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Introduction

Radio frequencies and optics are two established domains of physics that where developed in parallel in the past century. Both domains are unied by the common physics of electromagnetic wave propagation, but are intuitively well separated: from the spectral point of view, thermal infrared rays emitted by human beings have frequencies 10 000 times higher than waves used for 5G communications. As a result of this large dierence, we picture them as two separated and bounded domains of dierent natures rather than a unied continuum. Still, there is a frequency range connecting these two domains, around 10 12 Hz: it is the Terahertz range.

From a technological perspective, optics and radio frequencies use distinct sources, distinct detectors, distinct components in general and, up to the late XX th century rise of optoelectronics, distinct applications. The reason for the relative lack of knowledge regarding the THz range appears then clearly as THz devices have not emerged as a widespread technology yet, and this has for long been referred to as the "THz gap". However, the scientic interest for this spectral domain is now several decades old with various applications being explored, such as imaging, telecommunications, spectroscopy, non-destructive sensing, quantum technologies... The continuous emergence of potential applications evidence the challenge of developing THz technologies. Today, a wide range of THz emitters from electronic frequency multipliers chains to Quantum Cascade Lasers (QCLs) covers the whole THz spectrum, and have enabled the THz domain to become a dynamic research eld, so that the THz gap fades in laboratories. However, most of these devices rely on technologies adapted from microwave or optics domains, pushed to their limit in the THz range where their eciency falls. For instance, there are fundamental limitations to high frequency electronics schemes because of transistor commutation time or to lasers towards lower frequencies due to the materials band gaps. Other examples, such as QCLs or photo-conductive antennas require bulky hardware involving cryogenics or femtosecond lasers, limiting the diusion of THz emitters to the outside of laboratories or large facilities. In the end, these THz devices do not appear as a mature technologies yet.

At the center of all detector or source devices, we nd a material hosting the light-matter interaction i.e. a material able to absorb or emit photons, that we refer to as "active material". This is for instance a gain medium in lasers, or photoconductive materials in detectors. Over the last decades, active materials especially suited for the THz range have been discovered and their study have been a trending research interest ever since. These include ferromagnetic heterostructures or 2D materials such as transition metal dichalcogenides or TDMs (M oSe 2 , P dSe 2 ), black phosphorus, some topological insulators (Bi 2 T e 3 ), and graphene [1,2,3]. Graphene has been extensively investigated for its electronic properties since almost 20 years. As it is a gapless semi-conductor, there is no bottom energy limitation for interband absorption or emission of photon processes, which makes graphene a natural candidate to be an active material in the THz range.

Unfortunately, graphene, like many other active 2D materials attractive for the THz range, presents relatively low absorption, typically 2.3% for interband processes in graphene. This is a very general issue of THz light-matter interaction, as they are either few atoms thin, or of size in the hundreds nanometer range for quantum dots. How can such tiny objects eciently couple to THz INTRODUCTION radiation of wavelength several orders of magnitude larger, in the hundred of micrometers range.

To overcome this intrinsic limitation, a light-matter enhancement system has to be provided: THz cavities and resonators. Photonic resonators are key elements in many optoelectronic devices, such as high performance detectors and wave emission systems. Their rst property is to exchange and store electromagnetic energy, enhancing electric eld intensity in their inside. Directly related is their ability to select particular frequencies of the spectrum, the resonance frequencies f res , to which is associated the spectral linewidth ∆f of the resonance. The related dimensionless parameter is the quality factor Q, dened as Q = fres INTRODUCTION THz photonic crystal Fabry-Perot cavity [5] (left) and LC circuit (Split Ring Resonator) metamaterial [6] (right). realize high delity operators [9].

Because of the limitations of existing approaches in THz resonators, overcoming the present obstacle of combining high quality factor Q and low mode volume V requires the development of an original solution whose concept could benet from fully using the hybrid nature of the THz range.

In this thesis, we propose a hybrid cavity structure including a photonic crystal mirror and a metallic mirror, the THz Tamm cavity, and we investigate its light-matter interaction properties for use with graphene based materials. Tamm cavities have been extensively studied in the NIR [10] and even demonstrated to be appropriate for lasing modes. We develop a Tamm cavity adapted to the THz range and showed that it exhibits excellent spectral properties with a high Q factor. We demonstrate that the metal mirror of the Tamm cavity can be used to explore original cavity designs, and we use this functionality to couple the THz Tamm cavity to a resonant LC circuit metamaterial derived from Split Ring Resonators. The resulting coupled resonators we created presents a deep sub-wavelength mode volume typical of micro LC circuits, while maintaining a good quality factor, which opens brand new possibilities for THz quantum light-matter coupling. Because of this low mode volume, those resonators are suitable hosts for encapsulated Graphene Quantum Dots (GQDs), which are zero dimensional objects with sizes of the order of 100 nm. Such relatively large GQDs exhibit typically level discretization due to 0D connement with interlevel of the order of several meV , i.e. in the THz range. We characterize experimentally the light-matter interaction properties of a single Graphene Quantum Dots (GQD) by demonstrating Photon Assisted Tunneling (PAT), which enables the estimation of the electric dipole moment d of the GQD device. As a perspective, we estimate the value of the light-matter coupling constant g that would be possible to reach by coupling a GQD to a metamaterial/Tamm cavity.

In Chapter 1, after presenting the basic tools to describe resonant cavities and a state of the art of THz resonators, we will present the basic THz Tamm cavity. We will explain how it is fabricated by simple layer stacking, its resonance mechanism and characterize experimentally its spectral properties. As a rst application of this cavity, we will present our investigations by simulations of the classical light-matter coupling between graphene and the Tamm cavity as well as the cleanroom process we developed. Also, we will report our investigation on the eect of patterning the metallic mirror into a sub-wavelength strip grating, demonstrating the interest of the metallic mirror of the Tamm cavity.

INTRODUCTION

In Chapter 2, we present the coupling between the THz Tamm cavity and resonant metamaterials obtained by patterning the metallic mirror. We will rst introduce the framework of Cavity Quantum Electrodynamics (CQED) for quantum light-matter coupling leading to the denition of the light-matter coupling constant g and we will highlight the role of the mode volume V . After showing the similarities between light-matter coupling and resonator coupling from a theoretical point of view, we will present the system of coupled resonators combining the THz Tamm cavity and resonant metamaterials and characterize experimentally their spectral properties. We willnally present a method using Free Element Method simulations to evaluate the mode volume of these coupled cavities.

In Chapter 3, we will investigate the spectral and light-matter interaction properties of a GQD with free-space THz radiations. We will present the theoretical energy level spectrum of large GQDs.

Then, we will use the transport spectroscopy technique to probe the energy levels of a single GQD connected in the Single Electron Transistor architecture. Using a coherent THz source, we will investigate the classical and quantum regime of interaction and nally analyze the Photon-Assisted Tunneling phenomenon we observe to show how it enables the determination of the light-matter interaction strength between THz photons and the GQD based device. 

Contents

Chapter 1

The THz Tamm cavity

Light-matter coupling is at the base of many applications of optics and is a prominent research area in the THz range as many basic devices such as emitters or detectors are still to be developed. In order to increase the eciency of light-matter coupling, a key element is required: the electromagnetic resonator. Its role is to store a high quantity of electromagnetic energy and to concentrate this energy spatially at the active matter location. It is to these two purposes that are associated the quality factor Q and the mode volume V , as measurements of the performances of electromagnetic resonators.

In the THz range, realizing high Q or low V is dicult, especially regarding the mode volume because of the very large typical scale, the wavelength λ ∼ 300 µm at 1 THz. Dierent families of existing THz resonators address these issues, but conciliate both properties remains a challenge. This thesis proposes a novel kind of cavity: the THz Tamm cavity, with is built from the association of a metallic mirror and of a Distributed Bragg Reector (DBR). As this structure associates elements from dierent families of resonators, it is expected to enable hybrid properties in terms of quality factor and mode volume.

In this rst chapter, we investigate the resonance mechanism and the properties of the THz Tamm cavity. We present a theoretical description of open resonators as well as the state of the art of resonators in the THz range and state their current limitations.

We will then introduce the THz Tamm cavity and characterize extensively its spectral properties. As a demonstration of the applications of this cavity, we will rst propose its classical coupling with CVD graphene for enhanced absorption in graphene and present preliminary investigations regarding this topic. We will nally use the pattering of the cavity gold mirror into a strip grating as a way to demonstrate the possibility of coupling the Tamm cavity to equivalent components on the mirror surface.

General description of electromagnetic resonators

In this rst section, we introduce THz resonators. We will present a theoretical description of open resonators using temporal coupled mode theory as a way to provide expressions for all the relevant quantities needed to characterize resonators. After justifying the quality factor Q and the mode volume V regarding classical light-matter coupling using the Purcell factor, we will establish the state of the art of THz cavities and use the criterion of resonance mechanism to classify them in three great families whose properties will be discussed.

The resonance phenomenon

A wide variety of physical systems, from building to atoms, host the phenomenon called resonance.

At the base of all resonances is a self sustained oscillation arising from the periodic exchange between two types of energies. Among the most common resonators, in mechanical resonators, the resonance arises from the exchange between kinetic and potential energies, either gravitational, elastic or of pressure if the system is a pendulum, a guitar string or a wind instrument. To the two energy forms are associated two conjugated variables, say u and v, which are related by their time derivatives:

du dt = -αv and dv dt = βu (1.1)
Each single variable is then described by the harmonic oscillator equation:

d 2 u dt 2 + αβu = 0 (1.2)
In electromagnetic resonators u and v are naturally the electric and magnetic elds. Without perturbations, such system evolves periodically at a frequency f r = √ αβ 2π . If it is excited by an external source, the system stores the energy supplied by the external drive. Considering some damping or energy losses by the system, the stored energy will not diverge to innity but nds its maximum if the system is excited at its resonance frequency. The resonance frequency is 1 THz and the quality factor Q = 10. P in is the input power supplied by the external drive.

The main parameter describing this curve is the quality factor Q. It describes the energy density enhancement inside the resonator, but also the linewidth of the resonance peak ∆f which are directly related. Translated into gures:

Q = 2π
Energy stored in the system Energy lost per cycle and

Q = f r ∆f (1.3)
How resonators exchange energy with their environment is thus a major aspect to understand the resonator properties.

Relevant gures in electromagnetic cavities Open resonator theory

We describe in this section the dynamical equation for an open resonator coupled to an external wave to compute reection and transmission coecients, using the formalism of temporal coupled mode theory, adapted from [1]. We consider a resonator with a single mode at angular frequency ω r storing energy W . From the two conjugated variables u and v describing the energy exchange as dened in Eq.1.1, we built a single eld amplitude in the mode a [2]:

a = 1 2α u + j 1 2β v (1.4)
So that the uncoupled system is described by the rst order dierential equation:

da dt = jω r a (1.5)
Taking into account losses in the system, the dynamic equation for the amplitude a becomes:

da dt = (jω r - 1 τ )a (1.6)
Where we dene τ the relaxation time of the resonator.

Let us now consider an open resonator coupled to three propagation channels with the following interaction scheme: and one loss channel with relevant interaction constants. In the following, we will not consider s +,3 as it is an amplication channel we do not include in the discussion.

Here the three channels are cavity input s 1 , output s 2 and inner dissipation or amplication s 3 channels, but the formalism can be extended to m channels. We write in a synthetic vector form the incoming waves s + , outgoing waves s -as well as κ * the incoming wave to resonant mode coupling constant, and t the resonant mode to outgoing wave coupling constant. The reection at channel interfaces is written using the matrix M r :

|s + =   s +,1 s +,2 s +,3   |s -=   s -,1 s -,2 s -,3   κ| * =   κ * 1 κ * 2 κ * 3   |t =   t 1 t 2 t 3   M r =   r 1 0 0 0 r 2 0 0 0 r 3   (1.7)
The matrix M r is only diagonal if we neglect direct coupling between channels (energy is necessary transferred through the resonator). Note that r 3 is non-relevant in the case of s 3 being a dissipation channel. We use notation t i and r i as the these coecients identify to the amplitude transmission and reection coecients of barrier i in typical optical resonators such as Fabry-Perot cavities, that we present in Section 1.1.3. The dynamic equation for the mode amplitude a is now given by: The frequency domain solution for a is directly:

da dt = (jw r - 1 
a = κ| * |s + j(ω -ω r ) + 1 τ (1.9)
The amplitude module |a| has then a Lorentzian shape whose linewidth is determined by the factor 1 τ .

κ| *

, |t and M r describe the relations between the wave amplitudes at the resonator interfaces. They are then all linked to transmission t i and reection r i coecients of these interfaces and are not independent from each other. Their expressions can be found from energy conservation arguments.

There is a quadratic relation between the eld amplitude a and the energy stored in the resonator W : W = C W |a| 2 . The parameter C W describes in the general case the energy capacity of the system for a given eld amplitude [3]. In Fabry-Perot cavities for instance, C W is given by the round-trip time inside the cavity:

C W = 2L
vg where L is the cavity length and v g is the group velocity [4], and longer cavities have an increased C W factor. External waves s α,i are normalized so that the related power P α,i is directly given by P α,i = |s α,i | 2 . Consider a system with energy W 0 at t = 0. At t = 0, the external drive is stopped and the eld amplitude and inner energy relax as: a(t) = a 0 e -t τ and W (t) = W 0 e -2 t τ (1.10)

With a 0 = W 0 C W e jωt . The energy is carried away from the resonator via waves |s -, that follows the evolution of a as: |s -= a 0 e -t τ |t (1.11) From energy conservation dW dt = P -,1 + P -,2 + P -,3 = -s -|s -leading to:

t|t 2C W = |t 1 | 2 + |t 2 | 2 + |t 3 | 2 2C W = 1 τ (1.12)
We can at this point identify the terms

|t i | 2 2C W
to the dierent rates or inverse time scales . These times scales represent decay times due to the coupling to the left channel, to the right channel and to inner losses, respectively. Also, in an optical cavity interpretation, |t i | 2 parameters are given by the power transmission coecients through the i barrier T i . κ * i and r i are the coupling coecients from the point of view of the external channels s i . They are related to the coupling coecient from inside the resonator t i through symmetry relations that we can explicit using time reversal symmetry applied to the evolution of the system we described above (Eq.1.10). In this time reversed picture, the system is fed by three incoming waves of growing 1.1. GENERAL DESCRIPTION OF ELECTROMAGNETIC RESONATORS amplitude, no wave comes out of the resonator and the resonator evolves as the time conjugate of Eq.1.10, so that we have: Where T R stands for time reversed quantities. We have da T R dt = (jω r + 1 τ )a T R , and we also have Eq.1.8 for a T R :

da T R dt = (jw r - 1 τ )a T R + κ| * a T R |t (1.14)
From which we can deduce:

2 τ = κ| * |t = t|t C W (1.15)
And we can conclude that

κ| * = t| C W i.e. κ * i = t i C W
. Also, from the reection equation in Eq.1.8, we can deduce M r |t * = -|t which implies relations between transmission and reection coecients at channel barriers, in particular r i t * i = -t i that is used in Eq.1.17.

We have expressed κ| * and τ as a function |t and go back to the initial situation, in which an incoming wave from channel s 1 is reected in channel s 1 and transmitted in channel s 2 . We can now compute the transmission and reection coecients of the resonator dened as r = s -,1 s +,1 and t = s -,2 s +,1 for a unique incoming wave s +,1 is incident on the resonator. In these conditions, the amplitude in the resonant mode reads:

a = 1 C W t 1 s +,1 j(ω -ω r ) + 1 τ (1.16)
And we have, using r 1 t * 1 = -t 1 for r :

r = r 1 (j(ω -ω r ) + 1 τ -T 1 C W ) j(ω -ω r ) + 1 τ t = t * 1 t 2 C W j(ω -ω r ) + 1 τ (1.17)
Hence the power reection and transmission coecients:

R = R 1 ( 1 τ -T 1 C W ) 2 + (ω -ω r ) 2 (ω -ω r ) 2 + ( 1 τ ) 2 T = T 1 T 2 C 2 W (ω -ω r ) 2 + ( 1 τ ) 2 (1.18) 
With T i = |t i | 2 and R 2 i = |r i | 2 . We recognize the expected Lorentzian lineshape, with a fullwidth at half-maximum (FWHM) Γ = 2 τ and we can now discuss the dierent important parameters regarding this expression.

Power coupling rates

The dierent contributions the peak linewidth can be separated in three: the left and right radiative coupling rates Γ rad,1 and Γ rad,2 as well as the dissipation coupling rate Γ loss :

Γ rad,1 = 2 τ rad,1 = T 1 C W Γ rad,2 = 2 τ rad,2 = T 2 C W Γ loss = 2 τ loss = T 3 C W (1.19)
So that Γ = Γ rad,1 + Γ rad,2 + Γ loss . These Γ i coecients are power dened i.e. they describe the relaxation of the system in terms of energy. We can nally give the general expressions of transmission and reection coecients:

R = R 1 ( Γ 2 -Γ rad,1 ) 2 + (ω -ω r ) 2 (ω -ω r ) 2 + ( Γ 2 ) 2 T = Γ rad,1 Γ rad,2 (ω -ω r ) 2 + ( Γ 2 ) 2 (1.20)
This approach usually describes systems with ecient barriers so that R 1 is most of the time simplied to 1.

Critical coupling criteria

From the expressions of the power coecients from Eq.1.20, we can discuss the criteria to maximize transmission and minimize reection at resonance. Under resonant excitation, the power coecients values reads:

R = R 1 (Γ rad,2 -Γ rad,1 + Γ loss ) 2 (Γ rad,1 + Γ rad,2 + Γ loss ) 2 T = 4Γ rad,1 Γ rad,2 (Γ rad,1 + Γ rad,2 + Γ loss ) 2 (1.21)
The maximum for the transmission coecient T is reached for Γ rad,1 = Γ rad,2 i.e. if the resonator is symmetric regarding its two radiative channels. Also, unity transmission is possible only if Γ loss = 0 which is expected from energy conservation.

Γ rad,1 = Γ rad,2 is also the criteria for zero reection without losses, however, zero reection is also achievable if Γ loss = 0 under the condition: Γ rad,2 -Γ rad,1 + Γ loss = 0 (1.22) The resonator is then called critically coupled, and Eq.1.22 is called the critical coupling criterion.

In that case, the energy supply rate via channel 1 is equal to the energy dissipation rate via losses and channel 2, so that no energy is reected: it is an equivalent of impedance matching for resonators.

Critical coupling is desirable in most scenarios and is a fundamental part of resonator engineering: it enables high contrast peaks in experimental spectra and also the maximization of the absorption inside the resonator (See Fig. 1.3). As a consequence, the critical coupling criteria establishes a relation between radiative and dissipation coupling rates which need to be of the same order of magnitude. (Γ rad,1 = 3Γ rad,2 ). Critical coupling is highlighted by the vertical dashed line.

Quality factors

From Eq.1.20 the expression of the resonator quality factor Q is basically given by:

Q = ω r Γ (1.23)
To expand the description further, we can dene quality factors associated to the dierent dissipation processes, the coupling to the left, right radiative channel and the resonator losses:

Q rad,1 = ω r Γ rad,1 Q rad,2 = ω r Γ rad,2 Q loss = ω r Γ loss (1.24)
So that

1 Q = 1 Q rad,2 + 1 Q rad,1 + 1 Q loss
. From Eq.1.20 and Eq.1.24 a direct link between the quality factor and the resonance peak contrast appears through the Γ i parameters. The existence of a limiting parameter, typically resonators inner losses Γ loss , forces then the value of radiative quality factors Q rad,1 and Q rad,2 to be as low as Q loss in order to obtain a high resonance peak contrast.

It is important to stress here the impact of the energy capacity C W . Since the Γ i scale like C W , there is no inuence of C W for properties at resonance such as the inner eld amplitude a or the coecient R and T . The quality factor scales however like C W , which can be directly exploited to enhance the quality factor as we will see in Section 1.1.3.

Light-matter coupling, Purcell factor and mode volume

In the case of electromagnetic resonators, the eld amplitude a to be amplied identies to the electric eld E. The principal application of electromagnetic resonator we will be interested in is the enhancement of the coupling between light and matter. As a rst approach, we present the Purcell eect: a quantum system able to emit or absorb photons at an angular frequency ω 0 , when placed in a resonator, sees its spontaneous emission rate enhanced by the Purcell factor [5]:

F P = 3 4π 2 λ n 3 Q V (1.25)
Where n is the refractive index of the medium containing the emitter and λ the wavelength in free-space. In this expression appears the mode volume of the cavity V , which is dened as [6]:

V = | (r)E 2 |d 3 r | (r)E 2 | max (1.26)
Where E is the electric eld prole of the resonant mode and the relative dielectric constant. The mode volume V is in fact a measurement of the energy spatial connement in the resonant mode, as 1 V is the maximum energy density divided by the total energy. Let us now remark that the other important term of F P , the quality factor Q, also describes the energy concentration in the resonator as we presented but in the spectral domain, as it is proportional to the photonic density of states.

In the end, the Purcell factor, as a gure of merit, is the product of the two factors quantifying the performances of a electromagnetic resonator for light-matter coupling enhancement due to both spectral and spatial energy concentration i.e. Q and 1 V .

THz resonator state-of-the-art

We present in this section the state of the art of THz resonators, using the quality factor Q and the mode volume V as the relevant quantities to measure their performances, and we propose a classication in three great families that are the photonic crystal cavities, the LC circuit resonators and the metal-dielectric-metal antennas.

Propagation based versus localized component based cavities

The most important distinction to be made between dierent types of electromagnetic resonators and even for resonators of other domains of physics, is the distinction between resonances arising either from propagation eects and standing waves or from the interaction between at least two localized and possibly separate systems able to exchange energy. It is for instance for mechanical resonators the opposition between the guitar string and the spring-mass system.

Todorov et al. present a comprehensive description of the dierence between these two types of THz resonators in [7], from which is reproduced Fig1.4. D refers to the transverse displacement eld, H to the total magnetic eld, and P c to the polarization eld inside the capacitor. Reproduced from [7].

Let us consider a resonator composed of a parallel plate capacitor to which an inductive loop is associated. Schematically, the contribution of the electric eld to the Hamiltonian (See Fig1.4) can be separated in two parts. First, the contribution of the propagating wave, embedding spatial variations of the electric eld (rst term). Then, the electrostatic-like contribution due to the charge of the parallel plate capacitor (third term). The second term gives the magnetic energy contribution.

For propagation based/optics cavities, the rst propagative term is dominant and the capacitive term can be neglected, which requires for one dimensions of the system to be at least of the order of the wavelength in the material λ n for propagation to be possible. For localized components/electronics resonators, the third capacitive term is dominant and propagation eects are neglected, which have major consequences. The energy exchanged is in this case mediated by currents owing between the capacitor and the inductive loop instead of the electromagnetic propagation equation that link electric and magnetic elds in space. Electric and magnetic energies can then be stored in localized and separated components. As a consequence, a strong argument to tell to which regime belongs a given resonator is to consider whether or not the electric and magnetic elds are spatially separated.

Most importantly, since the capacitive electric eld contribution is quasi-static, the space-time entanglement from propagating waves is lifted and there is no necessity for a dimension of the resonator to be of the order of the wavelength λ. In other words, the mode volume is then not limited by diraction in this case. This has dramatic consequences for THz resonators because λ is very large, as we saw in the previous section. Thus, resonators based on localized components enable the connement in all direction of space to dimensions much shorter than the wavelength, to even go to deep sub-wavelength mode volume V as we will show in the following.

Photonic crystal cavities (PCC)

THz resonators based on lossless dielectric photonic crystals have recently emerged as very promising cavities to achieve very high Q-factor. The most simple photonic crystal based cavity is a 1D Fabry-Perot cavity, i.e. a cavity based on two mirrors facing each other, in which the mirrors involved are Distributed Bragg Reector (DBR) [8]. In these cavities, the fundamental resonance mechanism is phase matching after a round-trip inside the cavity, resulting in a constructive interference eect at specic frequencies. This makes this THz photonic crystal Fabry-Perot cavity a propagation based resonator.

The DBR are realized by stacking dielectric layers of dierent refractive indexes and of thicknesses λ 4 . Due to destructive interference for the transmitted wave in each layers, such structures are very ecient mirrors over a given frequency range called the photonic bandgap or stop-band by analogy to semi-conductors, which makes them 1D photonic crystals. Near unity reectivity can be obtained for a sucient number of lossless dielectric layers. The design and demonstration of Distributed Bragg Reector adapted to the THz range is now almost 20 years old, as they were developed in the early 2000's for p-Ge laser applications [9,10], where a stack of low loss silicon and vacuum layers were used. The THz Photonic crystal cavities have drawn renewed attention from mid 2010's up to now.

Zhang et al. used 1D photonic crystal Fabry-Perot cavities for polariton study and demonstrated

to approach the ultra-strong coupling regime with 2D electron gas (2DEG) [8] (See Fig1.5). As represented Fig1.5.a), the structure involves two Si-vacuum DBRs facing each other, and the center silicon layer of double thickness is sucient to split the photonic crystal in two separate DBRs, which enables the formation of a photonic mode at the center. The electric eld from the resulting resonant mode is then localized between the DBRs, with an electric eld maximum at the two silicon-air interfaces of the central silicon layer (Fig1.5.b)). The mode prole exhibits lobes of size λ 2 (contracted by the refractive index n Si in silicon) that are typical of a standing wave pattern arising from the addition of counter propagating waves. The mode is here conned almost entirely in the rst central lobes, i.e. a length λ 2 , thanks to the high refractive index contrast between vacuum and silicon. However, there is no possibility for in-plane connement since the structure is 1D.

The high reectivity of the DBR and the low silicon losses enable high quality factor modes with a fundamental resonance at 0.41 THz as presented on the transmission spectrum Fig1.5.c).

The cavity presents at least two higher order modes, and the quality factor goes as high as 810 for the third mode. There is no fundamental limit to the quality factor Q in such kind of structures because of the lossless nature of the dielectric used for the mirrors, the DBRs. Also, as the cavity is symmetric and there is no intrinsic losses, Γ rad,1 = Γ rad,2 , which should lead to critical coupling and unity transmission at resonance. However, this is obviously not the case in Fig1.5.c). Two factors can explain such deviation: absorption in silicon from residual doping or most likely misalignment in the layered structure. In both cases, we can expect enhanced performances in terms of quality factor Q and maximum transmission at resonance from technological improvements. The mode volume V is on the opposite fundamentally limited by the diraction limit to ( λ 2 ) 3

Chen et al. investigated Fabry-Perot cavities using Si-vacuum THz DBRs as mirror [11] prior to the one we presented above. The authors increased the distance between the mirrors, starting from 2λ, keeping a xed working frequency. As the distance increases, the fundamental mode frequency decreases, the resonant mode density per spectral range is increased, and the mode probed at a given Reproduced from [12].

frequency is of higher order. As a result, the quality factor Q increases without any improvement on mirror reectivity. This is the main interest of increasing the distance between mirrors in Fabry-Perot cavities : for a cavity length of 21λ (or about 20 mm at 336 GHz), the authors reports a quality factor as high as 10 000 Fig1.6.a). The specicity of the rst cavity we presented [8] is only that the distance between DBRs is reduced to zero as there is no actual gap but the central silicon layer.

The increase of the quality factor for increased cavity length can be understood as an increase of the energy stored in the cavity at constant inner electric eld due to greater length, resulting directly in a increase of the quality factor Q. This corresponds to an increase of the C W factor from Section 1.1.2 linear with the cavity length. An equivalent interpretation using the photon picture is that, as the cavity length increases, incidence of photons on mirrors are less frequent which reduces radiative damping rates Γ rad . The fundamental drawback is the linear increase of the mode volume V with the cavity length, so that the gure of merit Q

V , the Purcell factor, is theoretically unchanged as the cavity length is increased.

The cavity length can be pushed to remarkably high values [12]. Using a 480 mm cavity and two DBR comprising only four silicon at three vacuum layers, Hindle et al. demonstrate a quality factor Q as high as 7 × 10 6 (See Fig1.6.b)) to achieve ultra high sensitivity for gas sensing application.

Such value approaches the ultimate value due to silicon losses in mirrors (around 1.5 × 10 7 ), and is only limited by transverse losses non-perfectly compensated by a waveguide.

In parallel to these 1D photonic crystal Fabry-Perot cavities were developed THz resonators using 2D photonic crystals [13]. The same materials, silicon and vacuum, are used as high and low refractive index dielectrics, and the crystal consists in a triangular lattice (lattice parameter a = 240 µm) of air holes (radius r = 72 µm) etched in a 200 µm silicon slab (Fig1.7.a)). The resonance relies on defect modes: three missing holes at the center of the crystal are responsible for a perturbation of the crystal periodicity, the defect, where a photonic mode is trapped due to the surrounding photonic crystal. Such structure provides an excellent quality factor Q higher than 10 000 (Fig1.7.b)), but also improves electric eld connement since the electric eld spatial extension is here limited in the three directions of space: besides the in-plane connement from the 2D photonic crystal, the nite slab thickness bound the mode extension in the out of plane direction. The cavity defect mode volume, here ∼ λ 3 can then approach the theoretical limit for photonic crystal based cavities, i.e. λ 2 3 [6].

It is important to emphasize at this point that the dimensionality of the electric eld connement directly dictates what type of object can be eciently coupled to the THz resonator. 1D cavities with no or minor in-plane electric eld connement can only be coupled to objects with high in-plane spatial extension. It is for instance a 2DEG in [8], quantum wells (QWs) or in general 2D materials.

On the contrary, the coupling with 0D object such as isolated quantum dots is dicult because of a poor spatial overlap of the object with the photonic mode due to their small size. A resonator that connes the electric eld in 3D appears then necessary.

Finally, some original approaches to go beyond this mode volume limit have to be highlighted.

Lu et al.

propose a theoretical scheme to further enhance the electric eld connement in all dielectric photonic crystal cavities [14]. The eect relies on a smart use of electromagnetic boundary conditions at dielectric interfaces, i.e. continuity of the electric displacement eld This trick enables an increase of the electric eld energy density at the hotspot, in silicon, by a factor ( 2 1 ) 2 i.e. about 130 for a silicon/air interface and decreases the mode volume by the same order of magnitude. This eect is associated with relatively low additional radiative losses maintaining a quality factor Q higher than 10 000.

Although this theoretical proposition suers from some drawbacks for actual applications, for instance the small extension of the hotspot in silicon, it opens interesting possibilities to increase the coupling eciency of dielectric photonic crystal cavities with small 0D objects.

Overall, the photonic crystal cavities we presented here hosts all several high quality factor Q modes but their mode volume is fundamentally limited to the wavelength λ 3 by the diraction limit because they are propagation based cavities.

LC circuit resonators

We focus now on the opposite type of resonator: LC circuit or localized component resonators. The most popular LC circuit resonators in the THz range are split-ring resonators (SRRs) and their derivatives. They were originally designed for radio frequencies, with a rst example at 240 MHz for particle acceleration applications [15]. During the rise of attention to THz technologies in the mid 2000's the structure was scaled down to obtain a THz SRR at 2.6 THz [16]. Its fabrication beneted from the diusion of photo-lithography for micro-fabrication of 2D structures, which also enabled the Reproduced from [16]. b) Transmission spectrum of the SRR structure included in the inset picture. Q = 6.9. adapted from [17]. c) Complementary SRR metamaterial structure (yellow is a gold layer). Note the polarization of the electric eld in the horizontal plane. d)

Transmittance spectra for direct SRR (blue) and complementary SRR (red) metamaterials. Q = 11.7 and 5.3, respectively. e) In-plane electric eld mode prole (heatmap) and current distribution (red arrows) for direct SRR (left) versus complementary SRR (right) at 500 GHz. c), d), e) reproduced from [18]. fabrication of large arrays of resonators at one time. In the THz range, SRRs are indeed mostly used as 2D metamaterials, i.e. 2D arrays of sub-wavelength period reproducing the same pattern, here the SRR, on large areas, that optically respond as an ensemble. The primary reason is that large area samples are necessary for optical THz measurements because of low focusing possibilities. The characteristic SRR structure from [16] is picture in Fig1.8.a): a metal ring, forming an inductive loop, is split by a narrow capacitive gap in which charge accumulation happens. In this example an additional smaller ring placed at the center. The size of this simple SRR (∼ 100 µm) is still of the order of the wavelength as λ = 115 µm at 2.6 THz.

Since this rst demonstration, many improvements on SRR design have been made, mostly lead by Faist group at ETH-Zurich for light-matter coupling applications [17]. A typical transmission spectrum and design of state of the art SRR is presented Fig1.8.b): the structure is rectangular rather than circular, capacitive gaps are widened and several loops are associated. The transmission spectrum presents two distinct resonances which is a striking illustration of the distinction between LC modes and propagation based modes: for the rst resonance, at 0.50 THz, the 36 µm wide resonator is almost 5 times smaller than the wavelength in silicon λ n = 170 µm (GaAs, n = 3.53) whereas the resonator size is of the order of the wavelength as λ n = 42 µm for the second resonance at 2 THz. The rst mode is thus a LC circuit resonance and the second is a propagation based resonance that is often called "cut-wire" mode or dipolar mode.

Maissen et al. used an alternative resonator design in [18]: the complementary split ring resonator or CSSR, where the metamaterial pattern is identical to the related SRR but metal and free substrate are inverted. The metamaterial is then a whole metallic plane including SRR shaped holes (See Fig1.8.c)). The CSRRs and the usual direct SRRs share many reciprocal properties, provided a 90 • polarization rotation of the excitation electric eld. They share the same resonance frequency (See Fig1.8.d) at 0.5THz) but CSSRs exhibit a transmission maximum at resonance since unlike direct SRRs that exhibit a transmission minimum. Then, current connement in CSSR is equivalent to electric eld connement in SRR, as the small capacitive gap of SRRs is replaced by a narrow metal strip in CSRR (heatmap vs red arrows in Fig1.8.e)). As a consequence, the CSSR appears rather designed to conne magnetic eld around this narrow strip.

From a mode volume perspective, the SRR is indeed much more ecient to concentrate the electric as the electric eld is conned in the two narrow gaps whereas the electric eld is conned into the wider central region in CSRR, which implies a mode volume most likely orders of magnitude larger in CSSR. However, the light-matter coupling constant g is higher with CSSRs in [18] than with SRRs in [17] which shows that the mode volume V as dened in Eq.1.26 is not sucient to characterize the light-matter coupling strength. The authors do use the mode volume (V = 5.8 × 10 -17 m 3 = 3 × 10 -7 λ 3 for the CSSR) but account for this issue by including the vector potential value at the 2DEG position, which is dierent from the maximum vector potential norm, for their light-matter coupling constant g theoretical evaluation. This issue will be extensively discussed in Chapter 2. This couterintuitive eect highlights a fundamental limitation of SRRs : since the 2DEG is located inside the substrate and not at the electric eld maximum inside the capacitive gap, the 2DEG can only couple to fringing eld from the resonator. In other words, the overlap between the 2DEG and the resonator EM mode is rather low and an excellent connement is then not necessary desirable. This explains how the 2DEG can be in the end better coupled to a resonator with a priori larger mode volume V . This issue is an important motivation for the design of the next class of resonators we present: 3D LC circuits. Paulillo et al. developed 3D LC circuits such as 3D meta-atoms for coupling with parabolic quantum wells (PQWs) [19] (Note previous works about related LC-circuits designs [20]). This structure is represented Fig1.9.a): the cylindrical active matter region or PQW is inserted between a metallic ground plane and a top metal disk as second capacitor plate, which is itself connected to the ground plate via a metal band closing the inductive loop. An ensemble of the resulting resonators are arranged in a 2D sub-wavelength array to form a 2D resonant metamaterial, exhibiting a typical LC resonance in the THz range as presented Fig1.9.b). Also, the mode volume is approximately given by the capacitor volume, here 23 µm 3 3 × 10 -5 λ 3 . As a second example, Jeannin et al. investigated an alternative design derived from an usual 2D SRR structure (Fig1.9.d)), whose reection spectrum is represented Fig1.9.c) [21]. Here, the inductive loop is equivalent to the 2D metal wire found in SRRs and the capacitor only is in 3D with a ground plane buried into the substrate. The exploration of 3D structures enables an important change in the capacitor structure used in the LC circuit. Instead of neighboring thin layers of metal creating a capacitor by charge accumulation at their edges in 2D SRR, capacitors in 3D LC circuits can be actual parallel plate capacitors. The electric eld in the resonator is consequently rather uniform and well localized between capacitor plates (See the electric energy density Fig1.9.e)), which eases the coupling with QW that are directly placed between the capacitor plates (Also note that a vertical electric eld is necessary for coupling with quantum wells). For such systems, because the active matter system is uniformly exposed to the maximum electric eld of the resonator, the mode volume is completely relevant to describe the cavity light-matter coupling enhancement because the overlap between active matter and the EM resonator mode is close to unity. In [21], the mode Figure 1.9: a) 3D THz meta-atom resonator structure, and b), related reectivity spectrum. Q = 6.3. Reproduced from [19]. c) Reectivity spectrum (Q ∼ 6) of the 3D LC circuit structure presented in d). e) Electric (left) and magnetic (right) energy densities proles for the LC mode at 3.5 THz. c) , d) and e) adapted from [21].

volume is as low as V = 10 -6 λ 3 , an improvement compared to [19].

All the quality factors of the LC circuit structures presented here are rather low, ranging between 5 and 12. This is directly related to the resonance mechanism that relies on charge currents for induced magnetic eld in the inductive loop and charge accumulation in the capacitor element, leading to high ohmic losses Γ loss . Additionally, we have to consider the necessity for fulll at least partially the critical coupling criteria. SRR are radiatively coupled to the outside in two directions so that Γ rad,1 = 0 and Γ rad,2 = 0. However, they are not symmetric resonators because they stand on a dielectric substrate, so that the criteria Γ rad,1 -Γ rad,2 = Γ loss can be fullled with intrinsic losses. Resonators such as LC circuit that have high ohmic losses Γ loss have then necessarily also a high radiative coupling rate Γ rad,1 in order to ensure a high contrast resonance peak. From the critical coupling criterion, we can estimate that the quality factor Q is reduced for this reason by about half or more for cavities compatible with transmission (i.e. having non-zero Γ rad,2 ). Q rad is then a major contribution to the total quality factor Q, but its value is imposed by the intrinsic losses.

As a rst solution, a full metallic ground plane suppressing Γ rad,2 for minor additional losses is used in [21] and [19], which makes Q rad,1 = Q loss sucient for critical coupling. The obvious counterpart is that the resonator cannot be used in transmission anymore. Alternatively, the use of superconducting materials greatly reduce ohmic losses. A YBCO CSSR quality factor of 31 was reported in [22], and niobium, due to its lower residual conductivity, has been used for SRR with quality factors as high as 87 on a silicon substrate [23] and up to ∼ 180 on a MgO substrate [24]. In these low losses systems, Q rad can be pushed to very high values and a whole new way to design SRR can be explored.

Metal-dielectric-metal antennas

Antennas are among the oldest man-made electromagnetic resonators. The most typical antenna structure is the dipole antenna, which is basically a metallic rod with one dimension L much greater than the other, and whose fundamental resonance wavelength is given by L = λ 2n ef f

(n ef f the ef- fective mode index). The resonance condition imposes a size of the order of the wavelength, which makes it a propagation based resonator. However, the specicity of antennas involving metal compared to photonic crystal cavities, is that 3D connement can be achieved with only one dimension given by the wavelength. This for instance enables THz dipolar antennas to have nanometer scale radius as long as their length is of the order of the THz wavelength [25]. As a consequence, the mode volume is not fundamentally limited to ( λ 2 ) 3 , even if mode volumes as small as in LC circuit resonators cannot be reached. This specicity makes metal-dielectric-metal antenna a family on its own in THz resonators.

Recent THz antennas structures rely on a metal-dielectric-metal structure, where the electric eld is concentrated in a dielectric layer located on a full metal ground plane and under a metallic top layer that denes the structure shape. Todorov et al. report the rst use of this structure type for THz light-matter coupling are microcavities in [26]: a metallic strip array deposited on a quantum well structure behaves as a resonator along the strips width i.e. w strip = k λ 2n ef f (k accounts for higher order modes). The electromagnetic mode is represented Fig1.10.a) top panels. From impedance mismatch due to the edge of the metal layer, the electric eld is conned under the top metal strip, and we observe the usual standing wave pattern with an increasing number of lobes for higher order mode. The specicity here is that cavity edges are magnetic eld nodes instead of electric eld nodes because the mismatch is from high (inside the cavity) to low impedance.

Unlike suggested by the mode prole picture Fig1.10.a), the dielectric layer thickness is much smaller than the strip width (e dielec = 0.8 µm vs w strip = 12.3 µm). The resonant mode is thus conned in a thickness about 100 times smaller than the wavelength (λ = 86 µm at 3.5 THz): this is The electric eld is conned in both the center and the outer edge of the dielectric disk (radius 21 µm, thickness 4 µm), i.e. about the whole volume of the resonator V = 6 × 10 -15 m 3 = 2 × 10 -3 λ 3 at 2.1 THz. This is the same order of magnitude as in square patch resonators.

The originality of this structure is the possibility of post-process tuning of the resonance frequency through anisotropic or isotropic etching trough the top patch hole, partially removing high refractive index dielectric to decrease the eective mode index and increase the resonance frequency.

The authors propose however a model based on LC circuits components evaluation that properly accounts for the resonance frequency evolution. This discussion highlights that, because antennas contain metal structures and involve currents in their resonance mechanism, their classication between LC circuits and propagation based resonators remains to some extend ambiguous. They can be consequently considered at the edge, hence their hybrid properties in terms of quality factor and mode volume.

As a conclusion, all this recent research works use a wide variety of THz resonators, which are either inspired from optical cavities, electronic circuits or antenna. Each of them provides its own advantages: we report in Table1.1 the value of Q and V for some selected works presented in this section.

Resonator cavities, show some interesting improvement of the mode volume but these values remains order of magnitude higher than LC circuits whereas the rather low quality factor values have nothing to do with the ones of photonic crystal cavities. High quality factors and low mode volumes appear still incompatible in current THz resonators and we described the fundamental limitation for this, primarily the wavelength diraction limit and ohmic losses.

The basic THz Tamm cavity

We presented in the previous section the dierent families of THz resonators, and pointed out that their advantages and limitations are intrinsically linked to their types, so that obtaining both a high quality factor and a low mode volume is dicult. In order to try to solve this apparent contradiction, we explore a novel type of resonator in the THz range: the THz Tamm cavity.

After presenting the general Tamm cavity principle and its inspiration from the existing NIR Tamm cavity, we will detail the reection properties of the two mirrors we used in the THz range, a THz DBR and a gold mirror. We present then our realization of the THz Tamm cavity, that we characterize extensively, both experimentally and using simulations. A large part of this section and of Section 1.4 is reproduced in our publication in ACS Photonics, "Tamm Cavity in the Terahertz Spectral Range" [29]. 

THE BASIC THZ TAMM CAVITY

To understand the apparition of such mode, let us consider a wave propagating between the two mirrors. As the wave is successively incident on the DBR and on the metallic mirror, it is subject to two reections r DBR and r metal each cycles. A cavity mode appears if the wave interferes constructively with itself after a round-trip inside the cavity. As the cavity thickness is reduced to zero, the phase matching condition for constructive interference reduces to:

r DBR r metal = 1 (1.27)
Or alternatively, considering the possibility for non-perfect reectivity, with p an integer:

arg(r DBR ) + arg(r metal ) = 2pπ

(1.28)

Consequently, there is a possibility for a resonant mode if the DBR is highly reective, i.e. for a frequency inside the photonic bandgap of the DBR. We will see that the nal dielectric layer, closest to the metal mirror, is necessary of high refractive index. The "Tamm" cavity name refers then to an analogy with the electronic Tamm states which are surface states in semiconductor structures arising for electron energies within the material bandgap due to a disrupt of periodicity near the material surface [30]. Eq.1.28, that is referred to as phase matching condition, enables the prediction of the frequency of the resonant Tamm mode.

1.2.2 Tamm cavities in the infrared range.

Tamm cavities and photonic Tamm modes were rst theoretically proposed by Kavokin et al. in the visible range as a structure associating two photonic crystals [31], where the resonant mode is due to a period mismatch between the photonic crystals. It is in a second article [32] that the metal-photonic crystal structure investigated since was proposed theoretically. The authors propose a structure adapted to the near infrared (NIR) range using GaAs and AlAs as high and low refractive index dielectrics (n GaAs = 3.7 and n AlAs = 3.0, respectively) as well as a gold layer as metallic mirror (See structure and eld prole Fig. 1.12.a)). Experimental demonstration was later provided in [33], where the alternate semi-conductor structure is grown using molecular beam epitaxy (MEB).

19 pairs of 66/81 nm thick GaAl/AlAs layers provide a DBR centered at 0.97 µm. By adding a 50 µm gold layer, a resonant Tamm mode at 1.0 µm was demonstrated (Fig. 1.12.b)), with a quality factor in the ∼ 250 range dominated by losses in the gold layer.

NIR Tamm cavities were subsequently extensively studied with DBR structures typically grown by molecular beam epitaxy or PECVD, such as GaAs/Al 0.95 Ga 0.05 As. A presented by G. Lheureux in his PhD thesis [34], they drove interest for their spatially conned mode: a typical feature of Tamm mode is the exponential decay of the electric eld amplitude in the DBR structure, starting from the metal layer Fig. 1.12.c). Switching from gold to silver as metallic mirror because of its lower losses in the NIR and visible range, the mode quality factor can be increased to 1000. Using little structure modication (Fig. 1.12.d)), the mode prole can be manipulated to enhance penetration depth in the DBR and increase the quality factor up to 5000 [35]. This technique is equivalent to the increase of cavity length for Fabry-Perot photonic crystal cavities we presented in Section 1.1.3. Tamm mode were also used for coupling with surface plasmon-polariton (SPP) [37,38] and for the demonstration of lasing structure relying of InGaAs/AlAs quantum dot structures [36], in which in-plane connement and polarization control can be achieved through e-beam lithography patterning of the surface metal layer (Fig. 1.12.e)). nm, forming a high quality factor "Super-Tamm" mode and right, high transmission mode in DBR structure. Adapted from [35]. e) Illustration of the patterning of the top metal layer for connement and polarization control. Reproduced from [36].

Reection properties of silicon-vacuum THz DBR

In this thesis work, we propose to transpose the concept of Tamm cavity from the NIR to the THz range. The wavelength λ in the THz range is of the order of several hundreds of µm (1 THz = 300 µm), which makes the DBR layers thicknesses needed much larger than in the NIR range. The layers thicknesses are indeed given by the DBR stop-band center frequency, expressed due to the destructive interference condition as:

f DBR = (2p + 1) c 4e i n i or e i n i = (2p + 1) λ Ref l 4 (1.29)
With p an integer and e i n i the thickness/refractive index product in layer i, constant between dierent layers. The reection spectrum of a DBR is periodic, and a DBR having its rst stop band (p = 0) centered at 1 THz requires e i n i = λ 4 = 75 µm. This makes the DBR fabrication methods used in the NIR range, usually molecular beam epitaxy growth or PECVD deposition, impossible to scale up to such high thicknesses. To solve this issue, we use a THz DBR equivalent to the ones used for photonic crystal Fabry-Perot cavities [8,9]. Their simple structure enables an easy fabrication of these DBR by stacking alternatively vacuum (or air) and silicon layers as low and high refractive index dielectric layers. In the following, we will call "n-layers" DBR a structure composed of n The properties of multilayer structures such as DBR can be predicted using Transfer Matrix Method or TMM [39]. TMM is an analytical method enabling the computation of reection, transmission and absorption coecients as well as eld proles but relies on multiple matrix multiplications, so that a numerical implementation is required in the end (see Appendix A). We calculated using TMM the reection coecient of a vacuum-silicon DBR for 1,2 and 3 layers DBR centered at 1 THz, as represented Fig. 1.13.b).

The "1 layer DBR" structure is a simple silicon layer, and its reection spectrum (black curve) is the rst period of the oscillation pattern due to interference eects in a thin dielectric slab, which can be written as:

R 1layer = 2R(1 -cos(∆φ)) 1 + R 2 -2Rcos(∆φ) with ∆φ = 2ke Si n Si cosθ (1.30)
Where R = 30.0% is the reection coecient at the silicon-vacuum interface, k = ω c the wave- vector in vacuum and θ the angle of incidence. The frequency domain periodicity appears here explicitly through the contribution of k and the frequency period

f P = c 2e Si n Si cosθ .
The 2 layers DBR, composed of only 2 silicon and 1 vacuum layers, is sucient to observe a well dened DBR photonic stop-band (orange curve) because of the large refractive index mismatch between air and silicon (n Si = 3.42). For the same reason, the 3 layers DBR is sucient to obtain a reectivity higher than 99%: in more details, maximum reection coecients are 71.0%, 97.1% and 99.75%, for 1,2 and 3 layers, respectively. Such high reectivities are reached owing to the negligible THz conductivity of the dielectric layers. For a THz DBR, we use of high resistivity silicon wafer (typically ρ > 8000 Ω.cm) as dielectric layers to minimize ohmic losses. Finally, the stop-band is about 70% of the center frequency wide, which is much larger than for GaAs/AlGaAs based DBR for the NIR range, closer to 10% as presented in Fig. 1.12.b). The stop-band width is indeed given

∆f f DBR = 4 π arcsin n H -n L n H + n L (1.31)
It is consequently larger for a higher refractive index contrast.

Let us now remark that the required silicon wafer thickness for a THz DBR centered at 1 THz, 22 µm, is very small compared to standard silicon wafers. Due to supply limitations in commercially available wafers, we used in this work The DBR stop-band of the 3λ 4 DBR is split in three smaller sub-stop-bands because of the fre- quency period divided by 3 associated with the tripled silicon thickness. The sub-stop-bands are not all equivalent: for the center one, interferences favor reection in both types of layers just as in the λ 4 structure whereas the destructive interference criteria is only fullled by the silicon layer in the lateral sub-stop-bands. As a result, the maximum reectivity of the lateral sub-stop band is only 98.9%, meaning losses are more than 4 times higher but it is unchanged in the central stop band.

The central stop-band is nonetheless more than twice narrower in the 3λ 4 structure ( ∆f f DBR ∼ 32%).

We will consider this 3λ 4 structure, that we used for experiments, in the following, and focus on the center sub-stop-band around 1 THz.

In order to realize a Tamm cavity, we are interested in the reection properties of the DBR and in particular the phase of the reection coecient r DBR through Eq.1.28. Let us emphasize that r DBR in the framework of the phase matching condition for Tamm cavities does not refer to the amplitude reection coecient of the whole silicon-vacuum DBR structure. Indeed, as presented prole than the full DBR power reection coecient R from Fig. 1.14 but shows some dierences.

In particular, the maximum of |r DBR | 2 is signicantly lower (99.15%) compared to the full DBR reection coecient because it involves one less dielectric interface.

The amplitude reection coecient r DBR is represented in the complex plane in Fig. 1.15.c). The high reectivity, useful part of the DBR stop-band highlighted in red in Fig. 1.15.b) is also highlighted in red in Fig. 1.15.c) and d) to ease visibility and connections between these gures.

Inside the DBR stop-band, r DBR lies close to the unity circle and rotates counterclockwise as the frequency increases. This phase of r DBR is represented Fig. 1.15.d). We observe a quasi-linear evolution of the reection phase inside the stop-band, centered at arg(r DBR ) = π for f = f DBR . We can produce an approximate expression for the phase of r DBR inside the stop-band. arg(r DBR ) can be separated in two contributions: the propagation contribution in the nal silicon layer 2ke Si and the phase of the reection on the rest of the DBR, r * The phase of r * DBR can be approximated at rst order around the stop-band center frequency f DBR by [40]:

arg(r * DBR ) = 2πτ * φ (f -f DBR ) + O(f -f DBR ) 3 (1.33)
Where τ * φ is the phase reection delay of the DBR without the nal Si-layer. This quantity describes the time it takes for a wave to be reected on the DBR because of the nite penetration of the incident wave inside the DBR. For usual DBR structure with λ 4 layer thicknesses, the phase reection delay τ * φ can be computed analytically [40] but for our 3λ 4 structure, τ * φ can be computed using TMM: τ * φ = 0.30 ps for a 3 layers DBR.

Since e Si = 3λ 4 , the nal silicon layer propagation contribution 2ike Si can be expressed as 2ke Si = 3π + 3π(f -f DBR )T with T = 1/f DBR = 1 ps being the DBR central period. We can now express the DBR reection phase: Let us nally emphasize that this expression assumes the nal layer is of high refractive index:

arg(r DBR ) = π + 2π(τ * φ + 3T 2 )(f -f DBR ) + O(f -f DBR ) 3
if it were of low refractive index and the previous layer of high refractive index, then the reection phase would be 0 at the stop-band center instead of π.

Gold layers as mirror in the THz range

The second mirror we consider is a metallic mirror made out of a gold layer, for its high conductivity and low ohmic losses, deposited on the nal silicon layer of the DBR. The optical properties of gold are described by it refractive index n gold , which can be found in literature from the visible range down to about 1 THz [41] and is represented Fig. 1.16.a). This frequency evolution is well captured by the Drude conductivity model, which enables to write the material relative permittivity as a function of the angular frequency ω as:

= ∞ - ω 2 P ω 2 + iωω τ (1.35)
Where ω P is the metal plasma frequency and ω τ is the electron scattering rate in the metal. ∞ is the high frequency limit of . Ref. [41] provides ω P = 1.37 × 10 16 rad.s -1 and ω τ = 4.5 × 10 13 rad.s -1 , i.e. ω P is in the UV range but ω τ is about 6.5 THz. Since we are interested in the ω ω P limit in the THz range, ∞ can be directly neglected.

We use this expression to provide approximate expressions for the real and imaginary part of the refractive index n gold as = n 2 gold = (n 1 + in 2 ) 2 . Two cases have to be separated: in the mid-infrared range (MIR), ω P ω > ω τ , and the refractive index can approximated as:

n 1 = ω P ω τ 2ω 2 and n 2 = ω P ω (1.36)
The refractive index is then mostly imaginary and the wave inside the material is entirely evanescent.

In the lower part of the THz spectrum, typically around 1 THz, we now have ω P ω τ > ω and a new approximation of leads to:

n 1 = √ 2 2 ω P √ ωω τ (1 - ω 2ω τ )
and

n 2 = √ 2 2 ω P √ ωω τ (1 + ω 2ω τ ) (1.37)
n 1 and n 2 are of the same order of magnitude and the wave is propagative over no more than one wavelength in the material. The above expressions are represented using parameters ω P and ω τ from [41] along experimental data in Fig. A direct consequence of this perfect-like mirror behavior of a gold layer is that transmission is extremely low, beyond detectable limits at 1 THz. As a consequence, a cavity using this mirror is used in reection only, as we will see for THz Tamm cavities in the following.

The THz Tamm cavity

We presented in the previous section the phase and amplitude reection properties of the silicon/vacuum THz DBR and of a gold mirror on a silicon substrate separately. We present in the following the result of the association of these two mirrors, the THz Tamm cavity whose properties will be investigated both theoretically and experimentally.

Fabrication and characterization

We fabricated the THz DBR by stacking silicon wafers (ρ > 8000 Ω.cm) separated by metallic spacers to form vacuum gaps. The ∼ 70 µm thick, double side polished, high resistivity silicon wafers were supplied by the company Pi-Kem Ltd and the 75 µm metallic spacers were produced by the company Wipelec. We deposited in the cleanroom a gold mirror on the top silicon layer of the DBR stack using thermal evaporation under vacuum of a 100 nm gold layer (Pictures of the structures are showed in Fig. 1.17). We developed a manual assembly procedure of the whole structure in GHz). Dashed line hides high amplitude noise in the low frequency part of the spectrum, which is at the edge of our FTIR bandwidth. A gold mirror is taken as reference. The whole spectrum is shifted around 0.9 THz because we used ∼ 73 ± 2 µm thick wafers instead of 66 µm.

micro-machining of the holder surface. This original procedure is simple to perform, which makes our THz Tamm cavity easy to fabricate. In the same manner we did for the silicon-vacuum DBR, we will call a "N layers Tamm cavity" a structure made of N Si layers structure and N-1 vacuum layers.

To characterize the electromagnetic modes in the THz Tamm cavity, we perfom reectivity measurement at 13 • incidence using a Fourier transform infrared (FTIR) spectrometer based on a Globar thermal light source and a liquid helium cooled bolometer detector. The spectral resolution of the FTIR spectrometer is 6 GHz. Experimental and TMM simulated reection spectra of a 3 layers Tamm THz cavity are represented in Fig. 1.18, alongside the reection spectrum of a 3 layers THz DBR.

We observe the apparition of a sharp, high contrast mode at the center of the DBR stop-band, with a quality factor Q = 544 and a minimum reectivity of 3% at 1 THz in TMM simulations. Experimental data are resolution limited and we observe Q = 121 at 0.915 THz. This important result is the rst experimental realization of the THz Tamm cavity.

We recall here the phase matching condition for Tamm cavities (Eq.1.28): arg(r DBR ) + arg(r metal ) = 2pπ

From Eq.1.34, the reection phase at the center of the DBR stop-band arg(r DBR ) = π when the nal layer is of high refractive index. Since arg(r metal ) -π around 1 THz, the phase matching condition is realized at the DBR stop-band center as observed in Fig1.18. The fundamental frequency of the Tamm mode is then easily predicted and designed as it matches the DBR center frequency. This feature is specic to the THz Tamm cavity: in the visible and NIR range, the Tamm cavity resonance frequency is close to stop-band edges of the DBR (See Fig1.12.b)). The reection phase is indeed signicantly dierent from π in the IR range, about ∼ -0.8π around 1 µm (Fig1.16.b)), so that the resonance frequency has to shift to compensate this phase through the DBR reection phase. Note that if the nal layer is of low refractive index, arg(r DBR ) = 0 at the center of the DBR stop band and the frequencies at which arg(r DBR ) = π lie outside the DBR stop band, preventing the existence of the Tamm mode.

The very slight deviation (0.1%) from the DBR center frequency seen in Fig1.18.a) is due to the non-perfect reection of the gold mirror. In the same manner, thickness variations of the nal silicon layer can shift the Tamm mode from the DBR center frequency through the 2ke layer contribution to the DBR reection phase. This is the reason why the Tamm mode is not precisely at the center of the DBR stop band in Fig1.18.b).

Electromagnetic mode prole

As we demonstrated the existence of a resonant mode in our THz Tamm cavity, we now explore the properties of this mode among which we investigate here the spatial prole of the mode. We Owing to the high refractive index contrast between silicon and vacuum used in the THz DBR, the electromagnetic eld is mainly conned in the rst silicon-vacuum layers pair. Following the denition of mode volume V from Eq.1.26, we can dene an eective connement length in the propagation direction L conf : ). For this reason, using λ 4n Si layers would greatly reduce the connement length, down to L conf = 0.18 λ n Si = 16 µm which is below the optimal value for full dielectric propagation based cavities [6]. An extended discussion on the impact of using 3λ 4 regarding mode prole is provided in Appendix B. The reason for the improved electric eld connement in THz Tamm cavities is highlighted by the comparison of this mode prole with the mode prole inside THz photonic crystals Fabry-Perot cavities as presented in Fig. 1.5.b) from Ref. [8]. Ignoring the additional lobe here, the photonic crystal Fabry-Perot cavity mode prole appears to be equivalent to the Tamm cavity mode prole duplicated by symmetry, where the gold mirror is the symmetry plane. As we presented, a gold mirror behaves as a perfect electric conductor in the THz range, which is known to be a symmetry plane regarding tangential electric eld (at normal incidence the electric eld is always tangential). This way, the gold mirror prevents the necessity for the symmetric part of the full photonic crystal cavity, which directly reduces the connement length by a factor 2, at the cost of using the cavity in transmission.

L conf = cavity | (z)E 2 |dz | (z)E 2 | max
The particular electric eld distribution within THz Tamm cavities is of interest for light-matter coupling applications. First, the coupling between the electric eld and an active material is optimal for both 2D materials deposited at the nal vacuum-air interface and for bulk materials in the core nal layer. Graphene embedded within Tamm cavities using spacer layers has been previously theoretically studied in the IR range [42]. For Tamm cavity operating at THz frequencies, as the optimal 2D material position stands on a free silicon-air interface, the incorporation of a 2D material within the cavity is easily achievable. Indeed, it is compatible with direct transfer of usual fabrication techniques on silicon chip. Large coupling with bulk material is also an interesting feature, common to Fabry-Perot cavities but not provided by 2D electronic resonators that relies only on the fringing elds that leak out from the circuit capacitor [43]. Then, the Si layer can act as a gate electrode for 2D active materials deposited at the silicon-vacuum interface (where electric eld is maximum) to control their chemical potential without introducing any electromagnetic perturbation. Besides, the metallic layer is well-adapted for an electrical pumping of active bulk materials.

Inuence of the DBR silicon layer number

The main parameter to be chosen in the THz Tamm cavity structure is the number of silicon and vacuum layers, that inuences the DBR reectivity, as presented in Section 1.2.3. The quality factor Q of the Tamm cavity is determined by the quality of its mirrors:

1 Q = 1 Q DBR + 1 Q gold (1.40)
Since the cavity cannot transmit THz waves, the resonant mode only interacts with two channels: a radiative coupling channel through the DBR, and a loss channel is the metal because losses in the DBR are negligible due to the use of high-resistivity silicon and vacuum layers. Q rad identies then to Q DBR and Q loss identies to Q gold under the formalism we presented in Section 1.1.2, and coupling rates Γ rad and Γ loss are associated to the DBR and the gold mirror respectively:

Q DBR = 2πf 0 Γ rad and Q gold = 2πf 0 Γ loss (1.41)
With f 0 the cavity resonance frequency. The expression of the coupling rates Γ rad and Γ loss are deduced for the power fraction lost for each reection, T i = (1 -|r i | 2 ), and the mirror incidence rate, which given by the inverse round-trip time 1 τ φ [4]:

Γ rad = 1 τ φ (1 -|r DBR | 2 )
and

Γ loss = 1 τ φ (1 -|r gold | 2 ) (1.42)
We can then link the amplitude decay time τ dened in Eq.1.6 to the round-trip time inside the cavity τ φ as:

τ = (1 -|r DBR | 2 ) + (1 -|r gold | 2 ) 2 τ φ (1.43)
And the two factors inuencing the quality factor Q = τ ωr 2 appear explicitly. As a result of the importance of the round-trip time τ φ , proportional to the equivalent DBR length l DBR , the use of 3λ 4n Si thick Si layers instead of λ 4n Si directly increases the cavity quality factor without any inuence on both mirror losses [44], in the same manner as increasing the cavity length in photonic crystal based Fabry-Perot cavities. This is obviously done at the expense of increasing the connement length L conf .

In the end, the quality factor for our THz Tamm cavity reads:

Q = 2π f 0 (Γ rad + Γ loss ) = 2π τ φ f 0 (1 -|r DBR | 2 ) + (1 -|r gold | 2 ) (1.44)
The evolution of the quality factor with the number of silicon layers in the DBR calculated from this expression is given Fig. 1.20.a).

On the other hand, it is desirable to maximize the peak contrast of the cavity mode. Total absorption is achieved when Γ rad and Γ loss are equal according to the critical coupling criterion [45].

The minimum reectivity is here given, according to Eq.1.22 by:

R min = Γ rad -Γ loss Γ rad + Γ loss 2 (1.45)
We represent in Fig. 1.20.b), the reectivity spectra of Tamm cavities computed using TMM for increasing silicon layers in the DBR as well as experimental data in Fig. 1.20.d). Adding silicon/vacuum pairs to the DBR increases |r DBR | and Q DBR , resulting in the cavity quality factor Q to converge to the ultimate limit of Q gold = 932. However, this leads to a dramatically reduced peak contrast 1 -R min as presented Fig. 1.20.a), due to deviation from critical coupling. To get more insights on this criterion, we represent in Fig. 1.20.c) the amplitude reection coecient of the cavity r, computed using TMM, in the complex plane [2]. Far from the resonance, the cavity just behaves as its DBR part (gray dotted line), having a reection modulus |r | close to 1 and a phase varying linearly inside the stop-band [40], corresponding to a counter-clockwise rotation in the complex plane. Hence, r follows the unity circle, moving counterclockwise. Close to resonance, |r| drops and r describes a smaller inner circle (counterclockwise), attached to the r = -1 point, of radius 2Γ rad Γ rad +Γ loss . Actually, r just follows the expression from Eq.1.17, with the specicity that r 1 = r DBR has a linear phase dispersion.

Critical coupling is achieved when r = 0 is reached (dashed line circle). The 2 silicon layers cavity is then said to be overcoupled (Γ rad > Γ loss ) whereas the 3 and 4 silicon layers cavities are undercoupled (Γ rad < Γ loss ). Undercoupling is even larger for 5 and more layers cavities: each additional silicon/vacuum pair after the 4 th silicon layer typically divides the resonance peak contrast by a factor ∼ 10 due to the increasing DBR reectivity. The 3 silicon layers case is almost critically coupled: this is the reason for the excellent contrast of the resonance represented Fig. 1.20.b) (R min = 3%). To exactly meet the critical coupling, the tuning of Γ rad must be ner. Smaller DBR quality factor steps for additional dielectric pairs could be achieved by reducing the refractive index contrast between dielectric layers, using for instance polymers instead of vacuum. In particular, TOPAS, as a very low loss material in the THz range, could be a good candidate. As the number of Si layers increases from 2 to 3, we observe a narrowing of the resonant peak from 11 GHz to 7.5 GHz. Above 3 Si layers, the resonance linewidth becomes however relatively constant because the resonance linewidth is too small to be resolved by the FTIR spectrometer. This limited spectral resolution of the measurement also reduces the contrast of the resonant peak for Tamm cavities with 3 and 4 Si layers. The slight shifts in the resonance frequency from one structure to the other are only due to small variations of the Si and vacuum layers thickness.

Experimental quality factor

Measurements presented above were limited by the resolution of our FTIR, 6 GHz. To determine the actual experimental quality factor of a 3 Si layers Tamm cavity, we perform higher resolution reectivity measurements using the SOLEIL synchrotron source. Measurements at the AILES beamline, in collaboration with Pascale Roy and Jean-Blaise Brubach, are performed on a Bruker IFS125 HR interferometer operating at 600 MHz resolution combined with synchrotron radiation. The reectivity was measured at quasi normal incidence (7°) by means of a Helium pumped bolometer and a 50 µm thick beamsplitter [46]. The THz reection spectrum of a 3 silicon layers cavity, reported in Fig. 1.21, shows a sharp resonance at 1.015 THz.

The full-width at half-maximum (FWHM) of this Tamm cavity mode is ∼ 4.4 GHz corresponding to a quality factor as high as 230 and the contrast 1 -R min reaches 62 %. This result shows the potential of these Tamm cavities for advanced THz devices. In particular, the high contrast value of the cavity resonance combined with a high quality factor, makes the Tamm cavity especially suited to be coupled to low absorbing materials such as graphene. Indeed, loading the cavity with an absorbing material adds another dissipation channel transferring energy to the material that can be modeled as an additional dissipation rate Γ * loss , and Γ * loss Γ loss is a necessary the condition for the majority of the incident power to be coupled to the material instead of dissipated by the resonator losses.

We now discuss the origins of the dierence between the experimental quality factor and the theoretical prediction from TMM. We attribute the experimental quality factor lower than predicted of the layers, we model the Tamm cavity by an eective distribution of cavities having a Gaussian distribution of resonance frequencies within the THz beam D(f ):

D(f ) = 1 σ f √ 2π e -1 2 (f -f 0 ) 2 σ 2 f (1.46)
With σ f the resonance frequency standard deviation and f 0 the center frequency of the distribution, which is the experimental resonance frequency. This distribution is plotted for σ f = 1 GHz in Fig. 1 We observe a good agreement between the experimental spectrum and the convoluted reection spectrum for σ f = 1 GHz for both quality factor and peak contrast. This strongly supports our interpretation that the experimental broadening is mainly due to layer thickness variation. From σ f , we can estimate an order of magnitude of the thickness variation σ e over the THz beam size.

Assuming the whole DBR follows the same proportional thickness variations, since f 0 is inversely proportional to e Si , we have:

σ e e Si = σ f f 0 ∼ 0.1% (1.47)
A rough order of magnitude of the thickness variations can then be estimated: σ e ∼ 100 nm over the distance of the beam waist of 1 mm. It shows most importantly shows that the layer thickness uniformity is the dominant factor limiting the cavity quality factor. In particular, the quality of the parallelism of the wafers in the stack, that gives the vacuum layers thickness uniformity, is of prime importance as we observed Q-factor variations for successive manual stacking of the same layers.

Higher order modes

The reection spectrum of the DBR being periodical, Tamm cavities also exhibits higher order resonant modes, similar to Fabry-Perot cavities. For instance, a Tamm cavity resonant at 1 THz will present a second order Tamm mode at 3 THz, a third at 5 THz etc. Since the resonance of the Tamm cavity matches the DBR stop-bands center frequencies, higher order modes appear at frequencies f p similar to Eq.1.29:

f p = (1 + 2p) c 4n Si e Si (1.48)
For cavities using 3λ 4n Si silicon layers, because the stop-band is split in three, additional Tamm modes appear in the lateral sub-stop-bands, that we name modes "-" and "+". A few examples of experimental measurements of these modes are presented in Fig. 1.23. The mode 1+ is a side mode of the fundamental mode 1 we presented before and modes 2-, 2 and 3 are higher order modes.

We experimentally show that lateral sub-stop-bands are not equivalent to central stop bands: center modes 2 and 3 have higher quality factors than lateral modes 1-and 2-. Moreover, we observe that the quality factors do not increase when the mode order increases, as it would be theoretically expected from Q = τ ωr 2 with ω r the resonance angular frequency and τ the cavity lifetime, assumed about constant. This can be explained by the layer thickness variations inside the DBR that are of increasing relative importance when frequency increases, which compensates the expected quality factor increase. The identication of this issue opens perspectives regarding improvement of the quality factor of these higher order modes thanks to stack quality improvements.

Another signature of stack imperfections is highlighted by the green arrow in This frequency splitting is due to the polarization dependence of the reection coecients at the dielectric interfaces, given by Fresnel equations:

r T E = n 1 cos(θ 1 ) -n 2 cos(θ 2 ) n 1 cos(θ 1 ) + n 2 cos(θ 2 ) or r T M = n 2 cos(θ 1 ) -n 1 cos(θ 2 ) n 1 cos(θ 2 ) + n 2 cos(θ 1 ) (1.49)
Here, we are interested in the amplitude refraction coecient of the vacuum-silicon interface r Si , whose modulus is represented in Fig. . The contrast decreases signicantly to 0 for both polarization, but in very dierent manner. For the TE polarization, the reectivity increase induces a quality factor increase, so that the Tamm cavity evolves towards further under-coupling. In the TM cases, the Tamm cavity reaches critical coupling around 20 • then falls back to 0 at the Brewster angle, and the quality factor follows a continuous decrease for increasing incidence angle. Both polarization resonance peaks become then weaker, but the TE polarized mode peak becomes weaker and narrower. This explains why our resolution limited measurements cannot capture the TE polarized mode at angles higher than 40 • . Counter-intuitively, the decrease of the TM mode quality factor makes its more visible to our measurement setup and compensates partially the theoretical contrast decrease, making it possible to detect up to 60 • .

As a conclusion, the basic THz Tamm cavity presented here compares well to the state-of-the-art THz cavities, especially silicon-vacuum DBR Fabry-Perot cavities: with Q > 200, it presents a high quality factor lying within the same range as the photonic crystals Fabry-Perot cavity from [8], which would enable signicant THz light-matter interaction enhancement. Also, its structure and mode prole presenting an electric eld maximum at a free surface makes it suitable for coupling with many THz active materials, typically 2D materials such as graphene as we present in the next section.

However, the eective connement length is only reduced by a factor 2 compared to propagation based cavities and is still bound to the large THz wavelength. The major interesting feature of this cavity is then not its basic performances, but the inclusion of a metallic mirror in the structure, opening a wide range of engineering possibilities in terms of cavity design, which we explore in Section 1.4.

Enhanced absorption in graphene included in THz Tamm cavities

As application of the THz Tamm cavities regarding light-matter coupling with 2D materials, we propose in this section to couple a large graphene sheet deposited inside the cavity to realize enhanced absorption of THz light by graphene. After presenting simulation results of the tunable reection spectrum of a graphene-loaded THz Tamm cavity, we will detail the cleanroom process we developed to obtain large area of graphene in a gated transistor architecture and discuss some of its results.

Note that the structural and electronic properties of graphene will be presented in more details at the beginning of Chapter 3.

Using graphene as a tunable THz absorber

Graphene, because it is a gapless semiconductor, presents interesting absorption properties in the THz range. Several applications using graphene as an absorber have been proposed, principally as a THz photodetector [47] or a THz modulator [48]. The absorption of graphene is however rather low, and light-matter coupling scheme involving THz resonators are required to enhance absorption in graphene, especially for photodetectors and modulators.

The use of graphene in THz modulators is highly appealing because of the tunability of its electronics properties by voltage controlled capacitive gating eect. Sensale-Rodriguez et al. [49] realized a graphene based modulator device in which the graphene layer stands on an insulating SiO 2 substrate, which form with the conducting p-Si substrate a capacitor (see Fig. electrically controlled from about 0.25 to 0.65. using a 30 V span.

Valmorra et al. report the coupling of graphene to Split Ring Resonators (SRRs) to realize a THz modulator [50]. Similarly, the modulation of the transmission of the sample is realized by the tuning of the electronic properties of graphene through capacitive gating, but in this device architecture, the graphene sheet is connected to two separated source and drain electrodes. The transport properties of the graphene sheet can be monitored during THz optical measurements, enabling the estimation of the Fermi level of graphene. The modulation depth is here however limited to few percent, partially because the modulation mechanism is not based on absorption in graphene but rather on the modication the SRR resonance properties due to the presence of graphene surrounding the SRR. approach relying on a graphene layer buried within the middle of a silicon THz waveguide [START_REF] Mittendor | Graphene-based waveguideintegrated terahertz modulator[END_REF].

They demonstrated experimentally a 90% modulation depth with 5 GHz modulation speed from 0.2 THz to 0.7 THz. However, the graphene layer needs to be burried within the middle of the waveguide as the maximum of the electric eld components interacting with the graphene layer are localized at the center of the waveguide, requiring dicult technical fabrication process.

These previous works suggest that graphene, because of its limited absorption, should be coupled to a high quality factor cavity in order to reach critical coupling at moderate doping values of the order of µ ∼ 100 meV. The development of an easy to fabricate device also nds its interest compared to existing solutions.

Tunable absorption using graphene embedded in a THz Tamm cavity -Simulation

We explore in the following the possibility to enhance the absorption of THz light in graphene by loading a graphene sheet in a Tamm cavity. In this device architecture, the graphene layer is deposited on the nal silicon/vacuum interface, i.e. at the electric eld maximum of the Tamm mode as presented Fig. 1.27. We performed TMM simulation of the resulting layered structure using a modied version of our TMM computation code accounting for a surface conductivity at the nal silicon/vacuum interface introduced by the graphene sheet. We use the conductivity model for graphene given by [START_REF] Choi | Broadband electromagnetic response and ultrafast dynamics of few-layer epitaxial graphene[END_REF]:

σ intra = jσ G 8k B T π 2 (ω + j/τ ) ln 2cosh( µ k B T ) (1.50) σ inter = σ G 2 tanh ω + 2µ 4k B T + tanh ω -2µ 4k B T
Where σ intra and σ inter are the intraband and interband conductivity of graphene, and the full conductivity of graphene is given by σ = σ intra + σ inter . We used here σ G = e 2

4 . E F designate the Fermi level of graphene. As we will present in the next section, it is possible to tune the Fermi level of graphene and consequently the carrier density and the conductivity of graphene using capacitive gating eect. As a general rule, the conductivity of graphene is minimal at µ = 0 and the intraband conductivity increases with the temperature.

Because of this surface conductivity, amplitude reection and transmission coecients of the interface supporting the graphene sheet are modied as:

r 12 = n 1 -n 2 -Z 0 σ n 1 + n 2 + Z 0 σ and t 12 = 2n 1 n 1 + n 2 + Z 0 σ (1.51)
Where Z 0 is the impedance of free-space. Note that the relation r 12 = -r21 does not hold anymore, which greatly modies the expressions of the transfer matrix. Further details on TMM simulation of conducting sheets are given in Appendix A.

The reection spectra of the graphene-loaded THz Tamm cavity with three silicon layers at 4 K are represented Fig. 1.28.a). We observe that the inclusion of graphene in the cavity is responsible for a reduction of the quality factor and of the peak contrast: µ = 0 mev Q = 233 and R min = 0.42. This eect is explained by the additional dissipation Γ graph introduced by graphene absorption so that the new dissipation rate in the cavity is Γ loss = Γ loss + Γ graph with Γ loss the dissipation rate due to the gold mirror dened in Eq.1.42. As the graphene Fermi level is increased, absorption in graphene increases due to the enhanced conductivity, and both quality factor and contrast are reduced as the system goes towards further undercoupling. There is then no possibility to reach unity absorption in this three layers Tamm Γ rad,1 for a three layers DBR. We notice however a high sensitivity of R min to the Fermi level which is suitable for modulator applications.

In order to reach critical coupling and unity absorption, we increased Γ rad,1 by simulating a two silicon layers THz Tamm cavity instead (at 4K Fig. 1.28.b)). We now observe a transition from overcoupling at µ = 0 meV to undercoupling at µ = 100 meV, and critical coupling is achieved at µ = 50 meV with unity absorption. From the examination of the graphene-loaded cavity quality factors and using the critical coupling criterion Γ graph + Γ loss -Γ rad,1 = 0, we can estimate that the fraction of the incident power absorbed by the graphene sheet is about 93%, the remaining part being dissipated by the gold mirror. Near unity absorption in graphene can then be realized by integration of the graphene sheet in a THz Tamm cavity, which could be appealing for THz detectors applications.

We nally perform the simulation of the same two layers THz Tamm cavity loaded with graphene at 300 K (Fig. 1.28.c)). Due to thermal enhancement of the intraband conductivity around µ = 0, the sensitivity to tuning of the Fermi level is very limited below µ = 50 meV (we recall k B T ∼ 25 meV at 300 K). We nonetheless show that unity absorption is possible for µ = 0 meV to µ = 50

meV, which could be suitable for devices working at room temperature.

Clean room processing of large CVD graphene area transistor

We present here the cleanroom process we developed to fabricate a graphene transistor adapted to the integration in a Tamm cavity. Given the large extension of the THz beam in our measurement setup, about 3 mm, we need a large area of graphene section, typically 3 × 3 mm 2 . We use then a Chemical

Vapor Deposition (CVD) grown graphene sheet on copper provided by the company Graphenea, and we adapted the graphene wet transfer process developed by Kokoura Mensah during his PhD at LPENS [START_REF] Mensah | DNA hybridization measured with graphene transistor arrays[END_REF]. In order to directly integrate the graphene transistor in the THz Tamm cavity, the whole process is performed on the thin silicon wafer we use to realize the THz Tamm. This is an advantage of the THz Tamm cavity: since most cleanroom processes are developed on silicon substrate, they are most of the time directly transferable on our thin silicon wafers. The fabrication is however made dicult by the fragility of our samples, which for instance prevents ultrasonic cleaning.

µm Silicon

Thin silicon wafer preparation

As a rst step, we prepare the surface of the thin silicon wafers before proceeding to the graphene transfer. The device requires an insulating layer, which was not present on the thin silicon wafers we bought, to be able to apply a gate voltage between the graphene and the silicon layer. To form an insulating layer, the following layers are deposited:

• 300 nm SiO2 using PECVD.

• 40 nm Al 2 O 3 using Atomic Layer Deposition (ALD).

SiO 2 is responsible for a large doping of the graphene if the graphene is deposited directly on top of it, this is why we also deposit 40 nm of alumina (Al 2 O 3 ).

The 100 mm diameter circular wafer is then cleaved in rectangular samples of size 12 × 14 mm tting the Tamm cavity sample holder. The full wafer is protected prior to this last step using a spin-coated layer of PMMA in order to prevent silicon particle deposition on the wafer surface during cleavage. The PMMA layer is then removed using 50 • C acetone for 30 minutes and isopropyl alcool (IPA) before pursuing with the wet transfer of CVD graphene.

Graphene wet transfer

The wet transfer of CVD graphene we present here is pictured Fig. 1.30. CVD graphene comes in the form of an atomic layer on a copper foil, copper acting as a catalyst for CVD growth. We prepare the foil with the following steps:

• Cut 10 × 10 mm 2 squares in the copper foil using scissors.

• 2 nm Al 2 O 3 protection layer on the top graphene using ALD.

• Spin-coating of a PMMA (500 nm) layer, top side + 15' backing at 150 • C.

• Cleaning of the foil backside, 2' O 2 stripping using Reactive Ion Etching (RIE) + 2' purge.

• Etching of the Cu foil in Cu etch solution (NH 4 ) 2 S 2 O 8 , 5% mass in water, one night.

At this point, the graphene+PMMA foil oats on the surface of the etching solution, the Cu foil has been etched, and it is time for the "shing" step. During shing, we use the thin silicon wafer we prepared held by tweezers, plunge it in water and catch the oating foil from below, which requires some skill and practice. In details :

• Rinsing of the etching solution using degassed de-ionized (DI) water, 4 times.

• 4' plasma O 2 cleaning of the wafer, to make the wafer surface hydrophilic.

• Fishing

The graphene+PMMA foil is now transferred on the thin silicon wafer. The direct removal of the PMMA layer using 50 • C acetone lead to a high level of tearing of the graphene sheet (See Fig. 1.30). The irregularities of the original copper foil are indeed reproduced by the PMMA layer and kept during the wet transfer process. As a result, the graphene/wafer interface is irregular and can contain trapped water, which results in high mechanical stress during PMMA removal and water drainage.

To prevent this issue, we proceed to an annealing of the PMMA layer above its fusion temperature to relax the surface deformations with the following procedure: • PMMA annealing directly after shing, 60 to 150 • C, 5 • C steps + 15'.

• PMMA removal, acetone 50 • C 30' + IPA.

• 2 nm Al 2 O 3 protection layer on the top graphene using ALD.

The transfer of the 10 × 10 mm 2 CVD graphene square on the thin silicon wafer is nished, and we can proceed to the lithography step.

Graphene transistor device lithography

In the lithography step, we want to remove the unwanted graphene parts and deposit gold source and drain electrodes overlapping with the graphene surface to enable electrical contact. We consequently need two lithographies, but it is possible to do both of them without lift-o in-between to simplify the procedure:

• Positive laser lithography of a 4 × 3 mm 2 rectangle using AZ5214 spin coated and backed at 110 • C, 1'15 to select the graphene area we keep.

• 60" over-development in AZ 728MIF solution, to remove the Al 2 O 3 layer.

• Graphene removal, 1' O 2 stripping (RIE) + 2' purge.

• 2 nd positive laser lithography of the electrodes The graphene transistor is then ready, but the electrodes are not accessible because of the Al 2 O 3 layer. We need to remove it selectively on a section of the electrodes to enable wire bonding which requires an additional lithography. In addition, we add the gold mirror of the Tamm cavity on the backside of the sample.

• Positive lithography on the bonding pads, AZ5214 backed at 110 • C, 1'15.

• Al 2 O 3 etch, concentrated H 3 PO 4 acid at 50 • C, 10' + rinsing in water.

• Gold mirror deposition, Au 150 nm backside, thermal evaporator.

• Acetone 50 • C 20' lift-o + IPA.
The device is nally ready for use, as shown Fig. 1.31.

Transport measurements

To demonstrate the possibility of tuning the electronic properties of graphene in our device, we perform source-drain resistance measurements, modulating transport properties using capacitive gating.

We use the back mirror of the sample as a gate electrodes, the drain electrode is grounded and gate voltage V G and source drain bias V SD are applied using a dual channel Keithley DC source (see electrical connections Fig. 1.29).

We observed a gating eect on the graphene resistance, unfortunately, for all of the large graphene samples a large and quick increase of leakage current I GS was observed at gate voltages V G ranging between 10 to 30 V which limited the gating possibilities of our samples. An example of this limited conductance modulation measurement is represented Fig. 1.32.b), blue dotted curve. This eect is explained by the dielectric breakdown of the insulating layer. We tried to fabricate samples with smaller graphene area to reduce the surface of the capacitor involved and limit the probabilities of breakdown. For a graphene surface area of 100×100 µm 2 (See Fig. 1.32.a)), we managed to perform a gate voltage scan from -40 to 60 V without breakdown, that is represented Fig. 1.32.b), black line. We observe an evolution of the resistance as a function of the gate voltage due to the modulation of the charge carrier density n. The curve has a peak shape, and its maximum indicates the charge neutrality point, or Dirac point, V 0 for which E F = 0 eV. This point is shifted from V G = 0 V to about 36 V because the graphene sheet is doped due to imperfections or chemical interactions during the fabrication process. We tted this measurement using the expression [START_REF] Kim | Realization of a high mobility dual-gated graphene eld-eect transistor with Al 2 O 3 dielectric[END_REF]:

R = R contact + 1 µ (en 0 ) 2 + C 2 (V G -V 0 ) 2 (1.52)
Where µ is the carrier mobility, n 0 is the residual charge carrier density, V 0 the charge neutrality point, R contact is the resistance of the device that is not due to the graphene sheet and C the capacitance of the graphene-oxide-silicon capacitor. We observe a good agreement of the tting and we can estimate µ ∼ 700 cm 2 .V -1 .s -1 , and n 0 ∼ 1.10 12 cm -2 which is consistent with CVD graphene. This measurement is however not very accurate for quantitative estimation because of the limited gate voltage span, in particular, a higher gate voltage span is expected to obtain a reliable estimate of R contact . In the end, we demonstrate the possibility of electrostatic gating in graphene transistors on thin silicon wafers using our process.

We however managed to obtain these results for a single device, and for a size much too small to be compatible with THz optical measurements. We determined that the low quality of the PECVD SiO 2 layer is responsible for the breakdown: our fabrication process was tested on a 500 µm thick, commercially available silicon wafer covered by a 300 nm thermal grown SiO 2 layer, and we managed to perform gate voltage scans from -200 to 200 V without breakdown. Further experimentation using high quality thermally grown SiO 2 on thin silicon wafers will be performed in the future.

Surface functionnalization of the Tamm cavity gold mirror

A major specicity of the THz Tamm cavity is the presence of a metallic mirror, that is expected to enable new design possibilities through surface pattering. The pattering of the Tamm cavity metallic mirror for original property design has been explored in the IR range. For instance, Gazzano et al. used metallic mirrors reduced to disks of diameter a few λ to obtain discrete energy levels because of the lateral connement, with applications to single photon sources [START_REF] Gazzano | Single photon source using conned Tamm plasmon modes[END_REF]. Also, Gubaydullin et al.

presented the use of a sub-wavelength (sub-λ) metallic strip grating as metallic mirror in the IR range [START_REF] Ar Gubaydullin | Tamm plasmon sub-wavelength structuration for loss reduction and resonance tuning[END_REF]. Such Tamm cavities, whose structure is presented in Fig. 1 This result was interpreted as a continuous transition between two cavities of dierent resonance frequencies, one basic IR Tamm cavity and another one with an additional layer of dielectric resist layer between the DBR and the metallic mirror. However, the complete description of the frequency shift for intermediate lling factor has not been realized. Also, since the properties of metal layers and DBRs are very dierent between the IR and the THz range, a signicantly dierent behavior can be expected for this structure in the THz range.

In this section, we propose the study of the pattering of the gold mirror of the THz Tamm cavity into sub-λ strips. After investigating experimentally the reection properties of sub-λ strip grating THz Tamm cavities, we will propose a theoretical description of the interaction mechanism between the Tamm cavity and the gratings, and show that this patterning opens a wide range of possibilities of cavity design and functionalities especially adapted to the THz range.

Properties of sub-λ strip grating mirrors

We rst present the reection properties of the sub-λ metal strip grating. We realized a gold strip grating of period p = 75 µm = λ 4 (xed in the following), deposited on a thin silicon substrate (e Si = 66 µm) using standard laser lithography techniques (see the grating structure Fig. 1.34). The strips have a width a, whose inuence will be studied, and the relevant gure to describe the grating geometry is the width/period ratio called the lling factor f f : The principal interest of a sub-λ period grating is that no diraction is possible for sub-λ periodic structures. This way, the grating behaves as a single layer entity having tunable properties versus f f : it is the simplest metamaterial surface possible, reduced to 1D. This also enables a simple single spatial mode description of the cavity.

f f = a p (1.
We rst study the response of a sub-wavelength metallic grating only by considering an innite silicon substrate, illuminated from the substrate side, so that we consider r gold as dened in Section 1.2.1. We compute using Finite Element Method simulations (FEM, Comsol Multiphysics) and periodic boundary conditions the reectivity spectra of a 75 µm periodic gold strip grating (gold thickness 100 nm) standing on an innite silicon substrate, for both parallel and orthogonal polarizations (polarizations are dened Fig. 1.34)) and for lling factors of 0.3, 0.5, 0.7 and 0.9 on Fig. 1.

35).

The reectivity curves show a clear increase of the grating reectivity |r grating | 2 as the lling factor f f increases, but also a frequency dependence with opposite tendencies depending on the polarization in the 0.6 THz, to 1.15 THz range. A singularity appears at 1.27 or 1.18 THz for all lling factors, that is attributed to grating extraordinary transmission [START_REF] Thomas W Ebbesen | Extraordinary optical transmission through sub-wavelength hole arrays[END_REF] also named grating modes [START_REF] Volodymyr O Byelobrov | Periodicity matters: Grating or lattice resonances in the scattering by sparse arrays of subwavelength strips and wires[END_REF][START_REF] Baldassarre | Intrinsic linewidth of the plasmonic resonance in a micrometric metal mesh[END_REF]. These grating modes arise at the substrate-gold interface and propagate in the grating plane. Their resonance condition is given by the wavelength matching with the grating period. 75 µm is indeed the wavelength in silicon at 1.17 THz and the grating is not strictly sub-wavelength anymore above this frequency limit. Grating modes appear at slightly higher frequencies because the eective mode index is slightly lower than n Si . 1.17 THz is then the upper frequency limit of We perform reectivity measurements of sub-λ grating Tamm cavities for dierent lling factors ranging from 0.9 to 0.3 and for both parallel and orthogonal polarizations, presented Fig. 1.37. The reectivity is displayed as a function of the frequency shift from the resonant frequency of the reference Tamm cavity (=1). We use for each cavity an unpatterned gold area to provide a reference Tamm cavity fabricated on the same DBR structure.

We observe a clear shift of the resonant frequency as the lling factor is decreased. The structure exhibits a total frequency tuning range > 0.25 THz for f f = 0.3, which is 50 times higher than the 4.4 GHz linewidth of the cavity mode presented in Fig. 1.21. We also observe that the resonant frequency shift, ∆f , evolves in opposite directions depending on the polarization: for a parallel polarization, the resonant frequency shifts toward lower frequencies (∆f < 0), whereas it shifts toward higher frequencies for the orthogonal polarization (∆f > 0). Moreover, the frequency tuning is not symmetric, being more sensitive to the lling factor for the orthogonal polarization. This highlights the dierence between physical mechanisms involved depending on the mode polarization.

Since the maximum measurable Q is limited by the FTIR spectral resolution to < 130 (dotted line Fig. 1.38.b)), we were unable to capture from these reectivity measurements the quality factor dependence on the lling factor. To quantitatively establish how the quality factor of the Tamm cavity evolves with the lling factor of the sub-λ metallic grating, we calculate the reection spectra of the sub-λ grating Tamm cavities for various f f using FEM simulations and extract from the We observe that the quality factor of 550 is remarkably almost constant for the orthogonal polarization from f f = 1 down to f f = 0.5. Thus, a high-quality factor is preserved for a large range of frequency tuning. The role of the top mirror to preserve high quality factor by compensating the high transmission of gold strip gratings for this polarization is evidenced by the blue dashed line in Fig. 1.38. Indeed, the quality factor calculated without top mirror shows a large drop as soon as gaps are opened between strips (as soon as f f = 1). Below f f = 0.5, the quality factor with top mirror for this orthogonal polarization drops rapidly due to the decreased reectivity of the DBR at stop-band edges. In the parallel polarization case, the quality factor with additional mirror is continuously reduced as is decreased but remains as high as 180 for f f of only 0.1.

Theoretical modeling

In order to understand the mechanism for the resonant mode frequency shift, we propose a theoretical description of the sub-λ strip grating Tamm cavity based on the equivalent circuit model [START_REF] Olli Luukkonen | Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches[END_REF]. This model proposes an analogy between electromagnetic wave propagation in free-space and in transmission lines, where propagation media are analogous to transmission line dened by their

characteristic impedance Z i = Z 0 n i
, Z 0 being the impedance of free space and n i the material refractive index. Metallic metamaterials are analogous to a localized shunt impedance Z and the model can be schematically pictured as: This model is easy to manipulate and gives simple formulas, but can show some limitation in the high frequency limit because it assumes the period of the grating is much smaller than the wavelength. Depending on its polarization, the interaction of light with the metallic strip grating is completely dierent resulting in two distinct values for Z. For a polarization parallel to the strips axis, the incident wave induces currents along the strips and creates magnetic eld (red looped eld lines around the strips, Fig. 1.39.b)), whereas a polarization orthogonal to the strips induces charge and hotspots at strip edges, resulting in electric eld between the strips (Fig. 1.39.c)). These two pictures illustrate how the strip grating behaves as an inductance (Z ind ) or capacitor (Z capa ) for a parallel or orthogonal polarization. For a perfect metal, which is a reasonable approximation for gold in the THz range, the expression for these impedances, normalized by Z 0 are given by [START_REF] Lewis | Equivalent-circuit formulas for metal grid reectors at a dielectric boundary[END_REF]:

Z ind = j p λ ln 1 sin(π f f 2 )
and

Z capa = -j 1 2(1 + n 2 Si ) λ p 1 ln 1 cos(π f f 2 ) (1.54)
Where p is the strip grating period. These formulas recall the usual form for inductance and capacitor imdepances, Z ind = jLω and Z capa = 1 jCω with normalized self-inductance and capacitance:

L = p 2πc ln 1 sin(π f f 2 ) and C = p 2πc 2(1 + n 2 Si )ln 1 cos(π f f 2 ) (1.55)
Which only involve geometric parameters, and are similar through the logarithmic dependence to fringing capacitance and self-inductance in neighboring metal layers found in split-ring resonators [START_REF] Sydoruk | Analytical formulation for the resonant frequency of split rings[END_REF].

Using these impedance values, the equivalent circuit model provides a simple expression for the reection coecient of the strip grating mirror derived from the transmission line equivalence: intersections with the real axis correspond to the limit case encountered: if f f = 1, the incident wave is reected on a perfect mirror (a perfect conductor, Z = 0) and r grating = -1. On the opposite, if f f , there is no gold on the silicon surface (Z → ∞, there is no shunt) and the reection coecient is real, given by Fresnel equations as r grating = n Si -1 n Si +1 . Between these two points, increasing frequency leads to clockwise evolution along the circle for both polarizations, and we observe that the lling factor dependence is dierent depending on the polarization.

r grating = Z(n Si -1) -1 1 + Z(n Si + 1) (1 
This circular evolution of the reection coecient of strip gratings was reported by Ulrich et al.

[66] in the microwave range and is actually a very general feature of localized reector. Considering the strip grating as a sub-λ scattering element without absorption (i.e. considering the metal as a perfect conductor), the coherent scattered amplitude due to the grating is responsible for the transmission decrease t grating -1 and to the reection r grating , so that t grating = 1 + r grating 

Re(r grating ) + α 1 + α 2 + Im(r grating ) 2 = 1 (1 + α) 2 (1.57) With α = n 2 n 1
. The complex reection coecient has then values located on a circle of radius 1 1+α , centered in -α 1+α . As a way to check the consistency of this equation, if the reection phase is 0, meaning there is no gold at all, we can check that the reection coecient will be

n 1 -n 2 n 1 +n 2 , which
is the result obtained from the Fresnel equations for a plain interface between two dielectrics. The circular evolution displayed is then just a consequence of energy conservation and coherent scattering relations.

The evolution of r grating in the complex plane most importantly highlights the eciency of f f as a parameter to change the reection phase of the grating mirror arg(r grating ). Using the framework of the phase matching condition, we can interpret the resonance frequency shift in opposite directions for opposite polarizations as resulting from the opposite sign of the equivalent shunt impedance and opposite phase shift of the reection phase. At this point, we use the approximation that the additional gold mirror does not change the reection and only compensate the transmission losses.

The reection phase arg(r grating ) can be analytically derived from the equivalent circuit model expression for r grating :

arg(r grating ) = arg Z(n Si -1) -1 1 + Z(n Si + 1) = π + arg(1 -Z(n Si -1)) -arg(1 + Z(n Si + 1)) (1.58) arg(r grating ) = π -arctan(Im(Z)(n Si -1)) -arctan(Im(Z)(n Si + 1)) (1.59)
Expanding at rst order the arctangent function, valid for small Z meaning f f close to 1:

arg(r grating ) = π -2n Si Im(Z) + O(Im(Z) 3 ) (1.60)
We have then a simple rst order expansion for the phase of the reection on the grating. It is nally possible to derive using the phase matching criterion and the phase of r DBR from Eq.1.34 an analytical expression for the resonant frequencies of the strip grating Tamm cavity in the capacitive and inductive cases:

f ind = f 0 1 1 + p 2πc β(f f ) τ φ and f capa = f 0 2 + f 0 2 1 + 2 f 2 0 c 2πp β capa (f f ) τ φ (1.61) With β ind (f f ) = 2n Si ln 1 sin(π f f 2 )
and

β capa = n Si 1 + n 2 Si 1 ln 1 cos(π f f 2 ) (1.62)
The validity of these formula is highlighted in Fig. 1.41 by the good agreement between the predicted resonant frequencies (dashed black curve) with the resonant frequencies obtained from FEM simulations and the experimental results down to f f ∼ 0.5. Small deviations at f f close to 1 can be explained by the lossless nature of the analytical model, whereas FEM simulations takes into account actual complex refractive index of gold from [41]. From this model, we emphasize that the Tamm cavity resonant frequency shift is also a direct signature of the reection phase shift ∆ϕ = arg(r grating ) -π due to the sub-λ patterning of the metallic layer given by:

∆ϕ = 2π(f -f 0 )τ φ + O(f -f 0 ) 3 (1.63)
∆ϕ is then proportional to the Tamm cavity frequency shift (f -f 0 ), as long as the resonant frequency does not reach the DBR stop band edges. From our experimental measurements, we can thus estimate the corresponding experimental reection phase shifts ∆ϕ (Right scale in Fig. 1.41).

The cavity can then be seen as a phase probe of the metamaterial reectivity. 

Tunability range of the sub-λ Tamm cavity

The patterned Tamm cavity we presented demonstrates a tunability higher than 25% of the center frequency f 0 = 1 THz, which is ultimately limited by the spectral width of the DBR stop-band. We were able to explore the full width of the DBR stop-band using both polarization because of the Tamm mode central position in the stop-band for f f = 1, which is specic to the THz range as it is due to the very low losses of the gold mirror. The large stop-band of the THz DBR is obtained because of the choice of high refractive index contrast materials for the DBR, as showed by Eq.1.31, enabled by the possibility to use vacuum layers as dielectric thanks to the large wavelength in the THz range. Also, using λ 4n silicon layer structure would signicantly increase the DBR spectral width and maximal tunability up to 0.7 THz. The cavity would then be much more sensitive to the lling factor f f , as this sensitivity is inversely proportional to the DBR phase reection delay τ , whose value is reduced from 1.8 ps to 0.8 ps going from a 3λ 4n to a λ 4n structure.

Cavity length interpretation

As a nal interpretation of the frequency tuning phenomenon we presented, we can use the eective length of the strip grating Tamm cavity. In the similar way as after Eq.1.34, we can dene an eective phase penetration depth l grating . Since we have for the DBR:

τ φ = arg(r DBR ) -π 2π(f -f 0 ) and l DBR = τ φ c 2 (1.64)
We can propose for the strip grating:

l grating = arg(r grating ) -π 2πf c 2 (1.65)
So that, close to f f = 1:

l grating = c f n Si Im(Z) (1.66) 
The opposite sign impedance for the two polarizations leads then to opposite eective phase penetration depth for the grating. As a result, an inductive grating in the parallel polarization case increases the cavity length, reducing the cavity resonance frequency, and on the opposite, a capacitive grating in the orthogonal polarization case reduces the cavity length, increasing its resonance frequency.

This analysis is not just mathematically relevant: looking at the electric eld maps of the resonant mode Fig. 1.42, we observe an opposite evolution of the mode prole depending on the polarization. On the left, parallel polarization case, the electric eld penetrates the grating mirror partially (positive l grating > 0) so that the whole picture moves up, whereas on the right it is rejected by the grating mirror in the orthogonal polarization case because of the charge accumulation at strip edges, reducing the size of the cavity (l grating < 0).

Conclusion

We presented in this chapter the conception and characterization of the THz Tamm cavity resonant at 1 THz. The cavity associates two dierent mirrors, a Distributed Bragg Reector made of silicon and vacuum layers, and a metallic gold mirror. From the classication of the literature THz resonators into three families we proposed, we show that the THz Tamm cavity is a Fabry-Perot cavity whose resonance mechanism is based on propagation eects between the two mirrors. As a result and because both mirrors have high reectivity in the THz range, this cavity has a high quality factor Q, and we demonstrated using FTIR measurement and Transfert Matrix Method simulations a theoretical quality factor of 544 and an experimental value of 230 at 1 THz. The cavity also hosts several higher order modes, which opens possibilities of applications at higher frequencies.

Because of its high quality factor, the cavity is adapted for coupling with low absorbing materials such as many 2D materials, typically graphene. We explored this possibility, rst by simulation of modulated absorption in graphene loaded in Tamm cavities and we showed promising results for modulator applications. We also developed a cleanroom process for the fabrication of a large area CVD graphene modulated by a gate voltage on thin silicon substrate compatible with THz optics measurements but we were limited by dielectric breakdown of the silicon oxide.

We nally showed that a major interest of the THz Tamm cavity is the presence of a metallic mirror that can be patterned through simple lithography techniques. As a demonstration, we patterned the mirror into a sub-wavelength strip grating, which is the simplest possible 1D metamaterial. The resulting sub-wavelength grating Tamm cavity showed then novel functionalities such as frequency tuning or polarization control that we characterized experimentally. We showed using the equivalent circuit model to explain the frequency shift that the strip gratings are equivalent to inductance or capacitor components. Now, if it were possible to associate these two components, we would be able to study the coupling between the Tamm cavity and a resonant LC circuit. This is what we will investigate in the next chapter, focused of the coupling between the Tamm cavity and resonant 2D metamaterials.

Parallel pol. Orthogonal pol. In this chapter, we will explore the coupling of the Tamm cavity to localized resonant components, i.e. surface patterned LC circuits at the gold surface of the Tamm cavity. We will rst introduce a quantum description of the light matter interaction between a two level system and a quantum eld as a base for a discussion on the denition of the mode volume V , and to introduce the relevant quantities for cavities in CQED. We will then present coupled resonators in general and we will demonstrate the coupling between our Tamm cavity and complementary split-ring resonators (CSRR). We will nally discuss the mode volume of the resulting coupled resonators as the relevant gure for light-matter coupling in THz cavities.

2.1 Quantum description of light-matter coupling with quantum eld

In this section, we present a theoretical picture of the interaction of an electric dipole with a quantum cavity eld, and focus on relevant parameter regarding the light-matter coupling energy g. We will justify the importance of the reduction of the mode volume V as way to reach the strong and ultrastrong coupling regime, that will be presented at the end of the section. We will note quantum mechanics operators with the notation X and vector operator in bold letter X.

Light-matter interaction Hamiltonian

We consider the linear model for light-matter coupling in a cavity that we adapt from references [3,4,5,6]. The model includes rst a two level system, the matter part, characterized by a ground state |g at zero energy and an excited state |e at energy ω 0 . The electromagnetic eld part is a resonant cavity mode at angular frequency ω, whose state |N is given by the number of photons in the mode N . The uncoupled Hamiltonian is given by the sum of the energies of theses two systems:

Ĥ0 = Ĥmatter + Ĥfield = ω 0 σ+ σ-+ ω(â † â + 1 2 ) (2.1)
Where σ+ , σare the fermionic ladder operators of the two level system and â † , â are the bosonic creation and annihilation operator for photons in the cavity mode, which are expressed as:

σ+ = |e g| σ-= |g e| and â † |N = √ N + 1 |N + 1 â |N = √ N |N -1 (2.
2)

The light-matter interaction Hamiltonian H inter we consider here originates from the cavity electric eld interaction with the electrons in the material, which is written as:

Ĥinter = -D. Ê Where D is the electric dipole operator, dened in the general case as:

D = q R (2.4)
With R the position operator. A simple expression such as Eq.2.3 requires an important hypothesis: amplitude and phase variations of cavity mode the electric eld are neglected over the extension of the matter system, which means the matter system is very small compared to the characteristic size of the resonant mode prole and can be considered punctual: it is the dipolar approximation [5]. Such assumption is originally made for light-matter coupling with atomic systems or molecules, whose size are negligible compared to the wavelength even in the visible domain.

The simple product expression of H inter highlights clearly that, under the dipolar approximation, the matter part and the eld part of the system have clear separate contributions under the two operator D and Ê towards the light-matter coupling strength. We will now present these two operators in detail.

Electric eld operator

Ê

The expression of the electric eld operator at position r, Ê(r), is given by [6]:

Ê(r) = E 0 (f * (r)â + f (r)â † ) (2.5)
Where f (r) is the complex vector eld describing the electric eld mode prole in the cavity, normalized so that |f (r)| max = 1 and E 0 is the maximal electric eld amplitude. To be consistent with Eq.2.3, Ê is the electric eld operator Ê(r) taken at the position of the matter system r 0 . In most light-matter coupling experiments, it is placed at the maximum electric eld location, so that

Ê = E 0 (â + â † ).
Also, E 0 has to be normalized properly. For instance, the energy of the vacuum state should read ω 2 . We can compute it using our expression:

0| 0 | Ê(r)| 2 |0 = 0 |E 0 f (r)| 2 d 3 r = ω 2 (2.6)
Note that for simplicity we did not include the contribution of the magnetic eld and of the time averaging, responsible for factors 2 and 1 2 respectively that cancel themselves out to keep the result the same. We deduce from this normalization condition the expression for E 0 :

E 0 = ω 2 0 V (2.7)
Here, we dened the volume V :

V = |f (r)| 2 d 3 r (2.8)
Given any non normalized distribution of the mode eld E(r), f (r) is deduced from f (r) = E(r) |E(r)|max . Including the possibility of a inhomogeneous dielectric constant (r), the expression for V can be written:

V = (r)|E(r) 2 |d 3 r | (r)E(r) 2 | max (2.9)
We recover the expression of the cavity mode volume from Chapter 1 Section 1.1.2 Eq.1.26.

We show here the meaning of the mode volume: it is an indirect measurement of the electric eld amplitude, but the gure actually relevant for light-matter coupling is the maximum electric eld 1 V , which is also the electric eld amplitude for quantum uctuations of the vacuum.

Due to photon energy quantization, the value of the mode volume is sucient to describe the electric eld amplitude, also, its value can be computed and compared between dierent cavities as it is most of the time linked to the cavity geometry. This is why it is kept as a characteristic gure of merit of cavity electric eld connement.

Electric dipole moment operator

D

The electric dipole moment operator is the observable associated to the polarization of the matter system. In most cases, the permanent electric dipole moment is zero, hence, the dipole moment has no diagonal terms and can be written, in the (|g ,|e ) base [6]:

D = p(σ + + σ-)e (2. 10 
)
Where e is the unit vector describing the polarization of the |g → |e transition. The matrix element p can be computed from the denition Eq.2.4, projected on the transition polarization:

p = q e| R.e |g (2.11)
With q the electric charge. We identify here that e| R.e |g quanties the matter part the light-matter coupling strength: it is homogeneous to a length, the electric dipole moment d: 

d = e| R.e |g
Ĥ = Ĥ0 + Ĥinter = ω 0 σ+ σ-+ ω(â † â + 1 2 ) + qdE 0 (σ + + σ-)(f * (r 0 ).eâ + f (r 0 ).eâ † ) (2.13)
Where r 0 denotes the position of the matter system. With the right phase reference, f (r 0 ).e can be taken as real and we obtain the Rabi Hamiltonian:

ĤRabi = ω 0 σ+ σ-+ ω(â † â + 1 2 ) + g(σ + â + σ-â † + σ+ â † + σ-â) (2.14)
We identify here the vacuum Rabi splitting 2g, with the expression for g:

g = -qde.f (r 0 )E 0 (2.15)
The usual expression for g is g = qdE 0 , however, we remind here that this expression requires that the matter system is located at the mode electric eld maximum and that the polarization of the transition e is colinear to the electric eld polarization. Considering these conditions are fullled, the light-matter coupling constant g is determined by the knowledge of the dipole moment length d, for the matter part, and the cavity mode volume V for the eld part. In addition, if N e identical emitters are included in the cavity, the collective coupling increases g by a factor

√ N e [7].

The examination of the Rabi Hamiltonian Eq.2.14 enables a discussion on the four coupling terms. The two rst terms σ+ â and σ-â † describe respectively the absorption of a photon to raise the two-level system in the excited |e state and a desexcitation to the ground state |g that comes with the emission of a photon, i.e. energy exchange between the cavity and the two level system. On the other hand, the two last terms correspond to simultaneous increase (decrease) of both matter and eld energies. Since they do not agree with the energy conservation principle, these two terms play no major role as long as g is small compared to the angular frequencies of the system ω 0 and ω.

A common approximation is then to neglect the two last terms of the Rabi Hamiltonian: it is the rotating wave approximation, that results in the Jaynes-Cummings Hamiltonian:

ĤJC = ω 0 σ+ σ-+ ω(â † â + 1 2 ) + g(σ + â + σ-â † ) (2.16)
We dene now the matter-cavity detuning δ:

δ = ω -ω 0 (2.17)
For low detuning δ ω 0 , states |g, N + 1 and |e, N have close energies regarding the uncoupled Hamiltonian H 0 , which makes their coupling resonant. It is then possible to neglect coupling with all other states, which reduces ĤJC to simple 2 × 2 operators in every sub-ensemble N : {|g, N + 1 , |e, N }. The diagonalization in the sub-ensemble N leads to the following eigenstates [4]:

|+, N = cosθ N |e, N -sinθ N |g, N |-, N = sinθ N |e, N + cosθ N |g, N (2.18) with tan(2θ N ) = 2g √ N +1 δ
. For degenerate states δ = 0, θ N = π 4 so that both states |+, N , |-, N are a 50%/50% mixture of states |g, N + 1 , |e, N . The eigenenergies read:

E ±,N = ( ω 0 + N ω) + δ 2 ± 2 4g 2 (N + 1) + δ 2 (2.19)
The coupling results then in an energy splitting at zero detuning ∆E = 2 g √ N + 1. The increase of the photons number in the cavity N +1 results in an enhanced light-matter coupling energy, with an eective coupling constant g N = g √ N + 1. This square root scaling law of the interaction energy will be recovered in the next chapter, Section 3.3.3 with eV T Hz as the coupling energy and where the THz intensity I T Hz scales like the photon number N + 1 without cavity.

We focus in the following on the case N = 0, i.e. the interaction between |g, 1 and |e, 0 states producing coupled states |+ and |-. The eigenenergies have the simple form:

E ± = ω 0 + δ 2 ± 2 4g 2 + δ 2 (2.20)
g is there interpreted as the light-matter coupling energy in the one photon-one electron limit.

This typical energy spectrum, which is usually called the anti-crossing pattern, is represented versus frequency detuning δ in Fig. 2.2. The degeneracy between states is lifted because of the coupling with a minimal energy dierence 2g, the vacuum Rabi splitting.

Weak and strong coupling regime

Let us now consider the nite lifetime of the two-level system excited state |e and of the cavity mode at frequency ω, characterized by the matter decoherence rate γ i.e. the non-radiative dissipation rate, and the cavity decay rates κ. Because of the coupling, the linewidth Γ ± of the coupled states |+ and |at zero detuning is the average of the linewidths of the uncoupled states [3]: δ, for g ω 0 = 0.2. The energies are normalized by the energy of the 2 level system transition ω 0 .

Γ ± = γ + κ 2 (2.
In a simplied picture, two coupling regimes are possible depending on how Γ ± compares to the light matter coupling energy g.

If g < γ+κ

2 , there is no possibility to resolve the anti-crossing around δ = 0 due to the linewidth of both energy levels: it is the weak coupling regime. In that case, the eect of light-matter coupling eect is rather semi-classical and limited to the enhancement of spontaneous radiative emission from the excited state |e in the cavity mode ω and the relevant quantier is the Purcell factor as dened in Chapter 1, Section 1.1.2.

The strong coupling regime is however achieved when:

g γ + κ 2 (2.22)
It is then possible to measure the anti-crossing as it is not blurred out because of the peak linewidth. An alternate interpretation based on lifetimes and exchange rates can be proposed. The light-matter coupling energy g has the unity of a frequency: it is the exchange rate between the cavity and the matter system, from which we can deduce a typical time τ g ∼ 1 g between cavity/matter exchange events. As a consequence, if τ g is much smaller than the coupled mode lifetime 1 Γ ± , an energy quantum can transit between the cavity and the matter system back and forth several times before being dissipated due to material or cavity losses. The strong coupling condition enables this way a coherent interaction between light and matter, and this is the regime of choice for CQED, quantum optics or quantum computing experiments.

THz strong coupling state of the art

Strong light-matter coupling has been previously demonstrated in multiple works in the THz range. . "QW" stands for Quantum Well.

The values of g that where obtained reach a non-negligible fraction of ω 0 : such systems belong to the ultra-strong coupling regime, which begins at about g ω 0 > 0.1. In the ultra-strong coupling regime, the coupling terms σ+ â † and σ-â cannot be neglected anymore so that the full Rabi Hamiltonian has to be considered, which leads to multiple original eects [14,15].

Let us emphasize that the active material used in these works are not single two-level systems, they are ensemble of N e electronic systems collectively coupled to the cavity eld. The coupling constant g is consequently enhanced by a factor √ N e as described in the previous section. The electrons involved in the coupling are located within the mode volume of the cavity, so that N e scales like the cavity mode volume V . From Eq.2.15 and Eq.2.7), g ω 0 is expressed as:

g ω 0 = ed N e 2 0 ω 0 V e.f (r 0 ) (2.23)
As a consequence, g ∝ Ne V does not increase for extended active material systems such as QW or 2DEG when the cavity mode volume V is decreased [12] unlike what could be expected. However, reducing V through highly sub-wavelength eld connement does reduce the number of electrons in the coupling N e , and it enables reaching the few electron ultra-strong coupling regime which is currently an important research axis as it could enable the observation of new phenomena such as optical bi-stability and photon blockade [15].

Considering that the mode volume V inuence on g is "screened" by N e in these conditions, we can now understand why the ultra-strong coupling is widely studied in the THz range. From Eq.2.23, the normalized light matter constant g ω 0 scales like 1 ω 0 , which makes going towards lower frequencies, i.e. the THz range, interesting for ultra-strong light matter coupling. This conclusion however does not hold for single emitter as a general scaling law applies to the mode volume:

V ∝ λ 3 ∝ 1 ω 3 0
which overturns the tendency if not compensated by N e .

Beyond the strong coupling regime -Cooperativity

Apart from the ratio g ω 0

, another quantity is accepted as a gure of merit of quantum light-matter coupling systems: the cooperativity C, which is dened as :

C = 4g 2 κγ (2.24)
This gure describes the degree of coherence of the light-matter coupling interaction: if C > 1 the energy quantum of photons in the cavity are preferentially coherently transferred to the matter system than dissipated by escaping the cavity or by non-radiative processes [16]. This property is actually relevant for many applications of CQED. In quantum information for instance, the cooperativity limits the delity of qubit gates [17]. It is also involved in qubit based laser schemes [18],

where C > 1 2 can be considered as an equivalent laser threshold for laser systems involving few qubits [19].

Realizing high cooperativities has attracted a recent attention in THz CQED experiments. Zhang et al. from Kono group at Rice university demonstrated C as high as 360 using a high-mobility 2DEG integrated in a photonic crystal Fabry-Perot cavity, in Ref. [8] that we already presented. The same group even pushed the value of C to 3500 by using a multi-layer 2DEG [20]. Mavrona 

et al. from

Faist group also demonstrated a cooperativity of 57 in again a 2DEG coupled to a Fabry-Perot cavity using two mirrors based on weakly-transmitting hole patterned metal layers [21]. All these works have in common that they use Fabry-Perot cavities because they are the only THz resonators providing high quality factors i.e. low κ. This novel challenge justies the need for high quality factor cavities presenting a low mode volume V that enables a large light matter coupling constant g.

Coupled resonators for hybrid THz cavities.

As we presented, THz cavities for light-matter interaction applications require principally a small mode volume to enhance the coupling constant g and reduce the number of electrons N e involved in the coupling. The THz Tamm cavity we presented in Chapter 1 has good spectral properties as it exhibits a high quality factor Q, however, it concentrates the electric eld on a distance that is still comparable to λ 2 . In order to achieve a sub-wavelength 3D electric eld connement, we propose in this section the coupling of the THz Tamm cavity with a 2D metamaterial, in order to realize a THz resonator associating both the high quality factor from the Tamm cavity and the low mode volume from the 2D metamaterial.

Experimental measurements in this section were realized with the joined eort of Solen Coeymans during his M2 internship in our team.

Coupled resonator theory

We present here the theoretical energy dispersion of two coupled harmonic oscillators A and B, rst in a classical picture relying on analogies with classical systems and then in a quantum picture using the quantum description of the resonator elds.

Classical picture

The typical example of coupled resonators is an ensemble of two spring-mass systems linked by an additional spring that enables energy transfer between the two systems, as represented in Fig. 2

.3.a).

The dynamical equations ruling this system and its resolution are presented in [22]:

ẍA + ω 2 A x A + κ(x A -x B ) = 0 ẍB + ω 2 B x B -κ(x A -x B ) = 0 (2.

25)

Where x A and x B are the positions of mass A and B, ω i = K i m i and κ the coupling constant. The harmonic solutions of this homogeneous system of equations, for |ω A -ω B | ω A , have angular frequencies given by:

ω 2 ± = ω 2 A + ω 2 B 2 + κ ± 1 2 (ω 2 A -ω 2 B ) 2 + 4κ 2 (2.26)
This spectrum is represented Fig. 2.3.e) and presents an anti-crossing pattern comparable to the one expected for strong light-matter coupling in Fig. 2.2 as a similar degeneracy lifting phenomenon is observed. A classication of coupled oscillators can be realized depending on the nature of the coupling terms. In Eq.2.25, the two oscillators are coupled by their position coordinates through the terms ±κ(x A -x B ), but other forms of coupling are possible, for instance a coupling through the momentum coordinates with interaction energy V as [23]:

a) b) c) d) K K k A B K A K B η m A m A m B m B C C A L L A c C A L A L B C B M e) f) 0.6 0.8 1.0 1.2 1.4 1.6 B B ω ω A -ω B ω + ω - -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 ω ω A -ω B ω + ω - -0.4 -0.2 0.0 0.2 0.4 +/- +/- ω A ω A ω B ω B V κ ω A B
ẍA + ω 2 A x A + V ẋB = 0 ẍB + ω 2 B x B -V ẋA = 0 (2.27)
An example of such oscillator is not straightforward for mechanical resonators, an approaching system is represented Fig. The harmonic solutions of the system of equation Eq.2.27 in the strong coupling regime have angular frequencies given by [24] (Fig. 2.3.f ): In the end, the two examples we presented demonstrate that a detailed observation of the anticrossing pattern in coupled resonator systems gives then information on the nature of the coupling terms involved in the interaction.

ω 2 ± = ω 2 A + ω 2 B 2 ± 1 2 (ω 2 A -ω 2 B ) 2 + 4V 2 ω A ω B (2.

Quantum picture

In the same manner as the electromagnetic cavities we presented in Section 2.1.1, two harmonic oscillators A and B can be described in a quantum formalism using the creation and annihilation operators â † , â and b † , b. The Hamiltonian of the coupled resonators can then be expressed as [25]:

Ĥ = ω A (â † â + 1 2 ) + ω B ( b † b + 1 2 ) + g * (â + â † )( b + b † ) (2.29)
This Hamiltonian has the same structure as the Rabi Hamiltonian, except it involves bosonic operators only, and g * is dened here as an energy exchange rate between two harmonic oscillators.

From this similar Hamiltonian, the resolution of this system is to a large 

|+ ph = cosθ |A -sinθ |B |-ph = sinθ |A + cosθ |B (2.30)
Where θ varies from 0 to π 2 with the resonator detuning, with θ = π 4 to describe the continuous transition from |A to |B . The resonance frequencies read [26]:

ω 2 ± = ω 2 A + ω 2 B 2 ± (ω 2 A -ω 2 B ) 2 + 4g * 2 (2.31)
As expected from the classical model, this dispersion represents an anti-crossing pattern quite similar to Eq.2.20. It is a symmetric dispersion comparable to Fig. 2.3.f), the Hamiltonian from Eq.2.29 captures only a certain type of coupled resonators as we presented with the classical picture.

Finally, the linewidth of the coupled resonators at zero detuning is the average of each resonator linewidths :

Γ ± = Γ A + Γ B 2 (2.32)

Review of some coupled THz resonators

Recent works have explored the potential of coupled THz resonators. In particular, a silicon-vacuum photonic crystal Fabry-Perot cavity, similar to the one presented in [8], embedding a SRR metamaterial has been presented by Meng et al. [23] and is represented in the inset Fig. Both the antenna and the QW are strongly coupled to the LC circuit resonator and the complete system exhibits as a result three separate resonances (Fig. 2.4.d)). Resonator coupling is used to solve a fundamental issue associated with deeply sub-wavelength LC resonators. Since the radiative coupling rate Γ rad scales like the mode volume V [28] and the non-radiative losses Γ loss are rather high in such metallic resonators, the critical coupling criterion is hardly achievable. On the other hand, THz antenna are eciently coupled to free space i.e. they have a large Γ rad . The coupling of the dipolar antenna and the LC circuit resonator creates then a resonator with low mode volume

V enabling an ecient light-matter coupling with the QW and also a high coupling to free space Γ rad enabling to approach critical coupling and a high photon absorption eciency in the QW of 33%. This utilization of THz resonators coupling shows that it is a way to overcome fundamental limitations regarding light-matter coupling by combining properties of dierent families of resonators. 

Metamaterial coupled THz Tamm cavities -Presentation

We explore in this chapter the coupling of the THz Tamm cavity to localized components resonators on the gold surface, typically resonant metamaterials. The study of the Tamm cavities including sub-λ strip gratings in Chapter 1 Section 1.4 indeed suggested that the top gold mirror of the THz Tamm cavity is a suitable host for metamaterials to be coupled to the cavity mode. In contrast with previous works that embedded SRRs in photonic crystal cavities [23] (Fig. The metamaterial is realized by simple optical lithography prior to the gold layer deposition, via thermal evaporation under vacuum, followed by a lift-o. The resulting metamaterial is basically a gold mirror including patterned holes, unlike the direct SRRs used in [23]. The metamaterial unit cell pattern we will mainly study is represented Fig. metallic grid of horizontal and vertical strips [29], to which metal tips were added. This structure promote the electric eld connement by lightning rod eect, and also makes the metamaterial resonant in the frequency range of interest. It also presents a C 4v rotational symmetry that ensures the metamaterial response is polarization independent at normal incidence. In the end, this pattern in equivalent to four associated basic SRRs sharing their capacitive gap at the center of the pattern, each ones being rotated by 90

• . The blue dotted circle Fig. 2.5.b) highlights one of the four SRR.

For this reason, we name this pattern Grid Split Ring Resonators (GSRR).

We simulate Fig. as they present respectively very narrow or broad resonances, with quality factor values of 100 and ∼ 2.5. When the two resonators are coupled together, the transmission spectrum mainly shows two well separated peaks at 0.84 and 1.13 THz, with quality factors of 15 and 20. We directly observe the splitting of the coupled modes into two well separated modes and we can already evaluate the coupling constant to be g * ω 0 ∼ 0.15. This large value shows the GSRR metamaterial and the Tamm cavity are ultra-strongly coupled. We study in the following this oscillator strong coupling regime.

Coupled resonators in the strong coupling regime

Dierent patterns of coupled resonators

In a rst approach to the metamaterial/Tamm coupled resonators, we explore dierent types of metamaterials, with the objective of reaching the strong resonator coupling regime with these systems.

We use three metamaterial patterns: the GSRR we designed for maximal electric eld connement, the cross pattern which is a rather usual reference for 2D metamaterial studies in the THz range, and the Complementary Split Ring Resonator (CSRR) that was reproduced from literature [11] and whose resonance frequency was tuned to 1 THz by homothetic transformation with a shape factor of ∼ 0.5. We fabricate these metamaterials by negative laser lithography techniques of the hole patterns on the 66 µm thick silicon wafers followed by a 3/100 nm Cr/Au thermal evaporation deposition and lift-o in hot acetone. We use chromium as a grip layer for the gold in order to facilitate the lift-o. Optical microscope picture of these metamaterials are represented Fig. 2.7.a), b), and c). We use a 2 silicon layers Tamm cavity chosen instead of the optimal 3 layers cavity that we mainly studied in Chapter 1 to match critical coupling as the patterned holes in the gold mirror introduce a non-negligible transmission and additional radiative coupling Γ rad,2 . Let us here stress the dierence between GSRR and CSRR. CSRR are SRR for which metal and free surface are inverted. As a result, SRR capacitive gaps are turned into narrow metal strips in CSRR that conne currents and the magnetic eld. On the other hand, GSRR are rather multiple SRR (four in the example we study) that are connected with each other by their sides, and they concentrate the electric eld. This is why GSRR shall not be confused with CSRR and why we proposed a dierent name.

The transmission spectrum of the Tamm cavity coupled with the three dierent metamaterials measured using a FTIR spectrometer, are represented Fig. 2.7. For the GSRR pattern Fig. 2.7.d),

we observe the expected frequency splitting due to the oscillator coupling and we can estimate 2g 290 GHz, that demonstrate resonators in the ultra-strong coupling regime. We remark that the high frequency coupled mode is perturbed by an additional peak around 1.17 THz. This additional peak is due to the edge of the stop-band, as we presented in Chapter 1 Section 1.2.5. Since the value of 2g * is very high, of the order of the DBR bandwidth, this phenomenon will be present in most of our measurements for this particular metamaterial pattern.

Fig. 2.7.e) presents the transmission spectrum of the Cross/Tamm coupled resonators. We observe the characteristic frequency splitting resulting from to resonator coupling with two coupled modes at 0.85 and 1.05 THz, and we can estimate here 2g * 200 GHz. It is lower than in the GSRR case but it still denotes a strong coupling regime with two well separated peaks. This value is here overestimated because of the non-negligible mismatch between the resonance frequency of the Tamm cavity, 1 THz, and of the cross metamaterial we fabricated, 0.93 THz. This also explains the asymmetry between the coupled peaks we observe.

Finally, Fig. 2.7.f) presents the coupling between the CSRR metamaterial and the Tamm cavity. We experimentally could not observe two separate transmission peaks as evidence for ecient resonator coupling and we mainly observe a single sharp peak at 0.97 THz, that corresponds to the Tamm resonance. The low but non-negligible transmission around 1.1 THz, with T ∼ 0.5%, suggests that we also measure a weak transmission due to the CSRR resonance but that the coupling is not strong enough to realize proper coupling.

We perform the simulation of these coupled resonators using FEM to obtain a more detailed view of the coupling. Fig. 2.8 shows the simulated transmission spectra of the coupled GSRR/Tamm cavity (blue), alongside the FEM simulated transmission spectrum of the GSRR metamaterial on an innite silicon substrate (black), and the reproduction of the experimental spectra (red)). We observe in Fig. 2.8.a) a good agreement between simulation and experiments of the resonance frequencies of the coupled modes. The gray area denotes the blind spots in our measurements due to an additional transmission peak at the edge of the DBR stop-band, and we observe that it is of much lower intensity in the simulations, which can be explained by possible layers misalignment.

We now consider the Cross pattern from Fig. 2.8.b), composed of two orthogonal slits of length L = 60 µm and width 10 µm, resonant at 0.93 THz. With this type of patterned holes, the resonance is rather close to an antenna resonance [30] with a resonance wavelength of the order of 2n ef f L. n ef f is the eective mode index with n ef f = Si +1 2 = 2.5 since the electric eld is located in both silicon and vacuum at antenna resonance. For this reason, the cross pattern is larger than the GSRR and the period of the metamaterial had to be increased to 75 µm. As a result, we observe an additional sharp peak close to 1.3 THz that corresponds to the "grating mode" we described in Chapter 1 Section 1.4.1 that arises because of the metamaterial periodicity. This additional transmission peak frequency is given by f ∼ c n Si p since n ef f is here close to n Si : the grating mode is located almost entirely in silicon as the metamaterial is out of resonance. This sets an higher bound to the metamaterial period we can use for coupled resonators around 1 THz at about p < 75 µm.

The simulated spectrum of the Tamm cavity coupled with CSRR, Fig. peaks partially merged together, which shows a coupling close to the strong coupling. From tting the simulated curve with two Lorentzian peaks, we can estimate 2g * ∼ 50 GHz but only a rough estimate of the coupled mode linewidth can be given: Γ ∼ 25 -50 GHz, which still shows that the resonators are at the edge between weak and strong coupling. It also appears that we could not obtain experimentally a suciently good matching between the uncoupled resonance frequencies of the Tamm cavity and the CSRR metamaterial, as the coupling between the resonators is ecient only if |ω A -ω B | < g * . Note that the fabrication of CSRR using laser lithography as we did can be challenging, as the CSRR smaller dimensions are smaller than 1 µm, at the limit of the technique resolution. Electron beam lithography should be used instead to solve the problem.

g * , Q and Γ rad in coupled resonators

We demonstrated in Fig. 2.8 that it is possible to couple dierent types of resonant metamaterials, SRR or antenna based, to the THz Tamm cavity. We notice that the coupling constant g * decreases from the GSRR to the CSRR when the linewidth of the uncoupled metamaterial Γ M M (from the black curve) also decreases. This is an important general trend to be remarked, that is related to a second surprising observation. Considering that for a two silicon layers Tamm cavity Γ T amm 10 GHz Γ M M , we expect from Eq.2.32 a coupled mode linewidth Γ Coup of the order of Γ M M 2 . We observe in practice a much smaller value. We propose here a qualitative description of these two eects.

Fig. 2.9 presents an energy exchange scheme for the 2D metamaterial on an innite substrate (a) and the metamaterial/Tamm coupled resonators (b). The uncoupled metamaterial is radiatively coupled in two directions and presents a loss channel due to the metal, which is the typical coupling scheme as we presented in Chapter 1 Section 1.1.2. The full linewidth Γ is given by:

Γ M M = Γ rad,1 + Γ rad,2 + Γ loss (2.33)
Depending on the metamaterial, the relative contributions of radiative and dissipative couplings are dierent. As a general rule, the metamaterial pattern mostly inuences Γ rad and Γ loss stays of the same order of magnitude [27].

Considering now the metamaterial/Tamm coupled resonators, the energy exchange scheme includes two resonant modes exchanging energy at the rate g * . This energy exchange explains our observations regarding Γ M M and Γ Coup : since the metamaterial in located on the Tamm cavity instead of an innite substrate, there is no possibility for direct radiative coupling to free space in the left direction, and Γ rad,1 is completely suppressed. The full linewidth of the coupled oscillators modes Γ Coup at zero detuning is then expressed as:

Γ Coup = Γ rad,T amm + Γ rad,2 + Γ loss 2 (2.34) a MM a MM a Tamm T T R R 1 1 Γ g rad,2
Γ rad,1 Since Γ rad,T amm is very small, this explains how Γ Coup

Γ rad,2 Γ rad,Tamm * a) b) Γ loss Γ loss
Γ M M 2 :
The coupling to the continuum Γ rad,1 (to the left in Fig. 2.9) is replaced by the coupling to the Tamm cavity g * , which does not count as losses in the strong coupling regime. In the same manner, we understand the codependency of g * and Γ M M for the dierent metamaterial patterns as the mechanism for the 2D metamaterial coupling is the same, which suggest that g * scales like Γ rad,1 .

Anticrossing measurement

To investigate in details the coupling mechanism, we probe the evolution of the GSRR/Tamm resonators transmission spectrum as a function of the resonance frequency detuning between the two resonators. We use a Tamm cavity at the xed frequency 1 THz composed of two 66 µm silicon layers, and several GSRR metamaterial are fabricated on thin silicon wafers with resonance frequencies ranging from 0.82 to 1.7 THz. We note in the following this uncoupled GSRR resonance frequency f GSRR . The metamaterial period p is xed to 50 µm and the frequency tuning is achieved by homothetic transformation of the GSRR pattern. Transmission measurements of these GSRR/Tamm coupled resonators for all GSRR resonance frequencies are performed using a FTIR spectrometer.

We limit our study to GSRR resonant at frequencies higher than 0.8 THz because of the very low signal level of our FTIR setup under 0.7 THz.

The transmission spectra shown Fig. 2.10.a) present the signature splitting of coupled resonators.

In particular, the continuous transition between the GSRR resonance and the Tamm cavity resonance is evidenced by the continuous increase of the quality factor of the low frequency coupled mode when the GSRR frequency is increased. These measurements are however perturbed by the additional transition peak around 1.2 THz, which prevents an accurate reading of the high frequency coupled mode properties.

In order to obtain a better measurement of the high frequency coupled mode, we realize in Indeed, since the GSRR/Tamm cavity interface is not modied compared to the 2 layers Tamm cavity, the value of the coupling constant g * is the same and the frequency positions of the coupled modes transmission peaks are the same. The frequency shift of the high frequency coupled mode appears on this gure clearly.

The coupled modes resonance frequencies f + and f -from Fig. 2.10.a) and b) are reported on Fig. 2.11. We observe superposition of the resonance frequency values for the 2 layers Tamm and for "single layer Tamm", which validates our hypothesis of an identical coupling mechanism. The global evolution of f + and f -with the GSRR resonance frequency matches an anti-crossing pattern demonstrating the strong coupling of the GSRR and of the Tamm cavity. Note that f + does not converge to 1 THz in the low GSRR frequency limit. We analyze this observation as a coupling of the Tamm cavity with the GSRR even if the GSRR is non-resonant: it is in fact equivalent to the shift observed with the strip grating mirror in the orthogonal polarization case in Chapter 1 Section 1.4. The top gold mirror of the Tamm cavity is much less perturbed for high frequency GSRR than for low frequency GSRR because high frequency GSRR are much smaller, which is equivalent to a lling factor very close to 1 in the Chapter 1 analysis, hence the absence of shift from 1 THz for the lower frequency mode in the high f GSRR limit. In order to realize a detailed analysis of the anti-crossing curve, we performed the simulation of the frequency domain response of the Tamm/GSRR coupled resonators for GSRR of period p = 50 µm for increasing uncoupled GSRR resonance frequency f GSRR , as a reproduction of our experimental data presented above. The resonance frequency of the Tamm cavity is xed and the resonance frequency of the uncoupled GSRR f GSRR is modied by homothetic transformation. The resonance frequencies of the coupled modes f + and f -extracted for the FEM simulations are reported Fig. 2.12.a). The anti-crossing behavior we observe matches our experimental measurements and reproduces the typical features, especially the convergence of f + to ∼ 1.1 THz in the low GSRR frequency limit instead of 1 THz.

We reported the frequency splitting as a function of f GSRR on Fig. 2.12.b). The simulations enable the observations of a shift of the minimum frequency splitting that we used as a measurement of 2g * 285 GHz. This minimum splitting is expected to be found at zero detuning, i.e for a f GSRR = 1 THz, but is here located around 1.075 THz. This dierence highlights a specicity of our system compared to the typical coupled resonators: we attribute it to a diminution of the parameter g * when f GSRR increases, i.e. when the GSRR dimensions are reduced. This eect is here signicant because of the large GSRR frequency range studied due to the large value of g * .

These results show that our coupled resonators system presents some additional complexity compared to the ideal case described by the Hamiltonian Eq.2.29. Further investigations will enable to use the deviations to the basic anti-crossing pattern we have shown here, linked to the discussion from Section 2.2.1 about the inuence of the coupling terms on the anti-crossing pattern, to obtain information on the coupling mechanism between the Tamm cavity and the GSRR metamaterial. 

"Weak" coupling regime

Resonator density dependence

We now explore the dependence of g * with the surfacic density of GSRR ρ S . As the light-matter coupling constant g grows like √ N e , N e the number of emitters collectively involved in the interaction, the resonator coupling constant g * is expected to scale like the square root of the number of GSRR per unit surface √ ρ S i.e 1 p . We perform on Fig. 2.13.b) a linear t (red curve) on the dependence of g * with the inverse metamaterial period 1 p of the form g * = Ap -1 , and we observe a good agreement with the expected dependence with A = 7.4 THz.µm. The slight deviation from theory can be explained by the GSRR resonance frequency shift with p, responsible for non-negligible detuning at the extreme values of p. This result highlights the collective nature of the interaction between the Tamm and the GSRR resonators organized in a metamaterial.

The metamaterial period p appears then as a simple degree of freedom to adjust the resonator coupling constant g * . We can deduce an upper bound to the period p compatible with the strong coupling regime. Since the coupled mode linewidth Γ Coup is of the order of 50 GHz, g * < Γ Coup for p > ∼ 200 µm. For p above this value, the Tamm cavity and GSRR resonators are in the weak coupling regime, in which no splitting is observed. In practice, the transition regime in the p = 100 µm to p = 500 µm period range cannot be studied eciently because of the multiple grating modes appearing around 1 THz.

THz Tamm cavity coupled to an isolated resonator

It is possible to restrict the coupling to the weak coupling regime by separating the GSRR resonators by a large value. We study in the following GSRR separated by a large distance with p = 1 mm. For p = 1 mm, the GSRR resonators are in the weak coupling regime with the Tamm mode, but are also isolated: the period is much larger than the wavelength λ ∼ 430 µm and as a result, there are very small interactions between a GSRR and its neighbors and no grating modes are observed. Because of the very low density of resonators on the surface, the transmission of such systems is very low and we were unable to measure it using our FTIR spectrometer. We collaborated with Jean-François Lampin from IEMN laboratory, Villeneuve d'Ascq, who performed transmission measurements using a Vector Network Analyser (VNA) on Tamm cavity/GSRR coupled resonators centered at 700 GHz. A VNA is a measurement setup (See Fig. 2.14.a)) enabling the measurement of amplitude transmission and reection coecients (or S-parameters) using a heterodyne detection scheme with a high dynamic range up to 80 dB. The system also oers a very high frequency resolution. We adjust the Tamm cavity and the GSRR resonance frequencies to 700 GHz by applying a scale factor 1 0.7 to the DBR layers thicknesses (e Si = 94 µm and e vac = 107 µm) and the GSRR dimensions because the VNA setup operates in the 500 to 750 GHz frequency range.

The experimental power transmission spectrum of a low density array of GSRR separated by 1 mm on the top gold mirror of a 3 layers Tamm cavity is represented in Fig. 2.14.b) alongside the transmission spectrum of the same low density GSRR array on a thin silicon substrate. We observe a sharp resonance peak at 0.683 THz with a quality factor value Q ≈ 240. The observed quality factor matches the quality factor we measured in Chapter 1 Section 1.2.5 for a basic THz Tamm cavity. Also, the transmission at the Tamm cavity resonance is enhanced by a factor ∼ 7 compared to the measurement without cavity (blue). The resonators are here in the regime of weak coupling and their energy exchange is non-coherent. The addition of the Tamm cavity is responsible for a large enhancement of the energy absorption in the photonic mode of the isolated GSRR, otherwise poorly coupled to the continuum, thanks to the large Tamm cavity quality factor. This explains the increase of the transmission at the Tamm cavity resonance. We simulated this system using FEM with COMSOL Multiphysics in the Scattering Field Formulation formalism, that enables the simulation of isolated components illuminated by a plane wave. As a summary, the Tamm/GSRR coupled resonators in the weak coupling regime combine the high quality factor of the Tamm cavity and the high electric eld connement to maximize the electric eld enhancement at the GSRR center, with values higher than 50. However, since the coupling between resonators is non-coherent, we cannot exploit in this regime these properties for strong coupling with a two-level matter system for instance. The real interest of this conguration is that it is optimal to expose a given sample to a high amplitude classical THz electric eld, for instance to maximize absorption of THz waves by small isolated objects.

Alternate design for quality factor optimization

As a nal investigation on the spectral properties of the GSRR/Tamm coupled resonators, we investigate in this section the highest quality factor that is possible to reach with this architecture. We showed in Section 2.2.4 that the coupling increases Q by suppressing Γ rad,1 for the GSRR. To minimize the losses even further, we add to the structure an additional gold mirror in order to suppress Γ rad,2 , in a similar manner to what we did in Chapter 1 Section 1.4. This structure is represented Fig. 2.16.a). Also, we noticed in Fig. 2.7.d) that the high frequency coupled mode was perturbed by the edge of the stop-band, partially because of the high value of the resonator coupling constant g * 145 GHz. In Section 2.2.5, we showed that g * can be modied by adjusting the period of the metamaterial p. We choose then to increase the GSRR metamaterial period to 70 µm in order to decrease g * to about 100 GHz and limit the inuence of the stop-band edge on the high frequency coupled mode. We characterize this GSRR/2 layers Tamm coupled resonators by reectivity measurements performed using a FTIR spectrometer. The reectivity spectrum is presented Fig. 2.16.b) (red).

We observe two resonance peaks (dark blue arrows) at 0.92 and 1.11 THz, which indicates a strong resonator coupling regime with g * ∼ 95 GHz. The estimation of the experimental quality factors we demonstrate with this measure is Q ∼ 40-45 for the lower frequency coupled mode and Q ∼ 30 -35

for higher frequency coupled mode.

The measurement we present is however a preliminary measurement with an important level of noise and can be improved. To estimate the theoretical limit of Q, we also simulate the reectivity spectrum of this coupled resonators structure for a 2 layers Tamm cavity (Fig. 2.16.b), blue) and for a 3 layers Tamm cavity (black). Comparing the blue and red curves, the experimental resonance frequencies are un good agreement with the simulations, and the simulated quality factors of the GSRR/2 layers Tamm coupled resonators are 44 and 58 for the low and high frequency modes respectively. The simulated reection peaks show a high contrast, which suggests there is much room for improvement in our experimental data. If the GSRR is coupled with the 3 layers Tamm cavity (black curve), the quality factors are increased to 62 and 80 but the coupling is not as ecient and the peak contrast in reduced to 20%.

These quality factor values are a huge improvement compared to usual SRRs, limited to quality factors of the order of 10. There are two reasons for this. First, because of the coupling with the Tamm cavity, which has a very small linewidth Γ T amm < 10 GHz, the linewidth of the coupled resonators

Γ Coup = Γ T amm +Γ GSRR 2 GHz reduces to Γ Coup ≈ Γ GSRR 2
, hence a doubling of the quality factor. Then, the inclusion of the GSRR metamaterial in the Tamm cavity enables the suppression of the impact of the radiative coupling rate of the GSRR on its quality factor, so that only Γ loss of the GSRR contributes to the linewidth. As a rule of thumb given by the critical coupling criterion, Γ rad is of the order Γ loss or more, and the quality factor is there again at least increased by a factor 2.

In the end the coupling of metamaterial with our THz Tamm cavity enables a quality factor increase by a factor of the order of 4. In our experiment, this factor is even higher than 10 as Q GSRR ≈ 3.5 for p = 70 µm, because Γ rad is dominant for the GSRR pattern and is completely suppressed in this coupled architecture.

Mode volume of the THz Tamm cavity/GSRR coupled resonators

In the previous section, we presented extensively the spectral properties of the Tamm/GSRR coupled resonators, and now turn to the mode volume V properties of these coupled resonators. After discussing the formula used for quantitative evaluation of the mode volume, we will present the eect of strong resonator coupling on the mode volume, from a simple theoretical perspective rst and then using quantitative estimation for dierent scenarios using FEM simulations.

On the issue of mode volume denition

Let us rst recall the usual formula of the mode volume V :

V = (r)|E(r) 2 |d 3 r | (r)E(r) 2 | max (2.35)
The usual manner of dening the mode volume V leading to this formula, that we adapted in Section 2.1.1, uses an important assumption as part of the dipolar approximation [5]: the matter system is assumed to "see" a single value of the electric eld. This is totally justied in the point like atomic systems used in the original light-matter coupling experiments. However, as we presented in Table 2.1, the matter systems used for THz ultra-strong experiments are principally Quantum Wells (QW) or 2D Electron Gas (2DEG) that are highly extended systems exposed to an inhomogeneous electric eld. As a consequence, the adaptation of this formula to condensed matter systems for THz applications has to be discussed properly.

As we presented, the mode volume V , as it is dened for light-matter coupling, is an indirect measurement of the electromagnetic energy density at the matter system position associated to a given photonic mode via the factor | (r)E(r) 2 | max , for a normalized energy in the mode. Eq.2.35 is a sucient parameter to describe the photonic mode only if the matter system is placed at the electric a) b)

Figure 2.17: Schematic picture of the two limit cases considering light matter coupling.

The red color distribution represents the electric eld amplitude of the photonic mode and dark blue areas the active material systems. a) Point-like emitter in a homogeneous electric eld. b) Extended material system coupled to a highly concentrated and inhomogeneous photonic mode.

eld maximum and the electric eld amplitude is constant over the matter system size. From this criteria, we can draw two opposite scenarios for light-matter coupling that are pictured in Fig. 2.17.

The rst scenario Fig. 2.17.a) corresponds to the ideal case where the dimensions of the matter systems are much smaller compared to the typical variation length of the photonic mode and the whole matter system is subject to an homogeneous electric eld. The resonator does not have to be necessarily a propagation based resonator with smooth mode amplitude variations, it can be a metallic resonator such as a metallic antenna as long as the matter system is small compared to photonic mode variations. The coupling strength will however be very sensitive to the precise position of the matter system: in [32], the authors present the coupling between an isolated semi-conductor quantum dot and a bowtie antenna, and show that the light-matter coupling constant g is dierent depending on the quantum dot position inside the antenna mode.

In the second scenario Fig. 2.17.b), the electric eld is highly localized due to resonant metallic elements, and on the opposite the matter system extends over a large distance. It is the typical scenario when using SRR coupled to QW or 2DEG. Here, the description using the mode volume as dened in Eq.2.35 is not sucient as the electric eld is highly inhomogeneous over the material volume. This conguration also is not of optimal eciency as the QW or 2DEG cannot be located at the electric eld maximum between the metal edges.

This discussion relies on the comparative size of the matter system and photonic mode typical variation distances. We understand then that which scenario is encountered does not only depend on the resonator, but also on the material system, i.e. the whole light-matter coupling scenario that is considered. It is nally possible to propose an alternative denition of an eective mode volume

V ef f , that accounts for the variations over the mode surface [33]:

V ef f = V matter (r)|E(r) 2 |d 3 r matter (r)|E(r) 2 |d 3 r (2.36)
Where V matter is the volume of the active material. The maximum value of the electromagnetic energy has been here replaced by its average value over the active material volume to account for the spatial variations of the electric eld. The above expression can be written using a dimensionless parameter Ψ [13]:

V ef f = V matter Ψ 2 with Ψ 2 = matter (r)|E(r) 2 |d 3 r (r)|E(r) 2 |d 3 r (2.37)
Ψ 2 appears then as an overlap factor between the matter system and the photonic mode. In the optimal case for light-matter coupling the overlap factor converges to 1, and for a given material system, the resonator design stakes are then to maximize this overlap factor by adjusting the mode prole to the material system shape. This is an important reason why 3D LC circuits are being explored as an alternative to SRR [12,13], as we presented in Chapter 1 Section 1.1.3.

Mode volume evolution in coupled cavity scenarios Theoretical eect of mode coupling on mode volume

Let us consider a theoretical picture of the typical case of strongly coupled resonators we study: a photonic mode A from a propagation based resonator, that has a large mode volume and a high quality factor, is coupled to a second photonic mode B hosted by a metal based resonator showing high electric eld connement. For simplicity, we only consider states with one photon in the mode A or the mode B that we note |A and |B respectively. The higher frequency coupled mode is written as:

|+ ph = cosθ |A -sinθ |B (2.38)
Or, expressed for the electric eld distribution of the coupled mode E + :

E + (r) = cosθE A (r) -sinθE B (r) (2.39) 
Where E A (r) and E B (r) are the electric eld distributions for one photon in the modes A or B respectively. We are interested in the mode volume V + of this coupled mode, given by Eq.1.26:

V + = (r)|E + (r) 2 |d 3 r | (r)E + (r) 2 | max (2.40)
We recall that the upper part of this ratio is given by the electromagnetic energy in the mode.

Consequently, if the electric elds E A , E B and E + are properly normalized for one photon in the modes A, B and the coupled mode, then we have (r)|E A (r) 2 |d 3 r = (r)|E B (r) 2 |d 3 r = (r)|E + (r) 2 |d 3 r provided the resonators are close to frequency matching.

The bottom term in Eq.2.40 denotes the maximum electric energy density in the coupled resonator. It is necessarily given by the metal resonator, i.e. the mode B, because of the high electric eld concentration associated with this resonator:

| (r)E + (r) 2 | max = sin 2 θ| (r)E B (r) 2 | max (2.41)
We can rewrite Eq.2.40 as :

V + = (r)|E B (r) 2 |d 3 r sin 2 θ| (r)E B (r) 2 | max (2.42)
In which we identify the expression of the mode volume of the metal based resonator V B . Alternatively, the mode volume of the lower frequency mode V -is estimated with cosθ as the coecient for the contribution of |B in the coupled mode |ph . We can nally give a simple estimate of the mode volume of the coupled resonator:

V + = V B sin 2 θ and V -= V B cos 2 θ (2.43)
Obviously, the mode volume of the coupled modes does not diverge at large detuning (θ → 0 or π 2 ) but rather converges to the largest mode volume V A . These expressions reect the continuous evolution of coupled modes from pure mode A to pure mode B as a function of detuning, and we expect the curves of V + and V -to cross at zero detuning as the coupled modes are equally distributed on mode A and B. We have most importantly shown, using few legitimate assumptions, that the mode volume of the coupled modes V ± are given by the resonator having the smallest mode volume V B .

In particular, at zero frequency detuning, θ = π

4 , E + (r) = 1 √ 2 E A (r) -1 √ 2 E B (r)
and we have:

V ± = 2V B (2.44)
The mode volume is then only increased by a factor 2 because of the coupling. According to the interpretation that the mode volume is a measurement of the electromagnetic energy concentration, we understand that associating two resonators dilutes the electromagnetic energy in the two resonators, hence the doubling of the mode volume V B due to the coupling.

Evaluation of the mode volume in Tamm/GSRR coupled resonators systems

In order to estimate the evolution of the mode volume due to the coupling, we have a powerful tool available: the FEM simulation, that gives the information of the electric eld distribution of the coupled mode. We performed in Fig. 2.12 simulations reproducing the frequency domain response of the GSRR/Tamm coupled resonators for GSRR of period p = 50 µm and various uncoupled resonance frequencies f GSRR . The simulated structures were identical to the ones we used for the experimental transmission spectra were presented in Fig. 2.10 and Fig. 2.11. We use in the following these simulations to estimate the mode volume of the higher and lower frequency coupled mode f + and f -for the GSRR/Tamm coupled resonators we experimentally characterized in Section 2.2.4.

To compute the mode volume of the coupled modes V , we could use the basic expression from Eq.2.35. In practice, this formula is rather dicult to use for multiple reasons.

First, we consider here an open resonator that is excited via an input plane wave incident on the DBR which has two consequences: part of the energy in the simulation space belongs to the plane wave and is not actually stored in the resonant mode, and also, arbitrary boundaries to the integration space need to be chosen, otherwise the energy density integral becomes divergent as the plane waves are theoretically unbounded. More complex expressions of the mode volume accounting for this issue have been proposed [34], we will however tackles this problem by limiting the integration domain " cavity " to a distance λ 4 above the GSRR surface, in addition to the two silicon and single vacuum layers of Tamm cavity. This is an approximation as this denition includes in the integration some penetration of the input plane wave in the DBR. The quality factor Q gives an estimate of the ratio between the energy stored in the resonator and outside, over a distance λ. This makes this approximation all the more appropriate that the quality factor is high, typically higher than 10.

This will however be an important source of uncertainty for lower quality factor resonators such as the uncoupled GSRR.

The value of |E| max is also not a robust measurement in FEM simulations of thin metallic layers. In our simulation, we modeled the gold layer as innitely thin. As a result the electric eld is divergent in the capacitive gap of the Tamm/GSRR coupled resonators (See Fig. 2.18), and |E| max cannot be dened. Using the value of |E| at an arbitrary position close to the metal edge could appear as a solution but this measurement is very sensitive to the meshing, the convergence threshold and some inherent variability. The solution to this problem is related to the denition of a light-matter interaction scenario as the expression of V ef f from Eq.2.36 substitutes to an average value over the active material volume.

We propose here a light-matter coupling scenario compatible with the interaction with 2D materials deposited on a substrate, typically graphene. We consider an extended active material system located on the surface of the top substrate, spanning the whole length of the GSRR capacitive gap.

The electric eld of interest in this conguration is then the average value of electric eld between the tips of the GSRR, whose prole is represented in Fig. 2.18. We propose then the following expression for V ef f :

V ef f = L gap cavity (r)|E(r) 2 |d 3 r gap 0 |E| 2 dx (2.45)
Where " gap " denotes the 1D integral from one of the GSRR tips to the other in the polarization direction and L gap is the distance between the tips. In our simulations, L gap is modied by the homothetic transformation realized for the GSRR frequency tuning so that L gap is reduced when f GSRR is increased. We use the following method to evaluate the eective mode volume V ef f from our simulations.

We compute the expression from Eq.2.45 as a function of frequency, which results in the curve of a frequency dependent "volume of connement" V * (f ) represented Fig. 2.18. The frequency dependence represented here is not an evolution of the mode volume as only one V ef f is dened for a given mode, however, the evolution of V * (f ) is an indirect measurement of the electric energy density in the system as we observe two V * (f ) minima for the two resonances of the system, i.e. at the frequencies f + and f -. This is a way to control the quality of our mode volume evaluation. We can then evaluate V ef f for the two coupled modes from the values of V * (f ) at its minima.

The evolution of the eective mode volume of the two coupled modes V + and V -as a function of f GSRR is represented Fig. 2.19.a). We observe a rapid increase of V -at high f GSRR that in coherent with the convergence of the lower mode to a pure Tamm mode, however, we do not observe a crossing of the curves of V + and V -that we predicted from Eq.2.43. There is a general trend of reduction of V ef f going towards higher frequencies, as expected from the decrease of the wavelength λ and we attribute the absence of crossing of the curves to this eect. The frequency dierence between the modes f + and f -is indeed of the order of 30%, and the related large wavelength value dierence is greatly amplied due to the power 3 dependence of the volume. This makes the direct COUPLING comparison between V + and V -dicult as the frequency dierence is an important penalty on V -. ) GS Freq (THz) this representation constant at a value 5 × 10 -6 λ 3 , which validates the relevance of this normalization. We now observe the expected crossing of the curves of V + and V -at f GSRR ≈ 1.15
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THz, which is higher than the expected frequency from Fig. 2.12.b). The transition from increasing (decreasing) curve to an horizontal asymptote in both cases captures well the continuous transition of the coupled modes from a pure Tamm cavity mode to a pure GSRR metamaterial mode as a function a detuning.

We could not measure a convergence of V + or V -to V GSRR at large detuning but to a value about twice higher ∼ 1 × 10 -5 . This is probably explained by the arbitrary choice of the integration space " cavity ". In the end, we can produce a fair estimate of the eective mode volume of the coupled modes at zero detuning, V ef f 1.2 × 10 -5 λ 3 . This is the major result of this analysis, as we demonstrate mode volumes comparable with 3D LC circuits (See Chapter 1 Table 1.1), in an architecture that can demonstrate quality factors in the 40-45 range as we showed in Section 2.2.6.

This result compares well to metal-dielectric-metal antennas with better values for both the quality factor and the mode volume achieved with an easy to fabricate structure.

Metamaterial pattern optimization for mode volume reduction

In this nal section, we study the limits of the Tamm/metamaterial coupled resonators regarding the eective mode volume V ef f . To this purpose, we explore variations of the GSRR pattern we used before. The alternative design we studied is inspired from [35], as we noticed that the resonators the authors present can also be classied as GSRR as they are composed of a metamaterial of patterned hole in gold mirror forming two associated SRRs. The derived metamaterial pattern we study is represented Fig. 2.20. We use the same period as before p = 50 µm and focus on the study on the evolution of V ef f with the size of the capacitive gap between the electrodes L gap , where the electric eld enhancement is at its maximum. The eective mode volume of these coupled resonators is estimated using the method described above, and reported normalized by λ 3 in Fig. 2.22.b). A single V ef f is represented as we found

V + = V -after normalization. We model as before the metamaterial as an innitely thin metal sheet. Note that we performed as a consistency test the simulation of the same structure with a more complex model accounting for the nite thickness of the gold layer set at 100 nm. The results were similar and only diered by less than 10% for the smallest structure at L gap = 200 nm.

From the slope 2 of the log plot, we determine that V ef f scales like L 2 gap . FEM simulation shows that the electric eld distribution away from the gap does not depend much on L gap , but on the opposite, the average value of the electric eld norm in between the metallic tips scales like 1 Lgap , as it was already suggested from Fig. 2.18.a). From our denition denition of V ef f in Eq.2.36, we can deduce that the L 2 gap scaling of V ef f arises from the 1 Lgap scaling of |E| in the capacitive gap.

For the smallest gap size we tested, 200 nm, FEM simulations demonstrate a value of the mode volume as low as 7.4 × 10 -8 λ 3 , which is a state of the art value, especially for such high values of Q. In the next chapter, we will study the light-matter coupling properties of a graphene quantum dot device, whose length is of the order of 300 nm. It is then compatible with a gap size of around 500 nm, and we can keep the value 4.7 × 10 -7 λ 3 as a realistic estimate of the mode volume of the metamaterial/Tamm coupled resonators compatible with these graphene quantum dot devices.

Conclusion

The 2D metamaterial/Tamm coupled resonators we presented in this chapter are a development of the THz Tamm cavity towards quantum light-matter coupling. The relevant gure quantifying this regime of interaction is the light-matter coupling energy g, which is mainly improved by reducing the cavity mode volume V as g ∝ 1 V . We developed to this purpose Tamm cavities coupled to metamaterials at the gold mirror surface based on patterned holes designed to concentrate the electric eld, that we name Grid Split Ring Resonators (GSRR).

We characterized experimentally the spectral properties of these coupled resonators, and we found that the coupling was responsible for well separated resonance peaks showing a strong to ultra-strong resonator coupling regime. From the analysis of the linewidth dependence, we showed that the resonator coupling is very ecient because GSRRs and typical resonant metamaterials have large radiative coupling rates Γ rad that is turned into a large resonator coupling constant g * when included in the Tamm cavity. This large Γ rad of resonant metamaterials, usually responsible for a low quality factor, is there turned into an advantage regarding the coupling with Tamm cavities. As a direct consequence of this conversion of Γ rad , we also observed an increase of the coupled resonator quality factor much higher than the expected factor 2, that we estimated to be at least of the order of 4, only limited by ohmic losses of the metamaterials. In the GSRR case we studied, it was even higher than 10 as we experimentally demonstrated a quality factor Q ∼ 40-45 range at 0.92 THz, and we showed by simulation that it is possible to reach values up to 80.

We discussed in the nal section the denition of the mode volume in dierent light-matter coupling scenarios and proposed a formula adapted to the coupling of extended active materials with the GSRR/Tamm coupled resonators. We showed theoretically that if one resonator has a much smaller mode volume than the other as it is the case with the GSRR/Tamm coupled resonators, the mode volume for the strongly coupled resonators is given by this smaller mode volume, only increased by the factor 2. Using FEM simulations, we reproduced the evolution of the mode volume of the two coupled modes as a function of the frequency detuning. We nally studied using simulations a close metamaterial pattern optimized for reduction of the mode volume, which exhibited V = 4.7×10 -7 λ 3

for a 500 nm gap size, which is of the same order of magnitude as SRR from literature that are the best THz resonators regarding mode volume.

The metamaterial/Tamm cavity we developed here, with its deep sub-wavelength mode volume and rather high Q factor is meant to be a platform for cavity quantum electrodynamics in the THz range. The cavity however only represents one half of the system, and need to be coupled to an matter system active in the THz range. Since the Tamm cavity and the metamaterials we used are planar cavities, our system is in its present form adapted to be coupled with 2D materials, typically 2DEG or quantum wells. The coupling with 0D objects such as quantum dots would however require the limitation of the in-plane spatial extension of the coupled resonators mode to achieve connement in all directions of space. A possibility regarding this issue would be the reduction of the top metallic layer to nite size disks as already used in infrared Tamm cavities [36].

In the next chapter, we investigate the coupling of a Graphene Quantum Dot (GQD) to free-space THz waves in order to evaluate the possibility of using GQDs in CQED experiments.

Chapter 3

Photon-assisted tunneling in graphene quantum dot

THz light-matter coupling requires active material systems with discrete energy levels, whose energy level spacing falls within the THz range. A general method used in semiconductor structures is the quantization of energy in discrete Landau levels obtained by applying a magnetic eld. Their energy spacing is however determined by the magnetic eld amplitude, limiting the exibility in engineering the electronic level distribution. Alternatively, quantization of the energy spectrum is obtained by spatial connement of carriers, which can be realized in semiconductor structure by adding spatial boundaries in a given dimension of space, such as potential barriers or directly reducing the size of an object to nanometer scales. From a 3D bulk semi-conductor, adding connement directions reduces interacting systems to 2D quantum wells [1], 1D nanowires [2] and ultimately 0D quantum dots [3] for which carriers are spatially conned in all directions of space [4], resulting in a full discretization of electronic levels. Their energy spacing can be then freely engineered by the extension, shape and edge prole of the spatial connement.

The energy level spacing of quantum dots increases when their typical dimensions are reduced.

In order to produce quantum dots active in the THz region, large quantum dots typically in the 100's nm range shall be considered. The energy of interband transitions is however limited by the band gap energy, which falls in the NIR and visible range in most semiconductor quantum dots.

To produce quantum dots with interband transitions in the THz spectral range, semiconductors with extremely low bandgaps, as low as few meV, are necessary as 1 THz correspond to 4 meV. To overcome this fundamental limitation associated with nite bandgap semiconductors, a solution is to use a "gap-less semiconductor" i.e a semi-metal. Mercury chalcogenides are promising gap-less material [5] as recent works have reported interband absorption down to 10 THz in HgTe quantum dots of ∼100 nm size [6]. However, the fabrication of larger quantum dots to decrease further the interband transition energy is not well-mastered up to now, preventing their use in the low frequency part of the THz spectral range. In this thesis work, we use graphene as gap-less material, and study large Graphene Quantum Dots (GQDs). A main advantage of this nanomaterial system is that, by using a top-down technique, graphene quantum dots can be processed with controlled size and shape.

In this chapter, we investigate light-matter interaction properties of a single GQD using transport spectroscopy in the Coulomb blockage regime. We will rst describe the energy level spectrum of GQDs from a theoretical perspective, as well as their absorption properties in the THz domain.

In a second part, we will present the principle of transport spectroscopy for probing the energy levels of nanoscale structures, and present its application to a large GQD included in a single electron transistor device, rst without illumination in order to estimate microscopic properties of the GQD-SET device. Finally, we will use Photon-Assisted Tunneling (PAT) evidenced by transport spectroscopy under coherent THz illumination in the GQD-SET as a tool to quantify the light-matter interaction strength of the device and the electric dipole moment d.

Spectral properties of large graphene quantum dots

We focus in this rst section on the structural and electronic properties of large circular Graphene Quantum Dots (GQDs). We will introduce graphene, its structure and its specic energy dispersion relation. We present a simplied and an exact theoretical model accounting for the eect of spatial connement on the GQD energy level spectrum. Finally, we show how the absorption spectrum of large GQDs is expected to evolve with their radius as a way to justify their interest for THz applications.

Electronic energy levels in Graphene Quantum Dots

Graphene is a material made of a single layer of carbon atoms arranged in an hexagonal lattice (Fig. 3.1.a)) presenting exceptional electronic, optical and mechanical properties due to the connement to a single atomic plane [7]. At the basis of graphene electronic properties are the carboncarbon π bonds common to unsaturated and aromatic compounds, whose wavefunction expand out of the sheet plane. Most importantly, π-electrons involved in these bounds are delocalized over the whole graphene sheet structure, which enables a high electronic mobility in graphene. These electronic properties are captured by a tight binding Hamiltonian, here simplied to electron hoping between nearest neighbor [8]:

H = -t <i,j> [c † i c j + h.c.] (3.1) 
Where the nearest neighbor hoping energy t 2.8 eV describes the hoping rate between nearest neighboring atoms i, j, and c † 

E ±( -→ q ) = ± v F | - → q | + O ( q K ) 2 (3.2) Where - → q = - → k - - →
K is the wavevector centered at the K point and v F = 3 2 ta 10 6 m.s -1 is the Fermi velocity, a the carbon-carbon distance. The linear dispersion around the Dirac points is very specic to graphene and has several consequences compared to usual semiconductor which exhibit parabolic dispersion. First, the Fermi velocity is constant and the charge carrier density n scales like E 2

F : n = 1 π E F v F 2 (3.3) 
This carrier density can then be directly tuned by a gate voltage controlling the Fermi energy.

The linear dispersion relation also implies that electrons around K points have zero eective mass, making Eq.3.2 the dispersion relation associated to massless relativistic fermions described by the Dirac equation [9]. Finally, the band structure of graphene forbids electron back-scattering [10],

making transport in graphene highly coherent over distances up to several µm [11].

By reducing the dimensions of the graphene layer, the graphene dispersion relation can be shaped as a result of the additional spatial connement of carriers. Reducing one graphene sheet dimension to few to tens of nm leads for instance in graphene nanoribbons, which exhibit sub-band splitting and tunable gap opening [12]. Full quantum connement is achieved for spatial connement in both directions of the graphene sheet plane. Such structures are called Graphene Quantum Dots or GQDs. As carriers are conned in all three directions of space in GQDs, their energy levels become completely discrete, as in an isolated atom. Because they are derived from a material with a gapless and linear energy dispersion, the GQDs energy spectrum is expected to be quite dierent from other active materials used for THz applications. In the following of this section, we adapt the work of Sylvain Massabeau in his PhD thesis [13] to describe the energy spectrum of circular GQDs.

Continuous model approximation and cylindrical wave

As a rst approach, the circular GQD of radius R can be described as quantum well in a 2D space of circular symmetry described by a continuous wavefunction Ψ( -→ r ) and the low energy Hamiltonian reduces to the Dirac Hamiltonian form [14]:

H = v F   0 -i ∂ ∂x -i ∂ ∂y -i ∂ ∂x + i ∂ ∂y 0   and Ψ( - → r ) = A( - → r ) B( - → r ) (3.4) 
Ψ( -→ r ) is a two components vector representing the two atoms A and B of the graphene unit cell. The eigenvalue equation for the Dirac Hamiltonian, giving the state energy E, is then a simple dierential equation:

∆A( - → r ) = - E v F 2 A( - → r ) (3.5)
Because of the circular symmetry, we can assume a specic form for the function A(r, ϕ):

A(r, ϕ) = a(r)e imϕ (3.6) 
The periodic angular dependence impose m to be an integer, the angular momentum number. The solutions for the radial part a(r) are then given by the m th Bessel function of the rst kind:

a(r) = J m Er v F (3.7) 
The eect of quantum connement arises from boundary conditions imposed to the wavefunction.

At the GQD edge, we have:

a(r = R) = J m ER v F = 0 (3.8)
This boundary condition is responsible for the quantization of the energy spectrum and we can deduce the possible eigenvalue of the system E m :

E m = v F Θ 1 J (m) R (3.9)
Where Θ 1 J (m) is the rst zero of the m th Bessel function of the rst kind J m . This energy spectrum as a function of GQD radius is represented Fig. The energies estimated using this continuous wavefunction model conrm that large GQDs, typically larger than 100 nm, are good candidates for THz technologies as they exhibit energy level spacing in the THz range. As an example, the energy level spacing for a 50 nm radius GQD is about 17 meV or ∼ 4 THz. We will nonetheless see in the next part that this simplied approach does not account for the full complexity of the GQDs energy spectrum.

Edge eect inuence on the GQD energy level spectrum

The continuous model presented above can account for the eect of the nite size of the GQD on the innite graphene band diagram, but neglects the microscopic structure of the GQD and in particular cannot account for the non-negligible edge eects in GQDs. For instance, the edge structure of GQD, which can be either armchair or zigzag (See Fig. 3.2), or also disordered, have a great inuence on the electronic structure of energy states near the Dirac point i.e. close to zero energy [15]. Eq.3.9 with increasing angular momentum number m from bottom to top.

In the case of circular GQD, it is geometrically not possible to have either dened armchair or zigzag edges, which adds even more complexity. In order to capture rigorously the contribution of the edge eects on the electronic energy states, S. Massabeau propose in his PhD thesis [13] the calculation of the GQD energy spectrum using the direct numerical diagonalization of the tight-binding Hamiltonian Eq.3.1. This process is however extremely computing power consuming as the Hamiltonian is a matrix of size N × N , with N the number of carbon atoms in the GQD. Consequently, the maximal radius studied was limited to 25 nm. The resulting energy spectra for radius ranging from 17 to 25 nm are represented Fig. Interestingly, we observe a complex dispersion of the energy levels ranging from the Fermi level E = 0 to several hundreds of meV, and classication of these states in three groups has been realized. The higher energy states or bulk states follow the energy evolution predicted by Eq.3.9 (Dashed lines Fig. 3.4) for m = 1 and m = 2, making them the fairly close to the prediction from the continuous model. However, many lower energy states are present in the spectrum: edge states, close to the Dirac point, and mixed states, between edge and bulk states.

The electronic density functions Ψ 2 represented on the right give another insight to this classication. Bulk states exhibit smooth and large lobes almost entirely away from the GQD edges, in agreement with the boundary conditions imposed in Eq3.8. On the opposite, edge states are strongly localized at the GQD boundary. In-between, mixed states also exhibit an important localization at the GQD edge but a non-negligible density at the center of the dot. It appears then clearly that edge and mixed states cannot be captured by a continuous model deriving from the innite graphene dispersion relation as they result from the complex coupling of localized orbitals.

Absorption spectrum

Since we are interested in the THz light-matter interaction properties of the GQD, the knowledge of which transitions between energy states are eciently coupled to THz light in of prime importance.

We now present the dependence of the GQD absorption properties on their size. Fig. 3.5.a) represents the absorption cross-section of a GQD normalized by the GQD surface for various radii and a doping value E F = 200 meV. The absorption is calculated from the computation of the dipolar interaction Hamiltonian H I = e me p.A matrix element, with p the impulsion operator and A the vector potential of a plane wave at normal incidence, for all pairs of GQD states described previously. α is evaluated from the ratio of the GQD absorption cross section over the GQD surface area. Reproduced from [13] b) Frequency of the absorption maximum from tting of theoretical curves in a). Adapted from [13] The absorption spectra present an intense absorption peak whose center frequency scales like 1 R (Fig. 3.5.b)). This resonant absorption is a demonstration of the quantization of electronic energy levels in GQDs, as innite graphene shows a constant absorption from THz to visible range [16].

Further examination shows that the main absorption processes involve only the bulk and mixed states that are eciently coupled to light unlike edge states.

Extrapolation of the 1 R dependence suggests the absorption maximum frequency for a 50 nm ra- dius GQD would be about 4 THz. This approximately matches the inter-level spacing for successive angular momentum number m from the simplied continuous model of Eq.3.9, which is consistent as the bulk states captured by the continuous model states are the energy levels involved in the transitions. Since the main transitions involved in the absorption resonance are transitions between successive energy states, we can attribute the absorption in this spectral range to principally intraband transitions. Note that interband transitions have larger transition energies and have a weaker contribution to the absorption.

We will present in the following parts the experimental investigation we performed on the GQD energy level spectrum and on its light-matter interaction properties in a non-resonant frequency range, between 100 to 400 GHz.

Dark transport spectroscopy of graphene quantum dots

The direct probing of optical properties of a single GQD at THz frequencies is experimentally challenging because of its very small size (∼ 100 nm) with regards to typical THz beam size, limited by diraction to ∼ λ = 300 µm. Transport spectroscopy is a way to avoid this diculty as it is a very sensitive technique relying on the connection of the GQD to electrodes located in its close vicinity. This architecture is called the single electron transistor (SET), and enables the precise control and measurement of the sample conductance properties.

As a rst step before studying the THz photo-response of the GQD, we will show in this section how transport measurements without illumination enable the exploration of electronic energy levels of quantum dot systems, and we will present the measurement of the electrical coupling parameters of the GQD-SET device. The investigations presented in the following of this chapter were realized in collaboration with Takis Kontos and Sébastien Balibar, two researchers at LPENS.

Graphene Quantum dot in the Coulomb Blockade regime

Transport spectroscopy: the single electron transistor A quantum dot coupled to two electron reservoirs or Fermi seas via tunneling barriers can be used as a conduction channel between the two reservoirs. If the tunneling rate to the electron reservoirs is small enough, the electronic lifetime in the quantum dot can become higher than the inverse energy level spacing, the conduction enters the sequential tunneling or Coulomb blockade regime, where electrons can only tunnel one-by-one in and out of the quantum dot. From an energy level perspective, the system can then be described as two continuum of states, the electron reservoirs, lled with electrons up to their chemical potentials, and a sequence of discrete energy levels at the center that are hosted by the GQD (See Fig. 3.6.a)). Most importantly, the conduction properties of quantum dots in this regime of interaction are governed by the availability of the quantum dot energy levels, which opens the possibility to use transport measurements as a probe of the energy spectrum. It is the basic principle of transport spectroscopy.

In the sequential tunneling regime, electrons can only be added one-by-one to the quantum dot, and the energy needed to add an electron denes the addition energy E add . This is the energy that is probed by transport spectroscopy. Since the quantum dot is coupled to electrodes, E add is however not directly the inter-level spacing in the GQD, as we present in the following. Quantum dots in the sequential tunneling regime are coupled to electrodes using the single electron transistor (SET) architecture, as represented in Fig. 3.6.b). In this structure, a quantum dot is capacitively coupled to a source, a drain and a gate electrode, and tunneling is possible to source and drain electrodes at rate Γ L and Γ R respectively. It was rst proposed by Likharev in [17], where a nanoscale metallic island was used instead of a quantum dot. Metallic islands present a continuous energy spectrum, however, because of the capacitive coupling to the electrodes, adding an electron to the islands requires an additional electrostatic or charging energy E C = e 2 C Σ [18], where
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C Σ = C S + C G + C D is
the total island capacitance. This makes the energy spectrum of the system versus electron number in the island discrete and enables the sequential coupling regime. When unlike metals the energy spectrum is not a continuum, i.e. in the case of semiconductor quantum dots, this charging energy E C adds up to the inter-level spacing ∆E level so that the eective electron addition energy E add reads:

E add = E C + ∆E level (3.10)
The addition energy includes then the contributions of both the matter system inter-level spacing ∆E level and of the electrostatic energy via E C . We present here in detail the electrostatic couplings in the QD-SET devices. Because of the capacitive coupling with the electrodes, the electric potential of the central island V 0 is given by the three capacitor charge/potential relations:

V S -V 0 = q S C S V 0 -V D = q D C D V G -V 0 = q G C G (3.11)
In actual devices, the drain electrode is grounded, so that we will take V D = 0 as a reference and V S = V SD . With the convention from Eq.3.11, all charge q i are taken positive if V SD and V G are positive. We dene N as the number of electrons in the quantum dot, with N = 0 as a reference without external potentials. The charge in the quantum dot Q is expressed from charge conservation:

Q = -N e = q D -q G -q S (3.12)
We can then deduce the expression of the electrostatic potential in the quantum dot V 0 in the single electron transistor regime:

V 0 = -N e + C S V SD + C G V G C Σ (3.13) With C Σ = C S + C G + C D .
From this equation we can dene the capacitive lever-arm factor α i of electrode i:

α G = C G C Σ and α S = C S C Σ (3.14)
The α i are actually the linear coecients describing the capacitive coupling of the electrode i to the quantum dot potential V 0 :

α G = ∂V 0 ∂V G and α S = ∂V 0 ∂V S (3.15)
The capacitive lever-arm factor of the drain electrode

α D = C D C Σ
is hidden in Eq.3.13 because V D = 0, it is however present through the C D contribution to C Σ that makes V 0 tend to 0, and it can be deduced from the relation α S + α G + α D = 1.

This expression of V 0 shows that the gate voltage V G can be used to adjust the charge in the quantum dot. The energy levels of the quantum dot are indeed tuned by an additional electrostatic contribution -eV 0 , and the chemical potential of the dot µ QD (N ), dened as the energy needed to add the N th electron to the quantum dot with N -1 electrons, reads:

µ QD (N ) = E add (N ) -eα S V SD -eα G V G (3.16)
We now consider the possibility for a current to ow through the quantum dot at low sourcedrain bias V SD E add . An electron can tunnel from electrode i (source or drain) with chemical potential µ i = -eV i to the quantum dot with N -1 electrons if µ i > µ QD (N ). Inversely, an electron can tunnel from the dot to the electrode i if µ i < µ QD (N ).

If µ QD (N ) = µ S/D as depicted Fig. 3.7.a), an electron can tunnel from the drain to the quantum dot nearest lower state, the N electron state, but can then never tunnel from the quantum dot to the source because the N electron state has a lower energy. In this conguration, there is no possibility for conduction through the quantum dot.

If on the opposite µ QD (N ) µ S/D i.e. µ QD (N ) lies within the [µ S , µ D ] window, an electron can tunnel from the drain to the quantum dot N electron state and then from the quantum dot to the source. As a consequence, a non-zero current can only be measured if the quantum dot chemical potential is aligned with source and drain chemical potentials. Consequently, when sweeping the chemical potential of the quantum dot levels using the gate voltage V G , successive alignments with µ S/D lead to successive current peaks separated by E add eα G (Fig. 3.7.c)). This conductance measurement as a function of gate voltage V G becomes then a spectroscopic tool to measure E add and probe the energy levels of the quantum dot. pictures are reported on the V G axis.

For a large source-drain bias voltage, this picture is modied: tunneling through the N electron state is possible as long as µ S < µ QD (N ) < µ D (in the case V SD positive) as presented on Fig. 3.8.a)

. These two conditions can be written in terms of potentials V G and V SD :

-V SD > E add e -α S V SD -α G V G -0 < E add e -α S V SD -α G V G
Repeated for two successive quantum dot energy levels N -1 and N , the resulting four conditions draw in the (V G , V SD ) plane Fig. 3.8.b) a diamond pattern, the Coulomb diamond. This is the most specic feature of single electron transistors: inside the diamonds, there is no conduction possible due to Coulomb blockade.
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N-1 The color map represents the dierential conductance in a log scale. Reproduced from [21] d) Coulomb peak spacing distribution as a function of GQD diameter. Reproduced from [22] The GQD is connected to source and drain electrodes via two narrow constrictions that are set to a non-conducting state using the two lateral gate voltages, so that the constrictions act as tunneling barriers. The principal gate electrode is the central plunger gate, which is used to tune the energy levels of the GQD. As a result, Coulomb peaks are observed Fig. 3.9.b) as the plunger gate voltage is swept when the GQD energy levels are aligned with source and drain electrodes Fermi energies.
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High quality Coulomb diamonds have been observed in single electron transistor connected to GQD [21] such as represented Fig. 3.9.c). Transport measurements are a powerful spectroscopic tool for the investigation of GQD energy levels. However, as we presented in Section 3.1, the GQD energy levels spectrum is rather complex. For this reason, Ponomarenko et al. focused their study on the statistics of the energy peak spacing [22]. Fig. 3.9.d) represents the energy peak spacing distribution measured for several GQD diameters: for the largest GQD (250 nm radius), the peak spacing is monodisperse showing that a continuum-like spectrum is probed and peak spacing only measures the charging energy E c of the GQD. The peak spacing distribution is on the opposite broadened for GQDs of diameter 110 nm and smaller, meaning that dierent and denite energy levels are used by the electron for the tunneling through the quantum dot. The energy level spacing due to quantum connement is then sucient to be observed. The distribution is a measurement of E c + ∆E level , so that the lower bound of the distribution is an estimate of the charge energy E c ∼ 4 meV for a 110 nm diameter, and the inter-level spacing distribution ranges from 0 to 6 meV i.e. about 1.5 THz. This highlights the potential of GQD in the > 100 nm diameter range for THz technologies. In recent works, Banszerus et al. used electrostatic potential barriers from electrodes instead of etching to produce gate-dened GQD of high quality due to the absence of edge disorder eect [23].

Fabrication and experimental setup GQD fabrication

The GQD-SET we used, that was fabricated by Elisa Riccardi who worked as a post-doctoral researcher in our team, presents a ma jor dierence compared to previous works. To ensure the highest quality graphene sample, we use a graphene ake (Fig. 3.10.a)) exfoliated from natural crystalline graphite that was encapsulated between two hexagonal boron-nitride (hBN) akes [24] (Fig. 3.10.b)). hBN is a crystalline 2D material whose lattice parameter approximately matches the graphene lattice parameter, which makes it an excellent substrate for graphene as it causes low disorder to the graphene structure. The GQD-SET structure is patterned on this heterostructure using a HSQ resist mask (Fig. 3.11.a)).

The remaining unnecessary parts are etched away using oxygen RIE to draw the all hBN graphene heterostructure device as presented Fig. In order to connect the device to the measurement instruments, gold electrodes are later deposited using thermal evaporation under vacuum with an overlap with the graphene electrode edges, so that graphene and gold are electrically connected thanks to 1D contacts [25]. The nal device is represented schematically Fig. 3.12.a). The tooth shape visible on Fig. The dilution refrigerator setup we used is represented in Fig. 3.13. The central element is a gold plated metallic sample holder cooled down at 40 mK, whose temperature is maintained constant using a heating component controlled by a feedback loop. The GQD device is placed on this sample holder, which also enables electric connections for measurements. The central part is isolated from the outside temperature using ve successive metallic cylindrical heat shield (See Fig. 3.14.a)) and two separated vacuum chambers, between the 300 K and 4 K screens and inside 4 K screen. The whole structure is pre-cooled thanks to a 77K liquid nitrogen bath, a 4 K liquid helium bath and a ∼ 1 K pumped liquid helium bath.

Our dilution refrigerator is original because, due to its large dimensions compared to more modern devices, it uses a very large quantity of 4 He-3 He gaseous mixture, about 600 L at room temperature.

As a consequence, it exhibits a very high refrigerant power, which enables to maintain a constant temperature around 40 mK even when the optical access is open and a non-negligible THz power, of the order the several tens of µW, is incident on the sample. This makes our dilution refrigerator a remarkable tool for light-matter coupling experiments in the tens of mK range. DC voltages of all electrodes are controlled by DC voltage sources and the tunneling current I is measured using a trans-impedance amplier connected to the drain electrode. The dierential conductance G dif f is measured using a lock-in amplier probing the trans-impedance amplier output V I and applying a low frequency (f = 77 Hz) modulation V AC of the order of 10 µV to the source electrode using a summation circuit (See Fig. 3.14.b)). The whole electric apparatus is computer controlled, which enables automated measurements. This transport spectroscopy setup was developed in the group of Takis Kontos at LPENS.

Blockade of constriction conduction -Cross pattern

The rst step before attempting transport measurement in the Coulomb blockade regime on the GQD-SET device is to set the constrictions connecting the GQD to source and drain electrodes in a non-conducting state, so that they act as tunneling barriers [18,19]. As a simplied picture, the lateral gate potentials V G2 and V G3 have to be chosen so that no constriction energy level is available for conduction at the chemical potential of the source and drain electrodes.

In order to probe the transport properties of the constrictions, we measure the tunneling current through the GQD as a function of lateral gate voltages V G2 and V G3 in Fig. 3.15. We observe two ensembles of zero conduction lines in two separate directions highlighted by dotted lines, creating a global "Cross" pattern. The vertical branch of the cross is dened by V G2 : the vertical lines are non-conducting states of the left constriction, and the rather horizontal lines are on the opposite non-conducting states of the right constriction. The non-verticality or horizontality of the lines are a symbol of cross-talking between the lateral gate electrodes: the left constriction energy levels are not only inuenced by V G2 , but also in a smaller extend by V G3 . To set both constrictions in a non-conductive state, we choose (V G2 , V G3 ) in the region of crossing of both ensemble of lines, i.e. the region bounded by dashed lines in Fig. 3.15, and most favorably at the intersection of two large non-conducting lines. The location of the favorable region is likely to be shifted because of irreversible charging events, or because of the capacitive coupling of the constrictions to the plunger gate voltage V G1 . As a consequence, it can be useful to perform this set of measurements again during long experiment campaigns or in particular if a new range of V G1 is explored.

Transport measurements in a GQD SET Coulomb diamonds in Graphene Quantum Dots

To explore the Coulomb blockade regime in our GQD-SET device, we performed dark transport spectroscopy measurements. The dierential conductance (G dif f = dI dV SD

) as a function of V G1 and V SD , displayed Fig. 3.16.a), exhibits the Coulomb diamond shape as presented in Section 3.2.1

showing that our device is in the sequential regime of tunneling. From the diamond height, we extract directly the electron addition energy of E add ∼ 6 meV in the considered gate voltage range.

The measurement of the Coulomb diamond pattern enables the estimation of the capacitive lever-

arm factors α i = C i C Σ
from the detailed analysis of the width and the frontier slope of the diamond [26] as presented in Fig. 3.16.b). Since the drain electrode is grounded in our experiments, we estimate α D using α G + α S + α D = 1. Also, our device includes additional gate electrodes G2 and G3, however, since their electric potentials do not change during experiments, their contributions cannot be distinguished from the capacitive coupling to the grounded drain electrode, and are included in α D for clarity. From the diamond height compared to its width, we can evaluate the G1 gate capacitive lever-arm α G . In the end, we estimate: This conduction enhancement is visible by bright and dark lines parallel to diamond edges.

α G = 0.097 α S = 0.352 α D = 0.551 (3.17) 0 0.08 0.16 G ( ) diff 2e 2 h b) a) E add α G α S α G α + D α G E add α G -0.
They are hardy visible on Fig. 3.16.a) (white dashed line), however, we reported in a previous work well dened excited states on several successive diamonds (Reproduced in Fig. 3.17.b)). From this measurement, we were able to estimate directly the inter-level spacing ∆E level , independently of the charging energy E C , to be about 1.7 meV = 0.42 THz for a GQD sample of higher diameter (∼ 150 nm). This result conrms that the GQD exhibits separated electronic states with energy level spacing ∆E level ∼ 0.5 THz.

Study of the Coulomb peaks

We study in the following the detailed shape of the Coulomb peaks in conductance measurements, in order to estimate the microscopic parameter associated to the GQD coupling to the electron reservoirs: the tunneling rate to the barriers Γ.

I-V G scan:

The tunneling current through the GQD at low V SD bias voltage is represented Fig. 3.18 (along the horizontal dashed line in Fig. 3.16.a)). We observe the Coulomb peaks pattern as described in Fig. 3.7.c). The dierences between peak height and also inter-peak spacing is a signature that the graphene island we used is small enough to be considered as an actual quantum dot by opposition to a metallic island [22]: dierent energy states, having dierent coupling parameters to the electrodes (Γ L , Γ R ), are probed successively instead of a continuum of undierentiated metallic states. From an energy scale point of view, it means we have (Γ L + Γ R ) ∆E level .

-0.8 -0. We derive in the following the expression of the current through the GQD, in the zero temperature limit (at 40 mK k b T 4 µeV (Γ L +Γ R ) as we will see in the following). The GQD-SET device can be modeled as a discrete energy level at energy d (single for simplicity) interacting with two Fermi seas or electron reservoirs, the electrodes, at chemical potentials µ S and µ D and is described by the Coulomb blockade model. In this system, d identies to its chemical potential µ QD as dened from Eq.3.16, and can be written as:

d = 0 -eα G V G -eα S V SD (3.18)
Where 0 is the energy of the state considered independently of capacitive couplings. The tunneling current through the GQD I is then given using the Landauer formula, leading for a single localized level d to [29]:

I = e d [f S F ( ) -f D F ( )] Γ 2 1 π Im[G( , d )] (3.19) 
where f

S/D F

is the Fermi distribution centered at the chemical potential µ S/D , Γ = Γ L + Γ R is the sum of the tunneling rates between the QD and the L and R electrodes (assumed equal) and G is the retarded Green function. First, in the non-interacting case, G =

1 d --i Γ 2
. Since we neglect here thermal broadening of the Fermi distributions, the term [f S F ( ) -f D F ( )] is then reduced to a gate function Π µ D µ S ( ) and the tunneling current reads:

I = e d Π µ D µ S ( ) Γ 2 1 π Γ ( d -) 2 + ( Γ 2 ) 2 (3.20)
Transcripted as a function of experimental parameters (V G and V SD ), the expression reads:

I(V G , V SD ) = e d Π 0 -eV SD ( ) Γ 2 1 π Γ ( 0 -eα G V G -eα S V SD -) 2 + ( Γ 2 ) 2 (3.21) 
This function is the convolution of the gate function due to the source-drain voltage bias V SD by the Lorentzian function due to the GQD level nite lifetime, whose center is shifted due to capacitive coupling. This expression can be simplied further in the case of the measurement from Fig. 3.18, i.e. V G scans at low source-drain bias (V SD = 100µV ). In particular, we set V SD Γ, so that the convolution with the gate function can be simplied to a readout of the function at 0:

I(V G , V SD Γ) = e 2 V SD Γ 2π Γ ( 0 -eα G V G ) 2 + ( Γ 2 ) 2 (3.22)
We obtain a simple Lorentzian peak function of width

2Γ eα G centered in 0 eα G
, which highlights how such V G scans are useful to perform GQD level spectroscopy. From Lorentzian ts, the Coulomb peak widths of about 2.6 mV and we estimate Γ ∼ 0.25 meV. Note that our assumption Γ eV SD is not fully fullled, and this estimation method for Γ is not the most precise, rst because of the necessary bias voltage V SD and also mostly because of the uncertainty on the geometric determination of α G . Performing V SD scan measurements instead enables a more reliable determination of Γ independently of α G .

G dif f -V SD scan:

In order to produce a reliable estimate for Γ, we perform then V SD scans. The tunneling current I does not exhibit a peak shape in this conguration, which makes the tting step dicult and prevents the accurate estimation of Γ using this measurement. Hence, we probe the dierential conductance G dif f instead in Fig. 3.19, which shows a peak shape as a measure of the non-linearities of I.

The graphene is here used for its semi-conducting properties, and it exhibits an ultra-broadband detection sensitivity ranging from the low frequency THz to the UV domains [31] (Fig. 3.20.b)).

We also previously reported that hBN encapsulated GQD are sensitive to photogating eects [27]: weakly bounded charges due to defects in silicon substrate can be liberated and migrate to the substrate/GQD-SET interface when exposed to broadband THz light, hence inuencing the GQD transport response via an equivalent additional gate voltage that shifts the photo-current response as presented in Fig. 3.20.c). The GQD-SET structure used is represented Fig. 3.20.d): it is very similar to the one we studied in this work, with the dierence that the source and drain electrodes were not patterned in a bow-tie antenna structure in this thesis.

These three previous works on light-matter coupling phenomena in GQDs use two rather classical eects, and quantum optic experiments using GQD are still limited to very small GQD interacting with visible light. For instance, room temperature single optical photon emission with high purity and high brightness in the visible range has been demonstrated from GDQs of a few nanometers in diameter [32]. We probe in this section the coupling of the GQD-SET device to coherent THz light and demonstrate a quantum response of the large GQD.

PAT in QD related systems in a zero net current through the GQD. When a small bias voltage is applied, there is a narrow gate voltage range in which PAT events are only possible between the quantum dot and one of the two electrodes. As a result, a net tunneling current can be observed at this gate voltage. When performing gate voltage scans, PAT is then responsible for satellite peaks that appear on each side of the DC Coulomb peak as represented in Fig. 3.21.c). Depending on the left or right side of the satellite peak, the interaction picture enabling tunneling is either a) or b), respectively.

An important property of PAT is that the satellite peak position is given by the energy dierence between the quantum dot level and the electrodes chemical potential, hence the photon energy. The gate voltage shift between the principal Coulomb peak and the satellite peak evolves then linearly with the photon frequency. Also, as the illumination power is increased, higher order peaks can appear, corresponding to the absorption of two or more photons for the same tunneling event.

Photon assisted tunneling in the THz range has been previously demonstrated in a few systems PAT [35]. In self-assembled InAs quantum dots, PAT involving up to 4 photons was observed, and was also used to probe excited states of the quantum dot [36]. Recently, PAT was demonstrated in a system closer to our GQD: in carbon nanotubes quantum dots in the microwave range (20 to 50 GHz) by Meyer et al. [37], and in the THz range by Tsurugaya et al. [38] and Rinzan et al. [39].

The quantitative analysis of the power dependence of the photo-current response was limited in previous PAT demonstration as accurate power calibration in the THz range are dicult. Also, no demonstration of PAT has been provided yet in GQD.

Illumination setup

We use a Schottky diode frequency multipliers chain from VDI as THz source, whose function is to multiply by 9 the frequency from a microwave signal in the 8.5 -14.5 GHz frequency band generated by an AnaPico AG frequency synthesizer. The multipliers chain emits a continuous monochromatic, vertically polarized THz wave in free space, whose frequency can be nely tuned using the frequency synthesizer, and is terminated by a horn antenna to produce a beam with moderate divergence of about 15 • . This source operates initially in the 82 -120 GHz band but additional multiplier stages can be added to reach higher frequencies at the expense of the output power. The output beam is collimated using a short focal TPX lens (f 1 = 25 mm) and focused using a long focal TPX lens (f 2 = 250 mm) on the GQD sample through the refrigerator windows. A scheme of the optical windows is represented Fig. 3.22.

Because of the very large wavelength we used, ∼1 to 3 mm, the alignment is not very sensitive to in-plane displacement of the source or the lenses. As a matter of fact, the principal limiting element is the input refrigerator window of diameter 6 mm, located at a distance ∼ 150 mm from the sample. A quick diraction calculation highlights this point: the numerical aperture of the window N.A. is ∼ 0.02, so that the minimal THz spot size in the sample plane due to diraction would be of the order of λ 2N.A. = 25 mm at λ = 1 mm/ f = 300 GHz. Considering this large size compared to the input window diameter, the beam is divergent in the dilution refrigerator due to a large diraction associated with the windows. There is then no point trying to focus precisely the THz beam on the sample. Note that the alignment is however very sensitive to displacements along the propagation axis due to interference eects. We present in detail the calibration of the transmission of the windows ensemble in Appendix C, in which we performed illumination intensity on the GQD sample estimations.

Low Frequency -Classical regime

We rst focus on the photo-transport response of the GQD-SET device in the low frequency band, at 111.5 GHz. This precise frequency was chosen from photo-current maximization, as the frequency response spectrum exhibits large and fast amplitude modulations due to all interference eects (details in Appendix C). 

Oscillating bias model

In a semi-classical picture, the blurring of Coulomb diamonds we observe can described by a modulation of the source-drain bias voltage by the incident THz electric eld. The interaction of the incident THz electric eld with the GQD-based device results in an AC voltage modulation of amplitude V T Hz that is added to the DC source-drain bias V SD , as depicted schematically in Fig. 3.24.
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V THz This harmonic modulation V T Hz characterizes the energy of the light-matter interaction in this model. It is responsible for a time dependent expression of the dierential conductance G dif f :

G dif f (V G , V SD , V T Hz , t) = e 2 Γ ( 0 -eα G V G + e(1 -α S )V SD + eV T Hz cos(ωt)) 2 + ( Γ 2 ) 2 (3.25)
We do not include the corrective factor (1 -α S ) accounting for the capacitive gating from source and drain electrodes to the oscillating term eV T Hz . The reason for this choice is that the precise contribution of capacitive gating depends on the relative contributions of the two electrodes to V T Hz and we could not determine them. For instance, a symmetric case V S = V T Hz 2 cos(ωt) and V D = -V T Hz 2 cos(ωt), the capacitive gating contributions mostly cancel themselves out. Also, we do not take into account the quadratic background correction term, which is a reasonable approximation provided the conductance peak is centered around V SD = 0 V in our data.

The expression of G dif f from Eq.3.25 is a Lorentzian peak whose center position is modulated in time by the quantity V T Hz cos(ωt). Since the acquisition time of our measurements is slow compared to the period of the THz waves, we measure the time-average value of the conductance < G dif f > which has the shape of a broadened peak. We can estimate an expression of the peak linewidth under THz illumination Γ from the expression of < G dif f >:

< G dif f >= e 2 Γ T T = 2π ω 0 dt 1 ( 0 -eα G V G + e(1 -α S )V SD + eV T Hz cos(ωt)) 2 + ( Γ 2 ) 2 (3.26)
This integral has a simple analytical solution, using a residue theorem calculation, only if 0eα G V G + e(1 -α S )V SD = 0 i.e. at the peak center. We can then only give an analytical expression for the average conductance maximum under THz illumination:

< G dif f > max = e 2 1 Γ 2 + (2eV T Hz ) 2 (3.27)
From integral conservation arguments under modulation and averaging, we expect the width Γ to follow the inverse evolution:

Γ (V T Hz ) = Γ 2 + (2eV T Hz ) 2 (3.28)
This expression can be further simplied to Γ = 2eV T Hz for 2eV T Hz > Γ, so that Γ scales like √ I T Hz , I T Hz the THz intensity incident on the sample plane. In the following, we focus on the peak width instead of its height for the estimation of V T Hz as it is a more robust quantity in the curve tting we performed.

Power dependent broadening Fig. 3.25 shows the evolution of the dierential conductance peak as a function of V SD at V G1 = -0.57 V for dierent incident THz intensities ranging from 0 to 49 µW.mm -2 . Whereas the Coulomb blockade peak is sharp without illumination, with a width of 0.49 mV, with THz illumination, the peak broadens with increasing THz intensity as expected from the oscillating bias voltage model . because µ S -eV T Hz < µ QD (N ) , but never to the unmodulated drain electrode. Once the N electron level is emptied, it is lled with an electron from either source or drain electrodes, resulting in no current if the electron comes from the source and a net current if the electron comes from the drain.

A net current ows then in a single direction, from source to drain, independently from the DC bias sign, and the source electrode acts as an electron-photon pump [40,42,43]. This model requires that V T Hz exceeds V SD = 300 µV, which is coherent with our estimation of V T Hz Fig. 3.26.b) for I T Hz > 10 µW/mm 2 . The important information highlighted by this particular behavior is that the main response of our GQD-based device is non-thermal related. It is also a signature of the high non-linearities exhibited by our GQD-based device, which are highly desirable for detection applications. In a Taylor expansion picture, G dif f reads:

I(V G , V SD , V T Hz ) = I(V G , V SD )+V T Hz cos(ωt) ∂I ∂V SD (V G , V SD )+ 1 2 V 2 T Hz cos 2 (ωt) ∂ 2 I ∂V 2 SD (V G , V SD )+O(V 3 T Hz ) (3.29)
Over averaging, all uneven term of the Taylor expansion are however canceled out:

< I(V G , V SD , V T Hz ) >= I(V G , V SD ) + 1 4 V 2 T Hz ∂ 2 I ∂V 2 SD (V G , V SD ) + O(V 4 T Hz ) (3.30)
Resulting in a dominant term

∂ 2 I ∂V 2 SD (V G , V SD ), which is characteristic of the non-linearity of I versus V SD .
As a nal remark, it has to be noted at this point that the light-matter interaction has an eect on the source-drain bias voltage because the polarization is oriented along the source-drain axis. It would be possible to promote the interaction via the gate voltage V G1 by rotating the polarization by 90

• or by changing the arrangement of the dierent electrodes.

High frequency -Quantum regime

The eect we presented in the previous section is a rather classical description of light-matter interaction, because the excitation frequency 111.5 GHz remained of the order of Γ 0.31 meV 75 GHz. As we aim to reach a quantum regime of interaction, we add a frequency tripler to the multiplication chain and explore in the following the GQD light-matter interaction properties in the 240 -380 GHz frequency band.

THz-induced satellite peak

To evidence PAT in this frequency range, we perform tunneling current measurements under illumination at various THz frequencies. The working frequencies were chosen from local photocurrent maxima, distributed evenly in the 240-380 GHz range (See Appendix C). The tunneling current I as a function of V G1 is reported in Fig. 3 We observe that the satellite peak position shifts in the direction of positive V G1 as the frequency of the THz wave is increased. We nd a value very close to the distance between source and drain electrodes of ∼ 300 nm in the GQD-based device. As we recall from Chapter 2 Section 2.1.1, d is given by the matrix element of the position operator R and the value of d reects the spatial extension of the wavefunctions involved in the transition. This observation is then consistent with an electric dipole involving electronic transitions between an orbital of the reservoir electrons (source or drain) and an orbital of the GQD, which supports the validity of our analysis of an interaction mechanism involving the electrodes via the oscillating bias V T Hz .

The uncertainty is estimated to be mostly due to THz intensity estimations, and the dispersion over the values of d matches the dispersion of our intensity estimations, ±20%. Because of this uncertainty, we could not observe any frequency dependent trend in the variations of d with frequency.

Conclusion

We investigated in this chapter the THz spectral and light-matter interaction properties of Graphene Quantum Dots. From the theoretical study of the GQD energy spectrum, it appears that circular GQD of diameters higher than 100 nm exhibits an absorption resonance below 4 THz, which makes then appealing for THz technologies. We performed transport spectroscopy on a single hBN encapsulated GQD of diameter 100 nm placed in a dilution refrigerator with optical access. Connected in the single electron transistor (SET) architecture, we isolated the GQD from the electrodes by setting the graphene connections as tunneling barriers, so that the GQD-SET is in the Coulomb blockade regime. The energy spectrum of the GQD-SET is then discrete and, by tuning its chemical potential of the GQD using a gate electrode, we probed the energy levels of the GQD and we estimated the inverse lifetime associated to the tunneling rate to the electrodes Γ ≈ 0.31 meV or 75 GHz.

Using a frequency multipliers chain THz source, we performed the transport spectroscopy of the GQD-SET in two dierent regimes. Around 110 GHz, the interaction is in the classical regime and the photo-current response we observed lead us to propose an interaction mechanism based on an additional oscillating bias voltage V T Hz between the source and drain electrode. The square root dependence of V T Hz versus the THz intensity conrmed this mechanism of coherent interaction. In the quantum regime, for THz waves ranging between 240 and 380 GHz, this interaction eect turned into a satellite conduction peak whose gate voltage shift is given by the energy quantum of THz photons: this is a characteristic feature of photon-assisted tunneling (PAT).

From the satellite peak amplitude, we were able to evaluate the interaction potential V T Hz . We performed the quantitative analysis of the dependence of V T Hz versus the calibrated incident THz intensity. This way, we used PAT as a tool to estimate the characteristic gure of the light-matter interaction strength of the GQD, its electric dipole moment length d. As we presented in Chapter 2 Section 2.1.2, the knowledge of the value of the electric dipole moment enable the estimation of the light-matter interaction energy g if the GQD-SET device is placed in a given resonant cavity. We estimated the value of d to about 230 nm: this is a large value, which suggests the strong coupling regime could be reached with single emitter in the THz range using GQDs, as it has already been achieved in the IR domain [51]. We will discuss this in the conclusion of this thesis. by a factor higher than 10 with an experimental quality factor of about 40-45. Concerning the mode volume of these coupled resonators, we showed that the resonator with the smallest mode volume imposes its volume to the coupled resonators modes, only increased by a factor 2 from theoretical consideration, and we provided a method of computation of the mode volume using Finite Element Method simulation to support this result. With minor design optimization, we showed then that a mode volume as low as V = 4.7 × 10 -7 λ 3 can be reached for a 500 nm gap size, which is comparable to THz SRR from literature. In the end, both the quality factor and the mode volume of the coupled resonators modes were dictated by the resonant metamaterial, but we did took advantage of the high quality factor of the Tamm cavity as the integration of the resonant metamaterial in the cavity suppresses its the radiative losses. Only the ohmic losses of the metamaterial matter then, which completely changes the strategies to develop for resonator design. In particular, the perspective of using superconducting materials such as niobium instead of metals is highly appealing to reach a much higher range of quality factors in the metamaterial/Tamm coupled resonators.

In Chapter 3, it is the other part of light-matter coupling systems that is investigated: Graphene Quantum Dots as THz active materials. We presented how large GQDs with diameter higher than 100 nm exhibit absorption in the THz range. We used transport spectroscopy to experimentally characterize the energy levels and light-matter interaction properties of a single hBN encapsulated GQD of diameter 100 nm. By connecting the GQD in a Single Electron Transistor architecture, in the Coulomb blockade regime, we probed the energy levels of the GQD and we estimated an energy level broadening of Γ ≈ 0.31 meV or 75 GHz. Under free-space THz illumination at 110 GHz, the GQD-SET exhibited a classical photo-response, that we interpreted as an interaction mechanism due to an additional oscillating bias voltage V T Hz between the source and drain electrodes introduced by the THz wave. The quantum regime of interaction is reached around 300 GHz, and we demonstrated in this frequency range Photon-Assisted-Tunneling as we observed a satellite conduction peak shifted by the photon energy. Using a quantitative analysis of this phenomenon, we were able to use PAT to estimate the electric dipole moment length d of the GQD to be as high as d 230 nm. This large coupling is responsible for the high sensitivity of GQDs to THz waves despite their size being more than three orders of magnitudes smaller than the THz wavelength, even with non-focused free-space radiations. These results call for the inclusion of GQD-SET devices in resonant systems to produce highly sensitive THz devices.

As a perspective, we can estimate using the results of this thesis a value of the light-matter coupling constant g that would be possible to reach by coupling a GQD to a metamaterial/Tamm cavity. The simple expression of g, g = edE 0 with E 0 = ω 0 /(2 0 V ) the cavity vacuum eld, is indeed a simple product of the cavity contribution, E 0 , with the matter contribution d, i.e. of the results of Chapter 2 and Chapter 3. With V estimated from Chapter 2 to V = 4.7×10 -7 λ 3 at 1 THz, the cavity vacuum eld is as high as 1.7 kV.m -1 and we estimate g ω 0 ∼ 0.10 which is the beginning of the ultra-strong light-matter coupling regime. It would then be possible to reach the ultra-strong coupling regime at the single electron level with a single GQD in metamaterial/Tamm coupled resonators, provided that we additionally achieve in-plane connement of the electromagnetic mode.

This opens the perspectives of using GQD in quantum optics experiments and for probing nonclassical light.

Another important gure of merit of quantum information to characterize the degree of coherence of the interaction is the cooperativity C = g 2 κγ . We experimentally measured a cavity linewidth κ ≈ 22 GHz, and the matter decay rate γ can be estimated to be smaller than the GQD energy level linewidth Γ ≈ 75GHz we measured. In the end, we expect the system of a single GQD coupled to the metamaterial/Tamm coupled resonators to have a cooperativity C ∼ 6. The interest of having both a high quality factor and a low mode volume in THz resonators appears in this gure of merit, as both κ ∝ 1 Q and g 2 ∝ 1

V contribute to the cooperativity. It is then the combination of these two Les micro-circuits LC ont un volume de mode V très faible, typiquement de l'ordre de 10 -6 λ 3 .

L'objectif de ce couplage entre résonateurs est ainsi de réaliser une structure adaptée de la cavité Tamm avec un volume de mode largement sous-longueur d'onde. Cette diminution du volume de mode est cruciale pour le couplage lumière-matière. En eet, le formalisme de l'électrodynamique quantique en cavité (CQED) présente l'énergie de couplage lumière-matière g comme le quanticateur de la force de cette interaction. g est proportionnel à l'amplitude du champ électrique par photon dans la cavité, et le volume de mode V est un quanticateur indirect de cette amplitude, d'où il vient que g ∝ 1 V . La réduction du volume de mode, en ayant pour conséquence l'augmentation de l'énergie d'interaction lumière-matière, permet ainsi s'atteindre un régime quantique de couplage lumière matière qu'on appelle régime de couplage fort. 

ABSTRACT

Resonant cavities are a critical component in many photonic systems for light-matter coupling. In the Terahertz domain, state-of-the-art resonators are unable to present both high quality factor and a high field confinement. We propose is this thesis the Terahertz Tamm cavities, whose structure opens a wide range of possibility for cavity, enabling the realization of cavity presenting deep sub-wavelength mode volume while keeping a high quality factor. The first part of the PhD thesis is focused on the realization and experimental characterization of the Terahertz Tamm cavities. We explored then the patterning of the Tamm cavity metallic mirror into resonant metamaterials for the reduction of the mode volume. Finally, we studied without cavity the photo-response of an encapsulated graphene quantum dot to coherent Terahertz excitation, in order to estimate experimentally the lightmatter coupling strength in graphene quantum dots. These results suggest that it is possible to reach the strong coupling regime between Terahertz Tamm cavities and graphene quantum dots.

MOTS CLÉS

Terahertz -Cavité optique -Couplage lumière-matière -Graphène RÉSUMÉ Les cavités résonantes sont des composants centraux dans de nombreux systèmes photoniques de couplage lumière-matière. Dans le domaine Terahertz, les résonateurs à l'état de l'art ne parviennent pas à concilier un bon facteur de qualité et un confinement du champ important. Nous proposons dans cette thèse les cavités Tamm Terahertz, dont la structure ouvre de nombreuses possibilités de design de cavité, permettant l'obtention de volumes de mode largement sous-longueur d'onde tout en maintenant un facteur de qualité élevé. La première partie de cette thèse est centrée sur la réalisation et la caractérisation expérimentale des cavités Tamm Terahertz. Nous avons ensuite exploré la structuration du miroir métallique de la cavité Tamm en métamatériaux résonants pour la réduction du volume de mode. Enfin, nous avons étudié hors cavité la réponse d'un quantum dot de graphène à une excitation Terahertz cohérente, afin d'estimer expérimentalement la force du couplage lumière-matière de ces structures. Ces résultats ouvrent la voie à l'obtention d'un régime de couplage fort entre les cavités Tamm et des quantums dots de graphène.
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Fig. 1 .Figure 1 . 1 :

 111 Figure 1.1: Typical Lorentzian resonance peak, here the energy stored into a resonator.

Figure 1 . 2 :

 12 Figure 1.2: Schematic picture of an open resonator coupled to two radiative channels

  τ )a + κ| * |s + and |s -= M r |s + + a |t (1.8)

Figure 1

 1 Figure 1.3: a) Reectivity spectra of a resonator coupled via Γ rad,1 = 0.03ω r , Γ rad,2 = 0.01ω r and Γ loss = 0 (black), Γ loss = 2 3 Γ rad,1 (red, critical coupling) and Γ loss = 5Γ rad,1 (blue). b) Reectivity, transmission and absorption at resonance as a function of the ratio Γ loss Γ rad,1

Figure 1 . 4 :

 14 Figure 1.4: Schematic picture and associated Hamiltonian of the two limit cavity cases: propagation based/optics cavities and localized components based/electronics resonators.

Figure 1 .

 1 Figure 1.5: a) Schematic view of the 1D photonic crystal cavity structure, presenting a periodic arrangement of 50 µm Si wafers with a central layer of double thickness introducing the defect from which the cavity mode arises. b) Modulus of the electric eld amplitude prole for the rst resonant mode at 0.41 THz. c) Cavity transmission spectrum featuring the three rst resonant modes at 0.41, 1.22 and 2.02 THz. No 2DEG is included in the cavity for this measurement. All gures reproduced from [8].

Figure 1 .

 1 Figure 1.6: a) Transmitted power through a 19.164 mm THz DBR Fabry-Perot cavity. Q = 10000 Reproduced from [11]. b) Top: Transmitted power through a 480 mm THz DBR Fabry-Perot cavity laterally conned by a corrugated silicon waveguide. Q = 7×10 6 . Bottom: Insight of the cavity high density of modes and associated constant cavity nesse.

  an interface component and the continuity of the electric eld -→ E parallel component. When introducing a nanohole (dimension typically < 1 µm, Fig1.7.c), right) at the electric eld maximum of a photonic crystal cavity defect mode, an incident polarization orthogonal to the slot long axis

Figure 1 . 1 (

 11 Figure 1.7: a) 2D silicon/vacuum photonic crystal cavity structure including a rst waveguide as input port 1, central missing three hole as defect and a second waveguide as output port 3. Reproduced from [13]. b) Transmitted power through the 2D photonic crystal cavity. Q = 11000. Reproduced from [13]. c) Left: 1D cavity structure and electric eld prole for the cavity defect mode, showing a diuse lobe and a localized amplitude enhancement at the center nanohole position. Right: Electric eld 2D prole around the nanohole. All at f = 2.176 THz, the electric eld is vertically polarized, reproduced from [14].

Figure 1 .

 1 Figure 1.8: a) SEM picture of a unit cell the of the rst THz SRR metamaterial.Reproduced from[16]. b) Transmission spectrum of the SRR structure included in the inset picture. Q = 6.9. adapted from[17]. c) Complementary SRR metamaterial structure (yellow is a gold layer). Note the polarization of the electric eld in the horizontal plane. d)

Figure 1 . 7 .

 17 Figure 1.10: a) Top: Magnetic and electric mode proles of the strip array microcavity. The magnetic eld is out of plane and the electric eld vertically polarized ( k is horizontal). Bottom: related reectivity spectrum exhibiting the rst 3 resonant mode (Fundamental : Q ∼ 6.7). Adapted from [26]. b) Left: Optical micrograph of the patch antenna array showing the array unit cell and SEM picture of a single antenna. Right: reectivity spectra for high and low antenna densities. Q factors are 8 and 24, respectively. Reproduced from [27]. c) Top: schematic view of the disk patch antenna (here splited in two). Bottom: Electric displacement and magnetic eld proles for the axisymmetric mode e 02 at 2.1THz. Adapted from[28].

1. 2 . 1 Figure 1 . 11 :

 21111 Figure 1.11: Schematic association of a DBR and a metallic mirror resulting in a Tamm cavity. The DBR structure is an alternate of high (n H ) and low (n L ) refractive index layers, and the photonic mode is localized in the vicinity of the metal layer (red).

Figure 1 .

 1 Figure 1.12: a) Predicted electric eld (solid line), magnetic eld (dashed line) and refractive index (dotted line) prole for a Tamm cavity resonant at λ = 1.3 µm. Reproduced from [32]. b) Theoretical DBR reectance spectrum centered at λ = 0.97 µm (solid line) as well as theoretical Tamm cavity reectance/transmittance spectra (dashed lines) and experimental spectra (data points) for two dierent gold layer thicknesses. Reproduced from [33]. c) Typical electric energy density in a silver/GaAs/AlAs Tamm cavity at λ = 0.86 µm. Adapted from [34]. d) Electric energy prole in left: basic Tamm structure, center, Tamm structure including and additional low refractive index layer of thickness e = 20

λ 4 Figure 1 .

 41 Figure 1.13: a) Schematic structure as the silicon/vacuum THz DBR. b) First period of the reection spectra at normal incidence of a vacuum-silicon DBR with 1 (black), 2 (orange) and 3 silicon layers (blue). The silicon layers are e Si = λ 1T Hz 4n Si = 21.94 µm thick, vacuum layers in-between are 75 µm thick.

3λ 4 instead of λ 4

 4 thick wafers i.e. about 66 µm instead of 22 µm at 1 THz, keeping e vac = 75 µm. The modied reection spectrum for a 3 layers DBR computed using TMM is represented Fig.1.14. 

Figure 1 . 14 :

 114 Figure 1.14: Comparison between reection spectra of 3 silicon layers DBRs centered at 1 THz using e Si = λ 1T Hz 4n Si = 21.94 µm (black) and e Si = 3λ 1T Hz 4n Si = 65.83 µm (blue). e vac = 75 µm for both.

Fig. 1 .Figure 1 .

 11 Fig.1.15.a), because of the additional metal layer in Tamm cavities deposited directly on the DBR surface, the last interface of the nal silicon layer (the layer closest to the metal) does not contribute to the DBR. The reason for this is that this interface with vacuum does not exist because of the metal layer. As a result, |r DBR | 2 calculated using TMM in Fig.1.15.b) has the same overall spectral

DBR

  (See Fig.1.15.a)). For clarity, we keep these two contributions integrated in r DBR : r DBR = r * DBR e -2ike Si and arg(r DBR ) = arg(r * DBR ) -2ike Si (1.32)

(1. 34 )φ c 2 = 270 µm, among which 3T 2 c 2 =

 34222 This expression exhibits a total phase reection delay τ φ = τ * φ + 3T 2 = 1.80 ps, relative to the whole DBR considered for Tamm cavities. This value is in fact also the round trip-time inside the DBR, and enables the denition of an equivalent length for the DBR in the form l DBR = τ 225 µm = e Si n Si is the contribution of the nal silicon layer and τ * φ c 2 = 45 µm is the penetration length in the rest of the DBR.
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 1118 Figure 1.17: a) 3D representation of the 3 layers THz Tamm cavity including a gold top layer as mirror, silicon wafers (purple) and metal strips as spacers (gray). The cavity is coupled to the outside via its bottom face. b) Optical photograph of the structure in its sample holder. The three separate silicon layers are visible to the naked eye.

Figure 1 . 19 :

 119 Figure 1.19: Electric eld prole (amplitude modulus) of the resonant Tamm mode at 1 THz computed using TMM, superimposed to the cavity structure. The input incident wave is of normalized amplitude 1.

(1. 39 )

 39 Since the integrated term scales like n 2 |E| 2 , L conf is dominated by the contribution of the nal silicon layer e Si = 3λ 4n Si (Full calculation gives L conf = 40 µm = 0.45 λ n Si

Figure 1 .

 1 Figure 1.20: a) Evolution of the Tamm cavity quality factor (blue) and resonance peak contrast (1 -R min ) as a function of the DBR number of silicon layers. b) Reectivity spectra around the resonance peak of the 1 THz Tamm cavity for an increasing number of Si layers in the DBR. The quality factors are 99, 544 and 876 for 2, 3 and 4 silicon layers, respectively. c) Evolution versus frequency (from 0.96 to 1.04 THz) of the complex reection coecient of the Tamm cavity in the complex plan for an increasing number of Si layers. Black dashed line illustrates the hypothetical critical coupling case and gray dotted line represents the unity circle. d) Experimental reection spectra of 2 (green), 3 (red) and 4 (blue) Si layers Tamm cavities, with 6 GHz resolution (spectra are oset by unity steps for clarity). The continuous black lines are Lorentzian ts giving quality factors of 84, 121 and 129 for 2, 3 and 4 Si layers Tamm cavities, respectively.

Fig. 1 .

 1 Fig.1.20.d) presents our reectivity measurements for Tamm cavities with 2, 3 and 4 Si layers.

Figure 1 . 21 :

 121 Figure 1.21: High resolution (0.6 GHz) reection spectrum of a 3 Si layers Tamm cavity, measured using high resolution FTIR and synchrotron radiation. The thickness of the Si layers for this cavity is 66 ±2 µm. The FWHM of the Tamm resonance is 4.4 GHz corresponding to a quality factor of 230.

Figure 1 .

 1 Figure 1.22: a Theoretical reection spectrum of a 3 silicon layers Tamm cavity (blue), from TMM, and Gaussian cavity frequency distribution (orange, arbitrary units), with σ f = 1 GHz, corresponding to a quality factor of 430. b) Expected measurement peak from convolution of the two curves in a) (green) and high resolution experimental measurement of a 3 silicon layers Tamm cavity (red).

  .22.a) (orange), next to the reection spectrum (blue) of an ideal 3 silicon layers Tamm cavity (i.e. σ f = 0) of quality factor 544. The convolution of this perfect Tamm cavity spectrum with the resonance frequency distribution proposed Eq.1.46 is represented in green in Fig.1.22.b) alongside the measurement from Fig.1.21.

2 .Figure 1 . 23 :

 2123 Figure 1.23: Experimental reection spectra of higher order Tamm modes for a 3 Si layers Tamm cavity. Silicon thicknesses are 73 ± 2 µm, same as Fig.1.18.b).

Fig. 1 .

 1 23.d). As the frequency increase, imperfections are responsible for the deformation of the DBR stop-bands. This results in weak resonances due to moderate reection of the DBR outside its stop-band becoming visible.Their mode proles are nonetheless signicantly dierent from the fundamental Tamm modes and their quality factors signicantly lower.In-plane dispersion relationIn order to study the inuence of the in-plane momentum on the mode properties, we nally investigate the angular dispersion relation of the THz Tamm cavity. The Tamm cavity modes exhibit dispersion as a function of the incidence angle due to the angular dependence of interference eects in the DBR. To characterize these in-plane dispersion properties, we perform angle resolved reectivity measurements from 15• to 65 • . Fig.1.24 shows the modal dispersion relation in a 3 Si layers Tamm cavity of the fundamental mode (left) and the "1+" mode (right) from our experimental measurements (middle) and from TMM in the TE polarization (top) and in the TM polarization (bottom). We observe a parabolic dispersion, similarly to a Fabry-Perot mode close to normal incidence, independently of the polarization. Being excited by free-space THz plane waves, the Tamm mode is radiative and lies within the light cone. TMM calculation reveals that the dispersion relation of Tamm modes formed by the TE and TM polarizations are distinct with a progressive frequency splitting between TE and TM polarizations as the in-plane wavevector is increased. Since the light emitted from the Globar is unpolarized, the experimental relation dispersion is expected to include both dispersion relations of TM and TE polarized Tamm modes (Theoretical are indicated by dashed and solid lines, for TE and TM polarization, respectively, in middle-left panel Fig.1.24). However, due to the limited spectral resolution of the measurements, the frequency splitting between TM and TE polarization is not resolved at small angles, and at angles larger than 40°, only the TM Tamm mode dispersion is observed in experimental data.

  1.25.a): for the TE polarization, |r Si | increases with the incidence angle to converge to 1, and on the opposite for the TM polarization, |r Si | decreases to reach 0 at the Brewster angle 73.7 • (dotted vertical line) before increasing back to unity reection in the very-high angle limit. This is the reason for the degeneracy lifting between the two polarization modes we observe: as the incidence approach the Brewster angle, the Tamm mode is perturbed by the fading reection of the vacuum-silicon interface up to being completely suppressed (See simulated dispersion curves, bottom panels Fig.1.24).

Figure 1 . 24 :

 124 Figure 1.24: Dispersion relations: reectivity map versus incidence angle of the 3 Si layers cavity of the fundamental Tamm mode (left) and the "1+" mode (right), from unpolarized reectivity measurements (middle), TMM simulation for a TE (top) and TM (bottom) polarization. In middle left panel, solid and dashed lines reports adjusted the theoretical prediction of the dispersion relation for TM and TE polarization from TMM, respectively. Simulated gures represent log(1 -R) to enhance visibly.

Figure 1 .

 1 Figure 1.25: a) Angular dependence of the amplitude reection coecient modulus on a vacuum-silicon interface for the TE (black) and the TM (red) polarization. Dotted vertical line indicates the Brewster angle. b) Angular dependence of a 3 layers Tamm cavity peak contrast (solid line) and quality factor (dashed line) for the TE (blue) and TM polarizations (red).

  Figure 1.26: a) Structure of the gated graphene modulator and modulated reection spectra at increasing gate voltages. Adapted from [49]. b) Structure of the SRR-coupled graphene device in the graphene-transistor architecture and modulated transmission spectra. Reproduced from [50].
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 127 Figure 1.27: Schematic structure of the graphene-loaded THz Tamm cavity.

Figure 1 . 28 :

 128 Figure 1.28: Reectivity spectra at various chemical potentials µ for a) a 3 layers Tamm cavity at 4 K, b) a 2 layers Tamm cavity at 4 K and c) a 2 layers Tamm cavity at 300 K.

Figure 1 . 29 :

 129 Figure 1.29: Structure of the nal silicon wafer of the graphene-loaded THz Tamm cavity, connected in a graphene transistor architecture, of which the process is presented in this section.
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 130 Figure 1.30: Successive steps of the wet transfer of CVD graphene.

• 60 "

 60 Figure 1.31: Photograph of the graphene transistor on thin silicon device, including to gold electrodes and a hardly distinguishable graphene square at the center. The device is placed on a metallic holder that can be used as gate electrode

Figure 1 .

 1 Figure 1.32: a) 100 × 100 µm 2 graphene sheet connected to source and drain electrodes. The purple shadow on the left of the device is an aggregate of resist remains and graphene and was not present on other devices. b) Source-drain resistance characteristics versus gate voltage of the sample from a) (black) and t from Eq.1.52 (dashed red). Dotted blue line: typical measurement on large graphene area devices. The blue star represents the event of dielectric breakdown that interrupted the measurement.

Figure 1 .

 1 Figure 1.33: a) Top metallic mirror sub-λ grating structure. Green layer is a dielectric resist. b) Electric eld prole for a 0.5 lling factor patterned Tamm cavity mode at 1.02 µm. c) Frequency shift for various lling factors in the patterned Tamm cavity. All reproduced from [59].
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 134 Figure 1.34: Gold strip grating on thin silicon wafer geometry scheme and optical microscope image of the grating surface. The parallel electric eld polarization is represented in orange and the orthogonal polarization in blue.
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 135 Figure 1.35: Reectivity spectra of a 75 µm periodic gold strip grating on an innite silicon substrate for a a) parallel or b) orthogonal incident polarization, for increasing lling factor f f .
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 1137 Figure 1.36: 3D representation of the 3 layers Sub-λ strip grating Tamm cavity including an additional gold layer above the grating mirror (semi-transparent for visibility).

  calculation the quality factors and frequency shifts of the Tamm modes as a function of the lling factors, as represented Fig.1.38.
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 1 Figure 1.38: a) Frequency shifts of Tamm cavities from FEM simulations (solid line curve) and experiments (red diamonds) as a function of the lling factor. b) Simulated quality factors (FEM) as a function of the lling factor for parallel (orange) and orthogonal (blue) polarizations. Solid lines: complete cavity with additional gold mirror. Dashed lines: Cavity without additional mirror. Dotted black line: maximum measurable quality factor corresponding to the resolution of our FTIR.

Figure 1 .

 1 Figure 1.39: a) Representation of the equivalent circuit model: the grating mirror is modeled as a shunt impedance at the interface between two transmission lines representing silicon and air. b) Schematic illustration of the inductive behavior of the strip grating in the parallel polarization case and c) capacitive behavior in the orthogonal polarization case. Red arrows: magnetic eld line, green: electric eld lines, orange: electric currents in the strips, and "+" and "-" are symbols for charge accumulation.

Figure 1 . 40 :

 140 Figure 1.40: Evolution of the reection coecient of the sub-λ strip grating in the complex plane versus lling factor and frequency (0.7 to 1.3 THz). Upper part: parallel polarization/inductive grating and bottom part, orthogonal polarization/capacitive grating. Dotted straight lines illustrate symmetry relations between grating of opposite polarizations and complementary lling factors.
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 141 Figure 1.41: Frequency shifts of Tamm cavities from FEM simulations , theory (dashed black curve) and experiments (red diamonds) as a function of the lling factor. Right scale indicates the corresponding reection phase shift from theory.
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 14223 Figure 1.42: Electric eld distribution of the resonant cavity mode for f f = 1 (top), f f = 0.7 (middle) and f f = 0.3 (bottom panel). 3 grating period are represented, the gold strips are located in the z = 0 plane. Solid lines are material interfaces, Dashed horizontal line recalls the rst electric eld maximum postion in the f f = 1 Tamm cavity. Note to the reader: Compare the maximum eld position at f f = 1, dashed line, to the maximum eld position at dierent f f to see how the whole picture moves up or down depending on the polarization.

Figure 2 . 1 :

 21 Figure2.1: Light-matter interaction scheme, involving a cavity mode (orange), a two level matter system (red), the energy exchange via the light-matter coupling energy g (blue), as well as the cavity decay rate κ and the matter decoherence rate γ.

  -matter coupling energy g Taking the interaction Hamiltonian H inter into account |g , |e and |N are not separately eigenstates of the system anymore, and we now need to consider the light and matter hybrid states, or dressed states, |g, N and |e, N . The full Hamiltonian reads:

Figure 2 . 2 :

 22 Figure 2.2: Energy spectra of states |+ (blue) and |-(red) versus frequency detuning

Figure 2 .

 2 Figure 2.3: a) Schematic picture of the typical coupled oscillator system: two elastically coupled spring-mass resonators. b) Spring-mass resonators coupled by the momentum, for instance via a dissipation-less uid. c) Electrical LC resonators capacitively coupled. d) Electrical LC resonators coupled by the current via mutual induction. e) Eigenfrequency solutions of the system of equations 2.25 as a function of the detuning ω A -ω B , showing a shifted anti-crossing pattern. f) Eigenfrequency solutions of the system of equations 2.27, showing a symmetrical anti-crossing pattern.

  2.3.b), where two spring-mass systems would be coupled by momentum exchange via a dissipation-less uid. However, the separation of families appears clearly for classical electrodynamics resonators based on LC components. Capacitively coupled LC resonators such as represented Fig.2.3.c) are coupled by the non-derivative coordinate: as we recall from the mechanics/electrodynamics analogy, the mathematical equivalence between charge/capacitors and position/springs directly links coupled resonators from Fig.2.3.a) and Fig.2.3.c). On the other-hand, circuit coupled through mutual magnetic induction as represented Fig.2.3.d) are linked through the current.

28 )

 28 Fig.2.3.f) can only be obtained if the coupling term for the resonator A is proportional to the amplitude of motion of eld in the resonator B and vice versa. It is not the case for the position coupling term ±κ(x A -x B ) from Eq.2.25. From another perspective, the classication can be done by determining whether the resonator A is inuenced by resonator B even if B is non-resonant, as it the case for the coupled spring-mass resonators from Fig.2.3.a) because of the spring k.

  2.4.a). For aFabry-Perot cavity centered at 0.8 THz, the transmittance spectrum of the cavity coupled with a SRR metamaterial exhibits a splitting in two separate peaks with opposite frequency shifts as the resonance frequency of the SRR is detuned from 0.8 THz, which is a signature of strong resonatorresonator coupling.The resulting energy spectrum is represented Fig.2.4.b), and the authors demonstrate experimentally the anti-crossing pattern with a good agreement with a coupled oscillators model. The observed coupling constant g * ω F P 0.11 is large, and even g * ω F P 0.18 if a metallic cross metamaterial is used instead of SRRs.The idea of resonator coupling was pushed further by Jeannin et al. with the demonstration of light-matter coupling with coupled THz resonators in[27]. The authors present a detector device involving three coupled systems: a sub-wavelength 3D LC circuit, a dipolar antenna in the form of metal strips between the LC circuits (See Fig.2.4.c)) and a semiconductor quantum well (QW).

Figure 2 .

 2 Figure 2.4: a) Transmission spectra of the coupled SRR/photonic crystal cavity for various SRR resonance frequencies (indicated on the right). Uncoupled PC cavity resonance frequency: 0.81 THz. Inset: coupled SRRs/PC cavity structure. b) Deduced coupled modes resonance frequencies versus uncoupled SRR resonance frequency. Lines are tting from a classical coupled harmonic oscillators model. a),b) reproduced from [23] c) Antenna coupled 3D LC circuit SEM picture (top) and reectivity spectrum (bottom), showing the frequency splitting due to resonator coupling. The uncoupled LC circuit is resonant at 3.1 THz and the antenna at 4.7 THz. d) Reectivity spectra for various antenna resonance frequencies (color circles). The uncoupled LC circuit and the QW are resonant at 3.3 THz.Right inset: QW photon absorption eciency. c),d) adapted from[27].

  .4.a) and b)), metamaterials can be included directly on top of the Tamm cavity. We propose to use this specicity of the THz Tamm cavity by integrating inverted resonant metamaterial in the gold mirror, i.e. using arrays of patterned holes in the mirror as resonators instead of direct SRR. The schematic coupled cavity is represented Fig.2.5.a).

Figure 2 . 5 :

 25 Figure 2.5: a) Schematic view of the Tamm cavity coupled to the GSRR metamaterial on the top mirror. b) Unit cell structure of the GSRR metamaterial. p is the metamaterial period, w the tip width, L the tip length and l the central gap size.

Figure 2 . 6 :

 26 Figure 2.6: Transmission spectra of the GSRR metamaterial on an innite silicon substrate (orange) and of the coupled GSRR/Tamm cavity composed of 2, 66 µm thick Si layers (blue), from FEM simulations. Black: reection spectrum of a 2 layers Tamm cavity.

Figure 2 . 7 :

 27 Figure 2.7: Optical microscope picture of the cavity surface showing the gold metamaterial on the top thin silicon substrate for a) the Grid Split Ring Resonator (GSRR) pattern (p = 50 µm, same dimensions as in Fig.2.6), b) the Cross pattern (p = 75 µm) and c) the Complementary Split Ring Resonator (CSRR) pattern (p = 50 µm). Second line: Experimental transmission spectra of the metamaterial/Tamm coupled resonators for d) the GSRR pattern, e) the Cross pattern and f) the CSRR pattern from [11].

FrequencyFigure 2 . 8 :

 28 Figure 2.8: a) Experimental (red) and FEM simulated (blue) transmission spectra of the metamaterial/Tamm coupled resonators and FEM simulated transmission spectrum of the metamaterial on an innite silicon substrate (black) for a) the GSRR pattern, b) the Cross pattern and c) the CSRR pattern.

Figure 2 . 9 :

 29 Figure 2.9: Structure and related energy exchange scheme for a) the metamaterial on an innite substrate and b) the metamaterial coupled to the Tamm cavity.

Fig. 2 .Figure 2 .

 22 Fig.2.10.b) the same measurements for a GSRR metamaterial standing on a single 66 µm thin silicon layer i.e. using only the top wafer of the GSRR/Tamm coupled cavity from Fig.2.10.a). We

Figure 2 . 11 :

 211 Figure 2.11: Resonance frequencies of the coupled modes f + and f -for a Tamm cavity centered at 1 THz and a GSRR metamaterial of increasing resonance frequency (x-axis), for a 2 layers Tamm cavity from Fig.2.10.a) (blue) and for the "single layer Tamm cavity" from Fig.2.10.b) (red).

Figure 2 .

 2 Figure 2.12: a) Coupled modes resonance frequencies f + et f -of a Tamm/GSRR coupled resonators as a function of the uncoupled GSRR resonance frequency f GSRR , from FEM simulation. b) Frequency splitting f + -f -as a function of f GSRR deduced from a).

Fig. 2 .Figure 2 .

 22 Figure 2.13: a) Transmission spectra of a 2 layers Tamm/GSRR coupled resonators for metamaterials of dierent period p, from FEM simulations. Successive curves were oset by 0.2 for clarity. b) Resonator coupling constant g * deduced from FEM simulation versus inverse period 1/p (black points) and linear t (red curve).

Fig. 2 .Figure 2 .

 22 Fig.2.15 represents the electric eld amplitude enhancement due to the resonators as a function of frequency (a) at the GSRR center and in the gold mirror plane at the Tamm cavity resonance

Figure 2 .

 2 Figure 2.15: a) Electric Field Enhancement (FEF) at the center of the GSRR coupled to a 3 layers Tamm cavity centered at 700 GHz (red) or on a innite silicon substrate (dashed blue), from FEM simulations in the scattering eld formulation. b) Spatial prole of the electric FEF for a GSRR on a 3 layers Tamm cavity, from FEM simulations.

Figure 2 .

 2 Figure 2.16: a) Structure of the GSRR/Tamm cavity optimized for high quality factor b) Experimental data and simulation data for the 3 layers Tamm cavity were oset for clarity.

Figure 2 .

 2 Figure 2.18: a) Electric Field Enhancement in the capacitive gap of the GSRR for a Tamm/GSRR coupled resonator, at the higher resonance frequency f + . Dashed lines represents the position of the GSRR tips for dierent GSRR resonance frequencies (upper right box). b) Frequency dependent mode volume V * for dierent GSRR resonance frequencies.

Figure 2 . 3 .

 23 Figure 2.19: a) Eective mode volume of the Tamm/GSRR coupled resonators for the higher (blue) and lower (red) frequency coupled modes, and of the uncoupled GSRR on a innite silicon substrate (purple), from FEM simulations. b) Same V ef f normalized by λ 3 .

Figure 2 . 20 :Figure 2 .Figure 2 .

 22022 Figure 2.20: Unit cell structure of the gold metamaterial we study in this section. The geometrical parameters are set to p = 50 µm, L = 35 µm, l = 30 µm and w = 4 µm.

Figure 3 . 1 :

 31 Figure 3.1: a) Representation of a graphene sheet hexagonal structure, showing a carbon atom at each node. Left and right edges are in the armchair conguration, up and down edges in the zigzag conguration. b) Dispersion relation of graphene calculated from tightbinding model, including a magnied view of the linear part of the dispersion relation around the K point, the Dirac cone. Reproduced from [8].

Figure 3 . 2 :

 32 Figure 3.2: Schematic representation of a circular Graphene Quantum Dot. Red inset exhibits an armchair edge conguration, and blue inset a zigzag edge conguration.

Figure 3 . 3 :

 33 Figure 3.3: Energy spectrum of a graphene quantum dot as a function of radius from
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Figure 3 . 4 :

 34 Figure 3.4: GQD energy spectrum as a function of the GQD radius from numerical diagonalization of the thight binding Hamiltonian. Dashed lines represent m = 1 and m = 2 solutions from the continuous model Eq.3.9. The GQD states are classied by color in three classes: Bulk states, Mixed states and Edge states. Typical electronic density proles Ψ 2 for each type of states are represented right. Adapted from [13].

Figure 3 . 5 :

 35 Figure 3.5: a) Theoretical absorption spectra of a circular GQD with a chemical potential of 200 meV for various radii. α is evaluated from the ratio of the GQD absorption cross

Figure 3 . 6 :

 36 Figure 3.6: a) Schematic energy diagram of the quantum dot SET representing the quantum dot energy levels (red) between two Fermi sees or electron reservoirs, the source and drain electrodes (blue). b) Schematic architecture of the single electron transistor (SET),here using a quantum dot as central island (red). The device includes three electrodes, source drain and gate, capacitively coupled (green) to the quantum dot and two tunneling barriers (black) between the quantum dot and the source and drain electrodes enabling electron tunneling at rates Γ L and Γ R respectively.

Figure 3 . 7 :

 37 Figure 3.7: a) Energy diagram of the QD-SET in a non-conducting state at low bias (V SD > 0). b) Energy diagram for a conducting state. c) Schematic tunneling current vs gate voltage V G characteristics of a quantum dot SET. Each Coulomb peak corresponds to a given quantum dot state (reported above), and positions corresponding to a) and b)

Figure 3

 3 Figure 3.8: a) Schematic energy diagram of the quantum dot SET in the high bias case (V SD > 0), in a conducting state. b) Schematic stability diagram in the (V G , V SD ) plane. Blue ratios indicates the slopes of the frontiers. The light blue region is the Coulomb diamond, in which conduction through the quantum dot is impossible. The position corresponding to the picture a) is indicated by the black arrow.

Figure 3 .

 3 Figure 3.9: a) SEM picture of a typical GQD-SET, including the GQD at the center, source and drain electrodes (S and D), a plunger gate (PG) for tuning the GQD chemical potential and two lateral gates (B1 and B2) for setting the graphene constriction as nonconductive. Reproduced from [20] b) Tunneling current from source to drain electrodes through the GQD, exhibiting the coulomb peak pattern. Reproduced from [18] c) Typical Coulomb diamond pattern for large GQD, with a forbidden conduction in the blue areas.

The 3 Figure 3 .

 33 Fig.3.10.c).

Figure 3 .

 3 Figure 3.11: a) Optical microscope picture of the HSQ resit mask on top of the top hBN layer (yellow/green triangle. The graphene cannot be seen in the structure). b) SEM picture of the GQD-SET made of the hBN/graphene/hBN heterostructure, after etching.

Figure 3 .Figure 3 . 13 :

 3313 Figure 3.12: a) 3D representation of the nal GQD-SET device including its gold electrodes as connection to the graphene leads. b) SEM close up view of the GQD at the center, connected via narrow constrictions to Source and Drain electrodes, and surrounded by 3 gate electrodes G 1 , G 2 and G 3 .

Figure 3 .

 3 Figure 3.14: a) Schematic representation of the dilution refrigerator bottom part, showing the successive shells at decreasing temperature and the GQD at the center. The 77 K screen is connected to the nitrogen bath, the 4K screen to the helium bath and the 0.7 K screen to the evaporation chamber of the circuit. b) Electrical circuit used for measurement transport spectroscopy of the GQD-SET. Blue: Summation/divider circuit. Red: Trans-impedance amplier.

Figure 3 . 15 :

 315 Figure 3.15: Tunneling current through the GQD as a function of lateral gate voltages at V G1 = 0 V and V SD = 350 µV.

Figure 3 .Figure 3 .

 33 Figure 3.16: a) Dierential conductance G dif f as a function of the source-drain voltage V SD and of the plunger gate voltage V G1 , exhibiting Coulomb diamonds. b) Close up picture of the Coulomb diamond measurement from a) with geometrical construction used to evaluate relative capacitances. The color scale is normalized by the conductance quantum G 0 = 2e 2 h

Figure 3 . 18 :

 318 Figure 3.18: DC current Coulomb peaks as a function of V G1 at V SD = 100 µV.

Figure 3 . 21 :

 321 Figure 3.21: Energy diagram of the tunneling event enabled by PAT for a) the left side satellite peak and b) the right side satellite peak. c) Schematic prole of the tunneling current through a QD-SET under THz illumination, including PAT-induced satellite peaks (orange). The left (right) satellite peak corresponds to the situations pictured Fig.a) (b).

  in the THz and microwave range. Zeuner et al. observed PAT in GaAs/AlAs semiconductor superlattices at 1.3 THz, showing the signature of the absorption of up to 7 photons per tunneling event and also up to room temperature at 2.5 THz [33]. Drexler et al. also demonstrated PAT up to 100 K at 1.5 THz in resonant tunneling diodes [34]. Narrow-gap bow-tie antenna were used by Yoshida et al. for focusing of the THz eld at 2.5 THz on C 60 fullerene molecule to achieve single molecule

Figure 3 . 22 :

 322 Figure 3.22: Illumination setup including two TPX lenses, the four sapphire windows of the dilution refrigerator (blue, with diameters 6, 10, 6 and 10 mm) and the refrigerator base (yellow) at 40 mK holding the GQD sample. All ob ject positions along the propagation axis, the THz beam (light red) and windows diameters are drawn at scale (bottom left).

Fig. 3 .Figure 3 . 23 :

 3323 Figure 3.23: Dierential conductance G dif f as a function of the source-drain voltage V SD and of the plunger gate voltage V G1 in dark (left) and with THz illumination at 111 GHz (right).

Figure 3 .

 3 Figure 3.24: a) Schematic picture of the interaction between the THz wave and the GQD-SET. The THz electric eld, linearly polarized along the source-drain axis, creates an AC source-drain potential V T Hz that adds up to the DC source-drain bias voltage V SD . b) Corresponding energy diagram of interaction between the GQD and the THz waves.

Figure 3 . 25 :Figure 3 . 27 :

 325327 Figure 3.25: Dierential conductance as a function of V SD for V G1 = -0.57 V without THz light (black curve, same as Fig.3.19) and for increasing incident THz intensity (color curves).

Figure 3 .

 3 Figure 3.28: a) Source-drain current vs gate voltage V G1 observed without (black curve) and with THz irradiation at frequencies f = 270.7, 292.3, 313.4, 341.7 and 377.7 GHz from bottom to top (color curves). The bias is V SD = 100 µV. The curves are oset by multiples of 0.006 pA for clarity. The dashed lines show positions of satellite peaks due to photon-assisted tunneling process. b) Energy spacing between the original Coulomb peaks and the satellite peaks as a function of the photon frequency of the THz wave. The blue line is a t by a linear function, excluding the rst point, with a slope 0.046 mV.GHz -1 . The right scale indicates the photon frequency equivalent to the gate voltage shift deduced from the shift multiplied by the gate electrode capacitive lever arm α G , converted in frequency units of energy.

Fig. 3 .Figure 3 . 30 :( 3 . 36 )Fig. 3 .

 33303363 Figure 3.30: THz intensity dependence of the amplitude V T Hz at frequencies f = 246.1, 270.7, 292.3, 313.4, 341.7 and 363.1 GHz. The red lines are square root ts from which are deduced the indicated dipole moments lengths d (uncertainty ∼ 20%).

3 .

 3 Résumé en françaisSituées à l'intersection des domaines de l'infrarouge et des radio-fréquences, les ondes Terahertz (THz) englobent tous les rayonnements électromagnétiques situés entre 100 GHz et 10 THz. Cette bande de fréquence a été historiquement peu étudiée du fait d'un manque de sources ecaces. Aujourd'hui, ce manque a été partiellement comblé et il est possible d'étudier en laboratoire l'intégralité de cette gamme. Les émetteurs THz restent cependant soit de faible puissance, soit très volumineux, et ils nécessitent parfois un refroidissement par des liquides cryogéniques. Les dispositifs THz ne sont ainsi pas encore matures pour des applications à large échelle. L'ensemble des sources et détecteurs THz utilisent des eets de couplage lumière-matière dans leurs principes de fonctionnement. La partie matière de cette interaction, que l'on nommera par la suite "matériaux actifs" est très spécique dans la gamme THz. Il s'agit en particulier des matériaux 2D, parmi lesquels le plus emblématique est certainement le graphène. Le graphène est constitué d'une couche monoatomique d'atomes de carbone organisés dans une structure hexagonale, qui possède d'exceptionnelles propriétés électroniques et mécaniques. C'est par ailleurs un matériaux semi-conducteur sans gap, ce qui en fait un candidat de choix pour des applications dans le domaine THz. Ces matériaux 2D, du fait de leur nesse, présentent malheureusement un couplage natif limité avec les ondes THz. An de permettre une interaction ecace entre les ondes THz dont la longueur d'onde, λ ∼ 300 µm, est plusieurs ordres de grandeur plus grande que la taille typique des objet à coupler aux ondes THz, il est nécessaire de développer des dispositifs d'exaltation de l'interaction lumière-matière. Il s'agit des résonateurs électromagnétiques. Les résonateurs électromagnétiques ont pour principale propriété de permettre d'emmagasiner de l'énergie électromagnétique par un phénomène de résonance, ce qui a plusieurs conséquences. Premièrement, les résonances se produisent à des fréquences discrètes f res , ce qui permet de sélectionner les fréquences de travail. C'est ce qui est par exemple utilisé dans des résonateurs mécaniques très communs: les instruments de musique. Une grandeur caractérise l'ecacité de cette résonance: le facteur de qualité Q, qui quantie la quantité d'énergie stockée dans le résonateur par rapport à ses pertes d'énergie. Plus Q est grand, plus la résonance est intense, plus la quantité d'énergie stockée est grande et plus la fréquence est dénie précisément. C'est donc une grandeur qu'on cherche à maximiser. D'autre part, les résonateurs électromagnétiques permettent de concentrer l'énergie dans des volumes bien dénis où il devient très favorable de placer des matériaux actif an d'augmenter leurs propriétés de couplage lumière-matière. Cette propriété est caractérisée par le volume de mode V . Cette caractéristique est particulièrement cruciale dans la gamme THz du fait de la très grande longueur d'onde dans le domaine THz, l'extension naturelle du mode étant donnée par la limite de diraction soit V ∼ λ 2 An d'obtenir un couplage lumière-matière fort, il est ainsi désirable de parvenir à un connement du mode résonant dans un volume V plus petit que la longueur d'onde. Le domaine THz étant à la croisée de l'optique et des radio-fréquences, les résonateurs THz se classient schématiquement en deux familles. D'une part, une première famille de résonateurs THz a pour principe de résonance la formation

Figure 3 . 37 : 2 3à

 3372 Figure 3.37: Cavité Fabry-Perot THz à cristaux photoniques (gauche) et réseau de micro-circuits LC de type Split-Ring Resonators formant un méta-matériau 2D (droite).

Figure 3 . 38 :Figure 3 . 39 :

 338339 Figure 3.38: Structure schématique de la cavité Tamm THz (gauche) et photographie vue de côté de la structure multi-couche de la cavité, où l'on aperçoit trois couches de silicium séparées par des espaces vides (droite).

Figure 3 . 40 :Figure 3 . 41 :

 340341 Figure 3.40: Prol du champ électrique à l'intérieur de la cavité Tamm THz résonante à 1 THz.

Figure 3 . 42 :

 342 Figure 3.42: Structure de la cavité Tamm couplée à un méta-matériau de micro-circuit LC résonants (gauche) et spectres de transmission du système de résonateurs couplés pour une cavité Tamm résonante à 1 THz et un méta-matériau résonant de fréquence variable, indiqué par le cercle de couleur (droite).

Figure 3 . 44 :

 344 Figure 3.44: Structure à du graphène à l'échelle atomique (gauche) et structure du quantum dot de graphène dans l'architecture transistor à un seul électron (droite).

  

  

  

  

  

  

  

  

  

Table 1 . 1 :

 11 -3 λ 3 7.10 -4 λ 3 3.10 -5 λ 3 10 -6 λ 3 4.10 -7 λ 3 3.10 -7 λ 3 Compilation of the quality factor Q and the mode volume V of selected works, Perot cavities exhibit very high-quality factors (> 200) but mode volumes limited by (λ/2) 3 due to diraction. Electronic circuits, made of miniature metallic structures, show on the contrary low quality factor, around ∼ 10 for SRR but can provide deep subwavelength eective mode volume in the 10 -6 λ 3 range. Micro antennas, despite being propagation based

		F.P. PC	2D PC	D. Patch	Patch	3D LC	3D LC	SRR	CSRR
	Reference	[8]	[13]	[28]	[27]	[19]	[21]	[17]	[18]
	Q	810	10 000	40	6.7	6.3	6	11.7	5.3
	V 2.10 sorted by mode volume. Abbreviations: F.P PC = Photonic crystal Fabry-Perot cavity, λ λ 3
	2D PC = 2D Photonic crystal defect mode cavity, D. Patch = Disk Patch antenna.	

  1.16.a). We observe that, in the long wavelength/low frequency range around 1 THz, the overall evolution is captured but quantitative agreement would require a better adjustment of ω P and ω τ parameters. We will use the experimental tabulated values of n gold in the following. , n 2 scales like λ and the penetration depth δ is constant, about 25 nm. Around 1 THz. This is the reason why we can use mirror made of thin layers of metal, typically From these values of the refractive index of gold, we can evaluate the reection coecient on the metal mirror r metal for an incident wave in silicon using Fresnel equations: metal | 2 = 1 and arg(r metal ) = -π. In particular at 1 THz, we can extrapolate |r metal | 2 = 98.79%.

	0 Figure 1.16: a) Real (n 1 , red) and imaginary (n 2 , blue) part of the refractive index 50 100 150 200 250 300 0 200 400 600 Wavelength (µm) 1 10 100 1000 0.94 0.96 0.98 1.00 Wavelength (µm) |r metal |² --0.9 -0.8 -0.7 -0.6 b) 𝜋 of gold n gold from [41]. Dotted lines represent the approximate expressions for short wavelengths from Eq.1.36 and dashed lines for long wavelengths form Eq.1.37. Vertical solid line indicates the equivalent wavelength to ω τ . b) Power reection coecient |r metal | 2 of a gold mirror for an incident wave from silicon (black) and associated reection phase arg(r metal ) (blue). Dashed lines are linear extrapolations and dotted vertical line stands for λ = 300 µm or 1 THz. The main interest of these analytical approximate expressions is to discuss the evolution with arg(r metal ) (rad) 𝜋 𝜋 𝜋 𝜋 frequency of relevant quantities, in particular the penetration depth in the metal δ = λ Refractive index a) 2π 1 n 2 . In the IR range ω P ω > ω τ THz, n 2 scales like √ λ so that δ also scales like √ λ: its evolution with frequency is slow, for instance, n Si -n gold n Si + n gold (1.38) Fig.1.16.b) represents the power reection coecient |r metal | 2 as well as the phase of the re-ection coecient arg(r metal ). Because of the refractive index going to very high values in the δ ∼ 80 nm at 1 r metal = THz range, the properties of the gold mirror converge to the characteristics of a perfect mirror i.e.

|r

  The realization of graphene based THz modulators able to reach total extinction remains then a challenge, partially because of the low absorption of graphene. Liang et al. demonstrate the possibility of reaching a 100% modulation depth in an architecture requiring the modulation to be directly associated to a Quantum Cascade Laser (QCL) THz source at 3.2 THz [51]. Kakenoc et al. demonstrate total absorption in a graphene on dielectric layer device required the doping of

graphene to very high level, up to µ ∼ 1 eV to obtain sucient absorption in graphene

[START_REF] Kakenov | Observation of gate-tunable coherent perfect absorption of terahertz radiation in graphene[END_REF]

. Finally, the coupling of graphene to high quality factor photonic crystal resonators with high quality factors has been numerically investigated by Piper et al. and demonstrated the possibility of reaching total absorption at chemical potential close to 0 [53]. Mittendor et al. have developped an original

  conguration because Γ graph is too high compared to

		1.0					1.0					1.0			
		0.9					0.8					0.8			
	Reflectivity	0.6 0.7 0.8				Reflectivity	0.4 0.6					0.4 0.6			
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  . On the other hand, energy conservation without dissipation impose R grating + T grating = 1 = |r grating | 2 + n 2 n 1 |t grating | 2 if input and output refractive indexes n 1 and n 2 are dierent. From combining these relations, we get:

Table 2 .

 2 

	Cavity type	Fabry-Perot	Antenna	SRR	CSRR	3D LC circuit	3D LC circuit
	Material system	2DEG	QW	2DEG	2DEG	parabolic QW	QW
	g ω 0	0.12	0.11	0.58	0.87	0.14	0.135

1 condensates values of the normalized light-matter coupling constant g ω 0 versus cavity type and active material used, from articles that were presented in the state of the art of THz cavities, Chapter 1 Section 1.1.3.

Table 2 .

 2 1: Selected works on strong coupling in the THz range, indicating the value of

	the normalized light-matter coupling constant	g ω 0

  coupled photonic modes |+ ph and |ph that are linear combinations of the original modes |A and |B :

extend analogous to what we presented in Section 2.1.2 if we only consider for simplicity the one photon case. The eigenvectors are then two

Table 2 .

 2 2 recalls these gures for comparison. Coup exp. Γ Coup simu.

	Pattern g GSRR Γ M M 440 145	60	58
	Cross	205	100	51	37
	CSRR	130	25	∅	25 -50

* Γ

Table 2 . 2 :

 22 Compilation of the coupling constants extracted from data Fig.2.8.

The average value of the two peaks was used for coupled modes, when possible. All values in GHz.

  3.3. A simple 1 R dependence is retrieved as expected from a quick estimate of the linear dispersion relation quantized due to the discrete wavevector k n ∼ n π R , with n an integer.

to 200 nm, in the IR and the THz range even if the wavelength is two order of magnitude greater.

caractéristique du couplage entre résonateurs. Lorsque la fréquence de résonance du méta-matériau augmente de 0.8 à 1.2 THz, on observe la transition continue des modes de haute et basse fréquences entre un caractère 100% Tamm et un caractère 100% méta-matériau. Lorsque les deux résonateurs résonnent à 1 THz, le couplage est symétrique et chacun des modes couplés a un caractère 50% Tamm et 50% méta-matériau.En optimisant la structure du système de résonateurs couplés, nous avons démontré expérimentalement un facteur de qualité pour les modes couplés de l'ordre de 45. Il s'agit d'une augmentation importante par rapport aux méta-matériaux de la littérature, dont le facteur de qualité est typiquement l'ordre de 10. Cette amélioration est attribuée à l'incorporation du méta-matériau dans la cavité Tamm à faible pertes, qui permet la suppression des pertes radiatives du méta-matériau. Le haut facteur de qualité de la cavité Tamm est ainsi utilisé avantageusement pour obtenir un système de résonateurs couplés avec un bon facteur de qualité.La caractérisation du volume de mode de ces cavités couplées peut être réalisée par le biais de simulations par méthode des éléments nis (FEM). Ces simulations permettent d'obtenir la distribution du champ électrique du mode résonant et ainsi d'estimer le volume V dans lequel le mode électromagnétique est conné. Le prol du champ électrique d'un méta-matériau dérivé de celui étudié précédemment, qui a été optimisé pour la réduction du volume de mode, est représenté Figure 3.43. Les pointes métalliques de cette structure sont responsable d'un eet d'antenne important, qui conne le champ électrique au centre de la structure pour une réduction du volume de mode maximale. Le volume de mode est alors fortement dépendant de l'espace entre les deux pointes métalliques L gap et on observe V ∝ L 2gap . Pour L gap = 500 µm, le volume de mode du système de résonateurs couplés est réduit à V = 4.7 × 10 -7 λ 3 , ce qui est du même ordre de grandeur que les valeurs typiques des micro-circuits LC.En associant en une même structure deux types de résonateurs aux propriétés opposées, le système de résonateur couplés méta-matériau/Tamm permet nalement de concilier 2 propriétés supposément incompatible: un bon facteur de qualité Q et un volume de mode V très largement
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The dierential conductance G dif f is expressed as

, we can formally derive from Eq.3.21:

The main term, related to the conductance peak to be tted, is the rst term. It is of order 0 regarding V SD whereas the second term scales like V 2 SD (if eα G V G = 0 such that the peak is centered at V SD = 0), so this rst term is dominant around V SD = 0. For quantitative peak function tting, we will only consider the rst term, but we keep a phenomenological tting parameter γV 2 SD as we did observe such additional quadratic background in our measurement. Eq.3.23 is then reduced to:

We obtain once again a lorentzian peak, centered in -0 -eα G V G e(1-α S ) , and the linewidth is now 2Γ e(1-α S ) . This is due to the capacitive coupling from the source electrode inuencing the GQD energy levels during V SD sweep. Γ is then estimated from this measurement to Γ ∼ 0.31 meV, in fair agreement with the estimation obtained from the V G scans which supports our analysis. This quantity is the principal factor limiting the electron lifetime in the GQD, and it sets an energy scale to overcome to reach quantum eects in our GQD-SET sample.

Photon assisted tunneling in graphene quantum dots for lightmatter coupling strength study

We presented in the previous section DC transport measurements that we used to evaluate electronic properties the GQD: the addition energy E add , coupling rates to the electrodes Γ and capacitive coupling lever-arms α i . We are interested in the following to the light-matter interaction properties of the GQD-SET device.

To this purpose, we use transport spectroscopy under coherent THz illumination to evidence tunneling events enabled by the absorption of THz photons, which is called photon-assisted tunneling (PAT). We will study the photo-current response in two separate frequency bands: around 110 GHz and from 240 to 380 GHz.

State of the art: Light-matter coupling experiments and large graphene quantum dots GQD light matter interaction

The investigation of light-matter coupling properties in large GQD has only been reported in three previous articles to our knowledge. El Fatimi et al. studied in [30] and [31] ultrasensitive THz detectors using epitaxy-grown GQD, based on the bolometric eect, i.e. the increase of the tunneling current through a GQD due to THz light absorption and electron temperature increase (Fig. 3 Inset: SEM picture of the 150 nm epitaxied GQD device.

Reproduced from [30] b) DC I-V characteristics without (black) and with illumination on the GQD sample for a wavelength λ = 2 mm (low THz, red), 1.5 µm (NIR, green) and 365 nm (UV, purple).

The absorbed power is about 1 nW. Inset: Voltage drop as the illumination is turned on versus tunneling current. Reproduced from [31] c) Coulomb peak shift due to photogating in a GQD-SET. Black curve is without and red curve is with illumination. Reproduced from [27] d) Optical microscope picture of the GQD-SET device from [27] (Adapted). The yellow area are the gold electrodes, purple is the Si/SiO 2 substrate and the center green part is the hBN-graphene heterostructure.

We can estimate the THz oscillating bias V T Hz from the peak linewidth Γ of these measurements. Since we could not obtain an exact analytical function for the < G dif f > peak, we use for tting a generic Gaussian peak function Ae The characteristic amplitude of this interaction V T Hz extracted from measurements tting as a function of the incident THz intensity, I T Hz , is reported in Fig. 3.26.b). If we do not consider the rst four points for which 2eV T Hz < Γ, we observe that V T Hz follows a square root dependence with I T Hz , which is consistent with a coherent interaction as V T Hz scales like the electric eld amplitude of the THz excitation E T Hz .

Negative tunneling currents

We also investigate the average DC tunneling current < I > through the GQD as a function of V G1 for dierent incident THz intensities, at a positive bias voltage V SD = 250 µV (Fig. 3.27). We observe that the THz radiation increases the current on the left side of the Coulomb blockade peaks measured without illumination and induces a negative current on their right side. This result is rather surprising as we observe negative tunneling currents for positive bias voltages.

This change in sign of the current is attributed to an asymmetric AC coupling of the THz eld to source and drain electrodes [40,41]. To explain this phenomenon, let us consider the energy picture from Fig. 3.24.b) where the AC coupling is fully asymmetric (only V S is modulated). Without

V T Hz , tunneling through the GQD is not possible as the N electron energy state is not aligned with source and drain electrode energies. As the THz illumination is turned on, due to the asymmetric coupling, the electron from the N electrons GQD level can be "pumped" to the source electrode up to the precision of α G evaluation. This is a signature of photon-assisted tunneling [44,45]: the satellite peaks correspond to tunneling events through the GQD enabled by the absorption of a THz photon, as represented in Fig. 3.21.b).

Theoretical formula and quantitative analysis

The study of the THz light-matter interaction with our GQD-SET device at 111 GHz showed that the main coupling mechanism relies on an oscillating source-drain bias voltage V T Hz , which we described in a classical picture (Fig. 3 

The average tunneling current is expressed in this model as [46]:

Where ω is the THz excitation angular frequency, J k is the k th Bessel function of the rst kind, µ S and µ D are the DC chemical potentials of source and drain electrodes, inuencing the Fermi distributions f S ( ) and f D ( ) respectively, and d = 0 -α G eV G1 is the GQD energy level tuned during gate voltage scans. In Eq3.32, the peak function has a Lorentzian shape broadened by the Fermi distribution dierence. Assuming a symmetric coupling to the leads (Γ L = Γ R ) the tunneling current expression can be reduced to:

and Ψ is the Digamma function dened as:

The detailed derivation is provided in Appendix E. In this expression, the peak function is

given by the Im(Ψ) dierence as the bias is small (µ S = -eV SD = -100 µeV and µ D = 0 eV ).

In this coupling scheme, the THz illumination modulates the chemical potentials of the electrodes at the frequency of the THz wave, with an amplitude V T Hz . It results in resonant tunneling at energy shifts equal to the photon energy that leads to the successive apparition of satellite peaks of

The summation over k in Eq.3.33 accounts for the possible absorption of k photons for the PAT process.

We observed a single satellite peak in our measurement corresponding to tunneling enabled by the absorption of one photon, so that k = 0 and 1 are sucient in the summation in the above formula. From usual PAT theory [46], a second satellite peak corresponding to k = -1, symmetric to the one we observe, would be expected on the left side of the Coulomb blockade peak. Such symmetric peak is not present in our measurements, similarly to several previous works [47,48,49].

We attribute the absence of this low V G1 satellite peak to the asymmetric coupling of the THz wave to the source and drain electrodes in a regime where the bias (100 µV ) is larger than V T Hz [50].

This observation is consistent with the change in sign of the current measured in the low frequency regime, which also relies on an asymmetric AC coupling. We performed this analysis for six other working frequencies and the corresponding evolution of V T Hz is represented Fig. 3.30. Intensity calibrations at various frequencies are presented in Appendix D. The Y-scale was adjusted so that the ratio [V T Hz ]max

is constant. Because of the square root evolution of V T Hz versus I T Hz , this choice implies that measurements for which the V T Hz response is higher at a given intensity I T Hz have visually a higher curve.

Estimation of the electric dipole momentum d

From the quantitative study we performed of the coherent THz light-matter interaction with a QGD, we propose an original use of PAT, as a tool to estimate the electric dipole moment of our GQD based device. In the coherent light-matter interaction picture we presented in Chapter 2 Section

Conclusion and perspectives

In this thesis, we investigated the possibilities oered by a novel family of resonators in the THz range, the THz Tamm cavities, to realize light-matter coupling with materials active in the THz range, in particular graphene. The three chapters we presented cover the dierent building blocks regarding this objective and enable the evaluation of the perspective oered by THz light-matter coupling between graphene and Tamm cavities when brought altogether.

In Chapter 1, we introduced the concept of the Tamm cavity, which combines a Distributed Bragg reector and a metallic mirror to form a Fabry-Perot cavity. The THz Tamm cavity we fabricated uses a very simple structure: thin silicon wafers and spacers creating vacuum layers are stacked to create the photonic crystal structure of the DBR and a gold layer close the cavity, creating the second mirror. With this structure, our THz Tamm cavity have performance close to other THz Fabry-Perot cavities whose resonance mechanism is based on propagation eect, and we indeed measured a high value of the quality factor Q = 230. This high quality factor is appealing to realize classical light-matter coupling with graphene, i.e. enhanced and controlled absorption, because it is a low absorbing material. We presented a cleanroom process we developed to realize large area gated graphene transistors on thin silicon substrates that can be directly included in the THz Tamm cavity to realize modulated absorption experiments. We then exploited the presence of the gold mirror in the THz Tamm cavity to demonstrate a rst example of the wide design freedom enables by this structure. We patterned the gold into a sub-wavelength strip grating that ended up being equivalent to inductance or capacitor components that enabled a ne tuning of the Tamm mode frequency over a 250 GHz range as well as polarization sensitivity. A striking feature of the THz Tamm cavity to recall is its simplicity of fabrication. By stacking two to three thin silicon wafers, it is possible to obtain a high electromagnetic energy density enhancement given by the large value of the quality factor, and this enhancement can be used for all samples or devices that can be processed on thin silicon wafers.

Chapter 2 was focused on the use of this design freedom of THz Tamm cavities to develop a platform for quantum light-matter coupling. From the theoretical model we presented, it appeared that the path for obtaining a large value of the light-matter coupling constant g was necessarily to reduce the mode volume of the cavity V . The most successful THz resonators from literature regarding the mode volume are the Split Ring Resonators, that are based on localized resonant components.

We integrated then resonant metamaterials derived from SRRs in the Tamm cavity by drawing patterned holes its the gold mirror. The resulting system is a pair of coupled resonators of opposite properties: the Tamm cavity, with a large mode volume and high quality factor, and the resonant metamaterial that exhibits a deep sub-wavelength mode volume but a low quality factor. From the experimental characterization we performed, we observed a splitting of the resonance at 1 THz in two coupled modes, with a resonator coupling constant g * as high as 150 GHz demonstrating ultrastrong resonator coupling. Also, we observed a large improvement of the coupled resonator quality factors because of the suppression of the metamaterial radiative losses due to its inclusion in the Tamm cavity. Instead of an expected improvement by a factor 2, we observed an improvement of Q

properties that could here enable C > 1. This possible high cooperativity value also suggests that a single GQD coupled to the metamaterial/Tamm coupled resonators is a good candidate for laser scheme involving quantum dots in the Single Electron Transistor architecture, as the equivalent of the laser threshold for such systems is given by C > 1 2 . These systems of highly coupled light and matter could hence be at the base of novel quantum emitters of THz photons.

Appendix

A. Transfer Matrix Method

We used in this thesis the Transfer Matrix Method (TMM) to predict the reection spectrum and electric eld prole of multi-layer 1D structures. We detail in this appendix the mathematical framework of TMM, that we implemented in Python. The base principle of TMM relies on the calculation the electric elds in the forward and backward directions E f and E b . Note that an alternative version of TMM using elds E and H is sometimes presented, but these approaches are naturally equivalent as the relation between (E f , E b ) and (E, H) is a bijection.

The matrix relation for the n th layer is deduced from the denition of Fresnel coecients of reection on transmission:

Where u n and w n are the complex amplitudes at the entrance of layer n, M n is the transfer matrix for the n th layer, and e n and k n = kn n are the thickness and wavevector of the n th layer, respectively. M n is actually the product of the matrix P n accounting for the propagation in layer n and of the matric I n accounting for the reections and transmissions at the n/n + 1 interface:

If the interface is a simple interface between two dielectric materials, the relation r n+1,n = -r n,n+1 enables the simplication of the expression of the matrix I n and then of matrix M n as:

and M n = e -iknen r n,n+1 e -iknen r n,n+1 e iknen e iknen

However, if the interface hosts a surface conductivity σ, which is typical way of modeling 2D materials such as graphene, the relation r n+1,n = -r n,n+1 does not hold and the general form of the transfer matrix has to be used. Note that in that case, the expression of the reection and transmission coecients (at normal incidence) are given by:

With Z 0 the impedance of free space. The total transfer matrix M tot corresponding to the stack of N layers is calculated by multiplying N transfer matrices, and we can deduce from M tot the total reection and transmission coecients r and t:

Where we noted "0" the incidence medium, vacuum in most on our simulation. The reection and transmission spectra are simply calculated as R = |r| 2 and T = n N +1 n 0 |t| 2 for dierent frequencies.

The computation of the electric eld at all positions z of the structure is realized by constructing the matrix M (z) backwards: knowing the forward and backward elds in the layer n + 1, we can deduce the electric eld in the previous layer n by multiplying the vector giving the elds in layers n + 1 by the interface matrix I n and a partial propagation matrix P n (z), corresponding to the matrix P n wrote before where e n is substituted by δ, the distance between the position z and the next interface (δ is written systematically δ(z) = L -z -N N +1 e n , where N is the number of the layer including position z). Starting from the transmission coecient t calculated separately and the nal layer, we can do the product of the transfer matrix of all complete layers and of P N (z)I N to go back to position z:

M n

The nal electric eld prole is the calculated by addition of the elds E f (z) et E b (z). We also stress here that despite a quality factor 2.5 times higher, the electric eld inside the cavity is the same in the 3λ 4 structure. This illustrates that the higher quality factor is basically due to the longer cavity length, reducing dissipation rates because of the longer round-trip time τ (τ reads 0.7 and 1.8 ps, respectively, from expression in main part 3.B.). C: Analysis of the frequency dependence of the photoresponse of the Graphene Quantum Dot

In this appendix, we investigate the highly frequency resolved transport measurements in the GQD based devices under THz illumination. The complex frequency dependence of the photoresponse is explained by the interference eects, as we use THz waves propagating in free-space through a complex optical path (Fig. 3.32). We use a Schottky diode frequency multipliers chain as THz continuous wave source, which emits tunable monochromatic THz waves. 

Frequency-resolved tunneling current in the GQD

We measure the tunneling current through the GQD as a function of THz frequency and present it in Fig. 3.33. This measurement is performed at a gate voltage shifted away from a Coulomb peak by 5 mV, so that the tunneling current without illumination is strictly 0 due to Coulomb blockade but the photocurrent is high. We use this highly frequency-resolved measurements to select the frequencies (red circles) at which we performed the quantitative analysis of V T Hz versus the THz intensity in the main manuscript.

From this complex frequency dependence of the tunneling current, we can identify three main distinct patterns:

A fast modulation with a frequency spacing in the ∼ 1-2 GHz range resulting in the spectrum being chopped in sharp peaks.

Several lobes separated by ∼ 22 GHz, that are especially clear around 245 GHz, 270 GHz, 290 GHz and 315 GHz.

A slow envelope modulation of the whole spectrum with a frequency spacing in the ∼ 90 GHz range, that we distinguish between 240 GHz and 330 GHz.

We now discuss on the origins of these three patterns.

Interference between optical components

We rst record the power spectrum incident on the GQD-based device as a function of frequency.

For this purpose, we use our optical set-up, which includes the THz electronic source and the col- We reproduce with this experiment the fastest part of the modulation pattern we observed Fig. 3.33 with a frequency spacing between peaks of about 2 GHz or less. We attribute this fast modulation to multiple interference eects of the THz waves between the lenses, the diaphragms and the THz detector. This modulation frequency of ∆f =2 GHz can be considered as a Fabry-Perot interference, which would be linked to a cavity length L = c/(2∆f ) = 7.5 cm in free space. This length value supports our interpretation on the interference eects as this value corresponds to most APPENDIX of the distances between cryostat windows or lenses, ranging between 2.5 and 10 cm.

Interference in the cryostat windows

We independently calibrate the frequency dependence of the transmission of the four cryostat windows. We measure the transmission spectrum of each cryostat window separately. Fig. 3.34.b) represents the product of the four transmission spectra.

The total transmission spectrum clearly reproduces the well separated lobes around 245, 270, 290 and 315 GHz, as well as some more complex variations at higher frequencies as observed in the photocurrent response in Fig. 3.33.b). Thus, we can denitely attribute these lobes to the eect of the transmission of the sapphire windows. Note that the frequency spacing between these lobes, ∼ 22 GHz, matches an interference eect in the 2 mm thin sapphire window (n ord = 3.07 and n ext = 3.41 for sapphire around 300 GHz).

Interference in the silicon substrate We investigate the inuence of the nite thickness of the silicon substrate on which is deposited the GQD. We simulate, using Comsol Multiphysics (Free-Element Method), the propagation of the incident THz wave after passing through the 10mm aperture of the cryostat window located just above the sample (see Fig.3.35). Because the silicon substrate of 520 µm thick is placed on a reective gold ground plane (orange line), we observe a standing wave pattern inside the silicon substrate and above the sample Fig. 3.35.a) As a result, the electric eld amplitude at the substrate surface, i.e. at the GQD position (red line), varies with the THz wave frequency, as represented Fig. 3.35.b). We observe a slow periodic modulation of the electric eld amplitude, consistent with a standing wave interference pattern, with a ∼ 88 GHz period. Note that some additional sharp peaks are most likely simulation artifacts since the simulated area is much larger than the wavelength. The frequencies for the electric eld nodes at the substrate surface are given by: f k = kc/(2n Si e) with e the substrate thickness and k an integer. The frequencies for electric eld nodes 1, 3 and 4 are about 84 GHz, 253 GHz and 338 GHz, consistently with the nodes observed in the photoresponse of the GQD device reported in Fig. 3.33.

D. THz incident intensity on the sample estimate

We calibrate here the THz intensity incident on the GQD device. In order to produce a reliable estimate, we placed the four cryostat windows on an optical bench reproducing the position of all elements (source, lenses and windows) we used for experiments. We also placed a calibrated pyroeletric detector (sensitive element surface area: 4 mm 2 ) at the equivalent GQD sample position.

The incident intensity on the THz detector as a function of the THz frequency is represented in We used this measurement to estimate the incident THz intensity for each frequency band in which we performed the quantitative analysis for V T Hz . Since we optimized the illumination frequency to match the photocurrent peaks, we look at the THz intensity at peaks maxima for our intensity estimate. We also estimate the intensity uncertainty from the amplitude dierence between neighbouring peaks, up to 40%. We calibrated the intensity in the 100 GHz band by multiplying this measurement with the source power gain because absolute intensity measurements are less reliable at low frequencies since λ=3mm becomes of the order of the dimensions of some lens mounts and cryostat windows. Note that we used the amplitude of the electric eld, proportional to the square root of the THz intensity, for our nal estimate for the GQD dipole moment d, which makes d twice less sensitive to inaccuracies in intensity estimation, i.e. about 20%.

E. Full derivation of the current through the quantum dot under oscillating bias

We model the interaction between the THz eld and the Graphene Quantum Dot (GQD) as an additional time dependent source-drain bias voltage we call V T Hz , responsible for oscillation of the electronic chemical potential in the source and drain electrodes at angular frequency ω. This interaction model is described by Jauho et al., who propose an expression for the time-averaged current through the quantum dot :

This formula can be seen as the convolution the Fermi-Dirac functions dierence, resulting from the source-drain bias voltage at nite temperature, with the usual Green function of a quantum dot

shifted by k quanta of the photon energy ω and weighted by the k th Bessel function of the rst kind J k , squared, to account for the impact of the amplitude V T Hz This integral can be computed analytically using residue theorem as the integrand exhibits 3 families of poles of order 1 in the upper half plane:

To which corresponds 3 types of residues:

We obtain a new expression for the current:

APPENDIX

The summations 1 and 2 over and m1 and m2 converge to an expression including the Digamma Ψ function dened as Ψ(x) = Γ (x) Γ(x) , Γ(x) being the Gamma function Γ(x) = +∞ 0 t x-1 e -t dt:

Where k = d + k ω + i Γ 2 . With z = 1 2 -β 2iπ (µ 1k ), we can nally use the reection formula for Digamma: Ψ(z -1) = Ψ(z) + πtan -1 (πz) on the second Ψ term, which enables the reduction of the expression to a compact:

The tan term is linked to the Fermi-Dirac distribution through tanh( β 2 ( k -µ 1 )) = 1 -2f L ( k ) which compensate the remaining f L term from the k-type residue.

Doing the same for the m 2 term, we obtain in the end a simple, fully integrated expression for the current: Where k = d + k ω + i Γ 2 . This is the expression we used for tting of our results in the 300GHz band, which enables the evaluation of V T Hz from the height ratio between principal and satellite peaks. Cette valeur de d, par ailleurs importante, permet l'estimation de l'énergie d'interaction lumièrematière g dans un scénario de couplage du GQD avec un résonateur THz. g est en eet simplement donnée par g = E.d avec E l'amplitude du champ électrique due aux uctuations quantiques du vide, et E est déduit du volume de mode de la cavité V . En considérant le couplage d'un GQD avec les systèmes de résonateurs couplés méta-matériau/cavité Tamm, nous estimons cette énergie d'interaction à g ω 0 ≈ 0.13, ce qui signierait la réalisation d'un couplage lumière-matière ultra-fort à un seul électron.

Ce système est ainsi prometteur pour être utilisé pour des applications de technologies quantiques dans la gamme THz.