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Titre: Commande haute performance de l'optique adaptative du Gran Telescopio Canarias
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Résumé: La turbulence atmosphérique dégrade
la qualité des images acquises par les télescopes
terrestres. L'optique adaptative (OA) permet de
compenser en temps réel ces dégradations à l'aide
d'un miroir déformable. Le Gran Telescopio Ca-
narias (GTC, La Palma, Îles Canaries) de 10 m
de diamètre va se doter d'un tel système, GT-
CAO, conçu par l'Instituto de Astrofísica de Ca-
narias (IAC). Dans ma thèse, je conçois et mets
en ÷uvre un asservissement très performant pour
GTCAO : des modèles mathématiques prédisent la

turbulence pour mieux la compenser. C'est une
première pour un système dédié à un télescope de
cette taille et en conditions expérimentales. J'ai
développé les stratégies d'identi�cation et de mise
à jour des modèles (car la turbulence évolue), et
les résultats sont au rendez-vous. La qualité des
images a été améliorée de façon spectaculaire dans
un grand nombre de cas. Cette thèse, en cotutelle
internationale avec l'université de La Laguna, a été
menée en collaboration avec l'IAC.

Title: High-performance adaptive optics control for the Gran Telescopio Canarias
Keywords: System modeling and control, Adaptive optics, Kalman �ltering, Astronomy

Abstract: Atmospheric turbulence degrades the
quality of images acquired by terrestrial telescopes.
Adaptive optics (AO) makes it possible to com-
pensate for these degradations in real time using a
deformable mirror. The 10 m diameter Gran Tele-
scopio Canarias (GTC, La Palma, Canary Islands)
will be equipped with such a system, GTCAO, de-
signed by the Instituto de Astrofísica de Canarias
(IAC). In my thesis, I design and implement a very
e�cient servo-control for GTCAO: mathematical

models predict turbulence to better compensate
for it. This is a �rst for a system dedicated to
a telescope of this size and under experimental
conditions. I developed the strategies for identify-
ing and updating the models (because turbulence
evolves rapidly), and the results are there! Image
quality has improved dramatically in a large num-
ber of cases. This thesis, in international cotutelle
with the University of La Laguna, was carried out
in collaboration with the IAC.
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Résumé en français

Les systèmes d'optique adaptative astronomiques permettent de compenser les
dégradations induites par la turbulence atmosphérique sur les images acquises par les
télescopes terrestres. D'autres sources d'aberrations dégradent également les images,
comme de petites erreurs de pointage du télescope, des vibrations de sa structure
dues au vent ou des vibrations générées par des composants tels que des pompes, des
ventilateurs, etc. Ces dégradations se traduisent par une déformation du front d'onde
incident, qui devrait être plan en l'absence d'aberrations. En OA dite classique,
un miroir déformable compense ces déformations en temps-réel à partir de mesures
fournies par un analyseur de surface d'onde. Un calculateur temps-réel calcule la
commande à partir des mesures. L'algorithme de commande le plus largement utilisé
est une commande à action intégrale. Cependant, les boucles d'asservissement des
systèmes d'OA comportent des retards que l'intégrateur ne peut compenser. A�n
d'améliorer les performances, des commandes prédictives à base de modèle ont donc
été proposées pour prédire la perturbation et ainsi compenser le retard global du
système.

Le but de ce travail de recherche doctorale est la conception et la validation
d'un régulateur optimal prédictif linéaire quadratique gaussien (LQG) pour GTCAO,
le système d'optique adaptative qui équipera bientôt le Gran Telescopio Canarias
(GTC) et qui a été intégré par l'Instituto de Astrofísica de Canarias (IAC). GTC est
un télescope de classe 10 m de l'Observatoire Roque de los Muchachos situé sur l'île
de La Palma aux Îles Canaries. Ce travail a été mené dans le cadre d'une cotutelle
internationale entre l'Université Paris Saclay-Institut d'Optique (Palaiseau, France)
et l'Université de la Laguna-IAC (La Laguna, Tenerife, Espagne), et soutenue princi-
palement par le programme Actions Doctorales Internationales (ADI) apportées par
l'IDEX Paris-Saclay. La pandémie a limité (voire arrêté) l'accès à Tenerife et donc
à GTCAO pendant une assez longue période et a aussi provoqué des changements
dans la réalisation du projet GTCAO. Néanmoins, j'ai eu la chance d'obtenir une
prolongation de 7 mois qui m'a permis de poursuivre mes tests à l'IAC.

Le manuscrit est composé de 8 chapitres : une introduction générale (chapitre 1),
une partie sur la formation d'image en présence de turbulence (chapitre 2) et une
description de l'optique adaptative classique (un seul miroir et un seul analyseur,
analyse et correction se faisant dans la même direction) avec ses composants et
régulateurs standards que sont la commande à action intégrale et le régulateur LQG
sous forme générale (chapitre 3).

Comme détaillé dans le chapitre 3, les régulateurs LQG sont construits sur une
représentation d'état de la boucle d'optique adaptative avec des a priori spatiaux et
temporels. La commande LQG est une approche basée sur un modèle d'état linéaire,
où le régulateur comprend un �ltre de Kalman qui calcule de manière récursive
une prédiction à court terme optimale (à variance minimale) des perturbations à
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compenser.

Le chapitre 4 est composé d'un article en voie de soumisson. Cet article revient
sur le problème de la commande optimale (à variance minimale) pour les systèmes
d'optique adaptative dont les mesures et les commandes sont asynchrones, ce qui
se traduit par un retard non entier de la boucle d'asservissement. Lorsqu'ils ne sont
pas correctement pris en compte, ces retards fractionnaires peuvent signi�cativement
dégrader les performances de l'optique adaptative, en particulier en présence de vi-
brations à haute fréquence. Ceci est démontré grâce à des mesures expérimentales
en laboratoire sur le système GTCAO. Une méthode LQG constructive et facile à
mettre en ÷uvre est proposée et validée en simulation pour les vibrations a�ectant
les modes de basculement. En particulier, notre méthodologie permet la construction
d'un modèle de perturbation à temps continu à partir d'un modèle d'état à temps
discret identi�é sur les mesures.

Dans le chapitre 5 de ce manuscrit est présentée la première exploration des
méthodes de modélisation et des procédures d'étalonnage pour la commande LQG
d'un système d'OA dédié à un très grand télescope, avec une pupille segmentée non
circulaire. Ceci est proposé comme une alternative performante à la commande par
action intégrale standard. Pour construire certains des modèles et également faire des
simulations, le simulateur OOMAO (Object-oriented Matlab adaptive optics, codé
en Matlab© orienté objet par R. Conan et C. Correia) et ses nombreux modules
sont utilisés. Nous développons en particulier dans ce chapitre 5 certains aspects
liés au télescope lui-même, comme la façon dont les miroirs primaire et secondaire
sont structurés, ainsi que la description de la rotation/dérotation nécessaire de la
pupille pour les observations astronomiques. En outre, la façon dont le vent peut faire
trembler le miroir secondaire est modélisée. Cela met en évidence le risque potentiel
de présence d'une vibration de fréquence propre 12Hz et d'amplitude signi�cative.
Or, ce type de perturbations que sont les vibrations ne peuvent pas être corrigées
par un intégrateur lorsque le système d'optique adaptative tourne à une cadence
inférieure à 200Hz.

Ensuite, parmi les paramètres clés d'un banc d'optique adaptative, nous pro-
posons une méthode simple pour estimer le retard fractionnaire de la boucle. Ce
retard doit être connu non seulement pour simuler correctement la boucle d'optique
adaptative mais aussi pour concevoir le contrôleur LQG. Nous proposons une mé-
thode basée sur les estimations moindres carrés combinant robustesse et précision.
Des simulations et des tests de mesures de retard sur banc permettent cette mise en
évidence des qualités de notre estimateur. Cela passe par la comparaison de la mé-
thode avec une autre méthode basée sur l'analyse spectrale (utilisant la transformée
de Fourier), pour laquelle nous proposons également des pistes d'amélioration.

De surcroît, un important travail est dédié à la modélisation pseudo-synthétique
de la matrice dite d'interaction (matrice reliant les commandes envoyées au mi-
roir déformable et les mesures du déphasage résultant fournies par l'analyseur de
surface d'onde). Cette matrice est cruciale notamment pour l'étude des conditions
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atmosphériques. La modélisation pseudo-synthétique (plutôt qu'une version expéri-
mentale mesurée sur le banc d'optique adaptative) permet d'abord de caractériser le
miroir déformable. De sa caractérisation s'ensuit la possibilité de dé�nir une matrice
de projection e�cace permettant de convertir les phases prédites par le �ltre de Kal-
man en des commandes à envoyer au miroir pour corriger ces phases. Les avantages
apparus sont notamment la bonne prise en compte des éventuels actionneurs morts
du miroir et de la géométrie de ce dernier. Outre le miroir déformable, l'analyseur
de surface d'onde doit également être modélisé. C'est fait via sa matrice de mesure,
de façon à pouvoir modéliser les mesures correspondant à une phase de perturbation
donnée. Nous détaillons donc un protocole nécessaire à la bonne prise en compte à
la fois de la géométrie du système optique et de la taille des pixels des images de la
caméra de l'analyseur.

Un dernier point appréciable de ce chapitre 5 est la proposition d'une méthode
pour modéliser la variance du bruit de mesure de l'analyseur de surface d'onde, basée
sur l'étude spectrale des mesures et la prise en compte du �ux sous forme de carte
d'intensité. Cela consiste à disquali�er les zones de l'analyseur de surface d'onde qui
n'ont pas ou très peu reçu de �ux de la part de l'étoile guide. Une extension de la
méthode est également présentée. Celle-ci consiste à non plus simplement disquali�er
les zones invalides de manière statique, mais plutôt d'analyser en temps réel les zones
qui semblent manquer de �ux, et remplacer les mesures correspondantes par une
estimation que fournit le �ltre de Kalman.

Toutes les méthodes de ce chapitre sont appliquées au système GTCAO.
Dans le chapitre 6, nous nous dirigeons vers la modélisation non plus du système

d'optique adaptative mais vers celle des perturbations. Un critère attendu est la
possibilité de mise à jour régulière du régulateur, en fonction de l'évolution des
statistiques de perturbation.

Nous prenons comme base les méthodes de modélisation et d'identi�cation de
modèles récemment con�rmées par des tests sur le ciel. La phase est représentée
dans la base de Zernike. Ces méthodes consistent à établir deux modèles dynamiques
stochastiques de perturbation complémentaires :

� Un premier modèle non paramétrique consiste en une identi�cation dite par
sous-espaces (méthode N4SID). Elle permet de modéliser tout type de per-
turbation (vibrations incluses). Notre travail a permis la mise en lumière de
certains avantages ou désavantages possibles de cette méthode de modélisation
dans notre cas d'étude GTCAO.

� Un deuxième modèle plus simple et paramétrique consiste en une prise en
compte de certaines caractéristiques statistiques globales des perturbations.
Nous avons proposé des méthodes d'estimation n'utilisant que les mesures de
l'analyseur de surfce d'onde pour ces paramètres, notamment des vitesses de
vent dites modales qui �xent les vitesses de décorrélation des modes de Zernike.
Le fonctionnement non-supervisé de l'estimation est également abordé.
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Un résultat intéressant a permis d'axer l'optimisation d'un paramètre clé du réglage
du régulateur LQG, le fudge factor, qui permet d'obtenir un bon compromis entre
performance et stabilité, ce qui sera illustré dans les résultats expérimentaux du
chapitre 7.

Outre l'identi�cation des modèles, nous étudions en simulation dans ce chapitre 7
la façon dont on peut mettre à jour le régulateur en temps réel a�n d'éviter un ressaut
trop important des mesures et des commandes lors de la transition. Des simulations
montrent que le changement de régulateur peut se faire en douceur. Ces méthodes
doivent être développées plus en profondeur pour une utilisation sur le ciel. En�n,
le chapitre 7 aborde la mise en ÷uvre expérimentale de notre régulateur LQG sur
GTCAO (dont le calculateur temps-réel DARC a été développé par l'Université de
Durham) et sur des données ciel du système d'OA du télescope Keck (Hawaii).

Ce chapitre commence par une présentation d'outils utiles pour l'analyse des per-
formances, dans l'objectif notamment d'analyser spatio-temporellement les qualités
et défauts du régulateur LQG et de l'intégrateur. Cela inclut en particulier l'étude
des algorithmes standards d'évaluation de la qualité des images scienti�ques prises
sur le banc : le rapport de Strehl, compris entre 0% (image catastrophique) et 100%
(image parfaite sans aucune perturbation optique).

Les résultats des tests expérimentaux sur GTCAO révèlent que :

� Pour une perturbation liée à la turbulence atmosphérique pure, l'écart de per-
formance entre le LQG et l'intégrateur est plus important pour une forte tur-
bulence. Le LQG améliore alors le rapport de Strehl de 5 à 10 points. Les
avantages en cas de turbulence atmosphérique faible apparaissent pour des cas
d'étoile guide de �ux moyen, avec jusqu'à 10 points de Strehl d'amélioration
lorsque le �ux est faible.

� Dans le cas où le miroir secondaire vibrerait à 12Hz (en présence de windshake),
l'intégrateur est plus pénalisé que le LQG, ce qui conduit à une augmentation
des écarts indiqués ci-dessus.

� Quand des perturbations plus complexes apparaissent, telles que celles que l'on
peut voir dans les données sur le ciel de l'optique adaptative du télescope Keck,
le LQG permet un gain de 10 points par rapport à l'intégrateur pour une étoile
guide de �ux moyen. Nous avons également pu montrer expérimentalement
que même des vibrations à très haute fréquence (typiquement 315Hz pour une
fréquence d'échantillonnage de Fs = 1 kHz) pouvaient être compensées par le
régulateur LQG sur le système GTCAO.

Dans tous ces tests, les marges de stabilité du LQG sont très confortables, de l'ordre
de 9 dB pour le gain et 40◦ pour la phase. La �gure 1 illustre un cas emblématique
de vibrations générées sur le banc GTCAO suivant des données enregistrées sur le
ciel issues du système d'OA de Keck. Les vibrations a�ectent les premiers 9 modes
de Zernike, le système fonctionne à 200 Hz sur une étoile modérément brillante. Les
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images scienti�ques montrent le gain spectaculaire de l'OA d'une façon générale, mais
aussi l'amélioration impressionnante de 11 points du rapport de Strehl, qui passe de
38% pour l'intégrateur à 49% pour la commande LQG.

Figure 1 : (banc avec vibrations, 8 novembre 2022) Images scienti�ques en
présence de vibrations sur 9 modes générées à partir d'un jeu de données ciel de
l'OA de Keck et injectées via le miroir déformable. Gauche : boucle ouverte (pas
de correction par OA). Milieu : integrateur (rapport de Strehl 38%). Droite :
régulateur LQG (rapport de Strehl 49%).

En�n, de nombreuses simulations en rejeu sont e�ectuées grâce à l'utilisation
de données ciel de l'optique adaptative du télescope de l'observatoire de Keck. Les
mêmes procédures de calcul (modélisation � partielle ici � du système d'optique
adaptative et identi�cation des modèles de perturbation) pour la conception des ré-
gulateurs LQG ont permis de con�rmer en simulation notre stratégie d'autotuning
telle que développée dans les précédents chapitres. L'ordre de grandeur du gain de
performance en moyenne pour ces jeux de données Keck est estimé à environ 100 nm

RMS. Cela a de plus con�rmé que notre stratégie de conception du régulateur LQG
pouvait rapidement être adaptée à un autre système d'optique adaptative � à condi-
tion que le calculateur temps-réel dispose de l'algorithme de commande adéquat, un
régulateur sous forme d'état linéaire étant su�sant.

Pour conclure, la maturité de la méthodologie permettrait de procéder mainte-
nant à des essais de régulateur non supervisé sur le ciel. Ceux-ci seraient d'un grand
intérêt pour confronter les résultats à ceux obtenus sur banc et en rejeu, et pour
confronter la modélisation à des perturbations réelles qui ne seraient plus vraiment
stationnaires. Il faut également tester la performance sur des intervalles de temps
su�samment longs, et ainsi pouvoir éprouver la stabilité du régulateur.

Je remets mon grand remerciement à l'équipe de GTCAO pour leur accueil dans
l'équipe et leur aide sur leur système d'optique adaptative. La formation o�erte pour
la manipulation du banc, mêlée à la prise de con�ance à l'AIV, ont permis un long
et plaisant travail pour le développement de cette régulation à haute performance.

Un grand merci également à Peter Wizinowich et Sam Ragland pour le partage
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de nombreuses données ciel de l'observatoire de Keck, accompagnées de paramètres
clés tels que la matrice d'interaction. La gentillesse avec laquelle furent remis les
jeux de données rendit leur exploitation très motivante, vers l'aboutissement de mon
travail de thèse.
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Chapter 1

Introduction

1.1 A short history of high angular resolution and its path towards
adaptive optics

For millennia (Rappenglück, 1997), the humankind has been developing a fascination
for its host Universe. It was mainly in the seek of its interpretation �rst, followed by
its practical usage (e.g. orientation). In the past centuries, the �eld of astrophysical
targets have been continuously backed away from the Earth, always expecting both
a clearer and stronger light signal.

This has come synergistically with the dedication of more observation sites (e.g.,
Cheomseongdae, �gure 1.1) and more instruments. The key one was the telescope,
starting in the 17th century. It was an instrumental tool to turn the sky interpre-
tations into a scienti�c research, with the growing principle that the laws of nature
apply everywhere equally in our solar system and everywhere in the universe (Van
Helden, 1974).

Figure 1.1: Left: 첨성대 , among the oldest surviving astronomical observa-
tories, constructed in the 7th century on demand of Queen Seondeok (South
Korea, credit Lucas Marquis).
Right: the Gran Telescopio Canarias (Spain, credit University of Florida).

In 1609, Galileo Galilei perfected a refraction telescope with several lenses and
pointed it at the night sky, enabling him to discover the satellites around Jupiter (Rose,
1964). The German astronomer Johannes Kepler � before his heliocentric model of
the Solar System � published the theoretical foundation for the study of such lens
systems (Helden, 1974). In the same century, another Italian astronomer, Giovanni
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Cassini, designed a telescope with increased focal length, which allowed him to ob-
serve the moons of Saturn and to make the �rst accurate measurement of the distance
between the Earth and the Sun, our modern astronomical unit (Augusto, Difa, and
Rossi, 2021). In the meantime, Isaac Newton invented the re�ector, a re�ecting tele-
scope, using a concave mirror to re�ect and focus light until the eyepiece without
chromatic aberrations (Augusto, Difa, and Rossi, 2021). In 1789, the astronomer
William Herschel built such a re�ecting telescope, with su�cient resolution to dis-
cover Uranus (Augusto, Difa, and Rossi, 2021). Neptune and its 6 times fainter
brightness was �rst observed again a few decades later by the German astronomer
Galle, with a 10-cm refractive telescope (made of achromatic lenses thanks to the
English optician John Dollond), by conducting the predictive localisation calculated
by the French mathematician Le Verrier: given a bright guide star to track, Galle
could see alongside the blue spot of the 8th solar system planet (Krajnovic, 2016).
In the early 20th century, the application of interferometry allowed for even higher
angular resolution with telescopes. The angular resolution is the smallest allowed
distance between two close objects to keep them distinguishable. Combining simulta-
neously the light from multiple telescopes, interferometry creates images with greater
details than what could be achieved with one single telescope. In 1920, the Amer-
ican astronomer Albert Michelson used an interferometer to measure the diameter
of Betelgeuse star (higher than one astronomical unit, roughly equal to the distance
between the Sun and the Earth, that is about 150 million kilometers!). Those re-
sults were published by Pease in (Pease, 1921), in which is repeatedly mentioned one
di�culty: the seeing.

For a single-mirror telescope, the best achievable theoretical resolution (that is,
at the di�raction limit) is inversely proportional to its diameter. For an interferom-
eter, it is inversely proportional to the maximum distance between the individual
telescopes which are used in combination. In astronomy, seeing refers to the e�ect
of atmospheric turbulence on the sharpness of astronomical images. Because of the
seeing, a telescope or interferometer of size 10 meters will have as poor resolution
as one of size 10 centimeters. Good seeing conditions were then of utmost impor-
tance for high-resolution observations. To address this issue, Babcock �rst suggested
in 1953 (Babcock, 1953) a disturbance correction principle which was the basis of
adaptive optics (AO). The AO systems aim at compensating the image deformations
induced by the atmospheric turbulence on ground-based telescopes. To do so, a de-
formable mirror (DM) is inserted on the optical path and is controlled in real time
using measurements of the deformations delivered by a wavefront sensor (WFS).

In 1989, an astronomical AO system is �nally successfully operational, the COME-
ON AO prototype, tackling the atmospheric turbulence related optical e�ects (Rous-
set et al., 1990). The global interest in AO immediately soared, making it since then
a staple in the ground-based astronomy, an integral part of new telescopes design.
Around 10 years after COME-ON, the 10-m Keck telescope started its observa-
tions (Wizinowich et al., 2000). It has been followed for instance by the Very Large
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Telescope (Hubin et al., 1994), the Large Binocular Telescope (Esposito et al., 2010),
the Subaru Telescope (Guyon, Hayano, et al., 2014). The largest telescope today is
the 10.4-m Gran Telescopio Canarias (GTC), not yet but soon to be equipped with
GTCAO, a Single Conjugated AO (SCAO) system, that is, a DM and a WFS, with
analysis and correction performed in the same direction. GTCAO has been inte-
grated by the Instituto de Astrofísica de Canarias (IAC) for infrared observations.
It is in the �nal stages of testing at the IAC laboratory on the island of Tenerife (La
Laguna town). As for most of the operational AO systems, the baseline for the con-
troller of the GTCAO is an integral action controller, or in short, an integrator. An
integrator is easy to implement (already used for the �rst AO system COME-ON)
and in most cases it has a very good performance. In addition, it requires only a
modest amount of knowledge about the AO system.

1.2 Advanced controllers to cope with vibrations (and other adverse
situations)

However, poor signal-to-noise ratios or non-atmospheric disturbances such as vibra-
tion may severely a�ect integral control performance, see e.g. (Kulcsár, Sivo, et al.,
2012). Combining good performance in these unfavorable situations with robustness
and ease of implementation is not straightforward and very few operational AO sys-
tems have more advanced controllers able to e�ciently adapt to these types of cases.
Most, if not all, of these systems are dedicated to exoplanet detection: SPHERE
(Beuzit et al., 2005) at the Very Large Telescope, GPI (B. Macintosh et al., 2007) at
Geminy South and SCExAO (Guyon, Martinache, et al., 2010) at Subaru telescope.
The latter is based on multivariable linear regression (Guyon, Lozi, et al., 2020)
while the �rst two use Linear Quadratic Gaussian (LQG) regulators on tip and tilt
for SPHERE (Petit et al., 2014) and on tip, tilt and focus for GPI (L. Poyneer, Rosa,
et al., 2014), higher orders being controlled with an integrator. These regulators aim
at predicting the upcoming disturbance in order to address the temporal delays that
AO systems inherently su�er from. They are all eXtreme AO (XAO) systems, with
very strong performance requirements. Apart from these operational systems, very
few on-sky experiments have been carried out. Using a similar scheme, that is a
limited number of low-order modes with an advanced controller capable of vibration
mitigation, the higher orders with an integrator, there is, to the best of our knowl-
edge, only a few examples: tip/tilt control for a 1.5 meter solar telescope (Doelman,
Fraanje, and Breeje, 2011), 20 modes for a 5 meter astronomical telescope (Tesch et
al., 2015), tip/tilt control for another solar telescope of 1.8 meter (Guo et al., 2021).
As for the control of all modes in SCAO, full LQG control has been demonstrated on
sky only twice: in 2012 by Sivo (Sivo et al., 2014) and in 2019 by Sinquin (Sinquin
et al., 2020), both on the CANARY (Myers et al., 2008) demonstrator at the 4.2
meter William Herschel telescope in La Palma (Canary Islands).

So what is an LQG regulator? It has been proposed for the �rst time in AO in

29



Chapter 1. Introduction

1991 (Paschall, Von Bokern, and Welsh, 1991). It consists in using a linear stochastic
state-space model to predict the disturbances from noisy and delayed WFS measure-
ments thanks to a Kalman �lter. It can be designed in discrete time in an optimal
way in the sense of the minimal variance of the residual phase (Le Roux et al., 2004;
Kulcsár, H.-F. Raynaud, et al., 2006; Looze, 2009; Kulcsár, H. F. Raynaud, et al.,
2012). Of course, the state-space model should describe well enough the spatio-
temporal statistics of the disturbances. With GTCAO, the objective is to bring to
a SCAO system the main advantages of these types of regulators, that is e�ciency
and robustness, and to ease their implementation thanks to well-de�ned procedures.

1.3 The Gran Telescopio Canarias and adaptive optics LQG control:
context and objectives

The GTC is a world-class optical and infrared telescope. It has a primary mirror
diameter of 10.4 meters, making it the largest single-aperture telescope in the world.
This primary mirror is a segmented mirror, composed of 36 hexagonal mirrors (GTC,
2023), as illustrated in �gure 1.2.

Figure 1.2: Photograph (credit GTC) of the GTC primary mirror M1. We
can distinguish some of the 36 grey-appearing hexagonal segments. The red
beams are carrying the M1 rotation platform. The grey ones are carrying the
secondary mirror M2, visible by re�ection on the right side of the primary
mirror (M2 has the same shape as M1 but is about 10 times smaller). The
black pipe in the center of the primary mirror is the �nal entrance of the light
once successively re�ected by M1 and M2.
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objectives

It was in the late 1980s that the idea of building a large telescope at the Spanish
Observatory of Roque de los Muchachos was suggested. The trigger was pulled in
1995 when the Spanish authorities secured granting funds. One appealing criteria
was the quest for an unprecedented optical quality, notably highlighted by the design
of an AO system (Rodriguez-Espinosa and Alvarez, 1997). The site of el Roque de los
Muchachos appeared as a promising place in terms of sky conditions to erect a 10-m
telescope (Varela, Muñoz-Tuñón, and Gurtubai, 2001). It is located on the island
of La Palma, part of the Canary Islands (Spain), at the top of mountains reaching
over 2.3 kilometers of height. There, thanks to climate cells, the atmosphere is of
excellent quality for astro-observations.

Figure 1.3: Map of Canary Islands location (Credit (Blázquez-Bermejo et al.,
2020)). The island of La Palma (GTC host) is the most north-west. The island
of Tenerife (where are the premises of the IAC) is the fourth from the left or
from the right.

In 2004, the 36 segments of the primary mirror are received and three years later
is happening the �rst light at the GTC (Sánchez-Martínez and F., 2008). Although
the AO implementation was delayed, GTC found a large success with cutting edge
scienti�c instruments such as OSIRIS (�rst scienti�c instrument, for high sensitivity
spectroscopic observations, allowing for instance the study of exoplanets (Murgas
et al., 2019), which is a hot topic nowadays), or HiPERCAM (high-speed optical
imager (Dhillon et al., 2021)). For the last few years, the AO installation program has
been reactivated, with the aim of extending the GTC high-technology instruments
and high light �ux towards a higher spatial resolution, as initially planned. The
corresponding high-resolution new instrument is FRIDA, a di�raction-limited imager
and integral-�eld spectrograph for the adaptive-optics focus (Watson et al., 2022).

The AO system for GTC, GTCAO, is now in the end of its test phase and will
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Figure 1.4: Comparison of images taken by GTC (left, credit GTC) and by
Hubble Space Telescope (right, credit HST) of the center of a galactic cluster.
GTC discovers more new galaxies (bigger photon collection surface) but with
poorer resolution (atmospheric turbulence does not a�ect space telescopes).

be soon shipped to La Palma and integrated on one of the GTC Nasmyth platforms.

My PhD targets the full design and test of an optimal LQG controller for the
GTCAO system. Nowadays, an LQG regulator is not straightforward to set up. Some
underlying modeling di�culties certainly play a major role in its underutilization on
sky, while the recent hardware evolution facilitates its real-time implementation and
is thus nowadays not the main obstacle. Besides the fact that it can signi�cantly
improve the performance with respect to an integrator, LQG control for GTCAO
bene�ts from an existing module on the real-time computer DARC (A. Basden et al.,
2010) (used for the full LQG on-sky experiments mentioned above) which happened
to be the real-time computer chosen for GTCAO.

This manuscript presents the �rst exploration of modeling methods and calibra-
tion procedures for the LQG control of an AO system on a very large telescope, the
latter having moreover a non-circular segmented pupil. Our work aim at providing
well de�ned methodologies to model the disturbances and the AO system, including
protocols that should ease the calibration of the system components. The whole
methodology is validated on the GTCAO bench. The objective is to go towards an
unsupervised LQG regulator that adapts to turbulence conditions evolution and that
should work without the help of a control specialist, delivering therefore accessible
high performance.

The PhD takes place in the frame of an international joint supervision between
the Université Paris-Saclay and the Universidad de La Laguna in collaboration with
the IAC, with main support of the Actions Doctorales Internationales (ADI) program
funded by IDEX Paris-Saclay. Of course, the pandemic limited (or even stopped)
access to Tenerife for quite a long period and caused changes in the realization of
the GTCAO project. Nevertheless, I was lucky enough to be granted a 7-month
extension that allowed me to continue my tests at IAC.
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1.4 Manuscript organization

This PhD thesis manuscript is composed of eight chapters, starting with this intro-
duction as chapter 1, ending with the Conclusion and perspectives in chapter 8.

The chapter 2 is dedicated to the description of astronomy pictures from the
ground. An accent is set on the turbulence disturbance with its main statistic prop-
erties that we need in our work.

In chapter 3, we explain the principle of adaptive optics systems. These ex-
planations go with the introduction of linear systems modeling which is necessary
for the control. We focus on the description of some regulators used nowadays on
operational telescopes, including the LQG controller.

The chapter 4 aims at giving a description of the impact of the AO systems delay
and of the modeling thereof in high-performance control. The highlighted issue is
tackled by de�ning an optimal controller thanks to exact temporal modeling of the
DM and the WFS for the de�nition of LQG regulator. It is the occasion for showing
the main drawback of the integrator and the strength of LQG control: the vibration
mitigation.

In chapter 5, we describe the GTCAO system. We detail for each of its compo-
nents a simple method to calibrate it, the fundamental parameters being supposedly
known (e.g. interaction matrix, WFS pixel size...). The simple methods are thus
applied to GTCAO, with in mind their applicability to other SCAO systems. This
calibration is oriented towards the LQG control, which involves the linear modeling
of the AO components presented in chapter 3.

Then, in chapter 6, the described modeling protocols are targeting the distur-
bances. It mainly consists in de�ning simple procedures to estimate the spatio-
temporal disturbance priors we invoke in the LQG regulator de�nition. This chapter
also aims at clarifying the state-space modeling of the complete disturbance. Some
comments are made about the validity of the models when the disturbance statistics
have evolved and about the switching aspects between two consecutive models.

Eventually, we show in chapter 7 the global performance reached with the LQG
regulator implemented as proposed in the previous chapters. This chapter consists
in describing �rst our performance criteria. Those criteria are used to study the
respective GTCAO on-bench performance of the integrator and LQG controllers,
in terms of scienti�c image quality and system behaviour. A short experimental
comparison is also done with the widely used MMSE (Minimum Mean-Square Error)
reconstructor. In the same chapter, a part of my PhD work is applied to data from
the Keck telescope. Once the system is modeled following chapters 5 and 6, the
performance is validated throughout replay tests with on-sky data of Keck's AO
system.
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Chapter 2

Image formation for ground-based telescopes

2.1 Introduction

This starting chapter explains the fundamental optical concepts and some charac-
teristics of the turbulence and other disturbances such as windshake and vibration,
helping for the understanding of the upcoming work of this manuscript. For a large
part of the material presented here, details can be found in (Roddier, 1999).

The mirror diameters of the latest high-tech telescopes are hundreds of times
larger than those of our amateur binoculars. The principles of image formation in
section 2.2 allow us to understand why the resolution of the images becomes hundreds
of times better. However, as mentioned in the introductory chapter, when observing
the universe from the Earth's surface, our images are degraded by atmospheric tur-
bulence, whose main parameters are described in section 2.3. These disturbances are
often represented by the so-called Zernike basis described in section 2.4. This basis
will be used throughout the manuscript to represent the disturbances. We will go on
highlighting the other critical perturbations generated by the wind, which makes the
telescope structures shake, or by the mechanical vibrations induced by some compo-
nents. Finally, in section 2.6, we present the Strehl ratio (SR), the common metric
that we have used to evaluate astronomical image quality.

2.2 Principle of image formation � Fourier optics

Point spread function

An optical system is in a standard way described by its point spread function (PSF).
It is the impulse response of that system, or in other words the image obtained
when observing a point-like object. For any object O (not necessarily point-like),
the image I at the focus of the telescope can be described, for translation invariant
optical systems, by a convolution: for each coordinate xim, yim in the focal plane,

I
(
xim, yim

)
= (O ∗ PSF )

(
xim, yim

)
. (2.1)

With the acceptable hypothesis that the astrophysics objects are in�nitely far (rel-
atively to the size of the telescope pupil), the Fourier optics formula gives the PSF
as the square modulus of the inverse Fourier transform F−1 of the telescope pupil:

PSF (xim, yim) =
∣∣F−1(P)(xim, yim)

∣∣2 , (2.2)

with (xim, yim) the Cartesian coordinates in the image plane. Here P is the aper-
ture function: the Fourier transform allows to switch between the image plane
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and the pupil plane. For instance, in the classical case of a circular pupil (like
a circular primary mirror without central obstruction) of diameter Dpup, noting
ρpup =

√
xpup2 + ypup2 (polar coordinates with (xpup, ypup) being the Cartesian co-

ordinates in the pupil plane), we have

P(ρpup) =
{

1, if ρpup ≤ Dpup/2
0, else

, (2.3)

and the PSF is the Airy disk with analytical expression

Airy(θ) =
πD2

pup

4λ2

∣∣∣∣
2J1 (πDpupθ/λ)

πDpupθ/λ

∣∣∣∣
2

, (2.4)

which depends on the wavelength λ. For the PSF, we often use as above the angle
θ as coordinate rather than the position ρim =

√
xim

2
+ yim

2
= fθ, with f the

focal distance of the optical system under consideration. The term J1 is the Bessel
function of the �rst kind, and this di�raction-limited PSF has a full width at half
maximum (FWHM) of λ/Dpup radian.

Optical transfer function

The optical transfer function (OTF) of the optical system is de�ned as the Fourier
transform of the PSF for each spatial frequency ν ≜ ρpup/λ:

OTF (ν) = F (PSF ) (ν) . (2.5)

The PSF and the OTF are thus bijectively equivalent. The particularity is that the
PSF gives directly the point image obtained with the optical system, while the OTF
is detailing the spatial spectrum also called spectral transmissivity. We can then
�close the loop� with the telescope pupil, stating the Wiener�Khintchine theorem:
the OTF is the autocorrelation of the pupil function. Denoting the normalized spatial
frequency by ν ′ = ν/νc = νλ/Dpup, the calculation gives:

OTF (ν ′) =

{
2
π

(
arccos(ν ′)− ν ′

√
1− ν ′2

)
, if ν ≤ νc

0, else.
(2.6)

This de�nes the so-called cut-o� frequency νc of the optical system. The di�raction
phenomenon written in equation (2.1) corresponds then, in terms of spectral content,
to

F(I)
(
ν ′
)
= F(O)

(
ν ′
)
OTF (ν ′) . (2.7)

Object frequencies higher than νc are therefore cancelled out, meaning that the pupil
is a low-pass �lter. We retrieve a de�nition of the di�raction-limited resolution of
the telescope 1/νc = λ/Dpup, that is to say the FWHM.
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2.3 Atmospheric turbulence problem and parameters

In our study, we are in the case of disturbed images when the incident wavefront
undergoes more perturbations than the inevitable pupil di�raction previously de-
scribed.

2.3.1 Loss of coherence when crossing the atmosphere

Our atmosphere is not homogeneous. It is composed of multiple gas bubbles, moved
by the wind, each having a di�erent temperature and humidity. As a consequence,
each has its own optical index n(t, xpup, ypup, z) if located at (xpup, ypup, z) at the
instant t. This index can be linearly evaluated as done in the empirical law of
Gladstone-Dale (Barrell and Sears, 1939):

n(t, xpup, ypup, z) = 1 +Gairρair(tpup, xpup, ypup, z) , (2.8)

where ρair stands for the density and Gair = 2.26×10−4m3/kg denotes the Gladstone-
Dale constant, almost independent from the wavelength. In this way, the light rays
emitted from one same point in the space will be more or less slowed down depending
on the atmospheric cells they go through before reaching the pupil. Their optical
path is expressed with

δOP(t, xpup, ypup) ≜
∫ 0

htur
n(t, xpup, ypup, z)dz , (2.9)

where htur is the altitude of the highest turbulence layer. The optical path when
reaching the telescope pupil at z = zpup = 0 depends on spatio-temporal coordinates
(t, xpup, ypup). In other words, the temperature-dependent refraction index of the air
will lead to di�erent Descartes-described angle variations.

In our case of wave optics, we describe the full wavefront above the telescope
pupil as the resulting dephasing

ϕ(t, xpup, ypup) ≜ 2π

λ
δOP(t, xpup, ypup, zpup) , (2.10)

so as to take into account the wavelength in�uence on the distorted images. This
loss of coherence will deteriorate image formation (at pupil level z = 0). In Fourier
optics with j the complex number, equation (2.2) is then replaced by

PSF (t, xim, yim) =
∣∣F−1 (exp (jϕ(t))P) (xim, yim))

∣∣2 , (2.11)

computed from the pupil space 2-D function

(xpup, ypup) 7→ exp (jϕ(t, xpup, ypup))P(xpup, ypup) . (2.12)

The two basic examples of distortion are:
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� The 1-D case (ypup = 0), where the deformed wavefront is still plane but
simply inclined by an angle α(t). We have then

ϕincl(t, xpup) =
2π

λ
xpup α(t) , (2.13)

and the Fourier transform property tells us that the PSF we get with ϕincl(t) in
equation (2.11) is therefore the same as the di�raction-limited one but shifted
with an angle α(t) in the image plane (or with a distance α(t)f). Since exp(a+
b) = exp(a)exp(b), the same reasoning is applicable to a wavefront that is not
plane anymore but whose spatial �rst order approximation is (2.13):

ϕ(t, xpup) = ϕincl(t, xpup) +O(xpup2) . (2.14)

The �nal image we get is the image distorted by the dephasing O(xpup2) but
shifted with an angle α(t).

� The piston case, de�ned as

ϕ(t, xpup, ypup, zpup) = ϕpist(t) , (2.15)

the same over the full pupil. The value exp (jϕ(t)), which is now scalar, can
then get out of the Fourier transform in equation (2.11), and its unitary mod-
ulus has no impact on the PSF value.

2.3.2 De�nition of the main turbulence characteristics

The spatial and temporal characteristics of the turbulence are described through
its spatio-temporal statistics. These are essential part of the construction of our
stochastic models for control.

Fried parameter r0

The Fried parameter r0 (Fried, 1966) represents the characteristic coherence size of
the wavefront: the bigger r0, the better the image quality. It can also be inter-
preted as the maximal length which limits the dephasing to a pure tip-tilt, as in
equation (2.13). The parameter r0 is typically of 10 cm at the default wavelength
of 500 nm (T. Fusco et al., 2004; Osborn et al., 2018). It depends notably on the
wavelength at power 6/5 = 1.2 in its analytical formula

r0 =

[
0.42

(
2π

λ

)2

sin (γ)−1
∫ ∞

0
C2
n(z

′)dz′

]− 3
5

, (2.16)

where γ is the elevation angle. This gives the relation between the r0 values at two
di�erent wavelengths λ1 and λ2:

r0(λ1) = r0(λ2)

(
λ1

λ2

)6/5

. (2.17)
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From equation (2.16), we can see that r0 ∝ sin (γ)
3
5 , so that the best elevation for

observations is at the zenith (γ = 90deg). The integrated term C2
n(z) is the refractive

index structure parameter, or simply the turbulence strength parameter. It provides
a statistical measure of the strength of atmospheric turbulence, representing the
spatial variations of the refractive index in the atmosphere as a function of altitude
z. A usual approximation is to partition the atmosphere into several discrete layers
(
∫∞
0 C2

n(z
′)dz′ =

∑Nlayer

i=1 C2
n(i), Taylor hypothesis (Taylor, 1938)) and estimate their

respective energy (with dedicated instrument e.g. (Vernin and Munoz-Tunon, 1992)).
Indeed the atmospheric temperature mixing occurs mainly:

� close to the ground (0 to 40m)

� at the inversion layer (1 to 2 km)

� at the jet-stream level (8 to 12 km)

with the main part for the ground layer.

Wind speed V0

A second key variable to describe the atmosphere is the wind speed average V0. With
the well accepted Taylor approximation, each layer k of the atmosphere is animated
by its proper wind speed Vk into a translation motion. It corresponds to a horizontal
translation of its proper air cells. In the end, the value of V0 is obtained as the
energy-weighted average of the wind speed of all layers:

V0 =

(∑Nlayer

i=1 C2
n(i)V

5/3
i∑Nlayer

i=1 C2
n(i)

) 3
5

. (2.18)

A typical value is of 10m s−1 (T. Fusco et al., 2004; J. Osborn et al., 2016).

Temporal coherence τ0

The third variable to describe the atmosphere, based on the two previous ones, is
the resulting characteristic coherence time of the wavefront,

τ0 = 0.31
r0
V0

. (2.19)

For the previous numerical values (r0 = 10 cm and V0 = 10m s−1), this gives a value
of 3ms similar to on-sky measures (Osborn et al., 2018). Thus, the atmospheric
optics is a severely non-stationary phenomenon. When taking images through the
atmosphere, the distortion will a�ect the PSF di�erently according to the exposure
time Texp of the camera:

� If Texp < τ0, the PSF will consist of several randomly distributed speckles
of characteristic size λ/Dpup radians (di�raction limited) spreading with a
characteristic size of λ/r0 radians.
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� If Texp >> τ0, the PSF will be the sum of many independent spreads of the
speckles described above, whose accumulation will lead to a 2-D Gaussian
image of FWHM close to λ/r0 radians.

Figure 2.1: (simulation) PSF obtained in di�raction limited case (left), in
presence of turbulence with a short exposure time Texp < τ0 (middle), and
in presence of turbulence with a long exposure time Texp ≃ 500τ0). Fried
parameter at r0(λ = 500 nm) = 10 cm, telescope diameter 11.35m (as is GTC),
imaging camera in H-band 1600 nm.

In the end, the resolution boundary in turbulent conditions, called seeing, is evaluated
with the formula (Tatarski, Silverman, and Chako, 1961):

αtur = 0.975λ/r0 , (2.20)

and with equation (2.17), we see that αtur ∝ λ
−1
5 . It is a big issue in visible-infrared

spectrum (reaching one arcsecond), but negligible for radio waves telescope.

Outer scale parameter L0

The outer scale parameter L0 refers to the characteristic length scale over which
the refractive index �uctuations are uncorrelated. As a consequence, the low spatial
orders of the turbulence will have less energy when L0 decreases.

Power spectral density

Kolmogorov formalized a model to describe spectrally the atmospheric turbulence
energy (Kolmogorov, 1941). It is involved in our work since describing the power
spectral density (PSD) W (k, i) (k in m−1, i-th layer of atmosphere) of the phase
disturbance:

WKol
ϕ (k, i) (fs, h) ≃ 0.033 (2π)−

2
3C2

n(i)k
− 11

3 . (2.21)

Von Kármán extended this model to take notably the outer scale L0 into account (Kár-
mán, 1948):

WKar
ϕ (k, i) ≃ 0.033 (2π)−

2
3C2

n(i)

(
1

L2
0

+ k2
)− 11

6

, (2.22)
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which is the model used in our work for all theoretical PSD calculations. When L0

tends to in�nity, we retrieve the Kolmogorov model.

2.4 Wavefront description: the Zernike base

In this section, we de�ne the Zernike modes (Zernike, 1934) and their usage in the
description of atmospheric disturbance statistics.

2.4.1 Zernike polynomials

The Zernike basis is an orthonormal basis of polynomials de�ned on a circular support
in polar coordinates. The j-th polynomial is de�ned, ∀ρ ∈ [0, 1] and ∀θ ∈ [0, 2π], by:

Zj(ρ, θ) =





√
jrad + 1Rjazi

jrad
(ρ)
√
2cos(jaziθ) for jazi ̸= 0 and j even ,√

jrad + 1Rjazi
jrad

(ρ)
√
2sin(jaziθ) for jazi ̸= 0 and j odd ,√

jrad + 1Rjazi
jrad

(ρ)
√
2 for jazi = 0 ,

(2.23)

jrad being the radial order and jazi the azimuthal order. The indexes j, jrad and jazi
are de�ned by Noll (Noll, 1976), and the function Rjazi

jrad
is expressed by:

Rjazi
jrad

(ρ) =

jrad−jazi+2∑

k=0

(−1)k(jrad − k)!

k!( jrad+jazi
2 − k)!( jrad+jazi

2 + k)!
ρjrad−2k . (2.24)

The �rst polynomials are shown in �gure 2.2. A phase de�ned on a Zernike basis is
decomposed in the form

ϕ(ρ, θ) =
+∞∑

j=0

ajZj(
2ρ

D
, θ) , (2.25)

with ρ ∈ [0, D/2]. In this equation, aj is the coe�cient of the j-th Zernike polynomial
Zj .

The turbulence energy is concentrated in the �rst Zernike modes. For the models,
this motivates the use of a phase vector on a limited basis, of dimension nmodes, where
the piston is removed since not sensed by the WFS and without impact on the PSF:

ϕZer =




a1
a2
...

anmodes


 . (2.26)

The phase variance (in rad2) is the norm of this vector:

σ2
ϕ(t) =

∞∑

j=1

aj(t)
2 . (2.27)
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Chapter 2. Image formation for ground-based telescopes

Figure 2.2: 2-D representation of the �rst 9 Zernike modes. Top to bottom:
radial order irad 0 to 5. Left to right: the (irad + 1) azimuthal orders. Credit:
Nschloe.

If the radial order is nrad, the total number of Zernike modes is given by:

nmodes =
nrad(nrad + 3)

2
. (2.28)

The total number of modes considered for the phase decomposition depends on the
spatial resolution we want to achieve.

2.4.2 Spatio-temporal statistics of atmospheric disturbances in Zernike

base

2.4.2.1 Modal energy distribution

Once expressed in the Zernike base, we can compute the covariance matrix Σϕ of
atmospheric phase disturbance (Noll, 1976) for each couple of mode (i, j) whose
radial order are (irad, jrad) and azimuthal order are (iazi, jazi):

Σϕ(i, j) ≜ Cov (ai, aj)

= 3.90
√
(irad + 1) (jrad + 1)(−1)(irad+jrad−2iazi)/2δiazi,jazi

(
Dpup

r0

)5/3

×
2−14/3Γ

(
irad+jrad−5/3

2

)

Γ
(
−irad+jrad+17/3

2

)
Γ
(
irad−jrad+17/3

2

)
Γ
(
irad+jrad+23/3

2

) . (2.29)
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2.4. Wavefront description: the Zernike base

This is derived from the Kolmogorov statistical description of the turbulence (Kol-
mogorov, 1941). The non-diagonal shape of this matrix means that modes are corre-
lated. The diagonal term Σϕ(i, i) gives access to the expected energy as the spatial
variance stemming from the mode i. It corresponds to the temporal variance of the
i-th Zernike coe�cient:

Σϕ(i, i) =< a2i >= lim
T→∞

1

T

∫ T

0
ai(t)

2dt , (2.30)

and thus the trace of Σϕ is giving the global wavefront expected variance (Noll, 1976)

σ2
ϕ =

1

Spup

∫

Spup

〈
ϕ2(ρ)

〉
dρ =

∞∑

i=1

< a2i > . (2.31)

To account for the outer scale L0, an adjustment based on Von Kármán spatial
statistics (2.22) is made (Chassat, 1992) by applying a coe�cient η(i)η(j) to each
Σϕ(i, j), where η is de�ned by:





η(i) ≈ 1− 0.77
(
2πDpup

L0

)1/3
+ 0.09

(
2πDpup

L0

)2
− 0.054

(
2πDpup

L0

)7/3
if irad = 1,

η(i) ≈ 1− 0.039
(
2πDpup

L0

)2
+ 0.027

(
2πDpup

L0

)7/3
if irad = 2,

η(i) ≈ 1− 1
(irad−11/6)(irad+23/6)

(
2πDpup

L0

)2
if irad ≥ 3 .

(2.32)
It was also shown that the variances are well approximated by an asymptotic depen-
dence on the radial order when the latter is large enough (R. Conan, 2008):

σ2
irad
≈ 0.7632 (irad + 1)−11/3

(
Dpup

r0

)5/3

. (2.33)

If nrad Zernike modes are corrected, the atmospheric turbulence energy left over is
then equal to (R. Conan, 2008):

σ2
left = 0.458 (nrad + 1)−5/3

(
Dpup

r0

)5/3

. (2.34)

2.4.2.2 Temporal spectral distribution

With the Taylor hypothesis where each discrete turbulence layer is supposed to evolve
as a frozen screen that translates at the wind speed, the previous spatial study can
be converted into temporal spectrum with the basic fact that the changes between
two ∆x-separated points will be the same as the changes between two ∆t = ∆x/V0-
separated instants (J.-M. Conan, Gérard Rousset, and Madec, 1995; Le Roux et
al., 2004). The PSDs of Zernike coe�cients (example in �gure 2.4) exhibit the two
following noteworthy properties:
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Figure 2.3: Theoretical modal energy with respect to the Zernike mode number
for a telescope diameter of 11.35m (as is GTC). Left: r0 = 8 cm. Right:
r0 = 25 cm. The modes of a same radial order have the same energy (steps).
Von Kármán statistics are limiting the low orders energy according to L0/Dpup

ratio. A factor α applied to r0 leads to a vertical shift of α5/3 (close to ∼ 15
on this graph).

� Cut-o� frequencies located at Fcut = 0.3 (nrad+1)(V0/Dpup) (frequency at the
break of slope of the curves)

� Beyond the cut-o� frequency, an exponential decrease with a logarithmic slope
of −17/3
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Figure 2.4: PSD of the turbulence of three Zernike modes (OOMAO simulation
with L0 = 20m and V0 = 10m s−1).
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2.5. Windshake and vibration

Eigenmode description Eigenfrequency [Hz]

Lateral mount bending 5.14

Front bending of the tube around its axis 9.33

Front bending of the mount 12.26

Torque of the mount 13.23

Vertical bending of the rotating �oor 14.88

Local torque of the Nasmyth platforms 15.94

Table 2.1: List of some of the GTC mechanical eigenmodes. Credit: extracted
from a table of (Pan et al., 2000).

2.5 Windshake and vibration

Windshake and vibration can originate from various sources, such as wind blowing on
the structure of the telescope or components like fans, cooling pumps... The resulting
mechanical displacements have a direct repercussion on the wavefront distortion and
are likely to signi�cantly impact the quality of the scienti�c images (Kulcsár, H. F.
Raynaud, et al., 2012).

The Zernike modes are a good support to describe the e�ects of these non-
atmospheric disturbances on the wavefront. With the growth in complexity of large
telescopes architectures, the number of modes to be a�ected is likely to go beyond
the three standard modes of tip, tilt and defocus. However, mechanical vibration
a�ecting the telescope structure will probably concern the low temporal frequencies.
An example of some of the GTCmechanical eigenmodes together with their resonance
frequency are given in table 2.1. With the induced motions, the same frequencies will
appear in the PSDs of the �rst optical modes. A typical root-mean-square (RMS) of
the tip and tilt vibrations for instance is σvib = 5 to 100mas (Kulcsár, Sivo, et al.,
2012), which is the same order of magnitude as the Airy disk of telescopes observing
in the visible-infrared wavelengths. Some disturbances other than those structure-
induced can reach similar energies, with potentially much higher temporal frequencies
(e.g �gure 7.21 in chapter 7). Vibration mitigation on telescopes is therefore crucial
for obtaining the di�raction-limited astronomical images.

2.6 Image quality evaluation � Strehl ratio

When developing a high-resolution optical system it is of utmost importance to set a
quality criterion. In the case of scienti�c images, the standard one is the Strehl ratio.
It is de�ned as the ratio of the intensity peak of the actual PSF over the intensity
peak of an ideal di�raction-limited PSF, reaching the best possible value of 1 in case
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of an indeed di�raction-limited PSF. For a centered PSF, it is written as:

SR ≜ max(PSF )

max(PSF di�r)
=

∑
OTF∑

OTFdi�r
, (2.35)

with thus the possibility of using the OTF instead of the PSF. The Strehl ratio can
be approximated from the phase variance σ2

ϕ, so without the need of a scienti�c
image, using the approximation proposed in (Mahajan, 1983) as:

SR ≈ exp(−σ2
ϕ) , (2.36)

valid for SR values typically higher than 0.3. Using this formula, the SR scales from
one wavelength λ1 to another one λ2 by the simple rule

SRλ2 ≈ SR
(λ1/λ2)

2

λ1
.

We saw in �gure 2.3 that the simple tip and tilt turbulence-induced dephasing modes
could easily reach 20 rad2 in visible wavelength, a regime where equation (2.36) is
not valid.

2.7 Conclusion

We have seen the dramatic impact the atmosphere has on image resolution for the
ground-based telescopes. With a very short overview, we have described the distur-
bances with some spatial and temporal parameters. These are well described in the
Zernike basis, which will be also used to express the mechanical-related vibration
perturbations. Performance assessment through image quality will be evaluated in
a standard way with the Strehl ratio, and the Mahajan approximation (Mahajan,
1983) will also be used when appropriate.

Adaptive optics systems are used to achieve the full resolution possible in the
di�raction limit. Their principle and operation, together with their main components
and their standard servoing, are discussed in the following chapter.
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Chapter 3

Adaptive optics principle and standard controllers

3.1 Introduction

We have seen in chapter 2 how the atmospheric turbulence and some mechanical
motions a�ect the visible/infrared wavefronts and the impact on images. This is well
described in the Zernike base, including some spatio-temporal behaviors. We are ex-
tremely far from achieving the full possible resolution without the use of an adaptive
optics system. The principle of adaptive optics, along with its key components, will
be detailed in the following sections. The components will be modeled linearly, and
the delays of the di�erent stages of the servo loop will be speci�ed. Some standard
regulators will also be presented in the last section.

3.2 Adaptive optics principle and system modeling

Adaptive optics (AO) systems aim at restoring the wavefront to its aberration-free
pre-atmospheric shape, in real time, by interposing a deformable mirror (DM) on
the optical path. The DM shape correction is managed with a servo control. We
will focus in this manuscript on single conjugated AO (SCAO) systems, featuring a
single DM and a single wavefront sensor (WFS), the latter measuring the residual
wavefront deformation after correction by the DM.

3.2.1 Components

3.2.1.1 Wavefront sensor

With our current technologies, it is impossible to detect the temporal oscillations
of the electromagnetic �elds in the infrared (ν > c/λIR > 10−14Hz), making their
dephasing not directly measurable. We are thus exploiting their energy variations,
encoding the dephasing into an intensity modulation. The WFS used in GTCAO sys-
tem is a Shack-Hartmann wavefront sensor. Its principle is represented in �gure 3.2.
It is made of a 2-D grid of nSA × nSA micro-lenses. Each micro-lense focuses the
beam corresponding to its surface on the CCD plane of the WFS camera, producing
a spot corresponding to the PSF. The position of the center of the spot is in the �rst
approximation linearly related to the local slope of the wavefront as detailed below.
A Shack-Hartmann with nSA linear subapertures must have a maximum subaperture
size dSA = Dpup/nSA of around r0 �at scienti�c wavelength� to be able to measure
the wavefront with limited error in the �rst order approximation. This is why many
AO systems feature a subaperture size of around dSA = 50 cm (GTC, Keck, William
Herschel...).
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Figure 3.1: Adaptive optics principle for a SCAO system. The illustrated WFS
is of Shack-Hartmann type. A bright enough guide star is needed to allow for
measurements.

The WFS camera integrates images over each sampling period Ts with values
typically ranging from 1ms to 10ms. It de�nes the sampling frequency of the AO
loop, Fs = 1/Ts. If I is the 2-D intensity map of one sub-aperture, the center of
gravity (choriz, cverti), or centroid of the spot, is estimated by:

choriz =

∑
1≤i≤npx
1≤j≤npx

I(i, j)i

∑
1≤i≤npx
1≤j≤npx

I(i, j)
, cverti =

∑
1≤i≤npx
1≤j≤npx

I(i, j)j

∑
1≤i≤npx
1≤j≤npx

I(i, j)
, (3.1)

where npx is the number of linear pixels in each subaperture. Some algorithms are
better at estimating the centroids positions (A. G. Basden et al., 2016), notably
by relying on a �xed number of the most illuminated pixels (instead of a threshold
leading to a variable number of selected pixels). The local slope of the incident
wavefront is deduced from the Gauss optics geometrical formula α = (choriz, cverti) /f ,
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3.2. Adaptive optics principle and system modeling

assuming that the spots stay close to their optical axis, f being the focal length of the
WFS microlenses. Once we have α, the corresponding dephasing ϕ can be computed
using the basic formula (2.13). Note that the piston is not sensed by the Shack-
Hartmann WFS since it induces no displacement of the spot.

Micro-lenses
array

Deformed wavefront

Guide
star

Light
beam

Spot
Optical axis

x

y

detector array (CCD/CMOS)
z

Spot
Optical axis

Figure 3.2: Shack-Hartmann wavefront sensor principle. The �ux comes from
a bright enough guide star (along the z axis). The distorted wavefront above
one of the WFS subapertures has a slope αy. The vertical displacement of the
image spot on the CCD camera will then be αyf .

The vector gathering all the measurement is noted y, containing ny ≈ 2 × n2
SA

values. Some unilluminated subapertures are discarded, notably those in the four
corners and those in the telescope pupil obscuration. The unit of y is generally the
pixel (WFS CCD pixel). The WFS linear measurement operator is denoted by D,
which is a gradient matrix that computes the slope between the opposite sides of the
subapertures as shown in �gure 3.3. It depends on the WFS CCD pixel size and on
the wavelength at which ϕ is given. With D, the measurement can be written

y = Dϕ+ w . (3.2)

The measurement noise w is assumed to be white, zero-mean and Gaussian. The
delay of one frame due to the integration time of the WFS camera (see chronogram in
�gure 3.5) allows us to complete equation (2.24) by taking into account the temporal
occurrences to obtain

yk = Dϕk−1 + wk , (3.3)

where

ϕk ≜ 1

Ts

∫ kTs

(k−1)Ts

ϕ(t)dt . (3.4)
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Figure 3.3: Representation in pupil plane of the measurement matrix D of one
subaperture. Left and middle: horizontal and vertical gradient vectors (each
reshaped in the 2D pupil plane, unit px/rad). Right: wavefront, unit rad
(OOMAO simulation). The white grid represents the microlenses grid of the
WFS. The three subapertures in each corner are invalid (illumination surface
lower than 50% due to pupil obscuration).

The measurement noise w has two main sources. Denoting by npixel ≤ n2
px the

number of pixels actually used to estimate each centroid in equation (3.1), the sources
are:

� The photon noise, whose repercussion on the WFS slopes error variance is
given by (G. Rousset, Primot, and Fontanella, 1987):

σ2
photon =

π2

2nphoton

(
XT

XD

)2

(3.5)

in rad2, de�ned as the variance of the phase di�erence between the subaperture
edges, where nphoton is the total number of photons received by the npixel
involved pixels during one frame. The FWHM of the subaperture image is
XT ≈ λ/r0 while XD ≈ λ/dSA is its size in di�raction-limited case.

� The read-out noise, depending on the electronic noise of the CCD σe (in elec-
trons per pixel per frame), whose repercussion on the WFS slopes error vari-
ance is given by (G. Rousset, Primot, and Fontanella, 1987; Roddier, 1999):

σ2
RON =

π2

3

( σe
G npixel

nphotonXD

)2

, (3.6)

again de�ned as the variance (in rad2) of phase di�erence between two subaper-
ture edges. Here G is the gain in CCD electron per photoelectron (generally
around 103).
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As the two noise sources are independent, we conclude that

σ2
w = σ2

photon + σ2
RON .

The photon quantity represents a limitation for the Shack-Hartmann WFS when
we know that many astrophysical targets are not located right next to a bright
enough guide star. To remedy these too low signal-to-noise ratio situations, it is
then necessary to increase the WFS integration time Ts. This increase has an impact
on the temporal delay, which is usually in the order of τ ∼ 2Ts. It has a cost in the
temporal error variance. An evaluation of this temporal error, induced by a pure
delay of τ , is given in (Roddier, 1999) and depends on τ0:

σ2
tempo = (τ/τ0)

5/3 . (3.7)

It corresponds to the residual wavefront phase variance left when applying a perfect
correction ϕcor(t) at delayed time ϕcor(t+ τ). The decorrelation time τ0 was de�ned
by equation (2.19) in chapter 2. Another source of error in the measurement is the
spatial sampling set by the WFS subapertures, which prevents from measuring all
the wavefront distortions. Notably, the spatial frequencies higher than the Shannon
limit 1

2dSA
are not measured. The impact on the �nal residual dephasing variance of

the AO system is approximated by the aliasing term (E. Gendron and G. Rousset,
2012):

σ2
alias = 0.07

(
dSA
r0

)5/3

. (3.8)

The propagation of aliasing in the loop depends on the controller, as shown in (Ju-
vénal et al., 2018).

3.2.1.2 Deformable mirror

A deformable mirror is typically made of a thin, �at re�ective surface that is coated
with a layer of re�ective material such as aluminum (Madec, 2012). The mirror's
surface is then divided into a grid of actuators. Actuators are located under the
surface and can push or pull on the mirror membrane, to modify the mirror's surface
shape. We assume here that the DM has a linear response. For each actuator, the
in�uence function IF is de�ned as the continuous pro�le taken by the membrane
when a unitary command is applied. The coupling CDM is then the DM surface
deformation above the nearest neighbour actuator. The dephasing (or phase) ϕcor

generated by the DM when a control vector u is applied to the nu actuators is thus:

ϕcor =

nu∑

i=1

u(i)IF (i) . (3.9)

When the in�uence functions are concatenated as column vectors in a matrix de-
noted here by N and called in�uence functions matrix, the correction phase can be
expressed as

ϕcor = Nu (3.10)
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for any vector u. Typical units are volts for u, and thus radians per volt for N , but
any other unit is possible if consistent with the unit of the dephasing.

This equation (3.10) assumes that u remains in the linearity range of the actu-
ators, which is generally considered to be the case in astronomy. However, there
is always a clipping (saturation) value uclip such that |u| < uclip, imposed by the
electronics stage. Generally, the actuators are located at each corner of the WFS
microlenses grid. It is the Fried geometry, in which case the linear number of actua-
tors is nact = nSA + 1. It is the place where their e�ect on the DM membrane is the
most visible by the WFS, as illustrated in �gure 3.4. Had an actuator been in the
center of a subaperture, the gradient would have been close to zero regardless of the
voltage applied to that actuator: seen from the WFS, the wavefront would appear
�at in that subaperture.

The �nite number of actuators and their coupling set a limit to the spatial fre-
quencies the DM can generate, producing a �tting error. Its variance is approximated
by (Roddier, 1999; Hardy and Thompson, 1998)

σ2
�t ≃ 0.2

(
pitch
r0

)5/3

, (3.11)

where the pitch corresponds to the distance between two actuators in the telescope
pupil. The coe�cient of 0.2 depends on the DM in�uence functions (chapter 9
of (Hardy and Thompson, 1998), table 9.3).
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Figure 3.4: (OOMAO simulation) Representation in the pupil plane of an
in�uence function of one actuator with a coupling factor of CDM = 0.18. White
lines represent the microlenses grid of the WFS. This actuator is in Fried
geometry at a corner of the WFS subaperture grid.
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3.3. Adaptive optics standard regulators

3.3 Adaptive optics standard regulators

3.3.1 Chronogram and AO loop block-diagram

The chronogram of the AO loop with a delay of 2 frames (2Ts) is given in �gure 3.5,
where the measurement delay corresponds to the integration of the phase over one
frame Ts (equation (3.3)). All the other operations (WFS camera read-out, slopes
and commands computations, data transfers, DMmembrane reshaping) are supposed
to take one additional frame. The case of a non-integer loop delay will be detailed
later in chapter 4. The block diagram corresponding to the chronogram of �gure 3.5
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s( 2)−k T

Figure 3.5: Chronogram of the AO loop with a total loop delay of 2 frames.

is given in �gure 3.6. Each component is represented by its matrix operator as we
supposed that all subsystems were linear. The regulator or controller is also linear,
with transfer function denoted by G(z).

3.3.2 Interaction and control matrices

3.3.2.1 Interaction matrix

The interaction matrix (sometimes called poking matrix) is the basis of AO systems
calibration. It describes how a control vector u sent to the DM will be registered by
the WFS which returns a measurement vector y:

y = Mintu . (3.12)
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Figure 3.6: Block diagram of a closed-loop AO system in the usual 2-frame
loop delay case. One frame is due to WFS integration time, and the correction
phase is delayed by another frame.

The interaction matrix model is immediately deduced from D (WFS measurement
matrix) and N (DM in�uence functions matrix) as

Mint = DN . (3.13)

To be measured on a bench by the use of an internal light source (so without tur-
bulence), a calibration process is performed: the DM is actuated with a variety of
chosen commands, and the resulting changes in the incoming wavefront are measured
by the WFS. See (Currie et al., 2020) about interaction matrix calibration. When
only one actuator at a time is poked, the process has to be repeated for each of the
nu actuators. An illustration of the WFS measurement obtained with one single
poked actuator is given in �gure 3.7.

3.3.2.2 Command matrix

The command matrix Mcom (sometimes called reconstruction matrix) relates the
measurements to the commands through u = Mcomy. This relationship is obtained
by the least square minimization

argmin
u

||Mintu− y||2 , (3.14)

leading to
Mcom ≜ M †

int =
(
Mint

TMint

)−1
MT

int . (3.15)

WhenMint
TMint is poorly conditioned, which is often the case, the calculation (3.15)

requires a singular value decomposition and a �ltering of the smallest eigenvalues,
thus �ltering out the associated DM modes. This allows to avoid some strong DM
loads that are harmful for the hardware. It also allows to remove some DM modes
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Figure 3.7: (OOMAO simulation) Representation in pupil plane of the inter-
action matrix Mint of the actuator poked in �gure 3.4. This corresponds to
one column of the interaction matrix Mint.

that degrade the residual phase while leading to almost zero WFS measurements.
Those two aspects are illustrated in �gure 3.8.
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Figure 3.8: (OOMAO simulation) Example of command computation based on
u = Mcomy with two command matrices di�erently �ltered. Up: the desired
phase on the right (a) and corresponding measurement y by the WFS on
the left (b). Down (c): obtained command u with 5 �ltered modes (left)
and corresponding correction phase (right). Down (d): obtained command
u with 21 �ltered modes (left) and corresponding correction phase (right).
The 5-�ltered-mode command matrix produces 10 times higher commands,
with high spatial frequencies, for a wrong resulting correction phase. The 21-
�ltered-mode command matrix gives a correction corresponding to the desired
phase: (d)-right is similar to (a).
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3.3.3 Integral action controller

The standard integral action controller, or integrator, is the most commonly used
regulator on the AO systems and is based on the knowledge of the command matrix.
It was the one used for the �rst AO system COME-ON (Rousset et al., 1990), and
its simplicity has kept it on �rst place.

The calculation of a leaky integrator command at time kTs using the residual
wavefront slopes measurement yk is given by

uintk = αleaku
int
k−1 − gMcomyk . (3.16)

The leaky factor αleak < 1 aims at preventing integrator wind-up in case of frequent
actuator saturation. Typical values range from αleak = 0.99 to 0.999 (Van Dam,
Le Mignant, and B. A. Macintosh, 2004). When αleak = 1, we recover an integrator.
The loop gain g is a scalar parameter that is to be tuned according to the disturbance
strength, the measurement noise variance, and the sampling frequency Fs. Gener-
ally, as tip and tilt (TT) modes have dynamics and energy very di�erent from high
order (HO) modes, it is advantageous to attribute di�erent loop gains gTT and gHO

for respectively the TT and HO modes. For the 2-frame delay case, the stability
condition is given by g < 1 (the smaller the loop gain g, the larger the stability
margins).

3.3.4 Linear Quadratic Gaussian regulator

For a linear system with Gaussian statistics, the optimal minimum variance control is
known to be a Linear Quadratic Gaussian regulator (Anderson and Moore, 1990). In
AO, when a linear stochastic dynamical model is used for the disturbance, it has been
shown that the optimal control problem (minimizing the residual phase variance)
could be equivalently solved in discrete time (Le Roux et al., 2004; Kulcsár, H.-F.
Raynaud, et al., 2006). Indeed, the residual phase variance σ2

ϕ
res can be decomposed

into two terms:

σ2
ϕ
res = lim

K→+∞

1

K

K∑

k=1

||ϕres
k ||2 + σ2

inter , (3.17)

where σ2
inter is the so-called intersampling variance. The latter does not depend on

the control u and can be for instance computed from the disturbance PSD (Kulcsár,
H. F. Raynaud, et al., 2012). When the loop delay is non-integer, the problem is
more complicated and will be addressed in chapter 4. Therefore, in the 2-frame
delay case, the optimal control is obtained by minimizing the term in (3.17) that
does depend on u, that is

J(u) = lim
K→+∞

1

K

K∑

k=1

||ϕresk ||2 = lim
K→+∞

1

K

K∑

k=1

∥∥ϕk+1 −Nuk
∥∥2 . (3.18)
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Assuming that ϕ is a stationary and ergodic zero-mean stochastic process, the opti-
mal control is then simply

uoptk = PuE[ϕk+1|Ik] , (3.19)

where Pu ≜ N † is the pseudo-inverse of N and E[•|Ik] is the conditional expectation
with respect to the past information Ik from which uk is computed. With a state
space representation of the AO system (including wavefront perturbations) in the
form 




Xk+1 = AXk + Γvk
yk = CyXk −DNuk−2 + wk

ϕk = CϕXk

, (3.20)

where noises {v} and {w} are zero-mean, Gaussian and white with covariance ma-
trices Σv and Σw respectively, the optimal prediction E[ϕk+1|Ik] is obtained as the
output of a Kalman �lter. In open-loop, the term −DNuk−2 disappears. The vector
Xk is the state vector for the disturbance model at time k. It can contain for instance
several temporal occurrences of the perturbation when the model is autoregressive.
The matrix A is the state matrix containing the poles of the dynamical disturbance
model, Γ ensures consistency of process noise vk injection with the dimensions of the
state vector Xk, and Cy is the observation matrix. The state model (3.20) should be
e�cient to represent the disturbance spatio-temporal statistics and the AO system.
The optimal control (3.19) then takes the form

uk = CuX̂k+1|k , (3.21)

where Cu = PuCϕ is the projector of the state vector on the deformable mirror

actuators and X̂k+1|k = E[Xk+1|Ik] is obtained as the output of the asymptotic
Kalman �lter built from (3.20). As it may be di�cult on a real system to ensure
that N has the right bench geometry with respect to D, Pu can be modi�ed as
Pu = McomD (Sivo et al., 2014).

Kalman �lter equations

The asymptotic Kalman �lter can be used without loss of optimality in in�nite
horizon control problems (Kucera, 1991). It gives the solution to the minimum
prediction error variance problem. It is a recursive �lter, and its steps are de�ned
below:

1. Update of the state estimation X̂k|k:

X̂k|k = X̂k|k−1 +H∞
(
yk − ŷk|k−1

)
, (3.22)

with ŷk|k−1 = CyX̂k|k−1 −DNuk−2 is the prediction of the closed-loop slopes
and H∞ the estimation Kalman gain:

H∞ = Σ∞CT
y

(
CyΣ∞CT

y + αFFΣw

)−1
. (3.23)
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The so-called fudge factor αFF is not present in a standard Kalman �lter. It
aims at absorbing unmodeled dynamics or inaccurate values of the matrices
in (3.20). It is to be tuned around its default value αFF = 1, increasing
notably for very low measurement noise variance cases (high �ux NGS). The
asymptotic state prediction error covariance matrix Σ∞ is the solution of the
discrete algebraic Riccati equation:

Σ∞ = AΣ∞AT+ΓΣvΓ
T−AΣ∞CT

y

(
CyΣ∞CT

y + αFFΣw

)−1
CyΣ∞AT . (3.24)

To solve numerically the Riccati equation (3.24), we use the doubling algo-
rithm (Lainiotis, Assimakis, and Katsikas, 1994). It has repeatedly shown its
high stability and most of all its remarkable speed of convergence. The matrix
Σ∞ is computed o�-line.

2. State prediction X̂k+1|k:

X̂k+1|k = AX̂k|k . (3.25)

By combining equations (3.22) and (3.25), one obtains a single prediction
equation:

X̂k+1|k = AX̂k|k−1 + L∞
(
yk − ŷk|k−1

)
(3.26)

= (A− L∞Cy) X̂k|k−1 + L∞ (yk +Mintuk−2) , (3.27)

where L∞ ≜ AH∞ is the prediction Kalman gain, computed o�ine. Equa-
tion (3.27) is the one that is in practice implemented in real time (with of
course an adapted real-time formulation).

In our upcoming cases, we set for the doubling algorithm the following solving pa-
rameters: residual error 10−9, resolution method �normAlpha�. The latter method
did not appear to give di�erent results from the other method �traceGamma�. A
change in the residual error (tested from 10−2 to 10−20) neither modi�ed the ob-
tained Σ∞ nor its computation time (typically around 20 iterations involved, carried
out in around 10 seconds with an Intel® Xeon(R) E-2276M CPU @ 2.80GHz×12
computer for a 1500×1500-size Σ∞). When increasing the residual error to 100, it
leads to a state prediction error covariance matrix faster computed (only two itera-
tions) but with very poor closed-loop results.

3.3.5 Minimum Mean Square Error reconstructor

The MMSE has been widely employed in AO, in particular in wide-�eld AO, e.g. (B.
Ellerbroek, 2002; B. L. Ellerbroek and Vogel, 2009; Neichel et al., 2010; Vidal et al.,
2011). The MMSE reconstructor is a minimum variance reconstruction method that
relies solely on the last pseudo-open loop measurement, corresponding to

ϕ̂k−1|k = E[ϕk−1|yPOLk ] . (3.28)
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At each time k, we thus have:

uk = N †ϕ̂k−1|k (3.29)

= N †RMAPy
POL
k . (3.30)

The pseudo-open loop slopes yPOL are computed from the actual closed-loop ones y
and using the interaction matrix to cancel the e�ect of the DM correction (taking
the loop delays into account):

yPOLk = yk +Mintuk−2 . (3.31)

The index k − 1|k in the MMSE equation means that we make an estimation of the
past disturbance ϕk−1 based on its measurement yk. It does not use any temporal
statistics. That is why it is sometimes called a static reconstructor. The reconstruc-
tion matrix is obtained as

RMAP = ΣϕD
T
(
DΣϕD

T + αMAPΣw

)−1
, (3.32)

where Σϕ stands for the theoretical Von Kármán covariance matrix. As is the fudge
factor αFF in the LQG case, αMAP is to be tuned according to the signal-to-noise
ratio.

We recognize in (3.32) the same structure as for the Kalman gain H∞ in equa-
tion (3.23) but without temporal evolution. In this case, when the model is close to
a random walk (A close to I), the resulting Kalman gain H∞ tends towards RMAP,
as shown in �gure 3.9 for the defocus mode.
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Figure 3.9: Comparison between the Kalman gain matrixH∞ (left, AR1 model
with A close to I) and the MAP reconstructor RMAP (right). The line corre-
sponding to the defocus mode is displayed in 2-D (WFS measurement space).

3.3.6 Real-time computer

The real-time computer (RTC) is at the heart of the AO system servoing. An RTC
requires precise timing and synchronization to ensure that tasks are completed within
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the required time frame Ts. In the case of a generic linear regulator, the RTC should
compute the commands as fast as possible to limit the loop delay. For example,
for LQG control, the commands are calculated using an equation that has the same
complexity as the integrator, albeit some remaining update calculations are done in
idle time. For example in the 2-frame delay case, this e�cient implementation takes
the following form: 




uk = u−k−1 +M1yk
X̂k+1|k = X̂+ +M2yk
X̂+ = M3X̂k+1|k +M4uk−1

u−k = M5X̂
+

(3.33)

where matrices M1 to M5 are derived from (3.21) and (3.27). Those matrices are
de�ned o�ine and loaded on the RTC. All the calculations depending on yk can
be done sequentially with the arrival of data. In particular, the multiplication by
M1 = N †CϕL∞ for the LQG is of same size as M1 = gMcom for the integrator. Once
the command uk (�rst line of equation (3.33)) is sent to the DM, and while waiting
for the end of next WFS image integration (so as to compute the next measurement
yk+1), the RTC computes the more time-consuming lines 2 to 4 among the LQG
equations (3.33) (for instance, M2 = L∞ is of bigger size than M1).

3.4 Conclusion

We have seen the main components of an AO system and what are their respective
roles. It is generally possible to fully model it with linear equations, allowing the
de�nition of an optimal high-performance controller: the LQG regulator. Its con-
struction has been recalled in the case where the AO system has a 2-frame loop delay,
the extension to any integer loop delay being straightforward. In the next chapter,
we extend this construction to the case when the total loop delay takes non-integer
values.

We have seen that the complexity degree for the integral control was lower than
the MMSE one, the latter itself lower than the LQG. Both MMSE and LQG need
the knowledge of some system characteristics: WFS matrix D, measurement noise
covariance matrix Σw, interaction matrix Mint and in�uence matrix N . We will see
in chapter 5, what simple procedures can solve these system modeling issues.
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Chapter 4

Fractional loop delay in adaptive optics modeling

and control

Summary content

This chapter features a forthcoming paper that focuses on fractional delays in adap-
tive optics. The paper introduces speci�c notations that facilitate a comprehensive
explanation of the modeling and control design aspects when fractional delays are
present.

We tackle the following issues:

� The derivation of the optimal (minimum-variance) LQG controller for AO
systems with integer delays is recalled to show that in the absence of actuator
dynamics the optimal LQG control in presence of a fractional delay retains
the same general structure, albeit with a Kalman �lter based on a model of
asynchronous WFS measurements.

� Suboptimal LQG controllers used in the literature and based on approxima-
tions of the fractional delay for discrete-time models are introduced. The
Kalman �lter is synchronized either with the DM as in (L. Poyneer and Véran,
2008; L. A. Poyneer, D. W. Palmer, et al., 2016; L. A. Poyneer, Ammons, et al.,
2023), or with the WFS as in (Sivo et al., 2014; Sinquin et al., 2020; Marquis
et al., 2022).

� We present simulations and GTCAO bench tip-tilt performance evaluations
of integral and suboptimal LQG controllers in presence of fractional delay,
together with simulation results for the optimal LQG regulator. We show that
problems arise when vibrations are present.

� We detail the construction of the asynchronous optimal LQG control based
on a continuous-time stochastic disturbance model, similarly to (Looze, 2009;
H.-F. Raynaud, Correia, et al., 2011). However, we present a solution to
build this continuous-time model from a standard non-fractional discrete-time
one and we use calculations that involve only simple ingredients like matrix
exponentials and solving Lyapunov equations (no numerical integrations are
needed, contrarily to (Looze, 2009)).

� We develop tools for theoretical performance assessment in presence of frac-
tional delay for any linear regulator. This includes temporal spectral study and
robustness analysis. These tools are applied to GTCAO tip-tilt simulations.
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This paper revisits the problem of optimal (minimum-variance) control for Adaptive Optics (AO) systems
when measurements and commands application are asynchronous, resulting in a non-integer servo-loop
delay. When not properly accounted for, such fractional delays may severely degrade AO performance,
especially in presence of high-frequency vibrations. We present evidence of this performance degradation
thanks to in-lab experimental measurements on the Gran Telescopio Canarias Adaptive Optics (GTCAO)
system controlled with standard suboptimal LQG controllers. A constructive, easy to implement Linear
Quadratic Gaussian (LQG) control design is then proposed and validated in simulation for vibrations
affecting the tip-tilt modes. Our methodology is very interesting as it allows performance assessment
for any linear controller in terms of variance, rejection transfer functions, power spectral densities and
stability margins. We also show how the continuous-time disturbance model can be derived from standard
discrete-time disturbance data-based modeling.
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1. INTRODUCTION1

Adaptive optics (AO) systems aim to compensate in real-time for2

optical aberrations which degrade image quality. They operate3

via a deformable mirror (DM) that compensates for the optical4

path distortions estimated from wavefront sensor (WFS) mea-5

surements. The increasing size of the large telescopes’ primary6

mirror renders the use of AO systems mandatory in order to7

approach the diffraction limit. This also requires efficient com-8

pensation of the disturbances generated by wind and vibrations,9

see, e.g., [1]. This leads to a gain of interest in high-performance10

predictive AO control [2–6], especially LQG control based on a11

Kalman filter constructed from a stochastic disturbance model.12

However, efficient predictive compensation of high-frequency13

disturbances requires taking accurately into account the servo-14

loop delay.15

In AO systems, as in many feedback systems, control design16

is generally based on the simplifying assumption that the real17

time computer provides measurements and sends commands at18

successive sampling instants, so that the total servo-loop delay19

is an integral multiple of the control sampling period. However,20

in many AO systems WFS measurements and DM commands21

are actually de-synchronized, resulting in a fractional loop delay.22

Modeling such asynchronous AO systems cannot be achieved23

using standard discretization techniques. It requires a lifting pro-24

cedure, see„ e.g., [7], which essentially boils down to building25

an augmented state-space representation in order to account for26

the sequence of non-evenly spaced events occurring during each27

sampling interval (see, e.g., [7]). Lifting techniques were indeed28

applied to AO control with non-integer measurement delays in29

[8, 9], allowing the derivation of an optimal LQG controller and30

the computation of the theoretical optimal performance also in31

presence of DM dynamics. The constructions proposed required32

as a starting point a continuous-time state-space stochastic dis-33

turbance model, and the optimal control design procedure in-34

volved the computation of several integrals of matrix-valued35

functions, resulting in tedious numerical computations.36

In recent years, simpler suboptimal alternatives were pro-37

posed and implemented. In [10], Poyneer and Véran developed38

a closed-loop state space model where predicted phases at non-39

integer time indexes are approximated by weighted averages of40

phases estimated at integer time indexes. Such approximations41

were repeatedly validated with on-bench [6] and on-sky experi-42

ments [11]. The same principle of weighted averages has been43

used for a full LQG control with vibration mitigation carried out44

on sky by Sivo [12] and Sinquin [3].45

A question nevertheless arises: are these approximations still46

acceptable when the disturbance contains oscillations at high47

temporal frequencies? In this paper, we present experimental48

results obtained on the AO test-bench currently under develop-49
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ment for the 10-meter class Gran Telescopio Canarias (GTC). In50

these on-bench tests, two suboptimal LQG controllers based on51

different ways to take fractional delays into account were tested52

and compared to standard integral action control. These results53

showed that the performance of the two suboptimal LQG were54

markedly different and were sensitive to variation/uncertainties55

in the actual value of the fractional delay.56

These on-bench results suggested that implementing instead57

an optimal LQG control could yield significantly improved and58

more robust performance. This provided the motivation to re-59

visit the construction of the lifted model of an asynchronous AO60

system and of the resulting optimal minimum-variance LQG61

control. This paper presents the resulting procedure, where all62

calculations are performed using two standard and computation-63

ally stable routines – computing matrix exponentials and solving64

Lyapunov equations. In addition, we show how to construct65

the key necessary ingredient – the underlying continuous-time66

disturbance model – from discrete-time models built from statis-67

tical priors and/or identified from WFS measurements. We also68

provide constructive procedures enabling to compute theoretical69

performance assessments for the optimal LQG regulator or any70

other linear controller, in terms of variance, but also and for the71

first time, in terms of rejection transfer functions, power spectral72

densities and stability margins.73

The paper is organized as follows. Section 2 recalls the deriva-74

tion of the optimal (minimum-variance) LQG controller for AO75

systems with integer delays, and shows that in the absence of76

actuator dynamics the optimal LQG retains the same general77

structure whatever the delay, albeit with a Kalman filter based78

on a model of asynchronous WFS measurements. Section 3 intro-79

duces the suboptimal LQG controllers based on approximations80

of the fractional delay for discrete-time models synchronized81

either with the DM or with the WFS. Sections 4 and 5 present82

simulation and test-bench tip-tilt performance evaluations of in-83

tegral and suboptimal LQG controllers in presence of fractional84

delay, together with simulation results for the optimal LQG reg-85

ulator. Section 6 details the construction of the asynchronous86

optimal LQG control based on a continuous-time stochastic dis-87

turbance model, and shows how to build this model from a88

standard (non-fractional) discrete-time one. Tools for theoretical89

performance and robustness evaluation are presented in sec-90

tion 7. In section 8, those evaluation tools are applied to GTCAO91

tip-tilt simulations. Conclusions are presented in section 9.92

2. OPTIMAL PREDICTION FOR OPTIMAL CONTROL93

In the basic case where WFS and DM are synchronized and when94

DM dynamics can be neglected, the optimal control solution to95

AO disturbance rejection is known to be obtained as a discrete-96

time LQG regulator [13–16]. We briefly recall here how this97

solution is obtained, in order to specify clearly what must be98

modified in presence of a fractional delay.99

Consider an AO system operating in closed-loop with a sam-100

pling frequency of Fs (sampling time Ts = 1/Fs). Since the actual101

performance of the AO correction is obtained by integrating the102

light flux over very long exposure times (with respect to the AO103

sampling rate), the performance cost function J to be minimized104

is the residual phase variance defined as the average power of105

the residual phase aberration ϕres over an infinite time horizon:106

J (u) ≜ lim
T→+∞

1
T

∫ T

0
∥ϕres (t)∥2 dt. (1)

The command is applied via a zero-order hold (ZOH), and there-107

fore is piecewiese constant over successive sampling intervals:108

∀t ∈ [kTs, (k + 1)Ts[, u(t) = u(kTs) ≜ uk . (2)

The control applied at time kTs is thus uk, and the correction109

phase is also piecewiese constant, with110

∀t ∈ [kTs, (k + 1)Ts[, ϕcor(t) = Nu(t) = Nuk . (3)

As done in [13, 14, 16], let us define time average values over111

one frame for any continuous-time variable x(t) as112

x̄k ≜
1
Ts

∫ kTs

(k−1)Ts

x(t)dt. (4)

From Eq. (3), the correction phase equation is simply113

ϕ
cor
k+1 = Nuk . (5)

By slicing the integral in Eq. (1) on DM ZOH intervals, the114

optimal control that minimizes J(u) can be equivalently obtained115

by minimizing the discrete-time cost function116

Jd(u) ≜ lim
K→+∞

1
K

K−1

∑
k=0

Jk (uk) (6)

with the incremental cost Jk defined as117

Jk (uk) ≜ ∥ϕres
k+1∥2

=
∥∥ϕk+1 − Nuk

∥∥2 ,

(7)

(8)

where ϕ
res
k+1 and ϕk+1 are defined similarly to Eq. (4).118

The intersampling variance, denoted by σ2
ϕ,is, is then the cost119

associated with the part of the continuous-time disturbance that120

cannot be corrected by the AO system and therefore does not121

depend on the regulator:122

σ2
ϕ,is ≜ lim

N→+∞

1
N

N−1

∑
k=0

1
Ts

∫ (k+1)Ts

kTs

∥∥ϕ(t)− ϕk+1
∥∥2 dt , (9)

so that123

J(u) = Jd(u) + σ2
ϕ,is. (10)

The intersampling variance σ2
ϕ,is represents the variance of the124

continuous-time disturbance variation around its temporal av-125

erages ϕk, and can be explicitly calculated from the disturbance126

power spectral density [16].127

Assume that the phase trajectory is known in advance (com-128

plete information hypothesis). In this unrealistic ideal case, the129

optimal control uci would be obtained at each step by minimiz-130

ing Jk(uk) in Eq. (8), which yields131

uci
k ≜ Puϕk+1 , (11)

where Pu is the pseudo-inverse of the influence matrix N:132

Pu ≜ (NTN)−1NT . (12)

In the real world (incomplete information hypothesis), the133

phase trajectory is not known and the control needs to be com-134

puted from available WFS measurements. The stochastic separa-135

tion theorem applies here: the optimal control u∗ is obtained by136

replacing the unknown value of ϕk+1 in Eq. (11) by its optimal137
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estimate in the sense of the minimum variance of the estima-138

tion error. This optimal prediction is the conditional expectation139

with respect to the set of past information (controls and measure-140

ments) Ik = {u0, . . . , uk−1, y0, y1, . . . , yk}, where yk is defined as141

the latest measurement used to compute the control applied at142

time kTs. The optimal control at each frame k is thus obtained143

as:144

u∗k ≜ arg min
uk

E[Jk(uk)|Ik]

= Pu E[ϕ̄k+1|Ik].

(13)

(14)

At this point, it is worth noting that in all cases (integer or145

fractional loop delays), the optimal control expression in Eq. (14)146

does not change. However, the calculation of the conditional147

expectation itself will depend on the measurement model, and148

thus on the loop delay.149

Let us suppose that the total loop delay is (d + δ)Ts, with150

d ∈ N and 0 < δ ≤ 1. This total loop delay is the time lag151

from the beginning of WFS exposure to the beginning of DM152

commands application by the ZOH. This includes readout of153

the WFS camera CCD, slopes and commands computation, data154

transfers, etc. The measurement equation can then be defined as155

yk ≜
1
Ts

∫ (k+1−d−δ)Ts

(k−d−δ)Ts

Dϕres(t) dt + wk , (15)

where D is the WFS measurement matrix and w the measure-156

ment noise, which as usual is assumed to be a zero-mean Gaus-157

sian white noise. For the sake of simplicity, we will assume158

throughout this paper that the total loop delay is 1 + δ, so that159

d = 1. It means that the WFS exposure frame is bigger than160

the sum of the AO computational delays – see the chronogram161

in figure 1. (Larger values of d can then be handled by adding162

additional delayed states in the models.) When d = 1, the last163

measurement available to compute uk is thus164

yk = Dϕ
res,δ
k + wk , (16)

where165

ϕ
res,δ
k ≜ 1

Ts

∫ (k−δ)Ts

(k−1−δ)Ts

ϕres(t) dt . (17)

Using Eq. (3), the measurement equation becomes166

yk = Dϕ
δ
k − DN ((1− δ) uk−1 + δuk−2) + wk , (18)

where167

ϕ
δ
k ≜

1
Ts

∫ (k−δ)Ts

(k−1−δ)Ts

ϕ(t) dt . (19)

All is needed to constructively solve the incomplete informa-168

tion optimal control problem, that is to compute the conditional169

expectation in Eq. (14), is a linear time-invariant stochastic model170

that outputs the discrete-time variables ϕ and ϕ
δ. This model171

can be put in standard state-space form as172





xk+1 = Axk + Γvk

ϕk = Cϕxk

ϕ
δ
k = C

ϕ
δ xk ,

(20)

(21)

(22)

where v is a zero-mean Gaussian white noise with covariance173

matrix Σv and independent of the measurement noise w. The174

measurement model then translates into175

yk = Cyxk − DN
(
(1− δ)uk−1 + δuk−2

)
+wk , (23)
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Read-out and

computations

WFS exposure

−2ku

2 2,k ky u− − 1 1,k ky u− −
,k ky u

cor cor( ) kt =

cor cor
1( ) kt  −=

sT

s( 1)k T−

DM zero-order 

hold

( ) s1+ δ T
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s(1 )− T

Fig. 1. Chronogram of the AO loop with a total loop delay of
d + δ with d = 1. The discrete-time phase ϕ is the time-average
of the continuous-time phase ϕ(t) on DM-related intervals,
as defined in Eq. (4) with ϕ(t) in place of x(t), and ϕ

δ is the
discrete-time variable averaged on WFS-related intervals, as
defined in Eq. (19). The computational delays (middle red line)
are here smaller than one frame.

where Cy = DC
ϕ

δ . The optimal control in Eq. (14) can be rewrit-176

ten as177

u∗k = PuCϕ x̂k+1|k , (24)

where the minimum-variance prediction x̂k+1|k = E[xk+1|Ik] is178

the output of a Kalman filter built on Eq. (20)-(23). We briefly179

recall below the Kalman filter equations.180

The real-time part of the asymptotic Kalman filter corre-181

sponds to182

x̂k+1|k = Ax̂k|k−1 + L∞(yk − ŷk|k−1) , (25)

involving the prediction of the closed-loop residual slopes based183

on Eq. (23):184

ŷk|k−1 = Cy x̂k|k−1 − DN
(
(1− δctrl)uk−1 + δctrluk−2

)
. (26)

We distinguish here on purpose the loop delay value δctrl used185

to define the LQG regulator matrices from the true system loop186

delay δ. The prediction Kalman gain L∞ is computed off-line as187

L∞ = AΣ∞CT
y

(
CyΣ∞CT

y + αFFΣw

)−1
, (27)

where Σ∞ is the asymptotic estimation error covariance matrix188

and the constant αFF > 0 is a fudge factor which enables to tune189

the global signal-to-noise ratio in order to account for modeling190

errors. The matrix Σ∞ is obtained as the unique solution – which191

is guaranteed to exist when the model Eq. (20)-(22) is stable – of192

the following discrete algebraic Riccati equation (DARE):193

Σ∞ =AΣ∞ AT + ΓΣvΓT

− AΣ∞CT
y

(
CyΣ∞CT

y + αffΣw

)−1
CyΣ∞ AT. (28)

Details on the Kalman filter and conditions to obtain a unique194

solution of the DARE can be found, e.g., in [17, 18].195

The usual 2-frame delay case will correspond to δ = 1, so196

that ϕ = ϕ
δ leading to the measurement equation197

yk = Dϕk−1 − DNuk−2 + wk . (29)

In this case, the optimal control is based on the discrete state-198

space model (20)-(21), which only needs to output ϕ.199
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3. SUBOPTIMAL DISCRETE-TIME LQG CONTROL WITH200

FRACTIONAL DELAY201

When 0 < δ < 1, optimal control design requires a model202

capable of producing as outputs both discrete-time variables ϕ203

and ϕ
δ – that is, averages of ϕ over overlapping time intervals.204

As it will be show in section 6, such a model can be constructed205

from a continuous-time stochastic disturbance model, which can206

itself be derived from a simpler to construct model of ϕ.207

A simple suboptimal way to cope with fractional delays is to208

keep using a model of the disturbance averaged on a sampling209

period Ts and synchronized on either the DM, as in [6, 10, 11],210

or on the WFS, as in [3, 12, 19].211

In the DM-synchronized case, the Kalman filter is built on a212

state-space model of ϕ with internal state xk = xϕ,k, in the form213





xϕ,k+1 = Aϕxϕ,k + Γϕvϕ,k

ϕk = Cϕxϕ,k

ϕk−1 = Cϕ,1xϕ,k .

(30)

(31)

(32)

Since ϕ
δ is not an output of this model, the measurement equa-214

tion can no longer be rewritten in the form of Eq. (18). It is215

replaced by the approximation216

yk = D
(
(1− δctrl)ϕk + δctrlϕk−1

)
−

DN
(
(1− δctrl)uk−1 + δctrluk−2

)
+wk

= D
(
(1− δctrl)Cϕ + δctrlCϕ,1

)
xϕ,k−

DN
(
(1− δctrl)uk−1 + δctrluk−2

)
+wk .

(33)

(34)

The Kalman filter then produces the non-optimal prediction217

ϕ̂k+1|k = Cϕ x̂ϕ,k+1|k, yielding a suboptimal control that retains218

the same expression as in Eq. (24):219

uk = PuCϕ x̂ϕ,k+1|k . (35)

Conversely, in the WFS-synchronized case, the Kalman filter220

is built on a state-space model of ϕ
δ. But since the underlying221

continuous-time process ϕ is always assumed to be stationary,222

averaging it over WFS intervals will result in exactly the same223

discrete-time stochastic model as in the DM-synchronized case,224

namely:225





xϕ,k+1 = Aϕxϕ,k + Γϕvϕ,k

ϕ
δ
k = Cϕxϕ,k

ϕ
δ
k−1 = Cϕ,1xϕ,k .

(36)

(37)

(38)

One can put the measurement equation in the form of Eq. (23)226

by taking Cy = Cϕ. However, since ϕ(t) is not constant over227

WFS sampling intervals, the optimal prediction E[ϕk+1|Ik] can228

no longer be computed from x̂ϕ,k+1|k. Approximating it by a229

weighted average of the predictions of ϕ
δ
k+1 and ϕ

δ
k leads to the230

suboptimal control231

uk = Pu

(
δctrlE[ϕδ

k+1|Ik] + (1− δctrl)E[ϕδ
k |Ik]

)

= Pu
(
δctrlCϕ + (1− δctrl)Cϕ,1

)
x̂ϕ,k+1|k

= PuCϕ,2 x̂ϕ,k+1|k , (39)

with Cϕ,2 ≜ δctrlCϕ + (1− δctrl)Cϕ,1. As noted in [10, 20], Eq. (33)232

would be valid only if ϕ(t) remained constant over successive233

DM intervals. Also, while both simplifications result in non234

optimal controllers, this will not matter much as long as the235

PSD of ϕ is mainly concentrated on low temporal frequencies so236

that the intersampling variance remains small. Conversely, one237

should expect problems when the controller has to compensate238

for high-frequency vibration peaks. These aspects are investi-239

gated by means of simulation examples in Section 4 and through240

experimental results on the GTCAO bench in Section 5.241

4. EFFECT OF FRACTIONAL DELAY ON TIP-TILT CON-242

TROL SIMULATION243

The impact on performance of the two modelings, which are244

1. the DM-synchronized model based on ϕ that gives an LQG245

controller denoted by LQG-DM,246

2. the WFS-synchronized model based on ϕ
δ that gives an247

LQG controller denoted by LQG-WFS,248

depends of course on the values taken by the actual loop delay249

δ, on the loop delay value δctrl used for controller design, and250

on the disturbance. We consider here a scalar model, namely a251

tip-tilt control. This is relevant since the tip and tilt modes are252

the two optical modes for which the impact of vibrations is the253

most significant, and thus the ones for which fractional delay254

most strongly impacts performance.255

The performance of these two suboptimal LQG controllers256

are compared with a standard leaky integrator:257

uk = αleakuk−1 + gMcomyk , (40)

where 0 < g < 1 is the integrator gain, αleak ≤ 1 is the leakage258

factor and Mcom is a pseudo-inverse of the interaction matrix259

Mint ≜ DN.260

A. Simulation set-up261

In these simulations, atmospheric turbulence is generated as the262

output of a continuous-time second order low-pass shaping filter263

with transfer function ω2
0tur

F0/(ω2
0tur

+ 2ξturω0tur s + s2), where264

s is the Laplace variable. The cut-off frequency is set to ftur =265

ω0tur /2π = 1 Hz (equivalent to a wind speed of 10 m s−1), the266

damping coefficient to ξtur = 0.9, and the DC gain F0 is adjusted267

so as to set the total disturbance variance to etur = 20 rad2 at the268

WFS wavelength (500 nm).269

The vibration-like disturbances are generated also using this270

type of model, albeit with a value of the frequency fvib =271

ω0vib /2π that will take different values throughout the spec-272

trum, a damping coefficient set to ξvib = 10−3 and an energy273

evib = 2 rad2 (corresponding to 110 nm RMS, or an angle of274

arrival of 9 mas RMS for a 10-m diameter pupil).275

In this scalar set-up, the matrices N and D are set to 1, so that276

the commands uk and the measurements yk can be considered277

to be both in radians. The variance of the tip-tilt measurement278

noise w is taken as σ2
w = 0.1 rad2, a typical value for a 10-meter279

diameter telescope with a 20x20-subaperture Shack-Hartmann280

WFS [21]. Two sampling frequencies will be considered in the281

simulations: Fs = 200 Hz and Fs = 500 Hz.282

The discrete-time disturbance state-space model used to com-283

pute the LQG controllers was identified using the N4SID sub-284

space algorithm [3, 22] from a 20 s-long batch of open-loop WFS285

data. The order of the model is set to 10 for all disturbance cases.286
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The closed-loop system is simulated at a fine rate of 40 times287

the sampling frequency of the AO system, allowing to generate288

the desired spectra for both turbulence and vibrations. The WFS289

measurements are obtained every Ts = 1/Fs by averaging the290

fast rate samples, and the DM commands are applied through a291

ZOH of sampling period Ts that respects the chosen loop delay292

1 + δ, so as to match the chronogram in Figure 1.293

B. Case with turbulence only294

Performance results in terms of residual disturbance RMS in nm295

are shown in figure 2 for the integrator, LQG-DM and LQG-WFS296

regulators, and with disturbance generated exclusively by the297

turbulence model. Two scenarios are considered for the LQG298

controllers: in solid line, the actual loop delay of the system and299

of the model used for control design are equal (δ = δctrl). In300

dashed line, the system loop delay is set at δ = 0.5, whereas301

δctrl varies from 0 to 1. Both LQG regulators give similar results,302

as expected in presence of atmospheric turbulence only. Also,303

their performance evolves smoothly for δ varying from 0 to 1;304

for the middle value δ = 0.5, taking a wrong value for δctrl does305

not impact much performance, showing that all controllers are306

essentially insensitive to an error on the loop delay.307
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Fig. 2. (simulation, δ = δctrl or δ = 0.5 ̸= δctrl) Residual phase
RMS (nm) in a pure turbulence case for integrator (□−), and
with δ = δctrl (solid lines) for LQG-DM (◦−) and LQG-WFS
(×−), or with a fixed value of δ = 0.5 and δctrl in [0, 1] (dashed
lines).

C. Case with turbulence and vibration308

One knows that a key factor for the predictive control advan-309

tages is the presence of high-frequency disturbances, typically310

vibrations. In this subsection, we will highlight the delay model-311

ing issue when the vibration frequencies are approaching the AO312

system Shannon-Nyquist frequency Fs/2. Simulations results313

are displayed in figure 3.314

We notice that whatever the sampling frequency (200 Hz or315

500 Hz here), once the vibration frequency exceeds Fs/4 its re-316

jection gets critical if the system delay is around δ = 0.5 frame.317

In the case of fvib = Fs/4, the situation starts being compli-318

cated, with a residual disturbance RMS 50% higher than if319

fvib = Fs/10. When increasing even more the vibration peak320

frequency ( fvib = Fs/3), the rejection is poor especially at321

δ = 0.5 frame where about 50% of the 110 nm-RMS vibration is322

rejected when using the WFS-synchronised modeling, dropping323

to about 40% with the DM-synchronised modeling.324

The simulations have also shown that in addition the DM-325

synchronised LQG requires a strong increase in the fudge factor326

αFF to around ten times its pure-turbulence value. In the case of327

multi-modal LQG control (not developed in this article), despite328

a gain in stability margin (increasing from 40 degrees to 60329

degrees), this high fudge factor has a deleterious effect on higher330

spatial orders correction.331

In this case of high-frequency vibrations and using the WFS-332

synchronised modeling, a solution is to take Fs higher than333

around 5 fvib – if the sampling frequency Fs can be increased334

without degrading the SNR (left graphs in figure 3); meanwhile,335

the value of 1/Fs must be closer to a multiple of δ (to be at the336

bottom of the bells in figure 3).
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Fig. 3. (simulation, δ = δctrl) Residual phase RMS in a case of
turbulence (single tip mode) with added vibration (total RMS
of 370 nm) with respect to the regulator’s delay value δctrl.
Sampling frequency, top: Fs = 200 Hz, bottom: Fs = 500 Hz.
Vibration frequency fvib value, left to right: Fs/10, Fs/4, Fs/3.

337

5. GTCAO ON-BENCH PERFORMANCE338

The AO bench GTCAO [23] is in commissioning phase at the339

Nasmyth platform of the 10.4 m Gran Telescopio Canarias at340

La Palma (Canary Islands, Spain). Its SCAO mode features an341

on-axis Shack-Hartmann sensor with 20 × 20 lenslets, for which342

the image scale is 0.35 arcsecond per pixel. There are 312 active343

lenslets leading to 624 measurements. A Cilas© deformable344

mirror with 373 active actuators is used to correct the incoming345

wavefront disturbance. The performance is evaluated with:346

• a near-IR camera and its corresponding internal light source347

(central wavelength of 1.6 µm)348

• the residual WFS slopes average (allowing for residual349

tip/tilt estimation)350

The real-time computer is DARC [24], allowing for LQG con-351

troller implementation in both a WFS-synchro setting and a352

DM-synchro setting.353

A. Tests description354

During those runs, the control frequency was set to Fs = 500 Hz,355

with a loop delay of δ = 0.8 (1.6 ms). A shifted phase screen356

simulates an atmosphere of r0 = 23 cm with a speed of 10 m s−1.357
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A tip-tilt vibration signal is simulated on the bench by send-358

ing in real time the corresponding tip-tilt commands sequences359

to the deformable mirror. This is of the outmost importance to360

stipulate in this paper, since it turns the vibrations into a both361

discrete and DM-synchronised perturbation. In this way, the reg-362

ulator with a DM-synchro setting should here allow for a perfect363

“vibration” rejection. Indeed, what used to be an approximation364

in the slope projector Cy becomes exact (cf. section B). We can365

however evaluate with the WFS-synchronised regulator cases366

whether an error in the projectors is indeed detrimental to the367

final AO system performance.368

The spectra of the tip and tilt disturbances are displayed in369

figure 4. The vibrations generated by the DM consists in four370

peaks, each of energy 2 rad2, located at respective frequencies371

fvib = [30, 60, 100, 150]Hz.
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Fig. 4. (bench) PSD of the open-loop tip and tilt, with the cu-
mulative energy on the bottom. The phase reconstruction is
based on the WFS slopes. Case with DM-introduced vibrations
and turbulence phase-screen related disturbance.

372

B. Tests results373

The experimental results are compared with a simulation per-374

formed as described in section 4, taking care of simulating con-375

stant disturbances on DM time intervals .376

The performances obtained on bench and in simulation are377

shown in figure 5. For the WFS-synchronized LQG, the on-bench378

performance curve features the “bell shaped” experienced in379

simulation (cf. section 4). For this controller (red curve and380

markers), the Strehl ratio is 6 points better when the delay is381

slightly over-estimated (δctrl = δ + 0.2) and one point better382

when it is severely under-estimated (δctrl = δ− 0.7). The DM-383

synchronised controller (blue curve and markers) shows the384

concurrence between the optimal δctrl value and the system one,385

leading to choose δctrl = δ. The values at δctrl = 0.1 shows a386

close-to-unstable AO loop with poor stability margins.387

Finally, the congruence between bench results and simula-388

tions validates those described in section 4. Noting that the two389

TT curves (o) are a translation downwards of the two SR bench390

curves (+), we confirm that the correction of turbulence-only dis-391

turbance for higher-order Zernike modes is not affected by the392

modeling error on δctrl. As seen in figure 2, the pure turbulence393

distortion correction is not deteriorated.394

C. Optimal asynchronous LQG395

In figure 6, we compare in simulation the performance (resid-396

ual variance) obtained with the suboptimal DM- or WFS-397

synchronized LQGs and with the optimal LQG based on the398
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Fig. 5. (bench and simulation, δ = 0.8) Residual distur-
bance energy evaluated from bench scientific images (crosses),
bench residual slopes (circles) and simulations (solid line).
The DM-synchronised and WFS-synchronised LQG regu-
lators are build and tested for different value given to δctrl.
Case with DM-introduced vibrations. On bench as on sim-
ulations, the integrator residual TT overcrosses 8 rad2 (with
− log(SR) = 13 rad2).

asynchronous model presented in section 6. Note that this op-399

timal LQG was not designed from the continuous-time model400

corresponding to shaping filters used to generate the pertur-401

bation, but from a continuous state-space model computed by402

de-discretizing (using results of section C) the same disturbance403

model identified from simulated WFS measurements as in sec-404

tion 4. All LQG controllers were designed using values of δctrl
405

ranging from zero to one, while the actual system delay was set406

to δ = 0.8.407

As expected, the optimal LQG gives the best performance for408

δctrl = δ. This performance level corresponds to what could be409

achieved for the best tuning of the DM-synchronized LQG on410

the bench, as shown in figure 5. Interestingly, the optimal LQG411

regulator also outperforms the two suboptimal controllers even412

when δctrl ̸= δ, and its performance is robust to even a large413

mismatch between the two values.414

We also notice, as in figure 5, that it is still advantageous415

to take a value of δctrl slightly larger than δ for the WFS-416

synchronised LQG (optimal value δctrl = 0.9 in this test).417

6. ASYNCHRONOUS DISCRETE-TIME MODEL AND OP-418

TIMAL CONTROL419

As noted in Section 2, when the measurement delay δ takes non-420

integer values, solving the optimal control problem requires a421

disturbance model able to produce as outputs successive tem-422

poral occurrences of both ϕ and ϕ
δ, i.e., averages of ϕ over asyn-423

chronous time intervals. This model should take the standard424

state-space form of Eq. (20)-(22).425

In this section, we show how to construct this discrete-time426

model from a continuous-time stochastic model of ϕ by applying427

the lifting procedure. Lifting essentially involves discretizing428

the continuous-time model over control (DM) intervals and aug-429

menting this discrete model with appropriate additional states430

corresponding to all events occurring between two successive431

sampling times – in our case, the asynchronous measurement432
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Fig. 6. (simulation, δ = 0.8) Residual disturbance energy
evaluated from simulations with continuous-time vibrations.
The DM-synchronised, WFS-synchronised and optimal LQG
regulators are built and tested for several values of δctrl.

process (see, e.g., [7]).433

As noted previously, the lifting technique was applied to434

optimal AO control with fractional delays in [8, 9]. The stream-435

lined construction presented here develops simpler constructive436

procedures to compute the matrices A, Γ, Cϕ, C
ϕ

δ , Σv with fully437

analytical tools that involve only matrix exponentials and Lya-438

punov equations resolution.439

A. Disturbance evolution over arbitrary time intervals440

We now proceed to build a model describing the evolution of the441

phase and of its integral over arbitrary time intervals. The start-442

ing point of this construction will a be a continuous stochastic443

model in standard state-space form:444

{
dxϕ (t) = Aϕxϕ (t) dt + vc (t) dvc ,

ϕ (t) = Cϕxϕ (t) ,

(41)

(42)

where the model input vc is a (vector-valued) continuous Gaus-445

sian white noise with variance Qϕ ≥ 0. This model is required446

to be stable. This means that the matrix Aϕ is Hurwitz, i.e. has447

all its eigenvalues values with strictly negative real parts. Dis-448

cretizing Eq. (41) on any time interval [t1, t2] yields:449

xϕ (t2) = eAϕ(t2−t1)xϕ (t1) + v1(t1, t2) , (43)

with450

v1(t1, t2) =
∫ t2

t1

eAϕsvc(t2 − s)ds . (44)

From the definition of a continuous-time white noise, this ran-451

dom vector is zero-mean and Gaussian, with covariance matrix452

Σv1 (t2 − t1) =
∫ t2−t1

0
eAϕsQϕeAϕsT

ds . (45)

Also from the definition of a continuous-time white noise,453

v1(t1, t2) and v1(t3, t4) are independent when the two intervals454

do not overlap, i.e. when t3 ≥ t2. The continuous variable allow-455

ing the computation of both ϕ
δ
k and ϕk is the rescaled integral456

ψ(t) of the phase:457

ψ(t) ≜ 1
Ts

∫ t

0
ϕ (s) ds . (46)

The next step is to augment the state by setting458

η(t) ≜


 xϕ (t)

ψ(t)


 . (47)

Since dψ/dt = ϕ/Ts = Cϕxϕ/Ts, the differential equation gov-459

erning the stochastic process η is460

dη(t) = Aηη(t)dt + Γηvc(t)dvc , (48)

with461

Aη ≜


 Aϕ 0

1
Ts

Cϕ 0


 Γη ≜


 I

0


 . (49)

Discretizing Eq. (48) over the time interval [t1, t2] yields:462

η (t2) = eAη(t2−t1)η (t1) + vη(t1, t2) , (50)

where463

vη(t1, t2) ≜


 v1(t1, t2)

v2(t1, t2)


 =

∫ t2

t1

eAη sΓηvc(t2 − s)ds . (51)

The vector-valued random variable vη(t1, t2) is zero-mean and464

Gaussian, with covariance matrix465

Σvη (t2 − t1) =
∫ t2−t1

0
eAη sΓηΓT

η eAη sT
ds . (52)

As shown in Appendix A, the matrix exponential of Aη is given466

by467

eAη s =


 eAϕs 0

Cψ(s) I


 , (53)

with468

Cψ(s) =
1
Ts

Cϕ A−1
ϕ (eAϕs − I) . (54)

As for the covariance matrix function Σvη (s), it can be parti-469

tioned as470

Σvη (s) ≜


 Σv1 (s) Σv1v2 (s)

Σv1v2 (s)
T Σv2 (s)


 , (55)

where Σv1 , Σv2 and Σv1v2 are matrix-valued functions which can471

be evaluated using formulas in Appendix A.472

B. Discrete-time model473

The phase averages over the DM and WFS intervals can now be474

retrieved from the corresponding increments of the integral ψ:475

ϕk = ψ(kTs)− ψ((k− 1)Ts)

ϕ
δ
k = ψ((k− δ)Ts)− ψ((k− 1− δ)Ts) .

(56)

(57)

A convenient choice of augmented state vector is then:476

zk ≜




xϕ(kTs)

ψ(kTs)− ψ((k− δ)Ts)

ψ((k− δ)Ts)− ψ((k− 1)Ts)

ψ((k− 1)Ts)− ψ((k− 1− δ)Ts)




. (58)
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The process noise corresponding to this augmented state will be477

similarly constructed from the values of vη(t1, t2) computed over478

the intervals [kTs, (k + 1− δ)Ts] and [(k + 1− δ)Ts, (k + 1)Ts]:479

vk ≜


 vη((k + 1− δ)Ts, (k + 1)Ts)

vη(kTs, (k + 1− δ)Ts)




=




vk,1

vk,2

vk,3

vk,4




=




v1 ((k + (1− δ))Ts, (k + 1)Ts)

v2 ((k + (1− δ))Ts, (k + 1)Ts)

v1 (kTs, k + (1− δ)Ts)

v2 (kTs, k + (1− δ)Ts)




.

(59)

(60)

Because occurrences of vη taken over non-overlapping inter-480

vals are independent zero-mean Gaussian vectors, the random481

process v is a discrete zero-mean Gaussian white noise with482

block-diagonal covariance matrix483

Σv =


 Σvη (δTs) 0

0 Σvη ((1− δ)Ts)


 . (61)

The evolution of this augmented state between two succes-484

sive DM sampling instants is obtained by successively apply-485

ing Eq. (50) for the intervals [kTs, (k + 1− δ)Ts] and [(k + 1−486

δ)Ts, (k + 1)Ts]. This yields:487

xϕ((k + 1)Ts) = eAϕδTs xϕ((k− δ + 1)Ts) + vk,1 ,

xϕ((k− δ + 1) Ts) = eAϕ(1−δ)Ts xϕ(kTs) + vk,3 ,

ψ((k + 1)Ts)− ψ((k− δ + 1)Ts =

Cψ(δTs)xϕ((k− δ + 1) Ts) + vk,2 ,

ψ((k− δ + 1)Ts)− ψ(kTs) = Cψ((1− δ)Ts)xϕ(kTs)

+vk,4 .

(62)

(63)

(64)

(65)

Rearranging these terms leads to a discrete-time state equation488

in the desired form489

zk+1 = Azk + Γvk , (66)

with490

A =




eAϕTs 0 0 0

Cψ(δTs)eAϕ(1−δ)Ts 0 0 0

Cψ((1− δ)Ts) 0 0 0

0 I 0 0




,

Γ =




I 0 eAϕδTs 0

0 I Cψ(δTs) 0

0 0 0 I

0 0 0 0




.

(67)

(68)

The two desired averaged phases ϕk and ϕ
δ
k are then obtained as491

ϕk = Cϕzk ,

ϕ
δ
k = C

ϕ
δ zk ,

(69)

(70)

with:492

Cϕ =
(

0 I I 0
)

,

C
ϕ

δ =
(

0 0 I I
)

,

(71)

(72)

giving thereupon access to the measurement as493

yk = Cyzk − DN ((1− δ) uk−1 + δuk−2) + wk , (73)

where494

Cy = DC
ϕ

δ =
(

0 0 D D
)

. (74)

Setting xk = zk, the optimal LQG then retains the same form as495

in Section 2:496

u∗k = PuCϕ x̂k+1|k , (75)

where the minimum-variance prediction x̂k+1|k = E[xk+1|Ik] is497

the output of a Kalman filter built on Eq. (20)-(21):498

x̂k+1|k = Ax̂k|k−1 + L∞(yk − ŷk|k−1) , (76)
499

ŷk|k−1 = Cy x̂k|k−1 − DN ((1− δ)uk−1 + δuk−2) . (77)

C. Building the continuous disturbance model500

A key ingredient to construct lifted asynchronous disturbance501

model is a continuous-time stochastic disturbance model in the502

form of Eq. (41)-(42), and more precisely the three matrices Aϕ,503

Cϕ and Qϕ.504

We show here how these matrices can be retrieved from a505

state-space model of the averaged disturbance ϕ, which in turn506

can be built either from statistical priors or identified from WFS507

recorded data. Such a model would correspond to the state-508

space representation (30)-(31) in the synchronous case δ = 1. For509

the sake of clarity, we recall here this state-space representation:510

{
xϕ,k+1 = Aϕxϕ,k + Γϕvϕ,k ,

ϕk = Cϕxϕ,k .

(78)

(79)

We will make the additional assumption that the disturbance511

covariance matrix Var(ϕ) = Σϕ is known.512

Let us now suppose that ϕ has been generated by a contin-513

uous model in the form (41)-(42). Applying the results in the514

previous subsection in the special case δ = 1, we get515

xϕ(kTs) = eAϕTs xϕ((k− 1)Ts) + v1((k− 1)Ts, kTs) ,

ϕk = Cψ(Ts)xϕ(k− 1) + v2((k− 1)Ts, kTs) .

(80)

(81)

The first equation can be made to match Eq. (78) by setting516

xϕ,k = xϕ((k− 1)Ts) and Γϕvϕ,k = v1((k− 1)Ts, kTs). The sec-517

ond one needs to be slightly modified by noting that when (78)-518

(79) is a model identified from WFS measurements, its output519

corresponds to the predictable part of ϕk, in other words to the520

conditional expectation521

E(ϕk|xϕ,k) = E(ϕk|xϕ((k− 1)Ts)) = Cψ(Ts)xϕ((k− 1)Ts)

=
1
Ts

Cϕ A−1
ϕ (eAϕTs − I)xϕ,k . (82)

Equating Eq. (78) with Eq. (80) and Eq. (79) with Eq. (82) leads522

to:523

Aϕ =
1
Ts

log(Aϕ) ,

Cϕ = Cϕ(Aϕ − I)−1 log(Aϕ) .

(83)

(84)

Note that log(Aϕ) is well defined and computable as long as524

Aϕ has no eigenvalue on the negative real axis. This condition525

can always be enforced by computing a modal realization of526

(78)-(79) and removing the offending states.527
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To compute Qϕ, we use the fact that Var(ϕ) ≈ Var(ϕ), since528

the difference between the two is the intersampling variance.529

Thus, Var(ϕ) = Σϕ should be approximately equal to Σϕ =530

CϕPϕCT
ϕ , where Pϕ is the solution of the continuous Lyapunov531

equation532

AϕPϕ + Pϕ AT
ϕ + Qϕ = 0 . (85)

To select the appropriate value of Qϕ, we first note that the533

mapping from Qϕ to Σϕ is obviously linear. Consider first the534

case where the shaping filter transfer function F(z) = Cϕ(zI −535

Aϕ)
−1Γϕ is diagonal. Under this assumption, it is immediately536

shown that this mapping is a pointwise matrix multiplication, in537

other words that for every couple of coordinates (i, j), Σϕ(i, j) =538

Qϕ(i, j)G(i, j), where G is a square symmetric matrix.539

Thus, a simple procedure to ensure that Σϕ = Σϕ is:540

1. select Qϕ = Qϕ,0, where Qϕ,0 is any positive definite matrix541

with all its element non-zero (for example, Qϕ,0 = I + ε);542

2. compute the corresponding solution Pϕ,0 of Eq. (85);543

3. compute Σϕ,0 = CϕPϕ,0CT
ϕ ;544

4. for all couples of coordinates (i, j), take545

Qϕ(i, j) =
Qϕ,0(i, j)Σϕ(i, j)

Σϕ,0(i, j)
. (86)

When F(z) is non diagonal, the linear mapping between the546

coordinates of Qϕ and those of Σϕ needs to be identified547

using a sequence of semi-positive definite test matrices548

Qϕ,1, . . . , Qϕ,n(n+1)/2, where n = dim(ϕ) is the number of549

disturbance modes. Inverting this linear transformation550

then enables to compute the appropriate value of Qϕ.551

7. THEORETICAL PERFORMANCE AND ROBUSTNESS552

The discrete-time disturbance model (20)-(22) constructed in553

the previous section can be used to compute the expected per-554

formance of the asynchronous AO system for any optimal or555

suboptimal linear controller. As we shall see, it is possible to556

compute not only the theoretical value of the residual phase557

variance (including the intersampling variance), but also the558

residual phase PSD, thus enabling a detailed performance as-559

sessment in the form of a frequency-dependent rejection gain.560

The asynchronous model also enables to evaluate the AO loop’s561

modal stability margins (gain, phase and delay).562

These performance calculations rely on the key property that563

both the continuous-time model (41)-(42) and the discrete-time564

model (66)-(73) define stationary and ergodic zero-mean Gaus-565

sian processes. In particular, the solution z of Eq. (66) is a sta-566

tionary ergodic zero-mean Gaussian vector-valued process, the567

covariance matrix of which is the unique solution Σz = Var(zk)568

of the discrete Lyapunov equation569

AΣz AT + ΓΣvΓT = Σz . (87)

A. Intersampling variance and disturbance PSD570

As shown in Section 2, in the absence of actuator dynamics571

the overall performance of the AO system, measured by the572

averaged residual phase variance J(u) of the AO system, is the573

sum of a control-dependent discrete criterion Jd(u) and of a574

control-independent intersampling variance:575

J(u) = Jd(u) + σ2
ϕ,is . (88)

Because ϕ(t) and ϕk are both ergodic, for u = 0 the almost-sure576

identities hold:577

J(0) = trace(Var(ϕ(t)))

= Jd(0) + σ2
ϕ,is

= trace(Var(ϕk)) + σ2
ϕ,is , (89)

where trace(Σ) denotes the trace of Σ. But since ϕk = Cϕzk, we578

get579

Var(ϕk) = CϕΣzCT
ϕ

. (90)

Because the augmented state xk contains an occurrence of xϕ(t)580

at sampling time t = kTs, the corresponding value of ϕ(kTs) can581

be generated as ϕ(kTs) = Cϕ,zzk, with582

Cϕ,z =
(

Cϕ 0 0 0
)

. (91)

Thus, the following almost-sure identities hold:583

Var(ϕ(t)) = Var(ϕ(kTs)) = Cϕ,zΣzCT
ϕ,z ,

σ2
ϕ,is = trace(Var(ϕ(t)))− trace(Var(ϕk))

= trace(Cϕ,zΣzCT
ϕ,z)− trace(CϕΣzCT

ϕ
) .

(92)

(93)

The discrete-time stochastic model (20)-(22) also enables to eval-584

uate the PSD of (for example) ϕ. This stems from the fact that the585

z-transforms of v and ϕ are related through Φ(z) = Hv,ϕ(z)V(z),586

where Hv,ϕ(z) is the transfer function of the corresponding shap-587

ing filter:588

Hv,ϕ(z) = Cϕ,z(zI − A)−1Γ . (94)

Since v is a white noise, for any frequency f the PSD Φϕ of ϕ can589

be evaluated by setting z = 2iπ f /Fs and computing590

Φϕ(z) = Hv,ϕ(z)Φv(z)Hv,ϕ(z)∗ = Hv,ϕ(z)Σv Hv,ϕ(z)∗ (95)

(where M∗ denotes the conjugate transpose of M). One can591

similarly evaluate the PSD of ϕ, or for that matter any possible592

linear combination of the coordinates of x.593

B. Closed-loop state-space representation594

In order to apply the same procedures to evaluate control per-595

formance, one needs to construct a stochastic state-space model596

of the closed-loop AO system with inputs v and w and output597

ϕ
res. The first step is to put the AO controller itself in the general598

state-space form599

{
xu,k+1 = Auxu,k + Buyk ,

uk = Cuxu,k+1 .

(96)

(97)

For an integrator, this is achieved by setting xu,k = uk−1, so that600

Au = αleak I, Cu = I and Bu = gMcom. For LQG AO controllers,601

an appropriate choice of xu and Bu is602

xu,k =


 x̂k|k−1

uk−2


 , Bu =


 L∞

0


 . (98)

The construction of Au and Cu for the optimal and suboptimal603

LQG controllers in Sections 3 and 6 is detailed in Appendix B.604
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A convenient choice of internal state for the closed-loop AO605

system model is then:606

xperf,k ≜




zk

xu,k

uk−2


 . (99)

Combining Eq. (66), Eq. (69), Eq. (73), Eq. (96) and Eq. (97), we607

get the stochastic state-space “performance model”608

xperf,k+1 = Aperfxperf,k + Γperf,vvk + Γperf,wwk ,

ϕ
res
k = Cperfxperf,k ,

(100)

(101)

where609

Aperf =




A 0 0

BuCy Au − (1− δ)Bu MintCu −δBu Mint

0 Cu 0


 , (102)

610

Γperf,v =




Γ

0

0


 , Γperf,w =




0

Bu

0


 , (103)

611

Cperf =
(

Cϕ −NCu 0
)

. (104)

C. Performance evaluation: residual phase variance and PSD612

Using the performance model following the same approach as in613

the previous subsection, we can evaluate the theoretical values614

of Jd and also the spatial covariance matrix of ϕ
res. First, we615

compute the unique solution Σperf = Var(xperf,k) of the discrete616

Lyapunov equation617

AperfΣperf AT
perf + Γperf,vΣvΓT

perf,v + Γperf,wΣwΓT
perf,w = Σperf .

(105)
From this, we get618

Jd(u) = trace(Var(ϕres
k )) = trace(CperfΣperfC

T
perf) . (106)

To evaluate Φϕ
res , the PSD of ϕ

res, we first compute the closed-619

loop transfer functions between v and ϕ
res and between w and620

ϕ
res:621

Hv,ϕres (z) = Cperf(zI − Aperf)
−1Γperf,v ,

Hw,ϕres (z) = Cperf(zI − Aperf)
−1Γperf,w .

(107)

(108)

Since v and w are mutually independent white noises, we get:622

Φϕ
res (z) = Hv,ϕres (z)Σv Hv,ϕres (z)∗ + Hw,ϕres (z)Σw Hw,ϕres (z)∗ .

(109)
An example of application is presented in figure 7, allowing623

for a mutual validation of this method and of the simulations624

performed in section 4.625

D. Performance evaluation: rejection and noise propagation626

gains627

In the non-asynchronous case, the PSD of the residual phase628

ϕ
res can also be computed from the PSD of ϕ, using AO loop629

rejection transfer function Trej(z):630

Φϕ
res (z) = Trej(z)Φϕ(z)Trej(z)∗ . (110)

This calculation is no longer possible in the asynchronous case,631

since the trajectories of ϕ
res cannot be computed from those of632

ϕ. However, it is possible to evaluate for all turbulence modes633

a “rejection gain” by setting Σw = 0 and taking the ratios of the634

corresponding diagonal terms of Φϕ
res (z) and Φϕ(z). Likewise, a635

noise propagation gain can be evaluated by following the same636

procedure with Σv = 0 and taking the ratios of the diagonal637

terms of Φϕ
res (z) and Σw. The theoretical evaluation procedure638

is implemented in the next section, with a display of the rejection639

gains Φϕ
res /Φϕ in figure 12.640
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Fig. 7. (simulation and theoretical, δ = 0.5) PSD of the DM-
synchronized phase, disturbed ϕ (OL, black curve) and resid-
ual ϕ

res (yellowish: integrator; reddish: WFS-synchronized
LQG controller with δctrl = 0.5). Comparison of simulation-
based (solid lines) and state-space-based (dashed lines, from
Eq. (109)) computations. On the right is a zoom on the vibra-
tion peak. Sampling frequency Fs = 500 Hz.

E. Stability margins641

An important issue in control design is whether the closed-loop642

system remains stable in presence of modeling errors. In the643

case of asynchronous measurements, it is of course critical to644

take into account discrepancies between the actual system delay645

δ and the value δctrl used to design the LQG controller. In the646

non-asynchronous case, a relevant way to assess robust stability647

is to evaluate the phase, gain and delay margins corresponding648

to the turbulence modes. This is achieved by taking the diago-649

nal terms of the rejection transfer function and computing the650

corresponding equivalent open-loop transfer function (OLTF).651

This procedure can be adapted to the asynchronous case by652

noting that the incoming continuous-time disturbance ϕ(t) can653

be decomposed as ϕ = ϕ
δ
+ ϕ̃δ, where the WFS-synchronized654

intersampling signal ϕ̃δ(t) is not measured by the WFS. As a655

consequence, the stability of the asynchronous loop is equivalent656

to the stability of the closed-loop system with input ϕ
δ and657

output y.658

This closed-loop transfer function can itself be computed659

from the regulateur transfer function, namely:660

TFregul(z) = zCu(zI − Au)
−1Bu . (111)
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Taking the fractional delay into account, the corresponding open-661

loop transfer function is662

TFOL(z) = N
(

δz−1 + (1− δ)
)

TFregul(z)Dz−1 (112)

In the single-mode case, D and N become scalar numbers. This663

enables to draw a Nyquist plot and to evaluate the stability664

margins.665

8. PERFORMANCE EVALUATION FOR TIP-TILT SIMULA-666

TIONS667

We come back to the LQG-DM and LQG-WFS regulators perfor-668

mance compared now with the third one which is the optimal669

LQG, LQG-OPT, in Figure 8. The performance results show that670

the optimal LQG allows to correct the wavefront independently671

from the presence of a fractional delay in the system.672

We show in Figure 9 the effect of a calibration error of±0.1 be-673

tween δctrl and the true value δ (0.2 ms), where the worst residual674

disturbance RMS is retained in each case. All controllers show675

a robust behavior, the optimal one keeping its advantage over676

almost the whole range of delays. Our experience on the pro-677

cessed examples made us realize that it was possible to slightly678

improve the performance of LQG-WFS by tuning δctrl away679

from δ, as done in Figure 8. The best tuned value of δctrl for the680

LQG-DM controller stays equal to δ. This is visible in a detailed681

example of the error impact, shown in Figure 11 for the case682

where δ = 0.5 frame.683
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Fig. 8. (theoretical, tuned δctrl) Residual phase variance in rad2

(left scale) and corresponding residual phase RMS (right non-
linear scale) in case of turbulence with added vibrations (total
RMS of 370 nm) as a function of the system delay δ. Sampling
frequency Fs = 500 Hz. Vibration frequencies fvib = 30, 60, 100
and 150 Hz. Suboptimal regulators are defined with their best-
tuned δctrl. The dashed red curve corresponds to δctrl = δ,
different from the best-tuned values.

A. Stability margins and robustness684

We can calculate and compare the stability margins displayed685

in figure 10. It can be seen that the gain margins are roughly686

the same whatever the LQG design, with the usual possibility687

to increase them by tuning upwards the fudge factor. However,688

the delay margins are interestingly showing that:689

• Contrarily to LQG-WFS and LQG-OPT, LQG-DM cannot690

gain much in delay stability margin by tuning the fudge691

factor. It is way easier for LQG-WFS. This is understandable692

from the fact that the Kalman filter in the LQG-WFS case is693

not making approximations while LQG-DM does.694
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Fig. 9. (theoretical, mistuned δctrl) Residual phase variance
in rad2 (left scale) and corresponding residual phase RMS
(right nonlinear scale) in case of turbulence with added vibra-
tions (total RMS of 370 nm) as a function of the system delay
δ. Sampling frequency Fs = 500 Hz. Vibration frequencies
fvib = 30, 60, 100 and 150 Hz. Suboptimal regulators are de-
fined by taking the best-tuned δctrl of Figure 8 ±0.1 frame. The
dashed red curve corresponds to δctrl = δ± 0.1.

• The change in stability margin, by playing with the fudge695

factor, is mainly possible for delay values δ nearby 0.5 frame.696

It is the location where the vibration rejection is compro-697

mised by the modeling error in the LQG-WFS regulator698

case. Moreover, the margin value itself is almost doubled699

for δ = 0.5 frame with respect to the integer delay case.700

• Despite an approximation in the delay modeling, LQG-701

WFS shows the best delay margins. For instance, for702

δ = 0.8 frame, it benefits from a 1.3-frame delay margin,703

while limited to respectively 1 frame and 0.8 frame for704

LQG-OPT and LQG-DM. This was actually predictable705

looking at figure 6 where the bench tests and simulations706

revealed greater forbearance of LQG-WFS compared to the707

other two regulators when δctrl deviated from the actual708

δ. In that same figure 6, we can even notice an improve-709

ment of the performance of LQG-WFS for greater values of710

δctrl = δ + 0.1.711
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Fig. 10. (theoretical, δctrl = δ) Stability margins and corre-
sponding performance as a function of the fudge factor (y-
axis) and the delay δ (x-axis). Left to right: LQG with phase
model synchronized with DM (LQG-DM), with WFS (LQG-
WFS), and optimal controller (LQG-OPT). Top to bottom: gain
[dB], delay [frames] margins and performance expressed as
[exp(−σ2

λ=500nm)].

This comment of the last item is confirmed and detailed in712

figure 11, representing the same variables as figure 10 but with a713

fixed value of δ = 0.5 and making δctrl deviating on both sides.714

We notice that the gain margins stay unchanged while delay715
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Fig. 11. (theoretical, δ = 0.5) Stability margins and correspond-
ing performance as a function of the fudge factor (y-axis) and
the regulator delay δctrl (x-axis). Left to right: LQG with phase
model synchronized with DM (LQG-DM), with WFS (LQG-
WFS), and optimal controller (LQG-OPT). Top to bottom: gain
[dB], delay [frames] margins and performance expressed as
[exp(−σ2

λ=500nm)].

margins are logically impacted. They are interestingly degraded716

when underestimating δctrl < δ but improved when making717

an overestimation δctrl > δ. We see on the performance maps718

(bottom) that LQG-WFS is surprisingly not convex, with best719

results for δctrl = δ + 0.3 while having great stability margins.720

In the end, one should better overset the delay value δctrl a little:721

the performance is almost unchanged – or even improved if722

using LQG-WFS –, the delay margins are improved, and the723

gain margins are almost not degraded.724

However, whatever the tuning, the image quality criteria725

exp(−σ2
λ=500nm) (visible wavelength) in figure 10 and for delays726

from 0.4 to 0.6, is dramatically jumping from 40% with LQG-DM727

to 60% for LQG-WFS and to 80% for the optimal LQG regulator.728

B. Rejection gains729

In figure 12, we present the frequency-dependent rejection and730

noise propagation gains of the three LQG regulators. These gains731

are evaluated by computing the ratios Φϕ
res (z)/Φϕ(z) (light732

thick lines) and Φϕ
res (z)/σ2

w (dark thin lines). The results on733

the graphs enable us to highlight the potential loss of vibration734

rejection with respect to the vibration frequency. Indeed, we735

notice that LQG-WFS (middle graph) loses efficiency when the736

signal frequency increases, with a rejection gain limited to 0.2737

at 150 Hz. The same phenomenon is visible for LQG-DM (left738

graph), the latter having moreover a more critical noise prop-739

agation, notably at 150 Hz (gain superior to 2). This is related740

to the delay margins observed in figure 10, in which the values741

are significantly lower for the LQG-DM case. On the other hand,742

LQG-OPT (right graph) remains effective in completely rejecting743

the four vibration peaks. This is made possible without over-744

shooting the noise at high frequencies, again in accordance with745

the good stability margins described in the previous section.746

9. CONCLUSION747

This paper revisits the optimal (minimum-variance) AO con-748

trol design in presence of fractional delay. This problem has749

been tackled (using the lifting technique) in [8, 9] in the case750

of a DM with temporal dynamics. Based on the same lifting751

technique, we present here a constructive and new procedure752

to design the optimal controller under the hypothesis of DM753

with instantaneous response. Our constructive procedure is easy754

to implement and can be readily extended to solve the optimal755

control problem in presence of (linear) actuator dynamics.756
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Fig. 12. (theoretical, δ = 0.5) Phase rejection and noise propa-
gation gains. Left to right: LQG-DM, LQG-WFS and LQG-OPT
controllers. Sampling frequency Fs = 500 Hz. Vibration fre-
quencies fvib = 30, 60, 100 and 150 Hz. Best-tuned δctrl.

It is first shown that the optimal control problem with frac-757

tional delay keeps the same simple structure than in the case758

of integer delay. However, the disturbance prediction is then759

obtained by a Kalman filter based on a lifted disturbance model760

that outputs two averaged values: the disturbance averaged761

over the DM sampling period and over the WFS sampling pe-762

riod. We propose in this paper to directly construct this lifted763

state-space representation, starting from a standard discrete-time764

disturbance model derived from statistical priors and/or iden-765

tified from WFS measurements. This construction procedure766

is markedly different from the ones proposed in [8, 9], which767

required computationally involved numerical integrations in768

particular for the state noise covariance matrix. Our streamlined769

optimal control design relies on calculation procedures involv-770

ing only matrix exponentials and Lyapunov equations. It is771

applied in simulation to optimize tip-tilt vibrations rejection on772

the GTCAO case (the AO system dedicated to GTC, see [23]). It773

yields significant improvement in performance and robustness774

compared with simpler but suboptimal LQG controllers.775

The two suboptimal LQG controllers that are used for com-776

parison are adapted to the presence of a fractional delay. One,777

denoted by LQG-DM, uses a disturbance model synchronised778

with the DM intervals, as in [6, 10, 11]. The other one, denoted by779

LQG-WFS, is based on a disturbance model synchronized with780

the WFS, as in [3, 12]. We show that in presence of atmospheric781

turbulence only, all three controllers (LQG-DM, LQG-WFS and782

optimal) behave the same way, and far better than the integra-783

tor. However, in presence of vibrations, both LQG-DM and784

LQG-WFS see their performance degrading all the more the vi-785

bration’s natural frequency increases. This expected behavior is786

evidenced thanks to on-bench experiments on GTCAO. We also787

show that injecting piecewise constant vibrations on a bench788

via the DM favors LQG-DM over LQG-WFS. When the vibra-789

tion is acting as a continuous-time signal, LQG-WFS generally790

outperforms LQG-DM and exhibits stronger stability margins.791

The design of the optimal controller relies on a continuous-792

time model of the disturbances, which is in practice not avail-793

able. We propose in this paper to build the continuous-time794

model by “dediscretizing” the discrete-time model identified795

from the telemetry data. This provides a Kalman filter which de-796

livers minimum variance estimates of phase temporal averages797

over past and future WFS and DM intervals, and hence optimal798

commands. This makes it possible to have for the first time a799

complete control design procedure that starts from the standard800

discrete-time models to the optimal discrete-time controller that801

takes fractional delays into account.802

This is used to derive theoretical performance evaluations in803
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terms of residual phase variance, but also to propose for the first804

time, thanks to our constructive method, the calculation of the805

phases and residual phases PSD, rejection and noise propagation806

transfer functions or gains, plus all stability margins.807

While the applications presented above are scalar, the pro-808

posed method is applicable to multi-modal AO control with809

large dimensions.810

A. INTEGRALS OF MATRIX EXPONENTIALS811

The integrals of matrix exponentials used throughout this paper812

can all be computed using two basic matrix algebra routines,813

namely computing matrix exponentials and solving continu-814

ous Lyapunov functions, which are available in many software815

packages (in MATLAB, the functions expm and lyap).816

Start with the integral of the exponential of an invertible817

matrix Aϕ. It can be evaluated over any time interval as818

∫ t

0
eAϕsds = A−1

ϕ (eAϕt − I) = (eAϕt − I)A−1
ϕ . (113)

This formula enables to compute the integral of the non-819

invertible block-triangular matrix820

Aη =


 Aϕ 0

1
Ts

Cϕ 0


 . (114)

To achieve this, it suffices to note that the solution of the de-821

terministic autonomous equation η̇(t) = Aηη(t), where η =822

(xT
ϕ ψT)T, is823

xϕ(t) = eAϕtxϕ(0) ,

ψ(t) =
∫ t

0

1
Ts

Cϕxϕ(s) ds + ψ(0)

=
1
Ts

Cϕ

(∫ t

0
eAϕsds

)
xϕ(0) + ψ(0) .

(115)

(116)

Since this should be equal to eAη tη(0) for all t ≥ 0 and any824

possible choice of xϕ(0), this matrix exponential is825

eAη s =


 eAϕs 0

CΦ(s) I


 , (117)

with826

CΦ(s) =
1
Ts

Cϕ

(∫ t

0
eAϕsds

)
=

1
Ts

Cϕ A−1
ϕ

(
eAϕs − I

)
. (118)

A second standard result from control theory is that when Aϕ is827

a Hurwitz square matrix (all eigenvalues with strictly negative828

real parts) and Qϕ = QT
ϕ ≥ 0 (all eigenvalues positive), the829

following identity holds:830

∫ ∞

0
eAϕsQϕeAT

ϕsds = Pϕ , (119)

where Pϕ ≥ 0 is the unique solution of the continuous-time831

Lyapunov equation832

AϕPϕ + Pϕ AT
ϕ + Qϕ = 0 . (120)

As an immediate corollary, the corresponding integral over a833

finite interval is given by834

∫ t

0
eAϕsQϕeAT

ϕsds = Pϕ − eAϕtPϕeAT
ϕt . (121)

As it turns out, Pϕ = Σxϕ , where Σxϕ is the covariance matrix of835

the stationary solution of Eq. (48).836

We now proceed to evaluate the noise covariance matrix837

Σvη (t) =
∫ t

0
eAη sQ eAη sT

ds , (122)

where Q =


 Qϕ 0

0 0


. It is immediately checked that the838

integrand in Eq. (122) is839

eAη sQeAη sT
=


 eAϕsQϕ eAϕsT

eAϕsQϕCΦ(s)T

CΦ(s)Qϕ eAϕsT
CΦ(s)QϕCΦ(s)T


 . (123)

Applying Eq. (113) and Eq. (121) leads to:840

Σvη (t) ≜


 Σv1 (t) Σv1v2 (t)

Σv1v2 (t)
T Σv2 (t)


 , (124)

where841

Σv1 (t) = Pϕ − eAϕtPϕeAT
ϕt

Σv1v2 (t) = Σv1 (t)−
1
Ts

A−1
ϕ (eAϕt − I)Qϕ A-T

ϕ CT
ϕ

Σv2 (t) =
1

T2
s

Cϕ A−1
ϕ ×

(
Σv1 (t) + tQϕ

−A−1
ϕ (eAϕt − I)Qϕ −Qϕ(eAT

ϕt − I)A-T
ϕ

)

× A-T
ϕ CT

ϕ .

(125)

(126)

(127)

(128)

B. LQG REGULATORS IN STATE-SPACE FORM842

We detail here the construction of matrices Au and Cu for the843

LQG controllers in Sections 3 and 6. Recall that this state repre-844

sentation is in the form845

{
xu,k+1 = Auxu,k + Buyk ,

uk = Cuxu,k+1 .

(129)

(130)

With846

xu,k =


 x̂k|k−1

uk−2


 , Bu =


 L∞

0


 . (131)

A. Optimal LQG847

For the optimal LQG regulator in Section 2, we take xk = zk, the848

augmented state vector is defined by equation Eq. (58). Combin-849

ing Eq. (24), Eq. (25) and Eq. (26) then yields850

Au =


 A− L∞Cy + (1− δctrl)DNPuCϕ δctrlL∞DN

PuCϕ 0


 , (132)

851

Cu =
(

PuCϕ 0
)

. (133)
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B. DM-synchronized LQG852

In this case, xk = x̂ϕ,k|k−1. From Eq. (33), we get853

ŷϕ,k|k−1 = D
(
(1− δctrl)Cϕ + δctrlCϕ,1

)
x̂ϕ,k|k−1 − DNuk−2 ,

(134)
The control being given by Eq. (35), this results in854

Au =


 Aϕ − L∞D

(
(1− δctrl)Cϕ + δctrlCϕ,1

)
L∞DN

PuCϕ 0


 , (135)

855

Cu =
(

PuCϕ 0
)

. (136)

C. WFS-synchronized LQG856

As in the DM-synchronized case, we take xk = x̂ϕ,k|k−1. Com-857

bining Eq. (23) and Eq. (39) yields:858

ŷϕ,k|k−1 = D
(
Cϕ − (1− δctrl)NPuCϕ,2

)
x̂ϕ,k|k−1 − δctrlDNuk−2 .

(137)
Thus:859

Au =


 Aϕ − L∞DCϕ + (1− δctrl)L∞DNPuCϕ,2 δctrlL∞DN

PuCϕ,2 0


 ,

(138)860

Cu =
(

PuCϕ,2 0
)

. (139)
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Chapter 5

Adaptive optics system modeling and calibration

for linear predictive control

5.1 Introduction

We have seen in chapter 3 and 4 that the implementation of an LQG regulator
intrinsically required the modeling of the AO system and as a result its calibration.
We will explore in this chapter some aspects linked to the telescope itself, like the
way the primary and secondary mirrors are structured, the pupil rotation/derotation
or how the windshake is modeled. We will also describe some calibration methods
and their implementation on GTCAO to obtain an e�cient controller. In particular,
we propose a simple method to estimate the fractional loop delay, which needs to be
known to simulate properly the AO loop and to design the controller. To build some
of the models, the inner functions of the Object-oriented Matlab adaptive optics
toolbox (R. Conan and Correia, 2014) (OOMAO) will be used.

This chapter starts with the descriptions related to the telescope in section 5.2
and the GTCAO system in section 5.3. Interaction matrix calibration is tackled in
section 5.4, fractional loop delay estimation in section 5.5 and measurement noise
covariance matrix in section 5.6.

5.2 Gran Telescopio Canarias

5.2.1 Primary mirror: an alt-azimuth mounted segmented pupil

5.2.1.1 Telescope pupil

The Gran Telescopio Canarias has a 36-hexagonal-segment primary mirror, with a
total peak-to-peak width of Dpup = 11.35m. This parameter will mainly intervene
in the turbulence and tip-tilt vibration energy. In terms of light collection, it is
equivalent to a 10.4-meter diameter circular mirror. The spider holding the secondary
mirror has six thin legs of uniform width of 2.5 cm. It is neglected since su�ciently
small not to have led to any petal mode problem on the Keck telescope which has
the same architecture. The central obstruction is a circle of size 2.5m. The pupil is
in the end a collection of hexagonal segments, as illustrated in �gure 5.1.

5.2.1.2 Alt-azimuthal mount

The GTC location is at latitude Φa =28°45'. Its mount is alt-azimuthal. As a result,
to allow long exposure time scienti�c images, a de-rotator manages the de-rotation
of the images, de�ned by the parallactic angle (ηa). This angle variation is a function

77
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Figure 5.1: (OOMAO) Footprint of the GTC input pupil.

of the zenith angle (Za), the declination (δa) and the hour angle (ha). All are shown
in the celestial illustration, �gure 5.2. The sinus law gives us

sin(ηa(t)) = sin(ha(t))
sin(π/2− Φa)

sin(Za(t))
. (5.1)

The de�nition of the hour angle is

ha(t) =
360

24
(12− t) , (5.2)

taking for t the time convention that the target is at its zenith at t = 12. The zenith
angle is obtained with:

Za(t) = arccos (sin(δa) sin(Φa) + cos(δa) cos(Φa) cos(ha(t))) . (5.3)

The azimuth angle Aa can also be given:

Aa(t) = arcsin

(
cos(δa sin(ha(t))

sin(Za(t))

)
. (5.4)

It is then possible to see what is the de-rotator speed as illustrated in �gure 5.3.
For example, for an object at declination 45°, it is invisible until the hour −8 because
under the horizon. Once visible and tracked by the telescope, the de-rotator speed
goes from about 0.4° per 120 seconds to 1.6° per 120 seconds at time 0. The second
half of the object �day� (time 0 to 12) is symmetrical. Therefore, in this example, if
one imposes that the modeling should be done at most every 1° of pupil rotation, as
e.g. in (Van Dam, Le Mignant, and B. A. Macintosh, 2004), we should update the
controller every minute. This insures nearby the zenith a maximum rotation of 0.8°
(speed of 1.6° for 2 minutes). This will be used later when evaluating the validity of
LQG models.
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Figure 5.2: Diagram of celestial angles de�nitions (Kaler, 2002). The target
travels at its declination δa, at constant hour angle speed (dha

dt
= 360° per day).

The GTC mount manages the angles of zenith Za(t) and azimuth Aa(t), and
the internal de-rotator manages the parallactic angle ηa(t).
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Figure 5.3: Parallactic angle evolution speed (in degree per 120 sec) as a
function of the time (x-axis) and the target declination (y-axis). The dashed
circles in the middle are delimiting the area where the speed exceeds 2 degrees
per 120 second (maximum value set in the color bar). The outside black area
corresponds to coordinates of objects that are invisible from the GTC (under
the horizon of La Palma).
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Figure 5.4: Illustration of the parallactic angle e�ects on a 2-hour exposure
image of Orion with an alt-azimuthal tracking. Left: with parallactic angle
de-rotation (Credit: Scott Levine). Right: Matlab simulation without de-
rotation. All stars are describing circle arcs of angle ηa.

5.2.2 Tip-tilt secondary mirror and tip-tilt correction

The secondary mirror M2 is a tip-tilt mirror whose support makes a central ob-
struction of 2.5m. The e�ect of windshake can be important as described in sec-
tion 5.2.2.1, due to the vibrations induced by the spider structure that supports M2.
This mirror has also its proper servo-loop, described in section 5.2.2.2.

5.2.2.1 Windshake-induced tip and tilt disturbance

Taking into account the low-order aberrations due to the windshake is mandatory and
all the more so important as we are on a very large telescope. Other non-atmospheric
aberration sources may also be present, like vibrations induced by coolers, fans,
etc. We are going to describe the basic approach implemented to generated phase
disturbances that mimic the M2 related vibrations.

Windshake-induced aberrations spectrum

An analytical expression of the power spectral density (PSD) of the mechanical
excitation due to the windshake has been provided by the IAC mechanics team and
reported in (Femenía, Icíar Montilla, and Núñez, 2017):

Swind(f) =
f

(1 + f2)
4
3

(
1 +

(
f

0.77

) 4
3

)2 , (5.5)

where f is the temporal frequency in Hz. This is �ltered by the response of the
telescope to produce the windshake. The telescope is considered as a spring-damp
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system of natural frequency ωvib = 2πfvib = 75.4 rad s−1 and damping coe�cient
ξvib = 0.01. Noting p = 2iπf the Laplace variable, the transfer function can be
written as:

Htel(p) =
1

(
p

ωvib

)2
+ 2ξvib

ωvib
p+ 1

. (5.6)

The PSD of the windshake perturbation is thus:

PSDwindshake(f) = Swind(f)|Htel(2iπf)|2 . (5.7)

Figure 5.5 illustrates the windshake PSD and its di�erent components: the PSD
Swind in red, the telescope square gain |Htel|2 in blue, and the total disturbance
PSDwindshake in bold black.
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Figure 5.5: (Optical disturbance models resulting from mechanical models)
Windshake-induced aberrations: power spectral density for tip or tilt Zernike
modes (angle of arrival in radians). The windshake entrance Swind multiplied
by the telescope response Htel results in the disturbance PSD PSDwindshake.
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Generation of windshake phase aberrations

Knowing the expression of the windshake PSD in equation (5.7), we can generate a
discrete-time vibration signal ϕvib to be added to the atmospheric tip (or tilt) mode
for a niter-frame long (niter even) simulation at frequency Fs. The following standard
steps lead to the generation of the temporal data:

� Calculate from equation (5.7) the amplitude PSDwindshake(fk) where fk =

k Fs
niter+1 for k ∈ Iiter = J1, niter2 K (the 0 frequency is not calculated here).

� Compute a discrete Fourier transform of the desired vibration signal, Φvib =

F
(
ϕvib

)
, by assigning phases Θk as pseudo-random numbers following the

continuous uniform distribution over [−π, π]:

∀k ∈ Iiter,Φ
vib(fk) =

√
PSDwindshake(fk)exp(iΘk) . (5.8)

� Build a discrete Fourier transform respecting hermitian symmetry (vibration
signal must be real with zero mean):

{
0,
{
Φvib (fk)

}
k=1,...,

niter
2

,
{
Φvib* (fk)

}
k=

niter
2

,...,1

}
.

This allows to generate niter + 1 data at the right sampling frequency Fs.

� Go back to temporal space by inverse Fourier transform ϕvib = F−1
(
Φvib

)

and adjust the scalar temporal RMS of the signal from any initial arbitrary
value σϕ to the desired value σvib:

σvib
σϕ

ϕvib. In our case, σvib = 10 rad (path-
way di�erence) allows a standard deviation of σAoA = 63mas (angle of arrival,
corresponding to an amplitude of

√
2σAoA ≈ 0.1′′ as in (Femenía, Icíar Mon-

tilla, and Núñez, 2017)). In other words, knowing that the Airy disk is of size
FWHMAiry = λsci/Dpup = 0.033′′, a long exposure with pure vibration (no at-
mosphere, no correction) leads to a 2D-Gaussian-shaped image with a FWHM
of FWHMvib = 2.355σAoA ≃ 4.5FWHMAiry as visible in �gure 5.6. An ex-
ample of windshake temporal evolution obtained with the procedure above,
together with the atmospheric tip generated under OOMAO are displayed in
�gure 5.7.

5.2.2.2 Secondary mirror tip/tilt correction

The measurements coming from the WFS of GTCAO will be also used to drive
the secondary mirror M2. The latter will manage a part of the tip and tilt (TT)
correction, with its sampling frequency set to 100Hz. There is no TT mirror on
GTCAO optical table, so the DM will have to manage M2 TT residual disturbance.
The M2 loop will be positioned ahead of GTCAO so that the DM works in closed
loop from M2 residuals without knowing the values of the M2 commands. The
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Figure 5.6: (OOMAO simulation) PSF in the focal plane. Left: di�raction
limited. Right: long exposure image with windshake aberrations (no atmo-
sphere, no correction) as simulated for GTC.
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Figure 5.7: (OOMAO simulation) Example of windshake aberrations (green
curve, tip Zernike mode), atmospheric turbulence tip generated by OOMAO
(blue color, standard scenario of r0 = 20 cm and V0 = 10m s−1), and sum of
turbulence and windshake (red curve). The three sets come from one single
simulation. The windshake is clearly dominant in this scenario.
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Figure 5.8: Structure of the servoing with GTCAO and M2 in the loop. The
M2 loop receives measurements where the e�ect of the high-order DM (HODM)
of GTCAO is removed. The low-pass �lter (LPF) is a Butterworth �lter with
cut-o� frequency 50Hz. The M2 loop has a frequency sampling of 100Hz.
Data transfer rates are not indicated.

block-diagram of this control structure has been proposed in an internal technical
report (Núñez Cagigal, 2018) and is illustrated in �gure 5.8 in a simpli�ed version.

To simulate the existence of M2 on the bench (while being of course already
in the spider web of the operational GTC), �rst, the related windshake vibrations
must be introduced as explained in 5.2.2.1. Then, the M2 related tip-tilt transfer
function needs to be accounted for. In the report of (Núñez Cagigal, 2018), M2 has a
time response modeled with a second order �lter (damping 0.7 and cut-o� frequency
70Hz), a time delay of 3ms, and is managed by a standard integrator with a best-
tuned loop gain. The measurements received by this integrator are pre-�ltered by a
Butterworth with a cut-o� frequency of 50Hz. Therefore, the disturbance entering
GTCAO needs to be pre-processed by the M2 loop when simulated on the bench
or in OOMAO. This was done in particular for all the additional disturbances we
introduced on the bench, such as the windshake. An example of such processed
windshake time-series is shown in �gure 5.9.

5.3 GTCAO system and components

At the time of this manuscript writing, the single-conjugated AO bench GTCAO is
in its �nal test campaign in the AIV of the IAC (Iciar Montilla et al., 2022).

Wavefront sensor

The GTCAO system features an on-axis Shack-Hartmann sensor with 20×20 lenslets (Marco
de la Rosa et al., 2018). The camera is an OCAM2 with EMCCD and 240 × 240

pixels, each pixel having an image scale on sky of 0.35′′. This leads to 12× 12 pixels
for each subaperture. That CCD can be moved left-right and up-down, allowing for
choosing what is the global reference centroid position. The read-out is done with
an electronic gain, possible to set from around 50 to 1000. The related noise is of
0.4 e− px−1 RMS. There are 312 active lenslets, thus leading to 624 measurements
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Figure 5.9: (simulation) Example of windshake signal in open-loop (black) and
M2-corrected (blue) with a sampling time of Ts = 1000Hz. Left: time-series.
Right: energy (cumulative on the bottom). The temporal response of M2 is
visible on the time-series, most of all around the frame 44200 (time resolution
of 1ms). The OL signal has a total energy of 150 rad2 (not represented in
cumulative energy graph because too high). The 12-Hz resonance peak is not
corrected by M2: the DM will have to fully manage it. This residual time-
series will be used as a disturbance signal for the bench tests.
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(contained in the vector y).

Deformable mirror

The DM is a Cilas of 21×21 piezoelectric actuators, among which 373 are used (Marco
de la Rosa et al., 2018) but with the 330th out of order. The commands unit is called
�count�, such as 1 count = 0.0065V = 0.0449 nm. The command stroke limit of each
actuator is a voltage of ±400V = ±3.07 × 104 count = ±1.35µm. The stroke of an
actuator is increased when the neighbours are actuated, due to the coupling factor
of CDM ≈ 0.14.
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Figure 5.10: 2D display of the control vector (in counts) necessary to �atten
the DM (November 2022). The highest values of about 6× 103 counts on the
very right side is not negligible: it corresponds to one �fth of the maximum
allowed value uclip = 3.07× 104 counts.

The command vector is actually containing 373 + 2 commands. The two addi-
tional ones are called �pseudo-actuators�, corresponding to a tip and a tilt command.
The latters are still performed by the DM, simply allowing for increasing the integra-
tor loop gain dedicated to tip and tilt. The actuators grid is not Fried aligned with
the WFS, mainly due to a 3.0° rotation between the DM and the WFS. The DM
response time is lower than 0.5ms. We estimated this by sending some steps com-
mands to the DM and recording WFS data at a frame of 2000Hz, as illustrated in
�gure 5.11. The values plotted at each sampling time kTs correspond to the average
values of the DM position on the whole interval [(k − 1)Ts, kTs].

Real-time calculator

The real-time computer software is DARC (A. Basden et al., 2010; Marco de la Rosa
et al., 2018). At each frame, the centroid of each subaperture is computed by using
the 16 most illuminated pixels. Below a chosen total illumination, the vertical and
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Figure 5.11: DM average angle on each sampling period (cadence of 2000Hz).
The DM rises between 0 and 0.5ms. It means that it has a time response
inferior to 0.5ms.

horizontal measurements of a subaperture is automatically set to 0. The computation
is done by a Superserver RTC. The baseline of GTCAO concerning the regulator is
a leaky integrator with a gain dedicated to the TT modes and another for the higher
orders. The output telemetry gives access to time-series of the slopes (units: pixels of
the WFS CCD), the actuators commands (in counts), the subapertures illumination
(in electrons) and other variables that are not used in our case. The DARC software
also allows in its baseline distribution for the implementation of an LQG controller,
as it was used on CANARY at a frequency of about 150Hz, as described in detail
in (Sivo, 2014). The LQG real-time implementation corresponds to the scheme given
in section 3.3.6. It was modi�ed in the beginning of my PhD by Jose Marco de la
Rosa (software engineer at IAC) to allow an LQG implementation on GTCAO at
high frequency rate. It was also improved by Nicolas Galland (post-doc at Institut
d'Optique, Laboratoire Charles Fabry) to take into account the commands clipping
and the time delay. All these modi�cations have been validated by Ali Basden
(Durham University).

Bench disturbance simulator

The system must work for faint guide star magnitudes reaching Mngs = 14 with
a performance of still 10% in terms of Strehl ratio in K band. With guide stars
brighter than Mngs = 10, the Strehl ratio must be upper than 65% (Núñez Cagigal
et al., 2017). The bench test allows to implement some simulations with a telescope
simulator (on the left in �gure 5.12). The atmospheric turbulence disturbance is
introduced by one of the two available phase screens (PS):

� a �rst phase screen (PS1) corresponds to a favorable atmosphere of r0 = 23 cm

� a second phase screen (PS2) corresponds to a challenging atmosphere of r0 =
8.5 cm.
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Figure 5.12: Scheme (left) and photograph (right) of the GTCAO bench in
the AIV. Credit: (Béjar et al., 2018)

Both PSs were manufactured with low TT energy to mimic M2 e�ect. The vibrations
are simulated by sending to the deformable mirror some pre-computed vibration
time-series, at the loop sampling frequency Fs (Jose Marco function added on the
GUI). An internal source can simulate a visible-NGS of magnitude 10 to 14.

The performance is assessed through:

� the near-IR test camera (very right in �gure 5.12) and its corresponding inter-
nal halogen light source (central wavelength of 1.6µm) with pixel size 11mas.
This mimics the record of scienti�c images.

� the residual slopes given by the WFS.

On the bench, the pupil of GTC, M1, is simulated with a mask on the optical path
of the NGS and of the scienti�c source. It is rotated of 3.6 degrees. However, it does
not represent the central obscuration, as visible in �gure 5.13.

5.4 Pseudo-synthetic interaction matrix and phase-to-commands pro-
jector

The interaction matrix enters the LQG formulation (see 3.3.4) to compensate the
e�ect of the DM commands in the Kalman �lter. It is also used to reconstruct POL
slopes from which is built the state-space model of the disturbances.

In �rst subsection 5.4.1, we show the discrepancy noticed when comparing the
bench OL measurements with:

� the POL slopes obtained with an experimental interaction matrix M exp
int ,

� the POL slopes obtained with a pseudo-synthetic interaction matrix M synth
int .
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Figure 5.13: GTCAO test bench M1 pupil. It has no central obscuration (and
no spider), and the orientation corresponds to a spin of 3.6 degrees.

In subsection 5.4.2, we describe the way the WFS matrix D is calculated, which is
used in subsection 5.4.3 to obtain the pseudo-synthetic interaction matrix. Then,
as we have the in�uence matrix N through the optimization of the pseudo-synthetic
interaction matrix, we get a mapping of the actuators positions in subsection 5.4.4.
From that, we can build in subsection 5.4.5 the phase-to-commands matrix Pu that
allows the predicted phase to be projected on the actuators space, see equation (5.13).

5.4.1 Experimental interaction matrix issues and pseudo-synthetic matrix

Limited linearity for GTCAO

We can start showing some potential limits of the interaction matrix (linear model)
in our GTCAO case. The pixel size of the WFS CCD is of µwfs = 0.35′′ for a
subaperture of dSA = 0.568m. At λwfs = 500 nm, the pixels are thus Nyq times
smaller than the FWHM of the subapertures di�raction-limited spots:

Nyq ≜ 0.5λwfs/dSA
µwfs

= 0.260 . (5.9)

The value of Nyq would be 1 in the Shannon-Nyquist resolution case. As a result,
the linearity of the measurement is compromised. For each subaperture image, when
the light spot happens to be in the middle of a � twice bigger � CCD pixel, a
small displacement is almost undetectable. On the contrary, when the light spot is
exactly between two pixels, a small displacement will be measured with a too high
sensitivity. This non-linearity is visible in the OOMAO simulation on �gure 5.14.
This simulation simply consists in measuring, with a same-de�ned Shack-Hartmann
WFS as GTCAO one, a varying tip phase and extracts the tip measurement as the
median of all horizontal displacement measurements. We notice that the measured
tip (continuous line) is either �atter or steeper than the real tip (dashed line). The
same type of behaviour has been pointed out in (Kolb et al., 2012) for a source whose
FWHM was of 0.5 pixels (that is to say Nyq = 0.25). For simplicity reasons, the
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Figure 5.14: (OOMAO simulation) Comparison of the measured tip (full line)
with the real linear tip (dashed lined, which is also the model-based value).

linear model in our case will be the same dashed line for all the subapertures.

Measurement noise within Mexp
int

We highlight here the problem of measurement noise intrinsically existing in the
interaction matrix M exp

int measured on the bench. To favor a proper reconstruction
of some pseudo-open loop slopes, the interaction matrix is thresholded with a value
of 1.8 × 10−6 px count−1 (�gure 5.15). This value has been experimentally de�ned
through the evaluation of ∥y −M exp

int u∥. We send to the DM some turbulence-like
commands (recorded during a previous close-loop run) and compare the tip and tilt
measured with the one we expected knowing the interaction matrix. As it can be seen
in �gure 5.16, the comparison of M exp

int u with the slopes measured after application
of u is better for the thresholded interaction matrix.
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Figure 5.15: (bench data). Comparison of the interaction matrixM exp
int without

(left) and with (right) threshold. Square root displayed (the threshold has a
square root (1.8× 10−6)0.5 = 0.0013).
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Figure 5.16: (Bench data). Comparison of the tip (angle of arrival) of the
slopes measured on the bench (blue) with the slopes reconstruction M exp

int u,
with (red) and without (yellow) thresholding M exp

int . Without thresholding,
the reconstruction is 15% too weak. The angle of arrival is computed as the
average of horizontal slopes.

Pseudo-open loop reconstruction with a pseudo-synthetic interaction ma-
trix

However, we noticed that the POL slopes were still not well matching the OL slopes.
We record some OL slopes of a full phase screen rotation. We close the loop and
record a new batch of a full phase screen rotation. We build back a POL sample from
the latter, using either M exp

int or a pseudo-synthetic interaction matrix M synth
int . The

way M synth
int is constructed will be detailed later in section 5.4.3. We then compare

these POL samples with the OL one. To compare the samples, we use a Zernike
MMSE reconstructor and compute the �rst Zernike modes variance.

After doing the noise �ltering (�gure 5.15), theM exp
int -based POL have still around

15% error when using the phase screen 2 (PS2) data while the pseudo-synthetic in-
teraction matrix allows a better reconstruction of the POL for all Zernike modes as
shown in �gure 5.17. Something unexplained nevertheless happens when estimating
OL slopes directly from the commands, as in �gure 5.16: when using the pseudo-
synthetic matrix, the result is further from the real measurement than when using
M exp

int , as shown in �gure 5.18. This means that POL reconstruction is better done
with the pseudo-synthetic interaction matrix whereas reconstruction OL measure-
ments from command vectors is more accurate with the �thresholded� experimental
interaction matrix. In the following, each matrix will be used according to the sit-
uation. For the Mintu estimation as in section 5.5 (loop delay estimation), M exp

int is
used. Otherwise, for POL slopes fabrication, M synth

int is used (including in the Kalman
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Figure 5.17: (bench data). Modal comparison of the OL (blue) with the POL
(red). Top: modal variances. Bottom: ratio of square root of the respective
modal variances. Left: using M exp

int for POL. Right: using M synth
int for POL.
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Figure 5.18: (bench data). Comparison in OL without turbulence of the mea-
surement OL (blue) with the expected slope Mintu (red) when sending some
commands u to the DM. Left: using M exp

int . Right: using M synth
int . The latter

leads to 20% overestimation

5.4.2 modeling of WFS matrix D

The WFS matrix D, as described in section 3.3.4, is used to describe the slopes
measurements from the phase. It is also used to build the pseudo-synthetic interac-
tion matrix in the next subsection. The linear operation that relates the phase ϕ to
the non-noisy WFS measurement y can be written:

y = Dϕ. (5.10)

92



5.4. Pseudo-synthetic interaction matrix and phase-to-commands projector

For the sake of simplicity, we have used the typical matrix DO, calculated in the
software OOMAO, that can be easily transformed intoD. It has been commonly used
in the on-sky LQG implementations by Sinquin (Sinquin et al., 2020) on CANARY.
Each of its j-th and (j + nSA)-th column contains proper coe�cients to compute
respectively the horizontal and vertical phase gradient for the j-th subaperture. It
uses only the subapertures edge pixels as described in �gure 3.3.The unit is pixel per
radian (pixels of the OOMAO WFS camera).

It remains to adapt DO to the dimensions and conventions of GTCAO. This is
done by comparing the interaction matrice (PMX) of OOMAO with the GTCAO
one.

1. We notice that the subapertures indexes concur: for both, the �rst SA is
up-left and the order of range is up-down and then left-right. It remains to
simply rearrange the slopes order (that is the lines order of DO) since OOMAO
separates the horizontal slopes (�rst 312 lines) from the vertical slopes (last 312
lines) while the RTC DARC gathers the horizontal and vertical slopes of each
subaperture together: DO = [Dx1, Dx2, ..., Dx312, Dy1, ..., Dy312]

T rearranged
to DARC order [Dx1, Dy1, ..., Dx312, Dy312]

T.

2. The sign convention of the x-slopes is matching but not the y-slopes one, visible
on the example of �gure 5.19. The signs of the D matrix columns should be
modi�ed as follows:

[Dx1, Dy1, ..., Dx312, Dy312]
T → [Dx1,−Dy1, ..., Dx312,−Dy312]

T .

3. Eventually, the scaling must be �tted. In OOMAO, DO is scaled so as to
satisfy Shannon criteria whatever the wavelength of the guide star λwfs used
in the simulations: the FWHM of one di�raction-limited lenslet spot λwfs/dSA
is tacitly supposed to be equal to two CCD pixels (2px = 2 × 0.35′′ on sky
for GTCAO). So the scaling factor to apply is Nyq = 0.26 for a 500-nm guide
star (same logic as for equation (5.9)).

In the end, when working in Zernike space (ϕ is a vector of Zernike coe�cients),
we use an orthogonalized Zernike-to-zonal projector CZernToZon (to account for pixel-
lisation and central obstruction). From the OOMAOmatrixDO = [Dx1, Dx2, ..., Dx312, Dy1, ..., Dy312]

T,
the D matrix used in the LQG implemented in DARC RTC has therefore the fol-
lowing expression:

D = Nyq × [Dx1,−Dy1, ..., Dx312,−Dy312]
TCZernToZon. (5.11)

5.4.3 Construction of M synth
int

The method to compute a pseudo-synthetic interaction matrix is fully based on (Her-
itier et al., 2018; Heritier-Salama, 2019). We generate numerically the interaction
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Figure 5.19: 2D representation (WFS slopes space) of the interaction matrix
for the actuator number 99: OOMAO (top) and GTCAO (bottom), showing
separately horizontal slopes (left) and vertical slopes (right). We notice that
the sign of the vertical slopes is inverted between OOMAO and GTCAO.

matrix, identifying the key-parameters of the model from experimental inputs. The
principle is to solve:

argmin
X

||M synth
int (X)−M exp

int ||2 , (5.12)

where the vector X contains the necessary parameters to geometrically transform
the DM actuators grid into the WFS subaperture grid. In the case where the DM
and the WFS are in Fried geometry (all actuators at the corners of the microlenses),
this geometrical transformation is the identity. In OOMAO, it is possible to de�ne
a DM through the map of the actuators with their respective complex coordinates
zsynth = xsynth + jysynth. The default OOMAO case is the Fried geometry, and
the coordinates of the actuators are integers, corresponding to the WFS subaperture
edges. The origin is the center of the pupil (the down-right corner of the subaperture
located in the 10th column and the 10th line). In our case, the parameters X are
de�ned as follow:

� The term X(1) is the horizontal shift, X(2) is the horizontal homothety
(magni�cation) and X(3) is the horizontal quadratic displacement: xsynth =

xfried +X(1) +X(2)xfried +X(3)(xfried)2

� The three next terms X(4), X(5) and X(6) are the vertical ones: ysynth =

yfried +X(4) +X(5)yfried +X(6)(yfried)2

� The rotation of angle θDM = X(7) is made once the grid has been distorted
by the 6 �rst terms X: zsynth = exp (jX(7))

(
xsynth + jysynth

)

� The in�uence function is also a synthetic one, a 2-D symmetric Gaussian calcu-
lated by OOMAO. This was tested in simulation in (Heritier-Salama, 2019) and
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showing as good results as using an experimental in�uence function. The only
parameter that remains to be de�ned is then the coupling factor CDM = X(8),
supposed identical for all the actuators

� The last parameter is a rescaling factor X(9). Without �guring out the reason
why, it appeared to be quite di�erent from the expected Nyquist factor Nyq =

0.26 (around X(9) = 0.45).

With those parameters, we can de�ne the OOMAO interaction matrix M synth
int =

X(9) × (DN)(X), and the Matlab function lsqnonlin is used to optimize equa-
tion (5.12) with respect to the nine components of X. We go until quadratic order
for the shifts as indicated in a technical IAC document (Femenía, Icíar Montilla, and
Núñez, 2017). The resulting pseudo-synthetic interaction matrix is very close to the
measured one, as seen for example in �gure 5.20 for the actuator number 70.
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Figure 5.20: 2D representation of the GTCAO measurements for the poke of
actuator number 70. Top: horizontal slopes. Bottom: vertical slopes. Left:
experimental interaction matrix. Right: pseudo-synthetic interaction matrix.
The square root is displayed so as to see the pixels erased by the threshold
applied to the experimental interaction matrix.

5.4.4 DM actuators positions and in�uence functions

Together with the pseudo-synthetic interaction matrix, we obtain the distribution
map of the actuators in the WFS plan, as shown in �gure 5.21. The coupling factor
estimated is CDM = 18%. It is higher than the DM calibration one (CDM = 14%),
perhaps because of the GTCAO optical mount between the DM and the WFS (while
the DM calibration with a Zygo was performed before its installation in GTCAO
optical path). Because of a lack of time, we could not properly try to adjust each
respective actuator sensitivity (we have one unique coe�cient X(9) for the whole
DM). Anyway, the OOMAO simulations seemed to show a very low dependency of
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Figure 5.21: 2D representation of the GTCAO DM actuators positions (black
circles) relatively to the microlenses grid (red).

the performance (less than one Strehl point) to an error on the actuators sensitivity.
We have tried higher variations than those given in the technical IAC report and
shown in �gure 5.22 (Núñez and Martin, 2018).
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Figure 5.22: 2D representation of the GTCAO DM actuators sensitivity rel-
atively to the average value. The actuators at the very edges are about 6%
more sensitive than others.
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5.4.5 Phase-to-commands projector

Let us suppose that we dispose of a prediction of the state vector X̂k+1|k. We must
project it onto the DM space. As said in section 3.3.4 (equation (3.21)), the LQG
control commands are computed as:

uk = PuCϕX̂k+1|k , (5.13)

where the phase-to-commands projector Pu can be either PN
u = N † or PMcom

u =

McomD. The behaviour was studied with OOMAO simulations with a set of param-
eters mimicking the GTCAO bench phase screen PS2 with a wind speed of 10m s−1.
In simulation, we can use the exact DM in�uence functions matrix N .

In the case of Fried geometry (between the DM and the WFS) the performance is
the same for both projectors, around 51% of SR. Otherwise, when the actuator map
is warped as for GTCAO (�gure 5.21), simulation results change, with a drop of 5
points of SR for PN

u and of 9 points of SR for PMcom
u . This matches the fact that the

phase �eld description is limited (correction phase of the DM not well measured).
This is logically worse for PMcom

u due to the lower sensitivity of the WFS to the
actuators that are away from the Fried geometry (example in �gure 5.20).

However, the gap between the two projectors was not so high on the bench,
limited to around 1 point of SR which is probably originated from the dead actuator
management. Nevertheless, as explained below, PN

u is useful to manage the dead
actuators. We did not have time to pinpoint the reason of this limited improvement.

Dead actuators management

The actuator number idead = 330 is out of order. The membrane of the DM at this
actuator location can however still be reshaped by moving the neighbours thanks
to the coupling. It means that the actuator is not frozen. It is simply probably
not a mechanic but electronic problem, such that no voltage can be applied to that
actuator. Its in�uence function is thus set to zero in the in�uence matrix N . In this
way, the neighbours keep the same in�uence functions as if no actuator was dead.
This was checked by sending some pistons to the DM and noticing that the resulting
slopes measurements are matching with the such-de�ned pseudo-synthetic matrix as
shown in �gure 5.23.

Two methods to limit the impact of idead on the performance have been tested:

1. The �rst method is using the piston mode of the DM. The piston mode is nor-
mally invisible to the Shack-Hartmann WFS. But when one unique actuator
is broken, a piston command sent to the DM will provoke a global up/down
motion of the DM membrane, excepted for the area related to the dead actu-
ator. In this way, the wavefront will undergo a deformation corresponding to
a simple down/up motion of exclusively that 330th actuator. This is clear in
�gure 5.23. It is simpler to take advantage of this if the coupling of the DM
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is very low, so that the piston performed by the neighbours is not moving the
idead actuator too much.

The drawback of this piston method is that it may limit the dynamics of the
DM. Since all actuators are moving all together, there is the risk of reaching
the saturation threshold. This did not happen on the bench but was nearly to
with the challenging atmosphere phase screen PS2.
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Figure 5.23: 2D comparison between the expected measurement of a piston.
Top: horizontal slopes. Bottom: vertical slopes. Left to right: M exp

int × upiston,
M synth

int ×upiston, on-bench piston measurement, andM synth
int (:, 330) (330th actua-

tor's pseudo-synthetic e�ects). White measurements correspond to the absence
of measurement (subapertures that are invalid because not enough �ux or lo-
cated outside the telescope pupil).

A simple way to allow the use of the piston is to compute Pu with a pseudo-
synthetic model which includes the dead actuator (not put to zero). Then, the
command expected from the dead actuator command is taken o� from each
Zernike mode number z by subtracting a full piston:

P z
u ← P z

u − P z
u (i

dead) . (5.14)

The tip and spheric modes example is shown in �gure 5.24. The same process
is possible with PN

u and PMcom
u usingM synth

int . For the PMcom
u case, if no pseudo-

synthetic interaction matrix is available, another way is to keep the piston-like
mode among the SVD commands modes of M exp

int to compute Mcom. Such a
mode is shown in �gure 5.25. Allowing the piston has improved the SR of
some 1.5 point for challenging atmosphere case and around 0.5-1 point for the
favorable atmosphere case.
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Figure 5.24: 2D display of the projectors using the piston mode (tip on the
left, spherical on the right). Subleft: PN

u . Subright: PMcom
u . They are very

similar, but the N -based projector manages better the conversion. The angle
of spin of the DM (3°) is visible on the tip mode.
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Figure 5.25: 2D display of the GTCAO DM piston mode obtained from M exp
int

SVD (mode number 369 out of 373). The 4 or 5 strong outlier commands
on the edge of the DM should be truncated to the average turquoise value to
avoid useless strong edge commands.
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2. A second and preferable method to manage the dead actuator is to use its
neighbourhood. This is actually automatically done when performing the
pseudo inverse of Mint or N when the dead actuator in�uence function is
simply set to zero. The �rst advantage compared with the di�erential piston
method above is that the actuators stroke is way decreased, with only a very
few saturation issues at the neighbourhood (in some simulations, but never
on the bench). The second big advantage is that it is applicable even if more
than one actuator is dead. The inconvenient is that it is slightly less precise
than the piston since exciting all the neighbourhood around the dead actuator.
Some examples of projector modes are given in �gure 5.26.

On bench tests, this PN
u projector improves the SR compared with a �ltered

McomD (�ltered piston mode). It gives 1 point SR more (instead of 1.5 point
with the piston method 1.) for the challenging atmosphere case and 0.5 point
for the favorable atmosphere case. With PMcom

u , �ltering or not the high order
SVD modes that excite the actuators in the neighbourhood of the dead one
does not allow a proper management of idead.
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Figure 5.26: 2D display of the projector PN
u using the dead actuator neigh-

bourhood. Left: tip mode. Right: spherical mode.

5.4.6 Conclusion on the use of a pseudo-synthetic interaction matrix

When using the formula M exp
int × u, it is important to apply a noise threshold to the

measured interaction matrix, and the result is in our case closer to the corresponding
OL slopes obtained on the bench using the same commands. It is quite simple to
build from M exp

int a pseudo-synthetic interaction matrix. The latter appears to better
reconstruct the pseudo-open loop slopes. It also gives access to a DM in�uence
functions matrix N that accounts for the bench geometry and that is used for the
phase-to-commands projector PN

u . The latter appeared in OOMAO simulations to
be 10% better than PMcom

u due to the limited visibility of some actuators in the
middle of some subapertures (SRN ≈ 1.1SRMcom with SRMcom ≃ 40%).

On bench tests, both yet appeared (without explanation) to be of practically
the same quality: only one SR point better for PN

u , just due to a better account of
the dead actuator. Using the piston mode of the DM to replace the dead actuator
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(inside PMcom
u or PN

u ) is more advantageous. However, if several actuators came
to die, the piston method would probably not bring any improvement while the
neighbourhood method would stay satisfactory. Another advantage of the pseudo-
synthetic interaction matrix is that it adapts easily to any change on the bench, as
noted in (Heritier-Salama, 2019; Kolb et al., 2012). We therefore retained PN

u for
our bench tests.

5.5 Fractional loop delay estimation

We presented in chapter 4 an in-depth study of how the loop delay intervenes in the
high-performance predictive controller de�nition, how it a�ects the stability mar-
gins and vibration mitigation. In this section, we will describe various methods to
estimate the loop delay in our AO system.

5.5.1 Problem description

We will describe three methods to carry out o�-line estimations of the loop delay ∆

starting from the end of the WFS CCD integration to the end of the related DM
reshaping. This delay includes the camera read-out, the slopes computation (from
the received WFS image), the corresponding commands computation and the DM
settling time. The total loop delay, de�ned in chapter 4 as d + δ frames, is thus
expressed here under the form 1 + ∆ frames, where ∆ can be bigger than 1 frame
contrarily to δ. This way, the 1-frame exposure time of the WFS camera will not be
part of the estimation.

We will describe three methods to compute the delay ∆: the DM step response,
the Fourier transform with interspectrum, and the least-squares (LS) resolution. This
last method appears to be the most versatile as shown in simulation and easier to
implement than the Fourier one. This delay will be for sure function of the state
vector size.

5.5.2 Measurement model

The three methods compare the data recorded on the bench without disturbance
with the WFS model. In this section, the WFS measurement is denoted by ywfs,
the measurement noise w as usual, and the command-based reconstructed slopes by
ydm, with ydmk = Mintuk. With the ceiling and �oor rounding of ∆ denoted by ⌈∆⌉
and ⌊∆⌋ respectively, we have:

ywfsk (∆) = Mint

(
(∆− ⌊∆⌋)uk−⌈∆⌉ + (⌈∆⌉ −∆)uk−⌊∆⌋

)
+ wk (5.15)

= (∆− ⌊∆⌋)ydmk−⌈∆⌉ + (⌈∆⌉ −∆)ydmk−⌊∆⌋ + wk . (5.16)

In many typical cases on AO systems, GTCAO included when operating below Fs ∼
600Hz, the delay∆ is below one frame so that ⌊∆⌋ = 0 and ⌈∆⌉ = 1. Equation (5.15)
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then becomes:

ywfsk (∆) = Mint (∆uk−1 + (1−∆)uk) + wk. (5.17)

In these equations, we have supposed that the settling time is small enough (inferior
to 1 frame) to involve in equation (5.15) only two successive commands frames in the
model ywfs(∆). This was checked on the bench as shown in GTCAO DM description,
�gure 5.11.

5.5.3 Estimation methods for the delay ∆

5.5.3.1 Step response

Principle

The step response method consists in sending to the DM a tip command in open-
loop and catch the moment when it starts to take its �nal shape by plotting the
WFS slopes average (ex. in �gure 5.27). The last point before the �nal plateau,
point number k of value noted ϵ, is the frame within which the DM reached its �nal
shape (at frame k + 1 the shape has already been established). The value of ϵ can
be seen as the percentage of the unitary step that has been integrated. The delay
is then simply computed as (k − ϵ) frame. At high FPS, we can roughly distinguish
the calculation time and the DM settling time. The drawback is how irrelevant a
step command is compared with what the DM does when operating in real time to
compensate turbulence.

Application

The used data sequences are similar to that of �gure 5.27. For instance, looking at
yellow curve in the Fs = 500Hz case, we obtain a delay ∆ = (k− ϵ)Ts = (2−0.83)×
2 = 2.34ms. Another example, looking at purple curve in the Fs = 1000Hz case, we
obtain a delay ∆ = (k − ϵ)Ts = (3 − 0.4) × 1 = 2.6ms. All results are gathered in
the �gure 5.28.

5.5.3.2 Fourier

Principle

Fourier method uses the standard properties of Fourier transform of two signals of
same frequency f , one being shifted by ∆. In our case, the delay equation (5.15)
becomes:

∀f,F
(
ywfs(∆)

)
(f) = exp(2iπ∆f)F

(
ydm

)
(f) + F (w) (f). (5.18)
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Figure 5.27: (bench) Plots of the step measurements used to compute the delay.
Left to right: 200, 500 and 1000 FPS. For each graph, the �rst point (frame
number 0 at arbitrary time position t0 = 0ms) corresponds to the integration
frame that ends at t0. Even if it is in open loop, the command is still calculated
by the RTC so that the calculation time is accounted for: the next command
vector is applied only after the command calculation is �nished. Each plot is
the average of ten step responses, and the error bars correspond to ±σ.
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Figure 5.28: (bench) Plots of the loop delays estimated with the step method
for di�erent phase vector sizes at di�erent FPS.
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After multiplying left and right by the conjugate F (ydm), we get the interspectrum
I written as:

∀f, I(f) = F
(
ywfs

)
F (ydm)(f) (5.19)

= exp (2iπ∆f) |F
(
ydm

)
(f)|2 + F (w)F (ydm)(f) . (5.20)

If the noise w is negligible compared with ydm at frequency f , the argument of I
will be a straight line of slope 2π∆. Only remains to catch the desired variable ∆:

∆ =
slope (arg(I))

2π
=

kI
2π

. (5.21)

This method had been proposed by Jose Marco de la Rosa at the IAC in the case
where the commands sent to the DM are an oscillating tip of single frequency fvib
and amplitude A. The expected average of horizontal slopes is then:

ydm
tip

= A cos(2πfvibt+ ϕ1) ,

while the average of measured horizontal slopes is

ywfs
tip

= A cos(2πfvibt+ ϕ2) = A cos (2πfvib(t−∆) + ϕ1) .

We notice simply that ∆ϕ = 2πfvib∆, which is a particular case of equation (5.21)
for the case of single-frequency signal:

∆ =
∆ϕ

2πfvib
. (5.22)

Jose Marco made it then possible to be entirely implemented with one GTCAO GUI
button (commands sequence fabrication, application to the DM, recording of the
slopes ywfs, computation of ∆).

For broader-frequency-covering signals, the slope kI has to be estimated by linear
interpolation of arg(I).

With many tests in simulation and on bench data, we have shown that for the case
where u is a sequence of turbulence-like commands (not only one single vibration),
the interpolation of arg(I) is way better by weighting the cost-function V with the
square norm |I(f)|2:

V (k) =

fmax∑

f=fmin

|I(f)|2 × (kf − arg(I(f)))2 . (5.23)

This weight allows to account for the relative reliability of the arg(I) curve points.
Then:

kI = argmin
k

V (k) . (5.24)

The frequency interval [fmin, fmax] (and there could be more if desired) on which the
slope is estimated is self-chosen. This is useful for on-sky delay estimation, when
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the spectral analysis is to be performed on frequency ranges where the turbulence
disturbance is not too strong. It works in simulations when the command signal
is at least twice stronger than the parasite turbulence one. This optimization of
equation (5.24) is done for both the horizontal slopes average (1D tip time-series)
and vertical slopes average (1D tilt time-series) giving out their respective slopes
estimations. It also appeared to be possible on other Zernike modes (tested for
modes 1 to 5) doing a phase reconstruction, if the SNR is high enough. The �nal
slope kI used to apply equation (5.21) is then:

kI =
kItip/V (kItip) + kItilt/V (kItilt)

1/V (kItip) + 1/V (kItilt)
. (5.25)

Application

The interspectrum process is illustrated in �gure 5.29. Estimation results are in
�gure 5.32, together with those of the least-squares method described hereafter.

5.5.3.3 Least-squares

Principle

We propose to perform a least-squares (LS) estimation of ∆ by writing the delay
equation (5.15) for niter frames, leading to a linear parametric equation (Walter and
Pronzato, 1997) that is solved for ∆. With the hypothesis that ∆ < 1, this writes:

ywfs2 −Mintu2 = Mint (u1 − u2)×∆+ w2

ywfs3 −Mintu3 = Mint (u2 − u3)×∆+ w3

... (5.26)

ywfsniter
−Mintuniter = Mint (uniter−1 − uniter)×∆+ wniter

with wk the measurement noise vector. This can be concatenated into a unique
vectorial equation

Y = R×∆+W, (5.27)

where Y and the regressor R are composed of only known terms. This can be
straightforwardly solved with the LS method:

∆̂ = R†Y . (5.28)

Using the noise statistics Σw to weight the estimation of ∆ (more noisy subapertures
measurements have a smaller weight in ∆ estimation) did not modify the results.
This method also works with on-sky open-loop data, that is to say with a parasite
turbulence-induced signal Dϕ added to the self-introduced one ydm. It is just nec-
essary to either extend the batch size niter or increase the strength of the injected
signal Mintu.
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Figure 5.29: Examples of interspectra phases (arg(I), left) and energy (|I|,
right). Top: using turbulence-like commands. Bottom: using tip steps com-
mands. The point at 12.5Hz shows the relevance of the energy ponderation
we suggested in equation (5.24). It is even clearer with tip steps interspectrum
(bottom) with many purely noisy frequencies.
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If the result happens to be negative, the �rst responsible is the hypothesis of
∆ < 1. It was con�rmed by simulation. This means that the delay may actually
be between ∆ = 1 and 2 frames, so equation (5.26) must simply use ywfsk+1 instead of
ywfsk for k = 2, ..., niter .

The LS theory gives access to an estimation σ∆ of the estimation error standard
deviation. Denoting by e ≜ Y − R∆̂ the estimation residues, and by σe its scalar
standard deviation, then:

σ∆ = σe

(
1

RTR

)1/2

. (5.29)

Application

We can show in �gure 5.30 the validity of equation (5.29). The delay estimations are
performed on the bench putting the RTC either on integrator mode (red curve) or in
LQG mode (blue curve). We see that the experimental results of ∆ estimations have
an RMS matching rather well with the theoretical formula of equation (5.29). It can
thus be used as an indicator of whether the data sample used for delay estimation
will allow a su�cient precision. In �gure 5.32, it can be seen that the LS method
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Figure 5.30: (bench) Delay ∆ estimations with LS method for di�erent sample
sizes niter. Each point shows the average and ± the STD of 8 di�erent samples.
The squares show the expected STD. The commands data sent to the DM were
a Keck batch.

tends to give more reliable results in the case of turbulence-like injected commands.
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5.5.3.4 Simulation tests

The methods based on FFT and LS are tested by generating more or less noisy mea-
surements ywfs using some past bench commands batches u and applying equation
(5.15) with self-chosen value of ∆ = 2ms. Results are given in �gure 5.31. It shows
that both methods are perfectly working in case of a vibration command, with a
better repeatability in the LS results. However, in the case of turbulence-like AO
commands, the Fourier method is getting limited in terms of precision. This simula-
tion allows to conclude that the Fourier method should only be used with sine wave
commands to get enough precision of the linear interpolation of arg(I).
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Figure 5.31: Simulated slopes data. Plots of the obtained delays for di�erent
noise values and di�erent sample sizes. The used commands are turbulence-like
on the left, 12-Hz vibration on the right. Internal source without turbulence.

5.5.3.5 Bench results and conclusion

We notice on the results of �gure 5.32, that both FFT and LS delay estimation
methods are quite consistent, the time-delay increasing with the size of LQG phase
vector. The case of turbulence-like commands (left) at 100Hz (blue curves) con�rms
the limits of the FFT method as predicted in simulations before. The use of vibra-
tion commands (right) allows to avoid being subject to this issue, with moreover a
simpler interspectrum process (needs only equation (5.22), without the need of linear
interpolation). On GTCAO, the delay estimations were consistent between the two
methods whatever the commands sent were some sky-like or some vibrations. No
distinguishable dependence on the Zernike modes appeared, as expected from the
negligible time response of the DM (tests done for tip, tilt, focus and astigmatism).

We have also tested cases in presence of a disturbance signal Dϕ. Such cases
estimation results are not displayed on the graphs, but a time-series example is
given in �gure 5.33. It appeared that the LS method is more robust (as expected
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5.5. Fractional loop delay estimation

from the simulation tests of sensitivity to the measurement noise), with a variation
in the estimation lower than 0.1ms.
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Figure 5.32: Plots of the estimated delays for various LQG phase vector sizes
and FPS. The commands are turbulence-like on the left and a pure tip vibration
fvib = 20Hz on the right (niter = 4000). Internal source without turbulence.
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Figure 5.33: (bench) Example of expected signal ydm (yellow) and actually
measured disturbed signal (blue). The LS method still extracts the delay
existing between both, the FFT method does not.

In any case, a good way to check the validity of the estimations is to make it
for various growing size samples as shown in �gure 5.30 and see whether it indeed
converges with similar STD as expected with equation (5.29). In terms of implemen-
tation complexity, the LS is very simple (no transition towards frequency space is
needed).

As for the step response method with results in �gures 5.28 and 5.34, the delay is
about 0.5ms bigger. This discrepancy is signi�cant enough to discard this method.
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Figure 5.34: (bench) Plots of the delay estimations obtained for various phase
vector size and FPS. The commands are tip steps. Internal source without
turbulence.

5.6 Measurement noise covariance matrix

5.6.1 Telemetry-based construction method

As explained in section 3.3.4, the computation of the Kalman gain L∞ calls for the
de�nition of the measurement noise covariance matrix Σw. We conduct a telemetry-
based procedure, based on WFS measurements and �ux per subaperture, that de-
livers a Kalman gain leading to both a stable and e�cient closed-loop controller,
notably well adapted to the case of segmented primary mirror with unilluminated
subapertures. It is described in the article of the SPIE conference at Montréal in
July 2022 (Marquis et al., 2022), included hereafter. This matrix Σw can also be
used for the MAP phase reconstruction.
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Lucas Marquisa, Caroline Kulcsára, Ićıar Montillab, Henri-François Raynauda, José Marco de
la Rosab, Óscar Tub́ıo Araújob, Alastair Basdenc, and Marcos Reyes Garćıa-Talaverab
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ABSTRACT

The Gran Telescopio Canarias (GTC) will be soon equipped with an Adaptive Optics (AO) system. The GTCAO
system1,2 is currently at the Instituto de Astrofisica de Canarias (IAC), where tests and performance assessment
are ongoing. The Institut d’Optique Graduate School-Laboratoire Charles Fabry (IOGS-LCF), through a col-
laboration with IAC, is exploring high performance control solutions. In this proceeding, we present first bench
results for such a controller, namely a Linear Quadratic Gaussian regulator (LQG). First, we briefly describe
the GTCAO bench and the principle of the LQG regulator. Second, an aspect of this development is outlined,
namely the wavefront sensor measurement noise variance characterization. It is conveniently based on the use of
telemetry data (wavefront sensor closed-loop slopes power spectral densities and subapertures flux) allowing for
an easy-to-update and best-tuned controller. Finally, on-bench performance results are presented with an LQG
regulator in the line of the previous on-sky experiments with full LQG regulator,3,4 implemented in DARC,5

the GTCAO RTC. Comparison is performed with the integrator as baseline controller, through evaluation of
the Strehl ratio from point spread functions acquired on the scientific camera, rejection transfer functions and
stability margins.

Keywords: Adaptive Optics, discrete-time LQG control, asymptotic Kalman filter, measurement noise covari-
ance, vibration filtering

1. INTRODUCTION

1.1 GTC telescope

The Gran Telescopio Canarias telescope is until now the biggest telescope in visible{infrared wavelength range.
Located in La Palma (Canaries Islands, Spain), it has a segmented primary mirror (37 segments) of equivalent
diameter 10.4m. It will be equipped next year with an adaptive optics system: the GTCAO.

1.2 GTCAO

The GTCAO is a Single Conjugated AO (SCAO) system, currently in laboratory at the Instituto de Astrofisica
de Canarias (IAC), where tests and performance assessment are ongoing. It is composed of those three main
components:

1. Deformable mirror (DM): Cilas piezo-electric, size 21 ˆ 21 with 373 used actuators

2. Wavefront sensor (WFS): Shack-Hartmann with OCAM2 camera (EMCCD), size 20 ˆ 20 with 312 used
subapertures

3. Real-time controller: Durham AO Real-Time Controller5 (DARC), which embeds an LQG controller

The typical loop sampling frequencies extend from 50Hz to 1000Hz, corresponding respectively to NGS magni-
tudes of around 14 and 10 (or less).

Further author information: lucas.marquis@institutoptique.fr



1.3 GTCAO controller

The controller baseline for GTCAO is the integrator, with a tip/tilt loop separated from the higher orders loop.
The core of our work is the design of a high-performance controller based on data-driven models: the LQG
controller.

1.3.1 Integrator

When closing the loop with a sampling time of Ts, the calculation of an integrator command uINT at time kTs

using the residual wavefront slopes measurement yk is given by

uINT
k “ uINT

k´1 ´
`

gMcomyk ` gTTMTT
comyk

˘

(1)

where Mcom is the DM command matrix and MTT
com the tip/tilt modes command matrix. The loop gains g and

gTT are optimized on the bench according to the disturbance (phase screen, vibration) and measurement noise
(variance σ2

w, depending on the NGS magnitude MNGS and the sampling frequency Fs).

1.3.2 Linear Quadratic Gaussian controller

For the sake of simplicity, we suppose here that GTCAO has a total loop delay of exactly two frames (one for
the WFS exposure time, one for WFS camera read-out, slopes and command computation and DM reshaping).

Principle Our goal is to compute the command uk´1 that minimizes the residual phase variance Jpuq “

varpϕres
k q “ varpϕk ´ϕcor

k q. The correction phase ϕcor
k is related to the command vector u through ϕcor

k “ Nuk´1,
N being the DM influence matrix.

To design an LQG controller, we need a state space representation of the AO system (including wavefront
perturbations), obtained for example in the form

$

&

%

Xk`1 “ AXk ` Γvk
ϕk “ CϕXk

yOL
k “ CXk ` wk

(2)

where Xk is the state vector at time k, A is the state matrix containing the dynamics of the perturbation model.
The disturbance ϕk is expressed on a Zernike base and is obtained as an output thanks to the matrix operator
Cϕ. The process noise v is zero-mean, white and Gaussian with covariance matrix Σv insuring that ϕ has the
desired Von Kármán statistics. The matrix Γ simply ensures consistency with the dimensions of the state vector
Xk. The open-loop WFS measurement Y OL is affected by a zero-mean white Gaussian measurement noise w
with covariance matrix Σw, and C is the observation matrix that encodes the WFS operations.

The optimal control which minimizes Jpuq is an LQG regulator. The control takes the form

uk “ N :ϕ̂k`1|k (3)

where ϕ̂k`1|k “ Epϕk`1|Ikq “ CϕX̂k`1|k is the output of the asymptotic Kalman filter built from (2), Ik “

tyk, yk´1, ..., uk´1, uk´2, ...u representing all available information at time k.

Kalman filter calculation The real-time part of the asymptotic Kalman filter corresponds to the equation

pXk`1|k “ A pXk|k´1 ` L8

`

yk ´ pyk|k´1

˘

(4)

where pyk|k´1 “ C pXk|k´1´Mintuk´2 is the prediction of the closed-loop residual slopes, andMint is the interaction
matrix.

The prediction Kalman gain L8 is computed off-line:

L8 “ AΣ8CT
`

CΣ8CT ` αffΣw

˘´1
(5)



with Σ8 the asymptotic estimation error covariance matrix and αff is a fudge factor that allows to tune the
global signal-to-noise ratio. The matrix Σ8 is then obtained as the solution of the following discrete algebraic
Riccati equation, computed off-line:

Σ8 “ AΣ8AT ` ΓΣvΓ
T ´ AΣ8CT

`

CΣ8CT ` αffΣw

˘´1
CΣ8AT. (6)

The state matrix A and state noise covariance matrix ΓΣvΓ
T embed the disturbance model. The matrix Σw

embeds the WFS measurement noise model. We need to model the disturbance and the measurement noise
faced by the AO system as efficiently as possible in terms of control performance. We focus in this paper on the
computation of Σw, and we explain in next section how we compute it using telemetry data.

2. AO SYSTEM MODELLING FOR LQG CONTROLLER: THE MEASUREMENT
NOISE COVARIANCE MATRIX

The computation of the Kalman gain through (5) and (6) calls for the definition of the measurement noise
covariance matrix Σw “ E

`

wkw
T
k

˘

. As the measurement noise is supposed here to be spatially white, Σw is a
diagonal matrix in the form Σw “ diagrσ2

wpiqsi“1,...,ns
where ns is the number of slopes (ns “ 624 slopes).

In the case of GTCAO, the telescope pupil is not circular and moreover rotates with time, see figure 1.

Figure 1. The non circular pupil of GTC (left) rotates with time, inducing a strongly variable flux on the WFS camera
for the edges subapertures (right).

The purpose of this Section is to propose a method that computes Σw automatically while accounting for the
flux per subaperture for a given batch of pseudo-open-loop slopes measurements. This method has been used
successfully for LQG bench tests.

1. First, we need the median of the measurement noise variances of the well illuminated subapertures (that is
to say subapertures with a flux level above the threshold stipulated to DARC). These are easy to pinpoint
since they are delivering a non-zero measurement at every frame, so that the validity ratio is equal to 1
(never beneath the threshold). We need to have an idea of the minimal length the considered batch should
have (niter) and of the bandwidth of high frequencies taken into account (nfreq) so as to obtain a good
estimation of the noise variance from the Power Spectral Density (PSD).

Figure 2 shows the ratios r of validation of the WFS illumination criterion according to the subaperture
(left), and an example of the PSD of a y-slope for a batch size of 12000 open-loop samples recorded at 1000
Hertz (right).

Figure 3 shows on the left the medians calculated when increasing the batch size used to compute the
Power Spectral Density (PSD) and on the right when increasing the number of frequency PSD samples
used for the variance calculation. In our case, either at Fs “ 100 FPS or 1000 FPS, niter “ 2000 frames
and nfreq “ 200 points are satisfying values as it can be seen in figure 3.

2. Secondly, we attribute a variance to the partially illuminated slopes from the estimations mentioned above.
They correspond to the subapertures in which the availability ratio r (figure 2, left) is between 0 and 1
excluded. Knowing that the measurement noise variance is proportional to the light flux, we decided on
the following rule:

@i P v1, 624w, rpiq Ps0, 1r ùñ σ2
wpiq “

1

rpiq
median

`

tσ2
wpjq|rpjq “ 1u

˘

. (7)
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Figure 2. Left: typical ratios r of validation of the WFS illumination criteria according to the subaperture. Right: example
of PSD of a y-slope (here, slope number 610/624 for a 1000-Hertz 12000-frame long OL sample), the black dashed line
showing the estimated noise in px2

{Hz as the median of the last 200 points (high frequencies 400 Hz to 500 Hz here,
nfreq “ 1200 frequency samples): σ2

wp610q “ 1.2 ˆ 10´5
ˆ Fs{2 “ 6.0 ˆ 10´3 px2.

500 1000 1500 2000
0

0.005

0.01

0.015

0.02

0.025

0 100 200 300 400 500 600 700 800 900
0

0.005

0.01

0.015

0.02

0.025

High flux - 200FPS - no vibration (1)
High flux - 200FPS - no vibration (2)
High flux - 200FPS - vibration
Low flux - 100FPS - vibration
Low flux - 100FPS - no vibration
High flux - 1000FPS - no vibration (1)
High flux - 1000FPS - no vibration (2)
High flux - 1000FPS - vibration

Figure 3. Slopes measurement noise variance estimations (median of the fully-illuminated slopes among the 624 obtained
the same way as in figure 2). Left: for different sample sizes niter; case with nfreq “ 200. Right: for different numbers
nfreq of high-frequency points; case with niter “ 2000.



3. Then, we attribute a high value σw,lim “ c ˆ median
`

tσ2
wpjq|rpjq ą 0u

˘

to the never-illuminated subaper-
tures. It needs to be extremely high since corresponding to missing measurements, but small enough to
avoid numerical problems when solving the Riccati equation. Different coefficients c are leading to neglige-
able performance gaps when carrying out tests on the bench (those unilluminated subapertures are set to
zero by DARC), allowing to take c roughly between 20 and 1000. It was decided to take c “ 100.

Once the three steps are completed (requiring not even one second of computation on a standard laptop) we
dispose of an appropriate matrix Σw (example in figure 4) that allows for starting the Kalman gain matrix
computation.
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Figure 4. Slopes measurement noise variance estimations, in px2, following the procedure described above (using a batch
of slopes at high flux recorded at 1000 FPS). Left: in 2D pupil plan. Right: on a graph, unilluminated subapertures cut
out, with median drawn as a horizontal blue bar. Both: x-slopes on the subleft and y-slopes on the subright

Notes For some reasons, the y-slopes clearly seem to be more subject to measurement noise than the x-slopes
are (cf figure 4).

Also, it is clear that setting a high variance value for a given slope (like taking c “ 100) roughly amounts to
nullify the corresponding column in the Kalman gain L8 or equivalently to replace the corresponding measure-
ment by its prediction.

3. ON-BENCH RESULTS

We present here some of the results obtained on the GTCAO bench when closing the loop with an integrator or
with an LQG controller.

3.1 Bench parameters

The turbulence (rotating phase screen) corresponds to a single layer of Fried parameter r0 “ 9 cm and wind
speed V0 “ 10m s´1. We have also independently some windshake-induced vibrations: we introduce artificially
with the DM a peak of energy in both tip and tilt PSD, at 12Hz and of RMS 20mas as described by the GTC
mechanics team,2 as illustrated in figure 5 with the OL tip-mode PSD.

3.2 Strehl ratios

We consider in this paper two NGS magnitude cases: first, magnitude 10.2 (with 900FPS sampling rate) and
second, magnitude 11.3 (400FPS). All regulators have been tuned in order to get their best performance in each
case (integrator tip-tilt and DM gains, and LQG fudge factor).

The LQF regulator reaches 37.5 % of Strehl Ratio (SR) for both magnitudes, while the integrator gives a
value of 34.5 % SR for magnitude 10.2 and 32 % SR for magnitude 11.3. It is worth noting that despite the loop
frequency decrease (from 900FPS to 400FPS), the LQG regulator maintains its performance at the same level
thanks to its predictive capacity. Figure 6 presents the profiles associated with the four corresponding Point
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Figure 5. PSD of tip perturbations: turbulence and 12-Hz vibration (20 mas RMS).

Spread Functions (PSFs), showing the increase of the peak intensity provided by the LQG (9 % increase for
magnitude 10.2 and 19 % for magnitude 11.3).

The use of the procedure presented above for the calculation of Σw has allowed an increase of 1.5 to 3.5 points
of SR (depending on the turbulence strength, magnitude and presence of vibration where highest increases have
been obtained) with respect to using a standard calculation where all measurement noise variances are deduced
only from the slopes PSDs plateaus. The LQG thus allows better performances than the integrator while closing

Figure 6. Profiles of the PSFs (in Airy disk peak unit) obtained with integrator and LQG regulator in two cases: magnitude
10.2 (900 FPS sampling rate) and magnitude 11.3 (400 FPS sampling rate). The x-axis is in pixels of the scientific camera.

the loop with lower sampling frequency. It allows thus to possibly decrease the WFS camera gain in order to
increase the camera longevity.

3.3 Behavior

We describe hereafter some behavioral aspects for the case with magnitude 11.3 (400 FPS).

3.3.1 Rejection transfer functions

Figure 7 presents the Rejection Transfer Functions (RTFs) for the LQG regulator (top) and for the integrator
(bottom). The theoretical RTFs are in good agreement with the ones calculated from the bench telemetry data.
This shows that the models and calibrations are well describing the bench behaviour. It is worth noting that the
tilt PSD presented in figure 5 exhibits a peak at 12 Hz that is nicely compensated by the LQG RTF shown in
figure 7.
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Figure 7. Rejection Transfer Functions for the LQG regulator (top) and the integrator (bottom) in the case of bad
atmospheric conditions and windshake-induced vibration for magnitude 11.3. The loop rate is 400 FPS.

3.3.2 Stability and actuator solicitation

The LQG regulator has excellent stability margins, see also.4 For the case of magnitude 11.3 (400 FPS), as
shown in figure 8, the tip phase margin of the LQG is 53˝ and the gain margin is 13.6 dB. This is respectively
around 22˝ and 9 dB above the integrator margins.

In addition to that, the actuators are less solicited when operating with a well-tuned LQG regulator, with on
average ´13 % rms of actuator stroke with respect to the integrator as shown in figure 9. Only the integrator
has some commands above the DM clipping value of 3µm.

Figure 8. Tip correction Nyquist diagram for the LQG regulator (blue) and the integrator (red). The loop rate is 400
FPS.

4. CONCLUSION

In this paper, we have presented a procedure for the calculation of the measurement noise covariance matrix used
in the LQG design. This procedure is fast (less than 1 s on a standard laptop), easy to update during operation
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Figure 9. Example of actuators stroke temporal rms for the LQG regulator (blue) and the integrator (red).

and utilizes closed-loop measurements and a map of average flux per subaperture. It allows an increase of the
Strehl ratio of 1.5 to 3.5 points depending on the observation conditions (turbulence strength, NGS magnitude,
presence of vibration).

On-bench results have been presented in the case of windshake-induced vibrations and strong turbulence
for two different NGS magnitudes (10.2 and 11.3). Rejection transfer functions are also displayed. The LQG
regulator overpasses the integrator both in terms of SR and of stability margins.

More cases with magnitudes until 14 are left for future work, which possibly includes on-sky tests in 2023.
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5.6. Measurement noise covariance matrix

5.6.2 Measurement noise variance values on GTCAO bench

In �gure 5.35, we show the estimations obtained for various bench �ux and phase
screen cases. To convert to an on-sky angle, the RMS must be multiplied by the WFS
pixel size µwfs = 0.35′′. To convert to the wavefront peak-to-peak di�erence of the
edges of the subapertures, this angle RMS must be multiplied by 2πdSA/λwfs. The
typical RMS value for GTCAO is of 10−1 px = 35mas = 1.2 rad for λwfs = 500 nm.

The photon noise formula suggested a power law flux−1 in section 3.2.1.1. Here,
probably because of the undersampling (Roddier, 1999), it is rather σ ∝ flux−1.2

, drawn in black on the �gure 5.35. Whatever the �ux, there is no change in the
slope of the exponential model. It means that even with low �ux, the read-out noise
(∼ flux−2) is still lower than the photon noise thanks to the EMCCD gain of about
G ∼ 500. We see a coe�cient between the two phase screens of about 1.5 ≤ 2,
meaning that as expected the photon noise depends on the seeing, but way less than
the formula-based expectations of

(
rPS10 /rPS20

)2 ∼ 5 because of the undersampling.
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Figure 5.35: Plots of the measurement noise variances (diagonal of each Σw)
with respect to the �ux (median value of the sample, normalized by the respec-
tive WFS CCD gain G ∼ 500 of each case). One color corresponds to one case
of NGS magnitude with its �tted sampling frequency. One dot corresponds to
one of the 624 values of the diagonal of Σw.

5.6.3 Extension: substitution for invalid measurements

As concluded in the second section of the proceeding (Marquis et al., 2022) presented
in this chapter, the unilluminated subapertures measurement noise variances are set
to a strong value. This corresponds to set to zero the corresponding columns of the
Kalman gain. Another way to see this is within the Kalman �lter equation: it is
equivalent to the numerical substitution of those unilluminated subapertures corre-
sponding slopes by their predicted measurement ŷk|k−1 = CyX̂k|k−1−DNuk−2. This
operation is not possible yet with DARC RTC, so it has been tested in simulation
only. But it would be doable in real-time, as DARC sets to zero the low-�ux sub-
aperture measurements that are considered not valid. In simulation, we compare the
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Chapter 5. modeling and calibration for linear predictive control

di�erence between LQG regulators where slopes are simply set to zero versus substi-
tuting the measurements with their Kalman prediction. Some advantages appeared
when using the substitution:

� First advantage, a reinforced stability, noticed with the increase of the allowed
range of fudge factor

� Second advantage, a slight increase of the performance, with a little less than
one SR point without vibration and a little more than one in vibration cases.
On the bench, a test was carried out to mimic this substitution method in the
case where a whole part of the pupil was deprived of measurements (local burst
of turbulence for instance). It was done with phase screen one (r0 = 23 cm)
and a wind speed of V0 = 10m s−1 at 200Hz with GTC windshake disturbance
(section 5.2.2.1). The �ux threshold of the WFS CCD was arti�cially set to a
higher value than the usual one, so as to have more invalid subapertures even
within the hexagonal pupil.

The noise covariance matrix was then similar to that of the left image in
�gure 5.36. In this high-invalidity case, closing the loop with the adjusted Σw

(adjusted in such a way that it would be equivalent to replacing the invalid
measurements by the slopes predicted by the Kalman �lter) was giving 1.5 SR
point more than without adjusting Σw (keeping into account the DARC null
measurements of the invalid subapertures).

The residual tip and astigmatism are shown in �gure 5.37 for the PSDs and
in table 5.1 for the SR performance. In those conditions, the integrator was
of course more severely concerned. The loss of valid subapertures in�icted a
decrease of 12 SR points to the integrator (63% to 51%), while of 8 points for
the LQG (68% to 60%) and 6.5 points with the substitution method. The loss
of only 8 points without stability issue suggests that the LQG would be robust
to this kind of sudden unmodeled events, such as a burst of turbulence.
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Figure 5.36: (bench) 2D representation of the diagonal of the measurement
noise covariance matrix diag(Σw). Left: case of high �ux threshold, there are
some invalid subapertures inside the telescope pupil. Right: case of standard
�ux threshold.

� Third advantage, a back-up solution to the hexagonal M1 pupil rotation prob-
lem. In a simulated situation where the pupil rotation is faster than is the
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5.6. Measurement noise covariance matrix
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Figure 5.37: (bench) PSDs of reconstructed phases. Left: tip mode. Right:
astigmatism mode. Residual phases of the LQG are shown with (blue) or
without (red) substitution. The main improvement is due to the attenuation
of the tip vibration at 12Hz.

Standard validity Reduced validity

Regulator no vibration vibration no vibration vibration

Integrator 69 63 59 51

LQG 71 68 64 + 0.5 60 + 1.5

Table 5.1: (bench) Strehl ratio (%) with and without the decrease of slopes
validity rate. The substitution method related gain of points is indicated with
+pnt.
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LQG regulator matrices update (near the zenith, cf �gure 5.3), the substitu-
tion allows to take a simple circular model for Σw with a loss of only 1 SR
point. A circular model but with usual zeroing of invalid subapertures mea-
surements leads to a loss of 5 SR points and with a more restricted range of
good fudge factors.

5.7 Conclusion

We started this chapter clarifying the e�ect M2 would have during on-sky tests:
correct low-frequency disturbance, but introduce a vibration peak at 12Hz that the
DM will have to counteract.

We have seen how to model each part of an AO system in order to apply high per-
formance control. We have calibrated the interaction matrix. The pseudo-synthetic
interaction matrix allows an accurate POL reconstruction and produces the right
geometry for the in�uence matrix used for the projector Pu (phase-to-commands
projector). It also allows to manage easily the dead actuator. We have proposed a
simple and e�cient delay measurement method based on least-squares estimation.
We have also proposed the calibration of the measurement noise covariance matrix
based on the �ux per subaperture, combined with a speci�c processing of invalid
subapertures in real time (replacement of invalid measurements by their Kalman
prediction). This allows to account easily for a non-circular pupil and its rotation.

All this will be used in chapter 6 for the phase modeling and to obtain the results
presented in chapter 7.
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Chapter 6

Methodology for data-driven disturbance model-

ing

6.1 General presentation of the disturbance models

As already mentioned, the implementation of a high-performance controller as the
LQG requires not only the modeling of the AO system (chapter 5) but also the spatio-
temporal modeling of the disturbances. In this chapter, we will present telemetry-
based methods to achieve this. The optimal modeling developed in chapter 4 could
not be tested through end-to-end simulations due to a lack of time. It is besides not
needed on bench where vibrations are piece-wise constant signals introduced with
the DM.

We are following the modeling methods recently con�rmed with on-sky tests (Sin-
quin et al., 2020), using thus the Zernike representation of the phase. Those methods
consist in two complementary disturbance stochastic dynamical models:

� A �rst model describes for the global turbulence-induced wavefront disturbance
as a list of second order auto-regressive models based on turbulence priors (Sivo
et al., 2014), encapsulated inside matrices A1 and A2 such as:

ϕturk+1 = Atur
1 ϕk +Atur

2 ϕturk−1 + Γturvk . (6.1)

The state space representation will then be:




[
ϕturk+1

ϕturk

]
=

[
Atur

1 Atur
2

I 0

]

︸ ︷︷ ︸
Atur

[
ϕturk

ϕturk−1

]
+

[
Γtur

0

]
vk

ϕturk =
[
I 0

]
︸ ︷︷ ︸

Cϕtur

[
ϕturk

ϕturk−1

] (6.2)

In our GTCAO case, the wavefront ϕturk is expressed in a Zernike basis. It
could be de�ned in another basis. For instance, Léonard Prengère showed in
simulations the e�ciency of using the Yule-Walker equations to de�ne AR2
models in a Karhunen�Loève basis (Prengere, 2021).

The signal {v} is a zero-mean Gaussian process noise with unitary covariance
matrix, so that the corresponding process noise variance is Σtur

v = Γtur(Γtur)T.
We list in section 6.2 the methods used to estimate all the required priors.

� A second model is used for the low order (LO) Zernike modes, the parameters of
which being identi�ed with the N4SID subspace identi�cation method (Over-
schee and Moor, 1994) used on sky in (Sinquin et al., 2020). The method
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Chapter 6. Methodology for data-driven disturbance modeling

has been coded by Baptiste Sinquin with insured stability of the identi�ed
model. Subspace identi�cation methods belong to the set of machine learn-
ing methods. They are also based on a linear state-space model but without
parametric structure (which is sometimes referred to as �model-free�). The
state-space model is in the form:

{
xLOk+1 = ALOxLOk + ΓLOvk
ϕLOk = CLOxLOk

, (6.3)

where xLOk is a state without any obvious physical interpretation and ϕLOk is a
vector containing the Zernike coe�cients of low-order modes. This method is
described in section 6.3. In section 6.3, we show the interest of de�ning the LO
matrices with coupling between Zernike modes (rather than sparse de�nition
with decoupled dynamics). In section 6.4, we highlight some precautions to
take about the loss of validity of the low-order models when the parallactic
angle varies.

These two dynamical models are concatenated by taking the sum ϕ = ϕtur +

ϕLO for the low-order modes and ϕ = ϕtur for all the other ones. The open-loop
measurement yOL is modeled as the noisy measurement of the sum of the delayed
phases of the two disturbance models:








ϕturk+1

ϕturk

xLOk+1

xLOk


 =




Atur
1 Atur

2 0 0
I 0 0 0
0 0 ALO 0
0 0 0 I




︸ ︷︷ ︸
A




ϕturk

ϕturk−1

xLOk
xLOk−1


+




Γtur 0
0 0
0 ΓLO

0 0




︸ ︷︷ ︸
Γ

vk

yOLk =
[
0 D 0 DCLO

]
︸ ︷︷ ︸

Cy




ϕturk

ϕturk−1

xLOk
xLOk−1


+ wk

ϕk =
[
I 0 CLO 0

]
︸ ︷︷ ︸

Cϕ




ϕturk

ϕturk−1

xLOk
xLOk−1




(6.4)

The two covariance matrices of the process noise for the AR2 and the low-order
models, namely Σtur

v and ΣLO
v , are computed by solving separately two Lyapunov

equations, once all the parameters have been de�ned and the low-order model iden-
ti�ed. The global covariance matrix Σv for the model in (6.4) is then obtained as
the block-diagonal formed with Σtur

v and ΣLO
v . We can then follow the Kalman gain

calculation and �lter implementation as described in section 3.3.4.
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6.2. AR2 modeling for control

6.2 AR2 modeling for control

As seen in section 2.4, the spatio-temporal statistics of phase disturbance induced by
the atmospheric turbulence can be described in our case by three main parameters:
the Fried parameter r0, the large scale factor L0 and the wind speed V0. The values
identi�ed during the de�nition of our LQG controller will be denoted respectively by
V LQG
0 , rLQG0 and LLQG

0 . One more parameter to be tuned is the fudge factor αFF.
We present in this section some methods to do so, based on the reconstructed OL
phase trajectories in Zernike base (using equations (3.31) and (3.32)).

6.2.1 Number of modes to describe the phase

As explained in chapter 2, the number of Zernike modes used to represent the phase
depends on the spatial resolution we want to achieve. A simple order of magnitude
for the necessary radial order is twice the linear number of actuators, nrad ≃ 2×nact.
In some CANARY on-sky tests with full LQG (Sivo et al., 2014), a radial order of
nrad = 14 was used. For CANARY, it corresponded to a little less than twice its
linear number of actuators of 8. In (Sinquin et al., 2020) with the new DM of
CANARY, nrad = 2× nact = 30 radial orders were used.

On GTCAO, the radial order nrad was set to 37 (total of 740 Zernike modes).
This was decided noticing that the computation time was signi�cantly increasing
above this value (�gure 5.32), while performance was not signi�cantly improved
even in simulations (less than one SR point until nrad = 2× nact = 42), as shown in
�gure 6.1. We see on that �gure that if the computation time of the models becomes
an issue, it would be conceivable to drop to a radial order of 34 without too much
performance sacri�ce.

6.2.2 Coherence length, outer scale factor and fudge factor

As commonly done in the community (see e.g. (Andrade et al., 2018)), the estimation
of atmosphere characteristic lengths is done from a data set of WFS slopes Y =

(yk)1≤k≤niter by optimizing (with Matlab lsqnonlin function) the cost function:

p̂ = argmin
p

∑

z∈Z

{
log
(〈

ϕ2
z

〉
vK(p)

)
− log

(〈
ϕ2
z

〉
MAP(p)

)}2
, (6.5)

where Z is a list of Zernike modes z which depends on the parameter p to be optimized
(coherence length, outer scale, or fudge factor). The two main terms in equation (6.5)
are:

1.
〈
ϕ2
z

〉
vK(p)

, corresponding to the theoretical variance expectation of mode num-
ber z, based on Von Kármán statistics (depending on parameters p = r0 or
p = L0, cf section section 2.4.2), plotted in blue in the next �gures 6.3, 6.4,
and 6.7.
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Figure 6.1: (GTCAO replay and OOMAO simulation) Optimization of the
radial order to de�ne the Zernike basis of the LQG controller on GTCAO. The
value of nrad = 37 was selected. On-bench tests with phase screen 2 and an
LQG of radial order nrad = 30 showed a decrease of the performance slightly
bigger than one SR point compared with nrad = 37.

2.
〈
ϕ2
z

〉
MAP(p)

= var (RMAPzY ), corresponding to the temporal variance of the
reconstructed phase time-series (mode number z). It is plotted in red in the
next �gures 6.3, 6.4, and 6.7. As mentioned, the reconstructor RMAP is de�ned
from Von Kármán statistics (thus depending on parameters p = r0 or p = L0)
and with a SNR-tuning regularization parameter p = αMAP.

With an iterative process, the three parameters rLQG0 , LLQG
0 and αFF are sequentially

optimized.On OOMAO simulations, with three such iterations (one iteration for
equation (6.5) corresponds to one loop on the three parameters rLQG0 , LLQG

0 and
αFF), we were converging towards a consistent set of values. The same with two
iterations on GTCAO bench data or with Keck on-sky data. Those three variables
govern di�erent parts of the Zernike modes distribution.

Due to the segmented shape of M1, the Zernike modes with high energy concen-
trated on the edge of the circular pupil are particularly inaccurately reconstructed.
They are thus not used for the parameters optimization. They correspond to the �rst
and the two last azimuthal modes of each radial order past the 20th mode, looking
as the ones shown in �gure 6.2. The MAP approach does not succeed to avoid this
problem despite the high noise level attributed to the out-of-M1 subapertures.
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6.2. AR2 modeling for control

Figure 6.2: Example of Zernike modes (number 77 and 78) tricky to reconstruct
from hexagonal-M1 slopes measurements.

Coherence length rLQG0

The value rLQG0 de�nes the global level of energy of all Zernike modes. We take the
set of Zernike modes Z = J35, 135K, since it corresponds to the spatial frequencies
where neither L0 nor αFF intervene. An example is shown in �gure 6.3.
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Figure 6.3: (Keck on-sky data) Example of rLQG0 optimization from Zernike
modes of orders 35 to 135 whose spots are in black.

Outer scale factor LLQG0

The value LLQG
0 determines the relative energy levels of the low order Zernike modes.

This prior is used only by the AR2 models to distribute the modal energy, since the
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subspace identi�cation of the low-order model simply uses the data variances to �t
its energy. We take for the estimation of LLQG

0 Z = J1 , 34K, corresponding to the
spatial frequencies where L0 intervenes. An example is shown in �gure 6.4. On
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Figure 6.4: (Keck on-sky data) Example of LLQG
0 optimization from Zernike

modes of orders 1 to 34 whose spots are in black.

some OOMAO simulations, the performance did not change when taking a value of
10m or 100m, as long as the ratio LLQG

0 /αFF was kept the same. Surprisingly, on
the bench, it did have an unexplained impact. Indeed, when setting the estimated
value of LLQG

0 = 20m in the LQG regulator de�nition, L0 ≃ 20m being the value
for phase screen 1, the performance was 1 SR point lower than with LLQG

0 = 12m

itself again 1 SR point lower than with 6m. Yet, keeping the largest value of LLQG
0

and multiplying the fudge factor by 4 did not yield the same performance as with
LLQG
0 = 6m as it would be the case in the simulations. Moreover, the residual phase

reconstructed from the residual slopes of the bench tests suggest that the best setting
was the one with the estimated LLQG

0 on �gure 6.5, with rejection transfer functions
matching the theoretical ones in �gure 6.6. The identi�ed LO models (section 6.3)
are not the reason of the smallness of that best-tuned value LLQG

0 = 6m. Indeed,
one could think that because they are already quite accurate, the energy allocated
to the AR2 models for low Zernike orders should be diminished. Yet, even when
doing tests without LO identi�ed models (full AR2 Zernike modeling for all Zernike
modes), the same low-L0 preference appeared.

In practice, a good compromise �from experimental intuition� would be to start
from LLQG

0 = 12m. Taking low values such as less than 6m repeatedly caused model
stability issues. This remain to be further investigated.
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Figure 6.5: (bench) PSD of the residual astigmatism with closed-loop LQG
regulator with three di�erent LLQG

0 . The yellow curve (LLQG
0 = 6m) has the

worst reconstructed residual phase, but the best Strehl ratio on the bench.
Black: open-loop phase
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Figure 6.6: (bench) LQG rejection transfer function of the astigmatism mode
for three di�erent LLQG

0 (and thus three di�erent datasets, the same ones as
used in �gure 6.5).
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Fudge factor αFF

As LLQG
0 sets the level of energy of low-order Zernike modes, αFF determines the

energy of the high order Zernike modes. We take for its estimation Z = J200 , 740K,
corresponding to the Zernike modes where the changes of αMAP in RMAP impact
the reconstructed modes variance. (The expression of RMAP is given in (3.32) and
recalled here: RMAP = ΣϕD

T
(
DΣϕD

T + αMAPΣw

)−1
.) This sensitivity is shown

in �gure 6.7. To optimize αMAP, we keep using equation (6.5). Let us point out
that in that equation, we did not take o� any term of noise: we do not write the
reconstructed phase variance with a noise term as

〈
ϕ2
z

〉
MAP(p)

= var(RMAPzY )−RMAPzΣwRMAPz
T , (6.6)

but rather without subtracting the noise term RMAPzΣwRMAP
T
z . Thus, we mimic

the principle of the LQG regulator, in which the measurement noise must be �ltered.
Indeed, when closing the loop, the Kalman gain has to manage the noise contained
in the slopes measurements y. For this reason, we tune αMAP to manage the mea-
surement noise, as it has a big impact on the variance of the high order reconstructed
modes (�gure 6.7).

For some yet unexplained reason, a good fudge factor for the LQG implementa-
tion, in OOMAO simulation as on the bench, happened to be αFF = αMAP × 10. If
it is reaching big values, say, αFF = 100 >> 1, it means that the observing situation
is with a very high NGS �ux (seen on bench and in simulations) and thus a very low-
value covariance noise matrix Σw has been calculated. This rule of αFF = αMAP×10

always led to stable controllers with better performance than the integrator. How-
ever, it sometimes did not give the best performance on the bench, as in some cases
αFF = αMAP × 3 was optimal. A last thing to precise is that on GTCAO, the value
given to αFF is quite �exible: if α∗

FF is the value giving the best performance, less
than one SR point would be lost by de�ning the LQG matrices with a fudge factor
value in the range [α∗

FF/2, α
∗
FF × 2].

6.2.3 Modal speed V LQG
0

The determination of the modal �wind� speed is based on the cut-o� frequency of
the Zernike coe�cients PSD, see (Sivo et al., 2014). It relies on the typical one-
layer Von Kármán shape to which the PSD of radial orders irad should resemble
(section 2.4.2.2):

� a low frequency plateau extending from null-frequency until Fcut, given by

Fcut = 0.3(irad + 1)
V0

Dpup
(6.7)

� a f− 17
3 (or f− 11

3 if the Shack-Hartmann aliasing occurs, see e.g. (E. Gendron
and G. Rousset, 2012)) asymptote from Fcut to Fnoise (frequency where noise
plateau starts)
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Figure 6.7: (Keck on-sky data) Example of αMAP optimization. Black cruxes
correspond to the unused values (Zernike modes with poor reconstruction
within a segmented pupil).

� A high frequency plateau purely composed by the measurement noise

This model is not appropriate for low order modes. These have more complex PSDs
because of additional perturbations such as vibrations or windshake. We will use
the terminology of modal speed rather than wind speed, since V LQG

0 determines the
model wind speed for each mode.

Instead of one unique wind speed identical for all modes as in (Sivo et al., 2014),
we will determine one modal speed for each Zernike radial orders. We will then apply
the same formula to de�ne the AR2 model. For each of the (irad+1) Zernike modes
of radial order irad, the coe�cients a1 and a2 of matrix Atur will be:

a1 = 2exp(−ξωirad
0 Ts) cos(ω

irad
r Ts)

a2 = −exp(−2ξωirad
0 Ts) (6.8)

with ξ = 0.9 and

wirad
r = 2π0.3(irad + 1)V LQG

0

irad
/Dpup

√
1− ξ2 = ωirad

0

√
1− ξ2 , (6.9)

where the modal speeds can reach values higher than V LQG
0 ∼ 100m s−1. Figure 6.8

shows that the LO modes are better corrected with LQG controllers built from higher
modal speeds. Switching from V LQG

0 = 15m s−1 (real bench wind speed) to V LQG
0 =

40m s−1 appeared to improve the SR by about two points. It is thus interesting
to conclude that it is preferable to increase the cut-o� frequency to �lter out the
additional energy induced by the aliasing of the Shack-Hartmann subapertures.
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Figure 6.8: (bench) Examples of PSDs calculated from some GTCAO closed-
loop residual reconstructed phase modes. LQG regulators de�ned with di�er-
ent modal speeds V LQG

0 . Left to right: Zernike modes 1, 5, 25 and 100. Black:
open-loop. The actual wind speed was of V0 = 10m s−1.

We present here a way to extract appropriate modal speeds V LQG
0 from the open-

loop data, in a simple and fast way. Given a batch of (pseudo-)open-loop data Y OL,
the procedure is for each radial order:

1. Reconstruct Zernike open-loop phase ϕOL = RMAPY
OL (nrad + 1 modes of

radial order nrad)

2. Compute their respective PSDs and average them to a single one PSDavrg,
assuming all should be more or less identical for a given radial order (example
in �gure 6.9)

3. Compute the low-frequency plateau value (plateau) of the theoretical PSD
as the average of the �rst 4 points and the high-frequency noise value as the
average of the last 20 points.

4. For Fcut from
Fs/2
niter

to Fs/2, compute model PSDs PSDmodel(Fcut) as a long
plateau until Fcut followed by a f−4-slope line down to the previously calcu-
lated noise level (examples in �gure 6.10). This is a simple way to represent
the AR2 model. As said before with the example of �gure 6.8, a condition to
optimize the performance is to encompass the whole frequency domain. This
is ensured by constraining the f−4-slope line to reach the noise plateau of the
data PSD (for instance, in �gure 6.10 the dashed line is not satisfying).
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Figure 6.9: Examples of PSDs calculated from Keck pseudo-open loop slopes.
Zernike modes of radial order nrad = 4 (left to right, modes 10 to 14). Red:
nrad-th radial order average PSDavrg.
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plateau frequencies: it was thus discarded despite a better �tting (�gure 6.11).
Red: nrad-th radial order average PSDavrg(nrad = 4).
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5. Calculate the average of the logarithm of the error gap ϵ between modeled and
data-based PSDs (example in �gure 6.11):

ϵ(Fcut) = | log(PSDavrg)− log(PSDmodel(Fcut))|2 . (6.10)

Its argmin is the Fcut we are looking for, which gives V LQG
0 (irad) thanks to

equation (6.7).
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Figure 6.11: Example of error function ϵ(Fcut). The dashed line represents the
values where Fcut is too small for the PSD model to reach the noise plateau of
the data PSD. The best frequency is thus here 3Hz.

6. Once all the nrad modal speeds are computed, set all modal speed values
for radial orders greater than 12 to the median value thereof. This is done
knowing that the speed estimations are getting trickier for very high Zernike
orders (noisier data), as in �gure 6.12. It avoids instability problems exposed
below.

7. A last thing to check is whether the respective modal estimations are de-
creasing with the radial order. It appeared that sometimes, when some esti-
mations V LQG

0 (jrad) are lower than for some higher order ones, the Riccati
equation solving becomes di�cult to solve: either the doubling algorithm
does not converge, or it does converge but yields an unstable Kalman �lter
(max |(eig(A−L∞C))| > 1, equation (3.25)). A satisfying solution is to insure
that all the higher order modal speeds are decreasing by setting a constant
value

∀krad ≥ jrad, V
LQG
0 (krad) = med(V LQG

0 (irad > 12)) .
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The last resort in case of stability problems is to set one same unique average
speed for all the Zernike radial orders.
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Figure 6.12: (Keck on-sky data) Example of modal speeds estimations.

Simulation tests

We performed simulations on OOMAO to check the e�ciency of this method. We
�rst estimated the modal speeds Vesti on a batch of open-loop data, and then per-
formed several closed-loop simulations with LQG controllers for which the AR2 model
was parameterized with various modal speeds V LQG

0 around the estimated value Vesti:
V LQG
0 = {0.5Vesti, 0.75Vesti, Vesti, 1.25Vesti, 1.5Vesti}. We expected the performance

to be the best or at least at a good level for V LQG
0 = Vesti, which would be the

value used in an unsupervised identi�cation. This was done for two extreme cases:
[Mngs, Fs] = [10, 1000Hz] and [13, 100Hz]. Results are displayed in �gure 6.13. Note
that the case with challenging atmosphere and high sampling frequency is the only
one for which the estimated wind speed is not the best tuning to de�ne the LQG
controller. However, the loss of performance is less than one SR point.

Concerning the repeatability, the modal speed estimations Vesti,i of a same pa-
rameterized atmosphere but using di�erent batches vary of

σVesti

Vesti
< 5% in the four

cases.

6.3 Low-order models identi�cation

6.3.1 Zernike modes and state-space size

A subspace identi�cation is done for the �rst 9 Zernike modes (radial order 3). Each
mode corresponds to 18 states. This means that xLOk has 9× 18 = 162 components.
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Figure 6.13: Example of estimated modal speeds tests. Left: [Mngs, Fs] =
[10, 1000Hz]. Right: [Mngs, Fs] = [13, 100Hz]. Top: r0 = 8 cm. Bottom:
r0 = 20 cm.
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6.3. Low-order models identi�cation

These two values (9 modes, 162 state components) were decided with replays
using Keck on-sky data, noting that for higher values (more Zernike modes, or bigger
state vector) the performance almost did not change. The same limit value was found
at the WHT in (Sinquin et al., 2020), above which the performance did not improve.
We could have expected that for Keck telescope, with its structure bigger than the
one of WHT, more Zernike modes would have been necessary. Yet, keeping the
number to 9 is still enough. It might be explained by the increase in the AR2 cut-o�
frequencies, while in (Sinquin et al., 2020) the modal speed V LQG

0 was constant for
all modes and had not been optimized.

6.3.2 Identi�cation method

The same LO modeling algorithm as in (Sinquin et al., 2020) is used, based on
N4SID (Overschee and Moor, 1994), but modi�ed to insure the stability of the iden-
ti�ed model by an adequate regularization of the last resolution of a linear matrix
equation. An additional optimization step in the identi�cation could be implemented
with the prediction error minimization (PEM). However, it led several times to un-
stable models (maximal modulus of eigenvalues of identi�ed matrix ALO higher than
one) and was thus discarded.

During our work, a particular interest towards coupled dynamics was given.
Without coupling, independent N4SID models are de�ned for each Zernike mode
z, leading in the end to a block-diagonal matrix ALO assembling the separately iden-
ti�ed ALO

z models. Coupled identi�cation gathers all the data for the 9 Zernike
modes and produce one non-diagonal model. The advantages that have arisen are:

� Gain in performance: on the GTCAO bench (with Keck-like disturbances) and
on replay with on-sky Keck data, the use of coupling in the de�nition of ALO

was improving the SR by some 2 points.

� Reduced size of the state vector: the mechanical coupling existing between
the di�erent parts of the structure (e.g. an oscillating arm inducing both
defocus and tip/tilt disturbances), and the coupling between the disturbance
sources (e.g., is one fan rotating now?) leads to the possibility to gather
the disturbances into particular modes involving several Zernike modes. The
coupling allows it, so as to diminish the choice of the size of the state vector
to embed all disturbances.

� No need to wonder about the respective order to grant to each Zernike mode
model: a total size of 9×18 = 162 is given, and the algorithm will automatically
optimize the importance given to each.

The disadvantage we can state is the computation complexity to build the ma-
trices. For instance, in our simulations Matlab needs several minutes to build the
matrices in the coupling case, compared with a total of ∼ 10 s with successive inde-
pendent identi�cations. This problem with coupling was solved by using the script
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Figure 6.14: (Keck on-sky data) Example of identi�ed PSD to see the coupling
advantage in disturbance modeling. Tip mode. The coupling allows more ac-
curate modeling, leading to more than 2 SR points improvement. The coupled
model is yet of order 18 only, while of order 30 for the coupling-free one.

coded by Sinquin (whose principle is explained in the annex of (Sinquin et al., 2020)),
with a computation time of some 20 s. Those times are given for a model of total or-
der ∼ 100 from telemetry data of length 10000 samples. Another disadvantage is the
supplementary steps towards the absence of physical meaning of the subspace identi-
�cation. If for some reasons one Zernike mode appeared to be badly corrected when
closing the loop, it would be di�cult to point out what part of ALO is responsible.

6.4 Switch and stitch successive models

6.4.1 Needs of update

Atmosphere evolution

The models, whether based on priors or identi�cations, depend on the observation
conditions. The classical conditions are those of the atmosphere, such as the wind
speed. The very good robustness of LQG control to those changes were highlighted
in (Prengère et al., 2020). It has not been deeply examined on the GTCAO bench
during my PhD, always keeping the phase screen wind speed to V0 = 10m s−1.
Anyway, the performance variation for some LQG de�ned with modal speeds V LQG

0

from one to even four times the actual value V0 did not lead to stability problem,
with a loss of SR inferior to 3 points, matching with (Prengère et al., 2020). A study
about the impact of bursts of turbulence has also been conducted by Nicolas Galland
(pending COAT proceeding), showing that it is still better to have an LQG regulator
with a non-optimized rLQG0 >> r0 decorrelation length than an integrator.

138



6.4. Switch and stitch successive models

A more serious issue for the LQG is the evolution of vibration spectra. It can be
induced for instance by the activation/deactivation of some mobile machine compo-
nents of the telescope, such as cooling systems. It can also be the result of changes
in the position of the M2 carrying spider, leading to changes in the mechanical vi-
bration modes of the structure and thus in the resulting optical disturbances PSDs,
even with a constant wind.
On bench tests and in simulation, the non-modeling of existing vibrations almost
systematically made the LQG underperform the integrator. Conversely, modeling a
nonexistent vibration had almost no impact on the performance (less than one SR
point). A bench example is shown with the PSDs of residual reconstructed phases
for those two situations in �gure 6.15 (low �ux, Fs = 100Hz, phase screen 1 with
r0 = 23 cm). Without modeling the vibrations, the SRs collapse from 65% to 24%
when the vibrations occur. However, with the vibration model, the SR still reaches
64.5% in absence of vibrations and remains at 54% with vibration. Thus, if the same
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Figure 6.15: (bench tests) PSD of the residual tip. Left: with vibrations.
Right: without vibrations. Red: regulator de�ned from vibration-free data.
Blue: regulator de�ned from vibration-including data.

vibration peak happens to be regularly present on some Zernike modes of a tele-
scope, the safer course would be to include its analytical AR2 model at the speci�c
vibration frequency.

Parallactic angle evolution

Another interesting problem we investigated is the variation of the parallactic angle
described in �gure 5.3. This pertains to the identi�ed low-order models. It was
con�rmed on the bench, with DM-injected Keck-like disturbances of LO Zernike
modes 1 to 9. The LQG regulator matrices are de�ned with the on-sky data, but on
the bench the DM-injected disturbances have been applied a spatial rotation of 90
degrees or 180 degrees. We see on results �gure 6.16 that it led to a loss of 11 SR
points (from 49% to 38%) in the worst case of 90 degrees rotation, and 9 points (from
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Figure 6.16: (OOMAO simulation with Keck on-sky LO disturbances) E�ect
on the LQG controller SR (y-axis) of the parallactic angle changes relatively
to the model identi�cation data (x-axis). A law of 0.3 point per degree is a
good order of magnitude for the �rst (and last) 50 degrees. Integrator SR (not
displayed) always around 30%.

49% to 40%) for the 180 degrees one. The integrator, as expected, was not sensitive
to it (staying to its 39% SR). As expected from its rotation invariance, the defocus
mode was still reasonably corrected by the LQG whatever the angle, as visible in
modal results in �gure 6.17.

An idea (but not yet properly implemented in simulation) is to include in real-
time some spin-angle dependent linear operators, that allow to spin o� the mea-
surements (retrieve a spin-free measurement vector), compute the command with a
same initial unique spin-free model, and then spin back the commands thanks to
Zernike basis rotation formulas. For now, the only solution is to update the models
often enough (depending on the location of the celestial object and the LO models
singularities) so as not to have a too strong modeling error and therefore a limited
loss of performance.

6.4.2 Model stitching in real-time systems

As seen in section 6.4.1, an on-the-�y model update will be necessary to guaranty
the high performance. We use in this section the regulator state space representation
to describe commands calculation from the slopes. It is de�ned by:

{
XRk+1 = ARXRk + BRyk
uk = CRXRk+1

. (6.11)

Let
{
A1

R, B
1
R, C

1
R

}
be the set of current regulator matrices. A new one

{
A2

R, B
2
R, C

2
R

}

has been de�ned: a controller switch is then necessary. The RTC will keep performing
the computations, but at the switch iteration k = ks, the state-vector calculation
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Figure 6.17: (bench) Modal spectra analysis of the e�ects on of parallactic
angle changes. Left to right: tip, tilt and defocus. The worst are the peaks
speci�c to the tip (1.2Hz) and to the tilt (7.6Hz) that are not covered anymore
with a 90 degrees rotation. The turbulence correction does not depend on the
angle, since more or less of same PSD for all the Zernike modes of a same
radial order. Moreover, the models used for turbulence are not caring about
the propagation direction (�boiling� models).
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will mix the two models, multiplying the state 1 vector by the state 2 matrix:

X2
Rks

= A2
RX

switch
R +B2

Ryks−1 , (6.12)

with Xswitch
R = X1

Rks−1. A �rst thing to notice is that it is not a problem for the
AR2 models that represent mainly atmospheric turbulence: whatever 1 or 2, the
state vectors should contain the same physical values of the phase at the two past
iterations. However, the subspace identi�ed models may not.

6.4.2.1 Basic methods and resulting issues

A solution to this switching problem was theoretically described in (H.-F. Raynaud,
Kulcsár, et al., 2016).

The idea is to compute at the instant ks− 1, by least square, the vector X2
Rks−kh

that would have led to the same sequence of commands uks−kh , ..., uks−1 actually
obtained with the �rst regulator and to propagate this controller state through (7.6)
from k = ks − kh to k = ks − 1. It was tested in replay with bench data and
appeared to be working well, as shown in �gure 6.18. It requires a horizon value
of about kh = 50, below which some jumps might occur at switching moment.
In that �gure is tested another method, which simply consists in doing a replay
at instant ks − 1 on the last kh iterations and use the last obtained X2

Rks−1 as
the switching value Xswitch

R . For kh >> 1, the two methods give the same result
Xswitch

R . The second method gives at least as good performance as the �rst method,
with moreover a smaller necessary horizon, around kh ∼ 20, according to some
switching simulations (results in �gure 6.19. This smaller horizon, with moreover
less operations to do, makes this second replay method preferable to the �rst one.
The order of magnitude on my computer to perform the replay is of 10ms for kh = 50,
making thus completely imaginable the implementation on an RTC. However, this
is assuming that the RTC could have immediately access to the data of the past
kh iterations. Since the switching was not a sensitive issue in my PhD (see next
section), it was not developed further for GTCAO.

6.4.2.2 Simple solution: keep state

In DARC, the RTC was always keeping the last state when changing the LQG
regulator matrices, just on condition that the size of the new matrices was the same
as the current matrices. Jose Marco added an option to DARC to allow the user to
choose whether or not to keep the state on the frame when the RTC changes the
LQG matrices. On GTCAO, the default was to keep the state during the switch.
To make sense, this requires that the two successive models involved have the same
number of Zernike modes with the same number of LO modes. This is not much
of a constraint in our case where these numbers are set (cf previous sections). In
simulations, this solution of keeping the state appeared to work very well in most
of the cases (no residual phase jump at switching frame, e.g. �gure 6.18 top) but
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Figure 6.18: (replay) Residual phase before and after regulator switching. The
switching occurs at ks = 845. Top: switch from one set of matrices with
wrong vibration modeling (fvib = 12Hz and 25Hz) to another set with right
vibration modeling (fvib = 15Hz and 30Hz). Bottom: switch from one set
of matrices without vibration modeling to another set with right vibration
modeling (fvib = 15Hz and 30Hz).
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Figure 6.19: (replay) Residual phase before and after regulator switching. The
switching occurs at ks = 1000 from one set of LQG matrices without vibration
modeling to another set of LQGmatrices with vibration modeling. The horizon
represents the number of iterations used in the replay mode to initialize the
new state vector Xswitch

R .

sometimes made the switch occur worse than Xswitch
R = 0 (residual phase jump at

switching frame, e.g. �gure 6.18 bottom). We made a test on the bench to see how
the system was reacting during the switches with and without keeping the state, as
shown in �gure 6.20. It was a case with maximal sampling frequency Fs = 900Hz

to challenge the RTC during the switches. There is a DM-injected vibration peak
at 12Hz. The switch is done between two regulators, one being de�ned from with-
vibration data and the other without. With a reset to zero of the state vector (blue
curve), there is no loss of stability, with very small transient times. Keeping the
state, they are invisible. But we can precise that the things would not be so easy
if the regulator matrices were modeling vibration peaks at two di�erent resonant
frequencies. In that case, the red curve would have probably looked like the blue
one.

Another thing to say is that this type of peak is often happening naturally on the
RTC, during usual runs (without switch), probably because some slopes are missed
by DARC (about every 5 seconds). This is enough for us at the moment not to dig
deeper the issues of optimal stitching.

6.5 Conclusion

We have detailed the telemetry-data-based methods developed to acquire the nec-
essary parameters for disturbance modeling. This allows to cope with all type of
disturbances, in an autotuning way. Some warnings about the needs of model up-
date and the switching instants have been detailed, but in the following we will stay
in the case of stationary conditions.

The next chapter describes the results obtained on bench with those modeling
methods, comparing the autotuning strategy with the best-tuned LQG regulators.
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Figure 6.20: (bench) Residual slopes RMS. A switch between two preset reg-
ulators is done every half second. Red: keep state, SR 64%. Blue: reset state,
SR 62.5%. The non regularity of peaks is due to data recording di�culties of
the RTC at high sampling frequency.
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Chapter 7

Performance analysis for LQG control: GTCAO

bench tests and Keck on-sky data

We have developed in chapter 5 some procedures to calibrate and model the AO
system.In chapter 6, we have designed the disturbances models together with their
identi�cation procedures. The previous chapter explained the methods to model the
disturbances. In this chapter, we evaluate the performance of this work applied to the
GTCAO system. First, we de�ne the performance and behavior evaluation tools in
section 7.1. Then, in section 7.3, we gather the performance results obtained on bench
with GTCAO. Unfortunately, the whole control design procedure could not be tested
on sky. We have thus contacted Peter Wizinowich at Keck Observatory, with the
idea of carrying out some tests using on-sky data sets. Sam Ragland has kindly made
available several hundreds of data sets. The performance results obtained in replay
are presented in section 7.4. Let us precise that the work developed in chapter 4 was
not implemented on bench tests: the vibrations on GTCAO are simulated with DM
commands, that is to say in discrete time, while the chapter 4 is dedicated to the
correction of continuous disturbances.

7.1 Performance evaluation from residual slopes

7.1.1 Residual phase reconstruction

The study of residual slopes is particularly inappropriate for performance evaluation.
What matters for scienti�c images is the residual phase variance, which needs to be
minimized. This is illustrated in �gure 7.1, where the LQG has more than 20% higher
residual slopes variance than the integrator. Yet, its SR is 10 points higher than the
integrator one. The di�erence between residual slopes and phase on GTCAO might
be even stronger than some other AO systems due to the non-Fried geometry (limited
measurement of the actuators related dephasing). To reconstruct the residual phase
time-series ΦCL, the same projector RMAP as in equation (3.32) is used, applied to
time-series of closed-loop slopes Y CL time-serie of :

ϕCL = RMAPY
CL . (7.1)

Even if RMAP is de�ned based on open-loop atmospheric statistics, it appeared that
this reconstruction was giving almost the same results as doing: ΦCL = RMAP(Y

CL−
MintU) +NU , in which RMAP does multiply pseudo-open loop measurements (U is
the matrix containing time-series of command vectors uk) . Once the time-series are
computed, it is possible to take the squared modulus of the Fourier transform to
obtain the PSD. This is a very interesting graph to plot to determine what are the
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Figure 7.1: (bench) Residual slopes STD in a case with vibrations.

problems of a regulator, displaying its cumulative sum to highlight the actual zone
of importance among the frequency spectrum. This is done in results sections 7.3.4
and 7.4.1.3.

7.1.2 Rejection transfer function computation

The rejection transfer function (RTF) shows the spectral rejection of the distur-
bances. Its modulus can be computed in two di�erent ways. The �rst is based on
experimental data, and the second on theoretical formula resting on the models.

Empirical calculation

The RTFs are standardly calculated from the empirical PSDs. For each mode, the
PSDs in open-loop (or pseudo open-loop) and closed-loop are computed. Then, the
empirical RTF gain is obtained as the ratio of closed-loop PSD by (pseudo-)open-loop
PSD for each temporal frequency.

Theoretical calculation

The format of matrices in DARC allows to write the regulator matrices [AR, BR, CR]

as in equation (7.6). From it, it is possible to build a state-space representation
[AP , BP , CP , DP ] of the closed-loop system with the phase disturbance ϕOL as input
and the residual ϕCL as output. For instance, for the case of a system delay∆ inferior
to one (meaning that ∆ = ∆− ⌊∆⌋ ≜ δ), it is written:
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AP =

[
AR + (1− δ)BRMintCR δBRMint

CR 0

]
(7.2)

BP =

[
BRD
0

]
(7.3)

CP =
[
N(1− δ)CR δN

]
(7.4)

DP = I (7.5)

and the state-space representation writes:
{

XP
k+1 = APXP

k + BPϕOLk

ϕCLk = CPXP
k+1 + DPϕOLk

. (7.6)

Then, Matlab allows to plot the Bode diagram corresponding to this system, that
is to say of the rejection transfer function.

7.1.3 Stability margins from Nyquist diagram

The Nyquist diagram is used to visualize the stability margins. It is obtained with
Matlab by de�ning the transfer function in open-loop. The latter needs the regulator
transfer function, which is

TFregul(z) = zCR(zI −AR)
−1BR , (7.7)

where z = exp(2iπTs) is the z-transform variable. Then, the open-loop transfer
function of the mode number i is:

TFOL(z) = N i
(
δz−1 + (1− δ)

)
TFregul(z)D

iz−1 , (7.8)

where N i and Di are respectively the line and the column of matrices N and D

(corresponding to the mode of interest i). The Matlab function nyquist is then used
directly with each mode in (7.8), the transfer function being de�ned as a symbolic
expression.

7.2 Study of scienti�c images: Strehl ratio computation

The estimation of SR has been widely studied, see e.g. (Roberts Jr et al., 2004;
Soummer and Ferrari, 2007; Gladysz et al., 2008). In this section, we present two
standard ways to compute the SR from a given PSF:

� in image space, computing the ratio between the scienti�c image peak and
the di�raction-limited PSF, as presented in section 2.6 (the left hand side of
equation (2.35))

� in Fourier space, computing the ratio between the scienti�c image FFT �the
optical transfer function (OTF)� total energy and the di�raction-limited PSF
FFT total energy (the right hand side of equation (2.35)).
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7.2.1 Methods description

Camera parameters

Both methods need the value of the oversampling µovsci of the scienti�c camera:

µovsci = 0.5
λsci/Dpup

µsci
= 1.32 , (7.9)

with λsci = 1600 nm, Dpup = 11.4m and µsci = 11× 10−3 arcsec.

7.2.1.1 Airy reference

Both methods need a di�raction-limited reference to determine how far from the
maximum possible intensity the scienti�c images peaks are.

� The pupil of M1 on the bench is simulated with OOMAO (segmented pupil)
and is rotated of 3.6 degrees, as is GTCAO M1 pupil simulator shown in
�gure 5.13.

� To have the right oversampling in the focal plane, the pupil of current size n

is padded (basic Matlab function) up-down and left-right with n(2µovsci − 1)/2

lines and columns.

� The padded pupil is resized with the propper coe�cient to reach afterwards
the desired scienti�c image number-of-pixel size nSRpx .

� Eventually, the square module of the FFT of the padded array (example of
result in �gure 7.8) gives the di�raction-limited PSF Idi�r.

7.2.1.2 Image pre-processing

Both methods are applied after a pre-processing of the images:

� The image to be processed is made of the average of nimg images. It has
already its background subtracted. In our case, it represents 11 s, that is to
say one full rotation of the phase screen at V0 = 10m s−1.

� To counteract the e�ect of salt & pepper noise and of some vertical noise bands
(visible for instance on �gure 7.2), a median �lter of size 1×3 (horizontal band)
is applied to the image. It enables to �nd the PSF peak of intensity without
being trapped by strongly noisy pixels. For the 13×13 pixels around that peak
pixel, the unmedianned original image is kept to avoid �ltering the maximum
intensity pixel. The median �ltering mostly helps the OTF method, whose
results precision otherwise can drop by some 3 Strehl points. The residual
noise mean and STD values, µnoisesci and σnoisesci , are then estimated on a far-
from-�ux area (�gure 7.3).
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Figure 7.2: (bench) Example of image without (left) and with (right) median
�ltering. E�ects on the image (top, with square root to highlight the noise)
and their OTF real part (bottom).
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Figure 7.3: (bench) Example of scienti�c image noise area (yellow-orange high-
lighted pixels). Noise STD σnoisesci and average µnoisesci are evaluated on those
pixels.
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� The PSF is centered. To allow an accurate centering, an interpolation is �rst
made, using zero-padding in Fourier space. An interpolation factor of q = 3

(linear) appeared su�cient, beyond which the SR estimation is not changing
(typical value for an image with pixels oversampling of µovsci = 1.32 ≃ 1.5).
This interpolation is of course also done for the Airy reference image.

� The image is cropped to the desired square image size qnSRpx pixels linear. The
Airy reference image too.

Once prepared in such a way, the image I can be processed by the OTF algorithm
and/or the PSF one. Note that the total �uxes are adapted later, within each of
both methods.

7.2.1.3 OTF method

The OTF is obtained by taking the FFT of the image I: OTF = F (I). Then:

� The image I is assumed to be composed of a useful signal part Isci plus two
components of noise, one main white Iwhite and the other spatially correlated
Inon-white: I = Isci + Iwhite + Inon-white (example in �gure 7.4). In this way,
almost the whole noise signal in the OTF is concentrated in OTFwhite at the
0-px−1 point (�rst point of the OTF matrix). The e�ect of the noise at this
frequency should thus be removed. This is done by performing a second order
extrapolation of the OTF in zero using the next four points of the real part of
the OTF, as illustrated in �gure 7.5.
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Figure 7.4: (bench) Example of noisy OTF real part (continuous red line) and
image noise (real part of spectral content, dashed red line) using a window

of nSRpx=80 pixels. The cut-o� frequency Fcut =
nSRpx
2µovsci

= 31 pixels is indicated
by a vertical line and is consistent with the OTF behavior. These 1-D curves
correspond to the circular averages of the OTFs real part.

� The OTF of the di�raction-limited image is taken, OTFdi�r = F (Idi�r).
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Figure 7.5: Example of OTF for a noisy PSF (red), the OTF extrapolation
(black) and the rescaled denoised OTF (blue). These 1-D curves correspond
to the circular averages of the OTFs real part.

� The total �uxes are made unitary for both the studied image and the di�raction-
limited image, in the spectral domain, by dividing their respective OTFs by
their respective �rst value (the images were centered on their respective max-
imum value during the images pre-processing, so OTF (0 px−1) = I).

� The SR is then computed using:

SR =
max(I)

max(Idi�r)
=

I(0 rad)

Idi�r(0 rad)
=

OTF

OTFdi�r
=

∑
OTF∑

OTFdi�r
. (7.10)

7.2.1.4 PSF method

The pre-processed image I is used this way:

� The average noise scalar value previously computed (�gure 7.3) is substracted
from the image: I ← I − µnoisesci .

� In the case of a very noisy image (SNR below 100), a 2-D Gaussian �tting can
be done (with a least-square optimization of the Gaussian amplitude, center
and variances, Matlab code of Gero Nootz (2022)), giving thus an estimation
of the peak value of the image. It also gives the possibility to have an estimate
of the FWHM of the scienti�c PSF by using the x and y RMS:

FWHM = 2.335
σx + σy

2

1

q
[px] . (7.11)

Note that if the SNR is over 100, as it is the case on the bench or in our SR
computation simulations, it is not necessary to make this Gaussian �tting and
it can be even prejudicial. We see for instance on images of �gure 7.6 that
AO closed-loop images may be not really Gaussian. Red and green lines on
the images are the two principal directions of the 2-D Gaussian models. Black

153



Chapter 7. LQG performance analysis: GTCAO bench tests and Keck on-sky data

lines on the plots are the Gaussian models. Model is strongly wrong for the
10%-SR case (20% relative underestimation of the SR), good for the medium
case (less than 0.5% relative error) and acceptable for the 95%-SR case (3%
relative error).
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Figure 7.6: (simulation) Example of 2-D Gaussian �tting of a long exposure
scienti�c image with SNR higher than 100. SR cases (left to right): 10%, 50%
and 95%. The �tting clearly fails for the 10%-SR case. Interpolation factor of
5. Figure code Gero Nootz (2022).

� The total �uxes are made unitary for both the studied image I and the
di�raction-limited image Idi�r.

� The SR is computed as:

SR =
max(I)

max(Idi�r)
. (7.12)

Automated computation on GTCAO bench

On GTCAO bench, the SR is continuously displayed aside the RTC windows using
a slightly di�erent PSF method. It is setting the window size to the value nSRpx such
that the edge pixels of the cropped image have an STD twice as big as σnoisesci .

7.2.2 Simulation study of the pros and cons

To �gure out the pros and cons of these two methods, we performed simulations with
di�erent SRs, scienti�c camera noise levels and window sizes nSRpx . Note that, since
having SNRs over 100 in the simulations, no Gaussian �tting has been done.

7.2.2.1 Simulations conditions

Wavefront distortion

The closed-loop images are simulated by computing a wavefront error on 495 Zernike
modes following a typical Gaussian distribution with Zernike residual variance cal-
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culated from bench data. The variance values are averaged for each radial order
(�gure 7.7). The variances are obtained as then scaled to have more or less chal-
lenging wavefront distortions. Long exposure scienti�c images are the sum of 75
�short exposure� PSFs, each computed with independent realisations of wavefronts
(example in �gure 7.8).
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Figure 7.7: Modal statistics used for generating residual wavefronts (red, left).
Example of residual wavefront on the right (as on the testbench, there is no
central obscuration).

Figure 7.8: Simulated PSF for SR computation. Left to right: di�raction
limited, short exposure, long exposure with added noise. The last one is the
simulated scienti�c image. Case of a residual wavefront of 0.8 rad RMS (50%
SR) with noise of SNR=100 and window size of nSRpx = 20 pixels.

Computation of the �true� Strehl ratio

The SR is computed with the noise-free image, to which the PSF method is applied
(section 7.2.1). Since there is no noise yet, we can consider that the PSF method
delivers the right SR value.

Noisy images

A read-out noise is then added as a zero-mean Gaussian white noise. The values
taken for the SNR are based on typical bench values, which is around 5000: σnoisesci ≃
2 au ≃ max(Idi�r)

5000 . Two other values are tested: an SNR of 500 (σnoisesci = 20) and 100
(σnoisesci = 100).
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Computation with di�erent window sizes

The two SR computation methods described above are both implemented, cropping
the images with di�erent window sizes nSRpx . As it can be seen in �gure 7.8, the
minimum size should be around 20 px. In simulations, the sizes extend from nSRpx = 20

to 160 pixels.

7.2.2.2 Simulations results

Results are gathered in �gure 7.9. For the sake of clarity, the STD are plotted on
another graph instead of adding error bars on the median error graphs.

50 100 150
Window size

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

E
rr

o
r

M
E

D
IA

N

SR = 0.12

5000 - OTF
500 - OTF
100 - OTF
5000 - PSF
500 - PSF
100 - PSF

SNR

50 100 150
Window size

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

E
rr

o
r

M
E

D
IA

N

SR = 0.36

50 100 150
Window size

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

E
rr

o
r

M
E

D
IA

N

SR = 0.83

50 100 150
Window size

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

E
rr

o
r

S
T

D

SR = 0.12

5000 - OTF
500 - OTF
100 - OTF
5000 - PSF
500 - PSF
100 - PSF

SNR

50 100 150
Window size

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

E
rr

o
r

S
T

D

SR = 0.36

50 100 150
Window size

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

E
rr

o
r

S
T

D

SR = 0.83

Figure 7.9: (simulation) Comparison of SR estimation errors as a function of
the window sizes nSRpx . Continuous lines: OTF method. Dashed lines: PSF
method. Top: medians of the estimation errors. Bottom: STDs of the es-
timation errors. Window sizes nSRpx are in pixels. Errors STD are reaching
0.2 (outside the graph) for the low �ux case at high SR=0.83 for SNR=100
(down-right yellow graphs).

From the analysis of �gure 7.9, we can state that

� The high �ux cases, SNR 5000 (blue curves), correspond to the bench test
conditions. The OTF method works well when the window is su�ciently wide
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(nSRpx > 130 px), giving an estimation error inferior to 0.01. The PSF method
exhibits however an even better behaviour (lower error median values and
similar STDs) with only nSRpx ≃ 60 px. We see in these simulations that the
values of nSRpx = 32px for high SRs or nSRpx = 64px for lower SRs slightly
overestimates the SRs (about 1 point).

� With a SNR of 500 (red curves), both estimators still converge to the right SR
when the window size increases. The PSF is again preferable. With this SNR,
the error STD starts increasing for both methods. Setting the window sizes to
the best estimation values (130 pixels for OTF method and 60 pixels for PSF
method), the PSF method has again slightly lower error STDs than the OTF
method.

� With a SNR of 100 (low �ux, yellow curves), both estimators stop converging
when increasing the window size. The SR is still well estimated using the
local minimum of PSF method estimations, around nSRpx = 60px in those
simulations. The OTF estimator has more bias and seems to underestimate
the SR past nSRpx ≃ 90 px. Looking at the STDs of the estimation errors, the
repeatability is here quite damaged, rising about 0.02 even for the smallest
window size. When setting the window sizes to the values of 60 and 90 pixels,
the PSF method has again lower error STDs.

As a conclusion, we favor the PSF method, granting better accuracy and precision
on the whole SR scale, notably with our high-�ux GTCAO scienti�c source.

7.2.3 Assessment with bench test images

Using some CL images obtained on the bench for various phase screens and NGS
�uxes, in OL or CL, it is possible to appreciate whether the simulations results
(�gure 7.9) match with experimental ones. Figure 7.10 analysis leads to similar
behaviour but with changes in the numerical values:

� Due to high �ux condition, the estimations are all converging with the window
size (unlike yellow curves). For the PSF method a value of nSRpx between 80
and 100 px is correct, similarly to simulations (SNR close to 5000). For OTFs,
nSRpx ≃ 130 px as indicated for simulations.

� As in simulations, the OTF probably underestimates the SR for large window
sizes, getting typically a few points under the PSF method estimations

� A di�erence between the bench results and the simulation results is the stronger
sensitivity of bench images SR to the window size. For instance, the red curve
case shows now a decrease of 20 points between the SR estimations at nSRpx = 20

pixels and at nSRpx = 150 pixels, while it was of only 4 points in simulations.
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Figure 7.10: (bench) Example of SR estimation methods application on GT-
CAO scienti�c images. Window sizes nSRpx are in pixels. PS1: phase screen 1
(favorable atmosphere). PS2: phase screen 2 (challenging atmosphere). PS0:
no phase screen (disturbance-free and with �atened DM).

Conclusion

The SR estimator based on the PSF is the best for the GTCAO bench tests scienti�c
images. Despite a similar behaviour, the bench images are more strongly sensitive
to the window size than in simulation. It is probably due to the absence of central
obscuration: a badly corrected phase in the central part of the pupil is a�ecting the
scienti�c images. This produces a strong decrease of the SR when increasing the
window size. The values retained for the bench SR estimations are nSRpx = 32px for
phase screen 1 and nSRpx = 64px for phase screen 2 to balance this e�ect.

7.3 GTCAO on-bench tests: performance results and behaviour anal-
ysis

In this section, we start in subsection 7.3.1 by precising the pipeline we followed to
carry out on-bench tests.

Then, we present some results obtained on GTCAO bench. In section 7.3.2 are
gathered the SR results for the basic cases with pure turbulence (phase screens PS1
and PS2), to which is added in section 7.3.3 only the windshake TT disturbance
(section 5.2.2.1). Afterwards, in section 7.3.4, the performance is analysed in a case
where Keck-like disturbances on all the �rst 9 Zernike modes (not only TT) are
injected (made possible here again by the DM on GTCAO optical path).

158



7.3. GTCAO on-bench tests

7.3.1 Pipeline of on-bench tests

The main steps we followed for the tests on the bench (we suppose that all the system
power is already turned on and the WFS CCD cooled down) are the following:

1. At the beginning of the day, the WFS reference centroids positions is loaded.
Those centroids references are everyday the sames: they were optimized dur-
ing a bench calibration to give the best possible SR. Then, the WFS CCD
is shifted up-down and left-right to minimize the measured slopes relatively
to the just-loaded reference centroids. Then, the loop is closed (with an in-
tegrator with any small loop gain) to �nalize the alignment on the reference
centroids. Finally, the such-obtained DM o�set voltages are taken (average of
the commands on one second) as the �attening reference command of the day.

2. For each test of the day, the bench simulator parameters are set to the desired
experimental conditions: the NGS �ux (playing with the NGS source power
or setting some �lter at the entrance of the WFS), the vibrations (loading a
time-series of DM commands on the GUI) and the phase screen (setting PS1
or PS2 and their rotating speed).

3. For each test, the GTCAO RTC parameters are set to the desired control con-
ditions: the sampling frequency Fs, the WFS CCD optical gain and the WFS
CCD �ux threshold (with python DARC commands on the RTC computer, or
on the WFS GUI window)

4. The regulator is adjusted: setting the desired loop gains on the integrator GUI
or setting the desired LQG matrices timestamp on the LQG GUI.

5. The loop is closed. The RTC is asked to collect some telemetry data for a
user-de�ned duration, say ten seconds. This is done using the GUI interface.

6. Past those ten seconds, the headers which describe the RTC and simulator
parameters are automatically added to the saved �ts �les (the list of headers we
de�ned with Jose Marco are listed in Appendix A (page 193), and are joined
to �ts �les thanks to �with_cards� GUI function). The �ts �les are copied
towards the GUI-indicated working directory. From our computer (linked to
the IAC AIV internal folders) we copy those �les to our own computer LQG
directory: the Matlab code can be run to de�ne LQG matrices as in section 6,
a �ow chart that gives the sequence of the calculations is given in Appendix B
(page 197).

7. The state-space model is recast into DARC-format LQG matrices that are
saved in their respective �ts �les, with their timestamp. The �ts �les are
given headers to describe the controller parameters (example in Appendix A
(page 193)).
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8. These matrices are sent to the RTC computer (reverse path as the data path),
the GUI timestamp is adapted, and reloaded by DARC (i.e. go back to step 4
to test the updated LQG controller)

7.3.2 Results for pure atmospheric turbulence

The on-bench results in terms of SR are displayed in �gure 7.11. They correspond
to cases with atmospheric turbulence only. On the left are the cases with favorable
atmosphere (PS1), while challenging on the right (PS2). The sampling frequency
for each NGS magnitude is written in black (in Hertz). Blue lines correspond to the
LQG results obtain with the best tuning of the fudge factor αFF, red lines to the
integrator results with the best tuning of the loop gains.

In good atmospheric conditions (PS1), with NGS magnitudes 10.2 or 11.3, both
integrator and LQG regulator have the same maximal SR of 72%, with the sharpest
PSF of FWHM 35mas. We see that the LQG performance outperforms the inte-
grator when the magnitude increases. The prediction capability of the LQG is well
illustrated for magnitude 11.3 (500Hz) and 12.6 (250Hz): the performance is at
same level despite the lower loop frequency and �ux.

For bad atmospheric conditions (PS2), the advantage is broader, with a mini-
mum gain of 4 SR points and a maximum of 10 SR points. The prediction here
allows keeping the same performance level when going from magnitude 10.2 (900Hz)
to magnitude 11.3 (400Hz). In terms of resolution, at Fs = 50Hz, the LQG is
sharpening the critical FWHM of the integrator PSF from 400mas to 69mas.

With each phase screen, some tests were performed using the data-based algo-
rithm to adjust the fudge factor automatically (section 6.2.2).

For the case of phase screen 2, these autotuned fudge factor values led to the
same performance as with the best values tuned manually.

For phase screen 1, we observed that the autotuned fudge factors led to a rea-
sonable performance degradation of half of the improvement with respect to the
integrator (e.g. 63.5% SR instead of 66.5% at Fs = 100Hz). We could envision
several options to avoid this:

� a look-up table, depending on the NGS magnitude and the estimated AR2
parameters

� revisit the criterion we built for the fudge factor in section 6.2.2

� optimize the fudge factor based on a short loop replay, which may be time
consuming in situations where model updates are to be performed on short
time scales.
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Figure 7.11: (bench without vibration, 2022/06/02) SR as a function of the
guide star magnitude. Left: phase screen 1 r0 = 23 cm. Right: phase screen 2
r0 = 8 cm. Sampling frequencies are written in black for each NGS magnitude.

7.3.3 E�ect of windshake on performance

The on-bench SRs with turbulence and windshake are displayed in �gure 7.12. On
the left are the cases with favorable atmosphere (PS1), while challenging on the right
(PS2).

In good atmospheric conditions (PS1), we see that the advantages of the LQG
appear from magnitude 11.3. Despite the windshake, the LQG controller can still
keep the same performance when diminishing the sampling frequency from 900Hz

to 500Hz. For magnitudes higher than 11.3, the gain of SR with respect to the
integrator increases from a minimum of 4 points to a maximum of 12 points. In terms
of resolution, at Fs = 50Hz, the LQG is sharpening the FWHM of the integrator
PSF from 81mas to 52mas.

For bad atmospheric conditions (PS2), the LQG succeeds to keep the same per-
formance between sampling frequencies of 900Hz and 400Hz. Compared with the
integrator, the gain in SR extends from a minimum of 4 points to a maximum of 12
points. For magnitudes higher than 13, the LQG is more than doubling the maxi-
mal intensity of the integrator. In terms of resolution, at Fs = 50Hz, the LQG is
sharpening the FWHM of the integrator PSF from 440mas to 140mas.

With each phase screen, some tests were performed using the data-based al-
gorithm to adjust the fudge factor automatically (section 6.2.2). It gave similar
performance as with the manual best tuning. In the case of phase screen 2, the
performance was however sometimes lower (about 3 SR points for magnitudes 12.6
and 13.3). Nevertheless, it is worth noting that the autotuned procedure tends to
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favor higher values of the fudge factor. As a results, the regulator sees its stability
margins increased. On sky, the good compromise may well be to prefer a method
which ensures more robust stability.
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Figure 7.12: (bench with vibration, 2022/06/13) SR as a function of the guide
star magnitude. Left: phase screen 1 r0 = 23 cm. Right: phase screen 2
r0 = 8 cm. Sampling frequencies are written in black for each NGS magnitude.

7.3.4 Performance and behavior analysis for Keck-like disturbances

7.3.4.1 Global tests description

Used data

We use here Keck on-sky data recorded in 2020 which were made accessible to us
thanks to Peter Wizinowich, Sam Ragland (and of course thanks to the work of the
sta� at Keck Observatory).

On-bench disturbances

To obtain the corresponding phase disturbances, a Keck MAP reconstructor is de-
�ned with the same procedure as for GTCAO (matrices D, Σw, Σϕ). For bench
tests, we keep the Zernike modes 1 to 9 that seemed the main containers of vibration
disturbances judging from the PSDs. The two �rst modes (tip and tilt) are �ltered
by M2 the same way as detailed in section 5.2.2.2. The phases are �nally converted
into GTCAO commands with a phase-to-command GTCAO projector, to allow their
injection with the DM.
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7.3. GTCAO on-bench tests

Those synthetic disturbances are added to phase screen 1, the latter rotating at
V0 = 10m s−1.

Regulator matrices construction

The LQG controller matrices are generated following the autotuning procedure (in-
cluding for the fudge factors, which resulted to give indeed the best performance),
using OL data. In the last subsection, a brief performance study is conducted with
an MMSE reconstructor (same de�ned regulator as in section 3.3.5, possible to im-
plement with DARC LQG module).

7.3.4.2 Detailed analysis for a low-FPS Keck-like case

For this case, the chosen Keck data had a particularly strong tip and tilt energy
with a low sampling frequency. The phase disturbances are resampled from their
initial sampling frequency of 149Hz to Fs = 200Hz which is the GTCAO frequency
sampling used for these tests.

The data length recorded during the closed-loop tests on the bench corresponds
to a duration of half of the Keck disturbances (4000 iterations out of 8000). Using
the same data for the training as for the test has not appeared to particularly favor
performance during bench tests, as shown in the example given in �gure 7.13. The
integrator loop gains were tuned, leading to the maximal TT loop gain allowed value
on the GUI, gTT = 1.8, and gHO = 0.8 for the other modes.
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Figure 7.13: (bench with vibration) Residual phase variances of the �rst 9
Zernike modes with Keck-like LO disturbance. For the LQG, no particular
4000-iteration long interval appears better than the other half: the identi�-
cation was performed using the �rst half of the data and this interval is not
favored in terms of variance. Blue: LQG. Red: integrator.
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Performance results on scienti�c images

In �gure 7.14 are shown the long exposure scienti�c images (λsci = 1600 nm). They
have been upsampled by a factor two and recentered.

The left one is in open-loop. The center is the closed-loop with the integrator,
and the right one with the LQG controller. The maximum intensity of the latter is
30% higher than the integrator one, increasing the Strehl ratio from 38% to 49%.
The PSF is sharpened with a FWHM decreased from 47 to 41mas. Without any
disturbance, the FWHM is of 33mas.

Residual modal phase energy and spectral analysis

We analyze in this paragraph the advantages of the LQG regulator in terms of spatial
(modal) variances and frequency PSDs. We see in �gure 7.15 that the advantage of
the LQG comes mainly from the vibration mitigation. The tip and tilt are the
main concerned modes, with a total of more than 2 rad2 energy di�erence seen on
their two cumulative variance graphs. The defocus (mode 3) is also signi�cant, with
0.6 rad2 di�erence. On this Keck sample, the astigmatism is not preponderant. It
mainly has a reasonable vibration peak at 29Hz, that is to say in the overshoot of
the rejection, but leads to a penalty of some 0.1 rad2, that is to say around 0.5 point
of SR at λsci. In some other Keck samples, a strong vibration peak of astigmatism
(around 1.5 rad2) exists at very high frequency, around 315Hz. It is investigated in
subsection 7.3.4.3.

Figure 7.14: (bench with vibration, 2022/11/08) Scienti�c images with Keck-
like LO (9 modes) disturbance. Left: open-loop. Middle: integrator (SR 38%).
Right: LQG controller (SR 49%).

Also in �gure 7.15 we can see that the higher Zernike orders (number 23 is shown
here) are as well corrected by both the LQG controller and the integrator with a
very small advantage to the integrator. This is visible in �gure 7.16, where the
modal residual phase variances are displayed. The two cumulative variances curves
(bottom) have a similar increase past mode number 7. The two variances curves
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Figure 7.15: (bench with vibration) Residual phases with Keck-like LO (9
modes) disturbance. Up: modal PSDs. Down: cumulative energy. Left to
right: Zernike modes 1, 2, 3, 4 and 23.
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(top) show however a slightly better correction of high orders by the integrator. In
terms of commands, this leads to a stronger solicitation of the DM as shown in
�gure 7.17. This is another positive side e�ect of the LQG controller, avoiding to
grant to much stroke to some Zernike modes that are yet not preponderant in terms
of performance. Thus, in situations with strong turbulence, the LQG would lead to
a signi�cant increase of the SR gap thanks to a clipping limitation and with a better
DM behavior.
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Figure 7.16: (bench with vibration) Modal residual phase variance with Keck-
like LO (9 modes) disturbance. Blue: LQG. Red: integrator.

Disturbance modeling and rejection transfer functions

In �gure 7.18, we see that the N4SID-identi�ed models (four �rst modes) are encom-
passing many of the numerous non-turbulent energy peaks. The AR2 model on the
very right (mode 23) is covering both the entire plateau of turbulence energy and the
high frequency blob of energy (around 10Hz). This includes the Shack-Hartmann
aliasing that visibly increases slighter the energy past 5Hz. This broad coverage
comes from the high modal speed and allows good performance (section 6.2.3).
Note: We might believe here that the modeling could be improved by using the
N4SID identi�cation with order 2 models. But doing so did not improve the perfor-
mance on the bench, with even a negative impact of the DM behaviour (creation of
some commands peaks on some actuators).

In �gure 7.19 are shown the rejection transfer functions, both model-based (dark
bold plots) and bench data based (light slim plots). When comparing those RTFs
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Figure 7.17: (bench with vibration) Standard deviation of each actuator com-
mand series. Blue: LQG. Red: integrator.

with the previous disturbance models of �gure 7.18, we notice that what has been
modeled is indeed well rejected.

We can notice that the low-frequency plateau in the tip (mode 1) disturbance
rejection of the integrator (bottom red curves) is higher than for the tilt (mode 2)
or defocus (mode 3) disturbance rejection by a factor greater than 3. This is due
to the broken actuator located on the right of the middle horizontal axis of the
pupil. Indeed, the DM cannot easily shape a proper tip mode, needing a strong
stroke of actuators on the left and right edges of the DM where the dead actuator
is located (see section 5.4.5. This is provoking a static error, therefore visible in the
low frequencies. On the contrary, the tilt or defocus modes are almost not a�ected,
since the dead actuator is not much degrading theses modes.

Stability margins

In �gure 7.20 are displayed the stability margins of the LQG and the integrator.
For the tip and tilt modes, the integrator has a phase margin of 28 degrees and

the LQG 38 degrees. Despite the large rejection improvement, the LQG has thus
10 degrees more phase margin than the integrator. In terms of temporal delay, it
corresponds to increasing from 0.33 to 0.65 frame margin. The integrator is already
below the usual limit of 30 degrees, meaning that increasing more the tip/tilt gain
gTT would not be done in on-sky tests (even if the GUI allowed it). The gain margins
are of 7 dB for the integrator and 10 dB for the LQG.

For the defocus and astigmatism modes, the integrator with its lower gHO loop
gain sees its margins jumping to 11 dB and 55◦. For LQG, the margins go to 41◦

and 11 dB: only slightly larger than for tip and tilt. This similarity is due to the
fact that defocus and astigmatism are also among the Zernike modes managed with
identi�ed LO models.
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Figure 7.18: (bench with vibration) PSDs of open-loop phase disturbances and
corresponding LQG temporal models. Left to right: Zernike modes 1, 2, 3, 4
(N4SID-identi�ed models) and 23 (AR2 model).
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Figure 7.19: (bench with vibration) Modal RTFs with Keck-like LO (9 modes)
disturbance. Up blue: LQG. Down red: integrator. Left to right: Zernike
modes 1, 2, 3, 4 and 23.
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For the high order modes (number 23 here), the stability margins get similar for
both controllers. The LQG and its AR2 model gets 12 dB and 52◦, the integrator
11 dB and 53◦.

Concerning modeling error impact on the LQG, the parameter of interest is the
loop delay δctrl. Looking at tip/tilt modes, with a pessimistic error of 0.25ms,
the phase margin loses 4◦ and the gain margins 1 dB. To increase the margins, a
possibility is to increase the fudge factor. An augmentation from αFF = 6 to 30

improves the margins by 5◦ and 2 dB, leading to a modest SR decrease of 1 point on
the bench. Although such an error on the loop delay is unlikely to occur, it shows
that it could be considered to impose minimum stability margins by adjusting the
fudge factor, with a potentially limited impact on performance.
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Figure 7.20: (bench with vibration) Regulators modal Nyquist diagrams with
Keck-like LO (9 modes) disturbance. Blue: LQG. Red: integrator. Reading
direction: Zernike modes 1, 2, 3, 4 and 23.

7.3.4.3 Analysis for a high-frequency vibration Keck-like case

Description of the case

Numerous on-sky data sets among the ones of September 2020, with sampling fre-
quencies of Fs ≃ 1 kHz, appear to show a vibration peak at a frequency of fvib =

315Hz. It is notably visible in the PSDs of the astigmatism and defocus modes. They
can reach an energy of some 2 rad2. This level of energy at this frequency (∼ Fs/3)
corresponds to the study made in chapter 4. For the bench tests, we kept ourselves
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from implementing this critical situation and took a case with a similar PSD shape
but with nicer energy peaks of around 0.1 rad2. The RTC LQG code version which
is used for this test is the one synchronizing the models with the DM, as we took
δctrl = δ, a value which should give good performance results when vibrations are
injected by the DM, as shown in chapter 4.

The LQG in this modest-vibration case allowed to increase the Strehl ratio from
60% (integrator) to 63%. One of the three points comes from the high-frequency
vibrations correction.

Results in vibration rejection

We see in �gure 7.21 that similarly to the bench test of previous section 7.3.4.2
and the analysis on high-order modes, mode 23 is slightly better corrected by the
integrator. We can appreciate here the neutralization by the LQG regulator of the
vibration peaks at fvib = 315Hz, visible in modes 3 and 5. The integrator could not
prevent from amplifying those peaks despite the loop gains tuning.
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Figure 7.21: (bench with vibration) Residual phases with Keck-like high-
frequency vibrations. Up: modal PSDs. Down: cumulative energy. Left
to right: Zernike modes 1, 2, 3, 5 and 23.

The RTFs shown in �gure 7.22 illustrate very well the vibration peak rejections
for modes 3 and 5, validating the e�ciency of the modeling (the curves are dashed
to let the experimental RTFs visible behind). The di�culty of tip compensation due
to the dead actuator is here also very well visible (mode 1), with a much higher
low-frequency plateau than for modes 2 and 3.
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Figure 7.22: (bench with vibration) Modal RTF with high-frequency vibrations
Keck-like case. Up and blue (dashed or continuous line): LQG. Down and red:
integrator. Left to right: Zernike modes 1, 2, 3, 5 and 23.
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Figure 7.23: (bench with vibration) Regulators modal Nyquist diagrams with
high-frequency vibrations Keck-like case. Blue: LQG. Red: integrator. Zernike
defocus mode.
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The Nyquist diagram of the defocus mode (mode 3) shown in �gure 7.23 also
displays the stability margins of the integrator and the LQG. The integrator and the
LQG have respective gain margins of 6 and 7 dB, at respective frequencies 133Hz

and 122Hz. The respective phase margins are of 46 and 38 degrees, at respective
frequencies 67Hz and 58Hz. It leads to time delay margins of respectively 1.9 and 1.8
frames. The stability margins are similar to those obtained in the other Keck-like test
(cf. �gure 7.20), the 315-Hz vibration compensation having thus no stability issue.
The account in the modeling of high frequency peaks should thus not compromise
regulator stability.

Conclusion

This case of high-frequency vibration de�nitely highlights the ability of LQG con-
trollers to reject vibration in a very wide frequency range. This also con�rms our
previous hypothesis of considering that the DM response is instantaneous. Indeed,
the vibrations at 315 Hz being completely suppressed by the LQG, we can say that
our temporal model is valid. The total loop delay for these tests is 2.6 frames
(∆ = 1.6ms at 1 kHz), which corresponds to a fractional delay of δ = 0.6 frames: a
critical case as seen in chapter 4. In the real life (continuous vibration disturbance
instead of DM-synchronized one), the developments of chapter 4 would need to be
implemented so as to take optimally into account the fractional delay.

Globally, these results are also very promising news regarding the GTCAO sys-
tem, showing that its components and RTC allow for extreme vibration management.

7.3.4.4 Performance with an MMSE reconstructor

Description of the case

An MMSE reconstructor (principle described in section 3.3.5) for GTCAO was built
and tested on the bench. The same system modeling is used for the MMSE as
for the LQG (phase-to-command matrix N †, measurement matrix D, measurement
noise covariance matrix Σw, delay ∆), the same number of Zernike modes (740),
and the same atmosphere priors necessary for RMAP computation (r0, L0). A fudge
factor was hand-tuned separately to optimize the SR of the MMSE reconstructor
(the αMAP of section 6.2.2 was �ne).

Concerning the tests conditions, the guide star magnitude is of 12.5, with a
sampling frequency of Fs = 150Hz. The PS2 is used to introduce challenging at-
mospheric disturbance, to which is added (or not) the same vibration spectra as in
section 7.3.4.2.

Results on the bench

In �gure 7.24 are shown the rejection transfer functions of the MMSE, computed
either from theoretical models or from the experimental residual PSDs of the recon-
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7.3. GTCAO on-bench tests

structed modes. Both match, as seen previously with the integrator and the LQG
controllers (e.g �gure 7.22). We can see that similarly to the integrator, the absence
of temporal modeling constrains the delay-related overshoot to be fully localized on
high frequencies.
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Figure 7.24: (bench and model) Modal RTF of the MMSE reconstructor. Left
to right: Zernike modes 1, 2, 3, 4 and 23.

An advantage of the MMSE is the modal reconstruction, giving a strong reduction
of the DM commands STD, with an evener shape, as presented in �gure 7.25.
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Figure 7.25: (bench) Commands STD for the case without vibration.

The results in terms of SR are shown in table 7.1. Thanks to a better noise rejec-
tion, the MMSE allows an improvement (around +15%) of the initial integrator SR.
The extra performance improvement then allowed by the LQG (temporal modeling)
is still of +20% (4 points, no-vibration case) to +50% (5 points, vibration case).
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Regulator Integrator MMSE LQG

SR (fwhm) - w/o vibration 15 (47) 18 (44) 22 (42)

SR (fwhm) - w/ vibration 8 (75) 9 (71) 14 (58)

Table 7.1: (bench) Strehl ratio (%) and FWHM (mas) with and without vi-
bration for the three standard regulators.

7.4 Performance results in replay with W. M. Keck telescope on-sky
data

The purpose of this section is to present the results obtained by applying our work
in replay mode using Keck telescope AO system on-sky data from 2013 and 2020. As
mentioned at the beginning of section 7.3.4, we are grateful to the Keck Observatory
sta� and in particular to Peter Wizinowich and Sam Ragland for making it possible
to use these data. We also would like to thank Olivier Beltramo-Martin who has
made available the three initial ready-to-use datasets from 2013.

After a preliminary study on the three initial datasets in section 7.4.1, we have
extended the analysis to two more data sets of September 2020 in section 7.4.2.

7.4.1 Replay procedure and preliminary results on 3 datasets

We describe brie�y in sections 7.4.1.1 to 7.4.1.3 the procedures, tests and analysis
done in replay mode with three data sets of nights of August 2013 (all being full
NGS cases):

� Data set 1, r0 = 23 cm, 1054 FPS

� Data set 2, r0 = 17 cm, 1054 FPS

� Data set 3, r0 = 25 cm, 149 FPS

The replay procedure is described in section 7.4.1.1.
The two same regulators have been tested. One is an LQG regulator designed in

the same way than the one designed for GTCAO, see section 7.4.1.2 readily adapted
to the Keck AO system parameters. The second is a leaky integrator similar to the
one used for Keck AO.

First performance results and behavior studies are in section 7.4.1.3.

7.4.1.1 Replay mode and information used to perform the tests

We use pseudo-open-loop (POL) data to replay the closed-loop AO system with var-
ious regulators. To reconstruct the POL data, we use the loop delays (DM and TTM
may have di�erent delays but run at the same loop frequency), in order to perform a
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correct compensation. The delay values for DM and TTM loops as described in (Van
Dam, Le Mignant, and B. A. Macintosh, 2004) are:

∆loop
DM = 2.1ms , ∆loop

TTM = 1.65ms , (7.13)

WFS exposure time excluded. Then, if y are the slopes contained in the slopes �le,
Gcent is the centroids gain, uDM the DM commands, and uTTM the TT commands,
the POL slopes are computed using the Keck interaction matrix Mint as:

yPOLk = yk/Gcent (7.14)

−Mint

(
δloopDM uDMk−2 + (1− δloopDM )uDMk−1

)

−
(
δloopTTMuTTMk−2 + (1− δloopTTM)uTTMk−1

)
,

with here the delays expressed in frames and in a case where ∆loop
DM = ∆loop

DM −
⌊∆loop

DM ⌋ = δloopDM ≤ 1. In a case where ∆loop
DM > 1, the commands indexes must be

adjusted (one additional frame delay).
For simplicity reasons, we used in our replays the same unique value of 1.8 ms for

both the DM and the TTM delays. We could thus use our pre-existing replay code
without modi�cation (one unique delay value). As shown in the following sections,
it is close enough to the real Keck AO system delay values to mimic the on-sky
behavior.

To calculate the command matrix Mcom, we have done a pseudo-inversion of the
interaction matrix Mint and have also optimized the number of �ltered mode, so as
to minimize the distance between on-sky and in-replay residual slopes variances. It
leads us to �lter 4 modes out of 349.

Figure 7.26 shows the POL data obtained after DM and TTM commands com-
pensation with the loop delays de�ned above.

Figure 7.27 shows the in-replay results using a leaky integrator with leak gain
gleak = 0.999 and compare them with on-sky data: on the left the on-sky and in-
replay residual slopes variances for all subapertures, and on the right the on-sky
and in-replay residual angle of arrival. The residuals in replay have slightly higher
variances on the subapertures corresponding to pupil edges, but otherwise they are
very close.

Furthermore, �gure 7.28 compares on-sky and in-replay tilt commands for the
leaky integrator. The discrepancy is small.

In addition, it is visible in �gure 7.29 that the replay reproduces the modal
distribution of the residual phase (left graphs), and also rather well the temporal
frequency behaviors we get from residual phase reconstruction (MMSE estimation,
the �rst 4 Zernike modes PSDs are shown in �gure 7.29).

In conclusion, the procedure that allows to build POL data from the on-sky data
sets can be validated, and so is the replay procedure. We are now in the position to
test the two regulators of interest using POL slopes in replay.
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Figure 7.26: POL data obtained by compensating DM and TTM commands.
Data set 3. Left: POL phase Zernike modes variance compared with Von
Kármán statistics. Right: angle of arrival norm evolution.
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Figure 7.27: Left: on-sky and in-replay residual slopes variances for all sub-
apertures; Right: on-sky and in-replay residual angle of arrival with leaky inte-
grator. Data set 3. Integrator loop gains in the replay: gTT = 0.3, gHO = 0.5,
αleak = 0.999.
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Figure 7.28: On-sky and in-replay tilt commands. Data set 3. Integrator loop
gains in the replay: gTT, gHO = 0.5, αleak = 0.999.
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Figure 7.29: Left: on-sky and in-replay residual modal phase variances; Right:
PSDs of on-sky and in-replay residual modal phase (tip, tilt, defocus, astig-
matism, for a wavelength of 500 nm). Data set 3. Integrator loop gains in the
replay: gTT = 0.3, gHO = 0.5, αleak = 0.999. Centroids gain: 0.53.
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7.4.1.2 Designing the LQG regulator

The de�nition of the LQG regulator is the same as done for GTCAO, with matrices
obtained following the procedure described in chapter 6. The �rst half of the POL
dataset is used to identify the disturbance models, the remaining half being used for
performance evaluation in replay.

The commands uTTM are supposed to correspond directly to the phase tip and tilt
ˆϕTT predicted by the Kalman �lter. To calculate the commands uDM, the remaining

predicted phase ϕ̂− ˆϕTT is projected onto the DM space using here the WFS mea-
surement matrix model D (phase-to-slopes), left-multiplied by the command matrix
Mcom (slopes-to-commands):

uDM = McomDϕ̂ ≜ PMcom
u ϕ̂ . (7.15)

This choice of projector rather than PN
u aimed at simplifying the modeling of Keck

AO system, which has anyway a Fried geometry as shown in �gure 7.30 and no broken
actuator. The in�uence functions matrix N was still computed as in section 5.4.3
(with a tuning of TT modes due to the existence here of a TT mirror), for the
calculation of theoretical RTFs.
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Figure 7.30: 2D representation of the Keck DM actuators estimated positions
(black circles) relatively to the microlenses grid (red). Rotation angle esti-
mated to -0.1061 degree, coupling factor of CDM = 0.108.

7.4.1.3 Performance results and analysis on the 3 datasets

Table 7.2 gathers the results obtained with the leaky integrator and the LQG regu-
lator. The same leak gain αleak = 0.999 has been used for all the data sets.

The results are given as the residual wavefront error RMS, computed as the square
root of the sum of the �rst 300 Zernike modes average power.Residual wavefronts
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have been estimated from residual slopes using the MMSE estimator (equation (7.1)).
The data of Table 1 are the only ones that exhibit a signi�cant discrepancy between
on-sky and in-replay performance with the integrator. This was not the case for the
data of Section 7.4.2.

Data set 1 2 3
Integrator (on-sky) 189 (0.5 & 0.3) 206 (0.5 & 0.3) 677 (0.5 & 0.3)
Integrator (best loop gain values in replay) 221 (0.5 & 0.55) 230 (0.55 & 0.7) 352 (0.9 & 1.2)
LQG 188 199 247

Table 7.2: Replay results. Residual wavefront error RMS in nanometers (300
Zernike modes). For the two leaky integrator cases, DM and TTM gains values
are given under the form (DM loop gain & TTM loop gain).

To understand the behavior of the regulators, �gures 7.31 and 7.32 report various
results related to closed-loop behaviors. The PSDs for di�erent Zernike modes, for
the leaky integrator and the LQG, as well as the PSDs of the POL data, are shown
in �gure 7.31.

Thanks to the data-driven part of the LQG controller based on subspace iden-
ti�cation for the LO modes, the controller automatically balances its RTF for each
mode as seen on the bench in section 7.3.4: strong rejection when needed, relaxation
when possible. In �gure 7.31, when comparing the PSDs of the integrator and the
LQG, we see that the respective cumulative PSD curves exhibit several behaviors
of the LQG regulator: for mode 2 (tilt), it dampens the large 1.25-Hz vibration
peak; for mode 3 (defocus), the 15-Hz vibration peak is strongly rejected, and for
mode 4 (astigmatism) the correction is distributed throughout the large 10-to-40-Hz
range of energy. This behavior can be easily appreciated thanks to the empirical and
theoretical RTFs shown in �gure 7.32. Those RTFs are obtained the same way as
explained in section 7.1.2.

These results show similarities with the tests we have conducted on the GTCAO
bench at IAC:

� When it is possible to close the loop with a bright guide star, at Fs = 1054Hz,
the integrator can deliver good performance despite the presence of vibrations
in the low order Zernike modes spectra. LQG may improve by some 5 to 10
SR points when compared with replayed integrator (based on the Mahajan
approximation exp−σ2

applied to the results of table 7.2). Similarly to what
we have on GTCAO bench, the stronger the atmospheric disturbance (about
r0 = 17 cm in set 2 while about 23 cm in set 1), the better the improvement in
performance with LQG.

� When the loop is closed with lower frame-per-second rate, as is the case for
the data set 3 (Fs = 149Hz), the integrator rejection is poor in the 10Hz-to-
50Hz frequency range (populated with several vibrations) and the performance
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drastically drops down. However, in spite of the low FPS which tends to lower
performance for all controllers, the LQG built from our data-based models pro-
vides much better wavefront correction than the integrator (the corresponding
increase in terms of SR should be in the order of 20 points).

After these preliminary good results, we have processed in next section numerous
recent data of 2020 to extend the performance analysis.
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Figure 7.31: Replay results, data set 3. Top row: power spectral densities.
Bottom row: cumulative power spectral densities. From left to right: tip, tilt,
defocus, astigmatism. Black: pseudo-open-loop. Blue: closed-loop LQG. Red:
closed-loop integrator.

180



7.4. Performance results in replay with Keck on-sky data

10 -1 10 0 10 1

10 -4

10 -2

10 0

10 2

jR
T

F
j2

Mode 1

LQG - Replay
LQG - Model

10 -1 10 0 10 1

10 -4

10 -2

10 0

10 2

Mode 2

10 -1 10 0 10 1

10 -4

10 -2

10 0

10 2

Mode 3

10 -1 10 0 10 1

10 -4

10 -2

10 0

10 2

Mode 4

10 -1 10 0 10 1

10 -4

10 -2

10 0

10 2

jR
T

F
j2

INT - Replay
INT - Model

10 -1 10 0 10 1

10 -4

10 -2

10 0

10 2

10 -1 10 0 10 1

Frequency (Hz)

10 -4

10 -2

10 0

10 2

10 -1 10 0 10 1

10 -4

10 -2

10 0

10 2

Figure 7.32: Replay results, data set 3. Rejection transfer functions (squared).
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Bottom row and red: leaky integrator.
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7.4.2 Performance results with datasets of September 2020

To identify and test the LQG regulators, we need enough seconds of data. When a
data set is shorter than 4 seconds, the identi�cation sometimes does not lead to good
models. We thus retained all the data sets with duration greater than 4 seconds, and
the same time-series were used for optimizing the integrator loop gains. In this way,
the data sets recorded during the night of 9 September have not been used (their
duration is less than 4 seconds).

When the data sets duration is greater than 4 seconds but less than 8 seconds,
the same data are used for model identi�cation and performance evaluation. We
checked on a few sets that this did not lead to a signi�cant overestimation of the
LQG good performance.

The frequency sampling for these data is either Fs = 1054 Hz or Fs = 438 Hz.
We are thus probably in cases of medium to high �ux. Results in terms of wavefront
error RMS in nm are displayed in �gure 7.33 and show an impressive improvement
with LQG. Wavefronts were estimated from residual slopes using MMSE reconstruc-
tion. Note the good agreement between on-sky and in-replay performance for the
integrator.

Results in terms of slopes RMS in arcsec are displayed in �gure 7.34. The slopes
RMS are similar between integrator and LQG. However, the wavefront error RMS is
much lower for LQG. We have pointed out the same standard behavior with GTCAO
on-bench data in section 7.1. In another case with Keck-like vibrations that was not
reported in that section (also a bench experiment with vibrations generated by the
deformable mirror), the residual slopes RMS appeared to be 20% worse for LQG,
while its SR on the science camera was of 25%, against the integrator one of 17%.
And when looking at their respective MMSE-reconstructed residual phases, the LQG
indeed achieved smaller residual wavefront error. Even better, the ratio between the
two respective images SRs (0.25/0.17 ≈ 1.5) was nearly the ratio between the two
Mahajan-estimated SRs (0.54/0.37 ≈ 1.45) based on residual phase reconstruction.

7.4.3 Keck replays conclusion

We can conclude that the LQG strategy designed in the framework of my PhD
and tested on the GTCAO bench gives excellent results on these hundreds of data
sets. More tests and analysis could be done with even more data sets to probe
various observation conditions (high-�ux/very-low-�ux, high wind/low wind, more
challenging atmospheres with lower r0 values, etc.).
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Figure 7.33: Performance comparison between integrator and LQG regulators
in terms of wavefront error RMS in nm for the nights of 8 September (left)
and 21 September (right).
Top: slopes RMS histograms.
Bottom: for replays with LQG and integrator (INT) and for on-sky integrator
(SKY), box charts with median value, upper/lower quartiles, and whiskers
extending until 1.5 times the interquartile range away from the top or bottom
of the boxes. Results outside the range are displayed with dots.
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Figure 7.34: Performance comparison between integrator and LQG regulators
in terms of slopes rms in arcsec for the nights of 8 September (left) and 21
September (right).
Top: slopes RMS histograms.
Bottom: for replays with LQG and integrator (INT) and for on-sky integrator
(SKY), box charts with median value, upper/lower quartiles, and whiskers
extending until 1.5 times the interquartile range away from the top or bottom
of the boxes. Results outside the range are displayed with dots.
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7.5 Conclusion

We started this chapter with a presentation in section 7.1 of some tools useful for
performance analysis. We have in particular shown how to compute the theoretical
open-loop transfer functions and RTFs using the state-space representation. The
study on SR in section 7.2 led us to choose a method based on the PSF for our
on-bench performance assessment.

The on-bench tests are conducted in section 7.3:

� For pure atmospheric turbulence, the gap between LQG and integrator per-
formances is more important for stronger disturbances (low r0). With strong
turbulence, the SR is improved by the LQG from 5 to 10 points. The advan-
tages in cases of favorable atmospheric turbulence appear for NGS magnitudes
higher than 12, reaching 10 SR points for magnitude 14.

� In presence of windshake, the integrator is more a�ected than the LQG, mak-
ing the gaps above increasing. The LQG succeeds to keep the same perfor-
mance when it runs whether at 900Hz (NGS magnitude 10) or 400Hz (NGS
magnitude 11).

� In a �rst case with Keck-like vibration disturbances, at magnitude 12.5, the
LQG allowed a gain of 10 points against the integrator. In another Keck-
like case, we could con�rm that even very high frequency vibrations could be
managed by the LQG on GTCAO.

The modal analysis of those two cases showed that the integrator was better
compensating the high order Zernike modes (mainly upper than order 70). If
this is not simply due to the correction optimization of the LQG (concentrat-
ing the DM abilities on the most energetic modes), some model improvement
should be envisioned.

In all those tests, the stability margins of the LQG are very comfortable. The data-
based determination of the fudge factor happened to suit quite �ne the balance
between stability and performance, with some possibilities to improve it even more.

Numerous replays carried out using Keck on-sky data with the same calculations
procedures have allowed to con�rm the autotuning strategy developed in chapter 6.
These good news come with the other part of our work: the simplicity to de�ne
an LQG controller on another AO system � on condition that the RTC disposes of
the necessary control algorithm. The order of magnitude of the performance gain in
average for these Keck datasets is estimated to about 100 nm RMS.

The maturity of the methodology would allow to go now for on-sky tests. These
would be of great interest to confront the results with the ones obtained on bench and
in replay, and confront the modeling to real and not really stationary disturbances
over long enough intervals of time to test the controller stability.
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Chapter 8

Conclusion and perspectives

8.1 Conclusion

The GTC and its 10.4-m segmented primary mirror has nowadays the biggest po-
tential of resolution in the world. To exploit it, it will be soon equipped with a
single-conjugated adaptive optics system: GTCAO. Its control baseline is the stan-
dard integral action controller (or integrator), which has been used as the default
AO controller over the past three decades. It is particularly easy to implement while
well adapted to atmospheric turbulence rejection.

However, it has been seen in the community of other 8-10m class telescopes that
disturbances other than the atmosphere alone are present, and in particular vibra-
tion. These are induced by the wind blowing on the telescope's structure, or by com-
ponents such as fans, coolers, etc. The temporal behaviour of these non-atmospheric
disturbances generally exhibit higher frequencies than atmospheric turbulence so
that they are poorly compensated (or even ampli�ed) by the integrator due to the
time delay a�ecting AO systems. This has led to consider optimal AO control, that
is minimal variance LQG control design, which embeds an optimal prediction of the
disturbances. As are many high-performance controllers, the LQG is based on a
state-space representation of the AO system, to model both the dynamics of the
disturbances and the AO loop. A Kalman �lter predicts the short-upcoming time
disturbances, this prediction being optimal in the sense of the minimum variance of
the estimation error.

Despite the higher numerical complexity of this regulator, we show that it can be
operated at more that 1 kHz on the GTCAO real-time computer DARC, including
clipping management. The control design involves a disturbance modeling step which
needs to deliver an accurate enough disturbances state-space model. It then allows a
predictive control which is particularly e�cient to suppress vibration, whatever their
number and their spatio-temporal statistics. This proved e�ective in on-sky tests,
with a signi�cant gain in the quality of scienti�c images.

Thus, in seek of optimal control for the GTCAO system, we have proposed in
this manuscript a complete methodology for calibrating and modeling the AO system
with its disturbances. The validity of the approach has been con�rmed by numerous
on-bench laboratory tests. Our LQG disturbances modeling baseline is similar to
the modeling de�ned in (Sinquin et al., 2020) and successfully tested on sky. Using
a Zernike basis de�ned on a �nite number of modes (740 modes in our GTCAO
case), we identify a stochastic dynamical AR2 parametric model for all the modes.
Conversely to what was done in (Sinquin et al., 2020), this AR2 modeling is adapted
to the telemetry data. A speci�c treatment is made for 9 low order modes with an
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additional stochastic dynamical model identi�ed using subspace identi�cation with
the same implementation as in (Sinquin et al., 2020).

While the full LQG regulators tested on sky have been initially de�ned in Zernike
basis with circular pupil shapes, the methodology we have developed accounts for a
segmented pupil. The key di�erence comes from the measurement noise covariance
matrix, for which we have proposed an estimation strategy adapted to a non-circular
and rotating pupil such as M1 in GTC: a high value is attributed to the unilluminated
wavefront sensor subapertures. The Kalman �lter is thus predicting the phase in the
circular Zernike basis by relying only on the in-pupil illuminated subapertures, which
are updated at each model update, say every 2 minutes.

Another important part we developed is the estimation of temporal parameters.
Our extensive study shows that the modeling requires special treatment in the pres-
ence of a fractional loop delay when high frequency disturbances need to be rejected.
The problem of fractional loop delay in AO control has already been tackled in the
literature, but we have highlighted behaviours that have not been pointed out so
far and we have compared suboptimal control solutions in the way they should be
implemented in a real system. In particular, we have shown through simulations and
on bench that with atmospheric disturbance only, the e�ect of a fractional loop delay
on suboptimal control performance was negligible, which is not the case in presence
of vibration. We have also demonstrated that the optimal modeling and perfor-
mance evaluation could be obtained using standard and simple methods, without
resorting to multiple numerical integrations. We have also developed a method that
derives the continuous-time state space model from a given discrete-time state-space
model identi�ed from telemetry data. This allows to build the optimal modeling
based on the continuous-time state space matrices. We have also shown how to de-
rive the open-loop and rejection transfer functions that are useful for stability and
performance analysis. The implementation of the optimal regulator would need no
modi�cation of the RTC code.

This modeling is accompanied by the need to estimate the system loop delay, a
task for which we have de�ned and tested a simple and accurate method. Concerning
the disturbances modeling, the temporal cut-o� frequencies for each mode of the AR2
state-space model appeared to have a signi�cant impact on performance and require
special attention. The equivalent wind speed in the pupil, usually used as a reference
to compute these cut-o� frequencies, is in many cases not adapted and leads to an
undervaluation of the best modal speeds values for the AR2 model.

On the bench, the study of modal power spectral densities (PSDs) has con�rmed
that taking higher modal speeds V LQG

0 and thus having faster modal decorrelations
in the AR2 model were bene�cial for the performance. This allows a better handling
of the measurement aliasing signal. It allowed a gain of at least 1 SR point, and
even 3 SR points in some cases with vibration or high sampling frequency cases with
strong atmospheric turbulence (900Hz, r0 = 8 cm).

In addition to the temporal parameters, the LQG controller we implemented
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needs some spatial priors about atmospheric conditions, such as r0 and L0. We
started with a basic existing identi�cation methods (based on von Kármán statis-
tics), with an important di�erence being the consideration of the poor reconstruction
of some Zernike modes with a segmented pupil for which the edges are not measured.
With the same identi�cation method, we made an important progress in the evalu-
ation of the �loop gain� of the LQG, that is, the fudge factor. It is a key factor to
be tuned in terms of both stability and performance, and we have shown thanks to
on-bench results that our evaluation of the fudge factor was a good compromise.

All the proposed disturbance models are identi�ed in an unsupervised way from
telemetry data. We only use the measurements provided by the wave front sensor (a
Shack-Hartmann type in the case of GTCAO) in the form of slopes measurements
and �ux per sub-aperture. The regulator can therefore be easily updated at regular
intervals (less than 1 minute is needed to build all the LQG matrices on a basic
laptop computer) and is thus able to closely follow the evolution of the disturbance
statistics.

As for the system modeling required by LQG control, we have shown that using
a pseudo-synthetic interaction matrix gives better results than the experimental in-
teraction matrix, even after noise thresholding. This gives moreover access to both
the WFS measurement matrix and DM in�uence functions matrix. We unravelled
the rules to �t the WFS measurement matrix to the system's geometry and CCD
pixel size. The synthetic DM in�uence function matrix allows to de�ne an e�cient
projector PN

u for the projection of the Kalman �lter phase predictions onto the DM
actuator space. This projector has the advantage to avoid a detour via the measure-
ment space, as done before. It thus avoids the lack of visibility some DM actuators
have in the measurement space (because we are not really in a Fried geometry), and
it avoids worrying about de�ning a command matrix from the interaction matrix. In
OOMAO simulations, the use of this projector improved strongly the performance
(5 SR points), while on the bench rather 1 SR point. This may be due to several
factors, e.g., the lack of precision of the estimated actuators position or the lack of
consideration of the non-linear relation between phase and WFS measurements due
to the large size of CCD pixels.

In this work, we paid particular attention to the potential loss of performance
implied by the rotation of the pupil. We noticed with simulations and bench tests
that the model identi�cation is sensitive to changes in the sky-to-WFS angle. This
could be mainly a problem in case of observation very close to the observatory zenith
where de-rotation higher than 2 degrees per 2 minutes might happen. The extreme
case is 90 degrees per 2 minutes: it makes the LQG controller less e�cient than
the integrator when the disturbance energy (e.g., vibration peaks) is concentrated at
di�erent frequencies on modes that exhibit rotational symmetry with respect to each
other (e.g., tip and tilt, astigmatism 1 and 2, etc.). This of course does not happen
with the integrator as it is independent from this angle.

The LQG regulator we developed is based on a parametric model complemented
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with a non-parametric one, a data-driven �model-free� part, with a design that in-
sures to meet closed-loop stability conditions. As it is entirely built from telemetry
data, it can be used in operation with a very limited learning stage (say in the order
of 10 seconds). Its performance could be assessed through on-bench experiments
conducted on GTCAO (with DARC real-time computer) at the IAC, and we warmly
thank the team at IAC for having welcomed us and provided the necessary sup-
port. The on-bench performance revealed excellent, with a signi�cant increase in the
quality of scienti�c images compared to the best-loop-gain integrator, in particular
in situations of low signal-to-noise ratio (SNR) (magnitude of the guide star greater
than 12.5 in the visible) or in presence of vibration in the medium and high temporal
frequencies. For example, we get about 10 points more of a Strehl ratio of 35% in
a low SNR case, or on a Strehl ratio of 38% in a case of vibration similar to those
of the Keck telescope. In situations of pure atmospheric turbulence with favorable
observing conditions (large r0 and magnitudes less or equal to 11.3 in the visible), the
integrator and our predictive LQG controller have similar performance, albeit with
a better robustness during on-sky operations, as reported in (Sinquin et al., 2020).
Also, thanks to the kindness of Sam Ragland and Peter Wizinowich, and with the
initial help of Olivier Beltramo-Martin, we could test the performance of our LQG
design on hundreds of on-sky data recorded in 2013 and 2020 on the AO system
of the Keck telescope. These tests, carried on in replay mode, have shown possible
improvements of the same order of magnitude as those obtained on GTCAO. In
addition, the LQG regulators exhibit very good stability margins, never seen below
35-degree phase margin and 7-dB gain margin.

8.2 Perspectives

The results presented in this manuscript motivate a fully unsupervised operation
with LQG regulators, which should be the next stage of development in the short
term. The �rst of the perspectives would thus be to validate the whole strategy
with on-sky tests, as the agreement between in-lab bench results and on-sky replays
makes it very promising. Besides, the development of the remaining articulations
and GUIs to operate a fully autotuned LQG regulator on sky are the purpose of the
H2020 ORP project (T. Morris et al., 2020).

Of course, this work has left aside certain aspects which could not be tackled for
lack of time, certain in-depth studies would have required additional attention. To
start with, the developments of chapter 4 could not be implemented and tested on
the bench. As the modeling corresponds to continuous-time disturbances, it would
be particularly interesting to be tested on sky. On a bench, when non-atmospheric
disturbances are injected thanks to the DM, the modeling should be modi�ed to ac-
count for piece-wise constant disturbances in addition to the atmospheric turbulence
for a better appreciation of the global performance.

As for the AO system calibration, several points worth being looked at. First, the
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calculation of the pseudo-synthetic interaction matrix, based on (Heritier et al., 2018;
Heritier-Salama, 2019), led to obtaining an in�uence matrix with correct geometry
allowing to derive a better phase-to-commands projector that naturally accounts
for dead actuators. However, the relative improvement was not as good as what
was expected when compared with simulations so that it is worth looking deeper
into this problem to possibly derive a more e�cient interaction matrix. Second,
the simple method based on a least-squares solution of a linearly parameterized
equation proved to deliver an e�cient estimation of the loop delay in open-loop,
even with turbulence. It would be useful to study a formulation for closed-loop
on-sky operations in particular for systems without internal sources.

The modeling of the disturbances is ready to be fully autotuned. It is based
on the Zernike basis and involves two di�erent strategies: a machine learning-based
method, N4SID, for the coupled low-order state space model, and a parametric state
space model corresponding to a multivariable autoregressive model of order 2, the
parameters of which are estimated from telemetry data. Although leading to stable
and e�cient regulators, the AR2 model deserves some attention, in particular for the
high orders: we have seen that the model PSD was sometimes not �tting so closely
the experimental data. It could thus be interesting to identify order 2 models for each
mode using N4SID, as proposed in (Prengere, 2021). As for the low-order model,
we have mentioned above its sensitivity to the sky-to-WFS angle when observing
close to the zenith. To counteract this problem, it could be built di�erently, using a
decoupled design where the modes with rotational symmetry are summed together.
This is likely to produce a model that becomes insensitive to this angle.

A problem that has not been addressed is the e�ect of the aliasing on high-
frequency vibrations: when sampled below the Shannon-Nyquist frequency, vibra-
tions that are physically not present in the system appear in the measurements. If
we let the regulator compensate for them, the performance will be degraded as the
DM will generate a vibratory signal. If a table of possible high-frequency vibrations
is available, the low-order model could be modi�ed to cancel out the ghost vibrations
by performing a canonical decomposition of the low-order state matrix. This should
be possible in an automated way.

The switching between two successive controllers, which needs software modi�-
cations that are for the moment not available on DARC RTC, needs to be deepen
in order to insure a good stitching. The simple solution that consists in keeping the
previous state to perform a kind of warm restart is not e�cient enough. The method
described in (H.-F. Raynaud, Kulcsár, et al., 2016) insures bumpless switching but
needs real-time operations to be performed in parallel of the control calculation. This
would however concern only the low-order part of the regulator state. The rest of the
state being related to smooth turbulence models, it could be initialized with warm
restart.

Globally, having an index that indicates in real time whether the model is in
good adequation with the disturbance would be of great interest. As we have seen in
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the results, lowering the residual slopes variance does not necessarily lead to lowering
the residual phase variance and this makes the task more di�cult. However, taking
advantage of the estimated phases given by the Kalman �lter should be investigated.

To jump towards extreme AO or extremely large telescope sizes, the Zernike
basis is not adapted since it is di�cult to reach a number of modes greater than
900 (Prengere, 2021). We could transpose our methods towards other basis such
as the Karhunen�Loève, as foreseen for the AO control of the MICADO �rst light
instrument of the ELT (Clénet et al., 2018; Zidi et al., 2022). In combination with
the use of N4SID for the AR2 model identi�cation, as proposed in (Prengere, 2021)
and mentioned above, this would allow the modeling methodology to be applied to
any modal basis without speci�c knowledge about its spatio-temporal statistics. This
could serve the next generation of instruments such as SPHERE+ (A. Boccaletti et
al., 2022).
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List of whole headers � examples

A.1 LQG controller headers
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Keyword Value Description

MI
'20201116_104325_pmx_...
rcond_0.1_stdThresh_1'

Interaction matrix (pmx)

MITHRESH 1.8e-6 Interaction matrix threshold value

MISYNTHE
'20220308_X_KlinKquadAngle...
CouplingStrangecoe�XrotYrot.mat'

Synthetic interaction matrix parameters

PINVMINT 1 Recompute a new RMX?
PINVNFLT 4 Number of �ltered PMX modes
PSEUDACT 0 Use TT pseudo-actuators?

FREQ 1000 Chosen FPS [Hz]
SYSDELTA 0.4 System delay (POL reconstruction) [frame]
LQGDELTA 0.4 Controller delay

ATMFILE
'20210730_131755_OPEN_LOOP_...

_cents'
Data �le for atmosphere priors estimation

FLATFILE '20221123_163003_OPEN_LOOP_acts.�ts' File with DM �attening commands
ATMHANN 1 With/without Hann damping of time-series? [boolean]
ATMMAPFF 0.6232 Estimated fudge factor αMAP

ATMNITER 2 Number of priors estimation iterations
DSUBAP 0.5675 Subapertures on-sky diameter [m]

DMSYNCHR 'poyneer' Synchronizing method ('poyneer' or 'WFS'?)
LAMBDWFS 5× 10−7 WFS (and models) wavelength
PXSIZWFS 1.70e-6 WFS CCD pixel on-sky size

NOISDATA
'20210730_131755_OPEN_LOOP_...

_cents'
Data �le used for noise estimation

DZERCOEF 0.26 WFS CCD Shannon coe�cient
ORADIAL 37 Zernike radial order (AR2)

KSI 0.9000 Damp factor ξ (AR2)
MEANWIND 9 Wind speed [m s−1] (AR2)

R0 0.3300 r0 [m] (AR2)
L0 25 L0 [m] (AR2)

WITHLO 1
Identi�cation of low-order

modes? [boolean]
SYSID 'n4sid' Identi�cation method

NMODLO 2 Number of low-orders (LO)
ORDERLO 15 Model order for (LO) modes

DATATOM
'20210730_131755_OPEN_LOOP_...

_cents'
Data �le used for

LO modes modelling
FUDGE 50 Fudge factor αFF

SWMA2MI 100 Superior limitation of Σw (min2max)
DARE 'doubling' Method for solving Riccati equation

STOPCRIT 'normAlpha'
Criteria for solving
Riccati equation

EPSILON 1.00e-09
Criteria value for solving

Riccati equation
MAXITER 50 Max of iterations for solving Ricc. eq.

NHIGFREQ 100
Number of high frequency PSD points

used for noise estimation
MEANWIND 38.138 Model decorrelation speed [m/s] (TipTilt modes)

DM1 11.35 M1 diameter [m]
DM2 0 Central obscuration diameter [m]

FILTNDAG 1 Number of �ltered modes for N†

KNDAGTT 1.1936 Rescaling factor applied for N†

METHODPU 5 Projector Pu method (0->McomD, 5->N†)
NDAGPIST 0 Piston used to replace dead actu?
NDAGBROK 330 Index of dead actuator set to zero in N

Table A.1: List of LQG controller headers - example of the controller
'20210730_13h58m49s'
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A.2 Bench data headers

Keyword Value Description

MI '20210208_121706_pmx_rcond_0.10_stdThresh_1.00' Interaction matrix (pmx)
MC '20210208_121706_rmx_rcond_0.10_stdThresh_1.00' Command matrix (rmx)

TOTDELAY 1.7000 Total delay [frames]
SCIBGRMV 1 Was the scienti�que background removed?
CTRLSTMP '20210715_15h05m32s' Controller timestamp
SCINIMAG 200 Number of scienti�c images
DATASTMP '20210715_174843' Timestamp of this data �le
CTRLMODE 'INT' Running darc-int or darc-lqg?
FPSWFS 100 Set FPS [Hz]
FPSDARC 99.9979 DARC FPS [Hz]
PHASCRN 2 Phase screen
CCDGAIN 990 WFS CCD gain
VWIND 33.0000 Wind speed [bench unit]

SCIEXPOS 50000 Scienti�c camera exposure time [µs/image]
WFSTHRES 1200 WFS light threshold [ADU]
NGSPOWER 0.9000 [bench units]
NGSFLTWH 3 Filter wheel position
INTGAIN 0.6000 Integrator global loop gain (NA if LQG mode)
INTLEAK 0.9900 Leaky factor (NA if LQG mode)
VIBRATOF 'KECKcommands_1000FPS_20221011_14h41m57s' Vibration commands �le (NA if no vibration)
VIBRATOG 0.5 Gain applied to VIBRATOF commands
COMPTIME 2.4199e-04 Computation time [s] (slopes-to-commands time)

Table A.2: List of bench data headers - example of the run '20210715_174843'

195



Appendix A. List of whole headers � examples

A.3 Vibration commands headers

Keyword Value Description

TIMESTMP '20210730_12h23m07s' Timestamp of this vibrations �le
FPS 1000 Chosen FPS [Hz]

NITER 10750 Length [frames]
MODEVIB '1 2' Concerned modes [Zernike]

FVIB '12and90' Frequencies [Hz]
RMSAOA '1.2125e-07and2.425e-08' RMS angle of arrival [rad]

WFSLMBDA 6.5000e-07 WFS wavelength [m]
RMSPHI '3.0473and0.60947' RMS dephasing [rad@λwfs]

KSI '0.01and0.0001' Damping factor ξ
SEED 45 Seed for pseudo-random vibration phases

PINVMINT 1 Recompute a new RMX?
MI '20201116_104325_pmx_rcond_0.10_stdThresh_1.00.�ts' Interaction matrix (PMX)

PINVNFLT 15 Number of �ltered PMX modes
PSEUDACT 0 Use TT pseudo-actuators?

Table A.3: List of vibration commands �ts �le headers - example of the com-
mands batch '20210730_12h23m07s'.
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Appendix B

Building the LQG regulator

Procedure for the building of the LQG regulator matrices

We �rst gather here the expression of the global state space representation of the
disturbances as given in (6.4), together with some notations that are used in the �ow
chart presented on next page.
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
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xLOk+1

xLOk
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 =
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with the following notations:

Atur =

[
Atur

1 Atur
2

I 0

]
(B.4)

Ctur
y = [0 D] (B.5)

CLO
y = [0 DCLO] (B.6)

Ctur
ϕ = [I 0] (B.7)

CLO
ϕ = [CLO 0] (B.8)



Get data from RTC
(slopes, commands, intensity maps)

Compute POL slopesM synth
int (5.12)

∆ in section 5.5.3.3

Compute Σw

Section 5.6

Compute RMAP (3.32)
r0, L0, αMAP in 6.2.2, αFF

Reconstruct POL phases

Identify LO model
in section 6.3

gives ALO, CLO
ϕ ,ΣLO

v , CLO
y

Estimate V LQG
0

in section 6.2.3

Compute AR2 matrices
in section 6.2

gives Atur, Ctur
ϕ ,Σtur

v , Ctur
y

Assemble global model
gives A,Cϕ,Σv, Cy

Solve DARE
Compute Kalman gain L∞

Needs αFF Adjust V LQG
0 or αFF

A− L∞C
stable?

no

Phase-to-commands projector
Pu in (5.13) and Cϕ

Put all matrices in RTC format
Write headers

Send matrices to RTC

yes
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