changes
and are well-suited for systems with fluctuating workloads or unpredictable
behavior.

• Idling vs. Non-idling

– An idling scheduling algorithm allows for the possibility of inserting idle
times in the processor’s operation. In such cases, a task may be selected for
execution or be delayed for a specified duration, even if the processor is idle
and available for use.

– A non-idling or work-conservative algorithm ensures that a processor exe-
cutes the highest-priority task as soon as it is ready and cannot delay it if
there is no other work, i.e., it operates without idle times.

• Monoprocessor vs. Multiprocessor

– A monoprocessor scheduling algorithm is designed to manage tasks running
on a single processor system.

– A multiprocessor scheduling algorithm, on the other hand, allows tasks to
be executed across multiple processors in a system.

• Clairvoyant vs. Non Clairvoyant

– A clairvoyant scheduling algorithm has a complete knowledge of the future
to take decisions, i.e., it is aware of all the characteristics of all tasks in
advance.
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– A non-clairvoyant scheduling algorithm does not need the knowledge of
future to take decisions.

Real-Time Scheduling Analysis

Prior to delving into various scheduling approaches, it is essential to define terms
frequently employed in characterizing the properties of real-time scheduling algorithms
and comparing them to one another.

Schedulability testing means verifying off-line whether a given application rep-
resented by its periodic task set may be scheduled feasibly, i.e., respecting all the
deadlines on a given processor.

Definition 1. Valid: A valid schedule produced by a scheduling algorithm χ for a given
task set τ is a schedule in which the constraints of each of the tasks are met.

Definition 2. Feasibility: Scheduling is feasible for a given task set if there exists at
least one scheduler capable of producing a valid schedule.

Definition 3. Schedulability: A task set is schedulable if there exists an algorithm for
which it is guaranteed schedulable.

Definition 4. Optimality: A scheduling algorithm is said to be optimal for a class of
systems and a set of scheduling policies given certain assumptions if and only if any
system schedulable by some policy in this set is guaranteed schedulable by this algorithm.

In systems that require guaranteed performance, it is crucial to apply a schedulability
test tailored to the scheduling policy of the execution platform. The schedulability test
can be characterized in the following ways:

• Sufficient: if this property is present, then the task set is schedulable. If absent,
the test cannot be used to conclude that the set of tasks is effectively schedulable;

• Necessary: if this property is not present, then the corresponding set of tasks is
not schedulable. If not, it is nevertheless not possible to conclude that the set of
tasks can be scheduled so that all time constraints are met;

• Exact: the test is both necessary and sufficient. The test can be used to determine
prior to execution whether or not a task set is schedulable.

Exact schedulability tests are the most desirable for time-validating real-time
systems. However, this kind of test does not always exist, can be too costly to evaluate
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or can impose restrictive assumptions on the tasks. Real-time software designers
therefore often choose to use tests that are sufficient but not necessary.

From an engineering standpoint, a schedulability test that is both tractable and
demonstrates low pessimism is ideal. A tractable test refers to one that can be executed
within a reasonable time frame and with manageable computational resources. Low
pessimism relates to a test’s propensity to yield false negatives, suggesting that the
test might fail even if the system is capable of meeting its deadlines.

By conducting the schedulability test offline before run-time, system designers and
engineers can confirm that the selected scheduling algorithm and system configuration
deliver the required temporal accuracy. This procedure aids in preventing deadline
misses and guarantees reliable system operation. Typically, a scheduling algorithm
possesses a unique form of schedulability analysis. Some prevalent forms of schedulabil-
ity analysis include processor utilization-based analysis, response time analysis (RTA),
and processor demand (DBF). These analyses are specific to the scheduling algorithm,
which will be discussed in the subsequent sections.

In this dissertation, we will employ several key terminologies which are defined as
follows:

• Processor Utilization (Up): As mentioned in the periodic task model, the
utilization of a task τi, denoted by ui, is the ratio of its Worst-Case Execution
Time (WCET) to its period, ui

def= Ci
Ti

. The total processor utilization, Up, is the
sum of the utilizations of all tasks in the task set τ , represented as [Liu and
Layland (1973)]:

Up
def=

∑
τi∈τ

ui (2.1)

• Demand bound function (W): The demand bound function for a recurring task
τi, represented as Wi(t), establishes a maximum constraint on the cumulative
execution time demanded by jobs of τi, which not only arrive but also have
deadlines falling inside any time interval of length L. This can be expressed as
[Baruah et al. (1990)]:

Wi(L) = max
(⌊

L−Di

Ti

⌋
+1,0

)
×Ci (2.2)

• Worst-Case Response Times (RT ): In a system, task τi experiences interfer-
ence from tasks with higher priority, which impacts the response time of the task.
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We can represent the worst-case response time as RTi = Ci + Ii, where Ii where
signifies the largest delay in execution caused by higher-priority tasks during the
interval [t, t+RTi). Task τi is interfered with by each higher-priority task, and
thus Ii is calculated as Ii = ∑

j∈hp(i)

⌈
RTi
Tj

⌉
Cj . Here, hp(i) represents the set of

tasks with a higher priority relative to τi. Consequently, the final RTi can be
determined as [Joseph et al. (1986)]:

RTi = Ci +
∑

j∈hp(i)

⌈
RTi

Tj

⌉
Cj (2.3)

Nonetheless, the indeterminate RTi term is present on both sides of the equation,
which calls for an iterative method to determine its accurate value. Let RT n

i

represent the nth approximation of the actual RTi value. We can compute these
approximations using the subsequent equation:

RT n+1
i = Ci +

∑
j∈hp(i)

⌈
RT n

i

Tj

⌉
Cj (2.4)

The iteration begins with RT 0
i = 0 and terminates once RT n+1

i = RT n
i .

• Hyperperiod (H): The hyperperiod of a task set represents the smallest time
interval after which the global periodic pattern for all tasks repeats. It is typically
calculated as the Least Common Multiple (LCM) of the periods of all tasks in
the system.

Scheduling Problem

In real-time systems, optimal algorithms are those that can find the best possible
solution to a scheduling problem, ensuring that all tasks meet their deadlines, if such
a solution exists. However, designing and implementing optimal algorithms for more
complex problems can be computationally expensive and may not be feasible within the
time constraints of real-time systems. Many real-time scheduling problems are classified
as NP-hard, which means that no known algorithm can find an optimal solution in
polynomial time (i.e., time complexity of O(nk), where n is the input size and k is a
constant). In such cases, the time complexity of finding an optimal solution can grow
rapidly with the increase in the number of tasks, making it impractical to solve for
large-scale real-time systems or systems with stringent timing requirements. Examples
of such problems include scheduling tasks with shared resources, and multiprocessor



2.3 Real-time Systems: Deterministic Performance | 37

scheduling. For real-time scheduling problems classified as NP-hard, heuristic or
approximation algorithms are often employed to find near-optimal solutions more
efficiently. While these algorithms may not guarantee optimality, they can provide
practical and effective solutions for real-time systems with strict timing constraints
and limited computational resources.

In summary, optimal algorithms guarantee the best possible solution to a given
problem, but they can be computationally expensive, especially for NP-hard problems.
Non-optimal (Heuristic algorithms) offer an alternative approach, trading off some
degree of optimality for faster, more efficient solutions that are more suitable for
real-time systems with strict timing constraints.

Priority Driven Scheduling

Considering the vast body of literature available on scheduling, it is impractical for
any survey paper to provide an exhaustive overview. Ramamritham and Stankovic
(1994) has categorized different real-time scheduling algorithms into a set of distinct
paradigms. In this dissertation, we particularly emphasize on priority-based scheduling
approaches for uniprocessor systems.

Priority-based Scheduling Algorithm

It is a widely used approach to manage the execution of real-time tasks by assigning a
priority to each task and then ordering them according to its priorities. In this method,
the higher-priority tasks are executed before the lower-priority tasks. Assignment can
be based on timing parameters such as relative deadline, period, laxity or on other
user-defined metrics. The priority-driven scheduling paradigm can be classified as
Fixed priority scheduling and Dynamic priority scheduling.

In Fixed-Priority Scheduling, prior to execution, each task is assigned a static or
fixed priority, which remains constant during execution. Each job spawned by the task
inherits the same priority value. Examples of fixed priority assignment algorithms are
Rate Monotonic scheduling (RM) [Liu and Layland (1973)] for periodic tasks, where task
priorities are assigned inversely proportional to their periods (i.e., shorter periods have
higher priorities) and Deadline Monotonic Scheduling (DMS) [Leung and Whitehead
(1982)] for periodic tasks, where task priorities are assigned inversely proportional to
their relative deadlines (i.e., shorter deadlines have higher priorities). RM is certainly
the most frequently implemented scheduler firstly because its implementation is simple
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and because it was proved as the best fixed priority scheduler when applied to periodic
tasks with implicit deadlines.

In Dynamic-Priority Scheduling, task priorities are updated during run-time
based on changing system conditions or task attributes. Examples of dynamic priority
assignment algorithms are Earliest Deadline First (EDF) [Liu and Layland (1973)],
where task priorities are assigned based on their absolute deadlines, with tasks having
the earliest deadlines assigned the highest priorities and Least Laxity First (LLF) [Mok
(1978)] where task priorities are assigned based on their laxity. Tasks with the least
laxity have the highest priorities.

In this dissertation, we concentrate on the Rate Monotonic fixed-priority scheduling
algorithm and on the Earliest Deadline First dynamic-priority scheduling algorithm.
Subsequently, we provide a detailed schedulability analysis for these two scheduling
algorithms, along with illustrative schedules for a given task set.

Scheduling Algorithm Schedulability Test Inequality Condition Considering

Earliest Deadline First
Scheduler

Processor Utilization Based
Liu and Layland (1973)

Up ≤ 1 Exact Independent tasks
Implicit deadlines
Synchronous tasks

Processor Demand (DBF)
Baruah et al. (1990)

∀L : L≥ 0 : [(∑n
i=1 Wi(L)≤ t)] Exact Independent tasks

Constrained deadlines
Synchronous tasks

Sufficient Independent tasks
Constrained deadlines
Asynchronous tasks

Rate Monotonic Scheduler

Processor Utilization Based
Liu and Layland (1973)

Up ≤ n
(
21/n−1

)
Sufficient Independent tasks

Implicit deadlines
Synchronous tasks

Response Time Analysis
Joseph et al. (1986)

RT n+1
i ≤Di Exact Independent tasks

Constrained deadlines
Synchronous tasks

Sufficient Independent tasks
Implicit deadlines
Asynchronous tasks

Table 2.2 Schedulability tests for the EDF and RM scheduling algorithms.

Schedulability Test

The schedulability tests for these algorithms are summarized in Table 2.2. The
schedulability bound is proportional to the number of tasks and decreases as n, the
number of tasks, increases. Considering that lim

n→∞n
(
21/n−1

)
= ln2 ≃ 0.69, RM

can schedule any task set if Up ≤ 0.69. Baruah and Burns (2006) demonstrated the
sustainability property of these schedulability tests meaning that, if a task set is juged
schedulable it will remain schedulable with more favourable parameters i.e., a shorter
computation time, a longer period or a longer deadline.
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EDF Illustrative Schedule

Let us consider a mobile robotic application. The task parameters are presented as
follows:
task_name (offset, wcet, relative deadline, period):
Motor Control (0,2,5,5), Obstacle Sensor (0,1,10,10), Teleop (0,3,15,15),
Battery (0,1,30,30).
In real-time systems, the scheduling algorithm’s schedule is theoretically displayed using
Gantt charts. We present the Gantt schedule of the aforementioned task set using the
Earliest Deadline First (EDF) scheduling algorithm. The processor utilization-based
schedulability test is satisfied since Up ≤ 1. The same sequence of the schedule will be
repeated in the next hyperperiods. Figure 2.10, illustrates the Gantt chart up to the
end of the hyperperiod equal to 30. The schedule demonstrates that the Teleop task is
preempted by the higher-priority Motor Control task at time instant 5. Additionally,
the schedule highlights the intervals during which the processor is idle i.e., has nothing
to execute. It is evident that there are no missed deadlines in the schedule.

Battery
(0,1,30,30)

Motor
Control
(0,2,5,5)

Obstacle
Sensor

(0,1,10,10)

Teleop
(0,3,15,15)

Processor
Idle

time1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 300

pr
ee

m
pt
io
n

Figure 2.10 The Gantt chart represents the schedule of typical mobile robotics functional
tasks using the Earliest Deadline First (EDF) scheduling algorithm.

In this example, for sake of simplicity, we have assumed the tasks to be independent.
However, in reality, tasks participate to a common objective and depend on each other,
exchanging data for example or simply synchronizing their execution. Our research
places emphasis on characterizing and addressing these dependencies to ensure efficient
and reliable scheduling in real-time systems.

2.4 Conclusion

This chapter has provided an introduction to the mobile robotics systems explored
in this research. We have presented a generic architecture that displays all the
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subsystems within a mobile robot, as well as the abstraction levels illustrating the
hardware and software abstractions of mobile robots. We have defined the most crucial
requirements, namely the functional and non-functional requirements of mobile robot
software architecture. It can be observed that the functional requirements of the
system are satisfied through robotic middleware frameworks, such as ROS. However,
ROS is not a traditional operating system, and middleware alone cannot satisfy the
non-functional requirements of the mobile robotic system.

Therefore, we have introduced the fundamental concepts of real-time systems, which
are essential for achieving deterministic execution and satisfying the non-functional
requirements of the system. We have discussed three main aspects: the real-time
workload, which provides the periodic task model; the processing platform, which is
responsible for achieving non-functional requirements in correlation with the functional
requirements that we will focus on in this research; and the scheduling algorithm, which
encompasses the properties and two classical priority-based scheduling policy (RM
and EDF). One aspect we have not discussed in this chapter is the energy constraints,
which is a primary concern of this research. This topic will be reviewed in the following
chapter.



Chapter 3

Energy Management Strategies:
State-of-the-Art

In this chapter, we explore the progression of energy management, from mobile
robotics to real-time energy harvesting computing systems. We begin by outlining the
perspectives on energy management in mobile robotic systems and real-time systems.
In Section 3.1, we review the high-level energy-efficient approaches practiced in mobile
robotics systems. Subsequently, we discuss the emergence of energy harvesting mobile
robots and their applications in Section 3.2. Section 3.3 introduces the energy man-
agement techniques for Real-Time Energy Harvesting Systems (RTEHS) and includes
definition of energy-neutrality and energy-aware scheduling in RTEHS. In Section 3.4,
we describe in detail an optimal scheduling algorithm dedicated to RTEHS, namely
Earliest-Deadline-Harvest (ED-H). Finally, Section 3.5 discusses the uncertainties of
energy harvesting systems in real-world implementations. This includes solar energy
harvesting techniques and solar energy prediction, which are discussed in Section 3.6.
In Section 3.7, we address the uncertainty of energy storages that power mobile robotic
systems.

3.1 Energy Management - An Overview

In this section, we provide an in-depth analysis of energy management strategies for
real-time computing systems and mobile robots. We discuss the importance of energy
efficiency, various techniques to minimize energy usage, challenges, and future trends.
This review offers insights into enhancing energy efficiency in mobile robots, ultimately
increasing functional requirements and contributing to non-functional requirements
and environmental impact.

Energy efficiency is a crucial consideration in the design and operation of mobile
robots. Achieving a high level of energy efficiency enables robots to perform tasks more
effectively and efficiently, extending their operational lifespan. Several strategies can
be employed to attain energy efficiency, such as using energy-efficient components, de-
signing lightweight robots, employing high-efficiency batteries, implementing adequate
power management techniques, and optimizing navigation and task performance. By
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reducing power consumption, mobile robots can operate for extended periods, making
them more effective and versatile in a wide range of applications.

Energy management is increasingly becoming a critical and central issue in embedded
devices and mobile robotic systems. This problem can be examined at two levels: the
component level and the system level. Traditionally, many components integrated into
mobile robots have been designed with low-power consumption in mind. However, it is
essential to recognize the critical distinction between power/energy-aware systems and
low-power systems [Liu et al. (2001a)].

Power/energy-aware systems must optimize the utilization of their available power,
encompassing low-power design as a special case. By adopting an energy-aware design
approach, the overall utility and performance of mobile robots can be significantly
enhanced. This strategic focus on energy management ensures that the robots not only
consume minimal power but also make the most effective use of their energy source,
enabling them to perform tasks more efficiently and autonomously [Liu et al. (2001b)].

It is essential to differentiate between the two terms, power-aware and energy-aware,
which are often used interchangeably in research. Power-aware and energy-aware are
related but distinct concepts in the context of designing systems powered by limited
energy sources.

• Power-aware: refers to the design of systems and algorithms that optimize power
consumption by making the best use of available power source. Power is the rate
at which energy is consumed or produced, usually measured in watts (W). Power-
aware systems concentrate on managing power consumption, considering various
power sources and adapting the system’s operation to optimize power usage.
Examples include adjusting the voltage and frequency of processors, managing
power states of components, and using power-efficient scheduling techniques.

• Energy-aware: involves creating systems and algorithms that optimize total
energy consumption over a given period. Energy is the total amount of power
consumed over time, typically measured in joules (J) or watt-hours (Wh). Energy-
aware systems aim to reduce overall energy consumption while meeting specific
performance, reliability, or functionality requirements. Examples include energy
harvesting techniques, energy-efficient task scheduling, and optimizing the use
of batteries and other energy storage devices [Mei et al. (2005), Farooq et al.
(2023)].
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To sum up, power-aware systems focus on optimizing the rate of energy consumption,
while energy-aware systems concentrate on optimizing the total energy consumed over
time.

3.1.1 Energy-efficient Real-time Computing System

In the early days of computing, processors were primarily designed to maximize
performance without much consideration for energy efficiency. As technology advanced
and computing systems became more pervasive, concerns about energy consumption,
heat generation, and environmental impact came to the forefront. This led to the
development of energy-efficient techniques such as Dynamic Power Management (DPM)
[Benini et al. (2000)], and Dynamic Voltage and Frequency Scaling (DVFS) [Burd et al.
(2000), Pillai and Shin (2001), Schmitz and Al-Hashimi (2013)]. These techniques have
become crucial for modern computing systems with CPUs and GPUs, especially in
real-time embedded applications with autonomy requirements.

DPM dynamically adjusts its power states based on the system’s workload and
performance requirements. In a processing system, DPM [Benini et al. (2000)] may
involve turning off or placing unused components into low-power states when they are
not needed, ensuring that only the necessary resources are active. For example, this
may include turning off some CPU or GPU cores, network interfaces, or bluetooth
connections.

DVFS adjusts processor’s supply voltage based on computational demands. Lower-
ing the voltage and in consequence frequency too, reduces power consumption. But at
the same time, it impacts negatively the performance in terms of response time for
the tasks, necessitating a balance between energy efficiency and real-time computing
system requirements [Burd et al. (2000)].

The work proposed by Amarnath et al. (2022) focuses on HetSched, a Quality-of-
Mission aware scheduler for autonomous vehicles on heterogeneous domain-specific
systems-on-chips (DSSoCs). They have integrated the DVFS technique within the
scheduler to optimize energy usage while considering task deadlines and a fraction
of available slack. By incorporating DVFS, HetSched can further improve energy
efficiency and maintain real-time computing system performance in autonomous vehicle
applications.
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3.1.2 Energy-efficient Mobile Robots

Several high-level techniques have emerged to optimize energy usage while maintaining
operational goals. This concerns motion planning, path planning, joint speed control
and power scheduling (JSP).

Mobile Robot Energy Efficient Approaches

Planning Approaches Operating System Level
Approaches

Motion Planning Path Planning Joint Speed
Control  

Power
Scheduling

DVFS 

Figure 3.1 Energy-efficient approaches practiced for mobile robots.

• Energy-efficient motion planning (EMP): algorithms aim to find the optimal
trajectory that minimizes energy consumption through optimized velocity profiles.
They use a calibration procedure to identify the best velocity profile to reduce
energy consumption. For example, an energy-efficient motion planner may
consider factors such as the robot’s velocity, acceleration, or terrain properties
to generate a trajectory that consumes the least amount of energy. [Mei et al.
(2004), Tokekar et al. (2011), Xie et al. (2018), Jaramillo-Morales et al. (2020)]

• Energy-efficient path planning (EPP): techniques determine the most energy-
saving route by considering factors such as distance, terrain, and robot dynamics.
For instance, a path planning algorithm could generate a route that avoids steep
inclines or rough terrain, which would require more energy for the robot to
traverse. Another example is the use of an A* algorithm with a cost function that
incorporates energy consumption, allowing the robot to find the most energy-
efficient path. [Mei et al. (2006), Yang et al. (2010), Liu and Sun (2011), Datouo
et al. (2018), Maidana et al. (2020), Kyaw et al. (2022)]

• Joint Speed Control and Power Scheduling (JSP): problem aims to optimize
both the joint speed profiles of a mobile robot and the power allocation across
various components and subsystems to minimize energy consumption. The JSP
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problem seeks a balance between optimal joint speed control, which determines
the velocity profiles for the robot’s joints, and power scheduling, which adjusts
the processor frequency to meet the computational demands of the tasks and
optimize energy usage. By effectively managing the processor frequency through
DVFS and optimizing the joint speed control, the JSP problem aims to minimize
the overall energy consumption of the mobile robot. [Brateman et al. (2006),
Zhang and Hu (2007), Zhang et al. (2009), Mohamed et al. (2021)]

Each of the energy-efficient techniques mentioned here has its own drawbacks
and limitations. Motion and path planning techniques face challenges such as high
computational complexity, sensitivity to model inaccuracies, and scalability issues.
Meanwhile, the JSP approach has drawbacks such as overhead and latency, potentially
impacting the real-time performance of the system. Additionally, it is highly complex
to precisely tune the processor frequency and achieve optimal speed.

In Table 3.1, we provide a concise review of research works that focus on energy-
efficient approaches for mobile robots. These studies primarily concentrate on two
types of robots: differential drive and omnidirectional drive robots, which are widely
developed for research purposes. It can be observed that most of the proposed works
are based on simulation experiments, with very few ones that provide valid results
through real-world experiments. The main objective of this review is to identify the
scope and nature of these approaches. Recall that the primary goal of energy-efficient
strategies for mobile robots is to prolong their operational time.

From our analysis, we found that all previous researches on energy efficiency in
mobile robots address this issue through only one criterion: energy saving. Energy
saving refers to the reduction of energy consumption by using energy-efficient approaches
without altering the system’s overall functionality, thereby extending the operation
time. However, this approach still relies on conventional energy sources, which may lead
to instances where the energy in the storage unit is completely drained, then requires
replenishment of the storage unit.

Our dissertation focuses on an emerging research trend in mobile robotics that seeks
to harness renewable energy sources. This approach employs energy-neutral strategies,
utilizing energy-aware scheduling to meet both the timing and energy constraints of the
processing system in mobile robots. These strategies often involve adopting intelligent,
conservative modes that balance the demand for energy from traditional sources with
harvested energy. As a result, this approach prevents the system from depleting its
energy reserve, ensuring that both functional and non-functional requirements of mobile
robotic systems are met.
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Research Works Energy-Efficient
Approaches

Robot Type Experiments Energy
Saving

Energy
Neutral

Mei et al. (2004) EMP OD Simulation ✓ ✗

Mei et al. (2006) EPP DD Simulation ✓ ✗

Brateman et al. (2006) JSP DD Simulation ✓ ✗

Zhang and Hu (2007) JSP - Simulation ✓ ✗

Wang et al. (2008) DVFS - Simulation ✓ ✗

Zhang et al. (2009) JSP - Simulation ✓ ✗

Yang et al. (2010) EPP DD(4W) Simulation ✓ ✗

Liu and Sun (2011)
Liu and Sun (2012)
Liu and Sun (2014)

EPP DD Real-World ✓ ✗

Tokekar et al. (2011) EMP DD(4W) Real-World ✓ ✗

Henkel et al. (2016) EPP OD Real-World ✓ ✗

Yacoub et al. (2016) EMP DD Simulation
Real-World

✓ ✗

Xie et al. (2018) EMP,EPP OD Real-World ✓ ✗

Datouo et al. (2018) EPP OD Simulation ✓ ✗

Valero et al. (2019) EPP DD(4W) Real-World ✓ ✗

Ramos (2019) EMP,EPP DD Simulation ✓ ✗

Jaramillo-Morales et al. (2020) EMP DD Real-World ✓ ✗

Maidana et al. (2020) EPP DD Simulation ✓ ✗

Mohamed et al. (2021) JSP DD(4W) Real-World ✓ ✗

Kyaw et al. (2022) EPP DD Real-World ✓ ✗

Table 3.1 Research work summary of energy-efficient mobile robotic ap-
proaches. Abbreviations: EMP - Energy-efficient Motion Planning, EPP - Energy-
efficient Path Planning, JSP - Joint Speed and Power Scheduling, DVFS - Dynamic
Voltage and Frequency Scaling, OD - Omnidirectional Drive, DD - Differential Drive,
DD(4W)- Differential Drive (2 actuated wheel, 2 steering wheel).

To the best of our knowledge, none of the examined works have tackled the primary
requirements of industrial standardization for functional requirements (FR) and non-
functional requirements (NFR) of system or software architecture in mobile robotic
systems. As a result, our dissertation concentrates on the integration of energy-
neutral techniques in mobile robots, aiming to investigate this area more thoroughly
and contribute to a clearer understanding of energy efficiency in such systems. By
emphasizing the use of renewable energy sources and encouraging more sustainable
operation, our research aspires to improve the performance of mobile robots to meet
both functional and non-functional requirements.
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A) B) C)

D) E) F)

Ladybird Agribot Cool Robot Spirit

Chaman MarXbot Wheeled vehicle model

Figure 3.2 Energy-Harvesting Mobile Robotic Systems. A) Ladybird Agribot [Bender
et al. (2020)], B) Cool Robot Antarctic Rover [Lever et al. (2006)], C) Spirit Mars
Rover 1, D) Chaman Monitoring Robot [Guerrero-González et al. (2010)], E) MarXbot
Indoor exploration [Vaussard et al. (2013)], F) Wheeled vehicle powered by temporal
temperature gradients harvested using butane and iso-butane [Xiao et al. (2019)].

3.2 Emergence of Energy-Harvesting Mobile Robots

In recent years, researchers have developed mobile robots that utilize renewable energy
sources along with the primary power supply. Figure 3.2 shows some of these robots,
highlighting their distinct features and applications. For instance, Ladybird [Bender
et al. (2020)] is a robot designed for proximal crop sensing in agriculture. It harvests
solar energy and recharges its battery source, though the evaluation of the solar power
system and energy management of the robot remains unaddressed. Similarly, Lever et al.
(2006) proposed a robotic system primarily developed for exploration in the Antarctic
region, where traditional power sources are not feasible. However, these robots were
limited to summer operations due to the availability of sunlight. Guerrero-González
et al. (2010) designed a wheeled robot named "Chaman" for surveillance and monitoring,
which also utilizes solar power harvested via photovoltaic cells. Vaussard et al. (2013)
introduced MarXbot, one of the first mobile robots that consider indoor photovoltaic
harvesting. Furthermore, Xiao et al. (2019) proposed a novel idea for car-like wheeled

1https://solarsystem.nasa.gov/missions/spirit/in-depth/

https://solarsystem.nasa.gov/missions/spirit/in-depth/
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robots, harvesting energy through an actuation system with temperature gradients
using butane and iso-butane gases.

Existing studies do not address how to effectively utilize the harvested energy or
manage the energy within the system to meet critical constraints. Notably, many space
rovers2 make use of solar harvesting technologies as their primary energy source, and
these systems are designed to make mission-critical decisions based on energy availability.
However, the approaches used in these systems are not universally applicable, and the
unavailability of relevant documents prevents their adaptation to other systems.

Consequently, the pursuit of energy neutrality for mobile robotic systems remains
an open research area. In our dissertation, we aim to rigorously examine this topic,
emphasizing the integration of energy management strategies. This approach will
enable mobile robots to efficiently utilize harvested energy and achieve energy neutrality,
ultimately contributing to a more sustainable and effective operation.

3.3 Real-Time Energy Harvesting System

Energy management in systems with finite energy source can be significantly enhanced
through energy neutral techniques. These techniques have been extensively explored
and addressed in the context of real-time computing systems mainly wireless sensor
networks that power connected Internet of Things (IoT) devices. These system often
utilize energy harvested from renewable sources through energy harvesting units,
forming Real-Time Energy Harvesting Systems (RTEHS).

Emax

Emin

Empty

0h
time

12h 24h 0h
time

12h 24h

SoC SoC
Energy-neutral Systems Intermittent Systems

perpetual operation

shutdown shutdown

Figure 3.3 Energy Management Techniques for RTEHS adapted from Hanschke (2022).

Figure 3.3 illustrates two energy management techniques for RTEHS:
2https://www.jpl.nasa.gov/missions/mars-pathfinder-sojourner-rover

https://www.jpl.nasa.gov/missions/mars-pathfinder-sojourner-rover
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1. Energy Neutral Operation (ENO) systems are designed to achieve perpetual
operation, which is characterized by the system’s ability to continuously function
without ever running out of energy. This is accomplished by carefully managing
the energy harvested from renewable sources and balancing it with the system’s
energy consumption. The perpetual operation of ENO systems ensures that
these systems remain functional and reliable, meeting their intended application
goals while minimizing the need for external energy sources or frequent battery
replenishment.

2. Intermittent Computing (IC) devices, where the system operates with high
consumption until the energy is fully depleted, causing the sensor to shut down.
When the energy level is sufficient again, operation returns to normal, and the
process repeats. IC devices, by design, operate on very small capacitors and
low-power harvesting methods, allowing for tiny-sized sensors. As a result, they
are suitable for wearables and other applications where seamless integration into
the surroundings is crucial.

The concept of ENO, proposed by Kansal et al. (2007), serves as a fundamental
condition that an energy harvesting system must meet. Over time, two distinct classes
of energy management techniques for ENO systems have emerged, as identified by
Hanschke (2022): planning approaches and real-time approaches.

• Planning: approaches assume that a sensor node’s activities can be predetermined.
Typically, application requirements, such as a specific sampling rate, are given
and incorporated into the energy management strategy. The primary goal is to
meet or exceed the application requirements while maintaining energy neutrality.

• Real-time: approaches consider node activities as spontaneous, occurring in
small segments (i.e., tasks), often described by statistical models of arrival rates.
These tasks must be scheduled promptly to avoid missing deadlines while still
considering energy consumption.

Our research will concentrate on real-time approach, as it offers numerous advantages
for more effective energy management across various applications and environments.
Real-time approach is particularly suitable for systems that require adaptability,
responsiveness, robustness, scalability, and less dependence on forecasting to maintain
energy neutrality and achieve optimal performance. By focusing on this approach, we
aim to explore and develop efficient energy management strategy for mobile robotic
systems that can be applied to a wide range of scenarios and applications. These
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techniques globally satisfy the non-functional requirements (ref: Section 2.1.2) of the
mobile robotic system and contribute to the functional requirements accordingly.

3.3.1 Energy-neutral Operation

Energy-neutral Operation (ENO), as explored by [Kansal et al. (2007)], focuses on
the relationship between the power harvested from an energy source (Ph(t)) at a
given time t and the power consumed by the system (Pc(t)) at the same time. The
authors proposed three cases to model the energy behavior of the system and establish
conditions for energy conservation:

1. Harvesting system with no energy storage: In this case, the energy extracted
from the environment is directly used by the system without being stored.

2. Harvesting system with an ideal energy buffer : This scenario assumes an ideal
mechanism for storing any amount of harvested energy.

3. Harvesting system with a non-ideal energy buffer : This is a more practical case,
where the energy capacity is limited, charging efficiency is less than perfect, and
some energy is lost through leakage.

Our focus is on the third case, as it represents a more realistic scenario. The energy
conservation conditions for this case are given by:

Eb(0)+ρ
∫ T

0
[Ph(t)−Pc(t)dt]+dt−

∫ T

0
[Pc(t)dt−Ph(t)dt]+−

∫ T

0
Pl(t)dt≥ 0

∀T ∈ [0,∞)
(3.1)

Here, Eb(0) is the initial energy stored in the energy storage device, ρ represents
the charging efficiency, [x]+ defines the rectifier function3, and Pl is the leakage power
of the storage unit. However, this equation does not consider the capacity of the energy
storage unit (Eb).

Eb(0)+ρ
∫ T

0
[Ph(t)−Pc(t)dt]+dt−

∫ T

0
[Pc(t)dt−Ph(t)dt]+−

∫ T

0
Pl(t)dt≤ Eb

∀T ∈ [0,∞)
(3.2)

3[x]+ =
{

x x≥ 0
0 x < 0
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It is important to note that while condition 3.1 is both necessary and sufficient4 for
all allowable Ph(t) and Pc(t), condition 3.2 is only sufficient but not necessary. Some
functions that do not satisfy this condition may still be allowable, as excess energy that
is not used or stored in the buffer can be dissipated as heat from the system. In such
cases, the left-hand side of (3.1) will be strictly greater than zero, by the amount of
energy wasted. The condition (3.2) becomes necessary if wasting energy is not allowed.

The real-time computing community has tackled the challenges of ENO through
numerous scheduling strategies, detailed in the following subsection. These strategies
aim to ensure energy neutrality while satisfying the timing constraints and energy
demands of tasks in RTEHS.

3.3.2 Energy-aware Scheduling in RTEHS

In recent years, the real-time computing domain has seen a significant increase in
research focusing on scheduling strategies for real-time tasks on computing systems.
These strategies aim to satisfy both timing and energy constraints. Unlike DVFS, which
aims to minimize global energy consumption, energy-aware scheduling dynamically
manages available energy sources, such as harvested environmental energy and stored
battery energy. This approach determines suitable periods for executing real-time tasks
and replenishing energy storage to ensure continuous operation, typically assuming a
monoprocessor with two modes: active and standby. Our research seeks to develop
versatile energy-aware scheduling approaches for mobile robotic systems that maintain
perpetual operation while accommodating diverse system requirements and constraints.
We review algorithms from the literature for scheduling tasks in real-time energy
harvesting systems. These systems often involve a processing unit that executes
tasks with deadlines, consuming energy stored in a reservoir after production by an
environmental source, as depicted in Figure 3.4. In this context, a scheduling algorithm
is considered optimal if it produces a feasible schedule each time another scheduler
does so under the same conditions, including identical energy harvester and storage
unit characteristics.

Allavena and Mosse (2001) presents a study on offline algorithms for scheduling
periodic tasks with a common deadline, known as "frames," where the task execution
order does not impact schedulability. The power scavenged by the energy source is
assumed to be constant, and tasks consume energy at a constant rate. Tasks are
categorized into recharging and discharging groups. The scheduler executes tasks from

4Refer to Section 2.3.4
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the same category successively, selecting discharging tasks to decrease the energy level
in the storage unit and recharging tasks to increase it, maintaining the energy level
between minimum and maximum limits. Preemption occurs when the energy level
reaches one of these limits. While this work is among the first to focus on rechargeable
systems with hard real-time constraints, it has limitations, including a restrictive model
(frame based systems), and an offline scheduler that lacks flexibility for new-generation
real-time applications.

An early and significant work in the realm of real-time scheduling with energy
harvesting considerations is the Lazy Scheduling algorithm (LSA) [Moser et al. (2006)].
LSA serves as an idling version of the EDF scheduling algorithm, enabling the processor
to idle based on energy availability. With the goal of maintaining high energy storage
levels, LSA executes tasks only when specific conditions are fulfilled. The algorithm
introduces the concept of the energy variability characterization curve (EVCC) to
assess the schedulability of a task set. While LSA is proven to be optimal under
certain conditions [Moser et al. (2007)], it has limitations, such as assuming energy
consumption is proportional to execution time and necessitating continuous adjustment
of consumption power to the source power.

Abdedda et al. (2014) introduced a fixed-priority real-time scheduling approach
for energy-harvesting systems, which serves as an idling variant of the well-known
non-idling FP (Fixed Priority) scheduler. The algorithm schedules tasks according to
a fixed priority and executes them as soon as there is sufficient energy in the storage
unit for at least one time unit of a task. When energy is insufficient, the algorithm
replenishes the energy storage, but only to the extent needed to execute one time unit
of the job with the highest priority. This approach aims to balance task execution
with energy consumption, ensuring tasks are processed as soon as enough energy is
available, thus minimizing idle time. Despite these developments, the question of
whether an optimal algorithm exists for a general energy-harvesting system model
remains unanswered.

A potential solution could involve combining virtual deadlines with lookahead
computation, but the complexity of such an algorithm is exponential. The existence of
an optimal algorithm for fixed-priority energy-harvesting systems and the problem’s
potential NP-hardness are still open questions that warrant further investigation
[Chetto and Queudet (2014a)].

From Table 3.2, it is evident that scheduling algorithms for RTEHS predominantly
focus on independent real-time tasks. This presents a significant limitation, as these
scheduling algorithms cannot be easily integrated into more realistic real-time systems
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Figure 3.4 Model of Real-time Energy Harvesting System.

Research Works Scheduling
Algorithm

Task
Dependency

Allavena and Mosse (2001) DVS Independent
Moser et al. (2007) LSA Independent
Abdedda et al. (2014) PFPasap Independent
Chetto (2014) ED-H Independent

Table 3.2 Existing literature of real-time scheduling strategies for RTEHS.

where processes interact to meet system-wide requirements. The nature of these
interactions is diverse, including synchronization for shared resources, as outlined in
Section 2.3.2. In mobile robots processing platform, tasks are not independent and
frequently share resources, rendering the existing scheduling algorithms unsuitable for
such applications.

In this dissertation, our primary focus is on the scheduling algorithm proposed
by Chetto (2014), known as the Earliest-Deadline Harvest (ED-H). While the ED-H
scheduling algorithm only considers independent tasks, we contribute to this research
by taking into account dependent tasks and providing an enhanced schedulability
test. Throughout the course of this research, we implement the algorithm as a
novel scheduling class within the Xenomai-patched Linux kernel. The limitations
of the implementation and methods to overcome these limitations are detailed in
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the contribution chapters of this dissertation. With the ED-H scheduling strategy,
we aim to maximize the utility for mobile robotic systems by successfully fulfilling
both functional and non-functional requirements in a harmonized manner, ensuring a
well-balanced and efficient system performance. In the following section, we provide an
in-depth explanation of the ED-H scheduling strategy, which will be frequently referred
to throughout this dissertation.

3.4 Earliest-Deadline Harvest Scheduling

We provide an in-depth overview of the dynamic priority scheduler ED-H, proposed by
Chetto (2014). To better understand the concepts of ED-H, we will first define the
task model, energy model, and unique terminologies related to RTEHS. Our real-time
energy harvesting system model, illustrated in Figure 3.4, comprises three primary
components: a processing unit, an energy storage unit, and a harvesting unit.

The processing unit, which may be a microcontroller or microprocessor, utilizes
energy to function. The energy storage unit can be a battery or a supercapacitor.
The selection relies on aspects such as system dynamics, dimensions, and budgetary
considerations. The harvesting unit is responsible for capturing energy from external
sources like solar, wind, vibrations, kinetic, or chemical energy. The nature of the
harvesting unit depends on the ambient energy type and the amount of energy required.
We will now discuss the ED-H scheduler and its application in real-time energy
harvesting systems.

3.4.1 Task Model

In this section, we examine a set of real-time jobs executed on a uniprocessor pro-
cessing unit with a single clock rate. We adopt the periodic real-time task model
τ = {τi(Φi,Ci,Di,Ti)|1≤ i≤ n} from earlier (ref; Section 2.3.2) and introduce a new
parameter, Ei, representing the worst-case energy consumption (WCEC). Ei is the maxi-
mum energy a task consumes while executing on the processor, measured in energy units.
The real-time task model now uses a five-tuple representation: τi(Φi,Ci,Di,Ti,Ei).

For the sake of simplicity, we utilize a job set, comprised of task set jobs, in place
of a task set to outline RTEHS concepts. We represent the set of n preemptible and
independent jobs as J = {Ji(ai,di,Ci,Ei)|1≤ i≤ k}. Each job has an activation time
(ai), a absolute deadline (di), a worst-case execution time (Ci), and a worst-case energy
consumption (Ei). Notably, Ei is not necessarily a function of Ci, meaning a job’s
effective energy consumption does not linearly depend on its effective execution time



3.4 Earliest-Deadline Harvest Scheduling | 55

[Jayaseelan et al. (2006)]. For each time unit, an upper bound (eub units of energy)
is known for any job’s energy consumption. However, the exact amount of effectively
consumed energy in a time unit is unknown beforehand.

We use dmax = max0≤i≤k di and Dmax = max0≤i≤n Di to represent the largest
absolute deadline and the largest relative deadline for the jobs in task set τ , respectively.
The energy consumption by jobs within the time interval [t1, t2) is indicated by Ec(t1, t2).
Similar to the processor utilization of a real-time task set (i.e., Up

def= ∑n
i=1

Ci
Ti

), we
define the energy utilization of the task set τ as Ue

def= ∑n
i=1

Ei
Ti

, which characterizes the
average energy consumption of τ per time unit.

3.4.2 Energy Model

In addressing the energy considerations of the system, we formulate an energy model
that encompasses both energy storage and power harvesting components. At any
given moment t, the power harvester (e.g., solar panel) captures ambient energy and
converts it into electrical power through an instantaneous charging rate Ph(t), taking
into account all losses. The energy harvested during the time interval [t1, t2) is denoted
as Eh(t1, t2):

Eh(t1, t2) =
∫ t2

t1
Ph(t)dt (3.3)

We assume that energy production and consumption can occur simultaneously. The
energy consumption during any unit time slot is no less than the energy generated
within the same time slot. Consequently, the remaining capacity of the energy storage
does not increase when a job is being executed. Instead, the processor must draw any
additional energy required for a job from the storage.

The energy output from the source is variable and not necessarily constant. Despite
this, it can be precisely forecasted in the near future with minimal processing and
energy expenses. We consider an energy storage unit (e.g., a rechargeable battery)
that maintains functionality even in the absence of energy to harvest. The maximum
amount of energy storable at any given moment is represented by the nominal capacity,
Eb.

The energy storage receives power from the harvester and delivers it to the processor.
The energy stored at a specific time t is symbolized by E(t). The energy storage retains
energy without any loss over time. If the storage remains fully charged at time t while
charging continues, energy is squandered. In contrast, if the storage is entirely depleted
at time t (energy exhaustion), no job can be performed.
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We consider energy to be wasted if the storage unit remains fully charged but is
still being charged. Conversely, the storage unit is deemed fully depleted at time t if
0≤ E(t) < Emax, indicated by E(t)≈ 0. The system begins with the energy storage
unit at full capacity (i.e., E(0) = Eb). The energy stored within the unit can be utilized
at any later point without experiencing energy loss over time.

Types of Starvation

In the scope of the RTEH model, a job may fail to meet its deadline due to one of the
following two circumstances:

• Time Starvation: This occurs when a job of a task reaches its deadline at time
t with an incomplete execution, as the necessary processing time for finishing
the job before the deadline is insufficient. The energy storage unit has remaining
energy when the deadline violation occurs (i.e. E(t) > 0).

• Energy Starvation: This situation arises when a job of a task reaches its deadline
at time t with an incomplete execution, due to the unavailability of the required
energy for finishing the job before the deadline. The energy storage is depleted
when the deadline violation takes place. The energy in the storage unit is
exhausted when the deadline violation occurs (i.e. E(t)≈ 0).

RTEHS-specific Definitions

We now present new definitions specifically tailored to scheduling in RTEH systems.

Definition 5. Time-validity: A schedule Γ for jobs of task set τ is said to be time-valid
if the deadlines of all jobs of τ are met in Γ , considering that ∀i ∈ {1, ...,n},Ei = 0.

Definition 6. Time-feasibility: The job set J is said to be time-feasible if there exists
a time-valid schedule for J .

Definition 7. Energy-validity: A schedule Γ for the task set τ is said to be energy-valid
if the deadlines of all jobs of τ are met in Γ , considering that ∀i ∈ {1, ...,n},Ci = 0.

Definition 8. Energy-feasibility: The job set J is said to be energy-feasible if there
exists a energy-valid schedule for J .

Definition 9. Energy-clairvoyance: A scheduling algorithm χ is considered energy-
clairvoyant if it necessitates knowledge of future energy production for making runtime
decisions.
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3.4.3 Description of ED-H

ED-H is a variation of the EDF scheduling algorithm. The traditional EDF is a
greedy scheduler as it executes jobs as early as possible, utilizing the energy stored
in the storage unit without accounting for future energy needs. We discuss the types
of starvation that might arise with EDF, underlying the explanation of the ED-H
algorithm. Assuming a set of jobs that EDF can schedule as time-feasible, energy
starvation for a job Jj can only occur due to the execution of a job Ji that runs before
Jj arrives, with di > dj . The energy starvation of Jj resulting from Ji with di ≤ dj is
unavoidable by any scheduler. Clearly, clairvoyance regarding job arrivals and energy
production would allow EDF to predict energy starvation and deadline violations. As a
result, the primary idea behind ED-H is to permit job execution solely when starvation
is not a risk. Clairvoyance in both job arrivals and energy production enables ED-H to
anticipate potential energy starvation.

The decision-making process in ED-H is based on the online computation of two
crucial data: slack time and preemption slack energy. These terms are essential for
understanding the algorithm and are defined as follows:

Slack Time

Definition 10. The slack time (ST) represents the maximum continuous processor
time that can be made available from time t while still guaranteeing the deadlines of all
the jobs in job set J .

The slack time of a real-time job set J at the current time t is given by

STJ(t) = min
di>t

STJi
(t) (3.4)

Here STJi
(t) is the slack time of the job Ji at the current time t defined as:

STJi
(t) = di− t−h(t,di)−ATi (3.5)

In this equation, h(t,di) refers to the total processing time demand of the uncompleted
jobs at time t with deadline at or before di. Here, ATi denotes the total remaining
execution time of uncompleted jobs that are currently ready at t with absolute deadline
at or before di.

h(t1, t2) =
n∑
i

Wi(t1, t2).Ci (3.6)
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Wi(t1, t2) provides the maximum number of job instances of a task τi in the time
interval [t1, t2), which is given by:

Wi(t1, t2) = max
(

0,
⌊

t2−ai−Di

Ti

⌋
−

⌈
t1−ai

Ti

⌉
+1

)
(3.7)

Preemption Slack Energy

Definition 11. The preemption slack energy (PSE) is the maximum energy that can be
consumed by the currently active job at time t while still guaranteeing energy feasibility
for jobs that may preempt it.

Let d be the absolute deadline of the active job. The preemption slack energy of the
job set J at the current time t is given by:

PSEJ(t) = min
t<di<d

SEJi
(t) (3.8)

Here, SEJi
(t) represents the slack energy of job Ji at current time t. It is the maximum

surplus energy that the system can consume within the time interval [t,di) while
guaranteeing enough energy for jobs released at or after t and with a deadline at or
before di.

SEJi
(t) = E(t)+Eh(t−di)−g(t,di) (3.9)

In this equation, g(t,di) is the total energy demand of the uncompleted jobs at time t

with deadline at or before di.

g(t1, t2) =
n∑
i

Wi(t1, t2).Ei (3.10)

These definitions and equations form the basis for understanding the computation
of slack time and preemption slack energy in the ED-H scheduling algorithm. By
taking these factors into account, the algorithm can efficiently schedule tasks in energy-
constrained environments while guaranteeing the deadlines and energy feasibility of all
jobs.

3.4.4 ED-H algorithm Specification

The ED-H scheduler incorporates more than just a single rule for selecting a job that is
ready for execution. It also features a rule for dynamically managing processor activity
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by designating intervals when the processor should remain idle (standby) and those
when it should execute a job. Let L(t) represent the list of ready jobs at the current
time t.

Rule1: Use EDF-assigned priorities to choose the next job from the ready list L(t)

Rule2: The processor remains idle during [t, t+1) if L(t) = ∅

Rule3: The processor remains idle during [t, t+1) if L(t) ̸= ∅ and one of the following
condition is true:

(a) E(t)≈ 0

(b) PSEJ(t)≈ 0

Rule4: The processor is busy during [t, t+1) if L(t) ̸= ∅ and one of the following condition
is true:

(a) E(t)≈ Eb

(b) STJ(t) = 0

Rule5: The processor can be either busy or on idle if L(t) ̸= ∅ , 0 < E(t) < Eb, STτ (t) > 0
and PSEτ (t) > 0.

The ED-H scheduler is renowned for its adaptability and energy efficiency, ensuring
that energy is conserved and alerting the system promptly about any negative slack
time or preemption slack energy situations. The implementation involves several rules,
Rule 1 selects the job with the earliest deadline form the ready list. Rule 2 denotes the
processor state as idle when there are no jobs in the list. Rule 3, prevents job execution
if the storage unit is almost empty or running the job would cause an unavoidable
energy shortage due to insufficient preemption slack energy. Rule 4 dictates that the
processor should be busy if the storage unit is full or remaining idle would lead to
a missed deadline due to zero slack time. Rule 5 allows the processor to be either
on idle or busy without jeopardizing the subsequent schedule’s validity under specific
conditions, such as the storage unit being neither empty nor full and the system having,
both non-zero slack time and preemption slack energy. Unique cases derived from
Rule 5 include ASAP and ALAP approaches, which involve executing jobs either as
early as possible when there is sufficient energy or as late as possible without exceeding
the storage unit’s maximum capacity. The ED-H variant depends on the rule chosen
for initiating and concluding the storage charging phase, with one example being to
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execute jobs when the energy level reaches a specific threshold and transition the
processor to idle mode to recharge the storage unit when the charge level falls below
another predefined threshold.

3.4.5 Schedulability Analysis

We recall that the schedulability test serves as an essential mechanism for validating
the feasibility of a job set processed through the scheduling algorithm. Under ED-
H scheduling this examination determines whether every job can meet its timing
and energy constraints. The schedulability test for ED-H encompasses both static
(offline) and dynamic (online) analysis. In particular, dynamic analysis proves to be
indispensable for applications where job arrivals are not known a priori. By evaluating
the computed slack time and preemption slack energy, dynamic analysis enables the
scheduler to make informed decisions during runtime. Thus, it guarantees that jobs
can meet their timing and energy constraints.

Static Analysis

The static analysis method utilizes an approach equivalent to the processor demand
method of EDF to calculate static slack time and static slack energy. The Static Slack
Time (SST) between [t1, t2), denoted as SSTJ(t1, t2), represents the longest interval
within [t1, t2) during which the processor can stay idle while still ensuring the execution
of jobs of set J with activation times at or after t1 and deadlines at or before t2:

SSTJ(t1, t2) = t2− t1−h(t1, t2) (3.11)

From this, we can deduce the static slack time of the set τ :

SSTJ = min
0≤t1<t2≤dmax

SSTJ(t1, t2) (3.12)

Demonstrating that SSTJ ≥ 0 proves that the job set J is schedulable by ED-H in
the absence of energy constraints.

The Static Slack Energy (SSE) between t1 and t2, denoted as SSEJ(t1, t2) is the
maximum amount of energy available during the interval [t1, t2) while still ensuring the
execution of the jobs of J with activation times after t1 and deadlines at or before t2:

SSEJ(t1, t2) = Eb−Eh(t1, t2)−g(t1, t2) (3.13)
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We can then define the static slack energy of J as follows:

SSEJ = min
0≤t1<t2≤dmax

SSEJ(t1, t2) (3.14)

The static slack energy of J represents the energy surplus that can be consumed at
any time while still guaranteeing that the energy requirements of the jobs of J will be
met.

Schedulability Condition

To assess the feasibility of an application, it must be schedulable under the chosen
RTEHS model. The feasibility test considers the properties of its components, particu-
larly the storage unit’s capacity and the harvesting unit’s power production. Theorem 1
demonstrates that time and energy constraints can be evaluated separately, dividing
the feasibility test into time and energy feasibility tests. Thus, an application is feasible
if and only if it is both time-feasible and energy-feasible [Chetto (2014)].

Theorem 1. [Chetto (2014)] A job set J conforming to the RTEHS model is feasible
if and only if

SSTJ ≥ 0 and SSEJ ≥ 0 (3.15)

The time feasibility test has a complexity of O(n2), as the static slack time calcula-
tion requires n2 different intervals. If ambient energy can be predictively estimated for
each time interval using a finite number of values, the energy feasibility test will also
have a computational complexity of O(n2).

3.4.6 Illustrative example of ED-H

In order to facilitate the understanding of how ED-H operates, we will examine a
periodic task schedule. We will consider a task set with attributes defined as follows:
task_name (offset, wcet, relative deadline, period, wcec).
τ1 (0,1,6,6,13), τ2 (0,3,10,10,33), τ3 (0,2,15,15,18).

For simplicity and clarity of the ED-H concept, we adopt a number of assumptions.
Firstly, the power harvested during one time instance, denoted as Ph, is always a
constant value equal to 7, with storage unit begin recharged at the beginning of
every time unit. Secondly, power is consumed from the storage unit solely during the
execution of the jobs; which implies there is no power consumption when the processor
is standby. Lastly, during job executions, the power consumed per unit is determined
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by the ratio of the jobs wcec to its wcet. The storage unit is at its maximum capacity
Eb = 30 energy units at time t = 0.

We apply Theorem 1 to test the feasibility of the jobs. As SSTJ and SSEJ is equal
to 0, this proves that there exists a time-valid and energy-valid schedule for the job
set, thereby inferring that the task set is guaranteed to be schedulable by ED-H.

τ1
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Processor
Idle

τ2
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τ3
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Figure 3.5 The ED-H schedule for the three tasks is presented, with the energy level of
the storage unit depicted by a red line. The maximum capacity of the storage unit,
marked by a green line, is 30 energy units.

We will now construct the ED-H schedule. At time t = 0, three jobs are in the
ready list (i.e., L(0) = 3). The scheduler first applies Rule 1 to select the earliest
deadline job, τ1,0, from the ready list. Then performs the check by calculating STJ

with Equation 3.4 and PSEJ with Equation 3.8. Rule 5 is satisfied and we adopt the
ASAP approach, which chooses the processor to execute the job τ1,0, followed by the
next job τ2,0 and then τ3,0.

At t = 6, job τ1,1 is released and ST and PSE are calculated as before. Since there
is no sufficient energy to execute the job at that time, implying Rule 3, the processor
is put on standby to recharge the storage unit. At t = 7 there is sufficient energy to
complete the execution of job, thus Rule 5 is applied. In the same way, ST and PSE
are calculated whenever a new instance of a job is present in the ready list, and the
respective Rules are applied.

In this schedule, the energy unit is at its maximum capacity at the start which is
30 energy unit. When the schedule completes the first hyperperiod, denoted as H = 30,
the energy unit is fully replenished. Figure 3.5 illustrates the schedule of the task set
and depicts the energy level of the storage unit. It is evident that no job misses its
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deadline and the energy level in the storage unit never depletes below the minimum
energy level Emin, which in this case 1 energy unit.

3.4.7 Properties of ED-H

Optimal Analysis

Formally proven optimal [Chetto (2014)], the ED-H scheduling algorithm outperforms
any other scheduler under the same hardware and energy conditions when constructing
a valid schedule for a set of jobs J .

Theorem 2. [Chetto (2014)] The ED-H scheduling algorithm is optimal for the RTEHS
model.

Optimality is established by recognizing that job deadlines are missed due to either
time or energy shortages. In essence, ED-H creates a valid schedule if there isn’t a time
interval where both the processor demand surpasses the interval size and the energy
demand exceeds the total available energy.

Clairvoyance

The following theorem gives an important restriction on ED-H. It precisely gives the
length of the time interval in future where prediction is required.

Theorem 3. [Chetto (2014)] ED-H scheduling algorithm operates as an online lookahead-
D.

As shown by Chetto and Queudet (2014a), no online scheduling algorithm can
achieve optimality without at least D units of time clairvoyance. To make a decision
at any time t, ED-H needs to know both the job arrival process and the energy
production process during the subsequent D units of time. Regarding clairvoyance,
ED-H’s lookahead-D performance remains unmatched by any other scheduler.

A notable shortcoming of the ED-H scheduling algorithm is its inability to account
for dependent tasks. This consideration is crucial, as many processing applications
in mobile robotics systems involve shared resources, leading to task dependencies.
Consequently, the need to incorporate and analyze tasks that share resources serves as
a key driving force behind this research. Additionally, the complexity of implementing
the ED-H scheduling algorithm within a real-time operating system (RTOS) remains
an open research area. Addressing this challenge is vital for further exploration and
practical application of the algorithm in real-world systems.
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In the following sections, we will explore the uncertainties of energy harvesting
systems that integrate works from various domains. This exploration will provide a
deeper understanding of the challenges associated with energy management in real-
world scenarios and help us develop more effective solutions for mobile robotic systems
that incorporate energy harvesting technologies.

3.5 Energy-neutral Operations uncertainties

Energy management for ENO systems has been extensively studied through theoret-
ical contributions. However, achieving the ENO condition in practice can be quite
challenging due to several factors, including energy consumption uncertainty, energy
harvesting uncertainty, and energy storage uncertainty. These uncertainties are briefly
explained below:

1. Energy consumption uncertainty: The power consumption of a computing
system can be influenced by various factors, making it difficult to accurately
predict. Importantly, the scheduling schemes often assume that parameters
such as task execution time and energy consumption are known a priori using
static analysis, which is difficult to estimate or predict in practice. Separate
studies exist for analyzing Worst-case Execution Time (WCET) [Puschner and
Schedl (1997), Wenzel et al. (2008), Wilhelm et al. (2008)] and Worst-case Energy
Consumption (WCEC) [Jayaseelan et al. (2006), Wagemann et al. (2015), Sieh
et al. (2017), Wägemann et al. (2018), Eichler et al. (2019)], but they are complex
and challenging to adapt for different operating systems.

2. Energy harvesting uncertainty: Harvested energy from renewable sources
is inherently unpredictable. While patterns in the energy source can be learned
over time, the exact amount of energy that will be available at any given mo-
ment is difficult to determine. This uncertainty adds complexity to the energy
management process, as it is necessary to adapt to changing energy availability.

3. Energy storage uncertainty: The characteristics of energy storage systems,
such as charging and discharging rates, can also introduce uncertainty. Further-
more, determining the actual energy capacity of a storage system, as opposed
to its nominal capacity, can be a complex task. Energy storage devices, like
batteries or capacitors, may also experience degradation over time, which affects
their performance and capacity.
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These uncertainties must be carefully managed in order to achieve an accurate
estimation of energy neutrality and optimize the performance of ENO systems. In
real-time systems, scheduling strategies often depend on worst-case analyses of tasks
running on the system. However, these worst-case analyses can be challenging to
explore. As a result, we will further investigate approaches that specifically address
these uncertainties, particularly in the context of mobile robotic systems. By examining
these approaches, we aim to better understand how to manage the uncertainties inherent
in energy consumption, harvesting, and storage for such systems.

3.6 Energy Harvesting Systems

Energy harvesting, also known as energy scavenging or power harvesting, involves
capturing and converting ambient energy from the environment into electrical energy.
This harvested energy can subsequently be utilized to power or recharge the sys-
tems, effectively extending their operational capabilities and reducing dependence on
conventional energy sources.

Numerous energy harvesting technologies have been developed to capture energy
from various sources, including solar, wind, vibration, temperature, and radio frequency.
This dissertation focuses on the identification and evaluation of suitable harvesting
technologies for mobile robotic systems. In this section, we present an overview of
different technologies and highlight the most appropriate harvesting technology that is
widely adopted for wireless sensor networks, specifically solar harvesting. Additionally,
we discuss its suitability for mobile robot systems, as well as the limitations and
complexities of harvesting technology for industrial mobile robots.

3.6.1 Harvesting Technologies

Mobile robot systems can be equipped with various energy harvesting technologies,
depending on the application and environmental conditions. In the following, we
discuss some suitable technologies that can be implemented individually or as a hybrid,
depending on the energy demand of the robotic system [Liang et al. (2022)]:

1. Solar energy harvesting: Solar energy harvesting captures energy from sunlight
using photovoltaic (PV) cells. It is a widely practiced and well-established
technology, suitable for outdoor robots and applications where sunlight is readily
available. Solar energy harvesting is clean, renewable, and offers a virtually
unlimited energy source during daylight hours.
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2. Piezoelectric energy harvesting: Piezoelectric energy harvesting converts me-
chanical strain or vibrations into electrical energy using piezoelectric materials.
This technology is particularly useful in applications where robots are subject to
constant movement or vibrations.

3. Triboelectric nanogenerators [Barkas et al. (2019), Yang et al. (2023)]: Tribo-
electric nanogenerators harvest energy from the contact or separation of two
different materials, generating an electric charge due to the triboelectric effect.
This technology can be applied in scenarios where robots experience frequent
contact with surfaces or objects, such as robotic grippers or wheeled robots.

4. Regenerative braking [Canfield et al. (2019), Ko et al. (2019)]: Regenerative
braking captures the kinetic energy lost during braking or deceleration and
converts it into electrical energy. This technology is especially relevant for mobile
robots with frequent stop-and-go movements, allowing them to recover energy
otherwise wasted as heat during braking.
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Figure 3.6 Highlighting the various energy-harvesting technologies that can be adapted
for mobile robotic system.

Table 3.3 shows the comparison of power densities provided from various litera-
ture sources for different harvesting technologies. This helps to identify the suitable
harvesting technology for the scalability of energy demand of the system. Among the
various energy harvesting technologies, solar energy harvesting remains efficient and is
widely practiced and extensively explored due to its abundant availability, renewability,
and eco-friendliness. The advancement of photovoltaic materials has increased interest
in exploring the harvesting of energy from indoor ambient lights. We further discuss
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Harvesting Technology Power density Condition
Solar - Outdoor [Hamadani et al. (2021)] 36 mW

cm2 Mono-crystalline Silicon PV cell under
Air Mass 1.5 Global
(the standard for 1000 W/m2 irradiance with the sun’s spectrum)

Light - Indoor [Shore et al. (2021)] 0.2 mW
cm2 Mono-crystalline Silicon PV cell under

white LED with a CCT of 3000K
1000 lx illuminance

Vibrations [Los et al. (2004)] 0.3 mW
cm3

Thermal [Los et al. (2004)] 0.017 mW
cm3

Radio Frequency [Vaussard (2015)] 0.003 mW

TENG [Seung et al. (2020)] 0.5 mW Textile-based tire cord TENG
running at 1000rpm

Table 3.3 Comparison of harvested power density from various harvesting technologies
under different conditions.

the advancement and limitations of solar energy harvesting for outdoor and indoor
applications, which will be the primary concern in this dissertation.

3.6.2 Solar Energy Harvesting

Solar energy harvesting has emerged as a powerful and sustainable approach to meeting
the energy needs of various applications, including mobile robotic systems. It involves
capturing sunlight and converting it into electrical energy using photovoltaic (PV) cells,
which are semiconductor devices that generate electricity when exposed to sunlight.

PV cells, typically composed of semiconductor materials like silicon or gallium
arsenide (GaAs), form the backbone of solar energy harvesting systems. When exposed
to sunlight, these semiconductor materials release electrons, which are then collected
by metal contacts to generate an electric current. The performance of a solar cell is
influenced by several factors, including the intensity of sunlight, the angle of incidence,
and the ambient temperature. The qualitative characteristics of solar cells are crucial
in understanding their performance. These characteristics include:

1. short-circuit Current (Isc): It is the maximum current generated by the solar
cell when the voltage across the cell is zero. This occurs when the cell is under
illumination but not connected to any external load.

2. open-circuit Voltage (Voc): It is the maximum voltage generated by the solar cell
when there is no current flowing through it. This occurs when the cell is under
illumination but not connected to any external load.

3. Fill Factor (FF): It is the ratio of the maximum power output of the solar cell
to the product of Isc and Voc. It represents the efficiency of the solar cell in
converting sunlight into electricity.
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Another significant aspect of solar energy harvesting is the azimuth angle, which is
the horizontal angle between the sun’s position and the solar cell’s surface. This angle
affects the incident angle of sunlight on the solar cell and, consequently, its energy
conversion efficiency. To optimize energy harvesting, the solar cell should be oriented
to minimize the azimuth angle.

Solar energy harvesting is also affected by solar irradiance i.e., the amount of
sunlight energy received per unit area per unit time, usually expressed in watts per
square meter (W/m2). Solar irradiance varies with time of day, weather conditions,
and geographical location. Lux, a unit of measurement for illuminance, indicates the
intensity of light falling on a surface. Table 3.4 demonstrates the lux intensity in
various environments, which affects the power harvested.

Environment Typical Lux
Direct Sunlight 32K to 100K
Ambient Daylight 10K to 25K
Factory, Workshops 1K
Office, Laboratories 500
Warehouse Aisles 200

Table 3.4 Light Intensity in different environments 5

The energy conversion efficiency of a solar cell depends on factors such as the
semiconductor material, cell quality, and operating conditions. Illumination levels are
influenced by controllable and uncontrollable factors. Uncontrollable factors include
intensity and weather conditions, while controllable factors include deployment site and
solar panel orientation. The maximum power that can be harvested depends on the
solar harvesting unit’s surface area. Typically, solar panels are manufactured in specific
sizes, but for a prototype system, it is essential to build a panel by connecting mini cells
to cover the maximum possible area the system can accommodate, meeting the power
requirements of the storage units. Arranging PV cells in series (increasing voltage) and
parallel (increasing current) increases the power harvested with the increase in area.

Solar panel efficiency is influenced by manufacturing parameters, such as materials
used, cell layer thickness, and coating, as well as environmental parameters like snow,
dust, temperature, and aging. Environmental parameters, an active research topic
[Farahmand et al. (2021)], are challenging to predict and often neglected in simple
solar cell models. Solar cell load characteristics can be further understood through
I-V (current-voltage) curves and P-V (power-voltage) curves (Figure 3.7). The curves
are graphical representations of the relationship between current, voltage, and power

4https://greenbusinesslight.com/

https://greenbusinesslight.com/
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Figure 3.7 Load characteristics of a PV cell.

under varying illumination conditions. The Maximum Power Point (MPP) on these
curves ensures optimal energy conversion efficiency. According to [Jeong and Culler
(2012)], the MPP mainly depends on the illumination level and is challenging to
configure statically. Input load matching techniques are a trade-off between efficiency
and harvested power [Khosro Pour et al. (2013), Ram et al. (2017)].

Efficiency of Indoor Solar Energy Harvesting

In recent years, there has been a growing interest in indoor photovoltaic (PV) energy
harvesting as an alternative energy source for powering indoor mobile robots, partic-
ularly those used in industrial settings. Since most industrial mobile robots operate
indoors, harvesting energy from indoor lighting can significantly contribute to their
energy efficiency, extending their operational capabilities, and reducing reliance on
conventional energy sources.

Indoor PV cells are specifically designed to efficiently capture energy from artificial
light sources, such as fluorescent, incandescent, and LED lights commonly found in
indoor environments. These cells differ from outdoor solar panels in terms of material
composition, energy conversion efficiency, and spectral response to better suit indoor
lighting conditions. Operating at lower light intensities compared to outdoor solar
panels, indoor PV cells exhibit higher energy conversion efficiency under such conditions,
making them well-suited for applications where robots need to function in areas with
limited natural sunlight.

Recent research by Shore et al. (2021) and Hamadani et al. (2021) has conducted
experiments to evaluate the efficiency of different PV cell materials under indoor
environment conditions. Their results, as shown in Figure 3.8, indicate that different
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Figure 3.8 I-V curve measurements for the three solar cells Si, GaAs, and GaInP under
1000 lux [Shore et al. (2021)].

materials have improved harvested power. Interestingly, these types of PV cells can be
utilized both indoors and outdoors.

To our knowledge, there are no existing studies exploring the integration of pho-
tovoltaic energy harvesting systems into industrial mobile robots. This presents an
exciting and challenging research opportunity, as harnessing energy from both outdoor
and indoor lighting can significantly improve the energy efficiency and performance of
these robots. However, one critical and challenging aspect that needs to be addressed
is harvest profiling.

Harvest profiling involves predicting the future energy availability, which is essential
for real-time energy-neutral scheduling strategies that rely on the timing window of
prediction techniques. This aspect will be discussed in the following section, providing
valuable insights for the development and implementation of energy harvesting systems
in industrial mobile robots, thereby advancing their energy efficiency and overall
performance.

3.6.3 Solar energy harvest prediction methods - A closer look

Solar irradiation fluctuates throughout the year and day due to the Earth’s path around
the Sun and its rotation, leading to significant variations in power harvested from solar
panels. As a result, energy-harvesting systems in mobile robotics must monitor the
incoming energy and estimate future intake to efficiently manage the decision making
system.
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In the literature, a common approach to represent the observed harvest is to use
discrete time intervals or time slots (Ts). The length of the time slots (Tl) depends
on the profile horizon (Th), which can range from short-term systems that track the
diurnal cycle using a Th of 24 hours to long-term systems that account for yearly
fluctuations. When predicting energy, it is essential to determine a representative
value for the energy harvested in each time slot. One established approach is to use
the average value, calculated by taking the mean of collected samples in each time
slot. However, using the average value presents challenges, and literature [Renner and
Turau (2012)] suggests that time slot lengths below 30 minutes do not significantly
increase energy-harvesting system benefits. For instance, the average value does not
account for imbalances in energy harvesting within the time slot. This issue becomes
more critical when the storage level is near the minimum. Balancing the need for more
precise energy predictions against computational complexity and memory requirements
is crucial when selecting an appropriate method for energy prediction in mobile robotic
systems operating on such short timescales.

Energy prediction techniques are essential for effectively managing harvested energy.
Multiple algorithms have been developed that use past observations to estimate future
harvest conditions, as listed in Figure 3.9. The Exponentially-weighted Moving Average
(EWMA) [Kansal et al. (2007)] filter is a widely used approach, providing a memory-
efficient, low-complexity method for estimating future harvest in the same slot on the
next day. Other approaches, such as the Weather-conditioned Moving Average (WCMA)
[Piorno et al. (2009)] and Profile Energy Prediction Model (Pro-Energy) [Fong (2017)],
attempt to improve the accuracy of short-term estimation by incorporating weather
information and typical daily harvest representations, respectively. However, these
methods may not be suitable for longer-term predictions or may introduce additional
complexity. For indoor environments, Stricker and Thiele (2022) employ a random
forest approach to predict energy harvesting. Yamin and Bhat (2021) propose a novel
hierarchical machine learning model that takes into account recent history and daily
variations to accurately predict future energy availability. Additionally, they suggest
using online learning to adapt the model to seasonal and spatial variations in harvested
energy.

For applications with missions characterized in seconds, it is essential to carefully
select a prediction method that balances accuracy, computational complexity, and
memory requirements to ensure efficient and reliable robot operation. This consideration
is vital for the successful integration of energy prediction techniques into mobile robotic
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Figure 3.9 Overview of Solar Energy Prediction Algorithms for Energy Harvesting
Systems.

systems, ensuring that the chosen method aligns with the systems specific operational
requirements and constraints.

3.7 Storage Systems - Powering mobile robots

Industrial robots, apart from Autonomous Mobile Robots (AMRs), are predominantly
stationary and rely on a direct and continuous energy supply. In contrast, the mobility
of AMRs necessitates an onboard energy source with limited capacity. The selection of
an energy source for such systems is a design-level decision and depends on the robot’s
requirements. Addressing energy supply and operational longevity issues could lead to
more sustainable and commercially viable robots for new applications, thereby driving
further industrial expansion. Rigorous research is essential for improving existing
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solutions and exploring new options for powering robots [Gurguze and Turkoglu (2017),
Farooq et al. (2023)].

In this context, environment and task-specific solutions may be more desirable and
practical, as each task and environment imposes different constraints on the selection
of powering technology. Offering multiple solutions with varying costs, operational
times, and hardware setups for similar tasks and working environments could facilitate
the commercialization of a broader variety of robots catering to diverse customer
demographics. Currently, batteries, internal combustion engines, and fuel cells are the
most commonly used power supply methods for AMRs Farooq et al. (2023). Industrial
AMRs predominantly utilize batteries, with a wide range of options available on the
market. Thorough research is crucial for selecting the appropriate battery based on
system requirements.

Parameter Lead Acid Li-ion polymer Super capacitors Li-ion
Energy Density (Wh/Kg) 30-50 100-130 1-10 110-130
Recharge Cycle
(upto 80% of initial capacity)

200-300 300-500 106 500-10000

Fast Charging Time 8-16h 2-4h 1-10s 2-4h
Self-discharge weeks months days long months
Nominal Voltage (V) 2V 3.6V 1-3V 3.6V
Charge rate (C) 5-0.2 2-1 - 2-1
Operating Temperature (°C) -20 to 60 0 to 60 -40 to 85 -20 to 80

Table 3.5 Comparison of energy storage technologies Buchmann (2017).

Table 3.5 presents a comparison of various battery technologies. While superca-
pacitors are widely used and adapted for Wireless Sensor systems, AMRs require high
energy density, which is satisfied by Li-ion batteries. Consequently, Li-ion batteries are
the most popular battery technology for industrial mobile robots. There is a growing
interest in exploring new battery technologies using sodium-ion, with sustainability
being a significant advantage in a world transitioning away from carbon-based energy
sources [Abraham (2020)]. Researchers are increasingly focused on providing solutions
and materials for fast battery charging.

Due to the complexity and limitations of charging technologies, there is considerable
interest in utilizing ambient energy sources. Although numerous harvesting technologies
could address charging limitations, charging battery efficiency through harvesting
technologies remains a challenge. Gibson and Kelly (2010) demonstrated that high
system efficiency was achieved by directly charging the battery from a photovoltaic
(PV) system without intervening electronics and matching the PV maximum power
point voltage to the battery charging voltage at the desired maximum state of charge.
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Accurately measuring the State of Charge (SoC), which identifies a battery’s energy
level, is another challenge in battery storage systems. Several methods exist for obtain-
ing Lithium-Ion State of Charge (SoC) measurements or Depth of Discharge (DoD) for
a lithium battery. Some methods, such as impedance spectroscopy or hydrometer gauge
for lead-acid batteries, are complex and require specialized equipment. Partovibakhsh
and Liu (2015) proposed a method for estimating Li-ion battery SoC using an unscented
Kalman filtering method. The two most common and straightforward methods for
estimating a battery’s state of charge are the voltage method or Open Circuit Voltage
(OCV) and the coulomb counting method. These methods are widely practiced, and
components for estimating SoC using these methodologies are readily available for
integration with robotic systems.

3.8 Conclusion

In this chapter, we have explored the energy management strategies practiced for
mobile robotics. The approaches reviewed primarily focus on energy saving, resulting
in an increased operation time for mobile robots. However, these strategies do not
fully address the functional and non-functional requirements (FR and NFR) of the
system/software architecture in mobile robotics, which encompass both performance
and resource utilization (time and energy).

To address these limitations, we introduce the energy-neutral concept, which is
novel for the mobile robotics community. An energy neutral system is defined as
one that adapts its energy consumption regarding the energy it may receive from an
external source. While some robots utilize an energy harvester to recharge its energy
supply, they lack the intelligence needed to avoid exhausting the energy storage. The
energy-neutral concept has mainly been extensively explored in computer engineering
to effectively operate small embedded computing devices such as sensor nodes.

In this chapter, we have presented a brief state of the art related to the scheduling
issue for the RTEHS model that comprises tasks with deadlines and energy harvesting
considerations. In most research studies, the objective is to minimize the total energy
consumed by software to maximize the application’s lifetime or the duration between
battery recharges. In contrast, scheduling under energy harvesting settings aims to
guarantee energy neutrality, ensuring that the system never consumes more energy
than harvested while satisfying real-time constraints expressed by deadline success.

This scheduling issue is more complex than in real-time systems with no energy
limitations due to variations in the energy produced by the source, which may not
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align with the timing requirements of real-time tasks. Consequently, any scheduling
algorithm must include a power management procedure capable of deciding when to
make the processor busy and for how long, and when to let the processor idle, allowing
for energy storage unit recharging.

We have described the optimal dynamic scheduler ED-H which is dedicated to
independent tasks. One shortcoming we identified is that its implementation cannot be
integrated into a realistic context like mobile robots, where the tasks interact through
shared resources. Extending the ED-H scheduling algorithm to consider resource access
and implementing the algorithm under a real-time operating system remains an open
area of research.

Additionally, we discussed the uncertainties that must be addressed to implement
a complete real-time energy harvesting solution for mobile robotics systems. These
include energy harvesting uncertainty, which encompasses solar power harvesting
technology and prediction algorithms for estimating future harvested energy, and
energy estimation for the remaining energy in the storage unit. Both quantities are
required to guarantee the performance of the energy-aware scheduling algorithm ED-H.



Chapter 4

Methodology: Designing Real-time
Deterministic Industrial Mobile

Robots

In this chapter, we tackle the unique challenges associated with industrial mobile
robot (IMR) architectures. Unlike other software systems, these robots need to interact
in real-time with the unpredictable and often rapidly changing environments. This
necessitates architectures that can handle real-time responses, manage sensors and
actuators, process tasks concurrently, and seamlessly integrate high-level planning
with low-level control. Despite these needs, the existing architectures of IMR fall
short, causing difficulties in programming, configuration, and adherence to real-time
requirements. This issue is discussed extensively in Section 4.1. Therefore, this chapter
is dedicated to re-imagining and rebuilding such an architecture to not only meet
industrial standards but also to be user-friendly and easily maintainable.

We aim to create a robust robot system that is predictable at all times during
operation. We discuss this in Section 4.2, detailing necessary hardware and software
modifications to enhance the system’s functional predictability, maintainability, and
usability. Next, in Section 4.3, we explore the significant role of a real-time Linux kernel
and a dual kernel architecture in guaranteeing deterministic software performance.
Following this, we justify our choice of the Jetson AGX processing platform for our
redesign in Section 4.4. This platform aligns perfectly with the needs of an IMR.
Finally, we detail our approach to enhance the real-time performance and predictability
of the robot using the ROS 2 architecture in Section 4.5. Here, we focus on adjusting
the scheduling abstraction to increase the functional behavior and reliability of the
ROS2 applications. By the end of this chapter, our aim is to provide developers with a
thorough guide for achieving the highest degree of performance and integrity of IMR
to meet the ISO standard.
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4.1 Problem Formulation

We analyze the challenges encountered by a generic IMR architecture. This architecture
is generally divided into two primary categories: the hardware architecture which
comprises computing units and various peripheral components interfaced for the mobile
robot’s functioning, and the software architecture which includes entities that control
the operational behavior of the peripheral components. Collectively, these aspects pose
challenges that hinder the mobile robot from fulfilling industrial demands effectively
while maintaining product quality and user satisfaction.

Considering the generic architecture of the mobile robot illustrated in Figure 2.1,
the system includes two computing units: high-level and low-level processing units. A
microcontroller unit is selected as the low-level processing unit to control peripheral
components such as actuators and sensors. An x86 processor is chosen to manage the
mobile robot autonomously, utilizing robot middleware such as ROS. Figure 4.1 shows
the two processing units, and highlights how the velocity computed from x86 machine
is transferred to the microcontroller unit. This one converts and communicates the
speed values to motor drivers using CANopen [Farsi and Ratcliff (1997)] library.
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Figure 4.1 Processing platforms in mobile robot highlighting the navigation system.

Several difficulties emerge with this architecture in industrial settings, beginning
with challenges for integrators or developers. Debugging low-level firmware that controls
peripheral components can be arduous, mainly due to limited accessibility when the
robot is in motion. This issue, which we term as the difficulty to program, reprogram,
or reuse the software for user-specific requirements, leads to complications.

The next obstacle lies in reconfigurability. In this context, reconfigurability refers
to adjusting the mobile robot according to user specifications. At times, users might
need to alter the robot’s maximum speed or interface different peripheral components.
This process necessitates reprogramming, which is often a complex task. Overall,
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reconfiguration demands physical access to the mobile robot, which is time-consuming
and often difficult, affecting the product’s usability.

The second major issue concerns the overload management of applications within
the high-level processing units. If not chosen wisely, the processing platform could
lead to the product’s performance degradation. For instance, a processing platform
with four cores could potentially be overloaded due to improper thread and resource
management, leading to decreased performance and the product becomes unpredictable.

The third challenge involves the inter-process communication reliability between
the high-level processing unit and the low-level processing unit. Consider a case as
shown in Figure 4.1, where the ROS robot middleware, which controls navigation
and operates on the high-level processing unit, delivers a command velocity. This
command, defining the robot’s speed needed to reach the goal, is processed by the
low-level unit to transfer the necessary instructions to the motor drivers. Additionally,
the low-level processing unit reads the wheel velocity from encoders and transmits
the information to the high-level processing unit. The information exchange occurs
via ROS topics using specific libraries such as rosserial1, typically through a serial or
ethernet communication link between the two processing units. However, this setup
can lead to delays and potential data loss, negatively impacting the autonomous control
of the robot in dynamic real-world environments. This is primarily because rosserial
works only as a minimal experimental support [Macenski et al. (2022)].

The final issue concerns energy management. All the electronic components inter-
faced in the mobile robot consume power. Therefore, it is vital to design an architecture
and select components that optimize low power consumption. Addressing these issues
is paramount to deliver a simple architecture that ensures product quality and usability.
The following sections propose solutions to overcome these challenges, emphasizing the
need for an architecture that harmoniously balances performance, user satisfaction,
and energy efficiency.

4.2 Product Architecture and Design Principles

Our primary objective is to benchmark an architecture that effectively addresses the
above issues, thereby offering a robust product suitable for industrial applications and
fulfilling user requirements. For instance, employing an Industrial Automation PC,
such as Programmable Logic Controllers (PLC) based PC, as a low-level processing

1http://wiki.ros.org/rosserial

http://wiki.ros.org/rosserial
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unit could mitigate the difficulties associated with reprogramming and reconfiguration
[Kim and Shin (2017), Xie et al. (2018)].

However, this architecture does come with its own set of challenges. The primary
issue is that these PCs operate on the Windows operating system, and some features
are not open-source. This limitation hinders developers when they need to incorporate
new functionalities. A key drawback persists in the form of inter-process communica-
tion latency between high-level processing units. Moreover, this architecture would
lead to greater energy consumption, as industrial PCs consume more power than
microcontrollers. Additionally, the cost associated with automation PCs is considerably
high. Therefore, although the use of industrial automation PCs can enhance the
product’s usability to some extent, it still presents disadvantages that preclude meeting
industrial requirements and ensuring product quality. Even if we were to continue
using microcontrollers as low-level processing units, we could achieve improvements in
thread management and reduce communication latency through efficient library usage.
This could be done by employing commercially supported libraries like micro-ROS
[Belsare et al. (2023)]. However, such an approach still falls short in terms of product
usability, specifically in programming and reconfiguration.

Given these factors, it is evident that designing an architecture that satisfies all
requirements is a challenging task. In response to these challenges, we propose a robust
architecture designed with a two-fold emphasis: hardware considerations and software
considerations. This approach strives to balance performance, energy efficiency, and
user satisfaction, all of which are critical for the successful deployment of mobile robots
in industrial settings.

4.2.1 Hardware Consideration

The hardware of a mobile robot pertains to the physical components integrated
within its system, such as motors, industrial sensors, and processing units. These
elements communicate using established industrial protocols like the CAN (Control
Area Network) and I/O (Input-Output) links.

Our approach concentrates on the processing platform. It is essential for this unit
to comply with all the necessary requirements and successfully mitigate the challenges
we have previously identified. Primarily, the processing platform must be capable of
integrating industrial sensors through suitable peripheral interfaces. Secondly, the
platform should be designed for easy programmability and reconfigurability, with no
requirement for physical access. An ideal approach would involve a single processing
platform that fulfills these prerequisites. This would negate the need for a separate
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low-level processing unit and, in turn, eliminate inter-process communication issues
between the high and low-level processing units. After careful consideration, we have
identified the Jetson PCs, specifically the Jetson AGX Xavier or Jetson AGX Orin
models, as the most suitable options to meet all peripheral requirements to interface
the components for autonomous mobile robots.
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Figure 4.2 Hardware consideration for IMRs.

Figure 4.2 shows the simplest hardware consideration for mobile robot. This
unified processing platform enables programming and reconfiguring through network
access, thereby eliminating the need for physical contact. Furthermore, it supports
all necessary industrial peripherals, facilitating seamless interaction with industrial
sensors. Additional I/O link devices can be implemented to augment sensor interface
capabilities. The Jetson platform can function across different power modes, providing
an added advantage of reconfigurability. Furthermore, its support for machine learning
functionalities enhances the operational capabilities of mobile robots in industrial
settings2 [Schmid et al. (2020)].

By taking into account this hardware consideration, we not only enhance the
product’s usability but also identify a platform that supports functional accuracy,
performance, and reliability. However, a thorough understanding of these qualities
requires an in-depth examination of the software architecture of the processing platform.

4.2.2 Software Consideration

Mobile robots rely significantly on their software, which determines their functional and
non-functional properties. The complexity of robot software systems arises largely from
the need to manage various sensors and actuators in real time, despite the presence of
considerable uncertainty and interference. Furthermore, the robot must be capable of

2https://github.com/dusty-nv/jetson-reinforcement

https://github.com/dusty-nv/jetson-reinforcement
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accomplishing specific tasks while simultaneously detecting and responding to unan-
ticipated circumstances. Performing all these activities together and asynchronously
escalates the system’s complexity.

However, implementing a robust architecture, complemented with fitting program-
ming tools, can assist in handling this complexity, as suggested by Kortenkamp et al.
(2016). It is important to remember that no one architecture suits all needs. Each
architecture comes with its own set of strengths and weaknesses. Ahmad and Babar
(2016), undertook a detailed exploration of issues concerning software architectures for
robotic systems. They mapped key trends from 1990 to 2015, namely object-oriented,
component-based, and service-driven robotics. However, these architectural approaches
often lacked the validation of quality-specific or architecturally crucial requirements.
In response to these challenges, the Robot Operating System (ROS) was developed
[Quigley et al. (2009)]. This flexible framework was designed for developers to build
upon, enabling the creation of robot software systems that can cater to a multitude of
hardware platforms, research contexts, and runtime demands. Despite its versatility,
ROS lacked some essential production-grade features and algorithms. Its limitations
in security and performance made ROS1 unsuitable for safety-critical applications
[Macenski et al. (2020)].

To address these limitations, ROS2 was introduced, offering industrial-grade features
such as enhanced security, reliability, and real-time capabilities, vital for the next
generation of robots. A critical part of this upgrade was the incorporation of the
Data Distribution Service (DDS) [Pardo-Castellote (2003)]. DDS, with its flexible
transport configurations and scalability, proved suitable for real-time distributed
embedded systems. The adoption of ROS2 significantly contributed to the rapid,
reliable deployment of real robot systems in a range of challenging settings. García
et al. (2020) conducted an extensive empirical study to understand the practical
aspects of robotics software engineering. They identified several requirements for
robotic software. Many of these requirements, including quality assurance, reuse,
and interoperability, are satisfactorily addressed by ROS2. However, the aspect of
deterministic execution still represents an unresolved challenge.

Figure 4.3 provides a complete depiction of the proposed software architecture. It
distinctly demarcates the user space modules and kernel space modules. User space
modules are those which users can directly access and manipulate. Conversely, kernel
space modules operate at the system level and can undergo modifications during
the installation of the processing platform. In our architecture, we employ a Linux3

3https://www.kernel.org/

https://www.kernel.org/
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Figure 4.3 Software abstraction for industrial mobile robot. Highlighting the user space
and kernel space modules.

operating system that is patched with Xenomai4 kernel running on Ubuntu5 distro.
The goal of this combination is to establish a unified system that can execute high-

4https://evlproject.org/
5https://ubuntu.com/

https://evlproject.org/
https://ubuntu.com/
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level operations while also managing the control of external components (hardware
components of IMR). More specifically, the Xenomai kernel is designated to handle
control threads of external components, particularly those with stringent timing
requirements. In mobile robot software, it is essential for practitioners to distinguish
between non real-time and real-time applications. In the following sections, we will
explore real-time applications in more depth and provide reasons for our choice of a
Xenomai kernel-enhanced Linux operating system for robotic applications. We will
also delve into the deterministic characteristics inherent in ROS2.

4.3 Real-time Linux

Before exploring the details of real-time Linux, it is important to recall a few aspects
previously discussed in Section 2.3.3. Firstly, it is crucial to understand that having a
Linux kernel alone does not necessarily transform an operating system into a real-time
one. A prevalent misconception is that real-time equates to optimized performance.
This is generally a misinterpretation stemming from systems, often labeled as real-time,
that have efficient enough performance to prevent any human-perceivable deadline
failures [Lelli (2014)]. However, a real-time Linux kernel does not necessarily enhance
performance optimization [Madden (2019)]. Instead, it aims to produce a deterministic
response to an external event, with the objective being to minimize response latency
rather than optimizing throughput. According to a widely accepted definition, in
a real-time system, the correctness of a computation relies not only on the logical
accuracy of the result but also on the time it takes to produce it. If a system fails to
meet its timing constraints, it is deemed to have failed. This definition aligns with the
POSIX Standard 1003.16, which describes real-time responsiveness as an operating
system’s ability to deliver a specified level of service within a defined response time
[Burns (2009)].

In essence, real-time systems are best suited for scenarios with extreme latency
dependencies, where a missed deadline results in system failure, rather than mere
performance degradation. Historically, industrial automation society have preferred to
use PLCs for real-time performance. Recently, however, Linux-based industrial PLCs7

have emerged. Despite their benefits, these PLCs lack versatility for all developers,
leading to increased focus on industrial PCs for solutions with high computing demand.
While it is imperative for these industrial PCs8 to offer real-time performance, this

6https://standards.ieee.org/ieee/1003.1/7700/
7https://www.wago.com/global/automation-technology/discover-plcs/pfc100
8https://premioinc.com/blogs/blog/the-differences-between-industrial-pcs-and-plcs

https://standards.ieee.org/ieee/1003.1/7700/
https://www.wago.com/global/automation-technology/discover-plcs/pfc100
https://premioinc.com/blogs/blog/the-differences-between-industrial-pcs-and-plcs
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can be achieved through specific kernel configurations of the operating system, and
further enhanced with dual-kernel approaches. Therefore, developers must follow best
practices in developing applications that deliver real-time performance.

4.3.1 PREEMPT_RT Linux

Developers face a challenging trade-off when seeking to reduce latency and achieve
real-time computing capabilities: they must make the Linux kernel preemptible. The
Linux kernel Scheduler9 has several preemption models available:

• CONFIG_PREEMPT_NONE: No Forced Preemption (Server)

• CONFIG_PREEMPT_VOLUNTARY: Voluntary Kernel Preemption (Desktop)

• CONFIG_PREEMPT: Preemptible Kernel (Low-Latency Desktop)

• CONFIG_PREEMPT_RT: Fully Preemptible Kerenl (Real-Time)

The PREEMPT_NONE model is the default behavior in standard kernels, where forced
preemption is not allowed. This is optimized for overall throughput, particularly in
high-computation server workloads, but it doesn’t guarantee low latency as kernel
code is never preempted. The PREEMPT_VOLUNTARY mode allows for quicker application
responses to user inputs, ideal for desktop use. This mode enables a low-priority
process to voluntarily preempt itself even during a system call in kernel code. While
this may slightly reduce throughput, it lowers the maximum rescheduling latency and
improves the perceived smoothness of applications under load. The PREEMPT model, like
PREEMPT_VOLUNTARY, enables voluntary preemption points in the Linux kernel, but it
also allows kernel code to be involuntarily preempted outside critical sections. This can
provide reduced kernel latencies suitable for desktop or embedded systems with latency
requirements in the millisecond range, however at the cost of slightly lower throughput
and increased runtime overhead to kernel code. PREEMPT_RT, a patch set hosted by the
Linux Foundation, implements a priority scheduler and other real-time mechanisms.
A significant portion of the PREEMPT_RT locking code was merged into recent Linux
Kernel10. PREEMPT_VOLUNTARY is the default preemption model selected for desktop
systems. Current Ubuntu release Ubuntu 22.04 have enabled PREEMPT_DYNAMIC11,
allowing the preemption model to be chosen at boot time.

9https://bootlin.com/doc/training/preempt-rt/preempt-rt-slides.pdf
10https://www.kernel.org/
11https://lore.kernel.org/lkml/87v90kcf7v.mognet@arm.com/T/

https://bootlin.com/doc/training/preempt-rt/preempt-rt-slides.pdf
https://www.kernel.org/
https://lore.kernel.org/lkml/87v90kcf7v.mognet@arm.com/T/
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Figure 4.4 Linux Kernel scheduling class policies. Highlighting the real-time scheduling
policies: SCHED_DEADLINE, SCHED_FIFO, SCHED_RR and non real-time "default" policy
SCHED_NORMAL.

The Linux kernel scheduler plays a vital role in enabling real-time behavior as
it determines which runnable thread should be executed. This extends to both user
space threads and kernel threads. Each thread is assigned a scheduling class or policy,
which defines the algorithm used for its execution. Thread with different scheduling
classes coexist on the system. In Linux kernel, scheduling policies12 are categorized
into real-time and normal, with their priorities depicted in Figure 4.4. Real-time
policies are SCHED_FIFO, SCHED_RR, and SCHED_DEADLINE. SCHED_FIFO and SCHED_RR
have priority levels from 0 to 98 and take precedence over normal threads. Priority 99
is reserved for critical housekeeping threads [Madden (2019)]. SCHED_FIFO allows a
thread to run uninterrupted unless a higher priority thread preempts it, blocks, yields,
or terminates. SCHED_DEADLINE, introduced in kernel 3.14, manages periodic threads
based on a specified deadline. A detailed explanation of SCHED_DEADLINE policy can be
found in Lelli (2014). SCHED_NORMAL, SCHED_BATCH, and SCHED_IDLE, handle regular
threads. SCHED_IDLE is employed when the processor is idle, and SCHED_BATCH allows
threads to run longer with less frequent interruptions, which is suitable for batch
jobs. SCHED_NORMAL is the default policy used for regular threads and is employed
when a user application is created without defining a scheduling policy. It utilizes
the Completely Fair Scheduler (CFS)13 which aims to emulate an "ideal" multitasking
CPU, sharing equal CPU power among running threads. Given the constraint of one
thread execution at a time, CFS uses a "virtual runtime" concept, where the thread’s
actual runtime is normalized to the number of running threads.

12https://manpages.ubuntu.com/manpages/focal/man7/sched.7.html
13https://docs.kernel.org/scheduler/sched-design-CFS.html

https://manpages.ubuntu.com/manpages/focal/man7/sched.7.html
https://docs.kernel.org/scheduler/sched-design-CFS.html
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Real-time Application

When designing a real-time application, adherence to a set of best practices is rec-
ommended, primarily because not all POSIX APIs were constructed with real-time
functionality in mind. A crucial step in developing a real-time application is the con-
figuration stage, usually performed within the application’s initialization section. This
involves setting up the parameters of the application, allocating memory, initializing
locks, and starting threads. It also includes defining scheduling attributes such as
priority levels and deadlines, along with specifying CPU affinity. Utilizing the standard
C library is sufficient as it encompasses the POSIX real-time API. Among various C
libraries, glibc14 is highly recommended due to its mature support for certain real-time
features. In UNIX, the creation of a process, generally involving the fork()15 function,
initiates an address space containing program code, data, stack, shared libraries, among
others, and a thread that executes the main() function. While a process starts with
one thread, additional threads can be incorporated using pthread_create(). These
additional threads operate within the same address space as the initial thread and
execute a function passed to pthread_create().

The function pthread_attr_setschedpolicy() is used to set the scheduling policy
of a thread. The existing system calls sched_setscheduler() and sched_getscheduler()
have not been extended due to potential binary compatibility issues that could arise
from modifying the sched_param data structure in existing applications. To circumvent
this problem, two new system calls, sched_setattr() and sched_getattr(), have
been introduced [Lelli (2014)]. These system calls are also compatible with the other
existing scheduling policies. The interpretation of the arguments passed to these system
calls depends on the selected policy. These calls are intended to supersede the previous
system calls, which will be retained to avoid breaking existing applications. The proto-
type of these new system calls is shown in Listing 4.1. In Appendix B.1, we present
the structure of thread creation, focusing on the setting of different scheduling policies,
particularly SCHED_FIFO and SCHED_DEADLINE, as well as the attributes associated
with these policies.
# include <sched.h>

struct sched_attr {
u32 size;
u32 sched_policy ;
u64 sched_flags ;

14https://www.gnu.org/software/libc/
15https://man7.org/linux/man-pages/man2/fork.2.html

https://www.gnu.org/software/libc/
https://man7.org/linux/man-pages/man2/fork.2.html
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/* SCHED_OTHER , SCHED_BATCH */
s32 sched_nice ;
/* SCHED_FIFO , SCHED_RR */
u32 sched_priority ;
/* SCHED_DEADLINE */
u64 sched_runtime ;
u64 sched_deadline ;
u64 sched_period ;

};

int sched_setattr (pid_t pid , const struct sched_attr *attr);
int sched_getattr (pid_t pid , const struct sched_attr *attr , unsigned

int size);

Listing 4.1 SCHED_DEADLINE API.

The Linux kernel, even with the application of a real-time patch, does not provide
guaranteed deadlines [Madden (2019)]. The kernel offers what is known as soft real-
time behavior through its real-time scheduling policies. This soft real-time approach
means that while the kernel strives to schedule threads within their timing deadlines,
it does not assure that these deadlines will always be met. In contrast, hard real-time
systems provide a guarantee that all scheduling requirements will be met within certain
boundaries. This level of assurance is not offered by Linux, as it does not make any
promises about the scheduling of real-time threads. However, the Linux scheduling
policy does ensure that real-time threads are operational whenever they are runnable.
Despite lacking a design to guarantee hard real-time behavior, the PREEMPT_RT locking
code - which forms the majority of the remaining real-time patches - was integrated
into Linux 5.1516. Yet, there are still more enhancements to be introduced upstream17.
Currently, PREEMPT_RT is the accepted standard implementation of real-time Linux.
However, users that demand very low latency and very high reliability of deadlines
may be better served using a proprietary real-time kernel patch, such as Xenomai18.

4.3.2 Xenomai patched Linux Kernel

Xenomai brings improved real-time abilities to Linux. It does this by adding a dedicated
core into the kernel that handles tasks needing a fast and stable response time. This
method is called a dual-kernel architecture. It allows some tasks to have strict real-time

16https://www.kernel.org/
17https://ubuntu.com/blog/what-is-real-time-linux-part-iii
18https://source.denx.de/Xenomai/xenomai

https://www.kernel.org/
https://ubuntu.com/blog/what-is-real-time-linux-part-iii
https://source.denx.de/Xenomai/xenomai
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promises while others can have extensive operating system services. Here, the standard
kernel and the real-time core work almost separately, each taking care of different tasks.
The real-time tasks are always prioritized. We are mainly looking at Xenomai-4, the
most recent version which uses the EVL core19. The EVL core was adapted from the
Xenomai 3 Cobalt core20 and redesigned to be more scalable and easy to maintain.
However, both versions follow the same idea of dual-kernel technique. The introduction
of the EVL project has simplified the integration of Xenomai into the Linux kernel.
This is achieved by co-existing the EVL code with the Linux kernel. The activation of
the CONFIG_EVL configuration results in the Linux kernel being equipped with EVL
modules.

A valid question arises "Why choosing Xenomai when we can run POSIX-based
applications on a PREEMPT_RT kernel?" The answer is simple. If the application already
follows POSIX standards and meets performance needs, then Xenomai may not be
needed. But Xenomai might be useful in certain cases:

• If the application requires bounded response times and very limited jitter, consis-
tently.

• If the application needs reliable performance, meaning no kernel or user code
should interfere with strict real-time deadlines.

• If the application’s design needs the real-time execution to be separated from the
general-purpose activities. This way, they will not share important subsystems
like the common scheduler.

• If it is not possible or effective to use CPU isolation to reduce the impact of the
non-real-time workload on the real-time side.

Certainly, Xenomai may not operate effectively with low-end hardware, particularly
single-core CPUs, as the kernel needs at least one non-isolated CPU for system
maintenance tasks. This can lead to a situation where the system might freeze. For
instance, in a device with a single-core CPU, Xenomai may face challenges as the
single processor must manage both system maintenance tasks and regular operations,
which could potentially cause operational congestion, leading to system hangs. A key
reason for choosing EVL for our work is its ability to reduce the difficulty associated
with developing additional scheduling policies, a process that is facilitated by a well-
documented guide of its internal functions.

19https://evlproject.org/overview/
20https://source.denx.de/Xenomai/xenomai/-/wikis/Introducing_Xenomai_3

https://evlproject.org/overview/
https://source.denx.de/Xenomai/xenomai/-/wikis/Introducing_Xenomai_3
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Figure 4.5 Xenomai kernel scheduling policies. SCHED_FIFO real-time policy, SCHED_TP
and SCHED_QUOTA policies are supported optionally by the EVL core. To enable
either CONFIG_EVL_SCHED_QUOTA or CONFIG_EVL_SCHED_TP must be set in the kernel
configuration.

In the context of out-of-band21 thread scheduling, the EVL core introduces its
unique hierarchy of scheduling policies as depicted in Figure 4.5. These are checked
in a particular sequence every time the system needs to determine the next eligible
thread for execution on the current CPU.

• SCHED_FIFO: This stands for the well-known First-In, First-Out real-time policy22.
Additionally, it also manages the Round-Robin policy, known as SCHED_RR,
internally.

• SCHED_TP: This policy aims to manage temporal partitioning among multiple
thread sets. Its function is to prevent any overlap of these thread sets on the
CPU on which this policy is executed.

• SCHED_QUOTA: This policy serves to enforce a limit on CPU utilization by threads
during a fixed time frame.

• SCHED_WEAK: This is a non-real-time policy that allows the threads to run primarily
in-band but still permits them to request EVL services.

• SCHED_IDLE: This is the default fallback policy that the EVL core uses when
there are no runnable tasks on the CPU for other policies.

21Within the EVL documentation, the term "out-of-band" is used to denote the EVL core, whereas
"in-band" refers to the Linux core. This distinction helps differentiate the threads each core manages
in the dual-kernel architecture.

22https://pubs.opengroup.org/onlinepubs/009695399/functions/xsh_chap02_08.html

https://pubs.opengroup.org/onlinepubs/009695399/functions/xsh_chap02_08.html
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It is essential to note that the SCHED_QUOTA and SCHED_TP policies are supported
optionally by the EVL core. Out of all these policies, only SCHED_FIFO, SCHED_QUOTA,
and SCHED_TP are real-time scheduling policies23.

The EVL core needs to respond promptly to interrupts, irrespective of ongoing kernel
operations. To circumvent this, Dovetail24 uses an interrupt pipelining mechanism25,
allowing immediate handling of interrupts, no matter what activities the main kernel is
performing. As a result, the EVL core can swiftly react to interrupts, while main kernel
operations proceed mostly unaffected, except for minor pauses needed for out-of-band
operations.

EVL Real-time application

# include <sys/types.h>
# include <stdlib .h>
# include <error.h>
# include <errno.h>
# include <evl/evl.h>
# include <evl/clock.h>
# include <evl/ thread .h>
# include <pthread .h>

# define SCHED_PRIORITY 50 /* Priority */
# define FIFO_PERIOD_NS 1000000 /* 1ms */

void * threadfunc (void *parm)
{

int ret = 0;
struct evl_sched_attrs attrs; /* evl scheduling attributes */
struct evl_thread_stats stats; /* thread statistics */

attrs. sched_policy = SCHED_FIFO ;
attrs. sched_priority = SCHED_PRIORITY ;
attrs.fifo. period = FIFO_PERIOD_NS ;

ret = evl_attach_self ("/ threadfunc :%d", getpid ());
if (ret < 0)

error (1, -ret , " evl_attach_self () failed ");

23https://evlproject.org/core/user-api/scheduling/
24https://evlproject.org/dovetail/
25https://evlproject.org/dovetail/pipeline/

https://evlproject.org/core/user-api/scheduling/
https://evlproject.org/dovetail/
https://evlproject.org/dovetail/pipeline/
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ret = evl_set_schedattr ( evl_get_self (), &attrs);
if (ret < 0)

error (1, -ret , " evl_set_schedattr () failed ");

/* Make the thread periodic which is handled within the kernel */
evl_set_thread_periodic ();
while (1) {

/* Wait for the thread period */
evl_thread_wait_period (efd , &stats);

/* Your code here */
}
return NULL;

}

int main(int argc , char *const argv [])
{

pthread_t thread ;
struct sched_param param;
cpu_set_t cpu_set ;
int ret;

CPU_ZERO (& cpu_set );
CPU_SET (0, & cpu_set );

ret = sched_setaffinity (0, sizeof ( cpu_set ), & cpu_set );
if (ret)

error (1, errno , " cannot set affinity to CPU0");

ret = evl_init ();
if (ret)

error (1, -ret , " evl_init () failed ");

ret = pthread_create (& thread , NULL , threadfunc , NULL);
if (ret)

error (1, errno , " pthread_create () failed ");

pthread_join (thread , NULL);
return 0;

}

Listing 4.2 EVL periodic application structure.
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In the EVL environment, an application typically consists of one or more specialized
EVL threads, which run alongside standard POSIX threads. EVL threads, once bound
to the EVL core, use services provided by the libevl26 library, which is a specialized
library built to offer ultra-low latency and real-time services. This library plays a
critical role in allowing EVL threads to achieve high-performance real-time operations.
It is important to note that when an application uses libevl services, it should be linked
against the libevl library. Initially, an EVL thread is just a regular POSIX thread.
However, by calling the function ’evl_attach_self()’, the thread gains the ability to
use EVL’s real-time services, which are critical for meeting time-sensitive demands.
Importantly, during these critical periods, the thread should avoid using common C
library services (glibc), as doing so could compromise the real-time performance.

To facilitate the management of real-time periodic threads, we have incorporated two
APIs into libevl: ’evl_set_thread_periodic()’ and ’evl_thread_wait_period()’.
The evl_set_thread_periodic() function makes a thread periodic by creating a
periodic timer for it within the scheduling class, while evl_thread_wait_period()
makes the thread wait for the timeout period and also provides any overrun status of the
thread. Listing 4.2 presents a straightforward code structure that allows a conventional
POSIX thread to utilize its real-time services after this thread has established an
attachment to the EVL core. In a typical lifecycle of an EVL application, a thread
first attaches to the EVL core, performs time-critical operations exclusively using
EVL services, and then, when the critical operations are complete, the thread can use
standard C library services for clean-up operations before exiting.

4.3.3 Scheduling Latency

Scheduling latency is a crucial metric in the realm of real-time Linux [de Oliveira et al.
(2020)]. It essentially represents the longest delay between the moment a high-priority
thread becomes ready to execute its tasks, and when it actually begins executing its
own code. This latency value plays a pivotal role in decision-making related to thread
scheduling and allocation across processor cores. Additionally, it informs whether
real-time threads should enter a sleep state or remain actively waiting after completing
their present tasks.

To measure scheduling latency, we use a popular tool called cyclictest27. This
tool evaluates the difference between a thread’s intended wake-up time and its actual
wake-up time, thereby providing critical insights about system latency performance.

26https://evlproject.org/core/user-api/
27https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/cyclictest/start

https://evlproject.org/core/user-api/
https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/cyclictest/start
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Figure 4.6 Scheduling Latencies of PREEMPT_RT and EVL core in a stressed envi-
ronment. Scheduling latency of PREEMPT_RT compared with ’user’ latency of EVL
core.

There have been numerous studies indicating Xenomai’s superiority over Linux in
real-time applications [Brown and Martin (2010), Diana Marieska et al. (2011), Huang
et al. (2015), Yang and Shinjo (2020), Jo and Choi (2022)]. However, such outcomes
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largely depend on the specific setup and platform being utilized. In parallel, Linux has
been progressively refining its real-time capabilities. We are not claiming Xenomai is
inherently better than the real-time Linux variant, PREEMPT_RT. Although PREEMPT_RT,
is continuously evolving, Xenomai has already demonstrated its effectiveness for appli-
cations requiring strict timing requirements. We employ Xenomai for the management
of threads requiring strict timing, ensuring their operation remains reliable under
worst-case conditions.

We conducted our testing on an i5-7200U 4-core CPU running at 2.50GHz, with
a Linux kernel enabled for real-time operations, incorporating the PREEMPT_RT and
EVL_CORE configurations. The tools used were cyclictest for Linux threads and
latmus28 for EVL threads. During these tests, the CPU was subjected to a 100%
load using the stress-ng29 tool. Our focus was on scheduling tasks on a single core,
and we assigned a high priority (with the SCHED_FIFO policy -p 80 priority), with
memory lock and real-time clock options. The duration of the test was 1 hour and
results for both Linux and EVL threads is shown in Figure 4.6. Using the latmus
tool, we measured the scheduling latency for timer irq, user thread and kernel thread.
Meanwhile, cyclictest was used to create a user thread and measure its scheduling
latency. The latency observed in Figure 4.6a can be compared with the user latency
displayed in Figure 4.6b. However, we have chosen not to present the latency of
SCHED_OTHER obtained by running cyclictest without the priority option. This is due
to the latency being substantially high, exceeding 200us (maxing out at 8000us). The
results, under a high-stress workload, showed that Xenomai had lower latency than
PREEMPT_RT. This ensures more reliable scheduling of threads, which is crucial for
maintaining the functional effectiveness of mobile robot under worst-case scenarios.

4.4 Jetson Development

Developing the proposed hardware and software architecture was an arduous task,
particularly due to the scarcity of Jetson documentation at the time. We employed
the Jetson AGX Xavier Developer Kit to construct the new architecture. In terms of
the hardware architecture, we established communication with the motor drivers via
the CAN peripherals using the CAN ports of the Jetson and CAN transceivers. The
sensors of the mobile robot were interfaced using industrial I/O expandable shields30 ,
facilitating the simple interaction with and manipulation of I/O sensors. Other robot

28https://evlproject.org/core/testing/
29https://wiki.ubuntu.com/Kernel/Reference/stress-ng
30Industrial-Shields

https://evlproject.org/core/testing/
https://wiki.ubuntu.com/Kernel/Reference/stress-ng
https://www.industrialshields.com/shop/is-ab20an-hf-plc-arduino-ardbox-analog-17
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accessories can be connected directly to the Jetson PC’s peripheral ports due to its
inbuilt communication peripherals. We focused on the critical elements for industrial
mobile robots, namely motor drivers and obstacle detection sensors, for interfacing with
the PC. Other sensors, such as Lidar, IMU, and Camera, can be connected directly to
the PC’s serial USB ports.

CAN

Serial

Motor Drivers

I/O Expandable Device

IMU

LIDAR

Camera

Serial

Serial

Serial
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Figure 4.7 IMR hardware interface with Jetson AGX developer kit. With the software
abstraction threads controlling the robot.

Building the proposed software architecture posed the next challenge. At the time
of our work, the Jetson PC was released with Ubuntu 20.04 running Linux tegra
5.10. Jetson uses a specific Linux kernel for the tegra SoC, enabled with the PREEMPT
configuration. Building and booting the Jetson with the EVL patched Linux kernel was
an intricate task. To our knowledge, no other work has used the EVL patched Linux
kernel on Jetson. After several attempts and a deep understanding of the Jetson device
tree’s components, we managed to install the EVL Linux kernel to boot on Jetson.
However, this was a difficult process due to the ongoing development of the Jetson
documentation. Upon successful installation of the kernel, we discovered that the Jetson
drivers, including the CAN and others, were not functional because the EVL patched
Linux kernel did not contain specific development for Jetson. Consequently, we worked
on integrating the components of linux-evl-v5.1031 into the linux-tegra-5.1032

kernel, ensuring a complete kernel with EVL and tegra modules. This step allowed
us to utilize the drivers of Jetson. Ultimately, we built and installed the Jetson with
linux-tegra-evl-5.10. The guide detailing this installation process is presented
in Appendix B.4. Figure 4.7 illustrates the complete architecture of the proposed
industrial mobile robot. Our primary objective was to run peripheral component control
threads with strict timing constraints under the EVL core. We utilize the CANopen
library for motor communication, recognizing it as the standard library for interfacing

31https://source.denx.de/Xenomai/xenomai4/linux-evl.git
32https://github.com/OE4T/linux-tegra-5.10.git

https://source.denx.de/Xenomai/xenomai4/linux-evl.git
https://github.com/OE4T/linux-tegra-5.10.git
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with motor drivers. The CANopen and Sensors threads were established using POSIX
threads, operating under the SCHED_FIFO policy, and subsequently attached to the
EVL core. If enhanced reliability is required for additional component interfaces, the
corresponding threads, designed to operate the specific libraries of these components,
can be scheduled to run under the EVL core. However, we have not yet explored
ROS2’s real-time capabilities. As ROS2 manages all the robot’s functional behavior, it
is crucial to focus on its real-time characteristics to ensure that ROS2 also performs as
expected. This focus is vital for maintaining system integrity and meeting industrial
standards.

4.5 ROS2 real-time characteristics

We recall that the Robot Operating System, known as ROS, is not an actual operating
system but rather a framework developed for creating robotics applications. Faced
with limitations in the original ROS, particularly regarding operations in restrictive
environments and maintaining real-time constraints, the developers decided to introduce
an improved version: ROS2. Rather than developing a completely new middleware,
they opted to utilize an existing one. After a thorough evaluation, DDS33 emerged
as the preferred choice, thanks to its long-standing history, strong support, and its
capabilities in delivering real-time performance and safety certification.

4.5.1 Data Distribution Service

The DDS specification, defined by the Object Management Group (OMG)34, forms
the basis of a publish/subscribe data-distribution system. The implementation details
are managed by the OMG, with various versions developed by different vendors,
such as RTI35 and eProsima36. DDS’s versatility allows it to support a wide range
of applications, from small embedded systems to large-scale infrastructure systems,
including distributed real-time embedded systems. At the heart of DDS is a Data-
Centric Publish-Subscribe (DCPS) model. This model creates a "global data space"
that independent applications can access, facilitating efficient data distribution.

33https://docs.ros.org/en/humble/Installation/DDS-Implementations.html
34https://www.omg.org/omg-dds-portal/
35DDS-Implementation-Connext
36DDS-Implementation-Fast-DDS

https://docs.ros.org/en/humble/Installation/DDS-Implementations.html
https://www.omg.org/omg-dds-portal/
https://docs.ros.org/en/humble/Installation/DDS-Implementations/Install-Connext-University-Eval.html
https://docs.ros.org/en/humble/Installation/DDS-Implementations/Working-with-eProsima-Fast-DDS.html
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In DDS, each process that publishes or subscribes to data is referred to as a
participant, comparable to a node in ROS. Participants interact with the global data
space using a typed interface. The DCPS model is comprised of various entities:

• DomainParticipant: This is the entry point to the service and a container for
other entities. All applications within a Domain communicate with each other,
promoting communication optimization and isolation.

• Publisher : Responsible for issuing data, a Publisher manages one or more
DataWriters and sends data to one or more Topics.

• Subscriber : Responsible for receiving published data and making it available, a
Subscriber acts on behalf of one or more DataReaders.

• DataWriter : A DataWriter is used by a DomainParticipant to publish data
through a Publisher. It publishes data of a specific type.

• DataReader : Attached to a Subscriber, a DataReader allows a DomainParticipant
to receive and access data. The type of data must match that of the DataWriter.

• Topic: Used to identify each data-object between a DataWriter and a DataReader,
a Topic is defined by a name and a data type.

All DCPS entities come with a Quality of Service37 (QoS) policy representing their
data transport behavior. Each data transaction is configurable via various QoS policy
options, like:

• Deadline: This policy mandates that a DataWriter and a DataReader must
update their data at least once within a specific deadline period.

• History: This policy determines whether the data transport should deliver only
the most recent value, all intermediate values, or a combination of both. The
exact behavior is configurable via the depth option.

• Reliability: This policy dictates how data is transported. ’Best Effort’ mode
ensures quick data transport but might risk data loss in less robust networks.
’Reliable’ mode guarantees data delivery through the retransmission of missed
samples.

37QoS: The overall performance of a network. Includes factors such as bandwidth, throughput,
availability, jitter, latency, and error rates.
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• Durability: This policy makes the system attempt to save multiple samples for
any potential late-joining DataReader. The number of samples saved is contingent
on the History policy, with settings such as ’Volatile’ and ’Transient Local’.

Real-Time Publish/Subscribe (RTPS) protocol is used for data transportation
between a DataWriter and a DataReader. This DDS standard protocol enables DDS
implementations from different vendors to interoperate. This protocol abstracts and
optimizes transport, such as TCP/UDP/IP, and is flexible enough to take advantage
of a QoS policy. With DDS, users can focus on their specific goals and determine
how to meet real-time constraints easily. This is achieved by generating code as a
DomainParticipant using the DDS APIs, which includes QoS policies, while the DCPS
middleware handles data transport in distributed systems based on the specified QoS
policy. Maruyama et al. (2016) carried out a performance evaluation of ROS 1 and
ROS2, considering factors such as latency, throughput, thread count, and memory
usage. Additionally, they examined the impact of changing DDS implementations
and QoS policies in ROS2. Their findings suggest that DDS enhances ROS2’s fault
tolerance and flexibility across different platforms. However, despite ROS2’s focus on
improving real-time capabilities, particularly in network contexts, guaranteeing strict
timing constraints remains a complex challenge.

4.5.2 ROS2 Scheduling Abstraction

From a logical perspective, ROS applications are composed of nodes, the smallest
self-contained units of behavior. These nodes communicate using the publish-subscribe
paradigm: nodes publish messages on topics, which broadcast the message to all nodes
that are subscribed to the topic. Nodes react to incoming messages by activating call-
backs to process each message. Since these callbacks may publish messages themselves,
complex behavior can be implemented as a network of topics and callbacks. We recall
the structure of ROS2, to define the important scheduling abstraction of ROS2. We
find a series of layered abstractions, as depicted in Figure 4.8. It supports applications
written in various languages, with official support for C++ and Python. Here is a
simplified breakdown:

• ROS Client Library (rcl): rcl ensures uniformity of behavior across programs,
regardless of the programming language used, by providing APIs.

• ROS Middleware Library (rmw): rmw acts as a communication bridge between rcl
and the DDS. The implementation of rmw varies according to the DDS vendor.
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Within ROS2, there are three essential abstractions related to scheduling [Choi
et al. (2021)]: callbacks, nodes, and executors.

1. Callbacks: In ROS2, callbacks are the smallest units that can be scheduled. There
are five types of callbacks: timer, subscription, service, client, and waitable. While
timer callbacks operate based on a fixed schedule, the others are event-triggered.
Callback functions in ROS2 primarily facilitate the transport of messages between
publishers and subscribers.

2. Nodes: A node in ROS2 is a set of callback functions, arranged for feature
partitioning and modularity. It is also the smallest entity that can be allocated to
executors. This means that an executor is responsible for executing all callbacks
within its allocated node.

3. Executors: Executors are responsible for managing the execution of callbacks.
Essentially a thread operating on CPU cores, is responsible for executing assigned
callbacks. The node abstraction is used to allocate callbacks to executors. Once
nodes are assigned to an executor, it handles all callbacks from those nodes,
irrespective of the callback’s origins. Callback scheduling by an executor is
distinct from traditional priority-based real-time task scheduling [Casini et al.
(2019)]. In an executor’s callback scheduling, two features stand out. Firstly,
callback priorities are type-based, with timer callbacks always given the top
priority. All callbacks are non-preemptively executed. Secondly, an executor
updates non-timer callback readiness via communication with the middleware
layer (rmw) at a polling point, leading to a round-robin-like operation of chains
[Casini et al. (2019)].

When deploying a ROS2 application, it is essential to allocate individual nodes to
hosts and then map them to the operating system’s processes. Notably, ROS2 does
not place any restrictions on this process. The implementation of the ROS2 execution
model relies on running executors within the processes, which handle messages from rcl
and subsequently trigger the related callbacks [Macenski et al. (2023)]. By initiating
the spin() function of the executor instance, the current thread begins querying the
rcl and middleware layers for incoming messages and other events. This continues
until the node is deactivated. Currently, rclcpp offers three types of Executors: Single
Threaded Executor (the most basic type), Multi-Threaded Executor (which allows for
parallel processing by creating multiple threads), and Static Single-Threaded Executor
(designed to optimize runtime costs when scanning a node’s structure). Moreover,
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ROS2 enables the arrangement of a node’s callbacks into groups: Mutually Exclusive
(where callbacks can not run simultaneously) and Reentrant (where callbacks can run
in parallel). The current scheduling schematic of ROS2 executors is presented by
Casini et al. (2019). While the three executors provided by rclcpp are suitable for most
applications, they fall short for real-time applications, which require definite execution
times, predictability, and custom control over the execution sequence. This is attributed
to a complex and mixed scheduling schematic, the risk of priority inversion, lack of
explicit control over the callback execution sequence, and absence of built-in control for
initiating specific topics. Lastly, the overhead from the executor in terms of CPU and
memory utilization is fairly significant [Macenski et al. (2023)].

From a real-time perspective, it is crucial to acknowledge that custom scheduling
policies for executors. The scheduling methodology employed by the operating system
for each ROS executor’s threads significantly influences the overall timing behavior of
the application. To achieve more predictable scheduling, executor threads can be associ-
ated with a reservation server, a strategic configuration aimed at ensuring predictability
[Casini et al. (2019)]. The seminal work by Casini et al. (2019) served as the theoretical
foundation for investigating the temporal behavior of ROS2. It made significant strides
in predicting the end-to-end latency (or response time) of time-sensitive processing
chains. They presented an intuitive model of ROS applications operating on a resource
reservation scheduler such as Linux’s SCHED_DEADLINE. Intriguingly, they validated
their approach using the move_base package, a core component of the navigation
stack for autonomous robots. Additionally, noteworthy work on scheduling schematics
was performed by Choi et al. (2021). Their efforts focused on reducing end-to-end
system latency through the use of the Priority-Driven Chain-Aware Scheduler (PiCAS).
They established a modified rclcpp package that includes specialized APIs for assign-
ing priorities to executors, which are then scheduled under the SCHED_FIFO policy
of the PREEMPT_RT patched Linux kernel. When compared with traditional ROS2
scheduling that uses the SCHED_OTHER policy, and resource reservation which deploys
the SCHED_DEADLINE policy, the improvement in end-to-end latency was substantial.
This development enhances the predictability of ROS2 scheduling schematic, thus
meeting the real-time application requirements within ROS2. However, there remains
a gap in the research concerning the scheduling ROS2 applications under the Xenomai
framework, an area with the potential to further improve system-level reliability and
predictability.
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4.5.3 ROS2 with Xenomai

There exists research focusing on real-time architecture for robotic control, particularly
with respect to the Xenomai framework. This includes the work of Choi et al. (2009),
which employed a Linux patched Xenomai 2.0 and a sink node; the research undertaken
by Yang and Choi (2014) centered around trajectory planning; and the study conducted
by Delgado et al. (2019), which utilized the Cross-Domain Datagram Protocol (XDDP).
Furthermore, investigations such as those by Park et al. (2020) and Barut et al. (2021)
have explored the scheduling latency for ROS2 under PREEMPT_RT Linux. However,
these studies did not place particular emphasis on the scheduling schematics of ROS
threads. Within the context of integrating the ROS2 and Xenomai-4 frameworks, no
extant work is currently available. Our goal was to contribute by expanding the PiCAS
[Choi et al. (2021)] rclcpp package’s functionality, enabling it to schedule either a single
executor thread or multiple threads using the EVL core. This modification provides a
direct and user-friendly adaptation for developers, empowering them to develop and
deploy real-time applications. By fostering system predictability through this method,
we anticipate an improvement in the dependability of robotic devices.

We start by delineating the PiCAS framework, depicted in Figure 4.9. This
framework adopts the workload models, namely Callback, Node, Executor, and Chain,
originally conceptualized by Choi et al. (2021). Chains, which are not inherent to the
ROS2 framework, are formed by system designers to encapsulate message exchanges
between nodes. Developers assign priority to callbacks and executors based on their
criticality to meet application-level requirements. Given the significant impact of
end-to-end latency on real-time systems, PiCAS’s focus is directed towards scheduling,
resource allocation, and chain analysis. All proof-of-concept components, including
priority assignment and end-to-end latency computation, are preserved as we primarily
concentrate on scheduling enhancements within the Xenomai framework. To rectify
the shortcomings of the original ROS2 framework, detailed in Section 4.5.2, PiCAS
facilitates the prioritization of critical computation chains across the complex layers
of ROS2, as represented in Figure 4.9. The existing ROS2 scheduling architecture
is revamped with two considerations in mind: firstly, a higher-priority chain should
execute before lower-priority chains; secondly, instances of the same chain assigned
to the same CPU core should execute in their arrival order. This strategy aims
to mitigate self-interference between instances of the same chain and consequently,
prevent unwanted latency increases. Taking these factors into account, the author
develops chain scheduling strategies within and across executors. To implement these
strategies, PiCAS introduces a callback priority assignment scheme, which assigns
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Figure 4.9 PiCAS framework [Choi et al. (2022)].

higher priority to callbacks of more critical chains. Additionally, it prioritizes callbacks
at the beginning of a chain to mitigate self-interference. PiCAS also incorporates a chain-
aware node allocation algorithm, which allocates nodes to executors and maps executors
to available CPU cores in line with the scheduling strategies. This algorithm aims to
allocate all nodes related to the same chain to a single CPU core whenever feasible,
minimizing interference between different chains. Initially, PiCAS was implemented
for a ’SingleThreaded’ executor. However, Hoora et al. (2023) later enhanced it for
’Multithreaded’ executors with both constrained and arbitrary deadlines.

We have advanced the functionality of the PiCAS framework, allowing it to operate
with the EVL core. We developed an API , attach_executor_evl_core(), which
accepts a attribute (true or false). It is essential to invoke this API to bind the executor
to the EVL core, thus enabling the usage of EVL’s scheduling capabilities. The PiCAS
framework has been tested under three different conditions: ROS2 default, ROS2
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Chain set Chains
Chain 1 Γ1[τi(πi)] =: [τ1(30), τ2(31), τ3(32)]
Chain 2 Γ2 =: [τ4(23), τ5(24), τ6(25), τ7(26), τ8(27), τ9(28), τ10(29)]
Specifications [sec]
Timer callback (τ1 and τ4) Ci = 0.109, Ti = 1
Regular callbacks Ci = 0.131

Table 4.1 Chain sets and their specifications.
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Figure 4.10 End-to-end latency results of ROS2 PiCAS running under EVL core
compared with ROS2 default and PiCAS PREEMPT_RT.

PiCAS-PREEMPT_RT, and ROS2 PiCAS-EVL. The chain set utilized for this testing
is identical to the one specified in Choi et al. (2021), as depicted in Table 4.1. Moreover,
we have assigned priorities to the chains (πi), using a predefined priority assignment rule.
These tests were conducted on an i5-7200U 4-core CPU, operating at 2.50GHz, with a
Linux kernel configured for real-time operations, incorporating both the PREEMPT_RT
and EVL_CORE configurations. We utilized ROS2 distro Galactic38, with the default
DDS (FastRTPS). The PiCAS framework has also been implemented for the long-term
distro Humble39 and is compatible with other DDS options, such as Connext. We
used trace_picas40 to observe the end-to-end latency for the chains and depicted the
results as a box plot in Figure 4.10. The results indicate that the PiCAS framework

38https://docs.ros.org/en/galactic/index.html
39https://docs.ros.org/en/humble/index.html
40trace_picas package is provided with PiCAS framework to measure the end-to-end latencies of

chains

https://docs.ros.org/en/galactic/index.html
https://docs.ros.org/en/humble/index.html
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significantly reduces the chain latency in comparison to the ROS2 default scheduling
scheme. It is also crucial to note that executing the executor at the system level is
highly predictable and consistent with the PiCAS framework. Our further enhancement
to employ the EVL core has significantly improved the end-to-end latencies. This test
was performed under heavy workload conditions, and it was demonstrated that EVL
scheduling further enhances the integrity of the PiCAS framework. This enhancement
presents the possibility of scheduling ROS2 with Xenomai. Developers who require
very low latency for their ROS2 applications can benefit from the straightforward
adaptation of the EVL core.

4.6 Conclusion

In this chapter, we have provided a thorough guide that highlights the importance of
real-time application and its use in IMRs. It is designed as a hands-on manual for
developers who aim to implement a real-time framework to ensure predictable and
robust performance for IMRs. We started by discussing the current issues related to
how most systems do not focus on predictability and have limitations in maintenance
and usability in an industrial setting. After a thorough evaluation of contemporary
technologies and methodologies, we proposed a solid architecture that focuses on
both the hardware and software aspects of the industrial robot. The hardware setup
we suggest is simple and easy to maintain and integrate with, and it also simplifies
programming and setup, making it more user-friendly.

We provided details on how to consider the software aspects to create and implement
real-time features. We defined the system modules and scheduling classes that are used
to ensure a high level of predictability. We discussed the use of both the PREEMPT_RT
and Xenomai framework, which helps in bringing real-time features to Linux operating
systems. We stressed the importance of the Xenomai framework for devices that require
high levels of predictability and reliability. We also provided an easy-to-understand
guide on how to create real-time applications using the EVL core. We provide the
two new APIs that have been developed under EVL code that help define periods
and schedule threads to run periodically. This is essential as the threads that control
the hardware parts of an industrial robot should run periodically. We proved the
importance of the Xenomai system by evaluating its scheduling latency, showing it
provides a high level of predictability for threads running under the EVL core, even
in worst-case conditions. We discussed the challenges faced during the development
of the proposed architecture using the Jetson AGX platform. We provided details on
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the kernels used and modified to run the EVL patched Linux kernel on the Jetson
Developer kit. We highlighted the real-time features within ROS2, as it is where all the
behavioural aspects of an IMR lies. We provided a brief overview of DDS, focusing on
its real-time features using the QoS policy at the network level of the middleware. We
acknowledged research that emphasizes the scheduling schematic of ROS2 executors
to ensure reliability through real-time practices by using resource reservation and
priority scheduling. We have extended the work of Choi et al. (2021) to run ROS2
applications under the EVL core to increase predictability in worst-case situations.
This chapter provides a thorough guide for developers, covering both hardware and
software aspects and providing a minimalist approach to practice. However, we did
not discuss about energy issues. In the next chapters of this dissertation, we will
explore the optimal energy-aware scheduler, namely ED-H, its requirements, and the
implementation procedure into this software layer to meet the strict timing and energy
requirements of the application.



Chapter 5

Real-time energy-aware scheduling
under shared resource constraints

A lot of research studies addressed the scheduling issue of deadline constrained
tasks in the RTEH (Real Time Energy Harvesting) context. In particular, in this
thesis we focused on the optimal one, ED-H [Chetto (2014)]. However, optimality of
this scheduler assumes that the tasks are independent i.e. they do not communicate
and do not synchronize each other. The supplementary resource requirements of
the tasks has not yet been thoroughly examined. As discussed in Section 2.3.2, the
imperative role of shared resources in the system is clearly established. For instance, in
a mobile robot, a task such as sensor fusion, where encoder readings and IMU data are
fused to create odometry data, is crucial. This fusion necessitates a mutual exclusion
mechanism to manage the data correctly, thereby emphasizing the importance of shared
resources. Therefore, we propose an extension to the independent workload model that
incorporates the critical resources. Consequently, we introduce new definitions and
notations that will prove instrumental in subsequent sections. The main objective of
that chapter is firstly to show how to implement jointly a resource access protocol with
the ED-H scheduler and secondly to derive a new schedulability condition.

The plan of the chapter is as follows. In Section 5.1 we outline the fundamentals
of shared resource and the terminologies used when a processing platform executes
tasks with shared resources. Additionally, we present the resource access protocols de-
signed to prevent priority inversion, emphasising on Dynamic Priority Ceiling Protocol
(DPCP). In Section 5.2, we introduce a novel schedulability test, specifically designed
for real-time tasks that share resources under the ED-H scheduling algorithm. This
marks a novel contribution, being the first work to consider tasks with shared resources
in the context of the state-of-the-art scheduling algorithm for RTEHS.

5.1 Shared Resources and Critical Sections

In this section, we revisit the key concepts that we first introduced in Section 2.3.2,
focusing on shared resource constraints. Resources within a computer system can be
broadly classified into two categories, physical and virtual. Physical resources refer
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to tangible computer system components like memory, I/O, and hardware devices.
On the other hand, virtual resources are abstract entities that maintain some level
of internal consistency, such as shared data structures. The term ’critical sections’ is
used to label the parts of a program that interact with shared resources.

Notions

Within the scope of a single-processor system, we present a set of resources, denoted as
Ω = {Ri∥1≤ i≤ κ}, which are typically serially reusable. These resources are allocated
to jobs in a nonpreemptive manner, meaning that once a resource Ri is in use by a
job, it remains inaccessible to other jobs until its release. The phenomenon known
as a race condition occurs when the sequence in which a shared resource is accessed
influences the final outcome. To mitigate this, a ’mutual exclusion’ mechanism is
implemented, ensuring exclusive access to a critical section for a single job at any
given time, thereby safeguarding the order and efficiency of operations. In this mutual
exclusion mechanism, a job intending to utilize a resource Ri initiates a lock request,
represented as L(Ri). This request signals the job’s requirement for the resource. The
job resumes its operation once the requested resource is granted. Upon completion of its
operation requiring the resource, the job releases it, performing an unlock, symbolized
as U(Ri). Each critical section, under the assumption of using only a single unit of
the resource, is denoted as [R;Rc]. Here, Rc denotes the maximum execution time for
that section.

5.1.1 Resource Conflicts and Blocking

In the context of shared resources, situations often arise where multiple jobs attempt
to access these resources simultaneously during overlapping time intervals. Such
circumstances are referred to as resource conflicts. A resource conflict occurs when two
jobs require resources of the same type. Conflict escalates into contention when one
job requests a resource that is currently allocated to another job.

As previously stated, mutual exclusion ensures that only one job accesses a critical
section at any given time. If a job’s lock request fails, it becomes blocked and is removed
from the ready job queue. This job remains blocked until it is granted the required
resource Ri, at which point it becomes unblocked, returns to the ready job queue, and
resumes execution when scheduled. While ’blocking’ implies a mandatory delay imposed
by other jobs due to the immediate unavailability of the resource. The principle of
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mutual exclusion thus ensures orderly access to resources, preventing conflict and
maintaining operational efficiency.

When multiple jobs share the same resources, certain challenges may arise. One of
these complexities is priority inversion, which was defined in Section 2.3.2. Deadlock
is another possible issue, occurring when jobs indefinitely wait for each other to release
shared resources, resulting in a stalemate. To counteract these issues, scheduling theory
offers various resource access protocols. These protocols establish rules determining the
conditions for resource request approval, as well as the scheduling of jobs that require
these resources.

5.1.2 Resource Access Protocols

We study the renowned uniprocessor resource synchronization protocols, designed to
mitigate priority inversion and deadlock.

The first solution to counteract indirect priority inversion is the implementation
of a strategy that disallows preemption when a job enters a critical section. One
protocol, known as the Non-Preemptive Protocol (NPP), provides a straightforward
approach to prevent priority inversion [Mok (1983)]. Under NPP, a job attempting
to lock acquisition is given the highest scheduling priority, thereby safeguarding it
from preemption by other jobs. This method effectively solves both priority inversion
and deadlock problems. However, it creates a new issue where lower-priority jobs can
obstruct unrelated higher-priority jobs, impacting their response time.

In response to this issue, Sha et al. (1990) proposed the Priority Inheritance Protocol
(PIP). Under PIP, if a lock is free, a job locks it immediately. However, if the lock is
occupied, the higher-priority job, is blocked. To counteract the priority inversion, higher-
priority job transfers its current scheduling priority to the lock holder, low-priority job,
until it releases the lock and higher-priority job can obtain it. Although PIP effectively
prevents preemption by all lower-priority jobs, it has limitations. Deadlocks can occur
when lock requests are nested. Additionally, PIP does not minimize the blocking time
of higher-priority jobs since any locking request is granted immediately if the lock is
free.

The Priority Ceiling Protocol (PCP) addresses both of these issues [Sha et al.
(1990)]. PCP introduces priority ceilings and mandates that all jobs resource requests
are known beforehand. The resource priority ceiling is the highest priority of all jobs
that can obtain a specific resource. The system’s current priority ceiling is the highest
priority ceiling of the resources currently in use. When a job requests a resource, if
the resource is not free, the job is blocked. Otherwise, the protocol follows certain
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rules: if the job’s current priority is higher than the current priority ceiling, the job
immediately acquires the resource; if the task’s priority is equal to the current priority
ceiling and the task already holds another resource with the same resource priority
ceiling, the task acquires the resource; otherwise, the task is blocked. Initially PCP was
designed for fixed-priority scheduling algorithms, such as RM, this protocol has been
extended by Chen and Lin (1990) to dynamic-priority scheduling algorithms, such as
EDF. In this context, the priority ceiling is evaluated at each modification of the ready
job list that is caused by activation or completion of jobs.

In Baker (1990) Stack Resource Policy (SRP) is a PCP variant that allows non-
blocking tasks to share a single execution stack. The main difference between this
protocol and PCP is that it prevents any preemption in locking scenarios that could
be problematic, instead of denying lock attempts. Another PCP variant with similar
analytical properties to SRP is the Immediate Ceiling-Priority Protocol (IPCP) [Burns
(2009)]. The main idea here is to elevate a task’s priority with each resource request to
the resource’s ceiling priority and lower the priority back when the resource is released.

In this dissertation, our primary focus is on the Dynamic Priority Ceiling Protocol
(DPCP) as proposed by Chen and Lin (1990). In the context of energy-aware scheduling,
particularly the ED-H algorithm, our intention is to scrutinize the synchronization
issues when tasks operate with shared resources. More specifically, we aim to explore
the impact on the schedulability test for ED-H in circumstances involving shared
resource usage.

Notions

To delineate the DPCP protocol, we need to introduce the essential terminologies.
Firstly, each resource within the protocol is associated with a unique parameter known
as ’priority ceiling’. For a resource Ri, its (dynamic) priority ceiling, denoted as ρ(Ri),
is equivalent to the highest priority among all jobs requiring Ri. It is important to
note that the resources required by all jobs are identified in advance, before any job
commences its execution.

Secondly, we must consider the system’s ’current priority ceiling’. This is a dynamic
value represented as ρ̂(t), with t standing for the current time. If at time t, certain
resources are being used, then ρ̂(t) matches the highest priority ceiling of the resources
in use. Conversely, if all resources are free at time t, the ceiling ρ̂(t) defaults to a
non-existent priority level π, which is theoretically lower than the lowest priority of all
jobs. Additionally, the ’blocking set’ of a task is critical, representing the set of critical
sections that may block jobs of the task. Specifically, it includes the critical sections
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of lower-priority tasks whose priority ceilings are equal to or higher than the task’s
priority. This blocking set is denoted as Θ.

In systems with static priorities, the blocking set can be readily determined, given
that task priorities and priority ceilings are static. However, in a system operating with
a dynamic priority scheme, the blocking set’s identification becomes less straightforward,
as the relative priorities among tasks are subject to change from job to job.

5.1.3 Dynamic Priority Ceiling Protocol

The principles of Dynamic Priority Ceiling Protocol (DPCP) can be adapted from
Priority Ceiling Protocol (PCP) in the context of Earliest Deadline First (EDF)
scheduling and resource contention. The rules are thus reformulated as follows:

1. Scheduling Rule: EDF rule,

(a) At the release time t, the initial priority π(t) of every job J corresponds to
its absolute deadline, with an earlier deadline indicating higher priority.

(b) Every ready job J is preemptively scheduled in accordance with its current
priority π(t), which is based on its absolute deadline.

2. Allocation Rule: Whenever a job J requests a resource R at time t, one of the
two scenarios arises:

(a) If R is already held by another job, J ’s request fails and J becomes blocked.

(b) If R is free:

i. If J ’s priority π(t) surpasses the current priority ceiling ρ̂(t), R is
allocated to J .

ii. If J ’s priority π(t) is not higher than the system’s current ceiling ρ̂(t),
R is allocated to J only if J is the job currently holding the resource(s)
with a priority ceiling equal to ρ̂(t). If not, J ’s request is denied, and J

becomes blocked.

3. Priority-Inheritance Rule: If J becomes blocked, the job Jl that blocks Jh inherits
the current priority π(t) of J . Jl operates at its inherited priority until it releases
all the resources with priority ceilings equal to or higher than π(t); at that point,
the priority of Jl reverts to its original priority πl(t′), which it had at the time t′

when it was allocated the resource(s).
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These rules encapsulate the fundamentals of DPCP, where priority ceilings associated
with resources are dynamic, varying in line with currently active jobs and their
corresponding absolute deadlines. The resource is allocated contingent on both the
initial and the inherited priorities (if applicable) under DPCP. The priority inheritance
mechanism within DPCP assures that a job of lower priority that blocks a higher
priority job will temporarily operate at the higher priority to circumvent priority
inversion until the blocking is resolved.

For a job Ji using DPCP, the worst-case blocking length Bi is defined as the
duration of the longest critical section in Θi. By factoring in the worst-case blocking
of each task, a sufficient schedulability condition can be formulated, as depicted in the
following theorem.

Theorem 4 (Chen and Lin (1990)). A set of n periodic tasks can be scheduled by EDF
using the DPCP protocol if the following inequality is met:

n∑
i=1

Ci +Bi

Ti
≤ 1 (5.1)

5.1.4 Example of EDF+DPCP

We illustrate the operation of EDF+DPCP through an example with a task set that
comprises of three periodic tasks τ1 , τ2 and τ3, and two semaphores S1 and S2

used to protect the access to shared resources R1 and R2 respectively. The tasks
τi = (Ci,Ti,Di; [Rk;ek]) are described by the following parameters: τ1 = (2, 6, 5;
[R1;1]), τ2 = (2, 8, 6; [R2;1]) and τ3 = (8, 24, 20; [R1;3[R2;3]]).

Figure 5.1 shows how the periodic task set is scheduled by EDF using DPCP for
managing shared resource accesses. For the tasks, the blocking sets are computed as
follows: Θ1 = {S1} as τ3 might lock R1 when τ1 intends to use it. Similarly, Θ2 = {S2}
as τ3 might lock R2 when τ2 intends to use it. For τ3, no blocking is expected, and
therefore Θ3 = {}. The worst-case blocking times that each task may encounter are
determined from these blocking sets. For τ1 and τ2, the worst-case blocking times are
B1 = B2 = 3, while B3 = 0.

The execution commences with the highest priority job J1,0 which starts its operation
and accesses the free resource R1. Subsequently, at t = 2, job J2,0 embarks on its
execution, accessing and completing its operation as the required resource R2 is free.
At t = 4, job J3,0 being the only job remaining, initiates its execution and locks the
available resource R1. A new instance of job J1,1 is introduced at time t = 6 with a
higher priority (π(6) = 12) than J3,0 preempting the latter to execute. However, at
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Figure 5.1 Illustrative example of EDF+DPCP schedule.

t = 7, when J1,1 attempts to lock R1, which is already secured by J3,0 it cannot obtain
the lock. This situation necessitates the verification of the priority ceiling, resulting in
J3,0 inheriting the priority of J1,1 and resuming its execution to complete its access to
R1. Upon J3,0 releasing R1 at t = 9, J1,1 acquires the lock on R1 and completes its
execution before the deadline. This example succinctly depicts the combined efficacy
of EDF scheduling and DPCP in managing shared resources effectively and preventing
deadline misses.

5.2 Energy-aware scheduling with Shared Resource constraints

Our examination is centered on a RTEHS with a set of periodic tasks, scheduled under
the ED-H energy-aware scheduling algorithm. This analysis is primarily aimed at
understanding the task and energy models pertinent to the RTEHS, as detailed in
Section 3.4. Following this, the resource model will be discussed, merging previously
established notions with their associated parameters, particularly those crucial to
RTEHS.

Within the RTEHS, the process of scheduling real-time tasks that share resources
under energy constraints presents an additional blocking factor. This typically occurs
when a higher priority job requires a resource currently used by a job of lower priority.
As depicted in Figure 5.2, the higher priority job encounters two forms of blocking,
namely blocking time and blocking energy. Considering these blocking factors is critical
as the higher priority job could face time or energy starvation while waiting for
the resource. Therefore, our interest is to include these blocking aspects into the
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Figure 5.2 Blocking factors for tasks with shared resources under RTEHS.

schedulability analysis of ED-H. Doing so permits that a robust schedulability test for
tasks with shared resources can be established.

5.2.1 Resource Model

We are considering a set of periodic tasks sharing a collection of κ resources, denoted as
Ω = {Ri∥1≤ i≤ κ}. The status of each resource is either locked or unlocked, depending
on whether a job is currently accessing it or not.

Each resource R carries an associated dynamic priority ceiling at any given time t,
notated as ρ(R). This dynamic priority ceiling is defined as the highest priority among
all tasks that could potentially require access to R. With the dynamic nature of job
priorities in the system, these priority ceilings adjust accordingly. Within the DPCP, a
job will temporarily take the priority of the highest priority job it is obstructing until
the blockage is resolved. This inherited priority is denoted as πh(t). Conversely, if a
job is not obstructing any others, its actual priority is indicated as πa(t).

Further parameters associated with RTEHS include δl,h and ξl,h. Here, δl,h rep-
resents the longest duration a lower-priority job Jl can hold a resource needed by a
higher-priority job Jh. The term ξl,h denotes the maximum energy consumed by the
lowest-priority job Jl while holding the resource needed by the higher-priority job Jh.
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5.2.2 Schedulability Analysis of ED-H + DPCP

In this section, we outline the approach to evaluate the feasibility of a set of periodic
tasks in the context of shared resources. Initially, we introduce the schedulability of a
periodic task set under ED-H, as described in Chetto and Queudet (2019). Theorem 5
presents the schedulability test, managing both the processor demand (h) and energy
demand (g):

Theorem 5. A set of deadline-constrained jobs J of a periodic taskset with Up ≤ 1
and Ue ≤ Ph is schedulable by ED-H iff for every interval [t1, t2), h(t1, t2)≤ t2− t1 and
g(t1, t2)≤ C +Eh(t1, t2)

Proof. Chetto and Queudet (2019)
Before delving into the specifics, it is crucial to understand the necessity of incor-

porating the blocking factor in the schedulability test for ED-H. To illustrate this,
we consider a periodic task set denoted as τi = (Ci,Ti,Di,Ei; [Rk;Rck,Rek]). The
parameters are defined as follows : τ1 = (4, 8, 8, 6; [R1;2,3]), τ2 = (2, 12,
12, 2; [R2;1,1]) and τ3 = (6, 24, 24, 18; [R1;5,10]). Initially, the storage is
considered to be at maximum capacity, E(0) = Eb = 5, and the instantaneous harvested
power Ph, is a constant at 2.

By applying the existing schedulability test, the task set is deemed schedulable, in
line with Theorem 5. We draw up a schedule for the task set, as shown in Theorem 5.
At the start, the job with the earliest deadline, J1,0 executes, followed by J2,0. At t = 6,
job J3,0 begins its execution and acquires a lock on resource R1. Subsequently, when
job J1,1 is released at t = 8 and preempts, it encounters the already locked resource R1,
which is in use by J3,0. After verifying the priority ceiling, J3,0 inherits the priority of
J1,1 and continues to use resource R1. During its execution J3,0 consumes energy that
may be required by future jobs. However, by the time J3,0 releases R1, job J1,1 lacks
sufficient time and energy to complete its execution within its deadline. This results in
an invalid schedule.

The schedulability tests, originally designed for independent periodic tasks under
ED-H scheduling, can be broadened to include blocking terms. When blocking factors
are present, the schedulability tests, which are both necessary and sufficient under
preemptive scheduling, become merely sufficient. This is because blocking conditions,
which are unique to each job, are assessed under worst-case scenarios and can never
occur concurrently.

Our schedulability analysis is based on the processor/energy demand criterion.
We adopt a similar strategy as proposed by Baruah (2006) to extend the demand
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Figure 5.3 Non-valid ED-H schedule when considering tasks with shared resources.

criterion by introducing the concept of blocking function in scenarios involving blocking
terms. However, in our context, we are dealing with both time and energy constraints.
Consequently, it becomes essential to establish a blocking time function as well as a
blocking energy function. These functions facilitate a detailed exploration of task set
schedulability, considering it from a two-fold perspective – the time and energy domain.

5.2.3 Analysis in the time domain

The processor demand associated to a periodic job set J , h(t1, t2) over the interval
[t1, t2) is the total processing time required by jobs with arrival times at or after t1 and
deadlines at or before t2. We denote BT (L), as the function of longest blocking time
for which a job with relative deadline less than or equal to L may be blocked by a job
with relative deadline greater than L.

Lemma 1. For any instants t1 and t2,
h(t1, t2)≤∑n

i=1 Ni(t1, t2).Ci +BT (t2− t1)
with BT (t2− t1) def= max{δl,h ∥ Dl > t2− t1 and Dh ≤ t2− t1}
and Ni(t1, t2) def= max

(
0,⌊ t2−ri−Di

Ti
⌋−⌈ t1−ri

Ti
⌉+1

)
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Proof. The number of jobs generated in [t1, t2) corresponds to the number of non-
negative integers k that satisfy the inequalities t1 ≤ ri +kůTi and t2 ≥ ri +kůTi +Di.
There are exactly max

(
0,⌊ t2−ri−Di

Ti
⌋−⌈ t1−ri

Ti
⌉+1

)
such k’s. Each job requires Ci

processing time units coming from its normal execution with no resource access.
Consequently, it has to receive at least Ni(t1, t2)ůCi processing time units in [t1, t2).
However, under ED-H+DPCP, in time interval [t1, t2) a job Jh with relative deadline
less than or equal to t2−t1 of that wants to access a resource which is held by job Jl with
relative deadline greater than t2− t1 may be blocked. It involves additional processing
time bounded by BT (t2− t1). The lemma follows since the cumulative processing time
required is upper bounded by BT (t2− t1)+ ∑n

i=1 max
(
0,⌊ t2−ri−Di

Ti
⌋−⌈ t1−ri

Ti
⌉+1

)
.Ci.

5.2.4 Analysis in the energy domain

The energy demand g(t1, t2) over [t1, t2) is defined as cumulative energy required by
jobs with arrival times at or after t1 and deadlines at or before t2. Let us denote BE(L)
the highest quantity of energy from which a job with relative deadline less than or
equal to L may be deprived of by a job with relative deadline greater than L.

Lemma 2. For any instants t1 and t2,
g(t1, t2)≤∑n

i=1 Ni(t1, t2).Ei +BE(t2− t1)
with BE(t2− t1) def= max{ξl,h ∥ Dl > t2− t1 and Dh ≤ t2− t1}

Proof. Each job requires at most Ei energy units coming from its normal execution
with no resource access. Consequently, it has to receive at least Ni(t1, t2)ůEi energy
units in [t1, t2). Under ED-H+DPCP, in time interval [t1, t2) a job Jh with Dh ≤ t2− t1

that wants to access a resource which is held by a job Jl with Dl > t2− t1 may suffer
from lack of energy due to the largest amount of energy consumed by job Jl upper
bounded by BE(t2− t1). The lemma follows since the cumulative energy required is
upper bounded by BE(t2− t1)+ ∑n

i=1 max
(
0,⌊ t2−ri−Di

Ti
⌋−⌈ t1−ri

Ti
⌉+1

)
.Ei. □

5.2.5 Sufficient schedulability test
We may derive the sufficient schedulability test of ED-H+DPCP for any periodic task
set and any energy source profile :
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Theorem 6. A periodic task set is schedulable by ED-H+DPCP on any interval [t1, t2)
if:

n∑
i=1

Ni(t1, t2).Ci +BT (t2− t1)≤ t2− t1 (5.2)

n∑
i=1

Ni(t1, t2).Ei +BE(t2− t1)≤ C +Eh(t1, t2) (5.3)

Proof. Consider an independent task set in which each job issued from task τi has
worst-case computation time equal to Ci and worst-case energy consumption equal
to Ei. This task set will be schedulable by ED-H as long as Theorem 5 is satisfied.
Under DPCP, directly from Lemma 1, the blocking time function can be treated as
an additional processing time while from Lemma 2, blocking energy function can be
treated as additional energy consumption of τi. Thus, it follows from Theorem 6 that
the task set will be schedulable if equations 5.2 and 5.3 are satisfied.

Theorem 6 above answered the question of whether a set of periodic tasks may
respect all their deadlines between any two time instants, be given their computing,
energy and resource requirements in one side and the characteristics of the energy
storage and energy source in the other side. Theorem 6 gives a sufficient schedulability
condition which deals with upper bounded worst-case processing time through inequality
5.2 and upper bounded worst-case energy consumption through inequality 5.3.

Illustrative example of ED-H+DPCP

We present an illustrative example that demonstrates the effectiveness of ED-H in
scheduling tasks with shared resources under the DPCP protocol. We consider a
periodic task set denoted by τi = (Ci,Ti,Di,Ei; [Rk;Rck,Rek]). The tasks parame-
ters are defined as follows : τ1 = (3, 10, 10, 9; [R1;2,6]), τ2 = (4, 15, 15, 5;
[R2;2,2.5]) and τ3 = (9, 30, 30, 18; [R1;4,8[R2;1,2]]). Initially, the storage is
considered to be at maximum capacity, E(0) = Eb = 6, and the instantaneous harvested
power Ph, is a constant at 2.

Initially, job J1,0 begins execution, employing resource R1. Subsequently, job J2,0

uses resource R2, which is free at the time. Job J3,0 then starts its execution, securing
a lock on resource R1, which is free. Both the time and energy domain analyses are
carried out for the time interval [10,20). Equation 5.2 is verified, with (3 + 4) ≤ 10
being satisfied. Similarly, Equation 5.3 is verified, with (9+8)≤ 26 also being satisfied.
Figure 5.4 depicts a valid schedule of the task set under the combined approach of
ED-H and DPCP.
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Figure 5.4 ED-H+DPCP valid schedule.

5.3 Conclusion

The schedulability test discussed previously in this dissertation did not apply when
tasks share mutually exclusive resources. In this chapter, we have delved into a detailed
schedulability analysis for the ED-H energy-aware scheduling algorithm that specifically
focuses on tasks subject to shared resource constraints. Key elements such as resource
access protocols and shared resource constraints were discussed, underscoring their
role in preventing issues such as priority inversion and deadlocks, which can arise
from resource contention. Moreover, we elaborated on an additional resource model
specifically designed for RTEHS that schedules tasks sharing resources. A noteworthy
contribution of this work is the proposition of a novel blocking function - the blocking
energy function. This function augments the conventional blocking time function and is
designed specifically for RTEHS. The illustrative example emphasized the shortcomings
of the existing schedulability test, especially when dealing with dependent tasks that
share resources. To rectify this, we offered a new theoretical analysis that incorporates
the dual blocking factors - time and energy - into the processor demand and energy
demand functions.

Furthermore, we established a new theorem for scheduling periodic tasks using
shared resources with ED-H and managing resources with DPCP. While other dynamic
resource access protocols could be applied, the schedulability test would remain con-
sistent. The insights gained from this theoretical progression creates a solid basis for
the real-world application of ED-H. Following chapters will shift focus towards the
practical aspects, exploring the implementation of ED-H within the Xenomai Kernel.



Chapter 6

An Energy-Aware Scheduler for
Xenomai

In this chapter, we extend our exploration of scheduling schemes within the real-
time operating system Xenomai-4 (EVL), paying special attention to the energy needs
of mobile robots at the operating system level of the computing platform. We have
previously discussed an energy-aware scheduling scheme from a theoretical perspective.
Now, we aim to further develop this concept into a more practical framework. In
Section 6.1, we establish the requirements needed to transition this proof of concept to
the operating system level. The primary requirement involves verifying the scheduler
behavior through a real-time simulator. Section 6.2 provides a detailed overview of
the newly developed REACTSim (Real-time Energy-Aware Computing Task scheduler
Simulator) tool. It explains how it can be effectively used. We also demonstrate the
distinctive outcomes when scheduling energy-constrained tasks using the traditional
EDF scheduler versus the optimal energy-aware scheduler, specifically ED-H. Building
on this foundation, we delve into the implementation of two new scheduling policies in
Section 6.3. These policies include the traditional SCHED_EDF (Earliest Deadline First
Scheduler) and the energy-aware SCHED_EDH (Earliest Deadline Harvest scheduler).
We thoroughly examine key aspects of the EVL scheduler core, detailing its behavior
and scheduling class. This section also offers extensive details about the implemented
scheduling policies and their application, and outlines the development platform and
debugging tool used during the process. Lastly, in Section 6.4, we consider the limita-
tions of addressing the energy requirements of industrial mobile robots at the system
level. To counter these challenges, we propose a novel strategy to refine our focus. This
exploration sets a firm groundwork for continued research into energy-aware scheduling
schemes for mobile robots.

6.1 Problem Statement

While energy-aware scheduling algorithms proposed by Moser et al. (2007) and Abdedda
et al. (2014) have been innovative, their features have not been integrated into real-time
operating systems (RTOS). Previous simulation studies by Abdallah (2014) and Rola El
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Osta (2017) have critically examined and compared various metrics, including the rate
of preemption, the processor usage, and the energy usage under ED-H [Chetto (2014)]
with respect to other comparable scheduling algorithms. However, the primary focus
of our work is on implementing the ED-H scheduling scheme within an RTOS, thereby
extending its applicability to real-world applications. We have examined the dual-
kernel approach offered by Xenomai for Linux distribution. The implementation of a
scheduling scheme into a kernel is not straightforward; it requires deep understanding of
the scheduling classes, a work that is further complicated by the inherent complexity of
the Linux kernel’s scheduling classes and an insufficient documentation. To circumvent
these challenges, we have opted for Xenomai, given its unique functionality and the
supportive infrastructure outlined in Section 4.3.2.

The EVL project1 has been instrumental in simplifying the intricacies of Xenomai,
enabling a more in-depth understanding of its core implementation. This has facilitated
the integration of a novel scheduling scheme alongside pre-existing ones. However,
implementing ED-H comes with its own challenges, especially given its reliance on
computations like slack time and preemption slack energy to make decisions. To
alleviate these challenges and before attempting to integrate this into the kernel
framework, which could lead to additional debugging complexities, we propose to
build a simulation framework. This will essentially emulate the kernel’s scheduler
functionality and provide a practice platform for our implementation. Consequently,
we aim to design a simulation framework that is not only user-friendly but also
facilitates the development of the scheduling scheme and enables the verification of
its functionalities. Moreover, creating an offline schedulability test environment is
essential. This environment will enable developers to define effective task parameters,
thereby helping in verifying the schedulability of the task set. This tool will also
enable the simulation and understanding of power consumption and power harvesting
behaviors. Using this simulation framework, we can observe the behavior of realistic
applications scheduled with an operating system. In summary, our goals are threefold.
First, we will develop a simulation framework that emulates the kernel’s structure and
is easily usable. Second, we will create an offline schedulability test environment to
assist developers in selecting appropriate task parameters and system parameters (e.g.,
energy storage size, etc). Finally, we will implement the ED-H scheduling policy into
the Xenomai kernel and verify the efficacy of task scheduling with time and energy
constraints.

1https://evlproject.org/

https://evlproject.org/
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6.2 RT Simulator

Focusing on real-time task scheduling, numerous simulators have been developed,
offering profound insights into the performance characteristics of scheduling algorithms.
One such simulator is Cheddar [Singhoff and Plantec (2007)], an open-source plat-
form designed to simulate real-time systems software architectures and assess their
schedulability and performance metrics. Another simulator, RTsim [Manacero et al.
(2001)], serves as a collection of programming libraries encapsulated in C++. Its
primary role is to facilitate the simulation of real-time control systems. On the other
hand, SimSo [Cheramy et al. (2014)] focuses on architectures with multiple processors
working in real-time. It uses Python and a system called SimPy to allow for quick
simulations and easy creation of scheduling policies. These tools have proven to be
influential in the study and analysis of scheduling algorithms, particularly for their
role in computing task scheduling. Another tool worthy of mention is the Linux
Scheduler Simulator (LinSched)2, which provides developers the flexibility to alter the
behavior of the Linux scheduler and assess these changes in a user-space environment.
LinSched’s key strength lies in the fact that it necessitates minimal modifications in
the kernel sources, allowing developers to create kernel code and have kernel-ready
patches readily available post-testing. The Linux kernel also benefits from PRAcTISE
(PeRformance Analysis and TestIng of real-time multicore SchEdulers)3, which is a
framework for the Linux kernel. It helps developers create, test, and debug scheduling
algorithms. It also allows developers to compare different implementations by providing
early performance estimates. This helps in choosing the best structures for data and
schedulers. Unlike other tools like LinSched, PRAcTISE allows true parallelism which
allows for a full test in a realistic scenario. These frameworks significantly ease the
process of developing and modifying kernel code for the Linux kernel. In this work,
we have developed a user-friendly simulator, REACTSim (Real-time Energy-Aware
Computing Task scheduler Simulator). This simulator integrates a straightforward
task structure identical to Xenomai and the Linux Kernel, while crucially incorpo-
rating energy constraints. REACTSim has a user-friendly Graphical User Interface
(GUI) interface which simplifies its usage, making it an accessible tool for real-time
energy-aware task scheduling.

2https://github.com/jserv/linsched
3https://github.com/Pippolo84/PRAcTISE

https://github.com/jserv/linsched
https://github.com/Pippolo84/PRAcTISE
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6.2.1 REACTSim

REACTSim is a tool developed in C for the analysis and scheduling of real-time
computing tasks with energy requirements. In order to create an interactive and user-
friendly environment, we have incorporated a GUI supported by QT4. The tool has
been built with several scheduling policies including: Earliest Deadline First scheduler
(SCHED_EDF), Earliest Deadline Harvest Scheduler (SCHED_EDH), Rate Monotonic Sched-
uler (SCHED_RM), and Deadline Monotonic Scheduler (SCHED_DMS). Our main focus
during the development phase was on SCHED_EDF and SCHED_EDH, with the inclusion
of energy constraints.

Select Scheduling Policy
Select Task set Input type

User Input / FIle Input
Auto Task Set Generator

SCHED_EDF
SCHED_ED-H
SCHED_RM
SCHED_DMS

Schedulability test Run Schedule Plot Schedule

Figure 6.1 REACTSim Overview.

Figure 6.2 Interface to select the scheduling policy and task parameters input type.

The overview of the REACTSim tool, as depicted in Figure 6.1, illustrates the
selection of a scheduling policy as the initial step. The user then chooses the task
parameter input type, conducts the schedulability test, and executes the schedule.
Finally, the user can visualize the scheduling plot. As shown in Figure 6.2, REACTSim
begins with the user selecting their desired scheduling policy from a drop-down menu.
The option to ’Include energy parameter’ can either be selected or deselected for the
scheduling policy, except in the case of SCHED_EDH where it is enabled by default. We

4https://wiki.qt.io/Main

https://wiki.qt.io/Main
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have incorporated two modes for task set input: user input and an automatic task set
generator, which employs the UUniFast algorithm [Bini and Buttazzo (2005)].

(a) Input by User pop-up window
(b) Input by auto taskset generator pop-
up window

Figure 6.3 Task parameter input pop-up windows.

Upon clicking the ’Input by User’ button, a pop-up window opens. Figure 6.3a
illustrates the layout for defining parameters for the ’n’ number of tasks. If the ’Include
energy parameter’ option from the previous window is selected, energy parameters are
included in this window. Otherwise, only time parameters are displayed. Additionally,
users can load a predefined task set in a CSV file by selecting the desired filename and
clicking the ’Load’ button, which automatically loads the task parameters. Alternatively,
if the ’Input by auto taskset generator’ button is selected, a pop-up window titled ’Auto
Task Set Generator’ appears, as shown in Figure 6.3b. In this window, the user can
specify the number of tasks to generate and the maximum utilization of the task set.
Other task parameters can be defined by selecting one of three options under ’Define
type’: ’Hyperperiod’, ’Random Periods’ and ’Random WCET’. When ’Hyperperiod’ is
defined, the system generates task periods as factors of the given hyperperiod. With
’Random Periods’, the user can define a min-max range, within which periods are
randomly assigned to tasks, and then WCETs are calculated. Conversely, if ’Random
WCETs’ is chosen, the process operates in reverse. We recommend selecting the
’Hyperperiod’ option, as other options could assign high period values to the tasks, or
sometimes set the WCETs of the tasks equal to 1, given that the tool only supports
integer values. If the energy parameter is enabled, users can set the maximum power
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(power_max) for the task that could be consumed per unit of time, chosen randomly
within the min and max power range. For simplicity, we consider the WCEC of the
task to be the maximum energy that will be consumed by the task while computing,
calculated as power_max×WCET . Similar to ’Input Task Parameter’, users can
define other energy-related parameters.

Figure 6.4 REACTSim Simulator Interface.

Once the task parameters are defined and the ’Ok’ button is clicked, a subsequent
dialog box appears with various layouts, as displayed in Figure 6.4. Initially, the
task parameters defined in the previous step are visualized in a table. The user is
permitted to modify the values in the ’WCET’ and ’Period’ columns. The updated
parameters in the task structure are reflected when the ’Update’ button is clicked.
Below this table, the overall processor utilization and energy consumption of the defined
task set are displayed. Users have the ability to update the energy parameters. To
incorporate these new parameters, the ’Update’ button on the side must be clicked.
Additionally, there is an option to save the parameters to a file for easy retrieval in the
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future. A schedulability test can be conducted on the defined task set, the results of
which are subsequently displayed. Users can specify the time window for the schedule
to be produced, with a maximum value of 1000, or schedule until the hyperperiod.
Additionally metrics of the schedule such as deadline misses, preemptions, response
times, and processor idle rates are also displayed. For a visual representation of the
schedule, users can select the ’Schedule Gantt Plot’ button, which results in the display
of a schedule plot along with the corresponding energy level. The simulator is designed
to function within a uniprocessor environment and is exclusively engineered to support
synchronous periodic tasks with implicit deadlines. Moreover, all time-related and
energy parameters are represented as integers. When the "Include Energy Parameters"
is activated, and during the associated scheduling process, the energy in the storage
incrementally increases corresponding to the power harvested. This happens at the
beginning of each instance prior to the scheduling event. The tool operates under
certain assumptions. It assumes that power harvested is constant, energy discharge only
occurs during the execution of a task, and all tasks execute completely according to their
WCET. These assumptions have been integrated into the simulator for simplification.

6.2.2 ED-H Simulation

The development of REACTSim was primarily motivated by the need to validate the
SCHED_EDH scheduling policy ahead of its implementation in the Xenomai Kernel. The
ED-H strategy relies on the computation of slack time and preemption slack energy to
make decisions regarding the active and idle states of the processor. Furthermore, the
tool is designed to determine the offline schedulability of a task set. The functional
architecture of the tool has been deliberately designed to align with the kernel structure,
simplifying the process of implementation.

In our demonstration, a periodic task set consisting of 10 tasks was configured
with a hyperperiod of 3360. The parameters assigned to this task set are shown in
the scheduling interface window as illustrated in Figure 6.5a. Initially, we applied the
SCHED_EDF policy to execute the schedule. We chose not to perform a schedulability
test as the tasks incorporated energy parameters. Upon running the schedule, it is
obvious that the schedule cannot be completed as the energy level falls below zero,
which is clearly highlighted in the display layout of the interface window. The energy
level dropping below zero can be clearly observed in the energy level plot depicted
in Figure 6.5b. The non-optimality of the EDF scheduler for the real-time energy
harvesting model was previously proven by Chetto and Queudet (2014a). Consistently,
our simulation results are in line with this conclusion.
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(a) Simulator Interface - EDF Scheduler.

(b) Tasks schedule and energy level.

Figure 6.5 EDF scheduling with energy simulation.

We then scheduled the same task set of 10 periodic tasks using the ED-H scheduling
scheme. As seen in the interface window Figure 6.6a, the task set is both time and
energy feasible. When we execute the schedule, it completes successfully with no missed
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(a) Simulator Interface - ED-H.

(b) Tasks schedule using ED-H and energy level.

Figure 6.6 ED-H scheduling simulation.

deadlines. Figure 6.6b presents the schedule of the tasks, along with the corresponding
energy level. It’s evident that the energy level never falls below the threshold, and is
fully replenished at the end of the hyperperiod. From these results, we can deduce that
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the ED-H scheduler’s behavior is correct and ready for implementation into the kernel
framework. For practical simplicity, we opted not to define any specific units, enabling
the time and energy parameters to correlate directly to their respective units.

6.3 Novel Scheduling Policies in Xenomai

Scheduling policies determine when and how tasks are prioritized and selected to
run. This fundamental aspect of operating system design is illustrated in Figure 4.5,
where traditional scheduling policies implemented in Xenomai-4 (EVL) are presented.
Historically, the Linux Kernel process scheduling5 employed an O(n)6 scheduler from
versions 2.4 to 2.6. In Linux Kernel 2.6, an O(1)7 scheduler was introduced, signifying
a considerable advancement. This scheduler, alternatively referred to as the Big O
of 1 scheduler or the constant time scheduler, marked a shift in task management
efficiency. In a subsequent transformation, Ingo Molnar introduced a novel scheduler
structure in Linux, superseding the O(1) scheduler [Lelli (2014)]. The novel scheduler
had a logarithmic complexity (O(log N)), as opposed to the constant time complexity
(O(1)) of the older version. This added complexity was a result of incorporating a data
structure called a red-black tree8 for managing thread execution.

In contrast, the EVL kernel uses a custom form of priority queue implemented by
Philippe Gerum. This implementation employs linked lists9 to arrange thread elements.
The __list_add_pri macro ensures that elements are inserted into the list based on
their priority, creating an O(n) complexity for insertion. The list_get_entry macro,
on the other hand, retrieves and removes the first item in the list, resulting in an
O(1) complexity for removal/access. The EVL scheduling process comprises a core
block, which provides fundamental functionalities, and a set of scheduling classes. Each
class encapsulates one specific scheduling policy except the fifo class. In the EVL
scheduling class, we introduce two new scheduling policies. The first, SCHED_EDF, is the

5https://www.scaler.com/topics/operating-system/process-scheduling/
6O(n) scheduler, divided processor time into "epochs", adjusted for incomplete thread, and enabled

simultaneous scheduling of n-processes, enhancing the efficiency over the previous circular queue
scheduler.

7O(1) scheduler, or constant time scheduler, schedules processes within a consistent timeframe,
regardless of the number of processes. It uses two queues: a run queue for active processes and an
expired queue for processes with expired time allotments, favoring interactive tasks and lowering
non-interactive tasks’ priorities.

8Red-Black Tree, a self-balancing binary search tree, for scheduling. Each task is stored in this
tree based on its virtual runtime, with the leftmost node, indicating the least virtual runtime, being
selected next for execution.

9linux-evl-list

https://www.scaler.com/topics/operating-system/process-scheduling/
https://source.denx.de/Xenomai/xenomai4/linux-evl/-/blob/v5.15.y-evl-rebase/include/evl/list.h
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SCHED_FIFO SCHED_RR

fifo.c

SCHED_TP SCHED_QUOTA SCHED_WEAK SCHED_IDLE

tp.c quota.c weak.c idle.c

Priority

kernel/evl/sched/

SCHED_EDH SCHED_EDF

edf.cedh.c

Figure 6.7 Xenomai-4 EVL Kernel scheduling policies, highlighting the newly im-
plemented policies SCHED_EDH and SCHED_EDF. SCHED_EDH being the highest priority
scheduler among the other policies.

traditional earliest deadline first scheduler. The second is a novel scheduler, SCHED_EDH,
an optimal energy-aware scheduling scheme proposed by Chetto (2014). Figure 6.7
displays these novel scheduling policies within the hierarchy of the schedulers, and the
respective files where the scheduler exists in the kernel codebase. Before delving into
the specific details of these scheduling policies, it is crucial to describe the integral
components of the EVL scheduler core and the entities within the scheduling classes.

EVL Scheduler Core

The integration of the dovetail framework merges the real-time and regular capabilities
of the Linux kernel into a unified control flow. This integration enables a form of dual
kernel setup, where you can switch execution context between the in-band (regular
kernel) and out-of-band (EVL real-time) stages as needed. The Dovetail mechanism
introduces a two-stage interrupt pipeline as depicted in Figure 6.8, which prioritizes
immediate processing of device interrupts (IRQs) in an "out-of-band" stage, while the
regular kernel operations ("in-band" stage) are momentarily delayed, thus ensuring
prompt responses to external events. This process enables an autonomous core to
efficiently manage real-time applications, while maintaining regular kernel activities
with minimal interruptions. The function dovetail_context_switch() facilitates this
switch. It inserts a preemption window for out-of-band IRQs just before the context
switch is finalized, allowing for the possibility of interrupting partially switched in-band
contexts. In the context_switch() function, if dovetail is enabled, it creates a short
window for preemption by out-of-band interrupts just before finalizing the context
switch. This is done by first setting the active_mm11 of the previous task to next->mm

9https://evlproject.org/dovetail/pipeline/
11Associated mm_struct structure that holds memory management information related to the

process.

https://evlproject.org/dovetail/pipeline/
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Figure 6.8 Dual-kernel interrupt pipeline10.

and then calling hard_local_irq_sync(). After these calls, the active_mm of the
previous task is set back to the old mm structure. This window allows for the possibility
of interrupting the context switch process. This ensures that high priority real-time
tasks (out-of-band) can preempt lower priority tasks even if they are in the process of
switching context. Thus, the framework offers lower latency response times to such
out-of-band interrupts and tasks.

At the end of the function, inband_switch_tail() is called. If the next task is on
its way to the out-of-band stage, the context switch epilogue12 is delayed. The context
switch epilogue is executed only when the task switches back to the in-band stage,
making sure that the context switch is entirely completed before allowing the next task
to run in the in-band stage. The function finish_task_switch() is then called to
complete the rest of the context switch process which includes housekeeping tasks such

12The "context switch epilogue" is a phase that finalizes the context switch process. It involves
cleaning up and restoring the state of the system after the execution has been transferred from one
process or thread to another.
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as decrementing the reference count of the mm_struct of the previous task, performing
scheduler housekeeping, and then finally enabling preemption.

In addition to the context switch mechanism, dovetail plays an integral role in
Xenomai’s real-time scheduling system. The Xenomai-4 (EVL) real-time subsystem
introduces its own scheduler, managing and scheduling threads in the system according
to their scheduling classes and maintaining a runqueue of active threads for each CPU.
Every runqueue is protected by a spin-lock to guarantee correctness on concurrent
updates. Runqueues are modular, in the sense that there is a separate sub-runqueue
for each scheduling class. Tasks are enqueued on a runqueue when they wake up
and are dequeued when they are picked to run or suspended. The core function
of this system, __evl_schedule(), is responsible for selecting the next thread to
run and performing the context switch to start its execution. This function begins
by confirming that it is not running in the in-band context with enabled hardware
interrupts which could disrupt the real-time operations of the system. It then disables
the local IRQs for the duration of the scheduling operation. If the current thread
has user-level state (EVL_T_USER), priority ceiling requests are committed before
putting the thread to sleep. The pick_next_thread() function is then used to select
the next thread to run, considering all threads, blocking conditions, preemption
requirements, and scheduling classes in decreasing weight order. The first runnable
thread found with the highest priority is selected from the highest scheduler class.
After selection, set_next_running() is called to prepare the thread for execution.
Finally, a context switch to the selected thread is performed by preparing the run
queue switch with prepare_rq_switch() and performing the actual context switch
with finish_rq_switch(). The Xenomai scheduling system is a highly modular,
preemptive, and class-based scheduling system, where each scheduling class is handled
separately, and the highest priority thread is always run next. It follows strict locking
protocols and carefully maintains the states of threads and runqueues to ensure safe
and correct scheduling.

Scheduling Class

The evl_sched_class structure describes a scheduling class in the Xenomai EVL
real-time subsystem. Here are some of the significant members of this structure:

• sched_init: This function initializes a runqueue.

• sched_enqueue: This function is used to enqueue a thread in the runqueue of
the respective scheduling class.
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• sched_dequeue: This function is used to dequeue a thread from the runqueue of
the respective scheduling class.

• sched_pick: This function is used to pick the next thread to run from the
runqueue. This is where the scheduling class’s scheduling policy would come into
play to determine which thread should be run next.

• sched_setparam: This function is used to set the scheduling parameters for a
thread. The scheduling parameters typically include the priority of the thread.

• sched_getparam: This function is used to retrieve the scheduling parameters for
a thread.

• nthreads: This is the count of threads in this scheduling class.

• weight: The weight of this scheduling class. It could be used in schedulers which
consider the weight of tasks for making scheduling decisions.

• policy: The scheduling policy of this class. This is typically a constant that
represents the scheduling policy.

• name: The name of this scheduling class.

In addition to the scheduler class structure, we have the evl_thread structure,
which contains instances of the scheduling class entities. The ioctl methods (specifically
thread_ioctl and thread_oob_ioctl) serve as the interface for userspace to configure
and control thread behavior, including scheduling, state, mode, and interaction with
other system components. Notably, thread_oob_ioctl provides out-of-band control
operations, enabling the system to switch execution modes and signal events among
threads, enhancing the real-time capabilities of the system. These operations are
critical for managing threads and their scheduling characteristics within a running
system.

6.3.1 Development and Debugging Platform

Several tools exist to help kernel developers during development and debugging. An
example of debugging tool is perf [De and Arnaldo (2010)] which can be employed for
collecting performance data and extracting execution traces from running operating
system. There is also an infrastructure, trace/ftrace13, that is beneficial for debugging

13https://www.kernel.org/doc/html/v5.0/trace/ftrace.html

https://www.kernel.org/doc/html/v5.0/trace/ftrace.html
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as well as scrutinizing latencies and performance issues within the kernel. Further,
Kernelshark14 serves as a graphical interface for processing ftrace reports, proving to
be an effective tool for understanding kernel behavior.

Typically, once kernel modifications are made, the next step is to run the updated
kernel in a virtualized environment. In this context, the Kernel Virtual Machine
(KVM) can be highly beneficial. It can be controlled and attached by the GNU
Project Debugger (GDB), facilitating the debugging process. However, it should be
noted that the effectiveness of this solution can be limited in scenarios involving high
concurrency [Lelli (2014)]. It may also potentially impact the reproducibility of certain
bugs. Furthermore, we identified the use of KGDB, in the context of halting EVL code,
has its limitations, which make it unsuitable. In our work, we have utilized QEMU15,
a hardware virtualization software, to emulate a system with defined specifications.
To provide a filesystem for the emulated system, we employed minimal configured
Buildroot16. For debugging purposes, we employed the printk() function. The kernel
utilized for our development was linux-evl-v5.1517.

6.3.2 SCHED_EDF Xenomai scheduler policy

We describe the implementation of the SCHED_EDF scheduling policy and evaluate its
key property: assigning the highest priority to the thread with the earliest absolute
deadline. Our implementation strategy closely follows the approach adopted for the
EVL SCHED_FIFO scheduler. This strategy is commonly referred to as the distributed
run-queue [Lelli (2014)]. This approach implies that each CPU possesses its own
private data structure that executes its unique ready queue. Therefore, each CPU’s
tasks are stored in a distinct run-queue specific to that CPU. This queue is designed
as a linked list that orders tasks by their (absolute) deadlines. We designed the
evl_sched_edf scheduling class structure with a weight attribute set to 5. This value
is higher than that of the evl_sched_fifo class, thus conferring a higher priority to
evl_sched_edf. We register the evl_sched_edf as the top most class which enables
the __pick_next_thread() function to pick thread from the evl_sched_edf class
first. Furthermore, we added two extra members, sched_periodic and sched_wait,
to the scheduling class. These members are specifically designed to manage the periodic
timer handler and the wait timer event, respectively.

14https://kernelshark.org/
15https://www.qemu.org/
16https://buildroot.org/
17Xenomai-linux-evl_v5.15

https://kernelshark.org/
https://www.qemu.org/
https://buildroot.org/
https://source.denx.de/Xenomai/xenomai4/linux-evl/-/tree/v5.15.y-evl-rebase?ref_type=heads
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EVL EDF thread entities, as presented in Listing 6.1, have been integrated into
the evl_thread structure. Whenever the thread is activated, the absolute deadline of
the job is updated. This update is signaled by the newly incorporated EVL_T_UPDATE
thread info flag and occurs within the sched_enqueue member of the evl_sched_edf
class.
struct evl_edf_entity {

struct list_head rq_next ;
/* thread params */
ktime_t release_time ; /* Thread first arrival time */
ktime_t rel_deadline ; /* relative deadline */
ktime_t period ; /* period */
// calculated absolute deadline for job instance
ktime_t job_release_time ; /* instance release time */
ktime_t abs_deadline ; /* absolute deadline */
u64 job_instance ; /* number of job instance */
unsigned int new_thread ; /* flag for new edf thread */
/* Thread timers */
struct evl_timer edf_timer ;
struct evl_wait_queue wq;
struct evl_poll_head ph;
bool ticked ;

};

Listing 6.1 EVL EDF thread entities.

We have expanded the evl_sched_attrs structure by adding EDF scheduling pa-
rameters. These parameters can be user-defined and are transferred to the kernel space
using libevl functions. Listing 6.2 provides an example of a simple application in which
the user can create a thread that is scheduled under the SCHED_EDF policy within the
EVL core. Additionally, the evl_thread_stats structure has been created that enables
the deadline monitoring feature incorporated within the sched_wait function. This
modification enables users to retrieve this value through the evl_thread_wait_period
function.
void * Application (void *parm)
{

int efd , ret = 0;
struct evl_sched_attrs attrs; /* evl scheduling attributes */
struct evl_thread_stats stats; /* thread statistics */

/* Set the thread scheduling policy */
attrs. sched_policy = SCHED_EDF ;
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/* Put 0 to create synchronous threads */
attrs.edf. release_time = 0;

/* Period of the thread in ns ( nanosecond ) */
attrs.edf. period = 2000000000;

/* Relative deadline of the thread in ns */
attrs.edf. rel_deadline = attrs.edf. period ;
/* Add the posix thread as EVL thread */
efd = evl_attach_self ("/ edfthread :%d",gettid ());

/* Set the thread attributes under EVL scheduling attributes */
ret = evl_set_schedattr ( evl_get_self () ,&attrs);

/* Make the thread periodic which is handled within the kernel */
evl_set_thread_periodic ();

while (1) {
/* user function */
/* Wait for the thread period */
evl_thread_wait_period (efd ,& stats);

}
return NULL;

}

Listing 6.2 EVL EDF User-level API.

During our developmental phase, we consistently utilized the QEMU emulator,
configured specifically to operate on two cores. After compiling the kernel, we loaded it
into the QEMU environment. A test application, which was created and compiled with
libevl integration, was transferred into the Buildroot environment. This application was
subsequently initiated from the QEMU console. To facilitate the debugging process
throughout these stages, we employed the printk() function. We executed various
tests to verify the correct functioning of the timer handle (which wakes up the thread),
sched_enqueue (which calculates the absolute deadline and adds the thread to the
list), and sched_pick (which selects the highest-priority thread from the list ordered
by the absolute deadline).

From the console print, we observed the schedule for threads created with periods
of 4, 2, 6, and 3 seconds (for better printing). The print lines labeled with the [evl]
index displayed the threads in the list during the sched_pick operation. Here, the
release time (rel) and absolute deadline (abs) were also printed. The lines labeled with
[Thread x][start] and [Thread x][end] indicate the beginning and end times of
the user threads. The number of deadline misses and overruns were also logged. As
depicted in Figure 6.9, we present a single time window where all four threads are
listed, and the schedule pick operation and preemptions were correctly performed.



6.3 Novel Scheduling Policies in Xenomai | 137

[  137.136620] [evl] Curr time = 136967181905 Thread in list: edfthread1:194, rel=136967089457, abs=140967089457

[  137.137950] [evl] Curr time = 136968512655 Thread in list: edfthread2:195, rel=136968464771, abs=138968464771
[  137.137951] [evl] Curr time = 136968513929 Thread in list: edfthread1:194, rel=136967089457, abs=140967089457

[  137.139625] [evl] Curr time = 136970187398 Thread in list: edfthread2:195, rel=136968464771, abs=138968464771
[  137.139626] [evl] Curr time = 136970188477 Thread in list: edfthread1:194, rel=136967089457, abs=140967089457
[  137.139626] [evl] Curr time = 136970189144 Thread in list: edfthread3:196, rel=136970143050, abs=142970143050

[  137.141949] [evl] Curr time = 136972511992 Thread in list: edfthread2:195, rel=136968464771, abs=138968464771
[  137.141950] [evl] Curr time = 136972512827 Thread in list: edfthread4:197, rel=136972467995, abs=139972467995
[  137.141951] [evl] Curr time = 136972513471 Thread in list: edfthread1:194, rel=136967089457, abs=140967089457
[  137.141951] [evl] Curr time = 136972514046 Thread in list: edfthread3:196, rel=136970143050, abs=142970143050

[  137.560064] [evl] Curr time = 137390625826 Thread in list: edfthread4:197, rel=136972467995, abs=139972467995
[  137.560068] [evl] Curr time = 137390630823 Thread in list: edfthread1:194, rel=136967089457, abs=140967089457
[  137.560069] [evl] Curr time = 137390631944 Thread in list: edfthread3:196, rel=136970143050, abs=142970143050

[  137.982536] [evl] Curr time = 137813097904 Thread in list: edfthread1:194, rel=136967089457, abs=140967089457
[  137.982540] [evl] Curr time = 137813102824 Thread in list: edfthread3:196, rel=136970143050, abs=142970143050

[  138.402620] [evl] Curr time = 138233182252 Thread in list: edfthread3:196, rel=136970143050, abs=142970143050

[Thread 1][start] Start Time: 136967192359 
[Thread 2][start] Start Time: 136968516528 
[Thread 2][end] 
[Thread 2] no_of_dmiss = 0, dmiss_time = 0, overrun = 0
[Thread 4][start] Start Time: 137390635502 
[Thread 4][end] 
[Thread 4] no_of_dmiss = 0, dmiss_time = 0, overrun = 0
[Thread 1][end] 
[Thread 1] no_of_dmiss = 0, dmiss_time = 0, overrun = 0
[Thread 3][start] Start Time: 138233230403 
[Thread 3][end] 
[Thread 3] no_of_dmiss = 0, dmiss_time = 0, overrun = 0

Figure 6.9 EVL SCHED_EDF scheduler thread pick and execution console debug. Time
units are in ns. ’rel’ referes to release time and ’abs’ refers to absolute deadline of the
thread.

To validate the scheduling policy, we employed a technique similar to that used
by Lelli (2014) for validating the SCHED_DEADLINE policy in the Linux kernel. We
configured four periodic threads with respective periods of 12ms, 16ms, 48ms, and
70ms. To simulate the computation time of the threads, we created dummy loads
using sqrt and pow loops. Each process was statically bound to a CPU core using
the cpuset mechanism, and the loads were incrementally increased from 0.5 (50%)
to 0.95 (95%). Our observations from the deadline_miss field of evl_thread_stats
revealed that under the SCHED_EDF policy, no deadlines were missed. This outcome can
be attributed to the fact that the load on each core never exceeded 1 (100%). These
results assert that the SCHED_EDF scheduling policy is operational under the EVL core.
We have successfully applied the kernel patch to run on an i5-7200U 4-core CPU. This
implementation serves as a basis for the further development of the ED-H energy-aware
scheduling algorithm.
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6.3.3 SCHED_EDH Xenomai scheduler policy

While we have successfully developed a simulator for the ED-H scheduler, the com-
plexity of developing the scheduler within an operating system framework remains
high, primarily due to debugging challenges. We created a new scheduling structure,
evl_sched_edh, that maintains the same scheduling class structures as evl_sched_edf.
We set the weight of evl_sched_edh to 6, signifying it is the highest amongst all
EVL scheduler classes. Like SCHED_EDF, the queue for evl_sched_edh is designed as a
linked list that orders tasks by their absolute deadlines, complying with RULE 2 ED-H,
which is to pick the thread following the EDF policy. We included additional members
WCET and WCEC in the evl_edh_entity structure, as illustrated in Listing 6.3.
These additional parameters are crucial for calculating the ED-H scheduler’s two main
parameters: slack time and preemption slack energy.
struct evl_edh_entity {

struct list_head rq_next ;

/* thread params */
ktime_t release_time ; /* Thread first arrival time */
ktime_t wcet; /* worst case execution time */
ktime_t rel_deadline ; /* relative deadline */
ktime_t period ; /* period */
u64 wcec; /* worst case energy consumption */
u64 power_max ; /* Thread maximum power */

ktime_t job_release_time ; /* instance release time */
ktime_t abs_deadline ; /* absolute deadline */
u64 job_instance ; /* number of job instance */

ktime_t prev_exec ;
unsigned int new_thread ; /* flag for new edh thread */

/* Thread timers */
struct evl_timer edh_timer ;
struct evl_wait_queue wq;
struct evl_poll_head ph;
bool ticked ;

};

Listing 6.3 EVL EDH thread entities.

The time and energy demand bound function, which calculates the time and
energy demand, necessitates floor and ceil math functions from the C library. These
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functions are not readily available in the kernel space due to the kernel’s lack of
direct support for floating-point operations [Corbet et al. (2005)]. To circumvent this
limitation, we employed the DIV_ROUND_UP macro for ceil operations and a custom
macro for floor operations that can handle negative numbers. The traversal of EVL
threads is facilitated by for_each_evl_edh_thread, while list traversal is handled by
list_for_each_entry_safe.

A critical challenge lies in identifying when to perform a schedulability check.
Following the computation of parameters, the ED-H rules are verified. We employ
flags to denote the EVL_EDH_THREAD_REQUEUE and EVL_EDH_THREAD_RUN, representing
the idle and active states of the ED-H rule, respectively. Listing 6.4 shows the use of
the user-level API for creating an EVL thread scheduled under the SCHED_EDH policy.
We represent the WCEC parameter unit in µW to maintain uniform attribute units
within the Linux power supply class18.
void * Application (void *parm)
{

int efd , ret = 0;
struct evl_sched_attrs attrs; /* evl scheduling attributes */
struct evl_thread_stats stats; /* thread statistics */

/* Set the thread scheduling policy */
attrs. sched_policy = SCHED_EDH ;

/* Put 0 to create synchronous threads */
attrs.edh. release_time = 0;

/* WCET of the thread in ns ( nanosecond ) */
attrs.edh.wcet = 1000000000;

/* Period of the thread in ns ( nanosecond ) */
attrs.edh. period = 2000000000;

/* Relative deadline of the thread in ns */
attrs.edh. rel_deadline = attrs.edh. period ;

/* WCEC of the thread in µW */
attrs.edh.wcec = 550000;

/* Add the posix thread as EVL thread */
efd = evl_attach_self ("/ edhthread :%d",gettid ());

/* Set the thread attributes under EVL scheduling attributes */
ret = evl_set_schedattr ( evl_get_self () ,&attrs);

/* Make the thread periodic which is handled within the kernel */
evl_set_thread_periodic ();

while (1) {

18https://docs.kernel.org/power/power_supply_class.html

https://docs.kernel.org/power/power_supply_class.html


140 | An Energy-Aware Scheduler for Xenomai

/* user function */
/* Wait for the thread period */
evl_thread_wait_period (efd ,& stats);

}
return NULL;

}

Listing 6.4 EVL EDH User-level API.

To validate the scheduler, which requires energy parameters for calculating pre-
emption slack energy, we developed a kernel module to simulate energy dynamics.
The kernel module, when loaded, initiates a kernel thread that runs on a sepa-
rate core. For simplicity, we assumed a constant harvested power that updates
the battery level periodically (every 1s), as the test thread periods are considered
in seconds. Using evl_update_account, which updates the prev_exe entity of the
thread, the energy to discharge is relayed to the energy simulator. The callbacks
evl_get_bat_remaining_energy() and evl_get_harvested_power() are employed
to fetch the remaining battery energy and power harvested during a specific time
interval from the loadable kernel module, respectively. This approach significantly
simplifies the kernel module that emulates dynamic battery energy and harvested
power, making it straightforward to replace the simulated battery energy and harvested
power with actual values. Any required modifications can be readily made within the
loadable kernel module.

However, due to the intricate nature of the scheduler and debugging difficulties,
complete verification of the scheduler’s functionality remains challenging. Power
consumption measurement at the thread level is complex because power is not consumed
by threads directly. Instead, various hardware components including the CPU, memory,
and I/O systems consume power when executing instructions on behalf of threads.
Furthermore, the low granularity of energy creates difficulties in determining the
scheduler’s practical value at the system level, especially for devices like mobile robots.

6.4 Limitation

While the characterization of tasks in a simulation environment is relatively straight-
forward when considering energy constraints, the complexity significantly escalates
when translating this into a realistic scenario. We have successfully incorporated the
functional elements of the ED-H scheduler into the operating system framework, yet it
remains a challenge to create a scenario that accurately illustrates the efficacy of the
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decisions made by the ED-H scheduler. This difficulty stems from the characterization
of the energy parameters and the inherent debugging challenges within the kernel
framework. Despite the existing difficulties in modeling the Worst-Case Execution
Time (WCET) and Worst-Case Energy Consumption (WCEC) for the threads [Sieh
et al. (2017),Wägemann (2020)], this thesis does not focus on this aspect.

At this stage, the impact of scheduling threads at the operating system level,
where the granularity of energy is relatively small compared to the device’s total
energy consumption, doesn’t seem significant. This has led us to reconsider the
criterion of energy at a broader scope, (i.e., at the application level), where the total
energy requirements of the mobile robot can be considered. Additionally, it is notably
complex to design threads, especially the ROS threads, with consideration of the energy
parameter. We propose that the ED-H scheduler would be highly effective at the
system level for threads dealing with transmission scenarios. Nonetheless, considering
these complexities, we recommend the implementation of the ED-H scheduler at the
application level rather than at the system level. This approach not only simplifies the
process but also provides a more encompassing perspective on energy management,
thereby maximizing its potential advantages for mobile robots.

We have decided not to proceed with the implementation of the ED-H scheduler
with the dynamic priority ceiling protocol enhancement proposed in Chapter 5. We
recognize that Xenomai has a priority ceiling protocol, which opens up the possibility
of enhancements for the dynamic priority-based scheduler. Nevertheless, if adherence
to deadline constraints is a requirement, we could utilize the SCHED_EDF policy to
schedule the mobile robot threads.

6.5 Conclusion

This chapter delivered a deep exploration of the Xenomai framework’s scheduling
scheme. We started by outlining the prerequisites for implementing the energy-aware
scheduler ED-H in the real-time operating system. As a primary step, we developed
REACTSim, a simulator tool that accommodates energy considerations. We provided
a guide for using this tool, which integrates various scheduling policies. A comparison
of task scheduling with energy constraints using both the EDF and ED-H policies
showed that the ED-H delivers results as anticipated, leading to an energy-neutral
operation.

Subsequently, our focus shifted towards implementing the energy-aware scheduling
scheme as a kernel scheduler. To facilitate understanding, we detailed the scheduling
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aspects of the Linux kernel and Xenomai kernel. The action of the EVL scheduler core
when the system schedules standalone Linux kernel threads and real-time EVL threads
was clearly outlined. We initiated the implementation process with the SCHED_EDF
policy, which was not initially present in Xenomai’s scheduling class, given that ED-H
is based on the EDF policy. The dynamic priority nature of the scheduler was verified,
and the scheduling policy was validated using the deadline miss metric.

In our effort to implement the ED-H scheduler, we encountered several challenges,
especially in validating and debugging the intricate scheduler framework. The com-
plexity of characterizing energy parameters and estimating the WCET and WCEC
further added to the difficulties. Despite these challenges, we believe that the ED-H
scheduler, when implemented at the application level rather than the system level,
would significantly contribute to energy management, thus enhancing the operational
efficiency of mobile robots and other similar devices.



Chapter 7

Energy-Neutral Real-Time Mobile
Robotic Operation

This chapter brings into focus the application-level utility of energy-aware schedul-
ing theory, specifically tailored for mobile robots equipped with energy harvesting
technologies. We present a novel and initial proof-of-concept attempt at implementing
an energy-aware scheduling scheme for real-time energy harvesting mobile robotic
devices. By implementing this strategy, we aim to maintain energy-neutral operation.
In Section 7.1, we will provide a clear problem formulation, setting the stage for iden-
tifying the necessary requirements for the successful functioning of our energy-aware
scheduler, ED-H, at the application level. In Section 7.2, we first review previous works
to gain insight into the mission context of the mobile robotic device. We describe
existing mission allocation approaches; and we put in light that mission allocation
strategies do not consider energy-harvesting devices. In Section 7.3, we characterize
the mission model with precedence and energy constraints. We delve into the concept
of precedence constraints associated with real-time computing tasks and their relevance
at the mission level for mobile devices. In Section 7.4, we provide crucial details of the
energy estimation techniques that could be used to define the worst-case mission energy
(WCME), predict future energy that may be harvested during a given time window, and
monitor the battery’s energy. These elements are vital for the performance of the ED-H
scheduler. Before deploying these techniques in a real robot, we validate the proof of
concept through simulations. In Section 7.5, we perform two simulations: one with a
simulation tool to demonstrate that the mission characterization is valid for the context
of mobile robotic devices, and another simulation of a robot in Gazebo with precedence
and energy constraints. We strive to simulate a near-real-world scenario, though it
remains a considerable challenge. Finally, Section 7.6 we provide the implementation
details on a real robot. We highlight the limitations due to technological barriers. We
finally propose future methods to achieve energy-neutral operation while mitigating
the barriers.
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7.1 Problem Statement

The central objective of this dissertation is to research and devise a strategy for
achieving energy-neutral operations in industrial mobile robots. Despite the valuable
insights gained from our initial approach, which focused on evaluating the energy-
aware scheduler at the operating system level, we encountered significant limitations,
particularly when attempting to verify the functionality of the scheduler at the operating
system level proved to be challenging.This challenge motivated us to reassess the broader
framework of energy management in mobile robots, leading us to concentrate on a
more granular level of energy management.

Industrial mobile robots perform a range of tasks, or ’missions’, offering an ideal
context for examining and manipulating energy granularity. By addressing energy
management at this application level will simplify the complexities encountered in
earlier stages, offering a more practical framework for implementation and a streamlined
development process. Nevertheless, certain requirements must be met to successfully
establish the concept of energy-neutral operations at the application level.

The initial step requires correlating the essential components of the energy-aware
scheduler, ED-H, with those of the robotic mission. This correlation can address
the complex problem of characterizing the WCET and WCEC requirements of the
scheduler. Further, we need to consider additional elements, such as the retrieval of the
storage unit’s energy level and an estimation of energy to be harvested. These variables
are critical for calculating the preemption slack energy for the scheduler. Identifying
strategies to simplify these complexities and meet these prerequisites is crucial for the
desired functioning of the scheduler.

To validate our new approach, we plan to conduct tests using actual technologies
and robots. However, given the challenges of the real-world environment, we first plan
to verify our approach in a simulated environment. We will use a TurtleBot1, equipped
with ROS2 navigation2, running on the Gazebo simulator3 and an energy simulator
for preliminary testing. This phase will enable us to understand the operations of the
ED-H scheduler and assist in the development process. Upon successful simulation
testing, we will then proceed to real-world implementation, with the aim of achieving
energy-neutral operation for industrial mobile robots. By navigating this intricate
landscape, we will gain insights into the domain of industrial mobile robot energy
management. As we untangle these complexities, we will move closer to our ultimate

1ROS2-Turtlebot
2https://navigation.ros.org/
3https://docs.ros.org/en/humble/Tutorials/Advanced/Simulators/Gazebo/Gazebo.html

https://ros2-industrial-workshop.readthedocs.io/en/latest/_source/navigation/ROS2-Turtlebot.html
https://navigation.ros.org/
https://docs.ros.org/en/humble/Tutorials/Advanced/Simulators/Gazebo/Gazebo.html
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goal of creating an energy-neutral operation for industrial mobile robots, marking a
significant milestone in robotic efficiency.

7.2 Previous Works

We will review some work that diverges from the traditional approaches focusing on
energy management for mobile robots presented in Chapter 3. These studies focus
specifically on power constraints and mission-level considerations in the context of
mobile robots.

Power-aware scheduler

The study conducted by Liu et al. (2001a) serves as a seminal work in the realm of
power-aware scheduling algorithms for robots. Their study utilizes NASA/JPL’s Mars
rover to demonstrate the efficiency and applicability of their proposed scheduler. They
propose a system that relies on two power sources: a non-rechargeable battery and a
solar harvesting unit. Their primary motivation is to optimally utilize energy from the
free source - solar energy, which cannot be stored. Additionally, they aim to improve
battery usage by controlling the system-level power curves. The power-aware scheduler
presented in this paper is a key component in the proposed IMPACCT system-level
design framework. Its primary function is to create a schedule based on the constraints
of timing and power at a system level, thereby enabling efficient energy use. It first
constructs a constraint graph based on the given problem. This graph outlines the
relationships between tasks and their execution timings. The scheduler then searches
for a time-valid schedule where all tasks satisfy their respective timing constraints,
ensuring no deadlines are missed. After a time-valid schedule is obtained, the scheduler
applies the maximum power constraint. This is achieved by redistributing tasks and
manipulating slack times to eliminate power spikes, ensuring that the system does not
exceed its maximum power capacity at any given time. The final step involves the
application of the minimum power constraint. Here, the scheduler reorders tasks within
their slack times to reduce power gaps, thus improving the utilization of minimum
power. This step aims to take full advantage of available power resources and to
manage power jitter effectively. Despite these significant capabilities, the scheduler
falls short to support energy neutral operation. Energy neutrality is a scenario where
a system’s energy demand is perfectly balanced by its energy harvesting.
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Mission Manager

Dinh-Khanh (2020) presented an noteworthy research work on Quality of Service
(QoS) aware energy management for mobile robots, focusing on self-adaptation, which
allows a system to adjust its behavior in response to the operational environment
[Macías-Escrivá et al. (2013)]. In this context, QoS refers to performance metrics such
as obstacle safety distance, mission completion, and energy consumption reduction by
dynamically adjusting the robot’s velocity using the Monitoring, Analyzing, Planning,
and Executing (MAPE) paradigm. The decision-making process features a local Mission
Manager that utilizes reinforcement learning-based decision-making to automatically
reconfigure mission-specific parameters, minimizing performance and energy objective
violations. A global Multi-Mission Manager employs rule-based decision-making and
case-based reasoning techniques to monitor system resources and Mission Manager
responses, reallocating energy budgets and regulating the quality of service. Despite
the innovative approach, this work has limitations in its management methodology, as
it is primarily data-driven, focusing on monitoring necessary metrics rather than events.
The proposed algorithms also require careful effort to ensure learning performance,
and the study’s primary focus is on energy savings and self-adaptability.

Mission Allocation

Task (or Mission) allocation is a widely studied area in mobile robot research. Efficient
task allocation is a necessity for multi-robot systems operating in dynamic environ-
ments. It allows robots to adjust their workloads in response to the actions of other
robots or the system’s missions to enhance overall device performance. While various
techniques and requirements exist in the context of multi-robot systems, an allocation
problem deals with tasks requiring single or multiple robots for completion [Roche
(1999), Liekna et al. (2013), Aziz et al. (2022)]. Multi-robot task allocation (MRTA)
is an optimization problem that aims to solve this allocation by either minimizing
a cost function or maximizing a profit. The cost function could be the distance to
travel [Elango et al. (2011)], time for completion [Matarić et al. (2003)], or energy
[Kaleci and Parlaktuna (2013)]. With these techniques, missions to be performed by a
robot can be queued. This queueing method can be combined with our approach to
schedule missions for a single robot. This is the first study to explore an energy-neutral
operation strategy specifically tailored for an industrial mobile robot, marking a novel
approach in the field of mobile robotics.
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We recall that the objective of our research is to create an industrial mobile robot
capable of achieving energy-neutral operation. This signifies that all the energy required
by the robot is harvested from its surroundings, eliminating the need for traditional
charging stations and reducing periods of idleness, thereby enhancing productivity.
Despite our ambitious goal, we acknowledge the need for significant advancements
in energy harvesting technologies. Another crucial element of our research is the
introduction of mission characterization specific to energy-harvesting mobile robotic
systems. We recognize that increasing the autonomy duration of the robot remains
a significant challenge. Existing research suggests various energy-saving strategies
to minimize energy usage and prolong operation time. However, we believe that
harnessing ambient energy sources via advanced harvesting technologies presents a
more sustainable and promising solution to maximize not only the robot’s autonomy
duration but also its overall sustainability. In essence, through our research, we aim
to realize the true potential of energy harvesting technologies in the realm of mobile
robotics.

7.3 System Characterization

Uniprocessor Single Mobile
Robot
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Figure 7.1 Analogies of Real-time system terms to mobile robots.

In this work, we establish an essential correlation between real-time system theory
and mobile robots. The relationship is critical as it will allow us to apply real-time
computing methods for higher-level mobile robot applications. Figure 7.1 represents
the principal relationship we establish. Given that a single mobile robot can execute
only one mission at a time, it can be analogously treated as a uniprocessor system that
executes only one task at a time. Therefore, we refer to real-time computing tasks
as the missions performed by the mobile robot. Consequently, all relevant aspects
associated with the system workload model of a Real-Time Energy Harvesting System
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(RTEHS), such as worst-case execution time (WCET), worst-case energy consumption
(WCEC), and deadlines, can be translated into worst-case mission duration (WCMD),
worst-case mission energy (WCME), and mission deadlines, respectively.
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Figure 7.2 Real-time energy harvesting mobile robot.

In this work, the established model of a real-time energy harvesting system is
adjusted to function as a real-time energy harvesting mobile robot, as depicted in
Figure 7.2. An energy-aware scheduler is implemented at the user level to schedule
missions with deadline, energy, and precedence constraints. We employ the ROS2
middleware, together with the nav24 stack and Simple Commander API5, in order
to faciliate navigation commands that are compatible to handle missions with the
scheduler. The following subsections will provide detailed characterization of the
mission model and the energy model.

4https://navigation.ros.org/
5https://navigation.ros.org/commander_api/index.html

https://navigation.ros.org/
https://navigation.ros.org/commander_api/index.html
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7.3.1 Mission Model

We define a new workload model for mobile robots: M= {Ji(ri,Ci,di,Ei), i = 1 to n}.
Here, each mission is treated as a job Ji with a release time ri, worst-case mission
duration Ci, mission deadline di, and worst-case mission energy Ei. For sake of
simplicity, although some missions executed by the mobile robot could be periodic, we
exclude periodic missions. However, it should be noted that these periodic missions
can be directly associated with the periodic tasks discussed in the previous chapters.

Picks
Trolley

Picks
Trolley

Picks
Trolley

Ja Jb

Ja

Jb

(a) Non-valid Preemption (b) Resource constraints (c) Precedence constraints

Figure 7.3 Precedence constraints for missions.

We then consider synchronization issues framed in the real-time perspective for
mobile robots. Imagine a scenario where two jobs, or missions, denoted as Ja and Jb,
must be performed by the robot. These jobs are scheduled without energy constraints
using an Earliest Deadline First (EDF) scheduler. In the situation depicted in Figure 7.3,
job Jb preempts job Ja when the robot is performing a mission - for instance, picking up
a trolley. The robot cannot execute another job until it completely finishes its current
work, which makes the preemption invalid. This issue is similar to the precedence
constrains problem in real-time computing. Two different approaches from real-time
computing theory can be employed to address this issue. One relies on resource access
techniques discussed in Chapter 5, where we had expanded the proof to show how the
optimal energy-aware scheduler ED-H handles shared resource constraints. In this case,
we can consider the robot itself as a resource and apply a mutual exclusion mechanism
using the ED-H scheduler with dynamic priority ceiling protocol.

However, our primary focus is on implementing a robust workload model for missions
using a Direct Acyclic Graph (DAG) that indicates precedence relations. This approach
simplifies the job definition process by representing them as a graph. We will provide
a more detailed explanation of this approach in the sections that follow. Before, let
us establish the set of missions as a job set represented by J = {J1, . . .Jn}, which
corresponds to its respective precedence graph G. Here, J also signifies the set of
nodes present in the graph G. The graph G signifies a partial order ≺ on J such that
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Ji ≺ Jj only if a directed path exists in G that leads from node Ji to node Jj . In
such a situation, Ji is a predecessor of Jj (or conversely, Jj is a successor of Ji). We
use Ji→ Jj to represent a precedence relation between Ji and Jj . It is important to
note that a job set can have one or more jobs that serve as the beginning or end. A
beginning job does not have a predecessor job, and similarly, an ending job does not
have a successor job.

Deadline jobs with precedence constraints

The challenge of scheduling a set of jobs, with deadlines and release times, under
precedence constraints, can be solved with polynomial time complexity. Chetto et al.
(1990) proposed an effective method for this problem by transforming a group of
dependent jobs into a set of independent jobs by adjusting the timing parameters of
each job. The main idea here is to adjust all the start times and finish times in a way
that no job begins before its predecessor jobs have completed. Also, no job should
preempt the jobs that succeed it. This is achieved through a topological sort, adjusting
the deadlines of jobs sequentially, starting with the jobs that do not have any successors.
Once these jobs deadlines are adjusted, the method proceeds to adjust the deadlines of
successor jobs.

For each job that is at the end within the partial order, the deadline is set as it
is. For all other jobs, the deadline calculation of d∗

i for Ji is done using a particular
formula, as follows:

d∗
i = min(di,d

∗
j −Cj ∥Ji→ Jj) (7.1)

The same logic applies to the release time of each job. For every job at the start
within the partial order, the release time remains the same. For all other subsequent
jobs, the earliest possible start time for Ji is determined as follows:

r∗
i = max(ri, r

∗
j −Cj ∥Jj → Ji) (7.2)

With these adjustments, the nature of the problem remains consistent. Therefore,
for any two jobs where one succeeds the other, the start and end times of the predecessor
job are always less than or equal to those of the successor job, thereby preserving the
order of tasks and their precedence constraint.

Further with this approach, Chetto and Osta (2022) advanced the technique by
establishing a method to uphold the precedence constraint using the existing deadline
assignment protocol, specifically tailoring it to the requirements of the ED-H scheduler
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instead of the EDF scheduler, with no energy limitation. This achievement affirmed the
scheduler’s capacity to aptly handle jobs considering constraints related to deadlines,
energy, and precedence. With this foundation, the current research aims to integrate a
mission scheduler that efficiently employs ED-H scheduler with precedence constraints
for a real-time energy harvesting mobile robot. An illustrative example of the ED-H
scheduler with precedence constraints for real-time tasks can be seen in the paper.
Additionally, we present the mission schedule in Figure 7.8.

7.3.2 Energy Model

Now, let us describe precisely the model we consider for the energy harvesting mobile
robot. We consider a mobile robot powered by a lithium-ion battery. We utilize a
state of charge (SoC) monitor to read the capacity of the battery which is denoted as
Eb. At any given time t, the energy level of the battery is represented as E(t). It is
important to note that the robot cannot execute any mission when the energy level
falls below a defined threshold, Emin. This work is centred around a real-time energy
harvesting mobile robot. The primary harvesting technology employed in this context
is solar power, utilizing photovoltaic (PV) cells, due to the vast array of prediction
algorithms available for this technology. The power harvested by the unit at a given
time t is denoted as Ph(t). Furthermore, the total energy generated by the harvesting
unit over a specified time interval [t1, t2) is represented as Eh(t1, t2).

We have defined the mission model and the energy model specifically for a real-time
energy harvesting mobile robot. Following sections we will present methodologies to
calculate the worst-case mission duration (WCMD) and worst-case mission energy
(WCME) values for the mobile robots. In addition, we will discuss about the battery’s
energy level monitoring and energy prediction techniques to forecast future harvestable
energy. These factors are crucial for the efficient operation of the energy-aware mission
scheduler ED-H. Our ultimate goal is to implement a mission scheduling strategy
that allows for an energy-neutral mobile robot. The aim is to eliminate the need for
recharging stations, which currently leave the robot entirely inactive during recharging
periods. However, realizing this goal demands a thorough exploration of energy-
harvesting platforms. We therefore assume, for the purpose of this study, that the
robot is capable of harvesting energy sufficient to meet its energy demand. Moreover,
the current mission characterization of industrial mobile robots mainly considers the
notion of priority, with tasks being scheduled based on this attribute. We propose
to extend this by introducing notions of deadline, energy, and precedence constraints.
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The inclusion of these elements will enable the robot to handle tasks more intelligently,
leading to increased productivity. By adopting this approach, we can effectively
determine the optimal requirements for storage capacity (i.e., battery size) and the
dimensions of the energy harvesting unit. Consequently, this leads to potential cost
reductions in the manufacturing of the robotic device.

7.4 Estimation Techniques

In the context of mobile robots, the process of estimating the WCMD and WCME is
less complex when compared to the estimation of the WCET and WCEC. This relative
simplicity arises due to the larger granularity which permits their estimation through
practical techniques and dedicated libraries. Firstly, in the context of a mission, time
values are defined in "seconds". The total duration of the mission can be estimated
using a practical technique: running the missions and measuring the total duration. For
the worst case, this method must be executed multiple times to measure the WCMD.
Alternatively, a time estimation library6 can be used to estimate the time it will take
to travel from the start point to the goal point at the robot’s maximum velocity. We
employ a similar technique provided by the feedback from the Simple Commander API.
This technique calculates the total estimated time to complete the navigation based on
the generated path and the robot’s average velocity. However, we have not considered
scenarios where the robot may be obstructed by obstacles. If such a situation arises,
we can define a timeout after which the job can be cancelled to prevent the subsequent
jobs from missing their deadlines.

Another significant challenge involves estimating the energy used during a mission.
An initial, straightforward method might be to measure the energy level of the battery
at the beginning and at the end of the mission. However, this method does not offer a
precise estimate of the mobile robot’s energy consumption. Consequently, in the next
subsection, we will delve into more sophisticated techniques and provide a mathematical
energy estimation approach specifically tailored for the robot under study.

7.4.1 Energy Estimation

Power consumption in a robot is determined by the number of active components.
On the other hand, energy consumption depends on both power consumption and
the duration of each component’s activity [Parasuraman et al. (2015)]. In the case

6https://github.com/oKermorgant/mrs_monitor

https://github.com/oKermorgant/mrs_monitor
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of industrial mobile robots, device components are generally active for most of the
time. Consequently, energy consumption can be broadly categorized into two groups:
navigation system (which includes motors for navigation) and other subsystems, which
include computing platform and sensing units. Figure 7.4 illustrates the sequence of
power consumption for various components in industrial mobile robots. For smaller
robots, navigation power consumption is lower compared to other subsystems [Mei
et al. (2005), Parasuraman et al. (2015), Mohamed et al. (2021)]. Conversely, larger
robots operating in industrial or outdoor settings have navigation systems as their
primary power consumers [Morales et al. (2006), Xie et al. (2016), Liu et al. (2019)].
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Figure 7.4 Power consumption of various components in industrial mobile robots.

In our assessment of an industrial mobile robot’s energy consumption, we utilized
a component Yocto-Watt7 component. This component was interfaced on the main
device power distribution socket of the robot to measure the voltage and current
drawn by the robot’s various components. The Yocto-Watt component includes
specialized APIs that allow us to determine the power consumption of the load. In
an idle state with all components operational, the robot consumption amounted to
95W. The distribution of this power consumption is as follows: active motors utilized
30%, the processing platform consumed 15%, the sensors accounted for 35%, while
remaining components like LEDs and electrical circuits, consumed the residual 15%.
We conducted further tests with the robot navigating at its maximum speed of 1.6
m/s along a straight path. In this circumstance, the motors’ energy consumption
rose to account for 52% of the total power usage, indicating they were the primary
power consumers. The collected data underscores the importance of encapsulating all
energy-consuming components when managing energy at the application level. It is

7https://www.yoctopuce.com/EN/products/usb-electrical-sensors/yocto-watt

https://www.yoctopuce.com/EN/products/usb-electrical-sensors/yocto-watt
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crucial to consider every component’s energy usage for efficient energy management
and potential improvements in the design and operation of the mobile robot.

Due to the complexity of estimating energy consumption for dynamic consumers,
there is a need for defining an energy estimation model for the system. Energy
estimation models for mobile robots quantify the energy usage of different subsystems
and activities, helping in estimating and optimizing energy consumption. These models
inform decision-making around motion and path planning, and power allocation [Mei
et al. (2005)]. Additionally, they provide a benchmark for evaluating energy efficiency
across various robotic systems or control algorithms [Kim and Kim (2007)]. Accurate
models guide the design and selection of components that meet energy needs while
delivering desired performance. By factoring in velocity and acceleration, these models
calculate power and, subsequently, energy consumption. Estimations of the maximum
energy consumption can be achieved by considering the maximum velocity for a certain
travel duration.

Research Work Robot Robot
Type

Energy Estimation Model
Motor

PF KM DM MM FC SC Load
Mei et al. (2005) Pioneer 3DX DD ✓ ✓ DC
Kim and Kim (2007) Pioneer 3DX DD ✓ ✓ ✗ ✓ ✗ ✗ DC
Liu and Sun (2012) Pioneer 3DX DD ✓ ✗ ✗ ✓ ✓ ✗ DC
Wahab et al. (2015) DD ✓ ✗ ✗ ✓ ✓ ✗ DC
Jaiem et al. (2016) Pioneer 3DX DD ✓ ✓ DC
Jaramillo Morales et al. (2018)
Jaramillo Morales et al. (2020)

Nomad Super
Scout

DD ✓ ✓ ✓ ✗ ✓ ✓ DC

Touzout et al. (2022) Turtelbot-3 DD ✓ ✗ ✗ ✓ ✓ ✗ DC
Gürgöze and Türkoğlu (2022) DD ✓ ✓ ✓ ✓ ✓ ✗ DC

Table 7.1 Summarizing the research works that provide energy-estimation model of
mobile robots. Abbreviations: PF - Polynomial Fitting, KM - Kinematic Model, DM -
Dynamic Model, MM - Motor Model, FC - Friction Coefficient, SC - Static Components,
Load - payload, DC - Direct Current Motor.

Table 7.1 summarizes the research work that proposes energy-estimation models
for differential drive mobile robots. In this context, the energy-estimation model refers
to the estimation of the energy consumed during the operation of mobile robots. The
criteria used to compare these works include robot type, energy estimation technique,
and factors considered in the model. Polynomial fitting and mathematical modeling
are two widely studied energy-estimation models. Polynomial fitting, which involves
fitting the consumption of different velocity profiles. However it lacks accuracy. In
contrast, mathematical models prove more accurate, as they take into account kinematic,
dynamic, and motor models of the robot. Some research studies also take static friction
on different surfaces and slopes into account when estimating energy consumption. It
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is important to include static consumption of electronic components and sensors in the
estimation model, as well as the load a robot carries. Jaramillo Morales et al. (2020)
demonstrated that including the load in the energy estimation model leads to more
accurate results. In addition to these works, Xiao and Whittaker (2014) conducted
a comparison of energy expended by previous Mars and Lunar Rover missions based
on their mass and speed. They provided a model to estimate the achievable range or
distance a rover can cover with its full battery charge. This model can be useful for
robots employed in exploration missions, where energy-efficient operation is crucial to
extend mission durations and cover larger areas.

From the existing literature, we can derive the equation to calculate the energy
consumption of the mobile robotic system:

Ec =
∫ t

0
Pstatic(t)dt+

∫ t

0
Pdynamic(t)dt (7.3)

It is essential to develop an energy-estimation model specific to a particular robot, as
the model depends on the robot’s physical and dynamic properties. In this dissertation,
we will provide an energy-estimation model tailored to the cobot under study, taking
its mathematical model into consideration. This model will prove useful in estimating
the energy consumed during the robot’s mission, which is a significant parameter for
the energy-aware mission scheduler.

Energy estimation model

We utilize a standalone energy consumption model of a two-wheeled mobile robot.
As we stated previously the primary energy consumption sources in a robot are the
motors and various other components, including processing platform, sensors, and
electrical circuits. The energy consumption for motors encapsulates two significant
parts: energy conversion into the robot’s kinetic energy and the energy necessary
to overcome traction resistance. This energy model is expressed as per the formula
presented in Liu and Sun (2014).

Ec =
∫ t

0
Pstatic(t)dt

+
∫ t

0
(mmax{v(t)a(t),0})dt

+
∫ t

0
(I max{ω(t)β(t),0})dt

+
∫ t

0
(2µmg max{|v(t)|, |bω(t)|})dt (7.4)
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In this equation, v and ω symbolize the linear and angular velocities relative to
the robot’s center of mass. The distance from the robot’s center to the two wheels
is represented by b. The robot’s mass and the moment of inertia are denoted by m

and I, while a and β denote the linear and angular accelerations respectively. The
gravitational acceleration is denoted by g, and mg signifies the combined weight and
payload of the robot. µ is the rolling friction coefficient, which is contingent on the
ground surface type. By substituting the robot’s parameters into this equation, we can
estimate the energy that would be consumed for the travelled path.
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Figure 7.5 Energy model verification. Comparison between modeling and cobot results.

During our test with the cobot, we measured its power consumption while navigating
at a linear velocity of 1.2m/s. We recorded the power consumption data and compared
it to the energy model. As depicted in Figure 7.5, the model’s results are in line
with the experimental data, thereby confirming the validity of the parameters we
identified. In addition, the model indicated a potential for energy regeneration during
deceleration, with an estimated regeneration rate of approximately 5%. Exploring
regenerative harvesting technologies in the future could be an interesting avenue of
research. In Figure 7.6 we present a comparison between the energy model results and
the robot’s power consumption during the navigation phase of its mission. The velocity
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Figure 7.6 Comparison between modeling and cobot results for a mission navigation.

profile, recorded during the navigation, was incorporated into the energy model. To
estimate the worst-case mission energy, we employ an approximation technique that
considers the total mission duration and the robot’s average velocity. We determine
the average velocity by logging the velocity measurements across multiple mission
iterations. Using these data, we can apply the energy model to estimate the worst-case
mission energy. However, it is important to note that the worst-case mission energy
estimation is an approximation and may not always be precise, especially in highly
dynamic environments where motor acceleration varies due to frequent stops and starts.

7.4.2 Battery remaining energy monitoring

IMR uses a high-precision Coulomb Counter [Martin Murnane (2017)] to monitor
the battery’s State of Charge (SoC). This SoC, defined as the ratio of the remaining
capacity of the battery to its rated capacity specified by the manufacturer, ranges from
0% when the battery is completely drained to 100% when it is fully charged. The
remaining battery energy at any given time can be calculated by multiplying the SoC
by the battery’s total energy:
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E(t) = total energy× SoC(t)
100 (7.5)

Here, total energy signifies the product of (nominal) voltage (V) and (nominal)
capacity (Ah). For better visibility by the scheduler, the expression of total energy,
initially given in watt-hours (Wh), can be converted to joules. However, it is important
to note that the total energy that a battery can store may decrease over time due to
battery degradation factors such as aging and temperature effects. While these factors
are not the focus of this dissertation, future research should consider techniques like
machine learning approaches [Ren et al. (2019), Niri et al. (2020)] for estimating the
remaining battery energy.

7.4.3 Energy-Harvest Prediction

The energy prediction algorithms for solar power harvesting were discussed in Sec-
tion 3.6.2. However, all systems in which these techniques were tested were in a static
position. In this work, the solar panels are mounted on a mobile robot, adding a
dynamic motion factor to the uncertainty challenges of solar prediction. Predicting
the energy to be harvested thus becomes a more complex task. While this prediction
study is not the primary focus of this thesis and requires an entirely separate field
of expertise, we opt for a simplified approach with a couple of assumptions. These
assumptions are used to facilitate the verification of the scheduler.

In the first scenario, the harvested power is considered to be a constant for the
sake of simplicity. This assumption is primarily used for preliminary simulations and
provides a baseline for comparison with more complex scenarios. In the second scenario,
we aim to simulate a closer-to-reality situation. We record the power harvested during
the time window of a mission, defined as the period between the mission’s release
time and its deadline. For example, if a mission is to navigate from point A to B,
the time window begins when the robot starts moving and ends when it reaches the
destination. Running the mission multiple times allows us to calibrate the prediction
by recording the power harvested during each run’s time window. We can then employ
the simplest prediction algorithm, Exponential Weighted Moving Average (EWMA), to
predict the energy that will be harvested during the mission. This assumption holds
reasonably well for indoor environments where the intensity of light does not vary
significantly. However, outdoor scenarios present a much higher level of uncertainty.
For such situations, a prediction algorithm like Weighted Cumulative Moving Average
(WCMA) would be required.
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Figure 7.7 Evaluation of the EWMA prediction algorithm.

In order to illustrate the nature of our prediction algorithm in context of mission
scenarios, we executed a simulation that utilizes randomly generated power values
over the period of a 60-second mission. This simulation was conducted under the
assumption that both the light intensity and the mission path would remain constant,
leading to relatively predictable power production throughout the mission’s duration.
We used EWMA to estimate the power that the robot would harvest during the mission.
Our test showed that this method was accurate, with less than 10% error, as shown in
Figure 7.7. Recently, Stricker and Thiele (2022) conducted a comparison of EWMA
prediction with Random Forest technique for indoor harvesting applications. Their
proposed Random Forest predictor exhibited a Mean Absolute Deviation Percentage
(MADP) of 27.4%, whereas the MADP for the EWMA methodology was significantly
higher at 113.8%. However, their study considered indoor harvesting akin to the
diurnal cycle outdoors, meaning that lights were switched ’OFF’ during the night. In
an industrial setting, we assume that the light intensity does not vary significantly,
and if we consider a situation where lights are switched ’ON’ all the time, EWMA may
be a more suitable prediction method. The performance of the scheduler is dependent
on the precise forecasting of future energy. The duration of the mission, defined
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within a time window, is usually captured in ’seconds’ but can extend to ’minutes’
for missions of longer durations. Therefore, it becomes imperative to delve further
into energy prediction algorithms, especially those suitable for dynamic and uncertain
environments. This will undoubtedly enhance the performance of the energy-aware
mission scheduler in our study.

7.5 Energy-aware mission scheduler

First, we introduce the modified optimal energy-aware scheduler designed for real-time
computing tasks within mission scheduling. Algorithm 1, showcases the ED-H mission
scheduler. Inputs for the scheduler include the mission class, which is characterized
by release time, deadline, WCMD, WCME, and goal points. Other inputs include
the remaining battery energy, predicted power to be harvested (using the prediction
algorithm), full battery capacity, and energy threshold. The scheduler determines the
state of the mission manager, which can either be active (RUN_MISSION) or idle
(PAUSE_MISSION or IDLE), based on the ED-H scheduler’s set of rules. The slack
time (ST) and preemption slack energy (PSE) remain consistent. When the mission
manager state is RUN_MISSION, the simple commander API is executed to launch
the mission, using the mission’s goal point (i.e., the destination that the robot must
navigate to from its current location). The missions are managed and executed in
accordance with the state of the manager.

Initially, we validated the precedence and energy constraints for the mission set
using our simulation framework. To this end, we have modified the REACTSim tool to
accommodate the mission set, and we have subsequently renamed this modified tool as
REAMSim (Real-time Energy-Aware Mission scheduler Simulator). All corresponding
parameters of a task set are modified to match those of a mission set. For the initial
version of this tool, we have only allowed mission set input from a file, disabling other
methods. Each mission’s predecessor and successor can be defined in the respective
column. After loading the mission set, we apply the transformation algorithm we
discussed previously to convert the dependent mission set into an independent mission
set. Following this transformation, we can perform a feasibility test for both dependent
and independent mission sets. Finally, the missions can be scheduled, and the simulation
can be visualized. Figure 7.8a illustrates the DAG model of the considered mission
set, and the associated parameters for the mission are displayed in the table. We can
observe both the release time and the deadline of the dependent and independent
mission sets. The constraint here is that Mission 2 must not be executed before Mission
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Algorithm 1 The ED-H Mission Scheduler
Input
Current time t, M, E(t), Ph(t), Eb, Emin

Output Mission schedule
t← 0
Manager_state← IDLE
Qm← update_ready_queue(M)
while (1) do

hpM ← select_high_priority_mission(Qm(t)) //Rule 1
ST (t)← slack_time_computation(t,Qm)
PSE(t)← preempt_slack_energy_computation(t,Qm,E(t),Ph(t))
if Qm(t) ̸= ∅ then

if E(t) < Emin or PSE(t) < Emin then
Manager_state← PAUSE_MISSION //Rule 3

else if E(t) == Eb or ST (t) == 0 then
Manager_state←RUN_MISSION //Rule 4

else if E(t) < Eb and ST (t) > 0 and PSE(t) > 0 then
Manager_state← PAUSE_MISSION or
Manager_state←RUN_MISSION //Rule 5

end if
else

Manager_state← IDLE //Rule 2
end if
if Manager_state == RUN_MISSION then

run_navigation(hpM)
else if Manager_state == PAUSE_MISSION then

pause_navigation(hpM)
end if
t := t+1

end while
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M1

M3 M2

M4

(a) Mission Simulator Interface - ED-H.

(b) Mission schedule using ED-H and precedence constraints. Both the dependent jobs and
independent jobs release and deadline are marked as dashed arrows and continuous arrows.

Figure 7.8 ED-H mission scheduling simulation.

1. As shown in the Gantt of the schedule displayed in Figure 7.8b, Mission 1 is executed
before Mission 2, which satisfies the precedence constraints, and the same applies for
Missions 3 and 4. Furthermore, the schedule also illustrates the energy level, clearly
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showing that depletion does not fall below the threshold and that energy-neutral
operation is achievable. As a subsequent step, we have simulated a realistic scenario of
a mobile robot using the ROS simulation tools.

ROS2 Simulation

Figure 7.9 Gazebo environment with Turtlebot3 in house world.

In the ROS2 simulation, we implement the turtlebot38 simulation with Gazebo,
using the environment setting of a house world as depicted in Figure 7.9. The purpose
of this simulation is to command the robot to execute various missions, namely

8https://github.com/ROBOTIS-GIT/turtlebot3

https://github.com/ROBOTIS-GIT/turtlebot3
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navigating from one point to another, by utilizing the energy-aware mission scheduler
ED-H. We receive the velocity at which the robot travels and, using the energy model
of the turtlebot3, we simulate the instantaneous power consumption of the robot.
The parameters of the robot, defined in the work of Touzout et al. (2022), are used
for this simulation, including a static power consumption of 10W for the turtlebot.
Given that the robot lacks energy-related equipment like a battery or a harvesting
unit, we use separate ROS nodes to manage battery energy, harvested power, and
power consumption estimation. Each node has respective topics to facilitate data
communication amongst them. Upon launching the simulation with the turtlebot3,
the navigation stack (nav2), and the energy simulator, a complete node graph and
corresponding topics recorded using the rqt_graph9 is shown in Figure B.1.

D
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M4(E)

M3(B) M1(A)

M2(C)

M5(D)

Figure 7.10 Rviz visualization of the map, robot, and planner along with the missions.
’S’ is the initial starting point.

We perform the mapping using the cartographer slam and save the map using
the map server packages of nav2, which is subsequently provided to the localization
and planner. Figure 7.10 shows the map and the localized robot with the defined

9http://wiki.ros.org/rqt_graph

http://wiki.ros.org/rqt_graph
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mission points to which the robot must navigate. We specify a set of five missions,
the precedence constraints of which are depicted in the figure. Initially, we launched
each mission individually to measure the WCMD. As previously stated, the duration
of the mission can be obtained through the feedback of the navigation stack, which
is also represented in the Rviz window located at the bottom left, as highlighted in
Figure 7.10. We include an upper bound with this mission duration, as occasionally
the robot may be obstructed by obstacles due to localization issues or network loss. We
do not take into account the mission duration when the robot is temporarily blocked
and attempting recovery behavior, as it is considered lost. This issue is often observed
when the robot is entering a narrow passage, such as passing through a doorway. We
measure the WCME with the recorded velocity during the navigation of the mission,
and utilizing the energy model. We operate under the assumption that the robot must
complete a mission within a certain time frame, defining release times and deadlines
accordingly.

After the definition of the mission parameters, we use the REAMSim tool to
generate an independent mission set, with release times and deadlines calculated using
a sorting algorithm that considers the precedence constraint. Figure 7.11a presents
the parameters of the mission set used for the simulation. We simulate the harvesting
power for the mission time window, randomly ranging from a minimum of 9W to a
maximum of 12W. REAMSim is modified to consider this simulated variable harvested
power if the ’Power Harvested’ data is set to zero. We conduct an offline schedulability
test for the mission set, which yields successful results. Figure 7.11b illustrates the
schedule of the mission set using the ED-H energy-aware mission scheduler. It is
observed that the power harvested is fully utilized by the mission and the battery’s
energy is never depleted. However, this scenario cannot be replicated in the robot
simulation or real-world application due to the fact that REAMSim only considers
the energy consumed during the execution and not in the idle state. To explore this
further, we simulate the robot under different harvesting settings for the mission set.
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(a) Mission set used for the simulation. Power Harvested is set to 0 for considering
variable harvested power.

(b) Schedule of the mission.

Figure 7.11 Offline simulation of the mission set using REAMSim.
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(a) Mission schedule with constant harvest power.

(b) Energy and power logs of the Mission schedule simulated on ROS2.

Figure 7.12 Mission schedule and energy logs for the setting 1.
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(a) Mission schedule.

(b) Energy logs.

Figure 7.13 Mission schedule and energy log for simulation with setting 2.
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(a) Mission schedule.

(b) Energy logs.

Figure 7.14 Mission schedule and energy log for simulation with setting 3.
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Setting 1: (Constant) Harvested Power >= Total energy utilization

In this scenario, we consider a constant harvested power of 12W, which is either
greater than or equal to the total energy utilization (≈11W). We then perform the
simulation under this setting. We initialize a mission class with the independent
mission set, which includes release time∗, deadline∗, WCMD, WCME, and goal point,
to a runqueue. The mission is selected from the runqueue according to the EDF rule.
Figure 7.12a illustrates the schedule as recorded in the mission manager performing
the mission execution with the ED-H mission scheduler and navigation commander.
Figure 7.12b shows the power and energy log of the simulation. The instantaneous
power consumption plot exhibits the power consumed during navigation. The total
energy consumed during the mission is presented in the top right corner. The subplot
at the bottom left displays the remaining battery energy in joules, and the subplot
at the bottom right plots the harvested power, which is constant. From the schedule,
we can infer that the robot has utilized the harvested power to execute the missions,
thus preventing any depletion in the battery energy. Furthermore, we can note that
the precedence constraints are satisfied, leading to the conclusion that the scheduler is
capable of executing critical missions with time constraints. Nevertheless, we cannot
make the assumption that the power is always constant. Therefore, we move to the
next setting, which incorporates variable power.

Setting 2: Variable Harvested Power Profile 1

In this scenario, we assume that the power harvested during the simulation is variable,
ranging from 9W to 11W. As depicted in Figure 7.13, while the robot is executing
Mission 3 and the energy falls below the threshold, the ED-H scheduler efficiently
allocates an idle time period by effectively pausing the execution of the mission. This
ensures there is enough energy to successfully complete the mission. However, energy
surpasses the threshold during the performance of Mission 1. If we hypothesize that the
harvesting unit fails to gather the required power and reaches a timeout, the mission is
consequently skipped. This causes subsequent missions to experience time and energy
starvation. In response to this situation, we propose a "breakout" period. During this
time, the robot can maneuver towards high-energy zones (that can be defined by the
Costmap filter10), enabling more power harvesting and the completion of subsequent
missions. However the mission will not be completed before the deadline which can be

10https://navigation.ros.org/tutorials/docs/navigation2_with_keepout_filter.html

https://navigation.ros.org/tutorials/docs/navigation2_with_keepout_filter.html
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denoted using the QoS profile. The QoS measure provides an assessment of the robot’s
performance under the constraints of time and energy for mission completion.

Setting 3: Variable Harvested Power Profile 2

In this scenario, we conduct a simulation of mission scheduling using the same power
harvesting profiles previously employed with the REAMSim tool for schedulability
tests. The power ranges from 9W to 12W. Figure 7.14 presents the schedule and the
energy log. We can observe that the missions are scheduled in accordance with the
precedence constraints and are completed before their respective deadlines. The total
energy used for the mission is represented in the plot, including the idle time during
the mission processes. The battery’s energy level never falls below the threshold and is
replenished, indicating an energy-neutral operation. However, achieving this outcome
remains a challenge due to technological limitations associated with the harvesting
and charging system. Hence, a practical implementation of energy-neutral operation
still presents difficulties. Nevertheless, we have developed a mission scheduler that is
capable of handling time, energy and precedence constraints effectively. This scheduler
could be further improved by incorporating a variety of harvesting technologies, paving
the way towards realizing energy-neutral operation.

7.6 Implementation and Technological Barriers

Our research aimed to develop a real-time energy harvesting mobile robot equipped
with an energy-aware mission scheduler and a harvesting unit, as depicted in Figure 7.2.
Regrettably, we encountered certain challenges that hindered further progression.
One issue was getting the navigation stack (nav2) to function with the new cobotic
architecture. Moreover, a significant challenge lay in devising an indoor harvesting
system capable of fulfilling the energy demands of the cobot. Considering the current
state of technology, achieving such a system remains an elusive goal. In our initial tests,
we opted to use readily available photovoltaic cells made of monocrystalline material11.
As seen in Figure 7.15, we fabricated three panels, each consisting of 40 cells, capable
of powering a load with a 12V battery. To regulate the power distribution between the
battery and the harvesting unit, we employed a charge controller. We used a Yocto
wattmeter to record the harvested power and, as expected, we were able to harvest
only maximum power of 320mW in an indoor environment with a light intensity of
1700-1800 lux. For instance, over 2 hours and 30 minutes, we only harvested a total

11https://www.seeedstudio.com/0-5W-Solar-Panel-55x70.html

https://www.seeedstudio.com/0-5W-Solar-Panel-55x70.html
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of 1500 joules indoors. On the other hand, outdoor settings with 65K lux allowed
us to harvest up to 24W, with a total of 50K joules harvested over 1 hour and 30
minutes. Considering the available space on the cobot, we determined that it could
accommodate four panels, each measuring 700mm x 700mm. Theoretically, these
panels could generate approximately 2W of power indoors, which falls short of the
power requirements for the cobotic system. As a result, we need to explore different
technologies for indoor environments. While outdoor settings could potentially meet
the harvesting requirements, they introduce further complications, such as the need for
more complex navigation systems, making them less ideal for cobot applications.

Figure 7.15 Preliminary test of indoor harvesting.

Despite this challenge, it is crucial to highlight that our proposed mission scheduler
operates on an event-driven basis with time and precedence constraints suitable for
critical mission scheduling. This attribute potentially allows it to integrate with
other data-driven mission managers, as suggested in [Dinh-Khanh (2020)], to facilitate
energy-efficient scheduling, while still depending on conventional charging stations.
Looking forward, we expect advancements in harvesting technology and the evolution
of innovative energy scavenging methods for indoor settings to lead to more efficient
energy-neutral operations for cobotic systems. Current technological barriers present
significant challenges, but we believe that progress in this field will help us overcome
these obstacles, leading to more sustainable and energy-efficient cobotic systems.
Additionally, the robot can incorporate energy consumption minimizing techniques, as
outlined in current state-of-the-art approaches, to reduce energy demand. For instance,
when the robot is idle, power to the motors can be regulated using switches to toggle
’ON’ and ’OFF’, thereby reducing power consumption. The energy model can also be
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studied in depth to identify the optimal velocity profile for the robot, allowing it to
navigate while consuming less power. Such techniques could contribute significantly to
reducing the overall energy demand of the device. Consequently, this would allow us
to focus on a harvesting unit with lower power output that can still meet the robot’s
energy demand.

7.7 Conclusion

In this chapter, we highlighted the limitations of using an energy-aware scheduler at
the operating system level (i.e. at the computing task level) for industrial mobile
robots. We proposed investigating the scheduler at the application level, specifically as
a mission scheduler that takes into account the energy constraints of the cobotic device
as a whole. We explored how concepts from real-time theory could be applied to mobile
robots, and provided simple solutions for calculating the WCMD and WCME as part of
mission characterization. We introduced a new concept for mission characterization that
includes precedence constraints and makes use of a deadline sorting algorithm. This
approach prompts us to think beyond priority triggers and consider more sophisticated
deadline constraints for intelligent mission management in industrial settings. Next,
we detailed the energy model used to estimate the robot’s energy consumption and
validated it using real robot results. We demonstrated the application of the EWMA
prediction algorithm to robotic missions through a simulation test.

Following that, we described the modified ED-H scheduler designed for mission
scheduling and introduced REAMSim, a tool for testing the schedulability of a given
mission set offline. To showcase the performance of the scheduler under different
power harvesting profiles, we used the ROS simulation environment and the turtlebot3
model. We also introduced the notion of Quality of Service (QoS) that accounts for the
performance of the robot in terms of mission completion. Our proposed approach proved
effective in scheduling critical missions with time, energy, and precedence constraints.
However, implementing this methodology on real robotic devices for indoor settings
poses challenges due to technological barriers. We discussed these limitations and
showed preliminary results from testing indoor energy harvesting using monocrystalline
photovoltaic cells. Although achieving energy-neutral operation currently presents
technological hurdles, our work lays the groundwork for this goal. Meanwhile, the
energy-aware mission scheduler can still prove beneficial for scheduling critical missions
while relying on conventional charging stations.



Chapter 8

Conclusion and Future Perspectives

8.1 Conclusion

In this dissertation, we primarily focused on two significant limitations prevalent in the
realm of industrial mobile cobots: the absence of deterministic execution and the need
for effective energy management. Deterministic execution refers to the system’s ability
to consistently and predictably perform tasks, particularly in terms of task execution
time and response times to events.

Our aim is to bring these aspects by applying insights derived from the field of
real-time computing systems. Our objective for this dissertation can be summarized as
follows:

1. Our first aim is to design a system architecture, both hardware and software,
that adheres to real-time properties. We strive to offer an easy-to-use design that
overcomes the dynamic configuration and programming limitations of current
architectures.

2. Our principal objective is to make the system architecture energy-aware. We aim
to develop a platform that facilitates energy-neutral operation. For mobile robots,
energy neutrality implies a state where the robot’s energy usage is perfectly offset
by the energy it harvests or generates from environmental sources. This ensures
seamless operation without exhausting its energy source, and in turn, improves
its performance, extends its life expectancy, and increases the chances of mission
accomplishment.

Objective 1 - Contribution

Our objective was to enhance the architectural design of cobotic devices, ensuring
functional correctness, completeness, and appropriateness—these are key aspects of
product quality as per ISO standard. The architecture we developed successfully
meets both functional (FR) and non-functional (NFR) requirements of the mobile
robotic device. We have proposed and implemented a unified hardware abstraction
layer. This supports easy interfacing with the robot’s peripheral components and
complies with the software abstraction layer to satisfy the NFR properties. In the
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software abstraction layer, we incorporated elements that ensure real-time capabilities.
At the system level, we utilized a Linux kernel patched with the Xenomai kernel.
This supports the deterministic execution of threads and improves scheduling latency.
Furthermore, we applied deterministic execution to ROS threads, using the PiCAS
framework to execute these threads under the Xenomai kernel. To further these
advances, we have developed a detailed methodology. This methodology serves to
assist developers in building and refining a robust mobile architecture that adheres to
real-time properties while satisfying both FR and NFR of the device. The quality of
the proposed architecture aligns with ISO standards, encompassing aspects such as
modularity, reliability, reusability, maintainability, and portability.

Improvement Opportunities

Despite the proposed architecture adhering to the requirements, we have not been
able to fully validate its functionality on an actual robot. We have conducted tests
on peripheral components, providing assurance that all necessary parts will function
as expected. However, we were unable to assess the complete functionality of the
architecture within the robotic system, an aspect that requires further engineering effort
to validate. There also exists a challenge in building and flashing the processing platform.
We have attempted to simplify this process, but it could be further streamlined by
utilizing Yocto1 support for the Jetson modules. A significant limitation we encountered
was component shortage. We employed the Jetson AGX Xavier module, the availability
of which is currently limited. To the best of our knowledge, we were unable to identify a
module that inherently satisfies the peripheral requirements of the cobotic device apart
from the Jetson AGX modules. If we were to consider using the Jetson AGX Orin, it
would necessitate modification of the kernel package to incorporate the Xenomai kernel.
This would be a time-consuming engineering effort. Nonetheless, it is crucial to mention
these aspects are not limitations, but rather opportunities for further development and
improvement of the proposed architecture.

Objective 2 - Contribution

The principal aim of our research was centered around robotic operations with a focus
on timing behavior and resource usage, essential elements contributing to performance
efficiency. We addressed this aim by incorporating the concept of energy-neutrality
drawn from real-time computing systems into our methodology. For the realization

1https://github.com/OE4T/meta-tegra

https://github.com/OE4T/meta-tegra
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of this objective, we selected the ED-H scheduler, an optimal energy-aware real-time
scheduler. However, translating this theoretical aspect into practical application
presented a complex challenge. Our initial contribution was the development of a
novel theorem for the ED-H scheduler that takes into account tasks with shared
resource constraints. We provided a theoretical proof demonstrating that real-time
tasks with constraints on time, energy, and shared resources can be scheduled using the
optimal ED-H scheduler. Subsequently, we worked on the development of additional
scheduling policies for the Xenomai kernel. The SCHED_EDF policy was integrated first
to facilitate task scheduling with the earliest deadline first scheduler. Following the
verification of its functionality, we proceeded to develop an energy-aware scheduler for
Xenomai, resulting in a new scheduling class, SCHED_ED-H, which schedules tasks in
accordance with the ED-H scheduler. However, due to the complexity of debugging,
a full validation of the scheduler’s performance at the system level was not possible.
Furthermore, we found that the granularity of energy at the system level for the mobile
cobot was significantly lower compared to the energy usage of the device as a whole.
This led us to shift our focus from system-level concepts of real-time computing theory
to the application level for the mobile robot. At the application level, we introduced
a mission manager that incorporates the energy-aware ED-H scheduler for mission
scheduling, and we proposed a novel concept of mission characterization that considers
precedence constraints. Finally, we created an energy-aware mission scheduler that
adheres to the time, energy, and precedence constraints of the mission for mobile robotic
devices. Yet, the implementation of energy-neutral operation—an efficacy target of this
objective—remained elusive due to technological barriers related to energy harvesting
in indoor settings. Despite these challenges, our efforts contribute to a novel landscape
for mobile robots by implementing real-time computing concepts.

Improvement Opportunities

Despite the contributions of our energy-aware mission scheduler, there are areas that
require further attention: it can only consider static missions, meaning the missions
must be created prior to the start of execution. The system does not permit the
dynamic inclusion of missions during the schedule’s operation with the energy-aware
mission manager. The main shortcoming, however, lies in the harvesting technology cur-
rently available, which impedes the practical application of our methodology in indoor
settings. Consequently, there is a distinct need for additional research in diverse fields
to effectively incorporate various harvesting methods and deliver a robust prediction
algorithm for the power harvested. This multi-disciplinary approach will strengthen
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the applicability and efficiency of energy-neutral operations in indoor robotic systems.

In essence, this dissertation explored solutions for industrial mobile cobots that is
that achieve both determinism and energy management, leveraging the concepts of
real-time computing systems.

8.2 Scope for Future Research

Our research has successfully navigated several areas of development and has proposed
solutions for industrial mobile cobots. However, there are additional opportunities for
enhancement and expansion that can be realized through multidisciplinary integration.
Furthermore, several intuitive aspects could drive advancements and innovation in the
field of industrial mobile cobots.

– An area of focus could be the benchmarking of software abstraction using tracing
tools, particularly for ROS2 with ros2_tracing [Bedard et al. (2022)], aiming to
create a low-overhead framework.

– Dynamic power management techniques could be employed to control the state
of the motor, fostering energy conservation during the robot’s rest period.

– The exploration of harvesting techniques, such as regenerative energy through
the use of efficient motors and recovery systems, presents an intriguing scope for
research.

– Another compelling avenue for research would be to concentrate on fixed priority
energy-aware scheduling [Chetto (2021)].

– Finally, our work could extend towards a multi-mission manager and expanding
the energy-aware scheduler from single robot scheduling to multiple robots by
enhancing the scheduler with bin packing heuristics [Shin and Ramanathan
(1994), Coffman et al. (1999), Ghor et al. (2018)].

Each of these potential advancements underscores the multi-disciplinary nature
of this research and highlights the significant opportunities that exist for continued
innovation in the field of industrial mobile cobots.
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Chapter 9

French Summary

9.1 Introduction

Cette thèse explore le rôle de l’ingénierie logicielle dans la robotique, avec une attention
particulière à la gestion de l’énergie pour les robots autonomes mobiles. Les systèmes
robotiques, de plus en plus présents dans notre société, nécessitent une intégration
parfaite des éléments matériels et logiciels. Des recherches, comme celles d’Ahmad and
Babar (2016), montrent une tendance croissante à utiliser des méthodes d’ingénierie
logicielle pour réduire la complexité et améliorer l’efficacité des systèmes robotiques.
Toutefois, les pratiques actuelles d’ingénierie logicielle conduisent souvent à des logiciels
susceptibles d’être erronés et difficiles à maintenir. De plus, l’étude de García et al.
(2020) a révélé une lacune importante chez les professionnels de l’industrie en ce qui
concerne la garantie d’un fonctionnement déterministe, un concept clé dans les systèmes
informatiques temps réel. Cette thèse vise à combler ces lacunes, en se concentrant
en particulier sur les robots mobiles. L’objectif principal est de traiter la question de
la gestion de l’énergie, un enjeu majeur pour ces robots. L’objectif est d’améliorer
leur efficacité opérationnelle et d’assurer l’exécution de leurs fonctions de manière
autonome, tout en respectant les normes ISO 25010.

9.2 Problem Statement

L’étude de l’architecture des robots mobiles industriels est au cœur de cette thèse, en
particulier l’exécution déterministe et la gestion des contraintes de temps et d’énergie.
Les exigences des robots mobiles sont classifiées comme fonctionnelles et non fonc-
tionnelles. Les exigences non-fonctionnelles englobent la performance déterministe, la
fiabilité et l’utilisation de l’énergie. En raison de l’importance des réponses en temps
réel face à des environnements dynamiques, des stratégies pour optimiser l’utilisation de
l’énergie sans compromettre les performances temps réel sont explorées. Les algorithmes
d’ordonnancement économes en énergie pour les robots mobiles sont examinés, ainsi
que les compromis entre performance, fiabilité et consommation d’énergie. Les défis
principaux comprennent le développement d’une architecture pour les robots mobiles
qui respecte à la fois les exigences fonctionnelles et non fonctionnelles, l’amélioration des
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algorithmes d’ordonnancement économes en énergie pour les systèmes de récupération
d’énergie en temps réel (Real-time Energy Harvesting) et l’implémentation de ces
algorithmes dans un système d’exploitation temps réel (RTOS). L’objectif ultime est de
favoriser le développement d’une architecture robotique efficace, fiable et économe en
énergie. Bien que le focus soit mis sur le robot mobile industriel HUSKY développé par
E-COBOT, les contributions pourraient être étendues à d’autres systèmes robotiques
avec les modifications appropriées.

1. Conception de l’architecture matérielle/logicielle pour un robot mobile avec des
aptitudes temps réel : Le défi est de concevoir une architecture matérielle et
logicielle qui peut gérer les performances temps réel, la charge de calcul, et
la compatibilité avec le système d’exploitation et les middlewares sélectionnés.
L’utilisation d’un système d’exploitation temps réel (RTOS) qui permet une
exécution déterministe et un ordonnancement efficace des tâches est essentielle.

2. Reconfigurabilité et reprogrammation dynamique pour une meilleure adaptabilité
selon les exigences de l’utilisateur : Il est crucial de permettre la reconfigurabilité
et la reprogrammation dynamique, permettant des changements en temps réel
dans les tâches du robot sans nécessiter un arrêt complet ou un accès physique à
l’appareil.

3. Intégration d’un algorithme d’ordonnancement sensible à l’énergie avec des con-
traintes de ressources partagées : Le défi est de gérer les contraintes d’énergie
dans l’architecture des robots mobiles. Cela inclut l’intégration d’algorithmes
d’ordonnancement sensibles à l’énergie qui permettent un fonctionnement énergé-
tiquement neutre, équilibrant la demande d’énergie avec l’énergie récupérée à
partir de sources renouvelables.

4. Implémentation de l’algorithme d’ordonnancement optimal ED-H économe en
énergie dans un RTOS : Il est difficile d’intégrer ces algorithmes dans un RTOS
conjointement avec les politiques et mécanismes d’ordonnancement existants. Il
est crucial de s’assurer que l’algorithme d’ordonnancement sensible à l’énergie peut
coexister avec d’autres politiques d’ordonnancement sans impacter négativement
la performance en temps réel du système.

5. Implémentation de l’algorithme d’ordonnancement sensible à l’énergie pour as-
surer que les applications de mission des robots mobiles opèrent sous contraintes
d’énergie tout en maintenant les performances et la fiabilité : Le défi est de gérer
efficacement les ressources énergétiques pour permettre l’achèvement réussi des
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missions, en particulier à mesure que la complexité et le nombre de missions
augmentent.

6. Estimation de la durée et de la consommation d’énergie des missions des robots
mobiles : Il est difficile d’harmoniser la planification intelligente des missions en
temps réel pour les robots mobiles en raison de plusieurs facteurs interdépendants,
tels que la détermination de la consommation d’énergie pendant une mission et
l’intégration de solutions de récupération d’énergie.

Cette thèse fournit un guide complet pour concevoir et intégrer un robot mobile
déterministe temps réel et neutre en énergie, répondant aux défis de l’ordonnancement
des missions, de la récolte d’énergie et des contraintes de ressources. Elle présente une
analyse détaillée de chaque défi, des solutions proposées et leur efficacité, soutenues
par des résultats expérimentaux, visant à améliorer les exigences fonctionnelles et non
fonctionnelles des robots mobiles.

9.3 Contributions

Pour relever les défis mentionnés, nous avons apporté deux contributions majeures
dans le domaine des robots mobiles industriels, et deux contributions significatives aux
systèmes informatiques temps réel. Les contributions sont résumées comme suit:

9.3.1 Contribution 1

Conception Matérielle et Logicielle d’une Architecture de Robot Mobile
Industriel avec Aptitudes Temps Réel : Il s’agit d’une contribution au niveau
de l’architecture et du système. Notre objectif était d’améliorer la conception archi-
tecturale des dispositifs cobotiques, en garantissant l’exactitude, l’exhaustivité et la
pertinence fonctionnelles, qui sont des aspects clés de la qualité du produit selon la
norme ISO. L’architecture que nous avons développée répond avec succès aux exigences
fonctionnelles (FR) et non fonctionnelles (NFR) du dispositif robotique mobile. Nous
avons proposé et mis en œuvre une couche d’abstraction matérielle unifiée. Cela
facilite l’interface avec les composants périphériques du robot et respecte la couche
d’abstraction logicielle pour satisfaire les propriétés NFR. Dans la couche d’abstraction
logicielle, nous avons incorporé des éléments qui garantissent les capacités temps
réel. Au niveau du système, nous avons utilisé un noyau Linux patché avec le noyau
Xenomai. Cela favorise l’exécution déterministe des threads et améliore la latence
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de l’ordonnancement. L’exécution déterministe se réfère à la capacité du système à
effectuer des tâches de manière constante et prévisible, en particulier en termes de
temps d’exécution des tâches et de temps de réponse aux événements. De plus, nous
avons appliqué l’exécution déterministe aux threads ROS, en utilisant l’environnement
PiCAS pour exécuter ces threads sous le noyau Xenomai. Pour approfondir ces avancées,
nous avons développé une méthodologie détaillée. Cette méthodologie vise à aider les
développeurs à construire et affiner une architecture mobile robuste qui respecte les
propriétés temps réel tout en satisfaisant les FR et NFR du dispositif. La qualité de
l’architecture proposée est conforme aux normes ISO, englobant des aspects tels que la
modularité, la fiabilité, la réutilisabilité, la maintenabilité et la portabilité.

Background

Avant d’aborder les autres contributions, il est essentiel de présenter le contexte de
l’algorithme d’ordonnancement sensible à l’énergie, optimal, ED-H pour les systèmes à
récupération d’énergie temps réel (RTEHS). Habituellement, un RTEHS comprend un
module de récolte d’énergie, un module de stockage d’énergie et un module processeur.
Dans le système d’exploitation, les tâches à effectuer sont organisées selon un schéma
d’ordonnancement défini. Un de ces schémas traditionnels est "Earliest Deadline First"
(EDF). Cependant, EDF ne prend pas en compte les contraintes énergétiques. Selon
Chetto and Queudet (2014b), EDF n’est plus optimal et a un facteur de compétitivité
nul dans le cadre de RTEH. Chetto (2014) a adapté l’algorithme EDF pour démontrer
l’optimalité de ED-H, un ordonnanceur oisif avec lookahead D, où D est l’échéance
relative la plus longue des tâches dans l’application. Comme EDF, l’ordonnanceur
ED-H prend des décisions en temps réel. Cependant, il implique une clairvoyance
sur le futur à chaque instant sur au moins D unités de temps, et il est oisif. Dans
une plateforme RTEH, l’énergie disponible ne permet parfois pas d’exécuter toutes
les tâches à temps, sauf si le processeur entre délibérément dans le mode sommeil.
Lorsque l’ordonnanceur vise uniquement à respecter les échéances des tâches, il n’y a
aucun avantage à terminer une tâche plus tard que nécessaire. Les capacités à rendre le
processeur inactif font que ED-H peut anticiper l’épuisement de l’énergie dans l’unité
de stockage, ce qui, avec l’ordonnanceur non oisif et non clairvoyant EDF, peut se
manifester par le non-respect des échéances.

Avant de décrire les principes de ED-H, voici quelques définitions nécessaires :

• Le "Slack Time" de l’ensemble de tâches J à tc, noté STJ(tc), représente la durée
la plus longue pendant laquelle le processeur peut rester inactif à partir de tc.
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• Le ’Preemption Slack Energy" de l’ensemble de tâches J à tc, notée PSEJ(tc),
représente la plus grande quantité d’énergie qui peut être consommée par la tâche
active à tc tout en préservant la faisabilité énergétique des tâches qui peuvent la
préempter. PSEJ(tc) = mintc<ri<di<d SEJi

(tc).

• La "Slack Energy" de la tâche Ji à tc, notée SEJi
(tc), est la plus grande quantité

d’énergie qui peut être consommée dans [tc,di) tout en garantissant assez d’énergie
pour les tâches lancées à ou après tc avec une échéance à ou avant di. SEJi

(tc) =
E(tc)+Ep(tc,di)−g(tc,di) où g(tc,di) est la demande d’énergie de J sur [tc,di).

Désignons par Qr(tc) la liste des tâches prêtes à être exécutées à tc et non terminées.
Voici les règles qui définissent l’algorithme d’ordonnancement ED-H :

Rule1: La prochaine tâche à exécuter dans Qr(tc) = ∅, est choisie selon l’ordre de priorité
EDF.

Rule2: Si Qr(tc) ̸= ∅ est vide, alors le processeur reste inactif dans [tc, tc +1).

Rule3: Si Qr(tc) ̸= ∅ n’est pas vide alors que E(tc) = 0 ou PSEJ(tc) = 0, alors le
processeur reste inactif dans [tc, tc +1).

Rule4: Si Qr(tc) ̸= ∅ n’est pas vide alors que E(tc) = C ou STJ (tc) = 0, alors le processeur
reste occupé dans [tc, tc +1).

Rule5: Si Qr(tc) ̸= ∅ n’est pas vide, 0 < E(tc) < C, STJ(tc) > 0, et PSEtc > 0, le
processeur peut rester inactif ou occupé dans [tc, tc +1) selon une règle prédéfinie.

ED-H est un ordonnanceur optimal, ce qui signifie qu’un ensemble de tâches est
faisable si et seulement si au moins un ordonnancement ED-H peut satisfaire toutes
les échéances, compte tenu de la capacité de stockage d’énergie et de la puissance
de la source environnementale. La faisabilité de ce problème a été étudiée dans une
publication précédente. Les limites de faisabilité peuvent être dues au temps de
traitement et/ou à l’énergie. Ainsi, en plus de l’analyse de la demande de traitement
utilisée classiquement dans les systèmes temps réel sans contraintes d’énergie, il faut
prendre en compte l’analyse de la demande d’énergie. Cela nous amène à définir la
pénurie de temps et la pénurie d’énergie :

1. La pénurie de temps se produit lorsque le temps processeur disponible pour traiter
une tâche avant son échéance n’est pas suffisant, alors qu’il reste de l’énergie
disponible lorsque la violation de l’échéance se produit.
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2. La pénurie d’énergie se produit lorsque le temps processeur disponible pour traiter
une tâche avant son échéance est suffisant, mais l’énergie est épuisée lorsque la
violation de l’échéance se produit.

Ainsi, le test de faisabilité temporelle vérifie s’il y a pénurie de temps, tandis que
le test de faisabilité énergétique vérifie s’il y a pénurie d’énergie, pour n’importe quel
intervalle de temps de longueur finie.

Dans cette thèse, nous appliquons cette approche, prouvée de manière formelle,
pour faire fonctionner le robot mobile industriel de manière neutre en énergie. Cette
approche diffère des approches de pointe sur les économies d’énergie pour les robots
mobiles, qui consistent en la planification de mouvements économes en énergie, la
planification de trajets économes en énergie, le contrôle de la vitesse des articulations
et la gestion de l’alimentation du processeur. Nous nous concentrons d’abord sur cette
approche au niveau système du module de traitement. Voici les contributions en ce
qui concerne la gestion de l’énergie dans les robots mobiles industriels.

9.3.2 Contribution 2

Algorithme d’ordonnancement temps réel sensible à l’énergie ED-H sous
contraintes de ressources partagées : Nous avons étudié le test de faisabilité
ED-H en considérant des tâches qui accèdent en exclusion mutuelle à des ressources
partagées. Il est essentiel de bien gérer ces ressources pour éviter des situations de
blocage. Nous avons créé un modèle supplémentaire pour organiser des tâches qui
partagent des ressources. Une avancée clé est la nouvelle fonction de calcul de la
quantité d’énergie liée au blocage, qui complète la fonction traditionnelle de calcul du
temps de blocage. Nous avons souligné les limites du test de faisabilité actuel et avons
proposé une nouvelle analyse qui intègre conjointement le temps et l’énergie. Enfin,
nous avons présenté un nouveau théorème relatif au test d’ordonnançabilité de tâches
accèdant à des ressources partagées sous l’ordonnancement ED-H.

9.3.3 Contribution 3

Mise en œuvre de l’algorithme d’ordonnancement ED-H sous Xenomai, un
co-noyau temps réel pour distribution Linux: Nous avons approfondi l’étude
du système d’ordonnancement de Xenomai afin d’y intégrer l’ordonnanceur sensible
à l’énergie ED-H. Pour cela, nous avons créé REACTSim, un outil de simulation
intégrant des aspects énergétiques, avec un guide d’utilisation. Nos tests ont confirmé
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que ED-H permet un fonctionnement neutre en énergie. Nous avons ensuite détaillé
les principes d’ordonnancement des noyaux Linux et Xenomai. Nous avons ajouté la
politique SCHED_EDF à Xenomai, une étape nécessaire car ED-H est basée sur cette
politique. Après validation, nous avons créé une nouvelle classe d’ordonnancement
pour l’ordonnanceur ED-H, SCHED_EDH, adaptée aux tâches soumises à des contraintes
de temps et d’énergie. Malgré les défis liés à la complexité de l’ordonnancement et à la
caractérisation difficile des paramètres énergétiques, nous pensons que l’ordonnanceur
ED-H, utilisé au niveau de l’application, peut améliorer significativement la gestion de
l’énergie et l’efficacité opérationnelle des robots mobiles.

9.3.4 Contribution 4

Mise en œuvre de l’algorithme d’ordonnancement ED-H pour l’exploitation
économe en énergie des robots mobiles: Nous avons exploré l’implémentation
d’un ordonnanceur sensible à l’énergie, ED-H, pour des robots mobiles industriels,
en mettant l’accent non au niveau du système d’exploitation, mais au niveau de
l’application, c’est-à-dire au niveau de l’ordonnancement des missions. Pour cela,
nous avons introduit des concepts tirés de la théorie de l’informatique temps réel,
ainsi que des outils pour estimer les besoins énergétiques de chaque mission. L’idée
est de réfléchir non seulement à la priorité des tâches, mais aussi aux échéances et
aux contraintes d’énergie pour une gestion plus intelligente des missions. Nous avons
également présenté notre modèle d’énergie, validé par des expériences réelles, ainsi
qu’un outil de simulation pour tester la faisabilité de nos missions en tenant compte de
l’énergie. Nous avons montré comment cet ordonnanceur peut être performant, même
dans des scénarios variés de récolte d’énergie. Et nous avons introduit la notion de
Qualité de Service (QoS) pour évaluer la performance de nos robots. Enfin, nous avons
discuté des défis à relever pour mettre en œuvre cette méthode sur des robots réels,
notamment en ce qui concerne la récolte d’énergie en environnement intérieur (indoor).
Malgré ces défis, nous pensons que notre travail est une base solide pour l’intégration
de systèmes neutres en énergie, et que l’ordonnanceur de missions sensible à l’énergie
peut être utile pour gérer efficacement les missions en utilisant des stations de charge
traditionnelles.

9.4 Conclusion

Nous avons relevé six défis pour réaliser un robot mobile industriel. Nous avons
mis en place une méthodologie complète pour créer une architecture matérielle et
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logicielle robuste pour un robot mobile, avec des aptitudes de fonctionnement temps
réel indispensables pour régir les fonctionalités et la réactivité du système, et pour
optimiser les performances et l’utilisation des ressources. Nous avons concrétisé cette
méthodologie. Nous avons mis en évidence des obstacles technologiques liés aux
méthodes de récupération d’énergie en intérieur. Néanmoins, nous envisageons la
possibilité, dans le futur, de concevoir un robot industriel totalement autonome en
évitant la présence d’une station de charge conventionnelle car ne dépendant que de
l’énergie issue de sources ambiantes. La méthodologie guidera également le choix de la
taille de l’unité de stockage et la taille de l’unité de récupération d’énergie conduisant
ainsi à concevoir des robots mobiles à la fois robustes et économiques pour travailler
aux côtés des humains dans l’industrie.
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Figure A.1 Product quality model proposed by the ISO 25010 standard. It evaluates
the intrinsic quality (static and dynamic properties) of the software or computing
system.



202 |

Quality in use 
Human interaction with software 

Effectiveness 
 

accuracy and completeness with
which users achieve specified goals Usefulness 

Degree to which a user is satisfied with
their perceived achievement of

pragmatic goals, including the results of
use and the consequences of use

Satisfaction

Trust 

 Degree to which a user or other
stakeholder has confidence that a
product or system will behave as

intended 

Pleasure 

Degree to which a user obtains pleasure
from fulfilling their personal needs 

Efficiency 
 

resources expended in relation to the
accuracy and completeness with which

users achieve goals 

Comfort 

Degree to which the user is satisfied with
physical comfort 

Economic Risk Mitigation 

Degree to which a product or system mitigates
the potential risk to financial status, efficient

operation, commercial property, reputation or
other resources in the intended contexts of use 

Freedom from
Risk

Health and Safety Risk Mitigation 

Degree to which a product or system mitigates
the potential risk to people in the intended

contexts of use

Environmental Risk Mitigation 

Degree to which a product or system mitigates
the potential risk to property or the environment

in the intended contexts of use. 

Context Completeness 

Degree to which a product or system can
be used with effectiveness, efficiency,

freedom from risk, and satisfaction in all
the specified contexts of use. 

Context
coverage

Flexibility 

Degree to which a product or system can
be used with effectiveness, efficiency,
freedom from risk and satisfaction in

contexts beyond those initially specified in
the requirements.

Figure A.2 Quality in use model proposed by the ISO 25010. It evaluates the quality
characteristics of the software when it is used under specific context.
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B.1 POSIX Thread

1 # define _GNU_SOURCE
2 # include <pthread .h>
3

4 // Thread function
5 void* thread_function (void* arg) {
6 // code here
7

8 return NULL;
9 }

10

11 int main () {
12 pthread_t thread_id ;
13

14 // Create a new thread
15 int result = pthread_create (& thread_id , NULL , thread_function ,

NULL);
16 if ( result != 0) {
17 // Handle error
18 return 1;
19 }
20

21 // Wait for the thread to finish
22 pthread_join (thread_id , NULL);
23

24 return 0;
25 }

Listing B.1 POSIX Thread

B.2 POSIX Thread With SCHED_FIFO

1 # include <pthread .h>
2 # include <sched.h>
3 # include <stdio.h>
4

5 void* thread_function (void* arg) {
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6 // code here
7 while (1){
8

9 }
10 return NULL;
11 }
12

13 int main () {
14 pthread_t thread_id ;
15 pthread_attr_t attr;
16 struct sched_param param;
17

18 // Initialize thread attributes
19 if ( pthread_attr_init (& attr) != 0) {
20 perror (" pthread_attr_init ");
21 return 1;
22 }
23

24 // Set scheduling policy to SCHED_FIFO
25 if ( pthread_attr_setschedpolicy (&attr , SCHED_FIFO ) != 0) {
26 perror (" pthread_attr_setschedpolicy ");
27 return 1;
28 }
29

30 // Get max priority for the SCHED_FIFO policy
31 int max_priority = sched_get_priority_max ( SCHED_FIFO );
32 if( max_priority == -1) {
33 perror (" sched_get_priority_max ");
34 return 1;
35 }
36

37 param. sched_priority = max_priority ;
38

39 // Set the priority in the attribute
40 if( pthread_attr_setschedparam (&attr , &param) != 0) {
41 perror (" pthread_attr_setschedparam ");
42 return 1;
43 }
44

45 // Create a new thread
46 if ( pthread_create (& thread_id , &attr , thread_function , NULL) !=

0) {
47 perror (" pthread_create ");
48 return 1;
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49 }
50

51 // Destroy thread attributes
52 pthread_attr_destroy (& attr);
53

54 // Wait for the thread to finish
55 pthread_join (thread_id , NULL);
56

57 return 0;
58 }

Listing B.2 POSIX Thread With SCHED_FIFO

B.3 POSIX Thread With SCHED_DEADLINE

1 # include <pthread .h>
2 # include <stdio.h>
3 # include <stdlib .h>
4 # include <unistd .h>
5 # include <sched.h>
6 # include <sys/ syscall .h>
7

8 int sched_setattr (pid_t pid , const struct sched_attr *attr , unsigned
int flags) {

9 return syscall ( __NR_sched_setattr , pid , attr , flags);
10

11 void* thread_function (void* arg) {
12 // code here
13 while (1){
14

15 }
16 return NULL;
17 }
18

19 int main () {
20 pthread_t thread_id ;
21 struct sched_attr {
22 uint32_t size;
23 uint32_t sched_policy ;
24 uint64_t sched_flags ;
25 int32_t sched_nice ;
26 uint32_t sched_priority ;
27 uint64_t sched_runtime ;
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28 uint64_t sched_deadline ;
29 uint64_t sched_period ;
30 } attr;
31

32 attr.size = sizeof (attr);
33 attr. sched_flags = 0;
34 attr. sched_nice = 0;
35 attr. sched_priority = 0;
36 attr. sched_policy = SCHED_DEADLINE ;
37 attr. sched_runtime = 10 * 1000 * 1000;
38 attr. sched_period = attr. sched_deadline = 30 * 1000 * 1000;
39

40 if ( pthread_create (& thread_id , NULL , thread_function , NULL) != 0)
{

41 perror (" pthread_create ");
42 return 1;
43 }
44

45 sleep (1);
46

47 if ( sched_setattr ( pthread_getthreadid_np ( thread_id ), &attr , 0) !=
0) {

48 perror (" sched_setattr ");
49 return 1;
50 }
51

52 pthread_join (thread_id , NULL);
53

54 return 0;
55 }

Listing B.3 POSIX Thread With SCHED_DEADLINE

B.4 Jetson Linux-tegra-evl kernel installation guide

Note: This guide is a procedure to compile and install custom kernel on Jetson AGX
Xavier. The kernel version referred in this guide will enable the EVL core kernel on
Jetson, however many drivers of Jetson cannot be used, as the kernel does not contain
these specific drivers.
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Prerequisite

We need to install Jetson SDK Manager on HOST PC (x86 machine with ubuntu).
Download the Latest SDK manager https://developer.nvidia.com/sdkmanager_deb

• Install the gcc/g++ cross compiler for aarch64 and other utilities

\$ sudo apt install gcc-aarch64-linux-gnu
g++-aarch64-linux-gnu build-essential git bison flex
libncurses-dev libssl-dev libelf-dev

↪→

↪→

Versions

1. Host PC : Ubuntu 20.04

2. SDK Manager version : 1.7.3.9053

3. Jetpack version : JetPack 5.0.2

4. Linux Mainline version : linux 5.15-85

5. Xenomai version: EVL linux5.15-85

Kernel Building on Host PC

These steps have to be done on the Host machine (x86 PC) and not on Jetson PC.
Download the linux-evl kernel source and libevl library source from the EVL project
repository.

The Evl project repositories can be found in this site https://evlproject.org/.
linux-evl repository contains mainline kernel with evl sources. libevl repository
contains the C language API for programming real-time applications which needs to
call the EVL core services.

• Open a new working directory to build the kernel source.

\$ mkdir linux_evl_kernel
\$ cd linux_evl_kernel

https://developer.nvidia.com/sdkmanager_deb
https://evlproject.org/
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• Download the linux evl kernel and libevl from the EVL project git repository

\$ git clone --depth 1 --branch v5.15.85-evl2-rebase
https://source.denx.de/Xenomai/xenomai4/linux-evl.git
\$ git clone --depth 1 --branch r42
https://source.denx.de/Xenomai/xenomai4/libevl.git

• Two folders linuxevl and libevl will be cloned with the kernel source and evl
library source code.

• Download the linux evl kernel with sched-edf patch files from the git reposi-
tory EVL-linux-kernel-patches (tag linux-evl-edf-v1.0) and the respec-
tive evl library patch file from the git repository EVL-library-patches (tag
libevl-v1.0).

• Apply the patches to the linux kernel source and libevl source

\$ cd linux-evl
\$ git apply ../evl-linux-kernel-patches/linux-evl-edf-v1.patch
\$ cd ../libevl
\$ git apply ../evl-library-patches/libevl-v1.0.patch

Build Linux-EVL

• Kernel compilation

\$ cd linux-evl
\$ cp /boot/config-`uname -r`* .config
\$ make ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu-

UAPI=~/linux_evl_kernel/linux-evl menuconfig↪→

• Check if the following configurations are enabled, if not change the configuration
accordingly.
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1. General setup -> Local version - append to kernel release
-> EVL-EDF↪→

2. General setup -> Kernel .config support
3. Platform selection -> NVIDIA Tegra SoC platform (enable)
4. Kernel Features -> EVL real-time core
5. Kernel Features -> Dovetail interface
6. Device Drivers -> Out-of-band device drivers -> Timer

latency calibration and measurement↪→

7. Device Drivers -> Out-of-band device drivers -> OOB
context switching validator↪→

8. Device Drivers -> SOC (System On Chip) specific Drivers ->
NVIDIA Tegra194 SoC (enable)↪→

9. Device Drivers -> Thermal drivers -> NVIDIA Tegra thermal
drivers -> Tegra SOCTHERM thermal management (Enable
module)

↪→

↪→

10. Cryptographic API -> Certificates for signature checking
-> Additional X.509 keys for default system keyring ->
(clear)

↪→

↪→

11. Cryptographic API -> Certificates for signature checking
-> X.509 certificates to be preloaded into system
blacklist keyring -> (clear)

↪→

↪→

12. Kernel hacking -> Compile-time checks and compiler
options -> Generate BTF typeinfo (disable)↪→

• Compile the kernel

\$ make ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu-
UAPI=~/linux_evl_kernel/linux-evl -j`nproc`↪→

Kernel Installation on Jetson PC

There are two methods to install mainline kernel on Jetson PC
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Method 1 - Easy and efficient method

Using the ./flash command of nvidia sdk manager

• Install the modules of the compiled kernel into the rootfs of the Jetpack.

\$ cd linux_evl_kernel/linux-evl/
\$ sudo make ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu-

INSTALL_MOD_PATH=~/nvidia/nvidia_sdk/↪→

JetPack_5.0.2_Linux_JETSON_AGX_XAVIER_TARGETS/Linux_for_Tegra/rootfs
modules_install↪→

• Before flashing the Jetson PC. Make sure to put the Jetson PC into recovery
mode.

1. Jetson PC should be in power off state.
2. Connect the Power source to Jetson PC.
3. Press the ON button and recovery button (next to power

button) simultaneously.↪→

4. Connect a USB Type-C cable to the Jetson Type-C port (port
facing the led power on) and to↪→

the HOST PC.

• Flash the jetson PC using the command below.

\$ cd ~/nvidia/nvidia_sdk/
JetPack_5.0.2_Linux_JETSON_AGX_XAVIER_TARGETS/Linux_for_Tegra
\$ sudo ./flash.sh -K

~/linux_evl_kernel/linux-evl/arch/arm64/boot/Image -d
~/linux_evl_kernel/

↪→

↪→

linux-evl/arch/arm64/boot/dts/nvidia/tegra194-p2972-0000.dtb
jetson-agx-xavier-devkit internal↪→

Method 2

Compiled kernel module can be directly installed on Jetson PC and flashed with the
dtb generated by the kernel build
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• Copy the build and compile kernel folder from Host PC to Jetson PC.

• Extract the linux kernel folder into new folder

• Install the kernel

~/newDev/linux-5.15.28\$ sudo make modules_install
~/newDev/linux-5.15.28\$ sudo make install

• Modify the extlinux to boot the correct kernel

~\$sudo gedit /boot/extlinux/extlinux.conf

Building EVL library

EVL library uses meson build to install the library in the system. This has to be done
on the Jetson AGX.

• Library compilation (fill the system path in <path_to>)

\$ cd libevl
\$ mkdir build
\$ meson setup -Dbuildtype=release -Dprefix=/
-Duapi=<full_path_to>/evlkernel/linux-evl
. build
\$ cd build
\$ meson compile
\$ meson install
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Appendix C

C.1 Jetson AGX Characteristics

AGX Xavier1 AGX Orin2

AI Performance 32 TOPs 200 TOPs
GPU 512-core Volta GPU with Tensor

Cores
1792-core NVIDIA Ampere ar-
chitecture GPU (with 56 Tensor
cores)

CPU 8-core ARM v8.2 64-bit CPU,
8MB L2 + 4MB L3

12-core ARM v8.2 64-bit 3MB L2
+ 6MB L3 CPU

Memory 16GB 256-bit LPDDR4x |
137GB/s

32 Go 256 bits LPDDR5 | 204,8
Go/s

Peripherals UART, SPI, CAN, I2C, I2C,
DMIC, GPIOs

UART, SPI, CAN, I2C, I2C,
DMIC, GPIOs

Consumption 15W | 30W 15W | 40W
Table C.1 Comparison of AGX Xavier and AGX Orin

The proposed architecture was developed using the Jetson AGX Xavier Developer
Kit. For industrial production, the industrial version of the AGX Xavier could be
utilized, but it would necessitate the design of a separate carrier board to utilize the
peripherals. It should be noted that the Jetson AGX Xavier Developer Kit is no longer
available. For ongoing development and research, the Jetson AGX Orin Developer Kit
could be considered as a suitable replacement. However, it is important to note that
the Linux-Tegra kernel, of the AGX Orin’s software stack, would need to be modified
to incorporate Linux-EVL features.

1https://www.nvidia.com/fr-fr/autonomous-machines/embedded-systems/jetson-agx-xavier/
2https://www.nvidia.com/fr-fr/autonomous-machines/embedded-systems/jetson-orin/

https://www.nvidia.com/fr-fr/autonomous-machines/embedded-systems/jetson-agx-xavier/
https://www.nvidia.com/fr-fr/autonomous-machines/embedded-systems/jetson-orin/
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C.2 Other Components

Figure C.1 Industrial shield to interface I/O sensors.

The Industrial Shield PLC ARDUINO ARDBOX Analog3 can be utilized to interface
with I/O sensors. This shield can be connected to the Jetson PC via either UART or
SPI communication protocols.

Figure C.2 Yocto-Watt to measure the power consumption.

We utilized Yocto-Watt4 for power consumption measurements. This tool is
provided with libraries in various languages, including C, Python, and C++, offering
ease of use for monitoring the energy consumption of the device.

3https://www.industrialshields.com/shop/is-ab20an-hf-plc-arduino-ardbox-analog-17
4https://www.yoctopuce.com/EN/products/usb-electrical-sensors/yocto-watt

https://www.industrialshields.com/shop/is-ab20an-hf-plc-arduino-ardbox-analog-17
https://www.yoctopuce.com/EN/products/usb-electrical-sensors/yocto-watt


 

 

Titre : Systèmes cobotiques temps réel sous contraintes d’énergie 

Mots clés : Cobots Mobiles, Gestion de l’énergie, Ordonnanceur temps-réel, Récolte d’énergie, Contrôle 
d'accès aux ressources, Noyau Xenomai, ROS2. 

Résumé : Les cobots mobiles sont appréciés dans 
l'industrie pour aider l’opérateur humain et améliorer la 
productivité.  Nous avons contribué à leur conception 
en développant d’une part une nouvelle architecture 
matérielle pour plus de performance et d’autre part un 
système d'exploitation combinant Linux et Xenomai 
pour une exécution déterministe du firmware. Pour 
pallier aux défauts de ROS2, nous proposons 
l’intégration d’un d'ordonnancement temps réel conduit 
par la priorité, au sein de Xenomai, ce qui permet aussi 
de minimiser la latence.  Notre approche respecte les 
normes de qualité ISO 25010. Au coeur de cette thèse 
se trouve aussi la problématique  de l’autonomie 
énergétique du cobot que nous cherchons à solutionner 
grâce à la récupération de l’énergie environnementale. 
Pour ce faire, nous préconisons d’utiliser ED-H, un 
ordonnanceur de tâches optimal qui assure la neutralité 
énergétique chaque fois que possible tout en 
garantissant le respect des contraintes temporelles du 
cobot. 

Une contribution de cette thèse a donc été d’adapter 
l’ordonnanceur ED-H, initialement conçu pour des 
tâches indépendantes, à un ensemble de tâches 
dépendantes accédant à des ressources partagées en 
exclusion mutuelle. Une nouvelle condition 
d’ordonnançabilité a été proposée et la performance 
de ED-H a été évaluée en simulation avant son 
déploiement dans le noyau Xenomai. Cette preuve de 
concept nous a conduit à conclure que l’ordonnanceur 
non oisif EDF reste l’ordonnanceur de tâches temps 
réel à privilégier y compris sous contraintes 
énergétiques.  Une autre contribution est de proposer 
l’ordonnanceur ED-H non pas au niveau des tâches 
logicielles mais des missions du cobot. Nous 
montrons comment  ED-H, sensible à  l’énergie, 
permet de planifier les missions pour gagner en 
autonomie énergétique.  Enfin, nous avons créé une 
plateforme expérimentale, visant la conception d’un 
cobot de transport énergétiquement autonome par 
récupération d’énergie photovoltaïque et embarquant 
cette nouvelle architecture matérielle et logicielle. 

 

Title : Real-time and energy constrained cobotic systems 

Keywords : Mobile Cobots, Energy Management, Real-time Scheduling, Energy Harvesting, Resource Access 
Control, Xenomai Kernel, ROS2. 

Abstract : Mobile cobots are popular in manufacturing to 
help human operators and improve productivity. We have 
contributed to the design of cobots by developing both a 
novel hardware architecture to enhance user interaction, 
and a dual-kernel OS that combines Linux and Xenomai, 
ensuring deterministic firmware execution. To overcome 
the limitations of ROS2, we have integrated a real-time 
priority-driven scheduling framework with Xenomai to 
reduce latency. Our methodology adheres to the ISO 
25010 quality standards. A crucial challenge this thesis 
addresses is the issue of energy autonomy. We propose a 
solution based on harvesting the ambient energy. Our 
solution involves using ED-H, an optimal real-time 
computing task scheduler that guarantees energy 
neutrality whenever possible while satisfying the timing 
requirements. One contribution of this thesis was therefore 
to adapt the ED-H scheduler, initially designed for 
independent tasks, to a set of  dependent tasks that 

access shared resources in mutual exclusion. We proved 
a new sufficient schedulability condition. We tested the 
actual performance of ED-H via simulation and then we 
implemented it in the Xenomai kernel. This proof of 
concept led us to conclude that the non-idling scheduler 
EDF remains the preferred real-time task scheduler even 
under energy limitations. Another major contribution of 
this work is the proposal to apply the ED-H algorithm, not 
at the task level, but for managing the cobot missions. 
We show how ED-H allows for mission planning while 
leading to increase the duration of the application. 
Finally, we have created an experimental platform that 
targets the design of an energy-autonomous cobot for 
transport. This involves scavenging photovoltaic energy 
and implementing our novel hardware and software 
architecture. 
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