
HAL Id: tel-04279241
https://theses.hal.science/tel-04279241

Submitted on 10 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Axiomatic and computational aspects of discrete
optimization problems in collective settings : from

Multi-Agent Scheduling to Participatory Budgeting
Martin Durand

To cite this version:
Martin Durand. Axiomatic and computational aspects of discrete optimization problems in collective
settings : from Multi-Agent Scheduling to Participatory Budgeting. Operations Research [math.OC].
Sorbonne Université, 2023. English. �NNT : 2023SORUS290�. �tel-04279241�

https://theses.hal.science/tel-04279241
https://hal.archives-ouvertes.fr

École doctorale no 130 : Informatique, Télécommunications et Electronique
Sorbonne Université, Paris

Axiomatic and computational aspects of discrete
optimization problems in collective settings

From Multi-Agent Scheduling to Participatory Budgeting

Thèse de doctorat en informatique
présentée publiquement par

Martin DURAND

le 23 Octobre 2023

Rapporteurs
Alessandro AGNETIS Professor, University of Sienna, Italie
Jérôme LANG Directeur de recherche CNRS

LAMSADE, Université Paris-Dauphine, France

Examinateurs
Nadia BRAUNER Professeure, G-SCOP, France, Présidente du jury
Nicolas MAUDET Professeur, LIP6, Sorbonne Université, France
Arianna NOVARO Maı̂tresse de conférences, Université Paris I Panthéon-Sorbonne, France

Directrice de thèse
Fanny PASCUAL Maı̂tresse de conférences, HDR,

LIP6, Sorbonne Université, France

Table of contents

2

Table of contents

Acknowledgements 7

Introduction 9

1 Preliminaries 13
1.1 An introduction to scheduling . 13
1.2 Computational social choice . 19
1.3 Multi-agent scheduling . 27

2 Efficiency and Equity in the Multi-Organization Scheduling Problem 31
2.1 Introduction . 31

2.1.1 Related work. 32
2.1.2 Overview of our results . 34

2.2 Preliminaries . 35
2.2.1 Notations . 35
2.2.2 Problem statement . 36

2.3 Interest of cooperation and algorithm . 36
2.3.1 Cooperation can decrease all the makespans 37
2.3.2 A PTAS with resource augmentation 38

2.4 Efficiency vs. rationality constraint . 42
2.4.1 Priority to efficiency . 43
2.4.2 Priority to the rationality constraint 44

2.5 Max Min Gain . 49
2.5.1 Problem statement . 49
2.5.2 Case of unit tasks . 50
2.5.3 General case . 53
2.5.4 Heuristic . 59
2.5.5 Experimental evaluation . 63

2.6 Conclusion . 65

3 Collective schedules: analysis of four aggregation rules 67
3.1 Introduction . 67
3.2 Preliminaries . 71

3

Table of contents

3.2.1 Definition of the problem and notations. 71
3.2.2 Four aggregation rules. 72
3.2.3 Resoluteness. 77

3.3 Axiomatic properties . 78
3.3.1 Neutrality and PTA neutrality. 78
3.3.2 Distance. 81
3.3.3 PTA Condorcet consistency. 83
3.3.4 Incompatibilities between axioms and properties. 85
3.3.5 Length reduction monotonicity. 87
3.3.6 Reinforcement. 89
3.3.7 Unanimity. 90
3.3.8 Summary of the axiomatic properties of the rules. 94

3.4 Computational complexity and algorithms. 94
3.4.1 Complexity. 94
3.4.2 EMD with local search: a heuristic for ΣD and ΣT. 101

3.5 Experiments. 102
3.6 Discussion and conclusion . 105

4 Collective schedules: unit time and constraints 107
4.1 Introduction . 107
4.2 Preliminaries . 109

4.2.1 Definitions and notations . 109
4.2.2 Generalization of classical scheduling criteria. 111

4.3 An analysis of the EMD rule . 112
4.4 Scheduling tasks with time constraints . 120

4.4.1 Getting optimal solutions with time constraints 120
4.4.2 Axiomatic study of rules with inferred time constraints 121

4.5 Precedence constraints . 128
4.5.1 Inferred precedence constraints . 129
4.5.2 Imposed precedence graph . 131

4.6 Conclusion . 142

5 A Non-Utilitarian Discrete Choice Model for Preference Aggregation 145
5.1 Introduction . 146

5.1.1 Discrete choice models for preference aggregation 146
5.1.2 Overview of our results . 147

5.2 Related work . 148
5.3 Preliminaries . 149
5.4 A Non-Utilitarian Discrete Choice Model 152
5.5 MLE of the Parameters of the k-Wise Young’s Model 154
5.6 Algorithms for Determining an MLE . 156
5.7 Numerical Tests . 158
5.8 Conclusion . 160

4

Table of contents

6 Detecting and taking Project Interactions into account in Participatory Bud-
geting 163
6.1 Introduction . 163

6.1.1 Related work . 164
6.1.2 Our approach to interaction detection 165
6.1.3 Overview of our results . 168

6.2 Preliminaries . 169
6.3 Axioms for utility functions . 170
6.4 A utility function taking synergies into account 172

6.4.1 A function using Möbius transforms: uM 172
6.4.2 Properties of uM , and remarks on its computation 174

6.5 Axioms for budgeting methods . 176
6.6 Complexity . 181
6.7 A branch and bound algorithm . 186

6.7.1 Description of the algorithm . 186
6.7.2 Experiments . 188

6.8 Conclusion . 189

7 Conclusion and perspectives 191

Bibliography 197

5

To those who make me happy.

6

Acknowledgments

I would like, first and foremost, to thank my PhD advisor Fanny Pascual. I had the
chance of meeting her a few years ago during my Bachelor’s degree as a teacher in the
algorithmic course, alongside with Olivier Spanjaard. From all the courses I was follow-
ing back then, this one was my breath of fresh air. Both lectures and exercises sessions
interested me a lot and I quickly became more and more fascinated with algorithms
and their theoretical aspects. Following this path, I entered the Master’s degree AN-
DROIDE, focused on operations research, decision, multi-agent systems and robotics.
During this degree, my interest was focused on computational complexity and collec-
tive decision making. After working on a research project, supervised by Fanny, I asked
her if she could supervise me for an internship, then a second a few months later and
finally a PhD thesis. At every step of the way Fanny has been an excellent teacher and
a benevolent supervisor.

By accepting to supervise me for this PhD thesis, Fanny allowed me enter the world
of academia, a world in which I blossom and in which I feel deeply happy. For this,
I will always be thankful to her. During the thesis we managed to find the proper
rhythm, despite the lock-downs, the amount of time spent on administrative tasks and
teachings. I always had enough freedom to explore the topics I enjoyed and always had
enough guidance not to get lost. She has been kind, open-minded, patient, rigorous,
hard-working, she had the right intuitions and always gave helpful feedback. For all
these reasons, I always knew, going into a meeting, that it would be both an enjoyable
and teaching moment.

I wish Fanny the best for the years to come and I will always be grateful to her.
I would also like to thank Olivier Spanjaard who, like Fanny, was first my teacher

both in Bachelor’s and Master’s degree. He co-supervised, with Fanny, my Master’s
degree 6 months internship. During this time, as well as later, during the PhD thesis,
it has been a pleasure working with him on research as well as teaching. Beyond this,
he has always been available and helpful whenever I had an issue as well as cheerful in
the day-to-day life.

I would also like to thank all the professors from the Master’s degree ANDROIDE.
I learnt a lot during these two years, and this is due to their skills as teachers as well
as their dedication to build courses they are passionate about. This passion passes
on. I think this thesis shows that I took a lot from all these lectures from the most
theoretical to the most practical. Thank you to Pierre Fouillhoux, Patrice Perny, Bruno

7

Escoffier, Pierre-Henri Wuillemin, Evripidis Bampis, Thibaut Lust, Nicolas Maudet,
Aurélie Beynier and Safia Kedad-Sidhoum.

More generally, it has always been a pleasure to work in LIP6, it is a very welcoming
environment. In particular, the members of the Operations Research and the Decision
teams have been my colleagues for 3 years now and the atmosphere was always cheer-
ful. Thank you to Carola, Martin, Niklas, Koen, Georgii, Mara, Maria Laura, Anja and
Alexis for sharing a part of this journey with me.

There are three colleagues I would like to thank just a little bit more, hopefully
the others will not get jealous. Magdalena have been my office mate for several years.
We worked on topics that are quite close and every single discussion I had with her
regarding research has been illuminating. She is deeply passionate about her research
and about the computational social choice field as a whole. She is nice, inspiring and
unique in so many ways. She also gave me plenty of advice for the redaction of this
manuscript as well as the template I used for this document (and this is one of the most
valuable gift for a PhD student !).

I would also like to thank my two fellow PhD student companions François and
Océane. We have been colleagues for two years but, beyond that, we spent a lot of time
together outside of the office. François pushed me to do sports again, which is not an
easy task, and Océane shared a little bit of my passion for movies. They have been
funny, understanding and supportive friends and I will remember kindly the time I
spent with them during these years.

I would also like to thank Déborah and Kévin for being supportive during this jour-
ney. They are two of my closest friends and, despite the circumstances, they have al-
ways been available and cheerful as they always had been.

Finally, I want to thank my family for being supportive, in all possible ways, es-
pecially my parents for hosting me and bearing with me for 3 additional years, which
once more, is not an easy task ! I would like to thank my sister as well, she has been a
role model for me for quite some time now.

All these persons, and many others, have been a part of my life during this journey.
I have no regret about these three years, if I had to do it all over again, I would do it all
over again without changing anything, thank you.

8

Introduction

This thesis focuses on several collective decision making problems, from multi agent
scheduling to participatory budgeting. There are several agents, that can represent
companies, citizens of a city, members of a research lab . . . , for which a common so-
lution has to be found. Such a solution can be a schedule of tasks of interest for the
agents, a ranking of items that the agents have to sort or a selection of projects ap-
proved by the agents. Each agent has different interest over the possible solutions. This
can be because the solution impacts directly the agents or because the agents express
preferences over the possible solutions. Any solution can be evaluated thanks to differ-
ent tools. We will mostly focus on fairness and efficiency. Fairness and efficiency can
be formulated in different ways, depending on the context, from objective functions to
binary properties. In all cases, our goal will be to find a solution that corresponds as
much as possible to the interests or preferences of the agents. A solution is collectively
satisfying if it is “close” to the preferences of the agents, according to some definition of
closeness, or if the overall benefit of the agents is high. The solution should also be fair
in the sense that no agent should be treated better than any other. We study different
problems, especially scheduling problems, in which we have to find fair solution or fair
decision making processes while guaranteeing some notion of efficiency.

Presentation of the chapters. This document is divided into seven chapters.

• In Chapter 1, we present both the scheduling and the computational social choice
fields. We aim at introducing models and resolution concepts relevant to this the-
sis. We conclude the chapter with a short review of some multi-agent scheduling
problems.

• Chapter 2 is dedicated to the Multi-Organization Scheduling Problem. It is a
scheduling problem in which several organizations (or agents) have tasks and
machines. Each organization has a “local” schedule in which it schedules its own
tasks on its own machines. We consider that the organizations collaborate by
sharing their machines in order to improve the quality of their solution. The goal
is to find a schedule of all the tasks on all the machines (a task can be scheduled
on a machine owned by another organization) which satisfies all the organiza-
tions. Our objective here is to study the tradeoff between efficiency, in terms of
global performance, and fairness. Regarding fairness, we will at first consider a

9

Introduction

rationality constraint which requires that, when the machines are shared among
the organizations, each organization has a solution at least as satisfying as its lo-
cal schedule. In other words, an organization cannot loose anything by sharing.
This constraint ensures that organizations have an incentive to collaborate, but
fulfilling it can impact the efficiency of the solution and our goal is to understand
to which extent. In a final part, we will consider fairness as a main objective
and formulate a new problem, by trying to find solutions not only fulfilling the
rationality constraint but in which each organization gains as much as possible.

• Chapters 3 and 4 focus on the Collective Schedules problem. The collective
schedules problem consists in computing a schedule of tasks shared between in-
dividuals. Individuals have preferences over the order of the shared tasks. This
problem has numerous applications since tasks may model public infrastructure
projects, events taking place in a shared room, or work done by co-workers. Our
aim is, given the preferred schedules of individuals (voters), to return a consensus
schedule.

In Chapter 3, we propose an axiomatic study of the collective schedule prob-
lem, by using classic axioms in computational social choice and new axioms that
take into account the duration of the tasks. We show that some axioms cannot
be fulfilled by the same rule, and we study the axioms fulfilled by four rules:
one which has been studied in the seminal paper on collective schedules [Pas-
cual et al., 2018], one which generalizes the Kemeny rule, one which generalizes
Spearman’s footrule, and one which relies on a scheduling approach. From a
computational point of view, we show that three of these rules solve NP-hard
problems, but that it is possible to solve optimally these problems for small but
realistic size instances, and we give an efficient heuristic for large instances. We
conclude this chapter with experiments evaluating the quality of the heuristic
and the computation time of the four rules.

In Chapter 4, we will consider the setting in which all the tasks have the same
length. We study several algorithms taking preferences as parameters and re-
turning a collective solution. These algorithms are based on two main criteria,
each one extending a classic scheduling criterion: a distance criterion and a bi-
nary criterion. These algorithms return a solution minimizing either the binary
or the distance criterion. This work focuses on classic scheduling constraints,
namely the release dates, the deadlines and precedence constraints. We will con-
sider two settings, one in which preferences fulfill the constraints, and another
one in which they do not. In both cases the goal is to study the complexity and
the mathematical properties of the algorithms. Finally, we study a fast heuris-
tic algorithm for a special case of our problem with regards to its approximation
ratio for the distance criterion and whether or not the schedule returned by this
heuristic fulfills the scheduling constraints.

• In Chapter 5 we study the preference aggregation problem with a probabilistic
approach. A set of v voters express preferences over a set of n candidates. We

10

Introduction

make the hypothesis that there exists a ground truth ranking, i.e. an objective
way of ranking the candidates. The voters have a noisy perception of this ground
truth and express their perception via their votes. In this chapter, we call “model”
a probabilistic model which represents the noise. This model associates a condi-
tional probability to each preference.We study in this chapter a non-utilitarian
discrete choice model for preference aggregation and its application to voting.We
propose an exact and a heuristic algorithm to compute the best estimation of the
ground truth ranking according to our model. Numerical tests are presented to
assess the efficiency of these algorithms, and measure the model fitness on syn-
thetic and real data.

• Chapter 6 is dedicated to the Participatory Budgeting problem. In this problem,
the objective is to select a set of projects that fits in a given budget. Voters express
their preferences over the projects and the goal is then to find a consensus set of
projects that does not exceed the budget. The aim of this chapter is to introduce
models and algorithms for the Participatory Budgeting problem when projects
can interact with each other. Our goal is to detect such interactions thanks to the
preferences expressed by the voters. Through the projects selected by the voters,
we detect positive and negative interactions between the projects by identifying
projects that are consistently chosen together. In presence of project interactions,
it is preferable to select projects that interact positively rather than negatively, all
other things being equal. We introduce desirable properties that utility functions
should have in presence of project interactions and we build a utility function
which fulfills the desirable properties introduced. We then give axiomatic prop-
erties of aggregation rules, and we study three classical aggregation rules: the
maximization of the sum of the utilities, of the product of the utilities, or of the
minimal utility. We show that in the three cases the problems solved by these
rules are NP-hard, and we propose a branch and bound algorithm to solve them.
We conclude this chapter with experiments.

• Finally, Chapter 7 concludes this thesis and presents several research perspectives
for each of the previous chapters.

11

Introduction

12

Chapter 1

Preliminaries

This chapter aims at introducing basic notions and notations used throughout this the-
sis. Firstly, we introduce scheduling: we define what a scheduling problem is, present
several resolution concepts and mention some algorithms to solve such problems. The
problems we will study in Chapters 2, 3 and 4 are scheduling problems. Secondly, we
introduce computational social choice and focus on the voting problem: we give an
overview of different approaches and present voting rules as well as tools to evaluate
such rules. The voting problem is central to this thesis and we will use the different
approaches introduced in this chapter in Chapters 3 to 6. We conclude this chapter
with a short review of several multi agent scheduling problems.

We start by introducing the scheduling field.

1.1 An introduction to scheduling

What is scheduling ? Scheduling [Błażewicz et al., 2001; Brucker, 2010; Pinedo,
2012] is a decision-making process dealing with the allocation of tasks to a set of
given resources, also called machines. Scheduling problems represent many real life
situations. Machines can represent any resource in a production or logistic process:
machines in a workshop, airstrips in an airport, processing units in a computing en-
vironment, crew members in a company and so on. Tasks may represent steps in a
production process, take-off and landings in an airport, execution of programs and so
on. Each of the task has a processing time, namely an amount of time needed by a ma-
chine to process the task. A schedule is then an allocation of each task on a machine,
each task having a starting time and a completion time. A task cannot start on a ma-
chine if the machine is processing another task at the same time. Scheduling is both
a very active research area in operations research and a very well-implanted one since
we can find publications from the 1950s (e.g. [Bellman, 1956]). At that time, schedul-
ing was mostly about optimizing production lines in factories. However as previously
mentioned, it can model a very wide range of real life problems.

13

Preliminaries

Example 1.1.1: Gate affectation in an airport

We can represent the affectation of planes to gates in an airport as a scheduling
problem. Each gate is represented by a machine. Each boarding and disembarka-
tion of a plane is a task. Depending on the number of passengers, the duration of
each of these steps can vary and therefore the tasks may have different process-
ing times. The problem then consists in affecting tasks to machines such that no
machine processes two tasks at the same time, since multiple planes cannot be
affected to one gate.

We introduce a first set of notations. Scheduling deals with a set of m machines.
There is a set J = {t1, . . . , tn} of n tasks. Each task ti has a processing time pi , i.e. the
amount of time needed by a machine to process task ti . Given a schedule S, the comple-
tion time of a task ti in schedule S, i.e. the time at which the processing of task ti ends,
is denoted by Ci(S).

One common way of representing schedules is to use a Gantt chart. In such a chart,
each row represents a machine, tasks represented on the same row are affected to the
same machine. The x axis represents time, task represented on the left are processed
before tasks represented on the right.

Example 1.1.2: Gantt chart

If we consider a very simple example in an airport having 3 gates {A,B,C} and
dealing with 10 flights {F1,F2,F3,F4,F5,F6,F7,F8,F9,F10}, either arriving at
the airport or leaving from the airport, in a 12 hours time period. We can repre-
sent a potential schedule of the 10 flights on the 3 gates as follows:

F1 F4 F5 F9

F3 F7 F6

F2 F10 F8

A

B

C

0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 1.1: Gantt chart of a schedule

The schedule S represented in Figure 1.1 affects, for example, task F6 to the
machine B between time 8 and time 10 and therefore CF6(S) = 10, while task F8
is affected to machine C between time 11 and time 12, thus CF8(S) = 12.

The makespan of a schedule S is the completion time of the last task to be processed
in S, it is usually denoted by Cmax(S). It represents the time from which the whole
workload has been processed and all the machines are free. As an example, if tasks
represent steps of a project, the makespan represents the time at which the project is

14

Preliminaries

fully completed.

Example 1.1.3: Makespan

The makespan is very easy to read on a Gantt chart. Let us look at the following
schedule S of 4 tasks on 2 machines.

t1 t2 t4

t3

0 1 2 3 4 5 6 7 8 9 10 11 12

It is easy to see that the task with the maximum completion time is t4 with
C4(S) = 12, the makespan of S is then 12.

Constraints. In Example 1.1.2, it is not possible to schedule the tasks in any given
way. Indeed, it is impossible to schedule a disembarkation before the plane actually
reaches the airport or to schedule a boarding after the departure of the plane. Schedul-
ing problems handle such situations with constraints, which can take different forms.
The goal is then to find an allocation of the tasks on the machines fulfilling a set of
constraints, such a schedule is called a feasible schedule. Some of the classic constraints
include release date, i.e. the time from which it is possible to schedule a task and dead-
line, i.e. the last possible time a task can be completed at. The release date of task ti is
denoted by ri while di denotes its deadline.

It is also possible to have a precedence relation P between tasks, taP tb means that
task ta has to be scheduled before task tb, i.e. the starting time of task tb has to be
greater than or equal to the completion time of task ta. This precedence relation over
the set of tasksJ is irreflexive, asymmetric and transitive.

Observation 1.1.1: Quick reminder

• Irreflexivity means that we cannot have taP ta, i.e. the precedence relation
cannot force to schedule a task before itself.

• Asymmetry means that if we have taP tb we have ¬tbP ta, i.e. if we need to
schedule ta before tb then it is impossible that tb has to be scheduled before
ta.

• Transitivity means that if we have taP tb and tbP tc then we have taP tc, i.e.
if task ta has to be scheduled before task tb and task tb has to be scheduled
before task tc then task ta has to be scheduled before tc.

Because the precedence relation fulfills these three conditions, it is a strict partial
order.

15

Preliminaries

This relation can be represented with a precedence directed graph in which each
vertex i represents a task ti and there is an arc going from vertex i to vertex j if task
ti has to be scheduled before task tj . Since the relation is transitive, irreflexive and
asymmetric, this directed graph does not contain any cycle.

Objectives. Some problems only require to find a feasible schedule (which can al-
ready be a NP-hard problem), while some others aim at finding a feasible schedule
which optimizes some function. There is a wide range of different objective functions:
minimizing the makespan, minimizing the sum of the completion times of the tasks,
minimizing the delay between an expected due date for a task and its actual comple-
tion time The objective functions we study in this thesis rely on two main notions
the makespan and the due dates.

Finding a schedule which minimizes the makespan is a NP-hard problem, even if
there are only 2 machines [Garey and Johnson, 1979]. However, there are numerous
polynomial time algorithms returning schedules which have a makespan very close to
the optimal reachable makespan, as we will see later.

The second class of optimization functions that we will study are based on the no-
tion of due date. We say that a task ti has a due date di if it is expected to complete at
time di . Note that contrarily to a deadline, the task does not have to be completed by
time di , however if the task is not completed at time di , there will be a penalty. A com-
mon example to illustrate this notion is delivery. If a company is supposed to deliver a
given product to a client by a given time, it is usually not a strict deadline, in the sense
that it could be delivered later. However this delay can imply discounts on the price
of the product or other less visible costs, like lower chances that the client will contact
the company again. The objective functions we will use are derived from several usual
scheduling optimization functions [Brucker, 2010]:

• Tardiness (T): the tardiness measures how late a task is in comparison to its due
date. The tardiness Tj(S) of a task tj in a schedule S is defined as follows: Tj(S) =
max{0,Cj(S)− dj}.

• Deviation (D): the deviation measures how far from its due date a task is, whether
before or after. The deviation Dj(S) of a task tj in a schedule S is defined as
follows: Dj(S) = |Cj(S)− dj |.

• Unit time penalty (U): the unit time penalty counts 1 if the task is executed after
its due date, 0 otherwise. It is defined as follows: Uj(S) = 1Cj (S)>dj .

These three functions corresponds to different interpretation of the due dates. The
tardiness fits with the example mentioned above, we penalize tasks being late and the
later the task, the higher the penalty. The unit time penalty is a binary criterion in the
sense that it only measures if a task is late or not, it does not matter by how much. This
is the case when executing a task after its due date can be done but is useless, even if it
is done just after the due date. The deviation also penalizes tasks for being early. This

16

Preliminaries

allows us to model situations in which scheduling a task earlier than its due date is
costly. For example, imagine the due date being the time at which a company plans to
send manufactured goods. Then it may want the goods to be produced as close to the
date as possible, since producing them earlier means that they have to be stored, which
can have a cost and also takes space in warehouses.

Example 1.1.4: Due date criteria

Let us consider an instance with 3 tasks {t1, t2, t3}, each of processing time 1 and
each having a due date. Task t1 has a due date d1 = 2, task t2 has a due date
d2 = 5 and task t3 has a due date d3 = 9. Let us now consider a schedule S of the
three tasks on one machine:

t1 t2t3

0 1 2 3 4 5 6 7 8 9 10 11 12

d1 d2 d3

Task t1 completes exactly at its due date, so both its tardiness, deviation and unit
time penalty are 0. Task t2 completes at time 7, which his higher than its due
date d2 = 5. Its deviation and tardiness are of 2 and its unit time penalty is 1.
Task t3 completes before its due date, its tardiness and unit penalty are 0 while
its deviation is 5 because it is completed 5 units of time earlier than its due date.

Graham notation. As mentioned above the number of scheduling problems is very
large and there are a lot of variations in each problem: How many machines are there
? Are all the machines identical ? Do the tasks have release dates ? Do all the tasks
have the same processing time ? Do we want a schedule satisfying constraints or are we
looking for a schedule minimizing the makespan, or some cost function ? Graham et al.
[1979] introduced a convention on scheduling problems, they can be denoted using the
following notation: (α|β|γ).
Component α. The α gives information on the machines. It can be a number, 1 for
example indicates that there is one single machine. It can also be a letter, indicating
some property on the machines. For example P indicates that the machines are identi-
cal. This letter can be associated with a number, indicating the number of machines, P 2
means that there are 2 identical machines. If no number is specified, then the number
of machines m is not fixed and is a parameter of the problem. In this thesis, we will
consider two contexts regarding machines 1 and P , in other words, we will either look
at scheduling problems with one machine or with a set of identical machines.
Component β. The β gives information on the constraints or specificity of the set of
tasks. Constraints like release dates and deadlines are specified here by indicating ri or
di . Precedence constraints are specified by adding “prec” in the β section. There are

17

Preliminaries

different types of precedence corresponding to more or less restricted forms of prece-
dence graph from “chains” or “tree” to any type of graph. If the tasks have a given
characteristic, for example if all the tasks have the same processing time, it is indicated
by adding pi = p. If they all have a processing time of exactly 1, we add pi = 1. The
scheduling problems we will study will either have no constraints at all or the con-
straints mentioned above, precedence, release dates and deadlines. We will consider in
Chapter 4 a situation in which all tasks have a unit processing time.
Component γ . Finally, the γ part indicates the optimization function. Looking for
any feasible solution is indicated by a dash “-” or a star “*”. The makespan objective
is represented by Cmax while the objective consisting in minimizing the sum of the
completion time of all the tasks is denoted by ΣCi . The objectives for the total tardiness,
deviation and unit time penalty are denoted by ΣTj , ΣDj , ΣUj , meaning that we look
for a schedule minimizing the sum of the tardiness, deviation or unit time penalty over
all the tasks. These objective functions imply that tasks also have due dates so this is
not indicated in the β part of the notation.

In this thesis we will sometimes use Graham notation to refer to known problems, in
particular (P ||Cmax) but also problems like (1||ΣDj) or (1|pj = 1, chains|ΣUj) for example.

Algorithms. We complete this introduction to scheduling by reviewing a few com-
mon scheduling algorithms that we will use later. Firstly, it is interesting to notice that
a lot of scheduling problems are known to be NP-hard. In such cases, in order to solve
these problems exactly, a few common methods are used like constraint programming,
linear programming or branch and bound methods. These are classic tools allowing
to model a lot of different problems (not necessarily in scheduling) and to solve them
optimally. Depending on the problem, these methods may be more or less efficient and
in some cases these exact resolution methods cannot be run in reasonable time even
when the instances have a small number of tasks and machines. In such cases, we have
to use other algorithms.

For some problems, it is also possible to use α-approximate algorithms. These algo-
rithms do not solve the problems exactly but return a solution which is guaranteed not
to be too bad in comparison to an optimal solution. For a minimization problem, like
the makespan minimization problem, an algorithm is said to be α-approximate with
regards to an objective function if it always return a schedule for which the objective
value is at most α times the objective value for the optimal solution. A polynomial
algorithm which is α-approximate for an NP-hard problem can be a good alternative
to an exponential algorithm if the time available for the computation of a solution is
limited and if α is not too large.

A first, very common, class of greedy scheduling algorithm are the list schedul-
ing algorithms. The idea is to sort the tasks according to some criterion and then to
schedule the tasks greedily in the given order, i.e. as soon as a machine is available,
we schedule the first task in the list. Such algorithms are very fast to compute, as long
as the criterion used to sort the tasks is simple to compute. They are also performing
very well for several problems. For example, the algorithm scheduling tasks by in-

18

Preliminaries

creasing processing time, also called SPT for Shortest Processing Time, is optimal for
the problem (P ||ΣCj). We now show a quick example of the scheduling algorithm LPT,
standing for Longest Processing Time, which consist in sorting the tasks by decreasing
processing time and scheduling the tasks in that order.

Example 1.1.5: LPT (Longest Processing Time) algorithm

Let us consider an instance with 2 identical machines and four tasks {t1, t2, t3, t4}
having processing times p1 = 3,p2 = 4,p3 = 8,p4 = 5. We sort the tasks by de-
creasing processing time, i.e. we will consider the tasks in the order t3, t4, t2, t1.
The LPT algorithm then returns the following schedule:

t3 t1

t2t4

0 1 2 3 4 5 6 7 8 9 10 11 12

This algorithm has several interesting properties. First as mentioned above, it is
very fast to compute. Secondly it has a very good approximation ratio for the makespan
minimization problem. It precisely have a ratio of 4/3− 1/3m, this means that we have
a theoretical guarantee that the makespan of the schedule returned by LPT is at most
4/3 − 1/3m times the optimal makespan [Graham, 1969]. It performs even better in
practice and the 4/3 ratio is only obtained for very specific instances. On a more gen-
eral note, approximation is very commonly used in scheduling. Since a lot of problems
are NP-hard, designing polynomial time algorithms which gives theoretical guarantees
with regards to the optimization function seems like a good tradeoff between compu-
tation time and optimization.

If the reader is interested in the scheduling field, a more detailed presentation can
be found in [Błażewicz et al., 2001; Brucker, 2010; Pinedo, 2012].

We now present the computational social choice field, another important research
area in operations research as well as decision theory.

1.2 Computational social choice

Computational social choice [Brandt et al., 2016] focuses on collective decision making
processes as voting, fair distribution of goods and more generally any process which
consists in finding a common solution given the preferences of a set of agents. In the
1950s, research on collective decision processes was mostly conducted by economists
and mathematicians who studied them from a normative angle, i.e. by studying their
mathematical properties. This resulted in several very strong theoretical results, as we
will see, but these works neglected the computational aspect of the processes. It is only
from the 1980s that many computer scientists started investigating this field, bringing

19

Preliminaries

a computational turn to the social choice theory field resulting in the computational
social choice area. It heavily focuses on the decision process: how do we make sure that
this process is fair and how do we make sure that the solution given by this process is
satisfactory ? This section aims at introducing several common tools from computa-
tional social choice and especially the ones used in this thesis. We start by reviewing
common methods for voting.

Notations. Voting deals with a set V = {v1, . . . , vv} of v voters giving preferences over
a set S of n candidates. The preference of voter vi is denoted by Ri . The set of all
these preferences is called the preference profile and is denoted by P . Depending on
the context, these preferences can be given in different ways. The most commonly
studied context is the one in which voters give full rankings over the candidates. We
denote by XS the set of all possible linear orders, or rankings, over the candidates in
S. An aggregation rule r takes as an input a set of preferences and returns a collective
solution. We can then describe r as r : (XS)v → XS .

Axioms. Axioms are desirable properties that an aggregation rule should follow.
They are particularly studied in the theory of voting. Since one of the problems stud-
ied in this thesis, namely the collective schedules problem, is an extension of voting,
we give detailed insights on axioms.

Let us start with an example. If we consider a public election, no voter should have
an a priori greater impact than any other voter. This axiom is called anonymity (since
voters are treated equally as if they were all interchangeable). Processes which favour
a given voter do not fit well in election contexts. Therefore a way to validate an ag-
gregation rule, is to check whether it fulfills axioms, like anonymity, or not. It would
definitely be unacceptable for a population that the voting system used to elect the
people’s representatives does not satisfy anonymity, so any rule which does not fulfill
anonymity cannot be used for public elections. Note that an axiom can be relevant in
some contexts but not in others. For example, if stakeholders have to vote on a given is-
sue relative to a company, then a stakeholder owning a very small part of the company
should not have the same weight than the major stakeholder: in that case anonymity is
not relevant. An important part of the work regarding axioms is to identify which ones
are relevant in a given context. Given this information, we then try to find a rule ful-
filling these axioms among the existing ones or we can design a new one fulfilling these
properties. Axioms are very varied and can cover a lot of different aspects of the pro-
cess from equal treatment, to resistance to manipulation. It is particularly interesting
to look at combinations of axioms. Let us consider the three following axioms:

• Unanimity: if all voters prefer candidate a to candidate b, then in the ranking
returned by the rule candidate a has to be ranked higher than candidate b.

• Independence of irrelevant alternatives: if every voter’s preference on candidates
a and b remains identical, then modifying the voters preferences on other pairs
of candidates, e.g. a and c, b and d or c and d, will not modify the ranking of

20

Preliminaries

a relatively to b in the ranking returned by the rule. In other words, whether
a is ranked before b or b before a in the returned ranking only depends on the
preferences of the voters over the pair a and b.

• Non-dictatorship: no single voter has the power to always decide the returned
ranking.

These three axioms seem quite natural. However a very famous result, namely Ar-
row’s impossibility theorem [Arrow, 1950], states that it is impossible for an aggrega-
tion rule to fulfill these three axioms.

Theorem 1.2.1: Arrow’s impossibility theorem

No aggregation rule can fulfill both unanimity, independence of irrelevant alter-
natives and non-dictatorship.

This result shows that it is impossible to find an aggregation rule fulfilling this set
of three natural axioms. Arrow’s theorem states that we either have to chose a rule that
could return a solution in which b is ranked above a, even if all voters prefer a to b, a
rule for which the position of a relative to b depends not only on whether a is preferred
to b by the voters, or a rule for which there is a dictator. None of these is ideal but we
have to choose, rules often give up on the independence of irrelevant alternatives since
non-dictatorship and unanimity seem more important. It also shows a very interesting
aspect of the axiomatic study of rules. Since it is impossible to have everything at the
same time, it is important to design rules that fit in different contexts. Having this
toolbox (or axiom combination box) allows to pick and choose which rule seems to be
the best in a given context. In that sense, when comparing two rules, if the second one
does not fulfill an axiom fulfilled by the first, it may allow the second to fulfill another
axiom which was not fulfilled by the first.

When studying the collective schedules problem, in Chapter 3, we will see that
fulfilling some axioms may be incompatible with some other desirable properties.

Satisfaction as an optimization function. Independently from axioms, decision pro-
cess can fulfill some other properties relative to an objective function we want to op-
timize. For example, if we manage to express how satisfied an agent is with a given
solution, then a process finding the solution which maximizes the satisfaction of the
agents is interesting in itself. Such a decision process can also fulfill some axioms (it is
the case most of the time) and it is worth studying because it gives us some guarantee
over the satisfaction of the agents. The Kemeny rule [Kemeny, 1959] is a classic voting
system. It relies on a metric called the Kendall-Tau distance. The Kendall-Tau distance
aims at measuring the difference between two rankings, supposedly one we are trying
to evaluate and one which is given by a voter.

21

Preliminaries

Definition 1.2.1: Kendall-Tau distance

Let R and R′ be two rankings of the same set of n candidates S = {a,b, . . .n}. The
Kendall-Tau distance between R and R′ ∆KT (R,R′) is defined as follows:

∆KT (R,R′) =
∑

(a,b)∈S2

1a≺Rb,b≺R′ a

where a ≺R b means that a is ranked above b in ranking R.

For each pair of candidates (a,b), the Kendall-Tau distance counts 1 if a is ranked
before b in R and b is ranked before a in R′ or if b is ranked before a in R and a is
ranked before b in R′. Intuitively, the Kendall-Tau distance counts the number of pairs
on which rankings R and R′ disagree.

Example 1.2.1: Kendall-Tau distance

Let us consider two rankings R and R′ of 3 candidates a,b and c.

• Ranking R: a ≺R b ≺R c

• Ranking R′: b ≺R′ c ≺R′ a

We can see that in ranking R the candidate a is ranked above candidate b and c.
In ranking R′, candidates b and c are ranked above candidate a. The Kendall-Tau
distance then counts one disagreement on the pair (a,b) and one disagreement
on the pair (a,c). Candidate b is ranked above candidate c in both rankings, the
Kendall-Tau distance does not count any disagreement for this pair. The total
Kendall-Tau distance ∆KT (R,R′) between R and R′ is thus 2.

To evaluate a potential ranking R, it is possible to compute the Kendall-Tau distance
of this ranking with every preference of the profile to obtain a measure of how far the
ranking R is from the set of preferences given by the voters. The Kemeny rule precisely
does that: it sums the Kendall-Tau distance of the ranking R to each preference of the
voters to obtain an overall score for the ranking R. The Kendall-Tau distance between
a ranking R and a preference profile P is then ∆KT (R,P) =

∑
vi∈V

∆KT (R∗,Ri). The higher

this distance is, the further ranking R is from the set of preferences.

Definition 1.2.2: Kemeny rule [Kemeny, 1959]

The Kemeny rule returns a ranking R∗ such that:

∆KT (R∗, P) = min
R∈XS

∆KT (R,P)

22

Preliminaries

Example 1.2.2: Kemeny rule

Let us consider 3 candidates {a,b,c} and 9 voters with preferences, expressed as
rankings, as follows:

• 3 voters have preferences a≺b≺c.

• 2 voters have preferences c≺a≺b.

• 2 voters have preferences b≺a≺c.

• 2 voters have preferences c≺b≺a.

Ranking R = a ≺ b ≺ c has no disagreement with the first set of preferences.
It disagrees on pairs (a,c) and (b,c) with the second set of preferences, so we
count 2 times 2 disagreements. It disagrees on pair (a,b) with the third set of
preferences, i.e. 2 times 1 disagreement, and on all pairs with the last set of
preferences which amounts to 2 times 3 disagreements. The total Kendall-Tau
distance with the profile is then 2 ·2+2 ·1+2 ·3 = 12, which is the lowest possible.
The Kemeny rule returns ranking R.

The Kemeny rule fulfills several axioms, but independently of that, if we consider
that the Kendall-Tau distance is an interesting way of measuring the distance between
two rankings, then the solution returned by the Kemeny rule has an intrinsic value. It
is the “closest” to the preferences of the voters according to the Kendall-Tau distance.
This way of defining voting rules is common: we start by defining a notion of difference
between a solution and a preference and we then aggregate these differences measure
to obtain a global score for any possible solution, then returning a solution (in that case
a ranking) minimizing this difference.

Another example we can mention is the Spearman rule [Diaconis and Graham,
1976], based on the Spearman correlation coefficient, which states that the distance
between two rankings is the sum of the differences of the position of each candidate in
both rankings.

Example 1.2.3: Spearman correlation coefficient

Let us consider the rankings R and R′ from Example 1.2.1

• Ranking R: a ≺R b ≺R c

• Ranking R′: b ≺R′ c ≺R′ a

The Spearman correlation coefficient ρ between rankings R and R′ is computed

23

Preliminaries

as follows:

ρ(R,R′) =
∑
c∈S
|posc(R)− posc(R′)|

= |posa(R)− posa(R′)|+ |posb(R)− posb(R′)|+ |posc(R)− posc(R′)|
= |1− 3|+ |2− 1|+ |3− 2| = 4

Just like the Kemeny rule, the Spearman rule returns a ranking minimizing the
overall Spearman correlation coefficient with the preference profile.

Among the rules proceeding in this way, some use a specific class of metrics to mea-
sure the difference between rankings. If this metric is a distance, in the mathematical
sense, then the rule which consists in returning the ranking minimizing the distance
with the preference profile necessarily fulfills certain axioms [Elkind et al., 2010, 2011].
This is the case of the Kemeny and Spearman rules. We will follow this principle when
dealing with collective schedules and participatory budgeting.

On a final note, we mention here that both the Kemeny and the Spearman rules
return a ranking minimizing the sum of the distances between the returned ranking
and the preferences of the voter. However, instead of the sum, we could use other
aggregators like the maximum, meaning that the returned ranking has to have the low-
est maximum distance to a preference, i.e. the voter being the most unsatisfied with
the solution has to be as satisfied as possible; or the product, meaning that instead of
summing the distances to obtain a global distance with the set of preferences, we mul-
tiply them. These two other aggregators are known to be fairer than the sum, since
they make sure that the least satisfied agents are not too unsatisfied. There are also
other, more complex, aggregators, like OWA (Ordered Weighted Average) [Yager and
Kacprzyk, 2012], that we will not use in this thesis but that could be interesting in the
contexts studied in this thesis. We will use the sum in Chapters 3 and 4 but we will
also use the product and the minimum in Chapter 6.

Probabilistic approach to voting. Another approach to voting consists in focusing
less on the aggregation rule and more on the voters’ behaviour. Instead of designing
rules and studying their properties, it is possible to try and describe the way voters
behave by using a probabilistic model [Elkind and Slinko, 2016; Xia, 2019]. The idea is
the following one:

1. we suppose that there is an objective ground truth, which can consist in a ranking
or anything that allows us to rank the candidates;

2. we suppose that voters do not have exact knowledge of this ground truth, they
have only an imperfect perception of it, the votes are then interpreted as noisy
observations of the ground truth;

3. by making assumptions on what this noise is, we can estimate how likely each
ground truth is given the votes;

24

Preliminaries

4. we return the best possible estimation of the ground truth, according to the votes
and the assumptions on the voters behaviour.

Such an approach is called probabilistic because the assumptions on the noise give
us a probabilistic model. The idea is to associate a probability with every possible
vote, i.e. if we consider that the ground truth is a given ranking R, then a voter has
a probability p(R′ |R) of observing another given ranking R′. This means that given a
ground truth, we can estimate the probability of observing the preferences expressed by
the voter and finally, we can estimate which ground truth is the most likely. The main
objective of this approach is to give a tool that evaluates how well we can explain the
behaviour of voters: the better a probabilistic model fits to the preferences we observe,
the better it is. One final aspect is that it is possible, for certain aggregation rules, to
find a corresponding probabilistic model: the rule returns a ranking which is a best
estimation of the ground truth [Young, 1988; Conitzer et al., 2009]. In such cases, we
can both have axiomatic guarantees about the rule and an evaluation of how well the
model fits to the preferences of the voters. We will use this approach in Chapter 5.

Complexity. Another way to evaluate a decision process is to look at its complexity.
The complexity of a process is given as a function of the size of the input. For example
in elections, we have a number of voters v and a number of candidates n. The com-
plexity of a process returning a solution to the election would then be a function of v
and n. Since real life elections can gather the preferences of millions of voters over a
large set of candidates, it is important for a voting system to be able to handle large
size instances. Finding a ranking minimizing the Kendall-Tau distance is known to be
NP-hard. However several resolution techniques, like dynamic programming [Betzler
et al., 2009], have been used to find an optimal Kemeny ranking. These techniques do
have an exponential complexity, but this complexity increases exponentially only with
the number of candidates, so it may be possible to run the Kemeny rule if the number
of candidates is not too large. On the other hand, some rules, like the Spearman rule,
can be solved in polynomial time. Indeed, finding an optimal ranking for the Spearman
rule can be reduced to an assignment problem, which can be solved in O(n3)[Edmonds
and Karp, 1972]. Once more, knowing the context in which the rule is going to be ap-
plied is key. If the number of candidate and voters is small, it may be better to go for
a rule with high complexity but high theoretical guarantees, but in contexts in which
the instance to solve has a very large size, it is probably better to have a rule with low
complexity.

Observation 1.2.1: An issue that is hard to evaluate

Beyond all these theoretical aspects, there is also a practical one which may be
even more important but which researchers may struggle with. No matter how
good a rule is, how well it fits in a given context it is also essential that voters
understand how the rule works. A voting rule has to be trusted in order for
voters to be willing to participate, and it is easier for a rule to be trusted if it is

25

Preliminaries

understood. We do have a lot of tools to measure complexity, in terms of number
of operations, but very few to measure the “simplicity” of a rule for the voters.
We can mention the experimental studies which directly ask voters about which
systems seems to be the best according to them [Rosenfeld and Talmon, 2021].
But beyond these empirical studies, not much has been done to evaluate this
criterion. In this thesis we will study several aggregation rules, some of them
very “simple” and intuitive and some others way harder to explain to voters or
agents. Most of the time the simpler rules lack some theoretical guarantees that
the more complex rules give. However, in practice, using simpler rules may be
the best option if we want the citizens to participate in the voting process.

Multi-winner voting Multi-winner voting consists in selecting a set of k winning can-
didates among the n candidates of S given the preferences of the voters [Faliszewski
et al., 2017]. In classic contexts, a solution is either a unique candidate, who wins an
election for instance, or a complete ranking of the candidates. In this case, we want a
subset of candidates. When electing members of a parliament, it makes sense to look
for a subset of candidates that is representative of the population. This idea of rep-
resentation is formulated by the proportionality property. On the other hand, when
choosing a committee of experts, it may be better to aim for the k “best” candidates, re-
gardless of representation issues. Just like the classic voting problem presented earlier,
there is a wide range of axioms corresponding to different contexts and that rules fulfill
or not. In recent years, an extension of multiwinner voting has been widely studied: the
Participatory Budgeting problem Aziz and Shah [2021]. In this problem, the objective
is to select a set of projects that fits in a given budget. Voters express their preferences
over the projects and the aim is then to find a consensus set of projects that does not
exceed the budget. When all the projects have the same cost, we fall back to the multi-
winner voting problem, since the number of projects that can be chosen is known. We
will study this problem in Chapter 6.

Other resolution concepts. We conclude this section by mentioning other usual con-
cepts in social choice problems that are not necessarily based on preference aggrega-
tion. One of these problems is the allocation of goods [Bouveret et al., 2016]. A set
of m goods, e.g. car, house, money, candies, . . . , has to be given to a set of n agents.
Each agent gets a certain satisfaction from each good, depending on what she values.
A solution is then an allocation of each good to an agent, each agent may receive sev-
eral goods. The aim is often to find an allocation that is both fair and efficient. The
efficiency can be measured by looking at the sum of the satisfaction of the agents or by
looking at an optimal solution, where optimality is defined as the fact that no agent can
improve its solution without another one decreasing her satisfaction. Fairness on the
other hand is measured using different properties. The most commonly used is envy-
freeness, which states that no agent should be more satisfied if she had the goods given
to another agent instead of the good she has. Another notion of interest is proportion-

26

Preliminaries

ality which states that each agents should be at least as satisfied with the goods she gets
than the satisfaction she would get by having all the goods divided by the number of
agents. A proportional allocation does not always exist, neither does an envy-free al-
location. Some papers also focus on the trade off between efficiency and fairness [Aziz
et al., 2023] in fair allocation.

We complete this chapter with a short review of different scheduling problems
when several agents are involved.

1.3 Multi-agent scheduling

Several multi-agent problems have been studied in the literature. There are many dif-
ferent setups depending on the number and characteristics of machines, agents and
tasks. The aim of this section is not to present an extensive review of multi agent
scheduling problems studied in the literature but to introduce resolution concepts for
such problems.

Competitive agents scheduling on a common machine. In this setting several agents
each own a subset of tasks. The goal for each agent is to schedule her tasks on a com-
mon machine and to optimize an objective function on her set of tasks. This objective
function can for example be the minimization of the sum of the completion times of her
tasks [Perez-Gonzalez and Framinan, 2014]. In their book, Agnetis et al. [2014] give a
detailed analysis of a large class of problems in this setting, as well as in other settings,
as we will see later. They describe several solution concepts:

• Pareto optimal solutions: Since there are several objective functions – one for each
agent, the notion of optimal solution is not as straightforward as it is when deal-
ing with one objective only. In multi-objective optimization problems, a solution
S is said to be Pareto optimal if there exists no other solution which is at least as
good for all objective functions and strictly better for at least one objective func-
tion. To solve the problem we can either look for a Pareto-optimal solution or the
set of all Pareto-optimal solutions.

• Linear combination of criteria: Among the Pareto optimal solutions, some maxi-
mize certain functions aggregating the different objectives. For example let us
consider a two objectives setting: the first objective consists in minimizing some
function f1 and the second objective consists in minimizing some other function
f2. Then, it is possible to consider a function f = α1f1 +α2f2. The solution mini-
mizing function f is Pareto optimal. The coefficient α1 and α2 allow to give more
or less weight to each objective function.

• Epsilon-constraint: This approach consists in setting a minimum quality expected
for all objectives but the objective fk and to optimize according to fk . The solution
found is then the best solution for fk among the solutions that are good enough for
the remaining objectives. Among all the Pareto optimal solutions, some may be

27

Preliminaries

very unbalanced. For example a solution which is only optimizing one objective
function fk is Pareto optimal, since it is impossible to improve any other objective
without deteriorating the value of fk . However it is possible, and often the case,
that such a solution is very unsatisfactory for the other objective functions. In
such case, it is interesting to have some guarantee over the minimum quality of a
solution on each objective function.

In a recent paper, Agnetis et al. [2019] use another solution concept: the Kalai-
Smorodinski fairness, when two agents are competing on a single machine. In a min-
imization problem, the utility that agent i gets from a solution S is defined as the dif-
ference between the value of the agent’s objective in the worst possible solution for the
agent and the value of her objective in S. If fi is the objective function for the agent i
and S∞i is the worst possible solution for the agent, then ui = fi(S∞i)− fi(S). We denote
by S∗i the best possible solution for agent i. The utility ui is then normalized by dividing
it by fi(S∞i)− fi(S∗i). A schedule is said to be Kalai-Smorodinski fair if it maximizes the
minimum normalized utility among the agents. Using these normalized utilities allows
all the satisfactions to be measured on a similar scale.

Observation 1.3.1: Kalai-Smorodinski fairness

This definition of fairness is extremely relevant in multi agent scheduling set-
tings. Indeed, the different agents can have very different sets of tasks depending
on the number and the processing time of the tasks. It is also interesting to look
at the best and worst solutions for the agents since, depending on the instance
structure, they can be very different or pretty close.
Let us consider a simple example. Two agents each have a subset of tasks and
there are two common machines. Each agent wants to minimize her makespan,
i.e. the completion time of her last task. Agent 1 owns two tasks, one of process-
ing time 10, called a1, and one of processing time 5, called b1. Agent 2 owns three
tasks of processing time 1, called a2,b2 and c2. Among the solutions with no idle
time the best for agent 1 gives her a makespan of 10 and the worst makespan of
13.

a1

b1 a2 b2 c2

0 1 2 3 4 5 6 7 8 9 10

b1

a2 b2 c2 a1

0 1 2 3 4 5 6 7 8 9 10 11 12 13

28

Preliminaries

The best reachable makespan for agent 2 is 2 and the worst is 8 (as seen in the
first schedule).

a2 a1

b2 c2 b1

0 1 2 3 4 5 6 7 8 9 10 11

In this example, we can see that although a makespan of 10 is very satisfying for
agent 1, it is unacceptable for agent 2, so comparing the objective function values
is not relevant. Additionally the structure of the instance may limit the quality
of solutions for one agent. In the example, agent 1 will always have a makespan
of 10 at least because she has a task of processing time 10. Kalai-Smorodinski
fairness allows to put the evaluation for all agents on a same scale and to make
sure that this scale takes the instance structure into account. In Chapter 2, we
will study a definition of agent satisfaction that is close, although not identical,
to this definition of satisfaction.
There is however one drawback to this definition: it requires to compute the best
and worst possible values of the objective function for each agent and this may be
an NP-hard problem. It is the case in Chapter 2, where agents aim at minimizing
their makespan and this problem is NP-hard.

We also mention that there exist other settings, in which some tasks may be of inter-
est to several agents at the same time, in which there may be several parallel machines
or in which the processing time of tasks may vary [Agnetis et al., 2014].

Among these extensions, Saule and Trystram [2009] study a case in which there are
several agents competing to schedule their jobs on a set of common machines. Each
agent has her own objective function. They propose several algorithms to solve this
problem, some using combinatorial optimization techniques as well as some greedy
algorithms, including one which is a constant approximation of a Pareto-optimal solu-
tion.

Multiple agents, each having one task Several papers look at fairness among tasks.
Each agent is supposed to have one task and the goal is to design fair processes. In
their paper, Niu et al. [2022] study a simple problem, the minimization of the sum
of the completion times on a single machine. An optimal solution for this problem
is obtained by scheduling the tasks by increasing processing times. However, such
an algorithm is unfair in the sense that agents are not treated equally because of the
processing time of the tasks. A fair process can be obtained by randomization, in this
case each agent has an equal chance for her task to be processed first. The authors study
the trade off between efficiency, in terms of the sum of completion times, and fairness
in terms of expected completion time of each task.

29

Preliminaries

Multiple agents with multiple tasks Using a game theory approach, Cohen and Pas-
cual [2015] study a problem in which agents own several tasks and can choose to which
machine they want to affect which task. Each machine has a scheduling policy, namely a
way to order the tasks scheduled on the machine. The goal for each agent is to minimize
the average completion time of her task. And the goal of the system is to minimize the
average completion time of all tasks. Each agent can have different strategies, namely
ways of spreading her tasks on the different machines. The authors look at equilibrium
in such a setting.

We mention the Multi Organization Scheduling Problem [Pascual et al., 2007] in
which several organizations each own tasks and machines. They have local schedules,
i.e. schedules of their tasks on their machines. We look at what happens when the
organizations share their machines. The goal is then to find a schedule of all the tasks
on all the machines and in which each organization has a solution at least as good
as its local schedule. We will give a detailed presentation of the Multi-Organization
Scheduling Problem in Chapter 2.

We also quickly introduce the Collective Schedules problem [Pascual et al., 2018] in
which a set of tasks common to a (potentially large) set of agents has to be scheduled.
Each agent has her own preferences regarding the order of the tasks and the goal is to
find a consensus schedule which satisfies at most the agents. This problem is an exten-
sion of the voting problem introduced earlier. We will focus on Collective Schedules in
Chapters 3 and 4.

30

Chapter 2

Efficiency and Equity in the
Multi-Organization Scheduling
Problem

The Multi-Organization Scheduling Problem (MOSP) is a scheduling problem in which
several organizations (or agents) have tasks and/or machines. Each organization has a
“local” schedule in which it schedules its own tasks on its own machines. We consider
that the organizations collaborate by sharing their machines in order to improve the
quality of their solution. The goal is to find a schedule of all the tasks on all the ma-
chines (a task can be scheduled on a machine owned by another organization) which
satisfies all the organizations. Our objective here is to study the tradeoff between effi-
ciency, in terms of global performance, and fairness, by making sure each agent benefits
from sharing the machines. Regarding fairness, we will at first consider a rationality
constraint which requires that each organization has a solution at least as satisfying as
its local schedule when sharing the machines. In other words, an organization cannot
loose anything by sharing. This constraint ensures that organizations have an incen-
tive to collaborate, however fulfilling it can impact the efficiency of the solution and
our goal is to understand to which extent. In a final part, we will consider fairness
as a main objective and formulate a new problem, by trying to find solutions not only
fulfilling the rationality constraint but in which each organization gains as much as
possible.

This work has been published in [Durand and Pascual, 2021].

2.1 Introduction

Cost constraints, as well as environmental issues, make the sharing of machines be-
tween independent organizations (such as laboratories or universities) a very interest-
ing solution. Sharing machines allow organizations which need to execute tasks to use
the machines of organizations which do not need machines at this time, decreasing

31

Multi-Organization Scheduling Problem

the completion time of the tasks without having to invest in new machines. But co-
operation is even more than sharing unused machines with organizations who need to
schedule tasks: cooperation can benefit simultaneously several organizations which all
have tasks to compute, by allowing a better placement of the tasks, as we will see in the
sequel. The Multi Organization Scheduling Problem (MOSP) [Pascual et al., 2007] deals
with several organizations which each owns both a set of identical parallel machines
and a set of sequential tasks to execute. The objective is to minimize the maximum com-
pletion time of the last task completed on the machines shared by the organizations,
called global makespan, given that no organization should increase the completion time
of its tasks in the shared system, compared to the case where it executes its own tasks
on its own machines. This last constraint is called the rationality constraint, and ensures
that all the organizations have incentive to share their machines.

Besides analyzing the best possible benefit that organizations can mutually have by
sharing their machines, our aim is to focus on the efficiency of algorithms (where the
efficiency is thought in term of makespan – the date at which all the tasks have been
computed), and on the equity of algorithms for MOSP (even if the rationality constraint
is fulfilled, the benefit should be spread among all organizations). These two aspects
may be antagonist, and our aim is to see to which extent, since what we want would be
a schedule with a small makespan and in which machines are shared with equity. We
will start by reviewing existing work on MOSP, and continue by presenting our results
and the structure of the chapter.

2.1.1 Related work.

The Multi Organization Scheduling Problem [Pascual et al., 2007, 2009] has been in-
troduced with parallel rigid tasks (tasks that need to be executed in parallel on several
machines) and has mainly been studied from an approximation viewpoint. The best ap-
proximate algorithm is a 3-approximation algorithm when the organizations schedule
locally the tasks in decreasing order of their heights (the height of a task is the number
of machines needed to execute the task), or a 4-approximation algorithm in the general
case [Dutot et al., 2011]. For sequential tasks (tasks that need to be executed on one
machine only), the best known algorithm is a 2-approximate algorithm [Cohen et al.,
2010] (in the sequel of this section, all the papers – as well as our results – deal with
sequential tasks). Note that all these bounds are not only approximation ratios, since
they are in fact upper bounds of the ratio, in the worst instance, Cmax(S)

OPT r̄ , where Cmax(S)
is the makespan in a solution returned by the algorithm and OPT r̄ is the smallest possi-
ble makespan that can be obtained by scheduling the same set of tasks on the same set
of machines (this last schedule does not necessarily fulfill the rationality constraint).
Lower bounds on such a ratio have also been given: it has been proved that there is no
algorithm with a ratio smaller than 2 when the tasks are parallel [Pascual et al., 2009],
or when the tasks are sequential and when it is required that, in the returned schedule,
the machines of each organization schedule their own tasks before scheduling the tasks
of other organizations [Cohen et al., 2010, 2011b]. A lower bound of 3

2 is known in

32

Multi-Organization Scheduling Problem

the general case for sequential tasks Pascual et al. [2007]; Cohen et al. [2010] – we will
improve this bound in the sequel.

Several variants have been studied: for example, organizations may choose them-
selves on which machines to schedule their tasks knowing that each machine schedule
the tasks of its organization first Cohen et al. [2011b]. Despite most works deal with
minimizing the overall makespan while each organization wishes to minimizes its own
makespan, other objectives have also been studied: the aim can be to minimize the
average completion time of tasks [Cohen et al., 2010, 2011b], or the energy needed to
schedule the tasks [Cohen et al., 2014]. These papers usually show that the problem is
NP-hard and then give approximation algorithms or heuristics.

Some papers also consider a relaxed version of MOSP: it is assumed that the orga-
nizations tolerate a bounded degradation on the makespan of their own tasks, and
the aim is to minimize the global makespan. This problem is denoted by (1 + α)-
MOSP [Ooshita et al., 2009] when it is assumed that each organization accepts to in-
crease the maximum completion time of its tasks by a factor at most (1 + α). A 3

2 -
approximate algorithm for 2-MOSP has been given [Cordeiro et al., 2011]. Other work
include additional constraints on the machines [Chakravorty et al., 2013]. The closest
work in spirit to what we will do in Section 2.4 is a study of (1 +α)-MOSP on unrelated
machines [Ooshita et al., 2009, 2012]. In this setting, Ooshita et al. show that, when
there is no cooperation (α = 0), the makespan can be m times higher than in the opti-
mal makespan without the rationality constraint. When α > 0, the authors also give a
(2 + 2

α)-approximate algorithm for (1 +α)-MOSP.

There is few work on fairness issues when some organizations own tasks and ma-
chines. In an experimental work, Cohen et al. [2011b] look at the fairness (using stretch
and Jain Index) of schedules returned by some algorithms, and they show that the best
results are obtained by algorithm ILBA [Pascual et al., 2009]. In another work, Skowron
and Rzadca [2013] model the fair scheduling problem as a cooperative game and use
the Shapley value to determine an ideal fair schedule. To calculate the contribution of
an organization, they determine how the presence of this organization influences the
performance of other organizations. For unit-size tasks they give a fully polynomial-
time randomized approximation scheme, and they show this problem is NP-hard and
hard to approximate in the general case.

Other works about fairness in scheduling are mainly about how to schedule tasks of
different users on a set of shared machines. In this context [Agnetis et al., 2014], several
agents own an individual set of tasks and the objective is to schedule the tasks of all
agents on a set of common machines. Each agent has her own objective function, the
goal is then to find a solution in which each agent is satisfied given that the objectives of
the different agents can be antagonist. The aim is then to find a Pareto optimal solution,
i.e. a solution in which improving the satisfaction of an agent necessarily deteriorates
the satisfaction of another agent, and if possible to find a fair one.

33

Multi-Organization Scheduling Problem

2.1.2 Overview of our results

In this chapter, we consider that N organizations O1, . . . ,ON share m machines, and
that each organization Oi has its own set of tasks Ti . Each organization Oi wishes to
minimize its makespan, i.e. the date at which all its tasks (the tasks of Ti) have been
completed. If each organization Oi schedules its own tasks (and only its owns tasks)
on its own machines, these tasks are completed at a date which will be called the local
makespan of Oi . We consider that this schedule is given by the organizations, they can
either use a heuristic or solve the problem optimally, even though (P ||Cmax) is a NP-
hard problem. We have two objectives, which can be antagonists. First, we would like
to return a schedule which is as efficient as possible, and thus which minimizes the
global makespan while not increasing the local makespans . Second, we would like to
return a fair schedule. Our results are as follows.

In Section 2.3 we show that cooperation can permit to decrease the makespan of
each organization by a factor N (but no more). This shows that cooperation can benefit
to all the organizations simultaneously, and not only to some organizations which own
many tasks or few machines. In this section, we also give a polynomial time algorithm
with resource augmentation: for a fixed ϵ > 0, and a fixed number of organizations, it
returns a solution (1 + ϵ)-approximate in which each organization has a makespan at
most (1 + ϵ) times its local makespan.

In Section 2.4, we relax the rationality constraint by considering (1 +α)-MOSP: we
assume that each organization agrees to complete its last task at a date at most (1 +α)
times its local makespan. We are interested by the trade off between the value of α
and the value of the (global) makespan. We first show that an algorithm which returns
schedules which minimize the makespan can have to increase a local makespan by a
factor m− 1, which is certainly unacceptable for the agents. We then focus on the ratio
than can be obtained for the global makespan, for a fixed α: we give a lower bound
of the necessary increase of the makespan in (1 + α)-MOSP with respect to the opti-
mal makespan without the rationality constraint. If α = 0, (1 + α)-MOSP corresponds
to MOSP (no organization should get a makespan higher than its local makespan). In
this case, the obtained lower bound shows that it is not possible to obtain an algorithm
which outputs 2-approximate schedules for the makespan and which fulfills the ratio-
nality constraint. This improves the lower bound of 3

2 given in Pascual et al. [2007];
Cohen et al. [2010].

In Section 2.5, we define the gain of an organization as the ratio between its local
makespan minus its makespan in the schedule returned over its local makespan. Since
we want to fulfill the rationality constraint, this gain will be at least 0, but the higher
this gain is, the higher an organization will be satisfied by the schedule returned. We
are interested by getting fair schedules: we introduce the problem which consists in
returning schedules which maximize the minimal gain of an organization. For the
unit tasks case, i.e. the case in which all tasks have the same processing time, we give a
polynomial time optimal algorithm for this problem. For the general case, we show that
this problem is NP-complete, and even hard to approximate, and we give an heuristic
which outputs, in practice, schedules close to the optimal ones.

34

Multi-Organization Scheduling Problem

We conclude this work by giving a few research direction in Section 2.6. Before
starting to present our technical results, we start, in Section 2.2, by introducing nota-
tions and defining formally our problem.

2.2 Preliminaries

2.2.1 Notations

By O = {O1, ...,ON } we denote the set of N independent organizations sharing m identi-
cal machines {1, . . . ,m} and n tasks. Each organization Oi , with i ∈ {1, . . . ,N } owns mi ≥ 1
machines, and a set Ti of ni ≥ 0 tasks. If ni > 0, these tasks are denoted by t1

i , . . . , t
ni
i .

Tasks are sequential: each task t
j
i is executed on a single machine, during a processing

time (also called length) pji > 0. We denote by m = ΣN
i=1mi the total number of machines,

and by n = ΣN
i=1ni the total number of tasks. We denote by T = ∪Ni=1Ti the set of all the

tasks.
Given a task j, and a considered schedule S, we denote by Cj(S) the completion time

of task j in schedule S, i.e. the date at which its execution ends. Preemption is not
allowed: once a task starts to be executed, it will be executed until its completion.

MOSP takes as input the local schedules of the organizations. The local schedule of
Organization Oi is a schedule of the ni tasks of Oi on the mi machines of Oi . This sched-
ule may minimize the makespan of Oi , or not (this problem is indeed NP-hard [Garey
and Johnson, 1979]): Organization Oi computes itself its local schedule and gives it to
a central entity. We will denote by S i

loc the local schedule of Organization Oi , and we
will denote by Ci

loc the makespan of this schedule (this will be called the local makespan
of Oi).

Figure 2.1: Example of a set of local schedules and local makespans for N = 5. Time on
the x axis, organizations on the y axis.

Given a schedule S of the n tasks on the m machines, we will denote by Ci
max(S)

35

Multi-Organization Scheduling Problem

the completion time of the last task of Organization Oi in S, also called the makespan
of Organization Oi in S. Given a schedule S we will denote by Cmax(S) the completion
time of the last task in S. Therefore Cmax(S) = maxi∈{1,...,N }Ci

max(S), and is called the
global makespan (also called the makespan of S).

Given i ∈ {1, . . . ,m}, we will denote by Li(S) the load of machine i in schedule S: this
is the sum of the processing times of the tasks assigned to machine i in S. The total load
is the sum of the processing times of all the tasks of the schedule (ΣN

i=1Σ
ni
j=1p

j
i).

2.2.2 Problem statement

The objective of each organization Oi is to minimize Ci
max(S), the date at which all its

tasks are completed in the returned schedule S. The multi-organization scheduling
problem (MOSP) consists in scheduling the n tasks of all the organizations, on the
m machines of the organizations, in order to minimize the global makespan with the
additional constraint that no organization has a makespan larger than the makespan of
its local schedule:

minimize Cmax(S) such that, for each i ∈ {1, . . . ,N },Ci
max(S) ≤ Ci

loc.

The set of these additional constraints is called the rationality constraint: it ensures that
each organization will have incentive to accept the schedule returned by the central
entity (or trusted third party), since it will not be able to get a better makespan if it
schedules its own tasks on its own machines.

Given an instance I , we will denote by S∗ an optimal solution for MOSP, and we will
denote by OPT the makespan of such a solution. In the sequel, we will be interested
in comparing OPT , or the makespan returned by an algorithm, to the best solution
without the rationality constraint, that we will denote S∗(r̄). In such a solution, all the
tasks are scheduled on all the machines in order to minimize the global makespan:
this is an optimal solution of the classical scheduling problem (P ||Cmax). We will also
denote by OPT (r̄) the makespan of S∗(r̄).

2.3 Interest of cooperation and algorithm

In this section, we measure to what extent cooperation can reduce the makespans of
organizations, with respect to a schedule made of the local schedules only. We will
show in Section 2.3.1 that on some instances, cooperation can decrease simultaneously
all the makespans. In Section 2.3.2, we present an algorithm which returns a schedule
whose makespan is at most (1+ϵ) times the makespan of an optimal schedule of MOSP,
while the makespan of each organization in this schedule is at most (1+ϵ) times its local
makespan.

36

Multi-Organization Scheduling Problem

2.3.1 Cooperation can decrease all the makespans

If the local makespan of Organization Oi is much larger than the local makespan of the
other organizations, then, by load balancing tasks of Oi on the machines of all the orga-
nizations, the makespan of Oi may decrease a lot. In this section, we show that MOSP is
more than load balancing tasks of heavy loaded organizations on the machines of less
loaded organizations: there are instances for which all the organizations can simultane-
ously benefit of cooperation. Figure 2.2 shows an instance with N = 3 organizations in
which all organizations can benefit a lot from sharing their machines. Proposition 2.3.1
shows that all the organizations may together reduce their makespans up to a factor N
by cooperating with each other.

Proposition 2.3.1: Best case scenario

In an optimal schedule for MOSP, all the organizations may decrease simultane-
ously their makespans up to a factor N , with respect to their local makespans
(which are assumed to be optimal). This is the best possible bound : there is no
instance where each organization can decrease its makespan by a factor larger
than N .

Proof. Let us first exhibit an instance where each organization improves its makespan
by a factor as close as wished of N . We consider an instance where each of the N orga-
nizations owns a single machine (therefore m = N). For each i ∈ {1, . . . ,N }, Organization
Oi owns mxi−1 tasks of length 1 (thus Organization O1 owns m tasks, while Organiza-
tion ON owns mxN−1 tasks). The local makespan of Organization Oi is therefore mxi−1.

Let us now consider the following schedule, S, optimal for MOSP : on each machine,
there are one task of Organization O1, followed by x tasks of Organization O2, followed
by x2 tasks of Organization O3, and so forth. The schedule ends on each machine with
xN−1 tasks of ON . For each i ∈ {1, . . . ,N }, the makespan of Oi in S is 1 + Σi

j=2x
j−1.

Therefore, each organization Oi decreases its makespan, from S i
loc to S, by a factor

Ci
loc

Ci
max(S)) = mxi−1

1+Σi
j=2x

j−1 . This tends towards m = N when x tends towards to the infinity. An

example of such an instance when N = 3 is shown in Figure 2.2.
Let us now show that there is no instance where cooperation can make each organi-

zation decrease its makespan by a factor larger than N . By contradiction, let us assume
that there exists an instance I for which there is a schedule S in which the makespan
of each organization is decreased by a factor larger than N with respect to its local
makespan (assumed to be optimal). Note that there is in I at least one organization Oi

such that mi ≥ m
N (otherwise, we would have ΣN

i=1mi < m). By hypothesis, the makespan

of Oi in S is Ci
max(S) < Ci

loc
N . We now show that this implies that it is possible for Oi to

obtain a schedule of its tasks on its machines with makespan smaller than Ci
loc.

Indeed, let us consider the following schedule of the tasks of Oi on mi machines :
compute between time 0 and Ci

max(S) the tasks scheduled in S on the first mi machines,
and then the tasks scheduled in S on machines mi + 1,2mi between time Ci

max(S) and

37

Multi-Organization Scheduling Problem

0 3 9 27

O1

O2

O3

0 1 4 13

Figure 2.2: Example of best case instance when N = 3 before (top) and after (bottom)
sharing machines

2Ci
max(S), etc. (tasks scheduled in S on machines (x − 1)mi + 1,xmi are scheduled be-

tween time (x − 1)Ci
max(S) and xCi

max(S), as they are scheduled in S : a task starting at
time t on machine j will be scheduled at time t mod Ci

max(S), on machine (j mod mi)
if j mod mi , 0 and on machine mi otherwise). This schedule is a feasible schedule
of makespan at most NCi

max(S) < Ci
loc. Therefore, the local schedule of Oi was not

optimal, a contradiction.
An example with N = 3 organizations can be found in Figure 2.3. The figure shows

how to build, from a given schedule S, a local schedule for an organization Oi with
mi ≥m/N such that the makespan of this local schedule is at most NCi

max(S).

2.3.2 A PTAS with resource augmentation

In this section, we show that the polynomial approximation scheme (PTAS) presented
by Hall and Shmoys [1989] for a scheduling problem can be used to get a PTAS with
resource augmentation for our problem. More precisely: given a fixed ϵ > 0, and a fixed
number of organizations N , we will get a polynomial time algorithm which returns a
schedule with a makespan at most (1 + ϵ)OPT , and in which the makespan of each
organization is at most (1 + ϵ) times its local makespan. The rationality constraint may
thus be violated, but the increase of the makespans of the organizations is bounded,
and may be acceptable if ϵ is small. Let us start by presenting the scheduling problem
studied by Hall and Shmoys.

Scheduling problem with delivery times (SchedDT). The input of this problem con-
sists in nDT tasks {1, . . . ,nDT } and mDT identical machines. Each task j has a processing
time pj (it must be processed without interruption for time pj on any one of the mDT

machines), a release date rj (the date at which it becomes available for processing),
and a delivery time qj . Each task’s delivery begins immediately after its processing

38

Multi-Organization Scheduling Problem

0 Ci
max(S) = 8

0 Ci
max(S) 2Ci

max(S) 3Ci
max(S)

Figure 2.3: Example showing that it is impossible to decrease its makespan by a factor
higher than N . In this case N = 3, Oi has mi = 4 machines and owns the colored tasks.
The other tasks are owned by the other organizations. A schedule S of all the tasks on
all machines (top) and a potential local schedule of makespan at most NCi

max(S).

39

Multi-Organization Scheduling Problem

has been completed, and all tasks may be delivered simultaneously. Therefore, for a
given schedule S in which task j starts at time σj , the completion time of task j is de-
fined as Cj(S) = σj + pj + qj . The aim is to minimize, over all possible schedules, the
makespan Cmax(S) = maxj∈{1,...,n}Cj(S). In the sequel, we will denote this problem as
SchedDT. As noted by Hall and Shmoys, this problem is equivalent to the scheduling
problem with release dates (rj) and due dates (dj) – and without delivery times – in
which the objective is to minimize the maximum lateness, where the lateness of task j
is Lj = σj + pj − dj . This last problem is denoted as (P |rj |Lmax), using Graham’s notation
for scheduling problems. However, while this problem is inapproximable in polyno-
mial time if P , NP , there exists a PTAS for SchedDT. Let us now give a high level
description of this PTAS, that we will use for our problem is the sequel. The details can
be found in the original paper [Hall and Shmoys, 1989].

High level description of the PTAS for SchedDT. This PTAS is a generalization of the
PTAS of Hochbaum and Shmoys [1987] for problem (P ||Cmax). The principle of Hall
and Shmoys’s algorithm is the following one. It assumes that there are a lower bound
LB and an upper bound UB of the optimal makespan OPTDT of SchedDT, such that
LB ≤OPTDT ≤UB ≤ 2OPTDT . It then does a dichotomic search with a target value T on
this interval: for each target value, the algorithm either builds a schedule of makespan
at most T (1 + ϵ), or it assures that there is no schedule of makespan at most T . At the
end of the dichotomic search, the schedule found with the smallest value of T which
lead to a feasible schedule is returned.
Before this, a preprocessing step consists in rounding the input: the releases dates are
rounded down to obtain a fixed number of distinct ones. The same thing is done for
delivery times. Tasks are partitioned into two sets: large tasks (tasks whose processing
times are larger than or equal to a given number δ function of ϵ), and small tasks
(smaller than δ). Large tasks are rounded down so that there is a fixed number of
different processing time for the large tasks. Given that, for large tasks, there are a fixed
number of different values of q, r and p, there is now a fixed number τ1 of different types
of large tasks. Small tasks are “glued” into small components of size δ and of common
values r and q (once these values have been rounded): there is now a fixed number
τ2 of different types of small components (which gather small tasks). Let X be the set
of possible types of tasks (|X | = τ1 + τ2). A machine configuration indicates, for each
type of task t ∈ X how many tasks of type t are on the machine. Given the size of the
large tasks, we can upper bound the maximum number of large tasks per machine in a
schedule with a makespan smaller than 2OPTDT and show that the number of relevant
machine configurations is fixed (let us denote by γ this number). For a given schedule,
xl indicates the number of machines with configuration l: vector x = (x1, . . . ,xγ) defines
an outline for the schedule. Therefore, the number of relevant outlines is at most mγ ,
a polynomial in m. The order of tasks on machine is based on a generalization of the
Jackson’s rule [Jackson, 1955], a polynomial time optimal algorithm for (1||Lmax) (where
the aim is to minimize the maximum lateness on a single machine), when there are
release date. This algorithm schedules the tasks by increasing due date. This problem,
(1|rj |Lmax), is solved in polynomial time [Hall and Shmoys, 1989]. The algorithm tries

40

Multi-Organization Scheduling Problem

every relevant outline. If at least a schedule with makespan at most T is found, the
algorithm outputs the best schedule – a schedule, with rounded tasks of makespan
at most T . When the tasks take back their true values, this becomes a schedule of
makespan at most (1+ϵ)T . By doing a dichotomic search over T , this algorithm returns
a (1 + ϵ)-approximate solution for the SchedDT [Hall and Shmoys, 1989]. Let us now
see how we can use it to get a PTAS with resource augmentation for MOSP.

Algorithm for our problem. Let I be an instance of MOSP, and T an integer (T will
be a target makespan). We create an instance I ′(T) of SchedDT from I and T in the
following way. We fix nDT = n and mDT = m. For task t

j
i (the j-th task of Organization

i), which is of length p
j
i in I , we create in I(T)′ a task tk , with k = (Σi−1

x=1nx)+i (i.e. to each

task of I is associated a task in I ′(T)). We set: pk = l
j
i , rk = 0, and qk = max{0,T −Ci

loc}.
The idea is the following one: tasks are available at date 0, and a task of Organization
Oi should be scheduled before the local makespan of Oi , C

i
loc. Whereas the lengths

will be rounded, we will not round down the values q in the PTAS if the number of
organizations is fixed (in this case, there will be a fixed number of sizes q – at most N ,
the number of organizations –, and this will allow us to better bound the deterioration
of the local makespans of the organizations). Once this reduction has been done, we use
the above described PTAS of Hall and Shmoys with instance I ′(T) (the only differences
between the original PTAS and our utilization of it is that the values q are not rounded –
if N is fixed –, and that the instance I ′(T) slightly differs at each step of the dichotomic
search since the values q are a function of T).

We do a dichotomic search over the target makespan T in the interval [LB,UB],

where LB = max
{

maxi,j p
j
i ,

ΣN
i=1Σ

ni
j=1p

j
i

m

}
and UB is the makespan of the schedule re-

turned by a greedy 2-approximate algorithm for MOSP [Cohen et al., 2011b] (UB is the

makespan of a schedule without idle times, so we have UB ≤
ΣN
i=1Σ

ni
j=1p

j
i

m +maxi,j p
j
i ≤ 2LB).

Note that maxi,j p
j
i and

ΣN
i=1Σ

ni
j=1p

j
i

N are lower bounds of OPT (since maxi,j p
j
i is the length

of the longest task, and
ΣN
i=1Σ

ni
j=1p

j
i

m is the average load of a machine), and thus the maxi-

mum of the two LB = max
{

maxi,j p
j
i ,

ΣN
i=1Σ

ni
j=1p

j
i

m

}
is a lower bound of OPT . Let us denote

ApproxViaDT(ϵ) this algorithm.

Proposition 2.3.2: PTAS approximation ratio

Let ϵ > 0. If the number of organizations is fixed, Algorithm ApproxViaDT(ϵ)
returns a schedule of makespan at most (1 + ϵ)OPT in which each organization
i ∈ {1, . . . ,N } has a makespan at most (1 + ϵ)Ci

loc.

Proof. Let us first show that Algorithm ApproxViaDT(ϵ), returns a schedule of
makespan at most (1 + ϵ)OPT .

41

Multi-Organization Scheduling Problem

Let us consider an instance I of MOSP, and let us denote by OPT the value of its
optimal makespan. Let us consider a target makespan T examined at a given step of
the dichotomic search. For this value T , the algorithm either returns a schedule of
value T (1 + ϵ), or assures that there is no schedule of value at most T . If T = OPT ,
then, OPTDT ≤OPT , where OPTDT is the makespan of an optimal solution of instance
I ′(T) of the scheduling problem with delivery times. Indeed, let us consider an optimal
schedule for MOSP, and let us view it from the viewpoint of SchedDT. For each task
k of Organization Oi , qk = max{0,OP T − Ci

loc}. In a feasible schedule for MOSP, the
execution of this task k will end at most at time Ci

loc, and thus its completion (as defined
in the scheduling problem with delivery times) will be at most at time Ci

loc + q ≤ OPT .
Therefore, there is a feasible schedule of makespan OPT for instance I ′(OPT).

Note that, during the dichotomic search of ApproxViaDT(ϵ), if there is a solution
for instance I ′(T) for problem SchedDT then there is no solution for instances I ′(T ′)
with T ′ < T (by construction) and there are solutions for instances I ′(T ′) with T ′ > T
since a solution for instance T will be a solution for instance T ′ (the values q increase at
most by T ′ −T , while the makespan also). Therefore, ApproxViaDT(ϵ), which returns a
schedule (1 + ϵ)-approximate for SchedDT, will return a solution of makespan at most
(1 + ϵ)OPT .

Let us now show that in the returned solution, the makespan of each organization
is at most (1 + ϵ)Ci

loc. Recall that the makespan of the schedule returned by the PTAS
for SchedDT (for the final target makespan T) is at most (1 + ϵ)T ≤ (1 + ϵ)OPT . Recall
also that the values q have not been rounded, and that the value q of a task of Oi is 0
if Ci

loc > T and T −Ci
loc otherwise. The schedule of the tasks of types in X (tasks with

rounded sizes, or small tasks glued into small components) has a makespan at most T .
The factor (1 + ϵ) is obtained when we replace these tasks by the tasks with their real
lengths. Since the values q have not been rounded down, a task of Oi will end, when
considering the schedule with the rounded sizes, at time at most Ci

loc if T < Ci
loc, and at

most T − q = Ci
loc otherwise: in both cases, its execution ends at time at most Ci

loc. By
replacing the tasks of X by the true tasks, each completion time may be increased by
factor (1 +ϵ). Therefore, we obtain a schedule in which the execution of each task of Oi

ends at most at time (1 + ϵ)Ci
loc. This concludes the proof.

Note that, if the number of organizations is not fixed, we can use the same algo-
rithm, by rounding the values q (as in the original PTAS for SchedDT). This will re-
turn a schedule of makespan at most (1 + ϵ)OPT and in which each organization has a
makespan at most Ci

loc + ϵOP T .

2.4 Efficiency vs. increase of the local makespans

In this section, we study how the aim of minimizing the makespan is in opposition
with the rationality constraint. We start, in Section 2.4.1, to show that if we want to
return a schedule optimal for the makespan, then we may have to increase the local
makespans up to a factor m − 1. Since it is unlikely that the organizations agree to

42

Multi-Organization Scheduling Problem

increase their local makespan of such a large factor, in Section 2.4.2, we assume that
each organization agrees to increase its makespan by a factor (1 + α), with α ≥ 0. We
then look at the increase of the makespan in function of α (when α = 0, the problem is
MOSP, the higher α is, the more relaxed the rationality constraint is).

Note that, contrarily to what we have done in Section 2.3.2, in this section, we com-
pare the makespan of an optimal solution of (1 + α)-MOSP to the optimal makespan
without the rationality constraint, OPT (r̄). The algorithm of Section 2.3.2 returns a
schedule close to OPT , the optimal solution of MOSP , but not necessarily close to
OPT (r̄) (this can be very different, since, as we will see in the sequel, OPT , can be twice
larger than OPT (r̄)).

2.4.1 The aim is to minimize the makespan: impact on the local makespans.

We first show that in the specific case in which there are two organizations, each one
having one machine, we have OPT = OPT (r̄).

Proposition 2.4.1: Particular case - N = 2

When N = 2 and m1 = m2 = 1, any optimal solution for MOSP is also optimal for
(P ||Cmax).

Proof. We assume N = 2, m = 2 and m1 = m2 = 1. Let us assume without loss of general-
ity that C1

loc ≤ C2
loc, and let us consider S∗(r̄), an optimal schedule for (P ||Cmax) for such

an instance. In S∗(r̄), let us schedule on each machine the tasks of O1 before the tasks of
O2. By construction, this schedule minimizes the makespan, since each machines still
runs the same tasks, just in a different order, the final task still completes at the same
time. Organization O2 does not increase its makespan (otherwise the local schedules
would have a makespan smaller than OPT , which is not possible); and O1 does not
increase its makespan neither since its jobs are at the beginning of the schedule on each
machine and it only had one machine for its local schedule.

This is the best case: the rationality constraint does not prevent from obtaining the
best schedule concerning the makespan. This is however not always the case when
m > 2. The following proposition shows that, in order to get a schedule minimizing the
makespan, an organization may have to increase its makespan up to a factor m− 1.

Proposition 2.4.2: Cost of efficiency

In a schedule which minimizes the makespan of the tasks of T on m machines,
an organization may necessarily increase its makespan up to a factor m−1 (com-
pared to its local makespan), but never up to a factor larger than m. This holds
even if there are two organizations.

Proof. Let us assume, without loss of generality that the organizations are indexed
by non decreasing local makespan, i.e. C1

loc ≤ C2
loc ≤ · · · ≤ CN

loc. Let us consider an

43

Multi-Organization Scheduling Problem

optimal schedule of the tasks T for problem (P ||Cmax). In this schedule, we reorder
the tasks such that on each machine the tasks are scheduled by increasing number of
their organizations (i.e. tasks of O1 are scheduled before the one of O2, and so forth).
Let us denote by O the schedule obtained. This schedule stays an optimal schedule
since the load on each machine, and thus the makespan, do not change. Let us show
that for each i ∈ {1, . . . ,N }, Ci

max(O) ≤ mCi
loc. Let us consider a given machine j and

a task x of Oi on machine j. If it is not the first task on machine j, task x is pre-
ceded by tasks of {O1, . . . ,Oi} on j. The load of the tasks which precede x (plus the
length of x) is thus at most

∑i
k=1mkC

k
loc (since the load of each organization Ok is at

most mkC
k
loc). Since the organizations are indexed by non decreasing local makespans,∑i

k=1mkC
k
loc ≤

∑i
k=1mkC

i
loc ≤ mCi

loc. The completion time of each task of Oi in O is at
most mCi

loc. Therefore Ci
max(O) ≤mCi

loc.
Let us now output an instance in which an organization has to increase its makespan

up to a factor m− 1. Consider the instance with two organizations, where O1 has m− 1
machines and m − 1 tasks of length 1 (its local makespan is thus 1), and where O2
has m − 1 tasks of length m − 1 and 1 machine. An optimal schedule of these tasks
on m machines has a makespan of m − 1. Indeed, in such a schedule, the tasks of O1
are necessarily scheduled on the same machine and are completed at time m − 1 : the
makespan of O1 is increased by a factor m− 1. This instance is showed in Figure 2.4.

Note that the bound of m − 1 can be increased up to m if the organizations are
allowed to own tasks but no machine. The instance showing this is almost the same
than the one in the proof above (O1 owns m machines and m tasks of length 1 and O2
has m− 1 tasks of length m).

We have seen that what we could call “the price of efficiency”, the factor at which
a local makespan may have to increase to get an optimal schedule for the makespan, is
between m − 1 and m, which is high. We can assume that organizations may accept to
increase their makespans in order to get an efficient schedule, but only if this does not
increase to much. In the following section, we assume that each organization agrees to
increase a little bit its makespan: given a fixed value α it will accept a schedule in which
its makespan is increased by a factor at most (1 +α) compared to its local makespan.

2.4.2 The aim is to minimize the increase of the local makespans: impact
on the makespan.

Let α ≥ 0. We now assume that each organization Oi agrees to have a makespan at
most equal to (1 + α)Ci

loc. If α = 0, this is the MOSP. Otherwise, it means that each
organization agrees to increase a little bit its makespan (the higher α is, the higher an
organization agrees to increase its makespan). We call (1+α)-MOSP, the problem where
we wish to minimize the makespan with these relaxed constraints:

minimize Cmax(S) such that, for each i ∈ {1, . . . ,N },Ci
max(S) ≤ (1 +α)Ci

loc.

44

Multi-Organization Scheduling Problem

1

1

m− 1 m− 1

0 1 (m− 1)2

O1

m− 1 machines
.
.
.

O2 . . .
m− 1 tasks

1 1

m− 1

m− 1

m− 1

0 OPT (r̄)

.

.

.

. . .

Figure 2.4: Example of an instance in which O1 has to increase its makespan by a factor
m − 1 in an optimal solution for (P ||Cmax) with regards to its local makespan. Local
schedules (top), optimal schedule for (P ||Cmax) (bottom).

45

Multi-Organization Scheduling Problem

Our aim is to give a lower bound on the approximation ratio of an algorithm for (1+α)-
MOSP with respect to the optimal makespan OPT (r̄): this will show what we loose, in
term of makespan, due to the relaxed rationality constraint.

The bound we introduce in Proposition 2.4.3 implies, as we will see with Corol-
lary 2.4.1, that when α = 0 (in the usual MOSP context), there is no algorithm less than
2-approximate. We also show in Figure 2.6 how this ratio evolves when the number of
machines and α increase.

Proposition 2.4.3: Relaxed rationality constraint

Let α ≥ 0, ε > 0. If each organization accepts to increase its makespan by
a factor (1 + α), there is no (max

k∈{
⌊√

αm2+m
1+α

⌋
,

⌈√
αm2+m

1+α

⌉
}

(
1 + (m−k)(k(1+α)−mα−1)

k(m−1)

)
− ε)-

approximate algorithm with respect to the global makespan.

Proof. Given m machines, and k ∈ {1, . . . ,m − 1}, let us consider the following set of
tasks: k tasks of length xk(m−1) (these tasks are said large) and nsmall = (m−1)xk(m−k)
tasks of length 1 (these tasks are said small). The optimal makespan of these tasks is
OPT = xk(m − 1): it is obtained when each large task is alone on a machine, and the
small tasks are scheduled on the (m− k) remaining machines.

Let us now assume that Organization O1 owns m − 1 machines and all the small
tasks, and that Organization O2 owns one machine and all the large tasks. The local
makespan of O1 is then C1

loc = xk(m− k) ≤OPT , and the local makespan of O2 is C2
loc =

xk2(m− 1) ≥OPT .
Let S be a schedule in which each organization increases its makespan by a factor

at most (1 +α). In S, each task of O1 (small task) is completed at the latest at time ⌊(1 +
α)C1

loc⌋ = ⌊(1+α)xk(m−k)⌋. Therefore, on m−k machines, there are at most ⌊(1+α)xk(m−
k)⌋ tasks of length 1, and the other small tasks are on the k remaining machines. The
minimal number of small tasks to schedule on the k remaining machines is nsmall −(m−
k)⌊(1 + α)xk(m − k)⌋ = (m − 1)xk(m − k) − (m − k)⌊(1 + α)xk(m − k)⌋. On one of these k

machines, there is at least 1/k of these tasks, that is (m−1)x(m−k)− (m−k)⌊(1+α)xk(m−k)⌋
k ≥

(m − 1)x(m − k) − (1 + α)x(m − k)2. If there are at least two large tasks on the same
machine, the makespan is at least equal to 2(xk(m − 1)) = 2OPT . Otherwise, there are
at most one large task by machine. The makespan of such a schedule is then at least
the length of a large task plus the length of the small tasks. This is larger than or equal
to xk(m− 1) + (m− 1)x(m− k)− (1 +α)x(m− k)2. The approximation ratio is thus at least
xk(m−1)+(m−1)x(m−k)−(1+α)x(m−k)2

xk(m−1) = 1 + (m−k)(k(1+α)−mα−1)
k(m−1) .

By deriving f (k) = 1 + (m−k)(k(1+α)−mα−1)
k(m−1) (with k ∈ [1,+∞)), we find that the value of

k which maximizes f (k) is k =
√

αm2+m
1+α .

Since f (k) is an increasing function between [1,
√

αm2+m
1+α] and a decreasing function

46

Multi-Organization Scheduling Problem

1 1. . .

1 1. . .

xk(m− 1) xk(m− 1)

0 xk(m− k) xk2(m− 1)

(m− 1)xk(m− k) tasks

O1

m− 1 machines
.
.
.

.

.

.

O2 . . .
k tasks

1 1. . .

1 1. . .

xk(m− 1)

xk(m− 1)

0 xk(m− 1)

(m− 1)xk(m− k) tasks

m− k machines

k machines

.

.

.
.
.
.

Figure 2.5: Instance giving the approximation ratio. Local schedules (top) and optimal
solution for (P ||Cmax) (bottom).

47

Multi-Organization Scheduling Problem

in [
√

αm2+m
1+α ,+∞), the maximum value of f (k) when k is an integer is:

max
k∈{

⌊√
αm2+m

1+α

⌋
,

⌈√
αm2+m

1+α

⌉
}

(
1 +

(m− k)(k(1 +α)−mα − 1)
k(m− 1)

)
.

When α = 0, the value of k which maximizes the ratio (f (k)) is ⌈
√
m⌉ or ⌊

√
m⌋. When

√
m is an integer, there is no algorithm for MOSP which returns

(
1 + m−2

√
m+1

m−1 − ε
)
-

approximate schedules with respect to the global makespan. This tends towards 2
when m tends towards the infinity, which leads to the following corollary.

Corollary 2.4.1: Cost of rationality

Let ϵ > 0. There is no algorithm which returns schedules which fulfill the ra-
tionality constraint, and which is (2 − ϵ)-approximate with respect to the global
makespan OPT (r̄).

This bound improves the previous one, 3
2 , which had been given by Pascual et al.

[2007] for two organizations and by Cohen et al. [2010] for more than two organiza-
tions. Furthermore, Cohen et al. [2011a] show that no approximation algorithm for
MOSP has a ratio asymptotically better than 2 w.r.t. the global makespan (when m
tends towards the infinity) when we add the constraint that on the returned schedule,
each machine schedules the tasks of its organization (if any) before the tasks of other
organizations. This constraint is thus not necessary to obtain the asymptotic ratio of 2.

When m tends towards the infinity and α > 0 the value of k maximizing f (k) is then
m
√

α
α+1 . In that case we can express the approximation ratio depending on only α as

2+2α−(α+1)
√

α
α+1 −

α√
α

α+1

. The value
√

α
α+1 quickly increases with α and tends towards

1 when α tends towards the infinity. This means that this ratio is close to 2 when α is
close to 0, and it quickly decreases and tends towards 1.

Figure 2.6 shows the lower bound given in Proposition 2.4.3. This ratio is given as
a function of α (Left), or of the number of machines, m (Right). The higher m is, the
higher the ratio is. When α increases, this ratio decreases quickly. The first points of the
curves in Figure 2.6 Left shows the lower bound of the ratio between the best makespan
in a schedule satisfying the rationality constraint, and the best makespan without this
constraint (as seen above, this ratio tends towards 2 when m increases). This ratio when
α = 0 can also be seen in the blue curve of Figure 2.6 Right.

48

Multi-Organization Scheduling Problem

Figure 2.6: Each organization accepts to decrease its makespan by a factor (1+α). Lower
bound on the ratio between the best possible makespan when no organization increases
its makespan by a factor larger than (1 +α), and the optimal makespan.

We end this section by mentioning that we can easily adapt the algorithm described
in Section 2.3.2 to the case of (1 +α)-MOSP: whereas, for a target makespan T , we had
set the delivery time of a task of Organization Oi to q = max{0,T −Ci

loc} (so that this task
is completed at time Ci

loc in the returned schedule of rounded tasks), we fix this value
to q = max{0,T −(1+α)Ci

loc} in the case of (1+α)-MOSP. We thus get, for any fixed ϵ > 0,
a polynomial time algorithm returning a schedule of makespan at most (1+ϵ) times the
makespan of an optimal solution of (1 +α)-MOSP, and in which the makespan of each
organization is at most (1 + ϵ)(1 +α) its local makespan.

In the previous sections, we have assumed either that the rationality constraint
should be fulfilled (but we then had as only objective function to minimize the global
makespan, and the gains for the organizations – the decrease of their makespans –
in the returned schedule could be very different), or we have even assumed than we
can relax (in a bounded way) the rationality constraint to get a schedule with an even
smaller makespan. In the following section, we focus on fairness issues: we will keep
the rationality constraint, and our focus will not be to decrease the makespan, but to get
schedule in which all the organizations decrease their makespans by a factor as large as
possible.

2.5 Max Min Gain

2.5.1 Problem statement

Let us first define the gain g i(S) of Organization Oi in a schedule S: g i(S) represents
how much Organization Oi has decreased its makespan in the schedule S in comparison

49

Multi-Organization Scheduling Problem

to its local schedule:

g i(S) =
Ci
loc −C

i
max(S)

Ci
loc

.

Note that this value is 0 when organization Oi has the same makespan in S and in its
local schedule (the ratio would be 1 if Oi got a makespan of 0 in schedule S). Expressing
the gain in that way allows to have a scale from 0 to 1 for all organizations, 0 meaning
that the organization does not gain anything in comparison to its local schedule and 1
being a (potentially unreachable) situation in which an organization gets a makespan
of 0. Intuitively, if the makespan of an organization is divided by x ≥ 1, then its gain is
x−1
x . For example if an organization has a makespan 2 times smaller in S in comparison

to its local makespan, then its gain is 1/2 = 0.5
The Maximal Minimal Gain problem, denoted as MaxMinGain, takes the same in-

put as MOSP. The output is a schedule of the n tasks of all the organizations on the
m machines of the organizations, in order to maximize the minimum gain among the
organizations. The returned schedule is thus S∗ = argmax

S
min

i∈{1,...,N }
g i(S)

Note that the schedule Sloc which is made of N local schedules has a minimum gain
of 0, which means that an optimal schedule for MaxMinGain always has a minimum
gain larger than or equal to 0 and satisfies the rationality constraint.

Given a considered instance I , we will denote by S∗ an optimal solution for the
problem MaxMinGain, and we will denote by OPT the minimum gain among the or-
ganizations in such a solution. In the sequel, we will be interested in comparing the
makespan Cmax(S∗), or the makespan returned by an algorithm, to the best solution
without the rationality constraint, that we will denote by S∗(r̄).

Note that our definition of the gain is very close to the definition of utility used
in a paper by Agnetis et al. [2019]. In the work of Agnetis et al., two agents, each one
owning a subset of tasks, share a single machine. The two agents A and B have different
objective functions f A and f B. The utility of agent A in a schedule S is defined as f A

∞ −
f A(S), where f A

∞ denotes the value of f A when the subset of tasks of A is scheduled after
the subset of tasks owned by B, which is the worst case for A. Even though the contexts
are different, the idea is the same: we evaluate individual satisfaction by comparing
a worst case for the agent to the current solution. In our case, for each organization
Oi , we compare the makespan obtained by Oi in a schedule to the worst makespan
Oi could have, and this worst makespan is its local makespan, Ci

loc, since the schedule
should fulfill the rationality constraint.

2.5.2 Case of unit tasks

In this section, we show that problem MaxMinGain can be solved in polynomial time
when all the tasks have the same length. Moreover, in this case, it is possible to find
a schedule S which is optimal for MaxMinGain and optimal for problem (P ||Cmax):
the global makespan is minimized while the minimal gain of an organization is max-
imized. Let us now present the following algorithm which returns such a schedule.
This algorithm, called LS-IM (for List Scheduling by Increasing local Makespan), is a

50

Multi-Organization Scheduling Problem

list scheduling algorithm: it greedily schedules all the tasks, considering the tasks by
increasing local makespans of their owners:

Algorithm LS-IM

Sort the organizations by non decreasing local makespans. If two
organizations have the same local makespan, sort them by non
decreasing number of tasks, if these two organizations have the same
number of tasks, sort them in any order. Let Ox1

, . . . ,OxN be the result of
this sort.

for i=1 to N do
for each task t

j
xi ∈Txi do

schedule t
j
xi on the first available machine;

end
end

Algorithm 1: List scheduling by increasing local makespans (Algorithm LS-

IM)

Observation 2.5.1: Complexity of LS-IM

LS-IM as presented above only runs in pseudopolynomial time. Indeed, when
all tasks have the same processing time, an instance can be described with 2 in-
tegers per organization: the number of tasks and the number of machines that
it owns. In that case, the size of the instance is of 2N integers, whereas LS-IM
runs in O(n+N logN) since we need to sort the organizations by increasing local
makespan and then schedule the tasks one by one. It is possible to obtain the
same schedule without scheduling the tasks one by one since all the tasks from
the same organization are scheduled “together”. We start by sorting the organi-
zations by increasing local makespan. Then for each organization, we compute
the euclidian division of its number of tasks over the total number of machines
(ni/m). The result of the division gives us a number of slot needed on all the ma-
chines while the rest (ni mod m) gives us the number of additional tasks to be
scheduled. These tasks can be scheduled as a block since no tasks from another
organization should be scheduled in the middle of these tasks. This algorithm
runs in O(N logN +N log2n) and is thus a polynomial time algorithm.

Figure 2.7 shows an instance with local schedules on top and the schedule obtained
by running LS-IM on bottom. It is easy to see that, in the schedule obtained with LS-

IM, to increase the gain of organization O3 (with green tasks), it would be necessary
to delay one of the tasks from O2 (yellow tasks) after the makespan of O3. This would
greatly lower the gain of O2 and also lower the overall minimum gain. We now show
that this applies more generally and that LS-IM is optimal for MaxMinGain when all
tasks have the same processing time.

51

Multi-Organization Scheduling Problem

Figure 2.7: Example of an execution of LS-IM on an instance with N = 3 organizations

Proposition 2.5.1: Unit task MaxMinGain

When all the tasks have the same processing time, Algorithm LS-IM returns a
schedule which is optimal for MaxMinGain and optimal for (P ||Cmax).

Proof. Let us assume that the organizations are labelled such that C1
loc ≤ C2

loc ≤ · · · ≤ CN
loc

and that, for all l ∈ {2, . . . ,N }, if Cl
loc = Cl−1

loc , then nl ≥ nl−1. We also assume all the tasks
have the same length.

Let us suppose, for the sake of contradiction, that the schedule S returned by algo-
rithm LS-IM is not optimal for MaxMinGain. Let Ok be an organization which gets a
minimal gain in S. In order to increase the gain of Ok , we should build a schedule S ′

in which Ck
max(S ′) < Ck

max(S). Tasks all have the same length and there is no idle time
in S: there is not enough slots so that all the tasks of O1, . . . ,Ok are completed before
time Ck

max(S). Therefore, in S ′, a task of Ol , with l < k will be completed at time at least

Ck
max(S). The gain of Ol in S ′ will thus be at most Cl

loc−C
k
max(S)

Cl
loc

≤ Ck
loc−C

k
max(S)

Ck
loc

: the minimal

gain in S ′ is smaller than or equal to the minimal gain in S. Therefore, S is optimal for
MaxMinGain.

Schedule S has no idle time and all the tasks are the same length, therefore if a task
t
j
i starts at time t in S, all machines are busy at least until t, which means that at least

one tasks has to start at t or later, this is in particular true for the last task executed in
S: the schedule S is then also optimal for (P ||Cmax).

We showed that, in the particular case where all tasks have the same processing
time, we can find a polynomial time algorithm which builds a schedule which both
minimizes the global makespan and maximizes the minimal gain of an organization.
In this special case we do not have to compromise between global optimization and
individual satisfaction. Unfortunately, this result does not hold in the general case, as
we will see in the following section.

52

Multi-Organization Scheduling Problem

2.5.3 General case

In this section, we study MaxMinGain in the general case. We fist show that MaxMin-

Gain is NP-hard and hard to approximate.

Proposition 2.5.2: MaxMinGain inapproximability

If P ,NP , problem MaxMinGain is NP-hard and inapproximable in polynomial
time, even if there are only two organizations and two machines.

Proof. Let r > 1. By contradiction, let us assume that P , NP and that there ex-
ists a polynomial time r-approximate algorithm for MaxMinGain. We will show that
this algorithm allows us to solve the NP-complete Partition problem. The Partition

problem is the following one: given a set S = {a1, . . . , ak} of k positive integers such
that Σk

i=1ai = 2B, is it possible to partition S into two subsets S1 and S2 such that
Σai∈S1

ai = Σai∈S2
ai = B?

We will exhibit an instance for which the maximum minimal gain is strictly greater
than 0 if and only if there is a yes answer to the Partition problem. Note first that, if
this is true, then our r-approximate algorithm allows us to solve the Partition problem.
Indeed, if there is a yes answer to the Partition problem then the maximal minimal
gain is OPT > 0: a r-approximate algorithm should return a solution in which the gain
of each organization is a least rOP T > 0. If the answer to the Partition problem is ‘no’
then OPT = 0, and any algorithm, including the r-approximate algorithm, will return
a solution with minimal gain 0. Therefore, the r-approximate algorithm permits to
determine whether the answer to the partition problem is positive or not. Since this
r-approximate algorithm is a polynomial time algorithm, this implies that P = NP , a
contradiction.

Let us now consider the following instance of MaxMinGain, and show that, for this
instance, there is a yes answer to the Partition problem if and only if the maximum
minimal gain, OPT, is strictly greater than 0. There are two organizations, each one
having a single machine. Organization O1 owns k tasks t1

1 , . . . , t
1
k such that for each

i ∈ {1, . . . , k}, the processing time of task t1
i is equal to ai . Organization O2 owns 2 tasks,

each of length B+ 1. The local makespan of O1 is thus 2B, while the local makespan of
O2 is 2B+ 2. Figure 2.8 shows such an instance.

Let us first consider that answer of the Partition problem is ‘yes’. Therefore, there
exists a partition (S1,S2) of the tasks of O1 such that

∑
t1
i ∈S1

pt1
i

=
∑

t2
i ∈S2

pt2
i

= B. By
scheduling the tasks of S1 followed by a task of O2 on a machine, and the tasks of S2
followed by the second task of O2 on the second machine, the makespan of O1 is B,
while the makespan of O2 is B+ (B+ 1) = 2B+ 1. Since the local makespan of O1 is 2B
and the local makespan of O2 is 2B+ 2, both organizations have a gain strictly greater
than 0 (O1 decreases its makespan by a factor 2, and O2 by a factor B+2

B+1).
Let us now consider that the answer of the MaxMinGain problem is ‘yes’. This

implies that the makespan of organization O2 is equal to or lower than 2B + 1. It also
means that the makespan of organization O1 is equal to or lower than 2B − 1. Since

53

Multi-Organization Scheduling Problem

a1 a2 a3 an−1 an. . .

B+ 1 B+ 1

0 2B 2B+ 2

O1

O2

ai aj ak al. . .

ag ah ap aq. . .

B+ 1

B+ 1

0 B 2B+ 1

Figure 2.8: Local schedules (top). A solution with a minimum gain strictly greater than
0 (bottom). This can only be achieved if we can partition the tasks of O1 into two sets,
each of total processing time B.

O2 has two tasks of processing time B+ 1 and O2 has a makespan of 2B+ 1 or less, its
two tasks need to be scheduled on different machines and to start at the latest at time
B. Organization O1 has a total load of 2B. Since tasks of O2 start at the latest at time
B and each occupy B+ 1 units of time on a machine, it means that there are at most B
units of time on each machine between 0 and 2B − 1 for tasks of O1, and this only if
tasks of O2 start exactly at time B. To have a makespan lower than or equal to 2B − 1
organization O1 then needs to schedule its 2B load of tasks such that there is a load of
total processing time B on each machine, otherwise either the task of O2 starts later and
O2 has a gain of 0 or a task of O1 starts after a task of O2 and the gain of O1 is 0. Since
the processing times of the tasks of O1 are the same than the values of the Partition

problem, if in a schedule, the tasks of O1 are split in such a way that there is a load of
B units of time on each machine, it means that it is possible to partition the integers of
the Partition problem in two subsets, each of total sum B. Therefore, the answer to the
Partition problem is then ‘yes’.

We have shown that the minimal gain is strictly greater than 0 if and only if the
answer of the Partition problem is ‘yes’: this concludes the proof.

Let us now show that MaxMinGain is strongly NP-hard. This implies that there
is no pseudo-polynomial algorithm to solve it. The proof however supposes that the
number of machines is not fixed, whereas the previous proof holds when m = 2.

54

Multi-Organization Scheduling Problem

Proposition 2.5.3: MaxMinGain strong NP-hardness

Problem MaxMinGain is strongly NP-hard, even if there are only two organiza-
tions.

Proof. Let us reduce the NP-complete problem 3-Partition to the decision version of
MaxMinGain. The 3-Partition problem is the following one: given a set S = {a1, . . . , a3k}
of 3k positive integers such that Σ3k

i=1ai = kB, with B ∈ N, is it possible to partition S
into k subsets {S1, . . . ,Sk} such that for each i ∈ {1, . . . , k},Σaj∈Siaj = B?

Our problem is the following one: given the local schedules of N organizations,
and given a value X between 0 and 1, is is possible to create a schedule S of all the
tasks on all the machines such that the gain of any organization is at least X, meaning:
Ci
loc−C

i
max(S)

Ci
loc

≥ X,∀i ?

We create an instance of the MaxMinGain problem from the instance of 3-Partition
as follows: there are two organizations, O1 and O2. Organization O1 owns one machine
and 3k tasks t1, . . . , t3k such that for each i ∈ {1, . . . ,3k}, the processing time of task ti is
equal to ai . Organization O2 owns k−1 machines and k tasks, each of length kB. We set
X = k−1

2k . Such an instance is shown in Figure 2.9.
Let us show that there is a yes answer to the 3-Partition problem if and only if the

answer of the corresponding instance of MaxMinGain is also ‘yes’.
Let us first consider that the answer of the 3-Partition problem is ‘yes’: there exists

a partition (S1, . . . ,Sk) of the tasks of O1 such that for each i ∈ {1, . . . , k},Σaj∈Siaj = B. For
each i ∈ {1, . . . , k}, by scheduling on machine i the tasks corresponding to the numbers
of Si followed by a task of O2, the makespan of O1 is B, while the makespan of O2 is
B + kB = (k + 1)B. Since the local makespan of O1 is kB and the local makespan of O2

is 2kB, the gain of O1 is k−1
k ≥

k−1
2k and the gain of O2 is then 2kB−B(k+1)

2kB = k−1
2k = X: the

answer to the decision problem of MaxMinGain is ‘yes’.
Let us now consider that the answer to the decision problem of MaxMinGain is

‘yes’. The gain of each organization is at least X = k−1
2k . This means that the makespan of

Oi in S is at most Ci
loc(1−X), that is kB−kB k−1

2k = B(k+1
2) for O1 and 2kB−2kB k−1

2k = (k+1)B
for O2. Thus the global makespan is at most (k+1)B. Therefore, there is necessarily one
task of O2 on each of the k machines. Since the global makespan is at most (k+ 1)B and
since the total load is (k+1)kB, then there is necessarily a load of (k+1)B on each of the
k machines. The load due to the tasks of O2 on each machine is kB, so the load due to
the tasks of O1 is B on each machine. It is therefore possible to partition the numbers
t1, . . . , tk into k sets of weight B: the answer of the 3-Partition problem is ‘yes’.

We showed that when the tasks have the same lengths, there is always a sched-
ule which is both optimal for MaxMinGain and for the minimization of the makespan
(problem (P ||Cmax)). It is easy to note that, in the general case, we can obtain an optimal
solution S∗ of MaxMinGain that is also 2-approximate for (P ||Cmax). Since every sched-
ule with no idle time is 2-approximate for (P ||Cmax), we can obtain such a schedule
from S∗ by removing idle times between tasks and by advancing any task on a machine

55

Multi-Organization Scheduling Problem

a1 a2 . . . a3k−1 a3k

kB

kB

.

.

.

kB

kB kB

0 kB 2kB

O1

k−1
machines

O2

kB

kB

kB

.

.

.

kB

kB

0 B (k + 1)B

k
machines

Figure 2.9: Local schedules (top). A solution with a minimum gain of X (bottom).
This can only be achieved if we can partition the tasks of O1 into k sets, each of total
processing time B.

available before the starting time of the task. By doing this, we do not delay any task,
so every organization has at least the same gain as in S∗, and this new schedule is thus
still optimal for MaxMinGain. This schedule does not contain any idle time before that
the last task starts to be executed, and is thus 2-approximate for (P ||Cmax).

Let us now show that there is no algorithm which is optimal for MaxMinGain and
which has an approximation ratio smaller than 2 for MOSP. Naturally, this implies that
no algorithm can be optimal for MaxMinGain and have an approximation ratio smaller
than 2 for (P ||Cmax).

56

Multi-Organization Scheduling Problem

Proposition 2.5.4: Cost of fairness

Let m ≥ 4 and ϵ > 0. There is no algorithm which is optimal for MaxMinGain

and (2− 7
m+3 − ϵ)-approximate for MOSP.

Proof. Let us consider the following instance, with two organizations. Organization O1
owns m− 1 machines and m2 tasks of length 1. Organization O2 owns one machine, 2
tasks of length m − 1 and one task of length 3. O1’s local makespan is m + 2 and O2’s
local makespan is 2m+ 1.

In an optimal schedule SMMG for MaxMinGain, the m2 tasks of O1 are scheduled
first, followed by three tasks of O2 on three different machines. Indeed, in SMMG,
the makespan of O1 is m and the makespan of O2 is 2m − 1, which is also the global
makespan. O1’s gain is m+2−m

m+2 = 2
m+2 and O2’s gain is 2m+1−2m−1

2m+1 = 2
2m+1 . Since O2 has

the minimum gain, in order to increase the minimum gain we should decrease O2’s
makespan. This is only possible if a task of O1 is delayed, being completed at time
at least m + 1 instead of m. The gain of O1 would then be at most m+2−(m+1)

m+2 = 1
m+2 ,

which is smaller than the minimal gain in SMMG. Schedule SMMG is thus optimal for
MaxMinGain. We can also note that SMMG is one with the smallest makespan among
the optimal schedules for MaxMinGain.

Let us now consider SMOSP , an optimal schedule for MOSP. In SMOSP , the two tasks
of O2 of length m−1 are scheduled at time 0, first and (m−1)(m−2) tasks of O1, so that
the load of every machine is m − 1. Then, m tasks of O1 are scheduled between m − 1
and m. Schedule SMOSP ends by the last task of O2 (of length 3) at time m, and the
remaining 2(m−1) tasks of O1 on the m−1 other machines. In SMOSP , the makespan of
O1 is thus m+2 and the makespan of O2 is m+3. Note that SMOSP fulfills the rationality
constraint and is optimal for (P ||Cmax).

Let r be the ratio between the makespan in SMMG, the best schedule (w.r.t the
minimization of the makespan) among schedules optimal for MaxMinGain, and the
makespan in SMOSP , optimal for MOSP:

r =
2m− 1
m+ 3

= 2− 7
m+ 3

.

Therefore, for this instance, there is no optimal schedule for MaxMinGain which has
an approximation ratio better than (2− 7

m+3) for MOSP.

When m tends towards the infinity the ratio tends towards 2: it is thus impossible to
find an optimal algorithm for MaxMinGain less than 2-approximate for the makespan
minimization. We have showed that MaxMinGain is strongly NP-hard, hard to ap-
proximate and that, in the general case, ensuring a fair schedule can lead to low global
efficiency. We will now propose a polynomial time heuristic which, in practice, returns
good solutions for both the minimum gain and the global makespan.

57

Multi-Organization Scheduling Problem

1 1 1. . .

1 1. . .

m− 1 m− 1 3

0 (m+ 2) 2m+ 1

(m− 1)(m+ 1) tasks

O1

m− 1 machines
.
.
.

.

.

.

O2

1 1. . .

1 1. . .

m− 1

m− 1

3

0 m 2m− 1

m tasks

.

.

.
.
.
.

1 1 1 1 1. . .

1 1. . .

m− 1 1 11

m− 1 1 3

0 (m+ 3)

(m− 2)(m− 1) tasks

m− 1 machines

.

.

.

.

.

.
.
.
.

.

.

.
.
.

.

Figure 2.10: Instance giving the approximation ratio. Local schedules (top), optimal
schedules for MaxMinGain (middle) and optimal solution for (P ||Cmax) (bottom).

58

Multi-Organization Scheduling Problem

2.5.4 Heuristic

In this section, we propose a polynomial time heuristic for MaxMinGain. The idea
behind this heuristic, called MCEDD (for MOSP Constrained Earliest Due Date), is to
schedule the tasks by increasing local makespan. In such a schedule, tasks owned by
the organization having the lowest local makespan are scheduled first, then the tasks
of the organization having the second lowest makespan and so on. However, such a
schedule does not necessarily fulfill the rationality constraint. The heuristic ensures
that, at each step, the rationality constraint is fulfilled and tries to schedule tasks by
increasing local makespan if it does not conflicts with this constraint.

Over this section we will illustrate the different steps of the algorithm with a run-
ning example. We will assume that the organizations are labelled in non decreasing
order of their makespans: C1

loc ≤ · · · ≤ CN
loc.

Example 2.5.1: MCEDD execution: Local schedules

In the running example we will consider the following instance with five
organizations:

As mentioned above, we will consider that the organizations are sorted by in-
creasing local makespan, therefore O1 is the organization with the dark blue
tasks (on the bottom), O2 is the organization with the light blue tasks above O1
and so forth until O5 at the top with the red tasks.

In this algorithm we will consider two subroutines. The first one is the list schedul-
ing algorithm LPT (for Longest Processing Time), which schedules the tasks of an or-
ganization by non increasing processing time (as soon as a machine is available, the
remaining task with the longest processing time is scheduled on this machine).

LPT Algorithm

Sort the tasks by non increasing processing time.
for each task t in that order do

Find a machine mi with a minimum load and schedule t on mi

end
Algorithm 2: Longest Processing Time List Scheduling (LPT)

The second subroutine consists in delaying the tasks of an organization Oi in a
way that no task ends after the local makespan of Oi and no task begins before the
makespan of an organization with a lower makespan, unless it is scheduled on the
machines of Oi . This means that the tasks are scheduled as late as possible either

59

Multi-Organization Scheduling Problem

between 0 and Ci
loc if the machine is owned by Oi or between the highest makespan

among the organizations having a smaller makespan than Oi and Ci
loc if the machine

is not owned by i (in practice, the tasks of Oi are scheduled using LPT from time Ci
loc,

on all the machines and in the reverse order of time, under the constraint that no task
should start on a machine of Ok (with k , i) before Ci−1

max(S)).

Example 2.5.2: MCEDD execution: Delay subroutine

If we want to run this delay subroutine on O5, the tasks of O5 should be
scheduled as late as possible within the purple border.

This subroutine aims at creating space at the beginning of the schedule for organi-
zations with a low makespan without risking increasing the makespan of other organi-
zations. It runs as follows:

Delay subroutine

Parameters: Organization Oi , makespan Cl
max(S) of the organization Ol

with the highest makespan among the organizations with a lower
makespan than Oi

for each machine mk do
Set lmk

= Ci
loc

end
Sort the tasks of Oi by non increasing processing time
for each task tj owned by Oi do

Find a machine mk with maximum lmk
and such that either

lmk
− ptj ≥ Cl

max(S) or mk is owned by Oi

Schedule tj on mk such that it completes at time lmk

lmk
← lmk

− ptj
end

Algorithm 3: Delay subroutine

The MCEDD algorithm alternates between these two subroutines: it delays the
tasks of the organizations with a high makespan, creating space at the beginning of
the schedule. It then runs an LPT algorithm on the tasks of organizations with a small
makespan. This LPT algorithm hopefully decreases the makespan of the organizations
with a low local makespan, making it even lower. This means that there is more space
for the delay subroutine, allowing to delay the tasks of the organizations with high
makespans even more, creating more space and so forth.

60

Multi-Organization Scheduling Problem

Example 2.5.3: MCEDD execution: Alternating between the subroutines

Starting from the local schedules, MCEDD starts by running the delay subrou-
tine for all organizations except the one with the lowest local makespan, by
decreasing local makespan, i.e. it delays the tasks of O5, then O4, then O3 then
O2.

As we can see, organizations O3 and O2 cannot fully delay their tasks because
the makespan of the organization below them, i.e. having the highest makespan
among the organizations having a lower makespan, is too high. The MCEDD
algorithm then runs an LPT algorithm on the tasks of O1 on all the machines.

This operation lowers the makespan of O1: we can therefore rerun the delay
subroutine on O2 with the new makespan of O1.

This delay may free some space on the machines owned by O2 (although it is not
the case here). The MCEDD algorithm then runs an LPT algorithm on the tasks
of O1 (since some space may have been freed) and then on the tasks of O2.

We rerun this sequence for organization O3. First we delay its tasks:

61

Multi-Organization Scheduling Problem

Then we run LPT for organizations O1,O2 and O3.

And we do the same for O4 and O5, giving us the final schedule.

The MCEDD algorithm is described as follows:

MOSP-Constrained Earliest Due Date algorithm(MCEDD)

for i from 2 to N do
Use the delay subroutine with parameters i and Ci−1

loc
end
for i from 1 to N do

for j from 1 to i do
Use the LPT subroutine on tasks owned by Oj

end
if Ci

max(S) < Ci
loc and i + 1 ≤N then

Use the delay subroutine with parameters i + 1 and Ci
max(S)

end
end

Algorithm 4: MCEDD algorithm

Note that we decided to use LPT in order to schedule the tasks of an organization
because of its low computational cost and its good approximation ratio, but it is possi-
ble to consider other scheduling algorithms.

Regarding complexity, we can sort the tasks by decreasing processing time as a
preprocessing step, which costs O(n logn) operations. Thus the sorting steps in the

62

Multi-Organization Scheduling Problem

LPT and delay subroutines can be treated before starting MCEDD. Both LPT and the
delay subroutine schedule greedily the task on the first available machine, finding such
a machine costs O(logm) operations if we use a heap, meaning that scheduling all the
n tasks in a subroutine costs O(n logm) operations. The MCEDD algorithm complexity
is then determined by the two nested loops running through the organizations and
running LPT. This amounts to O(N2n logm) operations. Adding the preprocessing part,
the total complexity of MCEDD is in O(n logn+N2n logm).

Note that this algorithm is 2-approximate for (P ||Cmax) (and thus for MOSP) since it
returns a schedule with no idle time before the start of the last task. Since MaxMinGain

is hard to approximate, we have no approximation ratio for the minimum gain. Let us
now evaluate this algorithm experimentally.

2.5.5 Experimental evaluation

In this section, we study the quality of the solution returned by our algorithm on ran-
domly generated instances. To measure its efficiency, we will compare the makespan of
the schedule returned by MCEDD with a lower bound of the optimal makespan. Let S
be the schedule returned by our algorithm when executed on the instance I . We define:

s(I) =
Cmax(S)

max(L,pmax(I))

where L = Σn
i∈Tpi/m is the average load of a machine and pmax(I) = maxi∈T pi denotes

the largest processing time of a task in I . The value max(L,pmax(I)) is a lower bound of
an optimal makespan for instance I .

To measure the equity of the returned solution we compare the minimum gain ob-
tained in the scheduled returned by MCEDD with two upper bounds of the optimal
minimum gain. We define :

s′(I) =
min

i∈{1,...,N }
g i(S)

min{UB1,UB2}
To compute the first upper bound UB1 we compute the gain any organization would get
if it could schedule all its tasks at the beginning of the schedule and with preemption,
i.e. tasks can be divided, this represent an upper bound of the gain this organization
can get. We take the minimum of all these gains to obtain an upper bound on the
maximum minimum gain. Formally, it is defined as follows:

UB1 = min
i∈{1,...,N }

Ci
loc −max(Li(I),pmax(Oi))

Ci
loc

where Li(I) =
∑ni

j=1 p
j
i

m is the average load of a machine if the only tasks in I were the
one of Oi ; pmax(Oi) denotes the largest length of a task owned by Oi . We can note that
max(Li(I),pmax(Oi)) is a lower bound of the best makespan that Oi could get. Then, the

term Ci
loc−max(Li (I),pmax(Oi))

Ci
loc

is a higher bound of the gain Oi can get.

63

Multi-Organization Scheduling Problem

The second upper bound UB2 is an upper bound of the gain that the organization
with the largest makespan can get. A lower bound of the best possible makespan is
the average load of a machine L. This means that at least one organization will get a
makespan at least as large as L. The gain of the organization which has this makespan is
then lower than or equal than the gain the organization with the largest local makespan
would get if its makespan in the final solution was the average load of a machine, i.e.

UB2 = CN
loc−L
CN
loc

(ON is assumed to have the largest local makespan). Therefore, it is a

higher bound of the minimum gain since at least one organization will get a gain of at
most this value.

The local schedules are obtained with the LPT list scheduling. Instances are ran-
domly generated thanks to a realistic generator [Lublin and Feitelson, 2003]. The au-
thors have analyzed data from different sites regarding the workload and programmed
a generator creating workloads similar to the ones observed in the data. We set the
maximum task length to 50. Tasks are spread among the organizations following a zipf
distribution; we set the number of elements of the distribution to N and s to 1.4267
which corresponds to the data observed by Iosup et al. [2006]. We create instances
varying three parameters: the number of tasks n, the number of machines m and the
number of organizations N . Machines are spread uniformly. We consider 9600 in-
stances.
We will focus on the impact of the number of organizations on the quality of the solu-
tion returned by our algorithm on the tested instances.

(a) Variation of score s (b) Variation of score s′

Figure 2.11: Experimental evaluation of MCEDD.

We see in Figure 2.11(a) that the score s increases with the number of organizations.
This is consistent with the idea that the more organizations there are, the more diffi-
cult it is to satisfy each one of them. We also observe that the s score is below 1.055.
This means that the schedule returned by our algorithm has on average a makespan

64

Multi-Organization Scheduling Problem

lower than 1.055 times a lower bound of optimal global makespan with no rationality
constraint.

Figure 2.11(b) shows the variation of score s′. We note that s′ is on average above
0.96. This means that the minimum gain in the schedule returned by our algorithm is
higher than 0.96 times a higher bound of the optimal minimum gain.

Observation 2.5.2: Explaining the “drop” in the s′ ratio

The value of the s′ ratio may seem weird for 5 organizations, however we can
explain this by looking at the two higher bounds we considered.

Figure 2.12: Average maximum minimum gain obtained by MCEDD in compar-
ison to the average higher bounds

In this figure, we can see that the combination of the two bounds seem to be a
very close higher bound of the optimal solution when N = 2, although none is
informative enough on its own. However, when N = 5, the second higher bound
does not seem to bring any information regarding the maximum minimum gain.
When N = 10 or more, either bound seem to be satisfying with regards to the
optimal solution. One potential explanation for the decrease in the s′ score is
that the bounds are not as informative when N = 5 in comparison to over values
and not necessarily that MCEDD does not perform as well in such cases.

2.6 Conclusion

In this chapter, we have focused on two problems: MOSP and (1 +α)-MOSP for which
we have studied the necessary tradeoff between efficiency (in term of low makespan)
and the (relaxed) rationality constraint. We have also shown the interest of coopera-
tion, that can benefit to all the organizations, and proposed an algorithm which re-

65

Multi-Organization Scheduling Problem

turns schedules (1+ϵ)-approximate for MOSP while the makespans of the organizations
are increased by at most a factor (1 + ϵ). We then introduced problem MaxMinGain,
for which we have also shown the necessary tradeoff between the minimization of the
makespan and the minimization of the minimal gain (excepted if the tasks have all the
same length, instances for which there is a polynomial time algorithm optimal for both
objectives). We have shown that MaxMinGain is inapproximable in polynomial time
if P , NP , but we have given a heuristic which, in practice, returns good schedules for
both the minimization of the makespan and the maximization of the minimal gain.

Note that most results can be adapted if the tasks have released dates. Indeed, the
“negative” results are still valid (this concerns complexity proofs, and results showing
the necessary tradeoff between the global makespan and either the rationality con-
straint or the maximization of the minimal gain). The optimal algorithm for MaxMin-

Gain with unit tasks can also be easily adapted. The PTAS of Hall and Shmoys [1989]
works with release dates, and thus we can use its adaptation with release dates too:
there is also in this case a (1 +ϵ)-approximate schedule for MOSP while the makespans
of the organizations are increased by at most a factor (1 + ϵ). Likewise, this algorithm
can be adapted when machines are not necessary identical but can have a fixed number
of different speeds.

Note also that in this chapter we have considered that each organization owns at
least one machine, but results also hold if there are organizations with tasks but without
any machine (in this case, they do not have “local makespan”, and we do not apply the
rationality constraint for these organizations).

66

Chapter 3

Collective schedules: analysis of
four aggregation rules

The collective schedules problem consists in computing a schedule of tasks shared be-
tween individuals. Tasks may have different duration, and individuals have preferences
over the order of the shared tasks. This problem has numerous applications since tasks
may model public infrastructure projects, events taking place in a shared room, or
work done by co-workers. Our aim is, given the preferred schedules of individuals
(voters), to return a consensus schedule. We propose an axiomatic study of the collec-
tive schedule problem, by using classic axioms in computational social choice and new
axioms that take into account the duration of the tasks. We show that some axioms
are incompatible, and we study the axioms fulfilled by four rules: one which has been
studied in the seminal paper on collective schedules [Pascual et al., 2018], one which
generalizes the Kemeny rule, one which generalizes Spearman’s footrule and one which
relies on a scheduling approach. From an algorithmic point of view, we show that three
of these rules solve NP-hard problems, but that it is possible to solve optimally these
problems for small but realistic size instances, and we give an efficient heuristic for
large instances. We conclude this chapter with experiments evaluating the quality of
the heuristic and the computation time of the four rules.

The results presented in this chapter have been published in [Durand and Pascual,
2022].

3.1 Introduction

In this chapter, we are interested in the scheduling of tasks of interest to different peo-
ple, who express their preferences regarding the order of execution of the tasks. The
aim is to compute a consensus schedule which aggregates the preferences of the indi-
viduals, that we will call voters in the sequel.

This problem has numerous applications. For example, public infrastructure projects,
such as extending the city subway system into several new metro lines, or simply re-

67

Collective schedules - general case

building the sidewalks of a city, are often phased. Since workforce, machines and yearly
budgets are limited, phases have often to be done one after the other. The situation is
then as follows: given the different phases of the project (a phase being the construc-
tion of a new metro line, or of a new sidewalk), we have to decide in which order to
do the phases. Phases may have different duration – some may be very fast while some
others may last much longer. In other words, the aim is to find a schedule of the phases,
each one being considered as a task of a given duration. Note that tasks may not only
represent public infrastructure projects, but they may also model events taking place
in a shared room, or work done by co-workers (the schedule to be built being the order
in which the events – or the work to be done – must follow each other). In order to get
such a schedule, public authorities may take into account the preferences of citizens,
or of citizens’ representatives, which could be invited to express their preferences.

This problem, introduced by Pascual et al. [2018], takes as input the preferred
schedule of each voter (the order in which he or she would like the phases to be done),
and returns one collective schedule – taking into account the preferences of the vot-
ers and the duration of the tasks. We distinguish two settings. In the first one, each
voter would like each task to be scheduled as soon as possible, even if he or she has
preferences over the tasks. In other words, if this were possible, all the voters would
agree to schedule all the tasks simultaneously as soon as possible. This assumption –
the earlier a task is scheduled the better – , will be denoted by EB in the sequel. It was
assumed by Pascual et al. [2018], and is reasonable in many situations, in particular
when tasks are public infrastructure projects. However, it is not relevant in some other
situations. Consider for example workers, or members of an association, who share
different works that have to be done sequentially, for example because the tasks need
the same workers, or the same resource (e.g. room, tool). Each work (task) has a given
duration and can imply a different investment of each worker (investment or not of a
person, professional travel, staggered working hours, ...). Each worker indicates his or
her favorite schedule according to his or her personal constraints and preferences. In
this setting, it is natural to try to fit as much as possible to the schedules wanted by
the workers – and scheduling a task much earlier than wanted by the voters is not a
good thing: assumption EB does not hold here. In this paper, our aim is to compute a
socially desired collective schedule, with or without the EB assumption.

Observation 3.1.1: EB setting

In the EB setting, it could make sense to look for a schedule minimizing the sum
of the completion times of the tasks. In that way, we make sure that as many
tasks as possible are completed at the beginning of the schedule, leaving long
tasks that can cause delay to be executed later. In a sense, an “efficient” schedule
can be obtained with the SPT (Shortest Processing Time) list algorithm, i.e. by
scheduling tasks by increasing processing time. However such a schedule can be
unsatisfying for the voters, e.g. if all voters schedule the tasks by decreasing pro-
cessing time. The collective decision process should take into account both the

68

Collective schedules - general case

preferences and the general idea that short tasks should be somehow favoured
when dealing with an EB setting.

This problem generalizes the classical consensus ranking problem, since if all the
tasks have the same unit length, the preferred schedules of a voter can be viewed as her
preferred ranking of the tasks. Indeed, each (unit) task can be considered as a candidate
(or an item), and a schedule can be considered as a ranking of the candidates (items).
Computing a collective schedule in this case consists thus in computing a collective
ranking, a well-known problem in computational social choice [Brandt et al., 2016].

Related work. Our work is at the boundary between computational social choice [Brandt
et al., 2016] and scheduling [Brucker, 2010], two major domains in artificial intelli-
gence and operational research.

As mentioned above, the collective schedule problem generalizes the collective rank-
ing problem, which is an active field in computational social choice (see e.g. [Dwork
et al., 2001; Skowron et al., 2017; Celis et al., 2018; Singh and Joachims, 2018; Biega
et al., 2018; Geyik et al., 2019; Asudeh et al., 2019; Narasimhan et al., 2020]). In this
field, authors often design rules (i.e. algorithms) which return fair rankings, and they
often focus on fairness in the beginning of the rankings. If the items to be ranked are
recommendations (or restaurants, web pages, etc.) for users, the beginning of the rank-
ing is indeed probably the most important part. Note that this does not hold for our
problem since all the planned tasks will be executed – only their order matters. This
means that rules designed for the collective ranking problem are not suitable not only
because they do not consider duration for the items, but also because they focus on the
beginning of the ranking. This also means that the rules we will study can be relevant
for consensus ranking problems where the whole ranking is of interest.

As mentioned earlier, the collective schedule problem has been introduced by Pas-
cual et al. [2018] for the EB setting. In this paper, the authors introduced a weighted
variant of the Condorcet principle [De Condorcet, 2014], called the PTA Condorcet
principle (where PTA stands for “Processing Time Aware”), and they adapted previ-
ously known Condorcet consistent rules when tasks have different processing times.
They also introduced a new rule, which computes a schedule which minimizes the sum
of the tardiness of tasks between the preferred schedules of the voters and the sched-
ule which is returned. They show that the optimization problem solved by this rule is
NP-hard but that it can be solved for reasonable instances with a linear program.

Multi agent scheduling problems mainly focus on cases where (usually two) agents
own their own tasks, that are scheduled on shared machines: the aim is to find a Pareto-
optimal and/or a fair schedule of the tasks of the agents, each agent being interested by
her own tasks only [Saule and Trystram, 2009; Agnetis et al., 2014]. We also mention
the work of Elkind et al. [2022] in which the authors study the assignment of shared
unit size tasks to specific unit size time slots. This latter work focus on fairness notions
extended from the multi-winner voting problem and does not use scheduling notions.

We conclude this related work section by mentioning similarities between our prob-

69

Collective schedules - general case

lem and the participatory budgeting problem, which is widely studied [Aziz and Shah,
2021]. In the participatory budgeting problem, voters give their preferences over a set
of projects of different costs, and the aim is to select a socially desirable set of items
of maximum cost B (a given budget). The participatory budgeting problem and the
collective schedules problems have common features. They both extend a classical op-
timization problem when users have preferences: the participatory budgeting problem
approach extends the knapsack problem when users have preferences over the items,
while the collective schedules problem extends the scheduling problem when users
have preferences on the order of the tasks. Moreover, when considering unit items or
tasks, both problems extend famous computational social choice problems: the partic-
ipatory budgeting problem generalizes the multi winner voting problem when items
have the same cost, and the collective schedules problem generalizes the collective
ranking problem when tasks have the same duration. For both problems, because of
the costs/lengths of the items/tasks, classical algorithms used with unit items/tasks
may return very bad solutions, and new algorithms are needed. A recent work by Boes
et al. [2021] proposes a framework for such collective problems, generalizing, among
others, the collective schedules and the participatory budgeting problems. The authors
also study how well-known collective decision rules can be extended to fit in these
optimization contexts.

Overview of our results.

• In section 3.2, we present four rules to compute consensus schedules. We in-
troduce a new one, that we will denote by PTA Kemeny, and which extends the
well-known Kemeny rule [Kemeny, 1959] used to compute consensus rankings
in computational social choice. The two next rules come from scheduling theory,
and were introduced by Pascual et al. [2018]: they consist in minimizing the sum
of the tardiness of tasks in the returned schedule with respect to the voters’ sched-
ules (rule ΣT), or in minimizing the sum of the deviation of tasks with respect to
the voters’ schedules (rule ΣD). Note that the ΣD rule is equal to the Spearman’s
footrule [Diaconis and Graham, 1976] when the tasks are unitary. The last rule
(rule EMD) consists in scheduling tasks by increasing median completion time in
the preferences of the voters.

• In section 3.3, we study the axiomatic properties of the above mentioned rules by
using classical social choice axioms as well as new axioms taking into account the
duration of the tasks. Table 3.1 summarizes our results. We also show incompat-
ibilities between axioms: we show that a rule which is neutral, or which is based
on a distance, both does not fulfill the PTA Condorcet consistency property, and
can return a schedule with a sum of tardiness as far from the optimal as wanted.

• In Section 3.4, we show that the PTA Kemeny and ΣD rules solve NP-hard prob-
lems and we propose a fast heuristic which performs well regarding the ΣD and
ΣT rules.

70

Collective schedules - general case

• In Section 3.5, we see that the PTA Kemeny and ΣD rules can be used for small
but realistic size instances, and that the heuristic presented in the previous sec-
tion returns schedules which are very close to the ones returned by ΣD. We also
compare the performance of the rules on the sum of tardiness or deviations of the
tasks in the returned schedules.

Let us now introduce formally our problem and present the four rules that we will
study in the sequel.

3.2 Preliminaries

3.2.1 Definition of the problem and notations.

LetJ = {t1, . . . , tn} be a set of n tasks. Each task ti ∈J has a length (or processing time)
pi . We do not consider idle times between the tasks, and preemption is not allowed: a
schedule of the tasks is thus a permutation of the tasks ofJ. We denote by XJ the set
of all possible schedules. We denote by V = {v1, . . . , vv} the set of v voters. Each voter
vk ∈V expresses her favorite schedule Sk ∈XJ of the tasks inJ. The preference profile,
P , is the set of these schedules: P = {S1, . . . ,Sv}.

Example 3.2.1: Preference profile

Let us consider an instance with n = 3 and v = 5. The setJ = {ta, tb, tc} is the set
of tasks and we have pa = 2,pb = 4 and pc = 1. The first 2 voters schedule tb first,
then ta and finally tc. A second set of two voters schedule ta, then tb, then tc.
The final voter schedules tc, then tb and finally ta. We represent such an instance
with a Gantt chart as follows:

tb ta tc
ta tb tc

tc tb ta

2 voters

2 voters

1 voter

0 1 2 3 4 5 6 7

Figure 3.1: Example of a preference profile P

Given a schedule S, we denote by Ci(S) the completion time of task ti in S. We
denote by di,k the completion time of task ti in the preferred schedule of voter k (i.e.
di,k = Ci(Sk) – here d stands for “due date” as this completion time can be seen as a
due date, as we will see in the sequel. We denote by ta ≻S tb the fact that task ta is
scheduled before task tb in schedule S. This relation is transitive, therefore, if, in a
schedule S, task ta is scheduled first, then task tb and finally task tc, we can describe S
as (ta ≻S tb ≻S tc). Given a schedule S we will denote by S(ta↔tb) the schedule obtained
from S by swapping the positions of the tasks ta and tb.

71

Collective schedules - general case

An aggregation rule is a mapping r : (XJ)v→XJ that associates a schedule S – the
consensus schedule – to any preference profile P . We will focus on four aggregation
rules that we introduce now: ΣD, ΣT, PTA Kemeny and EMD.

3.2.2 Four aggregation rules.

A) The ΣD rule. The ΣD rule is an extension of the Absolute Deviation (D) scheduling
metric [Brucker, 2010]. This metric measures the deviation between a schedule S and
a set of given due dates for the tasks of the schedule. It sums, over all the tasks, the
absolute value of the difference between the completion time of a task ti in S and its
due date. By considering the completion time di,k of task ti in the preferred schedule
Sk as a due date given by voter vk for task ti , we express the deviation D(S,Sk) between
schedule S and schedule Sk as D(S,Sk) =

∑
ti∈J |Ci(S) − di,k |. By summing over all the

voters, we obtain a metric D(S,P) measuring the deviation between a schedule S and a
preference profile P :

D(S,P) =
∑
Sk∈P

∑
ti∈J
|Ci(S)− di,k | (3.1)

The ΣD rule returns a schedule S∗ minimizing the deviation with the preference
profile P : D(S∗, P)=minS∈XJD(S,P).

Example 3.2.2: ΣD- computing deviation

We consider the instance of Example 3.2.1 and the schedule S = (ta ≻S tb ≻S tc).

tb ta tc
ta tb tc

tc tb ta

2 voters

2 voters

1 voter

0 1 2 3 4 5 6 7

ta tb tcS

In S, ta completes at time 2 whereas it completes at time 6 in the schedule pre-
ferred by the first two voters, we then count |2−6| as the deviation relative to task
ta. Tasks tb completes at time 6 in S and at time 4 in the schedule preferred by
the first two voters, we count |6− 4| for the deviation relative to task tb. Finally,
task tc completes at time 7 in both schedules, we do not count any deviation.
The total deviation between these two schedules is then |2 − 6| + |6 − 4| = 6. We
compute the deviation over all the schedules preferred by the voters and we sum
to obtain the total deviation between schedule S and the preference profile P .

72

Collective schedules - general case

Observation 3.2.1: ΣD- Particular property

We mention here that contrarily to the other rules that we study in this chapter,
the ΣD rule does not “naturally” schedule the tasks without idle time. Indeed,
even if all the voters give schedules without idle times, the solution minimizing
the sum of deviations may have some, as we see in the following example. There
are v voters and n = v + 1 tasks. The tasks are of three types. Task tk has a
processing time p. Tasks t1 to tv/2 have a processing time of p − 1. Tasks 1 to v

2
have a processing time of 1. There are v voters split in two groups. The first v/2
voters schedule all tasks t1 to tv/2 except one at the beginning of their schedule.
The ith schedule all these tasks except ti . These voters then schedule tasks tk then
the tasks of length 1 in the same order 1,2, . . . then the task ti (depending on the
voter). The last v/2 voters schedule the tasks t1 to tv/2 by increasing index, then
one task of processing time one: voter v/2 + i schedule task i at this slot. They
then schedule the remaining tasks of processing time one by increasing index
and finally tk . The detailed preference profile can be found below.

tv/2 t2 . . . tv/2−1 tk 1 2 3 . . . v
2 t1

t1 tv/2 . . . tv/2−1 tk 1 2 3 . . . v
2 t2

.

.

.

.

.

.

t1 t2 . . . tv/2 tk 1 2 3 . . . v
2 tv/2−1

t1 t2 . . . tv/2−1 tk 1 2 3 . . . v
2 tv/2

t1 t2

. . .

tv/2−1 tv/2
v
2 1 2 3

. . .

v
2 − 1 tk

t1 t2

. . .

tv/2−1 tv/2 v
2 −1 1 2 3

. . .

v
2 tk

.

.

.

.

.

.

t1 t2

. . .

tv/2−1 tv/2 2 1 3 4

. . .

v
2 tk

t1 t2

. . .

tv/2−1 tv/2 1 2 3 4

. . .

v
2 tk

v/2

v/2

0 p − 1 2(p − 1) (v/2−1)(p−1)

(v/2)(p−1)

(v/2−1)p

We give a few intuitions of why the optimal solution will have an idle time:

73

Collective schedules - general case

• In this instance, the tasks of processing time 1 are all scheduled most of the
time in one given time slot. For example task i starts at time (v/2 − 1)(p −
1) + p in v − i preferences. In order to minimize the deviation, a schedule
should make sure that these tasks are assigned to their time slots.

• Tasks t1 to tv/2−1 are always scheduled at the same time except for the ith

voter who schedule task ti at the end of the schedule. Because of that, a
schedule minimizing deviation should put tasks t1 to tv/2−1 at the begin-
ning of the schedule in that order.

• This leaves the positions of tk and tv/2. Since tv/2 is scheduled either after
the t tasks at the beginning of the schedule, or in the middle of the t tasks
by all voters except one, and since task tk is scheduled either after the t
tasks or at the very end of the schedule the best option regarding deviation
is to schedule tv/2 after tv/2−1.

• If we want each task of processing time 1 to be scheduled at its spot, it is
necessary that there is an idle time after tv/2, then task 1,2, . . . and finally
tk which completes one unit of time after the total load of the schedule.

The previous paragraph aims at giving the intuition of why the optimal solution
has an idle time, but we can also verify numerically that the optimal solution is
indeed:

t1 t2 . . . tv/2−1 tv/2 1 2 3 4 . . . v
2 tk

0

Looking at tasks 1 to v/2, scheduling task i at its time slot in the preferences
of the first v/2 voters creates a deviation of i − 1 + i (there are i − 1 voters for
which the task is moved by one unit of time and one voter for which it is moved
by i). Scheduling task i one unit of time earlier (which would remove the idle
time) increases the deviation by one for v − i voters who scheduled task i in the
same slot and reduces it by one for the remaining i voters, this would then be an
increase of

∑v/2
i=1 v − 2i. On the other hand the deviation of tk would decrease by

v, since it would be one unit of time closer to all the preferences.So for any value
of v such that v <

∑v/2
i=1 v − 2i, the solution minimizing the total deviation has an

idle time.
However, in this chapter we will only consider solutions without idle time. We
can consider a lot of contexts in which the time horizon is precisely set and it is
impossible to have “holes” in the schedule. It also allows us to have a one to one
matching between linear orders and schedules, since given a linear order, there
is only one schedule without idle time and respecting the order; whereas there is
an infinite number of schedules with idle times respecting the order.

74

Collective schedules - general case

This rule was introduced (but not studied) by Pascual et al. [2018], where the au-
thors observed that, if tasks have unitary lengths, this rule minimizes the Spearman
distance, which is defined as SD(S,Sk) =

∑
ti∈J |posi(S) − posi(Sk)|, where posj(S) is the

position of item j in ranking S, i.e. the completion time of task j in schedule S if items
are unitary tasks.

B) The ΣT rule. This rule, introduced by Pascual et al. [2018], extends the classical
Tardiness (T) scheduling criterion [Brucker, 2010]. The tardiness of a task ti in a sched-
ule S is 0 if task ti is scheduled in S before its due date, and is equal to its delay with
respect to its due date otherwise. As done for ΣD, we consider the completion time of
a task ti in schedule Sk as the due date of voter vk for task ti . The sum of the tardiness
of the tasks in a schedule S compared to the completion times in a preference profile P
is then:

T (S,P) =
∑
Sk∈P

∑
ti∈J

max(0,Ci(S)− di,k) (3.2)

The ΣT rule returns a schedule minimizing the sum of tardiness with the preference
profile P .

C) The PTA Kemeny rule. We introduce a new rule, the Processing Time Aware Ke-
meny rule, an extension of the well-known Kemeny rule [Kemeny, 1959]. The Kendall
tau distance is a famous metric to measure how close two rankings are: it counts the
number of pairwise disagreements between two rankings (for each pair of candidates
{a,b} it counts one if ta is ranked before tb in one ranking and not in the other ranking).
The Kemeny rule minimizes the sum of the Kendall tau distances to the preference
profile, i.e. the voter’s preferred rankings.

Despite its good axiomatic properties, this rule, which does not take into account
the length of the tasks, is not suitable for the collective schedules problem. Consider
for example an instance with only two tasks, a short task ta and a long task tb. If a
majority of voters prefer tb to be scheduled first, then in the returned schedule it will
be the case. However, in EB settings, it may be suitable that ta is scheduled before tb
since the small task ta will delay the large one tb only by a small amount of time, while
the contrary is not true.

We therefore propose a weighted extension of the Kemeny rule: the PTA Kemeny
rule, which minimizes the sum of weighted Kendall tau distances between a schedule
S and the schedules of the preference profile P . The weighted Kendall tau distance be-
tween two schedules S and Sk counts the weighted number of pairwise disagreements
between two rankings; for each pair of tasks {ta, tb} such that tb is scheduled before ta
in Sk and not in S, it counts pa. This weight measures the delay caused by task ta on
task tb in S (whereas ta caused no delay on tb in Sk). The score measuring the difference
between a schedule S and P is:

∆P TA
KT (S,P) =

∑
Sk∈P

∑
{ta,tb}∈J2

pa ×1ta≻S tb ,tb≻Sk ta (3.3)

75

Collective schedules - general case

Example 3.2.3: Computing the weighted Kendall-Tau score

We consider an instance with three tasks {ta, tb, tc} and five voters. We have pa =
2,pb = 4 and pc = 1. The preference profile is as follows (we indicate in front of
each schedule the number of voters for which it is the preferred schedule):

tb ta tc
ta tb tc

tc tb ta

2 voters

2 voters

1 voter

0 1 2 3 4 5 6 7

Let us compute the PTA Kendall tau score of schedule S = (tb≻S ta≻S tc) . There
is 0 disagreement with the first set of 2 voters. There is 1 disagreement with the
second set of 2 voters because the pair {ta, tb} is inverted. Therefore we count
pb×2=8, since tb is scheduled before ta in S. There are 2 disagreements with the
last voter, one on the pair {ta, tc} and one on the pair {tb, tc}. Therefore, we count
pa=2 plus pb =4. Overall, the score of S = (tb≻S ta≻S tc) is 8+2+4=14.

The PTA Kemeny rule returns a schedule minimizing the weighted Kendall Tau
distance to the preference profile P .

Observation 3.2.2: Choosing an aggregator

One can note that to define the three rules presented above, we used two steps.
The first step consists in defining a way to measure the difference between two
schedules: one that we try to evaluate and one expressed by a voter. This is
the deviation, the tardiness and the weighted Kendall-tau distance. The second
step consists in aggregating these individual differences to obtain a general score
over the whole preference profile. For these three rules, we used the sum (

∑
).

However it could be possible to use other aggregators like the minimum (min)
or the product (

∏
). The optimal solution for the (min) would be the schedule

minimizing the maximum difference with any voter, in a sense, this ensures that
the least satisfied voter is as satisfied as possible.

D) The Earliest Median Date (EMD) rule. The Earliest Median Date (EMD) rule com-
putes the median completion time of each task in the preference profile, and returns a
schedule in which the tasks are ordered by increasing median completion time. If two
tasks have the same median completion time, it schedules the shortest one first.

76

Collective schedules - general case

Example 3.2.4: EMD rule

In the instance of Example 3.2.3, the vector of the completion times of task ta
is (6,6,2,2,7), and its median is thus 6. The median of the completion times of
task tb and tc are 5 and 7, respectively. Therefore, the schedule S returned by the
EMD rule is (tb≻S ta≻S tc).

This rule has two major benefits. Firstly it is easier to understand for a voter than a
rule using an optimization criterion, such as the first three rules, and voters are more
eager to participate in a process that they understand fully. Secondly, it is fast to com-
pute. Indeed, we only need to compute, for each task, its median completion time,
which can be done in O(nv). Indeed, assuming that we get in O(1) the completion time
of a task in each preferred schedule, the median of the completion times of a given task
is the median of v values, which can be computed in O(v) [Blum et al., 1973]. The tasks
are then scheduled by increasing median completion times, which costs O(n logn). The
complexity of the EMD rule is thus O(nv + n logn), which is in practice O(nv) since we
generally have v ≥ logn.

Observation 3.2.3: EMD rule - Jackson’s rule extension

The EMD rule can be seen as an extension of the Earliest Due Date rule (EDD)
when tasks have multiple due dates. The EDD rule is a list algorithm scheduling
tasks by non decreasing due dates [Jackson, 1955]. It is known to solve opti-
mally some scheduling problems, like (1||Lmax) in which we want to minimize
the maximum difference between a task’s completion time and its due date. It
is also commonly used as a part of other scheduling algorithm to solve more
complex problems [Pinedo, 2012].

3.2.3 Resoluteness.

Note that some of these rules return a schedule minimizing an optimization function,
and that it is possible that several optimal schedules exist. In computational social
choice, rules may be either resolute or irresolute. A rule is resolute if it always re-
turns one single solution, and it is irresolute if it returns a set of solutions. Thus, rules
optimizing an objective function may either be irresolute, and return all the optimal
solutions, or they can be resolute and use a tie-breaking mechanism which allows to
determine a unique optimal solution for each instance.

Irresolute rules have the advantage that a decision maker can choose among the
optimal solutions, the one that he or she prefers. However, the set of optimal solutions
can be large, and sometimes even exponential, making it difficult to compute in prac-
tice. Furthermore, in real situations, there is not always a decision maker which makes
choices, and an algorithm has to return a unique solution: in this case, the rule must be
resolute and needs to use a tie breaking mechanism that allows to decide between the
optimal solutions.

77

Collective schedules - general case

In this chapter, unless otherwise stated, we consider that each rule is resolute and
returns thus always a unique solution. However, since a good tie breaking mechanism
is usually dependent on the context, we will not describe it. Instead, we will study the
properties of the set of optimal solutions and see if using a tie breaking mechanism
impacts the axiomatic properties of the rule – as we will see, most of the time, this will
not be the case.

3.3 Axiomatic properties

In this section, we study from an axiomatic point of view the four rules that we have
introduced earlier. We use existing axioms and properties (such as the PTA Condorcet
consistency property, defined by Pascual et al. [2018]). We extend standard existing
axioms (such as neutrality) to our context, and we introduce new axioms (such as the
length reduction monotonicity). Table 3.1 summarizes the axioms fulfilled by each
of the four rules. We also outline some incompatibilities between these axioms and
properties.

3.3.1 Neutrality and PTA neutrality.

The neutrality axiom is a classical requirement of a social choice rule. A rule is neutral
if it does not discriminate apriori between different candidates. Note that this axiom
can be fulfilled only by irresolute rules, since a resolute rule should return only one
solution, even when there are only two equal length tasks ta and tb, and two voters: one
voter who prefers that ta is before tb, while the other voter prefers that tb is before ta (the
same remark holds for consensus rankings instead of consensus schedules). Therefore,
in this subsection we will consider that our the rules ΣD, ΣT, and PTA Kemeny return
all the optimal solutions of the function they optimize. Throughout this subsection, we
will call P(ta↔tb) the preference profile obtained from P by switching the positions of
two tasks ta and tb in the preferences.

Definition 3.3.1: Neutrality

Let r be an irresolute aggregation rule, P a preference profile, and S∗ the set
of solutions returned by r when applied on P . Let S∗(ta↔tb) the set of solutions
returned by r on P(ta↔tb). The rule r is neutral if and only if for each solution S in
S∗, S(ta↔tb) is in S∗(ta↔tb).

Proposition 3.3.1: Neutrality - ΣD

The ΣD rule is not neutral even if it does not apply any tie-breaking mechanism.

Proof. Let us consider an instance with n = 6 tasks {ta, tb, tc, td , te, tf }, we have pa = pb =
pc = 1,pd = 2,pe = k and pf = k − 2, with k a positive integer. The instance has a high

78

Collective schedules - general case

even number of v voters having the following preferences:

tb ta tf te td tc

tb te ta tf td tc

tb tf tc te td ta

tf tc td ta tb te

0 2k + 3

v
2−1

1

1
v
2−1

For k = 20 and v = 400, the ΣD rule returns the schedule S = (tb ≻S tf ≻S ta ≻S te ≻S
td ≻S tc) since it is the only one minimizing the absolute deviation with the profile P . If
we consider the profile P(tb↔te) in which the positions of tb and te are swapped, we have:

te ta tf tb td tc

te tb ta tf td tc

te tf tc tb td ta

tf tc td ta te tb

0 2k + 3

v
2−1

1

1
v
2−1

For profile P(tb↔te), the only optimal schedule is S ′ = (te ≻S ′ ta ≻S ′ tf ≻S ′ tb ≻S ′ td ≻S ′
tc). If the ΣD rule was neutral, S and S ′ would be similar but the position of tb and te
would be swapped. However, the positions of ta and tf are also modified, meaning that
the ΣD rule is not neutral.

As we will see later, the ΣT and the PTA Kemeny rules do not fulfill neutrality (this
will be corollaries of Propositions 3.3.7 and 3.3.9).

Proposition 3.3.2: Neutrality - EMD

The EMD rule does not fulfill neutrality.

Proof. Let us consider an instance with n = 4 tasks {ta, tb, tc, td} and v = 3 voters. We
have pa = 1, pb = 10, pc = 8 and pd = 2. The preferences are as follows:

td ta tb tc

ta tb tc td

tc td ta tb

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1

1

1

79

Collective schedules - general case

For such a profile the median completion times are as follows: ma(P) = 3,mb(P) =
13,mc(P) = 19 and md(P) = 10 where mi(P) is the median completion time of task ti
in the preference profile P . The schedule returned by the EMD rule is then S = (ta ≺S
td ≺S tb ≺S tc. Let us now study the preference profile P(ta↔tb):

td tb ta tc

tb ta tc td

tc td tb ta

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1

1

1

For the profile P(ta↔tb), the median completion times are as follows: ma(P(ta↔tb)) =
13,mb(P(ta↔tb)) = 12,mc(P(ta↔tb)) = 19 and md(P(ta↔tb)) = 10, therefore, the schedule re-
turned by the EMD rule is S ′ = (td ≻S ′ tb ≻S ′ ta ≻S ′ tc). If the EMD rule was neutral, S
and S ′ would be similar but the positions of ta and tb would be swapped. Since here
the position of td also changes, EMD is not neutral.

Treating all tasks equally despite the fact that they can have very different length
does not seem natural. However, rules should still have some guarantee of equal treat-
ment. We introduce the PTA neutrality axiom, which ensures that two tasks of equal
length are considered in the same way.

Definition 3.3.2: PTA neutrality

Let r be an irresolute aggregation rule, P a preference profile, and S∗ the set
of solutions returned by r when applied on P . Let S∗(ta↔tb) the set of solutions
returned by r on P(ta↔tb). The rule r is PTA neutral if and only if, for any two
tasks ta and tb such that pa = pb, for each solution S in S∗, S(ta↔tb) is in S∗(ta↔tb).

The PTA neutrality axiom relaxes the concept of neutrality for the cases in which
tasks (candidates) have lengths (weights). This axiom ensures that two candidates with
the same characteristics are treated equally. When all the tasks have the same length,
the PTA neutrality axiom is equal to the neutrality axiom.

Proposition 3.3.3: PTA-Neutrality - All rules

If they do not apply any tie-breaking mechanism, the PTA Kemeny, ΣD, ΣT and
EMD rules are PTA neutral.

Proof. Let P = {S1, . . . ,Sv} be a preference profile and ti and tj be two tasks such that
pi = pj . For any schedule Sk expressed by a voter vk , we know that in Sk (ti↔tj), we have
Ci(Sk (ti↔tj)) = Cj(Sk) and Cj(Sk (ti↔tj)) = Ci(Sk). The completion times of any other task

80

Collective schedules - general case

than ti and tj is the same in Sk and in Sk (ti↔tj) since no other task has been moved and
since pi = pj .

For each possible consensus schedule S for P , we can note that S(ti↔tj) has the same
deviation (resp. tardiness) for P(ti↔tj) than S for P . This implies that if a schedule S is
optimal for ΣD (resp. ΣT) for a profile P , then the schedule S(ti↔tj) is optimal for ΣD
(resp. ΣT) for he profile P(ti↔tj): the PTA neutrality holds for ΣD and ΣT.

The PTA Kemeny rule returns a ranking minimizing the weighted sum of pairwise
disagreements with the profile. By swapping the positions of ti and tj in both the profile
P and a schedule S, we do not change the disagreements on pairs of tasks that do not
contain ti nor tj . The pair {ti , tj} is permuted in both S(ti↔tj) and P(ti↔tj) leading to the
same number of disagreements. Indeed, whenever there was a disagreement between
S and a preference Sk (ti↔tj) in P on a pair {ti , tx} then there will be a disagreement on
{tj , tx} between S(ti↔tj) and Sk (ti↔tj). Similarly if S and a preference Sk of P agree on
the pair {ti , tx}, then S(ti↔tj) and the preference Sk (ti↔tj) in P(ti↔tj) will agree on {tj , tx}.
Since the lengths of ti and tj are the same, the weights on a disagreement between S
and P will be the same than a disagreement between S(ti↔tj) and P(ti↔tj), meaning that
the overall sum of weighted disagreements between S and P is the same than between
S(ti↔tj) and P(ti↔tj). Since this applies to every schedule S, if S is optimal for the profile
P , then S(ti↔tj) is optimal for P(ti↔tj). Hence the PTA Kemeny rule is PTA neutral.

As seen above, for each voter vk , we have Ci(Sk (ti↔tj)) = Cj(Sk) and Cj(Sk (ti↔tj)) =
Ci(Sk), and for any other task tl we have Cl(Sk) = Cl(Sk (ti↔tj)). Therefore, the set of
completion times of any other task is the same in P and in P(ti↔tj), and the median
completion time of a task is the same in P and in P(ti↔tj) except for ti and tj which
swapped their median and therefore swapped their position in the order of the tasks
when sorted by increasing median time. Therefore, the EMD rule will return the same
schedules when applied on P and on P(ti↔tj) except that ti and tj are swapped: it is PTA
neutral.

Note that the neutrality axiom is incompatible with the resoluteness axiom [Brandt
et al., 2016], and this is the same for PTA neutrality. That means that any rule which
always returns only a single solution cannot be neutral: for our rules, once we use a
tie-breaking mechanism, we have to give up PTA-neutrality. However, if we focus on
the set of optimal solutions, they all fulfill the PTA neutrality axiom.

3.3.2 Distance.

Some aggregation rules are based on the minimization of a metric. By metric, we mean
a mapping between a pair of elements, in our case two schedules, and a value. This is
the case of ΣT (resp. ΣD) where the value associated to the pair (S,Sk), where Sk is the
preferred schedule of a voter vk and S is a given schedule, is the sum of the tardiness
(resp. deviations) of the tasks in S with respect to their completion time in Sk . This is
also the case of the PTA Kemeny rule where the value associated to the pair (S,S ′k) is
the weighted number of pairwise disagreement between S and Sk .

81

Collective schedules - general case

Most of these rules sum these values over the whole preference profile to evaluate
the difference between a schedule and a preference profile. This is the the case of
the ΣT, ΣD, and PTA Kemeny rule. If a rule minimizes the sum of this metric over
the voters and if the metric is a distance (i.e. it satisfies non-negativity, identity of
indiscernible, triangle inequality and symmetry), we say that the aggregation rule is
“based on a distance”. The fact that a metric is a distance leads to interesting properties
Brandt et al. [2016].

Observation 3.3.1: Distance-based rules

In this chapter, we only focus on the sum but these desirable axioms are also
fulfilled by rule using other aggregators. In [Elkind et al., 2010, 2011], the au-
thors study a more general framework in which it is possible to use any norm
and not just the sum (which is the l1 norm). They show that some properties of
the distance and the norm imply certain axiomatic properties for the rule. They
show for example that any rule using a (pseudo)distance and any norm as an
aggregator fulfill reinforcement.

Proposition 3.3.4: Distance - ΣD

The absolute deviation metric is a distance.

Proof. To be a distance, a metric m must fulfill four properties:

(1) Non negativity: m(S,S ′) ≥ 0,∀S,S ′ ∈ XJ

(2) Identity of indiscernibles: m(S,S ′) = 0 iff S = S ′

(3) Symmetry: m(S,S ′) = m(S ′ ,S),∀S,S ′ ∈ XJ

(4) Triangle inequality: m(S,S ′) ≤m(S,z) +m(z,S ′),∀S,S ′ , z ∈ XJ

The non negativity (1) property is direct since we sum absolute values, which are al-
ways positive.
We prove the identity of indiscernibles (2) by noting that two schedules S,S ′ are iden-
tical iff all the tasks complete at the exact same time in both schedules. Therefore, if
S and S ′ are identical, then there is no difference between the completion times of a
task in the two schedules, and the deviation is thus null. Otherwise, at least one task
completes at a different time in the two schedules, leading to a non-null difference, and
a positive overall absolute deviation between the two schedules.
The symmetry (3) property is a direct consequence of the evenness of the absolute value
function. By definition, D(S,S ′) =

∑
ti∈J |Ci(S) − Ci(S ′)| and D(S ′ ,S) =

∑
ti∈J |Ci(S ′) −

Ci(S)|. By noting that: Ci(S) −Ci(S ′) = −(Ci(S ′) −Ci(S)) and since |a| = | − a|,∀a ∈ R, we
have D(S,S ′) = D(S ′ ,S).
Finally, we prove the triangle inequality (4) thanks to the subadditivity property of the
absolute value function. We consider the absolute deviation between two schedules

82

Collective schedules - general case

S and S ′: D(S,S ′). Let z be a third schedule. By definition: D(S,S ′) =
∑

ti∈J |Ci(S) −
Ci(S ′)| =

∑
ti∈J |Ci(S)−Ci(z) +Ci(z)−Ci(S ′)|. By subadditivity of the absolute value, we

have:
D(S,S ′) ≤

∑
ti∈J

(|Ci(S)−Ci(z)|+ |Ci(z)−Ci(S
′)|)

D(S,S ′) ≤D(S,z) +D(z,S ′)

As we will see in the sequel (Propositions 3.3.8 and 3.3.10), the fact that the D
metric is a distance implies that the ΣD rule is not PTA Condorcet consistent, and that
it can return solutions with a sum of tardiness arbitrarily larger than the optimal sum
of tardiness. Before seeing this, let us start by recalling what is the PTA Condorcet
consistency property, introduced in [Pascual et al., 2018].

3.3.3 PTA Condorcet consistency.

This axiom, particularly meaningful in EB settings, states that a task ta should be sched-
uled before task tb if a fraction of at least pa/(pa +pb) of the voters schedule ta before tb.
The idea behind this axiom is that the longer a task is, the more it should be supported
in order to be scheduled early.

Definition 3.3.3: PTA Condorcet consistency [Pascual et al., 2018]

A schedule S is PTA Condorcet consistent with a preference profile P if, for any
two tasks ta and tb, it holds that ta is scheduled before tb in S whenever at least
pa

pa+pb
· v voters put ta before tb in their preferred schedule. A scheduling rule

satisfies the PTA Condorcet principle if for each preference profile it returns
only the PTA Condorcet consistent schedule, whenever such a schedule exists.

Note that if all the tasks have the same length, the PTA Condorcet consistency is
equal to the well-known Condorcet consistency [De Condorcet, 2014].

Proposition 3.3.5: PTA Condorcet consistency - PTA Kemeny

The PTA Kemeny rule is PTA Condorcet consistent.

Proof. Let S be a schedule returned by the PTA Kemeny rule. For the sake of contradic-
tion, let us suppose that, in S, there is a pair of tasks ta and tb such that ta is scheduled
before tb whereas more than pb

pa+pb
×v voters scheduled tb before ta and that a PTA Con-

dorcet schedule exists.
We study two cases. Firstly, consider the tasks ta and tb are scheduled consecutively
in S. In that case, we call S(ta↔tb) the schedule obtained from S in which we swap the
position of ta and tb. Since both schedules are identical except for the inversion of the

83

Collective schedules - general case

pair {ta, tb} their weighted Kendall tau scores vary only by the number of disagreements
on this pair.

• We have assumed that the number vb≻a of voters scheduling tb before ta is larger
than pb

pa+pb
× v. Since in S, ta is scheduled before tb, the weighted disagreement of

the voters on pair {ta, tb} in S is larger than pb
pa+pb

× v × pa.

• In S(ta↔tb), tb is scheduled before ta. Since vb≻a > pb
pa+pb

× v, we know that the

number va≻b of voters scheduling ta before tb is smaller than pa
pa+pb

× v. Therefore,

the weighted disagreement on pair {ta, tb} is smaller than pa
pa+pb

× v × pb.

Thus the score of S(ta↔tb) is smaller than the one of S: S is not optimal for the PTA
Kemeny rule, a contradiction.

Secondly, let us consider that ta and tb are not consecutive in S, and let tc be the
task which follows ta in S. In S, it is not possible to swap two consecutive tasks to
reduce the weighted Kendall tau score, otherwise the schedule could not be returned
by the PTA Kemeny rule. Thus, by denoting by S(ta↔tc) the schedule S in which we
exchange the order of tasks ta and tc, we get that ∆P TA

KT (S(ta↔tc), P) − ∆P TA
KT (S,P) ≥ 0.

This implies that vta≻tc × pc − vtc≻ta × pa ≥ 0 and vta≻tc ×
pc

pa+pc
− vtc≻ta ×

pa
pa+pc

≥ 0, where
vtc≻ta = v − vta≻tc is the number of voters who schedule tc before ta in their preferred
schedule. Therefore, vta≻tc ≥ v × pa

pa+pc
. Therefore, task ta is scheduled before tc in any

PTA Condorcet consistent schedule. By using the same argument, we find that task tc
is scheduled before task td , which follows tc in S, and that tc has to be scheduled before
td in any PTA Condorcet consistent schedule, and so forth until we meet task tb. This
set of tasks forms a cycle since ta has to be scheduled before tc in a PTA Condorcet
consistent schedule, tc has to be scheduled before td in a PTA Condorcet consistent
schedule, . . . , until we meet tb. Moreover tb has to be scheduled before ta in a PTA
Condorcet consistent schedule since more than pb

pa+pb
× v voters scheduled tb before ta.

The existence of this cycle means that no PTA Condorcet consistent schedule exists for
the profile, a contradiction.

Proposition 3.3.6: PTA Condorcet consistency - EMD

The EMD rule is not PTA-Condorcet consistent.

Proof. Let us consider an instance with n = 2 tasks {ta, tb} and v = 3 voters. We have
pa = 1 and pb = 3. The preferences are as follows:

tb ta

ta tb

0

2

1

84

Collective schedules - general case

In such a profile, the median completion time of tb is smaller than the median com-
pletion time of ta: the EMD rule returns the schedule S = (ta ≺S tb). However ta is
scheduled in 1/3 of the preferences before tb, and 1/3 is larger than pa/(pa + pb) = 1/4:
in a PTA-Condorcet consistent schedule ta is scheduled before tb, and the EMD rule is
thus not PTA-Condorcet consistent.

3.3.4 Incompatibilities between axioms and properties.

One can wonder if the PTA Kemeny rule (without breaking-tie rule) is the only rule
which is PTA Condorcet consistent, neutral and which fulfills reinforcement, just like
the Kemeny rule is the only Condorcet consistent neutral rule fulfilling reinforcement
[Young and Levenglick, 1978]. We will show that it is not true, since PTA Kemeny does
not fulfill neutrality. We even show a more general statement : no neutral rule can
be PTA Condorcet consistent. This answers an open question of Pascual et al. [2018]
where the author conjectured “that rules satisfying neutrality and reinforcement fail
the PTA Condorcet principle” and said that “it is an interesting open question whether
such an impossibility theorem holds”.

Proposition 3.3.7: Incompatibility - PTA Condorcet / Neutrality

No neutral rule can be PTA Condorcet consistent.

Proof. Let us consider an instance I with an odd number of voters v ≥ 3, two tasks ta
and tb, such that pa = 1 and pb = v, and a preference profile as follows: va = v−1

2 voters
prefer schedule ta ≻ tb (this schedule will be denoted by A), and vb = v+1

2 voters prefer
schedule tb ≻ ta (schedule denoted by B).

tb ta

ta tb

0

vb

va

By contradiction, let us suppose that r is a rule which is both neutral and PTA
Condorcet consistent. Since r is PTA Condorcet consistent, it will necessarily return
the only PTA Condorcet consistent schedule when applied on instance I : A (indeed at
least pa

pa+pb
× v = v

v+1 ≤ 1 voter prefer to schedule ta before tb).
Let P(ta↔tb) be the preference profile obtained from P in which the positions of ta

and tb are swapped in all the voters’ preferences. Since r is neutral, it necessarily re-
turns schedule A in which we have inverted ta and tb, i.e. schedule B. However, this
schedule is not PTA Condorcet consistent, whereas there exists a PTA Condorcet sched-
ule. Indeed, schedule A is a PTA Condorcet consistent schedule for P(ta↔tb) since at least
pa

pa+pb
× v = v

v+1 ≤ 1 ≤ va voters prefer to schedule ta before tb, while pb
pa+pb

× v = v2

(v+1) is
larger than vb for all values of v ≥ 3.

85

Collective schedules - general case

This proposition implies that the PTA Kemeny rule is not neutral, even if no tie-
breaking mechanism is used, since it is PTA Condorcet consistent.

Aggregation rules based on distance metrics have several good axiomatic properties
[Elkind et al., 2010, 2011; Brandt et al., 2016]. However, they cannot be PTA Condorcet
consistent, as shown by the following proposition.

Proposition 3.3.8: Incompatibility - PTA Condorcet / Distance

Any resolute aggregation rule returning a schedule minimizing a distance with
the preference profile violates the PTA Condorcet consistency property. This
result holds for any tie-breaking mechanism.

Proof. Let us consider an instance I with two tasks ta and tb, such that pa = 1 and pb = v,
an odd number of voters v ≥ 3, and a preference profile as follows: va = ⌊v−1

2 ⌋ voters
prefer schedule ta ≻ tb (this schedule will be denoted by A), and vb = ⌈v+1

2 ⌉ voters prefer
schedule tb ≻ ta (schedule denoted by B). A distance relation td fulfills symmetry: for
each pair of schedules S and S ′, d(S,S ′) = d(S ′ ,S). Therefore, for our instance, by
symmetry we have: d(A,B) = d(B,A). Since vb > va, any aggregation rule r based on
minimizing a distance with the profile will return B only. However, the only Condorcet
consistent schedule is A. Since rule r returns B, r is not PTA Condorcet consistent.

Let us now show that neutrality and distance minimization can lead to very ineffi-
cient solutions for tardiness minimization.

Proposition 3.3.9: Inapproximability for ΣT of neutral rules

For any α ≥ 1, there is no neutral aggregation rule returning a set of solutions S
such that all the solutions in S are α-approximate for ΣT.

Proof. Let us consider an instance Ik with two tasks ta and tb, such that pa = 1 and
pb = k, an odd number of voters v ≥ 3, and a preference profile as follows: va = ⌊v−1

2 ⌋
voters prefer schedule ta ≻ tb (this schedule will be denoted by A), and vb = ⌈v+1

2 ⌉ voters
prefer schedule tb ≻ ta (schedule denoted by B). We define profile P(ta↔tb) as the profile
P in which tasks ta and tb are swapped in the preferences. Any neutral rule which
returns A (resp. B) when applied on P will return B (resp. A) when applied on P(ta↔tb).
A neutral rule could also return {A,B}

For profile P , schedule A has a sum of tardiness of ⌊v−1
2 ⌋, since task tb is delayed by

1 in comparison to schedule B. Schedule B has a sum of tardiness of ⌈v+1
2 ⌉×k since task

ta is delayed by k in comparison to schedule A.
Likewise, in profile P(ta↔tb), schedule A has a sum of tardiness of ⌈v+1

2 ⌉ , and schedule
B has a sum of tardiness of ⌊v−1

2 ⌋ · k.
For both profiles P and P(ta↔tb), schedule B has a total sum of tardiness k times

higher than the optimal (schedule A), which can be arbitrarily far from the optimal.
Since a neutral rule r returns B either for profile P or for profile P(ta↔tb), or both, and

86

Collective schedules - general case

since k can be as big as we want, the sum of tardiness of at least one schedule returned
by r can be arbitrarily far from the optimal.

Since the ΣT rule, without tie-breaking mechanism, returns only optimal solutions
for the tardiness minimization, this implies that the ΣT rule is not neutral. Let us now
show that aggregation rules based on a distance minimization, as ΣD, can return very
bad solutions for ΣT.

Proposition 3.3.10: Inapproximability for ΣT of distance-based rules

For any α ≥ 1, there is no aggregation rule based on a distance minimization and
always returning at least one α-approximate solution for ΣT.

Proof. Let us consider an instance Ik with two tasks ta and tb, such that pa = 1 and
pb = k, an odd number of voters v ≥ 3, and a preference profile as follows: va = ⌊v−1

2 ⌋
voters prefer schedule ta ≻ tb (this schedule will be denoted by A), and vb = ⌈v+1

2 ⌉ voters
prefer schedule tb ≻ ta (schedule denoted by B). Any distance td is symmetric, therefore
d(A,B) = d(B,A). Any rule returning the schedule minimizing the distance with the
profile will return A (resp. B) if A (resp. B) is more present than B (resp. A) in the
profile. Since a majority of voter prefer B, any rule based on a distance minimization
returns B. For profile P , A has a total sum of tardiness of ⌈v+1

2 ⌉×1 since task tb is delayed
by 1 in comparison to schedule B. On the other hand, B has a total sum of tardiness
of ⌊v−1

2 ⌋ × k, since task ta is delayed by k in comparison to schedule A. Since k can be
as high as we want, the sum of tardiness in schedule B can be arbitrarily far from the
optimal sum of tardiness.

3.3.5 Length reduction monotonicity.

Let us now introduce a new axiomatic property, which is close to the discount mono-
tonicity axiom [Talmon and Faliszewski, 2019] for the participatory budgeting prob-
lem. A rule r satisfies the discount monotonicity axiom if a project cannot be penalised
because it is cheaper (i.e. if a project is selected by rule r then it should also be selected
by this rule if its price decreases, all else being equal). We propose a new axiom, that
we call length reduction monotonicity, and which states that the starting time of a task in
a schedule cannot be delayed if its length decreases (all else being equal). This axiom
is particularly meaningful in EB settings, where all the voters would like all the tasks
to be scheduled as soon as possible.

Definition 3.3.4: Length Reduction Monotonicity

Let S be the schedule returned by a resolute rule r on instance I . Assume that we
decrease the length of a task ti in I , all else being equal. Let S ′ be the schedule
returned by r on this new instance. Rule r fulfills length reduction monotonicity if
task ti does not start later in S ′ than in S.

87

Collective schedules - general case

Proposition 3.3.11: Length Reduction Monotonicity - EMD

The EMD rule fulfills length reduction monotonicity for any tie-breaking mech-
anism.

Proof. Let P be a preference profile and S be the schedule returned by the EMD rule
on P . Let P ′ be the preference profile obtained from P in which a task ti has its length
reduced by x > 0, everything else being equal. For each voter vk , the completion time
of ti in P ′ is equal to its completion time in P minus x. Its median completion time
is then reduced by x in P ′ with respect to its median completion time in P . For any
other task tj – whose length does not change –, its median is reduced by at most x
(since in each preference its completion time is reduced by x if tj is scheduled after ti ,
and is not reduced otherwise). The median completion time of task ti decreases by x
whereas the median completion times of the other tasks decreases by at most x, so EMD
will not schedule ti later in P than in P ′: the EMD rule fulfills the Length Reduction
Monotonicity property.

Since the EMD rule fulfills the length reduction monotonicity property, it seems
particularly indicated for EB settings. Unlike the EMD rule, let us now see that the ΣD
rule does not fulfill the length reduction monotonicity property.

Proposition 3.3.12: Length Reduction Monotonicity - ΣD

The ΣD rule does not fulfill length reduction monotonicity for any tie-breaking
mechanism.

Proof. Let us consider an instance with 5 tasks {t1, t2, t3, tx, ti} with p1 = p2 = p3 = px = 1
and pi = 10. The preferences of the 400 voters are as follows:

tx t2 t1 ti t3
t3 t2 t1 ti tx
t3 ti tx t1 t2
t3 ti tx t2 t1

101

101
99
99

tx t2 t1 ti t3
t3 t2 t1 ti tx
t3 ti tx t1 t2
t3 ti tx t2 t1

For the profile on the left, the only schedule S minimizing the absolute deviation
is : S = (t3 ≻S ti ≻S tx ≻S t2 ≻S t1). For the profile on the right, the only schedule S ′

minimizing the absolute deviation is such that: S ′ = (t3 ≻S ′ t2 ≻S ′ tx ≻S ′ ti ≻S ′ t1). Task
ti has a reduced length but it starts later in S ′ than in S: ΣD does not fulfill length
reduction monotonicity.

It is not very surprising that the ΣD rule does not fulfill this axiom. Indeed, the
LRM axiom is particularly meaningful in EB settings, whereas ΣD aims at returning a
schedule that fits as much as possible as the completion times given by the voters, and

88

Collective schedules - general case

is not particularly well adapted for EB settings. Determining whether the rules ΣT and
PTA Kemeny fulfill the LRM axiom is an open problem.

3.3.6 Reinforcement.

Definition 3.3.5: Reinforcement

An aggregation rule r fulfills reinforcement (also known as consistency) [Brandt
et al., 2016] if, when a ranking R is returned by r on two distinct subsets of
voters A and B, the same ranking R is returned by r on A∪B.

For irresolute rules, in order to fulfill reinforcement, the rule has to return the in-
tersection of the subsets of solutions returned on A and B if it is non empty. Since
the PTA Kemeny rule sums the weighted Kendall tau score among the voters, it fulfills
reinforcement.

Proposition 3.3.13: Reinforcement - PTA Kemeny

The PTA Kemeny rule fulfills reinforcement.

Proof. We consider two subsets of voters V1 and V2. Since the score is obtained by
summing the weighted disagreements over all the voters, the score over V1 ∪V2 is the
sum of the score on V1 and the score on V2. Therefore, if a schedule minimizes the PTA
Kendall tau score on both V1 and V2, then it will minimize it on the union of the two
subsets.

Note that the PTA Kemeny rule fulfills reinforcement and PTA Condorcet consis-
tency, whereas the already known aggregation rules [Pascual et al., 2018] for the col-
lective schedule problem either fulfill one or the other but not both.

Proposition 3.3.14: Reinforcement - EMD

The EMD rule does not fulfill reinforcement.

Proof. Let us consider an instance with n = 6 unitary tasks {t1, t2, t3, t4, t5, t6} and v = 7
voters divided into two groups V1 and V2. Group V1 contains two voters whose prefer-
ences are as follows :

t1 t2 t3 t4 t5 t6
t1 t2 t3 t4 t5 t6

1
1

Group V2 contains five voters :

89

Collective schedules - general case

t2 t4 t1 t3 t5 t6
t2 t4 t1 t3 t5 t6
t5 t6 t1 t2 t3 t4
t5 t3 t1 t4 t2 t6
t3 t1 t6 t4 t2 t5

1

1

1

1
1

The median completion times are as follows: m1(V1) = 1,m2(V1) = 2,m3(V1) = 3,
m4(V1) = 4,m5(V1) = 5,m6(V1) = 6 and m1(V2) = 3,m2(V2) = 4,m3(V2) = 4,m4(V2) =
4,m5(V2) = 5,m6(V2) = 6. The EMD rule always returns the schedule S = (t1 ≺S t2 ≺S
t3 ≺S t4 ≺S t5 ≺S t6) when applied on V1. When applied on V2 it returns the same
schedule S and some other schedules. If EMD fulfilled reinforcement, then it should
return S when applied on V1 ∪ V2. For the profile V1 ∪ V2 the median completion
times are as follows: m1(V1 ∪ V2) = 3,m2(V1 ∪ V2) = 2,m3(V1 ∪ V2) = 3,m4(V1 ∪ V2) =
4,m5(V1 ∪ V2) = 5,m6(V1 ∪ V2) = 6. Therefore the EMD rule can return two schedules
S1 and S2, S1 = (t2 ≺S1

t1 ≺S1
t3 ≺S1

t4 ≺S1
t5 ≺S1

t6) and S2 = (t2 ≺S2
t3 ≺S2

t1 ≺S2
t4 ≺S2

t5 ≺S2
t6). Both of these schedules are different from S: the EMD rule does not fulfill

reinforcement.

As mentioned in Section 3.3.2, this last result implies that the EMD rule is not based
on a distance.

3.3.7 Unanimity.

Let us now focus on the unanimity axiom, a well-known axiom in social choice. This
axiom states that if all the voters rank candidate ta higher than candidate tb then, in the
consensus ranking, ta should be ranked higher than tb. We take the same definition,
replacing “ranked higher” by “scheduled before”:

Definition 3.3.6: Unanimity

Let P be a preference profile and r be an aggregation rule. The rule r fulfills una-
nimity iff when task ta is scheduled before another task tb in all the preferences
in P , then ta is scheduled before tb in any solution returned by r.

Note that this axiom is interesting through its link with precedence constraints in
scheduling. Indeed, if all the voters schedule a task before another one, it may indicate
that there is a dependency between the two tasks (i.e. a task must be scheduled before
the other one). A rule which fulfills the unanimity axiom can then infer the precedence
constraints from a preference profile.

Proposition 3.3.15: Unanimity - EMD

The EMD rule fulfills unanimity.

90

Collective schedules - general case

Proof. Let P be a preference profile in which a task ta is always scheduled before a task
tb. Since ta is always scheduled before tb, for each voter, the completion time of ta is
strictly smaller than the completion time of tb, and thus the median completion time
of tb is strictly larger than the median completion time of ta. Therefore ta is scheduled
before tb by EMD: the EMD rule fulfills unanimity.

In [Pascual et al., 2018], the authors prove that the ΣT rule does not fulfill unanim-
ity (this property is called Pareto efficiency in the paper). Let us now show that the ΣD
does not fulfill this property either.

Proposition 3.3.16: Unanimity - ΣD

The ΣD rule does not fulfill unanimity for any tie-breaking mechanism.

Proof. Let us consider an instance with 5 tasks {ta, tb, tc, td , te} such that pa =pb =pc =10,
pd =pe =1 andv=88 voters. We consider the following preferences.

td ta te tb tc
te tc td ta tb
td tb te tc ta

29
30
29

In this example, a short task te is always scheduled before a long task tc in the
preferences. However in the unique optimal solution S for ΣD, which is td ≻S tc ≻S
te ≻S ta ≻S tb, te is scheduled after tc. Therefore, the ΣD rule does not fulfill unanimity.

Note that, if we reverse all the schedules in the preference profile, then the long
task tc is always scheduled before the short task te but has to be scheduled after the te
in the optimal solution, which is S but reversed.

One could expect the PTA Kemeny rule to fulfill unanimity since the Kemeny rule
does, and since it minimizes the pairwise disagreements with the voters. We can show
that this is in fact not the case, by exhibiting a a counter-example.

Proposition 3.3.17: Unanimity - PTA Kemeny

The PTA Kemeny rule does not fulfill unanimity for any tie-breaking mecha-
nism.

Proof. We consider an instance with n = 7 tasks {ta, tb, tc, td , te, tf , tg }, such that pa = 1,
pb = 10 and pc = pd = pe = pf = pg = 2, and v = 100 voters. The preferences are as
follows :

tc td te tf tg tb ta
tb ta tc td te tf tg

50
50

91

Collective schedules - general case

In this preference profile, the task tb is always scheduled before ta, however in the
only optimal solution for PTA Kemeny, ta is scheduled before tb, indeed the optimal
solution S is ta ≺S tc ≺S td ≺S te ≺S tf ≺S tg ≺S tb.

Note that unanimity is fulfilled if all the tasks are unit tasks. This has indeed al-
ready been shown for ΣT [Pascual et al., 2018], and this is true for PTA Kemeny since
the Kemeny rule fulfills the unanimity axiom.

In our context, the unanimity axiom is not fulfilled because of the lengths of the
tasks. It may indeed be better to disagree with the whole population in order to min-
imize the average delay or deviation, for ΣT and ΣD, or to disagree with the whole
population if this disagreement has a small weight, in order to reduce other disagree-
ments which have larger weights, for PTA Kemeny. Let us now restrict the unanimity
axiom to the case where all voters agree to schedule a small task ta before a large task
tb: we will see that the solutions returned by the PTA Kemeny rule always schedule ta
before tb, that at least one optimal solution returned by ΣT also schedules ta before tb,
whereas all the optimal solutions for ΣD may have to schedule tb before ta as we can
see in the proof of proposition 3.3.16.

Proposition 3.3.18: Unanimity special case - PTA Kemeny

Let ta and tb be two tasks such that pa ≤ pb. If task ta is always scheduled before
task tb in the preferences of the voters, then ta is scheduled before tb in any
optimal schedule for the PTA Kemeny rule.

Proof. Let ta and tb be two tasks such that pa ≤ pb. Let us assume, by contradiction,
that there is a schedule S such that tb is scheduled before ta and which is optimal for
the PTA Kemeny rule. Let S(ta↔tb) be the schedule obtained from S by swapping the
position of ta and tb. Let tc be a task different from ta and tb. If tc is scheduled before
tb or after ta in S, then the swap of ta and tb has no impact on the disagreements with
tc. If tc is scheduled between ta and tb, then we have b ≻S c and c ≻S a and a ≻S(ta↔tb)

c

and c ≻S(ta↔tb)
b (the order between tc and the tasks other than ta and tb does not change

between S(ta↔tb) and S). Task ta is always scheduled before task tb in the preferences
and pa ≤ pb, therefore the overall cost of scheduling ta before tc is smaller than or equal
to the cost of scheduling tb before tc. Furthermore, since ta is always scheduled before tb
in the preferences, scheduling ta before tb does not create a new disagreement, whereas
the cost of scheduling tb before ta is equal to v · pb. The overall cost of S is then strictly
larger than the cost of S(ta↔tb) which means that S is not optimal, a contradiction.

Proposition 3.3.19: Unanimity special case - ΣT

Let ta and tb be two tasks such that pa ≤ pb. If task ta is always scheduled before
task tb in the preferences of the voters, then ta is scheduled before tb in at least
one optimal schedule for the ΣT rule.

92

Collective schedules - general case

Proof. Suppose that an schedule S is optimal for the ΣT rule and such that tb is sched-
uled before ta in S, Ca(S) > Cb(S). By swapping the positions of ta and tb in S, we obtain
a new feasible solution S ′ in which the completion times of all tasks but ta and tb are
either smaller than or equal to the ones in S. The completion time of tb in S ′ is the one
of ta in S and the completion time of ta in S ′ is smaller than or equal to the one of tb in
S. The completion time of tb in each preference is strictly higher than the completion
time of ta. For any voter i, there are two cases:

• Task ta is completed in S before its completion time in Si . In that case, if task
tb completes in S ′ at the same time than ta in S, it will also complete before its
completion time in Si and therefore both tasks ta and tb will not be tardy, in S ′,
just like in S.

tb ta

0 Ca(Si) Cb(Si)

S

• Task ta is completed in S after its completion time in Si . We will distinguish two
subcases:

– Ca(S ′) ≥ Ca(Si). In that case the tardiness of ta for voter i is decreased by
Ca(S) − Ca(S ′). On the other hand, the tardiness of task tb is increased for
voter vi by at most Cb(S ′)−Cb(S), since we have Ca(S) = Cb(S ′) and Ca(S ′) ≤
Cb(S), the overall tardiness does not increase.

tb ta

0 Ca(Si) Cb(Si)

Ca(S)−Ca(S ′)

Ca(S)−Cb(Si)

S

– Ca(S ′) < Ca(Si). In that case, the tardiness of task ta decreases by Ca(S) −
Ca(Si) and the tardiness of tb increases by at most Cb(S ′) − Cb(Si), since
Cb(Si) > Ca(Si), the tardiness does not increase overall.

tb ta

0 Ca(Si) Cb(Si)

Ca(S)−Ca(Si)

Ca(S)−Cb(Si)

S

Thus, if we are looking for a single solution for ΣT, we can restrict the search to
solutions fulfilling the unanimity axiom for couples of tasks for which all the voters

93

Collective schedules - general case

agree that the smaller task should be scheduled first. For ΣD, we can guarantee solu-
tions which fulfill this axiom for couples of tasks of the same length.

Proposition 3.3.20: Unanimity special case - ΣD

Let ta and tb be two tasks such that pa = pb. If task ta is always scheduled before
task tb in the preferences of the voters, then ta is scheduled before tb in at least
one optimal schedule for the ΣD rule.

Proof. Suppose that an schedule S is optimal for the ΣD rule and such that tb is sched-
uled before ta in S and pa = pb. By swapping the positions of ta and tb in S, we obtain
a new feasible solution S(ta↔tb) in which the completion times of all tasks but ta and
tb are equal to the ones in S. The completion time of tb in S(ta↔tb) is the one of ta in
S and the completion time of ta in S(ta↔tb) is lower or equal to the one of tb in S. The
completion time of tb in each preference is strictly higher than the completion time of
ta. Therefore, in S(ta↔tb) the deviation of tb which is ending in S(ta↔tb) at the time ta ends
in S, is lower or equal to the deviation of ta in S. Similarly the deviation of ta in S(ta↔tb)
is lower or equal to the deviation of tb in S. Overall, the deviation of S(ta↔tb) is lower
or equal to the deviation of S. Their deviation are equal if both ta and tb are scheduled
before their minimum completion time or both after their last completion time in the
preference profile.

We have seen that with the ΣT and PTA Kemeny rules, if a task ta is scheduled
before a task tb by all voters and ta is not longer than tb, then there exists an optimal
solution which schedules ta before tb. This is not the case for ΣD. In EB settings, we
would expect well supported short tasks to be scheduled before less supported large
tasks. Therefore the ΣT and PTA Kemeny rules seem well adapted for EB settings,
while the ΣD rule seems less relevant in these settings.

3.3.8 Summary of the axiomatic properties of the rules.

We summarize the results shown in this section in Table 3.1. A sign “*” means that the
property has been showed by Pascual et al. [2018], the other results are shown in this
chapter.

3.4 Computational complexity and algorithms.

3.4.1 Complexity.

In this section we study the computational complexities of the ΣD and the PTA Kemeny
rules. We will then focus on resolution methods for these rules. The ΣT rule has already
been proven to be strongly NP-hard [Pascual et al., 2018]. In the same work, authors
use linear programming to solve instances up to 20 tasks and 5000 voters, which is
satisfactory since realistic instances are likely to have few tasks and a lot of voters.

94

Collective schedules - general case

Unanimity (ta before tb)

Rule N PTA N R PTA C LRM Distance pa<pb pa=pb pa>pb
PTA K ✗ ✓ ✓ ✓ ? ✗ ✓ ✓ ✗

ΣT ✗ ✓ ✓* ✗* ? ✗ ∼ ∼ ✗*
ΣD ✗ ✓ ✓* ✗ ✗ ✓ ✗ ∼ ✗

EMD ✗ ✓ ✗ ✗ ✓ ✗ ✓ ✓ ✓

Table 3.1: Fulfilled (✓) and unfulfilled (✗) axioms by the PTA Kemeny, ΣT, ΣD and
EMD rules. Symbol ∼means that the property is fulfilled by at least one optimal solu-
tion. The acronyms in the columns correspond to: neutrality (N), PTA neutrality (PTA
N), reinforcement (R), PTA Condorcet consistency (PTA C), length reduction mono-
tonicity (LRM).

The PTA Kemeny rule is NP-hard to compute since it is an extension of the Kemeny
rule, which is NP-hard to compute [Bartholdi et al., 1989]. Most of the algorithms used
to compute the ranking returned by the Kemeny rule can be adapted to return the
schedule returned by the PTA Kemeny rule, by adding weights on the disagreements in
the resolution method. In the following section, to compute schedules returned by the
PTA Kemeny rule, we will use a weighted adaptation of an exact linear programming
formulation for the Kemeny rule [Conitzer et al., 2006].

Regarding the ΣD rule, when there are exactly two voters, the problem is easy to
solve: we return one of the two schedules in the preference profile (since deviation is
a distance, any other schedule would have a larger deviation to the profile because of
triangle inequalities). In the general case, the problem is NP-hard, as shown below.

Theorem 3.4.1: Strong NP-hardness of ΣD

The problem of returning a schedule minimizing the total absolute deviation is
strongly NP-hard.

Proof. In order to prove that computing the schedules returned by ΣD is NP-hard, we
start by introducing and proving a preliminary lemma. In the sequel, for reasons of
readability, we will denote by ΣDP the problem which consists in returning a schedule
which minimizes the sum of the absolute deviations with the preference profile (i.e.
ΣDP is the problem solved by the ΣD rule).

In the sequel, we consider a polynomial time reduction from the problem (1|no −
idle|ΣD) which has been proven as strongly NP-hard when coded in unary [Wan and
Yuan, 2013]. In this problem we consider an instance I composed of a setJ of n tasks,
each task ti having a processing time pi ∈ N∗ and a due date di . By L =

∑
ti∈Jpi , we

denote the overall load of the tasks. A feasible solution for this problem is a schedule
S of all tasks in J on a single machine, with no idle time. We denote by D(S) the sum
of the absolute deviations

∑
ti∈J |Ci(S)−di | where Ci(S) is the completion time of task ti

in the schedule S. Given an integer B, the objective is to determine if a schedule S with

95

Collective schedules - general case

a total sum of absolute deviations D(S) smaller than or equal to B exists. Since no task
can complete before its processing time or after L (because there is no idle time), we
can assume without loss of generality that L ≥ di ≥ pi . If a task i had a deadline smaller
than its processing time, then all feasible solutions would at least have a deviation of
pi − di for task i, therefore, we can reduce B by that amount and have di = pi ; an analo-
gous remark can be done for di > L.

From an instance I of the (1|no − idle|ΣD) problem, we define an instance I ′ of the
ΣDP problem. We have a setJ′ of n′ = n+4L tasks. For each task ti ofJ, there is a task
t′i inJ′ with p′i = pi . We denote by J ⊂J′ the set of tasks t′1 to t′n created from the tasks
ofJ. The setJ′ also contains 4L tasks of length 1. These 4L tasks are partitioned into 4
sets L1, L2, L3 and L4. Therefore the set of all the tasksJ′ = J∪L1∪L2∪L3∪L4. Instance
I ′ has 4n voters: for each task ti ∈J, we create 4 voters vi1,v

i
2,v

i
3,v

i
4 (see Figure 3.2).

• Voter vi1, of type 1, schedules first the tasks of L1 , then the tasks of L2, then the
tasks of L3, then the tasks of J and finally the tasks of L4.

• Voter vi2, of type 2, schedules firstly the tasks of L1, followed by the tasks of J , then
the tasks of L2, then the tasks of L3 and finally the tasks of L4.

• Voter vi3, of type 3, schedules task t′i in order that this task completes at time
di + 2L. The rest of the schedule is as follows: first, the tasks of L2, then the tasks
of J except t′i , then the tasks of L1 are scheduled around task t′i . The schedule
ends with the tasks of L3 followed by the tasks of L4.

• Voter vi4, of type 4, schedules task t′i in order that this task completes at time
di + 2L. The rest of the schedule is as follows: first, the tasks of L1, then the tasks
of L2, then the tasks of L4 are scheduled around task t′i , then the tasks of J without
t′i . The tasks of L3 end the schedule.

L1 L2 L3 J L4

L1 J L2 L3 L4

L2 J\{t′i} L1 t′i L1 L3 L4

L1 L2 L4 t′i L4 J\{t′i} L3

0 L 2L 2L+ di 3L 4L 5L

vi1

vi2

vi3

vi4

Figure 3.2: Voters associated with a task t′i

The order on the tasks in each of the subsets L1, L2, L3, L4 is the same for all voters.
For the set J , the order is the same for all voters, but, for each voter of type 3 and 4 one
task is scheduled at a given time, regardless of its usual rank in the order.

96

Collective schedules - general case

Let us note that we can create such an instance in polynomial time since the instance
for the (1|no − idle|

∑
D) problem is coded in unary.

Lemma 3.4.1: Structure of an optimal solution

Given an instance I of the (1|no − idle|
∑
D) problem, there exists an optimal

solution for the instance I ′ of ΣDP , created as described above, in which the
tasks are scheduled as follows: L1 first, L2 second, J third, then L3 and finally
L4.

Proof. Figure 3.3 illustrates the structure of an optimal solution as stated in this lemma.
We prove this lemma by proving four facts.

L1 L2 J L3 L4

0 L 2L 3L 4L 5L

Figure 3.3: Structure of an optimal solution.

Fact 1: There exists an optimal schedule S∗ in which the tasks of L1 are scheduled before
the tasks of L2 and J .
To prove fact 1, we consider an optimal schedule S∗ in which at least one task of L1 is
scheduled after a task of J or L2. Thanks to proposition 3.3.20, we can consider that in
S, the tasks of L1 and L2 are scheduled before the tasks of L3 and L4 and in the same
order than in the preferences since the tasks of L1 and L2 are always scheduled before
the tasks of L3 and L4 and the tasks of L1 and L2 are always scheduled in the same
order. Let us call x1 ∈ L1 the first task of L1 scheduled just after a task x2 ∈ L2 ∪ J . We
note C1(S∗) and C2(S∗) the completion times of tasks x1 and x2 in S∗. Since x1 is the
first task of L1 to be scheduled just after a task of L2 or J and since the tasks of L1 are
scheduled in the same order as in the preferences, task x2 starts after the tasks of L1
preceding x1 in the preferences. We study the schedule S in which the tasks x1 and x2
are swapped. We distinguish two cases:

1. Task x2 is in L2: the swap changes the order on the tasks x1 and x2, the order on
the tasks of L1 (resp. L2) is unchanged. Therefore x1 (resp. x2) is still scheduled
after (resp. before) the tasks scheduled after it (resp. before it) in the preferences,
which means that, in S, the task x1 (resp. x2) completes at or after (resp. at or
before) its completion time for voters of type 1,2 and 4 (resp. for voters of type
2). Thus, for each voter of type 1 and 4, the absolute deviation is reduced by one,
and reduced by two for each voter of type 2. Overall, the absolute deviation is
reduced by 4n. On the other hand, voters of type 1,3 and 4 could increase their
deviations of 1 relatively to task x2 and voters of type 3 could also increase their
deviation for the task x1 of 1. In the worst case, this increase is of 4n, which equals
the reduction, therefore S would also be optimal.

97

Collective schedules - general case

2. Task x2 is in J : following the same reasoning, we can see that voters of type 1,2 and
4 will decrease their deviations for task x1 by px2

with the swap. Voters of type 1
will also decrease their deviation for task x2 by one since x1 completes before 3L
in S∗ which implies that x2 completes before 3L in S. Overall the reduction is of
3npx2

+ n. Voters of type 2,3 and 4 could increase their deviation for x1 by 1 and
voters of type 3 could increase their deviation with x1 by px2

, overall the increase
is at most of 3n + npx2

, since px2
≥ 1 the increase is smaller than or equal to the

decrease, S is also optimal.

In both cases, S is at least as good as S∗, therefore, from any optimal solution respecting
proposition 3.3.20, we can iteratively obtain a new optimal solution in which the tasks
of L1 are scheduled before the tasks of L2 and J .

Fact 2: There exists an optimal schedule S∗ in which tasks of L4 are scheduled after tasks
of L3 and J .
Fact 2 can be proved in an analogous way than Fact 1.

Fact 3: There exists an optimal solution S∗ in which tasks of L2 are scheduled before tasks
of J .
We show that there is an optimal solution in which the tasks of L2 are scheduled before
the tasks of J . We consider an optimal solution S∗, respecting the previous facts and
proposition 3.3.20, in which at least one task of L2 is scheduled after a task of J . Let us
denote by x2 the first task of L2 scheduled after a task of J . Let us call xj the task of J
scheduled just before x2 in S∗. Note that such a task always exists since the task of L1
are scheduled before the tasks of J and L2 and the tasks of L3 and L4 are scheduled after
the ones of L2. We study the schedule S, similar to S∗ except that x2 and xj are swapped.
Since the tasks of L2 are in the same order than in the preferences, and since we swap
x2 only with tasks of J , x2 cannot complete in S before tasks of L2 scheduled before it
in S∗. Therefore, x2 completes in S at least at the same time than in the preferences of
voters of type 1 and 4. By swapping x2 and xj , we reduce the absolute deviation on x2
for voters of type 1,3 and 4 by pxj , we also reduce absolute deviation on xj for voters of
type 1, by 1. Overall, we reduce the sum of absolute deviation by 3npxj +n. We may in-
crease the absolute deviation on xj for voters of type 2,3 and 4 by one and deviation on
x2 for voters of type 2 by pxj , increasing the total sum of deviation by at most 3n+npxj .
Since pxj ≥ 1, the increase is smaller than the decrease, therefore S is also optimal.

Fact 4: There exists an optimal solution S∗ in which tasks of L3 are scheduled after tasks
of J .
We can prove fact 4 in the same way than fact 3.

From Facts 1 to 4, we get Lemma 3.4.1.

We can now go back to the proof of theorem 3.4.1.
In a schedule which follows the structure explained in Lemma 3.4.1, it is possible

98

Collective schedules - general case

to calculate the absolute deviations associated with the tasks of subsets L1, L2, L3 and
L4:

• L1: the tasks of L1 are scheduled exactly like in the preference of voters of type 1,
2 and 4. The voter of type 3 associated with the task i has a delay of L+ (L−pi) on
the di first tasks of L1 and a delay of 2L on the others. Overall, the deviation is:
n×

∑
i di × (2L− pi) + (L− di)× 2L.

• L2: Voters of type 1 and 4 have no deviation on the tasks of L2. The 2n voters of
type 2 and 3 have a deviation of L on each of the L tasks of L2, which amounts to
2nL×L.

• L3: Symmetrically to L2, the sum of deviation of tasks of L3 is also: 2nL×L.

• L4: Voters of type 1,2 and 3 have no deviation on the tasks of L4. For the voters of
type 4: the first di − pi tasks of L4 are delayed of 2L, the rest of the tasks of L4 are
delayed by 2L−pi , which amounts to: n×

∑
i(di −pi)×2L+(L− (di −pi))× (2L−pi) =

n×
∑

i(di − pi)(pi) + 2L2 −Lpi .

Overall the sum of deviations M associated with the subsets L1, L2, L3 and L4 is:

M =

n×∑
i

di × (2L− pi) + (L− di)× 2L

+
(
2nL2

)
+
(
2nL2

)
+

n×∑
i

(di − pi)(pi) + 2L2 −Lpi

M=4nL2 +

n∑
i

−pidi + 2L2 + pidi − p2
i + 2L2 −Lpi

M = 4nL2 +n×

∑
i

4L2 − pi(L+ pi)

We now study the deviation of the tasks of J . The median completion time of
task t′i in J is d′i = 2L + di . Let us see that, regardless of the order on the tasks of J
in the preference, voters of type 1 and 2 will always have a total deviation on task t′i
of 2L. Since the order is the same for all the voters, the task will complete at a time
L + K with K an integer lower than L, in the preference of any voter of type 2 and at
3L+K in the preference of any voter of type 1. Therefore, in any schedule S, since the
task completes at a time Ci(S) between 2L and 3L, we will have a total deviation of
Ci(S)− (L+K) + (3L+K)−Ci(S) = 2L. We count then 2L for every pair of voter of type 1
and 2, which amounts to 2L×n for each task, so the overall deviation of 2Ln2.

For the last two type of voters, for each task t′i , we distinguish two cases:

1. Voters vi3 and vi4 both have scheduled t′i so it completes at 2L+di = d′i . The devia-
tion of a schedule S, regarding these two voters is therefore 2|Ci(S)− d′i |.

99

Collective schedules - general case

2. All other voters of type 3 and 4 schedule tasks of J in the same order except
of one task t′j , which is scheduled to complete at d′j . Let us denote by K the

integer such that task t′i completes at L+K in v
j
3, then t′i completes at 3L+ pj +K

in v
j
4. Since t′i completes between 2L and 3L in the optimal solution S we are

considering, we know that the deviation with v
j
3 and v

j
4 regarding task t′i will be

Ci(S)− (L+K) + 3L+ pj +K −Ci(S) = 2L+ pj . We calculate this value for all tasks,
and call it N :

N =
∑
t′i∈J

 ∑
t′j∈J\{t

′
i }

2L+ pj

N =

∑
t′i∈J

2L(n− 1) +L− pi = 2Ln2 −Ln−L

By summing all these terms, the deviation of a solution S respecting lemma 3.4.1 is:

D(S) = M + 2Ln2 +N + 2
∑
t′i∈J
|Ci(S)− d′i |

If a solution S with a cost lower than B exists for instance I of problem (1|no− idle|ΣD),
then there is a solution S ′ with a cost lower than M+2Ln2+N+2B for instance I ′ of ΣDP .
We can find this solution by reproducing the order on the task ofJ on the tasks on J .
More precisely, S ′ respects Lemma 3.4.1 and schedules task from J in the order corre-
sponding to S with the tasks ofJ. We would have Ci(S ′) = Ci(S) + 2L and d′i = di + 2L.
Therefore, for all i, we have |Ci(S) − di | = |Ci(S ′) − d′i |. Since,

∑
ti∈J|Ci(S) − di | ≤ B, we

have
∑

t′i∈J |Ci(S ′)− dd′i | ≤ B and consequently, D(S ′) ≤M + 2Ln2 +N + 2B.
Reciprocally, if there exists a solution S ′ with a total deviation D(S ′) smaller than
M + 2Ln2 + N + 2B for an instance I ′ of ΣDP , we can create a solution S with a cost
lower than B for an instance I of (1|no − idle|

∑
D) by recreating the order on the tasks

of J on the tasks ofJ.

We showed that there exists a solution of cost at most B for the (1|no − idle|ΣD)
problem for instance I iff there is a solution of cost at most M + 2Ln2 + N + 2B for
instance I ′ of ΣDP , that we can obtain in polynomial time. Since (1|no − idle|ΣD) is
strongly NP-hard, ΣDP is strongly NP-hard.

Since computing an optimal schedule for ΣD is strongly NP-hard, we propose two
resolution methods. First, we use linear programming, as it has been done with ΣT,
allowing us to solve exactly instances up to 15 tasks in less than 30 minutes. Second, we
propose to use the EMD rule as a heuristic and to use local search in order to improve
the solution.

100

Collective schedules - general case

3.4.2 EMD with local search: a heuristic for ΣD and ΣT.

Since both the ΣD and ΣT rules solve NP-hard problem, we propose to use the EMD
rule as a heuristic to solve these problems. As we will see in Section 3.5, EMD performs
well in practice, even if, in the worst cases, it can lead to really unsatisfactory schedules,
which can be shown by exhibiting a worst case instance.

Proposition 3.4.1: No α-approximation of EMD for ΣD and ΣT

For any α ≥ 1, EMD is not α-approximate for the total absolute deviation mini-
mization, nor for the total tardiness minimization.

Proof. Let us consider an instance with v voters and n tasks. Tasks t1, t2 and t3 are of
size p, with p an integer and n−3 tasks t4, . . . , tn are of size 1. We consider the following
preference profile:

t1 t3 t4 . . . tn t2

t1 t2 t4 . . . tn t3

t2 t1 t4 . . . tn t3

t2 t3 t4 . . . tn t1

v
2 − 1

1

1
v
2 − 1

0 p 2p 2p+n−3 3p+n−3

In such an instance, tasks t1 and t2 have median completion times m1 = m2 = p. The
task t3 has a median completion time m3 = 2p. Tasks t4 to tn have median completion
times from 2p + 1 to 2p + n − 3. Therefore the EMD rule returns a schedule S with t1
and t2 first, in any order, then t3 and finally t4 to tn in this order: S = (t1 ≻S t2 ≻S t3 ≻S
t4 ≻S ... ≻S tn). This solution has a sum of deviation of ΣD(S) = vpn+ vn− 3v − 4p.

Let us now consider another solution S ′ = (t1 ≻S ′ t3 ≻S ′ t4 ≻S ′ ... ≻S ′ tn ≻S ′ t2), we
calculate its total deviation and find: ΣD(S ′) = 2pv + vn− 3v + 2p+ 2n− 6.

We calculate the ratio between the two values:

vpn+ vn− 3v − 4p
2pv + vn− 3v + 2p+ 2n− 6

When p,n and v tend towards +∞ the ratio tends towards +∞ as well. Therefore the
EMD rule can return a schedule with a sum of deviations arbitrarily far from the opti-
mal one.

We can use the same instance to show a similar result regarding ΣT. The tardiness
of schedule S = (t1 ≻S t2 ≻S t3 ≻S t4 ≻S ... ≻S tn) is ΣT (S) = vpn+pv/2+(n−3+p)v−2. The
tardiness of S ′ = (t1 ≻S ′ t3 ≻S ′ t4 ≻S ′ ... ≻S ′ tn ≻S ′ t2) is ΣT (S ′) = (n−3+p)+(n−3+2p)v/2.
Once more, when n,v and p tend towards +∞, the ratio tends towards +∞.

Local search. In order to improve the solution returned by the EMD rule, we propose
a local search algorithm. We define the neighbourhood of a schedule S as the set of

101

Collective schedules - general case

schedules obtained from S in which two consecutive tasks have been swapped. If at
least one neighbour has a total deviation (resp. tardiness) smaller than S, we choose
the best one, and we restart from it. Otherwise, S is a local optimum and we stop the
algorithm. At each step, we study (n− 1) neighbours: the complexity is linear with the
number of steps. In our experiments, by letting the algorithm reach a local optimum,
we saw that the result obtained is usually very close to its local optimum at n steps and,
that the local search always ends before 2n steps: in practice, we can bound the number
of steps to 2n without reducing the quality of the solution.

3.5 Experiments.

Instances. Since, up to our knowledge, there is no database of instances for the collec-
tive schedule problem, we use synthetic instances. We generate two types of preference
profiles: uniform (denoted below by U), in which the preferences are drawn uniformly
(each possible permutation of the task is as likely as the others); and correlated (C), in
which the preferences are drawn according to the Plackett-Luce model [Plackett, 1975;
Luce, 2012]. In this model, each task ti has an objective utility ui (the utilities of the
tasks are drawn uniformly in the [0,1] interval). We consider that the voters pick the
tasks sequentially (i.e. they choose the first task of the schedule, then the second, and
so forth). When choosing a task in a subset J , each task ti of J has a probability of being
picked of ui/

∑
tj∈J uj . The lengths of the tasks are chosen uniformly at random between

1 and 10 (the results do not differ when the lengths are chosen in interval [1,5]). For all
the experiments, we use CPLEX, a linear programming solver, to compute an optimal
solution for each rule.

Number of optimal solutions. For most of the instances that we have generated, our
rules had only one optimal solution. This was the case for more than 99% of the in-
stances for ΣT and ΣD. For PTA Kemeny, this was the case for about 90% (resp. 95%)
of the instances of 100 voters (resp. 250 voters), and for 98% of the instances in the
case of correlated instances of 250 voters.

Computation times. We run, on a 6-core Intel i5 processor, the two linear program-
ming algorithms corresponding to the ΣD and PTA Kemeny rules. The mean computa-
tion times are given in Table 3.2.

ΣD PTA Kemeny
Number of voters P n=4 n=8 n=12 n=4 n=8 n=12

50
U 0.01 0.28 10.4 0.004 0.02 0.05
C 0.005 0.13 0.95 0.002 0.02 0.05

500
U 0.01 25.0 104.1 0.003 2.1 4.6
C 0.006 13.4 47.6 0.003 1.3 3.8

Table 3.2: Mean computation times (s) for ΣD and PTA Kemeny.

These algorithms allow to solve small but realistic instances. Note that correlated

102

Collective schedules - general case

instances, which are more likely to appear in realistic settings, require less computa-
tion time than uniform ones. Note also that computing an optimal schedule for PTA
Kemeny is way faster than an optimal schedule for ΣD.

Observation 3.5.1: Linear programming formulation

We now describe the linear programming formulation we used for these exper-
iments. There are n(n − 1) binary variables preci,j . Variable preci,j is equal to 1
if task ti is scheduled before task tj in the solution. To compute the cost of a
solution we add n integer variables Ci which represent the completion time of
task ti . Finally, we add n · v variables devi,v containing the deviation of task ti
for voter vv . The objective is then to minimize the sum of the variables devi,v .

minimize
∑
v∈V

∑
i∈J

devi,v

s. t. preci,j + precj,i = 1 ∀i, j ∈ V 2, i , j
preci,j + precj,k + preck,i ≤ 2 ∀i, j,k ∈ V 3, i , j, i , k,k , j

pj +
∑

i∈J\{j}
preci,j · pi = Cj ∀j ∈J

di,k −Ci ≤ devi,k ∀i ∈J,∀k ∈ V
−(di,k −Ci) ≤ devi,k ∀i ∈J,∀k ∈ V

preci,j ∈ {0,1} ∀i, j ∈J2, i , j
tj ∈ N

+ ∀j ∈J

Regarding the constraints, the first two lines ensure that the solution is a total
order of the tasks. The third line ensures that variable Cj contains the completion
time of task tj . The following two lines make sure that variable devi,k contains
the deviation of task ti for voter vk .

Performance of EMD. We now evaluate the performance of the EMD algorithm in com-
parison to the optimal resolution in terms of computation time and total deviation. We
compute the ratio r = D(EMD,P)/D(S∗, P) (resp. r = T (EMD,P)/T (S∗, P)) where S∗ is
a schedule returned by ΣD (resp. ΣT) and EMD is a schedule returned by the EMD
algorithm. We compute r before and after the local search. Results can be found in
Figures 3.4 and 3.5. In these figures, the orange lines shows the median value of the
ratio r, the boxes extend from the first quartile to the third quartile and the dots show
the results outside of these quartiles.

103

Collective schedules - general case

Figure 3.4: Ratio r between the deviation of the schedule returned by EMD without
(left) and with local search (right) in comparison to the optimal solution returned by
ΣD.

Figure 3.5: Ratio r between the tardiness of the schedule returned by EMD without
(left) and with local search (right) in comparison to the optimal solution returned by
ΣT.

The EMD algorithm alone returns solutions with a sum of deviations (resp. tardi-
ness) about 10% (resp. 25%) higher than the optimal sum of deviations (resp. tardi-
ness). With local search, the solution improves, especially for ΣD, with on average a
sum of deviations (resp. tardiness) less than 1% (resp. 20%) higher than the optimal
one. In terms of computation time, for 10 tasks and 100 voters, the heuristic (EMD +lo-
cal search) takes 0.037 seconds to return its solution before the local search, and 0.63
seconds in total, while the linear program takes 4.5 seconds. This heuristic is thus a
very fast and efficient alternative to the ΣD rule for large instances. The EMD rule does
not seem to work as well to approximate ΣT than ΣD. This can be explained by the fact
that a task scheduled at its median completion time has a minimum overall deviation
but can be tardy for many voters. On a more general note, schedules returned by the
ΣD and ΣT rules can be quite different, as we will see now, and the EMD rule returns

104

Collective schedules - general case

schedules close to the ones returned by the ΣD rule.

Difference between the ΣD, ΣT and PTA Kemeny rules. We execute the three rules
on 300 instances, and we compare the schedules obtained with respect to the total
deviation (ΣD), the total tardiness (ΣT) and the weighted Kendall Tau score (KT). We
compare each schedule obtained to the optimal schedule for the considered metric. For
example, the “1.06” in column ΣT of Table 3.3 means that, on average, for uniform
instances with 5 tasks, the schedule returned by the ΣT rule has a sum of deviation
1.06 times larger than the minimal sum of deviation.

ΣD ΣT PTA K
P M n=5 n=10 n=5 n=10 n=5 n=10

U
ΣD 1 1 1.06 1.07 1.07 1.09
ΣT 1.12 1.16 1 1 1.01 1.02
KT 1.12 1.16 1.01 1.01 1 1

C
ΣD 1 1 1.05 1.09 1.05 1.07
ΣT 1.06 1.08 1 1 1.001 1.001
KT 1.07 1.07 1.002 1.01 1 1

Table 3.3: Performance of each rule relative to the others.

Table 3.3 shows that the schedules returned by ΣT and PTA Kemeny are very close
to each other (the values they obtain are very close), while the ΣD rule returns more
different schedules, even if the scores obtained by the three rules do not differ from
more than 16% for uniform instances and 9% for correlated instances. Note that the
number of tasks does not seem to change these results. Overall, the PTA Kemeny and
ΣT rules return similar schedules, in which short tasks are favored, whereas the ΣD
rule seems to return schedules as close as possible to the preference profile.

Length reduction monotonicity (axiom LRM). We have proved in Proposition 3.3.11
that the EMD rule fulfills length reduction monotonicity and we have shown in Propo-
sition 3.3.12 that the ΣD rule does not fulfill this property. We now study to what
extent the length reduction monotonicity axiom is fulfilled in practice for the ΣD, ΣT
and PTA Kemeny rules. We run the three rules on 1200 instances with 50 voters and 8
tasks. Then, we reduce the length of a random task in each of the instances, and run the
three rules again. If the reduced task starts later in the schedule returned by a rule than
it did before the reduction, we count one instance for which the rule violates LRM. On
the 1200 instances, PTA Kemeny and ΣT always respected LRM. The ΣD rule violated
LRM in 102 instances (8.5%). This percentage goes up to 12.3% on uniform instances
and up to 18% on uniform instances with tasks with similar lengths.

3.6 Discussion and conclusion

We studied, from an axiomatic and a computational viewpoint, four natural rules for
the collective schedule problem. This problem generalizes the collective ranking prob-

105

Collective schedules - general case

lem, since the collective ranking problem can be viewed as the collective ranking prob-
lem with unit length tasks. Note the four studied rules either generalize well know
rules for the collective ranking problem (the PTA Kemeny rule generalizes the Kemeny
rule, and the ΣD rule generalizes Spearman’s footrule), or are rules that do not seem
to be used for the collective ranking problem yet (ΣT and EMD) – these rules may be
interesting also in the context of collective ranking.

We have also introduced some new axioms, as PTA Neutrality, that may be useful in
other context where items, or candidates, have weights. We showed incompatibilities
between axioms, showing that neutral or distance based rules are not PTA Condorcet
consistent and do not approximate the minimal sum of tardiness of the tasks.

Going back to our four rules, we saw that the PTA Kemeny and the ΣT rules seem to
be particularly adapted in EB settings, where it is better for a task to be completed early
(the ΣT rule seems well adapted to this setting by definition, and the PTA Kemeny rule
because it fulfills in particular the PTA Condorcet property). From an experimental
viewpoint, we also saw that the solutions returned by the ΣT and the PTA Kemeny
rules are very close. On the contrary, the ΣD rule is, by construction, useful in non EB
settings.

Despite it does not fulfill reinforcement, contrary to the three other rules, the EMD
rule has several advantages: it can be computed in polynomial time (contrary to the
three other rules), and it is the only one to guarantee that a task ta will be scheduled
before a task tb if all the voters have scheduled ta before tb. This last remarks guar-
antees that the schedule returned by EMD fulfills precedence constraints, if there are
precedence constraints between the tasks and that these constraints are fulfilled in the
schedules given by the voters. The EMD rule also fulfills the Length Reduction Mono-
tonicity axiom. This last point makes it a good candidate for EB settings. However, as
seen in experiments, EMD approximates very well the rule ΣD, (and better than it ap-
proximates the ΣT and the PTA Kemeny rules): and is thus also, and above all, useful
in non EB settings.

106

Chapter 4

Collective schedules: unit time and
constraints

In this chapter, we will consider the collective schedules problem where all tasks have
the same length. We study several algorithms taking preferences as parameters and
returning a collective solution. These algorithms are based on two main criteria, ex-
tending the criteria presented in Chapter 3: a distance criterion, which generalizes the
tardiness and the deviation criteria, and a binary criterion which generalizes the unit
time penalty criterion [Brucker, 2010]. These algorithms return a solution minimizing
either the binary or the distance criterion. This chapter focuses on classic scheduling
constraints, namely the release dates, the deadlines and precedence constraints. We
will consider two settings, one in which preferences fulfill the constraints and another
one in which they do not necessarily fulfill them. In both cases the goal is to study the
complexity and the mathematical properties of the algorithms. We study a fast heuris-
tic algorithm for a special case of our problem with regards to its approximation ratio
for the distance criterion and its behaviour regarding the constraints.

4.1 Introduction

The collective schedules problem [Pascual et al., 2018] consists in scheduling a set of
n tasks shared by v individuals, also called voters. The tasks may represent talks of
a conference that will be done in a same room, works to be done sequentially by co-
workers, or events that will occur in one of the weekly meetings of an association. Each
voter has his or her own preferences regarding the order in which theses tasks will be
executed. We consider two models. In the first one, introduced by Pascual et al. [2018]
and that we will call Order Preferences, each voter gives his or her preferred order – a
permutation of the tasks. In the second model, that we introduce in this chapter, and
that we call Interval Preferences, each voter gives for each task the interval in which
he or she would like the task to be done. In this chapter, we focus on situations in
which all the tasks have the same duration (a time slot per task). Our aim is, given the
preferences of each individual, to compute a good compromise schedule of the n tasks.

107

Collective schedules - unit tasks and constraints

Note here that, since the tasks are unit tasks, a schedule of the n tasks can be seen as
a ranking of n tasks (or candidates). In this chapter, we will use several concepts – such
as precedence constraints – from the scheduling field: we will therefore use the term
schedule and not ranking for a permutation of the n tasks. Note however that several
results of this paper are interesting not only in the context of scheduling but also in the
context of ranking candidates.

The dissatisfaction of a voter if the returned schedule is schedule S is measured
thanks to two families of criteria, coming from the scheduling theory field. One is a
binary criterion, which says that a voter is satisfied if a task is not scheduled too late
(or not too early) in S with respect to the preference of the voter (expressed as a order
preferences or interval preferences). The other family of criteria is a distance criterion,
which says that the closer the returned schedule is to the voter’s preferences, the more
satisfied a voter is.

We measure the quality of a compromise schedule S for all the voters by summing
up the sum of the dissatisfaction of the voters for schedule S. This sum, divided by v,
represents the average dissatisfaction of a voter with solution S. We focus on an utilitar-
ian criterion: our aim is to compute a schedule with the smallest sum of dissatisfaction.

An assignment problem. Without additional constraints, this problem can be solved
polynomially, both for Order and Interval Preferences, as it is an assignment problem.
Indeed, the returned schedule being a permutation of the n tasks, we know that there
will be n time slots, between 0 and n, one for each task. We create a complete bipartite
graph with the tasks on the left and the time slots on the right. For each pair (task t,
time slot s), the cost of the edge (t, s) is the sum of the dissatisfaction caused by task t
to all the voters if t is scheduled at time slot s. Therefore, a schedule that minimizes
the total dissatisfaction corresponds to a minimum cost matching in such a graph. The
graph can be built in O(vn2), and a minimum cost matching can be found with Hun-
garian algorithm in O(n3) [Tomizawa, 1971; Edmonds and Karp, 1972], leading to a
O(vn2 +n3) algorithm.

Additional constraints. Our aim is to study this problem by adding the main con-
straints in scheduling: time constraints and precedence constraints. Time constraints
mean that to each task is associated a release date and a due date (or deadline), and
that in the returned schedule each task should be scheduled between its release date
and its deadline. Precedence constraints mean that there is a precedence graph of the
n tasks: if there is an edge from task ti to task tj in this graph, this means that in the
returned schedule task ti should be scheduled before task tj . We will study both the
case where these constraints are imposed, and the case where they are inferred from
the preferences of the voters.

Overview of our results.

• We first start by introducing notations in Section 3.2, as well as formal definition
of the binary and distance criteria studied in this chapter. As we will see, these
criteria generalize the other criteria studied before (total tardiness, and total devi-
ation), and also allow us to model famous scheduling criteria, as the minimization

108

Collective schedules - unit tasks and constraints

of the total earliness of the task, or also the minimization of the number of late
tasks. Rules that return optimal solutions of these criteria will be studied in the
sequel.

• In Section 4.3, we focus on the algorithm which, in the Order Preference setting,
computes the median start time of each task, and then schedules the tasks by
increasing median start times (rule EMD – for Earliest Median Date). We show
that, interestingly, this rule returns a schedule which is a 2-approximation of the
total tardiness criterion.

• We then focus in Section 4.4 on time constraints: we show that it is still possible
to get an optimal solution in polynomial time with time constraints on the tasks.
We focus on the rules optimizing the binary and distance criteria (without time
constraints), as well as the EMD rule, and we present an axiomatic study of these
rules when time constraints are induced by the preferences of the voters (e.g. if
all the voters schedule, in their preferred schedules, a task t at time X, is this task
t necessarily started exactly at time X in the returned schedule ? If task t is always
started after time X in the preferred schedules, is it always scheduled after time
X in an optimal solution ?).

• In Section 4.5, we focus on precedence constrains between the tasks. We show
that the previously studied rules, which could be run in polynomial time with-
out precedence constraints, can still be used (with an additional polynomial time
step) when the precedence constraints are inferred by the preference of the vot-
ers. On the contrary, we show that we have to solve NP-hard problem when the
precedence constraints are not fulfilled by the preferred schedules of the voters.
This is true both for the distance and the binary criterion, and in particular in the
cases where we wish to minimize the total deviation, the total tardiness, or the
number of late tasks.

• We conclude this paper in Section 4.6 by an overview of our results and a few
research directions.

4.2 Preliminaries

4.2.1 Definitions and notations

Order Preferences and Interval Preferences.
We consider a set J = {t1, . . . , tn} of n tasks of interest for a set V = {v1, . . . , vv} of v

voters. Each task has a processing time of 1. The preferences of voter vi are denoted by
Si , and depend of the setting used.

In the Order Preferences setting, each voter indicates its preferred schedule, as a
permutation of the n tasks (we do not consider idle times between the tasks). Therefore,
Si is the preferred schedule of voter vi . We denote by Cj(Si) the completion time of task

109

Collective schedules - unit tasks and constraints

tj in the preferred schedule of voter vi . More generally, given a schedule S of tasks of
J, we denote by Cj(S) the completion time of task tj in S.

In the Interval Preferences setting, each voter indicates for each task the interval in
which he or she wishes to see the task scheduled. More precisely, for each task tj ∈J,
voter vi ∈ V indicate a release date – that will be denoted by rj,i – , and which means
that voter vi would like task tj to be started at the soonest at time rj,i . Likewise, voter
vi ∈ V indicates a due date (also called deadline) – that will be denoted by dj,i –, and
which means that voter vi would like task tj to be completed at the latest at time dj,i .
Therefore, Si is the set of the n pairs (release date, due date) that voter vi sets for the
n tasks. Note that this setting generalizes the Order Preferences settings, since it is
possible for a voter to set for each task a release date (resp. a due date) equal to its start
(resp. its completion time) in its preferred schedule. The only constraint we impose is
that there exists a feasible schedule that fulfills the time constraint given by a voter (i.e.
in which each task tj is scheduled in the interval [rj,i ,dj,i]).

In the sequel, we will penalize schedules in which tasks are scheduled out of the
intervals given by the voters. The Interval Preferences setting allows voters to express
pretty precise preferences. Indeed, if a voter wants a task to be done before a given date
t, and has no preference on the starting date of a task then she can indicate a release
date of 0 and a due date of t. If her only wish is that a task starts after a given time t′,
then she can indicate a release date of t′ and a due date of n. Finally, if a voter wants
a task to start exactly at time t′′, then she can give a release date of t′′ and a due date
of t′′ + 1. This flexibility in the preferences allow voters to express situations in which
they have different expectations regarding the task, from having no interest in a task to
wanting it to be completed exactly at a given time.

Let us now present the two general objective functions that we will consider in this
chapter: the binary criterion, and the distance criterion.

Binary criterion.
The first criterion, called Binary Criterion, measures whether a task is executed in

the time interval indicated by a voter or not (the penalty is 0 if the tasks is scheduled in
the desired interval, and is 1 if the task is not scheduled in the desired interval). Given
a schedule S, the dissatisfaction of voter vi ∈ V concerning task tj ∈J is thus:

bj(S,Si) =

1 if Cj(S) > dj,i or Cj(S) ≤ rj,i
0 otherwise

The dissatisfaction of a voter vi concerning a schedule S with the binary criterion is
then:

B(S,Si) =
∑
tj∈J

bj(S,Si)

Distance criterion.
The second criterion, called Distance Criterion, also does not count any penalty

when a task is scheduled in its time interval, but otherwise it counts a penalty which

110

Collective schedules - unit tasks and constraints

expresses how far from its interval the task is. The dissatisfaction of voter vi concerning
task tj for schedule S is:

disj(S,Si) =

Cj(S)− dj,i if Cj(S) > dj,i
rj,i − (Cj(S)− 1) if Cj(S) ≤ rj,i
0 otherwise

The dissatisfaction of a voter vi concerning a schedule S with the distance criterion
is then:

Dis(S,Si) =
∑
tj∈J

disj(S,Si)

Aggregation function.
As said in the introduction, we will study the utilitarian utility function. Our aim

will be to minimize Σvi∈VB(S,Si) with the binary criterion, or Σvi∈V Dis(S,Si) with the
distance criterion. The Binary Criterion rule is an algorithm that returns a schedule min-
imizing binary criterion, while the Distance Criterion rule is an algorithm that returns a
schedule minimizing distance criterion.

4.2.2 Generalization of classical scheduling criteria.

The two above defined criteria generalize the main criteria already studied in the Order
Preferences setting (see Chapter 3 and [Pascual et al., 2018]). Assume indeed that
voters have expressed their preferences using the Order Preferences setting (i.e. each
voter indicates his or her preferred schedule). Let P be the preference profile.

• Total deviation. The total deviation of a schedule S is D(S,P) = Σvi∈VD(S,Si),
where D(S,Si) =

∑
tj∈J |Cj(S)−Cj(Si)|. If our aim is to compute a schedule of min-

imal total deviation, as does rule ΣD, then we should use the Distance Criterion
by setting the release date of task tj for voter vi at Cj(Si)− 1, and the due date of
task tj for voter vi at Cj(Si).

• Total tardiness. The total tardiness of a schedule S is T (S,P) = Σvi∈V T (S,Si), where
T (S,Si) =

∑
tj∈Jmax(0,Cj(S)−Cj(Si)). If our aim is to compute a schedule of min-

imal total tardiness, as does rule ΣT, then we should use the Distance Criterion
by setting the release date of task tj for voter vi at 0, and the due date of task tj
for voter vi at Cj(Si).

• Total earliness. The total earliness of a schedule S is E(S,P) = Σvi∈V E(S,Si), where
E(S,Si) =

∑
tj∈Jmax(0,Cj(Si)−Cj(S)). If our aim is to minimize the total earliness,

a classic criterion in scheduling [Brucker, 2010], then we should use the Distance
Criterion by setting the release date of task tj for voter vi at Cj(Si)−1, and the due
date of task tj for voter vi at n.

111

Collective schedules - unit tasks and constraints

• Total number of late tasks. The total number of late tasks of a schedule S is
U (S,P) = Σvi∈VU (S,Si), where U (S,Si) is the number of tasks of J such that
Cj(S) > Cj(Si) (such tasks are called late tasks). This a classic criterion, denoted
by ΣU (for “Unit Penalties”), in scheduling [Brucker, 2010]. We can solve this
optimization problem by using the Binary Criterion by setting the release date of
task tj for voter vi at 0, and the due date of task tj for voter vi at Cj(Si).

• Total number of tasks not well positioned. If our aim is to maximize the number of
tasks scheduled at the exact position given by the voters, then we should use the
Binary Criterion by setting the release date of task tj for voter vi at Cj(Si)−1, and
the due date of task tj for voter vi at Cj(Si).

In the next section, we introduce the EMD rule and show that it is a 2 approximation
of the total tardiness (ΣT) and total earliness (ΣE) criteria.

4.3 An analysis of the EMD rule

The EMD rule, introduced in Chapter 3 in the Order Preferences setting, schedules the
tasks by increasing median completion times, where the median time of a task tj is the
median of the set {Cj(S1), . . . ,Cj(Sv)}. If several tasks have the same median completion
time, any tie breaker mechanism can be used.

It was shown previously [Pascual et al., 2018] that, for unit size tasks, and for any
preference profile P and any schedule S, we have D(S,P) = 2T (S,P), and thus that
T (S,P) = E(S,P) since D(S,P) = E(S,P)+T (S,P). Therefore, a α-approximate algorithm
for the total tardiness criterion will also be an α-approximate algorithm for the earli-
ness criteria, and an α-approximate algorithm for the total deviation criterion.

We consider that we are in the Order Preferences setting. Before showing that EMD
is 2-approximate for the total tardiness criterion (and thus also for the deviation and
earliness criterion), we introduce a way to see the instance that will facilitate the anal-
ysis.

Breaking down the preference profile. We “break down” the preference profile not
by looking at voters individually, but by looking at time slots. Note that this does not
change the preference profile: it is just another way of looking at it. For each time
slot between 1 and n, each voter vi selected a task that she has scheduled in this time
slot in her preferred schedule. We call choice a triplet (Sx, tj , s) indicating that voter vx
schedules task tj in time slot s, i.e. between time s − 1 and s, in her preference Sx. We
can thus express a preference profile as a set of choices, such that there are v choices
for each time slot and there are n choices for each voter, each task and each slot being
chosen exactly once by each voter. We denote by C the set of all the choices and, for
each y ∈ {1 . . .n}, we denote by Cy the set of all choices (Sx, tj , s) such that s ≤ y.

Iterative breakdown of the tardiness criterion. As we have seen, the total tardiness
of a schedule S given a preference profile is the sum, over all voters, of the tardiness of
each task in S in comparison to its completion time in the preference of the voter. By

112

Collective schedules - unit tasks and constraints

breaking down the set of preferences into choices, it is possible to express the tardiness
in another way, that will facilitate the analysis of the algorithm. If a task tj has been
scheduled by a voter vx at time slot s, then, if it is not scheduled in a solution S by time
s, we count a penalty; if it is not scheduled by time s+1, we count another penalty; and
so forth. We can then split the tardiness by looking at the tasks scheduled by S at time
slots: for each slot between Cj(Si) to n, if task tj has not been scheduled yet, then we
count 1 tardiness penalty (for voter i). We sum this over all the voters. By this way,
we compute for each slot s the number of penalties caused by the decision taken in s –
there will be 1 penalty of each pair (voter vx, task tj) if task tj has not been completed
at time s whereas Cj(Sx) ≤ s.

Example 4.3.1: Tardiness caused by the choice for the first slot

Let us consider an instance with 5 voters and 5 tasks as follows. Each line rep-
resents the preferred schedule of a voter – e.g. the preferred schedule of the first
voter is made of task 1, then task 4, followed by task 2, then task 3 and finally
task 5 (such a schedule can be written as: 1 ≺ 4 ≺ 2 ≺ 3 ≺ 5):

1 4 2 3 5

1 5 3 4 2

1 2 3 4 5

2 1 3 5 4

3 4 1 5 2

Looking at time slot 1 (between dates 0 and 1), task 1 has been scheduled three
times, task 2 once and task 3 once. In a solution S, scheduling task 1 at slot 1
causes a (total) tardiness of 2 since task 2 and 3 which were chosen by two voters
will not be scheduled on time. Scheduling task 2 or task 3 causes a tardiness of
4, and scheduling task 4 or task 5 creates a tardiness of 5.

In the proof of the following proposition, to compute the sum of the tardiness (also
called the total tardiness) of a schedule S, we will look a time slots, starting from the
first one, between dates 0 and 1, to the last one, between dates n − 1 and n. When
looking at time slot y, for each choice (Sx, tj , s) ∈ Cy , we will count a penalty if task tj
has not been scheduled at time slot y or before. We denote by ky the number of late
tasks at time slot y: ky(S,P) =

∑
(Sx ,tj ,s)∈Cy

1Cj (S)>y . The total tardiness can be expressed
as follows: T (S,P) =

∑n
y=1 ky(S,P).

113

Collective schedules - unit tasks and constraints

Example 4.3.2: Computing the total tardiness with choices

Let us consider an instance with 5 tasks and 5 voters, thepreference profile P is
as follows:

1 4 2 3 5

1 5 3 4 2

1 2 3 4 5

2 1 3 5 4

3 4 1 5 2

The EMD rule computes the median completion time of all tasks and returns a
schedule in which tasks are ordered by non decreasing median completion time.
In this example, we have: (1 ≺ 2/3 ≺ 4/5), let us call S the schedule returned by
EMD. The first task to be scheduled is 1. By scheduling 1 in the first slot, this
means that all the choices (Sx, t1, s) are not counted in ks(S,P) for any s ≥ 1, i.e.
any s. Intuitively, the task scheduled in the first slot is never late for any voter.

1

4 2 3 5

5 3 4 2

2 3 4 5

2 3 5 4

3 4 5 2

EMD

On the other hand, the other choices (Sx, tj ,1) for tj , 1 are counted by k1(S,P),
in this example we have two choices, since one voter scheduled task 2 in slot 1
and one scheduled task 3 in slot 1, which means k1(S,P) = 2.

114

Collective schedules - unit tasks and constraints

1

4 2 3 5

5 3 4 2

2 3 4 5

3 5 4

4 5 2

2

3

EMD T ardiness = 2

We keep going with slot 2. The EMD rule schedules either task 2 or task 3. Let us
suppose that it selects task 2. The value of k2(S,P) is then the number of choices
in C2 and for which the task is not 1 nor 2, i.e. 3 choices for the slot 2 plus one
choice remaining from the first slot.

1 2

3 5

3 4

3 4 5

3 5 4

5

4

5

4

3

EMD T ardiness = 2 + 4

We continue with the third slot. The EMD rule schedules task 3 and k3(S,P) = 3.

115

Collective schedules - unit tasks and constraints

1 2 3

5

4

4 5

5 4

5

4

5

4

EMD T ardiness = 2 + 4 + 3

For slot 4 the EMD rule schedules either task 4 or task 5, let us assume that it
selects task 4. There are 3 choices in C4 for which the task is not in {1,2,3,4},
therefore k4(S,P) = 3.

1 2 3 4

5

5

5

5

5

EMD T ardiness = 2 + 4 + 3 + 3

For the last slot, there is only one task left and there are no remaining choice
so k5(S,P) = 0 (more generally, kn(S,P) = 0. We obtain the total tardiness by
summing k1 + k2 + k3 + k4 + k5 = 2 + 4 + 3 + 3 + 0 = 12.

Proposition 4.3.1: EMD- 2-approximation for ΣT

The EMD rule is 2-approximate for the total tardiness criterion.

Proof. Let us consider a preference profile P . Let S be the schedule returned by the

116

Collective schedules - unit tasks and constraints

EMD rule and let S∗ be a schedule minimizing the total tardiness with respect to pref-
erence profile P . We prove this result by showing that for all i ≥ 0, ki(S,P) ≤ 2ki(S∗, P).

For i = 0, we have ki(S,P) = ki(S∗, P) = 0, since no task is scheduled before the first
time slot. For any time slot from 1 to n, we express ki(S,P) as the difference between
i × v, the total number of choices from time slot 1 to time slot i, and the number of
choices (Sx, tj , s) such that s ≤ i and tj has been scheduled at the latest at time slot i in
S. We denote by qi the number of tasks with median completion time smaller than or
equal to i. There are two cases:

1. qi ≤ i: in this case, the EMD rule schedules the qi tasks with median completion
time smaller than or equal to i in the i first time slots. Let q∗i be the number of
tasks with median completion time smaller than or equal to i that are scheduled
in S∗ at the latest at date i. These q∗i tasks are necessarily scheduled before date i
by the EMD rule as well. Let Q∗i be the set of the q∗i tasks of median completion
time smaller than or equal to i and that are scheduled in S∗ before or at time i.

Finally, we denote by Q∗i the number of choices (Sx, tj , y) of Ci such that tj ∈ Q∗i
and y ≤ i. These choices are removed from the i × v choices for both the solutions
S and S∗. There are qi −q∗i tasks of median completion time smaller than or equal
to i that are scheduled in S before or at time i and that are scheduled after i in
S∗. For each of these tasks, there are at least v/2 choices among the i × v which
are removed by scheduling the task before date i. There are also (i − qi) tasks
with median completion time strictly larger than i that are scheduled at the latest
at date i in S, but we have no guarantee that scheduling these tasks remove any
choice. We therefore have:

ki(S,P) ≤ i × v −Q∗i − (qi − q∗i)v/2

In S∗, there are (i − q∗i) tasks of median strictly larger than i, at most, scheduling
these tasks before or at time i removes at most v/2 choices. We then have:

ki(S
∗, P) ≥ i × v −Q∗i − (i − q∗i)v/2

We then compute:

2ki(S
∗, P)− ki(S,P) ≥ 2i × v − 2Q∗i − (i − q∗i)v − i × v +Q∗i + (qi − q∗i)v/2

2ki(S
∗, P)− ki(S,P) ≥ q∗iv −Q

∗
i + (qi − q∗i)v/2

We know that Q∗i ≤ q∗iv since each task in Q∗i is scheduled at most v times in the
preference profile, once per voter. We also know that qi ≥ q∗i . We then have:

2ki(S
∗, P)− ki(S,P) ≥ 0

2. qi > i: in this case, the EMD rule schedules, from dates 0 to i, exactly i tasks of
median completion time smaller than or equal to i. There remains (qi − i) tasks of
median completion time smaller than or equal to i that are not scheduled by date

117

Collective schedules - unit tasks and constraints

i in S, the schedule returned by the EMD rule. Each of these tasks can appear in
at most v choices in Ci .

Let ri ≥ 0 be the number of tasks with median completion time strictly larger than
i that are not scheduled by date i in S. Let Ri the set of these ri tasks, and let Ri

the set of choices (Sx, tj , s) in Ci such that j ∈Ri . We have:

ki(S,P) ≤ (qi − i)v + |Ri |

In S∗, the i tasks scheduled by time slot i are split between the qi tasks of median
completion time smaller than or equal to i and the ri tasks of median completion
time strictly larger than i. We denote by R∗i the tasks of Ri scheduled by S∗ before
or at time i. We call r∗i = |R∗i |, and R∗i the set of choices (Sx, tj , s) of Ci such that
j ∈ R∗i . There are (qi − (i − r∗i)) tasks of median completion time smaller than or
equal to i that are not scheduled by S∗ by time i. Each of these tasks is at least in
v/2 choices in Ci . We can then write:

ki(S
∗, P) ≥ (qi − i + r∗i)v/2 + |Ri | − |R∗i |

We then have:

2ki(S
∗, P)− ki(S,P) ≥ (qi − i + r∗i)v + 2|Ri | − 2|Ri |∗ − (qi − i)v − |Ri |

2ki(S
∗, P)∗ − ki(S,P) ≥ r∗i × v + |Ri | − 2|R∗i |

Since |Ri | ≥ |R∗i | and r∗i × v > |R∗i |, we have: 2ki(S∗, P)− ki(S,P) ≥ 0.

In both cases, we have ki(S,P) ≤ 2ki(S∗, P) for all i ≥ 1. Therefore, we have:
∑n

i=1 ki(S,P) ≤
2
∑n

i=1 ki(S
∗, P) and then ΣT (S,P) ≤ 2ΣT (S∗, P).

As seen above, since, with unitary tasks, T (S,P) = E(S,P) and D(S,P) = 2T (S,P), for
any schedule S and preference profile P , we get the following corollary.

Corollary 4.3.1: EMD rule - 2-approximation for ΣD and ΣE

The EMD rule is 2-approximate for the ΣD criterion, and for the ΣE criterion.

Observation 4.3.1: Tight bound for EMD

We note here that this 2-approximation is tight. We consider the instance used
in the proof of Proposition 3.4.1 with p = 1, and that we represent below:

118

Collective schedules - unit tasks and constraints

t1 t3 t4 . . . tn t2

t1 t2 t4 . . . tn t3

t2 t1 t4 . . . tn t3

t2 t3 t4 . . . tn t1

v
2 − 1

1

1
v
2 − 1

0 p 2p 2p+n−3

The ratio between the deviation of the solution returned by EMD and the optimal
deviation was:

vpn+ vn− 3v − 4p
2pv + vn− 3v + 2p+ 2n− 6

By replacing p by 1, we have:

2vn− 3v − 4
vn− v + 2n− 4

When n and v tend towards +∞, the ratio tends towards 2.

Additional results in voting theory As noted earlier, the minimization of the devi-
ation criterion when tasks are of unit length is equivalent to the minimization of the
Spearman correlation coefficient. This means that the EMD rule returns a ranking that
is 2-approximate for the minimization of the Spearman coefficient. Although this min-
imization problem is polynomially solvable, it is still an interesting property to have
for the EMD rule.

Corollary 4.3.2: EMD- 2-approximation of the Spearman rule

The EMD rule is 2-approximate for the minimization of the total Spearman cor-
relation coefficient to the preference profile.

We can show that EMD is 4-approximate for the Kemeny rule.

Proposition 4.3.2: EMD- 4-approximation of the Kemeny rule

The EMD rule is 4-approximate for the minimization of the Kendall-Tau distance
to the preference profile.

Proof. Diaconis and Graham [1977] showed that for any ranking R and any preference
profile P , the Spearman correlation coefficient ρ (see Example 1.2.3) fulfills the fol-
lowing property: ∆KT (R,P) ≤ ρ(R,P) ≤ 2∆KT (R,P). We call S the solution returned by
EMD, S∗KT a solution minimizing the Kendall-Tau distance to the preference profile and
S∗ a solution minimizing the total Spearman correlation coefficient with the preference

119

Collective schedules - unit tasks and constraints

profile.
For the sake of contradiction, let us assume that:

∆KT (S,P) > 4∆KT (S∗KT , P)

We then have

ρ(S,P) ≥ ∆KT (S,P) > 4∆KT (S∗KT , P) ≥ 2ρ(S∗KT , P)

And since S∗ is optimal for the Spearman, rule we have:

ρ(S,P) ≥ ∆KT (S,P) > 4∆KT (S∗KT , P) ≥ 2ρ(S∗KT , P) ≥ 2ρ(S∗, P)

A contradiction, given the result from Proposition 4.3.1. We therefore have:

∆KT (S,P) ≤ 4∆KT (S∗KT , P)

In the next section, we focus on release time and due dates constraints.

4.4 Scheduling tasks with time constraints

We first show that it is still possible to compute in polynomial time an optimal solution
of the total dissatisfaction of the voters with both the Binary criterion and the Distance
criterion presented in Section 4.2.

4.4.1 Getting optimal solutions with time constraints

Let us consider that each task tj ∈J has a release date rj and a due date dj . These
dates can be imposed, for example when the tasks represent events that cannot occur
before a date rj or after a date dj . They can also be inferred from the preferences of
the voters (by setting rj = minvi∈V {rj,i} and dj = maxvi∈V {dj,i}). In this case, we want
no task to be scheduled earlier than in the preferred interval of any voter, or later than
in the preferred interval of any voter. This case is particularly interesting if voters are
aware of real time constraints on the events that are represented by the tasks, and if the
scheduler does not necessarily know these constraints.

Returning an optimal schedule for both the Binary criterion and the Distance crite-
rion is, as without any time constraints, an assignment problem. In the bipartite graph
with the tasks on the left and the time slots on the right, for each pair (task tj , time slot
s), we just put an edge between tj and s if and only if rj ≤ s ≤ dj − 1. The costs of the
edges are equal to the sum of the dissatisfaction of the v voters if task tj is scheduled
between s−1 and s. An optimal solution which fulfills time constraints – if there is one
feasible solution – is a minimum cost matching. Such a matching, if it exists, can be
found with Hungarian algorithm in O(n3) [Tomizawa, 1971; Edmonds and Karp, 1972].

120

Collective schedules - unit tasks and constraints

In the next section, we study to which extent the rules presented earlier propa-
gate constraints fulfilled by the preferences of the voters. For example, if all the vot-
ers schedule a task after a given time, it may be because this task is not available be-
fore. This is particularly interesting in contexts in which the preferences given are not
necessarily votes but feasible solutions for a problem (potentially optimizing different
aspects like cost, employee satisfaction, inventory management . . .). In this case, the
question becomes: given several feasible solutions satisfying a set of constraints, does
the aggregation rule ensure that the returned solution fulfills the same constraints?

4.4.2 Axiomatic study of rules with inferred time constraints

Release dates and deadlines consistencies.

The idea of the two following axioms is the following one: if a task tj starts after (resp.
ends before) a given date s in the preferences of all the voters, we can interpret it as s
being a firm release date (resp. deadline) for task tj . In this case, we would like the rule
to return a solution in which tj starts after (resp. ends before) s.

Definition 4.4.1: Release Date Consistency

Let V be a set of voters and tj a task such that for each preference Si expressed
by voter vi ∈ V , we have Cj(Si) ≥ s, with s a constant. An aggregation rule fulfills
release date consistency if it always returns a schedule S in which Cj(S) ≥ s.

Definition 4.4.2: Deadline Consistency

Let V be a set of voters and tj a task such that for each preference Si expressed
by voter vi ∈ V , we have Cj(Si) ≤ s, with s a constant. An aggregation rule fulfills
deadline consistency if it always returns a schedule S in which Cj(S) ≤ s.

We show that the Distance Criterion rule, the Binary Criterion rule, and the EMD
rule do not fulfill these axioms.

Proposition 4.4.1: Distance - Deadline and Release Date Consistency

The Distance Criterion rule does not fulfill the deadline consistency nor the re-
lease date consistency, even when preferences are expressed as schedules.

Proof. Let us consider an instance with 8 tasks and 6 voters and the following prefer-
ences:

121

Collective schedules - unit tasks and constraints

t6 t2 t3 t4 t5 ti tj t1
t1 t6 t3 t4 t5 ti tj t2
t1 t2 t6 t4 t5 ti tj t3
t1 t2 t3 t6 t5 tj ti t4
t1 t2 t3 t4 t6 tj ti t5
t1 t2 t3 t4 t5 tj ti t6

The schedules (t1 ≺ t2 ≺ t3 ≺ t4 ≺ t5 ≺ t6 ≺ ti ≺ tj) and (t1 ≺ t2 ≺ t3 ≺ t4 ≺ t5 ≺
t6 ≺ tj ≺ ti) are the only two optimal schedules, with a total distance of 54. They do
not fulfill release date consistency since all the voters have completed tasks ti and tj
at time 7 in their preferred schedules, whereas in the returned solution, one of these
two tasks is completed at time 8. The best solutions fulfilling release date consistency
are (t1 ≺ t2 ≺ t3 ≺ t4 ≺ t5 ≺ tj ≺ ti ≺ t6), and (t1 ≺ t2 ≺ t3 ≺ t4 ≺ t5 ≺ ti ≺ tj ≺ t6), with
a total distance of 56. Therefore, the Distance Criterion rule does not fulfill deadline
consistency.

By reversing the preferences (e.g. , when a preferred schedule (t1 ≺ t2 ≺ t3 ≺ t4 ≺
t5 ≺ tj ≺ ti ≺ t6) becomes (t6 ≺ ti ≺ tj ≺ t5 ≺ t4 ≺ t3 ≺ t2 ≺ t1)), we obtain an instance in
which tasks ti and tj always start after or at t1, but in which the optimal solutions are
(ti ≺ tj ≺ t6 ≺ t5 ≺ t4 ≺ t3 ≺ t2 ≺ t1) and (tj ≺ ti ≺ t6 ≺ t5 ≺ t4 ≺ t3 ≺ t2 ≺ t1) (the previous
optimal solutions but reversed). Either task ti or tj starts at time 0 in these solutions,
whereas no voter schedule theses tasks before time 1. Therefore, the Distance Criterion
rule does not fulfill release date consistency.

Proposition 4.4.2: Binary - Deadline and Release Date Consistency

The Binary Criterion rule does not fulfill the deadline consistency nor the release
date consistency.

Proof. Let us consider the following preferences of 3 voters over 7 tasks:

t1 t2 t4 t5 t6 t3 t7
t1 t4 t3 t5 t2 t7 t6
t4 t2 t3 t1 t6 t7 t5

We first consider that the deadlines are the one given in the above schedules, and
that the release dates are 0. The binary criterion this corresponds to the ΣU criterion
(which minimizes the number of late tasks).

The only optimal solution for ΣU is (t1 ≺ t2 ≺ t3 ≺ t5 ≺ t6 ≺ t7 ≺ t4). The number
of late tasks in this solution is 3, task t4 being considered late by the three voters. In
a solution fulfilling the deadline consistency property, task t4 has to be completed at
most at time 3. This implies that either task t1, task t2 or task t3 has to end after time

122

Collective schedules - unit tasks and constraints

3 and will therefore be late for two voters. Additionally, if task t1 is delayed, because
of deadline consistency, it has to end at time 4, meaning that task t5 has to be delayed
and will therefore be considered late for 2 voters, which amounts to 4 late tasks, more
than the optimum. The same line of reasoning can be applied for tasks t2 and t3 if they
are delayed after time 3, causing delay to task t5, t6 or t7 if they are scheduled at time
4, 5 or 6. Any solution respecting the deadline consistency property has therefore a
number of late tasks of at least 4: the ΣU rule does not fulfill deadline consistency.

We can show similarly that the Binary Criterion rule does not fulfill the release date
consistency. To this end, we consider that the the deadlines are n, and that the release
dates are the one given in the above schedules, once they have been reversed. The
binary criterion in this case minimizes the number of early tasks).

Proposition 4.4.3: EMD- Deadline and Release Date Consistency

The EMD rule does not fulfill deadline consistency nor release date consistency.

Proof. Let us consider the following preferences of 3 voters over 4 tasks:

t2 t1 t3 t4
t3 t1 t2 t4
t4 t1 t2 t3

With such preferences, the median completion times are as follows: m1(P) = 2,
m2(P) = m3(P) = 3 and m4(P) = 4. The EMD rule returns a schedule in which task t1 is
scheduled first and therefore completes at time 1, which is before its completion time
in all the preferences of the voters. Therefore, the EMD rule does not fulfill release date
consistency.

Let us now consider the following preferences of 3 voters over 4 tasks:

t2 t3 t1 t4
t2 t4 t1 t3
t4 t3 t1 t2

With such preferences, the median completion times are as follows: m1(P) = 3,
m2(P) = 1, m3(P) = 2 and m4(P) = 2. The EMD rule returns a schedule in which task t1
is scheduled last and therefore completes at time 4, which is after its completion time in
all the preferences of the voters: the EMD rule does not fulfill deadline consistency.

Since our three rules do no fulfill release date nor deadline consistency, we propose
a weaker, yet meaningful, property called temporal unanimity.

123

Collective schedules - unit tasks and constraints

Temporal unanimity

An aggregation rule satisfies temporal unanimity if, when all voters agree on the time
interval during which a task ti is scheduled, then ti is scheduled during this time inter-
val in the solution returned by the rule. When preferences are given as schedules, this
property means that if all voters schedule task i at the same time slot in their preferred
schedules, then i should be scheduled at the same time slot in the returned solution.
When preferences are expressed as time intervals, it means that if all voters agree on the
same release date and deadline for i, then i should be scheduled in this given interval
in the returned solution.

Definition 4.4.3: Temporal Unanimity

Let V be a set of voters, and let tj be a task such that for each voter vi ∈ V , we
have dj,i = d, with d a constant, and rj,i = r, with r a constant strictly smaller
than d. An aggregation rule fulfills temporal unanimity if it returns a schedule in
which task tj is executed between r and d.

We show that EMD does not fulfill this property, whereas the Binary and the Dis-
tance Criterion rules do fulfill this axiom.

Proposition 4.4.4: EMD- Temporal Unanimity

The EMD rule does not fulfill the temporal unanimity property.

Proof. Let us consider the following instance:

t2 t1 t3 t4
t3 t1 t2 t4
t4 t1 t2 t3

The median completion times are as follows: m1(P) = 2, m2(P) = m3(P) = 3 and
m4(P) = 4. The EMD rule returns a schedule in which task t1 is scheduled first and thus
completes at time 1 even though it completed at time 2 in all the schedules expressed
by the voters.

Proposition 4.4.5: Binary - Temporal Unanimity

The Binary Criterion rule fulfills temporal unanimity.

Proof. Let us consider a task s(1) such that, for all voter vi , ds(1),i = d and rs(1),i = r with
r and d two constants such that 0 ≤ r < d ≤ n. Let us now consider an optimal schedule
S∗ for the Binary Criterion minimization in which task s(1) is not scheduled between r
and d. Since each of the preferences has to be compatible with a feasible schedule, in

124

Collective schedules - unit tasks and constraints

each preferences there are at most d− r tasks with release dates and deadlines included
in the [r,d] interval. Since task s(1) is always included in this interval in the preferences
of the voters, there is in the [r,d] interval of S∗ at least one task s(2) is scheduled in the
preferences of the voters at least once before r or after d. We distinguish two sub-cases.

• If this task s(2) does not have a unique release date r ′ given by the voters and
a unique due date d′ given by the voters, then we can simply perform the swap
between the positions of s(1) and s(2) to obtain a new solution S ′ in which there
is one less task out of its unique time interval and which is at least as good as S∗

since we decrease the binary criterion cost for s(1) by the number of voters v and
we increase it for s(2) by at most v.

• If this task s(2) has a unique release date r ′ and due date d′ then we consider two
subcases:

– If task s(2) is scheduled in S∗ before r ′ or after d′, and therefore not in its
unique time interval, or if its time interval covers the position of s(1) in S∗,
we can perform the swap between the positions of s(1) and s(2) as in the
above mentioned case.

– Otherwise, we consider the other tasks, if any, scheduled in S∗ between r
and d and which are not always scheduled between r and d in the prefer-
ences. If none of these tasks fulfill any of the two previous conditions then
we consider the set Ts(1) of all these tasks scheduled between r and d in S∗

and which have a unique time interval in which they are scheduled. For each
of these tasks, its time interval r ′ ,d′ is either as r ′ < r or d′ > d, or both. We
now consider the interval from the smallest unique release date of a task in
Ts(1) to the maximum unique deadline of a task in Ts(1). We then repeat the
same reasoning as above:

∗ if there is a task s(3) which is in the time interval of a task s(2) from Ts(1),
and which does not have a unique time interval or which has a time in-
terval containing the position of s(1) in S∗, then we perform the follow-
ing circular exchange: task s(1) takes the time slot of s(2), which takes
the time slot of s(3), which takes the time slot of s(1). Such a circular
exchange does not increase the binary criterion, since the cost relative
to s(1) is decreased by v, the cost relative to s(2) does not increase, since
s(2) stays in its interval, and the cost of s(3) increases by at most v.
∗ If no such task s(3) exists, then there is at least one task which has a

unique release date r ′′ < r ′, or a unique deadline d′′ > d′, or both. We
then consider the set Ts(2) of such tasks and expand the considered in-
terval. Since at each of these steps we extend the considered interval by
at least one unit of time, the interval will necessarily include the position
of s(1) at some point and we will be able to perform a swap.

125

Collective schedules - unit tasks and constraints

Proposition 4.4.6: Distance - Temporal Unanimity with ordered preference

The Distance Criterion rule fulfills temporal unanimity when preferences are
schedules.

Proof. Let us consider that a task tl is always scheduled between time k and time k + 1
in the preferences of the voters. Let S∗ be an optimal solution for the Distance Criterion
minimization, and let us assume, by contradiction, that task tl is not scheduled between
k and k + 1 in S∗. Let S be a schedule obtained from S∗ by swapping the positions of
task tl and the task tj scheduled between k and k + 1 in S∗. Note that the distance of
any task other than tl or tj is the same in S and S∗. The distance of task tl is decreased
by the absolute value of the difference between its position in S and its position in S∗,
times the number of voters (since all voters scheduled it between k and k+1), while the
distance of task tj is increased by at most this value. Therefore S is an optimal schedule
as well.

. tj . . . tl

0 k + 1

Figure 4.1: Schedule S∗ and the swap performed to obtain S.

Let us now examine the case in which the distance of task tj has increased by
v|Cl(S∗) −Cj(S∗)| – we will actually show that this cannot happen. Note that if task tj
was scheduled before task tl in S∗ (case 1) then the distance of tj increased by vCl(S∗)−
Cj(S∗): it means that tj has been scheduled before its completion time in S∗ by all vot-
ers. Likewise, if task tj was scheduled after task tl in S∗ (case 2) then the distance of
tj increased by Cj(S∗)−Cl(S∗): it means that tj has been scheduled after its completion
time in S∗ by all the voters.

In case 1, let b be the maximum completion time of task tj in the preference profile,
and let tk be the task which is completed at time tb in S∗. We build schedule S ′ from S
by swapping the position of task tj and task tk . The distance of tj is decreased by the
difference between the position of tj and tk for all voters. If the distance of tk increases
by the same value it means that task tk always completes before b in the preferences
of the voters. By repeating such swaps, the date b is decreased each time and we will
necessarily reach a point where we either find a task for which the distance increase is
smaller than the distance decrease when doing the swap or find a b of 1.

126

Collective schedules - unit tasks and constraints

. . . tk . . . tj . . . tl

0 b k + 1

Figure 4.2: Schedule S∗ and a preliminary swap (case 1) ensuring that the final swap of
task tl will strictly decrease the total distance.

The same thing can be done in case 2, by defining b as the minimum completion
time of tj in the preference profile, and tk as the task which is completed at time b
in S∗. The distance of tj is decreased by the difference between the position of tj and
tk for all voters. If the distance of tk increases by the same value than the distance
of tj is decreased, it means that task tk always completes after b in the preferences of
the voters. By repeating such swaps, the date b is increased each time and we will
necessarily reach a point where we either find a task for which the distance increase is
smaller than the distance decrease when doing the swap or find a b of n.

If we did not find b = 1, or b = n, it means that we have found a schedule of cost
(sum of the distances) better than S∗, a contradiction. If we ended with b = 1 or b = n,
then a task that would always complete before (resp. after) or at time b = 1 (resp. b = n)
would always be scheduled first (resp. last), and doing the swap will always be strictly
better. The solution obtained after doing the swaps is strictly better than the solution
S∗ supposed to be optimal, a contradiction.

Proposition 4.4.7: Distance - Temporal Unanimity with interval preferences

The Distance Criterion rule does not fulfill temporal unanimity when prefer-
ences are expressed as release dates and deadlines.

Proof. Let us consider an instance with 8 tasks and 6 voters and the following prefer-
ences:

t6 t2 t3 t4 t5 ti/tj t1
t1 t6 t3 t4 t5 ti/tj t2
t1 t2 t6 t4 t5 ti/tj t3
t1 t2 t3 t6 t5 ti/tj t4
t1 t2 t3 t4 t6 ti/tj t5
t1 t2 t3 t4 t5 ti/tj t6

In this profile each voter gives a time interval of 1 for all tasks except for ti and tj
which have a time interval of 2. For example the first voter indicates that task t6 has a
release date of 0 and a due date of 1, while both tasks ti and tj have a release date of 5
and a due date of 7. The two optimal solutions for the Distance Criterion minimization

127

Collective schedules - unit tasks and constraints

are (t1 ≺ t2 ≺ t3 ≺ t4 ≺ t5 ≺ t6 ≺ ti ≺ tj) and (t1 ≺ t2 ≺ t3 ≺ t4 ≺ t5 ≺ t6 ≺ tj ≺ ti), with
a total distance of 48. These optimal schedule do not fulfill temporal unanimity since
either ti or tj is scheduled outside of the time interval agreed on by all the voters. The
best solutions fulfilling temporal unanimity are (t1 ≺ t2 ≺ t3 ≺ t4 ≺ t5 ≺ tj ≺ ti ≺ t6), and
(t1 ≺ t2 ≺ t3 ≺ t4 ≺ t5 ≺ ti ≺ tj ≺ t6), with a total distance of 50.

When all tasks have the same length and the preferences are expressed as schedules,
the ΣD rule fulfills temporal unanimity. We show that this is however not the case when
tasks do not have the same length.

Proposition 4.4.8: ΣD- Temporal axioms with tasks of different length

When tasks are not of the same length, the ΣD rule does not fulfill temporal
unanimity nor release date consistency nor deadline consistency.

Proof. We consider the following instance with 4 tasks, 3 voters and such that p1 = p2 =
p3 = 1 and pj = 4 :

t1 tj t3 t2
t2 tj t1 t3
t3 tj t2 t1

Any optimal solution for ΣD schedule tj first and then t1, t2 and t3 in any order, for
a total deviation of 18. A solution fulfilling temporal unanimity would schedule t1, t2
or t3 first, then tj and finally the remaining two tasks, in any order. Such a solution has
a deviation of 24. We also note that the optimal solution does not fulfill the deadline
consistency, and by reversing the instance, we can show that the ΣD rule does not fulfill
release date consistency either.

4.5 Precedence constraints

In this section, we focus on precedence constraints between the tasks. We will consider
two settings.

Firstly, we consider a setting in which the precedence constraints are known by the
voters. In this setting, that we call inferred precedences, if a task ta has to be scheduled
before a task tb, then, in the preference Si of any voter vi , we have Ca(Si) < Cb(Si). Our
aim is to determine whether or not a given aggregation rule guarantees that task ta will
be scheduled before task tb in the schedule returned by the rule. Note that in voting
theory this property is called unanimity.

The second setting corresponds to the case in which the precedence constraints
are not known by the voters, and therefore preferences do not necessarily fulfill these

128

Collective schedules - unit tasks and constraints

precedence constraints: the precedence constraints only exist for the schedule that has
to be returned. This setting is called precedence graph.

We define a family of optimization problems of form α − P rec where α is an opti-
mization criterion and P rec is a setting for the precedence constraints: it is Inferred

when precedence constraints are fulfilled by the preferences, or Graph when the pref-
erence constraints only apply to the returned solution. For example, the problem ΣD-

graph has the following input: a setJ of n tasks ; an acyclic directed graph G which
represents the precedence constraints between the tasks in J ; a set V of v preferred
schedules (permutation of tasks) – these schedules do not necessarily fulfill the prece-
dence constraints. The aim is to output a schedule which fulfills the precedence con-
straints and, among these feasible schedules, which minimizes the sum of the devia-
tions with respect to the preferences of the voters:

∑
vi∈V

∑
tj∈JDj(S,Si).

Our aim is to study the complexity of problems mentioned before (total deviation,
total tardiness, number of late tasks), when there are inferred or given precedence con-
straints. In Section 4.5.1, we study the case in which precedence constraints are in-
ferred by the preferences of the voters, and we show that problems ΣD-inferred and
ΣT -inferred can be solved in polynomial time. In Section 4.5.2, we study the case in
which precedence constraints are given and are not necessarily fulfilled by the pre-
ferred schedules of the voters. We will show that problems ΣD-graph, ΣT -graph and
ΣU -graph are NP-hard.

4.5.1 Inferred precedence constraints

Proposition 4.5.1: ΣT -inferred and ΣD-inferred- Polynomially solvable

Problems ΣD-inferred and ΣT -inferred can be solved in O(vn2 +n3).

Proof. We showed earlier (Propositions 3.3.19 and 3.3.20) that when two tasks ta and
tb are of same length, if task ta is scheduled before tb in all the preferences then there
exists an optimal solution for the ΣD rule and the ΣT rule such that ta is scheduled
before tb. Additionally, for any optimal solution in which tb would be scheduled before
ta, it is possible to swap the position of ta and tb without increasing the deviation (or
the tardiness). Therefore by doing successive permutations from an optimal solution,
we can find another optimal solution in which precedence constraints are fulfilled. We
now show that the number of permutations needed is bounded by n2. Problems ΣD-

inferred and ΣT -inferred can thus be solved in polynomial time by

1. computing an optimal solution of ΣD or ΣT (without the precedence constraints)
through an assignment problem, as seen in the introduction. This can been done
in O(vn2 +n3);

2. swapping pair of tasks (ta, tb) that do not fulfill precedence constraints in the
returned schedule of Step 1. As we will show now, there will be at most n2 swaps.

129

Collective schedules - unit tasks and constraints

We create a precedence directed graph with n vertices, one for each task, and in
which there is an edge from vertex ta to vertex tb if the task corresponding to vertex
ta is always scheduled before the task corresponding to vertex tb in the preferences of
the voters. There are at most n2 edges so it is possible to create this graph in O(n2)
operations. Note that this precedence relation is transitive: if ta is always scheduled
before tb and tb is always scheduled before tc then ta is always scheduled before tc. This
implies that this graph has no cycle. This also implies that there exists at least one
vertex with no successor.

We choose a vertex x among the vertices with no successor in the above mentioned
precedence graph. For readability, we will in the sequel denote the task corresponding
to vertex x as task x. We look whether among the predecessors of x there exist vertices
corresponding to a task scheduled after x in the optimal schedule returned by ΣD or
ΣT. If such vertices exist, we swap the position of the task x with the task correspond-
ing to its predecessor scheduled after it and as close as possible to x in the returned
schedule. We repeat this step until all the tasks corresponding to predecessors of x are
scheduled before x. By swapping x with its closest predecessor scheduled after it, we
make sure that we do not create any violation of the precedence constraints. Studying
all the vertices takes n operations, consisting in at most n swaps: the total number of
swaps is then bounded by n2.

Note that the previous proof is a constructive proof: we can compute an optimal
solution for ΣD-inferred (or ΣT -inferred) by solving an assignment problem for ΣD
(or ΣT), and then swapping tasks which do not fulfill the precedence constraints as
explained in the proof of Proposition 4.5.1.

We cannot take the same approach for ΣU -inferred. Indeed, there are instances in
which no optimal solution for the minimization of the total number of late tasks crite-
rion fulfills the inferred precedence constraints, as shown by the following proposition.

Proposition 4.5.2: ΣU- Precedence not fulfilled by optimal solution

There exist instances for which no optimal solution for the ΣU criterion fulfills
the inferred precedence constraints.

Proof. Let us consider the following instance of 5 tasks and 6 voters. The number at
the left of each schedule indicates the number of voters whose schedule is the preferred
schedule (e.g. the favorite schedule of three voters is the second schedule).

a 2 b 1 3

1 a 2 b 3

1 2 3 a b

1
3
2

The only optimal solution for the ΣU criterion is the following one:

130

Collective schedules - unit tasks and constraints

1 2 b a 3

In this solution, b is scheduled before a, whereas all the voters have scheduled a
before b in their favorite schedules: this violates the inferred precedence constraints.

This last proposition means that we cannot proceed like in Proposition 4.5.1, by
computing an optimal solution for ΣU and then swapping tasks which would not be in
the right order. Whether problem ΣU -inferred is NP-hard or not is an open question.

4.5.2 Imposed precedence graph

We start by proving that this problem is strongly NP-hard for the total tardiness crite-
rion.

Proposition 4.5.3: ΣT -graph- NP-hardness

The ΣT -graph problem is strongly NP-hard, even when the precedence graph
consists in chains.

We prove this proposition by doing a polynomial time reduction from the schedul-
ing problem denoted by (1|chains,pj = 1|ΣTj) using the Graham’s notation, a classical
way to denote problems in scheduling theory [Brucker, 2010]. An instance of this prob-
lem is:

• a set J of n unit tasks, each task j having a due date dj . Without loss of generality,
we assume that dj ≤ n for all j.

• a precedence graph, modeling precedence constraints between the tasks. We as-
sume that this graph is made of chains (i.e. each task has at most one successor
and one predecessor, and there is no cycle).

The optimization version of this problem consists in minimizing the sum of the tar-
diness of the tasks. The decision version of this problem consists in answering the
following question: given an integer K , is there a schedule S of the tasks in J on a single
machine, such that the precedence constraints are fulfilled, and such that the total tar-
diness of the tasks,

∑
j∈J max(0,Cj(S)−dj), is smaller than or equal to K ? This problem

is known to be NP-hard [Leung and Young, 1990].
We create an instance of ΣD-graph from the instance from (1|chains,pj = 1|ΣTj) as

follows.

• For each task j in J we create a task tj and a task dumj . These tasks are split into
two sets Jt = {j1, . . . , jn} and Jdum = {dum1, . . . ,dumn}. The set J ′ of the tasks of the
instance of ΣT -graph is the union of Jt and Jdum.

131

Collective schedules - unit tasks and constraints

• For each precedence relation in the (1|chains,pj = 1|ΣTj) problem between tasks
i and j, we create a precedence constraint between ti and tj in the precedence
graph of problem ΣT -graph.

• For each task j in J we also create three voters. Their preferred schedules, that we
will describe now, are represented on Figure 4.3. The first two voters, of type T ,
schedule tj first, followed by tj+1 and so forth until tn, then t1 to tj−1 by increasing
index. They then schedule the dum tasks following the same pattern: dumj first,
then dumj+1 to dumn, followed by dum1 to dumj−1 by increasing index (see top
schedule in Figure 4.3). The last voter, of type D, schedules task tj between time
dj−1 and dj . Before that, she schedules (dj−1) dum tasks from dumj by increasing
index (using again a circular order of the tasks, where task dum1 follows task
dumn). The remaining dum tasks are scheduled after tj by increasing indexes.
The schedule is completed with tasks tj+1, tj+2, . . . , until task tj−1 if j , 1, or task
tn if j = 1 (see bottom schedule in Figure 4.3).

tj tj+1 tj−2 tj−1 dumj dumj+1 dumj−2 dumj−1

dumj dumj+1 . . . tj dumj−2 dumj−1 tj+1 tj+2 tj−1

0 dj
n 2n

2

1

Figure 4.3: Preferred schedules of the 3 voters generated for task j.

In order to prove Proposition 4.5.3, we start by proving the following lemma.

Lemma 4.5.1: Structure of an optimal solution in the reduction

For the instance of the ΣT -graph problem described above, there is an optimal
solution in which all the t tasks are scheduled before all the dum tasks.

Proof. Let us assume by contradiction that there is no optimal solution in which all t
tasks are scheduled before all dum tasks. Let S be such an optimal solution: there is
at least one dum task completing just before a task t. Let us call dumi the first dum
task scheduled before a t task, and tj be the t task scheduled just after dumi . Let k be
the completion time of dumi in S: we have Cdumi

(S) = k and Ctj (S) = k + 1 (note that
1 ≤ k < 2n).

We call S ′ the schedule obtained from S by swapping the position of dumi and tj .
The total tardiness of S ′ is similar to S except for the tardiness of dumi and tj . We then
have Cdumi

(S ′) = k + 1 and Ctj (S
′) = k. Note that if the precedence constraints over the

t tasks are satisfied by S, they are also satisfied by S ′ since the order on the t tasks has
not changed. Therefore, since S is a feasible solution, S ′ is also a feasible solution. We
distinguish two sub-cases:

132

Collective schedules - unit tasks and constraints

tk . . . tl duma . . . dumi tj

tk . . . tl duma . . . tj dumi

0 k

S

S ′

Figure 4.4: Schedules S and S ′. The first dum task to be scheduled just before a t task
in S is dumi .

• k ≤ n. In this case, the tardiness relative to task tj is reduced in S ′ in comparison
to S by at least 2k. Indeed, there are 2k voters scheduling tj at time k or before.
Therefore, moving tj from k + 1 to k reduces the tardiness of tj by one for each of
these voters, giving a total of 2k. The tardiness of task dumi is increased in S ′ in
comparison to S. There are at most k voters of type D scheduling dumi at time
k or before: for each of these voters, the tardiness is increased by one. The sum
of the tardiness of S ′ is decreased by at least 2k (due to tj), and increased by at
most k (due to dumi), in comparison to the sum of the tardiness of S: the total
tardiness of S ′ is thus smaller than the tardiness of S. Since S minimizes the sum
of the tardiness, there is a contradiction.

• k > n. In this case, the tardiness relative to task tj is reduced in S ′ in comparison
to S by 2n+1+(k−n). Indeed, there are 2n voters of type T scheduling tj before k,
and one voter of type D scheduling tj so that this task is completed at date dj with
dj ≤ n. This makes a total of 2n+ 1. Additionally, there are k − n voters of type D
scheduling tj at time n+ 1, n+ 2 up to k. For each of these voters, the tardiness of
tj is reduced by one.

On the other hand, the tardiness of dumi is increased in S ′ in comparison to S by
n+2(k−n). The n voters of type D scheduled dumi so it that it is completed at most
at time n+ 1, meaning that delaying dumi from k to k + 1 increases the tardiness
by one for each of these n voters. Additionally, there are 2(k − n) voters of type
T scheduling dumi so that it completes at dates n+ 1, n+ 2 to k: the tardiness is
increased by one for each of these voters. If we compare the increase in tardiness
for task dumi , n+2(k−n), to the decrease of the tardiness for task tj , 2n+1+(k−n),
we see that the sum of the tardiness in S ′ is decreased by 2n+ 1− k. Since k < 2n,
this value is always strictly positive. This means that the total tardiness of S ′ is
strictly smaller than the tardiness of S, an optimal solution: a contradiction.

We can now start the proof of Proposition 4.5.3.

Proof. From Lemma 4.5.1, we know that there exists an optimal schedule S in which t
tasks are scheduled before dum tasks. We analyze the sum of the tardiness in such a
schedule. We first show that the sum of the tardiness of dum tasks is the same in any
schedule fulfilling the property of Lemma 4.5.1 (first item below), and we then analyze
the sum of the tardiness due to t tasks (second item below).

133

Collective schedules - unit tasks and constraints

• We show that in any schedule in which dum tasks are scheduled after t tasks, the
tardiness due to dum tasks is always the same.

Voters of type T schedule each dum task twice between n and n+1, twice between
n+1 and n+2 and so on until 2n−1 and 2n. In schedule S, the dum task scheduled
between n and n+1 in not late for any voter of type T , the task scheduled between
n+1 and n+2 is late of one unit of time for 2 voters of type T , and so on. Overall,
the total tardiness of dum tasks for T voters is then 2

∑n
i=1

∑i
j=1(j − 1), a constant

number.

Let us now show that the sum of the tardiness of dum tasks for D voters will be the
same in any schedule S in which t tasks are scheduled before dum tasks. Indeed,
for each D voter j, and for each task dumi , the completion time of dumi in the
preferred schedule of j is at most n+1, whereas the completion time of dumi in S
is at least n+ 1. Therefore, the sum of the tardiness due to dum tasks for D voters
is equal to the sum of the distances between completion times of dum tasks in the
preferred schedules of voters D to date n+1 – which is a constant, since preferred
schedules are fixed –, plus the sum of the distances of dum tasks between date
n+ 1 and the completion time of dum tasks in S – this is also a constant since the
completion times of dum tasks in S are the set of times {n+ 1, . . . ,2n}. Therefore,
the the sum of the tardiness of dum tasks for D voters is a constant.

We have seen that the sum of the tardiness of dum tasks is value is the same for
any schedule S which fulfills Lemma 4.5.1. Let Tdum denote this value, which is
constant.

• Regarding tasks t, voters of type T schedule them such that each task ti is com-
pleted twice at time 1, twice at time 2 and so on. So, regardless of the order of
tasks t in S, the first task of S is not late for any voter, the second task of S is late
by 1 unit of time for 2 voters, the third task is late by 1 unit of time for 2 voters,
by 2 units of time for two voters and so on. Therefore, the sum of the tardiness of
t tasks for voters of type T is also the same for each schedule S in which t tasks
precede dum tasks. Let Tt denote this sum of tardiness.

Voters D schedule all tasks t after n+1 except one task tj (for the j-th voter of type
D), and this task is completed at time dj . Therefore in S, each task tj is always
early for all voters D except one, the j-th voter of type D, and its tardiness for this
voter is equal to max(0,Ctj (S)− dj).

The sum of the tardiness T (S) in schedule S is thus equal to:

T (S) = Tdum + Tt +
∑
tj∈Jt

max(0,Ctj (S)− dj)

Since Tdum and Tt do not depend on the order of the tasks in S as long as all tasks t are
scheduled first and all tasks dum are scheduled afterwards, the tardiness of schedule S
only depends on the position of tasks t relatively to the due dates of the (1|chains,pj =
1|ΣTj) problem.

134

Collective schedules - unit tasks and constraints

We will now prove that there exists a solution S for the instance of the ΣT -graph
problem described above such that T (S) ≤ Tdum + Tt + K , if and only if there exists a
schedule S ′ for (1|chains,pj = 1|ΣTj) problem such that the tardiness is smaller than
or equal to K . In other words, the answer to the question of ΣT -graph problem is
then “yes” if and only if the answer to the question of the corresponding instance of
(1|chains,pj =1|ΣTj) is “yes”.

Let us assume first that there is a solution S of ΣT -graph problem such that T (S) ≤
Tdum + Tt +K . It means that

∑
tj∈J max(0,Ctj (S) − dj) ≤ K . Let S ′ be a schedule of tasks

of (1|chains,pj = 1|ΣTj) such that the completion time of task j in S ′ is equal to the
completion time of tj in S. We have

∑
j∈J max(0,Cj(S ′) − dj) ≤ K , and this solution is

feasible since the precedence constraints between the tasks of the (1|chains,pj = 1|ΣTj)
problem are the same than between the t tasks. The answer to the question of the
(1|chains,pj =1|ΣTj) is then “yes”.

Let us now assume that there is a feasible solution (schedule) S ′ of (1|chains,pj =
1|ΣTj) such that the total tardiness is smaller than or equal to K . If we create solution
S such that the completion time of task tj in S is equal to the completion time of j in
S ′, we then have

∑
tj∈Jt max(0,Ctj (S) − dj) ≤ K . The dum tasks are then scheduled in

any order. Such a solution has then a total tardiness of Tt + Tdum + K . This solution
is feasible since the precedence constraints between tasks of the (1|chains,pj = 1|ΣTj)
problem are the same than between the t tasks. This implies that the answer to the
ΣT -graph problem is thus “yes”.

There is a polynomial time reduction from decision problem (1|chains,pj = 1|ΣTj),
which is strongly NP-complete, to the decision version of our problem ΣT -graph. Prob-
lem ΣT -graph is thus strongly NP-hard.

Since, as we have seen before, with unit tasks graphs, and for any profile P and any
schedule S, the sum of the deviations in S with respect to profile P is equal to twice
the sum of the tardiness in S, a schedule minimizing the sum of the deviations among
schedules which fulfill the precedence constraints will also minimize the sum of the
tardiness. Given Proposition 4.5.3, we deduce the following corollary.

Corollary 4.5.1: ΣD-graph- NP-hardness

The ΣD-graph problem is strongly NP-hard, even when the precedence graph
consists in chains.

We now show that problem ΣU -graph, which aims at minimizing the number of
late tasks in the returned schedule, with respect to the preferred schedules of the voters,
is also a strongly NP-hard problem.

Proposition 4.5.4: ΣU- NP-hardness

The ΣU -graph problem is strongly NP-hard, even when the precedence graph
only consists in chains.

135

Collective schedules - unit tasks and constraints

We prove this results by doing a polynomial time reduction from the (1|chains,pj =
1|ΣUj) problem. The decision version of this problem is the following one. An instance
of this problem is:

• A set J ′ = {1, . . . ,n} of n unit tasks. Each task i has a deadline di .

• A a acyclic precedence graph of n vertices {1, . . . ,n}: there is one edge from vertex
i to vertex j if task i has to be scheduled before task j. This graph can be only a
set of chains between some tasks.

• An integer K ′

The aim of optimization problem is to compute a schedule which fulfills the prece-
dence constraints and which minimizes the number of late tasks (i.e. tasks which are
completed after their deadlines). The question of the corresponding decision problem
is the following one: is there a schedule S which fulfills the precedence constraints and
in which at most K ′ tasks are late ?

Garey and Johnson [1976] have shown that this problem is strongly NP-hard with
general precedence constraints, even with unit time tasks. Lenstra and Rinnooy Kan
[1980] have sharpened this result by showing that this problem remains strongly NP-
hard, even if the set of precedence constraints is a set of chains.

Without loss of generality we assume that di ≤ n (tasks with deadlines larger than n
will never be late in a schedule of n unit tasks without idle time). We create an instance
of ΣU -graph as follows.

For each task i of J ′, we create a task ti and a task dumi . For each task i we also create
(n+ 1) voters as shown in Figure 4.5. There are n voters “of type T” scheduling task ti
first, then ti+1 and so forth until tn and then scheduling tasks t1 to ti−1 by increasing
index. They then schedule tasks dum1, dum2, . . .dumn. The last voter, “of type D”
schedules task ti so that it is completed at time di , and, if di , 1, she schedules task
dum2 to dumdi−2 by increasing index from time 0 to time di − 2. From time di , she
schedules tasks dumdi−1 to dumn until time n, by increasing index, and she schedules
dum1 so that this tasks is completed at time n + 1. She completes the schedule with
tasks ti+1, . . . , tn by increasing index, followed by tasks t1 to ti−1 by increasing index.
For any precedence relation between tasks i and j in (1|chains,pj =1|ΣUj), we create the
same preference relation between tasks ti and tj of our ΣU -graph instance.

ti ti+1 ti−2 ti−1 dum1 dum2 dumn−1 dumn

dum2 . . . dumdi ti dumdi+1 . . . dumn dum1 ti+1 ti+2 . . . ti−2 ti−1

0 di
n 2n

n

1

Figure 4.5: Preferred schedules of the n+ 1 voters generated for task i.

In order to prove Proposition 4.5.4, we introduce several lemmas which describe
an optimal schedule for the above described instance. As in the proof of Proposi-

136

Collective schedules - unit tasks and constraints

tion 4.5.3, we will see that computing such an optimal solution allow us the associated
NP-complete scheduling problem (problem (1|chains,pj =1|ΣUj) in our case).

Lemma 4.5.2: Task dum1 always starts in n

There exists an optimal solution for ΣU -graph in which task dum1 completes at
time n+ 1.

Proof. All voters schedule dum1 so that it is completed at time n+1. Let S be a schedule
in which dumi does not complete at time n+ 1. We distinguish two sub-cases:

1. Task dum1 completes before time n+ 1: we create schedule S ′ from S by schedul-
ing dumi so that it is completed at time n + 1. We decrease from 1 unit of time
any task scheduled in S between dum1 and time n+ 1. Task dum1 is not late in S ′

for any voter, just like in S and the task that have been scheduled before cannot
become late in S ′ if they were not in S. Therefore the number of late tasks cannot
increase from S to S ′.

2. Task dum1 completes after n+ 1. We distinguish two sub-cases:

• If the task j completing at time n + 1 in S is a dum task, we create S ′ from
S by swapping the position of dum1 with the task j. The unit time penalty
for all tasks but j and dum1 are identical between S and S ′. Task dum1 is in
S ′ on time for the n(n + 1) = n2 + n voters, whereas it was late in S. On the
other hand the unit time cost for task j is increased, but at most by n2 voters,
since the n voters of type D already considered it late since they scheduled it
before time n+1. Overall the unit time penalty is reduced in S ′ in comparison
to S.

• If the task j completing at time n+1 in S is a t task, we create a new schedule
S ′ by scheduling dum1 so that it completes at time n + 1. We then perform
consecutive swaps such that the order on the t tasks is the same in S, which
is a feasible solution, and S ′. If there is at least one t task scheduled between
n+ 1 and, Cdum1

(S), the completion time of dum1 in S, we schedule task j at
the time slot occupied by the first t task scheduled after n+ 1 in S. Let ti be
such a task. This task ti is then scheduled at the time slot of the following
t task which is completed before Cdum1

(S), and so on until there is no t task
left before Cdum1

(S). The final t task moved that way goes on the time slot
occupied by dum1 in S (i.e. is completed at time Cdum1

(S)).

137

Collective schedules - unit tasks and constraints

. j . . . ti duma dumb ti′ ti′′ . . . dum1 . . .

0 n 2n

S ′

S

. dum1 . . . j duma dumb ti ti′ . . . ti′′ . . .

Figure 4.6: Schedule S and the swaps performed to obtain S ′.

Note that if the precedence constraints between the t tasks are fulfilled by S,
they are also fulfilled by S ′ since the order on the t tasks do not change, just
their positions.
The t tasks which have been moved in S ′ were considered late in S by all T
voters: delaying them do not increase unit time penalty for T voters. Since D
voters schedule t task in a cyclic fashion, each t task completes once at time
n + 2, once at time n + 3 and so on. Therefore delaying a t task by one unit
of time between n+ 1 and 2n increases its unit time penalty by 1 (since one
additional voter will consider it late). Therefore, when delaying these tasks,
the cumulative delay is at most n. On the other hand, scheduling dum1 at
time n+ 1 decreases the number of late tasks by n2 + n since it is late for all
voters in S and on time for all voters in S ′. This means that the total unit
time penalty is smaller in S ′ than in S.

In all the cases, we managed to generate a solution S ′ in which dum1 is scheduled
between time n and time n + 1 with the total number of late tasks of S ′ smaller
than or equal to the number of late tasks in S. Therefore there always exist an
optimal solution in which dum1 is scheduled between n and n+ 1.

Lemma 4.5.3: dum tasks starting from n are ordered by increasing indices

There exists an optimal solution of ΣU -graph that fulfills Lemma 4.5.2 and such
that there is in this solution a set of successive dum tasks scheduled by increasing
index from time n, and none of these tasks are considered late by any voter of
type T .

Proof. Let S be an optimal solution fulfilling the property of Lemma 4.5.2: task dum1
is completed at time n+ 1.

Let us assume that in S some tasks of the dum set starting at time n are not sched-
uled by increasing index. Let duma and dumb be the two tasks scheduled the earliest in
this set and such that duma is scheduled before dumb with a > b. Since they are the first
two tasks fulfilling this condition any task of this set scheduled before duma in S has a
smaller index than a and is also scheduled before duma in the preferences of voters T .

138

Collective schedules - unit tasks and constraints

Let us consider the solution S ′ obtained from S by swapping the positions of duma

and dumb. Since b < a, dumb is scheduled before duma in the preferences of T voters
and since all tasks of the set scheduled before duma in S are also scheduled before duma

in preferences of voters T , duma cannot be late for voters of type T . This means that
task duma does not become late for T voters in S ′. This tasks is late for D voters in both
S and S ′ since it is scheduled after n+ 1. Since the completion time of dumb is reduced
in S ′ in comparison to S, it cannot be late in S ′ whereas it was not late in S. Therefore,
the number of late tasks in S ′ is not larger than the number of mate tasks in S.

Repeating these swaps until all the dum tasks of the set are scheduled by increasing
index, we obtain a new solution in which all of these tasks are on time for T voters and
in scheduled by increasing index and such that number of late tasks is not increased in
comparison to S.

Lemma 4.5.4: Tasks t are scheduled before tasks dum on [0,n]

There exists an optimal solution for ΣU -graph which fulfills Lemma 4.5.3, and
such that all t tasks scheduled between time 0 and time n are scheduled before
any dum tasks scheduled between time 0 and time n.

Proof. Let us consider a solution S fulfilling the properties of Lemmas 4.5.2 and 4.5.3
and such that there is a task dumi scheduled between time 0 and time n and such that
there is a task tj scheduled just after dumi in S. Since the task scheduled between time
n and n+ 1 is dum1 in S, task tj completes at most at time n.

We create a schedule S ′ from S by swapping the positions of dumi and tj . For each
date k between 1 and n, there are n voters of type T scheduling tj so that it is completed
at time k. Therefore, advancing tj by one unit of time between 1 and n, decreases the
number of late tasks by n. On the other hand, task dumi is delayed by one unit of time.
This does not impact the T voters since they schedule dumi after time n + 1. Voters
of type D might have an increased unit time penalty for task dumi . Since there are n
voters of type D, this increases the number of late tasks by at most n. Therefore, the
number of late tasks in S ′ is smaller than or equal to the the number of late tasks in
S.

Lemma 4.5.5: Structure of an optimal solution

There exists an optimal solution for ΣU -graph which fulfills Lemma 4.5.4, and
in which all the t tasks are scheduled before all dum tasks. Moreover, in this
solution, the dum tasks are scheduled in order of increasing indexes.

Proof. Let S be an optimal solution satisfying the properties of Lemma 4.5.4 and such
that all tasks t are not scheduled before all dum tasks. Let dumi be the first dum task to
be scheduled in S. This implies that Cdumi

≤ n. Because of Lemma 4.5.4, task dumi has
to be scheduled after a series of t tasks, and all tasks scheduled after dumi and before
dum1 are dum tasks as well. Let tj be the first t task scheduled after dumi . As we have

139

Collective schedules - unit tasks and constraints

seen, dumi is scheduled after n+1 and after a set of dum tasks scheduled by increasing
index.

tk . . . tl dumi . . . dumx dum1 dum2 . . . dumy tj

0 n 2n

Figure 4.7: Schedule S with the swap performed to obtain Stmp.

Let Stmp be the schedule obtained by swapping from S the position of dumi and tj ,
and let S ′ be the schedule obtained by swapping from S the position of dumi and tj and
in which dumi is re-positioned in the dum set so that the tasks in the set are scheduled
by increasing indexes (therefore that S ′ can also be obtained from Stmp by repositioning
dumi at the right place in the set of dum tasks that follow it in S).

Note that since S fulfills the precedence constraints on the t tasks, then they are
fulfilled by Stmp and S ′ as well since the order on the t tasks does not change. In its new
position in Stmp and S ′, task dumi is not late for voters of type T (who schedule dumi

after time n). It may be late for some voters of type D whereas it was not necessarily
late for these voters in schedule S. Therefore, since there are n voters of type D, the
number of late tasks due to dumi is increased by at most n in Stmp and in S ′. Let us now
focus on the total number of late tasks tardiness in Stmp. The only tasks whose time slot
has changed (compared to is time slot in S) is tj , which was late for all voters of type T
in S but now completes at most at time n. It thus in Stmp on time for at least n voters
of type T (the ones scheduling it between time n−1 and n). Overall the number of late
tasks does not increase in Stmp in comparison to S. Since all the voters schedule, in
their preferred schedules, the dum tasks by increasing order, the number of late tasks
in S ′ is not larger than the number of late tasks in Stmp. Therefore, the number of late
tasks does not increase in S ′ compared to in S.

By repeating, if needed, this type of swaps, we obtain an optimal solution in which
all t tasks are scheduled before all dum tasks, and in which dum tasks are scheduled
by increasing indices.

Starting from any optimal solution S and applying the successive swaps described
in Lemmas 4.5.2 to 4.5.5, we obtain an optimal solution in which tasks t are scheduled
first and are followed by dum tasks which are scheduled between time n and 2n by
increasing indices. Let us now prove Proposition 4.5.4.

Proof. We show that there exists a solution with a total number of late task smaller than
or equal to K ′ for (1|chains,pj =1|ΣUj) if and only if there exists a solution with a total
number of late tasks for ΣU -graph smaller than or equal to K = K ′+n(n+1)+

∑n
i=1(i−1)n.

Let us first assume that there exists a solution with at most K late tasks for ΣU -

graph. Thanks to Lemmas 4.5.5, we know that there exists an optimal solution in

140

Collective schedules - unit tasks and constraints

which tasks of type t are scheduled before dum tasks, which are scheduled by increas-
ing indices. In such a solution S, the number of late tasks can be split into two parts,
one independent from the order of the t tasks, and one depending on this order.

Regardless of the order of the t tasks, the dum tasks are all on time for the voters
of type T , and all (except dum1) late for the voters of type D. There are therefore n− 1
dum tasks late for each of the n voters of type D, which amounts to n(n− 1) late tasks.
Furthermore, t task completes n times at time 1, n times at time 2, and so on until time
n. The t task completing at time 1 will be on time for all voters of type T , the t task
completing at time 2 will be late for n voters of type T , the third task will be late for 2n
voters and so on. This amounts to

∑n
i=1(i − 1)n. For each i ∈ {1, . . . ,n}, task ti is on time

for D voters, except for the i-th D voter, who scheduled task ti so that it is completed
at time di .

This means that the total number of late task in S is Ut(S) + n(n− 1) +
∑n

i=1(i − 1)n,
where Ut(S) denotes the number of late t tasks in S for voters of type D. Since S is an
optimal solution and since the answer to the ΣU -graph problem is ‘yes’, this means
that Ut(S) ≤ K ′.

We label the t tasks according to their position in schedule S, which can be de-
scribed as follows: (tS(1), tS(2), . . . , tS(n),dum1,dum2, . . . ,dumn), where S(i) denotes the
index of the task scheduled in position i in S. We consider the schedule S ′ of tasks of
(1|chains,pj = 1|ΣUj): S(1),S(2), . . . ,S(n). Note that since S is a feasible solution of ΣU -

graph and since the precedence constraints on t tasks are the same than on the tasks of
the (1|chains,pj =1|ΣUj) instance, S ′ is a feasible solution of (1|chains,pj =1|ΣUj). In S ′,
task S(i) is completed at the same time than task tS(i) in S, therefore task S(i) is late if
and only if S(i) is late for the voter scheduling S(i) at time dS(i). Therefore if Ut(S) ≤ K ′,
the total number of late tasks in S ′ is also smaller than or equal to K ′, which means that
the answer to the (1|chains,pj =1|ΣUj) problem is also ‘yes’.

Reciprocally, if the answer to the (1|chains,pj = 1|ΣUj) problem is ‘yes’, then there
exists a schedule S ′ for (1|chains,pj = 1|ΣUj) such that the total number of late tasks
in S ′ is smaller than or equal to K ′. We consider S the schedule (tS ′(1), . . . , tS ′(n),dum1,
dum2, . . . ,dumn) for the ΣU -graph problem. Schedule S fulfills the precedence con-
straints of the ΣU -graph instance since these precedence constraints are the same than
the precedence constraints on the t tasks of the corresponding instance of ΣU -graph.

Since S fulfills the property of Lemma 4.5.5, there is a constant number of late task
n(n − 1) +

∑n
i=1 for voters of type T . The number of late t tasks for voters of type D

depends on whether task ti is scheduled before or after time di since only one D voter
schedules task ti before time n (she schedules ti between times di − 1 and di). Task ti is
completed in S at the same time than task i in S ′. Therefore task ti completes after di
in S if and only if task i is late in S ′. Therefore the number of late t tasks in S for voters
of type D is equal to the number of late tasks in S ′. Since the number of late tasks in
S ′ is smaller than or equal to K ′, the total number of late tasks in S is smaller than or
equal to K ′ +n(n+ 1) +

∑n
i=1(i − 1)n and the answer to ΣU -graph is then ‘yes’.

The answer to the ΣU -graph problem is ‘yes’ if and only if the answer to the
(1|chains,pj =1|ΣUj) problem is ‘yes’. Since the decision version of problem (1|chains,pj =

141

Collective schedules - unit tasks and constraints

1|ΣUj) is strongly NP-complete [Lenstra and Rinnooy Kan, 1980], we conclude that the
decision version or problem ΣU -graph is also strongly NP-complete.

Proposition 4.5.3 shows that problem ΣT -graph is strongly NP-hard, while Propo-
sition 4.5.4 shows that problem ΣU -graph is strongly NP-hard, even if the precedence
graphs are only made of chains of tasks. Since, as we have seen in Section 4.2.2, prob-
lem ΣT is a special case of the Distance Criterion, and problem ΣU is a special case of
the Binary Criterion, we get the following corollary.

Corollary 4.5.2: Distance and Binary - NP-hardness

Returning an optimal solution for the Distance Criterion or the Binary Criterion
are strongly NP-hard problems when there are imposed precedence constraints.
This is true even with precedence graphs only made of chains.

4.6 Conclusion

In this chapter, we studied the collective scheduling problem with unit size tasks,
which can also be seen as a collective ranking problem since tasks of length 1 can be
considered as items and preferred schedules as preferred rankings.

We introduced two general objective functions, one based on a distance, and the
other one on a binary criterion. The distance based function minimizes the average
distance between the returned schedule (or ranking) and the preferences of the voters
(expressed as preferred schedules or preferred intervals for each task). It generalizes
already known rules that minimize of the average deviation (ΣD), or the average tar-
diness (ΣT). The binary function generalizes the rule ΣU that minimizes the average
number of late tasks. These rules can be applied in polynomial time even if we add
release dates and deadlines constraints on the tasks.

We studied these two general rules from an axiomatic point of view when we infer
release dates and deadlines from the preferences of the voters, showing that they do not
fulfills release date or deadline consistency, but that they fulfill temporal unanimity,
three axioms that we have introduced in this chapter.

We have also shown that the rule EMD which schedules the tasks by increasing
median completion time (or by increasing median place in a ranking if we consider
rankings instead of schedules), is a 2-approximation for the sum of the deviation (or
the sum of the tardiness) minimization.

Last but not least, we studied the case where there are precedence constraints be-
tween the tasks. Note that precedence constraints also make sense in the context of
rankings if items, a constraint between two items a and b saying that item a has to
be ranked higher than item b. We showed that if the precedence constraints are ful-
filled by the preferred schedules (or rankings) of the voters, then it is easy to get an
optimal schedule (ranking) which fulfills the precedence constraints while minimiz-
ing the average deviation (or the average tardiness). When the preferred schedules do

142

Collective schedules - unit tasks and constraints

not necessarily fulfill the constraints, we showed that on the contrary, it is NP-hard to
find a schedule that fulfills the precedence constraints while minimizing the average
deviation (or the average tardiness, or the average number of late tasks).

143

Collective schedules - unit tasks and constraints

144

Chapter 5

A Non-Utilitarian Discrete Choice
Model for Preference Aggregation

In this chapter, we take a probabilistic approach to preference aggregation. A set of v
voters express preferences over a set of n candidates. In this chapter, we will follow a
probabilistic approach as described in Section 1.2. We make the hypothesis that there
exists a ground truth ranking, i.e. an objective way of ranking the candidates. The
voters have a noisy perception of this ground truth and express their perception via
their votes. In this chapter, we call “model” a probabilistic model which represents
the noise. Such a model associates a conditional probability to each preference: it al-
lows us to state that “if the ground truth ranking is R∗, then the probability for a voter
to express her preference R is p(R|R∗)” and to compute the value of this probability.
We study in this chapter a non-utilitarian discrete choice model for preference aggre-
gation. Unlike the Plackett-Luce model, one of the most studied probabilistic model,
that we will introduce in the chapter, this model is not based on the assignment of
utility values to alternatives, but on probabilities pi to choose the best alternative (ac-
cording to a ground truth ranking R∗) in a subset of i alternatives. We consider k−1
parameters pi (for i = 2 to k) in the model, where k is bounded by the number n of al-
ternatives (or candidates). We study the application of this model to voting, where we
assume that the input is a set of choice functions provided by voters. If k=2, our model
amounts to the model used by Young [1988] in his statistical analysis of Condorcet’s
voting method, and a maximum likelihood ranking is a consensus ranking for the Ke-
meny rule [Kemeny, 1959]. If k >2, we show that, under some restrictive assumptions
about probabilities pi , the maximum likelihood ranking is a consensus ranking for the
k-wise Kemeny rule [Gilbert et al., 2020]. When we relax these assumptions, we pro-
vide a characterization result for the maximum likelihood ranking R and probabilities
pi . We propose an exact algorithm as well as a heuristic to compute both ranking R
and probabilities pi . Numerical tests are presented to assess the efficiency of these
algorithms, and measure the model fitness on synthetic and real data.

The results presented in this chapter have been published in [Durand et al., 2022].

145

A Non-Utilitarian Discrete Choice Model for Preference Aggregation

5.1 Introduction

5.1.1 Discrete choice models for preference aggregation

Preference aggregation is ubiquitous in multiple fields, among which are social choice
[Arrow, 1951; Sen, 1999], information retrieval [Cormack et al., 2009], collaborative
filtering [Pennock et al., 2000], or peer grading [Raman and Joachims, 2014]. The ag-
gregation problem is formulated as follows: given v agents (or voters) and n alternatives
(or candidates), each agent’s preferences are specified by a ranking (permutation) of the
alternatives, and the aim is to determine a single consensus ranking. Alternatively, pref-
erences can also be expressed as choice functions instead of rankings [Aleskerov, 1999],
i.e., each agent chooses her preferred candidate among various subsets of candidates.
A choice function allows more possibilities for the voters (cyclic preferences are even
possible), and may be easier to elicit if only a few subsets of candidates are considered.
However, if all subsets of candidates are considered, their number becomes quickly
very large (2n). The procedure producing a consensus ranking from the v agents’ pref-
erences (expressed as rankings or choice functions) is called a voting rule.

A stream of research aims to rationalize voting rules by using statistical models
for rank data, whose characteristics depend on the application domain (see e.g. [Xia,
2019]). This assumption of a statistical model behind the agents’ preferences dates back
to Condorcet. As emphasized by Young [1988], “Condorcet argued that if the object
of voting is to determine the ‘best’ decision for society but voters sometimes make
mistakes in their judgments, then the majority alternative (if it exists) is statistically
most likely to be the best choice.”

Young’s examination of Condorcet’s work through the lens of modern statistics
leads him to put forward the Kemeny rule [Kemeny, 1959] (see Definition 1.2.2 in
Section 1.2). This well-known rule consists of producing a consensus ranking R that
minimizes the number of disagreements between R and the pairwise preferences of
the agents on the candidates. Young shows that a consensus ranking for the Kemeny
rule is a Maximum Likelihood Estimate (MLE) of a “ground truth” ranking R∗ of the
alternatives if one assumes that the pairwise preferences of the voters follow a statisti-
cal model parameterized by R∗ under specific assumptions. The assumptions (already
made by Condorcet) are:

1) In every pairwise comparison, each voter chooses the best alternative in R∗ with
some fixed probability p, with p> 1

2 .

2) Each voter’s judgment on every pair of alternatives is independent of her judg-
ment on every other pair1.

3) Each voter’s judgment is independent of the other voters’ judgments.

When voters’ preferences are expressed as rankings, it is also known that a con-
sensus ranking for the Kemeny rule is an MLE of a ground truth ranking R∗ for a

1Note that this assumption allows the preferences to be cyclic.

146

A Non-Utilitarian Discrete Choice Model for Preference Aggregation

distance-based statistical model for ranking data [Conitzer et al., 2009]. Consider in-
deed the conditional probability distribution P r on rankings R′ of candidates defined
by P r(R′ |R∗) ∝ 2−∆KT (R∗,R′), where ∆KT (R∗,R′) is the Kendall tau distance between R∗

and R′ (number of pairwise disagreements between R∗ and R′). Assuming that each
voter’s judgment is independent of the other voters’ judgments, it is easy to show
that the Kemeny rule returns a ranking R maximizing P r(R1, . . . ,Rn|R)=

∏v
j=1 P r(Rj |R)=

2−
∑

j ∆KT (R,Rj), i.e., an MLE of R∗.
Other works about the use of MLE for preference aggregation explore the estimation

of the parameters of discrete choice models from voting data. A discrete choice model
consists of predicting the probabilities, called choice probabilities, of choosing c∈S when
presented with a subset S of alternatives, for each possible subset S [Luce, 2012]. A
set of agents’ rankings can be seen as choice data by considering that each ranking
rationalizes a choice function. A choice function f picks a favorite alternative in any
subset S of alternatives. For instance, the ranking 1≺ 2≺ 3 (where “≺” stands for “is
preferred to”) rationalizes the choice function f ({1,2}) = 1, f ({1,3}) = 1, f ({2,3}) = 2,
and f ({1,2,3}) = 1. The most famous discrete choice model is known as the Plackett-
Luce model. It consists in assigning a utility uc to each alternative c, and setting the
probability P r(f (S)=c) to choose c in S equal to uc/

∑
d∈S ud . The corresponding voting

rule returns the ranking of alternatives by decreasing order of maximum likelihood
utilities. Unlike most discrete choice model, the model we propose hereafter does not
rely on the assignment of utility values (or utility distributions) to alternatives.

The use of discrete choice models based on utilities for preference aggregation de-
viates from Young’s point of view. Indeed, Young uses distinct parameters to model, on
the one hand, the respective “objective” skills of the candidates, namely the parameter
R∗ (ground truth ranking), and on the other hand, the “reliability” of the judgments of
the voters, namely the parameter p (the closer the probability p is to 1, the more con-
sistent the preferences are with the ground truth ranking). In discrete choice models
based on utilities, the utilities are used both for modeling the objective skills of the
candidates and the reliability of the judgments (the greater the differences in utilities,
the more reliable the voters’ judgments). Besides, unlike Young’s model, that is related
to the Kemeny rule, the consensus rankings obtained by sorting the candidates by de-
creasing order of maximum likelihood utilities are not related to well-identified voting
rules.

5.1.2 Overview of our results

We propose a discrete choice model inspired by Young’s model for the Kemeny rule.
Given a ground truth ranking R∗ of the alternatives, the choice of an agent in a subset
of i alternatives is consistent with R∗ with a probability pi (pi is αi > 1 times greater
than the probability to choose any other given candidate in a subset of size i). Unlike
many discrete choice models used for social choice, the model is thus non-utilitarian,
i.e., not based on the assignment of utility scores to alternatives. While the introduction
of utility scores is appealing because the cardinal data are richer than the ordinal ones,

147

A Non-Utilitarian Discrete Choice Model for Preference Aggregation

the interpretation of such utility scores is not always obvious, e.g., when comparing
artworks. We show the following results regarding the model we propose:

• Proposition 5.5.1 states that, if the value of αi does not depend on i, then a max-
imum likelihood ranking is a consensus ranking for the k-wise Kemeny rule, a
recently introduced voting rule that returns a ranking minimizing the number of
disagreements with the choice functions of the voters [Gilbert et al., 2020].

• If values αi depend on i, we provide a characterization result (Proposition 5.5.2)
for a maximum likelihood estimation of the ground truth ranking R∗ and αi ’s.
The characterization involves a weighted variant of the k-wise Kemeny rule.

• Based on Proposition 5.5.2, we provide an exact algorithm and a heuristic algo-
rithm for determining a maximum likelihood couple in the general case.

• Finally, using synthetic and real data, we present numerical tests to assess the
efficiency of these algorithms, as well as the model fitness to data.

5.2 Related work

The related work concerns either the maximum likelihood approach to voting, or set
extensions of the Kemeny rule.

The maximum likelihood approach to voting. In this approach, we make the as-
sumption that a true “objective” ranking of the candidates exists, and that the prefer-
ences expressed by the voters are noisy observations of this true ranking. If the pref-
erences are rankings drawn i.i.d. from a distribution, the probability of observing a
set P = {R1, . . . ,Rn} is then P r(P |R) =

∏n
j=1 P r(Rj |R). Each probability model for P r(Rj |R)

induces a voting rule where a ranking maximizing P r(P |R) (the likelihood) is a con-
sensus ranking. Drissi-Bakhkhat and Truchon [2004] investigate a setting in which the
probability of comparing two alternatives consistently with a ground truth ranking R∗

is increasing with the distance between them in R∗. This leads to a new voting rule
that the authors examined from an axiomatic point of view. While every noise model
on the votes2 induces a voting rule, Conitzer and Sandholm [2005] study the oppo-
site direction, using it as a way to rationalize voting rules. They identify noise models
for which an MLE ranking is a consensus ranking of well-known voting rules (scor-
ing rules and single transferable vote), and on the contrary, for other rules (Bucklin,
Copeland, maximin), they show that no such noise model can be constructed. Conitzer
et al. [2009] pursue this line of work, providing an exact characterization of the class
of voting rules for which a noise model can be constructed. More recently, Caragiannis
et al. [2016] study how many votes are needed by a voting rule to reconstruct the true

2When the votes are viewed as noisy perceptions of a ground truth ranking R∗, a noise model is the
mathematical description of the probabilities of the votes based on R∗.

148

A Non-Utilitarian Discrete Choice Model for Preference Aggregation

ranking. Another line of research focuses on the use of discrete choice models in so-
cial choice. Soufiani et al. [2012] study an extension of the Plackett-Luce model. This
model can be viewed as a random utility model in which the utilities of alternatives are
drawn i.i.d. from a Gumbel distribution. They propose a random utility model based
on distributions in the exponential family (to which Gumbel distributions belong), as
well as inference methods for the parameters. Among other results, they showed that
their model fits better than the Plackett-Luce model to the well-known sushi dataset
[Kamishima, 2003].

Set extensions of the Kemeny rule. Gilbert et al. [2020] introduce the k-wise Kemeny
rule, show that the computation of a consensus ranking according to this rule is NP-
hard, and provide a dynamic programming procedure for this purpose. We will give
a detailed presentation of this rule in the ext section. At least two other set extensions
of the Kemeny rule have been proposed. Both extensions consider a setting in which,
although the voters have preferences over a set S, the election will in fact occur on a
subset S ⊆ S drawn according to a probability distribution on 2S [Baldiga and Green,
2013; Lu and Boutilier, 2010]. A consensus ranking R is then one that minimizes, in
expectation, the number of voters’ disagreements with the chosen candidate in S (a
voter disagrees with R on S if tR(S) is not her most preferred candidate in S). Baldiga
and Green study a setting in which the probability P r(S) only depends on the cardi-
nality of S. Lu and Boutilier study a special case of the previous setting, where each
candidate is unavailable in S with a probability p, independently of the others, i.e.,
P r(S) = p|C\S |(1− p)|S |. Proposition 5.5.2 later in the paper uses a weighted sum of dis-
agreements ∆k,α

KT on subsets of size at most k that is formally equivalent to the rule used
by Baldiga and Green for k=n: the weights logαi assigned to disagreements on subsets
S of size i= |S | play the role of P r(S). However, the viewpoint we take here is completely
different, as the values αi are not given, but inferred from the choice data. In addition,
to determine a maximum likelihood ranking for our model, we do not minimize ∆

k,α
KT

only, but the sum of ∆k,α
KT and another term.

5.3 Preliminaries

In the following, we will consider that the preferences of the agents are expressed as
choice functions. A first possibility to elicit these choice functions is by asking each
agent to give her most preferred alternative for each subset of size at most k – this
may be a good solution if there are few candidates and k is not too large, or when
the agents are not able to give their preferences as rankings. Another possibility is
to ask for rankings, and infer choice functions from them (the choice in a subset S
of candidates is the highest ranked candidate among S) – a ranking can be seen as a
compact representation of a choice function.

149

A Non-Utilitarian Discrete Choice Model for Preference Aggregation

Example 5.3.1: Inferring choice functions

Let us consider 3 candidates {c1, c2, c3} and 10 voters with preferences, expressed
as rankings, as follows:

• 3 voters of type I have preferences c1≺c2≺c3.

• 3 voters of type II have preferences c3≺c1≺c2.

• 2 voters of type III have preferences c2≺c1≺c3.

• 2 voters of type IV have preferences c3≺c2≺c1.

This preference profile yields the choice function profile given in Table 5.1,
where each cell gives the favorite alternative fj(S) in S for voter j of the type
corresponding to the row. For example, considering the rightmost column, one
sees that c1 (resp. c3) is the preferred candidate in {c1, c2, c3} for voters of type I
(resp. II and IV).

S= {c1, c2} S= {c1, c3} S= {c2, c3} S= {c1, c2, c3}
fj(S) (j of type I) c1 c1 c2 c1

fj(S) (j of type II) c1 c3 c3 c3

fj(S) (j of type III) c2 c1 c2 c2

fj(S) (j of type IV) c2 c3 c3 c3

Table 5.1: The choice function profile in Example 5.3.1.

Let V = {v1, . . . , vv} be a set of v agents (or voters) and S a set of n alternatives (or
candidates). We denote by XS the set of the n! possible rankings of S. For k ∈ {2, . . . ,n},
we denote by Φk the set of all subsets S of S such that 2 ≤ |S | ≤ k. Given a value k ∈
{2, . . . ,n}, each agent vj ∈ V has a choice function fj : Φk → S which gives, for each
subset S of alternatives of size at most k, her preferred alternative in S (assuming that
each agent has only one favorite alternative per subset). We denote by Fk the set of
all possible choice functions on sets of size at most k. A choice function profile P =
(f1, . . . , fv) ∈Fv

k is a tuple of v choice functions fj , one per agent. In this setting, the
purpose of preference aggregation is to determine a consensus ranking from the choice
functions in P . A voting rule r : Fv

k → (2XS \{∅}) in which ballots are choice functions,
maps each choice function profile to a non-empty set of consensus rankings.

The statistical model for choice functions studied in this paper will reveal closely
related to a recently proposed voting rule, namely the k-wise Kemeny rule [Gilbert
et al., 2020]. To compute a consensus rankings for the k-wise Kemeny rule, one needs
only the information from the choice matrix derived from P , denoted by MP . The choice
matrix gives, for each subset S of candidates and each candidate c, the number of voters
for which c is the preferred candidate in S. If only subsets of size at most k matter, the
choice matrix can be restricted to these subsets.

150

A Non-Utilitarian Discrete Choice Model for Preference Aggregation

Example 5.3.2: Example 5.3.1 continued - Choice matrix

The choice matrix synthesizing the results of all setwise contests for the choice
functions of Table 5.1 is given in Table 5.2. The matrix reads as follows: for
instance, considering the rightmost column, one sees that c1 is the most preferred
candidate in {c1, c2, c3} for 3 voters, c2 is the most preferred candidate for 2 voters,
and c3 is the most preferred candidate for 5 voters.

S {c1, c2} {c1, c3} {c2, c3} {c1, c2, c3}
c1 6 5 – 3

c2 4 – 5 2

c3 – 5 5 5

Table 5.2: The choice matrix associated to the instance of Example 5.3.1.

We now formally describe the k-wise Kemeny rule. Given a ranking R and a subset
S ∈Φk of candidates, let tR(S)∈S denote the most preferred candidate in S for R (i.e., for
each candidate c, tR(S)∈S, tR(S) is ranked at a higher position in R than c – is preferred
to c). The k-wise distance ∆k

KT (R,f) between a ranking R and a choice function f ∈Fk

is the number of disagreements between R and f on sets of candidates of size between
2 and k:

∆k
KT (R,f) =

∑
S∈Φk

1tR(S),f (S)

where 1tR(S),f (S) = 1 if tR(S) , f (S), 0 otherwise. Note that when k= 2, ∆2
KT (R,f) is the

well-known Kendall tau distance between R and f ∈F2 (which associates a winner to
each pair of candidates). We may also express ∆k

KT by splitting Φk into sets of subsets
of the same cardinality. Let us denote by Si the set of subsets of S of cardinality equal
to i. We have thus

⋃k
i=2Si = Φk and ∆k

KT can be written:

∆k
KT (R,f) =

k∑
i=2

∑
S∈Si

1tR(S),f (S)

Given a profile P , the cost of a ranking R is the sum of the k-wise distances between R
and each choice function fj (j ∈ {1, . . . , v}) in the choice function profile. It is thus the
total number of disagreements between R and the voters on all the possible subsets of
candidates of size at most k:

∆k
KT (R,P) =

n∑
j=1

∆k
KT (R,fj) =

n∑
j=1

k∑
i=2

∑
S∈Si

1tR(S),fj (S)

The k-wise Kemeny rule determines a ranking minimizing ∆k
KT (R,P) among all the

rankings R∈XS . To compute such a consensus ranking, one needs only the information

151

A Non-Utilitarian Discrete Choice Model for Preference Aggregation

from the choice matrix MP . It indeed minimizes ∆k
KT (R,P):

∆k
KT (R,P) =

k∑
i=2

∑
S∈Si

d(MP ,S,R) (5.1)

where d(MP ,S,R) is the number of voters whose most preferred candidate in S is not
tR(S) (number of disagreements between R and MP for S). That is, a consensus ranking
for the k-wise Kemeny rule minimizes the number of disagreements with the agents’
choice functions on subsets of cardinality at most k (a disagreement occurs between
a ranking R and choice function f on a subset S of candidates if f (S) , tR(S)). The
k-wise Kemeny rule generalizes the Kemeny rule, as it amounts to the usual Kemeny
rule if k = 2. Increasing k allows to overcome a well-known drawback of the Kemeny
rule, namely that very different consensus rankings may coexist. The example below
illustrates this.

Example 5.3.3: Example 5.3.1 continued - k-wise Kemeny rule

In Example 5.3.1, there are two consensus rankings for the Kemeny rule, namely
c1≺ c2≺ c3 and c3≺ c1≺ c2 since both of them induce 14 pairwise disagreements
with the preference profile. Candidate c3 is thus ranked last in the former, and
first in the latter. In contrast, for the 3-wise Kemeny rule, the only consensus
ranking is c3 ≺ c1 ≺ c2, with 14 + 5 = 19 disagreements (14 on pairs, and 5 on
{c1, c2, c3}), while there are 14+7=21 disagreements for c1≺c2≺c3.

5.4 A Non-Utilitarian Discrete Choice Model

We now present the statistical model on choice functions that we will study in the re-
mainder of the paper. The sample space (i.e., the possible observed outcomes from
which the parameter of the statistical model are inferred) is the set of choice matrices.
In this framework, the assumptions made by Condorcet and Young (see the introduc-
tion) need to be adapted, as we consider not only choices on pairs of candidates but
also on subsets. Given a true ranking R∗ of S, the following assumptions are made on
random variables fj(S) for all voters vj :

1. for every i ∈{2, . . . , k}, S ∈Si , c∈S \{tR∗(S)}, the probability that fj(S)= tR∗(S) is αi >1
times larger than the probability that fj(S)=c: P r(fj(S)= tR∗(S))=αi · P r(fj(S)=c);
that is, it is α|S | more likely to choose the highest ranked candidate of S in R∗ than
any other given candidate of S.

2. for every pair {S,S ′} of subsets in Φk , fj(S) and fj(S ′) are independent.

For any pair {vj ,vj ′ } of voters, we also assume that each voter’s preferred choice on each
subset of candidates is independent of the other voters’ preferences, i.e.:

3. for every {vj ,vj ′ }⊆V and (S,S ′)∈ (Φk)2, fj(S) and fj ′ (S ′) are independent.

152

A Non-Utilitarian Discrete Choice Model for Preference Aggregation

For k=2, these assumptions amount to those made by Young on pairwise judgments
in his analysis of Condorcet’s theory of voting. If k >2, the additional parameters α|S |
(for |S |>2) give more flexibility to fit the observed choice data, at the cost of a greater
computational load. Note that Assumption 1 means that the probability that voter vj
agree with ranking R∗ on the preferred candidate in S depends only on the size of S,
and not on the members of S.

Assumptions 1 and 2 yield the following statistical model for choice functions f ,
that we call k-wise Young’s model, parameterized by a ranking R and choice probabilities
pi =αi/(αi + i − 1) (conversely, αi =(i − 1)pi/(1− pi)), where pi represents P r(f (S)= tr(S))
for |S |= i:

Definition 5.4.1: k-wise Young’s Model

Given a set S of n alternatives, the k-wise Young’s model is defined as follows:

• the parameter space is XS ×Θ, where XS is the set of rankings on S and
Θ=(1

2 ,1]×. . .×(1
k ,1] is the set of choice probabilities −→p =(p2, . . . ,pk),

• for any (R, −→p)∈XS×Θ, the probability P r(f |R, −→p) is

k∏
i=2

∏
S∈Si

p
1−1tR(S),f (S)

i

(1− pi
i − 1

)1tR(S),f (S)

where 1tR(S),f (S) = 1 if tR(S) , f (S), 0 otherwise.

If R=R∗, we have indeed P r(f (S) = c) = (1−pi)/(i−1) for c, tR(S) by Assumption 1,
and the products in the formula for P r(f |R, −→p) follow from Assumption 2.

As the preferences revealed by the choices may be cyclic, sampling a choice function
according to this model can be decomposed into independent draws for each subset
S⊆S. Given a choice function profile P with v voters, if one assumes the functions in P
are independently sampled (in line with Assumption 3) from a k-wise Young’s model of
parameters R and −→p , the probability P r(MP |R, −→p) follows a multinomial distribution:

k∏
i=2

∏
S∈Si

v!∏
c∈S vc!

p
v−d(MP ,S,R)
i

(1− pi
i − 1

)d(MP ,S,R)
(5.2)

where vc denotes the number of voters that choose candidate c in subset S.
From Equation 5.2, it is clear that the likelihood of (R, −→p) given MP , denoted by

L(R, −→p |MP), is proportional to
k∏

i=2

∏
S∈Si

p
v−d(MP ,S,R)
i

(1− pi
i − 1

)d(MP ,S,R)
(5.3)

because the coefficients v!/(
∏

c∈S vc!) depend neither on R nor on −→p . Let us now study
different voting rules arising from Equation 5.3. Depending on whether or not restric-
tive assumptions are made about probabilities pi , we show that a maximum likelihood

153

A Non-Utilitarian Discrete Choice Model for Preference Aggregation

ranking R is a consensus ranking for the k-wise Kemeny rule, or for a weighted variant
whose parameters vary with MP and R.

5.5 MLE of the Parameters of the k-Wise Young’s Model

A consensus ranking for the k-wise Kemeny rule is an MLE of a ground truth ranking
R∗ if one assumes that the choice function profile is sampled according to the k-wise
Young’s model when α2 = . . .=αk =α>1, i.e., in a subset S, candidate tR∗(S) is the most
likely to be chosen, with a probability α times greater than any other given member of
S, whatever the size of S. More formally:

Proposition 5.5.1: k-wise Young model and k-wise Kemeny rule

If there exists α >1 such that α2 = . . .=αk =α, then, given a choice matrix MP , a
ranking R has maximum likelihood for the k-wise Young’s model iff it minimizes
∆k
KT (R,P), i.e., ranking R is a consensus ranking for the k-wise Kemeny rule.

Proof. Maximizing Equation 5.3 amounts to maximizing:

log

 k∏
i=2

∏
S∈Si

p
v−d(MP ,S,R)
i ·

(1− pi
i − 1

)d(MP ,S,R)

=
k∑

i=2

∑
S∈Si

(
(v − d(MP ,S,R)) · logpi + d(MP ,S,R) · log

(1− pi
i − 1

))

=
k∑

i=2

∑
S∈Si

v logpi −
k∑

i=2

∑
S∈Si

d(MP ,S,R) · log

 pi
1−pi
i−1

For a given set of values pi , determining a ranking R that maximizes the above formula
is equivalent to minimizing:

k∑
i=2

∑
S∈Si

d(MP ,S, r) · log

 pi
1−pi
i−1

As pi is the probability to choose tR(S) and (1−pi)/(i−1) the probability to choose

any other member of S, we have pi/(1 − pi/(i − 1)) = αi . Furthermore, by assumption,
αi =α ∀i ∈{2, . . . , k}. Consequently, the expression simplifies to:

(logα) ·
k∑

i=2

∑
S∈Si

d(MP ,S,R)

The coefficient logα is strictly positive because α>1 by assumption, and it can therefore
be omitted when minimizing according to R. From Equation 5.1, we have:

k∑
i=2

∑
S∈Si

d(MP ,S,R) = ∆k
KT (R,P)

154

A Non-Utilitarian Discrete Choice Model for Preference Aggregation

Therefore, whatever the vector −→p of choice probabilities, a ranking R that maximizes
L(R, −→p |MP) minimizes ∆k

KT (R,P), which concludes the proof.

For k=2, this proposition amounts to the result of Young regarding the interpreta-
tion of the Kemeny rule as an MLE of a ground truth ranking.

If we do not assume that the αi are equal, then the maximum likelihood ranking
may depend on −→α =(α2, . . . ,αk), and we need to determine3 a couple (R, −→α) of maximum
likelihood L(R, −→α |MP), even if we are only interested in R. Determining such a couple
(R, −→α) defines a new voting rule in itself, which returns R as a consensus ranking. The
following result shows that it can be formulated as a discrete optimization problem on
the space of rankings, because, for each ranking R, there exists a closed-form expression
to determine the corresponding maximum likelihood values αi .

Proposition 5.5.2: Characterization of a maximum likelihood ranking

Given a choice matrix MP , a couple (R, −→α) has maximum likelihood for the k-
wise Young’s model if and only if ranking R minimizes

∆
k,α
KT (R,P)−

k∑
i=2

∑
S∈Si

v log
αi

αi + i − 1
, (5.4)

where ∆
k,α
KT (R,P) =

k∑
i=2

(logαi)
∑
S∈Si

d(MP ,S,R) (5.5)

and αi = ((i − 1) ·
∑
S∈Si

(v − d(MP ,S,R)))/(
∑
S∈Si

d(P ,S,R)). (5.6)

Proof. From the proof of Proposition 5.5.1, we know that a couple (R, −→p) has maximum
likelihood iff, for a given choice matrix MP and ranking R, it maximizes:

f (−→p) =
k∑

i=2

∑
S∈Si

v logpi −
k∑

i=2

∑
S∈Si

d(MP ,S,R) · log

 pi
1−pi
i−1

 (5.7)

To determine an optimum of function f , each component pi can be optimized in-
dependently from the others, because each one appears in a different term of the sum
from i = 2 to k. Noting that

∑
S∈Si v =

(n
i

)
· v as there are

(n
i

)
different subsets S ∈Si , the

partial derivative of order 1 is written as:

∂f

∂pi
(−→p)=

(n
i

)
· v −

∑
S∈Si

d(MP ,S,R)

pi
−

∑
S∈Si

d(P ,S,R)

(1− pi)
.

3From now on, we use indifferently −→p or −→α , because one vector can be inferred from the other.

155

A Non-Utilitarian Discrete Choice Model for Preference Aggregation

For pi ∈ [0,1], the derivative vanishes for:

pi =

(
n
i

)
· v −

∑
S∈Si

d(MP ,S,R)

/
((
n
i

)
· v

)
.

It is easy to prove that ∂2f
∂p2

i
(−→p)< 0 for pi ∈ [0,1], thus the corresponding stationary

point of f is a maximum. From the values pi of maximum likelihood we derive the
values αi of maximum likelihood:

αi =
pi

1−pi
(i−1)

= (i − 1) ·
∑

S∈Si (n− d(MP ,S,R))∑
S∈Si d(MP ,S,R)

The result is obtained by expressing Equation 5.7 in function of αi instead of pi , and
turning the maximization into a minimization of the opposite expression.

Note that, according to Proposition 5.5.2, the maximum likelihood value of each
pi given R corresponds to the observed proportion of agreements between R and P on
subsets of size i, which is consistent with intuition. The formula of the likelihood of a
couple (R, −→α) is written as the sum of two terms:

– the term ∆
k,α
KT (R,P) is a weighted sum of disagreements between R and P , where

the disagreements on subsets of size i are weighted by logαi ;

– the term −
∑k

i=2
∑

S∈Si v log(αi/(αi+i−1)) = − log
∏v

j=1
∏k

i=2
∏

S∈Si pi ; as
∏v

j=1
∏k

i=2
∏

S∈Si pi ≤
1, the opposite of its logarithm is positive, and the term is all the greater as the
empirical probability that the v choice functions in P coincide with R is low.

Let us now present algorithms (an exact one and a heuristic one) to compute a
maximum likelihood couple (R, −→α) given a choice matrix MP .

5.6 Algorithms for Determining an MLE

A brute force method for determining a couple (R, −→α) of maximum likelihood given P
consists of computing a vector −→α of maximum likelihood for each ranking R (thanks
to Prop. 5.5.2), and, turning −→α into −→p , retaining the couple (R, −→p) that maximizes
Equation 5.3.

A Faster Exact Algorithm. It is possible to improve this procedure by considering
only a subset of rankings R on the candidates. We know indeed from Proposition 5.5.2
that, for any given −→α , the corresponding maximum likelihood ranking R minimizes
∆
k,α
KT (R,P) (see Equation 5.5). Minimizing ∆

k,α
KT (R,P) can be seen as a multi-objective

optimization problem, by associating to each R the vector:

−→
d P (R)=

∑
S∈S2

d(MP ,S,R), . . . ,
∑
S∈Sk

d(MP ,S,R)

156

A Non-Utilitarian Discrete Choice Model for Preference Aggregation

In multi-objective optimization problems, the goal is often to enumerate all the Pareto
optimal solutions, i.e., in our setting, the rankings R such that there does not exist an-

other ranking R′ for which
−→
d P (R′)≤

−→
d P (R), where −→x ≤ −→y if for all i in {2, . . . , k} xi ≤yi ,

and there exists i in {2, . . . , k} xi < yi . A ranking R minimizing ∆
k,α
KT (R,P) is obviously

Pareto optimal. Such a ranking actually belongs to a more restricted set: the set of
supported solutions, i.e., those that optimizes a weighted sum of the objectives [Ehrgott,
2005]. The weight assigned to each objective i is here logαi . An even more restricted
set can be considered: the set of extreme rankings. A Pareto optimal ranking R is ex-

treme if
−→
d P (R) is a vertex of the convex hull of {

−→
d P (R) : R∈XS } in the (k−1)-dimensional

objective space, where XS is the set of all rankings. Indeed, it is well-known in multi-
objective optimization that, for each supported ranking R′, there exists an extreme
ranking R such that ∆k,α

KT (R,P)=∆
k,α
KT (R′ , P).

A recent work presents a method for enumerating the extreme solutions in multi-
objective optimization problems [Przybylski et al., 2019]. Based on such a method,
we design an exact procedure for determining a maximum likelihood pair (R, −→α) by
Prop. 5.5.2:

1. Determine all the extreme rankings by using the method by Przybylski et al.
[2019];

2. For each extreme ranking R, compute by Equation 5.6 the vector −→α R such that
(R, −→α) has maximum likelihood;

3. Return a couple (R, −→α R) that minimizes Equation 5.4.

Although this procedure allows us to reduce the number of rankings we need to
consider, there are still many of them, especially when the value of k increases. For
this reason, we now propose a faster heuristic giving a very good approximation of an
optimal couple (R, −→α).

A Heuristic Algorithm. Instead of considering all the extreme rankings, we propose
an Iterative Optimization (IO) heuristic, which alternates two steps:

• α-step: compute an −→α of maximum likelihood given R by Equation 5.6;

• R-step: compute an R of maximum likelihood given −→α by minimizing ∆
k,α
KT (R,P)

(see Equation 5.5).

The minimization of ∆
k,α
KT (R,P) is performed thanks to a weighted variant of the dy-

namic programming algorithm proposed by Gilbert et al. [2020] for the k-wise Kemeny
rule. The two steps are alternated until the same ranking is found in two consecutive
R-steps.

The complexity of the dynamic programming algorithm that computes a ranking R

minimizing ∆
k,α
KT (R,P) is O(2nn2v), thus the heuristic is not polynomial time (but much

faster than the exact algorithm, as will be seen later).

157

A Non-Utilitarian Discrete Choice Model for Preference Aggregation

The output of the IO algorithm may depend on the chosen initial ranking. We
investigated several ways of generating the initial ranking: we used rankings computed
by, Borda or Spearman voting rules (both can be obtained in polynomial time); or by
launching the algorithm from a given vector −→α for the R-step (in the numerical tests, we
have set the values αi corresponding to pi = 1/i + (i − 1)/(10i)). These different variants
are experimentally evaluated in the next section.

5.7 Numerical Tests

We report here the results of several experiments4 to test the performance of our heuris-
tic and the fitness of the k-wise Young’s (k-wise) model compared to that of the Plackett-
Luce (PL) model on synthetic and real-world data.

Instances. The tests are carried out both on real data sets from the Preflib library
[Mattei and Walsh, 2013], and on three types of synthetic instances. The first type of
synthetic instances are uniform instances, in which the preferences of each voter is a
random ranking in the set XS of all permutations. The second type of instances, called
PL instances, are preference profiles generated thanks to the PL model [Plackett, 1975;
Luce, 2012]. The third type of instances, called k-wise instances, are choice matrices
generated with our model. Given a ground truth ranking R∗, the choice function of a
voter is generated as follows: for each subset S of size i, the voter chooses the winner
in S w.r.t. R∗ with probability pi , and chooses any other candidate in S with probability
(1− pi)/(i − 1). We set k=n in all tests.

Performance of the heuristic. In order to evaluate the performance of the IO heuris-
tic, we compare the log-likelihood (LL) of the returned pair (R, −→α) with the one ob-
tained by the exact method. Denoting by OPT (I) the value of the LL of an optimal pair
for a given instance I and by IO(I) the value of the LL of the pair returned by the IO
method, we calculate the ratio q = IO(I)/OP T (I). The optimal value is calculated us-
ing the exact algorithm described in Section 5.6. Since the performance of the heuristic
may vary in function of the initial ranking, we try different initial rankings : an optimal
ranking for the Borda rule (B), or for Spearman (SM). For all the real instances from the
PrefLib library, and for all tested PL instances, the heuristic always returns an optimal
pair (R, −→α). On uniform instances, the result is not always optimal, but it is very close
to the optimal LL: the ratio q is above 0.9999 on average, regardless of the initial rank-
ing. In fact, the log-likelihood obtained was optimal for 575 (resp. 581, 586) instances
out of 600 with Borda start (resp. Spearman start, α start). The heuristic provides an
excellent approximation of an optimal pair (R, −→α). As said earlier, the heuristic is not a
polynomial time algorithm, but it remains much faster than the exact multi-objective
algorithm.

4All algorithms have been implemented in C++, and the tests have been carried out on an Intel Core
I5-8250 1.6GHz processor with 8GB of RAM.

158

A Non-Utilitarian Discrete Choice Model for Preference Aggregation

Computation times. Regardless of the type of instance, the IO method is much faster
than the exact multi-objective algorithm. For example, for m = k = 8, the IO method
takes 260 (resp. 185) seconds on average to return a solution for uniform (resp. PL)
instances whereas the exact algorithm requires 30000 (resp. 1000) seconds on average
to determine an optimal pair for the same instances.

Figure 5.1 shows the computation time of the IO method in function of k for uni-
form (left) or PL (right) instances with 8 candidates. It shows that the initial ranking
does not have a big impact on the computation time. In this figure, we see that the
variant starting from a given vector −→α is faster, although this initialization step takes
more time that the computation of the Borda and Spearman rankings (which can be
computed in polynomial time). Indeed, the variant starting from −→α provides a better
initial ranking than Borda and Spearman, which reduces the number of iterations and
consequently the overall running time of the algorithm. This does not hold however
for the PL instances, for which the Borda and the Spearman start lead to a faster reso-
lution, because the Borda and Spearman rankings are computable in polynomial time
and are, in this case, very good approximations of a ranking of maximum likelihood.

Figure 5.1: Computation time (in seconds) of the IO method on uniform (left) and PL
(right) instances. “IO sample start” denotes for the variant that is launched from a
given vector of values αi .

Model fitness. We now compare our model with the PL model in terms of fitness with
real-world data. We use instances from the sushi dataset [Kamishima, 2003], in which
5000 voters give their ranking over 10 kinds of sushis. We randomly draw n∈{50,100}
voters among the 5000. We apply the exact solution procedure proposed above, and
compare the results with those of the PL model. The likelihood of a choice matrix w.r.t.
the PL model for choice functions is written as follows:

∏k
i=2

∏
S∈Si

v!∏
c∈S vc!

∏
c∈S

(
uc∑
d∈S ud

)vc
where vc denotes the number of voters choosing candidate c in S, and uc the utility of
c. To compare the fitness of the models, we use the Bayesian Information Criterion
–BIC– [Schwarz, 1978]. Regarding the k-wise model, we consider the case of constant
αi ’s (model α) and the general case where the αi may vary (model αi). We compute
the ratio BIC(µ)/BIC(P L) for µ∈{α,αi}. For 50 voters, the obtained ratio is 1.054 (resp.

159

A Non-Utilitarian Discrete Choice Model for Preference Aggregation

1.047) for model α (resp. αi). This improves to 1.052 (resp. 1.045) for 100 voters. This
shows that for this dataset, the fitness of models α and αi is close to the PL model,
although the fitness of the latter is slightly better (by 5% at most).

Comparison with the PL model. We now compare the PL model and the k-wise
model on PL instances and k-wise instances. In both cases, we compute a correlation
factor ρ between the returned ranking and the ground truth ranking used for genera-
tion. The factor ρ is the Kendall-Tau distance normalized between 0 and 1 – 0 indicates
that the two rankings are identical while 1 means that they are opposite. Figure 5.2
shows the mean value of ρ in function of the level of correlation of the voters’ pref-
erences, for k-wise instances (left) and PL instances (right). For k-wise instances, the
correlation between the choice functions is controlled by setting pi =1/i + x(1− 1/i) for
x∈ [0,1]: all choice functions are equally likely and independent from the ground truth
ranking for x = 0, while all choice functions are perfectly consistent with the ground
truth ranking for x= 1. For PL instances, the correlation between the rankings is con-
trolled by setting up =1 + (m−p)x as utility of the candidate in position p in the ground
truth ranking: the higher x, the stronger the correlation. As one would expect, the MLE
ranking for the k-wise (resp. PL) model is closer to the ground truth ranking on k-wise
(resp. PL) instances. Interestingly, the k-wise model performs better on PL instances
than the PL model on k-wise instances. When instances are correlated enough, the MLE
ranking for both models always correspond to the ground truth.

Figure 5.2: Mean ρ (and 68% confidence interval) between the returned ranking and
the ground truth on k-wise instances (left) and PL instances (right).

5.8 Conclusion

We have studied here an extension of Young’s model for pairwise preferences to choices
in subsets of size at most k, showing that the maximum likelihood ranking w.r.t. this
model coincides with a consensus ranking for the k-wise Kemeny rule under certain
assumptions on the choice probabilities. Relaxing these assumptions, we have pro-
posed inference algorithms for the model, learning the choice probabilities from the

160

A Non-Utilitarian Discrete Choice Model for Preference Aggregation

data. The fitness of the model on real data is comparable with the Plackett-Luce model,
although no utilities are embedded in our model. This is a first step towards the use
of non-utilitarian discrete choice models for preference aggregation. Note that, among
the statistical models based on a ground truth ranking R on alternatives, an interesting
connection has been shown by Mallows [1957] between Young’s model for binary rela-
tions (all pairwise preferences are independent and c is preferred to c′ with probability
p>1/2 if c is preferred to c′ in R) and Mallows’ model for rankings (given a dispersion
parameter θ ≥ 0, we have P r(R′) ∝ e−θ∆KT (R,R′), where ∆KT (., .) is the Kendall tau dis-
tance): sampling a ranking using Mallows’ model is equivalent to sampling a binary
relations R using Young’s model with probability p = eθ/(1 + eθ) until a transitive bi-
nary relation R is obtained. This connection provides a simple but inefficient sampling
method for Mallows’ model. Efficient sampling and learning methods for Mallows’
model have been proposed later [Doignon et al., 2004; Lu and Boutilier, 2014]. An in-
teresting extension of the work presented here would therefore consist in determining
if the k-wise Young’s model can be related to a k-wise distance-based statistical model
M for rankings, in the same manner as Young’s model and Mallows’ model, and to in-
vestigate effective sampling and learning methods for M from choice data.

161

A Non-Utilitarian Discrete Choice Model for Preference Aggregation

162

Chapter 6

Detecting and taking Project
Interactions into account in
Participatory Budgeting

The aim of this chapter is to introduce models and algorithms for the Participatory
Budgeting problem when projects can interact with each other. In this problem, the
objective is to select a set of projects that fits in a given budget. Voters express their
preferences over the projects and the goal is then to find a consensus set of projects
that does not exceed the budget. Our goal is to detect such interactions thanks to the
preferences expressed by the voters. Through the projects selected by the voters, we
detect positive and negative interactions between the projects by identifying projects
that are consistently chosen together. In presence of project interactions, it is preferable
to select projects that interact positively rather than negatively, all other things being
equal. We introduce desirable properties that utility functions should have in pres-
ence of project interactions and we build a utility function which fulfills the desirable
properties introduced. We then give axiomatic properties of aggregation rules, and we
study three classical aggregation rules: the maximization of the sum of the utilities, of
the product of the utilities, or of the minimal utility. We show that in the three cases
the problems solved by these rules are NP-hard, and we propose a branch and bound
algorithm to solve them. We conclude the chapter by experiments.

6.1 Introduction

Participatory budgeting is a democratic process in which community members decide
how to spend part of a public budget. Started in Porto Alegre, Brazil, in 1989, this
process has spread to over 7,000 cities around the world, and has been used to de-
cide budgets from states, cities, housing authorities, universities, schools, and other
institutions1. The principle is the following one: the authorities of a given community

1https://www.participatorybudgeting.org/

163

Detecting and taking Project Interactions into account in Participatory Budgeting

(e.g. a city, or a university) decide to dedicate a budget l between projects proposed
by the community members. Some community members (e.g. citizens, or students)
propose projects, and write a proposal presenting their project and estimating its cost.
All the community members are then asked to vote on the projects. There are several
ways to collect voters’ preferences. Due to its simplicity, the most widely used method
is approval voting, in which voters are asked to approve or not each of the proposed
projects. A variant of this method, called knapsack voting [Goel et al., 2019], and that
we will consider in this chapter, asks the voters to approve projects up to the budget
limit l: with knapsack voting, each voter is encouraged to give the set of projects that
he or she would like to be selected, given the budget allocated. We start by reviewing
existing work on participatory budgeting. Once the preferences of the voters have been
expressed, the authorities use an algorithm which aggregates them and returns a set of
projects (a bundle) of total cost at most l. In practice, e.g. in Warsaw, the projects are
usually selected by decreasing number of votes.

6.1.1 Related work

Participatory budgeting is a very active field in computational social choice and numer-
ous other algorithms have been proposed [Aziz and Shah, 2021; Aziz et al., 2017; Peters
et al., 2021; Talmon and Faliszewski, 2019]. Several social welfare functions have been
considered. The aim is usually either to maximize the minimal utility of a voter [Sree-
durga et al., 2022]; to guarantee proportional representation to groups of voters with
common interest [Peters et al., 2021; Aziz et al., 2017; Freeman et al., 2021], both aim-
ing to return “fair” solutions; to maximize the sum of the utilities of the voters (utili-
tarian welfare); or to maximize the products of these utilities (Nash product) [Benade
et al., 2021; Goel et al., 2019; Aziz and Shah, 2021]. In this chapter we are interested
in optimizing three of the most classical criteria: the maximization of the sum of the
utilities, of the product of the utilities, or of the minimal utility of the voters.

There are two main ways to define the utility of a voter. The first way defines the
utility of a voter as the number of funded projects that he or she approves [Peters et al.,
2021; Jain et al., 2020]. The second way defines the utility of a voter as the total amount
of money allocated to projects approved by the voter [Goel et al., 2019; Talmon and
Faliszewski, 2019; Freeman et al., 2021]. This second way of measuring the satisfaction
of a voter is particularly relevant in the case of knapsack voting, where each voter can
only approve a total budget of l: if a voter chooses to approve a project with a large cost
at the expense of projects with smaller costs, it means that he or she prefers the large
project to the smaller ones. We will consider this way to measure utilities.

Project interactions. Project interactions (also called synergies between projects)
have been little explored so far. In almost all the papers, it is assumed that the utility
of a bundle (a set of projects) for a given voter is the sum of the utilities of these projects
(number of projects or total cost of these projects, depending on the model considered).
In a recent paper, Fairstein et al. [Fairstein Roy and Kobi, 2023] do an empirical study
of several voting formats, without considering synergies. However, they say in their

164

Detecting and taking Project Interactions into account in Participatory Budgeting

conclusion that “real voter utilities likely exhibit complementarities and externalities
— a far cry from our utility proxies”. Indeed, in practice, positive and negative syn-
ergies do exist. For example, two projects which are facilities that are planned to be
built in the same location, or two projects which are very similar (e.g., two projects of
playgrounds, or two skateboard parks) will have negative synergies: for a given voter,
the utility of such two projects A and B will be smaller than the sum of the utilities of A
and B. On the contrary, some projects are complementary and therefore have positive
synergies. This is for example the case when a project aims to build a bicycle garage and
another project aims to build a meeting place nearby. For a given voter, the utility of
two projects A and B with positive synergies will be larger than the sum of the utilities
of A and B. For two projects A and B which are independent, i.e., do not have positive
neither negative synergies, the utility of the two projects A and B will be as usual the
sum of the utilities of A and B.

To the best of our knowledge, there are only two papers which deal with projects
interactions [Rey and Maly, 2023]. Jain et al. [2020] introduce a model in which they
assume that the synergies between the projects are already known and are defined as a
partition P over the projects. The projects which belong to a same set of the partition
either have a substitution effect (i.e. a negative interaction) or a complimentary effect
(a positive interaction). The authors define a utility function f such that f (i) is the
utility that a voter v gets from a set of the partition P if i projects from this set and
approved by v are in the returned bundle. If f is concave (i.e. f (i + 1) − f (i) < f (i) −
f (i − 1)) then projects in the same set of P have negative interaction; if f is convex
(i.e. f (i + 1) − f (i) > f (i) − f (i − 1)) then projects in the same set of P have positive
interaction. The utility of a voter is the sum of the utilities it has over the different
sets of the partition. This model is the first one to consider project interactions. In a
subsequent paper, Jain et al. [2021], assuming such an existing partition of the projects
to interaction structures, take voter preferences to find such interaction structures (in
their model, voters submit interaction structures, and the goal is to find an aggregated
structure). Fairstein et al. [2021] also consider an underlying partition structure and
ask the voters to give a partition of projects into groups of substitutes projects: in this
setting only negative interactions are considered.

These papers are the first ones to consider and model project interaction. However,
by partitioning the projects, their model cannot represent situations in which a project
A can be both in positive interaction with a project B and in negative interaction with
a project C, situation that we wish to take into account in this chapter. Furthermore,
the authors of the previous mentioned papers assume that such a partition is either
known [Jain et al., 2020], or computed thanks to the partitions of the projects asked
to the voters [Jain et al., 2021; Fairstein et al., 2021], which can be a fastidious and
complicated task for the voters.

6.1.2 Our approach to interaction detection

Our aim is not only to take into account interactions between projects into the utilities
of voters, but also to detect the interactions through the preferences of the voters. De-

165

Detecting and taking Project Interactions into account in Participatory Budgeting

tecting such interactions through the votes is not possible if, as in [Jain et al., 2020], the
voters use approval voting to give their opinions on the projects. Indeed, with approval
voting, a voter tends to evaluate each project individually and to select the projects that
he or she finds interesting according to his or her own criteria. Thus, it is likely that
a voter who would like to see a playground built near his or her home will support
all the playgrounds projects, even if such projects interact negatively. On the contrary,
with knapsack voting, each voter is asked how he or she would spend the money if
he or she had the opportunity to decide. In that context, it is unlikely that a voter se-
lects projects that interact negatively, and on the contrary it is likely that projects that
interact positively will be chosen. We think the best way to get reliable preferences
(which express synergies) is to ask the following question to the voters: “How would
you spend the budget if you could make the decision ?”. Assuming most voters follow
this recommendation, the synergies should be estimated quite accurately.

Detecting synergies can be done through the ballots approved by the voters, by look-
ing at the frequencies of occurrence of groups of projects among the projects approved
by the same voter, compared to the “expected” frequencies of this group of projects.
If, for example, two projects A and B are selected together very often, we will deduce
that they probably are in positive synergy. On the contrary, if two objects are never
selected together, the synergy will be negative. Thus, by comparing the frequency of
appearance of these projects A,B together with the product of the frequency of A and
the frequency of B, we deduce synergies from the voters’ choices.

Example 6.1.1: A simple example

Consider a budget l=9 and 5 projects {A, . . . ,E} of costs (2,3,3,1,1) (i.e. project A
has cost 2, while project E has cost 1). Consider the following votes of 4 voters:
{A,B,D,E}, {A,B,C},{C,E},{A,B,D}. Each project has been selected 2 or 3 times
but projects A and B are always selected together, and projects C and D are never
selected in a same ballot: we will deduce that projects A and B have a positive
synergy while projects C and D have a negative synergy. Hence, whereas both
bundles {A,B,C,E} and {A,B,C,D} are optimal for the utilitarian welfare, bundle
{A,B,C,E} is preferable because C and D have a negative synergy while C and E
do not.

One could argue that two projects will not be chosen by the same voter because of
the budget limit and not because they have a negative interaction. First, if the sum
of the costs of these two projects is larger than l, then these two projects will anyway
not be chosen in the returned bundle. Second, we examined the costs distribution of
projects from the 247 real-world instances of knapsack voting from Pabulib [Stolicki
et al., 2020]. These instances mainly have “small projects”: the vector of costs of
projects of these instances is in average: (0.56,0.18,0.09,0.06,0.04,0.02,0.02,0.01,0.01,
0.01) – which means than 56% of the projects have a cost between 0 and 10% of the
budget, 18% of the projects have a cost between 10 and 20% of the budget, and so
forth. Additionally, on the same instances, the average (resp. median) total cost of

166

Detecting and taking Project Interactions into account in Participatory Budgeting

the projects selected by a voter represents 66% (resp. 75%) of the budget. This means
that a majority of voters could have selected one more project, and this among most of
the unapproved projects. Therefore, the overall low cost of the projects paired with the
budget left unused in the votes suggests that if two projects are rarely selected together,
it is usually not because of their costs.

Note that taking account of synergies between the projects may be interesting even
if all the projects have the same cost, as shown by the following example.

Example 6.1.2: Projects of same cost

Let us consider a scenario with 12 voters, 8 projects of cost 1 and a budget of
4. Six voters select projects 1 and 2 plus a pair of projects in {5,6,7,8}, different
for each one. The six other voters select projects 3 and 4 plus a pair in {5,6,7,8},
different for each one. Therefore, each project is selected exactly 6 times.

p1 p2 p5 p7

p1 p2 p5 p8

p1 p2 p6 p7

p1 p2 p6 p8

p1 p2 p7 p8

p1 p2 p5 p6

p3 p4 p5 p7

p3 p4 p5 p8

p3 p4 p6 p7

p3 p4 p6 p8

p3 p4 p7 p8

p3 p4 p5 p6

Figure 6.1: Example with l = 4

Without synergies, each bundle of 4 projects is optimal for the sum of the util-
ities. However, using synergies, we can detect that {1,2} and {3,4} are prob-
ably two strong pairs in comparison to the others. We can also see that the
subset{1,2,3,4} is never chosen as a whole which may indicate an antisynergy
of the complete subset.

In the sequel, we will sometimes consider the k-additivity hypothesis, which means
that there are synergies between groups of up to k projects. For example, with the 2-
additivity hypothesis, we consider only interactions between pairs of projects, and not
between more important groups of projects. In addition to the fact that it is realistic
that synergies are important only for small values of k, considering this hypothesis will
have repercussions on the complexity of our algorithms.

We conclude this introduction with an example showing that, in practice, positive
(resp. negative) interactions may indeed be detected through the frequencies of co-
occurrence of the projects in the same bundles.

167

Detecting and taking Project Interactions into account in Participatory Budgeting

Example 6.1.3: Real-life instances

By looking at real-world knapsack voting instances in the Pabulib library Stolicki
et al. [2020], and by considering that there may be positive interactions between
two projects (resp. negatively) when they are (resp. are not) chosen together,
we identified several cases in which projects seem to interact positively or nega-
tivelya. For example, in Warsaw (poland warszawa 2017 niskie-okecie.pb), two
projects for the same neighbourhood, the first one being building a sport court
and the second one building a playground, were chosen together less often than
expected (given how often each one was individually approved). Our model says
that they interact negatively, which makes sense, these projects being close to be-
ing susbtitutes. In another instance (poland warszawa 2018 niskie-okecie.pb),
two projects, the first one being building alleys in a park and the second one
building public lightning in the same park, were consistently chosen together,
which our model interpreted as a positive synergy. This also makes sense since
these projects are clearly complementary.

aTo be precise, to detect these interactions, we used the utility function uM presented in Section
4, by considering 2-additivity hypothesis.

6.1.3 Overview of our results

We tackle the indivisible participatory budgeting problem, with knapsack voting, by
considering that projects are not independent, but that there may have positive and
negative synergies between them.

• In Section 6.3, we propose desirable properties for utility functions in presence
of project interactions.

• In Section 6.4 we present a particular utility function, derived from Möbius trans-
forms and denoted by uM , that fulfills the axioms defined on the previous section.

• In Section 6.5, we study axiomatic properties of aggregation rules. We consider in
particular three aggregation rules, which either maximize the sum of the utilities,
the product of the utilities, or the minimal utility of the voters.

• In Section 6.6 we show that these rules solve NP-hard problems, and that syn-
ergies make the problem harder since it is NP-hard to maximize the sum of the
utilities with unit size projects when there are synergies, whereas this problem
can be solved easily without synergies. These results hold for utility function uM
but also for other very general synergy functions.

• In Section 6.7, we propose an exact branch and bound algorithm which can be
used with any utility function, and we conclude with an experimental evaluation.

168

Detecting and taking Project Interactions into account in Participatory Budgeting

6.2 Preliminaries

We use the general framework for approval-based participatory budgeting proposed
by Talmon and Faliszewski [2019] . A budgeting scenario is a tuple E=(A,V ,c, l) where
A = {a1, . . . , an} is a set of n projects, or items, and c : A → N is a cost function: c(a) is
the cost of project a ∈ A – abusing the notation, given a subset S, we denote by c(S) the
total cost of S: c(S)=

∑
a∈S c(a). The budget limit is l ∈N. The set V = {v1, . . . , vv} is a set

of v voters. Each voter vi ∈ V gives a set of approved projects Ai ⊆ A, containing a set
of projects that she approves of and such that c(Ai) ≤ l. We denote by EA the set of all
possible budgeting scenarios having A as a set of projects.

A budgeting method r is a function taking a budgeting scenario E = (A,V ,c, l) and
returning a bundle B ⊆ A such that c(B) ≤ l. We consider that a budgeting method
always returns a unique bundle (we can use usual tie-breaking techniques to handle
instances with several winning bundles). The winning bundle for a budgeting scenario
E is denoted by r(E). A project is funded if it is contained in the winning bundle B.
Given a bundle B and a voter vi with her approval set Ai , we denote by Bi =Ai ∩B the
set of projects common to Ai and B.

Utility functions. A utility function u : 2A → R
+
0 is a set function which gives a

value to each subset of items. A linear utility function is such that that the value of a
bundle B is the sum of the utilities of its items: u(B) =

∑
a∈Bu({a}). The overlap utility

function, introduced for the knapsack voting by Goel et al. [2019] , considers that the
utility of a bundle B is the sum of the costs of the projects in B: f (Ai ,B)=

∑
a∈Bi

c(a)

Satisfaction functions. A satisfaction function f is a function f : 2A × 2A → R,
which, given a voter vi ∈ V and a bundle B ⊆ A, returns the satisfaction that vi gets
from B. Given a selected bundle B and a utility function u, we will consider that the
satisfaction of voter vi from bundle B is the utility of Ai ∩B: f (Ai ,B)=u(Bi ,E).

.
The utility function aims at associating to each possible bundle an evaluation of

its quality. The satisfaction function indicates, given two sets of projects, the first one
being the preference of a voter and the other being a potential solution, how satisfied
the voter is given the solution.

In the sequel, we will consider generalizations of the overlap utility function that
take into account potential projects interactions. Since these function may depend on
the instance, we will denote the utility of the subset Bi as: u(Bi ,E).

Aggregating criterion. In order to obtain a solution satisfying the whole popula-
tion, we study the three most classical aggregating methods: the sum (

∑
), the product

(
∏

) and the minimum (min) of the satisfactions of the voters. We denote by α− ru
the budgeting method returning the α aggregation of the utility function u, where
α ∈ {

∑
,
∏
,min}. This rule returns an optimal bundle of the associated maximization op-

timization problem, that we will call problem PB-Max−α−u (e.g. problem PB-Max−
∑
−u

consists in computing a bundle maximizing the sum of the utilities of the voters when
the utility function used is u). These three aggregating concepts rely on different ideas
of the collective satisfaction. The sum criterion maximizes the average satisfaction of a

169

Detecting and taking Project Interactions into account in Participatory Budgeting

voter. The minimum tries to satisfy as much as possible the least satisfied voter – this
is an egalitarian view. Finally the product stands in between the two previous criteria:
the product is very penalized by the presence of very low utility values, however, it
still takes into account the larger values. This last criterion has been the favourite of
the voters in an experimental study Rosenfeld and Talmon [2021]. These three criteria
share several axiomatic and computational properties, as we will see in the following
sections.

We will now discuss how to obtain satisfactory utility functions and how mathe-
matical properties on such functions impact the budgeting methods.

6.3 Axioms for utility functions

In this section, we define desirable properties for utility functions in the presence of
synergies.

The first property states that the utility of a single project should be proportional
to its cost. This property is fulfilled by the overlap utility function Goel et al. [2019]. It
is particularly meaningful in knapsack voting: since there is a budget constraint on the
approval set of the voters, the approval of a project is done with full knowledge of its
cost and the approval of a costly project is done at the expense of the budget for other
projects.

Definition 6.3.1: Cost consistency (CC)

Given a budgeting scenario E = (A,V ,c, l), a utility function uE : 2A × EA → R
+
0

is cost consistent if there exists a constant k such that for each project a in A, we
have u({a}E,) =k · c(a).

The factor k allows normalization. This property insures that the utility function
follows the cost function for the sets containing only one project. Note that this prop-
erty is only determining the behaviour of the utility function for subset of size one, it
does not indicate anything about the remaining subsets.

The following classical property ensures that the utility of a set does not decrease
when the set grows. This ensures that we cannot decrease a voter satisfaction by adding
a project that she selected.

Definition 6.3.2: Super-set monotonicity (SSM)

Given a budgeting scenario E= (A,V ,c, l), a utility function uE is super-set mono-
tone if for any subset Xsub and X such that Xsub ⊂ X, we have u(Xsub,E) ≤ u(X,E).

Relaxing the neutrality principle Brandt et al. [2016], the next property states that
two similar projects should be treated equally. Given a set S, we denote by S(ai↔aj) the
set obtained from S by swapping ai and aj : ai (resp. aj) belongs to S(ai↔aj) if and only

170

Detecting and taking Project Interactions into account in Participatory Budgeting

aj (resp. ai) belongs to S, and each project ak < {ai , aj} belongs to S(ai↔aj) if and only
if ak belongs to S. We also denote by E(ai↔aj) the budgeting scenario obtained from E
by swapping the approval of the projects ai and aj : a voter vl approves ai (resp. aj) in
E(ai↔aj) if and only if vl approves aj (resp. ai) in E.

Definition 6.3.3: Cost-Aware Neutrality (CAN)

Given a budgeting scenario E = (A,V ,c, l), and two projects ai and aj of A

such that c(ai) = c(aj), a utility function uE is cost-aware neutral if u(S,E) =
u(S(ai↔aj),E(ai↔aj)).

Note that this property is inspired by the Processing Time Aware neutrality property
(see Definition 3.3.2) used in the collective schedules model: this property ensures that
two tasks of equal processing time are treated equally. We restrict our analysis to cost-
aware neutral utility functions since no pair of projects with the same cost should be
treated differently.

If a subset of item is consistently chosen as a whole, then the utility it brings should
be higher than the sum of the utilities of the items. On the opposite side, if projects
are never chosen together, then the utility of the whole subset should be lower than
the sum of utilities of the items. The third axiom states that the more a subset appear
together, the more its utility should increase, everything else being equal.

The next property, the effect of positive synergies ensures that the utility of subsets
of projects that always appear together is larger than the sum of the utilities of its
components.

Definition 6.3.4: Effect of positive synergies (PS)

Given a budgeting scenario E = (A,V ,c, l), a utility function uE fulfills the effect
of positive synergies (resp. strong effect of positive synergies) property if, for each
subset S in 2A such that for each voter vi we have either S ⊆ Ai or S ∩ Ai = ∅
and such that there exists vk ∈ V with S ⊆ Ak , then u(S,E) ≥

∑
a∈S u({a},E) (resp.

u(S,E) >
∑

a∈S u({a},E)).

The next property ensures that the utility of subsets of projects that never appear
together is smaller than (or equal to) the sum of the utilities of its components.

Definition 6.3.5: Effect of negative synergies (NS)

Given a budgeting scenario E = (A,V ,c, l), a utility function uE fulfills the effect
of negative synergies (resp. strong effect of negative synergies) property if, for each
subset S in 2A such that for each voter vi ∈ V we have |S ∩Ai | ≤ 1, then u(S,E) ≤∑

a∈S u({a},E) (resp. u(S,E) <
∑

a∈S u({a},E)).

171

Detecting and taking Project Interactions into account in Participatory Budgeting

The next property states that the utility of a subset should increase with the num-
ber of appearances of the whole subset in the preferences of voters with respect to a
solution in which the number of approvals of the items is the same but the items are
not approved by the same voters.

Definition 6.3.6: Regrouping monotonicity (RM)

Let E = (A,V ,c, l) be a budgeting scenario, S ⊆ A be a subset such that c(S) ≤ l,
and let vi and vj be two voters of V such that S ⊆ (Ai ∪Aj), Ai ∩Aj = ∅, S ⊈ Ai ,
S ⊈ Aj , and c(Ai ∪Aj \ S) ≤ l. Let VS =V ∪ {vk ,vl} \ {vi ,vj}, where vk and vl are
two voters who are not in V and such that Ak = S and Al = (Ai ∪ Aj) \ S. Let
E′=(A,VS , c, l) be a budgeting scenario. A utility function uE satisfies regrouping
monotonicity if u(S,E) < u(S,E′).

We can also imagine creating utility functions thanks to prior knowledge on the
projects, however in such cases, it is possible that the last three properties are violated.

In the following section, we propose a utility function taking synergies into account,
and that fulfills the properties that we have introduced in this section.

6.4 A utility function taking synergies into account

6.4.1 A function using Möbius transforms: uM

Möbius transforms Rota [1964] are a classical tool for measuring synergies in sets of
items. Given a utility function u : 2A → R

+
0 , the Möbius transform of a subset S, de-

noted by m(S), expresses the level of synergy between the items in S. For a set S= {a,b}
of two elements, and if u(∅)=0, we have m(S)=u({a,b})−u({a})−u({b}). More generally,
the Möbius transform of a set S is calculated as follows:

m(S)=
∑
C⊆S

(−1)|S\{C}|u(C)

The Möbius transform m(S) expresses the level of synergy between the elements of
the subset S. If it is negative, this indicates a negative interaction between the elements
of S; if it is null, this indicates independence of the elements; and if it is positive, this
indicates positive interaction between the elements.

Example 6.4.1: Computing Möbius transforms

Let us consider a utility function u over a set of items {1,2,3}. The utilities are as
follows:

C ∅ {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}
u(C) 0 0.2 0.4 0.5 0.5 0.7 0.8 1

172

Detecting and taking Project Interactions into account in Participatory Budgeting

Let us compute the Möbius transform of subset {1,2}
m({1,2}) = (−1)0u({1,2}) + (−1)u({1}) + (−1)u({2}) + (−1)2u(∅)
m({1,2}) = u({1,2}) − u({1}) − u({2}) + u(∅)
m({1,2}) = −0.1

We find a negative Möbius transform, indicating a negative interaction between
elements 1 and 2.

A utility function from Möbius transforms. It is not only possible to find the
Möbius transforms from a utility function, it is also possible to build a utility function
from the Möbius transforms thanks to the following expression Rota [1964]:

u(S)=
∑
C⊆S

m(C)

The utility of a subset S is then the sum of Möbius transforms of its elements –
which is also the sum of their utilities – plus the Möbius transforms of the subsets
included in S, representing their level of positive and negative synergies. Therefore, if
we can measure the level of synergy of each subset, we can build a utility function.

We use a statistical approach in order to infer synergies from the preferences. Let
r(S,V) be the rate of occurrence of a subset S in the approval sets of voters in V (i.e.
the ratio between the number of voters who selected all the projects of S, and the to-
tal number of voters). The expected rate of occurrence of a whole subset S if all of
its elements were perfectly independent (ignoring possible cost constraints), would be∏

a∈S r({a},V), the product of the appearance rates of each the elements of S. We use
(r(S,V) −

∏
a∈S r(S,V)) as a marker of synergy. If it is null, then the projects appear

as independent in the preferences. If it is positive, then the subset appears more fre-
quently than expected if the preferences were random, indicating a positive interaction.
If it is negative, it indicates on the contrary a negative interaction.

We set u(∅) = m(∅) = 0 and, to insure cost consistency, we set u({a}) = m({a}) = c(a).
Since (r(S,V)−

∏
a∈S r(S,V)) has a range included in [−1;1], we multiply this difference

by the cost of the subset. We obtain: m(S,E) = (r(S,V) −
∏

a∈S r(S,V)) · c(S). We finally
adapt this definition so that the utility function obtained from the Möbius transforms
fulfills super-set monotonicity:

m(S,E)=

0 if S=∅
c(a) if S= {a}

max{
(
r(S,V)−

∏
a∈S

r(S,V)
)
c(S),

max
a∈S

(
−

∑
C⊂S,a∈C

m(C,E)
)
} otherwise

(6.1)

The intuition is the following one:
∑

C⊂S,a∈C
m(C,E) is the sum of the Möbius trans-

forms of subsets containing project a. By ensuring that the Möbius transform of S is
larger than or equal to the opposite of this sum, we ensure that the utility of S is not

173

Detecting and taking Project Interactions into account in Participatory Budgeting

smaller than the utility of S \ {a}.
Note that guaranteeing super-set monotonicity implies that we know the Möbius

transforms value of smaller sets. The utility function uM is as follows:

uM(S,E)=
∑
C⊆S

m(C,E) (6.2)

6.4.2 Properties of uM , and remarks on its computation

We use Equation 6.2 to determine the utility of a bundle with function uM . Because of
its recursive nature, we compute first, as a preprocessing step, the utility of singletons,
then pairs, then triplets and so forth. Determining the utilities in this way costs up to
2n (since there are 2n subsets) times v×n operations (since determining the appearance
rate of a subset costs v × n operations). This calculation is much faster with the k-
additivity hypothesis, since the Möbius transform associated to any subset of size larger
than k is then 0. Therefore, with such an hypothesis, we simply need to know the
Möbius transforms of the subsets of size at most k: the preprocessing part is polynomial
if k is a constant.

We now state that the utility function uM fulfills all the desirable properties stated
in Section 3. This is true even with the k-additivity assumption, for any value of k.

Proposition 6.4.1: Axiomatic properties of uM

The utility function uM fulfills cost consistency, super-set monotonicity, the effect
of positive synergies property, the effect of negative synergies property, regrouping
monotonicity and cost aware neutrality. It also fulfills the strong effect of positive
synergies property if for each project a, there is at least one voter who does not
select a.

Proof.

• Cost consistency. As defined in equation 6.1, the Möbius transform of a single
project is its cost. Since the utility of a single project is its Möbius transform,
assuming the Möbius transform and the utility of the empty set is 0, the utility
uM({a},E)=c(a) for any project a. Therefore uM fulfills cost consistency.

• Super-set monotonicity. As detailed earlier, the super-set monotonicity of the
function uM is insured by the definition of the Möbius transform. As a reminder,
to fulfill super-set monotonicity, the function uM has to verify the following prop-
erty: uM(S,E) ≥ uM(S\{a},E) for all S ∈ 2A\∅ and all a ∈ S. Since, by definition, we
have m(S,E) ≥ −

∑
C⊂S,a∈Cm(C,E) for all a ∈ S, it means that

∑
C⊆S,a∈Cm(C,E) ≥ 0

for all a ∈ S and therefore
∑

C⊆Sm(C,E) ≥
∑

C′⊆S\{a}m(C′ ,E) for all a ∈ S. By defi-
nition of uM , this means uM(S,E) ≥ uM(S \{a},E) for all a ∈ S. The utility function
uM fulfills super-set monotonicity.

174

Detecting and taking Project Interactions into account in Participatory Budgeting

• Effect of positive synergies. Let S be a subset of projects such that for any a ∈
S and any vi ∈ V , a ∈ Ai =⇒ S ⊆ Ai and such that ∃vk ∈ V with a ∈ Ak . In
other words, if a voter approves of one of the elements of S, she approves of all
projects in S and such a voter exists in V . For such a subset, the value r(S,V) −∏

a∈S r({a},V) is equal to r(S,V)− r(S,V)|S |. Since the r(S,V) value is larger than 0
and smaller than or equal to 1, the difference r(S,V)− r(S,V)|S | is positive or null.
This means that (r(S,V)−

∏
a∈S r({a},V))c(S) is positive or null, this means that the

Möbius transform of S is positive or null, m(S,E) ≥ 0. The same remark can be
said about all subset C ⊆ S since all the projects of S are only selected together.
Therefore, we have

∑
C⊆S,|C|≥2m(C) ≥ 0. By definition, the Möbius transforms

of the single projects are their cost, we then have:
∑

C⊆Sm(C) ≥
∑

a∈S c(a), and
consequently: uM(S,E) ≥ 0. The utility function uM fulfills the effect of positive
synergies property. If we suppose that for each project a, there is at least one voter
who does not select a, then for each subset S, there is at least one voter who does
not select S. Then r(S,V) is smaller than 1 and the difference r(S,V) − r(S,V)|S |

is strictly positive. In this case, uM fulfills the strong effect of positive synergies
property.

• Effect of negative synergies. Let S be a subset of projects such that for any a ∈ S
and any vi ∈ V , a ∈ Ai =⇒ S∩Ai = {a}. In other words, if a voter selects an element
a of S, then it is the only element of S she selects. For such a subset, the value
r(S,V) −

∏
a∈S r({a},V) is negative or null, since S never appears but the element

of S can appear individually. This is true for any subset C ⊆ S such that |C| ≥ 2.
When summing the Möbius transforms all these subsets included in S,we will
have the Möbius transforms of singleton that are positive and equal to the cost
the project and then null or negative values. This means that the overall utility of
S cannot be greater than the sum of the utility of its components. Therefore, uM
fulfills the effect of positive synergies property.

• Regrouping monotonicity. Let E = (A,V ,c, l) be a budgeting scenario and let
S ∈ 2A be a subset of projects with c(S) ≤ l. Let vi and vj be two voters in V such
that Ai∩Aj =∅, S ⊆ Ai∪Aj and c(Ai∪Aj \S) ≤ l. We consider voters vk and vl with
Ak = S and Al =Ai ∪Aj \ S, and a set of preferences VS =V ∪ {vk ,vl} \ {vi ,vj}. Let
E′ = (A,VS , c, l) be a budgeting scenario. In VS any subset C ⊆ S appears at least
as often than in V and any project appears as much in VS than in V , therefore
for any C ⊆ S, r(C,VS) ≥ r(C,V), consequently m(C,E) ≥ m(C,E) and uM(C,E′) ≥
uM(C,E). Since uM(C,E′) ≥ uM(C,E), for all C ⊆ S and r(S,VS) > r(S,V) we see
that m(S,E′) > m(S,E) and therefore uM(S,E′ ,>)uM(S,E) from equation 6.2. Thus,
uM fulfills regrouping monotonicity.

• Cost aware neutrality. Given a budgeting scenario E = (A,V ,c, l), let E(ai↔aj) =
(A,V(ai↔aj), c, l) be the budgeting scenario obtained from E by swapping the ap-
proval of two projects ai and aj such that c(ai) = c(aj). For a given subset S, let
S(ai↔aj) be the subset obtained from S by swapping ai and aj , i.e. S(ai↔aj) contains

175

Detecting and taking Project Interactions into account in Participatory Budgeting

the same projects than S except for ai and aj , if S contains ai , S
(ai↔aj) contains aj

and if S contains aj , S
(ai↔aj) contains ai . Since c(ai)=c(aj), and since for any subset

C, r(C,V) = r(C(ai↔aj),V(ai↔aj)), we can see that m(C,E) =m(C(ai↔aj),E(ai↔aj)) and,
because of equation 6.2 that uM(C,E) =uM(C(ai↔aj),E(ai↔aj)). The utility function
uM fulfills cost aware neutrality.

6.5 Axioms for budgeting methods

In this section we discuss some axiomatic properties of the different aggregation rules,
relying on the properties of the utility function used. We try, when it is possible, to
have general results relying on the properties introduced in section 6.3 instead of on
specific utility functions. We start with the inclusion maximality axiom Talmon and
Faliszewski [2019], also known as exhaustiveness Aziz et al. [2017]. This axiom states
that if a bundle B is a winning bundle according to a budgeting method r, then it is
either exhaustive, in the sense that it is impossible to add a project without exceeding
the budget limit, or any of its feasible superset is also a winning bundle.

Definition 6.5.1: Inclusion maximality (IM) [Talmon and Faliszewski, 2019].

A budgeting method R satisfies inclusion maximality if for any budgeting sce-
nario E = (A,V ,c, l) and each pair of feasible bundles B and B′ such that B′ ⊂ B, it
holds that B′ ∈R(E) =⇒ B ∈R(E).

Proposition 6.5.1: Super-Set Monotonicity and Inclusion Maximality

If a utility function u fulfills super-set monotonicity, then the budgeting method
α−ru , for α ∈ {

∑
,
∏
,min} fulfills inclusion maximality.

Proof. Let u be a utility function satisfying super-set monotonicity and α−rua budgeting
method maximizing either the sum, the product or the minimum over all the voters
utilities. For any voter vi , and for any pair of feasible bundles B and B′ such that B′ ⊂ B,
we call Bi and B′i the common subsets between Ai and B and Ai and B′ respectively.
Since B′ ⊂ B, we have B′i ⊆ Bi . Since both the sum, product and the minimum utility of
the voters are non decreasing with the utility of individual voters, if B′ is optimal for
any of these rules, then B is also optimal. The budgeting method α−Ru thus satisfies
inclusion maximality.

Note that when a budgeting method is resolute, meaning that it returns only one
winning bundle, this axioms requires that the only winning bundle is exhaustive. This
means that if we use tie-breaking mechanism to choose a solution among several opti-
mal ones, they should select an exhaustive solution. Note that it can be easily obtained
by adding projects greedily from an optimal solution that is not exhaustive.

176

Detecting and taking Project Interactions into account in Participatory Budgeting

The next two axioms focus on robustness, especially when projects have a composite
structure (i.e. a large project can be divided into several small projects, or small projects
merged into one large project).

Definition 6.5.2: Splitting monotonicity (SM) [Talmon and Faliszewski, 2019].

A budgeting method r satisfies splitting monotonicity if for every budgeting sce-
nario E = (A,V ,c, l), for each ax ∈ r(E) and each budgeting scenario E′ which is
formed from E by splitting ax into a set of projects A′ such that c(A′)=c(ax), and
such that the voters which approve ax in E approve all items of A′ in E′ and no
other voters approve items of A′, it holds that r(E′)∩A′ , ∅.

Proposition 6.5.2: Splitting monotonicity - uM

For α ∈ {
∑
,
∏
,min}, the budgeting method α− ruM fulfills splitting monotonicity.

Proof. Let E = (A,V ,c, l) be a budgeting scenario, and let B be the bundle returned by
α− ru for E. Let ax be a project in the bundle α− ru(E). Let E′ = (A′ ,V ′ , c′ , l) be the
budgeting scenario formed from E in which ax is divided into a set X ′ of projects such
that c(X ′) = c(ax). Voters in V ′ are the same than in V except that any voter approving
project ax in V approves all the projects of X ′ in V ′. The bundle B maximizes the ob-
jective of the rule α−ru . Note that the utility of any subset that does not contain ax is
identical for E and E′, and brings the same satisfaction to each voter: it therefore has
the same quality regarding the aggregating criterion of α−rufor E and E′. Let B′ be
the bundle B in which ax is replaced by all the projects in X ′. Bundle B′ is a feasible
solution for E′. Any voter v′i in V ′ has a corresponding voter vi in V . We recall that Bi

denotes the set of projects that are common between a bundle B and the approval set
of a voter vi . There are two cases:
• X ′ ∩B′i =∅: in this case, uM(B′i ,E

′) = uM(Bi ,E)
•X ′ ⊆ B′i : we have c(B′i) =c(Bi) and r(B′i ,V)=r(Bi ,V). Additionally, we have

∏
b′∈B′i r(b

′ ,V ′) ≤∏
b∈Bi

r(b,V), since the rates do not change but the number of projects is larger in B′i than
in Bi . This is also true for any subset C ⊆ B′i such that X ′ ⊆ C. Therefore, because of the
super-set monotonicity property, we have uM(B′i ,E

′) ≥ uM(Bi ,E).
Overall, B′ is at least as good as any solution containing no element of X ′, meaning that
either B′ maximizes the rule criterion or a solution containing at least one project in
X ′ does. Therefore there is a a in X ′ such that a is in α−ru(E′): the α−ru rule fulfills
splitting monotonicity.

177

Detecting and taking Project Interactions into account in Participatory Budgeting

Definition 6.5.3: Merging monotonicity (MM) Talmon and Faliszewski [2019]

A budgeting method r satisfies merging monotonicity if for each budgeting sce-
nario E = (A,V ,c, l), and for each A′ ⊆ r(E) such that for each vi ∈ V we either
have Ai ∩ A′ = ∅ or A′ ⊆ Ai – i.e. a voter approves either all projects from A′

or none – it holds that a ∈ r(E′) for E′ = (A \ {A′} ∪ {a},V ′ , c′ , l), c′(a) = c(A′), and
each voter vi ∈ V for which A′ ⊆ Ai in E approves a in E′, and no other voter
approves a.

Proposition 6.5.3: Effect of positive synergies and merging monotonicity

Let α ∈ {
∑
,
∏
,min}. If a utility function u fulfills the strong effect of positive

synergy property and cost consistency, then the budgeting method α−ru does
not fulfill merging monotonicity.

Proof. • Case where α =Σ. Let T be an even positive integer. Let us consider a bud-
geting scenario E = (A,V ,c, l) with A = x1,x2, y, c(x1) = c(x2) = T /2, c(y) = T and l = T .
There are two types of voters in V . There are v1 voters of the first type, and each one
of them approves x1 and x2. There are v2 voters of type 2, and they all approve y as
shown in Figure 6.2. By cost consistency, we know that there exists a constant k such
that u(x1,E) = u(x2,E) = kT /2 and u(y,E) = kT . By strong effect of positive synergies,
we have u({x1,x2},E) > u({x1},E) + u({x2},E) and consequently u({x1,x2},E) > kT . Let
ϵ=u({x1,x2},E)− kT > 0. The bundle {x1,x2} has a total utility of v1(kT + ϵ), the bundle
{y} has a utility of v2kT . If v1kT − v2kT + v1ϵ > 0, then {x1,x2} is the best bundle.

x1 x2

y

n1

n2

Figure 6.2: First budgeting scenario E

We now consider E′ = (A′ ,V ′ , c′ , l) another budgeting scenario such that A′ = {x,y},
c′(x)=c(x1) + c(x2)=c′(y)=c(y)=T . In V ′ we create v1 voters approving x and v2 voters
approving y. Note that the budgeting scenario E′ is similar to E except that the projects
x1 and x2 have merged in a project of size T . Because of cost consistency, we have
u({x},E′) = u({y},E′) = kT . Therefore the bundle {x} has a total utility of v1kT and the
bundle {y} still has a utility of v2kT . If v1 < v2, {y} is the winning bundle.

x

y

n1

n2

Figure 6.3: Second budgeting scenario E′

By setting v1 = ⌈2kT /ϵ⌉ and v2 = v1 + 1, {x1,x2} is the winning bundle for E and {y}

178

Detecting and taking Project Interactions into account in Participatory Budgeting

is the winning bundle for E′, giving us an instance for which the
∑
−ru rule does not

fulfill merging monotonicity.

• Case where α ∈ {
∏
,min}. Let us consider a budgeting scenario E = (A,V ,c, l) with

A= {x1,x2,x3,x4, y}, c(x1) = c(x2) = c(x3) = c(x4) = (T − 2)/4, c(y) =T /2 + 1 with T an even
integer and l=T . There are two voters in V : the first one approves of x1, x2, x3 and x4,
the second one approves of y.

x1 x2 x3 x4

y

1

1

Figure 6.4: First budgeting scenario E

When maximizing either the min utility or the product, for any utility function
u fulfilling cost consistency and the strong effect of positive synergies, the winning
bundle will be y plus two projects xi and xj . Let us assume, without loss of generality
that the projects x1 and x2 are part of the winning bundle. Let E′ = (A′ ,v′ , c′ , l) be a
budgeting scenario formed from E in which projects x1 and x2 are merged into one
project X of cost (and therefore utility) T /2− 1.

X x3 x4

y

1

1

Figure 6.5: Second budgeting scenario E′

The utilities of x3 and x4 are still (T −2)/4. By strong superadditivity of groups, the
utility of {x3,x4} is strictly larger than 2(T − 2)/4 and strictly larger than the utility of
X consequently. Therefore the winning bundle for E′ is {y,x3,x4}. Since X is not in this
bundle, merging monotonicity is not fulfilled.

The next axiom states that if the cost of a funded project decreases, it is still guar-
anteed to be funded. It is easy to see that this axiom is not compatible with the cost
consistency property.

Definition 6.5.4: Discount Monotonicity (DM) Talmon and Faliszewski [2019]

A budgeting method r satisfies discount monotonicity if for each budgeting sce-
nario E = (A,V ,c, l) and each item b ∈ r(E), it holds that b ∈ r(E′) for E′ =
(A,V ,c′ , l) where for each item a , b, c′(a)=c(a) and c′(b)=c(b)− 1.

Proposition 6.5.4: Cost Consistency and Discount Monotonicity

Let α ∈ {
∑
,
∏
,min}. If a utility function u fulfills cost consistency, then the bud-

geting method α−ru does not fulfill discount monotonicity.

179

Detecting and taking Project Interactions into account in Participatory Budgeting

Proof. Let us consider a budgeting scenario E = (A,V ,c, l) with A = x1,x2, y, such that
c(x1) = 4, c(x2) = 3, c(y) = 4 and l = 8. There are two voters in V : the first one approves
x1 and x2, and the second one approves y. When maximizing either the

∑
, the min

or the
∏

of utilities, for any utility function u fulfilling cost consistency, the winning
bundle will be y plus project x1. Let E′ = (A,V ,c′ , l) be a budgeting scenario formed
from E in which project x1 now has a cost of 2 instead of 4. The winning bundle is
now {y,x2}. The cost of project x1 was reduced and it was removed from the winning
bundle, therefore discount monotonicity is not fulfilled.

This last axiom states that any funded project in a winning bundle is still funded
when the budget limit increases.

Definition 6.5.5: Limit Monotonicity (LM) Talmon and Faliszewski [2019]

A budgeting method r fulfills limit monotonicity if for each pair of budgeting
scenarios E = (A,V ,c, l) and E′ = (A,V ,c, l + 1) with no item which costs exactly
l + 1, it holds that a ∈ r(E) =⇒ a ∈ r(E′).

Proposition 6.5.5: Cost consistency and Limit Monotonicity

Let α ∈ {
∑
,
∏
,min}. If a utility function u fulfills cost consistency, then the bud-

geting method α−rudoes not fulfill limit monotonicity.

Proof. • Case where α =
∑

: Let us consider a budgeting scenario E = (A,V ,c, l) with
A = x1,x2,x3, c(x1) = 2, c(x2) = 5, c(x3) = 6 and l = 6. There are three voters in V : the
first one approves of x1, the second one approves of x2 and the third one approves of
x3. When maximizing the sum of utilities, for any utility function u fulfilling cost con-
sistency, {x3} will be the winning bundle. Let E′ = (A,V ,c, l′) be a budgeting scenario
formed from E but such that the budget limit l′ is now 7 instead of 6. The winning
bundle is now {x1,x2}. The budget limit was increased and project x3 was removed
from the winning bundle, therefore limit monotonicity is not fulfilled.

• Case where α ∈ {min,
∏
}: Let us consider a budgeting scenario E = (A,V ,c, l) with

A= x1,x2,x3, c(x1) = 1, c(x2) = 2, c(x3) = 3 and l = 4. There are two voters in V : the first
one approves of x1 and x2, the second one approves of x3. When maximizing either
the min or the product of utilities, for any utility function u fulfilling cost consistency,
{x1,x3} will be the winning bundle. Let E′ = (A,v,c, l′) be a budgeting scenario formed
from E but such that the budget limit l′ is now 5 instead of 4. The winning bundle
is now {x2,x3}. The budget limit was increased and project x1 was removed from the
winning bundle, therefore limit monotonicity is not fulfilled.

From Proposition 6.4.1 and propositions from Section 6.5, we get the following
corollary.

180

Detecting and taking Project Interactions into account in Participatory Budgeting

Corollary 6.5.1: Axiomatic properties α − ruM

The rules α−ru for α ∈ {
∑
,min,

∏
} and u = uM fulfill inclusion maximality and

splitting monotonicity. They do not fulfill merging monotonicity, discount mono-
tonicity and limit monotonicity.

6.6 Complexity

We show in this section that, for each α ∈ {
∑
,
∏
,min}, problem PB-Max−α−u is NP-

hard when there are synergies, and this even if all the projects have unitary cost and
when the utility function fulfills only very mild conditions. This shows that synergies
add complexity, since problem PB-Max−

∑
−u is polynomially solvable when projects

have the same cost and without synergies (i.e. when the function u is linear). Indeed,
without synergies and with unitary size projects, selecting the projects by decreasing
number of votes maximizes the sum of the utilities of the voters. Let us now show that,
with synergies, this problem is NP-hard even with very general utility functions. We
start by proving a preliminary result for the Clique problem.

Lemma 6.6.1: Clique with dmax <
√
m

The Clique problem is strongly NP-complete even if it is restricted to graphs G
in which dmax <

√
m, where m is the number of edges and dmax is the maximum

degree of a vertex of G.

Proof. The Clique problem is the following one. We are given an undirected graph
G = (V ,E), with V the set of n vertices and E the set of m edges. We denote by di the
degree of a vertex i, and by dmax the maximum degree of any vertex in V . We are also
given an integer K . The question is: does there exist a clique of size K in G?

This problem is known to be strongly NP-complete Garey and Johnson [1979], and
we now show that it is still strongly NP-complete when the graph G is such that

√
m >

dmax.
We reduce the Clique problem in any graph into the Clique problem in a graph

where
√
m > dmax. Let G and K be an instance of the Clique problem without any

constraint on m and dmax. We first transform graph G into a graph G′, as follows. Graph
G′ is built from graph G by “copying” G m times, obtaining m connected components:
for any vertex vi in V , we create m+ 1 vertices {vi,0,vi,1 · · ·vi,m} in V ′, and for each edge
(vi ,vj) in E, we create m+1 edges {(vi,0,vj,0) · · · (vi,m,vj,m)} in E′. We denote by dGmax (resp.
dG

′
max) the maximum degree of a vertex of G (resp. G′), and by m (resp. m′) the number

of edges in G (resp. G′). We have dG
′

max = dGmax and m′ = (m + 1)m. Since m ≥ dGmax and
dG

′
max = dGmax, we have: m′ =m(m + 1) ≥ dGmax(dGmax + 1). Therefore,

√
m′ > dG

′
max. We now

show that there is a clique of size K in G′ if and only if there is a clique of size K in G.

181

Detecting and taking Project Interactions into account in Participatory Budgeting

• Let us first assume that there is a clique C = {v1,v2 · · ·vK } of size K in G. In that
case, the set C′ = {v1,0,v2,0 · · ·vK,0} is clique of size K in G′ since for any edge con-
necting two vertices vi and vj in G we created an edge connecting vi,0 and vj,0 in
E′.

• Let us now assume that there exists a clique of size K in G′. Such a clique can only
be formed by a set of vertices {v1,i ,v2,i · · ·vK,i} with a fixed i since no edges in E′

connect two vertices vk,i and vl,j with i , j by construction. If such a clique exists,
then the subset C = {v1,v2 · · ·vK } in G is a clique as well since if an edge (vk,i ,vl,i)
exists in E′, an edge (vk ,vl) exists in E. Therefore C is a clique of size K in G and
the answer to the Clique problem is yes.

Since our problem is in NP, and that there exists a polynomial time reduction of the
strongly NP-complete Clique problem into the Clique problem when

√
m > dmax, we

conclude that the Clique problem is strongly NP-complete even when
√
m > dmax.

Proposition 6.6.1: PB-Max−
∑
−u with synergies

Problem PB-Max−
∑
−u is strongly NP-hard, even if all the projects have unit

costs. This is true if u = uM , as well as for any utility function u such that the
utility of two projects that have been selected together by at least one voter is
strictly larger than the utility of two projects approved by the same number of
voters but that have never been selected together by a same voter.

Proof. The decision version of our problem, that we will denote PB-Max−
∑
−u-dec, is

the following one. We are given a number R ∈ Z and a budgeting scenario E=(A,V ,c, l)
with c a cost function such that the cost of each project of A is exactly one. We consider
that the utility function u is such that the utility of a pair of projects selected at least
once together is strictly larger than the utility of any other pair of projects that have
been selected the same number of times but that have never been selected together.
The set A is a set of v voters {v1, . . . , vv}, having each one approved up to l projects of A.
The question is: does there exist a set B ⊂ A of up to l projects such that the utility of B,∑

vi∈V u(Bi ,E), is at least R ?

We reduce the strongly NP-complete problem Clique to this problem. We will as-
sume that the instance of the Clique problem is a graph such that

√
m > dmax (the

Clique problem is still NP-complete in this case, as shown by Lemma 6.6.1). The
Clique problem is as follows: given an graph G = (V ,E), such that

√
m > dmax, and

an integer K , the question is: does there exist a clique of size K?
Given an instance (G,K) of the Clique problem, we create an instance of PB-Max−

∑
−u-

dec as follows. We first transform graph G into a graph G′, as follows. We start by
setting G′ = G, and we assume that the |V | vertices of G′ are labelled {1, . . . , |V |}. For
each vertex i of degree di < dmax, we add (dmax − di) new neighbor vertices, denoted
by Dummy(i,1), . . .Dummy(i,dmax − di). By doing this, the vertices of {1, . . . , |V |} are
all of degree dmax. Let G′ = (V ′ ,E′) be the graph obtained. Each newly added vertex

182

Detecting and taking Project Interactions into account in Participatory Budgeting

Dummy(i, j) is of degree 1 in G′. Therefore, the number of newly added vertices in G′

is ndummy =
∑|V |

i=1dmax − di = |V |dmax − 2|E|, and the number of newly added edges is the
same value. We label the newly added vertices (if any) as {|V |+ 1, . . . , |V |+ndummy}.

We now create from G′ a set of projects A as follows. To each vertex i ∈ {1, . . . , |V ′ |}
we create a corresponding project Pi of cost 1: there are thus |V | projects correspond-
ing each one to one vertex of V , and ndummy projects corresponding each one to one
dummy vertex. We create a set V of mV = |E′ | + (dmax − 1)ndummy voters. To each edge
{x,y} ∈ E′, we create a voter which approves exactly two projects: projects Px and Py ,
corresponding to vertices x and y. For each dummy vertex, we create (dmax − 1) voters
that approve only the project corresponding to the dummy vertex.

We fix the maximum budget to l =K (since all the projects have a unitary cost, this
means that up to K projects can be selected). The value of R, the target utility, depends
of the synergy function. We observe that in our instance of PB-Max−

∑
−u-dec each

project is chosen by the same number of voters (dmax − 1). Let utogether be the utility
that a voter obtains for a set of two projects which have both been chosen by the voter.
The sequel of the proof works for all utility function such that utogether > 2. This is in
particular true for uM , as shown by the following fact.

Fact 1: If the utility function is uM , then utogether > 2.
Proof of the fact: Let us show that the utility function uM count positive interactions
for pairs of projects corresponding to vertices connected by an edge in G′. For function
uM , we have:

m({x,y}, V)≥r({x,y}, V)− r({x}, V)r({y}, V)

m({x,y}, V)≥ 1
mV
− (dmax)2

(mV)2 =
1
mV

(
1− (dmax)2

mV

)
Furthermore:

mV = |E|+
|V |∑
i=1

dmax(dmax − di)= |E|+|V |(dmax)2−
|V |∑
i=1

dmaxdi

Since didmax ≤ (dmax)2, we get
∑|V |

i=1didmax ≤ |V |(dmax)2, and thus mV ≥ |E|. Since√
|E| > dmax, mV > (dmax)2 and the Möbius transform of the pair is larger than 0, mean-

ing that the utility of the subset {x,y} is larger than the sum of their costs: utogether > 2.

Let us now show that it possible to select a set of at most K projects of total utility
larger than or equal to R=Kdmax + K(K−1)

2 (utogether − 2) if and only if there is a clique of
size K in G.
• Let us first assume that there is a clique C of size K in G. Let Sclique be the set of

the K projects which correspond to the K vertices of C. Note that for each couple of
projects x and y of Sclique, exactly one voter has approved both x and y. The utility of
Sclique is thus utogether for each of these K(K − 1)/2 voters. Note also that each project
has been selected by exactly dmax voters. Therefore, for the Kdmax−2×K(K−1)/2 voters
who approve exactly one project of Sclique, the utility of Sclique is 1. The other voters
do not approve any project of Sclique and have a utility of 0. The total utility of Sclique

183

Detecting and taking Project Interactions into account in Participatory Budgeting

is thus 1 × (Kdmax − 2 × K(K−1)
2) + utogether

K(K−1)
2 =Kdmax + K(K−1)

2 (utogether − 2) =R. The
answer to our problem is thus ‘yes’.
• Let us now assume that there is a set C of at most K projects of total utility at

least R = Kdmax + K(K−1)
2 (utogether − 2). Note that each project is approved by exactly

dmax voters. The utility of C for a given voter is 0 if the voter does not select any
project of C, 1 if it selects exactly one project, and utogether > 2 if it approves exactly two
projects (recall that a voter approves at most 2 projects). The utility of C is thus equal
to n1, the number of voters who approve exactly one project of C, plus n2 × utogether ,
where n2 is the number of voters who approve exactly two projects of C. We have
R=Kdmax−2K(K−1)

2 +K(K−1)
2 utogether ≤ n1+n2utogether , and n1+2n2 ≤ Kdmax (since n1+2n2

is equal to the total number of votes for projects of C and C is of size at most K).
Therefore, n1 =Kdmax − 2K(K−1)

2 , and n2 = K(K−1)
2 . This means that there are exactly K

projects in C and that for each couple of projects of C, there is a voter who approves
both projects (recall that there is exactly one voter by edge in G′). Therefore, there exists
a clique of size K in G′, and thus a clique of size K in G. There exists a polynomial time
reduction of the strongly NP-complete Clique problem into the decision version of our
problem: PB-Max−

∑
−u-dec is thus strongly NP-hard.

The next result extends the result from Sreedurga et al. [2022], which proves that
the maxmin participatory budgeting problem is strongly NP-hard for approval voting
when the utility function is the sum of the costs of the funded approved projects. We
generalize this result by proving that this is true for both the maxmin and the product
of utilities and we show that we only need a very weak condition on the utility function
for this to be true. Additionally, it holds for knapsack voting, which is more specific
that approval voting. We also show that the problem is hard to approximate. We first
prove the following lemma.

Lemma 6.6.2: SetCover - Any element is in at most K different sets

The Set cover problem is strongly NP-complete even when restricted to in-
stances in which the number of subsets containing the same element is bounded
by K , the size of a feasible solution.

Proof. The Set cover problem is the following one: we are given a set U of n elements,
called the universe, and a collection S of m sets whose union is U. Given an integer
K < m, the question is: does there exist a set S of elements in S, such that ∪s∈S = U and
|S| ≤ K ?

From an instance U,S,K , we create a new instance U′,S ′,K ′. In this new instance,
we create m dummy elements {x1

dummy · · ·x
m
dummy} and m dummy sets {s1

dummy · · ·s
m
dummy}

such that sidummy contains xidummy . We then have n′ = n + m and U′ = U ∪ {x1
dummy , · · · ,

xmdummy}, m
′=2m and S ′=S ∪ {s1

dummy · · ·s
m
dummy} and K ′=K +m. In this new instance, it

is easy to see that each element is contained by at most m < K ′ sets.

184

Detecting and taking Project Interactions into account in Participatory Budgeting

We now prove that there exists a set cover of U′ with subsets of S ′ and of size K ′ at
most if and only if there exists a set cover of U with subsets of S and of size K at most.

• Let us first suppose that there exist a cover C′ of U′ with subsets of S ′ and of size
K ′ at most. This cover necessarily contains the m dummy sets since these sets are
the only one containing the m dummy vertex. The K ′ −m < K other sets of the
cover form a feasible cover of the n elements of U and all of these sets are in S.

• Now, we suppose that that there exist a cover C of U with subsets of S and of
size K at most. The elements of U′ that are not covered by C are the dummy
elements. By adding the m dummy sets of S ′ to C, we obtain a cover C′ covering
all the elements from U plus the m dummy elements and of size of |C|+m. Since
|C| ≤ K , we have |C|+m ≤ K +m=K ′, we therefore have a feasible cover of U′.

There exist a polynomial time reduction between any instance of Set cover to a version
of the Set cover problem in which the number of sets containing the same element is
bounded by K . Therefore the Set cover is still strongly NP-complete in that case.

Proposition 6.6.2: min and
∏

Problems PB-Max−min−u and PB-Max−
∏
−u are strongly NP-hard for any utility

function u such that u(∅,E)=0 and u(S,E) > 0 for each S , ∅. For any δ > 1, there
is no polynomial time δ-approximate algorithm if P ,NP .

Proof. The decision version of our problem is the following one. We are given a real
number R and a budgeting scenario E = (A,V ,c, l) with A a set of n projects and c a cost
function such that the cost of each project is exactly one. We consider a utility function
u such that u(S,E) > 0 if S , ∅. The set V is a set of v voters {v1, . . . , vv}, having each one
approved up to l projects of A. The question is: does there exist a set B ⊂ A of up to l
projects such that the utility of B,

∏
vi∈V u(Bi ,E) (or minv∈V u(Bi ,E)), is at least R ?

We will reduce the strongly NP-complete problem Set cover Garey and Johnson
[1979] to this problem. The Set cover problem is the following one: we are given a set
U of n elements, called the universe, and a collection S of m sets whose union equals
the universe. Given an integer K , the question is: does there exist a set S of sets in S,
such that ∪s∈S = U and |S| ≤ K ? We suppose that the number of subsets containing the
same element is bounded by K – as shown by Lemma 6.6.2, the problem is still strongly
NP-complete in that case.

Let U, S and K be an instance of the Set cover problem. Let us create an instance
of our problem.

For each element s in U, we create a voter ve. For every subset s in S, we create a
project as of cost 1. This project is approved by any voter ve such that e ∈ s. Note that,
since the number of sets containing the same element is smaller than or equal to K , the
number of projects approved by a voter is smaller than or equal to K . We set l=K and
R=ϵ with ϵ > 0. The question is now: does there exist a bundle B of projects such that

185

Detecting and taking Project Interactions into account in Participatory Budgeting

the product (or minimum) of the voters’ utilities for bundle B is greater than or equal
to ϵ ? Since ϵ can be as small as we want, we can simply look for a solution with value
strictly larger than 0.

We show that there is a positive answer to this question if and only if there exists a
cover of size K in S.

• Let us first assume that there is a cover C of size K in S. Let Bcover be the set of
the K projects which correspond to the K sets of S. All voters have at least one of
their approved projects in the bundle Bcover , since the projects corresponding to
the sets have been chosen by the voters matching with the elements. Therefore, if
a voter did not have at least one approved project in Bcover , then the cover C would
not cover the element corresponding to the voter. The answer to our problem is
thus ‘yes’.

• Let us now assume that it possible to select at most K projects such that the total
utility is at least R=ϵ. Since we use the product or the min, this means that every
voter has at least one of her approved projects in the funded bundle B. We know
that for each ve ∈ V , there is one project of Ae in B. If we consider the cover CB

formed by the sets corresponding to the projects in B, this means that for every
element e, there is a subset s in CB such that e ∈ s. Since the size of B is at most
K , the size of CB is at most K , which means that CB is a feasible cover for the Set

cover problem. The answer is thus ‘yes’.

There exists a polynomial time reduction of the strongly NP-complete Set cover prob-
lem into our problem: our problem is strongly NP-hard. Furthermore, a δ-approximate
algorithm, with δ, would allow to detect whether there exist a solution with a prod-
uct (or minimum) of utilities strictly larger than 0, and thus would allow to solve the
Set cover problem. Therefore, for any δ > 0, there does not exist polynomial time
δ-approximate solution for our problem, unless P =NP .

6.7 A branch and bound algorithm

In this section, we propose an exact branch and bound algorithm for α− rufor α ∈
{
∑
,
∏
,min} since, as shown in the previous section, this is NP-hard. We also run ex-

periments on real-life instances.

6.7.1 Description of the algorithm

Let us now present a branch and bound algorithm which solves PB-Max−α−u exactly,
for α ∈ {

∑
,min,

∏
}. Each level of the decision tree corresponds to a project: we either

add it to the funded projects – if it fits in the remaining budget, or we ban it for the
current node and all of its sons. In such a decision tree, each leaf corresponds to a
feasible bundle. Since every decision is binary and there are n consecutive decisions,
corresponding to the n projects, there are 2n leaves corresponding to the 2n possible

186

Detecting and taking Project Interactions into account in Participatory Budgeting

subsets. Since the cost of an optimal bundle is at most l, at a current node, we add a
project only if its cost is at most l minus the cost of the currently funded projects – this
allows us to prune the tree. Moreover, at each node, we compute a feasible solution,
and an upper bound of the value of the quality (w.r.t. the objective function of PB-
Max−α−u) of a bundle that is reachable from this node. If the upper bound of the value
of a reachable bundle is smaller than the value of a feasible solution we already know,
then exploring the node’s sons is useless, and we prune the tree.

Case where α =
∑

. We compute a new feasible solution using a greedy rule, called R
g
|Bv |

by Talmon and Faliszewski [2019], and which simply selects the projects by decreasing
number of selections. At each node we consider the not yet considered projects by
decreasing number of selections, and we add a project if it fits in the remaining budget.
As we will see in Section 6.7.2, using this algorithm at the root of the tree can also be
used as a good and fast heuristic.

The upper bound follows the same principle than the classic upper bound for the
Knapsack problem, it is a linear relaxation. In order to compute our upper bound, we
need an upper bound on the utility that each project can give to a voter. By multiplying
it by the number of voters who selected this project, we obtain an upper bound of the
utility that a project can bring to the whole set of voters.

Before starting the exploration of the decision tree, for each project a, we compute
the sum of the Möbius transforms of each feasible subset in which a appears, divided
by the size of this subset. This is an upper bound of how much utility a project can
provide to one voter, we multiply it by the number of voters who selected this project,
and obtain an upper bound of how much utility the project can bring to the whole
set of voters. Note that this can be applied to other utility functions since the Möbius
transforms can be computed for any utility function.

At each node, we then run the greedy algorithm selecting the (non yet selected nor
eliminated) projects by decreasing upper bounds and we relax the integrity constraint,
obtaining a fractional solution. This gives us an upper bound of the best solution that
can be obtained at the current node. Note that the k-additivity assumption is par-
ticularly useful here since the maximum utility a project can give decreases when k
decreases, since all the Möbius transforms of subsets of size strictly greater than k are
null.

Case where α ∈ {min,
∏
}. We compute a feasible solution as follows: we look for the set

of least satisfied voters. We choose the most frequently selected project by these voters,
among projects that fits into the remaining budget. We repeat this process until there
is no budget left.

For the upper bound: at the root of the decision tree, we assume that each voter
gets her favorite set of projects. At each node, we consider that each voter gets the
projects that she voted for among the already selected projects, plus all the projects
that she selected among projects that still fits in the budget and which have not been
considered yet. For example, if the selected projects cost half the budget, then any
project costing more than half the budget could not be chosen and is therefore banned.
If a project is banned, then we simply add it to the ban list. Then, we remove all newly

187

Detecting and taking Project Interactions into account in Participatory Budgeting

Function n=5 n=8 n=10 n=12 n=15
1-additive 0.013 0.057 0.10 0.26 0.77
2-additive 0.015 0.076 0.15 0.60 3.60
3-additive 0.016 0.11 0.25 1.43 9.85

Table 6.1: Completion time (s) of the branch and bound algorithm.

banned project from the best reachable subsets of the voters. This gives us an upper
bound of the value of any reachable solution.

Computing the utilities. The utility provided by a given solution B to a voter vi is
the utility of Bi . Determining Bi and computing its utility can be done in polynomial
time if we know the utility function. Therefore, for each node of the decision tree,
computing solutions and determining their value as upper and lower bounds can be
done in polynomial time.

To determine the utility of a bundle with function uM , we use Equation 6.2. Be-
cause of its recursive nature, we compute first, as a preprocessing step, the utility of
singletons, then pairs, then triplets and so forth. Determining the utilities in this way
cost up to 2n (since there are 2n subsets) times nv operations (since determining the
appearance rate of a subset costs nv operations). This calculation is much faster with
the k-additivity hypothesis, stating, as seen earlier, that we can consider interactions
only in subsets of projects of size at most k.

With the k-additivity hypothesis, it is possible to know the utility of a subset of
size j in O(jk) operations, since its utility is the sum of all the Möbius transforms of its
parts, and there are at most jk parts with a non null Möbius transform. This hypothesis
has great implications on the computational side.

6.7.2 Experiments

We use real instances from the Pabulib Stolicki et al. [2020] library with a budget limit
on the approbation sets of the voters. Experiments are run on an Intel Core i5-8250U
processor with 8GB of RAM. We study the completion time of our algorithm and the
impact of the synergies on the returned solutions. We consider that α =

∑
for the

experiments since the sum is the most common aggregator.

Quality of the heuristic. On average, the solution returned by the exact (branch and
bound) algorithm has an overall utility 0.28% higher than the utility of the solution re-
turned by the heuristic R

g
|Bv |

for the uM function: the heuristic returns, on the instances
of Pabulib, very good solutions with regards to our optimization criterion.

Impact of the k-additivity assumption. The k-additivity assumption allows to de-
crease the calculation time significantly – the lower k is, the fastest is the algorithm.
Table 6.1 indicates the computation times obtained when k=1 (no synergy), and when
k=2 and k=3 with utility function uM .

188

Detecting and taking Project Interactions into account in Participatory Budgeting

Impact of considering synergies. We compare the optimal solution for the overlap
utility function (1 additive) and the uM function with no k-additivity assumption. The
optimal solutions are different in 35% of the instances, and the amount of money spent
differently on average for all the instances is of 28.5%. Therefore, taking synergies into
account impacts the returned bundle in a little bit more than a third of the instances,
and this impact may be important since the returned bundle considering synergies then
differs significantly from an optimal bundle ignoring synergies.

6.8 Conclusion

This chapter represents a first step towards taking project interactions into account in
participatory budgeting problems. We introduced a utility function uM based on the
frequency of selection of groups of projects by the voters, and we showed that it fulfills
desirable axioms. We furthermore showed that taking into account synergies is NP-
hard with the main aggregation criterion, and this for very general utility functions.
We designed an exact algorithm that we implemented with uM but which can also be
used with others utility functions.

Whereas, for very costly projects, decision makers will probably identify synergies
“by hand”, when there are numerous small projects, the authorities will likely be un-
able or unwilling to identify the synergies. In such settings, identifying the synergies
thanks to the preferences of the voters, is promising. We could also imagine settings
where a community decides to use a participatory budgeting approach to set a program
of a maximum fixed total duration l among various events (presentations, courses, doc-
umentaries, etc), each event having a duration (considered as a cost). Members of the
community could be asked to select the events they prefer, using knapsack voting: this
situation is a participatory budgeting problem for which it would be particularly inter-
esting to take into account synergies between the events.

189

Detecting and taking Project Interactions into account in Participatory Budgeting

190

Chapter 7

Conclusion and perspectives

In this final chapter, we propose a summary of the results presented in the thesis and
we present several research directions.

General conclusion. We studied several collective decision problems, from ranking
aggregation to multi agent scheduling problems. We used different tools to study col-
lective decision processes: axioms, fairness criteria, computational complexity, objec-
tive functions measuring the satisfaction of the agents, fitness to real-world data. An
ideal decision process would perform well according to all these evaluation tools, how-
ever, as seen in this thesis we most of the time have to chose. This choice can either be
between axioms when some axioms are incompatible, or between polynomial complex-
ity and guarantee of an optimal solution when optimization problems are NP-hard, and
so on.

Multi agent scheduling problems can have another particularity that does not exist
in all collective decision problem. In some cases, satisfying the agents involved in the
process can be inefficient for the system as a whole. This is the case when the goal of the
system is to minimize some objective, e.g. the makespan or the sum of the completion
times of the tasks, and agents have preferences that deviate from this objective. In
such cases, decision processes should also take this in consideration in order to return
a solution that satisfies the agents and is as efficient as possible for the system. This
trade off between efficiency and fairness can take different forms, as seen in this thesis.

We now give a little more details regarding each chapter.

Multi-Organization Scheduling Problem. In Chapter 2, we focused on the Multi-
Organization Scheduling Problem (MOSP). We have studied the necessary trade off
between efficiency (in term of makespan minimization) and fairness, either expressed
with the rationality constraints or as an optimization criterion. We have also shown
the interest of cooperation, that can benefit to all the organizations. We have seen that
finding a solution in which each organization is as satisfied as possible is a NP-hard
problem, that is even NP-hard to approximate. We have also seen that such a solution
can be inefficient regarding the overall makespan minimization.

191

Conclusion and perspectives

There are numerous work directions:

1. Online tasks: in such a setting, the algorithm scheduling the tasks does not have
knowledge about the tasks from the beginning: the information arrives along the
execution. There are several interesting questions: How do we define the rational-
ity constraint in this context ? How do we define fairness ? How do we maintain
fairness over time ? These questions arise both if the algorithm is completely un-
aware of the upcoming tasks or if we have some predictions on upcoming tasks.

2. Additional scheduling constraints: several of our results can be extended to the
case where the tasks have release dates since “negative” results hold in a more
general case and some of our “positive” results can be directly adapted. Some
constraints, like deadline, are pretty easy to handle for organizations when they
schedule their own tasks on their own machines but it would be interesting to see
how to handle such constraints when machines are shared.

3. Different scheduling objectives: we considered that all organizations wanted to
minimize their makespan, however it may also be possible that some organiza-
tions have different objectives, like minimizing the sum of the completion times
of their tasks or some due date criterion like deviation or tardiness. In such cases,
the rationality constraint can be directly extended (by replacing the makespan
objective by the organization’s objective) but the way the system handles such a
situation remains to be defined. This question is particularly interesting when
the organizations have very different objectives, and when their objectives are
very different from the system one.

4. Different machines: Different organizations having different clusters and possibly
different machines is also an interesting context to consider. In that case organi-
zation having powerful machines may be more demanding since they bring more
processing power.

5. Fairness: we focused on two fairness criteria: the rationality constraint and the
Maximum Minimum Gain. There are a lot of other fairness criteria: one of the
most commonly used for sharing resources is the envy-freeness criterion. An
allocation is said to be envy-free if no agent prefers the share of another agent
to her share. Studying whether this criterion can be extended to MOSP is a very
interesting research direction.

6. Distributed algorithms: the algorithms we studied suppose that there is an en-
tity gathering all the information from all organizations, computing a schedule
and returning it to the organizations. Even if this algorithm has guarantees, like
fulfilling the rationality constraint, it is not obvious that organizations would be
willing to give all their information to a central entity. It would be interesting
to design algorithms where organizations build progressively a common sched-
ule by sharing information with each other and progressively building the final

192

Conclusion and perspectives

schedule. Such an algorithm is called distributed since it relies on agents exe-
cuting the algorithm instead of a central entity. For example, studying how the
heuristic MCEDD behaves in such a context would be interesting.

Collective Schedules. In Chapters 3 and 4, we studied the Collective Schedules prob-
lem. We took an axiomatic approach in Chapter 3 and studied several aggregation
rules. Three of these rules minimize the sum of the dissatisfaction of the agents, ac-
cording to some notions of dissatisfaction: two which generalize scheduling criteria
and one extending the Kendall-Tau distance. In addition to this minimization aspect,
these rules satisfy certain axiomatic properties, some of them being meaningful in EB
(Earlier is Better) settings, i.e. settings in which scheduling tasks as early as possible
is a good thing. We showed incompatibility results between some axioms. These three
rules solve NP-hard problems. We also studied a fourth rule, called EMD, for (Earliest
Median Date) which schedules tasks by increasing median completion time in the pref-
erences of the voters. This rule does not have the same theoretical guarantees than the
first three but can be computed in polynomial time and is also easier to understand for
the voters.

There are several research perspectives and open questions:

1. Length Reduction Monotonicity (LRM axiom): firstly, we conjectured that the
Length Reduction Monotonicity axiom (see Definition 3.3.4) is fulfilled by two of
the rules we studied (the PTA Kemeny and ΣT rules). Showing that this is indeed
the case (or not) is an open problem.

2. Domain restriction: in voting theory, it is sometimes useful to consider that the
preferences of the voters follow some underlying structure. One of the most stud-
ied case is the Single-Peaked preferences case [Black, 1948]. In such a setting,
candidates can be placed on an axis and the preferences of the voters have to fol-
low this axis. For example, if we have 3 candidates placed on the axis in the order
1,2,3, then a voter cannot express the preference 1 ≺ 3 ≺ 2 since candidate 2 is
between 1 and 3 in the axis but not in the preference. This same idea of struc-
tured preferences can be extended to handle cases in which candidates and voters
can be positioned on a map, voters being more favorable to candidates that are
close to them. The reason it is interesting for collective schedules is that when we
model public works in that way, there may be some underlying structure on the
preferences. If we assume that a municipality wants to build infrastructures, a
voter may prefer the municipality to build the closest one to his or her place first.
When we have this knowledge about the instance, some problems may be easier
to solve and some rules may fulfill certain axioms that they do not necessarily
fulfill in the general case.

3. Axiomatic characterization: It is sometimes possible to characterize a voting rule
with a set of axioms. This means that the set of axioms defines perfectly the aggre-
gation rule r in the sense that any rule that fulfills this set of axioms always return

193

Conclusion and perspectives

the same solution that rule r. Such a result exists for the Kemeny rule, which is
known to be the only aggregation rule which fulfills reinforcement, Condorcet
consistency and neutrality [Fishburn, 1981]. Studying whether such results can
be found in the collective schedules problem is an interesting perspective.

4. Scheduling extensions: There are several potential extensions of this problem.
We could study the case in which there are several machines that can process the
tasks. In such a case we have to know how voters express their preferences, do
they still provide a complete schedule ? When there are several machines, all the
schedules do not have the same makespan, is it important and if so how do we
balance makespan minimization and voter satisfaction ? We could also imagine
that the processing time of the tasks may be uncertain, e.g. a project may be
announced as lasting 4 months but because of some factors end up being longer
than that. In this case, can we find algorithms that are robust ?

In Chapter 4, we focused on the particular case in which all tasks have the same
length. We considered a more general way of expressing preferences since voters can
express time intervals for each task instead of giving a complete schedule. We studied
two aggregation rules, one based on a distance criterion and one on a binary criterion.
These two criteria extend the criteria introduced in the previous chapter. This allows
the voter to give very precise preferences. We studied classic scheduling constraints,
namely the release dates, deadlines and precedence constraints. We investigated two
settings, one in which voters are aware of such constraints and express preferences
that fulfill them, and a second one in which the preferences are not constrained but
the solution we return is. We showed that adding release dates and deadlines do not
increase the complexity of the problem, regardless of whether the preferences fulfill
them or not. Precedence constraints on the other hand add complexity if the prefer-
ences do not fulfill them. We also showed that the EMD algorithm introduced earlier
is 2-approximate for the minimization of the distance criterion when tasks are of the
same length.

Among the research directions, we mention:

1. Complexity: whether the minimization of the binary criterion is an NP-hard prob-
lem when preferences fulfill precedence constraints remains an open question.

2. Approximation: several of the problems studied are NP-hard. Looking for ap-
proximation algorithms, maybe by extending algorithms from the scheduling lit-
erature, is a promising research direction.

3. New aggregation rules: we showed that the rules we studied did not fulfill two
axioms, namely the deadline consistency and the release date consistency. De-
signing an aggregation rule that fulfills such axioms and has other theoretical
guarantees is an interesting perspective.

194

Conclusion and perspectives

Ranking aggregation In Chapter 5 we studied the ranking aggregation problem with
a probabilistic approach. We have studied here an extension of Young’s model for pair-
wise preferences to choices in subsets of size at most k, showing that the maximum
likelihood ranking w.r.t. this model coincides with a consensus ranking for the k-wise
Kemeny rule under certain assumptions on the choice probabilities. Relaxing these as-
sumptions, we have proposed inference algorithms for the model, learning the choice
probabilities from the data. The fitness of the model on real data is comparable with
the Plackett-Luce model, although no utilities are embedded in our model. Regarding
our model, there are a few work directions:

1. Extension of Mallows’ model: an interesting connection has been shown by Mal-
lows [1957] between Young’s model for binary relations and Mallows’ model for
rankings: sampling a ranking using Mallows’ model is equivalent to sampling
a binary relations R using Young’s model with probability p = eθ/(1 + eθ) until a
transitive binary relation R is obtained. An interesting extension of the work pre-
sented in this thesis would therefore consist in determining if the k-wise Young’s
model can be related to a k-wise distance-based statistical model M for rankings,
in the same manner as Young’s model and Mallows’ model, and to investigate
effective sampling and learning methods for M from choice data.

2. Rank dependent probabilities: an extension of our model could consist in con-
sidering that the probability of choosing a candidate of the subset that is not the
winning candidate according to the ground truth ranking depends on its position
in the subset. For example, in a triplet choosing the second candidate would be
more likely than choosing the third candidate. This yields a new model and a new
aggregation rule in which disagreements are weighted. Given a subset ordered as
1 ≺ 2 ≺ 3 in the ranking we want to evaluate, we would count a disagreement if
candidate 2 or candidate 3 is ranked above the others in a preference but if candi-
date 3 is ranked first in this subset, the disagreement would have a greater weight
that if 2 was ranked first in this subset. Studying the fitness of such a model and
the properties of this aggregation rule are interesting research directions.

3. Probabilistic models for collective decision: on a more general note, this proba-
bilistic approach could be used for other voting relating problems, like the col-
lective schedules problem or the participatory budgeting problem. A lot of real
world data is available for the participatory budgeting problem [Stolicki et al.,
2020], making it a prime candidate to be studied with a probabilistic approach.

Participatory Budgeting. We introduced a model for the Participatory Budgeting prob-
lem when there are interactions between projects. We introduced a utility function uM
based on the frequency of selection of groups of projects by the voters, and we showed
that it fulfills desirable axioms. We furthermore showed that taking into account syn-
ergies is NP-hard with the main aggregation criteria, and this for very general utility
functions. We designed an exact algorithm that we implemented with uM but which

195

Conclusion and perspectives

can also be used with other utility functions. This automatic detection of interactions
is relevant in contexts in which there are many projects or in contexts in which the
authority running the participatory budgeting is not willing or able to measure the in-
teractions on its own. We could also imagine settings where a community decides to
use a participatory budgeting approach to set a program of a maximum fixed total du-
ration l among various events (presentations, courses, documentaries, etc), each event
having a duration (considered as a cost). Members of the community could be asked
to select the events they prefer, using knapsack voting: this situation is a participatory
budgeting problem for which it would be interesting to take into account synergies
between the events.

We mention a few research perspectives:

1. Proportionality: our model tends to consider that the utility of groups of projects
chosen together is larger than the utility of projects that are not chosen together.
This means that group of projects that often appear together in the preferences
are more likely to be chosen together. This idea goes against one resolution princi-
ple: the proportionality [Aziz et al., 2017]. The main idea behind proportionality
is the following one: a part of x% of the population should be allocated a part of
x% of the budget. For example, this means that if half the population approve
a project that costs half of the budget, then all these voters should be satisfied
at least as much as if this project was funded (since there is a way of satisfying
all of them by selecting the project). Although the utility function we describe
does not seem to favor proportionality, it does not mean that it is impossible to
combine this principle with the use of interactions between projects and this is
an interesting research perspective.

2. Simpler models for interactions: our model, as well as the other models taking
synergies into account, seem to be hard to grasp for voters. Designing a simpler
model which allows the decision maker to gain information regarding the interac-
tions between the projects thanks to the preference of the voters is an interesting
perspective. As seen in Proposition 6.6.1, maximizing voters’ utility when the
utility function takes interactions into account is an NP-hard problem. However,
even within the model we described, it may be possible to design aggregation
rules fulfilling the axioms presented and that are easier to understand for voters.

3. Probabilistic approach: as said earlier, the amount of available data for partic-
ipatory budgeting makes a probabilistic approach possible. It would be partic-
ularly interesting to compare a probabilistic model considering interactions be-
tween projects with another one which considers that the projects are indepen-
dent. Comparing these two model in terms of fitness could show that there are
synergies between projects and that the votes expressed by the citizens take this
into account.

196

Papers

Martin Durand and Fanny Pascual. Efficiency and equity in the multi organization
scheduling problem. Theoretical Computer Science, 864:103–117, 2021.

Martin Durand and Fanny Pascual. Collective schedules: Axioms and algorithms. In
Algorithmic Game Theory: 15th International Symposium, SAGT 2022, Colchester, UK,
September 12–15, 2022, Proceedings, pages 454–471. Springer, 2022.

Martin Durand, Fanny Pascual, and Olivier Spanjaard. A non-utilitarian discrete choice
model for preference aggregation. In International Conference on Scalable Uncertainty
Management, pages 157–171. Springer, 2022.

197

Bibliography

198

Bibliography

Alessandro Agnetis, Jean-Charles Billaut, Stanislaw Gawiejnowicz, Dario Pacciarelli,
and Ameur Soukhal. Multiagent Scheduling. Models and Algorithms. Springer, 2014.

Alessandro Agnetis, Bo Chen, Gaia Nicosia, and Andrea Pacifici. Price of fairness
in two-agent single-machine scheduling problems. European Journal of Operational
Research, 276(1):79–87, 2019. ISSN 0377-2217. doi: https://doi.org/10.1016/j.
ejor.2018.12.048. URL https://www.sciencedirect.com/science/article/pii/

S0377221719300025.

Fuad Aleskerov. Arrovian aggregation models. Kluwer Academic, 1999.

Kenneth J Arrow. A difficulty in the concept of social welfare. Journal of political econ-
omy, 58(4):328–346, 1950.

Kenneth J Arrow. Social choice and individual values, 1951.

Abolfazl Asudeh, H. V. Jagadish, Julia Stoyanovich, and Gautam Das. Designing fair
ranking schemes. In Proceedings of the 2019 International Conference on Management
of Data, SIGMOD ’19, page 1259–1276. Association for Computing Machinery, 2019.
ISBN 9781450356435. doi: 10.1145/3299869.3300079. URL https://doi.org/10.

1145/3299869.3300079.

Haris Aziz and Nisarg Shah. Participatory budgeting: Models and approaches. In
Pathways Between Social Science and Computational Social Science, pages 215–236.
Springer, 2021.

Haris Aziz, Barton Lee, and Nimrod Talmon. Proportionally representative participa-
tory budgeting: Axioms and algorithms. arXiv preprint arXiv:1711.08226, 2017.

Haris Aziz, Xin Huang, Nicholas Mattei, and Erel Segal-Halevi. Computing welfare-
maximizing fair allocations of indivisible goods. European Journal of Operational
Research, 307(2):773–784, 2023. ISSN 0377-2217. doi: https://doi.org/10.1016/j.
ejor.2022.10.013. URL https://www.sciencedirect.com/science/article/pii/

S0377221722007822.

Katherine A Baldiga and Jerry R Green. Assent-maximizing social choice. Social Choice
and Welfare, 40(2):439–460, 2013.

199

https://www.sciencedirect.com/science/article/pii/S0377221719300025
https://www.sciencedirect.com/science/article/pii/S0377221719300025
https://doi.org/10.1145/3299869.3300079
https://doi.org/10.1145/3299869.3300079
https://www.sciencedirect.com/science/article/pii/S0377221722007822
https://www.sciencedirect.com/science/article/pii/S0377221722007822

Bibliography

John Bartholdi, Craig A Tovey, and Michael A Trick. Voting schemes for which it can be
difficult to tell who won the election. Social Choice and welfare, 6(2):157–165, 1989.

Richard Bellman. Mathematical aspects of scheduling theory. Journal of the Society for
Industrial and Applied Mathematics, 4(3):168–205, 1956.

Gerdus Benade, Swaprava Nath, Ariel D Procaccia, and Nisarg Shah. Preference elici-
tation for participatory budgeting. Management Science, 67(5):2813–2827, 2021.

Nadja Betzler, Michael R Fellows, Jiong Guo, Rolf Niedermeier, and Frances A Rosa-
mond. Fixed-parameter algorithms for kemeny rankings. Theoretical Computer Sci-
ence, 410(45):4554–4570, 2009.

Asia J. Biega, Krishna P. Gummadi, and Gerhard Weikum. Equity of attention:
Amortizing individual fairness in rankings. In The 41st International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR ’18, page
405–414. Association for Computing Machinery, 2018. ISBN 9781450356572. doi:
10.1145/3209978.3210063. URL https://doi.org/10.1145/3209978.3210063.

Duncan Black. On the rationale of group decision-making. Journal of political economy,
56(1):23–34, 1948.

Jacek Błażewicz, Klaus H Ecker, Erwin Pesch, Günter Schmidt, and Jan Weglarz.
Scheduling computer and manufacturing processes. springer science & Business me-
dia, 2001.

Manuel Blum, Robert W. Floyd, Vaughan Pratt, Ronald L. Rivest, and Robert E. Tarjan.
Time bounds for selection. Journal of Computer and System Sciences, 7(4):448–461,
1973. ISSN 0022-0000. doi: https://doi.org/10.1016/S0022-0000(73)80033-9. URL
https://www.sciencedirect.com/science/article/pii/S0022000073800339.

Linus Boes, Rachael Colley, Umberto Grandi, Jérôme Lang, and Arianna Novaro. Col-
lective discrete optimisation as judgment aggregation. CoRR, abs/2112.00574, 2021.
URL https://arxiv.org/abs/2112.00574.

Sylvain Bouveret, Yann Chevaleyre, Nicolas Maudet, and Hervé Moulin. Fair allocation
of indivisible goods., 2016.

Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, and Ariel D Procaccia.
Handbook of computational social choice. Cambridge University Press, 2016.

Peter Brucker. Scheduling Algorithms. Springer, 5th edition, 2010. ISBN 3642089070.

Ioannis Caragiannis, Ariel D Procaccia, and Nisarg Shah. When do noisy votes reveal
the truth? ACM Transactions on Economics and Computation (TEAC), 4(3):1–30, 2016.

200

https://doi.org/10.1145/3209978.3210063
https://www.sciencedirect.com/science/article/pii/S0022000073800339
https://arxiv.org/abs/2112.00574

Bibliography

L. Elisa Celis, Damian Straszak, and Nisheeth K. Vishnoi. Ranking with fairness con-
straints. In Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Don-
ald Sannella, editors, 45th International Colloquium on Automata, Languages, and
Programming, ICALP, volume 107 of LIPIcs, pages 28:1–28:15. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2018. doi: 10.4230/LIPIcs.ICALP.2018.28. URL
https://doi.org/10.4230/LIPIcs.ICALP.2018.28.

Anirudh Chakravorty, Neelima Gupta, Neha Lawaria, Pankaj Kumar, and Yogish Sab-
harwal. Algorithms for the relaxed multiple-organization multiple-machine schedul-
ing problem. In 20th Annual International Conference on High Performance Com-
puting, HiPC 2013, Bengaluru (Bangalore), Karnataka, India, December 18-21, 2013,
pages 30–38. IEEE Computer Society, 2013. doi: 10.1109/HiPC.2013.6799127. URL
https://doi.org/10.1109/HiPC.2013.6799127.

Johanne Cohen and Fanny Pascual. Scheduling tasks from selfish multi-tasks agents.
In Euro-Par 2015: Parallel Processing: 21st International Conference on Parallel and
Distributed Computing, Vienna, Austria, August 24-28, 2015, Proceedings 21, pages
183–195. Springer, 2015.

Johanne Cohen, Daniel Cordeiro, Denis Trystram, and Frédéric Wagner. Analysis
of multi-organization scheduling algorithms. In Pasqua D’Ambra, Mario Rosario
Guarracino, and Domenico Talia, editors, Euro-Par 2010 - Parallel Processing, 16th
International Euro-Par Conference, Ischia, Italy, August 31 - September 3, 2010, Pro-
ceedings, Part II, volume 6272 of Lecture Notes in Computer Science, pages 367–379.
Springer, 2010. doi: 10.1007/978-3-642-15291-7\ 34. URL https://doi.org/10.

1007/978-3-642-15291-7_34.

Johanne Cohen, Daniel Cordeiro, Denis Trystram, and Frédéric Wagner. Coordination
mechanisms for selfish multi-organization scheduling. In 18th International Confer-
ence on High Performance Computing, HiPC 2011, Bengaluru, India, December 18-21,
2011, pages 1–9. IEEE Computer Society, 2011a. doi: 10.1109/HiPC.2011.6152720.
URL https://doi.org/10.1109/HiPC.2011.6152720.

Johanne Cohen, Daniel Cordeiro, Denis Trystram, and Frédéric Wagner. Multi-
organization scheduling approximation algorithms. Concurr. Comput. Pract. Exp., 23
(17):2220–2234, 2011b. doi: 10.1002/cpe.1752. URL https://doi.org/10.1002/

cpe.1752.

Johanne Cohen, Daniel Cordeiro, and Pedro Luis F. Raphael. Energy-aware multi-
organization scheduling problem. In Fernando M. A. Silva, Inês de Castro Dutra,
and Vı́tor Santos Costa, editors, Euro-Par 2014 Parallel Processing - 20th Interna-
tional Conference, Porto, Portugal, August 25-29, 2014. Proceedings, volume 8632 of
Lecture Notes in Computer Science, pages 186–197. Springer, 2014. doi: 10.1007/
978-3-319-09873-9\ 16. URL https://doi.org/10.1007/978-3-319-09873-9_16.

Vincent Conitzer and Tuomas Sandholm. Common voting rules as maximum likeli-
hood estimators. In Proceedings of UAI 2005, pages 145–152, 2005.

201

https://doi.org/10.4230/LIPIcs.ICALP.2018.28
https://doi.org/10.1109/HiPC.2013.6799127
https://doi.org/10.1007/978-3-642-15291-7_34
https://doi.org/10.1007/978-3-642-15291-7_34
https://doi.org/10.1109/HiPC.2011.6152720
https://doi.org/10.1002/cpe.1752
https://doi.org/10.1002/cpe.1752
https://doi.org/10.1007/978-3-319-09873-9_16

Bibliography

Vincent Conitzer, Andrew Davenport, and Jayant Kalagnanam. Improved bounds for
computing kemeny rankings. In AAAI, volume 6, pages 620–626, 2006.

Vincent Conitzer, Matthew Rognlie, and Lirong Xia. Preference functions that score
rankings and maximum likelihood estimation. In IJCAI, pages 109–115, 2009.

Daniel Cordeiro, Pierre-François Dutot, Grégory Mounié, and Denis Trystram. Tight
analysis of relaxed multi-organization scheduling algorithms. In 25th IEEE Inter-
national Symposium on Parallel and Distributed Processing, IPDPS 2011, Anchorage,
Alaska, USA, 16-20 May, 2011 - Conference Proceedings, pages 1177–1186. IEEE, 2011.
doi: 10.1109/IPDPS.2011.112. URL https://doi.org/10.1109/IPDPS.2011.112.

Gordon V Cormack, Charles LA Clarke, and Stefan Buettcher. Reciprocal rank fusion
outperforms condorcet and individual rank learning methods. In SIGIR, pages 758–
759, 2009.

Nicolas De Condorcet. Essai sur l’application de l’analyse à la probabilité des décisions
rendues à la pluralité des voix. Cambridge University Press, 2014.

P. Diaconis and R.L. Graham. Spearman’s Footrule as a Measure of Disarray. Stanford
University. Department of Statistics, 1976.

Persi Diaconis and Ronald L Graham. Spearman’s footrule as a measure of disarray.
Journal of the Royal Statistical Society: Series B (Methodological), 39(2):262–268, 1977.

Jean-Paul Doignon, Aleksandar Pekeč, and Michel Regenwetter. The repeated insertion
model for rankings: Missing link between two subset choice models. Psychometrika,
69(1):33–54, 2004.

Mohamed Drissi-Bakhkhat and Michel Truchon. Maximum likelihood approach to vote
aggregation with variable probabilities. Social Choice and Welfare, 23(2):161–185,
2004.

Pierre-François Dutot, Fanny Pascual, Krzysztof Rzadca, and Denis Trystram. Approx-
imation algorithms for the multiorganization scheduling problem. IEEE Trans. Par-
allel Distrib. Syst., 22(11):1888–1895, 2011.

Cynthia Dwork, Ravi Kumar, Moni Naor, and D. Sivakumar. Rank aggregation meth-
ods for the web. In Vincent Y. Shen, Nobuo Saito, Michael R. Lyu, and Mary Ellen
Zurko, editors, Proceedings of the Tenth International World Wide Web Conference,
WWW, pages 613–622. ACM, 2001. doi: 10.1145/371920.372165. URL https:

//doi.org/10.1145/371920.372165.

Jack Edmonds and Richard M. Karp. Theoretical improvements in algorithmic effi-
ciency for network flow problems. J. ACM, 19(2):248–264, 1972. doi: 10.1145/
321694.321699. URL https://doi.org/10.1145/321694.321699.

Matthias Ehrgott. Multicriteria optimization, volume 491. Springer, 2005.

202

https://doi.org/10.1109/IPDPS.2011.112
https://doi.org/10.1145/371920.372165
https://doi.org/10.1145/371920.372165
https://doi.org/10.1145/321694.321699

Bibliography

Edith Elkind and Arkadii Slinko. Rationalizations of voting rules. Handbook of Compu-
tational Social Choice, 2016.

Edith Elkind, Piotr Faliszewski, and Arkadii M Slinko. On the role of distances in
defining voting rules. In AAMAS, volume 10, pages 375–382, 2010.

Edith Elkind, Piotr Faliszewski, and Arkadii M Slinko. Homogeneity and monotonicity
of distance-rationalizable voting rules. In AAMAS, volume 2011, pages 821–828,
2011.

Edith Elkind, Sonja Kraiczy, and Nicholas Teh. Fairness in temporal slot assignment.
In Panagiotis Kanellopoulos, Maria Kyropoulou, and Alexandros A. Voudouris, edi-
tors, Algorithmic Game Theory - 15th International Symposium, SAGT 2022, Colchester,
UK, September 12-15, 2022, Proceedings, volume 13584 of Lecture Notes in Computer
Science, pages 490–507. Springer, 2022. doi: 10.1007/978-3-031-15714-1\ 28. URL
https://doi.org/10.1007/978-3-031-15714-1_28.

Roy Fairstein, Reshef Meir, and Kobi Gal. Proportional participatory budgeting with
substitute projects. CoRR, abs/2106.05360, 2021. URL https://arxiv.org/abs/

2106.05360.

Benadè Gerdus Fairstein Roy and Gal Kobi. Participatory budgeting design for the real
world. In Proceedings of the AAAI Conference on Artificial Intelligence, 2023.

Piotr Faliszewski, Piotr Skowron, Arkadii Slinko, and Nimrod Talmon. Multiwinner
voting: A new challenge for social choice theory. Trends in computational social choice,
74(2017):27–47, 2017.

Peter C Fishburn. An analysis of simple voting systems for electing committees. SIAM
Journal on Applied Mathematics, 41(3):499–502, 1981.

Rupert Freeman, David M. Pennock, Dominik Peters, and Jennifer Wortman Vaughan.
Truthful aggregation of budget proposals. Journal of Economic Theory, 193:105234,
2021. ISSN 0022-0531. doi: https://doi.org/10.1016/j.jet.2021.105234. URL https:

//www.sciencedirect.com/science/article/pii/S002205312100051X.

M. R. Garey and D. S. Johnson. Scheduling tasks with nonuniform deadlines on two
processors. J. ACM, 23(3):461–467, jul 1976. ISSN 0004-5411. doi: 10.1145/321958.
321967. URL https://doi.org/10.1145/321958.321967.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness (Series of Books in the Mathematical Sciences). W. H. Freeman, 1979.

Sahin Cem Geyik, Stuart Ambler, and Krishnaram Kenthapadi. Fairness-aware ranking
in search and recommendation systems with application to linkedin talent search. In
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’19, page 2221–2231. Association for Computing Machinery,

203

https://doi.org/10.1007/978-3-031-15714-1_28
https://arxiv.org/abs/2106.05360
https://arxiv.org/abs/2106.05360
https://www.sciencedirect.com/science/article/pii/S002205312100051X
https://www.sciencedirect.com/science/article/pii/S002205312100051X
https://doi.org/10.1145/321958.321967

Bibliography

2019. ISBN 9781450362016. doi: 10.1145/3292500.3330691. URL https://doi.

org/10.1145/3292500.3330691.

Hugo Gilbert, Tom Portoleau, and Olivier Spanjaard. Beyond pairwise comparisons in
social choice: A setwise Kemeny aggregation problem. In AAAI, pages 1982–1989,
2020.

Ashish Goel, Anilesh K Krishnaswamy, Sukolsak Sakshuwong, and Tanja Aitamurto.
Knapsack voting for participatory budgeting. ACM Transactions on Economics and
Computation (TEAC), 7(2):1–27, 2019.

Ronald L. Graham. Bounds on multiprocessing timing anomalies. SIAM journal on
Applied Mathematics, 17(2):416–429, 1969.

Ronald L Graham, Eugene L Lawler, Jan Karel Lenstra, and AHG Rinnooy Kan. Opti-
mization and approximation in deterministic sequencing and scheduling: a survey.
In Annals of discrete mathematics, volume 5, pages 287–326. Elsevier, 1979.

Leslie A. Hall and David B. Shmoys. Approximation schemes for constrained schedul-
ing problems. In 30th Annual Symposium on Foundations of Computer Science, Re-
search Triangle Park, North Carolina, USA, 30 October - 1 November 1989, pages
134–139. IEEE Computer Society, 1989. doi: 10.1109/SFCS.1989.63468. URL
https://doi.org/10.1109/SFCS.1989.63468.

Dorit S. Hochbaum and David B. Shmoys. Using dual approximation algorithms for
scheduling problems theoretical and practical results. J. ACM, 34(1):144–162, Jan-
uary 1987. ISSN 0004-5411. doi: 10.1145/7531.7535. URL https://doi.org/10.

1145/7531.7535.

Alexandru Iosup, Catalin Dumitrescu, Dick Epema, Hui Li, and Lex Wolters. How are
Real Grids Used? The Analysis of Four Grid Traces and Its Implications. In 2006 7th
IEEE/ACM International Conference on Grid Computing, pages 262–269, September
2006. doi: 10.1109/ICGRID.2006.311024. ISSN: 2152-1093.

J.R. Jackson. Scheduling a production line to minimize maximum tardiness. Research
report. Office of Technical Services, 1955.

Pallavi Jain, Krzysztof Sornat, and Nimrod Talmon. Participatory budgeting with
project interactions. In IJCAI, pages 386–392, 2020.

Pallavi Jain, Nimrod Talmon, and Laurent Bulteau. Partition aggregation for partici-
patory budgeting. In Proceedings of the 20th International Conference on Autonomous
Agents and MultiAgent Systems, pages 665–673, 2021.

Toshihiro Kamishima. Nantonac collaborative filtering: recommendation based on or-
der responses. In SIGKDD, pages 583–588, 2003.

John G. Kemeny. Mathematics without numbers. Daedalus, 88(4):577–591, 1959.

204

https://doi.org/10.1145/3292500.3330691
https://doi.org/10.1145/3292500.3330691
https://doi.org/10.1109/SFCS.1989.63468
https://doi.org/10.1145/7531.7535
https://doi.org/10.1145/7531.7535

Bibliography

J.K. Lenstra and A.H.G. Rinnooy Kan. Complexity results for scheduling chains on
a single machine. European Journal of Operational Research, 4(4):270–275, 1980.
ISSN 0377-2217. doi: https://doi.org/10.1016/0377-2217(80)90111-3. URL https:

//www.sciencedirect.com/science/article/pii/0377221780901113. Combina-
tional Optimization.

Joseph Y-T Leung and Gilbert H Young. Minimizing total tardiness on a single machine
with precedence constraints. ORSA Journal on Computing, 2(4):346–352, 1990.

Tyler Lu and Craig Boutilier. The unavailable candidate model: a decision-theoretic
view of social choice. In Proceedings of EC 2010, pages 263–274, 2010.

Tyler Lu and Craig Boutilier. Effective sampling and learning for mallows models with
pairwise-preference data. J. Mach. Learn. Res., 15(1):3783–3829, 2014.

Uri Lublin and Dror G. Feitelson. The workload on parallel supercomputers: modeling
the characteristics of rigid jobs. Journal of Parallel and Distributed Computing, 63(11):
1105–1122, November 2003. ISSN 07437315. doi: 10.1016/S0743-7315(03)00108-4.
URL https://linkinghub.elsevier.com/retrieve/pii/S0743731503001084.

R. Duncan Luce. Individual Choice Behavior: A Theoretical Analysis. Courier Corpora-
tion, 2012. ISBN 978-0-486-15339-1.

Colin L Mallows. Non-null ranking models. i. Biometrika, 44(1/2):114–130, 1957.

Nicholas Mattei and Toby Walsh. Preflib: A library of preference data
http://preflib.org. In ADT 2013, Lecture Notes in Artificial Intelligence. Springer,
2013.

Harikrishna Narasimhan, Andy Cotter, Maya Gupta, and Serena Lutong Wang. Pair-
wise fairness for ranking and regression. In 33rd AAAI Conference on Artificial Intel-
ligence, 2020.

April Niu, Agnes Totschnig, and Adrian Vetta. Fair algorithm design: Fair and effica-
cious machine scheduling. arXiv preprint arXiv:2204.06438, 2022.

Fukuhito Ooshita, Tomoko Izumi, and Taisuke Izumi. A generalized multi-
organization scheduling on unrelated parallel machines. In 2009 International Con-
ference on Parallel and Distributed Computing, Applications and Technologies, PDCAT
2009, Higashi Hiroshima, Japan, 8-11 December 2009, pages 26–33. IEEE Computer
Society, 2009. doi: 10.1109/PDCAT.2009.26. URL https://doi.org/10.1109/

PDCAT.2009.26.

Fukuhito Ooshita, Tomoko Izumi, and Taisuke Izumi. The price of multi-organization
constraint in unrelated parallel machine scheduling. Parallel Process. Lett., 22
(2), 2012. doi: 10.1142/S0129626412500065. URL https://doi.org/10.1142/

S0129626412500065.

205

https://www.sciencedirect.com/science/article/pii/0377221780901113
https://www.sciencedirect.com/science/article/pii/0377221780901113
https://linkinghub.elsevier.com/retrieve/pii/S0743731503001084
https://doi.org/10.1109/PDCAT.2009.26
https://doi.org/10.1109/PDCAT.2009.26
https://doi.org/10.1142/S0129626412500065
https://doi.org/10.1142/S0129626412500065

Bibliography

Fanny Pascual, Krzysztof Rzadca, and Denis Trystram. Cooperation in multi-
organization scheduling. In European Conference on Parallel Processing, pages 224–
233. Springer, 2007.

Fanny Pascual, Krzysztof Rzadca, and Denis Trystram. Cooperation in multi-
organization scheduling. Concurr. Comput. Pract. Exp., 21(7):905–921, 2009. doi:
10.1002/cpe.1378. URL https://doi.org/10.1002/cpe.1378.

Fanny Pascual, Krzysztof Rzadca, and Piotr Skowron. Collective schedules: Scheduling
meets computational social choice. In Proceedings of the 17th International Conference
on Autonomous Agents and MultiAgent Systems, AAMAS ’18, page 667–675, 2018.

David M Pennock, Eric Horvitz, C Lee Giles, et al. Social choice theory and recom-
mender systems: Analysis of the axiomatic foundations of collaborative filtering. In
AAAI/IAAI, pages 729–734, 2000.

Paz Perez-Gonzalez and Jose M Framinan. A common framework and taxonomy for
multicriteria scheduling problems with interfering and competing jobs: Multi-agent
scheduling problems. European Journal of Operational Research, 235(1):1–16, 2014.

Dominik Peters, Grzegorz Pierczyński, and Piotr Skowron. Proportional participatory
budgeting with additive utilities. Advances in Neural Information Processing Systems,
34:12726–12737, 2021.

Michael L Pinedo. Scheduling, volume 29. Springer, 2012.

R. L. Plackett. The analysis of permutations. Journal of the Royal Statistical Society. Series
C (Applied Statistics), 24(2):193–202, 1975. ISSN 0035-9254. doi: 10.2307/2346567.
URL https://www.jstor.org/stable/2346567.

Anthony Przybylski, Kathrin Klamroth, and Renaud Lacour. A simple and efficient di-
chotomic search algorithm for multi-objective mixed integer linear programs. arXiv,
2019.

Karthik Raman and Thorsten Joachims. Methods for ordinal peer grading. In SIGKDD,
pages 1037–1046, 2014.

Simon Rey and Jan Maly. The (computational) social choice take on indivisible partici-
patory budgeting, 2023.

Ariel Rosenfeld and Nimrod Talmon. What should we optimize in participatory
budgeting? an experimental study. CoRR, abs/2111.07308, 2021. URL https:

//arxiv.org/abs/2111.07308.

Gian-Carlo Rota. On the foundations of combinatorial theory i. theory of möbius func-
tions. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 2(4):340–368,
1964.

206

https://doi.org/10.1002/cpe.1378
https://www.jstor.org/stable/2346567
https://arxiv.org/abs/2111.07308
https://arxiv.org/abs/2111.07308

Bibliography

Erik Saule and Denis Trystram. Multi-users scheduling in parallel systems. In 23rd
IEEE International Symposium on Parallel and Distributed Processing, IPDPS, pages 1–
9. IEEE, 2009. doi: 10.1109/IPDPS.2009.5161037. URL https://doi.org/10.1109/

IPDPS.2009.5161037.

Gideon Schwarz. Estimating the dimension of a model. Ann. of stat., pages 461–464,
1978.

Amartya Sen. The possibility of social choice. American eco. rev., 89(3):349–378, 1999.

Ashudeep Singh and Thorsten Joachims. Fairness of exposure in rankings. In Pro-
ceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’18, page 2219–2228. Association for Computing Machin-
ery, 2018. ISBN 9781450355520. doi: 10.1145/3219819.3220088. URL https:

//doi.org/10.1145/3219819.3220088.

Piotr Skowron and Krzysztof Rzadca. Non-monetary fair scheduling: a cooperative
game theory approach. In SPAA, pages 288–297, 2013.

Piotr Skowron, Martin Lackner, Markus Brill, Dominik Peters, and Edith Elkind. Pro-
portional rankings. In Carles Sierra, editor, Proceedings of the Twenty-Sixth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI, pages 409–415. ijcai.org, 2017.
doi: 10.24963/ijcai.2017/58. URL https://doi.org/10.24963/ijcai.2017/58.

Hossein Azari Soufiani, David C. Parkes, and Lirong Xia. Random utility theory for
social choice. In NeurIPS, NIPS’12, page 126–134. Curran Associates Inc., 2012.

Gogulapati Sreedurga, Mayank Ratan Bhardwaj, and Yadati Narahari. Maxmin par-
ticipatory budgeting. In Lud De Raedt, editor, Proceedings of the Thirty-First In-
ternational Joint Conference on Artificial Intelligence, IJCAI-22, pages 489–495. In-
ternational Joint Conferences on Artificial Intelligence Organization, 7 2022. doi:
10.24963/ijcai.2022/70. URL https://doi.org/10.24963/ijcai.2022/70. Main
Track.

Dariusz Stolicki, Stanislaw Szufa, and Nimrod Talmon. Pabulib: A participatory bud-
geting library. CoRR, abs/2012.06539, 2020. URL https://arxiv.org/abs/2012.

06539.

Nimrod Talmon and Piotr Faliszewski. A framework for approval-based budgeting
methods. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33,
pages 2181–2188, 2019.

N. Tomizawa. On some techniques useful for solution of transportation network
problems. Networks, 1(2):173–194, 1971. doi: 10.1002/net.3230010206. URL
https://doi.org/10.1002/net.3230010206.

Long Wan and Jinjiang Yuan. Single-machine scheduling to minimize the total earliness
and tardiness is strongly np-hard. Operations Research Letters, 41(4):363–365, 2013.

207

https://doi.org/10.1109/IPDPS.2009.5161037
https://doi.org/10.1109/IPDPS.2009.5161037
https://doi.org/10.1145/3219819.3220088
https://doi.org/10.1145/3219819.3220088
https://doi.org/10.24963/ijcai.2017/58
https://doi.org/10.24963/ijcai.2022/70
https://arxiv.org/abs/2012.06539
https://arxiv.org/abs/2012.06539
https://doi.org/10.1002/net.3230010206

Bibliography

Lirong Xia. Learning and decision-making from rank data. Synthesis Lectures on Artifi-
cial Intelligence and Machine Learning, 13(1):1–159, 2019.

Ronald R Yager and Janusz Kacprzyk. The ordered weighted averaging operators: theory
and applications. Springer Science & Business Media, 2012.

H Peyton Young. Condorcet’s theory of voting. American Political science review, 82(4):
1231–1244, 1988.

H Peyton Young and Arthur Levenglick. A consistent extension of condorcet’s election
principle. SIAM Journal on applied Mathematics, 35(2):285–300, 1978.

208

Summary

This thesis focuses on several collective decision making problems, from multi agent
scheduling to participatory budgeting. For each of these problems, the goal is to take
a decision that impacts several agents. These agents can represent citizens, companies,
members of a research laboratory, ... Such a solution can be a schedule of tasks of in-
terest for the agents, a ranking of items that the agents have to sort or a selection of
common projects to fund. Each agent has his or her own interest over the possible so-
lutions and our goal is to find a solution that satisfies the agents as much as possible.

Any solution can be evaluated thanks to different tools. We will mostly focus on
fairness and efficiency: a solution has to be efficient for the whole set of agents and fair
in the sense that no single agent should be too unsatisfied. Fairness and efficiency can
be formulated in different ways, from objective functions to axiomatic properties.

We study several problems in this thesis and put an emphasis on scheduling prob-
lems.

	Acknowledgements
	Introduction
	Preliminaries
	An introduction to scheduling
	Computational social choice
	Multi-agent scheduling

	Efficiency and Equity in the Multi-Organization Scheduling Problem
	Introduction
	Related work.
	Overview of our results

	Preliminaries
	Notations
	Problem statement

	Interest of cooperation and algorithm
	Cooperation can decrease all the makespans
	A PTAS with resource augmentation

	Efficiency vs. rationality constraint
	Priority to efficiency
	Priority to the rationality constraint

	Max Min Gain
	Problem statement
	Case of unit tasks
	General case
	Heuristic
	Experimental evaluation

	Conclusion

	Collective schedules: analysis of four aggregation rules
	Introduction
	Preliminaries
	Definition of the problem and notations.
	Four aggregation rules.
	Resoluteness.

	Axiomatic properties
	Neutrality and PTA neutrality.
	Distance.
	PTA Condorcet consistency.
	Incompatibilities between axioms and properties.
	Length reduction monotonicity.
	Reinforcement.
	Unanimity.
	Summary of the axiomatic properties of the rules.

	Computational complexity and algorithms.
	Complexity.
	EMD with local search: a heuristic for D and T.

	Experiments.
	Discussion and conclusion

	Collective schedules: unit time and constraints
	Introduction
	Preliminaries
	Definitions and notations
	Generalization of classical scheduling criteria.

	An analysis of the EMD rule
	Scheduling tasks with time constraints
	Getting optimal solutions with time constraints
	Axiomatic study of rules with inferred time constraints

	Precedence constraints
	Inferred precedence constraints
	Imposed precedence graph

	Conclusion

	A Non-Utilitarian Discrete Choice Model for Preference Aggregation
	Introduction
	Discrete choice models for preference aggregation
	Overview of our results

	Related work
	Preliminaries
	A Non-Utilitarian Discrete Choice Model
	MLE of the Parameters of the -Wise Young's Model
	Algorithms for Determining an MLE
	Numerical Tests
	Conclusion

	Detecting and taking Project Interactions into account in Participatory Budgeting
	Introduction
	Related work
	Our approach to interaction detection
	Overview of our results

	Preliminaries
	Axioms for utility functions
	A utility function taking synergies into account
	A function using Möbius transforms: uM
	Properties of uM, and remarks on its computation

	Axioms for budgeting methods
	Complexity
	A branch and bound algorithm
	Description of the algorithm
	Experiments

	Conclusion

	Conclusion and perspectives
	Bibliography

