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Bérengère DUBRULLE Examinatrice
Directrice de Recherche, CNRS, Université Paris-Saclay



Titre: Turbulence multi-échelle dans le vent solaire: de la théorie aux observations

Mots clés: Plasma, Turbulence, Vent solaire

Résumé: Le vent solaire, plasma turbulent, est

mesuré in situ par de nombreuses sondes spatiales.

Les mesures révèlent des fluctuations du champ

magnétique sur une large gamme de fréquences, avec

une rupture de pente à environ 1 Hz, marquant une

transition du comportement MHD mono-fluide vers un

état où ions et électrons agissent différemment. Une

seconde transition survient vers 50 Hz, où le spec-

tre magnétique s’accentue davantage, indiquant un

changement lié à l’inertie des électrons. Cette tur-

bulence est étroitement liée à l’origine du chauffage,

caractérisé par la décroissance progressive de la

température ionique avec la distance héliosphérique.

Cela est interprété comme le résultat du transfert

d’énergie de grandes à petites échelles par la turbu-

lence. Notre objectif est d’étudier cette turbulence du

vent solaire, couvrant des échelles allant de la MHD

aux échelles inertielles électroniques. Premièrement,

nous utilisons la loi zéro de la turbulence qui révèle une

dissipation d’énergie, dite anomale anomale, lorsque

les viscosité/résistivité diminuent. L’utilisation de la

dissipation anomale, basée sur une forme locale de

la loi de Kolmogorov dans les données THEMIS et

PSP, montre que le chauffage calculé dépasse con-

sidérablement la moyenne de la MHD. En outre, elle

permet également de prouver la loi zéro dans un modèle

simplifié de la MHD, et son application aux données

Voyager 2 révèle que le chauffage généré par les chocs

présents aux abords de Jupiter domine celui provenant

des fluctuations turbulentes. Deuxièmement, nous

nous intéressons aux échelles sous-MHD. Les mesures

révèlent un comportement monofractal des fluctua-

tions magnétiques, contrairement aux échelles MHD

qui présentent un comportement multifractal. Pour

comprendre cette différence, nous effectuons des sim-

ulations numériques directes 3D des équations de

l’électron MHD réduite dans des régimes de turbulence

d’ondes faible et forte. Ces simulations montrent que

seule la turbulence faible peut reproduire la monofrac-

talité, suggèrant qu’aux échelles électroniques, le vent

solaire évolue dans un régime de turbulence d’ondes

d’Alfvén cinétique faible et sans collision. Enfin, une

théorie de la turbulence d’ondes faible pour la MHD

électronique inertielle est développée. Nous donnons

les solutions exactes, prouvons que la cascade d’énergie

est directe et évaluons la constante de Kolmogorov.

De manière remarquable, ces équations sont identiques

(à une constante près) à celles décrivant la turbulence

d’ondes inertielles dans les fluides non ionisés en rota-

tion rapide. Ce fort lien souligne l’importance des in-

vestigations en laboratoire pour étudier la turbulence

à ces échelles, difficilement accessibles aux satellites.

Ces études permettent d’obtenir une vision globale du

comportement turbulent du vent solaire d’un point de

vue observationnel, numérique et théorique.
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Abstract: The solar wind is a turbulent plasma that

can be measured in situ by spacecraft such as Voy-

ager/NASA, THEMIS/ESA, or PSP/NASA. Measure-

ments reveal magnetic field fluctuations over a wide

range of frequencies, with a change in slope around 1

Hz, indicating a transition from the single-fluid MHD

behavior of the plasma to a state where ions and elec-

trons have distinct dynamics. A second transition is

observed around 50 Hz, beyond which the magnetic

spectrum becomes steeper, marking a change in physics

where the inertia effects of electrons become significant.

The study of this turbulence is closely linked to under-

standing the origin of local heating, characterized by

a slow decrease in ion temperature with increasing he-

liospheric distance. This decrease is interpreted as a

signature of heating resulting from the transfer of en-

ergy from large to small scales by turbulence. The ob-

jective of this thesis is to study solar wind turbulence

from MHD scales to electron inertial scales.

In the first part, we use the Zeroth law of turbu-

lence to measure energy dissipation at MHD scales.

This law states that energy dissipation per unit mass

approaches a non-zero limit, known as anomalous dis-

sipation, as viscosity/resistivity decreases. A local

form of Kolmogorov’s exact law is used with THEMIS

and PSP data to show that heating calculated using

anomalous dissipation can be significantly higher than

the average heating predicted by the exact MHD law.

Furthermore, the application of anomalous dissipation

proves the Zeroth law in a simplified MHD model. Its

application to Voyager 2 data reveals that heating gen-

erated by shocks near Jupiter is dominant compared to

that from turbulent fluctuations.

In the second part, we focus on sub-MHD scales

(frequencies between 1 and 50 Hz). In situ measure-

ments show a monofractal behavior of magnetic fluctu-

ations, whereas at MHD scales a (standard) multifrac-

tal behavior is observed. To study this difference, high-

resolution 3D direct numerical simulations of the elec-

tron reduced MHD equations are conducted in weak

and strong wave turbulence regimes. These simula-

tions reveal that only weak turbulence can reproduce

the monofractality. Combined with recent work, this

result suggests that at electron scales, the solar wind

is in a regime of weak kinetic Alfvén wave turbulence

without collisions.

Finally, a theory of (weak) wave turbulence for in-

ertial electron MHD in the presence of a strong ex-

ternal magnetic field is developed. Exact solutions

(Kolmogorov-Zakharov spectrum) are provided, and it

is shown that the cascade is direct. The importance

of considering electron mass in this regime is high-

lighted. Remarkably, these equations are identical (up

to a constant) to those describing inertial wave turbu-

lence in rapidly rotating non-ionized fluids. This con-

nection underscores the importance of laboratory in-

vestigations to study turbulence at these scales, which

are currently challenging to access by satellites.

These studies provide a comprehensive understand-

ing of the turbulent behavior of the solar wind from

observational, numerical, and theoretical perspectives.
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démesuré. Je ne peux t’exprimer cela de vive voix, alors j’utilise ces lignes pour te remercier.

Quelques années plus tard, je croisai le chemin de Sébastien. À l’époque, je ne le savais pas encore mais,
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16 CHAPTER 1. GENERAL INTRODUCTION

1.1 Turbulence

Here we are. . . The sempiternal question of How to define turbulence? The funny paradox is that turbu-

lence is ubiquitous, but there is not a universally agreed-upon definition (it is, to say, how hard it is to

work on turbulence). I think the fairest definition is: “You know it when you see it”. Instead of giving a

clear and formal definition, I rather prefer to discuss some characteristics of turbulence through examples

so that you know it when you see it.

1.1.1 Unpredictability

Turbulent flow is a mess. It is by definition chaotic, meaning it is significantly dependent on initial

conditions. This property gave rise to the so-called butterfly effect, which states that a butterfly flapping

its wings can potentially lead to the formation of a storm. What we need to understand is that chaos

roughly means that even if the equations are deterministic, a minuscule difference in the initial states can

lead to vastly different behavior over a sufficiently long time. This makes it impossible to precisely describe

turbulent motion because the outcome is highly dependent on the initial conditions. All you can do is to

speak about it statistically.

This short anecdote demonstrates the concept of chaos and how a tiny error made by a meteorologist in

the 1960s led to its revolutionary discovery. In 1963, Edward Lorenz, a meteorologist at the Massachusetts

Institute of Technology, was studying the equations used to understand the dynamics of air in the atmo-

sphere. Up until now, nothing surprising. However, to gain a deeper understanding of the equations, he

simplified them as much as possible, distilling only the essential elements of the underlying physics that

gave rise to what is now known as the Lorenz system [16]. Lorenz attempted to solve these equations using

a supercomputer of the time. To do this, he inputted his equations with a precision of up to six decimal

places and ran the computations twice for each set of parameters. Legend has it that on one occasion,

Lorenz was in a rush and wanted to save time, so he entered the parameters with only three decimal places.

When he returned from a coffee break, he noticed that his data was drastically different from what he had

obtained using six decimal places. He repeated the experiment, this time using four and then five decimal

places, but the conclusion remained unchanged: they were entirely different from those of the reference

simulation. Lorenz had unknowingly discovered chaos. Almost a decade later, this inspired him to give a

talk entitled “Predictability: Does the Flap of a Butterfly’s Wings in Brazil Set Off a Tornado in Texas?”

[17]. . . The butterfly effect was born.
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Figure 1.1: Illustration of the divergence between two predictions using the Lorenz model.

1.1.2 Multiscale

Turbulence is arguably the most ubiquitous physical phenomenon, appearing at nearly all scales of the

universe. We find it from the subatomic world of the quantum vortex [2] to the vastness of interstellar

dust and nebula [11], such as the Orion Nebula, which spans more than 20 million light-years across.

It can also be found in the human body, such as the blood flowing through your aorta [26], and in the

atmosphere, where it plays a crucial role in the formation of rain clouds [27]. Even solar cells, –with a

France-sized surface area – are turbulent. And let us not forget about the great Jupiter vortex, with a

size larger than that of Earth, and exhibits turbulent behavior [30]. Although not an exhaustive list, these

examples provide a glimpse into the ubiquitous nature of turbulence in the universe. As we will see in

the following paragraphs, the propensity for turbulence is not surprising, given that it arises from the

nonlinearities inherent in the equations describing physical systems. Since nature itself is nonlinear, it is

natural to find turbulence occurring at all scales of the universe. Lastly, it is worth noting that a turbulent

flow is multiscale. For instance, consider the eruption plume depicted in Figure 1.2. The gas movement

emerging from the crater is turbulent, and as you zoom in, you will notice finer details and structures. To

emphasize the significance of this property, Alexander Smits [29] humorously remarked, “You can tell how

high budget a Hollywood movie is based on how many scales are in their turbulent explosions.”

1.1.3 Diffusive

Turbulence mixes things. It is easy to imagine that if a drop of dye is introduced into a turbulent flow, it

will be distorted and blended with the surrounding fluid until it is fully incorporated, thereby making it

impossible to discern between regions with or without the dye. One approach to illustrate this point is to

describe what turbulence is not: laminar flow. This term stems from the same Latin word that lamination

does: ‘lamina’, meaning a thin layer of a material, and it refers to smooth flow in a fluid, where the moving

particles stay largely confined to distinct layers, that move at different speeds with no mixing to each other.
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Figure 1.2: Tompualan crater, mount Lokon-Empung, Indonesia. The eruption plume is reaching its peak
height, as it reaches the cloud base. 10 September, 7.01 AM local time. Credits: David Pyle.

It is particularly satisfying to look at because it is so smooth that one can ask whether they are looking at

a glass or a flowing fluid. Moreover, analytical solutions for laminar flows are relatively easy to find, but

this type of flow is rare in nature. Turbulent flows are all contrary to what I just described.

1.1.4 High Reynolds number

It is now the time to introduce the incompressible Navier-Stokes equations since they are the fundamental

equations governing the motion of fluids, and they are the equivalent of Newton’s second law.

∇ · u = 0, (1.1a)

∂u

∂t
+ u ·∇u = −1

ρ
∇P + ν∇2u. (1.1b)

The first equation verifies the incompressibility of the flow, indicating that a fixed number of fluid particles

consistently occupy a constant volume within the fluid. This holds for water and many liquids, but is not

realistic for gases. The second equation describes how the velocity will change in space and time under

the influence of the pressure P and the viscosity ν. To be more specific, the first term describes the time

evolution of the velocity field, while the second term on the left-hand side describes the nonlinear advection.

The first term on the right-hand side models the impact of the pressure, while the last one stands for the

https://blogs.egu.eu/network/volcanicdegassing/2013/09/13/friday-field-photos-eruptions-at-lokon-empung-volcano-indonesia/
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energy dissipation due to molecular collisions. The Reynolds number is defined as the ratio between the

nonlinear advection and the viscous terms [24, 31]:

∣∣∣∣
u ·∇u

ν∇2u

∣∣∣∣ ∼
U2/L

Uν/L2
=
LU

ν
≡ Re, (1.2)

where U and L are respectively the characteristic velocity and size of the flow. When Re≫ 1, the flow is

dominated by the advection and the viscous dissipation becomes negligible. This type of flow is turbulent

(typically when Re > 103). On the contrary, if the advection term is negligible compared to the viscous

one, the flow is laminar.

It could be interesting to explain why these two terms are modeled like this. Let us begin with the

viscous one. The classical example is the one-dimensional linear diffusion equation:

∂u(x, t)

∂t
= ν

∂2u(x, t)

∂x2
, (1.3a)

u(x, t = 0) = u0(x). (1.3b)

The curvature of the velocity profile, whether it is concave or convex, is represented by the second derivative

in space. Therefore, the equations preceding this statement establish a connection between the evolution

of the velocity profile over time and its curvature, with the viscosity ν serving as a coefficient that either

enhances (ν > 1) or reduces (ν < 1) this curvature modification – note that a time renormalization can

absorb this coefficient. A solution of this diffusion equation is

u(x, t) =
1√
4πνt

∫ +∞

−∞
exp

[
−(y − x)2

4νt

]
u0(y)dy. (1.4)

As one can see in this expression, as time passes, on the one hand, the exponential in the convolution

product becomes increasingly widespread and then smooths the function u0(x); and on the other hand,

the amplitude of the velocity field decreases, as can be observed in the prefactor of the integral (cf., top

panel of Figure 1.3 for a visual representation). Both effects are accentuated with the viscosity that only

appears in a product of νt – which is not surprising since, as said before, ν can be absorbed by a time

renormalization.

On the contrary, the nonlinear advection term will increase the velocity shear. We can begin with a
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c c

u(x, t) u(x, t)

Figure 1.3: From top to bottom: linear diffusion, linear advection, and nonlinear advection sketches. The
shades of blue from dark to light indicate the progression in time.

simpler equation, such as the linear advection equation,

∂u(x, t)

∂t
= c

∂u(x, t)

∂x
, (1.5a)

u(x, t = 0) = u0(x). (1.5b)

The solution is the initial velocity profile u0(x) traveling at a constant velocity c. Now, in the nonlinear

case, we have

∂u(x, t)

∂t
= u(x, t)

∂u(x, t)

∂x
. (1.6)

This implies that the original wave is no longer traveling at a constant velocity; rather, the higher the value

of u(x, t), the faster the wave speed, leading to a steepening of the wave and ultimately the formation of

a shock (cf., middle and bottom panels of Figure 1.3). Such a phenomenon is described by the Burgers

equation, which serves as a one-dimensional representation of turbulence.

These simplified one-dimensional examples help us understand the physical impact of the two factors

that determine the Reynolds number and how they interact. Turbulent flows exhibit a stronger nonlinear

advection effect than the viscous effect, resulting in a more complex dynamics than laminar flows with a

low Reynolds number and no mixing.
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1.2 Plasma

1.2.1 Definition

Plasma is considered the fourth state of matter: heating a solid makes a liquid, heating a liquid makes a gas,

and heating a gas makes a plasma. This state of matter is created when a gas is partially or fully ionized,

resulting in a mixture of positively charged ions and negatively charged electrons with approximately equal

densities. This ionization can be achieved through a variety of methods, including high temperatures,

such as those found in stars or flames, or through constant bombardment by other particles, as is the case

in the Earth’s ionosphere. Although plasmas are not natural on Earth, they have many industrial uses,

ranging from fluorescent lights and high-voltage circuit breakers to space propulsion systems and tokamaks

for nuclear fusion experiments. Despite being discovered experimentally in 1879, the first theoretical

descriptions of plasmas did not emerge until 1929 in a study on the dynamics of electrons and ions in an

arc-type discharge [32].

Plasmas, although similar to neutral gases on a macroscopic level, exhibit unique microscopic behav-

iors. They maintain overall electrical quasi-neutrality, but can experience significant variations in charge

density within small regions. This distinct characteristic gives rise to various properties of plasmas, which

will be explored in this manuscript. Moreover, they can be categorized based on their particle interac-

tions. Collisional ones are governed by the macroscopic electromagnetic field and Coulomb forces between

neighboring particles, while collisionless plasmas are diluted and have few interactions between charged

particles and can behave differently depending on whether we look at individual particles or the plasma as

a whole. To study such plasmas, different models exist. The kinetic approach examines a group of particles

whose velocities follow a distribution function f and studies the change of this function over space and

time. The fluid approach, on the other hand, disregards individual particles and studies the macroscopic

behavior of the plasma by looking at different moments of the distribution function f . For instance, mag-

netohydrodynamics (MHD) is the simplest fluid description and can deal with complex phenomena such

as plasma turbulence, but more advanced descriptions like Hall-MHD consider electron-ion separation,

and the bi-fluid approach treats species as distinct interacting fluids. To summarize, there are different

perspectives one can take depending on what aspect of the plasma we want to investigate. Now, in the

upcoming paragraphs, I plan to delve into greater detail about the two primary frameworks through which

we study plasmas: the kinetic and the fluid descriptions.

Clearly, any definition of plasma must be accompanied by parameters, of which one is the dimensionless
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Figure 1.4: Illustration of a shift of all the electrons slightly to the right by a distance ξ to perturb the
uniform, quasi-neutral plasma and highlight the plasma pulsation.

plasma parameter,

Λ ≡ neλ
3
D, (1.7)

where ne represents the electron density. The Debye length, denoted as λD, plays a crucial role as it serves

as the characteristic length scale over which the Coulomb potential of an individual charged particle is

exponentially weakened or “screened”. This screening effect arises due to the preferential accumulation or

exclusion of oppositely or like-charged particles in the vicinity of the charged particle. Mathematically, the

Debye length is defined as [8]:

λD ≡
√
ε0kBT

nee2
, (1.8)

with ε0 represents the vacuum permittivity, kB is the Boltzmann constant, T denotes the temperature,

and e stands for the elementary charge. When Λ ≫ 1, collective electrostatic interactions outweigh binary

particle-particle collisions, indicating a weakly coupled plasma. It is precisely this type of plasma that

will be the main focus of our investigation in this manuscript. Furthermore, as Λ → ∞, the charges

in the plasma become uniformly distributed, leading to quasi-neutrality. Beyond the Debye sphere, the

positive and negative charges balance each other out. One might naturally wonder about the characteristic

timescale associated with the Debye length. Let us imagine a uniformly distributed quasi-neutral plasma

with well-equilibrated Debye clouds. Now, let us introduce a slight shift of all the electrons to the right by

a distance ξ, as depicted in Figure 1.4. Due to this displacement, an electric field arises, pointing from the

ions to the displaced electrons, with a magnitude of E = eneξ/ε0. The equation of motion for the electrons
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can then be expressed as follows:

me
d2ξ

dt2
= −eE =⇒ d2ξ

dt2
= −ω2

peξ, with ωpe ≡
√
nee2

ϵ0me
. (1.9)

where ωpe denotes the pulsation of a simple harmonic oscillator, commonly called plasma pulsation. Hence,

even small displacements between the positively and negatively charged species give rise to plasma oscil-

lations, commonly known as Langmuir waves [32]. This collective phenomenon emerges as the plasma

endeavors to restore quasi-neutrality in response to a disturbance.

1.2.2 Kinetic description

In this section, we draw inspiration from the insightful work of Dwight R. Nicholson, as presented in his

notable book on plasma physics [23].

Plasma kinetic theory is a theory that considers the movements of all particles in a plasma. To describe

how they all evolve over time and space, we first need to determine the precise trajectories of each one.

One helpful way to do this is to consider their positions and velocities as independent variables in a

hypothetical six-dimensional space with (x,v) axes, which is referred to as the phase space and where the

vector x represents the real space position (x, y, z) of a particle, and the vector v represents its velocity

components (vx, vy, vz). To begin with, we can model the density of the N0 particles of the species s of the

plasma as

Ns(x,v, t) =

N0∑

i=1

δ(x− xi)δ(v − vi), (1.10)

where δ(x− xi) is the Dirac distribution – which is zero if x ̸= xi and one if x = xi. Taking into account

all the species s forming the plasma, we obtain the total density

N(x,v, t) =
∑

s

Ns(x,v, t). (1.11)

Since the number of particles does not change, thus one has

dN(x,v, t)

dt
= 0, (1.12)
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where d/dt stands for the total derivative. Developing this expression leads to

∂N

∂t
+ v ·∇xN + a ·∇vN = 0, (1.13)

where a is the acceleration. The velocity vi of a particle i satisfies the Lorentz force equation,

ms
dvi(t)

dt
= qsE

(m)[xi(t), t] + qsvi(t)×B(m)[xi(t), t], (1.14)

where E and B are respectively the electric and magnetic fields. The superscript (m) refers to the

electromagnetic fields at a microscopic scale that are generated by the particles themselves, together with

externally applied fields. These microscopic fields are ruled by the Maxwell equations that describe the

time and space evolution of the electric and magnetic fields

Maxwell-Gauss: ∇ ·E(m) =
ρ
(m)
c

ε0
, (1.15a)

Maxwell-Thomson: ∇ ·B(m) = 0, (1.15b)

Maxwell-Faraday: ∇×E(m) = −∂B
(m)

∂t
, (1.15c)

Maxwell-Ampère: ∇×B(m) = µ0J
(m) +

1

c2
∂E(m)

∂t
, (1.15d)

with ε0 the vacuum dielectric permittivity, µ0 the vacuum magnetic permeability and c = 1/
√
ϵ0µ0 the

speed of light in vacuum. We define the microscopic charge density ρ
(m)
c and the microscopic current J (m)

as

ρ(m)(x, t) =
∑

s

qs

∫

R3

Ns(x,v, t)dv, (1.16a)

J (m)(x, t) =
∑

s

qs

∫

R3

vNs(x,v, t)dv. (1.16b)

According to Newton’s second law, the acceleration a can be replaced by the Lorentz force and one obtains

∂Ns(x,v, t)

∂t
+ v ·∇xNs +

qs
ms

(
E(m) + v ×B(m)

)
·∇vNs = 0 , (1.17)

which is the Klimontovitch equation that tells us whether there is a particle with infinite density at a given

point [12]. While this equation is exact and provides a precise description of all the orbits of the particles
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Figure 1.5: Illustration of the ensemble average operation.

composing the plasma, we are not particularly interested in the exact solutions of it because they would

be far too detailed for practical purposes. What we are really interested in is how many particles are

likely to be found in a small volume ∆x∆v in the phase-space centered at (x,v). So, we want to know

the smooth function f(x,v, t) = ⟨Ns(x,v, t)⟩, which is the average number of particles of species s per

unit of phase space. Suppose we are studying long-range electric and magnetic fields that span distances

much larger than the Debye length. In this case, we can consider a box centered around the point x in

phase space. This box should be significantly larger than the mean interparticle spacing but still much

smaller than the Debye length. We can now count the number of particles of species s in the box at time

t with velocities in the range v to v +∆v, divide by the size of the box (multiplied by ∆vx∆vy∆vz), and

refer to the result as fs(x,v, t) – cf., Figure 1.5 for an illustration of this process. This smooth function

fs(x,v, t) is commonly known as the distribution function. Although this number will fluctuate over time,

the fluctuations will be small if there are numerous particles in the box (enough to verify the plasma

parameter Λ ≫ 1). An equation for the time evolution of the distribution function can be obtained from

the Klimontovitch equation by ensemble averaging. Let us define the perturbations δNS , δB and δE as

Ns = fs + δNs, (1.18a)

B(m) = B + δB, (1.18b)

E(m) = E + δE, (1.18c)

where B = ⟨B(m)⟩, E = ⟨E(m)⟩, ⟨δE⟩ = ⟨δB⟩ = 0, and ⟨δNs⟩ = 0. Using these definitions and ensemble
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averaging, one obtains

∂fs(x,v, t)

∂t
+ v ·∇xfs +

qs
ms

(E + v ×B) ·∇vfs = − qs
ms

⟨(δE + v × δB) ·∇vδNs⟩ , (1.19)

which is the Boltzmann equation that models the kinetic description of the plasma [4]. The left-hand side

changes gradually in phase space and represents plasma collective behavior. The right-hand side is the

average of products involving peakly quantities, such as δE or δNs, and is very sensitive to the discrete

nature of the particles. Thus, it represents discrete particle effects, including collisions. This term is

particularly difficult to model accurately, as it is highly dependent on the nature of the plasma under

consideration. For instance, we must carefully consider whether we are dealing with collisions between

two, three, or even more particles at a time. Moreover, we must determine whether these collisions are

elastic or inelastic and what the corresponding cross-sections are. Additionally, we must account for

the possibility of collisions between neutral and charged particles, which introduces an additional level

of complexity. Consequently, a vast amount of research is dedicated to modeling this term, taking into

account the specific characteristics of the plasma being studied [25, 28]. If collisions are negligible because,

for instance, the plasma is very diluted, then we are left with the Vlasov equation [33]:

∂fs(x,v, t)

∂t
+ v ·∇xfs +

qs
ms

(E + v ×B) ·∇vfs = 0. (1.20)

1.2.3 Fluid description

Most of the time, plasmas can be considered as two interpenetrating fluids, one made up of electrons

and the other of positive ions. This simplifies the equations because we do not have to worry about the

different velocities of each particle in the fluids. Instead of the seven-dimensional phase-space of the kinetic

theory, we can use a set of equations that describe the behavior of each fluid as a whole, using just three

spatial dimensions and time. However, this approach has a drawback: it ignores the details of the velocity

distribution function such as Landau damping, which can be important in certain cases [13].

We start with the Vlasov equation and use it to derive the continuity equation, which tells us that the

fluid density of a species s, denoted by ns(x, t), does not change at a point x unless there is a net amount

of fluid entering or leaving a small volume that includes that point. In other words, the fluid is neither

created nor destroyed – its density can only change if it flows in or out of a given region. We use the
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normalization

ns(x, t) =

∫

R3

fs(x,v, t)dv, (1.21)

and note the fluid velocity us

us(x, t) =
1

ns

∫

R3

vfs(x,v, t)dv. (1.22)

Integrating the Vlasov equation (1.20) over the velocity v, the third and fourth terms vanish and one

obtains

∂ns(x, t)

∂t
+∇ · (nsus) = 0 , (1.23)

where ∇ stands for ∇x in the fluid description.

The momentum equation, which describes how this quantity changes over time, is obtained by multi-

plying the Vlasov equation by msv before integrating over the same variable. This yields

∂

∂t

(∫

R3

msvfsdv

)
+

∫

R3

msvv ·∇xfsdv + qs

∫

R3

v (E + v ×B) ·∇vfsdv = 0. (1.24)

The first term is by definition ∂t(nsmsus). For the second term, we can use the relation vv ·∇xfs = ∇x ·

(vvfs). Since fs is a probability distribution, the ensemble average of any quantity is ⟨g⟩ = n−1
s

∫
R3 gfsdv.

Thus, the second term is equal to ∇x · (nsms ⟨vv⟩). The third term is, by integration by parts, equal to

−qsnsE. In the last term, it is useful to move the ∇v operator to the left to obtain ∇v · [(v ×B) fs].

Integration by parts then yields −qsnsus ×B. Combining all terms, the momentum equation becomes,

∂

∂t
(nsmsus) +∇ · (nsms ⟨vv⟩) = qsns (E + us ×B) . (1.25)

However, there is a problem with the fluid approach. The continuity equation, which tells us how the

density evolves, involves the function us, while the momentum equation involves the function ⟨vv⟩. To

solve the equation that describes the i-th factor of v, we need to take into account a term that involves

the (i + 1)-th factor of v. This means that a complete description of plasma would require an infinite

number of moment equations derived from the Vlasov equation. In essence, we would need to replace

the seven-dimensional Vlasov equation with an infinite number of four-dimensional fluid equations. . . In

practice, we truncate this series of equations by using a physical argument to model the term with i + 1

factor of v. Generally, and it is the case in the solar wind, we have a net velocity us in a direction.

So, in a first approximation, one can assume that all particles have the same macroscopic velocity and
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fs(x,v, t) = ns(x, t)δ (v − us), thus

⟨vv⟩ = 1

ns

∫

R3

vvnsδ (v − us) dv = usus. (1.26)

But to be more realistic, let us consider a distribution that exhibits a net velocity us in a specific direction

and has a velocity distribution when viewed from the frame moving with the velocity us. Therefore, we

can model this as follows

⟨vv⟩ = 1

ns

∫

R3

nsvvδ (v − us) dv +
1

ns

∫

R3

(v − us)(v − us)fsdv = usus +
Ps

nsms
, (1.27)

where Ps is, by definition, the pressure tensor. We end up with

∇ · (nsms ⟨vv⟩) = (∇ · us) (nsmsus) + (us ·∇) (nsmsus) +∇ ·Ps, (1.28)

and the momentum equation becomes

∂

∂t
(msnsus) + (∇ · us) (msnsus) + (us ·∇) (msnsus) = −∇ ·Ps + qsns (E + us ×B) . (1.29)

Subtracting the continuity equation multiplied by us from the left side, we find

msns

(
∂us
∂t

+ us ·∇us

)
= −∇ ·Ps + qsns (E + us ×B) . (1.30)

When coupled with the Maxwell equations and a closure (which heuristically describes the pressure tensor

[3]), this provides a fluid description for each species forming the plasma.

1.2.4 Magnetohydrodynamics approach

If we think of the solar wind as a fluid, one can use the previous equations derived for each species of

plasma. Since it is mainly composed of electrons and protons, we assume that a bi-fluid description is

appropriate. Now we wish to combine the electrons and ions equations to obtain a single-fluid equation

also known as the equation of magnetohydrodynamics (MHD). By defining the single fluid mass density,
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charge density, velocity, current density, and pressure tensor as follows

ρM (x, t) =
∑

s

nsms, (1.31a)

ρc(x, t) =
∑

s

nsqs, (1.31b)

u(x, t) =
1

ρM

∑

s

nsmsus, (1.31c)

J(x, t) =
∑

s

qsnsus, (1.31d)

P =
∑

s

Ps, (1.31e)

we want to derive the mass conservation, the charge conservation, the momentum conservation equations,

and the generalized Ohm’s law to obtain a complete set of equations.

The mass conservation law is obtained by multiplying the ion mass conservation by mi, the electron

mass conservation by me and then adding the two equations together to obtain

∂ρM
∂t

+∇ · (ρMu) = 0 . (1.32)

The charge conservation law is obtained by using the same algebra but replacing the mass with the charges

∂ρc
∂t

+∇ · J = 0 . (1.33)

Now, regarding ∂tns and us as small quantities, we add the momentum equations for ions and electrons

and keep only the leading order terms to obtain

ρM

(
∂u

∂t
+ u ·∇u

)
= −∇ ·P+ ρcE + J ×B , (1.34)

which is the single-fluid momentum equation. Note that ρcE is negligible with respect to the other terms,

but we keep it for the subsequent analysis. Finally, we need a relation that describes the time derivative

of the current, also called generalized Ohm’s law. Multiplying (1.30) by qs/ms, adding the ion version to

the electron one, neglecting the quadratic terms in the small quantities ∂tns and us we find

∂J

∂t
= −

∑

s

[
qs
ms

∇ ·Ps +
q2sns
ms

(E + us ×B)

]
. (1.35)
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We note that

nee
2

me
ue = − e

me
J +

e2

memi
ρMV − menee

2

mini
ue. (1.36)

Then, neglecting 1/mi ≪ 1/me whenever possible and assuming ne ≃ ni ≃ n, we find

∂J

∂t
=

e

me
∇ ·Pe +

ne2

me
(E + u×B)− e

me
J ×B. (1.37)

Multiplying the previous relation by me/(ne
2) leads to the generalized Ohm’s law

me

ne2
∂J

∂t
=

1

ne
∇ ·Pe +E + u×B − 1

ne
J ×B . (1.38)

Coupled with the Maxwell equations, we obtain a complete set of equations – if we assume the pressure

term can be expressed in terms of mass density. For cold electrons, the gradient pressure is negligible

and the first term of the right-hand side can be ignored whereas at low frequency (i.e., lower than the ion

cyclotron frequency), the left-hand side is negligible. In addition, when the current is small the J × B

term, also known as the Hall term, can be ignored1. Under these assumptions, Ohm’s law becomes

E = −u×B, (1.39)

and we finally obtain the non-relativistic equations of the ideal MHD that model a collisionless plasma as

a fluid

∂ρM
∂t

+∇ · (ρMu) = 0, (1.40a)

ρM

(
∂u

∂t
+ u ·∇u

)
= −∇ ·P+ J ×B, (1.40b)

∂B

∂t
= ∇× (u×B) , (1.40c)

∇×B = µ0J , (1.40d)

where the term involving 1/c2 in the Maxwell-Faraday equation (1.15c) is considered negligible, in particular

due to the low-frequency assumption (i.e., non-relativistic plasma).

1By scaling the magnetic field in velocity units, B → B/
√
µ0ρM , it appears that the Hall term is also negligible when

modeling plasma dynamics at scales ℓ larger than the ion inertial length di ≡ c/ωpi.
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1.2.5 MHD Waves and linear theory

Waves play a central role in turbulence. They are the fundamental bricks on which many features and

models of turbulence rely. In the context of ideal MHD, the plasma obeys the following equations

∂ρ

∂t
+∇ · (ρu) = 0, (1.41a)

∂P

∂t
= −γP

ρ
∇ · (ρu) , (1.41b)

ρ

(
∂u

∂t
+ u ·∇u

)
= −∇

(
P +

B2

2µ0

)
+

1

µ0
B · ∇B, (1.41c)

∂B

∂t
+ u ·∇B = B ·∇u, (1.41d)

where ρ = ρM – we will adopt this notation for the rest of the manuscript – and we use a polytropic closure

to link the pressure to the mass density with γ the polytropic index (P ∝ ργ).

Now, let us consider a uniform, stationary MHD fluid, threaded by a uniform magnetic field B0 =

B0e∥, where e∥ represents a unit vector. To orient the coordinate system, we will use e∥ = ez and, the

perpendicular directions being ex and ey. We perturb the fluid with small displacements, which we take

to be sinusoidal:

ρ = ρ0 + ρ1e
i(k·x−ωt), (1.42a)

P = P0 + P1e
i(k·x−ωt), (1.42b)

u = u1e
i(k·x−ωt), (1.42c)

B = B0 +B1e
i(k·x−ωt). (1.42d)

By small displacement, we mean that nonlinearities are neglected. This results in linear theory. Our

linearized MHD equations, projected along the perpendicular and the parallel directions, are then

ωρ1 = ρ0k · u1, (1.43a)

ωP1 = ρ0c
2
sk · u1, (1.43b)

ωu1 = k⊥

(
P1

ρ0
+

B0 ·B1

2µ0ρ0

)
− B0 · k

µ0ρ0
B1, (1.43c)

ωB1 = − (B0 · k)u1 +B0 (k · u1) , (1.43d)

where c2s = γP0/ρ0 is the sound speed. Now, we establish the general wavevector k = k⊥e⊥+k∥e∥ where e⊥
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B0

B0

B0

Alfvén waves

Slow magnetosonic waves

Fast magnetosonic waves

Figure 1.6: Illustration of the three distinct wave types, characterized within the framework of MHD. The
dotted lines depict the local mean magnetic field, while the solid lines represent the perturbed magnetic
field lines. The color gradient indicates the thermal pressure variations in the plasma. It is noteworthy
that the direction of pressure variations does not always align with the local mean magnetic field. This
peculiar case was chosen for illustrative purposes.

and e∥ are defined to be mutually perpendicular. By substituting Equations (1.43b – 1.43d) into Equation

(1.43c), one obtains,




ω2 − k2∥b
2
0 0 0

0 ω2 − k2⊥c
2
s − k2b20 −k⊥k∥c2s

0 −k⊥k∥c2s ω2 − k2∥c
2
s







u1x

u1y

u1z




= 0, (1.44)

where we have introduced the Alfvén velocity b0 ≡ B0/
√
µ0ρ0 for convenience. A non-trivial solution arises

in this system when the determinant of the matrix is equal to zero. This condition leads to the following

dispersion relation:
(
ω2 − k2∥b

2
0

) [
ω4 −

(
c2s + b20

)
k2ω2 + k2k2∥c

2
sb

2
0

]
= 0. (1.45)

From this general relation, three distinct limits can be identified. First, in the incompressible case where

cs → ∞, the first factor in the preceding expression must be zero. This yields the so-called Alfvén waves

characterized by the dispersion relation:

ωA = ±b0k∥ . (1.46)
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They were analytically predicted by Hannes Alfvén [1] in 1942 who was awarded the prestigious Nobel

Prize in 1970 “for fundamental work and discoveries in magnetohydrodynamics with fruitful applications

in different parts of plasma physics” [22]. These are transverse waves (uk and bk are perpendicular to k)

propagating at the group velocity b0, also known as the Alfvén speed. The phase velocity vϕ of these waves

can be expressed as vϕ = b0k∥/k, indicating their semi-dispersive nature. Essentially, these waves exhibit

anisotropic behavior. As shown in the top panel of Figure 1.6, Alfvén waves are magnetic field perturbations

and act on the field like you will pluck a string. The initial experimental attempts to detect them were

conducted in a magnetized mercury bath [18] and later in ionized helium gas [5]. The first irrefutable

evidence of their existence was provided by Lehnert [15] in 1954 using liquid sodium. Subsequently, Alfvén

waves were observed in the interplanetary space by the Pioneer and Explorer probes [7]. It was not until

2008 that the initial indications of Alfvén waves on the Sun were obtained through the data collected by

the Hinode/JAXA space telescope [21].

We have two additional solutions known as the fast and slow magnetosonic waves, which correspondingly

follow the dispersion relations:

ωF = ±csk√
2


1 + b20

c2s
+

√(
1 +

b20
c2s

)2

− 4
b20
c2s

k2∥
k2



1/2

, (1.47a)

ωS = ±csk√
2


1 + b20

c2s
−

√(
1 +

b20
c2s

)2

− 4
b20
c2s

k2∥
k2



1/2

. (1.47b)

It is readily apparent that these waves emerge as natural extensions of the classical sound waves in the

context of a magnetic field. In the absence of such a field, the Alfvén waves cease to exist and the MHD

equations revert to their hydrodynamic form. Consequently, the discernment between fast and slow waves

becomes impossible, and they assimilate into the isotropic sound waves. The key distinction between the

slow and fast waves lies in the positioning of the pressure perturbations relative to the magnetic field lines.

In the case of fast waves, compression regions align with regions where the magnetic field lines are closely

packed, while rarefaction regions correspond to regions where the magnetic field lines are more spread

apart. The fundamental difference is that for fast waves, there are two restoring forces working in unison:

the thermal pressure, which tends to expand the plasma, and the magnetic field, which resists compression.

In contrast, slow waves exhibit an anti-correlation between thermal pressure and changes in field strength,

resulting in a scenario where the combined effect of thermal and magnetic pressure is relatively small. The
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Figure 1.7: The phase diagrams depict the behavior of fast, slow, and Alfvén waves with respect to the
angle θ between the mean magnetic field B0 and the wavevector k. In the case where thermal pressure
dominates over magnetic pressure (b0 < cs), shown on the left, a distinct region emerges where no waves
occur within the phase velocity range of vϕ ∈ [b0, cs]. Conversely, in the case where magnetic pressure
dominates over thermal pressure (cs < b0), depicted on the right, there is no forbidden region.

distinction is illustrated in the middle and bottom panels of Figure 1.6.

Another intriguing aspect concealed within these magnetosonic waves is the regime of high thermal

pressure relative to the magnetic pressure. In this scenario, where b0 ≪ cs, the fast waves exhibit a

dispersion relation approximately given by ωF ≃ ±csk, while the dispersion relation for the slow wave

tends to ωS ≃ ±b0k∥. These correspond, respectively, to the classical sound waves and the Alfvén-like

waves. Notably, in this regime, the two types of waves become decoupled, coexisting without any interplay

or exchange. Two last intriguing limits worth noting are when k = k∥ and k = k⊥. In the former case, one

of the waves can be identified as a sound wave propagating along the mean magnetic field (ωF ≃ ±csk∥),

while the other wave can be identified as the classical Alfvén wave (ωS ≃ ±b0k∥). In the latter case, only

the fast wave persists, which takes the form of a longitudinal wave resembling a modified sound wave:

ωF ≃ ±c2sk2
√
1 + b20/c

2
s. Figure 1.7 displays the phase diagram of the magnetosonic waves, encompassing

all of these scenarios. To summarize, in ideal MHD, we encounter two significant types of waves: Alfvén

waves and magnetosonic waves.

1.3 Solar wind

1.3.1 What is it?

Each second, approximately 1036 particles escape from the Sun, forming what we call the solar wind. These

particles (mainly electrons, protons, and α-particles) have an exceptionally large mean free path, which is
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Figure 1.8: Proton temperature data from Voyager 2 plasma instrument, from 1 au to about, 50 au. Credits:
Matthaeus et al. [19].

the average distance between two collisions. In fact, it is estimated that a particle in the solar wind will

only collide (Coulomb collisions) with another particle approximately once every Sun-Earth distance. This

characteristic renders the solar wind a collisionless plasma, resulting in a highly diluted environment with

only about 107 particles per cubic meter at one astronomical unit (au) from the Sun, in contrast to the

approximately 1025 particles per cubic meter in the air we breathe at sea level. The solar wind presents a

plethora of intriguing questions, such as the mechanisms behind its acceleration, the temperature evolution

resulting from the absence of collisions, and the presence of two distinct winds, one being approximately

twice as fast as the other [6]. As an illustrative instance where turbulence might play a role, we present

in Figure 1.8 the radial variation of the temperature of solar wind protons. The intriguing aspect here

lies in the quest to precisely identify and quantify the elusive mechanisms responsible for shaping this

temperature profile. These are all important questions that drive active research, including in the field of

turbulence. However, I do not want to limit the study of plasma turbulence to just these questions. In my

view, the solar wind is a fundamental object that can offer insights that go far beyond its own properties.

1.3.2 Why use it?

When it comes to the fundamentals of physics, our goal is to describe nature using mathematical models

that explain measurements. However, in astrophysics, we face a unique challenge as the phenomena and

objects we seek to understand are often located far away from us. As a result, we can only rely on a

magnifying glass (however large and sophisticated) to infer properties from the light we receive. The

main issue is that light has been traveling over very (very) long distances, crossing various media, and
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Figure 1.9: Photo taken January 22, 2012, at the wavelength 17.1 nm (Fe IX line): the Sun erupted with
a solar flare leading to a coronal mass ejection and a burst of highly energetic protons known as solar
energetic particles. Credits: NASA/SDO/AIA.

has a significant chance of interacting with them, potentially falsifying our deductions. Thankfully, the

plasma turbulence community enjoys a unique advantage in the form of solar wind, as illustrated in Figure

1.9. This archetypal plasma with no boundary condition is located at ∼ 100, 000km from Earth – to be

understood as two steps away from home – presents an ideal opportunity for launching spacecraft and

obtaining in situ measurements to test the validity of our theories and making detailed predictions. As

we assume that physical laws remain constant in time and space [20], we have verified that, out of the

countless stars identified in the visible universe, our sun is a prototypical middle-aged star [14]. This allows

us to reasonably assume that our findings on the solar wind are likely applicable to a multitude of other

stars. By leveraging this universal character, we can attempt to model plasma turbulence in its essence

and gain a profound understanding of this ubiquitous phenomenon.

1.3.3 What about turbulence in the solar wind?

In this thesis, I will focus on turbulence through the fluid approach, using the solar wind to discuss with

nature. The fluid approach can seem out of context since this medium is collisionless but because it is
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collisionless its Reynolds number is huge and turbulence may play an essential role in the dynamics, acting

as a unifying force, linking scales through a cascade process, and enhancing the cohesion of the plasma.

This cohesion not only enables the description of the large-scale solar wind with MHD, but also makes

the fluid approach relevant even at scales where kinetic effects would be expected to dominate [10]. The

most common refinement to probe turbulence beyond MHD scales is the Hall-MHD that takes into account

the Hall term in the generalized Ohm’s law we derived above. The idea is since a proton is more than

1800 times heavier than an electron, the mass ratio between the two species is roughly equivalent to that

between an African bush elephant and a newborn baby. It goes without saying that if you apply the same

amount of force to push the elephant and the baby, one will move a little faster than the other. . . This

is precisely what the Hall effect describes: due to the mass difference between ions and electrons, the two

species exhibit different dynamics. Ions move more slowly than electrons, which results in a separation

of electric charge and the creation of a (Hall) current. Further refinements are possible by playing with

Ohm’s law, but for the solar wind, the collisionless nature implies some kinetic effects that are no longer

negligible as we model plasma at scales smaller and smaller. One can always use the fluid framework

to probe peculiar effects, but it will be complicated to arrive at a complete understanding of the plasma

properties at small scales/high frequencies.

In this manuscript, I will explore the intriguing world of turbulence across various scales of plasma. My

focus will be on investigating two distinct regimes: the weak and strong turbulence. We will delve into the

details of these two approaches in the upcoming chapters, but the key difference between them lies in the

impact of nonlinear terms in the equations. In summary, weak turbulence consists of interacting waves that

are distorted over a much longer timescale than linear waves due to weak nonlinearities in the equations.

After numerous interactions, we can make detailed predictions of how the plasma energy will evolve and at

which scale, both quantitatively and qualitatively. Although powerful, this approach is somewhat limiting

because it only models a specific type of plasma, and as time progresses, the turbulence cannot remain

weak. The strong turbulence approach does not have a theory that is as rigorous and predictive as the

weak turbulence approach, but we can still make analytical predictions. These are based on what is known

as the Zeroth law of turbulence, which is considered to be an axiom. The Zeroth law of turbulence states

that “If in an experiment on turbulent flow, all control parameters are fixed, except for the viscosity, which

is lowered as much as possible, the energy dissipation per unit mass ε approaches a nonzero limit.” [9]. I

will discuss this milestone in more detail in the next chapter, but this unique property that the energy

dissipation of a turbulent flow is independent of viscosity has sparked investigations that have led to the
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discovery of the only law that we are currently capable of predicting in strong turbulence.

There is another important aspect of turbulence theory that I have not mentioned yet, but it plays

a central role. If you are a mathematician, you can skip this part and go directly to the next section.

Physicists often rely on dimensional analysis to make predictions using hand calculations before delving

into more sophisticated analyses (and potentially seeking help from mathematicians). The turbulence com-

munity is no exception to this approach. Moreover, due to the inherent complexity of the equations that

model turbulence, there are predictions based solely on what is known as phenomenology, which is a jargon

used to refer to a refined dimensional analysis in the context of turbulence. Although approximate, phe-

nomenology enables us to make predictions that have been validated through direct numerical simulations

(DNS) and in situ observations. It remains a valuable tool to consider, even though it can never replace

rigorous theories.

1.4 Overview

This manuscript is divided into six chapters (excluded this one). In Chapter 2, I present an MHD low-

dimensional model, for which I prove the Zeroth law of turbulence. Chapter 3 extends the findings from

the preceding chapter to the three-dimensional case, allowing us to apply these theoretical insights to

estimate the energy dissipation in solar wind turbulence using in situ data. In Chapter 4, we venture

into sub-MHD scales, where ions are too heavy to follow the electron dynamics, to explore the differences

between weak and strong turbulence regimes. By conducting direct numerical simulations, we investigate

whether either of these regimes can capture the features of solar wind turbulence at such scales. We then

continue to descent into the depths of plasma dynamics in Chapter 5. Here, we delve into the intricate

world of even smaller scales, where the influence of electron inertia cannot be overlooked. By developing

a weak turbulence theory, we aim to predict the energy spectrum at these scales, taking into account the

perturbations induced by electron inertia that were previously neglected. We finally discuss, in Chapter 6,

an elegant connection between the equations governing the prediction of the energy spectrum and the world

of autonomous dynamical systems. This intriguing link allows us to accurately measure the power law of

the energy spectrum in the absence of dissipative processes, thus overcoming the limitations encountered in

previous chapters. In Chapter 7, we bring this expedition to its end, offering a succinct recapitulation and

perspectives that highlights the necessity of a collaborative effort, intertwining theoretical investigations,

numerical simulations, and the scrutiny of observational data.



REFERENCES 39

In summary, this manuscript provides an overview of three years’ worth of research on hot and chaotic

space gas.
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The Yanase model

This study is published in:
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2.1 Introduction

The Yanase model is to MHD what the Burgers equation is to hydrodynamics. One might question the

value of studying a simplified model, but as Kadanoff has pointed out: “The strategy of studying physical

questions by using highly simplified models is made rewarding by a characteristic of physical systems called

“universality”, in that many systems may show the very same qualitative features, and sometimes even the

same quantitative ones. To study a given qualitative feature, it often pays to look for the simplest possible

example.” [27]. Following this principle, we will demonstrate the Zeroth law of turbulence by examining

it through the framework of the Yanase model. But before presenting the novel insights that the Yanase

model brings to turbulence theory, I must take a brief detour to introduce an older method that has

been employed for many years and has provided valuable insights into the behavior of turbulent systems.

Despite the advent of newer techniques, it remains a valuable tool for understanding the fundamental

aspects of turbulence. In reality, the upcoming presentation is an extension of the older approach, which

was extensively utilized but necessitates restrictive assumptions to be applied.

2.1.1 The elementary brick

Turbulence has an interesting property known as the Zeroth law of turbulence, which is regarded as an

axiom. In hydrodynamics, as the viscosity ν approaches zero, the total energy of the system continues

to decrease at a constant rate ε, regardless of the value of the viscosity. This observation is somewhat

surprising, but it turns out that this behavior is consistent with a key principle named anomalous dissipation

lim
ν→0

dE

dt
= −ε < 0. (2.1)

This property is something that is a bit counter-intuitive and raises interesting questions. For instance, is

the limit of ν → 0 the same as having ν = 0? And assuming that statement is true, how can a conservative

system dissipate energy? Before considering these questions, I have to follow the historical storytelling and

present what was for a long time the only theoretical result we had concerning the strong turbulence.

2.1.2 The exact law of turbulence

In the 1940s, a Russian mathematician named Kolmogorov tackled this problem and made a groundbreaking

contribution to the field of hydrodynamic turbulence, leaving behind a remarkable legacy. While I will not
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delve into the derivation of his result, as numerous textbooks, books, reviews, and articles have already

covered it, I will describe the key idea, hypotheses on which this result is based, and its implications.

Starting with the incompressible Navier-stokes equations (1.1), the idea was to derive an equation

describing the time evolution of the velocity correlation tensor Rij(x, r, t) ≡ ⟨ui(x, t)uj(x+ r, t)⟩, where ⟨·⟩

is the ensemble average. This is the fundamental quantity upon which all statistical theories of turbulence

are built, and measures how much two distinct points separated from a distance r are dependent on each

other. Based on this tool, one can distinguish three peculiar cases:

• If Rij(x, r, �t), then the turbulence is stationary.

• If Rij(�x, r, t), then the turbulence is statistically homogeneous.

• If Rij(x, |r|, t), then the turbulence is isotropic, meaning that the ensemble averages possess mirror

symmetry and are invariant under rotation of the reference frame.

Here, we must take note that the definition of Rij involves the fluctuating velocity field, which has a zero

mean. The correlation tensor measures the disparity between the velocity field at two distinct points, let

us sayM andM ′ (cf. Figure 2.1). It is important to stress that fluid flow does not undergo sudden changes

in an instant. Even in turbulent situations, there is a form of memory within the flow, and it requires a

certain duration for the observed fluid parcel to undergo significant transformations from its initial state.

Thus, for large separations r, we expect the velocity correlation tensor Rij(r) to approach zero, while in

the limit of r → 0, Rij only gives us information about the kinetic energy at a single point x, and does not

reveal anything about the distribution of energy concerning the size of turbulent structures. To address

this, we introduce the velocity increment δu ≡ u(x + r) − u(x), which acts as a statistical spatial filter,

extracting information about the distribution of velocity with respect to separation scales r.

With the help of these mathematical tools, the earliest prediction for turbulent flow was made in 1941

by Kolmogorov [28] which is now known as the four-fifths law due to a particular constant that appears in

the equation. The path to this result involved tensor analysis, which can make the formalism cumbersome.

In this section, we will follow a more direct approach to derive this law in a different form: the four-thirds

law, which was only discovered in 1997 by Antonia et al. [4]. Both laws relate the third-order structure

functions — representing the velocity field’s increment moment — to the separation distance between two

points in homogeneous, isotropic, stationary, and three-dimensional incompressible turbulence.
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Figure 2.1: In homogeneous turbulence, only the relative difference in position between the points M and
M ′ is relevant.

Let us write the incompressible Navier-Stokes equations at points x and x′

∂tui + ∂k (ukui) = −∂iPi + ν∂kkui + fi, (2.2a)

∂tu
′
j + ∂′k

(
u′ku

′
j

)
= −∂′jP ′

j ++ν∂′kku
′
j + f ′j , (2.2b)

where Einstein’s notations are used, f represents the external large scale forcing, and the prime symbol

in the derivatives and pressure term signifies that they are with respect to the variable x′. Multiply the

first equation by u′j and the second by ui, and the addition of these two equations gives us, on taking the

ensemble average, a dynamic equation for the second-order correlation tensor

∂t
〈
uiu

′
j

〉
+
〈
∂k
(
ukuiu

′
j

)
+ ∂′k

(
u′kuiu

′
j

)〉
=−

〈
∂i
(
Piu

′
j

)
+ ∂′j

(
P ′
jui
)〉

+ ν
〈
∂kk

(
uiu

′
j

)
+ ∂′kk

(
uiu

′
j

)〉

+
〈
fiu

′
j + fjui

〉
.

(2.3)

Assuming homogeneity and after a few calculations (see e.g Galtier [21]) one can rewrite the previous

relation as follows

∂

∂t

〈
uiu

′
i

2

〉
=

1

4
∇r · ⟨(δu · δu) δu⟩+ 2ν∇2

r

〈
uiu

′
i

2

〉
+ F , (2.4)

where F(r) is a correlator as well. We now define the mean rate of total energy injection as F = ε. The

final expression of the exact law is valid in the inertial range, where the corresponding scales are much

smaller than the forcing scales but much larger than the dissipation scales. By using the stationarity
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assumption, we find

ε = −1

4
∇r · ⟨(δu · δu) δu⟩ . (2.5)

Assuming isotropy, one can integrate this expression and obtain the four-third law

−4

3
εr = ⟨(δu · δu) δur⟩ , (2.6)

where ur is the longitudinal component of the velocity, i.e., that along the direction of separation r. This

expression provides an estimate of the energy flux in the inertial range, which is far from the forcing and

dissipation ranges. At the time of its discovery, it was the only theoretical result that did not require

perturbative development, hence it is referred to as an exact law. Since, it has been generalized to more

complex systems such as both incompressible and compressible MHD [2, 6, 38, 40], Hall-MHD [1, 7, 20,

22, 26] and even gravitoturbulence [8, 9]. However, the applicability of exact laws is quite restrictive since

several approximations are needed to derive them. Specifically, an external force is required to reach a

stationary state, and the flow must be homogeneous (and isotropic). In the next sections, we will explore

an alternative approach that relaxes some of these assumptions by working with weak solutions.

Inspired by the Leray [29] idea that turbulent solutions of the Navier-Stokes equations might be irreg-

ular, Onsager [35] suggested examining the Euler equation to shed light on this intriguing phenomenon.

He states that the absence of viscosity in the Euler equation causes the flow to evolve into a turbulent

state, leading to sharp gradients, irregularities and this lack of smoothness can result in energy dissipation.

More recently, two French mathematicians, Jean Duchon, and Raoul Robert [18], made a big leap forward

in support of Leray and Onsager. First, they proved that the answer to the earlier question is yes, the

same phenomenon occurs in the Euler equations, and then the Zeroth law is still valid when ν = 0. They

also devised a method based on weak solutions for calculating anomalous dissipation in both Euler and

Navier-Stokes equations and provided an expression for it.

In this chapter, we will focus on Onsager’s conjecture using a low-dimensional model of MHD called the

Yanase model. By following the approach of Duchon & Robert, we will prove the Zeroth law of turbulence

in this model, and thus get a good feeling for how to estimate the energy dissipation rate ε defined in

Equation (2.1).
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2.2 Mathematical prerequisites

2.2.1 What is a weak solution?

It is not superfluous to introduce the concept of weak solutions mathematically before delving into calcula-

tions. First, let me introduce the Hölder continuity. A function f defined on a segment I ∈ R is α-Hölder

continuous, where α ∈ R∗
+, if there exists a positive constant Cα such that for any pair of points x, y ∈ I

|f(x)− f(y)| ≤ Cα |x− y|α . (2.7)

For α = 1, we recognize the Lipschitz continuity. Now, if α > 1, f(x) is constant. To prove it, we can

rearrange the terms as ∣∣∣∣
f(x)− f(y)

x− y

∣∣∣∣ ≤ Cα |x− y|α−1

and by taking the limit as (x−y) → 0, we can identify f ′(x) on the left-hand side of the equation, while the

right-hand side approaches zero. Thus, f(x) is constant if α > 1. In considering the case of α < 1, we find

that according to the definition (2.7), the function f is still uniformly continuous, but its derivative may

diverge and therefore cannot be defined in the usual sense. This leads to the introduction of the concept of

a weak derivative, which is more general than the (strong) derivative and is applicable to functions that are

not differentiable but still integrable. When dealing with weak derivatives, it can be useful to employ the

notion of generalized functions – also named distributions. Specifically, we can move the derivatives onto

a suitable test function, which enables us to work with weak solutions of the equations. This test function

should be an infinitely differentiable function with compact support, even, non-negative, and having an

integral of 1.

2.2.2 An example of the use of weak solutions

When we solve ordinary or partial differential equations, we usually assume that the solution is smooth

and has all its derivatives well-defined. But sometimes, equations do not have nice, smooth solutions that

we can differentiate. In these cases, we can use the concept of weak solutions, which allows us to find

solutions to equations even when we cannot differentiate them. The idea is to rewrite the equation in a

way that does not require differentiating the solution, and then find functions that satisfy this new weak

formulation. These are important because they allow us to solve equations that we would not be able to

otherwise and are encountered in many real-world phenomena such as conservation laws.
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As an example, one can take the linear diffusion equation seen in the previous chapter. Let us assume

that the diffusion coefficient ν = 1, then

∂u(x, t)

∂t
=
∂2u(x, t)

∂x2
. (2.8)

To get an idea of the properties of a hypothetical solution u(x, t) without directly solving the equation,

one can integrate it with a test function φ(x, t).

∫ +∞

−∞

∫ +∞

−∞

∂u(x, t)

∂t
φ(x, t)dxdt =

∫ +∞

−∞

∫ +∞

−∞

∂2u(x, t)

∂x2
φ(x, t)dxdt.

Performing an integration by parts, the boundary terms vanish because of the compact support of φ(x, t)

and we find ∫ +∞

−∞

∫ +∞

−∞
u(x, t)

∂φ(x, t)

∂t
dxdt = −

∫ +∞

−∞

∫ +∞

−∞
u(x, t)

∂2φ(x, t)

∂x2
dxdt. (2.9)

So, if u(x, t) is continuously differentiable, then equation (2.8) implies equation (2.9). But there are

functions u(x, t) that can satisfy equation (2.9) for any φ(x, t), even though they might not be differentiable

and therefore cannot satisfy equation (2.8). This is where the concept of weak solutions comes in. It allows

us to deal with these types of functions and still make sense of the equation. In the subsequent analysis,

we assume that weak solutions are primarily concerned with resolving spatial irregularities rather than

temporal ones. Then, the test function φ will depend solely on the spatial variable x.

2.3 The Yanase model

2.3.1 Derivation of the model

We start from the 3D compressible MHD equations (with ∇ ·B = 0)

∂ρ

∂t
+∇ · (ρu) = 0, (2.10a)

ρ

(
∂u

∂t
+ u ·∇u

)
= −∇P +

1

µ0
(∇×B)×B + dν̃ , (2.10b)

∂B

∂t
= ∇× (u×B) + dη, (2.10c)

where ρ is the mass density, u the velocity, B the magnetic field, P the pressure, µ0 the magnetic per-

meability of the vacuum, dν̃ = ν̃∇2u + (ν̃/3)∇ (∇ · u) and dη = η∇2B are the dissipative terms, ν̃ the
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dynamic viscosity and η the magnetic diffusivity. Yanase [46] reduces this system by making the follow-

ing assumptions: u and B depend only on the one-dimensional space variable x and time t such that

u(x, t) = u(x, t)êx and B(x, t) = By(x, t)êy + Bz(x, t)êz. The pressure term is neglected compared to

the magnetic pressure; the density ρ is put constant and equal to ρ0 in the equations for the velocity and

magnetic fields. All this leads to the Yanase equations

∂u

∂t
+

∂

∂x

(
u2 + b2y + b2z

2

)
= ν

∂2u

∂x2
, (2.11a)

∂by
∂t

+
∂

∂x
(uby) = η

∂2by
∂x2

, (2.11b)

∂bz
∂t

+
∂

∂x
(ubz) = η

∂2bz
∂x2

, (2.11c)

where by definition bj ≡ Bj/
√
ρ0µ0 with j = y, z and ν ≡ 4ν̃/ (3ρ0). It is straightforward to show that the

total energy, E = (u2+b2y+b
2
z)/2, and the modified cross-helicity, ub with b the magnetic field modulus, are

conserved when ν = η = 0. Although this one-dimensional system mimics the compressible MHD equations

with two similar invariants [21], it is generally not fully consistent with it because of the assumption of

constant density (in space and time), which, according to Equation (2.10a), leads necessarily to a constant

velocity u. There is, however, one exception to this (considered here): when the velocity derivative is

constant in space, the mass density will remain constant in space (but not in time) if it is initially so.

2.3.2 Anomalous dissipation

In the classical picture of turbulence, the fields u, by, and bz are assumed to remain smooth at all scales.

If it is not the case, one needs to regularize Equations (2.11). To do this, we introduce φ an infinitely

differentiable function with compact support on R, even, non-negative with integral 1 [18]. We also define

φℓ(ξ) ≡ φ(ξ/ℓ)/ℓ, where ξ ∈ R and ℓ ∈ R∗
+. Denoting uℓ = φℓ ∗ u, bℓy = φℓ ∗ by and bℓz = φℓ ∗ bz, with ∗ the

convolution product, one obtains (we consider a periodic domain)

∂uℓ

∂t
+

∂

∂x

(
(u2)ℓ + (b2y)

ℓ + (b2z)
ℓ

2
− ν

∂uℓ

∂x

)
= 0, (2.12a)

∂bℓy
∂t

+
∂

∂x

(
(uby)

ℓ − η
∂bℓy
∂x

)
= 0, (2.12b)

∂bℓz
∂t

+
∂

∂x

(
(ubz)

ℓ − η
∂bℓz
∂x

)
= 0, (2.12c)
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from which we can deduce

∂

∂t

(
uuℓ + byb

ℓ
y + bzb

ℓ
z

2

)
+
uℓ

4

∂

∂x

(
u2 + b2y + b2z

)
+
u

4

∂

∂x

(
u2 + b2y + b2z

)ℓ
+
bℓy
2

∂

∂x
(uby)

+
by
2

∂

∂x
(uby)

ℓ +
bℓz
2

∂

∂x
(ubz) +

bz
2

∂

∂x
(ubz)

ℓ − ∂2

∂x2

(
νuuℓ + ηbyb

ℓ
y + ηbzb

ℓ
z

)
= −Dℓ

ν,η,

(2.13)

where by definition

Dℓ
ν,η ≡ ν

∂u

∂x

∂uℓ

∂x
+ η

∂by
∂x

∂bℓy
∂x

+ η
∂bz
∂x

∂bℓz
∂x

, (2.14)

is the viscous/resistive dissipative term. The third-order structure functions are introduced in the following

manner,

Dℓ
a ≡

1

12

∫
dφℓ

dξ

[
(δu)3 + 3

(
(δby)

2 + (δbz)
2
)
δu
]
dξ, (2.15)

where δu ≡ u(x+ ξ)−u(x), δby ≡ by(x+ ξ)− by(x) and δbz ≡ bz(x+ ξ)− bz(x). After integration by parts

and development, one finds

Dℓ
a =− 1

12

[
∂

∂x

(
u3
)ℓ − 3u

∂

∂x

(
u2 + b2y + b2z

)ℓ
+ 3

(
u2 + b2y + b2z

) ∂uℓ
∂x

+ 6u

(
by
∂bℓy
∂x

+ bz
∂bℓz
∂x

)

+3
∂

∂x

(
ub2y + ub2z

)ℓ − 6by
∂

∂x
(uby)

ℓ − 6bz
∂

∂x
(ubz)

ℓ

]
.

Introducing the previous expression into the local expression of energy conservation (2.13) leads to the

point-splitting energy conservation equation,

∂

∂t

(
uuℓ + byb

ℓ
y + bzb

ℓ
z

2

)
+

∂

∂x

[
(u3)ℓ

12
+

(
ub2y + ub2z

)ℓ

4
+
uℓ
(
u2 + b2y + b2z

)

4
+
u
(
byb

ℓ
y + bzb

ℓ
z

)

2

]

− ν
∂2

∂x2

(
uuℓ
)
− η

∂2

∂x2

(
byb

ℓ
y + bzb

ℓ
z

)
= −Dℓ

a −Dℓ
ν,η.

(2.16)

The limit ℓ→ 0 leads to the first main result

∂E

∂t
+
∂Π

∂x
= −Da −Dν,η , (2.17)
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with by definition

Π =
u3

3
+ ub2 − ∂

∂x

(
νu2 + ηb2

)
, (2.18a)

Da = lim
ℓ→0

Dℓ
a, (2.18b)

Dν,η = ν

(
∂u

∂x

)2

+ η

(
∂by
∂x

)2

+ η

(
∂bz
∂x

)2

, (2.18c)

where Π is the energy flux. Expression (2.17) is particularly relevant in the inviscid/ideal limit, i.e., when

ν = η = 0. In this case, there is still a channel to dissipate energy through the anomalous dissipation Da

which happens because of the lack of smoothness of the fields. On the contrary, if the fields are regular

enough, by using a Taylor expansion it is straightforward to show that Dℓ
a → 0 when ℓ→ 0. Finally, note

that we recover the well-known result on Burgers’ equation in the absence of a magnetic field [17, 19].

2.3.3 Analytical solutions

Let us define the velocity u(x, t) and the magnetic field components by±(x, t) and bz±(x, t) in the interval

x ∈ [−L,+L], with L ∈ R+ and t ∈ R∗
+. If the dissipative coefficients ν = η ∈ R∗

+, then the Yanase

equations admit the following analytical solutions

u(x, t) =
x

t
− L

t
tanh

(
xL

νt

)
, (2.19a)

by±(x, t) = ±by,0
L

t
tanh

(
xL

νt

)
, (2.19b)

bz±(x, t) = ±bz,0
L

t
tanh

(
xL

νt

)
, (2.19c)

where by definition

by,0 =
1√

1 + c2
, bz,0 =

c√
1 + c2

,
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and c ∈ R is a constant. In the limit ν → 0+, the solutions (2.19) tend to the following inviscid profiles

corresponding to discontinuities

u(x, t)
ν→0+−−−−→





(x+ L)/t, if x < 0

(x− L)/t, if x > 0

, (2.20a)

by±(x, t)
ν→0+−−−−→ ±





by,0L/t, if x < 0

−by,0L/t, if x > 0

, (2.20b)

bz±(x, t)
ν→0+−−−−→ ±





bz,0L/t, if x < 0

−bz,0L/t, if x > 0

. (2.20c)

These are stationary shocks of amplitude ∆ = 2L/t for the velocity, ∆y = by,0∆ for the y-component and

∆z = bz,0∆ for the z-component of the magnetic field, localized at point x = 0 for all time (see Figure 2.2).

These inviscid solutions are the MHD version of the Khokhlov sawtooth solution for Burgers’ equation [41].

It is interesting to note that the analytical solutions (2.20) are fully consistent with the three-dimensional

compressible MHD equations since the velocity derivative is constant in space. Indeed, from the Yanase

equations completed with the density equation (so far left out of our one-dimensional model), it is possible

to find, in the inviscid limit, an exact solution for the mass density, which remains constant (in a given

interval) in space but evolves in time as

ρ(x, t) =
1

t
[C+H(x) + C−H(−x)], (2.21)

where H is the Heaviside function and C± ∈ R∗
+.

A direct numerical simulation of Equations (2.11) was performed to check if (and how) the analytical

solutions (2.19) are generated. We use a spatial resolution of 8192 grid points and −L ≤ x ≤ L, with L = 1.

A fourth-order Runge-Kutta numerical scheme was implemented in time and the spatial derivatives are per-

formed using fast Fourier transforms with periodic boundary conditions. The initial conditions correspond

to plane waves and are u(x, t = 0) = sin(2πx), by(x, t = 0) = sin(πx) and bz(x, t = 0) = 2 sin(πx). (See

[46] for random initial conditions.) The time step and the viscosity are computed automatically using CFL

conditions [16]. The time evolution of the fields is shown in Figure 2.2 from t = 0 (blue) to t = 1.1 (red).

After an initial phase during which the amplitude of the magnetic field increases locally at the expense

of the velocity (with max |bj+(x, t > 0)| > max |bj+(x, t = 0)| and max |u(x, t = 0)| > max |u(x, t > 0)|),
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Figure 2.2: Top line: analytical solutions u (left), by+ (center) and bz+ (right) at t = 1, for ν = 0, 0.1 and
0.5 (solid, dashed and dashed-dotted lines, respectively), in a domain of size 2L = 2. We take c = 2 and
thus the amplitude of the shocks are ∆ = 2, ∆y = 2/

√
5 and ∆z = 4/

√
5. Bottom line: direct numerical

solution of Yanase’s equations with the time evolution (from blue to red) of the velocity (left) and the
magnetic field components (center and right).
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which can be interpreted as a kind of dynamo effect, the analytical solutions (u, bj±) are eventually formed

at positions x = 0 and ±L after the merger of shocks.

With the analytical formula in hand, we can now predict the intermittency profile, which is defined as

the moments of the ensemble average of the increments of velocity denoted as δu ≡ u(x + ℓ) − u(x) and

increments of the magnetic fields denoted as δb ≡ b(x+ ℓ)− b(x). These are calculated as follows:

δu =





(ℓ− 2L) /t if x ≤ 0 ≤ x+ ℓ,

ℓ/t else.
(2.22a)

δb =





−2L/t if x ≤ 0 ≤ x+ ℓ,

0 else.
(2.22b)

We respectively define the structure functions for the velocity field Sup = ⟨|δu|p⟩ and for the magnetic field

Sbp = ⟨|δb|p⟩, where ⟨f⟩ = (2L)−1
∫ +L
−L f(x)dx. In the limit ℓ≪ L and at the main order, one has

Sup =
1

2L

(∫ −ℓ

−L

∣∣∣∣
ℓ

t

∣∣∣∣
p

dx+

∫ 0

−ℓ

∣∣∣∣
ℓ− 2L

t

∣∣∣∣
p

dx+

∫ +L

0

∣∣∣∣
ℓ

t

∣∣∣∣
p

dx

)
≃ ∆p

[∣∣∣∣
ℓ

2L

∣∣∣∣
p

+
ℓ

2L

]
, (2.23a)

Sbp =
1

2L

∫ 0

−ℓ

∣∣∣∣
−2L

t

∣∣∣∣
p

dx = ∆p ℓ

2L
. (2.23b)

Distinguishing the cases p < 1 and p ≥ 1, we finally find

Sup ≃ ∆p





(ℓ/2L)p if 0 < p < 1,

ℓ/2L if p ≥ 1.
(2.24a)

Sbp = ∆p ℓ

2L
. (2.24b)

Thus, Sup and Sbp exponents are

ζup =





p if 0 < p < 1,

1 if p ≥ 1.
(2.25a)

ζbp = 1. (2.25b)

It is worth noting that even this simple model presents a challenge to a theory à la Kolmogorov in the one-

dimensional case. While the naive extension of the exact laws predicts mono-fractal behavior characterized

by a linear dependence between ζ and p, as shown in Figure 2.3, this is not observed here. A comparison
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between the Burgers equation and the four-fifth law can be found in Eyink [19], but the conclusion remains

the same.
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Figure 2.3: Structure function exponents ζup and ζbp as a function of p.

2.3.4 Mean dissipation rates

We shall compute the mean rate of energy dissipation. From the analytical solutions (2.19) one can find

the mean rate of viscous dissipation ε ≡ ⟨Dν,ν(x, t)⟩. In the limit of small viscosity, a simple calculation

gives

lim
ν→0+

ε = lim
ν→0+

ν

2L

∫ +L

−L

{[
1

t
− L2

νt2
sech2

(
xL

νt

)]2
+
(
b2y,0 + b2z,0

) L4

t4ν2
sech4

(
xL

νt

)}
dx. (2.26)

In the main order, one finds

lim
ν→0

ε = lim
ν→0

L3

νt4

∫ +L

−L
sech4

(
xL

νt

)
dx =

∆3

6L
, (2.27)
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Figure 2.4: Left: viscous dissipation in the analytical solutions for various viscosities. Right: ratio of the
mean rate of viscous dissipation and its main order estimation.
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which is positive and independent of ν. As depicted in the left panel of Figure 2.4, the dissipation phe-

nomenon is concentrated near the shock location at x = 0. Remarkably, as the viscosity decreases, the

dissipation becomes more prominent and localized in that region. In the right panel of Figure 2.4, we vali-

date this trend by confirming that as the viscosity decreases, the mean rate of viscous dissipation converges

towards the expression (2.27). Taking now the inviscid/ideal solutions (2.20), one finds for the variation

of total energy dE/dt = −∆3/(6L), which is compatible with expression (2.27). However, when ν = η = 0

the only way to dissipate energy is through the mean anomalous dissipation ⟨Da⟩. In the inviscid/ideal

case, one has (with expressions (2.20)),

Da = lim
ℓ→0

Dℓ
a =

∆3

3
δ(x) , (2.28)

hence we find the exact relation

⟨Da⟩ =
1

2L

∫ +L

−L

δ(x)

12

[
1 + 3

(
b2y,0 + b2z,0

)]
∆3dx =

∆3

6L
,

which is equal to ε in the limit of small viscosity. Therefore, the viscous dissipation can be substituted

exactly by the anomalous dissipation in the absence of viscosity. In other words, the loss of energy in

Yanase’s equations is then produced by the loss of regularity of the velocity and magnetic field. These results

prove the Zeroth law of turbulence in this particular case. Note that shocks are often considered as a part of

the structures produced by turbulence (for Burgers’ equation see [10]) in addition to fluctuations, as one can

see in supersonic hydrodynamic turbulence (see e.g., [20]). Therefore, the Zeroth law of turbulence can be

applied to one-dimensional equations too, which are characterized by shock steepening. The particularity

of our approach is that the computation of anomalous dissipation does not require a statistical treatment

and can be applied to a single nonlinear event. The discrepancy between the viscous (2.19) and the

inviscid (2.20) solutions can be investigated numerically with expression (2.15). The latter is computed

with a convolution product based on FFT and a normalized Gaussian function is chosen for φ. One might

object that a Gaussian function does not satisfy all the requirements to be a test function, particularly the

condition of compact support. However, from a numerical standpoint, the Gaussian kernel demonstrates

the most favorable behavior for obtaining accurate analytical predictions (cf. Figure 2.5). Simulations are

made on a spatial domain of size 2L = 2 with spatial increment dx = 10−4. The term Dℓ
a is computed over

the entire simulation domain for 102 values of ℓ ranging from 2× 10−4 to 2× 10−1. Figure 2.5 (top) shows
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Figure 2.5: Top: space/scale diagram of the normalized local energy transfer Dℓ
a/ε for the inviscid (left)

and viscous (center and right) analytical solutions of Yanase’s equations. The intensity of Dℓ
a/ε is given by

the colorbar. Bottom: variation with ℓ of the normalized local energy transfer at x = 0 (left) and averaged
over [−L,+L] (right), in the inviscid and viscous cases.
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the evolution of the anomalous dissipation as a function of two parameters: the position in the simulation

domain (x-axis) and the width (or scale) of φ (y-axis). Both the inviscid (left) and viscous (center and

right) solutions lead to a map where the intensity of Dℓ
a is relatively low far from the shock (localized at

x = 0). It becomes relatively high close to x = 0 with, however, a difference between the two types of

solution: while the inviscid solution continues to increase and forms a true singularity, the viscous one

converges to zero at small ℓ, meaning that it is a quasi-singularity. Therefore, this map tells us at first

glance what kind of solution leads to a non-zero anomalous dissipation.

A more precise analysis can be done by observing how Dℓ
a evolves with ℓ. Figure 2.5 (bottom left)

shows this (normalized) evolution on the shock for the inviscid case and two viscous cases. We see that

the inviscid solution follows a power law in ℓ−1 at all scales, while the viscous solutions follow mainly (at

small scales) a power law in ℓ2. These behaviors can be understood by simple dimensional arguments.

In the inviscid case, δu ∼ δb ∼ ∆ and we find Dℓ
a ∼ ∆3/ℓ, whereas with the viscosity effect we have

δu ∼ δb ∼ ℓ; plugging this into (2.15) gives Dℓ
a ∼ ℓ2. Figure 2.5 (bottom right) confirms this behavior

when the (normalized) mean value ⟨Dℓ
a⟩ is taken. We can conclude that the lower the viscosity, the better

the power law ℓ−1 will be followed by the viscous solution, but one always reaches a scale in ℓ below which

the viscous solution becomes attractive.

2.4 Application to shocks in the solar wind

2.4.1 From time to space measurements

In our previous analysis, we focused on the spatial characteristics of anomalous dissipation. However,

since the available spacecraft data primarily consists of time measurements, we must devise an appropri-

ate method to translate these temporal observations into meaningful spatial measurements. The Taylor

hypothesis suggests that the measurements taken aboard a spacecraft can be considered as samples from

a one-dimensional spatial profile [44]. In other words, we assume that the timescale over which the wave

characteristics change is much larger than the duration it takes for the spacecraft to traverse through

them. This hypothesis allows us to relate the frequency of waves in the plasma rest frame to the observed

frequency measured onboard the spacecraft. One might question the relevance of considering the wave

frequency as ωplas, given the nonlinear nature of the solar wind and the fact that we can only theoretically

derive a dispersion relation for linear waves. As we will discuss in Chapter 4, the nonlinear behavior of the

plasma and its modeling requires a separation of timescales between linear and nonlinear effects. However,
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the outcome reveals that the linear timescale is the most rapid, making it the safest choice to regard ωplas

as the linear wave timescale. The equation that connects ωplas to the observed frequency onboard the

spacecraft ωsc can be expressed in the following manner:

ωsc = ωplas + k · (V + V sc) . (2.29)

Here, k represents the wavevector, V denotes the velocity of the solar wind, and V sc represents the

spacecraft velocity. In typical space plasma scenarios, we have Vsc ≪ V , yielding a simplified expression:

ωsc = ωplas + k · V = ωplas + kV cos θkV , (2.30)

where θkV corresponds to the angle between the wavevector and the solar wind velocity. The second term

on the right-hand side arises from the Doppler shift. What Taylor proposed is a method to determine the

dominance of the Doppler shift. The practical implementation involves assessing whether the phase speed

of the wave, denoted as Vϕ = ω/k, is significantly smaller than the flow speed represented by V . In simpler

terms, we aim to ensure that Vϕ ≪ V . Considering the wind supersonic and super-Alfvénic nature, we

find that the Taylor hypothesis holds remarkably well. However, it becomes evident that not only the wind

speed but also the angle formed between the wavevector and the flow, plays a role. When dealing with

waves having an angle θkV approaches ±π/2, it becomes necessary to scrutinize the validity of the Taylor

hypothesis for wave propagation. Secondly, in situations of strong anisotropy (k∥ ≪ k⊥) like in the solar

wind, the expression for ωsc for Alfvénic turbulence becomes:

ωsc = k∥VA + kV = kV cos θkV

(
1 +

k∥VA
kV cos θkV

)
. (2.31)

Therefore, if |θkV| ≪ π/2, the Taylor hypothesis still holds its ground at MHD scales. Lastly, when exam-

ining fluctuations at scales smaller than MHD ones, the significance of the wave phase speed can become

prominent. Consequently, it is imperative to meticulously verify the validity of the Taylor hypothesis, since

the assumption Vϕ ≪ V is no longer evident. In this context, as we focus on the solar wind at extremely

low frequencies, there is no need for concern when employing this hypothesis.
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2.4.2 The application

As an illustration, we will study the outer solar wind around 5 au (near Jupiter), where sawtooth and

battlement structures are observed. For the following, let us be a bit loose with our language and say that

anomalous dissipation can be used as a proxy to estimate the amount of energy that will eventually be

converted into heat via kinetic processes in the solar wind, on time (and space) scales much smaller than

the resolution of the data we are currently working with. Then, as we will see, the expression of anomalous

dissipation provides a simple and concise formula to estimate the heating produced by collisionless shocks.

For r > 10 au cosmic particles are the main source of heating of the solar wind [36, 37], while for

r < 2 au turbulent fluctuations are omnipresent. On the other hand, at 2–10 au collisionless shocks have

been clearly detected by Voyager 1 & 2 [11, 39] (relatively weak field fluctuations are also present with

possibly non-trivial dynamics [31]). Although these events are known for years and are believed to have a

strong impact on the local heating [24], to the best of my knowledge, so far no theory with an exact, concise,

and directly applicable formula for estimating the heating rate has been proposed. As we can see in Figure

2.6, the velocity profile shows shocks on which turbulent fluctuations are superposed. For the magnetic field

and density, we also observe large-scale structures as well as fluctuations. The study of these fluctuations

has already been done by Pine et al. [37] to deduce the turbulent heating. Here, we only consider the

large-scale variations of the fields where the fluctuations are filtered. Our theory may be applied precisely

in this region where the radial direction is identified with the x-direction. Then, u is the main component

of the velocity: we have verified in the data that the perpendicular (to the radial direction) components of

the velocity are at most equal to 5% (in modulus) of the radial component. Knowing that Parker’s spiral

angle is close to 80o at 5 au, the transverse (to the radial direction) components of the magnetic field are

dominant, and Bx can be neglected. We use the shock profiles (2.20)–(2.21) which are exact solutions of

the one-dimensional compressible MHD equations (Yanase’s equations completed by the density equation).

Although limited, it is believed that this one-dimensional MHD approach can provide an estimate of the

shock heating in the outer solar wind. The hypothesis that the dissipation finds its origin in the lack of

regularity of the fields is a useful mathematical model for obtaining predictions, but in reality, dissipation

is physically produced by kinetic effects at sub-MHD scales. Therefore, the heating rate found must be

seen as an approximation of the actual dissipation.

In Figure 2.6 an example of such shocks (one can easily verify that these are not contact discontinuities

for which only the mass density varies, nor rotational discontinuities for which |B| does not vary [21])
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Figure 2.6: From top to bottom: modulus of the proton velocity and magnetic field, the proton density,
proton plasma beta, proton temperature, and time/scale diagram of the normalized local anomalous dis-
sipation (vertical dashed lines delimit the area studied in Figure 2.7, where a compressible shock arises
at time t⋆). Data measured by Voyager 2 into the solar wind from May 5 to June 20, 1979, at ∼ 5.1 au.
Theoretical fits (thick gray lines) are superposed to emphasize the sawtooth and crenelated nature of the
basic fields.
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Figure 2.7: Left: ρDτ
a(t⋆) as a function of scale τ ; note that t⋆ corresponds to the shock’s location. Right:

variation with τ of ρDτ
a averaged over a time interval of 10 days centered at the shock position t⋆.

is reported and fitted with a sawtooth velocity (in modulus), a crenelated magnetic field (in modulus)

and density. The magnetic field data and plasma moments (density, velocity, temperature) were measured

respectively by the Flux Gate Magnetometer (MAG) and the Plasma Spectrometer (PLS) onboard Voyager

2. Data have between 48 s and 96 s time resolution [33]. A moving median window of length 5 points is

used to fill small data gaps, and linear interpolation fills the remaining gaps. After using the Taylor

hypothesis (t = −x/USW , with USW the solar wind velocity), the velocity antishocks can be interpreted

as a succession of shocks. Therefore, the profiles of the basic fields (|u|, |B|, ni) are roughly compatible

with the inviscid solutions (with possibly the absolute value and normalization for the magnetic field)

discussed above. The one-dimensional MHD model assumes a small plasma beta, a condition satisfied with

a (proton) βi = 2µ0nikBTi/B
2 (kB the Boltzmann constant) usually smaller than 1 (see also [36]) except

on some shock locations (which shows the limitation of our model). The ion temperature reveals very

often the presence of large peaks at the discontinuities (e.g., May 19, May 24, or June 10), but it is not

systematically the case. A possible explanation is that the energy from the shock may be converted into

another form than heating (e.g., radiation), hence a possible slight overestimation of the heating. Note that

we are in the same situation as for the estimation of the heating rate from the turbulent fluctuations at

MHD scales, for which it is implicitly assumed that ε is entirely converted into plasma heating. The other

smaller peaks observed at any time may be the consequence of turbulent heating. Finally, the time/scale

diagram (τ is used instead of ℓ) of the normalized local anomalous dissipation reveals the position of the

main discontinuities, which are characterized by a scaling Dτ
a ∼ 1/τ (see Figure 2.7). It is actually from

this signal we were able to define (most of) the positions of the singularities in the basic fields (thick gray

lines). We see that the heating coincides well with peaks in temperature.
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It is straightforward to deduce the heating rate produced by such discontinuities. For the velocity,

we find a typical amplitude ∆ ≃ 105ms−1 and a duration τ ≃ 5 days which is consistent with the

integral scale of the f−2 spectra measured in this region [12, 13]. With USW ≃ 4.5× 105ms−1, we obtain

L = τUSW ≃ 1011m. The mass density being ni ≃ 105m3, we eventually obtain the mean rate of energy

dissipation (or heating rate)

ρ ⟨Da⟩ =
ρ∆3

6L
∼ 10−18Jm−3 s−1. (2.32)

We can easily verify that the amplitude and duration of the magnetic events (after normalization) are

approximately the same, confirming the relevance of our MHD solutions.

Expression (2.32) is used to evaluate the local heating produced by a compressible shock localized at

t⋆, which is the center of the time interval of 10 days (from June 5 to June 15) defined with the two vertical

dashed lines in Figure 2.6. First, the presence of a shock at t⋆ is clearly confirmed in Figure 2.7 (top)

with a clear scaling ρDτ
a ∼ 1/τ . Then, the local heating can be directly deduced from the anomalous

dissipation averaged over this time interval of 10 days centered around t⋆ (bottom). Within the limit of

small τ , a value ⟨ρDτ
a⟩ ≃ 3 × 10−18Jm−3 s−1 is obtained, which confirms the previous evaluation. Note

that the overall behavior found here should be compared to Figure 2.5 (bottom). The heating rate found

is smaller than that commonly obtained at 1 au from turbulent fluctuations, with ρε > 10−17Jm−3 s−1 [3,

5, 14, 15, 25, 30, 32, 42, 43, 45]. However, the value (2.32) is more than one order of magnitude larger than

the values recently reported from the turbulent fluctuations at the same heliocentric distance [37]. This

suggests that in the outer solar wind, discontinuities if they exist, can be the main source of local heating.

2.5 Conclusion

The Zeroth law of turbulence is one of the oldest conjectures in turbulence that is still unproven in general.

In this chapter, we considered weak solutions of a low-dimensional model of compressible MHD named the

Yanase model. It provides an example where this law can be proven and reinforces Onsager’s conjecture,

which assumed that the lack of smoothness of the fields could be the cause of the energy dissipation in the

limit of infinite Reynolds numbers [35].

We employed this model and its anomalous dissipation expression to approximate the heating generated

by a collisionless shock. To be precise, we assumed that the anomalous dissipation observed at the larger

scales would transform into heat through kinetic processes taking place at sub-MHD scales. The dissipa-

tion of energy in collisionless plasmas is an important topic in space physics, astrophysics, and laboratory
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plasmas. Although plasma heating involves kinetic effects at sub-ion scales, it has been increasingly rec-

ognized in recent years that the exact laws of turbulence in MHD [5, 25, 42] provide means of estimating

the mean rate of heating through the measure of the mean rate of energy transfer (assuming that the

MHD energy transfer is mainly converted into small-scale heating). For space plasmas, this method has

been used in homogeneous regions (solar wind and Earth’s magnetosheath) where turbulent fluctuations

are dominant. However, in the presence of collisionless shocks, the assumption of statistical homogeneity

is broken and the exact laws of turbulence become unusable [23]. Our application to the solar wind of

the low-dimensional MHD solutions, which are by nature intrinsically limited, reveals that the heating

produced by a discontinuity is much higher than the values obtained from turbulent fluctuations at the

same heliocentric distance [37], suggesting that collisionless shocks can be a dominant source of heating in

the outer solar wind. Given the importance of collisionless shocks in astrophysics and laboratory plasmas

[34], it is believed that this study may be useful in a number of other situations.

In summary, our investigation of the Yanase model provides a promising insight into the relationship

between anomalous dissipation and the Onsager conjecture. However, it is important to note that a

complete proof of this connection at the level of the full three-dimensional equations is a huge challenge.

But we can still do something that goes in that way. . .
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3.1 Introduction

Now that we have tackled the Yanase model, let us turn our attention to the more general problem of

three-dimensional incompressible MHD. Unlike the low-dimensional model, exact solutions and Zeroth law

proofs are not feasible in the general case. Nevertheless, we can derive an exact law and an expression of

anomalous dissipation.

To put our findings to the test, we have the advantage of numerous missions that measure solar wind

turbulence in situ (the one I spoke about in the Section 1.3). In particular, we will use data from two

spacecraft: Parker Solar Probe, which is roaming around the Sun, and THEMIS-B, which is close to Earth.

By comparing the two datasets, we will determine which tool between the exact law and the anomalous

dissipation is more suitable for estimating turbulent dissipation in the solar wind at MHD scales.

3.2 Incompressible MHD theory

3.2.1 Waves and structures

To begin with the incompressible MHD theory, let us explore the linear case. Assuming the presence of a

mean magnetic field, we can study its perturbations and simplify the equations to their linear form. As

discussed in Chapter 1, in this context, we encounter the Alfvén wave which propagates along the magnetic

field lines at a constant velocity known as the Alfvén velocity. These waves exhibit a characteristic motion,

where the particles and the perturbation of the magnetic field are transverse to the direction of propagation.

Now, when we consider the complete equations, we encounter nonlinearities. These nonlinear effects can

distort the original Alfvén waves, causing modifications to their wavenumber. This phenomenon, known as

turbulent cascade, will be extensively discussed in the next chapters. In addition to distortion, the waves

can also exhibit phase coherence, giving rise to the formation of coherent structures such as vortices.

As we delve into the subsequent sections, we will explore, inter alia, how certain inhomogeneous struc-

tures named switchbacks, measured in the solar wind, exhibit distinct alfvénic characteristics. Therefore,

the incompressible assumption does not hinder our ability to study and understand these types of events.

3.2.2 Exact law

In the previous chapter, we mentioned that the four-thirds law derived by Antonia et al. [2] has many

generalizations. One such extension was developed in 1998 by Politano and Pouquet [22] for incompressible
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MHD (hereafter called the PP98 law). Let me give you a rough idea of how they did it. Let u be the fluid

velocity, b ≡ B/(µ0ρ0) the magnetic field normalized to a velocity, with ρ0 the (constant) plasma density

and µ0 the vacuum permeability, P⋆ = P + b2/2 the sum of the thermal and magnetic pressures, ν the

kinematic viscosity, and η the magnetic diffusivity. Then, the incompressible MHD equations read [8]:

∂u

∂t
= −∇P⋆ −∇ · (u⊗ u− b⊗ b) + ν∇2u, (3.1a)

∂b

∂t
= −∇ · (u⊗ b− b⊗ u) + η∇2b, (3.1b)

∇ · u = 0, (3.1c)

∇ · b = 0, (3.1d)

where ⊗ denotes the tensor product operation. To derive these equations, the following Ohm’s law is used:

e = ηj − u× b, (3.2)

where e is the normalized electric field and j = ∇× b is the normalized electric current density. To obtain

the PP98 law, we assume that we are dealing with asymptotically large values of both magnetic and kinetic

Reynolds numbers, as well as with stationary, homogeneous turbulence. After a standard calculation, one

obtains a primitive form of the PP98 exact law:

−4ε = ∇r · ⟨SMHD⟩ , (3.3a)

SMHD = (δu · δu+ δb · δb) δu− 2 (δu · δb) δb. (3.3b)

In this equation, ε is the mean rate of energy transfer / dissipation / forcing, the equivalence between the

three definitions being due to the stationarity assumption. The previous expression can be reduced to the

PP98 law when the statistical isotropy is further assumed:

−4

3
εr = ⟨(δu · δu+ δb · δb) δur − 2 (δu · δb) δbr⟩ . (3.4)

Here, δur = δu · (r/r) and δbr = δb · (r/r) with r the norm of the vector r. The PP98 law is valid in the

inertial range of incompressible MHD turbulence, and a basic assumption made to use it is that the fields

are regular (i.e., differentiable). To characterize the behavior of the fluctuations in the velocity u and the
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magnetic field b, we can define Hölder exponents (p, q) ∈ Q+
∗ such that the following inequalities hold:

|⟨δu⟩| ≤ ⟨|δu|⟩ ; |⟨δb⟩| ≤ ⟨|δb|⟩ , (3.5a)

|δu| ≤ Cur
p ; |δb| ≤ Cbr

q, (3.5b)

where Cu and Cb are some positive constants. By applying these inequalities to the PP98 law, we find that

this theory is valid if the following conditions on the Hölder exponents are fulfilled:

p = 1/3 ; q = (1− p)/2. (3.6)

Two crucial points warrant discussion. Firstly, if p < 1/3 and/or q < (1 − p)/2, the right-hand side

of Equation (3.3a) scales as r3p−1 or rp+2q−1, and exhibits a potential blow-up as r → 0. To overcome

this limitation, a weak formulation must be introduced. The second point arises when p > 1/3 and/or

q > (1 − p)/2. In this scenario, as r → 0, the right-hand side of Equation (3.3a) decreases faster than r,

ultimately converging to zero. This result implies ε = 0, which contradicts the assumption of a nonzero

value for ε and, consequently, the existence of an inertial range in the energy cascade.

3.2.3 Anomalous dissipation

As before, the weak formalism is based on smoothing of a field with some kernel φ ∈ C∞ with compact

support on R3, even, non-negative and with integral 1. To formalize the notion of scale, we define a family

of test functions φℓ such that φℓ(ξ) ≡ φ(ξ/ℓ)/ℓ3. Note that there is no unique solution for the test function.

However, with this definition, the anomalous dissipation does not depend on the test function in the limit

ℓ→ 0 because in this case, the test function tends to a Dirac distribution [7]. Note also that this filtering

process consists in smoothing the fields in a space defined by a sphere of radius ℓ centered at the point ξ

(cf. Figure 3.1). The regularized fields at scale ℓ are defined by taking the convolution product of the fields

with φℓ

uℓ(x, t) ≡ φℓ ∗ u =

∫
φℓ(ξ)u(x+ ξ, t)dξ, (3.7)

which tends to u(x, t) when ℓ → 0. The other regularized quantities are defined in the same way. Under
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Figure 3.1: Scheme of the filtering process. The color reflects the intensity of the smoothing. ℓ can be seen
as the typical scale beyond which the contribution to the integral (see Equation (3.7)) is mainly negligible.

these considerations, the kinetic, and magnetic energies read

Eℓu(x, t) ≡ u · uℓ
2

=

∫
φℓ(ξ)

u(x, t) · u(x+ ξ, t)

2
dξ, (3.8a)

Eℓb(x, t) ≡ b · bℓ
2

=

∫
φℓ(ξ)

b(x, t) · b(x+ ξ, t)

2
dξ. (3.8b)

The previous expressions can also be interpreted as the local equivalents of a correlation function, where the

ensemble average is replaced by a local average over scale. Now, if we assume that (u, b) are weak solutions

of the incompressible MHD equations (3.1) over a periodic domain T3 and that (u, b) ∈ L3
(
[0, T ]× T3

)
,

with the above definitions and using a point-splitting regularization, one can derive the following weak

formulation (valid for individual realizations) of the local energy conservation at position x:

∂

∂t
Eℓ(x, t) +∇ ·Πℓ(x, t) = −Dℓ

ν,η(x, t)−Dℓ
a(x, t), (3.9)

with Eℓ = Eℓu + Eℓb the total energy. Πℓ is the spatial flux whose heavy form is not given explicitly here;

this is a purely local term that describes how energy is transported across the flow, and it vanishes after

integration over space with the appropriate boundary conditions. We also have the energy dissipation by
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viscous and resistive effects (that includes the vorticity ω = ∇× u and the electric current j = ∇× b),

Dν,η = νω2 + ηj2 (3.10)

and the anomalous dissipation,

Da (x, t) = lim
ℓ→0

1

4

∫

T3

∇φℓ(ξ) · SMHD (x, ξ, t) dξ, (3.11)

where the third-order structure function reads

SMHD (x, ξ, t) = (δu · δu+ δb · δb) δu− 2 (δu · δb) δb. (3.12)

The approach to derive these equations follows a similar path to the one we used for the Yanase model, and

for a detailed derivation, one may refer to Galtier [9]. Expression (3.8) must be seen as a generalization

of the PP98 law (or more precisely of the Kármán–Howarth MHD equation [22]) that we can recover for

regular fields and homogeneous turbulence (see below). Note that in the limit ℓ → 0, the two dissipative

terms are mutually exclusive: the presence of any viscosity/resistivity should prevent the formation of

singularities. Thus, in this limit, only one of them can appear in the equation. Another physical relevance

of the weak formulation is revealed when performing an integration over space. The absence of an energy

source at the boundary is formally equivalent to assuming periodicity (or homogeneity); therefore, the

notation ⟨·⟩ will be used for integration in space. We find

∂

∂t

〈
Eℓ
〉

= −
〈
Dℓ
a

〉
−
〈
Dℓ
ν,η

〉
, (3.13a)

〈
Dℓ
a

〉
=

1

4

∫

T3

∇φℓ(ξ) · ⟨SMHD⟩dξ. (3.13b)

In the small-scale limit, we find for a viscous/resistive flow

lim
ℓ→0

〈
Dℓ
ν,η

〉
≡ ⟨Dν,η⟩ = ε. (3.14)

Therefore, Dℓ
ν,η can be used to trace, locally and across scales, the rate of viscous/resistive energy dissipation

[17]. On the other hand, expression (3.13b) has a strong similarity with the right-hand side term of the

exact law (3.4), especially if one performs an integration by part, assuming the fields to be regular, and
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takes the small scale limit

Da (x, t) ≡ lim
ℓ→0

Dℓ
a = − lim

ℓ→0

1

4

∫

T3

φℓ (ξ)∇ · SMHD(x, ξ, t)dξ. (3.15)

This relation directly connects Da to the PP98 law, which leads to the remarkable equality ⟨Da⟩ = ε.

Therefore, Dℓ
a can also be used to trace, locally and across scales, the rate of energy transfer.

Other interpretations can be made based on the relation (3.15). In the presence of finite viscosity and

resistivity, the fields are regular (because the Laplacian operator smooths the fields at small scales) and

thus satisfy limξ→0+ δu = limξ→0+ δb = 0, which leads to Da = 0; this is the classical situation. On

the contrary, if ν = η = 0, non-regular fields can be produced and Da can have a contribution. This

contribution is however not systematic because the fields must satisfy the Hölder condition [6, 20]. Using a

scaling analysis (at a fixed position x), we can make three theoretical predictions of practical importance:

1. In the inertial range where the fields correspond to turbulent fluctuations that obey the PP98 law in

the inertial range, we have δu3 ∼ δb3 ∼ ℓ and thus Dℓ
a(x) ∼ ℓ0.

2. At small scales where viscous/resistive effects dominate, a Taylor expansion gives δu ∼ δb ∼ ℓ and

thus Dℓ
a(x) ∼ ℓ2.

3. However, when the fields are non-regular and act like discontinuities, the increments correspond to

jumps δu ∼ ∆u, δb ∼ ∆b, and thus Dℓ
a(x) ∼ ℓ−1.

Therefore, depending on the scaling that would be measured in the solar wind (see below) it will be possible

to make a distinction between turbulence, viscous/resistive damping, and discontinuities (see Figure 3.2).

Note, however, that other ℓ-dependence are possible for non-regular fields [15, 16, 18].

To conclude, we point out that Da is a generalized function, and its analytic form (if it can be found)

can lead to the appearance of a δ-function (see e.g., Chapter 2). This means that when the limit ℓ→ 0 is

taken, one expects to see the value of
∣∣Dℓ

a

∣∣ increases without limit, however, in practice, the value ℓ = 0

will never be reached (see below).
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log ℓlog ℓK

logDℓ
a ∝ ℓ−1

∝ ℓ2

∝ ℓ0

Figure 3.2: Variation (schematic) of the anomalous dissipation Dℓ
a(x) as a function of the scale ℓ for a

discontinuity (red line), turbulent fluctuations (green line), and viscous/resistive damping (blue line). The
intersection between the green and the blue lines defines the dissipative (i.e., Kolmogorov) scale and is
noted ℓK . Similarly, the intersection between the green and the red line can define the discontinuity scale,
below which discontinuities become dominant (see Figure 3.4).

3.3 Application to the solar wind

3.3.1 Data selection

In the remaining part of this chapter, our focus will shift toward the practical application of these two

approaches in determining the rate of energy transfer within the solar wind. We will examine their effec-

tiveness in capturing the turbulent plasma dynamics near Earth as well as in the proximity of the Sun. By

comparing and contrasting the results obtained from these two distinct regions, we aim to gain valuable

insights into the energy transfer processes operating within the solar wind.

In the first step, we used the THEMIS-B/ARTEMIS P1 spacecraft data during time intervals when

it was traveling in the free-streaming solar wind. The magnetic field data and plasma moments (protons

density and velocity) were measured respectively by the Flux Gate Magnetometer (FGM) and the Electro-

static Analyzer (ESA). All data are expressed in the Geocentric Solar Ecliptic (GSE) coordinate system,

and have a time resolution dt = 3 s, which corresponds to the spacecraft spin period. We analyzed more

than 180 h of data between 2008 and 2011 that cover both fast and slow solar winds. Fast winds are defined

as having an average speed USW > 450 km s−1. The others are the slow winds. In the second step, we

analyze PSP’s data measured between 2018 and 2020 during the first and fifth approaches of the spacecraft

to the Sun. We selected two subsets of a total duration of about 115 h corresponding roughly to radial

distances of 17 and 13 solar radii (at perihelion) to which we refer respectively by subsets PSP1 and PSP5.

The magnetic field and plasma moments (protons density and velocity) were measured respectively by the

fluxgate magnetometer (MAG) and the Solar Probe Analyzer (SPAN). All data are expressed in the Radial

Tangential Normal (RTN) coordinate system, and have a time resolution dt = 1 s.
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For both spacecraft, the selected intervals are divided into samples of two hours, which correspond to

a number of data points N = 2400 for THEMIS-B and N = 7200 for PSP. The data selection yielded :

– 51 samples (122,400 data points) in the slow solar wind.

– 46 samples (110,400 data points) in the fast solar wind.

– 61 samples (439,200 data points) for PSP1.

– 55 samples (396,000 data points) for PSP5.

Data gaps (when present) were interpolated linearly. For the selected time intervals, we compute the

energy cascade rates ε estimated by PP98 and the anomalous dissipation Dℓ
a using Equations (3.4) and

(3.11) respectively. The structure functions of u and b are calculated for different time lags τ ∈ [1, 100] dt

to probe the scales of the inertial range. As usual (see e.g., Hadid et al. [11]), we use the Taylor hypothesis

τ = −ξ/USW with USW the mean solar wind speed on the interval, assuming that Da = Dℓmin
a , with ℓmin

the minimum accessible value, which is 3 s for THEMIS-B and 1 s for PSP data. We note
〈
Dℓ
a

〉
the time

average of the anomalous dissipation over the two hours sample.

Mathematically, the anomalous dissipation Dℓ
a can be interpreted as a continuous wavelet transform

of the third-order structure function SMHD with respect to the wavelet φ. The link between the weak

formulation and the wavelet transform reveals several advantages of its application to rough turbulent

fields. Indeed, a wavelet transform can be considered as a “local Fourier transform” and it is suitable

for application to inhomogeneous fields. Thus, it will genuinely deal with the observed breaking of the

spatial translation symmetry [6]. Therefore, we computed Dℓ
a on the entire time interval for 100 values of

ℓ as a continuous one-dimensional wavelet transform based on fast Fourier transform – a Matlab package

provided by the toolbox YAWTB [14]. The test function φℓ is a normalized Gaussian of width ℓ, which is

convenient because its derivative is exact. Note that in the implementation of the anomalous dissipation,

only the terms depending on ξ are computed because the convolution product is performed on this variable

and, given the properties of φℓ, it is obvious that the smoothing of a field independent of ξ leaves the

result unchanged. To minimize the finite window size effects due to the non-periodicity of the data, we

artificially extend each time series to twice its size to apply a Gaussian windowing before computing its

Fourier transform. The final result is obtained in the time domain after an inverse Fourier transform, where

only the information from the central part of the time series (i.e., the original one of interest) is considered.
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Figure 3.3: Top panels display the slow (left) and fast (right) winds measured with THEMIS-B. The
bottom panels display PSP1 (left) and PSP5 (right). In each panel, from top to bottom, we find the
fluctuations of the velocity components, fluctuations of the magnetic field components, proton density, and
space-scale diagram (in modulus) of the anomalous dissipation. The red, blue, and green curves correspond
respectively to the x, y, z components (GSE coordinates) for THEMIS-B and to the R, T,N components
(RTN coordinates) for PSP. The vertical gray lines locate the instant for which |Da| is extremal on the
sample.
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3.3.2 Inhomogeneous structures

We begin our data analysis with four examples where discontinuities are present. In Figure 3.3 we show

(top left) a THEMIS-B slow wind interval on August 08, 2008, from 02:54:36 to 04:54:36, (top right) a

THEMIS-B fast wind interval on April 04, 2011, from 21:15:23 to 23:15:23, (bottom left) a PSP1 interval

on November 06, 2018, from 09:00:00 to 11:00:00, and (bottom right) a PSP5 interval on June 03, 2020,

from 22:00:00 to June 04, 00:00:00. For each case study, the first two panels (top to bottom) show the

three components of the protons velocity and the magnetic field, respectively. They highlight the presence

of discontinuities, and thus the breaking of statistical homogeneity, which may jeopardize the use of exact

laws. We find that for the PSP intervals that are closer to the Sun, the velocity and magnetic field

components are strongly correlated (respectively 91%, 90%, and 91% for the radial, tangential, and normal

components for the PSP1 interval, and 96%, 86%, and 80% for the PSP5 one), which can be interpreted as

the signature of outward propagating Alfvén waves [5]. The third panel shows the proton density, which

is relatively constant, and the last panel shows a space-scale diagram of the anomalous dissipation (in

modulus): time is on the x-axis, the width ℓ of the test function on the y-axis and the intensity of |Dℓ
a| is

in color. These maps illustrate the local energy transfer between different scales ℓ (at a given time t, or

using the Taylor hypothesis, at a given position x = −USW t with USW the solar wind speed). If we follow

the evolution of the plasma from small to large scales, the dark areas delimit the impact of an event on

the energy transfer: the larger the bright area in scale, the greater the impact of the event in scale and the

smaller would be the local energy transfer. Conversely, when a region is mainly dark, this means that the

energy transfer is local and the dynamic is driven by turbulent fluctuations.

A more precise analysis can be made by observing how |Dℓ
a| evolves according to the scale ℓ at given

times t⋆ and tf . We respectively chose t⋆ and tf such that |Da(t⋆)| = max (|Da|) and |Dℓ
a(tf )| = min (|Da|)

over the 2 h interval (see Figure 3.3). The top panels of Figure 3.4 reveals that when placed respectively

on a discontinuity (at time t⋆) and on a turbulent fluctuation (at time tf ), the anomalous dissipation does

follow the ℓ−1 and ℓ0 power-laws, as theoretically expected. The third panel shows the evolution of the

anomalous dissipation |
〈
Dℓ
a

〉
|, averaged over the entire intervals of 2 h, as a function of ℓ. The power

laws found indicate the dominant type of energy transfer. For those coming from THEMIS-B (in blue),

we observe mainly a flat profile, which means that the dominant mechanism is a turbulent cascade due

to fluctuations. For PSP1 (dark red), a power law in ℓ−1 appears at small ℓ, showing the prevalence of

discontinuities at small scales for this interval. For PSP5 (light red), an intermediate power law is observed,
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Figure 3.4: Top left: modulus of the anomalous dissipation at time t⋆ as a function of scale ℓ; top right:
modulus of the anomalous dissipation at time tf as a function of scale ℓ; bottom left: estimates of the
mean anomalous dissipation as a function of ℓ; bottom right: modulus of the mean rate of energy cascade
as a function of τ . Here, ℓ and τ vary approximately on the same interval.
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suggesting that the effect of discontinuities is weaker. The last panel displays the value of |ε| as a function of

τ for the four intervals. We can see that the curves do not exhibit a clear plateau as theoretically expected;

this might be due to the violation of one (or more) of the assumptions on which the exact law formalism

is grounded. This is particularly the case for the statistical homogeneity, which is unlikely to be valid here

because of the presence of discontinuities that distort the estimate of the mean rate of energy cascade [11].

Note that for the PSP intervals close to the Sun, both intervals give the same order of magnitude of the

anomalous dissipation, but is larger than that from THEMIS-B data at 1 au, which overall remains true

for the other intervals. This is consistent with the radial increase of the turbulent cascade rate ε as one

approaches the Sun [1, 4]. Also, the anomalous dissipation is larger for fast than for slow solar winds, in

agreement with previous results regarding the cascade rate ε [11].

3.3.3 Switchbacks

Switchbacks are defined as sudden reversals of the radial magnetic field component associated with sharp

variations in the radial plasma flow [12, 13, 19]. Although they are actively studied, their origin remains

an open question [3, 28] even if numerical simulations seem to show that many features of the observed

turbulence (i.e., switchbacks) are reproduced by a spectrum of Alfvénic fluctuations advected by a radially

expanding flow [26]. We propose here to estimate the anomalous dissipation produced by these peculiar

structures in order to quantify their relative importance in the energy cascade.

We focus on a PSP1 interval on November 06, 2018, from 01:30 to 02:30 where switchbacks are numerous.

The first two panels of Figure 3.5 again highlight a clear correlation between the velocity and the magnetic

field (respectively 97%, 86%, and 90% for the radial, tangential and normal components), which testifies to

the presence of outward Alfvén waves. By following the evolution of |Dℓ
a| as a function of ℓ on switchbacks

located at times t⋆, a power-law close to ℓ−3/4 seems to emerge. This does not correspond to any scaling

laws predicted analytically. Note that there is a zoology of non-regular fields, and the fact that we find

empirically a ℓ−3/4-dependence could mean that a switchback is not strictly speaking a simple jump.

However, as far as we know, the precise mathematical structure that could reproduce this ℓ-dependence

is not known. The fifth panel shows mainly a flat curve for both the mean rate of energy cascade and

the anomalous dissipation. We also see that the values coincide relatively well in the limit of small-scale

ℓ. The fact that ε is relatively smooth and constant may come from the fact that the discontinuities are

so large that they impose at all scales their jump (or amplitude) on the increments δu and δb, which

then would lead to a higher value of ε (compared to Figure 3.4). Although both estimates (|
〈
Dℓ
a

〉
| and
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Figure 3.5: 1 h interval of PSP1 with switchbacks. From top to bottom: velocity components, magnetic
field components, proton density, modulus of anomalous dissipation (at different times (see also the vertical
gray lines in the first three panels and dotted white lines in the last one) t⋆ = {01:41:13, 02:11:47, 02:19:53}
in gray, black and light gray, respectively) as a function of ℓ, modulus of 1h-averaged anomalous dissipation
as a function of ℓ (red) and modulus of the mean rate of energy cascade as a function of τ (blue), and
finally the three-dimensional map of the modulus of anomalous dissipation where the color is related to the
intensity and thus to the height of

∣∣Dℓ
a

∣∣. Velocity and magnetic fields are expressed in RTN coordinates.
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|ε|) give a similar result, rigorously speaking, the exact law should not be applicable in this type of data.

The last panel is a three-dimensional space-scale diagram of anomalous dissipation, which highlights that

switchbacks make the main contribution to the energy cascade. Indeed, one can observe that the large-

scale contribution of the anomalous dissipation comes from the locations where switchbacks occur and, we

observe the same behavior as in Section 3.3.2: the dark areas mark the limit of the impact of a discontinuity

on its vicinity. Overall, we observe that the values of |Dℓ
a| for switchbacks – in particular in the limit of

small ℓ – are significantly higher than the values found for the other types of singularities, characterized

by other power-laws, which suggests that switchbacks can contribute to stronger heating.

3.3.4 Statistical results

We conclude our data analysis with a statistical comparison between the mean anomalous dissipation and

the mean rate of energy transfer as a function of the solar wind speed and the level of the magnetic field

fluctuations. Note that the latter is estimated by the ratio between the root-mean-square BRMS and the

mean value B0 of the magnetic field.

In Figure 3.6, we show | ⟨Da⟩ | as a function of |ε| for each processed interval. The upper panels

correspond to THEMIS-B intervals (triangles for slow wind and squares for fast wind) and the lower panels

to PSP intervals (triangles for PSP1 and squares for PSP5). The dashed (diagonal) line obeys the equation

|⟨Da⟩| = |ε|. The colors in the left column reflect the mean solar wind velocity, while those in the right

column correspond to the amplitude of the magnetic field fluctuations of each of the intervals. First, we

notice that near the Sun (bottom panels), the values of |⟨Da⟩| and of |ε| are higher than near the Earth (top

panels). This property can be attributed primarily to the strength of the magnetic field which intensifies

as one approaches the Sun, but also to the omnipresence of discontinuities near the Sun. Note that the

decrease of the cascade rate with the heliocentric radial distance has already been measured from exact

laws or turbulence transport models [1, 4], but the new observation regarding |⟨Da⟩| was achieved thanks

to our anomalous model that applies in the presence of discontinuities. Second, a clear correlation with the

wind speed is found at 1 au with the two methods: the faster the wind, the higher the mean rate of energy

transfer. This property was also shown by [11] using exact (compressible and incompressible) laws. Note

that only THEMIS-B data include fast winds (PSP orbits near the Sun remain mainly in the equatorial

plane, where the wind is generally slow). Third, in the right column, no clear behavior emerges in the

magnetic field fluctuations at 1 au while for the PSP intervals, even if these events are a few and thus

statistically meaningless, large values of BRMS/B0 tend to reduce the mean rate of energy transfer. Last,
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Figure 3.6: Anomalous dissipation as a function of the mean rate of energy transfer, measured via the PP98
law. The color scales correspond to the solar wind velocity (left) and to the magnetic field fluctuations
(right). The triangle and square markers respectively refer to the slow and fast winds (THEMIS-B) in
the upper panels and to PSP1 and PSP5 in the lower panels. The dashed (diagonal) lines correspond to
|⟨Da⟩| = |ε| and black markers are the intervals studied in Figure 3.3.

the majority of the values lie above the diagonal, meaning that on average |⟨Da⟩| > |ε|. This observation

can be seen as a signature of inhomogeneities (discontinuities) that are not well captured by the method

using the exact law. These inhomogeneities lead mainly to a non-local contribution visible at large ℓ (see

Figures 3.3 and 3.5).

3.4 Conclusion

In this chapter, we have used two different methods to measure the rate of turbulent energy transfer

at MHD scales. The first is the PP98 exact law applicable to stationary, homogeneous, and isotropic

turbulence, and the second is the anomalous dissipation Dℓ
a. Both laws have a similar form with the same

combination of structure functions, but in the latter case, the stationarity and homogeneity assumptions
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are not necessary for its derivation. Therefore, Dℓ
a can be considered as more general than the PP98 law

since it is a local (exact) law allowing us to measure the energy transfer rate at each point of the turbulent

flow even when discontinuities are present. Note that the weak formulation of the PP98 law provides

a theoretical justification of the observational work of [23–25] who heuristically employed the PP98 law

without ensemble average.

Theoretically, several scaling behaviors are expected for Dℓ
a depending on the type of signals. For pure

turbulent fluctuations for which the PP98 applies well, a flat signal is expected for Dℓ
a and reported in our

study. In the presence of discontinuities, a scaling in ℓ−1 is expected and indeed well observed over the

whole available range of scales. However, no sign of a dissipation range in ℓ2 is detected. These properties

can be explained by the fact that the present study is limited to MHD scales. Therefore, a natural extension

of this work would be to study sub-MHD scales using data that have the required high time resolution, such

as those of the Magnetospheric Multiscale Mission (MMS), to see if a ℓ2 dissipation can be detected. Unlike

the viscous dissipation discussed in Section 3.2, in collisionless plasma, the dissipation involves complex

physics at kinetic scales, and a variation different from ℓ2 (but still with a positive slope) is likely. The

method based on anomalous dissipation can offer an original diagnosis to characterize this dissipation.

Anomalous dissipation has many advantages over the exact law but its implementation on real data

calls for some caution. This is because the dissipation formula is derived in the theoretical limit ℓ → 0,

which is unattainable in real data. The smallest scale that can be used in spacecraft (or simulations) data

is set by the available time (or grid) resolution. To what extent the anomalous dissipation estimated at this

smallest accessible scale is representative of dissipation at the actual smallest scale of the system remains

thus subject to caution.

The other limitation of the present study is that it is based on the MHD model. However, this

limitation can (partly) be overcome by using the incompressible Hall-MHD model already derived by

[10], which would allow probing finer scales and possibly highlight a correlation between the anomalous

dissipation with temperature, or estimate the importance of the Hall effect in the energy cascade. A further

potential improvement is to account for density fluctuations and see how they would impact the anomalous

dissipation estimates in the solar wind. Such a model remains yet to be derived. However, even with such

general models, there will always be a limitation imposed by the temporal resolution of the data that will

prevent the strict application of ℓ→ 0.

A final caveat that should be kept in mind when estimating both the anomalous dissipation and the

cascade rate from the exact law, which is inherent to the use of single spacecraft data, is the validity of
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Figure 3.7: Overview of the observed predominant mechanisms that are responsible for the heliospheric
turbulence’s mean energy transfer rate. TF and PUIs stand for turbulent fluctuations and pickup ions,
respectively. Note that this classification is made in terms of variations in the basic fields that enter the
MHD equations. Therefore, this view is more rooted in the physics of turbulence than in the sources of
turbulence of the solar wind.

the Taylor hypothesis and, even when it is valid, how its use would impact the measured quantities. In

the case of anomalous dissipation, the use of the Taylor hypothesis implies that Da only depends on a one-

dimensional space variable. One can assume isotropy (as done in exact law studies) but this assumption is

poorly verified in the solar wind.

Several heating mechanisms exist in the solar wind (see Figure 3.7) and their predominance seems to

depend on the heliospheric radial distance as shown by the proton temperature measurements (cf., Figure

1.8). It is well known that around 1 au turbulent fluctuations are dominant, but closer to the Sun both

discontinuities and strong turbulent fluctuations are important as now evidenced in PSP observations, while

beyond 2 au we observe large-scale inhomogeneous structures such as interplanetary shocks, with relatively

weak turbulent fluctuations. Beyond 20 au, the dominant heating mechanism is mainly pickup ions [21,

27]. Faced with such a variety of processes, it is interesting to have a tool that allows us to quantify the

turbulent energy cascade rate at fluid scales, regardless of the dominant heating mechanism at work. The

anomalous dissipation seems to be a good candidate for this purpose.
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4.1 Introduction

Until now, our exploration of plasma turbulence has primarily focused on the scales governed by MHD.

However, going beyond where the dynamics becomes more intricate demands further refinement. This

occurs when we venture into scales smaller than the ion inertial length di ≡ c/ωpi, where ωpi represents

the ion plasma pulsation. At such scales, the discrepancy in mass between ions and electrons becomes

crucial (remember the baby and the elephant), and it is necessary to consider the behaviors of ions and

electrons as distinct entities. To capture this distinction, we adopt an approach that applies to scales

where di ≪ ℓ ≪ de, with de representing the electron inertial length. In this range, the magnetic field is

considered frozen into the electron flow ue, while the ions remain motionless (ui = 0). This approximation,

known as electron magnetohydrodynamics (EMHD), allows us to delve into the dynamics of plasma at sub-

proton scales with an accurate description. By incorporating anisotropy (k∥ ≪ k⊥) and considering small

perturbations of the magnetic field, we arrive at the reduced EMHD (REMHD) formulation, which enables

us to probe the characteristics of turbulent plasmas, like the solar wind, at such scales.

The motivation behind understanding the behavior of plasma turbulence at sub-proton scales in the

solar wind remains an intriguing puzzle. Observations at these scales show a distribution of magnetic spec-

trum power law indices ranging from approximately -7/3 to -3, with a peak near -8/3 [55], which is the most

commonly reported value [2, 3, 50, 54] - as depicted in Figure 4.1. This raises the fundamental question:

what underlying physics accurately describes these observations? Several theoretical models have emerged

as potential explanations for the observed magnetic spectra, namely weak wave turbulence, and strong

wave turbulence with or without the presence of electronic Landau damping [68]. Each model presents

a distinct perspective on the nature of plasma dynamics at sub-proton scales but is hardly differentiable

through the lens of the energy spectrum power law. Thus, the question is: how to accurately distinguish

them in the observational data?

In this chapter, we aim to go beyond the conventional diagnostic of the magnetic spectrum power

law and propose a complementary approach by measuring their intermittency. This study is divided into

four distinct sections. We begin by introducing the REMHD model, focusing on two regimes of particular

interest: weak wave turbulence and strong wave turbulence in the absence of Landau damping1. Then

we will present the numerical setup used to perform the experiments. Finally, after having analyzed the

1The accurate description of Landau damping goes beyond the scope of a fluid model, necessitating a kinetic model.
However, according to the following results and DNS conducted by Zhou et al. [68], the nature of intermittency in strong wave
turbulence appears to be independent of the presence or absence of Landau damping.



4.2. THEORETICAL FRAMEWORK 93

Figure 4.1: Examples of power spectral densities of magnetic field fluctuations in the solar wind at 1 au
using data from the Cluster STAFF search-coil magnetometer. Left: plot from Podesta [50]. Right: plot
from Sahraoui et al. [55].

numerical results, we will discuss their relevance and how one can transfer them to solar wind observations

to better understand the underlying physics at play.

4.2 Theoretical framework

4.2.1 Derivation of the model

When examining sub-proton scales, one can assume that ions remain immobile on the timescales of interest

and only electron dynamics is relevant. Consequently, we should adopt a bi-fluid approach, assuming

massless electrons. Within this framework, Ohm’s law, derived from Equation (1.30), takes the form:

E = − 1

nee
∇Pe − ue ×B. (4.1)

Here, E denotes the electric field, ne represents the electronic density, e symbolizes the elementary charge,

Pe designates the scalar pressure of the electrons (justified for isothermal electrons [58]), and B stands

for the magnetic field. The electron velocity ue can be expressed directly in terms of the magnetic field

because in a plasma (ni = ne) with motionless protons and moving electrons, the current density J is

given by J = ene(ui − ue) ≃ −eneue, and, at the same time, J is known through Maxwell-Ampère’s law

(1.15d). By expressing the magnetic field in velocity units b = B/
√
µ0ρ and utilizing the Maxwell-Faraday
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law (1.15c), we arrive at the self-consistent evolution equation for the magnetic field, namely the EMHD

equation:

∂b

∂t
= −di∇× [(∇× b)× b] . (4.2)

This concept originated from the work of Kingsep et al. [35], but its roots can be traced back to the 1960s

with early studies on semiconductor plasmas [14, 46]. In contrast to the MHD equations, the EMHD

exhibits a dependence on the ion inertial scale, introducing a distinct length scale and a corresponding

validity range. To investigate this further, we can consider normalizing the equation by characteristic

quantities. It is natural to normalize length by di and magnetic field by its mean value b0 in the context

of studying turbulent fluctuations. Time is conveniently normalized by the ion cyclotron frequency Ωi ≡

b0/di. By scaling time with Ωi, spatial gradients with di, and magnetic field with b−1
0 , we adimensionalize

the EMHD equation but also emphasize its validity range. Specifically, it is applicable when dealing

with temporal and spatial fluctuations on timescales t ≪ Ω−1
i and spatial scales ℓ ≪ di, which precisely

correspond to the scales of interest in our study. Additionally, this equation conserves two important

quantities: the magnetic energy E = 1/2
∫
R3 b

2 dx that cascades directly (from large to small scales),

and the magnetic helicity which is a measure of the linkage, twist, and writhe of the magnetic field

H =
∫
R3 a · b dx such as a ≡ ∇ × b represents the potential vector, which cascades inversely (from

small to large scales) [10, 25, 58]

Now, let us consider a uniform and stationary magnetic field b0 = b0e∥. By introducing small dis-

placements and assuming sinusoidal perturbations, b = b0 + b1e
i(k·x−ωt), we obtain helical waves known

as whistler waves. Their dispersion relation is given by:

ω = ±dib0k∥k , (4.3)

where the ± notation differentiates between the co-propagating and counter-propagating waves relative to

the direction of the magnetic field. When k∥ ≪ k⊥, these dispersive waves become oblique [53] and are

called hereafter whistler Alfvén waves (WAW). They experience changes in their phase speed based on the

angle between the magnetic field and the direction of propagation (cf., Figure 4.2). As the waves deviate

further from alignment with the magnetic field direction, their velocity decreases. Eventually, when they

reach a completely perpendicular direction, they vanish.

Now, let us consider finite perturbations and establish the following ordering that allows linear and
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Figure 4.2: Phase velocity vϕ = ω/k normalized to the Alfvén speed b0 as a function of the normalized
wavenumber kdi.

nonlinear physics to coexist while keeping perturbations small [29, 58–60]:

b1
b0

∼
k∥
k

≪ 1, (4.4)

under which the magnetic field can be represented as b1 = e∥×∇⊥ψ+bze∥, where ψ is the stream function

and bz represents the perturbation along the guide field b0. From Equation (4.2), the evolution equations

for ψ and bz take the form [10, 27]:

∂ψ

∂t
= dib0∇∥bz, (4.5a)

∂bz
∂t

= −dib0∇∥∇2
⊥ψ. (4.5b)

Here, the parallel gradient operator ∇∥ ≡ ∂z + b−1
0 {ψ, ·} comprises both a linear component, representing

gradients along the guide field b0, and a nonlinear component, reflecting gradients along the local field

b = b0 + b1. The notation {g, h} ≡ ∂xg∂yh− ∂yg∂xh is the Poisson bracket of two scalar functions g and

h. It is quite fascinating to observe that the chosen ordering restricts the nonlinear dynamics to occur

solely within the planes perpendicular to the magnetic field b0. As a result, eddies and swirling motions

are exclusively generated within these planes, while linear waves transmit information across them, leading

to three-dimensional dynamics, as illustrated in Figure 4.3. The equations known as REMHD describe

incompressible whistler Alfvén waves which can be generated by kinetic instabilities in the solar wind [28].

Interestingly, despite their incompressible nature, these waves share the same set of equations and then

dispersion relation as the compressible version of REMHD called ERMHD (yes, the term “reduced” has

simply been shifted one letter forward to make this distinction) [11, 58]. The ERMHD provides a framework



96 CHAPTER 4. INTERMITTENCY IN ELECTRON MHD

Waves carrying information

N
on

li
n
ea
r
d
y
n
a
m
ic
s
in

2
D

b0

Figure 4.3: Three-dimensional reduced model supporting both nonlinearity and waves. Adapted from
Schekochihin [59].

for understanding the dynamics of kinetic Alfvén waves (KAWs), which represent a natural extension of

the Alfvén wave cascade. These KAWs can undergo damping due to the ionic Landau effect, resulting

in plasma heating, while concurrently transferring energy to the KAW cascade [4, 6, 15, 39, 40, 45, 57,

58]. Although these waves may appear physically distinct, their dispersion relations are mathematically

equivalent [27]. Hence, the forthcoming analysis and discussion apply to both whistler and kinetic Alfvén

waves, as their turbulent characteristics are identical.

By utilizing REMHD (or ERMHD), we can classify the turbulent behavior into three regimes based

on scale separation. This separation allows us to distinguish between the linear timescale, τL, associated

with the motion of WAW/KAW, and the nonlinear timescale, τNL, arising from the nonlinear terms in the

equations. These timescales are estimated through phenomenology and serve as a wet-finger approximation.

Specifically, τL ∼ 1/(dib0k⊥k∥), while τNL ∼ 1/(dik
2
⊥b). To compare the two timescales, we introduce the

parameter χ, defined as χ ≡ τL/τNL. The relation b ∼
√
2k⊥k∥E(k⊥, k∥), gives

χ ∼
√
2E(k⊥, k∥)k3⊥k

−1
∥ b−2

0 . (4.6)

Based on this parameter, we can distinguish three regimes: when χ is negligible, of the order, or greater

than unity. Those are referred to as the weak, strong, and supercritical regimes, respectively.
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Figure 4.4: Temporal evolution of energies associated to Equations (4.5) as observed through direct nu-
merical simulation of decaying turbulence. The inset provides a closer view of a shorter time interval,
emphasizing the contrasting dynamics between the linear and nonlinear timescales.

4.2.2 Weak wave turbulence

In the weak regime, characterized by χ ≪ 1 for all wavenumbers, the nonlinearities are. . . weak. As

a result, the distortions of wave packets occur over long timescales compared to the linear wave period,

leading to a multi-timescale dynamics, as illustrated in Figure 4.4. The separation between linear and

nonlinear dynamics allows for a rigorous analytical treatment incorporating a well-defined closure and

accurate predictions under appropriate assumptions [7, 8, 51, 61]. This analytical approach reveals a

magnetic energy spectrum E(k⊥, k∥) ∝ k
−5/2
⊥ k

−1/2
∥ [26]. A phenomenological approach can also yield

similar results by considering the transfer time τtr ∼ τ2NL/τL and the magnetic energy flux ε ∼ b2/τtr.

Calculations show that E(k⊥, k∥) ∼ (εb0/di)
1/2 k

−5/2
⊥ k

−1/2
∥ , consistent with the exact prediction for the

weak regime. However, it is important to acknowledge that the weak regime cannot be sustained ad vitam

æternam. Remarkably, even as the waves’ k∥ and, consequently, their frequency remain constant, the

parameter χ ∼
(
dib

3
0/ε
)−1/4

k
1/4
⊥ k

−3/4
∥ increases at higher values of k. Eventually, at a critical scale kc, the

condition χ ≪ 1 is violated, resulting in χ ∼ 1, prompting us to consider the implications of the strong

regime.

4.2.3 Strong wave turbulence

The condition of χ ∼ 1 corresponds to the strong regime, also known as the critical balance assumption

which conjectures that the linear and nonlinear effects operate on similar timescales [29, 30]. This regime
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lacks a rigorous analytical description, then it has been investigated through numerical simulations to verify

this phenomenology [9, 10, 18–20, 34]. The idea behind this can be pitched as follow. First, we assume that

all electromagnetic perturbations exhibit strong anisotropy, meaning that their characteristic scales along

the mean field are significantly larger than those across it, as expressed by the wavenumbers: k∥ ≪ k⊥.

Second, we consider that the interactions between wave packets are strong, and as the turbulence reaches

smaller scales, it naturally organizes itself in a manner where the linear timescale and the timescale for

perpendicular nonlinear interactions become comparable to each other [29, 58]. These two key assumptions

lay the foundation for our understanding of the strong regime. Through a phenomenological approach,

similar to that used in the weak regime, we can make predictions by assuming τL ∼ τNL. In this scenario, the

magnetic energy spectrum is expected to follow E(k⊥, k∥) ∼ (ε/di)
2/3 k

−7/3
⊥ k−1

∥ [10, 58]. Interestingly, the

power laws in this regime closely resemble those observed in weak wave turbulence, making it challenging

to distinguish between the two based solely on this diagnostic.

4.2.4 Supercritical regime

When χ ≫ 1, the dynamics of the system undergoes a transition into an unsustainable two-dimensional

regime. In this regime, the behavior of waves in the perpendicular planes becomes less significant. Sur-

prisingly, an important quantity called anastrophy A =
∫
R3 a · b dx becomes an invariant [9], allowing for

the emergence of an inverse cascade even when the magnetic helicity is zero. However, it is crucial to un-

derstand that this regime is not stable and cannot be sustained indefinitely – unless a forcing is applied to

sustain it. The unsustainability of this regime can be attributed to two key factors. Firstly, in the REMHD,

information propagates along the direction of the magnetic field b0 at the phase speed vϕ = dib0k∥. The

structures within the system cannot remain coherent if their length exceeds a certain value, approximately

given by l∥ ∼ vϕτNL. Any structures longer than this characteristic length will inevitably break apart and

lose their coherence. This limitation arises from the principle of causality, which governs the propagation of

information in the system [47, 59]. Furthermore, as the value of χ increases, the planes perpendicular to b0

tend to lose their correlation over increasingly smaller distances, leading to the generation of higher parallel

wavenumbers that decrease χ. In simpler terms, as χ increases, the system generates smaller scales that

disrupt the overall coherence of the perpendicular planes. Consequently, the supercritical regime becomes

unstable, and the system naturally relaxes towards the critical balance regime. Figure 4.5 illustrates the

evolution of these three different regimes.
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Figure 4.5: A sketch of cascade path and spectra for the EMHD turbulence: both the case of injection at
k⊥ = k∥ = k0 and that at k∥ ≪ k⊥ = k2D are shown. Adapted from Nazarenko and Schekochihin [47].

4.2.5 Intermittency

The challenge of distinguishing between weak and strong wave turbulences lies in their closely related

spectra. However, we need not confine ourselves to this diagnostic alone. As introduced in the previous

chapters, we can compute the increments of the magnetic field δb = b(x + r) − b(x) and observe their

evolution when they are raised to an arbitrary power p ≥ 1. Based on this diagnostic, we can discern

whether the energy, as it cascades towards smaller scales, becomes increasingly confined to sparse regions

of space, giving rise to intermittent structures that emerge prominently from the fluctuations background.

Consequently, we ascertain whether the statistics of magnetic field fluctuations exhibit a scale-dependent

nature, indicative of the aforementioned energy concentration phenomena, or if a scale invariance prevails,

with no particular region exhibiting a greater energy concentration over others [24, 42].

We propose that these two regimes display contrasting patterns of intermittency. In the case of weak

wave turbulence, we anticipate monofractal intermittency, and by definition, the system exhibits a self-

similar scaling behavior. This expectation is rooted in the predominance of waves in the dynamics, with

no coherent structures formed2. Conversely, strong wave turbulence is expected to display intermittency

and multifractal scaling, attributed to the emergence of swirling eddies, current sheets, and other coherent

structures. Our objective is to elucidate these distinctions through direct numerical simulations (DNS) of

REMHD.

2It is worth noting that our expectations may be overly simplistic, and it is not immediately apparent that weak regimes
will be devoid of intermittency. In fact, direct numerical simulations of other systems such as MHD [43] or gravity waves [62]
have demonstrated multifractal intermittency in weak regimes.
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4.3 Direct numerical simulations

4.3.1 Numerical setup

To perform DNS, we employ a modified version of the pseudospectral code called AsteriX [44, 45], which

is derived from the well-known code TURBO [66]. The simulations are conducted in a triple periodic cubic

box of size L = 2π and utilize N2
⊥ × Nz Fourier modes. For time stepping, we make use of a third-order

modified Williamson algorithm [67], which is a four-step, low-storage Runge-Kutta method. To ensure

numerical stability and attain a turbulent stationary state, we introduce additional dissipative and forcing

terms in the equations. The system we solve is represented by the following set of equations:

∂ψ

∂t
= dib0∇∥bz + η∇6ψ + fψ, (4.7a)

∂bz
∂t

= −dib0∇∥∇2
⊥ψ + η∇6bz + f bz . (4.7b)

The dissipative terms take the form of collisional viscous damping, where the dissipative coefficient η is

carefully chosen based on the numerical resolution. Its purpose is to facilitate a rapid fall-off of the energy

spectrum before reaching the resolution cutoff. It is important to note that the hyper Laplacian operator

is employed purely for numerical reasons and does not represent any physical phenomenon. It is used to

achieve an extended inertial range and effectively dissipate energy without causing bottlenecks or reflections.

To generate turbulence and regulate energy injection ε, we induce controlled fluctuations at large scales

using forcing terms (fψ and f bz). These terms are selectively applied within the range 1.5 < k⊥di < 2.5

and adopt a negative damping form proportional to the large-scale modes of ψ and bz. This technique

allows us to precisely control the energy injection level while ensuring sufficiently chaotic motions to drive

turbulent behavior. To optimize computational efficiency, we conduct simulations at various resolutions,

employing a recursive refinement technique [44], with the highest resolution reaching up to N⊥ = 1024

and Nz = 128. Throughout all simulations, the values of (di, b0) are consistently set as (1, 1), serving as

reference units alongside the size of the computational domain L = 2π. To mitigate aliasing effects in the

nonlinear terms, a phase shift method is employed, enabling partial dealiasing [49]. Consequently, the total

number of spectral modes is half the number of mesh points used. To investigate the two regimes of interest,

we conducted two simulations of balanced turbulence, with the only distinction being the energy injection

rate ε. Specifically, the latter was 500 times higher for the strong regime (ε = 0.5) compared to the weak

one (ε = 10−3). The top and middle panels of Figure 4.6 illustrate a three-dimensional depiction of the
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electric current along the mean field and snapshots of the magnetic field modulus in a plane perpendicular

to b0 for each regime. These visual representations reveal distinct dynamics between the two regimes.

4.3.2 Spectra

Before diving into the measurement of intermittency, it is crucial to verify whether we have indeed reached

the regimes we are investigating. To do so, we can examine the values of the parameter χ. As depicted in

Figure 4.7, both the weak and strong regimes adhere to this criterion. The weak regime exhibits a χ ≪ 1

across all wavenumbers, by the principles underlying the associated theory. On the other hand, the strong

regime shows a noteworthy behavior, with the first parallel modes satisfying the condition χ ∼ 1. Then,

as we ascend to higher parallel modes, χ diminishes, thus deviating from the critical balance hypothesis.

But it is the low parallel modes that bear the greatest energy and hence exert a dominant influence on the

turbulent dynamics (note that the k∥ = 0 mode corresponds to an average over k∥ and is not considered

in this analysis).

In Figure 4.8, we present the one-dimensional axisymmetric transverse magnetic spectra for both

regimes. These spectra, obtained by integrating over a cylinder aligned with b0, exhibit power law behavior

as predicted by theoretical expectations. The weak regime follows a power law index close to -5/2, while

the strong regime follows a power law index of -7/3. This further validates our observation of these two

distinct regimes.

The parallel spectra hold limited significance due to two primary factors. Firstly, the scarcity of Fourier

modes in the parallel direction poses a challenge in establishing a distinct inertial range with a power law

behavior in that specific dimension. Secondly, in both regimes, the parallel cascade exhibits a minimal

energy transfer, necessitating an extensive amount of time for its occurrence (given that the parallel power

law index is less than one, it would theoretically take an infinite amount of time for the parallel cascade to

reach k∥ → ∞). Due to these considerations, we set aside the parallel dynamics and focus our attention on

the perpendicular counterpart. Fortunately, this does not impose significant limitations on our objective

of reporting the observations of the solar wind at 1 au, since the in situ data collected by the roaming

spacecraft predominantly captures the perpendicular dynamics. In comparison, the measurement of the

parallel component remains less well-documented.

Additional confirmation of our findings involves investigating the wavenumber-frequency spectrum,

a task that requires the simultaneous application of space and time Fourier transforms. In the case of

weak wave turbulence, a distinct signal along the line defined by the dispersion relation should become
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Figure 4.6: Top: Three-dimensional visualization of the electric current along the mean field, for weak
(blue) and strong (red) wave turbulences. Middle: Snapshots of the magnetic field modulus, normalized
by the mean field strength b0, in a section perpendicular to b0 for weak (blue) and strong (red) wave
turbulences. weak wave turbulence is characterized by the lack of coherent structures and lower magnetic
fluctuations compared to strong wave turbulence. The white line represents the trajectory of a virtual
spacecraft. Bottom: Detected magnetic field recorded by a virtual spacecraft following a specific path
(white line in the upper panels) in both weak (blue line) and strong (red line) turbulence simulations.
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Figure 4.7: χ parameter for the weak (blue) and strong (red) turbulence regimes. The gray lines represent
the value χ = 1.
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Figure 4.8: Transverse energy spectra of the weak (blue line) and strong (red line) regimes are presented
in this figure. The grey column at low k⊥di represents the forcing scales, while the blue and red columns
indicate the regions of the inertial range where intermittency will be evaluated for the two regimes (ex-
cluding the histograms). The insets provide compensated spectra for closer examination.
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evident. Conversely, in the case of strong wave turbulence, where interactions lack preferential alignment,

we would not anticipate the emergence of discernible patterns in this plot. To achieve this, we monitor

the evolution of the diagonal kx = ky within planes perpendicular to b0 over several linear wave periods.

Through this approach, we reconstruct the wavenumber-frequency spectrum for both regimes, enabling us

to ascertain whether the weak wave turbulence exhibits wave interactions, as expected. Figure 4.9 presents

a visual representation of the space-time Fourier spectra for both regimes, considering values of kz = 4, and

kz = {1, 2, 4} for the inset. A striking observation is that in the weak regime, wave interactions become

apparent for k⊥di ≳ 20 and follow the theoretical dispersion relation. One can identify three limitations to

the observation of resonance at larger scales: (i) As we move towards larger scales, the influence of random

forcing becomes increasingly prominent, leading to a randomization of the interactions. Consequently,

a significant amount of time is required for resonant interactions to dominate, primarily manifesting at

higher wavenumbers. (ii) For low values of ω, the diagnostic requires tracking the signal for extended

periods. To resolve ω ≃ 0, one would ultimately need to record data from the beginning of the DNS.

However, in our case, we chose to save computational time by employing a recursive refinement technique,

making such extended recordings unfeasible. (iii) The last limitation arises from finite box effects. In

the weak regime, the nonlinear energy transfer occurs through the resonant interaction of three waves

with different wavenumbers, primarily in close proximity (i.e., triadic interaction). As the wavenumber

decreases, the number of possible configurations for wave resonance via triadic interactions diminishes,

imposing a limiting factor. In stark contrast, the strong regime displays a distinct absence of discernible

patterns. Instead, a broad range of frequencies becomes excited throughout the plasma scales, appearing

to be confined within a domain where dynamically connected modes adhere to a power law resembling k
4/3
⊥ .

This characteristic aligns with the critical balanced assumption and signifies the existence of structures

that are not primarily governed by resonances dictated by the dispersion relation. Furthermore, the

presence of two-dimensional coherent structures becomes apparent through the distinct signal observed at

low frequencies. These structures are likely to be stimulated by the perpendicular forcing at a large scale,

coupled with the inherent propensity of the reduced model to generate nonlinear structures within the

perpendicular planes. Lastly, at scales smaller than k⊥di ≃ 50, the effects of dissipation become prominent

in both regimes, and the noisy background overshadows the damped signal.
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Figure 4.9: Space-time Fourier spectra of the magnetic energy in the weak (blue) and the strong regimes
(red) in plane kz = 4. The pulsation ω is normalized by v⋆ϕ/di, where v

⋆
ϕ represents the phase speed defined

as v⋆ϕ ≡ dib0k
⋆
⊥, with k

⋆
⊥ =

√
2 being the lowest value considered for this diagnostic. The left panel includes

an inset showing the superposition of the space-time Fourier spectra of the magnetic energy for planes
kz = {1, 2, 4} in linear scales. The white dotted lines correspond to the theoretical dispersion relations of

the WAW/KAW. The right panel exhibits a black dotted line illustrating the power law k
4/3
⊥ , which serves

as evidence for the presence of the critical balanced regime.

4.3.3 Structure functions

Intermittency is commonly quantified by examining the deviation from Gaussianity in the probability den-

sity function (PDF). Thus, a primary diagnostic involves computing the PDF of magnetic field increments

δb = b(x + r) − b(x) and observing its evolution as a function of increment size r. Intuitively, we an-

ticipate detecting non-Gaussianity for small increments, which should gradually converge to a Gaussian

distribution as the increment size increases. This expectation arises from the notion that sufficiently distant

points should exhibit decorrelation. However, we also anticipate the presence of fatter non-Gaussian tails

as a result of the possible formation of coherent structures within this regime. This can be observed in

the bottom panel of Figure 4.6, where the magnetic field modulus exhibits a higher level of intermittency

compared to the weak regime.

In our analysis, we focus on increments within perpendicular planes, utilizing a total of Nz = 128 planes.

The findings are depicted in Figure 4.10. It is noteworthy that the weak regime exhibits small non-Gaussian

tails for lower values of the perpendicular increment distance, r⊥, followed by a swift convergence towards a

Gaussian-like distribution as r⊥ increases. In contrast, the strong regime reveals pronounced non-Gaussian

tails attributed to the presence of coherent structures such as eddies or current sheets. Furthermore, we
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Figure 4.10: PDFs of the magnetic field increments δb for weak (blue) and strong (red) turbulence, and
for six distances r⊥.

have normalized the increments to the factor rH⊥ , where H = 0.75 is determined through fitting analysis.

This normalization allows us to examine the self-similar behavior of the PDFs. If self-similarity holds, they

should collapse onto a single scaling function, at least for the majority of the distribution, according to the

rescaling operation [36]:

Ps
(
δb/rH⊥

)
= rH⊥Ps (δb) . (4.8)

Remarkably, this normalization procedure yields a collapse of the different PDFs in the weak regime.

However, it is worth noting that the lowest value of r⊥ still exhibits coherence between the two points,

preventing complete collapse (see Section 2.1.2). Interestingly, similar collapses with a rescaling using the

value H ∼ 0.8 have been documented in measurements of the solar wind’s magnetic field PDF [37].

To obtain more precise results, we can investigate the behavior of higher-order structure functions. To

do so, we introduce the p-order structure functions as

Sp ≡ ⟨|δb|p⟩ = Cpr
ζ(p), (4.9)

where ζ(p) is the scaling exponents measured in the inertial range, and the coefficients Cp are constants.

This process offers the opportunity to explore the behavior of the structure functions across smaller and

smaller scales as we increase the value of p. Remarkably, as we elevate p, the structure function becomes

more sensitive to small-scale gradients, allowing us to capture the occurrence of rare events in the PDFs.

The theoretical predictions state that the energy spectrum follows a power law of E(k⊥) ∝ k
−5/2
⊥ and

E(k⊥) ∝ k
−7/3
⊥ for the weak and strong turbulences respectively. Therefore, we should expect to observe

ζ(2) = 3/2 in the weak regime and ζ(2) = 4/3 in the strong one and, under the assumption of self-similarity,



4.3. DIRECT NUMERICAL SIMULATIONS 107

10−2 10−1

r⊥/L

10−7

10−3

101

〈|δ
b|p
〉

1 2 3 4 5

10−2 10−1

r⊥/L

1 2 3 4 5

p

1 2 3 4 5

p

1

2

3

4

ζ
(p

)

3p/4

2p/3

weak

strong

Figure 4.11: Top: Structure functions for both the weak (blue lines) and strong (red lines) turbulence
regimes. The highlighted sections represent the specific data points utilized for fitting the scaling exponents
ζ(p). Bottom: The corresponding scaling exponents ζ(p). The dotted lines represent the expected profiles
based on self-similarity, while the shaded areas represent the fitting errors associated with the determined
exponents.

the scaling exponents can be derived as ζ(p) = 3p/4 and ζ(p) = 2p/3 respectively. We can find another

clue in the weak regime that lends support to this expectation. If intermittency is monofractal, then the

coefficient H observed in the collapse of the PDFs should correspond to the coefficient of the function ζ(p).

Theoretical predictions indicate that this coefficient should be 3/4, which aligns with the fitted value of H.

To investigate this further, we compute the structure functions for p ∈ [1, 5], considering the limitations

imposed by the available number of data points [22].

The top panels of Figure 4.11 present the behavior of the p-order structure function as a function of

the scale separation r⊥. The highlighted region indicates the specific locations where the scaling exponent

ζ(p) will be determined through a fitting. This region corresponds to the shaded area within the inertial

range in Figure 4.8 and spans a full decade for improved accuracy. The outcome is illustrated in the lower

panel of Figure 4.11, where a distinct linear relationship emerges, in accordance with the self-similarity

prediction for weak wave turbulence. In contrast, the strong regime exhibits multifractal intermittency,
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deviating from the monofractal line as p increases. Notably, both regimes demonstrate the anticipated

values for ζ(2). These observations suggest that, contrary to the strong regime which concentrates energy

in sparse regions of the plasma to develop coherent structures like current sheets or vortices, in the weak

regime, energy is distributed more evenly throughout the plasma which is consistent with the absence of

strong nonlinearities and the lack of distinct structures.

4.4 Discussion

This preliminary investigation was initially driven by the challenge of distinguishing the turbulent regime

prevailing in the solar wind at sub-proton scales. As depicted in Figure 4.1, in situ data revealed magnetic

spectra close to the -8/3 scaling [3, 50, 55, 56]. A notable characteristic was the tendency to display self-

similar behavior when examining the p-order structure functions [1, 16, 17, 31, 37, 38]. To investigate these

features, we conducted two DNS: one focusing on the weak regime, characterized by small nonlinearities

and weak interactions between wave packets, and another capturing the strong regime with significant

wave packet interactions.

The numerical experiments yielded a clear distinction between the two regimes, particularly through the

lens of intermittency. Contrary to the strong regime, the weak regime displayed monofractal intermittency.

Interestingly, the characteristics observed in the latter regime closely aligned with those measured in the

solar wind. We observed that the PDFs of magnetic field increments exhibited a universal collapse when

appropriately rescaled by the factor rH⊥ , with H = 0.75, closely resembling the values employed in analyzing

in situ data [37]. On the other hand, the scaling exponents ζ(p) of the p-order structure functions exhibited

a linear relationship, following the scaling law of 3p/4, which is consistent with the estimation of the H

value. This finding provides compelling evidence in support of the weak regime as an accurate description

of the in situ measurements of the solar wind at sub-proton scales.

Two notable caveats arise in our investigation. The first issue concerns the observed power law in

the solar wind, which closely aligns with a steep exponent close to -8/3 rather than the anticipated -5/2.

Numerical simulations of the strong regime with Landau damping have revealed an exponent of -8/3, but

also pronounced intermittency [68], which rules out this scenario to report the in situ data. I think that the

key distinction lies in the fact that the solar wind represents a collisionless plasma, wherein dissipation is

absent, preventing the attainment of a stationary solution. Hence, it is understandable to encounter a subtle

difference among the theoretical predictions, which are based on assumptions of stationary turbulence, the
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simulations incorporating viscous damping at small scales, and the actual observational data. In Chapter

6, we explore non-stationary solutions of the weak regime without introducing any additional dissipative

processes. Intriguingly, we find that one solution closely resembles the in situ observations at sub-proton

scales... The second objection that arises pertains to the sustainability of weak wave turbulence over an

infinite range of scales, as discussed in Section 4.2.2. weak wave turbulence always gives way to strong

turbulence beyond a critical scale kc. Considering this, along with the fact that energy cascades begin

at MHD scales in the solar wind, one might question why turbulence would appear in a weak regime at

sub-proton scales. A clever solution emerges when you take your nose out of the grindstone and step back.

When we shift our perspective from considering MHD scales and sub-proton scales as distinct entities

to viewing them as part of a continuum, we can identify two conserved quantities: the total energy and

the generalized helicity (which encompasses both cross and magnetic helicity) [5]. Additionally, a distinct

category of waves known as ion cyclotron waves (ICWs) emerges near the ion inertial lengths [65]. These

waves interact with particles efficiently, directly heating the plasma through resonant coupling to particle

gyromotion [12, 28]. They present a potential avenue for turbulent dissipation and are enhanced by a

concept called the “helicity barrier” [44]. This intriguing mechanism arises from the interaction between the

inverse cascade of generalized helicity and the direct cascade of energy, resulting in an energy buildup within

the inertial range [33]. Consequently, fluctuations with small parallel scales emerge, damping turbulence

through cyclotron resonance and the helicity barrier selectively permits only a fraction of the flux from

large scales to enter the sub-ion cascade [44, 64].

The presence of significant ICWs near the ion scale can induce notable drops in energy amount, leading

to the weakening of nonlinearities at scales beyond the proton level [21, 32], and can potentially randomize

turbulent fluctuations, renowned for their strong intermittency at MHD scales [17, 41]. Consequently,

nonlinear interactions no longer give rise to highly intermittent fluctuations, thus suppressing the formation

and occurrence of intermittent structures, especially those related to current sheets in the sub-proton scales

[17, 23, 37, 48, 52, 63]. This leads us to the regime of weak wave turbulence.

Recent numerical investigations [44, 64] and observational studies [12, 13] have unequivocally substan-

tiated and verified this scenario, thereby fortifying its profound relevance. The final piece of the puzzle

lies in obtaining an analytical relationship that establishes a connection between the helicity level at MHD

scales and the fraction of energy cascading to sub-proton scales. Such a relations holds great interest as it

would shed light on the intricate interplay between helicity and energy transfer in turbulent plasmas. Fur-

thermore, it would provide a theoretical validation of the helicity barrier, which currently remains confined
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to observations from spacecraft and direct numerical simulations.
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5.1 Introduction to wave turbulence

To understand the intricate process of energy transfer across various scales in a turbulent plasma, numerous

approaches can be undertaken. However, there exists a remarkably rigorous one, rooted in systems con-

sisting of numerous wave packets weakly interacting with each other: the theory of wave turbulence. The

term “weakly interacting” arises from the assumptions that the nonlinearities are weak and only become

significant after an extensively long time in comparison to the individual periods of the linear waves [30, 51].

The significance of wave turbulence theory is twofold. Firstly, it presents a natural mechanism for closure,

ensuring consistency in the asymptotic evolution [5–7, 55]. Secondly, it provides a framework for obtaining

exact analytical solutions, namely the thermodynamic equilibrium state and the Kolmogorov-Zakharov

(KZ) spectra, representing stationary solutions of the wave kinetic equations [72]. These equations, rem-

iniscent of Boltzmann-like equations, describe the temporal changes in wave packet density solely as a

function of that density [34–36]. The thermodynamic equilibrium state represents the statistical energy

distribution in isolated systems, maximizing entropy under energy constraints, and joint entropy in cases

where multiple conserved quantities are involved [65]. While the Kolmogorov-Zakharov solution arises

in nonequilibrium scenarios, specifically when nonisolated systems are subject to an external force and

dissipation due to viscosity acting on various length scales, resulting in the Kolmogorov behavior of finite

flux. In the range of motion where the kinetic equation holds, quantities such as energy are conserved.

The flow of spectral densities can be visualized as moving from sources in the k-space to sinks [70, 71].

These solutions, known as KZ solutions, bear resemblance to the well-known prediction of the Kolmogorov

energy spectrum E(k) in high Reynolds number hydrodynamics, denoted as E(k) = cΠ2/3k−5/3 where Π

is the energy flux, and c a constant. Additionally, the kinetic equation exhibits time-dependent solutions

of a self-similar nature, providing insights into how the stationary solutions are reached. However, the

analytical derivation of these solutions remains an open question.

Wave turbulence theory finds broad applicability in both natural and laboratory settings. One promi-

nent example is the study of ocean gravity waves on a sea stirred by wind. Nonetheless, the theory’s

relevance extends beyond this specific case. In principle, its manifestations can also be observed, for in-

stance, in: (i) Astrophysical environments, with Alfvén waves [26], fast magnetosonic waves [31, 42], kinetic

Alfvén waves, and whistler waves [24]. (ii) The atmospheres of rotating planets, where Rossby-like waves

are present [2–4]. (iii) The formation of Bose-Einstein condensates [52, 53]. (iv) The interface between air

and a liquid, such as water, with capillary waves [71]. (v) Nonlinear optics, specifically the diffraction of
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optical waves [21]. (vi) Acoustic waves [43, 54, 73]. (vii) The deformation of a material with elastic waves

[20]. (viii) In the oceans due to the Coriolis effect with Kelvin waves [44]. (ix) Even the formation of the

universe with gravitational waves [27, 33].

However, it is essential to question whether wave turbulence truly governs the behavior of ocean waves,

capillary waves, and other relevant examples where we would expect the theory to apply. Despite notable

achievements, the theory also encounters limitations. In essence, the story of wave turbulence remains far

from complete, with our understanding still in its early stages of experimental investigation. Recent exper-

imental observations in surface waves [22], gravity waves [18, 37], internal gravity waves [64], and inertial

waves [48, 69] have provided supporting evidence for the theories developed in these areas, reinforcing the

validity of the wave turbulence approach when the following conditions are met. To begin, we consider an

infinite domain and assume that our physical fields have zero means, are bounded throughout, and possess

sufficient smoothness, ensuring well-defined behavior described by the partial differential equations. Con-

sequently, we reformulate the governing equations, employing a diagonalized set of Fourier amplitudes for

the physical fields. It is important to recognize that these amplitudes, being associated with bounded fields

rather than decaying ones, should be regarded as generalized functions rather than ordinary ones. Only

statistical averages of the Fourier amplitudes hold significance in this context. Hence, we can identify at

least three fundamental premises on which the wave turbulence closure is established [65]. We assume

1. spatial homogeneity for the fields, meaning that the ensemble averages of the fields, evaluated at

points x, x+ r1, x+ r2, . . . depend only on the separations r1, r2, . . . .

2. that at an initial time, when the external driving force is introduced, the fields at distant points

are uncorrelated. This implies that the cumulants in physical space initially exhibit a property

where, as the separations |rj | become large, the cumulants decay rapidly enough, allowing their

Fourier transforms to be treated as ordinary functions. Although this assumption is modest, it is

necessary for evaluating the long-term behavior of integrals like
∫
f(k)tsinc(kt)dk, where we require

the smoothness of f(k) in wavenumber k to ensure that this integral behaves as πsgn(t)f(0) in a long

time.

3. that different asymptotic expansions for the gradual evolution of two-point functions remain uniformly

valid across all wavenumbers. In its most basic form, this requires that the ratio of linear to nonlinear

timescales is small for every wavevector.

This chapter presents the wave turbulence theory for inertial kinetic Alfvén waves (IKAW) and inertial



5.2. INERTIAL ELECTRON MAGNETOHYDRODYNAMICS 121

whistler waves (IWW), governed by the inertial electron MHD (IEMHD) discussed in the next section. The

structure of the chapter is as follows. After a quick (and therefore simplified) derivation of the equations

that we will use for the theory of wave turbulence, we introduce the canonical variables and derive the

dynamical equation describing the wave amplitude variation. In Section 5.4, a phenomenology of wave

turbulence is developed to get a simple heuristic explanation for the solutions (Kolmogorov–Zakharov

spectra) derived later. In the following Section 5.5, we derive the wave kinetic equations, from which

we show the detailed conservation of invariants. The exact stationary solutions in the anisotropic limit

k∥ ≪ k⊥ and the locality of these solutions is proved in Section 5.6. We then consider the limit of super-local

interactions and derive the associated nonlinear diffusion equation for the energy in Section 5.7. Section

5.8 is dedicated to the computation of the sign of the energy flux, which gives the direction of the cascade,

and to the determination of the Kolmogorov constant. Before concluding with a discussion of possible

applications of our results, and ways in which these results can be extended, we discuss, in Section 5.9, the

link between this plasma turbulence and the inertial waves turbulence arising in fast rotating non-ionized

fluids.

5.2 Inertial electron magnetohydrodynamics

Here, the system in which we are interested in the plasma dynamics at scales where the electron inertia

plays a non-negligible role. In our approach, the mass difference between ions and electrons is such that the

ions will be considered static to form a neutralizing background. Therefore, at the timescale of interest,

only the electron dynamics is relevant. This is the domain of EMHD (introduced in Chapter 4) and

IEMHD which describe, respectively, the scales de ≪ ℓ ≪ di and re ≪ ℓ ≪ de, where re ≡ √
βede is

the electron Larmor radius. Remarkably, the IEMHD regime can only be observed when the magnetic

pressure significantly exceeds the thermal pressure (i.e., when βe ≪ 1). Although it is difficult for current

spacecraft to measure the plasma dynamics corresponding to the electron inertial scales, it is interesting

to see what the theoretical description can predict. The EMHD and IEMHD approximations are widely

used models to study, for example, magnetic reconnection or space plasma turbulence [8–10, 12–15, 39].

More information is given in [47] where an exhaustive list of plasmas driven by the IEMHD model is given

with the parameter regimes. In this chapter, we present the theory of wave turbulence for IEMHD in the

presence of a relatively strong and uniform external magnetic field B0. The equivalent theory for EMHD

has already been published [24] but not yet for IEMHD. Strong IEMHD turbulence has recently received
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new attention with the study of the weakly compressible case [11, 60]. The objective was to study the

nature of plasma turbulence in the Earth’s magnetosheath. The main prediction, phenomenological in

nature, is a magnetic spectrum in k
−11/3
⊥ (see also [46]) which is less steep than the prediction we will

derive here. In the meantime, a rigorous derivation (using systematic asymptotic expansions) based on

a more general model including electron inertia and finite Larmor radius corrections has been proposed

[57, 58]. This more general approach allows the study of several limits, and to recover in particular the

model discussed previously [11]. In fact, these weakly compressible IEMHD equations have the same

mathematical structure as the incompressible case when the ion βi (the ratio between ion thermal pressure

and magnetic pressure) is moderately small. Therefore, the physics of wave turbulence that we will describe

in this chapter has a broader impact than strictly speaking the incompressible case and can be applied to

both IWWs and IKAWs. As discussed in the previous chapter, a similar situation exists for scales larger

than de: in the presence of a strong B0, the equations describing the nonlinear dynamics of kinetic Alfvén

waves and whistler waves have exactly the same mathematical form, which means that the physics of

wave turbulence is similar for both problems [25]. Although a fully kinetic approach is a priori required to

describe plasma dynamics at electron inertial scales, all of these reduced fluid models can provide interesting

insight when considering small fluctuations around a Maxwellian equilibrium state. In this chapter, we

follow this precept and apply the powerful tool of wave turbulence to extract new properties useful for a

better understanding of space plasmas.

The goal of this section is to quickly derive in a simplified way the set of equations describing the

dynamics of non-relativistic electrons at inertial scales in a fully ionized plasma. For this reason, the

assumption of incompressibility will be used. A complete derivation is found in [11] and in [58].



5.2. INERTIAL ELECTRON MAGNETOHYDRODYNAMICS 123

5.2.1 Governing equations

The basic fluid equations governing the electron dynamics in an incompressible (dissipationless) plasma

are

∂ue
∂t

+ (ue ·∇)ue = − 1

ρe
∇Pe −

qe
me

(ue × b+E) , (5.1a)

∂B

∂t
= −∇×E, (5.1b)

∇×B = µ0J , (5.1c)

∇ · ue = 0, (5.1d)

∇ ·B = 0, (5.1e)

where ue(x, t) is the electron velocity, ρe(x, t) = men0 the constant electron mass density with me the

electron mass and n0 the density, Pe(x, t) the electron pressure, qe > 0 the modulus of the electron charge,

b(x, t) the magnetic field, E(x, t) the electric field, J(x, t) = n0qe (ui − ue) the electric current and ui(x, t)

the ion velocity (assumed to be zero). Normalizing the magnetic field to the (electron) Alfvén velocity and

then taking the rotational of equation (5.1a) combined with the Maxwell-Faraday law (5.1b), one obtains

∂

∂t

(
d2e∇2 − 1

)
b+ (ue ·∇) (d2e∇2 − 1)b =

(
d2e∇2 − 1

)
b ·∇ue, (5.2)

where de =
√
me/(n0q2eµ0) is the electron inertial length. Now, we introduce a relatively strong and

uniform (normalized) magnetic field b0 = b0e∥ that defines the parallel direction. In the limit of IEMHD,

the spatial variations of b are done on a characteristic length L≪ de and mainly in the plane perpendicular

to e∥. Thus, in the leading order, we have

(
∂

∂t
+ ue⊥ ·∇⊥

)
d2e∇2

⊥b = d2e(∇2
⊥b⊥ ·∇⊥)ue − (b0 ·∇)ue, (5.3)

and also J = −n0qeue, which can be written dej = −ue with the normalized electric current j ≡ ∇ × b.

The magnetic field having a zero divergence, we define b ≡ b0−∇× (gex + ψez) where ex and ez are unit

vectors (hereafter, we will assume ez = e∥ which is valid at leading order for a relatively strong uniform

magnetic field b0), ψ(x, t) a stream function and g(x, t) a function satisfying the relation ∂yg ≡ b∥. We

obtain the relation

∇2
⊥b =

(
e∥ ×∇⊥

)
(∇2

⊥ψ) +∇2
⊥b∥e∥, (5.4)
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where, hereafter, the z-derivative is assumed to be negligible compared to the perpendicular derivative.

Replacing b by its expression, the electron velocity can be expressed as a function of the magnetic field

components

ue = de
(
e∥ ×∇⊥b∥ −∇2

⊥ψe∥
)
. (5.5)

Projecting equation (5.3) in the perpendicular plane to e∥, we find

(
e∥ ×∇⊥

) [ ∂
∂t

(
d2e∇2

⊥ψ
)]

+ d2e (ue⊥ ·∇⊥)
[(
e∥ ×∇⊥

)
∇2

⊥ψ
]
=d3e

(
∇2

⊥b ·∇⊥
) (

e∥ ×∇⊥b∥
)

− deb0∂∥
(
e∥ ×∇⊥

)
b∥.

(5.6)

The non-trivial relation

(ue⊥ ·∇⊥)
[(
e∥ ×∇⊥

)
∇2

⊥ψ
]
=
(
e∥ ×∇⊥

) [
(ue⊥ ·∇⊥)∇2

⊥ψ
]
+ de

(
∇2

⊥b ·∇⊥
) (

e∥ ×∇⊥b∥
)
, (5.7)

allows to simplify the previous equation and, by expressing ue as a function of ψ, we obtain after some

algebraic manipulations

∂

∂t

(
∇2

⊥ψ
)
+ de

[(
e∥ ×∇⊥b∥

)
·∇⊥

]
∇2

⊥ψ = −Ωe∂∥b∥ , (5.8)

with Ωe ≡ b0/de the cyclotron frequency of electrons (note that here, Ωe is constant due to the assumption

of incompressibility). Now, a projection of (5.3) in the e∥ direction gives directly

∂

∂t

(
d2e∇2

⊥b∥
)
+ d2e (ue⊥ ·∇⊥)∇2

⊥b∥ = −d3e
(
∇2

⊥b ·∇⊥
)
∇2

⊥ψ + deb0∂∥
(
∇2

⊥ψ
)
. (5.9)

It is straightforward to show that the first term of the right-hand side is exactly zero. Then, by expressing

b and ue as functions of ψ and b∥, we obtain

∂

∂t

(
∇2

⊥b∥
)
+ de

[(
e∥ ×∇⊥b∥

)
·∇⊥

]
∇2

⊥b∥ = Ωe∂∥
(
∇2

⊥ψ
)
. (5.10)

Equations (5.8) and (5.10) describe the dynamics of electrons at inertial scales. They have been derived

in a more general framework and using kinetic arguments by [11] and [58]. Here, we have used the

incompressibility condition to propose a (less accurate but more) fast derivation of a system that a priori

describes only IWW. However, it is interesting to note that at inertial electron scales: (i) IKAW and IWW



5.2. INERTIAL ELECTRON MAGNETOHYDRODYNAMICS 125

can have the same dispersion relation and the only difference is that the transition to the inertial regime

occurs at k2⊥d
2
e ≃ 1 for IWW rather than k2⊥d

2
e ≃ 1+2/βi for IKAW; (ii) the nonlinear equations governing

the dynamics of IKAW and IWW are mathematically similar (up to a change of variable from bz to ρe [11,

58]), which means that the physics of wave turbulence developed in this chapter applies to both waves. A

similar situation is found at scales larger than de: in the presence of a strong B0, the equations describing

the nonlinear dynamics of kinetic Alfvén waves and whistler waves have exactly the same mathematical

form, which means that the physics of wave turbulence is similar for both problems [25].

5.2.2 Dispersion relation

In the linear regime, the Fourier transform of equations (5.8) and (5.10) gives

∂ψk
∂t

= iΩek∥k
−2
⊥ bk, (5.11a)

∂bk
∂t

= iΩek∥ψk, (5.11b)

where the Fourier transform used is

ψ(k, t) ≡ ψk =

∫

R3

ψ(x, t)e−ik·xdx, (5.12)

and the notation bk ≡ b∥,k as well. If the wavevector k is decomposed as k = k⊥e⊥ + k∥e∥, then the linear

dispersion relation reads
(
ωk
Ωe

)2

=

(
k∥
k⊥

)2

. (5.13)

One can find the following solutions to the linear IEMHD equations in Fourier space

ψk(k⊥, t) = f (k⊥) cos (ωkt) + ig (k⊥) k
−1
⊥ sin (ωkt) , (5.14a)

bk(k⊥, t) = g (k⊥) cos (ωkt) + if (k⊥) k⊥ sin (ωkt) , (5.14b)

with f and g two arbitrary functions.
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5.2.3 Three-dimensional quadratic invariants

In the absence of forcing and dissipation, the system (5.8)–(5.10) has two quadratic invariants. The first

invariant is the energy which is written at the leading order

E = d2e
〈
j2
〉
= E⊥ + E∥ = d2e

〈(
∇⊥b∥

)2
+
(
∇2

⊥ψ
)2〉

, (5.15)

where ⟨·⟩ is an ensemble average or, equivalently by ergodicity, a spatial average. E can also be interpreted

as the kinetic energy of electrons. As shown hereafter, both E⊥ and E∥ are separately conserved at the

nonlinear level, however, energy is exchanged between the two at the linear level, thanks to the presence

of waves. This definition of energy is valid for both IWW and for IKAW in the limit of small βi.

In Fourier space, the expressions of the energy density respectively in the directions parallel and per-

pendicular to the mean magnetic field are |u∥,k|2 = d2ek
4
⊥|ψk|2 and |u⊥,k|2 = d2ek

2
⊥|bk|2. From the equations

describing the temporal evolution of ψ and b∥ in Fourier space, we obtain the evolution of the energy

density (we used the properties ψ∗
−k = ψk and b∗−k = bk)

∂|u∥,k|2
∂t

− id2eΩek∥k
2
⊥bkψ

∗
k + c.c. = d3e

∫

(R3)2
Su∥ (k⊥, p⊥, q⊥) δkpqdpdq + c.c., (5.16a)

∂|u⊥,k|2
∂t

+ id2eΩek∥k
2
⊥bkψ

∗
k + c.c. = d3e

∫

(R3)2
Su⊥ (k⊥, p⊥, q⊥) δkpqdpdq + c.c., (5.16b)

with Su∥ (k⊥, p⊥, q⊥) and Su⊥ (k⊥, p⊥, q⊥) the nonlinear interaction coefficient defined as

Su∥ (k⊥, p⊥, q⊥) ≡ sinαkk
2
⊥p⊥q⊥ψk

(
q2⊥ψqbp − p2⊥ψpbq

)
, (5.17a)

Su⊥ (k⊥, p⊥, q⊥) ≡ sinαkp⊥q⊥
(
q2⊥ − p2⊥

)
bkbpbq, (5.17b)

where we have used the relation e∥ · (ep⊥ × eq⊥) = sinαk and c.c. denotes the complex conjugate. Parallel

Eu∥ and perpendicular Eu⊥ energies being the sum of these quantities over all wavenumbers, we find

∂Eu∥
∂t

− id2eΩe

∫

R3

k∥k
2
⊥bkψ

∗
kdk + c.c. = d3e

∫

(R3)3
Su∥ (k⊥, p⊥, q⊥) δkpqdkdpdq + c.c., (5.18a)

∂Eu⊥
∂t

+ id2eΩe

∫

R3

k∥k
2
⊥bkψ

∗
kdk + c.c. = d3e

∫

(R3)3
Su⊥ (k⊥, p⊥, q⊥) δkpqdkdpdq + c.c.. (5.18b)

The remarkable property is that the nonlinear contributions are both conserved over time since Su∥ (k⊥, p⊥, q⊥)
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and Su⊥ (k⊥, p⊥, q⊥) verify the following relations

Su∥ (k⊥, p⊥, q⊥) + Su∥ (p⊥, q⊥, k⊥) + Su∥ (q⊥, k⊥, q⊥) = 0, (5.19a)

Su⊥ (k⊥, p⊥, q⊥) + Su⊥ (p⊥, q⊥, k⊥) + Su⊥ (q⊥, k⊥, q⊥) = 0. (5.19b)

Then, as said before, the parallel and perpendicular components of the energy are conserved individually

at the nonlinear level. The exchanges between the two are only done at the linear level.

The second quadratic invariant is the momentum that can be written in the leading order,

H = d2e
〈
(∇2

⊥ψ)(∇2
⊥b∥)

〉
. (5.20)

The quantity H can be understood as the kinetic helicity of electrons. Unlike energy, momentum is not

positively defined. As we will see later, the wave kinetic equations conserve these two invariants on the

resonant manifold, which will be introduced in the subsequent section.

5.3 Wave amplitude equation

In Fourier space, IEMHD equations (5.8) and (5.10) become,

k2⊥
∂ψk
∂t

− iΩek∥bk = de

∫

(R3)2
e∥ · (p⊥ × q⊥) q

2
⊥bpψqδ

k
pqdpdq, (5.21a)

k2⊥
∂bk
∂t

− iΩek∥k
2
⊥ψk = de

∫

(R3)2
e∥ · (p⊥ × q⊥) q

2
⊥bpbqδ

k
pqdpdq, (5.21b)

with δkpq ≡ δ (k − p− q) the Dirac distribution coming from the Fourier transform of the nonlinear terms.

We introduce the canonical variables as follows,

ψk ≡ − 1

2dek2⊥

∑

sk

skA
sk
k , bk ≡

1

2dek⊥

∑

sk

Askk , (5.22)

where sk = ±1 is the directional polarization that defines the direction of the wave propagation with

skk∥ ≥ 0. After a little calculation, we find

(
∂

∂t
+ iskωk

)
Askk =

1

4

∑

spsq

∫

(R3)2

e∥ · (p⊥ × q⊥)

k⊥p⊥q⊥

(
q2⊥ + sksqk⊥q⊥

)
A
sp
p A

sq
q δ

k
pqdpdq. (5.23)
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By making the following change of variable Askk = ϵaskk e
−iskωkt, where ϵ≪ 1 is a small positive parameter,

the linear part of this equation vanishes and we obtain the fundamental equation describing the slow

temporal evolution – thanks to ϵ – of the wave amplitude

∂askk
∂t

=
ϵ

4

∑

spsq

∫

(R3)2
Hskspsq

kpq a
sp
p a

sq
q eiΩ

k
pqtδkpqdpdq, (5.24)

with Ωkpq ≡ skωk − spωp − sqωq and Hskspsq
kpq ≡ e∥ · (p⊥ × q⊥)

(
q2⊥ + sksqk⊥q⊥

)
/ (k⊥p⊥q⊥) the nonlinear

interaction coefficient which depends on the nonlinearities of the system. The presence of the complex

exponential is fundamental for the asymptotic closure: as we are interested in the long-time behavior with

respect to the linear timescale (1/ω), the contribution of the exponential is mostly zero. Only (secular)

terms for which Ωkpq = 0 will survive [7, 55]. Adding to this the relation imposed by the Dirac distribution,

we can obtain the following resonance condition (symmetries in p and q are used)

k + p+ q = 0, (5.25a)

skωk + spωp + sqωq = 0. (5.25b)

After a few manipulations, we find the anisotropic (k∥ ≪ k⊥) relationships

sqq⊥ − spp⊥
skωk

=
skk⊥ − sqq⊥

spωp
=
spp⊥ − skk⊥

sqωq
, (5.26)

which will be useful to prove the conservation of the quadratic invariants. This is also useful to highlight

the anisotropic character of the system, whereby it exhibits an inherent inclination to distribute its energy

across higher perpendicular modes k⊥ rather than parallel ones k∥. Indeed, let us consider the particular

case of super-local interactions which give, in general, a dominant contribution to the turbulent dynamics.

In this case, we have k⊥ ≃ p⊥ ≃ q⊥ and the resonance condition simplifies into

sq − sp
skk∥

≃ sk − sq
spp∥

≃ sp − sk
sqq∥

. (5.27)

If k∥ is non-zero, the left-hand term will only give a non-negligible contribution when sp = −sq. We do not

consider the case sp = sq which is not relevant to the first order in the case of local interactions as can be

seen in expression (5.24) which then becomes negligible (it is easier to see that in equations (5.29)–(5.30)

after using the symmetry in p and q). The immediate consequence is that either the middle or the right
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term has its numerator canceling (to first order), which implies that the associated denominator must also

cancel (to first order) to satisfy the equality: for example, if sk = sp then q∥ ≃ 0. This condition means

that the transfer in the parallel direction is negligible because the integration in the parallel direction of

equation (5.24) is then reduced to a few modes (since p∥ ≃ k∥) which strongly limits the transfer between

the parallel modes. The cascade in the parallel direction is thus possible but relatively weak compared to

the one in the perpendicular direction.

Before applying the spectral formalism of wave turbulence, it is necessary to symmetrize the funda-

mental equation (5.24) under the exchange of p and q. To do this, we take advantage of the summation

over the sp and sq polarizations and introduce

L
skspsq
kpq =

1

2

(
Hskspsq

kpq +Hsksqsp
kqp

)
, (5.28)

to finally obtain after a little calculation

∂askk
∂t

= ϵ
∑

spsq

∫

(R3)2
L
skspsq
kpq a

sp
p a

sq
q eiΩ

k
pqtδkpqdpdq , (5.29)

where

L
skspsq
kpq ≡

e∥ · (p⊥ × q⊥)

8k⊥p⊥q⊥
(sqq⊥ − spp⊥) (skk⊥ + spp⊥ + sqq⊥) . (5.30)

This operator has, among others, the following symmetries

L
skspsq
kpq = L

−sk−sp−sq
kpq = L

skspsq
−k−p−q = L

skspsq
−kpq = L

skspsq
k−p−q, (5.31a)

L
skspsq
kpq = L

sksqsp
kqp , (5.31b)

L
sk−sp−sq
kpq = L

−skspsq
kpq , (5.31c)

L
skspsq
0pq = 0. (5.31d)

Equation (5.29) is our fundamental equation, the starting point to derive the wave kinetic equations. Note

that the nonlinear coupling associated with the wavevectors p and q vanishes when they are collinear

(k = 0 is a particular case). Additionally, the nonlinear coupling vanishes whenever the wavenumbers p⊥

and q⊥ are equal if their associated polarities sp and sq are also equal. This was also observed in EMHD

(for scales larger than de) and seems to be a general property of helical waves [24, 28, 40, 67, 68]. The

nonlinear interaction, being a three-wave process, gives rise to eight potential resonant configurations when
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Figure 5.1: Diagram of the four fundamental interactions of the IWW/IKAW turbulence.

considering the polarities. However, by leveraging the symmetries of the nonlinear operator L
skspsq
kpq , we

can simplify this to just four types of interactions encompassing all the possible polarities (cf. Figure 5.1).

5.4 Phenomenology of wave turbulence

Before going into the deep analysis of the wave turbulence regime, it is important to have a simple (phe-

nomenological) picture in mind of the physical process that we are going to describe. According to the

properties given in Section 5.3, if we assume that the nonlinear transfer is mainly driven by super-local

interactions (k ∼ p ∼ q), which is a classical assumption in the turbulence phenomenology, then we can

consider only stochastic collisions between counter-propagating waves (sp = −sq) to derive the form of

the spectra. Note that non-local interactions (which include copropagating waves) also provide a contri-

bution to the nonlinear dynamics but, as will be shown in Section 5.6.3 with the convergence study, their

contributions are not dominant for the formation of a stationary spectrum.

To find the transfer time and then the energy spectrum, we first need to evaluate the modification of a

wave produced by one collision. Starting from the momentum equation (for simplicity we write the wave

amplitude as aℓ and assume anisotropy with k ∼ k⊥), we have

aℓ(t+ τL) ∼ aℓ(t) + τL
∂a

∂t
∼ aℓ(t) + τL

a2ℓ
ℓ⊥
,

where τL is the duration of one collision; in other words, after a collision, the distortion of a wave is

∆Laℓ ≃ a2ℓ/ℓ⊥. This distortion is going to increase with time in such a way that after N stochastic

collisions, the cumulative effect may be evaluated like a random walk [23]

N∑

i=1

∆iaℓ ∼ τL
a2ℓ
ℓ⊥

√
t

τL
.
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The transfer time, τtr, that we are looking for is the time for which the cumulative distortion is of order

one, i.e., of the order of the wave itself:

aℓ ∼ τL
a2ℓ
ℓ⊥

√
τtr
τL
.

Then, we obtain

τtr ∼
1

τL

ℓ2⊥
a2ℓ

∼ τ2NL

τL
,

where τNL ≡ ℓ⊥/aℓ. This is basically the formula that we are going to use to evaluate the energy spectra.

Let us consider IWW/IKAW for which τL ∼ 1/ωk ∼ k⊥/k∥. A classical calculation with a constant energy

flux ε ∼ Eℓ/τtr, leads finally to the bi-dimensional axisymmetric energy spectrum

E
(
k⊥, k∥

)
∼
√
εΩek

−5/2
⊥ k

−1/2
∥ . (5.32)

As we will see in Section 5.6.2, this corresponds to the exact solution of the wave turbulence theory. The

same calculation could be done for the momentum but, as we will see, it presents a more subtle behavior

that phenomenology cannot describe.

5.5 Kinetic equations

5.5.1 Definition of the energy density tensor

We now move on to a statistical description. We use the ensemble average ⟨·⟩ and define the following

spectral correlators (cumulants) for homogeneous turbulence (we assume ⟨askk ⟩ = 0)

〈
askk a

s′k
k′

〉
= e

s′k
k′δkk′δ

sk
s′k
, (5.33)

with es
′
k (k′) = e

s′k
k′ . We observe the presence of the delta function δsk

s′k
meaning that two-point correlations

of opposite polarities have no long-time influence in the wave turbulence regime. The other delta function

is the consequence of the statistical homogeneity assumption. The objective of the wave turbulence theory

is to derive a self-consistent equation for the time evolution of this spectral correlator; this is the kinetic

equation. In this development, we have to face the classical closure problem: a hierarchy of statistical

equations of increasingly higher order emerges. In contrast to strong turbulence, in the weak wave turbu-

lence regime we can use the timescale separation to achieve a natural closure of the system [7, 55]. We
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start from (5.29) and write successively equations for the second- and third-order moments,

∂

∂t

〈
askk a

s′k
k′

〉
= ϵ

∑

spsq

∫

(R3)2

(
L
skspsq
kpq

〈
a
s′k
k′a

sp
p a

sq
q

〉
eiΩ

k
pqtδkpq + L

s′kspsq
k′pq

〈
askk a

sp
p a

sq
q

〉
eiΩ

k′
pqtδk

′
pq

)
dpdq, (5.34)

and

∂

∂t

〈
askk a

s′k
k′a

s′′k
k′′

〉
= ϵ

∑

spsq

∫

(R3)2

(
L
skspsq
kpq

〈
a
s′k
k′a

s′′k
k′′a

sp
p a

sq
q

〉
eiΩ

k
pqtδkpq + L

s′kspsq
k′pq

〈
askk a

s′′k
k′′a

sp
p a

sq
q

〉
eiΩ

k′
pqtδk

′
pq

+L
s′′kspsq
k′′pq

〈
askk a

s′k
k′a

sp
p a

sq
q

〉
eiΩ

k′′
pq tδk

′′
pq

)
dpdq.

(5.35)

A natural closure arises for times asymptotically large compare to the linear wave timescale (see, e.g., [51,

55, 56]). An important aspect is the uniformity of the development, which was discussed first by [7]. In

this case, the fourth-order moment does not contribute at large time and, therefore

〈
a
s′k
k′a

s′′k
k′′a

sp
p a

sq
q

〉
=
〈
a
sp
p a

sq
q

〉 〈
a
s′k
k′a

s′′k
k′′

〉
+
〈
a
sp
p a

s′k
k′

〉〈
a
sq
q a

s′′k
k′′

〉
+
〈
a
sp
p a

s′′k
k′′

〉〈
a
sq
q a

s′k
k′

〉

+
〈
a
sp
p a

sq
q a

s′k
k′

〉〈
a
s′′k
k′′

〉
+
〈
a
sp
p a

sq
q a

s′′k
k′′

〉〈
a
s′k
k′

〉
+
〈
a
sp
p a

s′k
k′a

s′′k
k′′

〉 〈
a
sq
q

〉
+
〈
a
sq
q a

s′k
k′a

s′′k
k′′

〉 〈
askp
〉
.

(5.36)

Since, we assumed zero mean fields, the terms of the second line of the precedent relation are identically

zero, and the nonlinear regeneration of third-order moments depends essentially on the products of second-

order moments. Thanks to the integration on the dummy variables p and q, to their symmetry and the

symmetry between the polarizations sp and sq, we make the following simplification in advance

〈
a
s′k
k′a

s′′k
k′′a

sp
p a

sq
q

〉
=
〈
a
sp
p a

sq
q

〉 〈
a
s′k
k′a

s′′k
k′′

〉
+ 2

〈
a
sp
p a

s′k
k′

〉〈
a
sq
q a

s′′k
k′′

〉
, (5.37)

and also introduce the spectral energy density es
′
k (k′) = e

s′k
k′ such as

〈
askk a

s′k
k′

〉
= e

s′k
k′δkk′δ

sk
s′k
, (5.38)
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where δkk′ = δ (k + k′) and δsk
s′k

= δ (sk − s′k). The last delta condition ensures that the contribution is

non-negligible over long times. We then write

〈
a
s′k
k′a

s′′k
k′′a

sp
p a

sq
q

〉
= e

sp
p δpqδ

sp
sq e

s′k
k′δk′k′′δ

s′k
s′′k

+ 2e
sp
p δpk′δ

sp
s′k
e
sq
q δqk′′δ

sq
s′′k
, (5.39a)

〈
askk a

s′′k
k′′a

sp
p a

sq
q

〉
= e

sp
p δpqδ

sp
sq e

sk
k δkk′′δ

sk
s′′k

+ 2e
sp
p δpkδ

sp
ske

sq
q δqk′′δ

sq
s′′k
, (5.39b)

〈
askk a

s′k
k′a

sp
p a

sq
q

〉
= e

sp
p δpqδ

sp
sq e

sk
k δkk′δ

sk
s′k

+ 2e
sp
p δpkδ

sp
ske

sq
q δqk′δ

sq
s′k
. (5.39c)

We note that, on the one hand, the δpq imposes p = −q and, on the other hand, the δkpq imposes k = p+q.

Thus, these two conditions lead to k = 0. Since L
skspsq
0pq = 0, the first term on the right side hand side is

zero, and we get

∂

∂t
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〉
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∑
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k
pqtδ

sp
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e
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k′
pq
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)
dpdq.

(5.40)

After integration and summation of the polarizations, we obtain

∂

∂t

〈
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s′′k
k′′

〉
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s′′ksks
′
k

−k′′−k−k′e
sk
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s′k
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)
, (5.41)

where Ωkk′k′′ = skωk+s
′
kω

′
k+s

′′
kω

′′
k and where we used the relation esk−k = eskk due to the homogeneity of the

turbulence. Further simplifications can be made. Firstly, the interaction coefficient has the following sym-

metry L
sks

′
ks

′′
k

−k−k′−k′′ = L
sks

′
ks

′′
k

kk′k′′ . Secondly, we introduce L
skspsq
kpq ≡ (sqq⊥ − spp⊥)M

skspsq
kpq which is convenient

for the calculations. We obtain
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(5.42)

We observe that M
sks

′
ks

′′
k

kk′k′′ =M
s′′ksks

′
k

k′′kk′ = −M s′ksks
′′
k

k′kk′′ thus the previous expression can be simplified
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(5.43)
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We note that s′′kk
′′ − s′kk

′ = s′′kk
′′ − skk + skk − s′kk

′, and thus
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(5.44)

After integration over time, one has

〈
askk a

s′k
k′a

s′′k
k′′

〉
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,

(5.45)

with

∆ (x) =

∫ t≫1/ω

0
eixτdτ =

eixt − 1

ix
. (5.46)

Now, we can introduce expression (5.45) for the third-order moment into equation (5.34)

∂
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= I1 + I2,

(5.47)

where I1 and I2 are the two integrals involving the interaction coefficients L
skspsq
−kpq and L

s′kspsq
−k′pq

, respectively.

Expressing L
skspsq
kpq as a function of M

skspsq
kpq , the first integral becomes

I1 = 2ϵ2
∑
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(5.48)

We note that ∆ (Ω−kpq) eiΩ
k
pqt = ∆

(
Ωkpq
)
. The long-time behavior is given by the Riemann-Lebesgue lemma

∆(x)
t→∞−−−→ πδ(x) + iP

(
1

x

)
. (5.49)
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After a last change of variable, we find (p, q) → (−p,−q)
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The same manipulation with I2 without performing the change of variable leads to
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(5.51)

and the sum of these two integrals gives
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(5.52)

Using the symmetries of the resonant conditions, we have
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(5.53)

The δ (Ωkpq) allows us to finally rewrite the term in the second line as follows

∂eskk
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πϵ2
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)
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where

L̃
skspsq
kpq ≡

L
skspsq
kpq

skωk
, (5.55)

Ωkpq ≡ skωk+spωp+sqωq and δkpq = δ (k + p+ q). This equation is the main result of the wave turbulence

formalism. It describes the statistical properties of IWW or IKAW turbulence at the leading order, i.e.,

for three-wave interactions.
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5.5.2 Detailed conservation of quadratic invariants

In Section 5.2.3 we introduced the three-dimensional invariants of IEMHD. The first test that the wave tur-

bulence equations must pass is the detailed conservation – i.e., for each triad (k,p, q) – of these invariants.

Starting from the definitions (5.15) and (5.20), we define the energy and momentum spectra

E(k) ≡
∑

sk

eskk = e+k + e−k , (5.56a)

H(k) ≡
∑

sk

skk⊥e
sk
k = k⊥

(
e+k − e−k

)
. (5.56b)

Before checking the energy conservation, it is interesting to note that when one of the polarized energy

density tensors e±k is zero, the other invariant is extremal and verifies the relation H(k) = ±k⊥E(k), which

is in agreement with the realizability condition (Schwarz inequality) |H(k)| ≤ k⊥E(k). From equation

(5.54), we obtain the equation for the (total) energy
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(5.57)

Without forcing and dissipation, energy must be conserved, and this conservation is done at the level of

triadic interactions (detailed energy conservation). The demonstration is straightforward. By applying a

cyclic permutation of wavevectors and polarizations, we find,

∂E(t)

∂t
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= 0,

(5.58)

which proves the conservation of (kinetic) energy on the resonant manifold for each triadic interaction.
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For the second invariant H(t), one has
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(5.59)

The same manipulations as before lead immediately to

∂H(t)
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(5.60)

This proves the conservation of momentum (kinetic helicity) on the resonant manifold for each triadic

interaction.

5.5.3 Helical turbulence

From the wave turbulence equation (5.54), we can deduce several general properties. First, we observe that

there is no coupling between the waves associated with the p and q wavevectors when these wavevectors

are collinear. Second, the nonlinear coupling disappears whenever the wavenumbers p⊥ and q⊥ are equal if

their associated polarities sp and sq are also equal. These properties are also observed in EMHD (for scales

larger than de) and more generally for other helical waves [24, 28, 40, 67, 68]. Note that they can already

be deduced directly from the fundamental equation (5.24). Third, the wave modes (k∥ > 0) are decoupled

from the slow mode (k∥ = 0) which is not described by these wave kinetic equations. This situation is thus

different from wave turbulence in incompressible MHD, where the slow mode has a profound influence on

the nonlinear dynamics.

5.6 Turbulent spectra as exact solutions

5.6.1 Wave kinetic equations for the invariants

The objective of this section is to derive, in the stationary case, the exact power-law solutions of the kinetic

equations for the two invariants, energy, and momentum. To do so, it is necessary to simplify the equations,



138 CHAPTER 5. WAVE TURBULENCE IN INERTIAL EMHD

written for E(k) and H(k), using the axisymmetric assumption. First, we have
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(5.61)

We now develop the energy density tensors inside the integral in terms of energy and momentum spectra.

We note that only terms containing the products of two E(k) or two H(k) will survive for energy, whereas

only the products of E(k)H(k) will survive for helicity. After some algebra, we find for the energy
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(5.62)

and for the momentum
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(5.63)

If we exchange in the integrand the dummy variables, p and q, as well as sp and sq , we can simplify further

the previous expressions to obtain
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αq

Figure 5.2: Triadic relation k⊥ + p⊥ + q⊥ = 0.

To simplify the problem, we will consider an axial symmetry with respect to the external magnetic field

and introduce the two-dimensional anisotropic spectra

Ek = E
(
k⊥, k∥

)
= 2πk⊥E

(
k⊥, k∥

)
, (5.66a)

Hk = H
(
k⊥, k∥

)
= 2πk⊥H

(
k⊥, k∥

)
, (5.66b)

which result from an integration over the angles in the plane perpendicular to the mean magnetic field

(see Figure 5.2). In polar coordinates dpdq = p⊥dαqdp⊥dp∥dq∥ and, thanks to the Al-Kashi formula:

q2⊥ = k2⊥ + p2⊥ − 2k⊥p⊥ cosαq, we find at fixed k⊥ and p⊥, q⊥dq⊥ = k⊥p⊥ sinαqdαq. Using expression

(5.55), we then obtain the kinetic equations
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(5.67)

where ∆⊥ the integration domain verifies the resonance condition k⊥ + p⊥ + q⊥ = 0 (cf., Figure 5.3) and
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
 , (5.68)

with αq the angle between k⊥ and p⊥ in the triangle defined by the triadic interaction (k⊥,p⊥, q⊥) (see

Figure 5.2). Equations (5.67) will be used to derive exact solutions also called Kolmogorov–Zakharov

spectra.
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Figure 5.3: Illustration of the Kuznetsov–Zakharov transformation. It consists of swapping regions I and III
with regions II and IV, respectively. We specify that the gray band is defined up to infinity and corresponds
to the domain ∆⊥. The same manipulation is done on the parallel wavenumbers.

5.6.2 Kolmogorov–Zakharov spectra

Equations (5.67) have sufficient symmetry to apply the bi-homogeneous conformal Kuznetsov–Zakharov

transformation [72]. This transformation has been applied to several problems involving anisotropy [28, 29,

42]. It is a generalization of the Zakharov transformation applied to isotropic turbulence (in the context of

strong 2D HD turbulence, see also [41]). With such an operation, we are able to find the exact stationary

solutions of the kinetic equations in power law form. The bihomogeneity of the integrals in the wavenumbers

k⊥ and k∥ allows us to use the transformations (see Figure 5.3)

p⊥ → k2⊥/p⊥, (5.69a)

q⊥ → k⊥q⊥/p⊥, (5.69b)

p∥ → k2∥/p∥, (5.69c)

q∥ → k∥q∥/p∥. (5.69d)

We apply this transformation first on the energy equation (5.67) which means that we are looking for

constant energy flux solutions. We seek stationary solutions in the power law form,

E
(
k⊥, k∥

)
= CEk

−x
⊥
∣∣k∥
∣∣−y , (5.70a)

H
(
k⊥, k∥

)
= CHk

−x̃
⊥
∣∣k∥
∣∣−ỹ , (5.70b)
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where CE and CH are two constants with CE ≥ 0. (We consider only positive parallel wavenumber since

it is symmetric in k∥.) The new form of the integral, resulting from the summation of the integrand in its

primary form and after the Kuznetsov–Zakharov transformation, can be written as
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(5.71)

with the pure energy contribution
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and the pure helicity contribution

ΞH = k−1−x̃
⊥

∣∣k∥
∣∣−ỹq−1−x̃

⊥
∣∣q∥
∣∣−ỹ
[
1− sksp

(
p⊥
k⊥

)−x̃−2 ∣∣∣∣
p∥
k∥

∣∣∣∣
−ỹ][

1−
(
p⊥
k⊥

)2x̃−3 ∣∣∣∣
p∥
k∥

∣∣∣∣
2ỹ−1

]
. (5.73)

We can distinguish two different types of solutions. First, there are the thermodynamic equilibrium solu-

tions, which correspond to the equipartition state for which the energy flux is zero. The power laws which

verify this condition are,

E
(
k⊥, k∥

)
= CEk⊥,

H
(
k⊥, k∥

)
= CHk

2
⊥.

(5.74a)

(5.74b)

These results can be easily verified by direct substitution in the original kinetic equations. In general, this

stationary state cannot be reached in the presence of helicity because the value sksp = −1 prevents the

cancellation of the integral. There is, however, a particular case where the solutions exist: it is the state

of maximal helicity for which either e+k = 0 or e−k = 0. Then, we have the relation Hk = ±k⊥Ek. But this

state is not viable as we can see in equation (5.54): for example, if e−k = 0 at time t = 0, it will not remain

zero at time t > 0. This means that this solution is only possible if there is an external mechanism that

forces the system to remain in the maximal helicity state.

The most interesting solutions are those for which the energy flux is constant, non-zero, and finite.

These exact solutions are called Kolmogorov–Zakharov (KZ) spectra and correspond to the values which
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make the integral cancels in a non-trivial way and independently of the polarization. These spectra are

E
(
k⊥, k∥

)
= CEk

−5/2
⊥

∣∣k∥
∣∣−1/2

,

H
(
k⊥, k∥

)
= CHk

−3/2
⊥

∣∣k∥
∣∣−1/2

.

(5.75a)

(5.75b)

They are not constrained by the polarization and can therefore be reached by the system even in the

presence of helicity. For the helicity equation, using the same manipulations as before, we obtain

∂Hk

∂t
=
ϵ2Ω2

e

213
CECH

∑

skspsq

∫

∆⊥

skspk∥p∥
k2⊥p⊥q

2
⊥

(
sqq⊥ − spp⊥

skωk

)2

(skk⊥ + spp⊥ + sqq⊥)
2 sinαq

× k−x−x̃⊥
∣∣k∥
∣∣−y−ỹ

[
1− sksp

(
p⊥
k⊥

)x+x̃−4 ∣∣∣∣
p∥
k∥

∣∣∣∣
y+ỹ−1

]

×
[(

q⊥
k⊥

)−x ∣∣∣∣
q∥
k∥

∣∣∣∣
−y (

1− sksp

(
p⊥
k⊥

)−x̃−2 ∣∣∣∣
p∥
k∥

∣∣∣∣
−ỹ)

+sksq

(
q⊥
k⊥

)−x̃−1 ∣∣∣∣
q∥
k∥

∣∣∣∣
−ỹ (

1−
(
p⊥
k⊥

)−x−1 ∣∣∣∣
p∥
k∥

∣∣∣∣
−y)]

δ (Ωkpq) δk∥p∥q∥dp⊥dq⊥dp∥dq∥.

(5.76)

The zero helicity flux solutions satisfy,

E
(
k⊥, k∥

)
= CEk⊥,

H
(
k⊥, k∥

)
= CHk

2
⊥,

(5.77a)

(5.77b)

which correspond to the thermodynamic spectra found for energy (this can be seen directly from equation

(5.70)). For the KZ spectra, we have a family of solutions that meet the following criteria

x+ x̃ = 4,

y + ỹ = 1.

(5.78a)

(5.78b)

The situation is worse than for energy because none of the constant helicity flux solutions (thermodynamic

or KZ) can be reached in general because of the presence of the product sksp which, let us recall, prevents

the cancellation of the term in the right-hand side of expression (5.76). Only the maximal helicity state

allows the existence of these stationary spectra but, as said above, it is not a naturally viable state. (Note

that this property found in weak wave turbulence may not be true in strong turbulence.)

In conclusion, the most relevant solutions are the KZ spectra at constant energy flux. In Section 5.8
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we will further investigate the corresponding exact solution for H = 0 in order to find the direction of the

energy cascade and the expression of the Kolmogorov constant. In space plasma physics, we often compare

theoretical predictions with the magnetic spectrum EBk which is well measured by spacecraft (with the

Taylor hypothesis, the frequency is used as a proxy for the wavenumber). In our case, a simple dimensional

analysis based on the definition of energy (5.15), leads to the relation Ek ∼ k2⊥E
B
k . Consequently, we

obtain EBk ∼ k
−9/2
⊥ , which is steeper than the predictions made at scales larger than de.

5.6.3 Locality conditions

We have seen that the most interesting exact solutions of the kinetic equations are the KZ spectra at

constant energy flux. However, these solutions are only entirely relevant if they satisfy the locality condition.

Mathematically, this condition means that the integral must be convergent. If it is not the case, it means

that the inertial range is dependent on the largest or smallest scales, where forcing and dissipation are

expected. The calculation of the locality condition is highly non-trivial in this anisotropic case. Note that

the study of locality is still a subject of investigation [19]. In the absence of helicity, we find the following

conditions

3 < x+ 2y < 4, (5.79a)

2 < x+ y < 4. (5.79b)

We obtain a classical result for wave turbulence, in the sense that the power law indices of the KZ spectra

fall exactly in the middle of the convergence domain (see Figure 5.4).

The objective is to find the locality domain of the power law solutions at constant energy flux and

(for simplicity) in the absence of helicity. In other words, we want to check if the contribution of non-

local interactions is not dominant. There are three areas (regions A, B, and C in Figure 5.5) for which

the interactions are non-local. To do this, it is convenient to introduce the adimensional wavenumbers

p̃⊥ ≡ p⊥/k⊥, p̃∥ ≡ p∥/k∥, q̃⊥ ≡ q⊥/k⊥ and q̃∥ ≡ q∥/k∥. We obtain (H = 0):

∂Ek
∂t

=
ϵ2C2

E

212Ωe
k4−2x
⊥ k−2y

∥
∑

skspsq

∫

∆⊥

sksp
p̃∥

p̃⊥q̃2⊥
(sq q̃⊥ − spp̃⊥)

2 (sk + spp̃⊥ + sq q̃⊥)
2 sinαq

× q̃−x⊥ q̃−y∥

(
1− p̃−1−x

⊥ p̃−y∥

)
δ

(
sk + sp

p̃∥
p̃⊥

+ sq
q̃∥
q̃⊥

)
δ
(
1 + p̃∥ + q̃∥

)
dp̃⊥dq̃⊥dp̃∥dq̃∥.

(5.80)
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Figure 5.4: Domain of convergence of the energy integral. The black dot at the center of the domain
corresponds to the KZ energy spectrum.

This expression can be integrated into parallel directions. We recall the following property,

∫

R
f(x)δ (g(x)) dx =

∑

i

f (xi)

|g′ (xi)|
, such as g (xi) = 0. (5.81)

Then, we have

δ
(
1 + p̃∥ + q̃∥

)
−→ q̃∥ = −1− p̃∥, (5.82a)

δ

(
sk + sp

p̃∥
p̃⊥

+ sq
q̃∥
q̃⊥

)
−→ p̃∥ = p̃⊥

skq̃⊥ − sq
sqp̃⊥ − spq̃⊥

. (5.82b)

We obtain

∂Ek
∂t

=
ϵ2C2

E

212Ωe
k4−2x
⊥

∣∣k∥
∣∣−2y

∑

skspsq

∫

∆⊥

skspq̃
−x−y−2
⊥ (sq q̃⊥ − spp̃⊥)

2 (sk + spp̃⊥ + sq q̃⊥)
2

× sinαq
skq̃⊥ − sq
sqp̃⊥ − spq̃⊥

∣∣∣∣
sp − skp̃⊥
sqp̃⊥ − spq̃⊥

∣∣∣∣
−y (

1− p̃−x−y−1
⊥

∣∣∣∣
skq̃⊥ − sq
sqp̃⊥ − spq̃⊥

∣∣∣∣
−y)

×
∣∣∣∣

p̃⊥q̃⊥
spq̃⊥ − sqp̃⊥

∣∣∣∣ dp̃⊥dq̃⊥,

(5.83)

where sinαq =
√

1−
(
1 + p̃2⊥ − q̃2⊥

)2
(2p̃⊥)

−2.
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C

Figure 5.5: The kinetic equations are integrated on a domain verifying k + p + q = 0. The gray strip
corresponds to this domain for the adimensional perpendicular wavevectors. A, B, and C (at infinity) are
the non-local regions where the convergence of the integrals must be checked.

Zone A

We define p̃⊥ = 1 + r cosβ and q̃⊥ = r sinβ, with r ≪ 1 and β ∈ [π/4, 3π/4]. Two cases must be

distinguished: when sk = sp and when sk = −sp. An evaluation (in leading order) of the different terms

of the integral (5.83) is given in Table 1. Note that these evaluations take into account the possible

cancellation of the integral due to β symmetry.

sk = sp sk = −sp
sk q̃⊥−sq
sq p̃⊥−spq̃⊥ −1 −1∣∣∣ sp−skp̃⊥
sq p̃⊥−spq̃⊥

∣∣∣ r| cosβ| 2

(sq q̃⊥ − spp̃⊥)
2 1 1

(sk + spp̃⊥ + sq q̃⊥)
2 4 r2

sin θ r
√− cos 2β r

√− cos 2β

1− p̃−x−y−1
⊥

∣∣∣ sk q̃⊥−sq
sq p̃⊥−spq̃⊥

∣∣∣
−y

∝ r2 cos2 β ∝ r2 cos2 β∣∣∣ p̃⊥q̃⊥
spq̃⊥−sq p̃⊥

∣∣∣ r |sinβ| r |sinβ|
dp̃⊥dq̃⊥ rdrdβ rdrdβ

Table 5.1: Evaluation, in leading order, of the different terms of the integral (5.83) in Zone A.

When sk = sp, the criterion of convergence of the kinetic equation (5.83) will be given by the following

integral ∫ R<1

0
r3−x−2ydr

∫ 3π/4

π/4
|cosβ|2−y

√
− cos 2β (sinβ)−1−x−y dβ. (5.84)
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Therefore, there is convergence if x+ 2y < 4. When sk = −sp, we have

∫ R<1

0
r5−x−ydr

∫ 3π/4

π/4
cos2 β

√
− cos 2β (sinβ)−1−x−y dβ (5.85)

and the convergence is obtained if x+ y < 6.

Zone B

We define p̃⊥ = r cosβ and q̃⊥ = 1 + r sinβ, with this time β ∈ [−π/4, π/4]. We have two cases: sk = sq

and sk = −sq. An evaluation (in leading order) of the different terms of the integral (5.83) is given in

Table 2. Note that these evaluations take into account the possible cancellation of the integral due to β

symmetry.

sk = sq sk = −sq
sk q̃⊥−sq
sq p̃⊥−spq̃⊥ skspr

2 sin2 β −2sksp∣∣∣ sp−skp̃⊥
sq p̃⊥−spq̃⊥

∣∣∣ 1 1

(sq q̃⊥ − spp̃⊥)
2 1 1

(sk + spp̃⊥ + sq q̃⊥)
2 4 r2

sin θ
√
1− tan2 β

√
1− tan2 β

1− p̃−x−y−1
⊥

∣∣∣ sk q̃⊥−sq
sq p̃⊥−spq̃⊥

∣∣∣
−y

1− (r cosβ)−x−y−1 |r sinβ|−y 1− 2−y (r cosβ)−x−y−1

∣∣∣ p̃⊥q̃⊥
spq̃⊥−sq p̃⊥

∣∣∣ r |cosβ| r |cosβ|
dp̃⊥dq̃⊥ rdrdβ rdrdβ

Table 5.2: Evaluation, in leading order, of the different terms of the integral (5.83) in Zone B.

When sk = sq, the criterion of convergence of the kinetic equation (5.83) will be given by the following

integral ∫ R<1

0
r3−x−2ydr

∫ +π/4

−π/4
(cosβ)−x−y |sinβ|2−y

√
1− tan2 βdβ. (5.86)

Therefore, there is convergence if x+ 2y < 4. When sk = −sq, we have

∫ R<1

0
r3−x−ydr

∫ +π/4

−π/4
(cosβ)−x−y

√
1− tan2 βdβ (5.87)

and the convergence is obtained if x+ y < 4.
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Zone C

We define p̃⊥ = (τ2 − τ1)/2 and q̃⊥ = (τ1 + τ2)/2, with −1 ≤ τ1 ≤ 1 and 1 ≪ τ2. We have two cases:

sp = sq and sp = −sq. An evaluation (in leading order) of the different terms of the integral (5.83) is given

in Table 3. Note that these evaluations take into account the possible cancellation of the integral due to

τ1 symmetry. When sp = sq, the criterion of convergence of the kinetic equation (5.83) will be given by

sp = sq sp = −sq
sk q̃⊥−sq
sq p̃⊥−spq̃⊥ −sksp/2 −sksp/2∣∣∣ sp−skp̃⊥
sq p̃⊥−spq̃⊥

∣∣∣
∣∣τ2τ−1

1

∣∣ /2 1/2

(sq q̃⊥ − spp̃⊥)
2 τ21 τ22

(sk + spp̃⊥ + sq q̃⊥)
2 τ22 1 + τ21

sin θ
√
1− τ21

√
1− τ21

1− p̃−x−y−1
⊥

∣∣∣ sk q̃⊥−sq
sq p̃⊥−spq̃⊥

∣∣∣
−y

1− 2x+2y+1τ−x−2y−1
2 |τ1|y 1− 2x+y−1τ−x−y−1

2∣∣∣ p̃⊥q̃⊥
spq̃⊥−sq p̃⊥

∣∣∣ τ22
∣∣τ−1

1

∣∣ /4 τ2/4

dp̃⊥dq̃⊥ ∝ dτ1dτ2 ∝ dτ1dτ2

Table 5.3: Evaluation, in leading order, of the different terms of the integral (5.83) in Zone C.

the following integral ∫ +1

−1

√
1− τ21 |τ1|y+1 dτ1

∫ +∞

τ>1
τ−x−2y+2
2 dτ2. (5.88)

Therefore, there is convergence if 3 < x+ 2y. When sp = −sq, we have

∫ +1

−1

(
1 + τ21

)√
1− τ21dτ1

∫ +∞

τ>1
τ−x−y+1
2 dτ2, (5.89)

and the convergence is obtained if 2 < x+ y.

In conclusion, a solution is local if the following conditions are satisfied

3 < x+ 2y < 4,

2 < x+ y < 4.

(5.90a)

(5.90b)

We notice that the KZ spectrum for the energy corresponds to x+ 2y = 7/2 and x+ y = 3. These values

are thus exactly in the middle of the convergence domain.
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5.6.4 Domain of validity of inertial electron waves turbulence

The inertial whistler wave turbulence theory presented here is an asymptotic theory that relies on the

separation of time scales. Specifically, it assumes that the transfer time is significantly greater than the

period of the linear waves. Due to this assumption, the theory does not hold uniformly across the entire

k-space. To establish the domain of validity, one must begin with the kinetic equation, for which we have

obtained the precise KZ solutions. By performing a dimensional analysis of Equation (5.67), we ascertain

that the transfer time scales as (with Ωe ∼ 1):

τtr ∼
1

ϵ2Ek
k−4
⊥ k−1

∥ . (5.91)

By including the KZ solution in the previous equation, we obtain τtr ∼ ϵ−2k
−3/2
⊥ k

−1/2
∥ , and simple manip-

ulation of the condition τ1 ≪ τtr leads to the inequality

ϵ4/3k
5/3
⊥ ≪ k∥ . (5.92)

Equation (5.92) represents the condition for the validity of the IWW/IKAW turbulence theory in the

context of three-wave interactions. It is important to highlight that this condition does not contradict the

assumption of anisotropy (k∥ ≪ k⊥) as the small parameter ϵ is present. Hence, there exists a region in

k-space where the theory remains valid. It is worth noting that in the prohibited region characterized by

small k∥ or large k⊥, higher-order processes such as four-wave interactions could be considered to accurately

describe the system [49, 55, 66].

5.7 Super-local interactions

In this section, we shall study the limit of local triadic interactions (in the perpendicular direction) for

which the wave kinetic equations simplify significantly. From the results found in the previous section, we

know that it is mainly relevant to study energy only. In the strongly anisotropic limit k∥ ≪ k⊥, equation

(5.67) writes

∂Ek
∂t

=
∑

skspsq

∫
T
skspsq
kpq dp⊥dp∥dq⊥dp∥. (5.93)
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By definition (the small parameter ϵ is absorbed in the time variable)

T
skspsq
kpq =

Ω2
e

212
skspk∥p∥
k2⊥p

2
⊥q

2
⊥

(
sqq⊥ − spp⊥

skωk

)2

(skk⊥ + spp⊥ + sqq⊥)
2 sinαq

× Eq (p⊥Ek − k⊥Ep) δ (Ωkpq) δk∥p∥q∥ ,

(5.94)

is the nonlinear operator which describes the energy transfer between modes which verifies the following

symmetry

T
skspsq
kpq = −T spsksqpkq . (5.95)

In the limit of super-local interactions, we can write

p⊥ = k⊥(1 + ϵp) ; q⊥ = k⊥(1 + ϵq), (5.96)

with 0 ≪ ϵp ≪ 1 and 0 ≪ ϵq ≪ 1. We can introduce an arbitrary function f
(
k⊥, k∥

)
and integrate the

kinetic equation to find

∂

∂t

∫
f
(
k⊥, k∥

)
Ekdk⊥dk∥ =

∑

skspsq

∫
f
(
k⊥, k∥

)
T
skspsq
kpq dk⊥dp⊥dq⊥dk∥dp∥dq∥

=
1

2

∑

skspsq

∫ [
f
(
k⊥, k∥

)
− f

(
p⊥, p∥

)]
T
skspsq
kpq dk⊥dk∥dp⊥dp∥dq⊥dp∥.

(5.97)

Neglecting the parallel wavenumber contribution (this assumption is fully compatible with the weak cascade

along the parallel direction – see arguments based on the resonance condition), for local interactions we

have

f
(
p⊥, p∥

)
=

+∞∑

n=0

(p⊥ − k⊥)
n

n!

∂n

∂kn⊥
f
(
k⊥, k∥

)
=

+∞∑

n=0

ϵnp
kn⊥
n!

∂n

∂kn⊥
f
(
k⊥, k∥

)
. (5.98)

In the main order, we can write

∂

∂t

∫
f
(
k⊥, k∥

)
Ekdk⊥dk∥ =

− 1

2

∂

∂k⊥


 ∑

skspsq

∫
ϵpk⊥T

skspsq
kpq

∂

∂k⊥
f
(
k⊥, k∥

)
dk⊥dk∥dp⊥dp∥dq⊥dp∥


 .

(5.99)
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Using integration by part, we find the relation

∂Ek
∂t

=
1

2

∂

∂k⊥


 ∑

skspsq

∫
ϵpk⊥T

skspsq
kpq dp⊥dp∥dq⊥dp∥


 . (5.100)

The asymptotic form of T
skspsq
kpq can be found by using the locality in the perpendicular direction. In

particular, we find the relations

k2⊥p
2
⊥q

2
⊥ = k6⊥, (5.101a)

(
sqq⊥ − spp⊥

skωk

)2

=
k4⊥
Ω2
ek

2
∥
(sq − sp)

2 , (5.101b)

(skk⊥ + spp⊥ + sqq⊥)
2 = k2⊥ (sk + sp + sq)

2 , (5.101c)

Eq (p⊥Ek − k⊥Ep) = −ϵp
2
k4⊥

∂

∂k⊥

(
Ek
k⊥

)2

, (5.101d)

sinαq = sinπ/3 =
√
3/2, (5.101e)

δΩkpq
=

k⊥
Ωe
δ
(
skk∥ + spp∥ + sqq∥

)
. (5.101f)

After simplification, we arrive at

T
skspsq
kpq =− ϵp

√
3

214
1

Ωe

spp∥
skk∥

k5⊥ (sq − sp)
2 (sk + sp + sq)

2 ∂

∂k⊥

(
Ek
k⊥

)2

× δ
(
skk∥ + spp∥ + sqq∥

)
δ
(
k∥ + p∥ + q∥

)
.

(5.102)

With this form we see that the transfer will be significantly higher when sp = −sq, therefore we will only

consider this type of interaction. Then, the expression of the transfer reduces to

T
sksp−sp
kpq = −ϵp

√
3

212
1

Ωe

spp∥
skk∥

k5⊥∂k⊥ (Ek/k⊥)
2 δ
(
skk∥ + spp∥ − spq∥

)
δ
(
k∥ + p∥ + q∥

)
. (5.103)

The resonance condition leads to two possible combinations for the parallel wavenumbers,

k∥ + p∥ − q∥ = 0 and k∥ + p∥ + q∥ = 0, (5.104a)

k∥ − p∥ + q∥ = 0 and k∥ + p∥ + q∥ = 0. (5.104b)

The solution corresponds either to q∥ = 0 or p∥ = 0, which means in particular that the strong locality

assumption is not allowed for the parallel direction. The second solution cancels the transfer, therefore, we
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will only consider the first solution for which we have (with p∥ = −k∥). We find

∂Ek
∂t

=
1

2

∂

∂k⊥

(∫
ϵpk⊥T

++−
kpq dp⊥dp∥dq⊥dp∥

)
=

√
3

213
1

Ωe

∂

∂k⊥

[
k8⊥

∂

∂k⊥

(
Ek
k⊥

)2
]∫ +ϵ̃

−ϵ̃
ϵ2pdϵp

∫ +ϵ̃

−ϵ̃
dϵq.
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We finally obtain the nonlinear diffusion equation

∂Ek
∂t

= C
∂

∂k⊥

[
k7⊥Ek

∂

∂k⊥

(
Ek
k⊥

)]
, (5.106)

where C = ϵ̃4/
(
210

√
3Ωe

)
. This equation has been derived analytically from the kinetic equations in the

limit of super-local (perpendicular) interactions and when H = 0. It gives the first interesting description

of wave turbulence in IEMHD. In particular, the thermodynamic and KZ spectra are exact solutions. We

can also prove that the corresponding energy flux is positive, and thus that the cascade is direct.

It is interesting to note that a similar nonlinear diffusion equation has been obtained, in the same

approximation of wave turbulence, for EMHD [16, 57] and rotating hydrodynamics [32]. The numerical

simulations of this equation reveal the existence of an energy spectrum close to k
−8/3
⊥ during the non-

stationary phase that is steeper than the KZ spectrum. This solution has been understood as a self-similar

solution of the second kind (which means it cannot be predicted analytically). It is also shown that once the

energy spectrum reaches the dissipative scales, a spectral bounce appears which affects the whole inertial

range to finally form the expected KZ spectrum in k
−5/2
⊥ . In the forthcoming chapter, we will establish a

connection between the nonlinear diffusion equation and autonomous systems. This link will enable us to

accurately determine the energy spectrum exponent during the non-stationary phase, bridging partial and

ordinary differential equations and potentially providing an analytical framework to address this unresolved

question.

5.8 Direction of the energy cascade and Kolmogorov constant

5.8.1 Direct energy cascade

In this section, we will study the sign of the energy flux from the kinetic equations (5.71) and prove that

the cascade in the perpendicular direction is direct. In cylindrical coordinates (see figure 5.6), we have [72]

∂E(k)

∂t
= −∇ ·Π = − 1

k⊥

∂ (k⊥Π⊥(k))
∂k⊥

−
∂Π∥(k)

∂k∥
, (5.107)
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Π∥(k)

Π⊥(k)

Figure 5.6: Schematic representation of an axisymmetric flux in Fourier space, where each cylindrical shell
represents a specific value of k⊥. While in theory, these shells form a continuum, their discrete nature in
this illustration helps to provide visual clarity.

where Π is the energy flux vector, Π⊥, and Π∥ its perpendicular and parallel components (axisym-

metric turbulence is assumed), respectively. Introducing the axisymmetric spectra Ek ≡ 2πk⊥E(k),

Π⊥ ≡ 2πk⊥Π⊥(k) and Π∥ ≡ 2πk⊥Π∥(k), we obtain

∂Ek
∂t

= −∂Π⊥
∂k⊥

−
∂Π∥
∂k∥

. (5.108)

We now introduce the adimensional variables p̃⊥ ≡ p⊥/k⊥, q̃⊥ ≡ q⊥/k⊥, p̃∥ ≡ p∥/k∥ and q̃∥ ≡ q∥/k∥.

We seek power-law solutions of the form (5.70) and then obtain

∂Ek
∂t

=
ϵ2

213Ωe

[
k4−2x
⊥

∣∣k∥
∣∣−2y

C2
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⊥
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∣∣−2ỹ

C2
HIH(x̃, ỹ)

]
, (5.109)

where

IE(x, y) =
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(5.110)
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and

IH(x̃, ỹ) =
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skspsq
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Taking the limits, corresponding to the KZ spectra, (x, y, x̃, ỹ) → (5/2, 1/2, 3/2, 1/2), thanks to the Hospital

rule, we can write (
ΠKZ

⊥
ΠKZ

∥

)
=

ϵ2

213Ωe

(
k−1
∥
k−1
⊥

)[
C2
E

(
I⊥
I∥

)
+ C2

H

(
J⊥
J∥

)]
, (5.112)

where
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and
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J∥
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Therefore, the ratio of the two fluxes is

ΠKZ
∥

ΠKZ
⊥

=
k∥
k⊥

C2
EI∥ + C2

HJ∥
C2
EI⊥ + C2

HJ⊥
. (5.115)

Since it is proportional to k∥/k⊥, we expect ΠKZ
∥ ≪ ΠKZ

⊥ , which is in agreement with the analysis based

on the resonance condition to find the direction of the cascade. In the absence of helicity, the ratio (5.115)

only depends on k∥/k⊥ ≪ 1 and I∥/I⊥; we numerically find I∥/I⊥ ≃ 0.73, then the previous expectation is

fulfilled.

We can also find the sign of the energy flux and thus prove the direction of the cascade. Since the

perpendicular flux is dominant, we will neglect the parallel flux and only look for the sign of I⊥. A

numerical evaluation reveals a positive value, which means that Π⊥ > 0 and that the energy cascade is

direct in the transverse direction.
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Figure 5.7: Left: integrand of I⊥ which is always positive. Center: integrand of I∥ whose sign depends on
the perpendicular wavenumbers. Right: integrand of I⊥ divided by the integrand of I∥. The blue color
corresponds to negative values and the red color to positive values. On the right, the dark colors testify
that the integrand of I⊥ is greater than that of I∥ in modulus.

In Figure 5.7, we show the sign of the integrands of I⊥ and I∥ obtained from a numerical evaluation of

expressions (5.113) after integration over the parallel wavenumbers, and for relatively small perpendicular

dimensionless wavenumbers (< 5). We see that for I⊥ the integrand is always positive, while for I∥

the integrand can be either positive or negative depending on the perpendicular wavenumbers (for large

perpendicular wavenumbers it is always positive), but, overall, the positive sign dominates in the sense

that the integral I∥ > 0. Therefore, the parallel cascade is also direct, but it is composed of different

contributions, with some triadic interactions contributing to an inverse cascade.

5.8.2 Kolmogorov constant

If we neglect the parallel flux and helicity, we can also obtain the expression of the Kolmogorov constant

CK , for which we can numerically get an estimate. To do so, we take advantage of the Dirac distributions

to integrate the parallel wavenumbers. Then, since I⊥ is only defined on the region ∆⊥, we introduce the

change of variable q̃⊥ ≡ ξ− p̃⊥ where ξ ∈ [1,+∞[ and p̃⊥ ∈
[
ξ−1
2 , ξ+1

2

]
that confines the integration to this

domain (see Figure 5.8). We obtain

I⊥ =

∫ a=+∞

a=1

∫ p̃⊥=(a+1)/2

p̃⊥=(a−1)/2

∑

skspsq

Kskspsq
1p̃q̃ dadp̃⊥, (5.116)
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p̃⊥

q̃⊥

1

1
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1 p̃⊥
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1 q̃⊥

p̃⊥
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q̃⊥ p̃⊥

1
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− 1
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Figure 5.8: Left: The kinetic equation (5.83) is integrated over a domain verifying k⊥ + p⊥ + q⊥ = 0,
which corresponds to an infinite band where the boundaries are flattened triangles. Regions A, B and C (at
infinity) are those for which the triadic interactions are non-local. We define q̃⊥ = a − p̃⊥, ∀a ∈ [1,+∞[,
to restrict the numerical integration to the domain ∆⊥. Right: Representation of the non-local triadic
interactions for regions A, B and C.

where
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(5.117)

is a coefficient with the following symmetries Kskspsq
1p̃q̃ = K−sk−sp−sq

1p̃q̃ , which reduces by two the number of

integrals to compute (four instead of eight). A numerical integration of (5.116) gives finally

CK = 64

√
2

I⊥
≃ 8.474 . (5.118)

The numerical convergence of CK to this value is shown in Figure 5.9 and, one finds at a given k∥,

Ek =
√
Π⊥ΩeCKk

−5/2
⊥ (5.119)
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Figure 5.9: Convergence of CK as a function of ξ.

5.9 Connection with fast rotating hydrodynamics

Interestingly, Equations (5.8) and (5.10) have also been found in the case of hydrodynamics turbulence

under fast rotation [38, 47, 50]. The same analysis and results can be obtained for this problem (up to

a constant factor). In fact, this work has already been conducted by Galtier [28], except for verifying

the locality of the kinetic equations and computing the Kolmogorov constant. Since the equations are

exactly the same (up to a constant factor), the locality is also confirmed for fast-rotating hydrodynamics

turbulence. The Kolmogorov constant is slightly modified due to the numerical factor associated with the

constant, yielding CK ≃ 0.749. Further details can be found in David and Galtier [17].

5.10 Discussion and conclusion

In this chapter, we have developed a wave turbulence theory for inertial electron MHD (i.e., for scales

smaller than de) mediated by three-wave interactions between inertial whistler waves or between inertial

kinetic Alfvén waves. The asymptotic wave kinetic equations are derived for the two quadratic invariants

of the system, namely energy, and momentum. The theory is expected to be relevant mainly for ion-

electron plasmas such as the Earth’s magnetosheath, the solar corona, or the solar wind [47], but also

for electron-positron plasmas [45]. We show that this turbulence is mainly characterized by a direct

energy cascade in the direction perpendicular to the strong applied magnetic field. The role of the second

invariant, the momentum or kinetic helicity, is less important because in general there is no exact solution

at constant helicity flux (except for the state of maximal helicity). By converting the exact solution
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(Kolmogorov–Zakharov spectrum) into the unit of magnetic field, which is easier to measure in space

plasma, we find a magnetic energy spectrum EB ∼ k
−9/2
⊥ . It is interesting to note that this power law

is steeper than that observed in the solar wind at sub-MHD scales – satisfying kde < 1 – with a power

law index often close to −8/3 [1, 59, 63] (cf., Figure 4.1) whereas, at kde > 1, power law indices close to

−11/3 are observed [61, 63] as well as −9/2 [62] but in a narrow frequency range. The former matches the

strong turbulence prediction [9, 46], while the latter is in adequation with the wave turbulence one. In the

absence of helicity, we prove that the energy cascade is direct and numerically estimate the Kolmogorov

constant using its analytical expression. We also prove that the Kolmogorov–Zakharov spectrum is in the

domain of convergence, showing the relevance of the exact solution.

An interesting point concerns the dynamics of the two-dimensional state (i.e., the slow modes for which

k∥ = 0). We see from the kinetic equation (5.67) that the nonlinear transfer for energy and helicity decreases

linearly with k∥, and for the value k∥ = 0 the transfer is exactly null. This means that the dynamics of

the slow modes decouple from the three-dimensional state. The slow modes are not described by the wave

turbulence theory, which is based on the time scales separation τL ≪ τNL (when k∥ → 0 this inequality

cannot be satisfied). The possibility that higher-order processes, such as four-wave interactions, could lead

to a coupling between two-dimensional and three-dimensional modes has been discussed in the past by

[66] in the context of inertial waves in rotating hydrodynamics. Since it is a similar problem, this scenario

could also be relevant here.

In the limit of super-local (perpendicular) interactions, we derive a nonlinear diffusion equation that

exhibits similarities with the equations found in electron MHD at scales larger than de, as well as in the

context of inertial wave turbulence (turbulence in fast-rotating fluids). The link is deeper than that, since

the two problems share the same kinetic equations (within a factor) with the same dispersion relation

(within a factor). This connection is due to a strong asymmetry imposed by a mean magnetic field on the

one hand and by the axis rotation on the other hand. It is also due to the helical nature of the waves.

This reinforces the bridge between plasma physics and fluid mechanics (see also [32]) and suggests that

laboratory experiments [48, 69] can help to better understand space plasma physics at a scale still difficult

to detect by current spacecraft.
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of inertial kinetic-alfvén turbulence,” The Astrophysical Journal, vol. 870, no. 2, p. 103, Jan. 2019.

[61] F. Sahraoui, M. L. Goldstein, P. Robert, and Y. V. Khotyaintsev, “Evidence of a cascade and dissi-

pation of solar-wind turbulence at the electron gyroscale,” Phys. Rev. Lett., vol. 102, p. 231 102, 23

Jun. 2009.

[62] F. Sahraoui et al., “Scaling of the electron dissipation range of solar wind turbulence,” Astrophys.

J., vol. 777, no. 1, p. 15, Oct. 2013.

[63] F. Sahraoui, L. Hadid, and S. Huang, “Magnetohydrodynamic and kinetic scale turbulence in the

near-earth space plasmas: A (short) biased review,” Reviews of Modern Plasma Physics, vol. 4, no. 1,

p. 4, Feb. 2020.

[64] C. Savaro et al., “Generation of weakly nonlinear turbulence of internal gravity waves in the coriolis

facility,” Phys. Rev. Fluids, vol. 5, p. 073 801, 7 Jul. 2020.

[65] V. Shrira et al., Advances in Wave turbulence. World Scientific, 2013, vol. 83.

[66] L. Smith and F. Waleffe, “Transfer of energy to two-dimensional large scales in forced, rotating

three-dimensional turbulence,” Physics of Fluids, vol. 11, no. 6, pp. 1608–1622, 1999.

[67] L. Turner, “Using helicity to characterize homogeneous and inhomogeneous turbulent dynamics,” J.

Fluid Mech., vol. 408, no. 1, pp. 205–238, 2000.



REFERENCES 163

[68] F. Waleffe, “The nature of triad interactions in homogeneous turbulence,” Phys. Fluids A, vol. 4,

no. 2, pp. 350–363, 1992.

[69] E. Yarom and E. Sharon, “Experimental observation of steady inertial wave turbulence in deep

rotating flows,” Nature Physics, vol. 10, no. 7, pp. 510–514, Jul. 2014.

[70] V. E. Zakharov and N. N. Filonenko, “Energy spectrum for stochastic oscillations of the surface of a

liquid,” Dokl. Akad. Nauk SSSR, vol. 170, no. 6, pp. 1292–1295, 1966.

[71] V. E. Zakharov and N. N. Filonenko, “Weak turbulence of capillary waves,” J. Appl. Mech. Tech.

Phys., vol. 8, no. 5, pp. 37–40, 1967.

[72] V. E. Zakharov, V. S. L’Vov, and G. Falkovich, Kolmogorov spectra of turbulence I: Wave turbulence.

Springer Berlin, Heidelberg, 1992.

[73] V. E. Zakharov and R. Z. Sagdeev, “Spectrum of Acoustic Turbulence,” Soviet Physics Doklady,

vol. 15, p. 439, Nov. 1970.



164 CHAPTER 5. WAVE TURBULENCE IN INERTIAL EMHD



Chapter 6
Anomalous scaling in wave turbulence

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.2 An elegant connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.2.1 The differential approximation model . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.2.2 From DAM to DAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

6.3 In pursuit of the global bifurcation . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.4 Application to the solar wind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6.4.1 Growth of the limit cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6.4.2 Comparison with a DAM simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6.4.3 Comparison with reality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

165



166 CHAPTER 6. ANOMALOUS SCALING IN WAVE TURBULENCE

6.1 Introduction

In the previous chapter, we discussed in Section 5.7 the derivation of nonlinear diffusion equations, also

referred to as the differential approximation model (DAM). In this chapter, we shall discover that these

equations might serve as a crucial milestone in our comprehension of the solar wind at sub-MHD scales.

But before, I have to introduce them properly.

The historical development of this type of model can be traced back to the work of Leith [21], who

initially applied it to address hydrodynamics questions unrelated to wave turbulence. Subsequently, DAM

found application in the study of gravity water wave turbulence by Hasselmann and Hasselmann [15],

and it has since been extensively employed to investigate various specific phenomena related to wave

turbulence. For instance, the DAM has been utilized to explore the simultaneous presence of strong and

weak turbulence components in superfluid [19] as well as phenomena such as reconnections of superfluid

vortices [23], Kelvin waves on quantized vortex lines [22], nonlinear Schrödinger equation and optical

turbulence [8], Bose–Einstein condensates [6], Alfvén waves in the presence of cross-helicity [10], waves

in fuzzy dark matter [28], interacting gravity waves on the surface of deep fluids [31] also, and even for

gravitational waves [12, 29].

Basically, direct approximation models can be viewed as a form of non-linear Fourier law, in which the

energy flux is expressed as a non-linear function involving the energy spectrum and its spectral derivative.

This formulation, with its second-order approximation (involving two spatial derivatives), offers a versatile

framework for studying systems that can be described by single conservation laws. It is important to note

that second-order models cannot accommodate inverse or dual cascade. To analyze such systems, the im-

plementation of fourth-order models, (involving four spatial derivatives), becomes essential. Nevertheless,

one notable advantage of DAM is their ability to exhibit at least two analytical solutions: the thermody-

namics one, characterized by a zero energy flux, and the Kolmogorov–Zakharov one, which corresponds

to a constant energy flux. A nonlinear combination of the two solutions can also be found and is denoted

as a “warm cascade” [6] in which we observe the simultaneous presence of two distinct scalings: the low

wavenumbers conform to the Kolmogorov–Zakharov spectrum, while the high wavenumbers align with the

thermodynamics solution.

Among the remarkable characteristics, it has been discovered that second-order models with finite

capacity (i.e., where the spectrum is integrable at k → ∞ meaning that it contains a finite amount of

energy), exhibit a self-similar finite-time blow-up spectrum preceding the KZ one with an anomalous
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scaling x⋆. In the presence of viscosity, when the energy spectrum reaches the dissipative scales, a distinct

bump arises from these scales that modifies the entire spectrum, resulting in a constant energy flux across

scales and the emergence of the KZ spectrum. This phenomenon has been observed in a broad range of

systems [30], as well as systems displaying inverse cascade behavior [12]. Recent studies have elucidated

that these behaviors can be analyzed in terms of self-similar solutions of the second kind [2, 13]. Such

solutions manifest self-similar profiles that develop in a finite time but span an infinite range of scales,

characterized by a distinct sharp front on one side and an anomalous algebraic decay on the opposite end

of the spectral range.

The aim of this chapter is to determine the anomalous scaling x⋆ that is linked to the emergence of the

self-similar solution. Three options are practicable to tackle this problem. The first one entails embarking

upon direct numerical simulations of the exact system, which necessitates a substantial allocation of com-

putational resources in the hopes of achieving a sufficient resolution to make an approximate measurement

of the anomalous scaling. The second option involves conducting numerical simulations of the kinetic

equations, which allows observation of the anomalous exponent but presents challenges in achieving precise

measurements [4, 9, 20]. Alternatively, one can opt for simulations of the DAM, which offers the advantage

of accurately observing and quantifying this anomalous scaling, which is independent of the specific closure

and initial conditions employed [30].

In the present chapter, we present the analytical known solutions of the DAM, then assuming a self-

similar solution, we use an elegant connection between partial differential equations and dynamical au-

tonomous systems (DAS) to probe the anomalous scaling x⋆. By doing so, we are going to be able to

theoretically bind its value and find a precise method to numerically measure it. Before concluding on the

relevance of such models for the solar wind, we will apply this theory to the DAM obtained in the previous

chapter (see Equation 5.106). This will allow us to verify if the anomalous exponent x⋆, measured via

numerical simulation of the DAS, is coherent with the spectrum that appears when we solve numerically

the DAM.
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6.2 An elegant connection

6.2.1 The differential approximation model

In the general case, we consider the following nonlinear diffusion process in Fourier space for the energy

spectrum E(k, t):

∂E(k, t)

∂t
= −∂F (k, t)

∂k
, (6.1a)

F (k, t) = −kmEn ∂
∂k

(
E

kd−1

)
. (6.1b)

In this model, several variables and parameters are involved. Here for wave turbulence systems, F represents

the energy flux1, d ∈ N corresponds to the dimension of the system, and n ∈ N∗ denotes the order of the

resonant wave interaction minus two. For example, n = 1 for three-wave processes and n = 2 for four-

wave processes. The constant m depends on the specific type of wave and is typically a positive rational

number. For instance, the combination (d, n,m) = (2, 2, 19/2) represents water gravity waves [24, 31],

while (d, n,m) = (2, 1, 11/2) models water capillary waves. Additionally, Alfvén waves are described

by (d, n,m) = (2, 1, 19/2) [10], while Kelvin waves are characterized by (d, n,m) = (1, 2, 6) [18]. It is

noteworthy that the DAM derived for the IEMHD shares the same formulation as the one used to model

inertial waves in fast rotating turbulence, kinetic and whistler Alfvén waves [7, 11, 25]. In this case, it

obeys the parameter combination (d, n,m) = (2, 1, 7).

In turbulence studies, our focus lies on power law solutions. It is therefore logical to seek an energy

spectrum represented by the expression E(k, t) = k−xA(t) in the simplest case. By employing this variable

separation, we aim to find familiar steady-state analytical solutions that can be derived rigorously from the

original equations. Upon substituting this solution into Equations (6.1), we obtain the following expression:

1

An+1

dA

dt
= (x+ d− 1)(d−m+ x+ nx)km−d−1−nx. (6.2)

The function A(t) that satisfies this relation is given by:

A(t) = n−1/n

[
A−n

0

n
− (x+ d− 1)(d−m+ x+ nx)km−d−1−nxt

]−1/n

, (6.3)

1In the context of wave turbulence, instead of the quantity E(k, t), one may come across the wave action spectrum
represented by N(k, t). In this case, F would denote the wave action flux, but it is just a notation issue that does not alter
the subsequent analysis and discussion.
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where A0 represents the initial condition. Interestingly, there exist three solutions for which A(t) becomes

independent of k:

(xT , xK , xF ) ≡
(
1− d,

m− d

n+ 1
,
m− d− 1

n

)
. (6.4)

The first one xT corresponds to a zero energy flux and is thus the thermodynamics solution. The second

one xK corresponds to a constant energy flux and is named the Kolmogorov–Zakharov solution. The third

one xF has a non-constant flux and is, so far I know, not predicted by any theoretical analysis of the kinetic

equations. The concept of the warm cascade, mentioned earlier, arises when considering a constant energy

flux F (k, t) = F0. Under this assumption, we find that the energy spectrum E(k) can be expressed as

E(k) =

(
− F0

xK − xT
k−(n+1)xK + c0k

−(n+1)xT

)1/(n+1)

, (6.5)

where c0 represents an integration constant. Notably, in the context of finite capacity cascades, where

xK > 1, we observe that xT < xK . This implies that the warm cascade exhibits the KZ spectrum at low

wavenumbers k, while conforming to the thermodynamics solutions at higher wavenumbers.

Now that we have identified the main solutions of the DAM, our next step is to propose a self-similar

form for the solution of the model. This allows us to delve deeper into the study of anomalous scaling. Our

approach involves finding the associated DAS, with the exponent x of the energy spectrum serving as the

only free parameter. By doing so, we can establish theoretical bounds for x⋆ and numerically determine

its precise value by chasing a global bifurcation. This vocabulary will be presented and explained in the

upcoming sections.

6.2.2 From DAM to DAS

We are interested in the early evolution of the spectrum, which is initially non-zero only in a finite range

of k. As the front of the spectrum propagates toward large k, for the values of k which are much greater

than the initial k’s the solution tends to be a self-similar solution of the second kind. It is to be found by

making in Equation (6.1) substitution in the form E(k, t) = k−x⋆ ϕ(η), with η ≡ k/k⋆ where k⋆ ≡ (t⋆− t)−b,

and b(x) ≡ 1/[n(xF − x)] > 0. With the new variables, the energy flux becomes

F = k
(n+1)(xK−x)
⋆ Π(η), (6.6a)

Π(η) ≡ −ηmϕn ∂
∂η

(ηxT ϕ) , (6.6b)
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and Equation (6.1) can now be written as a bi-dimensional ordinary differential equation:

ϕ′(η) = −xT
ϕ

η
−Π

η1+(n+1)xK

ϕn
, (6.7a)

Π′(η) = b(x)

[
(x− xT )ϕ− Π

η(n+1)xKϕn

]
. (6.7b)

To solve this system, it is crucial to consider the appropriate boundary conditions that capture the desired

behavior in both the UV (ultraviolet) and IR (infrared) regimes. Let us examine these boundary conditions

in detail: For the UV behavior, characterized by the small scales, we seek algebraic solutions that exhibit a

power-law decay. Specifically, we have ϕ(η) = A0η
−x and Π(η) = An+1

0 (x− xT )η
(n+1)(xK−x). On the other

hand, as we approach the IR regime, corresponding to large scales, we require a smooth behavior where the

solutions decay faster than a power law. More precisely, both ϕ(η) and Π(η) approach zero smoothly as

η → ∞. Here, “smoothly” implies selecting physically relevant solutions in such a way that the spectrum

and the associated flux vanish at the front [29].

We now consider a new change of variable, which allows us to interpret the solution of (6.7) satisfying

the boundary conditions prescribed above.

f(η) = ηxF ϕ(η), p(η) = ηxF−1Π(η). (6.8)

The correct rescaling is obtained by defining τ = log η and the system (6.7) becomes now

f ′(τ) = αf − p

fn
, (6.9a)

p′(τ) = βp+ b(x)

[
γf − p

fn

]
. (6.9b)

with

α ≡ −xT +
(n+ 1)xK − 1

n
, (6.10a)

β ≡ (n+ 1)(xK − 1)

n
, (6.10b)

γ ≡ x− xT . (6.10c)

It is important to note that xK > 1 because we are examining scenarios with finite capacity, where an

explosive cascade occurs. Consequently, both α and β are positive. Concerning the boundary conditions,
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now f and p tends to zero when η tends to both zero and infinity: limη→0(f, p) = limη→∞(f, p) = (0, 0).

In order to apply the standard fixed point analysis, the last step before obtaining the final dynamical

autonomous system is to remove the singularity by changing the time variable τ → θ =
∫ τ
τ0
f−n(τ ′)dτ

(with arbitrary τ0 > 0). We finally obtain the following system

f ′(θ) = αfn+1 − p,

p′(θ) = βfnp+ b
(
γfn+1 − p

)
.

(6.11a)

(6.11b)

6.3 In pursuit of the global bifurcation

As is customary when approaching a problem, our initial focus should be on the behavior of the system at

equilibrium. Hence, we need to identify the fixed points of the system to determine when Equations (6.11)

do not depend on time by solving the system (f ′(θ), p′(θ)) = (0, 0). This DAS exhibits a rather intricate

nature with n + 1 fixed points. Given the complexity inherent in the general case, we shall consider the

specific scenario of n = 1, which corresponds to three-wave processes — which is the wave turbulence

problem that has piqued our interest. This calculation, for n = 1 leads to the finding of two distinct fixed

points, denotes P0 and P1:

P0 = (0, 0) ; P1 =

(
b(α− γ)

αβ
,
b2(α− γ)2

αβ2

)
. (6.12)

The next question is about their stability. Are they stable or not? How an orbit in the phase space will

be attracted or repelled by them? This can be determined by computing the trace and the determinant of

the Jacobian matrix ∆(f, p) associated to the fixed points. This matrix is

∆(f, p) =




2αf −1

2bγf + βp −b+ βf


 , (6.13)

and the determinants and traces of ∆(f, p) associated to the fixed points, namely ∆P0 and ∆P1 , are

Det (∆P0) = 0 ; Tr (∆P0) = −b, (6.14a)

Det (∆P1) =
b2 (α− γ)2

αβ
; Tr (∆P1) =

2b(α− γ)

β
− bγ

α
. (6.14b)
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The determinant of ∆P0 being zero, it indicates that P0 is a saddle-node characterized by real eigenvalues

with different signs. On the other hand, for P1, the determinant is positively defined, warranting our

attention towards its trace. Remarkably, we find that the trace assumes a positive value when x > xH , a

zero value when x = xH , and a negative value when x < xH where

xH ≡ 1− d+
2α2

2α+ β
= xK +

(xK − 1)2

3xK − xT − 2
. (6.15)

Formally, the point xH is known as a Hopf bifurcation. This denomination, also known as the Poincaré-

Andronov-Hopf bifurcation, refers to the occurrence of a local emergence or disappearance of a periodic

solution, also known as a self-excited oscillation. By examining the definitions of the trace and the deter-

minant, which are the sum and product of the eigenvalues respectively, and employing the inequality of

arithmetic and geometric means, we can establish the relation Tr2 (∆P1) ≥ 4Det (∆P1). In the case where

equality holds, we obtain two solutions x±, which are:

x± = 1− d+
2
(
α2 ±

√
α3β

)

2α+ β ± 2
√
αβ

. (6.16)

Therefore, P1 is an unstable node (real positive eigenvalues) for x ≤ x−, an unstable focus (complex

eigenvalues with positive real part) x− ≤ x ≤ xH , a stable focus (complex eigenvalues with negative real

part) for xH ≤ x ≤ x+, and a stable node (real negative eigenvalues) for x ≥ x+ (cf., Figure 6.1).

Through the phenomenon of Hopf bifurcation, we have already acquired the necessary elements to

establish bounds for the anomalous exponent x⋆. Firstly, by definition, xK always remains smaller than

xH . Secondly, the value of xH serves as an upper limit for the stability of the fixed point P1, below which

it gives rise to the formation of a limit cycle and above which, all the trajectories in phase space will

inexorably converge to the fixed point P1, leading to a stationary state. As previously mentioned, when

the parameter x ≤ xH , periodic solutions emerge within the system, allowing for the presence of closely

spaced orbits in phase space. This signifies a local bifurcation, whereas our ultimate aim is to identify

the value x⋆ associated with a global bifurcation. Hence, it is possible to disregard all values of x such

that xH < x for which no bifurcation exists. Thirdly, the lower bound is given by the KZ exponent itself,

since it can be proven that no limit cycle exists for this value [13, 14]. A remarkable consequence emerges

from the analysis: there always exists an anomalous scaling for direct cascade with finite capacity. This

intriguing finding stems from the following considerations. A finite capacity cascade is characterized by
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Figure 6.1: Poincaré diagram illustrating the stability of a fixed point in a two-dimensional autonomous
system.

a Kolmogorov–Zakharov exponent xK > 1, implying that m > 1 + d + n. Conversely, when xK = xH ,

we expect the absence of anomalous exponents, as xK ≤ x⋆ ≤ xH . However, satisfying this condition

is equivalent to fulfilling the relation m = d + 2 (when n = 1), which intriguingly, never occurs in the

context of finite capacity cascades2. To illustrate this concept, Figure 6.2 provides a visual representation,

considering the case of (d, n) = (2, 1), which could correspond to three-wave processes in three-dimensional

axisymmetric turbulence. For our specific case of electron MHD with (d,m, n) = (2, 7, 1), the range of

potential values for x⋆ falls within the interval [5/2, 37/13] ≃ [2.5, 2.8462].

The final stage of our quest is now to determine the value x⋆ at which the limit cycle becomes a global

bifurcation. At first glance, the pursuit of such peculiar behavior may seem unconventional. However, upon

closer inspection, the rationale becomes apparent. Our objective is to capture the essence of an explosive

cascade, where k → ∞ within a finite time. This fundamental characteristic finds its manifestation in our

autonomous system through a configuration that exhibits an infinite period in phase space. Remarkably,

only global bifurcations possess this unique property, thus providing a compelling explanation for our

2The aforementioned statement can be extended to m = 1+d+n, irrespective of the specific value of n. This generalization
is facilitated by an equivalent DAS derived in Thalabard et al. [30], which features only three fixed points, regardless of the
particular value of n.
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Figure 6.2: Variations of the exponents x related to the thermodynamics solution xT (red), the Kolmogorov
solution xK (green), and the Hopf bifurcation xH (blue) for two-dimensional systems (d = 2) ruled by three
waves process (n = 1). In the golden area, the anomalous exponent x⋆ can take on values, indicating the
region of interest for our analysis.

pursuit of these particular phenomena. Specifically, for three-wave processes (n = 1), the only global

bifurcation that can occur in the autonomous system (6.11) is a homoclinic cycle. In other words, the

emergence of the limit cycle occurs as a result of the Hopf bifurcation taking place at the fixed point P1,

and the collision with the saddle node takes place when the limit cycle connects with the fixed point P0

(the origin). This global bifurcation is referred to as the homoclinic cycle. Unfortunately, we currently

lack an analytical method to predict the exact value of x⋆ that produces such a cycle. We must rely on

numerical simulations to obtain this information.

6.4 Application to the solar wind

6.4.1 Growth of the limit cycle

To make further progress, numerical simulation becomes necessary. We begin with the knowledge that there

exists a homoclinic cycle in the phase space which connects P0 to P1 and has an infinite period. When

the Hopf bifurcation occurs, the free parameter x takes on the value of xH , and a limit cycle appears.

Subsequently, as we gradually decrease the value of x from x = xH , the area of the limit cycle expands

and its period increases until it eventually collides with the origin. This collision allows us to identify the

homoclinic cycle at the value x = x⋆, which represents the anomalous exponent.

To determine this precise value x⋆, we employ numerical continuation algorithms provided by the

PyDSTool Python library [5]. Here, we focus on the DAM derived from the IEMHD kinetic equations

with (d,m, n) = (2, 1, 7), which is also valid for the EMHD and for strongly rotating nonionized fluids.
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Figure 6.3: Left: A three-dimensional perspective depicting the growth of the limit cycle. Center: Variation
of the cycle’s period as a function of x. Right: A two-dimensional representation corresponding to the first
panel. The limit cycle is attained when the cycle reaches the fixed point P0 located at the origin. This
process determines the formation of the homoclinic cycle.

Consistently to the analytical prediction, we observe a Hopf bifurcation occurring at approximately xH ≃

2.8462, resulting in the emergence of periodic orbits. Figure 6.3 shows the results obtained through the

continuation algorithm. The left panel illustrates that the branch of periodic solutions terminates at

x = x⋆ ≃ 2.6764, coinciding with the collision of the limit cycle with the origin. Furthermore, the central

panel demonstrates that the final cycle tends to an infinite period when x → x⋆. Therefore, x⋆ ≃ 2.6764

represents the sought-after exponent. The right panel is a two-dimensional view of the first one to better

visualize the growth of the limit cycle and the final homoclinic cycle.

6.4.2 Comparison with a DAM simulation

To verify the consistency of the anomalous exponent obtained by chasing the homoclinic cycle, we conduct

numerical simulations of the Equation (6.1) with (d,m, n) = (2, 1, 7), which corresponds to our specific

problem. However, it is important to be aware of the inherent challenges associated with sharp propagating

fronts and discontinuous derivatives that arise in such computations. These features often lead to numerical

instabilities and blow-ups when conventional differentiation schemes are employed. To overcome these

issues, I utilize a numerical code designed by Thalabard et al. [29] which employ smooth noise-robust

differentiators specifically designed to handle such situations. I opt for a log-discretization approach in the

frequency space, which allows us to extend the inertial range and obtain accurate results. This involves

discretizing the frequency domain using grid points ki = 2i/κ, where i ranges from -1200 to 1200, and

κ = 20 controls the frequency binning. To stabilize the system, no viscosity is introduced. Instead, we rely
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Figure 6.4: Direct numerical simulation of the DAM. The red curve corresponds to the initial condition.
As time goes on, the spectrum develops and exhibits a power law fitting the anomalous exponent x⋆
determined with the limit cycle.

on the smooth noise-robust differentiators [16], which enable us to compute derivatives in the k-space and

effectively regulate the dynamics of the system. The derivative is computed using the expression:

D(f, i) =
42δ1 + 48δ2 + 23δ3 + 8δ4 + δ5

512hki
, (6.17)

where δ ≡ fi+k − fi−k and h = ln 21/κ. To advance in time, we employ the second-order Adams-Bashforth

scheme. The time step ∆t is determined by the CFL condition:

∆t = µ×min
k

E + ϵ

|DtE + ϵ| , (6.18)

where ϵ = 10−50 and µ = 10−2. The initial condition for the energy is a Gaussian centered at k0 = 10−14

with an amplitude of 1025 and variance of 0.1.

In Figure 6.4, we observe the time evolution of the energy spectrum. As anticipated, a prominent direct

cascade emerges, accompanied by a remarkably extensive inertial range that extends across more than 25

decades. The power law exponent precisely aligns with the one derived from our pursuit of the homoclinic

cycle, thus providing compelling evidence for the equivalence we posited between DAM and DAS.
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6.4.3 Comparison with reality

Solar wind turbulence at sub-proton scales is characterized by a magnetic energy spectrum with a power

law index close to -8/3, as depicted in Figure 4.1, and has posed a significant challenge in the field of space

plasma physics [1, 26, 27]. This scaling law defies the predictions of classical turbulence theories, which

rely on different types of model equations and wave behaviors, either with or without anisotropy. For

years, it seemed impossible to reconcile these observations with existing turbulence theories, marking this

problem as one of great importance. Some attribute it to coherent structures, while others propose kinetic

effects as the cause (here “kinetic” denotes phenomena that are not described by a fluid model, such as

wave-particle interactions, and Landau dumping, to name a few).

Here, we have taken a different approach by considering a nonlinear diffusion model, which incorporates

only local interactions. By relaxing the assumption of stationarity, commonly employed in turbulence

predictions, we discovered a self-similar solution of the second kind that aligns with the observed magnetic

energy spectrum. Remarkably, this non-stationary phase exhibits no viscous dissipation, which is a crucial

departure from fluid turbulence. It is important to acknowledge that the absence of viscous dissipation is

a more appropriate approach when addressing the solar wind turbulence, since it is a collisionless plasma.

However, we must explore the implications and consequences of this assumption. Notably, we should

not expect kinetic dissipation at these scales to behave similarly to hydrodynamics, as demonstrated by

phenomena like Landau damping [3]. Hence, a pertinent question emerges: why do we persist in our quest

for stationary solutions? Based on these considerations, this seemingly anomalous exponent has nothing

of anomalous.

Our interpretation of the results suggests the presence of kinetic dissipation that does not significantly

impact the inertial range, which is a departure from fluid turbulence behavior. However, it is worth noting

that kinetic dissipation may still play a role in plasma heating, as it could explain the slow variation of

ion temperature with respect to heliocentric distance (cf., Figure 1.8), or justify the presence of wave

turbulence at EMHD scales (cf., Chapter 4). Additionally, we suggest that the presence of a spectral index

close to -8/3 in the solar wind can be attributed to the cascade of weak turbulence at sub-proton scales,

where the absence of significant dissipation prevents the cascade to converge to a state with a constant

energy flux. This would provide an explanation for the observed spectral index close to -8/3 instead of

-5/2, as demonstrated in our study. Furthermore, why not coin this phenomenon as collisionless wave

turbulence? This concept captures the idea of energy dissipation occurring through collisionless processes,
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such as kinetic effects, rather than relying on viscous or resistive dissipation mechanisms.

6.5 Conclusion

Differential approximation models are useful to probe specific turbulence features because it allows fine

predictions both numerically since it does not require a huge amount of numerical resources, contrary to

DNS of the exact equations from where they are derived, and theoretically as we demonstrated in this

chapter. In order to precisely determine the anomalous scaling which appears when considering a direct

cascade with a finite amount of energy, we took advantage of the bridge that exists between differential

approximations models and dynamical autonomous systems. In the general case of second-order models,

we were able to bound the anomalous exponent x⋆ which is greater than the KZ solution but lower than

the exponent associated with the Hopf bifurcation. To pursue the analysis, we had to perform numerical

experiments by finding the x value associated with the homoclinic cycle of the system, and in the case of

IEMHD (or EMHD or inertial waves turbulences), we found that value to be equal to x⋆ ≃ 2.7674 which

is a very tiny correction (∼ 7% steeper than the KZ solution). We solved numerically the original DAM

and verified that this anomalous scaling coincides with the observed spectrum.

However, it is important to note a caveat regarding the relevance of the second-order models discussed

here when applied to systems exhibiting an inverse or dual cascade. In such cases, these models may be

less applicable, and it becomes necessary to consider fourth-order models which accurately capture and

account for the behavior associated with inverse or dual cascades. Although the analysis becomes more

intricate, the underlying approach remains the same. This extension has been developed by Thalabard et

al. [29], who thoroughly addresses the strengths and limitations of second-order models and conducts a

similar analysis, but specifically for fourth-order models. It is worth noting that while fourth-order models

prove useful in dealing with systems featuring an inverse or dual cascade, they do not benefit from certain

theorems that ensure the existence of a global bifurcation, as is the case for second-order models [13].

What motivated us to delve deeply into the determination of this small correction is the remarkable

observation that in the solar wind, dissipative mechanisms like viscosity or resistivity are entirely negligible,

yet we consistently observe a scaling behavior close to −8/3 for the magnetic spectrum at sub-proton scales

[1, 17, 26, 27]. While the DAM relies on several assumptions derived from kinetic equations (considering

only super-local interactions, balanced turbulence, and neglecting interactions between counter-propagating

waves), the fact that the anomalous exponent remains independent of any closure or initial conditions, and
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closely matches the observed exponent in the solar wind, presents either a remarkable coincidence or a

compellingly elegant and simple explanation to account for the in situ observations. Together with the

findings presented in Chapter 4, these results strongly support weak turbulence as a plausible scenario for

the behavior of the solar wind at sub-proton scales. Exploring other systems that lack viscosity and allow for

experimental investigations, such as superfluids, could be an intriguing research. If the anomalous exponent

predicted by the analyses presented here aligns with the one measured experimentally in superfluids, it

would prompt us to seriously consider the relevance of these seemingly simple models. Perhaps their

derivation retains the essential components necessary to investigate the question of anomalous scaling? In

any case, such studies would undoubtedly shed light on the relevance and applicability of these models,

offering valuable insights into the underlying mechanisms at play.
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Chapter 7
General conclusion

In this manuscript, we have embarked on a journey through the intricacies of plasma turbulence, exploring

various scales and dynamics. While the path may at times seem elusive, we can distill our findings into a

coherent summary.

7.1 MHD scales

Our exploration began at the MHD scales, where we grappled with the challenge of defining energy dissi-

pation. We employed a powerful tool called anomalous dissipation, originally developed for the Euler and

Navier-Stokes equations [2]. This methodology, tailored for systems with infinite Reynolds numbers, aligns

remarkably well with the solar wind, characterized by its lack of viscosity and resistivity. Inspired by the

Onsager conjecture, which asserts that the lack of smoothness in fields leads to energy dissipation [3, 5],

we unraveled the intricate interplay between anomalous dissipation and the Zeroth law of turbulence. In

Chapter 2, we delved into a low-dimensional model known as the Yanase model. Through this model,

we not only demonstrated the Zeroth law of turbulence, but also confirmed its profound connection with

anomalous dissipation. Moreover, leveraging the insights gained from this model, we successfully applied

the concept of anomalous dissipation to measure the heating generated by shocks. Remarkably, we obtained

a single, elegant analytical formula, rendering the computation of anomalous dissipation unnecessary for

quantifying shock-induced heating.

We then moved to the general case, with the study of three-dimensional incompressible MHD. While

we were unable to prove the Zeroth law – which would have secured the coveted million-dollar prize from

the Clay Institute [4] – we employed the anomalous dissipation to estimate turbulent heating in the solar

183



184 CHAPTER 7. GENERAL CONCLUSION

wind. By comparing our findings with the PP98 exact law, which requires signal homogeneity, we revealed

the superiority of anomalous dissipation. This remarkable tool extends the scope of the PP98 law by

enabling its application to discontinuous data and facilitating the tracking of dissipation at each moment

of measurement. Moreover, we made a notable discovery regarding the ability of anomalous dissipation

to differentiate between different flows. In Chapter 3, we used the anomalous dissipation to theoretically

distinguish shocks from fluctuations and viscous flows. Additionally, our investigation into switchbacks,

observed near the Sun, uncovered a scaling ℓ−3/4 in the evolution of anomalous dissipation across scales ℓ

when switchbacks occur. This finding suggests that anomalous dissipation not only provides a more precise

estimation of energy dissipation, but also serves as a tool for detecting and characterizing switchbacks.

Moreover, it has the potential to identify specific plasma regions where dissipative mechanisms play a

significant role.

In summary, our exploration of anomalous dissipation has yielded remarkable insights into energy

dissipation and its applications in differentiating flows, detecting switchbacks, and identifying dissipative

regions within the plasma. While the proof of the Zeroth law remains an elusive goal, we have successfully

demonstrated the intimate connection between it and the concept of anomalous dissipation in the Yanase

model, suggesting that is an interesting way to overcome this long-time-standing challenge.

7.2 EMHD scales

In our exploration beyond MHD scales, as described in Chapter 4, we encountered a new range of scales

ruled by EMHD, that posed intriguing questions. Contrary to the behavior observed in MHD, the analysis

of in-situ solar wind data at sub-proton scales revealed a distinct phenomenon: the magnetic fluctuations

exhibited no intermittency. To unravel this difference, we performed high-resolution three-dimensional DNS

of the reduced EMHD equations, specifically investigating weak and strong wave turbulence regimes. Our

simulations led to a significant finding: only the weak wave turbulence regime could accurately reproduce

the observed scale-invariance in the data. The presence of weak turbulence at those scales may be attributed

to the helicity barrier that arises in the context of imbalanced turbulence [1]. When the helicity is nonzero,

heating occurs through ion cyclotron resonance at the ion scale, which weakens the turbulent cascade at

sub-proton scales. As a result, the regime transition to weak turbulence provides a compelling explanation

for the observations.

Another intriguing aspect we addressed was the observation of the -8/3 power law in the magnetic
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spectrum at these scales. In Chapter 6, which encompassed weak turbulence at both EMHD and IEMHD

scales, we tackle this problem by turning to the direct approximation model derived from the kinetic

equations, selectively emphasizing super-local interactions. By adopting this model, we look for self-similar

non-stationary solutions, as no dissipative force was introduced to the equations. This deviation from the

conventional approach, which typically predicts a stationary solution, allowed us to gain deeper insights

into the true behavior of the solar wind. Our investigations yielded remarkable results: a manifestation of

anomalous scaling with an exponent close to k
−8/3
⊥ in the energy spectrum during the non-stationary phase.

These findings further bolstered the notion that the interactions at play are predominantly local and, given

the collisionless nature of the plasma, it concurred with the theory that the observed magnetic spectrum,

by in situ data, originates from a non-stationary phase. In other words, it arises from a non-viscous regime

or collisionless wave turbulence.

7.3 IEMHD scales

The final model we looked at is the IEMHD, where the electron inertia has to be taken into account. In

Chapter 4, we developed a weak wave turbulence theory within this regime in the presence of a relatively

strong and uniform external magnetic field. We derived the kinetic equations that capture the three–

wave interactions between inertial whistler or inertial kinetic Alfvén waves. Astonishingly, we discovered

a striking parallel between these kinetic equations and those describing inertial wave turbulence in non-

ionized fluids undergoing rapid rotation (albeit differing by a constant). We showed that for both invariants,

energy, and momentum, the transfer is anisotropic with a direct energy cascade mainly in the direction

perpendicular to the mean magnetic field and the exact stationary solutions reveal a magnetic energy

spectrum ∼ k
−9/2
⊥ , which is steeper than the EMHD prediction where electron inertia is neglected. The

profound interconnection between inertial wave turbulence and turbulence in IEMHD sheds light on the

striking similarities between these seemingly disparate topics. This revelation holds profound implications,

as it invites us to explore laboratory investigations of turbulence at these scales—a domain that remains

beyond the current reach of spacecraft.

7.4 Perspectives

Leaving aside my perspective to rob a central bank and disappear on a lost and paradisiacal island, I can

distinguish three questions that pique my curiosity.
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The first one revolves around the turbulent dynamics at sub-proton scales and the quest to uncover the

underlying physics governing the magnetic spectrum within this domain. Through our investigations, we

have demonstrated, in Chapter 4, that weak turbulence successfully captures the observed phenomena. We

have also discussed the presence of a potential helicity barrier in the solar wind that could give rise to this

regime. An intriguing avenue of exploration lies in the application of anomalous dissipation to the region

where the helicity barrier manifests itself. By quantifying the energy dissipation within this domain, we

have the potential to gain insights into the amount of energy that persists at sub-proton scales. Through

careful observation, it might even be possible to establish an empirical relationship between the intensity

of the helicity barrier, as characterized by the amount of helicity present, and the residual energy beyond

this barrier.

The second point concerns the stationary solutions derived from theoretical frameworks that may not

accurately reflect the true nature of the system due to the lack of dissipation. To advance our understand-

ing, a key questions emerge: While direct approximation models, as demonstrated in Chapter 6, provide

reliable measurements, can transformations of kinetic equations (such as Kolmogorov–Zakharov) be found

to directly predict non-stationary solutions? Additionally, like the transition from MHD to EMHD scales,

could there exist another helicity barrier between the EMHD and IEMHD ranges? This last question

converges into a more fundamental inquiry: What are the consequences arising from the interplay of the

invariants, namely energy, and helicity? Could there exist a helicity barrier, or its equivalent, at every

transition between different scales? In other words, might we encounter such a barrier between MHD and

EMHD scales, followed by another between EMHD and IEMHD scales, and so forth?

My last perspective centers around the connection between rotating turbulence and IEMHD. We have

observed that the two systems of equations are identical up to a constant. This prompts an intriguing

question: Can we rely on mathematical consistency (which I have great faith in) to bridge the gap and

explore turbulence at IEMHD scales using fast-rotating water tanks? While we acknowledge that there

are differences between the systems and the solar wind may exhibit kinetic effects at IEMHD scales, from

a turbulence standpoint, the essence appears to be the same. Therefore, I propose an unconventional

approach: Why not save resources and conduct experiments using this proxy to investigate turbulence at

its core before to launch spacecraft?
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Chapter 8
Synthesis (in French)

Le vent solaire est un plasma turbulent mesuré in situ par des sondes telles que Voyager/NASA, PSP/NASA

ou THEMIS/ESA. Les mesures révèlent des fluctuations du champ magnétique sur une large gamme de

fréquences, avec un changement de pente autour de 1Hz, indiquant une transition du comportement

mono-fluide MHD du plasma vers un état où ions et électrons ont une dynamique distincte. Une seconde

transition est observée vers 50Hz, au-delà de laquelle le spectre magnétique se raidit davantage, marquant

un changement de physique où les effets d’inertie des électrons deviennent importants. L’étude de cette

turbulence est étroitement liée à la compréhension de l’origine du chauffage local, caractérisé par une

décroissance lente de la température ionique en fonction de la distance héliosphérique. Cette décroissance

est interprétée comme la signature d’un chauffage résultant du transfert d’énergie des grandes échelles vers

les petites échelles par la turbulence. L’objectif de cette thèse est d’étudier la turbulence du vent solaire à

des échelles allant de la MHD aux échelles inertielles électroniques.

Dans un premier temps, nous utilisons la loi zéro de la turbulence pour mesurer la dissipation d’énergie

aux échelles MHD. Cette loi qui stipule que la dissipation d’énergie par unité de masse tend vers une

limite non nulle appelée dissipation anomale lorsque les viscosité/résistivité diminuent. Selon la théorie de

Kolmogorov de 1941, cette dissipation anomale conduit à la dérivation de la loi 4/5 pour l’hydrodynamique

incompressible et peut être généralisée à d’autres fluides incompressibles ou compressibles. Une forme locale

de la loi exacte de Kolmogorov fut dérivée en s’appuyant sur la conjecture d’Onsager, puis généralisée à

la MHD Hall, obtenant ainsi un équivalent local des lois exactes de la MHD et de la MHD de Hall. Cette

découverte est cruciale pour les plasmas spatiaux, car elle permet l’examen de la dissipation locale, étant

donné que la dissipation anomale ne nécessite pas de moyenne d’ensemble. Une forme locale de la loi

exacte de Kolmogorov est donc utilisée dans les données THEMIS et PSP, pour montrer que le chauffage
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calculé avec la dissipation anomale peut être significativement plus élevé que celui déduit de la loi exacte

de la MHD. De plus, l’utilisation de la dissipation anomale permet de prouver la loi zéro dans un modèle

simplifié de la MHD. Son application aux données Voyager 2 révèle que le chauffage généré par les chocs

présents aux abords de Jupiter domine celui provenant des fluctuations turbulentes.

Dans un deuxième temps, nous nous intéressons aux échelles sous-MHD (fréquences entre 1 et 50Hz).

Les mesures in situ révèlent un comportement monofractal des fluctuations magnétiques, alors qu’aux

échelles MHD un comportement (standard) multifractal est observé. Pour étudier cette différence, des

simulations numériques directes tridimensionnelles et haute résolution des équations de l’électron MHD

réduite sont menées dans les régimes de turbulence d’ondes faible et forte. Ces simulations montrent

que seule la turbulence faible peut reproduire la monofractalité. Jointe à des travaux récents, ce résultat

suggère qu’aux échelles électroniques le vent solaire est dans un régime de turbulence d’ondes d’Alfvén

cinétique faible et sans collision. Une autre question concerne l’observation de la loi de puissance -8/3 du

spectre magnétique à ces échelles. Les équations de la turbulence faible de la MHD électronique, dans la

limite des interactions super-locales, se simplifient en une équation de diffusion non linéaire qui peut être

facilement simulée numériquement, révélant un spectre d’énergie en -8/3 pendant la phase non stationnaire

de la cascade d’énergie. Cela suggère que les interactions sont principalement locales, et compte tenu de la

nature non collisionnelle du plasma, cela est conforme à la théorie selon laquelle nous observons le spectre

magnétique dans une phase non stationnaire, résultant de l’absence de collisions.

Enfin, une théorie de la turbulence d’ondes (faible) pour la MHD électronique inertielle en présence

d’un fort champ magnétique externe est développée. Ce régime est pertinent lorsque l’inertie des électrons

est prise en compte. Nous avons dérivé les équations cinétiques qui décrivent les interactions à trois ondes

entre les ondes whistler inertielles ou les ondes d’Alfvén cinétiques. Nous montrons que, pour les deux

invariants, l’énergie et la quantité de mouvement, le transfert est anisotrope avec une cascade d’énergie

directe principalement dans la direction perpendiculaire au champ magnétique moyen, et les solutions

stationnaires exactes (i.e. spectre de Kolmogorov—Zakharov) révèlent un spectre d’énergie magnétique

plus raide que la prédiction de la MHD électronique où l’inertie des électrons est négligée. De manière

remarquable, ces équations sont identiques (à une constante près) à celles décrivant la turbulence d’ondes

inertielles dans les fluides non ionisés en rotation rapide. Ce lien fort souligne l’importance des expériences

en laboratoire pour étudier la turbulence à ces échelles, actuellement difficilement accessibles aux satellites.

Ces travaux permettent d’obtenir une vision globale du comportement turbulent du vent solaire tant

d’un point de vue observationnel, que numérique ou théorique.
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