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RÉSUMÉ

La Relativité Générale (RG) prédisait l’existence des Ondes Gravitationnelles (OG) il y a

100 ans de cela. Dans cette théorie, l’espace-temps n’est plus une entité rigide et il peut

être courbé par la présence de matière et d’énergie. Les OGs sont précisément le résultat

de la propagation de ces courbures dans l’espace-temps. Elles sont de très faible ampli-

tude et leur détection représente un véritable défi technologique. Seules des sources très

massives peuvent émettre des OGs suffisamment puissantes pour être mesurées. En 2016,

la collaboration LIGO/Virgo détectait pour la première fois une OG provenant de la fusion

de deux trous noirs. Cette découverte a révélé un tout nouveau spectre d’observations as-

trophysiques qui est aujourd’hui un domaine de recherche très actif. Pour détecter une

OG, il faut pouvoir mesurer les courbures de l’espace-temps induites par le passage de

celle-ci. Une méthode, basée sur un réseau de pulsars chronométrés ou Pulsar Timing

Array (PTA), propose d’utiliser les pulsars (des étoiles à neutron en rotation rapide qui

sont perçues sur Terre comme des séries de pulses de lumière très régulièrement espacés

dans le temps) comme des "horloges cosmiques" pour mesurer les perturbations dues à

l’OG. Ce manuscript se concentre sur la détection d’OGs basse fréquence (nanohertz) en

utilisant les données de chronométrage haute précision d’un réseau de pulsars millisec-

onde obtenu à l’aide de radiotéléscopes.

Le premier chapitre donne un aperçu du bagage théorique nécessaire pour compren-

dre l’origine des OGs. Pour comprendre la RG, il est essentiel de comprendre les bases

de la géométrie différentielle et Riemanienne. Elles donnent un cadre d’étude des es-

paces courbes qui est le coeur de la description mathématique de la RG. L’équation cen-

trale de la RG est l’équation de champs d’Einstein. Elle décrit la relation qui existe entre

la géométrie de l’espace-temps d’une part et la présence de matière d’autre part. Pour

des très petites perturbations de la métrique de l’espace-temps, il est possible de mon-

trer que cette équation s’apparente à une équation de propagation d’une onde. Cette

dérivation est détaillée dans ce chapitre car elle correspond à la description mathémath-

ique d’une OG qui nous sera utile pour la suite. Typiquement, les sources d’OG seront

des systèmes binaires d’objets très massifs (trous noirs, étoiles à neutrons, ...) comme

il a été le cas pour la première OG détectée en 2016. Nous présentons ici la forme des

OGs émises par des systèmes binaires en orbite circulaire l’un autour de l’autre. Il appa-

raît que l’amplitude de ces ondes est proportionnelle à la masse des objets du système

puis inversément proportionnelle à la distance de la source. Il en vient alors que plus

le système binaire est massif ou plus il est proche, plus les effets dues à l’OG émise se

feront sentir. Les objets les plus massifs de l’Univers que l’on connaît à ce jour sont les

trous noirs supermassifs. Leur origine reste encore un mystère car il est difficile d’établir

un modèle de formation de ces astres en un temps aussi "court" que celui de l’âge de

l’Univers. Notamment, l’observation de noyaux de galaxies actifs très anciens compor-
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tant des trous noirs extrêmement massifs en leur centre indique que ces objets se sont

formés rapidement, probablement par fusion d’autres trous noirs supermassifs. Cepen-

dant, nous ne disposons d’aucune observation de fusion de trous noirs supermassifs à

ce jour. Nous argumentons qu’un réseau de pulsars chronométrés (Pulsar Timing Array

ou PTA) pourrait détecter des OGs générées par des systèmes de trous noirs super mas-

sifs binaires. Comme indiqué précédemment, les pulsars peuvent êtres utilisés comme

des "horloges cosmiques" donnant accès à une mesure des propriétés de l’espace-temps

dans notre Galaxie. Nous dérivons une expression mathématique pour les résidus tem-

porels induits par les OGs dans la donnée chronométrée des pulsars. Lorsqu’un tel signal

est stable et monochromatique, on le qualifie d’Onde Gravitationnelle Continue (OGC).

Ce manuscript est centré sur l’étude des OGCs émises par des systèmes binaires de trous

noirs supermassifs.

Dans le second chapitre, nous présentons les méthodes d’analyse de donnée pour la

détection d’OGs dans PTA. Pour cela, nous expliquons brièvement l’inférence Bayesienne

qui est au coeur de ces méthodes. Elle nous permet d’évaluer la significativité statistique

de nos modèles ainsi que les valeurs des paramètres de signaux que l’on cherche à dé-

tecter en fonction de la donnée mesurée (dans notre cas, la donnée chronométrée des

pulsars). Une quantité centrale de l’inférence Bayesienne est le Facteur de Bayes. Il donne

une mesure comparative des "poids" statistiques de différents modèles et est crucial pour

sélectionner ceux qui reproduisent le mieux la donnée observée. Nos modèles et méth-

odes d’analyse doivent être capables de : (i) quantifier tous les bruits présents dans la

donnée pour pouvoir isoler le signal d’OG désiré (ii) estimer un facteur de Bayes pour les

OGs que l’on cherche à détecter pour affirmer leur présence dans la donnée (iii) établir

une limite haute d’amplitude de l’OG pour sa détection dans le cas où on ne détecte rien.

Les principaux bruits, outre les erreurs systématiques et bruits des appareils de mesures

(ici les téléscopes radio), présents dans la donnée de chronométrage sont intrinsèques

aux pulsars et corrélés dans le temps. Nous avons des bruits dits "rouges", dominants en

basse fréquence, dus à une irrégularité dans la rotation même des pulsars et induisant de

légères variations dans les temps d’arrivée des pulses chronométrés sur Terre. Nous avons

aussi un bruit de mesure de dispersion, du à la propagation des photons composants les

pulses dans le milieu interstellaire. Durant son voyage depuis le pulsar jusqu’à la Terre, un

pulse de lumière interagit avec les électrons interstellaire, ce qui a pour effet de retarder

son temps d’arrivée. Lorsque la densité d’électrons varie sur l’axe pulsar-Terre, cela in-

duit une perturbation dans le temps d’arrivée des pulses chronométrés. La présence de

ces bruits détériore notre sensibilité aux OGs et ils doivent être modélisés avec soin. Enfin,

nous présentons comment ces modèles sont testés grâce à des méthodes de Monte-Carlo

par chaînes de Markov (MCMC) dont le fonctionnement est expliqué.

Le troisième chapitre présente les résultats obtenus avec le second ensemble de don-

nées de la collaboration PTA internationale (IPTA DR2) qui combine les données de :
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l’observatoire d’OG nanohertz d’Amérique du Nord (NANOGrav), le PTA Européen (EPTA)

et le Parkes PTA (PPTA) en Australie. Cet ensemble de donnée étant assez conséquent, les

ressources en calcul nécessaires pour l’analyser seront elles aussi condisérables. Pour

palier ce problème, il est possible de classer les pulsars en fonction de leur sensibilité

moyenne à une OGC de fréquence donnée. Pour ce faire, de fausses OGCs sont simulées

dans la donnée de chronométrage pour estimer le rapport signal sur bruit de chaque pul-

sar. Ce rapport signal sur bruit quantifie la réponse individuelle des pulsars à l’OGC in-

jectée et leur classement se fait suivant les valeurs obtenues. Il apparaît alors que certains

pulsars dominent complètement le réseau de par leur sensibilité supérieure. En sélec-

tionnant un sous-ensemble de pulsars qui complètent au moins 95% de la sensibilité to-

tale du réseau, nous réduisons la donnée nécessaire aux analyses, et donc le temps de

calcul, tout en conservant une bonne sensibilité aux OGCs. Après avoir classé les pul-

sars, nous appliquons les méthodes présentées dans le chapitre précédent pour tester la

présence d’OGCs dans IPTA DR2. Nous n’avons trouvé aucune preuve de leur présence.

En conséquence, nous avons établi une limite haute de détection pour l’amplitude des

OGCs et avons trouvé que IPTA DR2 donne la meilleure sensibilité à ce jour pour des sig-

naux dont la fréquence est plus haute que 11 nHz. Dernièrement, les collaborations PTA

ont mis en évidence la présence d’un bruit "rouge" commun à tous les pulsars (ayant la

même densité spectrale de puissance entre chaque pulsar). L’origine de ce bruit est en-

core à déterminer. Son inclusion dans notre modèle détériore la sensibilité aux OGCs du

réseau en basse fréquence. De plus, nous montrons qu’une mauvaise modélisation des

bruits intrisèques aux pulsars peut mener à une fausse détection. En général, les bruits

sont décrits de la même façon pour tous les pulsars. Cependant, des études récentes

ont montré qu’adapter nos modèles de bruits individuellement pour chaque pulsar don-

nait une meilleure représentation de la donnée. Les meilleurs modèles de bruits sont

sélectionnés par calcul du facteur de Bayes (introduit dans le second chapitre). Avant

l’utilisation des modèles "sur-mesure", nous détections un signal similaire à une OGC de

51nHz, supporté par le facteur de Bayes. L’introduction des nouveaux modèles a com-

plètement absorbé cette composante. L’origine de ce signal est encore à détérminer mais

il est probable qu’il résulte d’interactions complexes entre différentes éléments de notre

modèle. C’est pourquoi une bonne modélisation des modèles de bruits dans PTA est cru-

ciale à la recherche d’OGs car des erreurs dans celui-ci peuvent mener à des fausses dé-

tections.

Le dernier chapitre présente une nouvelle méthode basée sur les Estimations par Noy-

aux (Kernel Density Estimation ou KDE) qui a été développée durant mon doctorat pour

optimiser les techniques d’analyse de donnée pour la recherche d’OGs et en particulier

pour améliorer le temps effectif d’échantillonage des méthodes MCMC. Le KDE est une

méthode d’estimation de densité de probabilité des paramètres d’un ensemble de don-

née. Pour estimer ces densités de probabilité, il est possible d’utiliser des histogrammes.
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Contrairement à ces derniers, le KDE a l’avantage d’être une fonction continue et définie

dans tout l’espace. Pour qu’il décrive fidèlement la donnée, il faut l’adapter à celle-ci à

l’aide de méthodes d’optimisation parfois coûteuses en temps de calcul. Nous présen-

tons ici une nouvelle méthode d’optimisation rapide par linéarisation d’un problème

de minimisation d’erreur quadratique. Ensuite, nous présentons une nouvelle méth-

ode d’estimation des corrélations entre paires de paramètres basée sur la divergence de

Jensen-Shannon à partir de laquelle un algorithme de groupement des paramètres est

développé. Les KDEs produits avec ces méthodes sont utilisés en MCMC pour proposer

de nouveaux points dans les régions intéressantes de l’espace des paramètres pour aider

l’échantillonage. D’abord, nous avons testé les KDEs avec la donnée IPTA DR2 pour la

recherche d’OGCs. Dans ce cas, le temps d’échantillonage effectif était réduit d’un facteur

2 ou 3 ce qui indiquait un bon fonctionnement de la méthode. Par la suite, nous avons

testé une méthode adaptative du KDE avec de la donnée simulée de LISA (futur obser-

vatoire spatial d’OG) pour la recherche de signaux gravitationnels de binaires galactiques

(systèmes binaires de naines blanches). Elle s’est avérée moins efficace avec la donnée

LISA pour laquelle le temps effectif d’échantillonage n’était que légèrement réduit (de

17%).

En résumé, ce manuscript explore différents aspects de l’analyse de donnée pour la

recherche de signaux gravitationnels. Il est principalement axé sur la donnée PTA (en

particulier la donnée de la collaboration internationale IPTA) et la recherche d’OGC. Ces

travaux ont mené à l’écriture de 3 articles scientifiques (dont 2 en tant que premier au-

teur) qui sont, alors que j’écris ces lignes, en cours de soumission à des revues scien-

tifiques. Pour le moment, aucune détection d’OGC n’est à signaler dans la donnée IPTA.

L’observation des pulsars et leur chronométrage est constamment en cours, donnant ac-

cès à toujours plus de donnée. De plus, la construction de nouveaux téléscopes radio

haute précision (comme MeerKAT ou SKA) devrait augmenter notre sensibilité aux OGs,

faisant de la première détection d’un signal gravitationnel en provenance d’un système

binaire de trous noirs supermassifs un espoir bien concret pour les années à venir.

Mots clés: Onde gravitationnelle - Pulsars - Trou noir supermassif - Analyse de données
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ABSTRACT : FRANÇAIS

Ce manuscript est centré sur la détection d’Ondes Gravitationnelles (OG) basse fréquence

en utilisant les données de chronométrage haute précision d’un réseau de pulsars millisec-

onde obtenues à l’aide de radiotéléscopes. Le premier chapitre donne un apercu du bagage

théorique nécessaire pour comprendre l’origine des OGs. Après avoir présenté les bases de

la Relativité Générale (RG), nous argumentons qu’un réseau de pulsars chronométrés (Pulsar

Timing Array ou PTA) pourrait détecter des OGs générées par des systèmes de Trous Noirs Su-

per Massifs Binaires (TNSMB) et nous dérivons une expression mathématique pour les résidus

temporels qui seraient induits dans la donnée chronométrée. Lorsqu’un tel signal est stable

et monochromatique, on le qualifie d’Onde Gravitationnelle Continue (OGC). Dans le sec-

ond chapitre, nous présentons les méthodes d’analyse de donnée pour la détection d’OGs

dans PTA. Nous expliquons brièvement l’inférence Bayesienne et nous détaillons comment

les bruits intrinsèques aux pulsars peuvent être modélisés. Nous montrons que pour estimer

la significativité statistique de nos modèles de signal et de bruits, nous calculons le Facteur

de Bayes (FB) en utilisant des hypermodèles et des méthodes de Monte-Carlo par chaînes de

Markov (MCMC). Dans le chapite trois, nous discutons des résultats obtenus avec le second

ensemble de données de la collaboration PTA internationale (IPTA DR2) qui combine les don-

nées de : l’observatoire d’OG nanohertz d’Amérique du Nord (NANOGrav), le PTA Européen

(EPTA) et le Parkes PTA (PPTA) en Australie. Nous avons cherché des OGC mais n’avons trouvé

aucune preuve de leur présence dans la donnée. Nous avons établi une limite haute de détec-

tion pour l’amplitude des OGCs et avons trouvé que IPTA DR2 donne la meilleure sensibilité à

ce jour pour des signaux dont la fréquence est plus haute que 11 nHz. Il a été découvert il y a

peu qu’un bruit en basse fréquence et commun à tous les pulsars était présent dans la donnée.

L’inclusion de ce dernier dans le modèle détériore la sensibilité aux OGCs du réseau. De plus,

nous montrons qu’une mauvaise modélisation des bruits intrisèques aux pulsars peut mener

à une fausse détection. Le dernier chapitre présente une nouvelle méthode basée sur les Es-

timations par Noyaux (Kernel Density Estimation ou KDE) qui a été développée durant mon

doctorat pour optimiser les techniques d’analyse de donnée pour la recherche d’OGs. Cette

méthode est utilisée avec MCMC pour améliorer son temps effectif d’échantillonage. Elle a

été testée avec IPTA DR2 pour la recherche d’OGCs puis avec Sangria, une donnée simulée

du futur projet d’observatoire spatial d’OG (le Laser Interferometer Space Antenna ou LISA),

pour la recherche de Binaires Galactiques (BG). Nous démontrons que la méthode est efficace

pour IPTA DR2 mais est moins performante avec LISA.

Mots clés: Onde gravitationnelle - Pulsars - Trou noir supermassif - Analyse de données
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ABSTRACT : ENGLISH

This manuscript focuses on the detection of low frequency Gravitational Waves (GW) us-

ing high precision timing observations of millisecond pulsars collected with radio telescopes.

The first chapter gives an overview of the theoretical background necessary to understand the

origins of GWs. After presenting the basics of General Relativity, we argue that a Pulsar Tim-

ing Array (PTA) could detect GWs generated by Super Massive Black Hole Binaries (SMBHBs)

and derive a mathematical expression for the expected timing residuals induced in the pulsar

timing data. When such a signal is stable and monochromatic, we call it a Continuous Gravita-

tional Wave (CGW). In the second chapter, we present data analysis methods for the detection

of GW signals in PTA. We briefly explain Bayesian inference and detail how the noises intrinsic

to pulsars can be modeled. We show that to assess the significance of our noise and signal

models, we compute the Bayes Factor (BF) using hypermodels and Markov Chain Monte-

Carlo (MCMC). In chapter three, we discuss the results obtained with the international PTA

second data release (IPTA DR2) combining data from : the North American Nanohertz Obser-

vatory for Gravitational Waves (NANOGrav), the European Pulsar Timing Array (EPTA) and the

Parkes Pulsar Timing Array (PPTA). We have searched for CGW signals and found no evidence

of their presence in the data. We have set an upper limit on the amplitude of CGW and found

that IPTA DR2 gives the best sensitivity to date for signals with frequencies above 11 nHz. It

has been recently discovered that a low frequency noise common to all pulsars was present

in the data. The inclusion of the latter in the model deteriorates the sensitivity of the array

to CGW. Moreover, we show that a bad modeling of the intrinsic noise properties of pulsars

can lead to false detection. The last chapter presents a new method based on Kernel Density

Estimation (KDE) that was developed during my PhD to optimize the data analysis pipelines

for GW search. The method is used with MCMC to improve the effective sampling time. It

was tested with IPTA DR2 for CGW search and the simulated Laser Interferometer Space An-

tenna (LISA) dataset "Sangria" for Galactic Binaries (GBs) search. We show that the method is

efficient for IPTA DR2 but is less performing with LISA.

Keywords: Gravitational wave - Pulsar - Super massive black hole - Data analysis

15



16



CHAPTER 1

THEORETICAL BACKGROUND

Contents
1.1 General relativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.1.1 The notion of curved space . . . . . . . . . . . . . . . . . . . . . . . . 19

1.1.2 Mathematical description of a curved space . . . . . . . . . . . . . . 20

1.2 Gravitational waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.2.1 Linearized Einstein field equations . . . . . . . . . . . . . . . . . . . 25

1.2.2 Polarization tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.2.3 Quadrupole formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.2.4 Circular binary system . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.3 Supermassive black holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.3.1 Gravitational wave background . . . . . . . . . . . . . . . . . . . . . 37

1.3.2 Continuous waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.4 Pulsar Timing Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

1.4.1 Sensitivity of the array . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

1.4.2 Millisecond pulsars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

1.4.3 The International Pulsar Timing Array . . . . . . . . . . . . . . . . . 43

1.4.4 PTA response to GW signal . . . . . . . . . . . . . . . . . . . . . . . . 46

1.5 Multi-band gravitational wave astronomy . . . . . . . . . . . . . . . . . . 52

1.5.1 Ground based detectors : LIGO/Virgo . . . . . . . . . . . . . . . . . . 52

1.5.2 Space based detector : LISA . . . . . . . . . . . . . . . . . . . . . . . . 53

1.1 General relativity

Albert Einstein’s General relativity (GR) came out in 1915 as a new theory of gravity and a

generalization of special relativity. It no longer describes gravity as an attractive force but

rather as a manifestation of the curvature of space-time that is modified in the presence of

masses, where free-falling objects are actually inertial and following geodesic trajectories.
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Figure 1.1: Illustration of the Ehrenfest paradox with on the left, a rotating disk with angu-

lar velocity~ω seen from above. When it rotates, it should see its circumference C decrease

due to relativistic length contraction while its radius R is unaffected. On the right, we have

the resolution of the paradox showing that a curved geometry allows smaller circumfer-

ence without change in radius R.

The latter is a consequence of the equivalence principle saying that no distinction can

be made between the motion of a falling object on a planet or in an accelerated frame of

reference. The gravitational mass is the same as the inertial mass. Therefore, a free-falling

object experiencing weightlessness is in an inertial frame of reference.

Special relativity already tells us that a particle in motion will experience time dilation

and length contraction in the tangent direction to its trajectory, which was raising con-

tradictions in the case of circular motions and orbits. One famous Gedankenexperiment

that is behind the intuition of curvature in GR is called the Ehrenfest paradox : a rotating

disk of radius R would, due to length contraction, see its circumference smaller than 2πR.

But its radius R, in the direction perpendicular to its trajectory, would remain unchanged.

This is only possible in curved space (see figure 1.1). Planets orbiting stars should then

be experiencing a curvature of space while following an inertial trajectory. It is possible if

heavy masses curve space-time and orbits are geodesics in a curved space.

After years of development, the so called Einstein field equations were derived to ex-

press the equivalence between curvature of space-time and distribution of energy. To

quote John Archibald Wheeler : "Spacetime tells matter how to move; matter tells space-

time how to curve". The introduction of curvature in the equations of physics led to

countless predictions that were all verified experimentally like the anomalous precession

of Mercury, gravitational lensing, the expansion of the universe, the existence of black

holes, and more recently, gravitational waves, the main topic of this thesis.
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Figure 1.2: The spherical surface of the the Earth (positive curvature) is fundamentally

different from a plane (null curvature). Every planisphere of the Earth that we have are

just approximations where length measurements are distorted.

1.1.1 The notion of curved space

From simple 1D curve to more elaborate n-D hypersurfaces, the curvature is a measure-

ment of how much we deviate from a straight line or a flat surface. In curved space, many

of the general results of flat euclidian space geometry are no longer true. For instance, the

sum of the 3 angles of a triangle may not equal 180o or two locally parallel straight lines

(geodesics) may eventually cross.

Carl Friedrich Gauss worked extensively on the matter and derived a scalar quantity,

the Gaussian curvature, giving a mathematical measurement of how curved is a surface.

He realized that for 2D surfaces, this quantity was invariant under isometric transforma-

tions and independent of the 3D space in which it was embedded. This observation is

stated in the Theorema Egregium.

The curvature is an intrinsic property of the space. A curved space cannot be folded

back into a flat space or the other way around. For example, a world map, as a 2D flat rep-

resentation of the spherical surface of the Earth, does not accurately reproduce distances

and areas. There exists no direct mapping of a curved surface on a flat one that comes

without scale distortion issues. The sphericity of the Earth implies positive curvature that

is not shared by a flat sheet of paper of null curvature. To that extent, length and angle

measurements are fundamentally different in the two.

A pupil of Gauss, Bernhard Riemann, continuing the work previously undertaken by

his teacher, generalized the mathematical description of the curvature for N-dimensional

spaces. In GR, we make use of the Riemannian geometry to characterize the curvature of

space-time.
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R

T⃗

s(t)

Figure 1.3: We can associate a tangent circle of radius R to each point of s(t). The inverse

of the radius defines the curvature. This is the simplest way to think about curvature in

1D.

1.1.2 Mathematical description of a curved space

Historically, different approaches were used to mathematically describe the curvature.

The first and maybe simplest is to define a tangent osculating circle at any point of a given

parametrized curve s(t ) (see figure). The curvature κ is defined as the inverse of the radius

of the circle. A straight line has an osculating circle of infinite radius, hence no curvature.

This concept can easily be generalized in differential geometry for oriented surfaces of

higher dimensions. However it requires the d-dimensional surface to be embedded in a

d +1-dimensional space.

Riemannian geometry allows the description of the curvature without immersing the

surface in a d +1 space, following the Theorema Egregium defining it as an intrisic prop-

erty of the surface. It is done using the concepts of geodesic deviation (see figure 1.5).

Here we will present the standard "toolbox" that is used in GR for calculation in curved

space. One can refer to references for more details (see Thorne et al. 2000; Schutz 2022;

Hausner 2016).

Basis vectors Basis vectors are tangent vectors at each point of the parameterized sur-

face f (xµ), we have :

eµ = ∂µ f . (1.1)

They define the basis of a local tangent (and flat) space at point xµ. We use the nota-

tion :
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Figure 1.4: In curved space, basis vectors eµ are function of coordinates xµ and straight

lines are parametrized geodesics X µ(λ).
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∂µ ≡ ∂

∂xµ
, (1.2)

to express the derivative with respect to coordinate xµ.

Metric tensor The metric tensor is the mathematical object that redefines scalar prod-

uct hence distances/angle measurement. In Euclidian flat space, it is just the identity

matrix, but more generally we have :

gµν = eµ ·eν, (1.3)

that is not necessarily diagonal or the identity. It quantifies length and angle distor-

tions at every point in space.

Length measurement Length measurement depends on the metric tensor. We define

the element on length of a parametrized curve with components X µ as :

d s2 = gµνd X µd X ν, (1.4)

which defines the scalar product of infinitesimal vector d~X with itself.

Christoffel symbols The Christoffel symbols Γβµα are related to the derivative in the µ

direction of basis vector eα as :

∂µeα = Γβµαeβ, (1.5)

They are the coefficients that quantify how basis eα varies with respect to coordinate

µ. They can be expressed in terms of the derivatives of the metrix tensor gµν.

Γ
β
µα = 1

2
gβλ

(
∂αgλµ+∂µgλα−∂λgµα

)
(1.6)

Covariant derivative The covariant derivative is the derivative of a vector ~v taking into

account the variations of the basis vectors eα :

∇µ~v =∇µvαeα =
(
∂µvβ+ vαΓβµα

)
eβ. (1.7)

Geodesic equation The geodesic equation is the equation of a straight line1 in curved

space. Physically, it corresponds to the equation of motion of a non-accelerated object in

a curved space.

1A straight line is the shortest path between two points. The geodesic equation extends this deifinition

to curved space.
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d 2X µ

dλ2
+Γµ

αβ

d Xα

dλ

d X β

dλ
= 0, (1.8)

with λ the parameter of the curve (corresponding to the proper time τ for massive

objects).

Riemann tensor The Riemann tensor is a measurement of geodesic deviation. Indeed,

in flat space, two neighbouring geodesics are parallel straight lines but this is no longer

true in curved space. We can quantify this effect by measuring the difference in varia-

tion of the basis vector eα on a closed loop in two directions µ and ν (figure 1.5). Using

equation 1.5 we get :

Rβ
µναeβ =

(
∂µ∂ν−∂ν∂µ

)
eα =

(
∂µΓ

β
να−∂νΓβµα+ΓλναΓβµλ−ΓλµαΓ

β

νλ

)
eβ. (1.9)

This definition can be generalized to any vector using parallel transport and covariant

derivatives (Hausner 2016). The Riemann tensor appears when calculating the evolution

of the separation vector between two objects free-falling side by side. Physically, it corre-

sponds to the tidal forces.

Ricci tensor The Ricci tensor is obtained from the Riemann tensor Rβ
µνα by contraction

of first index β and third index ν 2. It is analog to taking the trace of the matrix containing

all possible deviation vectors ~R associated with~eα being first transported in the µ direc-

tion (see figure 1.5), quantifying the strain felt in the directions perpendicular to µ.

Rµα = Rβ

µβα
(1.10)

It contains information about volume deformation along geodesics. Component Rµα

is a measurement of volume change when transporting basis vector ~eα along direction

µ. A null Ricci tensor does not necessarily mean that there is no curvature. It just corre-

sponds to volume conservation along geodesics (i.e. experienced contraction and dilation

in directions perpendicular to µ compensate). This tensor is symmetric and is more often

noted Rµν.

Einstein field equations

The Einstein field equations are the central equations of GR. They tell how space-time

geometry is affected by the distribution of energy within it. Finding a solution to this

equation gives the metric tensor gµν that we will use to study the dynamics of objects

using the geodesic equation.

2Contraction with second index gives the same result with opposite sign and contraction with last index

is null. This is due to the antisymmetric properties of the Riemann tensor.
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Figure 1.5: The Riemann tensor contains the components of the deviation vectors ~R for

all possible transportation of basis vector eα on a closed loop in directions µ and ν.
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The distribution of energy and matter is described by the stress energy tensor Tµν. It

follows the continuity relation :

∇µTµν = 0, (1.11)

expressing the local conservation of energy and momentum.

At first sight, it could be tempting to write Rµν = κTµν to map the curvature of space-

time to the presence of energy. But this cannot work because Rµν does not have a null

covariant derivative. Nonetheless, it possible to build a curvature tensor from the Ricci

tensor Rµν that also has null covariant derivative. We call it the Einstein tensor Gµν :

Gµν = Rµν− 1

2
Rgµν, (1.12)

∇µGµν = 0, (1.13)

We can now empirically postulate an equation that relates the stress-energy tensor

Tµν and the Einstein tensor Gµν as :

Gµν = κTµν. (1.14)

The value of the constant κ is set in such a way that equation 1.14 reduces to Poisson’s

equation for the gravitational potential in the Newtonian limit. Including the cosmologi-

cal constantΛ, we have the final expression for the Einstein field equations :

Gµν+Λgµν = 8πG

c4
Tµν . (1.15)

For a given Tµν, this equation gives a system of non linear second order differential

equations for the metric tensor gµν. It is possible to linearize this equation by introducing

small perturbations around the flat-space metric.

1.2 Gravitational waves

The following section is a mathematical introduction to gravitational waves inspired from

the present references : Maggiore 2007; Babak 2020; Carroll 1997.

1.2.1 Linearized Einstein field equations

We define a metric tensor that is :

gµν = ηµν+hµν, (1.16)
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with inverse :

gµν = ηµν−hµν, (1.17)

where hµν << ηµν, is a small perturbation we add to the flat-space Minkowski metric

ηµν.

To express the Einstein field equations using this approximation, we first need to write

the Ricci tensor Rµν. Keeping only first order terms in hµν and getting rid of higher order

terms. We have for the Christoffel symbols :

Γ
β
µα = 1

2
ηβλ

(
∂αhλµ+∂µhλα−∂λhµα

)
+O(h2), (1.18)

which gives for the Ricci tensor :

Rµν = ∂λΓλµν−∂µΓλλν+O(Γ2)

= 1

2

(
∂β∂νhβµ+∂β∂µhβν−∂β∂βhµν−∂µ∂νhλ

λ

)
,

(1.19)

and the Ricci scalar :

R = ∂β∂λhβλ−∂β∂βhλ
λ (1.20)

We can now write the Einstein tensor :

Gµν = 1

2

(
∂β∂νhβµ+∂β∂µhβν−�hµν−∂µ∂νh −ηµν

(
∂β∂λhβλ−�h

))
. (1.21)

Where we have used to simplify notation convention :

hλ
λ = h and ∂β∂β =� (1.22)

The physics of GR do not depend on the choice of coordinate system. That is to say,

for any local coordinate transformation :

xµ→ xµ+ξµ(x), (1.23)

the Einstein field equations will remain unchanged. For such a coordinate transfor-

mation, the metric perturbation hµν rewrites as :

hµν→ hµν+∂νξµ+∂µξν. (1.24)

One can verify that the additional terms actually cancel out in equation 1.21. That

means we have a gauge (coordinate) freedom which we can use to simplify the expression.

We introduce the trace reversed metric3 that is
3At that stage, the trace reversed metric is introduced to render the "wave equation"-like properties of

the linearized Einstein field equations.
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h̄µν = hµν− 1

2
ηµνh, (1.25)

for which the gauge condition becomes :

h̄µν→ h̄µν+∂νξµ+∂µξν−ηµν∂βξβ, (1.26)

We can rewrite the linearised Einstein tensor in term of this trace reversed metric,

yielding

Gµν = 1

2

(
−�h̄µν+∂β∂νh̄µβ+∂β∂µh̄νβ−

1

2
ηµν∂

β∂λh̄βλ
)
. (1.27)

Using the coordinate freedom expressed in (1.26) we can now derive the divergence of

h̄µν as

∂µh̄µν→ ∂µh̄µν+�ξν, (1.28)

then choose the ξµ in such a way so that they obey �ξν = −∂µh̄µν to give the Lorenz

gauge condition :

∂µh̄µν = 0. (1.29)

Using that gauge, the expression of the Einstein tensor enormously simplifies to be-

come :

Gµν =−1

2
�h̄µν (1.30)

giving the final expression of the linearized Einstein field equations for the trace re-

versed metric :

�h̄µν =−16πG

c4
Tµν (1.31)

We can already see that this equation corresponds to the equation of propagation of a

wave with a source term. Finding solutions to (1.31) give periodic first order perturbations

of the metric tensor that we identify as gravitational waves.

1.2.2 Polarization tensor

When considering gravitational waves propagating in the vacuum, we can set the stress-

energy tensor to be Tµν = 0. In that case, equation (1.31) takes the simple form :

�h̄µν = 0. (1.32)

27



Solutions to the latter can be expressed as a linear combination of plane waves with

polarization tensor εµν :

h̄µν = εµνe i kσxσ , (1.33)

with kµ the wave vector.

This expression of the linearized Einstein field equations in the vacuum offer addi-

tional coordinate freedom. Indeed, plugging equation (1.26) in (1.32) we have :

�h̄µν+�
(
∂νξµ+∂µξν−ηµν∂βξβ

)
= 0, (1.34)

that is satisfied if the ξµ follow the wave equation �ξµ = 0. Solving ξµ =Cµe i kσxσ and

using the plane wave solution of h̄µν, the gauge condition (1.26) becomes :

h̄µν = εµνe i kσxσ →
{
εµν+ i

(
kνCµ+kµCν−ηµνkβCβ

)}
e i kσxσ , (1.35)

and the trace of the transformed polarization tensor gives :

ε
µ
µ→ ε

µ
µ−2i kµCµ (1.36)

There are infinite number of ways to pick the Cµ without affecting the Lorenz gauge4.

We can fix the Cµ (hence the ξµ) so they cancel the trace of h̄µν. This choice of coordinate

system is called the Transverse Traceless (TT) gauge. If the trace is null, one immediately

sees that we have :

h̄µν = hµν (1.37)

So plane wave solution of h̄µν are the same for the initial metric perturbation hµν.

Given equation (1.32), the harmonic gauge and the TT gauge, we have :

kµkµ = 0

kµεµν = 0

ε
µ
µ = 0

(1.38)

The first condition shows that kµ is light-like so the wave is propagating at the speed

of light c, the second condition expresses the transversality of the wave and the last con-

dition gives the null trace of the polarization tensor. Therefore, for a wave propagating

along k3 with wave vector kµ = (k0,0,0,k3), we have :

(k0)2 − (k3)2 = 0

ε0ν = ε3ν = 0

ε11 +ε22 = 0.

(1.39)

4Or De Donder gauge, or harmonic gauge... it has got many names.
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Because hµν is symmetric, we also have for the two last unconstrained components of

εµν:

ε12 = ε21. (1.40)

Finally, we define ε11 = h+ and ε12 = h× to get the polarization tensor of a GW :

εµν =


0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0

 (1.41)

This tensor can be decomposed in two independent components as :

εµν = ε+µν+ε×µν =


0 0 0 0

0 h+ 0 0

0 0 −h+ 0

0 0 0 0

+


0 0 0 0

0 0 h× 0

0 h× 0 0

0 0 0 0

 , (1.42)

that we call the "plus" and "cross" polarizations.

1.2.3 Quadrupole formula

In the previous section we have presented a solution to the linearized Einstein field equa-

tions in the vacuum but we did not explain how GWs are generated. Just like the electro-

magnetic waves originate from electric charges in motion, we expect GWs to be produced

by moving masses. However, there is a fundamental difference with GWs. Take a spheri-

cally symmetric gravitational potential Φ(r ) ∝ M/r with M =∑
i mi the total mass of the

source object and write its multipole expansion :

Φ(r −R) ∝ 1

R

∑
i

mi − 1

R3

∑
i

mi~ri ·~R + ..., (1.43)

In virtue of the momentum ~p conservation principle, the massive dipole
∑

i mi~ri is a

constant. Indeed, we have in the center of mass frame :

∑
i
~pi =

∑
i

d

d t

(
mi~ri

)
=~0, (1.44)

Therefore, it is impossible to generate time-dependent GWs with a massive dipole.

The source must have asymmetric (at least quadrupolar) features to be able to radiate

GWs. In Einstein field equations, this condition is satisfied by ∇µTµν = 0.
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To solve equation (1.32) we make use of Green’s function formalism. The solution for

the wave equation has already been studied and we can find in the literature the expres-

sion of the Green function for the wave operator � :

G(t ,x, t ′,x’) =−δ(t ′− [t − [x−x’]])

4π|x−x’| . (1.45)

Using this result it comes naturally that the hµν will be expressed in terms of the Green

function as :

h̄µν = 4G

c4

∫
dx’

Tµν(t ′− [t − [x−x’]])

|x−x’| . (1.46)

The distance to the source is usually very large. To that extent, |x− x’| becomes the

cosmological luminosity distance dL , taking into account the expansion of the universe

for high redshift objects. Moreover, in the TT gauge, we only have 2 independent spa-

tial components of hi j . Using ∂µTµν = 0 and T00 >> Ti j in the non-relativistic limit, it is

possible to show after some calculation that (see Babak 2020) :

∂2
0

∫
dx(T 00xi x j ) = 2

∫
dxTi j (1.47)

which is only valid for isolated sources and leads to :

h̄i j = 2G

dLc4
∂2

0

∫
dx’T 00x ′

i x ′
j , (1.48)

where T 00 = ρc2 is the rest energy density. Defining the quadrupole moment tensor

as :

Ii j =
∫

dx’ρx ′
i x ′

j , (1.49)

and using its expression in the TT gauge :

Ii j = Ii j − 1

3
δi j trace(I ) (1.50)

we have the final expression of our quadrupole formula for the generation of GWs :

hi j = 2G

dLc4
Ïi j . (1.51)

The prefactor being extremely small, GWs have very low amplitude. The only way

to produce loud and detectable GWs is to have a very massive source. Furthermore, as

expected according to the initial comment in this section, the lowest possible order of

moment is the quadrupole because of the conservation of energy and momentum. Grav-

itational dipoles are forbidden by the equations of GR. It means that for GWs to be pro-

duced, a system must present asymmetries in the distribution of its mass. We can find

such asymmetries in orbiting binary systems.
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1.2.4 Circular binary system

Consider a binary system of reduced mass µ and total mass M = ma +mb in circular orbit

in the x-y plane at orbital frequency ω with separation r . We have for the positions of the

two objects~xa and~xb in the center of mass frame :

~xa(t ) = rµ

ma

(
cos(ωt ),sin(ωt ),0

)
~xb(t ) =−ma

mb
~xa(t ).

(1.52)

For two point objects, the mass distribution ρ(~x) is :

ρ(~x) = maδ(~x −~xa)+mbδ(~x −~xb). (1.53)

We can now calculate the components of quadrupole moment Ii j using equations

(1.49) and (1.50) which yield :

Ii j = 1

2
µr 2


(
1/3+cos(2ωt )

)
sin(2ωt ) 0

sin(2ωt )
(
1/3−cos(2ωt )

)
0

0 0 0

 , (1.54)

and then take the second time derivative of Ii j :

Ïi j =−2µr 2ω2


cos(2ωt ) sin(2ωt ) 0

sin(2ωt ) −cos(2ωt ) 0

0 0 0

 . (1.55)

We use Kepler’s third law to constrain the value of r :

r 3ω2 =GM

⇔r =
(GM

ω2

) 1
3

,
(1.56)

now using (1.51) we have for the two independent components h+ and h× :

h+ =−4M5/3
c G5/3ω2/3

dLc4
cos(2ωt )

h× =−4M5/3
c G5/3ω2/3

dLc4
sin(2ωt ),

(1.57)

where we have introduced the chirp mass Mc = µ3/5M 2/5. We can see that the GW

signal oscillates at twice the orbital frequency. To that extent, we have :

ω=π fg w (1.58)
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with fg w the GW signal frequency. Like the luminosity distance dL , the frequency of

the signal can be subject to redshift when the binary system is far away. Therefore, for

redhsift z, it transforms as :

fg w → fg w

1+ z
(1.59)

A gravitational binary system will radiate energy in the form of GWs. As a conse-

quence, the orbital frequency ω will increase with time and inversely, the separation r

will decrease until the two objects eventually merge. We can estimate this frequency and

separation evolution if we know the amount of energy radiated by the system per unit

time dE/d t given by (Carroll 1997; Schutz 2022) :

dE

d t
= G

5c5
〈...
I i j

...
I i j 〉, (1.60)

where
...
I i j is the third time derivative of the quadrupole and 〈.〉 denote the averaging

over some periods of the wave. After some straightforward calculation, we have :

dE

d t
=− 32

5c5
G7/3M 4/3µ2ω10/3 =−32G4µ2M 3

5c5r 5
, (1.61)

writing ω in terms of r using Kepler’s third law. Making use of the Virial theorem for a

gravitational system, we also have :

E =−1

2

GMµ

r
⇔ dE

d t
= 1

2

GMµ

r 2

dr

d t
. (1.62)

Equating the two last expressions, we get an equation for r that we can solve. Once

solved, it gives :

r (t ) =
(
r 4

0 −
256

5

G3M 2µ

c5
t
)1/4

= r0

(
1− t

τc

)1/4
, (1.63)

where we have defined r0 the initial separation and τc the coalescence time. At t = τc ,

separation r (τc ) = 0, thus the two orbiting objects come into contact and merge5. Again,

using Kepler’s third law and the chirp mass Mc , we can write the evolution of the orbital

frequency ω(t ) :

ω(t ) =ω0

(
1− 256

5

G5/3M5/3
c

c5
ω8/3

0 t
)−3/8

=ω0

(
1− t

τc

)−3/8
, (1.64)

where ω0 is the initial orbital frequency, showing that indeed, ω(t ) goes up with time,

hence, so does the GW frequency fg w (t ). It means that the phase Φ(t ) of the GW will

evolve with time like :

5This is true considering the point-mass approximation. In reality, for two objects of radius L, we can

trivially show using r (tc ) = L that merger happens at tc = τc

(
1− (

L/r0
)4

)
which is less than τc . We deduce

from this that bigger objects merge sooner.
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Φ(t ) =Φ0 +
∫ t

t0

d tω(t ) =Φ0 + c5

32G5/3M5/3

(
ω−5/3

0 −ω(t )−5/3) (1.65)

In equation (1.57) we give the h+ and h× components of hµν for a binary system or-

biting in the x-y plane with angular momentum~L, emitting GW in the z direction. For a

more general description, we need to rotate around the x-axis the transverse quadrupole

moment by an inclination angle ι giving :

h+ = 4M5/3
c G5/3ω2/3

dLc4
(1+cos2 ι)cos(2Φ(t ))

h× = 4M5/3
c G5/3ω2/3

dLc4
cos ιsin(2Φ(t )).

(1.66)

Finally, we can perform a rotation in the polarization plane by an angle 2ψ, introduc-

ing the polarization basis following ê1 · ê2 = 0 and ê1 · k̂ = ê2 · k̂ = 0. We have for e A
i j the +

and × GW polarization tensor :

ε+i j = ê1 ⊗ ê1 − ê2 ⊗ ê2

ε×i j = ê1 ⊗ ê2 + ê1 ⊗ ê2

, (1.67)

[
h+
h×

]
→

[
cos2ψ −sin2ψ

sin2ψ cos2ψ

][
h+
h×

]
, (1.68)

and we have hµν in its final form :

hµν =
∑

A=+,×
εA
µνhA = ε+µνh++ε×µνh×

h+ = 2M5/3
c G5/3ω2/3

dLc4

(
(1+cos2 ι)cos2ψcos(2Φ(t ))−2cos ιsin2ψsin(2Φ(t ))

)
h× = 2M5/3

c G5/3ω2/3

dLc4

(
(1+cos2 ι)sin2ψcos(2Φ(t ))+2cos ιcos2ψsin(2Φ(t ))

)
Φ(t ) =Φ0 + c5

32G5/3M5/3

(
ω−5/3

0 −ω(t )−5/3)
ω(t ) =π fg w (t ) =ω0

(
1− 256

5

G5/3M5/3
c

c5
ω8/3

0 t
)−3/8

(1.69)

In summary, we have 5 parameters that characterize our GW :

Mc Chirp mass (kg)

dL Luminosity distance (m)

ι Inclination angle (rad)

ψ Polarization angle (rad)

Φ0 Initial phase (Rad)

fg w GW signal frequency (Hz)
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Figure 1.6: Illustration of the geometry of the SMBHB. Here, L̂ represents the rotation axis

of the binary, k̂ the direction of propagation of the GW with polarization basis {ê1, ê2}, the

polarization angle ψ and finally ι the inclination (i.e. the angle between L̂ and k̂).
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Figure 1.7: First images of SMBH captured by the Event Horizon Telescope.

1.3 Supermassive black holes

In 1916, Karl Schwarzschild came up with a metric tensor gµν solution to the Einstein field

equations in the vaccum (see Schwarzschild 1999, a translation to English of the original

1916 paper), describing the geometry of spacetime in spherical coordinates when a non-

rotating point mass M is present in the center of the frame. This solution is consistent

with classical gravity in the Newtonian limit but it predicts peculiar behaviour when ap-

proaching the center. Using that metric the length element d s2 writes as :

d s2 = (
1− 2GM

r c2

)
c2d t 2 − (

1− 2GM

r c2

)−1dr 2 − r 2dΩ2, (1.70)

where r is the distance to the center for an external (far away) observer and dΩ =
sin2θdθdφ is the element of solid angle. One immediately sees that for r = 2GM/c2, the

coordinate system diverges. This radius of singularity 6 is called the Schwarzschild radius

and it defines the boundaries of what we call the event horizon. Beyond this limit, nothing

can escape and this region of spacetime appears completely black to external observers :

we have a Black Hole (BH).

These astrophysical objects are completely characterized by their mass that can range

from a few solar masses M¯ to billions of solar masses. If it is greater than 106M¯, we

call it a supermassive black hole (SMBH). They are the largest category of black holes and

6Note that this is not a true singularity but rather a coordinate singularity. It is possible to make it disap-

pear by chosing an apprioriate coordinate system, like for instance, Lemaître coordinates.
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Figure 1.8: Illustration of the possible scenarios for MBH formation. Z is the metallicity

of the halo, i.e. the presence of elements heavier than helium (figure taken from Volonteri

2010).

we expect to find them at the center of galaxies. How they form is still an open question

in astrophysics. The observation of Active Galactic Nuclei (AGN) at very high redshift

suggests that they were already present in the early Universe. The proposed scenarios

for their formation rely on the production of black hole "seeds" that already have masses

around 103−6M¯. Such seeds could be produced by the collapse of first generation stars

(Pop III) in large protogalactic gas clouds (Volonteri 2012). On figure 1.8, we see that the

clouds can experience direct collapse or fragment into individual clumps giving birth to

a cluster of smaller stars. In both cases, these early stars are often massive enough to end

up exploding as supernovae or collide in the cluster to produce BHs. Later, the seeds can

grow through accretion of the surrounding gas and BH merger, leading to black holes with

huge masses, (Super)-Massive Black Holes (MBH). Inspiralling Supermassive Black Hole

Binary (SMBHB) systems could produce loud and stable low frequency GWs that would

still be detectable at large distances in spacetime.

The most accepted scenario to explain the birth of such SMBH pairs is by means of
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galaxy merger. When their nuclei get closer, the stars and gas making up the galaxies steal

kinetic energy from the SMBHs through gravitational interaction. The stars get ejected by

slingshot effect and the gas generate dynamical friction. This loss of energy will drive the

SMBHs closer and closer until they form a stable binary, separated by a distance that is

only in the order of some parsecs. At that stage, there might not be enough matter present

between the two SMBHs to significantly extract energy from the system. The only way it

can give away energy is through GW emission that are extremely weak. It is estimated that

such an inspiralling phase should be as long as the age of the Universe before entering

the merging phase where the GW emissions become efficient. The observations seem

to contradict this prediction because we see very massive AGNs at high redshift whose

formation we can explain only with SMBHB merger. This is the "final parsec" problem.

The mechanisms allowing the SMBHs to merge within a reasonable amount of time are

still unclear but some solutions have been proposed. In Milosavljevic 2003 they describe

two of the suggested explanations : (i) they show that taking into account the shape of

the galaxies and the inhomogeneous distribution of matter within them could make the

dynamical friction more efficient, allowing the SMBHs to enter merging phase, (ii) they

explain that a N -SMBH (galaxy) merger could solve to the issue, where the inspiralling

phase is described as a N -body problem which could allow the SMBHs to get closer under

certain conditions.

In practice, it is possible to detect such GWs thanks to the huge mass of the SMBHs (i.e.

huge chirp mass Mc of the binary system) that make up for loud GWs. A large population

of SMBHB would produce a superposition of many GWs filling-up the entire Universe7.

The resulting signal can de divided into two main categories : the stochastic Gravitational

Wave Background (GWB) and Continuous Waves (CW).

1.3.1 Gravitational wave background

The vast population of observable galaxies indicates that we probably have a large popu-

lation of SMBH in the Universe. The superposition of many individual SMBHB GW signals

would result in a low frequency noise spread on a broad band. For a population of circular

SMBHB, given the formula for GW emissions, we can show that such a noise signal has a

frequency spectrum following a powerlaw. We define the characteristic strain of the GWB

as (Taylor 2021):

h2
c ( f ) ≡ f Sh( f ) ∝ f −2 dρ

d ln f
, (1.71)

with Sh( f ) the power spectral density for the considered population of sources (here

circular SMBHBs) and dρ/d ln f the energy density of sources in a logarithmic interval of

7We can only see the local Universe.
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Figure 1.9: A simulation of SMBHB population in the universe where y-axis is GW ampli-

tude and x-axis is GW frequency. Each blue triangle represents a single SMBHB source.

The total sum of these signals gives the characteristic strain of the GWB (black line) which

can be approximated by a powerlaw (orange line) of index -2/3. The black stars are in-

dividual binaries resolved on top of the background (CGW). The dotted line displays the

sensitivity of IPTA, showing that both GWB and CGW should be detectable at low frequen-

cies. (Acknowledgement : we have used simulated population of binaries from A.Sesana

to produce this plot.)
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frequency.

Considering that we have N0 emitting binaries and ignoring the effects due to red-

shift8, we can approximate the density dρ/d ln f for circular binaries using equations

(1.61) and (1.76) :

dρ

d ln f
∼ N0

dE

d ln f
∝ f

dE

d t

d t

d f
∝ f × f 10/3 × f −11/3 ∝ f 2/3, (1.72)

yielding a frequency dependence following a powerlaw with spectral index 2/3.

Given equation 1.71, we have a hc that follows a powerlaw as :

hc ( f ) ∝ f −2/3. (1.73)

On figure 1.9, we see a simulated population of individual SMBHBs with their corre-

sponding GW strain amplitude h and frequency f . The higher frequency range appears

less crowded because the frequency evolution rate of the circular SMBHB increases as

f 11/3 (equation 1.76) so the binaries spend less time there. As a consequence, the char-

acteristic strain hc decreases with frequency, like the GW energy density, and the signal

looses its stochasticity.

When we search for such stochastic signal, we model the characteristic strain as a

powerlaw with amplitude AGW B and spectral index γGW B within our prior assumptions

on their values :

hc = AGW B

( f

1yr−1

)γGW B

. (1.74)

The detection of the GWB and the measurement of (AGW B , γGW B ) would give crucial

information about the population and distribution of SMBHBs across the Universe. It is

the main target of PTA collaborations.

1.3.2 Continuous waves

The amplitude of a GW decreases with distance as 1/dL . Some of the SMBHB responsi-

ble for the stochastic GWB may be closer to us and appear brighter in their GW emission,

resulting in GW signal resolved at single frequencies on top of the GWB (see figure 1.9).

These GWs are called Continuous Gravitational Waves (CGW) and are described as de-

terministic signals. According to equation (1.64) showing the evolution of GW frequency

with time, CGWs should see their frequency increase. However, for supermassive sys-

tems, this evolution can be neglected over some orbital periods (for frequencies of ≤ 10−7

8This is a big approximation, for the sake of quickly demonstrating the expected frequency dependence

of the characteristic strain. For a realistic derivation we would have to take into account redshift, mass

distributions, mass ratios and even eccentricity of the binaries (see Taylor 2021).
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Figure 1.10: On the left panels, a simple illustration (fake data) of what is seen by the ra-

diotelescope. We evaluate the true TOAs~tobs (black) and produce a predicted value~tpr ed

(red) by fitting a timing model. On the right panels, the same thing but in the presence

of GW signal. The timing model does not account for the delay induced by the GW and

timing residuals δ~t are measured.

Hz only, see section 1.4.1 for more details). This manuscript focuses on this type of signal

and we will present in the next section how it is possible to detect them using pulsars.

1.4 Pulsar Timing Array

A Pulsar Timing Array (PTA) is an array of Milliecond Pulsars (MSPs) observed from the

Earth using radiotelescopes to monitor the time of arrivals (TOAs)~t of their pulses. Among

these pulsars, some have been observed for long periods of time T >20 years giving us ro-

bust datasets to work with. This timing data allows to use pulsars as "cosmic clocks". We

can predict the TOAs by characterizing the properties of the pulsar and modeling per-

turbations of physical origin. The difference between the predicted TOAs~tpr ed and the

measured TOAs~tobs is called the timing residuals δ~t . If our PTA is sensitive enough, the

effect of GWs should be present and detectable in the timing residuals δ~t .

MSPs usually have a characteristic and well defined pulse profile. However, the obser-

vation of a single pulse can be challenging because of its low amplitude and the ambient

noise levels. For that reason, we measure series of consecutive pulses that we stack to-
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gether to obtain an averaged pulse profile with a significantly better signal to noise ratio.

We then cross-correlate a previously determined template of the pulse profile9 to extract

a value of the TOA. One new TOA is obtained with a cadence of about 1 week. We can

estimate the uncertainty of a TOA measurement as (Lorimer and Kramer 2012) :

σT O A ' W

S/N
, (1.75)

with W the width of the pulse and S/N the signal to noise ratio of the measured (aver-

aged) pulse profile.

Typically, we have σT O A ' 10−6s so we are accurate to the micro-second, which is re-

markable for astrophysical observations. This timing precision led physicists to believe

that the effect of GWs could be noticeable in the TOAs. This idea was first proposed in

Sazhin 1978 and Detweiler 1979 where it is argued that only GW sources with masses

around 108−10M¯ could be detectable within the sensitivityσT O A of our MSP timing mea-

surements. The natural candidates for such GW sources are SMBHBs.

1.4.1 Sensitivity of the array

The long period of observation T of the PTA makes it sensitive to GWs down to the nanohertz

band (1/T ∼ 10−9 Hz). The cadence of observation is about 1 week10 so signals with fre-

quencies above 1/7days ∼ 10−6 Hz are under sampled. Moreover, many observation gaps

are present in the dataset, sometimes of several months due to maintenance of the radio-

telescopes. As a consequence, the TOAs are not evenly sampled and it is not possible to

directly visualize the Fourier spectrum of the pulsars. Instead, we use Gaussian processes

to model the time-correlated features intrinsic to pulsars and interpolate between gaps

(see section 2.2.2).

In that window of frequency, the GWB should give rise to measurable effects thanks

to the high precision timing measurements of MSPs (see figure 1.9). For CGWs, we can

argue whether the frequency evolution of the SMBHBs is going to introduce a bias in the

measurement of the signal (Sesana and Vecchio 2010). We derive from equation (1.64) :

dω

d t
= 3

8

1

τc
ω11/3 = 96

5

G5/3M5/3
c

c5
ω11/3, (1.76)

the expression giving the rate of change in GW frequency (recall that fg w = πω) for a

binary system with orbital periodω. In the context of PTA, we are sensitive to frequencies

around fg w ∼ 10−8 Hz and binaries with a chirp mass Mc ∼ 109M¯. For such systems, the

coalescence time τc is in the order of 104−5 years so the change in frequency that occurs

9For curiosity, many pulse profile templates can be found at : https://www.jb.man.ac.uk/research/
pulsar/Resources/epn/

10Note true for legacy data because of gaps.
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Figure 1.11: The evolution of frequency ∆ fg w for 10 years of observation and three chirp

masses compared to PTA resolution.

within the period of observation T (in the order of 10 years) is expected to be small. Using

the previous equation, we can evaluate this change of frequency ∆ fg w to first order :

∆ fg w ' d fg w

d t
×T ' 96

5

G5/3M5/3
c

c5
f 11/3

g w ×T. (1.77)

For the considered values of the parametersMc , fg w and T we have a∆ fg w that is less

than 10−9 Hz, hence below PTA frequency resolution. To that extent, the CGW sources can

be considered stable and monochromatic (i.e. non evolving).

This approximation is no longer true for signals with higher frequencies. The very

strong dependence of ∆ fg w on fg w can produce differences that are resolvable by the ar-

ray. On figure 1.11, we plot ∆ fg w (not approximated as in equation 1.77) as a function of

the initial signal frequency fg w , for 10 years of observation and three different values of

chirp mass Mc , to compare it with a typical PTA resolution of 1 nHz. It is clear that dis-

crepancies between true and measured signal frequencies will appear around 100 nHz (or

less for largeMc ) where∆ fg w exceeds the PTA resolution. We even start to see very strong

frequency evolution for the largest values of chirp mass. It means that the non-evolving

source approximation no longer stands. To search for signal at frequencies higher than

∼100 nHz, we must take into account the evolution of the SMBHB. If we do not, 100 nHz

should be a reasonable limit up to which the ∆ fg w can be negligible for Mc ≤ 109M¯.
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1.4.2 Millisecond pulsars

Pulsars appear as the last state of evolution of stars with masses around 9M¯. When nu-

clear fusion cycles are over within its core, the produced iron core collapses under the

gravitational pull producing a gigantic explosion known as a supernova of type II. During

this event, the whole star shrinks down into a small volume, leaving behind an extremely

compact and highly magnetized neutron star with a diameter of about 10km. The angu-

lar momentum of the star before the supernova is conserved and transferred to the tiny

residual neutron star, giving it a high rotational speed. The combination of both high

magnetization and high spin velocity produces beams of electromagnetic emissions that

we perceive as pulses, hence the name, Pulsar (Pulsating staR). They were originally de-

tected in the radio frequency band. Some of them are extremely stable in their rotation,

which is why they are interesting objects to study, opening a whole spectrum of very pre-

cise astrophysical measurements.

Due to their emissions, pulsars loose energy with time. As a consequence, they loose

angular momentum and their rotational speed decreases. This "spin-down" can cause

the pulsar to fade away and not be detectable by radiotelescopes. If the pulsar is in a bi-

nary system, it can get re-accelerated by stealing angular momentum from its companion

through gas accretion. This process is called the "recycling" of pulsars (Alpar et al. 1982).

Once equilibrium is reached, such pulsars can have periods of rotation in the order of the

millisecond (i.e. millisecond pulsars). Moreover, due to their history and age, they are

much more stable than young pulsars that just went through a supernova (more prone to

glitches/starquakes).

MSPs in our galaxy are monitored by several collaborations throughout the world us-

ing their radio observatories to collect timing data. Lately, efforts were made to put in

common all these datasets which gave birth to the international collaboration.

1.4.3 The International Pulsar Timing Array

The IPTA DR2 consists of 65 stable MSP with the duration of observations up to 30 years

(Perera 2019; Antoniadis 2022). It combines the pulsar timing data acquired by three PTA

collaborations, namely :

• the European Pulsar Timing Array EPTA first data release (Desvignes 2016) com-

bining data from the Nancay radio-telescope (France), the Effelsberg radio-telescope

(Deutschland), the Lovell Telescope (UK), the Westerbork Synthesis radio-telescope

(Nederland) and the Sardinia radio-telescope (Italia),

• the North American Nanohertz Observatory for Gravitational Waves NANOGRAV

9 year data release (Arzoumanian 2016) with data from the Green Bank Telescope

(USA) and the Arecibo Radio telescope (Puerto Rico) who recently passed away,
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Figure 1.12: The population of known pulsars given their spin period (x-axis) and spin

period first time derivative (y-axis) (plot taken from Tiengo et al. 2011). MSPs lie on the

bottom left corner after getting recycled. The dashed blue line is the limit of the pulsar

graveyard below which no pulsar (or very few) is expected to radiate because of electron-

positron pair production (Chen and Ruderman 1993).
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Figure 1.13: The list of IPTA telescopes and their locations in the various countries of the

collaboration (picture taken from the NANOGRAV website).

• The Parkes Pulsar Timing Array PPTA first data release (Manchester 2013a) using

the Parkes Radio telescope (Australia).

The combination of all data is superior to the datasets of each collaboration. We have

already observed the improvement in the detection of the common red noise process in

Antoniadis 2022 by using IPTA DR2. This upgrade in sensitivity can be explained by :

• a better sky coverage providing better localization of GW signals,

• a better decoupling and identification of noise components due to the increased

number of backends giving better constraints on noise parameters,

• the reduction of the number of gaps in the data due to absence of observations.

Today, the IPTA also counts the Indian PTA (InPTA) collaboration (Tarafdar et al. 2022)

and the South-African MeerKAT radio-telescope (Bailes et al. 2020) within its collabora-

tors. For now, the only available combination is the DR2 of which we make extensive use

in this manuscript. The IPTA collaboration is already working on the third data release

that will combine latest datasets to give the best possible sensitivity to date.
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1.4.4 PTA response to GW signal

We have presented in section 1.2 a solution to the linearized Einstein field equations in

the TT gauge that gave GWs. The first order perturbation to the flat-space metric for a GW

propagating along the ẑ axis was :

hT T
µν = ∑

A=+,×
εA
µνhA =


0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0

 , (1.78)

where we see the two independent polarization states h+ and h×.

For a pulsar in the sky, let n̂ be the unit vector pointing from the Earth to the pulsar

and σµ the four-momentum of a light-like signal of frequency ν travelling from the pulsar

to the Earth. We can write the geodesic equation for σµ as :

dσµ

dλ
+Γµ

αβ
σασβ = 0, (1.79)

with

σµ = (ν,−νn̂) = d X µ

dλ
= d

dλ
(t ,~x). (1.80)

In theory, the GW should influence the position of the pulsar n̂ but this effect is con-

sidered small and neglected here. Expressing the Christoffel symbols for gµν = ηµν+hµν
and keeping only the first order terms, we get :

Γ
µ

αβ
= 1

2
gµδ

(
∂αgβδ+∂βgδα−∂δgαβ

)
' 1

2
ηµδ

(
∂αhβδ+∂βhδα−∂δhαβ

)
+O(h2)

(1.81)

We plug this expression of Γµ
αβ

into the geodesic equation and focus on the time com-

ponent of σµ :

dσ0

dλ
+Γ0

αβσ
ασβ = 0

⇔dν

dλ
+ 1

2
η00(−∂0hαβ

)
σασβ = 0

⇔dν

dλ
+ 1

2

∂hi j

∂t
ν2n̂i n̂ j = 0.

(1.82)

We only have spatial components in hµν so we denote the metric perturbation by hi j ,

omitting the h0ν and hµ0 terms that are null. To account for the fact that GWs propagate

at the speed of light, we have to define the delayed wave solution :
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hi j = hi j (t − k̂ ·~x), (1.83)

with k̂ the direction of propagation of the GW. This gives for the total derivative of hi j

with respect to λ:

dhi j

dλ
= ∂hi j

∂t

d t

dλ
+ ∂hi j

∂(k̂ ·~x)

d(k̂ ·~x)

dλ

= ∂hi j

∂t
ν− ∂hi j

∂t
k̂ · d~x

dλ

= ∂hi j

∂t
ν− ∂hi j

∂t
k̂ · (−νn̂)

= ∂hi j

∂t
ν
(
1+ k̂ · n̂

)
,

(1.84)

and for the time derivative :

∂hi j

∂t
= dhi j

dλ

( 1

1+ k̂ · n̂

) 1

ν
. (1.85)

Now, combining (1.82) and (1.85), we get :

1

ν

dν

dλ
=−1

2

( n̂i n̂ j

1+ k̂ · n̂

)dhi j

dλ
. (1.86)

This equation shows how the frequency of a signal is affected by the presence of a GW.

In fact, if we consider a pulsar that is emitting pulses of light at rate ν0, we can integrate

this last expression between the times of emission of the pulse at pulsar tp and reception

t on Earth. This yields the redshift (or blueshift) induced in the TOAs of a pulsar :

ln
ν(t )

ν0
=−1

2

∑
A=+,×

( n̂i n̂ j

1+ k̂ · n̂

)
εA

i j (hA(t )−hA(tp )) (1.87)

with ν(t ) the frequency at reception that we can define as ν(t ) = ν0 + δν for small

variation of ν giving ln
(
ν0 +δν

)
/ν0 ' δν/ν0.

We can relate the time at the pulsar tp with the time on Earth t using the relation :

tp = t − L

c
(1+ k̂ · n̂), (1.88)

where L is the distance Earth-pulsar. The right hand side term represents the delay

due to the propagation of the pulse, taking into account the geometry of the system (see

figure 1.14). We see that for k̂ ·n̂ =−1 we have tp = t . In that particular case, the pulses and

GW propagate on the same axis at same velocity c (the emitting SMBHB is right behind

the pulsar), canceling the delay between the measured time at Earth and pulsar, hence

the frequency shift induced in the TOAs. This is called the "surfing" effect.

47



Figure 1.14: The geometry of the PTA in the radio observatory (Earth) frame. The SMBHB

emitting a GW signal in the direction ~k is going to influence the TOAs of the pulsar ob-

served on Earth. The angle between~k and the unit vector n̂ pointing to the sky position of

the pulsar seen from Earth determines how the GW is felt by the pulsar according to the

antenna pattern fuction F+,×. The distance Earth-pulsar L affects the delay in the pulsar

term.
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We can also calculate the scalar product between the geometrical prefactor function

of n̂ and the εA
i j using the definition of the polarization basis (ê1, ê2) and the expression of

vectors in spherical coordinates :

k̂ =−sinθcosφx̂ − sinθ sinφŷ −cosθẑ

ê1 =−sinφx̂ +cosφŷ

ê2 =−cosθcosφx̂ −cosθ sinφŷ + sinθẑ

(1.89)

This gives the antenna pattern functions F A for both polarizations, expressing the re-

sponse of the PTA as a function of the sky position n̂ of the pulsar and the direction of

propagation of the GW k̂. We can write them as :

F+(k̂) = 1

2

(ê1 · n̂)2 − (ê2 · n̂)2

1+ k̂ · n̂
, (1.90)

F×(k̂) = (ê1 · n̂)(ê2 · n̂)

1+ k̂ · n̂
, (1.91)

allowing us to rewrite equation (1.87) :

δν

ν0
=− ∑

A=+,×
F A(k̂)

(
hA(t )−hA(tp )

)
(1.92)

To get the timing residuals δ~tGW induced in the TOAs by the passing GW signal, one

needs to integrate again δν/ν0 to calculate the phase shift produced by this frequency

modulation of the pulsar signal :∫ t

0
d t
δν

ν0
=− ∑

A=+,×
F A(k̂)

∫ t

0
d t

(
hA(t )−hA(tp )

)
. (1.93)

This requires to integrate the hi j terms, which cannot be done analytically. However,

it is possible to approximate this integral by neglecting the evolution of the orbital fre-

quency ω(t ) of the SMBHB (see section 1.4.1) producing the GWs over the course of PTA

observation (of about 20 years). Given equations in (1.69), for non polarized signal (ψ= 0)

we have :

h+ ∝ω(t )2/3 cos(2Φ(t ))

h× ∝ω(t )2/3 sin(2Φ(t )),
(1.94)

and for the integrals, neglecting the evolution ofω(t ) and using the chain rule to relate

Φ and t : ∫
d th+ ∝ω2/3

∫ (dΦ

d t

)−1
dΦcos(2Φ(t ))∫

d th× ∝ω2/3
∫ (dΦ

d t

)−1
dΦsin(2Φ(t )),

(1.95)
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with dΦ/d t =ω, we finally get :

∫
d th+ ∝ 1

2
ω−1/3 sin(2Φ(t ))∫

d th× ∝−1

2
ω−1/3 cos(2Φ(t )).

(1.96)

After re-rotating the polarization basis by an angle 2ψ, we can write the timing resid-

uals δ~tGW induced in the TOAs of a pulsar by an individual SMBHB emitting CWs :

δ~tGW = ∑
A=+,×

F A(k̂)
(
sA(t )− sA(tp )

)
s+(t ) = M5/3

c G5/3

dLc4
ω(t )−1/3

(
(1+cos2 ι)cos2ψsin(2Φ(t ))+2cos ιsin2ψcos(2Φ(t ))

)
s×(t ) = M5/3

c G5/3

dLc4
ω(t )−1/3

(
(1+cos2 ι)sin2ψsin(2Φ(t ))−2cos ιcos2ψcos(2Φ(t ))

)
tp = t − L

c
(1+ k̂ · n̂).

(1.97)

Note that we have two terms acting in δ~tGW , the Earth term sA(t ) and the pulsar term

sA(tp ) (for both polarizations s+ and s× expressed above). We see that the amplitude of the

timing residuals depends on ω(t )−1/3. It means that the sensitivity of the array decreases

for signals with higher frequencies where the array experiences mainly white noise. We

can expect an improved sensitivity for the low frequency signals but it is also mitigated

by the presence of time correlated noises (red noise, dipsersion measure noise) as well

as our limited time of observation (see section 1.4.1). The negative effect of the ω(t )−1/3

factor is reflected in the behaviour of the PTA sensitivity curve on figure 1.9 where we see

its degradation as we go higher in frequency.

Even though we have neglected the evolution of ω(t ) to approximate the integral in

(1.95), it is not possible to neglect its evolution over the course of the whole travel of a

pulse from pulsar to Earth. In section 1.4.1, we have explained why it is a reasonable ap-

proximation to consider the CGW sources to be monochromatic and non evolving during

the time of observation (∼10 years) for low frequency signals. However, as demonstrated

here, PTA is sensitive to the difference in GW amplitude h felt by the pulsar and our radio-

observatories on Earth. Pulsars are on average at a distance of about 1kpc, meaning that it

takes ∼ 1000 years for their radio emissions to reach us. For such timescale, it is no longer

possible to ignore the frequency evolution of the SMBHB system. Therefore, the pulsar

term in δ~tGW can have different frequency and phase than the Earth term. For pulsar α,

the frequency ω(tp,α) and phase Φ(tp,α) of the pulsar term are obtained using equations

(1.64) and (1.65) at pulsar time tp (equation 1.88). We can think of two particular cases

(Babak 2016; Ellis et al. 2012) :
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Figure 1.15: Distribution of∆ fα as shown in Sesana and Vecchio 2010. The vertical dotted

line at ∼3 nHz represents the frequency resolution of the array.

• ∆ fα = [
ω(tp,α) −ω(t )

]
/2π < 1/T where the pulsar term and the Earth term have

nearly the same frequency and their difference is below the resolution 1/T of the

array. However, the phase Φ(tp,α) will be different for each pulsar because of their

disparate distances and sky locations, destroying the phase coherency of the pulsar

terms, while the Earth phaseΦ(t ) will be the same for all pulsar.

• ∆ fα = [
ω(tp,α) −ω(t )

]
/2π > 1/T where the pulsar term and the Earth term have

different frequencies that the array can resolve. In that case, they can be treated

as separate components. We can then include the pulsar term in our analysis or

consider it to be an extra source of noise because of its random phase and frequency

(different for all pulsars), focusing on the Earth terms that are actually in phase.

In Sesana and Vecchio 2010, they estimate the distribution of∆ fα for 100 isotropically

distributed pulsars across the sky at 1kpc distance using a realistic simulation of SMBHB

population (figure 1.15). They found that the frequency difference between pulsar and

Earth term is mainly above the resolution of the array. To that extent, they can be treated

separately.
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Figure 1.16: GW detectors sensitivities from Thermal noise in BEC-phononic gravitational

wave detectors https://www.researchgate.net/publication/275974267_Thermal_
noise_in_BEC-phononic_gravitational_wave_detectors

1.5 Multi-band gravitational wave astronomy

As we have seen in the previous section, PTA aims to detect very low frequency GW signal

in the nanohertz band. But the efforts of the scientific community gave birth to other

detectors allowing to probe the universe for the presence of GW at higher frequencies

(between 1-103Hz). Some of these detectors are already functioning, some others are still

being designed. We will give a brief overview of the main projects that are currently being

developed (see figure 1.16).

1.5.1 Ground based detectors : LIGO/Virgo

The GW detectors of the LIGO (Laser Interferometer Gravitational-Wave Observatory)

and Virgo collaborations follow the same concept. They are ground-based Michelson in-

terferometers (LIGO in the USA and Virgo in Italy) with arms that are 3 to 4 km long. A GW

passing through the detector modulates the length of the arms resulting in an interfer-

ence pattern that can be measured11 (Abbott et al. 2020). This technology is suited for the

11To be more precise, the GW affects the proper distance between the beam splitter and the mirrors.
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detection of GWs emitted by merging stellar-mass black hole (or neutron star) binary sys-

tems because they can reach frequencies of ∼ 10Hz (see figure 1.16), where the detector

is most sensitive and the GW amplitude is loudest. SMBHBs are invisible to LIGO/Virgo

because they merge before even getting to such high frequencies due their massive size.

The first direct detection of a GW merger signal was announced by the collaborations

on 11 February 2016. The development of a new generation of ground-based detectors

(like Einstein telescope, Maggiore et al. 2020) is currently an active field of research.

1.5.2 Space based detector : LISA

The Laser Interferometer Space Antenna (LISA) is an international project of space-based

GW detector in heliocentric orbit. Like LIGO and Virgo, it uses laser interferometry to

detect GWs, but with a different "triangle-shaped" configuration with arms that are ∼2.5

million kilometers long. This massive size brings technical difficulties that are worked

around using Time-Delay Interferometry to measure the frequency shift δν/ν of the lasers

where the signature of GWs will be imprinted (for details, see Amaro-Seoane et al. 2017).

It is most sensitive for GW signals with frequencies of ∼ 10−3 Hz (see figure 1.16).

The Galactic Binaries (GBs) present in the Milky way (white dwarf binaries) will be

detectable by LISA. They share similarities with the PTA CGWs in the sense that they will

be seen as deterministic components resolved on top of a stochastic signal generated by

the large population of GBs (the stochastic "foreground"). The equations governing their

evolution are the same as the CGWs, but here for higher frequencies (∼ 10−3 Hz) and

lighter systems (Mc ∼ 1M¯). In chapter 4, we develop and test a data analysis method

using simulated LISA data for the detection of GBs (see section 4.4).
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CHAPTER 2

DATA ANALYSIS METHODS FOR PTA
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2.1 Bayesian analysis

The topic of Bayesian analysis is very broad. Here, we will focus on the concepts that are

interesting for our work. For more details, see Sivia and Skilling 2006.

2.1.1 Likelihood function

In statistics, the likelihood function L(~δt |~θA,MA) assesses how likely it is to observe data

δ~t given a set of parameters ~θA of model MA. For example, under the assumption that
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the samples in δ~t are independent and Gaussian distributed with a standard deviation σi

that is determined by parameters~θA
1, the likelihood writes as :

L(~δt |~θA,MA) =∏
i

{ 1p
2πσi (~θA)

exp

(
−1

2

δt 2
i

σ2
i (~θA)

)}
= 1p|2πN| exp

(
−1

2
~δtN−1~δt

)
, (2.1)

with |.| denoting the determinant and N = diag{σi (~θA)} the diagonal matrix containing

the σi (~θA).

Intuitively, we want the values of parameters~θA that maximize the likelihood to match

the data δ~t that was actually observed. Finding the maximum likelihood thus gives esti-

mators of the parameters~θA. However, working with fixed values does not provide infor-

mation about the probability distribution of the~θA.

2.1.2 Likelihood ratio test

We can compare two models A and B by taking the ratio of their respective likelihood

functions. We often work with the logarithm of this ratio that we noteΛ :

lnΛ= ln
L(~δt |~θA,MA)

L(~δt |~θB ,MB )
. (2.2)

This quantity can be used to measure the statistical significance of a model with re-

spect to another. In the case of signal detection, we compare a model with noise + the

anticipated signal to the model with only noise. We refer to the latter as the "null hypoth-

esis" often noted H0. In the particular case where the two models are nested (i.e. when
~θA = ~θB

⋃~θs with ~θs the parameters associated with the additional signal present in A)

and for large number of samples, this ratio follows a chi squared distribution (see Willk’s

theorem in Wilks 1938).

2.1.3 Posterior distribution

In the Bayesian framework, we set up a model and define a prior probability distribution

for each of the parameters. This prior probability is a key point to the approach because

model parameters are now treated as random variables with probability distributions.

We want to update our prior knowledge π(~θA|MA) of parameters~θA for a model MA,

by expressing the probability of observing them given some data δ~t . Using the rules of

conditional probability we get the posterior probability :

1In section 2.2.2, we show that in PTA noise models the σi are function of two parameters EFAC and

EQUAD characterizing the white noise.
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p(~θA|~δt ,MA) = Pr(~δt |~θA,MA)Pr(~θA|MA)

Pr(δ~t |MA)

= L(~δt |~θA,MA)π(~θA|MA)

ZA
.

(2.3)

with ~θA the vector of model parameters, L(~δt |~θA,MA) the likelihood, π(~θA|MA) the

prior probability and ZA = p(δ~t |MA) the evidence, expressing the probability of measur-

ing data δ~t given model MA, acting as a normalizing constant.

In order to assess the statistical significance of a model MA with respect to another

model MB , we need to compare the odds Pr(MA|δ~t ) and Pr(MB |δ~t ) of the considered

models given data δ~t . Using conditional probabilities (Bayes theorem) we get the odds

ratio :

Pr(MA|δ~t )

Pr(MB |δ~t )
=

Pr(δ~t |MA)Pr(MA)
Pr(δ~t )

Pr(δ~t |MB )Pr(MB )
Pr(δ~t )

= ZA ×p(MA)

ZB ×p(MB )
. (2.4)

The evidence Z corresponds to the integral of the posterior probability distribution

over whole parameter space (fully marginalized posterior) :

ZA =
∫

d~θA p(~θA|~δt ,MA) =
∫

d~θAL(~δt |~θA,MA)π(~θA|MA). (2.5)

Assuming we are agnostic about models MA and MB , we can take the two probabil-

ities p(MA) and p(MB ) to be equal. In that particular case, the odds ratio reduces to the

Bayes factor :

BAB = ZA

ZB
, (2.6)

where BAB is the Bayes factor, the quantity that we use for model selection. The bigger

the BAB , the preferred model A is over model B . In GW data analysis, we use it to search

for the presence of GWs in the data by comparing a model with a signal against another

model without that signal. For large values of BAB , we can say that we have detected that

signal. To decide which model is best, we can refer to Jeffrey’s scale (Jeffrey 1998):

log10BAB Strength of evidence

0 to 1/2 Not decisive

1/2 to 1 Substantial

1 to 2 Strong

>2 Decisive

It is important to note that other scales exist (Kass and Raftery 1995), so deciding

whether the Bayes factor is significant may seem rather arbitrary. To that extent, it is pos-

sible to claim detection only when its value is high enough (>102−3). We must remain cau-
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tious when dealing with intermediate values of BAB that are sensitive to our own "bias"

factors.

This quantity is often difficult to compute since we can only approximate the integral

in (2.5) that yields the evidence Z , because of our poor knowledge of the posterior distri-

bution. To estimate the latter, we resort to sampling algorithms allowing us to explore the

parameter space.

2.2 Modelling PTA data

2.2.1 The timing model

In order to get the timing residuals δ~t of a pulsar, we need to fit a timing model that gives

a predicted value ~tpr ed of the TOAs ~tobs . This predicted value needs to account for all

physical effects responsible for the delays induced in the TOAs. Here, we only give a brief

overview of the mechanisms at work. For a complete description, please see Edwards et

al. 2006. A least square fit is performed to estimate parameter values for :

• The spin frequency and spin-down rate measuring the deceleration of the pulsar

due to its emissions,

• The sky position and proper motion of the pulsar in the sky,

• The dispersion measure due to the propagation of the pulses through the interstel-

lar medium with which they can interact during their journey to Earth,

• The binary orbital effects when the pulsar orbits a massive companion that can

induce GR effects like Shapiro delay or Einstein delay (or simply Doppler shift due

to the orbital motion).

The geomoetry of the problem is expressed in the Solar System Barycenter (SSB) that

we estimate using Solar System Epheremides (SSE) providing the position of the planets

at a given time. This translation calls for an additional delay, the Roemer delay given by :

∆R =−~r ·
~RBB

c
, (2.7)

with~r the position of the radio observatory in the SSB frame and ~RBB the unit vector

pointing to the sky position of the pulsar in the SSB frame. If this effect is not accurately

quantified (i.e. errors in the SSE estimations hence in the position of the SSB), it can

leave some artifacts in the timing residuals that will appear as a signal correlated between

pulsars (Tiburzi et al. 2016).
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For our analyses, we used a pre-fitted dataset including the timing residuals δ~t with

the associated values of timing model parameters for all pulsars so we did not have to

perform the timing model fit ourselves. However, there are still unmodelled noises in the

δ~t that we will present in the next section.

2.2.2 Noises in PTA

To use PTA as a detector we need to identify all the sources of noise that will interfere with

the desired signal (Verbiest and Shaifullah 2018). Each noise will be represented by a set of

parameters in the model. One of the drawbacks of the PTA being a pulsar based detector

is that it is not possible to characterize noises beforehand. They should be set as free

parameters while running detection scripts, often leading to high dimensional parameter

space and heavy computational cost.

We can group the different noises in three categories : white noise, red noise and dis-

persion noise (Chalumeau 2021, Goncharov et al. 2020). We will first explain what each

noise category describes, then we will show the final expression of the PTA marginalised

likelihood (equations 2.21 and 2.31).

White noise The white noise describes the observational errors dominating the high

frequency of PTA sensitivity. The radio-telescopes used to produce the PTA datasets are

often subject to random interferences, hence the evaluation of TOA uncertainties σ for

one pulsar may be biased (Taylor 1992; Shannon et al. 2014). The white noise also deals

with the statistics of pulse to pulse variations, hence the uncertainty on the determination

of the averaged pulse profile (see section 1.4.1). These effets are taken into account with a

rescaling of the uncertainties (see Chalumeau 2021) by a global multiplicative factor EFAC

and a constant EQUAD added in quadrature as :

σ̂2
k = E2

f ,k ×σ2
T O A,k +E2

q,k (2.8)

Each E f ,k (EFAC), Eq,k (EQUAD) pairs are different for each radiometer backend k and

are applied as global rescaling parameters to every TOA uncertainty σT O A,k coming from

backend k.

We assume that the noises are gaussian and the residuals should behave as a normal

distribution if the model is matching well with the data. Including these white noise pa-

rameters allows us to rescale the residuals so they fit this assumption.

Another white noise component is ECORR. It takes into account the jitter-like effect

(pulse to pulse variation) that is correlated between TOAs for a given observation epoch.

Note that this noise is only modelled in the NANOGRAV data and is not to be considered

in other datasets2 (Lentati et al. 2016).

2For example, in the EPTA dataset, the jitter-like effect is considered to be included in the EQUAD term.
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In general, including white noise leads to a lot of additional parameters because of the

many different backend-receiver systems in radio-telescopes. For that reason, it is com-

mon practice to evaluate the maximum likelihood values of EFAC, EQUAD and ECORR

for the TOAs of each pulsar separately, and use these values as fixed for GW analysis that

employs the whole PTA array. This allows to considerably reduce the size of the parameter

space and the computational cost (Aggarwal 2019).

Red noise The red noise is a time-correlated noise intrinsic to each pulsar dominating

at low frequencies (Shannon and Cordes 2010, Haasteren and Levin 2012). It takes into

account possible stochasticity in pulsar rotation. We describe it as a Gaussian process

decomposed on a Fourier basis with finite number of components. Its power spectral

density is expressed as :

SRN ( f ) = A2
RN

12π2
yr3

( f

yr−1

)−γRN

(2.9)

with ARN the amplitude and γRN the spectral index.

In the case of an individual red noise, different values of ARN and γRN are associ-

ated with each pulsar. To describe common red noise processes, we set the same values

of AC RN and γC RN for all pulsars, meaning that they share a red noise with same PSD.

Lately, such common processes have been discovered by all PTA collaborations S Chen

et al. 2021; Goncharov et al. 2021; Antoniadis 2022; Arzoumanian et al. 2020.

Dispersion measure variation The photons emitted from the pulsars get scattered by

the interstellar medium on their way to Earth. The variability of the electron density

on the axis Earth-pulsar introduces additional time-correlated noise in the data which

resembles a low frequency red noise. However, photons with different frequencies will

interact differently with the interstellar medium. Thus, observing incoming photons at

different frequency bands allows us to distinguish this dispersion noise from a regular red

noise. Its power spectral density writes as follows :

SDM ( f ) = A2
DM

12π2
yr3

( f

yr−1

)−γDM (1400MHz

fν

)2
(2.10)

with ADM the amplitude, γDM the spectral index and fν the photon frequency3.

The dispersion measure (DM) noise is individual to each pulsar because it depends

on the density of the interstellar medium along the axis Earth-pulsar.

3Not to be confused with the spin velocity of the pulsar sending photon packets (pulses) with a rate ν.

The frequency fν represents the "colour" of the photons measured on that frequency band.
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Bayesephem The physics of PTA is expressed in the solar system barycenter (SSB) frame.

To translate from Earth’s reference frame to SSB, we need a precise knowledge of Earth’s

position with respect to the SSB (Hobbs et al. 2006, Vallisneri 2020). We get this informa-

tion via solar system ephemeris (SSE). If the translation is not performed correctly, one

can observe timing residuals in the TOAs due to errors in the determination of planetary

motion (thus, an error in the determination of the SSB). Small deviations can lead to no-

ticeable delay and interfere with GW detection. Bayesephem is a method that proposes

to mitigate the systematic errors in the SSE by including deterministic corrections in the

timing residuals (Roemer delay). Gaussian weights are given to small deviations in the

orbital parameters of planets, allowing to absorb uncertainties on planetary position and

correct errors on the determination of the SSB.

2.2.3 Single pulsar likelihood

To get the timing residuals ~δtα of one pulsar, we need to fit a timing model to the observed

TOAs,~tobs,α. This timing model depends on many parameters (pulsar position, pulsar ro-

tation frequency, spin down, parallax, ...) and gives a predicted value of the TOAs,~tpr ed ,α

(Hobbs et al. 2006). The difference between the observed and predicted values of the TOAs

gives the timing residuals. Small imperfections are present in the timing model and as-

sumed to be linear so first order corrections are included for better precision (Lentati et al.

2013), with M the design matrix (containing the first derivatives of δ~tpr ed ,α with respect to

the timing model parameter errors) and ε the vector of small offset in timing parameters.

~δt ′α =~tobs,α−~tpr ed ,α = Mε+n. (2.11)

The noises n are assumed to be Gaussian and stationary. It follows that the timing

residuals δ~tα behave as a normal distribution as developped in Haasteren and Vallisneri

2014. Given the noises that we presented in the previous section, we can write for n :

n = nW N +nRN +nDM , (2.12)

where we have the correlated RN and DM noises4 and the uncorrelated WN. We model

the noises n as Gaussian processes (Haasteren and Vallisneri 2014) and we can express

them in time domain as a Fourier decomposition to the N f th harmonic :

n(~tobs,α) =
N f∑

l
Xl cos(2π fl~tobs,α)+Yl sin(2π fl~tobs,α) = Fa, (2.13)

with

4In reality, many other noises can be added here, but only these two will be used in this manuscript
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a =



X1

Y1

X2
...

XN f

YN f


and F =


cos(2πt0 f1) sin(2πt0 f1) . . . cos(2πt0 fN f ) sin(2πt0 fN f )

cos(2πt1 f1) sin(2πt1 f1) . . . cos(2πt1 fN f ) sin(2πt1 fN f )
...

...
. . .

...
...

cos(2πtNt−1 f1) sin(2πtNt−1 f1) . . . cos(2πtNt−1 fN f ) sin(2πtNt−1 fN f )


(2.14)

where Nt is the number of samples in~tobs,α, Xl and Yl are the Gaussian distributed

weights, the cos(2πt fl ) and sin(2πt fl ) are the basis functions and the fl are the N f linearly

spaced frequencies starting from lowest frequency f0 = 1/T with T the total timespan of

observation of the pulsar (Haasteren and Vallisneri 2014) T = max
{
~tobs,α

}−min
{
~tobs,α

}
.

In theory, a Fourier basis is orthogonal when the~tobs,α are evenly spaced. This is not

the case for a real PTA dataset because of stochasticity in the sampled values of TOAs. We

still consider that the basis is approximately orthogonal so we can write the PSD Σ as a

function of the Fourier coefficients a :

Σ=< a>a >= diag{Sn( fL ,~θHP )}/T, (2.15)

with < . > denoting the averaging over the noise realizations, Sn( fL ,~θHP ) the PSD of

the modeled noise evaluated at Fourier frequency fL for hyper-parameters ~θHP corre-

sponding to, in the case of RN and DM, the amplitudes ARN , ADM and spectral indices

γRN , γDM . Then, in the "weight-space" view of Gaussian processes (Haasteren and Vallis-

neri 2014), the Fourier coefficients a follow a Gaussian prior probability of :

π(a,Σ) =
exp

(
− 1

2 a>(Σ)−1a
)

p|2πΣ| . (2.16)

We can also write the covariance matrix for noise n as :

< n>n >= F> < a>a > F = F>ΣF. (2.17)

This result will be useful to express the total covariance matrix of the likelihood. The

final expression for the residuals δt is :

~δtα = ~δt ′α−Mε−FRN aRN −FDM aDM (2.18)

Assuming Gaussian likelihood for the δ~tα with uncorrelated white noise (therefore as-

suming a likelihood of the form 2.1), we have for the posterior distribution :
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p(δ~tα|~θα) =
exp

(
−1

2
~δtαN−1~δtα

)
p|2πN|

exp
(
− 1

2 a>(Σ)−1a
)

p|2πΣ| π(ε)π(~θHP ). (2.19)

with N the diagonal matrix of the σ̂i presented in equation (2.8), the Gaussian prior

on a, π(ε) the prior on the timing model parameter offset and π(~θHP ) the prior on the

hyper-parameters.

The posterior distribution can be analytically marginalized with respect to the a thanks

to their Gaussian behaviour. However,π(ε) is a uniform distribution on the whole real axis

and requires a different approach for marginalization. It is possible to mimick a uniform

π(ε) using a Gaussian prior in the limit :

lim
λ→∞

exp
(
− 1

2ε
>(λI)−1ε

)
√

|2πλI|
=π(ε). (2.20)

with I the identity matrix. In that approximation, the ε are Gaussian weights and

the design matrix M plays the role of basis functions. This method was first shown in

Haasteren and Vallisneri 2014, allowing marginalisation on all parameters at once and

giving the marginalised posterior distribution where the noise hyper-parameters~θHP (the

amplitude and spectral indices of the Gaussian processes) appear in the covariance ma-

trix C of the new marginalised likelihood L(~δtα|~θ,Cα) as

p(δ~tα|~θα) =L(~δt |~θα,Cα)π(~θHP )

= 1p|2πCα|
exp

(
−1

2
~δt ′αC−1

α
~δt ′α

)
π(~θHP ),

(2.21)

with5 :

Cα = N+CT M ,α+CRN ,α+CDM ,α

= N+M>λIM+F>
RNΣRN FRN +F>

DMΣDM FDM .
(2.22)

Bare in mind that this timing model marginalisation "trick" is an approximation as λ

cannot be numerically set to ∞ and we use instead very large values (1040). It is more

convenient to work with this expression of the posterior for Bayesian analyses because

the covariance matrix can be written as :

Cα = N+T>ΦT. (2.23)

5Note that we omit the index α for matrices N, M, F and Σ to avoid overcrowded equations but it should

actually be there because they describe properties of pulsar α.
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T =


M

FRN

FDM

Φ=


λI 0 0

0 ΣRN 0

0 0 ΣDM

 . (2.24)

In this form, the covariance matrix can be inverted using the Woodbury lemma :

C−1
α = (N+T>ΦT)−1

= N−1 −N−1T(Φ−1 +T>N−1T)−1T>N−1,
(2.25)

which is used to optimize numerical computation. In ENTERPRISE, the argument of

the exponential δ~tαC−1
α δ~tα is computed by first solving the linear system for x and taking

the dot product with δ~tαN−1T from the left :

(Φ−1 +T>N−1T)~x = T>N−1δ~tα

⇔δ~tαN−1T ·~x = δ~t>α N−1T(Φ−1 +T>N−1T)−1T>N−1δ~tα,
(2.26)

giving,

δ~tαC−1
α δ~tα = δ~tαN−1δ~tα−δ~tαN−1T ·~x (2.27)

Finally, if we want to add the contribution of any deterministic signal to our model

(CGW signal, BAYESEPHEM), we need to transform the residuals as follows :

δ~tα→ δ~tα− s(~tobs,α,~θ) (2.28)

where s(~tobs,α,~θ) is a deterministic signal, function of time.

2.2.4 Multi pulsar likelihood

In the case of deterministic GGW signal, the likelihood for an array of pulsars is simply

the product of the single pulsar likelihoods. For N pulsars indexed by α, we have the total

timing residual vector :

δ~t =⋃
α
δtα. (2.29)

When we are using the whole array, the Fourier basis that is used for GP noises is de-

fined from the total observation timespan of the array (T = max
{⋃

αδ~tobs,α
}−min

{⋃
αδ~tobs,α

}
)

and the covariance matrix is :

Cab =


C0 0 0 0

0 C1 0 0

0 0
. . . 0

0 0 0 CN

 . (2.30)
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Figure 2.1: Hellings and Down correlation with χ a function of angular separation ζ be-

tween two pulsars a and b (plot taken from Jenet and Romano 2014)

In this thesis, we are interested only in CGW signal so the covariance matrix we use

is always block diagonal and the total likelihood factorises as the product of single pulsar

likelihoods :

LPT A(~δt |~θ,Cab) =∏
α

L(~δt |~θα,Cα), (2.31)

where the Cα appear in the diagonal of the Cab .

2.2.5 Correlated signals

When including correlated signals to the model, the covariance matrix presented above is

no longer block diagonal. The off diagonal terms can follow various correlation patterns

χab that are function of the angular separation ζ between pulsars.

Hellings and Down PTA collaborations mainly target quadrupolar correlation patterns

because they agree with the presence of GW signal. We can recover such correlations by

calculating the overlap between the antenna pattern functions of two pulsars with angular

separation ζ. This yields the Hellings and Down (HD) curve that is expected to be the

signature of the GWB (see Hellings and Downs 1983).

The GWB has a correlation matrix CGW B similar to that of a common red noise but

with additional correlation terms χab that relate two pulsar a and b given their angular

separation ζab (see figure 2.1) :
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CGW B =χabCRN , (2.32)

with χab = 1 if a = b.

Dipolar correlation Dipolar correlations can originate from errors in the SSE (Tiburzi

et al. 2016). The position of the observatories on Earth with respect to the SSB must be

known to high precision, otherwise measurable (and correlated between pulsars) effects

will appear in the timing residuals when the translation to the SSB is made (see section

2.2.1). In that case, the correlation function is of the form :

χab ∝ cos(ζab). (2.33)

A dipolar correlation is somewhat similar to a HD curve. This resemblance can cause

problems when searching for GWB because the two signals may interact in the model. A

correct modelisation of the SSE is then crucial to PTA efficiency (Vallisneri 2020).

Monopolar correlation A signal with monopolar correlation is fully correlated between

pulsars. There is no dependence in the angular separation ζ, hence the off-diagonal terms

of the covariance matrix are equivalent. We have :

χab = 1. (2.34)

One possible origin for monopolar features is clock correction errors. The atomic

clock systems in the radio-telescopes allowing local time measurements can accumulate

errors that must be corrected in order to keep them synchronized. If the correction is

not done correctly, it can cause a low frequency noise in the timing residuals of the TOAs

measured with the affected radio-telescope (Tiburzi et al. 2016).

2.3 Markov Chain Monte Carlo

When dealing with high dimensional models and complex datasets, we often work with

difficult posterior probability distributions that are not analytically invertible or for which

finding maxima is not trivial. Furthermore, it is almost impossible to visualize the proba-

bility distributions of individual parameters because of the tremendous amount of com-

putation time that it would represent. For illustration, if we want to plot a posterior prob-

ability distribution p(~θ) of a d-dimensional parameter space on a grid of N points per

parameter, we would need N d evaluations of the probability function p(~θ). Assume that

one computation of p(~θ) is fast (∼ 10−3s) and we want a grid of N = 10 points (low resolu-

tion) for a 10-dimensional parameter space. This plot would take :
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10−3 ×1010 = 107s ' 3 months and 3 weeks, (2.35)

which is ridiculously long for such a low resolution plot. To tackle the issue, numerical

algorithms were proposed, one of the most popular being Markov Chain Monte Carlo

(MCMC). It allows to sample points from a target distribution p(~θ) while focusing on the

interesting regions, in a limited number of evaluations of the function. Before presenting

the sampling algorithm, we must explain what a Markov process is in order to justify the

motivation behind it. For more details, see Brooks et al. 2011.

2.3.1 Markov process

A Markov process (or Markov chain) is a stochastic process defining a series of events in

which each event only depends on the previous. Such a process is said to be "without

memory" or simply "Markovian". Let X = {A,B ,C , ...} a random variable following the

rules of a Markov process and ~p(t ) a vector expressing the probabilities of finding X at

states {A,B ,C , ...} at discrete time t . For a set of samples {XT }, the previous no-memory

condition is satisfied by :

Pr(XT |XT−∆t , XT−2∆t , XT−3∆t , ...) = Pr(XT |XT−∆t ). (2.36)

Because of this condition, we can define a transition matrix Q that is independent of

time, relating two successive events at times t and t +∆t in the chain so that the compo-

nents of probability vector ~p(t +∆t ) change as :

p j (t +∆t ) =∑
i

Qi j pi (t ). (2.37)

To preserve probabilities p j (t +∆t ) to be between 0 and 1 and ~p(t +∆t ) to be normal-

ized, Q must be positive and respect the condition :

∑
j

Qi j = 1 (2.38)

When vector ~p(t +∆t ) is different from ~p(t ), we are in transient regime and probabil-

ities are function of time. But when vector ~p(t +∆t ) is equal to ~p(t ), we have a stationary

process for which we will denote probability vector as ~P so that :

P j =
∑

i
Qi jPi . (2.39)

The time independence of stationary processes is a key element that is utilized in the

MCMC algorithms. Nonetheless, stationary does not necessarily mean equilibrium and it

is custom to define a stronger condition to force stationarity.
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2.3.2 Detailed balance

The detailed balance is a way of defining equilibrium by reversibility of a process. Indeed,

if a process is reversible it is stationary, but not always the other way around. Detailed

balance is expressed as :

Qi jPi =Q j iP j (2.40)

If this equality is respected, we have :

Qi jPi =Q j iP j

⇔∑
i

Qi jPi =
∑

i
Q j iP j

⇔∑
i

Qi jPi =P j ,

(2.41)

where we have used (2.38) to go from second to last line. In other words, this ensures

that going forwards or backwards in time has no effect on the system. A reversible Markov

process must fulfill this condition and the core sampling algorithm of MCMC is entirely

based on it.

2.3.3 The sampling algorithm

Until now, we have been working with a finite number of components for probability vec-

tor pi and transition matrix Qi j . We can easily generalize to continuous functions by

saying :

pi → p(~θ)

Qi j → q(~θ|~θ∗),
(2.42)

where~θ is a vector in a d-dimensional parameter space following probability distribu-

tion p(~θ). In that case, the detailed balance condition is :

q(~θ|~θ∗)p(~θ) = q(~θ∗|~θ)p(~θ∗) (2.43)

The idea behind the sampling algorithm is to use the properties of a stationary Markov

process to draw samples from a target distribution p(~θ). In other words, starting from an

initial sample~θ0, we want to build a Markov chain (i.e. a set of N samples {~θN }) that per-

forms a random walk in the parameter space following the probability of p(~θ). By ensur-

ing that the target p(~θ) is the stationary distribution of the Markov process, we ensure that

the~θ are sampled from p(~θ). The resulting set of samples {~θN } can later be post-processed

to study the probability distributions of the model parameters.
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For any probability distribution p(~θ), we want to find a transition matrix q(~θ∗|~θ) that

always respects the detailed balance condition. We first introduce a proposal distribution

g (~θ∗|~θ) from which it is possible to draw new samples~θ∗ given~θ, the current sample (or

current state of the Markov chain) 6. Then we define an acceptance probability α(~θ∗,~θ)

that decides if the new sample is accepted or rejected. We can write the transition kernel

as the product of the two :

q(~θ∗|~θ) = g (~θ∗|~θ)α(~θ∗,~θ), (2.44)

and plugging this expression in (2.43), we get :

α(~θ∗,~θ)

α(~θ,~θ∗)
= p(~θ∗)g (~θ|~θ∗)

p(~θ)g (~θ∗|~θ)
. (2.45)

We can say that if a new jump going from~θ to~θ∗ is not accepted, then the same jump

but reversed would always be accepted, that is to say, α(~θ,~θ∗) = 1. Thus, we have :

α(~θ∗,~θ) = min
{

1,
p(~θ∗)g (~θ|~θ∗)

p(~θ)g (~θ∗|~θ)

}
, (2.46)

where the min ensures that 0 ≤ α(~θ∗,~θ) ≤ 1. This is called the Metropolis-Hastings

choice (Hastings 1970).

The acceptance probability will entirely determine our random walk in the parameter

space, which by construction, respects the detailed balance condition for target distribu-

tion p(~θ). Starting from sample~θ, we jump to sample~θ∗ with a probabilityα(~θ∗,~θ) or stay

at sample ~θ with probability 1−α(~θ∗,~θ). The process is repeated N times and obtained

samples at each step are concatenated into a chain (Markov chain) that forms our final

set of samples {~θN } following the target probability distribution p(~θ).

Let us summarize the sampling algorithm in steps :

• For current (or initial) sample~θ0 compute p(~θ0)

• Draw new sample~θ∗ from proposal distribution g (~θ∗|~θ0) and compute p(~θ∗)

• Compute the acceptance probability α(~θ∗,~θ0) = min
{

1, p(~θ∗)g (~θ0|~θ∗)

p(~θ0)g (~θ∗|~θ0)

}
• Accept new sample with probability α(~θ∗,~θ) and set~θ0 =~θ∗ OR reject new sample

with probability 1−α(~θ∗,~θ) and set~θ0 =~θ

• Append~θ0 to chain of samples and repeat

6The proposal distribution can be anything, from a Gaussian distribution centered on ~θ to a uniform

distribution, as long as the output sample is random.
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Figure 2.2: Illustration of the hypermodel method. Here, the hypermodel is the union of

two different models A and B (red and blue) with posterior distributions P A and PB func-

tions of parameters~θA and~θB . As the sampling goes on, the sampler can jump between

models by selecting which posterior is active. It will spend more time on a model if it is

favoured by the Metropolis-Hasting choice (model A in this example). The time spent on

models A and B corresponds respectively to the total number of samples nA and nB .

2.3.4 Hypermodels for model selection

To compute the Bayes factor, we can use a method presented in Hee et al. 2015 called

hypermodels. A hypermodel is the union of two or several submodels. Its vector of pa-

rameters~θ is :

~θ =
N−1⋃
i=0

~θi (2.47)

with~θi the parameters for submodel i and N is the total number of submodels.

We introduce an additional integer parameter j with uniform probability distribution

n( j ) = {0,1,2, ..., N −1}. Throughout sampling, we draw an integer k from n( j ) that deter-

mines which submodel is going to be active for the likelihood computation so that :

L(~θ, j = k|δ~t ) =Lk (~θk |δ~t ) (2.48)

where Lk (~θk |δ~t ) the likelihood of submodel k. In that case, the posterior distribution

of the hypermodel is :
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p(~θ, j |δ~t ) = p(~θ0 ∪~θ1 ∪ ...∪~θi ∪ ...∪~θN−1|δ~t )n( j )

= p
(N−1∏

i=0
∪~θi |δ~t

)
n( j )

=L
(N−1∏

i=0
∪~θi |δ~t

)N−1∏
i=0

π(~θi )n( j )/Z ,

(2.49)

where Z is the evidence of the hypermodel acting as a normalizing constant and π(~θi )

the prior probabilities for parameters~θi of submodel i . Fixing j = k, we get :

p(~θ, j = k|~δt ) =Lk (~θk |~δt )
N−1∏
i=0

π(~θi )n( j = k)/Z , (2.50)

which the active posterior distribution when an integer k is drawn for n( j ). If we

marginalize this expression for all~θ, we obtain :

p( j = k|δ~t ) =
∫

d~θp(~θ, j = k|~δt )

=
∫

d~θLk (~θk |~δt )
N−1∏
i=0

π(~θi )n( j = k)/Z

=
∫

d~θkLk (~θk |~δt )π(~θk )
N−1∏
i=0
i 6=k

∫
d~θiπ(~θi )n( j = k)/Z .

(2.51)

Using the definition of the evidence Zk and the fact that prior probabily distributions

π(~θi ) are normalized : ∫
d~θkLk (~θk |~δt )π(~θk ) =Zk

N−1∏
i=0
i 6=k

∫
d~θiπ(~θi ) = 1,

(2.52)

equation (2.51) greatly simplifies to :

p( j = k|δ~t ) =Zk n( j = k)/Z

⇔Zk = p( j = k|δ~t )

n( j = k)
Z .

(2.53)

The p( j = k|δ~t ) corresponds to the odds ratio for parameter j to be at value k. So for

a chain of N samples, if nk is the number of samples corresponding to j = k, we have :

p( j = k|δ~t ) = nk

N
, (2.54)

and for two different models k and k ′, we directly see that :

Zk ′

Zk
= nk ′

nk
, (2.55)
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where we have used n( j = k) = n( j = k ′) because n( j ) is a uniform distribution. Re-

call from section 2.1.3 that the ratio of evidences corresponds to the Bayes factor which

is the quantity that we used to do model selection. Therefore, using hypermodels, the

evaluation of the Bayes factor between models A and B is :

BAB = nA

nB
(2.56)

with nA and nB respectively the number of final samples for which submodel A was

active and submodel B was active. They represent the time spent by the sampler on one

model. Comparing them shows which model is preferred according to the MCMC rules.

The big advantage of this technique is that it requires no direct evidence estimates

which are usually complicated multidimensional integrals7. However, it can sometimes

be a bit long to run because we need the sampler to efficiently explore every submodel.

This requires many samples for which we need to run our MCMC for longer.

7Other methods like parallel-tempering or nested sampling can estimate these difficult integrals with

fairly good accuracy.
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The International Pulsar Timing Array 2nd data release is the combination of

datasets from worldwide collaborations. In this study, we search for continu-

ous waves: gravitational wave signals produced by individual supermassive

black hole binaries in the local universe. We consider binaries on circular

orbits and neglect the evolution of orbital frequency over the observational

span. We find no evidence for such signals and set sky averaged 95% upper

limits on their amplitude h95. The most sensitive frequency is 10nHz with

h95 = 9.1× 10−15. We achieved the best upper limit to date at low and high

frequencies of the PTA band thanks to improved effective cadence of obser-

vations. In our analysis, we have taken into account the recently discovered

common red noise process, which has an impact at low frequencies. We also
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find that the peculiar noise features present in some pulsars data must be

taken into account to reduce the false alarm. We show that using custom

noise models is essential in searching for continuous gravitational wave sig-

nals and setting the upper limit.

3.1 Introduction

The goal of the Pulsar Timing Array (PTA) collaborations is to detect gravitational wave

(GW) signals in the nanohertz band, where we expect to see a gravitational wave back-

ground (GWB) produced by the superposition of GW signals from the population of su-

permassive black hole binaries (SMBHBs) (Maiorano et al. 2021). Some individual SMB-

HBs might be brighter than most and stand above the stochastic signal; those are indi-

vidually resolvable sources. The binaries detectable in the PTA band are in the orbits with

the period from a few months to a few years and emit almost monochromatic GWs con-

tinuously during decades; we refer to those signals as continuous GWs (CGWs) (Ellis et al.

2012; Babak 2016; Aggarwal 2019; Corbin and Cornish 2010).

The GWs affect propagation of the radio emission from millisecond pulsars leaving an

imprint in the time of arrival (TOA) of pulses observed with the radio telescopes. CGWs

impact TOAs from all observed millisecond pulsars in a deterministic manner character-

ized by parameters of the SMBHBs. In this work, we consider the data combined by the In-

ternational Pulsar Timing Array (IPTA). IPTA is a consortium of NANOGRAV (NANOGrav

Collaboration et al. 2015), European Pulsar Timing Array (EPTA) (Desvignes et al. 2016),

Australian (PPTA) (Manchester et al. 2013b) and Indian Pulsar Timing Array (InPTA) (Taraf-

dar et al. 2022) collaborations. In particular, we analyze the second data released by IPTA

(IPTA DR2) described in details in Perera 2019.

Recently, PTA collaborations have reported on the discovery of the common red noise

signal, that is the stochastic signal with the spectral shape common to all pulsars in the

array. Its high statistical significance was demonstrated independently by three collab-

orations (Arzoumanian et al. 2020; S Chen et al. 2021; Goncharov et al. 2021) and, with

even higher statistical confidence, was assessed using the IPTA DR2 (Antoniadis 2022).

We do not yet know the nature of this process, and its interpretation as GW background

is inconclusive: the data is not informative enough to resolve the Helllings-Downs spatial

correlations (Hellings and Downs 1983), which should be present in the case of the GW

signal.

In this work, we search for continuous GWs which could be present in the data in addi-

tion to the stochastic GWB. Following the steps of previous studies (Babak 2016; Aggarwal

2019; Zhu et al. 2014; Becsy et al. 2022; Becsy and Cornish 2020), we search for a single GW

signal produced by a SMBHB binary in a circular orbit. In our study, we neglect the pulsar
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terms during the search and setting an upper limit on GW amplitude. However, we do an

in-depth analysis of the (weak) candidate events identified as plausible GW signals. In the

followup analysis on the restricted parameter space (frequency and sky position), we ex-

tend our model to include (i) pulsar term, (ii) eccentricity, (iii) extend the model beyond

the assumption of a single source. For the first time, we have included in the analysis the

common red component as a part of the total noise model.

The main results of the paper can be summarized as follows. We did not detect any

CGW signal and set an upper limit on GW amplitude. We have found that the noise model

plays a crucial role in interpreting PTA observations. The detailed analysis performed

on the most promising candidate event revealed that it could be explained by a time-

correlated high-frequency noise in one of the pulsars.

This chapter is organized as follows. In the next Section, we will briefly describe the

IPTA DR2 dataset and the data model used in the analysis. Most of the material needed

for this Section is available in the literature, and we heavily refer to it, keeping only parts

which are necessary for further presentation. In Section 3.4 we describe the methodology

which we have followed to get our results presented in Section 3.5. In Section 3.6 we

give a detailed follow-up study of a most promising GW candidate event and demonstrate

the importance of noise modelling at high frequencies. We conclude with Section 3.7.

Throughout this chapter, we adopt geometrical units G=c=1.

3.2 The noise and signal model

3.2.1 The noise model

In all that follows, the noise model that we use is based on what is presented in section

2.2.2. That is to say, we use a PTA likelihood with marginalized timing model, including

red noise and dispersion measure noise. The covariance matrix is block diagonal because

we do not include common correlated processes between pulsars. However, we do in-

clude a common red noise process (except for the ranking) because it was found in the

IPTA DR2 with good statistical significance (Antoniadis 2022). To summarize, the covari-

ance matrix Cα for the noise model of one pulsar is :

Cα = Nα+CT M ,α+CDM ,α+CRN ,α+CC RN , (3.1)

with Nα the uncorrelated white noise, CT M ,α the term associated with the marginal-

ized timing model, CDM ,α the dispersion measure noise, CRN ,α the individual red noise

and CC RN the common red noise.
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3.2.2 The signal model

For the signal model, we consider monochromatic CGW signal as presented in section

1.4.4. The timing residuals expected in the PTA data for a CGW signal coming from a

circular SMBHB:

sa(t ,Ω̂) =−∑
A

F A(Ω̂)[sA(t )− sA(t −τa)] (3.2)

with τα = t − tp,α the delay between Earth time t and pulsar time tp,α and :

s+(t ) = M5/3

dLω(t )1/3

[
sin[2Φ(t )](1+cos2 ι)cos2ψ

+2cos[2Φ(t )]cos ιsin2ψ
]

, (3.3)

s×(t ) = M5/3

dLω(t )1/3

[
sin[2Φ(t )](1+cos2 ι)cos2ψ

−2cos[2Φ(t )]cos ιsin2ψ
]

, (3.4)

where M is the chirp mass, dL the luminosity distance, ω(t ) the CGW orbital angular

frequency, ι is the orbital inclination to the line of sight, ψ is a polarization angle andΦ(t )

is the phase of CGW.

The F A are the antenna pattern functions (Babak and Sesana 2012; Sesana and Vec-

chio 2010; Ellis et al. 2012; Taylor et al. 2016) given as

F+(Ω̂) = 1

2

(m̂ · p̂)2 − (n̂ · p̂)2

1+ Ω̂ · p̂
, (3.5)

F×(Ω̂) = (m̂ · p̂)(n̂ · p̂)2

1+ Ω̂ · p̂
. (3.6)

In this work1, we neglect the pulsar term considering it as a part of the noise, as-

suming that the source has evolved sufficiently over τα to move the pulsar term off the

earth-term frequency. Including pulsar term should improve the parameter estimation

but comes with a huge price of the increase in the complexity of the likelihood surface

and the dimensionality of parameter space (2 additional parameters per pulsar for phase

and frequency of pulsar term, e.g. see Corbin and Cornish 2010). We foresee the possi-

bility of following up the candidate events (identified using the earth term only) with the

extended signal model (pulsar term, eccentric orbit) on the reduced parameter space. We

also neglect the evolution of the GW frequency (ωo = 2π fg w ) over the observation time.

The frequency evolution becomes potentially measurable for the heavy sources emitting

at frequency ≥ 10−7Hz, neglecting the frequency evolution does not prevent us from de-

tecting the sources but introduces a bias in the measured GW frequency (overestimating

1Based on the submitted IPTA collaboration paper where I am corresponding author.
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CGW parameter Range

log10 h [-18, -11]

fg w (Hz) [10−9, 10−7]

φ0 [0, 2π]

cos ι [-1, 1]

ψ [0, π]

θ [0, π]

φ [0, 2π]

Table 3.1: List of the CGW parameters as defined in our model with their respected ranges.

it), for more details see conclusion in Petiteau et al. 2013. So the CGW phase takes a very

simple form:

Φ(t ) =ωo t +φ0/2, (3.7)

where φ0 is initial orbital phase. Finally, the CGW amplitude h is a function of M, dL and

fg w given by

h = 2M5/3(π fg w )−2/3

dL
. (3.8)

We consider the model containing only one CGW signal. This model still detects mul-

tiple CGW if they are present in the data at the non-overlapping Fourier frequencies (see

Babak and Sesana 2012 for discussion). If we find more than one candidate with sufficient

statistical significance as potential GW sources, we will conduct additional investigations

extending our model to include several CGWs. We start the analysis with 1 CGW source

characterized by 7 parameters summarized in table 3.1 together with their prior range (we

always assume a uniform prior2).

3.3 Ranking the pulsars

Within the pulsars that make up the PTA, some may be more sensitive to the presence of

GW signal, depending on their noise properties and time of observation. To characterize

the contribution of individual pulsars we can evaluate the signal to noise ratios (SNR)

separately for each pulsar after injecting fake GW signal in their TOAs. It is interesting to

rank them according to their SNR to see which contribute the most to the sensitivity of the

array. We eventually discard the worst pulsars to lighten the data and the computational

cost without significant loss in detectability.

2For setting an upper limit we use uniform prior on the amplitude of GW strain
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3.3.1 Ranking method

In L. Speri 20223 we present two methods (Chimera and SNRB maximization, see refer-

ence and appendix 6.5 for details about the methods) to rank pulsars with respect to GWB,

which is a stochastic and correlated signal. CGW are deterministic signals and their analy-

sis has been treated separately from the stochastic GWB. CGWs are included in the model

as a periodic delay applied to the timing residuals ~δt while the effect of the GWB is in-

cluded in the covariance matrix C of the likelihood. This fundamental difference between

the two signals and their mathematical description calls for a different ranking method.

Here, we want to rank pulsars according to their response to a CGW signal. One way

to proceed is to inject a large number of fake CGW signals with randomized parameters

except for fixed frequency and amplitude (Babak 2016). Then, for each pulsar, the CGW

signal-to-noise ratio is computed for each injection and averaged numerically. In this way,

we have the average response of each individual pulsar in the array at a given frequency

of the CGW signal. This averaging can also be done analytically, as shown in the following

paragraph. Note that we refer to the signal-to-noise ratio of CGWs using the acronym

SNR. However, we use the symbol ρ to distinguish the SNR of CGWs from the previously

defined SNRs.

In the likelihood of Eq.(2.21), the inclusion of a deterministic signal is performed by

changing the timing residuals as δ~t → δ~t −~s(~θ) where~s(~θ) is the signal template we aim

to measure. In that case, the likelihood can be rewritten as:

lnL=−1

2
[(δ~t |δ~t )+ (~s|~s)−2(δ~t |~s)+Trln2πC] , (3.9)

where we have introduced the noise weighted inner product (~x|~y) = xT C−1 y .

We can now calculate this expression for the hypothesis of the presence of a CGW (H1)

versus its absence (H2) (see section 2.1.2). The expectation value of the log-likelihood

ratio becomes:

〈lnΛ〉H1 =
〈

ln(
p(δ~t |~s)

p(δ~t |~0)
)

〉
H1

= 〈(δ~t |~s)− 1

2
(~s|~s)〉H1 =

1

2
(~s|~s) , (3.10)

where ρOpt =
√

(~s|~s) is the optimal SNR for the CGW source.

Since the source parameters are not known a priori, we average ρ2
Opt over gravitational

wave polarization ψ, initial phase φ0, inclination ι, and sky location (θ,φ). To do so, we

analytically compute the integral over the defined bounds of the CGW parameters:

ρ2 =
∫ π

0

dψ

π

∫ 2π

0

dφ0

2π

∫ −1

1

d cos ι

2

∫ −1

1

d cosθ

2

∫ 2π

0

dφ

2π
(~s|~s) . (3.11)

3I am co-author of the paper for which I worked on the ranking method for CGW signals.

78



Using the formula for a CGW signal from a circular SMBHB, ~s(t ,Ω), as presented in

section 1.4.4, the SNR2 averaged over CGW parameters takes this simple form (see ap-

pendix for calculus development):

ρ2(h, f ) = 4

15

( h

2π f

)2[
(cos2π f t |cos2π f t )+ (sin2π f t |sin2π f t )

]
, (3.12)

with

h = 2M5/3(π f )2/3

dL
, (3.13)

where f and h are the gravitational wave frequency and amplitude, M is the chirp

mass and dL is the luminosity distance. For pulsar a, we evaluate ρ2
a at the TOAs~ta . We

consider an Earth-term SNR because the inclusion of the pulsar term requires assuming

a chirp mass and having a good knowledge of pulsar distance to estimate frequency evo-

lution. Furthermore, the pulsar term will only promote pulsars at large distances with

typically low SNRs (large-distance pulsars typically have a worse timing and their radio

signal is weaker, leading to a degradation in the distance estimation). We are interested

in the relative SNR contribution of pulsars at fixed signal frequency thus including pul-

sar term constitutes additional complexity that is beyond our purposes. If pulsar term

and earth term are at same frequency (but different phase), their averaging yields twice

the same average SNR2 therefore leaving the relative contribution unchanged. The corre-

lated noises (e.g. intrinsic and dispersion measure noises) are taken into account in the

covariance matrix C of the noise-weighted inner product of the cosine and sine terms.

Common (correlated) processes were not included in our noise model, so the covari-

ance matrix is block-diagonal. In this way, the likelihood can be factorized and SNR2s

can be computed independently for each pulsar. In practice, we should incorporate the

common processes in the noise model, but this adds another level of complexity that is ir-

relevant for the goal of the selection procedure4. The ultimate goal is identification of the

best pulsars for CGW detection, and therefore, only the intrinsic properties of the pulsars

were considered.

We estimate the relative contribution of one pulsar to the total SNR of the array using

the normalized SNR2:

ρ̄2
a( f ) = ρ2

a(h, f )∑
b ρ

2
b(h, f )

, (3.14)

Note that the amplitude h cancels out in this expression and the CGW frequency f re-

mains the only parameter. Therefore we can fix h to any value without affecting the rank-

ing.

We construct the cumulative sum of the normalized SNR2s of the pulsars ranked from

best to worst. We fix a threshold value for the SNR2 cumulative sum above which pulsar

4Furthermore, detectable CGW signals must be louder than the GWB. Since the GWB is stronger at lower

frequencies, CGW signals are more likely to be found at high frequencies.
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Figure 3.1: Cumulative ρ̄2 plot for the pulsars in the IPTA DR2 at CGW frequency of 5nHz.

The pulsars above the red dashed line contribute less than 5% of the total SNR2. This

means only 12 pulsars out of 65 contribute on average to 95% of the total SNR2 of the

array at 5nHz. Note that, while only the best 22 pulsars in the array are shown in the

figure, the normalized total SNR has been evaluated using all 65 pulsars in the array.

contributions to the total SNR2 are not considered significant. This value was chosen to

be 0.95. The process is illustrated in Figure 3.1 for pulsars from the IPTA second data

release (Perera 2019).

Due to the strong dependence of ρ̄2
a( f ) on f , the resultant CGW pulsar ranking is also

frequency dependent. This can be clearly seen from Figure 3.2. In our analysis, we use

100 log-spaced frequency bins between 10−9 and 10−7 Hz. Ranking lists were obtained

separately for each frequency bin. In order to construct the final ranking catalog of best

pulsars at a given frequency range, the lists at each frequency are merged together. This

procedure ensures that we will gain at least, no matter the CGW frequency, 95% of the

total SNR2 of the array.
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Figure 3.2: Normailzed ρ̄2
a of the five best pulsars of the IPTA DR2, at different CGW fre-

quencies. The glitches at the right of the plots are due to the one year and half-year peaks.

3.3.2 Ranking results

We now test the performance of the CGW ranking method using noise-parameter values

previously extracted from individual pulsar noise analyses of the latest IPTA data release

(Perera 2019) and a "realistic" simulated EPTA dataset consisting in 40 pulsars with same

RMS and sky locations as real EPTA dataset (Desvignes 2016) but with white noise only,

ignoring intrinsic red noise and dispersion measure noise, and injected GWB (L. Speri

2022).

Because the ranking method is based on an exact noise-averaged formula, it is un-

necessary to simulate noise realizations to test its performance. However, we still want to

prove that the selected pulsars recover most of the total SNR in the presence of a true (i.e.

non-averaged) signal. We test this by comparing the fraction of total SNR2 obtained using

the CGW ranked pulsars to that obtained from a random pulsar selection. For an array of

N pulsars, the fraction of total SNR2, given a list of M < N pulsars, is defined as:

ρ2
M =

M∑
a=1

ρ̄2
a , with 0 < ρ2

M < 1, (3.15)

where ρ̄2
a is the normalized SNR2 defined in Eq (3.14).

After extracting the list of best pulsars, we test the selection procedure as follows:
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Figure 3.3: Distribution of the SNR2 coverage for 1000 different sets of CGW parameters.

The distributions are obtained with the list of best pulsars and random selection for a real

IPTA dataset and the realistic EPTA dataset.
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• We draw the CGW signal parameters ~θ from a uniform distribution with bounds

defined as in the integral of Eq. (3.11), and with frequency between 1 and 100 nHz.

As pointed out in section 3.3.1 the strain amplitude has no influence on the ranking

and therefore we fix it to h = 10−14.

• We compute the non-averaged optimal SNR ρOpt =
√

(~s|~s) for each pulsar for a CGW

signal ~s(t ,~θ) and we use this quantity to calculate the normalized ρ̄2
a defined in

Eq. (3.14).

• We compute ρ2
M−CGW for the list of best selected pulsars and ρ2

M−rand for a random

subset of pulsars of random size M .

• We repeat the previous steps one thousand times.

This gives us 1000 values of ρ2
M−CGW and ρ2

M−rand that we plot as histograms on Figure

3.3. For the IPTA dataset, the distribution of fractional ρ2
M−CGW for the selected pulsars is

narrowly peaked around a mean value 0.97. The random selection ρ2
M−rand gives an al-

most uniform distribution with 0.50 mean value. The distribution is not uniform because

ρ2
a is not uniform and a few ρ2

a values are much bigger while many others are very small.

Similar results are obtained for the realistic EPTA dataset. We find that the number of

pulsars which gives 95% of the SNR2 is 22 for both datasets.

Now we briefly discuss the comparison between the CGW and GWB selection meth-

ods. Focusing on the realistic EPTA dataset, we find an overlap between the identified

best pulsars with the CGW method and GWB method as shown in Table 3.2. This time we

run the Chimera and SNRB-maximization ranking for brief explanation of the methods)

without fixing the six initial pulsars of the EPTA. We find that 17 pulsars are common to

all three selection methods (highlighted in bold).

In summary, when true CGW signals are injected in the data, the CGW ranking method

selects the pulsars which provides most of the SNR of the array, whereas a random selec-

tion is inefficient. This method extracts the few best pulsars to optimize the search for a

CGW signal.

3.3.3 Sensitivity curve

CGW strain amplitude for ρ = 1

It is possible to plot the PTA sensitivity to CGW signal using the SNR formula in equation

3.12. Indeed, the total SNR2 of the array ρ2 is the quadratic sum of the individual SNRs ρ2
a

of pulsars. We can invert the expression 3.12 to express the amplitude h of the CGW as a

function of ρ2
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CGW ranking Chimera method SNRB maximization

J0030+0451 J0030+0451 J0030+0451

J0613−0200 J0034−0534 J0613−0200

J0751+1807 J0613−0200 J0621+1002

J1012+5307 J0621+1002 J0751+1807

J1022+1001 J0751+1807 J1022+1001

J1024−0719 J1012+5307 J1024−0719

J1600−3053 J1024−0719 J1600−3053

J1640+2224 J1455−3330 J1640+2224

J1713+0747 J1600−3053 J1713+0747

J1730−2304 J1640+2224 J1730−2304

J1744−1134 J1713+0747 J1744−1134

J1751−2857 J1730−2304 J1751−2857

J1804−2717 J1744−1134 J1801−1417

J1853+1303 J1751−2857 J1804−2717

J1857+0943 J1801−1417 J1843−1113

J1909−3744 J1804−2717 J1853+1303

J1910+1256 J1843−1113 J1857+0943

J1911+1347 J1857+0943 J1909−3744

J1918−0642 J1909−3744 J1910+1256

J2010−1323 J1910+1256 J1911+1347

J2124−3358 J1911−1114 J1911−1114

J2145−0750 J1918−0642 J1918−0642

J2010−1323 J2010−1323

J2124−3358 J2124−3358

J2322+2057 J2322+2057

Table 3.2: List of the first 22 pulsars selected with the CGW ranking method and the 25

pulsars selected with the Chimera method and SNRB-maximization in the realistic EPTA

dataset. Bold font indicate the 17 pulsars that are selected by all three methods described

in L. Speri 2022.
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ρ2(h, f ) =∑
a
ρ2

a(h, f ), (3.16)

h( f ) =
p

15π f ρ( f )√
(cos2π f t |cos2π f t )+ (sin2π f t |sin2π f t )

, (3.17)

giving h as a function of the CGW frequency f and the noise parameters included in

the covariance matrix of the noise weighted inner products.

By setting ρ to be equal to 1 we obtain the value of CGW amplitude corresponding

to the threshold above which the signal starts to become louder than the noise5. This de-

pendence on the noise becomes obvious when we plot the sensitivity curve : the threshold

amplitude h as a function of frequency f .

Effect of noises on the sensitivity

Naturally, we expect the chosen noise model to have a strong influence on the sensitivity

of the array. This is a major concern when dealing with PTA data because we cannot

characterize the noises present in the array beforehand, we have to fit for them. A wrong

modelization of the noises could lead to fake detections.

In Bayesian analysis, we treat noise parameters as random variables with probability

distributions. In equation 3.17 we explicitly see the dependence of h on noise model pa-

rameters present in the noise weighted inner products (denominator of the expression),

meaning that the threshold amplitude of detection should itself have a probability distri-

bution. We propose to test two things :

• Study the influence of different values of noise parameters for the same model,

• Examine the influence of the size of the Fourier basis for the noises modelled as

Gaussian processes (RN and DM, see section 2.2.2).

For the first point, we use previous MCMC noise analyses that were performed on

individual pulsars to recover the posterior distributions of the noise parameters. We pro-

duce a 100 different sensitivity curves using 100 different samples randomly drawn from

the posteriors of the noise parameters. We use the noise model presented in section 2.2.2

with a timing model, white noise, red noise and dispersion measure noise. Figure 3.4

shows that amplitude h( f ) now becomes a broad distribution. It appears less constrained

at low frequencies due to the stronger presence of RN and DM noise. The sensitivity we

obtain with fixed maximum likelihood value of noise parameters seems to give a better

sensitivity than the average distributions of h around 10nHz. Therefore, in the case of

PTA, taking into account the variability of the noise parameters has a direct influence on

the detectability of a signal.

5Here, the SNR is for a single frequency signal.
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Figure 3.4: Binned sensitivity curve for 100 different realization of noise parameters. The

grey colour scale represents the binning of h at a given frequency. The dashed line repre-

sents the sensitivity curve for maximum likelihood values of parameters.
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Figure 3.5: Effect of the Fourier basis size for red noise of the sensitivity curves. We com-

pare two models using 30 and 100 frequency bins for RN and DM Fourier basis. Using

different numbers of frequency bins can have an impact on the noise modelling at high

frequencies because it moves the frequency after which only white noise is present in the

array.

For the second point, we plot two different sensitivity curves with same noise model

but different number of frequency bins (30 and 100) for RN and DM with maximum like-

lihood values of parameters. We clearly see on figure 3.5 that using a short basis has an

impact on the predicted sensitivity at high frequencies. In section 2.2.2 we explained that

for one pulsar the Fourier basis is made of the N harmonic frequencies of 1/T , T being

the total time of observation for that pulsar. Logically, choosing a N that is too small will

brutally turn off the effect of the noise after the frequency N /T , producing a "step" in

the sensitivity that we see on figure 3.5. This effect will be even more pronounced for red

noises with low spectral index. For very steep RN, the white noise rapidly takes over and

the step will not appear. All things considered, having a short Fourier basis will not have

a strong impact on signal searches at low frequency but it is crucial at higher frequencies.

3.4 Method

We work within the Bayesian framework and start with running the search for the CGW

signal. As mentioned above, we sample parameters of CGW together with the noise pa-
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rameters for RN and DM. We keep the white noise parameters fixed and marginalize over

the timing model and BAYESEPHEM parameters. We made two runs: with and without

CRN, to check how much it affects our result. We always use Markov chain Monte-Carlo

(MCMC) sampler (Ellis and Haasteren 2017), and we use ENTERPRISE (Ellis et al. 2020)

software to construct the models and compute the likelihood and prior probability.

We extensively use the single pulsar noise explorations runs performed before the

main analysis. We have converted posteriors for the RN and DM into 2D histograms

({ARN ,DM ,γRN ,DM }) and use them as one of a proposal for those parameters. This em-

pirical proposal improves the efficiency of MCMC and reduces the autocorrelation length

of the chain (Aggarwal 2019).

During the search, we compute the Bayes factor (BF), comparing the null model (noise

only) against the model where we have a CGW signal on the logarithmically spaced fre-

quencies. In the absence of the detection, we proceed to setting an upper limit, building

a 95% sensitivity curve. During the upper limit analysis, we used a uniform prior on the

amplitude of the GW signal.

IPTA data contains 53-millisecond pulsars; however, not all of them are equally sensi-

tive to the CGW. We have selected 21 pulsars which, on average, recover 95% of the array’s

total signal-to-noise ratio (SNR) to CGW. The selected pulsars are depicted on the pro-

jected sky map in Figure 3.6 as red stars; we have used large green stars and annotation

for the four best timers. The ranking method is briefly outlined in Babak 2016 and in

greater detail in L. Speri 2022. This significantly reduces the computational cost without

much affecting the final results.

Historically we have performed the search with the noise model with the uniform set-

tings across all pulsars in the array; namely, we have used 30 frequency bins for modelling

both RN and DM processes (as it was done in preceding work Arzoumanian et al. 2014;

Aggarwal 2019). Using this uniform setting we have obtained quite erroneous results,

and after a long investigation, we realised that this noise model does not adequately de-

scribe the observational data (see section 3.6). We have switched to another noise model

where we have used the custom-made noise model for the six best EPTA pulsars (see

Chalumeau 2021 for details), and for other pulsars, we changed the number of used fre-

quency bins: RN30DM100 – 30 bins for the RN and 100 bins for DM modelling. We will

continue using this short-hand notation for the noise model, showing explicitly the num-

ber of Fourier frequencies used by the base functions in the Gaussian process describing

the corresponding noise. The results presented in the next section were obtained using

the "custom" made noise model; we postpone the detailed discussion on the noise model

selection and influence until Section 3.6.
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3.4.1 Model selection

During the search, we consider two competing models: noise only and noise with 1 CGW

signal. We compute the Bayes factor (BF) to measure which model is preferred by the IPTA

DR2 dataset. In particular we employ hyper-model jumps to compute BF following the

methods outlined in Hee et al. 2015 and implemented in the enterprise extensions
(Taylor et al. 2021). In this method, we introduce a hyper-parameter which indexes the

models; then, we perform sampling inside each model and in this parameter. The BF then

is a fraction of the samples the chain spends in each model. For example, if we consider

two models MA and MB with the hyper-parameter n, then the BF is the ratio (see section

)

BA
B = nA

nB
(3.18)

where nA,nB counts the number of samples in the chain corresponding to the models

A,B . In our previous investigations, we have found that this method gives quite a reliable

result, e.g. see Chalumeau 2021 where comparison is done against the evidence compu-

tation obtained with Dynesty nested sampling.

Later in this work we will compute BF between the models where we also vary the

noise.

3.4.2 Upper limit

For obtaining the upper limit, we again use MCMC assuming a uniform prior distribu-

tion for logh within the bounds [−18,−11] on the fixed set of fg w . We use marginalized

posterior probability distribution for the CGW amplitude p(h) to set 95% upper limit h95

defined as :

0.95 =
∫ h95

0
p(h)dh. (3.19)

We use a grid of 100 logarithmically spaced frequencies between 10−9 and 10−7 Hz. The

lowest bound determined by the IPTA observational span 1/Tobs that is ≈ 10−9 Hz while

the upper bound, 10−7 Hz, is constrained by reduction in the sensitivity due to response

(∝ f −1/3) and by our assumption that GW frequency does not evolve. We should take into

account the frequency evolution of the GW signal above 10−7 Hz during the analysis, as

discussed in Petiteau et al. 2013. As mentioned above, we compute the upper limit for two

models of noise; with and without CRN. The inclusion of CRN adds two more parameters

to the model (an amplitude parameter AC RN and a spectral indexγC RN ), which we sample

together with parameters of CGW and other noise components.
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Figure 3.6: 2D sky sensitivity of IPTA for CGW signal around most sensitive frequency.

The figure was obtained computing the 95% upper limit for h on 12 patches across the

sky. Gaussian interpolation was used to smoothen it across boundaries.

3.5 Results

We compute BF between two models Bcustom+CGW
custom for a noise only model Mcustom and

noise+CGW signal model Mcustom+CGW . The subscript "custom" corresponds to the

noise model we have used for these main results and distinguishes it from other noise

models considered in the next section. Similarly to the upper limit run, we have used a

log-uniform prior on logh bounded by [-18, -11], and the BF was computed on the grid of

100 CGW frequencies ( fg w ) between 1 and 100 nHz.

The main result of this work is summarized in Figure 3.7. In the lower panel we plot

the BF, and, as one can see, the noise model is usually preferred. There are few spikes

where BF reaches 1, this is definitely not a detection, however PTA efforts probably should

monitor carefully those frequencies in the future extended IPTA datasets. The excess in

BF was also used as identification of the CGW candidates to follow. These results show

that there is nothing to follow6: Bcustom+CGW
custom ≤ 1.

The top panel of Figure 3.7 shows the upper bound of the 95% central credible re-

gion for CGW strain computed at the same set of frequencies. Note the "spiky" features

at several frequencies (8.1, 13, 16) nHz corresponding to the outlier indicating potential

candidates of CGW. However the corresponding BFs are (0.95, 0.33, 0.34) indicating no

statistical significance in the analyzed data.

We have computed the upper limit using uniform in GW strain prior with and without

CRN on the fine frequency grid; the results are present in Figure 3.9. The upper limit

slightly worsens at low frequencies when we add the CRN; this is understandable as we

6Note that the highest spike corresponds to frequencies close to fyr and should be discarded.
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Figure 3.7: On the top panel, the upper bound of the 95% central credible region on logh

obtained with a log-uniform prior (with CRN). Bottom panel is the associated BF at given

CGW frequency. The black dashed line shows where BF is equal to 1. The two peaks

around 35 and 70 nHz with BF>1 are the 1yr and 2yr and should not be taken into account.
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need a higher amplitude of CGW to get the same SNR when raising the noise floor. The

most sensitive frequency of IPTA DR2 is 10.2 nHz with h95 = 9.1×10−15 in both cases with

and without CRN component.

In the model that includes CRN, we are allowing slope and amplitude to vary during

the sampling. The recovered posterior for CRN with CGW at 1nHz (blue) is compared

to the posterior obtained in Antoniadis 2022 (orange) in figure 3.8. We observe that the

amplitude of CRN in the model which does not include CGW (Antoniadis 2022) is slightly

higher while the slope is almost the same. This could be explained by a partial absorption

of the CRN into CGW. At the same time adding the CRN to the model increases the overall

noise level (therefore decreasing the SNR of the signal). The interplay between CRN and

CGW appears to mitigate the effect of the CRN on the upper limits in figure 3.8.

We have also overplotted the best CGW upper limit available to date based on the

analysis of the NANOGRAV 11 years dataset (Aggarwal 2019) as a dashed (green) line. Note

that only the nine-year NANOGRAV data set was included in IPTA DR2. As expected, our

current results are better at very low frequencies thanks to the longer observation time.

Extended sky coverage, improved effective cadence of observation thanks to overlapping

timing data (gaps coverage) and the addition of pulsars like J0437-4715 (only present in

PPTA data Manchester 2013a), which is an excellent timer, is reflected in a much improved

upper limit at 100 nHz, where we might expect the first detection of CGWs.

We want to point at the double-peak feature just above 10nHz (see Figure 3.7). This

peak remains the same under the prior change (from the uniform in the amplitude to the

uniform in the log-amplitude), which often corresponds to a signal present in the data.

The Bayes factors for those peaks are low (0.33, 0.34). Nonetheless, we should keep an eye

on those frequencies in the next data releases.

3.6 Effect of noise modeling on the CGW search

In this subsection, we consider several noise models and compute BF between those

models of noise with and without CGW. The main results presented in the previous sec-

tion were obtained with the custom-made noise model for the best EPTA pulsars (Chalumeau

2021) and with RN30DM100 choice of Fourier frequencies for other pulsars. The custom

noise model modifies the number of Fourier frequencies as given in table 3.3 and includes

additional noise components (like system noise). However, the Fourier basis for CRN is

always fixed at 30 frequency bins.

Here we present results with what was considered "standard" noise settings before

this work, namely RN30DM30 model. We have started analysis using this model, and the

search quickly converged to a particular sky position at 51 nHz. The first peculiarity of

these results is that 51 nHz is very close to Venus orbital frequency, and the second is
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Figure 3.8: CRN parameters for IPTA DR2 without CGW signal obtained in (orange) and

with CGW signal at 1 nHz (blue).

Pulsar name RN bins DM bins

J0613-0200 10 30

J1012+5307 150 30

J1713+0747 15 150

J1744-1134 10 100

J1909-3744 10 100

J0437-4715 30 100

Other pulsars 30 100

Table 3.3: Number of frequency bins used for individual RN and DM noise
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Figure 3.9: 95% sky averaged upper limit h95 on CGW amplitude for models with and

without CRN

that the sky position had a bi-modal structure and was located very close to J1012+5307

see Figure 3.10. The Bayes factor for this event with the RN30DM30 noise model was

BRN 30_DM30+CGW
RN 30_DM30 = 18, which is not very high; however, it seriously triggered our atten-

tion by being relatively well constrained in the parameter space.

We have launched a set of investigations trying to understand this event. Using sam-

ples taken from the candidate’s posterior, we have checked the contribution to the SNR

from each pulsar. It came out that the main part comes from J1012+5307, but a few other

pulsars (J1713+0747 and J0437-4715) also contributed not negligibly. We have checked

that the zero contribution from a very good timer J1909-3744 is expected given the pre-

sumed sky position of the event.

We also conducted a set of injections of CGW signals with parameters taken from the

candidate’s posteriors using a simulated IPTA data (same TOAs as the real) with white

noise only (RN and DM are supposed to be sub-dominant at the candidate frequency).

We could not reproduce the observed results with injections even when we increased the

amplitude of the simulated signal.

BAYESEPHEM does not include a contribution from the inner planets to the phe-

nomenological model, so we consulted a group from Observatoire de la Côte d’Azur (IN-

POP group), inquiring if there could be an error in the Venus orbit picked up in the CGW

analysis. We were reassured that the Venus parameters are known with very high preci-
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sion: this is a simple planet without any moons. However, looking into the future, we

probably should extend BAYESEPHEM (or alternative mitigation models) by including

the perturbation of orbital elements for the inner planets. We have performed the analy-

sis with a narrow prior around this event with the model including the pulsar term. The

Bayes factor has slightly increased BF = 21; however, the parameter estimation did not

change appreciably. We have tried several runs with an extended model that includes the

orbital eccentricity (again with a narrow prior). The eccentric runs show a very poor con-

vergence, but all of them suggest a relatively high eccentricity. Results of both models

(eccentric and with pulsar term) imply that the power is not localized at one particular

frequency but spread over some finite-size frequency band.

We have turned to several noise models. We have started with varying number of

Fourier frequencies used in the Gaussian process for RN and DM and tried MRN 30DM100

andMRN 100DM100. The BF for CGW with those noise models has increased tremendously.

Finally, we have tried the custom model for the six best EPTA pulsars. Most notable is the

peculiar noise model for J1012+5307 (see table 3.3) which, in combination with the sky

position of the candidate event (being next to it), suggests that the explanation might

be in the time-correlated high-frequency noise present in that pulsar (see Appendix of

Chalumeau 2021). This would also be consistent with the results of eccentric runs sug-

gesting that this could be extended in the frequency feature. We do not know the origin of

that noise; it was found empirically. Including the custom noise model reduced the BF for

this event to Bcustom+CGW
custom = 0.95 and the posterior samples are not anymore constrained

(see Figure 3.11 and, please, note that we have used different range for the parameters).

We have also computed the Bayes factor for the noise-only models (assuming that GW sig-

nal is weak) and found that BRN 30DM30
custom =< 10−2 and similar result for RN30DM100 model

suggesting that the data prefers by far the custom model.

Custom made noise models for PPTA pulsars were studied in Goncharov et al. 2020.

However, the peculiar behaviour that we have found in IPTA data was mainly originat-

ing from J1012+5307 which is not observed by PPTA. For that reason, we have chosen to

focus on noise models from Chalumeau 2021. On the other hand, the noise model for

J0437-4715 was based on Goncharov et al. 2020 where the spectral index for RN is of 3 and

the optimal number of frequency bins for DM is (at least) 91. For this pulsar, we chose

30 frequency bins for RN as it was the recommended value for spectral index > 1.5 (see

Goncharov et al. 2021).

This was a useful exercise that triggered a set of investigations we would have to do

in case of any CGW candidate. In addition, this section shows the importance of custom

modelling noise for the best pulsars in the array, especially the noise at high frequen-

cies, which is often partially neglected, assuming that it is dominated by the white (mea-

surements) noise and it does not affect the search for the stochastic GW signal (which

is most pronounced at low frequencies). The considered event shows how unmodelled
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Figure 3.10: Posterior distribution for logh, cosθ and φ using noise model MRN 30D M30.

The black star indicates the sky position of J1012+5307. The dashed lines represent the

median values of the parameters.
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high-frequency noise could conspire for CGW signal.

3.7 Conclusion

We have searched for a continuous GW signal in the IPTA DR2 dataset. We have used

the Bayesian approach and based detection criteria on the Bayes factor. We have shown

that using a custom noise model for the six best EPTA pulsars is essential for the correct

interpretation of the data. This is especially true for J1012+5307, which exhibits time-

correlated noise at high frequencies. We found no CGW candidates using this noise model

and proceeded to set the upper limit on GW strain. The addition of CRN in the noise

model slightly affects the upper limit by lowering the sensitivity of the array at low fre-

quencies. The most sensitive frequency appears to be around 10 nHz with a 95% sky

averaged upper limit for CGW amplitude h95 = 9.1×10−15. The IPTA DR2 shows a much

better upper limit than previously set at higher frequencies, making it a promising dataset

to detect CGW.

During the analysis, we demonstrated the CGW candidate follow-up investigations

program, which was an important exercise that should be used in subsequent PTA CGW

analysis. The expected CGW signal has low SNR, and its SNR will be slowly accumulated

as we get more pulsars and a longer observational span. Modelling noise in pulsar data is

essential, especially at high frequencies.

This analysis was limited to circular SMBHBs using only the Earth term. The use of ec-

centric CGW signal and including the pulsar term might potentially improve the search;

however, it brings signal complexity which might make harder the interpretation of the

results and increases the parameter space. We are entering the era of very high quality

and high cadence radio observations with new instruments like FAST (Hobbs et al. 2019)

or SKA (Stappers et al. 2018) with sophisticated data analysis techniques. Additional in-

vestigations of the best approach to detecting CGW have to be re-investigated, probably

using simulated data and/or an extended CGW signal injection campaign.
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Markov Chain Monte Carlo approach is frequently used within Bayesian frame-

work to sample the target posterior distribution. Its efficiency strongly de-

pends on the proposal used to build the chain. The best jump proposal is

the one that closely resembles the unknown target distribution, therefore we

suggest an adaptive proposal based on Kernel Density Estimation (KDE). We

group parameters of the model according to their correlation and build KDE

based on the already accepted points for each group. We adapt the KDE-

based proposal until it stabilizes. We argue that such a proposal could be

helpful in applications where the data volume is increasing and in the hyper-

model sampling. We tested it on several astrophysical datasets (IPTA and

LISA) and have shown that in some cases KDE-based proposal also helps to

reduce the autocorrelation length of the chains. The efficiency of this pro-

posal is reduces in case of the strong correlations between a large group of

parameters.
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4.1 Introduction

We live in the era of large physics and astrophysics projects and often have to deal with

large and complex datasets. The data analysis usually requires large computing facilities

and a single computation could sometimes last for weeks. Optimizing the analysis tech-

niques and pipelines is then a key challenge of the data science associated with all large

(astro)physical experiments.

Nowadays, it is quite common to use Bayesian framework for analysing the data. It is

especially convenient if we have a parameterized data model (or several competing mod-

els) describing the data. In this approach we treat all parameters as random variables with

some prior based either on some physical principles or informed from the previous inde-

pendent experiments. We use the observations at hands to refine our prior knowledge

and infer a posterior probability distribution function for parameters of a model, or even

perform a selection among several models. Often we have to deal with multidimensional

parameter space with a non-trivial likelihood function which can be evaluated only nu-

merically. One of the most used tool to perform the numerical sampling from a target dis-

tribution is Markov Chain Monte Carlo (MCMC). Building a Markov chain that represents

the desired posterior requires two key ingredients: (i) proposal suggesting how to choose

point ~Xi+1 given the last point in the chain ~Xi ; (ii) the detailed balance which ensures

the reversibility of the chain. One of the most successful and frequently use proposal ap-

proach is to use parallel tempering: running several chains with logarithmic distributed

temperature ladder (see for example Earl and Deem 2005). The hot chains play role of a

proposal there and its efficiency depends on the interplay of number (and distribution) of

hot chains (more chains is better) and computational demands (increase with the num-

ber of chains). Understanding the properties of the signal and the likelihood surface often

leads to a custom proposal suitable for a particular problem.

Here we suggest another generic proposal based on the Kernel Density Estimation

(KDE). The idea of using KDE has already been explored (Ashton and Talbot 2021; Farr

et al. 2020). The main result of this paper is in a particular implementation of KDE itself

and its embedding into a sampler. Even though the proposed method is very generic we

will mainly discuss its implementations in the gravitational waves (GWs) data analysis.

Let us summarize the key points of the KDE-based proposal.

• KDE is used together with the set of other proposals in building a Markov chain.

We assume an adaptive approach where we use the data accumulated in a chain

to regularly rebuild the KDE. We repeat adjustments until the convergence criteria

based on the Kulback-Leibler divergence is satisfied.

• In order to build KDE we split all parameters into several groups, where parame-

ters in each group show evidence of mutual correlation. The KDE-based proposal
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is most efficient if the full parameter space could be split into many small uncor-

related groups. The performance drops significantly if dimensionality of a group is

larger than 5.

• We have build KDE with the self-optimizing bandwidth based on the distribution of

a sample points provided at the input.

Note that the adaptation breaks “Markovian” properties of the chain. Either one should

dismiss the parts of the chain during the adaptation or, in case of uninterrupted adapta-

tion, assume that the chain is only asymptotically Markov. We give detailed description of

implementation in the next two sections (4.2, 4.3).

We have implemented the KDE-based proposal in a particular sampler https://gitlab.
in2p3.fr/lisa-apc/mc3. We give a detailed description of this sampler in Appendix 6.4.

The main feature of this sampler is that it runs several chains either completely indepen-

dently or as parallel tempering. Multi-chain run is used to compute Gelman-Rubin ratio

(Gelman and Rubin 1992) to monitor the convergence.

We assess the performance of the suggested proposal in two applications to GW data

analysis. In first one we analyse the data combined by International Pulsar Timing Array

(IPTA) collaboration searching for a continous GW signal in the nano-Hz band. As the sec-

ond dataset we use simulated LISA data publically available through LISA Data Challenge

(2a) portal. We use the KDE-based proposal to infer parameters of 6 Galactic white dwarf

binaries. We present the performance of our proposal for those two data analysis prob-

lems in Section 4.4, in particular we show that the KDE-based proposal allows to reduce

the autocorrelation length while keeping high acceptance rate.

We conclude the paper with discussion on the limitation and possible extension of our

method in Section 4.5.

4.2 Kernel Density Estimation

In this rather short section we describe our particular way of building KDE. We start with

a short introduction to KDE and then give details of the bandwidth optimization that we

use.

KDE is a non-parametric method used to estimate a probability density function (pdf)

based on a finite set of sample points (Parzen 1962; Rosenblatt 1956). It is a smooth al-

ternative to a histogram. The advantage of KDE is that it uses no binning and gives a

continuous function interpolating (and extrapolating) across the whole parameter space.

For a d-dimensional dataset {~X } of size N and kernel K (x,~h), we have our KDE f̂ (x,~h) :

f̂ (x,~h) = 1

N

N−1∑
a=0

K (x−~Xa ,~h), (4.1)
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with parameter ~h specifying the bandwidth of the kernel. We use latin subscripts from

the first half of the alphabet to enumerate the samples in the set. The main idea is to sum

smooth kernel functions of x centered on each sample (input) data point ~Xa . The overlaps

between neighbouring kernels will add-up, shaping the PDF for the set of samples {~X }.

The choice of the kernel is arbitrary and we choose to work with a gaussian kernel of the

form:

Kg (x−~Xa ,~h) =
d∏

i=1

exp

{
−1

2
|x−~Xa |2i

h2
i

}
p

2πhi
, (4.2)

where the hi is the local bandwidth corresponding to i -th parameter |x− ~Xa |i , and d is

the dimensionality of the parameter space. We use the latin letter from the second half of

the alphabet to enumerate particular parameters, and the vector notation corresponds to

a vector in the parameter space.

4.2.1 Optimal bandwidth

A KDE has one free parameter which we want to tune, the bandwidth~h. Its value should

be adapted to the dataset we are working with. There is no direct way of estimating it and

we use an optimisation method (Jin et al. 2021) based on the minimisation of the mean

squared error (MSE) ε2 with respect to~h :

ε2 =
∫

dx( f̂ (x,~h)− f (x))2, (4.3)

∂ε2

∂~h
= 0, (4.4)

where f (x) is the true pdf that we want to approximate with the KDE. The numerical way

of evaluating this integral is given in the appendix 6.3.

Instead of using a global bandwidth ~h, we can define a local bandwidth ~ha for each

kernel K (x−~Xa ,~ha) (Terrell and Scott 1992). In that case, our KDE f̂ (x,~h) is :

f̂ (x,~h) = 1

N

N−1∑
a=0

K (x−~Xa ,~ha). (4.5)

Intuitively we expect the local bandwidth~ha to be scaled according to the local density of

points. Indeed, the bandwidth is chosen so that it is narrow in the regions of parameter

space where the samples are most dense and it is broad where we have fewer samples.

This can ensure good interpolation and overlap between kernels, in particular, in high

dimensional problem where the sample points are very sparse.
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In practice we use solution of equation 4.4 to find optimal local bandwidth. The global

bandwidth (if needed) could be defined as an average over all local values (by setting the

input parameter global bw = True).

In Appendix 6.3, we have shown that each local bandwidth ~ha = [ha,1 ha,2 ...] of the

kernel centered on point ~Xa can be approximated by solving a linear system for the k

nearest neighbours ~Xb of the form :

A(~Xb)


1

h2
a,1
1

h2
a,2
...

= ~B(k) (4.6)

Matrix A and vector ~B are given in Appendix 6.3 eqn. 6.33, where we provide a detailed

description of the method. They depend on the position of nearest neighbours which are

the knear points contained in a hypercube centered on the point ~Xa in the parameter

space. The edge ∆Xi of the hypercube for each parameter Xi is defined as :

∆Xi = (max
{~X }

Xi −min
{~X }

Xi )/s (4.7)

where maximisation and minimisation are performed over the set of input samples

and s is a scaling parameter we call "adapt scale".

It might happen that a hypercube contains no point (besides the central). In that case,

we cannot compute the local bandwidth and the point is discarded. Its bandwidth is later

set to the global bandwidth as defined above. In case of high dimensionality and if the

points in the dataset are very sparse, we change parameter s iteratively decreasing by a

factor 2 until we find non-empty hypercubes. However, if this happens the evaluation of

the bandwidth will probably be flawed and there is not much we can do about it, except

use bigger datasets with more sample points. Often the amount of additional points that

is needed to cover all “holes” could be very large incurring unmanageable computational

cost. That is why good parameter grouping is essential : reducing dimensionality without

loss of correlated features in the data. This will be the main subject of the next section.

4.3 Method

The main idea is to build a KDE for a given d-dimensional set of sample points {~X }. How-

ever, for a high dimensional KDE we are strongly affected by the "curse of dimensionality"

(Scott and Sain 2005) because the sample sets are often limited in size leaving under-

covered regions of the parameter space. In addition the efficiency of KDE is degrading

if there are too many points since we place the kernel on top of each sample. For that
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reason, we will split a d-dimensional parameter space into several low dimensional sub-

spaces grouping the most correlated parameters together. We assume that sub-groups

are not correlated and build the KDE for each of them f̂α(xα,~hα), so the total KDE is the

product of the low-dimensional KDEs:

F̂ (x,~h) =∏
α

f̂α(xα,~hα), (4.8)

where the greek indices enumerate the subgroups of parameters. Forming these sub-

groups relies on the assessment of the correlation between parameters based on the pro-

vided set of samples {~X } and this is the main subject of the next subsection.

4.3.1 Parameter grouping

For a d-dimensional dataset {~X } we want to split the parameters in several sub-groups.

Each sub-group will contain correlated parameters while parameters from different sub-

groups will be uncorrelated. We could use a covariance matrix to identify correlations,

however it implicitly assumes Gaussian distribution and cannot account for any complex

2D structures between pairs of parameters. Instead we use a method based on the Jensen-

Shannon divergence (JSD) (Nielsen 2019). JSD, similarly to the Kullback–Leibler (KL) di-

vergence, measures the similarity between two distributions, but with the advantage of

being symmetric and bound 0 ≤ JSD ≤ ln2, moreover it does not make any assumptions

about the distributions. For each pair of parameter (Xi , X j ) with the joined probability

distribution p(Xi , X j ) we compute

0 ≤ JSD
(
p(Xi , X j )||p(Xi )p(X j )

)≤ ln2, (4.9)

where the second distribution p(Xi )p(X j ) is a product of one-dimensional (marginal-

ized) distributions obtained by shuffling the parameters {Xi , X j } that supposed to destroy

any correlations between parameters Xi , X j (see figure 4.1). If the JSD is low, it means that

the shuffling did not affect the dataset and the parameters did not exhibit correlation. On

the other hand, if the JSD is large, the shuffling did change something and the parameters

should be grouped together.

We define a JSD threshold (we usually use 0.1) which we consider that two parameters

are correlated. Starting from one parameter, we iterate the process to extract all correlated

(chained) pairs. Once no additional correlated parameter is found, we take the union of

all correlated pairs of parameters to form a sub-group. This process is illustrated in figure

4.2.

In case of multimodality of the probability distribution function that we try to repro-

duce with KDE, we implemented an additional (optional) feature: clustering samples be-

fore building KDE. This feature is especially welcome when the modes are separated by
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Corr = 0.0 Corr = 0.94 Corr = 0.0

JS = 0.0 JS = 0.28 JS = 0.21

Figure 4.1: We plot three examples of datasets where we have on the left no correlation,

in the middle linear correlation and on the right more elaborate features. On the top

panels we have the corresponding values of the correlation coefficient based on simple

evaluation of the covariance matrix. We see that it excels at finding the linear correlation

but completely fails with the right panel features. On the bottom panels we have the same

three datasets in red with their corresponding shuffled version that destroys correlations

in blue. While the left panel remains unchanged, the others are affected and it is captured

by the JS divergence.

very low probability valleys. We cluster the samples (using k-means method MacQueen

1967) and apply KDE building approach described above to each mode. This does not

change the fundamental structure of the KDE but it helps the bandwidth adaptation.

4.3.2 Turning KDE into proposal

It is desirable in several application to use posterior points inferred for some parameters

into a prior for another investigation. Let us give several examples:

• The data inferred from electromagnetic observations in form of samples is used as

a prior for the GW experiment. In this case we can either build a joined likelihood
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Figure 4.2: Illustration of the parameter grouping process using a JSD matrix. For this

example, the JSD threshold is set to 0.25, hence the parameter sub-groups will be [0, 2, 3,

4] and [1]. Starting from parameter 0, we find that JSD for parameters 2 and 3 are above

the threshold so they are both correlated with parameter 0. Then we check for parameters

2 and 3 and find that 4 is correlated with 3 while 2 sees no additional correlation. The last

step would have been to check for 4 and find that there are no additional correlations.

Therefore, 0, 2, 3 and 4 will form a sub-group of correlated parameters. The parameter

“1” is the last parameter that does not correlate with others (according to the adopted

threshold) and it will be a sub-group on its own.

or, alternatively, build KDE on the external posteriors and use it as a prior while

analyzing the GW data.

• In Pulsar Timing Array (PTA) data analysis we often first investigate data acquired

for each pulsar and trying to build a noise model. Later this pulsar and associated

noise model is plugged into "Array" of pulsars for searching for a GW signal. It is

proven to boost significantly efficiency of the GW search if we use posteriors for the

noise model inferred in the first step as a proposal in the global fit later on.

• Often the data is taken continuously and we want to analyse it "on the fly"; that is

true for GW data analysis. In this case you want to increment the data with a certain

cadence while using information about the sources acquired from the analysis of

the past data. One possibility is to turn again posterior built from the analysis of,

say, first half a year of data into a prior in the analysis of the whole year of data.

• The method in Hee et al. 2016 gives a practical suggestion on how to compute the

Bayes factor comparing several models without computing the evidence for each

model. In this approach we introduce hyper-parameter indexing the models and
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jump in this parameter (say, within MCMC) which corresponds to jumping between

the models. For this method to be robust the exploration within each model must

be very efficient otherwise it will lead to very long poorly converging runs or to spu-

rious results. If we have posteriors for each (or some) model available, we can turn

them into proposal and use in the hyper-model exploration.

The main idea of grouping parameters in building KDE implies that we probably also

want to make jumps within each subgroup (or in some subgroups) while keeping other

parameters fixed (Gibbs-like sampling). The subgroups for a current jump are chosen

randomly assuming equal probability attached to each subgroup. The randomness im-

plies reversibility and equal probability is a warrant that we jump in all parameters evenly

(on average) while performing low dimensional jumps. Let us denote the number of sub-

KDEs that is used for each jump nkde , then the proposal probability is

F̂nkde (x,~h) =
nkde∏
α

f̂α(xα,~hα), (4.10)

where the subscript in xα implies that we vary only parameters that belong to that (α) sub-

group. This probability1 is used to balance the chain in the Metropolis-Hastings step of

the MCMC algorithm (Hastings 1970). Choosing a point from a given sub-KDE f̂α(xα,~hα)

is done by drawing a point from the randomly chosen kernel K (x− ~Xa ,ha) of f̂α(xα,~hα)

centered on ~Xa :
~X ∗

b → ~Xa +N (~0,ha), (4.11)

where N (~0,ha) is a normally distributed random variable with~0 mean and covariance

matrix diag(ha) that is the bandwidth of kernel K (x− ~Xa ,ha). For a random set of nkde

sub-KDEs, the newly proposed point ~X ∗ is the union of parameters from each subgroup
~X ∗

b :

~X ∗ =⋃
b

~X ∗
b . (4.12)

4.3.3 Adaptive proposal

In case we do not have samples from the previous investigations, we still can build KDE-

based proposal using the points accepted by a running MCMC. There are several caveats

which need to be considered: (i) during the burn-in and even some time after the dis-

tribution of the accepted points is quite unstable that will reflect on the KDE (ii) we are

breaking the rules of MCMC, the chain is only asymptotically Markov, so that at some

point we should fix the KDE-based proposal and dismiss all samples accumulated before.

1The probability F̂nkde (x,~h) corresponds to the proposal probability for the jump q(~θ|~θ∗) presented in

section 2.3.3
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Figure 4.3: For a chain of total length N , we get rid of the burn-in, then we extract ns

linearly space samples from the remaining fraction of the chain. These ns points are used

to build the KDE.

The rest of this subsection gives the details of the practical implementation of the adap-

tation.

To build a KDE on the currently sampled chain, we select only a subset of the total N

samples. In particular, we take ns uniformly spaced points, from burn-in to the last point,

as illustrated in Figure 4.3. The burn-in is taken to be a fraction, q , of the total chain length

N and those points are dismisssed (hence, ns = (1− q)N ). As chain evolves, the burn-in

could also grow until we get to the stationary distribution. The post-burn-in length is

also increasing, and, since we keep ns fixed, the space ∆n between the selected samples

grows. We expect that the quality of the KDE improves with increase in ∆n because of

the reduced correlation in the samples taken for building KDE, and that is true until ∆n

reaches typical autocorrelation length of the chain (Hogg and Foreman-Mackey 2018).

We re-build a new KDE after each Nad apt iterations (jumps) of the chain. We want

to track the evolution of KDE and stop adapting when it has reached stability (that could

be another indicator of the burn-in phase). We compare the new (re-built) KDE F̂1(x, ~h1)

with the old F̂0(x, ~h0) by computing the KL divergence (Kullback and Leibler 1951):

KL(F̂0||F̂1) =
∫

dxF̂0(x)(log F̂0(x)− log F̂1(x)) (4.13)

This integral could be approximated as

KL(F̂0||F̂1) ' 1

ns

∑
a

(log F̂0(~X0a , ~h0)− log F̂1(~X0a , ~h1)), (4.14)

where {~X0} is the set of ns samples used to build F̂0(x, ~h0). This gives a measure of change

in KDE between successive updates: ∆KL. We stop updating KDE in order to preserve the

108



ergodicity of the process (Atchadé and Rosenthal 2005) as soon as convergence criterion

| <∆KL > |√
< KL2 >

< 5% (4.15)

is satisfied. The angular brackets denote the averaging over the last 5 updates and we

demand that the average change in KL is small compared to the average KL values. ∆KL

can be negative or positive, depending on the evolution of KL. If KL does not converge to

a specific value, this condition ensures that it is at least oscillating around a mean value.

4.4 Results

We consider two datasets and perform search/parameter estimation using MCMC with

KDE-based proposal.

In first application we consider a dataset from International PTA collaboration and

perform the noise analysis for each pulsar in the array (Perera 2019). The likelihood is

expected to be quite broad and unimodal but the dimensionality of the parameter space

is large as well as its overall volume.

In second application we work with the simulated LISA data and search/characterize

small bandwidth with several Galactic white-dwarf binaries. The likelihood in this case

has more complex structure with quite strong correlation between parameters.

We quantify performance of the KDE-based proposal using the following criteria:

• Closeness between built KDE and the true distribution using KL divergence2.

• The acceptance rate when the KDE is used as a proposal with MCMC sampler

• The autocorrelation length (Hogg and Foreman-Mackey 2018) of the MCMC chain

when the KDE is used as proposal, to evaluate improvement in the mixing of the

chain.

4.4.1 IPTA dataset

We build the KDE using ns = 10000 samples from the chains generated by previous MCMC

runs. We adopt the following choice of parameters for generating KDE:

• js threshold = 0.1

• adapt scale = 10

• use kmeans = False
2Because we do not know the true distribution, we have to use histograms to evaluate KL. The formula

for binned KL is given in Appendix 6.2.
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Figure 4.4: Distribution of the KL divergence for all sub-KDEs. 1-d sub-KDEs are of best

quality.

• global bw = True

• n kde = 1

Within total 104 parameters, the grouping algorithm finds : 76 1-dimensional sub-groups,

12 2-dimensional sub-groups and 1 4-dimensional sub-group. For each of these sub-

groups we calculate the KL divergence KL(pα(xα)|| f̂α(xα,~hα)) of the true pdf of the sub-

group pα(xα) against the corresponding sub-KDE f̂α(xα,~hα). A good sub-KDE should give

a KL(pα(xα)|| f̂α(xα,~hα)) that is close to 0. Because the number of parameter is large, we

show the histogram plot in figure 4.4 depicting KL for each subgroup.

The impact of the dimensionality of the sub-KDE on KL can be clearly seen in Fig-

ure 4.4 . Close to 0 we have 76 1-dimensional sub-KDEs, between 0.1 and 0.4 we have

12 2-dimensional sub-KDEs, and the 4-dimensional sub-KDE has KL ≈ 0.7. As discussed

in the previous section, increasing dimensionality implies sparse data samples, so we ex-

pect KL values to rise because the KDE might fail to interpolate the PDF correctly be-

tween neighbouring points, producing holes in the distribution. Computing KL allows us

to quantify this effect and assess the quality of the KDE that may not be obvious by just

eyeballing (see figure 4.5).

Next we will analyse the IPTA data using MCMC sampler (Ellis and Haasteren 2017)

and ENTERPRISE (Ellis et al. 2020) package for computing likelihood function. We chose
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Figure 4.5: 2-dimensional corner plot of binned original dataset against smooth KDE plot.

KDE is blue, original is orange. The contour levels for the original dataset on the bottom

left panel are [0.1, 0.95]. For this sub-KDE, KL ' 0.11.

to use two jump proposals Single-Component Adaptive Metropolis (SCAM) (Haario et al.

2001) and Differential Evolution (DE) (Ter Braak 2006; Jasper A. Vrugt 2008) to compare

to KDE. We search for a continuous gravitational wave signal while fitting for pulsar noise

parameters (Aggarwal 2019). The KDE for the noise parameters has been built using pos-

terior samples obtained from the preceding single pulsar analysis. We will compare three

different runs:

• using a KDE-based + default jump proposals SCAM and DE (labeled as “KDE”);

• using binned empirical distributions + default proposals SCAM and DE (labeled as

“Binned”);

• using only default proposals SCAM and DE (labeled as “None”).

The binned empirical distributions are essentially 2-dimensional histograms based on the

same posterior samples as used in building KDE (Taylor et al. 2021). Those carry a similar

spirit to KDE, being pair-wise approximation to marginalized posterior, but at the same

time are fundamentally different from the KDE in the sense that the KDE is a continuous

function in space that interpolates between the sample points using smoothening kernel.

In addition KDE-based proposal makes grouping based on the parameter correlation that

could lead to more than two dimensional group (see figure 4.4).
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KDE SCAM DE

Acceptance rate 0.57 0.39 0.43

Table 4.1: Acceptance for various proposals (KDE run)

Binned SCAM DE

Acceptance rate 0.47 0.41 0.43

Table 4.2: Acceptance for various proposals (binned proposal run)

Tables 4.1, 4.2, compare acceptance rate of different proposals in two independent

runs. One can see that KDE has the highest acceptance rate due to smart parameter

grouping and interpolation between the samples incorporated in the KDE-based pro-

posal. For the jumps we could use simultaneous jump in one or several (nkde ) sub-groups.

Increasing nkde leads to the higher dimensionality of the jumps and has a strong impact

on the acceptance rate as shown in Figure 4.6. The best results are achieved if we perform

jumps in one subgroup at the time, the acceptance rate decreases exponentially with nkde .

A high acceptance rate is not necessarily a sign of a good proposal as it has to be

paired with the low autocorrelation length. For each run, we compute the autocorrelation

lengths of all parameters and compare the maximum, minimum and mean autocorrela-

tion lengths. The low autocorrelation length implies that the samples drawn/accepted are

independent. Results are presented in Table 4.4. KDE performs very well for IPTA data.

Minimum autocorrelation length does not seem to be affected much by the choice of pro-

posal but the maximum is reduced by a factor 2 when using KDE. Reducing the maximum

is the most important because thinning the chain by this factor ensures that all samples

are independent for all parameters. The mean autocorrelation length is just an indicator

of the average performance of the proposal.

Like for the acceptance rate, we check the influence of nkde on the autocorrelation

length. Results are given in Table 4.5. For high values of nkde , even though we have de-

creasing acceptance rate, the autocorrelation drops too and mixing improves. However,

this result should be take with a caution, using high nkde could lead to a very low accep-

tance point as shown in Figure 4.6. In Figure 4.7 we show the autocorrelation length as

a function of nkde and it indicates that the optimal number is around nkde = 5 with ac-

nkde KDE SCAM DE

1 0.47 0.41 0.43

5 0.22 0.36 0.41

10 0.08 0.35 0.40

Table 4.3: Acceptance for different nkde
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Figure 4.6: Acceptance rate for several values of nkde .

max min mean

KDE 578 27 113

Binned 1386 29 160

None 1032 25 208

Table 4.4: The maximum, minimum and mean autocorrelation lengths for three runs.

nkde max min mean

1 578 27 113

5 386 25 79

10 395 28 95

Table 4.5: The maximum, minimum and mean autocorrelation lengths for different nkde .
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Figure 4.7: Mean, maximum and minimum autocorrelation lengths for several values of

nkde .

ceptance rate of 0.22 that is very close to the expected optimal acceptance rate of 0.234

(Gelman et al. 1997). Based on these results, we recommended to work with values of nkde

between 1 and 10, especially when the dimensionality of the parameter space is high like

in this IPTA example.

4.4.2 LISA dataset

Now we turn our attention to the simulated LISA data, in particular, we use “Sangria”

dataset which is 1 year long, it contains about a dozen of merging massive black hole bi-

naries and about 30 millions of Galactic binaries https://lisa-ldc.lal.in2p3.fr/.

Here we are interested in Galactic binaries in the very narrow frequency range around 4

mHz and we have removed all merging black holes. We have detected 6 sources in that fre-

quency interval and we use KDE-based proposal together SCAM and DE3. This time we

use home-made sampler M3C 2 (https://gitlab.in2p3.fr/lisa-apc/mc3), specifi-

cally parallel tempering version of it. We describe this sample in details in the Appendix

6.4. This sampler is using Metropolis-Hastings acceptance-rejection step as well as slice

sampling (Neal 2003).

3The DE introduced in Ter Braak 2006 is using population MCMC, here we rather use it on a single chain

in the spirit described in the snooker proposal in Jasper A. Vrugt 2008
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Each Galactic binary is characterized by 8 parameters, so we have in total 48 parame-

ters (Littenberg 2011). We expect some parameters (like amplitude and the orbital inclina-

tion angle) to correlate for each source, and, in addition, some parameters could correlate

between the sources. Here we try to build a proposal on-the-fly. The likelihood surface for

this problem is rather complex having many well separated maxima (reason for using par-

allel tempering). We will build KDE as we accumulate samples: adapting KDE proposal

with the rate every 5000 samples and using ns = 5000 samples for each chain. Besides

KDE we also use SCAM proposal and slice sampling. Note that the combination of SCAM

jump with Metropolis-Hastings sampling and slice (being very independent) already sig-

nificantly reduce the autocorrelation of the accepted points.

First, we consider the convergence of KDE adaptation. During the burn-in stage the

KDE is changing quite violently. The correlation between parameters is quite unstable

which leads to fluctuation in how parameters are grouped and in the number of sub-

groups. As burn-in proceeds we keep track of the grouping and fix the splitting in sub-

groups as soon as it stabilizes (when the same grouping appears at least 5 times). Once

we have fixed sub-groups we check the KL divergence between the subsequent updates

of KDE (as described above). The results of KDE adaptation are presented in Figure 4.8.

The consistent grouping of parameters was reached after 26 updates as indicated by a

dashed red line. Then we compute KL after each update and stop adaptation once the

condition 4.15 is met (see the right panel of Figure 4.8). From then on we keep KDE fixed

and perform the actual sampling.

As a next step we want to check the acceptance rate of the KDE-based proposal and

compare it to SCAM and slice. Note that slice is not based on the Metropolis-Hastings

acceptance/rejection algorithm, however we still can introduce an effective acceptance

rate as a ratio of total number of slice calls to the total number of likelihood evaluations

used by slice.

We consider two cases for the subgroup jumps nkde = 1 and nkde = 5. Figure 4.9 com-

pares acceptance rate for nkde = 1. One can see that it stabilizes around 0.31 very fast, and,

despite that it is lower than what we had for the PTA application, it is a very decent accep-

tance rate. SCAM has a similar acceptance (but usually longer autocorrelation length),

while slice is worse by a factor 10 (though it usually has low autocorrelation length).

Figure 4.10 compares acceptance rate for nkde = 5. Increase in the dimensionality of

the jumps has a drastic effect on the acceptance rate, its value drops to about 0.015. It is

also interesting to compare behaviour of SCAM and slice for two runs. Slice shows very

stable/consistent results, while SCAM has significant fluctuations though preserving the

trend. The two-dimensional KDE jumps seem to be the best option in this application.

Next we check the autocorrelation length when we run with and without KDE-based

proposal. We restrict ourselves with the case nkde = 1 since nkde = 5 has a very poor

acceptance rate. Figure 4.11 compares maximum and mean autocorrelation of two runs.
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Figure 4.8: Evolution of KL and ∆KL. Left panel, evolution of KL before fixing parameter

groups. Right panel, evolution of KL after fixing parameter groups, we start computing

∆KL 5 updates after the grouping was fixed. The thick red line indicates the∆KL threshold

level of 5% below which we reach convergence.

We observe that the mean value is slightly (about 17%) lower when we include KDE-based

proposal and the maximum length remains the same. As we have already mentioned,

mixing SCAM with Metropolis-Hastings and slice steps does reduce the autocorrelation

already (compared to PTA example where we did not use slice sampling). In addition we

use parallel tempering algorithm, where the hot chains could be seen as yet another jump

proposal. All in all, KDE does not add much to already reduced autocorrelation run in the

current analysis.

4.5 Conclusion

Bayesian formalism is a usual approach in nowadays gravitational waves data analysis.

The inference of the parameters posterior distribution is often done using MCMC and the

efficiency strongly depends on the proposal it uses. In this article we have presented KDE-

based proposal which can be either built on-the-fly during the extended burn-in stage or

constructed using posterior points from another run.

The suggested KDE-based proposal has several extended features: (i) the adaptive
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Figure 4.9: Acceptance rate of all proposals for nkde = 1. KDE and SCAM are on top panel,

SLICE on bottom panel. Red plot and black dashed line shows where KDE finally con-

verged and stopped updating.

bandwith based on the local density of points (small bandwidth in the densely sampled

regions of the parameter space); (ii) splitting parameter space into sub-groups of the cor-

related parameters and applying KDE on each subgroup, we identify correlations using

JSD; (iii) possibility of building KDE adaptively.

We tested this proposal by running MCMC on IPTA data, using a KDE that we have

built from previous MCMC runs (i.e. non adaptive case). The advantage of KDE-based

proposal was clearly seen in high acceptance rate with low autocorrelation length. We

have found that using rather low value nkde = 1− 5 (number of subgroups used in the

jump simultaneously) seems to be optimal.

Another application of the KDE-based proposal was in running PTMCMC on the sim-

ulated LISA data searching for Galactic white dwarf binaries in a narrow frequency band.

In this case we have built KDE adaptively during an extended burn-in stage. The addi-

tion of KDE-proposal to the sampling had only a moderate impact: it shows a decent

acceptance rate (about 31%) with only small improvement in the autocorrelation length.

Moreover we have shown that low-dimensional jumps are strongly preferred.

Few things could be improved, most notably in the adaptation. The threshold for

grouping parameters was chosen somewhat ad hoc, and correlation of some parame-

ters could be close to the threshold. We did observe the fluctuation in choosing the sub-
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Figure 4.10: Acceptance rate of all proposals for nkde = 5. KDE and SCAM are on top

panel, SLICE on bottom panel. Red plot and black dashed line shows where KDE finally

converged and stopped updating.

groups during the adaptation. One possibility could be to choose not one but two plau-

sible grouping, build KDE for each and use two KDE proposals in a probabilistic manner.

The criteria for stopping adaptation was also chosen somewhat arbitrary, and might ben-

efit from the further tuning. Finally, we should implement an adaptive tuning for optimal

nkde based on the acceptance rate.
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CHAPTER 5

SUMMARY AND PERSPECTIVES

In this PhD thesis, we have explored the low frequency realm of gravitational waves using

the stability of millisecond pulsars with Pulsar Timing Arrays. More specifically, we have

used the second data release of the International Pulsar Timing Array that is the combina-

tion of all the pulsar timing data collected for the past decades. It gathers high precision

measurements from the European, North-American and Australian collaborations. We

developed robust data analysis pipelines to search for the presence of continuous grav-

itational wave signals, i.e. monochromatic and deterministic gravitational wave signals

induced by supermassive black hole binary systems. The manuscript was separated into

four main sections : (I) the presentation of the theoretical background necessary to un-

derstand the physics of the pulsar timing array, (II) the data analysis methods that are

used to search for gravitational wave signal in the data, (III) the results of this search ob-

tained with the IPTA DR2 and finally, (IV) the presentation of a new method using kernel

density estimation to optimize our data analysis pipelines.

The search for deterministic gravitational wave signal in the IPTA DR2 was conclusive.

We found no evidence for such signals so we have set an upper limit on amplitude h.

It appears that the IPTA DR2 is most sensitive for signals with a frequency around 10nHz

where its upper limit is h95 = 9.1×10−15 and provides the best sensitivity to date of all PTAs

at high frequencies thanks to the improved cadence of observation. Following the recent

discoveries of low frequency processes common to all pulsars in the array, we need to

include it into the model. It came out that the latter correlates with the common red noise,

slightly deteriorating the upper limit at low frequencies. Even though the search was not

fruitful, we have stumbled upon gravitational wave like signals at high frequencies with

relatively high Bayes factor that triggered our attention. These features were absorbed

after changing the noise model. This result is crucial to understand how the noise model

directly affects the observation and must be chosen with great care. This study led to

a publication for which I am corresponding author. It was shared with the international

collaboration and approved by the steering committee. It was submitted to MNRAS under

the name : Searching for continuous Gravitational Waves in the second data release of the

International Pulsar Timing Array.

We proposed a new method using kernel density estimation in gravitational wave data

analysis. It came from a desire to simplify and yet optimize the data analysis pipelines

that we use. In this chapter, we present a new fast semi-analytical method to optimize
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the bandwidths of the kernels. This optimal kernel density estimation is then used with

MCMC as a proposal distribution. We quantify the quality of our proposal by estimat-

ing the autocorrelation length (i.e. the effective sampling time) of the produced Markov

chains for different proposals. It turned out that our proposal was giving the best per-

formance with IPTA data. We wanted to push it a step further by suggesting an adaptive

proposal that would build itself as the MCMC is sampling. We tested it on simulated LISA

data to search for galactic binary signals. The proposal was still reducing the effective

sampling time but its performance was less probing. This work led to the writing of an

article that was submitted of Physical Review D and pre-published on Arxiv (Falxa et al.

2022).

The search for gravitational wave signal is still an ongoing project. The recent detec-

tion of the common red noise process by all collaborations really has spawned renewed

interest for the pulsar timing world. Hopefully, in the upcoming days, we will finally de-

tect the signals that have been hunted for many years. The latest data releases together

with the newly available radio-observatories provide the best sensitivity to date, raising

hopes of gravitational wave detection in the next few years.
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6.1 Averaged signal to noise ratio

In this section, we propose to develop the analytical averaging of the signal to noise ratio

formula presented in section 3.3.1. This formula is developed fromg the expression of the

timing residuals induced in PTA by a CGW that was demonstrated in section 1.4.4. This

calculation is rather trivial. We use for the timing residuals (only Earth term)

s = F+s++F×s×, (6.1)

with

s+(t ) = h

ω

[−sin[2Φ(t )]I cos2ψ −cos[2Φ(t )]J sin2ψ
]

(6.2)

s×(t ) = h

ω

[−sin[2Φ(t )]I cos2ψ +cos[2Φ(t )]J sin2ψ
]

, (6.3)

where we have defined

h = 2M5/3(π f )2/3

dL
(6.4)

I = 1+cos2 ι J = 2cos ι. (6.5)
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The signal to noise ratio is, using the definition of the noise weighted inner product :

ρ2 = (s|s) = sTΣ−1s (6.6)

We will denote the averaging of a quantity A with respect to some parameter p with

brackets and index < A|A >p . For the signal to noise ratio ρ2, function of the GW param-

eters, we have ∫
dψ

π

dφ0

2π

d cos ι

2

d cosθ

2

dφ

2π
ρ2 =< s|s >ψ,φ0,ι,θ,φ, (6.7)

(s|s) = (F+)2(s+|s+)+ (F×)2(s×|s×)+2F+F×(s+|s×), (6.8)

In the following, we omit the
( h
ω

)2 prefactor. We have for each term in 6.8

(s+|s+) ∝ I2 cos2 2ψ(sin2Φ(t )|sin2Φ(t ))+J 2 sin2 2ψ(cos2Φ(t )|cos2Φ(t ))

+2IJ cos2ψsin2ψ(sin2Φ(t )|2cosΦ(t )),
(6.9)

(s×|s×) ∝ I2 sin2 2ψ(sin2Φ(t )|sin2Φ(t ))+J 2 cos2 2ψ(cos2Φ(t )|cos2Φ(t ))

−2IJ cos2ψsin2ψ(sin2Φ(t )|cos2Φ(t )),
(6.10)

(s+|s×) ∝ I2 cos2ψsin2ψ(sin2Φ(t )|sin2Φ(t ))−J 2 cos2ψsin2ψ(cos2Φ(t )|cos2Φ(t ))

−2IJ (sin2 2ψ−cos2 2ψ)(sin2Φ(t )|cos2Φ(t )).
(6.11)

We average the expression with respect to the polarization angle ψ to get

< s|s >ψ= 1

2

( h

ω

)2[
(F+)2 + (F×)2][I2(sin2Φ(t )|sin2Φ(t ))+J 2(cos2Φ(t )|cos2Φ(t ))

]
.

(6.12)

In the case of a monochromatic, non evolving CGW signal, we can approximate 2Φ(t )

by :

2Φ(t ) →ωt +φ0, (6.13)

so the sin2Φ(t ) and cos2Φ(t ) terms become

sin2Φ(t ) = sinωt cosφ0 +cosωt sinφ0 (6.14)

cos2Φ(t ) = cosωt cosφ0 − sinωt sinφ0, (6.15)

yielding
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(sin2Φ(t )|sin2Φ(t )) =cos2φ0(sinωt |sinωt )+ sin2φ0(cosωt |cosωt )

+2cosφ0 sinφ0(sinωt |cosωt ),
(6.16)

(cos2Φ(t )|cos2Φ(t )) =cos2φ0(cosωt |cosωt )+ sin2φ0(sinωt |sinωt )

−2cosφ0 sinφ0(sinωt |cosωt ).
(6.17)

After averaging with respect to the initial phase we get

< sin2Φ(t )|2sinΦ(t ) >φ0=< cosΦ(t )|cosΦ(t ) >φ0=
1

2
(sinωt |sinωt )+ 1

2
(cosωt |cosωt ),

(6.18)

So ρ2 becomes

< s|s >ψ,φ0=
1

4

( h

ω

)2[
(F+)2 + (F×)2][I2 +J 2][(sinωt |sinωt )+ (cosωt |cosωt )

]
. (6.19)

We now compute the average of the I2 +J 2 term with respect to the inclination ι

< I2 +J 2 >ι= 16

5
, (6.20)

and we have

< s|s >ψ,φ0,ι= 4

5

( h

ω

)2[
(F+)2 + (F×)2][(sinωt |sinωt )+ (cosωt |cosωt )

]
. (6.21)

This partially averaged, sky location dependent SNR formula can be used to rank the

pulsars according to frequency of CGW and sky location. However, we want the fully av-

eraged ρ2 so we need to express the antenna pattern functions in terms of the CGW sky

location parameters

F+(Ω̂) = 1

2

(m̂ · p̂)2 − (n̂ · p̂)2

1+ Ω̂ · p̂
(6.22)

F×(Ω̂) = (m̂ · p̂)(n̂ · p̂)

1+ Ω̂ · p̂
, (6.23)

ω̂=−(sinθcosφ, sinθ sinφ,cosθ)

m̂ = (−sinφ,cosφ,0)

n̂ =−cosθcosφ,−cosθ sinφ, sinθ),

(6.24)

To average over sky location parameters, we place ourselves in the frame where the

earth-pulsar axis unit vector p̂ = (0,0,1), which makes the calculation easy and gives :
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< (F+)2 + (F×)2 >θ,φ=
1

3
. (6.25)

Finally, we have for the averaged signal to noise ratio to CGW signal :

< s|s >ψ,φ0,ι,θ,φ=
4

15

( h

ω

)2[
(cosωt |cosωt )+ (sinωt |sinωt )

]
(6.26)

6.2 Kullback-Leibler divergence

We test the quality of our KDE by computing the KL divergence for each subgroup f̂α(xα,~hα).

Because we cannot know the true pdf for a set of samples {~X }, we have to resort to bin-

ning. From sub-KDE f̂α(xα,~hα) built on subgroup of parameter samples {~Xα}, we draw a

new set of samples {~X ∗
α}. We estimate the corresponding normalized histogram distribu-

tions Pα and P∗
α using same grid of N bins to compute the KL divergence as Kullback and

Leibler 1951 :

KL(Pα||P∗
α) =

N∑
i=0

Pα,i

(
lnPα,i − lnP∗

α,i

)
. (6.27)

To avoid divergence of the logarithms, we set every Pα,i and P∗
α,i that are equal to 0 to

the minimum found value in Pα
⋃

P∗
α that is not 0.

6.3 Optimal bandwidth of KDE

.

We start this appendix with defining few useful expressions that will be used in our

derivations later.

• The overlap between two neighbouring kernels of same bandwidth is given by

∫
dxK (x−~Xa ,~h)K (x−~Xb ,~h) =

d∏
i=1

exp−1
4
|~Xa−~Xb |2i

h2
ip

π2hi
. (6.28)

Let us remind you that d is the dimensionality.

• If a set of samples {~X } of size N drawn from the probability density function f (x),

then we can approximate the averaging integral as :

∫
d x f (x)g (x) ' 1

N

∑
a

g (Xa) , (6.29)

where the function g is evaluated at the sample points ~Xa .
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The main objective of this Appendix is to derive the optimal local bandwidth which is

defined through the minimization of the mean square error:

ε2 =
∫

d x( f̂ (x,h)− f (x))2

=
∫

d x f̂ 2(x,h)−2
∫

d x f̂ (x,h) f (x)+
∫

d x f 2(x)

=
∫

d x f̂ 2(x,h)−2
∫

d x f̂ (x,h) f (x)+ const ,

(6.30)

where f (x) is the true PDF, ( f̂ (x,h) is its KDE approximation and const is the term inde-

pendent of the bandwidth h. We introduce local bandwidth ha attached to each sample

point Xa . Next we assume that all points in the vicinity of each point have similar band-

width, in other words, hb ≈ ha for knear local points Xb . Using these assumptions we can

approximate the first term:

N 2
∫

d x f̂ (x,ha) f̂ x,hb =∑
a

d∏
i=1

1

2
p
πha,i

+

∑
a

∑
b 6=a

d∏
i=1

e
− 1

4

∆X 2
ab,i

h2
a,i

2
p
πha,i

, (6.31)

where ha,i is i-th component of bandwidth attached to Gaussian kernel at ~Xa and∆Xab,i =
(~Xa − ~Xb)i is i-th component of the a vector connecting two samples in the parameter

space.

Using now second bullet equation and excluding the actual sample from the sum (for

improving stability and removing the possible bias, see "leave one out estimator" Jin et al.

2021) we obtain for the second term

2
∫

d x f̂ (x,ha) f̂ x ≈ 2

N 2

∑
a

∑
b 6=a

d∏
i=1

e
− 1

2

∆X 2
ab,i

h2
a,i

p
2πha,i

, (6.32)

where we have assumed N À 1, N (N −1) ≈ N 2. Combining these terms together gives us

N 2(ε2 − const ) =∑
a


d∏

i=1

1

2
p
πha,i

+ ∑
b 6=a

d∏
i=1

e
− 1

4

∆X 2
ab,i

h2
a,i

2
p
πha,i

−

2
∑

b 6=a

d∏
i=1

e
− 1

2

∆X 2
ab,i

h2
a,i

p
2πha,i

 .
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Find the minimum of this expression by differentiating with respect to hc, j and equating

it to zero:

0 =− 1

hc, j

d∏
i=1

1

2
p
πhc,i

1+ ∑
b 6=c

[
1− 1

2

∆X 2
bc, j

h2
c, j

]
d∏

i=1
e
− 1

4

∆X 2
bc,i

h2
c,i

−2(
p

2)d

[
1−

∆X 2
bc, j

h2
c, j

]
d∏

i=1
e
− 1

2

∆X 2
bc,i

h2
c,i


Next we assume quite conservative approximation:

∆X 2
bc, j

h2
c, j

¿ 1 for all points ~Xb in

vicinity of ~Xc and all components j . This assumption overestimates the bandwidth and

therefore conservative: this is what is used in this paper. Expanding in this small parame-

ters and retain only the terms quadratic in this small ratio we obtain the system of linear

equations for 1/h2
c, j :

knear (2d/2+1 −1)−1

(2d/2 −1)
= ∑

b 6=c

[
3
∆X 2

bc, j

h2
c, j

+ ∑
i 6= j

∆X 2
bc,i

h2
c,i

]
. (6.33)

Solving this system at each point ~Xc for each direction in the parameter space ( j ) gives us

the desired local bandwidth~hc .

As an alternative approach we can assume that the bandwidth is comparable to the

distance to the neighnbours and define h2
c, j =∆X 2

c, j (1+εc, j ), where∆X 2
c, j = 1/knear

∑
b∆X 2

bc, j

is the average square distance (i -th component) to the points in vicinity of ~Xc and assume

that ∆X 2
bc, j /∆X 2

c, j ∼ 1 and εc, j ¿ 1 for all b,c, j . This yields

d∏
i=1

e
− 1

4

∆X 2
bc,i

h2
c,i ≈

(
1+ 1

4

d∑
i

∆X 2
bc,i

∆X 2
c,i

)
d∏

i=1
e
− 1

4

∆X 2
bc,i

∆X 2
c,i . (6.34)

Using this approximation we arrive at the system of linear equations for 1/h2
c, j :

−1+ ∑
b 6=c

2(
p

2)d
d∏

i=1
e
− 1

2

∆X 2
bc,i

∆X 2
c,i −Pbc

(
1− 1

2

d∑
i

∆X 2
bc,i

∆X 2
c,i

)
=

∑
b 6=c

Pbc

(
3
∆X 2

bc, j

∆X 2
c, j

εc, j +
∑
i 6= j

∆X 2
bc,i

∆X 2
c,i

εc,i

)
,

where

Pbc ≡
1

4

 d∏
i=1

e
− 1

4

∆X 2
bc,i

∆X 2
c,i −4(

p
2)d

d∏
i=1

e
− 1

2
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Solving this system at each point ~Xc for each direction in the parameter space ( j ) gives us

the desired local bandwidth~hc .

6.4 The M3C2 sampler

The M3C2 1 (Multiple parallel Markov Chain Monte Carlo) is a python implementation of

MCMC sampler. The aim of this tool is to improve the sampling robustness of complex

posterior distribution, by running multiple chains in parallel. The cross check of the chain

performance informs us about convergence (using Gelman-Rubin ratio Gelman and Ru-

bin 1992). We have implemented two mechanisms of building the chain (1) using slice

sampling (slice ) and (2) Metropolis-Hastings algorithm (MH) which could be used sep-

arately or together improving the mixture of the chains and reducing the auto-correlation

length. Even though the sampler is very generic, we primarily use it within the context

of GW data analysis. For the Metropolis-Hastings method we have implemented a set of

proposal jumps:

• SCAM (Single Component Adaptive Metropolis), jumps along one randomly chosen

direction given by the eigen vectors of the covariance matrix Roberts and Rosenthal

2009; Haario et al. 2001

• DE (Differential Evolution), jumps along the direction given by difference of two ran-

domly chosen samples of the chains, or (as in the classic implementation Ter Braak

2006; Jasper A. Vrugt 2008) by using state of different chains running in parallel.

• ReMHA (Regional Metropolis Hastings Algorithm), the proposal represented by a mix-

ture of several Gaussians distributions Roberts and Rosenthal 2009; Craiu et al. 2009.

For SCAM we build the covariance matrix adaptively based on the accumulated sam-

ples. The use of the accumulated samples breaks the Markov property of the chain, mak-

ing it asymptotically Markovian. The stability of the covariance matrix is yet another sign

of the converged chain. One can stop adaptation after burn-in run. This proposal is sug-

gested in Ellis 2013.

ReMHA is similarly used adaptively. We use accumulated samples during the burn-in to

estimate the number of clusters using Variational Bayesian Gaussian Mixture (skikit-learn
package) and use this Gaussian mixture probablity as a proposal. This proposal is some-

what similar to the one suggested in Craiu et al. 2009.

DE could be used as a proposal (snooker) described in Jasper A. Vrugt 2008 using multi-

ple chains running in parallel or using the accumulated samples for each chain to propose

the jump. There is no much difference between those two ways in case of well converged

1https://gitlab.in2p3.fr/lisa-apc/mc3
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chains. However, the behavior and efficiency of those two implementations is very differ-

ent during the burn-in stage.

In slice sampling, we use slicing of the parameter space either randomly or along

the eigen directions of the covariance matrix, the choice is made with a probability set by

user. In case of mixture of slice and MH, the frequency of each method is defined by

a user specified weight. In addition to preset proposals available in M3C2, user can add

custom jump-proposals using a common interface. The weights and proposals can be set

individually for each running chain.

Besides running parallel independent chains, M3C2 sampler has also parallel temper-

ing implementation with an adaptive temperature ladder following Vousden et al. 2016.

The adaptation is aiming at increasing the acceptance rate between the chains.

The multi-chain scheme of M3C2 can be easily deployed on the multicore CPU infras-

tructure. Data exchange between chains, in case of parallel tempering, is restricted to its

minimum level (pairwise communication between the chains), to ensure a good scalabil-

ity.

6.5 Pulsar ranking for correlated signals

In L. Speri 2022, several methods are presented for the ranking of pulsars according

to their contribution to the total SNR of the array, for a given correlated signal. In this

manuscript, we mention SNR-B and Chimera when we cross-check the ranking obtained

with the CGW method to support its validity. Here we will briefly explain what the meth-

ods consist in.

6.5.1 SNR-B

The SNR-B method computes the optimal statistics that maximize the SNR of the array in

the presence of correlated signal (Rosado et al. 2015). It is given by :

SNR2
B = 2

∑
a<b

∫
Γ2

abS2( f )Tab[
Pa( f )+S( f )

][
Pb( f )+S( f )

]+S2( f )Γ2
ab

, (6.35)

whereΓab is the correlation coefficient between pulsars a and b, Tab is the overlapping

time of observation between pulsars a and b, S( f ) is the PSD of the expected signal and

Pa( f ), Pb( f ) are the PSD of the intrinsic noises of pulsars (red noise, dispersions measure,

etc).

6.5.2 Coupling matrix

The coupling matrix formalism seeks to quantify the overlap between different spatial

correlation patterns between pulsars using spherical harmonics Yl m . Indeed, l = 0,1,2
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describe respectively a monopole, a dipole and a quadrupole, corresponding to the cor-

relations expected for the three main types of correlated signals in PTA (see section 2.2.5).

We decompose the sky distribution of pulsars on a spherical harmonic basis (Efstathiou

2004) and evaluate the overlap between the coefficients as :

K(l m)(lm)′ =
∫

dΩYlm(Ω)W (Ω)Y(lm)′(Ω), (6.36)

with

W (Ω) =∑
a

waδ(Ω− p̂a), (6.37)

the window function, giving the positions p̂a of pulsar with an associated weight wa .

The weight wa is chosen according to the RMS value of pulsar a residuals (Roebber 2019).

For a set of pulsars, we evaluate the leakage between components with the ratio δλ =
λmi n/λmax , λ being the eigenvalues of the matrix Ml l ′ obtained by averaging of K(l m)(lm)′

over the components m. Selecting the largest ratio δλ ensures that we have the best pos-

sible decoupling between different l .

6.5.3 Chimera

The Chimera method is a combination of the two previous methods. We define an effec-

tive score SCC hi mer a of SNR-B and δλ (coupling matrix) according to which we rank the

pulsars :

SCC hi mer a = SNRBδλ. (6.38)

In L. Speri 2022, the 25 best pulsars acquired with this method are saved as best pul-

sars of the array.
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