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EM Modeling of Large Planar Array Structures using SCT

Large sized planar structures are increasingly being employed in satellite and
radar applications. Two major kinds of such structures i.e. FSS and Reflectarrays are
particularly the hottest domains of RF design. But due to their large electrical size
and complex cellular patterns, full-wave analysis of these structures require
enormous amount of memory and processing requirements. Therefore conventional
technigues based on linear meshing either fail to simulate such structures or require
resources not available to a common antenna designer. An indigenous technique
called Scale-changing Technique addresses this problem by partitioning the cellular
array geometry in numerous nested domains defined at different scale-levels in the
array plane. Multi-modal networks, called Scale-changing Networks (SCN), are then
computed to model the electromagnetic interaction between any two successive
partitions by Method of Moments based integral equation technique. The cascade of
these networks allows the computation of the equivalent surface impedance matrix of
the complete array which in turn can be utilized to compute far-field scattering
patterns. Since the computation of scale-changing networks is mutually independent,
execution times can be reduced significantly by using multiple processing units.
Moreover any single change in the cellular geometry would require the recalculation
of only two SCNs and not the entire structure. This feature makes the SCT a very
powerful design and optimization tool. Full-wave analysis of both uniform and non-
uniform planar structures has successfully been performed under horn antenna

excitation in reasonable amount of time employing normal PC resources.
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EM Modeling of Large Planar Array Structures using SCT

The accurate prediction of the plane wave scattering by finite size arrays is of
great practical interest in the design and optimization of modern frequency selective
surfaces, reflectarrays and transmittarrays. A complete full-wave analysis of these
structures demands enormous computational resources due to their large electrical
dimensions which would require prohibitively large number of unknowns to be
resolved. Thus the unavailability of efficient and accurate design tools for these
applications limits the engineers with the choice of low performance simplistic

designs that do not require enormous amount of memory and processing resources.

Moreover the characterization of large array structures would normally require
a second step for optimization and fine-tuning of several design parameters since the
initial design procedure assumes several approximations e.g. in the case of
reflectarrays the design is usually based on a single cell scattering parameters under
normal incidence, which is not the case practically. Therefore a full-wave analysis of
the initial design of the complete structure is necessary prior to fabrication, to ensure
that the performance conforms to the design requirements. A modular analysis
technique which is capable of incorporating small changes at individual cell-level

without the need to rerun the entire simulation is extremely desirable at this stage.

11



General Introduction

Historically several approaches have been followed when analyzing large
planar structures [HuangO07]. In the case of uniform arrays, where we have periodicity
in the geometry, an infinite approach is often used. By using Floquet’'s theorem, the
analysis is effectively reduced to solving for a single unit-cell; thus significantly
reducing the unknowns and therefore the simulation times [Pozar84] [Pozar89].
Although the periodic boundary conditions take into account the effect of mutual
coupling in the periodic environment, the approximation may not hold for the arrays
where individual cell geometries are very different. In addition this is a very poor

approximation for the cells lying at the edges of the array.

A simple method based on Finite Difference Time Domain (FDTD) technique
has been proposed to precisely account for the mutual coupling effects. It consists of
iluminating a single cell in the array in the presence of nearest neighbor cells and
calculating the reflected wave. Though it allows precise excitation and boundary
conditions for each cell in the array it is not very practical to design large arrays due

to extremely long execution times [Cadoret2005a].

Different conventional methods have been tested for a full-wave analysis of
periodic structures e.g. Method of Moments (MOM) used in the spectral domain for
multilayered structures [Mittra88] [Wan95], Finite Element Method (FEM) [Bardi02]
and FDTD [Harms94]. But all of these methods would require prohibitive resources
for the cases where the local periodicity assumption cannot be applied. A spectral
domain immitance approach has been used in the full-wave analysis of a 2-D planar
dipole array along with the Galerkin’s procedure using entire domain basis functions
[Pilz97].

The method of moments for the global electromagnetic simulation of finite size
arrays requires high CPU time and memory especially when the patch geometries
are non-canonical and therefore sub-domain basis functions have to be used. The
memory problem may be resolved by using various iterative techniques (e.g.
Conjugate Gradient iterative approach) [Sarkar82] [Sarkar84] at the cost of further
increase in the execution time. A promising improvement of the MOM, called the

Characteristic Basis Method of Moment was proposed for reducing the execution

12
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time and memory storage for large-scale structures [Mittra05] [Lucente06]. However

the convergence of numerical results remains delicate to reach systematically.

In order to overcome the above-mentioned theoretical and practical difficulties,
an original monolithic formulation for the electromagnetic modeling of multi-scale
planar structures has been proposed [Aubert09]. The power of this technique called
the Scale-changing Technique (SCT) comes from the modular nature of its problem
formulation. Instead of modeling the whole planar-surface as a single large
discontinuity problem, it is split into a set of many small discontinuity problems each
of which can be solved independently using mode-matching variational methods
[Tao91]. Each of the sub-domain discontinuity solution can be expressed in the
matrix form characterizing a multiport-network called Scale-Changing Network
(SCN). SCT models the whole structure by interconnecting all scale-changing
networks, where each network models the electromagnetic coupling between

adjacent scale levels.

The cascade of Scale Changing Networks allows the global electromagnetic
simulation of all sorts of multi-scaled planar geometries. The global electromagnetic
simulation of structures via the cascade of scale-changing networks has been applied
with success to the design and electromagnetic simulation of specific planar
structures such as multi-frequency selective surfaces of infinite extent [Voyer06],
discrete self-similar (pre-fractal) scatterers [Voyer04] [Voyer05], patch antennas
[PerretO4] [Perret05] and reconfigurable phase-shifters [Perret06] [PerretO6a). The
objective of this work is to validate SCT in the case of various planar array
geometries including FSS arrays, reflectarrays and transmittarrays.

Another modular approach based on spectral-domain MOM has been used in
the case of multilayer periodic structures [Wan95] which consists of characterizing
each array layer by a generalized scattering matrix (GSM) and then analyzing the
complete structure by a simple cascade of these GSMs. SCT differs from this
approach because in case of SCT patrtitioning is applied to the same array-plane and
therefore SCT is applicable for the single-layer array problems. For multilayer arrays
SCT can be used in hybrid with the fore-mentioned approach for the efficient

modeling of more complex electromagnetic problems e.g. in the case of variable

13



General Introduction

sized stacked patch-arrays [Encinar99] [EncinarO1] [Encinar03] and aperture-coupled
arrays [Robinson99] [Keller00].

This thesis is divided into two main sections. In the first section the theory
behind the scale-changing technique is presented in a general context using an
example of a generic discontinuity plane. Several concepts related to the technique
are introduced and elaborated. How the discontinuity problem can be expressed in
terms of equivalent circuit components is demonstrated [Aubert03]. The problem is
then formulated in terms of matrix equations from this equivalent circuit and solved
using MOM based technique. The second part of this section demonstrates the

application of SCT to periodic reflectarrays.

In the second section of the thesis, SCT is used to model finite and non-
uniform single layered planar arrays. First it is shown that SCT effectively models the
electromagnetic coupling between the neighboring cells of an array. Later the
technique is used to model linear arrays of non-uniform metallic strips and patches.
The simulation results as well as the simulation times are compared to the classic
simulation tools. Finally, SCT is applied to find the free-space diffraction patterns of
two-dimension planar arrays. Both uniform and non-uniform arrays are simulated
under plane-wave and horn-antenna excitations and the scattering field plots are

compared to results obtained by other techniques.

14
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Theory of Scale-changing Technique (SCT)

|.1. INTRODUCTION

Presently the most common method to compute the scattering fields from the
planar structures is by solving the integral equation formulation of the Maxwell's
equations. This approach permits to express the open boundary electromagnetic
problem in terms of an integral equation formulated over the finite planar surface.
This reduction of one spatial dimension makes this method very efficient in the case
of planar geometries. Yet this method in its traditional formulation is not particularly
adapted for large planar structures containing scaled geometries and complex
metallic patterns. Rapid and fine-scale variations in the structure geometry can cause
abrupt changes in electromagnetic field patterns requiring local meshing at a very
minute scale which in turn would require immense storage and computational

resources.

We propose to resolve this problem by introducing local description of fields
for different regions of the planar surface. The procedure can be outlined in the

following steps:

1) The planar surface is decomposed in several sub-domain surface regions.
2) The electromagnetic fields are expressed on the modal-basis of each of these

sub-domains bounded by their respective boundary conditions.

16
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3)

4)

5)

Modal contributions are treated separately for lower order modes and higher
order modes. Higher order modes are considered to contribute only locally
where as lower order modes define coupling with the domain at the higher
scales.

Electromagnetic coupling between two successive scales is modeled by a
scale-changing network defined by the lower order modes of the two sub-
domains.

A global electromagnetic solution is obtained by a simple cascade of these

scale-changing networks.

These concepts will be explained in further detail in the subsequent sections.

17
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|.2. SCALE-CHANGING TECHNIQUE (SCT)

[.2.1. Introduction

Electrically large (many orders of the wavelength) structures e.g. multiband
frequency selective surfaces, non-uniform reflectarrays and self-similar fractal
structures are said to be complex when their geometrical dimensions vary over a
large range of scale. In other words we have very fine patterns and large patterns in
the same structure. As mentioned previously linear meshing in these structures
requires tremendous amount of computational resources and may lead to ill-

conditioned matrices.

The higher the number of scale-levels the higher is the complexity. Scale-
changing technique (SCT) gets its name from scaled partitioning of the planar
structure and the modeling of the electromagnetic interactions between these scale-
levels [Aubert09]. In this section we will focus on the electromagnetic simulation of a
generic multi-scale structure consisting of metallic patterns printed on a dielectric

planar surface.

[.2.2. Discontinuity Plane

To understand the concepts and workings of the Scale-changing Technique
we will study a general case of an arbitrary discontinuity. Consider multiple metallic
patterns with the dimension varying over a wide range of scale, printed on a planar
dielectric surface. Suppose that the largest patterns are several orders of magnitude
bigger than the finest patterns. This discontinuity plane may be modeled by placing it
at a cross-section of a waveguide or can simply be located in the free-space. The two
half-regions i.e. the left-hand region and the right hand region are assumed to be

composed of multilayered and loss-less dielectric media.

18
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1.2.2.1. Partitioning of the Discontinuity Plane

The starting point of proposed approach involves the coarse partitioning of the
discontinuity plane domain into large sub-domains of arbitrary shape and comparable
sizes. This partitioning step corresponds to the first order of the magnitude of
discontinuity plane patterns. The second step consists of partitioning each of the
domains formed in the first step by introducing smaller sub-domains of comparable
sizes corresponding to the next order of magnitude. This procedure of partitioning the
domains into smaller sub-domains is repeated until the smallest scale is reached.
Such hierarchical domain-decomposition allows rapid focusing on increasing details

of the planar geometry unlike a linear meshing approach.

Scale level s

Figure 1.1: An example of discontinuity plane presenting 3 scale-levels (black is metal
and white is dielectric) and the scattered view of the various sub-domains generated
by the partitioning process

This manner of partitioning allows us to define separate scale-levels for the

co-planar domains and sub-domains and this can be represented as shown in

19



Theory of Scale-changing Technique (SCT)

Figure- 1.1. The smallest sub-domains are assigned the bottom most scale or scale-
level one whereas the largest domain i.e. the entire discontinuity plane gets the
highest scale-level s,.x. It IS important to note that the scattered representation of the
domains is only for the sake of clarity, essentially all the domains and sub-domains

lie in the same plane.

Figure 1.2: The ith generic domain resulting from the partition process at scale level ‘s’
(black is metal, white is dielectric and grey indicates the location of sub-domains

D Pwithj=1,2, .., M)

Let's consider once again the case of the generic discontinuity plane of
Figure-1.2. Assuming it to be the ith domain of a general scale-level s it can be
denoted for convenience as Di(s). where,i=1—N, N being the total number of
domains at the scale-level s. And s ranging from 1 to s,.. Using the above

described partitioning procedure it can be decomposed into M sub-domains denoted

20
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by D].(S_l), (where j = 1 — M) defined at scale-level s — 1. In addition the discontinuity

plane may contain simple metallic and dielectric domains where further partitioning is
not needed [Aubert09].

1.2.2.2. Choice of Boundary Conditions:

Artificial boundary conditions are introduced along the contours of all these
domains and sub-domains. These boundary conditions are introduced only on the
contours of the sub-domains lying in the discontinuity plane and not in the two half-
regions on each side of this discontinuity. The boundary conditions are selected from

1) Perfect Electric Boundary Conditions (PEC)
2) Perfect Magnetic Boundary Conditions (PMC)
3) A combination of the above two conditions

4) Periodic Boundary Conditions (PBC)

The physics of the problem should be considered in the choice of the
boundary conditions around any domain. In practice boundary conditions can be tried
on the contours of each sub-domain and tested for accuracy, execution time and

numerical convergence depending on a particular geometry.

The purpose of introducing the boundary conditions at the sub-domain level is
essentially to define a new boundary value problem at a local level that can be solved
independently by expressing the tangential fields in the region on the modal-basis
respecting these boundary conditions. At sub-domain level each boundary value
electromagnetic problem is resolved by writing the field equations in integral equation
formulation and applying the Galerkin’s method to solve for the surface fields and

currents.

Since now we have many smaller independent problems, the number of
unknowns in the matrix equations are reduced and therefore much less memory
resources are required. It is to be noted here that due to introduction of artificial

boundary condition the scale-changing technique is not an exact technique but an

21
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approximate method. And these approximations need to be chosen carefully not to

significantly perturb the accuracy of the solution [VoyerTh].

1.2.2.3. Field Expansion on Orthogonal Modes:

In the sub-domain Di(s) bounded by the artificial boundary conditions the modal
expansion of the tangential electromagnetic field can be performed. Therefore the

nth mode of the modal basis f‘)ﬁf’s) is solution to the following Helmholtz equation
[Collin91].

[VTZ + k,(f's)z] F&9 =0 (1.1)

In the above equation V? is the transverse Laplacian operator and k,(f’s) is the
cut-off wave-number of the nth mode of the ith sub-domain of the sth scale-level i.e.
DY . The F@9 is the orthogonal modal-basis which satisfies the boundary conditions

at the contours of the sub-domain. The condition of orthognality dictates;

FU,F9) = [0 [F47] . Fovas={, Torm 7 7} (.2

Apn form= n

The = operator represents the complex conjugate. And m and n are any two

modal indexes of the orthogonal modal basis FG).

1.2.2.4. Active and Passive Modes:

Now that we have the modal representation of the tangential electromagnetic
field in the sub-domain, the field contributions due to lower-order and higher-order
modes can be treated separately. As the order of the modes increases, the energy
diffracted at the metal interface for that harmonic becomes more and more localized
within the vicinity [Collin91]. Therefore it is safe to assume that after a certain number
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of modes, the higher order modes will contribute only to very fine-scale variations of
the electromagnetic field that are localized to that particular sub-domain. On the other
hand the lower order modes describe the large-scale variations of the field that
couples with the tangential fields of the sister sub-domains.

()

For example in case of the generic sub-domain D;™ the fine-scale variations

are described as a linear combination of infinite number of higher-order modes of

Fff’s)which are spatially localized in the vicinity of discontinuities, sharp edges and

various contours of the domain and therefore does not significantly contribute to the
electromagnetic coupling between the various sub-domains D].(S_l). For this reason

these higher-order modes are called passive modes.

The large-scale contribution to the field in Di(s) is due to the electromagnetic
coupling between the constitutive sub-domains D].(S_l). This coupling can be modeled

as the combination of only a limited number of lower-order modes in the spectral
domain. Because these lower-order modes are involved in the description of
electromagnetic coupling they are called active modes. Finally, the coupling between

the active modes of the domain Di(s) and the passive modes of sub-domains D].(S_l) is

very weak due to the large difference in their spatial frequencies.

It follows from the above-mentioned physical considerations that the
electromagnetic coupling between two subsequent scale-levels, e.g. the scale-level s

and the lower scale s — 1, can be defined in term of the mutual interactions of the

(s-1)

active modes of the domain Di(s) and the active modes of the sub-domains D;” ™.

[.2.3. Scale-changing Network (SCN)

The mutual coupling of the active modes described in the previous section can

be represented by a multiport of Figure 1.3. Each port in the network represents an

active mode. The ports on the left hand side models the active modes in domain Di(s)

whereas the M set of ports on the right hand side denote the active modes of M sub-
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domains D].(S_l)(where j=1— M) of scale level s—1. As this multiport allows to

relate the fields at scale s to fields at the lower scale s-1, it is named the Scale-
changing network (SCN).

For relating the electromagnetic fields at scale s to that of another scale s — 2,
the interconnection of scale-changing networks may be performed as shown in
Figure 1.4, each network being previously computed separately. Consequently, the
modeling of interaction among the multiple scales of a complex discontinuity plane is
reduced to simple cascade of appropriate scale-changing networks, where each

network models the interaction between two scales.

active modes in fo'”

Scale
f o—— Changing [ 1°
O] Network :—O '~

|
|
:
| active modes in D[-ZS'”
| 1
- oy (s) e
active modes in Di- S O: =i
|
|
|
|
|
|
|
|
|

E s—>s-1 —0 |

scale level s

active modes in D‘i;'“

scale level 5-1

Figure I1.3: The Scale Changing Network coupling the active modes in the domain Di(s)
(scale level s) and its constitutive sub-domains Dj(s_l) (scale level s-1)
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It is important to note that the computation of these scale-changing networks
is mutually independent. Therefore each network can be computed by using a
separate processing node. This modular nature of scale-changing technique can be
exploited in multiprocessing environments to cut simulation times in the case of very
large and complex structures. Moreover any single change at any scale-level will only
need the re-computation of two scale-changing networks and not the SCNs for all
other scales. This means that small geometric changes will not require the entire
simulation of the structure all over again. This feature is an essential quality of a good

parametric tool. Therefore SCT designs will have the capability of rapid simulations in

the cases where the effects of certain modifications are studied on the design.

scale level s

Figure 1.4: The cascade of Scale Changing Networks allow to relate the transverse
electromagnetic field at scale ‘s’ to that at scale ‘s—2’

Scale
Changing
Network

s 55-1

scale level 5-1
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The derivation of scale-changing network’s characterization matrix requires
the definition of artificial electromagnetic sources named the scale-changing sources

in various sub-domains obtained from the partitioning process.

I.2.4. Scale-changing Sources

The derivation of scale-changing network that couples the scale s to the
adjacent scale s —1 requires the resolution of a boundary value problem. Active
modes of the domain at scale-level s will act as the excitation sources called scale

changing sources for the problem.

A B

REQ.’:DH 1 Ez Regiﬂn 2

n,<€ >N,

E4

(s)

Figure I.5: The discontinuity plane along with the two parallel side-planes A and B in
the two half-regions
To derive the mathematical expressions for scale changing sources lets

consider once again the generic discontinuity plane Di(s). Figure 1.5 represents the
discontinuity plane along with two planes A and B placed infinitely close to the either

side of the discontinuity plane. The unit-vectors n; and n, are the normal vectors of
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the two planes. The tangential electric and magnetic fields (ﬁf;"s) and ﬁfxi’s) ) on the
domains of the two parallel planes (ax = 1,2) can be expressed on a modal-basis
Fs)

n
E.’(z s) _ Zn— V(l 5,) F(l 5) (1.3)

a‘(;,s) H(l s) Zn . I(l ,S,00) F(l ,S) (|_4)

v ¥and 18°%) denote respectively, the voltage and current amplitudes of the

nth mode in fo). Tangential electric field and the surface current density on each of
the domain can be expressed separately with active and passive modes defining the

large scale and fine scale variation of these quantities respectively.

BEY = e, OO T 4 By YOO T
ol R

large “« fine

(1.5)

where N, is the number of active modes in each of the domain. Similarly for surface

current density we can write.

_)g,S) — Z I(zsa) F(z s) + Zn Not+1 I(i,s,a) F’;i,s)
(l.S) _ 7(@s) + 7(i.s) (1.6)
a —Ja

large “« fine

The passive modes being highly evanescent are shunted by their purely

reactive modal admittances (Y, *>*)). Consequently,
R A AL for n > N, (1.7)
Using the above formulation in Equation 1.6 we obtain;

—)Eli,s) ~ -’Sxi,s) + Z,?:):Na_'_l Yrgi,s,a)Vn(i,S,a) F(l S) (|8)

large

which can be formally written in the operator form as:
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-)g',s) _ —)g,s) + ?éi,s)fg(i,s) (Ig)

large

with 79 = 2,?=Na+1|F,(f’s))Y,fi's'“)(F,(f’s) where 7 is an admittance operator.

Now the tangential electric field and surface current density on the discontinuity plane

D(S)can be determined from using the following boundary conditions.

Ez@ _ E’(i.S) _ E’(i.S)

B
N (1.10)
]ES) ](l ,S) ](l ,S)

Using the above equations we can solve for the field quantities on the discontinuity
plane as follows:

Y, V;l(i,s) FS'S) =y, V(i.s,A) F’(i,s) =y, V;l(i.s,B) F’Sli,s) (1.11)
(i, s) V(LsA) V(lSB)

>V, A

Similarly j can be written as

jO- Ol +9F® (.12)

large

where

:Z I(lSA) F(ls) + ZNB I(lSB) F(ls)
woe targe (1.13)
Yi(s) YA( ) g Y(ls) Yia=AB LneN +1 F(ls))y(lsa)( (&)

If the same number of active modes are taken in the domains Aand Bi.e. Ny = Ny =

N;, the current scale changing sources at scale-level s and domain Di(s)can be

rewritten in the simplified form as under:

i

= Sala bV FYY

large (1.14)
|F(' s))Y(‘ S)( (i.s)

(s) _
YS ZnN+1
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where I = [ + () is the amplitude of the nth active mode in D and

v = y {8 4 yE&SB) g the total modal admittance viewed by D in case of
passive modes. Equation .12 can be represented as a Norton equivalent Network

shown in Figure 1.6.

i
large
©

~ ‘ -

¥ i© |E®
‘o)

Figure 1.6: Symbolic representation of current scale-changing source at scale level ‘s’
in the domain D

In the computation of a scale changing network between a domain Di(s)at scale
s and the sub-domains D].(S_l)at scale s-1, the scale-changing sources of the sub-

domains are defined on the active modes of the respective sub-domain only. This is
due to the assumption that we made in the earlier section that active modes of the
larger domain interacts very weakly to the passive modes of its constituent sub-

domains.
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|.3. MODELING OF A PASSIVE PLANAR REFLECTOR CELL USING
SCALE-CHANGING TECHNIQUE (SCT)

[.3.1. Introduction

In the previous sections we have developed the basic concepts needed to
understand the scale changing technique. Now we will apply these concepts to a
practical case of passive planar reflector cell.

---------- Periodic BC
Magnetic BC
............. Electric BC

Figure I.7: A 2-D infinite reflect-array with enlarged unit-cell: Dimensions: ag=by=15mm,
a;=12mm, b,=1mm, b; and a, are variable. Substrate thickness h'=0.1mm (&=3.38), air
gap height h=4mm.

[.3.2. Geometry of the Problem

Consider an infinite array of Figure 1.7 under plane wave excitation. This
problem is equivalent to resolving the same problem for a single unit-cell under
periodic boundary conditions. The computation of phase-shift introduced to an
incident plane-wave by unit-cell reflectors when bounded by periodic boundary
conditions is an essential step of a reflectarray design process. Characterization of

each unit-cell under infinite array environment is considered as an approximation of
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the behavior of that cell in the real array. Therefore we will consider here the problem

of finding the scattering matrix of a planar reflector under infinite array conditions.

[.3.3. Application of Scale-changing Technique

1.3.3.1. Partitioning of Discontinuity Plane:

Application of scale-changing technique requires the partitioning of the
discontinuity plane. In our case simplicity of the geometry allows us to define three

nested scales (Figure 1.8). In this simple case we have only one domain at each
scale-level. Domain Df) of scale-level 3 encompasses the entire reflector plane.
Domain DEZ) at second scale-level consists of patch and slot whereas the domain

Dgl) on the bottom scale is comprised of slot only.

D, Scale 3

Figure 1.8: Partitioning the discontinuity plane of the planar reflector in its constituent
domains and sub-domains at three scales. White portions represent dielectric, Black
represents metal and grey parts represent un-partitioned sub-domains.

This problem requires the computation of one scale-changing network i.e.

between the scale-level 3 and scale-level 2 modeling the interaction between the
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active modes of Df) and Diz). This SCN will be cascaded with a surface impedance

multipole computed on the active modes of D§2> as shown in Figure 1.9.

TE,, | o |
mode * ] ¢

SCN

s} —>s2 . [Zs]
™, .| [ .|
mode * *

Figure 1.9: Global simulation of the planar reflector involves the cascade of the scale-
changing network multipole and the surface impedance multipole.

The two multipoles can be computed separately by decomposing the original
problem in two separate problems each modeling two successive scale-levels as
shown in the Figure 1.10. The resolution of the structure in Figure 1.10 (a) will give the
scale changing network multipole while the surface impedance multipole can be

obtained from the structure of Figure 1.10 (b).

1.3.3.2. Surface Impedance Multipole Computation:

The surface impedance multipole is represented in Figure 1.10 (b). The ports
on the LHS represent the active modes in domain Df) of scale-level 2. The boundary
value problem in this case is shown in the same figure above the surface impedance
multipole. Here we have the slot domain Dgl) nested inside the patch domain D@,

both resting on a dielectric slab of relative permittivity €. This boundary value

problem can be represented in terms of the equivalent circuit of Figure 1.11.
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D,? D;"
D,
o0— —o° o—1
o0— }—o o—o1,
o—— Scale —=o° o——
0——  Changing o o——ro/ Surface
Active modes | Network . Active modes . Impedance
D,® . : D,® : Multipole
. S;-->S, : >
. S
—» o—
o— —o° o—1
(a) (b)

Figure 1.10: Decomposition of the problem in two sub-problems. (a) SCN is computed
from the structure shown above the SCN multipole (b) Surface Impedance Multipole is
computed from the problem involving patch and slot domain only.

The left part of the circuit i.e. the source ]§2) along with the admittance
operator Y,, is the Norton equivalent excitation defined on the discrete orthogonal

modal-basis of D (F{"%).

72 _ 3@ — _ ¢vN®2) (1,2) 2(1,2)
=HT X = Yoo Iy "

(1.15)
22) _ vo (1,2) B(1,2)
El - n=1 Vn Fn
5 o —=(1,2 1,2) /52(1,2
Tu = Ty a|Fn Wy 2 (F (1.16)

N®2 s the number of active modes of the domain D®. 142 and V(2 are the

column vectors of size N(t?) [isting the coefficients in the matrix form.
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V(LZ) =

1,2)
VN(LZ)

(1.17)

Yn(l'z) is the admittance of nth mode. The expressions for the modal admittances for

TE and TM modes are as follows:

AR

P
Jjopo

TE modes

TM modes

(1.18)

with 1 the propagation constant of nth mode in medium i. The expression of y@ for

n

a TE or TM mode is y® = /kg — k2e®

1,@

E*]{'E']

£,

J1f.1:'

Figure 1.11: Equivalent circuit diagram to compute the surface impedance multipole.

The dielectric side of the discontinuity plane is modeled as a shorted dielectric

waveguide. Therefore the operator Y,,, represents the modes of the domain Dgz)

short circuited by ground through the dielectric. If h is the thickness of the dielectric

and y,s.p the propagation constant of nth mode in the substrate then the admittance

operator can be written as

~ _ 0 —)(1,2)
Ysub - Zn:l Fn )

1,2 (1,2
Y2 coth (Vsup )(FS?

nsub
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The electric field source Ef) is a virtual source defined in the slot domain Dgl)
(scale 1). The name virtual sources imply that unlike real sources they deliver no
electromagnetic energy and are therefore represented with an arrow across the
source. The virtual sources serve to represent two different boundary conditions at a

time in one equivalent circuit. For example in this case the field source Ef) defined in

Dgl) models dielectric boundary conditions where as the dual quantity ]51) which is

DV

only defined outside models the perfect electric boundary conditions of the

metallic surface.

It is to be noted here that both the quantities E(l) and ](1) cannot be non-zero
at the same time and therefore the energy supplied by the source which is the
product of the two quantities E and J is zero everywhere [Aubert03]. Ef) serves to

represent the tangential electric field in the slot domain on an orthogonal set of entire

domain trial functions [Nadarassin95] defined in Dgl) (ffll'l)) as under.

-1 _ @1 ,(1,1) g(1,1)
El - 11\1,:1 Vn Fn

in D{V (1.20)
—)gl) — 6

N@D peing the number of active modes in D”. The column-vector V(D of
dimensions N1 |ists the weights of the test functions.
yan — | (1.21)

(11)
VN(l 1)

Following matrix equations can be written from the equivalent circuit by using

[EgZ)] [ (2)]

1.22)
® [ 19 ] &) (
1 M + sub E

Kirchoff's laws.
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This boundary value problem may be solved by applying the Galerkin’s method. The

above matrix equation can therefore be written in terms of coefficient matrices.

(1,2) P (1,2)

0
0 |- [—Pf Pl YoupPy + PY (Yas + Youp)Po) 7 lyaw

T denotes the complex conjugate transpose of a matrix. [P,] is the projection matrix

of dimensions N2 x N@D of active modes of modal-basis F{"?on F"Y.

1,2 1,1 1,2 1,1
(FEEMD) e (FP D)

Pl = 4D Dy ) oD (29
1,2 1,1 1,2 1,1
(FN(l.Z)’ Er)y e <FN(LZ)' FN(l.l))

Similarly [P,] is the projection matrix of dimensions (M®? — N@2) x N@D of

passive modes of modal-basis F{"?on FV.

(1.2) 1) (1.2) 1)
(Fyaao, B o (s, Fyan)
Pl = ( )E @D ( )E D) (1:25)
12) L1l 12) (11
<FM(1,2)' E7)y e (FM(l,Z)'FN(1.1)>

[Yy] is a diagonal matrix of passive modal admittances. Its dimensions are (M(l'z) —

(1.2) 0
N1 yq

Yyl=| : ok (1.26)

1,2
0 S s
[Y),] is a diagonal matrix of dimensions M(12) x p(12)
(1.2)
Yioup coth (Yisuph) - 0
[Yun] = : . : (1.27)
0 YM(‘LZ)sub coth ()/Msubh)

From equation (1.23) surface impedance can be written as
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(2502 ] = Py X (P]YyupPy + P (Yag + Yeup)P) 1 x PI (1.28)

with
[Va2] = [2502 ] x [10:2] (1.29)

1.3.3.3. Scale-changing Network Computation:

Equivalent circuit of Figure 1.12 (a) represents the boundary value problem of
Fig 1.10 (a). In this case the discontinuity plane represented by the middle branch is

modeled with two sources. The current source j(ez)is the virtual source defined in D§2>

defining perfect electric boundary conditions while the electric field source e® is the
scale-changing source modeling the electromagnetic coupling with the sub-domain
as explained in section I. Assuming that both sources are defined by the same set of
orthogonal modes the equivalent circuit can be simplified to that of Figure 1.12 (b)
[PerretTh].

A Zy
1,® @

? e®

ns
sz

+(2)

(@)
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E,®

J_](B_] J1{E} E_1I:2]

ns
wZz

(b)

Figure 1.12: (a) Equivalent circuit diagram to compute the scale-changing network

multipole. (b) Simplified Equivalent Circuit.

E"f) is the excitation source defined on N3 active modes of the orthogonal

modal-basis of D§3) (75,(,1'3)). Floquet modal basis is chosen at this scale to model the

periodicity of the infinite array. Floquet modes TEy and TMgo are chosen to represent

the two plane-wave polarizations. The expressions for the Floquet modal basis can

be found in Appendix A.

(3 (13) 1,3) »(1,3
EY = SNy FLD
73) _ oo 1,3) 2(1,3)
P = e IV

V3 and 13 are the column vectors of dimensions N3,

(1 3) y L3

(1 3) Vl(1.3)
J13) = L3 = :
N(l 3) N(@3)

Operators Z,, and Z,,,, are defined as usual

5 0o 1,3 1,3 1,3
ZM — anN(1,3)+1|F( ))Z( )<F( )|

5 o | =(1,3 1,3 —(1,3
Zsub = Zn=1|F£1 ))Z( )tanh (Vnsubh)(Fsl )|

nsub
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with modal impedances defined as

' J w(’f)“ TE modes
Z' =40 (1.33)
i TM modes
Jjwe

Using Kirchoff's circuit laws following matrix equation can be written from the
equivalent circuit of Fig (b)

(3)

1| =
E?

(1.34)

(ZM + ZAsub)_1 _Zsub (ZM + ZAsub)_1 ] [E?)]
Zsub(ZM + ZAsub)_1 ZMZsub(ZM + ZAsub)_1 52)

Applying Galerkin’s method we get

1(1'3)] _[H11 H12 ya3)

vaa| = lg21 w22l * e (1.35)

With projection matrices defined as under:

[H,,] is a diagonal matrix of dimensions N3) x N (13

-1
|(Ztanh (riguph)) - 0 |
[H;4] = | : ; I (1.36)
-1
[ 0 (lell(fg)subtanh (yN(1'3)subh’)) J
[H,,] is a unitary matrix of dimensions N3 x N(12)
-1 -« 0
0o - -1

with [H,1] = —[Hy,]" and [H,,] = PJZP,

[P,] is the projection matrix of dimensions (M1 — N(3)) x N1 of passive modes

of modal-basis f‘f}‘”on f,(f'z).
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13) (1,2) 13) (1,2)
(Fyam, B o (e, Fyas)
[P,] = s : . . : . (1.38)
1,3 1,2 1,3 1,2
<FM(1,3)’F1 ) <FM(1.3)'FN(1.2))
and Z is a diagonal matrix of size (M®3 — N3) x (M@3) — N@3))
[ 1(\]1(?.)3)4.1 1(\]1(’iy)3)sub+1tanh (yN(1'3)sub+1h) 0
73 (13) tanh ( h
N2 41 T E N e BN N supa )
[Z] = : : (1.39)

(1,3) (1,3)

0 ZM(1'3)ZM(1'3)sub
7(13) | -(13)

mM@3) M3 sup

tanh (yM(1'3)subh)

tanh (v ,(1,3) ¢, ).

1.3.3.4. Network Cascade:
In this step cascade of two networks is performed to obtain the equivalent
surface impedance of the complete structure [Z] as viewed by the excitation modes

at the surface of the discontinuity plane (see Figure 1.9)

1(1'3)] _ [H11 H12 V(1,3)]

vaa| T lg21 w22l * e (1.40)

Note the negative sign in the surface impedance multipole equation to signify the
reversal of the currents in the cascading procedure.
[V = —[zs@ | x [10:2)] (1.41)

From the above equations following equation for the overall multipole can be

extracted
[103] = [vs] x [V] (1.42)
with
[Ys]= [Hy] + [Hip]([2s02 | + [Hy,]) [Hi]T (1.43)
Scattering parameter matrix is calculated by using
51= (VZul) (2] - [Z]) X (2] + 2D TZur] (1.44)

with [Z] = [Ys]™ ! and [Z)] is the modal impedance of excitation modes in air.

40



EM Modeling of Large Planar Array Structures using SCT

[.3.4. Results Discussion

1.3.4.1. Planar Reflector under Normal Incidence:

A planar unit-cell reflector depicted in Figure 1.13 has been modeled and
simulated using the approach outlined in the previous section. The discontinuity
plane of the reflector cell is comprised of slotted patch centered on two dielectric
layers. The dimensions are indicated in the figure captions. The simulations have
been performed for nine distinct unit-cell geometries obtained by varying metallic
patch width (b1l) and slot length (a2) (Table-1.1). This infinitely thin metal patch rests
on a 100um lossless dielectric (¢, = 3.38) which is in turn placed on a 4mm air-cavity
with a ground-plane at the bottom. Normal plane wave with electric field linearly
polarized perpendicular to slot-length is considered as excitation source. The results
presented are for the phase of the reflection coefficient (S11) calculated at the plane

of the discontinuity plane.

b0
b1

al

-

al

Figure 1.13: Geometry of Planar unit-cell reflector. Dimensions: ag=by=15mm, a;=12mm,
b,=1mm, b, and a, are variable. Substrate thickness h1=0.1mm (&=3.38), air gap height
h2=4mm.
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1.3.4.1.1. Convergence Study:

As described in the previous section, the tangential electromagnetic field in
different regions of the discontinuity plane is defined by the orthogonal set of modes
of the domain. Precise description of field quantities would require adequate number
of active and passive modes to be considered at each scale-level. Appropriate
number of modes may be chosen by a systematic convergence study. This study
involves plotting reflection coefficient phase results with respect to the number of
modes at each domain to find the appropriate number for which the results converge.

Case 1 2 3 4 5 6 7 8 9
bl 2446 6 8 10 10 12
a2 7464 10 8 6 10 10

Table 1.1: Above nine planar unit-cell geometric configurations are simulated.
Dimension bl and a2 (in mm) are the width of the patch and the length of the slot
respectively.

Convergence study results for the sixth reflector-cell configuration at the
centre frequency of 12.1GHz are shown in Figure 1.14. Figure 1.14 (a) shows the

convergence of the reflection coefficient phase with respect to the number of active
modes N2 in the patch domain D® and the number of passive modes M®3) taken

inside the periodic waveguide (discontinuity domain Df). It is apparent that there is
no significant variation in phase results for waveguide modes greater than 2500.
Similarly around 600 active modes in the patch domain are required for the phase

convergence with in 3° margin.

Figure 1.14 (b) plots the convergence curves with respect to patch active

modes and the number of active modes NV taken in the slot domain D'". Here,
again the flat part of the curves demonstrates the convergence of reflected phase. It
is evident from the curves that convergence is achieved if the number of patch active
modes is taken between 600 and 1000 and the number of slot active modes is taken
between 80 and 120. However, if the number of slot active modes exceeds a certain
limit, matrices become ill-conditioned leading to the loss of convergence as can be

seen by the sudden drop in two lower curves. This numerical problem can be
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attributed to the use of entire domain trial functions and is analogous to the one

observed classically in the Mode Matching Technique [Lee71].
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Figure 1.14: Convergence study of phase of reflection coefficient for case6
(b1,a2)=>(8,8), Frequency 12.1GHz : (a) Convergence with respect to number of modes
in the waveguide (Legend indicates number of patch modes); (b) Convergence with
respect to number of modes in the slot (Legend indicates number of patch modes).
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For this reflector-cell configuration we have chosen 5000 waveguide modes,
1000 antenna active modes and 120 slot active modes. For these numbers, the
convergence achieved is within 1° margin. It should be noted here that the phase
convergence is not very sensitive to number of passive modes in a domain as long
as a significant number is taken. 1000 passive modes were taken in the patch
domain M®?for the simulation results presented in this section. However a rigorous
convergence study is required to determine the number of active modes which

characterize the mutual coupling between different scales.

1.3.4.1.2. Results for the phase of Reflection Coefficient:

The nine unit-cell configurations are simulated using Scale-changing
Technique over the frequency range of 11.7GHz to 12.5GHz using the convergence
results at the centre frequency for each configuration. Same structures were
simulated using Finite Element Method based commercial software (HFSS verll)
under periodic boundary conditions and Floquet port excitation. Table-1.2 lists the
values of the reflected phase obtained by SCT and HFSS simulations for all nine
configurations at center frequency (12.1GHz) under normal incidence conditions.
Difference in the results between the two techniques is listed in the third row. It is
evident that the results agree nicely with a maximum difference of 6.1° for the fifth
configuration. The overall average difference between two techniques for all the
configurations is 3.1° at the center frequency.

[ Case | 1 | 2 | 8 | 4 | 5 | 6 | 7 | 8 | 9
4SS0 26120 2041° 2328° 11625° 156120 4453 11690 117.2°

pISNNE  46.21° 27.94° 20.93° -21.54° 12235° -151.49° -143.01° 123° 122.4°

03180 080 1740 610 46F 1S° @ s

Table 1.2: A comparison of the Si; phase (in degrees) obtained by SCT and HFSS at
centre frequency (12.1GHz) for all the nine cases under normal incidence. Third row
lists the absolute difference between the two results.

Usually the results over the entire frequency band are required to visualize the

phase variation with frequency. In Figure 1.15 the phase curves for the first seven
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configurations are plotted over the entire frequency band i.e. 11.7 to 12.5 GHz. The
results of HFSS simulations are represented on the same figure for comparison
purposes. Again the two results agree very closely with maximum difference of 6° for
the fifth case. The convergence criterion used in case of HFSS simulations is As
equal to 2% which means mesh refinement stops when the difference in the S-

parameter matrix for two consecutive passes is less than 2%.
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Figure 1.15: Phase results over the entire frequency range (11.7 — 12.5GHz) for the
first seven geometric cases. (——) SCT (x x x) HFSS.

1.3.4.2. Planar Reflector under Oblique Incidence:

The same nine unit-cell configurations have been studied under oblique
incidence excitation. To simply the geometry only a single layer of dielectric is
considered shorted by a ground plane. Therefore the results presented in this section
are for the configurations in which only the air-cavity acts as the dielectric. All other

dimensions remain unchanged.

Plane-wave incidence is defined by the angle 8 and ¢ as shown in the Figure-
[.7. The horizontal and vertical polarizations of the plane-wave are characterized by

TEgo and TMgo Floquet propagation modes.
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0 0° 10° 20° 30° 40° DIFF
HFSS SCT HFSS SCT HFSS SCT HFSS SCT HFSS SCT
1 46 47.2 47.1 49 54.7 55 65 67.1 785 785 1.02
2 24.3 29.7 28.9 31 36.8 38 48.4 50 64.2 65 2.02
3 20.7 24.6 23.5 26 32.4 34 45 46 61.7 62 1.95
4 -21.7 -17 -19.1 -15 -11.1 -8 0.71 4 13.7 17.53 3.62
5 123 1229 122 107 119 104 114 102 109 101  8.92
6 -148 -151.5 -151 -153 -155 -158 -166 -169.2 -195 -198 2.92
7 -144 -143.8 -146 -143.7 -152 -151 -169 -166.5 -214 -208 2.8
8 125 117 118 1145 111 1086 101 102.6 89 925 4.8
9 124 1165 116 1115 996 102 77.6 96 37.4 56 9.91
DIFF 3.44 4.31 3.21 5.44 4.77

Table 1.3: A comparison of the S;; phase (corresponding to the reflection co-efficient
of Mode TEq) at the centre frequency 12.5GHz under incidence oblique (¢=0°)

0 0° 10° 20° 30° 40° DIFF
HFSS SCT HFSS SCT HFSS SCT HFSS SCT HFSS SCT
1 149 1478 150 149 149 148 144 1464 135 143  2.42
2 172 1735 172 173 171 171 167 1675 153 156  1.20
3 171 1739 172 173 171 172 166 168 153 156  1.82
4 -173 -171.5 -173 -172 -174 -1733 -179 -1784 -195 -194 1.19
5 -174 -1706 -174 -171 -176 -1725 -179 -177 -196 -193 2.60
6 -163  -160.8 -162 -160.8 -164 -162.1 -169 -167.4 -185 -184 1.80
7 -157 -152.4 -156 -153.1 -157 -154.6 -161 -161.3 -178 -176 2.70
8 -155 -1523 -155 -151 -156 -153 -161 -158 -178 -173.7 3.12
9 -152  -148.7 -151  -150 -152 -154 -157 -163 -173 -173.6 2.42
DIFF 1.55 1.34 1.88 1.99 2.89

Table 1.4: A comparison of the Sy, phase (corresponding to the reflection co-efficient

of Mode TMy) at the centre frequency 12.5GHz under incidence oblique (¢@=0°)
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Figure 1.16: Phase results over the entire frequency band. Simple lines represent SCT
results. Lines with markers represent HFSS results (a) TEq (b) TMgo

Table 1.3 lists the reflection phase results of TEyg mode for several different
angles of incidence. In this case we have varied the angle theta from 0° to 40° in
¢=0° plane. The results are compared to those found with HFSS simulations. The
last column of the table gives the average difference between the SCT and HFSS
results for that particular configuration whereas the last row gives the average
difference for all the configurations at a particular incidence. We find a good

agreement between the results of two techniques i.e. within £3° range except for
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configuration 5 and 9. The slightly larger difference in results for these two cases can

be attributed to the convergence issues of their HFSS simulations.

Table 1.4 lists the phase results of the reflection coefficient corresponding to
the vertical polarization i.e. TMgy for the same incidence angles. Here again the
results compare nicely to the results obtained by HFSS. It is important to note that at
12.5GHz and for the incidences given we have only two Floquet propagation modes
l.e. TEgo and TMgo. The incidences are chosen to avoid the appearance of spurious

modes.
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Figure I1.17: Variation of S;; phase with respect to the angle of incidence (8 from 0° to
40°)

Figure-1.16(a) and Figure-1.16(b) plot the phase results for the two
polarizations over the entire frequency band. Only the results of a limited number of
configurations are depicted to avoid over-crowding of the figures. Simple lines
represent the SCT results while the lines containing markers plot the HFSS results.
Again a good agreement between the results of the two methods can be seen over

the entire frequency band. Here in the case of both HFSS and SCT the convergence

criterion for each configuration is determined at the centre frequency only and the
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results over the entire frequency band are calculated using this convergence criterion
(mesh description in the case of HFSS and the number of modes in the case of
SCT).

It would be interesting to plot the variation of reflection coefficient phase with
respect to the change in the incidence. The variation of phase results of TEqg mode
with the change in the incidence angle can be seen in Figure 1.17. It can be seen that
for certain configurations the variation of phase is over a much larger range than the
others. The direction of the phase change for each configuration is indicated by the
grey arrows.
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Figure I.17: Variation of the magnitude of S;, with respect to the incidence angle.

The coupling between the modes TEq, and TMgo gives the measure of cross-
polarization component of the back-scattered field. The magnitude of S;, is plotted in
Figure 1.18 for five different configurations. It is apparent from the results that the
inter-modal coupling is very small (lower than -40dB) for all configurations and for all
incidence angles in ¢=0° plane.
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l.4. CONCLUSIONS

In this chapter we have presented the underlying theory of the Scale-changing
Technique and explained certain concepts involved in the application of this
technique to the planar structures. It has been shown that the Scale-changing
Technique is particularly suited for the applications that require large complex planar
geometries with patterns varying over a wide scale-range. The concept of scale-
changing network to model electromagnetic coupling between adjacent scale-levels
is introduced and it is shown that the computation of these SCNs is mutually
independent. This formulation, by its very nature is highly parallelizable, which gives
SCT a huge advantage over other techniques that have to be adapted for distributed
processing.

In the second half of this chapter the Scale-changing technique is applied to
the case of a typical reflector cell under infinite array conditions. The results for the
phase-shift introduced to a linearly polarized plane-wave under both normal and
oblique incidence are calculated and compared to the results obtained by another
simulation tool. The good agreement between the results demonstrates that SCT is a

reliable design and simulation technique.
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Electromagnetic Modeling using SCT

II.1. INTRODUCTION

In the previous section we have detailed the underlying theory and working of
scale-changing technique with the example of passive reflector under infinite array
conditions. In this section we will see how this technique can be used to efficiently

model large arrays of non-uniform geometry.

First of all we will introduce the concept of a bifurcation multipole which is
essentially a scale-changing network to model the electromagnetic coupling between
neighboring cells in an array. Mutual coupling between two planar dipoles will be
characterized with the help of this scale-changing network and it will be demonstrated
that in the case of a planar dipole array the mutual coupling effect is accurately taken
into account when modeled using SCT. Later we will use the bifurcation scale-
changing network to compute the surface impedances of 1-D arrays of metallic strips
and patches inside a parallel plate waveguide. A comparison of simulation-times with
that of conventional techniques will be made to emphasize the efficiency of SCT.
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Later in the section, the concept of this bifurcation scale-changing network is
enhanced to incorporate the mutual coupling in 2-D arrays. Large non-uniform planar
array structures are analyzed for plane-wave scattering problem and a good
agreement is obtained with the simulation results of conventional simulation tools.
Later these structures are analyzed using pyramidal horn as an excitation source.
Results are presented for two source configurations i.e. when the source horn is
placed at a vertical distance from the centre of the array and when the horn is placed
at an offset with an angle of incidence. A comparison of simulation times is given for

each case.

53



Electromagnetic Modeling using SCT

11.2. MODELING OF INTER-CELLULAR COUPLING

[1.2.1. Bifurcation Scale-changing Network

Consider a small array of two unit-cells placed side by side horizontally. Each
of the unit-cells can be characterized independently by its surface-impedance matrix
(SIM) using an ortho-normal modal-basis defined on unit-cell's domain. To model the
overall behavior of this simple two-cell array, mutual electromagnetic interactions
between the cells have to be taken into account. These mutual interactions are
characterized by a scale-changing network which when cascaded with the surface
impedance matrices of individual unit-cells will give the overall surface impedance or
admittance that characterizes this array. The parent-domain Qq along with the sub-
domains Q; and Q. (unit-cell domains) can be visualized as the openings of a
bifurcated waveguide as shown in Figure II.1, the scale-changing network multipole is
therefore dubbed as the bifurcation multipole.

Figure 11.1: Electromagnetic coupling between two adjacent unit-cell domains D; and
D, modeled by a waveguide bifurcation. Inter-modal coupling between parent domain
Do and daughter domains D; and D, can be represented by a bifurcation Scale-
changing network.
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Note that in the case of a linear array (unit-cells arranged in one dimension) of
non-uniform cells, electromagnetic modeling of an entire array is a simple iterative

cascade of the bifurcation scale-changing networks as shown in the Figure 11.2.

Figure 11.2: Cascade of Bifurcation Multipoles to model the mutual coupling of a linear
array.

11.2.1.1. Equivalent Circuit Diagram:

The equivalent circuit to compute the bifurcation scale-changing network
between a generic scale s and its subsequent scale s-1 is represented in Figure 11.3.
Electromagnetic sources forming the two branches of the circuit model the transverse
fields in the two sub-domains lying at scale s-1. The source part of the circuit
represents the excitation electromagnetic fields of scale-level s as described in

Section-| of this thesis.
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The current sources jo¥ and j'® are the virtual-sources defined in the aperture
domains to model the perfect dielectric boundary conditions. The electric field scale-
changing sources e® and e® on the other hand represent the tangential
electromagnetic fields in the aperture domains. The tangential electromagnetic field
in the parent domain Dy (at scale s) is represented by the source E. Virtual sources
and the scale-changing sources when defined in the same domain and using the
same modal-basis can be modeled by a single equivalent source [PerretTh Pg-27].
This simplification reduces the analytical calculations of the circuit. A simplified
version of equivalent circuit is thus shown in Figure I.4 with the new equivalent

current sources j¥ and j*?.

1 (1 7'2
jo" jo®

? el j(1) el j(z)

Figure I1.3: Equivalent circuit diagram of a bifurcation Scale-changing Network. The
dual quantities are shown in red.

Assuming N1 active modes in Do and N2 in each of the daughter domains (D1,
D,) we can express the electromagnetic field quantities in terms of mathematical

equations written using the equivalent circuit of Figure 11.4.

E = gilvnFn

(1.1)
J = 2=l By
F, is the orthogonal modal-basis defined in Do, Similarly,
Z = Z‘?:N1+1|ﬁn)zn(ﬁn| (1.2)
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where Z, is the equivalent parallel modal impedance in the two half-regions. For
example, if we have two different substrates at the two sides of the discontinuity
plane, assuming air on one side and a dielectric with relative permittivity &, on the
other, modal impedance of the nth passive mode Z, is the parallel equivalent of

modal impedances of that mode in each of the dielectric domain and is written as:

€0 »&r
Zn Zn

n=— €0 Er
Zn +Z,

(11.3)

J o c@

(1) :(2)

Figure Il.4: Simplified Equivalent circuit. Virtual source and the scale-changing source
of each branch (when defined in the same domain and using same orthogonal modal-
basis) can be replaced by a single current source.

[I] and [V] are the column vectors of size N1 listing the coefficients of equation II.1.
I Vi
s ] vl=| :

IN1

[1] =

: ] (I1.4)
VNl

Considering the modal-basis ffll) and ff)in the two sub-domains the tangential fields

in them can be expressed on their respective modal-basis. For sub-domain D;

JB =y (@0

n=11ln
(11.5)

e® = T v £

similarly for sub-domain Do,
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J (2) _ v (2) f(z)

- nln
(11.6)
o o 2 2
e = nlr(z)()

with the coefficient vectors of eq-11.5 and eqg-11.6 are defined on the active-modes in
each sub-domain.

oo
(k) v(k)
N2

Inz
In order to compute the multipole-matrix that characterizes the bifurcation multipole,
we need to find a relation between the quantities defined in the parent domain to that
defined in sub-domains. As these quantities are defined on the active-modes of their
respective modal-basis, they form the ports through which tangential fields at one
scale can interact with the tangential fields of the other. The relation between the
fields at two scales can be written from the equivalent circuit of Fig-1l.4 using

Kirchoff's laws.

J 0 -1 -1 E
cw|=1 2 Z|x|[j® (11.8)
Ne) 1 Z Z j@

Solving the matrix equation of eqg-1l.8 by applying Galerkin’'s method gives the

following:

(1)] Pu)r P(l)r p® pOTzp®| x |[i®] (11.9)
[v®@]] [p@T p®Tzp® pATzp® [i@]

where T denotes the complex conjugate transpose. If M denotes the multipole-matrix
that characterizes the bifurcation-multipole which relates the tangential fields at scale
s and s-1 defined on the active modes, then eg-I1.9 can be rewritten as under:
[1] [V]
[v®]| = [M] x |[i?] (11.10)

[v®] [(®]
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The constituent sub-matrices of M are defined here.[Pl(k)] is the projection matrix of

dimensions N1 x N2 of active modes of modal-basis F,, on f(k)

(Fu i50) (P fis)
p®] = : A D k=12 (I.11)

Fri, fO) - (Fyp, f)

Similarly [Pz(k)] is the projection matrix of dimensions (M —Nl) X N2 of passive

modes of modal-basis F,, on 4.

k
( N1+1» ( N1+1: ( ))

B [ . V=12 (1.12)
<FM.f1“‘)> <FM,f,5">>

The bifurcation multipole defined by the matrix [M] characterizes the electromagnetic
coupling between two consecutive scale-levels and serves as a basic block to model

the mutual coupling between the elements of an array structure.

N2

Figure 11.5: Scattered Electric Field from two half-wavelength dipoles separated by a
distance ‘d’ allows characterizing the mutual coupling with respect to distance.
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[1.2.2. Mutual Coupling between half-wave dipoles

To demonstrate that the scale-changing network described in the previous
section accurately models the mutual coupling between the elements of an array, a
classical example of mutual coupling between two half-wave dipoles has been

considered in this section.

Two thin metallic strips of half-wavelength dimensions are represented in
Figure 1.5 separated by a distance d between them. Given a plane-wave incidence,
a half-wave dipole reradiates the field uniformly around its axis but in the elevation
cut-plane the maximum radiated energy is along 8=0° direction (z-axis taken out of
the plane containing dipoles). We will use the magnitude of electric field in the
maximum energy direction as a parameter of measure for the mutual coupling

between the two dipoles.

N2 N2 D>>\

[

m

——
B

Figure I1.6: Mutual coupling effect disappears when the separation D is many orders of
wavelength.

The phenomenon can be illustrated as shown in Fig-1l.6. An incidence field E
induces the surface currents l;; and I, on the two dipoles. These induced currents
will in turn induce coupling currents I, and 11, on the neighboring dipole. The radiated
field E; is thus comprised of three components; E; and E, are radiated by current
sources l;; and Iy, where component Ey is radiated by the coupling currents I,; and

l12 and is a function of dipole separation. In the absence of mutual coupling e.g. when
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the distance between the two dipoles is many orders of wavelength, Ey is zero and
the total radiated field E, is a simple summation of the individual fields radiated by

each dipole.

Figure 1.7 plots the Radar cross-section ratio (SER ratio) of a couple of
dipoles to that of an isolated dipole computed analytically. The analytical expression

Is given by the following equation:

g _ 4
7 |1+§—;§|2

where Z,; is the input impedance of a single dipole as seen by the incident plane-
wave and is constant. Z;, on the other hand is the mutual impedance of the two
dipoles and is a function of separation (d) between them. In the absence of the
mutual coupling Z;, reduces to zero and we have a fixed value of the SER ratio that
computes to 6dB. When d is equal to zero, the two dipoles overlap and are
essentially seen as a single dipole and the SER ratio reduces to one (or 0 dB). As the
separation is progressively increased a steadily decreasing sinusoidal behavior is
observed around fixed SER ratio of 6dB. The sinusoidal nature can be attributed to
the constructive or destructive nature of mutual interactions between the coupling
currents induced by the incident wave on the two dipoles. As the separation
increases in terms of wavelength, the mutual interactions tend to die out and the SER
ratio tends towards the fixed SER ratio of 6dB.

As the radar cross-section is directly proportional to the scattered field E; a
similar behavior can be seen when E; is plotted against d and therefore the radiated

field can be used to characterize the effect of mutual coupling between two dipoles.
- 2
|Ex|

N
|Einc|

o = 4mr? >
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Figure I.7: Variation of the SER ratio of the dipoles with respect to separation ‘d’. Blue
dotted line shows the SER ratio in the absence of mutual coupling.

[1.2.2.1 Simulation Results

Two rectangular dipole strips of lengths 12mm each are simulated as a simple
two cell array under plane-wave incidence. A single scale-changing network is
required to characterize the mutual coupling between the two strips. The strips were
simulated multiple times by varying the distance between them. The radiated E-field
(computed along 6=0° @=0° direction) is plotted against the separation d varied over

one wavelength (Fig-11.8).

The steadily decreasing sinusoidal behavior with respect to the separation d is
apparent from the results of Fig-11.8. The reradiated field in the absence of mutual
coupling can be found by simple summation of reradiated fields by isolated dipoles.

This is represented by the dotted straight line at the centre of the plot.
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Although the sinusoidal nature of the curve shows the presence of significant
mutual coupling between the dipoles, to validate that the bifurcation scale-changing
network can accurately model its effect, the SCT results need to be compared to
those obtained by another full-wave analysis method. The same problem was
simulated using a MOM based technique (IE3D) and the results are presented in the
plot of Fig-11.8 for validation purposes. It is found that the results obtained by two
technigues agree closely which validates the point that SCT accurately characterizes

the effects of mutual coupling between the elements of an array.

20

SCT —e—
MOM
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o

Simple summation! of the scattered E-field by
the two dipoles

Max |Etheta | (E-plane) (mV/m)

0-5 4/Lambda 1
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o

Figure 11.8: Characterization of mutual coupling for two dipole strips at 12.5GHz. SCT
results (-0-) IE3D results (---)
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a

Figure 11.9: One dimensional (linear) array of non-uniform unit-cells. Dotted lines mark
the unit-cell boundaries. Non-uniformity arises from the arbitrary shape of the metallic
pattern of each unit-cell.
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Figure 11.10: (a) A finite 1-D non-uniform array of infinitely thin and lossless metallic
strips (b) A typical unit-cell when placed inside a parallel plate waveguide (c)
Transverse discontinuity plane at z=0. Dotted lines represent PMBC. Solid lines (top
and bottom) represent PEBC. a=10mm b=9mm x=2mm @ 5 GHz
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11.3. MODELING OF NON-UNIFORM LINEAR ARRAYS (1-D)

[1.3.1. Introduction

In this section the characterization of linear arrays using iterative cascading of
bifurcation scale-changing networks will be demonstrated. Later on in this chapter a
similar procedure will be employed to the full-wave analysis of large 2-D planar
arrays.

A general 1-D non-uniform finite array of arbitrary shaped patches is shown in
Figure 11.9. The non-uniformity arises from the fact that each unit cell has a different
geometry from that of its neighboring cells. Therefore the mutual coupling between
cells can vary over a large scale between various neighbors. Analysis techniques
used for uniform array structures which assume uniform mutual coupling between all
cells may not be applied in this case and can lead to inaccurate results especially
near the resonance frequencies of the metallic patterns where mutual coupling is
strong.

The tools capable of modeling precise mutual coupling in non-uniform arrays
promise more robust designs. To demonstrate the advantages of SCT in modeling of
finite non-uniform array problems it is applied to a special case of 1-D non-uniform
array of thin metallic strips. The strips are of uniform width though the position of
each strip within the unit-cell is variable. As the distance between neighboring strips

varies the mutual coupling between them is not constant.

[1.3.2. Characterization of a metallic-strip array

The problem of electromagnetic diffraction from a thin lossless metallic strip is
very well known. It has been shown that the higher order modes excited by the
presence of a lossless metallic strip discontinuity inside a rectangular waveguide are
purely inductive in nature [Collin91]. Therefore a linear array of metallic strips can be

characterized by its equivalent inductance inside a parallel-plate waveguide.

A finite, non-uniform 1-D array of perfectly conducting thin metallic strips is

shown in Figure 11.10 (a). A unit-cell consisting of a single strip is shown in Figure
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[1.10 (b) and Figure 11.10 (c). Position of the strip along x-axis can be varied to obtain
several different unit-cell configurations. Several of these unit-cells can then be

combined to form a 1-D array.

1.3.2.1 Application of Scale-changing Technique

The application of Scale-changing Technique requires the partitioning of
array-plane in domains and sub-domains defined at various scale levels. For instance
an array consisting of 8 unit-cells can be partitioned as shown in Figure 1.11. At the
lowest scale (s=1) the domains are defined along the unit-cell boundaries. At scale-
level 2 two adjacent unit-cell domains can be modeled into a single domain using
bifurcation network making four domains at scale 3. This iterative process goes on

until the entire array domain is reached at the top-most scale.

Figure Il.11: Decomposition of the discontinuity plane in five scale-levels.

Each of the unit-cell is modeled alone and is represented by its characteristic
surface impedance multipole [Zs]. Two of these unit-cells can be grouped together by
cascading a bifurcation SCN multipole with the surface impedance multipoles of the
unit-cells. At scale-level 2, four bifurcation multipoles are required to group eight
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cells. Similarly at scale-level 3, two bifurcations are required to group eight cells and

finally at the fourth scale only one bifurcation multipole is needed.

Eo j e Nz

(a) (b)

Figure 11.12: (a) Equivalent circuit diagram representing a unit cell metallic-strip
discontinuity (b) Surface Impedance Multipole defined on the active modes of the unit-
cell domain.

It is worth noting here that the computation of all multipoles, at which-ever
scale they are present, is mutually independent of one another. This essentially
means that each multipole can be computed in parallel on separate machines and it
is only as a final step the resulting matrices are cascaded to obtain the overall

simulation results for the entire structure.

11.3.2.1.1 Computation of Surface Impedance Multipole

The computation of surface impedance multipole [Zs] has to be performed for
each unit-cell. The problem can be represented by the equivalent circuit diagram of
Figure 11.12 (a). The voltage source Ep represents the tangential electric field defined
on the active modes of the unit-cell domain. The impedance operator Z represents
the modal impedances of higher order modes that are excited due to the presence of
metallic strip discontinuity. And the current source j represents the surface currents
induced on the strip. Galerkin’s method is applied to compute surface impedance
matrix (Zsurf) Which characterizes the surface impedance multipole. It should be noted

here that the number of active modes would be chosen by a comprehensive
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convergence study to precisely define the coupling between two adjacent scales. The
boundary value problem for the first unit-cell domain at scale-level 1 can be

expressed as:
[U] = [Zsurf] [l] (”13)

where the v and i are defined on N2 active modes of the domain.

Vo i
[v] = [ : ] [i] = [ : ] (1.14)
VN2 Iz

11.3.2.1.2 Computation of Bifurcation Multipole

The computation of a general bifurcation multipole matrix between a scale s
and subsequent scale s-1 was given in section 11.2 and is represented mathematically

by equation 11.10.

| ing v
VOT%O— Ms,s-1 T N2
Ins- o
VN1T+ +TV 0
L iN2

Figure 11.13: Bifurcation Scale-changing Network Multipole characterizes mutual
coupling between scale-level ‘s’ and ‘s-1’

The scale-changing network multipole between a domain at scale s and two
sub-domains at scale s-1 in represented in Fig-11.13. The tangential field defined on
N1 active modes of the parent domain is represented by N1 ports on the LHS of the
scale-changing network. The fields defined in the two sub-domains, defined on active
modes (N2 and N2’) are represented by two sets of ports on the right-hand side. This

field interaction can be expressed analytically by the following matrix equation:
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[1] V]
[v®]| = (M1 x |[iV] (11.15)
[v®] [i(@]

[M®*!] can be expressed in its component sub-matrices.

[M11] [M12] [M13]
[MSs=1] = |[M21] [M22] [M23] (11.16)
[M31] [M32] [M33]

L(s) o
I MM T v
0, [ M(@s)

[ ()
Lis) | o

L

Figure 11.14: Electrical Model of the Bifurcation SCN Multipole defined on single TEM
mode in each domain.

11.3.2.1.3 Computation of the cascade

The complete simulation of full array is performed by a simple cascade of all scale-
changing networks and their underlying surface impedance multipoles. A general

cascade step of this iterative process is computed by the following equation.

51 [Zows'l  [0] M22] [M23]7\ _ [[M21]
[vsL,] = [M11]—<[[M12] [M13]] x([ [O]f . +[[M32] [M33]D x [[M31]] (11.17)

surf

[Zsu™™] and [Zsui™?] are surface impedance matrices characterizing the sub-
domains at scale s-1. [Ysur™*] which characterizes the parent domain at scale s, is
found by cascading SCN [M*'] with [Zsu ™! and [Zsu"1?]. The relation of these

impedances with the quantities of eg-11.15 is given by:
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] = ~[z52] [1@] [v®] = ~[z527] 1) (118

surf

= [Yaurs] V] (1.19)

For a very simple case where all tangential fields are defined on a single mode (e.g.
TEM mode) the bifurcation multipole can be represented by its equivalent electrical
network of two inductances as shown in the Fig-11.14. The mutual coupling between
the domains can be visualized by the mutual inductance in this case.

11.3.2.2 Simulation Results and Discussion

Consider a unit-cell shown in Fig-11.10 (c) placed in a parallel plate waveguide.
The objective is to determine the equivalent inductance presented by this strip under
the excitation of the fundamental TEM mode. The symmetry of the problem along the
Z-axis permits to treat the problem in even and odd order solutions by using perfect
magnetic boundary conditions (PMBC) and perfect electric boundary conditions
(PEBC) in the discontinuity plane at z=0. It is clear that for the second case the
solution reduces to zero due to short circuit produced at the discontinuity plane by
PEBC. Therefore we are interested only in the even order solution where the
discontinuity plane is characterized by PEBC in the metallic strip region and PMBC in

the non-metallic region.

_ _ Inductance (nH)
Configuration

SCT HFSS
A (x0= Omm) 8.46 8.89
B (x0= 2mm) 4.85 5.19
C (x0= 4mm) 4.0 4.32
D (x0= 6mm) 4.87 5.19
E (x0= 8mm) 8.51 8.89

Table Il.1. List of possible unit-cell configurations and their inductance results in
single-cell environment.
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We can obtain five possible configurations of the unit-cell by simply displacing
the metallic strip along the x-axis. Table 1.1 lists all five configurations. These
configurations are named A, B, C, D and E and they will be used as the constituent
building blocks to construct finite arrays. The equivalent inductance values for each
of the configuration as obtained by SCT and HFSS are listed in the second and third
column respectively. For a single cell the problem can be solved analytically
[Aubert03] to validate the SCT results.

6

N

Inductance (nH)
@
9

-

———

00 5 10 15 20 25 30
Number of active (coupling) modes

Figure 11.15. Convergence results for a 2-cell array. Note matrix ill-conditioning
problem for more than 15 modes for a classical mode-matching technique. Padé
approximants ( o ) and conjugate gradient method (-0-) can be used to improve
convergence by increasing the number of modes without introducing large numerical
errors at a cost of increased simulation times.

Figure 11.15 depicts the convergence results for a two-cell array (configuration
CC), when the array is modeled using one bifurcation stage. Here the inductance
curve is plotted with respect to the number of active modes taken in each unit-cell
domain. It is apparent from the plot that the choice of mode count is limited due to
matrix ill-conditioning problem [VoyerTh] if more than 15 modes are taken.

Two techniques have been used to overcome this problem in our case. Padé

approximants [Brezinski94] can be used to extend the range of modes to reach
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convergence without encountering the ill-conditioned matrices but this approach is
not easily applicable for 2-D problems [Bose80]. Alternatively an iterative technique
called method of Conjugate Gradients [Sarkar84] can be employed to compute the
unit-cell surface impedance multipoles which can then be cascaded with bifurcation
multipole to model overall problem. The curves resulting from the two techniques are
plotted against each other in Fig-11.15. It can be noted that the convergence is

achieved in both cases over a larger range of active modes.

Simulation Time (sec)

Array Size
SCT HFSS

1 cell 0.14 18

2 cells 0.59 27

4 cells 0.61 33

8 cells 0.64 36
16 cells 0.68 55
32 cells 0.71 53

Table II.2. Simulation times comparison for SCT and HFSS.

1-D array of 2" strip elements can be constructed by cascading n levels of
bifurcation multipoles. Table 11.2 lists the inductance results for finite arrays of various
sizes with number of cells ranging from 2 to 32. The execution time comparison is
made for SCT and HFSS simulations. It is clear from the results that for SCT the
simulation time increases linearly with the exponential increase in number of array
cells, whereas in HFSS which is linear-meshing technique execution time increase
exponentially with every additional mesh-refinement. This difference in execution
times will be more apparent for the applications with complex unit-cell geometries.
These simulations are carried out on a PC with x86 based processor with clock
frequency of 3.19 GHz and 2GB of RAM. The convergence criterion used in HFSS

simulations is to achieve 2% of convergence on S-parameters matrix.
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Figure 11.16 plots the results of convergence for a 16 cell array with respect to
active-modes at the unit-cell domain. It can be seen that 30 modes are enough to
define precise coupling at that scale level. To define intermediate coupling between
different bifurcation levels no more than 10 modes are necessary. It is clear that for

more complex structures we will need a lot more modes to reach convergence.

0.4
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o
o

o
o
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Figure I1.16. Convergence results for a 16-cell array.

Inductance (nH)

Array Size Unit-cell Arrangement
SCT HFSS
2 cells BC 2.34 2.13
2 cells DB 2.57 2.30
4 cells DACD 1.30 1.24
16 cells ABCDBCABECAABAAD 0.30 0.29
EAEAEAEAEAEAEAEA
32 cells EAEAEAEAEAEAEAEA 0.27 0.26

Table I1.3. Inductance results for non-uniform arrays
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Various sized 1-D strip arrays with different unit-cell configurations arranged in
no-particular order are simulated and the results are presented in Table I1.3. Here the
results for array comprised of up to 32 unit-cells are presented. For larger arrays
HFSS fails to converge with the available amount of memory.

-
N

-
N

-
o

Normalized Computation Time

01 2 3 4 5 6 7

Iteration

Figure I1.17. Evolution of the normalized computation time with respect to bifurcation
iterations used. For an iteration n the array consists of 2" cells.

The evolution of computation time with respect to the array size is traced in
Figure 11.17 for the two simulation techniques. Number of bifurcation iterations is
taken along horizontal axis. For an iteration n the array size is equal to 2" cells. The
computation time is normalized with respect to the time taken to compute a simple
two-cell array using a single bifurcation network. It is quite obvious from the plot that
the simulation time increases linearly in case of SCT though there is an exponential
increase in the array size. On the other hand for HFSS the evolution of computation
time is exponential. It can be concluded from these results that real advantage of
SCT over conventional methods is when the array-size is really large i.e. when seven

or more bifurcation iterations are involved.
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[1.3.3. Characterization of a metallic-patch array

In previous section SCT was applied to a linear array of metallic strips. In that case
our problem was symmetric along y-axis and therefore the analytical expressions for
the modal-basis were simplified (no y-dependence). In real life rectangular patches
are most commonly in planar radiators and scatterers therefore it would be

interesting to simulate linear arrays of variable sized metallic patches.

11.3.3.1 Introduction

Consider the 1-D non-uniform patch array of Fig-11.18 (a). Each unit-cell of the
array is different from the other in terms of difference in dimensions of its patch.
Consider a typical unit-cell of such an array shown in Fig-11.18 (a & b) when placed
inside a parallel plate waveguide. The patch is considered to be infinitely thin and
lossless. In its isolated state each cell can be characterized by its surface-impedance
matrix multipole, where each port represents a propagating mode in the parallel plate
waveguide. An entire array can be characterized in a similar fashion. The numerical
results presented here correspond to TEM mode excitation. Figure 11.19 depicts four
unit-cell configurations named A, B, C and D that will be used to construct the arrays.

B m o] « leoEgcec@Bfo=m®BE
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R e
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A
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N Y

(b) ao (©)

Figure 11.18: (a) A finite 1-D non-uniform array of lossless metallic patches (b) A
typical unit-cell when placed in a parallel plate waveguide (at z=0) a0=10mm,
b0=10mm, (c) Longitudinal view (patch thickness = 0)
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Figure 11.19: Four unit-cell configurations that are used to construct 1-D finite
arrays of Tablel. Patch dimensions for each configuration given as
(@l(mm),b1(mm)) are A(4,4), B(6,4), C(3,5), D(8,8)

The process of discontinuity plane decomposition and the assigning of scale-

levels to various domains and sub-domains is the same as in metallic strip array

case.
) _ Reactance (kQ)
Array Size Unit-cell Arrangement
SCT HFSS
2 cells BC -3.41 -3.42
4 cells BCDA -0.62 -0.63
8 cells CBBADADC -0.33 NC
8 cells CBABCBBB 0.87 0.88
16 cells BACADBACCABBADAB 0.23 0.20
DCCCCADDCDCCDDAD
32 cells CABCDDCCCBACDADD -0.06 NC

Table Il.4. Reactance results for non-uniform arrays

11.3.3.2 Simulation Results and Discussion

Table-11.4 lists equivalent reactance results for six different linear and non-
uniform arrays at 5GHz. The first column gives the cell arrangement of the array e.g.
array BC comprises of two unit-cells and is formed by placing the unit-cell

configurations B and C (Fig-11.19) side by side. A good agreement is found between
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the SCT and HFSS results for the first, second and fourth array. For the fifth array
HFSS results converge only after relaxing the convergence criterion i.e. from less
than 0.2% to less than 2% of variation in S-matrix values for two consecutive passes.
This explains the relatively greater difference from SCT results in this case. For the

third and sixth cases HFSS results do not converge even with the relaxed criterion.

Figure 11.20 plots the simulation time against the array-size in case of the two
simulation techniques. If the array-size is represented in the number of unit-cells (N)
then for each size-iteration (1) the size of the array is given as N=2'. In other words,
for each size-iteration the unit-cells in the array double from the previous value. For
each technique execution time results are normalized with respect to the time
required to simulate an array of two unit-cells (I=1). The results of Figure 11.20 are
obtained for a uniform array made up of unit-cell configuration A.

Note that in case of SCT the execution time increases linearly with increase in
the number of size-iterations (I=In(N)/In(2)). However this is not the case for HFSS
which uses linear mesh-refinement procedure. The behavior is similar to that
observed in the metallic strip array case as expected. The linear behavior of SCT
comes from the fact that for all unit-cells being similar only one Scale-Changing
Network needs to be calculated to represent all of them. This allows faster and better
convergence for SCT results as compared to Finite Element Method using spatial
meshing. In case of non-uniform arrays the linear behavior can be achieved by
executing individual Scale-Changing Networks in parallel on multiple processors. The
simulation time results presented are for 3.2GHz Intel x86 Family processor with 2GB
RAM.
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Normalized Execution Time

Number of Iteration

Figure 11.20: Evolution of the normalized computation time with respect to bifurcation
iterations used. For an iteration n the array consists of 2" cells.
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II.4. MODELING OF 2-D PLANAR STRUCTURES

[1.4.1. Introduction

In the section-Il.2 the concept of bifurcation scale-changing network was
introduced and later applied to model linear array discontinuities in parallel-plate
waveguides. A similar formulation can be used in the case of a scattering problem
involving two dimensional planar structures e.g. Frequency selective surfaces and

Reflectarrays.

[ g HDx @
A
_ i, - _
S‘W\
L L] L -]
B "E E r]
L] ol L] L
I [ F] [
d
A
L L] l L]

Figure I1.21: A 4x4 array of half-wave dipoles under Normal plane-wave incidence.

The scattering problem requires the resolution of a free-space boundary-value
problem in which the planar array can be characterized by its surface impedance
matrix. The diffraction field patterns can then be calculated from the equivalent
surface current induced on the planar surface due to the incident fields [BalanisTh].

Mathematical formulation of the problem is presented in the sub-section 11.4.3.

[1.4.2. Mutual coupling with 2-D Scale-changing Network

To study the mutual coupling effect in case of a small two-dimensional array, a
small 4x4 array of dipole strips has been simulated under normal plane-wave

incidence as depicted in Fig-11.21. The dipole elements are separated horizontally by
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a distance of half wavelength to maximize the mutual coupling effects between the
elements. In this case the scale-changing multipole groups the elements in two
dimensions i.e. mutual coupling between four elements is considered in the

computation of a single scale-changing network.
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Figure 11.22: Scattering field pattern of a simple 4x4 dipole array for (a) H-plane (b) E-
plane. SCT results (blue) takes into account the effect of mutual coupling. Array
pattern as calculated from the Array Factor computation neglecting the mutual
coupling (red).
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To account properly for all mutual coupling effects a convergence study has to
be done to ensure that enough coupling modes are considered in the computation of
scale-changing networks. Too few modes and the inter-cellular interactions are not
well-defined and too many can produce ill-conditioned matrices and other unwanted

numerical errors.

The radiation patterns plots in H-plane and E-plane of the array are
represented in Fig-11.22 for the normal plane-wave incidence with the incident E-field
oriented along the axis of the dipole strips. The radiation pattern of the array in the
absence of mutual coupling as computed using the radiation pattern of a single
element using the array factor [BalanisAnt] of the 4x4 dipole array is also traced on
the same plot for comparison purposes. It is quite apparent from the results that if the
mutual-coupling effects are ignored the results can be very different from the actual
results and therefore the precise characterization of inter-cellular coupling is vital for

planar array problems.
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Figure 11.23: (&) An NxN array of arbitrary elements under normal plane wave
incidence. For all results E-plane and H-plane are elevation planes defined at (¢=90°)
and (@=0°) respectively (b) Array domain (D) with equivalent surface current J; Metal
domain (DM)
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[1.4.3. Formulation of the scattering problem

This sub-section discusses the theory of electromagnetic scattering from a
thin planar array. Consider a plane-wave at a normal incidence on an array of finite
extent made from unit-cells of arbitrary metallic patterns (Fig-11.23a). These cells are
arranged on a two dimensional rectangular lattice. To solve the scattering problem
from this regular array first consider a more general planar structure comprised of
metal and dielectric regions (Fig-11.23b). The domain Dy denotes the metallic domain
which is the sub-set of the array domain D. The time-harmonic regime is assumed for

all fields.

11.4.3.1 Derivation of the current density on the array domain D

The integral equation formulation of the boundary value problem on metal
domain Dy in the case of planar scatterer of Fig-11.23b can be written as:

Einc(r) + Escat(r) =0 fOT' re DM (||.20)

Where E;.(r) and E.,(r) denote the incident and scattered field
respectively. The total tangential field is zero as dictated by the perfect electric
boundary conditions at the metal surface. The scattered field from a planar surface

can be written in terms of unknown surface current densityf on the metal domain Dy

and free space Green'’s functions G(r,r") [Vardaxoglou97].
Escat(r) = [, G(r,r)] (r)dr’ (1.22)

The primed co-ordinates r' correspond to the observation point.

With SCT, we substitute the current J_ defined on the metal domain (Dwm) by an
equivalent current ]jq defined on the entire array domain (D). The planar surface

domain D is characterized by a surface impedance matrix [Zs] (which fixes the new

boundary conditions of the problem) such as:

Ev’total = [Z,] *E (11.22)
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The boundary value problems at all scale-levels in SCT are formulated in
spectral domain therefore it is convenient to evaluate the scattering problem in the
spectral domain as well. Thus the new formulation in spectral domain can be written

by using eg-11.20 and eg-I1.21 in eq-11.22:
Ene() + Glog = [Zsleq (11.23)

Where G designates the Green function (in operator form) in the spectral domain.

Artificial boundary conditions (PPWG BC) are first introduced at the contour of
the domain D. These boundary conditions are assumed not to perturb significantly
the electromagnetic field of the original problem. They allow defining an orthogonal
set of discrete modes for expanding the unknown surface current density /., in the

domain D as given by the following mathematical expression.

-

Jeq = TN g iGeq. (11.24)

Jeq i being the orthogonal modal basis in D and N being the number of active modes

along each dimension of the planar domain.

In practice, same entire-domain orthogonal basis functions are used for this
expansion as well as for representing the equivalent surface impedance matrix [Z]
that models the array. The number of modes may be determined a posteriori from
convergence criteria of the numerical results. The derivation of [Z;] from the scale-

changing technique will follow in the subsection 11.4.3.1.3.

To determine the scattered electric field when illuminated by a plane wave, the

equivalent surface current density J., in the domain D needs to be calculated. This

current density may be computed from the resolution of the following matrix equation
derived from the Integral Equation Formulation of the boundary value problem given

by eqg-11.23 using Galerkin’s method [Harrington96] [Harrington61].

[qu] = [[Zspace] + [Zs]]_l [Vinc] (11.25)
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[Zspace] is the matrix representation of the free space Green functions in the
spectral domain. [Vi,c] and [l,q] are the vectors containing known expansion

coefficients of the incident electric-field and the unknown coefficients of surface

current density /., defined on the modal-basis of the array-domain D.

11.4.3.1.1 Calculation of [Vinc]
Vin¢ can be obtained from the following scalar product:

+o0o

V] = (Goq s E™) = [ [ Geq i Co ) E™ (x, y)dxdy (11.26)

where E"¢ is the tangential component of the field incident on the planar domain D.
For example in the case of plane-wave incidence the tangential component of the

incident field can be written as

N E e—j(k,icx+k3i,y)5c>
Einc — { 0x (Nn.27)

EOy e —j(k,icx+k3i,y)5;

With ki ,k;, are the components of the tangential incident-wave vector given

by ki = kcos'sin@!
kg, = kcosB'cos@!

6% and @' are the polar angles of incidence.

84



EM Modeling of Large Planar Array Structures using SCT

Figure 11.23: Co-ordinate system convention for plane-wave incidence.

For antenna sources, EI"¢ is tangential component of the radiated electric-field
incident on the planar surface and can be calculated from the radiation pattern
characteristics and the position of the source with respect to the array. This process
is outlined in the Annex B for a case of pyramidal horn source. In addition Einc¢ can be
found numerically by simulating the source antenna with any 3-D EM simulation tool
(e.g. GRASP) and using the tangential component of the field projected on the array-

plane in equation 11.26 to find V"¢, Alternatively the projection of antenna

measurement data expressed on spherical modes can be used in place of E»¢,

11.4.3.1.2 Calculation of [Zgpace]

The calculation of Zg,,. in spatial domain is quite delicate. Indeed the
expression of Z,,.. in spatial domain brings up the spatial form of the dyadic Green
functions given by the following equation [Harrington96].

o—ik|Ge-x"yZ+(y-y"y2] 2

an[(x—x")2+(y-y")2]1/2

px,y;x",y") = (11.28)

Zspace Can then be found from the following expression obtained by the

application of Galerkin’s method on equation 11.23.

[Zspace]i,j = _<geq_ir G * geq_j> (”29)

The spatial formulation of the above equation gives the following complex
equation which requires the computation of the convolution product of two functions

inside a double integral equation.

[Zspace]i’j =
92 92
ks + =
+00 +o0 " ox? 0xd 1oyt =4 Iyt
oo I Geq i o) == .7 T 0y x, Y * eq (', y)dxdy  (11.30)
’ dydx k(z) + W

The convolution product is given by the following equation

85



Electromagnetic Modeling using SCT

+oo e—Jk[(x—-x"2+(y-y")?] 12

© 4m[(x-x")2+(y-y")?]1/?

+oo = o ’ ’
P,y ;x",¥") * Geq_j(x", ¥ = [_, [ * Joq_j(x',ydx'dy" (11.31)
As the entire domain trial functions are defined in spectral domain it is easier
to solve the expression of equation (11.30) in spectral domain rather than spatial
domain. Moreover the expression in equation (11.31) simplifies in the spectral domain
as the product of convolution in spatial domain becomes a simple multiplication

operation in the spectral domain. Fourier transforms are used to achieve this domain

transformation:
Fut,y) = tike ky) = [77 [ ulx,y) exp(—j[kex + kyy]) dxdy (11.32)
F7 (ke ky)) = uey) = = 77 [ a(ky ky) exp(+ilkex + kyy]) deyde,

(11.33)
Where F and F~! denote the forward and inverse transforms respectively.

Therefore equation 11.30 can be rewritten using Parseval’s theorem and utilizing

Fourier transform equations as under:

[Zspace]ij =
kZ — k&  k.k
+00 400 2 X 0 x™"y ~ 2
4nzf L eql(kx'ky) jwea | kyky k2 —kZ G (ke ky)Geq j(x, ky)dkydk,
(11.34)
G (ky, k) is the spectrum of the free-space Green'’s function.
(——L— if k2> k2 + k2
_ 2 |k2—k2 —K2
G(ky ky) = (11.35)

if kZ < k2 + k2

KN N
- |
< xR
N <

2 |k2+k2 —k2
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Figure 11.24: Wave-vector transformation from Cartesian to Polar co-ordinates.

Thus the computation of Zzg,,. has been reduced to the computation of a single
double integral in the spectral domain. Moreover since the test functions geq_n(x ,Y)

are defined in the rectangular domain their Fourier transform can be calculated

analytically.

In the computation of the integral of equation 11.34 a singularity appears
atk; + k; = k§. While the continuous integral is computed numerically as a discrete
sum, the discontinuity can easily be avoided. Using polar co-ordinates k, and k.,
singular values of k, and k,, translates into a circle of k, = k, as shown in the Fig-

[1.24. The numerical computation of the integral in equation 11.34 is performed in polar

coordinates avoiding the singularity circle.

11.4.3.1.3 Derivation of [Z] of the array from the Scale Changing Technique

In a complex discontinuity surface the metallic patterns can be viewed as set
of several domains and embedded sub-domains. In order to demonstrate the
partitioning process of the discontinuity plane in the case of simple array structures
consider the array of Fig-11.23a with individual cells of arbitrary geometry arranged on
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a uniform rectangular lattice. For a special case of 16 cell array the process can be

described as follows (Fig-11.25):

Figure I1.25: Decomposition of a 4x4 array in four scale-levels

1) The entire planar domain of the array denoted by D3 lies at the top most scale-
level (s=3). This domain contains all unit-cells plus any border regions around

them.

2) D3 contains a single sub-domain D, which is defined at the subsequent scale-
level i.e. s=2. D, encompasses all 16 unit-cells of the array and contains four

sub-domains D}, D;2, D;°®and D,* all defined at scale-level s=1.

3) Each domain at s=1 contains 4 sub-domains of its own defined at the lowest
scale-level s=0 (e.g. Di* contains Do', D¢?, Do® and Do*). Each of the four

domains at s=1 are comprised of 4 elementary cells of the array.

4) At scale-level s=0 each domain contains only a single unit-cell which in turn is
modeled by its surface impedance [Zs] or admittance matrix [Ys] defined on

the modal-basis of this domain.

This process of partitioning the array plane is applicable for the array of any
size. In general in case of cells arranged on rectangular lattice, an array containing n

cells can be partitioned in logon scale-levels. For other cell-arrangements the
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partitioning technique is still valid only in this case the sub-domains may not be

regular-shaped which would affect the choice of modal basis for these domains.

Artificial boundary conditions are considered at the contours of the domains
and sub-domains. Physical nature of the problem need to be considered in the
choice of boundary conditions. Or alternatively several boundary conditions can be

tested and the one with the best convergence results are chosen.
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Figure 11.26: Calculation of surface impedance of array by cascading Scale-changing
networks and surface impedance multipoles.

The computation of all scale-changing networks is mutually independent
therefore each multipole can be computed separately on different machines and it is
only in the final step the resulting matrices are cascaded to obtain the overall

simulation of the entire structure (Fig-11.26).

[1.4.4. Numerical results and discussion

Once it has been demonstrated that SCT successfully characterizes mutual
coupling between the elements of a small and simple finite array of dipoles the next
logical step is to apply the concept to the case of larger arrays and with complex
geometries that are traditionally used in modern array applications.

89



Electromagnetic Modeling using SCT

11.4.4.1 Planar Structures under Plane-wave incidence

In this subsection the scattered field results for two types of arrays are
presented. The uniform array which is made up of identical metallic patches each of
dimensions 13.5mm x 13mm. The non-uniform array is made up of non-identical unit-
cells with each unit-cell geometry comprised of a patch loaded with a slot. The length
of the patch is 13.5mm whereas the slot-width is 1mm for all cells. But the patch-
width (b;) and slot-length (a;) are variable from cell to cell. The combination of these

parameters will give each unit-cell its unique geometry.

b ‘ 1 mm
! a 16.8 mm

13.5 mm

16.8 mm

Figure 11.27: A unit-cell geometry for non-uniform arrays. Patch-width b; and slot-
length a; is difference for each array element.

First a uniform-array of 64 identical patch-elements arranged in an 8x8
element grid is simulated. Plane-wave normal excitation with vertical E-field
polarization (perpendicular to the slot) has been considered. The equivalent surface-
current Jeq is computed by the procedure detailed in the section 11.4.3 on the planar
surface of the array. The fields radiated by this current source can be computed by
the procedure described in [BalanisAnt Ch:3] by calculating auxiliary Magnetic vector

potential (A) function.
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The radiation pattern results of scattered E-field in the H-plane for the 8x8
uniform patch array is given in Fig-11.28. For the uniform case the pattern is
symmetric as expected around 0° elevation. As all the unit-cells are same in this case
only a single surface impedance multipole need to be calculated. Four levels of
scale-changing networks are used to model the entire array. The structure is
simulated with HFSS under plane-wave incidence. Non-normalized results of the
reradiated field in H-plane are compared and an excellent agreement is found

between the results of the two methods.
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Figure 11.28: H-plane radiation pattern of an 8x8 uniform array of identical patches. The
patch dimensions are 13.5x13 mm. Unit-cell dimensions 16.8x16.8 mm, at 12.5GHz

In the second case a non-uniform array of 64 elements is analyzed. The array
is constructed by varying cell-geometries along horizontal axis whereas the array is
kept symmetric along vertical axis. This means that a non-uniform pattern is expected
in H-plane when the incident field is polarized in the vertical direction. The radiation
pattern results of scattered E-field in the H-plane are given in Fig-11.29. It can be seen
that the pattern is not uniform and displaced. Here the SCT results are compared to
the results of two other techniques (HFSS and IE3D). It is quite clear that for certain

elevation angles the results are more close to one technique and for other angles to
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the other. The same is true when the results from the other simulation tools are
compared with one another. But overall a general pattern is followed in all three
cases and the disagreement at certain angles can be due to the small electrical size

of the array.
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Figure 11.29: H-plane radiation pattern of an 8x8 non-uniform array of patch and slots.

Once SCT results have been validated in the case of small sized 2-D arrays it
is interesting to apply it to much larger arrays with sizes comparable to real-life
designs. Figure 11.30 gives the results for a 256 elements uniform patch array
arranged in a 16x16 rectangular grid. The scattered field amplitude patterns are
given for both H-plane and E-plane. Results from HFSS and IE3D are also presented
in the same plots. A very good agreement is observed for the main lobes and first five
side-lobes. The results tend to diverge for the elevation angles greater than 50° but

the side-lobe levels for these angles are well below 20dB.
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Figure 11.30: Scattering pattern of a 16x16 uniform patch array. The patch dimensions
are 13.5x13 mm. (a) H-plane (b) E-plane
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Figure 11.31: Scattering pattern of a 16x16 non-uniform patch array. (a) H-plane (b) E-
plane

The results for the 256 element non-uniform array case are given in Fig-11.31.
(The individual patch dimensions are taken from ACE array design). This non-uniform
patch array is symmetric along vertical axis therefore we have a symmetric pattern in
E-plane. The H-plan pattern is non-symmetric as expected. Again a good agreement
with the results of other methods is observed for small elevation angles where most

of the energy of the radiated field is concentrated.
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11.4.4.2 Planar Structures under Horn antenna

In the above sub-section both uniform and non-uniform planar structures were
simulated under plane-wave incidence. The plane-wave excitation condition is valid
for the applications where the planar structure is used at a far receiving end or when
the excitation source is placed very far from the surface of the array. In most
practical applications an antenna illumination source is placed in close proximity to

the planar array therefore it needs to be simulated along with the planar structure.

As SCT is a 2.5D simulation technique it cannot be directly applied to simulate
3D antenna sources. To incorporate the source in the simulations, SCT can be used
in hybrid with other 3-D modeling tools. For example, a source antenna can be
modeled using tools like GRASP, FEKO or HFSS and the projection of the radiation
fields in the array domain can be used in SCT as an excitation source. Alternatively,
some antennas can be modeled analytically e.g. analytical modeling of a pyramidal

horn is detailed in Appendix-B.

11.4.4.2.1 Radiation Characteristics of Pyramidal Horn

In Appendix-B a pyramidal horn antenna has been modeled analytically by
approximating its behavior by that of a radiating aperture. Taking aperture
dimensions equal to that of horn’s aperture and a similar aperture field distribution,
the far-field radiation patterns of the aperture can approximate the horn’s radiation

pattern over certain elevation range in the main-beam direction.

The far-field radiation patterns from the aperture field are compared to that of
the pyramidal horn radiation patterns to see if the approximation holds. Both H-plane
and E-plane radiation patterns are shown in Figure-11.32. It is clear that for the
elevation angles between -30° and 30°, the two radiation patterns overlap precisely.
Therefore as long as the planar array is placed within this elevation range with
respect to source, the behavior of the horn can be modeled accurately. This
approximation holds only if the source horn is placed at a distance greater than 2D?/A

(where D is the largest horn dimension) which may not always be the case in
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practical applications. Nonetheless this approach is presented here to demonstrate

how the excitation source can be incorporated with SCT simulations.

0 15.6833
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Figure 11.32: Directivity pattern of a pyramidal horn (red) compared to that of Aperture
antenna (blue) (a) H-plane (b) E-plane
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11.4.4.2.2 Horn Excitation vs Plane-wave Excitation

In this subsection a comparison between the scattering patterns for the two
types of excitations i.e. plane-wave excitation and the horn excitation is given. For
horn simulations, the antenna is placed along the vertical axis directly above the
centre of the planar structure. The distance of the horn can be varied along the
vertical axis.

First a simple metal sheet of the dimensions equal to that of an 8x8 array
described before has been simulated. The scattering pattern results for the normal
plane-wave excitation are shown in blue in Fig-11.33. The horn excitation results when
it is positioned at a distance of 66cm and 100 cm from the metal sheet is given in red
and black. As expected as the distance of the horn from the sheet is increased its

results tend towards the plane-wave results.

Fig-11.34 presents the scattering results from an 8x8 uniform patch array under
both plane-wave and horn excitation. Here again we see the similar behavior. At a
distance of 100cm the horn field illuminating the array surface is effectively seen as a
plane-wave. The horn and plane-wave results are normalized for comparison

purposes.
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Figure 11.33: Scattering from a metal sheet for different excitations at 12.5GHz. Plane
wave (blue) Horn (d=660mm) (red) Horn (d=1000mm) (dotted black) (a) H-plane (b) E-
plane
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Figure 11.34: Radiation pattern diagrams for a 8x8 uniform patch array at 12.5GHz.
Plane wave (blue) Horn (d=400mm) (red) Horn (d=1000mm) (dotted black) (a) H-plane
(b) E-plane
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11.4.4.2.3 Horn antenna with an offset and angle of inclination

For practical applications the source antenna is not usually placed directly at
the top of centre of the planar structure to avoid the masking effect of the source on
the backscattered field. Conventionally it is placed at an offset with respect to the
center of the planar structure with a certain angle of inclination to center the main

lobe of the antenna in the middle of the array (see Fig-B.3).

In this subsection results for several array structures under such an excitation
are presented. Same structures are simulated using FEKO (MOM solver) and the
results of these simulations are presented in the same plots for the comparison
purposes. FEKO was chosen due to its surface meshing capability contrary to HFSS
which performs meshing in the whole volume and therefore cannot be used with the

memory resources available on a common PC.

A metal sheet of 8x8 array dimensions is simulated and the results of
scattered field both in E-plane and H-plane are presented in Fig-11.35. The horn is
placed at 66cm above the metal sheet at an offset of 67.2mm from its centre along
the vertical axis. It is given an inclination of 6.5° to center its main beam in the middle
of the sheet. As the metal sheet is modeled as a perfect conductor we expect to see
the specular reflection in the E-plane. The 6.5° displaced main-lobe results in the E-
plane demonstrate this effect. In the H-plane the pattern is symmetric around 0° as
expected. FEKO results for the similar excitation conditions are represented in green.
The non-normalized comparison shows good agreement in the magnitude as well as
main-lobe position of the reflected field components. For all FEKO results, rapid
jittery variations are present on the radiation pattern curves. One explanation is that
this may be due to convergence errors if the meshing step is not fine enough. For all
FEKO results presented here A/10 is taken as mesh-step. A smaller step cannot be
taken due to the limitations of memory resources. Nonetheless the FEKO results
validate the general form and amplitude of the scattered field patterns.
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Figure 11.35: Radiation pattern diagrams for a 8x8 metal sheet. FEKO (green) Horn
(d=660mm) (red) alpha=6.5° (a) H-plane (b) E-plane
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Figure 11.36: Radiation pattern diagrams for a 8x8 uniform patch array. FEKO (green)
Horn (d=660mm) (red) alpha=6.5° (a) H-plane (b) E-plane
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Fig-11.36 shows the field patterns for an 8x8 uniform patch array under similar
excitation conditions as described in the case of metal sheet. The comparison of SCT
and FEKO results are presented. Again we see a displaced pattern in E-plane and a
symmetric pattern in H-plane as expected.

H-plane radiation pattern results for an 8x8 non-uniform array with the unit-cell
geometry comprised of patch loaded with slot is depicted in Fig-11.37. FEKO results in
this case have even higher oscillations as compared to the uniform array case. Due
to the presence of slots inside the patches usually very fine-scale meshing is required
to effectively calculate the rapid field variations around the edges of the slots. The
mesh-step used for the FEKO simulations is 2mm (AM10=2.4mm) in this case it takes
around 4 hours to run one complete simulation. The mesh-step cannot be further
reduced due to memory constraints. Nonetheless it is very clear that average form of

the FEKO pattern closely follows the SCT results in amplitude and form.
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Figure I1.37: Scattering pattern of an 8x8 non uniform patch-slot array in H-plane.
FEKO (green) Horn (d=660mm) (red) alpha=6.5°
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11.4.4.3 SCT Execution Times

The execution times for SCT simulations depend on a number of factors. The
scattering patterns are calculated from the equivalent surface current defined in
equation 11.25. The solution of the fore-mentioned equation requires the computation
of three matrices i.e. [Z], the projection matrix of free-space Green'’s functions in the
spectral domain, [Viy], tangential incident fields on the planar array defined on the
array modal-basis and [Zs] surface impedance matrix characterizing the planar-array
structure. The computation of both Zy and Vi, does not involve the application of SCT
and although they are sensitive to choice of modal-basis in the array-domain at the
top-scale, they are not required to be recomputed if any change is made to an
individual cell-geometry. Therefore in parametric studies and optimization loops, the

computation time of Zs is the most important.

The computation of Zs depends on the size of the array as well as the unit- cell
geometries. Size of the array will determine the number of scale-changing networks
to be computed where as the unit-cell geometry will principally determine the number
of active and passive modes required to compute the surface-impedance multipoles.
Also if two or more cells have the same geometry, the surface-impedance multipole

for each of them needs to be calculated only once.

CPU Time (sec)

[Zs] complete array 43.06

Zs unit-cell 11.7
SCN (100 active 4000 passive) (1 SCN + 1 cascade) 13
SCN (120 active 4000 passive) (1 SCN + 1 cascade) 11
SCN (200 active 2000 passive) (1 SCN + 1 cascade) 6

Table II.5. [Zs] computation time for 8x8 uniform patch slot array

In the case of a 64 element (8x8) uniform patch-slot array, only one surface-
impedance multipole needs to be computed along with three scale-changing
networks to compute the surface-impedance for the entire array. The whole process

takes around 43 seconds (Table I1.5). At scale-level 1 single-unit cell requires 11
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seconds to compute; at scale 2 one scale-changing network along with a single
cascade (scale-changing network multipole with 4 surface-impedance multipoles)
requires 13 seconds and so on. For a uniform array case at each scale-level only a
single scale-changing network and a single cascade computation needs to be

performed therefore the computation of Zs in this case is the most efficient.

The execution times in the case of an 8x8 non-uniform patch-slot array
comprised of 8 different unit-cell configurations are given in Table II.6. In this case at
the scale-level 1, eight surface impedance matrices have to be computed each
corresponding to one geometric configuration. At scale-level 2, one scale-changing
network has to be computed but 4 cascades need to be performed. The process
continues likewise at higher scales. It is clear from these results that SCT make use
of redundant nature of the geometry to efficiently characterize the whole structure. It
can be deduced from the results of Table II.6 that in the case of an array where all
unit-cells differ from one another, the CPU time required to compute Zs of the

complete array would be around 1130 seconds.

CPU Time (sec)

[Zs] complete array 172

Zs unit-cell (8 configs) 135

SCN (100 active 4000 passive) (1 SCN + 4 cascades) 16
SCN (120 active 4000 passive) (1 SCN + 2 cascades) 12
SCN (200 active 2000 passive) (1 SCN + 1 cascade) 6

Table I1.6. [Zs] computation time for 8x8 non-uniform patch slot array
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11.5. CONCLUSIONS

In this chapter the Scale-changing technique has been applied to characterize
several planar structures. In the first part of the chapter, the concept of a scale-
changing network to model the mutual coupling between array elements was
introduced. It has been shown that SCT can effectively be used to characterize the
mutual coupling in the planar arrays. This was demonstrated both in the case of
mutual coupling between two half-wave dipole elements as well as between the
elements in a planar dipole array. Later the SCT has been applied for modeling non-
uniform linear array and it was shown that SCT is manifolds more efficient than other

conventional EM modeling tools in case of large arrays.

In the second part of this chapter, SCT has been applied to the problem of
electromagnetic scattering from two dimensional non-uniform planar array structures.
The scattered field patterns for several types of arrays are calculated under plane-
wave and horn-antenna excitation. These results are compared to simulation results
from other 3D full-wave analysis tools. Finally the execution times to compute the
surface impedances in the case of both uniform and non-uniform arrays are given. It
has been shown that SCT effectively reuses the redundancy in a design. Moreover,
the highly parallelizable execution capability of scale-changing network makes SCT a
promising tool to design, analyze and optimize large complex planar structures,

which is not usually convenient to do with the existing techniques.
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Conclusions

A technique based on interconnecting Scale-changing networks has been
proposed for the electromagnetic modeling of planar array structures. The problem of
electromagnetic scattering from these arrays was addressed and it has been shown
that the Scale-changing technique can effectively be used to calculate the field
scattering patterns and surface currents. In the course of this thesis SCT has been
applied to the scattering problem of several planar arrays and it has been
demonstrated that the technique effectively models the mutual interactions between

the array elements.

The uniqgue formulation of the Scale-changing Technique avoids the direct
computation of structures with high aspect ratios. Thanks to hierarchical domain-
decomposition provided by the partitioning process, the complex geometries are
broken down into finite number of simpler geometries at distinct scale-levels.
Moreover, the scale-changing networks that relate the electromagnetic field at
adjacent scales are computed separately, therefore providing an inherent

parallelization capability.

This modular nature of the technique can be exploited by distributed
processing algorithms to reduce the simulation-time many folds. Similarly the
convergence study (finding the appropriate number of active and passive modes at
each domain) can be parallelized by running convergence passes as separate
processes. It has been demonstrated that for certain planar structures the simulation
times can be reduced by 90% by implementing both of above stated approaches
[Khalil09].
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Domain decomposition not only allows the rapid processing of the overall
simulation, it also helps solving the memory problems for simulating large structures.
As the complex problem is now partitioned into much smaller problems, the new
equations are made up of fewer unknowns and thus can be represented by smaller
matrices requiring much less memory resources. In addition this gradual change of
dimensions from one scale-level to the next helps to avoid the numerical conditioning

errors linked to critical aspect ratios in a structure.

Typically, if N orders of magnitude separate the largest to the smallest
dimensions in the structure, the Scale-changing Technique requires the computation
of N Scale-changing Networks. In design and optimization processes small
modifications in the structure geometry is often required. For example, if
modifications in the structure geometry occur at a given scale S, only the SCNs
between scale S and S-1 and between S and S+1 need to be recalculated. This
gives SCT a huge advantage on classical meshing based techniques which require
the recalculation of the overall structure. This built-in modularity makes the scale-

changing technique a very powerful optimization and parameterization tool.

Although as a stand-alone method, SCT is applicable only to 2D or 2.5D
planar structures, but it can be used in hybrid with other classical methods for 3D
applications. The idea is to use the SCT for the planar sub-domains and one of the
classical methods e.g. FDTD, FEM or TLM for the volume sub-domains. The
interlinking between the methods can be performed using IE formulation by relating
tangential electromagnetic fields at the exterior surfaces of the volume sub-domains
to the active modes of the planar sub-domains.

Apart from all the positive features SCT has its limitations as well. First of all,
there is no simple and automatic convergence criterion for determining the number of
active modes in the sub-domains. For the moment the appropriate number of active
modes has to be manually determined from the convergence curves. Moreover in
certain cases the matrix ill-conditioning problems may lead to numerical convergence

iIssues requiring additional processing e.g. iterative solver methods to resolve them.

Presently, planar structures comprised of simple canonical domains have
been treated only. The rectangular domains and sub-domains allow the field

description in terms of purely analytical entire-domain trail functions and therefore
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save the complex numerical treatment necessary in the case of non-analytical trial
functions required to describe the electromagnetic field in non-canonical shaped

domains.

Another limitation concerns the introduction of artificial boundary conditions at
the boundaries of domains formed by the partitioning process. Normally these
boundary conditions are selected taking into account physical nature of the problem
that is the behavior of electromagnetic fields in their vicinity. But even a different set
of boundary conditions does not seem to affect the accuracy of the solution
significantly, only in this case the solution would need a larger number of modes to
converge. Similarly introducing artificial boundary conditions around the unit-cell
domains of the arrays does not significantly perturb the accuracy of the simulations

as shown by the mutual-coupling study.

Concerning the perspectives of this work, it will be highly interesting to design
a real-life planar array application e.g. a cassegrain FSS or a reflectarray using
Scale-changing Technique and a possible optimization using Grid-computing. The
experimental validation of such a case would help to demonstrate the potential of the

SCT in the design and analysis of real-life applications.
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Annexes

A.1. INTRODUCTION

This annex gives the expressions of the orthogonal modal-basis for the
various kinds of boundary conditions described in Part | of this thesis. Assuming a
rectangular domain of dimensions A (along x-axis) and B (along y-axis) with the lower
left corner placed at the origin. If this rectangular domain is bounded by any of the
following boundary conditions, the transverse electromagnetic field in the domain can

be expressed on the orthogonal modes as under.

A.2. ELECTRIC BOUNDARY CONDITIONS

The rectangular domain is bounded by perfect electric boundary conditions on all

sides.
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A.3. MAGNETIC BOUNDARY CONDITIONS

The rectangular domain is bounded by perfect magnetic boundary conditions on all

sides.
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where a« = TE,TM A and B are the dimensions of the array
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A.4. PARALLEL-PLATE WG BOUNDARY CONDITIONS

The rectangular domain is bounded by perfect electric boundary conditions at the top

and bottom but perfect magnetic boundary conditions at side walls.
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For m=n=0, we have a TEM mode, so in this case,

- 1 —
fTEM(x ) = \/ﬁy

A.5. PERIODIC BOUNDARY CONDITIONS
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The rectangular domain is bounded by periodic boundary conditions (Floquet

conditions) at all sides.
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where a = TE,TM A and B are the dimensions of the array
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For m=n=0, we have two TEM modes, (or modes TEOO and TMO0O)
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B.1. INTRODUCTION

This annex details the mathematical modeling of a pyramidal horn antenna of
the dimensions shown in the figure. At the simulation frequency (12.5GHz), the feed-
waveguide has only TEjo as the propagation mode. Therefore at the aperture of the
horn the field distribution can be approximated to that of TE;o mode distribution.

Figure B.1: Dimension of the pyramidal horn along with its aperture field distribution.

B.2. APPROXIMATION BY RADIATING APERTURE

Far-field radiation from a pyramidal horn can be approximated by the radiation
from a rectangular aperture inside an infinite ground plane if the aperture field
distribution is close to that of the field on the horn aperture. The expressions for the
far field radiation pattern for different aperture field distributions can be found

analytically [BalanisAnt Ch12].

Consider a rectangular aperture of dimensions a and b with the electric field

distribution given by the following expression.

IA
><\
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+

s
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E, = E,cos (—ax ) a,
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\<\
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+
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The far-field radiated by this field distribution is given in spherical co-ordinates

by the following expressions.
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E.=H,=0
Ey = —=Csin cosX zsinY’ E¢=—ECCOSHCOS¢ cos X ZsinY
BECE RO 7 a-(3) "
HQ:—E—¢ , H¢:@
n n
where
X=k2—aSir19COS¢ , Y=k2—bsin6?sin¢, C=j—abk§j:r_jkr,k=w UoEo, N = ‘;_Z

B.3. TANGENTIAL COMPONENT OF FAR-FIELD ON A PLANAR
SURFACE

B.3.1. Horn centered on the planar surface

Following figure shows the tangential component E4 of the radiated field on an
incident planar surface located in the x-y plane at a distance z=660mm from the feed
horn (in the far-field region).

&

7z=660 mm

Incident Plane

Figure B.2: Computation of the tangential component of the incident field of a horn
centered on a planar domain

The incident field can be written in the planar-domain co-ordinate systems as
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Where,
E, = E,sin6 cos ¢ + Eg cos 6 cos ¢ — Eg sin ¢

using far-field expressions from section C.2 in the above equation.

T cos X sinY T cos X sinY |
E, =0—-=Csing > c0s 6 cos ¢ + —Ccos b cos ¢ 5 singp =0
NTRO SRNTRE
2 2
Similarly Ey and E, can be written as under
E, = E,sinfsin¢ + Eg cos 0 sin¢ + Ey cos ¢
T cos X sinY ] T cos X sinY
E, =0--Csing 2 COSQSln(j)—ECcochoscp ~ Ty cos ¢
() -(3) - (3)
T cos X sinY .9 2
E, =-=cC > cosH[sm¢ +cos¢]
2 2 T Y
o)~ (3)
T cos X sinY
E, =-- cosf

E, =E,cos0 — Egsing

cos X sinY

-3 "

Now Einc and Etg can be computed from the following equations.

T
E, =—=Csin¢

Ey = (Ey9 +E,;2).(R+9)
Since planar surface is normal to the plane of the horn’s aperture-plane, the
tangential field has only the y-component.
Eig = EyY

B.3.1. Horn with an offset and an inclination angle

In most practical cases the horn antenna is not centered on the reflecting

structure but placed at an offset to avoid the masking effect. The horn antenna is
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inclined at a certain angle to position its main beam at the centre of the planar
structure. In the figure below the horn antenna is displaced a distance ‘d’ along the y-

axis. Angle a represents the orientation of the feed horn with respect to the co-
ordinate system of the incident plane. In this case the tangential electric field Etg on

the planar surface can be found as follows.

-
|

7z=660 mm incident plane

Figure B.3: Computation of the tangential component of the incident field of a horn
with an offset and an inclination angle

The new observation point coordinates on the incident plane with respect to

the new position and orientation of the feed horn are,

X=X
y =y cosa+z' sina

z=12 cosa—y sina

So the tangential component Etg of the field in this case is given by,
Eg = (ExX +Eyy +E,2). R +9)
Erg = Bx(X'.8) + By ('.9) + Eo(Z.9)
Eg =0+ Eycosa+ E,sina

Ei = Eycosa + E; sina

Now we plot the magnitude of the tangential component on the planar surface.

There are two cases in this respect, first is, in which feed horn is placed normal to
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incident plane and the second is in which it is placed with some offset and inclination
angle, both of these cases are described below.

B.4. CALCULATION OF [V (]

With parallel-plate boundary conditions as the orthogonal modal basis of the
rectangular incident plane, we have

A B 1 A B
[Vinc]TEM = (f; Etg) = ff fy* Ey dx dy = \/ﬁ ff Ey dx dy

x=0 y=0 x=0 y=0
Winclrerm = {f ) Eeg) = ffx:o yzofy E, dx dy.

A B
Vinel = ff N cos (% x) cos (%T y) E, dx dy

x=0 y=0
Where a = TE,TM

y(m)

0.0s

T nos 0
X (m)

Figure B.4: Tangential field pattern of a horn antenna placed at the center of the planar
surface at a distance ‘d’ from it. d=660mm

B.4.1. Horn centered
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By using the analytical expression of E, in the above equation, we get the

following integral. This integral is too complex to resolve analytically and therefore

has been solved using numerical integration.

[Vinc

]
AB i 24242
mmn nw n( abkE,e/kV¥ vtz . z
[N“ cos (— x) cos (— y)] -=1J cos| cos " ————
A B 2 2nr [x2 + y2 + 72

x=0 y=0
cos (kz_a sin (cos‘1 ;> cos (tan_1 X) ) sin <kz—b sin (cos_1 ;> sin (tan‘1 X) )
Jx2+y?+z2 x JxZ+y? 422 x
2
ka . 1 Z 1Y (™Y @sin cosl——2— )sin(tan-12
(Btsincos™t s eos () ) - (5)|| 2 Y e MG

dxdy

Magnitude of the Tange rface
nz
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01

0.05

-0.05

-01

-0.18

1
-0.05 u] 0.05 0.1 015 0.2

X {m}

Figure B.5: Tangential field pattern of a horn antenna placed at an offset of 200mm
from the center of the surface with an angle of inclination equal to 30°. d=660mm

B.4.2. Horn at an offset with an inclination

If the Horn Antenna is at oblique angle a with an offset of d, then we have to
simply replace the coordinates x, y and z in the above equation with x*, y" and z" as

follows:

!

x' = —zsina + (x+ d) cos a
y' =y
z' =zcosa+ (x+d)sina

120



THESIS SUMMARY
(FRENCH)



Thesis summary (French)

Abstract

Les structures planaires de grandes tailles sont de plus en plus utilisées dans les
applications des satellites et des radars. Deux grands types de ces structures a
savoir les FSS et les Reflectarrays sont particulierement les plus intéressants dans
les domaines de la conception RF. Mais en raison de leur grande taille et de la
complexité des cellules élémentaires, I'analyse compléte de ces structures nécessite
énormément de mémoire et des temps de calcul excessif. Par conséquent, les
techniques classiques basées sur maillage linéaire soit ne parviennent pas a simuler
de telles structures soit, exiger des ressources non disponibles a un concepteur
d'antenne. Une technique appelée « technique par changement d’échelle » tente de
résoudre ce probléme par partitionnement de la géométrie du réseau par de
nombreux domaines imbriqués définis a différents niveaux d'échelle du réseau. Le
multi-pbéle par changement d’échelle, appelé « Scale changing Network (SCN) »,
modélise le couplage électromagnétique entre deux échelles successives, en
résolvant une formulation intégral des équations de Maxwell par une technique
basée sur la méthode des moments. La cascade de ces multi-pbles par changement
d’échelle, permet le calcul de la matrice d'impédance de surface de la structure
complete qui peut a son tour étre utilisées pour calculer la diffraction en champ
lointain. Comme le calcul des multi-péles par changement d’échelle est mutuellement
indépendant, les temps d'exécution peuvent étre réduits de maniere significative en
parallélisant le calcul. Par ailleurs, la modification de la géométrie de la structure a
une échelle donnée nécessite seulement le calcul de deux multi-pdles par
changement d’échelle et ne requiert pas la simulation de toute la structure. Cette
caractéristique fait de la SCT un outil de conception et d'optimisation trés puissant.
Des structures planaires uniformes et non uniformes excité par un cornet ont étés
modélisés avec succes, avec des temps de calcul délais intéressants, employant les

ressources normales de l'ordinateur.
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Introduction générale

La prédiction exacte de la diffraction d'ondes planes par des réseaux de taille finie
est d'un grand intérét pratique dans la conception et l'optimisation des surfaces
sélectifs en fréquences (FSS), reflectarrays et transmittarrays. Une analyse (full-
wave) complete de ces structures nécessite énormément de ressources de calcul en
raison de leur grandes dimensions électriques qui exigeraient la résolution d’un
grand nombre d'inconnues. Ainsi, l'absence des outils de conception précis et
efficaces pour ces applications limite les ingénieurs a choisir des conceptions
simplistes et de faible performance qui ne demandent pas énormément de mémoire

et de ressources de traitement.

En outre, la caractérisation des grands réseaux devrait normalement nécessiter une
deuxieme étape pour l'optimisation et l'ajustement de plusieurs paramétres de
conception parce que la procédure initiale de la conception suppose plusieurs
approximations, par exemple dans le cas de reflectarrays la conception est
généralement basée sur la caractérisation d'une cellule seule sous les conditions
d’'incidence normales, ce qui n'est pas le cas pratique. Par conséguent, une analyse
full-wave de la conception initiale de la structure compléte est nécessaire avant la

fabrication, a fin de s'assurer que la performance est conforme aux exigences de
conception. Une technique d'analyse modulaire qui est capable d'intégrer de petits
changements au niveau des cellules individuelles, sans la nécessité de relancer la

simulation entiére est extrémement souhaitable a ce stade.

Historiguement plusieurs approches ont été suivies lors de l'analyse des structures
planaires de grande taille [Huang07]. Dans le cas des réseaux uniformes, ou nous
avons la périodicité de la géométrie, une approche infinie est souvent utilisée. En

utilisant le théoréme de Floquet, I'analyse est en fait réduit a la résolution d'une seule

cellule unitaire; ce qui réduit significativement les inconnues et donc le temps de
simulation [Pozar84] [Pozar89]. Bien que les conditions aux limites périodiques
prennent en compte l'effet de couplage mutuel dans l'environnement périodique,

I'approximation ne serait pas valable dans le cas des réseaux ou les géométries des
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cellules individuelles sont trés différentes. En outre il s'agit d'une approximation trés

mauvaise pour les cellules situées sur les bords des réseaux.

Une technique simple basée sur la méthode des différences finis (FDTD) est
proposée pour justement tenir compte des effets de couplage mutuel. Il s’agir
d'éclairer une seule cellule du réseau en présence de cellules voisines et le calcul de
I'onde réfléchie. Si elle permet d'excitation précise et des conditions aux limites pour
chaque cellule dans le réseau, elle n'est pas tres pratique pour concevoir des

réseaux de grandes en raison de délais d'exécution tres longue [Cadoret2005a].

Différentes méthodes conventionnelles ont été testées pour une analyse full-wave
des structures périodiques, par exemple la méthode des moments (MOM) utilisés
dans le domaine spectral pour les structures multi-échelles [Mittra88] [Wan95],
méthode des éléments finis (FEM) [Bardi02] et FDTD [Harms94]. Mais toutes ces
méthodes nécessitent des ressources prohibitives pour les cas ou I'hypothése de
périodicité locale ne peut pas étre appliquée. Une approche immitance dans le
domaine spectrale a été utilisée dans I'analyse d'un réseau planaire de dip6les avec
la procédure de Galerkin en utilisant I'ensemble des fonctions d’essais en domaine

entier (entire-domain trial functions) [Pilz97].

La méthode des moments pour la simulation électromagnétique des réseaux de taille
finie nécessite grand temps de calcul et les ressources de mémoire, en particulier
lorsque les géométries des patches sont non-canoniques et donc fonctions des base
sous-domaine doivent étre utilisés. Le probleme de mémoire peut étre résolu en
utilisant diverses techniques itératives (par exemple, méthode de gradient conjugué)
[Sarkar82] [Sarkar84] au prix d'une augmentation du temps d'exécution. Une
amélioration prometteuse de la MoM, appelée Characteristic Basis Method of
Moments a été proposée pour réduire le temps d'exécution et le stockage de la

mémoire pour des grandes structures [Mittra05] [Lucente06]. Toutefois, la

convergence des résultats numérigues reste délicate a atteindre systématiquement.

Afin de surmonter les difficultés théoriques et pratigues mentionnés ci-dessus, une

formulation monolithe originale pour la modélisation électromagnétique des
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structures planaires multi-échelles a été proposée [Aubert09]. La puissance de cette
technique appelée la technique par changement d'échelles (SCT), provient de la
nature modulaire de sa formulation du probleme. Au lieu de la modélisation de la
surface plane compléete, comme un grand probleme unique, il est divisé en un
ensemble de nombreux petits problémes dont chacun peut étre résolu de maniére
indépendante en utilisant les techniques variationnelles [Tao091]. La solution de
chaque un de ces petits problemes peut étre exprimée sous forme de matrice qui
caractérise un multiport appelé « Scale changing Network (SCN) ». SCT modélise
toute la structure en interconnectant tous les multipoles, ou chague SCN modélise le

couplage électromagnétique entre les niveaux de I'échelle adjacents.

La cascade de SCNs permet la simulation électromagnétique globale de toutes
sortes de géométries planaires multi-échelle. La simulation électromagnétique
globale des structures par la cascade de SCNs a été appliquée avec succes a la
conception et la simulation électromagnétique de structures planaires spécifiques tels
gue les surface sélectives en fréequences multiples [Voyer06], structures auto-
similaire (pré-fractale) [Voyer04] [Voyer05], antennes patch [Perret04] [Perret05] et
cellule déphaseurs reconfigurables [Perret06] [PerretO6a]. L'objectif de ce travail est

pour valider SCT dans le cas de diverses géométries de réseau planaire y compris

les réseaux FSS, reflectarrays et transmittarrays.

Une autre approche modulaire basée sur du domaine spectral MoM a été utilisée
dans le cas des structures périodiques multicouches [Wan95], qui consiste a
caractériser chaque couche du réseau par un « generilzed scattering matrix (GSM) »
puis a analyser la structure compléte par une cascade simple de ces GSM. SCT
difféere de cette approche, car en cas de SCT le cloisonnement est appliqué a une
méme surface et donc SCT est applicable a réseaux d’'une seule couche. Pour les
réseaux multicouches SCT peut étre utilisé en I'hybride avec I'approche mentionnée
au-dessus pour la modélisation efficace des problemes électromagnétiques plus
complexes, par exemple dans le cas de réseaux des patches empilés des tailles

variables [Encinar99-patch] [EncinarO1] [EncinarO3] et les réseaux couplés par

I'ouverture [Robinson99] [Keller00].
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Cette thése est divisée en deux parties. Dans la premiere partie la théorie derriére la
technique par changement d'échelle est présenté dans un contexte général en
utilisant 'exemple d'un probleme de la discontinuité générique. Plusieurs concepts
liés a la technique sont introduits et développés. Comment le probleme de
discontinuité peut étre exprimée en termes de composants de circuit équivalent est
démontré [Aubert03]. Le probleme est alors formulé en termes d'équations
matricielles a partir de ce circuit équivalent, et résolu a l'aide de la technique basée
sur le méthode de moments. La deuxieme partie de cette section montre I'application

de la SCT pour les réseaux réflecteurs périodiques.

Dans la deuxiéme partie de la thése, SCT est utilisé a fin de modéliser les réseaux
planaires finis et non-uniforme. D'abord, il est démontré que SCT modélise
efficacement le couplage électromagnétique entre les cellules voisines d'un
réseau. Plus tard, la technigue est utilisée pour modéliser des réseaux linéaires non-
uniformes des bandes métalliques et des patches. Les résultats de simulation ainsi
gque les temps de calcules sont comparés a des outils de simulation
classiques. Enfin, SCT est appliqué au probleme de diffraction en I'espace libre par
les réseaux planaires 2D. Les réseaux uniformes et non-uniformes sont simulés sous
I'excitation d'onde plane et le cornet. Les résultats de diagrammes de rayonnement

sont compareés aux résultats obtenus par d'autres techniques.
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Partie 1

Introduction

Actuellement, la méthode la plus utilisée pour calculer les champs de diffraction par
des structures planaires est de résoudre des équations de Maxwell dans leur
formulation intégrales. Cette approche permet d'exprimer le probleme a conditions
limitées dans lI'espace libre en termes d'une équation intégrale formulées sur la

surface plane finie de structure. Cette réduction d'une dimension spatiale rend cette

méthode trés efficace dans le cas de géométries planes. Pourtant, cette méthode
dans sa formulation traditionnelle n’est pas particulierement adaptée pour les
grandes structures planaires multi-échelle avec des motifs métalliques
complexes. Les variations rapides et fines dans la géométrie de la structure peuvent
provoquer de brusques changements dans le champ électromagnétique exigeant
maillage local a une échelle tres petites ce qui nécessiterait de un stockage et les

ressources de calcul immenses.

Nous proposons de résoudre ce probléme en introduisant la description locale des
champs dans différentes régions de la surface plane. La procédure peut étre

résumeée par les étapes suivantes:

1. La surface plane est décomposée en plusieurs sous-domaines surfaciques.

2. Le champ électromagnétique est exprimé sur la base modale de chacun de
ces sous-domaines bornés par leurs conditions aux limites spécifiques.

3. Les contributions modales sont traitées séparément pour les modes d'ordre
inférieur et les modes d'ordre supérieur. Les modes d'ordre supérieur
contribuent seulement au niveau local alors que les modes d’ordre inférieurs
définissent le couplage avec le domaine a I'échelle supérieure.

4. Le couplage électromagnétique entre deux échelles successives est modélisé
par un « scale changing network » définie par les modes d'ordre inférieur des
deux sous-domaines.

5. Une solution électromagnétique pour la structure entiere est obtenue par une

cascade simple de ces SCNs.
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Conclusion

Dans ce chapitre, nous avons présenté la théorie de la technique par changement
d’échelles et certains concepts liés a l'application de cette technique a des structures
planaires ont été expliqué. Il a été montré que la SCT est particulierement adaptée
pour les applications qui nécessitent des grandes géométries planaires complexes
avec des motifs variant sur une large gamme d'échelle. Le concept de SCN pour
modéliser le couplage électromagnétique entre les échelles adjacentes est mis en
avant et il est montré que le calcul de ces SCNs est mutuellement
indépendant. Cette formulation, par sa nature méme est hautement parallélisable, ce
qui donne SCT un énorme avantage sur d'autres techniques qui doivent étre

adaptées pour un traitement distribué.

Dans la seconde moitié de ce chapitre, la SCT est appliquée dans le cas d'une
cellule déphaseur sous des conditions périodiques infinité. Les résultats de
déphasage introduit a une onde plane en incidence normales et puis obliques sont
calculés et comparés a un autre outil de simulation. Le bon accord entre les résultats

démontre que SCT est une technique fiable pour la conception et la simulation.
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Partie 2

Introduction

Dans la partie précédente, nous avons détaillé la théorie derriere la SCT avec
I'exemple d’une cellule déphaseur passif sous les conditions périodiques. Dans cette
section, nous allons voir comment cette technique peut étre utilisée de maniére

efficace a fin de modéliser des grands réseaux de géométrie non-uniforme.

Tout d'abord nous allons introduire la notion du multipole de bifurcation qui est
essentiellement un multipole de changement d’échelle (SCN), pour modéliser le
couplage électromagnétique entre les cellules voisines dans un réseau. Le couplage
mutuel entre deux dipdles planaires sera caractérisé par ce SCN et il sera démontré
gue dans le cas d'un dip0le planaire I'effet de couplage mutuel est correctement pris

en compte lors de la modélisation par SCT. Plus tard nous allons utiliser le multipole
de bifurcation pour calculer les impédances de surface des réseaux 1D de bandes
métalliques et des patches dans un guide d'ondes. Une comparaison des temps de
simulation avec celle des techniques conventionnelles sera faite pour souligner

I'efficacité du SCT.

Plus tard dans cette partie, le concept du multipole de bifurcation est renforcé a fin de
intégrer le couplage mutuel dans les réseaux 2D. Les réseaux planaires non-

uniforme de grande taille sont analysés pour le probleme de diffraction

électromagnétique et un bon accord est obtenu avec les résultats de simulation
d'outils de simulation classiques. Puis, ces structures sont analysées en utilisant
I'antenne cornet pyramidal comme une source d'excitation. Les résultats sont

présentés pour les deux configurations de la source c'est a dire quand le corne est

placé a une distance verticale du centre du réseau et quand il est placé avec un
offset et un angle d'inclinaison. Une comparaison des temps de simulation est

donnée pour chaque cas.
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Conclusion

Dans ce chapitre, la technique par changement d’échelles a été appliquée a la
caractérisation de plusieurs structures planaires. Dans la premiére partie du chapitre,
la notion d'un multipole de changement d’échelle a été introduite pour modéliser le
couplage mutuel entre les éléments des réseaux. Il a été montré que SCT peut
effectivement étre utilisée pour caractériser le couplage mutuel dans les réseaux
planaires. Cela a été démontré a la fois dans le cas de couplage mutuel entre deux

dipble demi-ondes, ainsi que dans le cas des éléments d'un réseau de dipdle. Puis la
SCT a été appliquée pour la modélisation d’un réseau linéaire et non-uniforme et il a

été montré que la SCT est beaucoup plus efficace que d'autres outils classiques de

modélisation dans le cas de grands réseaux

Dans la deuxieme partie de ce chapitre, la SCT a été appliquée au probleme de la
diffusion électromagnétique par les réseaux planaires en 2D. Les diagrammes de
champ électrice diffusé par plusieurs types de réseaux sont calculés sous I'excitation
d'onde plane et I'antenne cornet. Ces résultats sont comparés aux résultats de la
simulation obtenu par autres outils d'analyse full-wave en 3D. A la fin, les temps
d'exécution pour calculer les impédances de surface dans le cas des réseaux
uniforme et non-uniforme sont présentés. Il a été montré que la SCT réutilise
efficacement la redondance d’'une conception. En outre, la capacité de I'exécution en
parallele de SCNs rendre SCT un outil prometteur pour concevoir, analyser et
optimiser les structures planaires grandes et complexes, ce qui n'est généralement

pas facile a faire avec les techniques existantes.
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Conclusion générale

Une technique basée sur l'interconnexion des multipole de changement d’échelles a
été proposée pour la modélisation électromagnétique de réseaux planaires. Le
probléme de la diffraction électromagnétique par ces structures a été abordé et il a
eté montré que la SCT peut étre utilisés efficacement pour calculer les diagrammes
de rayonnement et les courants de surface. Dans le cadre de cette thése, la SCT a
été appliqguée au probléeme de diffraction électromagnétique dans le cas de plusieurs
réseaux planaires et il a été démontré que cette technique modélise de maniére

efficace les interactions mutuelles entre les éléments du réseau.

La formulation unique de la technique par changement d’échelles permet d'éviter la
computation directe des structures avec des rapports de dimensions tres
élevé. Grace a la décomposition hiérarchique de domaine de discontinuité par le
processus de partitionnement, les géométries complexes sont décomposées en des
géomeétries simples de nombre finis a I'échelle des niveaux distincts. En outre, les
multipoles de changement d’échelles qui relient les champs électromagnétiques a
des échelles adjacentes sont calculés séparément, offrant ainsi une capacité

inhérente a la parallélisation.

Ce caractere modulaire de la technique peut étre exploité par des algorithmes de
traitement distribué a fin de réduire I'’énormément le temps de simulation. De méme,
I'étude de convergence (en calculant le nombre approprié de modes actifs et passifs
a chague domaine) peut étre parallélisée en exécutant les passes de convergence
comme des processus séparés. Il a été démontré que pour certaines structures
planaires, le temps de simulation peut étre réduit de 90% en mettant en ceuvre les

deux approches indiquées ci-dessus [Khalil09].

La décomposition de domaine permet non seulement le traitement rapide de la

simulation globale, elle contribue également a résoudre les problémes de mémoire

pour la simulation de grandes structures. Puisque le probléeme complexe est
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maintenant divisé en plusieurs petits problémes, les nouvelles équations sont
composées de moins de variable inconnues et peuvent donc étre représentées par
les petites matrices nécessitant moins de ressources de mémoire. De plus, ce
changement graduel des dimensions de niveau d'une échelle a l'autre permet
d'éviter les erreurs numériques de conditionnement associées a rapport critique de

dimensions dans une structure.

En régle générale, si la séparation entre le plus grand et plus petit des dimensions de
la structure est a l'ordre de grandeur N, la technique par changement d'échelles
nécessite le calcul de N multipoles de changement d’échelles. Dans les processus
de la conception et I'optimisation, des petites modifications sont souvent nécessaires
dans la géométrie de la structure. Par exemple, si a un moment donné, des
modifications dans la géométrie de la structure se produisent a I'échelle S, seuls les
SCNs entre I'échelle S et S-1 et entre S et S +1 doivent étre recalculés. Cela donne

la SCT un énorme avantage par rapport a les techniques classique basées sur le
maillage linéaire qui nécessitent au nouveau le calcul de la structure globale. Cette
modularité inhérente de la SCT fait de sort que I'on obtient un outil puissant pour

I'optimisation et le paramétrage.

Méme si la SCT est applicable uniquement pour les structures planaires en 2D ou
2.5D, elle peut étre utilisée en hybrides avec d'autres méthodes pour les applications
3D. L'idée est dutiliser la SCT pour les sous-domaines planaires et l'une des
méthodes classiques, par exemple FDTD, FEM ou TLM pour les sous-domaines
volumiques. Le rapport entre les méthodes peut étre réalisé en utilisant la formulation
IE en mettant en relation des champs électromagnétiques tangentiels sur les
surfaces extérieures de sous-domaines volumiques par les modes actifs des sous-

domaines planaires.

En dehors de toutes les caractéristiques positives la SCT a ses propres limites. Tout
d'abord, il n'y a pas de critere simple et automatique de la convergence pour
déterminer le nombre de modes actifs dans des sous-domaines. Pour l'instant, le
nombre approprié de modes actifs doit étre déterminé manuellement a partir des

courbes de convergence. En outre, dans certains cas, les probléemes de mauvais
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conditionnement des matrices peuvent entrainer des problemes de convergence

numeérique nécessitant un traitement supplémentaire.

Actuellement, seulement les structures planaires composées des formes simples
canoniques ont été traitées. Les domaines et sous-domaines rectangulaires
permettent la description du champ en termes de fonctions d’essaies purement
analytique donc évitant les traitements numériques complexes nécessaires dans le
cas de fonctions d’essaies non-analytiques nécessaires a la description du champ

electromagnétique dans des domaines de formes non-canoniques.

Une autre limitation concerne l'introduction de conditions aux limites artificielles aux
bords de domaines formés par le processus de partitionnement. Normalement, ces
conditions aux limites sont choisies en tenant compte de la nature physique du
probleme. Mais méme un choix différent de conditions aux limites ne semble pas
affecter la précision de la solution de maniere significative sauf que dans ce cas, la
solution aurait besoin d'un plus grand nombre de modes pour sa converger. De
méme lintroduction de conditions aux limites artificielles autour des domaines de
cellules unitaires de réseaux ne va pas perturber significativement la précision des

simulations, comme indiqué par I'étude du couplage mutuelle.

En ce qui concerne les perspectives de ce travail, il sera trés intéressant de
concevoir, dans les premiers temps, une application réelle de réseau planaire, par
exemple une FSS ou un réseau réflecteur Cassegrain en utilisant la technique par
changement d’échelles et aprés une optimisation de cette structure en faisant un
calcule sur la grille. La validation expérimentale d'un tel cas, permettrait de
démontrer le potentiel du SCT dans la conception et l'analyse des applications

réelles.
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