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Modélisation et conception par approche synchrone d’architectures
neuronales hybrides biologique-artificiel

Résumé
Alors que les Réseaux de Neurones Artificiels (RNA) continuent de progresser dans des do-
maines tels que l’apprentissage automatique, la robotique, les véhicules autonomes et le di-
agnostic de santé, un nouveau cadre d’application gagne du terrain à la fois dans les secteurs
académique et industriel : la Neurobiohybridation. Ce domaine cherche à établir des connexions
entre des neurones artificiels et biologiques dans le but de comprendre et potentiellement de
réparer ou remplacer des fonctions cérébrales perdues suite à des maladies ou des accidents.
Dans cette perspective, le développement de réseaux de neurones artificiels inspirés biologique-
ment, souvent appelés Réseaux de Neurones à Spikes (SNNs), est essentiel pour améliorer la
compatibilité entre les systèmes neuronaux artificiels et biologiques. Cette thèse s’inscrit dans
ce contexte en utilisant l’approche synchrone pour modéliser, mettre en œuvre et simuler des
SNNs bio-inspirés et biomimétiques. En utilisant des vérificateurs de modèles, qui permettent
de prouver ou d’extraire des propriétés des systèmes de manière formelle, notre objectif est
d’acquérir une compréhension plus complète des comportements biologiques dans le future.
Pour la première fois dans ce contexte, nous utilisons le langage Light Esterel pour atteindre nos
objectifs. Nous démontrons son potentiel dans la mise en oeuvre de modèles neuronaux, ini-
tiant une bibliothèque de modèles pour explorer différents types de SNNs. Tout au long de cette
thèse, nous avons développé un cadre complet basé sur Light Esterel pour modéliser, simuler et
mettre en oeuvre divers modèles de SNNs. Pour aborder les expériences de neurobiohybrida-
tion, nous avons développé notre propre architecture matérielle, SynchNN, capable d’exécuter
en temps réel des SNNs récurrents en utilisant notre bibliothèque de modèles. L’environnement
de modélisation que nous avons développé est complété par un framework de simulation, en
cours de développement, visant à réaliser des expériences de neurobiohybridation à l’avenir.

Mots-clés : Réseaux de neurones impulsionnels, Approche Synchrone, Langage Light Esterel,
FPGA, neurobiohybridation
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Modeling and design of neural network architectures for neural
artificial-biological hybridization based on synchronous approach

Abstract
As Artificial Neural Networks (ANNs) continue to advance in fields like machine learning,
robotics, autonomous vehicles, and healthcare diagnostics, an application domain is gaining
attraction in both academic and industrial sectors : Neurobiohybridization. This domain seeks to
establish connections between artificial and biological neurons with the goal of understanding
and potentially repairing or replacing lost brain functions due to disease or accidents. In pursuit
of this, the development of biologically inspired artificial neural networks, often referred to
as Spiking Neural Networks (SNNs), is essential to enhance compatibility between artificial
and biological neural systems. This thesis fits into this context by using the synchronous
approach to model, implement, and simulate bio-inspired and biomimetic SNNs. Leveraging
model checkers, that allow to prove or extract properties in systems in formal manner, our
aim is to gain a more comprehensive understanding of biological behaviors in the future. For
the first time in this context, we utilize the Light Esterel language to achieve our objectives.
We demonstrate its potential in implementing neural models, initiating a library of models for
exploring different types of SNNs. Throughout this thesis, we developed an entire framework
based on Light Esterel in order to model, simulate and implement various SNN models. To
address neurobiohybridization experiments, we developped our own hardware architecture,
SynchNN, capable of executing recurrent SNNs in real-time using our library of models.
This framework we developed is completed with an on-going simulation framework aiming to
conduct neurobiohybrid experiments in the future.

Keywords: Spiking Neural Networks, Synchronous Approach, Light Esterel language, FPGA,
neurobiohybridization
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1.1 Project context

With digital systems becoming an integral part of our daily lives, providing services that closely
align with human needs, such as sports or medical monitoring through connected devices, the
future holds the potential for digital systems to be regarded as "digital prostheses". These prostheses
would not only assist in specific tasks but also enhance human capabilities, augmenting cognition
and sensory functions. This raises the questions of their learning, appropriation and integration
into the everyday environments of those who use them. The partners of the ARTEFACT project
proposed that this topic, often imposed by American giants or simplified by the media, has to
be finally addressed and reappropriated by the University in an interdisciplinary manner. The
ARTEFACT project (Université Côte d’Azur (UCA), 2018-2021) is a collaborative effort involving
researchers and professors from various disciplines such as electronics, sociology, psychology,
computer science and neuroscience. The project aims to encompass the entire process, from the
design of new digital system devices to the support of their implementation and user acceptance.
The ARTEFACT project addresses three specific work packages (WPs):

• WP1 - Spatial cognition: This WP focuses on the development of a triangulation-based
localization system for monitoring and surveillance of elderly people.

• WP2 - Connected glasses and sensory augmentation: The objective of this WP is to establish
a system capable of delivering visual information from connected glasses to impaired people
through tactile feedbacks.

• WP3 - Neural hybridization and extended cognition: This WP, which is directly relevant to
this thesis, aims to develop neural architectures using the synchronous approach to enable
communication between artificial and biological neurons for the design of future neuropros-
theses.

This thesis, titled "Modeling and Design of Neural Network Architectures for neural
using the Synchronous Approach", specifically addresses WP3, the interconnection between
biological and artificial neurons. The collaboration involves several laboratories: the Laboratory of
Electronics, Antennas and Telecommunications (LEAT) for the study of the synchronous approach
and the design and development of neuromorphic systems; the Institute of Industrial Science
(IIS) at the University of Tokyo, Japan, for providing the experimental setup for communication
between biology and artificial systems; the NeuroMod Institute for biological discussions, and the
Laboratory of Computer Science, Signals and Systems (I3S) for computer science expertise.

1.2 Thesis context

The brain, the most complex organ of the human body, performs an astonishing array of functions
crucial to our survival and well-being. It represents one of the main components of the nervous
system. Within this system, neurons are the basic structural and functional units. These neurons
form a vast network, transmitting nerve impulses - a series of electric signals also known as action
potentials or spikes - amongst themselves and to different body parts. By doing so, neurons are
responsible for coordinating all the body’s activities, from basic functions like heart rate and
breathing, to complex processes like thoughts and emotions.



4 Chapter 1 — Introduction

Neuroscience is a scientific discipline dedicated to study the nervous system in its entirety. It
seeks to understand how the nervous system is structured, how it operates, how it develops, how
it changes over time, and how it can be repaired. This discipline covers a wide range of studies,
extending from molecular and cellular exploration of the nervous system to the investigation of
complex cognitive phenomena such as memory, learning, emotions, perception and decision-
making.

How do neurons enable the emergence of complex cerebral functions only through the ex-
change of electrical impulses?

The brain contains nearly 100 billion neurons (Herculano-Houzel, 2009) that communicate in a
multitude of interconnected networks and sub-networks in an extremely intricate way. Despite
technological advancements and intensive research, the answer to this question still holds a large
share of unknowns. However, there are theories that propose models to explain these complex inter-
actions. Among these theories, there are for example the "neuronal assemblies" and "polychronous
networks" theories. The neuronal assemblies theory suggests that groups of neurons connected
together can generate a sustained pattern of electrical activity. These assemblies are thought to
represent specific cognitive or perceptual entities, thus offering a possible way to link neural and
cognitive processes (Hebb, 1949b; Buzsáki, 2010). The polychronous networks theory, on the other
hand, proposes that precise timing of action potentials within the neural network is crucial. It sug-
gests that information is stored in the timing of spikes and the network’s time-dependent structure,
rather than the rate of neuron firing. This idea allows for an immense capacity for information
storage and processing within the brain’s neural networks (Izhikevich, 2006).

Studying, testing, or verifying these theories using observations from real neurons can quickly
become complex and requires advanced technological means. Precisely and simultaneously record-
ing activities from multiple neurons can be challenging, and the dynamic nature of biological
networks activities adds further complexity. To overcome these challenges, it is advantageous to
turn to in silico approaches, i.e. computer-based simulations, modeling or analysis.

Computational neuronscience and neuromorphic engineering

In silico approaches are made possible through the computational neuroscience discipline, a spe-
cialized interdisciplinary branch within the neuroscience field. It aims to develop and use math-
ematical models, algorithms, computer simulations, and theories to comprehend and predict the
functioning of the nervous system. It seeks to elucidate how nervous systems process information,
generate behavior, and how they can be modeled. These models focus on various aspects of the
nervous system, from biochemical processes within individual neurons to the behavior of large
neuronal networks. They provide controlled and highly detailed platforms for investigating neural
activity, exploring network dynamics, and manipulating various parameters to gain insights into
complex neural processes, impossible to perform in vivo. There are numerous models of neurons
with diverse characteristics. These models are distinguished based on their level of abstraction
and modeling objectives. In this thesis, we will focus specifically on bio-inspired or biomimetic
(bio-plausible) models and other models of biological mechanisms. These models are governed
by a system of differential equations to describe the mechanisms underlying the bioelectrical or
functional activity of neurons.
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In parallel, a different but related in silico branch, the neuromorphic engineering, derives
inspiration from the structure, functioning and processes of the human brain to design electronic
systems, algorithms and hardware architectures. The neuromorphic engineering aims to create
systems capable of mimicking brain-like learning to tackle tasks requiring human intelligence,
systems capable of real-time processing of vast amounts of information with energy efficiency
compared to traditional computers, or building adaptable systems capable of reorganization.

Toward the development of neuroprotheses

By developing models and architectures based on Artificial Neural Network (ANN) that replicate
the functions and structures of the nervous system, while also surpassing the speed of biological
neurons (Mahowald & Douglas, 1991), there is a rapidly growing interest in the field of biomedical
domain with the development of neuroprostheses. Neuroprostheses are devices that interact directly
with the nervous system to restore or replace lost brain functions due to diseases or accidents.
Devices that communicate directly with the nervous system already exist, such as cochlear implants,
which are inserted into the ear of a deaf or hard-of-hearing person to enable sound perception; motor
prostheses, which use brain or muscle signals to control movement of a prosthesis; retinal implants,
which restore some form of vision in blind individuals; etc. However, the mentioned implants are
not specifically based on ANN. Therefore, ANN-based devices are believed to have the potential
to interact with biological neurons, paving the way for a new generation of neuroprostheses.

The integration of biological neurons with artificial ones is referred to as biohybridization or,
more specifically, neurobiohybridization (Vassanelli & Mahmud, 2016). Neurobiohybridization
is a challenge being pursued by numerous research teams wordwide. This exploration began in
2001 with the pioneering work of (Jung, Brauer, & Abbas, 2001) and has continued to the present
day (Chiappalone et al., 2022). In parallel with the goal of replacing or repairing lost functions,
neurobiohybridization also offers the potential to gain a better understanding of biological processes
and address questions such as how neurons encode information. This interdisciplinary approach
provides an opportunity to bridge the gap between neuroscience and artificial intelligence, leading
to advancements in both fields.

Synchronous approach

In our methodology, we adopt the synchronous approach. This allows to leverage the numerous
options it offers in the context of modeling neuromorphic systems and understanding the biology.
Specifically, we have chosen to work with Light Esterel, a synchronous language developed within
the INRIA institute (Annie Ressouche) and the LEAT laboratory (Daniel Gaffé). The language
and its compilation environment provide advantageaous features we wanted to take advantage of,
as illustrated in figure 1.1. The compilation environment includes high-level codes specifications,
efficient codes generation and the use of formal methods to check specific behavioral properties.
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Figure 1.1: Light Esterel compilation environment and options

One important feature of the synchronous approach is the assurance it provides that the specifi-
cations are faithfully preserved throughout the entire compilation process, up to the code generation
phase. This is achieved through the underlying paradigm of the synchronous approach. This allows
the developpers to focus on the design and expression of their high-level specifications, to generate
multiple target codes seamlessly, without low-level coding burden.

Finally, due to the rigorous and well-defined nature of synchronous languages, it becomes
feasible to apply formal methods to verify and reason about the behavior and properties of the
specified systems.

So, this thesis is positioned at the intersection of these fields, with the aim to exploit the
synchronous approach for modeling and studying neuronal networks, for the development of bio-
logically plausible neuromorphic models and framework for neuroprostheses future applications.

1.3 Problematics

The use of formal methods in verifying software correctness and ensuring that the system respect
the given specifications is well-established, particularly in critical software systems. These methods
employ mathematical logic and provide rigorous reasoning techniques for system analysis. While
formal methods have demonstrated success in various domains, such as the study of dynamic
biological systems like genetic and metabolic networks (mentionned in (Guinaudeau, 2019)), their
application in the field of neuroscience is limited and relatively unexplored.
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This work marks the first application of the Light Esterel language, our main tool, in the study
of ANNs. Specifically, we will focus on Spiking Neural Networks (SNNs), a category of ANNs
that closely mimic the behavior of biological neurons by using spike-based communication.

All these points raise questions regarding, firstly, the use of Light Esterel for developping bio-
logically plausible SNN models; secondly, the exploration of the potential of formal methods to gain
a comprehensive understanding of the dynamics of BNNs; and thirdly, the types of neurobiohybrid
experiments that can be conducted in this context.

1.4 Objectives

The objectives of this thesis concern the application of the Light Esterel language in the modeling of
bio-inspired and biomimetic neural architectures, with a specific focus on neurobiohybridization.

The first objective is to demonstrate the capability of Light Esterel to model neural systems
that closely resemble the behavior of their biological counterparts. We aim to develop accurate and
biologically plausible models and validate them through experimental simulations and implemen-
tations.

The second objective involves exploring the feasibility of employing proof techniques on
our models, and to conduct two distinct experiments. The first experiment focuses on behavior
equivalence, where we try to formally prove that our modeled neural systems exhibit behavior
equivalent to biological observations. This would provide evidence of the fidelity of our models to
biological reality. The second experiment involves parameters exploration, where we aim to utilize
proof tools to identify sets of parameters that enable our neural models to exhibit specific desired
behaviors, similar to those observed in biological systems.

The third objective of this thesis is to leverage the developed neural models and biological
mechanisms in Light Esterel, to facilitate the generation of neural networks with ease in different
codes. We aim to develop a framework that simplifies the process of creating neural networks based
on our models and their corresponding implementations. Especially, we aim to test the generated
neural networks for neurobiohybrid experiments.

1.5 Contributions

The contributions of this thesis are as follows:

1. The utilization of the Light Esterel language for the first time in the domain of SNNs. This
required modifications to the initial compilation environment of the language. Specifically,
an input format was developed as front end of the Light Esterel compilation process for
specifying neural networks. Additional instructions and operators were added to the language
to facilitate the modeling of neural networks. Furthermore, two tools, "create_gln" and
"genlenet" were developed. These tools enable the generation of high-level specifications
for random or specific neural network’s configurations, and the rewritting of the high-
level specifications, respectively. The compilation tool "genlenet" allows to choose either to
generate codes or to produce the configuration files for the developed hardware architecture.

2. The development of a specific hardware architecture called SynchNN, designed to execute
recurrent SNNs in real-time with the neural models and biological mechanisms developed
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in Light Esterel. This architecture provides a solution to the scale limit encountered with the
Light Esterel compilation environment.

3. The use and study of the chosen symbolic proof tool : KIND2, within the context of our
application.

4. The ongoing development of a simulator for biohybrid or neurobiohybrid experiments, aim-
ing to complement the SynchNN architecture. This simulator serves as a tool for conducting
simulations, exploring different scenarios of biohybrid experiments, refining the developed
models and optimizing the parameters to ensure compatibility with the SynchNN platform.

These contributions collectively enhance the field of SNNs and neurobiohybridization by intro-
ducing the Light Esterel language, developing a specialized hardware architecture, and providing
tools for modeling, simulation and analysis. They also contribute to the understanding of the
applicability and limitations of symbolic proof techniques in the context of neural modeling.

1.6 Manuscript reading guide

The rest of this manuscript consists of six chapters.
Chapter 2 provides an overview of the basics in neuroscience, including the anatomy of a

neuron, the biological mechanisms involved in the generation, transmission, and reception of an
action potential, the principles and various models considered in this study, simulation methods
for SNNs, and an introduction to the application of neurobiohybridization.

Chapter 3 presents the synchronous approach, briefly discussing different existing languages
and providing a detailed description of the Light Esterel language chosen for this thesis. We also
introduce model checkers in this chapter.

Chapter 4 discusses existing works that combine neuroscience and the synchronous approach.
We explain how we described our models in Light Esterel, the validation process, and discuss the
limitations encountered with the language that led to the development of the SynchNN architecture.
Additionally, we present the results obtained from model checking experiments.

Chapter 5 provides a detailed description of the SynchNN hardware architecture developed,
including our approach to configure the architecture, our validation method and performance
analysis.

Chapter 6 presents the neurobiohybrid experiment conducted in Japan with the collaboration
of the Institute of Industrial Science (IIS) at the University of Tokyo, Japan, and discusses the
simulator developed for our neurobiohybrid application.

Finally, in Chapter 7, we present our conclusions and outline future perspectives of this thesis.



CHAPTER 2
Neural Networks

In this chapter, we explore the world of neurons and their interconnected networks, as
well as the efforts to replicate these foundation of the brain’s computing system. We start
by looking at the structure of a neuron and how neurons communicate with each other
using electrical signals known as action potentials or spikes. We then discuss different
spiking neuron models that aim to mimic the behavior of real neurons.

Next, we talk about neural properties. We discuss AMPA and GABA dynamics, the idea
of plasticity and axonal delay and the role of biological noise. Each of these topics gives
us more information about the complex workings of neural networks, but also carries
significant importance when it comes to the simulation and implementation of more bio
plausible Spiking Neural Networks (SNNs).

Then, we discuss about the simulation of SNNs. We present 2 different approaches, hard-
ware and software, and talk about their most-known framework. We discuss about their
respective advantages and disadvantages, and the applications they address. Amongst the
framework presented, we define the simulation framework we chose in this work’s context.

Finally, we focus on the context of neurobiohybridization, the context within which this
thesis is situated. We discuss the objectives, the technologies, the methodologies and
challenges of this application.

9



10 Chapter 2 — Neural Networks

2.1 Neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Action potential . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.3 Spiking neuron models . . . . . . . . . . . . . . . . . . . . 18

2.2 Models of neural properties . . . . . . . . . . . . . . . . . . . . . 24
2.2.1 AMPA and GABA dynamics . . . . . . . . . . . . . . . . . 24
2.2.2 Plasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.3 Axonal delay . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.4 Biological noise . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 Spiking Neural Network (SNN) behavorial simulation . . . . . . 29
2.3.1 Software approaches . . . . . . . . . . . . . . . . . . . . . 29
2.3.2 Hardware approaches . . . . . . . . . . . . . . . . . . . . . 30

2.4 Interfacing artificial with biological neurons : Neurobiohy-
bridization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4.1 Applications and objectives . . . . . . . . . . . . . . . . . 33
2.4.2 Technologies and methodologies . . . . . . . . . . . . . . . 33
2.4.3 Some limitations and challenges . . . . . . . . . . . . . . . 37

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37



2.1 – Neuron 11

The nervous system is a complex, highly organized network
of specialized cells, that transmit and process information
throughout the body. It is responsible for coordinating and
controlling a wide range of functions, including sensation,
movement, emotion, thought, etc. The nervous system can
be broadly divided into two main components : the cen-
tral nervous system (CNS) and the peripheral nervous sys-
tem (PNS). The CNS consists of the brain and the spinal
cord. It is the control center for the entire body, process-
ing the sensory information, generating motor commands,
and regulating higher cognitive functions such as learning,
memory or decision-making. The PNS encompasses all the
nerves outside the CNS. The nerves connect the brain and
the spinal cord to the rest of the body, responsible of the
transmission of the sensory/command information from/to
the CNS.
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2.1 Neuron

At the core of the functioning of the brain lies the neuron. A neuron is a unit cell that serves as
the basic building block of the nervous system. It was discovered by Santiago Ramón y Cajal, a
Spanish histologist and neuroscientist in the late 19th century (Llinás, 2003; De Carlos & Borrell,
2007). The main function of a neuron is to receive, process and transmit information called nerve
impulses, and it has evolved to transmit and process this information rapidly and efficiently. The
number of neurons was estimated to 86 billion neurons in the human brain (Azevedo et al., 2009).
The connections and communications between such a vast number of cells are responsible of the
multiple, various and complex brain functions.

2.1.1 Structure

The neuron is composed of 3 main parts : the soma, the dentrites and the axon, as illustrated in
figure 2.1.

Soma

Dentrites

Axon

myelin
Scwann

cell

node of
Ranvier axon

terminal

nucleus

Figure 2.1: Neuron’s structure.
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Dentrites

The dentrites are the branching extensions of a neuron that receive input from other neurons
and convey this information toward the cell body, or soma. Dentrites are characterized by their
complex branching patterns, which increase their surface area and enable them to form numerous
connections. The synapse is the junction between two neurons, where the axon terminal of the
presynaptic neuron (the neuron sending the signal) comes into close proximity with the dentrite or
cell body of the postsynaptic neuron (the neuron receiving the signal).

Soma

The soma, also known as the cell body or perikaryon, is the central part of a neuron that houses the
nucleus and other essential cellular components (Golgi apparatus, mitochondria, ...). The nucleus
contains the genetic material (DNA) that encodes for the synthesis of proteins and other molecules
necessary for the neuron’s structure, function and survival of the neuron. The main role of the
soma is to integrate signals it receives from the dentrites, and in case the amount of signals reaches
a certain threshold, it generates an action potential (or nerve impulse) that will be sent to other
neurons.

Axon

The axon is a long and unique projection of a neuron that extends from the soma. Its function is
to transmit electrical signals, known as action potentials, from the soma to other neurons or cells
such as muscles. The axon facilitates rapid and precise transfer of information between neurons,
enabling communication within the nervous system. Most axons in the human nervous system
are wrapped in a fatty insulating layer called the myelin sheath (Baumann & Pham-Dinh, 2001).
Myelin is produced by specialized glial cells such as Schwann cells in the peripheral nervous
system. Its role is to enable faster conduction of action potentials along the axon by reducing
electrical resistance and allowing the impulse to "jump" between gaps in the myelin called nodes
of Ranvier. This is particularly important when the distance between two neurons is long (from
microns to more than 1 meter), as it prevents the electric signal from decreasing or disappearing
during the transfer.

Neurons share some common features such as the 3 main parts mentionned previously. However,
they also exhibit a vast diversity in size, shape and function, as illustrated in figure 2.2. Neurons
can be categorized into various types (Masland, 2004; Nelson, Sugino, & Hempel, 2006; Stuart,
Spruston, & Häusser, 2016), such as sensory neurons, motor neurons and inter-neurons, each with
specific roles in the nervous system. However, there are no established consensus rules to precisely
categorize neurons (Markram et al., 2015).
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Figure 2.2: Example of different types of neurons, taken from (Stufflebeam, 2008) based on drawings made
by Santiago Ramón y Cajal. It shows the diversity of neurons in shape and size, in different brain areas.

2.1.2 Action potential

The action potential is the information exchanged between neurons, also known as the nerve
impulse or spike. It is a rapid, temporary change in the electrical potential across the membrane of
a neuron, and propagates from the soma, through the axon, to other neurons. An action potential
is generated and propagated through a series of well-coordinated movements across the neuronal
membrane as shown in figure 2.3.

Membrane potential of a neuron

The membrane potential of a neuron refers to the difference in electrical charge between the inside
and the outside of the cell membrane. A difference exists due to an unequal distribution of ions,
particularly sodium (Na+) and potassium (K+) (and chloride (Cl-)) between the inside and outside
of the membrane. The concentration of ions are regulated thanks to the selective permeability of
the cell membrane and to the action of ion pumps. The selective permeability of the membrane to
K+ ions means that it allows K+ ions to move more freely across the membrane, more precisely it
allows the K+ ions to diffuse out of the cell, which leads to only negatively charged ions inside the
cell.
Resting state: at rest, the neuron maintains a resting membrane potential, typically around -70 mV
(millivolts) (step 1 in figure 2.3), with the inside of the neuron being more negatively charged than
the outside. To compensate the K+ leaving out the cell, sodium-potassium pump (Na+/K+ pump)
actively transports 3 Na+ ions out of the cell and 2 K+ ions into the cell, using energy from one ATP
molecule (not illustrated in figure 2.3). This process allows to maintain a higher concentration of
Na+ ions outside and a higher concentration of K+ ions inside, hence a negative resting membrane
potential.
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Figure 2.3: Generation of an action potential. Modified figure from (dundeemedstudentnotes, 2012).

Generation of an action potential

The capacity of a neuron to generate an action potential is due to a significant concentration of
particular ions channels (or ions pumps for Na+ and K+) located at the axon’s initial segment
(where the axon originates from the soma), also known as the axon hillock. These channels are
voltage-dependent, meaning they open when the membrane potential crosses a specific threshold
or a depolarization threshold.
Depolarization: when the neuron receives excitatory stimulation or action potentials from others
neurons, the membrane potential becomes less negative, moving toward the depolarization thresh-
old, usually around -55 mV (step 2 in figure 2.3). Excitatory input provokes the opening of some
voltage-gated sodium (Na+) channels.
Hyper depolarization: when the threshold is reached, more Na+ channels open, allowing an influx
of Na+ ions into the cell. This rapid influx of positive ions causes the membrane potential to become
positive, leading the membrane potential to reach its peak, typically around +30 to +40 mV (step
3 in figure 2.3).
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Repolarization: as the membrane potential reaches its peak, the voltage-gated Na+ channels close,
and the voltage-gate potassium (K+) channels open. This allows the K+ ions to flow out of the cell,
returning the membrane potential back toward its negative resting state (step 4 in figure 2.3).
Hyperpolarization: during the repolarization, the K+ channels may remain open slightly longer,
causing a brief period of hyperpolarization (step 5 in figure 2.3), where the membrane potential
becomes more negative than the resting potential. The sodium-potassium pump (not illustrated on
the figure) then restores the original ion concentrations and reestablishes the resting membrane
potential.

Immediately after the action potential, it is impossible or extremely difficult to generate another
action potential as the Na+ channels responsible for the depolarization of the membrane potential
are still inactive and can not be reopened until the membrane potential returns close to its resting
state : it is called the absolute refractory period. After the absolute refractory period, when the
membrane potential is getting back (closer) to its resting state, it is possible to generate another
action potential, but it requires a stronger stimulus to reach the depolarization threshold : it is
called the relative refractory period. The refractory period ensures that action potentials propagate
unidirectionally along the axon, from the cell body to the axon terminal, and prevents them from
moving backward or continuously firing in a loop.

Propagation of an action potential

The propagation of an action potential refers to the travel of the action potential along the axon
of a neuron, from the axon hillock to the axon terminal. The influx of Na+ ions during the
depolarization phase creates a local current that flows passively along the axon. This local current
depolarizes the adjacent membrane, opening voltage-gated Na+ channels in the neighboring region
and allowing more Na+ ions to enter the cell. This depolarizes the adjacent membrane, generating
a new action potential at that location (see figure 2.4). The hyperpolarization prevents the action
potential to propagate backward or to generate a new action potential, by inactivating the previous
Na+ channels. In conclusion, the propagation of an action potential is actually a repeating process
of generation of an action potential along the axon.

Figure 2.4: Propagation of an action potential along the axon. Modified figure extracted from (Guinaudeau,
2019). The red cross means that the channel is inactive, which happened during the refractory period,
preventing the action potential from propagating backward and ensures unidirectional propagation.
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In myelinated axons, the myelin sheath insulates the axon and increases the speed of action
potential propagation. The myelin sheath is interrupted at regular intervals by small unmyelinated
regions called nodes of Ranvier, which are rich in voltage-gated ion channels, therefore a good area
to generate action potentials. The action potentials "jump" from one node to the next, a process
called saltatory conduction, significantly increasing the speed of transmission and can reach up to
150 m/s (Purves et al., 2001).

Termination : synaptic transmission

The termination phase occurs when the action potential reaches the axon terminal, which is the
endpoint of the axon where it makes connections with other neurons or target cells. The gap connec-
tion, also referred as the junction, between the neuron and the target neuron/cells, is called synapse
(see "b" in figure 2.5). Generally, the junction forms between the axon terminal of the presynaptic
neuron and the dentrites of the postsynaptic neuron, called axodentritic synapse. However, there
are other types of synapses including axosomatic, axoaxonic, dentrodentritic synapses, etc.

There are two kinds of synapses : chemical synapses and electrical synapses. Most common
ones are the chemical synapses. At a chemical synapse, the action potential transmission occurs
through the release of neurotransmitters from the presynaptic neuron into the synaptic cleft, then
the neurotransmitters diffuse and bind to specific receptors on the membrane of the postsynaptic
neuron or target cell. In electrical synapse, signal transmission occurs through the direct passage
of the action potential (electrical current) between neurons via gap junctions, which connect the
cytoplasm of adjacent cells. In the following, we will focus only on chemical synapses.

Figure 2.5: Illustration of an excitatory synaptic transmission. Modified figure extracted from (Guinaudeau,
2019). (1) Arrival of action potentials. (2) Calcium currents. (3) Exocytosis of vesicles. (4) Binding of
neurotransmitters to receptors. (5) Depolarizing currents and temporal summation of postsynaptic potentials.
(a) Presynaptic neuron. (b) Synaptic cleft. (c) Postsynaptic neuron. (d) Neurotransmitter vesicle; (e) Ion
channel receptor.
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When the action potential arrives at the axon terminal, it triggers the release of neurotransmitters
that initiate a response in the postsynaptic neuron or target cell. In the process, first the action
potential ("1" in figure 2.5) triggers the opening of voltage-gated calcium. This allows Ca2+ ions
to enter the terminal, causing a rapid increase in the intracellular calcium concentration ("2" in
figure 2.5). The influx of Ca2+ ions prompts the synaptic vesicles, which are small membrane-
bound structures containing neurotransmitters, to fuse with the presynaptic membrane ("3" in
figure 2.5). This process, known as exocytosis, releases the neurotransmitters into the synaptic
cleft. The released neurotransmitters diffuse across the synaptic cleft and bind to specific receptors
on the membrane of the postsynaptic neuron or target cell ("4" in figure 2.5). The binding of
neurotransmitters can cause the opening of ion channels, and therefore the flowing of ions into the
target cell ("5" in figure 2.5), or the activation of intracellular signaling pathways, leading to either
excitatory or inhibitory effects on the postsynaptic cells. In both cases, it causes the variation of
the membrane potential of the target cell.

Excitatory synapse involves excitatory neurotransmitters, such as glutamate, and it increases
the likelihood of the postsynaptic neuron to generate an action potential by causing depolarization
of the postsynaptic membrane. This is due to the influx of positively charged ions, Na+ or Ca2+,
which brings the membrane potential closer to its depolarization threshold. In contrast, inhibitory
neurotransmitters, such as Gamma-Amino-Butyric Acid (GABA), decrease the likelihood of the
postsynaptic neuron generating an action potential by causing hyperpolarization of the target cell’s
membrane. This is due to the influx of negatively charged ions, like chloride (Cl-), or the efflux
of positively charged ions, like K+, which move the membrane potential further away from the
threshold. We call Excitatory Post-Synaptic Potential (EPSP) when the action potential causes
the membrane potential of the target cell to depolarize, else it is called a Inhibitory Post-Synaptic
Potential (IPSP) which causes the polarization of the target cell’s membrane.

Integration of postsynaptic potentials

Both EPSPs and IPSPs can influence the likelihood of generating an action potential in the
postsynaptic neuron. Generally, one unique postsynaptic potential is not sufficient to make a
neuron generate an action potential. Multiple action potentials are required, and the integration
of postsynaptic potentials occurs primarily through two mechanisms : temporal summation and
spatial summation (figure 2.6).

• Temporal summation : Temporal summation occurs when multiple postsynaptic potentials
(either EPSPs or IPSPs) arrive at the same synapse in rapid succession. If the time interval
between these potentials is short enough, their effects can add up or "summate" before the
neuron returns to its resting state. In the case of EPSPs, this can increase the likelihood of
reaching the threshold potential for generating an action potential (figure 2.6(a)). And in the
case of IPSPs, it will make the membrane potential more negative;

• Spatial summation : Spatial summation occurs when postsynaptic potentials (either EPSPs
or IPSPs) are generated simultaneously or in a short time interval at different synapses on the
same neuron. The combined effect of these potentials can influence the membrane potential
of the neuron, hence increasing in the case of EPSPs (figure 2.6(b)) or decreasing in the case
of IPSPs, the likelihood of generating an action potential.
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(a) Temporal summation (b) Spatial summation

Figure 2.6: Spatio-temporal integration of postsynaptic potentials. The depolarisation threshold of a neuron
can be reached through two mecanisms : (a) via a temporal summation or (b) via a spatial summation.
Figure extracted from (Guinaudeau, 2019).

Leakage

The leakage refers to the passive flow of ions through "leak" channels. These ions channels are
embedded in the cell membrane, they allow specific ions to flow across the membrane, even when
the neuron is at rest. They are distinct from voltage-gated ion channels which open and close in
response to changes in membrane potentials. The role of leak channels is to maintain the resting
membrane potential of a neuron, or to reach it back when the membrane potential of the neuron is
being changed. The most common ions involved in maintaining the resting membrane potential are
K+ and Na+ ions. K+ ions flow out of the cell, in more quantity than Na+ flowing in the cell, and it
causes the membrane potential to be more negative. The dashed lines in the membrane potentials
graphs in figure 2.6 illustrate this phenomenon.

2.1.3 Spiking neuron models

Neuron models are mathematical or computational representations that seek to describe and sim-
ulate the behavior of biological neurons. Several neuron models exist, each with their strengths
and limitations depending on the level of abstraction, intended application and specific neuronal
properties they aim to capture. One abstraction level is for example the type of the model : single-
compartment or multi-compartment model. In a single-compartment model, the entire neuron is
represented as a single electrical compartment, which simplifies the neuron’s complex structure into
a point-like entity. This model ensures that the neuron’s membrane potential is uniform throughout
the cell, neglecting the spatial distribution of ion channels and the effects of dentrites and axons on
the membrane potential. The single-compartment models are generally computationally efficient
(but not all of them) and can be used to simulate large-scale neuronal networks. In contrast, in a
multi-compartment model, the neuron is divided into multiple interconnected electrical compart-
ments, representing different sections of the neuron, such as the soma, the dentrites and the axon.
Therefore, it allows to take into account the influence of the different parts of the neuron on the
membrane potential. Although they provide a good insights on the neuron’s biological mechanisms,



2.1 – 2.1.3 Spiking neuron models 19

they are computationally expensive and are not suitable for large-scale simulations or real-time
applications.

Single compartments are able to reproduce a variety of biological neuron families, as shown in
figure 2.7. In the following, we will present some examples of single compartment neuron models,
it is not an exhaustive list but it provides an overview of the variety of models and their applications.

Figure 2.7: Neurons are classified into different families, here based on their response v(t) to a stimulation
I(t). Figure extracted from (Izhikevich, 2003).

Hodgkin-Huxley (HH)

Developed in 1952 by Alan Hodgkin and Andrew Huxley, this model mathematically describes
the biophysical mechanisms underlying the generation and propagation of action potentials from
observations in the squid giant axon (Hodgkin & Huxley, 1952). They were awarded for their
groundbreaking work in 1963. The model is based on the voltage-dependant behavior of sodium
(Na+) and potassium (K+) ion channels and includes a set of differential equations that represent
the dynamics of ion flow and membrane potential. The model can be represented using an electrical
analog circuit in figure 2.8, to simplify the understanding of the membrane potential dynamics and
the role of voltage-dependant ion channels.

Extracellular

Intracellular

Figure 2.8: The neuron membrane can be represented as an electrical circuit.
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The resistors, referred here as the conductances 𝑔𝑖𝑜𝑛 = 1
𝑅𝑖𝑜𝑛

, represent the ion channels (Na+,
K+) in the membrane, the capacitor represents the ability of the neuron membrane to store electrical
charge and the ion batteries represent the equilibrium potential of the ions across the membrane.
There are additional components to account for the "leak" current, they represent the passive flow
of ions across the membrane. Therefore, from the circuit in figure 2.8, the membrane potential
(𝑉𝑚) can be written as :

𝐶𝑚
𝑑𝑉𝑚

𝑑𝑡
= 𝐼 (𝑡) −

∑︁
𝐼𝑖𝑜𝑛 (2.1)

where 𝐼 is the membrane input current, 𝐶𝑚 is the membrane capacity and 𝐼𝑖𝑜𝑛 represents the
different ions currents (𝐼𝐾 , 𝐼𝑁𝑎, 𝐼𝐿𝑒𝑎𝑘). Each current can be described in terms of its conductance,
the membrane potential and its equilibrium potential :

𝐼𝑁𝑎 = 𝑔𝑁𝑎 .(𝑉𝑚 − 𝐸𝑁𝑎) (2.2)
𝐼𝐾 = 𝑔𝐾 .(𝑉𝑚 − 𝐸𝐾 ) (2.3)

𝐼𝑙𝑒𝑎𝑘 = 𝑔𝑙𝑒𝑎𝑘 .(𝑉𝑚 − 𝐸𝑙𝑒𝑎𝑘) (2.4)

The conductance evolves in time (only the leakage is constant) and according to the membrane
potential. By adding the gating variables 𝑛, 𝑚, ℎ that represent the probability of activation of the
Na+ channel, activation of the K+ channel and inactivation of the Na+ channel respectively, we
obtain the differential equations :

𝐶𝑚
𝑑𝑉𝑚

𝑑𝑡
= −𝑔𝑁𝑎 .𝑚3.ℎ.(𝑉𝑚 − 𝐸𝑁𝑎) − 𝑔𝐾 .𝑛

4.(𝑉𝑚 − 𝐸𝐾 ) − 𝑔𝑙𝑒𝑎𝑘 .(𝑉𝑚 − 𝐸𝑙𝑒𝑎𝑘) + 𝐼 (2.5)

with 

𝑑𝑛

𝑑𝑡
= 𝛼𝑛 (𝑉𝑚).(1 − 𝑛) − 𝑛.𝛽𝑛 (𝑉𝑚)

𝑑𝑚

𝑑𝑡
= 𝛼𝑚(𝑉𝑚).(1 − 𝑚) − 𝑚.𝛽𝑚(𝑉𝑚)

𝑑ℎ

𝑑𝑡
= 𝛼ℎ (𝑉𝑚).(1 − ℎ) − ℎ.𝛽ℎ (𝑉𝑚)

(2.6)

where 𝑔 is the maximal conductance, 𝛼 and 𝛽 are the voltage-dependant rate constants that also
determine the opening and closing of the ion channels.

The HH model is very close to the physiology of a neuron, as it provides a detailed description
of the activation and inactivation of various ion channels at the molecular level. However, this
exhaustive representation makes the model complex and computationally expensive, therefore
limiting its applicability to large-scale simulations (Catterall, Raman, Robinson, Sejnowski, &
Paulsen, 2012).

Integrate-&-Fire (IF) and Leaky-Integrate-&-Fire (LIF)

The Integrate-&-Fire (IF) model is much more simplified neuron model compared to the HH
model. It was introduced by Louis Lapicque (Lapicque, 1907), and it captures the overall behavior
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of the biological neuron rather than the detailed biophysical process. The membrane potential in
the IF neuron is described by one equation :

𝐶𝑚
𝑑𝑉𝑚

𝑑𝑡
= 𝐼 (𝑡) (2.7)

where 𝐼 is the input current, 𝑉𝑚 is the membrane potential and 𝐶𝑚 is the membrane capacitance.
When the membrane potential reaches a predefined threshold value 𝑉𝑡ℎ, the neuron "fires" an
action potential, also referred to as a "spike". After firing, 𝑉𝑚 is reset to a resting value 𝑉𝑟𝑠𝑡 , and
a refractory period may be imposed, during which the neuron can not fire another spike. This
model is used to study the principles of neural computation, coding and information processing in
large-scale neuronal networks.

The Leaky-Integrate-&-Fire (LIF) model (Gerstner & Kistler, 2002) is a widely used variant of
the IF model, as it includes a leakage current term, making the neuron’s behavior more biologically
plausible (biologically realistic). The leakage is represented by a resistor through which the charge
stored in the capacitance gradually dissipates :

𝐶𝑚
𝑑𝑉𝑚

𝑑𝑡
= 𝐼 (𝑡) − 1

𝑅𝑚
.(𝑉𝑚 −𝑉𝑟𝑠𝑡 ) (2.8)

where 𝑅𝑚 a constant resistance value, also called membrane time constant 𝜏. When the neuron is
not excited, the potential 𝑉𝑚 returns back to its resting potential state 𝑉𝑟𝑠𝑡 .

Adaptive Leaky-Integrate-&-Fire (ALIF)

The LIF model assumes a constant firing threshold in time. However, experimental evidence
suggests that the threshold is not fixed and varies according to the past spiking history of the
neuron (Azouz & Gray, 1999). Therefore, (Chacron, Pakdaman, & Longtin, 2003) presents a
modified version of the LIF model, known as the Adaptive Leaky-Integrate-&-Fire (ALIF) which
incorporates a dynamic threshold variable. The ALIF is described by 2 differential equations :

𝑑𝑉𝑚

𝑑𝑡
= 𝐼 (𝑡) − 1

𝜏𝑚
.(𝑉𝑚 −𝑉𝑟𝑠𝑡 ) (2.9)

𝑑𝑉𝑡ℎ𝑟𝑒𝑠

𝑑𝑡
=

1
𝜏𝑡ℎ𝑟𝑒𝑠

(𝑉𝑡 −𝑉𝑡ℎ𝑟𝑒𝑠) (2.10)

if 𝑉𝑚 ≥ 𝑉𝑡ℎ𝑟𝑒𝑠, then

{
𝑉𝑚 = 𝑉𝑟𝑠𝑡

𝑉𝑡ℎ𝑟𝑒𝑠 = 𝑉𝑡ℎ𝑟𝑒𝑠 +𝑊
(2.11)

where 𝜏𝑚 is the time constant of the membrane, 𝑉𝑡ℎ𝑟𝑒𝑠 is the dynamic threshold variable, 𝑉𝑡 is the
value at which the threshold stabilizes in the absence of firing, and W is the increasing factor of
the threshold. When the neuron reaches the threshold value, 𝑉𝑚 is reset to its resting potential 𝑉𝑟𝑠𝑡
and 𝑉𝑡ℎ𝑟𝑒𝑠 is increased by 𝑊 . 𝑊 can be constant, a linear or non-linear function.

These new dynamics represent the threshold fatigue of the neuron, meaning that every time the
neuron emits a spike, its next emission will require more stimulation or will take longer than the
previous emission. After a certain moment of time of not firing, defined by 𝜏𝑡ℎ𝑟𝑒𝑠, the neuron will
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recover its initial threshold. The neuron dynamic shows adaptation i.e. gradual change in firing
rate, a feature that is absent from the standard LIF model : the neuron firing rate decreases over
time in response to a constant stimulus.

Izhikevich (IZH)

The Izhikevich (IZH) model (Izhikevich, 2003) is a simplified version of the HH model by using
the bifurcation theory. It captures the spiking and bursting of various types of cortical neurons
(figure 2.7) while remaining computationally efficient. The IZH model is described by a system of
2 differential equations :

𝑑𝑣

𝑑𝑡
= 0.04𝑣2 + 5𝑣 + 140 − 𝑢 + 𝐼 (2.12)

𝑑𝑢

𝑑𝑡
= 𝑎(𝑏𝑣 − 𝑢) (2.13)

if 𝑣 ≥ 30𝑚𝑉 , then

{
𝑣 = 𝑐

𝑢 = 𝑢 + 𝑑
(2.14)

where 𝑣 represents the membrane potential, 𝑢 is the membrane recovery variable and 𝐼 is the input
current. The parameters 𝑎, 𝑏, 𝑐 and 𝑑 are the constants that determine the specific properties and
dynamics of the neuron. When the membrane potential 𝑣 reaches 30 mV, the neuron is considered
to have generated a spike, and 𝑣 and 𝑢 are reset according to 2.14. The IZH model is designed
to reproduce various firing patterns but with a lower computational cost than the HH model for
example, making it suitable for large-scale simulations of SNNs.

Digital Spiking Silicon Neuron (DSSN)

The Digital Spiking Silicon Neuron (DSSN) neuron model (Kohno & Aihara, 2007; Nanami &
Kohno, 2016) is a qualitative neuron model that can simulate several classes of neuronal activities
as the HH model, given the appropriate set of parameters. The model is more precise that the IZH
model, and is described by a set of 3 differential equations and 3 functions :

𝑑𝑣

𝑑𝑡
=

𝜙

𝜏
( 𝑓 (𝑣) − 𝑛 − 𝑞 + 𝐼0 + 𝐼𝑠𝑡𝑖𝑚) (2.15)

𝑑𝑛

𝑑𝑡
=

1
𝜏
(𝑔(𝑣) − 𝑛) (2.16)

𝑑𝑞

𝑑𝑡
=

𝜖

𝜏

(
ℎ(𝑣) − 𝑞

)
(2.17)

𝑓 (𝑣) =
{
𝑎 𝑓 𝑛 (𝑣 − 𝑏 𝑓 𝑛)2 + 𝑐 𝑓 𝑛 (𝑣 < 0)
𝑎 𝑓 𝑝 (𝑣 − 𝑏 𝑓 𝑝)2 + 𝑐 𝑓 𝑝 (𝑣 ≥ 0)

(2.18)

𝑔(𝑣) =
{
𝑎𝑔𝑛 (𝑣 − 𝑏𝑔𝑛)2 + 𝑐𝑔𝑛 (𝑣 < 𝑟𝑔)
𝑎𝑔𝑝 (𝑣 − 𝑏𝑔𝑝)2 + 𝑐𝑔𝑝 (𝑣 ≥ 𝑟𝑔)

(2.19)
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ℎ(𝑣) =
{
𝑎ℎ𝑛 (𝑣 − 𝑏ℎ𝑛)2 + 𝑐ℎ𝑛 (𝑣 < 𝑟ℎ)
𝑎ℎ𝑝 (𝑣 − 𝑏ℎ𝑝)2 + 𝑐ℎ𝑝 (𝑣 ≥ 𝑟ℎ)

(2.20)

where v is the membrane potential, n and q are the fast and slow variables, respectively, that
describe the activity of the ion channels. 𝐼0 is a bias constant and 𝐼𝑠𝑡𝑖𝑚 is the input current. The
parameters 𝜙, 𝜖 and 𝜏 control the time constants of the variables. Parameters 𝑟𝑥 , 𝑎𝑥 and 𝑐𝑥 , where
𝑥 = 𝑓 𝑛, 𝑓 𝑝, 𝑔𝑛, 𝑔𝑝, ℎ𝑛 or ℎ𝑝, are constants that adjust the nullclines of the variables (Nanami &
Kohno, 2016).

Figure 2.9: Comparison of spiking neuron models in terms of bio plausibility and the number of FLOPS
(floating point operations such as addition, multiplication, etc.) needed to simulate the model during a 1 ms
time span. Extracted from (Izhikevich, 2004).
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There is a wide variety of other neuron models that differ in their complexity, level of ab-
straction and biological plausibility. The choice of the appropriate model depends on the specific
application and the trade-off between the model accuracy and computational efficiency. For ex-
ample, (Izhikevich, 2004) reviews various neuron models in terms of their biological plausibility,
i.e. number of neuron class behaviors the model can reproduce, and their computational efficiency
(figure 2.9).

In this work, we do not choose a specific neuron model. Instead, we aim to model various
models using the synchronous approach to simulate and apply verification tools to these models.
As we explain in later chapters, one objective is to simulate and to implement SNN in hardware
with the option to choose a neuron model and the neural properties to apply to the neural network.

2.2 Models of neural properties

Neural properties are essential characteristics of neurons and neural networks that enable them
to dynamically process, transmit and store information. These properties include neural dynamics
such as AMPA or GABA dynamics, short-term and long-term plasticity, axonal delay, synaptic
noise, all of which play a role in the functioning and dynamics of neural networks. We will
examine these neural properties, focusing on their underlying mechanisms and implications for the
modeling and simulation of more biologically plausible SNNs. Understanding these properties and
implementing these properties not only make the SNN more biologically realistic, but also give
insights of the cognitive processes such as the learning or memory.

2.2.1 AMPA and GABA dynamics

AMPA (𝛼-amino-3-hydroxy-5-methyl-4-isoxazolepropionic) is a receptor for glutamate neuro-
transmitter, an excitatory neurotransmitter. When a neuron receives an excitatory signal through
AMPA receptors, it increases the likelihood that the neuron will trigger an action potential. GABA
(𝛾-aminobutyric acid) is an inhibitory neurotransmitter. GABA receptors are responsible for re-
ceiving inhibitory signals, which decrease the likelihood that a neuron will trigger an action
potential. Biological observations have shown that when receiving an excitation (or an inhibition),
the effect on the membrane potential tends to decay exponentially toward zero (Ben-Ari, Khazipov,
Leinekugel, Caillard, & Gaiarsa, 1997). This decay follows a time constant, referred to as 𝜏𝑒𝑥𝑐
(for excitatory processes) or 𝜏𝑖𝑛ℎ (for inhibitory processes), which determines the rate at which the
excitations or inhibitions diminish.

In (Ambroise, 2015), they modeled the post-synaptic changes with an exponential equation :

𝐼𝑠𝑦𝑛 (𝑡) = 𝐼𝑚𝑎𝑥 .𝑒
− 𝑡

𝜏𝑠𝑦𝑛 (2.21)

where 𝐼𝑠𝑦𝑛 is the post-synaptic current, 𝐼𝑚𝑎𝑥 is the maximum post-synaptic current and 𝜏𝑠𝑦𝑛 is
either the time constant for excitatory or inhibitory synapse.

2.2.2 Plasticity

The Short-Term Plasticity and Spike-Timing-Dependent Plasticity are fundamental properties of
neural networks that allow them to adapt and change in response to incoming stimuli. These forms
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of plasticity specifically affect the post-synaptic potential in time, and are for example important
for learning and memory formation. In addition, there are other learning techniques used in the
field of neural networks, such as offline learning methods like the back-propagation technique
(Schuman et al., 2017; Sze, Chen, Yang, & Emer, 2017), an off-line learning algorithm (LeCun
et al., 1989). However, we will focus on the biologically-inspired methods, as they correspond to
online algorithms for spiking neural networks model.

Short-Term Plasticity (STP)

Short-Term Plasticity (STP) is an algorithm that refers to the synaptic strength modifications that
occur on a short timescale (milliseconds to seconds) (Zucker & Regehr, 2002; Beierlein, Gibson,
& Connors, 2003). It is associated to the changes in the amount of neurotransmitter released by
the presynaptic neuron (see section 2.1.2), the sensitivity of the postsynaptic receptors, or both,
following an action potential. There are two main types of short-term plasticity: facilitation and
depression. Facilitation occurs when the synaptic strength increases temporarily due to repeated
presynaptic stimulation. It corresponds to an increased probability of neurotransmitter release or
enhanced postsynaptic receptor sensitivity. Depression refers to a temporary decrease in synaptic
strength following high-frequency stimulation. This reduction in synaptic efficacy is usually related
to the depletion of neurotransmitter vesicles in the presynaptic terminal or desensitization of
postsynaptic receptors. The transient nature of these changes allows neural networks to adapt
rapidly to incoming stimuli. It is for example used to model Central Pattern Generator (CPG), a
neural network responsible for generating rhythmic patterns (Hill, Lu, Masino, Olsen, & Calabrese,
2001; Hill, Masino, & Calabrese, 2002) of motor activity, such as those involved in locomotion,
breathing, etc. The CPGs will be addressed in chapter 6. The STP algorithm, proposed in (Izhikevich
& Edelman, 2008), is described in table 2.1.

When a spike is received When no spike has been received

𝐼𝑠𝑦𝑛 [𝑛 + 1] = 𝐼𝑠𝑦𝑛 [𝑛] +𝑊𝑠𝑦𝑛 [𝑛] 𝐼𝑠𝑦𝑛 [𝑛 + 1] = 𝐼𝑠𝑦𝑛 [𝑛] − 1
𝜏𝐼
. 𝐼𝑠𝑦𝑛 [𝑛]

with 𝑊𝑠𝑦𝑛 [𝑛] = 𝑥𝑠𝑦𝑛 [𝑛] .𝑊𝑠

𝑥𝑠𝑦𝑛 [𝑛 + 1] = 𝑃. 𝑥𝑠𝑦𝑛 [𝑛] 𝑥𝑠𝑦𝑛 [𝑛 + 1] = 𝑥𝑠𝑦𝑛 [𝑛] + 1
𝜏𝑥
(1 − 𝑥𝑠𝑦𝑛 [𝑛])

Table 2.1: Equations that described the STP algorithm. The two cases are : the postsynaptic neuron
receives an action potential or not. Table extracted and modified from (Ambroise, 2015).

In table 2.1, 𝐼𝑠𝑦𝑛 is the input current or stimulation to the postsynaptic neuron receiving
the spike. The scalar factor 𝑥𝑠𝑦𝑛 indicates the state of the synapse (facilitation or depression)
by modulating the synaptic weight. The value of 𝑥𝑠𝑦𝑛 always tends toward 1. A percentage 𝑃

is multiplied by the 𝑥𝑠𝑦𝑛 factor each time a presynaptic spike is received. If the percentage is
greater than 1, the synapse will exhibit short-term facilitation, otherwise the synapse will exhibit
short-term depression. The constants 𝜏𝐼 and 𝜏𝑥 are the time constant of 𝐼𝑠𝑦𝑛 and 𝑥𝑠𝑦𝑛, respectively,
and they control how fast these variables return to their initial values. The figure 2.10 shows the
comparison of STP recorded in vitro (see section 2.4.2) and the model described in table 2.1.
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Figure 2.10: Comparison of STP recorded in vitro (black noisy curve) and simulated (red smooth curve) by
the model. On the left, high-frequency of input spikes decreases the effect of the postsynaptic potential on
the postsynaptic neuron. On the right, high-frequency input spikes increases the effect of the postsynaptic
potential on the postsynaptic neuron. Extracted from (Izhikevich & Edelman, 2008).

Spike-Timing-Dependent Plasticity (STDP)

Long-term plasticity, also known as Spike-Timing-Dependent Plasticity (STDP), is a form of
synaptic plasticity that occurs on a long timescale of minutes, hours, days or years (Feldman, 2012).
It is characterized by long-lasting changes in synaptic strength, which can be either potentiation
(strengthening) or depression (weakening) of synaptic connections. The STDP rule is based on the
timing of pre- and post-synaptic spikes, and can explain mechanisms such as memory or learning.

Basically, the STDP reinforces synapses that have contributed to the postsynaptic neuron
reaching its threshold while weakening less active synapses. Hebb’s postulate suggests that "if
neuron A persistently or repeatedly stimulates neuron B, causing B to generate an action poten-
tial, cellular or molecular changes occur to increase the efficiency of A’s action on B" (Hebb,
1949a). This principle forms the basis of understanding the Long-Term Potentiation (LTP) and
the Long-Term Depression (LTD). LTP is the long-lasting increase in synaptic strength following
high-frequency stimulation, LTD is the long-lasting decrease in synaptic strength following low-
frequency stimulation. Recent studies have emphasized the importance of precise timing between
pre- and postsynaptic action potentials (Markram, Lübke, Frotscher, & Sakmann, 1997; Bi & Poo,
1998; D’amour & Froemke, 2015). A general rule has emerged in the context of STDP: LTP
is induced when the presynaptic neuron fires an action potential before the postsynaptic neuron,
while LTD is induced when the presynaptic neuron fires an action potential after the postsynaptic
neuron. The amplitude of plasticity depends on the delay between pre- and postsynaptic action
potentials, with the modification of synaptic efficacy being stronger when the action potentials are
closer together. This amplitude decreases gradually with increasing time difference and becomes
null after a few tens of milliseconds (see figure 2.11).
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Figure 2.11: Temporal window for the induction of LTP and LTD. Each circle denotes the percentage change
in the amplitude of the post-synaptic potential, as a function of the delay (Δ𝑡) between the post-synaptic
neuron’s action potential and the pre-synaptic neuron’s action potential. The 2 curves are fitted to the
experimental data (circles). Figure extracted from (Walter et al., 2016), which is a modified version of (Bi
& Poo, 1998).

The formulation of the original STDP proposed in (Song, Miller, & Abbott, 2000) is described
by the equation :

𝐹 (Δ𝑡) =
{
𝐴+𝑒Δ𝑡/𝜏

+ if Δ𝑡 < 0
−𝐴−𝑒−Δ𝑡/𝜏

− if Δ𝑡 > 0
(2.22)

where 𝐴+ and 𝐴− are the amplitudes of the potentiation and depression, respectively. The 𝜏+ and
𝜏− are the time constants related to the potentiation and the depression, respectively. And Δ𝑡 is the
time difference between the pre-synaptic spike and the post-synaptic spike.

2.2.3 Axonal delay

Axonal delay refers to the time it takes for an action potential to propagate along the axon from the
soma of the presynaptic neuron to the soma of the postsynaptic neuron (including axon terminal +
dendrites propagation). This delay plays a crucial role in the overall timing and synchronization of
neural activity within the brain.

The speed at which action potentials travel along axons is influenced by several factors, such as
axon diameter, myelination, and the density of ion channels (Waxman, 1980). Larger axons generally
exhibit faster conduction velocities due to reduced internal resistance to the flow of electric currents.
Myelinated axons can transmit action potentials more rapidly compared to unmyelinated axons,
as myelination allows for the phenomenon of saltatory conduction, in which action potentials
effectively "jump" between nodes of Ranvier (Hartline & Colman, 2007).

Axonal delay plays a significant role in various neural processes such as sensory perception,
motor control, and learning. For example, it has been shown that the precise timing of action
potentials in the auditory system is crucial for sound localization (McAlpine, Jiang, & Palmer,
2001). Similarly, axonal delays are essential in the cerebellum, where they contribute to the precise
coordination of motor actions and the formation of internal models for motor control (Dean, Porrill,
Ekerot, & Jörntell, 2010).
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Incorporating axonal delays into the models can lead to more biologically plausible and poten-
tially more efficient networks (Izhikevich, 2006). Understanding and accounting for axonal delays
in the design of neuromorphic hardware and software could help improve the performance and
functionality of these systems, bringing them closer to the computational capabilities of biological
neural networks.

2.2.4 Biological noise

Biological noise is an inherent feature of neurons and neural networks, which can result from
various sources, such as stochastic ion channel behavior, random neurotransmitter release, and
fluctuations in membrane potential (Faisal, Selen, & Wolpert, 2008). Although noise is often
considered a detriment to signal processing and information transmission, it has been suggested
that it might play a functional role in neural computation and encoding (McDonnell & Ward, 2011).

In the context of biological neurons, the main sources of noise can be divided into two
categories: intrinsic and extrinsic noise. Intrinsic noise arises from the inherent randomness of
cellular processes, such as the stochastic opening and closing of ion channels and the probabilistic
release of neurotransmitters at the synapses (Stein, Gossen, & Jones, 2005). Extrinsic noise, on the
other hand, originates from fluctuations in the external environment, such as variations in sensory
input or synaptic activity from neighboring neurons (Destexhe & Rudolph-Lilith, 2012).

Recent studies have shown that the presence of biological noise can have significant conse-
quences for neural computation. For instance, stochastic resonance is a phenomenon in which the
presence of an optimal level of noise can enhance the detection and transmission of weak sig-
nals in neural systems (McDonnell & Abbott, 2009). Moreover, some computational models have
shown that noise can facilitate the generation of complex and irregular spiking patterns, which can
contribute to the efficient encoding and representation of sensory information (Faisal et al., 2008).

By incorporating noise into the design of spiking neural networks, researchers can potentially
improve the robustness and adaptability of these models, allowing them to better mimic the behavior
of biological neural networks (Izhikevich, 2007; Lansner, 2009).

There are different approaches to model and incorporate noise in neural network. For example,
by adding random fluctuations in input signals such Gaussian noise or other type of noise distribu-
tions (Bishop & Nasrabadi, 2006). Another example is by adding the noise into the neuron model
(Levitan, Segundo, Moore, & Perkel, 1968; Tuckwell, Wan, & Rospars, 2002; Brette & Gerstner,
2005). In this work, we implemented a noise model based on the Ornstein-Uhlenbeck (OU) (Brette
& Gerstner, 2005), that has been implemented and presented in (Ambroise, 2015; Grassia, Kohno,
& Levi, 2016; Khoyratee, Grassia, Saïghi, & Levi, 2019) for digital simulation of biologically
plausible neural networks. The OU model is described by the following equations :

𝑑𝐼𝑛𝑜𝑖𝑠𝑒

𝑑𝑡
= \ (` − 𝐼𝑛𝑜𝑖𝑠𝑒) + 𝜎

𝑑𝑊

𝑑𝑡
(2.23)

where 𝐼𝑛𝑜𝑖𝑠𝑒 is a noisy current, \ and 𝜎 are parameters to control the noise, ` is the mean value
and 𝑊 is a variable of the Wiener process that represents the random fluctuations. By modifying
these parameters, the process can be tuned to capture various levels of noise and dynamics. The
discretized version of the process is given by :

𝐼𝑛𝑜𝑖𝑠𝑒 [𝑛 + 1] = 𝐼𝑛𝑜𝑖𝑠𝑒 [𝑛] + \ (` − 𝐼𝑛𝑜𝑖𝑠𝑒 [𝑛])Δ𝑡 + 𝜎Δ𝑊 [𝑛] (2.24)
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Note that, we have implemented this model, but the integration of this model in the global
architecture is still ongoing.

2.3 Spiking Neural Network (SNN) behavorial simulation

Spiking Neural Networks (SNNs) are computational models inspired by the organization and the
functionality of biological neural networks, and they consist of interconnected neurons that process
and transmit information. SNNs are specifically designed to deal with information in the form of
action potentials or spikes, hence their name. The simulation of neural networks is really important
for understanding the principles governing neural information processing, testing hypotheses and
developing novel computational architectures for artificial intelligence applications.

There are 2 main different approaches to modeling and simulating SNNs, software-based and
hardware-based solutions.

2.3.1 Software approaches

Software-based approaches to SNN simulation have become increasingly popular due to the flex-
ibility they provide for exploring various aspects of neural dynamics, network topologies and
learning algorithms. Multiple frameworks and tools have been developed, and we will list the most
popular.

The NEURON environment (Hines & Carnevale, 1997) is a simulation environment for mod-
eling individual neurons and networks of neurons. It provides a high-level interface for defining
neuron models and network connectivity and supports a wide range of neural models, including
point neurons (simplified models that consider the neuron as a single point without spatial extent
or internal structure), compartmental models and cable theory-based models. NEURON is partic-
ularly well-suited for simulating biophysically detailed models that incorporate realistic membrane
dynamics and synaptic mechanisms (Carnevale & Hines, 2006).

The NEST simulator is specifically designed for large-scale SNNs with a focus on the dynamics,
size, and structure of neural systems rather than the exact morphology of individual neurons
(Gewaltig & Diesmann, 2007). It offers an efficient and highly-scalable simulation framework
that can handle networks containing millions of neurons and billions of synapses. NEST supports
a variety of neuron and synapse models and includes advanced features such as parallel and
distributed computing, allowing researchers to simulate large-scale SNNs on multi-core processors
and computer clusters.

BRIAN is a flexible and user-friendly Python-based simulator for SNNs (Goodman & Brette,
2008). It provides a simple and intuitive interface for defining neural models using mathematical
equations and supports a wide range of neuron and synapse models. Brian is designed to be easily
extensible, allowing users to develop custom models and simulation methods. It also includes
built-in support for parallel computing and GPU acceleration (Stimberg, Goodman, & Nowotny,
2018). However, it is less optimized for large-scale simulations compared to other tools (Stimberg,
Brette, & Goodman, 2019).

SpiNNaker is a software and hardware platform designed for simulating SNNs in real-time
(Furber, Galluppi, Temple, & Plana, 2014). It features a custom-built massively parallel processor
architecture optimized for neural network simulations and a flexible software environment that
supports various neural models and learning algorithms. SpiNNaker has been used to simulate



30 Chapter 2 — Neural Networks

networks containing up to a million neurons and billions of synapses, demonstrating its potential
for large-scale SNN research (Furber et al., 2012).

SpikingJelly (Feng, Xu, Yang, & Shi, 2020) is an emerging deep learning framework designed
for spiking neural networks (SNNs) based on the popular deep learning framework PyTorch
(Ketkar, Moolayil, Ketkar, & Moolayil, 2021). It aims to provide an efficient and user-friendly
platform for developing and training SNNs on both CPUs and GPUs. SpikingJelly offers a variety
of neuron models, learning rules, and encoding schemes, enabling researchers to experiment with
different SNN architectures and algorithms. By leveraging the flexibility and powerful features of
PyTorch, SpikingJelly makes it easy for researchers and developers to build, train, and evaluate
SNNs for various applications, such as computer vision, speech recognition and robotics.

For the purposes of this thesis, which focuses on developing and testing non-deep learning and
bio-realistic models or architectures, the BRIAN simulator framework was selected as the software
approach. The choice was driven by its user-friendly Python-based interface and the ability to
define neural models using mathematical equations. Our use of BRIAN is detailed in chapter 4
(section 4.1.1) and in chapter 6.

2.3.2 Hardware approaches

Hardware-based approaches to SNN simulation, also called Neuromorphic hardware, have gained
significant interest in recent years due to their potential for high-speed / real-time simulations. The
ability to perform computations in parallel, closely mimicking the natural operation of biological
neurons, leads to significant performance improvements and energy efficiency when compared to
traditional software-based simulators running on general-purpose processors (Furber et al., 2014).

Hardware-based approaches generally involve specialized computing platforms, such as Field
Programmable Gate Arrays (FPGAs) and Application-Specific Integrated Circuits (ASICs). Hard-
ware solutions for SNN simulation can be broadly categorized into analog and digital implemen-
tations. Analog implementations aim to closely mimic the behavior of biological neurons and
synapses using continuous voltage or current signals. These approaches can provide high energy
efficiency and real-time performance, but they may suffer from limited precision, variability, and
noise susceptibility. Some examples of analog hardware platforms for SNN simulation include
Neurogrid (Benjamin et al., 2014) and HICANN (Schemmel et al., 2010). Digital implementa-
tions, on the other hand, use discrete signals to represent spikes and neuronal states. They offer
greater flexibility, programmability, and scalability compared to analog implementations, but may
require more computational resources and power consumption.

FPGAs are re-configurable digital devices that allow users to create custom hardware circuits
by programming a large array of logic blocks and interconnects. FPGAs provide a high level of
flexibility and can be reprogrammed to implement a wide range of neural models and network
topologies. Other main advantages of using FPGAs for SNN simulation are their capability to
achieve real-time, low-power, low-surface performances, which can be crucial for certain applica-
tions, especially embedded applications. However, FPGA-based solutions may be limited in terms
of scalability and power efficiency compared to ASICs. We will not focus on ASICs, but generally
they are specialized integrated circuits designed to perform specific tasks. They offer the potential
for high-performance and power-efficient SNN simulations, but they are less flexible than FPGAs,
as they are tailored for a specific neural model, network architecture or application. Developing an
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ASIC can be a complex and time-consuming process, making it less suitable for rapid prototyping
and exploration of different SNN models.

Some devices, namely SOCs (System On Chips), include one or several CPUs alongside the
programmable logic array, which offers possibilities for both software and hardware programming
such as SpiNNaker (Furber et al., 2014). In this work, we have chosen to focus on FPGA-based
digital solutions for SNN simulation due to their flexibility and potential for real-time perfor-
mance. Table 2.2 compares some neuromorphic hardware architectures mainly for deep learning
applications, and we will introduce some of them, and discuss their advantages/disadvantages.

Chip Type Learning Programming Neuron Neural prop.

SpiNNaker (2010) D On & Off PyNN program. conductance-based
axonal delay

NeuroGrid (2014) A&D On & Off NGPython Adapt. IF conductance-based

TrueNorth (2014) D Offline Corelets LIF axonal delay

Loihi (2018) D On & Off Loihi API program. axonal delay
noise

Minitaur (2014) D Offline RTL LIF conductance-based

Fast pipeline (2015) D Offline RTL LIF -

HFirst (2015) D Offline RTL Complex-IF -

BrainScaleS (2017) A&D On & Off PyNN Exp-IF
conductance-based

axonal delay
analog noise

DYNAPS (2017) A&D Offline CHP Exp-IF conductance-based
analog noise

ConvNode (2018) D Offline RTL LIF -

This work (2023) D On & Off RTL

program.
(IF, LIF, conductance-based

Adapt. LIF, axonal delay
IZH, DSSN) noise

Table 2.2: Neuromorphic systems comparison. "D" is for digital, "A" for analog, "On" for online,
"Off" for offline, "program." for programmable and "prop." for properties. The last column lists
the known neural properties the chip is capable to simulate. "Conductance-based" refers to the
synapse model, taking into account the dynamics of ion channels and the changes in conductance
in time. Otherwise, the synapse strength is represented only by a constant current being added
to the post-synaptic neuron. "-" means that there were no information found. Table extracted and
modified from (Abderrahmane et al., 2020).

IBM’s TrueNorth is a neuromorphic chip developed by IBM that aims to mimic the architecture
and operation of the human brain (Merolla et al., 2014). The chip consists of an array of digital
neurons and synapses that can be programmed to implement various neural models and learning
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algorithms. TrueNorth is designed to be energy-efficient, making it suitable for use in embedded
systems and edge computing applications.

More recently, Intel’s Loihi is a neuromorphic research chip developed by Intel that features a
many-core, asynchronous, and event-driven architecture designed for energy-efficient SNN simu-
lation (Davies et al., 2018). It supports on-chip learning, enabling the implementation of various
learning algorithms without the need for external computation. Loihi has been used for a wide
range of applications, from robotics to natural language processing. And the version 2 of Loihi has
been released in 2023.

2.4 Interfacing artificial with biological neurons : Neurobiohy-
bridization

SNNs have been employed in various applications including pattern recognition (Tavanaei, Gho-
drati, Kheradpisheh, Masquelier, & Maida, 2019), robotics (Chicca, Stefanini, Bartolozzi, & In-
diveri, 2014; Krichmar, 2018), neuromorphic computing (Furber et al., 2014), Brain-Computer
interfaces (BCIs) (Kasabov, 2014)(Lorach et al., 2023) and more. As research in neuroscience and
neural engineering progresses, another interest is growing in neurobiohybrid systems (Vassanelli
& Mahmud, 2016). Neurobiohybrid research is an interdisciplinary field that combines living and
artificial systems. On the one hand, the living part consists of neurons in the form of individual
cells or networks. On the other hand, the artificial part is represented by devices that receives
and processes the information from the biological neurons through an interface that ensures the
recording and translation from the biology to the artificial, and from the artificial to the biology.
For example, the figure 2.12 illustrates the basic concept of interfacing a biological neural network
(BNN) and an artificial neural network (ANN) (can be referred as SNN as well).

Figure 2.12: Basic concept of interfacing a biological neural network (BNN) and an artificial neural network
(ANN). The physical interface to the BNN is implemented via stimulation and recording technologies.
Acquired signals are amplified and digitized in the acquisition frontend, before they are further processed to
extract informative features that serve as input to the ANN. ANN output is used to determine a stimulation
protocol, which control the current or voltage drivers connected to the stimulation electrodes to close the
loop. Figure extracted from (George et al., 2020).
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In this section, we will introduce this application domain in which this thesis is positioned. So
we will talk about some experiment technologies and methodologies, existing applications and the
challenges in this domain.

2.4.1 Applications and objectives

There are various applications in interfacing artificial and biological neurons, here we introduce
briefly a list of some of them :

• Neuroprosthetics and Brain-Computer Interfaces : one of the most well-known applications
is in the development of brain-computer interfaces (BCIs) and neuroprosthetics (Lebedev &
Nicolelis, 2006). Research on neural prosthetics is a contemporary subject with significant
advancements in recent years (Jung et al., 2001). Projects like ANR HYRENE contribute
to this area of research (Joucla et al., 2016). These devices aim to restore or augment lost
motor, sensory or cognitive functions by directly connecting the brain with external devices
or artificial limbs (Collinger et al., 2013).

• Rehabilitation and recovery after brain injuries: another application area is in developing
therapies and interventions for patients with brain injuries or neurodegenerative diseases
such as Parkinson, Alzheimer, etc. This diseases are characterized generally by the gradual
loss of neurons, leading to cognitive, motor or functional impairments (Erkkinen, Kim, &
Geschwind, 2018). By replacing or bridging the damaged neural tissue, it may be possible
to facilitate recovery and restore lost functions (Buccelli et al., 2019).

• Modeling and understanding neuronal mechanisms: interfacing biological neurons with
artificial systems can also provide valuable insights into the mechanisms underlying neural
processing, learning and adaptation (Douglas & Martin, 2004; Moxon & Foffani, 2015). By
studying the interactions between biological and artificial neurons, researchers can gain a
better understanding of neural computation and information processing in the brain.

• Hybrid Systems for Artificial Intelligence and Robotics: a promising application is in the
development of hybrid systems that combine biological and artificial components for ad-
vanced AI and robotic applications (DeMarse, Wagenaar, Blau, & Potter, 2001; Warwick
et al., 2010). Such systems can potentially leverage the unique capabilities of biological
neurons, such as adaptation, learning and fault tolerance, to create more robust and efficient
AI systems.

Indeed, as various applications exist, it is essential to emphasize that the initial ultimate goal
of this work is to model artificial biomimetic neural networks capable of interacting with biolog-
ical neurons, by reproducing their essential properties and mechanisms, to understand neuronal
mechanisms.

2.4.2 Technologies and methodologies

In the following, we will discuss about various technologies and methodologies used for interfac-
ing external devices with biological neurons, including the different types of experiments, some
techniques and technologies employed for recording biological neurons, and the technologies to
collect, process and analyze the recorded data as well as provide stimulation back to the biological
system.
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Types of experiments : In vivo, ex vivo, in vitro, open-loop, closed-loop

In vivo experiments involve the study of neural interfaces within living organisms. These experi-
ments are particularly valuable for understanding the complex interactions of biological systems
in their native environment. However, it sometimes requires invasive techniques, meaning surgical
operations for recording biological activity. In vivo experiments include Deep Brain Stimula-
tion (DBS) for Parkinson’s disease treatment (Benabid, Chabardes, Mitrofanis, & Pollak, 2009),
optogenetic stimulation of neural circuits (Deisseroth, 2011) and brain-computer interfaces (BCIs)
for motor prosthetics (McFarland & Wolpaw, 2008). Ex vivo experiments are conducted on living
tissues that have been removed from their original organism. These experiments provide a con-
trolled environment to study biological neurons, while still maintaining some of the complexity of
the native tissue. An example of an ex vivo experiment is the use of brain slices to study the effects
of electrical or optogenetic stimulation on neural activity (Mohajerani, McVea, Fingas, & Murphy,
2010). In vitro experiments are performed using isolated cells in a controlled environment, such as
cultured neurons. These experiments offer a high degree of control over experimental conditions,
allowing researchers to study the fundamental mechanisms underlying biological neurons. Exam-
ples of in vitro experiments include the study of synapse formation between cultured neurons and
artificial synapses (Müller et al., 2015).

Experiments can also be categorized into either open-loop or closed-loop setups. In open-loop
experiments, neural signals are recorded and processed without providing any real-time feedback
to the biological system. This type of experiment could be used to control the biological part (resp.
artificial part) via the artificial part (resp. biological part) (Ambroise et al., 2017). In contrast,
closed-loop experiments involve real-time interaction with the biological system, both artificial
and biological systems evolving and working together. This type of experiment allows to study for
example adaptation or learning mechanisms in real-time (Ambroise et al., 2017; Buccelli et al.,
2019).

In this thesis, we have chosen to focus on in vitro experiments. Working with in vitro experiments
allows for precise control of experimental conditions, such as growing and isolating specific cells,
as well as the ability to work with various sizes of biological neural networks. This way it is
easier to study the behavior of individual cells or growing cells gradually forming networks.
Furthermore, in vitro studies help avoid many ethical issues, particularly those associated with
animal experimentation. However, it is important to note that cell cultures are less complex than
neural networks found in the brain, and their random growth limits their physiological relevance
compared to biological systems with established structures and functions. Like other approaches,
in vitro experiments also present challenges in replicating the exact same conditions due to the
random nature of cell growth or behavior.

Recording biological neurons

There are different technologies for recording the activity of biological neurons. Some of them are
shown in figure 2.13. In this figure, the techniques differ from their temporal resolution (ability to
capture changes in neural activity over time), spatial resolution (ability to distinguish and localize
the source of neural activity), the physical scale (size of the region being recorded) and the depth
scale (the depth at which neural activity can be detected).
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Figure 2.13: Commonly used recording techniques of biological neuron activities in the brain. From left to
right, temporal resolution decreases, from <1 ms for single cell and Micro-Electrode Array (MEA) recordings
to ~1 sec for functional Magnetic Resonance Imaging (fMRI). The colors indicate the approximate physical
scale of the activity that can be recorded with each approach, as well as the approximate depth limits of each
technique. ECoG, EEG and fluorescence imaging are limited to recording from the brain’s outer surface.
Extracted from (The University of Queensland, 2023).

Some techniques are not limited to one type of experiment, so briefly :

• Single-Cell Recording : it involves the use of fine-tipped electrode to measure the electri-
cal activity of an individual neuron (Neher & Sakmann, 1976; Broccard, Joshi, Wang, &
Cauwenberghs, 2017). It has then a high temporal and spatial resolutions, providing detailed
information about the neuron’s membrane potential and its response to various stimuli. This
technique can be used for in vivo or in vitro experiments, and provides precise investigation
on neuron properties.

• Micro-Electrode Array (MEA) : it consists of arrays of small electrodes that are used to record
the extracellular activity of multiple neurons simultaneously (Obien, Deligkaris, Bullmann,
Bakkum, & Frey, 2015). MEAs can be employed in in vivo, ex vivo or in vitro experiments,
providing an invasive or non-invasive means to study the activity of neural networks. In
vitro MEA experiments are commonly used to investigate the behavior of cultured neurons,
allowing researchers to monitor the growing and the activity of large populations of cells
over time. MEAs technology is capable of recording and also stimulating back the biological
neurons.

• Electroencephalography (EEG) : it is a non-invasive technique for in vivo experiments,
to directly record the brain’s electrical activity through electrodes placed on the subject’s
scalp (Niedermeyer & da Silva, 2005). EEG does not capture action potentials, instead, it
records the cumulative activity of hundreds of thousands or millions of neurons in the form
of oscillatory activity. While the specific information carried by these oscillations is not
entirely understood, different oscillation frequencies have been linked to various behavioral
states (Buzsaki & Draguhn, 2004).

• Electrocorticography (ECoG) : it is similar to EEG for recording cumulative activity of
neurons, but differs by its invasiveness level as it involves electrode arrays being implanted
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beneath the scalp. Compared to EEG, it allows to better identify the source of the activity
and to record higher frequency electrical activity (Crone, Sinai, & Korzeniewska, 2006).

• Fluorescence calcium imaging : it is a technique that employs fluorescent indicators to
visualize changes in intracellular calcium levels, which are associated with neural activity
(Stosiek, Garaschuk, Holthoff, & Konnerth, 2003). This method can be used both in vitro
and in vivo, offering a high-resolution view of neural activity at the cellular level.

• Functional Magnetic Resonance Imaging (fMRI) is a non-invasive imaging technique that
measures changes in blood oxygenation levels in the brain, indirectly reflecting neural activity
(Ogawa, Lee, Kay, & Tank, 1990). fMRI is primarily used in vivo and provides information
about the brain’s functional organization at a macroscopic scale.

With the growing interest from the industry, more technologies are being developed to im-
prove the communication between natural neurons and external devices. For example, Neuralink
(Neuralink, 2023), a company founded by Elon Musk, introduced a novel brain-machine interface
(Musk et al., 2019) consisting of arrays of small and flexible electrode "threads" (3072 electrodes
per array distributed across 96 threads) that can be inserted directly into the brain with micron
precision using a neurosurgical robot. This new technology aims to have precise and minimally
invasive implantation, to increase electrodes count, to improve biocompatibility and durability, to
simplify the implementation procedure, etc.

In this thesis, we had the opportunity to work with MEAs technology for recording neuronal
behavior at a small scale, and the experiment will be detailed in chapter 6.

SNN to process biological data

After the biological recording, there are multiple processes that occur which include amplification,
denoising (to remove unwanted noise), spike sorting (to identify and classify individual neuron
spikes), and more, in order to obtain filtered biological spikes. However, we will only focus here on
the neuromorphic system that simulates SNN models and processes the obtained biological spikes.
Neuromorphic systems capable of running SNNs represent the next-generation of neuroprosthetic
devices, offering advantages such as energy efficiency, capability to perform real-time data pro-
cessing and the ability to mimic neurobiological computation for an improved synergy between
the technological and biological counterparts (Chiappalone et al., 2022).

The pioneer work was provided in (Le Masson, Le Masson, & Moulins, 1995) with the first
time interaction between single artificial and living neurons. After this first work, only small neural
networks like central pattern generators (see chapter 6) have been used to study locomotion (Joucla
et al., 2016; Jung et al., 2001; Sorensen, DeWeerth, Cymbalyuk, & Calabrese, 2004). Then larger
and real-time SNNs have been interfaced with biological neurons (Bonifazi et al., 2013; Keren,
Partzsch, Marom, & Mayr, 2019; Serb et al., 2020) for closed-loop applications.

In (Ambroise et al., 2017), they used SNNs implemented in a neuromorphic board, based on
IZH neuron model to communicate in an open- and closed-loop experiments with in vitro biological
neural network. The main result of this study is the successful modification of biological dynamics
during neurobiohybrid experiments using biomimetic SNN. A similar application to synchronize
biological and artificial neural networks was conducted using optogenetic stimulation controlled
by SNN dynamics (Mosbacher et al., 2020).
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An innovative neuroprosthesis has been designed in the framework of the European Project
"BrainBow" (Bonifazi et al., 2013). The project’s main results are reported in (Buccelli et al.,
2019), where the authors proposed a neuromorphic system that mimics the behavior of biological
neurons and synapses, to restore communication in damaged neuronal networks or replace one
entire neuronal sub-network. They demonstrated that by successfully stimulating and recording
neuronal activity using MEAs, where SNNs process the biological data and control the stimulation
parameters. The SNN was designed with the IZH neuron model, the STP model, AMPA and
GABA-ergic models, noise model and axonal delay (Ambroise et al., 2017).

2.4.3 Some limitations and challenges

Although this domain is quite interesting and allows researchers to directly communicate with real
neurons to understand biological functions and mechanisms, various challenges and limitations
must be addressed. It concerns the interface between artificial and biological neurons, and also the
experimental setups and technologies involved. There are not all the focus of this work, but it is
important to be aware of how difficult is the domain.

In vitro experiments, neuron culturing requires specialists to ensure sterile conditions, con-
trolled environment, culture substrate, etc., to obtain healthy cultures to test on. It can be complex
to maintain the viability and functionality of neurons over time, since they are sensitive to changes
in their environment such as temperature, pH and nutrient availability. Variability between cul-
tures can arise due to differences in their environment, therefore it impacts the reproductibility
of experiments (Buccelli et al., 2019). Finally, neuron cultures provide a simplified model system
for studying neuronal function and behavior, as they don’t fully exhibit the complexity of neural
circuits found in vivo.

Neuromorphic systems require computational models that can mimic the behavior of biological
neurons and synapses. These models must be able to process information in real-time with low
power consumption. Although various models exist, the parametrization of SNNs often requires
fine-tuning to effectively mimic the behavior of biological neural networks. Selecting appropriate
models and adjusting parameters to accurately represent neural dynamics can be a complex and
time-consuming task, and it depends on the application being studied. In (Buccelli et al., 2019),
the authors propose a method to create a library of SNNs based on the bursting activity of the
network, i.e. the frequency at which neurons in the network fire all together.

For future integration with biological cells, the development of neural interfaces that are bio-
compatible, stable and capable of long-term use is a critical challenge. According to the review
article by (Kozai et al., 2012) the long-term stability of neural interfaces is affected by several fac-
tors, including the mechanical mismatch between the device and the brain tissue, the inflammatory
response to the device, and the formation of glial scars around the device.

2.5 Conclusion

In conclusion, in this chapter, we discussed the biological basics of neurons and how they com-
municate together. Then we talked about spiking neuron models that reproduce the behavior of
real neurons in artificial systems, described by mathematical equations. We also explored various
neural properties, such as AMPA and GABA dynamics, plasticity, axonal delay and biological
noise, all observable in biological neural networks, and we also discussed on the implementation
of computational models that will be able to make artificial systems closer to biological behavior.
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We examined different ways to simulate SNNs, focusing on software and hardware approaches.
This led us to the main topic of the chapter, which is the connection between artificial neurons and
biological neurons through neurobiohybridization. We discussed the goals and applications of this
field, as well as the various technologies and methods used to develop these systems.

Despite actual limitations and challenges, neurobiohybrid systems have great potential. They
can help us learn more about the brain and its organization, which can lead to better understanding
and treatment of brain-related disorders, as well as the development of advanced brain-computer
interfaces and neuromorphic computing technologies. As research in this area continues to grow,
we can expect exciting progress that will further connect artificial and biological systems, giving
us a better understanding of the brain.



CHAPTER 3
Synchronous approach

In this chapter, we introduce the synchronous approach, the paradigm upon which
synchronous languages are based, and which is the base of this work. We discuss the
origins and objectives of this approach, providing a brief overview of several well-known
synchronous languages.

Our primary focus is on Light Esterel, the language that we have chosen to use
throughout this thesis. We detail its compilation environment and associated tools, along
with previous works that have utilized this language.

Additionally, we discuss model checking, an important tool in the domain of the syn-
chronous approach, which we aim to explore within the context of the neurobiohybridiza-
tion application.
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3.1 Paradigm

3.1.1 Real-time reactive system

"Reactive" systems refer to systems that interact with an environment and are designed to contin-
uously adapt and respond to possible changing conditions while ensuring their intended functions
effectively and efficiently. The term "interact" refers to the system’s ability to react to events and
changes in its environment, including changes it brings itself through its own reactions, creating a
possible feedback loop, as shown in figure 3.1. They differ from transformational systems, which
perform a specific set of computations or transformations on the inputs and produce outputs with-
out interacting with the environment. For example, filters are transformational systems, there is no
notion of events, they only operate on input data.

"Real-time" systems refer to systems that have predictable response times as illustrated in figure
3.1. Especially, these systems are subject to timing constraints, so they must guarantee a reaction
time with respect to deadlines. They differ from interactive systems which respond to environment
requests at their own speed, instead of the speed required by the environment e.g. web browser.
Respecting the time constraints is essential, particularly in critical systems. For example, a flight
control system must be able to process the user input (from the pilot) and calculate flight commands
in less than a few milliseconds to ensure the stability of the aircraft. Failure to meet the deadlines
can result in catastrophic consequences e.g. involving human lives, huge amount of money, etc.

Real-time reactive systems (Harel & Pnueli, 1985) combine the two previous definitions,
they process and respond effectively and efficiently to events from the environment, at the speed
determined by that environment. There are 2 types of event : "external" events e.g. input from
sensors or the user; or "internal" events e.g. interruptions between processes within the system
during scheduled tasks. These systems are commonly found in a variety of application domains :
electrical equipment, medical devices, automotive industry, aviation, military system, etc.

System
(internal reactions)

Environment

Event
stimuli

Reaction

Events

Reactions

known or limited (<T)
 response time

real-time

environment
modification 

new
induced
event

Figure 3.1: Principle of a real-time reactive system. The system’s time reaction to input event is known or
bounded. Input events trigger a sequence of internal reactions, that result in an output reaction or output
events. These output events may then modify the environment, leading to the production of new possible
events the system has to react to.

Furthermore, according to (Gaffé, 1996), a real-time reactive system is characterized by :
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• Strong timing constraints : the system has to meet specific deadlines for processing events
and responding to them. In some cases with "soft" timing constraints, the non-respect of the
deadline is not catastrophic, but it still needs to be detected and addressed.

• Determinism and safety : the system produces consistent and predictable results - the same
sequence of inputs gives the same sequence of outputs. When facing (external) changing
conditions or unknown inputs, the system is still predictable. Deterministic systems are
generally easier to understand, analyze, and diagnose. It is important to preserve determinism
throughout the design to the implementation process.

• Reliability : the system should perform its intended functions consistently and correctly, even
when facing (internal) failures or errors.

• Robustness : the system should perform correctly or switch to a safe and degraded mode of
operation to complete essential functions, when facing (internal) failures or errors.

• Parallelism and hierarchy : most systems are composed of a set of components (processes)
that evolve in parallel and communicate between each other, to produce the system’s output.
Moreover, processes can be included in larger processes where interruptions may occur. It is
called hierarchical composition, resulting in concurrency that must be ensured with respect
to the deterministic behavior.

The design and implementation of real-time reactive systems can be challenging and critical,
because the model needs to meet specific performance requirements such as correctness (the
model’s behavior is correct) and efficiency (the model performs at optimal speed). Traditional
programming methods and approaches can often result in errors, and debugging can be difficult
and time-consuming, particularly when time development is typically tight.

3.1.2 Some programming approaches and their limits

Mostly, the real world environment is completely asynchronous. It means that it is populated with
unpredictable signals (or input events), i.e. that do not occur at the same exact time or with the
same exact period of time. These variations in timing can be caused by delays, drifts, and other
timing-related issues, which basically make it challenging to design and implement reliable systems
that must operate in the real world.

Intuitively, to model or to implement such systems interacting with a dynamic environment, the
asynchronous approach would be ideal, since processes in asynchronous programs are triggered by
the occurrence, at any time, of the input events. In general in this approach, they use event handlers
to manage the inputs and the interactions between parts of the system model. So when an event
occurs, it is placed in a queue, and the event handler is triggered to process the event. However, to
include delays or the detection of the absence of a signal, it requires complex logic and additional
programming effort to ensure the system’s behavior. For example, waiting for a specific period of
time before taking an action, or adding timestamp to the signals to track their age, etc. Moreover,
although concurrent processes can be implemented thanks to synchronisation mechanisms such
as semaphores, it can lead to non-deterministic behavior. Concurrent processes in asynchronous
model are independent and can compete for calculation resources, therefore it is difficult to predict
when the processes will execute, how long it will take for a specific event to be processed, etc.
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So, in general the time management is complex due to the nature of asynchronism, hence more
challenging to express and ensure timing constraints.

Another approach is transition systems. Transition systems are mathematical models ideal to
describe systems whose behavior changes over time. It is mainly based on Finite States Machines
(FSMs) where transitions are triggered by the input events. Although this approach results in
deterministic models, concurrency can lead to complex and huge FSM models since all possibilities
have to be explicitly expressed. For example, the combination of two concurrent FSMs, with 𝑛

states and 𝑚 states respectively, will result in a new a global FSM with 𝑛 × 𝑚 states, with an
equivalent behavior.

So programming real-time reactive systems requires ensuring two essential traits : determinism
and concurrency, while being influenced by an asynchronous environment. Although there are
theoretically efficient solutions, they add significant complexity to the system and in its design,
therefore the risks of bugs increase. To address these points, specific languages have been developed
for designing real-time reactive systems, based on the synchronous approach that was developed
in the 80’s (Harel & Pnueli, 1985; Berry, 1989). In this thesis, we used the synchronous approach
that we will present in the next section.

3.1.3 Synchronous approach paradigm

The synchronous approach aims to make the programmer’s task easier (Halbwachs, 2013), by
providing specific frameworks or programming languages whose "primitives" and "semantics"
have been developed to express the system’s behavior in a simple, straightforward and formal way.
Primitives refer to the instructions or operators available in the language, and semantics refer to the
meaning or interpretation of these primitives. The synchronous approach relies on the synchronous
hypothesis : the model executes at discrete times and is considered to be infinitely faster than the
environment.

Atomic reactions

The evolution of a reactive system is a sequence of reactions triggered by events from the environ-
ment. In the synchronous world, the main idea is to consider that "reactions are instantaneous" or
they "take no time". We can imagine the model being run by a machine infinitely fast, so that by
observing from the outside, input events and the triggered output events are simultaneous, as illus-
trated in figure 3.2(a). By atomic reaction, the approach refers to the evolution of the system based
on a screenshot of the input events, and the set of reactions that are triggered by the occurrence of
the inputs are instantaneous : reactions are logical tests, computations, events broadcasting, etc. So
the model evolves only at discrete times, also called logical instants. The global evolution of the
model through time is then represented by an ordered sequence of logical instants, and apart from
these instants, nothing happens either in the model or in its environment.

In the real world, this vision can only be applied to systems that respect the following properties :
(1) the system produces the same sequence of output events given the same sequence of input events
and (2) the system’s time reaction must be shorter that the mean period the environment generates
events, as illustrated in figure 3.2(b).

There are numerous advantages to the "instantaneous" idea. One advantage is that temporal
semantic is simplified, it leads to clear temporal constructs and easier time reasoning. An other
advantage is that because a system evolves in a sequence of discrete steps, and nothing happens
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between two successive steps, the design, debugging or verification of the model is easier since the
model’s behavior is predictable and precise at each instant. It guarantees deterministic behaviors
even with concurrent processes, since any changes made by one process will be immediately visible
to the other processes.

Events
Reaction

i1 i2 i3
real-time

o1 o2 o3

i1 i2 i3
discrete time

o1 o2 o3

Real
world

Synchronous 
world

System 1
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o3
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Figure 3.2: Illustration of atomic reactions in synchronous modeling. (a) In the real world, the system 1
produces a sequence of outputs given a sequence of inputs, with each reaction taking a certain amount
of time. In the synchronous world, all reactions takes no time. (b) However, the system must respect the
synchronous criteria where the environment can not affect the system during reactions. Figure extracted
from Daniel Gaffé’s course entitled "the Synchronous language" in Master of Electronics.

Signals and events

Signals are the mean for the model to communicate with the environment or its components to
communicate between each other : the system receives "input" signals from and emits "output"
signals to the environment, and "local" signals are for communications between the system’s
components. Note that local signals are not accessible from outside the system. At each logical
instant, a signal must be consistent, meaning that its status and/or value are the same for all read
operations. The signal information lasts for the current instant it is emitted. An event is defined as
one or multiple signals occurring at the same logical instant. An event triggers the system reactions.

In some synchronous languages, such as Esterel which will be described in the next section, a
signal conveys two pieces of information at each instant : a predicate which refers to the presence
status of the signal (either present or absent), and its value of a given type, e.g. integer. The
predicate allows to handle explicit conditional execution based on the presence or absence of
signals. Particular cases are : pure signals do not have values and can only be present or absent;
sensor signals have only values and no predicate. However, in some languages, such as Lustre
described in the next section, the presence or absence notion do not exist. Lustre signals are typed,
convey only their value and can be undefined at any logical instant. A Lustre signal is "present"
only if it is defined.
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Causality

By considering that reactions are instantaneous in synchronous models, "causality" is used to track
how every event has been triggered in the system. Causality means that there is a sequence of
reactions that had led to the emission of event. However, instantaneous reactions can result in
temporal paradoxes when programming, and it must be detected during compilation. Generally,
temporal paradoxes appear when the internal signals of a system depend on other internal signals
or themselves. This is the case of causality cycle problem, for example "emit A if and only if A is
not emitted". Although it makes sense that A is emitted if it is not present, it would be rejected in
synchronous approach. Indeed, a synchronous system is executed on a snapshots of the status/values
of the inputs and the internal states at each logical instant. Therefore if the signal A is absent, but
the system emits instantaneously the presence of A, then the paradox is that A would have two
contradictory status "present" and "absent" within the same logical instant. This also illustrates a
synchronous rule which is "a signal can have one and only one value at each logical instant".

Multiform time

In synchronous approach, instantaneous reactions mean that time is no longer related to program
execution as in asynchronous approach, but to the occurrence of the input stream. The system only
reacts to the occurrence of external events, therefore time is considered as an input event. In other
words, to manipulate time, e.g. for specifying time constraints, a specific input signal should be
produced by a clock. Not only, it also means that any signal can be manipulated as a "time unit",
i.e. they have their own, which corresponds to the notion of multiform time. An example to illustrate
this principle is :

"The train must stop within 10 seconds"
and

"The train must stop within 100 meters"

The two sentences above specify two constraints based on two different basis of "time",
seconds and meters. In one case, the train must stop after the 10𝑡ℎ second, while the other is after
the 100𝑡ℎ meter. Constraints are therefore easier to manipulate within the synchronous approach.

How to connect the synchronous program to an asynchronous environment : the execution
machine

A synchronous program receives synchronous input events, and returns synchronous output events.
However, the environment the system is interacting with is asynchronous, for example, different
types of sensors can send different data to the system, independently. Therefore, to make the
interaction between a synchronous model and an asynchronous environment possible, the execution
machine is an important architecture that converts asynchronous events into synchronous events
(André, Marmorat, & Paris, 1991; Boufaied, 1998; Sarray, 2019). Moreover, the execution machine
has to ensure that the real implementation is a good approximation of the ideal synchronous
program, e.g. by guaranteeing atomic reactions i.e. non-overlapping executions. It has 3 main
roles : (1) to convert asynchronous input events into synchronous input events while the synchronous
program is being executed, (2) to activate the synchronous program on the new created set of input
events and (3) to present the generated synchronous output events to the environment. The figure
3.3 illustrates the principle of an execution machine.
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Figure 3.3: Global architecture of an execution machine.

The input event processing or events generator is responsible for receiving input events from
the environment ( e.g. from different types of sensors) and preparing them for presentation to the
synchronous program. Depending on the language and system being modeled, this component may
include buffering or sampling of input events to ensure that they are correctly synchronized with
the clock-based model of the system. Depending on the event processing strategy, it defines which
events should be considered as simultaneous. The synchronous program is the core component of
the execution machine, it receives the input events from the events generator and performs compu-
tation based on the inputs and its internal state, and produces the output events. The synchronous
program receives a tick clock or activator signal to start the reactions. The tick clock depends
on the strategy chosen for the language and the system being modeled. Finally, the output event
processing or post synchronizer is responsible for updating the output

Then, a tick signal (activator) is sent to the synchronous program to execute its reaction(s).
While the program is running, the events generator is listening to the incoming events, but the
synchronous program inputs are not modified. Finally, at the end of the reactions, the output events
are updated by the post synchronizer which receives the signal update from the program.

3.1.4 Synchronous languages or models overview

Synchronous programming languages are "model-based" languages, they emphasize the use of
models to represent and reason about system behavior. The languages provide operators, tools and
techniques for designing and working with these models. There are two families of synchronous
languages :

• Declarative languages : or "data flow oriented" languages are mainly derived from signal
processing techniques that represent systems in an equation-based form. In other words, the
programmer gives a description of the constraints and goals without specifying the steps
to get there. The most well-known languages are Lustre (Halbwachs, Caspi, Raymond, &
Pilaud, 1991) and Signal (Gautier, Le Guernic, & Besnard, 1987). Each variable is a data-
flow expressed as an equation and coupled with a clock, therefore a variable has one unique
value at each logical instant when it is defined.

• Imperative languages : or "control systems oriented" languages provide operators to describe
explicit and step-by-step (or concurrent) instructions on how tasks should be performed
with respect to eventual constraints. The most well-known languages are Esterel (Berry &
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Gonthier, 1992) a textual imperative language, and SyncCharts (André, 1996) its graphical
formalism.

Synchronous languages are primarily used for specification purposes. They provide rigorous
semantics that enable direct compilation of the specifications, and eliminate any ambiguity in
behavioral interpretation. Semantics in programming languages determine how the language’s
vocabulary (symbols, instructions, and operators) and syntax (instructions combined) should be
interpreted and executed. Semantics are defined using a definition or equivalence in another
formalism. For example, equational semantics define the meaning or equivalence of the language’s
vocabulary using mathematical (Boolean) equations.

Synchronous languages ensure that simulation, compilation, and verification results are con-
sistent with each other based on the given specifications. This means that simulation results can
be reproduced, generated codes are accurate and efficient in relation to the original model, and
verification results on the model can be applied to the generated codes. Generally, the compilation
of a synchronous program transforms the program specifications into finite state machines (FSMs)
expressed in the form of (Boolean) equation systems.

In the following, we provide an overview of some synchronous languages considered as the
most known, historical and some new ones. We especially develop the Esterel and Lustre languages
since the first one has inspired the language we chose to work with, and we used the second one
for verification experiments.

Esterel

Esterel (Berry, Moisan, & Rigault, 1983) is one the first synchronous languages, it has been
introduced and developed in the 80’s, through the collaboration of two organizations : the École
Nationale Supérieure des Mines de Paris (Center of Applied Mathematics (CMA)) and National
Institute for Research in Computer Science and Control (INRIA). It is an imperative and modular
synchronous language (Berry, 1999), which main objective is to provide high-level constructs or
instructions to specify the system’s behavior in a clear and concise manner. An Esterel program is
called a "module" and the basic structure looks like the following :

module <moduleName > :
input <in1, in2, ...>;
output <out1, out2, ...>;

<set of imperative instructions >

end module

The structure of an Esterel program consists of the module’s name, the input/output interface
declaration, the local signals declaration and definition, and the reactions. We refer to as "reactions"
the set of instructions that defines the module’s behavior. For that Esterel supports usual and specific
operators (or instructions), each with well-defined formal semantic. Here are some few operators :

• signal operators : emit, present, absent
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• control operators : if... then... else... end, loop... end loop, abort...
when, etc.

• arithmetic operators : :=, +, *, etc.

• logic operators : or, and, xor, etc.

• sequence and parallel operators : ;, ||

• temporal operators : await, every, after, etc.

Signal operators are for manipulating signals and their status : emit sets the signal status
to present, and present checks the presence status of a signal. Control operators are con-
ditional branching instructions or loop instructions. The sequence operator ";", e.g. "state-
ment1;statement2", is to execute the statement1 until it is finished, then to execute statement2, but
both belong to the same logical instant. The parallel operator "||", e.g. "statement1||statement2" is
to start and to execute both statements at the same time. The language allows to specify parallelism,
and it guarantees the determinism of such constructions since the semantics are well-defined. We
just give few examples of instructions in Esterel, but it supports other types of instructions such as
preemption used to abort sequence of statements when an event occurs.

During the compilation of an Esterel program, first the syntax is checked to ensure that it is
correct and conform to the language rules. Then, the program is transformed into a basic automaton
model, involving multiple steps. For example, it requires the flattening of the hierarchy : Esterel
programs can have multiple levels of hierarchy, with modules calling other modules, or modules
in parallel. Each module is transformed into one state machine, and all the state machines are
connected together through synchronization signals to form a larger synchronous automaton that
represent the entire program. This process simplifies the program and makes it easier to reason and
analyze it.

Lustre

The Lustre Language (Halbwachs et al., 1991) is a declarative language, and has been developed
in 1984 by Nicolas Halbwachs and Paul Caspi at the laboratory VERIMAG in Grenoble (France).
A Lustre program is called a "node" which structure is as follow :

node <NodeName > (<in1>: <typeOfIn1 >; <in2>: ...)
re turns (<out1>: <typeOfOut1 >; <out2>: ...);

var <var1Name >: <typeOfVar1 >;
var ...;

l e t
<set of equations >;

t e l

A Lustre program begins with the keyword "node"; followed by its name, then the list of its
input/output names and types. Local variables can be declared with their names and types with the
keyword "var". Finally the body of the program is written between the keywords "let" and "tel".
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In Lustre, every variable or output is a stream, meaning an infinite sequence of values of a given
type. As a declarative language, the variables and outputs are expressed as a set of equations which
depends on the inputs and the current internal state. Note that the order of the equations is not
important. Lustre applies the rewriting rule thanks to the equal operator. Lustre supports :

• basic types : bool, int, real

• arithmetic operators : +, -, *, /, mod

• logical operators : or, and, not

• comparison operators : =, <, >, <=, >=

• some control operators : if... then... else...

There are no loop operators or recursive functions, however Lustre allows for the use of
recursive temporal operators such as pre() and ->. The pre(x) operator is for accessing the value
of a signal x at the previous logical instant when it was defined, and the -> is to define the signal
values for all the following instants after its first value at the first instant. For example, a signal x
of type int, defined by x = 0 -> pre(x)+1, will take the value 0 at the first instant, then for the
following instants 0+1, then 1+1, then 2+1, etc. Where it will be defined. There are more operators
( e.g. operators for arrays) but we do not give an exhaustive listing since we used only a subset.
The previous list is the list of operators we used in Lustre programs in section 4.2 for verification
experiments.

Lustre compilation first consists in checking the absence of recursive call of nodes, the absence
of signal declarations without initialisation and the absence of definition with cycles. Then the
compilation generates a sequential code. The code is encapsulated in an infinite loop, and executed
at each logical instant (or clock). The loop is triggered, for example when there are new inputs, or
outputs need to be updated. Generally, it reads the inputs, computes the outputs and memorizes the
values of variables required for the next instant. The equations order in the Lustre program is not
important, however the compilation generates a sequential code where the order of the instructions
are important. To order the instructions, a topological ordering is made on the dependence graph
of the variables (Halbwachs, 2013). After the compilation, a Lustre code can be simulated with
the Luciole tool that provides a graphical interface to control the inputs of a node and visualise
the outputs accordingly. And Sim2chro, provided within Luciole, allows to draw the chronogram
of the simulation (see figure 3.4). Next, a lustre program can be translated into C codes thanks to
ec2c or drac tools.
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(a) Luciole simulation

(b) Displayed chronogram by Sim2chro

Figure 3.4: Simulation of a Lustre node. In this example, the output x is defined by the equation x = init
-> pre(x)+1, where init is an input of type "int" to initialize the first value of x.

Lustre has also been industrialized by the Verilog campany, its industrial name becomes
SCADE (Safety Critical Application Development Environment). SCADE has been used for the
design of critical systems in the domain of embedded systems such as aviation.

Signal

Signal (Benveniste, Le Guernic, & Jacquemot, 1991) is a synchronous programming language
developed at IRISA Rennes (France) by a team led by Albert Benveniste and Paul le Guernic. It
was industrialized by the company TNI through the Sildex 1 environment. Like Lustre, Signal is
a declarative language, in which a program expresses the relations between timed sequences of
values. The order of equations is not relevant, and signals are defined by equations that specify
their properties. Signal manipulates clock trees and does not have a global clock, unlike Lustre.

Signal is modular, and its unit of program is the "process". Signal is a relational language,
and every process defines a relationship between its input and output flows. Signal has five basic
operators (in addition to arithmetic and Boolean operators) to express the relationships that define
the output flows: delay, when, default, |, etc. The Signal language is simple to use for simple data
processing but can quickly become complex when programming complex sequences. To prove the
static and dynamic properties of programs written in Signal, the model verification tool Sigali was
designed.

Argos

Argos (Maraninchi & Rémond, 2001) is a graphical language based on a subset of Statecharts
(Harel, 1987) and belongs to the lineage of synchronous languages like Esterel and Lustre. Argos
uses operators to create Mealy machines. The language’s semantics are synchronous, like Esterel.



3.1 – 3.1.4 Synchronous languages or models overview 51

Argos has given rise to other graphical formalisms, such as "mode automata" (Maraninchi &
Rémond, 2003), a combination of Argos and Lustre to create a powerful synchronous language
that allows for the specification of applications combining automata and data flows. The "mode
automata" model has been implemented in the latest version of Scade.

SyncCharts

SyncCharts (André, 1996) are a graphical formalism, strongly inspired by StateCharts and Argos.
Like StateCharts, SyncCharts use states, initial and final states, transitions, signals, and events
to model reactive systems, ensuring hierarchy, modularity, and parallelism. However, SyncCharts
differ from StateCharts by introducing synchronous operators, ensuring no ambiguous interpre-
tation and no hidden behavior, guaranteeing the determinism of the model. SyncCharts handle
preemption in a more rational way by introducing the notion of abortion and suspension, using a
limited set of powerful graphical primitives.

In addition, SyncCharts integrate the simultaneity of events and instantaneous signal broadcast-
ing during communication. The formalism is based on a process calculus that allows for systematic
translation into an Esterel program, providing users with the benefits of the software environment
developed for synchronous programming. SyncCharts have been used to model critical reactive
systems such as automotive control systems. However, to use SyncCharts, users need to have a basic
understanding of synchronous programming to understand the notion of instant and transition.

Quartz

Quartz (Schneider, 2009) is an imperative synchronous programming language, developed at
the University of Kaiserslautern in Germany. It is designed for the modeling, verification, and
implementation of reactive systems. Quartz shares many similarities with Esterel, but includes
instructions for asynchronous parallel execution of tasks, enabling explicit implementation of
indeterministic systems. Quartz has also been extended with instructions that have a delayed effect
on the next instant, enabling the description of both software systems (sequential algorithms) and
hardware circuits. Additionally, Quartz introduces the concepts of concurrency and preemption,
and uses a four-valued algebra to verify program causality. Quartz also allows for the handling
of analog data to accommodate hybrid systems. Programs written in Quartz can be converted to
equivalent symbolic transition relations for formal verification, and the language’s determinism is
important for accurate simulation of observed behavior. In contrast of Esterel and other synchronous
languages, variables in Quartz are always present and defined, they only take a single value at each
instant.

Zélus

Zélus (Bourke & Pouzet, 2013) is a language to model hybrid systems, which means systems
that combine "discrete" behavior and "continuous" behavior. For example, it allows to describe
a discrete controller (modeled by FSMs) and its continuous physical environment (modeled by
Ordinary Differential Equations (ODEs)). Inspired from Lustre, it supports the combinations of
data flow descriptions, ODEs models and hierarchical automata. Synchronous languages in general
abstract the environment as a source of discrete sampled inputs, and they respond with discrete
outputs in return. A synchronous rule is that nothing can be inferred between two discrete instants.
Therefore, they are suitable for the design of discrete controllers. However, a model expressed with
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ODEs or Differential Algebraic Equations (DAEs) continues to evolve between two instants, and
a variable-step numeric solver is necessary to approximate efficiently and faithfully the solution
over time. The compilation of a Zélus program is by source-to-source translation into synchronous
code which is then compiled to sequential code and paired with an off-the-shelf numeric solver.
Zélus programs can be translated into C codes, e.g. for embedded applications.

3.2 The choosen language : Light Esterel

Light Esterel (Ressouche, Gaffé, & Roy, 2008) is a synchronous language developed by research
laboratories in informatics, electronics and mathematics (INRIA, LEAT and CMA). Its developers
are Annie Ressouche, Daniel Gaffé and Valérie Roy. The language is derived from Esterel V5 and
is designed for the specification and formal verification of real-time reactive systems. In this thesis,
we have chosen to use Light Esterel for 3 reasons. First, one of the developers, Daniel Gaffé, is the
co-supervisor of this thesis, therefore it is convenient for the understanding of and the programming
with the language. Second, as not a lot of studies have been conducted between the synchronous
approach and artificial neural networks (see chapter 4), this gives us the opportunity to have access
to the language compilers, and to rapidly modify, improve and adapt it for our application. Third,
the choice of Light Esterel does not limit the use of other languages, as it is possible to generate
other synchronous languages, such as Lustre, with the Light Esterel environment tool directly from
Light Esterel programs.

3.2.1 Light Esterel program structure

A Light Esterel program is referred as a module. A module has the following structure :

<Data declarations>
module <moduleName>:
<Interface declaration>
<Module body : automaton OR mealy machine OR statements>

end

Data declarations

The data declaration area is where to declare types, methods (or functions) and constants that will
be used in the module’s description (interface and body). The data declaration structure is as the
following :

<Data declarations> structure :
data:
Type: <type1>, <type2>, ...; -- eg: int, real, ...
Method: <returnedType1> <methodName1>(argName11, argName12, ...);

<returnedType2> <methodName2>(argName21, argName22, ...);
...;

Constant: <type1> <constantName1>:=<value1>;
<type2> <constantName2>:=<value2>;
...;

end data
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In contrast to other synchronous languages, there are no predefined types. User must define
specific types or methods or already defined library (see examples in (Gaffé, 2023a)) of the target
codes to be generated.

Interface declaration

The interface declaration of a module contains the input signals it listens to and the output signals
it emits. Additionally, it can also contain local signals, pre signals and the list of already compiled
modules that will be used within the current module. Signals can be either pure or typed. In Light
Esterel, a pre signal is used to access (store) the previous information (predicate or value) of a signal.
The pre signal declaration contains its name, the signal of interest and its initial constant value
at the very first instant. With the run operator, Light Esterel allows to call independent modules
with their own defined interface to form a modular system (a system composed of communicating
sub-modules). The interface declaration structure is shown in the following :

<Interface declaration> structure :
module <moduleName>:
Input: <signalInName1>, -- pure signal

<signalInName2> : <type2>, -- typed signal
...;

Output: <signalOutName1> [:<type1>],
<signalOutName2> [:<type2>],
...;

Local: <signalLocName1> [:<type1>],
<signalLocName2> [:<type2>],
...;

Pre: <signalPreName1> : <signalName1> $ <firstInstantConstantValue1>,
<signalPreName2> : <signalName2> $ <firstInstantConstantValue2>,
...;

Run: "<pathToModule1>" : <fileName1> : <moduleName1>;
"<pathToModule2>" : <fileName2> : <moduleName2>;
...;

Module body

The body of the module is where to specify how to produce the outputs from the inputs and
eventually the current state of the module. Light Esterel unifies different specification styles: a rep-
resentation in the form of a hierarchical automaton, a declarative syntax and an imperative syntax.
The figure 3.5 illustrates a simple application using these 3 different syntaxes. The application is
to emit the outputs O1 and O3 at the very first instant, then to emit the output O2 only when the
input I is present, and finally to stay idle forever.
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<Module body> structure :

1 module Parallel:
2 Input: I;
3 Output: O1, O2, O3;
4
5 emit O1
6 | |
7 {
8 wait I
9 >>

10 emit O2
11 }
12 | |
13 emit O3
14
15 end

(a) Imperative syntax

state0

state1

/O1,O3

I/O2

(b) hierarchical automaton
(graphical or textual)

1 module Parallel:
2 Input: I;
3 Output: O1, O2, O3;
4
5 Mealy Machine
6 Reg i s t e r :
7 X0: 0: X0next,
8 X1: 1: X1next;
9

10 X0next = X0 or not X1 and
I;

11 X1next = 0;
12
13 O1 = not X0 and X1;
14 O2 = not X0 and not X1 and

I;
15 O3 = not X0 and X1;
16
17 end

(c) Declarative syntax

Figure 3.5: Different syntaxes supported in Light Esterel.
In figure 3.5, (a) The imperative syntax, a textual language resembling to Esterel, allows to

design event driven applications. Light Esterel supports diverse operators to manipulate signals,
numeric and logical operations, logical instants, etc. Some simple operators are listed in table
3.1 and a complete syntax overview is shown in appendix A. In the given application example,
(a) 3 blocs are in parallel separated by the operator || : O1 and O3 are emitted in parallel at
the first instant, while O2 is waiting for the presence of I to be emitted. Note that the operator
» is a sequential operator, it specifies the execution order of instructions within the same logical
instant. (b) Hierarchical automaton can be described textually or graphically like StateChart. In
Light Esterel, the graphical format can be implemented using the Galaxy tool (Gaffé, 2023b; Gaffé
& Ressouche, 2008) developed with the fltk library, the tool is described in section 3.2.2. The
application example can be modeled into 2 states, where inputs and outputs are placed on the
transition branches. (c) The declarative syntax allows to describe data flow systems with equations
resembling to Lustre language. The outputs O1, O2, O3 are defined by equations that depend on
the input I and the current state encoded by X0, X1.
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nothing Do nothing
emit S Immediately set as present the status of S
present S {P1} else {P2} If S is present then P1 is executed, else P2
P1 >> P2 P1 is executed then P2
P1 || P2 P1 and P2 start simultaneously, the instruction is ter-

minated when P1 and P2 are both done
abort P when S P is executing normally until S is present
loop {P} P is executing and restarts when it is done
local S {P} The scope of S is limited to P (Locals became a dec-

laration since 2013)
run M Call of the module M
pause Stops until the next reaction (instant)
wait S Waits for the presence of S

Table 3.1: Some operators of Light Esterel, extracted from (Ressouche et al., 2008). More detailed
operators and syntaxes are given in appendix A.

3.2.2 Compilation environment and tools

The Light Esterel development chain is illustrated in figure 3.6. It shows the main compilers of Light
Esterel programs, called "Compiler of Light Esterel Modules (CLEM)" and "Compiler of Light
Esterel modules Finaliser (CLEF)". The Light Esterel compilers have been developed to support
modular compilations (Ressouche et al., 2008), i.e. to describe independently the sub-modules
of a system, then to compile them separately, and finally to assemble them together. This makes
modification easier and enables the addition of new modules without having to compile the entire
system again.

Input format Compilation Code Generation

hierarchical parallel automaton

function nets

imperative or declarative

simulation

hardware codes

software codes

models

checking

Figure 3.6: Compilation environment of Light Esterel.
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The development chain or workflow can be decomposed into three main phases :

• the design : the programming or specification of the application, and also the "input" of the
compiler CLEM;

• the compilation : the compilation of Light Esterel programs (contained in files with the ".le"
extension) into "Light Esterel Compiled codes" (generation of a ".lec" extension file) by the
CLEM compiler;

• the code generation : the transformation of the ".lec" codes into specific codes (software or
hardware) by the CLEF compiler.

Input format : Light Esterel model programming

Light Esterel programs are saved into files with the extension ".le". A Light Esterel program can
be manually written entirely using a text editor, and as detailed in section 3.2.1 in the "module
body" section, by choosing one of the programming styles : imperative or declarative or textual
automaton.

The Linker Of Object Modules (LOOM) tool (Gaffé, 2023b) is to create modular systems
graphically by providing a graphical interface to connect the Light Esterel compiled modules.
Loom then generates the corresponding ".le" file. The figure 3.7 illustrates the interface of Loom.
It shows 2 sub-modules interconnected to create a main module with 3 inputs and 3 outputs.

Figure 3.7: Visualisation of the LOOM tool interface (version 3.4.2). Example of a system with 3 inputs and
3 outputs, and composed of 2 communicating sub-modules through a splitter module. The splitter role is to
copy the sub-module1 output value (O1) to the sub-module2 input (I1) and to the system’s output (O1).

As previously mentioned, another tool is the galaxy tool. Galaxy is a graphical automaton editor,
its interface is shown in figure 3.8, and it has been developed in a research project combining FSMs



3.2 – 3.2.2 Compilation environment and tools 57

and synchronous languages. Galaxy offers the possibility to choose between 4 different models to
design an application : for the design of Mealy or Moore state machines, there is a basic automaton
model; for the design of basic automaton in parallel, there is the parallel automata model; for the
design of hierarchical automaton, there is the Light Esterel model; and finally, it is also possible to
create SynchCharts models.

Figure 3.8: Galaxy tool’s interface (version 3.7.1). Example of a hierarchical state machine composed of 3
states. The initial state (state0) is composed of 1 sub-module which is executed when in state0.

Compiler of Light Esterel Modules (CLEM)

The CLEM compiler (Gaffé & Ressouche, 2008; Gaffé, 2023a) relies on the constructive equational
semantic of Light Esterel (Ressouche et al., 2008). The semantic of a programming language is how
the vocabulary of the language (operators and statements) should be interpreted and executed. For
example, the equational semantic is the meaning of the Light Esterel vocabulary using mathematical
equations. The CLEM compilation consists in applying well-established and formal semantic
rules to transform each Light Esterel program into a b equation system. Light Esterel uses a set
b = {⊥, 0, 1,⊤}, a 4-valued algebras inspired from (Ginsberg, 1988), to define the status of a
signal and associated operators in Light Esterel (Gaffé & Ressouche, 2013), unlike Esterel with
3-valued algebras. When a signal is absent its status is 0. When it is present its status is 1. When
it is not determined then its status is ⊥ meaning bottom. And finally, ⊤ or error is when the signal
is over-specified meaning that its status has been emitted as "absent" and "present" at the same
time by different parts of the program. The use of a 4-valued algebras is to be able to characterize
status conflict between subprograms ( i.e. over-specifications), and therefore to allow separated
compilations. b is equipped with 5 composition laws (or operations or algebras) : ⊔, ⊓, ¬, ⊞ and
⊡ (see figure 3.9). ⊔, for unification, performs the unification of the knowledge concerning the
signal status : it implements the parallel operator ||. For example, if a signal status is 0 (absent)
from a sub-module and 1 (present) from another parallel sub-module, then the unification is error
since the signal status can’t be both at the same time. The ⊓ is the dual operator of ⊔, useless for
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compilation concern but important to prove distributivity properties. The ¬ is the negation, but
gives identity for ⊤ and ⊥. The ⊞ is equivalent to the boolean logical OR. The ⊡ is equivalent to
the boolean logical AND.

Figure 3.9: Composition laws of b. From five different algebras (Gaffé & Ressouche, 2013), the algebra5 was
selected, as it allows to satisfy more logical properties related on distributivity, commutativity, associativity,
absorption, etc. according to the Ginsberg algebra.

1 module first:
2 Input: I1, I2;
3 Output: O1, O2;
4
5 loop {
6 pause
7 >>
8 {
9 presen t I1 { emit O1}

10 | |
11 presen t I2 { emit O2}
12 }
13 }
14 end

(a) First module

1 module second:
2 Input: I3;
3 Output: O3;
4
5 loop {
6 pause
7 >>
8 presen t I3 { emit O3}
9 }

10 end

(b) Second module

1 module f i n a l :
2 Input: I;
3 Output: O;
4 Local: L1, L2;
5
6 run first[L2\I1, O\O1, I\I2, L1\O2]
7 | |
8 run second [L1\I3, L2\O3]
9

10 end

(c) Main module

(d) Evaluation order

Figure 3.10: Modified figure extracted from (Ressouche et al., 2008). Signals O1, O2 and O3 are inde-
pendent. In the main module, choosing a total order can introduce causality cycle. With the order (1), by
taking into account the renaming, the obtained system is {L1=I, L2=L1, O=L2} which result in a normal
evaluation. However, with the order (2), the obtained system is {L2=L1, O=L2, L1=I} resulting in a causality
cycle.



3.2 – 3.2.2 Compilation environment and tools 59

The system specifications is transformed into an equation system, but to generate codes, to
simulate or to link with other programs, it requires to find an evaluation order that is valid at
each synchronous logical instant. Usually, this order is static in most existing popular synchronous
languages. And static order forbids any separated compilation mechanism. For example, 2 scenarios
are shown in figure 3.10 with the compilation of a module called final. The first order results in
a correct evaluation of the equation system, while the second results in a causality cycle.

To avoid such problem, an incremental partial order has to be created. For that, each variable
in the equation system is assigned with two integer variables (CanDate, MustDate) which indicate
when the variable can and must be evaluated. In other words, the CanDate characterizes the earliest
date a variable can be evaluated regarding the system’s inputs, and the MustDate characterizes the
date a variable must be evaluated regarding the system’s outputs. By considering the dates as levels,
the level 0 characterizes the variables that are evaluated first because they depend on any other
variables. A level n+1 characterizes the variables that require the evaluation of variables from
lower levels (from n to 0) to be evaluated. Variables with the same level are independent, therefore
they can be evaluated in any order. This method is inspired from the PERT method (Kirkpatrick &
Clark, 1966). An example is given in figure 3.11 extracted from (Ressouche et al., 2008). We don’t
detail here the algorithms underlying the association of the levels for each variable, which is done
in (Ressouche et al., 2008). Instead, we only describe basically the main steps. First, a dependence
graph is first created from the equation system as illustrated in figure 3.11. This graph is composed
of the variables as nodes, and the dependency relation between the variables are characterised by
arrows, such that 𝑥′ → 𝑥 means the variable 𝑥′ depends on the variable 𝑥 to be calculated. Then,
for the CanDate, the input variables (x,y and t) are assigned with the level 0 as they don’t depend on
any other variables. From the graph, the CanDate level of a variable is the longest path (or critical
path) between this variable and all the other variables. For example, if considering the variable c,
starting from x, the dependency path is 2, while starting from t it is only 1, so the CanDatelevel
of c is 2. For the MustDate, the output variables (b, d and e) are set to the level 0. Then the other
levels are assigned in the same way as the CanDate levels, only the reasoning on the dependencies
is from the outputs to the inputs.

This method allows to detect causality cycles. This is the case when a level is greater than the
number of variables of the system.

Equation system example :

𝑎 = 𝑥 ⊔ 𝑦

𝑏 = 𝑥 ⊔ (¬𝑦)
𝑐 = 𝑎 ⊔ 𝑡

𝑑 = 𝑎 ⊔ 𝑐

𝑒 = 𝑎 ⊓ 𝑡

Figure 3.11: Extracted from (Ressouche et al., 2008), this example illustrates the concepts of CanDate and
MustDate. On the left is a b equation system where x, y and t are the inputs; b, d and e are the outputs. On
the right is the corresponding dependence graph, with the different levels. Note that the ⊔ here represents
the⊞ operator and the ⊔ represents the⊡ operator since (Gaffé & Ressouche, 2013).



60 Chapter 3 — Synchronous approach

So, CLEM compiles Light Esterel programs into a set of b equation systems, and extracts an
evaluation order of the equations. The compilation results are saved in a format file ".lec". This
format is then used to integrate the related program in other modules. The modular compilation
performs a linking operation (Ressouche et al., 2008) between the compiled modules and the main
module. The operation consists in merging the sorted equation systems of the different modules,
without reprocessing all the equations and evaluation orders again. The merging concerns for
example the equations that computes the same variable, and an adjustment is made for the CanDate
and MustDate of common variables when they are not assigned with the same dates in the different
parts of the program (an example is given in (Ressouche et al., 2008)).

Compiler of Light Esterel modules Finaliser (CLEF)

The compiler CLEF is called the "finalizer", it completes the CLEM compilation, in order to
generate codes. Indeed, some variables have the ⊥ status in the b equation system, so this specific
phase consists in replacing all the ⊥ status by 0 (absent). Note that any ⊤ status would have thrown
an error in the CLEM compilation. Compared to other synchronous approaches (Berry, 1999),
only one phase compilation is used instead of two, where signals with ⊥ status are assumed to be
absent. Although this makes the program behaves effectively following a semantic behavior, it has
the irreversible disadvantage of preventing any instantaneous connection with other synchronous
modules that may emit these signals, thus preventing modular compilation.

The finalisation is made by taking the ".lec" produced by the CLEM compilation. The b

equation system is converted into boolean equation system, so that it can be rewritten into another
codes (software or hardware). One b equation is translated into 2 boolean equations, based on the
mapping translation that encodes each element of b with a pair of boolean values, 𝐵 : b → IB× IB,
as shown in table 3.2. Then, only the first between the 2 generated boolean equations is kept at the
end of the finalisation.

Symbol Coding Finalisation

⊥ 00 0
0 01 0
1 10 1
⊤ 11 -

Table 3.2: Mapping translation of 4-valued algebras to final boolean equations.

Finally, different codes can be generated : software (C, Csharp, systemC), hardware (VHDL),
synchronous models (Esterel, Lustre), or input format for model checking applications (Blif,
NuSMV (Cimatti et al., 2002)) using the final equations.

3.2.3 Related works and applications on Light Esterel

Light Esterel has been and is still used in the academic field. This language is part of the curriculum
for obtaining an electronics engineering degree, specifically in the embedded systems. Some
research works have been conducted with the use of the Light Esterel language.

In (Abdelmoula, 2014), their objective was to generate exhaustive test sets to verify the correct-
ness of a specified model. Their approach aimed to address the limitations of both industrial testing
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techniques, which are typically non-exhaustive, and formal verification in scientific research, which
often faces the problem of combinatorial explosion. Their study focused on the "Calypso" commu-
nication protocol, which is commonly used in transportation systems, such as in buses to validate
transport smart cards. The protocol includes 33 main commands. To create the synchronous model
of the Calypso protocol, they used the Light Esterel language. Subsequently, a specific compiler
was developed for the application, as the CLEM version at that time was not able to compile
the model due to the explosion of (hierarchical) states. The synchronous model is then provided
as input to a generic compiler they developed, that employs a quasi-flattening algorithm and a
compiled internal description to verify security properties and reduce the state space combinatorial
explosion problem. As results, they not only succeeded in generating exhaustive test sets, but also
they proved that the protocol communication had some bugs and undefined behaviors (unreachable
states or unspecified behavior for particular sequence of inputs).

In (Barnes, 2017), they focused on the verification on the fly (in real-time) of the reliability in
wireless sensor network systems. They developed a new simulation environment and validation tool
to verify the communication protocols used between the nodes or sensors. Light Esterel was used
to model the properties that needed to be verified, and these properties were given to observers.
An observer is a module which role is to emit a signal or stop the simulation whenever a protocol
property has been violated, similar to a watchdog. This way, it is possible to find the error that
caused the violation using a debugger. The Light Esterel module is compiled into C codes and
inserted in the observer, and the approach allowed to detect and to emit an alarm during the
execution in real-time.

In (Sarray, 2019), a new synchronous language called "ADeL" (Activity Description Language
(Sarray, Ressouche, Moisan, Rigault, & Gaffé, 2017)) has been developed for a project on activity
recognition based on visual perception. The activities can be movements, actions or objectives of
mobiles objects (humans, animals or simple artefacts). Activity recognition aims at recognizing a
sequence of actions that follows a predefined model. The ADeL language was strongly inspired
from the syntax and the compilation method of Light Esterel. This language has been developed to
create a more accessible syntax especially for the doctors community, but also for non programmers
or non computer scientists, in order to describe activities.

3.3 Model Checker

Simulating a program is the easiest way to verify its correctness. However, for complex system
with large number of states, it would only cover a portion of the system’s behavior, as some
possibilities might be omitted. One of the main advantages of the synchronous approach is that the
models can be verified through formal verification tools or techniques. Formal verification is the
use of mathematical techniques to ensure accurate reasoning on finite states models. It can be the
verification of the correctness of the model or the exhaustive exploration of all its possible states.
There are three main types of methods : model checking, which explores the accessibility of specific
states of the system represented by a finite states model (graph or FSM); abstract interpretation,
which is an approximation theory of the semantics of discrete dynamical systems; and interactive
proof, which uses tools known as "proof assistants". The first method is adapted only for systems
represented with finite states models, while the other two can be used on systems without a finite
representation. We chose the first one, since we can apply model checking directly on the compiled
synchronous models.
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One main advantage of model checking is that it is completely automated and rigorous. It is
widely used in the design and verification of complex systems, such as hardware and software
systems. It involves three main steps : First, the system’s behavior is modeled into a graph or a
FSM model, which can be achieved using synchronous languages. Second, a set of specifications
or properties is expressed using a temporal logic with a specification language. Finally, an analysis
method is selected to verify the system’s behavior against the specifications or properties. A model
checker works by returning a counterexample if the model fails to satisfy the property, which can
be used to identify and fix the issues in the model. There are different types of properties that can
be verified :

• Safety properties : something bad will never happen;

• Liveness properties : something good will eventually happen;

• Temporal properties : something will always or eventually hold true over time;

• Invariant properties : something will always be true in every state;

• Reachability properties : a particular state or a set of states can be reached from a given
initial state;

• Equivalence properties : two different models behave in the same way.

A model checker mainly executes an exhaustive (but optimised) exploration of the FSM model
to determine whether the property is satisfied. So one of the major challenge of model checking is
the explosion of the number of states with the size of the system. Some works have been conducted
to address this issue with symbolic model checking (McMillan & McMillan, 1993) to represent the
system’s state space using symbolic variables instead of explicitly enumerating all possible states.
For example, one symbolic representation is binary decision diagrams (BDDs), which are a data
structure for representing boolean functions (Baier & Katoen, 2008) and can result in significant
performance gains to reduce large boolean expressions. Enumerating all the states refers to an
explicit automata, while reducing the states through, for example symbolic representation, refers to
implicit automata. In this work have chosen to focus on implicit automata since their compexity of
O(log2(n)) is lower compared to the complexity of O(n) of explicit automata in verification (where
n is the number of states).

Different model checkers exist, for example Xeve (Bouali, 1998) for Esterel programs, Lesar
(Raymond, 2008) and Nbac (Jeannet, 2003) for Lustre programs, Sigali (Marchand, Bournai,
Borgne, & Guernic, 2000) for Signal, etc. The choice of the model checker to use mainly depends
on the type of system and the type of properties to verify. In this section, we specifically present
the Kind2 (Hagen & Tinelli, 2008) model checker for Lustre programs. According to (De Maria,
Muzy, Gaffé, Ressouche, & Grammont, 2016), which has an objective close to this thesis work, it
is the most powerful model checker for Lustre programs, and therefore we used it in chapter 4.

Kind2 model checker for Lustre programs

Kind2 is an open-source model checker that is based on SMT solvers (Satisfiability Modulo
Theories). SMT sovlers are tools that can solve the satisfiability problem for first-order logic
combined with theories such as real numbers or data structures. Kind2 was implemented based
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on its predecessor PKind (Kahsai & Tinelli, 2011). It is designed to prove or disprove "safety"
properties expressed in Lustre in the form of invariant properties. A property is related to behaviors
the system at issue will never cross/reach in a finite execution e.g. deadlock situation.

How Kind2 is working ? We will not go into detail on all the steps, as they are beyond the
scope of this thesis, but generally, Kind2 converts the Lustre system model into state transition
system, then it relies on SMT based k-induction combined with several resolution engines to verify
the property. K-induction is a technique which consists of checking that a given property holds
for the initial state, and then proving that if it holds for the current state after k steps, it must also
hold for the next state (Gurfinkel & Ivrii, 2017). The value of k is gradually increased until the
property is shown to hold for all states, otherwise a counterexample is found. An example of engine
is IC3 (Incremental of Inductive Clauses for Indubitable Correctness), an algorithm that generates
an inductive strengthening of a property when k-induction fails to prove it (Bradley, 2012). The
inductive strengthening involves adding new clauses to the property that help prove it inductively.
Kind2 supports multiple SMT solvers (Z3, CVC4, CVC5, ...) or engines (BMC, PDR, ...), but since
we didn’t extensively study their functions or how they work, we will not detail them.

Kind2 uses an observer (Halbwachs, Lagnier, & Raymond, 1993), i.e. a lustre program in
which the property is expressed and which observes in parallel the behavior of the system receiving
sequences of inputs, and it returns if the property is respected at each logical instant or else it
returns a counterexample. The counterexample is an execution trace that leads to the violation.

3.4 Conclusion

The synchronous approach is a promising paradigm for modeling real-time reactive systems, as it
simplifies programming and makes it deterministic. The growing of interest in the synchronous
approach is shown by the development of different synchronous languages we presented in this
chapter, both in the academic and the industrial fields, and in a variety of applications.

Specifically, we focused on the Light Esterel language which we decided to use. We want to
emphasize that the choice of this language does not limit the use of others, as the Light Esterel
development chain can generate models in different languages. We also summarized some works
in which the Light Esterel language has been used. At the present time, the language has only been
used in academic research to model complex systems or to inspire development projects.

The compilation of a synchronous program generates a sequential, deterministic and generally
minimal FSM. So, one of the main advantages of the synchronous approach is the ability to verify
the generated FSMs through automatic techniques such as model checkers, e.g. to ensure the
correctness and reliability of a system, or to prove/disprove properties.

Overall, the synchronous approach has proved its efficiency in multiple domains. In the next
chapter, we present our work on the synchronous approach applied to artificial neural networks.





CHAPTER 4
Neuromorphic and

synchronous approach
In this chapter, we discuss the intersection of the two fields we’ve previously discussed,
neuromorphic and the synchronous approach, in the context of replicating and under-
standing biological neural networks. We present two works that are, to our knowledge,
closely related to the context that we aim for in this thesis.

We then introduce our methodology for implementing neural models using Light Esterel,
and present the validation process of these models. Along with this, we discuss updates
and developments we had to make in the language environment to be able to model
Spiking Neural Networks (SNNs). Finally, we detail the results we obtained in our model
checking experiments with our models.

Furthermore, this chapter highlights the limits and challenges encountered in using Light
Esterel and the synchronous approach in relation to the objectives we set out in this
thesis. These limitations and challenges led us to focus on solutions that we address in
Chapter 5.
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As explained in the previous chapter, formal languages exist, as synchronous languages, to
rigorously describe complex systems especially real-time reactive systems. They come with formal
methods as reasoning approach tools that involves using rigorous mathematical methods to prove
the validity or invalidity of propositions, theories or properties upon these formal systems.

On the other hand, SNNs are models inspired by the structure and function of the human brain.
They are composed of neurons connected to each other, capable of processing information in a
similar way to neurons in the human brain. They are similar to real-time reactive systems since
they interact with their environment by receiving input sequences of spikes and returning response
sequences of spikes.

Therefore, it is possible to use the formal approach to study SNNs in order to better understand
how biological neural networks work. Synchronous languages are ideal for modeling the function
of neurons and the interactions between them in a neural network, and then to use formal methods
to prove the validity of certain hypotheses about their function. However, there are few studies that
have applied formal methods to SNNs, in order to replicate or to understand biological mechanisms.
We discuss about 2 studies we are aware of in this area in annexe B.

4.1 Spiking Neural Network modeled with Light Esterel

4.1.1 Light Esterel neural models

In this thesis, we use the Light Esterel language to implement neural models, which is a novel
approach in the field. In the following, we explain the methodology and the updates on the Light
Esterel environment for implementing the models, then we describe the validation of these models
by using as reference the BRIAN simulator (Goodman & Brette, 2008). As a first step, the Light
Esterel implementation requires the discretization of the model differential equations.

Euler method : method of solving differential equations

As described in chapter 2, section 2.1.3, neural models are defined by differential equations of
order 1, which means they are defined as 𝑓 ′(𝑡) = 𝐹 (𝑡, 𝑓 (𝑡)). Solving this type of equation involves
finding all the differentiable functions 𝑓 (𝑡) that satisfy this relation. These equations usually have
an infinite number of solutions, each of which depends on the value of 𝑓 (𝑡0), also known as the
initial condition, at 𝑡 = 0. However, these equations are often not able to be solved using analytical
methods, and this is especially true for neural models. As a result, numerical methods are used to
approximate the solutions. Given an initial condition, the goal is to define a mathematical expression
that can be used to calculate the solution at each time step using the previous solution value. This
requires discretizing time into steps, with 𝑑𝑡 being the length between consecutive time steps.
There are different numerical methods that can be used, and the choice of which to use depends
on the application constraints, considering a trade-off often being made between implementation
cost and level of precision. In our case, we need a numerical method that is suitable for simulating
neural networks compatible with software and hardware.

In general, when the chosen time step 𝑑𝑡 is small, the approximation is closer to the true solution,
but the calculations take longer as there are more time steps involved. There are 2 categories of
numerical methods : 𝑑𝑡 is either adaptive or fixed (Press, Teukolsky, Vetterling, & Flannery, 1996).
Adaptive time steps change according to the error of the previous approximation in order to stay
close to the exact solution, but can also allow for larger time steps. However, using an adaptive
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time step can increase complexity as it requires calculating different 𝑑𝑡 values for each neural unit
for SNN simulations. For this reason, we have chosen the well-known intuitive simple numerical
method of Euler (1768) that uses fixed 𝑑𝑡. Let’s consider, the general form of a differential equation
of order 1 shown in equation 4.1. The definition of a derivative function is given in 4.2 where 𝑑𝑡 is
the time step which tends to 0. By isolating the expression to calculate the solution value at the next
time step, we obtain the equation 4.3. Finally, this Euler scheme allows to define the discretized
expression for numerical simulation by replacing the continuous time 𝑡 by discrete steps 𝑛 as shown
in equation 4.4, a recurrence relation with a given initial condition 𝑓 (𝑛 = 0) = 𝑓0.

𝑓 ′(𝑥) = 𝐹 (𝑡, 𝑓 (𝑡)) (4.1)

lim
𝑑𝑡→0

𝑓 (𝑥 + 𝑑𝑡) − 𝑓 (𝑥)
𝑑𝑡

= 𝐹 (𝑡, 𝑓 (𝑡)) (4.2)

lim
𝑑𝑡→0

𝑓 (𝑥 + 𝑑𝑡) = 𝑓 (𝑥) + lim
𝑑𝑡→0

𝐹 (𝑡, 𝑓 (𝑡)).𝑑𝑡 (4.3)

by replacing 𝑡 by 𝑛 and 𝑑𝑡 by a fixed value, we obtain the discretized expression of 𝑓 :

𝑓𝑛+1 = 𝑓𝑛 + 𝐹 (𝑛, 𝑓 (𝑛)).𝑑𝑡 (4.4)

Example 4.1.1 – In the Leaky-Integrate-&-Fire model, the membrane potential 𝑣 is described by
the following equations :

𝜏𝑣′(𝑡) = −𝑣(𝑡) + 𝐼

if 𝑣 > 𝑣𝑡ℎ𝑒𝑠ℎ𝑜𝑙𝑑 , then 𝑣 = 𝑣𝑟𝑒𝑠𝑒𝑡

The discretized expression of 𝑣 is then :

𝑣 [𝑛 + 1] = 𝑣 [𝑛] + 1
𝜏
.(−𝑣 [𝑛] + 𝐼) × 𝑑𝑡

if 𝑣 [𝑛 + 1] > 𝑣𝑡ℎ𝑒𝑠ℎ𝑜𝑙𝑑 , then 𝑣 [𝑛 + 1] = 𝑣𝑟𝑒𝑠𝑒𝑡

with the initial condition 𝑣 [0] = 𝑣0 where 𝑣0 is a given value.

The time step 𝑑𝑡 value

The Euler method has a local error (error per step) that is proportional to the square of 𝑑𝑡. Therefore,
when 𝑑𝑡 is small, the precision of the simulation is higher, but it also requires more calculations
within a given time period. The 𝑑𝑡 value may vary between different neural models, depending
on their level of biological precision and sensitivity to error in calculations. For example, the
Izhikevich model uses a time step of 1 ms, while the Hodgkin–Huxley model uses a time step of
0.1 ms (Izhikevich, 2004). In the Light Esterel implementation, the 𝑑𝑡 value is configurable, but it
must be the same for all units of a same network. In the following, we may refer to a time step as a
"logical instant" in the synchronous approach.
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Neural implementation in Light Esterel

In a neural model, the update of a variable at time step 𝑛 relies on its previous value at time step
𝑛 − 1. However, in Light Esterel, a signal value is only available at the logical instant it is emitted
and becomes inaccessible afterward. To address this issue, a new instruction has been added to
Light Esterel called "Pre" signal (short for PREvious). This feature establishes a specific local
variable with a designated initial condition value and the signal it tracks, enabling access to signal
values at instant 𝑛 − 1.

Light Esterel 
MODEL 

 
with Pre

Inputs Outputs

(a) Model with Pre

Main Light Esterel module
with Pre

Light Esterel
neural model

without Pre

Pre
Inputs

Pre
Outputs

Other
OutputsInputs

Pre

(b) Model without Pre and Light Esterel main

Main targeted codes

generated
codes of

Light Esterel
neural model

without Pre

Pre
Inputs

Pre
Outputs

Other
OutputsInputs

Delayer

(c) Model without Pre

Figure 4.1: 3 possible implementations of a neural Light Esterel model with or without the use of pre signals.
(a) With pre signals integrated into the neural model implementation e.g. the listing 4.1. (b) Without pre
signals within the neural model implementation e.g. the listing 4.2. A Light Esterel main module handles
the management of pre signals. (c) Without pre signals, an external module in the target code takes care of
the management of the pre signals of the generated neural model, with a delayer for example,.

There are 3 distinct approaches for implementing neural models in Light Esterel, each differing
in how they manage storage of previous signal values. The figure 4.1 shows the different approaches :

1. The first approach uses "pre" signals within the module implementation, as illustrated in
figure 4.1(a) and example in listing 4.1. Pre signals store specific signal values at each time
step, and are inaccessible from outside the module. This approach is used for testing single
neural models.

2. The second approach omits pre signals within the module, as shown in figure 4.1(b) and
example in listing 4.2. Instead, an external Light Esterel main module handles the signal
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storage using pre signals on the input/output of the module. We use this approach when
creating neural networks that will be compiled into other codes.

3. The third approach is similar to the second one, as show in figure 4.1(c) but in this case,
the Light Esterel module is compiled and converted into the targeted codes ( e.g. C codes).
Then the management of the signals is done by the main module in the targeted codes ( e.g.
a manually written main in C codes). We use this approach for the hardware we developed
in chapter 5.

1 -- Types / Methods / Constant
declarations

2 data:
3 Type: real;
4 Constant: real dt :vhdl= "to_real(1.0)"
5 :c= "1.0"
6 :lustre= "1.0";
7 end data
8 -- Module name / I\O / locals / Pre
9 module LIF:

10 Input: i_I : real,
11 i_inv_tau : real,
12 i_v_thres : real,
13 i_v_reset : real;
14 Output: o_v : real,
15 o_spike;
16 Local: new_v : real,
17 dv : real;
18 Pre: v_pre : o_v $ i_v_reset; -- <<
19 -- Module behavior description
20 loop
21 {
22 emit dv($i_inv_tau*($i_I - $v_pre)*dt)
23 >>
24 emit new_v($v_pre + $dv)
25 >>
26 i f ($new_v >= $i_v_thres) {
27 emit o_spike
28 >>
29 emit o_v($i_v_reset)
30 }
31 e l s e {
32 emit o_v($new_v)
33 }
34 >>
35 pause
36 }
37 end

Listing 4.1: LIF implementation with "Pre"

1 -- Types / Methods / Constant
declarations

2 data:
3 Type: real;
4 Constant: real dt :vhdl= "1.0"
5 :c= "1.0"
6 :lustre= "1.0";
7 end data
8 -- Module name / I\O / locals / Pre
9 module LIF:

10 Input: i_I : real,
11 i_inv_tau : real,
12 i_v_thres : real,
13 i_v_reset : real,
14 i_v_pre : real; -- <<
15 Output: o_v : real,
16 o_spike;
17 Local: new_v : real,
18 dv : real;
19 -- Module behavior description
20 loop
21 {
22 emit dv($i_inv_tau*($i_I-$i_v_pre)*dt)
23 >>
24 emit new_v($i_v_pre + $dv)
25 >>
26 i f ($new_v >= $i_v_thres) {
27 emit o_spike
28 >>
29 emit o_v($i_v_reset)
30 }
31 e l s e {
32 emit o_v($new_v)
33 }
34 >>
35 pause
36 }
37 end

Listing 4.2: LIF implementation without "Pre"

We will explain the implementation of neural models in Light Esterel, and we take as example
the LIF neuron model. In general for all neural models, the Light Esterel implementation structure
is globally the same. It is composed of 3 main parts separated by the comment lines starting with
the "−−" symbol. The first part, inside the block data (line 2) and end data (line 7), is where
the types, methods and constants are declared. In this example, values are of the "real" type and
there is one constant 𝑑𝑡. A new feature was added that is the use of a specific assignment syntax
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": targetedCode =", specifically useful when in some target codes, functions such as a conversion
are required for the signal/variable definition ( e.g. "to_real" in vhdl).

The second part is the module and the interface declarations (from line 9 to line 18). It contains
the module name, the list of inputs/outputs, the local signals and the pre signals. With the given LIF
model example, the inputs of the module listed after Input, are the neuron stimulation value (𝐼)
and its parameter values ( 1

𝜏
, 𝑣𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 and 𝑣𝑟𝑒𝑠𝑒𝑡 ). We chose to place the parameters of a neural

model as its inputs so that the same model can be used to create multiple modules with different
parameter values. This allows for flexibility and reusability of the model. Note that division by
a constant parameter is replaced by the multiplication by its inverse, such as the 𝜏 parameter.
This is especially important in hardware generation, where division can be resource-intensive and
time-consuming. As outputs, the model returns the membrane potential value 𝑣 and the spike signal
𝑠𝑝𝑖𝑘𝑒. Local signals are used for intermediate calculations and are not accessible from outside.
Here, 𝑑𝑣 is the variation of the membrane potential according to the inputs and 𝑑𝑡 values; 𝑛𝑒𝑤_𝑣
represents 𝑣 [𝑛+1], the new value of the membrane potential. The pre signal 𝑣_𝑝𝑟𝑒 emits the value
of 𝑣 delayed by one logical instant : the syntax "𝑜_𝑣 $ 𝑖_𝑣_𝑟𝑒𝑠𝑒𝑡" (line 18) means the signal 𝑣_𝑝𝑟𝑒
emits 𝑣 values with one logical instant delay, and it is initialized to 𝑣_𝑟𝑒𝑠𝑒𝑡 at the first instant.

The third part is the description of the module behavior, the step calculations to obtain the
outputs from the inputs. The 𝑙𝑜𝑜𝑝 instruction is used to execute the module every new logical
instant. Otherwise, the module would exit only at the first instant, and thus run only once. Next
instructions are related to the LIF model processing steps. First, the variation 𝑑𝑣 of the membrane
potential is calculated using the discretized expression of the differential equation. As a reminder,
the "$" sign before a signal accesses the signal value, and without, it returns the signal predicate.
Next instruction is the calculation of 𝑛𝑒𝑤_𝑣. The obtained new value is compared to the input
threshold, if it is greater, a spike is emitted and the output membrane potential is reset to the
input parameter reset value, otherwise the output membrane potential takes the previous calculated
𝑛𝑒𝑤_𝑣.

The listing 4.2 corresponds to the approach of implementing neural models without the use of
the pre signals. In this method, the pre signals are removed and turned into inputs instead, e.g. the
𝑣_𝑝𝑟𝑒 in the LIF module. Instead of performing the one logical instant delay on the "pre" signals
within the module, it is performed outside the module by an external module (Light Esterel or
other). This external module receives the signals that should be delayed, and sends them back to
the right inputs at the next logical instant. Both implementations are equivalent in terms of behavior,
and we chose the implementation without pre within the model for reasons we will explain later.

Implemented Light Esterel neural models and biological properties

Different neural models and some neural properties have been implemented in Light Esterel based
on their differential equations and after spike behavior (see chapter 2). They are summarized in
table 4.1, on the top left is the list of the neuron models, on the top right is the list of the synapse
models, and on the bottom is the list of the neural properties. Light Esterel models do not limit to
this list. Indeed, it is possible to add more neural models and biological properties.
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Neuron models

Integrate & Fire (IF)

Leaky Integrate & Fire (LIF)

Adaptive LIF

Izhikevich (IZH)

Digital Spiking Silicon Neuron (DSSN)

Hodgkin Huxley (HH)

Synapse models

Fixed

Short Term Plasticity (STP)

Spike Timing Dependant Plasticity (STDP)

Neural properties

Exponential decays (AMPA, GABA, ...)

Axonal delay

Noise

Table 4.1: Neural models and biological properties implemented in Light Esterel.

Value representation

In software, the float type can represent a wide range of numbers with a reasonable precision.
However, it is not supported by most hardware synthesis tools. In general, implementations of
floating-point arithmetic in hardware are complex and require a lot of resources, in terms of logic
gates and memory. Therefore, the fixed-point type is more suitable and more efficient for hardware
implementations. It uses a fixed number of bits to represent a value, it reduces the hardware
resources needed, however the precision is limited and must be carefully chosen according to the
application. In this work, we use the fixed-point type for hardware implementation, and the float
type for software simulation.

The floating-point type uses a mantissa 𝑀 (also called significand), a base 𝐵 and an exponent
𝐸 to represent a real number (norm IEEE 754). Similar to scientific notation, a number 𝑁 is written
as : 𝑁 = 𝑀 × 𝐵𝐸 . The exponent indicates the position of the radix point between the significand
digits, and it can be located anywhere thus the "floating" point.

Example 4.1.2 – Here is the floating-point representation of the value 12 . 345, in two different
bases :

12 . 345 = 12 345 × 10−3 (Base 10)

12 . 345 = 1100 0000111001 × 2−10 (Base 2)

The fixed-point type, as its name suggests, is characterized by a "fixed" position of the point
that separates the decimal part and the fractional part of a real number. In the binary format, the
type is defined with the notation 𝑄𝑥.𝑦 : 𝑥 is the number of bits on the left before the "point", it
encodes the decimal value, and 𝑦 is the number of bits on the right after the "point", it encodes the
fractional value. So 𝑥 + 𝑦 is the binary format length or size to represent a value. The 𝑥 depends on
the maximum absolute value to be represented and 𝑦 depends on the precision required, as shown
in the example below.
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Example 4.1.3 – In fixed-point representation, the previous example gives the following possible
conversions according to two different 𝑄𝑥.𝑦 configurations :

12 . 345 ≈ 00001100 . 01011000 = 23 + 22 + 2−2 + 2−4 + 2−5 (𝑄8.8)
= 12 . 34375

12 . 345 ≈ 00001100 . 0101100001010010 = 12 . 345001220703125 (𝑄8.16)

With 𝑥 = 8, and considering that the Most Significant Bit (MSB) i.e. the farthest bit to the left
represents the number’s sign (’0’ positive, ’1’ negative), therefore the maximum absolute value
(decimal part) that can be represented is 01111111 = 28−1 − 1 = 127.

Float type can support a much wider range of values than fixed type, with the ability to represent
very small numbers and very large numbers. Float type can also be used in hardware, but only
for functional simulations as it is not synthesizable for on board simulations. Thus, fixed type are
used for hardware to optimize resources utilisation and speed at the cost of range and precision
loss. And software simulations are used as reference to ensure that the behaviors are close, when
defining the representation size in fixed type.

Validation methodology

In order to validate the Light Esterel models, we used the BRIAN2 simulator (Stimberg et al.,
2019) which is the new version of the BRIAN simulator (Goodman & Brette, 2008) written in the
Python programming language. It is a free, open source simulator for spiking neural networks of
single compartment model neurons, and especially flexible to design and simulate bio-inspired and
biomimetic neural models. The original aspect of Brian is that neural models can be defined by
directly writing their equations in their standard mathematical notation, i.e. differential equations
and discrete events (the effect of spikes). This allows the user to implement and simulate new models
faster instead of learning and using low-level language like in the NEST simulator (Gewaltig &
Diesmann, 2007) or in the NEURON simulator (Carnevale & Hines, 2006). Brian is a clock
driven simulator which means that all events take place on a fixed time grid 𝑡 = 0, 1𝑑𝑡, 2𝑑𝑡, 3𝑑𝑡, ...
(Goodman & Brette, 2008) as discretization of the models. The simulation of the models requires
to chose different numerical integration methods, and to match our implementation method, we
chose the Euler method.

We illustrate in figure 4.2 the validation methodology of Light Esterel language in neural
modeling. The validation consists in verifying if the generated codes are correct and functional.
We applied the different steps with our first implemented Light Esterel neural models (Rasamuel,
Gaffé, Levi, & Miramond, 2019). The methodology is divided in 3 levels of validation : functional
simulation, hardware synthesis and hardware integration. The "functional simulation" level aims
at validating the software and the hardware generated codes. The "hardware synthesis" and "in-
tegration" levels are further investigations to validate the hardware generated codes for on FPGA
simulations.
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Figure 4.2: Validation methodology of Light Esterel neural implementations.

First, the neural model is implemented in Light Esterel, in BRIAN and in a manually written
VHDL codes. The 3 model implementations have the same parameters with the same numerical
Euler integration method. From the Light Esterel implementation, we generate the related software
and hardware codes, C and VHDL respectively, by using the compilation tool presented previously
in 3.2.2. In figure 4.2 :

• In the "functional simulation" level, each implementation is simulated either with float
or fixed type for values. The simulation results of the Light Esterel generated codes are
confronted to the references BRIAN and the manual codes. There are 3 main simulation
comparisons :

– Light Esterel generated C vs. BRIAN : to validate the generation of the C codes, in float
type.
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– Light Esterel generated VHDL vs. BRIAN : when the VHDL implementation is in float
type (not synthesizable), it is to ensure that the generated VHDL codes behave exactly
like the reference in simulation. When the VHDL implementation is in fixed type,
it is to ensure that the calculation errors induced by the fixed type do not affect too
radically the hardware behavior. This comparison also allows to determine the right
𝑄𝑥.𝑦 representation in order to minimize the simulation differences.

– Light Esterel generated VHDL vs. manual VHDL codes : manually written and op-
timized VHDL codes (with no FSMs and no pipelines) are confronted to the Light
Esterel generated VHDL. The comparison in float type, which can not be synthesized,
is to ensure that both implementations have the same behavior before the hardware
synthesis validation level.

• In the "hardware synthesis" level, we compare the synthesis results between the generated
VHDL and a manually optimized written VHDL code. The written VHDL implementation,
like in the generated VHDL, doesn’t involve pipeline to calculate the output values. The
synthesis gives the resources occupation of the model and the maximum clock working
frequency (Fmax) on the chosen FPGA. Since compilation transforms any Light Esterel
model specifications into an optimized finite state machines, this comparison evaluates the
efficiency of the compilation, i.e. the generated hardware model uses less or equivalent
resources compared to a manually written VHDL codes. For the synthesis, we use the
Register Transfer Level (RTL) synthesis provided in the Intel® Quartus® Prime Standard
Edition version 17.0.0 software tools.

• In the "hardware integration" level, we synthesize the Light Esterel generated hardware
codes to run on the FPGA board. This is the on-board validation to verify that the model is
working when simulated on the FPGA in real-time.

Validation results

We show example results in figures 4.3 and 4.4, based on the IZH neuron model, more precisely
the chattering neuron class (Izhikevich, 2003). With the same experiment protocol, the simulations
show the evolution of the neuron membrane potential when applying a constant stimulation value
during a period of time. Note that we chose to not display the simulations of the manually written
VHDL codes, but we assure that the simulations are identical to the generated VHDL.

In figure 4.3, the simulations refer to implementations with float type. From top to bottom,
the simulations are BRIAN, the generated C, and the generated VHDL. We can see that the 3
simulations are the exactly the same, their values at each time step have been checked and they
are equal. Therefore, we can conclude that the compilation and the generation of the Light Esterel
codes can be validated in software and hardware.
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Float type
BRIAN

Generated C

Generated VHDL

Figure 4.3: Membrane potential simulations in BRIAN and of the generated Light Esterel codes (C and
VHDL) of the IZH neuron model. The neuron class is the chattering (CH) type. On top, the BRIAN simulation.
In the middle, the generated C simulation. On the bottom, the generated VHDL simulation. A 7 mV constant
stimulation is applied to the neuron from 25 ms to 250 ms in the simulations.

However, more investigations are needed for the generated hardware codes for FPGA sim-
ulations. So in figure 4.4, we simulate the generated VHDL with 3 different configurations of
representation size 𝑄𝑥.𝑦 . As a reminder, fixed point type is more efficient for hardware implemen-
tations.
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Q12.19

Q12.11

Float type

Fixed type

BRIAN

Generated VHDL

Q12.20

Figure 4.4: Simulations of BRIAN and the generated Light Esterel codes (C and VHDL) of the IZH neuron
model, more precisely the chattering (CH) neuron class model, with float type. On top, the BRIAN simulation.
In the middle, the generated C simulation. On the bottom, the generated VHDL simulation. A 7 mV constant
stimulation is applied to the neuron from 25 ms to 250 ms in the simulations.

Globally, we can already notice that the BRIAN simulation (with float type) and the hardware
simulations (with fixed type) are not in phase. This right shift in time of the hardware simulations
can be explained by the membrane potential fall at the very beginning of each simulation, a
consequence of the errors induced by fixed type calculations. As we can see, the larger the size
of the value representation, the later the fall. Therefore in hardware, because of this phenomenon
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it takes more time to the neuron to reach the threshold value when the stimulation is applied for
the first time. Another difference we can notice is that the errors can also cause the emission
of less or additional spikes e.g. with 𝑄12.19, even though only 1 bit has been removed in the
value representation (see 𝑄12.20). The hardware behavior diverges more from the reference as the
representation size decreases (see 𝑄12.11), thus it highlights how important it is to chose the right
𝑄𝑥.𝑦 configuration. In this case, by referring to the BRIAN simulation, we can assume that 𝑄12.20
is the best size to stay accurate but at the cost of using more logics in hardware. Note that the best
size can differ with other classes of the same IZH neuron model, e.g. with the regular spiking
(RS) where the configuration 𝑄12.19 is sufficient.

Another investigation on the hardware generated VHDL codes corresponds to the verification
of how optimized the implementation is in terms of resources occupation in a FPGA : the "hardware
synthesis" level. So we used as target the FPGA device 5CGXFC9E7F35C8 from the Cyclone V
family. The available resources on the FPGA are Adaptive Logic Modules (ALMs), registers,
Digital Signal Processings (DSPs) and memory. The table 4.2 details the resources utilisation
obtained from the Quartus synthesis tool, of different implementations of the same neural model
in Light Esterel and manually in VHDL. We took the same example : the IZH neuron model. In
Light Esterel, we show two versions : with pre and without pre signals (see figure 4.1). Then, we
compared the generated VHDL codes with their equivalent manually written codes. The manual
codes are written to use as less resources as possible, the rule being to update the outputs of the
neural model at each time step, with no pipeline techniques.

IZH model resources utilization
With Pre Without Pre

VHDL implementation Light Esterel Manual Light Esterel Manual
Resources Total available
ALMs 113 560 246 212 228 204
Registers 220 201 189 186
DSPs 112 11 11 11 11
Memory 12 492 800 0 0 0 0
Fmax 33.8 Mhz 38.22 Mhz 220.02 Mhz -

Table 4.2: Resources utilization of the IZH model implemented manually in VHDL vs. the Light
Esterel generated VHDL, considering 𝑄12.19. The FPGA board used is the Cyclone V family -
5CGXFC9E7F35C8. Two versions of implementation are synthetized : with and without the pre
signals. The maximum frequency clock (Fmax) is also given for each implementation. Note that the
synthesis results "without pre" refer to the neuron model only, it does not include the management
of the pre signals as explained in figure 4.1. Therefore, the synthesis of the manual codes without
pre gives higher Fmax as the implementations are almost fully combinatorial.

According to the synthesis results, in general one IZH neuron is only using 0.20% (± 0.013%)
of the total available ALMs, and 9.82% of the available DSP blocks. Between the two implemen-
tations, the manual one uses the least amount of resources and has a higher Fmax. More precisely,
the generated codes use 16.03% more ALMs (respectively 11.76%), 9.45% more registers (re-
spectively 1.61%) compared to the manual codes in the version with pre (respectively without
pre). Nevertheless, it does not mean Light Esterel implementation is not ideal, because the excess
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resources usage is negligible compared to the overall capacity of the FPGA. When comparing
both Light Esterel version, the "without pre" version uses less resources which is logical as the
pre process is outside the model, but the most important is that the maximum frequency is much
more higher than the "with pre" version. Note that the Fmax in the manual without pre version is
particularly not provided because the manual implementation doesn’t involve register to register
path, required to calculate Fmax. For these reasons, we chose the version without Pre for the neural
implementation in Light Esterel as it gives the best performance in the synthesis results.

In conclusion, in this section we detailed how a neural model can be implemented in Light
Esterel. The simulations have confirmed that the generated Light Esterel codes are functional
in software and hardware, validated with the BRIAN simulator as reference. In hardware, the
synthesis results have led us to chose the implementation without pre in the Light Esterel neural
module. It has also confirmed that the resources utilisation of the generated VHDL codes is close
to an optimized manually written VHDL codes. Therefore, Light Esterel compilations and code
generations are adapted to neural model design and simulations.

4.1.2 Limits of Light Esterel compilation tools

After validating in the previous section the use of the Light Esterel language to implement neural
models, the next step is to implement SNNs based on them. With the run function, the Light
Esterel language is capable of modular implementation i.e. to duplicate Light Esterel modules
and to connect them together to construct more complex modules. As SNNs are structures of
neurons interconnected via synapses, therefore Light Esterel is suitable for SNN specification
whose structure is illustrated in figure 4.5. However, we reached some limitations with the Light
Esterel compilation tools for SNN compilations.

Limit 1 : SNN model size

A first limit encountered was the total time needed to compile Light Esterel SNN models based on
the modular implementation in figure 4.5. As we present in the graph in figure 4.6, the compilation
time exponentially increases as the SNN size expends. The graph shows the compilation time of
CLEM, the code generation time of CLEF and both summed for different SNN sizes. Even though
the codes generation time is close for all target codes, the reported times are the mean time between
C, lustre and VHDL codes generation. For the SNN models, as we don’t have specific configurations,
we decided to test the Light Esterel compilation tools on fully-connected models as worst cases.
So, the compilation times are based on fully-connected SNNs composed only of LIF neurons, STP
synapses and axonal delays equal to one time step 𝑑𝑡 = 1𝑚𝑠. In conclusion, 12 neurons (and 144
synapses) were the maximum size configuration we tested, as it took already more than 3.5 hours
in total to compile (CLEM : 1.28 hours) and to generate the related codes (CLEF : 2.28 hours ±
18 seconds). This maximum SNN configuration is small, compared to (Ambroise, 2015) whose
application is similar to ours, they modeled SNNs reaching a maximum of 100 neurons and 6200
synapses, with the same neural models and whose maximum axonal delay can go up to 50 ms for
each synapse.
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1 -- SNN specifications
2 module SNN:
3 ...
4 -- neuron runs
5 loop {
6 {
7 run IZH[l_a1\a,l_b1\b,...l_spike1\o_spike]
8 | |
9 run IZH[l_a2\a,l_b2\b,l_c2\c,...l_spike2\o_spike]

10 | |
11 run IZH[l_a3\a,l_b3\b,l_c3\c,...l_spike3\o_spike]
12 | |
13 ...
14 }
15 >> pause
16 }
17 | |
18 -- synapse runs
19 loop {
20 {
21 run STP[delayed_spike0\i_spike, l_p0\i_P,...\o_Isyn]
22 | |
23 run STP[delayed_spike1\i_spike, l_p1\i_P,...\o_Isyn]
24 | |
25 run STP[delayed_spike2\i_spike, l_p2\i_P,...\o_Isyn]
26 | |
27 ...
28 }
29 >> pause
30 }
31 -- neural properties runs (delay, noise, ...)
32 loop {...}
33 | |
34 -- neural parameters
35 loop {
36 emit l_a1(A1_const) >>
37 emit l_b1(B1_const) >>
38 ...
39 >>
40 pause
41 }
42 end
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Figure 4.5: Illustration of modular implementation in Light Esterel. On the right is the illustration of a
neural network created by connecting I/O of boxes that represent the Light Esterel neural modules i.e.
neuron, synapse, delay, etc. Mainly, a neuron is stimulated by a synapse, its output spike goes to the axonal
delay module which outputs the delayed spike to the synapse etc. The modules can have different parameters.
On the left is to show the Light Esterel specification format file to create a neural network. Each box is called
with the run command.
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Limit 2 : SNN model hardware generation

A second limit concerns the SNN hardware codes generation. As Light Esterel SNN implementa-
tion is modular as illustrated in figure 4.5, each module is then generated individually by CLEF
in hardware (VHDL). The resulting hardware codes is especially not ideal for hardware platforms
where the resources are limited. For example, in table 4.2 the IZH neuron model uses 11 DSPs and
with a total of 112 available DSPs on the FPGA board example, the maximum number of neurons
that can be generated and simulated is therefore 10 neurons (without synapses). Evidently, if we
consider synapse resources as well, the resulting SNN would be much more smaller. In conclusion,
the Light Esterel hardware generation, in our case of SNN models, is not optimized for hardware
platforms.

Limit 3 : SNN specifications

A third limit, not related to the Light Esterel compilers, is the specification of an SNN. Although,
Light Esterel is modular, the process of creating and specifying an SNN requires the declaration
and definition of each neuron and each synapse, including their specific parameters, and can be
a laborious task and error-prone, especially with large networks. To overcome this limitation, we
developed a specific format file to specify the SNN configurations called "GLN" file. It allows to
easily specify the models, connections and parameters. It also allows the specifications of random
values for parameters and connections if needed. This new file format is then used within the
compilation environment.

The choice of using the Light Esterel language is to take advantage of the Light Esterel
compilation environment for SNN designs. That is to design SNN models from a high level
specification language and to generate the corresponding software or hardware or other synchronous
codes. To understand biological neurons information processing, we expected not only to use
automatic provers on the developed Light Esterel models but also to use the models to communicate
with biological neurons in real time. However, the 2 limits were a turning point in our work. Indeed,
the constraint on SNN size that is supported by the Light Esterel environment tool is much smaller
than SNN sizes found in other studies (Ambroise, 2015; Buccelli et al., 2019) which also aim to
understand biological neurons by communicating with them.
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4.1.3 Light Esterel compilation environment updates
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Figure 4.7: Compilation environment of Light Esterel. On top (blue box) is the native compilation environ-
ment of Light Esterel. On the bottom (orange box) is the updates we added to be able to model and simulate
SNNs in hardware.

The first limit is related to the transformation functions of the two compilers CLEM and CLEF.
Even though they are still being updated, the compilers are assumed to be already well-optimized
and therefore it would require huge and complex modifications to address this first limit. For these
reasons, we decided to address the second limit i.e. to simulate larger SNNs in hardware based on
the same Light Esterel neural models we already developed. For that, we updated the Light Esterel
compilation environment by adding a new specific environment for hardware configurations. This
hardware environment configurations is related to the specific hardware architecture we developed,
called "SynchNN". Its goal is to automatically generate configuration files for the architecture that
supports our synchronous neural models. The updated compilation tool is illustrated in figure 4.7
and the developed hardware architecture will be described in the next chapter 5.

SNN specifications : ".gln" file

To model SNNs, we created a new format file called "gln" in which the user specifies the SNN
configurations. This is a front end configuration file to avoid the laborious work to specify and
configure the neural network. This file contains the SNN information such as the number of
neurons/synpases, the neuron/synapse models, the parameter values of each neuron/synapse, the
connections between the neurons and the connections from the external environment. The "gln"
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file can be written manually by the user or generated automatically by using the "create_gln" tool
we developed. The create_gln tool takes as inputs the network or file name, the number and model
of neurons, the density connection between 0% (just a sequence of connected neurons) and 100%
(fully-connected network), and the number of external neurons; then it generates the configuration
of a randomly connected SNN in a gln file.

create_gln <file_name> <number_of_neurons> <neuron_model>
<connection_density:0%–>100%> <number_of_external_synapses>
<synapse_model>

Firstly, this configuration file allows to generate the related Light Esterel specifications, then
to generate software or hardware codes through the initial compilation process. Secondly, it allows
to configure the SynchNN architecture by generating the necessary configuration files through
the updated compilation process. Thirdly, as a future perspective, the gln file aims to establish
a framework for integrating other software simulators such as the BRIAN simulator with our
developed architecture. The idea is to validate simulations in tools such as BRIAN, then to generate
the configurations for the hardware architecture, through an after-simulation-generated gln file.
This work is still in progress.

An example of "gln" file is shown in figure 4.8 with the related SNN configuration illustration.
We took the IZH model for the neurons and the STP model for the synapses. Only for the sake
of understanding, all the units have the same parameters. There are 3 neurons and 6 synapses in
total. 3 synapses are "internal" synapses (black arrows) which connect the neurons within the SNN,
while the other 3 synapses (red arrows) are "external" synapses that connect the SNN with external
spikes stimulations. So, the communication with the external environment is also based on "spike"
exchanges. The "gates" represent the external neurons or channels (illustrated by the red dashed
circles). And as we show, the same channel (gate) can stimulate different "external" synapses or
regions in the SNN.
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1 -- <file_name > : <#neurons> : <#synapses > : <#gates>
2 Name SNN_example : NEURONS : 3 : SYNAPSES : 6 : GATES : 2;
3
4 NEURONS :
5 -- <IZH> : <a> : <b> : <c> : <d> : <Iconst>
6 IZH : 0.02 : 0.2 : -50.0 : 2.0 : 10.0, --n1
7 IZH : 0.02 : 0.2 : -50.0 : 2.0 : 10.0, --n2
8 IZH : 0.02 : 0.2 : -50.0 : 2.0 : 10.0; --n3
9

10 SYNAPSES :
11 -- <STP> : <n_pre> : <n_post> : <P> : <inv_taux > : <

inv_tauWsyn > : <W> : <delay>
12 STP : 0 : 1 : 4.0 : 0.07 : 1.3 : -1.7 : 1, --s0
13 STP : 0 : 1 : 4.0 : 0.07 : 1.3 : -1.7 : 1, --s1
14 STP : 0 : 2 : 4.0 : 0.07 : 1.3 : -1.7 : 1, --s2
15 STP : 1 : 2 : 4.0 : 0.07 : 1.3 : -1.7 : 1, --s3
16 STP : 1 : 3 : 4.0 : 0.07 : 1.3 : -1.7 : 1, --s4
17 STP : 3 : 2 : 4.0 : 0.07 : 1.3 : -1.7 : 1; --s5
18
19 GATES :
20 1, -- line index of s0 in the SYNPASES list above
21 2 : 3; -- line indexes of s1, s2
22

(a) "gln" file
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External
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stimulation 
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(b) related SNN configuration

Figure 4.8: Example of a "gln" file in (a) which describes the SNN configuration in (b). Neurons are
represented by the circles or with prefix ’n’ and the synapses are represented by the arrows or with prefix
’s’. Red color means the neurons/synapses are external while black color means internal neurons/synapses.

The connections are specified in the "SYNPASES" list, by using the indexes of the neurons in
the "NEURONS" list. It relies on specifying the neuron "pre" followed by the neuron "post" after
the synapse model name STP : "pre" is for "presynaptic" neuron and "post" is for "postsynaptic"
neuron. The neuron index ’0’ is reserved for external neurons, therefore synapses with a neuron
index "pre" equals to ’0’ are "external" synapses. The "GATES" list is for specifying which external
neurons (channels) are connected to which external synapses. The numbers are the indexes of the
synapses in the "SYNAPSES" list. Finally, the other values are the parameters of the models, where
the last parameter in the synapse list is the axonal delay.

"Genlenet" compiler

"Genlenet" is the developed compiler that takes as input the "gln" file and generates the according
SNN model. There are two options : the compiler can generate the SNN Light Esterel model
(file ".le") or the configuration files for the SynchNN hardware architecture we developed. When
generating the Light Esterel file ".le", the implementation style is modular as we illustrated in figure
4.5 and where we previously exposed the limits. When generating the hardware configuration files,
the compiler runs a coloring graph algorithm on the SNN topology to obtain configurations
optimized for hardware platform simulations. In this hardware architecture described in the chapter
5, we made sure to use the same Light Esterel neural models listed in table 4.1.

4.2 Model checking experiments

The use of the synchronous approach was to verify if we can apply formal verification tools on
SNNs, especially model checking techniques to understand neural mechanisms, e.g. to extract
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temporal properties. In figure 4.9, we illustrated the model checking principle applied to this work.
Basically, model checking is an automated verification technique that takes as inputs a property
and a system model, and systematically checks whether the property holds for that model for all
the possible accessible states. The possible output are "satisfied" when the model satisfies the
property; "violated" when the model doesn’t satisfy the property and it returns a counter-example;
or "insufficient memory" when the system is too complex i.e. the number of states of the model is
to wide to be checked. By using model checking, we wanted to confront a SNN model to a given
behavior, and conduct 2 experiments : (E1) to verify the equivalence in terms of spiking output
behavior and (E2) by taking advantage of the counter-example output, to explore input parameters
so that the SNN model behaves in a desired way. From a biological application point of view, (E1)
would be used to validate SNN models compared to real neural activity measurements, and (E2)
would be used to look for parameters so that the SNN model would replicate biological neural
activity.
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Figure 4.9: Principle of model checking.

We took inspiration from the work of (De Maria et al., 2016) described in section B.1. They
used the Kind2 model checker (Hagen & Tinelli, 2008) to extract temporal properties from neuronal
"archetypes", and identified this model checker as the most powerful one compared to other existing
model checkers for Lustre programs. Even though Kind2 has been specifically developed for Lustre
(see section 3.1.4), the Light Esterel compilation tool can generate Lustre codes from Light Esterel
codes. Therefore, in the following, we have generated the neuronal Lustre nodes from Light Esterel
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specifications, and we only wrote the Lustre programs containing the observer node and the
property.

Related to (E1) and (E2) experiments explained previously, we tested Kind2 on one single
neuron first, instead of an entire SNN. Consequently, we will call (E’1) a derivative of (E1) i.e.
a comparison of one neuron and one behavorial nodes, and (E’2) a derivative of (E2) i.e. the
parameters exploration so that a neuron spikes in a desired way. To verify how powerful Kind2 is,
each experiment was conducted on two different neuron models we implemented in Light Esterel,
a simple model and a more complex model : the LIF model and the IZH model, respectively. In the
following, all neuron nodes are the generated lustre program from Light Esterel implementation.

4.2.1 Neuron behaviors comparison

The observer node structure for the behaviors comparison experiment is illustrated in figure 4.10.
In this experiment, there are 3 main nodes: the neuron node, the behavioral node and the observer
node. The two first nodes constitute the system to verify. The neuron node has its input parameters
and its input stimulation controlled by the observer using assertions, and outputs the resulting spike
sequence. Assertions are rules, conditions or properties on the system that are assumed to be true
at all instants. In this case, we use assertions to set the neuron node input values as constants. The
behavioral node outputs a spike sequence we manually expressed, to serve as a reference behavior.
And finally, the observer takes as inputs the neuron’s inputs, it confronts both output spikes from
the system and outputs whether the property it embeds is satisfied or not at each logical instant.
In this experiment, we want to verify if "the two system’s nodes always behave the same way",
therefore the safety property to verify is expressed as "𝑜1 = 𝑜2" where 𝑜1 is the output of the
neuron node and 𝑜2 is the output of the behavorial node.
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Figure 4.10: Observer node structure for Kind2 neuron behaviors comparison experiment. The observer
node is composed of the system (formed by the neuron and the behavorial nodes), the (safety) property and
some assertions on the neuron inputs. The observer verifies if the system satisfies the property at each logical
instant for the given inputs.

As an example, we show the observer lustre implementation of this experiment in the lustre
node 4.1 with the LIF model :
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Lustre node 4.1: Observer implementation for behaviors comparison experiment, with the LIF
model
node observer (i_I: bool; i_I_val: real; i_inv_tau: bool; i_inv_tau_val: real; i_v_thres

: bool; i_v_thres_val: real; i_v_reset: bool; i_v_reset_val: real) re turns (SIMILAR:
bool);

var useless : bool;
var o1: bool;
var o2: bool;
var o_v: bool;
var o_v_val: real;

l e t
useless = false;
-- Assertions on inputs --
a s s e r t i_I_val = 30.0;
a s s e r t i_inv_tau_val = 0.2;
a s s e r t i_v_thres_val = 20.0;
a s s e r t i_v_reset_val = 0.0;
-- Nodes outputs --
(o_v, o_v_val, o1) = lif(i_I, i_I_val, i_inv_tau , i_inv_tau_val , i_v_thres ,
i_v_thres_val , i_v_reset , i_v_reset_val);
o2 = behavior(useless);
-- Property --
SIMILAR = (o1 = o2);
--%MAIN;
--%PROPERTY SIMILAR;

t e l

The LIF membrane potential 𝑣 depends on the stimulation value 𝐼 and the three constant parameters
1
𝜏
, 𝑣𝑟𝑒𝑠𝑒𝑡 and 𝑣𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , as we recall the discretized equation that describes 𝑣 :

𝑣 [𝑛 + 1] = 𝑣 [𝑛] + 1
𝜏
.(−𝑣 [𝑛] + 𝐼) × 𝑑𝑡 (with 𝑣 [0] = 𝑣𝑟𝑒𝑠𝑒𝑡 )

if 𝑣 [𝑛 + 1] > 𝑣𝑡ℎ𝑒𝑠ℎ𝑜𝑙𝑑 , then 𝑣 [𝑛 + 1] = 𝑣𝑟𝑒𝑠𝑒𝑡

The node observer takes as input the neuron inputs and output the boolean SIMILAR. In the first
part, the assertions, preceded by "assert", are to specifiy the constant values of the inputs. Next,
the two nodes are called and their outputs are assigned to the local variables o1 and o2. Finally, the
SIMILAR output is expressed as a boolean function of o1 and o2, but also specified as the property
to verify with "--%PROPERTY SIMILAR".

The figure 4.11 shows the simulation of the lustre LIF node using the Luciole tool. This
tool allows the user to choose the input values (figure 4.11(a)) and to display the I/O flows
at each logical instant. The tool Sim2chro, included in Luciole, converts flows of values into
"viewable" chronogram (figure 4.11(b)). In the simulation, we fixed 𝐼 = 30, 1

𝜏
= 0.2, 𝑣𝑟𝑒𝑠𝑒𝑡 = 0

and 𝑣𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 20.0. As a result, the neuron outputs a spike every 5 logical instants.
We confronted the LIF node with the previous parameter values to two behavorial nodes shown

in figure 4.12 : one spike sequence similar to the LIF node 4.12(a) and another spike sequence
different to the LIF node 4.12(b). The last spike sequence is slightly different to the first one, by
emitting one spike at a random logical instant. The behaviors are implemented in Light Esterel
then generated in Lustre, like the neuron node.
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(a) Luciole window (b) Chronogram by Sim2chro

Figure 4.11: Simulation of the LIF neuron node using the Luciole tool. (a) shows the Luciole simulation
window where the user can choose the input states (present/absent) and values, on the left. On the right, the
output states (red means "present") and values are displayed at each logical instant. (b) is the chronogram
to visualize the outputs : the membrane potential v and the spike.

(a) Similar behavorial node (b) Different behavorial node

Figure 4.12: Simulations of two different behavorial nodes to confront the LIF neuron node. (a) Simulation
of the behavorial node whose spike sequence is similar to the LIF node in figure 4.11(b) : expressed as "emit
a spike every 5 logical instants". (b) Simulation of the behavorial node whose spike sequence is slightly
different to the LIF node, one additional spike is emitted at the 13th logical instant.

The Kind2 results are given in figure 4.13. For the asserted constant input values, when both
nodes have the same behavior (figure 4.13(a), Kind2 validates the property SIMILAR after 10
time steps (0.394s). And when the behaviors are different (figure 4.13(b)), Kind2 refutes the
property SIMILAR after 13 time steps (0.226s), when the difference occurs between 𝑜1 and 𝑜2.
In this experiment, we noticed that the model checking analysis time depends on when the spike
difference occurs : if the additional spike appears at the 123𝑡ℎ time step, it takes ∼17s to Kind2;
if it appears at the 1023𝑡ℎ time step, it takes ∼413s. This can be explained by the fact that the
implementation of the additional spike leads to the increase of the size of the related system
transition that Kind2 generates, hence it tests more states.
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(a) Similar behaviors

(b) Different behaviors

Figure 4.13: Kind2 results on two sub-experiments on the LIF model : (a) when the neuron node and the
behavorial node have the same output and (b) when both nodes have one spike difference.

In the case of the more complex model IZH, the spike sequence is not strictly regular as with
the LIF model. So instead of manually expressing the spike sequence for the behavior node, we
used the same IZH model with constant parameters as the behavior node. With the same assertion
method on the input values for the neuron node, Kind2 is also able to prove or disprove the
similarity property between the neuron and the behavior. However, the model checker is facing
a more complex system hence a bigger transition system to verify. As a consequence, it outputs
"error" or "warning" messages even though it succeeds the checking as shown in figure 4.14.

Figure 4.14: Kind2 results on the behavior comparison experiment on the IZH model.
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4.2.2 Neuron parameters exploration

The observer node structure for the parameters exploration experiment is illustrated in figure 4.15.
In this experiment, we tried to take advantage of the "counterexample principle" of Kind2 when
a property is false, to find the constant parameters to apply to a neuron so it outputs a desired
sequence of spikes. Therefore, we use the negation on the real property we want to obtain : instead
of "both nodes have the same sequence of output spikes", we want Kind2 to check that "both
nodes will never have the same sequence of output spikes during a certain number of time steps".
We wrote this property as "𝑜1{Δ𝑡𝑘} ≠ 𝑜1{Δ𝑡𝑘}". Compared to the previous experiment, first, the
observer checks the property according to the outputs on multiple time steps. We define Δ𝑡𝑘 the
length of the time steps observation window, i.e. the 𝑘 +1 "first" time steps over which the property
is verified. Second, here there is no imposed input values, but assertions are used to specify that
the values assigned to the neuron inputs at the first time step remain the same throughout the next
time steps. Otherwise, Kind2 changes the parameters at each time step to refute the property.
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Figure 4.15: Observer node structure for Kind2 neuron parameters exploration experiment. Δ𝑡𝑘 defines the
number of time steps .

The observer lustre implementation for this experiment with the LIF model is shown in the
lustre node 4.2, considering a Δ𝑡5 :
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Lustre node 4.2: Observer implementation for parameters exploration experiment, with the LIF
model
node observer (i_I: bool; i_I_val: real; i_inv_tau: bool; i_inv_tau_val: real; i_v_thres

: bool; i_v_thres_val: real; i_v_reset: bool; i_v_reset_val: real) re turns (
NOTSIMILAR: bool);
var useless : bool;
var o1, o2: bool;
var diff0, diff1, diff2, diff3, diff4, diff5: bool;
var I_val_const , inv_tau_const , v_thres_const , v_reset_const : real;
var o_v: bool;
var o_v_val: real;

l e t
useless = false;
-- Assertions on inputs --
I_val_const = i_I_val -> pre(I_val_const);
inv_tau_const = i_inv_tau_val -> pre(inv_tau_const);
v_thres_const = i_v_thres_val -> pre(v_thres_const);
v_reset_const = i_v_reset_val -> pre(v_reset_const);
-- Nodes outputs --
(o_v, o_v_val, o1) = lif(i_I, I_val_const , i_inv_tau , inv_tau_const , i_v_thres ,
v_thres_const , i_v_reset , v_reset_const);
o2 = behavior(useless);
-- Observation window --
diff0 = true -> pre(diff1);
diff1 = true -> pre(diff2);
diff2 = true -> pre(diff3);
diff3 = true -> pre(diff4);
diff4 = true -> pre(diff5);
diff5 = not(o1 = o2);
-- Property --
NOTSIMILAR = diff0 or diff1 or diff2 or diff3 or diff4 or diff5;
--%MAIN;
--%PROPERTY NOTSIMILAR;

t e l

We called the property to verify NOTSIMILAR, and the --% is a Kind2 command to specify the
property. Instead of directly linking the observer inputs to the neuron inputs like in the previous
experiment, we use local variables : in the assertion part, these local variables are initialized at the
first time step with the observer input values, then they keep the same value for the next time steps.
The property NOTSIMILAR is simply the negation of the property SIMILAR as we show in example
4.2.1.

Example 4.2.1 – If SIMILAR is the property that means "the two outputs o1 and o2 are similar
during 𝑡𝑘 time steps", then it can expressed as:
SIMILAR = (o1 = o2) (𝑡0) AND (o1 = o2) (𝑡1) AND ... AND (o1 = o2) (𝑡𝑘)

Therefore the negation of SIMILAR, called NOTSIMILAR, can be expressed as:
NOTSIMILAR = not(o1 = o2) (𝑡0) OR not(o1 = o2) (𝑡1) OR ... OR not(o1 = o2) (𝑡𝑘)

To memorize whether the property is satisfied or not at each time step 𝑖, we use local boolean
variables diff𝑖 : diff𝑖 is true when "(o1 ≠ o2) (𝑡𝑖)", and false when "(o1 = o2) (𝑡𝑖)".

One result is given in figure 4.16, with Δ𝑡5. As we can see, Kind2 doesn’t approve the property
and gives as counterexample the set of input values of the LIF node that disproves it. Indeed, when
simulating the neuron node with these values, it outputs the same sequence as the behavior node,
but only for the first 6 time steps, after they become different. It makes sense since we chose Δ𝑡5.
When we try to extend the observation window or number of time steps, e.g. Δ𝑡10 to contain 2
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consecutive spikes in the behavior node, we reach the limits of Kind2 : The model checker just
runs infinitely on a computer Dell Intel Core i7-11850H at 2.50 Ghz and 15.4 Go of RAM.

( BEHAVIOR )

( LIF )

Figure 4.16: Results of Kind2 parameters exploration with the LIF neuron model, considering Δ𝑡5. On the
right, the simulations of the LIF node with the counterexample input parameters compared to the behavior
node.

We succeed to find more adequate parameters to obtain exactly the desired behavior even
with Δ𝑡5, by adding more assertions in the observer node. It aims to reduce the domains for the
parameters exploration for Kind2, but it is possible only when the user imposes the values or
knows the intervals of the parameters due to some requirements for example. Nevertheless, with
this method the simulation is still required to verify if the desired neuron behavior is obtained
with the given set of parameters. An example is shown in figure 4.17, where we added the
following assertions in the observer node 4.2 : i_inv_tau value must be in the range ]0.0; 1.0[
and i_v_reset is fixed to 0.0. The neuron node simulation with the given counterexample set
of parameters is similar to the desired behavior and it shows that different set of parameters is
possible.

...
-- Additional assertions --
a s s e r t i_inv_tau_val > 0.0;
a s s e r t i_inv_tau_val < 1.0;
a s s e r t i_v_reset_val = 0.0;
...
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Figure 4.17: Results of Kind2 parameters exploration with the LIF neuron model, consideringΔ𝑡5. Assertions
were added on i_inv_tau and i_v_reset : 0.0 < i_inv_tau < 1.0 and i_v_reset = 0.0. On top right,
the simulation of the neuron LIF with the counterexample set of parameters.

When applied to the more complex IZH neuron model, the limits of Kind2 are again reached :
the number of time steps upon which the model checker needs to validate the neuron and the
behavior outputs is too long, the number of parameters and the neuron equations involve nonlinear
arithmetic.

4.2.3 Limits

Kind2 is a model checker that provides an efficient way to automatically check the correctness of
a system’s model, ensuring that the model satisfies specific properties or requirements. Although
we have successfully utilized the model checker in some of our experimental cases, we have also
demonstrated that Kind2 has its limitations. It did not meet our objectives in our initial experiments
with reduced cases before moving on to more complex neural network experiments. Our findings
indicate that the limitations of Kind2 are related to the types of models and properties it can handle.
Some of these potential limitations include:
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• Complexity of models: Kind2 may struggle with models that are very large or complex, or
those with lengthy execution times. The verification process for a large or complex model
may take a long time, or it may not be able to complete the verification process at all;

• Non-linear arithmetic: Kind2 currently does not support the use of non-linear arithmetic in
models;

• Finite state space: Kind2 can only handle models with a finite state space, meaning the
number of possible states of the system is limited.

Nevertheless, despite these limitations, Kind2 remains one of the best model checkers currently
available as presented in table B.3.

4.3 Conclusion

In this chapter, we explained our approach for implementing neural models based on differential
equations and spike events using the Light Esterel synchronous language. We presented the neural
models we implemented and described our validation method for the initial models in both software
and hardware. As a novel application for the Light Esterel environment, we also discussed the
updates we made to the compilation environment, enabling the design and simulation of spiking
neural networks (SNNs). Although the language is inherently suited for implementing neural
models based on differential equations, these updates were essential for creating and simulating
SNNs.

However, we encountered several limitations:

1. At the time this thesis was written, the Light Esterel compilation tool was constrained in
terms of the size of SNNs that could be compiled, with a maximum of 12 neurons and 144
synapses.

2. The SNN hardware code generation was not optimized for hardware platforms with limited
resources, such as FPGAs.

3. The hardware division operator had not yet been implemented in hardware, so neural models
with division operations, like the HH model, could only be simulated in software.

We chose Light Esterel for designing SNNs to leverage automatic provers for extracting or
highlighting biological neural properties. Inspired from related works on SNNs, we initially tested
the Kind2 model checker on a single neuron rather than an entire neural network. However, we
quickly reached the tool’s limits due to either the complexity of the neuron model or the properties
to be checked. Although other tools and techniques are available, as formal verification is a broad
research area applied in various academic and industrial settings, further exploration is needed.
Our preliminary results do not close the possibility of using formal methods on SNNs.

The limitations discussed in this chapter served as a critical turning point in our research.
Throughout the years of this thesis, we attempted to address each limitation, but time constraints
led us to prioritize finding a solution to simulate larger SNNs. This objective was driven by our
goal to communicate with biological neurons. Consequently, we decided to design a neuromorphic
architecture that could simulate larger SNNs while maintaining compatibility with the previously
developed Light Esterel neural models. In the following chapter, we provide a detailed description
of the hardware architecture we developed for this purpose.
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In this chapter, we address the limitations encountered when using native Light Esterel
tools for generating SNNs for software and hardware simulations, discussed in the
previous chapter. These limitations led us to develop our own hardware architecture,
which is the main focus of this chapter.

We discuss the motivations behind developing our own architecture and the strategies we
adopted, to overcome the previous limitations and to address the application constraints
in the context of this thesis.

We then provide a detailed description of our hardware architecture, SynchNN,
highlighting its various modules and units. The architecture is designed to be flexible
and efficient.

Furthermore, we present the validation results of our architecture, demonstrating its
effectiveness in simulating and executing SNNs. We discuss the performance of the
graph coloring algorithms implemented for the configuration of SynchNN.

Finally, we discuss the future perspectives and potential enhancements for our architec-
ture, highlighting areas for further research and development.
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As discussed in section 2.3.2, existing neuromorphic architectures proposed by industry and
academia primarily target machine learning applications such as classification or machine vision.
These architectures prioritize the simulation of large-scale SNNs in terms of the number of neurons
and synapses, often at the expense of flexibility in simulating biomimetic neural models and
incorporating various biological properties.

To overcome the limitations of the Light Esterel compilation environment and tools (as de-
scribed in section 4.1.2) and to address the requirements of neurobiohybridation experiments, as
explained in the following sections, we have developed our own neuromorphic architecture. This
decision not only allows us to continue using Light Esterel neural models developed in section
4.1.1, but provides us with complete control over an hardware architecture, enabling us to modify
and integrate new features in the future to fit our research objectives.

Time scale constraint

In the context of this work, neurobiohybrid experiments require the artificial part to be able to
update the states of all neurons and synapses within a 1 millisecond (ms) time-step (Ambroise,
2015; R. M. Wang, Thakur, & Van Schaik, 2018; Merolla et al., 2014). This time-step represents the
minimum sampling period necessary to capture the firing behavior of neural cells, as a neuron can
only generate one action potential within 1 ms (Buccelli et al., 2019). Although the development
process for hardware platforms can be time-consuming, they offer the advantage of processing at a
fast rate, which allows to meet the 1 ms time scale constraint. Note that the time-step is a parameter
in our architecture, and it is configurable.

Parallel and time-multiplexed hardware paradigms

In the initial compilation environment of Light Esterel (see section 3.6), the hardware generation
consists of implementing each neuron and synapse individually. This means that a neuron module,
described by a set of equations in hardware, is duplicated for each neuron in the network. Similarly,
a synapse module is duplicated for each synapse. While these modules execute in parallel similar to
the structural organization in the brain, this approach is rapidly confronted to the limit of available
resources on the FPGA.

An alternative approach is to time-multiplex the neuron and synapse modules. This leverages
the fact that an artificial neuron executes faster than a biological neuron (Mahowald & Douglas,
1991), therefore a single neuron module can be used to compute the state of multiple neurons in
the network (Cassidy, Andreou, & Georgiou, 2011; R. Wang, Hamilton, Tapson, & van Schaik,
2014).

In our hardware architecture, we have adopted a strategy that combines parallel processing and
time-multiplexing. Each Neural Processing Unit (NPU) consists of a neuron module and a synapse
module, and is responsible for processing a specific region of the SNN. This approach allows to
time-multiplex the neurons and synapses within a region, while simultaneously processing other
regions in parallel using separate NPUs.

Time-multiplexing and parallelism enable acceleration, ensuring compliance with the time-
step constraint and allowing for the simulation of a greater number of neurons and synapses.
Consequently, our strategy requires the exploration of methods to partition the neural network into
regions or groups of neurons, where each group is assigned to a specific NPU.
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5.1 Methods for neural network partitioning

As part of a second-year master’s internship that I supervised, we investigated and tested various
methods for partitioning neural networks (Chouchane, 2020). In this process, we explored the field
of graph theory, which encompasses a wide range of studies related to data representation and
partitioning. We will provide an introduction to graph theory to provide context to understand our
specific approach, but note that our coverage of the graph theory will be non-exhaustive.

5.1.1 Introduction to Graph theory

Graph theory is a mathematical field that studies graphs, which are structures used to model pairwise
relationships between objects. A graph consists of nodes (also called "vertices" or "points") that
are connected by edges (also called "links" or "lines") as illustrated in figure 5.1.

In general, a graph 𝐺 is represented as an ordered pair 𝐺 = (𝑉, 𝐸), where :

• 𝑉 is a set of nodes;

• 𝐸 ⊆ {{𝑥, 𝑦}|𝑥, 𝑦 ∈ 𝑉and 𝑥 ≠ 𝑦} is a set of edges, which are the connected pairs of nodes.

Node 1

Node 2

Node 3
Edge

(a) Undirected graph

Node 1

Node 2

Node 3
Arc

(b) Directed graph

Node 1

Node 2

Node 3

(c) Disconnected graph

Node 1

Node 2

Node 3

1

3

1.5

(d) Weighted connected directed graph

Figure 5.1: 4 types of graph : nodes are represented by circles and edges are either lines or arrows. (a)
shows an Undirected graph, (b) represents a directed graph, where edges are arrows showing the direction
of the information between two nodes. (c) shows a Disconnected graph, where nodes or groups of nodes
do not have connections or communication with other nodes. (d) is a combination of type (b) and (c), and
additionally, edges are labeled with values.

Separation problems are a significant area of research in graph theory (Pardalos, Mavridou,
& Xue, 1998; Bader, Meyerhenke, Sanders, & Wagner, 2013). We chose to explore this domain
as there are notable similarities between graph representation and neural network representation.
Nodes can be considered as neurons, and edges as synapses. Graph theory includes various types
of graphs (Mondal & De, 2017) as shown in figure 5.1, and in our context, we are particularly
focusing on one specific type known as weighted connected directed graph type in figure 5.1(d).
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A weighted connected directed graph has the following characteristics :

• Weighted : each edge is assigned with a value. In the context of neural networks, synapses
are defined by weights or a transmission delay, or both;

• Connected : there are no isolated nodes or groups of nodes. In the context of neural networks,
we focus on neural network where no neurons or groups of neurons are isolated from the
global network;

• Directed : there is a unidirectional flow of data between pairs of nodes, specified by an arrow.
In the case of neural networks, a spike travels from a pre-synaptic neuron to a post-synaptic
neuron only.

5.1.2 Two main partitioning approaches

Based on these characteristics, we explored related graph techniques to separate such a graph.
And there are two main approaches to divide a weighted connected directed graph into subgraphs:
clustering separation and coloring separation.

Clustering approach

Clustering is a widely used technique in graph analysis that aims to group nodes based on their
similarities or proximity. Various clustering algorithms have been developed and applied in different
fields. For example, k-means clustering is a popular algorithm that partitions nodes into k clusters
based on their distances to cluster centroids (Jain, Murty, & Flynn, 1999). Hierarchical clustering,
on the other hand, creates a hierarchy of clusters by iteratively merging or splitting clusters based
on similarity measures (Jain & Dubes, 1988). Spectral clustering utilizes the eigenvectors of a
similarity matrix to partition nodes into clusters (Ng, Jordan, & Weiss, 2001). These clustering
techniques have been successfully applied in various domains, including social network analysis
(Fortunato, 2010), image segmentation (Shi & Malik, 2000), etc. By identifying meaningful groups
within a graph, clustering provides valuable insights into the underlying structure and organization
of complex systems.

Coloring approach

Graph coloring assigns "colors" or labels to the nodes of a graph in such a way that adjacent
(or connected) nodes have different colors. This problem has applications in various domains,
including task scheduling, timetable planning, resource allocation, map coloring, and more (Jensen
& Toft, 2011). For example in task scheduling, graph coloring can be used to assign different time
slots (colors) to tasks (nodes) in order to ensure that no conflicting tasks are scheduled at the same
time.
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(a) Clustering principle (b) Coloring principle

Figure 5.2: Clustering and coloring methods applied on the same graph. (a) Left, clustering results in 3
clusters : most connected and closest nodes are grouped together. Colors were added to differentiate the
clusters. Right, reorganized clusters into vertical layers : 1 layer is 1 cluster. (b) Left, coloring results in
3 colors or groups : nodes that are directly connected have different color. Right, reorganized groups into
vertical layers : 1 layer is 1 color.

Selected approach : coloring

In the context of neural networks, the clustering paradigm limits the connections between clusters
of neurons (or inter-group communications), while it increases density of connections within each
cluster (or intra-group communications) as illustrated in figure 5.2(a). On the other hand, the
coloring paradigm prohibits communications between neurons in the same group, resulting in only
inter-group communications as illustrated in figure 5.2(b).

During the early development stages of SynchNN, the choice of the partitioning method was
influenced by the complexity of the related hardware development. The clustering paradigm re-
quires the hardware to support both inter-group communications between NPUs and intra-group
communications within each NPU. In contrast, the coloring paradigm only requires the hardware
to support inter-group communications between NPUs.

Furthermore, the layered structure of partitioned colored graphs looks similar to the layered
structure of fully-connected feedforward neural networks. In (Abderrahmane et al., 2020), the
authors explored various architecture designs for executing fully-connected SNNs on hardware
platforms, specifically FPGAs. They compared different designs based on latency, power con-
sumption and resource allocation. Their results show that allocating resources to process each layer
by one NPU in the case of fully-connected model can be an interesting choice. Therefore, our
intuition led us to adopt the coloring paradigm for our partitioning approach.

5.1.3 Coloring algorithms

In our study, we have chosen Greedy Graph Coloring algorithms, characterized by the careful
selection of the next node to be colored (Al-Omari & Sabri, 2006), which significantly impacts the
separation solution. The 3 selected algorithms to address our problem are First-Fit (FF), Largest
Degree Ordering (LDO) and Welsh-Powell (WP). These algorithms are simple and fast, but they
may not be the most optimized amongst existing algorithms. It is important to note that our
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partitioning step is not limited to these three coloring methods and can be further optimized in the
future, even with completely different approaches.

First-Fit (FF)

FF algorithm (Gyárfás & Lehel, 1988) is a simple and straightforward coloring algorithm. First, it
sorts the nodes by their IDs. Then, each node is selected in order, and the algorithm assigns it the
smallest available positive integer. In this context, an integer represents a color, and an "available"
integer refers to a color that is not assigned to any of the adjacent nodes of the current node.
The FF algorithm is described in algorithm 5.1, and a coloring example is shown in figure 5.3.
The algorithm can be implemented to run in 𝑂 (𝑛) (Klotz, 2002) but the coloring result strongly
depends on the nodes order.

Example 5.1.1 – In figure 5.3, the FF coloring is applied on a graph composed of 8 nodes randomly
connected. Nodes are ordered in a table. (a) The first color blue is applied to the first node in the
table, node 1. Then the next node in the table, node 2, is selected for coloring. (b) As node 2
adjacent nodes are uncolored, it can be assigned with blue too. (c) Next, as node 3 is connected to
node 1 and node 1 is already colored in blue, therefore a new color yellow is created for node 3.
(d) All nodes are processed in order based on the table, and the algorithm gives 3 colors out of the
graph.
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Figure 5.3: Example of First Fit coloring.
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Algorithm 5.1: First-Fit algorithm
Step 1 :

Order nodes by their IDs in a table 𝑜𝑟𝑑𝑒𝑟𝑒𝑑_𝑛𝑜𝑑𝑒𝑠_𝑡𝑎𝑏 by their IDs; // no node is
colored yet, ordering by IDs

Step 2 :
Create an empty list of 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑐𝑜𝑙𝑜𝑟𝑠;

// e.g. 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑐𝑜𝑙𝑜𝑟𝑠 = {{blue;true}, {yellow;false},...} listing all the created colors and their
availability (true or false)

Step 3 :
Create a new 𝑐𝑜𝑙𝑜𝑟;
Add it to 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑐𝑜𝑙𝑜𝑟𝑠 as available;
Assign it to the first node in 𝑜𝑟𝑑𝑒𝑟𝑒𝑑_𝑛𝑜𝑑𝑒𝑠_𝑡𝑎𝑏;

Step 4 :
repeat

Select next 𝑛𝑜𝑑𝑒_𝑖 in 𝑜𝑟𝑑𝑒𝑟𝑒𝑑_𝑛𝑜𝑑𝑒𝑠_𝑡𝑎𝑏;
foreach adjacent 𝑛𝑜𝑑𝑒_𝑘 of 𝑛𝑜𝑑𝑒_𝑖 do

if 𝑛𝑜𝑑𝑒_𝑘 is colored then
Mark 𝑛𝑜𝑑𝑒_𝑘’s 𝑐𝑜𝑙𝑜𝑟 as unavailable in 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑐𝑜𝑙𝑜𝑟𝑠;

if all colors are unavailable then
Create a new 𝑐𝑜𝑙𝑜𝑟;
Add it to 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑐𝑜𝑙𝑜𝑟𝑠;
Assign it to 𝑛𝑜𝑑𝑒_𝑖;

else
Assign the first available 𝑐𝑜𝑙𝑜𝑟 in 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑐𝑜𝑙𝑜𝑟𝑠 to 𝑛𝑜𝑑𝑒_𝑖;

Reset all colors in 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑐𝑜𝑙𝑜𝑟𝑠 to available;
until All nodes are colored

Largest Degree Ordering (LDO)

The LDO algorithm (Al-Omari & Sabri, 2006) follows a different approach by ordering the graph
nodes based on their degrees. The degree of a node refers to the number of adjacent nodes it is
connected to. In each step of the algorithm, the uncolored node with the largest degree is selected.
The color for this node is then determined using the same process as the FF algorithm, which
involves checking the colors of its adjacent nodes and assigning an available color. Intuitively,
the LDO algorithm tends to produce better colorings compared to the FF algorithm due to the
specific node selection order. The time complexity of the LDO algorithm is typically𝑂 (𝑛2) (Klotz,
2002). For a more detailed description of the LDO algorithm, please refer to algorithm 5.2, and an
example of its coloring result is illustrated in figure 5.4.



5.1 – 5.1.3 Coloring algorithms 103

1

7

6

3

4

5
2

8

Node ID 1 3 5 7 6 2 4 8

1

7

6

3

4

5
2

8

1

7

6

3

4

5
2

8

1

7

6

3

4

5
2

8

(a) (b)

(c) (d)

Degree 4 3 3 3 2 1 1 1

Node ID 1 3 5 7 6 2 4 8

Degree 4 3 3 3 2 1 1 1

Node ID 1 3 5 7 6 2 4 8

Degree 4 3 3 3 2 1 1 1

Node ID 1 3 5 7 6 2 4 8

Degree 4 3 3 3 2 1 1 1

Figure 5.4: Largest degree ordering coloring example on a graph composed of 8 nodes randomly connected.
(a) Nodes are ordered in a table according to their degrees. The first color blue is applied to the node with
the largest degree which is node 1. (b) Next, node 3 in the table order is selected. It’s adjacent to an already
colored blue node, a new color yellow is then created and assigned to node 3. (c) Next, node 5 is connected
to the colored node 3 but it can have the blue color. (d) All nodes are processed in the table order, and the
algorithm gives 2 colors out of the graph.

Algorithm 5.2: Largest Degree Ordering algorithm
Step 1 :

Sort the nodes according to their degrees in a table 𝑜𝑟𝑑𝑒𝑟𝑒𝑑_𝑛𝑜𝑑𝑒𝑠_𝑡𝑎𝑏 from largest to smallest; // ordering by
degrees

Step 2 :
Create an empty list of 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑐𝑜𝑙𝑜𝑟𝑠;

Step 3 :
Create a new 𝑐𝑜𝑙𝑜𝑟 ;
Add it to 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑐𝑜𝑙𝑜𝑟𝑠;
Assign it to the first node in 𝑜𝑟𝑑𝑒𝑟𝑒𝑑_𝑛𝑜𝑑𝑒𝑠_𝑡𝑎𝑏;

// the node with the largest degree receives the first color
Step 4 :

same as step 4 in FF algorithm;

Welsh-Powell (WP)

The WP coloring algorithm (Welsh & Powell, 1967), as the LDO, uses an ordered nodes table
based on their degrees in the graph: from the largest to the lowest. It first assigns one color to
the uncolored nodes with the largest degree in the table. Then it selects in the table order, all
the uncolored nodes that can be assigned with the same color. Once the color can’t be applied to
anymore nodes, a new color is created and assigned to the next uncolored node with the largest
degree. The process is repeated until there is no uncolored nodes left. The algorithm is detailed in
algorithm 5.3, and a coloring example is shown in the figure 5.5.
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Figure 5.5: Welsh-Powell coloring example on a graph composed of 8 nodes randomly connected. (a) Nodes
are ordered in a table according to their degrees. The first color blue is applied to the node with the largest
degree which is node 1. (b) Next, each node in the table order are checked if it can receive the color blue.
(c) If the blue color can’t be assigned anymore, a new color yellow is affected to the next uncolored node in
the table order which is node 3. The processes (b) and (c) are repeated until all nodes are colored. (d) All
nodes are processed in the table order, and the algorithm gives 2 colors out of the graph.

Algorithm 5.3: Welsh-Powell algorithm
Step 1 :

Sort the nodes according to their degrees in a table 𝑜𝑟𝑑𝑒𝑟𝑒𝑑_𝑛𝑜𝑑𝑒𝑠_𝑡𝑎𝑏 from largest to smallest; // ordering by
degrees

repeat
Step 2 :

Select a new 𝑐𝑜𝑙𝑜𝑟 and assign it to the uncolored node with the largest degree in 𝑜𝑟𝑑𝑒𝑟𝑒𝑑_𝑛𝑜𝑑𝑒𝑠_𝑡𝑎𝑏;

Step 3 :
repeat

Select next largest degree uncolored node in 𝑜𝑟𝑑𝑒𝑟𝑒𝑑_𝑛𝑜𝑑𝑒𝑠_𝑡𝑎𝑏;
Assign actual 𝑐𝑜𝑙𝑜𝑟 if possible;

until 𝑐𝑜𝑙𝑜𝑟 can no longer be assigned to another node

until all nodes are colored
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5.1.4 Coloring partitioning selection methods

A comparison was conducted in (Aslan & Baykan, 2016) between performances of well-known
coloring algorithms based on the coloring quality and the execution time. A good coloring perfor-
mance is characterized by minimizing the number of colors while ensuring fast coloring execution.
In our context, the number of colors directly corresponds to the number of NPUs to be imple-
mented, making a lower number preferable to conserve hardware resources. However, the coloring
execution time is not a significant concern for us, as this partitioning step is a pre-processing step
in our approach and does not affect the overall hardware performance. Additionally, we considered
another criteria in our partitioning selection process, which is the variation in the number of nodes
assigned to each color. It is preferable to select coloring solutions that exhibit a homogeneous
distribution of nodes among each color, in order to prevent over-utilization or under-utilization of
NPUs.

To evaluate the coloring algorithms previously presented, we used two software tools developed
at our laboratory : Galaxy (Gaffé, 2022) and Bing Bang. These tools are built upon libraries designed
for manipulating graphs and automata. Galaxy serves as a graphical editor for manually creating
and visualizing state machines or graphs, while Bing Bang is an additional module used to generate
random graphs with customizable characteristics, such as the number of nodes and the density of
connections. The connection density determines the number of edges per node. Note that the Bing
Bang tool serves as the basis of the create_gln tool, which is used to generate random networks and
to generate the gln specification file (see section 4.1.3). We employed both software tools, Galaxy
and Bing Bang, to generate custom or random graphs, as illustrate in figure 5.6, in order to test and
evaluate the detailed coloring algorithms discussed earlier. The evaluation results can be found in
Section 5.3.

(a) Custom graph (b) Random generated graph

Figure 5.6: Galaxy interface. (a) An example of customable graph with 4 nodes and 4 edges. (b) An example
of random generated graph from Bing Bang and visualized on Galaxy, 50 nodes and 30% of connections
per node.

Now that we have discussed the reasons behind developing our own hardware architecture and
the chosen strategies for simulating and executing SNNs, let’s proceed to describe in detail the
architecture that we have been developed.
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5.2 Neural Processing Unit

In this section, we present the neuromorphic architecture we developed, called SynchNN. The
architecture is illustrated in figure 5.7. It consists of multiple units, which can be categorized
into two groups. The first group, referred to as the NPU, is duplicated as needed based on the
pre-processings steps that we will explain in the following sections. It includes the "reception
unit", the "processing unit" and the "controller unit". The second group consists of the
"broadcasting unit" and the "time step manager unit", which are generated only once.
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Figure 5.7: Global architecture of SynchNN. The configuration of SynchNN such as the number of NPUs to
be generated, is accomplished using configuration files that are automatically generated from the Genlenet
tool (see section 4.1.3).

• The reception unit receives successively neuron identifications (neuron IDs) from the
broadcasting unit. It is a ID-to-spikes converter and includes the delaying of the spikes.
It also indirectly handles the matrix connection between neurons outside the NPU and the
neurons within the NPU. The converted spikes are then directed to the processing unit.

• The processing unit receives the spikes from the reception unit, and performs accord-
ingly the updates of all the synapses and neurons at each time step. When a neuron spikes,
its neuron ID is sent to the broadcasting unit.

• The controller unit orchestrates the reception and the processing units functions.

• The broadcasting unit receives neuron IDs from the processing units and from external
devices (outside the FPGA). His role is to broadcast sequentially the IDs to all the NPUs.

• The time step manager unit sends a signal "new time step" to the other units, to initiate
their processing at each new time step. Note that due to the leakage mechanisms or axonal
delays, all units are executed every time step.

We will provide a detailed description of each unit, along with their respective modules and
functions. To facilitate understanding, we will also provide an illustrative example of a simple SNN
which coloring is shown in figure 5.8. This example will serve as a visual representation of our
explanations on the concepts and processes of the architecture.



5.2 – 5.2.1 Pre-processings to configure SynchNN from ".gln" file 107

(a) Coloring (b) Neurons reorganization (c) Definition of the neuron IDs

Figure 5.8: SNN example of 6 neurons labeled with "n", 12 synapses labeled with "s" including 7 internal
(black arrows) and 5 external (red arrows). (a) The coloring of the SNN topology gives 3 colors. (b)
Reorganization of the SNN in layers, so each layer represent one color or one group. (c) Each neuron is
assigned a global neuron ID. The first bits on the left are the NPU ID (or color ID) the neuron belongs to.
External neurons belongs to a "virtual" NPU which ID is 0. The right side is the local index or local ID of
the neuron within a group.

5.2.1 Pre-processings to configure SynchNN from ".gln" file

There are pre-processings that are executed to configure SynchNN. It consists of 3 main pre-
processings applied during the compilation of the specification ".gln" file (see section 4.8). First
one is the partitioning coloring step that determines how many NPUs to generate and which neurons
to assign to them. The method of this step has been explained in previous section 5.1.3. The second
one consists of assigning a unique neuron ID for each neuron. Finally, the third one involves the
extraction of the connectivity matrix for each NPU.

Neuron ID assignment

A unique neuron ID is assigned to "external" and "internal" neurons. This neuron ID has the same
length for all neurons (see figure 5.8(c)). The neuron ID is obtained by concatenating the ID of the
NPU to which the neuron is assigned and its local ID within that NPU. Consequently, the length
of the neuron ID depends on two factors : the total number of NPUs and the maximum number of
neurons grouped among all the NPUs.

The inputs of SynchNN are "events" or "spikes" coming from an outside system to address
specific neurons within the SNN. From the perspective of the architecture, these external spikes
come from "external neurons", that reach the SNN through "external synapses". Consequently, it
is important to note that "external" neurons are considered to belong to a "virtual" NPU with an
ID of 0, it distinguishes them from the neurons within the NPUs.

Example 5.2.1 – In figure 5.8, the coloring of the given neural network results in 3 groups. With
the "virtual" group, the total number of groups is 4. So 2 bits will be used to code the NPU
IDs : "00" for the "virtual" NPU, "01" for NPU1, "10" for NPU2 and "11" for NPU3. Next, the
maximum number of neurons grouped within a color is 3 (color red), so 2 bits will also be used to
code the local IDs of all neurons. In total, 4 bits are used to code the global neuron ID that is the
concatenation of a NPU ID and the local neuron ID : "10 01" is the 2nd neuron within the NPU 2.
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Connectivity matrix extraction for each NPU

The global connectivity matrix is a table that describes the pairs of neurons that are connected in
the SNN. The table in figure 5.9(a) shows the global connections of the SNN example from figure
5.8. Elements in the table are the synapse labels. They connect the neurons pre ("npre") within the
rows to the neurons post ("npost") within the columns. After the coloring, a connectivity matrix is
deduced for each NPU (as shown in figure 5.9(b)). The "npre" and "npost" are replaced by their
neuron IDs. And finally, the synapse labels are replaced by integers.

(a) SNN connectivity matrix (b) NPUs connectivity matrices

Figure 5.9: Connectivity matrices of the example in figure 5.8. Rows are the pre-synaptic neurons (npre), and
columns are the post-synaptic neurons (npost). (a) Connectivity matrix of the original SNN. (b) Connectivity
matrices for the colored groups.

5.2.2 RECEPTION UNIT

The reception unit has two main functions. First one, it converts neuron IDs coming sequentially
from the broadcasting unit into a vector of spikes. Second one, it incorporates the modelling
of axonal delay related to each synapse associated to the NPU. To ensure these functions, the
reception unit is composed of 2 modules, as illustrated in figure 5.10 : a "neuron ID decoder"
and multiple "shift registers".

The inputs are the neuron ID and the state of the FIFO the neuron ID comes from, i_neurID and
i_fifo_empty respectively. These signals come from the broadcasting unit. Other inputs are the
signal to enable the shift of the registers and the signal to reset the output of neuron ID decoder
to ’0’, i_shiftRegs_en and i_rst_spikes respectively. These signals come from the controller
unit. The output spikes that are transmitted to the processing unit represent the spikes that have
traversed the entire array of shift registers or axonal delay lines. Note that the o_neurID_valid is a
just a debug signal to verify if the input neuron ID is valid and can be converted.
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Figure 5.10: Architecture of the reception unit.

Neuron ID decoder

The neuron ID decoder is responsible for the conversion of incoming neuron ID into a vector of
spikes. Its main role is to determine the specific post synapses within the NPU that are targeted by
the neuron ID. It consists of 3 modules arranged as illustrated in figure 5.11. These modules are
the "neuron ID to address converter", the "spikes ROM" and the "spikes storage".

The inputs are the neuron ID, a i_fifo_empty signal and a i_rst_spikes signal. When ’0’, the
i_fifo_empty indicates that the received ID can be converted, otherwise the ID is ignored. The
i_rst_spikes signal is to reset the output spikes of the module.

• Neuron ID to address converter : this module converts the neuron ID input into an
address for the spikes ROM module. It checks whether the received neuron ID belongs to
list of pre-neurons in the connectivity matrix of the NPU. If the neuron ID is not found in the
list, the module sets the signal o_IDinMatrix to ’0’, indicating that the neuron that emitted
the spike is not connected to any neurons within the NPU. On the other hand, if the neuron
ID is present in the list, it generates an address that corresponds to the row position of this
neuron ID in the NPU connectivity matrix.

Example 5.2.2 – In figure 5.9(b), if the NPU1 (green color) receives the neuron ID "1100"
(n5), the ID will be ignored because it is not part of its pre-IDs list. However, if it receives
the neuron ID "1001" (n3), then it will output the row position 2.
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Figure 5.11: Architecture of the neuron ID decoder module in the reception unit.

• Spikes ROM : it is a Read-Only Memory (ROM) where data are initialized once and can
only be read and accessed by an address. The Spikes ROM can be visualized as an array
that represents the connections between pre-neurons and post-synapses within the NPU. To
generate this array, we transform the NPU’s connectivity matrix into an array of ’1’s and ’0’s.
The number of rows in this array corresponds to the number of pre-neurons, which is the
same as the number of rows in the connectivity matrix. The number of columns represents
the number of post-synapses.
For each row in the connectivity matrix, we use the integers within that row as column
indexes in the array. We fill ’1’s at the corresponding row-column positions to indicate a
connection between a pre-neuron and a post-synapse. The remaining elements in the array
are filled with ’0’s to indicate the absence of connections. The resulting array is used to
initialize the Spikes ROM.
This module takes the address of the row position, from the Neuron ID to address
converter module as input. It then outputs the corresponding vector of spikes (a vector of
’1’s or ’0’s), stored at that address. Each element in this vector represents the presence or
absence of a spike for a specific post-synapse.

Example 5.2.3 – In figure 5.9(b), for the NPU2 (red color), the number of pre-IDs is 5, the
total number of synapses to address is 6. So the size of the memory is 5, and the size of each
data is 6 bits. The generated ROM will look like the following table (MSB : Most Significant
Bit / LSB : Less Significant Bit) :

Address input
2

Spikes ROM of NPU2

Address Memory data
LSB ... MSB

0 100000
1 010000
2 001000
3 000100
4 000011

Vector output
001000



5.2 – 5.2.3 PROCESSING UNIT 111

• Spikes storage : during the entire time step, the role of this module is to receive and collect
the spikes from the spikes ROM into internal registers. The "collecting" process involves
performing a logical OR operation between the input spikes and the state of the internal
registers. The module also has two additional inputs: i_rst_spikes and i_storing_en. The
i_rst_spikes input is used to reset the internal registers to ’0’ when the input signal is ’1’.
The i_storing_en input indicates whether the input spikes array can be stored.

Shift registers : axonal delays

We have chosen to use shift registers to model the axonal delay. Each synapse is associated with
a predetermined axonal delay, which is configured before the generation process and remains fixed
thereafter. By setting the general time step to 1 ms, modeling an axonal delay of 𝐷 ms requires 𝐷
successive shift registers. If a spike is inputted into this series of shift registers, it will be outputted
𝐷 ms later if a shift operation is performed every 1 ms. This approach allows for easier management
of spike sequences received by post-synapses, compared to a solution involving counters. Finally,
we generate a specific series of shift registers for each synapse to minimize resource utilization
compared to fixed series of shift registers or memory-based solutions.

5.2.3 PROCESSING UNIT

.  
.  

.

select

i_rst

Accumulator

i_W_val

i_acc_rst

i_rst
o_Wsum_val

i_acc_rst

i_neur_clk

i_syn_clk

i_synRAM_wr_en

i_spikeSyn1
i_spikeSyn2
i_spikeSyn3

i_spikeSynN

i_syn_inputs_en
i_neur_inputs_en

i_emit_spike_en o_neur_spike

o_IDneur_global
o_IDsSel_endIDsList

o_IDsSel_processIDneur

i_neurRAM_wr_en

o_spike

i_addr

i_wr

i_data1..p

o_data1..p

neurRAMs

i_

i_

i_

o_

i_

i_

i_

o_

i_

i_

i_

o_

i_

i_ o_

i_

i_acc_clk

PROCESSING
UNIT

.  
.  

.

Spikes mux

D 
Q

i_addr o_data1..q

neurROMs

ROMROM i_const1..q_val

i_var1..p_val

i_param1..p+q_pure

Neuron

i_rst

i_Isum_val o_spike

I_
I_
I_
I_

I_
I_
I_
I_

I_
I_
I_I_

o_var_1..p_val

.  
.  

.

i_addr

synRAMs

i_

i_

i_

o_

i_

i_

i_

o_

i_

i_

i_

o_

i_

i_ o_

i_
i_wr

i_data1..m

o_data1..m

i_addr

o_data1..n

synROMs

ROMROM

i_start

i_rst

i_nextIDsyn

i_nextIDneur

i_end o_IDneurGlobal

o_IDneurLocal 

o_endIDsynList 

o_processIDneur 

o_IDsyn 

IDs selector

i_IDsSel_nextIDneur
i_IDsSel_nextIDsyn

i_IDsSel_end
i_IDsSel_start

o_W_val

Synapse

i_spike

i_rst

i_const1..n_val

i_var1..m_val

i_param1..m+n_pure

o_var1..m_val

I_
I_
I_
I_

I_
I_
I_
I_

I_

I_
I_
I_
I_

.  
.  

.

Figure 5.12: processing unit architecture.

The main role of the processing unit is to update all the neurons and synapses associated
with the NPU. It receives spikes from the reception unit, updates all the synapses, and then
updates all the neurons based on the updated synapses. Finally, it emits the neuron IDs of the
neurons that have spiked throughout the time step to the broadcasting unit. To fulfill these
functions, the processing unit is composed of several modules and components. These include a
"spikes multiplexer", "ROM/RAM memories", a "synapse module", a "neuron module", an
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"accumulator" and an "IDs selector". The figure 5.12 shows how these different modules are
connected together.

Spikes multiplexer

The spikes multiplexer module takes a vector of spikes as input from the array of shift registers
in the reception unit. Each position in the input vector corresponds to a specific post-synapse
and can be either ’1’ or ’0’ to indicate the presence or absence of a spike at that post-synapse. The
module uses an address selector to choose one of the input spikes as the output. The selection of
the address is controlled by the IDs selector module.

Memories ROM/RAM

We use two types of on-chip memory which are Read-Only Memory (ROM) and Random Access
Memory (RAM). These memories are used to store different types of parameters related to the neural
models. The ROM is used to store constant parameters of the neural models. These parameters may
vary among neurons or synapses but remain fixed over time. An example of a constant parameter
is the membrane potential threshold (𝑣𝑡ℎ) in most neuron models. On the other hand, the RAM is
a type of memory that can be both read and written using an address. It is used to store variable
parameters, which describe the current state of a neural model. These variable parameters are
updated at each time step based on their previous values and the inputs to the neural model. An
example of a variable parameter is the membrane potential (𝑣) of a neuron.

The number of ROM components generated corresponds to the number of constant parameters
in the neural models, while the number of RAM components generated corresponds to the number
of variables. The length of each ROM and RAM component is determined by the number of
neurons and synapses in the neural network, respectively.

Example 5.2.4 – Let’s consider an example of a network consisting of 5 neurons using the Izhikevich
(IZH) model. The IZH model has 4 constant parameters (𝑎, 𝑏, 𝑐 and 𝑑) and 2 state variables (𝑣 and
𝑢). Each neuron in the network can have different values for these parameters and variables :

(1) In this case, a total of 4 ROMs and 2 RAMs will be generated. Each ROM stores the values
of a specific parameter (𝑎, 𝑏, 𝑐, or 𝑑) for all the neurons. Similarly, each RAM stores the values of
a specific variable (𝑣 or 𝑢) for all the neurons.

(2) Since we have 5 neurons in the network, each of the generated ROMs and RAMs from (1)
will contain 5 values. To access the parameters or variables of a specific neuron, the same address
is used across all the ROMs and RAMs.

The storage strategy is to store all the parameters and variables of a neuron or synapse at the
same address in the memory components. This means that only one address is used to retrieve all
the parameters and variables associated with a specific neuron or synapse.

Additionally, the data representation format 𝑄𝑥.𝑦 impacts the overall memory usage. All data
in the memory have the same size, which is preconfigured. If 𝑁const_param, 𝑁var, 𝑆const_param, and
𝑆var represent the number of constant parameters for the neuron model, the number of variables
for the neuron model, the number of constant parameters for the synapse model, and the number
of variables for the synapse model, respectively, then the total storage requirement is

(𝑁const_param + 𝑁var + 𝑆const_param + 𝑆var) ×𝑄𝑥.𝑦 bits
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Synapse module

The synapse module implements the set of equations of a synapse model, which is chosen by the
user in the gln file. The module is one of the synapse models listed in table 4.1 of chapter 4. The
synapse module receives input parameter values from the synapse ROMs and RAMs, as well as the
output spike (’1’ or ’0’) from the multiplexer. It calculates the updated values of the state variables
and sends them back to the RAMs. Additionally, it sends the resulting synapse stimulation value
W to the accumulator. To ensure the calculations are performed at the correct time, the synapse
module is controlled by a specific clock signal. This clock signal is provided by the controller
unit.

Accumulator

The accumulator module receives the stimulation value W from the synapse module. It adds
the input value to its internal register when it receives a clock signal. The internal register retains
its value until it receives another clock signal and the acc_rst signal, at which point it is reset to 0.
The module outputs the value of its internal register to the neuron module. The clock signal for
the accumulator module is also provided by the controller unit.

Neuron module

The neuron module implements the set of equations of a neuron model. It is selected from the
list of Light Esterel neuron models in table 4.1 of chapter 4, and specified by the user in the gln
file. Similar to the synapse module, the neuron module takes as input the parameter values from
the neuron ROMs and RAMs, as well as the stored stimuli from the accumulator. It performs its
calculations and updates the values of the state variables in the RAMs. In case a spike is generated,
we use this signal to enable the writing of the neuron ID to the broadcasting unit. To ensure that
the spike signal is only taken into account once, a signal the spike output is set to ’1’ until the next
controller clock signal input, indicating that a spike has been emitted by the neuron. To ensure that
the spike is only emitted once, a signal o_emit_spike_en is used in conjunction by the controller
unit. As the synapse module, the neuron module operates based on the clock signal provided by
the controller unit and performs its calculations at each clock cycle.

IDs selector

To ensure that synapses are updated before neurons, we have implemented a strategy where one
neuron is updated at a time. This is achieved by processing all the input (or pre) synapses associated
with that neuron and storing the resulting stimuli in the accumulator. While this approach requires
more control steps, it eliminates the need for an additional memory in the case of a strategy that
updates all the synapses first then all the neurons. To ensure the chosen strategy, the IDs selector
selects a local neuron ID and outputs its related local synapse IDs sequentially. These IDs are used
as addresses to access the memories for the neuron module and the synapse module, respectively.
To optimize the selection of IDs, the IDs selector module uses a rearranged version of the matrix
connectivity, as illustrated in figure 5.13. In the modified matrix version in this example, the local
neuron ID is the index of the column, and the pre synapse IDs are the integers within the same
column. This new version is synthesized as logic gates and not as a ROM component.
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Figure 5.13: IDs selector : an example of conversion of the connectivity matrix of the NPU 2 in example in
figure 5.9. (On the left) The original connectivity matrix of the NPU. (On the right) The modified connectivity
matrix, the integers have been moved up to the first lines.

The IDs selector input signals are i_start to start the selection process, i_end to end the
selection process and reinitialize the module internal variables, i_nextIDneur to ask for the next
neuron ID, and i_nextIDsyn to ask for the next synapse ID. The output signals are o_IDsyn
the synapse ID, o_IDneurLocal the local neuron ID to address the memories, o_IDneurGlobal the
global neuron ID that will be sent to broadcasting unit if a spike is emitted, o_endIDsynList a end
of list signal to notify that all the neurons and synapses have been processed, and o_processIDneur
a signal to tell that the neuron module can be executed. More specific explanations are provided in
annexe C on the reading process of the modified connectivity matrix.

5.2.4 CONTROLLER UNIT

The controller unit is responsible for managing and controlling both the reception unit and
the processing unit, to ensure that the overall system functions correctly and synchronously.
It consists of two parallel FSMs, as depicted in figure 5.14, a reception controller and a
processing controller. One controller manages the modules in the reception unit, while the
other controls the modules in the processing unit. Both controllers are synchronized using the
common signal shiftRegs_updated (shown in green in the figure), ensuring that the processing
unit does not start until the shift registers in the reception unit have been updated.

The controller unit has several inputs. But specifically, one input is the signal i_NEW_dt
from the time step manager unit, which indicates the beginning of a new time step. Another
input is the enable signal i_start_NPU, which activates the NPUs. The controller unit will only
start its operation if both i_NEW_dt and i_start_NPU are ’1’.

Reception unit controller

The reception FSM has been reduced to only 3 states. Its main roles are to send a shift enable signal
to all the shift registers at the beginning of a time step, then to reset the collected spikes in the
neuron IDs decoder module, and finally to notify the processing controller that it can start.



5.2 – 5.2.4 CONTROLLER UNIT 115

Reception 
FSM controller

start 
TT

shiftRegs_updated

s0_recep

o_shiftRegs_en 

s1_recep

TT

o_rst_spikes 
shiftRegs_updated

sinit_recep

Processing 
FSM controller

shiftRegs_updatedTT

o_acc_clk 
o_neur_inputs_en 

s2_process

i_IDsSel_processIDneur 
or  

i_IDsSel_endIDsList not i_IDsSel_processIDneur 
and 

not i_IDsSel_endIDsList 
i_IDsSel_processIDneur

TT 

not i_IDsSel_processIDneur

not i_IDsSel_endIDsList

TT

o_IDsSel_end 
sinit_process

start 
/ o_IDsSel_start 

i_IDsSel_endIDsList

TT

 
o_acc_clk 

o_syn_inputs_en 

s3_process

 
o_syn_clk 

o_syn_inputs_en 
o_synRAM_wr_en 

o_IDsSel_nextIDsyn 

s1_process

 
o_IDsSel_start 

o_syn_inputs_en 
o_acc_rst 
o_acc_clk 

s0_process

 
o_acc_rst 
o_acc_clk 

o_emit_spike_en 
o_syn_inputs_en 

s6_process

 
o_syn_clk 

o_syn_inputs_en 
o_synRAM_wr_en 

o_IDsSel_nextIDsyn 

s4_process

i_start_NPU
start

CONTROLLER
UNIT

i_NEW_dt

 
o_neur_clk 

o_neur_inputs_en 
o_neurRAM_wr_en 

o_IDsSel_nextIDneur 

s5_process

i_IDsSel_processIDneur

i_IDsSel_endIDsList

i_rst

i_clk

o_emit_spike_en 
s7_process

TT  :  no condition  
    in the transition

o_shiftRegs_en

o_rst_spikes

o_IDsSel_start

o_syn_inputs_en

o_acc_rst

o_acc_clk

o_emit_spike_en

o_syn_clk

o_synRAM_wr_en

o_IDsSel_nextIDsyn

o_neur_inputs_en

o_neur_clk

o_neurRAM_wr_en

o_IDsSel_nextIDneur

o_IDsSel_end

Figure 5.14: Architecture of the controller unit. Each state (circle) are individually named in grey. The
inputs are identified with "i_" and part of the sensibility list. Local signals are in blue and green and are
also part of the sensibility list. The outputs are identified with "o_" and are written in bold. "TT" means that
there is no conditions in the transition. Initial state at the reset are the ones pointed by the empty arrows.

Processing unit controller

The processing FSM orchestrates all the modules in the processing unit. Its main role is to ensure
the proper sequence of processing steps for each neuron. This includes processing all the pre
synapses, calculating the neuron’s response based on the accumulated stimulation, and sending
the eventual emitted spike to the broadcasting unit. The processing controller consists of 9
states :

• Initital state sinit_process : it’s the initial state. In this state, the processing controller
outputs the signal o_IDsSel_end to stop the operation of the IDs selector module. It waits
for the arrival of the start signal, and once it arrives, it triggers the beginning of the IDs
selector module. In the next clock cycle, the new state is s0_process.

• s0_process : In this state, the first IDs from IDs selector are sent to the spikes multiplexer
and the synapse/neuron memories. Before executing the synapse module, the value of the
accumulator is reset. When the signal shiftRegs_updated from the reception FSM is ’1’,
in the next clock cycle, the new state is s1_process.

• s1_process : All the synapse module inputs are ready, a clock signal is sent to trigger its
operation. A write enable signal is sent to all the synapse RAM memories to store the
updated values. At the same time, the next synapse ID is requested, to be available at the
next clock cycle. If the input signal i_IDsSel_processIDneur to process the neuron is ’1’ or
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if all the synapses have been processed, at the next clock cycle, the new state is s2_process.
Otherwise, it’s s3_process.

• s2_process : The last pre-synapse of the current neuron has been processed, its stimulation
output is added to the accumulator by sending a clock signal to the module. All the inputs
to the neuron module are ready. Without any conditions, in the next clock cycle, the new
state is s6_process.

• s3_process : The calculated stimulation of the pre-synapse is added to the accumulator by
sending a clock signal to it. At the same time, the new pre-synapse ID is available and the
related inputs are present at the synapse module. If the signal to process the neuron is ’1’
then the next state will be s1_process. Otherwise, the next state is s4_process.

• s4_process : All the synapse module inputs are ready, its operation is triggered by sending a
clock signal to it. The new calculated synapse values are stored in the synapse RAMs, and
the next synapse ID is requested for the next cycle. In the next clock cycle, the new state is
s3_process.

• s5_process : all the pre-synapses have been processed and their stimuli have been added to
the accumulator. The neuron module is then executed by sending one clock signal to it,
and the new calculated values are stored in the neuron RAMs. At the same time, the next
neuron ID is requested for the next clock cycle. If all the neurons have been processed, the
next state will be s7_process. Else, it will be s6_process.

• s6_process : A new neuron ID has been selected, the accumulator is reset to 0. The
o_emit_spike_en is set to ’1’ during the one clock cycle to send the global neuron ID to the
broadcasting unit in case a spike has been emitted in the previous clock cycle. The new
inputs of the synapse module are ready. The next state will be s1_process.

• s7_process : This state sets the o_emit_spike_en signal to ’1’ during one clock cycle, to
ensure that the o_neur_spike lasts only one clock cycle.

5.2.5 BROADCASTING UNIT

The broadcasting unit receives the neuron IDs of all the neurons being processed from all the
NPUs, including the neuron IDs of the external neurons. It stores a neuron ID whenever it receives
the spike signal, then it broadcasts them back to all the NPUs one by one. The broadcasting
unit remains active during the entire time-step, allowing neuron IDs to arrive at any moment. This
flexibility is important, especially when external inputs may not be bound to a specific time. Only
at the beginning of a new time step, the broadcasting is paused to allow the NPUs to update their
modules. Note that the broadcasting unit was added in the latest version of SynchNN to enable
connections between neurons within the same NPU. The broadcasting unit is mainly composed
of "FIFOs", a "FIFO multiplexer", a "FIFO read selector", a "FIFO address selector" and
an "IDs broadcasting controller".

Each NPU has its own FIFO to store the neuron IDs, and there is an additional FIFO dedicated
to the external neurons’IDs. The size of each FIFO is determined by the number of neurons
in the respective NPU or the number of external neurons it is associated with. This allows the
broadcasting unit to receive and store the neuron IDs in parallel from all the NPUs.
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Figure 5.15: broadcasting unit architecture.

To broadcast the neuron IDs, the FIFO multiplexer selects one of the FIFOs’outputs to
be broadcasted to all the NPUs. The selection of the FIFO is controlled by the FIFO address
selector, which outputs the addresses of the non-empty FIFOs. This allows for efficient selection
and broadcasting of neuron IDs.

The FIFO read selector is an asynchronous module which coordinates the read operations
of the FIFOs. It sends a read signal to specific FIFO based on the address provide by the FIFO
address selector, when its input i_nextIDneur is ’1’.

Finally, the IDs broadcasting controller module makes the broadcasting unit indepen-
dent. It controls the emptying process and the pause process of the broadcasting unit.

5.2.6 TIME STEP MANAGER UNIT

There are two main clock signals in SynchNN. The first one, clk, is the clock from the FPGA that
is driving mostly all the unit modules. The second one, clk_dt, derived from the first one, is the
clock defined by the application constraint time scale. This second clock imposes that the SynchNN
calculations are bounded by 2 successive rising edges of clk_dt.

So the time step manager unit is quite simple but still, it is an important unit. It is configured
with the dt period constraint and it creates the clk_dt by dividing the FPGA clk. The unit outputs a
signal o_NEW_dt during one clk cycle to all the other units every new time step.
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5.3 Experiments and results

5.3.1 Coloring algorithms results

The 3 algorithms, FF, LDO, and WP, are applied to 3 different graphs. Each graph has the same
number of nodes, which is 50, but the number of arcs varies. The number of arcs is determined by
the density of connections within each graph. Specifically, we have chosen densities of 20%, 30%,
and 50% for the three graphs, respectively. In this experiment, we are looking at the differences in
the solutions provided by the 3 algorithms, and the results are shown in figure 5.16.

Comparison of node distribution accross different graph algorithms:
FF, LDO, WP

For a graph of 50 nodes with 20%
connection density

For a graph of 50 nodes with 30%
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For a graph of 50 nodes with 50%
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Figure 5.16: Extracted and translated from (Chouchane, 2020), coloring results of the 3 algorithms FF,
LDO and WP on a graph of 50 nodes with (a) 20% connection density, (b) 30% connection density and (c)
50% connection density.

Each graphical plot represents the coloring results of the 3 coloring algorithms applied on
the same graph. The x-axis represents the number of colors used in the coloring, while the y-
axis represents the number of nodes assigned to each color. A black dash line represents the ideal
distribution of nodes among the colors, which is obtained by dividing the total number of nodes (50)
by the maximum number of colors among the algorithms. To decide the best coloring algorithm,
it should (1) achieve the minimum number of colors and (2) provides a more even distribution of
nodes among the colors to prevent over-utilization or under-utilization of NPUs.

Firstly, it is evident that as the density of connections increases, meaning the number of arcs
increases, the number of colors required to properly color the graph also increases. This is intuitive
since it becomes more challenging to group nodes that are not connected.
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Secondly, the number of colors obtained by each algorithm may vary. In the presented results,
the FF algorithm tends to yield more colors compared to the other algorithms. For example, in case
(b), it results in 15 colors while the others require only 13 colors. On the other hand, both the WP
and LDO algorithms produce fewer colors overall, but the WP algorithm consistently performs
better in cases (a) and (c).

In situations where the algorithms yield the same number of colors, the choice of the best
coloring depends on an additional criterion, namely the standard deviation. The standard deviation
measures how far the actual number of nodes per color deviates from the ideal number of nodes
per color represented by the dashed line in the plot. When comparing the LDO and WP algorithms,
the WP algorithm minimizes the standard deviation, indicating that the number of nodes per color
is closer to the ideal distribution represented by the dashed line.

So in conclusion, in these examples, the WP seems to be the best algorithm, however we keep
all 3 algorithms as sometimes the best one is not always the same one. So, the three algorithms
will be run on any given graph (or SNN specifications), the best coloring results chosen will be
based on again (1) a minimum number of colors and (2) a fair distribution among the colors.

5.3.2 Functional validation

The functional validation consists in ensuring that the architecture developed corresponds to the
expected behavior described in this chapter. It is done by running functional simulations on the
architecture, and for that purpose we used the Modelsim hardware simulation tool. The functional
validation is performed before proceeding to hardware synthesis and on-chip operation. As an
important debugging step in hardware implementation, functional simulation is performed on the
elementary modules that compose the units, then on each unit and finally on the whole architecture.

The simulations have demonstrated that each unit is operational, they are detailed in annexe D.
For the hardware performance analysis in section 5.3.3, if 𝑁𝑠 is the number of synpases in the NPU
and 𝑁𝑛 is the number of neurons, to process all the neurons and all the synapses in the processing
unit, the number of clock cycles required is :

2 + 2 × 𝑁𝑠 + 2 × 𝑁𝑛 + 2 = 2 × (𝑁𝑠 + 𝑁𝑛 + 2) cycles. (5.1)

where : there are 2 clock cycles before the first synapse is processed, the update of one synapse
needs 2 clock cycles, the update of one neuron needs 2 clock cycles, and there are 2 additional
clock cycles for the FSMs to be all reset.

SynchNN validation

For the global SynchNN architecture validation, we compared two simulations of the same SNN :
one simulation (software) with the BRIAN simulator and the other simulation (hardware) with
SynchNN using Modelsim. The main objective is to ensure that the hardware simulation is close to
the software simulation taken as reference, given the possible errors with the use of the fixed type
(see section 4.1.1).

In the figures 5.17 and 5.18, we show the simulations obtained on the SNN configuration
example in figure 5.8. For each simulation, we display the raster plot for the global SNN behavior,
and we isolate the evolution of the membrane potentials of some neurons for more precise local
behavior. The raster plot allows to visualize all the spikes emitted during the simulation by all
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the neurons. In a raster plot, a dot represents a spike where its coordinates x and y refer to the
time when the spike was emitted and the neuron (index) which has emitted the spike, respectively.
As no specific application is demonstrated here, the parameters of the neurons and synapses have
been chosen to facilitate the visual validation of the architecture : they are not biologically relevant
but they allow to have particular patterns easily comparable. The neural models used and their
parameters are given in the table 5.1.

Figure 5.17: BRIAN simulation of the SNN in example 5.8 with random parameters. (Top) The raster plot of
the entire network. Y-axis from bottom to top : ext0, ext1, ..., ext3, n1, n2, ..., n6. The neurons n2, n3 and n6
are highlighted with different colors. (Bottoms) The evolution of the membrane potentials of the 3 neurons
in NPU2.

Figure 5.18: SynchNN simulation in Modelsim of the SNN in example 5.8. Display setup and parameters
are the same as in the BRIAN simulation above. The clock frequency is 50 Mhz and 𝑄𝑥.𝑦 = 12 + 19 bits.
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Neuron model "IZH" (for all neurons)
a b c d Iconst
0.02 0.2 -65.0 2.0 6.0

Synapse model "STP"
P 1/𝜏𝑥 1/𝜏𝑊 W
(external) 1.0 0.9 0.0008 -2.0
(internal) 1.0 0.9 0.01 -0.5

Table 5.1: Parameters of the neural models used in the software and hardware simulations for
SynchNN validation. All axonal delays are set to 1 ms.

As detailed in the table, the neuron model is the IZH model and all neurons are the same regular
spiking (RS) type with the same parameters. Iconst allows the neurons to emit spontaneous spikes
without external inputs. The synapse model is the short term plasticity model, and they all are
inhibitory with the same axonal delays. Internal and external synapses have different parameters,
the external synapses inhibit more the internal neurons on a longer period. On the simulations, we
show the membrane potentials of the neurons in the NPU2. With the time step dt equals to 1 ms,
we run the simulation during 10 seconds, and during the first 6 seconds, external spikes (red dots)
inhibit the network. This external inhibition provokes the oscillatory patterns of some neurons (n2
and n6), but also the complete inhibition of others (n3 and n5). When no external stimulation is
applied, all the neurons start to fire again with different frequencies as they are inhibiting each
other.

At first sight, both simulations look similar: the patterns visually match as well as the number
of spikes emitted within the oscillatory patterns. But when we watch closely, there are differences :
the spikes are not emitted exactly at the same time, e.g. the neuron n5 (see raster plots) emits
one spike a little bit later in hardware around 3 seconds of simulation compared to the software.
To be more precise, the percentage of similarity between both raster plots is actually 7.68%. This
value represents the number of spikes that have been emitted exactly at the same times by the same
neurons in both simulations. This huge difference is due to the fact that calculations in software use
float type while in hardware it is fixed size type. Therefore, it leads to errors which explain why the
shapes of the action potentials are different. Also error computations cause the spikes in hardware to
be emitted with a delay, or even omitted due to the dynamics of the network : by analyzing the spike
timings, the delay between hardware and software for the same spike can range from 0 to hundreds
of milliseconds. Luckily, the resetting step of the neural models avoid the errors to explode. The
errors can be decreased if the time step dt is lowered and the fractional representation size in 𝑄𝑥.𝑦

is increased. But, a small dt will limit the maximum size of the network to simulate (explained in
the next sub-section) and a larger representation size will affect the resources utilization. Despite
the errors, the spiking patterns are the same but with possible delays between the spikes. Also,
in terms of the total number of spikes emitted during the whole simulation, the hardware and the
software are similar up to 99.58% (see table 5.2).
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TOTAL NUMBER OF SPIKES

Neuron Modelsim Brian Spikes number Spike timings
similarity similarity

n6 100 101 99.01 % 6.93 %
n5 78 80 97.50 % 3.75 %
n4 153 153 100.00 % 1.96 %
n3 26 24 91.67 % 4.17 %
n2 123 124 99.19 % 4.03 %
n1 228 229 99.56 % 8.3 %
ext3 6 6 100 % 100 %
ext2 0 0 - -
ext1 6 6 100 % 100 %
ext0 6 6 100 % 100 %
TOTAL 726 729 99.25 % 7.68 %

Table 5.2: Number of spikes emitted by each neuron in software and hardware during the 10
seconds simulation.

Hardware simulations cannot totally match with software simulations. But in our case, the most
important is that both simulations don’t have big difference behavior, and for SynchNN we can
validate the architecture as the global behavior match with the software behavior.

5.3.3 Performance : SNN maximal size

The total number of neurons 𝑁𝑛 and synapses 𝑁𝑠 that SynchNN supports depends on the available
FPGA resources. The maximum size can be determined in 3 steps : (1) compute the maximum
number of neurons and synapses respecting the total available memory; (2) compute the maximum
number of neurons and synapses one NPU can process with respect to the time step constraint -
here, we take into account the possibility of recurrent connections between neurons within the same
NPU -; and (3) deduce the minimum number of NPUs needed to respect (1) and (2). The estimations
depend on 4 major parameters : the constraint dt time step, the chosen working frequency of the
FPGA, the available resources on the FPGA (on-chip memory and DSP blocks) and the neural
models used. In the following, the equations are general, but the size estimation example is based
on the worst case scenario : a totally fully-connected SNN with the same maximum axonal delay
across all the synapses, but we consider only one connection from each external neuron.

For the step (1), as the total available memory on a FPGA is given by a total number of memory
bits, the SynchNN memory usage should not exceed this limit. In SynchNN, the memory is used
to store the neural parameters and variables (see RAMs/ROMs in the processing unit) which
depends on the chosen neural models, to store the spikes in the IDdecoder ROM (see ROM in the
reception unit), to model the axonal delays (see shift registers in the reception unit), and to
store the emitted ID of the spiking neurons (see FIFOs in the broadcating unit). So the following
equation is the total memory usage considering one NPU :
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[
𝑄𝑥.𝑦 ×

(
𝑁𝑛 × 𝑁nb_param + (𝑁𝑠int + 𝑁𝑠ext) × 𝑆nb_param

) ]
RAMs/ROMs

+
[
𝑁𝑛pre × (𝑁𝑠int + 𝑁𝑠ext)

]
IDdecoder ROM

+
[
(𝑁𝑠int + 𝑁𝑠ext) × max_delay

]
axonal delays

+
[
(𝑁𝑛 + 𝑁𝑛ext) × neuronID_length

]
FIFOs ≤ max_memory_bits𝐹𝑃𝐺𝐴 (5.2)

where 𝑄𝑥.𝑦 is the data representation of all the neural values; 𝑁nb_param and 𝑆nb_param are respec-
tively the total number of parameters and variables of the neuron model and the synapse model;
"max_delay" is the maximum delay of all the synapses; "neuronID_length" is the length of the
global neuron ID; 𝑁𝑛ext is the number of external neurons; 𝑁𝑠int and 𝑁𝑠ext are the number of internal
and external synapses, respectively; and 𝑁𝑛pre is the total number of pre-synaptic neurons of the
NPU.

Example 5.3.1 – We consider a fully-connected SNN case : the chosen data representation is
𝑄12.19; the neuron model is IZH (𝑁 IZH

nb_param = 7); the synapse model is STP (𝑆STP
nb_param = 6); the

maximum delay is max_delay = 50 ms; the number of external neuron is 𝑁𝑛ext = 100; and each
external neuron is only connected to one internal neuron. In this case, 𝑁𝑛pre = 𝑁𝑛 + 𝑁𝑛ext ; as
𝑁𝑛ext < 𝑁𝑛 therefore the "neuronID_length" is equal to

⌈
log2 𝑁𝑛

⌉
+1, where ⌈ ⌉ is the ceil function;

and finally, 𝑁𝑠ext = 𝑁𝑛ext . On a FPGA Cylcone V family (5CGXFC9E7F35C8), the total memory
bits available is 12 492 800 bits. So from the equations above, the total memory usage should be :

31 × (7.𝑁𝑛 + (𝑁𝑠int + 100) × 6)
+ (𝑁𝑛 + 100) × (𝑁𝑠int + 100)
+ (𝑁𝑠int + 100) × 50
+ (𝑁𝑛 + 100) × (

⌈
log2 𝑁𝑛

⌉
+ 1) ≤ 12 492 800

318.𝑁𝑛 + 336.𝑁𝑠int + 𝑁𝑛.𝑁𝑠int +
⌈
log2 𝑁𝑛

⌉
.(𝑁𝑛 + 100) + 33700 ≤ 12 492 800

As a fully-connected case, i.e. 𝑁𝑠int = 𝑁𝑛.𝑁𝑛, therefore the couple values 𝑁𝑛 = 158 and 𝑁𝑠int =

24 964 is the maximum solution of the equation above. So, with the available memory on the
FPGA, we estimate a SNN size with 𝑁𝑛 = 158, 𝑁𝑠 = 𝑁𝑠int + 𝑁𝑠ext = 24 964 + 100 = 25 064.

The step (2) is to determine the maximum number of neurons 𝑁NPU
𝑛 and synapses 𝑁NPU

𝑠 only
one NPU can process. As a reminder, the total number of cycles needed to update the neurons and
synapses is given by the expression in equation 5.1, and the general update must be done within
one time step 𝑑𝑡. The time step can be converted in a number of cycles 𝑑𝑡𝑐𝑦𝑐𝑙𝑒𝑠 depending on the
chosen FPGA clock frequency. Therefore, the total number of cycles to update the SNN should not
exceed the 𝑑𝑡𝑐𝑦𝑐𝑙𝑒𝑠, and we obtain the equation 5.4 :

2 × (𝑁NPU
𝑠 + 𝑁NPU

𝑛 + 2) ≤ 𝑑𝑡cycles (5.3)

𝑁NPU
𝑠 + 𝑁NPU

𝑛 ≤
𝑑𝑡cycles − 2

2
(5.4)
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Example 5.3.2 – With a chosen working frequency of 50 Mhz and a 𝑑𝑡 of 1 ms, 𝑑𝑡𝑐𝑦𝑐𝑙𝑒𝑠 is therefore
equal to 50 000 cycles, and we obtain :

𝑁NPU
𝑠 + 𝑁NPU

𝑛 ≤ 24 998

With the fully-connected condition, therefore the couple 𝑁NPU
𝑛 = 157 and 𝑁NPU

𝑠 = 24 649 satisfy
the above equation, it represents the maximum capacity of one NPU.

Finally, the step (3) is to find out how many NPUs are required to simulate the SNN size
estimation in step (1) with respect to the time step constraint in step (2). The number of NPUs
should then fit in the FPGA. This number depends on the number of available dedicated digital signal
processing (DSP) blocks. They accelerate typical signal processing tasks and include multipliers.
DSP’s functions can be implemented directly in logic (LUTs and flip-flops), however it would take
significant resources. The DSP usage in SynchNN depends on the neural models used and the data
representation 𝑄𝑥.𝑦 .

Example 5.3.3 – On an FPGA of the Cylcone V family (5CGXFC9E7F35C8), the total number of
available DSP blocks is 112. With the same example case taken since step (1), one NPU uses 23
DSP blocks. Thus, the maximum number of NPUs that can be generated on the board is 4.

As found in step (1), 𝑁𝑛 = 158 and 𝑁𝑠 = 25 064. However, these values don’t satisfy the step
(2) constraint. Therefore, one NPU (NPU1) will be generated and used at its maximum capacity
i.e. 𝑁NPU1

𝑛 = 157 and 𝑁
NPU1
𝑠 = 24 649, and another NPU (NPU2) will process the left over neurons

and synapses i.e. 𝑁NPU2
𝑛 = 1 and 𝑁

NPU2
𝑠 = 415.

Finally, we can confirm that the maximum SNN size of 158 neurons and 25 064 synapses can be
simulated on the chosen FPGA, by generating 2 NPUs in order to respect the time step constraint.

In conclusion, the maximum number of neurons and synapses that SynchNN can simulate
strongly depend on the application constraint and the FPGA resources constraint. The maximum
SNN size changes depending on the SNN configurations and the neural models, and they can be
calculated using the equations in step (1) but need to be confirmed with step(2) and step (3). The
table 5.3 details the SNN maximum sizes that can be simulated in SynchNN depending on the neural
models chosen. The neural models presented in this table are the hardware compatible models. This
means that not all the implemented Light Esterel models can be simulated in hardware for now, e.g.
the Hodgin-Huxley model due to the division operations that we didn’t integrate in hardware yet.
With the available resources of the Cyclone V family (5CGXFC9E7F35C8) FPGA, the estimation
values are calculated considering a fully-connected network with 100 external neurons and all
axonal delays equal to 50 ms.
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𝐷𝑎𝑡𝑎𝑠𝑖𝑧𝑒 31 bits (𝑄12.19)
Neuron model choice

IF X
LIF X
Adapt. LIF X
IZH X X X

Synapse model choice
Fixe X X X X
STP X
STDP X

Fully-connected SNN maximum size
# neurons 167 167 167 167 158 150
# synapses 27 989 27 989 27 989 27 989 25 064 22 500
# NPU 2 2 2 2 2 1

Table 5.3: SNN maximum size estimations that can be simulated on SynchNN, according to
the neural models used. The estimations are based on the available resources on the Cyclone V
(5CGXFC9E7F35C8) with : a fully-connected SNN with the same axonal delay for all the synapses;
100 external neurons; and one connection from each external neuron to internal neuron.

5.4 Discussions

SynchNN has been developed during the last years of this thesis to address one of the main
objectives, to simulate SNN in real-time for neurobiohybrid experiments. Several years are needed
to develop an optimized architecture, that’s why SynchNN still needs optimizations which will be
discussed in this section.

As we have seen in the results, the coloring paradigm is not always adapted to reduce the use
of FPGA resources. Indeed, when the density connections is high, the coloring tends to generate
several NPUs that contains only few neurons. Moreover, the number of NPUs that can actually be
generated strongly depends on the available resources on the FPGA target, and it can not be too
big. In the last version of SynchNN, we integrated the possibility to connect neurons of the same
NPU. Therefore, this feature makes the architecture not dependent to the coloring algorithms, so
we can investigate on other separation algorithms, for example the clustering method. If properly
chosen and set up, clustering seems to be more suitable for hardware resources utilization as it
would generate fewer NPUs. Moreover, the clustering paradigm is actually closer to the simulation
paradigm of many neuromorphic architectures based on the "minicolumn" building block (R. Wang
et al., 2014; Merolla et al., 2014; Thakur et al., 2018). Biologically, a minicolumn refers to a vertical
volume of cortex, containing a certain number of neurons and synapses (Buxhoeveden & Casanova,
2002). Neurons within a minicolumn can be connected together and are connected to neurons in
other minicolumns in the cortex. Neuromorphic accelerators model therefore the minicolumn as a
neural core, and several neural cores process portions of the SNN in parallel.

The broadcasting of the events (neuron IDs) to all NPUs was an easy implementation choice.
However, first, it increases the number of communication bus lines, and second, an event does not
necessarily need to be addressed to all NPUs. For these reasons, a routing method would be more
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appropriate for an event to be sent only to specific NPUs while the others wait for events intended
for them. This strategy is related to the use of the address event representation (AER) protocol.

Using one same hardware architecture to simulate different neural models in real-time is one
contribution of SynchNN, while other neuromorphic accelerators restrict the number of their models
and focusing on the possibility to simulate large scale network. At the expense of being able to
simulate large neural network, SynchNN allows to simulate neural models that can be updated in
one clock cycle. For models that require more clock cycles, significant modifications would be
necessary as the controller unit is designed to orchestrate only one cycle models.

SynchNN only uses the on-chip memories on the FPGA to store the neural models parameters
and variables, and the network connectivity. As the available memories is quite limited, it affects
the size of the SNN that can be simulated, especially when the models require multiple parameters
to be saved. The use of external memories is a solution to overcome that limit by storing the neural
parameters and variables outside the FPGA. However, using an off-chip memory needs flow control
to access the data, which will make the architecture significantly more complex, especially if there
are multiple off-chip memories or multiple NPUs that access the memories.

Once synthesized, the SynchNN architecture can not be reconfigured on-line e.g. changing
the neural models parameters. To reconfigure the SNN, a new synthesis is required with the new
parameters. Therefore it would be more interesting to change the parameters of the SNN on-
line without resetting the overall simulation. This can be done by using more RAM memories
which will contain the configurable parameters and which values can be changed and accessed
by a communication protocol. For the axonal delays, it would require to change the shift register
component.

We wanted the models to be configurable as much as possible i.e. many parameters are not
constants. But to increase the size of the SNN, we can implement other models in which the number
of variable parameters are restricted. For example, instead of having different spiking thresholds for
all neurons, the use of only one constant threshold for all the neurons will save memory. Another
solution to simulate larger SNN is to implement different SNNs on different FPGA boards, then to
make them communicate with each other through a protocol that is to be defined. This way, each
FPGA is actually processing a portion of a larger network.

5.5 Conclusion

The neuromorphic architecture SynchNN presented in this chapter was developed to overcome
the limits of the Light Esterel native tools which are to be only able to generate and simulate
limited sizes of SNN in hardware. This solution is related to our goals of communicating with real
neurons in real-time, and understanding how the information is processed in the brain on a small
scale using artificial models. The architecture is automatically generated and configured by the
developed "Genlenet" software tool that takes as input the user specifications written in a "gln" file
(cf. chapter 4).

Without development specifications, we have chosen to design the hardware respecting 2
constraints. The first constraint is related to the real-time artificial-biological communication which
imposes the respect of a discrete biological time step processing. The second constraint which is
the contribution of SynchNN is related to the possibility to simulate different neural models with
the same hardware architecture. For the hardware implementation strategies we adopted a parallel
architecture mixed with time-multiplexed architecture to improve the time processing and thus to
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allow the simulation of larger SNN size. Even if it improves the number of neurons and synpases
that can be simulated, the maximum size of the SNNs in SynchNN is still limited compared to
existing neuromorphic architectures in the literature which aim to simulate large scale SNNs such
as the size of the cortex. However the hardware-based neuromorphic accelerators are less flexible
and are capable to simulate only few to only one neural models, where SynchNN allows to choose
various models which were developed in Light Esterel. Other neuromorphic accelerators are also
flexible but they use processor-based solutions. Developing our own architecture gives us a total
control and thus makes it possible in the future to optimize and to improve the current SNN size
limit, and especially to add new features and new models.





CHAPTER 6
Neurobiohybrid
experiment and

simulation
In this chapter, our goal is to connect the work we have developed throughout this thesis
with the application field in which it is placed: Neurobiohybridization. Moreover, this
chapter serves as a gateway to new perspectives for addressing this domain.

Firstly, we present the neurobiohybrid experiment we conducted in Japan using real
biological neurons. We detail the experimental setup and the objectives we aspired
to achieve. Furthermore, we discuss the results, the limitations and challenges we
encountered during this experiment.

Subsequently, we introduce the development of a simulation framework. This framework
is conceived as a solution to overcome the limitations experienced during our experiment,
and as a platform for testing proof of concept before conducting real experiments. More-
over, this simulation framework is also intended to complement the SynchNN architecture
that we presented in the previous chapter, offering practical insights into the applicability
of our work, and extending its reach even into the domain of machine learning.
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6.1 Central pattern generator (CPG) experiment

In this section, we present a experiment opportunity we conducted to communicate with real
biological neurons using our synchronous models. Although we were unable to achieve the expected
results, we explain the preliminary objectives, the methodology, the experimental setup and discuss
the challenges encountered. The experiment was conducted in Japan, in collaboration with the
Institute of Industrial Science (IIS) at the University of Tokyo, in november 2019.

For this first and only opportunity we had, we tried to reproduce the results obtained in
(Ambroise et al., 2017) with our own synchronous implementations. They implemented a CPG
with the IZH model and STP model (see chapter 2) for the neurons and synapses respectively
(Ambroise, Levi, Joucla, Yvert, & Saïghi, 2013). In this experiment, they proved in an open and
closed-loop biohybrid experiments that it was possible to regulate or synchronize the activity of a
BNN and a SNN.

6.1.1 Definition

Central Pattern Generators (CPGs) are neural circuits that are characterized by their ability to
produce rhythmic patterns of neural activity (Marder & Calabrese, 1996; Hill et al., 2001, 2002)
without rhythmic sensory or input from higher-order neural structures. They are responsible for
controlling essential functions such as locomotion and respiration, in many organisms. For example,
CPGs control walking in salamanders (Ijspeert, Crespi, Ryczko, & Cabelguen, 2007), swimming
in tadpoles (W.-C. Li, Merrison-Hort, Zhang, & Borisyuk, 2014), flying in locusts (Stevenson &
Kutsch, 1987) and even heartbeats (Hill et al., 2001; Cymbalyuk, Gaudry, Masino, & Calabrese,
2002). The modeling of CPGs has been used in various applications such as robotics to control the
locomotion of bioinspired robots (Ijspeert, 2008; C. Li, Lowe, & Ziemke, 2013; Barron-Zambrano
& Torres-Huitzil, 2013) allowing for more natural, efficient and adaptive movements. In the field
of neurobiohybridization, CPGs have been used in closed-loop experiments with biological neural
network (BNN) such as in (Ambroise et al., 2017), where they have shown the possibility to change
and control biological dynamics, as a first step toward the realization of innovative neuroprosthesis.

Elementary CPG

An elementary CPG is a minimal neural circuit capable of generating rhythmic oscillatory activity.
The simplest model is composed of 2 neurons that reciprocally inhibit each other as illustrated
in figure 6.1. In this configuration, when one neuron is active, it exhibits a bursting activity that
inhibits the other. The burst refers to a successive spiking activity. However, when considering
synaptic fatigue, the inhibition strength gradually decreases over time. This results in the activation
of the other neuron, which, in turn, inhibits the first neuron. This mechanism repeats, leading to an
alternating pattern of activity.
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Figure 6.1: Illustration of an elementary CPG. (a) It is composed of 2 neurons, N1 and N2, of type RS
(see figure 2.7) connected with 2 inhibitory synapses. (b) Raster plot describing the behavior of the CPG,
an oscillatory activity between the two neurons. In this configuration, a constant input current is applied to
both neurons to make them fire. Figure extracted from (Ambroise, 2015).

In this elementary CPG model, it is possible to change the frequency of the oscillatory activity
by playing with the synapses parameters. However, to generate a wide range of frequencies, more
complex CPG configurations containing more neurons are required. To create more complex CPGs,
elementary CPGs are used as basic building blocks to achieve faster frequency or smaller period of
oscillations (Marder & Calabrese, 1996) as illustrated in figure 6.2. This modular approach allows
to model and replicate a wide range of biological rhythmic patterns observed in different organisms
(Hill et al., 2001).

Figure 6.2: Illustration of a segmental CPG. (a) It is composed of 8 neurons connected with inhibitory
synapses. (b) The raster plot shows the behavior of N1, N2, N3 and N4 neurons. Figure extracted from
(Ambroise, 2015).

6.1.2 Synchronous CPG implementations

At the time of this experiment, the framework and hardware architecture presented in chapters 4
and 5 were not developed yet. Therefore, our methodology was to individually model, declare and
connect manually the neurons and the synapses as illustrated on top of the figure 6.3. We will refer
to this method as the "modular" method.
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Figure 6.3: Implementation structure and simulation of the Light Esterel elementary CPG. On top, the
modular implementation of the CPG. The following graphs are the simulation of the generated C codes,
showing the raster plot, the membrane potential of each neuron and the inhibition currents over time.

This figure shows the global behavior of the CPG with the Light Esterel models. We can observe
the inhibition conflict at the beginning of the simulation, then the alternating firing activity due to
the inhibition patterns on one another. This simulation allows to validate the model and is obtained
by using the parameters in table 6.1.
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Neuron model "IZH"
a b c d Iconst

N1 0.02 0.2 -65.0 8.0 7.0
N2 0.02 0.2 -65.0 8.0 7.025

Synapse model "STP"
P 1/𝜏𝑥 1/𝜏𝑊 W

Syn1 0.01 0.00065 0.001 -5.0
Syn2 0.01 0.00065 0.001 -5.0

Table 6.1: Parameters of Light Esterel elementary CPG, with dt=1 ms. Note that a little stimulation
constant current is introduced to differentiate the 2 neurons. Iconst is the only parameter we can
tune, while the others are inherent to the IZH model. Without this distinction, the two neurons
would exhibit the exact same behavior, which would not result in the desired alternating patterns.

In table 6.2, we compare the synthesis results of the "modular" implementation method used in
this experiment with the architecture developed in chapter 5 for the same CPG configuration. The
"modular" method consists in generating individually each module of the SNN configuration. For
the elementary CPG, this means generating 2 neuron modules, 2 synapse modules and 2 axonal
delay modules. With the second method involving the hardware architecture, we generate only 1
neuron and 1 synapse module per NPU (axonal delays are managed differently). We also highlight
the impact of using the coloring algorithms. In the case of the elementary CPG, this results in the
configuration of 2 NPUs, each managing 1 neuron and 1 synapse.

Resources occupation of elementary CPG
Hardware implementation methods

Resources
Total Modular 1 NPU 2 NPUs
available

ALMs 113 560 438 503 978
DSP 112 30 23 46
Memory 12 492 800 0 0 0
Fmax (Mhz) 24 138 95

Table 6.2: Resources utilization of different hardware implementation methods to simulate the
Light Esterel CPG. The first one is the "modular" method generating each modules. The second
method refers to the use of only 1 NPU : the 2 neurons and 2 synapses are managed by 1 NPU. The
third method refers to the use of the coloring algorithm, and results in the generation of 2 NPUs :
1 neuron and 1 synapse per NPU.

Even though we did use the modular method for this experiment, we want to highlight in the
results reported in table 6.2 on the elementary CPG the need of a specific architecture to simulate
and execute SNNs on FPGA, and also to carefully chose the method that uses the lowest resources
and provides the best performance. The coloring algorithms are not always the best solution.
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6.1.3 Neurobiohybrid experimental setup

Figure 6.4: Experimental setup for the neurobiohybrid experiment with CPG.

Biological neural network

For the biological part in this experiment, we had at our disposal an organoid. The microscope view
of the organoid is shown in figure 6.4. Organoids are self-organized, three-dimensional (sphere)
tissue cultures derived from stem cells, and mimic the brain structure and its complexity at a
small scale. Multiple dissociated neurons grow and begin to form connections with each other
through functionality active synapses, establishing a random network and exhibiting spontaneous
electrophysiological activity. Brain organoids offer a great potentials of creating neural circuit
models that closely mimic brain structure and functionality, surpassing the capabilities of two-
dimensional cell cultures.

In our case, we had dissociated cortical rat neurons. These neurons were maintained in culture
and grow into an organoid over three months, through methods we do not detail here. Following
the cultivation process, the organoid is relocated onto a multi-electrode array (MEA) Petri dish
to record neuronal activities. The adhesion of the organoid to the MEA is facilitated by a mesh,
among other things. In figure 6.4, we can observe a darker zone in the middle of the culture, it is
where the concentration of cells is higher. The MEA used is a 64 electrodes MEA, but only few
electrodes were used as the organoid size does not cover all of them.

Spiking neural network

For the artificial part, we implemented the elementary CPG described in the previous section on
an FPGA board (cmodA7). The FPGA receives the digital spikes from the BNN. The spikes have
IDs that allow to target specific neurons in the SNN. In return, the SNN outputs specific spikes that
are used as triggers for the stimulation back to the BNN.
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Multimed system

Multimed is an acquisition and signal processing board, specifically engineered for real-time
analysis of multichannel biological data in open or closed-loop configurations. Its design features
a 64 channel acquisition capability with a frequency of 10 kHz and 16-bit precision. The board is
equipped with application-specific processing chains that offer sub-millisecond processing latency
and decision-making, as well as live display, computer control interfaces, and recording capabilities
(Ambroise et al., 2017). In figure 6.5, the processing chains typically include an Analog to Digital
converter (ADC), linear band-pass filters, wavelet filters, alongside detection mechanisms for both
action potentials and local field potentials. Moreover, the board supports single and network burst
detection and the ability to flexibly route events for the creation of intricate feedback rules. To
ensure lower processing latency, the described architecture is implemented on an FPGA, including
the SD card recording, VGA display and serial control interfaces. All processing functions can
be configured via a computer interface, and the data can be accessed and visualized through a
commercial software.

Figure 6.5: Description of the multimed system. The orange and green ports are the points where the data
can be accessed for recording or display purposes. Figure extracted from (Ambroise et al., 2017).

The MULTIMED system is compatible with MEA, external preamplifier and a multifunctional
stimulator. The stimulator can be calibrated to deliver specific current stimulation. It is designed
with two digital input channels that are used to trigger the delivery of the electrical stimuli to the
BNN. In this experiment, only one digital input channel is configured to receive one extracted
action potential from the CPG as a digital trigger. Not every action potential from the CPG is
used as a trigger, because rapid sequence of micro-stimulations could potentially cause premature
damage to the BNN and the electrodes. Therefore, to avoid this, we only extract the first action
potential from each burst of one neuron or specific neurons. In our case, we used as trigger just
one neuron of the CPG.

6.1.4 Objectives

One objective was to validate our synchronous models in the communication with biological cells.
A second objective, is to synchronize the BNN and SNN activities in a closed-loop experiment
(see section 2.4.2). To achieve this, when the CPG begins a burst activity, the first action potential
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of one specific neuron triggers an excitatory stimulus to the BNN, on one or multiple electrodes.
Conversely, when a significant portion of neurons have spiked (a network burst) at the biological
level, an inhibitory signal is sent back to the global CPG.

6.1.5 Expected results and challenges

While we could not complete the full experiment, the expected results based on (Ambroise et al.,
2017) are illustrated in figure 6.6. In this figure, we can discern two scenarios. In the first, the BNN
and the CPG are not interconnected via the stimulation/inhibition mechanisms, while in the second
they are. The first scenario is intended to depict how each entity is supposed to act "naturally", with
no interaction between them. The CPG displays an oscillatory pattern of activity, while the BNN
exhibits spontaneous activity (random spikes). When the connection is established, the stimulation
provided by the CPG, triggered by the first action potential of neuron N1, induces a network burst
in the BNN, which in turn inhibits the CPG. This inhibition interrupts the oscillatory activity. The
closed-loop experiment shows synchronization between the BNN and CPG, where global activity
can be periodic. This is demonstrated in (Ambroise et al., 2017), where the SNN is capable of
regulating the activity of the BNN.
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Figure 6.6: CPG experiment expected results based on (Ambroise et al., 2017) results.

Regrettably, the neural organoid we were working with was considered non-viable as we were
unable to detect any activity on the MEA prior to the experiment. There are numerous potential
causes for such failure in cell cultures. For instance, neural organoids lack a vascular system that is
crucial for the delivery of oxygen and nutrients to the cells. Consequently, cells in the center of the
organoid, which are deprived of these necessary resources, have a higher risk of dying. Additionally,
the process of moving the organoid from its original environment to the MEA platform before the
experiment requires delicate and sterile handling, which can be stressful for the cells and potentially
leading to cell death. Furthermore, having access to new cultures is a long process, the limited time
and the conditions that followed after november 2019 did not allow for a second attempt.
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6.2 A simulation framework for neurobiohybrid or biohybrid exper-
iments

6.2.1 Objectives

Considering the challenges associated with accessing a physical experimental setup, we decided
to develop a software framework for simulating neurobiohybrid or biohybrid experiments. This
choice provides various advantages :

• Proof of concept : a software framework allows us to conduct preliminary tests and validate
application concepts or potential applications, before we move on to live experimentation.

• Model testing and comparison : the simulation environment provides a controlled setting
where different SNN models can be tested and compared. This supports exploration of model
behaviors, performance and characteristics.

• Topology definition and hyperparameter tuning : we can adjust and optimize the network’s
topology and models’hyperparameters. This is crucial for ensuring that the models are well-
adapted to the task of interacting with biological neuronal activity.

The development of this simulation framework complements our SynchNN hardware architec-
ture. The aim is to determine the global parameters from the software simulation and apply them
to the hardware architecture configurations, enhancing the functionality and performance of the
hardware network.

6.2.2 BRIAN-based simulator

In (Garg et al., 2021), the authors present their approach for hand gesture recognition using
electromyography (EMG) data, i.e. electrical activity of muscles. They use the reservoir computing
paradigm for their application. After defining the reservoir computing, we will describe their
simulator architecture, and discuss about the modifications we incorporated to create our simulator.

Reservoir computing

Reservoir Computing (RC) is a computing paradigm that falls under the umbrella of Recurrent
Neural Networks (RNNs). RNNs are characterized by loops in the network model, allowing
information to persist or "flow" through the network over time. The loops are characterized by
recurrent connections between neurons. This is a distinctive feature in contrast to traditional feed-
forward neural networks, where information flows in one direction, from the input layer through
hidden layers to the output layer. This structure allows RNNs, and by extension RC, to process
sequential data and account for temporal dynamic behaviors, which are essential in various tasks
such as natural language processing, speech recognition and time-series prediction (Elman, 1990;
LeCun, Bengio, & Hinton, 2015; Graves, Mohamed, & Hinton, 2013).

RC consists of two primary components: a dynamic reservoir (also known as the hidden layer)
and a readout layer. The reservoir is a large, randomly generated RNN of sparsely interconnected
neurons, which serves as a temporal kernel or memory of past states/inputs. This reservoir trans-
forms the input into a higher-dimensional space where linear separation is easier to achieve. The
readout layer is a simple linear combination of the reservoir states. The key feature of RC is that
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only the weights of the readout layer are trained, while the weights in the reservoir remain fixed
(Jaeger & Haas, 2004; Maass, Natschläger, & Markram, 2002).

The SNN models we used and presented so far in this work can be classified also as RNNs.
These SNN models have a randomly connected network architecture, in the case of large neuron
numbers, and therefore can be seen as reservoirs in the RC paradigm. Moreover, in neurobiohybrid
experiments, the input to the SNN comes in the form of temporal sequence of spikes, from biological
neurons. This sequence depends on the current state of the biological network and the stimulations it
has received. Therefore the connection between biological input and the SNN models demonstrates
the potential of RC paradigm to process and interpret biological neural data.

The use of an open-source code : simulator architecture
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Figure 6.7: Global architecture of the simulator for hand gestures recognition using Reservoir Computing
paradigm. The inputs are hand gesture datasets collected from the Myo armband. The analog signals are
converted into spikes (up and down) which are sent to the reservoir as input. In the reservoir, blue (red resp.)
circles are excitatory (inhibitory resp.) neurons. Figures extracted and modified from (Garg et al., 2021).

The architecture of the simulator developed in (Garg et al., 2021) is illustrated in figure 6.7, and
the related open-source codes can be accessed through (Garg & Goupy, 2022). Without detailing
the specifics of their architecture, we will provide a general overview of the key components.

The simulator was designed for hand gesture recognition, utilizing datasets collected through
the Myo armband. This is a commercial EMG sensor developed by Thalmic Labs that is worn
on the forearm and generates a digital EMG signal comprised of 8 channels, each operating at a
frequency of 200 Hz.

Their architecture starts with their proposed novel method for converting 8 analog signals into
spike sequences for input into a neuromorphic reservoir. Each analog input channel is converted into
2 spike sequence channels (referred to as ’up’ and ’down’, representing excitatory and inhibitory
spikes, respectively). The resulting 16 channels are then used as input for the reservoir. The specific
neurons to which each channel is connected can be configured, as well as the SNN that represents
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the reservoir. This includes the neuron and synapse models to be used, their parameters, the density
of connections, and the network topology. In table 6.3, we list the possible choices of models that
can be simulated using their simulator. Although we won’t detail the "critical" model, it is also one
important approach in their work in this application they targeted. Briefly, either too much or too
little activity is not effective in maintaining a working memory inside the reservoir, which is crucial
for their implementation. The "critical" learning rule adjusts the weights in a way that guides the
reservoir towards a more desirable state, specifically the "edge-of-chaos" state (Garg et al., 2021).

The readout part of the system includes an average spikes module, which calculates the number
of spikes emitted by each neuron in the reservoir over a specified time period. The resulting vector
values is then sent to a classifier, which determines the winning class for the sample time period.

Available models of (Garg et al., 2021)’s simulator Our desired simulator

Neuron

LIF
ALIF

LIF IF
ALIF IZH

DSSN
HH

Synapse
fixed fixed
STDP STDP

critical-STDP STP

Neural properties
axonal delay

(None) exponential decays
noise

Table 6.3: Comparison of the available models within the simulator of (Garg et al., 2021) and the
desired simulator we want to develop. Note that the number of models in our "desired" simulator
may evolve in the future.

Adaptations and modifications to create our own simulator

To meet our needs for a simulation environment for neurobiohybrid or biohybrid experiments, we
are making some adaptations and modifications to the open-source code provided by (Garg et al.,
2021). Our global architecture to work with SynchNN is shown in figure 6.8, and the modifications
aim at having a more general and configurable simulator, and these include :

• Adding our neural models : we want to adapt the simulator to allow selection of neural
models (neurons, synapses and properties) as listed in table 6.3 and which are described in
chapter 2.

• Input adaptation : we want to generalize the input mechanisms to accommodate different
types of inputs, not limiting to analog signals or to the number of channels. It will enable
a wider range of input types. However, we will keep their approach for spike detection in
analog signals.
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• Readout type : in their architecture, the readout part is designed for formal-based classifiers
(SVM or LDA), and we want our simulator to be fully spike-based until the classification.

• Switching data types : we have to implement in the simulator the possibility to use fixed-
point operations as in hardware. Since floating-point and fixed-point simulations can diverge
as developed in chapter 5, this will avoid wrong configurations of the hardware architecture.

• Export parameters : we want to add the module to directly export the configurations of
the simulated SNN models, in order to configure the SynchNN architecture for hardware
implementation. This means to generate the "gln" configuration files for the hardware.

Of course, our intention is not to compete with the work presented in (Garg et al., 2021). Instead,
we aim to leverage and build upon their open-source contributions to develop a simulator that best
fits our needs and objectives, particularly in the context of our SynchNN hardware architecture.

In our current version of the simulator, we have not yet implemented the SNN classifier,
acknowledging that this will also require the implementation of a learning algorithm or method
related to the classification, which we will not detail here. It’s important to note that our simulator
is still under development, the architecture presented in figure 6.8 represents the ideal structure we
aim to achieve in order to simulate neurobiohybrid experiments.
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Figure 6.8: Global architecture of the simulator to work with SynchNN, adapted from simulator in (Garg et
al., 2021). It is designed for any applications using Reservoir Computing paradigm for now.

6.2.3 Early-stage experimental results

Even though we haven’t reached yet the stage of developing a complete spike based simulator with
our models, we will present some preliminary experiments conducted during the development
process of our desired simulator.

The first phase in our development process is to replace the SVM and LDA classifiers, illustrated
in figure 6.7, with a Multi-Layer Perceptron (MLP) classifier. The MLP is a well-known type of
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neural network model that is widely used for various classification tasks (Taud & Mas, 2018;
Rumelhart, Hinton, & Williams, 1986). This initial step allows us to verify that by integrating
the MLP classifier, the accuracy of the system, in the context of EMG data recognition, is not
significantly compromised while still leveraging the available models in their reservoir. Our goal in
the future is to transition from the MLP to a spike-based network by replacing the formal neurons in
the MLP with spiking neuron models such as the IF model and adopting spike-based information
encoding paradigms. Methods for this conversion have been explored within our laboratory in
(Abderrahmane et al., 2020), as well as methods to directly train SNN with backpropagation
(Lemaire et al., 2022).

Our initial experiment was conducted using the EMG subset of the sensor fusion dataset
(Ceolini, Taverni, Payvand, & Donati, 2020), which includes 5 classes corresponding to 5 gestures
as shown in figure 6.7. The encoded spikes from the "encoding" part in figure 6.7 were directly
connected to the classifiers. We configured all the classifiers with their default parameters provided
by the Python-based package scikit-learn. The results of this experiment serve as a baseline to
compare and evaluate the accuracies provided by the classifiers when the reservoir is added. The
results are shown in figure 6.9 comparing the accuracies of 4 different classifiers : LDA, SVM linear,
SVM with radial basis function (RBF) and the MLP. It provides two major information. Firstly,
among the 3 classifiers used in (Garg et al., 2021), the SVM_RBF is giving the highest accuracy.
Secondly, the accuracies obtained with the added MLP are comparable to those achieved by the
SVM_RBF classifier. This suggests that the integration of the MLP does not significantly alter the
accuracy in the case of this configuration of "input_only". Note that the accuracies presented can
be largely improved by optimizing the classifiers, but it is not the pupose of this work.

Figure 6.9: Classifiers comparison when connected directly to the input. This experiment was applied to
the EMG subset of sensor fusion dataset, which comprises 5 class dataset (Ceolini et al., 2020), consisting
of 5 gestures. This serves as a baseline for evaluating the impact of adding the reservoir.

In the second experiment, we introduced a reservoir with varying numbers of neurons which
are randomly connected. The synaptic weights are uniformly distributed between 0 and 0.25 and
remain fixed. This reservoir is placed between the input and the classifier as shown in figure 6.7. This
experiment allows to evaluate how different reservoir configurations affect the RC performances.
The results are presented in the graph in figure 6.10. As observed, the same classifiers as in
figure 6.9 outperform the others in this configuration. However, the RC achieves lower accuracies,
meaning that random connectivity may not provide an optimal configuration for this specific task.
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Figure 6.10: Classifiers comparison depending on the number of neurons in the reservoir. The "none"
learning algorithm means the synapses weights are fixed (uniform distribution between 0 and 0.25) as in
(Garg et al., 2021)

Then, we conducted a similar analysis by comparing the accuracies of the best-performing
classifier, SVM_RBF, with those of the MLP. This comparison was done based on different
configurations of the RC architecture using the available models in their simulator. Again, the
results in figure 6.11 highlight the almost similarity in accuracies between the two classifiers, for
various configurations of RC. Furthermore, by adding the "critical" learning algorithm, the RC is
able to surpass the "input_only" configuration.

Figure 6.11: Comparison of the SVM and MLP classifiers using different learning algorithms, considering
various sizes of the RC architecture. The reported results are the mean accuracies obtained across the
different RC sizes, along with the corresponding mean deviations for each classifier and learning algorithm.

These findings confirm that the MLP can be effectively integrated with an RC architecture
and demonstrate the potential for improving the system accuracy through the exploration and
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tests of reservoir configurations. Theses results pave the way for future experiments focused on
the conversion of the MLP into a spike-based neural network, aligning with our ultimate goal of
developing spike-based simulation and execution capabilities.

The second phase in the development of the simulator involves incorporating different neuron
models, synapse models and neural properties. This is done prior to the conversion of the MLP
classifier into spike-based networks. The purpose of this phase is to explore the potential of
different models in improving the performance of the system in this specific application as a case
of study. However, at this stage, we are still in the progress of integrating these models, and we
cannot provide conclusive results yet. Our initial experiments with the IZH model and the STDP
combined with axonal delay have shown lower accuracies compared to the baseline reference.
However, these results were obtained through random testing and require further investigation in
terms of adjusting the model parameters, validating the correctness of the codes, optimizing the
reservoir configurations, and conducting more systematic experiments. Only then, we will be able
to present the results and fully understand their implications.

6.3 Conclusion

In this chapter, we presented our first and only neurobiohybrid experiment we conducted in Japan,
with the collaboration of The University of Tokyo. We described the setup of the experiment, and
then we discussed the challenges and limitations associated with the culture and experimentation
of biological neurons, particularly in the case of organoids.

We also described how we are building a simulator, inspired by the work of (Garg et al., 2021).
This simulator will help to test and configure our SynchNN hardware architecture for neurobiohybrid
or biohybrid experiments. We discussed the need for such a framework, the modifications and
adaptations we made to the original simulator.

In the development of the simulator, we started exploring the use of spike-based deep learning
methods to classify patterns of activity in biological networks and/with reservoirs. Although we do
not detail these deep learning approaches in this manuscript, such an approach is certainly a viable
option in the context of neurobiohybrid experiments, particularly when it comes to classifying
patterns of activity in biological networks or in the reservoir. We do not have yet concrete results
to present, but we wanted to emphasize the need of such simulator for our hardware architecture,
and by adding spike-based deep learning classifier, it allows us for future experiments to connect
SynchNN with SPLEAT, a hardware architecture developed in our lab and designed to execute
deep SNN models. This connection will allow us to transition fully from simulation to hardware
implementation in the future.
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7.1 Conclusion

In this thesis, we focused on the exploration, modeling and simulation of bio-inspired and
biomimetic neural networks using the synchronous approach. Our ambition was to understand
how the biology works and replicate it with the goal of establishing communication with real bio-
logical neurons. For this purpose, we developed a framework throughout this thesis. An overview
of this framework is provided in figure 7.1.
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We started by studying biological mechanisms and models to simulate and to implement neural
networks that closely mirror biological behavior (Chapter 2). Our main tool was the high-level
synchronous specification and modeling language, Light Esterel (Chapter 3), to achieve our
objectives. This marked the first use of this tool in this field.

The first goal of our work, and our first major achievement, was the demonstration of the feasi-
bility of modeling various neuronal models with different levels of abstraction relative to biology,
using Light Esterel (Chapter 4). We validated our synchronous models by comparing them to refer-
ence simulations from the BRIAN simulator. We then created a library containing various models
to facilitate simulations and implementations of a wide range of SNN models. Given the complexity
and the necessity to specify a neural network configurations, we developed a higher-level specifica-
tion format, ".gln". This format automatically generates ".le" specifications for large networks with
the use of a developed compilation tool "genlenet", allowing potential users to create networks
based on the available models without the need to master the Light Esterel language. To arrive
at these results, it was necessary to make updates to the Light Esterel compilation chain (Chapter 4).

Our second goal in the use of the synchronous approach was to leverage automatic provers to
study biological neural networks through their artificial counterparts. We thus tested our initial
models under symbolic proof experiments such as proving the behavioral equivalence between a
model and biology, or exploring parameters to guide a model towards a particular behavior. How-
ever, we encountered limitations with the tool we used, KIND2, due to the behavioral complexity
of our models, defined by non-linear equations, or the temporal properties requiring too many
time steps to be proven (Chapter 4). We remain convinced that more powerful tools exist, and that
further exploration is still necessary.

As a third objective, in response to the limit of the network size that can be handled by
the Light Esterel’s native compilation tools, as well as the efficiency of the generated hardware
codes (Chapter 4), we decided to develop a specific hardware architecture, SynchNN, capable of
simulating in real-time larger networks while remaining compatible with the already developed
synchronous neural models (Chapter 5). This hardware architecture can be configured through the
updated Light Esterel compilation chain with the developed specification file ".gln". This once
again allows potential users to focus on the specification without worrying about low-level VHDL
coding. The architecture was specifically designed to support various neural models and also
potential models that we might add to the neural synchronous library in the future. This differs
from certain architectures where the models are limited or even fixed.

Finally, a forth objective in response to the challenges and limitations we encountered in
carrying out neurobiohybrid experiments, was to direct our efforts towards the development
of a software simulator based on BRIAN (Chapter 6). This simulator has several objectives,
including providing proof of concept for future neurobiohybrid or biohybrid experiments, but also
to complement SynchNN to explore and optimize the parameters to be applied to SynchNN for the
transition to real experiments. The emergence of the Reservoir Computing paradigm may seem
disconnected from our bio-inspired and biomimetic approach, but we consider that the reservoir
behaves like BNN. Consequently, we treat the reservoir as a black box, over which we have no
control in terms of its internal connectivity and with which we only interact through its inputs and
outputs. The interpretation of biological spikes is a complex task, and the encoding of information
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in biology still remains an open question. Therefore, we believe that machine learning and deep
learning approaches could, in their own way, provide solutions in the context of the interpretation
of biological activity, such as they could play a high-level interpreter of the existing correlations
between spike sequences. The subject is of course very vast and we cannot make definitive
statements, but a major research axis on deep bio-inspired classification methods exists within our
team, which would allow us to merge works and investigate the application of RC to biological
spikes. Moreover, this would allow neurobiohybrid experiments to go beyond only considering
bursts in biological recordings, as we explain with the CPG neurobiohybrid experiment (Chapter 6).

Given the challenges and limitations we encountered throughout this thesis, which were further
intensified by the Covid health crisis, we acknowledge that our work was significantly impacted
and slowed down. Consequently, the results presented in this manuscript do not completely resolve
all these objectives. However, we firmly believe they provide a solid foundation for future research.
Our primary contribution to the field of neuronal hybridization is a comprehensive framework that
integrates modeling, simulation, implementation, and potentially formal proofs, all based on the
Light Esterel language.

7.2 Perspectives

Several research directions can be considered for the future to continue to address the different
objectives previously mentioned. It would be beneficial to explore more symbolic tools for param-
eterizing neural models. The field of the synchronous approach is vast, applying to different fields
of applications and complexity, and we are convinced that there is still much to test.

In the context of the architecture we have developed, we can consider optimizing SynchNN to
be able to simulate larger networks and more various neural models. Indeed, it would be interesting
to continue developing neural models to supplement our current library. This would offer the
possibility to create and test different SNN models in real-time, where other architectures remain
quite limited in model choices. To enrich our library, we should also implement a method for the
division operation, this would offer us the possibility to run a wider range of models in hardware.
Also, in the automatic configuration of the architecture, where we used coloring graph algorithms
to partitioning the neural networks into into sub-groups, it would be interesting to study other
approaches such clustering algorithms for potential improvements. The broadcasting of events
within the architecture should be improved by changing the communication protocol by adopting
the address event representation (AER) protocol. This protocol enables specific addressing of
neurons instead of the broadcasting strategy. Additionally, to overcome the limitation imposed
by the on-chip memory and expand the network size, one solution would be the use of external
memory. However, it would suggest making numerous changes in the architecture including
the incorporation of a control flow mechanism to facilitate the access to the external memory.
Moreover, our present architecture does not allow to configure the SNN parameters online. To
enhance flexibility and eliminate the need for recompilation after eventual modifications, exploring
strategies for enabling online configuration would be a great benefit for using SynchNN.

Finally, the continuous development of the simulator to explore more neurobiohybrid exper-
iments is a promising path. Currently, the development of the SNN part and the integration of
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the same models of neurons, synapses and neural properties from the synchronous library are
underway. The use of machine learning and deep learning in the interpretation of reservoir activity
(biological or artificial) seems to be a promising approach in this field. Additionally, creating a
fully spike-based simulator would allow us to generate the hardware model to target 2 hardware
architectures developed in our team : SynchNN and SPLEAT. SPLEAT is a hardware architec-
ture designed to support the execution of deep spike-based neural networks. This way, we would
also be moving closer to the neuroprosthetic solutions advocated in the field of neurobiohybridation.
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A Light Esterel syntax overview

In the following, we detail the different syntaxes of the Light Esterel language, as the different
available statements, operators and expressions.

Module body : Imperative syntax

1 <Data declaration>
2 <Interface declaration>
3
4 Mealy Machine
5 -- register declaration
6 Reg i s t e r :
7 <reg_name1> : <0 or 1> : <reg_name1_next>,
8 <reg_name2> : <0 or 1> : <reg_name2_next>,
9 ...;

10 -- equations definition
11 <reg_or_signal_name1> = <quadrival expression1>;
12 <reg_or_signal_name2> = <quadrival expression2>;
13 ...;
14 end
15

where :

• <reg_name> : <0 or 1> : <reg_name_next> : syntax declaration of boolean registers.
First, the register’s name must be declared, then its first value (0 or 1), and finally the register
"next" value name.

• <reg_or_signal_name> = <quadrival expression> : equations of the signals (out-
puts or locals) or registers ("next"). The equations are boolean expressions based on the
current inputs or the registers value.

Note that the "register declarations" part is not mandatory, when registers are not needed.
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Module body : Automaton textual syntax

The Galaxy tool offers the possibility to model automaton graphically. It gives the choice between
different models : basic automaton, parallel automata, Light Esterel or SyncCharts. The Galaxy
tool generates the according Light Esterel file. However, it is also possible to use the textual syntax
to describe automaton.

1 <Data declaration>
2 <Interface declaration>
3
4 automaton
5 -- states declaration
6 s t a t e :
7 <state1_id>

[
run <module_name1>[<new>\<old>,...]

] [
/<signals_to_emit>

][
geometry: <val1,val2> val3

]
;

8 <state2_id>
[
run <module_name2>[<new>\<old>,...]

] [
/<signals_to_emit>

][
geometry: <val1,val2> val3

]
;

9 ...;

10 <stateN_id> [ f i n a l ]
[
run <module_nameN>[<new>\<old>,...]

] [
/<signals_to_emit>

][
geometry: <val1,val2> val3

]
;

11 -- transitions definition
12 t r a n s i t i o n :
13 i n i t i a l -> [<quadrival_expression>]

[
/<signals_to_emit>

]
<transition_type>

<next_state_id>
[
geometry: <val1,val2>

]
;

14 <state_id> [<quadrival_expression>]
[
/<signals_to_emit>

]
<transition_type>

<next_state_id>
[
geometry: <val1,val2>

]
;

15 ...;
16 end
17

In the states declaration :

• <state_id> : refers to the name or identification of the created state.

• run <module_name>[<new>\<old>,...] : an external module can be associated with a
state. That module (sub-module) will be executed when inside the given state. The "run"
operator is used to link the sub-module to the state. And to link the main module’s signals
to the sub-module interface, in the bracket is the list of signals where "new" refers to the
name of signals in the main module and "old" refers to the sub-module’s input/output signal
names.

• /<signals_to_emit> : is the list of signals that are emitted continuously when in the given
state (as in a Moore machine style). The list of signals are separated by the coma character
",".

• geometry: <val1, val2> val3 : is to specify the coordinates of the state (<val1, val2>),
and the size of the circle representing the state (val3), for graphical representation. The values
are in float.

• final : this keyword is to specify that the declared state is a terminal state, i.e. the automaton
computation is over when the terminal state(s) is (are) reached.

In the transitions definition :
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• /<signals_to_emit> : is the list of signals (separated by ",") that are emitted when the
transition is satisfied (like Mealy machine style). The signals are emitted for only 1 logical
instant.

• geometry: <val1, val2> : for graphical representation, <val1, val2> are the coordinates
of the transition label.

• [<quadrival_expression>] : boolean expression or conditions that must be satisfied
for the transition to occur between two states. If specifying the quadrival constant "TT" as
condition, it means the transition is always true and occurs.

• <transition_type> : there are 3 types of transition, which define how the instructions
being executed in a state are treated when the transition is triggered. Let’s consider an
instruction P being executed when in a particular state. The transition to a new state can be :

– strong-> : refers to a strong transition, it forces the instruction P being executed to
terminate when the transition’s condition is satisfied.

– weak-> : refers to a weak transition, it lets the instruction P ends when the transition’s
condition is satisfied.

– normalterm-> : refers to a normal transition.
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Statements

The module behavior is expressed in the module body using a set of control operators. There are
two kinds of operators : usual programming language operators and operators devoted to deal with
logical time, as presented in (Ressouche et al., 2008).

Non temporal statements

nothing Does nothing and terminates instantaneously

emit <signal> Sets <signal> status to "present" during the current
logical instant

noemit <signal> Sets the <signal> status to "absent" during the current
logical instant

sustain {<signal1>} until
<signal2>

Continuously emits <signal1> and stops when <sig-
nal2> occurs

present <signal> {P1}
else {P2}

If <signal> is present then P1 is executed, else P2

if <condition> {P1}
else {P2}

If <condition> is true then P1 is executed, else P2

P1 >> P2 P1 is executed then P2

P1 || P2 P1 and P2 start simultaneously, the instruction is ter-
minated when P1 and P2 are both done

abort P when <signal> P is executed normally until <signal> is present

strong abort {P}
when <signal/expression>

Kills P when <signal> occurs or <expression> is sat-
isfied

weak abort {P}
when <signal/expression>

Executes P one last time before killing it

loop {P} Infinite loop : P is executed and restarts when it is done

repeat <integer value> {P} Finite loop : P is executed a number of <integer value>
times

local <signal> {P} The scope of <signal> is limited to P

run M [<new>\<old>,...] Calls the module M, and links its interface signals
(referred as "old") to "new" signals

Table 1: Overview of Light Esterel non temporal operators.
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Temporal statements

pause Stops until the next reaction (instant)

wait <signal> Waits for the presence of <signal>

wait <integer value> <signal> Terminates with <integer value> presences of <signal>

halt Stops the module forever

Table 2: Overview of Light Esterel temporal operators i.e. to manipulate logical instants.

Expressions

$<signal> To get the value associated to <signal> at the current
logical instant

== != <= < > >= Values comparison operators

+ - * / Predefined value operators

FF or TT Quadrival constants

& or | or ~ or and or or or
not or abs or nand or nor or
xor

Quadrival operators

;; or -- Comments

Table 3: Overview of Light Esterel expressions.
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B Formal methods in Neurosciences

B.1 Neural archetypes

(De Maria et al., 2016) present a new discrete version of the LIF neuron. In the classical version,
both neuron state and time are possibly infinite. The membrane potential 𝑝, at a time 𝑡 ∈ [0;+∞],
integrates the values of the action potentials received from its input neurons, and also what remains
from previous inputs. The membrane potential can be described by :

𝑝(𝑡) =
+∞∑︁
𝑒=0

𝑚∑︁
𝑗=1

𝑟𝑒𝑥 𝑗 (𝑡 − 𝑒)

where 𝑒 ∈ R+ ∪ +∞ is the time elapsed until the current time 𝑡; 𝑟 is the remaining potential
coefficient, usually a function 𝑟 (𝑡) = 𝑒𝑥𝑝(−𝛼𝑡) defined for 𝑡 ∈ [0;+∞], with 𝛼 a positive constant;
𝑥 𝑗 are the neuron’s spike inputs ∈ {0, 1} (𝑚 is the number of the neuron’s predecessors). For
simplicity, all the synaptic weights are equal to 1.

As the inputs effect exponentially decrease with time, they assumed that inputs received a long
time ago can nevertheless be neglected. So they define a sliding integration time window of length
𝜎, where at each time 𝑡, inputs older than 𝜎 are not taken into account in the calculation of the
membrane potential. 𝜎 depends on an arbitrary error 𝜖 , such that the greater (resp. lower) 𝜖 , the
lower (resp. greater) 𝜎. Therefore, the time dependence of the membrane potential is not anymore
infinite but bounded to [𝑡 −𝜎, 𝑡]. Finally, by discretizing each time step with 𝑡, the computation of
the membrane potential now depends on a finite memory size, and can be defined as a simple sum :

𝑝(𝑡) =
𝜎∑︁
𝑒=0

𝑟𝑒
𝑚∑︁
𝑗=1

𝑥 𝑗 (𝑡 − 𝑒)

This discrete version of the LIF model, characterized by 3 parameters (remaining potential
coefficient, the size 𝜎 of the integration window and the potiential threshold), can be implemented
in the synchronous language Lustre. And by using this model, they encoded neural micro-circuits,
referred as archetypes, on which they applied model checking to verify temporal properties.
An archetype is a specific graph of a few neurons that have biologically significant structures
and behaviors. These archetypes correspond to elementary and fundamental elements of neural
information processing. From the biological point of view, archetypes constitute the normalized
form of potentially bigger and topologically more complicated neuronal circuits. Every micro-
circuit, event with many neurons, can theoretically be reduced to one of the few existing archetypes.
The figure B.2 shows basic neuronal archetypes they implemented with their discrete model.
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Figure B.2: Basic neuronal archetypes extracted from (De Maria et al., 2016). Circles represent neurons
based on their discrete neuron model and arrows represent the inputs, outputs and connections between
neurons. Arrows ending with black dots are inhibitory connections, and excitatory otherwise. (a) The simple
series is a sequence of neurons where each neuron receives as input the output of the preceding one. (b)
The series with multiple outputs is the simple series where all the neurons output are considered. (c) The
parallel composition is multiple neurons in parallel receiving inputs from the same neuron. (d) The negative
loop is composed of one neuron exciting another neuron, which in response inhibits the first one. (e) The
inhibition of a behavior is two neurons being stimulated while one is inhibiting the other. (f) The contralateral
inhibition is two neurons being stimulated while mutually inhibiting each other.

With the use of model checkers, they automatically verified some temporal properties on these
archetypes. For example, two simple series with different neuron parameters and different lengths
can always output the same spikes sequence. So with adapted parameters, this example shows the
possibility to reduce a micro-circuit to have the same behavior. They compared different Lustre
model checkers (see figure B.3), and it turns out that Kind2 is the most powerful one capable of
proving more general properties, compared to other Lustre model checkers : Lesar (Halbwachs &
Raymond, 1999), Nbac (Jeannet, 2003), Luke (Rümmer, n.d.) and Rantanplan (Franzén, 2006).
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Figure B.3: Extracted from (De Maria et al., 2016). Comparison of Lustre model checkers. It lists the model
checkers that was able or not to prove properties on Archetypes.

As a next step of their work, in (De Maria, L’Yvonnet, Gaffé, Ressouche, & Grammont, 2017)
they study the coupling of these archetypes. If the resulting circuit do not perform a more complex
function, then it can be reduced to a smaller archetype. But if a new biologically relevant function
is identified, it can lead to the creation of a whole new archetype. In (De Maria et al., 2022), they
use theorem provers as a new formal method approach to verify temporal properties compared
to the model checking approach. They concluded that both approaches have their pros and cons,
and they should be used together in a pragmatic way. Theorem provers are capable to prove more
general properties but proofs can be long and an expert is needed to help and drive the results,
while model checkers are faster and automatic, but cannot prove properties at the desired level of
generality. With the exploration of archetypes coupling, different functions may emerge, like cell
assemblies (Hebb, 1949b).

B.2 Abstract neuron model

Despite the evolution of technologies and the multiple neuroscience studies, it is still difficult to
understand how complex brain functions emerge from neuron activities. Among several theories,
one has been proposed by (Hebb, 1949b) to explain the neural representation of concepts: the
brain functions come from neural properties and their ability to constitute neuron assemblies. A
neuron assembly is a small set of strongly connected neurons which specificity is to synchronize
activity in response to specific stimuli (Singer & Gray, 1995; Harris, 2005; Huyck & Passmore,
2013). The synchronization of activity corresponds to the firing of all the neurons within a small
time window of tens of milliseconds or less (Singer et al., 1997). The activity of an assembly
would represent the perception of one stimulus, therefore the activation of multiple assemblies
would represent more complex stimuli (concepts) as a mix of multiple stimulus. This hypothesis
has been increasingly supported by biological, theoretical and simulation data that have proven
their existence. However, it is difficult to study neuron assemblies in vivo and in vitro because,
first, actual technologies are not able to record neurons individually and simultaneously in large
biological neural network thus to identify assemblies precisely; and second, the dynamic complexity
of formation and behavior of assemblies rely on processes that are not fully understood yet. Indeed,
they can form and reconfigure, multiple assemblies can activate simultaneously, one assembly can
activate other assemblies in a chain manner, one neuron may participate in multiple assemblies, etc.
Additionally, the large number of neurons in the brain makes experimental studies on biological
neurons even more complex as the combinatorial nature of possibilities explode. Consequently, in
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silico simulation becomes a good option to overcome experimental limits and to test hypothesis
related to the formation of neuron assemblies.

In that context, it is important to choose the right neuron model when studying the behavior and
the functions of neuron assemblies. Indeed, complex dynamics of these assemblies emerge from
the particular properties of individual neurons. It is particularly important to choose a neuron model
that is "simple" so it makes easier the study of the dynamic mechanisms, but also "biologically
plausible" enough to make biological accurate predictions. Most existing neuron models do not
take into account the morphology of neurons, particularly the dentrites, which can significantly
affect the integration of action potentials and the overall function of the neuron. The Hodgkin-
Huxley (HH) model (Hodgkin & Huxley, 1952) is one example that does incorporate dentrites
model derived from the cable theory (Rall, 1962). Even though these models are biologically
accurate, they come with a large system of differential equations (see chapter 2 section 2.1.3)
that describe multiple biological mechanisms, even on the molecule level. With the numerous
parameters to adjust, they would be too complex, when in network, to study assemblies. For these
reasons, (Guinaudeau, 2019) proposed a new abstract neuron model that incorporates dentrites
integration, while remaining simple in terms of number of parameters. Since their long-term goal
is to use computer-assisted reasoning about neurons in networks, they based their work on the
formal approach to describe and to analyze each part of their abstract model illustrated in figure
B.4. This way, they could use formal methods, such as model checker, to verify properties on their
model.

Synapse function

(a) Abstract neuron neuron1

Soma

Synapse

Compartment

(b) Reduced neuron neuron2

Figure B.4: Modified figures extracted from (Guinaudeau, 2019). Illustration and example of their abstract
neuron (a) and its reduced form (b). In (a), the synapse function is illustrated according to the three
parameters 𝑤, 𝜏 and 𝜏 when receiving a spike at times 𝑡1 and 𝑡2.

The abstract neuron model shown in B.4(a) consists of a soma, synapses, and compartments
representing the dendrites tree. Each synapse is characterized by a state function etat_s with
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3 parameters : a stimulation weight (𝑤), a rise period 𝜏 to reach 𝑤 when a spike occurs, and a
fall period 𝜏 to return to 0. When two consecutive spikes arrive at the same synapse, the total
stimulation induced at that synapse is the sum between the induced weight values of the first spike
and the weight induced values of the second spike. Each compartment is characterized by two
parameters : a time Δ required to cross the compartment and an attenuating factor 𝛼 that reduces
the stimulation (weight) as it passes through the compartment. Therefore, the total stimulation of
the soma is the sum of all the synapse stimulations, which are themselves affected by the route,
delays and attenuations in the dentrite tree. The authors in (Guinaudeau, 2019) used the Kind2
model checker to prove the property of equivalence between the abstract neuron model with a
complex dendrite tree (referred to as neuron1 in figure B.4) and a reduced model with a linear
dendrite tree (referred to as neuron2), in terms of input/output functions, given the same constant
inputs. However, they reported that the model checker’s limits were reached when the inputs
became more complex.

Both works have used formal methods to describe and design neuron models or neural network
models, in order to analyze and extract relevant properties by using model checking. Their works
were promising as they confirmed that thanks to model checkers, it is possible to analyze neural
models in a systematic and efficient way, to extract useful insights about their behavior and
functions. In that context, it inspired our works to model neuron and neural network models using
the synchronous language Light Esterel that have been developed in the laboratory. In the next
sections, we explained the implementation of our models, and we will describe the results we
obtained with Kind2 regarding our applications.
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C SynchNN : IDs selector flowchart for reading process

The reading process of the modified matrix version is controlled by a state machine, as depicted
in the flowchart in figure C.5. The module starts by selecting and outputting the first synapse ID in
the first column index as o_IDsyn, and the corresponding column index as o_IDneurLocal.

If the number of processed synapses reaches the maximum number of synapses in the NPU,
the module emits the o_processIDneur signal to notify the controller unit that the last synapse
is being processed, and the neuron module can be executed one final time. Additionally, the
o_endIDsynList signal is emitted to indicate that all synapse IDs have been processed.

If the maximum number of synapses has not been reached yet, the module checks the next
synapse ID within the same column. If the next ID is equal to 0, it means that the current synapse
ID is the last one in the column. In this case, the module emits the o_processIDneur signal and
waits for the i_nextIDneur signal from the controller unit.

On the other hand, if the next ID is not equal to 0, the current synapse is processed, and the
module waits for the i_nextIDsyn signal from the controller unit to proceed to the next synapse.

This state machine-based approach allows for efficient selection and processing of synapse IDs
from the modified matrix version, ensuring that all synapses associated with a specific neuron are
properly processed.
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Figure C.5: Flowchart reading process of the modified connectivity matrix by the IDs selector.
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D SynchNN : functional validations

The following is the functional validation of each unit in SynchNN. We detail the simulation of each
unit to validate their function. The simulations are based on the SNN in the example figure 5.8. We
have chosen the Izhikevich (IZH) and the Short-Term-Plasticity (STP) models for the neurons and
the synapses, respectively. The neuron model and synapse model parameters are not important as
no specific application is aimed at this validation step. So all the neurons are configured the same,
as for the synapses.

For the sake of understanding, we reduced the number of simulations to the units in the
generated NPU 2 (red) : composed of 3 neurons and 6 synapses. As the total number of signals is
huge, only important signals are shown that confirm the function of the unit. Note that the controller
unit validation is merged with the other units validation as they are dependants.
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Reception unit validation

Figure D.6: Modelsim simulation of the Reception unit based on the NPU 2 configurations in 5.8.
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The simulation in figure D.6 comes from the generated reception unit of the NPU 2 from the
exemple in 5.8. We focus on how random input neuron IDs are transformed into spikes within
a time-step. So in this simulation, we show the random signals (neuron IDs and i_fifo_empty)
supposed to come from the broadcasting unit, the signals and states of the reception controller
unit and finally the signals of the reception unit modules. Note that the beginning of a time step is
flagged by the i_start signal when ’1’.

The reception unit conversion process directly starts after the reset signal, shown by the
transition from the sinit_recept state to the s0_recep step in the controller. When the neuron ID is
part of the pre-IDs list of the NPU, the signal o_IDinMatrix is ’1’; an example is the ID "0100".
One clock cycle later, the IDs to addr converter module outputs the address of the spikes to be
routed to the correct synapses; the spikes generated by "0100" are stored at the address 3 of the
ROM. One clock cycle later, from that address the spikes ROM module outputs the stored spikes
array to the Spikes storage module; the ID "0100" is addressing a spike to the 4th synapse of the
NPU. The spikes storage module collects one cycle later the spikes when its enable storing signal
is ’1’. The collected spikes are shown by the o_spikesAxons signal. So in total, the conversion of
an ID to the storage of the associated spikes requires 4 clock cycles. In the case the ID is not part of
the pre IDs list or the signal i_fifo_empty is ’1’ respectively, the input neuron ID is ignored or the
spikes are not stored; see e.g. "1100" arround 450 ns. Again, when the signal i_fifo_empty is ’1’, it
means the input neuron ID is actually coming from an empty FIFO and the ID has already been sent
before. At the beginning of a new time-step, the reception controller unit sends the enable signal
i_shiftRegs_en to shift all the shift registers once. As a result, we can observe the changing values
of the o_spikes_Synapses output which is all the spikes that travelled the shift registers (axons) and
can be processed by the processing unit. For understanding purpose, the axonal delays of all the
synapses have been set to 0 × 𝑑𝑡, there is no axonal delay involved, the received spikes are directly
transmitted by the reception unit at the next time-step. Finally, the signal shiftRegs_updated is
re-emitted to notify that all the registers have been updated.
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Processing unit validation

Figure D.7: ModelSim simulation of the Processing unit based on the NPU 2 configurations in 5.8.
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The processing unit uses 1 neuron module and 1 synpase module to process all the neurons
and synapses in the NPU in a time-multiplexed manner. For each neuron, it computes all its
excitatory/inhibitory synpases first, and then it computes the neuron. The selection of the correct
synapses and their parameters in the memories for a given neuron is made by the IDs selector
module. As a reminder, the IDs are used as addresses for the memories. Note that we apply a minus
1 to the synapse IDs for addressing the memories, because they start at "1" instead of "0".

The processing unit is activated only after the i_start signal is ’1’ followed by the
shiftRegs_updated signal emitted by the reception controller. At the beginning, the processing
unit initiates the IDs selector module which outputs the IDs of the first synapse (o_IDsSel_IDsyn)
and the neuron (o_IDsSel_IDneur_local) it stimulates. For each neuron, the accumulator is first
reset to 0 by sending an impulsion on both signals i_acc_clk and i_acc_rst for one clock cycle.
The next clock cycle, the synapse module is executed by sending an impulsion on i_syn_clk, while
the next synapse ID is asked (see impulsion on i_IDsSel_next_IDsyn). The next clock cycle, the
previous synapse stimulus is added in the accumulator (see i_acc_clk again). The two previous
clock cycles are repeated until all the synapses related to the selected neuron have been processed.
In that case, the signal o_IDsSel_process_IDneur is emitted. So the next clock cycle after the last
accumulation, the neuron module is executed (see i_neur_clk), and the next neuron is asked (see
i_IDsSel_next_IDneur). Then the process is repeated until all the neurons have been calculated,
which means until o_IDsSel_end_syn_list is emitted. Note that when a neuron spikes, see arround
5550 ns for o_neur_spike, the neuron output module lasts during the whole neuron clock signal.
Therefore, we use the o_spike signal to control the broadcasting instead, with the corresponding
global ID (see o_IDsSel_IDneur_global). Finally, all the related FSMs of the processing unit are
reset.



198 Annexe

Broadcasting unit validation

Figure D.8: ModelSim simulation of the Broadcasting unit based on the SNN example in 5.8.
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The broadcasting unit receives the IDs of the neurons that have spiked in the network, i.e. from all
the NPUs. In the simulation in figure D.8, the IDs of the neurons being processed by each NPU are
received by the broadcasting unit, displayed by o_neurID_NPU𝑖 . They come with their eventual
spike signals o_spike_NPU𝑖 . When a spike is emitted, it enables the writing of the neuron ID into
the FIFO assigned to the NPU. During the simulation, FIFO_NPU𝑖 displays the list of neuron IDs
stored in a FIFO, and an empty signal shows the FIFO’s state (empty/not empty). As long as the
fifos are not all empty, i.e. allFifosEmpty is ’0’, the IDs of the not empty FIFOs are being read
and broadcasted to the NPUs. When a FIFO is empty or when all the FIFOs are empty, the output
signal o_fifoEmpty is set to ’1’ which notifies all NPUs that the current output o_neurID is from
an empty FIFO.

Time step manager unit validation

Figure D.9: ModelSim simulation of the Time Step Manager unit and the Controller unit.

The clk_dt clock signal represents the time constraint, it is configurable and is handled by the time
step manager unit. On every rising edge of clk_dt, the time step manager unit emits the o_NEW_dt
signal to all the NPUs which then start their calculations. The figure D.9 shows the global evolution
of all the controller units of the 3 NPUs after the o_NEW_dt is ’1’. Otherwise, they remain in their
initial state. The figure also shows the most important rule of the architecture, which is to terminate
all NPU’s process before the beginning of a new time step.







Modélisation et conception par approche synchrone
d’architectures neuronales hybrides biologique-artificiel

Marino RASAMUEL
Résumé

Alors que les Réseaux de Neurones Artificiels (RNA) continuent de progresser dans des do-
maines tels que l’apprentissage automatique, la robotique, les véhicules autonomes et le di-
agnostic de santé, un nouveau cadre d’application gagne du terrain à la fois dans les secteurs
académique et industriel : la Neurobiohybridation. Ce domaine cherche à établir des connexions
entre des neurones artificiels et biologiques dans le but de comprendre et potentiellement de
réparer ou remplacer des fonctions cérébrales perdues suite à des maladies ou des accidents.
Dans cette perspective, le développement de réseaux de neurones artificiels inspirés biologique-
ment, souvent appelés Réseaux de Neurones à Spikes (SNNs), est essentiel pour améliorer la
compatibilité entre les systèmes neuronaux artificiels et biologiques. Cette thèse s’inscrit dans
ce contexte en utilisant l’approche synchrone pour modéliser, mettre en œuvre et simuler des
SNNs bio-inspirés et biomimétiques. En utilisant des vérificateurs de modèles, qui permettent
de prouver ou d’extraire des propriétés des systèmes de manière formelle, notre objectif est
d’acquérir une compréhension plus complète des comportements biologiques dans le future.
Pour la première fois dans ce contexte, nous utilisons le langage Light Esterel pour atteindre nos
objectifs. Nous démontrons son potentiel dans la mise en oeuvre de modèles neuronaux, ini-
tiant une bibliothèque de modèles pour explorer différents types de SNNs. Tout au long de cette
thèse, nous avons développé un cadre complet basé sur Light Esterel pour modéliser, simuler et
mettre en oeuvre divers modèles de SNNs. Pour aborder les expériences de neurobiohybrida-
tion, nous avons développé notre propre architecture matérielle, SynchNN, capable d’exécuter
en temps réel des SNNs récurrents en utilisant notre bibliothèque de modèles. L’environnement
de modélisation que nous avons développé est complété par un framework de simulation, en
cours de développement, visant à réaliser des expériences de neurobiohybridation à l’avenir.

Mots-clés : Réseaux de neurones impulsionnels, Approche Synchrone, Langage Light Esterel, FPGA,
neurobiohybridation

Abstract
As Artificial Neural Networks (ANNs) continue to advance in fields like machine learning,
robotics, autonomous vehicles, and healthcare diagnostics, an application domain is gaining
attraction in both academic and industrial sectors : Neurobiohybridization. This domain seeks to
establish connections between artificial and biological neurons with the goal of understanding
and potentially repairing or replacing lost brain functions due to disease or accidents. In pursuit
of this, the development of biologically inspired artificial neural networks, often referred to
as Spiking Neural Networks (SNNs), is essential to enhance compatibility between artificial
and biological neural systems. This thesis fits into this context by using the synchronous
approach to model, implement, and simulate bio-inspired and biomimetic SNNs. Leveraging
model checkers, that allow to prove or extract properties in systems in formal manner, our
aim is to gain a more comprehensive understanding of biological behaviors in the future. For
the first time in this context, we utilize the Light Esterel language to achieve our objectives.
We demonstrate its potential in implementing neural models, initiating a library of models for
exploring different types of SNNs. Throughout this thesis, we developed an entire framework
based on Light Esterel in order to model, simulate and implement various SNN models. To
address neurobiohybridization experiments, we developped our own hardware architecture,
SynchNN, capable of executing recurrent SNNs in real-time using our library of models.
This framework we developed is completed with an on-going simulation framework aiming to
conduct neurobiohybrid experiments in the future.

Keywords: Spiking Neural Networks, Synchronous Approach, Light Esterel language, FPGA,
neurobiohybridization
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