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Résumé 
Cette thèse vise à étudier expérimentalement, analytiquement et numériquement, les 
conséquences de variations et d’oscillations hydrodynamiques à forte variabilité temporelle en 
milieux poreux partiellement saturés. Les problèmes que nous étudions comportent des 
surfaces libres tant à l’extérieur qu’à l’intérieur des milieux poreux, celles-ci étant définies 
comme des isosurfaces de pression d’eau égale à la pression atmosphérique (Pwater = Patm). 
Les différentes études expérimentales réalisées en laboratoire sont, respectivement :  

• une expérience d’imbibition dans une boite à sable avec effets capillaires importants; 
• la transmission d’oscillations de la surface libre à travers un massif sableux 

intercalaire dans un petit canal à houle (IMFT, Toulouse); 
• l’étude de la dynamique et de la propagation des oscillations des niveaux d’eau  dans 

un grand canal à houle (HYDRALAB, Barcelone), partiellement recouvert d’un fond 
sableux incliné, avec mesures de niveaux d’eau en pleine eau et sous le sable, et 
mesures du fond sableux (érosion/dépôts). 

Pour les études théoriques, nous avons développés des solutions analytiques linéarisées. Un 
exemple de problème traité analytiquement est: l’équation linéarisée de Dupuit-Boussinesq 
(D-B) transitoire à surface libre, en hypothèse d’écoulements plans et vidange/remplissage 
instantané : oscillations forcées, transmission et dissipation d’ondes à travers une boite à sable 
rectangulaire. 
Nous avons aussi développé une solution de l’équation faiblement non linéaire de Dupuit-
Boussinesq (D-B) pour étudier le problème d’imbibition avec variation abrupte du niveau 
d’eau amont (suivi temporel du front de saturation).  
Nous avons pu étudier les différents types de problèmes transitoires liés aux expériences 
citées plus haut par simulation numérique. En particulier, nous avons simulé des écoulements 
partiellement saturés et insaturés, en coupe verticale, à l’aide d’un code de calcul 
(BIGFLOW 3D) qui résoud l’équation de Richards généralisée en régime transitoire.  
Nous avons ainsi étudié numériquement en régime non saturé, l’expérience d’imbibition dans 
un sable initialement sec à frontières verticales (IMFT sandbox), puis l’expérience de 
propagation d’ondes dans le grand canal à houle de Barcelone (laboratoire HYDRALAB) 
comportant une plage de sable inclinée, avec un couplage complètement intégré entre les 
zones micro-poreuse (sable) et “macro-poreuse” (pleine eau). 
Pour analyser les résultats de cette dernière expérience et les comparer aux simulations, nous 
avons utilisé plusieurs méthodes de traitement et d’analyse des signaux : analyse de Fourier 
(spectres de fréquences) ; ondelettes discrètes multi-résolution (Daubechies) ; analyses 
corrélatoires simple et croisée. Ces méthodes sont combinées avec des méthodes de pré-
filtrage pour estimer dérives et résidus (moyennes mobiles ; ondelettes multi-résolution). 
Cette analyse des signaux a permis de comprendre et quantifier la propagation à travers une 
plage de sable. 
Au total, les différentes approches de modélisation mis en œuvre, associé à des procédures de 
calage en situation de couplage transitoire non linéaire ont permis de reproduire globalement 
les phénomènes de propagation de teneur en eau et de niveau d’eau dans les différentes 
configurations étudiées.   
Mots-Clé : Eau souterraine; Imbibition ; Propagation d’ondes ; Oscillations et fluctuations; Milieux 
poreux; Macro-poreux; L’écoulement plan (Dupuit-Boussinesq);  Equation de Richards ; Ecoulement 
partiellement saturé; Plage de sable inclinée; Traitement des signaux ; Ondelettes multirésolution ; 
Fonction de corrélation croisée; Spectre de fréquences ; Fonction de cohérence ; Canal à houle
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Abstract 
This thesis aims at investigating experimentally, analytically and numerically, the 
consequences of hydrodynamic variations and oscillations with high temporal variability in 
partially saturated porous media. The problems investigated in this work involve “free 
surfaces” both outside and inside the porous media, the free surface being defined as the 
“atmospheric” water pressure isosurface (Pwater = Patm). 

The laboratory experiments studied in this work are, respectively:  

• Lateral imbibition in a dry sand box with significant capillary effects; 
• Transmission of oscillations of the free surface through a vertical sand box placed in a small 

wave canal (IMFT, Toulouse); 
• Dynamics of free surface oscillations and wave propagation in a large wave canal 

(HYDRALAB, Barcelona), partially covered with sand, with measurements of both open water 
and groundwater levels, and of sand topography (erosion / deposition). 

For theoretical studies, we have developed linearized analytical solutions. Here is a sample 
problem that was treated analytically in this work: 

• The linearized equation of Dupuit-Boussinesq (DB) for transient free surface flow, assuming 
horizontal flow and instantaneous wetting/drainage of the unsaturated zone: forced 
oscillations, wave transmission and dissipation through a rectangular sandbox. 

We also developed a weakly nonlinear solution of the Dupuit-Boussinesq equation to study 
the sudden imbibition (temporal monitoring of the wetting front). 

We have studied the different types of transient flow problems related to the experiments 
cited above by numerical simulation. In particular, we have simulated unsaturated or partially 
saturated transient flows in vertical cross-section, using a computer code (BIGFLOW 3D) 
which solves a generalized version of Richards’ equation. 

Thus, using the Richards / BIGFLOW 3D model, we have studied numerically the experiment 
of unsaturated imbibition in a dry sand (IMFT sandbox), and then, with the same model, we 
have also studied the partially saturated wave propagation experiment in the large Barcelona 
wave canal (HYDRALAB laboratory), focusing on the sloping sandy beach, with coupling 
between the micro-porous zone (sand) and the “macro-porous” zone (open water). 

To interpret the results of the latter experiment and compare them to simulations, we use 
several methods of signal analyzis and signal processing, such as: Fourier analysis, discrete 
multi-resolution wavelets (Daubechies), auto and cross-correlation functions. These methods 
are combined with pre-filtering methods to estimate trends and residuals (moving averages; 
discrete wavelet analyses). This signal analyzis has allowed us to interpret and quantify water 
propagation phenomena through a sandy beach.  
To sum up, different modeling approaches, combined with model calibration procedures, 
were applied to transient nonlinear coupled flow problems. These approaches have allowed us 
to reproduce globally the water content distributions and water level propagation in the 
different configurations studied in this work.   
Key-Words: Groundwater; Sand box; Imbibition ; Wave propagation and transmission ; Water level 
oscillations and fluctuations ; Porous media ; Micro-porous ; Macro-porous ; Numerical simulation ; 
Plane flow model (Dupuit-Boussinesq) ; Richards nonlinear 3D model ; Partially saturated flow ; 
Sand Box ; Sloping sand beach ; Signal processing ; Multiresolution wavelets ; Cross-correlation 
function ; Period ; Frequency spectrum ; Coherency function; Wave canal ; Wave generator.   
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 ;ሺ݄ሻ Unsaturated hydraulic conductivity function with respect to the pressure head h, m/sܭ
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ఓ
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ఔ
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 ;ݏ/݉ ,Darcy flux vector  ࢗ
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כܵ
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ܶ  Period, s; 
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 ;Velocity vector, m/s  ࢂ
஻ܸ௢௨௡ௗ  Net volume of water entered or exited through all the sides of the field since 

the beginning of the numeric simulation (accumulative or global) with Bigflow, ݉ଷ; 

 ;Van Genuchten/Mualem ܯܩܸ
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 ;௧  half window width of Moving average filtering, sݓ
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 ;Water depth, m  ߟ
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߱ Angular frequency, ିݏଵ; 
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Introduction 

En hydrologie et l'hydrogéologie, les niveaux d'eau subissent des oscillations ou de brusques 

changements dans le temps. Cela peut se produire dans les aquifères, réservoirs, lacs, rivières, 

digues, les estuaires, les ports et les zones côtières. Dans de nombreux cas, les oscillations des 

surfaces libres ont lieu en eau libre, puis, se propagent dans les milieux poreux adjacents 

(plages, les aquifères côtiers, les berges, les digues, brise-lames, et ainsi de suite). Dans ce 

travail, nous étudions la réponse de la nappe phréatique, qui est, à la fois des zones saturées et 

non saturées (séparés par des surfaces libres) dans des conditions très dynamiques. Nous 

sommes intéressés à deux cas en particulier: des changements brusques et des oscillations 

périodiques des niveaux d'eau. Ceux-ci peuvent résulter de conditions environnementales 

naturelles ou induites par les opérations de l'homme dans le génie civil et hydrologiques 

applications. 

 Ainsi, nous nous concentrons sur les effets potentiels des variations des niveaux d'eau dans le 

voisinage de corps poreux, tels que (Figures 0-1 et 0-2): 

 Propagation d’ondes dans un environnement cosntitué de milieux poreux (plages, zones 

côtières et les estuaires) ; 

 Transmission / dissipation des marées et des vagues à travers les digues, brise-lames ou 

(ports) ; 

 variations de niveau d’eau de grande amplitude dans les rivières et les réservoirs, par 

exemple, à cause d’opérations de barrages; 

 Interactions crues/eaux souterraines, et inondations/eaux souterraines (interactions sols-

nappes-riviere en hydrologie) 

   Dans cette thèse, nous étudions en particulier la réponse du système de nappe phréatique des 

milleux poreux avec la surface libre aux variations des niveaux d'eau dans les eaux libres 

adjacents. Celui-ci peut être traité soit comme une frontière du domaine poreux, ou bien 

comme une interface interne (cf. plage de sable en pente). Deux types principaux de 

dynamique sont étudiés: (i) variation brusque du niveau d'eau (cf.  problème d’imbibition), et 
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(ii) des oscillations périodiques dues par exemple à des marées ou vagues (cf. les expériences 

de canal à houle). 

   Les analyses développées dans la thèse reposent sur trois approches complémentaires: 

 Expériences physique avec des modèles à échelle réduite dans le laboratoire (boites à 

sable, canaux); 

 Solutions analytiques linéarisées ou  faiblement non-linéaire en termes des niveaux d'eau 

(modèle  de Dupuit-Boussinesq de l’écoulement plan) 

 Solutions numériques complètements non-linéaires de l’équation de Richards en termes de 

pression interstitielle, teneur en eau et  Darcy flux, en 3D ou en coupes verticales, basée 

sur le code volume finis implicite (BigFlow 3D). 
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0 Introduction 

0.1 Objectives of the thesis 

   In hydrology and hydrogeology, water levels frequently undergo oscillations or abrupt 

changes in time. This can occur in aquifers, reservoirs, lakes, rivers, embankments, estuaries, 

ports, and coastal zones. In many cases, oscillations of free surfaces take place in open water 

bodies, and then, propagate into adjacent porous media (beaches, coastal aquifers, river banks, 

dykes, breakwaters, and so on). In this work, we study the response of ground water, that is, 

both unsaturated and saturated zones (separated by free surfaces) under very dynamic 

conditions. We are interested in two cases in particular: abrupt changes, and periodic 

oscillations of water levels. These can arise from natural environmental conditions, or from 

man induced operations in civil engineering and hydrological applications.  

   Thus, we focus on the potential effects of variations of water levels in the vicinity of porous 

bodies, such as (as illustrated in Figures 0-1 and 0-2): 

 Wave propagation in environmental porous media (beaches, coastal areas and estuaries);  

 Transmission/dissipation of tides and swells through dykes, or breakwaters (harbours) 

 Large variations of water levels in rivers and reservoirs, e.g. due to dam operations,  

 Effect of river floods on groundwater via stream-aquifer interactions (hydrology). 

Figure 0-1. Three Gorges Dam Reservoir filled 
to 135 meters (international PROBE, Mu Lan, 
June 2003).   

Figure 0-2. Sea beach of Rincon, Puerto 
Rico taken from the Red Door.  
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   In this thesis, we investigate in particular the response of a ‘free surface’ porous medium 

water system (e.g. a phreatic aquifer with a ‘groundwater table’) to variations of the water 

levels in adjacent open water bodies. The latter can be treated either as a boundary of the 

porous domain, or else as an internal interface (cf. sloping sand beach). Two main types of 

dynamics are investigated: (i) sudden change of water level (cf. ‘imbibition problem’, 

Chapter 3); and (ii) periodic oscillations due for example to tides or swells (cf. wave canal 

experiments, Chapter 4, 5, 6, and 7).  

   The analyses developed in the thesis rely on three complementary approaches:  

 Physical experiments with reduced scale models in the laboratory (sandboxes, canals); 

 Linearized or weakly non linear analytical solutions in terms of water levels (Dupuit-

Boussinesq plane flow model); 

 Fully nonlinear numerical solutions of the Richards flow equation in terms of pore 

pressure, water contents and Darcy fluxes, in 3D or in vertical cross-sections, based on 

implicit finite volume code (BIGFLOW 3D).   

0.2 Literature review (state of the art) 

   In this section, we examine the literature on oscillations and wave propagation in 

groundwater and above the free surface as well (unsaturated zone). We also include the case 

of sudden variations of water levels, as can occur for instance in dam reservoirs and lakes. 

However, we do not study two other important topics: the full coupling of porous media and 

open water hydrodynamics based on Navier-Stokes approaches, and the hydro-mechanical 

coupling (pressure-stress-strain, erosion, effects on possible terrain failures and slides) that 

can occur within the porous media under highly variable water levels and water pressures. 

Rather, we focus mainly on experimental and modeling studies focusing on water level 

oscillations and wave propagations, e.g., through reservoir dam embankments and through 

sandy beaches (our review is currently more complete on the latter topic).  

0.2.1 Observations on beach groundwater response to tidal & wave forcing  
   Beach groundwater hydrodynamics are a result of combined forcing from ocean tides (at 

diurnal of half-diurnal periods) and other shorter waves (swell) generated by wind and by 

barometric pressure differences, and occurring at a wide range of frequencies or periods 

(typically around 0.1 Hz or 10 s).  

   Beach groundwater response to tidal forcing has been studied extensively, and has been 

reviewed by many authors, including Nielsen et al. (1988)[72], Gourlay (1992)[11], Baird and 
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Horn (1996)[25], Turner et al. (1997)[59], Turner (1998)[14], Horn (2002)[18] and Horn 

(2006)[19].  Most early studies concentrated on groundwater in sandy beaches, particularly 

tide-induced fluctuations of the local beach water table, and generally in the cross-shore 

direction (perpendicularly to the shoreline). 

• Shape and elevation of the beach water table response to tidal forcing 

   A large number of observations describe the shape and elevation of the beach water table in 

response to tidal forcing at diurnal, semi-diurnal and spring-neap tidal frequencies. 

   Observations of beach water table behavior show that the water table surface is generally 

not flat, and that it is asymmetrical (eg: Turner(1993)[12], Raubenheimer et al.(1999)[29], 

Baird et al.(1998)[26], and Nielsen (1999)[16]).  

   The propagation of the water table fluctuations is influenced primarily by oscillation 

frequency, and by vertical flow and capillarity effects. The sloping boundary is responsible 

for the generation of higher harmonics in the water table oscillations, which have been shown 

to be stronger in the upper part of the aquifer due to the greater amount of vertical flow in this 

part of the aquifer (Cartwright et al. (2004b)[64]).  

   The asymmetry and phase lag between the water table and the tide increase in the landward 

direction, while the amplitude of the water table oscillations decreases in the landward 

direction (eg. Baird et al. (1998) [26], Raubenheimer et al. (1999) [29], and Robinson et al. 

(2005) [32] ).   

   Measured watertable elevations are generally higher than the tidal elevation (e.g. Nielsen et 

al. (1988)[72] [19], and Turner et al. (1997) [59]). This overheight increases as the beachface 

slope and sediment size decrease and as tidal range and wave infiltration increase (Turner et 

al. (1997) [59]). In general, the elevation of the beach water table increases as the 

permeability of the beach decreases. 

• Shape and elevation of the beach water table response to wave forcing 

   Wave forcing affects beach groundwater in a number of ways. Time-averaged wave effects 

contribute to watertable overheight, by two phenomena (e.g: Nielsen and Kang (1995) [67], 

Kang and Nielsen (1996) [44], and Nielsen (1999) [16] [19]):  

• by set-up / raising the mean water surface at the shoreline, and 

• by run-up / increasing the mean water surface through infiltration.  
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   Considering a vertical cross-section perpendicular to the shoreline, hydraulic gradients 

controlled by wave set-up also drive a general groundwater circulation in the beach (e.g: Li 

and Barry (2000) [53]).  

   Run-up of individual waves generates high-frequency water table and pore pressure 

fluctuations, which have been reported in a number of field experiments (e.g. Turner and 

Nielsen (1997) [47], Horn et al. (1998) [37], Turner and Masselink (1998) [48], Blewett et al. 

(2001) [31], Baldock et al. (2001) [83], Butt et al. (2001) [81], Cartwright et al. (2005)[61],  

and Robinson et al. (2005) [32] ). 

    High-frequency water table oscillations exhibit a similar asymmetry to that of tidally 

induced water table fluctuations, with a faster rate of rise than fall (Hegge and Masselink 

(1991) [30]).The landward propagation of a swash-induced pore pressure wave has been 

shown to be similar to that of tidally induced groundwater waves, with the amplitude 

decaying exponentially and the phase lag increasing linearly in the landward direction 

(Cartwright et al. (2005) [61]). 

   Waddell (1973) [38] and Waddell (1976) [5]observed that a wave arriving at the base of the 

beach face induced an instantaneous rise in the beach water table as a result of a “mass 

pressure flux” through the saturated sediment. In contrast, Hegge and Masselink (1991) 

[30]found that the water table elevation increased 4–5 seconds after maximum run-up, 

attributing this lag to the effects of “frictional retardation” on the input swash water. They 

suggested that the relative importance of pressure vs. swash infiltration is controlled by the 

location of the exit point, with pressure forces dominating on the saturated beach face 

seaward of the exit point and infiltration dominating landward of the exit point. Waddell 

(1976) [5] made a similar suggestion, and also suggested that sediment size will affect 

pressure transmission through the beach. Nielsen (1997) [13] noted that neither of these 

studies measured the actual position of the water table, but rather the pressure at some depth, 

and argued that such measurements cannot determine how the water table (as opposed to the 

non-hydrostatic pressure at some depth) behaves under unsaturated conditions landward of 

the run-up limit. 

• Spatial evolution of the dominant periods of the beach water table fluctuations 

  Some field evidence also suggests that wave effects can be observed over long time periods.  

   For instance, Nielsen (1999) [16] noted that water table oscillations due to relatively slow 

changes in wave height (say over several days) propagate further inland than higher-
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frequency oscillations. Similarly, several authors reported measurements of a beach 

groundwater pulse which was due to an increase in wave set-up at the shoreline during 

storms, and which propagated inland into the aquifer (Turner (1998) [14], Cartwright et al. 

(2004a) [62] , and Cartwright and Nielsen (2004c) [65] [19]). 

   In the same line of thought, many researchers have noted that the beach acts as a low-pass 

filter, only allowing the larger or longer period swashes to be transmitted through the beach’s 

porous matrix. It is observed that both the amplitude and the dominant frequency of the 

groundwater level spectrum decrease in the landward direction. The further landwards the 

given groundwater spectrum, the narrower its band and the more it is shifted towards lower 

frequencies (Lewandowski and Zeidler (1978)[22]).  

   There is indeed some evidence to suggest that some frequencies are less attenuated than 

others; however, it is not clear what controls the frequency pass band on a particular beach. 

Waddell (1980) [6] noted that the deeper the well point, the lower the cut-off frequency of the 

filter function is. Hegge and Masselink (1991) [30] suggested that the cut-off frequencies of 

the filter will be a function of tidal stage, hydraulic conductivity, beachface slope and the 

measurement position relative to the shoreline. 

   Relatively few studies have reported simultaneous measurements of beach groundwater and 

swash; here are a few such studies and their main conclusions: 

•    Hegge and Masselink (1991) [30] compared swash zone run-up and groundwater 

spectra, which showed a considerable reduction in dominant energy and also a shift in 

dominant energy towards lower frequencies.  

• Turner and Nielsen (1997) [47] noted that although the pore water pressures in the 

beach clearly responded to wave run-up, these fluctuations had a significantly lower 

frequency than that of the waves. They also noted that rapid water table fluctuations in 

the swash zone were more evident on the falling tide than on the rising tide, and 

highlighted the importance of capillary effects.  

• Nielsen and Turner (2000) [68] showed measurements of pore water pressure in the 

beach with a spectral peak at the frequency of the water table exit point, rather than at 

other forcing frequencies such as surf zone waves or run-up.  

• Cartwright et al. (2005) [61] presented shoreline, exit point, and pore pressure spectra. 

They showed that the transfer of energy from high-frequency swash forcing to low-
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frequency groundwater response could be attributed to wave run-up exceedance 

probabilities relative to the position of the exit point 

• Unsaturated zone and capillary fringe of the beach groundwater 

   The presence of a capillary fringe can have a significant effect on the exchange of water 

between the ocean and the coastal aquifer, particularly in terms of the storage capacity of the 

coastal / beach aquifer.  

   Recent studies have demonstrated that due to hysteretic water retention, capillarity affects 

water table dynamics over a much wider range of frequencies, including the tidal frequency 

(e.g. Nielsen and Perrochet (2000a) [69], Nielsen and Perrochet (2000b) [70], and Werner and 

Lockington (2003) [24]). At higher frequencies, the presence of a capillary fringe will have a 

significant effect on the dispersion of water table waves. Field and laboratory observations 

have also shown that natural groundwater waves usually propagate faster and decay more 

slowly in aquifers with a capillary fringe (eg. Nielsen and Turner (2000) [68], Cartwright et 

al. (2004a) [62], and Cartwright et al. (2004b) [64] ).  

   The height of the capillary fringe can be estimated under quasi-static assumptions (not 

always stated as such). Thus, Turner and Nielsen (1997) [47] gave an expression for the 

thickness of the capillary fringe within the beach, B, assuming cubic packing of spherical 

grains of uniform diameter: 

ܤ  ൌ ଵ଴ఊ
ఘ௚஽

  (0-1) 

where ߛ is the surface tension, ߩ is the density of the fluid, and D is the mean grain diameter. 

Atherton et al. (2001) [79] give an expression for the height of capillary rise: 

௖ܪ  ൌ ଶఊ௖௢௦ఈ
ఊ೘ఘ௚

  (0-2) 

where, ߛ is the surface tension, ߩ the density of the fluid, ߙ the contact angle between water in 

a pore and the pore side wall (taken to be zero), ߛ௠ the mean pore radius and g is acceleration 

due to gravity. In terms of macroscopic constitutive relationships, using the Van Genuchten 

Mualem model, Alastal et al. (2010) [50]point out, from earlier work by Ababou (1991) [10], 

that the mean static capillary height can be defined and calculated as the point of maximum 

moisture capacity, i.e., the inflexion point of ߠ(h), which leads to an explicit expression:  

஼஺௉ߣ ൌ
1
ߙ ൬1 െ

1
݊൰

ଵ/௡

  (0-3) 
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where “α” is the Van Genuchten pressure scaling parameter (inverse length units), and “n” is 

the Van Genuchten/Mualem exponent, or shape parameter (“n” is a dimensionless positive 

real number).   

    Observations which suggest that horizontal flows may also occur in the capillary zone have 

been reported (e.g. Atherton et al. (2001) [79], Silliman et al. (2002) [80], Cartwright et al. 

(2002) [63], Cartwright et al. (2004b) [64]), but the most significant phenomenon is probably 

the vertical exchanges in that zone under dynamic oscillatory conditions.  

• Effects of infiltration and exfiltration 

   The effects of infiltration and exfiltration are generally invoked to explain why beaches with 

a low water table tend to accrete, and beaches with a high water table tend to erode.  

   However, the relative importance of processes such as infiltration losses in the swash, 

changes in the effective weight of the sediment, and modified shear stress due to boundary 

layer thinning, are not yet clear. Experimental work on the influence of seepage flows within 

sediment beds provides conflicting results concerning the effect on bed stability (Horn 

(2006)[19]). 

0.2.2 Modeling of beach groundwater response to tidal & wave forcing 

   There are also a great number of numerical and analytical models for the investigation of 

the wave propagation in porous media, including the case of a vertical porous boundary (eg. 

Dominick et al. (1971) [40] ) and a sloping porous boundary as occurs for a bach (eg. Nielsen 

(1990) [9] ).  

   In unconfined aquifers, the dynamics of the water table will be influenced by the capillary 

fringe for all but the coarsest sands and gravel. Most existing models rely on the Dupuit-

Boussinesq equation (Chapter 1, for more details) for plane flow, in 1D across the shore (e.g. 

Nielsen (1990) [9], Baird et al. (1998) [26], Raubenheimer et al. (1999) [29], Song et al., 

(2007) [92]) and sometimes also in the 2D horizontal plane (e.g. Li et al. (1996) [54], and Li 

et al. (1997b) [56]). In all these cases, one considers only saturated flow and ignores the 

unsaturated zone and its capillary effects.  Therefore, according to these models, high-

frequency forcing does not induce water table fluctuations to any appreciable distance inland, 

a result which is contradicted by field observations (Li et al. (1997a) [58]). 

   Many other authors have attempted to capture the effects of the capillary fringe on beach 

groundwater dynamics based on the Green and Ampt (1911) [86] piston flow approximation, 
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which assume that the capillary fringe is completely saturated with a constant suction head at 

the top. Parlange and Brutsaert (1987) [49] added a correction term to the Boussinesq 

equation to account for the mass transfer of water across the moving watertable due to 

capillarity. Barry et al. (1996) [25] used this modified Boussinesq equation to investigate the 

propagation of small amplitude oscillations, and showed that the influence of the capillary 

fringe increases with oscillation frequency. Li et al. (1997a) [58] derived a dispersion relation 

including the effects of both finite aquifer depth and capillarity. Their model simulated 2D 

horizontal saturated flow and included capillary effects through the free-surface boundary 

condition. They investigated the influence of wave run-up on coastal aquifers and showed that 

capillary effects are important for high-frequency oscillations and provide the mechanism for 

high-frequency groundwater waves. Without the capillary correction term, the model was 

unable to reproduce the propagation of high-frequency watertable waves which has been 

observed in the field. 

   Li et al. (2000a) [57] incorporated capillary effects based on the Green and Ampt (1911) 

[86] piston flow approximation into the intermediate depth groundwater wave equations of 

Nielsen et al. (1997) [71] to derive a new groundwater wave equation : 

డ௛
డ௧

ൌ ௄
௦

݊ܽݐ ቀ݀ డ
డ௫

ቁ డ௛
డ௫

൅ ஻
௦

డ
డ௧

ቂ݊ܽݐ ቀ݀ డ
డ௫

ቁ డ௛
డ௫

ቃ   (0-3) 

where B is the thickness of the capillary fringe, h is the watertable elevation, s is specific 

yield, d is aquifer depth, K is hydraulic conductivity, t is time and x is horizontal distance. The 

first term includes the effects of vertical flows. The second term in the right-side of this 

equation accounts for the apparent water exchange between the capillary fringe and the 

aquifer that occurs when the water table fluctuates (Li et al. (1997a) [58] ). Comparison of 

their dispersion relation with a capillary term of Nielsen et al. (1997) [71] demonstrated the 

importance of capillarity for high-frequency oscillations, exhibiting a more realistic 

representation of high-frequency watertable oscillations as observed in the field by Kang et al. 

(1994) [52]. Their simulations showed that vertical flow effects reduces as aquifer depth 

decreases, and that wave damping at high frequencies is sensitive to the thickness of the 

capillary fringe.  

   In order to obtain an analytical solution, Li et al. (2000a) [57] assumed a vertical interface 

with a uniform head fluctuation; however, they noted that their ground water wave equation 

could be applied to a sloping beach with swash motion, in which case a moving boundary is 

involved and numerical solutions are required. 



 0 Introduction 

9 
 

   Nielsen and Perrochet (2000a) [69], and Nielsen and Perrochet (2000b) [70] incorporated a 

simplified description of the capillary fringe in the watertable equations, in order to express 

the change in total moisture (water table and capillary fringe) in terms of derivatives of the 

water table height only. They introduced the concept of the complex effective porosity, ne, to 

account for the observed damping and lag of oscillations in the total moisture compared to 

those in the watertable alone. They defined the complex effective porosity (nE) as follows: 

݊ ௗ௛೟೚೟
ௗ௧

ൌ ݊ா
ௗ௛
ௗ௧

   (0-4) 

where n is the drainable porosity (specific yield), h is water table elevation and htot is the 

equivalent saturated height of the total moisture (the sum of the water table height and the 

thickness of the capillary fringe). This term (nE) accounts mathematically for damping of 

fluctuations in the total moisture through its magnitude and for phase lag through its 

argument. In studies of simple harmonic forcing in a sand column, Nielsen and Perrochet 

(2000a) [69], and Nielsen and Perrochet (2000b) [70] found that the complex effective 

porosity (nE) was a constant for a given sediment at a given compaction. They also showed 

that the thickness of the capillary fringe varied nearly as much as the water table height.  

   Nielsen and Turner (2000) [68] extended the work of Nielsen and Perrochet (2000a) [69], 

and Nielsen and Perrochet (2000b) [70] to consider the case of simple harmonic oscillations 

and a wider range of sediment sizes, and obtained an empirical expression for the complex 

effective porosity 

݊ா ൌ ௡

ଵା஼൬௜
ഘಹഗ

಼ ൰
మ య⁄    (0-5) 

where ݊ is the drainable porosity (specific yield), ߱ is the angular frequency, ܪట is the height 

of the capillary fringe obtained from measurements, K is the hydraulic conductivity, and C is 

an empirical constant (C=2 in Nielsen and Turner (2000) [68], C=2.5 in Cartwright et al. 

(2002) [63], Cartwright et al. (2004b) [64], and Cartwright et al. (2005) [61]). Eq. (0-5) 

indicates that the influence of the capillary fringe is reduced for coarse sand and long forcing 

periods. Nielsen and Turner (2000) [68] noted that Eq. (0-5) is only valid when the capillary 

fringe is well below the sand surface and suggested when the capillary fringe is close to the 

sand surface, the flexing of meniscuses may be what determines the effective porosity of the 

beach. 

   Cartwright et al. (2004b) [64] considered the effect of a truncated capillary fringe (where 

the capillary fringe intersects the sand surface) on the dispersion of water table waves. They 
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investigated the extent to which truncation of the capillary fringe limits moisture exchange 

under periodic forcing via sand column experiments, and showed that the complex effective 

porosity was significantly reduced with increasing truncation, by up to a factor of 4. These 

results showed that truncation effects only became apparent when the distance between the 

sand surface and the maximum water table elevation was approximately half the height of the 

capillary fringe. When the sand surface is above the region of saturated moisture, there was no 

measurable effect of the sand surface on the water table oscillations. However, once the sand 

surface began to truncate the tension-saturated zone of the capillary fringe, there was a rapid 

decrease in the magnitude and argument of the complex effective porosity until a point where 

the sand surface equalled the maximum driving head elevation and the magnitude of the 

frequency response almost reached unity. 

   Cartwright et al. (2005) [61] presented simultaneous measurements of shoreline location, 

exit point location and pore pressure response, which they showed to be influenced by the 

presence of a capillary fringe. They used the parameter derived by Cartwright et al. (2004b) 

[64] to represent the reduction in aquifer storage due to both the effects of capillarity and the 

truncation of the capillary fringe by the sand surface. They compared the predictions of 

Turner's (1993b) [12] exit point model to their field measurements and showed that the 

inclusion of capillary effects improved the agreement between measured and predicted exit 

point location. They concluded that further work is needed to quantify the reduction in aquifer 

storage in terms of measurable aquifer parameters, and to allow for the dependence of the exit 

point (and of pore pressure dynamics) on shoreline proximity. 

   The use of the complex effective porosity does not give any information on the dynamics of 

the moisture distribution above the water table. It is clear that an improved understanding of 

processes in the capillary zone is essential for modeling moisture exchange in beaches, 

particularly in the swash zone. Any model which does not consider capillarity will create a 

large local hydraulic head gradient during wave run-up, leading to overestimation of 

infiltration (Li et al. (1999) [55]). Infiltration and/or exfiltration on a beach will be influenced 

by both the input of water from wave run-up and the ability of the sediment to take in water 

(hydraulic conductivity, specific yield and moisture content), which will be affected by the 

presence of a capillary fringe. 

   Both modeling and experimental work indicates that the hydraulic conductivity of the beach 

is a critical parameter. However, hydraulic conductivity varies both spatially and temporally 

on beaches, particularly on gravel and mixed sand and gravel beaches. Another important, but 
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poorly understood, consideration in beach groundwater studies is the role of air encapsulation 

during the wetting of beach sand. 

   Improved predictions of swash zone sediment transport and beach profile evolution cannot 

be achieved unless the complex fluid and sediment interactions between the surface flow and 

the beach groundwater are better understood, particularly the sensitivity of sediment transport 

processes to flow perpendicular to the permeable bed. Important research questions remain to 

be answered on the role of the capillary fringe in swash /watertable interaction: 

• nature of periodic fluctuations in the capillary fringe, both vertical and horizontal; 

beach groundwater recharge landward of the run-up limit;  

• variability of hydraulic conductivity and moisture content/air entrapment, especially 

on mixed beaches; 

• effects of pressure gradients in the swash zone;  

• and the effects of infiltration/exfiltration on swash sediment transport, particularly on 

coarse-grained beaches.  

   Most of the models require validation against laboratory and field data, particularly those on 

beach groundwater response to wave forcing and the effects of infiltration/exfiltration. The 

latter, in particular, are based on theory which needs to be verified. This will require careful 

laboratory experiments under realistic flow conditions and over a wide range of sediment 

sizes in order to determine the effect of seepage flows on sediment entrainment and transport. 

Direct measurements of key parameters such as hydraulic conductivity and moisture content 

need alos to be carried out in the field and more direct field measurements of infiltration rates 

are also required (Horn, 2006 [19]). 

0.2.3. Other review on topics of interests 
Water level dynamics in other porous bodies (other than sand beaches)  

   We have also reviewed the literature about ground water level variations in other contexts. 

For instance, in the sloping banks of large dam lakes, we have reviewed several papers 

focused on the groundwater response to high amplitude variations of water levels due to dam 

operations (particularly in the Chinese literature, eg. Feng et al. (2006) [87]; Mo et al. 

(2006)[88]).  

   Another case of interest is the case of wave propagation and damping through wave 

breakers (coarse dykes) in harbour engineering. These cases are all relevant to our work. For 
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instance, concerning the sudden variation of water level, see the imbibition experiment in a 

dry sandbox (studied in Chapter 3).  

   Concerning the damping of waves through a porous dyke, see the small wave canal 

experiment with an inserted vertical sandbox (Chapter 4). In fact, in the literature, problems 

of reflection and transmission of water waves through porous structures have been studied by 

the application of the eigenfunction expansion method (e.g., Sollitt and Cross (1972) [51], 

Dalrymple et al. (1991) [35], Yu and Chwang (1994) [89], Chwang and Chan (1998) [82], 

Chan and Lee (2001) [27], and Azhar et al. (2008)[28]). To calculate the porous medium flow, 

either Darcy’s law (e.g., Chwang and Chan (1998) [82]) or Forchheimer’s law (e.g., 

Dalrymple et al. (1991) [35], Azhar et al. (2008) [28]) has been used, but without considering 

the capillary effects that may occur in the unsaturated zone of the porous media.  

Oscillations and wave propagation analyses based on the Richards equation  

   We have reviewed above quite extensively a number of analyses on the effects of oscillatory 

forcing on free surface groundwater flow based on Dupuit-Boussinesq models with or without 

an additional capillary fringe submodel (Green and Ampt (1911) [86]).  

   However, other authors have studied directly unsaturated flow under oscillatory conditions. 

We only cite here two works that have been developed at IMFT.  

   The first one (Trégarot (2000) [17], Chap.4) consists in a linearized analyzis of the response 

of an unsaturated soil column to an oscillatory unsaturated flux imposed at the surface of the 

column. Damping, phase lag, and wavelength are analyzed mathematically in terms of soil 

parameters as a function of input frequency (based on earlier unpublished work by Ababou). 

In addition, the linearized solution is compared to nonlinear simulations of oscillating 

pressure profiles based on the Richards equation.  

   The second one is a more recent work by Alastal et al. (2010) [50]. They analyze the 

response of a partially saturated soil column to a pressure wave input at the bottom of the 

column. Phase lags due to both saturated and unsaturated zone dynamics are being studied 

(work in progress). 

Coupling Navier-Stokes (or other hydrodynamics) with porous media flow  

   Coupling Navier-Stokes (or other related hydrodynamics equations) with the Darcy-based 

porous media flow equations is an important topic to solve the real hydrodynamic problem 

which occurs in an interface such as sea/beach and river/bank. However, in this work, we will 
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be using a different approach from a “porous medium perspective”. Indeed, the approach to 

be implemented in this work (Chapter 7) will be based on generalizing the Richards porous 

media equation in order to include open water zones in the computational domain, rather than 

using Navier-Stokes based equations.  

   However, it is recognized that a different approach based on Navier-Stokes might be worthy 

of consideration, if properly adapted or coupled to porous media hydrodynamics. In order to 

make progress in this area, research has focused on establishing consistant interface 

conditions between open water (Navier-Stokes) and porous media (Darcy) domains, such as 

the Beavers-Joseph interface conditions [91]. This topic will not be pursued further in this 

work. 

Hydro-mechanical coupling and fluid-solid interactions  
   There are various types of hydro-mecanical coupling and fluid-solid interactions involved in 

the problems of interest for this thesis work, namely, harbor engineering, beach 

hydrodynamics (and morphodynamics), and also, estuaries, river banks, and dam lake 

embankments. In all these cases, fluid-solid interactions take place.  

   Briefly, two types of cases might be considered, as follows. First, for unconsolidated 

granular porous media, the changing regime of surface water flow can impact on 

erosion/deposition processes (beach swash zone); however, subsurface flow also can generate 

internal erosion and thus, create new flow pathways. Secondly, when porous media are 

consolidated, pore pressure and/or capillary pressure variations can lead to significant changes 

in the effective stress, which can have effects on cohesion and on failure mechanisms (rock 

falls, landslides, collapse of a dyke). This thesis is focused on the hydraulics aspects only, but 

it is clear that the mechanical consequences of internal pressure fluctuations and water level 

fluctuations are of great interest for applications and can lead to forgoing work. 

Signal analyzis and processing of water levels and pressure time series  
   In this thesis, we rely on mathematical and statistical methods for analyzing highly variable 

signals, in particular the water level signals H(xi,t) obtained from experimental measurements 

(Chapter 5 and Chapter 6, for more details).  

   For this sake, multiresolution wavelet analyzis, as well as correlation function and spectral 

density function have been used. The wavelet concept can be applied to any signal, while the 

correlation/spectrum concepts are well defined only for statistically stationary random 

processes. However, note that sometimes the the water level signals have been prefiltered, and 
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the correlation/spectral analyses have been applied only to their residuals. The soundness of 

our moving average filter (and the choice of window width) has also been tested by 

comparing it to the result obtained from wavelet orthogonal decomposition into 

approximation+residual.  

   The software tools used in this thesis were originally developed in the form of MATLAB 

Toolboxes in a previous thesis at IMFT (Fatmi (2009) [21]) for application to the analyzis of 

pore pressure and atmospheric pressure signals in a hydrogeologic site (Fatmi et al. (2008) 

[43]).  For the present work, they have been adapted and re-interpreted some of these tools for 

these specific purposes (sometimes in collaboration with H. Fatmi). For completeness, we 

provide an upgraded version of the corresponding signal analyzis theory in Appendix B9.   

0.3 Outline of the thesis 
   After this introductory chapter, the rest of the thesis is structured sequentially into eight 

chapters regrouped in three main parts, plus appendices, as follows:  

    First, note that the APPENDICES include not only classical appendices for each chapter 

(Appendices A), but also, additional chapters labeled Chapter B9 to Chapter B12 which 

contain additional results and details on signal analyses and simulations of the Barcelona 

wave canal (they can be skipped on first reading).  

   Let us now summarize briefly the contents of each part and each chapter.  

   PART I (Chapters 1-2): Governing equations & constitutive relations for porous media 

   Chapter 1 presents the governing equations and the constitutive relations for partially 

saturated or unsaturated porous media. 

    Chapter 2 defines the numerical procedures in the plane flow Dupuit-Boussinesq model 

and in the 3D partially saturated Richards model, taking into account time-varying boundary 

conditions in both models. 

   PART II (Chapter 3): Modeling of non-oscillatory flows in porous media 

   Chapter 3 describes numerical simulations with the Richards unsaturated flow model using 

the VGM (Van Genuchten / Mualem) model for conductivity and moisture curves versus 

pressure. The parameters of the VGM model are manually calibrated (fitted) with the results 

of the imbibition experiment conducted at IMFT (sudden imbibition or wetting of a dry 

sandbox). On the other hand, the linearized analytical solution of the Dupuit-Boussinesq 
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equation for the sudden discharge problem is validated by numerical simulations with Dupuit-

Boussinesq equations, and these are also compared with the more complete Richards model. 

   PART III (Chapters 4-7): Modeling of oscillatory flows in porous media 

   In Chapter 4, we describe a lab experiment with a vertical sandbox in a small wave canal 

(IMFT). We study the transmission of oscillations through the sandbox, experimentally with 

water level sensors, and numerically with the Dupuit-Boussinesq plane flow model. We also 

analyze linearized solutions of the Dupuit-Boussinesq equation and use them to interpet the 

experimental observations (damping). This experiment was also useful to test piezometric 

water level sensors for the measurements of water level fluctuations in sand (see next 

experiment in the Barcelona long wave canal). 

   Chapter 5 describes the experimental set up of the long wave canal (HYDRALAB, 

Barcelona), including a presentation of the water level measurements in the sloping sandy 

beach. The water level signals H(x,t) are presented, and their space-time characteristics are 

simply described (preliminary analyses). This chapter also serves as an introduction to the 

theories of the signal processing methods that will be used to analyze water level fluctuations.  

   Note. Theoretical aspects of signal processing are developed in more detail in the appended 

Appendix B9. In addition, more details on the water level signals recorded at different distances from 

the “coast line” are presented in the appended Appendix B10, comparing the entry water level ܪଵሺݐሻ 

near the “coast line” to the “pure groundwater” level fluctuation ܪ଺ሺݐሻ further away from the “coast”. 

  In Chapter 6, the measured water level fluctuations in the sloping sandy beach of the 

Barcelona wave canal are analyzed and interpreted via signal processing techniques, based on 

prefiltering techniques (e.g. moving averages) and three types of methods: Fourier spectra 

versus frequency; multi-resolution wavelet analyses; and temporal correlation and cross-

correlation functions versus lag times. Cross-analyses involve pairs of signals (Hi(t),Hj(t)) 

sampled at two positions in space perpendicular to the shoreline (xi,xj). 

   In Chapter 7, the wave propagation process in the sloping sandy beach of the Barcelona 

wave canal experiment is modeled numerically using the 3D Richards flow model in a 

vertical cross-section comprising both the “microporous” sand and the supposedly 

“macroporous” open water zone (swash zone above the sand beach). The partially saturated / 

unsaturated flow experiments are calibrated using the VGM parameter model, and also the 

Exponential parameter model, for the unsaturated conductivity and moisture-pressure curves 

K(h) and θ(h). In addition, the simpler Dupuit-Boussinesq plane flow model is also briefly 

tested for comparison. This chapter leads not only to a re-interpretation of the observed 
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experimental groundwater fluctuations, but also, to an evaluation of the numerical approach to 

coupled open water / porous media hydrodynamics.  

   Note. In addition, Appendix B11 and B12 present simulations of wave propagation in the sloping 

sandy beach under simpler wave input that those measured, in order to provide some more insights 

into the process. Thus, a single harmonic wave was forced at the beach entry during one period 

(Appendix B11) and during several wave periods (“continuous wave test” in Appendix B12). 

   Finally, Chapter 8 summarizes the main conclusions and the outlook for future research. 

 

Note: some parts of this work were published and presented earlier in Wang et al. (2008) [90], 
Wang et al. (2008) [93], Wang et al. (2010) [94], and some other parts of this work have been 
submitted more recently for publication.   
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Chapter 1: Governing equations and constitutive 

laws for porous media 

1.1 Introduction 
1.1.1 Configuration and hypothesis of the problems 
   Two types of equation models are used for analyzing transient porous media flows: 

saturated plane flow equation (Dupuit-Boussinesq), and variably saturated 3D flow 

(generalized Richards). Both models can treat the case of transient flow in a partially saturated 

porous medium, under different assumptions. The respective governing equations are detailed 

below. 

1.1.2 Navier-Stokes equation and its simplifications 
   Note: the interpretation in this section is borrowed from Ababou (2008) [73].   

   In “open flow” system (non-porous, classical fluid mechanics) the incompressible Navier-

Stokes system of equations is given by: 

൫ሬܸറ൯ݒ݅݀ ൌ 0  (1-1) 

଴ߩ 
డ௏೔
డ௧

൅ ଴൫ሬܸറߩ · ൯׏ ௜ܸ ൌ െሺ݌׏ ൅ ሻ௜ݖ׏଴݃ߩ ൅  ଶܸሻ  (1-2)׏ሺߤ

Where, ሬܸറ is the flow velocity; 

 ;଴ is the the fluid densityߩ

 ;is is the dynamic viscosity ߤ

݃ is the gravity acceleration; 

 ;is the elevation head ݖ

 .is the del operator  ׏

   The first equation is the mass conservation PDE (Partial Differential Equations) for an 

incompressible fluid. It states that the velocity divergence is equal to zero. The second 

equation is a system of three PDE’s enforcing the conservation of momentum, a vector 

quantity here by taking into account the zero divergence of velocity inferred from mass 

conservation. In total, the 3D Navier-Stokes equations constitute a system of four equations 
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(one for mass and three for momentum) with four unknown variables: pressure (p), and 

velocity components ( ௫ܸ, ௬ܸ, ௭ܸ). 

   In the second equation(1-2), the left two terms are the acceleration terms (eulerian and 

inertial) and the second term in the right is the viscous dissipation termሺ׏ߤଶܸሻ.  Neglecting 

the acceleration terms, Darcy’s equation is obtained by averaging the N-S equations over 

many pores:  

ଶ׏ߤ
௜ܸ ൌ െߤ థ௏೔

௞
 and then ݍԦ ൌ െ ௞

ఓ
൫׏ሬሬԦ݌ ൅  ൯ݖሬሬԦ׏݃ߩ

Where,  

݇ ൌ ݕݐ݈ܾ݅݅ܽ݁݉ݎ݁݌ ൎ ܿ ൈ ௉ைோாݎ
ଶ  

߶ ௜ܸ ൌ ௜ݍ ൌ ݕݐ݅ݏ݊݁݀ ݔݑ݈ܨ ቈ
ቀ௠య

௦ൗ ቁ

௠మୄ
቉ ฻ ሾ݉ ⁄ݏ ሿ  

߶ ൌ   ݕݐ݅ݏ݋ݎ݋ܲ

   The viscous dissipation term ሺߤሺ׏ଶܸሻሻ  becomes proportional to ܸ  upon averaging over 

many pores. This finally leads to Darcy’s linear flux-gradient law, usually expressed in terms 

of flux density “q” rather than velocity “V”.  

1.2 Plane flow equations with a free surface (Dupuit-Boussinesq) 
   The first model is used to analyze wave dissipation and transmission of water table 

fluctuations in (x,y,t) under plane flow hypotheses (Dupuit-Boussinesq). This model is based 

on Darcy’s linear flux-gradient law. It assumes vertically hydrostatic conditions, and most 

importantly, it does not take into account unsaturated flow and capillary effects above the 

moving free surface. This model also neglects the kinetics of retarded flow to/from the 

unsaturated zone (hypothesis of instantaneous storage/drainage). For more details, see Ababou 

(2008 [73], Sec.8.5.4). 

   The Dupuit-Boussinesq equations are given by: 

2D Conservation equation (vertically integrated): Φ பH
ப୲

ൌ െdivሺQሻ (1-3) 

2D Darcy equation (vertically integrated): ܳ ൌ െܶሺ݄ሻ݃݀ܽݎሺܪሻ (1-4) 

2D Flow equation in the (x,y) plane: Φ డு
డ௧

ൌ  ሻ൯  (1-5)ܪሺ݀ܽݎ൫ܶሺ݄ሻ݃ݒ݅݀

where Φ (m3/m3) is the unconfined storage coefficient or effective porosity, h is the water 

depth, ܶሺ݄ሻ is the hydraulic transmissivity, and  H is the elevation of the free surface, with the 

relation ݄ ൌ ܪ െ ܼ௜௡௙ሺݔ, ,ݔሻ, where  ܼ௜௡௙ሺݕ  .ሻ is the elevation of the impervious substratumݕ
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In our work, we focus on a flat substratum, either horizontal or inclined plane. For example, 

for a bed sloping in the x-direction, we have ܼ௜௡௙ ൌ െܫ଴ݔ, therefore: ݄ ൌ ܪ ൅  where I0 is ,ݔ଴ܫ

the slope. 

1.3 Partially saturated / unsaturated media with capillary effects 

(3D Richards)  

  The second model is based on a generalization of the 3D Richards equation for variably 

saturated heterogeneous porous media, possibly with macro-porous zones (including inertial 

effects with a quadratic flux-gradient law). This model is fully 3D (not vertically hydrostatic), 

and it is able to represent multiple free surface dynamics in (x,y,z,t). Also, the model accounts 

for capillary effects in the unsaturated zone. 

   The equations are given by (Trégarot, 2000 [17]):  

3D mass conservation: ఏ೐ሺ௛ሻ
డ௧

ൌ െ݀݅ݒሾݍሿ,  (1-6) 

3D Darcy-Buckingham (saturated/unsaturated): ݍ ൌ െܭሺ݄ሻ(7-1)  ,ܪ׏ 

3D flow equation for pressure head h: డఏ೐ሺ௛ሻ
డ௧

ൌ ሿ݄׏ሺ݄ሻܭሾݒ݅݀ ൅ ሺ݄ሻܭሾݒ݅݀ Ԧ݃஻ሿ   (1-8) 

   Where,  

௘ሺ݄ሻߠ ൌ ሺ݄ሻߠ െ  ;௥ is the effective volumetric water content, m3/m3ߠ

         ݄ is the pressure head, m; 

 ;௥ is the residual water content, m3/m3ߠ

ܪ ൌ ݄ ൅ Ԧ݃஻ ·  ;Ԧ is total hydraulic head, mݔ

 ;Ԧ is the point coordinate vector in the (x,y,z)ݔ

Ԧ݃஻ ൌ െ Ԧ݃/| Ԧ݃| is the normalized anti-gravity vector (upwards);  

ሺ݄ሻܭ ൌ ቎
௫௫ሺ݄ሻܭ 0 0

0 ௬௬ሺ݄ሻܭ 0
0 0 ௭௭ሺ݄ሻܭ

቏ is hydraulic conductivity tensor, m/s. 

   Note that the hydraulic conductivity tensor is expressed here in the principal system of 

coordinates. It is assumed that the axes of the computational domain ሺݔ, ,ݕ  ሻ coincide withݖ

the principal system of the permeability tensor. That is, the matrix ܭሺ݄ሻis assumed diagonal 

in this work. Nevertheless, it is worth noted that our model allows for the conductivity-

pressure relation ܭሺ݄ሻ to be nonlinearly anisotropic. 
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   Note ܭሺ݄ሻ  and ߠሺ݄ሻ  are respectively hydraulic conductivity function and water content 

function for the unsaturated media. For the unsaturated simulation, the parameter models of 

the water content ( )hθ  and the hydraulic conductivity ( )hK  are very important. Examples of 

models that have been often used in the literature are the Brooks and Corey, Brutsaert, 

Campbell, Van Genuchten / Mualem, and the Exponential model. These models have been 

often used for hydrological applications in the unsaturated zone, and the Van 

Genuchten / Mualem, and the Exponential model are most popular. For more details and a 

literature review, see [1] (Trégarot (2000) [17], Chapter 2). In this thesis, we use two different 

models:  

• Van Genuchten / Mualem model  

• Exponential model for both the ( )hθ  and the ( )hK  curve.  

1.3.1 Van Genuchten / Mualem model of K(h) and θ(h) 
    In the unsaturated zone of a porous medium, the model proposed by Van Genuchten 

(1980)[84] for the water content-pressure relation, ߠሺ݄ሻ, is:  

ܵሺ݄ሻ ൌ ఏሺ௛ሻିఏೝ
ఏೞିఏೝ

ൌ ቂ ଵ
ଵାሺିఈ௛ሻ೙ቃ

௠
  (1-9) 

where,  

 ;௦ is the saturated water content, m3/m3ߠ

 ;௥ is the residual water content, m3/m3ߠ 

m, n are the dimensionless exponents of the VGN model. 

   The functional model of Mualem (1976) [4] relates the hydraulic conductivity function  

 ሺ݄ሻ is the Van Genuchten curveߠ  ሺ݄ሻ function via a functional (integral). Whenߠ ሺ݄ሻ to theܭ

of equation (1-9), the resulting ܭሺ݄ሻ is of the form:  

ோሺ݄ሻܭ ൌ ௄ሺ௛ሻି௄ೝ
௄ೞି௄ೝ

ൌ ଵ
ሺଵାሺିఈ௛ሻ೙ሻష೘/మ ቀ1 െ ቂ1 െ ଵ

ሺଵାሺିఈ௛ሻ೙ሻቃ
௠

ቁ
ଶ
   (1-10) 

where, 

 ;௦ is the saturated hydraulic conductivity, m/sܭ

 ;௥ is the residual hydraulic conductivity, m/sܭ 

݉ ൌ 1 െ 1/݊  (Mualem model). 

1.3.2 Exponential model of θ(h) and K(h) 
    In the exponential model, water content function ߠሺ݄ሻ is defined: 
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ఏሺ௛ሻିఏೝ
ఏೞିఏೝ

ൌ ݁ఉሺ௛ି௛್ሻ  if ݄ ൑ ݄௕ (1-11)  

ఏሺ௛ሻିఏೝ
ఏೞିఏೝ

ൌ 1              if ݄ ൐ ݄௕ 

    And the hydraulic conductivity function ܭሺ݄ሻ for the unsaturated zone is: 

 
௄ሺ௛ሻି௄ೝ

௄ೞି௄ೝ
ൌ ݁ఈሺ௛ି௛್ሻ            if ݄ ൑ ݄௕ (1-12) 

 
௄ሺ௛ሻି௄ೝ

௄ೞି௄ೝ
ൌ 1   if ݄ ൐ ݄௕ 

where, ݄௕is the bubbling pressure head, m; 

 .is the capillary parameter, m-1 ߚ

1.3.3 Capacity function C(h)  
    The capillary capacity of the soil is defined as the slope of the relation ߠሺ݄ሻ: 

ሺ݄ሻܥ ൌ ௗఏሺ௛ሻ
ௗ௛

   (1-13) 

Let ܵ௘ ൌ ఏሺ௛ሻିఏೝ
ఏೞିఏೝ

 , then ܥሺ݄ሻ can also be written like: 

ሺ݄ሻܥ ൌ ௘௦ߠ
ௗௌ೐
ௗ௛

 and ܥሺܵ௘ሻ ൌ  ൫݄ሺܵ௘ሻ൯ (1-14)ܥ

where, ߠ௘௦ is the effective saturated water content and ߠ௘௦ ൌ ௦ߠ െ  .௥ߠ

   The capillary capacity of the soil represents the variation of water content per unit change in 

pressure, and it is a characteristic phenomenon of storage and release of water in the soil. 

   For the VGM model, ܥሺ݄ሻ is obtained as follows: 

ሺ݄ሻܥ ൌ
௛ሻ݊െ1ߙሺെݏ݁ߠߙ݊݉

ሾ1൅ሺെߙ௛ሻ݊ሿ݉൅1    (1-15) 

or  
ሺܵ݁ሻܥ  ൌ ݁ܵݏ݁ߠߙ݊݉

1൅1/݉ሺܵ݁
െ1/݉ െ 1ሻ1െ1/݊  (1-16) 

   For the exponential model, ܥሺ݄ሻ is obtained as follows: 

ሺ݄ሻܥ ൌ  ሺ݄െ݄ܾሻ  (1-17)ߚ݁ݏ݁ߠߚ

or  

ሺܵ݁ሻܥ ൌ  (18-1)  ݁ܵݏ݁ߠߚ

1.3.4 Diffusion function D(h)  
   The hydraulic diffusivity D (m2/ s) is introduced by Childs and Collis-George (1950) [39], 

defined by: 
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ሻߠሺܦ ൌ ሻߠሺܭ డ௛ሺఏሻ
డఏ

ൌ ௄ሺఏሻ
஼ሺఏሻ  (1-19) 

or  

ሺ݄ሻܦ ൌ ௄ሺ௛ሻ
஼ሺ௛ሻ  (1-20) 

   For the VGM model, the hydraulic diffusivity ܦሺܵ௘ሻ is obtained as follows: 

ሺܵ௘ሻܦ ൌ ሺଵି௠ሻ௄ೞ
ఈ௠ఏ೐ೞ

ܵ௘
଴.ହିଵ/௠ ቂ൫1 െ ܵ௘

ଵ/௠൯
ି௠

൅ ൫1 െ ܵ௘
ଵ/௠൯

௠
െ 2ቃ  (1-21) 

   For the exponential model, the hydraulic diffusivity ܦሺܵ௘ሻ is obtained as follows: 

ሺܵ௘ሻܦ ൌ ௄ೞ
ఉఏ೐ೞ

ܵ௘
ሺఈିఉሻ/ఉ  (1-22) 

or  

ሺܵ௘ሻܦ ൌ ଴ܵ௘ܦ
ሺఈିఉሻ/ఉ   (1-23) 

Where,  ܦ଴ ൌ ௄ೞ
ఉఏ೐ೞ

 

If given ߚ ൌ ሺܵ௘ሻܦ , 3/ߙ ൌ ଴ܵ௘ܦ
ଶ, it means that the capillary effect diffuses parabolicaly in 

an unsaturated zone. 

1.3.5 Interpretation of the parameters (α) in the exponential model  
  In the exponential model, ߙ is the slope of log-conductivity versus pressure, which has a 

physical meaning, related to pore size distribution: 

ߙ ൌ డ௟௡௄
డ௛

 , if ݄ ൑ ݄௕ (1-24) 

   As a consequence, the exponential conductivity model satisfies several properties 

(REPORT, Ababou (1991) [10], chapter 4): 

ܷሺ݄ሻ ൌ ଵ
ఈ

 ሺ݄ሻ  (1-25)ܭ

where, ܷሺ݄ሻ is Kirchhoff Transform and ܷሺ݄ሻ ൌ ׬ ሺ݄ᇱሻ௛ܭ
ିஶ ݄݀ᇱ 

ߙ ൌ െ ௏ሬሬԦ·׏ሬሬԦ௭

஽ห׏ሬሬԦ௭ห
మ  (1-26) 

where, ሬܸԦ represents the velocity of moisture disturbances,  ሬܸԦ ൌ െ డ௄
డఏ

· and ሬܸԦ௭ ݖሬሬԦ׏ ൌ ሺ0,0,1ሻ if 

the chosen coordinate system coincides with the natural system (x,y,z, with z vertical 

upwards). Equation (1-26) shows ߙ  indicates the magnitude of gravity-driven advection 

relative to diffusion. Advection can also be characterized by a dimensionless Peclet number (a 

vector), ሬܲԦ݁ ൌ ௏ሬሬԦ௅
஽

ൌ െ׏ܮߙሬሬԦݖ, where L is a characteristic length scale. 
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   From the equation (1-26), it can be seen that the moisture diffusion coefficient D is 

proportional to “Velocity” times a length scale equal to the inverse of ߙ. By analogy with 

dispersive transport, this suggests that: 

஼஺௉ߣ ൌ ଵ
ఈ
  (1-27) 

 ஼஺௉ is a capillary dispersivity length scale. Intuitively, it is the length scale of dispersion ofߣ

moisture around a moving moisture disturbance traveling at velocity ሬܸԦ . For alternative 

interpretation of ߣ஼஺௉, see White and Sully (1987, 1988) [45] [46]. 

   In addition, the ‘m’ and ‘n’ parameters are dimensionless exponents or shape factors, which 

are related to the pore size distribution (Thèse, Trégarot 2000 [17], Chapter 2; REPORT, 

Ababou (1991) [10], chapter 4). 

1.3.6 Interpretation of the parameters (α) in the VGM model  
   From the equation (1-9), water content ߠሺ݄ሻ, and equation (1-10), hydraulic conductivity 

ሺ݄ሻܭ , we see that the characteristic hydrodynamic parameters of the unsaturated porous 

medium are: 

• α [m-1]  

• n [dimensionless] 

  ௥ [m3/m3]ߠ ,௦ߠ •

 ௥ [m/s]ܭ ,௦ܭ •

   All these parameters will have an influence on numerical model results – but some 

parameters more than others. Here is a brief physical interpretation of these parameters.  

   The α can be interpreted as an inverse capillary length scale (mean capillary length): 

஼஺௉ߣ  ൌ  .ଵ [m]ିߙ

   The curve of the function ܥሺ݄ሻ  (equation (1-15)) of VGM model exhibits a maximum ܥ௠௔௫ 

for a pressure head ݄௠௔௫ ് 0 , where the curve of ܵ௘ሺ݄ሻ   marks a inflection point 

(ܵ௘ሺ݄௠௔௫ሻ ൌ ܵ௘ ௠௔௫). Therefore, we have: 

݄௠௔௫ ൌ െ ଵ
ఈ

ቀ1 െ ଵ
௡

ቁ
ଵ ௡⁄

  (1-28) 

௠௔௫ܥ ൌ ௘௦ߠ݊݉ߙ
ሺ௠ሻ೘

ሺ௠ାଵሻ೘శభ  (1-29) 

ܵ௘ ௠௔௫ ൌ ቀ ଵ
௠ାଵ

ቁ
௠

  (1-30) 

with ݉ ൌ 1 െ 1/݊ (Mualem) 



Chapter 1 Governing equations and constitutive laws for porous media 

25 
 

   In the equation (1-28) of ݄௠௔௫ function, ݊ ՜ ∞, ݄௠௔௫ ൌ െ ଵ
ఈ

ൌ െߣ஼஺௉. 

1.4 Partially saturated macro-porous media (3D Richards) 
   The macro porous media is an extremely course media. The effective water content model 

 ௘ሺ݄ሻ  of the ideal macro porous media is the step function as seen in Fig. 1-1. The hydraulicߠ

conductivity model ܭሺ݄ሻ  is defined in the same way with the model ߠ௘ሺ݄ሻ, shown in Fig. 1-2 

(Thèse, Trégarot 2000 [17]). 

  
Fig. 1-1 Effective water content model 
( )e hθ  of the macro porous media 

Fig. 1-2 Hydraulic conductivity model ( )K h  
of the macro porous media 

   The Richards equation with the macro-porous media parameters of ߠ௘ሺ݄ሻ and ܭሺ݄ሻ can be 

used to simulate the flow in the macro-porous media. 
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Chapter 2: Numerical procedure 

2.1 General presentation of BigFlow (2D/3D finite volume code) 

   We use the numerical code BigFlow (Ababou and Bagtzoglou 1993 [74]; Ababou 2008 

[73]) to investigate the highly transient flow problems described previously. Vertically 

hydrostatic plane flow is modelled with the “2D” plane flow model of BigFlow (Ababou and 

Al-Bitar 2007 [75]). On the other hand, variably saturated flow is handled with the 3D model 

of BigFlow, taking into account vertical velocities as well as unsaturated capillary effects (the 

3D model is also used to simulate vertical cross-sections as a special case).  

   The Bigflow code is based on the implicit finite volume, with sparse Preconditioned 

Conjugate Gradient matrix solver, and modified Picard iterations for nonlinear problem. The 

code was developed for high resolution simulation of 3D groundwater and unsaturated flow in 

heterogeneous media, and was tested for high-performance computations. 

   The equation model being solved is a generalized Darcy-type equation, with a mixed 

formulation of mass conservation, capable of simulating various types of flows within the 

same domain. Bigflow’s generic equation, for 3D as well as 2D plane flow, is of the form: 

డΘሺ௛,௫Ԧሻ
డ௧

ൌ െ׏ሬሬԦ ·  Ԧ (2-1)ݍ

Ԧݍ ൌ െܭി൫݄, ,ܪሬԦ׏  (2-2)  ܪሬԦ׏Ԧ൯ݔ

ܪ ൌ ݄ ൅ Ԧ݃ሺݔԦሻ ·  Ԧ  (2-3)ݔ

where only the first equation is actually solved, once the second and third equation have been 

inserted. The first equation expresses mass conservation in a partially saturated medium with 

known water retention or storage law Θሺ݄ሻ; the second question is generalized nonlinear flux-

gradient head loss law with tensorial hydraulic conductivity/transmisivity “K”; and the third 

equation is the relation between total head or elevation (H) and pressure head or water depth 

(h) via a normalized gravitational vector (g). 
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Fig. 2-2  Schematic of the time-varying water 
level ( )0 , ,H x y t boundary condition in time 
and space for the Boussinesq model 

Fig. 2-3  Schematic of the time-varying 
pressure head 0( , , )h x z t  boundary 
condition in time and space for the 
Richards model 

   2.3.2 Compilation of executable file for the time-varying BC’s problem 
   In Bigflow, each problem has a model, for instance, the plane flow 2D Boussinesq model, 

the partially saturated flow 3D Richards model. Furthermore, according to the different 

parameter model, each model has different sub-model, such as exponential sub-model and 

VGN sub-model for the 3D Richards model. As a result, the running of each sub-model needs 

an executable file (Bftest.exe) and at the same time, the compilation of the executable file for 

each sub-model needs a common file Combig and five source files: mainflow.f , ftime.f, 

fbqvt_chezy.f, fcond_*.f and ftheta_*.f.   

   Note that the mainflow.f is the main programme of Bigflow, ftime.f originally programmed 

by G. Tregarot is the file especially to treat the time-varying boundary condition, 

fbqvt_chezy.f has been programmed by G. Tregarot  to calculate the transmissivity  of the 

isotropic Boussinesq equation and St Venant equation, and fcond_*.f and ftheta_*.f are two 

parameter model files for the hydraulic conductivity function ܭሺ݄ሻ and the water content 

function ߠሺ݄ሻ. 

   In Version Bigflow2.0 (07-04-2007), the time-varying boundary condition which can be 

expressed as a formula, can be directly programmed in the ftime.f for two types of boundary 

conditions: time-varying water level (Boussinesq model) and time-varying pressure head 

(Richards model). Its advantage is that it doesn’t need a extra data file for the time-varying 

boundary condition, while its disadvantage is that for any modification of the time-varying 

boundary condition, it needs to recompile the executable file, and the most inconvenient is 
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that  it can not treat the random time-varying  boundary condition such as the measured data 

from the experiments. 

  In the Version Bigflow2.0 (09-2007), A. MALLET modified the mainflow.f and ftime.f  in 

order to treat the random time-varying boundary condition. Then this version of Bigflow can 

treat the time-varying boundary condition by adding the extra data files such as BoundA1.txt , 

and BoundB1.txt outside of the executable file. However, the modification of A. MALLET 

can just treat the random time-varying water level boundary condition for the Boussinesq 

model and saturated flow 3D Richards model. 

   In order to treat the random time-varying pressure head boundary condition for the partially 

saturated 3D Richards model, R. Ababou, Y. Wang et K. Alastal did the second modification 

in the mainflow4.3.f from the April through September of 2009. At this time, the parameter of 

the time dependence  parameter (LTRA(j),LTRB(j),j=1,2,3) in the INPUT1 (Trégarot 

2000[17]) is set to 2 for the random time-varying pressure head boundary condition of the 

variably saturated 3D Richards model, instead of 1 for the random time-varying water level 

boundary condition of the 2D Boussinesq model, see Table 2-1. In addition, if 2 is chosen for 

the parameter of the time dependence, this version of Bigflow4.3 (25 September 2009) is 

forced to treat the time-varying linear distribution of the pressure head in the z direction 

without consideration of the other types of time-varying boundary condition such as the 

spatial flux distribution. 

Table 2-1 Time-varying boundary condition in the INPUT1 of Bigflow  
2D Plane flow Boussinesq model 3D partially saturated flow Richards model 
TYPE OF B.Cs: 
LTYPA(j),LTYPB(j),j=1,2,3:  
 1 2 
 2 2 
 2 2 
 VALUE OF B.Cs:(FIXAj,FIXBj)j=1,2,3:  
 2.47 0.0 
 0.0 0.0 
 0.0 0.0 
TIME DEPENDANCE OF B.Cs: 
LTRA(j),LTRB(j),j=1,2,3:  
 1 0 
 0 0 
 0 0 

TYPE OF B.Cs: 
LTYPA(j),LTYPB(j),j=1,2,3:  
 11 2 
 2   2 
 2   2 
 VALUE OF B.Cs:(FIXAj,FIXBj)j=1,2,3:  
 2.47 0.0 
 0.0 0.0 
 0.0 0.0 
TIME DEPENDANCE OF B.Cs: 
LTRA(j),LTRB(j),j=1,2,3:  
 2 0 
 0 0 
 0 0 

 
   At the same time, it is worth noted that in Bigflow4.3, for the partially saturated flow 

Richards model, in the outside data file of BoundAi.txt or BoundBi.txt, it is still given the 

water level condition ܪሺݔ଴,  .ሻ, as in Version Bigflow2.0 (09-2007)ݐ
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   To compile the executable file for each model of Bigflow, it needs to follow the steps 

written in the ‘README FILE ReadMe_BF2005FORTRAN_Compiling.rtf’ by R.Ababou and 

A.Al-Bitar (6 Feb.2006), listed in the appendix AC2-1. The settings of the project options in 

the ABSOFT 9.0 Developer Tool Interface play very important role in the compilation of the 

executable file, and especially the CPU of the computer. Accordingly, it’s better to make the 

compilation in a fixed computer, instead of a mobile computer. The model types and the 

needed source files for the compilation of the corresponding executable file are listed in 

Table 2-2. 

Table 2-2 Model types and  corresponding source files for the executable files of Bigflow  
Model & 
Corresponding 
executable file 

2D Boussinesq 
unconfined plane flow 

3D Richards 
exponential parameters 

3DRichards VGN 
parameters 

BF_2D_unconf.exe BF_3D_U_exp.exe BF_3D_U_vgn.exe 
Source files 
for generating 
the executable 
files 

mainflow_v4-3.f, ftime_v3-0.f, Combig 

fbqvt_chezy.f fbqvt_chezy.f fbqvt_chezy.f 

fcond_bq_unconf.f fcond_exp5 fcond_vgn5 

ftheta_bq_unconf.f  ftheta_exp5 ftheta_vgn5 

   2.3.3 Data files for the time-varying BC’s problem 
   For the time-varying BC’s problem, whether the plane flow Boussinesq model or partially 

saturated flow Richards model, both need the water level fluctuation data file as the entry 

boundary condition. According to the time-varying boundary, the data files are named as 

BoundAi.txt and BoundBi.txtሺ݅ ൌ 1,2, 3ሻ. The format of the data file is given by [t H] two 

columns, as listed in the following example: 

t   H 

0.0000000e+000 2.0200000e-001 
1.0000000e-002 2.0190211e-001 
2.0000000e-002 2.0161803e-001 
3.0000000e-002 2.0117557e-001 
4.0000000e-002 2.0061803e-001 
5.0000000e-002 2.0000000e-001 
6.0000000e-002 1.9938197e-001 
7.0000000e-002 1.9882443e-001 
8.0000000e-002 1.9838197e-001 

2.4 Debugging and validation tests for the unsaturated flow 

   For unsaturated flow modelling, the shapes and parameters of the water content ( )hθ  and 

the hydraulic conductivity ( )hK  curves are very important. In this section, we also use these 

curves to distinguish between:  
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• actual porous media (such as sand or any other “microporous” medium), and  

• very coarse media, or even open cavities and free water bodies (“macroporous 

media”).  

2.4.1 Validation tests of macro-porous media: the falling head permeameter 
The falling head permeameter is used here as a first test and validation of the concept of 

“macroporous medium”. Indeed, the falling head permeameter is a vertical column made up 

of two parts (cf. Fig. 2-4):  

• The upper part is a cylindrical tube containing free falling water (this part is modelled 

as a “macroporous medium with 100% porosity and very large permeability…) 

• The bottom part is a cylindrical tube with same diameter, containing the porous 

medium (such as sand) 

 
Fig. 2-4  Simplified schema of the permeameter made up of the macro/micro porous 
media  

   In fact, as shown in Fig. 2-5, the water in the permeameter flows from the reservoir section 

s to a sample section S with vertical length L. We identify the level of liquid in the tank by the 

side h2 and hence we obtain a curve of water depth h in terms of observed time that we use to 

determine the hydraulic conductivity.  
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Fig. 2-5  Schema of  the variable head permeameter 

   The analytical expression of the hydraulic conductivity is obtained from the following 

assumptions: 

• Vertical monodimensional water flow  

• Darcy flow  

• Instantaneous draining / refilling of the column  

• Incompressible porous media 

   Considering the permeameter as a column containing two layers: macro /micro porous 

media (as shown in Fig. 2-4), we simulate this problem with two unsaturated Richards model 

(Exponential and VGM models for the water content curve ߠሺ݄ሻ  and the hydraulic 

conductivity curve ܭሺ݄ሻ) of BIGFLOW, and we will study the behavior of this column after a 

sudden discharge of water. We are interested in analyzing the variation of flow and especially,  

the hydraulic head over time that help us determine the saturated hydraulic conductivity of the 

micro porous medium and compare it with theoretical value (put directly in the numerical 

model). 

2.4.4.1 Analytical solution of the saturated hydraulic conductivity of the micro porous 
media 
   From Fig. 2-5, by applying Darcy's Law in the section of length L and surface S, we obtain 

that: 

ݍ  ൌ ௦ܭ
௛
௅

ܵ  (2-4) 

Where,  

 ;௦ is the saturated hydraulic conductivity (m/s)ܭ

h is the water depth (m). 

   The law of conservation of mass gives: 
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ݐ݀ ݍ ൌ െ(5-2)  ݄݀ ݏ 

   Substituting the equation  (2-4)  in  (2-5), we have: 
௄ೞ
௅

ݐ݀ ܵ ൌ െݏ ௗ௛
௛

 (2-6) 

   where, ݏ  is the reservoir section. By integrating (2-6) we obtain the expression of the 

hydraulic conductivity as follows: 

௦ܭ ൌ ௦
ௌ

כ ௅
ሺ௧మି௧భሻ

כ ሺ௛భ݊ܮ
௛మ

ሻ   (2-7) 

2.4.4.2 Numerical simulation conditions 

 Simulation domain 

 ;௭=1mܮ ,௬=2.0mܮ ,௫=2mܮ

 ;0.01m=ݖܦ ,1=ݕܦ ,1m=ݔܦ

The schema of the simulation domain is shown in Fig. 2-4 

 Boundary condition 
The boundary conditions on six faces of the calculated column are shown in Table 2-3. 

Table 2-3 Boundary conditions on six faces of the calculated column 

Faces  Faces « 1 » ⊥ X1 Faces « 2 » ⊥ X2 Faces « 3 » ⊥ X3 

Faces « A » (Xj=0) Flux ⊥ nul : q1=0 Flux ⊥ nul : q2=0 Unform head:     h = 0m 

Faces « B » 
(Xj=Lj) 

Flux ⊥ nul : q1=0 Flux ⊥ nul : q2=0 Flux ⊥ nul : q3=0 

 Initial condition 

The linear distributed initial pressure head in the column of two porous media: 

݄ሺݔ, ,ݕ  ሻ=0.95 –z (m)ݖ

 Hydraulic properties and numerical parameters of the micro and macro 

porous media 

The main hydraulic properties and numerical model parameters (Exponential model 

and VGM model) of the two porous media are listed in Table 2-4. 
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Table 2-4 Hydraulic properties and numerical parameters of the micro and macro porous media 
Parameters Micro porous medium Macro porous medium 

Saturated hydraulic conductivity ܭ௦ 10e-3 m/s 1 m/s 

Saturated water content ߠ௦ 0.3 m3 /m3 1 m3 /m3 

 
Exponential model for 

k(h), θ(h) 

 m-1 27 m-1 9 ߙ

 m-1 9 m-1 3 ߚ

஼௔௣ߣ ൌ
1
 m 0.037 m 0.111 ߙ

VGM model for k(h), 
θ(h) 

 m-1 27 m-1 9 ߙ
n 2.0 2.0 

஼௔௣ߣ ൌ
1
 m 0.037 m 0.111 ߙ

 Duration of the simulation and numerical parameters 

    Two numerical simulations both simulate the free water falling process of 2000s.  

The numerical calculation time parameters and the numerical criteria are listed  in Table 2-5.   

Table 2-5 Numerical parameters (INPUT1) for the calculation of  time step, non-
linear/outer (Picard) and linear/inner  iterations

Time step 

Intial time step DTIN=0.0001s 

Minimum time step DTMIN=0.0001s 

Maximum time step DTMAX=0.01 

Time step multifier DTMUL=1.2 
No-linear 
iterations 
(Picard) 

Convergence criterion of pressure head ENLH3=1.0E-4 

Maximum number of no-linear iteration INLMAX=15 

Linear 
iterations 

Convergence criterion of pressure head ENORM3=1.0E-6 

Maximum number of linear iterations ITEND=100 

Method  to caculate the middle nodal conductivities Geometric mean 

2.4.4.2 Numerical behaviour of Bigflow during the simulation  

 Exponential model 

The standarlized linear and nonlinear iteration process curves of the pressure head are 

shown in Fig. 2-6 and Fig. 2-7. 



Chapter 2 Numerical procedure 

35 
 

Fig. 2-6 Standardized linear iteration process 
curve of the pressure head in log10  

Fig. 2-7 Standardized nonlinear iteration 
process curve of the pressure head in log10 

Although there is a bigger beginning value about 1.0, the  linear and noliear errors decrease 

with respect to the iteration number and at last each of two satisfies its own convergence 

criteria . 

Fig. 2-8 shows that the curve of the evolution of ܳெ௔௦௦ almost superposes on the curve of 

the evolution of ܳ஻௢௨௡ௗf, except that there is a certain fluctuation of the ܳெ௔௦௦ in the first part 

of the simulation. In contrast, the ஻ܸ௢௨௡ௗ curve surperposes totally on ெܸ௔௦௦, as shown in Fig. 

2-9. In addition, the turning point in the  ܳ஻௢௨௡ௗ  curve indicates that the transition of the 

water surface from the macro porous medium to the micro porous medium. 

Fig. 2-8 Evolution of   and  
(local mass balance) 

Fig. 2-9 Evolution of   and  
(global volume balance) 

 Van Genuchten / Mualem model  

The numercial simulation with VGM model has the similar standarlized linear and 

nonlinear iteration process curves of the pressure head to Exponential model, as shown in Fig. 

2-10 and Fig. 2-11. 
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Fig. 2-10 Standarlized linear iteration process 
curve of the pressure head in log10  

Fig. 2-11 Standarlized nonlinear iteration 
process curve of the pressure head in log10 

Similar to Expenential model, Fig. 2-12 also indicates that the ܳெ௔௦௦ curve has the same 

trend as the ஻ܸ௢௨௡ௗ curve. Here it is noted that the VGM parameter ‘n’ has great influence on 

the nonlinear iteration convergence. In addition, the ெܸ௔௦௦ curve superpose almost on the 

஻ܸ௢௨௡ௗ  curve, as shown in Fig. 2-13. 

Fig. 2-12 Evolution of   and  
(local mass balance) 

Fig. 2-13 Evolution of   and  
(global volume balance) 

2.4.4.3 Calculation of the saturated hydraulic conductivity of the micro porous medium  

   The above expression (2-7) of the theoretical hydraulic conductivity indicates that the water 

depth curve h(t) above the micro porous medium column, or more precisely,  the positive 

pressure head h(t) curve at the boundary between the macro and micro porous media is the 

exponential function with the form exp ቀെ ௧
ఛ
ቁ, and ߬ ൌ െ ௅כఝ

௄ೞ
. 

Where,  

 ;௦ is the saturated hydraulic conductivity of the micro porous column (m/s)ܭ

 L is the vertical length of the micro porous medium column (m); 

 ߮ is the saturated water content ߠ௦௔௧(m3/m3) of the micro porous medium column. 
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Then, we can write the logarithmic expression of h(t) in the following form: 

ሺ݄ሻ݊ܮ             ൌ ݐܽ ൅ ܾ            avec  ܽ ൌ െ ଵ
ఛ
    (2-8) 

   As a result, the saturated hydraulic conductivity of the micro porous column can be obtained  

by doing the linear curve fitting on the logarithmic expression of the calculated pressure head 

h(t) at the boundary between the macro and micro porous media with Exponential model and 

VGM model. 

 Exponential model 

   Fig. 2-14 shows the vertical profiles of the calculated pressure head for different time at 

t=0s, 90s, 180s, 280s, 500s, 1000s, and 2000s with Exponential model. 

 
Fig. 2-14  Vertical  profiles of the calculated pressure head for different time (t=0s, 90s, 
180s, 280s, 500s, 1000s, and 2000s) with Exponential model 

   From this figure, it can be seen, on the one hand, the evolution of the pressure head of the 

column, and on the another head, the evolution of the water table (h=0) during the 

desaturation process. Thus, from this figure, it can be also seen that when t≈280s, the water 

table descends at the boundary between the macro and micro porous media from the macro 

porous medium. 

   In addition, Fig. 2-15 shows the evolution of the pressure head h(t) at the boundary 

(z=0.5m) between the macro porous medium (water) and the micro porous medium (sand). 
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Fig. 2-15  Evolution of the pressure head h(t) at the boundary (z=0.5m) between the macro 
(water) and micro (sand) porous media at t=0-2000s 

   From this figure, it can be seen that the pressure head decreases progressively and become 

zero at about t=280s, which comfirms the result shown in Fig. 2-14.  Therefore, the time 

t=280s can be regarded as a transition time from the unsaturated to saturated porous media, or 

more precisely,  it is the maximum time for which the regression equations can be applied to 

to determine the hydraulic conductivity ܭ௦ for the micro porous medium. 

   Considering the influence of the boundary transition from unsaturated to saturated porous 

media, the pressure head curve h(t) from t=0-180s is just taken to do the linear curve fitting 

and the result is shown in Fig. 2-16. 

Fig. 2-16  Ln(h) (t, z=0.5m) and the corresponding linear fitting curve at t=0-180s 

   From this figure, we obtain that, in the equation (2-8), a=-0.0072587. Therefore, we obtain 

that: 

௦ܭ ൌ  ݏ/0.0011݉

This means that the calculated saturated hydraulic conductivity (adjusted numerically) with 

Exponential model is very approximate to the theoretical value 0.001m/s (put directly in the 

numerical model). As a result, the coupling Exponential model between micro and macro 

porous media has been effectively validated by the falling head permeameter test. 
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 Van Genuchten / Mualem model  

   Fig. 2-17 illustrates the vertical profiles of the calculated pressure head for different time at 

t=0s, 90s, 180s, 260s, 500s, 1000s, and 2000s with VGM model. 

 
Fig. 2-17  Vertical  profiles of the calculated pressure head for different time (t=0s, 90s, 
180s, 260s, 500s, 1000s, and 2000s) with VGM model 

   From this figure, we know that it needs about 260s for the water table to descend to the 

boundary between the macro and micro porous media from the macro porous medium. This 

means that the calculated water table with VGM model descends more quickly than the 

calculated one with Exponential model. 

   Similarily,  the evolution curve of the pressure head h(t) at the boundary (z=0.5m) between 

the macro (water) and micro (sand) porous media (Fig. 2-18) further confirm the result shown 

in the vertical profile of the calculated pressure head (Fig. 2-17): the transition time from the 

unsaturated to saturated porous media is about 260s which  is also the maximum time to be 

used to do linear curve fitting  to determine the hydraulic conductivity ܭ௦ for the micro porous 

medium.  
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Fig. 2-18 Evolution of the pressure head h(t) at the boundary (z=0.5m) between the macro 
(water) and micro (sand) porous media at t=0-2000s 

   The same time of the pressure head curve h(t) from t=0-180s as the result with Exponential 

model is taken to do the linear curve fitting and the result is shown in Fig. 2-19. 

Fig. 2-19  Ln(h) (t, z=0.5m) and the corresponding linear fitting curve at t=0-180s 

   From this figure, we also obtain that, in equation (2-8), a=-0.0077754. Finally, we obtain 

that: 

௦ܭ ൌ  ݏ/0.0012݉

This also means that the calculated saturated hydraulic conductivity with VGM model is very 

approximate to the theoretical value, even though it is a little bigger than the one with 

Exponential model. Therefore, the coupling VGM model between micro and macro porous 

media has been also effectively validated by the falling head permeameter test. 
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Chapter 3: Wetting and discharge problems (non-

oscillatory) 

3.1 Introduction 
   Wetting and discharge problems exist everywhere in the nature and they are two good 

examples to investigate the capillary effect of the porous media. The capillary effect will be 

well understood with comparing the results with different methods: experiment, numerical 

simulations and analytical solution, which will be helpful to investigate the most complete 

problem: oscillations in a large wave canal (Barcelona) with a sloping sandy beach. 

3.2 Wetting problem (variably saturated imbibition in a dry sand) 
  3.2.1 Introduction 

   In this section, a wetting experiment in a vertical sandbox is conducted in order to 

investigate the capillary effect, and at the same time, the numerical simulation of highly 

nonlinear unsaturated /partially saturated flow (3D Richards model) using a finite volume 

code Biglflow is done to model the wetting problem in a dry porous bank. In addition, the 

analytical solution with Boussinesq plane flow (Polubarinova) will be used to be compared 

with the experimental and numerical results. 

  3.2.2 Laboratory experiment 

   3.2.2.1 Physical properties of the fine sand 
   The diameter measured by sieve analysis of the sand varies from about 0.02 through 

0.32mm, and the weighted average diameter is 0.16mm, as seen in Fig. 3-1. 

Fig. 3-1  Sand size distribution curve  
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    The measured water content at saturation  ߠ௦  and saturated hydraulic conductivity ܭ௦ are 

respectively equal to 0.38m3/m3 and 2.0E-4m/s. 

   3.2.2.2 Experiment conditions and methodology 
      The experimental device is a thick vertical slab of sand (or sand tank) containing initially 

dry sand, which is suddenly connected at right to a fixed water level reservoir (3.7 cm high). 

This emulates the lateral imbibition process in a dry porous bank from an open water 

reservoir or a canal in vertical cross-section. The internal dimensions of the porous domain 

are: 16 cm high × 40 cm long for the vertical slice (as in the numerical model) and 20 cm 

thick in the third direction (orthogonal to mean flow).  

   The experimental results are shown (optically) as the evolution of the wetted zone seen via 

photographs taken at different times. The vertical profile of the wetted zone at T=14 minutes 

is shown in Fig. 3-2.  

 
Fig. 3-2 Sand box-imbibition in a dry river bank: 
imbibition profile at t=14minutes  

3.2.3 Analytical solution with Boussinesq plane flow (Polubarinova)  
   It is noted that the following section is inspired (or directly taken) from Tregarot’s thesis 

(Tregarot 2000 [17]).  

   For the wetting problem, Polubarinova-Kochina proposed an analytical solution giving the 

position ηሺݔ,  ሻ of the free surface in the bank. Using her solution, with our notation, weݐ

derive the expressions of the downstream position of the wetting front on the impermeable 

floor, ݔி ሺݐሻ  and the specific flow entering the interface channel / bank  ܳௌሺݐሻ. 

   In view of the wetting problem, the Boussinesq equation is rewritten as follows: 

߶௘
డఎ
డ௧

ൌ ௦ܭ
డ

డ௑
ቀߟ డఎ

డ௑
ቁ (3-1) 
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where, ߟ is the water depth. Here, since the porous medium constituting the bank is initially 

very dry and its instantaneous imbibition, we can assume that ߶௘, its effective porosity, is 

defined by ߶௘ ≈ ߠௌ െ  .ௗߠ

   To find an analytical solution of this equation, Polubarinova-Kochina makes, like for the 

equation of heat conduction, the following variable,  ߯ ൌ ௑
௔√௧

, where ܽ is a constant to be 

determined. This change of variables applied in the equation (3-1) gives us: 

ௗమఎమ

ௗఞమ ൅ థ೐௔మ

௄ೞ
߯ ௗఎ

ௗఞ
  (3-2) 

     Now let: 

u ൌ η/η଴, χ ൌ Xඥம౛
ଶඥK౩ηబ୲

  and  a ൌ 2ටK౩ηబ
ம౛

     

where, η଴ is the limit water depth at the entry of the bank. 

   Then the equation (3-2)  becomes : 

ௗమ௨మ

ௗఞమ ൅ 4߯ ௗ௨
ௗఞ

  (3-3) 

   Finally, we introduce the variable ߦ ൌ ߯√2 ൌ ௑ඥథ೐

ඥଶ௄ೞఎబ௧
 in the equation (3-3):  

ௗమ௨మ

ௗకమ ൅ ߦ2 ௗ௨
ௗక

ൌ 0  (3-4) 

   The expansion of the equation (3-4) can be written as: 

"ݑݑ ൅ ᇱଶݑ ൅ ᇱݑߦ ൌ 0  (3-5) 

   Taking ݑ ൌ 0 in equation (3-5), since ݑԢԢ ≠ ∞, we have: 

ᇱݑᇱሺݑ ൅ ሻߦ ൌ 0   

where, if uԢ ≠ 0, then ݑԢ ൌ െξ 

   Consider the point of intersection of the graph of u (ξ) with the x-axis. To the point where 

ξ ൌ ܿ , we have ݑ ൌ 0  and ݑԢ ൌ െξ ൌ െܿ . A series expansion of the difference ξ െ ܿ 

applied to the function ݑሺξሻ gives us: 

ሻߦሺݑ ൌ ሺܿሻݑ ൅
ሺߦ െ ܿሻ

1! ሺଵሻሺܿሻݑ ൅
ሺߦ െ ܿሻଶ

2! ሺଶሻሺܿሻݑ ൅
ሺߦ െ ܿሻଷ

3! ሺଷሻሺܿሻݑ

൅
ሺߦ െ ܿሻସ

4! ሺସሻሺܿሻݑ ൅
ሺߦ െ ܿሻହ

5! ሺହሻሺܿሻݑ ൅ 0ሺߦሻ଺ 

The equation (3-5) is differentiated as follows: 
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uuሺଶሻ ൅ ൫uሺଵሻ൯ଶ ൅ ξuሺଵሻ ൌ 0  

uuሺଷሻ ൅ 3uሺଵሻuሺଶሻ ൅ ξuሺଶሻ ൅ uሺଵሻ ൌ 0  

uuሺସሻ ൅ 4uሺଵሻuሺଷሻ ൅ ξuሺଷሻ ൅ 3൫uሺଶሻ൯ଶ ൅ 2uሺଶሻ ൌ 0  

uuሺହሻ ൅ 5uሺଵሻuሺସሻ ൅ ξuሺସሻ ൅ 10uሺଶሻuሺଷሻ ൅ 3uሺଷሻ ൌ 0  

uuሺ଺ሻ ൅ 6uሺଵሻuሺହሻ ൅ ξuሺହሻ ൅ 15uሺଶሻuሺସሻ ൅ 4uሺସሻ ൅ 10൫uሺଷሻ൯ଶ ൌ 0  

   Knowing that ݑሺܿሻ ൌ 0 and ݑԢሺܿሻ ൌ െܿ, we get the coefficients: 

uሺଶሻሺcሻ ൌ െ ଵ
ଶ
      uሺଷሻሺcሻ ൌ െ ଵ

ଵଶୡ
 

uሺସሻሺcሻ ൌ ൅ ଵ
ଶସୡమ    uሺହሻሺcሻ ൌ െ ଵଵ

଻ଶ଴ୡయ 

   The series expansion is then written at the fifth order: 

ሻߦሺݑ ൌ 

െܿ ൬ ௑ඥథ೐

ඥଶ௄ೞఎబ௧
െ ܿ൰ െ ଵ

ସ
൬ ௑ඥథ೐

ඥଶ௄ೞఎబ௧
െ ܿ൰

ଶ
െ ଵ

଻ଶ௖
൬ ௑ඥథ೐

ඥଶ௄ೞఎబ௧
െ ܿ൰

ଷ
൅ ଵ

ହ଻଺௖మ ൬ ௑ඥథ೐

ඥଶ௄ೞఎబ௧
െ ܿ൰

ସ
൅ 0ሺߦሻହ  

Or :  

ݑ ൌ ఎ
ఎబ

ൎ െܿ ൬ ௑ඥథ೐

ඥଶ௄ೞఎబ௧
െ ܿ൰ െ ଵ

ସ
൬ ௑ඥథ೐

ඥଶ௄ೞఎబ௧
െ ܿ൰

ଶ
െ ଵ

଻ଶ௖
൬ ௑ඥథ೐

ඥଶ௄ೞఎబ௧
െ ܿ൰

ଷ
൅ ଵ

ହ଻଺௖మ ൬ ௑ඥథ೐

ඥଶ௄ೞఎబ௧
െ ܿ൰

ସ
    (3-6) 

   The constant ܿ is obtained by making ξ ൌ 0 in the expansion equation. For example, the 5th 

order is taken: 

ሺ0ሻݑ ൌ 1 ൎ ܿଶ ቀ1 െ ଵ
ସ

൅ ଵ
଻ଶ

൅ ଵ
ହ଻଺

൅ ଵଵ
଼଺ସ଴଴

ቁ   

where, ܿ ൌ  1.142762 

   From the solution (3-6) found by Polubarinova-Kochina, we seek ݔி  position at the 

intersection of the wetting front with impermeable floor of the aquifer, for which ݑ ൌ η
ఎబ

ൌ 0: 

ܺி ൌ ܿටଶ௄ೞఎబ
థ೐

 (7-3)     ݐ√

   Finally, we can find the expression of the specific flow entering the interface channel / 

bank. Knowing that the flow is uniform across the interface (pseudo-horizontal and vertically 

equipotential water flow), according to Darcy's law, integrated over the interface: 

ܳ௦ ൌ ଴ߟ௦ܭ ቀௗఎ
ௗ௑

ቁ
௑ୀ଴

ൌ ଴ߟ௦ܭ
ଶ ቀௗ௨

ௗ௑
ቁ

௑ୀ଴
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ቀௗ௨
ௗ௑

ቁ ൌ ඥథ೐

ඥଶ௄ೞఎబ௧
ቈെܿ െ ଵ

ଶ
൬ ௑ඥథ೐

ඥଶ௄ೞఎబ௧
െ ܿ൰ െ ଵ

ଶସ௖
൬ ௑ඥథ೐

ඥଶ௄ೞఎబ௧
െ ܿ൰

ଶ
൅ ଵ

ଵସସ௖మ ൬ ௑ඥథ೐

ඥଶ௄ೞఎబ௧
െ ܿ൰

ଷ
቉  

൬
ݑ݀
݀ܺ൰

௑ୀ଴
ൌ

ඥ߶௘

ඥ2ܭ௦ߟ଴ݐ
൤െܿ ൅

1
2 ܿ െ

1
24 ܿ െ

1
144 ܿ൨ ൌ

െ79ܿ
144

ඥ߶௘

ඥ2ܭ௦ߟ଴

1
ݐ√

 

      It is then obtained the specific discharge of the outflow (m2/s):  

ܳ௦ ൌ ଻ଽ௖
ଵସସ

଴ට௄ೞఎబథ೐ߟ
ଶ

ଵ
√௧

    (3-8) 

     3.2.4 Numerical simulation and calibration of the wetting problem 

    3.2.4.1 Introduction 
   For the wetting problem in a dry sand box, the numerical simulation has the characteristics 

of the highly nonlinear unsaturated / partially saturated flow. The finite volume code Bigflow 

3D unsaturated model is used to simulate this problem. 

   In the unsaturated flow simulation, the Van Genuchten/ Mualem parameter model is chosen 

to calculate the hydraulic conductivity ܭሺ݄ሻ  and the water content ߠሺ݄ሻ. In order to calibrate 

the experiment results, a large number of numerical simulations have been done. In this 

section, the best numerical simulation will be introduced in detail and its results will be 

compared with the experimental result. In addition, its result will be compared with the ones 

of the other two numerical simulations with different ߙ  ܽ݊݀ ݊, for analyzing the influence of 

the two parameters (ߙ  and n) on the evolution of the wetting front on the impermeable floor, 

 .ሻݐி ሺݔ

3.2.4.2 Numerical simulations 
 Simulation domain 

Vertical 2D: Lx=0.40m; Lz=0.16m; 

                     dx=0.0005m; dz=0.0005m 

    As a result, there are up to ¼ million nodes in a 2D vertical cross-section (40cm×16cm) as 

shown in Fig. 3-2. 

 Boundary condition 

Left boundary, top boundary and bottom boundary are the same: Flux=0.0; 

Right boundary: h(L,t)=0.037-z (linear distribution head). 

 Initial condition 
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݄଴ ൌ െ1.35 െ  (linear distribution pressure head) ݖ

 It means that the initial sand is very dry, and the initial water content ߠூ௡ ൎ

0.00067 ݉ଷ ݉ଷ⁄  

 Physical properties  

   The saturated hydraulic conductivity ܭ௦  of the sand is taken as 2.0e-4m/s, which is obtained 

by the experiment; the saturated water content ߠ௦ is also taken to the measured value of 0.38 

m3/m3. On contrast, the residual hydraulic conductivity ܭ௥  is taken as 2.0e-7m/s, and the 

residual water content ߠ௥ is 0.0m3/m3.   

   For the Van Genuchten Mualem parameter model, ߙ  is taken as 4.6݉ିଵ  (the capillary 

length is about 21.74cm) and ݊ is taken as 5 (power of the parameter function); the water 

content function curve ߠሺ݄ሻ , the hydraulic conductivity function curve ܭሺ݄ሻ, the capillary 

diffusion function curve ܦሺ݄ሻ and the capillary capacity function curve ܥሺ݄ሻ are respectively 

shown in Fig. 3-3, Fig. 3-4, Fig. 3-5 and Fig. 3-6. 

Fig. 3-3  Water content curve ( )hθ  of the 

sand with 14.6mα −= and n=5.  

Fig. 3-4 Hydraulic conductivity curve K(h) 
of the sand with 14.6mα −= and n=5.  

 

Fig. 3-5 Capillary diffusion ( )D h  of the sand 

with 14.6mα −=  and n=5. 

Fig. 3-6 Capillary capacity ( )C h  of the sand 

with 14.6mα −=  and n=5. 
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 Duration of the simulation and numerical parameters 

    The numerical simulation models the imbibition process of 30 minutes .  

The numerical calculation time parameters and the numerical criteria are listed  in Table 3-1.   

Table 3-1 Numerical parameters (INPUT1) for the calculation of  time step, non-
linear/outer (Picard) and linear/inner  iterations

Time step 

Intial time step DTIN=0.02s 

Minimum time step DTMIN=0.02s 

Maximum time step DTMAX=1.0 

Time step multifier DTMUL=1.2 
No-linear 
iterations 
(Picard) 

Convergence criterion of pressure head ENLH3=1.0E-4 

Maximum number of no-linear iteration INLMAX=2 

Linear 
iterations 

Convergence criterion ENORM3=1.0E-6 

Maximum number of linear iterations ITEND=50 

Method  to caculate the middle nodal conductivities Arithmetic mean 

 Numerical behaviour of Bigflow during the simulation 

Although there are bigger beginning values about 1.0, the  linear and nolinear errors 

decrease with respect to the iteration number and at last each of two satisfies the convergence 

criteria , as shown in Fig. 3-7 and Fig. 3-8. 

Fig. 3-7 Standarlized linear iteration process 
curve of the pressure head in log10  

Fig. 3-8 Standarlized nonlinear iteration 
process curve of the pressure head in log10 

Fig. 3-9 shows that the curve of the evolution of ܳ஻௢௨௡ௗ almost superposes on the curve of 

the evolution of ܳெ௔௦௦, except that there is a small difference at the beginning and the end of 

the simulation. The similar situation occurs to  ஻ܸ௢௨௡ௗ and ெܸ௔௦௦, as shown in Fig. 3-10 . 
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Fig. 3-9 Evolution of BoundQ   and MassQ  
(local mass balance) 

Fig. 3-10 Evolution of BoundV   and MassV  
(global volume balance) 

3.2.4.3 Comparisons of the numerical and experimental results 

   In order to compare the two results, the numerically computed pressure head isovalues are 

superimposed on the photos of the imbibitions profile of the experiment. Furthermore the 

numerical flux field is also plotted on the photos of the experiment to understand the 

imbibitions procedure.  Comparison results indicate that, in spite of a small difference at the 

beginning (t<6minutes), the numerical imbibitions procedures agree very well with the 

experimental one. The difference at the beginning may be caused by the experiment 

operation. 

 
Fig. 3-11 The flux field at t=6 minutes. The green curve (h=-0.20m) corresponds to S=0.62, and 
it also corresponds to the isovalue 1 1/n

caph h mα −= = −  (chapter.4, R. Ababou, 1991 [10]).   
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Fig. 3-12 The flux field at t=15 minutes. The green curve (h=-0.20m) corresponds to S=0.62, and 
it also corresponds to the isovalue 1 1/n

caph h mα −= = − (chapter.4, R. Aababou, 1991 [10]).  

   The two instantaneous profiles of the comparisons at t=6minutes and t=15minutes are 

respectively shown in Fig. 3-11 and Fig. 3-12. In the figures, the green curve (h=-0.20m) 

corresponds to S=0.62 (degree of saturation), and it also corresponds to the isovalue ݄ ൌ

݄௖௔௣ ൌ െିߙଵ݉ଵ ௡⁄  (chapter.4, R. Ababou, 1991); the yellow curve (h=-0.15m) corresponds to 

S=0.90 and blue curve is the free surface. In addition, it is noted that the initial pressure 

condition at the bottom ܪூ௡=-1.35m (the initial saturation is: ߠூ௡=0.00067) for the numerical 

simulation. 

3.2.4.4 Sensitivity analysis of “α” and “n” on the numerical results  

   For the numerical simulation of the unsaturated flow with VGM model, the parameter ߙ is 

interpreted as the inverse of the capillary length of the sand and the ‘n’ parameter is a 

dimensionless exponent, which is related to the pore size distribution (Tregarot’s thesis [17], 

Chapter 2, page 110) or shape factors (Ababou, 1991 [10], Chapter4, page 24).  More exactly, 

during the numerical simulations of the wetting experiment, n plays the dominant role on the 

slope of the pressure head contours in the vertical profile of the imbibitions. Therefore, it is 

necessary to do the sensitivity analysis of ࢻ and n on the numerical results. 

   In order to do the sensitivity analysis, the other two numerical simulations (Num.2 and 

Num.3) are added to be done. In the Num.2, ߙ has been kept same as the best simulation 

(Num.1 and 4.6= ߙm-1), n has been increased to 6 to study the role of n. On contrast, in the 

Num.3, n has been kept equal to 5 (same with Num.1), and ߙ has been increased to 6.6 m-1 to 

investigate the influence of ߙ.  
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   The comparison results of the evolution of the toe of saturation front ܺி with respect to √ݐ 

are shown in Fig. 3-13. From the figure, it can be seen that, in contrast with n, ߙ has bigger 

influence on the evolution of the saturation front toe in the sandbox bottom, the bigger ߙ is, 

the faster the saturation front toe moves in the x direction. However, according to the 

numerical results, there is the inverse situation which occurs to the saturation front toe in the y 

direction. This implies that the sand is not totally homogeneous and the hydraulic 

conductivity in the x direction is a little bigger than the one in the y direction. 

   Fig. 3-14 indicates that, in spite of the difference at the beginning, n has smaller influence 

on the evolution of inflow discharge at the interface of bank-river; on contrast, when ݐ ൐

ߙ due to the increased ,ݏ2.7 , the difference of the inflow discharge between Num.1 and 

Num.3 become bigger and bigger, and then keeps constant for a longer time. It is also noticed 

that the maximum differences appearing at the beginning and in the last part of the simulation 

are in the same order. Furthermore, from Fig. 3-14, it can also be seen that the natural 

logarithm of the inflow discharge has almost linear relationship with the natural logarithm of 

the time. 

 

 Fig. 3-13 Sensitivity analysis: evolution 
of the saturation front toe  for the 3 

group of parameters: 
Num.1: ( 1)4.6 , 5m nα −= =  
Num.2: ( 1)4.6 , 6m nα −= =  
Num.3: ( 1)6.6 , 5m nα −= = . 

Fig. 3-14 Sensitivity analysis: inflow 
discharge at bank-river interface with respect 
to the time  in log-log for the 3 
group of parameters: 
Num.1:  
Num.2:  
Num.3: ( 1)6.6 , 5m nα −= = . 

   In addition, considering that the initial condition (pressure head or degree of saturation) has 

very important role for succeeding in modeling the wetting problem, the sensitivity analysis 

has been done to investigate the influence of the initial pressure head at the sandbox bottom 

on the toe of the saturation front in the x direction and the inflow discharge. The results 
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indicate that when ݄௜௡ ൏ െ1.0݉(the initial sand is very dry) , the initial head has no influence 

on the toe of the saturation front in the x direction, and it just has very little influence on the 

inflow discharge at the very beginning of the imbibitions (ݐ ൏  (ݏ0.36

3.2.4.5 Comparisons of the numerical results and the analytical solution of Polubarinova 
    Since the analytical solution of Polubarinova with Boussesq saturated plane flow equation 

has not considered the capillary effect of the sand, it doesn’t suit really the wetting problem 

with very fine sand (with about 20cm capillary length). Fig. 3-15 (a) and (b) shows that, for 

the saturation front toe ܺி at the sandbox bottom (x direction), the analytical solution has a 

linear relationship with the square root of the time; on contrast, the numerical one  behaves 

differently with the time; the two types of results have bigger and bigger difference with the 

time increasing . At the same time, from Fig. 3-16, it can be seen although the analytical and 

numerical inflow discharges both are power functions of the time and both have the same 

power, however, there is a big difference between the analytical and the numerical value. 

 
(a) : ( )FX t  

 
(b) : ( )(ln( ))FLn X t  

Fig. 3-15 (a) (b) Evolution of the saturation front toe. Comparison between the analytical 
solution of Polubarinova (without any capillary effect) and the numerical Richards model 
(Num.1) which includes capillary effects in the unsaturated zone. 
Note: Parameters of simulation “Num.1”: 

ߙ ൌ 4.6݉ିଵ, ݊ ൌ 5 (Num.1, Bigflow); 
݄௜௡ ൌ െ1.35݉ (Num.1, Bigflow); 
௦ߠ ൌ 0.38m3/m3, ߠ௥ ൌ 0.0; 

௦ܭ           ൌ ܧ2.0 െ 4m/s, ܭ௥ ൌ ܧ2.0 െ 7m/s. 
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Fig. 3-16 Inflow discharge at bank-river interface with respect to the time  in log-
log. Comparison between the analytical solution of Polubarinova without any capillary 
effect and the numerical Richards model (Num.1). 

   Considering that the sand for the wetting experiment has large capillary effect (small ߙ), 

decreasing the capillary effect by increasing ߙ to 100 m-1 (capillary length is equal to 1 cm), 

the other parameters remaining unchanged (same as in “Num.1”). Simulation “Num.4” has 

been conducted to watch the evolution of the saturation front toes and the inflow discharge 

obtained with Richards model and with the analytical solution of Polubarinova. 

   Fig. 3-17 shows that the relationship curve of the computed  ܺி൫√ݐ൯  becomes linear and it 

is very approximate to the analytical one. However, due to the small saturated hydraulic 

conductivity ܭ௦ ൌ ܧ2.0 െ 4m/s for the case with a very small capillary effect (capillary 

length is equal to 1cm), the difference of the inflow discharge has not diminished, as shown in 

Fig. 3-18. 

 

Fig. 3-17 Evolution of the saturation front 
toe : simulation “Num.4”. 

Comparison between the analytical solution 
of Polubarinova without any capillary effects 
and the numerical Richards model (Num.4). 

Fig. 3-18 Inflow discharge  at the 
bank-river interface in log-log (simulation 
“Num.4”). Comparison between 
Polubarinova’s solution and the numerical 
Richards model (Num.4).  
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Note: Parameters of simulation “Num.4”: 
ߙ ൌ 100 ݉ିଵ, ݊ ൌ 5; 
݄௜௡ ൌ െ1.35݉; 
௦ߠ ൌ 0.38m3/m3, ߠ௥ ൌ 0.0; 
௦ܭ ൌ ܧ2.0 െ 4m/s, ܭ௥ ൌ ܧ2.0 െ 7m/s. 

3.2.5 Conclusion on the wetting problem 

   At first, the wetting process of a dry porous medium with a right boundary condition of a 

sudden increasing water level which then keeps constant has been studied by a laboratory 

experiment. The experimental results are shown (optically) as the evolution of the wetted 

zone seen via photographs taken at different times. 

   Secondly, 3D Richards model with the Van Genuchten/ Mualem parameter for the hydraulic 

conductivity ܭሺ݄ሻ  and the water content ߠሺ݄ሻ is chosen to simulate wetting experiment. A 

good calibration result (4.6=ߙm-1, n=5) has been obtained through the fine grids (up to ¼ 

million nodes in a 2D vertical cross-section), manually repeating the simulation tests with 

different unsaturated parameters, and comparing the simulation results of the unsaturated 

curves with the measured humility of the sand in the optical photos. Furthermore, sensitivity 

analysis result indicates that in contrast with n, ߙ has bigger influence on the evolution of the 

saturation front toe ݔி ሺݐሻ in the sandbox bottom, the bigger ߙ is, the faster the saturation 

front toe moves in the x direction. However, according to the numerical results, the inverse 

situation occurs to the saturation front toe in the y direction. This implies that the sand is not 

totally homogeneous and the hydraulic conductivity in the x direction is a little bigger than 

the one in the y direction. 

    Finally, the comparison between the numerical and the analytical results of the wetting 

problem furthermore demonstrates that the analytical resolution of Polubarinova with 

Boussinesq saturated plane flow equation doesn’t suit the wetting problem with very fine sand 

(with about 20cm capillary length). However, if the capillary effect is diminished, for 

example, ߙ is increased, the agreement of the results between the numerical simulation and 

the analytical solution is improved, which means that it can be found a type of course sand to 

suit the analytical solution of Polubarinova. 

3.3 Groundwater discharge problem 
3.3.1 Introduction  
  The linearized solution developed by Prof. Ababou (Ababou, 2007 [20]) for the discharge 

problem in the river bank after the infiltration of rain until a steady state will be used to 
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validate the VGM parametric model and the exponential parametric model of the 3D partially 

saturated Richard model of Bigflow and further to investigate the influence of the two 

parametric models on the capillary effect and the free surface of the river bank aquifer during 

the discharge process. 

    An example of the discharge problem of the river bank will be solved with analytical 

solution and the numerical simulations with Boussinesq plane flow model and two partial 

saturated Richards models. As a result, 5 numerical simulations will be conducted to 

investigate the discharge problem of the river bank: one with Boussinesq model (Num.1), two 

with VGM model (Num.2 and Num.3) and the other two with exponential model (Num.4 and 

Num.5). Furthermore, the two with VGM model have different ܽ values (different capillary 

length) and have the same n value (same distribution of the characteristic curves such as the 

degree of saturation of the water content ܵሺ݄ሻ); the other two with exponential model have 

different ܽ values and  3/ܽ=ߚ, which means that the two diffusion functions ܦሺߠሻ both are the 

square curve with respect to the water content ߠ (equation (1-23)). In addition, the same ܽ 

values have been taken for the two with different parameter model, namely, Num.2 with 

VGM model has the same smaller ܽ (bigger capillary length) as Num.4; Num.5 with VGM 

model has the same bigger ܽ (smaller capillary length) as Num.5. 

3.3.2 Analytical solutions of Boussinesq equation 

3.3.2.1 Problem 
   Consider an aquifer with free surface water feeding a river. After recharging the aquifer 

until a steady state by direct infiltration of rain, the flows into the soil surface is equal to the 

flows out of the bank-water interface, and as a result, the surface feeding of the soil is 

removed. Begins at t = 0, for the discharge of the aquifer, we will attempt to find an analytical 

expression giving the position of any point on the free surface in the aquifer with respect to 

time: ܪሺݔ,  ሻ into the river from the aquiferݐሻ. In addition, an evolution law of the flow ܳሺݐ

will also be sought (depletion law). The schema of the discharge problem is illustrated in Fig. 

3-19. 
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porosity of the porous medium (m3/m3), and SS is the specific storativity reflecting the 

compressibility effects. For a free surface, we can neglect the compressibility to the 

storage capacity of the pores (take ܵ ൌ  φ). 

 K is the hydraulic conductivity of the medium at saturation (m/s). 

 .is hydraulic transmissivity T (m2/s) for a horizontal aquifer ܪܭ 

 q is specific discharge, or flow per unit length transverse to the flow ሺm2/sሻ. 

Combining the two previous equations, and given the above remarks, we have: 

߶ డு
డ௧

ൌ ቂ డ
డ௫

ቀܶ డு
డ௫

ቁ ൅ డ
డ௬

ቀܶ డு
డ௬

ቁቃ  

   Finally, by plane symmetry in the y direction, assuming a straight section of river-basin in 

the y direction, we get: 

߶ డு
డ௧

ൌ డ
డ௫

ቀܶ డு
డ௫

ቁ   (3-9) 

   This equation is nonlinear because of the term ܶ ൌ ܪܭ . To solve it, we make the 

approximation  ܶכ ൌ  is a fixed height כܪ to make equation (3-9) linearized, where כܪܭ ≈ ܶ 

of the water to be determined. We then obtain the linearized equation: 

߶ డு
డ௧

ൌ ܶ כ డమு
డ௫మ  (3-10) 

With initial and boundary conditions: 

I-C : t = 0 :ܪሺݔ, 0ሻ ൌ ଴ܪ ൅ ሺܪଵ െ ݊݅ݏ଴ሻܪ ቀగ௫
ଶ௅

ቁ  

B-C : x = 0 : ܪሺ0, ሻݐ  ൌ ଴  B-C: x = L : ቀడுܪ 
డ௫

ቁ
௫ୀ௅

ൌ 0   

   We solve this problem with the method of separation of variables applied to the transformed 

variable: 

݄ሺݔ, ሻݐ ൌ ,ݔሺܪ ሻݐ െ   ଴ܪ

   Let: 

݄ሺݔ, ሻݐ ൌ ܺሺݔሻܶሺݐሻ  

Finally, it is obtained that: 

,ݔሺܪ ሻݐ ൌ ଴ܪ ൅ ሺܪଵ െ ݊݅ݏ଴ሻܪ ቀగ௫
ଶ௅

ቁ ݌ݔ݁ ቀെ గమ

ସ௅మ
כ்

థ
 ቁ   (3-11)ݐ

   We deduce the specific discharge (in m2/s) exiting at the interface bank-river and obtain: 
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ܳሺ0, ሻݐ ൌ െܭ · ,ሺ0ܪ ሻݐ · ቀడு
డ௫

ቁ
௫ୀ଴

  

Or: 

ܳሺ0, ሻݐ ൌ െܪܭ଴
గ

ଶ௅
ሺܪଵ െ ݌ݔ଴ሻ݁ܪ ቀെ గమ

ସ௅మ
כ்

஍
 ቁ  (3-12)ݐ

The equations (3-11) can be written as: 

ܳሺ0, ሻݐ ൌ െܳ଴݁݌ݔ ቀെ ௧
ఛ
ቁ, with  ߬ ൌ ସ௅మ

గమ
஍

௄ுכ and ܳ଴ ൌ ଴ܪܭ
గ

ଶ௅
ሺܪଵ െ  ଴ሻܪ

and we see that the discharge is dwindling exponentially with a characteristic time τ given 

above. It only remains to give an appropriate value for כܪ  to justify the linearization of 

equation (3-8). We see that this hypothesis is valid only if the ratio ሺܪଵ െ  ଴ is muchܪ / ଴ሻܪ

less than 1, in which case we may take for example: כܪ ≈ ሺ0ܪ ൅ 1ܪሻ/2 . 

3.3.2.4 Analytical solution of the linearized Boussinesq equation (discharge) 

 Calculation domain 

 .1.0=ݔ݀ ,100m=ܮ

 Boundary condition 

x=0 (left): ܪሺ0, ሻݐ ൌ ଴; x=L (right) : ቀడுܪ
డ௫

ቁ
௫ୀ௅

ൌ 0 

 Initial condition 

   t=0: ܪሺݔ, 0ሻ ൌ ଴ܪ ൅ ሺܪଵ െ ݊݅ݏ଴ሻܪ ቀగ௫
ଶ௅

ቁ  

with ܪ଴=10.0m, ܪଵ=10.8m, כܪ ൌ ሺܪ଴ ൅  .ଵሻ/2.0ܪ

The profile of the initial surface in the river bank is shown in Fig. 3-20. 

Fig. 3-20 Profile of the initial surface in the river bank 
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Free surface: ܪሺݔ, ሻݐ ൌ ଴ܪ ൅ ሺܪଵ െ ݊݅ݏ଴ሻܪ ቀగ௫
ଶ௅

ቁ ݌ݔ݁ ቀെ గమ

ସ௅మ
כ்

థ
  ቁݐ

   The discharge process of the free surface in the river bank is illustrated in Fig. 3-21.  

 
Fig. 3-21 The discharge process of the free surface in the river bank (aquifer) 

   From this figure, it can be seen that it needs about100 hours for the water in the saturated 

aquifer to totally discharge into the river for this example.  

3.3.3 Numerical simulations (Boussinesq and Richards) 

3.3.3.1 2D Dupuit-Boussinesq’s equation model (vertically integrated) 

 Simulation domain 

 .1.0=ݔ݀ ,100m=ܮ

The computed domain and time parameters are same with the analytical example above. 

 Boundary condition 

Left boundary: ܪሺ0,  ሻ=10m (uniform water head=constant)ݐ

Right boundary: flux=0 

 Initial condition 
Free surface: ܪሺݔ, 0ሻ ൌ ଴ܪ ൅ ሺܪଵ െ ݊݅ݏ଴ሻܪ ቀ గ௫

ଶכଵ଴଴
ቁ with  ܪ଴=10.0m and ܪଵ=10.8m. 

 Hydrodynamic propperties of the aquifer 

 ௦=1.0E-3m/sܭ ,௦=0.2m3/m3ߠ

 Duration of the simulation and numerical parameters 

    The numerical simulation models a discharge process of 100hours as the analytical example.  

The numerical caculation time parameters and the numerical criteria are listed  in Table 3-2.   
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Table 3-2 Numerical parameters (INPUT1) for the calculation of  time step, non-
linear/outer (Picard) and linear/inner  iterations

Time step 

Intial time step DTIN=0.1s 

Minimum time step DTMIN=0.1s 

Maximum time step DTMAX=100.0 

Time step multifier DTMUL=1.05 
No-linear 
iterations 
(Picard) 

Convergence criterion of pressure head ENLH3=1.0E-4 

Maximum number of no-linear iteration INLMAX=10 

Linear 
iterations 

Convergence criterion of pressure head ENORM3=1.0E-6 

Maximum number of linear iterations ITEND=800 

Method  to caculate the middle nodal conductivities Geometric mean 

 Numerical behaviour of Bigflow during the simulation 

Although the maximmum errors of the presure head  are about 0.001 for the linear or 

nonlinear iterations,  finally each of the both satisfies the convergence criteria , as shown in 

Fig. 3-22 and Fig. 3-23. 

Fig. 3-22 Standarlized linear iteration process 
curve of the pressure head in log10  

Fig. 3-23 Standarlized nonlinear iteration 
process curve of the pressure head in log10 

Fig. 3-24 shows that the curve of the evolution of ܳ஻௢௨௡ௗ completely superposes on the 

curve of the evolution of ܳெ௔௦௦. The similar situation occurs to  ஻ܸ௢௨௡ௗ and ெܸ௔௦௦, as shown 

in the Fig. 3-25. 
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Fig. 3-24 Evolution of BoundQ  and MassQ  
(local mass balance) 

Fig. 3-25 Evolution of  BoundV  and MassV  
(global volume balance) 

 Analysis of the numerical results (comparison with the analytical result) 
   The instantaneous profiles of the free surface during the discharge in the river bank at t=3 

hours (Fig. 3-26) and t=10hours (Fig. 3-27) have been plotted to be compared to the 

corresponding analytical results (linearized Boussinesq equation:(3-11)). 

Fig. 3-26 Comparison: instantaneous profile 
of the free surface in the river bank (

) at t=3 hours 

Fig. 3-27 Comparison: instantaneous 
profile of the free surface in the river bank 
( ) at t=10 hours 

   From these two figures, it can be seen that the free surfaces computed numerically with 

Boussinesq model agree very well with the linearized analytical solution of the Boussinesq 

equation. 

   In addition, the computed outflow discharge ܳሺ0,  ሻ at the bank/ river interface has alsoݐ

been compared (Fig. 3-28). It can be seen that the outflow rate decreases exponentially with 

the numerical solution as in the analytical solution. There is only a small difference of about 

0.6E-5m3/s between the two results at the beginning of the discharge. 
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Fig. 3-28 Evolution of the outflow discharge ( )0,Q t at the left boundary (river/bank inter 
face) in semi-log scale, and comparison with the linearized analytical solution. 

3.3.3.2 Richards’ equation model for the discharge problem (VGM model) 

 Simulation domain 

Vertical 2D: Lx=100m, Lz=11m; 

                     dx=1.0m, dz=0.02m 

 Boundary condition 

The boundary conditions are imposed as the same shown in Fig. 3-19: 

On the right boundary, top boundary and bottom boundary: Flux=0.0; 

On the left boundary: ݄ሺ0, ሻݐ ൌ ଴ܪ െ ݖ if ,(linear distribution head) ݖ ൑ ଴ܪ ൌ 10݉; 

flux=0.0,  if 0 ൑ ݖ ൑ ௭ܮ ൌ 11݉ 

 Initial condition 

Initial water level: 

,ݔሺܪ  ,ݖ 0ሻ ൌ ଴ܪ ൅ ሺܪଵ െ ݊݅ݏ଴ሻܪ ቀ గ௫
ଶכଵ଴଴

ቁ with ܪ଴=10.0m and ܪଵ=10.8m. 

Initial pressure head: 

 ݄ሺݔ, ,ݖ 0ሻ ൌ ,ݔሺܪ ,ݖ 0ሻ െ  (linear distribution pressure head) ݖ

 Physical properties 

 ௥=1.0E-7m/sܭ ,௥=0.0m3/m3ߠ ;௦=1.0E-3m/sܭ ,௦=0.2m3/m3ߠ   

Two numerical simulations with Van Genuchten Mualem parameter model have been 

done: (1) 6݉ି=ߙଵ , n=3; (2) 20݉ି=ߙଵ , n=3. The water content function curve ߠሺ݄ሻ , the 

hydraulic conductivity function curve ܭሺ݄ሻ, the capillary diffusion function curve ܦሺ݄ሻ and 

the capillary capacity function curve ܥሺ݄ሻ are respectively shown in Fig. 3-29, Fig. 3-30,  

Fig. 3-31 and Fig. 3-32. 
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Fig. 3-29  Water content curve ( )hθ of the 
river bank soil.  

Fig. 3-30 Hydraulic conductivity curve 
( )K h of the river bank soil.  

 

 

Fig. 3-31 Capillary diffusion ( )D h  of the 
river bank soil.  

Fig. 3-32 Capillary capacity ( )C h  of the 
river bank soil.  

 Duration of the simulation and numerical parameters 

    The numerical simulations models a discharge process of 100 hours as the analytical 

example and the numerical simulation with Boussinesq model.  

    The numerical caculation time parameters and the numerical criteria are also same as the 

numerical simulation with Boussinesq model, as shown above  in Table 3-2.   

 Numerical behaviour of Bigflow during the simulation 

Same as the simulation with Boussinesq model,  the maximmum errors of the presure head  

of  the linear or nonlinear literation both satisfy the convergence criteria , as shown in Fig. 3-

33 and Fig. 3-34. 
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Fig. 3-33 Standarlized linear iteration 
process curve of the pressure head in log10 
for the case: =20  n=3 (VGM) 

Fig. 3-34 Standarlized nonlinear iteration 
process curve of the pressure head in log10 
for the case: =20  n=3 (VGM) 

Fig. 3-35 shows that the curve of the evolution of ܳ஻௢௨௡ௗ almost superposes on the curve 

of the evolution of ܳெ௔௦௦, except that there is small difference at the beginning. At the same 

time, the curve ஻ܸ௢௨௡ௗ coincides very well with the curve ெܸ௔௦௦, as shown in Fig. 3-36. 

Fig. 3-35 Evolution of  BoundQ  and MassQ  
(local mass balance) for the case: 
α =20 ( 1),m −  n=3 (VGM) 

Fig. 3-36 Evolution of  BoundV  and  MassV  
(global volume balance) for the case: 
α =20 ( 1),m −  n=3 (VGM) 

3.3.3.3 Richards’ equation model for the discharge problem (Exponential model) 

   The same simulation conditions (simulation domain, boundary condition, initial condition, 

etc.) as the two above numerical simulations with VGM model have been used for the other 

two numerical simulations with the exponential parameter model. 

 Physical properties (parameters for exponential model)  

   Two groups of the parameters are respectively: (1) ߙ =6m-1, ߚ =2m-1, Hb=0.0; 

ሺ݄ሻߠ 6.667m-1, Hb=0.0.The water content function curve=ߚ ,20m-1=ߙ (2)   , the hydraulic 

conductivity function curve ܭሺ݄ሻ , the capillary diffusion function curve ܦሺ݄ሻ  and the 
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capillary capacity function curve ܥሺ݄ሻ are respectively illustrated in Fig. 3-37, Fig. 3-38, Fig. 

3-39 and Fig. 3-40. 

Fig. 3-37  Water content curve ( )hθ  of the 
river bank soil (Exp.).  

Fig. 3-38 Hydraulic conductivity curve 
( )K h of the river bank soil (Exp.).  

 

 

Fig. 3-39 Capillary diffusion ( )D h of the 
river bank soil (Exp.).  

Fig. 3-40 Capillary capacity ( )C h of the 
river bank soil (Exp.).  

 Numerical behaviour of Bigflow during the simulation 

The numerical behaviours of Bigflow during the simulation  are very similar to the ones of 

the Num.3 with the VGM model, as seen in Fig. 3-41, Fig. 3-42, Fig. 3-43, and Fig. 3-44. 

Fig. 3-41 Standarlized linear iteration 
process curve of the pressure head in log10 

Fig. 3-42 Standarlized nonlinear iteration 
process curve of the pressure head in log10 
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for the case: α =20m-1, β =6.667m-1, 
Hb=0.0 (Exp.) 

for the case: α =20m-1, β =6.667m-1, Hb=0.0 
(Exp.) 

 

 
Fig. 3-43 Evolution of  BoundQ  and  MassQ
(local mass balance) for the case: 
α =20m-1, β =6.667m-1, Hb=0.0 (Exp.) 

Fig. 3-44 Evolution of  BoundV  and  MassV
(global volume balance) for the case:
 α =20m-1, β =6.667m-1, Hb=0.0 (Exp.) 

3.3.3.4 Analysis of the numerical results of VGM model and exponential model 

 Analysis of the vertical distribution of the computed dynamic degree of 
saturation 

   At the position of a horizontal distance of ܺ଴=50m from the river (left boundary), two 

vertical profiles of the instantaneous static curve and dynamic curve of the degree of 

saturation with VGM model at t=10 hours for the two cases ( (a) 6=ߙm-1, ݊=3, m=1-1/n; (b) 

   .20m-1, ݊=3, m=1-1/n ) are shown in Fig. 3-45=ߙ

 
(a) VGM: 6=ߙm-1, ݊=3, m=1-1/n  

(b) VGM: 20=ߙm-1, ݊=3, m=1-1/n 
Fig. 3-45  Comparison of the vertical profile of the instantaneous static curve and the VGM 
dynamic curve of the degree of saturation at t=10 hours at 0X =50m with partially saturated 
Richards model  in the case of VGM parameters: (a) =6m-1, n=3, m=1-1/n; (b) =20m-1, 
n=3, m=1-1/n. 

   The above figure indicates that, during the transient simulation with Richards model, the 

profile of the water content above the free surface is nearly hydrostatic for all the time, which 

can explain the hydrostatic initial condition: ݄ሺݔ, ,ݖ 0ሻ ൌ ݖ െ ,ݔሺܪ ,ݖ 0ሻ, where,  ܪሺݔ, ,ݖ 0ሻ is 

the initial profile of the free surface of the aquifer (river bank).  
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   Fig. 3-46 demonstrates the above same results with the exponential model for the other 2 

simulations. 

 
(a) Exp: 6=ߙm-1, 2=ߚm-1, Hb=0.0 

 
(b) Exp: 20=ߙm-1, 6.667=ߚm-1, Hb=0.0 

Fig. 3-46  Comparison of the instantaneous static curve and the computed dynamic curve of 
the degree of saturation at t=10 hours at 0X =50m with partially saturated Richards model 
in the case of the exponential model parameters: (a) =6m-1, =2m-1, Hb=0.0; (b) 
=20m-1, =6.667m-1, Hb=0.0. 

 Analysis of the instantaneous vertical profile of the degree of saturation with 

the pressure head isovalues 

   The Num.2 has a different value of ߙ with the Num.3. This means that the two numerical 

simulations with VGM model have different capillary length: ߣ஼௔௣ሺே௨௠.ଶሻ =0.17m; 

  .஼௔௣ሺே௨௠.ଷሻ=0.05m, which is clearly shown in Fig. 3-47 (a) and (b)ߣ

   
(a) VGM: 6=ߙm-1, n=3, m=1-1/n 

 
(b) VGM: 20=ߙm-1, n=3, m=1-1/n  

Fig. 3-47  Vertical profile of the instantaneous distributions of the pressure head  
and the degree of saturation  at t=10 hours with partial saturated Richards model 
in the case of VGM parameters: (a) =6m-1, n=3, m=1-1/n; (b) =20m-1, n=3, m=1-1/n  
Note: 1. in the figure (a), the red curve (h=-0.17m) corresponds to S=0.63 and the yellow 
curve (h=-0.09m) corresponds to S=0.9; 2. in the figure (b), the red curve (h=-0.05m) 
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corresponds to S=0.63 and the yellow curve (h=-0.03m) corresponds to S=0.9.  

   In the figure, two red curves correspond to the degree of saturation S=0.63, their pressure 

head values are respectively  -0.17m and -0.05m, and it can be seen that the capillary domain 

of the Num.3 is much narrower than that of the Num.2. 

The similar situation occurs to the Num.4 and Num.5 with exponential model, as shown in 

Fig. 3-48 (a) and (b).  

 
(a) Exp.: 6=ߙm-1, 2=ߚm-1, Hb=0.0 

 
(b) Exp.: 20=ߙm-1, 6.667=ߚm-1, Hb=0.0 

Fig. 3-48  Vertical profile of the instantaneous distributions of the pressure head  
and the degree of saturation at t=10 hours with 3D Richards unsaturated model in 
the case of the exponential model parameters: (a) =6m-1, =2m-1, Hb=0.0; (b) =20m-1, 
=6.667m-1, Hb=0.0. Note: 1. in the figure (a), the red curve (h=-0.17m) corresponds to S=0.72 
and the yellow curve (h=-0.05m) corresponds to S=0.9; 2. in the figure (a), the red curve (h=-
0.05m) corresponds to S=0.72 and the yellow curve (h=-0.02m) corresponds to S=0.9. 

However, for the numerical simulations with VGM model and exponential model which 

have the same ߙ value, the degree of saturation corresponding to the capillary pressure head 

are different, and they are respectively 0.63 for the numerical simulations with VGM model 

and 0.72 for the ones with exponential model. In addition, from Fig. 3-47 and Fig. 3-48, it can 

be seen that the suction values corresponding to the degree of saturation S=0.90 have been 

decreased from 0.09m to 0.05 for Num.2 to Num.4 and from 0.03m to 0.02m for Num.3 to 

Num.5, and the distribution of the degree of saturation is different: the band width between 

the two pressure head contours with the same increment of the degree of saturation from the 

free surface to the unsaturated zone become more and more larger  with the exponential 

model, while  it is the narrowest around the capillary pressure head contour with the VGM 
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model. The different distribution of the degree of saturation can be explained due to the 

different diffusion curve ܥሺ݄ሻ, as seen in  Fig. 3-31 (VGM model) and Fig. 3-39 (Exponential 

model). 

 Analysis of the instantaneous vertical profile of the flux field with the pressure 

head contours 

   The vertical profiles of the instantaneous flux field  ݍሺݔ, ,ݖ ଴ሻݐ and pressure head  

݄ሺݔ, ,ݖ  ଴ሻcontours at t=10 hours for the 4 numerical simulations with Richards model areݐ

illustrated in Fig. 3-49 and Fig. 3-50.  

(a) VGM: 6=ࢻm-1, n=3, m=1-1/n (b) VGM: 20=ߙm-1, n=3, m=1-1/n 
Fig. 3-49  Vertical profile of the instantaneous flux field   and pressure head  

contours at t=10 hours with  partial saturated Richards model in the case of VGM 
parameters: (a) =6m-1, n=3, m=1-1/n; (b) =20m-1, n=3, m=1-1/n. Note: Scaleflux=0.7. 
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(a) Exp.: 6=ߙm-1, 2=ߚm-1, Hb=0.0 

 
(b) 20=ߙm-1, 6.667=ߚm-1, Hb=0.0 

Fig. 3-50  Vertical profile of the instantaneous flux field  and pressure head 

 contours at t=10 hours with partial saturated Richards model in the case of 
exponential model parameters: (a) =6m-1, =2m-1, Hb=0.0; (b) =20m-1, =6.667m-1, 
Hb=0.0. Note: / 3β α= and Scaleflux=0.7. 

   From these figures, it can be seen that the flux field in the saturated zone has no difference 

and however, the flux field in the unsaturated zone is different for the 4 numerical 

simulations: the flux begins to decrease from the free surface and drastically diminish to zero 

after the capillary length pressure head contour. Relatively, the flux with exponential model 

diminishes slower than the one with VGM model. 

 Analysis of the profile of the instantaneous free surfaces (ܐሺܠ, ,ܢ  ૙ሻ =0) in theܜ

river bank and the outflow discharge at the bank/river interface 

   The free surfaces of numerical simulations with same ߙ value have been plotted in the same 

figure to be compared with the analytical result. As a result, Fig. 3-51 shows the 

instantaneous free surfaces (݄ሺݔ, ,ݖ  ଴ሻ =0) at t=10 hours of the analytical solution, the Num.2ݐ

and Num.4 with ߙ ൌ 6m-1, and it can be seen that the free surface at the right boundary of the 

Num.2 with VGM model is about 0.05m lower than that of the analytical and the one of 

Num.4 with exponential model is about 0.12m lower than the analytical. This can be further 

explained by the fact that the analytical solution of the plane flow equation of Boussinesq 

doesn’t suit the problem with big capillary effect. In addition, the role of ߙ in the VGM model 

is not totally the same as the one in the exponential model due to the different definition of the 

water content function ߠሺ݄ሻ and the hydraulic conductivity function ܭሺ݄ሻ. However, for the 

problem with very small capillary effect, the results obtained with all the models should be 
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the same. This result can be obtained from Fig. 3-52. In the figure, instantaneous free surfaces 

at=10 hours in the river bank of Num.3 and Num.5 agree very well with the linearized 

analytical one.  

 
Fig. 3-51  Comparison of the instantaneous free surfaces (  =0) at t=10 hours in 
the river bank of the linearized analytical solution of the plane flow Boussinesq equation 
and the numerical simulations with 2  partially saturated Richards models in the case of 
 the parameters of VGM model (Num.2): =6m-1, n=3, m=1-1/n and
parameters of exponential model (Num.4): =6m-1, =2m-1, Hb=0.0. 

 

 

 
Fig. 3-52  Comparison of the instantaneous free surfaces ( =0) t=10 hours in the 
river bank of the linearized analytical solution of the plane flow Boussinesq equation and 
the numerical simulations with 2  partially saturated Richards models in the case of 
 the parameters of VGM model (Num.3): =20m-1, n=3, m=1-1/n, and 
the parameters of exponential model (Num.5): =20m-1, =6.667m-1, Hb=0.0. 

   At the same time, the evolution of the outflow discharge ܳሺ0, ,ݕ ,ݖ ሻݐ  at the bank/river 

interface has been compared among Num.1 (Boussinesq model), Num.3 (Richards equation 

with VGM parameter mode), Num.5 (Richards equation with exponential parameter mode) 

and the linearized analytical solution of Boussinesq equation, as shown in Fig. 3-53. From the 

figure, it can be seen that in spite of a tiny difference between the result with numerical 

Boussinesq model and the ones with Richards model at the end of the discharge of the 

aquifer, all the computed outflow discharges are in a very good agreement, and however, 
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there is still a very small difference between the numerical results and the analytical one, 

which may be due to the linearization of the analytical solution. 

Fig. 3-53  Comparison of the outflow discharge ( )0, ,Q z t  at the bank/river interface: 
(1) linearized analytical solution of Boussinesq equation; (2) numerical simulation of the 
Boussinesq equation (Num.1); (3) simulation with Richards model for 2 sets of parameters:  

- VGM model (Num.3): α =20m-1, n=3, m=1-1/n; 
- Exponential model (Num.5): α =20m-1, β =6.667m-1, Hb=0.0. 

 

3.3.4 Conclusion on the discharge problem 
   Through the approximation of the hydraulic transmissivity Tכ ൌ  T ≈ KHכin the Boussinesq 

equation, the linearized analytical solution has been obtained for the discharge process of the 

water level in the river bank with the initial free surface of the sinusoidal curve, and 

accordingly, the outflow discharge at the bank/river has been calculated with Darcy law. 

   An example of the discharge problem of the river bank has been solved with analytical 

solution and the numerical simulations with Boussinesq plane flow model and two partial 

saturated Richards models. The results indicate that: 

(1) The discharge process of the free surface obtained with Boussinesq model has a very 

good agreement with the analytical solution, and at the same time, there is a small 

difference of  the outflow discharge of about 0.6e-5m3/s at the bank/ river interface 

between the two results  at the beginning of the river bank discharge; 

(2) The analytical solution of the plane flow equation of Boussinesq doesn’t suit the 

problem with big capillary effect. Similarly, for the problem with big capillary effect, 

due to the different definition of the water content function ߠሺ݄ሻ and the hydraulic 

conductivity function ܭሺ݄ሻ, the role of ߙ in the VGM model is not totally the same as 

the one in the exponential model.  For instance, Num.2 (VGM) and Num.4 (Exp.) with 

the same smaller ߙ ൌ 6 m-1(the same bigger capillary length of 0.17m) have given the 

different instantaneous free surfaces.  
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(3) For the porous mede with very small capillary effect, the results obtained with all the 

numerical models are the same. For example, Num.3 (VGM) and Num.5 (Exp.) with 

the same bigger ߙ ൌ 20  and therefore the same smaller capillary length of about 

0.05m, have given the same instantaneous free surface for the discharge process of the 

river bank, and their results are also in a very good agreement with the one with 

Boussinesq model as well as the analytical solution.The biggest difference of the 

outflow discharge at the bank/river interface between the analytical  and the numerical 

can be explained as the consequence of the linearization  of the nonlinear Boussinesq 

equation. 
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Chapter 4: Wave propagation through a vertical 

sandbox (small wave canal) 

4.1 Introduction 
   In this chapter, three complementary approaches (laboratory experiment, analytical solution, 

and numerical simulation) are used to investigate the wave propagation in a sandbox with 

vertical boundary, which may represent a river bank, a breakwater, or a sandy beach.  

Firstly, in order to validate a sensor to be used to measure the water level fluctuations in the 

porous media under the oscillatory entry water level condition (high frequency wave forcing), 

and, furthermore, to investigate the propagation of the water level fluctuation in the porous 

media with very small periods such as Tmin=0.5s, a small “Darcy-scale” experiment is 

conducted in a water wave canal at IMFT laboratory. In this experiment, two types of 

pressure sensors and one capacitive sensor will be tested and finally only one type of sensor is 

going to make the measurement. Furthermore, the measured water level fluctuations in the 

vertical sandbox will be interpreted to obtain the saturated hydraulic conductivity of the sand 

under the high frequency foring oscillatory hydrodynamic entry water levels. As a result, this 

estimated hydraulic conductivity value will be compared with the ones obtained by the 

empirical formulas of Kozeny-Carman [20]. 

   Secondly, the linearized analytical solutions of the 1D nonlinear equation of Dupuit-

Boussinesq for the saturated plane flow with a free surface will be developed for a vertical 

sandbox. 4 cases of boundary conditions which will be considered in the linearized analytical 

solutions: on the left entry boundary, the water level fluctuations of the periodical sine wave 

and the periodical cosine wave are respectively imposed; on the right boundary, two types of 

boundary conditions are respectively imposed: a flux is equal to zero and a water level 

constant. As a result, the linearized analytical solution for the same boundary case with the 

vertical sandbox experiment will be used to analyze the inertial effects on wave oscillations in 

order to find out the criterion for the erosion at the oscillatory entry interaction boundary: 

porous media/open water. 
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   Thirdly, an example of the analytical case 2 of boundary condition will be simulated with 

vertically hydrostatic Boussinesq model. In this example, the fluctuation characteristic 

parameter of the entry water level fluctuations, the ratio of the fluctuation amplitude to the 

water depth is taken as 0.5. As a result, the simulated water heads will be compared with the 

corresponding analytical values. 

At last, two relative error formulas for the analytical water heads to the simulated ones are 

built up to estimate the precision of the analytical solution. Furthermore, the maximum errors 

of the analytical results for the boundary condition case 3 will be investigated in detail and as 

a result, the relationship curve of the maximum error and the ratio of the fluctuation amplitude 

to the mean water depth will be obtained. 

4.2 Laboratory experiment: vertical sandbox in small wave canal  
4.2.1 Experiment description and methodology 

 4.2.1.1 Infrastructure of wave canal with sandbox 
   The canal is about 4.7 m long, 0.14 m wide and 0.25 m high. At the right end of the canal, a 

mechanical wave generator with adjustable period and amplitude has been designed. A 

sandbox is immersed in the canal and it is 0.70 m long, 0.137 m wide and 0.50 m high. The 

transverse faces of the box are made of a metallic grid, and the other two faces are made of 

plexiglas. The upstream face of the sandbox is about 1.93 m from the wave generator. The 

profile of the whole wave canal is shown in Fig. 4-1. 

Fig. 4-1 “Darcy-scale” experiment in a small wave canal at IMFT laboratory. 

 4.2.1.2 Sediment characteristics 

Two types of sands have been used to test this experiment: fine sand used to do the wetting 

experiment in chapter 3 and coarse sand. For the fine sand, the grain diameter ranges from 

0.02mm through 0.32mm and ݀ହ଴ is 0.16mm; for the coarse sand, the grain diameter ranges 

from 0.8mm through 2.5mm and the corresponding ݀ହ଴ is about 1.8mm.  
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Finally, the coarse sand is chosen for this experiment. 

 4.2.1.3 Wave conditions  

  The wave generator can make waves with periods ranging from T = 0.57 s to 1.95 s. In 

contrast, the forced amplitude of the water level fluctuations depends on the period of the 

wave generator and the still water level ܪ଴ in the canal. Considering that the height of the 

wave canal is 25cm, the still water level is set equal to 7.6cm and the height of the sand layer 

in the sandbox is 12.1cm, which is set about half smaller than the height of the wave canal. As 

a result,   the amplitudes of the water level fluctuations at the entry vary from ܣ଴ = 0.11 cm to 

0.61 cm for all the wave generator periods in all the tests. 

 4.2.1.4 Tested water level sensors  

   In total, three types of sensor have been tested in this experiment. 

   The first tested sensor is a CP5230 transmitter (a model of pressure sensors made by 

HITEC), as shown in Fig. 4-2 (a). Its general features are water level measurement on free 

fluids for sewage, waste water, river and canal. The water level measurement is performed 

through the differential pressure measurement between liquid surface and the submersible 

sensor. 

 
(a) CP5230 transmitter 

 
(b) Mini-Diver 

Fig. 4-2  Tested sensors: CP5230 transmitter and Mini-Diver 

   This CP5230 transmitter can follow the water level fluctuations with very short period (high 

frequency) such as T=0.5s. However, in comparison with the sandbox, its volume is too big, 

its diameter is 3cm and it needs also a tube in metallic grid to separate the sand to measure the 
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water level fluctuations, as seen in Fig. 4-2 (a). 

   The second tested sensor is a Mini-Diver (a model of sensors made by Schlumberger Water 

Services) shown in Fig. 4-2 (b), which is another type of pressure sensor. Mini-Diver 

determines the height of a water column by measuring the water pressure with the built-in 

pressure sensor. When the Diver is above water, the atmospheric pressure is measured. Below 

the water surface the pressure of the water is added: the higher the water column is, the higher 

the pressure is. Based on the measured pressure, the height of the water column above the 

Diver's pressure sensor can be determined.  

   Compared with CP5230 transmitter, although the diameter of Mini-Diver is a little smaller 

(22mm), it is not able to follow the water level fluctuations with short periods such as 

T=1.95s for the sandbox experiment in the small wave canal in IMFT. 

 The third tested and finally chosen sensor is a capacitive sensor developed specially by the 

electronic specialist H. Ayroles of IMFT lab, as illustrated Fig. 4-3. The principal is to 

measure the water level by measuring the capacitance between the conductive water and a 

conductive metal rod surrounded by an insulating sheath made by a particular material (non-

conductor). The metal rod is installed in the tube with holes in order to avoid sand enterance 

into the tube connectted with the insulating sheath. The black fine line is used to provide 

ground connection. 

Fig. 4-3  Tested sensors: capacitve sensor used to measure the water level fluctuations in the 
sandbox 

In general, the capacitance has a linear relationship with the measured water level:  

ܥ ൌ ܽ. ܪ ൅ ܾ,  
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where, C is the capacitance, H is the measured water level, a is the slope of the linear 

variation and b is the intercept. As a result, the capacitance is converted into electrical signal 

by a transformation box to provide electric voltage output signal with a maximum electric 

voltage of 4 volts. Therefore, the electric voltage almost has a linear relationship with the 

measured water level, namely, ܷ ൌ ܽ. ܪ ൅ ܾ , where,  ܷ  is the electric voltage. This 

relationship is finally used to calibrate the capacitive senor to measure the water level 

fluctuations in the sand. 

Compared with CP5230 transmitter and Mini-Diver, the capacitive sensor made by H. 

Ayroles has two advantages: (1) the volume is very small, the diameter of the tube used is 

0.5mm, and it suits very much the small sandbox; (2) its sample time interval is 0.01s (sample 

frequency of 100Hz), which satisfes the needs for the experiment whose minimum period is 

about 0.5s. 

Therefore, the capacitive sensor is finally chosen to measure the water level fluctuations in 

the sand for the small sandbox experiment in the wave canal of IMFT and for the experiment 

in the Barcelona wave canal (Chapter 5). 

4.2.1.5 The measured instrument arrangement and the test boundary conditions 

   One capacitive sensor has been placed in the front of the upstream face of the sandbox in 

order to measure the entry water level fluctuations at the porous boundary.   

   In the sandbox, the water level fluctuations at 3 different positions have been measured 

and the positions are respectively x1=3cm, x2=6cm, x3=8.2cm from the right (upstream) face 

of the sandbox. Fig. 4-4 (a) shows the measurement of the water level fluctuations at x1=3cm 

with the capacitive sensor. In this experiment, on the left boundary of the sandbox is imposed 

a constant water level equal to the still water level in the right wave canal; the periodically 

oscillatory water level generated by the wave generator at the right end of the canal is 

imposed on the right boundary of the sandbox, as seen in Fig. 4-4 (a).  

In addition, the voltage transformation box and the computer are installed on a table near 

the sandbox, as shown in Fig. 4-4 (b). 
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(a) Arrangement of the capacitive sensor 

 
(b) Arrangement of the voltage transformation box and the computer 

Fig. 4-4 Instrumentation of the sandbox experiment in a small wave canal of IMFT 
laboratory: (a) capacitive sensor; (b) voltage transformation box and the computer. 

4.2.2 Interpretation of the experimental results 

4.2.2.1 Empirical formulas of Kozeny-Carman for the estimation of the hydraulic 

conductivity 

   From Ababou (2007), three empirical formulas of Kozeny-Carman about the relationship 

between the intrinsic permeability  ݇ and the mean diameter  ݀௠ as well as the porosity ߶ are 

as follows: 

   Formula 1: 

݇ ൌ ௗ೘
మ

ଵ଼଴
థయ

ሺଵିథሻమ  (4-1) 

   Formula 2: 
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݇ ൌ ௗ೘
మ

ଷ଺௛಼

థయ

ሺଵିథሻమ  (4-2) 

݄௄ ൌ 4.5 േ 1.5ሺ߶ ൏ 0.7 ݉ଷ ݉ଷ⁄ ሻ  

   Formula 3: 

݇ ൌ ଵ
଻ଶ

థయௗ೘
మ

ሺଵିథሻమ  (4-3) 

   At the same time, the hydraulic conductivity ܭ has the following relationship with the 

intrinsic permeability ݇ : 

ܭ   ൌ ఘ௚
ఓ

݇  or  ܭ ൌ ௚
ణ

݇  

   Note that: 

݇ is the intrinsic permeability (݉ଶ); 

 ;is hydraulic conductivity (m/s)ܭ

݀௠ is the mean diameter  ݀௠ (equivalent sphere) of grains (m); 

߶ is the porosity (m3/m3); 

 ;is the dynamic viscosity (kg/(m.s)) ߤ

 ;is the cinematic viscosity (m2/s) ߴ

 ;is the density or volumic mass (kg/m3) ߩ

݃ is the gravity acceleration and ݃=9.81 m/s2. 

4.2.2.2 Evolution of water levels versus space (x) and time (t) (decay) 

   In the below, Fig. 4-5 shows the evolution of the measured water levels and the 

corresponding theoretical values at the positions in the sandbox: x଴ ൌ 0.0, xଵ ൌ 3.0, xଶ ൌ

6.0, and xଷ ൌ 8.2cm for the period T=0.6896s and the entry amplitude ܣ଴ ൌ 0.2521 cm. 

Fig. 4-5 Time evolution of measured water levels H(x,t) (symbols) and the corresponding 
theoretical values (solid curves) at different locations in the sandbox: x0=0.0, x1=3.0, 
x2=6.0cm, x3=8.2cm (period T=0.6896s, amplitude A0 = 0.2521 cm).  



Chapter 4 Wave propagation through a vertical sandbox (small wave canal) 

82 
 

   From the figure, it can be seen that the amplitude of the water level fluctuations in the sand 

decay with respect to the distance from the entry boundary. 

4.2.2.3 Identification of hydraulic conductivity Ks and comparisons with Kozeny-
Carman 
   Based on the measured results and the analytical study of the plane flow problem (see 

further below, section 4.3.2), it is assumed that the amplitude of fluctuations decays 

exponentially with distance:  

ሻݔሺܣ    ൌ ଴݁ିܣ ೣ
ಽವ (4-4) 

where, ܣ଴ is the amplitude of the entry water level fluctuations, ܣሺݔሻ is the amplitude of the 

water level fluctuations in the sand at the position of x, and ܮ஽ is the decay length. 

   It can be therefore obtained, from the measurements, the characteristic decay length ܮ஽ of 

water level fluctuations in the porous medium for the given period and amplitude (Fig. 4-6).  

Fig. 4-6 Plot of ln(A(x)/Ao) versus distance x from the right boundary of the sandbox (inlet): 
measured values (symbols) and straight line fit, in the case: T = 0.6896 s, A0 = 0.2521 cm.  

   From this figure, it can be seen that the semi-log linear fit is quite good. Now, according to 

the analytical theory, the following relationship between the decay length LD  (m), the 

hydraulic diffusion coefficient ܦ  (m2/s), and the angular frequency ߱ (rad/s) of the incoming 

wave can be achieved: 

 
஽ܮ ൌ ට஽

ఠ
 with ܦ ൌ ௄ೞൈ௛బ

ఏೞ
 (4-5) 

where ߠ௦ is the effective porosity of the sand (ߠ௦ ൌ 0.36 ݉ଷ ݉ଷ⁄  in this experiment), ܭ௦ is the 

saturated conductivity and ݄଴ is the initial water depth in the sand . Therefore, it the apparent 

hydraulic conductivity ܭ௦  can also be identified from the water level fluctuation 

measurements in the sand, and it is obtained  ܭ௦ ൌ 1.918 ൈ 10ିଵ m/s.  

0 2 4 6 8 10
-1.5

-1

-0.5

0

X(m)

 L
n(

A
(x

)/A
0)

 

 

Ln(A(x)/A0)=-0.1445x

 R2=0.9935



Chapter 4 Wave propagation through a vertical sandbox (small wave canal) 

83 
 

The estimated hydraulic conductivities by the measured water fluctuations and the 

formulas of Kozeny-Carman are shown in the Table 4-1. 

Table 4-1 Estimated saturated hydraulic conductivity 

Method 
Saturated water 

content 
 ௌ(m3/m3)ߠ

Estimated saturated hydraulic 
conductivity ܭ෡ௌ (m/s) 

Experiment 
(Sand diameter: 
d=0.8-2.5mm) 

0.36 

1.918E-1 

Empirical 
formula of 
Kozeny-
Carman 

Formulas Sand diameter 
d=0.8mm d=1.8mm d=2.5mm 

Formula1 3.536E-3 1.790E-2 3.453E-2 
Formula2 

(hk=3) 3.893E-3 2.983E-2 5.755E-2 

Formula3 8.839E-3 4.475E-2 8.632E-2 

   From the table, it can be seen that the estimated saturated hydraulic conductivity value 

௦ܭ ൌ 1.918 ൈ 10ିଵ݉/ݏ  is 5-10 times larger than the ones obtained by the formulas of 

Kozeny-Carman for the mean diameter d=1.8mm, which may be due to hydro-mechanical 

interactions or to other neglected effects (vertical velocities, capillary effects).   

4.2.3 Acknowledgment 
During the test of the sensors, the electronic specialist of the IMFT lab H. Ayroles was 

very helpful. In addition, L. Le Fur, the technician of GEMP, here strongly contributed to the 

installation of the sandbox. 

4.3 Linearization and analytical solution of the non-linear 
Boussinesq equation 
4.3.1 Linearized Boussinesq analytical solution under oscillatory conditions  
   The analytical solutions of Boussinesq’s plane flow equation submitted to the periodic water 

levels by linearization methods have been developed. The simplest approximation consists in 

linearizing hydraulic transmissivity ܶ ൌ .௦ܭ  ,ݔሺܪ .௦ܭ ≈ ܶ ሻ in the formݐ  ௦ is theܭ ,where ,כܪ

saturated hydraulic conductivity and כܪ is the mean water depth.  

   Two cases of boundary condition are treated, the first one (Case 1) in a finite domain with 

reflective boundary at right, the second (Case 2) in a semi-infinite domain with fixed water 

level at right:  

Case 1:  Left boundary condition (x=0):  ܪሺ0, ሻݐ ൌ ଴ܪ ൅  ሻݐሺ߱ݏ݋଴ܿܣ

Right boundary condition (x=L):  ࢗ · ࢔ ൌ 0  
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Case 2:  Left boundary condition (x=0): ܪሺ0, ሻݐ ൌ ଴ܪ ൅  ሻݐሺ߱ݏ݋଴ܿܣ

       Right boundary condition (semi-infinite domain: x→∞): ܪሺ∞, ሻݐ ൌ   ଴ܪ

   Here, ܪ is the water level in the porous media, ܪ଴ is the mean water level or the still water 

level, ܣ଴ is the amplitude of the fluctuation or oscillation, and  ߱ is angular frequency. 

   The equation (3) (Depuit-Boussinesq, in chapter 2) of one dimension in the x direction is 

rewritten as follows: 

Φ డு
డ௧

ൌ డ
డ௫

ቀܶ డு
డ௫

ቁ  (4-6) 

where, ܶ ൌ .ܭ  .and Φ  is the effective porosity ܪ

   The equation (4-6) is non-linear. We linearize it by making the approximation that ܶ ൎ

כܶ ൌ  :is supposed fixed to obtain כܪ and כܪܭ

Φ డு
డ௧

ൌ כܶ డమு
డ௫

 (4-7) 

   Supposing that ݄ሺݔ, ሻݐ ൌ ,ݔሺܪ ሻݐ െ  ଴, we apply the method of the variable separation toܪ

solve this problem.  

  For Case 1, we put that  

 ݄ሺݔ, ሻݐ ൌ ܽሺݔሻ݁௜ఠ௧ (4-8) 

   So the equation (4-7) becomes  డ௛
డ௧

െ כ்

஍
డమ௛
డ௫మ ൌ 0 , or namely, ܽᇱᇱሺݔሻ െ ݅߱ ஍

כ் ܽሺݔሻ ൌ 0. Then 

the corresponding characteristic equation of this 2nd order linear diffusion equation is: 

ଶݎ   െ ݅߱ ஍
כ் ൌ 0  

and hereof  ݎ ൌ േ݁௜గ ସ⁄ ට߱ ஍
כ் ൌ േ ଵା௜

√ଶ
ට߱ ஍

כ் ൌ േ ଵା௜
ఋ

 with  ߜ ൌ ටଶ்כ

ఠ஍
 

where, ܽሺݔሻ ൌ భశ೔ି݁ܣ
ഃ ௫ ൅ ݁ܤ

భశ೔
ഃ ௫ 

   At the right boundary, we put that the flux ݍ ൌ 0.0. According to the Darcy’s law, we have 

that ݍ ൌ െ݀ܽݎ݃ܪܭሺܪሻ. Then, ݍ ൌ െ݀ܽݎ݃ܪܭሺܪሻ ൌ 0.0. Since ݄ሺݔ, ሻݐ ൌ ,ݔሺܪ ሻݐ െ  ଴, thenܪ
ப୦ሺ୶,୲ሻ

ப୶
|୶ୀL ൌ 0.0. And according to equation (4-8), there is ܽᇱሺݔሻ|୶ୀL ൌ 0.0, while  aᇱሺxሻ ൌ

െAeିቀభశ౟
ಌ ቁ୶ ൅ Beቀభశ౟

ಌ ቁ୶, then  

A
B

ൌ ൬eቀభశ౟
ಌ ቁL൰

ଶ
 (4-9) 

   At the left boundary, we have  Hሺ0, tሻ ൌ H଴ ൅ A଴cosሺωtሻ, so hሺ0, tሻ ൌ A଴cosሺωtሻ. Then,  



Chapter 4 Wave propagation through a vertical sandbox (small wave canal) 

85 
 

hሺ0, tሻ ൌ aሺ0ሻe୧ன୲  and  aሺ0ሻ ൌ A଴. Or just as aሺxሻ ൌ Aeିቀభశ౟
ಌ ቁ୶ ൅ Beቀభశ౟

ಌ ቁ୶ , and then  

    aሺ0ሻ ൌ A ൅ B ൌ A଴ (4-10) 

   From equations (4-9) and (4-10), we obtain that  

       A ൌ Aబୣ
మ൬భశ౟

ಌ ൰L

ୣ
మ൬భశ౟

ಌ ൰L
ାଵ

 (4-11) 

       B ൌ Aబ

ୣ
మ൬భశ౟

ಌ ൰L
ାଵ

 (4-12) 

So aሺxሻ ൌ Aబୣ
మ൬భశ౟

ಌ ൰L

ୣ
మ൬భశ౟

ಌ ൰L
ାଵ

eିቀభశ౟
ಌ ቁ୶ ൅ Aబ

ୣ
మ൬భశ౟

ಌ ൰L
ାଵ

eିቀభశ౟
ಌ ቁ୶ and then 

  hሺx, tሻ ൌ ൭Aబୣ
మ൬భశ౟

ಌ ൰L

ୣ
మ൬భశ౟

ಌ ൰L
ାଵ

eିቀభశ౟
ಌ ቁ୶ ൅ Aబ

ୣ
మ൬భశ౟

ಌ ൰L
ାଵ

eିቀభశ౟
ಌ ቁ୶൱ e୧ன୲      

   Generally, hሺx, tሻ is written as follows: 

hሺx, tሻ ൌ Aబ

ୣమL
ಌୡ୭ୱቀమL

ಌ ቁାଵ
ቂe

మLష౮
ಌ cos ቀଶL

ஔ
ቁ cos ቀωt െ ୶

ஔ
ቁ ൅ e

౮
ಌcos ቀωt ൅ ୶

ஔ
ቁቃ    (4-13) 

   According to the initial condition hሺx, 0ሻ ൌ 0.0, then aሺLሻ ൌ 0.0, namely,  

 A
B

ൌ െ ൬eቀభశ౟
ಌ ቁL൰

ଶ
 (4-14) 

   From equations (4-8) and (4-13),  ൬eቀభశ౟
ಌ ቁL൰

ଶ
ൌ 0.0, namely, cos ቀL

ஔ
ቁ ൌ 0.0 , and then the 

supplementary constraint is obtained as follows:     

 L ൌ L୬ ൌ ቀଵ
ଶ

൅ nቁ π ൈ δ, ሺn ൌ 0, 1, 2, … ሻ (4-15) 

   Finally, the linearized analytical hydraulic head for the oscillatory boundary condition case 

1 is written as follows:  

Hሺx, tሻ ൌ H଴ ൅ Aబ

ୣమL
ಌୡ୭ୱቀమL

ಌ ቁାଵ
ቂe

మLష౮
ಌ cos ቀଶL

ஔ
ቁ cos ቀωt െ ୶

ஔ
ቁ ൅ e

౮
ಌcos ቀωt ൅ ୶

ஔ
ቁቃ (4-16) 

where, δ ൌ ටଶTכ

ன஍
  L ൌ L୬ ൌ ቀଵ

ଶ
൅ nቁ π ൈ δ, ሺn ൌ 0, 1, 2, … ሻ, and L is the length of the domain.  

   As a result, for a periodic stationary regime as t ∞, the result equation (4-16) works with 

the constraint on the parameter of the problem L, the length of the domain. 

   For Case 2 (semi-infinite domain with fixed water level at infinity) the mathematical 

procedure is similar to that of Case 1, and the corresponding result is obtained as follows:  
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Case 2: ܪሺݔ, ሻݐ ൌ ଴ܪ ൅ ଴݁ିೣܣ
ഃܿݏ݋ ቀ߱ݐ െ ௫

ఋ
ቁ  (4-17) 

4.3.2 Physical interpretation 
   For Case 1 (finite domain with reflective boundary at one end) the basic form of the 

equation (4-13) can also be written as follows 

݄ሺݔ, ሻݐ ൌ ೣି݁ܣ
ഃܿݏ݋ ቀ௫

ఋ
െ ቁݐ߱ ൅ ାೣ݁ܤ

ഃܿݏ݋ ቀ௫
ఋ

൅  ቁ  (4-18)ݐ߱

   The equation (4-16) indicates that in its propagation domain, the wave is the combination of 

a forward wave (right wave) and a backward wave (left wave); at the same time, the forward 

wave amplitude decays and the backward wave amplitude amplifies with on exponential law 

with respect to the horizontal distance from the fluctuation boundary. 

   All the terms are explained in detail as follows:  

ೣି݁ܣ ➢
ഃܿݏ݋ ቀ௫

ఋ
െ   ቁ: forward wave (right wave)ݐ߱

ାೣ݁ܤ ➢
ഃܿݏ݋ ቀ௫

ఋ
൅   ቁ: backward wave (left wave)ݐ߱

➢ Phase velocity: థܸ ൌ ఠ
భ
ഃ

ൌ  ߜ߱

➢ Decay length: δ ൌ ටଶTכ

ன஍
 

➢ Wave length: λ ൌ 2πδ. 

   Similarly, when the left boundary condition is given as sinusoidal water level fluctuation 

and the right condition is given a flux equal to zero, the wave in the propagation domain  is 

also the combination of a forward wave (right wave) and a backward wave (left wave).  

Meanwhile, for the case that the right boundary condition corresponds to constant water level, 

the wave in the propagation domain just consists of one progressive wave.  

  As a result, for the various types of boundary conditions, the forward wave amplitude decays 

and the backward wave amplitude amplifies exponentially with respect to the horizontal 

distance from the fluctuation boundary. 

4.3.3 Posterior analysis of various effects and limitations (inertial effects, 

acceleration, erosion) 
4.3.3.1 Horizontal maximum acceleration terms and max Reynolds number 

   According to equation (4-17), Darcy’s equation is written as follows: 

ܳ௦ ൌ െܭ௦ܪሺݔ, ሻݐ డுሺ௫,௧ሻ
డ௫
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   Then the Darcy flux density is:  

௫ݍ ൌ ொೞ
ுሺ௫,௧ሻ ൌ െܭ௦

డுሺ௫,௧ሻ
డ௫

   (4-19) 

    And the water flow velocity in the porous media is:  

V୶ ൌ ୯౮
θ౩

ൌ െ K౩
θୱ

பHሺ୶,୲ሻ
ப୶

 (4-20) 

      According to the equation (4-17), for the boundary conditions of Case 2:  

 பHሺ୶,୲ሻ
ப୶

ൌ െ Aబ
δ

eି ౮δሺcos ቀωt െ ୶
δ
ቁ ൅ sin ቀωt െ ୶

δ
ቁሻ 

      As cos ቀωt െ ୶
δ
ቁ ൅ sin ቀωt െ ୶

δ
ቁ ൌ √2cos ሺωt െ ୶

δ
െ ଵ

√ଶ
ሻ, then 

பHሺ୶,୲ሻ
ப୶

ൌ െ Aబ
δ

eି౮
δ√2cos ሺωt െ ୶

δ
െ ଵ

√ଶ
ሻ   (4-21) 

And accordingly, at the entry boundary ሺx ൌ 0ሻ, the maximum horizontal water level gradient 

is obtained as follows: 

பHሺ୶,୲ሻ
ப୶ ୫ୟ୶

ሺ0, tሻ ൌ െ√2 Aబ
δ

   (4-22) 

and then  

,௫௠௔௫ሺ0ݍ ሻݐ ൌ ௦ܭ2√
஺బ
ఋ

  (4-23) 

   According to the equation (4-20),  V୶ሺx, tሻ ൌ െ K౩
θୱ

பHሺ୶,୲ሻ
ப୶

ൌ √2 K౩
θୱ

Aబ
δ

eି౮
δcos ሺωt െ ୶

δ
െ ଵ

√ଶ
ሻ, 

and  so the maximum water flow velocity in the porous media is obtained as follows: 

V୶୫ୟ୶ሺ0, tሻ ൌ േ√2 K౩
஘ୱ

Aబ
ஔ

    (4-24) 

   As a result, the horizontal acceleration is γ ൌ ୢ୴౮ሺ୶,୲ሻ
ୢ୲

ൌ െ√2ω K౩
θୱ

Aబ
δ

eି౮
δsin ሺωt െ ୶

δ
െ ଵ

√ଶ
ሻ, 

and so  

γ୫ୟ୶ሺ0, tሻ ൌ േ√2 K౩
θୱ

Aబ
δ
ω ൌ ଶπ

T
v୶୫ୟ୶   (4-25) 

4.3.3.2 Analysis and discussion 

   For the experiment in the small wave canal in the IMFT, the conditions are: physical 

properties of the sand: Kୱ ൌ 1.918e െ 1m/s,  θୱ ൌ 0.36m3/m3, the oscillatory water level 

characteristics: ܶ ൌ ݏ1.95 ଴ܣ , ൌ 0.23ܿ݉ , and the mean water level ܪ଴ ൌ ݄ݐ݌݁݀ ݎ݁ݐܽݓ ൌ

6.1ܿ݉, and then, the following characteristic parameter values can be computed: 

ߜ ൌ ටଶ௄ೞுబ
ఏೞ

்
ଶగ

ൌ 0.142݉  

பHሺ୶,୲ሻ
ப୶ ୫ୟ୶

ൌ െ√2 Aబ
δ

ൌ െ0.0229  
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௫௠௔௫ݍ ൌ ௦ܭ2√
஺బ
ఋ

ൌ 4.393݁ െ 3 (m2/s) 

V୶୫ୟ୶ሺ0, tሻ ൌ √2 ൈ ଵ.ଽଵ଼ୣିଵ
଴.ଷ଺

ൈ ଴.଴଴ଶଷ
଴.ଵସଶ

ൌ േ0.0122(m/s) 

γ୫ୟ୶ሺ0, tሻ ൌ ଶπ
T

v୶୫ୟ୶ ൌ േ ଶπ
ଵ.ଽହ

כ 0.0122 ൌ േ0.0393ms-2 

ܴ݁ଵ ൌ ௏ೣ ೘ೌೣௗೞೌ೙೏
ఔ

ൌ ଴.଴ଵଶଶൈଶ.ହ௘ିଷ
ଵ.଴଴ହ௘ି଺

ൌ 30.348 (d=2.5mm) 

ܴ݁ଵ ൌ ௏ೣ ೘ೌೣௗೞೌ೙೏
ఔ

ൌ ଴.଴ଵଶଶൈଵ.଼௘ିଷ
ଵ.଴଴ହ௘ି଺

ൌ 21.851 (d=1.8mm) 

ܴ݁ଵ ൌ ௏ೣ ೘ೌೣௗೞೌ೙೏
ఔ

ൌ ଴.଴ଵଶଶൈଵ.଼௘ିଷ
ଵ.଴଴ହ௘ି଺

ൌ 9.711 (d=0.8mm) 

ܴ݁ଶ ൌ ௤ೣ೘ೌೣඥ௞ವೌೝ೎೤

ఔ
ൌ 4.393݁െ3 ൈ√ଵଽ.଺ସଽ௘ିଽ

ଵ.଴଴ହ௘ି଺
ൌ 0.613  

ሺ1 െ ௦ሻߠ ఘೞିఘೢ
ఘೢ

ൌ ሺ1 െ 0.36ሻ ଶ.଺ହିଵ.଴
ଵ.଴

ൌ1.056 

Analysis and discussion of the above results: 

(1) The horizontal maximum acceleration γ୫ୟ୶ ൌ 0.0393ms-2 is much smaller than the 

gravity acceleration g=9.81ms-2; 

(2)  Since the mean diameter of the sand is about 2.5mm, the mean Reynolds number of 

the oscillatory flow in the open water at the entry boundary is much bigger than 10, 

while the Reynolds number of the oscillatory flow in the porous media at the entry 

boundary is equal to 0.613, much smaller than 10.  

(3) The key question remains:  what is the criteron for the initial erosion? 

4.4 Numerical simulations of wave propagation in the sandbox 

4.4.1 Numerical simulation with vertically hydrostatic Boussinesq model 
 Simulation domain 

  Simulated length: Lx=0.05m; 

  Grid size: dx=0.0001m, dy=0.0001m. 

 Initial condition 

          Initial water head: ܪூ௡ ൌ 0.2݉  

 Boundary condition 

Left boundary: ܪሺ0, ሻݐ ൌ ଴ܪ ൅ ܽ଴݊݅ݏሺ߱ݐሻ with ܽ଴ ൌ 0.1݉ ൌ ଴ܪ ൈ 50% and ܶ ൌ  ݏ0.2

         Right boundary: ܪሺܮ, ሻݐ ൌ  ଴ (water level=constant)ܪ
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 Physical properties of the porous media 

௦ߠ ൌ 0.2 ݉ଷ ݉ଷ⁄ ௦ܭ ,  ൌ1.0E-3(m/s) 

 Duration of the simulation and numerical parameters 

   We have modeled 3 periods: t=3T=0.6s.  The numerical caculation time parameters and the 

numerical criteria are shown in Table 4-2.  

Table 4-2 Numerical parameters (INPUT1) for the calculation of  time step, non-
linear/outer (Picard) and linear/inner  iterations

Time step 

Intial time step DTIN=0.0001s 

Minimum time step DTMIN=0.0001s 

Maximum time step DTMAX=0.001s 

Time step multifier DTMUL=1.2 
No-linear 
iterations 
(Picard) 

Convergence criterion of pressure head ENLH3=1.0E-4 

Maximum number of no-linear iteration INLMAX=10 

Linear 
iterations 

Convergence criterion of pressure head ENORM3=1.0E-6 

Maximum number of linear iterations ITEND=800 

 Numerical behaviour of Bigflow during the simulation 

   The evolution of the total net discharge entering or outgoing by all the faces of the domain 

ܳ஻௢௨௡ௗ and the evolution of the discharge corresponding to the change in volume of water 

inside the domain during the time interval DT ܳெ௔௦௦ have been watched, as seen in the Fig. 4-

7. The evolution of the net volume of water entered or exited through all the sides of the field 

since the beginning of the simulation ஻ܸ௢௨௡ௗ (accumulative), and the evolution of the volume 

of water that has formed or that disappeared within the area since the beginning of the 

simulation ெܸ஺ௌௌ (accumulative) have also been watched, as seen in the Fig. 4-8 . In the Fig. 

4-7, the evolution of ܳெ௔௦௦ completely superimposes on the evolution of ܳெ௔௦௦. In the Fig. 4-

8, the evolution of ஻ܸ௢௨௡ௗ coincides very well with the evolution of ெܸ௔௦௦. 
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Fig. 4-7 Evolution of   and  Fig. 4-8 Evolution of  and  

   It is clearly observed that the evolution of ܳெ௔௦௦ and ܳ஻௢௨௡ௗ and the one of  ஻ܸ௢௨௡ௗ and 

ெܸ௔௦௦ has the same period with that of the left entry water level fluctuation. 

4.4.2 Comparisons of the numerical results and analytical solution 
    The numerical and the corresponding analytical transient profiles of water height ܪሺݔ,  ሻatݐ

time t = T/4, T/2, 3T/4 and T are shown in the Fig. 4-9 ((a): analytical; (b) numerical) and Fig. 

4-10. In spite of a few differences, the main features are the same for the linear/nonlinear 

solutions; in particular, it can be seen that the decay length of the progressive wave 

(progressing to the right) is on the same order or even smaller than its wavelength.  
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(a) Analytical 
 

(b) Numerical (Bq model) 

Fig. 4-9 Transient profiles of water height ( ),H x t at time t = T/4, T/2, 3T/4 and T, where T 
(0.2s) is the period of the water level imposed at the left boundary. Note: the amplitude of 
boundary oscillations is 50% of the mean water depth 0H  and 0H =0.2m. 

 

Fig. 4-10 Water level profile ( )0,H x t at 0t =T/4, T, 3T/4 and T: response to oscillations at 

left in the case: 0H =0.2m, 0 0/A H =0.5, sK =1.0E-3m/s, sθ =0.2m3/m3 and 0.2T s= . 

   In addition, from the evolution of the water level ܪሺݔ଴, ଴ݔ ሻ atݐ ൌ ߜ 2⁄ =0.004m shown in 

Fig. 4-11, it can be seen that the numerical water level agrees very well with the analytical 

one, and the biggest differences always appear at the minimum values of the analytical water 

level.  
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Fig. 4-11 Evolution of water level ( )0,H x t : response to oscillations at 0 / 2x δ= =0.004m, 
where δ is the wave decay length. 

4.5 Analysis of the maximum error of analytical results  
4.5.1 Introduction and definition of maximum errors 

The linear equation can be solved by a simple algebraic operation, while the non-linear 

equation cannot be solved by algebraic operations and only can be solved by a complicated 

numerical method with a great number of iterations. Therefore, lots of non-linear problems 

are usually linearized and applied widely to solve the real problems. However, due to the 

linearization of the equation, the analytical only well agrees with the numeric within a certain 

range. Therefore, the establishment of an error criterion and the study of the applicable range 

are very important. 

In this section, the maximum relative error equation is built up. The maximum errors of 

the analytical results for the boundary condition case 3 will be investigated by comparing the 

corresponding numerical results with 2D Boussinesq model. 

Two error formulas are proposed to analyser the errors of the analytical water head: one is the 

absolute value of the difference of the numerical hydraulic head and the corresponding 

analytical hydraulic head relative to the average water depth, namely, 

  εMୟ୶ଵ ൌ max୲אሾ୲,୲୫ୟ୶ሿ
หHN౫ౣ౛౨౟ౙ౗ౢሺ୲ሻିH౗౤౗ౢ౯౪౟ౙ౗ౢሺ୲ሻห

Hబ
    (4-26) 

and the other one is the absolute value of the difference of the numerical hydraulic head and 

the corresponding  analytical hydraulic head relative to the amplitude of the fluctuation, 

namely, 

  εMୟ୶ଶ ൌ max୲אሾ୲,୲୫ୟ୶ሿ
หHN౫ౣ౛౨౟ౙ౗ౢሺ୲ሻିH౗౤౗ౢ౯౪౟ౙ౗ౢሺ୲ሻห

Aబ
  (4-27) 
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4.5.2 Calculation and analysis of the maximum errors on water levels 

4.5.2.1 Numerical simulations for assessing the maximum errors 
In total, 12 cases of numerical simulations have been modelled to calculate the analytical 

maximum errors. It is noted that in each case, according to the ratio ܣ଴ ⁄଴ܪ , 9 sub-cases have 

been all modelled . In each case, the limit condition of the periodic fluctuation of the cosine 

on the left boundary is identically imposed, except changing the average hydraulic head ܪ଴, 

or the amplitude ܣ଴of the fluctuation, or the period ܶ. That is to say, on the left boundary, the 

imposed entry water level fluctuation is ܪሺ0, ሻݐ ൌ ଴ܪ ൅ ܽ଴ܿݏ݋ ቀଶగ
்

 ቁ. In addition, on the rightݐ

boundary, uniform head is imposed to be equal to ܪ଴  and the initial condition is also a 

uniform head equal to ܪ଴. 

During the simulations, the instantaneous spatial distributions of the water level ܪሺݔ,  ଴ሻݐ

in the x direction indicate that the wave decay length δ has an important influence on the 

propagation distance of the fluctuation put on the left boundary. At the position with the 

distance of about 6δ from the fluctuation boundary, the total flux of the right boundary is 

about 1.0E-7m/s. Therefore, in the each simulation case, the simulated length is taken to be 

equal to 6δ, which means that the calculated domain varies with respect to the wave decay 

length δ. 

According to the analytical equation (4-17) for the analytical case 3, the amplitude of the 

propagation of the fluctuation in the porous media decays with the coefficient of the 

exponential negative index, namely ܽ଴݁ିೣ
ഃ , and therefore  ݀ݔ ൏ ߜ 10⁄  for each simulation. 

The maximum time step is taken as ܦ ெܶ௔௫ ൌ ܶ 200⁄ ا ܶ,  the initial time step ܦ ூܶ௡ ൌ

ܶ 2000⁄  and the minimum time step ܦ ெܶ௜௡ ൌ ܦ ூܶ௡ ൌ ܶ 2000⁄ .  

Here, it is worthy noted that the calculation maximum time interval have not only a very 

important influence on the numerical calculation precision, but also on the visualisation of the 

propagation of the fluctuation. The distance interval mainly plays a great role in the 

visualisation of the fluctuation propagation. 

In addition, it has been set that the convergence criteria of the non-linear iteration 

S=1.0E-4 and the max number of non-linear iterations=15, while the convergence criteria of 

linear iterations=1.0E-6, and the max number of linear iterations=500.  

The main parameters of the simulated cases are listed in the Table 4-3. 
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Table 4-3 Main parameters for the cases of the numerical simulations  
Cases ܶ 

(s) 
 ܭ

(m/s) 
 ଴ܪ
(m) 

Φ 
(m3/m3)

 ߜ
(m) 

ܮ ൌ  ߜ6
(m) 

1 0.2 1.00E-03 0.2 0.20 0.0080 0.0479 
2 10 1.00E-03 0.2 0.20 0.0564 0.3385 
3 0.2 1.00E-03 0.5 0.20 0.0126 0.0757 
4 0.2 1.00E-03 10 0.20 0.0564 0.3385 
5 10 1.00E-03 10 0.20 0.3989 2.3937 
6 3600 1.00E-03 10 0.20 7.5694 45.4163 
7 3600 1.00E-05 10 0.20 0.7569 4.5416 
8 3600 1.00E-03 10 0.20 5.3524 32.1142 
9 3600 1.00E-03 1 0.40 2.3937 14.3619 
10 43200 1.00E-03 3 0.20 14.3619 86.1714 
11 43200 1.00E-03 5 0.20 18.5411 111.2468 
12 43200 1.00E-03 10 0.20 26.2211 157.3268 

N.B. Each case includes the 9 sub-cases: 
଴ܣ                                                  ⁄଴ܪ =0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8 and 0.9. 

4.5.2.2 Time of occurrence of the maximum errors 
   From the above, we know that the maximum errors between the analytical and the 

numerical results always appear at the moment when the analytical hydraulic head reaches the 

minimum. Therefore, the time of the appearance of the maximum errors can be obtained by 

taking the derivative of the analytical equation with respect to the time t. The result of the 

derivative indicates that the time is a function of the position x, that is to say, the maximum 

error at the different position x occurs at the different time. As a result, the time of the 

maximum error is 

ఌ೘ೌೣݐ  ൌ ௫
ఋఠ

൅ ்
ଶ

൅ ܶ ൈ ݅ሺ݅ ൌ 1, 2, … ሻ  (4-28) 

4.5.2.3 Maximum errors of analytical versus numerical water levels (results) 

   After the minimum analytical hydraulic head are calculated with the analytical equation 

(4-17) , and at the same time, the numerical hydraulic head at the corresponding time of the 

minimum analytical water head are found, the maximum relative errors can be obtained with 

the error formula (4-26) and the error formula (4-27) .  

The profiles of the distribution of the maximum relative errors of the analytical water heads 

to the corresponding numerical values with the horizontal distance and the ratio of the 

amplitude to the mean water depth ܣ଴ ⁄଴ܪ  for all the simulated cases are plotted to observe 

the results.  
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   The distribution of the maximum relative error with the x and the ratio ܣ଴ ⁄଴ܪ  for the 

numerical case 1 with the error formula (4-26) and the one with the error formula (4-27) are 

respectively illustrated in Fig. 4-12 (a) and Fig. 4-13 (a).  

 
(a) ߝெ௔௫ሺܣ଴ ⁄଴ܪ ,  ሻݔ

 
(b) ߝெ௔௫ሺܣ଴ ⁄଴ܪ ሻ 

Fig. 4-12 Profile of the distribution of the maximum relative error  and the 

relationship curve of the  with respect to dimensionless parameter   with the 
formula 1 for the numerical case 1: 

0 0.2H m= , 0.2T s= , 3 3Φ 0.2m / m= , 1.0 3 /K E m s= − , 0.008mδ = , 0.05 6xL m δ= ≈ , 3Maxt T=  

0 0/A H =0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9. 

N.B.: Numerical analytical
Max1

t [ t , tmax ]
0

H (t) H (t)
ε max

H∈

−
=  

   The corresponding relationship curve of the maximum error ߝெ௔௫ with respect to 

dimensionless parameter  ܣ଴ ⁄଴ܪ  for the numerical case 1 with the formula 1 and the one with 

the formula 2 are respectively shown in Fig. 4-12 (b) and Fig. 4-13 (b). 
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(a) ߝெ௔௫ሺܣ଴ ⁄଴ܪ , ଴ܣெ௔௫ሺߝ ሻ (b)ݔ ⁄଴ܪ ሻ 

Fig. 4-13 Profile of the distribution of the maximum relative error  and the 
relationship curve of the  with respect to dimensionless parameter   with the 
formula 2 for the numerical case 1: 

0 0.2H m= , 0.2T s= , 3 3Φ 0.2m / m= , 1.0 3 /K E m s= − , 0.008mδ = , 0.05 6xL m δ= ≈ , 3Maxt T=  

0 0/A H =0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9. 

N.B.: Numerical analytical
Max 2

t [ t , tmax ]
0

H (t) H (t)
ε max

A∈

−
=  

It is found that: (1) the maximum errors always appear at around the position of  ݔ ൌ ߜ 2⁄ ; 

(2) the maximum errors have no relationship with the decay length ߜ and they stay constant 

with the increasing of  (3) ;ߜ the maximum errors have a good relationship with the ratio of 

the amplitude to the mean water depth ܣ଴ ⁄଴ܪ . 

   Therefore, we suppose that: 

ெ௔௫ߝ ൌ ߚ ቀ஺బ
ுబ

ቁ
ఈ

   (4-29) 

   Then the coefficients ߙ and ߚ are obtained with the Basic Fitting of Matlab tool. They are 

respectively: ߙଵ ൌ 2.309 and ߚଵ ൌ ݁ିଵ.ଷହସ  for the maximum errors with the error formula 

(4-26) and ߙଶ ൌ 1.309 and ߚଶ ൌ ݁ିଵ.ଷହସ for the error formula (4-27). 

As a result, we obtain: 

ெ௔௫ଵߝ ൌ ݁ିଵ.ଷହସ ቀ஺బ
ுబ

ቁ
ଶ.ଷ଴ଽ

  (4-30) 

And 

ெ௔௫ଶߝ ൌ ݁ିଵ.ଷହସ ቀ஺బ
ுబ

ቁ
ଵ.ଷ଴ଽ

   (4-31) 

   It can be seen that equations (4-30) and (4-31) have the same coefficient ߚ. 
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   4.5.3 Applicable range of the analytical solution 

   If the maximum relative error of the analytical and the numerical water head can’t be 

greater than 10%, the corresponding ratios of the amplitude to the mean water depth ܣ଴ ⁄଴ܪ  

can be obtained with the equation (4-30) and (4-31) for the two error formulas: 

0.0 ൑ ஺బ
ுబ

൑ 0.66  if ߝெ௔௫ଵ ൑ 10% (4-32) 

0.0 ൑ ஺బ
ுబ

൑ 0.48  if ߝெ௔௫ଶ ൑ 10% (4-33) 

   It can be seen that the error formula (4-26) is more strict than the error formula (4-27). 

4.6 Conclusion 
   In this chapter, three approaches: a laboratory experiment, an analytical solution, and 

numerical simulations have respectively been used to investigate the wave propagation in a 

sandbox with vertical boundary. 

A small “Darcy-scale” experiment has been conducted in a water wave canal at IMFT. In 

this experiment, two pressure sensors and one capacitive sensor have been tested. The 

capacitive sensor developed by the IMFT laboratory was chosen to measure the water level 

fluctuations in the vertical sandbox, considering two important factors: the size of the 

sandbox, and the sensitivity of the sensor with respect to short period fluctuations. 

   Based on the analytical study of the plane flow problem (see further below),   the 

assumption is made that the amplitude of fluctuations decays exponentially with distance, 

which  has been well verified by the measured water level fluctuations, and accordingly, the 

saturated hydraulic conductivity of the sand in the sandbox in the wave canal of IMFT has 

been obtained. The estimated value ܭ௦ ൌ 1.918 ൈ 10ିଵ݉/ݏ is 5-10 times larger than the ones 

obtained by the formulas of Kozeny-Carman for the mean diameter d=1.8mm, which may be 

due to hydro-mechanical interactions or to other neglected effects (vertical velocities, 

capillary effects).   

The linearized solutions of the one dimensional nonlinear equation of Dupuit-Boussinesq 

for the saturated plane flow with a free surface has been obtained for 2 cases of boundary 

conditions: on the left boundary, it is respectively imposed the periodic water level 

fluctuations of the sine wave and cosine wave; on the right boundary, it is respectively 

imposed zero flux and the constant water level.The linearized solutions indicate that: 
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• for the case with the right boundary of zero flux, the wave in its propagation domain 

in the porous media is the combination of a forward wave (right wave) and a 

backward wave (left wave), while for the case with right boundary of constant water 

level, the wave in the propagation domain is just consisted of one progressive wave 

(forward wave);  

• for 2 cases of boundary condition, the amplitude of the forward wave decays and the 

one of the backward wave amplifies by the exponential law with respect to the 

horizontal distance from the fluctuation boundary.   

   In addition, the criterion for the erosion at the interaction boundary: porous media/ open 

water with the forced entry water level fluctuation is always an open question to be discussed. 

   An example of the analytical case 2 (boundary condition case 2) has been simulated with 

vertically hydrostatic Boussinesq model. In this example, the fluctuation characteristics 

parameter: the ratio of the fluctuation amplitude to the water depth is taken as 0.5. The 

compared results of the simulated water heads and the corresponding analytical values 

demonstrate that:  

• in spite of a few differences, the main features are the same for the linear/nonlinear 

solutions,  and  in particular, the decay length of the progressive wave (progressing to 

the right) is on the same order or even smaller than its wavelength;  

• the evolution of the simulated water level agrees very well with that of the analytical 

one, and the biggest differences of the water heads always appear at the minimum 

values of the analytical water levels.  

   Two error formulas have been built up to analyze the errors of the analytical water head: 

one is the absolute value of the difference of the numerical hydraulic head and the 

corresponding analytical hydraulic head relative to the average water depth, and the other one 

is the absolute value of the difference of the numerical hydraulic head and the corresponding 

analytical hydraulic head relative to the amplitude of the fluctuation. Through the 

comparisons of the analytical solutions with the boundary case 2 and the corresponding 

simulated water heads for 12 numerical cases, it has been obtained: 

• The maximum errors of the analytical water head always appear at the time when the 

analytical hydraulic head arrives at the minimum and the corresponding time is the 

function of the position x; 
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• The maximum errors of the analytical water head always appear at around the position 

of  ݔ ൌ ߜ 2⁄  and they have nothing related with the decay length ߜ; 

• The maximum errors of the analytical water head are the power functions with respect 

to the ratio of the amplitude to the mean water depth ܣ଴ ⁄଴ܪ , with a same coefficient 

for the two maximum errors formulas,  and they are: 

ெ௔௫ଵߝ ൌ max୲אሾ୲,୲୫ୟ୶ሿ
หHN౫ౣ౛౨౟ౙ౗ౢሺ୲ሻିH౗౤౗ౢ౯౪౟ౙ౗ౢሺ୲ሻห

Hబ
ൌ ݁ିଵ.ଷହସ ቀ஺బ

ுబ
ቁ

ଶ.ଷ଴ଽ
  

ெ௔௫ଶߝ ൌ max୲אሾ୲,୲୫ୟ୶ሿ
หHN౫ౣ౛౨౟ౙ౗ౢሺ୲ሻିH౗౤౗ౢ౯౪౟ౙ౗ౢሺ୲ሻห

Aబ
ൌ ݁ିଵ.ଷହସ ቀ஺బ

ுబ
ቁ

ଵ.ଷ଴ଽ
  

• For maximum errors lower than 10%, ܣ଴ ⁄଴ܪ  must be less smaller than 0.66 with the 

maximum error formula 1 (ߝெ௔௫ଵ), and while the maximum ratio of ܣ଴ ⁄଴ܪ  is 0.48 

with the maximum error formula 2 (ߝெ௔௫ଶ). This means that the error of formula 2 is 

more strict than the error of formula 1. The analytical hydraulic head is in a very good 

agreement with the numerical result when ܣ଴ ⁄଴ܪ ൑ 0.48. 

   For the numerical simulation, the decay length ߜ  has an important influence on the 

propagation length of the fluctuation on the limit boundary. The simulation length should be 

greater than or equal to  6ߜ, and otherwise, due to the influence of the fixed hydraulic head on 

the opposite boundary, the distribution of the space and the value of the maximum error will 

both change.  

   The existing problems for the analytical solution are the following: 

• the initial error of all results are always very big; 

• when A଴ H଴⁄ ൐ 0.5, the maximum errors are greater than 10%. 

   In general, the non-linear analytical solution will be better than the linear analytical solution 

for the non-linear problem, and maybe it will be able to solve the existing problem. In fact, 

the asymptotic method of Polubarinova has been tried, but the results have not been 

completely analyzed and so they are not used here. Other non-linear methods should be 

investigated in order to improve on the analyses of the nonlinear Boussinesq equation in the 

presence of fluctuations (other effects like bottom slope). 
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Chapter 5: Water level measurements in a sandy 

beach: the Barcelona wave canal experiment 

5.1 Introduction 

      Beach groundwater interacting with tides, waves and swash is a complex and dynamic 

system. Groundwater fluctuations driven by oceanic oscillations enhance water exchange 

between the ocean and coastal aquifer. Interaction between swash dynamics and groundwater 

may also be important with regard to onshore sediment transport and beach profile evolution. 

There is currently limited understanding of how the beach groundwater system responds to 

oceanic forcing at various frequencies. Especially, models of water table response to wave 

forcing are less developed and require verification, and relatively few studies have reported 

simultaneous measurements of beach groundwater and swash. Improved predictions of swash 

zone sediment transport and beach profile evolution cannot be achieved unless the beach 

groundwater are better understood (Horn, 2006 [19]). 

   A “wave-beach” experiment was conducted in a large water wave canal equipped with a 

wave generator (CIEM flume in Barcelona). The experiment was part of a European project, 

HYDRALAB-SANDS, undertaken in collaboration between the HYDRALAB laboratory in 

Barcelona (Spain) and the OTE group of IMFT laboratory (Toulouse, France). The 

experiment was initially designed to measure the erosion of the swash zone in a sandy beach, 

with periodic water level oscillations.  

   This work focuses on a related problem, namely, the effect of surface water waves and 

swash zone phenomena on subsurface oscillations in the sandy porous medium, and the 

possible interactions between surface and subsurface oscillations. In this experiment, water 

level fluctuations H(t) in the sloping sandy beach were measured by 7 capacitive sensors 

(Hi(t) indicates the water level fluctuations measured by the i-th sensor). 
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5.2 Laboratory experiment: sloping sand beach in wave canal 

(Hydralab Barcelona) 

5.2.1 Experiment description and methodology 

5.2.1.1 Infrastructure 
      The wave canal is 100m long, 3m wide and 5m high. At the back end of the canal, we 

have designed a mechanical wave generator (“batteur”) with adjustable period and amplitude. 

The schema of the infrastructure of the wave canal is showed in Fig. 5-1. 

 
Fig. 5-1 Schema of  the infrastructure of the wave canal 

5.2.1.2 Sediment characteristics 
     In this experiment, we have considered the erosion of the sand-bed (beach). The mean 

diameter d50 of the sand is about 0.20 mm. The grain size distribution is shown in Fig. 5-2 and 

in Table 5-1. The sample statistics of the sand are listed in Table 5-2. The grain size 

distribution and the sample statistics of the sand have been provided by Spanish group. In 

addition, the beach has a slope of 1/15. 

Fig. 5-2 Sand size distribution of the sediments 
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Table 5-1 Grain size distribution Table 5-2 Sample statistics               
50-60  

Total 
Weight 

199,192   

 

Sieve 
(mm) 

Weight %  

0.710 0.020 0.010% 0.010% 
0.595 0.027 0.014% 0.024% 
0.500 0.668 0.336% 0.360% 
0.350 26.006 13.093% 13.453% 
0.300 66.983 33.723% 47.175% 
0.210 54.242 27.308% 74.484% 
0.149 36.515 18.384% 92.867% 
0.125 13.070 6.580% 99.447% 
0.105 0.738 0.372% 99.819% 
0.088 0.240 0.121% 99.940% 
0.063 0.050 0.025% 99.965% 

Remainder 0.070 0.035% 100.000%
 198.629   

5.2.1.3 Instrumentation 
     Before the experiment, the 7 capacitive sensors had been calibrated in the IMFT 

laboratory, as shown in Fig. 5-3.  

Fig. 5-3  Calibration of the capacitive sensors of the groundwater level for the  Barcelona  
experiment 

   As mentioned in Chapter 4, electric voltage output signal corresponding to the capacitance 

of the sensor has a linear relationship with the measured water level: 

( )U volt A H B= × +   (5-1) 
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   Where, U is the electric voltage output signal, H is the measured water level, A is the slope 

of the linear line and B is its intercept. 

   After measuring a series of water levels and the corresponding electric voltage output 

signals, by the linear line fitting, the coffficients A and B can be obtained. The coefficients A 

and B obtained in the static clear water at IMFT are showed in Table 5-3. 

Table 5-3 Coefficient values of the linear relationship between the voltage output signal and 
the measured water level in the static clear water for seven capacitive sensors 

Coefficients 
Capacitive sensors 

No.1 No.2 No.3 No.4 No.5 No.6 No.7 
A 0.0643 0.0579 0.0609 0.0661 0.068 0.0689 0.0783 
B -0.2429 0.0042 -0.132 -0.3199 -0.3551 -0.4078 -0.5078 

    In the Barcelona experiment, the reference water level or base water level is different from 

the one in IMFT, and the static water level or initial water level 2.47m has been chosen as the 

base water level. Due to this, the coefficients B for all the sensors had changed, and the new 

coefficients B for the experiment are showed in Table 5-4.  Considering about the sensitivity 

of the capacitive sensor, the coefficients B were recalibrated for all the sensors before the test 

of each day, even though the initial water level of each day was always kept the same 2.47m 

  



Chapter 5 Water level measurements in a sandy beach: the Barcelona wave canal experiment 

104 
 

Table 5-4 Coefficient values of the linear relationship between the voltage output signal and 
the measured water level in Barcelona wave canal for seven capacitive sensors 

Test date Coefficients 
Capacitive sensors 

No.1 No.2 No.3 No.4 No.5 No.6 No.7 
12/03/2008 B 1.4440 1.4140 0.9120 1.5430 1.2070 1.2070 1.3140 
13/03/2008 B 1.4320 1.4140 0.9120 1.5430 1.2070 1.2070 1.3140 
14/03/2008 B 1.4130 1.4180 0.9268 1.5700 1.2320 1.2320 1.3225 
17/03/2008 B 1.3940 1.3940 0.9130 1.5210 0.8931 0.6477 0.4700 
18/03/2008 B 1.3940 1.3840 0.9225 1.5310 0.8931 0.6477 0.4700 
19/03/2008 B 1.3940  1.6290 1.4740 0.8833 0.6281 0.4700 
20/03/2008 B 1.3940  1.6290 1.4740 0.8833 0.6281 0.4700 

All the 
tests A 0.0643 0.0579 0.0609 0.0661 0.068 0.0689 0.0783 

Note: 
         Sensor No.2 had fallen down in the wave canal since the local serial 8 test carried on the 
18 March 2009. 

As shown in Fig. 5-4 and Fig. 5-5 Fig. 5-5, 7 capacitive sensors were installed at regular 

intervals of about 1.5 m in the beach in order to measure groundwater level fluctuations. In 

particular, one sensor (No.1) was placed near the still water / beach boundary to measure the 

water level fluctuations corresponding to the entry condition of the model.  

 

Fig. 5-4 Schematic of the layout of the 
capacitive sensors in the swash zone 
(vertical axial section). Sensor N°1 is 
closest to the free water. 

Fig. 5-5 Sand beach with capacitive sensors / 
micro-piezometers at the HYDRALAB-SANDS 
wave canal (CIEM flume) in Barcelona. 
Incoming water waves are visible in the rear. 

 
   In addition to these 7 piezometers, there were 14 other pressure sensors installed in the 

canal by the Barcelona group (I. Caceres, J. Alsina, et al.). These 14 sensors measure the free 

water level fluctuations in the canal’s open water system (upstream of the swash zone). The 

horizontal distances are listed in Table 5-5 (as provided by the Barcelona group). The 

reference point is the wave maker front, located at the left end of canal. The relative 

Capacitive  sensor 

Sand-bed(beach) 
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horizontal distance of sensor No.1 “ 1H “ (the “entry” point at the still water / beach boundary) 

is 75.222 m with respect to the wave maker position. 

Table 5-5 Position of the 14 sensors for the free water level fluctuations from the wave 
generator front to the swash zone 

Sensor WG0 WG1 WG2 WG3 WG4 WG5 WG6 

X (m) 14.95 15.71 16.66 17.39 24.91 37.91 43.41 
Y (m) 0.65 0.65 0.65 0.65 0.65 0.65 0.65 

Sensor WG7 WG8 WG9 WG10 WG11 WG12 WG13 

X (m) 49.19 55.08 58.04 61 63.93 66.86 68.61 

Y (m) 0.65 0.65 0.65 0.65 0.65 0.65 0.65 

Note: The zero point of X is the wave maker front, as seen in Fig. 1. 

5.2.1.4 Wave condition of the wave generator  
The larger amplitude of all wave time series is around 0.9 m for erosive conditions of the 

swash zone of the sloping beach. The period of the wave generator is about 4 seconds.  

The wave generator produces a non-harmonic wave of the “JONSWAP” type. Fig. 5-6 (a) 

and (b) shows the water level signal at sensor WG0 (15m from the wave maker front as shown 

in Fig. 5-1. The Fourier spectrum of this signal is shown in Fig. 5-7.  

 
(a): t=0-1800s 

 
(b): t=0-200s 

Fig. 5-6 (a) (b) Evolution of the free water level fluctuation WG0(t) (15m right from the 
wave maker front).  
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Fig. 5-7  Fourier spectrum of WG0(t) (t = 0-1800 s, 600Tuckey sτ = ).  

It can be observed from both figures that the wave maker signal WG0 has one most 

dominant period, which is about 4 s (T1 = 3.96 s) and close to the originally designed period 

(4 s) of the wave maker. The temporal zoom in Fig. 5-6 (b) exhibits the appearance of low 

frequency “beats”, similar to acoustic beats due to the interference of two very close 

frequencies. Looking at the spectrum of Fig. 5-7 seems to confirm indeed that there are two 

dominant frequencies that are close enough to interfere (around period T1 = 3.96 s).   

The spectral characteristics of water levels along the canal (and also in the beach) can be 

seen in Fig. 6-18, which will be discussed later in section 6.5.3.3. 

 5.2.1.5 Carried tests  
The time required to reproduce the wave time series is around 30 minutes for erosive 

conditions. We began to measure the groundwater levels before the wave time series and 

finished measuring after the wave time series for each test. In all, we have done 39 tests to 

measure the groundwater level fluctuations in the sloping sandy beach. 

All the carried tests and the corresponding test time are shown in Table 5-6. 
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Table 5-6 All the carried tests in the Barcelona wave canal 

Test date Test name 
Number of 

the test series 
Start time of 

the series(time 
of the PC) local total 

12/03/2008 Ht-SIGN6-TotalSerial1-LocalSerial1-120308.dat 1 1 20:04:54.84 

13/03/2008 Ht-SIGN6-TotalSerial2-LocalSerial1-130308.dat 1 2 16:43:40 
Ht-SIGN6-TotalSerial3-LocalSerial2-130308.dat 2 3 17:30:43 

14/03/2008 

Ht-SIGN6-TotalSerial4-LocalSerial1-140308.dat 1 4 12:44:46 
Ht-SIGN6-TotalSerial5-LocalSerial2-140308.dat 2 5 13:50:47
Ht-SIGN6-TotalSerial6-LocalSerial3-140308.dat 3 6 14:46:20 
Ht-SIGN6-TotalSerial5-LocalSerial4-140308.dat 4 7 16:42:45 
Ht-SIGN6-TotalSerial6-LocalSerial5-140308.dat 5 8 17:36:51 

17/03/2008 

Ht-SIGN6-TotalSerial7-LocalSerial1-170308.dat 1 9 10:45:23
Ht-SIGN6-TotalSerial10-LocalSerial2-170308.dat 2 10 11:42:38 
Ht-SIGN6-TotalSerial11-LocalSerial3-170308.dat 3 11 12:28:11 
Ht-SIGN6-TotalSerial12-LocalSerial4-170308.dat 4 12 13:11:59
Ht-SIGN6-TotalSerial13-LocalSerial5-170308.dat 5 13 14:23:27 

18/03/2008 

Ht-SIGN6-TotalSerial14-LocalSerial1-180308.dat 1 14 10:13:57 
Ht-SIGN6-TotalSerial15-LocalSerial2-180308.dat 2 15 10:57:38 
Ht-SIGN6-TotalSerial16-LocalSerial3-180308.dat 3 16 11:50:12
Ht-SIGN6-TotalSerial15-LocalSerial4-180308.dat 4 17 12:27:59 
Ht-SIGN6-TotalSerial16-LocalSerial5-180308.dat 5 18 13:07:47 
Ht-SIGN6-TotalSerial17-LocalSerial6-180308.dat 6 19 13:59:00
Ht-SIGN6-TotalSerial20-LocalSerial5-180308.dat 7 20 14:39:55 
Ht-SIGN6-TotalSerial21-LocalSerial6-180308.dat 8 21 15:24:11
Ht-SIGN6-TotalSerial22-LocalSerial7-180308.dat 9 22 16:14:28 
Ht-SIGN6-TotalSerial23-LocalSerial10-180308.dat 10 23 16:56:59 
Ht-SIGN6-TotalSerial24-LocalSerial11-180308.dat 11 24 17:36:56
Ht-SIGN6-TotalSerial25-LocalSerial12-180308.dat 12 25 18:15:06 

19/03/2008 

Ht-SIGN6-TotalSerial26-LocalSerial1-190308.dat 1 26 11:03:54
Ht-SIGN6-TotalSerial25-LocalSerial2-190308.dat 2 27 10:37:47 
Ht-SIGN6-TotalSerial26-LocalSerial3-190308.dat 3 28 12:03:44
Ht-SIGN6-TotalSerial27-LocalSerial4-190308.dat 4 29 12:43:08 
Ht-SIGN6-TotalSerial30-LocalSerial5-190308.dat 5 30 13:37:20 
Ht-SIGN6-TotalSerial31-LocalSerial6-190308.dat 6 31 14:17:34 
Ht-SIGN6-TotalSerial32-LocalSerial5-190308.dat 7 32 14:56:17 
Ht-SIGN6-TotalSerial33-LocalSerial6-190308.dat 8 33 15:54:18.5 
Ht-SIGN6-TotalSerial34-LocalSerial7-190308.dat 9 34 16:38:09 
Ht-SIGN6-TotalSerial35-LocalSerial10-190308.dat 10 35 17:12:22 

20/03/2008 

Ht-SIGN6-TotalSerial36-LocalSerial1-200308.dat 1 36 10:05:57
Ht-SIGN6-TotalSerial35-LocalSerial2-200308.dat 2 37 10:40:39 
Ht-SIGN6-TotalSerial36-LocalSerial3-200308.dat 3 38  
Ht-SIGN6-TotalSerial37-LocalSerial4-200308.dat 4 39 11:50:33 
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Note:   

• The expression of the test date such as 120308 means that the test date is on 12th 

March 2008. 

• TotalSerial means that we rank the test serial numbers from the first day to the last 

day. LocalSerial means that we rank the test serial numbers by each day. For example, 

we had done 39 total test series from the 12th March 2008 to the 20th March 2008. The 

TotalSerial number is 3 for the second test serial (Local Serial) on the 13th March 2008  

and  Local Serial number is 2. 

5.2.2 Measured water levels Hi(t) of the experiment 
The water level measurements at the capacitive sensors began from the static initial water 

level (step (1) in Fig. 5-8 t=…-30s), then lasted about 30 minutes corresponding to water 

level fluctuations forced by the wave generator (step (2) in Fig. 5-8, t=30-1800s), and finally 

ended during the draining phase (step (3) in Fig. 5-8 t=1800s-…). The measured water levels 

 ሻ shown in Fig. 5-8 correspond to just one “test” (the “first test”, conducted the 18th ofݐሺܪ

March 2008).  

 
 
 

 

 

Fig. 5-8 Water levels ( )iH t  versus time at the 7 sensors (Test 1: 18 March 2008). 

   The measurement results show clearly two effects: the spatial decaying of the amplitudes 

away from the shore, and the filtering out of the shortest periods. Furthermore, the signals 

away from the shore (ܪହሺݐሻ, ܪ଺(t), ܪ଻(t)) exhibit a very different behavior from those closer 

to the shore (see Fig. 5-8). In fact, during the experiment, according to the eye observation, 

the water level fluctuations measured by the sensors No.2, No.3, No.4 and No.5 are the mixed 
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water levels composed of the surface water and the groundwater, and on contrast, the ones 

measured by the sensors No.6 and No.7 are pure groundwater levels. 

   From Fig. 5-8, we can see that the action of tides and waves results in a net super-

elevation of the mean groundwater surface above the elevation of mean sea level. The net 

super-elevation of the mean groundwater in these sensors may be caused by three principal 

factors: (1) the sloping beach face favoring vertical infiltration relative to horizontal outflow, 

(2) a 'decoupling' between the ocean and water table around low tide, and (3) wave setup and 

runup further elevating the region of ocean infiltration above the elevation of the tide. (Turner 

1997 [59]) 

The measured water level fluctuations of the other 38 tests are very similar to the ones of 

the first test conducted on the 18th of March 2008. Thus, we just choose the measured results 

of this test to analyze in the thesis. 

5.3 Conclusion and outlook 

   The measured water level fluctuations exhibit extremely irregular characteristics in time and 

space. Several signal processing techniques have been used to analyze these measured results. 

The preliminary illustrations of the signal processing of the ܪଵሺݐሻ and ܪ଺ሺݐሻ are described in 

a detail in the Appendix B: Chapter B10. The results obtained show that , spectral frequency 

methods, time correlations, and multi-resolution wavelet analyses can be used to analyze the 

original signal, the residuals and the components of ܪଵሺݐሻ, ܪଶሺݐሻ ,ܪଷሺݐሻ, ܪସሺݐሻ and ܪହሺݐሻ, 

and at the same time,  the dominant fluctuation periods of ܪ଺ሺݐሻ ,ܪ଻ሺݐሻ can be indirectly 

obtained by analyzing the residuals of the original signal with Fourier spectrum analysis and 

temporal analysis. ܪଵሺݐሻ has very low coherency with ܪ଺ሺݐሻ 

   The further detailed analysis and the corresponding interpretation on the measured water 

levels in the sloping sandy beach will be described in the next chapter (Chapter 6) 

   This experiment has been initially designed to measure the erosion of the swash zone with 

the periodic oscillations of the free water levels. For our focused problem, it existed two 

deficiencies: (1) The initial condition could not been exactly (precisely) verified; (2) Each test 

time is not enough long. For the future, if there is possibility to run a more specific exprement 

for investigating the similar problem, several remarks should be taken into account: 

(1) The number of the tests should be reduced and each test time will be prolonged until 3 

times or 4 times of the current test time, 2 or 3 tests are enough, and test time depends on the 

results of the sensor No.7, until the curve trend of the groundwater level is clear.  
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(2) Initial water level should be more precisely observed. The time for observing the initial 

water level will be prolonged to one week or even 2 weeks, which depends on the sand 

seepage velocity of the groundwater, until the initial water level is clearly observed constant 

in the sandy beach. 

(3)The wave period of the wave generator should be much longer than T=4s, for instance, 

T=20 or 30s which will cause less erosion in the swash zone. Less erosion in the swash zone 

will make complex problem easier to analyze. 

   Therefore, numerical simulations have been implemented in order to complement the 

experimental water level signal analyses and to compare them with various water flow models 

(a preliminary version of modeling results was presented in Wang et al. 2008). The numerical 

models being used for these comparisons include: 

(1) A 2D plane flow model based on the vertically averaged Dupuit-Boussinesq equation 

for unconfined groundwater flow (with fluctuating boundary conditions);  

(2) A 3D variably saturated flow model based on a generalized Richards' equation.  

   The detailed numerical simulations and the corresponding comparisons with experimental 

results will be described in the Chapter 7. 
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Chapter 6: Signal analyses and interpretation of 

water level data H(x,t) in the Barcelona wave canal 

6.1 Introduction 

   The Fourier spectral analysis reflects the structure of the signal by decomposing a signal in 

periodic functions. Its advantage is to clearly manifest the distribution of the Fourier spectral 

functions with respect to the frequency (period). Accordingly, it can be used to study the 

fluctuation characteristics with respect to the frequency (period). For example, for a single 

analysis,  it can be used to study the dominant periods of the measured water level 

fluctuations, and the propagation of the fluctuation energy of certain periods in the slopping 

sandy beach; for a cross analysis, it can be used to determine the coherency with the 

frequency between two water level fluctuations. 

   The wavelet transform makes the time-scale phenomena localized temporally or transient 

extend over a range of scales. The multi-resolution wavelet analysis makes a dyadic signal 

decomposed into a succession of approximations corresponding to increasing scales. It can 

especially be used to study the detail (one component) of any dyadic scale "m" of the 

measured data. This makes possible to study the fluctuation characteristics of one component 

signal corresponding to time scale 2௠ ൈ Δݐ such as the Fourier dominant period, the standard 

deviation, and so on. This also makes possible to make the correlation between the 

components with the same dyadic time scale of the two different signals. Especially, for the 

non-stationary water level fluctuations, it gives more satisfactory results than the ones 

obtained with Fourier spectral analysis. 

   The measured water level fluctuations exhibit extremely irregular characteristics in time and 

space in the sloping sandy beach of the Barcelona big wave canal. For this reason, single 

processing method such as direct Fourier analysis appears ineffective or not enough effective 

to analyze this kind of irregular water level fluctuations. 

    This paper presents an analysis of these measured water level fluctuations ( )iH t  in the 

sloping sandy beach in a single and cross way with Fourier spectrum, multi-resolution 
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wavelet methods and correlation analysis, together with the moving average and multi-

resolution wavelet filtering methods, by using signal analysis tools previously developed in 

the IMFT laboratory (Fatmi et al. 2008 [43]; Fatmi 2009 [21]). 

6.2 Analysis of Sensor 1 (H1(t)) used as entry boundary condition 

6.2.1 Introduction 
   As described in Chapter 5, the sensor No.1 was placed near the still water / beach boundary 

to measure the water level fluctuations ࡴ૚ሺ࢚ሻ corresponding to the entry condition of the 

model. This sensor lied in the centre of the swash zone, and as result, the water level 

fluctuations ࡴ૚ሺ࢚ሻ are very irregularly periodic.  

6.2.2 Periodic characteristics of the original signal 
   In order to analyze the periodic characteristics of the original signal of the water level 

fluctuations at sensor No.1 (ܪଵሺݐሻ ሻݐଵሺܪ ,(   is respectively zoomed with the time period 

t1=200s (Fig. 6-1) and the time period t2=50s (Fig. 6-2). From Fig. 6-1 and Fig. 6-2, it can be 

seen that there are mainly two range of periods which play a dominant role in the original 

signal of H1(t): T1=23-53s (Fig. 6-1)and T2=4.2-7.2s ( Fig. 6-2).  

 

Fig. 6-1 Zoom of the evolution of water level 
H1(m) (Original signals, t=30-230s) 

Fig. 6-2 Zoom of the evolution of  water 
level H1(m) (Original signals, t=30-80s) 

6.2.3 Fourier spectral analysis of the original signal  
   In order to evaluate and interpret the dominant fluctuation periods affecting the beach water 

table, Fourier spectral analysis (Appendix B9, more details about the concerned theory) is 

applied to the water level signal at the beach “entry” point, namely, 1( )H t . This “entry” 

signal is analyzed as follows, using three versions (or pieces) of the signal: 

i. Water levels measured from the beginning of the wave generator motion, until the end 

of the measurements (t=30-2459s);  

ii. Water levels measured during the motion of the wave generator (t=30-1800s); 
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iii.  Water levels measured after the stop of the wave generator (t=2000-2459s). 

   The resulting spectra are respectively shown in Fig. 6-3, Fig. 6-4 a and b.  

Fig. 6-3 Fourier frequency spectrum of the water level fluctuations  (t=30-2459s). 
 Tuckey filter: Tuckeyτ =600s  

 

 
a: t=30-1800s (during wave generation) 

 ்߬௨௖௞௘௬=600s b: t=2000-2459s, ்߬௨௖௞௘௬=150s 

Fig. 6-4 Fourier frequency spectrum of the water level fluctuations  for two 
different time windows (during and after wave generation). 

From these 3 figures, it can be seen that there are 3 periods which always prevail in the 

beach entry signal 1( )H t . Among them, T1≈24s plays the most important role, then T2≈43s, 

and finally T3=16s.  

   The period T1 = 24s is considered, at this stage of the analyzis, as the result of the run-up 

and rundown flow influenced by the size and shape of the wave canal and, more importantly, 

also by the existence of a sloping sandy beach at one end of the canal.  

   On the other hand, period T4 = 4.83 s is obviously close to the wave generator period 

(T0 = 4 s). It can be seen that this period T4≈4.83s, plays a much small role in the 1( )H t  signal 

than the other 3 periods.  Period T4 has spectral energy S=2.09E-2m2.s (obtained from Fig. 6-

4 a) during the working of the wave generator. In the frequency spectrum of the signal 
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analyzed after wave generation as stopped (Fig. 6-4 b), the wave generator period T4≈4.83s 

almost totally disappears (very small spectral energy S=8.203E-7m2.s). 

6.2.4 Multi-resolution wavelet decomposition of the original signal, and 

Fourier analysis of wavelet components 

      In contrast with Fourier analysis, multi-resolution wavelet decomposition intuitively 

demonstrates the evolving (non stationary) temporal variability of the water level fluctuation 

( )1H t  for each dyadic wavelet time scale (analogous to a period or an inverse frequency). 

Therefore, to validate and further interpret the dominant periods of ( )1H t obtained with 

Fourier spectral analysis, a multi-resolution wavelet analysis is used to decompose the 

complete original signal at the beach entry ( ( )1H t , t=30-2459s).   

   Considering that the data number analyzed by multi-resolution wavelet must be N=2L (L is 

the wavelet time scale, and more details about the theory are explained in Appendix B9), in 

order to analyze all the data, especially the third part data, ( )1H t  (the time step dt=0.1s, 

214<N1=24291<215) needs to be completed in the end with the mean water level of ( )1H t . As 

a result, the number of data is artificially extended from to N1 to N2=2L+1+1=32769, and the 

time window is extended from t1=2459s to t2=3306.8s. In this way, the signal becomes dyadic 

and suitable for multi-resolution wavelet analyzis.  

   Fig. 6-5 illustrates the evolution of the main wavelet components C4, C5, C6, C7, C8, C9, C10 

and C11 of the completed dyadic signal. It can be seen that the wavelet components C7 (time 

scale 12.8s) and C8 (time scale 25.6s) prevail from t=30s through t=2459s, and the other 

components totally disappear after about t=1800s (the time of the stop of the wave generator).  
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 Fig. 6-5 Evolution of the main components C4, C5, C6, C7, C8 , C9 , C10 and C11 of the 
completed signal  by adding the mean water level (t = 30- 3306.8s, the number of 
the data is N=2L+1, and L=15  is the dyadic scale). 

   The results of the wavelet decomposition of ( )1H t  suggest that the dominant components 

C7 and C8 (12.8s and 25.6s, compared to wave maker period 4s) are due to the effects of wave 

run-up and run-down flow due to the sloping sandy beach. In addition, it can be seen that the 

“amplitude” of component C5 (3.2s) is indeed a bit less than C7 and C8 during the working of 

the wave generator. 

   Since the wavelet dyadic time scales of the components C7, C8 and C5 are respectively 

12.8s, 25.6 and 3.2s, which are a bit different from the dominant periods of the Fourier 

spectrum, we decided to patch up the two types of analyses (Wavelet and Fourier) by 

examining also the dominant periods in the Fourier spectrum of the selected wavelet 

components.  

a :C7 b:C8 
Fig. 6-6 Fourier frequency spectrum S(f) of the component C5 and C7 of  with =600s. 
 

0 500 1000 1500 2000 2500 3000 3500

C4
C5
C6
C7
C8
C9

C10
C11

 C
om

po
ne

nt
s

 Time(s)

 Time of the stop of the wave generator

 Added data

( )1H t

10-2 10-10

0.02

0.04

0.06

0.08

0.1

0.12

0.14

 Frequency(Hz) 

 S
pe

ct
ru

m
(m

2 *s
)

 T2=27.27s

 T1=24s

 T3=16.22s

10-2 10-10

0.02

0.04

0.06

0.08

0.1

 Frequency(Hz) 

 S
pe

ct
ru

m
(m

2 *
s)

 T2=44.44s

 T3=30.77s
 T1=26.67s

( )1H t Tuckeyτ



Chapter 6: Signal analyses and interpretation of water level data H(x,t) in the Barcelona wave canal 

116 
 

 
Fig. 6-7 Fourier frequency spectrum S(f) of the component C5 of  ( =70s). 

 The results indicate that the dominant Fourier periods of C7, C8 and C5 are respectively 

23.33s (Fig. 6-6 a), 28s (Fig. 6-6 b) and 4.83s (Fig. 6-7). At the same time, when the dyadic 

time scale n൑7, the dominant Fourier period of the wavelet dyadic component of H1(t) (a non-

harmonic wave) falls between the corresponding wavelet dyadic time scale (n) and the next 

dyadic time scale (n+1), and in contrast, when n>7, the wavelet time scale periods are greater 

than the corresponding Fourier periods, and the difference between the both becomes greater 

and greater with increasing wavelet dyadic time scale n, as shown in Table 6-1. 

Table 6-1  Wavelet component dyadic time scale and corresponding Fourier period  of ( )1H t  

Component  
Ci 

C1 C2 C3 C4 C5 C6 C7 

Dyadic time scale 
Ti (s) 0.2 0.4 0.8 1.6 3.2 6.4 12.8 

Fourier period 
 TFi (s) 0.349 0.651 1.513 2.469 4.82 6.859 23.529 

Ci C8 C9 C10 C11 C12 C13 C14 

Dyadic time scale 
Ti (s) 51.2 102.4 204.8 409.6 819.2 1638.4 3276.8 

Fourier period  
TFi (s) 26.089 54.555 133.33 300.03 400.0 599.88 1200.0 

Note :  
1. Wavelet component dyadic time scale:  Ti=2i×dt and dt=0.1s. 
2. Fourier period TFi is obtained from the corresponding component Ci with Fourier analysis. 

   As a result, we conclude that the most dominant period T1=24s of H1(t) obtained with the 

Fourier spectrum is close to dominant periods (T2=23.33s and T3=28s) obtained with multi-

resolution wavelet analyzis.  

   Therefore, the dominant period T≈24s is further validated. It can be interpreted as the effect 

of the geometry of the wave canal or more precisely, the effect of the run-up and run-down 

flow due to the sloping sandy beach.   
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   On the other hand, we observe that the short period component of ( )1H t  (T ≈ 4.83s, close to 

the wave generator period) appears stronger with multi-resolution wavelet than with Fourier 

spectrum analyzis. 

6.2.5 Simplification of the signals 

  Water level fluctuations at sensor No.1 (ܪଵሺݐሻ) reflect surface water levels and can be 

considered as the entry boundary condition with respect to all the other ‘subsurface’ sensors. 

The regular periodic wave with period T = 4 seconds produced at the wave generator, seems 

much less regular when it arrives at Sensor No.1, in the swash zone ( Fig. 6-1 and Fig. 6-2). 

To simplify such complex signals, we want to find the dominant periods of H1(t). 

Accordingly, we choose the following bimodal Fourier approximation for water level signal 

H1(t): 

( ) ( ) ( )22211101 sinsin ϕωϕω ++++= tAtAHtH (6-1) 

   From the results obtained with Fourier spectral analysis (Fig. 6-3 and Fig. 6-4) as well as 

the results obtained with wavelet decomposition in Fig. 6-5, we can see clearly that period 

T1 = 23.33 s prevails among the H1(t) signals. So far, we consider that period T1 = 23.33 s is 

the result of the geometry of the wave canal or more precisely, it is the dominant period of the 

run-up flow induced by the effect of the sloping sandy beach. On the other hand, period 

T4 = 4.83 s is obviously close to the wave generator period (T0 = 4 s). 

   We then used orthogonal multi-resolution wavelet analysis to verify the results of Fourier 

analysis and to obtain the corresponding amplitudes and phases for the dominant periodic 

waves. In Fig. 6-8, we can see that the sum of the dyadic wavelet component C7 and the 

dyadic wavelet component C5 agree well with the original signal. After that, we obtain the 

amplitudes (defined as the 90% confidence band) of the wavelet components C7 and C5: 
 
 

஼଻ܣ ൌ 1.64 ൈ ஼଻ߪ ൌ 0.0672݉ and ܣ஼ହ ൌ 1.64 ൈ ஼ହߪ ൌ 0.0524 (C5 and C7 are shown in Fig. 

6-9). Concerning the phases, we can directly measure them from Fig. 6-9. A simple method 

was used at first, namely: ( ) ,02 * Ttn −= πϕ  where tn
*

  is the first 0-crossing of the signal (this 

method will be revised with a statistical identification of the positive phase). We obtain here: 

rad
C

238.0
7
=ϕ , and rad

C
982.0

5
=ϕ .   
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Fig. 6-8 Wavelet analysis of signal H1(t): comparison of original signal, bimodal Fourier 
signal, and 2-component wavelet. 

Fig. 6-9 Wavelet analysis of signal H1(t): the dyadic components C7 & C5 

   We have now obtained all the coefficients for the analytical bimodal Fourier model of 

equation (6-1), as shown in Table 6-2. From Fig. 6-8, it can be seen that this ‘analytical 

model’ is a good approximation of the original signal, and is confirmed with wavelet analysis. 

Note that the amplitude of period T2 (5 s) is almost the same as T1 (24s), whereas the 

spectrum of (Fig. 6-7) shows a much weaker spectral peak for T2 (5 s) compared to T1 (24s). 

This could be due to the folding of the energy of other fluctuation periods onto period T2 in 

the bi-modal approximation (this issue remains open).  

Table 6-2 Coefficients of the ‘analytical’ bimodal approximation 
Coefficients ܪ଴(m) ଵܶ(s) ܣଵ(m) ߮ଵ(rad) 

Values 2.5112 24 0.0672 0.238 
Coefficients  ଶܶ(s) ܣଶ(m) ߮ଶ(rad) 

Values  4.83 0.0524 0.982 

Methods Mean signal Fourier Wavelet Wavelet 
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6.2.6 Summary 

   The spectrum curve with respect to the frequency can be obtained with Fourier spectrum 

analysis. The roles of all periods in the signal can be observed immediately and intuitively 

from the Fourier spectrum curve, however, the evolution of roles of all periods with respect to 

the time cannot be obtained with Fourier spectrum analysis. 

  In contrast, the evolution of the components can be obtained with Multi-resolution wavelet. 

The evolution of the roles of all dyadic components can be observed with Multi-resolution 

wavelet, and at the same time, the corresponding amplitude and the phase can also be 

obtained.  

   Accordingly, combined the two methods, the complex irregular signal can be simplified by 

a bimodal Fourier model, which is a good approximation of the original signal and therefore, 

which can be used as the entry water level for the numerical simulations in order to eventually 

make the complex sea/beach  hydrodynamic partial saturated sloping sandy beach system 

easy understood.  In addition, evolution of the roles of all components will be helpful to 

interpreter the dominant period T≈24s, which is different from the one of the wave generator 

of the canal. 

6.3 Analysis of Sensor 7 (groundwater) 
6.3.1 Introduction 

      The micro-piezometric tube i =7 is the farthest sensor away from the swash zone. In fact, 

it is located about one meter or so from the impervious wall located at the end of the canal (in 

hydrogeologic terms, this boundary can be thought of as a groundwater divide).   

6.3.2 Analysis of the results 

   From Fig. 6-10, it can be seen that signal ( )7H t  is totally different from ( )1H t . Indeed, 

signal ( )7H t clearly exhibits a slowly increasing stage (water filling) and a descending stage 

(water draining). Contrary to ( )1H t , which measures surface water phenomena, piezometer 

( )7H t  is thought to provide a direct measurement of groundwater variations. 

   The Fourier method is not directly suited for analyzing this type of strongly non periodic 

and non stationary signal (Conway and Frame, 2000 [66]). Instead, a moving average filter is 

first used to remove the nonlinear trend, and then, the residual of the original signal is 
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analyzed. In other words, it is the spectrum of the residual of H7(t) that is analyzed, not the 

original non stationary signal. 

Fig. 6-10 Original signals H7(t) (t=30-2459s) and its moving average with window 
halfwidth  tw =70s. 

b
Fig. 6-11 Fourier frequency spectrum of the residual of H7(t) with moving average 
filtering ( =70s  and =600s) 

      The Fourier frequency spectrum of the detrended ( )7H t  is shown in Fig. 6-11. In 

comparison with the entry spectrum at sensor i=1, it can be seen here that all the high 

frequency waves have disappeared. The remaining dominant period is T1 = 300 s, a rather 

long period, about 12 times longer than the dominant period of the ( )1H t  signal (T1 = 24 s). 

Wave periods about 6 to 12 times shorter than T1 = 300 s are still visible in the residual ( )7H t  

spectrum, but they are sub-dominant and have much less energy. 

   In addition, its dominant Fourier spectrum energy is about 2.0e-5 m2.s and it is 2.0E-7 times 

smaller than that of H1(t) (0.4 m2.s)   
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6.4 Analysis of the other sensors (between swash zone and deep 

groundwater) 

   We analyze in this section the water levels at the intermediate sensors 2,3,4,5,6 (between 

the open water sensor No.1 located before the swash zone, and the groundwater sensor No.7 

located nearest to the end wall of the canal).  

   Due to complex wave hydrodynamics and to strong erosion in the swash zone, the 

shorewise position of the “static” free water boundary evolved during the wave generation 

tests. It finally reached the position of sensor No.3 at the end of the series of wave generation 

tests (9 days). Thus, during part of the wave tests, sensor No.2 also could be considered as 

measuring surface water rather than groundwater fluctuations.  

   The original water level signals of sensors No.2, 3, and 4, were analyzed directly via Fourier 

spectra, without detrending (same as sensor No.1). The resulting spectra (not shown here) are 

similar to those of sensor No.1.   

    On the other hand, given the structure of the signals obtained at sensors No.5 and No.6, 

further away from the shoreline, we chose to perform Fourier spectral analysis of the 

‘detrended’ signals (i.e., of the residuals obtained by moving averages). The resulting residual 

spectra (see Fig. 6-15 further below) are similar to those of sensor No.7.  

   We now focus on cross-analyses of these water level signals and/or their residuals. 

6.5 Cross analysis  
6.5.1 Introduction 
   We try here to interpret and to quantify the propagation of water level fluctuations in space, 

through the sloping sandy beach, using as an “input” the complex multimodal water level 

signal observed at the entry position (sensor No.1). In particular, we aim at characterizing:  

• the spatial evolution of dominant frequency modes in the cross-shore direction;  

• the spatial propagation of fluctuation energy (i.e., intensity of the spectrum);  

• the maximum cross-correlation between pairs of signals (No.1, No.i), and the 

corresponding lag time, leading also to an estimation of wave velocity;  

• the cross-spectral coherency functions between ( )1H t  and ( )( )2, ,7iH t i = … . 

   It was emphasized earlier that the original water level signals ( ( )5H t , ( )6H t , ( )7H t ) are 

strongly non-stationary. They are also, for this reason, very different from ( ( )1H t , ( )2H t ,
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( )3H t ) in terms of time structure and frequency content. Keeping this in mind, we conducted 

the cross analyses between ( )1H t  and ( )iH t  (i=2,…,7) based on the residuals rather than the 

original signals (this for all sensors i=1 to 7). 

6.5.2 Residuals of Hi(t) (i=1, …, 7) with moving average filtering 
6.5.2.1 Introduction  

   Considering that the water level fluctuations ܪହሺݐሻ, ܪ଺ሺݐሻ and ܪ଻ሺݐሻ are extremely non-

stationary  and are different from  ܪଵሺݐሻ, ܪଶሺݐሻ and ܪଷሺݐሻ,  in order to do the cross analysis 

between ܪଵሺݐሻ and ܪ௜ሺݐሻ (i=2,…,7) , the original signals are filtered with moving average 

filtering (Appendix B9). Then, the corresponding residuals after taking away the moving 

average from the original signals will be used to be analyzed. 

6.5.2.2 Residuals of Hi(t) (i=1, …, 7)  with moving average filtering 

The residuals of ܪ௜ሺݐሻ (i=1, …, 7)  are obtained by taking away the moving average from 

the original signals. The moving averages of ܪ௜ሺݐሻ (i=1,…,7) (Fig. 6-12 and Fig. 6-13) are 

obtained with moving average filtering with the half window width of the filter ௧ܹ=300s for 

 ሻ (i=1,…,7) areݐ௜ሺܪ ሻ. The corresponding residuals ofݐ଻ሺܪ ሻ  (i=1,…,6) , and ௧ܹ=70s forݐ௜ሺܪ

shown in the Fig. 6-14.  

Fig. 6-12   Original signals and the moving averages of ( )iH t (i=1, …, 3) with moving 
average filtering  
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Fig. 6-13   Original signals and  moving averages of ( )iH t (i=4, …, 7) with moving 
average filtering  

 

Fig. 6-14   Residuals of ( )iH t  (i=1, …, 7) with moving average filtering  

Note: The residuals of ( )iH t  (i=1,…,7) are obtained with the half window width of the 

filter  tw =300s for ( )iH t   (i=1,…,6) , and tw =70s for ( )7H t . 

6.5.2.3 Criterion for the half window width Wt of Hi(t) with moving average filtering 

   We have aso attempted to derive a more general criterion for selecting the best Wt in a 

moving average filter; however this particular work is not completed at this time (ongoing 

research).  

   Note: a compatibility criterion between the choice of the Tukey filter width (max lag) 

(Appendix B9) and the moving average window width (half-width Wt) is developed further, 

in Section 6.5.3.6.  

6.5.3 Cross analysis between H1(t) and Hi(t) (i=2, …, 7) 
6.5.3.1 Introduction  

The spacial variation of the water level fluctuation characteristics such as the dominant 

periods, Fourier spectrum energy, cross correlation, coherency, and wave propagation 
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velocity in the sloping sandy beach will be investigated in this section with 3 signal 

processing methods.   

During the analysis, according to the analysis methods, the original signals or the residuals 

of the original signals with moving average obtained in the section 6.5.2.2 are chosen. For 

instance, Fourier spectral analysis is used to analyze the spectral functions of the residuals and 

the multi-resolution wavelet is used to decompose the original signal. 

6.5.3.2 Spatial evolution of dominant periods in the sloping sandy beach (cross-shore) 

   The cross-shore spatial evolution of the dominant periods in the sloping sandy beach is 

shown in Fig. 6-15. This figure was obtained by spectral (Fourier) analyzis of the residuals of 

( ) ( 1,  , 7)iH t i = …  as explained earlier. There are 11 dominant periods marked out on the 

spectra of ( )iH t  ( 1, ,7)i = …  in the figure. 

 
a: the Fourier spectrum plotted in semi-log form 

 
b: the same Fourier spectrum plotted in log-log form 

Fig. 6-15  Fourier frequency spectrum of the residuals of  ( )iH t  (i=1,…,7) and of WG0(t), 
the “free water level” measured in the vicinity of the wave maker (free water level).  
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   Note: Moving average filtering was performed with a half window width 300tW s=  for 

signals ( ) ( 1, , 6)iH t i = … , and 70tW s=  for signal ( )7 .H t  All Fourier spectra were estimated 

with a Tuckey filter using a maximum lag cut-off Tuckeyτ =600s. 

The period T6 = 24s plays the most dominant role in ( )1H t  (spectral energy 1S

(T=24s) ≈ 0.42 m2.s), as well as in ( )2H t  and ( )3H t . Then, its energy decays rapidly at 

( )4H t , and becomes very weak in the spectra of ( )5H t , ( )6H t  and ( )7H t (spectral energy 7S  

(T=24s) ≈ 1.0E-6 m2.s) (Fig. 6-15, Fig. 6-16 and Fig. 6-17).  

Fig. 6-16  Fourier spectrum function with respect to the frequency of the residuals of 
 (i=4,6,7).  

 

Fig. 6-17  Fourier spectrum function with respect to the frequency of the residual of .  

   The period T5 = 44.44s is the 2nd most dominant period in the entry signal ( )1H t (spectral 

energy 1S (T44s) ≈ 0.12 m2.s), as well as in ( )2H t  and ( )3H t . Its energy decays then rapidly 
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at ( )4H t , ( )5H t , ( )6H t  and ( )7H t . However, this period is still weakly subdominant at 

( )7H t , although its energy is very small there (6.0E-6m2.s), see also Fig. 6-17.  

   Furthermore, the most dominant periods at piezometers ( )4H t , ( )5H t , ( )6H t  and ( )7H t are 

much longer periods than the dominant periods of ( )1H t , ( )2H t , ( )3H t . Indeed, the most 

dominant periods of ( )4H t , ( )5H t ,  and  are respectively 400s, 600s, 600s and 

300s.  

   In addition, it is noticed that  is most “dynamic”, not only for the long period 

T0=600s (which is dominant at H5), but also for all periods ܶ ൒ ݏ85.69 ; in particular 

T3=85.69s and T2=200s are also very dominant in H5(t) and their energies are much greater 

that the energy of the dominant period T1=400s of H4(t) (as can be seen from Fig. 6-15). This 

is due to the particular location of piezometer No.5, which lies near the exit point of the 

groundwater table in the sloping sandy beach, where the sloping boundary is responsible for 

the generation of higher harmonics of water table oscillations (Horn, 2006 [19]; Cartwright et 

al., 2004b [64]).  

   Note. To better comprehend the latter remarks, it should be kept in mind that sensors No.1-

No.2 are basically in the swash zone, with sensor No.1 being frequently or almost 

permanently flooded. Sensor No.3 is beyond the swash zone (marginally so). In fact, it should 

also be noted that, due to beach erosion, the free water level moves progressively downstream 

(or landward) from sensors No1-No2 towards sensor No.3, during the wave generation test.  

6.5.3.3 Energy propagation of water levels from the “sea” (wave generator) towards the 

“shore” and through the beach 

     In order to better interpret the spatial evolution of the dominant periods observed at ܪଵሺݐሻ 

(T1=24s, T2=44.44s, T3=400s and T0 ≈ 4s ≈ period of the wave maker), we also examined the 

spectrum of water level fluctuations measured at all available sensors along the Barcelona 

wave canal, from the “open sea” (wave generator position) to the shoreline (ܹܩ௜ (i=0, …, 13), 

provided by Barcelona Group) and beyond the shoreline (beach, ܪ௜ሺݐሻ (i=1, …, 7)). In other 

words, we now combine spectral analyses from all water level sensors, including both open 

water sensors (in the canal) and piezometric sensors (through the sandy beach).   

( )6H t ( )7H t

( )5H t
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   The cross-shore spatial distribution of the dominant periods in the canal is depicted in Fig. 

6-18. For each dominant period, the Fourier spectral energy “S” (m2.s) is displayed on a log-

scale and plotted versus sensor position “x” along the canal (both open water and beach). 

Fig. 6-18   Fourier frequency spectrum (energy spectrum) of water levels in the canal as a 
function of position (x), for different selected frequencies if  ௜݂ or periods 1 /i iT f= ௜ܶ ൌ 1/ ௜݂.  
Note: the spectra are estimated using a Tuckey filter, with a lag window 600Tuckey sτ =  

   Let us examine Fig. 6-18 in terms of the propagation of the spectral energy of the 3 

dominant periods T1=24s, T2=44.44s, T3=400s, and of the period of the wave generator T0=4s. 

We focus on the evolution of the water level spectra from the position of the wave maker (or 

the “open sea”, at left) towards the beach and then inland (at right). The following remarks 

can be made: 

• The wave maker period T0 ≈ 4s is dominant in the “open sea” (that is, in the canal, 

before reaching the swash zone). However, its spectral energy begins to decrease 

rapidly from a position ahead of the swash zone (WG10) where its Fourier spectrum is 

about 0.4 m2.s, to less than 0.01 m2.s at Sensor No.1 in the swash zone, and then less 

than 1.0E-5m2.s at sensor H7(t) inland.  

• The energy of period T1=24s is somewhat less dominant but on the same order as 

T0=4s before the swash zone. In the middle of the swash zone, its energy appears to 

decrease sharply and then rises again, and becomes dominant further inland, at 

piezometers H1(t), H2(t), and a bit beyond (we are still in the swash zone area). 
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• Similarly, the spectral energy of period T2=44.44s gradually increases throughout the 

swash zone, reaches a global maximum (with less energy than period T1=24s) at 

piezometers H1(t) and H2(t) in the swash zone, and then another relative maximum at 

piezometer H5(t) further inland.   

• Finally, concerning the longest period (T4=400s), its spectral energy, very low in the 

open sea, increases gradually from the wave maker (S≈1.004E-3m2.s) to the beach’s 

zone where it peaks (there is however also a small intermediate peak of energy at the 

very beginning of the swash zone, WG10). The global maximum of energy of T4 is 

observed further inland, at piezometer H5(t). Note that T4=400s is a rather long period, 

namely, 100 times longer than the wave maker period.    

   Before concluding this part, recall that the four harmonics (T1, T2, T3, T4) analyzed here 

were selected because they appeared dominant with respect to other frequencies, throughout 

various spatial positions along the canal and beach.  

   Now, as a follow up from the previous remarks, it can be seen from Fig. 6-18 that the 

energies of the four harmonics (T1, T2, T3, T4) all decrease drastically in the sloping sandy 

beach (H1(t) through H7(t)), although a local peak of energy can be observed at piezometer 

H5(t).  It can also be seen that the longest period T3=400s is the most dominant in the far 

beach region (H5(t), H6(t) and H7(t)). This suggests that the energy of the longer period has 

decayed less, or propagated farther through the beach, than the energy of the shorter periods.  

At the same time, the relative peak of spectral energy observed at H5(t) for several periods 

(T1,T2,T3) seems to be consistent with observation by Nielsen and Turner (2000) [68], and 

Cartwright et al. (2004b) [64], concerning the measured amplitude or energy of water table 

fluctuations in actual sloping beaches. In the case of our wave canal, the spectral peak 

observed at the longer periods (T2 and/or T3) is probably due to the indirect effects of wave 

run up flow on the subsurface water table fluctuations.  

   In real systems, a large amplitude (peak of energy) can be observed in relation with the 

return period of storm events, which cause wave set up at the shoreline at relatively low 

frequencies. These long periods then induce water table fluctuations that propagate further 

inland. Finally, another possible “effect” which can enhance the energy of lower frequencies 

is capillarity. Indeed, both measurements and simulations (eg. Chapter 5, Chapter 6, 

Chapter 7 and Horn 2006 [19]) indicate that the fluctuating water table beneath the sloping 

beach surface drops off more slowly than it rises, as a result of capillary effects. Incidentally, 

the slower drawdown of the water table due to unsaturated drainage can be taken into account 



Chapter 6: Signal analyses and interpretation of water level data H(x,t) in the Barcelona wave canal 

129 
 

by the Richards equation, but not by the Dupuit-Boussinesq model of groundwater flow 

(Chapter 8). 

   6.5.3.4 Cross correlation, lag time and wave propagation velocity between 1H (t)  and 

iH (t)  (i=2, …, 7)  

   The cross correlation between ܪ௜ሺݐሻ and  ܪ௜ାଵሺݐሻ ሺ݅ ൌ 1, … , 6) are obtained with temporal 

analysis by analyzing the residuals (t=400s-1700s) shown in the above with moving average 

filtering.  

 
(a) Cross correlation 

 
(b) Lag time 

 
(c) Wave propagation velocity 

Fig. 6-19  Maximum cross correlation 
coefficient, lag time and wave propagation 
velocity of the residuals between  and 

( )1iH t+  ( 1,...,6)i =  (spatial distribution).  
Notes:  
(1) moving average filtering, half window 
width  =300s for  ( )( 1, , 6)iH t i = …  , and 

=70s for ( )7H t  ; 

 (2) Cross correlation function XY
XY

X Y

C
R

σ σ
=

(unbiased estimate), and the first positive 
maximum value in the positive lag time; (3) 
lag time corresponding to the maximum 
correlation coefficient;  
(3) Wave propagation velocity = the 
horizontal distance between ( )iH t  and 

( )1iH t+  divides the corresponding lag time. 
 

   First, from the figure of maximum cross correlation coefficient of the future first wave with 

respect to the horizontal  distance  from ܪଵሺݐሻ to ܪ଻ሺݐሻ (Fig. 6-19 (a)), it can be seen that the 

1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

 X(m)

 C
ro

ss
 c

or
re

la
tio

n

 

 

 H1-Hi(i=2,...,7)

 H2-Hi(i=3,...,7)

 H3-Hi(i=4,...,7)

 H4-Hi(i=5,...,7)

 H5-Hi(i=6,...,7)

 H6-H7

1 2 3 4 5 6 7 8 9
-1

0

1

2

3

4

X(m)

 L
og

(L
ag

 ti
m

e 
(s

))

 

  H1-Hi(i=2,...,7)

 H2-Hi(i=3,...,7)

 H3-Hi(i=4,...,7)

 H4-Hi(i=5,...,7)

 H5-Hi(i=6,...,7)

 H6-H7

1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

2

 X(m)

 W
av

e 
pr

op
ag

at
io

n 
ve

lo
ci

ty
(m

/s
)

 

 

 H1-Hi(i=2,...,7)

 H2-Hi(i=3,...,7)

 H3-Hi(i=4,...,7)

 H4-Hi(i=5,...,7)

 H5-Hi(i=6,7)

 H6-H7
 Hi-Hi+1(i=1,...,6)

( )iH t

tw

tw



Chapter 6: Signal analyses and interpretation of water level data H(x,t) in the Barcelona wave canal 

130 
 

correlation coefficient almost decreases linearly with the distance from more than 0.8 

(between ܪଵሺݐሻ and  ܪଶሺݐሻ, and between ܪଶሺݐሻ and  ܪଷሺݐሻ) to less than 0.05 (between ܪଵሺݐሻ 

and  ܪ଻ሺݐሻ), except that there is a turning point at ܪସሺݐሻ). This means that ܪଵሺݐሻ has a very 

good cross correlation with ܪଶሺݐሻ and  ܪଷሺݐሻ) , and it has very bad cross correlation with 

 ሻ), because of the fluctuation decay in the sloping sandy beach. Even thoughݐ଻ሺܪ  ሻ andݐ଺ሺܪ

the cross correlation between the adjacent sensors of ܪ଺ሺݐሻ and ܪ଻ሺݐሻ) is still very bad, and 

the cross correlation coefficient is less than 0.25. 

   Secondly, the lag time corresponding to the cross correlation between ܪ௜ሺݐሻ and  ܪ௜ାଵሺݐሻ 

 ݅ ൌ 1, … , 6) exponentially increases with the horizontal distance from ܪଵሺݐሻ to ܪ଻ሺݐሻ (Fig. 6-

19 (b)). 

   Finally, the spacial wave propagation velocities in the sloping sandy beach are obtained by 

the flowing equation:  

௜,௜ାଵݒ ൌ ஽௫೔,೔శభ
ఛ೔,೔శభ

  (6-2) 

Where,  

௜ାଵሺ݅ܪ ௜ andܪ ௜,௜ାଵ is the wave propagation velocity betweenݒ ൌ 1, … , 6ሻ; 

௜ାଵሺ݅ܪ ௜ andܪ ௜,௜ାଵ is the horizontal distance betweenݔܦ ൌ 1, … , 6ሻ; 

߬௜,௜ାଵ is the lag time between ܪ௜ and ܪ௜ାଵሺ݅ ൌ 1, … , 6ሻ. 

   The spacial distribution of the wave propagation velocities with the horizontal distance is 

shown in Fig. 6-19 (c). From this figure, it can be seen that the mean wave propagation 

velocity almost decreases gradually with horizontal distance from ܪସ to ܪ଻, ݒ଺଻ is less than 

0.1m/s,  while ݒଵଶ ൌ ଵଷݒ ൌ ଶଷݒ ൌ ଶସݒ ൌ  the free wave propagation velocity in the ,ݏ/1.67݉

swash zone. 

   The spatial migration of this point of maximum cross-correlation indicates a statistical 

phase lag, analogous to that obtained for a pure progressive wave (for a similar analyzis of 

wave like processes in a vertical unsaturated column, see Alastal et al. 2010 [50]). 

6.5.3.5 Cross correlation and lag time of the wavelet components between 1H (t)  and 

iH (t)  (i=2,…,7)  

   Multi-resolution wavelet analysis can be used to decompose the whole signal in dyadic 

number of components, which makes possible the cross correlation between the same 

components of two different signals. Accordingly, the cross correlations between the 
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components of the original signal with respect to the dyadic time scale (Fig. 6-20 (a)) are 

analyzed and the results can be compared with the ones of the residuals in 6.5.4.4.  

 
(a) Cross correlation 

 
(b) Lag time 

Fig. 6-20  The maximum cross-correlation coefficient of the future first wave and the 
corresponding lag time of the components of the original signal between  and  
(i=2,…,7) with respect to the dyadic time scale. 

   From Fig. 6-20 (a), it can be seen that the same components of  ܪଵሺݐሻ and ܪଶሺݐሻ have the 

best cross correlation, as for ܪଵሺݐሻ and ܪଷሺݐሻ, while the same components of  ܪଵሺݐሻ have 

very bad cross correlation with the ones of  ܪ௜ሺݐሻ(i=4,…,7). The cross correlation of C7 and 

C8 between ܪଵሺݐሻ and ܪଶሺݐሻ is the best among all, then it is the ones between ܪଵሺݐሻ and 

 ሻ, and their correlation coefficients are all greater than 0.90; meanwhile the maximumݐଷሺܪ

cross correlation coefficient of the components between ܪଵሺݐሻ and ܪ௜ሺݐሻ(i=4,…,7) is less 

than 0.3.  This result is consistent with the one of the residuals between ܪଵሺݐሻ  and 

  .ሻ(i=2,…,7)ݐ௜ሺܪ

   The corresponding lag time with the dyadic time scale is shown in Fig. 6-20 (b). From this 

figure, it can be seen that the lag time is very small (about zero) from C1 to C5; then from C5 

to C8, it is a little bigger, and it almost keeps constant and the maximum lag time is 20.8s (C8, 

between ܪଵሺݐሻ and ܪ଻ሺݐሻ); then from C8 to C10, it linearly increases. 

   Furthermore, the spacial distribution of the cross correlation coefficient of the dominant 

components C7, C8, C9 and C10 between  ܪଵሺݐሻ and ܪ௜ሺݐሻ(i=2,…,7) and the responding lag 

time with respect to the horizontal distance are respectively illustrated in Fig. 6-21 (a) and (b).  
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(a) Cross correlation 

 
(b) Lag time 

Fig. 6-21  The maximum cross-correlation coefficient of the future first wave and the 
corresponding lag time of the components C7, C8, C9 and C10 of the original signal between 

  and   (i=2,…,7) with respect to the horizontal distance. 
Note: the wavelet dyadic time scales of C7, C8, C9 and C10 are respectively equal to 12.8s, 
25.6s, 512s, and 102.4s. 

   It is again shown that the components of ܪଵሺݐሻ have a good cross correlation with the ones 

of ܪଶሺݐሻ and ܪଷሺݐሻ, while they have very bad cross correlation with the ones of ܪସሺݐሻ, ܪହሺݐሻ, 

 ሻ. It can be further explained that the dominant components (C7 and C8) ofݐ଻ሺܪ ሻ, andݐ଺ሺܪ

 .ሻݐ଻ሺܪ ሻ, andݐ଺ሺܪ ,ሻݐହሺܪ ,ሻݐସሺܪ ሻ are totally different from the ones ofݐଷሺܪ ሻ andݐଶሺܪ ,ሻݐଵሺܪ

In addition, the lag time of the C7 and C8 is much smaller than the one of C9 and C10 from 

 ሻ, and the lag time of C10 is  bigger than the one of C9. It seems that there is aݐ଻ሺܪ ሻ toݐଷሺܪ

transient zone in which the lag time has a bigger slope than in the sea (macro porous media) 

and in the sloping sandy beach. The transient zones for C7, C8, C9 and C10 are respectively 

from ܪସሺݐሻ to ܪ଺ሺݐሻ, from ܪହሺݐሻ to ܪ଺ሺݐሻ, from ܪଷሺݐሻ to ܪସሺݐሻ and ܪଷሺݐሻ to ܪସሺݐሻ. 

   Finally, it is worthy noted that the wavelet component dyadic time scale of  ܪଵሺݐሻ is not 

equal to the dominant period obtained with Fourier spectrum analysis for the measured water 

level fluctuations in Barcelona wave canal (Table 6-1).  However, the original signal and the 

residual of ܪଵሺݐሻ, the same component has the same dominant period with Fourier spectrum 

analysis. 

   6.5.3.6 Spectral coherency function between 1H (t)  and iH (t)   

   The spectral coherency between the residuals of ( )1H t  and ( )iH t  (i=2,…,7) were 

computed at different frequencies in the frequency range f = 0-0.2 Hz (or: 5T s≥ ). These 

coherency functions are plotted in: 

• Fig. 6-22.  ( ( )1H t  and ( )iH t  (i=2,3,4), with Tuckeyτ =300s (moderate smoothing);  
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• Fig. 6-23.  ( ( )1H t  and  ( )iH t  (i=5,6,7), with Tuckeyτ =300s (moderate smoothing);  

• Fig. 6-24.  ( ( )1H t  and ( )( )2, , 7iH t i = … , with Tuckeyτ =30s (more smoothing).  

where the term “smoothing” refers to spectral smoothing induced by the Tuckey filter, as 

defined for instance in Yevjevich (1972) [3], Priestley (1981) [60], Papoulis and Pillai (2002) 

[23], and others (see also : Blackman and Tuckey 1958 [78]). 

Fig. 6-22  Fourier cross analysis: spectral coherency between the residuals of ( )1H t  and 

( ) ( 2, 3, 4)iH t i =  at t=400-1700s for a frequency range f = 0-0.2 Hz (or 5T s≥ ).  Spectral 

estimation with Tuckeyτ =300s. 
 

Fig. 6-23  Fourier cross analysis: spectral coherency between the residuals of ( )1H t   and 

( ) ( 4, , 7)iH t i = …  for a frequency range f = 0-0.2 Hz (or 5T s≥ ). Spectral estimation with

Tuckeyτ =300s. 
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Fig. 6-24  Fourier cross analysis: spectral coherency between the residuals of ( )1H t  and 

( ) ( 2, , 7)iH t i = …  for a frequency range f = 0-0.2 Hz (or 5T s≥ ). Spectral estimation with

Tuckeyτ =30s instead of 300s. 

Here, it is worth noting that:   

• the residuals used to calculate the coherency are obtained with moving average 

filtering, choosing a window half-width 300tw s=  for ( ) ( 1, , 6)iH t i = …  and 

70tw s=  for ( )7H t ;  

• in the Fourier spectral analysis, the spectra are estimated by Fourier transform of the 

covariance functions using a Tuckey filter, with a maximum lag window Tuckeyτ =300s 

for Fig. 6-22 and Fig. 6-23, and 30Tuckey sτ =  for Fig. 6-24 (the smaller the lag window 

Tuckeyτ , the more smoothing there is); 

• in order to estimate the coherency function of moving average residuals in a consistent 

way, we used the following criterion : max
Tuckey twτ = ; 

The spectral coherency functions obtained with 300Tuckey sτ =  and shown in Fig. 6-22 and 

Fig. 6-23 are very noisy. In order to show more clearly the spatial trend of the frequency 

coherency function, we also recalculated the spectra and the coherencies with more “Tuckey 

smoothing” ( 30Tuckey sτ = ): the result is shown in Fig. 6-24.  

   Furthermore, we can notice that the spectral resolution is inversely proportional to the max 

size of the Tuckey window max
Tuckeyτ : 
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Since ( )1f Hz
T

= , we can deduce the expression of the spectral resolution in terms of a time 

increment (or period increment): 

  2/T f fΔ =Δ  or 2T T fΔ = Δ  

For example, in Fig. 6-22, and Fig. 6-23, we have:  

1 0.001667
2 300

f HzΔ = =
×

,  

T=24s ⇒ 2 224 0.001667 0.96T T f sΔ = Δ = × = ;  

Similarly, in Fig. 6-24, we have: 

1 0.01667
2 30

f HzΔ = =
×

  

T=24s ⇒ 224 0.01667 9.6T sΔ = × = . 

   In Fig. 6-22, the spectral coherency functions between signal H1(t) and signals ( )2H t ,…,

( )4H t  are noisy, but nevertheless, a few common features can be observed (coherency 

troughs and peaks). For instance, there are 3 common coherency troughs at T2=66s, T8=10s, 

and T14=5.31s (serious incoherency), and there are 3 common coherency peaks at T3=25s, 

T6=14.63s and T9=9.37s (good coherency). For 15T s≥ , the residual of ( )1H t  has the best 

coherency with the one of ( )2H t  among all the signals. For 9 9.37 2T s T s= ≥ ≥ , compared 

with the coherency of the residual between ( )1H t  and ( )2H t , the coherencies of the residual 

between ( )1H t  and ( )3H t  as well as ( )4H t  have been  improved a little, as seen in  Fig. 6-22  

and Fig. 6-24. 

   From Fig. 6-23, it can be seen that the spectral coherencies between the residuals of ( )1H t  

and ( ) ( 5, , 7)iH t i = …  are totally noisy. This indicates in another way that the signal ( )1H t  is 

different from the signals of ( ) ( 5, , 7)iH t i = … .  However, in Fig. 6-24, the spectral 

coherency functions have been smoothed out indirectly (via the spectra themselves, with a 

more severe Tuckey filter). A single coherency peak (good coherency) and a single coherency 

trough (bad coherency) emerges, for all the pairs of signals (H1,Hi). The peak occurs for 

period T=20s and the trough occurs of period T=10s. The spatial evolution of coherency is 

also very clear. 
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   In fact, except the period of the wave generator T≈4s, all the dominant periods of  ( )1H t  or 

its residual can be interpreted as the effect of the geometry of the wave canal. For example, 

for T=25s ܶ ൌ ) and T=15s, there is a strong coherency betweenݏ25 )1H t  and ܪ௜ሺݐሻሺ݅ ൌ

2,3,4ሻ: this can be explained by the fact that the run-up and down flow with these two periods 

periodically arrives at ( )4H t  in the beach. For T=66s, 10s and 5.31s, there are only weak 

coherencies between ( )1H t  and ( )( )2,3,4iH t i = : the canal waves with these 3 periods just 

barely arrive at ( )1H t  and then return into the canal. For T=12.77s, 7.32s and 6.25s, there are 

strong coherencies between ( )1H t  and ܪ௜ሺݐሻሺ݅ ൌ 2,3ሻ, while there are incoherencies between 

( )1H t  and ܪସሺݐሻ this may indicate that the run-up flow with these 3 periods just barely 

arrives at ܪସሺݐሻ, or between ܪଷሺݐሻ and ( )4H t . Here, it should be noted that the observed 

principal run-up limits lie between piezometers ( )4H t  and ܪହሺݐሻ; in fact, the run-up limits 

appear to be a little lower than ( )4H t  and rarely higher than ( )4H t  (or even ܪହሺݐሻ 

sometimes). Finally, the coherencies between ( )1H t  and ( )( )5,6,7iH t i =  are weak at all 

frequencies or periods. This ܪ௜ሺݐሻሺ݅ ൌ 5,6,7ሻis probably due to the gradual decay of all the 

dominant periods of ( )1H t  as they propagate through the sandy beach towards those 3 

sensors, while at the same time, there emerges new dominant periods (lower frequencies) at 

( )4H t  .ሻݐ଻ሺܪ ሻ andݐ଺ሺܪ ,ሻݐହሺܪ ,

   In Fig. 6-24, the coherency obtained with 30Tuckey sτ = can be regarded as the mean 

coherency. The coherency peak at ܶ ൎ  can be explained by the fact that this period has a ݏ20

great influence on all the water level fluctuations in the sloping sandy beach, except ܪ଻ሺݐሻ, 

because the fluctuation has almost decayed when it arrived at ܪ଻ሺݐሻ. The coherency trough at 

ܶ ൎ ) indicates that there is a periodic backflow wave limit at ݏ10 )1H t , or between ( )1H t  

and ܪଶሺݐሻ, and it only has a local influence on ( )1H t .  

   The result obtained above can be further explained in Fig. 6-25 (spatial distribution of the 

coherency for the five dominant periods with respect to the horizontal distance, ்߬௨௖௞௘௬ ൌ

  .(ݏ30
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Fig. 6-25  Coherencies of the residuals, plotted with respect to horizontal distance, for 
several particular harmonics (periods Tj). Note: Tuckeyτ =30s (strong spectral smoothing). 

   From the figure, it can be seen that T=24s has a great influence on all the water level 

fluctuations except ( )7H t , while T=10s has little, or no influence, on any of water level 

fluctuations. 

   In addition, according to Menke et al. (1991) [85], we have tried to find if the coherency 

loss can be fitted by an exponential “law”, that is: 

Coherency = exp{-k f Δτ} 

Where,  k is the decay rate; 

 f is the dimensional frequency (in Hz); 

τΔ  is the lag time increment between ( )1H t  and ( )( )2,  ,7iH t i = … . 

   Note that Δτ could be seen also as a spatial lag distance Δx between sensors, via a relation 

of the form Δx = c. Δτ with some characteristic velocity “c”.  

   The corresponding coherency loss curves are shown in Fig. 6-26.  

 
Fig. 6-26  Coherency function versus normalized frequency (frequency × lag time 
increment Δ , as explained in the text). 
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   From this figure, it can be seen that the “law” of exponential decay of coherency with 

frequency×lag is not totally verified, especially concerning the coherencies between sensor 

( )1H t  and sensors ( )( )5,  ,7iH t i = … . However, it seems that the coherencies between 

sensor ( )1H t  and sensors ( )( )2,3,4iH t i =  approximately follow the exponential decay law, 

in spite of significant spectral fluctuations. 

6.5.4 Detailed cross analysis between H1(t) and H3(t) 

6.5.4.1 Introduction 

   Sensor No.3 (ܪଷሺݐሻ ) is installed in the sloping sandy beach at about right, 3 meters 

horizontal from Sensor No.1.  The characteristics of ܪଷሺݐሻ are very similar to the ones of 

ሻݐଵሺܪ . The cross analysis can be investigated by analyzing the original signals and the 

residuals with Fourier cross analysis, temporal analysis and Multi-resolution wavelet 

methods.  

6.5.4.2 Measured wave propagation velocity 

   The wave propagation velocity between the sensor No.1 and No.3 can be directly observed 

from the zoom figure (t=0-200s) of the evolution of the water level fluctuation of ܪଵሺݐሻ and 

  .ሻ (Fig. 6-27)ݐଷሺܪ

 
Fig. 6-27  Evolution of   and   at t=0-200s 

   The corresponding results are listed in the Table 6-3. From this table, the average of wave 

propagation velocity between ܪଵሺݐሻ and ܪଷሺݐሻ is about 1.17m/s. 
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Table 6-3 The wave propagation velocity between Sensor No.1 and Sensor No.3   

Termes 
Peak wave time (s)  

t1 t2 t3 t4 t5 
H1 38.21 88.17 111.6 136.3 169.5 
H3 40.69 90.5 114.1 138.9 172.4 

Lag time (s) -2.48 -2.33 -2.50 -2.60 -2.90 
Propagation velocity (m/s) 1.21 1.29 1.20 1.15 1.03 

Average of  Propagation velocity (m/s) 1.17 

   In addition, from another zoom (t=1700-1900s, before and after the wave generator 

working) of the evolution of the water level fluctuation of ܪଵሺݐሻ and ܪଷሺݐሻ (Fig. 6-28), we 

can see that the propagation velocity of the wave peaks after the stop of the wave generator is 

slower than the ones during  the work of the wave generator. 

 
Fig. 6-28 Evolution of ( )1H t   and ( )3H t   at t=1700-1900s 

6.5.4.3 Cross-spectral analysis between 1H (t)  and 3H (t)  residuals 

   The ܪଵሺݐሻ  and ܪଷሺݐሻ residuals have been obtained with moving average filtering and the 

half window width =300s. In general, the criterion between the half window width of 

moving average filtering and the maximum time lag of Turkey filter should be ்߬௨௖௞௘௬
௠௔௫ ൌ   ௧ݓ

    The coherencies with ்߬௨௖௞௘௬ ൌ and ்߬௨௖௞௘௬ ݏ30 ൌ   .are shown in Fig. 6-29 ݏ300
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Fig. 6-29   Coherency between the residuals of   and  with respect to 
dimensional frequency  

   The result is consistent with the one obtained above. Here, the coherencys with ்߬௨௖௞௘௬ ൌ

and ்߬௨௖௞௘௬ ݏ30 ൌ are put together in one figure to observe if the coherency ்߬௨௖௞௘௬ ݏ300 ൌ

can be regarded as the mean coherency of the one with ்߬௨௖௞௘௬ ݏ30 ൌ  ,From Fig. 6-29 .ݏ300

the answer is positive. 

   The reduced gains of the residuals of ܪଵሺݐሻ and ܪଷሺݐሻ ்߬௨௖௞௘௬ ൌ and ்߬௨௖௞௘௬ ݏ30 ൌ  ݏ300

are shown in Fig. 6-30.  

Fig. 6-30  Reduced gain between the residuals of  and  with respect to 
dimensional frequency  

   From this figure, it can be seen that compared with ܪଵሺݐሻ, the energies of the periods 

between 17.65s and 7.89s are all amplified at ܪଷሺݐሻ, except a gain dip at T=10.90s, in which 

the fluctuation energy is attenuated by about 27%. In addition, the energies of the dominant 

periods T1=24s and T2=42.86s are respectively slightly attenuated by about 16% and 23% , 

while the one of T3=15s is amplified by about 42% at ܪଷሺݐሻ. 
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   The phases of the residuals of ܪଵሺݐሻ  and ܪଷሺݐሻ  ்߬௨௖௞௘௬ ൌ ݏ30  and ்߬௨௖௞௘௬ ൌ ݏ300  are 

shown in Fig. 6-31. 

 
Fig. 6-31   Phase between the residuals of  and  with respect to dimensional  
frequency  

From this figure, it can be seen that there are respectively a positive big phase peak at 

T=10.9s and a negative big trough at T=10.71s, and this further explains the existence of a big 

backward flow fluctuation with about T=10s at ܪଵሺݐሻ or between  ܪଵሺݐሻ and ܪଶሺݐሻ.  

In addition, phase function can be used to verify the lag time obtained with the temporal 

analysis. Since for the analogy with harmonic wave: ܿݏ݋ሺ߱ ൅ ߮ଵଶሻ ൌ ݐሺ߱ሺݏ݋ܿ ൅ ߬ଵଶሻሻ  , 

where, ߬ଵଶ ൌ ఝభమ
ఠ

ൌ ఝభమ
௙

ൈ ‘ and then at a given ,ߨ2 ଴݂’, we have: ߬ଵଶሺ ଴݂ሻ ൌ ఝభమሺ௙బሻ
௙

ൈ  In .ߨ2

theory, the lag time of the most dominant period of the signal is approximate to the one of the 

signal. In Fig. 6-31, for the most dominant period T=24s, it can be obtained that 

 ߬ҧுభுయ ቀ ଵ
ଶସ

ቁ ൌ
ఝభమቀ భ

మరቁ
భ

మర
ൈ ߨ2 ൌ ଴.଴଺ଽହ଻

଴.଴ସଵ଺ସ
ൈ ߨ2 ൌ ݏ10.49 ൐ ݏ1.8 ൌ ߬ுభுయ  

 (obtained with correlation analysis Matlab function xcov, unbiased estimate). This error 

can be explained as a consequence of the ்߬௨௖௞௘௬ value for the phase function. 

6.5.4.4 Temporal cross correlation between the residuals of 1H (t)  and 3H (t)  

   The cross-correlation function (unbiased estimate) between the residuals of ܪଵሺݐሻ and ܪଷሺݐሻ 

with respect to the lag time is shown in the Fig. 6-32.  
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Fig. 6-32  Cross-correlation function of  the residuals of  and  (t=400s-1700s) 
with respect to lag time (Matlab function xcov, unbiased estimate) 

   From this figure, it can be seen that there is a lag time of 1.8s from ܪଵሺݐሻ to ܪଷሺݐሻ. In 

addition, ܪଵሺݐሻ  and ܪଷሺݐሻ  have a middle and upper cross correlation and the maximum 

correlation coefficient is 0.6682. The main period of the cross correlation function 23.5s is 

approximate to the most dominant period of ܪଵሺݐሻ and ܪଷሺݐሻ, which is obtained with Fourier 

single spectral analysis. 

6.5.4.5 Cross analysis with multi-resolution wavelet and temporal analysis   

   The multi-resolution wavelet analysis is used to decompose the original signals of ܪଵሺݐሻ 

and ܪଷሺݐሻ  into components in 13 dyadic scales and then the temporal analysis is used to do 

the cross correlation between the same component at all dyadic scales. The maximum cross 

correlation function with respect to the dyadic scale and the corresponding lag time are shown 

in Fig. 6-33. 

 
(a) Cross correlation 

 
(b) Lag time 

Fig. 6-33 The maximum positive cross-correlation coefficient of the positive lag time, and 
the corresponding lag time of the components of the original signal between  and 
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    From this figure, it can be seen that the component C8 has the largest cross correlation 

between  ܪଵሺݐሻ and ܪଷሺݐሻ, and then it is C7. The two cross correlation are greater than 0.9. 

There is a cross correlation peak at C5, but its cross correlation coefficient is about 0.5.  It 

means that the wave generator period has a very low influence between ܪଵሺݐሻ and ܪଷሺݐሻ. Fig. 

6-33 (b) indicates that the lag time of the whole signal 1.8s appears between C3 and C7, rather 

than in the principal components C7 and C8. This is not totally consistent with the result with 

Fourier gain function presented above.  

   In addition, the cross correlation of the components C5, C7 and C8 are illustrated in Fig. 6-

34.  

 
(a) C5 

 
(b) C7 

(c) C8 

Fig. 6-34  Cross correlation function of the 
wavelet dyadic components C5, C7 and C8 
between ( )1H t  and ( )3H t . 
Note: 
The dyadic time scales of C5, C7 and C8 are 
respectively equal to 3.2s, 12.8s and 25.6s. 
 

   From this figure, it can be seen that the period of the cross correlation function is 

approximate to the dyadic wavelet time scale or more exactly Fourier period of the 

component. 
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6.5.5 Cross analysis between H1(t) and H7(t) 

6.5.5.1 Introduction  

   Sensor No.7 is installed in the slopping sandy beach at the right end of the canal, and it is 

about 1 m from the right vertical impermeable wall.  ܪ଻ሺݐሻ is very ‘no-stationary’ and it is 

total different from ܪଵሺݐሻ. The residuals of  ܪଵሺݐሻ and ܪ଻ሺݐሻ by moving average filtering 

method is used to investigate the cross analysis of the whole signal with Fourier analysis, 

while the original signals are used to realize the component cross analysis with multi-

resolution wavelet. 

6.5.5.2 Residuals of 1H (t)  and 7H (t)  by moving average filtering 

   The residuals of  ܪଵሺݐሻ and ܪ଻ሺݐሻ (Fig. 6-36) are obtained with moving average filtering  

by taking away the moving average from the original signal (Fig. 6-35).The half window 

width for the moving average of ܪଵሺݐሻ is 300s and the one for ܪ଻ሺݐሻ  is 70s.  

 
Fig. 6-35  Evolution of ܪଵሺݐሻ and ܪ଻ሺݐሻ & the corresponding moving average 
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Fig. 6-36  Evolution of the residual of  ( )1H t  and ( )7H t  

   From Fig. 6-36, it can be clearly seen the fluctuation decaying, and the amplitude of ܪ଻ሺݐሻ  

is about 1/1000 of the one of ܪଵሺݐሻ. 

6.5.5.3 Cross-spectral analysis of the residuals of 1H (t)  and 7H (t)   

   The coherency functions obtained with ்߬௨௖௞௘௬ ൌ and ்߬௨௖௞௘௬ ݏ30 ൌ  are presented in ݏ300

Fig. 6-37.  

Fig. 6-37  Coherency functions of the residuals of   and  with respect to the 
frequency at =30s and  =300s 

   This figure shows that the coherency between the residuals of ܪଵሺݐሻ and ܪ଻ሺݐሻ is very low, 

and the average coherency coefficient with ்߬௨௖௞௘௬ ൌ  is about 0.3 and the maximum ݏ300

obtained ்߬௨௖௞௘௬ ൌ ݏ30  is less than 0.2. Therefore, for the two signals, the coherency 

functions with ்߬௨௖௞௘௬ ൌ  cannot be regarded as the mean value of the coherency function ݏ30
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with ்߬௨௖௞௘௬ ൌ ݏ300 . It indicates that the dominant periods of Hଵሺtሻ  has almost totally 

decayed at H଻ሺtሻ. 

   The reduced gain function (Fig. 6-38) indicates that the fluctuation energy gradually decay 

from Hଵሺtሻ  and H଻ሺtሻ  at all frequencies. At the same time, it can be seen that T=200s, 

g=1.005. This means the longer period can be easily propagated in the sloping sandy beach. 

What’s more, for T=50, 37.5, 13.04, and 10s, the energy is attenuated by less than 50%.  

Fig. 6-38  Reduced gain function of the residuals of   and  with respect to the 
frequency at =30s and =300s 

 

   In addition, the approximate lag time of the whole signal can be found around the period 

T=40s in the phase function (Fig. 6-39), although phase function is very noisy when ܶ ൏  .ݏ40

߬ҧுభுళ ቀ ଵ
ସ଴

ቁ ൌ
ఝభమቀ భ

రబቁ
భ

రబ
ൈ ߨ2 ൌ ଴.଴ହଶଷସ

଴.଴ଶହ
ൈ ߨ2 ൌ ݏ13.15 ൏ ݏ28.9 ൌ ߬ுభுళ 

(obtained with correlation analysis Matlab function xcov, unbiased estimate) 

Fig. 6-39  Phase function of the residuals of  ( )1H t  and ( )7H t  with respect to the 
frequency at Tuckeyτ =30s and Tuckeyτ =300s 
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6.5.5.4 Temporal cross-correlation between 1H (t)  and 7H (t)  residuals 

  The water level fluctuations ܪ଻ሺݐሻ has a very bad cross correlation with the beach entry 

water level fluctuation ܪଵሺݐሻ. From the cross correlation function between the residuals of 

 ሻ (Fig. 6-40), it can be seen that the maximum cross-correlation coefficient ofݐ଻ሺܪ ሻ andݐଵሺܪ

the first wave in the positive lag time is 0.03576. In addition, the lag time from ܪଵሺݐሻ to 

 ሻ isݐ଻ሺܪ ሻ toݐଵሺܪ ሻ is 28.9s. This means that the mean wave propagation velocity fromݐ଻ሺܪ

଻ܸ ൌ ଽ
ଶ଼.ଽ

ൌ 0.311ሺ݉/ݏሻ  

Fig. 6-40  Cross-correlation function of  the residuals of ( )1H t  and ( )7H t   with respect 
to the past and the future lag time (Matlab function xcov, unbiased estimate) 

6.5.5.5 Cross correlation analysis of multi-resolution wavelet components  
   The maximum cross correlation and the corresponding lag time of the original signal 

between ܪଵሺݐሻ and ܪ଻ሺݐሻ with respect to the dyadic time scale are shown in Fig. 6-41. 
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Fig. 6-41 The maximum cross-correlation coefficient of the first wave in the positive lag 
time and the corresponding lag time of the components of the original signals between 
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   In this figure, there are two cross correlation peaks at components C7 and C10. The cross 

correlation for C7 is a little better than C10, but the two cross correlation coefficients are less 

than 0.2. The lag time ߬ுభுళ ൌ   .is found around C8 ݏ28.9

   In addition, the cross correlation functions with unbiased estimate of C7, C8 and C10 are 

illustrated in Fig. 6-42.  

 
(a) C7 

 
(b) C8 

 
(c) C10 

Fig. 6-42  Cross correlation function of the 
wavelet dyadic components C5, C7 and C8 
between ( )1H t  and ( )7H t . 
Note: 
The dyadic time scales of C7, C8 and C9 are 
respectively equal to 12.8s, 25.6s and 
102.4s 

  

   From these three figures, it can be seen that the period of the cross correlation function is 

approximate to the dyadic wavelet time scale or more exactly Fourier period of the 

component. 

  In summary, the results of the cross-correlation between wavelet components of the original 
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 .ሻݐ଻ሺܪ

-100 -50 0 50 100
-1

-0.5

0

0.5

1

Tau(s)

 R
C

7-
C

7 (H
1-H

7)

 t2=41.3s

 Lag time t1=16.8s, RC7-C7(H1-H7)=0.1894

-100 0 100
-1

-0.5

0

0.5

1

Tau(s)
 R

C
8-

C
8 (H

1-H
7)  Lag time t1=20.9s, RC8-C8(H1-H7)=0.05825

 t2=45.3s

-500 0 500
-1

-0.5

0

0.5

1

 Tau(s)

 R
C

10
-C

10
 (H

1-H
7)

 Lag time t1=256.9s,
RC10-C10(H1-H7)=0.1233

 t2=392.1s



Chapter 6: Signal analyses and interpretation of water level data H(x,t) in the Barcelona wave canal 

149 
 

6.6 Wave propagation velocity  
   6.6.1 Measured wave propagation velocity  
     In this section, we analyze wave propagation velocities in the Barcelona wave canal, via 

analyses of water levels Hi(t) at different positions, both in surface water and ground water 

(sandy beach).   

   From the section 6.5.3.4, the mean wave propagation velocity between ܪ௜ and ܪ௜ାଵ in the 

sloping sandy beach between has been obtained (see Fig. 6-19 (c)). Similarly, the mean wave 

propagation velocity between open water sensors ܹܩ௜ and ܹܩ௜ାଵis calculated in this section.  

   The mean wave propagation velocities in both open and ground water are shown together in 

Fig. 6-43.  

 
Fig. 6-43 Wave phase velocity between water level sensors  and  (groundwater 

micro-piezometers) and the one between  and (open water pressure sensor) with 
respect to the horizontal x(i+1),  in the Barcelona wave canal. 

   It is noted that the wave phase velocity was obtained here based on temporal cross-

correlation analyses, programmed as a MATLAB script using MATLAB’s XCOV function with 

the ‘unbiased’ approach (R.Ababou); see also Alastal et al. (2010) [50]. More precisely, in the 

open water canal, the cross-analysis was conducted on the original signals, while in the sandy 

beach, the cross-analysis was conducted on the residual water levels obtained after removing 

the moving average. 

   From the Fig. 6-43, it can be seen that the average wave propagation velocity decreases 

with respect to the horizontal distance from the front of the wave generator towards the 

sloping sandy beach. The maximum value is equal to about 4.8m/s in the open water in front 

of the wave generator and the minimum value is about 0.056m/s in the sloping sandy beach 
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near the impermeable wall. It is also noticed that the wave propagation velocity between ܪଵ 

and ܪଶ is equal to the one between ܪଵ and ܪଷ in the sloping sandy beach. 

   6.6.2 Theoretical wave propagation velocity  
   6.6.2.1 Average wave propagation velocity of the open water with open wave equation 

   The average wave propagation velocity of the open water can be calculated with the 

equation: ܥҧ ൌ ඥ݃. ത݄, where, ݃ is the gravity acceleration,  ത݄ is the mean water depth of the 

Barcelona wave canal and ത݄=2.47m for the Barcelona wave canal experiment.  Therefore, it 

can be obtained  

ҧܥ ൌ √9.81 ൈ 2.47 ൌ  (3-6) ݏ/4.92݉

   It means that the theoretical average wave propagation velocity 4.92݉/ݏ in the open water 

is approximate to the maximum measured value about 4.8݉/ݏ  in front of the wave generator 

at the left end of the wave canal. 

   6.6.2.2 Average wave propagation velocity in the sloping sandy beach with Bousinesq 

equation 

    There are phase velocity and group velocity for the wave propagation in the porous media 

(Dean and et Dalrymple (2000) [41] ; Vichnevetsky and Bowles (1982) [77]). 

   (1)  Phase velocity of Boussinesq: 

௉௛௔௦௘ܥ ൌ ௉௛௔௦௘ሺ߱ሻܥ ൌ ߜ ൈ ߱    (Wang, 2008 [90])  (6-4) 

where, 

ߜ is the wave decay length, and ߜ ൌ ටଶ௄ೞ௛ഥ

ఠΦ
  

 ;௦ is the saturated hydraulic conductivity of the porous mediaܭ

߱ is the angular frequency; 

Φ is the saturated water content. 

   So the phase velocity ܥ௉௛௔௦௘  of Boussinesq depends on the angular frequency ߱  and 

accordingly, the Boussinesq wave is dispersive. 

   For the application, the phase velocity of Boussinesq can be directly expressed with respect 

to the period T: 

௉௛௔௦௘ܥ ൌ ௉௛௔௦௘ሺܶሻܥ ൌ ටସగ௄ೞ௛ഥ

஍
ቀଵ

்
ቁ

ሺଵ ଶሻ⁄
  (6-5) 
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   Now, given sK =0.005m/s (saturated hydraulic conductivity obtained by calibrated 

numerical simulations of beach groundwater hydrodynamics with the Richards model in 

Chapter 7), Φ =0.38m3/m3, and h =2.47m, the period T is the only unknown parameter that 

remains in the above Boussinesq phase velocity equation (6-5). Then, the phase velocity of 

the beach groundwater can be plotted with respect to the period T in the range T=0-40s, as 

illustrated in Fig. 6-44. These results of the phase wave velocity will be helpful to obain the 

group wave velocity and will be analyzed with the group wave velocity. 

 
Fig. 6-44 Wave phase velocity in the sandy beach from the Dupuit-Boussinesq model, 
plotted with respect to the period T (range T=0-40s).   

   (2)  Group velocity of Boussinesq: 

   Referencing to the books of Dean R. G. and R. A. Dalrymple [41] , and Vichnevetsky R. and 

J. B. Bowles [77], and an internal work on wave packets, modulated waves, and envelopes -- 

in either deterministic (harmonic) or statistical (random process) frameworks, the group 

velocity can be written as follows: 

௥௢௨௣ீܥ  ൌ ௗ
ௗఠ

൫߱.  ሺ߱ሻ൯ (6-6)݁ݏ݄ܽ݌ܥ

   Applying the phase velocity of Boussinesq equation (6-5) into the equation (6-6), the 

relationship equation between the phase velocity and group velocity is: 

௥௢௨௣ீܥ ൌ ଷ
ଶ

 ௉௛௔௦௘   (6-7)ܥ

   Finally, the group velocity with respect to the period is also illustrated together with the 

phase velocity in Fig. 6-44. 

   As a result, for the most dominant period of ܪଵ, T=24s, we obtain: 

௉௛௔௦௘ሺܶܥ  ൌ ሻݏ24 ൌ 0.1304݉ and  ܥ஼௥௢௨௣(T=24s)=0.1957m/s;  

  For the wave maker period T≈5s, we obtain: 
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 .஼௥௢௨௣(T=5s)=0.4287m/sܥ ௉௛௔௦௘(T=5s)=0.2858m/s, andܥ 

    Here, it is noted that in the sloping sandy beach, the position ܪହ is the demarcation point 

between the mixed zone and the pure groundwater zone. From Fig. 6-43, the average wave 

propagation velocity from 5H  to 7H , is in the range 0.2239m/s to 0.0556m/s. It is quite close 

to the theoretical group wave velocity (or the theoretical phase wave velocity) at T=24s, and it 

is about 50% smaller than the one at T=5s. In spite of this indetermination, we emphasize that 

the theoretical values for the two periods are on the same order with the corresponding 

measured values, that is, somewhat less than 0.5m/s from 4H  to 7H  (see Fig. 6-43). 

6.7 Conclusions  
   In order to better understand the propagation or spatial variation characteristics of the 

complex entry water level fluctuations in the sloping sandy beach, we have used several 

methods of signal analyzis and signal processing, such as auto and cross-correlation functions, 

Fourier spectra and cross-spectra, and discrete multi-resolution wavelets. These methods are 

combined with pre-filtering methods to estimate trends and residuals (moving averages; 

discrete wavelet decomposition) of the measured water level fluctuations. These methods 

were exploited to interpret and quantify water propagation phenomena along the canal and, 

particularly, through the sandy beach. The main results obtained can be summarized as 

follows: 

 A bimodal Fourier model has been obtained to simplify the complex irregular signal 

 ሻ, which is a good approximation of the original signal and therefore, which canݐଵሺܪ

be used as the entry water level for numerical simulations in order to eventually make 

the complex sea/beach  hydrodynamic partial saturated sloping sandy beach system 

easy understood; 

  Two dominant periods (T1=24s and T4 = 4.83) at the entry boundary were identified 

with spectral analysis and multi-resolution wavelets. Period T1=24s is interpreted as 

the result of the run-up and rundown flow influenced by the size and shape of the 

wave canal and, more importantly, also by the existence of a sloping sandy beach at 

one end of the canal. On the other hand, period T4 = 4.83 s is obviously close to the 

wave generator period (T0 = 4 s). Furthermore, when the dyadic time scale n൑7, it is 

found that the dominant Fourier period of the wavelet dyadic component of  ( )1H t  
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(a non-harmonic wave) falls between the corresponding wavelet dyadic time scale (n) 

and the next dyadic time scale (n+1); 

 The most dominant period at piezometers ( ) ( 1,2,3)iH t i =  is about 24 seconds, while 

the most dominant periods for piezometers ( ) ( 4,5,6,7)iH t i =  are over 10 times 

longer (400s, 600s, 600s again, and 300s, respectively, at i=4,5,6,7). The spectral 

energy of these long periods decays in the landward direction, but they are still 

identifiable as dominant periods when reaching groundwater piezometers 

( ) ( 4, 5, 6, 7)iH t i = . These “long periods” can be interpreted as the consequence of the 

geometry of the wave canal and (especially) of the sloping sandy beach; 

 All the fluctuation energies of the dominant periods drastically decrease along the 

sloping sandy beach away from the shore. The fluctuation energy of the longer periods 

propagates farther away from the shore (landward) compared to the shorter dominant 

periods; 

 At the exit point of the sloping sandy beach ( ( )5H t ), the spectral peaks observed at 

the longer periods (T2 =200s and/or T3=85.69s which are shorter than the dominant 

period T1=400s of ( )4H t ) are probably due to the indirect effects of wave run up flow 

on the subsurface water table fluctuations or due to the vertical flow caused by the 

capillary effect of the sloping sandy beach. This phenomenon is  consistent with the 

observations of Nielsen and Turner (2000), and Cartwright et al. (2004); 

 Maximum cross-correlation almost decreases linearly away from the wave generator, 

and the corresponding lag time increases exponentially with respect to the horizontal 

distance in the landward direction; 

 The measured average wave propagation velocity decreases with respect to horizontal 

distance from the wave maker towards the sandy beach. The minimum measured 

value 0.056m/s is fairly close to (about twice smaller than) the group velocity of 

period T=24s in the far beach near the impervious end wall of the canal (period T=24s 

is the dominant period at the beach’s entry point No.1);  

 Coherency functions have been used to investigate the spatial propagation of the 

particular periods (frequencies). For example, the peak of spectral coherency observed 

at 24T s≈  indicates that this period has a great influence on water level fluctuations 

all along the sloping sandy beach, except at the farthest piezometer ( )7H t  near the 

canal right end wall. The spectral coherency trough at 10T s≈  indicates that there is a 
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periodic backflow wave limit at ( )1H t  or between ( )1H t  and ( )2H t , as could be 

expected at the entry of the swash zone; 

 The decay of the spectral coherency function with respect to normalized 

frequency×lag time does not really follow the exponential law suggested by Menke et 

al. (1991), especially between ( )1H t  and ( )( )5,  ,7iH t i = … . The exponential decay 

law seems better satisfied between ( )1H t  and ( )( )2,3,4iH t i = , i.e., not too far away 

from the swash zone (landward). 

In addition, besides these signal analyses and interpretations, numerical simulations have 

also been implemented in order to complement the experimental water level signal analyses 

and to compare them with various flow models. A preliminary version of modeling results 

was presented in Wang et al. 2008, and a more complete set of simulations have been 

developed in the next chapter (Chapter 7).  
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Chapter 7: Numerical simulations of wave 

propagation in the sloping sandy beach of the 

Barcelona canal 

7.1 Introduction 

In order to complement the experimental water level signal analyses and to compare the 

measured results with various water flow models, several numerical models have been used. 

The numerical models used for these comparisons include: 

 A 2D plane flow model based on the vertically averaged Dupuit-Boussinesq equation 

for unconfined groundwater flow (with fluctuating boundary conditions);  

 A 3D variably saturated flow model based on a generalized Richards' equation with 

two different unsaturated parameter models: VGM model and Exponential model.   

7.2 Computational domain 

    Boussinesq model and Richards model are two types of numerical models. Accordingly, 

each model has its own computational domain: 

(1) Boussinesq model is, in fact, a 1D numerical simulation in the x direction, and its 

computational length ܮ௫ will be 10m; 

(2) Richards model is generalized with a fictitious macro porous medium and its 

computational domain is shown in Fig. 7-1. 

    Similar to the canal wave experiment in Barcelona, the length of the computational domain 

of Richard model is 10m and the beach slope is 1 15⁄ . 
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Fig. 7-1  vertical cross section of the numerical simulations of Richards model 

   In the numerical simulations, 7 probes (sensors) with same x position as the ones of the 

experiment are placed in the porous medium to measure the numerical water level fluctuation 

 ሻ in order to compare them with the corresponding experimental results. Their positionsݐ௜ሺܪ

in the computation domain are listed in Table 7-1. 

 Table 7-1 Horizontal distance of the sensors from the left boundary 
Sensor No.1 No.2 No.3 No.4 No.5 No.6 NO.7 

Distance Lx(m) 0 1.5 3.0 4.5 6.0 7.5 9.0 

7.3 Left boundary condition for the numerical simulation of 
Barcelona experiment 
   The measured water level H1(t) in the Barcelona experiment is used as the left boundary 

condition for the numerical simulation (see Fig. 7-2). 

Fig. 7-2 Boundary water level condition H1(t)  (experimental results) 
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7.4 Saturated hydraulic conductivity of the beach sand 

7.4.1 Kozeny-Carman empirical formula 
    According to Kozeny-Carman empirical formla 1(equation (4-1), Chapter 4), the 

calculated saturated hydraulic conductivities which corresponds respectively to the minimum, 

mean and maximum diameters of the beach sands are listed in Table 7-2. 

Table 7-2 Calculated saturated hydraulic conductivity by Kozeny-Carman formula 1 

 ௦ߠ
(m3/m3) 

݀ହ଴ 
(mm) 

 ௦(m/s)ܭ
( Kozeny-
Carman) 

݀௠௜௡ 
(mm) 

 ௦(m/s)ܭ
( Kozeny-
Carman) 

݀௠௔௫ 
(mm) 

 ௦(m/s)ܭ
( Kozeny-
Carman) 

0.38 0.20 2.77E-4 0.063 2.75E-5 0.71 3.49E-3 

7.4.2 Measured hydraulic conductivity obtained in laboratory experiment 
   Constant-head test (Braja 2008 [36], Bear 1972 [2]) has been used to measure the 

coefficient of permeability of sand.  

   As a result, the saturated hydraulic conductivity measured at IMFT is ܭ௦= 1.7e-4m/s and it 

is of the same order with the empiric value (2.77e-4) of d50 with Kozneny-Carman formula. 

7.4.3 Discussion about the saturated hydraulic conductivity 
   The Kozeny–Carman equation works well for describing coarse-grained soils such as sand 

and some silts (Braja 2008 [36], Bear 1972[2]). The measured saturated hydraulic 

conductivity is enough precise. However, the two results are obtained from cases in which the 

flow is laminar and in the Barcelona experiment, the entry water flow is very turbulent. It is 

reasonable to expect that the real saturated hydraulic conductivity will be bigger than the 

empiric value or the lab experimental result. The real saturated hydraulic conductivity value 

for the slopping sandy beach will be validated by the numerical simulations and the measured 

results. 

7.5 Vertically hydrostatic Boussinesq model (2D) 

7.5.1 Introduction 
   The objective of the numerical simulations in this section is to compare the results between 

the Boussinesq model and the experimental in the Barcelona wave canal.   

   This comparison will be completed in the next section with the use of the unsaturated / 

partially saturated Richards flow model in the (x,z) plane, without assuming vertically 

hydrostatic plane flow.  
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7.5.2 Numerical simulation with Boussinesq model 
 Simulation domain 

       1D: Lx=10m; dx=0.01m. 

 Boundary condition 

Left boundary: H(0,t)=H1(t)   (The experimental result, t=0-2450s) 

                 Right boundary: flux=0.0 (Impermeable wall) 

 Initial condition 

଴ܪ                     ൌ 2.47݉  

 Physical properties of the beach 

௦ߠ ൌ 0.38 ݉ଷ ݉ଷ⁄ ௦ܭ ,  ൌ2.8E-2(m/s) 

 Duration of the simulation and numerical parameters 

   We have modeled one complete test of  t=2450s: 30s static phase (step (1)), 1770s 

movements of the wave generator (step (2)), and 650s draining phase (step (3) ). The 

numerical caculation time parameters and the numerical criteria are shown in Table 7-3.  

Table 7-3 Numerical parameters (INPUT1) for the calculation of  time step, non-
linear/outer (Picard) and linear/inner  iterations 

Time step 

Intial time step DTIN=0.1s 

Minimum time step DTMIN=0.1s 

Maximum time step DTMAX=0.1s 

Time step multifier DTMUL=1 

No-linear iterations 
(Picard) 

Convergence criterion of pressure head ENLH3=1.0E-4 

Maximum number of no-linear iteration INLMAX=10 

Linear iterations 
Convergence criterion of pressure head ENORM3=1.0E-6 

Maximum number of linear iterations ITEND=800 

 Numerical behaviour of Bigflow during the simulation 

   Concerning the convergence of the numerical behaviour, it is difficult to find an appropriate 

criterion for this kind of simulations with very dynamic boundary condition. The evolution of 

the total net discharge entering or outgoing through all the faces of the domain 

ܳ஻௢௨௡ௗ(instantaneous or local) and the evolution of the discharge corresponding to the change 

in volume of water inside the domain during the time interval DT ܳெ௔௦௦(instantaneous or 

local) have been observed, as seen in Fig. 7-3. The evolution of the net volume of water 
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entered or exited through all the sides of the field since the beginning of the simulation 

஻ܸ௢௨௡ௗ (accumulative or global), and the evolution of the volume of water that has formed or 

disappeared within the area since the beginning of the simulation ெܸ௔௦௦  (accumulative, 

global) have also been watched, as seen in Fig. 7-4 . In Fig. 7-3, the evolution of ܳ஻௢௨௡ௗ 

completely superimposes on the evolution of ܳெ௔௦௦ . In Fig. 7-4, the evolution of ஻ܸ௢௨௡ௗ 

coincides very well with the evolution of ெܸ௔௦௦. 

Fig. 7-3 Evolution of   and  Fig. 7-4 Evolution of   and  

7.5.3 Comparisons between numerical and experimental results 
   The experimental and the numerical results about the evolution of the water level 

fluctuations at the positions Sensors No.2, No.3,  No.4 , No.5, No.6, and No.7 are shown in 

Fig. 7-5.  

Fig. 7-5 (a) Comparisons of the measured water levels and the numerical results for the 
Boussinesq flow model with Ks=2.8E-2m/s: evolution of the water level at different 
positions : Sensors No.2, No.3, No.4, No.5, No.6 and No.7.(t=0-2450s)  
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Fig. 7-5 (b) Zoom of the comparisons of the measured water levels and the numerical results 
for the Boussinesq flow model with Ks=2.8E-2m/s: evolution of the water level at different 
positions : Sensors No.2, No.3, and No.4.(t=0-500s) 
 

Fig. 7-5 (c) Zoom of the comparisons of the measured water levels and the numerical results 
for the Boussinesq flow model with Ks=2.8E-2m/s: evolution of the water level at different 
positions : Sensors No.5, No.6, and No.7.(t=0-1800s) 

   From this figure, it can be seen that the numerical results have the same evolution trend as 

the experimental: first, the water level fluctuations increase, then they fluctuate around a mean 

water level, and after the stop of the wave generator, they decrease with an exponential law. 

However, at the same time, it can be seen clearly that the measured water levels are still much 

higher than the ones of the numerical simulation in the case of ܭ௦ ൌ 2.8E-2m/s. The 

amplitudes of the measured data are also much bigger than those of the numerical simulation 

for the sensors No.2 to No.5. 
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  For these reasons, it’s necessary to conduct a sensibility analysis on the soil physical 

properties, boundary conditions and initial conditions, in order to improve the numerical 

results of Boussinesq model.  

7.5.4 Sensitivity analysis with respect to hydraulic conductivity Ks 
   In the Boussinesq model, there are mainly two dominant physical parameters: the saturated 

water content ߠ௦  and the saturated hydraulic conductivity ܭ௦  of the porous media. In the 

experiment in Barcelona, one kind of sand was used, so the saturated water content ߠ௦ of the 

sand was constant and only the single saturated hydraulic conductivity could be changed.  All 

the conditions are kept the same as the above numerical simulation whose results are shown 

in the Fig. 7-5  in the case of ܭ௦=2.8E-2m/s, except increasing the hydraulic conductivity 

value by 10 times and decreasing it by 10 times. The results of the evolution of the water level 

fluctuations of the numerical simulations with three different saturated hydraulic 

conductivities: ܭ௦=2.8E-1m/s, 2.8E-2m/s and 2.8E-3m/s are shown in  Fig. 7-6. 

 

Fig. 7-6 (a) Sensitivity analysis of  simulated water level evolution at different positions : 
Sensors No.2, No.3, No.4, No.5, No.6 and No.7.(t=0-2450s) in the cases: Ks=2.8E-1, 2.8E-2, 
and 2.8E-3m/s. 
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Fig. 7-6 (b) Zoom of the sensitivity analysis of  simulated water level evolution at different 
positions : Sensors No.2, No.3,  and No.4. (t=0-200s) in the cases: Ks=2.8E-1, 2.8E-2, and 
2.8E-3m/s. 
 

Fig. 7-6 (c) Zoom of the sensitivity analysis of simulated water level evolution at different 
positions: Sensors No.5, No.6, and No.7. (t=0-1400s) in the cases: Ks=2.8E-1, 2.8E-2, and 
2.8E-3m/s. 

   From this figure, it can be seen that the bigger the hydraulic conductivity is, the bigger the 

amplitudes of the water level fluctuations. The mobile average water levels of the cases : 

 ௦=2.8E-3m/s during theܭ : ௦=2.8E-1m/s and 2.8E-2m/s are bigger than those of the caseܭ

working of the wave generator, while for the two cases:  ܭ௦=2.8E-1m/s and 2.8E-2m/s ,its 

mobile average water levels are almost the same. Compared with the experimental results, the 

case of : ܭ௦=2.8E-1m/s gives the bigger amplitudes of the water level fluctuations for the 

sensors from No.2 to No.5, but for the sensors No.6 and No.7, the amplitudes are much bigger 

than the ones of the experimental measurements. 
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   The important thing is that the mobile average water levels of the three numerical 

simulations are all much smaller than those of the experimental. All other Boussinesq 

numerical simulations with positive height of the substratum, higher initial water level, and 

shorter simulated length in the x direction can’t increase more the mobile average water 

levels. 

7.5.5 Conclusion on the Dupuit-Boussinesq model 
   The simulated water levels ܪ௜ሺݐሻ obtained with the Boussinesq plane flow model do not 

agree exactly with the measured water levels:  the simulated water level fluctuations seem to 

be less important than the measured ones, and/or, the moving average water level is 

underestimated by the simulations (see for instance  ܪଷ, ܪସ, and ܪହ).  The moving average 

water levels remained smaller than the observed ones for a broad range of parameters, as 

shown by sensitivity analysis with respect to ܭ௦ (shown in Fig. 7-6) -- and also with respect to 

substratum height, initial water levels, and domain length (not shown here).  Analysis and 

interpretation of these discrepancies:  

• The Boussinesq model does not allow vertical velocities 

• The sloping beach boundary is not represented in the Boussinesq plane flow model.  

   Therefore, the 3D Richards flow model will next be used to simulate the oscillatory 

hydrodynamics in the partial saturated beach with a sloping surface, in a vertical cross-section 

(x,z).  

7.6 Simulation with Richards model in vertical cross-section (x,z) 
7.6.1 Introduction 
   Richards model is used to model the variably partial saturated flow. In the Richards model, 

the VGM model and the exponential model are used to model the unsaturated water content 

function ߠሺ݄ሻ and the unsaturated hydraulic conductivity function ܭሺ݄ሻ. 

   In this Chapter, the VGM model is mainly used to validate Barcelona experiment and model 

this kind of problem: hydrodynamics in a sloping sand beach. 

7.6.2 Hydrodynamic behavior of the macro porous medium 
   The effective water content model ߠ௘ሺ݄ሻ and the hydraulic conductivity function ܭሺ݄ሻ of 

the ideal macro porous media are the step functions and respectively shown in Fig. 1-1 and 

Fig. 1-2 in Chapter 1. In this chapter, for the numerical simulations with Richards model, the 
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totally saturated macro porous media is the sea water and the residual macro porous media is 

the air. 

7.6.3 Coupling of the micro porous medium and macro porous medium 
In the Barcelona experiment, the left entry water flow conditions are very complex. The 

entry water flow interact with the slopping sand beach by three ways: directly enter into the 

beach, going up and going down along the beach.  It is very difficult to directly measure the 

real entry water flow condition. In order to simplify it, the sensor No.1 is installed near the 

still water / beach boundary to correspond to the entry water level fluctuations condition of 

the numerical simulation.  

 Actually, in the numerical model (domain shown in Fig. 7-1), there are three kinds of 

media:  the sea water, the air and the beach sand. Therefore, the Richards model used in this 

Chapter is a coupling model between the macro porous media (sea water and the air) and the 

micro porous media (beach sand). 

In the numerical Richards coupling model, the oscillatory entry water level fluctuations are 

directly put on the slopping beach. That is to say, the saturated hydraulic conductivity should 

be enough big in order to model the extremely high porous flow. As a result, there is almost 

no water head loss for the entry water level fluctuations during the propagation in the macro 

porous media and they will be put directly on the slopping beach. 

In order to realize the above idea, the ratio of the saturated hydraulic conductivity of the 

macro porous and the micro porous media plays a dominant role in the numerical coupling. In 

general, this ratio should be greater than or at least equal to 10000. However, this will bring 

some difficulty for the iteration convergence. 

7.6.4 Numerical tests with the VGM model for K(h) and θ(h) 

7.6.4.1 Introduction 
In the VGM model, the two principal parameters of ߙ and ݊ are together related to the 

hydraulic conductivity function ܭሺ݄ሻ and the water content function ߠሺ݄ሻ. 

Due to the complexity of the problem of the hydrodynamic groundwater with the sloping 

beach, the numerical simulations have been done by three principal steps: 

Firstly, a single harmonic wave numerical experiment with one period (short run) has been 

done to test the ratio of the saturated hydraulic conductivity between the macro porous media 

(sea water) and the micro porous media (beach sands) and to make the hydrodynamic 
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groundwater easy understood. The detailed description of this numerical test is shown in the 

Appendix B: Chapter 11. 

Secondly, a serial of one single harmonic wave numerical experiment with several periods 

(long run) have been done to analyze the parameters sensitivity on the groundwater level 

amplitudes, and the steady mean ground water levels. The detailed presentation is described 

in the Appendix B: Chapter 12. 

Finally, the measured water level fluctuation of ܪଵሺݐሻ  has been used as the left entry 

boundary condition for the numerical simulations with VGM parameter model. The computed 

results will be compared with the experimental ones. 

In addition, the sensitivity analysis of the main 4 parameters: ܭ௦, ߠ௦, ߙ and ݊, on the water 

level fluctuations in the slopping sandy beach has been done in order to well understand the 

role of each parameter and eventually, try to improve the consistency of the numerical and the 

experimental results. 

7.6.4.2 Numerical simulation with entry water level of the experimental results ( )1H t  
 Simulation domain 

Vertical 2D: Lx=10m; Lz=0.8m; 

              dx=0.02m; dz=0.02m 

The beach slope is 1/15. The schema of the simulation domain is same as the single 

harmonic numerical experiments, shown in Fig. 7-1. 

 Boundary condition 

Left boundary: H(0,t)=H1(t)-2.30 ;  (The experimental result) 

Right boundary: flux=0.0. (Impermeable wall) 

 Initial condition 

଴ܪ  ൌ 0.17݉ , ݄଴ ൌ ଴ܪ െ  (linear distribution) ݖ

 Physical properties  

   The saturated hydraulic conductivity ܭ௦  for the micro porous media is taken as 0.005m/s 

and the one for the macro porous media is taken as 50m/s, by keeping the same ratio with one 

wave test. All the other physical properties for the micro porous medium and the macro 

medium are same as the single harmonic numerical experiment (short run). The main physical 

parameters are listed in Table 7-4.  
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Table 7-4  Physical properties of the micro and macro porous media  

Porous 
media 

Physical  properties 

Hydraulic conductivity Water content VGN model Capillary length 

 ௌܭ
(m/s) 

௦ ெ௔௖௥௢ܭ

௦ ெ௜௖௥௢ܭ
 ௥ܭ 

(m/s) 
 ௦ߠ

(m3/ m3) 
 ௥ߠ

(m3/ m3) 
 ߙ

(m-1) ߣ ࢔௖௔௣ 
(cm) 

Micro 
porous 

medium 
0.005 

1E+04 
1.0E-7 0.38 0.0 5.0 1.5 20.00 

Macro 
porous 

medium 
50.0 1.0E-7 1 0.0 100.0 3.0 1.00 

   The water content curve  in log-log and the hydraulic conductivity curve  in log-

log, the capillary diffusion coefficient ܦሺ݄ሻ  and the capillary capacity ܥሺ݄ሻ of the two media 

are respectively shown in Fig. 7-7, Fig. 7-8, Fig. 7-9 and Fig. 7-10.  

Fig. 7-7 Water content curve in log-log 
of the micro porous media and the macro 
porous media  

Fig. 7-8  Hydraulic conductivity curve 
in log-log of the micro porous media 

and the macro porous media  
 

 
Fig. 7-9 Capillary diffusion 
 in log-log of the micro porous media and 
the macro porous media  

Fig. 7-10 Capillary capacity  in log-log 
of the micro porous media and the macro 
porous media  
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   From these 4 figures, it can be seen that all the slopes of the curves of the properties of the 

macro porous media are more rapid than the ones of the micro porous media. 

 Duration of the simulation and numerical parameters 

    The validation test simulates the same time as the one of the experiment (serial 14), 

t=2450s.  

The numerical caculation time parameters and the numerical criteria are same as those of 

the single harmonic numerical experiments and that of the numerical simulation with 

Boussinesq model, shown in Table 7-3.   

 Numerical behaviour of Bigflow during the simulation 

The maximum errors of  the linear and nonliear iterations of the pressure head are smaller 

than 0.1, as seen in Fig. 7-11 and Fig. 7-12. 

Fig. 7-11 Standardized linear iteration process 
of the pressure head in log10  

Fig. 7-12 Standardized nolinear iteration 
process of the pressure head in log10  

 

From Fig. 7-13, it can be seen that the curve of the evolution of ܳ஻௢௨௡ௗ totally superposes 

on the curve of the evolution of ܳெ௔௦௦. At the same time, it can be clearly seen the effect of 

the difference of the entry water level fluctuations  ܪଵሺݐሻ on ܳ஻௢௨௡ௗ and ܳெ௔௦௦ from Fig. 7-

13 and Fig. 7-14, especially, at t=27.3s,1127s and 1635s, the three water level differences 

cause the three extremely biggest values for ܳ஻௢௨௡ௗ and ܳெ௔௦௦. 

0 2 4 6 8
-8

-6

-4

-2

0

 Linear iteration number

 L
og

10
(E

N
O

R
M

3)

0 2 4 6
-8

-6

-4

-2

0

Nonlinear iteration number

 lo
g1

0(
EN

LH
3)



Chapter 7 Numerical simulations of wave propagation  
in the sloping sandy beach of the Barcelona canal 

 

168 
 

Fig. 7-13 Evolution of  BoundQ  and MassQ    

Note: The print time of the Head_Tx file has the influence on the evolution of BoundQ  and 

MassQ . This plot is the results of the simulation without the output file Head_Tx. 
 

 
Fig. 7-14 Evolution of the difference of the entry  water level  fluctuations 
Note: the difference of the water level Dh(ti)=H1(ti+1)- H1(ti) 

7.6.4.3 Analysis and comparisons between the numerical and experimental results 
   The numerical results will be compared with the experimental results from the 5 following 

aspects:  

 Comparisons of the profiles of the water level fluctuations ࡴሺ࢞, ࢚ሻ and ࡴሺ࢞, ࢚૙ሻ 

(qualitative appearance) 

   From the two profiles (Fig. 7-15 and Fig. 7-16) of the instantaneous water level fluctuations 

 in the vertical section, it can be seen that the overall appearance of the numerical profile isܪ

very similar to the experimental one, except that there are no waves on the numerical results 

in the sea.  
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Fig. 7-15  Experimental profile of the instantaneous water level fluctuations in the vertical 
section (7 sensors) per 1s. Note the red course line is the free surface of the last time. 

  

 
Fig. 7-16 Numerical profile of the instantaneous water level fluctuations in the vertical 
section (7 sensors) per 1s. Note the red course line is the free surface of the last time. 

    In addition, Fig. 7-17 shows the instantaneous water level profiles of the vertical section at 

t=0.1s, t=38s, t=290s, t=800s, t=1300s, t=1650s, t=1800s, and t=2450s. This figure indicates 

that the numerical water levels near the sea and near the right wall of the canal are very 

approximate to the experimental results. 
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Fig. 7-17  Profiles of the instantaneous water level fluctuations in the vertical section: 
comparison between the numerical results (Richards model) and the experimental results. 

 Comparisons of the evolution of the water level fluctuations ࡴሺ࢞૙, ࢚ሻ (moving 

average) 

   From Fig. 7-18 and Fig. 7-19, it can be seen that the computed fluctuation characteristics of 

the water levels, and especially the computed curve trend are very similar to the experimental 

ones. In particular, the curve of ܪଶሺݐሻ almost superposes with the the experimental one. 
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Fig. 7-18  Evolution of the water levels of 6 sensors  (comparison with the experimental 
results) 

 

Fig. 7-19  Zoom of evolution of the water levels of 3 sensors at t=0-200s (comparison with 
the experimental results)  

 

 Comparisons of the Fourier spectrum (dominant period) 

   From the results of the signal processing of the water level fluctuations ܪଷሺݐሻ with Fourier 

spectrum analysis (Fig. 7-20), it can be seen that the computed water level fluctuations ܪଷሺݐሻ 

has the same dominant periods as the experimental ones such as the most dominant period 

T1=23.33s, and the Fourier spectrum energy almost has same distribution curve with respect 

to the period for the both results. 
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Fig. 7-20   Fourier spectrum function with respect to the frequency (m=700, dt=0.1s) 

In addition, the residual of the simulated ܪ଺ሺݐሻ has the same most dominant period T=600s 

as the experiment. From Fig. 7-21 and Fig. 7-22, it can be seen that the residual of the 

computed ܪ଺ሺݐሻ  with moving average (window halfwidth=300s) has a similar fluctuation 

curve and accordingly, the similar Fourier spectrum curve to the experiment.  

Fig. 7-21 Evolution of the residual of 
(window halfwidth=300s, k=1,dt=0.1s) 

Fig. 7-22 Fourier spectrum function with 
respect to the frequency (m=6000, dt=0.1s) 

 Comparisons of the autocorrelation function (structure of the signal) 

   The auto-correlation function ܴுయுయሺ߬ሻ of ܪଷሺݐሻ and the one of the residual of ܪ଺ሺݐሻ are 

respectively shown in Fig. 7-23 and Fig. 7-24.  
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Fig. 7-23 Auto-correlation  function 
 of with respect to the lag 

time  

Fig. 7-24   Auto-correlation  function  of the 
residual of   with 
respect to the lag time 
Note:  the residual of ( )6H t  obtained with 
moving average  filtering and the window 
halfwidth tw =300s 

   From these two figures, it can be seen that the signal structure of the computed ܪଷሺݐሻ (in the 

mixed zone) is very similar to the experimental, and the similar situation occurs with the 

residual of the computed ܪ଺ሺݐሻ and the experimental results. 

 Comparisons of the cross analysis between ۶૚ሺܜሻ and ۶૜ሺܜሻ 

The computed Fourier coherency curve for the longer periods (T>7.78s) and the shorter 

periods (T<0.5s) almost superposes on the experimental curves (Fig. 7-25).  

Fig. 7-25 Coherency function with respect to the reduced frequency 
(Fourier analysis: m=700, dt=0.1s) 

At the same time, for the middle periods (0.5<T<7.8s), the simulated Fourier coherency has 

been improved, because there is no further broken wave in the simulated sea. 

There is nearly no amplification of the Fourier spectrum energy for the computed ܪଷሺݐሻ 

(Fig. 7-26).  
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Fig. 7-26 Reduced gain function ( & ) with respect to the reduced frequency 
(Fourier analysis: m=700, dt=0.1s) 

Fourier spectrum energy of the computed ܪଷሺݐሻ almost has been no-linearly attenuated 

with decreasing period, which can also be seen in Fig. 7-20 (Fourier spectrum function) . This 

is because the run-up and run-down sea flow are ignored along the beach slope in the 

numerical simulation. 

The computed water level fluctuations ܪଷሺݐሻ  are more regular than the experimental ones. 

From the Fourier phase function (Fig. 7-27), it can be seen that there are gradually increasing 

positive phases for the periods T>1.63s and there are gradually decreasing negative waves for 

0.52<T<1.21s with decreasing period. On contrast, the experimental phase between ܪଵሺݐሻ and 

 .ሻ fluctuates frequently for the 2 corresponding timeݐଷሺܪ

Fig. 7-27 Phase function ( & ) with respect to the reduced frequency
(Fourier analysis: m=700, dt=0.1s) 

Numerical results of ܪଵሺݐሻ  and ܪଷሺݐሻ  have cross-correlation curve very similar to the 

experimental one (Fig. 7-28).  
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Fig. 7-28  Cross-correlation ( & ) with respect to the lag time 

What’s more, the simulated maximum cross-correlation is better than the experimental  one 

and the simulated lag time (0.5s) corresponding to the maximum cross-correlation is shorter 

than the experimental one (1.9s). This is caused by the ‘great velocity’ (10000m/s) of the 

macro porous media between ܪଵሺݐሻ and ܪଷሺݐሻ in the numerical simulation. 

Through the decomposition with multi-resolution wavelet and the inter-correlation of the 

components between  ܪଵሺݐሻ and ܪଷሺݐሻ with temporal analysis, from Fig. 7-29 , it can be seen 

that there are very similar maximum inter-correlation curves with respect to the dyadic time 

scale for the experimental and numerical results, and the best maximum inter-correlation 

component C8 of ܪଷሺݐሻ has very similar fluctuation curves for the both results (Fig. 7-30). 

 
Fig. 7-29  Relationship of the maximum inter-correlation and the dyadic time scale 
between ( )1H t  and ( )3H t  with multi-resolution wavelet and temporal analysis methods. 
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Fig. 7-30  Evolution of the wavelet dyadic component C8 of . 

 

7.6.4.4 Sensitivity analysis of hydrodynamic parameters (Ks, θs, α, n) 

   The objective of the sensitivity analysis is to understand the influence of the beach soil main 

physical properties (ܭ௦ and ߠ௦)  and the unsaturated VGM model parameters (ߙ and ݊) on the 

water level fluctuations in a slopping sandy beach, and further  to attempt to look for the 

method to improve the results of the numerical simulation by adjusting the parameters. 

   The parameter values used to do the sensitivity analysis for the numerical results are listed 

in Table 7-5. 

Table 7-5 Pamameter values for the sensitivity analysis on the numerical results 
Physical 

parameters 
 ௦(m/s) 5.0e-3 2.8e-3 5.0e-2ܭ

 ௦(m3/m3) 0.38 0.36 0.34ߠ
VGM 
model 

parameters 

 5.0 10.0 2.5 (m-1)ߙ

n 1.5 3.0 5.0 

   The influence of the numerical model parameter on the water level fluctuations in the 

slopping sandy beach includes two aspects: the raised mean water levels and the fluctuation 

amplitudes. The evolution of the water level fluctuations of the 6 probed sensors has been 

observed.  In fact, the influence of the parameters on the water level fluctuations of ܪଶሺݐሻ, 

 ,ሻ is very weak and it can nearly be not observed. At the same timeݐହሺܪ  ሻ, andݐସሺܪ ,ሻݐଷሺܪ

the influence on ܪ଺ሺݐሻ and ܪ଻ሺݐሻ is obvious and similar. The influence of the 4 parameters on 

   .ሻ is shown in Fig. 7-31ݐ଻ሺܪ
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Fig. 7-31  Sensitivity analysis: evolution of the water levels of sensor No.7  
(comparison with the experimental results) 

   The simulated results show the hydraulic conductivity ܭ௦  plays the most dominant role 

whether in the raised mean water level or the fluctuation amplitudes of the water level 

fluctuations in the slopping sandy beach. The bigger ܭ௦ is, the bigger the amplitude is, the 

higher the raised mean water level is and the rapider the rising curve slope is in the wetting 

period, and the rapider the draining curve slope is also in the draining period, especially for 

 ߙ plays the second dominant role, and in detail,  the smaller ߙ ,ሻ. On contrastݐ଻ሺܪ ሻ andݐ଺ሺܪ

(longer capillary length) is, the higher the raised mean water level is and the more rapid the  

rising curve slope in the wetting period, and the more rapid draining curve slope in the 

draining period. At the same time, n plays the third dominant role, and its influence is similar 

to the one of ߙ. At last, the saturated water content ߠ௦ has very weak influence and even the 

influence can even not be observed.  
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   In addition, the influence of ܭ௦ on the profiles of the instantaneous water level fluctuations 

in the vertical section for several particular time have been observed, shown in the Fig. 7-32. 

From this figure, it can be seen that, firstly, the differences of the water levels in the mixed 

zone are smaller than the ones in the groundwater zone; secondly, during the work period of 

the wave generator (t<1800s), the difference of the measured water level and the simulated 

water levels are biggest at the sensor No5, the separated point of the mixed zone and the 

groundwater zone; finally, during the draining period (t>1800s), the bigger ܭ௦  makes the 

bigger descending velocity of the water level, for instance, the water levels of the 6 sensors of 

the numerical simulation with the biggest ܭ௦ firstly arrive at the initial mean water level than 

the ones of the other 2 smaller ܭ௦ at t=2450s. 

Fig. 7-32  Sensitivity analysis: Profiles of the instantaneous water level fluctuations in the 
vertical section (comparison with the experimental results) 
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7.6.5 Numerical simulation with the exponential model for K(h) and θ(h) 

7.6.5.1 Introduction 

   Compared with VGM model, the numerical iteration is more easier for the exponential 

model to converge. 

   Since the different parameter functions, ߙ in the VGM model is not the total same as the 

one in the exponential model, although they are both defined as the inverse of the capillary 

length. If the same ߙ  value used in the above presented VGM model is taken in the 

exponential model, and  ߙ ൌ  for the macro porous media and micro porous media, what ߚ3

will happen for the coupling model between the sea and the slopping sandy beach?  This will 

be analyzed in the last part. 

7.6.5.2 Numerical simulation with an entry water level of the experimental results 1H (t)  

   The simulation domain, boundary condition, initial condition, duration of the simulation and 

numerical parameters are same as the numerical simulation VGM model for the Barcelona 

experiment.  

 Physical properties of the beach and the sea (micro and macro porous media) 

   The main physical properties of the beach and the sea with expenential model are listed 

in Table 7-6 

Table 7-6 Physical properties of the beach and the sea of the numerical simulation with 
exponential model 
Physical 

parameters 
௦ߠ ௦ ெ௜௖௥௢ 0.005m/sܭ ெ௜௖௥௢ 0.38m3/m3 

௦ߠ ௦ ெ௔௖௥௢ 50m/sܭ ெ௔௖௥௢ 1.0m3/m3 
VGM 
model 

parameters 

ெ௜௖௥௢ߙெ௜௖௥௢ሺߚ ெ௜௖௥௢ 5m-1ߙ 3⁄ ሻ 1.6667݉ିଵ 

ெ௔௖௥௢ߙெ௔௖௥௢ሺߚ ெ௔௖௥௢ 100m-1ߙ 3ሻ⁄  33.33݉ିଵ; 

    All other parameters are the same as the above numerical simulation with VGM model for 

the Barcelona experiment. 

    The curves of the water content ߠሺ݄ሻ, hydraulic conductivity ܭሺ݄ሻ, capillary diffusion 

 ሺܵ௘ሻ for the micro porous media (the beach) and the macroܥ ሺܵ௘ሻ and capillary capacityܦ

porous media (the sea) have been respectively illustrated in Fig. 7-33, Fig. 7-34, Fig. 7-35 

and Fig. 7-36. 
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Fig. 7-33 Water content curve ( )hθ in semi-
log x axis of the micro porous media and the 
macro porous media (Exp. model) 

Fig. 7-34  Hydraulic conductivity curve
( )K h  in log-log of the micro porous media 

and the macro porous media (Exp. model) 
 

Fig. 7-35 Capillary diffusion ( )eD S in semi-
log y axis of the micro porous media and 
the macro porous media  

Fig. 7-36 capillary capacity ( )eC S   in semi-
log y axis  of the micro porous media and the 
macro porous media 

 Numerical behaviour of Bigflow during the simulation 

   The minimum errors of  the linear and nonliear iterations of the pressure head are smaller 

than 1.0E-6, which is similar to the VGM model, as seen in Fig. 7-37 and Fig. 7-38. 

Fig. 7-37 Standarlized linear iteration process 
of the pressure head in log10 
(Exp. model) 

Fig. 7-38 Standarlized nolinear iteration 
process of the pressure head in log10 
(Exp. model) 
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     The curve of the evolution of ܳ஻௢௨௡ௗ totally superposes on the curve of the evolution of 

ܳெ௔௦௦, as seen in Fig. 7-39. Similarly to the VGM model, it can be clearly seen the effect of 

the difference of the entry water level fluctuations on ܳ஻௢௨௡ௗ and ܳெ௔௦௦ from Fig. 7-39 and 

Fig. 7-14. 

Fig. 7-39 Evolution of  BoundQ  and MassQ   (Exp. model) 

 Comparisons with the experimental results 

   Compared with the VGM model (Fig. 7-18), a similar result has been obtained through the 

comparison of the evolution of the water level fluctuations of the 6 probed sensors: the 

computed water level fluctuations have the same curve trend and similar fluctuation 

characteristics with the experimental results, and accordingly, the computed results agree very 

well as the experimental results, as seen in Fig. 7-40.  

Fig. 7-40  Evolution of the water levels of 6 sensors  (comparison with the experimental 
results)  (Exp. model) 
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7.6.6 Comparison of the numerical results with the Exponential and VGM 

models 
7.6.6.1 Introduction 

   Exponential model and VGM model are two different parameter models for the unsaturated 

soil physical properties: hydraulic conductivity ܭሺ݄ሻ and water content ߠሺ݄ሻ.  

   For the exponential model, the functions ܭሺ݄ሻ  and ߠሺ݄ሻሺequation ሺ1 െ 11ሻ and ሺ1 െ

12ሻ, Chapter 1ሻ are independent with their each own parameter ߙ (the inverse of the capillary 

length due to the hydraulic conductivity) and ߚ (the inverse of the capillary length due to the 

water content). In spite of this, they can be linked together by supposing a relationship with 

the diffusion coefficient function ܦሺܵ௘ሻ (equation (1-22), Chapter 1). Therefore, in the above 

numerical simulation test for Barcelona experiment, ܦሺܵ௘ሻ~ܦ଴ܵ௘
ଶ, and so ߙ ൌ  .ߚ3

   For the VGM model, the functions ܭሺ݄ሻ and ߠሺ݄ሻ are linked by parameter ߙ, the inverse of 

the capillary length, and the power n (equation (1-9) and (1-10), Chapter 2). 

  In general, the ߙ in the exponential model and in the VGM model do not mean the same 

capillary length, due to the different definition of the parameter function. However, in the 

above presented exponential model and in the VGM model, the same ߙ value is used and very 

similar results are obtained. As a result, it is very interesting to compare the corresponding 

pressure head contour distribution, water content distribution and flux field in vertical section 

for the two models.  

7.6.6.2 Comparison of the numerical results with the Exponential and VGM models 

   The difference of the results between the two models appears in the unsaturated zone of the 

macro porous media and the micro porous media. The distribution of the pressure head 

contours with the same serial values and the corresponding water content distribution in the 

vertical section for the two models at t=735s and t=980s are chosen and respectively shown in 

Fig. 7-41 to Fig. 7-48.  
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Fig. 7-41 Profile of the pressure head contours, 
the flux velocity and the beach slope at t=735s 
(length scale in z and in y are 10)
(Exp. model) 

Fig. 7-42 Profile of the pressure head 
contours, the flux velocity and the 
beach slope at t=735s (length scale in z 
and in y are 10)  (VGM model) 

 

Fig. 7-43 Profile of the water content  at 
t=735s in the xz plane (length scale in z and 
in y are respectively 10) (Exp. model) 

Fig. 7-44 Profile of the water content  
at t=735s in the xz plane  (length scale in z 
and in y are respectively 10)  (VGM model) 

 

Fig. 7-45 Profile of the instantaneous 
pressure head contours, the flux velocity 
and the beach slope at t=980s (length scales 
in z and in y are respectively 10) (Exp. 
model) 

Fig. 7-46 Profile of the instantaneous  
pressure head contours ,the flux velocity and 
the beach slope at t=980s (length scales in z 
and in y are respectively 10) (VGM model) 

( )hθ ( )hθ



Chapter 7 Numerical simulations of wave propagation  
in the sloping sandy beach of the Barcelona canal 

 

184 
 

 

Fig. 7-47 Profile of the instantaneous  water 
content  at t=980s in the xz plane 
(length scales in z and in y are respectively 
10) (Exp. model) 

Fig. 7-48 Profile of the instantaneous water 
content  at t=980s in the xz plane 
(length scales in z and in y are respectively 
10) (VGM model) 

   From the distribution of the pressure contours, it can be seen that the distribution density of 

the pressure head contours of the macro porous media of the exponential model is very 

different from the one of the VGM model. Especially, for the first 3 pressure contours, the 

distribution density is totally different and it varies very much. On contrast, in the unsaturated 

zone of the micro porous media, the distribution density of the pressure head contours of the 

two models is so small that it needs to be observed in detail. At the same time, from the water 

content distribution figures, it is obvious to observe that the capillary length obtained with the 

exponential model is longer than the one obtained with VGM model for the two times, and 

however, the difference is not big. At last, the flux is almost uniform in the all vertical 

sections and it doesn’t change very much for the different time with the two models. 

  In addition, the wetting and the draining phenomena are clearly observed from the 

instantaneous pressure head contours profile at t=735s and t=980s for the two models. From a 

zoom of the evolution of ܪଵሺݐሻ (Fig. 7-49), it can be seen that when t=735s, the left entry 

water level just began to descend from a peak value and when t=980s, the left entry water 

level will go up from the bottom value. Accordingly, it is clearly observed that the free 

surface levels in the macro porous media (sea water levels) are higher than the ones in the 

micro media (beach water levels) for the two models (Fig. 7-41 and Fig. 7-42) at t=735s 

(wetting phenomenon). At the same time,  the free surface levels in the macro porous media 

(sea water levels) are lower than the ones in the micro porous media (beach water levels) for 

the two models (Fig. 7-45 and Fig. 7-46) at t=980s (draining phenomenon) 

 

( )hθ ( )hθ
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Fig. 7-49  Zoom of the evolution of ( )1H t  at t=700s-1000s 

7.7 Conclusion and outlook 

  A 2D plane flow Boussinesq model, and a 3D variably unsaturated flow Richard model with 

two different unsaturated parameter models (VGM model and exponential model) have been 

used to simulate the Barcelona wave canal experiment. 

  Although the computed water levels obtained with Boussinesq plane flow model have the 

same evolution trend with the one of the experiment, they do not agree exactly with the 

measured water levels:  the simulated water level fluctuations seem to be less important than 

the measured ones, and the moving average water level is underestimated with the 

simulations. 

   Compared with the simulated results with Boussinesq plane flow model, the ones obtained 

with VGM model (Richard models) agree much better with the measured water levels in 3 

aspects: (1) the qualitative appearance of the profiles of the water level fluctuations ܪሺݔ,  ,ሻݐ

and the signal structure of the evolution of the water level fluctuation ܪ௜ሺݐሻ  by the 

comparisons of the auto-correlation function ܴு೔ሺ௧ሻு೔ሺ௧ሻ; (2) the trend of the evolution of the 

average water level confirmed by the comparisons of ܪ௜ሺݐሻ;  (3) the same dominant periods 

by the comparisons of  Fourier spectrum of  ܪ௜ሺݐሻ. 

   Furthermore, the exponential model with about the same capillary length (same ߙ) with 

VGM model gives the very similar water level fluctuations as the ones with VGM model. The 

results of the sensivtivity analysis indicate that the saturated hydraulic conductivity ܭ௦ has the 

most important imfluence on the ground water level fluctuations. 

   In fact, Richards model used to model the Barcelona wave canal experiment is a simplified 

coupling model. In the numerical simulations, the oscillatory entry water level fluctuations 
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 ሻ are supposed to directly put (or act) on the slopping beach, and this is not consistentݐଵሺܪ

with the actual situation. The moving average level is still underestimated with the 

simulations, and especially for the one of ܪହሺݐሻ, however the parameters are changed, the 

simulated moving average level does not improved enough.  

   In addition, in all the numerical simulations, it could be necessary to consider the erosion 

problem (in surface and intern) and some other couplings like hydro-mechanics (pore 

pressures, Terzaghi, rupture criteria, landslides). 
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Conclusions et perspectives 

   Les conséquences de variations et d’oscillations hydrodynamiques à forte variabilité 

temporelle en milieux poreux partiellement saturés et comportant des surfaces libres tant à 

l’extérieur qu’à l’intérieur des milieux poreux ont été étudiés expérimentalement, 

analytiquement et numériquement. 

   Concernant le problème d’imbibition, un bon résultat de calibration a été obtenu avec le 

modèle de Richards en coupe verticale (les paramètres les plus adaptées pour le modèle VGM 

étant: α = 4,6 m-1, n = 5). L'évolution de la position aval du front de saturation xF (t) est très 

sensible à α qui est lié à la longueur capillaire inverse du milieu poreux (environ 20 cm ici). 

En changeant la valeur de α, nous trouvons que plus grand est α (plus petite est la longueur 

capillaire), plus rapides sont les mouvements du front de saturation se déplaçant dans la 

direction x.  En outre, la solution analytique de Polubarinova (Polubarinova-Kochina 

(1962)[1], Trégarot(2000)[17]) ne correspond pas du tout au processus d’imbibition 

expérimental. Ceci était prévisible, car la solution de Polubarinova est basée sur l’équation 

saturée de Dupuit-Boussinesq avec l’hypothèse de drainage/ imbibition instantanée de la zone 

non saturée à la surface libre. Ces hypothèses ne sont valables que pour les milieux poreux 

grossiers ayant une petite longueur capillaire. Au contraire, dans ce sable très fin, les effets 

capillaires sont importants (longueur capillaire de 20 cm). 

  Nous avons également étudié séparément le problème hypothétique de drainage brusque 

d'une nappe phréatique dans une rivière, en utilisant des hypothèses d'écoulement plan et en 

négligeant les effets capillaires (Dupuit-Boussinesq). Nous avons utilisé une solution 

linéarisée H(x,t) (développée par Ababou (2007)[20]), et nous avons obtenu un très bon 

accord avec une solution numérique de l’équation de Dupuit-Boussinesq en écoulement plan 

(avec transmissivité non linéaire). Nous avons également comparé les résultats de Dupuit-

Boussinesq avec l'équation de Richards plus complète, permettant le drainage de la nappe 

phréatique (simulé comme un problème d'écoulement partiellement saturé/non saturé). 

Similairement au problème d’imbibition, il est vérifié à nouveau ici que l'équation de 

Boussinesq n'est bonne que lorsque la longueur capillaire est négligeable. Enfin, nous avons 
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également utilisé ce problème pour comparer deux différentes paramétrisations des courbes 

(K(h), θ(h)) dans le modèle de Richards. Il a été constaté que, en mettant une même échelle de 

longueur capillaire (1/α) dans le modèle de VGM et dans le modèle exponentiel, bien que les 

courbes (K(h), θ(h)) dans ces modèles soient différentes formes, le même débit de décharge 

Q(t) est obtenu à l’interface nappe-rivière. 

  La propagation des ondes dans une boite à sable rectangulaire placée dans un petit canal à 

houle a ensuite été étudiée expérimentalement, numériquement et analytiquement. Les 

solutions analytiques obtenues avec le modèle Dupuit-Boussinesq de l’écoulement plan 

indiquent que, en supposant une condition limite à sortie de niveau d'eau constant, l'onde dans 

le domaine poreux est constituée d'un seule vague progressive H(x,t) qui décroit 

exponentiellement. Cette décroissance exponentielle est confirmée par comparaison de 

l’approximation analytique avec les niveaux d'eau mesurés, bien que la perméabilité calculée 

obtenue par cette approximation semble trop élevée, peut-être en raison de l'érosion interne ou 

des effets lies à l'écoulement vertical. Enfin, il est intéressant de noter que, dans l'hypothèse 

d'une frontière fermée (ce qui n'était pas le cas pour notre boite à sable immergée), le niveau 

d'eau résultant H(x,t) est une combinaison d’une onde progressive avant et d’une onde 

progressive arrière, avec décroissance exponentielle d'amplitude par rapport à la distance à la 

frontière d’entrée (pour les ondes avant) -- ou à la frontière réflective (pour les ondes arrière). 

   Par la suite, dans le grand canal à houle (Hydralab à Barcelone), nous avons installé 7 

micro-piézomètres équipés de capteurs capacitifs, permettant de mesurer les fluctuations des 

niveaux d’eau de la nappe souterraine en des positions différentes dans la plage de sable 

inclinée. Nous avons aussi également mesuré d'autres fluctuations de niveaux d’eau dans l'eau 

libre (écoulement externe). Les résultats expérimentaux montrent une décroissance spatiale 

des fluctuations de niveau de la nappe souterraine, et aussi un « filtrage » (par la plage de 

sable) des périodes les plus courtes losque l'on s'éloigne du rivage. En outre, les mesures des 

niveaux d'eau loin de la rive (H6(t), H7(t)) présentent un comportement très différent de ceux 

plus près du rivage (comme H2(t)). En effet, étant donné les multiples fréquences du spectre 

des ondes qui arrivent à la rive (périodes de 5 s jusqu’à 600 s environ), le résultat est 

apparemment une surélévation de la surface libre moyenne (à distance du rivage) par rapport 

au “niveau d’eau moyen de la mer”. 

   En fait, il a été observé que les fluctuations des niveaux d'eau mesurés présentent des 

caractéristiques inhomogènes dans le temps et l'espace. Dans ce cas, les méthodes de 

traitement simples comme l'analyse de Fourier directe de chaque signal Hi(t) apparaît 
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inefficace ou ne fournit que des informations incomplètes. Pour cette raison, nous avons 

appliqué une série de tests et d'analyses sur les fluctuations de niveau d'eau mesurése, incluant 

à la fois les analyses croisées et univariées, la fréquence spectrale ainsi que des analyses de 

corrélation temporaire, analyses des ondelettes orthogonales multi-résolution, et les méthodes 

du pré-filtrage basées sur des moyennes mobiles ou de décomposition en ondelettes. Les 

principaux résultats obtenus avec les analyses du signal de ces méthodes sont les suivantes: 

• Étant donné que la période de géneration des ondes pas le batteur est d'environ 4-5 

secondes, la période dominante T1 = 24s de l'onde incidente sur la rive (piézomètre 

H1(t)) est interprétée comme l'effet de la géométrie du grand canal à houle, ou plus 

précisément, comme la période dominante issue du ‘run-up and run-down flow’ qui lié  

à la topographie et la nature de la plage inclinée de  sable fin. 

• Pour les trois piézomètres proches de la rive et dans la zone de swash Hi(t)(i=1,2,3),  

les périodes dominantes sont la même, environ 24 secondes ; les périodes dominantes 

sont un ordre de magnitude plus longue pour les piézomètres situés plus loin du rivage 

Hi(t)(i=4,5,6,7): leur périodes dominantes sont respectivement 400s, 600s, 600s et 

300s. 

• Les énergies de fluctuation des périodes dominantes diminuent considérablement avec 

la distance du rivage dans la plage de sable fin en pente. L'énergie de fluctuation de la 

période la plus longue se propage plus loin dans la plage que l'énergie des périodes 

plus courtes. 

• La corrélation maximale diminue presque linéairement, et le délai correspondant 

augmente de façon exponentielle par rapport à la distance horizontale dans la direction 

vers la terre (loin de la rive). 

• Les vitesses de propagation des ondes ont été toutes estimées le long du canal (en eau 

libre, et en eau souterraine) en utilisant des délais temporels (déphasages) mis en 

évidence par les corrélations croisées. La moyenne de la vitesse de propagation des 

ondes mesurées diminue avec la distance horizontale vers la plage de sable fin (en 

partant du générateur de houle). La valeur minimale mesurée (c=0.056m/s) est proche 

de la vitesse de groupe d’onde en poreux (2 fois plus petite), celle-ci étant calculée par 

Dupuit-Boussinesq pour T=24s, la période dominante du point d’entrée H1(t).  

• On obtient un pic de cohérence spectrale à 24T s≈  entre le signal H1(t) et les signaux 

H2(t), H3(t), etc. Ceci indique que cette période a une grande influence sur toutes les 

fluctuations de niveaux d’eau souterraine dans la plage inclinée de sable fin, à 
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l'exception du piézomètre ܪ଻ሺݐሻ le plus éloigné de la rive et le plus proche de la paroi 

du fond imperméable du canal. D’autre part, on observe un creux de cohérence à 

10T s≈ . Ceci peut indiquer qu'il y a une vague de reflux périodique dont la limite est 

située quelque part entre ܪଵሺݐሻ  et ܪଶሺݐሻ , et qui n’influence pas directement les 

piézomètres plus éloignés ܪଷሺݐሻ, ܪସሺݐሻ, etc.    

   Nous avons finalement développé un outil numérique pour modéliser l'expérience du grand 

canal à houle de Barcelone. L’utilisation du modèle 2D de Dupuit-Boussinesq de 

l’écoulement plan, comme on s'y attendait, n'a pas été vraiment concluante. Bien que les 

niveaux d'eau calculés aient la même évolution générale que les données expérimentales, ils 

ne sont pas vraiment en accord avec les niveaux d'eau mesurés: les fluctuations du niveau 

d'eau simulé semblent être moins importantes que celles mesurées, et la variation de niveau 

d'eau moyenne est très sous-estimée par les simulations. A noter que la plage en pente ne peut 

pas être représentée explicitement dans un tel modèle d’écoulement plan simplifié. 

   Nous avons ensuite porté notre attention sur un modèle d’écoulement partiellement saturé / 

non saturé, basé sur l'équation généralisée de Richards, avec un milieu macroporeux pour 

représenter le domaine au-dessus de la surface du sable en pente. Plus précisément, deux 

types de modèles ont été utilisés pour les courbes non saturées (K(h), θ(h)) dans le modèle de 

Richards : le modèle de Van Genuchten/Mualem (VGM) et le modèle exponentiel. 

   Les niveaux d'eau obtenus par la simulation numérique avec le modèle de Richards (en 

utilisant des courbes de VGM et un sous-domaine macroporeux pour l’eau libre) 

correspondent beaucoup mieux avec les niveaux d'eau mesurés que les simulations de Dupuit-

Boussinesq.  

Les résultats numériques ont été bien validés par comparison avec ceux de l’expérience sur 

trois aspects: 

(1) Les courbes ܪሺݔ௜, ሻݐ  de fluctuation du niveau d'eau, qui sont quantitativement 

confirmées par la comparaison des structures d’auto-corrélation des signaux ܪሺݔ௜,  ሻݐ

expérimentaux et modélisés; 

(2) La tendance de l'évolution du niveau d’eau moyen; 

(3) Les périodes dominantes, par comparaison des spectres de Fourier simulés et 

expérimentaux des signaux ܪሺݔ௜,  .ሻݐ
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De plus, on obtient un ensemble très similaires de fluctuations du niveau d'eau ܪሺݔ௜,  ሻ, enݐ

utilisant la même longueur capillaire (1/α) dans le modèle exponentiel et dans le modèle 

VGM. 

   En perspective, pour étudier les interactions entre l’hydrodynamique de la plage et des eaux 

souterraines, il sera intéressant et nécessaire de tenir compte également des processus 

d'érosion/dépôt de surface, ainsi que de l’érosion interne et d’autres couplages fluide/solide. 

Parmi ces derniers, citons les couplages hydro-mécaniques impliquant une loi 

contrainte/déformation, un couplage avec la pression interstitielle (contrainte effective de 

Terzaghi), effet de succion capillaire sur la cohésion et les critères de rupture, etc.  

   Le groupe OTE de l’IMFT (avec qui nous avons collaboré pour récupérer et analyser les 

données du canal à houle) est actuellement en train d'effectuer des analyses sur le processus 

d’érosion/dépôt basées sur des mesures de surface de sable réalisées par imagerie laser pour le 

même ensemble de génération de tests d'onde. Il sera intéressant par la suite d’étudier 

l’influence des fluctuations des niveaux d’eau de la nappe souterraine et de la dynamique de 

la zone non saturée sur ces phénomènes d’érosion/ dépôt. 

   Enfin, nous terminons avec trois illustrations des applications potentielles des fluctuations 

des niveaux d'eau en présence d’interactions surface/subsurface (ouvert/poreux): 

a) Les berges des rivières, estuaires, et lacs des barrages limités par des fondations 

imperméables et une couche verticale de noyau d'argile; 

 

b) Les berges des rivières, estuaires, et lacs des barrages limités par des fondations 

imperméables et une couche oblique de noyau d'argile; 
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c) Les lits des rivières, et les digues limités par des fondations imperméables : 

 

   Ces applications correspondent à des problèmes réalistes, qui peuvent être traités comme 

des extensions du travail présenté dans cette thèse. 
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  Conclusions and outlook 

   The consequences of hydrodynamic variations and oscillations with high temporal 

variability in partially saturated porous media with free surfaces both outside and inside the 

porous media have been investigated experimentally, analytically and numerically. 

   For the wetting problem in a sandbox, a good calibration result was obtained with the 

Richards model in vertical cross-section (best fitted parameters for the Van 

Genuchten/Mualem (VGM) model: 4.6=ߙm-1, n=5). The evolution of the saturation front toe 

 which is related to the inverse ߙ ሻ on the sandbox bottom is quite sensitive to parameterݐி ሺݔ

capillary length of the medium (about 20cm here). By changing the value of ߙ, we find that 

the larger ߙ is (the smaller the capillary length is), the faster the saturation front toe moves in 

the x direction. Also, the Polubarinova analytical solution (Polubarinova-Kochina (1962)[1], 

Trégarot (2000)[17]) does not fit at all the experimental wetting process. This is to be 

expected, because Polubarinova’s solution is based on the Dupuit-Boussinesq plane flow 

equation, with supposedly instantaneous drainage/wetting of the unsaturated zone at the free 

surface. The latter assumption would hold only for coarse media with small capillary length. 

On the contrary, in this very fine sand (݀ହ଴=0.16mm), capillary effects are important (20 cm 

capillary length). 

   We also studied, separately, the hypothetical problem of sudden discharge of a phreatic 

aquifer in a river bank, using plane flow assumptions and neglecting capillary effects (Dupuit-

Boussinesq). We used a linearized solution of the transient water table H(x,t) (developed by 

Ababou (2007) [20]), and we obtained a very good agreement with the numerical solution of 

the Dupuit-Boussinesq plane flow model (whith non linear transmissivity). We also compared 

the Dupuit-Boussinesq results with the more complete Richards equation, whereby water 

table discharge is simulated as a partially saturated / unsaturated flow problem. Similar to the 

wetting problem, it is verified again here that the Boussinesq equation is good only when 

capillary length is negligible. Finally, we also used this test problem to compare two different 
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parametrizations of the curves (K(h),θ(h))  in the Richards model. Using the same capillary 

length scale (1/ ߙ) in both the VGM and Exponential models, and in spite of the different 

shapes of (K(h),θ(h)) curves in these models, the same water table discharge rate Q(t) was 

obtained at the river bank.  

   Wave propagation through a rectangular sandbox in a small wave canal was then 

investigated experimentally, numerically and analytically. The analytical solutions obtained 

with the Dupuit-Boussinesq plane flow model indicate that, assuming an exit boundary of 

constant water level, the wave in the porous domain consists of a single exponentially damped 

progressive wave H(x,t). This exponential damping is confirmed by fitting the analytical wave 

with measured water levels, although the calculated permeability obtained by this fitting 

seems too high, due perhaps to internal erosion or to vertical flow dynamics. Finally, it is 

interesting to note that, in the hypothetical case of a closed boundary (which was not the case 

for our immersed sandbox), the resulting water level H(x,t) is a combination of a forward (and 

a backward) progressive wave, with exponentially decaying (increasing) amplitude with 

respect to horizontal distance “x” from the fluctuating water level boundary.  

  Next, we studied water level fluctuations in a long (100 m) wave canal at HYDRALAB in 

Barcelona, Spain. We have placed 7 micro-piezometers equipped with capacitive sensors, to 

measure groundwater level fluctuations at different positions in the sloping sandy beach. We 

have also analyzed other water level fluctuations measured in the open water along the canal. 

The experimental results show the spatial decay of groundwater level fluctuations, and also, 

the filtering out of the shortest periods as one moves away from the shore (“landward”). 

Furthermore, the water level signals away from the shore (ܪ଺ሺݐሻ  ሻ) exhibit a veryݐ଻ሺܪ,

different behavior from those closer to the shore (such as ܪଶሺݐሻ). Indeed, given the multiple 

Fourier frequencies of the waves that arrive at the shore, the result is apparently a net super-

elevation of the mean groundwater table (at a distance from the shore) compared to “mean sea 

level”. 

   In fact, it was observed that the measured water level fluctuations exhibit inhomogeneous 

characteristics in time and space. For this reason, simple processing methods such as direct 

Fourier analysis of each signal Hi(t) appears ineffective or provides only incomplete 

information. Therefore, we have applied a series of tests and analyses to the measured water 

level fluctuations ( )iH t , including both single and cross-signal analyses, spectral frequency as 

well as correlation time lag analyses, orthogonal multi-resolution wavelet analyses, and pre-
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filtering methods based on moving averages or wavelet decompositions. The main results 

obtained with these signal analyses methods are the following: 

 Given that the wave generator period is about 4-5seconds, the dominant period T1=24s 

of the incoming wave at the entry point of the shore (piezometer H1(t)) is interpreted 

as the effect of the “geometry” of the wave canal, or more precisely, it is the dominant 

period of the run-up and run-down flow due to the topography and the nature of the 

sloping sandy beach.   

 The most dominant period is the same, about 24 seconds, for the 3 piezometers closest 

to the shore and located in the swash zone ( ) ( 1,2,3)iH t i = ; in comparison, the 

dominant periods are one order of magnitude longer for the piezometers located 

further away from the shoreline, after the swash zone ( ) ( 4,5,6,7)iH t i = : their 

dominant periods are respectively 400s, 600s, 600s and 300s. 

 The fluctuation energies of the dominant periods drastically decrease with distance 

from the shore in the sloping sandy beach. The fluctuation energy of the longer period 

is propagated farther in the sloping sandy beach than the energy of the shorter periods. 

 The maximum correlation almost decreases linearly, and the corresponding lag time 

increases exponentially with respect to the horizontal distance in the landward 

direction (i.e., away from the shoreline). 

 The wave propagation velocities have been estimated all along the canal (open water 

as well as groundwater) using cross-correlation lag times (and phase lags). The 

measured average wave propagation velocity decreases with horizontal distance from 

the wave generator towards the sandy beach. The minimum measured value 

c = 0.056m/s is close to (but twice smaller than) the wave group velocity calculated 

from the Dupuit-Boussinesq model for the dominant period T = 24s of the entry point 

signal ( )1H t  located near the shoreline.  

 We analyzed the spectral coherency between H1(t) and all the other beach 

groundwater signals (H2(t), H3(t), …). The spectral coherency peak obtained at 

24T s≈  indicates that this period has a great influence on all the groundwater level 

fluctuations in the sloping sandy beach, except for piezometer H7(t) furthest from the 

shore and closest to the impervious end wall of the canal. On the other hand, the 

coherency trough at 10T s≈  may indicate that there is a periodic backflow wave 
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whose upper limit (landward) is located somewhere between H1(t) and H2(t), and 

therefore, this backflow does not directly influence piezometers H3(t), H4(t), etc.  

   We have finally developed a numerical model of the Barcelona wave canal experiment. The 

2D plane flow Dupuit-Boussinesq model, as expected, was not really conclusive. Although 

the computed water levels have the same general evolution as the experimental ones, they do 

not really agree with the measured water levels: the simulated water level fluctuations seem to 

be less important than the measured ones, and the moving average water level is much 

underestimated by the simulations. Indeed, note that the sloping beach could not be 

represented explicitly in such a simplified plane flow model.  

   We then focused on a vertical cross-section model of partially saturated / unsaturated flow 

based on the generalized Richards equation, with a macroporous medium to represent the 

open air/water domain above the sloping sand surface. Specifically, two different types of 

models were used for the unsaturated curves (K(h),θ(h)): the Van Genuchten / Mualem 

(VGM) model, and the Exponential model. 

   The simulated water levels obtained with the Richards model (using VGM curves and a 

macroporous subdomain for open water) agree much better with the measured water levels, 

compared with the Dupuit-Boussinesq simulations. The agreement is clear in three respects: 

(1) the qualitative appearance of water level signals ܪሺݔ௜,  ሻ, which are quantitativelyݐ

confirmed by comparing the auto-correlation structures of experimental versus 

simulated ܪሺݔ௜,   ;ሻ signalsݐ

(2) the trend of the average water level evolution;   

(3) the dominant periods are also found to be in agreement, based on comparisons of 

the simulated and experimental Fourier spectra of ܪሺݔ௜,   .ሻݐ

   Furthermore, using the same capillary length (1/ߙ) in the Exponential model and in the 

VGM model, yields a very similar set of water level fluctuations ܪሺݔ௜,  .ሻݐ

   Finally, as an outlook for the study of beach hydrodynamics and groundwater interactions, it 

will be interesting and useful to consider, in a future work, surface processes of 

erosion/deposition, as well as internal erosion, and other solid-fluid and hydro-mechanical 

couplings. The latter should involve a stress/strain law, coupling with pore pressure (Terzaghi 

effective stress), capillary suction effects on cohesion, yield strength criteria, etc.  
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   The OTE group at IMFT (with whom we have collaborated to retrieve and analyze wave 

canal data) is currently carrying out analyses of the erosion/deposition process based on sand 

surface measurements performed by laser imagery, for the same set of wave generation tests 

in the Barcelona canal.  Then, it will be interesting to study the influence of groundwater 

fluctuations and the dynamics of the unsaturated zone on the erosion/deposition processes. 

At last, we finish with three illustrations of potential applications of coupled 

surface/subsurface water level fluctuations:  

a) Banks of rivers, estuaries and dam lakes limited by impermeable foundations and a 

vertical layer of clay core; 

 

b) River banks, estuaries and dam lakes limited by impermeable foundations and an 

oblique layer of clay core; 

 

c) River banks, and dykes limited by impermeable foundations. 

 

   These applications correspond to realistic problems, which can be treated as extensions of 

this doctoral thesis work. 
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Résumé étendu 

   Cette thèse vise à étudier expérimentalement, analytiquement et numériquement, les 

conséquences de variations et d’oscillations hydrodynamiques à forte variabilité temporelle en 

milieux poreux partiellement saturés et comportant des surfaces libres tant à l’extérieur qu’à 

l’intérieur de milieux poreux.  

   Ce type de problème survient lorsque le massif poreux (digue, remblai, berge, sol, ...) est 

soumis à des oscillations dues aux marées et à la houle (littoral et portuaire), au passage de 

crues (rivières), et aux variations de niveaux de lacs  et de réservoirs. 

1. Introduction et objectifs 

   En hydrologie et hydrogéologie, les niveaux d'eau subissent des oscillations ou de brusques 

changements dans le temps. Cela peut se produire dans les aquifères, réservoirs, lacs, rivières, 

digues, les estuaires, les ports et les zones côtières. Dans de nombreux cas, les oscillations des 

surfaces libres ont lieu en eau libre, puis, se propagent dans les milieux poreux adjacents 

(plages, aquifères côtiers, berges, digues, brise-lames, …). Dans ce travail, nous étudions la 

réponse de la nappe phréatique, qui est à la fois dans des zones saturées et non saturées 

(séparés par des surfaces libres) dans des conditions très dynamiques. Nous nous sommes 

intéressés à deux cas en particulier: des changements brusques et des oscillations périodiques 

des niveaux d'eau. Ceux-ci peuvent résulter de conditions environnementales naturelles ou 

induites par des opérations de l'homme dans le génie civil et les applications hydrologiques. 

    Ainsi, nous nous concentrons sur les effets potentiels des variations des niveaux d'eau dans 

le voisinage de corps poreux, tels que: 

 propagation d’ondes dans un environnement constitué de milieux poreux (plages, zones 

côtières et les estuaires) (Figure 1); 

 transmission / dissipation des marées et des vagues à travers un milieu poreux (digues, 

brise-lames ou ports) ; 

 variations de niveau d’eau de grande amplitude dans les rivières et les réservoirs, par 

exemple  à cause d’opérations de barrages (Figure 2); 
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 interactions crues/eaux souterraines, et inondations/eaux souterraines (interactions sols-

nappes-riviere en hydrologie) 

Figure 1. Sea beach of Rincon, Puerto Rico 
taken from the Red Door. 

Figure 2. Three Gorges Dam Reservoir 
filled to 135 meters (international PROBE, 
Mu Lan, June 2003).   

   Dans cette thèse, nous étudions en particulier la réponse du système de nappe phréatique des 

milieux poreux avec la surface libre aux variations de niveaux d'eau dans les eaux libres 

adjacentes. Ce milieu peut être traité soit comme une frontière du domaine poreux, ou bien 

comme une interface interne (cf. plage de sable en pente). Deux types principaux de 

dynamique sont étudiés: (i) variation brusque du niveau d'eau (cf.  problème d’imbibition), et 

(ii) oscillations périodiques dues par exemple à des marées ou à des vagues (cf. les 

expériences de canal à houle). 

   Les analyses développées dans la thèse reposent sur trois approches complémentaires: 

 Expériences physique avec des modèles à échelle réduite dans le laboratoire (boites à 

sable, canaux); 

 Solutions analytiques linéarisées ou  faiblement non-linéaire en termes des niveaux d'eau 

(modèle  de Dupuit-Boussinesq de l’écoulement plan) 

 Solutions numériques complètements non-linéaires de l’équation de Richards en termes de 

pression interstitielle, teneur en eau et  flux de Darcy, en 3D ou en coupes verticales, 

basée sur un code volume finis implicite (BigFlow 3D). 

2. Equations régissant nos problèmes 
   Les équations régissant nos problèmes sont basées sur la loi de Darcy et diverses 

généralisations : 

 Equations des écoulements plans de nappes libres (Dupuit-Boussinesq),  

 Equations des écoulements 3D en milieu variablement saturé avec capillarité 

(Richards)  

   De plus, dans les équations de Richards, nous utilisons la fonction de Van Genucheten/ 
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Mualem (VGM) et la function exponentielle pour calculer la teneur en eau ߠሺ݄ሻ  et la 

conductivité hydraulique ܭሺ݄ሻ dans la zone non-saturé du milieux poreux. 

3. Méthodes numériques 
   Nous utilisons le code numérique BIGFLOW version 2007 (Ababou et Bagtzoglou 1993 [74]; 

Ababou et Al-Bitar 2007 [75]) basé sur la méthode des volumes finis afin d’étudier les 

problèmes décrits dans l’introduction. Nous avons, en particulier, développés des conditions 

limites permettant de traiter les problèmse avec des conditons limites variables dans le temps 

and l’espace. L’écoulement variablement saturé/non saturé est simulé avec le module 3D de 

BIGFLOW, et l’écoulement saturé quasi-plan est simulé avec le module plan “2D” de 

BIGFLOW. 

4. Expériences de laboratoire 
Pour étudier nos problèmes, nous avons réalisés trois expériences de laboratoire : 

• Expérience d’imbibition dans une boite à sable (avec grande capillarité, Figures 3 et 

4) ; 

 

Figure 3 : Expérience d’imbibition (IMFT) Figure 4 : Schéma de niveau d’eau de 
l’entrée H(t) 

• Transmission de niveau d’eau dans un canal à travers un massif sableux intercalé 

(écoulement oscillatoire, Figure 5 et 6) ; 

Figure 5 : Petit canal à houle (IMFT) Figure 6 : Schéma de niveau d’eau de 
l’entrée H(t) 

• Transmission de niveau d’eau dans un grand canal avec fond sableux incliné (expérience 

Hydralab-Sands à Barcelone, Figure 7 et 8) avec prise en compte de l’érosion. 
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Figure 7 : Grand canal à houle à Barcelone 
(Hydralab) 

Figure 8 : Schéma de niveu d’eau 
d’entrée H(t) 

   Dans l’éxpérience d’imbibition, le niveau d’eau statique dans le réservoir s’infiltre 

brusquement  dans une boite à sable sec et très fin (longueur capillaire d’envron 20cm). Nous 

avons étudié optiquement les évolutions des effets capillaires dans le milleu poreux. 

   En revanche, dans le petit canal à houle de l’IMFT, le massif sableux est beaucoup plus 

grossier (݀ହ଴ ൎ 1.8݉݉, sable grossier) et l’effet capillaire est négliseable. D’une part, nous 

avons utilisé cette expérience d’étudier la transmission de fluctuations de niveau d’eau à 

travers le massif sableux avec une condition de fontière d’écoulement oscillatoire forcé. 

D’autre part, nous l’avons aussi utilisé pour developer un capteur permettent de mesurer les 

fluctuations de niveaux d’eau dans les milleux poreux et qui a servi pour mesurer les 

fluctuations de niveaux d’eau dans une plage de sable fin en pente (grand canal à houle à 

Barcelone). 

   One peut ici noter que par la suite :  

(1) pour l’éxpérience d’imbibition, la frontière d’entrée est verticale, il n’y a pas de 

condition limite oscillatoire forcé et le mileu poreux est très fin avec un grand effet 

capilaire; 

(2) pour l’expérience dans le petit canal à houle de l’IMFT, la condition d’entrée est un 

écoulement oscillatoire forcement, la frontière d’entrée est verticale, et les effects 

capillaires sont négligeables.  

   Afin d’étudier le problème le plus complet de transmission de niveau d’eau dans le milieu 

massif poreux avec grand effet capillaire et avec la frontière d’entrée inclinée, nous avons 

réalisé  une expérience dans un grand canal à houle (Hydralab). Dans cette expérience, nous 

avons installé 7 capteurs capacitifs (piézometriques) dans la plage pour mesurer les 

fluctuations de niveaux d’eau libre (dans le zone de swash) et souterraine. Le Capteur No.1 a 

été installé à la frontière entre l’eau libre et la plage pour mesurer  les conditions d’entrée de 

niveaux d’eau dans la plage. 
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   De plus, cette expérience de "vague/plage" a été menée dans un canal d'eau de grande 

dimension équipé d'un générateur d'ondes (canal CIEM à Barcelone). L'expérience a été 

menée dans le cadre d'un projet européen, Hydralab-Sands, entrepris en collaboration entre le 

laboratoire Hydralab à Barcelone (Espagne) et le groupe OTE du laboratoire IMFT (Toulouse, 

France). L'expérience était initialement conçue pour mesurer l'érosion de la zone de swash 

dans une plage de sable fin, avec des oscillations périodiques du niveau d'eau. 

5. Problème d’imbibiton et problème de drainage 
 5.1 Problème d’imbibiton 

   Pour étudier le prolème d’imbibition avec variation abrupte du niveau d’eau amont (par 

suivi temporel du front de saturation), une solution de l’équation faiblement non linéaire de 

Dupuit-Boussinesq (D-B) et la simulation numérique dans la section verticale avec le module 

Richards ‘3D’ (VGM) ont été utilisés et comparés avec les résultats expérimentaux. 

 
Figure 9: Photo et simulation numérique (Richards) de l’expérience d’imbibition, montrant 
les isovaleurs de saturation calculés (S=90%, S=62% (S

CAP
) et S=1 (surface libre).  

Les flèches rouges représentent le flux. L’échelle de longueur capillaire est de 22 cm. 

   Un bon résultat de calibration (Figure 9) a été obtenu avec le modèle de Richards en coupe 

verticale (les paramètres les plus adaptées pour le modèle VGM étont: α = 4,6 m-1 et n = 5). 

L'évolution de la position   aval   du   front   de   saturation xF (t) est très sensible à α qui est 

liée à la longueur capillaire inverse de milieu poreux (environ 20cm ici). En changeant la 

valeur de α, nous trouvons que plus grand est α (plus petite est la longueur capillaire), plus 

rapide sont les mouvements du front de saturation se déplaçant dans la direction x. En outre, 

la solution analytique de Polubarinova (Polubarinova-Kochina (1962)[1],Trégarot(2000)[17]) 

ne correspond pas du tout avec le processus d’imbibition expérimental. Ceci était prévisible, 

car la solution de Polubarinova est basée sur l’équation saturée de Dupuit-Boussinesq avec 
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l’hypothèse de drainage/ imbibition instantanée de la zone non saturée vers la surface libre. 

Cela n’est valable que pour des milleux poreux avec une longueur capillaire petite. Au 

contraire, dans ce sable très fin, les effets capillaires sont ici importants (longueur capillaire 

de 20 cm). 

5.2 Problème de drainage 

   Nous avons également étudié séparément le problème hypothétique de drainage brusque 

d'un aquifère phréatique dans une rivière en utilisant des hypothèses d'écoulement plan et en 

négligeant les effets capillaires (Dupuit-Boussinesq). Nous avons utilisé une solution 

linéarisée de surface libre transitoire H(x,t) (développé par Ababou (2007)[20]), et nous avons 

obtenu un très bon accord avec une solution numérique du modèle Dupuit-Boussinesq de 

l’écoulement plan (avec transmissivité non linéaire). Nous avons également comparé les 

résultats de Dupuit-Boussinesq avec l'équation de Richards plus complète, permettant le 

drainage de la nappe phréatique simulé comme un problème d'écoulement partiellement 

saturé/non saturé. Similairement au problème d’imbibition, il est vérifié à nouveau ici que 

l'équation de Boussinesq n'est bonne que lorsque la longueur capillaire est négligeable. Enfin, 

nous avons également utilisé ce problème pour comparer deux différentes paramétrisations 

des courbes (K(h), θ(h)) dans le modèle de Richards. Il a été constaté que, en mettant une 

même échelle de longueur capillaire (1/α) dans le modèle de VGM et le modèle exponentiel, 

bien que les courbes (K(h), θ(h)) dans ces modèles soient de formes différentes, le même 

débit de drainage Q(t) est obtenue au bord de la rivière. 

6. Transmission et dissipation d’ondes à travers une boite à sable 

rectangulaire 
   Pour les études théoriques, nous avons développé des solutions analytiques linéarisées. 

   Un exemple de problème traité analytiquement est: l’équation linéarisée de Dupuit-

Boussinesq (D-B) transitoire à surface libre, avec l’hypothèse d’écoulements plans et 

vidange/remplissage instantanés: oscillations forcées, transmission et dissipation d’ondes à 

travers une boite à sable rectangulaire. 

   Cette solution analytique de surface libre (H(x,t) a été comparée avec celle issue de 

simulations numériques ave le module plan “2D” de  l’équation non-linéaire de Dupuit-

Boussinesq. Les comparaisons montrent deux types de résultats: 

• les profils de fluctuations de niveaux d’eau H(x,t) des deux types  de résultats 
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(solutions lineaires/nonlineaires) sont très ressemblants, et en particulier les longueurs  

de décroissance des vagues progressives sont du meme ordre de magnitude ; 

• les fluctuations de niveaux d’eau H(x0,t)  analytiques linéarisées sont en bon accord 

avec celles des simulations numériques de l’équation non-linéaire de Dupuit-

Boussinesq, sauf  certaines erreurs périodiques. 

   De plus, concernant les erreurs ߝሺݔ, ሻݐ ൌ หHN౫ౣé౨౟౧౫౛ሺ୶,୲ሻିH౗౤౗ౢ౯౪౟౧౫౛ሺ୶,୲ሻห
Hబ

 ou ߝሺݔ, ሻݐ ൌ

หHN౫ౣé౨౟౧౫౛ሺ୶,୲ሻିH౗౤౗ౢ౯౪౟౧౫౛ሺ୶,୲ሻห
Aబ

 (A଴ est l’amplitude de fluctuation d’entrée) entre les niveaux 

d’eau analytiques linéarisés et numériques nonlinéaires, on a trouvé que: 

• Les erreurs  ߝሺݔ଴, ሻݐ  atteingnent des maximums lorsque les niveaux d'eau sont 

minimums, les erreurs  ߝሺݔ, ݔ ଴ሻ atteingnent les maximums à la positionݐ ൌ ߜ 2⁄ , où 

 ;est la longueur de décroissance de vague dans le milieu poreux ߜ

• L’erreur maximale est  une fonction puissance vis à vis du rapport de l'amplitude 

avec le tirant d’eau moyen, et pour les deux formules d’erreurs, on a : 

ெ௔௫ଵߝ ൌ max୲אሾ୲,୲୫ୟ୶ሿ
หHN౫ౣé౨౟౧౫౛ሺ୲ሻିH౗౤౗ౢ౯౪౟౧౫౛ሺ୲ሻห

Hబ
ൌ ݁ିଵ.ଷହସ ቀ஺బ

ுబ
ቁ

ଶ.ଷ଴ଽ
  

ெ௔௫ଶߝ ൌ max୲אሾ୲,୲୫ୟ୶ሿ
หHN౫ౣé౨౟౧౫౛ሺ୲ሻିH౗౤౗ౢ౯౪౟౧౫౛ሺ୲ሻห

Aబ
ൌ ݁ିଵ.ଷହସ ቀ஺బ

ுబ
ቁ

ଵ.ଷ଴ଽ
  

   Concernant la simulation numérique, la longueur de décroissance δ joue  un role dominant 

influant sur la longueur de propagation de la fluctuation dans le milieu poreux. La longueur 

simulée devrait être supérieure ou égale à 6δ, sinon, en raison de l'influence de frontière de 

sortie, la distribution de l'erreur va complètement changer spatialement. 

   En général, la solution analytique faiblement non linéairisé sera meilleure que la solution 

analytique linéarisée pour le problème non-linéaire, et sera peut-être en mesure de résoudre le 

problème existant. D'autres méthodes non-linéairisées devraient être examinées afin 

d'améliorer les analyses de l’équation de Boussinesq non linéaire en présence de fluctuations 

(avec d'autres effets comme un fond en pente). 

   La propagation des ondes dans une boite à sable rectangulaire placé dans un petit canal à 

houle a été étudiée expérimentalement, numériquement et analytiquement. Les solutions 

analytiques obtenues avec le modèle Dupuit-Boussinesq de l’écoulement plan indiquent que, 

en supposant une condition limite en sortie à niveau d'eau constant, l'onde dans le domaine 

poreux est constituée d'un seule vague progressive H(x,t) qui décroit exponentiellement. Cette 
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décroissance exponentielle est confirmée par l’approximation analytique avec les niveaux 

d'eau mesurés, bien que la perméabilité calculée obtenus par cette approximation semble trop 

élevée, peut-être en raison de l'érosion interne ou des effets de l'écoulement vertical. Enfin, il 

est intéressant de noter que, dans l'hypothèse d'une frontière fermée (ce qui n'était pas le cas 

pour la boite à sable immergée), le niveau de l'eau résultant H(x,t) est une combinaison d’une 

onde avant (et arrière) progressive, avec décroissance (et croissance) exponentielle 

d'amplitude par rapport à la distance horizontale "x" de la frontière du niveau d'eau variable. 

7. Traitement des signaux de l’expérience de Barcelone 
   Afin d’étudier la transmission des fluctuations de niveau d’eau dans les mileux micros- 

poreux avec pente inclinée dans le grand canal à houle de Hydralab à Barcelone, nous avons 

installé 7 micro-piézomètres (capteurs capacitifs) permettent de mesurer les fluctuations des 

niveaux des eaux souterraines à des positions différentes dans la plage de sable fin en pente 

(Figure 10). Nous avons aussi également mesuré d'autres fluctuations du niveau d’eaux dans 

l'eau libre. 

 
Figure 10 : Schéma de l'arrangement des capteurs capacitifs dans la zone de swash en coupe 
vertical. Le Capteur N°1 est le plus proche de l'eau libre. 

   Les résultats expérimentaux (Figure 11) montrent la décroissance spatiale des fluctuations 

de niveau des eaux souterraines, et aussi le filtrage des périodes les plus courtes losque l'on 

s'éloigne du rivage. En outre, les signaux des niveaux d'eaux loin de la rive (H6(t), H7(t)) 

présentent un comportement très différent de ceux plus près du rivage (comme H2(t)). En 

effet, étant donné les multiples fréquences du spectre des ondes qui arrive à la rive (semblable 

à une combinaison de marées et d’ondes courtes), le résultat est apparemment une 

surélévation de la surface libre moyenne (à distance du rivage) par rapport au ‘niveau d’eau 

moyen de la mer’. 
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Figure 11 : Evolution des niveaux d’eau H(x,t) pour le serie-1 le 18 mars, 2008 (Barcelone)  

   En fait, il a été observé que les fluctuations des niveaux d'eau mesurés présentent des 

caractéristiques inhomogènes dans le temps et l'espace. Dans ce cas, les méthodes de 

traitement simples comme l'analyse de Fourier directe de chaque signal Hi(t) apparaît 

inefficace ou ne fournit que des informations incomplètes. Pour cette raison, nous avons 

appliqué une série de tests et d'analyses sur les fluctuations de niveau d'eau mesurés, incluant 

à la fois les analyses croisées et univariées, la fréquence spectrale ainsi que des analyses de 

corrélation temporaire, l’analyse des ondelettes orthogonales multi-résolution, et les méthodes 

de pré-filtrage basées sur des moyennes mobiles ou des décompositions en ondelettes. Les 

principaux résultats obtenus avec les analyses du signal de ces méthodes sont les suivants: 

• Étant donné que la période de géneration d’onde est d'environ 4-5 secondes, la période 

dominante T1 = 24s de l'onde incidente sur la rive (piézomètre H1(t)) est interprétée 

comme l'effet de la géométrie du grand canal à houle, ou plus précisément comme la 

période dominante  de l’écoulement de ‘run-up and run-down’ lié à la topographie de 

la plage de sable fin en pente (Figure 12). 

• Pour les trois piézomètres proches de la rive et dans la zone de swash Hi(t)(i=1,2,3),  

les périodes dominantes sont les mêmes, environ 24 secondes ; les périodes 

dominantes sont d’un ordre de magnitude plus longue pour les piézomètres situés plus 

loin du rivage Hi(t)(i=4,5,6,7): leur périodes dominante sont respectivement 400s, 

600s, 600s et 300s (Figure 13). 

• Les énergies de fluctuation des périodes dominantes diminuent considérablement avec 

l’éloigement du rivage dans la plage de sable. L'énergie de fluctuation de la période la 

plus longue se propage plus loin dans la plage que l'énergie des périodes plus courtes. 
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• La corrélation maximale diminue presque linéairement, et le délai correspondant 

augmente de façon exponentielle par rapport à la distance horizontale dans la direction 

de l’intérieur de la terre (loin de la rive). 

• Les vitesses de propagation des ondes ont été toutes estimées le long du canal (eau 

libre, ainsi que les eaux souterraines) en utilisant des temps de délai de corrélation 

croisée. La moyenne de la vitesse de propagation des ondes mesurée diminue avec la 

distance horizontale à partir du générateur d'ondes vers la plage de sable fin. La valeur 

minimale mesurée c = 0.056m / s est proche de la vitesse de groupe d'onde calculé 

pour la période dominante T = 24s de ( )1H t  près de la rive, bien que environ 2 fois 

plus petite. 

• Le pic de cohérence spectrale obtenu à 24T s≈  indique que cette période a une grande 

influence sur toutes les fluctuations de niveau des eaux souterraines dans la plage, à 

l'exception du piézomètre ( )7H t , le plus éloigné de la rive et le plus proche de la paroi 

du fond imperméable du canal. D’autre part, le creux de la cohérence à 10T s≈  

indique qu'il y a une vague de refoulement périodique limite située quelque part entre 

 .ሻ (Figure 14)ݐଶሺܪ ሻ etݐଵሺܪ

 
Figure 12 : Evolution de composantes  principales du signal H1(t) (analyse par ondelette 
discrète multi-résolution)  
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Figure 13 : Fonctions spectrales de Fourier de Hi(t)(i=1,..., 7) (analyse simple de Fourier)  

 

 
Figure 14 : Fonctions de cohérences en fonction à la fréquence dimensionale entre les 
résidus de H1(t) et Hi(t) (i = 2, ..., 7) (T ≥ 5s) (analyse croisée de Fourier)  

8. Simulations numériques de l’expérience de Barcelone 
   Nous avons développé un modèle numérique pour modéliser l'expérience du grand canal à 

houle de Barcelone. L’utilisation du modèle 2D de Dupuit-Boussinesq de l’écoulement plan, 

comme on s'y attendait, n'a pas été vraiment concluante. Bien que les niveaux d'eau calculés 

aient la même évolution générale que les données expérimentales, ils ne sont pas vraiment en 

accord avec les niveaux d'eau mesurés: les fluctuations de niveau d'eau simulées semblent être 

moins importantes que celles mesurées, et la variation de niveau d'eau moyenne est très sous-

estimée par les simulations. A noter que la plage en pente ne peut pas être représentée 

explicitement dans un tel modèle d’écoulement plan simplifié. 

   Nous avons ensuite porté notre attention sur un modèle d’écoulement partiellement saturé 

/non saturé basé sur l'équation généralisée de Richards, avec un milieu macroporeux pour 

représenter le domaine de l’air /l’eau libre  au-dessus de la surface du sable en pente. Plus 

précisément, deux types de modèles ont été utilisés pour les courbes caractéristiques des 
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milieux non saturés (K(h), θ(h)): le modèle de Van Genuchten/Mualem (VGM) et le modèle 

exponentiel dans le modèle de Richards. 

   Les niveaux d'eau obtenus par la simulation numerique avec le modèle de Richards (en 

utilisant des courbes de VGM et un sous-domaine macroporeux en eau libre) conviennent 

beaucoup mieux avec les niveaux d'eau mesurés (Figure 15), en comparants avec les 

simulations de Dupuit-Boussinesq.  

Figure 15 : Comparaison des signaux Hi(t) numériques / expérimentaux : evolution des 
fluctuations de niveaux d’eau H(xi,t) dans la plage de sable pour différents capteurs (xi) 

Les résultats numériques ont été bien validés avec ceux de l’expérience sur trois aspects: 

(1) Les courbes ܪሺݔ௜,  ሻ de fluctuation du niveau d'eau, quantitativement confirmées parݐ

la comparaison des structures d’auto-corrélation de signaux H(t) experimentaux et 

modélisés; 

(2) La tendance de l'évolution du niveau d’eau moyen, par comparaison de ܪሺݔ଴,  ሻݐ

(3) Les périodes dominantes, par la comparaison des spectres de Fourier simulés et 

expérimentaux de ܪሺݔ଴,  .ሻݐ

De plus, on obtient un ensemble très similaire de fluctuations de niveau d'eau ܪሺݔ௜,  ሻ enݐ

utilisant la même longueur capillaire (1 / α) dans le modèle exponetiel et dans le modèle 

VGM. 

9. Conclusions et perspectives 
  Dans cette thèse, en partant du problème simple d’imbibtion (avec frontière poreuse et sans 

oscillations forcés) pour aller jusqu’au cas plus complet de transmission de niveau d’eau dans 

une plage de sable fin en pente avec un signal d’entrée oscillatoire, nous avons étudié 

expérimentalement, analytiquement et numériquement, les conséquences de variations et 
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d’oscillations hydrodynamiques à forte variabilité temporelle en milieux poreux partiellement 

saturés et comportant des surfaces libres tant à l’extérieur qu’à l’intérieur de milieux poreux. 

   L’étude théorique et numérique d’oscillations hydrodynamiques dans les milieux poreux 

partiellement saturé ont conduit aux résultats suivants: 

• L’équation de Dupuit-Boussinesq de l’écoulement plan n’est valable que pour les 

milleux poreux avec une longueur capillaire petite, car elle ne comporte  pas de termes 

permettent de décrire l’écoulement vertical et   l’effet capillaire; 

• Les equations (modèle VGM et modèle exponentiel) des écoulements 3D en milieu 

variablement saturé de Richards permettent d’obtenir de bons résultats pour les 

milieux poreux avec grands effets capillaires; 

• Les equations pour les milieux partiellement saturés de Richards peuvent être utilisés 

pour le couplage numérique entre écoulements de surface et souterrain dans le modèle 

3D, en imposant le rapport de conductivité hydraulique en saturation entre le milleu 

macro-poreux et  le milieu micro poreux suffisamment grand.  

   L’analyse et le traitement de signaux appliqués aux fluctuations des niveaux d'eau mesurés 

avec des caractéristiques inhomogènes dans le temps et l'espace obtenus lors de  l’expérience 

dans le grand canal à houle de Barcelone, ont donné les résultats suivants:  

• La période dominante d'onde incidente sur la rive est identifiée par analyse de Fourier 

ou plus précisement, par la décomposition d’ondelette multi-résolution discrete; 

• L'énergie de fluctuation de la période la plus longue se propage plus loin dans la plage 

que l'énergie des périodes plus courtes. 

• La corrélation maximale diminue presque linéairement, et le délai correspondant 

augmente de façon exponentielle par rapport à la distance horizontale dans la direction 

vers la terre (loin de la rive). 

• Les vitesses de propagation des ondes dans la plage sont estimées en utilisant l’analyse 

de corrélation croisée (‘time lag’) ou les vitesses de groupe de propagation d’ondes de 

périodes dominantes près de la rive  avec l’équation théorique de Boussinesq. 

• Les fonctions de cohérence spectrale de Fourier sont utilisées pour detecter la 

variabilité spatiale  de la propagation des fluctuations de niveaux d’eau dans les 

milieux poreux.   

   Pour terminer, les fluctuations de niveaux d’eau ont été reproduites par des résultats 

numériques, et validées par trois aspects avec les résultats expérimentaux : 
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• Les structures d’auto-corrélation de signaux; 

• La tendance de l'évolution du niveau d’eau moyen ; 

• Les périodes dominantes (spectres de Fourier). 

  En perspective, pour étudier les interactions entre l’hydrodynamique de la plage et les eaux 

souterraines, il sera nécessaire de tenir compte également des processus d'érosion/dépôt de 

surface, ainsi que de l’érosion interne et d’autres couplages de fluide/solide (couplages hydro-

mécaniques impliquant une loi de contrainte /tension, la pression interstitielle, la contrainte 

effective de Terzaghi, les effets de succion capillaire sur la cohésion, les critères de rupture, 

etc.). Le groupe OTE à l’IMFT (avec qui nous avons collaboré pour récupérer et analyser les 

données du canal à houle) est actuallement en train d'effectuer des analyses du processus 

d’érosion/dépôt  basées sur des mesures de surface de sable réalisée par imagerie laser pour le 

même ensemble de génération de tests d'onde que celui étudie. Il sera intéressant par la suite 

d’étudier l’influence des fluctuations de niveaux d’eaux souterraines sur ces phénomène 

d’érosion/ dépôt. 
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README FILE "ReadMe_BF2005FORTRAN_Compiling.rtf" 
by R.Ababou and A.Al-Bitar (6 Feb.2006)  

==================================== 
 
1. Topic : Compiling "BIGFLOW" & its FUNCTIONS using "ABSOFT 9.0" FORTRAN compiler.  
 
2. Fortran version of BigFlow : BigFlow2000, Ver.1.0, Dec.2005/Jan.2006 
 
3. Source files :   
 1.1. BigFlow_main_source.f ...under various names, such as : <<mainflow_3DSWIM_3.f>> 
 1.2. COMBIG (fortran file invoked by INCLUDE in the main source) and its back-up 
(COMBIG*.f) 
 Functions (possibly located in a subdirectory "func"): 
 2.1. FBQVT*.f (Transmissivity model for 2D planar flows: Boussinesq, Diffusive Wave, 
SWIM2D) 
 2.2. FCOND*.f   (Conductivity - pressure curve model for 3D flows...) 
 2.3. FTHETA*.f  (Water content - pressure curve model for 3D flows...) 
 2.4. FTIME.f      (Time evolution of forcing functions : boundary fluxes, and/or interior source 
term) 
 
4. ABSOFT 9.0 Developer Tool Interface: 
 
 STEPS: 1. Set project options; 2. Add/remove files (add main&functions); 3. Build 
(compile&link) 
   
 1. Set project options (details) : special options that may have to differ from default values 
 
 Console Appli. : CPU : Pentium 4 (e.g., case of laptop computer Fujitsu LifeBook Series E) 
 Options Subset ==> FPU (Floating Point Unit) : Round Up (do not choose "Round to 
Nearest"!) 
 F77 : no warning 
 F77 compatibilty ==>  do not choose "static storage" ! (static storage should be turned off) 
    ==>  choose "Promote REAL and COMPLEX" (-N113) :  
     this turns on "real double-precision" (advisable!) 
 Link options :  

 Reserve Commit 
Stack size Reserve less than the max 

available RAM size  
(in number of bytes).  
Example with 1 Gbyte RAM:  
   536870912 
which is a half Gbyte:   
   0.5*(1024)**3 bytes. 

0x8000 
 
Note: This is the default  
 (in hexadecimal). 

Heap size 0x10000 
 
Note: This is the default   
(in hexadecimal). 

0x1000 
 
Note:This is the default   
(in hexadecimal). 

 
 
 2. Add/remove files (add main source.f and functions.f);  
 See list of fortran files above...  
 
 3. Build (compile and link) 
 Compile and link should be successfull : a single executable file ***.exe will be produced.  
 This executable can be renamed and moved in another directory to be used by BF-Python. 
 
5. Assumed name and location of the BigFlow executable file in the BF-Python package :  
"....../...../.....". 



 

217 
 

Appendix B



Appendix B:  Chapter B9 Signal analysis for oscillatory flows (methodogy) 
   

218 
 

Chapter B9: Signal analysis for oscillatory flows 

(methodology) 

9.1 Introduction 
   The measured water level fluctuations in the slopping sandy beach of the Barcelona wave 

canal are very irregular and non-stationary. In order to analyze their fluctuation 

characteristics, to study the propagation of the water level fluctuation in the partially 

unsaturated porous media with a inclined entry boundary, and eventually to understand the 

beach hydrodynamic response in the sea/beach system, the Fourier spectrum, multi-resolution 

wavelet, and temporal analysis signal processing methods are used together with the moving 

average, differential, and multi-resolution filtering methods in this thesis. 

   In this chapter, the theories of the three filtering methods and the three signal processing 

methods will be respectively introduced. 

9.2 Signal filtering methods 
9.2.1 Introduction 
   In order to analyze the oscillatory characteristics of the measured non-stationary water level 

fluctuations in Barcelona wave canal experiment such as ܪ଺ሺݐሻ  and ܪ଻ሺݐሻ , the moving 

average, differential, and multi-wavelet filtering methods are used to filter the original signal.       

   The used theories about the three filtering methods will be introduced in this section. 

9.2.2 Moving average filtering (linear integrator filter) 

   For any random time serial with a variable time step ݐ߂ሺ݅ሻ, the moving average is calculated 

by a sliding window ݐ߂௪ሺ݅ሻ through the values of chronic. The schema explaining in detail 

the simplified algorithm of the program is shown in Fig. 9-1. 
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Fig. 9-1 Calculation of the moving average for a random time serial of the  atmospheric 
pressure with time ( )t iΔ  

   The values of ௧ܹ  and ௠ܹ௔௫  are selected by the user based on variable time step ݐ߂ሺ݅ሻ, 

which is written according to the index ݅ as flows: 

∆t୵ሺiሻ ൌ ൫୲ሺ୧ାଵሻି୲ሺ୧ିଵሻ൯
ଶ

  (9-1) 

Where, 

 .௜ݐ ௪ሺ݅ሻ is time step weighted centered around the timeݐ∆ 

Note: 

 ;௧ is the size of half window in secondsݓ

௠ܹ௔௫ is the estimation of the maximum size of the half-window in number of time; 

 ;ሺ݅ሻ is the variable time step in secondsݐ∆

௧ݓ ሺ݅ሻ is the absolute time in seconds andݐ ൒  .ሺ݅ሻݐ∆

  Based on linear interpolation and extrapolation, this moving average uses a fixed window-- 

half window width ݓ௧ in time units with a constant or variable time step. Compared with the 
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one in Matlab by putting the data point number of the span which must be odd, the advantage 

of this moving average is that we can put directly the filter time ݓ௧. 

9.2.3 Differential filtering 
   This filtering removes the trend of the signal by calculating the one-time increase in the 

chronicle. 

   If ܺሺݐሻ is a time serial, the differentiated ∆ܻሺݐሻ is given by the following equation (9-2) for 

the case of  ∆ݐ ൌ  :ݐ݊ܽݐݏ݋ܿ

∆ܻሺݐሻ ൌ ܺሺ݊ ൅ 1ሻ െ ܺሺ݊ሻ (9-2) 

For the case of ∆ݐ is variable, the derivative of the function X (t) is written as: 

ሺ࢚ሻࢅ∆ ൌ ሻ࢔ሺࢄା૚ሻି࢔ሺࢄ
࢚ሺ࢔ା૚ሻି࢚ሺ࢔ሻ  (9-3)                            

This method preserves the structure and magnitude of the phenomena while eliminating the 

tendency. Thus, the use of this second mode of filtering is entirely consistent with the theory 

of random functions which relate the correlation and spectral analysis (Mangin, 1984) [7]. 

9.2.4 Discrete multi-resolution wavelet filtering 
The multi-resolution wavelet analysis can also be used to filter the signal.  The multi-

resolution wavelet analysis makes a dyadic signal decomposed into a succession of 

approximations corresponding to increasing scales. The difference between the measured 

signal and its approximation to the order ‘m’ is called “residual”. Therefore, a measured 

discrete signal ܺሺ݅ሻ can be expressed by the sum of the approximation ܣ௑
௠ and the residual 

ܴ௑
௠ in the multi-resolution wavelet function as flows:  

ܺሺ݅ሻ ൌ ௑ܣ
௠ሺ݅ሻ ൅ ܴ௑

௠ሺ݅ሻ   (9-4) 

where, 

 i can be replaced by ݐ௜ ൌ  ;ݐ߂݅

௑ܣ
௠ is the approximation of the dyadic scale ‘m’ (low pass filter); 

ܴ௑
௠ is the residual of the approximation of the dyadic scale ‘m’ (high pass filter); 

   The detailed multi-resolution wavelet analysis will be introduced in the latter of this 

Chapter. 

9.2.5 Comments 
If the same filter time is chosen, the moving average and the multi-resolution wavelet 

filtering methods can obtain the same filtered and residual signals. However, compared with 
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the moving average filtering, it is more complicated to determine the exact filter time for the 

multi-resolution wavelet filtering. 

Differential filtering is different from the moving average and the multi-resolution wavelet 

filtering. For the case that ∆ݐ ൌ  the fluctuation characteristics of the difference of ,ݐ݊ܽݐݏ݋ܿ

the original signal can be obtained by studying the filtered signal. 

As a result, the three filtering methods will be tested and eventually used to filter the 

extremely non-stationary water level fluctuations in the Barcelona wave canal experiment. 

9.3 Signal analysis methods   
9.3.1 Introduction 

The Fourier spectrum, multi-resolution wavelet and temporal analysis (correlation 

analysis) signal processing methods are used together to analyze the measured water level 

fluctuations in the slopping sandy beach in the Barcelona wave canal. 

 The analysis on the measured water level fluctuations includes the single and cross 

analysis. The corresponding theories about the above three signal processing methods are 

introduced in this section. 

9.3.2 Correlation analysis (single and cross) and temporal transfer function 
   Correlation function analysis is used to study the temporal structure of the beach water level 

fluctuations ( )( ) 1,2, ,7iH t i = …  (or their residuals) in the time domain, using either auto-

correlation functions versus time lag (τ), or cross-correlation functions for the joint analyzis 

of two signals such as H1(t) and H2(t+τ). Note on terminology: correlation functions are 

defined in this text as the normalized versions of the covariance functions (the two become 

identical for unit standard deviations). For background on correlation functions for 

(supposedly) stationary random processes, see Papoulis and Pillai (2002) [23], Bras et al. 

(1985) [76], Labat et al. (2000a) [33]. These references also describe methods to estimate the 

frequency spectrum of a stationary random process by Fourier transform of the correlation 

function (see further below). 

   Correlation analysis is used to study the evolution of events in the time domain in a single 

or cross way. The temporal structure of the signal ܺሺݐሻ , or both signals ܺሺݐሻ  and ܻሺݐሻ 

together, is captured by functions of time structure at two points ሺݐ, ൅ ݐ  τሻ, which depends 

only on the lag (τ) in the case of statistically stationary process. 
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   For the correlation analysis functions, there are biased and unbiased two estimations. 

   Biased estimation: 

• Cross covariance functions: 

௑௑ሺ݆ሻܥ    ൌ ଵ
ே

∑ ሺܺሺݐ௜ሻ െ തܺሻ௜ୀேି௝
௜ୀଵ ൫ܺ൫ݐ௜ା௝൯ െ തܺ൯ (9-5) 

௑௒ሺ݆ሻܥ   ൌ ଵ
ே

∑ ሺܺሺݐ௜ሻ െ തܺሻ൫ܻ൫ݐ௜ା௝൯ െ തܻ൯௜ୀேି௝
௜ୀଵ  (9-6) 

• Cross correlation functions: 

ܴ௑௒ሺ݆ሻ ൌ ஼೉ೊሺ௝ሻ
ఙ೉.ఙೊ

 (9-7) 

Where,  

௑ߪ
ଶ ൌ  ௑௑ሺ0ሻ  (9-8)ܥ

௒ߪ
ଶ ൌ  ௒௒ሺ0ሻ  (9-9)ܥ

   Unbiased estimation: 

• Cross covariance functions: 

௑௑ሺ݆ሻܥ   ൌ ଵ
ேି௝

∑ ሺܺሺݐ௜ሻ െ തܺሻ௜ୀேି௝
௜ୀଵ ൫ܺ൫ݐ௜ା௝൯ െ തܺ൯ (9-10) 

௑௒ሺ݆ሻܥ    ൌ ଵ
ேି௝

∑ ሺܺሺݐ௜ሻ െ തܺሻ൫ܻ൫ݐ௜ା௝൯ െ തܻ൯௜ୀேି௝
௜ୀଵ  (9-11) 

• Cross correlation functions: 

ܴ௑௒ሺ݆ሻ ൌ ஼೉ೊሺ௝ሻ
ఙ೉.ఙೊ

 (9-12) 

ܴ௒௑ሺ݆ሻ ൌ ஼ೊ೉ሺ௝ሻ
ఙೊ.ఙ೉

 (9-13) 

Where,  

௑ߪ
ଶ ൌ  ௑௑ሺ0ሻ  (9-14)ܥ

௒ߪ
ଶ ൌ  ௒௒ሺ0ሻ  (9-15)ܥ

     For the biased and unbiased cases, the inter-correlation function is not symmetric for 

values of -j and + j. The standard deviation functions are also the same for the two cases and 

they are written as follows: 

௑ߪ
ଶ ൌ ଵ

ே
∑ ሺܺሺݐ௜ሻ െ തܺሻଶ௜ୀே

௜ୀଵ ൌ  ௑௑ሺ0ሻ  (9-16)ܥ

௒ߪ
ଶ ൌ ଵ

ே
∑ ሺܻሺݐ௜ሻ െ തܻሻଶ ൌ ௒௒ሺ0ሻ௜ୀேܥ

௜ୀଵ   (9-17) 

   In particular, it is worth noted that, according to the different authors, there are several 

definitions of the cross covariance: 

௑௒ሺ߬௠ሻܥ ൌ ൛ሺܺ௧ܧ െ തܺሻ൫ ௧ܻାఛ೘ െ തܻ൯ൟ   (cf. Vanmarcke) (9-18) 

௑௒ሺ߬௠ሻܥ ൌ ൛ሺܺ௧ܧ െ തܺሻ൫ ௧ܻାఛ೘ െ തܻ൯ൟ   (cf. Ababou) (9-19) 

௑௒ሺ߬௠ሻܥ ൌ ൛൫ܺ௧ାఛ೘ܧ െ തܺ൯ሺ ௧ܻ െ തܻሻൟ   (cf. Papoulis) (9-20) 
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௑௒ሺ߬௠ሻܥ ൌ ൛൫ܺ௧ାఛ೘ܧ െ തܺ൯ሺ ௧ܻ െ തܻሻൟ   (cf. Matlab) (9-21) 

    From the above equations (9-18), (9-19), (9-20) and (9-21), it can be seen that the 

definition of Ababou is the same as the one of Vanmarcke, and the definition of Papoulis is 

same as the one of Matlab. The two kinds of definition have the flowing relationship: 

ሻܾ݈ܽݐܽܯ௑௒ሺ߬௠ሻሺܥ ൌ ሻ݁݇ܿݎ௑௒ሺെ߬௠ሻሺܸܽ݊݉ܽܥ ൌ  ሻ   (9-22)݁݇ܿݎ௒௑ሺ߬௠ሻሺܸܽ݊݉ܽܥ

   Note: 

♦  ܴ௑௒ሺ݆ሻ is the cross correlation function with respect to discrete lag ݆; 

 ;݆ ௑௒ሺ݆ሻ is the cross covariance function with respect to discrete lagܥ ♦

♦ ௝߬ is the lag time (if ݇଴ ൌ 1) and ௝߬ ൌ ݆Δݐ [time unit, eg. s]; 

♦ ௝߬ is the general lag time and ௝߬ ൌ ݆ ൈ ݇଴Δݐ [time unit, eg. s]; 

♦  ݇଴ is the sampling step and ݇଴ ൌ 1, ,ݎ݋ 2, ,3 ݑ݋ ,ݑ݋ … ,  ;ܯ

♦  ܰ is the total number of the measured data; 

♦ ݆ is the discrete lag (dimensionless). If ݇଴ ൌ 1,  j =0, 1, 2, ..., M; 

 ;is the truncation number ܯ ♦

♦ Δݐ is the time step. 

   For our case, the smallest sampling step number (݇଴ ൌ 1) is chosen to scan all the time 

serial. Otherwise, for a very long chronic with small time step, it is possible to make a sub-

sampling (k0 ≥ 2). 

   In the case of a simple single analysis, let ܻ ሺݐሻ  ൌ  ܺ ሺݐሻ, then the auto-covariance function 

defined above of the signal ܺ ሺݐሻ (with respect to the lag time τ ) can be obtained. In the case 

of a cross-analysis, the concept of cross-covariance is generally used to obtain the temporal 

transfer function ܺ ሺݐሻ → ܻ ሺݐሻ, causal or non-causal described in the thesis of Fatmi (2009). 

   In practice, the biased estimation is used to calculate the Fourier spectrum,  and at the same 

time, the unbiased estimation is used to do the direct single or cross analysis such as cross 

covariance function with respect to the lag to show the cross correlation of the  signals  

between ܻ ሺݐሻ and  ܺ ሺݐሻ . Because unbiased estimation will intuitively show the hidden 

periodicity of the two signals, while the 'biased' cannot show this characteristic. 
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9.3.3 Fourier spectral analysis with Fourier transformation of single, cross 
spectra and frequency gain 

9.3.3.1 Introduction 
   The Fourier spectral analysis reflects the structure of the signal by decomposing a signal in 

periodic functions. Its advantage is to clearly manifest the distribution of the Fourier spectral 

density (or fluctuation energy) with respect to the frequency (period).  

   Fourier single and cross spectral analysis in discrete time will be used to analyze the 

measured and simulated water level fluctuations. The single spectral analysis allows to study 

the frequency spectrum of a single column (auto-spectrum ܵ௑௑ ), while the cross spectral 

analysis allows to simultaneously treat two signals to study the cross spectrum ܵ௑௒. 

   The direct Fourier transformation and the inverse of the Fourier transformation of a real 

signal, the Fourier transformation of autocorrelation of Wiener-Khichen (W-K), and Tuckey 

filter for the Fourier spectral function, will be introduced in this section. Considering the 

consistence of the theory, corresponding Fourier transformations will be introduced from the 

continuous time to the discrete time for the single and cross analysis. Concerning the theory 

of spectral estimation, see Priestley (1981) [60], or Yevjevich (1972) [3]. For more details on 

specific procedures, see Fatmi et al. (2008) [43], and Fatmi (2009) [21]. 

9.3.3.2 Fourier single spectral analysis (estimation of the spectrum with Tuckey filter) 

   The auto-spectrum signal ܺሺݐሻ  can be defined in several ways. For example, there are 

Fourier spectral functions in continuous time and in discrete time, and there are also reduced 

(dimensionless) and unreduced spectral functions. The reduced spectrum of ܺሺݐሻ in discrete 

time, which is mainly used in this thesis, will be defined later in this section 

   In order to clearly explain the Fourier spectral theory, the Fourier transformation in 

continuous time is firstly introduced. 

 Direct Fourier transformation complex of the real signal in continuous time  

   The direct Fourier transformation complex of the real signal in continuous time can be 

written as follows: 

෠ܺሺ߱ሻ ൌ ଵ
ଶగ ׬ ݁ି௜ఠ௧ܺሺݐሻஶ

ିஶ ሻݐሺܺ ,ݐ݀ א Ը  (9-23) 

where, 

 ݁ି௜ఠ௧ ൌ ሻݐሺ߱ݏ݋ܿ െ  ሻݐሺ߱݊݅ݏ݅

or  

෠ܺሺ߱ሻ ൌ ଵ
ଶగ ׬ ሾܿݏ݋ሺ߱ݐሻ െ ሻஶݐሻሿܺሺݐሺ߱݊݅ݏ݅

ିஶ  (24-9)  ݐ݀
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or  
෠ܺሺ߱ሻ ൌ ܺோ௘ሺ߱ሻ ൅ ݅ ூܺ௠ሺ߱ሻ , ෠ܺሺ߱ሻ א  (25-9) ܥ

where,  

ܺோ௘ሺ߱ሻ ൌ ଵ
ଶగ ׬ ሻஶݐሺ߱ݏ݋ܿ

ିஶ ܺሺݐሻ݀(26-9)  ݐ 

ூܺ௠ሺ߱ሻ ൌ ଵ
ଶగ ׬ ሻஶݐሺ߱݊݅ݏ

ିஶ ܺሺݐሻ݀(27-9)  ݐ 

 Inverse of Fourier transformation of the real signal in continuous time  

   The signal can be reconstructed (the inverse of the Fourier transformation) in the following: 

ܺሺݐሻ ൌ ׬ ݁௜ఠ௧ஶ
ିஶ

෠ܺሺ߱ሻ݀߱  (9-28) 

ܺሺݐሻ ൌ ׬ ሾܿݏ݋ሺ߱ݐሻ ൅ ሻሿஶݐሺ߱݊݅ݏ݅
ିஶ

෠ܺሺ߱ሻ݀߱  (9-29) 

where,  

 ෠ܺሺ߱ሻ ൌ ܺோ௘ሺ߱ሻ ൅ ݅ ூܺ௠ሺ߱ሻ  (9-30) 

So we find ܺሺݐሻ as follows: 

ܺሺݐሻ ൌ ׬ ሾܿݏ݋ሺ߱ݐሻ ൅ ሻሿஶݐሺ߱݊݅ݏ݅
ିஶ ൫ܺோ௘ሺ߱ሻ ൅ ݅ ூܺ௠ሺ߱ሻ൯݀߱  (9-31) 

or 

ܺሺݐሻ ൌ ׬ ሾܺோሺ߱ሻܿݏ݋ሺ߱ݐሻ െ ூܺ௠݊݅ݏሺ߱ݐሻሿஶ
ିஶ ݀߱ ൅ ݅ ׬ ሾܺோሺ߱ሻ݊݅ݏሺ߱ݐሻ ൅ାஶ

ିஶ

ூܺ௠ሺ߱ሻܿݏ݋ሺ߱ݐሻሿ ݀߱  (9-32) 

We can the write ܺ ሺݐሻ  ൌ ൅ ܣ   :as follows ܤ݅ 

ܣ ൌ ׬ ሾܺோ௘ሺ߱ሻܿݏ݋ሺ߱ݐሻ െ ூܺ௠ሺ߱ሻ݊݅ݏሺ߱ݐሻሿஶ
ିஶ ݀߱  (9-33) 

ܤ ൌ ׬ ሾܺோ௘ሺ߱ሻܿݏ݋ሺ߱ݐሻ ൅ ூܺ௠ሺ߱ሻ݊݅ݏሺ߱ݐሻሿஶ
ିஶ ݀߱  (9-34) 

   ܺሺݐሻ is therefore decomposed into real and imaginary parts. According to the assumption of 

direct Fourier transform in the above, ܺሺݐሻ is real number which implies two conditions: 

ܤ (1) ൌ 0, then 

൜ ܺோሺ߱ሻ݊݅ݏሺ߱ݐሻ ൌ 0
ூܺ௠ሺ߱ሻܿݏ݋ሺ߱ݐሻ ൌ 0  ൜ ܺோሺ߱ሻ ൌ ܺோሺെ߱ሻ

ூܺ௠ሺ߱ሻ ൌ െ ூܺ௠ሺെ߱ሻ 

(2) Synthesis: 

For a real signal ܺሺݐሻ, its Fourier transform complex ෠ܺሺ߱ሻ has: 

൜ ܺோሺ߱ሻ ൌ ܺோሺെ߱ሻ
ூܺ௠ሺ߱ሻ ൌ െ ூܺ௠ሺെ߱ሻ   ߱׊ א ሾെ∞, ൅∞ሿ 

It means that ܴ݁ ቀ ෠ܺሺ߱ሻቁ is pair (even) function, and ܴ݁ ቀ ෠ܺሺ߱ሻቁis unpaired (odd) function. 

 Fourier transformation of the autocorrelation of  W-K in continuous time 



Appendix B:  Chapter B9 Signal analysis for oscillatory flows (methodogy) 
   

226 
 

   According to the theorem of Wiener-Khichen, the Fourier transform of the autocorrelation 

function is written as follows: 

ܵ௑௑ሺ߱ሻ ൌ ଵ
ଶగ ׬ ܴ௑௑ሺ߬ሻ݁ି௜ఠఛ݀߬ஶ

ିஶ   (9-35) 

׬ ܵ௑௑ሺ߱ሻ݀߱ஶ
ିஶ ൌ ൜ߪ௑

ଶ

1
  (9-36) 

where, 

 ܴ௑௑ is the autocorrelation function related to the auto-covariance function by the relation: 

ܴ௑௑ሺ߬ሻ ൌ ஼೉೉ሺఛሻ
ఙ೉

మ ൌ ஼೉೉ሺఛሻ
௏௔௥ሺ௑ሻ  (9-37) 

where, ߪ௑ is standard deviation of ܺሺݐሻ ; 
The autocorrelation is a pair (even) function and ܴ௑௑ሺെ߬ሻ ൌ  ܴ௑௑ ሺ߬ሻ; 

The auto-covariance is also a pair (even) function and ܥ௑௑ሺ߬ሻ ൌ   ; ௑௑ሺെ߬ሻܥ
The spectral density is symmetric (pair) and  ܵ௑௑ሺെ߱ሻ ൌ ܵ௑௑ሺ߱ሻ; 

The spectral density ܵ௑௑ሺ߱ሻ  of the signal ܺሺݐሻ  is always real and ܵ௑௑ א Ը . The 

imaginary part of ܵ௑௑ሺ߱ሻ  is equal to zero: 

൫ܵ௑௑ሺ߱ሻ൯݉ܫ ൌ െ ௜
ଶగ ׬ ܴ௑௑ሺ߬ሻ݊݅ݏሺ߱ݐሻ݀߬ ൌ 0ାஶ

ିஶ   (9-38) 

Direct estimation of  ܵ௑௑ሺ߱ሻ: 

 መܵ௑௑ ൌ ห ෠ܺሺ߱ሻหଶ ൌ ܺோ௘
ଶ ሺ߱ሻ ൅ ூܺ௠

ଶ ሺ߱ሻ (9-39) 

 Fourier transformation of the autocorrelation of  W-K in discrete time 

   From the above, we know that the continuous Fourier transformations of the signal for the 

spectrum and the auto-covariance are defined as follows:  

 ൝
ܵ௑௑

ሺଶሻሺ߱ሻ ൌ ଵ
ଶగ ׬ ௑௑ሺ߬ሻ݀߬ାஶܥሺି௜ఠఛሻ݌ݔ݁

ିஶ

௑௑ሺ߬ሻܥ ൌ ׬ ሺା௜ఠఛሻܵ௑௑݌ݔ݁
ሺଶሻሺ߱ሻ݀߱ାஶ

ିஶ

 (9-40) 

where,  

 ;௑௑ –auto-covariance functionܥ

ܵ௑௑
ሺଶሻ --bilateral continuous spectral density (2-sided); 

   For the continuous case, the maximum time is ݐ௠௔௫ ൌ ∞. 

   According to the continuous Fourier transformations (equation(9-40)), the discrete Fourier 

transformations for the spectrum and the auto-covariance are defined as follows: 

 ൝
ܵ௑௑

ሺଶሻሺ߱௞ሻ ൌ ∑ ௑௑൫ܥ൫ି௜ሺ௞∆ఠ௝∆௧ሻ൯݌ݔ݁ ௝߬൯௝ୀାே
௝ୀିே ݐ∆

௑௑൫ܥ ௝߬൯ ൌ ଵ
ே

∑ ൫ା௜ሺ௞∆ఠ௝∆௧ሻ൯ܵ௑௑݌ݔ݁
ሺଶሻሺ߱௞ሻ௝ୀାே

௝ୀିே ∆߱
 (9-41) 

where, 
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ఠೖୀ௞∆ఠ
ఛೕୀ௝∆௧  and conveniently, we can write that: ܥ௑௑൫ ௝߬൯ ൌ  ௑௑ሺ݆ሻܥ

   For the discrete case, the maximum time is ݐ௠௔௫ ൌ  .ݐ∆ܰ
   The dimensional bilateral (2-sided) discrete spectrum is defined by the following equation: 

ܵ௑௑
ሺଶሻሺ߱௞ሻ ൌ ∑ ௑௑ሺ݆ሻ௝ୀାேܥቀି௜൫ఠೖఛೕ൯ቁ݌ݔ݁

௝ୀିே  (42-9)  ݐ∆

where, 

ቀି௜൫ఠೖఛೕ൯ቁ݌ݔ݁ ൌ ൫߱௞ݏ݋ܿ ௝߬൯ െ ൫߱௞݊݅ݏ݅ ௝߬൯  ((9-43) 

   Substituting (9-43) in equation (9-42), we find: 

ܵ௑௑
ሺଶሻሺ߱௞ሻ ൌ ∑ ൫߱௞ݏ݋ܿൣ ௝߬൯ െ ൫߱௞݊݅ݏ݅ ௝߬൯൧ܥ௑௑ሺ݆ሻ௝ୀାே

௝ୀିே ݐ∆ ൌ ∑ ൫߱௞ݏ݋ܿൣ ௝߬൯൧ܥ௑௑ሺ݆ሻ௝ୀାே
௝ୀିே   ݐ∆

 (9-44) 

   The function ݊݅ݏሺݔሻ is asymmetric and the function ܿݏ݋ሺݔሻ is symmetric, so: 

ܵ௑௑
ሺଶሻሺ߱௞ሻ ൌ ൣ൫∑ ൫߱௞ݏ݋ܿൣ ௝߬൯൧ ൅௝ୀିଵ

௝ୀିே ∑ ൫߱௞ݏ݋ܿൣ ௝߬൯൧௝ୀே
௝ୀଵ ൯ܥ௑௑ሺ݆ሻ ൅  (45-9)  ݐ∆௑௑ሺ0ሻ൧ܥ

ܵ௑௑
ሺଶሻሺ߱௞ሻ ൌ ൣ൫2 ∑ ൫߱௞ݏ݋ܿൣ ௝߬൯൧௝ୀே

௝ୀଵ ൯ܥ௑௑ሺ݆ሻ ൅  (46-9)  ݐ∆௑௑ሺ0ሻ൧ܥ

   Then the relationship between the auto-covariance and the autocorrelation is given by: 

ܴ௑௑൫ ௝߬൯ ൌ ஼೉೉൫ఛೕ൯
ఙ೉

మ ൌ ஼೉೉൫ఛೕ൯
௏௔௥ሺ௑ሻ   (9-47) 

   We obtain: 

ܵ௑௑
ሺଶሻሺ߱௞ሻ ൌ ൣ൫2 ∑ ൣܴ௑௑൫ ௝߬൯ܿݏ݋൫߱௞ ௝߬൯൧௝ୀே

௝ୀଵ ൯ ൅ ܴ௑௑ሺ0ሻ൧∆ݐ ൈ ௑ߪ
ଶ  ((9-48) 

   The dimensional bilateral (2-sided) discrete spectrum is written: 

ܵ௑௑
ሺଶሻሺ߱௞ሻ ൌ ൫1 ൅ 2 ∑ ൣܴ௑௑ሺ݆ሻܿݏ݋൫߱௞ ௝߬൯൧௝ୀே

௝ୀଵ ൯∆ݐ ൈ ௑ߪ
ଶ  (9-49) 

where,  

ܵ௑௑
ሺଶሻሺ߱௞ሻ –dimensional bilateral (2-sided) spectrum; 

߱௞ ൌ ߨ2 ௞݂; 

௝߬ ൌ  ; ݐ∆݆

   The reduced bilateral (2-sided) discrete spectrum compared with the variance of ܺሺݐሻ with 

respect to the dimensionless frequency ݂כ is written as follows: 

כܵ
௑௑
ሺଶሻ൫݂כ

௞൯ ൌ ൫1 ൅ 2 ∑ ൣܴ௑௑ሺ݆ሻܿݏ݋൫2כ݂ߨ
௞݆൯൧௝ୀே

௝ୀଵ ൯  (9-50) 

where, ݂כ
௞ ൌ ௞݂ ൈ   ݐ∆

   Conventionally, the relationship between the unilateral (1-sided) spectrum ܵ௑௑
ሺଵሻሺ߱ሻ and the 

bilateral (2-sided) spectrum ܵ௑௑
ሺଶሻሺ߱ሻ is written: 

௑ߪ
ଶ ൌ ׬ ܵ௑௑

ሺଵሻାஶ
଴ ሺ߱ሻ݀߱ ൌ ׬ ܵ௑௑

ሺଶሻାஶ
ିஶ ሺ߱ሻ݀߱  (9-51) 
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ܵ௑௑
ሺଵሻሺ߱ሻ ൌ 2 ൈ ܵ௑௑

ሺଶሻሺ߱ሻ  (9-52) 

   The reduced unilateral (1-sided) discrete spectrum is written: 

כܵ
௑௑
ሺଵሻ൫ መ݂௞൯ ൌ כ2ܵ

௑௑
ሺଶሻ൫݂כ

௞൯ ൌ 2൫1 ൅ 2 ∑ ൣܴ௑௑ሺ݆ሻܿݏ݋൫2כ݂ߨ
௞݆൯൧௝ୀே

௝ୀଵ ൯  (9-53) 

   Finally, the dimensional unilateral (1-sided) discrete spectrum is written: 

ܵ௑௑
ሺଵሻሺ߱௞ሻ ൌ 2ܵ௑௑

ሺଶሻሺ߱௞ሻ ൌ ௑ߪ
ଶ∆ݐ ൈ 2൫1 ൅ 2 ∑ ൣܴ௑௑ሺ݆ሻܿݏ݋൫߱௞ ௝߬൯൧௝ୀே

௝ୀଵ ൯  (9-54) 

 Fourier transformation of the autocorrelation in the case of a finite duration 

(discrete frequency) 

   The bilateral (2-sided) spectrum must meet: 

௑ߪ
ଶ ൌ ׬ ܵ௑௑

ሺଶሻሺ߱ሻାஶ
ିஶ ݀߱  (9-55) 

   By discretizing ሺ߱ ՜ ߱௜ሻ, we find: 

௑ߪ
ଶ ൌ ൬2 ∑ ቂܵ௑௑

ሺଶሻሺ߱௜ሻቃ௜ୀே
௜ୀଵ ൅ 1 ൈ ܵ௑௑

ሺଶሻሺ0ሻ൰ ൈ ∆߱  (9-56) 

where, 

∆߱ ൌ ݂∆ߨ2 ൌ గ
ே∆௧

 and ∆݂ ൌ ௠݂௜௡ ൌ ଵ

೘்ೌೣ
 

   For the unilateral (1-sided) spectrum ܵ௑௑
ሺଵሻሺ߱ሻ, we have: 

௑ߪ
ଶ ൌ ൬∑ ቂܵ௑௑

ሺଵሻሺ߱௜ሻቃ௜ୀே
௜ୀଵ ൅ ଵ

ଶ
ൈ ܵ௑௑

ሺଵሻሺ0ሻ൰ ൈ ∆߱  (9-57) 

   The reduced unilateral (1-sided) discrete spectral density can be written: 

כܵ
௑௑
ሺଵሻሺ߱௜ሻ ൌ ௌ೉೉

ሺభሻሺఠ೔ሻ
ఙ೉

మ ൈ ∆߱ ൌ ௌ೉೉
ሺభሻሺఠ೔ሻ

ఙ೉
మ ൈ గ

ே∆௧
  (9-58) 

כܵ
௑௑
ሺଵሻሺ߱ሻ ൌ 2 ൈ כܵ

௑௑
ሺଶሻሺ߱ሻ  

1 ൌ 2 ൈ ൬2 ∑ ቂܵכ
௑௑
ሺଶሻሺ߱௜ሻቃ௜ୀே

௜ୀଵ ൅ כܵ
௑௑
ሺଶሻሺ0ሻ൰  (9-59) 

   Note: 

   The Fourier transform we use is discrete both in time and frequency, which is 

explained as follows: 

- The time is discrete (ݐ௜ ൌ ݅ ൈ Δ ݐ ) because the observations are discrete. The 

consequence of Δ ݐ is the existence of a maximum frequency ௠݂௔௫ (frequency of 

Nyquist, theorem of Shannon) 

- The frequency is discrete because the size of the temporal window of the 

observation is finite. Therefore, there is a lower frequency ௠݂௜௡ which gives the 

discrete frequency increment: Δ ݂ ൌ ௠݂௜௡. 

 Temporal filter for estimating the Fourier spectrum (Tuckey filter) 
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   The bilateral spectrum (2-sided) will not be used in this thesis. The unilateral spectrum (1-

sided) reduced temporarily (equation 9-58), which is defined in the frequency range of 

Shannon by applying Shannon's theorem and introducing the Tuckey filter, is used in this 

work. 

   In fact, in order to obtain the autocorrelation function, the time serial is discretized by step j 

in respecting the sampling theorem of Shannon. 

   The truncation ܯ  (maximum value to be taken) must meet the following inequality: 

ܯ) ൑ ܰ/3), where ܰ denotes the total number of observation. 

   If j is the number of discrete steps in terms of lag, the information is usable between 2j and 

M. This interval is called the observation window. The Fourier transformation is from - ∞ to + 

∞ and in our problem, the autocorrelation function is bounded between 0 and ܯ (truncation). 

Hence, it is necessary to smooth this function when the autocorrelation is discrete and the 

Fourier transformation is not discrete. 

   Several temporal filters have been considered in the literature. The rectangular could solve 

the problem mentioned above (the noise problem of the estimated spectrum). However, it is 

advisable to use temporal filters less steep than the rectangular window (coincidence effects). 

The Parzen (2) (in the below) filter eliminates too much information, while the Tuckey (2) (in 

the below) filter appears to retain the maximum information with maintaining its function of 

the smoothing of the estimated spectrum in a optimal way [Blackman and Tukey (1958) [78], 

Papoulis and Pillai (2002) [23], Priestley (1981) [60] and Yevjevich (1972) [3]]. The variance 

of the estimated errors on ܴ௑௑ሺτሻ increases with increasing lag (τ) (Fatmi et al., 2008, [43]). 

For all these reasons, Tukey filter is chosen and used later in this work. It can be noted that 

this type of filter is necessary to obtain a good spectral estimation from a signal of the finite 

duration in discrete time. 

   If ܦሺ݆ሻ is the temporal filter function of Tuckey by the Fourier transform for the finite size 

of the domain [0, M], then  

Filtre (۲ܒ) : 

The Fourier transform applies: 

• to a continuous function 

• and infinite support. 

Hence there is the necessity to: 

• do the smoothing due to the discretization  
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• and to nullify the values beyond the truncation M. 

Two possibilities are: 

• the pre-filtering of ܴ௑௑ ሺ݆ሻ corresponding to ܦሺ݆ሻ 

• and the post-filtering of the obtained spectrum. 

   In our case, several filter methods are referred for the pre-filtering ܦሺ݆ሻ  and they 

respectively are: 

• Bartlett:  ܦ௝ ൌ 1 െ ௝
௠

 (9-60) 

• Parzen (1):  ܦ௝ ൌ 1 െ ௝మ

ெమ  (9-61) 

• Parzen (2):  ܦ௝ ൌ 1 െ ଺௝మ

ெమቀଵି ೕ
ಾቁ

 ,  0 ൑ ݆ ൑ ெ
ଶ

 (9-62) 

• Parzen (3):  ܦ௝ ൌ 1 െ ଺௝మ

ெమቀଵି ೕ
ಾቁ

 ,  ெ
ଶ

൑ ݆ ൑  (63-9)) ܯ

• Tukey (1):  ܦ௝ ൌ 1 െ 0.46 ൅ ݏ݋0.46ܿ ቀగ௝
ெ

ቁ  (9-64) 

• Tukey (2):  ܦ௝ ൌ ൫ଵା௖௢௦ሺగ௝ ெ⁄ ሻ൯
ଶ

  or (9-65) 

• Tukey (3):  ܦ௝ ൌ ൫ଵା௖௢௦ሺଶగ௝∆௧ ଶெ⁄ ∆௧ሻ൯
ଶ

  or (9-66) 

   Note: 

   Opposed to the moving average, Tukey filter applies to the autocorrelation function, instead 

of the data itself. 

   Spectral estimation with Tuckey filter:  

Finally, the reduced spectrum used in this thesis is written as follows: 

כ൫݂כܵ
௜൯ ൌ 2ൣ1 ൅ 2 ∑ ௝·ܴ௑௑ሺ݆ሻ௝ୀெܦ

௝ୀଵ . כ݂ߨ൫2ݏ݋ܿ
௜. ݆൯൧  (9-67) 

Where, 

כ݂
௜ ൌ ௜

ଶൈெൈ௞బ
  

݅ ൌ 0, 1, 2, … ,  ;ܯ

௑௑ሺ݆ሻܥ ൌ ଵ
ே

∑ ሺܺሺݐ௜ሻ െ തܺሻ൫ܺ൫ݐ௜ା௝൯ െ തܺ൯௜ୀேି௝
௜ୀଵ   (9-68) 

ܴ௑௑ሺ݆ሻ ൌ ஼೉೉ሺ௝ሻ
ఙ೉

మ   (9-69) 

   Equation (9-67) is the dimensionless reduced spectrum normalized by the variance of the 

signal ܺሺݐሻ with respect to the dimensionless frequency ݂כ defined later.  

   The dimensional frequency is defined as : 

௜݂ : the “hertzienne” frequency (1 Hz=1 s-1)   ௜݂ ൌ ଵ
்೔

ሾݖܪሿ  
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   Fig. 9-2 shows some notions of the signal sampling.  

 
Fig. 9-2 Schema of the sampling of a discrete-time signal on a temporal observation 

window with the finite size. 

Note: 

௠ܶ௜௡ is the minimum period likely to be sampled ; 

௠ܶ௔௫ is the maximum period likely to be sampled; 

 ;is the time step (s) ݐ∆

ܰ is the number of discrete observations;  

௠௔௫ݐ ௠௔௫ is the maximum possible lag time (s), andݐ ൌ  ;ݐ∆ܯ

 .3/ܰ≈ܯ .eg ,ܰ ≥ܯ is the truncation lag that can be chosen for convenience with a cutoffܯ

   Using the definitions of this figure, by the sampling theorem of Shannon, we have: 

௠݂௔௫ ൌ ଵ
்೘೔೙

ሾݖܪሿ ֜ ௠݂௔௫ ൌ ଵ
ଶ∆௧

ሾݖܪሿ and ௠݂௜௡ ൌ ଵ

೘்ೌೣ
ൌ ଵ

ଶ௧೘ೌೣ
ሾݖܪሿ 

Then: ݐ௠௔௫ ൌ ֜ ݐ∆ܯ ௠݂௜௡ ൌ ଵ
ଶெ∆௧

ሾݖܪሿ ֜ ሺ ௠ܶ௔௫ ൒ 2 ௠ܶ௜௡ሻ 

   Then we can derive a dimensionless frequency ݂כ defined by: 

כ݂
௜ ൌ ௜݂ ൈ ݐ∆ ֜ כ݂

௜ ൌ ௜
ଶൈெൈ௞బ

  (9-70) 

Note: 

Here, we take ݇଴ ൌ 1 (more generally, ݇଴ ൒ 1 represents the temporal sampling step 

used in the Fourier transform). 

And the dimensional spectrum used in the thesis is written as follows: 

ܵሺ ௜݂ሻ ൌ ܵ൫݂כ
௜൯. ௑ߪ

ଶ.  (71-9)  ݐ݀
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   The reduced frequency belongs to the interval: 0 ൑ כ݂
௜ ൑ 0.5 (dimensionless). 

   Note:  

   The truncation lag ܯ can be replaced by the total duration of the time serial ܰ, which 

corresponds to the application of Shannon's theorem in the absence of filtering. Our approach 

here (with ܯ  instead of ܰ ) amounts to reduce the number of discrete frequency and to 

increase the frequency increment Δ݂. 

   Example: Δ ݐ ൌ ܰ ,ݏ1000 ൌ ܯ ,500 ൌ 50. 

• With ܰ we obtain Δ݂ ൌ 1/ሺ1000000ݏሻ ൌ  10ି଺ݖܪ;  

• With ܯ we obtain Δ݂ ൌ 1/ሺ100000ݏሻ  ൌ  10ିହ ݖܪ. 

   For ݇଴ ൌ 1, we have : መ݂଴ ൌ 0 and ݂כ
ே ൌ 0.5. 

   Finally, the term ܦ௝ is a temporal filter and Tukey filter (2) is used: 

௝ܦ ൌ
൬ଵା௖௢௦ቀഏೕ

ಾቁ൰

ଶ
  (9-72) 

where, 

j is the number of time steps and ݆ ൌ 1,2, … , ൑ ܯ  ܰ/3 (or, at most, ൌ ܰ ); 

 ;ݐ߂ is the window size of the truncation in number of the time step ܯ
ܰ is the total number of the sequential data;  

 .is the time step of the measurement ݐ߂

   Used in the W-K theorem for estimating the spectrum of a signal, the weighting function 

 ሺ݆ሻ is a filter of ܴ௑௑ሺ݆). In fact, for various reasons, to apply the Fourier transform, it isܦ

necessary to carry out smoothing. Tuckey filter is used in this thesis, because it makes better 

filtering of the long periods (low frequencies). The experience shows that Tuckey filter skews  

less the value of the variance and it overestimates the total variance of 8% (Mangin, 1984). 

The bandwidth of the filter must be greater than the one of the signal so that the sampling 

does not interfere in the reconstruction of the signal and let pass any information it contains. 

9.3.3.3 Cross spectral analysis 

 Fourier transformation of the cross correlation function of W-K in continuous 

time 

   The cross spectral density of ܺሺݐሻ and ܻሺݐሻ is decomposed in the frequency domain by 

Fourier transform with a complex number of the cross correlation function: 

ܵ௑௒ሺ߱ሻ ൌ ଵ
ଶగ ׬ ܴ௑௒ሺ߬ሻ݁ି௜ఠఛ݀߬ାஶ

ିஶ   (9-73) 
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׬ ܵ௑௒ሺ߱ሻ݀߱ାஶ
ିஶ ൌ ൜ܥ௑௒ሺ0ሻ

ܴ௑௒ሺ0ሻ  (9-74) 

Note: 

The cross correlation function ܴ௑௒ is asymmetrical: 
 ܴ௑௒ሺെ߬ሻ ് ܴ௑௒ሺ߬ሻ or ܴ௑௒ሺെ߬ሻ ് ܴ௒௑ሺ߬ሻ 

   It automatically deducts the cross spectral density is complex: ܵ௑௒ሺ߱ሻ א  then ,ܥ

 ܵ௑௒ሺ߱ሻ ൌ ܵோ௘ሺ߱ሻ െ ݅ ூܵ௠ሺ߱ሻ  or  ܵ௑௒ሺ߱ሻ ൌ |ܵ௑௒ሺ߱ሻ|݁൫ି௜ఏ೉ೊሺఠሻ൯ (9-75) 

Where, 

ܵோ௘ሺ߱ሻ— co-spectrum; 

ூܵ௠ሺ߱ሻ-- quadrature spectrum; 

Amplitude density spectrum:  

|ܵ௑௒ሺ߱ሻ| ൌ ඥܵோ௘
ଶ ሺ߱ሻ ൅ ூܵ௠

ଶ ሺ߱ሻ (9-76) 

Phase density spectrum:  

௑௒ሺ߱ሻߠ ൌ ݊ܽݐܿݎܽ ቀௌ಺೘ሺఠሻ
ௌೃ೐ሺఠሻቁ (9-77) 

 Fourier transformation of the cross correlation function of W-K in discrete time 

   The function of inter-covariance in discrete time is written as: 

௑௒ሺ݆ሻܥ ൌ ଵ
ே

∑ ሺܺሺݐ௜ሻ െ തܺሻ൫ܻ൫ݐ௜ା௝൯ െ തܻ൯௜ୀேି௝
௜ୀଵ , ݆ ൐ 0   (9-78) 

ܴ௑௒ሺ݆ሻ ൌ ஼೉ೊሺ௝ሻ
ఙ೉.ఙೊ

      

௒௑ሺ݆ሻܥ ൌ ଵ
ே

∑ ሺܻሺݐ௜ሻ െ തܻሻ൫ܺ൫ݐ௜ା௝൯ െ തܺ൯௜ୀேି௝
௜ୀଵ , ݆ ൏ 0   (9-79) 

ܴ௒௑ሺ݆ሻ ൌ ஼ೊ೉ሺ௝ሻ
ఙೊ.ఙ೉

      

௑ߪ 
ଶ ൌ ଵ

ே
∑ ሺܺሺݐ௜ሻ െ തܺሻଶ௜ୀேି௝

௜ୀଵ   (9-80) 

௒ߪ
ଶ ൌ ଵ

ே
∑ ሺܻሺݐ௜ሻ െ തܻሻଶ௜ୀேି௝

௜ୀଵ   (9-81) 

   The inter-correlation function is not symmetric from -j to + j, and the spectrum function is 

expressed by a complex number. Here the two expressions represented by the imaginary and 

real part are: 

• General expression of Fourier cross spectrum complex: 

ܵ௑௒ሺ߱ሻ ൌ ܵோ௘ሺ߱ሻ െ ݅ ூܵ௠  (9-82) 

The real part (co-spectrum): 

ܵோሺ߱ሻ ൌ 2൛ܴ௑௒ሺ0ሻ ൅ ∑ ൫ܴ௑௒ሺ݆ሻ ൅ ܴ௒௑ሺ݆ሻ൯ܦሺ݆ሻ௝ୀெ
௝ୀଵ כ݂ߨ൫2ݏ݋ܿ

௜݆൯ൟ  (9-83) 

The imaginary part (quadrature spectrum): 
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ூܵ௠ሺ߱ሻ ൌ 2 ∑ ൫ܴ௑௒ሺ݆ሻ െ ܴ௒௑ሺ݆ሻ൯௝ୀெ
௝ୀଵ ߨ൫2݊݅ݏሺ݆ሻܦ መ݂௜݆൯ (9-84) 

• Exponential expression of Fourier cross spectrum complex: 

ܵ௑௒ሺ߱ሻ ൌ |ܵ௑௒ሺ߱ሻ|݁൫ି௜ఏ೉ೊሺఠሻ൯ (9-85) 

where, spectrum density of amplitude: 

|ܵ௑௒ሺ߱ሻ| ൌ ඥܵோ௘
ଶ ሺ߱ሻ ൅ ூܵ௠

ଶ ; 

Spectrum of phase density: 

௑௒ሺ߱ሻߠ ൌ ݊ܽݐܿݎܽ ቀௌ಺೘ሺఠሻ
ௌೃ೐ሺఠሻቁ. 

• Combination of simple and cross spectrum: 

The coherency function is written as follows: 

௑௒ሺ߱ሻ݄݋ܥ ൌ |ௌ೉ೊሺఠሻ|
ඥௌ೉೉ሺఠሻ.ௌೊೊሺఠሻ

ൌ  ௑௒ሺ߱ሻ൯  (9-86)ߠ൫݅݌ݔሺ߱ሻ݄݁݋ܥ

The phase function (rad/s) is written as follows: 

௑௒ሺ߱ሻߠ ൌ ݊ܽݐܿݎܽ ቀௌ಺೘ሺఠሻ
ௌೃሺఠሻ ቁ  (9-87) 

The reduced gain function (dimensionless) is written as follows: 

כ݃
௑௒ሺ߱ሻ ൌ |ௌכ

೉ೊሺఠሻ|
ௌכ೉೉ሺఠሻ    (9-88) 

where, ܵכ
௑௒ሺ߱ሻ is the dimensionless cross spectrum; 

כܵ            
௑௑ሺ߱ሻ is the dimensionless single spectrum. 

The relationship between the no-reduced and reduced gain functions is written as follows: 

݃௑௒ሺ߱ሻ ൌ
|ܵ௑௒ሺ߱ሻ|
ܵ௑௑ሺ߱ሻ ൌ

௒ߪ

௑ߪ
. כ݃

௑௒ሺ߱ሻ 

 Where, ܵ௑௒ሺ߱ሻ is the dimensional cross spectrum; 

             ܵ௑௑ሺ߱ሻ is the dimensional single spectrum. 

   It is worth noted that the reduced gain ݃כ
௑௒ሺ߱ሻ is the ratio of the absolute value of the 

dimensionless cross-spectrum ܵכ
௑௒ሺ߱ሻ to the dimensionless auto-spectrum ܵכ

௑௑ሺ߱ሻ , while 

the no-reduced gain ݃௑௒ሺ߱ሻ  is the ratio of the absolute value of the dimensional cross-

spectrum ܵ௑௒ሺ߱ሻ to the dimensional auto-spectrum ܵ௑௑ሺ߱ሻ. For the same type of signals such 

as two signals are the water level fluctuations, the no-reduced gain ݃௑௒ሺ߱ሻ  is also 

dimensionless. 
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9.3.4 Multi-resolution wavelet analysis 
9.3.4.1 Introduction 
   The main objective of the wavelet transform is to analyze and decompose time-scale 

phenomena without losing information on time localization (transients, jumps, trends). From 

this point of view, the discrete multi-resolution wavelet framework, with its orthogonal basis, 

gives a more satisfactory decomposition than the time-frequency Fourier transform (which 

globalizes all times into a single frequency parameter). It is also more satisfactory than the 

sliding window Fourier analyzis of Gabor type. Concerning mathematical and computational 

aspects of multiresoultion wavelets, see Mallat (1989)[8], Strang & Nguyen (1996) [42], 

Mallat (1999) [15], and other references therein.  

   Here, the orthogonal basis of discrete multi-resolution wavelets (Daubechies basis, more 

precisely, Daubechies wavelets of order N=20) is chosen to analyze the measured water level 

fluctuations. The programs used for this analysis were put together into a custom-made 

Matlab Toolbox, including the wavelet functions proposed and published online by Stanford 

University (WaveLab: (http://www-stat.stanford.edu/ ~ wavelab/.), as well as the Matlab’s 

Wavelet Toolbox which itself contains also its own toolkit and its own analysis functions. 

Previous publications along these lines, using similar wavelet tools, are those of Labat et al. 

(2000.b) [34]and Fatmi et al. (2008) [43]. 

   The corresponding theory about the multi-resolution wavelet will be introduced in this 

section. It includes the decomposition, construction and the detail (component) of a signal as 

well as the application with the multi-resolution wavelet analysis. 

9.3.4.2 Decomposition of a signal 

   The signal ܺሺݐሻ in continuous time is represented in the coefficients (ܥ௝,௞
௑ ) as follows: 

ܺሺݐሻ ൌ ׬ ௝,௞ܥ
௑ ሺݐሻ௞ୀାஶ

௞ୀିஶ ߰௝,௞ሺݐሻ݀(89-9)  ݐ 

   In this equation, the coefficients of the discrete orthogonal wavelet transform ܥ௝,௞
௑  are given 

by the convolution: 

௝,௞ܥ
௑ ሺݐሻ ൌ ׬ ܺሺݐሻାஶ

ିஶ ߰௝,௞݀(90-9)       ݐ 

where, 

߰௝,௞ሺݐሻ ൌ 2௝ ଶ⁄ ߰൫2௝. ݐ െ ݇൯ (݆ ൐ 0: compression, ݆ ൏ 0: dilation) (9-91) 

or  

߰௝,௞ሺݐሻ ൌ ଵ
ଶషೕ మ⁄ ߰ ቀ௧ିଶషೕ.௞

ଶషೕ ቁ (݆ ൐ 0: compression, ݆ ൏ 0: dilation) (9-92) 
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   In such an orthonormal basis, the wavelets of the basis ߰௝,௞ሺݐሻ are ortho-normal to their 
images obtained by translations and dilations.  Therefore, we have: 

׬ ߰௠,௡ሺݐሻାஶ
ିஶ ߰௠ᇲ,௡ᇲ݀ݐ ൌ ௡,௡ᇲߜ௠,௠ᇲߜ    (9-93) 

where, ߜ is the Kronecker symbol defined as follows: 

௜,௝ߜ ൌ ൜ 1, if  i ൌ  j
 0, if  i ്  j  

   It is possible to construct a complete orthogonal basis in order that the signal at discrete 

time of the finite energy ܺሺ݅ሻ can be decomposed into a linear combination of translations and 

dilations of the basis functions with appropriate coefficients: 

ܺሺ݅ሻ ൌ ∑ ∑ ௝,௞ܥ
௑ ሺ݅ሻ߰௝,௞ሺ݅ሻ௞ୀାஶ

௞ୀିஶ
௝ୀାஶ
௝ୀ଴    (9-94) 

where, i can be replaced by ݐ௜ ൌ  .ݐ߂݅

   The relation (9-94) corresponds to the discretization of continuous time equation 

corresponding to the synthesis of a signal based on these wavelet coefficients. This can also 

be interpreted as a succession of approximations of the discrete signal ܺሺ݅ሻ (in the sense of 

least squares) by a sequence (ܺ௡ሺ݅ሻ, ݊ ൌ 1, . . . , ܰ) defined by the following equation: 

ܺ௡ሺ݅ሻ ൌ ∑ ∑ ௝,௞ܥ
௑ ሺ݅ሻ௞ୀାஶ

௞ୀିஶ
௝ୀ௡ିଵ
௝ୀ଴ ߰௝,௞ሺ݅ሻ (9-95) 

   The above equations constitute the conceptual basis of the multi-resolution analysis. For 

more details on this theory, see Mallat (1989). 

9.3.4.3 Approximation and detail of a signal 

   As mentioned above, the multi-resolution wavelet analysis makes a dyadic signal 

decomposed into a succession of approximations corresponding to increasing scales "j". The 

difference between the measured signal and its approximation to the order (n) is called 

"residual". The difference between the approximations of order (n +1) and (n) is called 

"detail" of order (n). Intuitively, the approximation thus corresponds to a large-scale time 

phenomena, while the detail accounts for the phenomena more specifically at a smaller scale 

than the order of the approximation. Or in another way, the approximation corresponds to a 

smoothed image signal, while the detail highlights the irregularities of the signal at a certain 

scale. 

   The approximation ܣ௠  and the detail ܦ௠ of a discrete signal ܺሺ݅ሻ with the resolution "m", 

are given by: 

௑ܣ
௠ሺ݅ሻ ൌ ∑ ,ܺۃ ߮௠,௞ۄ௞ୀାஶ

௞ୀିஶ . ߮௠,௞ሺ݅ሻ    (9-96) 
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௑ܦ
௠ሺ݅ሻ ൌ ∑ ,ܺۃ ߰௠,௞ۄ௞ୀஶ

௞ୀିஶ ߰௠,௞ሺ݅ሻ (9-97) 

Here, ߮௠,௞ is called scaling function, and ߰௠,௞ is called wavelet function (mother wavelet). 

   However, basically, the approximation ܣ௠ሺݐ௜ሻ  is a sum of the successive wavelet 

components  ܺ௠ ሺݐ௜ሻ  from the long scale k = M to the cutoff scale m, and the detail ܦ௠ ሺݐ௜ሻ 

is just the next component ܺ௠ାଵሺݐ௜ሻ of the one scale ݇ ൌ ݉ ൅ 1. 

   Remark: 

• Several different conventions are used in the literature and the dyadic scales may be 

increasing or decreasing with the index "m" (here "m" decreases from long scale to 

short scale) 

• Some authors choose to draw 1/scale or -log (scale) on the scale axis (ordinate). With 

this choice, the shorter scales (residuals) are placed at the top of the graph, and the 

longer scales (approximations) are below the graph. 

• A wavelet component of the dyadic scale "j" is often noted as ܥ௫
௝ሺ݅ሻ, and sometimes it 

is noted like with the wavelet coefficients. 

௫ܥ
௝ሺݐ௜ሻ ൌ ∑ ,ݔۃ ߰௠,௞ۄ௞ୀାஶ

௞ୀିஶ · ߰௠,௞ሺ݅ሻ  (9-98) 

ܺሺ݅ሻ ൌ ௑ܣ
௠ሺ݅ሻ ൅ ∑ ௑ܦ

௝ሺ݅ሻ ൌ ௑ܣ
௠௝ୀெ

௝ୀ௠ାଵ ሺ݅ሻ ൅ ܴ௑
௠ሺ݅ሻ  (9-99) 

where, 

 ௗܰ௬௔ௗ௜௖ ൌ 2ெ ൑ ௧ܰ௢௧௔௟; 

௑ܣ
௠ is the approximation of the dyadic scale ‘m’ (low pass filter); 

ܴ௑
௠ is the residual of the approximation of the dyadic scale ‘m’ (high pass filter); 

   The main equations of the orthogonal multi-resolution wavelet analysis are summarized in 

Table 9- 1. 

Table 9- 1 Main equations of the orthogonal multi-resolution wavelet analysis  

ܺሺ݅ሻ ൌ ∑ ∑ ௝,௞ܥ
௑௞ୀାஶ

௞ୀିஶ
௝ୀାஶ
௝ୀ଴ ሺ݅ሻ߰௝,௞ ൌ ௑ܣ

௠ሺ݅ሻ ൅ ∑ ௑ܦ
௝ሺ݅ሻ௝ୀெ

௝ୀ௠ାଵ  

߰௝,௞ሺݐሻ ൌ 2௝ ଶ⁄ ߰൫2௝ ൈ ݐ െ ݇൯  

ቊ
௑ܣ

௠ሺ݅ሻ ൌ ∑ ,ܺۃ ߮௠,௞ۄ௞ୀାஶ
௞ୀିஶ . ߮௠,௞ሺ݅ሻ

௑ܦ
௠ሺ݅ሻ ൌ ∑ ,ܺۃ ߰௠,௞ۄ௞ୀஶ

௞ୀିஶ ߰௠,௞ሺ݅ሻ
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9.3.4.4 Application of multi-resolution wavelet analysis 
  As mentioned above, multi-resolution wavelet can be used to make a filtering of the signal, 

and, more important, it can be used to study the detail of any dyadic scale "m" of the 

measured data. This makes possible to study the fluctuation characteristics of one component 

signal corresponding to time scale 2௠ ൈ Δݐ such as the Fourier dominant period, the standard 

deviation, and so on. This also makes possible to obtain the correlation between the 

components with the same dyadic time scale of the two different signals. 

   The following is a simple example of the use of the multi-resolution wavelet to analyze a 

regular signal ܺሺݐሻ to show the possible applications.  

   Example:  

The signal: ܺሺݐሻ ൌ ݊݅ݏ1.5 ቀ ଶగ௧
ଶళ∆௧

ቁ ൅ ݊݅ݏ3 ቀ ଶగ௧
ଶఱ∆௧

ቁ  (9-100) 

where,  

ݐ∆  is the time step and ݐ∆ ൌ  ;ݏ1

௠௜௡ݐ ,is the time ݐ ൌ ௠௔௫ݐ and ݏ0 ൌ  .ݏ1024

   In this example, the signal ܺሺݐሻ (equation (9-100) and Fig. 9-3) is constructed by a Fourier 

bimodel with the 2 different wavelet dyadic time scales: ଵܶ ൌ and ଶܶ  ݏ32 ൌ  and 2 ݏ128

different corresponding amplitudes: ܣଵ ൌ 3  and ܣଶ ൌ 1.5 . The main results are shown in the 

flowing figures from Fig. 9-4 to Fig. 9-8.  

 

Fig. 9-3  Evolution of the regular signal ( ) 7 5

2 2
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2 2

t t
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⎝ ⎠ ⎝ ⎠

 

   Fig. 9-4 shows the increasing approximations with the 10 increasing wavelet dyadic time 

scales. It can be seen that the top approximation ܣଵ଴ corresponding to the wavelet dyadic 

scale m=10 is the original signal ܺሺݐሻ. On contrast, in the figure of the residuals (Fig. 9-5), 
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the bottom residual corresponding to the wavelet dyadic scale m=1 is the original signal ܺሺݐሻ. 

In fact, the two figures show that the multi-resolution wave use two methods to construct a 

complete signal: (1) doing the sum of the components from the smallest wavelet dyadic time 

scale to the largest wavelet dyadic time scale (approximations); (2) doing the sum of the 

components from the lowest wavelet dyadic time scale to the largest wavelet dyadic time 

scale (residuals). 

Fig. 9-4  Evolution of the approximations with the increasing dyadic time scale of the 
regular signal ( )X t by multi-resolution wavelet analysis 
Note: in order to clearly show all the approximations, the absolute values of the residuals 
are added the changeable multiple of 1.8 from 0 to 9. 

 

Fig. 9-5  Evolution of the residuals with the increasing dyadic time scale of the regular 
signal ( )X t  with multi-resolution wavelet analysis 
Note: in order to clearly show all the approximations, the absolute values of the residuals 
are added the changeable multiple of 1.8 from 0 to 9. 

   On the other hand, Fig. 9-6 shows the principal details from C3 to C8 of the original signal 

ܺሺݐሻ . This figure clearly shows that the most dominant components are C5 and C7. 

Furthermore, the sum of the two components C5 and C7 can be done and compared it with the 

original signal (Fig. 9-7) to verify the selected dominant periods.  
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Fig. 9-6  Evolution of the principal dyadic components of the regular signal ( )X t  by multi-
resolution wavelet analysis with Daubechies20 filter  

 

 
Fig. 9-7  Comparison of the evolution of the sum of the components C5 and C7, and   the 
original signal ( )X t  (multi-resolution wavelet analysis) 

   In addition, the dominant periods: ଵܶ ൌ and ଶܶ  ݏ32 ൌ  are re-obtained by analyzing  ݏ128

the original signal ܺሺݐሻ and the sum of the two components with Fourier single spectral 

analysis, as seen from Fig. 9-8. It is worthy noted that, in this example, for the regular signal 

or Fourier model signal, it is obtained that the wavelet dyadic time scale is identical with the 

corresponding Fourier dominant period. In fact, the wavelet dyadic time scale is just 

approximate to Fourier period, and this conclusion will be verified for the measured no-

stationary water level fluctuations in Chapter 6. 
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Fig. 9-8  Comparison of the Fourier spectral functions of the sum of the components C5 
and C7, and   the original signal ( )X t  (Fourier spectral analysis, Tuckey filter, 
M=320<N/3=342, tΔ =1s) 
Note: wavelet dyadic time scale of C5:  5 5

5 2 2 1 32T t s= × Δ == × =  
          wavelet dyadic time scale of C7:  2 7

7 2 2 1 128T t s= × Δ == × =

  Finally, the multi-resolution with the Daubechies20 filter is used in this example as well as 

in this thesis, because it is asymmetrical and it fits better with the measured signals which just 

are not symmetric.  In fact, multi-resolution of the type Daubechies4 is also tested, and the 

results are not so much different from the ones obtained by the type Daubechies20 for the 

measured water level fluctuation. 

9.4 Conclusion 

   The main theories of the signal processing methods and three signal filtering methods which 

are used together to analyzed the measured water level fluctuations in the slopping sandy 

beach in the Barcelona wave canal experiment are introduced in this chapter. The signal 

processing methods include the Fourier spectrum, multi-resolution wavelet and correlation 

analysis. There filtering methods are respectively the moving average, differential and multi-

resolution wavelet filtering.  

If the same filter time is chosen, the moving average and the multi-resolution wavelet 

filtering methods can obtain the same filtered and residual signals. However, compared with 

the moving average filtering, it is more complicated to determine the exact filter time for the 

multi-resolution wavelet filtering, because the wavelet dyadic time scale is just an 

approximate Fourier period for the general irregular signal. 

Differential filtering is different from the moving average and the multi-resolution wavelet 

filtering. For the case of  ∆ݐ ൌ  the fluctuation characteristics of the difference of the ,ݐ݊ܽݐݏ݋ܿ

original signal can be obtained by studying the filtered signal. 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

200

400

600

800

1000

1200

1400

Frequency(Hz) 

 S
pe

ct
ru

m
(m

2 *s
)

 

 

Original signal X(t)
Sum of components C5 and C7

 T2=128s

 T1=32s



Appendix B:  Chapter B9 Signal analysis for oscillatory flows (methodogy) 
   

242 
 

   Considering that unbiased estimation of the correlation analysis (temporal analysis) can 

intuitively show the hidden periodicity of the two signals, while the 'biased' cannot show this 

characteristic, the biased estimation is used to calculate the Fourier spectrum, and at the same 

time, the unbiased estimation is used to do the direct single or cross analysis such as cross 

covariance function with respect to the lag to show the cross correlation of the signals 

between ܻሺݐሻ and  ܺሺݐሻ.   

   Concerning the correlation analysis, considering that unbiased estimation can intuitively 

show the hidden periodicity of the two signals, while the 'biased' cannot show this 

characteristic, the biased estimation is used to calculate the Fourier spectrum, and at the same 

time, the unbiased estimation is used to do the direct single or cross analysis such as cross 

covariance function with respect to the lag to show the cross correlation of the signals 

between ܻ ሺݐሻ and  ܺ ሺݐሻ.   

   The Fourier spectral analysis reflects the structure of the signal by decomposing a signal in 

periodic functions. Its advantage is to clearly manifest the distribution of the Fourier spectral 

functions with respect to the frequency (period). Accordingly, it can be used to study the 

fluctuation characteristics with respect to the frequency (period). For example, for a single 

analysis,  it can be used to study the dominant periods of the measured water level 

fluctuations, and the propagation of the fluctuation energy of certain periods in the slopping 

sandy beach; for a cross analysis, it can be used to determine the coherency with the 

frequency between two water level fluctuations. 

   The wavelet transform makes the time-scale phenomena localized temporally or transient 

extend over a range of scales. The multi-resolution wavelet analysis makes a dyadic signal 

decomposed into a succession of approximations corresponding to increasing scales. It can 

especially be used to study the detail (one component) of any dyadic scale "m" of the 

measured data. This makes possible to study the fluctuation characteristics of one component 

signal corresponding to time scale 2௠ ൈ Δݐ such as the Fourier dominant period, the standard 

deviation, and so on. This also makes possible to make the correlation between the 

components with the same dyadic time scale of the two different signals. Especially, for the 

non-stationary water level fluctuations, it gives more satisfactory results than the ones 

obtained with Fourier spectral analysis. 

   Finally, the three filtering methods will be compared and eventually will be combined with 

the three signal processing methods to filter and analyze the non-stationary water level 

fluctuations in the Barcelona wave canal experiment. 
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   In addition, it can be noted that the weighting function ܦሺ݆ሻ of Tuckey filter is a filter of 

ܴ௑௑ሺ݆) in the dimensionless reduced Fourier spectral function, while the moving average, 

differential and multi-resolution wavelet filtering methods are used to directly filter the signal 

(data).  
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Chapter B10: Illustrations of the signal processing of 

the measured water level data H1(t) and H6(t) of the 

experiment in Barcelona  

10.1 Introduction 
 As mentioned in Chapter 5, the sensor No.1 was placed near the still water / beach boundary 

to measure the water level fluctuations ࡴ૚ሺ࢚ሻ corresponding to the entry condition of the 

model.     

   As a result, the characteristics of  ࡴ૚ሺ࢚ሻ play a dominant role in the 6 other sensors’ water 

level fluctuations and in the whole sea/beach hydrodynamic partially saturated sloping sandy 

beach system.  At the same time, from the measured results (Fig. 5-8) and according to the 

observation during the experiment, the water level fluctuations ࡴ૛ሺ࢚ሻ ૜ሺ࢚ሻࡴ , ૝ሺ࢚ሻࡴ ,  and 

 ૞ሺ࢚ሻ are the mixed water levels composed of the surface water and the groundwater. Fromࡴ

the point of view of the signal processing, they have many similar oscillatory characteristics 

with ࡴ૚ሺ࢚ሻ, while ࡴ૟ሺ࢚ሻ and ࡴૠሺ࢚ሻ are pure groundwater levels, which are total different 

from ࡴ૚ሺ࢚ሻ. 

   Therefore, practicing of the signal processing techniques for the ࡴ૚ሺ࢚ሻ and ࡴ૟ሺ࢚ሻ plays a 

very important role in eventually finding a good method for analyzing ࡴ૛ሺ࢚ሻ, ࡴ૜ሺ࢚ሻ, ࡴ૝ሺ࢚ሻ 

and ࡴ૞ሺ࢚ሻ, and at the same time,  in finding an another method for ࡴૠሺ࢚ሻ. 

     In this chapter, three signal processing methods: Fourier spectrum, wavelet multi-

resolution and temporal analysis methods together with three filtering methods have been 

practiced to analyze the measured water level fluctuations ܪଵሺݐሻ and ܪ଺ሺݐሻ in the sloping 

sandy beach , using  signal analysis tools previously developed in the IMFT/GEMP group 

(Fatmi 2009 ) with concerned theories explained in detail in Appendix B: Chapter 9.  

10.2 Preliminary note (Sub-sampling) 

   For the measured raw data in Barcelona, the time step is Δt0 = 0.01 s = 10-2 s. In order to 

reduce the degree of difficulty on the signal processing under the condition of unaffecting the 
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results of the raw original data, the time step of the sub-sampling for all results presented here 

is taken as ΔtSUB-SAMPLING = 0.1 s = 10 Δt0.  

   The measured raw water levels for the 7 sensors in the sloping sandy beach (14 serial, 

measured 18 March 2008) are illustrated in Fig. 10-1.  Especially, the raw ࡴ૚ሺ࢚ሻ and ࡴ૟ሺ࢚ሻ 

are shown in Fig. 10-2. 

 
Fig. 10-1 Raw signal Hi (t)(i=1,…,7) measured in the sloping sands beach  

 

Fig. 10-2 Complete time series of ( )1H t  and ( )6H t  

   As a result, the data obtained by sub-sampling will be called original signal in this thesis. 

10.3 Original signal of H1 (t) and H6 (t) 
10.3.1 Introduction  
   In order to reduce the degree of difficulty of the signal processing, just the second step 

water level data (step (2) in Fig. 5-8 and the part highlighted with the rectangular line in Fig. 

10-2 ) are chosen to be analyzed here. 
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10.3.2 Original signal of H1(t)  
Sensor No.1 was placed near the still water / beach boundary to measure the water level 

fluctuations ࡴ૚ሺ࢚ሻ. This sensor lied in the centre of the swash zone, and as result, the water 

level fluctuations ࡴ૚ሺ࢚ሻ are extremely random. The evolution of the original signal ࡴ૚ሺ࢚ሻ  is 

shown in Fig. 10-3.   

Fig. 10-3 Evolution of water level ( )1H t  (m) (t=0-1736s, original signal). 

From the two zooms (the 2 part data respectively framed with the red rectangular line and 

the brown rectangular line, shown in Fig. 10-4 and Fig. 10-5) of  ࡴ૚ሺ࢚ሻ, we can see that there 

are two series of period for  ࡴ૚ሺ࢚ሻ: small period serial from T=4.2s to 7.2s and big period 

serial from T=23.2s to 53.0s. 

 
Fig. 10-4 Zoom of evolution of water level ( )1H t  (m) (t=0-50s, original signal). 
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Fig. 10-5 Zoom of evolution of water level ( )1H t  (m) (t=0-200s, original signal). 

10.3.3 Original signal of H6 (t)  
   The sensor No.6 was placed about 2.5m horizontally to the right vertical wall of the canal. 

The evolution of the original signal ࡴ૟ሺ࢚ሻ is shown in Fig. 10-6 . From this figure, we can see 

that the original signal ࡴ૟ሺ࢚ሻ is extremely irregular: the moving average increases linearly 

firstly with a steep slope and then with a flat slope; the fluctuations become more and more 

important with the time, and its periods vary from about T=48.3s to 228s. 

 
Fig. 10-6  Evolution of water level ( )6H t  (m) (t=0-1800s, original signal).  

10.4 Signal processing of H1 (t)  
10.4.1 Introduction 
   The Fourier spectrum analysis, multi-resolution wavelet and temporal analysis methods are 

used to analyze the original signal ࡴ૚ሺ࢚ሻ and its residuals obtained respectively with moving 

average, differential, and multi-resolution filtering. 
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10.4.2 Signal processing of the original signal H1(t) 
   The original signal ܪଵሺݐሻ analyzed is shown in Fig. 10-3. 

10.4.2.1 Analysis of the original signal H1(t) with Morlet wavelet analysis 

   Spectrum P(f) of ࡴ૚ሺ࢚ሻ with Morlet wavelet analysis, which is analyzed by A. SEVRAIN , 

is shown in Fig. 10-7. From this figure, it can be seen that the stronger spectrum density 

happens in two zones: f1=0.02-0.08Hz (T1=12.5-50s) and f2=0.12-0.36 (T2=2.76-8.33s); 

among them, the strongest spectrum density happens to the zone when f=0.04Hz (T=25s). 

 
Fig. 10-7  Results of P(f) of the original signal ( )1H t  with Morlet wavelet analysis (A.  
SEVRAIN ) 

10.4.2.2 Analysis of the original signal H1(t) with Fourier spectrum analysis  

   The reduced Fourier spectrum with respect to the reduced frequency of the original signal 

  .૚ሺ࢚ሻ is shown in Fig. 10-8 and Fig. 10-9 (in log-log axis)ࡴ
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Fig. 10-8  Reduced Fourier spectrum  with the respect to the reduced frequency 
(dimensionless,  ( )1H t , original signal) 

 

 
Fig. 10-9  Reduced Fourier spectrum  with the respect to the reduced frequency  in log-log 
axis (dimensionless,  ( )1H t , original signal) 

   From these two figures, it can be seen that the period T1=23.33s plays a dominant role in the 

signal, while the period T4=4.83 which most approaches the period of the wave generator has 

very small influence on the signal fluctuation. What’s more, the results of Fourier analysis 

coincide very well with those of Morelet wavelet spectrum analysis, seen in Fig. 10-7. 

10.4.2.3 Analysis of the original signal H1(t) with multi-resolution wavelet  

  The evolution of the wavelet components of the original signal ࡴ૚ሺ࢚ሻ  with multi-resolution 

wavelet is shown in Fig. 10-10.  
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Fig. 10-10  Evolution of the dyadic wavelet components of the original signal ( )1H t   with 
multi-resolution wavelet  

   From this figure, it can be seen that the two components C7 and C8 play a dominant role in 

the signal. The evolution of the dyadic component C7 and C8 are respectively zoomed in Fig. 

10-11 and Fig. 10-12.  

 
Fig. 10-11  Dyadic component C7 of the original signal  ( )1H t  obtained with multi-
resolution wavelet (The time scale: T7 = 27.Δt = 12.8 s ) 
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Fig. 10-12  Dyadic component C8 of the original signal  ( )1H t  obtained with multi-
resolution wavelet (The time scale: T8 = 28.Δt = 25.6 s ) 

   At the same time, the evolution of the dyadic component C5, which time scale (T5 = 25.Δt = 

3.2s) approaches the period of the wave generator of the Barcelona canal, is zoomed in Fig. 

10-13.  

Fig. 10-13  Dyadic component C5 of the original signal  ( )1H t  obtained with multi-
resolution wavelet (The time scale: T5 = 25.Δt = 3.2 s)  

   From these three figures, it can be seen that the signal of the dyadic component with same 

time scale is still very irregular and the wavelet dyadic time scale is a little smaller than the 

one of the corresponding component. 

10.4.2.4 Analysis of the original signal H1(t) with temporal analysis 

   The auto-correlation ࡴࡾ૚ࡴ૚ሺ࢑ሻ of the original signal ࡴ૚ሺ࢚ሻ  is shown in Fig. 10-14.  

0 100 200 300 400 500 600 700
-0.1

-0.05

0

0.05

0.1

 C
8(

m
)

 Time(s)

T1=50.1s

T2=34.8s

0 20 40 60 80 100
-0.1

-0.05

0

0.05

0.1

0.15

 Time (s)

 C
5(

m
)

T2=5.7sT1=4.7s



Appendix B:  Chapter B10 Illustrations of the signal processing of the measured water level 
data ࡴ૚ሺ࢚ሻ and ࡴ૟ሺ࢚ሻ of the experiment in Barcelona  

252 
 

Fig. 10-14  Auto-correlation function ( )
1 1H HR k  of the original signal ( )1H t   (dt=0.1s) 

   It can be seen that the first period of the ࡴࡾ૚ࡴ૚ሺ࢑ሻ  t2=24.7s is very approximate to the most 

dominant period of ࡴ૚ሺ࢚ሻ T1=23.33s (Fig. 10-8) 

10.4.3 Analysis of the residuals of H1(t) 
   The residuals are respectively obtained with moving average, differential and multi-

resolution filtering. 

10.4.3.1 Residual of H1(t) with moving average filtering  

   The evolution of the original signal, its corresponding moving average and residual of 

  .૚ሺ࢚ሻ are respectively shown in Fig. 10-15, Fig. 10-16 and Fig. 10-17ࡴ

Fig. 10-15  Evolution of the original signal ( )1H t  and its corresponding moving average 
with moving average filtering (window halfwidth wt=5s). 
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Fig. 10-16  Evolution of the moving average of the original signal ( )1H t  with moving 
average filtering (window halfwidth wt=5s). 

 

Fig. 10-17  Evolution of the residual of the original signal ( )1H t  with moving average 
filtering (window halfwidth wt=5s). 

10.4.3.2 Analysis of the residual of H1(t) with moving average filtering and Fourier 

spectrum analysis  

  The Fourier spectrum function ࡿሺࢌሻ of the residual of  ࡴ૚ሺ࢚ሻ with moving average filtering 

(window halfwidth wt=5s) is shown in Fig. 10-18 .  
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Fig. 10-18 Fourier spectrum function ( )S f of the residual of  ( )1H t  with moving average 
filtering (window halfwidth wt=5s) 

   The most dominant period T3=5.85s is in the middle of the periods shown in the evolution 

of the residual Fig. 10-17. 

10.4.3.3 Analysis of the residual of H1(t) with moving average filtering and multi-

resolution wavelet analysis  

   The evolution of the main wavelet dyadic components is shown in Fig. 10-19.  

 
Fig. 10-19 Evolution of the wavelet dyadic components of  residual of ( )1H t  with moving 
average filtering  (window halfwidth wt=5s) 

   It can be seen that the dominant component is C5 (T5=2^5*dt=3.2s), the Fourier period of 

which is 4.83s. 

   The sum of C5(t) and C7(t) (Fig. 10-20) agrees very well with the residual of ࡴ૚ሺ࢚ሻ. 
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Fig. 10-20 Evolution of the sum of 2 wavelet dyadic components C5(t) and  C7(t) of 
residual of ( )1H t  with moving average filtering (window halfwidth wt=5s) 

10.4.3.4 Analysis of the residual of H1(t) with moving average filtering and temporal 

analysis  

   The auto-correlation function ( )
1Re 1ReH HR k of the residual of ࡴ૚ሺ࢚ሻ with moving average 

filtering is shown in Fig. 10-21.  

Fig. 10-21 Auto-correlation function ( )
1Re 1ReH HR k of the residual of ( )1H t  with moving 

average filtering (window halfwidth wt=5s) (dt=0.1s) 

   It can be seen that the first period t2=5.8s approximate to the most dominant period of the 

corresponding residual T3=5.85s (Fig. 10-18). 

10.4.3.5 Residual of H1(t) with differential filtering 

   The evolution of the residual of ࡴ૚ሺ࢚ሻ with differential filtering is shown in Fig. 10-22. 
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Fig. 10-22 Evolution of the residual of ( )1H t  with  differential filtering 

10.4.3.6 Analysis of the residual of H1(t) with differential filtering and Fourier spectrum 

analysis   

  The reduced Fourier spectrum function ሻࢌሺࡿ   of the residual of  ࡴ૚ሺ࢚ሻ  with differential 

filtering is shown in Fig. 10-23. 

 
Fig. 10-23 Reduced Fourier spectrum function ( )S f of the residual of  ( )1H t  with 
differential filtering (dimensional).  
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wavelet   

   From the figure of the evolution of the main wavelet dyadic components (Fig. 10-24), it is 

not very easy to distinguish the dominant component, because there is to much noise in the 

components with low dyadic time scales. In spite of this, it seems that the fluctuation of C3 is 

stronger that the other components. In addition, the evolution of the sum of 2 wavelet dyadic 

components C5(t) and C7(t) (Fig. 10-25) doesn’t agree very well with the residual of ࡴ૚ሺ࢚ሻ 

with differential filtering. 
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Fig. 10-24 Evolution of the wavelet dyadic components of  residual of ( )1H t  with 
differential filtering 

 

Fig. 10-25 Evolution of the sum of 2 wavelet dyadic components C5(t) and  C7(t) of  the 
residual of ( )1H t  (differential filtering) and the one of the original signal ( )1H t . 

10.4.3.8 Analysis of the residual of H1(t) with differential filtering and temporal analysis 

   The auto-correlation function ( )
1Re 1ReH HR k of the residual of ࡴ૚ሺ࢚ሻ with differential filtering 

is shown in Fig. 10-26.  
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Fig. 10-26 Auto-correlation function ( )
1Re 1ReH HR k of the residual of ( )1H t  with differential 

filtering  (dt=0.1s) 

   It can be seen that the time t2=4.8s is approximate to the most dominant period T1=4.67s 

(Fig. 10-23) of the corresponding residual. 

10.4.3.9 Residual of H1(t) with multi-resolution wavelet C5 

   The evolution of the original signal ܪଵሺݐሻ , the approximation and the corresponding 

residual with multi-resolution wavelet are respectively shown in Fig. 10-27, Fig. 10-28 and 

Fig. 10-29. 

Fig. 10-27 Evolution of ( )1H t  and its approximation with multi-resolution wavelet (C5) 
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Fig. 10-28 Evolution of  the approximation of ( )1H t  with  multi-resolution wavelet (C5) 

 

Fig. 10-29 Evolution of  the residual of ( )1H t  with  multi-resolution wavelet (C5) 

10.4.3.10 Analysis of the residual of H1(t) with multi-resolution wavelet and Fourier 

spectrum analysis 

  The Fourier spectrum function ࡿሺࢌሻ of the residual of  ࡴ૚ሺ࢚ሻ with multi-resolution wavelet 

is shown in Fig. 10-30. 

 
Fig. 10-30 Fourier spectrum with respect to the frequency ( )S f of the residual of  ( )1H t  
with multi-resolution wavelet. 
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10.4.3.11 Analysis of the residual of H1(t) with multi-resolution wavelet filtering and 

temporal analysis 

  The autocorrelation function ( )
1Re 1ReH HR k  of the residual of  ࡴ૚ሺ࢚ሻ with temporal analysis 

and multi-resolution wavelet filtering is shown in Fig. 10-31. 

 
Fig. 10-31  Autocorrelation function ( )

1Re 1ReH HR k  of the residual of  ( )1H t  with multi-
resolution wavelet filtering. 

10.4.3.12 Analysis of the residual of H1(t) with multi-resolution wavelet filtering and 

analysis  

    Although there is much noise in the components with low dyadic time scales, it can be still 

seen that the component C5 play the most dominant role in the residual of ࡴ૚ሺ࢚ሻ with multi-

resolution wavelet filtering (Fig. 10-32). What’s more, the evolution of the sum of 2 wavelet 

dyadic components C5(t) and  C7(t) of  the residual coincides very well with the one of ࡴ૚ሺ࢚ሻ 

(Fig. 10-33). 

 
Fig. 10-32 Evolution of the wavelet dyadic components of  residual of ( )1H t  with  multi-
resolution wavelet filtering (C5) 
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Fig. 10-33 Evolution of the sum of 2 wavelet dyadic components C5(t) and  C7(t) of 
residual of ( )1H t  with  multi-resolution wavelet filtering (C5) 

10.4.4 Comparison of the same wavelet dyadic component C5 
   Fig. 10-34 shows the evolution of the wavelet dyadic component C5 of the original signal 

 ሻ and its residuals obtained respectively with moving average filtering (window halfwidthݐଵሺܪ

wt=5s), multi-resolution wavelet filtering (C5) and differential filtering methods.   

Fig. 10-34 Evolution of the wavelet dyadic component C5(t) of the residuals and the 
original signal of ( )1H t  

   The evolution of the component obtained with moving average filtering and multi-

resolution wavelet filtering almost superpose together on the one of the original signal. 

However, the one obtained with differential filtering is much smaller than the 3 others. 

   As a result, the Fourier spectrum curves of the residuals obtained with moving average 

filtering and multi-resolution wavelet filtering methods superpose also with the one of the 
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has the same shape with them, and due to the lower amplitude, it has the lower spectrum 

energy (Fig. 10-35). 

Fig. 10-35  Fourier spectra of  the wavelet dyadic component C5 of the residuals and the 
original signal of ( )1H t  

10.5 Signal processing of H6(t)  
10.5.1 Introduction 
   The Fourier spectrum analysis, multi-resolution wavelet and temporal analysis methods are 

used to analysis the original signal ࡴ૟ሺ࢚ሻ and its residuals obtained respectively with moving 

average, differential, and multi-resolution filtering. 

10.5.2 Analysis of the original signal H6(t) 
   The original signal ܪ଺ሺݐሻ analyzed is shown in Fig. 10-6. 

10.5.2.1 Analysis of the original signal H6 (t) with Fourier spectrum analysis  

   The Fourier spectrum of the original signal ࡴ૟ሺ࢚ሻ is shown in Fig. 10-36 in log-log axis. 

Fig. 10-36 Fourier spectrum of the original signal ( )6H t  in log-log axis (m=6000, dt=0.1s) 

    From this figure, the dominant period is not clear.  

10-2 10-1 10010-10

10-5

100

 Frequency (Hz) 

 S
pe

ct
ru

m
 o

f C
5 

(m
2 *s

)

 

 

Original signal
Residual (Moving average)
Residual (Multi-resolution)
Residual (Differential)  T3=1.18s

 T2=5.6s  T1=4.67s



Appendix B:  Chapter B10 Illustrations of the signal processing of the measured water level 
data ࡴ૚ሺ࢚ሻ and ࡴ૟ሺ࢚ሻ of the experiment in Barcelona  

263 
 

10.5.2.2 Analysis of the original signal H6(t) with multi-resolution wavelet 

  The evolution of the wavelet dyadic components of the original signal ࡴ૟ሺ࢚ሻ  with multi-

resolution wavelet is shown in Fig. 10-37.  

Fig. 10-37 Evolution of the wavelet components of the original signal ( )6H t  with multi-
resolution wavelet  

   From this figure, from the component C8 to C10, although the fluctuations of the component 

become stronger and stronger in the beginning and in the end of the evolution of the signal, it 

is still very difficult to distinguish the most dominant period. The evolution of C9 and C10 are 

shown alone respectively in Fig. 10-38 and Fig. 10-39. 

 

Fig. 10-38 Evolution of the wavelet dyadic component C9 of the original signal ( )6H t  with 
multi-resolution wavelet  
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Fig. 10-39  Evolution of the wavelet dyadic component C10 of the original signal ( )6H t  
with multi-resolution wavelet  

10.5.2.3 Analysis of the original H6(t) with temporal analysis 

   The autocorrelation function of the original signal ࡴ૟ሺ࢚ሻ  ࡴࡾ૟ࡴ૟ሺ࢑ሻ  with temporal analysis 

is shown in Fig. 10-40.  

 
Fig. 10-40 Autocorrelation function of the original signal ( )6H t ( )6 6H HR k     (dt=0.1s) 

   From this figure, there is no visible fluctuation. 
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10.5.3.1 Residual of H6(t) with moving average filtering 

   The evolution of the original signal ࡴ૟ሺ࢚ሻ and the corresponding moving average with 
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Fig. 10-41 Evolution of the original signal ( )6H t  and its corresponding moving average  
with moving average filtering  (window halfwidth wt=30s)  

 

 
Fig. 10-42 Evolution of the moving average of ( )6H t  (window halfwidth wt=30s) 

   The same moving average and the corresponding residual of ࡴ૟ሺ࢚ሻ are respectively alone 

shown in Fig. 10-42 and Fig. 10-43. 

Fig. 10-43 Evolution of the residual of ( )6H t  with moving average filtering (window 
halfwidth wt=30s)  
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10.5.3.2 Analysis of the residual of H6(t) with moving average filtering and Fourier 

spectrum analysis  

   The Fourier spectrum function ࢙ሺࢌሻ of the residual of  ࡴ૟ሺ࢚ሻ  with moving average filtering 

(window halfwidth wt=30s) is shown in Fig. 10-44. 

Fig. 10-44 Fourier spectrum function ( )S f of the residual of  ( )6H t   with moving 
average filtering (window halfwidth wt=30s)   

   From this figure, it can be seen that the period T2=85.69 plays the most dominant role in the 

residuals, and at the same the period T3=50s plays the second dominant role. 

10.5.3.3 Analysis of the residual of H6(t) with moving average filtering and multi-

resolution wavelet analysis 

   The evolution of the wavelet dyadic components is shown in Fig. 10-45. At the same time, the 

evolution of the components C8 and C9 are respectively shown in Fig. 10-46 and Fig. 10-47.  

 
Fig. 10-45 Evolution of the wavelet components of the residual of ( )6H t   with moving 
average filtering and multi-resolution wavelet analysis 
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Fig. 10-46 Evolution of the wavelet dyadic component C8 of the residual of ( )6H t   with 
moving average filtering and multi-resolution wavelet analysis 

 

 
Fig. 10-47  Evolution of the wavelet dyadic component C9 of the residual of ( )6H t   with 
moving average filtering and multi-resolution wavelet analysis 

   Although the fluctuation amplitudes of the component are very small, it can still be seen 

that C8 is the most dominant component in the residual. 

10.5.3.4 Analysis of the residual of H6(t) with moving average filtering and temporal 

analysis  

   The autocorrelation function ( )
6 Re 6 ReH H kR  of the residual of ࡴ૟ሺ࢚ሻ with moving average 

filtering (window halfwidth wt=30s) is shown in Fig. 10-48. In this figure, the time t3=93.8s is 

approximate to the most dominant period T2=85.69s obtained with Fourier spectrum analysis 

(Fig. 10-44). 
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Fig. 10-48 Autocorrelation function ( )
6 Re 6 ReH H kR  (future)of the residual of ( )6H t  with 

moving average filtering (window halfwidth wt=30s)  

10.5.3.5 Residual of H6(t) with differential filtering 

   The evolution of the residual of ࡴ૟ሺ࢚ሻ with differential filtering (t=1000-1050s) is shown in 

Fig. 10-49. 

Fig. 10-49 Evolution of the residual of ( )6H t  with differential filtering (t=1000-1050s) 

10.5.3.6 Analysis of the residual of H6(t) with differential filtering and Fourier spectrum 
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   The Fourier spectrum function with the respect to the frequency is shown in Fig. 10-50.  
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Fig. 10-50 Fourier spectrum function with the respect to the frequency of the residual of 
( )6H t  with differential filtering  

   It shows almost the same dominant periods with the ones of the residual with moving 

average filtering (window halfwidth wt=30s), except the noise after T=5.22s. 

10.5.3.7 Analysis of the residual of H6(t) with differential filtering and multi-resolution 

wavelet 

   In Fig. 10-51 , the evolution of the components shows that the component C9 plays 

dominant role in the residual signal of ࡴ૟ሺ࢚ሻ  with differential filtering. In addition, the 

evolution of the C9 is shown alone in Fig. 10-52. 

 
Fig. 10-51 Evolution of the wavelet dyadic components of  the residual of ( )6H t  with 
differential filtering  and multi-resolution wavelet 
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Fig. 10-52 Evolution of the wavelet dyadic component C9 of  the residual of ( )6H t  with 
differential filtering  and multi-resolution wavelet 

10.5.3.8 Analysis of the residual of H6(t) with differential filtering and temporal analysis 

   The autocorrelation function  ( )
6 Re 6 ReH H kR  of the residual of ࡴ૟ሺ࢚ሻ  with differential 

filtering is shown in Fig. 10-53. The time t2=0.3 is not approximate to the dominant period 

T2=85.87s. 

Fig. 10-53 Autocorrelation function  ( )
6 Re 6 ReH H kR  of the residual of ( )6H t  with 

differential filtering 

10.5.3.9 Residual of H6(t) with wavelet multi-resolution filtering 

   The evolution of ࡴ૟ሺ࢚ሻ  and its approximation with multi-resolution wavelet filtering is 

shown in Fig. 10-54. The corresponding residual is shown in Fig. 10-55. 
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Fig. 10-54 Evolution of ( )6H t   and its approximation with  multi-resolution wavelet 
filtering (C10) 

 

Fig. 10-55 Evolution of the residual of ( )6H t   with multi-resolution wavelet filtering (t=700-1700s) 

10.5.3.10 Analysis of the residual of H6(t) with multi-resolution wavelet filtering and 

Fourier spectrum analysis 

   The Fourier spectrum function with respect to the frequency of the residual of ࡴ૟ሺ࢚ሻ is 

shown in Fig. 10-56.  

 
Fig. 10-56 Fourier spectrum function of the residual of  ( )6H t   with multi-resolution 
wavelet filtering (m=6000, dt=0.1s) with respect to frequency  
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   The most dominant period T1=200s is longer than the one of the residual with moving 

average filtering and the one of the residual with differential filtering. However, the other 

dominant periods such as T2=85.67s and T4=44.44s are equal to the ones of the residual with 

the other two filtering methods, except that they have stronger Fourier spectrum density than 

those of the two other methods.  

10.5.3.11 Analysis of the residual of H6(t) with multi-resolution wavelet filtering and its 

analysis 

   The evolution of the dyadic wavelet components is shown in Fig. 10-57.  

 
Fig. 10-57  Evolution of the wavelet dyadic components of the residual of ( )6H t   with  
multi-resolution wavelet filtering  and analysis 

   The results in this figure show that the component C9 is the dominant component in the 

residual of ࡴ૟ሺ࢚ሻ with multi-resolution (C10). It is also shown alone in Fig. 10-58. 

 
Fig. 10-58  Evolution of the wavelet dyadic component C9 of the residual of ( )6H t   with  
multi-resolution wavelet filtering  and analysis 
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10.5.3.12 Analysis of the residual of H6(t) with multi-resolution wavelet filtering and 

temporal analysis 

   The autocorrelation function  ( )
6 Re 6 ReH H kR  with respect to the lag ࢑ is shown in Fig. 10-

59.  

 
Fig. 10-59  Autocorrelation function ( )

6 Re 6 ReH H kR   of the residual of ( )6H t  with multi-
resolution wavelet filtering  

   The time t2=187.1s is approximate to the most dominant period T1=200s. 

10.5.4 Comparison of the same wavelet dyadic component C9 
   Fig. 10-60 shows the evolution of the wavelet dyadic component C9 of the original signal 

 ሻ and its residuals obtained respectively with moving average filtering (window halfwidthݐ଺ሺܪ

wt=30s), multi-resolution wavelet filtering (C10) and differential filtering methods.  

Fig. 10-60  Evolution of the wavelet dyadic component C9(t) of ( )6H t  

   The evolution of the component obtained with moving average filtering and multi-

resolution wavelet filtering approximates to the one of the original signal before t=1350s, and 

however, after this time, the fluctuation amplitudes and periods of the residuals all are smaller 

0 1000 2000 3000 4000 5000 6000
-0.2

0

0.2

0.4

0.6

0.8

 Lag k

 R
H

6 
R

eH
6 

R
e(k

)

 t1=83.1s

 t2=187.1s

700 800 900 1000 1100 1200 1300 1400 1500 1600 1700
-0.04

-0.02

0

0.02

0.04

0.06

 C
9 

(m
)

 Time(s)

 

 

Original signal
Residual (Moving average)
Residual (Multi-resolution)
Residual (Differential)

T3=78s

T4=183s

T6=136s

T1=70.6s T2=107.9s



Appendix B:  Chapter B10 Illustrations of the signal processing of the measured water level 
data ࡴ૚ሺ࢚ሻ and ࡴ૟ሺ࢚ሻ of the experiment in Barcelona  

274 
 

than the ones of the original signal . In contrast, the fluctuation amplitudes of the residual 

obtained with differential filtering is smallest and they are very approximate to zero. 

   As a result, the most dominant period T1=171.44s of the component C9 of the original signal 

is bigger than the ones T2=85.67s of the residuals obtained with 3 filtering methods (Fig. 10-

61).   

Fig. 10-61  Fourier spectrum of  the wavelet dyadic component C9 of ( )6H t with respect to 
the frequency  

10.6 Cross analysis between H1(t) and H6(t) 
10.6.1 Introduction 
   Cross analysis of the original signal and the residuals between ܪଵሺݐሻ and ܪ଺ሺݐሻ will be 

investigated with Fourier cross analysis, temporal cross analysis and multi-resolution wavelet. 

The residuals are obtained with moving average filtering, differential filtering and multi-

resolution filtering analysis. 

10.6.2 Cross analysis of the original signal between H1(t) and H6(t) 
   The gain function (Fig. 10-62) shows that the Fourier spectrum energy decay very 

drastically for all the periods from ܪଵሺݐሻ to ܪ଺ሺݐሻ. 

 
Fig. 10-62  Gain function with respect to the reduced frequency (m=700, dt=0.1s) 
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   The coherency function (Fig. 10-63) indicates that there is very low coherency (coherency 

coefficients are smaller than 0.3) for all the periods between ܪଵሺݐሻ and ܪ଺ሺݐሻ. 

Fig. 10-63  Coherency function with respect to the reduced frequency (m=700, dt=0.1s) 

   The phase (Fig. 10-64) doesn’t change with the period, and it fluctuations from െ ߨ 2⁄  and 

൅ ߨ 2⁄ .  

Fig. 10-64 Phase function with respect to the reduced frequency (m=700, dt=0.1s) 

      From the figure (Fig. 10-65) of the maximum inter-correlation of the components between 

 ሻ with respect to the wavelet dyadic time scale, it can be seen that there areݐ଺ሺܪ ሻ andݐଵሺܪ

two peaks for the components C6 and C10. Although the two components have better cross 

correlation than the other components, the correlation coefficients are less than 0.5. 
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Fig. 10-65  Maximum inter-correlation with respect to the dyadic components  

10.6.3 Cross analysis of the residuals between H1(t) and H6(t) 

10.6.3.1 Cross analysis of the residuals between  ࡴ૚ሺ࢚ሻ and ࡴ૟ሺ࢚ሻ with moving average 
filtering  
   The residuals of ࡴ૚ሺ࢚ሻ and ࡴ૟ሺ࢚ሻ with moving average filtering (wt1=5s et wt6=30s, t=0-

1800s) is shown in Fig. 10-66.  

Fig. 10-66  Evolution of the residuals of ( )1H t  and ( )6H t  with moving average filtering 
(wt1=5s et wt6=30s, t=0-1800s) 

   It can be clearly seen that the fluctuation amplitudes of the residual of ࡴ૚ሺ࢚ሻ are much 

bigger than the ones of ࡴ૟ሺ࢚ሻ. 

   The gain function (Fig. 10-67) shows that, besides the big Fourier energy decaying, there 

are much more noise in the residual of ܪ଺ሺݐሻ. 
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Fig. 10-67  Gain function of the residuals of ( )1H t  and ( )6H t   with moving average filtering 
(wt1=5s et wt6=30s, t=0-1800s) (m=700, dt=0.1s) 

   Compared with the coherency of the original signal, the coherency coefficients for the 

residuals between ܪଵሺݐሻ and ܪ଺ሺݐሻ  (Fig. 10-68) have been improved. However, the biggest 

coefficient is still smaller than 0.5. 

Fig. 10-68  Coherency function of the residuals of ( )1H t  and ( )6H t   with moving average 
filtering (wt1=5s et wt6=30s, t=0-1800s)(m=700, dt=0.1s) 

   Compared with the original signal, and phase function (Fig. 10-69) for the residual doesn’t 

change very much. 
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Fig. 10-69  Phase function  of the residuals of ( )1H t  and ( )6H t with moving average 
filtering (wt1=5s et wt6=30s, t=0-1800s) (m=700, dt=0.1s) 

   However, from Fig. 10-70, it can be seen that the positions and the values of the maximum 

inter-correlation of the components of the residual between ܪଵሺݐሻ and ܪ଺ሺݐሻ have changed.  

The peak C6 has moved to C7. The corresponding cross correlation coefficient has decreased 

to 0.22 from about 3.9. The cross correlation coefficient of C7 has decreased to 0.42 from 

0.48. 

Fig. 10-70 Maximum inter-correlation between the residuals of ( )1H t  and ( )6H t  with 
moving average filtering (wt1=5s et wt6=30s, t=0-1800s)  with respect to the dyadic 
components  
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Fig. 10-71  Evolution of the residuals of ( )1H t  and ( )6H t  with differential filtering  

   The gain, coherency and phase functions (Fig. 10-72, Fig. 10-73, and Fig. 10-74 ), are still 

very similar to the ones of the residuals between ܪଵሺݐሻ and ܪ଺ሺݐሻ  with moving average 

filtering. In contrast, the maximum cross correlation of the components between the residuals 

has been improved, as seen in Fig. 10-75. The maximum cross correlation of C7 has been 

increased to 0.3, and especially the one of C10 has been increased to 0.62, which is also bigger 

than the one (0.48) of the original signal. 

Fig. 10-72 Gain function of the residuals of ( )1H t  and ( )6H t  with differential filtering 
(m=700, dt=0.1s) 
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Fig. 10-73 Coherency function of the residuals of ( )1H t  and ( )6H t  with differential 
filtering (m=700, dt=0.1s) 

 

Fig. 10-74 Phase function of the residuals of ( )1H t  and ( )6H t  with differential filtering 
(m=700, dt=0.1s) 

 

Fig. 10-75 Maximum inter-correlation between the residuals of ( )1H t  and ( )6H t  with 
differential filtering  with respect to the dyadic time scale  
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10.6.3.3 Cross analysis of the residuals between H1(t) and H6(t) with multi-resolution 

wavelet filtering  

   The fluctuation amplitudes of the residual of ࡴ૚ሺ࢚ሻ obtained with multi-resolution wavelet 

filtering (C5) are very approximate to the ones of the residual of ࡴ૚ሺ࢚ሻ obtained with moving 

average filtering (wt1=5s), as seen in Fig. 10-76. In contrast, the residual of the ࡴ૟ሺ࢚ሻ 

obtained with multi-resolution wavelet filtering (C10) is still very irregular. 

Fig. 10-76  Evolution of the residuals of ( )1H t  and ( )6H t  with multi-resolution wavelet 
filtering  (C5 and C10) 

   Compared with the residual obtained with the other methods, the gain function (Fig. 10-77) 

shows that there is still a great deal of Fourier spectrum energy decaying. At the same time, 

there is strong decreasing of the noise, which periods are shorter than 0.5s. 

   The coherency of the longer periods has obviously improved, as seen in Fig. 10-78. The 

biggest coherency coefficient is about 0.77 for the period T2=12.73s. However, the coherency 

of the shorter periods has strongly decreased and most of them are smaller than 0.2. 

Fig. 10-77  Gain function of the residuals of ( )1H t  and ( )6H t  with multi-resolution 
wavelet filtering  (C5 and C10) (m=700, dt=0.1s) 
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Fig. 10-78  Coherency function of the residuals of ( )1H t  and ( )6H t  with multi-resolution 
wavelet filtering  (C5 and C10) (m=700, dt=0.1s) 

   As seen in Fig. 10-79, the fluctuations of the phase of the longer periods have decreased.  

However, the fluctuations of the phase of the shorter periods still vary between െ ߨ 2⁄  and 

൅ ߨ 2⁄ . 

Fig. 10-79  Phase function of the residuals of ( )1H t  and ( )6H t  with multi-resolution 
wavelet filtering  (C5 and C10) (m=700, dt=0.1s) 

   In addition, from Fig. 10-80, the positions of the two peaks of the maximum inter-

correlation have changed, and the corresponding cross correlation coefficients have improved. 

The position of the first peak comes back to C6 and the one of the second peak has moved to 

C11. At the same time, the maximum cross correlation coefficient of the first peak has 

improved to about 0.52 and the one of the second peak has been improved to about 0.92. 
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Fig. 10-80  Maximum inter-correlation between the residuals of ( )1H t  and ( )6H t  with 
multi-resolution wavelet filtering  (C5 and C10) with respect to the dyadic time scale  

10.7 Comparison of the wavelet dyadic component C8 of H1(t) and 
H6(t) 

10.7.1 Wavelet dyadic component C8 of the original signal of H1(t) and H6(t) 

 
Fig. 10-81 Evolution of wavelet dyadic component C8(t) of the original signal  ( )1H t and 

( )6H t  
 

 
Fig. 10-82 Fourier spectrum of the wavelet dyadic component C8 of the original signal 

( )1H t  and ( )6H t with respect to the frequency  
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10.7.2 Wavelet dyadic component C8 of the residuals of H1(t) and H6(t) with 

moving average filtering  

Fig. 10-83  Evolution of the dyadic wavelet component C8 of the residuals of ( )1H t  and 
( )6H t  with moving average filtering (wt1=5s et wt6=30s, t=0-1800s) 

 

Fig. 10-84 Fourier spectrum of  wavelet dyadic component C8(t) of ( )1H t  and ( )6H t  
with moving average filtering (wt1=5s et wt6=30s, t=0-1800s) with respect to the frequency

10.7.3 Wavelet dyadic component C8 of the residuals of H1(t) and H6(t) with 

differential filtering 

 
Fig. 10-85 Evolution of the dyadic wavelet component C8 of the residual of ( )1H t and

( )6H t  with differential filtering (t=0-1800s) 
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Fig. 10-86 Fourier spectrum with respect to the frequency of  wavelet dyadic component 
C8(t) of ( )1H t  and ( )6H t   with differential filtering (t=0-1800s) 

10.7.4 Wavelet dyadic component C8 of the residuals of H1(t) and H6(t) with 

multi-resolution wavelet filtering 

 

Fig. 10-87  Evolution of the dyadic wavelet component C8 of the residuals o ( )1H t f  and 
( )6H t  with multi-resolution wavelet filtering (C5 and C10, t=0-1800s) 

 

Fig. 10-88 Fourier spectrum of  the wavelet dyadic component C8 of the residuals of 
( )1H t  and ( )6H t   with multi-resolution wavelet filtering (C5 and C10, t=0-1800s) with 

respect to the frequency  
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   From the above figures, corresponding to the comparison of the wavelet dyadic component 

C8 of the original signal ܪଵሺݐሻ and ܪ଺ሺݐሻ (Fig. 10-81), the residuals with moving average 

filtering(Fig. 10-83), the residuals with differential filtering (Fig. 10-85), and the residuals 

with multi-resolution filtering (Fig. 10-87), it is clearly seen that the fluctuation amplitudes of 

C8 of  ܪଵሺݐሻ are much bigger than the ones of the corresponding signal of ܪ଺ሺݐሻ, except for 

the residuals obtained with multi-resolution wavelet filtering. 

   At the same time, the dominant Fourier periods (Fig. 10-82, Fig. 10-84, Fig. 10-86, and Fig. 

10-88) are almost between the two dyadic time scales of C8 and C9 for the original signal and 

the residuals of  ܪଵሺݐሻ obtained with three filtering methods. However, for the component C8 

of the original signal and the residuals obtained with multi-resolution, the corresponding 

Fourier periods are longer than the wavelet dyadic time scale of C9. 

10.8 Conclusion 

  In this section, the signal processing methods, such as Fourier spectrum analysis, multi-

resolution wavelet and temporal analysis, and the three filtering methods (moving average 

filtering, differential filtering and multi-resolution wavelet ) have been used to analyze the 

measured water fluctuation levels ࡴ૚ሺ࢚ሻand ࡴ૟ሺ࢚ሻ. The summaries are flowing: 

 Analysis of ࡴ૚ሺ࢚ሻ 

   Morlet wavelet spectrum density P(f), the Fourier spectrum density S(f), the multi-

resolution wavelet analysis, and temporal analysis of the original signal ࡴ૚ሺ࢚ሻ obtain the 

same results: the most dominant period of  ࡴ૚ሺ࢚ሻ is T≈25s (wavelet dyadic wavelet C7 and 

C8). 

   In the different residuals of ࡴ૚ሺ࢚ሻ, which are respectively obtained with moving average 

filtering (window halfwidth wt=5s), differential filtering, and multi-resolution wavelet 

filtering, the period T≈4.83s, which is approximate to the one of the wave maker 4s, plays the 

most dominant role. This result is also respectively obtained with Fourier spectrum analysis, 

multi-resolution, and temporal analysis. 

   In addition, the same wavelet dyadic component of the original signal and its residuals 

obtained with different filtering methods almost has the same Fourier period. 

 Analysis of ࡴ૟ሺ࢚ሻ 

  The dominant periods of the original signal ܪ଺ሺݐሻ cannot be obtained with Fourier spectrum 

analysis and temporal analysis. In contrast, the ones of the residuals with moving average 
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filtering, differential analysis (k=1) and multi-resolution wavelet filtering can be obtained 

with Fourier spectrum analysis and temporal analysis (except the residuals with differential 

filtering). Concerning the multi-resolution wavelet analysis, it is capable to analyze the 

original signal and the filtered signal. Due to the very small fluctuation amplitudes of the 

components, it is very difficult to see immediately the dominant components in the figure of 

the evolution of all the wavelet dyadic components. However, the wavelet dyadic dominant 

components can be still obtained by watching the evolution of each component alone. 

Therefore the multi-resolution wavelet analysis is a good tool to analyze the very ‘no-

stationary’ signal such as ܪ଺ሺݐሻ. 

   In addition, the wavelet dyadic component of the original signal ܪ଺ሺݐሻ has longer most 

dominant period and the fluctuation amplitudes than the ones of the filtered signal. 

 Cross analysis between ࡴ૚ሺ࢚ሻ and ࡴ૟ሺ࢚ሻ 

   Since ܪ଺ሺݐሻ  is very ‘no-stationary’ and it has total different curve characteristic from  

 ሻ, the results of the cross analysis of the original signal with Fourier cross analysis showݐଵሺܪ

that the two curves have very low cross correlation for the fluctuations of all the periods. At 

the same time, the component which has the best cross correlation between ܪଵሺݐሻ and ܪ଺ሺݐሻ 

can be found through the cross-analysis between the components of the two signals with 

temporal cross analysis. 

   The cross correlation of the results can be improved to some extent by doing the cross 

analysis between the residuals of the two signals. However, the parameters of the filtering 

methods play a very important role in the results. For instance, compared with the original 

signal, the coherency coefficients of the residuals obtained with moving average filtering have 

been improved a little, while the maximum cross correlation coefficients have been decreased; 

on contrast, the maximum coherency coefficient and the maximum cross-correlation 

coefficient  have been improved for the residual obtained with multi-resolution wavelet. 

   For the original signal and the residuals of ܪଵሺݐሻ , the dominant Fourier period of the 

wavelet dyadic component is almost between the same dyadic time scale and the next dyadic 

time scale. In contrast, for the wavelet dyadic component of the original signal and the 

residuals of  ܪ଺ሺݐሻ, its dominant period is longer than the next wavelet dyadic time scale. 
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Chapter B11: Single harmonic wave numerical 

experiment for the Barcelona canal (short run) 

11.1 Introduction 

   In order to finally model the Barcelona experiment (Chapter 7): oscillations of the water 

level in a sloping sandy beach with very complex entry water level fluctuations, the first step 

is to model the oscillations of the water level in the same sloping sandy beach with entry 

water level fluctuations of one sinusoidal wave, the most single entry condition. In this 

chapter, we use VGM model to simulate the wave propagation in the sloping sandy beach 

with entry water level fluctuation of one single harmonic wave. 

11.2 Simulation domain 

Vertical 2D: Lx=10m; Lz=0.80m; 

            dx=0.02m ; dz=0.02m. 

The sand beach slope is 1/15. The schema of the simulation geometry domain is shown in 

Fig. 7-1. 

11.3 Boundary and initial conditions 

  Boundary condition 

Right boundary (all the other boundaries): flux=0.0. (Impermeable wall) 

Left boundary: ܪሺ0, ሻݐ ൌ ଴ܪ ൅ ଴ܣ · ݊݅ݏ ቀଶగ
்

଴ܪ) ቁ withݐ ൌ 0.40݉ ଴ܣ , ൌ 0.40݉ ଴ܣ , ⁄଴ܪ ൌ

1, T=30s), as shown in Fig. 11-1. 

 
Fig. 11-1 Left regular entry water level fluctuations for one wave numerical test  
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  Initial condition 

଴ܪ ൌ 0.40݉ , ݄଴ ൌ ଴ܪ െ  (linear distribution) ݖ

11.3 Physical properties of the beach sands and the sea water 

   All the physical properties for the micro porous media and the macro media are listed in 

Table 11-1.  

Table 11-1 Physical properties of the macro porous media and the micro porous media  

Porous 
media 

Physical  properties 

Hydraulic conductivity 
Water 

content 
(m3/m3) 

VGN model Capillary 
length 

Simulated 
time  

 ௌܭ
(m/s) 

௦_ெ௔௖௥௢ܭ

_௦_ெ௜௖௥௢ܭ
 ௥ܭ 

(m/s) 
 ௦ߠ
 

 ௥ߠ
 

 ߙ
(m-1) ݊ ߣ௖௔௣ 

(cm) 
Micro 
porous 
media 

0.05 
1E+04 

1.0E-7 0.38 0.0 5.0 1.5 20.00 
t=500s Macro 

porous 
media 

500.0 1.0E-7 1 0.0 100.0 3.0 1.00 

   The water content curve ߠሺ݄ሻ in log-log and the hydraulic conductivity curve ܭሺ݄ሻ in log-

log of the two media are respectively shown in Fig. 11-2 and Fig. 11-3.  

Fig. 11-2  Water content curve ( )hθ  in log-log 
of the micro porous media and the macro porous 
media 

Fig. 11-3 Hydraulic conductivity curve ( )hK  in 
log-log of the micro porous media and the macro 
porous media 

   From these two figures, it can be seen that the slopes of ߠሺ݄ሻ and ܭሺ݄ሻ of the macro porous 

medium (sea) are much more rapid than those of the micro porous medium (sloping sandy 

beach). 
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11.4 Duration of the simulation and numerical parameters 
   The simulated time is 500s.  

   The numerical caculation time parameters and the numerical criteria are listed in the Table 

7-3. 

11.5 Numerical behaviour of Bigflow during the simulation 
   The linear and nonlinear iteration process of the pressure head are respectively shown in 

Fig. 11-4 and Fig. 11-5.   

 
Fig. 11-4  Standarlized linear iteration 
process of the pressure head in log10 

Fig. 11-5  Standarlized nolinear iteration 
process of the pressure head in log10 

   It can be seen that the minimum linear and nonlinear iteration errors are respectively about 

1.0E-16 and 1.0E-8.  ܳ஻௢௨௡ௗ , ܳெ௔௦௦ , ஻ܸ௢௨௡ௗ  and ெܸ௔௦௦  are obviously affected by the sine 

wave water levels  on the left boudary. Their shapes are the same as the sinusoidal wave 

boudary water levels. These numerical behaviours are respectively shown in Fig. 11-6, and 

Fig. 11-7.  

Fig. 11-6  Zoom of the evolution of  BoundQ  
and MassQ  at t=0-90s 

Fig. 11-7  Zoom of the evolution of  BoundV  
and MassV  at t=0-90s 

Note: The print time of the Head_Tx file has an influence on the evolution of BoundQ  and 

MassQ . This plot is the results of the simulation without the output file Head_Tx. 
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   From the two figures, it can be seen that the curves of the evolution of ܳ஻௢௨௡ௗ and ܳெ௔௦௦,  

completely superimpose together, and there exists the similar case for the curves of the 

evolution of ஻ܸ௢௨௡ௗ and ெܸ௔௦௦. 

11.6 Result analysis of the one single harmonic wave test 

11.6.1 Profiles of the pressure head contour and the flux velocity field 
   The profiles of the pressure head contour and the flux velocity field at t=T/8=3.75s, 

t=3T/8=11.25s, t=5T/8=18.75s and t=7T/8=26.25s are respectively shown in Fig. 11-8, Fig. 

11-9, Fig. 11-10 and Fig. 11-11. 

 

Fig. 11-8 Profile of the pressure head 
contours and flux velocity at t=T/8=3.75s 
(length scales  in z and in y are respectively 10)

Fig. 11-9  Profile of the pressure head 
contours and flux velocity at t=3T/8=11.25s 
(length scales  in z and in y are respectively 10) 

 

 
Fig. 11-10  Profile of the pressure head 
contours, and flux velocity at t=5T/8=18.75s 
(length scales  in z and in y are respectively 10) 

Fig. 11-11  Profile of the pressure head 
contours and flux velocity at t=7T/8=26.25s 
(length scales  in z and in y are respectively 10) 

   When t=T/8=3.75s, the left boundary water level has just increased by 50% amplitude from 

the mean water level to the maximum (Fig. 11-1), at the same time, the water levels in the 

macro porous media rise with the same velocity of the boundary water level, while the ones in 
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the micro porous media increase much slower, and therefore, the flux flows upwards along 

the beach slope (as seen in Fig. 11-8). 

   When t=3T/8=11.25s, the left boundary water level has just descended by 50% amplitude 

from the maximum to the mean water level (Fig. 11-1), at the same time, the water levels in 

the macro porous media go down with the same velocity of the boundary water level, while 

the ones in the micro porous media go down much slower and as a result, the flux flows 

downwards along the beach slope (as seen in Fig. 11-9). 

   When t=5T/8=18.75s, the left boundary water level has continued to descend by 50% 

amplitude from the mean water level to the minimum (Fig. 11-1), at the same time,  the water 

levels in the macro porous media go down with the same velocity of the boundary water level, 

while all the water levels in the macro porous media are higher than the ones in the macro 

porous media, and as a consequence, the flux flows downwards along the beach slope (seen in 

Fig. 11-10). 

   When t=7T/8=26.25s, the left boundary water level has gone up by 50% amplitude from the 

minimum to the mean water level (Fig. 11-1), at the same time, the water levels in the macro 

porous media go up with the same velocity of the boundary water level, although the part of 

the water levels in the micro porous media are still higher than the ones in the macro media , 

and as a consequence, the flux flows upwards along the beach slope (as seen in Fig. 11-11). 

   In addition, the sloping sandy beach, the flux is very small for all time. 

  11.6.2 Instantaneous water content distribution θ(h) in the vertical section 
     The instantaneous distributions of the water content ߠሺ݄ሻ  in the vertical section at 

t=T/8=3.75s, t=3T/8=11.25s, t=5T/8=18.75s and t=7T/8=26.25s are respectively shown in 

Fig. 11-12, Fig. 11-13, Fig. 11-14 and Fig. 11-15.  

 
Fig. 11-12  Instantaneous profile of the water 
content ( )hθ  at t=T/8=3.75s in the vertical 
section (length scales  in z and in y are respectively 
10) 

Fig. 11-13  Instantaneous profile  of the water 
content ( )hθ  at t=3T/8=11.25s in the vertical 
section (length scales  in z and in y are respectively 
10) 
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Fig. 11-14  Instantaneous profile  of the 
water content ( )hθ  at t=5T/8=18.75s in the 
vertical section (length scales  in z and in y are 
respectively 10) 

Fig. 11-15  Instantaneous profile of the water 
content ( )hθ  at t=7T/8=26.25s in the vertical 
section (length scales  in z and in y are respectively 
10) 

   They all correspond with the pressure head contour at the same time (Fig. 11-8, Fig. 11-9, 

Fig. 11-10 and Fig. 11-11). 

  11.6.3 Water levels H(x,t) and pressure head h(x,z=0,t) 
    In this numerical simulation, the flow in the saturated zone is a quasi horizontal plane flow 

and therefore, the pressure head ݄ሺݔ, ݖ ൌ 0,  .ሻ  is approximate to the height of water tableݐ

This can be validated from two aspects: (1) if the pressure head ݄ሺݔ ൌ ,଴ݔ ,ݖ ሻݐ  has a 

hydraulic linear distribution; (2) if  ݄ሺݔ, ݖ ൌ 0, ଴ሻݐ ൌ ,ݔሺܪ  ଴ሻ. Fig. 11-16 shows the profilesݐ

of the instantaneous pressure head  ݄ሺݔ ൌ ,଴ݔ ,ݖ ଴ݔ ሻ atݐ ൌ 1.5m and it indicates that, in the 

saturated zone or when ݄ሺݔ ൌ 1.5݉, ,ݖ ሻݐ ൒ 0 , ݄ሺݔ ൌ 1.5݉, ,ݖ ሻݐ ൌ ݖ   and it is hydraulic 

linear distribution. In addition, the pressure head profiles ݄ሺݔ, ݖ ൌ 0, ଴ሻݐ  at ݐ଴ ൌ ܶ/4  and 

଴ݐ ൌ 3ܶ/4 are illustrated in Fig. 11-17, and they respectively superpose on the instantaneous 

water level profile ܪሺݔ, ଴ݐ ൌ ܶ/4ሻ and ܪሺݔ, ଴ݐ ൌ 3ܶ/4ሻ, as seen in Fig. 11-18. 

   

Fig. 11-16  Profiles of the pressure head evolution in the z direction at x=1.5m 
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Fig. 11-17  Pressure head h(x,0,t) at t=T/4 and 
t=3T/4 obtained by the file OUTHPB 
 

Fig. 11-18 Comparison of the pressure head 
h(x,0,t) and the free surface h(x,z,t)=0.0 at 
t=T/4 and t=3T/4 

   As a result, all the water levels ܪሺݔ, ሻݐ  obtained in the numerical simulations for the 

modeling of the Barcelona experiment are obtained by probing the pressure head 

 ݄ሺݔ, ݖ ൌ 0,  ሻ in the file OUTHPB (a output file of BigFlow), except for the pressure headݐ

contours. 

  11.6.4 Evolution of the water level fluctuations in time and space 
   Profiles of the evolution of the horizontal line pressure head at z=0 or free surface (time 

interval=10dt=1.0s) are shown in Fig. 11-19.  

 
Fig. 11-19 Profile of the evolution of the horizontal line pressure head at z=0  ( ), 0,h x z t=

or the water level fluctuations ( ),H x t   (time interval=10 dt=1.0s)   

   From this figure, it can be seen that all the movement area of the free surface in the two 

porous media during the simulation is the macro porous domain and the top part over the 

mean water level of the micro porous media domain. That is to say, even in the case when the 

left boundary water level goes down to the minimum water level ܪ଴=0, the water level in the 

porous media is still higher than the mean water level in the simulation. 
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   In order to observe the curve shape of the water level evolution at several different positions 

H(x0,t) in the porous media, 7 sensors are installed  in the beach bottom, which have the same 

horizontal distances with the ones of the experiment in Barcelona. The evolution of the 

pressure head of the 7 sensors ݄ሺݔ, ݖ ൌ 0, -ሻ and its zooms, are respectively shown in Fig. 11ݐ

20, Fig. 11-21 and Fig. 11-22.   

 
Fig. 11-20   Evolution of the approximate water levels of the 7 sensors at t=0-200s. 

 

 
Fig. 11-21   Zoom of the evolution of the 
water levels of the 7 sensors at t=0-90s (t=0-
3T). 

Fig. 11-22  Zoom of the evolution of the water 
levels of the 7 sensors at t=0-30s (t=0-T). 

   From these figures, it can be seen that all the front half-waves have the sine wave shape, 

except for a small delay of the propagation time for the sensor No.7; at the same time, the rear 

half-waves have different shapes according to the position in the porous media and they have 

an obvious amplitude decay. It means that the velocity of the water table going down is 

slower than the one going up in the porous media. In this numerical test, after the first half-

wave, for the water levels of Sensors No.2, No.3, No.4 and No.5, the water table in the micro 

porous media has not descent to the minimum value, and due to the rising of the boundary 
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water level, it has to go up again; for the water levels of Sensors No.6 and No.7, just in the 

beginning of the descending, the water table is affected by the left oscillatory boundary water 

level, and then it goes down until the mean water level at t≈179s without the influence of the 

oscillatory water level. 

   In general, the water levels in the macro porous media rise and descend with the same 

velocity as the boundary water level, and the velocity of the water table when going down is 

slower than when going up in the porous media.  

11.7 Analysis on the system energy balance during the numerical 

simulation 

   In order to analyze the energy changes of the system, the evolutions of ܳ஻௢௨௡ௗ, the left 

entry water level ܪଵሺݐሻ, and the inside water levels on the 7 sensors are plotted in the same 

figure in Fig. 11-23. 

Fig. 11-23  Evolution of the entry water level, BoundQ and the inside water levels in the porous 
media 

   From this figure, it can be seen that before the entry water level increases to the maximum, 

the water flow in the left side enters into the simulated domain. And especially when entry 

water level rises to about 150% of the mean water level, the ܳ஻௢௨௡ௗ reaches the maximum, 

and then decreases gradually to zero when the entry water level rises to the maximum water 

level. After the maximum entry water level, there is a zero ladder for ܳ஻௢௨௡ௗ because of the 

influence of the top wall, on which the boundary flux is 0. Then with the descending of the 

entry water level, the flow on the left side begins to flow out of the simulated domain until the 

entry water level descends to the minimum. The same case produces when the entry water 

level descends to the height of 50% ܪ଴, the  velocity for the flow going out reaches the 

maximum. And when entry water level descends to the minimum, there is another zero ladder 

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

 Time(s)

 H
(m

)

 

 

0 10 20 30 40 50 60
-0.02

-0.01

0

0.01

0.02

Q
B

ou
nd

(m
3 /m

3 )

 QBound
 H1(entry)

 H2
 H3
 H4
 H5
 H6
 H7



Appendix B:  Chapter B11 Single harmonic wave numerical experiment  
for the Barcelona canal (short run) 

297 
 

for ܳ஻௢௨௡ௗ, because of the bottom wall, on which the flux is zero. Then with the increasing of 

the entry water level, the flow begins to flow into the simulated domain again. When the entry 

water level rises the mean water level and then keeps this level, the ܳ஻௢௨௡ௗ quickly descends 

to zero. 

   The inside water levels are mainly influenced by the entry water level and its positions in 

the micro porous media. From Fig. 11-23, it can be seen that during the first increasing of the 

entry water level, there is a different delay for the water levels on the sensor No.7 and the 

sensor No.6 (when their water levels are less than the height of the porous media, and there is 

no delay for the other sensors whose water levels are always higher  than the height of the 

micro porous media); during the descending of the entry water level, each water level 

decreases obviously more slower than the entry water level when it reaches the height of the 

micro porous media; then with the increasing again of the entry water level, each water level 

of the inside 5 sensors, whose water level are lower than the mean water level, rises with the 

entry water level until the mean water level; for the sensor No.6 and No.7, their water levels 

are higher than the mean water level and this increasing of the entry water level has no 

influence on them, and they descend slowly until the mean water level. 

   The mean entry water level gradient డுభሺ௧ሻ
డ௫

  can be obtained from the ܳ஻௢௨௡ௗሺݐሻሺ݉ଷ ⁄ݏ ሻ 

calculation and ݍ஻௢௨௡ௗሺݐሻሺ݉ ⁄ݏ ሻ and its deduction is as follows: 

ܳ஻௢௨௡ௗሺݐሻሺ݉ଷ ⁄ݏ ሻ ൌ െܮ௒ ׬ ,൫݄ሺ0ܭ ,ݖ ሻ൯௭ୀ௅೥ݐ
௭ୀ଴ ൈ డ௛ሺ଴,௭,௧ሻ

డ௫
 (1-11)  ݖ݀

ሻሺ݉ݐ஻௢௨௡ௗሺݍ ⁄ݏ ሻ ൌ ொಳೀೆಿವ
஺ಷೌ೎೐భ

ൌ െ ଵ
௅ೋ

׬ ,൫݄ሺ0ܭ ,ݖ ሻ൯௭ୀ௅೥ݐ
௭ୀ଴ ൈ డ௛ሺ଴,௭,௧ሻ

డ௫
ݖ݀ ൎ െ ଵ

௅ೋ
ௌܭ ൈ

ሻݐଵሺܪ ൈ డுభሺ௧ሻ
డ௫

 (11-2) 

డுభሺ௧ሻ
డ௫

ൎ െ ௤ಳೀೆಿವሺ௧ሻ
భ

ಽೋ
ൈ௄ೄൈுభሺ௧ሻ

 (11-3) 

where, ܮ௓—the height of the simulated domain in z direction; 

 ;௒—the width of the simulated domain in y directionܮ

݄—pressure head; 

 ;water level—ܪ

 ;hydraulic conductivity—ܭ

ܳ஻௢௨௡ௗሺݐሻ—boundary dischargeሺ݉ଷ/ݏሻ; 

 ;ሻor boundary unity dischargeݏ/஻௢௨௡ௗ—boundary flux ሺ݉ݍ

 ;ி௔௖௘ଵ—area of the entry water level boundary faceܣ
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డுభሺ௧ሻ
డ௫

—water level gradient on the left boundary with respect to x. 

   The mean entry water level gradient డுభሺ௧ሻ
డ௫

 (equation (11-3) ) is plotted in Fig. 11-24. 

Fig. 11-24  Evolution of the mean entry water level gradient ( )1

x

H t∂

∂
 

   From this figure, it can be seen that, the mean entry water level gradient fluctuates with the 

entry water level and generally they have the small values, except when the entry water level 

arrived at the minimum value zero, it is positively infinite. 

11.8 Conclusion on one single harmonic wave test 

    When the ratio of the saturated hydraulic conductivity is equal to 10000, Bigflow code is 

able to model the coupling between the micro porous media and macro porous media. It 

means that the entry oscillatory water levels can be directly put on the beach slope without the 

water level loss. 

   The one sinusoidal wave numerical test with VGM model works very well. Its results very 

clearly show the response process of a beach system under the oscillatory water level 

condition at the left boundary. 

   When the left boundary water level rises or descends, the ones in the sea (macro porous 

media) correspondingly rise or descend with the same velocity, while the water levels in the 

beach responds much more slowly, depending on the parameters of the sands. 

The maximum water level in the porous media depends very much on the position of the 

right boundary. The shorter the horizontal distance of the beach is, the higher water level will 

be obtained in the beach. The increasing process of the water level in the beach is clearly 

shown in the animation obtained with the numerical results. 
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  It is worth noted that, in this numerical simulation, the flow in the saturated zone is a quasi 

horizontal plane flow, which is validated and therefore the pressure head ݄ሺݔ, ݖ ൌ 0,  ሻ  isݐ

approximate to the height of the water table. As a result, all the water levels ܪሺݔ,  ሻ obtainedݐ

by the numerical simulations for the modeling of the Barcelona experiment can be obtained 

by probing the pressure head ݄ሺݔ, ݖ ൌ 0,  ሻ in the file OUTHPB, except for the pressure headݐ

contours. 

   In addition, the left entry water level has the lag time of about T/4 to the left entry discharge 

ܳ஻௢௨௡ௗሺݐሻ. At the same time, the entry water level gradient with respect to x is equal to 

infinite when ܪଵሺ3ܶ 4⁄ ሻ =0. 
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Chapter B12: Single harmonic wave numerical 

experiment for the Barcelona experiment (long run) 

12.1 Introduction 

   In order to finally model the Barcelona experiment (Chapter 7): oscillations of the water 

level in a sloping sandy beach with very complex entry water level fluctuations, the second 

step is to model the oscillations of the water level in the same sloping sandy beach with an 

entry water level fluctuations made of the several continuous sinusoidal waves. In this 

chapter, we use the VGM model to simulate the wave propagation in the sloping sandy beach 

with an entry water level fluctuation of several single harmonic waves. 

12.2 Simulation domain 
   Vertical 2D: Lx=10m; Lz=0.80m; 

                     dx=0.02m ; dz=0.02m. 

   The schema of the simulation geometry domain is same as one single harmonic numerical    

experiment with one period (short run) ( Fig. 7-1).. 

12.3 Boundary and initial condition 

 Boundary condition 

   Left boundary: ܪሺ0, ሻݐ ൌ ଴ܪ ൅ ଴ܣ · ݊݅ݏ ቀଶగ
்

ቁݐ  witrh ( ଴ܪ ൌ 0.20݉ ଴ܣ , ൌ 0.10݉ , 

଴ܣ ⁄଴ܪ ൌ 0.5, T=30s), as shown in Fig. 12-1. 

   Right boundary (all the other boundaries): flux=0. (Impermeable wall). 
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Fig. 12-1 Left regular entry water level fluctuations with several continuous waves  

 Initial condition 

଴ܪ     ൌ 0.20݉ , ݄଴ ൌ ଴ܪ െ  (linear distribution) ݖ

12.3 Physical properties of the sand beach and the sea water 

   All the physical properties of the micro porous media and the macro media are the same as 

one single harmonic numerical experiment with one period (short run, Appendix B: Chapter 

11), which are listed in Table 11-1. The water content curve ( )hθ  in log-log and the 

hydraulic conductivity curve ( )hK  in log-log for the two media are respectively shown in Fig. 

11-2 and Fig. 11-3 in the previous chapter. 

12.4 Duration of the simulation and numerical parameters 

   The simulated time is 600s which corresponds to 20T.  

   The numerical caculation time parameters and the numerical criteria are also same as short 

run wave test in the prevous chapter, which are listed in Table 7-3. 

12.5 Numerical behaviour of Bigflow during the simulation 

   The evolutions of the linear iteration, nonlinear iteration criteria of the pressure head, 

ܳ஻௢௨௡ௗ, ܳெ௔௦௦, ஻ܸ௢௨௡ௗ and ெܸ௔௦௦ are obviously affected by the sine wave water levels  on the 

left boudary. Their shapes are the same as the sine wave boudary  water levels. These 

numerical behaviours are respectively shown in Fig. 12-2, Fig. 12-3, Fig. 12-4, and Fig. 12-5.   
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Fig. 12-2 Standarlized linear iteration 
process of the pressure head in log10  

Fig. 12-3 Standarlized nolinear iteration 
process of the pressure head in log10 

 

Fig. 12-4 Zoom of the evolution of  BoundQ  
and MassQ  at t=0-90s 

Fig. 12-5 Zoom of the evolution of  BoundV  
and MassV  at t=0-90s 

Note: The print time of the Head_Tx file has the influence on the evolution of BoundQ  and 

MassQ . This plot is the results of the simulation without the output file Head_Tx. 

   The minimum linear and nonlinear iteration errors for the pressure head are less than  

1.0E-6. The curves of the evolution of ܳ஻௢௨௡ௗ and ܳெ௔௦௦ completely superimpose together, 

and there exists the similar case for the curves of the evolution of ஻ܸ௢௨௡ௗ and ெܸ௔௦௦. 

   From the curves of ܳெ௔௦௦  and ܳ஻௢௨௡ௗ , it can be seen when entry water levels are the 

maximum and the minimum, the iterations are therefore difficult. 

12.6 Result analysis of continuous wave test 

12.6.1 Profiles of the pressure head contour and the flux velocity field 
   The profiles of the pressure head contours and the flux velocity at t=33.75s (T+T/8), 

t=303.75s (10T+T/8), t= 41.25s (T+3T/8) and t=311.25s (10T+3T/8) are respectively shown 

in Fig. 12-6, Fig. 12-7, Fig. 12-8 and Fig. 12-9. 
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Fig. 12-6 Profile of the pressure head 
contours, the flux velocity and the beach 
slope at t=T+T/8=33.75s (length scale in z 
and in y are 10) 

Fig. 12-7 Profile of the pressure head 
contours, the flux velocity and the beach 
slope at t=10T+T/4=303.75s (length scale 
in z and in y are 10) 

 

Fig. 12-8 Profile of the pressure head 
contours, the flux velocity and the beach 
slope at t=T+3T/8=41.5s (length scale in z 
and in y are 10) 

Fig. 12-9 Profile of the pressure head 
contours ,the flux velocity and the beach 
slope at t=10T+3T/8=311.25s (length scale 
in z and in y are 10) 

   When t=T+T/8=33.75s, the left boundary water level has  rosed amost 50% amplitude 

 from the mean water level to the maximum (Fig. 12-1), at the same time, the water (ଵ=0.3mܪ)

levels in the macro porous media rise with the same velocity of the boundary water level, 

while the ones in the micro porous media increase much slower and therefore, the flux flows 

upwards along the beach and flows towards the beach, the micro porous media (seen in Fig. 

12-6). 

   When t=10T+T/8=303.75s, due to the same boundary condition of the periodic water level 

as t=T+T/8=33.75s, the pressure head contours and the flux field are almost same as the ones 

when t=T+T/8=33.75s (seen in Fig. 12-7). 
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   When t=T+3T/8=41.25s, the left boundary water level has decreased by 50% amplitude 

 from the maximum to the mean water level (Fig. 12-1), at the same time, the  (ଵ=0.3mܪ)

water levels in the macro porous media go down with the same velocity of the boundary water 

level, while the ones in the micro porous media go down much slower and they are higher 

than the ones in the macro media and as a result, the flux flows downwards along the beach 

slope (seen in Fig. 12-8). 

   When t=10T+3T/8=311.75s, due to the same boundary condition of the periodic water level 

as t=T+3T/8=41.25s, the pressure head contours and the flux field are almost the same as the 

ones when t=T+3T/8=41.75s (seen in Fig. 12-9). 

  12.6.2 Instantaneous water content distribution θ(h) in the vertical section 
   The instantaneous distributions of the water content ( )hθ  in the vertical section at 

t=T+T/8=33.75s, t=10T+T/8=303.75s, t=T+3T/8=41.25s and t=10T+3T/8=311.25s are 

respectively shown in Fig. 12-10, Fig. 12-11, Fig. 12-12 and Fig. 12-13. 

Fig. 12-10 Profile of the water content ( )hθ  
at t=T+T/8=33.75s in the vertical section 
(length scale in z and in y are 10) 

Fig. 12-11 Profile of the water content 
( )hθ  at t=10T+T/8=303.75s in the vertical 

section (length scale in z and in y are 10) 
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Fig. 12-12 Profile of the water content ( )hθ  
at t=T+3T/8=41.5s in the vertical section
(length scale in z and in y are 10) 

Fig. 12-13 Profile of the water content ( )hθ  
at t=10T+3T/8=311.5s in the vertical section
(length scale in z and in y are 10) 

   They all are consistent with the pressure head contour at the corresponding time (Fig. 12-6, 

Fig. 12-7, Fig. 12-8 and Fig. 12-9.). 

  12.6.3 Evolution of the water level fluctuations in time and space 
      Profiles of the evolution of the horizontal line pressure head at z=0 (time interval=10 

dt=1.0s) are shown in Fig. 12-14.  

 
Fig. 12-14 Profile of the pressure head evolution on the bottom z=0 (per each 10 time 
steps). 

   From this figure, it can be seen that all the movement area of the free surface in the porous 

media during the simulation are equal or lower than the maximum boundary water level 0.3m. 

From x=0 to x=4.5m, it is the mixture zone of the surface water and the ground water; from 

x=4.5 to x=10 m, it corresponds to the pure groundwater zone and in this zone, the movement 

area of the free surface gradually decrease and finally tends to a steady state. In an another 
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words in this zone, the maximum groundwater table become constant and the minimum water 

table is equal to the initial mean water level ܪ଴.  

   In order to observe the curve shape of the water level evolution at several different positions 

,଴ݔሺܪ  ሻin the porous media, 7 sensors are installed in the beach bottom, which have the sameݐ

horizontal distances as the ones of the experiment in Barcelona. The evolution of the pressure 

head of the 7 sensors ݄ሺݔ, ݖ ൌ 0,  ሻ and its zooms, are respectively shown in Fig. 12-15, andݐ

Fig. 12-16. 

Fig. 12-15 Evolution of the water levels at the 7 sensors at t=0-600s. 
 

Fig. 12-16  Zoom of the evolution of the water levels at the 7 sensors at t=0-180s (t=0-6T). 

  From these two figures, it can be seen that there are obvious amplitude decays for all the 

ground water level fluctuations as well as a phase delay for the pure groundwater levels of the 

sensors No.4, No.5, No.6 and No.7. The velocity of the water table going down is still slower 

than the one going up in the micro porous media. After the first half-waves, for the Sensors 
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No.2 and No.3, the water table in the micro porous media has not descended (reach regularly) 

to the minimum value, and due to the rising of the boundary water level, it has to rise again. 

   In addition, the evolution of the water levels (probed the pressure head ݄ሺݔ, ݖ ൌ 0,  ሻ fromݐ

the file OUTHPB) of the 6 sensors are also separately shown in Fig. 12-17.  

Fig. 12-17  Evolution of the water levels of 6 sensors (t=0-600s) 

   From this figure, it can be seen that: 

 all the mean water levels of the 6 sensors first increase and then  tend to a different 

constant level according to the sensor positions;  

 the maximum water levels are equal to (in the mixed zone) or less than (in the pure 

groundwater zone) the maximum boundary water levels;  

 in the mixture zone of the surface zone and groundwater ( ݔ ൑ 4.5݉ ,where the 

height of the beach sands is equal to ܪ଴ ൅  ଴=0.3m), the mean water levels of theܣ

sensors (sensors No.2 and No.3) gradually increase with the increasing of distance 

from the left boundary;  

 at the same time, in the  pure groundwater zone (ݔ ൒ 4.5݉), the mean water levels of 

the sensors (sensors No.4, No.5, No.6 and No.7) gradually decrease and finally tend 

to a constant with the increasing of distance from the left boundary and they are 

always bigger than the initial water level ܪ଴.  

   The original signals of  ܪ௜ሺݐሻሺ݅ ൌ 2, … , 7ሻ all have a very good agreement with  ܪଵሺݐሻ and 

the cross-correlation coefficients are greater than 0.9, as shown in Fig. 12-18 
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Fig. 12-18  Maximum cross-correlation between ( )1H t  and ( )( )2, ,7iH t i = …   ( )maxR Lx  
with respect to the horizontal distance of the sensor position from the sensor No.1 (Original 
signal) 

   At the same time, the lag time from ܪଵሺݐሻ to ܪଶሺݐሻ and from ܪଵሺݐሻ to ܪଷሺݐሻ is zero, and the 

ones from ܪଵሺݐሻ to ܪସሺݐሻ, ܪଵሺݐሻ to ܪହሺݐሻ, ܪଵሺݐሻ to ܪ଺ሺݐሻ , and ܪଵሺݐሻ to ܪ଻ሺݐሻ  are longer 

and longer and they are respectively 2.2s, 5.4s,5.7s and 17.3s, as seen in Fig. 12-19.  

Fig. 12-19  Lag time corresponding to the maximum cross-correlation between ( )1H t  and 
( )( )2, ,7iH t i = …   with respect to the horizontal distance of the sensor position from the 

sensor No.1 (Original signal) 

   In fact, the lag time t=17.3s from ܪଵሺݐሻ to ܪ଻ሺݐሻ obtained by analyzing the cross-correlation 

between the original signal ܪଵሺݐሻ and the residual of ܪ଻ሺݐሻ with moving average filtering 

(window halfwidth =30s) is more reasonable than the one t=0 obtained by analyzing the cross-

correlation between the original signals of  ܪଵሺݐሻ and ܪ଻ሺݐሻ. 
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  12.7 Analysis on the system energy balance during the numerical 

simulation 

   In order to analyze the energy change of the system, the evolutions of ܳ஻௢௨௡ௗ, the left entry 

water level ܪଵሺݐሻ, and the inside water levels of the 7 sensors are plotted in the same figure as 

seen in Fig. 12-20.  

Fig. 12-20 Evolution of the entry water level ( )1H t , BoundQ  and the inside water levels of 
the 6 sensors in the porous media 

   From this figure, it can be seen that before the entry water increase to the maximum water 

level, the water flow in the left side enters into the simulated domain. Especially when the 

entry water level rises to the height of about 150% of the mean water ܪ଴, ܳ஻௢௨௡ௗ reaches the 

maximum, and then decreases gradually to zero when the entry water level rises to the 

maximum water level. Then, with the decreasing of the entry water level, the flow on the left 

side begins to flow out of the simulated domain until the entry water level descends to the 

minimum, and when the entry water level descends to the height of 50% ܪ଴, the ܳ஻௢௨௡ௗ 

arrives at the minimum.  With the increasing of the entry water level, the flow begins to flow 

into the simulated domain again. This behaviour is periodically repeated. This result can also 

be obtained from the figure of the cross correlation ܴுభொಳೀೆಿವሺݑܽݐሻ (Fig. 12-21).  
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Fig. 12-21 Cross correlation of entry water level ( )1H t and entry water discharge  BoundQ  

1 BoundH QR  at tau (lag time)=-200s-+200s with XCOV(  BoundQ , 1H ) (unbiased) 

    From this figure, it can be seen ܳ஻௢௨௡ௗ has the same oscillatory period T=30s as ܪଵሺݐሻ, 

ܳ஻௢௨௡ௗ  has a lag time of 22.7s (about 3T/4) to ܪଵሺݐሻ, and the two signals are in a good 

agreement (the maximum cross correlation coeffient ܴுభொಳೀೆಿವ=0.9284). 

   The mean entry water level gradient డுభሺ௧ሻ
డ௫

 and ܪଵሺݐሻ  have a similar good relationship 

(ܴ௠௔௫ ൐ 0.9) as the one between ܳ஻௢௨௡ௗ and ܪଵሺݐሻ and have the same period T=30s, as seen 

in Fig. 12-22 and Fig. 12-23. The difference is that డுభሺ௧ሻ
డ௫

 has a lag time of 7.7s (about T/4) to 

 ሻ. That is to say, the maximum values of ܳ஻௢௨௡ௗ are obtained during the increasing of theݐଵሺܪ

entry water level, while the ones of  డுభሺ௧ሻ
డ௫

 are obtained during the decreasing of ܪଵሺݐሻ. 

Inversely, the minimum values of ܳ஻௢௨௡ௗ  are obtained during the decreasing of the entry 

water level and the ones of డுభሺ௧ሻ
డ௫

 are obtained during the increasing of ܪଵሺݐሻ. In addition, 

from Fig. 12-20 and Fig. 12-22, it can be seen that െ0.5 ൈ 10ିଷ ൏ డுభሺ௧ሻ
డ௫

൏ 0.5 ൈ 10ିଷ and 

െ2 ൈ 10ିଷ ݉ଷ ⁄ݏ ൏ ܳ஻௢௨௡ௗ ൏ 2 ൈ 10ିଷ ݉ଷ ⁄ݏ . 
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Fig. 12-22 Evolution of the mean entry water level gradient ( )1

x

H t∂

∂
, entry water level 

( )1H t  and the inside water levels of the 6 sensors in the porous media 
 

 

Fig. 12-23 Cross correlation  of ( )1H t  and mean entry water level gradient ( )1

x

H t∂

∂
 

1
H MEWLGR  

at tau (lag time)=-200s-+200s with XCOV( ( )1

x

H t∂

∂
, 1H ) (unbiased) 

12.8 Sensitivity analysis of the VGM parameters, soil physical 

properties, mean free water levels and beach slopes on the 

groundwater level fluctuations 

    The objective of the sensitivity analysis is to investigate the influence of all the possible 

parameters on the water level fluctuation characteristic parameters with respect to space: the 

approximate stable mean water level ܪை௦ሺݔሻ and the corresponding amplitude (downword) 

 ሻ . All the results have been obtained in numerical cases with the entry݀ݎܽݓ݊ݓ݋ሻ ሺ݀ݔை௦ሺܣ

oscillatory water level boundary condition made of a single continuous harmonic wave. 
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Eventually, the dominant parameters will be helpful to realize the numerical simulation for 

the Barcelona experiment.   

   From the analytical solutions of the Boussinesq equation for a plane flow with oscillatory 

entry water level (Chaper 4) and simplified solution of phreatic saturation line under the 

actions of rainfall and reservoir water level fluctuation (Feng. 2006), the beach sand physical 

properties: saturated hydraulic conductivity ܭ௦  and saturated  water content ߠ௦ , the entry 

water level fluctuations: the amplitude ܣ଴, the period ଴ܶ and the mean free water level ܪ଴ 

which is considered same as the initial water level in the sand beach, the beach slope ݅, and  

the unsaturated parameters: ߙ and ݊ (VGM model). 

   All the results of the sensitivity analysis are illustrated in Fig. 12-24, Fig. 12-25, Fig. 12-26 

and Fig. 12-27.  

Fig. 12-24  Sensibility analysis of the saturated hydraulic conductivity SK , VGM 
parameters (α ,n), saturated water content Sθ  on the amplitudes of the groundwater level 
fluctuations. 
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Fig. 12-25 Sensibility analysis of the entry amplitude 0A , entry periodT , and beach slope 
on the amplitudes  of the groundwater level fluctuations. 

 

Fig. 12-26 Sensibility analysis of the saturated hydraulic conductivity SK , VGM 
parameters (α ,n), saturated water content Sθ  on the steady mean groundwater levels. 
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Fig. 12-27 Sensibility analysis of the entry amplitude 0A , entry period T , and beach slope 
on the steady mean groundwater levels. 

   The saturated hydraulic conductivity ܭ௦ has a dominant influence on the water level 

fluctuations in the porous media among the four parameters: ܭ௦, ߠ௦, ߙ and ݊. The parameter ߙ 

has the bigger influence on it. On the opposite,  ߠ௦ and ݊ has a very small influence on the 

water level fluctuations. By contrast, the entry amplitude ܣ଴, period ଴ܶ, and mean water level 

 .௦ܭ ଴ all have dominant influence on the water level fluctuations in the porous media  asܪ

   There is almost the same kind of influence with the up and down amplitudes which happens 

to the approximate stable mean water level. The entry amplitude ܣ଴, period ଴ܶ, mean water 

level ܪ଴  and the saturated hydraulic conductivity ܭ௦ have great influence on the water level 

fluctuations in the porous media. 

12.9 Conclusions and outlook 

From the results of the sensitivity analysis, we obtain that: 

• For the water level oscillations: the saturated hydraulic conductivity ܭ௦ has dominant 

influence on the water level fluctuations in the porous media among the four 
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period ଴ܶ, and mean water level ܪ଴ all have dominant influence on the water level 

fluctuations in the porous media  as ܭ௦. 

• For the approximate stable mean water level: the entry amplitude ܣ଴, period ଴ܶ, mean 

water level ܪ଴  and the saturated hydraulic conductivity ܭ௦ have great influence on the 

stable mean water level in the porous media. 

     Althrough the results obtained from the single harmonic wave numerical experiments with 

several continuous periods (long run) are qualitative, they will be very helpful to succeed in 

similating the Barcelona experiment. 

    In fact, in the Barcelona experiment, the entry water level periods, the entry amplitudes, the 

beach slope are fixed. The saturated water content ߠ௦ , and VGM parameters ߙ and ݊  has 

smaller influences on the water level fluctuations in the porous media. Thereofore, the most 

important parameter is still the saturated hydraulic conductivity ܭ௦. This parameter will be 

validated with the Barcelona experimental results by Boussinesq model and Richards model. 

In addition, the entry mean water level ܪ଴ is another important parameter which could be 

properly adjusted in the numerical simulation.  

12.10 Key questions and discussion 

   From this numerical simulation, we know that there is a key point which divides the whole 

simulated domain into two zones: mixture zone of the groundwater and the surface water and 

the pure groundwater zone. At this key point, the height of the beach ܪ௞௣ is equal to the 

maximum entry water level ܪଵ௠௔௫ , and the distance from the left boundary condition 

௞௣ܮ ൌ ுೖ೛

ூ
ൌ ுభሺ௧ሻ೘ೌೣ

ଵ ଵହ⁄ ൌ4.5m. All the evolution of the mean water levels of the 7 sensors first 

increases and then tends to a different constant water level. However, in the mixture zone, the 

mean water levels of the sensors (sensors No.2 and No.3) gradually increase with the 

increasing distance from the left boundary; at the same time, in the pure groundwater zone, 

the mean water levels of the sensors (sensors No.4, No.5, No.6 and No.7) gradually decrease 

to tend to a constant with the increasing distance from the left boundary and they are always 

bigger than the initial water level ܪ଴.  It means that the variation of the mean water levels 

with the distance ܪܦሺݔሻ is different in the two zones.  
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