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Large sized planar structures are increasingly being employed in satellite and 

radar applications. Two major kinds of such structures i.e. FSS and Reflectarrays are 

particularly the hottest domains of RF design. But due to their large electrical size 

and complex cellular patterns, full-wave analysis of these structures require 

enormous amount of memory and processing requirements. Therefore conventional 

techniques based on linear meshing either fail to simulate such structures or require 

resources not available to a common antenna designer. An indigenous technique 

called Scale-changing Technique addresses this problem by partitioning the cellular 

array geometry in numerous nested domains defined at different scale-levels in the 

array plane. Multi-modal networks, called Scale-changing Networks (SCN), are then 

computed to model the electromagnetic interaction between any two successive 

partitions by Method of Moments based integral equation technique. The cascade of 

these networks allows the computation of the equivalent surface impedance matrix of 

the complete array which in turn can be utilized to compute far-field scattering 

patterns. Since the computation of scale-changing networks is mutually independent, 

execution times can be reduced significantly by using multiple processing units. 

Moreover any single change in the cellular geometry would require the recalculation 

of only two SCNs and not the entire structure. This feature makes the SCT a very 

powerful design and optimization tool.  Full-wave analysis of both uniform and non-

uniform planar structures has successfully been performed under horn antenna 

excitation in reasonable amount of time employing normal PC resources. 

 

 

 

 



 

 

 

 

 

 

 

GENERAL INTRODUCTION  

  



EM Modeling of Large Planar Array Structures using SCT 
 

11 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The accurate prediction of the plane wave scattering by finite size arrays is of 

great practical interest in the design and optimization of modern frequency selective 

surfaces, reflectarrays and transmittarrays. A complete full-wave analysis of these 

structures demands enormous computational resources due to their large electrical 

dimensions which would require prohibitively large number of unknowns to be 

resolved. Thus the unavailability of efficient and accurate design tools for these 

applications limits the engineers with the choice of low performance simplistic 

designs that do not require enormous amount of memory and processing resources.  

 

Moreover the characterization of large array structures would normally require 

a second step for optimization and fine-tuning of several design parameters since the 

initial design procedure assumes several approximations e.g. in the case of 

reflectarrays the design is usually based on a single cell scattering parameters under 

normal incidence, which is not the case practically. Therefore a full-wave analysis of 

the initial design of the complete structure is necessary prior to fabrication, to ensure 

that the performance conforms to the design requirements. A modular analysis 

technique which is capable of incorporating small changes at individual cell-level 

without the need to rerun the entire simulation is extremely desirable at this stage. 
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Historically several approaches have been followed when analyzing large 

planar structures [Huang07]. In the case of uniform arrays, where we have periodicity 

in the geometry, an infinite approach is often used. By using Floquet’s theorem, the 

analysis is effectively reduced to solving for a single unit-cell; thus significantly 

reducing the unknowns and therefore the simulation times [Pozar84] [Pozar89]. 

Although the periodic boundary conditions take into account the effect of mutual 

coupling in the periodic environment, the approximation may not hold for the arrays 

where individual cell geometries are very different. In addition this is a very poor 

approximation for the cells lying at the edges of the array. 

 

 A simple method based on Finite Difference Time Domain (FDTD) technique 

has been proposed to precisely account for the mutual coupling effects. It consists of 

illuminating a single cell in the array in the presence of nearest neighbor cells and 

calculating the reflected wave. Though it allows precise excitation and boundary 

conditions for each cell in the array it is not very practical to design large arrays due 

to extremely long execution times [Cadoret2005a]. 

 

 Different conventional methods have been tested for a full-wave analysis of 

periodic structures e.g. Method of Moments (MOM) used in the spectral domain for 

multilayered structures [Mittra88] [Wan95], Finite Element Method (FEM) [Bardi02] 

and FDTD [Harms94]. But all of these methods would require prohibitive resources 

for the cases where the local periodicity assumption cannot be applied. A spectral 

domain immitance approach has been used in the full-wave analysis of a 2-D planar 

dipole array along with the Galerkin’s procedure using entire domain basis functions 

[Pilz97].  

 

The method of moments for the global electromagnetic simulation of finite size 

arrays requires high CPU time and memory especially when the patch geometries 

are non-canonical and therefore sub-domain basis functions have to be used. The 

memory problem may be resolved by using various iterative techniques (e.g. 

Conjugate Gradient iterative approach) [Sarkar82] [Sarkar84] at the cost of further 

increase in the execution time. A promising improvement of the MOM, called the 

Characteristic Basis Method of Moment was proposed for reducing the execution 
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time and memory storage for large-scale structures [Mittra05] [Lucente06]. However 

the convergence of numerical results remains delicate to reach systematically. 

 

In order to overcome the above-mentioned theoretical and practical difficulties, 

an original monolithic formulation for the electromagnetic modeling of multi-scale 

planar structures has been proposed [Aubert09]. The power of this technique called 

the Scale-changing Technique (SCT) comes from the modular nature of its problem 

formulation. Instead of modeling the whole planar-surface as a single large 

discontinuity problem, it is split into a set of many small discontinuity problems each 

of which can be solved independently using mode-matching variational methods 

[Tao91]. Each of the sub-domain discontinuity solution can be expressed in the 

matrix form characterizing a multiport-network called Scale-Changing Network 

(SCN). SCT models the whole structure by interconnecting all scale-changing 

networks, where each network models the electromagnetic coupling between 

adjacent scale levels. 

 

The cascade of Scale Changing Networks allows the global electromagnetic 

simulation of all sorts of multi-scaled planar geometries. The global electromagnetic 

simulation of structures via the cascade of scale-changing networks has been applied 

with success to the design and electromagnetic simulation of specific planar 

structures such as multi-frequency selective surfaces of infinite extent [Voyer06], 

discrete self-similar (pre-fractal) scatterers [Voyer04] [Voyer05], patch antennas 

[Perret04] [Perret05] and reconfigurable phase-shifters [Perret06] [Perret06a]. The 

objective of this work is to validate SCT in the case of various planar array 

geometries including FSS arrays, reflectarrays and transmittarrays.  

 

Another modular approach based on spectral-domain MOM has been used in 

the case of multilayer periodic structures [Wan95] which consists of characterizing 

each array layer by a generalized scattering matrix (GSM) and then analyzing the 

complete structure by a simple cascade of these GSMs. SCT differs from this 

approach because in case of SCT partitioning is applied to the same array-plane and 

therefore SCT is applicable for the single-layer array problems. For multilayer arrays 

SCT can be used in hybrid with the fore-mentioned approach for the efficient 

modeling of more complex electromagnetic problems e.g. in the case of variable 
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sized stacked patch-arrays [Encinar99] [Encinar01] [Encinar03] and aperture-coupled 

arrays [Robinson99] [Keller00]. 

 

This thesis is divided into two main sections. In the first section the theory 

behind the scale-changing technique is presented in a general context using an 

example of a generic discontinuity plane. Several concepts related to the technique 

are introduced and elaborated. How the discontinuity problem can be expressed in 

terms of equivalent circuit components is demonstrated [Aubert03]. The problem is 

then formulated in terms of matrix equations from this equivalent circuit and solved 

using MOM based technique. The second part of this section demonstrates the 

application of SCT to periodic reflectarrays. 

 

In the second section of the thesis, SCT is used to model finite and non-

uniform single layered planar arrays. First it is shown that SCT effectively models the 

electromagnetic coupling between the neighboring cells of an array. Later the 

technique is used to model linear arrays of non-uniform metallic strips and patches. 

The simulation results as well as the simulation times are compared to the classic 

simulation tools. Finally, SCT is applied to find the free-space diffraction patterns of 

two-dimension planar arrays. Both uniform and non-uniform arrays are simulated 

under plane-wave and horn-antenna excitations and the scattering field plots are 

compared to results obtained by other techniques. 

 

 
 
 
 
 
 
 
 
 



 
 

 
 
 
 
 
 
 
 

SECTION I:  

 

THEORY OF SCALE-CHANGING 

TECHNIQUE 
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I.1. INTRODUCTION 
 

Presently the most common method to compute the scattering fields from the 

planar structures is by solving the integral equation formulation of the Maxwell’s 

equations. This approach permits to express the open boundary electromagnetic 

problem in terms of an integral equation formulated over the finite planar surface. 

This reduction of one spatial dimension makes this method very efficient in the case 

of planar geometries. Yet this method in its traditional formulation is not particularly 

adapted for large planar structures containing scaled geometries and complex 

metallic patterns. Rapid and fine-scale variations in the structure geometry can cause 

abrupt changes in electromagnetic field patterns requiring local meshing at a very 

minute scale which in turn would require immense storage and computational 

resources.  

 

We propose to resolve this problem by introducing local description of fields 

for different regions of the planar surface. The procedure can be outlined in the 

following steps: 

 

1) The planar surface is decomposed in several sub-domain surface regions. 

2) The electromagnetic fields are expressed on the modal-basis of each of these 

sub-domains bounded by their respective boundary conditions. 
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3) Modal contributions are treated separately for lower order modes and higher 

order modes. Higher order modes are considered to contribute only locally 

where as lower order modes define coupling with the domain at the higher 

scales. 

4) Electromagnetic coupling between two successive scales is modeled by a 

scale-changing network defined by the lower order modes of the two sub-

domains. 

5) A global electromagnetic solution is obtained by a simple cascade of these 

scale-changing networks. 

 

These concepts will be explained in further detail in the subsequent sections. 
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I.2. SCALE-CHANGING TECHNIQUE (SCT)    

 

 

 

 

I.2.1. Introduction 

Electrically large (many orders of the wavelength) structures e.g. multiband 

frequency selective surfaces, non-uniform reflectarrays and self-similar fractal 

structures are said to be complex when their geometrical dimensions vary over a 

large range of scale. In other words we have very fine patterns and large patterns in 

the same structure. As mentioned previously linear meshing in these structures 

requires tremendous amount of computational resources and may lead to ill-

conditioned matrices. 

 

The higher the number of scale-levels the higher is the complexity.  Scale-

changing technique (SCT) gets its name from scaled partitioning of the planar 

structure and the modeling of the electromagnetic interactions between these scale-

levels [Aubert09]. In this section we will focus on the electromagnetic simulation of a 

generic multi-scale structure consisting of metallic patterns printed on a dielectric 

planar surface. 
 

I.2.2. Discontinuity Plane 

To understand the concepts and workings of the Scale-changing Technique 

we will study a general case of an arbitrary discontinuity. Consider multiple metallic 

patterns with the dimension varying over a wide range of scale, printed on a planar 

dielectric surface. Suppose that the largest patterns are several orders of magnitude 

bigger than the finest patterns. This discontinuity plane may be modeled by placing it 

at a cross-section of a waveguide or can simply be located in the free-space. The two 

half-regions i.e. the left-hand region and the right hand region are assumed to be 

composed of multilayered and loss-less dielectric media. 
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I.2.2.1. Partitioning of the Discontinuity Plane 

 

The starting point of proposed approach involves the coarse partitioning of the 

discontinuity plane domain into large sub-domains of arbitrary shape and comparable 

sizes. This partitioning step corresponds to the first order of the magnitude of 

discontinuity plane patterns. The second step consists of partitioning each of the 

domains formed in the first step by introducing smaller sub-domains of comparable 

sizes corresponding to the next order of magnitude. This procedure of partitioning the 

domains into smaller sub-domains is repeated until the smallest scale is reached. 

Such hierarchical domain-decomposition allows rapid focusing on increasing details 

of the planar geometry unlike a linear meshing approach.  

 

 
Figure I.1: An example of discontinuity plane presenting 3 scale-levels (black is metal 
and white is dielectric) and the scattered view of the various sub-domains generated 
by the partitioning process  
 
 

This manner of partitioning allows us to define separate scale-levels for the 

co-planar domains and sub-domains and this can be represented as shown in 
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Figure- I.1. The smallest sub-domains are assigned the bottom most scale or scale-

level one whereas the largest domain i.e. the entire discontinuity plane gets the 

highest scale-level ܠ܉ܕܛ. It is important to note that the scattered representation of the 

domains is only for the sake of clarity, essentially all the domains and sub-domains 

lie in the same plane. 

 

 
Figure I.2: The ith generic domain resulting from the partition process at scale level ‘s’ 
(black is metal, white is dielectric and grey indicates the location of sub-domains 
ܒ۲ 

ሺିܛ૚ሻ(with j = 1, 2, … , M)  
 

 

Let’s consider once again the case of the generic discontinuity plane of 

Figure-I.2. Assuming it to be the ࢏th domain of a general scale-level ܛ it can be 

denoted for convenience as D୧
ሺୱሻ. where, i ൌ 1 െ ܰ, ܰ being the total number of 

domains at the scale-level ܛ. And ܛ ranging from 1 to ܠ܉ܕܛ. Using the above 

described partitioning procedure it can be decomposed into ܯ sub-domains denoted 
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by D୨
ሺୱିଵሻ, (where j ൌ 1 െܯ) defined at scale-level ܛ െ ૚. In addition the discontinuity 

plane may contain simple metallic and dielectric domains where further partitioning is 

not needed [Aubert09]. 

 

I.2.2.2. Choice of Boundary Conditions: 

 

Artificial boundary conditions are introduced along the contours of all these 

domains and sub-domains. These boundary conditions are introduced only on the 

contours of the sub-domains lying in the discontinuity plane and not in the two half-

regions on each side of this discontinuity. The boundary conditions are selected from 

  

1) Perfect Electric Boundary Conditions (PEC) 

2) Perfect Magnetic Boundary Conditions (PMC) 

3) A combination of the above two conditions 

4) Periodic Boundary Conditions  (PBC) 

 

The physics of the problem should be considered in the choice of the 

boundary conditions around any domain. In practice boundary conditions can be tried 

on the contours of each sub-domain and tested for accuracy, execution time and 

numerical convergence depending on a particular geometry.  

 

The purpose of introducing the boundary conditions at the sub-domain level is 

essentially to define a new boundary value problem at a local level that can be solved 

independently by expressing the tangential fields in the region on the modal-basis 

respecting these boundary conditions. At sub-domain level each boundary value 

electromagnetic problem is resolved by writing the field equations in integral equation 

formulation and applying the Galerkin’s method to solve for the surface fields and 

currents.  

 

Since now we have many smaller independent problems, the number of 

unknowns in the matrix equations are reduced and therefore much less memory 

resources are required. It is to be noted here that due to introduction of artificial 

boundary condition the scale-changing technique is not an exact technique but an 
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approximate method. And these approximations need to be chosen carefully not to 

significantly perturb the accuracy of the solution [VoyerTh]. 

 

 

I.2.2.3. Field Expansion on Orthogonal Modes: 

 

In the sub-domain D୧
ሺୱሻ bounded by the artificial boundary conditions the modal 

expansion of the tangential electromagnetic field can be performed. Therefore the 

࢔ሬሬԦࡲ th mode of the modal basis࢔
ሺ࢙,࢏ሻ is solution to the following Helmholtz equation 

[Collin91]. 

 

ቂ்ߘଶ   ൅  ݇௡
ሺ௜,௦ሻమቃ ࡲሬሬԦ࢔

ሺ࢙,࢏ሻ ൌ 0ሬԦ                                                                 (I.1) 

 

In the above equation ்ߘଶ  is the transverse Laplacian operator and  ݇௡
ሺ௜,௦ሻ is the 

cut-off  wave-number of the nth mode of the ith sub-domain of the sth scale-level i.e. 

D୧
ሺୱሻ . The ࡲሬሬԦ ሺ࢙,࢏ሻ is the orthogonal modal-basis which satisfies the boundary conditions 

at the contours of the sub-domain. The condition of orthognality dictates; 

 

࢓ሬሬԦࡲۃ
ሺ࢙,࢏ሻ, ࢔ሬሬԦࡲ

ሺ࢙,࢏ሻۄ ൌ ׭ ቂࡲሬሬԦ࢓
ሺ࢙,࢏ሻቃ

 כ
஽೔
ሺೞሻ ࢔ሬሬԦࡲ  . 

ሺ࢙,࢏ሻ݀ݏ ൌ ൜0     ݂ݎ݋ ݉  ്   ݊
݉ ݎ݋݂ ௠௡ܣ ൌ   ݊ൠ                 (I.2) 

 

The כ operator represents the complex conjugate. And m and n are any two 

modal indexes of the orthogonal modal basis ࡲሬሬሬԦ ሺ࢙,࢏ሻ. 

 

I.2.2.4. Active and Passive Modes: 

 

Now that we have the modal representation of the tangential electromagnetic 

field in the sub-domain, the field contributions due to lower-order and higher-order 

modes can be treated separately. As the order of the modes increases, the energy 

diffracted at the metal interface for that harmonic becomes more and more localized 

within the vicinity [Collin91]. Therefore it is safe to assume that after a certain number 
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of modes, the higher order modes will contribute only to very fine-scale variations of 

the electromagnetic field that are localized to that particular sub-domain. On the other 

hand the lower order modes describe the large-scale variations of the field that 

couples with the tangential fields of the sister sub-domains. 

 

For example in case of the generic sub-domain D୧
ሺୱሻ the fine-scale variations 

are described as a linear combination of infinite number of higher-order modes of 

࢔ሬሬԦࡲ
ሺ࢙,࢏ሻwhich are spatially localized in the vicinity of discontinuities, sharp edges and 

various contours of the domain and therefore does not significantly contribute to the 

electromagnetic coupling between the various sub-domains D୨
ሺୱିଵሻ. For this reason 

these higher-order modes are called passive modes.  

 

The large-scale contribution to the field in D୧
ሺୱሻ is due to the electromagnetic 

coupling between the constitutive sub-domains D୨
ሺୱିଵሻ. This coupling can be modeled 

as the combination of only a limited number of lower-order modes in the spectral 

domain. Because these lower-order modes are involved in the description of 

electromagnetic coupling they are called active modes. Finally, the coupling between 

the active modes of the domain D୧
ሺୱሻ and the passive modes of sub-domains  D୨

ሺୱିଵሻ is 

very weak due to the large difference in their spatial frequencies.  

 

It follows from the above-mentioned physical considerations that the 

electromagnetic coupling between two subsequent scale-levels, e.g. the scale-level ܛ 

and the lower scale ܛ െ ૚, can be defined in term of the mutual interactions of the 

active modes of the domain D୧
ሺୱሻ and the active modes of the sub-domains  D୨

ሺୱିଵሻ. 

 

I.2.3. Scale-changing Network (SCN) 
 

The mutual coupling of the active modes described in the previous section can 

be represented by a multiport of Figure I.3. Each port in the network represents an 

active mode. The ports on the left hand side models the active modes in domain D୧
ሺୱሻ 

whereas the M set of ports on the right hand side denote the active modes of M sub-
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domains  D୨
ሺୱିଵሻ(where j ൌ 1 െܯ) of scale level ܛ െ ૚. As this multiport allows to 

relate the fields at scale s to fields at the lower scale s-1, it is named the Scale-

changing network (SCN). 

 

For relating the electromagnetic fields at scale ܛ to that of another scale ܛ െ ૛, 

the interconnection of scale-changing networks may be performed as shown in 

Figure I.4, each network being previously computed separately. Consequently, the 

modeling of interaction among the multiple scales of a complex discontinuity plane is 

reduced to simple cascade of appropriate scale-changing networks, where each 

network models the interaction between two scales. 

 

 

Figure I.3: The Scale Changing Network coupling the active modes in the domain  ۲ܑ
ሺܛሻ 

(scale level s) and its constitutive sub-domains  ۲ܒ
ሺିܛ૚ሻ (scale level s–1)  
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It is important to note that the computation of these scale-changing networks 

is mutually independent. Therefore each network can be computed by using a 

separate processing node. This modular nature of scale-changing technique can be 

exploited in multiprocessing environments to cut simulation times in the case of very 

large and complex structures. Moreover any single change at any scale-level will only 

need the re-computation of two scale-changing networks and not the SCNs for all 

other scales. This means that small geometric changes will not require the entire 

simulation of the structure all over again. This feature is an essential quality of a good 

parametric tool. Therefore SCT designs will have the capability of rapid simulations in 

the cases where the effects of certain modifications are studied on the design. 

 

 
Figure I.4: The cascade of Scale Changing Networks allow to relate the transverse 
electromagnetic field at scale ‘s’ to that at scale ‘s–2’  
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The derivation of scale-changing network’s characterization matrix requires 

the definition of artificial electromagnetic sources named the scale-changing sources 

in various sub-domains obtained from the partitioning process. 

 

I.2.4. Scale-changing Sources 
 

The derivation of scale-changing network that couples the scale ܛ to the 

adjacent scale ܛ െ ૚ requires the resolution of a boundary value problem. Active 

modes of the domain at scale-level ܛ will act as the excitation sources called scale 

changing sources for the problem. 

 

 
Figure I.5: The discontinuity plane along with the two parallel side-planes A and B in 
the two half-regions 
 

To derive the mathematical expressions for scale changing sources lets 

consider once again the generic discontinuity plane D୧
ሺୱሻ. Figure I.5 represents the 

discontinuity plane along with two planes A and B placed infinitely close to the either 

side of the discontinuity plane. The unit-vectors ܖ૚ሬሬሬሬԦ and ܖ૛ሬሬሬሬԦ are the normal vectors of 
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the two planes. The tangential electric and magnetic fields (ࡱሬሬԦࢻ
ሺ࢙,࢏ሻ and ࡴሬሬሬԦࢻ

ሺ࢙,࢏ሻ ) on the 

domains of the two parallel planes (α ൌ 1,2) can be expressed on a modal-basis 

࢔ሬሬԦࡲ
ሺ࢙,࢏ሻ. 

ࢻሬሬԦࡱ
ሺ࢙,࢏ሻ ൌ  ∑ ௡ܸ

ሺ௜,௦,ఈሻஶ
ୀ૚࢔ ࢔ሬሬԦࡲ

ሺ࢙,࢏ሻ                                                                          (I.3) 

ࢻԦࡶ
ሺ࢙,࢏ሻ ൌ ࢻሬሬሬԦࡴ

ሺ࢙,࢏ሻ ൈ હሬሬሬሬԦܖ   ൌ  ∑ ௡ܫ
ሺ௜,௦,ఈሻஶ

ୀ૚࢔ ࢔ሬሬԦࡲ
ሺ࢙,࢏ሻ                                              (I.4)                      

 

௡ܸ
ሺ௜,௦,ఈሻand ܫ௡

ሺ௜,௦,ఈሻ denote respectively, the voltage and current amplitudes of the 

nth mode in D஑
ሺୱሻ. Tangential electric field and the surface current density on each of 

the domain can be expressed separately with active and passive modes defining the 

large scale and fine scale variation of these quantities respectively. 

 

ቐ
ࢻሬሬԦࡱ
ሺ࢙,࢏ሻ ൌ  ∑ ௡ܸ

ሺ௜,௦,ఈሻࢻࡺ
ୀ૚࢔ ࢔ሬሬԦࡲ

ሺ࢙,࢏ሻ ൅ ∑ ௡ܸ
ሺ௜,௦,ఈሻஶ

ା૚ࢻࡺୀ࢔ ࢔ሬሬԦࡲ
ሺ࢙,࢏ሻ

ࢻሬሬԦࡱ
ሺ࢙,࢏ሻ ൌ ࢻሬሬԦࡱ

ሺ࢙,࢏ሻቚ
ࢋࢍ࢘ࢇ࢒

൅ ࢻሬሬԦࡱ
ሺ࢙,࢏ሻቚ

ࢋ࢔࢏ࢌ

                                     (I.5)    

 

where ࢻࡺ is the number of active modes in each of the domain. Similarly for surface 

current density we can write. 

 

ቐ
ࢻԦࡶ
ሺ࢙,࢏ሻ ൌ  ∑ ௡ܫ

ሺ௜,௦,ఈሻࢻࡺ
ୀ૚࢔ ࢔ሬሬԦࡲ

ሺ࢙,࢏ሻ ൅ ∑ ௡ܫ
ሺ௜,௦,ఈሻஶ

ା૚ࢻࡺୀ࢔ ࢔ሬሬԦࡲ
ሺ࢙,࢏ሻ

ࢻԦࡶ
ሺ࢙,࢏ሻ ൌ ࢻԦࡶ

ሺ࢙,࢏ሻቚ
ࢋࢍ࢘ࢇ࢒

൅ ࢻԦࡶ
ሺ࢙,࢏ሻቚ

ࢋ࢔࢏ࢌ

                                       (I.6) 

     
The passive modes being highly evanescent are shunted by their purely 

reactive modal admittances ( ௡ܻ
ሺ௜,௦,ఈሻ). Consequently, 

 

௡ܫ
ሺ௜,௦,ఈሻ ൎ   ௡ܻ

ሺ௜,௦,ఈሻ
௡ܸ
ሺ௜,௦,ఈሻ                       for  ݊ ൐ ఈܰ

                                    (I.7)   

 
Using the above formulation in Equation I.6 we obtain; 

 

ࢻԦࡶ
ሺ࢙,࢏ሻ ൎ   ࢻԦࡶ

ሺ࢙,࢏ሻቚ
ࢋࢍ࢘ࢇ࢒

൅ ∑ ௡ܻ
ሺ௜,௦,ఈሻ

௡ܸ
ሺ௜,௦,ఈሻஶ

ା૚ࢻࡺୀ࢔ ࢔ሬሬԦࡲ
ሺ࢙,࢏ሻ                                                    (I.8) 

 

which can be formally written in the operator form as: 
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ࢻԦࡶ
ሺ࢙,࢏ሻ ൌ   ࢻԦࡶ

ሺ࢙,࢏ሻቚ
ࢋࢍ࢘ࢇ࢒

൅ ෠ܻఈ
ሺ௜,௦ሻࡱሬሬԦࢻ

ሺ࢙,࢏ሻ                                                    (I.9) 

 

with  ෠ܻఈ
ሺ௜,௦ሻ ൌ  ∑ ቚࡲሬሬԦ࢔

ሺ࢙,࢏ሻۄ ௡ܻ
ሺ௜,௦,ఈሻࡲۃሬሬԦ࢔

ሺ࢙,࢏ሻቚஶ
ା૚ࢻࡺୀ࢔     where  ෠ܻఈ

ሺ௜,௦ሻ is an admittance operator.  

 

Now the tangential electric field and surface current density on the discontinuity plane 

D୧
ሺୱሻcan be determined from using the following boundary conditions.  

 

൝
࢏ሬሬԦࡱ
ሺ࢙ሻ ൌ ࡭ሬሬԦࡱ

ሺ࢙,࢏ሻ ൌ ࡮ሬሬԦࡱ
ሺ࢙,࢏ሻ

࢏Ԧࡶ
ሺ࢙ሻ ൌ ࡭Ԧࡶ

ሺ࢙,࢏ሻ ൅ ࡮Ԧࡶ
ሺ࢙,࢏ሻ                                                                       (I.10)      

 

Using the above equations we can solve for the field quantities on the discontinuity 

plane as follows: 

 

∑ ௡ܸ
ሺ௜,௦ሻஶ

ୀ૚࢔ ࢔ሬሬԦࡲ
ሺ࢙,࢏ሻ ൌ ∑ ௡ܸ

ሺ௜,௦,஺ሻஶ
ୀ૚࢔ ࢔ሬሬԦࡲ

ሺ࢙,࢏ሻ ൌ ∑ ௡ܸ
ሺ௜,௦,஻ሻஶ

ୀ૚࢔ ࢔ሬሬԦࡲ
ሺ࢙,࢏ሻ                   (I.11) 

 ֜ ௡ܸ
ሺ௜,௦ሻ ൌ    ௡ܸ

ሺ௜,௦,஺ሻ ൌ   ௡ܸ
ሺ௜,௦,஻ሻ 

Similarly ࡶԦ࢏
ሺ࢙ሻ can be written as  

࢏Ԧࡶ
ሺ࢙ሻ ൌ   ࢏Ԧࡶ

ሺ࢙ሻቚ
ࢋࢍ࢘ࢇ࢒

൅ ෠ܻ
௜
ሺ௦ሻࡱሬሬԦ࢏

ሺ࢙ሻ                                                     (I.12) 

where  

 

ቐ
࢏Ԧࡶ
ሺ࢙ሻቚ

ࢋࢍ࢘ࢇ࢒
ൌ ∑ ࢻԦࡶ

ሺ࢙,࢏ሻቚ
ࢋࢍ࢘ࢇ࢒

ൌࢻୀ࡮,࡭  ∑ ௡ܫ
ሺ௜,௦,஺ሻ࡭ࡺ

ୀ૚࢔ ࢔ሬሬԦࡲ
ሺ࢙,࢏ሻ ൅ ∑ ௡ܫ

ሺ௜,௦,஻ሻ࡮ࡺ
ୀ૚࢔ ࢔ሬሬԦࡲ

ሺ࢙,࢏ሻ

෠ܻ
௜
ሺ௦ሻ ൌ ෠ܻ஺

ሺ௜,௦ሻ ൅ ෠ܻ஻
ሺ௜,௦ሻ ൌ  ∑ ∑ ቚࡲሬሬԦ࢔

ሺ࢙,࢏ሻۄ ௡ܻ
ሺ௜,௦,ఈሻࡲۃሬሬԦ࢔

ሺ࢙,࢏ሻቚஶ
࡮,࡭ୀࢻା૚ࢻࡺୀ࢔

              (I.13)      

 

If the same number of active modes are taken in the domains A and B i.e.  ஺ܰ ൌ ஻ܰ ൌ

௜ܰ,  the current scale changing sources at scale-level s and domain D୧
ሺୱሻcan be 

rewritten in the simplified form as under: 

 

ቐ
࢏Ԧࡶ
ሺ࢙ሻቚ

ࢋࢍ࢘ࢇ࢒
ൌ ∑ ௡ܫ

ሺ௜,௦ሻ࢏ ࡺ
ୀ૚࢔ ࢔ሬሬԦࡲ

ሺ࢙,࢏ሻ

෠ܻ
௜
ሺ௦ሻ ൌ  ∑ ቚࡲሬሬԦ࢔

ሺ࢙,࢏ሻۄ ௡ܻ
ሺ௜,௦ሻࡲۃሬሬԦ࢔

ሺ࢙,࢏ሻቚஶ
ା૚࢏ࡺୀ࢔

                                                       (I.14)                      
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where ܫ௡
ሺ௜,௦ሻ ൌ ௡ܫ

ሺ௜,௦,஺ሻ ൅ ௡ܫ
ሺ௜,௦,஻ሻ is the amplitude of the nth active mode in D୧

ሺୱሻ and 

௡ܻ
ሺ௜,௦ሻ ൌ   ௡ܻ

ሺ௜,௦,஺ሻ ൅ ௡ܻ
ሺ௜,௦,஻ሻ is the total modal admittance viewed by D୧

ሺୱሻ in case of 

passive modes. Equation I.12 can be represented as a Norton equivalent Network 

shown in Figure I.6.  

 
Figure I.6: Symbolic representation of current scale-changing source at scale level ‘s’ 
in the domain ۲ܑ

ሺܛሻ 
 

In the computation of a scale changing network between a domain D୧
ሺୱሻat scale 

s and the sub-domains D୨
ሺୱିଵሻat scale s-1, the scale-changing sources of the sub-

domains are defined on the active modes of the respective sub-domain only. This is 

due to the assumption that we made in the earlier section that active modes of the 

larger domain interacts very weakly to the passive modes of its constituent sub-

domains. 
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I.3. MODELING OF A PASSIVE PLANAR REFLECTOR CELL USING 
SCALE-CHANGING TECHNIQUE (SCT)    

 

I.3.1. Introduction 
In the previous sections we have developed the basic concepts needed to 

understand the scale changing technique. Now we will apply these concepts to a 

practical case of passive planar reflector cell. 

 

 
 
Figure I.7: A 2-D infinite reflect-array with enlarged unit-cell: Dimensions: a0=b0=15mm, 
a1=12mm, b2=1mm, b1 and a2 are variable. Substrate thickness h'=0.1mm (εr=3.38), air 
gap height h=4mm. 
 

I.3.2. Geometry of the Problem 
Consider an infinite array of Figure I.7 under plane wave excitation. This 

problem is equivalent to resolving the same problem for a single unit-cell under 

periodic boundary conditions. The computation of phase-shift introduced to an 

incident plane-wave by unit-cell reflectors when bounded by periodic boundary 

conditions is an essential step of a reflectarray design process. Characterization of 

each unit-cell under infinite array environment is considered as an approximation of 
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the behavior of that cell in the real array. Therefore we will consider here the problem 

of finding the scattering matrix of a planar reflector under infinite array conditions. 

 

I.3.3. Application of Scale-changing Technique 
 

I.3.3.1. Partitioning of Discontinuity Plane: 

 

Application of scale-changing technique requires the partitioning of the 

discontinuity plane. In our case simplicity of the geometry allows us to define three 

nested scales (Figure I.8). In this simple case we have only one domain at each 

scale-level. Domain Dଵ
ሺଷሻ of scale-level 3 encompasses the entire reflector plane. 

Domain Dଵ
ሺଶሻ at second scale-level consists of patch and slot whereas the domain 

Dଵ
ሺଵሻ on the bottom scale is comprised of slot only. 

 

 
Figure I.8: Partitioning the discontinuity plane of the planar reflector in its constituent 
domains and sub-domains at three scales. White portions represent dielectric, Black 
represents metal and grey parts represent un-partitioned sub-domains. 
 

This problem requires the computation of one scale-changing network i.e. 

between the scale-level 3 and scale-level 2 modeling the interaction between the 
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active modes of Dଵ
ሺଷሻ and Dଵ

ሺଶሻ. This SCN will be cascaded with a surface impedance 

multipole computed on the active modes of Dଵ
ሺଶሻ as shown in Figure I.9.  

 

 
Figure I.9: Global simulation of the planar reflector involves the cascade of the scale-
changing network multipole and the surface impedance multipole. 
 

The two multipoles can be computed separately by decomposing the original 

problem in two separate problems each modeling two successive scale-levels as 

shown in the Figure I.10. The resolution of the structure in Figure I.10 (a) will give the 

scale changing network multipole while the surface impedance multipole can be 

obtained from the structure of Figure I.10 (b).  

 

I.3.3.2. Surface Impedance Multipole Computation: 

 

The surface impedance multipole is represented in Figure I.10 (b). The ports 

on the LHS represent the active modes in domain Dଵ
ሺଶሻ of scale-level 2. The boundary 

value problem in this case is shown in the same figure above the surface impedance 

multipole. Here we have the slot domain Dଵ
ሺଵሻ nested inside the patch domain Dଵ

ሺଶሻ, 

both resting on a dielectric slab of relative permittivity εr. This boundary value 

problem can be represented in terms of the equivalent circuit of Figure I.11. 
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                                              (a)                                                                          (b) 

 

Figure I.10: Decomposition of the problem in two sub-problems.  (a) SCN is computed 
from the structure shown above the SCN multipole (b) Surface Impedance Multipole is 
computed from the problem involving patch and slot domain only. 
 

The left part of the circuit i.e. the source Jଵ
ሺଶሻ along with the admittance 

operator ෠ܻெ   is the Norton equivalent excitation defined on the discrete orthogonal 

modal-basis of Dଵ
ሺଶሻ (ࡲሬሬԦ࢔

ሺଵ,ଶሻ).  

 

ቐ
Ԧଵࡶ
ሺଶሻ ൌ ሬሬሬԦଵࡴ

ሺଶሻ ൈ ܖ ሬሬሬԦ  ൌ  ∑ ௡ܫ
ሺଵ,ଶሻࡺሺభ,మሻ

ୀ૚࢔ ࢔ሬሬԦࡲ
ሺଵ,ଶሻ

 
ሬሬԦଵࡱ
ሺଶሻ ൌ  ∑ ௡ܸ

ሺଵ,ଶሻஶ
ୀ૚࢔ ࢔ሬሬԦࡲ

ሺଵ,ଶሻ
                                                          (I.15) 

 

෠ܻெ  ൌ  ∑ ቚࡲሬሬԦ࢔
ሺଵ,ଶሻۄ ௡ܻ

ሺଵ,ଶሻࡲۃሬሬԦ࢔
ሺଵ,ଶሻቚஶ

ሺభ,మሻା૚ࡺୀ࢔                                                  (I.16) 

 

ሺଵ,ଶሻ is the number of active modes of the domain Dଵࡺ
ሺଶሻ. ࡵሺଵ,ଶሻ and ࢂሺଵ,ଶሻ are the 

column vectors of size ࡺሺଵ,ଶሻ listing the coefficients in the matrix form. 
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ሺଵ,ଶሻܫ                           ൌ ൦
ଵܫ
ሺଵ,ଶሻ

ڭ
ேሺభ,మሻܫ
ሺଵ,ଶሻ

൪                               ܸሺଵ,ଶሻ ൌ ൦
ଵܸ
ሺଵ,ଶሻ

ڭ

ேܸሺభ,మሻ
ሺଵ,ଶሻ

൪                            (I.17) 

 

௡ܻ
ሺଵ,ଶሻ is the admittance of nth mode. The expressions for the modal admittances for 

TE and TM modes are as follows: 

௡ܻ
ሺ௜ሻ ൌ  ൞

ఊ೙
ሺ೔ሻ

௝ఠఓబ
 ݏ݁݀݋݉ ܧܶ                     

௝ఠఌ

ఊ೙
ሺ೔ሻ ݏ݁݀݋݉ ܯܶ                         

                                             (I.18) 

 

with ߛ௡
ሺ௜ሻ the propagation constant of nth mode in medium ݅. The expression of ߛ ሺ௜ሻ for 

a TE or TM mode is ߛ ሺ௜ሻ ൌ  ට݇௖ଶ െ ݇଴ଶߝ௥
ሺ௜ሻ 

 

 
 
Figure I.11: Equivalent circuit diagram to compute the surface impedance multipole. 

 

The dielectric side of the discontinuity plane is modeled as a shorted dielectric 

waveguide. Therefore the operator ෠ܻ௦௨௕   represents the modes of the domain  Dଵ
ሺଶሻ 

short circuited by ground through the dielectric. If ݄ is the thickness of the dielectric 

and ߛ௡௦௨௕ the propagation constant of ݊th mode in the substrate then the admittance 

operator can be written as 

 

෠ܻ௦௨௕  ൌ  ∑ ቚࡲሬሬԦ࢔
ሺଵ,ଶሻۄ ௡ܻ௦௨௕

ሺଵ,ଶሻcoth ሺߛ௡௦௨௕݄ሻࡲۃሬሬԦ࢔
ሺଵ,ଶሻቚஶ

ୀ૚࢔                                           (I.19) 
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The electric field source Eଵ
ሺଵሻ is a virtual source defined in the slot domain Dଵ

ሺଵሻ 

(scale 1). The name virtual sources imply that unlike real sources they deliver no 

electromagnetic energy and are therefore represented with an arrow across the 

source. The virtual sources serve to represent two different boundary conditions at a 

time in one equivalent circuit. For example in this case the field source Eଵ
ሺଵሻ defined in 

Dଵ
ሺଵሻ models dielectric boundary conditions where as the dual quantity Jଵ

ሺଵሻ which is 

only defined outside Dଵ
ሺଵሻ models the perfect electric boundary conditions of the 

metallic surface.  

 

It is to be noted here that both the quantities Eଵ
ሺଵሻ and Jଵ

ሺଵሻ cannot be non-zero 

at the same time and therefore the energy supplied by the source which is the 

product of the two quantities ۳ and ۸   is zero everywhere [Aubert03]. Eଵ
ሺଵሻ serves to 

represent the tangential electric field in the slot domain on an orthogonal set of entire 

domain trial functions [Nadarassin95] defined in Dଵ
ሺଵሻ (ࡲሬሬԦ࢔

ሺଵ,ଵሻ ) as under.  

 

ቐ
ሬሬԦଵࡱ
ሺଵሻ ൌ  ∑ ௡ܸ

ሺଵ,ଵሻࡺሺభ,భሻ
ୀ૚࢔ ࢔ሬሬԦࡲ

ሺଵ,ଵሻ 

 
Ԧଵࡶ
ሺଵሻ  ൌ  ૙ሬሬԦ       

Dଵ ࢔࢏  
ሺଵሻ                                                       (I.20) 

 

ܰሺଵ,ଵሻ being the number of active modes in Dଵ
ሺଵሻ. The column-vector ܸሺଵ,ଵሻ of 

dimensions ܰሺଵ,ଵሻ  lists the weights of the test functions. 

ܸሺଵ,ଵሻ ൌ ൦
ଵܸ
ሺଵ,ଵሻ

ڭ

ேܸሺభ,భሻ
ሺଵ,ଵሻ

൪                                                                             (I.21) 

 

Following matrix equations can be written from the equivalent circuit by using 

Kirchoff’s laws. 

൥
Eଵ
ሺଶሻ

Jଵ
ሺଵሻ ൩ ൌ ൤ 0 1

െ1 ෠ܻெ  ൅ ෠ܻ௦௨௕ 
൨  ൈ  ൥

Jଵ
ሺଶሻ

Eଵ
ሺଵሻ൩                                                   (I.22) 
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This boundary value problem may be solved by applying the Galerkin’s method. The 

above matrix equation can therefore be written in terms of coefficient matrices. 

 

൤ܸ
ሺଵ,ଶሻ

0
൨ ൌ ൤

0 ଵܲ
 

െ ଵܲ
்

ଵܲ
்

௦ܻ௨௕ ଵܲ
  ൅ ଶܲ

்ሺ ெܻ ൅ ௦ܻ௨௕ሻ ଶܲ
  ൨  ൈ   ൤

ሺଵ,ଶሻܫ
ܸሺଵ,ଵሻ

൨                              (I.23) 

 

ܶ denotes the complex conjugate transpose of a matrix. ሾ ଵܲ
  ሿ is the projection matrix 

of dimensions ܰሺଵ,ଶሻ ൈ  ܰሺଵ,ଵሻ of active modes of modal-basis ࡲሬሬԦ࢔
ሺଵ,ଶሻon ࡲሬሬԦ࢔

ሺଵ,ଵሻ.  

 

ሾ ଵܲ
  ሿ ൌ ൦

ଵܨۃ
ሺଵ,ଶሻ, ଵܨ

ሺଵ,ଵሻۄ ڮ ଵܨۃ
ሺଵ,ଶሻ, ܨ

ேሺభ,భሻ
ሺଵ,ଵሻ ۄ

ڭ ڰ ڭ
ܨۃ
ேሺభ,మሻ
ሺଵ,ଶሻ , ଵܨ

ሺଵ,ଵሻۄ ڮ ܨۃ
ேሺభ,మሻ
ሺଵ,ଶሻ , ܨ

ேሺభ,భሻ
ሺଵ,ଵሻ ۄ

൪                                                  (I.24) 

 

Similarly ሾ ଶܲ
  ሿ is the projection matrix of dimensions ൫ܯሺଵ,ଶሻ െ ܰሺଵ,ଶሻ൯ ൈ ܰሺଵ,ଵሻ of 

passive modes of modal-basis ࡲሬሬԦ࢔
ሺଵ,ଶሻon ࡲሬሬԦ࢔

ሺଵ,ଵሻ. 

 

ሾ ଶܲ
  ሿ ൌ ൦

ܨۃ
ேሺభ,మሻାଵ
ሺଵ,ଶሻ , ଵܨ

ሺଵ,ଵሻۄ ڮ ܨۃ
ேሺభ,మሻାଵ
ሺଵ,ଶሻ , ܨ

ேሺభ,భሻ
ሺଵ,ଵሻ ۄ

ڭ ڰ ڭ
ܨۃ
ெሺభ,మሻ
ሺଵ,ଶሻ , ଵܨ

ሺଵ,ଵሻۄ ڮ ܨۃ
ெሺభ,మሻ
ሺଵ,ଶሻ , ܨ

ேሺభ,భሻ
ሺଵ,ଵሻ ۄ

൪                                           (I.25) 

 

ሾ ெܻሿ is a diagonal matrix of passive modal admittances. Its dimensions are ൫ܯሺଵ,ଶሻ െ

ܰሺଵ,ଶሻሻ ൈ ൫ܯሺଵ,ଶሻ െ ܰሺଵ,ଶሻ൯ 

ሾ ெܻሿ ൌ ൦
ேܻሺభ,మሻାଵ
ሺଵ,ଶሻ ڮ 0
ڭ ڰ ڭ
0 ڮ

ெܻሺభ,మሻ
ሺଵ,ଶሻ

൪                                                    (I.26) 

 

ሾ ெܻሿ is a diagonal matrix of dimensions ܯሺଵ,ଶሻ ൈ  ሺଵ,ଶሻܯ

 

ሾ ௦ܻ௨௕ሿ ൌ ൦
ଵܻ௦௨௕
ሺଵ,ଶሻcoth ሺߛଵ௦௨௕݄ሻ ڮ 0

ڭ ڰ ڭ
0 ڮ

ெܻሺభ,మሻ௦௨௕
ሺଵ,ଶሻ coth ሺߛெ௦௨௕݄ሻ

൪                             (I.27) 

 

From equation (I.23) surface impedance can be written as 
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ሺଵ,ଶሻ ൧ ݏܼൣ ൌ   ଵܲ
  ൈ  ሺ ଵܲ

்
௦ܻ௨௕ ଵܲ

  ൅ ଶܲ
்ሺ ெܻ ൅ ௦ܻ௨௕ሻ ଶܲ

  ሻ ି૚ ൈ  ଵܲ
்                   (I.28) 

 

with 

ൣܸሺଵ,ଶሻ൧ ൌ ሺଵ,ଶሻ ൧ ݏܼൣ ൈ  ሺଵ,ଶሻ൧                                               (I.29)ܫൣ

 

I.3.3.3. Scale-changing Network Computation: 

 

Equivalent circuit of Figure I.12 (a) represents the boundary value problem of 

Fig I.10 (a). In this case the discontinuity plane represented by the middle branch is 

modeled with two sources. The current source j ୣ
ሺଶሻis the virtual source defined in Dଵ

ሺଶሻ 

defining perfect electric boundary conditions while the electric field source e  ሺଶሻ is the 

scale-changing source modeling the electromagnetic coupling with the sub-domain 

as explained in section I. Assuming that both sources are defined by the same set of 

orthogonal modes the equivalent circuit can be simplified to that of Figure I.12 (b) 

[PerretTh].  

 

Z
sub

1
(3)

1
(3)

M

e
(2)

(2)
(2)

 
(a) 
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(b) 

 
Figure I.12: (a) Equivalent circuit diagram to compute the scale-changing network 
multipole. (b) Simplified Equivalent Circuit. 
 

ሬሬԦଵࡱ
ሺଷሻ is the excitation source defined on ܰሺଵ,ଷሻ active modes of the orthogonal 

modal-basis of Dଵ
ሺଷሻ ሺࡲሬሬԦ࢔

ሺଵ,ଷሻሻ. Floquet modal basis is chosen at this scale to model the 

periodicity of the infinite array. Floquet modes TE00 and TM00 are chosen to represent 

the two plane-wave polarizations. The expressions for the Floquet modal basis can 

be found in Appendix A. 

 

ቐ
ሬሬԦଵࡱ
ሺଷሻ ൌ  ∑ ௡ܸ

ሺଵ,ଷሻேሺభ,యሻ
௡ୀଵ ࢔ሬሬԦࡲ

ሺଵ,ଷሻ

 
Ԧଵࡶ
ሺଷሻ ൌ  ∑ ௡ܫ

ሺଵ,ଷሻஶ
௡ୀଵ ࢔ሬሬԦࡲ

ሺଵ,ଷሻ
                                                                          (I.30) 

 

ܸሺଵ,ଷሻ and   ܫሺଵ,ଷሻ are the column vectors of dimensions ܰሺଵ,ଷሻ. 

ሺଵ,ଷሻܫ  ൌ ൦
ଵܫ
ሺଵ,ଷሻ

ڭ
ேሺభ,యሻܫ
ሺଵ,ଷሻ

൪        ܸሺଵ,ଷሻ ൌ ൦
ଵܸ
ሺଵ,ଷሻ

ڭ

ேܸሺభ,యሻ
ሺଵ,ଷሻ

൪                                                 (I.31) 

 

Operators መܼெ   and መܼ௦௨௕   are defined as usual 

 

൞
መܼெ  ൌ  ∑ ቚࡲሬሬԦ࢔

ሺଵ,ଷሻܼۄ௡
ሺଵ,ଷሻࡲۃሬሬԦ࢔

ሺଵ,ଷሻቚஶ
௡ୀேሺభ,యሻାଵ

 
መܼ௦௨௕  ൌ  ∑ ቚࡲሬሬԦ࢔

ሺଵ,ଷሻܼۄ௡௦௨௕
ሺଵ,ଷሻ tanh ሺߛ௡௦௨௕݄ሻࡲۃሬሬԦ࢔

ሺଵ,ଷሻቚஶ
௡ୀ૚

                                 (I.32) 
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with modal impedances defined as 

ܼ௡
ሺ௜ሻ ൌ  ൞

௝ఠఓబ
ఊ೙
ሺ೔ሻ  ݏ݁݀݋݉ ܧܶ                     

ఊ೙
ሺ೔ሻ

௝ఠఌ
ݏ݁݀݋݉ ܯܶ                         

                                                               (I.33) 

  

Using Kirchoff’s circuit laws following matrix equation can be written from the 

equivalent circuit of Fig (b) 

 

൥
Jଵ
ሺଷሻ

Eଵ
ሺଶሻ൩ ൌ ൥

൫ መܼெ  ൅ መܼ௦௨௕  ൯ିଵ െ መܼ௦௨௕  ൫ መܼெ  ൅ መܼ௦௨௕  ൯ିଵ

መܼ௦௨௕  ൫ መܼெ  ൅ መܼ௦௨௕  ൯ିଵ መܼெ  መܼ௦௨௕  ൫ መܼெ  ൅ መܼ௦௨௕  ൯ିଵ
൩  ൈ  ൥

Eଵ
ሺଷሻ

Jଵ
ሺଶሻ ൩                 (I.34) 

 

Applying Galerkin’s method we get  

൤ ܫ
ሺଵ,ଷሻ

ܸሺଵ,ଶሻ
൨ ൌ ቂ11ܪ 12ܪ

21ܪ 22ቃܪ  ൈ ൤
ܸሺଵ,ଷሻ
ሺଵ,ଶሻܫ

൨                                                                      (I.35) 

 

With projection matrices defined as under:  

 

ሾܪଵଵሿ is a diagonal matrix of dimensions ܰሺଵ,ଷሻ ൈ ܰሺଵ,ଷሻ 

ሾܪଵଵሿ ൌ

ۏ
ێ
ێ
ێ
ቀܼଵ௦௨௕ۍ

ሺଵ,ଷሻtanh ሺߛଵ௦௨௕݄ሻቁ
ିଵ

ڮ 0
ڭ ڰ ڭ
0 ڮ ቀܼ

ேሺభ,యሻ௦௨௕
ሺଵ,ଷሻ tanh ሺߛேሺభ,యሻ௦௨௕݄ሻቁ

ିଵ

ے
ۑ
ۑ
ۑ
ې
            (I.36) 

 

ሾܪଵଶሿ is a unitary matrix of dimensions ܰሺଵ,ଷሻ ൈ ܰሺଵ,ଶሻ 

ሾܪଵଶሿ ൌ ൥
െ1 ڮ 0
ڭ ڰ ڭ
0 ڮ െ1

൩                                                                    (I.37) 

with ሾܪଶଵሿ ൌ െሾܪଵଶሿ் and ሾܪଶଶሿ  ൌ ଶܲ
்ܼ ଶܲ

    
 

ሾ ଶܲ
  ሿ is the projection matrix of dimensions ൫ܯሺଵ,ଷሻ െ ܰሺଵ,ଷሻ൯ ൈ ܰሺଵ,ଶሻ of passive modes 

of modal-basis ࡲሬሬԦ࢔
ሺଵ,ଷሻon ࡲሬሬԦ࢔

ሺଵ,ଶሻ. 
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ሾ ଶܲ
  ሿ ൌ ൦

ܨۃ
ேሺభ,యሻାଵ
ሺଵ,ଷሻ , ଵܨ

ሺଵ,ଶሻۄ ڮ ܨۃ
ேሺభ,యሻାଵ
ሺଵ,ଷሻ , ܨ

ேሺభ,మሻ
ሺଵ,ଶሻ ۄ

ڭ ڰ ڭ
ܨۃ
ெሺభ,యሻ
ሺଵ,ଷሻ , ଵܨ

ሺଵ,ଶሻۄ ڮ ܨۃ
ெሺభ,యሻ
ሺଵ,ଷሻ , ܨ

ேሺభ,మሻ
ሺଵ,ଶሻ ۄ

൪                                       (I.38) 

 

and Z is a diagonal matrix of size ൫ܯሺଵ,ଷሻ െ ܰሺଵ,ଷሻ൯ ൈ ൫ܯሺଵ,ଷሻ െ ܰሺଵ,ଷሻ൯ 

 

ሾܼሿ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ ௓ಿሺభ,యሻశభ

ሺభ,యሻ ௓
ಿሺభ,యሻೞೠ್శభ
ሺభ,యሻ ୲ୟ୬୦ ሺఊಿሺభ,యሻೞೠ್శభ௛ሻ

௓
ಿሺభ,యሻశభ
ሺభ,యሻ ା௓

ಿሺభ,యሻೞೠ್శభ
ሺభ,యሻ ୲ୟ୬୦ ሺఊಿሺభ,యሻೞೠ್శభ௛ሻ

ڮ 0

ڭ ڰ ڭ

0 ڮ
௓
ಾሺభ,యሻ
ሺభ,యሻ ௓

ಾሺభ,యሻೞೠ್
ሺభ,యሻ ୲ୟ୬୦ ሺఊಾሺభ,యሻೞೠ್௛ሻ

௓
ಾሺభ,యሻ
ሺభ,యሻ ା௓

ಾሺభ,యሻೞೠ್
ሺభ,యሻ ୲ୟ୬୦ ሺఊಾሺభ,యሻೞೠ್௛ሻے

ۑ
ۑ
ۑ
ۑ
ې

       (I.39) 

I.3.3.4. Network Cascade: 

In this step cascade of two networks is performed to obtain the equivalent 

surface impedance of the complete structure ሾ  ܼሿ as viewed by the excitation modes 

at the surface of the discontinuity plane (see Figure I.9) 

 

൤ ܫ
ሺଵ,ଷሻ

ܸሺଵ,ଶሻ
൨ ൌ ቂ11ܪ 12ܪ

21ܪ 22ቃܪ  ൈ ൤
ܸሺଵ,ଷሻ
ሺଵ,ଶሻܫ

൨                                                             (I.40) 

 

Note the negative sign in the surface impedance multipole equation to signify the 

reversal of the currents in the cascading procedure. 

ൣܸሺଵ,ଶሻ൧ ൌ െൣܼݏ ሺଵ,ଶሻ ൧ ൈ  ሺଵ,ଶሻ൧                                                        (I.41)ܫൣ

 

From the above equations following equation for the overall multipole can be 

extracted  

ሺଵ,ଷሻ൧ܫൣ ൌ ሾܻݏ ሿ ൈ ൣܸሺଵ,ଷሻ൧                                                                 (I.42) 

with 

ሾܻݏ ሿ ൌ   ሾܪଵଵሿ ൅ ሾܪଵଶሿ൫ൣܼݏ ሺଵ,ଶሻ ൧ ൅ ሾܪଶଶሿ൯
ିଵሾܪଵଶሿ்                               (I.43) 

Scattering parameter matrix is calculated by using  

ሾ  ܵሿ ൌ   ቀඥሾܼெሿቁ
ିଵ
ሺሾ  ܼሿ െ ሾܼெሿሻ ൈ ሺሾ  ܼሿ ൅ ሾܼெሿሻିଵඥሾܼெሿ                        (I.44) 

 

with ሾ  ܼሿ ൌ   ሾܻݏ ሿିଵ and ሾܼெሿ is the modal impedance of excitation modes in air. 

 



EM Modeling of Large Planar Array Structures using SCT 
 

41 
 

I.3.4. Results Discussion 

 

I.3.4.1. Planar Reflector under Normal Incidence: 

 

A planar unit-cell reflector depicted in Figure I.13 has been modeled and 

simulated using the approach outlined in the previous section. The discontinuity 

plane of the reflector cell is comprised of slotted patch centered on two dielectric 

layers. The dimensions are indicated in the figure captions. The simulations have 

been performed for nine distinct unit-cell geometries obtained by varying metallic 

patch width (b1) and slot length (a2) (Table-I.1). This infinitely thin metal patch rests 

on a 100µm lossless dielectric (ߝ௥ ൌ 3.38) which is in turn placed on a 4mm air-cavity 

with a ground-plane at the bottom. Normal plane wave with electric field linearly 

polarized perpendicular to slot-length is considered as excitation source. The results 

presented are for the phase of the reflection coefficient (S11) calculated at the plane 

of the discontinuity plane. 

 

 
Figure I.13: Geometry of Planar unit-cell reflector. Dimensions: a0=b0=15mm, a1=12mm, 
b2=1mm, b1 and a2 are variable. Substrate thickness h1=0.1mm (εr=3.38), air gap height 
h2=4mm. 
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I.3.4.1.1. Convergence Study: 

 

As described in the previous section, the tangential electromagnetic field in 

different regions of the discontinuity plane is defined by the orthogonal set of modes 

of the domain. Precise description of field quantities would require adequate number 

of active and passive modes to be considered at each scale-level. Appropriate 

number of modes may be chosen by a systematic convergence study. This study 

involves plotting reflection coefficient phase results with respect to the number of 

modes at each domain to find the appropriate number for which the results converge. 

 

Case 1 2 3 4 5 6 7 8 9 
 b1  2 4 4 6 6 8 10 10 12  
a2  7 4 6 4 10 8 6 10 10  

 
Table I.1: Above nine planar unit-cell geometric configurations are simulated. 
Dimension b1 and a2 (in mm) are the width of the patch and the length of the slot 
respectively. 
 

Convergence study results for the sixth reflector-cell configuration at the 

centre frequency of 12.1GHz are shown in Figure I.14. Figure I.14 (a) shows the 

convergence of the reflection coefficient phase with respect to the number of active 

modes ܰሺଵ,ଶሻ in the patch domain Dଵ
ሺଶሻ and the number of passive modes ܯሺଵ,ଷሻ taken 

inside the periodic waveguide (discontinuity domain Dଵ
ሺଷሻ. It is apparent that there is 

no significant variation in phase results for waveguide modes greater than 2500. 

Similarly around 600 active modes in the patch domain are required for the phase 

convergence with in 3º margin.  

 

Figure I.14 (b) plots the convergence curves with respect to patch active 

modes and the number of active modes ܰሺଵ,ଵሻ taken in the slot domain Dଵ
ሺଵሻ. Here, 

again the flat part of the curves demonstrates the convergence of reflected phase. It 

is evident from the curves that convergence is achieved if the number of patch active 

modes is taken between 600 and 1000 and the number of slot active modes is taken 

between 80 and 120. However, if the number of slot active modes exceeds a certain 

limit, matrices become ill-conditioned leading to the loss of convergence as can be 

seen by the sudden drop in two lower curves. This numerical problem can be 
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attributed to the use of entire domain trial functions and is analogous to the one 

observed classically in the Mode Matching Technique [Lee71].  

 

 
(a) 

 
(b) 

Figure I.14: Convergence study of phase of reflection coefficient for case6 
(b1,a2)=>(8,8), Frequency 12.1GHz : (a) Convergence with respect to number of modes 
in the waveguide (Legend indicates number of patch modes); (b) Convergence with 
respect to number of modes in the slot (Legend indicates number of patch modes). 
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For this reflector-cell configuration we have chosen 5000 waveguide modes, 

1000 antenna active modes and 120 slot active modes. For these numbers, the 

convergence achieved is within 1º margin. It should be noted here that the phase 

convergence is not very sensitive to number of passive modes in a domain as long 

as a significant number is taken. 1000 passive modes were taken in the patch 

domain ܯሺଵ,ଶሻfor the simulation results presented in this section. However a rigorous 

convergence study is required to determine the number of active modes which 

characterize the mutual coupling between different scales. 

 

I.3.4.1.2. Results for the phase of Reflection Coefficient: 

 

The nine unit-cell configurations are simulated using Scale-changing 

Technique over the frequency range of 11.7GHz to 12.5GHz using the convergence 

results at the centre frequency for each configuration. Same structures were 

simulated using Finite Element Method based commercial software (HFSS ver11) 

under periodic boundary conditions and Floquet port excitation. Table-I.2 lists the 

values of the reflected phase obtained by SCT and HFSS simulations for all nine 

configurations at center frequency (12.1GHz) under normal incidence conditions. 

Difference in the results between the two techniques is listed in the third row. It is 

evident that the results agree nicely with a maximum difference of 6.1º for the fifth 

configuration. The overall average difference between two techniques for all the 

configurations is 3.1º at the center frequency. 

 

Case 1 2 3 4 5 6 7 8 9 

 SCT  45.86º 26.12º 20.41º -23.28 º 116.25 º -156.12º -144.53º 116.9º 117.2º 
HFSS  46.21º 27.94º 20.93º -21.54 º 122.35 º -151.49º -143.01º 123º 122.4º 
Diff 0.35º 1.82º 0.52º 1.74 º 6.1 º 4.63º 1.52º 6º 5.24º 

 

Table I.2: A comparison of the S11 phase (in degrees) obtained by SCT and HFSS at 
centre frequency (12.1GHz) for all the nine cases under normal incidence. Third row 
lists the absolute difference between the two results. 
 
 

Usually the results over the entire frequency band are required to visualize the 

phase variation with frequency. In Figure I.15 the phase curves for the first seven 
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configurations are plotted over the entire frequency band i.e. 11.7 to 12.5 GHz. The 

results of HFSS simulations are represented on the same figure for comparison 

purposes. Again the two results agree very closely with maximum difference of 6º for 

the fifth case. The convergence criterion used in case of HFSS simulations is Δs 

equal to 2% which means mesh refinement stops when the difference in the S-

parameter matrix for two consecutive passes is less than 2%. 

 

 
Figure I.15: Phase results over the entire frequency range (11.7 – 12.5GHz)   for the 
first seven geometric cases. (——) SCT    (x x x) HFSS. 

 

I.3.4.2. Planar Reflector under Oblique Incidence: 
 

The same nine unit-cell configurations have been studied under oblique 

incidence excitation. To simply the geometry only a single layer of dielectric is 

considered shorted by a ground plane. Therefore the results presented in this section 

are for the configurations in which only the air-cavity acts as the dielectric. All other 

dimensions remain unchanged. 

 

Plane-wave incidence is defined by the angle θ and φ as shown in the Figure- 

I.7. The horizontal and vertical polarizations of the plane-wave are characterized by 

TE00 and TM00 Floquet propagation modes. 
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θ  0º  10º  20º  30º  40º  DIFF 

  HFSS  SCT  HFSS  SCT  HFSS  SCT  HFSS  SCT  HFSS  SCT   

1  46  47.2 47.1  49 54.7 55 65 67.1 78.5  78.5  1.02 

2  24.3  29.7 28.9  31 36.8 38 48.4 50 64.2  65  2.02 

3  20.7  24.6 23.5  26 32.4 34 45 46 61.7  62  1.95 

4  ‐21.7  ‐17 ‐19.1  ‐15 ‐11.1 ‐8 0.71 4 13.7  17.53  3.62 

5  123  122.9  122  107 119 104 114 102 109  101  8.92 

6  ‐148  ‐151.5  ‐151  ‐153 ‐155 ‐158 ‐166 ‐169.2 ‐195  ‐198  2.92 

7  ‐144  ‐143.8  ‐146  ‐143.7 ‐152 ‐151 ‐169 ‐166.5 ‐214  ‐208  2.8 

8  125  117 118  114.5 111 108.6 101 102.6 89  92.5  4.8 

9  124  116.5  116  111.5 99.6 102 77.6 96 37.4  56  9.91 

DIFF  3.44  4.31  3.21  5.44  4.77   

 

Table I.3: A comparison of the S11 phase (corresponding to the reflection co-efficient 
of Mode TE00) at the centre frequency 12.5GHz under incidence oblique (φ=0º) 
 

θ  0º  10º  20º  30º  40º  DIFF

  HFSS  SCT  HFSS  SCT  HFSS  SCT  HFSS  SCT  HFSS  SCT   

1  149  147.8 150  149 149 148 144 146.4 135  143  2.42 

2  172  173.5 172  173 171 171 167 167.5 153  156  1.20 

3  171  173.9 172  173 171 172 166 168 153  156  1.82 

4  ‐173  ‐171.5  ‐173  ‐172 ‐174 ‐173.3 ‐179 ‐178.4 ‐195  ‐194  1.19 

5  ‐174  ‐170.6  ‐174  ‐171 ‐176 ‐172.5 ‐179 ‐177 ‐196  ‐193  2.60 

6  ‐163  ‐160.8  ‐162  ‐160.8 ‐164 ‐162.1 ‐169 ‐167.4 ‐185  ‐184  1.80 

7  ‐157  ‐152.4  ‐156  ‐153.1 ‐157 ‐154.6 ‐161 ‐161.3 ‐178  ‐176  2.70 

8  ‐155  ‐152.3  ‐155  ‐151 ‐156 ‐153 ‐161 ‐158 ‐178  ‐173.7  3.12 

9  ‐152  ‐148.7  ‐151  ‐150 ‐152 ‐154 ‐157 ‐163 ‐173  ‐173.6  2.42 

DIFF  1.55  1.34  1.88  1.99  2.89   

 

Table I.4: A comparison of the S22 phase (corresponding to the reflection co-efficient 
of Mode TM00) at the centre frequency 12.5GHz under incidence oblique (φ=0º) 
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(a) 

 
(b) 

Figure I.16: Phase results over the entire frequency band. Simple lines represent SCT 
results. Lines with markers represent HFSS results (a) TE00 (b) TM00  
 

Table I.3 lists the reflection phase results of TE00 mode for several different 

angles of incidence. In this case we have varied the angle theta from 0º to 40º in 

φ=0º plane. The results are compared to those found with HFSS simulations. The 

last column of the table gives the average difference between the SCT and HFSS 

results for that particular configuration whereas the last row gives the average 

difference for all the configurations at a particular incidence. We find a good 

agreement between the results of two techniques i.e. within ±3º range except for 
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configuration 5 and 9. The slightly larger difference in results for these two cases can 

be attributed to the convergence issues of their HFSS simulations. 
 
 

Table I.4 lists the phase results of the reflection coefficient corresponding to 

the vertical polarization i.e. TM00 for the same incidence angles. Here again the 

results compare nicely to the results obtained by HFSS. It is important to note that at 

12.5GHz and for the incidences given we have only two Floquet propagation modes 

i.e. TE00 and TM00. The incidences are chosen to avoid the appearance of spurious 

modes. 

 

 
Figure I.17: Variation of S11 phase with respect to the angle of incidence (θ from 0º to 
40º) 
 

Figure-I.16(a) and Figure-I.16(b) plot the phase results for the two 

polarizations over the entire frequency band. Only the results of a limited number of 

configurations are depicted to avoid over-crowding of the figures. Simple lines 

represent the SCT results while the lines containing markers plot the HFSS results. 

Again a good agreement between the results of the two methods can be seen over 

the entire frequency band. Here in the case of both HFSS and SCT the convergence 

criterion for each configuration is determined at the centre frequency only and the 
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results over the entire frequency band are calculated using this convergence criterion 

(mesh description in the case of HFSS and the number of modes in the case of 

SCT). 
 

It would be interesting to plot the variation of reflection coefficient phase with 

respect to the change in the incidence. The variation of phase results of TE00 mode 

with the change in the incidence angle can be seen in Figure I.17. It can be seen that 

for certain configurations the variation of phase is over a much larger range than the 

others. The direction of the phase change for each configuration is indicated by the 

grey arrows. 

 

 
Figure I.17: Variation of the magnitude of S12 with respect to the incidence angle. 

 

The coupling between the modes TE00 and TM00 gives the measure of cross-

polarization component of the back-scattered field. The magnitude of S12 is plotted in 

Figure I.18 for five different configurations. It is apparent from the results that the 

inter-modal coupling is very small (lower than -40dB) for all configurations and for all 

incidence angles in φ=0º plane. 
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I.4. CONCLUSIONS 

 

In this chapter we have presented the underlying theory of the Scale-changing 

Technique and explained certain concepts involved in the application of this 

technique to the planar structures. It has been shown that the Scale-changing 

Technique is particularly suited for the applications that require large complex planar 

geometries with patterns varying over a wide scale-range. The concept of scale-

changing network to model electromagnetic coupling between adjacent scale-levels 

is introduced and it is shown that the computation of these SCNs is mutually 

independent. This formulation, by its very nature is highly parallelizable, which gives 

SCT a huge advantage over other techniques that have to be adapted for distributed 

processing. 

 
In the second half of this chapter the Scale-changing technique is applied to 

the case of a typical reflector cell under infinite array conditions. The results for the 

phase-shift introduced to a linearly polarized plane-wave under both normal and 

oblique incidence are calculated and compared to the results obtained by another 

simulation tool. The good agreement between the results demonstrates that SCT is a 

reliable design and simulation technique. 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

SECTION II: 
 

ELECTROMAGNETIC MODELING 
USING SCALE-CHANGING 

TECHNIQUE (SCT) 
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II.1. INTRODUCTION 
 

In the previous section we have detailed the underlying theory and working of 

scale-changing technique with the example of passive reflector under infinite array 

conditions. In this section we will see how this technique can be used to efficiently 

model large arrays of non-uniform geometry.  
 

First of all we will introduce the concept of a bifurcation multipole which is 

essentially a scale-changing network to model the electromagnetic coupling between 

neighboring cells in an array. Mutual coupling between two planar dipoles will be 

characterized with the help of this scale-changing network and it will be demonstrated 

that in the case of a planar dipole array the mutual coupling effect is accurately taken 

into account when modeled using SCT. Later we will use the bifurcation scale-

changing network to compute the surface impedances of 1-D arrays of metallic strips 

and patches inside a parallel plate waveguide. A comparison of simulation-times with 

that of conventional techniques will be made to emphasize the efficiency of SCT. 
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Later in the section, the concept of this bifurcation scale-changing network is 

enhanced to incorporate the mutual coupling in 2-D arrays. Large non-uniform planar 

array structures are analyzed for plane-wave scattering problem and a good 

agreement is obtained with the simulation results of conventional simulation tools. 

Later these structures are analyzed using pyramidal horn as an excitation source. 

Results are presented for two source configurations i.e. when the source horn is 

placed at a vertical distance from the centre of the array and when the horn is placed 

at an offset with an angle of incidence. A comparison of simulation times is given for 

each case. 
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II.2. MODELING OF INTER-CELLULAR COUPLING    

 

II.2.1. Bifurcation Scale-changing Network 
 

Consider a small array of two unit-cells placed side by side horizontally. Each 

of the unit-cells can be characterized independently by its surface-impedance matrix 

(SIM) using an ortho-normal modal-basis defined on unit-cell’s domain. To model the 

overall behavior of this simple two-cell array, mutual electromagnetic interactions 

between the cells have to be taken into account. These mutual interactions are 

characterized by a scale-changing network which when cascaded with the surface 

impedance matrices of individual unit-cells will give the overall surface impedance or 

admittance that characterizes this array. The parent-domain Ω0 along with the sub-

domains Ω1 and Ω2 (unit-cell domains) can be visualized as the openings of a 

bifurcated waveguide as shown in Figure II.1, the scale-changing network multipole is 

therefore dubbed as the bifurcation multipole. 

 

 
Figure II.1: Electromagnetic coupling between two adjacent unit-cell domains D1 and 
D2 modeled by a waveguide bifurcation. Inter-modal coupling between parent domain 
D0 and daughter domains D1 and D2 can be represented by a bifurcation Scale-
changing network. 
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Note that in the case of a linear array (unit-cells arranged in one dimension) of 

non-uniform cells, electromagnetic modeling of an entire array is a simple iterative 

cascade of the bifurcation scale-changing networks as shown in the Figure II.2. 

 

 

 
 
Figure II.2: Cascade of Bifurcation Multipoles to model the mutual coupling of a linear 
array. 
 

II.2.1.1. Equivalent Circuit Diagram: 

 
The equivalent circuit to compute the bifurcation scale-changing network 

between a generic scale s and its subsequent scale s-1 is represented in Figure II.3. 

Electromagnetic sources forming the two branches of the circuit model the transverse 

fields in the two sub-domains lying at scale s-1. The source part of the circuit 

represents the excitation electromagnetic fields of scale-level s as described in 

Section-I of this thesis. 
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The current sources je(1) and je(2) are the virtual-sources defined in the aperture 

domains to model the perfect dielectric boundary conditions. The electric field scale-

changing sources e(1) and e(2) on the other hand represent the tangential 

electromagnetic fields in the aperture domains. The tangential electromagnetic field 

in the parent domain D0 (at scale s) is represented by the source E. Virtual sources 

and the scale-changing sources when defined in the same domain and using the 

same modal-basis can be modeled by a single equivalent source [PerretTh Pg-27]. 

This simplification reduces the analytical calculations of the circuit. A simplified 

version of equivalent circuit is thus shown in Figure II.4 with the new equivalent 

current sources j(1) and j(2).  

 

 

 

Figure II.3: Equivalent circuit diagram of a bifurcation Scale-changing Network. The 
dual quantities are shown in red. 

 

Assuming N1 active modes in D0 and N2 in each of the daughter domains (D1, 

D2) we can express the electromagnetic field quantities in terms of mathematical 

equations written using the equivalent circuit of Figure II.4.  

ቐ
  ሬԦܧ ൌ  ∑ ௡ܸ

 ேଵ
௡ୀଵ  Ԧ௡ܨ
 

  Ԧܬ ൌ  ∑ ௡ ஶܫ
௡ୀଵ  Ԧ௡ܨ

                                                                     (II.1) 

 

 Ԧ௡ܨ  is the orthogonal modal-basis defined in D0. Similarly, 

መܼ   ൌ  ∑ หܨԦ௡   ௡ܼۄ  Ԧ௡ܨۃ หஶ
௡ୀேଵାଵ                                                (II.2) 
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where Zn is the equivalent parallel modal impedance in the two half-regions. For 

example, if we have two different substrates at the two sides of the discontinuity 

plane, assuming air on one side and a dielectric with relative permittivity ߝ௥ on the 

other, modal impedance of the nth passive mode Zn is the parallel equivalent of 

modal impedances of that mode in each of the dielectric domain and is written as: 

 

ܼ௡  ൌ
௓೙
ഄబ
 
 
௓೙
ഄೝ
 
 

௓೙
ഄబ
 
 
ା ௓೙

ഄೝ
 
                                                                         (II.3) 

 

 
Figure II.4: Simplified Equivalent circuit. Virtual source and the scale-changing source 
of each branch (when defined in the same domain and using same orthogonal modal-
basis) can be replaced by a single current source. 
 

ሾܫሿ  and ሾܸሿ  are the column vectors of size ܰ1 listing the coefficients of equation II.1. 

                          ሾܫሿ  ൌ ൥
 ଵܫ
ڭ
  ேଵܫ

൩                               ሾܸሿ  ൌ ൥
ଵܸ
 

ڭ
ேܸଵ 
 
൩                                (II.4) 

 

Considering the modal-basis ࢔ࢌ
ሺଵሻ and ࢔ࢌ

ሺଶሻin the two sub-domains the tangential fields 

in them can be expressed on their respective modal-basis. For sub-domain D1 

൞
ଚሺଵሻሬሬሬሬሬሬԦ

 

 
ൌ  ∑ ݅௡

ሺଵሻஶ
ୀ૚࢔ ࢔ࢌ

ሺଵሻሬሬሬሬሬሬሬԦ
 

 

 
ሺଵሻሬሬሬሬሬሬሬԦࢋ

 
 
ൌ  ∑ ௡ݒ

ሺଵሻஶ
ୀ૚࢔ ࢔ࢌ

ሺଵሻሬሬሬሬሬሬሬԦ
 

                                                                                   (II.5) 

similarly for sub-domain D2, 
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൞
ଚሺଶሻሬሬሬሬሬሬԦ

 

 
ൌ  ∑ ݅௡

ሺଶሻஶ
ୀ૚࢔ ࢔ࢌ

ሺଶሻሬሬሬሬሬሬሬԦ
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ୀ૚࢔ ࢔ࢌ

ሺଶሻሬሬሬሬሬሬሬԦ
 

                                                                                         (II.6) 

with the coefficient vectors of eq-II.5 and eq-II.6 are defined on the active-modes in 
each sub-domain. 

                          ൣ݅ ሺ௞ሻ൧
  ൌ ቎

݅ଵ
ሺ௞ሻ

ڭ
݅ேଶ
ሺ௞ሻ
቏                   ൣݒ ሺ௞ሻ൧

  ൌ ቎
ଵݒ
ሺ௞ሻ

ڭ
ேଶݒ
ሺ௞ሻ
቏    ׊ ݇ ൌ 1,2                       (II.7) 

 

In order to compute the multipole-matrix that characterizes the bifurcation multipole, 

we need to find a relation between the quantities defined in the parent domain to that 

defined in sub-domains. As these quantities are defined on the active-modes of their 

respective modal-basis, they form the ports through which tangential fields at one 

scale can interact with the tangential fields of the other.  The relation between the 

fields at two scales can be written from the equivalent circuit of Fig-II.4 using 

Kirchoff’s laws. 

቎

 

 
ܬ
݁ሺଵሻ
݁ሺଶሻ

቏ ൌ ቎
0 െ1 െ1
1 መܼ   መܼ  

1 መܼ   መܼ  
቏  ൈ  ቎

ܧ
݆ሺଵሻ

݆ሺଶሻ
቏                                                      (II.8) 

 

Solving the matrix equation of eq-II.8 by applying Galerkin’s method gives the 

following: 

൦

 

 
ሾܫሿ

ሺଵሻ൧ ݒൣ
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ሺଵሻ்ܼ ଶܲ
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ଶܲ
ሺଵሻ்ܼ ଶܲ

ሺଶሻ

ଵܲ
ሺଶሻ்  ଶܲ

ሺଶሻ்ܼ ଶܲ
ሺଵሻ
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ሺଶሻ்ܼ ଶܲ

ሺଶሻ
൪  ൈ  ቎
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ൣ݅ ሺଵሻ൧
ൣ݅ ሺଶሻ൧

቏                       (II.9) 

 

where ܶ denotes the complex conjugate transpose. If M denotes the multipole-matrix 

that characterizes the bifurcation-multipole which relates the tangential fields at scale 

s and s-1 defined on the active modes, then eq-II.9 can be rewritten as under: 

൦

 

 
ሾܫሿ

ሺଵሻ൧ ݒൣ
ሺଶሻ൧ ݒൣ

൪ ൌ ሾܯሿ  ൈ ቎
ሾܸሿ
ൣ݅ ሺଵሻ൧
ൣ݅ ሺଶሻ൧

቏                                                                 (II.10) 
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The constituent sub-matrices of M are defined here.ቂ ଵܲ
ሺ௞ሻቃ is the projection matrix of 

dimensions ܰ1  ൈ ܰ2  of active modes of modal-basis ࡲሬሬԦ࢔   on  ࢌሬԦ࢔
ሺ௞ሻ; 

 

ቂ ଵܲ
ሺ௞ሻቃ ൌ ቎

 ଵܨۃ , ଵ݂
ሺ௞ሻۄ ڮ  ଵܨۃ , ே݂ଶ 

ሺ௞ሻۄ
ڭ ڰ ڭ

  ேଵܨۃ , ଵ݂
ሺ௞ሻۄ ڮ   ேଵܨۃ , ே݂ଶ 

ሺ௞ሻۄ
቏    ׊ ݇ ൌ 1,2                           (II.11) 

 

Similarly ቂ ଶܲ
ሺ௞ሻቃ is the projection matrix of dimensions ൫1ܰ– ܯ ൯ ൈ ܰ2  of passive 

modes of modal-basis ࡲሬሬԦ࢔   on ࢌሬԦ࢔
ሺ௞ሻ. 

 

ቂ ଶܲ
ሺ௞ሻቃ ൌ ቎

 ேଵାଵܨۃ , ଵ݂
ሺ௞ሻۄ ڮ  ேଵାଵܨۃ , ே݂ଶ 
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ڭ ڰ ڭ

  ெܨۃ , ଵ݂
ሺ௞ሻۄ ڮ   ெܨۃ , ே݂ଶ 

ሺ௞ሻۄ
቏   ׊ ݇ ൌ 1,2                        (II.12) 

 

The bifurcation multipole defined by the matrix ሾܯሿ characterizes the electromagnetic 

coupling between two consecutive scale-levels and serves as a basic block to model 

the mutual coupling between the elements of an array structure. 

 

 
Figure II.5: Scattered Electric Field from two half-wavelength dipoles separated by a 
distance ‘d’ allows characterizing the mutual coupling with respect to distance. 
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II.2.2. Mutual Coupling between half-wave dipoles 
 

To demonstrate that the scale-changing network described in the previous 

section accurately models the mutual coupling between the elements of an array, a 

classical example of mutual coupling between two half-wave dipoles has been 

considered in this section.  

 

Two thin metallic strips of half-wavelength dimensions are represented in 

Figure II.5 separated by a distance d between them. Given a plane-wave incidence, 

a half-wave dipole reradiates the field uniformly around its axis but in the elevation 

cut-plane the maximum radiated energy is along θ=0º direction (z-axis taken out of 

the plane containing dipoles). We will use the magnitude of electric field in the 

maximum energy direction as a parameter of measure for the mutual coupling 

between the two dipoles.  

 

 

Figure II.6: Mutual coupling effect disappears when the separation D is many orders of 
wavelength. 

 

The phenomenon can be illustrated as shown in Fig-II.6. An incidence field E 

induces the surface currents I11 and I22 on the two dipoles. These induced currents 

will in turn induce coupling currents I21 and I12 on the neighboring dipole. The radiated 

field Er is thus comprised of three components; E1 and E2 are radiated by current 

sources I11 and I22 where component EM is radiated by the coupling currents I21 and 

I12 and is a function of dipole separation. In the absence of mutual coupling e.g. when 
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the distance between the two dipoles is many orders of wavelength, EM is zero and 

the total radiated field Er is a simple summation of the individual fields radiated by 

each dipole.  

 

Figure II.7 plots the Radar cross-section ratio (SER ratio) of a couple of 

dipoles to that of an isolated dipole computed analytically. The analytical expression 

is given by the following equation: 

ߪ
଴ߪ

ൌ
4

ቚ1 ൅ ܼଵଶ
ܼଶଶ

ቚ
ଶ       

where Z22 is the input impedance of a single dipole as seen by the incident plane-

wave and is constant. Z12 on the other hand is the mutual impedance of the two 

dipoles and is a function of separation (d) between them. In the absence of the 

mutual coupling Z12 reduces to zero and we have a fixed value of the SER ratio that 

computes to 6dB. When d is equal to zero, the two dipoles overlap and are 

essentially seen as a single dipole and the SER ratio reduces to one (or 0 dB). As the 

separation is progressively increased a steadily decreasing sinusoidal behavior is 

observed around fixed SER ratio of 6dB. The sinusoidal nature can be attributed to 

the constructive or destructive nature of mutual interactions between the coupling 

currents induced by the incident wave on the two dipoles. As the separation 

increases in terms of wavelength, the mutual interactions tend to die out and the SER 

ratio tends towards the fixed SER ratio of 6dB. 

As the radar cross-section is directly proportional to the scattered field Er a 

similar behavior can be seen when Er is plotted against d and therefore the radiated 

field can be used to characterize the effect of mutual coupling between two dipoles. 
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Although the sinusoidal nature of the curve shows the presence of significant 

mutual coupling between the dipoles, to validate that the bifurcation scale-changing 

network can accurately model its effect, the SCT results need to be compared to 

those obtained by another full-wave analysis method. The same problem was 

simulated using a MOM based technique (IE3D) and the results are presented in the 

plot of Fig-II.8 for validation purposes. It is found that the results obtained by two 

techniques agree closely which validates the point that SCT accurately characterizes 

the effects of mutual coupling between the elements of an array. 

 

Figure II.8: Characterization of mutual coupling for two dipole strips at 12.5GHz. SCT 
results (-o-) IE3D results (---) 
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Figure II.9: One dimensional (linear) array of non-uniform unit-cells. Dotted lines mark 
the unit-cell boundaries. Non-uniformity arises from the arbitrary shape of the metallic 
pattern of each unit-cell. 

 

 

 

 

 

 
 

(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(b)                                                                                    (c) 

 
Figure II.10: (a) A finite 1-D non-uniform array of infinitely thin and lossless metallic 
strips (b) A typical unit-cell when placed inside a parallel plate waveguide (c) 
Transverse discontinuity plane at z=0. Dotted lines represent PMBC. Solid lines (top 
and bottom) represent PEBC. a=10mm b=9mm x=2mm @ 5 GHz 
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II.3. MODELING OF NON-UNIFORM LINEAR ARRAYS (1-D) 
 

II.3.1. Introduction 
In this section the characterization of linear arrays using iterative cascading of 

bifurcation scale-changing networks will be demonstrated. Later on in this chapter a 

similar procedure will be employed to the full-wave analysis of large 2-D planar 

arrays. 

A general 1-D non-uniform finite array of arbitrary shaped patches is shown in 

Figure II.9. The non-uniformity arises from the fact that each unit cell has a different 

geometry from that of its neighboring cells. Therefore the mutual coupling between 

cells can vary over a large scale between various neighbors. Analysis techniques 

used for uniform array structures which assume uniform mutual coupling between all 

cells may not be applied in this case and can lead to inaccurate results especially 

near the resonance frequencies of the metallic patterns where mutual coupling is 

strong.  

The tools capable of modeling precise mutual coupling in non-uniform arrays 

promise more robust designs.  To demonstrate the advantages of SCT in modeling of 

finite non-uniform array problems it is applied to a special case of 1-D non-uniform 

array of thin metallic strips. The strips are of uniform width though the position of 

each strip within the unit-cell is variable. As the distance between neighboring strips 

varies the mutual coupling between them is not constant. 

 

II.3.2. Characterization of a metallic-strip array 
 

The problem of electromagnetic diffraction from a thin lossless metallic strip is 

very well known. It has been shown that the higher order modes excited by the 

presence of a lossless metallic strip discontinuity inside a rectangular waveguide are 

purely inductive in nature [Collin91]. Therefore a linear array of metallic strips can be 

characterized by its equivalent inductance inside a parallel-plate waveguide. 

 

A finite, non-uniform 1-D array of perfectly conducting thin metallic strips is 

shown in Figure II.10 (a). A unit-cell consisting of a single strip is shown in Figure 
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II.10 (b) and Figure II.10 (c). Position of the strip along x-axis can be varied to obtain 

several different unit-cell configurations. Several of these unit-cells can then be 

combined to form a 1-D array. 

 

II.3.2.1 Application of Scale-changing Technique 

 

The application of Scale-changing Technique requires the partitioning of 

array-plane in domains and sub-domains defined at various scale levels. For instance 

an array consisting of 8 unit-cells can be partitioned as shown in Figure II.11. At the 

lowest scale (s=1) the domains are defined along the unit-cell boundaries. At scale-

level 2 two adjacent unit-cell domains can be modeled into a single domain using 

bifurcation network making four domains at scale 3. This iterative process goes on 

until the entire array domain is reached at the top-most scale. 

 

 
Figure II.11: Decomposition of the discontinuity plane in five scale-levels. 

 

Each of the unit-cell is modeled alone and is represented by its characteristic 

surface impedance multipole [Zs]. Two of these unit-cells can be grouped together by 

cascading a bifurcation SCN multipole with the surface impedance multipoles of the 

unit-cells. At scale-level 2, four bifurcation multipoles are required to group eight 
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cells. Similarly at scale-level 3, two bifurcations are required to group eight cells and 

finally at the fourth scale only one bifurcation multipole is needed. 

 

 
Figure II.12: (a) Equivalent circuit diagram representing a unit cell metallic-strip 
discontinuity (b) Surface Impedance Multipole defined on the active modes of the unit-
cell domain. 
 

It is worth noting here that the computation of all multipoles, at which-ever 

scale they are present, is mutually independent of one another. This essentially 

means that each multipole can be computed in parallel on separate machines and it 

is only as a final step the resulting matrices are cascaded to obtain the overall 

simulation results for the entire structure. 

 

II.3.2.1.1 Computation of Surface Impedance Multipole 

 

The computation of surface impedance multipole [Zs] has to be performed for 

each unit-cell. The problem can be represented by the equivalent circuit diagram of 

Figure II.12 (a). The voltage source E0 represents the tangential electric field defined 

on the active modes of the unit-cell domain. The impedance operator Z represents 

the modal impedances of higher order modes that are excited due to the presence of 

metallic strip discontinuity. And the current source j represents the surface currents 

induced on the strip. Galerkin’s method is applied to compute surface impedance 

matrix (Zsurf) which characterizes the surface impedance multipole. It should be noted 

here that the number of active modes would be chosen by a comprehensive 
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convergence study to precisely define the coupling between two adjacent scales. The 

boundary value problem for the first unit-cell domain at scale-level 1 can be 

expressed as: 

ሾݒሿ ൌ ൣܼ௦௨௥௙  ൧ ሾ݅ሿ                                                                            (II.13) 
 
where the v and i are defined on N2 active modes of the domain. 
 

     ሾݒሿ ൌ ൥
v଴
ڭ
vNଶ

൩                     ሾ݅ሿ ൌ ൥
i଴
ڭ
iNଶ

൩                                      (II.14) 

 

II.3.2.1.2 Computation of Bifurcation Multipole  
 

The computation of a general bifurcation multipole matrix between a scale s 

and subsequent scale s-1 was given in section II.2 and is represented mathematically 

by equation II.10. 

 

 
Figure II.13: Bifurcation Scale-changing Network Multipole characterizes mutual 
coupling between scale-level ‘s’ and ‘s-1’ 
 

The scale-changing network multipole between a domain at scale s and two 

sub-domains at scale s-1 in represented in Fig-II.13. The tangential field defined on 

N1 active modes of the parent domain is represented by N1 ports on the LHS of the 

scale-changing network. The fields defined in the two sub-domains, defined on active 

modes (N2 and N2’) are represented by two sets of ports on the right-hand side. This 

field interaction can be expressed analytically by the following matrix equation: 
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቏                                                        (II.15) 

 

[Ms,s-1] can be expressed in its component sub-matrices. 

ሾMୱ,ୱିଵ ሿ ൌ   ቎
ሾM11ሿ ሾM12ሿ ሾM13ሿ
ሾM21ሿ ሾM22ሿ ሾM23ሿ
ሾM31ሿ ሾM32ሿ ሾM33ሿ

 ቏                                           (II.16) 

 
 

0

0

0
0

0

0

 
Figure II.14: Electrical Model of the Bifurcation SCN Multipole defined on single TEM 
mode in each domain. 
 

II.3.2.1.3 Computation of the cascade 

 

The complete simulation of full array is performed by a simple cascade of all scale-

changing networks and their underlying surface impedance multipoles. A general 

cascade step of this iterative process is computed by the following equation.  

 

ൣሾ ௦ܻ௨௥௙
௦,ଵ ൧ ൌ   ሾM11ሿ െ ቌሾሾM12ሿ ሾM13ሿሿ  ൈ ቆ൥

ሾܼ௦௨௥௙
௦ିଵ,ଵሿ ሾ0ሿ
ሾ0ሿ ሾܼ௦௨௥௙

௦ିଵ,ଶሿ
൩ ൅ ൤ሾM22ሿ ሾM23ሿ

ሾM32ሿ ሾM33ሿ൨ቇ
ିଵ

ൈ ൤ሾM21ሿሾM31ሿ൨ቍ (II.17) 

 

 [Zsurf
s-1,1] and [Zsurf

s-1,2] are surface impedance matrices characterizing the sub-

domains at scale s-1. [Ysurf
s,1] which characterizes the parent domain at scale s, is 

found by cascading SCN [Ms,s-1] with [Zsurf
s-1,1] and [Zsurf

s-1,2]. The relation of these 

impedances with the quantities of eq-II.15 is given by: 
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ሺଵሻ൧ ݒൣ ൌ െൣܼ௦௨௥௙
௦ିଵ,ଵ൧ ൣ݅ ሺଵሻ൧              ൣݒ ሺଶሻ൧ ൌ െൣܼ௦௨௥௙

௦ିଵ,ଶ൧ ൣ݅ ሺଶሻ൧                              (II.18) 

ሾIሿ ൌ ൣ ௦ܻ௨௥௙
௦,ଵ ൧ ሾVሿ                                                                  (II.19) 

 

For a very simple case where all tangential fields are defined on a single mode (e.g. 

TEM mode) the bifurcation multipole can be represented by its equivalent electrical 

network of two inductances as shown in the Fig-II.14. The mutual coupling between 

the domains can be visualized by the mutual inductance in this case. 

 

II.3.2.2 Simulation Results and Discussion 
 

Consider a unit-cell shown in Fig-II.10 (c) placed in a parallel plate waveguide. 

The objective is to determine the equivalent inductance presented by this strip under 

the excitation of the fundamental TEM mode. The symmetry of the problem along the 

z-axis permits to treat the problem in even and odd order solutions by using perfect 

magnetic boundary conditions (PMBC) and perfect electric boundary conditions 

(PEBC) in the discontinuity plane at z=0. It is clear that for the second case the 

solution reduces to zero due to short circuit produced at the discontinuity plane by 

PEBC. Therefore we are interested only in the even order solution where the 

discontinuity plane is characterized by PEBC in the metallic strip region and PMBC in 

the non-metallic region. 
 

Configuration
Inductance (nH) 

SCT HFSS 

A (x0= 0mm) 8.46 8.89 

B (x0= 2mm) 4.85 5.19 

C (x0= 4mm) 4.0 4.32 

D (x0= 6mm) 4.87 5.19 

E (x0= 8mm) 8.51 8.89 

 
Table II.1. List of possible unit-cell configurations and their inductance results in 
single-cell environment. 
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We can obtain five possible configurations of the unit-cell by simply displacing 

the metallic strip along the x-axis. Table II.1 lists all five configurations. These 

configurations are named A, B, C, D and E and they will be used as the constituent 

building blocks to construct finite arrays. The equivalent inductance values for each 

of the configuration as obtained by SCT and HFSS are listed in the second and third 

column respectively. For a single cell the problem can be solved analytically 

[Aubert03] to validate the SCT results.  

 
 
Figure II.15. Convergence results for a 2-cell array. Note matrix ill-conditioning 
problem for more than 15 modes for a classical mode-matching technique. Padé 
approximants ( o ) and conjugate gradient method (-o-) can be used to improve 
convergence by increasing the number of modes without introducing large numerical 
errors at a cost of increased simulation times. 
 

 

Figure II.15 depicts the convergence results for a two-cell array (configuration 

CC), when the array is modeled using one bifurcation stage. Here the inductance 

curve is plotted with respect to the number of active modes taken in each unit-cell 

domain. It is apparent from the plot that the choice of mode count is limited due to 

matrix ill-conditioning problem [VoyerTh] if more than 15 modes are taken.  

 

Two techniques have been used to overcome this problem in our case. Padé 

approximants [Brezinski94] can be used to extend the range of modes to reach 
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convergence without encountering the ill-conditioned matrices but this approach is 

not easily applicable for 2-D problems [Bose80]. Alternatively an iterative technique 

called method of Conjugate Gradients [Sarkar84] can be employed to compute the 

unit-cell surface impedance multipoles which can then be cascaded with bifurcation 

multipole to model overall problem. The curves resulting from the two techniques are 

plotted against each other in Fig-II.15. It can be noted that the convergence is 

achieved in both cases over a larger range of active modes. 

 

Array Size 
Simulation Time (sec) 

SCT HFSS 
1 cell 0.14 18 

 
2 cells 0.59 27 

 
4 cells 0.61 33 

 
8 cells 0.64 36 

 
16 cells 0.68 55 

32 cells 0.71 53 

 
Table II.2. Simulation times comparison for SCT and HFSS. 
 

1-D array of 2n strip elements can be constructed by cascading n levels of 

bifurcation multipoles. Table II.2 lists the inductance results for finite arrays of various 

sizes with number of cells ranging from 2 to 32. The execution time comparison is 

made for SCT and HFSS simulations. It is clear from the results that for SCT the 

simulation time increases linearly with the exponential increase in number of array 

cells, whereas in HFSS which is linear-meshing technique execution time increase 

exponentially with every additional mesh-refinement. This difference in execution 

times will be more apparent for the applications with complex unit-cell geometries. 

These simulations are carried out on a PC with x86 based processor with clock 

frequency of 3.19 GHz and 2GB of RAM. The convergence criterion used in HFSS 

simulations is to achieve 2% of convergence on S-parameters matrix. 
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Figure II.16 plots the results of convergence for a 16 cell array with respect to 

active-modes at the unit-cell domain. It can be seen that 30 modes are enough to 

define precise coupling at that scale level. To define intermediate coupling between 

different bifurcation levels no more than 10 modes are necessary. It is clear that for 

more complex structures we will need a lot more modes to reach convergence. 

 
 
Figure II.16. Convergence results for a 16-cell array. 
 

 

Array Size Unit-cell Arrangement 
Inductance (nH) 

SCT HFSS 

2 cells BC 2.34  2.13 

2 cells DB 2.57 2.30 

4 cells DACD 1.30 1.24 

16 cells ABCDBCABECAABAAD 
 0.30 0.29 

32 cells 
EAEAEAEAEAEAEAEA 
EAEAEAEAEAEAEAEA 

 
0.27 0.26 

 
Table II.3. Inductance results for non-uniform arrays 
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Various sized 1-D strip arrays with different unit-cell configurations arranged in 

no-particular order are simulated and the results are presented in Table II.3. Here the 

results for array comprised of up to 32 unit-cells are presented. For larger arrays 

HFSS fails to converge with the available amount of memory. 
 

 
 
Figure II.17. Evolution of the normalized computation time with respect to bifurcation 
iterations used. For an iteration n the array consists of 2n cells. 
 

The evolution of computation time with respect to the array size is traced in 

Figure II.17 for the two simulation techniques. Number of bifurcation iterations is 

taken along horizontal axis. For an iteration n the array size is equal to 2n cells. The 

computation time is normalized with respect to the time taken to compute a simple 

two-cell array using a single bifurcation network. It is quite obvious from the plot that 

the simulation time increases linearly in case of SCT though there is an exponential 

increase in the array size. On the other hand for HFSS the evolution of computation 

time is exponential. It can be concluded from these results that real advantage of 

SCT over conventional methods is when the array-size is really large i.e. when seven 

or more bifurcation iterations are involved.  
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II.3.3. Characterization of a metallic-patch array 
 
In previous section SCT was applied to a linear array of metallic strips. In that case 

our problem was symmetric along y-axis and therefore the analytical expressions for 

the modal-basis were simplified (no y-dependence). In real life rectangular patches 

are most commonly in planar radiators and scatterers therefore it would be 

interesting to simulate linear arrays of variable sized metallic patches. 

 

II.3.3.1 Introduction  

 

Consider the 1-D non-uniform patch array of Fig-II.18 (a). Each unit-cell of the 

array is different from the other in terms of difference in dimensions of its patch. 

Consider a typical unit-cell of such an array shown in Fig-II.18 (a & b) when placed 

inside a parallel plate waveguide. The patch is considered to be infinitely thin and 

lossless. In its isolated state each cell can be characterized by its surface-impedance 

matrix multipole, where each port represents a propagating mode in the parallel plate 

waveguide. An entire array can be characterized in a similar fashion. The numerical 

results presented here correspond to TEM mode excitation. Figure II.19 depicts four 

unit-cell configurations named A, B, C and D that will be used to construct the arrays. 

 

a0

b0

x

y

a0 a1

z

x
(a)

(b) (c)

a0

a1

b1

  
 
Figure II.18: (a) A finite 1-D non-uniform array of lossless metallic patches (b) A 
typical unit-cell when placed in a parallel plate waveguide (at z=0) a0=10mm, 
b0=10mm, (c) Longitudinal view (patch thickness = 0) 
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Figure II.19: Four unit-cell configurations that are used to construct 1-D finite 
arrays of Table.I. Patch dimensions for each configuration given as 
(a1(mm),b1(mm)) are A(4,4), B(6,4), C(3,5), D(8,8) 

 

The process of discontinuity plane decomposition and the assigning of scale-

levels to various domains and sub-domains is the same as in metallic strip array 

case. 

 

Array Size Unit-cell Arrangement 
Reactance (kΩ) 

SCT HFSS 

2 cells BC -3.41  -3.42 

4 cells BCDA -0.62 -0.63 

8 cells CBBADADC -0.33 NC 

8 cells CBABCBBB 
 -0.87 -0.88 

16 cells BACADBACCABBADAB 
 -0.23 -0.20 

32 cells 
DCCCCADDCDCCDDAD 
CABCDDCCCBACDADD 

 
-0.06 NC 

 
Table II.4. Reactance results for non-uniform arrays 

 

II.3.3.2 Simulation Results and Discussion 
 

Table-II.4 lists equivalent reactance results for six different linear and non-

uniform arrays at 5GHz. The first column gives the cell arrangement of the array e.g. 

array BC comprises of two unit-cells and is formed by placing the unit-cell 

configurations B and C (Fig-II.19) side by side. A good agreement is found between 
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the SCT and HFSS results for the first, second and fourth array. For the fifth array 

HFSS results converge only after relaxing the convergence criterion i.e. from less 

than 0.2% to less than 2% of variation in S-matrix values for two consecutive passes. 

This explains the relatively greater difference from SCT results in this case. For the 

third and sixth cases HFSS results do not converge even with the relaxed criterion.  

 

Figure II.20 plots the simulation time against the array-size in case of the two 

simulation techniques. If the array-size is represented in the number of unit-cells (N) 

then for each size-iteration (I) the size of the array is given as N=2I. In other words, 

for each size-iteration the unit-cells in the array double from the previous value. For 

each technique execution time results are normalized with respect to the time 

required to simulate an array of two unit-cells (I=1). The results of Figure II.20 are 

obtained for a uniform array made up of unit-cell configuration A.  

 

Note that in case of SCT the execution time increases linearly with increase in 

the number of size-iterations (I=ln(N)/ln(2)). However this is not the case for HFSS 

which uses linear mesh-refinement procedure. The behavior is similar to that 

observed in the metallic strip array case as expected. The linear behavior of SCT 

comes from the fact that for all unit-cells being similar only one Scale-Changing 

Network needs to be calculated to represent all of them. This allows faster and better 

convergence for SCT results as compared to Finite Element Method using spatial 

meshing. In case of non-uniform arrays the linear behavior can be achieved by 

executing individual Scale-Changing Networks in parallel on multiple processors. The 

simulation time results presented are for 3.2GHz Intel x86 Family processor with 2GB 

RAM.  
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Figure II.20: Evolution of the normalized computation time with respect to bifurcation 
iterations used. For an iteration n the array consists of 2n cells.  
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II.4. MODELING OF 2-D PLANAR STRUCTURES 
 

II.4.1. Introduction 
In the section-II.2 the concept of bifurcation scale-changing network was 

introduced and later applied to model linear array discontinuities in parallel-plate 

waveguides. A similar formulation can be used in the case of a scattering problem 

involving two dimensional planar structures e.g. Frequency selective surfaces and 

Reflectarrays.  

 
Figure II.21: A 4x4 array of half-wave dipoles under Normal plane-wave incidence. 

 

The scattering problem requires the resolution of a free-space boundary-value 

problem in which the planar array can be characterized by its surface impedance 

matrix. The diffraction field patterns can then be calculated from the equivalent 

surface current induced on the planar surface due to the incident fields [BalanisTh]. 

Mathematical formulation of the problem is presented in the sub-section II.4.3. 

 

II.4.2. Mutual coupling with 2-D Scale-changing Network  
 

To study the mutual coupling effect in case of a small two-dimensional array, a 

small 4x4 array of dipole strips has been simulated under normal plane-wave 

incidence as depicted in Fig-II.21. The dipole elements are separated horizontally by 
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a distance of half wavelength to maximize the mutual coupling effects between the 

elements.  In this case the scale-changing multipole groups the elements in two 

dimensions i.e. mutual coupling between four elements is considered in the 

computation of a single scale-changing network.  

 
(a) 

 
 (b) 

 
Figure II.22: Scattering field pattern of a simple 4x4 dipole array for (a) H-plane (b) E-
plane. SCT results (blue) takes into account the effect of mutual coupling. Array 
pattern as calculated from the Array Factor computation neglecting the mutual 
coupling (red). 
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To account properly for all mutual coupling effects a convergence study has to 

be done to ensure that enough coupling modes are considered in the computation of 

scale-changing networks. Too few modes and the inter-cellular interactions are not 

well-defined and too many can produce ill-conditioned matrices and other unwanted 

numerical errors.  

 

The radiation patterns plots in H-plane and E-plane of the array are 

represented in Fig-II.22 for the normal plane-wave incidence with the incident E-field 

oriented along the axis of the dipole strips. The radiation pattern of the array in the 

absence of mutual coupling as computed using the radiation pattern of a single 

element using the array factor [BalanisAnt] of the 4x4 dipole array is also traced on 

the same plot for comparison purposes. It is quite apparent from the results that if the 

mutual-coupling effects are ignored the results can be very different from the actual 

results and therefore the precise characterization of inter-cellular coupling is vital for 

planar array problems. 

 

 

 
 
 

              (a)                                                                                        (b) 

Figure II.23: (a) An NxN array of arbitrary elements under normal plane wave 
incidence. For all results E-plane and H-plane are elevation planes defined at (φ=90º) 
and (φ=0º) respectively (b) Array domain (D) with equivalent surface current J; Metal 
domain (DM)  
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II.4.3. Formulation of the scattering problem  
 

This sub-section discusses the theory of electromagnetic scattering from a 

thin planar array. Consider a plane-wave at a normal incidence on an array of finite 

extent made from unit-cells of arbitrary metallic patterns (Fig-II.23a). These cells are 

arranged on a two dimensional rectangular lattice. To solve the scattering problem 

from this regular array first consider a more general planar structure comprised of 

metal and dielectric regions (Fig-II.23b). The domain DM denotes the metallic domain 

which is the sub-set of the array domain D. The time-harmonic regime is assumed for 

all fields. 

  

II.4.3.1 Derivation of the current density on the array domain D 

 

The integral equation formulation of the boundary value problem on metal 

domain DM in the case of planar scatterer of Fig-II.23b can be written as: 

ሻݎሬԦ௜௡௖ሺܧ ൅ ܧሬԦ௦௖௔௧ሺݎሻ ൌ  ெ                                               (II.20)ܦ ߳ ݎ  ݎ݋݂              0

 

Where ܧሬԦ௜௡௖ሺݎሻ and ܧሬԦ௦௖௔௧ሺݎሻ denote the incident and scattered field 

respectively. The total tangential field is zero as dictated by the perfect electric 

boundary conditions at the metal surface. The scattered field from a planar surface 

can be written in terms of unknown surface current density ܬ ሬሬԦ on the metal domain DM 

and free space Green’s functions ܩሺݎ,  .ᇱሻ [Vardaxoglou97]ݎ

ሻݎሬԦ௦௖௔௧ሺܧ ൌ ׬ ,ݎሺܩ  ᇱሻݎ
஽ಾ

 Ԣ                                                         (II.21)ݎᇱሻ݀ݎሬሬԦሺ ܬ

The primed co-ordinates ݎᇱ correspond to the observation point. 

 

With SCT, we substitute the current ܬ ሬሬԦ defined on the metal domain (DM) by an 

equivalent current ܬ௘௤ሬሬሬሬሬԦ  defined on the entire array domain (D). The planar surface 

domain D is characterized by a surface impedance matrix ሾZୱሿ (which fixes the new 

boundary conditions of the problem) such as:  

ሬԦ௧௢௧௔௟ܧ ൌ ሾܼ௦ሿ כ  ௘௤ሬሬሬሬሬറ                                                                    (II.22)ܬ
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The boundary value problems at all scale-levels in SCT are formulated in 

spectral domain therefore it is convenient to evaluate the scattering problem in the 

spectral domain as well. Thus the new formulation in spectral domain can be written 

by using eq-II.20 and eq-II.21 in eq-II.22: 

ሻݎሬԦ௜௡௖ሺܧ ൅ ܩ෠ܬ௘௤ሬሬሬሬሬԦ ൌ ሾܼ௦ሿܬ௘௤ሬሬሬሬሬԦ                                                                        (II.23) 

 

Where G෡ designates the Green function (in operator form) in the spectral domain.  

 

Artificial boundary conditions (PPWG BC) are first introduced at the contour of 

the domain D. These boundary conditions are assumed not to perturb significantly 

the electromagnetic field of the original problem. They allow defining an orthogonal 

set of discrete modes for expanding the unknown surface current density ܬ௘௤ in the 

domain D as given by the following mathematical expression.  

Ԧ௘௤ܬ ൌ ∑ Ԧ௘௤_௜ܫ Ԧ݃௘௤_௜ே௑ே
௜ୀଵ                                                                      (II.24) 

 

Ԧ݃௘௤_௜ being the orthogonal modal basis in D and N being the number of active modes 

along each dimension of the planar domain. 

 

In practice, same entire-domain orthogonal basis functions are used for this 

expansion as well as for representing the equivalent surface impedance matrix ሾܼ௦ሿ 

that models the array. The number of modes may be determined à posteriori from 

convergence criteria of the numerical results. The derivation of ሾܼ௦ሿ  from the scale-

changing technique will follow in the subsection II.4.3.1.3.  

 

To determine the scattered electric field when illuminated by a plane wave, the 

equivalent surface current density ܬ௘௤ in the domain D needs to be calculated. This 

current density may be computed from the resolution of the following matrix equation 

derived from the Integral Equation Formulation of the boundary value problem given 

by eq-II.23 using Galerkin’s method [Harrington96] [Harrington61]. 

    ሾIୣ୯ሿ  ൌ ቂൣZୱ୮ୟୡୣ൧ ൅ ሾ Zୱሿቃ
ିଵ
ሾV୧୬ୡሿ                        (II.25)  
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ൣZୱ୮ୟୡୣ൧ is the matrix representation of the free space Green functions in the 

spectral domain. ሾV୧୬ୡሿ and ሾIୣ୯ሿ  are the vectors containing known expansion 

coefficients of the incident electric-field and the unknown coefficients of surface 

current density ܬ௘௤ defined on the modal-basis of the array-domain D. 

 

II.4.3.1.1 Calculation of [Vinc] 

V୧୬ୡ can be obtained from the following scalar product: 
 

ൣܸ௜௡௖൧ ൌ ۃ Ԧ݃௘௤_௝, ۄ௜௡௖ܧ ൌ ׬ ׬ Ԧ݃௘௤_௝ሺݔ, ,ݔሬԦ௜௡௖ሺܧכሻݕ                           ݕ݀ݔሻ݀ݕ
ାஶ
ିஶ

ାஶ
ିஶ     (II.26) 

 

where E୧୬ୡ is the tangential component of the field incident on the planar domain D. 

For example in the case of plane-wave incidence the tangential component of the 

incident field can be written as 

ሬԦ௜௡௖ܧ ൌ ൝
଴௫݁ି௝൫௞ೣܧ

೔ ௫ା௞೤೔ ௬൯ݔԦ
଴௬݁ି௝൫௞ೣܧ

೔ ௫ା௞೤೔ ௬൯ݕԦ
                                                                     (II.27) 

With k୶୧  ,k୷୧  are the components of the tangential incident-wave vector given 

by:   ቊ
k୶୧ ൌ kcosθ୧sin׎୧

k୷୧ ൌ kcosθ୧cos׎୧ 

 .௜ are the polar angles of  incidence׎ ௜ andߠ
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Figure II.23: Co-ordinate system convention for plane-wave incidence. 

 

For antenna sources, EሬሬԦ୧୬ୡ is tangential component of the radiated electric-field 

incident on the planar surface and can be calculated from the radiation pattern 

characteristics and the position of the source with respect to the array. This process 

is outlined in the Annex B for a case of pyramidal horn source. In addition EሬሬԦ୧୬ୡ can be 

found numerically by simulating the source antenna with any 3-D EM simulation tool 

(e.g. GRASP) and using the tangential component of the field projected on the array-

plane in equation II.26 to find V୧୬ୡ. Alternatively the projection of antenna 

measurement data expressed on spherical modes can be used in place of EሬሬԦ୧୬ୡ. 

 

II.4.3.1.2 Calculation of ൣࢋࢉࢇ࢖࢙ࢆ൧ 

The calculation of ࢋࢉࢇ࢖࢙ࢆ in spatial domain is quite delicate. Indeed the 

expression of ࢋࢉࢇ࢖࢙ࢆ  in spatial domain brings up the spatial form of the dyadic Green 

functions given by the following equation [Harrington96]. 

߮ሺݔ, ; ݕ ,ᇱݔ ᇱሻݕ ൌ ௘షೕೖൣሺೣషೣ
ᇲሻమశሺ೤ష೤ᇲሻమ൧

భ మ⁄

ସగሾሺ௫ି௫ᇲሻమାሺ௬ି௬ᇲሻమሿభ మ⁄                                                         (II.28) 
 

 

Zୱ୮ୟୡୣ can then be found from the following expression obtained by the 

application of Galerkin’s method on equation II.23. 

ൣZspace൧௜,௝ ൌ െ݃ۃ௘௤_௜, ܩ כ ݃௘௤_ ௝ۄ                                                          (II.29) 

 

The spatial formulation of the above equation gives the following complex 

equation which requires the computation of the convolution product of two functions 

inside a double integral equation. 
 

ൣZୱ୮ୟୡୣ൧௜,௝ ൌ

׬ ׬ Ԧ݃௘௤_௜
ାஶ
ିஶ

ାஶ
ିஶ ሺݔ, .כሻݕ ௝

ఠఌబ
቎
݇଴ଶ  ൅

డమ

డ௫మ
డమ

డ௫డ௬
డమ

డ௬డ௫
݇଴ଶ ൅

డమ

డ௬మ

቏ ߮ሺݔ, ; ݕ ,ᇱݔ ᇱሻݕ כ Ԧ݃௘௤_௝ሺݔ
ᇱ,  (II.30)     ݕ݀ݔᇱሻ݀ݕ

 

The convolution product is given by the following equation 
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߮ሺݔ, ; ݕ ,ᇱݔ ᇱሻݕ כ ݃௘௤ష௝ሺݔ
ᇱ, ᇱሻݕ ൌ ׬ ׬ ௘షೕೖൣሺೣషೣ

ᇲሻమశሺ೤ష೤ᇲሻమ൧
భ మ⁄

ସగሾሺ௫ି௫ᇲሻమାሺ௬ି௬ᇲሻమሿభ మ⁄
ାஶ
ିஶ

ାஶ
ିஶ כ Ԧ݃௘௤_௝ሺݔᇱ,     ᇱ  (II.31)ݕᇱ݀ݔᇱሻ݀ݕ

                                                     

As the entire domain trial functions are defined in spectral domain it is easier 

to solve the expression of equation (II.30) in spectral domain rather than spatial 

domain. Moreover the expression in equation (II.31) simplifies in the spectral domain 

as the product of convolution in spatial domain becomes a simple multiplication 

operation in the spectral domain. Fourier transforms are used to achieve this domain 

transformation: 

,ݔሺݑ൫ܨ ሻ൯ݕ ൌ ,෤൫݇௫ݑ ݇௬൯ ൌ ׬  ׬ ,ݔሺݑ ሻݕ ݔ൫െ݆ൣ݇௫݌ݔ݁ ൅ ݇௬ݕ൧൯                 ݕ݀ݔ݀
൅∞

െ∞

൅∞

െ∞
(II.32) 

 

ଵିܨ ቀݑ෤൫݇௫, ݇௬൯ቁ ൌ ,ݔሺݑ ሻݕ ൌ ଵ
ସగమ

׬  ׬ ,෤൫݇௫ݑ ݇௬൯ ݔ൫൅݆ൣ݇௫݌ݔ݁ ൅ ݇௬ݕ൧൯ ݀݇௫݀݇௬     
൅∞

െ∞

൅∞

െ∞
 

(II.33) 

Where ܨ and ିܨଵ denote the forward and inverse transforms respectively. 

Therefore equation II.30 can be rewritten using Parseval’s theorem and utilizing 

Fourier transform equations as under: 
 

ൣZୱ୮ୟୡୣ൧௜,௝ ൌ

ଵ
ସగమ ׬ ׬ ෤݃Ԧ௘௤_௜

ାஶ
ିஶ

ାஶ
ିஶ ൫݇௫, ݇௬൯

.כ ଵ
௝ఠఌబ

ቈ
݇௫ଶ  െ ݇଴ଶ ݇௫݇௬
݇௬݇௫ ݇௬ଶ  െ ݇଴ଶ

቉ ,෨൫݇௫ܩ ݇௬൯ ෤݃Ԧ௘௤_௝൫݇௫, ݇௬൯݀݇௫݀݇௬  

(II.34) 
 

,෨൫݇௫ܩ ݇௬൯ is the spectrum of the free-space Green’s function. 

,෨൫݇௫ܩ ݇௬൯ ൌ  

ە
ۖ
۔

ۖ
ۓ

ି௝

ଶට௞బమି௞ೣమ ି௞೤
మ
     ݂݅ ݇଴ଶ ൐ ݇௫ଶ  ൅ ݇௬ଶ

ଵ

ଶට௞ೣమା௞೤మ ି௞బ
మ
     ݂݅ ݇଴ଶ ൏ ݇௫ଶ  ൅ ݇௬ଶ

 

                                                     (II.35) 
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Figure II.24: Wave-vector transformation from Cartesian to Polar co-ordinates. 

 

Thus the computation of Zୱ୮ୟୡୣ has been reduced to the computation of a single 

double integral in the spectral domain. Moreover since the test functions Ԧ݃௘௤_௡ሺݔ
 ,  ሻ ݕ

are defined in the rectangular domain their Fourier transform can be calculated 

analytically. 

In the computation of the integral of equation II.34 a singularity appears 

at ݇௫ଶ  ൅ ݇௬ଶ ൌ ݇଴ଶ. While the continuous integral is computed numerically as a discrete 

sum, the discontinuity can easily be avoided. Using polar co-ordinates ݇ఝ   and ݇௥  , 

singular values of ݇௫   and ݇௬   translates into a circle of ݇௥  ൌ ݇଴   as shown in the Fig-

II.24. The numerical computation of the integral in equation II.34 is performed in polar 

coordinates avoiding the singularity circle. 

 

II.4.3.1.3 Derivation of ሾ࢙ࢆሿ of the array from the Scale Changing Technique 

 

In a complex discontinuity surface the metallic patterns can be viewed as set 

of several domains and embedded sub-domains. In order to demonstrate the 

partitioning process of the discontinuity plane in the case of simple array structures 

consider the array of Fig-II.23a with individual cells of arbitrary geometry arranged on 
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a uniform rectangular lattice. For a special case of 16 cell array the process can be 

described as follows (Fig-II.25): 

 

 
Figure II.25: Decomposition of a 4x4 array in four scale-levels 

 

1) The entire planar domain of the array denoted by D3 lies at the top most scale-

level (s=3). This domain contains all unit-cells plus any border regions around 

them. 

2) D3 contains a single sub-domain D2 which is defined at the subsequent scale-

level i.e. s=2. D2 encompasses all 16 unit-cells of the array and contains four 

sub-domains D1
1, D1

2, D1
3 and D1

4 all defined at scale-level s=1.  

3) Each domain at s=1 contains 4 sub-domains of its own defined at the lowest 

scale-level s=0 (e.g. D1
1 contains D0

1, D0
2, D0

3 and D0
4). Each of the four 

domains at s=1 are comprised of 4 elementary cells of the array. 

4) At scale-level s=0 each domain contains only a single unit-cell which in turn is 

modeled by its surface impedance [Zs] or admittance matrix [Ys] defined on 

the modal-basis of this domain. 

This process of partitioning the array plane is applicable for the array of any 

size. In general in case of cells arranged on rectangular lattice, an array containing n 

cells can be partitioned in log2n scale-levels. For other cell-arrangements the 
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partitioning technique is still valid only in this case the sub-domains may not be 

regular-shaped which would affect the choice of modal basis for these domains. 

 

Artificial boundary conditions are considered at the contours of the domains 

and sub-domains. Physical nature of the problem need to be considered in the 

choice of boundary conditions. Or alternatively several boundary conditions can be 

tested and the one with the best convergence results are chosen. 

 

 
Figure II.26: Calculation of surface impedance of array by cascading Scale-changing 
networks and surface impedance multipoles. 

 

The computation of all scale-changing networks is mutually independent 

therefore each multipole can be computed separately on different machines and it is 

only in the final step the resulting matrices are cascaded to obtain the overall 

simulation of the entire structure (Fig-II.26).  

 

II.4.4. Numerical results and discussion 
 
 

Once it has been demonstrated that SCT successfully characterizes mutual 

coupling between the elements of a small and simple finite array of dipoles the next 

logical step is to apply the concept to the case of larger arrays and with complex 

geometries that are traditionally used in modern array applications. 
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II.4.4.1 Planar Structures under Plane-wave incidence 

 

In this subsection the scattered field results for two types of arrays are 

presented. The uniform array which is made up of identical metallic patches each of 

dimensions 13.5mm x 13mm. The non-uniform array is made up of non-identical unit-

cells with each unit-cell geometry comprised of a patch loaded with a slot. The length 

of the patch is 13.5mm whereas the slot-width is 1mm for all cells. But the patch-

width (b1) and slot-length (a2) are variable from cell to cell. The combination of these 

parameters will give each unit-cell its unique geometry. 

 

 
Figure II.27: A unit-cell geometry for non-uniform arrays. Patch-width b1 and slot-
length a2 is difference for each array element. 
 

First a uniform-array of 64 identical patch-elements arranged in an 8x8 

element grid is simulated. Plane-wave normal excitation with vertical E-field 

polarization (perpendicular to the slot) has been considered. The equivalent surface-

current Jeq is computed by the procedure detailed in the section II.4.3 on the planar 

surface of the array. The fields radiated by this current source can be computed by 

the procedure described in [BalanisAnt Ch:3] by calculating auxiliary Magnetic vector 

potential (A) function. 
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(a) 
 

 
 

(b) 
 
Figure II.30: Scattering pattern of a 16x16 uniform patch array. The patch dimensions 
are 13.5x13 mm. (a) H-plane  (b) E-plane 
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(a) 

 

 
(b) 

 
Figure II.31: Scattering pattern of a 16x16 non-uniform patch array. (a) H-plane  (b) E-
plane 

 
The results for the 256 element non-uniform array case are given in Fig-II.31. 

(The individual patch dimensions are taken from ACE array design). This non-uniform 

patch array is symmetric along vertical axis therefore we have a symmetric pattern in 

E-plane. The H-plan pattern is non-symmetric as expected. Again a good agreement 

with the results of other methods is observed for small elevation angles where most 

of the energy of the radiated field is concentrated. 
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II.4.4.2 Planar Structures under Horn antenna 
 

In the above sub-section both uniform and non-uniform planar structures were 

simulated under plane-wave incidence. The plane-wave excitation condition is valid 

for the applications where the planar structure is used at a far receiving end or when 

the excitation source is placed very far from the surface of the array.  In most 

practical applications an antenna illumination source is placed in close proximity to 

the planar array therefore it needs to be simulated along with the planar structure. 

 

As SCT is a 2.5D simulation technique it cannot be directly applied to simulate 

3D antenna sources. To incorporate the source in the simulations, SCT can be used 

in hybrid with other 3-D modeling tools. For example, a source antenna can be 

modeled using tools like GRASP, FEKO or HFSS and the projection of the radiation 

fields in the array domain can be used in SCT as an excitation source. Alternatively, 

some antennas can be modeled analytically e.g. analytical modeling of a pyramidal 

horn is detailed in Appendix-B. 

 

II.4.4.2.1 Radiation Characteristics of Pyramidal Horn 

 

In Appendix-B a pyramidal horn antenna has been modeled analytically by 

approximating its behavior by that of a radiating aperture. Taking aperture 

dimensions equal to that of horn’s aperture and a similar aperture field distribution, 

the far-field radiation patterns of the aperture can approximate the horn’s radiation 

pattern over certain elevation range in the main-beam direction. 

 

 The far-field radiation patterns from the aperture field are compared to that of 

the pyramidal horn radiation patterns to see if the approximation holds. Both H-plane 

and E-plane radiation patterns are shown in Figure-II.32. It is clear that for the 

elevation angles between -30º and 30º, the two radiation patterns overlap precisely. 

Therefore as long as the planar array is placed within this elevation range with 

respect to source, the behavior of the horn can be modeled accurately. This 

approximation holds only if the source horn is placed at a distance greater than 2D2/λ 

(where D is the largest horn dimension) which may not always be the case in 
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practical applications. Nonetheless this approach is presented here to demonstrate 

how the excitation source can be incorporated with SCT simulations. 

 
(a) 

 
(b) 

Figure II.32: Directivity pattern of a pyramidal horn (red) compared to that of Aperture 
antenna (blue) (a) H-plane (b) E-plane 
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II.4.4.2.2 Horn Excitation vs Plane-wave Excitation 

 

In this subsection a comparison between the scattering patterns for the two 

types of excitations i.e. plane-wave excitation and the horn excitation is given. For 

horn simulations, the antenna is placed along the vertical axis directly above the 

centre of the planar structure. The distance of the horn can be varied along the 

vertical axis. 

First a simple metal sheet of the dimensions equal to that of an 8x8 array 

described before has been simulated. The scattering pattern results for the normal 

plane-wave excitation are shown in blue in Fig-II.33. The horn excitation results when 

it is positioned at a distance of 66cm and 100 cm from the metal sheet is given in red 

and black. As expected as the distance of the horn from the sheet is increased its 

results tend towards the plane-wave results.  

 

Fig-II.34 presents the scattering results from an 8x8 uniform patch array under 

both plane-wave and horn excitation. Here again we see the similar behavior. At a 

distance of 100cm the horn field illuminating the array surface is effectively seen as a 

plane-wave. The horn and plane-wave results are normalized for comparison 

purposes. 
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(a) 

 
(b) 

Figure II.33: Scattering from a metal sheet for different excitations at 12.5GHz. Plane 
wave (blue) Horn (d=660mm) (red) Horn (d=1000mm) (dotted black) (a) H-plane (b) E-
plane 
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(a) 

 
(b) 

Figure II.34: Radiation pattern diagrams for a 8x8 uniform patch array at 12.5GHz. 
Plane wave (blue) Horn (d=400mm) (red) Horn (d=1000mm) (dotted black) (a) H-plane 
(b) E-plane 
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II.4.4.2.3 Horn antenna with an offset and angle of inclination 

 

For practical applications the source antenna is not usually placed directly at 

the top of centre of the planar structure to avoid the masking effect of the source on 

the backscattered field. Conventionally it is placed at an offset with respect to the 

center of the planar structure with a certain angle of inclination to center the main 

lobe of the antenna in the middle of the array (see Fig-B.3).  

 

In this subsection results for several array structures under such an excitation 

are presented. Same structures are simulated using FEKO (MOM solver) and the 

results of these simulations are presented in the same plots for the comparison 

purposes. FEKO was chosen due to its surface meshing capability contrary to HFSS 

which performs meshing in the whole volume and therefore cannot be used with the 

memory resources available on a common PC. 
 

A metal sheet of 8x8 array dimensions is simulated and the results of 

scattered field both in E-plane and H-plane are presented in Fig-II.35. The horn is 

placed at 66cm above the metal sheet at an offset of 67.2mm from its centre along 

the vertical axis. It is given an inclination of 6.5º to center its main beam in the middle 

of the sheet. As the metal sheet is modeled as a perfect conductor we expect to see 

the specular reflection in the E-plane. The 6.5º displaced main-lobe results in the E-

plane demonstrate this effect. In the H-plane the pattern is symmetric around 0º as 

expected. FEKO results for the similar excitation conditions are represented in green. 

The non-normalized comparison shows good agreement in the magnitude as well as 

main-lobe position of the reflected field components. For all FEKO results, rapid 

jittery variations are present on the radiation pattern curves. One explanation is that 

this may be due to convergence errors if the meshing step is not fine enough. For all 

FEKO results presented here λ/10 is taken as mesh-step. A smaller step cannot be 

taken due to the limitations of memory resources. Nonetheless the FEKO results 

validate the general form and amplitude of the scattered field patterns. 
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(a) 

 

(b) 

Figure II.35: Radiation pattern diagrams for a 8x8 metal sheet. FEKO (green) Horn 
(d=660mm) (red) alpha=6.5º (a) H-plane (b) E-plane 
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(a) 

 

(b) 

Figure II.36: Radiation pattern diagrams for a 8x8 uniform patch array. FEKO (green) 
Horn (d=660mm) (red) alpha=6.5º (a) H-plane (b) E-plane 
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Fig-II.36 shows the field patterns for an 8x8 uniform patch array under similar 

excitation conditions as described in the case of metal sheet. The comparison of SCT 

and FEKO results are presented. Again we see a displaced pattern in E-plane and a 

symmetric pattern in H-plane as expected.  

H-plane radiation pattern results for an 8x8 non-uniform array with the unit-cell 

geometry comprised of patch loaded with slot is depicted in Fig-II.37. FEKO results in 

this case have even higher oscillations as compared to the uniform array case. Due 

to the presence of slots inside the patches usually very fine-scale meshing is required 

to effectively calculate the rapid field variations around the edges of the slots. The 

mesh-step used for the FEKO simulations is 2mm (λ/10=2.4mm) in this case it takes 

around 4 hours to run one complete simulation. The mesh-step cannot be further 

reduced due to memory constraints. Nonetheless it is very clear that average form of 

the FEKO pattern closely follows the SCT results in amplitude and form. 

 

 

Figure II.37: Scattering pattern of an 8x8 non uniform patch-slot array in H-plane. 
FEKO (green) Horn (d=660mm) (red) alpha=6.5º  
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II.4.4.3 SCT Execution Times 

The execution times for SCT simulations depend on a number of factors. The 

scattering patterns are calculated from the equivalent surface current defined in 

equation II.25. The solution of the fore-mentioned equation requires the computation 

of three matrices i.e. [Zg], the projection matrix of free-space Green’s functions in the 

spectral domain, [Vin], tangential incident fields on the planar array defined on the 

array modal-basis and [Zs] surface impedance matrix characterizing the planar-array 

structure. The computation of both Zg and Vin does not involve the application of SCT 

and although they are sensitive to choice of modal-basis in the array-domain at the 

top-scale, they are not required to be recomputed if any change is made to an 

individual cell-geometry. Therefore in parametric studies and optimization loops, the 

computation time of Zs is the most important. 

 

The computation of Zs depends on the size of the array as well as the unit- cell 

geometries. Size of the array will determine the number of scale-changing networks 

to be computed where as the unit-cell geometry will principally determine the number 

of active and passive modes required to compute the surface-impedance multipoles. 

Also if two or more cells have the same geometry, the surface-impedance multipole 

for each of them needs to be calculated only once. 

 

 CPU Time (sec) 

[Zs] complete array 43.06 

Zs unit-cell 11.7 

SCN (100 active 4000 passive)  (1 SCN + 1 cascade)  13 

SCN (120 active 4000 passive) (1 SCN + 1 cascade) 11 

SCN (200 active 2000 passive) (1 SCN + 1 cascade) 6 

 
Table II.5. [Zs] computation time for 8x8 uniform patch slot array 

 

In the case of a 64 element (8x8) uniform patch-slot array, only one surface-

impedance multipole needs to be computed along with three scale-changing 

networks to compute the surface-impedance for the entire array. The whole process 

takes around 43 seconds (Table II.5). At scale-level 1 single-unit cell requires 11 
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seconds to compute; at scale 2 one scale-changing network along with a single 

cascade (scale-changing network multipole with 4 surface-impedance multipoles) 

requires 13 seconds and so on. For a uniform array case at each scale-level only a 

single scale-changing network and a single cascade computation needs to be 

performed therefore the computation of Zs in this case is the most efficient. 

 

The execution times in the case of an 8x8 non-uniform patch-slot array 

comprised of 8 different unit-cell configurations are given in Table II.6. In this case at 

the scale-level 1, eight surface impedance matrices have to be computed each 

corresponding to one geometric configuration. At scale-level 2, one scale-changing 

network has to be computed but 4 cascades need to be performed. The process 

continues likewise at higher scales. It is clear from these results that SCT make use 

of redundant nature of the geometry to efficiently characterize the whole structure. It 

can be deduced from the results of Table II.6 that in the case of an array where all 

unit-cells differ from one another, the CPU time required to compute Zs of the 

complete array would be around 1130 seconds. 
 

 CPU Time (sec) 

[Zs] complete array 172 

Zs unit-cell (8 configs) 135 

SCN (100 active 4000 passive) (1 SCN + 4 cascades) 16 

SCN (120 active 4000 passive) (1 SCN + 2 cascades) 12 

SCN (200 active 2000 passive) (1 SCN + 1 cascade) 6 

 
Table II.6. [Zs] computation time for 8x8 non-uniform patch slot array 
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II.5. CONCLUSIONS 
 

In this chapter the Scale-changing technique has been applied to characterize 

several planar structures. In the first part of the chapter, the concept of a scale-

changing network to model the mutual coupling between array elements was 

introduced. It has been shown that SCT can effectively be used to characterize the 

mutual coupling in the planar arrays. This was demonstrated both in the case of 

mutual coupling between two half-wave dipole elements as well as between the 

elements in a planar dipole array. Later the SCT has been applied for modeling non-

uniform linear array and it was shown that SCT is manifolds more efficient than other 

conventional EM modeling tools in case of large arrays. 

 

In the second part of this chapter, SCT has been applied to the problem of 

electromagnetic scattering from two dimensional non-uniform planar array structures. 

The scattered field patterns for several types of arrays are calculated under plane-

wave and horn-antenna excitation. These results are compared to simulation results 

from other 3D full-wave analysis tools. Finally the execution times to compute the 

surface impedances in the case of both uniform and non-uniform arrays are given. It 

has been shown that SCT effectively reuses the redundancy in a design. Moreover, 

the highly parallelizable execution capability of scale-changing network makes SCT a 

promising tool to design, analyze and optimize large complex planar structures, 

which is not usually convenient to do with the existing techniques. 
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A technique based on interconnecting Scale-changing networks has been 

proposed for the electromagnetic modeling of planar array structures. The problem of 

electromagnetic scattering from these arrays was addressed and it has been shown 

that the Scale-changing technique can effectively be used to calculate the field 

scattering patterns and surface currents. In the course of this thesis SCT has been 

applied to the scattering problem of several planar arrays and it has been 

demonstrated that the technique effectively models the mutual interactions between 

the array elements. 

The unique formulation of the Scale-changing Technique avoids the direct 

computation of structures with high aspect ratios. Thanks to hierarchical domain-

decomposition provided by the partitioning process, the complex geometries are 

broken down into finite number of simpler geometries at distinct scale-levels. 

Moreover, the scale-changing networks that relate the electromagnetic field at 

adjacent scales are computed separately, therefore providing an inherent 

parallelization capability.  

This modular nature of the technique can be exploited by distributed 

processing algorithms to reduce the simulation-time many folds. Similarly the 

convergence study (finding the appropriate number of active and passive modes at 

each domain) can be parallelized by running convergence passes as separate 

processes. It has been demonstrated that for certain planar structures the simulation 

times can be reduced by 90% by implementing both of above stated approaches 

[Khalil09]. 
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Domain decomposition not only allows the rapid processing of the overall 

simulation, it also helps solving the memory problems for simulating large structures. 

As the complex problem is now partitioned into much smaller problems, the new 

equations are made up of fewer unknowns and thus can be represented by smaller 

matrices requiring much less memory resources. In addition this gradual change of 

dimensions from one scale-level to the next helps to avoid the numerical conditioning 

errors linked to critical aspect ratios in a structure. 

 Typically, if N orders of magnitude separate the largest to the smallest 

dimensions in the structure, the Scale-changing Technique requires the computation 

of N Scale-changing Networks. In design and optimization processes small 

modifications in the structure geometry is often required. For example, if 

modifications in the structure geometry occur at a given scale S, only the SCNs 

between scale S and S-1 and between S and S+1 need to be recalculated. This 

gives SCT a huge advantage on classical meshing based techniques which require 

the recalculation of the overall structure. This built-in modularity makes the scale-

changing technique a very powerful optimization and parameterization tool. 

Although as a stand-alone method, SCT is applicable only to 2D or 2.5D 

planar structures, but it can be used in hybrid with other classical methods for 3D 

applications. The idea is to use the SCT for the planar sub-domains and one of the 

classical methods e.g. FDTD, FEM or TLM for the volume sub-domains. The 

interlinking between the methods can be performed using IE formulation by relating 

tangential electromagnetic fields at the exterior surfaces of the volume sub-domains 

to the active modes of the planar sub-domains. 

Apart from all the positive features SCT has its limitations as well. First of all, 

there is no simple and automatic convergence criterion for determining the number of 

active modes in the sub-domains. For the moment the appropriate number of active 

modes has to be manually determined from the convergence curves. Moreover in 

certain cases the matrix ill-conditioning problems may lead to numerical convergence 

issues requiring additional processing e.g. iterative solver methods to resolve them.  

Presently, planar structures comprised of simple canonical domains have 

been treated only. The rectangular domains and sub-domains allow the field 

description in terms of purely analytical entire-domain trail functions and therefore 
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save the complex numerical treatment necessary in the case of non-analytical trial 

functions required to describe the electromagnetic field in non-canonical shaped 

domains. 

 Another limitation concerns the introduction of artificial boundary conditions at 

the boundaries of domains formed by the partitioning process. Normally these 

boundary conditions are selected taking into account physical nature of the problem 

that is the behavior of electromagnetic fields in their vicinity. But even a different set 

of boundary conditions does not seem to affect the accuracy of the solution 

significantly, only in this case the solution would need a larger number of modes to 

converge. Similarly introducing artificial boundary conditions around the unit-cell 

domains of the arrays does not significantly perturb the accuracy of the simulations 

as shown by the mutual-coupling study.  

Concerning the perspectives of this work, it will be highly interesting to design 

a real-life planar array application e.g. a cassegrain FSS or a reflectarray using 

Scale-changing Technique and a possible optimization using Grid-computing. The 

experimental validation of such a case would help to demonstrate the potential of the 

SCT in the design and analysis of real-life applications.  

 

 

  



 

 

 

 
 
 

ANNEX A:  
 

DEFINITIONS OF ORTHOGNAL 
MODAL-BASIS  

 
 

ANNEX B:  
 

MODELING OF SOURCE HORN BY 
RECTANGULAR APERTURE 
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A.1. INTRODUCTION 
 

This annex gives the expressions of the orthogonal modal-basis for the 

various kinds of boundary conditions described in Part I of this thesis. Assuming a 

rectangular domain of dimensions ܣ (along x-axis) and ܤ (along y-axis) with the lower 

left corner placed at the origin. If this rectangular domain is bounded by any of the 

following boundary conditions, the transverse electromagnetic field in the domain can 

be expressed on the orthogonal modes as under.  

 

A.2. ELECTRIC BOUNDARY CONDITIONS 
 

The rectangular domain is bounded by perfect electric boundary conditions on all 

sides. 
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A.3. MAGNETIC BOUNDARY CONDITIONS 
 

The rectangular domain is bounded by perfect magnetic boundary conditions on all 

sides. 

Ԧ݂ఈሺݔ, ሻݕ ൌ ൞
ఈܯ ݊݅ݏ ቀ

ߨ݉
ܣ ቁݔ ݏ݋ܿ ቀ

ߨ݊
ܤ ቁݕ Ԧݔ

ܰఈ ݏ݋ܿ ቀ
ߨ݉
ܣ ቁݔ ݊݅ݏ ቀ

ߨ݊
ܤ ቁݕ Ԧݕ

       



EM Modeling of Large Planar Array Structures using SCT 
 

113 
 

 
ߙ  ݁ݎ݄݁ݓ ൌ ,ܧܶ  ݕܽݎݎܽ ݄݁ݐ ݂݋ ݏ݊݋݅ݏ݊݁݉݅݀ ݄݁ݐ ݁ݎܽ ܤ ݀݊ܽ ܣ  ܯܶ

 

ߙܯ    ൌ

ە
ۖۖ
۔

ۖۖ
െۓ

݊
ܤ

√2ܶ

ට݉ଶ ቀܣܤቁ ൅ ݊ଶ ቀܤܣቁ
             ሺܶܧሻ

݉
ܣ

√2ܶ

ට݉ଶ ቀܣܤቁ ൅ ݊ଶ ቀܤܣቁ
           ሺܶܯሻ

ۙ
ۖۖ
ۘ

ۖۖ
ۗ

ߙܰ    ൌ

ە
ۖۖ
۔

ۖۖ
ۓ ݉
ܣ

√2ܶ

ට݉ଶ ቀܣܤቁ ൅ ݊ଶ ቀܤܣቁ
             ሺܶܧሻ

݊
ܤ

√2ܶ

ට݉ଶ ቀܣܤቁ ൅ ݊ଶ ቀܤܣቁ
                ሺܶܯሻ

ۙ
ۖۖ
ۘ

ۖۖ
ۗ

     

 
  ݁ݎ݄݁ݓ ቄܶ ൌ ݊ ݎ݋ ݉            1 ൌ 0  

ܶ ൌ ݁ݏ݅ݓݎ݄݁ݐ݋             2  
 

A.4. PARALLEL-PLATE WG BOUNDARY CONDITIONS 
 

The rectangular domain is bounded by perfect electric boundary conditions at the top 

and bottom but perfect magnetic boundary conditions at side walls. 
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For m=n=0, we have a TEM mode, so in this case, 
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A.5. PERIODIC BOUNDARY CONDITIONS 
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The rectangular domain is bounded by periodic boundary conditions (Floquet 

conditions) at all sides. 
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For m=n=0, we have two TEM modes, (or modes TE00 and TM00) 
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B.1. INTRODUCTION 
 

This annex details the mathematical modeling of a pyramidal horn antenna of 

the dimensions shown in the figure. At the simulation frequency (12.5GHz), the feed-

waveguide has only TE10 as the propagation mode. Therefore at the aperture of the 

horn the field distribution can be approximated to that of TE10 mode distribution.  

 

 

Figure B.1: Dimension of the pyramidal horn along with its aperture field distribution. 

 

B.2. APPROXIMATION BY RADIATING APERTURE 
 

Far-field radiation from a pyramidal horn can be approximated by the radiation 

from a rectangular aperture inside an infinite ground plane if the aperture field 

distribution is close to that of the field on the horn aperture. The expressions for the 

far field radiation pattern for different aperture field distributions can be found 

analytically [BalanisAnt Ch12].  

 

Consider a rectangular aperture of dimensions a and b with the electric field 

distribution given by the following expression. 

 

௔ࡱ ൌ ଴ܧ cos ቀ
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െ
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െ
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The far-field radiated by this field distribution is given in spherical co-ordinates 

by the following expressions. 
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B.3. TANGENTIAL COMPONENT OF FAR-FIELD ON A PLANAR 
SURFACE 
 

B.3.1. Horn centered on the planar surface  
 

Following figure shows the tangential component Etg of the radiated field on an 

incident planar surface located in the x-y plane at a distance z=660mm from the feed 

horn (in the far-field region).  

 
Figure B.2: Computation of the tangential component of the incident field of a horn 
centered on a planar domain 

 
The incident field can be written in the planar-domain co-ordinate systems as 
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using far-field expressions from section C.2 in the above equation. 
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Similarly Ey and Ez can be written as under 
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Now ܧሬԦ௜௡௖ and ܧሬԦ௧௚ can be computed from the following equations. 
  
ሬԦ௜௡௖ܧ ൌ ොݔ௫ܧ ൅ ොݕ௬ܧ ൅ ݖ௭̂ܧ ൌ ොݕ௬ܧ ൅  ݖ௭̂ܧ
 
ሬԦ௧௚ܧ ൌ ൫ܧ௬ݕො ൅ .൯ݖ௭̂ܧ ሺݔො ൅  ොሻݕ
 

Since planar surface is normal to the plane of the horn’s aperture-plane, the 

tangential field has only the y-component.  

ሬԦ௧௚ܧ ൌ  ොݕ௬ܧ

B.3.1. Horn with an offset and an inclination angle  
 

In most practical cases the horn antenna is not centered on the reflecting 

structure but placed at an offset to avoid the masking effect. The horn antenna is 
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inclined at a certain angle to position its main beam at the centre of the planar 

structure. In the figure below the horn antenna is displaced a distance ‘d’ along the y-

axis. Angle α represents the orientation of the feed horn with respect to the co-

ordinate system of the incident plane. In this case the tangential electric field ܧሬԦ௧௚ on 

the planar surface can be found as follows. 

 
 

Figure B.3: Computation of the tangential component of the incident field of a horn 
with an offset and an inclination angle 
 

The new observation point coordinates on the incident plane with respect to 

the new position and orientation of the feed horn are, 

x ൌ xᇱ 

y ൌ yԢ cos α ൅ zԢ sin α 

z ൌ zԢ cos α െ yԢ sin α 

 

So the tangential component EሬሬԦ୲୥ of the field in this case is given by, 

E୲୥ ൌ ൫E୶xԢ෡ ൅ E୷yᇱ෡ ൅ E୸zᇱ෡൯. ሺxො ൅ yොሻ 

E୲୥ ൌ E୶ሺxᇱ෡ . xොሻ ൅ E୷ሺyᇱ෡ . yොሻ ൅ E୸ሺzᇱ෡ . yොሻ 

E୲୥ ൌ 0 ൅ E୷ cos α ൅ E୸ sin α 

E୲୥ ൌ E୷ cos α ൅ E୸ sin α 

 

Now we plot the magnitude of the tangential component on the planar surface. 

There are two cases in this respect, first is, in which feed horn is placed normal to 
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incident plane and the second is in which it is placed with some offset and inclination 

angle, both of these cases are described below. 

 

B.4. CALCULATION OF ሾࢉ࢔࢏ࢂሿ 
 

With parallel-plate boundary conditions as the orthogonal modal basis of the 

rectangular incident plane, we have 
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Where  α ൌ TE, TM 
 

 
 
Figure B.4: Tangential field pattern of a horn antenna placed at the center of the planar 
surface at a distance ‘d’ from it. d=660mm 
 

B.4.1. Horn centered  
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By using the analytical expression of E୷ in the above equation, we get the 

following integral. This integral is too complex to resolve analytically and therefore 

has been solved using numerical integration. 
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Figure B.5: Tangential field pattern of a horn antenna placed at an offset of 200mm 
from the center of the surface with an angle of inclination equal to 30º. d=660mm 
 
 

B.4.2. Horn at an offset with an inclination 
 

If the Horn Antenna is at oblique angle α with an offset of d, then we have to 

simply replace the coordinates   x, y and z in the above equation with x΄, y΄ and z΄ as 

follows: 

 
xᇱ ൌ െz sin α ൅ ሺx ൅ dሻ cos α 

y΄ ൌ y 
zᇱ ൌ z cos α ൅ ሺx ൅ dሻ sin α 

 



 

 

 

 

 

 

THESIS SUMMARY  

(FRENCH) 

  



Thesis summary (French) 
 

122 
 

Abstract 

Les structures planaires de grandes tailles sont de plus en plus utilisées dans les  

applications des satellites et des radars. Deux grands types de ces structures à 

savoir les FSS et les Reflectarrays sont particulièrement les plus intéressants dans 

les domaines de la conception RF. Mais en raison de leur grande taille et de la 

complexité des cellules élémentaires, l‘analyse complète de ces structures nécessite 

énormément de mémoire et des temps de calcul excessif. Par conséquent, les 

techniques classiques basées sur maillage linéaire soit ne parviennent pas à simuler 

de telles structures soit, exiger des ressources non disponibles à un concepteur 

d'antenne. Une technique appelée « technique par changement d’échelle » tente de 

résoudre ce problème par  partitionnement de la géométrie du réseau par de 

nombreux domaines imbriqués définis à différents niveaux d'échelle du réseau. Le 

multi-pôle par changement d’échelle, appelé « Scale changing Network (SCN) », 

modélise le couplage électromagnétique entre deux échelles successives, en 

résolvant une formulation intégral des équations de Maxwell par une technique 

basée sur la méthode des moments. La cascade de ces multi-pôles par changement 

d’échelle, permet  le calcul de la matrice d’impédance de surface de la structure 

complète qui peut à son tour être utilisées pour calculer la diffraction en champ 

lointain. Comme le calcul des multi-pôles par changement d’échelle est mutuellement 

indépendant, les temps d'exécution peuvent être réduits de manière significative en 

parallélisant le calcul. Par ailleurs, la modification de la géométrie de la structure à 

une échelle donnée nécessite seulement le calcul de deux multi-pôles par 

changement d’échelle et ne requiert pas la simulation de toute la structure. Cette 

caractéristique fait de la SCT un outil de conception et d'optimisation très puissant. 

Des structures planaires uniformes et non uniformes excité par un cornet ont étés 

modélisés avec succès, avec des temps de calcul délais intéressants, employant les 

ressources normales de l'ordinateur. 
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Introduction générale  

La prédiction exacte de la diffraction d'ondes planes par des réseaux de taille finie 

est d'un grand intérêt pratique dans la conception et l'optimisation des surfaces 

sélectifs en fréquences (FSS), reflectarrays et transmittarrays. Une analyse (full-

wave) complète de ces structures nécessite énormément de ressources de calcul en 

raison de leur grandes dimensions électriques qui exigeraient la résolution d’un 

grand nombre d'inconnues. Ainsi, l'absence des outils de conception précis et 

efficaces pour ces applications limite les ingénieurs à choisir des conceptions 

simplistes et de faible performance qui ne demandent pas énormément de mémoire 

et de ressources de traitement.  

En outre, la caractérisation des grands réseaux devrait normalement nécessiter une 

deuxième étape pour l'optimisation et l'ajustement de plusieurs paramètres de 

conception parce que la procédure initiale de la conception suppose plusieurs 

approximations, par exemple dans le cas de reflectarrays la conception est 

généralement basée sur la caractérisation d’une cellule seule sous les conditions 

d’incidence normales, ce qui n'est pas le cas pratique. Par conséquent, une analyse 

full-wave de la conception initiale de la structure complète est nécessaire avant la 

fabrication, a fin de s'assurer que la performance est conforme aux exigences de 

conception. Une technique d'analyse modulaire qui est capable d'intégrer de petits 

changements au niveau des cellules individuelles, sans la nécessité de relancer la 

simulation entière est extrêmement souhaitable à ce stade.  

Historiquement plusieurs approches ont été suivies lors de l'analyse des structures 

planaires de grande taille [Huang07]. Dans le cas des réseaux uniformes, où nous 

avons la périodicité de la géométrie, une approche infinie est souvent utilisée. En 

utilisant le théorème de Floquet, l'analyse est en fait réduit à la résolution d'une seule 

cellule unitaire; ce qui réduit significativement les inconnues et donc le temps de 

simulation [Pozar84] [Pozar89]. Bien que les conditions aux limites périodiques 

prennent en compte l'effet de couplage mutuel dans l'environnement périodique, 

l’approximation ne serait pas valable dans le cas des réseaux où les géométries des 
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cellules individuelles sont très différentes. En outre il s'agit d'une approximation très 

mauvaise pour les cellules situées sur les bords des réseaux.  

Une technique simple basée sur la méthode des différences finis (FDTD) est 

proposée pour justement tenir compte des effets de couplage mutuel. Il s’agir 

d'éclairer une seule cellule du réseau en présence de cellules voisines et le calcul de 

l'onde réfléchie. Si elle permet d'excitation précise et des conditions aux limites pour 

chaque cellule dans le réseau, elle n'est pas très pratique pour concevoir des 

réseaux de grandes en raison de délais d'exécution très longue [Cadoret2005a].  

Différentes méthodes conventionnelles ont été testées pour une analyse full-wave 

des structures périodiques, par exemple la méthode des moments (MOM) utilisés 

dans le domaine spectral pour les structures multi-échelles [Mittra88] [Wan95], 

méthode des éléments finis (FEM) [Bardi02] et FDTD [Harms94]. Mais toutes ces 

méthodes nécessitent des ressources prohibitives pour les cas où l'hypothèse de 

périodicité locale ne peut pas être appliquée. Une approche immitance dans le 

domaine spectrale a été utilisée dans l’analyse d'un réseau planaire de dipôles avec 

la procédure de Galerkin en utilisant l'ensemble des fonctions d’essais en domaine 

entier (entire-domain trial functions) [Pilz97].  

La méthode des moments pour la simulation électromagnétique des réseaux de taille 

finie nécessite grand temps de calcul et les ressources de mémoire, en particulier 

lorsque les géométries des patches sont non-canoniques et donc fonctions des base 

sous-domaine doivent être utilisés. Le problème de mémoire peut être résolu en 

utilisant diverses techniques itératives (par exemple, méthode de gradient conjugué) 

[Sarkar82] [Sarkar84] au prix d’une augmentation du temps d'exécution. Une 

amélioration prometteuse de la MoM, appelée Characteristic Basis Method of 

Moments  a été proposée pour réduire le temps d'exécution et le stockage de la 

mémoire pour des grandes structures [Mittra05] [Lucente06]. Toutefois, la 

convergence des résultats numériques reste délicate à atteindre systématiquement.  

Afin de surmonter les difficultés théoriques et pratiques mentionnés ci-dessus, une 

formulation monolithe originale pour la modélisation électromagnétique des 
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structures planaires multi-échelles a été proposée [Aubert09]. La puissance de cette 

technique appelée la technique par changement d'échelles (SCT), provient de la 

nature modulaire de sa formulation du problème. Au lieu de la modélisation de la 

surface plane complète, comme un grand problème unique, il est divisé en un 

ensemble de nombreux petits problèmes dont chacun peut être résolu de manière 

indépendante en utilisant les techniques variationnelles [Tao91]. La solution de 
chaque un de ces petits problèmes peut être exprimée sous forme de matrice qui 

caractérise un multiport appelé « Scale changing Network (SCN) ». SCT modélise 

toute la structure en interconnectant tous les multipoles, où chaque SCN modélise le 

couplage électromagnétique entre les niveaux de l'échelle adjacents.  

La cascade de SCNs permet la simulation électromagnétique globale de toutes 

sortes de géométries planaires multi-échelle. La simulation électromagnétique 

globale des structures par la cascade de SCNs a été appliquée avec succès à la 

conception et la simulation électromagnétique de structures planaires spécifiques tels 

que les surface sélectives en fréquences multiples  [Voyer06], structures auto-

similaire (pré-fractale) [Voyer04] [Voyer05], antennes patch [Perret04] [Perret05] et 

cellule déphaseurs reconfigurables [Perret06] [Perret06a]. L'objectif de ce travail est 

pour valider SCT dans le cas de diverses géométries de réseau planaire y compris 

les réseaux FSS, reflectarrays et transmittarrays.  

Une autre approche modulaire basée sur du domaine spectral MoM a été utilisée 

dans le cas des structures périodiques multicouches [Wan95], qui consiste à 

caractériser chaque couche du réseau par un « generilzed scattering matrix (GSM) » 

puis à analyser la structure complète par une cascade simple de ces GSM. SCT 

diffère de cette approche, car en cas de SCT le cloisonnement est appliqué à une 

même surface et donc SCT est applicable à réseaux d’une seule couche. Pour les 

réseaux multicouches SCT peut être utilisé en l'hybride avec l'approche mentionnée 

au-dessus pour la modélisation efficace des problèmes électromagnétiques plus 

complexes, par exemple dans le cas de réseaux des patches empilés des tailles 

variables [Encinar99-patch] [Encinar01] [Encinar03]  et les réseaux couplés par 

l'ouverture [Robinson99] [Keller00].  
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Cette thèse est divisée en deux parties. Dans la première partie la théorie derrière la 

technique par changement d'échelle est présenté dans un contexte général en 

utilisant l’exemple d'un problème de la discontinuité générique. Plusieurs concepts 

liés à la technique sont introduits et développés. Comment le problème de 

discontinuité peut être exprimée en termes de composants de circuit équivalent est 

démontré [Aubert03]. Le problème est alors formulé en termes d'équations 

matricielles à partir de ce circuit équivalent, et résolu à l'aide de la technique basée 

sur le méthode de moments. La deuxième partie de cette section montre l'application 

de la SCT pour les réseaux réflecteurs périodiques.  

Dans la deuxième partie de la thèse, SCT est utilisé a fin de modéliser les réseaux 

planaires finis et non-uniforme. D'abord, il est démontré que SCT modélise 

efficacement le couplage électromagnétique entre les cellules voisines d'un 

réseau. Plus tard, la technique est utilisée pour modéliser des réseaux linéaires non-

uniformes des bandes métalliques et des patches. Les résultats de simulation ainsi 

que les temps de calcules  sont comparés à des outils de simulation 

classiques. Enfin, SCT est appliqué au problème de diffraction en l'espace libre par 

les réseaux planaires 2D. Les réseaux uniformes et non-uniformes sont simulés sous 

l’excitation d'onde plane et le cornet. Les résultats de diagrammes de rayonnement 

sont comparés aux résultats obtenus par d'autres techniques.  
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Partie 1 

Introduction   

Actuellement, la méthode la plus utilisée pour calculer les champs de diffraction par 

des structures planaires est de résoudre des équations de Maxwell dans leur 

formulation intégrales. Cette approche permet d'exprimer le problème à conditions 

limitées dans l’espace libre en termes d'une équation intégrale formulées sur la 

surface plane finie de structure. Cette réduction d'une dimension spatiale rend cette 

méthode très efficace dans le cas de géométries planes. Pourtant, cette méthode 

dans sa formulation traditionnelle n’est pas particulièrement adaptée pour les 

grandes structures planaires multi-échelle avec des motifs métalliques 

complexes. Les variations rapides et fines dans la géométrie de la structure peuvent 

provoquer de brusques changements dans le champ électromagnétique exigeant 

maillage local à une échelle très petites ce qui nécessiterait de un stockage et les 

ressources de calcul immenses.  

Nous proposons de résoudre ce problème en introduisant la description locale des 

champs dans différentes régions de la surface plane. La procédure peut être 

résumée par les étapes suivantes:  

1. La surface plane est décomposée en plusieurs sous-domaines surfaciques. 

2. Le champ électromagnétique est exprimé sur la base modale de chacun de 

ces sous-domaines bornés par leurs conditions aux limites spécifiques. 

3. Les contributions modales sont traitées séparément pour les modes d'ordre 

inférieur et les modes d'ordre supérieur. Les modes d'ordre supérieur 

contribuent seulement au niveau local alors que les modes d’ordre inférieurs 

définissent le couplage avec le domaine à l'échelle supérieure. 

4. Le couplage électromagnétique entre deux échelles successives est modélisé 

par un « scale changing network » définie par les modes d'ordre inférieur des 

deux sous-domaines. 

5. Une solution électromagnétique pour la structure entière est obtenue par une 

cascade simple de ces SCNs. 
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Conclusion  

Dans ce chapitre, nous avons présenté la théorie de la technique par changement 

d’échelles et certains concepts liés à l'application de cette technique à des structures 

planaires ont été expliqué. Il a été montré que la SCT est particulièrement adaptée 

pour les applications qui nécessitent des grandes géométries planaires complexes 

avec des motifs variant sur une large gamme d'échelle. Le concept de SCN pour 

modéliser le couplage électromagnétique entre les échelles adjacentes est mis en 

avant et il est montré que le calcul de ces SCNs est mutuellement 

indépendant. Cette formulation, par sa nature même est hautement parallélisable, ce 

qui donne SCT un énorme avantage sur d'autres techniques qui doivent être 

adaptées pour un traitement distribué. 

Dans la seconde moitié de ce chapitre, la SCT est appliquée dans le cas d'une 

cellule déphaseur sous des conditions périodiques infinité. Les résultats de 

déphasage introduit à une onde plane en incidence normales et puis obliques sont 

calculés et comparés à un autre outil de simulation. Le bon accord entre les résultats 

démontre que SCT est une technique fiable pour la conception et la simulation.  
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Partie 2 

Introduction   

Dans la partie précédente, nous avons détaillé la théorie derrière la SCT avec 

l'exemple d’une cellule déphaseur passif sous les conditions périodiques. Dans cette 

section, nous allons voir comment cette technique peut être utilisée de manière 

efficace a fin de modéliser des grands réseaux de géométrie non-uniforme.  

Tout d'abord nous allons introduire la notion du multipole de bifurcation qui est 

essentiellement un multipole de changement d’échelle (SCN), pour modéliser le 

couplage électromagnétique entre les cellules voisines dans un réseau. Le couplage 

mutuel entre deux dipôles planaires sera caractérisé par ce SCN et il sera démontré 

que dans le cas d'un dipôle planaire l'effet de couplage mutuel est correctement pris 

en compte lors de la modélisation par SCT. Plus tard nous allons utiliser le multipole 

de bifurcation pour calculer les impédances de surface des réseaux 1D de bandes 

métalliques et des patches dans un guide d'ondes. Une comparaison des temps de 

simulation avec celle des techniques conventionnelles sera faite pour souligner 

l'efficacité du SCT.  

Plus tard dans cette partie, le concept du multipole de bifurcation est renforcé a fin de 

intégrer le couplage mutuel dans les réseaux 2D. Les réseaux planaires non-

uniforme de grande taille sont analysés pour le problème de diffraction 

électromagnétique et un bon accord est obtenu avec les résultats de simulation 

d'outils de simulation classiques. Puis, ces structures sont analysées en utilisant 

l’antenne cornet pyramidal comme une source d'excitation. Les résultats sont 

présentés pour les deux configurations de la source c'est à dire quand le corne est 

placé à une distance verticale du centre du réseau et quand il est placé avec un 

offset et un angle d'inclinaison. Une comparaison des temps de simulation est 

donnée pour chaque cas.  
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Conclusion  

Dans ce chapitre, la technique par changement d’échelles à été appliquée à la 

caractérisation de plusieurs structures planaires. Dans la première partie du chapitre, 

la notion d'un multipole de changement d’échelle a été introduite pour modéliser le 

couplage mutuel entre les éléments des réseaux. Il a été montré que SCT peut 

effectivement être utilisée pour caractériser le couplage mutuel dans les réseaux 

planaires. Cela a été démontré à la fois dans le cas de couplage mutuel entre deux 

dipôle demi-ondes, ainsi que dans le cas des éléments d'un réseau de dipôle. Puis la 

SCT a été appliquée pour la modélisation d’un réseau linéaire et non-uniforme et il a 

été montré que la SCT est beaucoup plus efficace que d'autres outils classiques de 

modélisation dans le cas de grands réseaux  

Dans la deuxième partie de ce chapitre, la SCT a été appliquée au problème de la 

diffusion électromagnétique par les réseaux planaires en 2D. Les diagrammes de 

champ électrice diffusé par plusieurs types de réseaux sont calculés sous l’excitation 

d’onde plane et l'antenne cornet. Ces résultats sont comparés aux résultats de la 

simulation obtenu par autres outils d'analyse full-wave en 3D. À la fin, les temps 

d'exécution pour calculer les impédances de surface dans le cas des réseaux 

uniforme et non-uniforme sont présentés. Il a été montré que la SCT réutilise 

efficacement la redondance d’une conception. En outre, la capacité de l'exécution en 

parallèle de SCNs rendre SCT un outil prometteur pour concevoir, analyser et 

optimiser les structures planaires grandes et complexes, ce qui n'est généralement 

pas facile à faire avec les techniques existantes.  
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Conclusion générale  

 

Une technique basée sur l'interconnexion des multipole de changement d’échelles a 

été proposée pour la modélisation électromagnétique de réseaux planaires. Le 

problème de la diffraction électromagnétique par ces structures a été abordé et il a 

été montré que la SCT peut être utilisés efficacement pour calculer les diagrammes 

de rayonnement et les courants de surface. Dans le cadre de cette thèse, la SCT a 

été appliquée au problème de diffraction électromagnétique dans le cas de plusieurs 

réseaux planaires et il a été démontré que cette technique modélise de manière 

efficace les interactions mutuelles entre les éléments du réseau. 

La formulation unique de la technique par changement d’échelles permet d'éviter la 

computation directe des structures avec des rapports de dimensions tres 

élevé. Grace à la décomposition hiérarchique de domaine de discontinuité par le 

processus de partitionnement, les géométries complexes sont décomposées en des 

géométries simples de nombre finis à l'échelle des niveaux distincts. En outre, les 

multipoles de changement d’échelles qui relient les champs électromagnétiques à 

des échelles adjacentes sont calculés séparément, offrant ainsi une capacité 

inhérente à la parallélisation. 

Ce caractère modulaire de la technique peut être exploité par des algorithmes de 

traitement distribué à fin de réduire l’énormément le temps de simulation. De même, 

l'étude de convergence (en calculant le nombre approprié de modes actifs et passifs 

à chaque domaine) peut être parallélisée en exécutant les passes de convergence 

comme des processus séparés. Il a été démontré que pour certaines structures 

planaires, le temps de simulation peut être réduit de 90% en mettant en œuvre les 

deux approches indiquées ci-dessus [Khalil09]. 

La décomposition de domaine permet non seulement le traitement rapide de la 

simulation globale, elle contribue également à résoudre les problèmes de mémoire 

pour la simulation de grandes structures. Puisque le problème complexe est 
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maintenant divisé en plusieurs petits problèmes, les nouvelles équations sont 

composées de moins de variable inconnues et peuvent donc être représentées par 

les petites matrices nécessitant moins de ressources de mémoire. De plus, ce 

changement graduel des dimensions de niveau  d'une échelle à l'autre permet 

d'éviter les erreurs numériques de conditionnement associées à rapport critique de 

dimensions dans une structure. 

En règle générale, si la séparation entre le plus grand et plus petit des dimensions de 

la structure est à l’ordre de grandeur N, la technique par changement d’échelles 

nécessite le calcul de N multipoles de changement d’échelles. Dans les processus 

de la conception et l'optimisation, des petites modifications sont souvent nécessaires 

dans la géométrie de la structure. Par exemple, si à un moment donné, des 

modifications dans la géométrie de la structure se produisent à l'échelle S, seuls les 

SCNs entre l'échelle S et S-1 et entre S et S +1 doivent être recalculés. Cela donne 

la SCT un énorme avantage par rapport à les techniques classique basées sur le 

maillage linéaire qui nécessitent au nouveau le calcul de la structure globale. Cette 

modularité inhérente de la SCT fait de sort que l’on obtient un outil puissant pour 

l'optimisation et le paramétrage. 

Même si la SCT est applicable uniquement pour les structures planaires en 2D ou 

2.5D, elle peut être utilisée en hybrides avec d'autres méthodes pour les applications 

3D. L'idée est d'utiliser la SCT pour les sous-domaines planaires et l'une des 

méthodes classiques, par exemple FDTD, FEM ou TLM pour les sous-domaines 

volumiques. Le rapport entre les méthodes peut être réalisé en utilisant la formulation 

IE en mettant en relation des champs électromagnétiques tangentiels sur les 

surfaces extérieures de sous-domaines volumiques par les modes actifs des sous-

domaines planaires. 

En dehors de toutes les caractéristiques positives la SCT a ses propres limites. Tout 

d'abord, il n'y a pas de critère simple et automatique de la convergence pour 

déterminer le nombre de modes actifs dans des sous-domaines. Pour l'instant, le 

nombre approprié de modes actifs doit être déterminé manuellement à partir des 

courbes de convergence. En outre, dans certains cas, les problèmes de mauvais 
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conditionnement des matrices peuvent entraîner des problèmes de convergence 

numérique nécessitant un traitement supplémentaire. 

Actuellement, seulement les structures planaires composées des formes simples 

canoniques ont été traitées. Les domaines et sous-domaines rectangulaires 

permettent la description du champ en termes de fonctions d’essaies purement 

analytique donc évitant les traitements numériques complexes nécessaires dans le 

cas de fonctions d’essaies non-analytiques nécessaires à la description du champ 

électromagnétique dans des domaines de formes non-canoniques. 

Une autre limitation concerne l'introduction de conditions aux limites artificielles aux 

bords de domaines formés par le processus de partitionnement. Normalement, ces 

conditions aux limites sont choisies en tenant compte de la nature physique du 

problème. Mais même un choix différent de conditions aux limites ne semble pas 

affecter la précision de la solution de manière significative sauf que dans ce cas, la 

solution aurait besoin d'un plus grand nombre de modes pour sa converger. De 

même l'introduction de conditions aux limites artificielles autour des domaines de 

cellules unitaires de réseaux ne va pas perturber significativement la précision des 

simulations, comme indiqué par l’étude du couplage mutuelle. 

En ce qui concerne les perspectives de ce travail, il sera très intéressant de 

concevoir, dans les premiers temps, une application réelle de réseau planaire, par 

exemple une FSS ou un réseau réflecteur Cassegrain en utilisant la technique par 

changement d’échelles et après une optimisation de cette structure en faisant un 

calcule sur la grille. La validation expérimentale d'un tel cas, permettrait de 

démontrer le potentiel du SCT dans la conception et l'analyse des applications 

réelles.
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