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ABSTRACT

NON-NEWTONIAN FLOW MODELLING THROUGH VENTURI FLUMES

by

Miloud Mouzouri

During a drilling operation, a certain number of unexpected events, related to the

flow of drilling fluid in the well, may happen rather quickly. Examples of such events

are formation fluid influx (kick) and mud loss to the formation. An uncontrolled kick

that increases in intensity may result in what is known as a blowout (e.g. the Deepwater

Horizon incident in 2010). Influxes and kicks are traditionally detected by monitoring the

drilling mud balance in the well, in particular, by monitoring the flow out the well and

comparing it to the incoming flow induced by the pumps. Most methods of monitoring

the flow out of the well while drilling consists in using a simple paddle (sensor that

measures the height of drilling fluid with the inclination of a paddle) in the return flow

line, or in using a Coriolis flow meter (flow meter known for its accuracy but expensive

and requires a complex installation by adding a bypass). There is a clear need of a new

accurate flow meter, but easy to install and inexpensive.
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The Venturi flume has been used as flow meter for years in water industry. It appears

as a cheap but accurate solution to measure large flow rates. Many people have worked

on this solution to improve its accuracy and to expand its scope. They have developed

models, based on a calibration process, to relate the upstream height to the flow rate.

This means that current models, as ISO NORM 4359 [1], can be used only for water

flow and specific geometry. As known, muds have non-Newtonian behavior and water

models cannot be used with this kind of fluids. For our application, trapezoidal shape

appears as a good compromise between accuracy and range of flow rate measurements.

Thus, we built a model able to compute the flow rate with taking into account fluid

properties and geometrical parameters. This model is simplified in 1D form by using

the Shallow Water theory, and completed by a friction model taking into account the

variation of fluid properties and geometry along the open channel. It have been validated

by series of experiments with both Newtonian and non-Newtonian fluids, where we

measured the flow rate and heights of the flow at different locations along the trapezoidal

Venturi flume. It have been also completed by 3D CFD which has been simulated both

Newtonian and non-Newtonian flows along the flume. To generalized this study, the

work was extended to another shape of Venturi more suited to some rig design.

The correlations and models developed and experimentally validated during this

research can be used to extend the use of Venturi flume flow meters for any fluids :

Newtonian and non-Newtonian. It is an opportunity for industries to propose a cheap

but accurate solution to measure flow rates in open channels with any kind of fluids.
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RESUME

Lors d’une opération de forage, un certain nombre d’événements imprévus par rap-

port à l’écoulement du fluide de forage dans le puits, peuvent se produire assez rapide-

ment. Des exemples de tels événements sont les afflux de pétrole ("kick") ainsi que les

pertes de boue dans la formation. Un "kick" qui augmente en intensité peut entraîner,

par ce que l’on nomme, un "blowout" (par exemple l’incident Deepwater Horizon en

2010). Les pertes et les gains sont habituellement détectés en contrôlant l’équilibre de

la boue de forage dans le puits, en particulier en contrôlant le débit sortant du puits et

en le comparant au débit entrant induit par les pompes. La plupart des méthodes de

surveillance, de l’écoulement du puits en cours de forage, est d’utiliser un simple "pad-

dle" (capteur qui mesure la hauteur du fluide de forage avec l’inclinaison d’une pagaie)

dans la ligne d’écoulement de retour, ou d’utiliser un débitmètre de Coriolis (débitmètre

connu pour sa précision, mais coûteux et nécessite une installation complexe en ajoutant

un "by-pass"). Il y a un besoin évident d’un nouveau débitmètre précis, mais facile à

installer et peu coûteux.

Le canal Venturi a été utilisé comme débitmètre pendant des années dans l’industrie

des eaux. Il apparaît comme une solution peu chère mais précise pour mesurer des débits

importants. Beaucoup de personnes ont travaillé sur cette solution pour améliorer sa

précision et élargir son champ d’application. Ils ont développé des modèles, sur la base

d’un processus d’étalonnage, permettant de relier la hauteur en amont au débit. Cela

signifie que les modèles actuels, comme ISO NORM 4359 [1], peuvent être uniquement

utilisés pour l’écoulement d’eau et pour une géométrie bien spécifique. Comme nous le

savons, les boues ont des comportement non-Newtonien, et donc ces modèles établis ne
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peuvent pas être utilisés avec ce type de fluides. Pour notre application, la forme trapé-

zoïdale apparaît comme un bon compromis entre la précision et la portée des mesures

de débit.

Ainsi, nous avons développé un modèle capable de calculer le débit en prenant en

compte les propriétés du fluide ainsi que les paramètres géométriques du canal. Ce

modèle a été simplifié sous forme 1D en utilisant la théorie des eaux peux profondes, et

a été complété par un modèle de friction tenant en compte de la variation des propriétés

des fluides et de la géométrie du canal. Ce modèle a été validé par une série d’expériences

avec les deux types de fluides: Newtonien et non-Newtonien, où nous avons mesuré le

débit et la hauteur de l’écoulement à différents endroits le long du canal Venturi. Nous

avons également réalisé des simulations 3D, en simulant des écoulements Newtoniens

et non-Newtonien le long du canal. Pour généraliser cette étude, cette démarche a été

étendue à une autre forme de Venturi plus adapté à un certain design de plate-forme

pétrolière.

Les corrélations et les modèles développés et validés expérimentalement au cours de

cette étude peuvent être utilisés pour étendre l’utilisation des canaux Venturi à tous

les fluides Newtonien mais aussi non-Newtonien. Il est maintenant l’occasion pour les

industries de proposer une solution, peu chère mais précise pour mesurer les débits dans

des canaux ouverts et pour tous types de fluides.
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CHAPTER I

Introduction

The Venturi effect is named after Giovanni Battista Venturi (1746 – 1822)
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1.1. INTRODUCTION TO VENTURI FLUME

1.1 Introduction to Venturi flume

A Venturi flume is a critical-flow open flume with a constriction which causes a drop

in the hydraulic grade line, creating a critical depth : hc shown in Figure 1.1.

Figure 1.1: Venturi flume

It is used in flow measurement of large flow rates where the critical height hc can

be related to the flow rate Q. Commonly, flumes are designed to pass the flow from

sub critical to supercritical state while passing through the throat, which in this case

becomes a critical section with a critical height hc. This specific transition is named

a transcritical transition, as opposed to hydraulic jump. This critical height may be

sufficient for computation of discharge, but due to the uncertainty in its location and

on its measurement, a method consists of relating the critical height hc to an upstream

height, hm, where the level of the fluid is horizontal and easier to conduct.

To ensure the occurrence of critical depth at the throat, the flumes are usually de-

signed in such way as to form a hydraulic jump on the downstream side of the structure.

When the downstream depth is so high that the subcritical flow enters the throat, then

the hydraulic jump disappears, the flume is operating in a submerged flow regime, and

the discharge need to be corrected. This correction may be found using predetermined

tables for a particular flume geometry, or may be done by adding a second height mea-
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1.2. KINDS OF VENTURI FLUMES

surement.

Weirs are using the same Venturi principle, but Venturi flumes have two advantages

over weirs where the critical depth is created by a vertical constriction. First, the

hydraulic head loss, which means the energy dissipated by friction, is smaller in flumes

than in weirs. Second, there is no dead zone in flumes where sediment and debris

can accumulate, such a dead zone exists upstream of the weirs. Since 1928, different

versions of Venturi flumes have been developed, and the main ones are described in the

next section.

1.2 Kinds of Venturi flumes

The measurement of water flow rate in open channels is a matter of importance

throughout the irrigation industry. The cost of the measuring structures faces a lot of

problems, as well as the fact that the particular device installed may not be well suited

to the conditions under which it must operate. Accumulations of debris in many devices

have made the measurements either questionable or even not valuable. Such failures

have encouraged the installation of devices better suited to the conditions.

For the measurement of water flow rate in open channels, the weir (Figure 1.2) has

been most generally used for small-to-moderate flow rates. Laboratory tests indicated

that it was the most accurate practical method for measuring water flow discharge.

Nevertheless, if the pool or channel section immediately upstream from the weir crest

accumulates sediment, the required vertical depth of water hm above the crast is corre-

spondingly reduced, thus interfering with the accuracy of the measurement.
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Figure 1.2: Rectangular weir

Where the size of the channel is not sufficient to permit the use of standard weirs,

orifices (Figure 1.3) have been used. Experiments seemed to indicate that the relation

which applies to give the true discharges is affected by the shape of the orifice, thus ren-

dering the practical application of device uncertain. However, its property of indicating

the discharge with a relatively small loss in head is an advantage.

Figure 1.3: Orifice

One of the devices most commonly used to measure large flows is the rating flume,

which is a simple structure built in the channel where the floor is level and with its side

walls either vertical or inclined. This flume is calibrated by current meter measurements

or by other means, where the rate of discharge varies with the depth of the stream,

indicated by a staff gage set on the inside face of the flume. The standard rating flume

is not altogether reliable. A sediment deposit often accumulates at the bottom of the
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device, thus cutting down the cross section of the water prism, which in turn affects

the velocity. Flow conditions downstream the rating flume are therefore modified. The

previously calibrated relationship between water height and flow discharge is not valid

anymore, leading to an erroneous measurement of the discharge. Trailing grass, weeds

or willows in the water may also affect the flow rate, which causes error in the discharge

measurements.

The improved Venturi flume (Figure 1.4), as described by R. L. Parshall [45], is

believed to possess such characteristics as will obviate many of the objections to the

weir, orifice, rating flume or other devices which was in general use. The use of the

word "Venturi" is justified, since the flume, by having a contracted section between a

converging and diverging section, is somewhat similar in principle to the Venturi tube

or meter. The improved Venturi flume, under certain conditions of flow, operates in

accordance with the Venturi principle. The design of the Parshall flume consists of

a uniformly converging upstream section, a short parallel throat section (the width of

which determines the flume size), and a uniformly diverging downstream section. The

bottom of the flume is horizontal in the upstream section: zone (1), slopes downward

in the throat: zone (2), then rises in the downstream section: zone (3) and ending with

a downstream elevation below that of the upstream elevation: zone (4), see Figure 1.4.

The greatest particularity is a drop in elevation through the throat of the flume. The

drop produces supercritical flow through the throat of the flume. With a transcritical

transition, only one head measurement is necessary to determine the flow rate, greatly

simplifying the use of the flume.
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Figure 1.4: Parshall flume geometry proposed by Radalph Parshall in 1928 [45]

After Parshall, many works have started to adapt Venturi effect to open channel

flow. The Palmer-Bowlus flume, shown in Figure 1.5, was the results of one of them in

the 1930s. The goal of their work was to develop a simple, low cost flume which can be

easily adapted to the round pipes and U-channels found in sanitary sewer applications.

Designed for installation in existing manhole channels and inline with sewer piping,

Palmer-Bowlus flumes have a U-shaped cross section. The throat of a Palmer-Bowlus

flume is created by a raised trapezoidal ramp section. As the bottom of the flume raises,

the sidewalls also get closer and the cross section is therefore contracted. The result

is that flow is accelerated through the throat by the combination of change in floor

elevation and vertical constriction of the sidewalls. Unlike the more common Parshall

flume, there is no need to accommodate a change in elevation. Both the inlet and outlet

of the Palmer-Bowlus flume are at the same elevation.

Figure 1.5: Palmer-Bowlus flume
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1.2. KINDS OF VENTURI FLUMES

In the 1930s, another work was carried out on a simple flume to measure run-off

from small plots and experimental catchments by the Soil Conservation Service, U.S.

Department of Agriculture. The H flume (Figure 1.6), so called as it was the eighth

design in a series starting with "A", combines the sensitivity of a sharp-crested weir

with the self-cleaning properties of a flume. The H Type flume consists of a uniformly

converging section, rectangular in cross-section, and an horizontal bottom. The throat is

formed by sloping the tops of the sidewalls downwards in the direction of the flow. Thus,

as the level in the flume increases, the point at which the flow overtops the sidewalls

moves further upstream, so that the effective crest width also increases. The result is

that H Type flumes are able to accurately measure flow rates lower than other flumes,

including the popular Parshall flume, while still being capable of measuring high flows.

Figure 1.6: H flume

Without a change in floor elevation (as for a Parshall flume) or the need for a free

spilling discharge off the end of the flume (as with a H Type flume), the trapezoidal

flume (Figure 1.7) consists of outward sloping walls of varying widths and an horizontal

bottom. The throat of the flume is defined as the narrowest section of the flume. As

the flow rate increases in the trapezoidal flume, the effective width (width of the free

surface at the throat) increases as the sidewalls slope outwards. The result of this is

that the trapezoidal flume has the sensitivity to measure low flows and the capacity to

measure high flows. The minimization of amount of transition needed to direct flow

and the flat floor of the flume allows it to be easily retrofitted into existing channels.
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Both of these features serve to reduce installation costs. An additional advantage of the

flat floor is that the flume is substantially self-cleaning; able to pass trash and debris

quite readily. This reduces the maintenance associated with the operation of the flume

while also allowing it to operate quite satisfactorily in applications where the flow can

be flashy or ephemeral, with solids present.

Figure 1.7: Trapezoidal flume

In the 1960’s, Gaylord Skogerboe, Leon Hyatt, Ross Anderson, and Keith Eggleston,

backed by funding from the United States Department of the Interior, Office of Water

Resources Research, developed a flume that was suitable to installation on flat bottoms.

Up until their research into what would become the Cutthroat flume (Figure 1.8), the

common approach to measuring flows in horizontal bottom applications was to use a

Parshall flume with the throat sections removed (which eliminated the need to raise the

flume to accomodate the drop through the flume). As the flume has no throat length,

it was given the name Cutthroat by its developers.
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Figure 1.8: Cutthroat flume

The Montana flume (Figure 1.9) is a lesser-known modification of the popular Par-

shall flume. Its primary use is the measurement of irrigation flows, but has gained pop-

ularity in certain municipal sewage applications where free-fall conditions occur. The

form of a Montana flume is the same as the uniformly converging section of a regular

Parshall flume. The floor of the flume is flat, retaining the same self-cleaning character-

istic of the Parshall flume. The throat of the flume is the narrowest, discharge end of

the flume. Like the Parshall flume that it is based on, the Montana flume is sized by

the throat width alone.

Figure 1.9: Montana flume
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The RBC (Replogle, Bos, Clemmens) flumes (Figure 1.10) are a series of portable

long-throated flumes developed in 1984 by scientists at the U.S. Department of Agri-

culture (USDA) and the International Institute for Land Reclamation & Improvement

(IRLI) for the measurement of flows in furrow and earthen channels. The RBC flume

is trapezoidal in cross-section with a sloped ramp in the flume throat (similar to a

Palmer-Bowlus flume). The cross-sectional area is constant in shape through the flume

(unlike Trapezoidal flumes) and does not necessarily have to conform to the upstream

/ downstream channels. A primary advantage of the RBC series of flumes is that they

can be calibrated by computer analysis, enabling the design of custom flumes that meet

specific site requirements or development of rating tables for non-standard dimension

flumes. The floor allows it to be more easily retrofitted into existing channels, reducing

installation costs and eliminating the need to either set the flume above the channel floor

or modifying the downstream channel. But making the installation easier by adding a

floor increases accumulation of debris.

Figure 1.10: RBC flume
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1.3 Oil & Gas industry motivations

1.3.1 Overview of drilling operation

Oil and gas wells are drilled to depths of several hundred to more than 5,000 meters,

as described Zoveidavianpoor [39]. Figure 1.11 shows a schematic of typical drilling rig,

which uses a rotating drill bit attached to the end of a drill pipe. Drilling fluids (muds)

are pumped down through the hollow drill pipe, through the drill bit nozzles and up the

annular space between the drill pipe and the hole. Drilling mud mixture is particularly

related to site and hole condition; it used to lubricate and cool the drill bit, maintains

pressure control of the well as it is being drilled, and helps to removes the cuttings from

the hole to the surface, among other functions.

Figure 1.11: Drilling installation

Mud and drill cuttings are separated by circulating the mixture over vibrating screens

called shale shakers. As the bit turns, it generates fragments of rock (cuttings), which

will be separated from the mud by shale shakers that will moves the accumulated cuttings

over the screen to a point for further treatment or management. Consequently, additional
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1.3. OIL & GAS INDUSTRY MOTIVATIONS

lengths of pipe are added to the drill string as necessary. As a common practice in drilling

of oil and gas wells, when a target depth has been reached according to the drilling

plan, the drill string is removed and the exposed section of the borehole is permanently

stabilized and lined with casing that is slightly smaller than the diameter of the hole.

The main function is to maintain well-bore stability and pressure integrity. (Two sizes

of casing depicted in Figure 1.11). Cement is then is pumped into the space between

the wall of the drilled hole and the outside of the casing to secure the casing and seal off

the upper part of the borehole. Each new portion of casing is smaller in diameter than

the previous portion through which it is installed. The final number of casing strings

depends on the total depth of the well and the sensitivity of the formations through

which the well passes. The process of drilling and adding sections of casing continues

until final well depth is reached.

1.3.2 Fluid gain and loss in drilling operation

During a drilling operation, a certain number of unexpected events, related to the

flow of drilling fluid in the well, may happen rather quickly. Examples of such events

are formation fluid influx (kick), mud loss to the formation, pipe washout, plugging of

the drill-string or bridging of the annulus. To minimize the impact of such incidents on

the drilling operation, it is important to detect and classify them as soon as possible, in

order to initiate counter actions that can reduce the risk of escalation of an abnormal

situation.

During a kick, the pressure found within the drilled rock is higher than the mud

hydrostatic pressure acting on the borehole or rock face. When this occurs, the greater

formation pressure has a tendency to force formation fluids into the wellbore. This

forced fluid flow is called a kick. An uncontrolled kick that increases in intensity may

result in what is known as a blowout (e.g. the Deepwater Horizon incident in 2010).
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1.3. OIL & GAS INDUSTRY MOTIVATIONS

Maintaining well control is the first priority of every drilling operation. Early detec-

tion of influxes from the formation before they develop into dangerous kicks can avoid

potentially losing the well, the rig and lives.

Influxes and kicks are traditionally detected by monitoring the drilling mud balance

in the well, in particular, by monitoring the flow out the well and comparing it to the

incoming flow induced by the pumps. The most basic method of monitoring the flow

out of the well while drilling is to use a simple paddle (sensor that measures the height

of drilling fluid with the inclinaison of a paddle) in the return flow line, see solution 1 in

Figure 1.12. This is an inaccurate measurement which limits the resolution of kick/loss

detection. The other solution of monitoring the flow out the well is using a Coriolis flow

meter. This flow meter is known for its accuracy but it is an expensive solution which

requires a complex installation by adding a bypass, see solution 2 in Figure 1.12. This

solution is then only used in a few rigs.

Figure 1.12: Flow paddle (solution 1) and Coriolis (solution 2) sensors installed in return
lines
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An alternative accurate and cheap solution can be a Venturi flume. In order to

monitor the flow rate out the well and to increase the reactivity of kick/loss detection,

we have to put the Venturi flume should be placed as close as possible to the well. Its

place would then be on the return flow line just before the shale shaker and the mud

tank (Figure 1.13).

Figure 1.13: Drlling installation

1.4 Research & Engineering challenges

The Venturi flume has been used for years in water industry. It appears as a cheap

but accurate solution to measure large flow rates. Many people have worked on this

solution to improve its accuracy and to expand its scope. They have developed models,

based on a calibration process, to relate the upstream height to the flow rate. This

means that current models (as ISO NORM 4359 [1]) can be used only for water flow and

specific geometry. In the present study, we extend this solution to other fluids and all

types of geometry. To do this, we have to built a model able to take to account for the

fluid properties and the geometric parameters. This model is able to compute flow rates

14
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in real time based on upstream height measurements for any types of fluid (Newtonian

and Non-Newtonian).

While flow of water in open channels has been well researched, non-Newtonian flow in

open channel is still a research topic that attracts more and more attention (Haldenwang

[28]). Datasets were published for non-Newtonian flow in rectangular open channels

by Coussot [15], Naik [40], Haldenwang [28], and Haldenwang & Slatter [48] ,Fitton

[20] for non-Newtonian flow in semi-circular open channels. Burger [8] published a

set of experiments for non-Newtonian flow in rectangular, triangular, semi-circular and

trapezoidal cross sectional shaped. They have demonstrated the effect of shape on

Newtonian and non-Newtonian flow but these results were established for specific and

constant section channels. The purpose of this study is also to generalize these studies

to non-Newtonian flows in any types of open channel with varying cross sections.
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1.5 Venturi flume set-up

1.5.1 Venturi flume shape and geometry

For our application, we prefer to avoid flume with change in floor elevation. The

change in floor elevation enhance cuttings deposit which can affect the measurements.

In drilling conditions, the flow rate has to be high but during the start and stop of

pumps, flow rates are low, so the flow rate sweep a large range of values and we need

good accuracy to measure low and high flow rates. Thus, we have chosen a trapezoidal

Venturi flume (Figure 1.14). This flume consists on consecutive sections : a converging

section, a throat section and a diverging section. So, this specific shape that under

free-flow conditions forces flow to accelerate from sub-critical to super-critical flow. This

transcritical transition may be characterized by a known relationship between the height

at the critical point and the flow rate. However, such a relationship needs the critical

height to be measured with good accuracy to estimate the flow rate. Such a measurement

is very difficult due to the rapid evolution of the free surface height around the transition

location and the uncertainty on the streamwise position of this transition due to the

complex 3D fluid flow in the Venturi flume.

Figure 1.14: Trapezoidal Venturi flume
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1.5.2 Venturi flume design

The iso standard 4359 [1] describes a way to size a trapezoidal Venturi flume related

to the range of flow rates measured. This method is based on the relation between

the height measured and the flow rate (1.1) established by a norm. This relation also

depends on geometric parameters, described on Figure 1.15, and is given below.

Q =
(

2

3

)
3
2 √

g CV CS CD B1 h
3
2
m (1.1)

With:

• Q : flow rate (m3/s)

• CV : dimensionless coefficient accounting for the influence of the incoming flow

velocity on the measured fluid level upstream

• CS : dimensionless numerical coefficient accounting for the non rectangular cross

section

• CD : dimensionless coefficient of discharge;

• B1 : width of flume throat (m)

• hm : height measured (m)

The coefficients CV , CS and CD are related to the height measured and others geo-

metric parameters as B1, B2, m and L where :

• B2 : width of the approach channel (m)

• m : side slope of the trapezoidal section (m horizontal length to a unit vertical

length)

• L : length of trapezoidal section of the contraction at the flume (m)

The ISO standard 4359 imposes different constraints for the Venturi dimensions to

maintain performances such as:
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Figure 1.15: Trapezoidal Venturi flume shape end geometrical parameters

• 0.05m < h < 2m

• h/L < 0.5

• B1 > 0.1m

The limitaion on B1 results from the lack of experimental data, but J. Vazquez [32]

has extended the iso standard 4359 for trapezoidal Venturi flume with B1 down to 0.02

m. We introduce d which is the depth of the Venturi flume and relates to the maximum

of upstream height in order to avoid overflow.

18
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1.5.3 Size optimization

The objective of this section is to study the sensitivity of geometrical parameters on

the flow rate Q for Q<500L/min. The optimization parameters are :

• B2 : imposed by application constraints at 0.12 m;

• d : evaluated by the maximum flow rate;

• m : evaluated by the maximum upstream height and increased by 30% to avoid

overflow risk on the Venturi flume;

• L : evaluated by two time the maximum upstream height;

• B1 : minimum of 0.1m, but down to 0.02m by J. Vazquez [32].

Figure 1.16: Flow rate Q vs. height measured hm for different configurations of B1 and
m, based on the ISO standard 4359

We notice that the trapezoidal Venturi flume which have the larger range of validity is

one that have the smaller width of flume throat B1. Then, we have selected geometrical

values as follows:

• B1 = 0.02m

• B2 = 0.12m

• m = 0.15

• L = 0.5m

• d = 0.3m
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1.6 Organisation of the dissertation

The overall aim of this work was to extend the use of Venturi flume as flow meter to

non-Newtonian fluids. The study is subdivided into the following chapters :

• Chapter 1 : it serves as an overall introduction, providing the background and

motivation for this study. It introduces the Venturi principle with different shapes

of flumes, as well as the shape of Venturi flume chosen.

• Chapter 2 : it shows the experiments conducted with our Venturi flume at reduced

scale, for different kinds of fluids.

• Chapter 3 : it contains a CFD study with our Venturi flume geometry, with

different kinds of fluids.

• Chapter 4 : it explains the 1D simplications made to model the flow along our

Venturi flume.

• Chapter 5 : it introduces a new model of friction in open channel flows.

• Chapter 6 : it compares all results from experiments and computations.

• Chapter 7 : it generalizes this study to a new Venturi flume shape.

• Chapter 8 : it presents the overall conclusions and recommendations.

20



1.7. INTRODUCTION GÉNÉRALE

1.7 Introduction générale

Au cours des opérations de forage, le débit de boue sortant du puits doit être surveillé.

Ainsi, un débitmètre doit être installé dans la conduite de retour. En raison du marché

actuel, un canal Venturi peut être une solution précise et peu couteuse intéressante pour

surveiller le débit de boue sortant du puits.

Un canal venturi est une portion de canal munie d’un étranglement et éventuellement

d’une élévation du radier, voir Figure 1.17. Ce canal permet de mesurer le débit de liquide

traversant le canal. Cette méthode de détermination des débits est fréquemment utilisée,

le plus souvent comme mesure du débit entrant ou sortant d’une station de traitement

des eaux usées. La réduction de la section du canal entraîne un changement de régime

hydraulique via un passage critique. L’écoulement fluvial change en un écoulement

torrentiel. Le niveau d’eau passe alors au-dessous de la hauteur critique hc. Ainsi il

existe une relation entre la hauteur en amont h et le débit Q.

Figure 1.17: Canal Venturi

Même si le canal Venturi apparaît comme une très bonne solution, ce dispositif est

utilisé uniquement pour mesurer les débits d’eau. Ainsi, nous avons développé différents

travaux, expériences et modélisations, afin d’étendre cette solution à des écoulements de

boue.
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CHAPTER II

Experimental flow through a Venturi flume

The only source of knowledge is experience.

Albert Einstein (1879 - 1955)
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2.1 Fluid rheology

2.1.1 Introduction to rheology

Rheology is the science of the deformation and flow behaviour of materials ranging

from ordinary liquids to elastic solids. This general definition of rheology was drawn up

by Bingham. Today, the term "rheology" is mainly used to denote the study of complex

fluids.

A fluid can be characterized according to its behaviour under the action of external

pressure or shear stress. The first type of behaviour distinguishes between compress-

ibility and incompressibility depending on whether a fluid element reacts to the applied

pressure or not. Most of the time, liquids can be considered as incompressible, whereas

gases are compressible media. This assumption is used to set up the continuity equa-

tion for a fluid element. In the case of a liquid, the response of the fluid to an applied

shear stress is usually more significant. In particular, the shear stress of a liquid can

be expressed by different rheological constitutive laws. They describe the fluid behavior

associated with flow curves which give the shear stress τ to shear rate γ̇ relationship.

Note that the rheological behaviour of a liquid can be more complex, i.e. the shear

stress could depends upon the pressure, temperature or even history for instance. In the

present study, we focus on the case for which the shear stress is a function of the only

shear rate γ̇. For this reason only generalized Newtonian fluid models will be discussed

in the following and will be referred as non-Newtonian fluid for sake of simplicity. Exam-

ples of popular rheological models which satisfy this assumption are shown in Figure 2.1.

There are two elementary fluid behaviors, known as the Newtonian and non-Newtonian.

A Newtonian fluid is defined by the linear dependence of the shear stress with the shear

rate, and viscosity as the constant of proportionality. Newtonian fluids are homogeneous

and isotropic, for example water. The viscosity of the materials in simple shear (one
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dimensional shear) is defined as

τ = µγ̇ . (2.1)

Non-Newtonian fluids have a non-linear flow curve and/or can have a yield stress τy.

Above the yield stress, the fluid has a viscous behaviour while it becomes solid when the

applied shear stress does not overcome the yield. In the solid state, elastic behaviour

can be observed in most of these viscoplastic fluids. The most simple model accounting

for a yield stress is the Bingham model which reads as

τ = τy + µpγ̇ , (2.2)

with τy the yield stress and µp the plastic viscosity. A more complex model has been

proposed to mimic the rheological behaviour of many visco plastic fluids, the Herschel-

Bulkley model which reads

τ = τy + kγ̇n , (2.3)

with with τy the yield stress, k the consistency index and n the flow index. If τ < τy

the Herschel-Bulkley fluid behaves as a solid, otherwise it behaves as a fluid. For n < 1

the fluid is shear-thinning, whereas for n > 1 the fluid is shear-thickening. If n = 1 and

τy = 0 , this model reduces to the Newtonian fluid.

Figure 2.1: Rheological constitutive laws
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2.1.2 Rheological characteristics of muds

2.1.2.1 Drilling muds functions

Drilling muds fulfill several purposes for the drilling operation, as described by Cous-

sot [42]. First the circulation of a viscous mud allows to evacuate rock cuttings from the

bottom hole to the surface, where the solids are separated from the fluid.

Muds also maintain the cuttings in suspension when the circulation is stopped: in-

deed, in order to add tubings to the drill string, the fluid circulation is regularly stopped.

During this rest time, solid cuttings may sediment to the bottom hole and lead to plug-

ging of the well. Drilling muds are therefore thixotropic and develop a gel (yield stress)

when not circulated.

The fluid circulated will generate a certain pressure (addition of the hydrostatic and

the frictional pressure) which is maintained at a value superior to the pressure of the

rock formation (in overbalanced drilling conditions). This helps to maintain the well

walls, to prevent destabilization of the ground and to control the venue of fluids from

the formation. Due to this pressure difference, the mud will filtrate in the permeable

rock formation and will form a filtration cake at the wall. Finally, the circulation of the

mud helps to cool down and lubricate the drill bit.

2.1.2.2 Drilling muds compositions

Drilling muds may be classified in two main families:

• Water based muds are principally aqueous solutions of polymers and clays in

brines with different types of solids and additives.

• Oil based muds are invert emulsions of brine into an oil phase stabilized by

surfactants. Various additives are added as organophilic polymers, organophilic

surface modified clays, solids and other additives.
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The choice of the mud formulation will depend on the nature of the rock formation,

the environmental and economic constraints as well as the possibility of supplying on

site. Different formulations may be used for a same drilling operation depending on

the geological nature of the different layers drilled. Oil based Muds can give better

performances but are generally more expensive and less ecologically friendly.

2.1.2.3 Drilling muds model

The fluids used in the experiments are aqueous solutions for which additives allow to

obtain the various desired rheological behavior. Drilling fluids such as mud have shear-

thinning properties (their effective viscosity decreases with shear rate) and present a

yield stress. The rheological behaviour of these muds is well represented by the Herschel

Bulkley model. The properties that determine the operational performance of these flu-

ids are their apparent viscosity and yield stress. Efficient pumping requires a sufficiently

low viscosity, while a minimum yield stress is required to maintain the suspended solids

in these fluids. Structure and the resulting properties typically cause a thixotropic na-

ture (fluid sensitivity to the history of shear). We carried out experiments using different

fluids, with similar density, to focus on the influence of rheological parameters on the

flow.

2.1.3 Fluids used during experiments

Three types of fluids were used in our different experiments allowing us to validate

our model for different regimes and also to reproduce real drilling muds behaviour.

• Experiments with water : this starting point is very important to validate the

experimental device with standard models used in the litterature for the case of a

water flow in trapezoidal Venturi flumes. In this case, the flow regime is always

turbulent. This case will be used to validate the 1D approach for this kind of flow.
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• Experiments with Newtonian viscous fluids : this step is important to gener-

ilized the the 1D Saint Venant approach taking into account of the friction of the

fluid, but still for Newtonian fluids. The main regime desires is the laminar regime.

Indeed, friction will have a big impact on laminar regime and then we need robust

friction and momentum models. To do this experiments, we choose mixtures of

glycerine. These mixtures are known for their simple protocol of preparation with

a fortuitous balance of physical properties, viscous and stable.

• Experiments with non-Newtonian fluids : this step is the last one to conclude

on the validity of the model to compute the flow along the trapezoidal Venturi

flume. In order to explore the different regimes (laminar and turbulent), different

mixtures of Carbopol will be used. Carbopol polymers are water soluble vinyl

polymers consisting of chains of cross-linked poly acrylic acid. Their solutions often

exhibit a yield stress and are widely used for making emulsions, for thickening and

gelation in many industries. As muds, these mixtures have an Herschel Bulkley

behaviour after the addition of a base [54]. Values of the yield stress and the

consistency of the fluid mostly depends on the concentration of Carbopol mixed

in the solution.

2.1.4 Fluids preparation

Mixtures used in the experiments are mainly aqueous solutions for which additives

are added to obtain the various desired rheological behavior.

• Water: we fill the tank directly with tap water ensuring that the flow loop is

clean. We have only to be careful with the proliferation of algae, and regularly put

anti algae chlorine solution.

• Mixtures of glycerin: these Newtonian mixtures are obtained by mixing glyc-

erin and water. Glycerin is available in the laboratory in an hermetic tank of
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1000L. The pure glycerin is very viscous and is denser than water. We prepared

10 different mixtures of glycerin with different concentrations. We started exper-

iments with pure glycerin and diluate the mixture by adding a volume of water

desired. Then, the solution is slowly stirred in order to obtain an homogeneous

solution of glycerin/water mixture without air bubbles trapped in the fluid. Note

that the viscosity of the fluid is very sensitive to the variation of the temperature

and also to the variation of the concentration. Then, we have to be careful during

tests with the temperature and the density of the fluid. Different mixtures selected

for this study are presented in Table 6.1 .

• Mixtures of carbopol: these non-Newtonian mixtures are obtained by mixing

Carbopol 940 resin and water. These mixtures are yield stress fluids and are

caracterized by Herschel-Bulkley laws. One difficulty will be on the dissolution of

the carbopol resin. So it is better to divide the all volume of mixture into small

volume and dissolved carbopol slowly. The mixing need to be slow to minimize

air bubbles formations which will be trapped into the mixture because of the

yield stress. When the Carbopol is homogenously mixed in the water tank, the

pH of the solution is around 4, because of the acid groups attached to the base

link of the polymer. This solution is brought to a pH of 7 by neutralization

with a sodium hydroxide solution. This adding sodium hydroxide leads to an

instantaneous thickening and a sol-gel transition when the pH of the solution is

close to 7. Beyond the neutralization phase, i.e. when pH > 9, there are no more

links between the chains and the gel is destructured. Finally, three zones can be

distinguished: a pH less than 5, the solution is in a state of pre-gelling, to a pH

between 5 and 8, the solution is in the form of a gel and finally, for a pH greater

than 9 begins the breakdown. This fluid was chosen because it has the properties

to be transparent, non-toxic and keeps its homogeneity even under the action of

29



2.1. FLUID RHEOLOGY

large deformations [24]. Note that the rheology of the fluid is very sensitive to

the variation of the pH and also to the variation of the concentration. Then, we

have to be careful during tests with the pH, the density and the temperature of

the fluid. Different mixtures selected for this study are presented in Table 6.1.

2.1.5 Rheology measurements

We used the rheometer RheolabQC, from Anton Paar, to measure the rheology of

our fluids. We can select between controlled shear rate γ̇ by imposing a rotational speed

and measure the torque or controlled shear stress τ by imposing a torque and measure

the rotational speed. With this two methods, we can determine the evolution of the

shear stress τ with the shear rate γ̇, and then decuce the viscosity η as

η =
τ

γ̇
. (2.4)

We have a Couette geometry, as shown in Figure 2.2, composed by two coaxial cylinders

with two different radius. The inner cylinder rotates at a rotational speed so that the

outer cylinder is fixed. Therefore, the fluid is sheared between these two cylinders.

Figure 2.2: Couette geometry of the rheometer RheolabQC
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The RheolabQC is connected to a PC and is equipped with a temperature device

to accurately control the temperature in the range of 10 ◦C to 50◦C, with cooling sys-

tem. Different strategies are used to determine the rheology of each mixtures on real

configurations.

Water: water viscosity is well known and is taken equal to 1Pa.s in our configu-

ration, as found by Kestin [31] for instance.

Mixtures of glycerin: these mixtures are still Newtonian, in which shear stress is

directly proportional to the shear rate. The viscosity measurement characterizes these

mixtures, but these mixtures are known to have viscosity very dependent on temperature.

During experiments, the temperature of the mixture increase because of pump system.

Therefore, we have to characterized mixtures viscosities for the range of temperature in

our configuration. We decided to measure six different viscosities at 20◦C, 22◦C, 24◦C,

26◦C, 28◦C and 30◦C for each mixtures of glycerin. The measured viscosity is plotted

as function of shear rate γ̇ for different values of T in Figure 2.3. In Figure 2.3, we can

see that the viscosity is shear independant as expected for Newtonian fluid, and only

depedents on the temperature T . Figure 2.3 shows the six different measurements of

viscosities as a function of T for the case Gly.3. Data are fitted with a second order

polynomial function which corresponds to Equation (2.5).

µGly.3(T ) = 0.0006 T 2 − 0.0447 T + 0.943 (2.5)

where µGly.3 is the viscosity of the mixture Gly.3 and T the temperature of the fluid.
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Figure 2.3: Viscosity of the mixture with 90% of glycerin at different temperatures in
function of the shear rate with log scale

Figure 2.4: Trendline of the viscosity and temperature of the mixture with 90% of glyc-
erin

We used this fit polynomial function to estimate the evolution of the viscosity during

the experiment by measuring the temperature as function of time. Notice that we fixed

a range of shear rate measurement equal to [5s−1, 500s−1], based on the recommended

practice on the rheology and hydraulics of oil-well drilling fluids [29], to be close to what

range is chosen in field.

Mixtures of carbopol: these mixtures are non-Newtonian, in which the shear

stress is related to the shear rate by the Herschel-Bulkley law, as described in Equation
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(2.3). The purpose of the rheological measurement is to characterize the three parame-

ters of the law : τy, k and n. For this purpose, we plotted the measurements of the shear

stress as a function of the shear rate and found the three parameters of the Herschel

Bulkley law from the trendline using an algorithm from the RheolabQC software, as

shown on Figure 2.5 .

Figure 2.5: Trendline of the rheology of the mixture with 0.13% of carbopol, where the
three parameters of the Herschel Bulkley law are equal to : τy = 1.315Pa,
k = 0.913Pa.sn and n = 0.51.
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Another method allows to determine more accurately the yield stress value of the

carbopol mixtures by slow linear temporal variation of the shear stress. It imposes a

constraint, which the viscosity and the deformation of the fluid are recorded. The slow

and continuous increase of the shear stress led to the collapse of the fluid gel structure

when the yield stress value is reached and then exceeded. The viscosity collapses and

deformation abruptly diverge: the fluid, previously in gel form, begins to flow. This

method allows to determine accurately the yield stress value, as described by Gabard

[24] and shown here in Figure 2.6.

Figure 2.6: Deformation method to determine accurately the yield stress value

These carbopol mixtures are very slightly thixotropic, their rheological characteriza-

tions are simple, reliable and reproducible. Those resumed their jelly structure almost

instantly after being sheared. These mixtures can be very viscous but with not a large

yield stress, one solution to have more yield stress, as mud behaviour, could be to add

a yield stress fluid as laponite but it was not studied here. Carbopol mixtures are not

very dependent on temperature variation but even with low yield stress, air bubble can

be stuck in the gel. Rather than establishing a relation between the three parameters of

each fluid rheology and the temperature, as well as the influence of the air bubbles, we

prefered to make a rheology characterization of the fluid regularly by taking off several

samples during experiments.
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2.1.6 Fluids properties used

Table 6.1 summarizes all fluids used with their properties, and the number of different

flow rates established. Each values on Table 6.1 are mean values during the day. Indeed

during the day, viscosity of the fluid changes due to change in temperature or air bubbles

trapped. All details of accurate measurements for all fluids can be found in the Appendix.

Design Concen Tempe Density Rheology Number of
−ation −tration −rature τ k n different

[%] [◦C] [kg/m3] [Pa] [Pa.sn] [-] flowrates
Water 100 22 1000 0 0.001 1 25
Gly.1 100 24 1256 0 0.747 1 14
Gly.2 95 23 1249 0 0.429 1 9
Gly.3 90 25 1237 0 0.203 1 21
Gly.4 87.5 27 1230 0 0.128 1 22
Gly.5 82.5 27.4 1220 0 0.074 1 23
Gly.6 80 27.2 1215 0 0.059 1 22
Gly.7 77.5 27.8 1209 0 0.045 1 24
Gly.8 72.5 28.7 1197 0 0.027 1 25
Gly.9 70 28 1215 0 0.024 1 25
Gly.10 65 28.1 1192 0 0.016 1 25
Carb.1 0.13 21 999.3 1.55 0.81 0.53 23
Carb.2 0.12 24 1000.1 1.15 0.59 0.54 24
Carb.3 0.118 22 999 0.83 0.57 0.55 21
Carb.4 0.115 22 999 0.84 0.51 0.54 21
Carb.5 0.11 23 1000.2 0.56 0.40 0.56 13
Carb.6 0.10 22 999.4 0.01 0.16 0.61 24
Carb.7 0.095 22 999.8 0 0.01 0.64 21

Total : 382

Table 2.1: Fluids properties used during experiments
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2.2 Experimental device

2.2.1 Scale down

In order to perform experiments which reproduce as much as possible field applica-

tions, a scaling between laboratory experiments and field application is done based on

similitude concept of the pertinent dimensionless numbers.

The first dimensionless number is the Reynolds number Re. It is used to characterize

different flow regimes within a similar fluid, such as laminar or turbulent flow. The

Reynolds number is defined as the ratio of inertial forces to viscous forces. It is written

in generalized form by Haldenwang [28] for Newtonian and non-Newtonian fluids as

Reg =
8ρu2

τy + k
(

8u
Dh

)n . (2.6)

The second one dimensionless number is the Froude number Fr. It is used to characterize

different flow regimes within a similar fluid, such as subcritical or supercritical flow. The

Froude number is defined as the ratio of inertial forces to gravitational forces. In open

channel flow, it is written in generalized form by Chow [13] as

Fr =
u

√

g a
ση

. (2.7)

The last one dimensionless number is the Bingham number Bm. The Bingham number

is defined as the ratio of yield stress to viscous stress. It is written in generalized form

as

Bm =
τy

k
(

8u
Dh

)n . (2.8)

The flow fields are exactly the same when considered with translation of the scales

by preserving the non dimension numbers. We shall get the generic expressions for the

scaling so that the real size setup could be translated to the experimental setup. Let us
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consider the terms given by the subscript "exp" for the experimental bench setup scales

and the terms given by the subscript "real" to the real size dimension on the field. We

then define all the scale ratio as

• the flow rate ratio

Qreal

Qexp

= rQ , (2.9)

• the length ratio

breal

bexp

=
hreal

hexp

=
Lreal

Lexp

= rL , (2.10)

• the velocity ratio

ureal

uexp

= ru , (2.11)

• the density ratio

ρreal

ρexp

= rρ , (2.12)

• the yield stress ratio

τyreal

τyexp

= rτy
, (2.13)

• the consistency index ratio

kreal

kexp

= rk , (2.14)

• the index ratio

nreal

nexp

= rn . (2.15)

We have to preserve all dimensionless numbers. Note that there are other dimen-

sionless numbers in our problem. First there is the side slope m, and then there is the

power index n. These numbers have not dimension and have to be taking into account.

So first, we impose

mreal = mexp (2.16)
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nreal = nexp . (2.17)

Then, we consider the Froude number for both the real scenario and the bench case as:

Frreal = Frexp

⇔ ureal
√

g areal

σηreal

=
uexp

√

g aexp

σηexp

⇔
(

ureal

uexp

)2

=

(

areal

aexp

)(

σηexp

σηreal

)

⇔ r2
u = rL .

Next, we consider the generalized Reynolds number for both the real scenario and the

bench case as :

Regreal = Regexp

⇔ 8ρrealu
2
real

τyreal + kreal.
(

8ureal

Dhreal

)nreal
=

8ρexpu2
exp

τyexp + kexp.
(

8uexp

Dhexp

)nexp

⇔ ρrealu
2
real

τyreal

(

1 + 1
Bnreal

) =
ρexpu2

exp

τyexp

(

1 + 1
Bnexp

)

⇔ ρrealu
2
real

τyreal

=
ρexpu2

exp

τyexp

⇔ rτy
= rρr2

u .

After, we consider the Bingham number for both the real scenario and the bench case
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as :

Bnreal = Bnexp

⇔ τyreal

kreal.
(

8ureal

Dhreal

)nreal
=

τyexp

kexp.
(

8uexp

Dhexp

)nexp

⇔ rk = rτy

(

8uexp

L2exp

)nreal

(

8ureal

L2real

)nexp

⇔ rk = rτy

(

8uexp

L2exp

)nreal

(

8ureal

L2real

)nexp

⇔ rk = rτy

(

rL

ru

)n

.

The last ratio needed for the scale similitude is to consider the conservation of the mass

for the two scales, as

Qexp/real = aexp/realuexp/real

⇔ rQ = r2
Lru .

To summarize,

• To maintain the same side slope number for the scaling means to impose the ratio:

rm = 1 . (2.18)

• To maintain the same index number for the scaling means to impose the ratio:

rn = 1 . (2.19)
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• To maintain the same Froude number for the scaling means to impose the ratio:

r2
u = rL . (2.20)

• To maintain the same Reynolds number for the scaling means to impose the ratio:

rτy
= rρr2

U . (2.21)

• To maintain the same Bingham number for the scaling means to impose the ratio:

rk = rτy

(

rL

ru

)n

. (2.22)

• To maintain the same flow rate for the scaling means impose to impose the ratio:

rQ = r2
Lru . (2.23)

Therefore we have 6 equations and 8 unknown ratios, so we have to impose 2 other

relations. Because of technical tools, the first relation to be imposed is on the flow rate

ratio. During drilling, the typical range of flow rate in the field is [ 0L/min ; 6000L/min

], so we want to reduce it to [ 0L/min ; 500L/min ] by imposing the ratio rQ = 12.

The second relation to impose is the density ratio. Since the typical range of density is

[ 1000kg/m3 ; 2000kg/m3 ] for fluids in the field or in the laboratory, it is relevant to

impose the ratio rρ = 1. Then, we can estimate all ratios as:

Qreal

Qexp

= 12 (2.24)

Lreal

Lexp

= 12
2
5 (≈ 2.7) (2.25)
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ureal

uexp

= 12
1
5 (≈ 1.6) (2.26)

ρreal

ρexp

= 1 (2.27)

τ0real

τ0exp

= 12
2
5 (≈ 2.7) (2.28)

kreal

kexp

= 12
2+n

5 (≈ 4.4 if n = 1) (2.29)

nreal

nexp

= 1 . (2.30)

It means that, based on similitude of the dimensionless numbers which govern the

flow, at the lengths at the lab scale are decreased by a factor of 2.7, velocities at the

lab scale are decreased by a factor of 1.6, flow rates at the lab scale are decreased by

a factor of 12, densities are the same and for Newtonien fluids viscosities at the lab

scale are decreased by a factor of 4.4. Based on this study, we built a flow loop able to

reproduce real flow conditions at reduced scale.

2.2.2 Flow loop

To study the flow of non-Newtonian fluids into trapezoidal Venturi flume during

drilling, we made fluid flow laboratory experiments along a Venturi flume at reduced

scale. The geometry size, the range of flow rates, the rheology and the density of the

fluid have been chosen to match to real scenarios during drilling at reduced scale. The

principle of this experiments is to circulate a fluid, with a rheology known, into the

Venturi flume at a flow rate known, and measure the height profile into the flume.

41



2.2. EXPERIMENTAL DEVICE

A flow loop was built, see Figure 2.7, at reduced scale and able to circulate different

fluids at different flow rates into the Venturi flume. This flow loop is composed by

• (1) : a tank able to contain 700L of fluid

• (2) : two helical screw pumps able to provide together a maximum flow rate of

500L/min

• (3) : a valve system to achieve small flow rates

• (4) : a Coriolis and an electromagnetic flowmeters able to measure the flow rate

accurately

• (5) : a column which brings the flow into the open channel

• (6) : the trapezoidal Venturi flume with 8 height sensors willing all along

Figure 2.7: Flow loop at Geoservices

The flow loop is also equipped with several security systems as a maximum level

alarm into the open channel and also a maximum pressure alarm into the pipe just after

the pumps. We have also a mixer into the tank to allow us to blend continuously the

mixture. The temperature and the pH are also monitoring in real time to keep an eye

on the fluid properties.

42



2.2. EXPERIMENTAL DEVICE

Following, 3 different configurations of the flow loop

Figure 2.8: Empty flow loop

Figure 2.9: Flow loop with low flow rate, the valve 1 is open and only 1 pump is turned
on

Figure 2.10: Flow loop with high flow rate, the valve 1 is closed and the 2 pumps are
turned on
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2.2.3 Sensors in the flow loop

Table 2.2 summarizes main sensors installed in the flow loop and their performances.

Sensor Designation Technology Measurement Accuracy

CMF200 Coriolis

Volume flow ± 0.1 %
Mass flow ± 0.05 %
Density ± 0.2 kg/m3

Temperature ± 1 ◦C ± 0.5 % of reading

Promag 53P Eletromagnetic Volume flow ± 0.2 %

UNAM 200 Ultrasonic Height ± 1 mm

Table 2.2: Sensors characteristics

Figure 2.11 shows the location of the 8 height sensors along the Venturi flume. The

locations have been chosen to cover the all height profile along the Venturi flume, and

at specific locations. Sensors US-1 and US-2 are upstream the Venturi flume, at stable

and subcritical flow. Sensors US-3 and US-4 quantifie the decreasing of height due to

the convergente part. Sensors US-5 and US-6 are in the throat and before the divergent

part, where may be the critical transition. Sensors US-7 and US-8 are downstream, and

may confirmed the supercritical flow.

Figure 2.11: Location of the 8 ultrasonic height sensors along the trapezoidal Venturi
flume

Let us consider the height h1, the height measured by the sensor US-1, and the same

for all sensors.
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2.2.4 Protocol of experiments

The protocol of experiments is decomposed into different steps

• Step 1: preparation of the mixture

All the mixture preparations are done as described previous part. Generally, we make

mixtures and wait 1 or 2 days to start the experiments and to let it rest.

• Step 2: calibration of the sensors

The Coriolis and the EM sensors have their own factory calibration. But for the US

sensors, we have to calibrate them. These calibrations are done by using adjusting shims

with a tolerance of 1µm. This technology is dependent of the temperature, therefore we

confined the area of measurements by installed a cover and controlled the temperature

inside. These calibrations were controlled every days before started the experiments.

• Step 3: circulation of the fluid with a fixed and chosen flow rate

We controlled flow rates by controlling the frequency of the pumps. It was the best way

to have constant and stable flow rates for all fluids. The small flow rates were obtained

by using the 2 valves, because the pumps are not made to go to low frequencies. Notice

that for high flow rates, pumps heated and so do fluids, so generally we heated fluids

before to start experiments by keep running pumps.

• Step 4: wait until steady state is reached

Indeed, we waited until steady states were reached. Generally, steady states were reached

after few minutes, this was depending on the viscosity of the fluid and also on how much

we increased the flow rate.

• Step 5: take 1 minutes of all measurements
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All the measurements were done by averaging them during 1 minute. The standard

deviations were also taken to quantify the stability of the measurements.

• Step 6: change the flow rate and go to the step 4

When the flow was stabilized and when the measurements were made, we changed the

flow rate and restarted from the step 4.

• Step 7: change the fluid

When we make all ranges of flow rates desired, we change the fluids by adding water.

Indeed, we started by the more viscous mixtures and diluted them by adding water, and

also waited the mixture homogenizations.

2.3 Dataset

2.3.1 Flow rate vs. height

We are interested by the relation between an upstream height from the Venturi flume

and the flow rate. The upstream height has been chosen where the height is relatively

horizontal. Knowing that h1 and h2 are very close, we choose h2 as the selected height

due to space optimization. We plotted these two parameters, h2 vs. Q, on two plots :

Figure 2.12 for Newtonian fluids and Figure 2.13 for non-Newtonian fluids.

Figure 2.12: Height h2 versus flow rate Q for all Newtonian fluids from experiments
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Figure 2.13: Height h2 versus flow rate Q for all non-Newtonian fluids from experiments
(and for water to have a reference)

2.3.2 Equivalent displacement thickness vs. Reynolds number

2.3.2.1 Boundary layer theory

For the boundary layer theory, we Consider a stationary body with a fluid flowing

around it, like the semi-infinite flat plate with fluid flowing over the top of the plate

(assume the flow and the plate extends to infinity in the positive/negative direction

perpendicular to the x-y plane), as shown in Figure 2.14. At the solid walls of the body

the fluid satisfies a no-slip boundary condition and has zero velocity, but as you move

away from the wall, the velocity of the flow asymptotically approaches the free stream

mean velocity.

Figure 2.14: Schematic drawing depicting fluid flow over a flat plate

The boundary layer thickness, δ, is the distance across a boundary layer from the

wall to a point where the flow velocity has essentially reached the ’free stream’ velocity

u0. This distance is defined normal to the wall. It is customarily defined as the point y
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where :

u(y) = 0.99u0 (2.31)

at a point on the wall x. For laminar boundary layers over a flat plate, as described H.

Schlichting [53] , the Blasius solution to the flow governing equations gives :

δ

x
=

4.91

Re 0.5
x

(2.32)

where the Reynolds number Rex = ρu0x/µ. The displacement thickness, δ∗, is the

distance a streamline just outside the boundary layer is displaced away from the wall

compared to the inviscid solution, as shown in Figure 2.15.

Figure 2.15: Displacement thickness

Based on the Blasius solution, Equation (2.32), we can determine the displacement

thickness :

δ∗

x
=

1.721

Re 0.5
x

(2.33)

2.3.2.2 Analogy with the boundary layer theory

The purpose of this section is to find a way to model the increase of height based

on the boundary layer theory. Indeed, this increase of height may be compared to the

displacement thickness, and therefore may be related to a Reynolds number taking into

account the viscosity of the fluid. We want to quantify the increase of height from a

water flow to a more viscous flow. We start from the relation height vs. flow rate for

water, as shown in Figure 2.16, which represents 26 points from experiments.

48



2.3. DATASET

Figure 2.16: Height h2 versus flow rate Q for water

We create a function fw which returns interpolated values at specific experimental

points using linear interpolation. This function is created only by experimental values.

On Figure 2.17, we plotted the height for water and for the fluid Gly.3 and we can see

the increase on height dH for a same flow rate Q0.

Figure 2.17: Height h2 versus flow rate Q for water and Gly.3 fluids, with the represen-
tation of dh2

Therefore, the purpose is to relate this dh to a Reynolds number following Equation

(2.33).

Newtonian fluids For Newtonian fluids, we choose a typical Reynolds number, taking

the characteristic length as the hydraulic mean depth hm, and defined as :

ReN =
ρuhm

µ
(2.34)
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where hm is the hydraulic mean depth and is equal to the depth h2 for our rectangular

section at this location (hm = a/σ = Bh/B = h2). In Figure 2.18, we can plot the

relative equivalent displacement thickness at le location 2 as dh2/h2−w in function of the

typical Reynolds number ReN , for experimental Newtonian fluids.

Figure 2.18: Relative equivalent displacement thickness dh2/h2−w in function of the typ-
ical Reynolds number based on the hydraulic mean depth ReN for all ex-
perimental Newtonian fluids

Therefore, we find the relation for the trendline from Figure 2.18 :

dh2

h2−w

=
4.6835

Re 0.587
N

(2.35)

with a R squared close to 1. This means that we can estimate directly and accurately

the height h2 for our Newtonian fluids by the computed height h2−c based on water data

h2−w, the flow rate Q, the density ρ, the viscosity µ of the fluid and the width of the

channel B as :

h2−c =
4.6835 h2−w
(

ρQ
Bµ

) 0.587 + h2−w (2.36)

Non-Newtonian fluids For non-Newtonian fluids, we choose a generalized Reynolds

number defined by Haldenwang [28] and used by Burger [8], but taking the characteristic
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length as the hydraulic mean depth hm, and defined as :

Reg =
8ρu2

τy + k
(

8u
hm

)n (2.37)

where hm is the hydraulic mean depth and is equal to the depth h2 for our rectangular

section at this location (hm = a/σ = Bh/B = h2). In Figure 2.19, we can plot the rela-

tive equivalent displacement thickness dh2/h2−w in function of the generalized Reynolds

number Reg, for all experimental data : Newtonian and non-Newtonian fluids.

Figure 2.19: Relative equivalent displacement thickness dh2/h2−w in function of the gen-
eralized Reynolds number Reg based on the hydraulic mean depth, for all
experimental fluids

As shown on Figure 2.19 there is an offset between Newtonian and non-Newtonian

data, indeed a parameter from non-Newtonian behaviour is not taking into account.

Kozicki and Tiu [56] who generalised the Rabinowitsch-Mooney equation for pipe flow

and together with the corresponding expression for non-Newtonian flow between parallel

plates, proposed a single equation of a generalized Reynolds number, Re∗, containing

two factors a and b to account for different channel shapes. Kozicki and Tiu [56] pre-

sented expressions for laminar flow of power law, Equation (2.38), and Bingham fluids

in rectangular, semicircular and triangular open channels. Kozicki and Tiu did not

experimentally verify their work.
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Re∗ =
8ρu2

k
(

a+bn
n

8u
Dh

)n (2.38)

where a and b are constants for various cross-sectional shapes. For pipe flow, a =

0.25, b = 0.75 and for slit flow, a = 0.5 and b = 1. Based on this theory, we decided to

introduce in the generalized Reynolds number, from Equation (2.37), a coefficient c which

was fine tune. This coefficient is also added on the numerator, as shown as Equation

(2.39), to refind the typical Reynolds number for Newtonian fluids from Equation (2.34).

Rec =
8cρu2

τy + k
(

c 8u
hm

)n (2.39)

A minimization study was done to find the better value of c to minimize the dis-

crepency between Newtonian and non-Newtonian data : c = 10. Therefore, we can plot

on Figure 2.20

Figure 2.20: Relative equivalent displacement thickness dh2/h2−w in function of the cal-
ibrated Reynolds number Rec with c = 10, based on the hydraulic mean
depth, and for all experimental fluids

We have the same expression of the trendline but with the calibrated Reynolds

number as

dh2

h2−w

=
4.6835

Re 0.587
c

(2.40)

with a R squared still close to 1.
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All fluids: The generalization for non-Newtonian fluids was done. Therefore, we can

estimate directly and accurately the height h2, for Newtonian or non-Newtonian, by the

computed height h2−c based on water data h2−w, flow rate Q, density ρ, fluid property

(τy, k, n) and width of the channel B by the implicite relation:

h2−c =
4.6835 h2−w

(

80ρQ2

τyB2h2
2−c+k(80Q)nB2−nh2−2n

2−c

) 0.587 + h2−w . (2.41)

To quantify the accuracy of this relation, we compared the height computed h2−c

using Equation (2.41) with the height measured during experiments h2, by introducing

the relative error on height as:

errorh =
h2−c − h2

h2
× 100 . (2.42)

The estimation of the relative error on height is shown on Figure 2.21, and confirmed

an accurate estimation of the relation (2.41) around 2%. Therefore, this method can be

used to estimate accurately the upstream height of any fluid based on the fluid property

and water data.

Figure 2.21: Relative error on height, using Equation (2.41) and the experiments, in
function of flow rate Q
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CHAPTER III

3D simulation of flow through a Venturi flume

The world’s an exciting place when you know CFD.

John Shadid
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3.1 Introduction to CFD

3.1.1 Computational Fluid Dynamics

Computational Fluid Dynamics (CFD) is the analysis of systems which produces

quantitative predictions of fluid motion based on conservation laws of mass, momentum

and energy, together with its associated phenomena such as chemical reactions, by means

of computer-based simulation. The simulation generally takes place by utilizing numer-

ical approximation techniques. The conditions of flow geometry, the physical properties

of a fluid, the boundary and initial conditions of a flow field are defined to provide so-

lution sets of the flow variables either at selected locations or for overall behavior in the

computational domain at specific times.

Due to the availability of affordable and advanced computing hardware, CFD has

become more common in petroleum engineering, as well as other fields of engineering,

after it was originally developed mechanical engineering, specifically in aerospace indus-

tries, Versteeg and Malalasekera [26]. Furthermore, a number of distinct advantages of

CFD include its time and cost effectiveness compared to those of a high-quality exper-

imental facility. More comprehensive information of all relevant flow variables can be

obtained conveniently with CFD. With a validated CFD model, flexible ability to change

parameters defining the flow conditions could be achieved for analyzing a problem with

different flow parameters under «what-if» scenarios.

3.1.2 CFD softwares

The market of commercial CFD softwares is currently dominated by four codes:

PHOENICS, FLUENT, FLOW3D and STAR-CD. The perpetual licence fee for a com-

mercial software is typically ranges from $10000 to $50000 depending on the number of

"added extras" required.

An alternative to these commercial CFD softwares would be free ones. Main current
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free CFD codes are : OpenFOAM, SU2, PyFR, Code Saturn, FEniCS, Gerris Flow

Solver, Clawpack, FEATFLOW, Channelflow and others. These open source softwares

are often written in C + + and are delivered with full source code access. OpenFOAM

appears as a general purpose open-source CFD code and the most widespread with a

large community of users, therefore we chose it for the rest of the study.

3.1.3 OpenFoam

OpenFOAM is a free, open source CFD software developed primarily by OpenCFD

Ltd since 2004, distributed by OpenCFD Ltd and the OpenFOAM Foundation. It has a

large user base across most areas of engineering and science, from both commercial and

academic organisations. OpenFOAM has an extensive range of features to solve open

channel flow with both Newtonian & non-Newtonian fluids, and for both turbulent &

laminar regimes. OpenFoam is using with a tools to process the results of simulation

cases and includes a plugin to interface with Paraview.

3.2 Numerical model

3.2.1 Numerical solver : interFoam

InterFoam is a solver for 2 incompressible fluids, which tracks the interface and

includes the option of mesh motion. The governing equations are based on the con-

servation laws of mass and momentum for incompressible homogeneous fluid flow. In

the interFoam solver, the conventional VOF method presented by Hirt and Nichols [9]

is applied. It uses the volume fraction as an indicator function (α in OpenFOAMTM

code) to define which portion of the cell is occupied by the fluid. For a water channel

flow,
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α(x, y, z, t) =































1 for a place (x,y,z,t) occupied by water

0 < α < 1 for a place (x,y,z,t) in the interface

0 for a place (x,y,z,t) occupied air

(3.1)

InterFoam solves the governing equations using finite volume approximations. A

computational domain is subdivided into a mesh of computational cells. For each com-

putational cell, average values for flow parameters are computed at discrete times

3.2.2 Geometry & mesh

CFD applies numerical methods (called discretization) to develop approximations of

the governing equations of fluid mechanics in the fluid region of interest. Therefore, the

first step would be to define the fluid region of interest. the fluid region would be the

region into the trapezoidal Venturi flume defined chapter II. For computation time issue,

we use the symetry of the problem on the plane (x,z) and then study only the half of

the region as shows on Figure 3.1.

Figure 3.1: Computational domain for the Trapezoidal Venturi flume modeling

After defining the computational domain, we have to define the mesh of the domain.

In this study, The mesh is generated from a dictionary file named blockMeshDict on
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OpenFoam directory. The principle behind blockMesh is to decompose the domain

geometry into a set of three dimensional, hexahedral blocks. Edges of the blocks are

straight lines. The mesh is ostensibly specified as a number of cells in each direction of

the block, sufficient information for blockMesh to generate the mesh data. We choose

to specify in the

• x direction : 500 cells

• y direction : 15 cells

• z direction : 75 cells

Therefore, we built a mesh with 562500 cells, and a size of mesh of 4mm in each directions

as shows on Figure 3.2.

Figure 3.2: Mesh for the Trapezoidal Venturi flume modeling

The mesh is checked with a dictionary file named checkMesh. This function checks

validity of the mesh with checking the geometry and the topology. This function is

usable when the geometry and the mesh are complicated, but here it still simple.
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3.2.3 Boundary conditions

All CFD problems are defined in terms of initial and boundary conditions. It is

important that we specify these correctly. In transient problems the initial values of all

the flow variables need to be specified at all solution points in the flow domain. In our

case, we start from an empty channel so all initial values are zero.

The boundary conditions for the fluid in the computational domain were defined

as shown in Figure 3.3, by adopting different colors for the seven faces of the three-

dimensional fluid element in CFD. At the bottom, south and the up east faces of the

computational domain which represented to the flume floor and walls (in gray), the

wall boundaries were specified with a no-slip wall condition. At the north face of the

computational domain (in green), the symmetry boundarie was defined. At the top of the

computational domain (in yellow), the atmospheric pressure condition was specified. At

the east and west faces of the computational domain (in blue and red), which represented

the inlet and outlet of the Venturi flume structure, pressure boundaries with specified

fluid heights (at the inlet) were specified. The inlet fluid height imposed accross the full

red face was choose as lesser than the final height of the flow after stabilization, as a

result, the final value of the height fluid is not imposed. At the outlet of the flume, it was

also assumed that a inlet-outlet condition of fluid velocity existed across the boundary,

as a result, the flow did not reflect when leaving the computational domain. It was also

assumed that a zero normal-derivative condition of height existed across the boundary,

as a result, no height value was imposed at outlet.

3.2.4 Numerical parameters

Time step: The appropriate time-step increment was automatically controlled by

OpenFoam, activating the function adjestTimeStep, to avoid numerical instabilities and

maintain computationally accurate results.
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Figure 3.3: Computational domain and boundary conditions for the trapezoidal Venturi
flume modeling

Steady-state condition: The simulation was set to be terminated either at a sim-

ulation time of 60s, or when reaching a steady-state condition. The height quantities

represented in the computational domain were monitored for the steady-state terminat-

ing condition.

Numerical schemes: The fvSchemes dictionary in the system directory sets the

numerical schemes for terms, such as derivatives in equations, that appear in applications

being run. We set default schemes from derivative in OpenFoam as Euler or Gauss linear

schemes.

Turbulence modelling: Different turbulence models for Newtonian flow are avail-

able in OpenFoam but we choose the numerical model: standard two-equation k − ǫ.

Gravity: Since this type of flow condition is expected to be influenced primarily

by inertia and gravitational forces with viscous effects, the gravitation physical model

was activated with a gravitational acceleration of 9.81m/s2.
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Parallel computing: OpenFOAM is able to run cases in parallel on distributed

processors. The method of parallel computing used by OpenFOAM is known as domain

decomposition, in which the geometry and associated fields are broken into pieces and

allocated to separate processors for solution. This method was used here and allocated

to 4 processors.

Iterative convergence: All residuals are checked to ensure solution convergence.

The iterative convergence error has an order of 10−8 for each quantities.

3.3 Results for water flow

3.3.1 Numerical parameters

We simulated a water flow along the trapezoidal Venturi flume using the 3D model

defined before. Table 3.1 is a summary of all parameters defined in input

Input Value
Fluid Water

Density ρ = 1000Kg/m3

Viscosity µ = 0.001Pa.s
Flow rate Q = 477L/min

Inlet fluid height h0 = 0.2m

Table 3.1: Input of the 3D water flow computation

3.3.2 Numerical results for the trapezoidal Venturi flume with the 3D un-

steady flow model

Figure 7.9 represents the evolution of a water flow through the trapezoidal Venturi

flume using CFD. We captured the height profile of the flow h from the symmetrical

face, in function of the x position at different time t. We started with an empty channel.

For t=1s, the flow is still fully supercritical and we can see the formation of an hydraulic
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jump at t=15s. The hydraulic jump will go upstream the flume and makes appear a

subcritical regime upstream. After 10s, the flow reached steady state and the Venturi

flume works with upstream subcritical condition, and imposed a transcritical transition

through the throat.

Figure 3.4: Capture at different time of a water flow along the trapezoidale Venturi
flume with the 3D model
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CHAPTER IV

1D Model for open channel flow through a Venturi

flume

All models are wrong, but some models are useful.

George P. E. Box (1919 - 2013)
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4.1 1D Saint Venant Equations (SVE) adapted to the trape-

zoidal Venturi flume

4.1.1 Introduction to Saint Venant Equations

A general fluid-flow problem involves the dynamics of different fields: the fluid pres-

sure, the temperature, the density and the flow velocity. The modelling of these dynamics

involves six fundamental equations: the continuity equation based on the law of con-

servation of mass, the momentum equations along three orthogonal directions (derived

from Newton’s second law of motion), the Thermal Energy equation obtained from the

first law of thermodynamics and equation of state, which is an empirical relation among

fluid pressure, temperature and density.

In the case of incompressible fluids and isothermal flows, the last two equations

are not required, and therefore can be solved by the continuity equation and by the

momentum equations assuming that both density and temperature are constant.

Throughout this section, channel flows are described with one-dimensional model,

which are simplifications of the full 3D model. Assuming one-dimensional flow does

not mean that velocities on others directions are zero. This is an important distinction

because, for an horizontal flow example, the vertical velocity cannot be zero when depth

changes.

The basic one-dimensional equations expressing hydraulic principles are called the

Saint Venant Equations [16] and were formulated in the 19th century by two mathe-

maticians: Saint Venant and Boussinesq.

These equations can be derived by averaging the Naviers Stockes eqtions (conserva-

tion of mass and conservation of momentum mentioned previously) over the cross-section

of the channel as it is presented in the following sections. Note that in the case of a flow

mostly oriented in the streamwise direction along the channel, these equations reduce
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to a one dimensional system.

The basic assumptions for the analytical derivation of the Saint Venant Equations

are the following:

• the flow is one-dimensional, i.e. the velocity is uniform over the cross-section and

the fluid level across the section is represented by a horizontal line

• the streamline curvature is small and the vertical accelerations are negligible, so

that the pressure can be taken as hydrostatic

• the effects of boundary friction and turbulence can be accounted for through re-

sistance laws analogous to those used for steady state flow

Mentioned by E. Aldrighetti [3], these hypotheses do not impose any restriction on

the shape of the cross-section of the channel and on its variation along the channel axis,

although the latter is limited by the condition of small streamline curvature. Then,

we will develop this equations to our trapezoidal Venturi flume geometry even if the

validity of assuming small streamline curvature for the flow along this geometry can be

discussed.
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4.1.2 Definition of the 1D problem

A sketch of the geometry is shown in Figure 4.1. The geometry depends on the

following parameters:

Figure 4.1: Parameters of the trapezoidal Venturi flume, y=0 at the streamwise axis of
symmetry

• h : the height of the fluid though the Venturi flume

• b : the width of the Venturi flume

• m : the side slope of the Venturi flume

• zb : the bottom level of the Venturi flume (inclined by θ with the horizontal)

For a trapezoidal flume, the channel width depth z > zb and position x is given by

σ(x, z) = b(x)+2m(x)(z −zb). For a > 0 there exist a unique fluid height (h > 0) in the

channel. The surface depth is η = zb +h and the surface width is ση = b(x)+2m(x)h(x).

Thus, the cross section occupied by the fluid is expressed with the following non linear

formula:

a(x) =

η
∫

zb

σ(x, z)dz = bh + mh2 (4.1)
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Before to entering into formulation of the 1D model equations, one needs to define

the mathematical tool, that is the Leibniz integral rule:

∂

∂x







η(x)
∫

zb(x)

g(x, z)dz





 =

η(x)
∫

zb(x)

∂g(x, z)

∂x
dz + g(x, η)

∂η

∂x
− g(x, zb)

∂zb

∂x
(4.2)

showing that the partial derivative of the integral can be written as the integral of the

partial derivative and accounting for the variation of the limits of the integral.

4.1.3 1D Saint Venant Equations

The starting point are the Navier Stokes equations for incompressible fluids. They

describe local mass and momentum equations:

∇.(~v) = 0 (4.3)

ρ
∂~v

∂t
+ ρ(~v.∇)~v = −~∇p + ~∇τ + ρ~g (4.4)

with ρ the density, ~v = (u, v, w) the velocity, p the pressure, ~g the gravity, and τ the

stress tensor. So we make the following hypothesis:

• 2D (x,z) flow : ~v = (u(x, z), w(x, z))

• zero slope : θ = 0 and then ∂zb

∂x
= 0

• gravity : ~g = (0, 0, −g)

• considering only friction at walls (depending on y): τ11 = 0

• characteristic horizontal length scale much larger than the characteristic vertical

length scale (L >> h)

• characteristic horizontal velocity much larger than the characteristic vertical ve-

locity (u >> w)
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Notice that with these assumptions, neither viscous or inviscid boundary conditions are

satisfied by the flow at side walls, at y=-σ/2 and y=-σ/2 . Within theses hypothesis,

the Naviers Stockes equations read:

ux + wz = 0 (4.5)

ρut + ρuux + ρwuz = −px + (τ12)y + (τ13)z (4.6)

0 = −pz − g (4.7)

These asumptions allow that the convective and the viscous terms in the third momen-

tum equation can be neglected. Therefore, the following equation for pressure results as

an hydrostatic pressure :

p(x, z, t) = ρg [η(x, t) − z] + patm . (4.8)

Moreover, assuming that the free surface can be expressed as a single valued function

z = η(x, t), the kinematics condition of the free surface is given by:

ηt + u(η)
∂η

∂x
= w(η) . (4.9)

Integrating the mass conservation equation along z, we have :

η
∫

zb

(ux + wz) dz = 0 . (4.10)

η
∫

zb

uxdz + w(η) − w(zb) = 0 . (4.11)
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Using the Leibniz integral and the no slip condition, we can write :

∂

∂x





η
∫

zb

udz



+ w(η) − u(η)
∂η

∂x
= 0 . (4.12)

And then, using the (4.9) with kinematics condition of the free surface

ηt +
∂

∂x





η
∫

zb

udz



 = 0 . (4.13)

Integrating along y
σ
2
∫

− σ
2

ηtdy +
∂

∂x







η
∫

zb

σ
2
∫

− σ
2

udydz





 = 0 , (4.14)

we found finally for the mass conservation :

at + (aū)x = 0 , (4.15)

with a the cross section and ū the cross sectional averaged velocity defined as :

ū =
1

h

η
∫

zb

udz (4.16)

Now, we rewrite the momentum equation (4.6) in conservative form

ρut + ρ(uu)x + ρ(wu)z = −px + (τ12)y + (τ13)z (4.17)

Using the kinematics condition at the free surface with Equation (4.9), the no slip

condition at the bottom of the channel, the expression of the hydrostatic pressure with

Equation (4.8) and integrating over the section Equation (4.9) then reads

ρaūt + ρ
(

βaū2
)

x
= −ρgahx − Pwτw , (4.18)
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where Pw is the wetted perimeter defined in the Annexe D.1 for different shape cross

section. The momentum coefficient β is defined by

β =
1
h

∫ η
zb

u2dz
(

1
h

∫ η
zb

udz
)2 , (4.19)

and τw the shear stress at walls and bottom is defined by

τw =
1

2
fρū2 , (4.20)

where f is modelled as the Fanning friction factor, Liggett J. A. [36]. Finally, we obtain

the momentum conservation equation as

(aū)t +
(

βaū2
)

x
= −gahx − 1

2
Pwfū2 , (4.21)

where

• (aū)t is the local acceleration term

• (βaū2)x is the convective acceleration term

• gahx is the pressure gradient term

• 1
2Pwfū2 is the friction term

Note that Equation (4.21) is often written in the conservative form as (see [10] for

instance)

(aū)t +
(

βaū2 + gξ(h)
)

x
= gΣ(h) − 1

2
Pwfū2 (4.22)

Here, the pressure gradient has been decomposed as

gahx = gξx(h) − gΣ(h) (4.23)
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where

ξ(h) =
1

2
bh2 +

1

3
mh3 (4.24)

Σ(h) =
1

2
bxh2 +

1

3
mxh3 (4.25)

Equations (4.15) and (4.21) are called the Saint Venant Equations. For sake of clarity,

ū will be replaced by u in the following of this work.

4.1.4 Hyperbolicity and the Saint Venant system

The Saint Venant Equations are systems of PDEs that can be written in the form

Wt + F (W)x = b (x, W) (4.26)

where W is the vector of the conserved quantities, F is the flux function and b the

source term

W =









a

au









, F =









au

βau2 + gξ(h)









, b =









0

gΣ(h) − 1
2Pwfu2









(4.27)

We can define the matrix J = ∂F
∂W

as the Jacobian of the flux F (W) which is equal to

J =









0 1

c2 − βu2 2βu









(4.28)

where c is the celerity of the gravity wave at the free surface, and given by

c =

√

ga

ση

(4.29)

73



4.1. 1D SAINT VENANT EQUATIONS (SVE) ADAPTED TO THE TRAPEZOIDAL VENTURI FLUME

Studying the characteristic polynomial of J, one can prove that system (??) is hyperbolic.

With eigenvalues which are real, distinct and read

λ1 = βu +
√

c2 + β(β − 1))u2 (4.30)

λ2 = βu −
√

c2 + β(β − 1))u2 , (4.31)

and the corresponding eigen vectors as

v1 =









1

βu +
√

c2 + β(β − 1))u2









, v2 =









1

βu −
√

c2 + β(β − 1))u2









(4.32)

Therefore, the Saint Venant system can be decomposed in two ODEs that hold along

the two characteristic curves given by

dx

dt
= λ1,2 (4.33)

4.1.5 Flow classification & flow conditions

Given the characteristic speeds and β = 1 (knowing that extension to β 6=1 can be

made), one can classify the flow according to a dimensionless number called the Froude

number and defined as

Fr =
| u |

c
(4.34)

According to the value of the dimensionless Fr number, three different regimes can

be defined

• Fr < 1 : that means | u | < c, the two characteristic speeds have opposite direc-

tions. Therefore, the information is transmitted along these curves both upstream

and downstream. This kind of flow is known as subcritical flow and occurs when

the gravitational forces are dominant over the inertial ones
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• Fr = 1 : that means | u | = c, one characteristic speed is vertical and the other

has the same direction of u. This kind of flow is known as critical flow and occurs

when the inertial forces and the gravitational forces are perfectly balanced.

• Fr > 1 : that means | u | > c, the two characteristic speeds have the same direction

of u. Therefore the information is only transmitted downstream. This kind of flow

is known as supercritical flow and it occurs when the inertial forces are dominant

over the gravitational ones.

The current flumes principle is to impose a transcritical transition, where we capture

the transition from a subcritical flow to supercritical flow. These current flumes are

designed based on ISO standard 4359 and are applied to so-called subcritical upstream

conditions. Figure 4.2 shows the three different regimes found along a Parshall flume

with subcritical upstream condition.

Figure 4.2: Different regimes along a Parshall flume.

Note that supercritical upstream flumes also exhist but are more likely used for flow

rate measurements in the case of heavy sediment load condition (see [49] for instance).

In order to highlight the major difference between a subcritical upstream flume and a
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supercritcal usptream flume, the sensitivity parameters can be considered. It is defined

as

s(Q) =
dhm

dQ
(4.35)

where Q is the flow rate and h the measured depth. Thus, equation (4.35) states that

sensitivity is a measure of the relative change in depth with a unit change in discharge.

In order to obtain a good accuracy on the flow rate estimation from height measurement,

the bigger value of s should be considered as it corresponds to a small variation of Q

associated with a big variation of hm.

Figure 4.3: Qualitative relation between hm and Q for subcritical and supercritical up-
stream condition for a trapezoidal Venturi flume

As shown in Figure 4.3, the upstream condition causes the bigger value of s is the

subcritical upstream condition. Therefore, we decide to develop a Venturi flume solution

based on subcritical upstream condition.

4.1.6 The friction and momentum models

4.1.6.1 Friction model

The average shear stress on the surface in contact with the fluid, or local shear stress,

equals to:

τw =
1

2
ρfu2 , (4.36)
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where f is the Fanning friction factor and u is the mean velocity. In open channel flow,

it is common to use the Darcy friction factor Cd, which is related to the Fanning friction

factor by:

Cd = 4f . (4.37)

As for pipe flows, the flow regime in open channels can be either laminar or turbu-

lent. In industrial applications with Newtonian fluids, it is commonly accepted that the

flow becomes turbulent for Reynolds numbers larger than 2000-3000, Chanson [10], the

Reynolds number being defined for pipe and open channel flows as:

Re =
ρuDh

µ
(4.38)

where µ is the dynamic viscosity of the fluid, Dh is the hydraulic diameter and u is the

mean flow velocity. Most open channel flows with water are turbulent, because of the

relatively small viscosity of water and with large flow rates. In most practical cases,

open channel flows are turbulent and the friction factor (with Darcy coefficient) may be

estimated from the Colebrook–White formula, Colebrook [14]

1√
Cd

= −2log10

(

ks

3.71Dh

+
2.51

Re
√

Cd

)

(4.39)

where ks is the equivalent roughness height of the surface over which the flow takes

place. Equation (4.39) is a non-linear equation. Numerical solutions of Equation (4.39)

for different ratios ks/Dh are given in Figure 4.4, known as the Moody diagram (Moody,

1994).

As mentioned before, Equation (4.39) is a non-linear equation and is usually solved

numerically due to its implicit nature. Lot of works have been employed to obtain

explicit reformulation of the Colebrook equation. But there are also various explicit
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Figure 4.4: Moody diagram (after Moody, 1944, with permission of the American Society
of Mechanical Engineers)

approximation of the related Darcy friction factor for turbulent flow as Haaland [27]

1√
Cd

= −1.8log10





(

ks

3.7Dh

)1.11

+
6.9

Re



 (4.40)

The different friction formulae (4.39) and (4.40) account for the roughness parameter

ks. Typicale values of ks are given in Table 5.5.
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ks(mm) Material
0.01–0.02 PVC (plastic)

0.02 Painted pipe
1–10 Riveted steel
0.25 Cast iron (new)
1–1.5 Cast iron (rusted)
0.3–3 Concrete
3–10 Untreated shot-concrete
0.6–2 Planed wood
5–10 Rubble masonry

3 Straight uniform earth channel

Table 4.1: Typical roughness heights

4.1.6.2 Momentum model

Velocity profiles are usually not uniform over the cross section, therefore average

velocity can be used by introducing the momentum coefficient or Boussinesq coefficient,

after Boussinesq [7]

β =
1
a

∫

a u2da

u2
, (4.41)

where a is the cross-sectional area (normal to the flow direction) and u is the mean flow

velocity (u = Q/a). The momentum coefficient is always larger than unity and β = 1

implies an uniform velocity distribution as shown in Figure 4.5 .

Figure 4.5: Values of momentum coefficient for uniform and non uniform velocity profiles

This coefficient was studied by Chow [13] who gives values for different channels for

water flow in turbulent regime, as described in Table 4.2.

For approximate values, the momentum coefficient can be computed by Equation
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Channels Value of β

Min. Av. Max.
Regular channels, flumes, spillways 1.03 1.05 1.07

Natural streams and torrents 1.05 1.10 1.17
Rivers under ice cover 1.07 1.17 1.33

Rivers wallays, overflooded 1.17 1.25 1.33

Table 4.2: Values of momentum coefficient β for different channels

(4.42) assuming a logarithmic distribution of velocity.

β = 1 + ǫ2 , (4.42)

or can be approximated by Equation (4.43) assuming a linear distribution of velocity as

Rehbock [50] obtained.

β = 1 +
ǫ2

3
(4.43)

where ǫ = umax/u − 1, umax being the maximum velocity and u being the mean velocity.

The coefficient ǫ can be estimate using the relation

ǫ =
9.5n

R
1/6
h

(4.44)

where n is Manning’s roughness coefficient and Rh the hydraulic radius. The Manning’s

roughness can be estimate with Table 5.18.

Channels Manning′s n
Very smooth concrete and planed timber 0.011

Smooth concrete 0.012
Ordinary concrete lining 0.013

Wood 0.014
Straight unlined earth canals in good condition 0.02

Mountain streams with rocky beds 0.05

Table 4.3: Manning’s roughness coefficients for various boundaries

It is well known that the flow velocity distribution across any flow cross-section of
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open channel is not uniform. The nature of flow velocity distribution in the cross section

of a channel flow is shown in Figure 4.6, as reported by Chaudhry [11].

Figure 4.6: Velocity distribution in open channel flow

Numerous sources confirme the practical consideration of momentum (or Boussinesq)

coefficient β as unity in hydraulic problem analysis, though the same sources indicate

that the values are not equal to unity. Experiments done by U. G. Wali [57], using the

traditional approach of determining momentum coefficients with numerical integration,

demonstrates that even for a small prismatic canal the value β is different from unity.

The findings presented by U. G. Wali are in agreement with what was reported by

Chow [13], which stated that for a regular canal the value of β range from 1.03 to 1.07.

Fenton [19], reported that neglecting this coefficient, i.e. β=1, in pipe flow and channel

flow modelling can introduce an error on height profile up to 5-10%. For this reason, he

encourages the use of the integral forms of the momentum equation in practical problems

of hydraulics to ensure the proper consideration of this factor.
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4.2 A 1D first order scheme for UNSTEADY flows through a

Venturi flume

4.2.1 Introduction to numerical methods

The current literature describes several numerical techniques that are suitable for

solving Equations (4.26). These include the method of characteristics, explicit difference

methods, fully implicit methods, Godunov methods [25] and semi-implicit methods.

The Godunov’s type methods, require the solution of local Riemann problems and,

consequently, are very effective on simple channel geometries. For space varying bottom

or width, source terms may generate artifical flows unless specific treatments of the

geometrical source terms are implemented [43], [55]. Moreover, Godunov’s type methods

are explicit in time and, accordingly, the allowed time step is restricted by a C.F.L.

stability condition, which relates the time step to the spatial discretization and the wave

speed.

4.2.2 Finite volume method

The finite-volume method (FVM) is a method for representing and evaluating par-

tial differential equations in the form of algebraic equations [35]. Similar to the finite

difference method or finite element method, values are calculated at discrete places on

a meshed geometry. Finite volume refers to the small volume surrounding each node

point on a mesh. In the finite volume method, volume integrals in a partial differential

equation that contain a divergence term are converted to surface integrals, using the

divergence theorem. These terms are then evaluated as fluxes at the surfaces of each

finite volume. Because the flux entering a given volume is identical to that leaving the

adjacent volume, these methods are conservative.
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4.2.3 The mesh

The first step in any numerical approximation is to discretize the computational

domain in both space and time. For simplicity, we consider a uniform discretization of

the domain along the spanwise direction x ∈ [xL, xR]. The discrete points are denoted

as xj = xL +
(

j + 1
2

)

∆x for j = 1, ..., N − 1, where ∆x = xR−xL

N+1 . We also define the

midpoint values

xj−1/2 = xj − ∆x

2
, (4.45)

xj+1/2 = xj +
∆x

2
, (4.46)

for j = 1, ..., N − 1. These values define computational cells or control volumes

Cj = [xj−1/2, xj+1/2] (4.47)

We use also a uniform discretization in time with time step ∆t. The time levels are

denoted by tn = n∆t. An illustration of the spatio temporal mesh is shown in Figure

5.6.

Figure 4.7: Showing the spatial discretization (red lines) and temporal discretization
(blue lines). Each control volume is represented by a square delimited by
these vertical and horizontal lines.

4.2.4 Cell averages

A classic finite difference method is based on approximating the point values of the

solution of a PDE. This approach is not suitable for conservation laws as the solutions are

83



4.2. A 1D FIRST ORDER SCHEME FOR UNSTEADY FLOWS THROUGH A VENTURI FLUME

not continuous and point values may not make sense. Instead, we change the perspective

and use the cell averages at each time level tn as the main object of interest for our

approximation.

W n
j ≈ 1

∆x

x
j+ 1

2
∫

x
j−

1
2

W (x, tn) dx (4.48)

The cell average (4.48) is well defined for any integrable function, hence also for the

solutions of the Saint Venant Equations (4.26) . The aim of the finite volume method

is to update the cell average of the unknown at every time step.

4.2.5 Godunov scheme

Consider the 1D Saint Venant Equations as given in equation (4.26) with (4.27) in

conservative form

Wt + F (W)x = b (x, W) , (4.49)

where W is the vector of the conserved quatities, F is the flux function and b the source

term.

By integrating (4.49) over a domain [xj− 1
2
, xj+ 1

2
] × [tn, tn+1 ]

tn+1
∫

tn

x
j+ 1

2
∫

x
j−

1
2

Wtdxdt +

tn+1
∫

tn

x
j+ 1

2
∫

x
j−

1
2

F (x, W)x dxdt =

tn+1
∫

tn

x
j+ 1

2
∫

x
j−

1
2

b (x, W) dxdt , (4.50)

and using the fundamental theorem of calculus gives

x
j+ 1

2
∫

x
j−

1
2

W(x, tn+1)dx −
x

j+ 1
2

∫

x
j−

1
2

W(x, tn)dx +

tn+1
∫

tn

F
(

W(xj+ 1
2
, t)
)

− F
(

W(xj− 1
2
, t)
)

dt

=

tn+1
∫

tn

x
j+ 1

2
∫

x
j−

1
2

b (x, W) dxdt (4.51)
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Godunov [25] approximated the flux at each interface xj+ 1
2

as the flux of the solution

of the Riemann problem at this interface

Fn
j+ 1

2
=

1

∆t

tn+1
∫

tn

F
(

W(xj+ 1
2
, t)
)

dt , (4.52)

defined by

Fn
j+ 1

2
= F (W(xj, tn), W(xj+1, tn)) . (4.53)

For the source term, we simply approximate

tn+1
∫

tn

x
j+ 1

2
∫

x
j−

1
2

b (x, W) dxdt ≈ ∆t∆x b (xj, W(xj, tn)) (4.54)

Using the cell averages definition (4.48), we can write Equation (4.49) as

∆x
(

Wn+1
j − Wn

j

)

+ ∆t
(

Fn
i+ 1

2
− Fn

j− 1
2

)

= ∆t∆x bn
j (4.55)

and so

Wn+1
j = Wn

j − ∆t

∆x

(

Fn
j+ 1

2
− Fn

j− 1
2

)

+ ∆t bn
j (4.56)

4.2.6 Numerical fluxes

Several numerical fluxes might be used, the most commonly used are

• Lax-Friedrichs flux [34]

• Rusanov flux [51]

• HLL flux [2]

• VFRoe-ncv flux [37]

The Lax-Friedrichs flux introduces much more diffusion than is actually required, and

gives numerical results that are typically more smeared unless a very fine grid is used.
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The Rusanov flux is also diffusive but more accurate and simple to implement, the

kinetic one is slightly less diffusive but more computationally time consuming. VFRoe-

ncv and HLL fluxes are comparable and very accurate, but the first one is a little more

time consuming due to entropy correction. All these fluxes are compared in [17] in

Saint-Venant framework.

In this work, we use the Rusanov flux which is accurate and defined by

F (WL, WR) =
F (WL) + F (WR)

2
− | k | WR − WL

2
(4.57)

with

k = sup ( sup
u=uL,uR j∈[1,2]

| λi(u) | ) (4.58)

where λ1(u) and λ2(u) are the eigenvalues of (4.28) and given by (4.30) and (4.31)

respectively.

4.2.7 CFL condition

A CFL (Courant, Friedrichs, Levy) condition has to be imposed on the time step for

the explicit scheme used here. The CFL allows to prevent from numerical blow up and

to ensure the positivity of a. This classical stability condition writes

∆t ≤ nCF L
∆x

max
i

(| ui | + ci)
(4.59)

where ci =
√

gai

σηi
and nCF L = 1 for the first order scheme.

4.2.8 Boundary and initial conditions

Two types of boundary conditions are implemented. On the outlet, all downstream

waves get out of the computation domain without any reflection. On the inlet, all

upstream waves are fully reflected on a wall. This condition is imposed by zero velocity
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at x = 0, i.e. u(x = 0) = 0. Nevertheless, a source term at x = 0 on the mass

conservation equation creates an inflow. When the steady state is reached, au = Q

where Q is the specified flow rate.

All these boundary conditions are implemented as follow using ghost cells (labelled

0 and N + 1)

a0 = a1 , ∀t (4.60)

u0 = −u1 , ∀t (4.61)

aN = aN+1 , ∀t (4.62)

uN = uN+1 , ∀t (4.63)

b(1, 1) =
Q(0, t)

∆x
, ∀x (4.64)

The basic initial condition would be to start with an empty channel. This could be

done but without considering friction or considering a new friction model. Indeed basics

friction models, as Colebrook-White model (4.39), assume a fully developed flow and so

can not model a starting flow. An empty channel will introduce a new problematic for

the friction terms as surface tension of the fluid. An alternative will be to impose no

friction when the height of the flow is less than a minimum height. Thus we can start

from an empty channel and use a simple model of friction.

4.2.9 Numerical results for the trapezoidal Venturi flume with the 1D un-

steady flow model

Figure 4.8 represents the evolution of a water flow through the trapezoidal Venturi

flume. We captured the height profile of the flow h in function of the x position at

different time t. We started with an empty channel but we imposed no friction condition

87



4.2. A 1D FIRST ORDER SCHEME FOR UNSTEADY FLOWS THROUGH A VENTURI FLUME

Figure 4.8: Capture at different time of a water flow along the trapezoidal Venturi flume
for Q = 500L/min with the 1D transcient model

when h<1mm. Indeed, for small length scale and starting flow, other phenomenons

appear as surface tension. When h>1mm, the friction is modelled by the Fanning

friction factor described in previous part. For t=0.5s, the flow is still fully supercritical

and we can see the formation of an hydraulic jump at t=1s. The hydraulic jump will go

upstream the flume and makes appear a subcritical regime upstream. After 5s, the flow

reached steady state and the Venturi flume works with upstream subcritical condition,

and imposed a transcritical transition through the throat.
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4.3 A 1D first order scheme for STEADY flows through a Ven-

turi flume

4.3.1 Introduction to gradually varied flow

In steady steate, the flow rate is constant and the conservation of mass gives

dQ

dx
= 0 (4.65)

with Q = au, and the momentum equation is written

(

βau2
)

x
= −gahx − 1

2
Pwfu2 (4.66)

Considering β constant, we can express the left term of Equation (4.66) as

dβau2

dx
= β

d

dx

(

Q2

a

)

= βQ2 d

dx

(

1

bh + mh2

)

= −βQ2 h db
dx

+ bdh
dx

+ h2 dm
dx

+ 2mhdh
dx

(bh + mh2)2

= −βQ2 h db
dx

+ h2 dm
dx

+ ση
dh
dx

a2

and then rewrite Equation (4.66) as

dh

dx
=

Sg − Sf

1 − βFr2
(4.67)

with the geometrical term source

Sg =
βQ2

ga3

(

h
db

dx
+ h2 dm

dx

)

(4.68)
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the friction term source

Sf =
1

2ga
PwCf

(

Q

a

)2

(4.69)

and the Froude number

Fr =

√

Q2ση

ga3
(4.70)

Equation (4.67) is the general differential equation for gradually varied flow as is cur-

rently written in the litterature, Chow [13]. It allows to obtain the slope of the fluid

surface with respect to the channel bottom. The fluid surface is parallel to the channel

bottom when dh
dx

= 0, rising when dh
dx

> 0 and lowering when dh
dx

< 0. On the other hand,

dh
dx

can be infinite when Fr =
√

1
β

(or Fr = 1 if β = 1) and characterized the critical

state where h = hc.

4.3.2 Characteristics of streamwise height profiles

Equation (4.67) for gradually varied flow expresses the longitudinal surface slope of

the flow with respect to the channel bottom. It can therefore be used to describe the

characteritics of various flow profiles. The flow profile represents the surface curve of

the flow. It will represent a backwater curve if the fluid depth increases in the direction

of the flow and a drawdown curve if the fluid depth decreases in the direction of flow.

Therefore the streamwise height profile is a backwater curve if ∂h
∂x

is positive and a

drawdown curve if ∂h
∂x

is negative.

When h = hc, Equation (4.67) can indicate that ∂h
∂x

is infinite, that is, that the flow

profile will be vertical in crossing the critical-depth line. If the fluid depth suddenly

changes from a low stage to a high stage in crossing the critical-depth line, a hydraulic

jump will occur, representing a discontinuity in the height profile. If the depth changes

from a high to low stage, then a transcritical transition will occur. It should be noted

that, at or near the critical-depth line, the flow profile is bent to produce such great

curvature that the small curvature assumption for the 1D Saint Venant equations, and
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will introduce large errors. In fact, the height profile may become so curvilinear or

rapidly varied so that the theory and equations developed in the preceding chapter

become inapplicable. Therefore, Equation (4.67) will be inaccurate near the critical

depth.

4.3.3 Classification of height profiles

Into a Venturi flume, when the downstream depth is high enough that the transition

to subcritical flow advances upstream into the throat and the transcritical transition

disappears, the flume is operating in a submerged flow regime. This regime is charactized

by a submerged height hs and an upstream height bigger than this submerged height.

Therefore, for a given flow rate and channel conditions, the submerged-depth and critical-

depth lines divide the space in a channel into three zones

• Zone 1 : the space above the upper line

• Zone 2 : the space between the two lines

• Zone 3 : the space below the upper line

Thus, the flow profiles may be classified into six mean different types according to the

nature of the conditions and the zone wich the flow surface lies. These types are designed

as M1, M2, M3; S1, S2, S3; where the letter is descriptive of the condition: M for mid

(subcritical) and S for steep (supercritical); and where the numerical represents the zone

number. It should be noted that a continuous flow profile usually occurs only in one

zone.

Figure 4.9 represents three typical flow profiles along Venturi flumes reflecting phys-

ical conditions:

• Plot 1 : M1 profile reflects a submerged flow, this occurs when fluid surface down-

stream from the flume is high enough to reduce flow through the flume. When the

resistance to the flow in the downstream channel is sufficient to reduce the velocity
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Figure 4.9: Examples of height profiles

out of the flume, flow depths increase and cause a backwater effect, as the fluid

cannot exit the flume quickly enough.

• Plot 2 : M2 with S3 profiles reflects a free-flow, this occurs in the flume when there

is insufficient backwater to reduce the discharge through the flume. The primary

advantage of free-flow is that the level only needs to be measured in the inlet of

the flume and upstream of the throat to calculate the flow rate. It is this typical

configuration that we are interested.

• Plot 3 : S3 profile reflects supercritical flow, that occurs when a supercritical

flow is imposed at the entrance of the flume and is used for transport and flow

measurement where the flow has to be fast.

As shown in Figure 4.9 and Plot 2, we are interested on the free flow condition which

allows a transcritical condition along the Venturi flume and allowing us to relate the

upstream height to the flow rate. But as we can see, this transcritical transition appears

when the flow cross the critical-depth line which means a critical height occurs. Using

Equation (4.67), the critical height needs to be narrowly modeled.

4.3.4 Method of singular points

In order to solve Equation (??) at critical point determined by position pair (xc,hc),

one approach is to use the method of the singular point. This theory was developed by
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Poincaré [46] but was first applied to flow studies in channels by Massé [38] and extended

by others.

Let the numerator and denominator of Equation (4.67)be represented by two fonc-

tions

dh

dx
=

Sg − Sf

1 − βFr2
=

F1(x, h)

F2(x, h)
(4.71)

Then, set each of these functions equal to zero

F1(x, h) = Sg − Sf = 0 (4.72)

F2(x, h) = 1 − βFr2 = 0 (4.73)

The solutions of theses Equations (4.72) and (4.73) are xc and hc, and for this

point, Equation (4.67) gives ∂h
∂x

= 0
0 , an indeterminate form. Such a point is known

in mathematics as a singular point. If a critical point (xc,hc) exists in the domain, then

the flow encounters a critical transition.

Location of the critical point The location of the critical point xc is determined

by solving Equation (4.72). First, from Equation (4.72), we have the relation for the

flow rate as

Q =

√

√

√

√

ga3
c

βση,c

(4.74)

where the index c stands for the critical value with the critical height hc. Then, we can

rewrite Equation (4.72) as a function of (xc, hc) as

F3(xc, hc) =

(

hc
db

dx

∣

∣

∣

∣

∣

x=xc

+ h2
c

dm

dx

∣

∣

∣

∣

∣

x=xc

)

− 1

2β
Pw,cfc (4.75)

We find (xc, hc) subject to following equation

F3(xc, hc) = 0 (4.76)
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F3(xc − ǫx, hc + ǫh) < 0 (4.77)

F3(xc + ǫx, hc − ǫh) > 0 (4.78)

with ǫx is a small variation on x and ǫh is a small variation on h, and which represents

a change in state from subcritical to supercritical. To find (xc, hc), one method consists

on vary xc and hc and study the sign of F3. So we varied xc into [0; 2] and hc into [0; 0.3].

Figure 4.10: Left plot : F3 as a function of xc and hc; Right plot : signs of F3 as a
function of xc and hc

The right plot on Figure 4.10 shows the sign of F3, when F3 = 1 then F3 > 0 and

when F3 = −1 then F3 < 0. The only location which verifies the conditions (4.76),

(4.77) and (4.78) is the location xc = 1.5, which is the location between the throat and

the divergent part, where bc = 0.02m and mc = 0.15.

Height of the critical point The height of the critical point is found by solving

Equation (4.73) and using previous results of the critical location. Then, Equation (4.73)

can be written as an equation with a polynomial on height as

gm3
ch

6
c + 3gbcm

2
ch

5
c + 3gb2

cmch
4
c + gb3

ch
3
c − 2βQ2mchc − βQ2bc = 0 (4.79)

Lot of methods can be used to solve this polynomial, especially the function roots in

matlab where the roots of the polynomial are calculated by computing the eigenvalues
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of the companion matrix. The roots are six in number but only one is positive and real.

Figure 4.11: Plot of hc values in function of the flow rate Q with bc = 0.02m, mc = 0.15,
β = 1 and g = 9.81msb−2

O. Thual et al. [41] showed that laminar flows have the same critical height hc as that

in the turbulent case. This feature is due to the existence of surface slope singularities

associated to plug-like velocity profiles (Equation (4.79) with β = 1) with vanishing

boundary-layer thickness. But us, we considered a normal flow for the definition of the

velocity distribution and then we take into account the value of β in Equation (4.79).

It is important to highlight that if we can measure the critical height, we can estimate

directly the flow rate, thanks to Equation (4.74), and you can found the plot which

represents the critical height hc in function of the flow rate Q on Figure 4.11. The

critical height hc is not possible to measure accurately because of the strong variation

of the surface slope around the critical point.

4.3.5 Method of computation

The differential equation of gradually varied flow cannot be expressed explicitly in

terms of h for all types of channel cross-section, hence a direct and exact integration of

the equation is practically impossible. Many attempts have been made either to solve

the equation for a special cases or to introduce assumptions that make the equation

to be analitycally integrable. Patil [47] proposed an improvement in the direct method
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originally proposed by Chow [13] for integrating the equation of gradually varied flow in

prismatic channels. The results obtained by this improved method compare well with

the results of the numerical method.

Due to the complexity of the channel shape used here, we propose a way to integrate

numerically Equation (4.67) of gradually varied flow. First, the domain is divided into

three domain : subcritical, critical and supercritical. Here, only transcritical transitions

are considered. In this case, the flow is subcritical prior the critical position and super-

critical downstream. Equation (4.67) is therefore integrated from the critical position in

both directions. In order to remove numerical singularity at (xc,hc), Equation (4.67) is

integrated in the subcritical region from a point (xc,L,hc,L) just before the critical point.

Similarly, we can integreate numerically Equation (4.67) from the point just after the

critical point (xc,R, hc,R) to get the height profile of the supercritical regime.

xc,L = xc − ǫx,L (4.80)

hc,L = hc + ǫh,L (4.81)

xc,R = xc + ǫx,R (4.82)

hc,R = hc − ǫh,R (4.83)

where ǫh,L and ǫh,R are small variations on height just before and after the critical point,

and where ǫx,L and ǫx,R are small variations on x just before and after the critical point.

Theses coefficient can be computed by linearising the differential equation around the

critical point. With this method, we can integrate the height profile for both (subcrit-

ical and supercritical) regimes and capture the transcritical transition and solving the

numerical problem due to the singular point.
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4.3.6 Numerical results for the trapezoidal Venturi flume with the 1D steady

state flow model

We used the method of computation described before to compute a complete height

profile of a water flow through the trapezoidal Venturi flume, as shown in Figure 4.12.

Upstream the critical point in red, we have a subcritical flow caracterized by Fr<1,

whereas downstream the critical point we have a supercritical flow caracterized by Fr>1.

Note that this method can be used and extended for other shapes of Venturi flume.

Figure 4.12: Water flow along the trapezoidal Venturi flume with Q = 500L/min
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4.4 Steady solutions of the 1D models for water flows through

the trapezoidal Venturi flume

We develop two strategies to compute the flow along the trapezoidale Venturi flume,

but this two models are based on different numericals approaches. The purpose of this

section is to compare this two models in term of performances to obtain the steady state

solutions. Indeed, we wait for steady state from the unsteady computation from the 1D

unsteady model to compare it with the steady computation from the 1D steady state

model. The three simulations below were made with three different number of meshes :

100, 1000 and 10000; and paramaters as:

• Fluid : water

• Flow rate : 500 L.min−1

• Viscosity : 0.001 Pa.s

• Density : 1000 Kg.m−3

• β : 1

For figures 4.13, 4.14 and 4.15, the first plot shows the width of the trapezoidal Venturi

flume, the second plot shows the depth of water along the flume, the third plot shows flow

rate computed and the last plot shows the Froude number computed for each models.
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Case 1 ; number of mesh : 100

Figure 4.13: Water flow along the trapezoidale Venturi flume with Q = 500L/min and
a number of mesh equal to 100

Height of the fluid Height of fluid computed by the steady model and the un-

steady model are close. The big differences are around x=1m and, ie. at the entrance

and exit of the throat secion, where depth rapidly varies on a small distance.

Flow rate The flow rate computed through the Venturi flume by the steady state

model is equal to the input flow rate, we have mass conservation. On the orther hand,

the flow rate computed through the Venturi flume by the unsteady model is different

from the input flow rate, we have not mass conservation. this discrepancy is due to the

not "well balanced" scheme. The source term affects the results of the unsteady model

and thus it needs to be improved.

Froude number Froude numbers computed by the steady model and the unsteady

model are close. The main result is that we have the critical point at the same location

for both models. It means that the singular point method used for the steady state
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model to predict the critical position and critical height, is validated by the unsteady

model where we don’t impose anything to determine the critical condition.

Case 2 ; number of mesh : 1000

Figure 4.14: Water flow along the trapezoidale Venturi flume with Q = 500L/min and
a number of mesh equal to 1000

height of the fluid Height of fluid computed by the steady model and the unsteady

model are very close. Small differences are still here, near the divergente and convergente

parts.

Flow rate The flow rate computed through the Venturi flume by the steady state

model is still equal to the input flow rate, we have mass conservation. On the other

hand, the flow rate computed through the Venturi flume by the unsteady model comes

closer the input flow rate. Increasing the number of meshes increases the accuracy of

the unsteady model.
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Froude number Froude numbers computed by the steady model and the unsteady

model are very close. The critical point is still at the same location for both models.

Case 3 ; number of mesh : 10000

Figure 4.15: Water flow along the trapezoidale Venturi flume with Q = 500L/min and
a number of mesh equal to 10000

Height of the fluid Height of fluid computed by the steady model and the un-

steady model are almost equal. The mean difference on height between boths are lesser

than 5%.

Flow rate Flow rates computed by the steady model and the unsteady model

are almost equal. The mean difference between boths are lesser than 0.03%. For this

computation, we can consider that we have mass conservation for both models.

Froude number Froude numbers computed by the steady model and the unsteady

model are almost equal and equal to 1 still at the same location.
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Conclusion

The steady state model is very accurate and ensure the mass conservation even with

small number of meshes. On the other hand, the unsteady model needs a significant

number of nodes to be accurate and ensure mass conservation. Moreover, the unsteady

model have to compute the all evolution of the flow from empty channel to full channel

and reach the steady state. Then, the computation time increases dramatically with

increasing of the number of meshes, as showed in Table 4.4.

Models Computation time (s)
Case 1 Case 2 Case 3

Steady state < 1 < 1 < 1
Unsteady 60 300 5000

Table 4.4: Computation time of models
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CHAPTER V

Friction model of non-Newtonian fluids for open

channels

Free societies are societies in motion, and with motion comes friction.

Salman Rushdie
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5.1 Introduction to friction

The study of water flow in open channels is well documented, and a lot of friction

models has been developed. On the contrary, the case of non-Newtonian fluid flows

has been less explored. The lack of information for this case makes the design of open

channels for complex fluid difficult. A specific attention on this point, and particularly on

the development of friction models, is therefore needed. Datasets are published for non-

Newtonian flow in rectangular open channels by Coussot [15], Naik [40], Haldenwang [28]

and Haldenwang & Slatter [48], for non-Newtonian flow in semi-circular open channels

by Fitton [20] [21] and by Burger [8] for non-Newtonian flow in semi-circular, triangular,

trapezoidal and rectangular open channels. Not much of data has been available for

non-Newtonian flow in channels of varying cross sections.

In the case of laminar flows of Newtonian fluids, Straub et al. [33] presented a

theoretical prediction of friction laws for open channels with different cross sectional

shapes and they also supplied experimental data for the flow of water and kerosene.

They showed that the data in the laminar flow regime can be defined by a general

relationship f = K/Re where f is the Fanning friction factor, Re is the Newtonian

Reynolds number and K is a purely numerical coefficient which dependends on the

channel shape. Analytical and numerical solutions for K were provided for rectangular,

semi-circular, elliptical, triangular and trapezoidal channels. Straub et al. [33] found

that the predicted f vs. Re law for smooth-wall, rectangular, triangular and semi-

circular shaped channels are in the good agreement with the experimental data when

plotted as an f vs. Re plot. For rectangular channels where the water height to channel

width (h/W) ratios ranges from 0.08 to 0.37, K was found to vary from 19.75 to 15.25.

These values compared well with the corresponding analytical values of 21.5 to 16.25. For

triangular channels, K was found to be 14.25 and independent of the vertex angle. This is

in excellent agreement with the analytical value of 14.23 for the 90deg triangular channel
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and the numerical value of 14.15 for the other triangular channels. For semicircular

channels, the f vs. Re plot showed the data to be grouped about the f = K/Re law

where K was found analytically to be 16.

Chow [13] proposed a friction law f as a function ofRefor the case of water in smooth-

wall, rectangular and triangular channels based on the two datasets of Straub et al. [33]

. Here, K was found to be approximately 24 for the rectangular channels and 14 for the

triangular channels.

Only few studies have been reported in the literature for the prediction of non-

Newtonian laminar friction law in open channels of arbitrary cross-section. The only

method available was that proposed by Kozicki and Tiu [56]. The shape factors used by

Kozicki and Tiu [56] were those evaluated from analytical solutions for flow of Newtonian

fluids in the open channel of the same cross-section by Chhabra and Richardson [12].

No experimental work was carried out by Kozicki and Tiu [56] to validate their model.

Coussot [15] provided some data for the flow of a Herschel-Bulkley fluid in rectangular

and trapezoidal channels. Fitton [20] [21] obtained data for flow of three different non-

Newtonian fluids (carboxymethyl cellulose, carbopol and thickened tailings) in semi-

circular channels. Naik [40] provided some data for turbulent flow of a Bingham fluid

in a rectangular channel.

Haldenwang [28] and Haldenwang & Slatter [48] provided an extensive database for

non-Newtonian flow in rectangular open channels. Burger [8] extended the database

developed by Haldenwang [28] for rectangular channels to include non-Newtonian flow

in semi-circular, trapezoidal and triangular channels. Using the Haldenwang [28] defini-

tion of Re, the effect of shape on the f vs. Re relationship for laminar, open channel

flow of non-Newtonian fluids was investigated in some depth. During this research,

Burger [8] investigated also the effect of shape on the friction factor-Reynolds number

relationship for turbulent non-Newtonian flow in rectangular, trapezoidal, semi-circular
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and triangular open channels.

5.2 Current models

5.2.1 Friction factor

Laminar friction models for open channels

We consider 4 current models used to describe laminar flows in open channels, given

in Table 5.1 and namely :

• The Straub [33] model for laminar flow of Newtonian fluids in rectangular, trian-

gular, semi-circular and trapezoidal open channels,

• The Kozicki & Tiu [56] model for laminar flow of power law and Bingham fluids

in rectangular, triangular and semi-circular open channels,

• The Haldenwang et al. [28] model for laminar flow of power law, Bingham plastic

and Herschel-Bulkley fluids in rectangular, triangular, semi-circular and trape-

zoidal open channels,

• The Burger [8] model for laminar flow of power law, Bingham plastic and Herschel-

Bulkley fluids in rectangular, triangular, semi-circular and trapezoidal open chan-

nels,
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Turbulent friction models for open channels

We consider 4 current models used to describe turbulent flows in open channels,

namely :

• The Blasius [6] model for turbulent pipe flow of Newtonian fluid, which has been

adapted for open channel flow by replacing the pipe diameter with four times the

hydraulic radius,

• The Naik [40] model for turbulent open channel flow of Bingham fluids,

• The Haldenwang et al. [28] model for turbulent open channel flow of power law,

Bingham plastic and Herschel-Bulkley fluids,

• The Burger [8] model for turbulent open channel flow of power law, Bingham

plastic and Herschel-Bulkley fluids,

These models are given in Table 5.3.
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5.2. CURRENT MODELS

ks(mm) Material
0.01–0.02 PVC (plastic)

0.02 Painted pipe
1–10 Riveted steel
0.25 Cast iron (new)
1–1.5 Cast iron (rusted)
0.3–3 Concrete
3–10 Untreated shot-concrete
0.6–2 Planed wood
5–10 Rubble masonry

3 Straight uniform earth channel

Table 5.5: Typical roughness heights

The coefficient A0 for the Naik [40] turbulent model is desfined as :

A0 = ln





30h

Rh

exp



−1 −
(

b
h

+ 2
)

h2

4a







 (5.1)

5.2.2 Momentum coefficient

Owing to the presence of a free surface and to the friction along the channel wall,

the velocities in a channel are not uniformly distributed in the channel section. General

patterns for velocity distribution in several channel sections for water are illustrated in

Figure 5.1.

Figure 5.1: Velocity distribution in open channel flow for water

The velocity distribution in a channel section can depend also on other factors, such
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5.2. CURRENT MODELS

as the rheology of the fluid, the unusual shape of the section and the roughness of

the channel. For inviscid fluid, the velocity distribution is uniform through the sec-

tion whereas the friction causes the curvature of the vertical and horizontal velocity

distribution Figure 5.2.

Figure 5.2: Effect of friction on velocity distribution in an open channel

The non uniform distribution of velocities affects the computation of momentum in

open channel flow. From the principle of mechanics, the momentum of the fluid passing

through a channel section per unit time is expressed by βρau2/g, where β is known

as the momentum coefficient or Boussiniesq coefficient, after Boussinesq [7] who first

proposed it and defined as :

β =

∫

a u2da

au2
(5.2)

Turbulent momentum coefficient model for open channels

As described in previous part, it is generally found that value of β, for fairly straight

prismatic channels and water fluid, varies approximately from 1.01 to 1.12, as described

by Chow [13]. He proposed an approximate values to estimate the momentum coefficient,

for water turbulent flow assuming a uniform flow along the streamwise direction and a

logarithmic distribution of velocity, as :

β = 1 + ǫ2 (5.3)
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5.2. CURRENT MODELS

where ǫ = umax/u − 1, umax being the maximum velocity and u being the mean velocity.

The coefficient ǫ can be estimate using the relation

ǫ =
9.5n

R
1/6
h

(5.4)

where n is Manning’s roughness coefficient and Rh the hydraulic radius. The Manning’s

roughness can be estimated with Table 5.18.

Channels Manning′s n
Very smooth concrete and planed timber 0.011

Smooth concrete 0.012
Ordinary concrete lining 0.013

Wood 0.014
Straight unlined earth canals in good condition 0.02

Mountain streams with rocky beds 0.05

Table 5.6: Manning’s roughness coefficients for various boundaries

Nothing has been reported in the literature for predicting momentum coefficient for

non-Newtonian turbulent flow in open channels of arbitrary cross-section. Therefore, the

model proposed by Chow [13] may be used for non-Newtonian fluids, because he related

the momentum coefficient only to the hydraulic radius and the surface roughness. For

example, with h = 0.2, b = 0.12 and a Mannin’s roughness n = 0.011, the momentum

coefficient β = 1.03.

Laminar momentum coefficient model for open channels

For laminar Newtonian flow, there is not direct approximation β but Straub et al.

[33] proposed an analytical formula of the velocity distribution for several open channel

shapes :

• semi-circular

• rectangular
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5.2. CURRENT MODELS

• triangular

• trapezoidal

In this case, the flow is assumed to be uniform along the streamwise direction. Then,

we can estimate the velocity distribution through the section and then estimate the

coefficient β using Equation (5.2). Figure 5.3 shows the analytical formula of the velocity

distribution for open channels with rectangular section.

Figure 5.3: Analytical formula of the velocity distribution for open channels with rect-
angular section

Very little has been reported in the literature for predicting momentum coefficient

for non-Newtonian laminar flow in open channels of arbitrary cross-section.

5.2.3 Selected friction models for open channels

Laminar flow : As described Straub [33] and Burger [8], the friction depends mainly

on the shape of the section. Straub [33] proposed an analytical formula to estimate the

friction for Newtonian fluids for different shapes, whereas Burger [8] proposed a semi-

empirical formula to estimate the friction for non-Newtonian fluids for different shapes.

Because of the shape variation of Venturi flumes and shape varieties, we propose a two

numerical models (1D and 2D) able to estimate friction for Newtonian & non-Newtonian

fluids adapted with different shapes. Thess models may compute velocity profil and may

estimate Fanning friction factor and momentum coefficient for different flows.
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5.3. LAMINAR THEORY

Transitional flow : The transition from laminar to turbulent flow of Newtonian fluids

in open channels has been reported to occur at Reynolds numbers between 2000 and

3000, as described Straub [33]. For non-Newtonian fluids, Haldenwang [48] found that

the transition occurred at much lower Reynolds numbers than that for Newtonian fluids.

We propose a simplification adapted for our geometry.

Turbulent flow : Friction is less impacted by the shape variations, therefore based on

the Blasius [6] formula and the Burger [8] correction, we propose same formula adapted

for our geometry.

5.3 Laminar theory

The wall shear stress of a liquid in steady flow in an open channel of uniform cross

section under the influence of a source term is determined by making a force balance as

shown in Figure 5.4.

Figure 5.4: Force balance of a steady flow in an open channel of uniform cross section

A force balance between the downwards force, source term causing flow parallel to

the plane and the force opposing the flow is the friction at wall. In a steady flow parallel

to the plane, we consider the pressure gradient Pg along the x-direction as the source

term. In the other hand, the force opposing the flow is due to the wall shear stress τw
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5.4. LAMINAR 1D FRICTION MODEL

times the wall area. Therefore, we can write the force balance in the x-direction as :

aLPg = τwPwL (5.5)

where a is the cross sectional flow area, L is a length of the channel and Pw is the wetted

perimeter. Noting the Fanning friction factor f is given by :

τw =
1

2
fρu2 (5.6)

For laminar flow, we relate the Fanning friction factor f to the generalized Reynolds

number Reg and the factor of shape K, as described Burger [8] and Straub [33].

f =
K

Reg

(5.7)

where

Reg =
8ρu2

τy + k
(

2u
Rh

)n (5.8)

Substituting for τw from Equation (5.6) and (5.7) into Equation (5.5) gives the expression

of the shape factor K as :

K =
2aPgReg

Pwρu2
(5.9)

5.4 Laminar 1D friction model

5.4.1 Flow along an infinite plane

We consider a non-Newtonian laminar flow on an infinite plate, as shown in Figure

5.5. Here, the flow is driven by a pressure gradient in the x-direction, but the same

problem can be solved with a flow driven by gravity on an inclined plane as did Burger

[8] [30], Alireza [52], Chambon [23], Chilton [18] and Coussot [15]. In the case of a yield
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5.4. LAMINAR 1D FRICTION MODEL

stress fluid, the flow is characterized by the existence of a solid phase such that y ∈

[hy, h], where h is the height of the fluid.

Figure 5.5: Open channel flow on an infinite plate. Velocity profil u(y) and shear stress
profil τ(y).

Let us consider the 2D problem, with u(x, y, t) and v(x, y, t) respectively parallel and

orthogonal velocity fields to the flow. Navier-Stokes equations can be written as :

∂u

∂x
+

∂v

∂y
= 0 (5.10)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂P

∂x
+

1

ρ

(

∂τxx

∂x
+

∂τxy

∂y

)

(5.11)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂P

∂y
+

1

ρ

(

∂τxy

∂x
+

∂τyy

∂y

)

(5.12)

where ρ denotes the density, τxx, τyy, and τxy are the normal stress in the x-direction,

normal stress in the y-direction, and shear stress, respectively.

It is assumed that the flow is steady, incompressible, fully developed (no side effects)

and is considered as being parallel to the bottom in the x-direction. This is the case

when the relative slope of the free surface is nil or negligible. Therefore, we impose

∂.
∂t

= 0 and v = 0. We impose also ∂.
∂x

= 0 except for the pressure gradient of the

x-direction, which is assumed constant and written as Pg. We consider only the shear

116



5.4. LAMINAR 1D FRICTION MODEL

stress, and τxy = τ , then we can write:

dτ

dy
= Pg (5.13)

Especially, integrating Equation (5.13) on the y-direction and assuming the condition of

free surface where τ(h) = 0, we have the distribution of the shear stress :

τ(y) = −(h − y)Pg (5.14)

and notice that on the bottom, τ(0) = −hPg.

We express the shear stress using the Herschel Bulkley law :

τ = τy + k

(

du

dy

)n

(5.15)

and rewrite Equation (5.13) with the expression of the shear stress as :

d

dy

(

τy + k

(

du

dy

)n)

= Pg (5.16)

Integrating twice Equation (5.16) results in :

u(y) =
n

n + 1

k

Pg

(

Pg

k
y +

C1 − τy

k

)

n+1
n

+ C2 (5.17)

where C1 and C2 are integration constants. Using the two boundary conditions from

Equation (5.14) and the no slip condition at the bottom (u(0) = 0), we can write the

velocity distribution as a function of the pressure gradient Pg and the fluid height h :

u(y) =
n

n + 1

k

Pg





(

Pg

k
y − hPg + τy

k

)
n+1

n

−
(

−hPg + τy

k

)
n+1

n



 (5.18)
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But, we prefer to express the velocity distribution as a function of the flow rate q per

unit length in the z-direction, and the height of the fluid h. So, we define hy which is

the height of the solid/liquid interface, u(hy) = uy and τ(hy) = τy. Then, above hy, the

fluid is like a solid and result are :

du

dy

∣

∣

∣

∣

∣

y=hy

= 0 (5.19)

hy =
hPg + τy

Pg

(5.20)

uy = − n

n + 1

k

Pg

(

−hPg + τy

k

)
n+1

n

(5.21)

The flow rate q per unit length can be written as the sum of two partial flow rates, one

part from the moving fluid below hy and the other from the moving plug above hy.

q =

hy
∫

0

u(y)dy + uy(h − hy) (5.22)

Using Equations (5.18), (5.20) and (5.21), we can write :

q =
n

2n + 1

k

P 2
g

(

−hPg + τy

k

)
n+1

n
(

nτy

n + 1
− hPg

)

(5.23)

Knowing the flow rate per unit length q, the rheology of the fluid (τy, k, n) and the height

h, we can compute the distribution of the velocity on an infinite plate by computing the

pressure gradient Pg with Equation (5.23) and then computing the analytical velocity

distribution with Equation (5.18).
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5.4.2 Numerical resolution

The other way to find the velocity distribution is to solve numerically Equation (5.24)

dτ

dy
= Pg (5.24)

We solve Equation (5.24) based on iterative method to estimate the shear stress distri-

bution with the relation :

τ = µapp
du

dy
(5.25)

where is introduced the apparent viscosity, µapp, and defined on the Herschel Bulkley

law as:

µapp =



















µmax, | .
γ | 6 .

γmin

τy| .
γ |−1 + k| .

γ |n−1, | .
γ | >

.
γmin

(5.26)

and the shear rate as :

.
γ=

du

dy
(5.27)

A regularization of the Herschel-Bulkley model is used in the following. Indeed, in the

limit of vanishing shear rates, the apparent viscosity of a true Herschel-Bulkley fluid is

infinite. This causes numerical difficulties when solving the pressure Equation (5.24) in

regions of zero shear. The most common approach to deal with this difficulty is to limit

the apparent viscosity to a large value, as done Frigaard & Nouar [22], Aposporidis [4],

Bercovier & Engelman [5] and Papanastasiou [44]. There is, of course, an infinity of

suitable functions for regularising the viscosity. The more popular is due to Bercovier

& Engelman [5] whith :

µapp = τy

(
√

.
γ2

+ǫ2
)−1

+ k
(
√

.
γ2

+ǫ2
)n−1

(5.28)
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where ǫ << 1. For our cases, best compromise between fast convergence and computa-

tion accuracy, ǫ = 10−2.

With the definition of the regularized apparent viscosity, Equation (5.28), Equation

(5.24) reduces to :

d

dy

(

µapp
du

dy

)

= Pg (5.29)

The unknows of the system are u(y) and Pg. We use finite difference method to find an

approximation ui of the velocity u(yi) of the solution on a grid.

Figure 5.6: Vertical mesh and associated space steps

Using central finite difference to estimate diffusive terms, we can write :

d
dy

(

µdu
dy

)∣

∣

∣

i
=

µ
i+ 1

2

du
dy |

i+ 1
2

−µ
i−

1
2

du
dy |

i−

1
2

∆y

= 1
∆y2

(

µi+ 1
2
(ui+1 − ui) − µi− 1

2
(ui − ui−1)

)

(5.30)

and therefore, we find the numerical solution ui of the following equation:

1

∆y2

(

µi+ 1
2
(ui+1 − ui) − µi− 1

2
(ui − ui−1)

)

= Pg (5.31)

The flow rate is imposed by a constrain on the axial velocity where N is the number of

mesh.
N
∑

i=1

ui∆y = q (5.32)
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The system take the following matrix form:









Ak B

∆y 0









.









ui

Pg









=









0

q









(5.33)

Where Ak is the diffusion matrix, with size N ×N ,calculated with the estimate apparent

viscosity at iterate k. The global matrix has then (N +1)×(N +1) .Equations are writen

for 2 ≤ i ≤ N − 1. Boundary conditions are implemented as follows by completing first

and last lines of diffusive matrix and right hand member.

u1 = 0 so Ak
1,1 = 1

uN −uN−1

∆y
= 0 so Ak

N,N−1 = −1
∆y

, Ak
N,N = 1

∆y

(5.34)

After each iteration k, we evaluate the new shear rate Πk+1
i and the new apparent

viscosity µk+1
i with finite difference formulas.

Πk+1
i =

uk
i+1 − uk

i

∆y
(5.35)

µk+1
i = k

(

Πk+1
i

)n−1
+ τ0

(

Πk+1
i

)−1
(5.36)

using zero gradient boundary condition for the shear rate as :

Πk+1
N−1 = Πk+1

N (5.37)

Finally the algorithm accuracy is firt order of accuracy with space step. The number of

iteration required increases with the non linearity of the system.
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5.4.3 Numerical vs. analytic solutions

The purpose of this study is to compare the analytical solution of the velocity dis-

tribution from Equation (5.18) vs. the numerical resolution of the velocity distribution

from Equation (5.31). Let compare results for 3 different fluids as described in Table

5.7.

Case Fluid τy k n ρ
[Pa] Pa.sn [−] [kg/m3]

1 Newtonian 0 0.5 1 1000
2 Bingham 5 0.5 1 1000
3 Herschel Bulkley 5 0.5 0.5 1000

Table 5.7: 3 different fluids of computations

For each case, we computed analytical and numerical velocity profile for q = 0.0333m2/s,

h = 0.2m and the number of mesh Nm = 211. Results are shown in Figure 5.7.

Figure 5.7: Velocity profile results from analytical and numerical solution, for the 3
different fluids : Newtonian fluid, Bingham fluid and Herschel Bulkley fluid
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We summarized the maximum errors between the analytical and numerical solutions

in Table 5.8.

Case Error Iterations Computation time
[%] [s]

1 0.02 1 0.5
2 0.13 88 20
3 0.32 83 19

Table 5.8: Maximum errors between the analytical and numerical solutions for the 3
different fluids: Newtonian fluid, Bingham fluid and Herschel Bulkley fluid

The numerical solutions have good agreement with analytical solutions. For a number

of meshes equal to 211, we can expect a maximum error on velocity between numerical

and analytical solutions lesser than 0.4%. This accuracy has a cost : 88 iterations and

20s of computation for the case 2. This accuracy can be improved but it would cost

too munch. For the case 1, the maximum errors between the analytical and numerical

solutions were computed for various number of meshes Nm. The algorithm converges

when increase number of meshes and the finite formulas reveal a first order accuracy in

space, as shwon in Table 5.9.

Nm Error
[%]

26 0.7750
27 0.3891
28 0.1949
29 0.0976
210 0.0488
211 0.0244
212 0.0121
213 0.0056

Table 5.9: Convergence of the numerical computations for the case 1
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5.4.4 Friction computations

5.4.4.1 Friction factor computation

The computation of the friction factor for laminar flow is based on the numerical

velocity profile model described on the previous part. Indeed, we can estimate the

Fanning friction factor for a steady parallel flow based on the numerical velocity profile

solution described on the previous part. Therefore, we can compute this friction factor

using Equation (5.7), compute the generalized Reynolds number using Equation (5.8)

and compute the shape factor using Equation (5.9). Based on the last 3 different cases

from Table 5.7, we computed the friction factor and results are summarized in Table

5.13.

Case Fluid τy k n ρ K Reg f
[Pa] Pa.sn [−] [kg/m3]

1 Newtonian 0 0.5 1 1000 24 266 0.09
2 Bingham 5 0.5 1 1000 22.6 78 0.29
3 Herschel Bulkley 5 0.5 0.5 1000 20.1 84 0.24

Table 5.10: Fanning friction factor f computations for the 3 different fluids

Notice that we can find analytically for Newtonian fluid that K = 24, by computing

the mean velocity based on the analytical equation of the velocity distribution (5.18)

with τy = 0 and n = 1, and using Equation (5.9) with Rh = a/Pw = h.

5.4.5 Momentum coefficient computation

The computation of the momentum coefficient for laminar flow is based on the nu-

merical velocity profile model described on the previous part. Indeed, we can estimate

the momentum coefficient β for a steady parallel flow. Therefore, we can compute this

numerical momentum coefficient using Equation (5.38). Based on the last 3 different

cases from Table 5.7, we computed the momentum coefficient and results are summarized

in Table 5.11.
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β =
1
ni

∑ni
i=1 u2

i
(

1
ni

∑ni
i=1 ui

)2 (5.38)

Case Fluid τy k n ρ Reg β
[Pa] Pa.sn [−] [kg/m3]

1 Newtonian 0 0.5 1 1000 266 1.2
2 Bingham 5 0.5 1 1000 78 1.1
3 Herschel Bulkley 5 0.5 0.5 1000 84 1.06

Table 5.11: Momentum coefficient β computations for the 3 different fluids

Notice that we can find analytically for Newtonian fluid that β = 1.2, by computing

the mean velocity based on the analytical equation of the velocity distribution (5.18)

with τy = 0 and n = 1, and integrating it between 0 and h.

5.5 Laminar 2D friction model

5.5.1 Flow along a rectangular channel

We consider a non-Newtonian flow on an infinite open channel with a rectangular

cross sectional shape. Here, the flow is driven by a pressure gradient in the x-direction.

If we inclined the open channel, the pressure gradient can be replaced by gravity which

drives the flow.

Figure 5.8: Open channel flow in a rectangular cross sectional shape
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Let’s consider the 2D problem, with u(y, z) the parallel velocity fields to the flow. It

is assumed that the flow is steady, incompressible, fully developed and is considered as

being parallel to the bottom in the x-direction. Navier Stockes equations can be reduced

to :

∂τxy

∂y
+

∂τxz

∂z
= Pg (5.39)

The shear stresses can be expressed by Herschel Bulkley laws as:

τxy = τy + k

(

∂u

∂y

)n

(5.40)

τxz = τy + k

(

∂u

∂z

)n

(5.41)

Therefore, we can rewrite Equation (5.39) with the expression of the shear stress as :

∂

∂y

(

τy + k

(

∂u

∂y

)n)

+
∂

∂z

(

τy + k

(

∂u

∂z

)n)

= Pg (5.42)

Equation (5.42) cannot be resolved analytically, as we did for the 1D equation, therefore

numeric technics should be used.

5.5.2 Numerical resolution

The numerical resolution of the 2D velocity profile is based on the resolution of

Equation (5.43) :

∂τxy

∂y
+

∂τxz

∂z
= Pg (5.43)

We solve Equation (5.43) based on iterative method to estimate the shear stresses dis-

tribution with the relations :

τxy = µapp,y
∂u

∂y
(5.44)

τxz = µapp,z
∂u

∂z
(5.45)
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where are introduced the apparent viscosities defined on the Herschell Bulkley laws as :

µapp,y/z =



















µmax,y/z, | .
γy/z | 6 .

γmin,y/z

τy| .
γy/z |−1 + k| .

γy/z |n−1, | .
γy/z | >

.
γmin,y/z

(5.46)

and where shear rates are defined as :

.
γy=

∂u

∂y
(5.47)

.
γz=

∂u

∂z
(5.48)

A regularization of the Herschel-Bulkley model is used in the following. Indeed, in the

limit of vanishing shear rates, the apparent viscosity of a true Herschel-Bulkley fluid is

infinite. This causes numerical difficulties when solving the pressure Equation (5.43) in

regions of zero shear. The most common approach to deal with this difficulty is to limit

the apparent viscosity to a large value, as done Frigaard & Nouar [22], Aposporidis [4],

Bercovier & Engelman [5] and Papanastasiou [44]. There is, of course, an infinity of

suitable functions for regularising the viscosity. The more popular is due to Bercovier

& Engelman [5] whith :

µapp,y/z = τy

(

√

.
γy/z

2 +ǫ2
)−1

+ k
(

√

.
γy/z

2 +ǫ2
)n−1

(5.49)

where ǫ << 1. For our cases, best compromise between fast convergence and computa-

tion accuracy, ǫ = 10−2.

With the definition of the regularized apparent viscosities, Equation (5.49), Equation

(5.43) reduces to :

∂

∂y

(

µapp,y
∂u

∂y

)

+
∂

∂z

(

µapp,z
∂u

∂z

)

= Pg (5.50)
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The unknows of the system are u(y, z) and Pg. We use finite difference method to find

an approximation ui,j of the velocity u(yi, zi) of the solution on a control volume. Using

Figure 5.9: Control volume

central finite difference to estimate diffusive terms, we can write :

∂
∂y

(

µapp,y
∂u
∂y

)∣

∣

∣

i,j
=

µapp,R
∂u
∂y |

i+ 1
2 ,j

−µapp,L
∂u
∂y |

i−

1
2 ,j

∆y

= 1
∆y2 [µapp,R (ui+1,j − ui,j) − µapp,L (ui,j − ui−1,j)]

(5.51)

∂
∂z

(

µapp,z
∂u
∂z

)∣

∣

∣

i,j
=

µapp,U
∂u
∂z |

i,j+ 1
2

−µapp,D
∂u
∂z |

i,j−

1
2

∆z

= 1
∆z2 [µapp,U (ui,j+1 − ui,j) − µapp,D (ui,j − ui,j−1)]

(5.52)

where the Up, Down, Right and Left apparent viscosities are defined respectively as :

µapp,U = τy
.

γU
−1 +k

.
γU

n−1 (5.53)

µapp,D = τy
.

γD
−1 +k

.
γD

n−1 (5.54)

µapp,R = τy
.

γR
−1 +k

.
γR

n−1 (5.55)

µapp,L = τy
.

γL
−1 +k

.
γL

n−1 (5.56)
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and the Up, Down, Right and Left shear rates are defined respectively as :

.
γU=

ui,j+1 − ui,j

∆z
(5.57)

.
γD=

ui,j − ui,j−1

∆z
(5.58)

.
γR=

ui+1,j − ui,j

∆y
(5.59)

.
γL=

ui,j − ui−1,j

∆y
(5.60)

Therefore, ui,j is the solution of the following equation:

1

∆y2
(µapp,R(ui+1,j − ui,j) − µapp,L(ui,j − ui−1,j))

+
1

∆z2
(µapp,U(ui,j+1 − ui,j) − µapp,D(ui,j − ui,j−1)) = Pg (5.61)

The flow rate is imposed by a constrain on the axial velocity, where N is the number of

mesh in the y and z direction.

N
∑

i=1

N
∑

j=1

ui,j ∆y∆z = Q (5.62)

The system take the following matrix form:
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(5.63)

where Ak is the diffusion matrix, with size N ×N , calculated with the estimate apparent

viscosities at iterate k. The global matrix has then (N2 + 1) × (N2 + 1) size. Equations

are writen for 2 ≤ i ≤ N − 1 and 2 ≤ j ≤ N − 1 using boundary conditions. Boundary
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conditions are implemented by completing first lines of the first diffusive matrix, last

lines of the last diffusive matrix and right hand member. We impose a zero gradient on

velocity for the free surface, and zero velocity on walls (left, right and bottom). After

each iteration k, we evaluate the new shear rate Πk+1
i and the new apparent viscosity

µk+1
i with finite difference formulas described before. The number of iteration required

increases with the non linearity of the system.

5.5.3 Numerical results

5.5.3.1 Newtonian flow

Straub et al. [33] presented a theory for laminar flow of Newtonian fluids in open

channels of different cross-sectional shapes and they also supplied experimental data for

the flow of water and kerosene. They found an analytical solutions for the velocity distri-

bution for open channel Newtonian laminar flow in rectangular, semi-circular, elliptical,

60◦, 90◦ and 120◦ triangular and trapezoidal channels. For a rectangular channel as

shown in Figure 5.10, the velocity distribution is written with Equation (5.64) .

Figure 5.10: Rectangular channel

u(y, z) =
Pgh2

2µ



1 − z2

h2
− 32

π3

∞
∑

n=0

(−1)n

(2n + 1)3

cosh
(

2n+1
2

πy
h

)

cosh
(

2n+1
2

πb
2h

) cos
(

2n + 1

2

πz

h

)



 (5.64)

where Pg is the pressure gradient term, h the height of the fluid, µ the viscosity of the

fluid and b the witdh of the channel.
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Let’s compare results for the analytical velocity profile from Straub et al [33]: Uanalytical,

and for the numerical velocity profile from the numerical resolution: Unumerical. We com-

pute a flow with Q=200L/min, a channel width b=0.12, a fluid height h=0.2, a viscosity

µ=500cP, a density ρ=1000Kg/m3 and a pressure gradient equivalent to a slope of 0.44◦.

The results are plotted on Figure 5.11.

Figure 5.11: Analytical velocity profile from Straub et al [33] : Uanalytical vs. Numerical
velocity profile from the numerical resolution : Unumerical

For this case, we summarized the maximum and mean errors on velocity between the

analytical and numerical solutions in Table 5.12.

Case Max. Error Mean Error Computation time [s]
[%] [%] Anal. Num.

1 4.2 3.3 0.1 2.9

Table 5.12: Maximum and mean errors between the analytical and numerical solutions
for the 3 different fluids: Newtonian fluid, Bingham fluid and Herschel Bulk-
ley fluid
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5.5.3.2 Non-Newtonian flow

As no existing 2D velocity profile for non-Newtonian flows exists, let us compare

results of the velocity profile only from the numerical resolution for 3 different fluids

: Newtonian, Bingham and Herschel Bulkley fluids. Table 5.13 summarizes each fluid

rheological characteristics used.

Case Fluid τy k n ρ
[Pa] Pa.sn [−] [kg/m3]

1 Newtonian 0 0.5 1 1000
2 Bingham 5 0.5 1 1000
3 Herschel Bulkley 5 0.5 0.5 1000

Table 5.13: 3 different fluids of computations

For each cases, we computed numerical velocity profiles for a flow rate Q = 0.0333m3/s,

a height h = 0.2m, a channel width b = 0.12 and the number of mesh Nm = 212. Results

are shown in Figure 5.12.

Figure 5.12: Velocity profile results from 2D numerical solutions, for the 3 different
fluids : Newtonian fluid, Bingham fluid and Herschel Bulkley fluid with
parameters described in Table 5.13
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5.5.4 Friction factor

5.5.4.1 Experimental measurements

Experiments : Burger [8] and Haldenwang [28] performed experiments where

non-Newtonian fluids were circulated into flumes. Flume tests were carried out in a

10m long, rectangular flume designed at the Flow Process Research Center. This flume

can be tilted up to 5◦ from the horizontal, as shown in Figure 5.13. By placing a partition

insert, the flume width was changed from 300 to 75mm. By inserting appropriate cross-

sectional inserts, the rectangular flume can be changed into a triangular, semi-circular

or trapezoidal cross-section. Here, the focus in on the rectangular flume.

Figure 5.13: 10 m flume rig from Burger and Haldenwang experiments

The flow, provided by a 100mm progressive cavity, positive displacement pump and

a Warmanw 4 × 3 centrifugal slurry pump, was monitored by an electromagnetic flow

meter. The discharge capacity was 45l/s. Flow depths were measured using digital

depth gauges of ±5% accuracy fitted at the 5 and 6m positions from the flume entrance.

These two positions were found to the optimum for depth measurement by Haldenwang

[28]. Since the difference in fluid height between these two positions was found to be

minimal, the flow in the region can therefore be taken as steady.
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They used different fluid rheologies defined on Table 5.14.

N◦ Fluid Concentration τy k n ρ
[%] [Pa] [Pa.sn] [−] [kg/m3]

1 Bentonite 6.8 18.34 0.0078 1 1042
2 Bentonite 4.8 5.66 0.0036 1 1029
3 Bentonite 4.5 4.3 0.0036 1 1027
4 Kaolin 5.4 4.4 0.084 0.582 1089
5 Kaolin 7.1 11.56 0.148 0.557 1118
6 Kaolin 9 19 0.21 0.616 1148
7 Kaolin 5.4 4.4 0.084 0.582 1089
8 CMC 1.5 0 0.14 0.944 1008.2
9 CMC 3 0 0.145 0.788 1017.5
10 CMC 3.1 0 0.175 0.768 1018.2
11 CMC 4 0 0.33 0.727 1022.8
12 CMC 5.3 0 0.92 0.678 1028

Table 5.14: Fluids used by Burger and Haldenwang during experiments

Results for laminar flow : The data of all non-Newtonian fluids in four channel

shapes are summarized in a database available in [8] and [28]. We are interested here by

results for all non-Newtonian fluids but only for the rectangular flume, with width from

300 to 75mm, and for the laminar regime.

Data in the laminar flow regime can be represented by a straight line of −1 slope in

the Moody chart defined by Burger [8].

f =
K

Reg

(5.65)

where K is the numerical coefficient depending on channel shape. The average K values

were obtained using

K =
2aPgReg

Pwρu2
(5.66)
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where Pg corresponds here to the driving gravity term on an inclined θ

Pg = ρg sin(θ) (5.67)

and where the generalized Reynolds number is written as

Reg =
8ρu2

τy + k
(

2u
Rh

)n (5.68)

Therefore, we can estimate experimentally the value of the coefficient K

Kexp =
16Rhρg sin(θ)

τy + k
(

2u
Rh

)n (5.69)

and the value of the Fanning friction factor

fexp =
2Rhg sin(θ)

u2
(5.70)

and plotted them, fexp and Kexp, in function of the generalized Reynolds number as

shown in Figures 5.14 and 5.15.

Figure 5.14: Loglog plot of fexp versus Reg for laminar flow of all non-Newtonian fluids
in rectangular flume ,with width equal to 300, 150mm and 75mm, at angles
of 1◦ to 5◦
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Figure 5.15: Plot of Kexp versus Reg for laminar flow of all non-Newtonian fluids in
rectangular flume ,with width equal to 300, 150mm and 75mm, at angles
of 1◦ to 5◦

The mean value of the shape coefficient for the experiments is find to be Kexp = 17.8.

5.5.4.2 Friction factor computation

Numerical results vs. Experiments for laminar flow : The computation of the

friction factor for laminar flow is based on the numerical 2D velocity profile model de-

scribed in the previous section. Indeed, we can estimate the Fanning friction factor

fnum, from Equation (5.71), for a rectangular channel by computating the shape coeffi-

cient Knum, from Equation (5.72), and the generalized Reynolds number, from Equation

(5.73).

fnum =
Knum

Reg

(5.71)

Knum =
2aPgReg

Pwρu2
(5.72)

Reg =
8ρu2

τy + k
(

2u
Rh

)n (5.73)

These computations have been done by using the experimental flow rates Qexp, the

experimental height hexp and for the experimentale fluids from Table 5.14, and by com-

puting the Fanning friction factor fnum and the shape coefficient Knum. These numerical
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results are shown in Figures 5.16 and 5.17 (red symbols), with the experimental results

(blue symbols) as a function of the generalized Reynolds number.

Figure 5.16: Loglog plot of fexp and fnum versus Reg for laminar flow of all non-
Newtonian fluids in rectangular flume ,with width equal to 300, 150mm
and 75mm, at angles of 1◦ to 5◦

Figure 5.17: Plot of Kexp and Knum versus Reg for laminar flow of all non-Newtonian
fluids in rectangular flume ,with width equal to 300, 150mm and 75mm, at
angles of 1◦ to 5◦

The 2D model is shown to be in good agreement with the experiments, the mean

value of the shape coefficient for the experiments is found to be Kexp = 17.8, whereas for

the numerical results it is found to be Kexp = 19.4. Therefore, the error for mean value

of the shape coefficien K between the experimental measurements and the numerical

computations is equal to 8.6%. So, we can compute the friction factor, with the 2D
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velocity profile model, for laminar flow along rectangular channel with an accuracy of

8.6%.

5.5.5 Momentum coefficient computation

The computation of the momentum coefficient for laminar flow is based on the 2D

numerical velocity profile model described previously. Indeed, we can estimate the mo-

mentum coefficient β for a steady parallel flow on a rctangular flume. Therefore, we

computed this numerical momentum coefficient using Equation (5.74). Based on the

last 3 different cases from Table 5.7, we computed the momentum coefficient with the

1D model and the 2D model, and results are summarized in Table 5.15.

β =
1
ni

∑ni
i=1 u2

i
(

1
ni

∑ni
i=1 ui

)2 . (5.74)

Case Fluid τy k n ρ β1D β2D

[Pa] Pa.sn [−] [kg/m3]
1 Newtonian 0 0.5 1 1000 1.2 1.34
2 Bingham 5 0.5 1 1000 1.1 1.21
3 Herschel Bulkley 5 0.5 0.5 1000 1.06 1.12

Table 5.15: Momentum coefficient β computations for the 3 different fluids with the 1D
model and the 2D model

Note that β1D is and has to be lesser than β2D, because it does not take into account

of the side effect and therefore is flatter.

5.6 Transition friction model

The transition from laminar to turbulent flow of Newtonian fluids in open channels

has been reported to occur at Reynolds numbers between 2,000 and 3,000, as described

Straub [33]. Few attempts were made to predict the laminar turbulent transition of

non-Newtonian fluids in open channels. The methods for predicting this transition was
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reviewed by Haldenwang [28]. Of these, Haldenwang’s transition model is the only

available model applicable for power law, Bingham plastic and Herschel-Bulkley fluids.

This model was developed for rectangular open channels based on the Froude number

and the point viscosity at a shear rate of 100s−1. It was found that the transition can

occurred at much lower Reynolds numbers than that for Newtonian fluids, it could start

at ReH = 500. Work is currently in progress to extend this work to other channel shapes.

In our complex and varying geometry, we approximated that the transition occured at

Reg = 2000. This simplification can be improved but is a first good approximation.

5.7 Turbulent friction model

5.7.1 Friction factor computation

Only few studies have been reported in the literature for predicting non-Newtonian

turbulent flow in open channels. Therefore, the computation of the friction factor for

turbulent flow may be based on the Burger correlation [8], given by Equation (5.75).

He adapted the Blasius equation [6] by changing the two coefficients a and b, fitted on

experiments for different channel shapes, and given in Table 5.16. Based on this method,

we may fit also these two coefficients for our geometry.

f =
a

Reb
g

(5.75)

Shape Rectangular Semi − circular Trapezoidal Triangular Venturi flume
a 0.1200 0.0480 0.0851 0.0415 av

b 3297 0.2049 0.2655 0.20225 bv

Table 5.16: Turbulent constants a and b used in turbulent model

As the friction factor in turbulent regimehas been shown to be less dependent on the

geometry than the laminar case, we compute the friction factor for turbulent flow using
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the 1D steady SWE model described in Chapter 4 and the experimental data described

in Chapter 2. In particular, we plot this friction factor as a function of the Reynolds

number from the transition point Reg = 2000, on Figure 5.18.

Figure 5.18: Plot of f versus Reg of the turbulent flow regime for all fluids

We fit a trendline on these points and propose a new turbulent friction model with

Equation ??, and the new two coefficients for our geometry are given in Table 5.17.

f =
av

Rebv
g

(5.76)

Shape Trapezoidal Venturi flume
av 0.52
bv 0.43

Table 5.17: Turbulent constants a and b used in turbulent model

5.7.2 Momentum coefficient computation

As described in previous part, it was generally found for Newtonian fluids that value

of β, for fairly straight prismatic channels and water fluid, varies approximately from

1.01 to 1.12, as described by Chow [13]. He proposed an approximate values to estimate

the momentum coefficient, for water turbulent flow assuming a logarithmic distribution
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of velocity, as :

β = 1 + ǫ2 (5.77)

where ǫ = umax/u − 1, umax being the maximum velocity and u being the mean velocity.

The coefficient ǫ can be estimate using the relation

ǫ =
9.5n

R
1/6
h

(5.78)

where n is Manning’s roughness coefficient and Rh the hydraulic radius. The Manning’s

roughness is given in Table 5.18 for different surface texture.

Channels Manning′s n
Very smooth concrete and planed timber 0.011

Smooth concrete 0.012
Ordinary concrete lining 0.013

Wood 0.014
Straight unlined earth canals in good condition 0.02

Mountain streams with rocky beds 0.05

Table 5.18: Manning’s roughness coefficients for various boundaries

Nothing has been reported in the literature for predicting momentum coefficient for

non-Newtonian turbulent flow in open channels of arbitrary cross-section. Therefore, the

model proposed by Chow [13] may be used for non-Newtonian fluids, because he related

the momentum coefficient only to the hydraulic radius and the surface roughness. For

example, with h = 0.2, b = 0.12 and a Manning’s roughness n = 0.011, the momentum

coefficient is β = 1.03.
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CHAPTER VI

Results: Models vs. Experiments

In theory, there is no difference between theory and practice.

But, in practice, there is.

Jan L.A. van de Snepscheut (1953 - 1994)
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6.1 Material used

6.1.1 Experiments

6.1.1.1 Fluids database

In this study, we developed a database for water, viscous Newtonian and non-

Newtonian fluids in trapezoidal Venturi flume. Prior to the publication of this database,

no experimental datasets were available except for water. We provided data for the flow

of water, glycerin mixtures and carbopol mixtures as described in Table 6.1.

Design Concen Tempe Density Rheology Number of
−ation −tration −rature τ k n different

[%] [◦C] [kg/m3] [Pa] [Pa.sn] [-] flowrates
Water 100 22 1000 0 0.001 1 25
Gly.1 100 24 1256 0 0.747 1 14
Gly.2 95 23 1249 0 0.429 1 9
Gly.3 90 25 1237 0 0.203 1 21
Gly.4 87.5 27 1230 0 0.128 1 22
Gly.5 82.5 27.4 1220 0 0.074 1 23
Gly.6 80 27.2 1215 0 0.059 1 22
Gly.7 77.5 27.8 1209 0 0.045 1 24
Gly.8 72.5 28.7 1197 0 0.027 1 25
Gly.9 70 28 1215 0 0.024 1 25
Gly.10 65 28.1 1192 0 0.016 1 25
Carb.1 0.13 21 999.3 1.55 0.81 0.53 23
Carb.2 0.12 24 1000.1 1.15 0.59 0.54 24
Carb.3 0.118 22 999 0.83 0.57 0.55 21
Carb.4 0.115 22 999 0.84 0.51 0.54 21
Carb.5 0.11 23 1000.2 0.56 0.40 0.56 13
Carb.6 0.10 22 999.4 0.01 0.16 0.61 24
Carb.7 0.095 22 999.8 0 0.01 0.64 21

Total : 382

Table 6.1: Fluids properties used during experiments
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6.1.1.2 Height database

This database is a reference in this study of non-Newtonian flows in Venturi flume.

For each fluid, we circulated a flow through the trapezoidal Venturi flume and we mea-

sured eight different heights along it. The location of each height sensor is shown in

Figure 6.1. These eight height sensors are named from US1 to US8, and the eight cor-

responding height measured are named from H1/exp to H8/exp. We developed a database

with 18 different mixtures, with 382 different flow rates measured, and consequently,

with 3056 different heights measured.

Figure 6.1: Location of the 8 ultrasonic height sensors along the trapezoidale Venturi
flume

For eaches mixtures, we can plot the height measured, from H1/exp to H8/exp, versus

the flow rate measured Qexp for all data, as shown in Figures 6.2 and 6.3.

We notice that for height measured from H7/exp to H8/exp, measurements are noisy.

This is due to the surface of the fluid at the exit of the divergent part. Indeed, on this

part of the Venturi flume, we are on supercritical regime and the surface is very agitated

and not flat. Therefore, the height of the free surface is difficult to measure accurately

in this region.
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6.1.2 3D CFD model

6.1.2.1 CFD inputs/outputs

CFD enables scientists and engineers to perform numerical experiments (i.e. com-

puter simulations) in a virtual flow laboratory. Therefore, it can be used to extend the

database for fluids closest to mud. Before using it as virtual flow laboratory, we have to

validate the 3D CFD model based on experimental results. First, we define the input

quantities of the 3D CFD model :

• the flow rate : Q

• the fluid rheology : τy, k and n

• the density : ρ

and the output quantity of the 3D CFD model :

• the height profile in the plane of symmetry of the trapezoidale Venturi flume,

shown in green on Figure 6.4.

Note that all numerical parameters and models used are described in the 3D simulation

chapter.

Figure 6.4: Symmetry plane in green of the trapezoidale Venturi flume
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6.1.2.2 CFD cases

Due to time computation cost, 3D simulations have been done for 3 specific cases:

• case 1: Newtonian turbulent flow with water fluid

• case 2: Newtonian laminar flow with glycerin fluid

• case 3: non-Newtonian lamiar flow with carbopol fluid

Figure 6.5: (From the left to the right: simulations of Newtonian turbulent flow, New-
tonian laminar flow and non-Newtonian laminar flow

Case Fluid τy k n ρ Q
[Pa] Pa.sn [−] [kg/m3] [L/min]

1 Water 0 0.001 1 1000 477.09
2 Glycerin 0 0.205 1 1237.5 244.5
3 Carbopol 1.6 0.81 0.53 1000 161.3

Table 6.2: 3D computation parameters

6.1.2.3 Height extraction

To extract the height of the free surface, we use the height function method HF,

which is a technique for calculating interface normals and curvatures from well-resolved

volume fraction data αi,j, as illustrated in Figure 6.6. Consider the 2D uniform mesh

used for the symmetry plane with sizes ∆x×∆z. For the cell (i, j), illustrated in Figure
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6.6, height of the free surface is constructed by summing volume fractions vertically as :

hi =
Nz
∑

j=1

αi,j∆z (6.1)

where Nz is the number of mesh in the z-direction.

Figure 6.6: Illustration of the HF method to compute the height of the free surface

Therefore, we can plot the 3 heights of fluids extracted from the 3D simulations, as

represented in Figure 6.7.

Figure 6.7: Heights of fluid extracted from the 3D simulations

6.1.3 1D SWE model

6.1.3.1 1D model inputs/outputs

A 1D model was performed to model the flow through the trapezoidal Venturi flume,

using the Shallow Water Equations as described on the 1D model for open channel flow
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chapter. To compute steady flow, we focus on the 1D steady SWE model, which is faster

and accurate. This model is completed by the friction model, described in friction model

section. For computation time cost, we use the 1D version of the friction model for the

laminar regime. First, we define the input quantities of the 1D SWE model :

• the flow rate : Q

• the fluid rheology : τy, k and n

• the density : ρ

and the output quantity of the 1D SWE model :

• the height profile in the plane of symmetry of the trapezoidale Venturi flume

Notice that all numerical parameters and models used are described in the 1D model for

open channel flow chapter.

6.1.3.2 1D computations

The 1D steady SWE model is so fast and accurate that we can compute quickly all

the height profile for any fluids, as shown in Figure 6.8. Or, we can compute all H2/1D

for any fluids (where H2/1D is the height computed by the 1D model on the location of

the sensor US-2), and get quickly the relation of the height H2/1D vs. the flow rate Q,

as shown in Figure 6.9.

6.1.4 0D calibrated model

6.1.4.1 0D calibrated model inputs/outputs

A 0D calibrated model was developed to compute the H2/0D for any fluids (where

H2/0D is the height computed by the 0D model on the US-2 sensor location). This model

is based on calibration using 382 different data. First, we define the input quantities of

the 0D calibrated model :
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Figure 6.8: 1D computations of the height profile for a Newtonian fluid with µ = 0.205cP
and ρ = 1237.5Kg/m3, and for Q = 244.5L/min

Figure 6.9: 1D computations of the relation H2/1D vs. Q for a Newtonian fluid with
µ = 0.205cP and ρ = 1237.5Kg/m3

• the flow rate : Q

• the fluid rheology : τy, k and n

• the density : ρ

• the initial relation height H2/w vs flow rate Q for water

and the output quantity of the 0D calibrated model :

• the height computed H2/0D

Notice that all numerical parameters and models used are described in the experimental

flow chapter.
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6.1. MATERIAL USED

6.1.4.2 0D computations

The 0D calibrated model needs the water data, and also geometrical coefficients

calibrated on an other fluid. Thus, it can model the increase of height compared to

water, due to the friction. These data can be obtained by a calibration test. Here, we

have a water serie of 26 different flow rates and corresponding heights. Thus, we can fit

a power law trendline, or we can do a linear interpolation between each points, as shown

in Figure 6.10. In this study, we focus on the linear interpolation between each points

to get better accuracy. An other solution can be to use the ISO norm [1] which propose

a way to get the relation of height in function of the flow rate for a Venturi flume.

Figure 6.10: Height measured H2/exp versus flow rate Qexp for water data

Having water data, the 0D calibrated model is so fast and accurate that we can

compute quickly all height H2/0D for any fluids, as shown in Figure 6.11.

Figure 6.11: 0D computations of the relation H2/0D vs. Q for a Newtonian fluid with
µ = 0.205cP and ρ = 1237.5Kg/m3
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6.2. HEIGHT PROFILE MODELED VS. HEIGHT PROFILE MEASURED

6.2 Height profile modeled vs. Height profile measured

6.2.1 Turbulent Newtonian flow : water

Fluid : Water
Concentration/vol [%] : 100
Flowrate Q [L/min] : 477.09
Density ρ [Kg/m3] : 1000
τy [Pa] : 0
k [Pa.sn] : 0.001
n : 1

Table 6.3: Case 1 : Water flow

Figure 6.12: Exp. vs. 3D vs. 1D for a water flow with µ = 0.001Pa.s, ρ = 1000Kg/m3

and Q = 477.09L/min

The 3D model computes the height profile for the water flow with a good accuracy

along all the length. On the other hand, the 1D model computes the height profile for

the water flow with a good accuracy except around the critical point. Indeed, the 1D

Saint Venant assumption of small streamline curvature is not valid around the critical

point where curvatures are not small.

154



6.2. HEIGHT PROFILE MODELED VS. HEIGHT PROFILE MEASURED

6.2.2 Laminar Newtonian flow : glycerin mixture

Fluid : Glycerin
Concentration/vol [%] : 90
Flowrate Q [L/min] : 244.5
Density ρ [Kg/m3] : 11237.5
τy [Pa] : 0
k [Pa.sn] : 0.205
n : 1

Table 6.4: Case 2 : Glycerin flow

Figure 6.13: Exp. vs. 3D vs. 1D for a glycerin flow with µ = 0.205Pa.s, ρ =
1237.5Kg/m3 and Q = 244.5L/min

The 3D model computes the height profile for the laminar Newtonian flow with a

good accuracy along all the length. Likewise, the 1D model computes the height profile

with a good accuracy, even around the critical point. Indeed, the friction effect limits

the curvature on model and on experiments.
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6.2. HEIGHT PROFILE MODELED VS. HEIGHT PROFILE MEASURED

6.2.3 Laminar non-Newtonian flow : carbopol mixture

Fluid : Carbopol
Concentration/vol [%] : 0.13
Flowrate Q [L/min] : 161.3
Density ρ [Kg/m3] : 1000
τy [Pa] : 1.6
k [Pa.sn] : 0.81
n : 0.53

Table 6.5: Case 3 : Carbopol flow

Figure 6.14: Exp. vs. 3D vs. 1D for a Carbopol flow with τy = 1.6Pa.s, k = 0.81Pa.sn,
n = 0.53, ρ = 1000Kg/m3 and Q = 161.3L/min

The 3D model computes the height profile for the laminar non-Newtonian flow with

a good accuracy along all the length, likewise the 1D model. On downstream, accuracies

are not as good because of relative errors and small heights.
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6.3. HEIGHT MODELED VS. HEIGHT MEASURED

6.3 Height modeled vs. Height measured

6.3.1 Turbulent Newtonian flow : water

Designation : Water
Fluid : Water
Concentration/vol [%] : 100

Table 6.6: Water case

Figure 6.15: a) Upstream height H2 from Experiments , 0D model and 1D model in
function of flow rate Q for water data, b) Error on usptream height between
Experiments and 0D model, and between Experiments and 1D model.

The 1D model computes the upstream height H2 with a good accuracy for Newtonian

turbulent flow, note that the friction is calibrated on Newtonian turbulent measurements.

On the other hand, the 0D model computes also the upstream height H2 with a good

accuracy, but note that it is based on calibration.
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6.3. HEIGHT MODELED VS. HEIGHT MEASURED

6.3.2 Laminar Newtonian flow : glycerin mixture

Designation : Gly.3
Fluid : Glycerin
Concentration/vol [%] : 90

Table 6.7: Gly.3 case

Figure 6.16: a) Upstream height H2 from Experiments , 0D model and 1D model in
function of flow rate Q for Gly.3 data, b) Error on usptream height between
Experiments and 0D model, and between Experiments and 1D model.

The 1D model computes the upstream height H2 with a good accuracy for Newtonian

laminar flow, note that for this computation there is none calibration. On the other hand,

the 0D model computes also the upstream height H2 with a good accuracy, but note

that it is based on calibration.
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6.3. HEIGHT MODELED VS. HEIGHT MEASURED

6.3.3 Laminar non-Newtonian flow : carbopol mixture

Designation : Carb.1
Fluid : Carbopol
Concentration/vol [%] : 0.13

Table 6.8: Carb.1 case

Figure 6.17: a) Upstream height H2 from Experiments , 0D model and 1D model in func-
tion of flow rate Q for Carb.1 data, b) Error on usptream height between
Experiments and 0D model, and between Experiments and 1D model.

The 1D model computes the upstream height H2 with a good accuracy for non-

Newtonian laminar flow, note that for this computation there is none calibration. On

the other hand, the 0D model computes also the upstream height H2 with a good

accuracy, but note that it is based on calibration.

159



6.3. HEIGHT MODELED VS. HEIGHT MEASURED

160



CHAPTER VII

Venturi flume as flow meter for non-Newtonian flows

The science of today is the technology of tomorrow.

Edward Teller (1908 - 2003)
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7.1. INTRODUCTION TO MUD FLOW METERING

7.1 Introduction to mud flow metering

Early detection of loss of drilling fluid to the formation or of a kick is the most effective

measure that can be taken to eliminate or limit the consequences of such incidents. A

prerequisite for detecting loss to the formation or kick during drilling operations is

monitoring the mass balance of the well, i.e. the flow of drilling fluid out of the well

compared to that pumped into the well. The most basic method of monitoring the flow

out of the well while drilling is using simple paddle (Figure 7.1: solution 1), which is

an inaccurate measurement that limits the resolution of kick/loss detection. The other

solution it to use a Coriolis flow meter (Figure 7.1: solution 2), which is quite an accurate

solution but involves expensive installation costs and setup. A possible alternative is to

use a Venturi flume (Figure 7.1: solution 3), which is an open channel with a constriction

designed to give a jump in the fluid level that holds information about the flow rate.

Venturi flumes are typically used to measure large flows of water but rarely used for

other fluids. The challenge here is to extend this solution to our drilling application

with non-Newtonian muds.

Figure 7.1: Solutions to measure the mud flow out the well

The combination of a Venturi flume with a height sensor is a very reliable method

of measuring flows. The set-up can be low cost and provide good overall accuracy. The
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7.2. FLOW RATE MEASUREMENT

height sensor mounted above the flow stream transmits a pulse that is reflected by the

surface of the fluid. The elapsed time between sending a pulse and receiving an echo

determines the fluid level in the flume. This level measurement is then converted into a

flow rate in the meter through the use of a preprogrammed equation specific to the type

and size of flume being used, to the density and the rheology of the fluid. For water,

the ISO norm 4359 [1] propose a way to find this equation which relate the upstream

height measured to the flow rate. This method is limited to water flows. In this study,

we built different models able to compute the flow of any fluids throught a Venturi flume

but we focus on the 1D steady SWE model. Indeed, the 1D steady SWE model can

compute flow of any fluids thought a trapezoidal Venturi flume, but can be extended to

all Venturi geometries.

7.2 Flow rate measurement

7.2.1 Inverse model

The 1D steady SWE model computes height of flows based on flow rate measurement,

and needs to be inversed to compute the flow rate based on height measurement. The

inverse model is based on optimization model which adjust the flow rate to match the

height computed with the height measured, as described in Figure 7.2.

Figure 7.2: Structure of the inverse 1D steady SWE model
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7.2. FLOW RATE MEASUREMENT

7.2.2 Accuracy

Figure 7.3 represents the error on flow rate between the 1D steady SWE inverse model

and the experiments for all fluids (Newtoniand and non-Newtonian). For Q>250L/min,

the accuracy of the Venturi flume flow meter can be taken as 5%. For Q<250L/min,

the accuracy has to be absolute and is equal to 15L/min.

Figure 7.3: Error between the flow rate computed by the inverse 1D steady SWE model
and the flow rate measured during experiments, for Newtonian and non-
Newtonian data

7.2.3 Sensitivity analysis

The sensitivity of the model is very important for the accuracy improvement. We can

know which parameter is more important than another. Indeed, first with the inverse 1D

steady SWE model, we can know the impact on the flow rate for a rheology, density and

height variation. This is interesting to estimate the error on the flow rate measurement

due to the error of input measurements. In the other hand, we can know the impact

on the flow rate for a geometry variation. This is interesting for the shape optimization

to built the shape and size which is the better one for accuracy performance. Thus, for
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7.2. FLOW RATE MEASUREMENT

the three cases described on Table 7.1. , Figures 7.4 and 7.5 represent respectively the

sensitivity of the Venturi flow meter on physical and geometrical quatities. We can see

the variation on flow rate due to each quantities variation.

Case Fluid τy k n ρ Q
[Pa] Pa.sn [−] [kg/m3] [L/min]

1 Water 0 0.001 1 1000 477.09
2 Glycerin 0 0.205 1 1237.5 244.5
3 Carbopol 1.6 0.81 0.53 1000 161.3

Table 7.1: Three characteristic cases of computations

Due to the non linearity of the problem, computations are done with 3 characteristic

cases which describe turbulent and laminar regime of Newtonian flow, and laminar

regime of non-Newtonian flow, summarized in Table 7.1. Figure 7.4 shows the response

on flow rate due to a height, a rheology or a density variation. Figure 7.5 shows the

response on flow rate due to a width, a side slope or a length variation.

Figure 7.4: Sensitivity of the flow rate in function of height, viscosity and density.

The sensitivity of the model is approximated and summarized in Table 7.2.

In term of flow metering, we have to be accurate on height measurement. Indeed,

a variation on height of 10% causes a variation on the flow rate of 30%. We have also

to be careful on the width, indeed the flow rate is the most dependent on the channel
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7.3. NEW DESIGN FOR MUD FLOW METERING

Figure 7.5: Sensitivity of the flow rate in function of width b, side slope m and length L

Quantitie Variation Variation on Q
h +10% +30%
µ +10% −5%
ρ +10% +5%
b +10% +40%
m +10% +5%
L +10% +0%

Table 7.2: Sensitivity of the flow rate Q to each quantities

width. The sedimentation, which affect the height or the channel width, is very harmful

for this kind of device.

7.3 New design for mud flow metering

With the goal of saving space in the flow line, a new geometry of Venturi was studied:

H flume, shown in Figure 7.6. The H flume, so called because it was the eighth in a

series of flumes investigated, combined the flow sensitivity of a narrow angle V-notch

weir with the flat floor and self-cleaning properties of a flume. The H series of flumes

are more modified weirs than a true flumes, with a V-shaped throat and no diverging

section. The H flume design allows a wider range of flows than any other flume type,
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7.3. NEW DESIGN FOR MUD FLOW METERING

providing low flow sensitivity as well as the ability to measure high flow rates. The

constraint of using a H flume is on the need of free spilling downstream condition. This

will be verified by putting it just before the tank and shale shakers.

Figure 7.6: H flume in its environment

7.3.1 H flume geometry

Based on H flume dimensions existing, we designed own H flume shape which is able

to measure the real range of flow rate from 5 to 6000L/min. These dimensions are based

on the 2 foot H flume table. It has a throat width of 2.4” and a channel width of 3ft.

All dimensions are shown in Figure 7.7 in the international system of units.

Figure 7.7: H flume dimensions
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7.3. NEW DESIGN FOR MUD FLOW METERING

7.3.2 Numerical experiments

Experiments with this geometry may be interessant but for reason of time and budget,

we used CFD which shows its interest. In a previous part, we showed the relevance of

using the 3D CFD to model a flow through a Venturi flume. Based on this study, we

developed a 3D model with the H flume geometry. The big change between the 3D

model of the trapezoidal Venturi flume and the 3D model of the H flume is the adding of

the tank. Indeed, the critical point may be around the throat and so we can not impose

a boundary condition on it, then the adding of the tank allows a free spilling condition

at the end of the H flume.

Figure 7.8: CFD computations of water flow through the H flume
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7.3. NEW DESIGN FOR MUD FLOW METERING

7.3.3 Flow computation

7.3.3.1 Newtonian turbulent flow

Fluid : Water
Flowrate Q [L/min] : 3000
Density ρ [Kg/m3] : 1000
τy [Pa] : 0
k [Pa.sn] : 0.001
n : 1

Table 7.3: Case 1 : Newtonian turbulent flow

Figure 7.9: a) Venturi shape, b) 3D vs. 1D model comparison for a Newtonian turbulent
flow with µ = 0.001Pa.s, ρ = 1000Kg/m3 and Q = 3000L/min, c) Error
between 3D and 1D model on eight height along the Venturi flume

3D model and 1D model results are very close for turbulent Newtonian flow compu-

tation.
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7.3. NEW DESIGN FOR MUD FLOW METERING

7.3.4 Newtonian laminar flow

Fluid : [ - ]
Flowrate Q [L/min] : 3000
Density ρ [Kg/m3] : 1000
τy [Pa] : 0
k [Pa.sn] : 0.6
n : 1

Table 7.4: Case 2 : Newtonian laminar flow

Figure 7.10: a) Venturi shape, b) 3D vs. 1D model comparison for a Newtonian laminar
flow with µ = 0.6Pa.s, ρ = 1000Kg/m3 and Q = 3000L/min, c) Error
between 3D and 1D model on eight height along the Venturi flume

3D model and 1D model results are also very close for laminar Newtonian flow

computation.
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7.3.5 Non-Newtonian laminar flow

Fluid : Rheliant mud
Flowrate Q [L/min] : 3000
Density ρ [Kg/m3] : 1845
τy [Pa] : 2.8
k [Pa.sn] : 0.061
n : 0.9

Table 7.5: Case 3 : non-Newtonian laminar flow

Figure 7.11: a) Venturi shape, b) 3D vs. 1D model comparison for a non-Newtonian
laminar flow with τy = 2.8Pa.s, k = 0.061Pa.sn, n = 0.9, ρ = 1845Kg/m3

and Q = 3000L/min, c) Error between 3D and 1D model on eight height
along the Venturi flume

3D model and 1D model results are also very close for laminar non-Newtonian flow

computation.
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7.3.6 Accuracy

Table 7.6 summarizes results from 3D and 1D models. 3D model has been validated

for open channel flow along a Venturi flume in a previous part. The purpose here is

to take it as reference, and then quantify the accuracy of the 1D model. Thus, the 1D

model has an accuracy around 4%. This kind of results is similar for what we found for

the trapezoidal geometry.

Case Fluid τy k n ρ Q3D Q1D ∆Q
[Pa] Pa.sn [−] [kg/m3] [L/min] [L/min] [%]

1 Water 0 0.001 1 1000 3000 3180 6
2 Viscous fluid 0 0.6 1 1000 3000 2280 4
3 Rheliant mud 2.8 0.061 0.9 1845 3000 3030 1

Table 7.6: 3 characteristic cases of computations with the H flume geometry
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CHAPTER VIII

Conclusions and recommendations

The only exercise I excel at is jumping to conclusions.

James Nathan Miller
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Conclusion

During drilling operations, the flow out the well has to be monitored. Thus, a flow

meter has to be installed in the return line. Due to the current market, a Venturi flume

can be an interesting accurate and cheap solution for monitoring the flow out the well.

Even if it appears as a very good solution, this device is only used for water flows. Thus,

we developed different works to extended this solution to mud flows.

Knowing the importance of experiments, a large experimental database was compiled.

Indeed, we have circulated Newtonian and non-Newtonian through a trapezoidal Venturi

flume. The database is composed by eighteen different fluids. During experiments, we

measured flow rates and eight heights at different locations along the Venturi flume. This

allowed us to estimate the height profile through the open channel for each fluids. In

order to extract useful informations from these experiments, the fluid properties have to

be know. For this purpose, the experiments were completed by rheology measurements.

To model the flow, a first approach may is 3D CFD. Using OpenFOAM software,

3D simulations were performed to capture the transcritical transition through the trape-

zoidal Venturi flume for different fluids. This 3D model was validated by comparison

with experimental data. It appears robust enough to extend simulations for other ge-

ometries of Venturi and real mud properties, in order to perform real case simulations.

In the context of flow metering, we need an accurate and fast model. Thus, a

simplified 1D model based on the Saint Venant Equations (SVE) has been developed with

a sub-model for the friction. Two strategies were done to solve these 1D Saint Venant

Equations. First, we solved them in their unsteady form using finite volume method.

Next, we solved them in their steady state form using the method of singular point.

These two methods have different advantages. The unsteady case allows simulating the
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time evolution of the hydraulic jump and the transcritical transition along the flume. The

steady state on the other hand does not give access to the transient regime but allows to

extract accurately the steady state solution on a very short computational time. These

two strategies were compared and converged for the same steady state results. Finally,

1D SVE solutions were found to be in good agreement with the experiments and with

the 3D CFD model, but using an additional sub-model for the friction.

The development of a sub-model for the wall friction was an important step, because

it expresses the impact of rheology on the flow characteristics. This sub-model of friction

was performed in 1D and 2D,. The 1D version gives fast and good results, and the 2D

version was found to give good agreement with the experiments done in rectangular

open channel by Haldenwang [28]. The friction model computes the friction with taking

into account the geometry of the channel and the rheology of the fluid.

Using the 1D steady state SVE model completed by the 1D sub-model of the friction,

we built an inverse model able to compute quickly and accurately the flow rate based

on upstream height, density and rheology measurements. Thus, we extended the use of

Venturi device as a flow meter for different fluids: Newtonian and non-Newtonian. The

accuracy of the device was found to be 5% for the high half of the flow rate range. This

flow meter was found as an accurate and cheap solution provided avoiding sedimentation

or anything affecting the upstream height or the throat geometry.

Considering the good agreement between experiments with 1D SVE models and

3D CFD model for the trapezoidal Venturi flume, we extended this work to another

shape: H-flume. This shape appears as more adapted for some rig configurations. Thus,

we performed 3D CFD and 1D SVE simulations which shown very close results. We

concluded on the relevance of use 1D SVE model with the 1D sub-model of friction to

model accurately non-Newtonian flows through Venturi flumes.
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Recommendations

From the outcomes achieved during this research the following recommendations can

be made.

• The large experimental database compiled during this research can be used by

future researchers and enginneers to further increase the understanding of non-

Newtonian open channel flow through a trapezoidal Venturi flume.

• The 3D CFD model developed during this work can be used to model flow through

other type of Venturi flumes.

• The 1D SVE models can be adapted to model flows through Venturi flumes, but

with less accuracy around the critical point with large streamline curvatures (lim-

itation of SVE)

• The 1D sub-model of friction appears as accurate and fast to estimate friction and

momentum coefficients. But a 2D friction model was performed and compared to

experimental data.

• The Venturi flume is clearly an accurate and cheap solution to measure flow rates

in open channels, but limiting sedimentation.

Despite the excellent agreement of the 1D SVE model with the experimental data

found for the trapezoidal Venturi flume, further work is still needed to explored effect of

the yield stress. Indeed, experiments were performed for fluids with little yield stress.

The Venturi flume is an accurate and cheap solution to measure mud flow rates

out the well, but limiting by sedimentation. A solution can be to inclined the flume

but the gravity term has to be taking into account in the SVE. This part has been

explored and gives good results. Another improvement would be to be dispensed of the

rheology measurements. Indeed during drilling, mud properties can change at any time.

A solution can be to have a real time rheometer. But another solution can be to measure
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another(s) specific height(s) through the Venturi flume and eliminated the unknown(s)

of rheology.
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Conclusion

Au cours des opérations de forage, le débit de boue sortant du puits doit être surveillé.

Ainsi, un débitmètre doit être installé dans la conduite de retour. En raison du marché

actuel, un canal Venturi peut être une solution précise et peu couteuse intéressante pour

surveiller le débit de boue sortant du puits. Même si il apparaît comme une très bonne

solution, ce dispositif est utilisé uniquement pour mesurer les débits d’eau. Ainsi, nous

avons développé différents travaux afin d’étendre cette solution à des écoulements de

boue.

Connaissant l’importance des expériences, une grande base de données expérimen-

tales a été élaboré. En effet, nous avons fait circuler des fluides Newtonien et non-

Newtonien à travers un canal Venturi trapézoïdal. La base de données est composé de

dix-huit fluides différents. Lors des essais, nous avons mesuré les débits et huit hauteurs

situé à différents emplacements le long du canal de Venturi. Cela nous a permis d’estimer

le profil de hauteur le long du canal ouvert pour chaque fluides. Afin d’extraire toutes

les données utiles des expériences, les propriétés des fluides doivent être connu. Pour

cela, les expériences ont été complétées par la mesure de rhéologie de chaque fluides.

Pour modéliser l’écoulement, la première approche a été la CFD 3D. Avec l’utilisation

d’un logiciel open source de CFD: OpenFOAM, des simulations 3D ont été réalisées afin

de capturer la transition transcritique à travers le canal Venturi pour différents fluides.

Ce modèle 3D a été validé par la comparaison avec les données expérimentales. Il

apparait assez robuste pour étendre les simulations 3D à d’autres géométries de Venturi

ainsi qu’à des fluides représentant de réelles boues, et cela dans le but d’effectuer des

simulations de cas réels.
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Dans le cadre de la mesure du débit, il faut un modèle précis et rapide. Ainsi, un

modèle simplifié 1D basé sur les équations de Saint Venant (listé SVE) a été développé

complété par un sous-modèle de frottement. Deux stratégies ont été faites pour résoudre

ces équations 1D de Saint Venant. Tout d’abord, nous les avons résolu dans leur forme

instationnaire en utilisant la méthode des volumes finis. Ensuite, nous les avons ré-

solu dans leur forme stationnaire en utilisant la méthode du point singulier. Ces deux

méthodes présentent des avantages différents. Le cas instationnaire permet de simuler

l’évolution temporelle du ressaut hydraulique et de la transition transcritique le long

du canal. D’autre part, l’état stationnaire ne donne accès au régime transitoire, mais

permet d’extraire avec précision la solution d’état stable avec un temps de calcul très

court. Ces deux stratégies ont été comparées et convergent vers les mêmes solutions sta-

tionnaires. Enfin, les solutions 1D SVE ont été jugées en bon accord avec les expériences

et avec le modèle 3D CFD, et cela en utilisant un sous-modèle supplémentaire pour le

frottement.

Le développement d’un sous-modèle, pour le frottement le long des parois, était

une étape importante car elle exprime l’impact de la rhéologie sur les caractéristiques

de l’écoulement. Ce sous-modèle de frottement a été réalisée en 1D, puis étendue au

2D. La version 1D donne de bons résultats mais est intéressante pour sa rapidité de

calcul. Par contre la version 2D, étant en parfait accord avec les expériences réalisées

par Haldenwang [28] le long d’un canal rectangulaire, s’avère précise mais couteuse en

temps de calcul. Ainsi, l’élaboration d’un tel modèle de friction permet de simuler le

frottement le long des parois en prenant en compte la géométrie du canal ainsi que la

rhéologie du fluide.
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En utilisant le modèle 1D SVE stationnaire complété du sous-modèle 1D de friction,

nous avons pu construire un modèle inverse capable de calculer rapidement et avec

précision le débit, et ceci en fonction de la hauteur en amont, la densité et la rhéologie

du fluide. Ainsi, nous avons pu étendre l’utilisation d’un tel dispositif comme débitmètre

pour différents fluides: Newtoniens et non-Newtoniens. La précision de l’appareil a été

évalué à 5% pour la moitié haute de la plage de débit. Ce débitmètre s’avère donc

comme une solution précise et peu chère, à condition d’éviter la sédimentation le long

du canal et tout ce qui perturberait la hauteur en amont ou la géométrie de la gorge.

Compte tenu de la bonne concordance des expériences, du modèles 1D SVE et du

modèle 3D CFD pour le canal Venturi à section trapézoïdal, nous avons choisi d’étendre

ce travail à une autre forme de Venturi: H-flume. Cette forme apparaît comme plus

adapté pour certaines configurations de plate-forme. Ainsi, nous avons réalisé différentes

simulations avec le modèle CFD 3D et le modèle 1D SVE, qui ont présenté des résultats

très proches. Nous avons alors conclu sur la pertinence de l’utilisation d’un modèle

1D SVE complété par un sous-modèle 1D de friction pour modéliser avec précision les

écoulements non-Newtoniens les long des canaux Venturi.
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Recommandations

A partir des résultats obtenus au cours de cette recherche, les recommandations

suivantes peuvent être faites.

• La large base de données expérimentales compilées au cours de cette recherche peut

être utilisée par de futurs chercheurs et ingénieurs afin d’affiner la compréhension

des écoulements non-Newtonien le long des canaux Venturi.

• Le modèle CFD 3D développé au cours de ce travail peut être utilisé pour modéliser

l’écoulement à travers différentes formes de canaux Venturi.

• Les modèles SVE 1D peuvent être utilisé pour modéliser les écoulements le long

des canaux Venturi, mais avec moins de précision autour du point critique et cela

du à d’importantes courbures des lignes de courant (limitation des equations de

Saint Venant)

• Le sous-modèle 1D de frottement s’avère précis et rapide pour estimer les coef-

ficients de friction et de profile de vitesse le long d’une géométrie variable. Un

modèle 2D de friction a été réalisé et validé par des données expérimentales [? ].

• Le canal Venturi se place clairement comme une solution précise et peu cou-

teuse pour mesurer les écoulement le long de canaux ouverts, mais limité par le

phénomène de sédimentation ou tout autre phénomène qui affecterait la hauteur

en amont ou la géométrie de la gorge.

En dépit de l’excellent accord du modèle SVE 1D et des données expérimentales

établies pour les canaux Venturi à sections trapézoïdales, d’autres travaux sont encore

nécessaires pour étudier et mieux comprendre l’effet de la contrainte seuil de certains

fluides. En effet, des expériences ont été réalisées seulement pour les fluides avec peu de

contraintes seuils.
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Le canal Venturi s’avère donc comme une solution précise et peu couteuse pour

mesurer des débits de boue en sortie de puits, mais est limitée par le phénomène de

sédimentation. Une solution à cela pourrait être l’inclinaison du canal, mais cela devra

entrainer la prise en compte du terme de gravité dans les équations de Saint Venant.

Cette partie a été explorée et a montré des résultats encourageants. Une amélioration

de ce débitmètre consisterait à se passer des mesures de rhéologie. En effet au cours du

forage, les propriétés de boue peuvent changer à tout moment. Une solution pourrait

consister en l’ajout d’un rhéomètre qui permettrait de mesurer la rhéologie des boues

en temps réel. Une deuxième solution, moins couteuse, pourrait être de mesurer une

ou plusieurs autres hauteurs spécifiques à travers le canal Venturi et ainsi éliminer les

inconnues de la rhéologie.
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Critical slope for laminar transcritical
shallow-water flows

O. Thual1,2,†, L. Lacaze1,2, M. Mouzouri1,2 and B. Boutkhamouine1,2

1Université de Toulouse; INPT, UPS; IMFT, Allée Camille Soula, F-31400 Toulouse, France
2CNRS; IMFT; F-31400 Toulouse, France

Backwater curves denote the depth profiles of steady flows in a shallow open
channel. The classification of these curves for turbulent regimes is commonly used
in hydraulics. When the bottom slope I is increased, they can describe the transition
from fluvial to torrential regimes. In the case of an infinitely wide channel, we
show that laminar flows have the same critical height hc as that in the turbulent
case. This feature is due to the existence of surface slope singularities associated to
plug-like velocity profiles with vanishing boundary-layer thickness. We also provide
the expression of the critical surface slope as a function of the bottom curvature
at the critical location. These results validate a similarity model to approximate the
asymptotic Navier–Stokes equations for small slopes I with Reynolds number Re

such that Re I is of order 1.

Key words: interfacial flows (free surface), low-Reynolds-number flows, thin films

1. Introduction

Shallow-flow modelling usually eliminates one or two spatial dimensions by
considering average properties over the depth of a thin fluid layer. This modelling
approach is current in hydraulics (Chow 1959), dealing with turbulent open-channel
flows. In this context, backwater curves denote 1D steady depth profiles h(x) and
obey the backwater equation (1 − Fr)h′ = I − J where Fr is a Froude number, I is
the bottom slope and J is the lineic head loss due to bottom friction. When I > 0 is
constant, the relative values of the critical height hc, such that Fr= 1, and the normal
height hn, such that I = J, lead to three M-curve types in the weak slope regime
hc < hn and to three S-curve types in the strong slope regime hn < hc. When I(x)

varies with space, transitions between the fluvial (Fr < 1) and the torrential (Fr > 1)
regimes can occur through hydraulic jumps or transcritical transition (e.g. Bukreev,
Gusev & Lyapidevskii 2002 or Zerihun & Fenton 2006). These backwater curves can

† Email address for correspondence: thual@imft.fr



be viewed as steady solutions of the Saint-Venant equations (de Saint-Venant 1871),
also called the shallow-water equations.

The laminar flows of thin viscous liquid layers are also modelled by shallow-flow
equations. Benney (1966) and Shkadov (1967) derived such models by retaining
only a parabolic velocity profile in a Galerkin approximation of the 2D vertical
Navier–Stokes equations and justified it by the good agreement with the experiments
of Kapitsa & Kapitsa (1949). Numerous subsequent works have proposed asymptotic
expansion leading to a 1D partial differential equation for the depth h(x, t) and
the lineic discharge flux q(x, t), often taking into account the effect of surface
tension and considering various bottom slopes (Lin 1969; Gjevik 1970; Nakaya 1975;
Pumir, Manneville & Pomeau 1983; Alekseenko, Nakoryakov & Pokusaev 1985;
Roberts 1996; Oron, Davis & Bankoff 1997; Ruyer-Quil & Manneville 1998, 2000,
2005; Nguyen & Balakotaiah 2000; Shkadov & Sisoev 2004; Boutounet et al. 2008;
Sadiq & Usha 2008; Fernàndez-Nieto, Noble & Vila 2010; Samanta, Ruyer-Quil &
Goyeau 2011; Noble & Vila 2013; Chakraborty et al. 2014, . . .). Starting with the
so-called ‘boundary-layer equation’, similar to Prandtl’s equations (Schlichting 1955),
the difficulty of these modelling approaches lies in the information required about
the velocity profile in the integration direction. Most works suggest fixed shapes
such as the parabolic one in the laminar cases. More elaborate approaches, such
as the weighted-residual method of Ruyer-Quil & Manneville (1998), are based on
well suited Galerkin approximation functions that minimize the number of resulting
equations. Following a different approach, we present an approximation method that
leads to a single backwater equation associated with similarity solutions for the
velocity profiles.

Here, we consider laminar flows of Newtonian fluids with negligible surface tension
effects in the presence of a small and slowly varying bottom slope such that the
product Γ = Re I of the slope I and the Reynolds number Re is of order one, while
I is small. For instance, the case I = 0.01 and Re = 100 satisfies this requirement
while ensuring that the flow is laminar. As for most asymptotic expansions, this choice
aims to balance a maximum of terms in the equations, that is, for the present case,
acceleration, pressure, bottom slope and friction in the momentum equations.

Under this asymptotic expansion, we express the steady solution velocities in the
form u = T/h and v = L(dh/dX)/h − ∂M/∂X where T , L and M are functions of
X = x/Re and Y = y/h, being related through L = YT and ∂M/∂Y = T . This leads
to the ‘TLM model’ in which the X dependency of the T profiles is contained in
the term h[(∂M/∂X)(∂T/∂Y) − (∂T/∂X)T] that appears to be often small compared
to the others. When it is so, the steady flow is described by the similarity model in
which T and L no longer depend on X (STL model). Such a similarity assumption
for the velocity profiles was introduced by Serre (1953), but the shape of the velocity
profiles had to be imposed eventually. Instead of using a Galerkin approximation and
averaging over the vertical, as is often done in the literature, our TLM and STL
models involve an implicit relation for h and dh/dX through a nonlinear 1D eigenvalue
problem, as explained in § 2. These models are then compared to each other in § 3 in
the case of transcritical flows.

2. Three shallow-water steady models

2.1. The TLM shallow-water model

We consider an infinitely wide channel whose bottom is defined by the equation
z = Zf (x) where (x, z) are respectively the horizontal and vertical coordinates in the
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presence of gravity g (figure 1). If y denotes the coordinate perpendicular to the
bottom at some location, we suppose that the slope I = −Z′f (x) is small enough to
consider that x is also the coordinate in the direction tangential to the bottom. Within
this approximation and denoting by ϕx the derivatives (∂ϕ/∂x)(x, y) or ϕ′(x) of a
quantity ϕ, the steady 2D incompressible Navier–Stokes equations read

ũx + ṽy = 0, ũũx + ṽũy =−p̃x + I + Re−1(ũxx + ũyy),

ũṽx + ṽṽy =−p̃y − 1+ Re−1(ṽxx + ṽyy),

}
(2.1)

where the velocities ũ and ṽ are made non-dimensional by q1/3g1/3 and all spatial
coordinates by q2/3g−1/3, with q denoting the constant lineic discharge flux. The
Reynolds number is Re= q/ν where ν is the kinematic viscosity.

The boundary conditions at the bottom, defined by the equation y= 0, are ũ= ṽ= 0.
On the free surface, defined by the equation y = h̃(x), the kinematic and dynamic
boundary conditions are respectively ũh̃x = ṽ and (p̃ − p̃a)n = 2Re−1

d̃ · n where pa

is the constant atmospheric pressure, n is the normal to the free surface and d̃ is the
strain rate tensor.

Since the slope I is small, we consider the following asymptotic expansion with
ǫ≪ 1:

ǫ = Re−1, Γ = Re I, h̃= h(ǫx)+O(ǫ),

ũ= u(ǫx, y)+O(ǫ), ṽ = ǫv(ǫx, y)+O(ǫ2), p̃= p(ǫx, y)+O(ǫ),

}
(2.2)

where Γ , h, v and p are of order one. Since I = O(ǫ), the coordinate x can be
considered to refer to the direction tangential to the bottom. We denote by X = ǫx

the slow streamwise coordinate. At the leading order of the expansion, one gets the
following system for u(X, y), v(X, y) and h(X):

uX + vy = 0, uuX + vuy =−hX + Γ + uyy, (2.3a,b)



with u(X, 0) = v(X, 0) = 0, u(X, h)hX = v(X, h) and uy(X, h) = 0 for the boundary
conditions, with

∫ h

0 u(X, y) dy= 1 as a constraint to express the constant dimensionless
discharge flux. Note that the pressure p is hydrostatic in the framework of this
analysis.

We look at solutions of (2.3a,b) with the general form

u(X, y)=
1

h(X)
T

(
X,

y

h(X)

)
, (2.4)

which leads to the ‘TLM model’ for T(X, Y) and h(X):

0= TYY + h3(Γ − hX)+ hXT2 + h(MXTY − TXT), (2.5)

where M(X, Y) =
∫ Y

0 T(X, Z) dZ, with T(X, 0) = TY(X, 1) = 0 and M(X, 1) = 1. The
vertical velocity reads v = (hX/h)L(X, y/h)−MX with L(X, Y)= YT(X, Y).

This equation with its three constraints determines one unknown scalar. If we
impose a bathymetry Zf (X) of slope Γ (X) = −Z′f (X), we can compute h′(X) = Σ

where Σ is the solution of (2.5) and then integrate to obtain the backwater curve
h(X).

2.2. The one-parameter family profiles of the STL model

We denote by ‘STL’ the model obtained by ignoring the h term (MXTY − TXT) in the
TLM model. Similarity solutions u(X, y)= T[y/h(X)]/h(X) are thus described by this
STL model. Denoting ∆= h3(Γ −Σ), this model reduces to the ordinary differential
equation 0 = T ′′ + ∆ + ΣT2, subject to the three constraints T(0) = T ′(1) = 0 and∫ 1
0 T(Y) dY = 1. We use a finite difference scheme (N−1)2(Tn+1 − 2Tn + Tn−1) for

n = 2, . . . , N−1 to approximate T ′′, where the Tn values are the values of T at N

equally distributed points in the interval Y ∈ [0, 1]. The three constraints of (2.5) read
T1=TN−TN−1=0 and

∑N

1 Tn=N. The function fsolve of Scilab (Scilab Enterprises
2012) is used with Σ considered as a control parameter to determine a branch of
solutions Σ =S (∆). We have checked that the resolution N= 101 provided sufficient
accuracy for most of the cases presented here.

Part of the branch of solutions Σ =S (∆) passing through the linear case (Σ,∆)=
(0, 3) is displayed in figure 2. The corresponding velocity profiles T∆(Y) range from
a shear profile for ∆=−∞ up to a plug-like profile (T∞ = 1 with a boundary layer
at Y = 0) for ∆=∞, passing through the parabolic profile T3(Y)= (3/2)Y(2− Y) for
the linear case.

In order to obtain a synthetic overview of our STL model, we integrate the equation
0= T ′′ +∆+ΣT2 over the interval Y ∈ [0, 1] to obtain

[h3 − β(∆)]h′(X)= h3Γ (X)− α(∆) with ∆= h3[Γ (X)− h′(X)], (2.6)

where α(∆) = T ′∆(0) and β(∆) =
∫ 1
0 T2

∆(Y) dY are plotted in figure 3(a). When the
velocity profile T∆ is the parabolic solution T3, one recovers the values α(3)= 3 and
β(3)=1.2 that are commonly used for laminar shallow flows. The solutions Σ =h′(X)

of the implicit (2.6) are displayed in figure 3(b) as functions of h for various values of
Γ . For Γ ∈ [1.82, 3], the resulting backwater curves exhibit more complex topologies
than the usual one obtained with constant values of α and β.
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2.3. Determination of the transcritical point with the NOR and STL models

We denote by NOR the model for which α = 3 and β = 1.2 are kept constant, as
if the velocity profiles were stuck to the parabola of the normal flow that would be
obtained for h=hn= (3/Γ )1/3. The backwater curves are thus solutions of the ordinary
differential equation h′(X) = [h3Γ (X) − 3](h3 − 1.2)−1. The general solutions of the
NOR model can be sought by considering the family of trajectories [X(s), h(s)] that
are solutions of the system Ẋ = D(h) and ḣ = N(X, h) with D(h) = h3 − 1.2 and
N(X, h)= h3Γ (X)− 3. The critical point (Xc, hc), forming a saddle node for the phase
portrait of the dynamical system, is obtained for D(hc) = N(Xc, hc) = 0, leading to
hc = 1.21/3 and Γc(Xc)= Γc = 2.5. The linearization of the dynamical system around
the critical point leads to the matrix A with the components A11=0, A12=D′(hc)=3h2

c ,
A21 = h3

cξ and A22 = 3h2
cΓc where ξ = Γ ′(Xc) measures the curvature of the bottom at

the critical point. The ‘eigenslopes’ of A, that is the slope of its eigenvectors, read

Σ±(ξ)=
Γc

2

(
1±

√
1+

4ξhc

3Γ 2
c

)
. (2.7)



It appears that this expression is also valid for the STL model (2.6) with hc = 1
and Γc= 3. To prove it, we consider, as for the NOR model, the following dynamical
system:

Ẋ =D[X, h, ḣ/Ẋ] with D(X, h, Σ)= h3 − β(h3[Γ (X)−Σ]),

ḣ=N[X, h, ḣ/Ẋ] with N(X, h, Σ)= h3Γ (X)− α(h3[Γ (X)−Σ]).

}
(2.8)

At first, the critical point is at the intersection of the lines ḣ = 0 and Ẋ = 0
in the (X, h) plane. The first condition reads ∆ = α(∆), leading to ∆ = 3 and
h= hn(X)= [3/Γ (X)]1/3. It describes the lines of the normal heights as Σ = 0. The
second condition can be satisfied only when h′(X)→−∞ and leads to h= 1 since it
can be numerically checked that (1− β)/α→ 0 when ∆→+∞. As announced, we
find hc = 1 and Γ (Xc)= 3 when both conditions are met.

We now determine whether a straight line trajectory with the equation XΣ(s) =

Xc + η(s) and hΣ(s) = hc + Ση(s), where Σ is a constant and η(s) = exp(λs) is a
small parameter, can satisfy (2.8) at the dominant order of η≪ 1. Such a property is
equivalent to

L(Σ) · φ = λφ with φ =

(
1
Σ

)
, L(Σ)= A+ B(Σ),

A=

(
0 3h2

c

h3
cξ 3h2

cΓc

)
and B(Σ)=

(
−h3

cξβ
′ −3h2

c(Γc −Σ)β ′

−h3
cξα

′ −3h2
c(Γc −Σ)α′

)
,





(2.9)

where ξ = Γ ′(Xc), α′ = α′[h3
c(Γc −Σ)] and β ′ = β ′[h3

c(Γc −Σ)]. We have A · φ = λφ

under the conditions λ= 3h2
cΣ and h3

cξ + 3h2
cΓcΣ = 3h2

cΣ
2. In that case, we see that

B(Σ) · φ = 0. This shows that if Σ is a critical slope of A, it is also a critical slope
of L(Σ) while being given by (2.7). We note that this property is independent of the
functions α(∆) and β(∆), whose roles are confined to the determination of hc and Γc.

3. Numerical simulations of critical transitions over obstacles

3.1. Numerical method for the TLM model and constant slope comparison

In order to solve (2.5) numerically, we discretize the variables X and h into successive
values Xi and hi for i= 1, . . . ,H. Choosing two positive weights θ and ζ such that
θ + ζ = 1, we build an implicit finite difference scheme to solve for the system (2.5)
in the form

0 = (θT i−1
YY + ζT i

YY)+ (hi−1 + ζ dhi)3(Γ −Σ)+Σ[θ(T i−1)2 + ζ (T i)2]

+
hi−1 + ζ dhi

dhi
Σ[(Mi −Mi−1)(θT i−1

Y + ζT i
Y)− (T i − T i−1)(θT i−1 + ζT i)], (3.1)

where the bottom slope is Γ = θΓ (hi−1)+ ζΓ (hi). The surface slope Σ that results
from this implicit equation must be considered as Σ = θΣ i−1+ ζΣ i. As dhi=hi−hi−1,
we then set dhi = Σ dXi with dXi = Xi − Xi−1 to simulate the differential equation
hX = Σ with an explicit Euler scheme. These steps are modified near singularities.
The vertical scheme is the same as the one used for the STL model. We denote by
T0(Y)= T0(Y) the initial condition. A centred scheme θ = ζ = 1/2 has been chosen.
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A first comparison between the TLM, STL and NOR models is made for the case of
constant slope Γ =0. We start with an initial condition with h0 high enough that T0(Y)

can be approximated by a parabola. A singularity at finite length is expected as shown
in figure 4. The singularities of the three models have been translated to X=0 in order
to compare them. The heights of these backwater curves differ by only 5%, which is
also the order of magnitude of the difference between the critical height hc= 1 of the
TLM and STL models and the critical height hc ∼ 1.06 of the NOR model. Similar
results are found with non-vanishing slopes Γ 6= 0 (e.g. figure 5). These flows can
be viewed as the fluvial regime of a transcritical transition through a bottom slope
discontinuity.

3.2. Phase portraits for semi-parabolic bottom shapes

We now choose a semi-parabolic bottom profile Zf (X) such that Γ (X)=−Z′f (X) reads
Γ (X)= ξX for X > 0 and Γ (X)= 0 for X 6 0. A comparison of the phase portrait for
the TLM, STL and NOR models is shown in figure 6 for two values of ξ . The initial
conditions, taken at X=−1, are set to explore the vicinity of the TLM critical point
reached for X= 3 for ξ = 1 and X= 0.3 for ξ = 10. The initial velocity profile for the
TLM is computed from the STL model for the same value of initial height h0. A fine
tuning of these values (up to twelve digits) shows that (Γc, hc)∼ (3, 1) as predicted
by our theory.
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The negative slope of the critical trajectory in the (X, h) plane can be compared to
the expression (2.7) that reads here

Σ−(ξ)=
3

2

(
1−

√
1+

4ξ

27

)
=−

1

9
ξ +

1

243
ξ 2 +O(ξ 3). (3.2)

This can be done visually by considering the curve of the normal height profiles
hn(X)= [Γ (X)/3]1/3 and noticing that h′n(Xc)=−ξ/9. For ξ = 1, the proximity of the
slopes Σ−(1)∼ h′n(Xc)∼−0.11 can be seen in figure 6. For ξ = 10, the discrepancy
between Σ−(10)=−0.86 and h′n(Xc)=−1.11 can be discerned visually.

These backwater phase portraits help to explain why the NOR model fails to catch
the correct values of Γc and hc. Indeed, the singularities of the phase portraits are
associated with plug-like velocity profiles T(Y) with β=

∫ 1
0 T2 dY→1 while this shape

factor is stuck at β = 1.2 for the NOR model.

3.3. Bottom shape inverse problem and validation of the critical slope relation

Rather than computing the unique critical backwater h(X) that links the fluvial and
torrential regimes for a given bottom slope profile Γ (X), which is cumbersome, we
consider the inverse problem of computing the latter, given the former. This is done by
considering that Σ and Γ are respectively known and unknown in the implicit (3.1).

We choose h(X) = h + 1h tanh(X/L) with h = (h1 + h2)/2 and 1h = (h2 − h1)/2
such that h1 = (3/Γ1)

1/3 and h2 = (3/Γ2)
1/3 are the normal heights associated with

the bottom slopes Γ2 > Γ1. The corresponding Γ (X) in the cases Γ1 = 1, Γ2 = 4
and L = 0.8 is displayed in figure 7(a) for both the TLM and STL models. Further
numerical experiments show that the discrepancy between the two models disappears
when L increases. We also observe that Γ ∼ 3 when h= 1, which confirms the value
of the critical slope Γc = 3. This defines the location Xc of the critical point. For
each value of L, we then compute ξ =Γ ′(Xc), which traces back the curvature of the
bottom at the critical point. Its relation with the critical slope Σc =Σ(Xc) is shown
in figure 7(b) and compared (dashed-dotted blue curve) with the function Σ−(ξ) of
(3.2), derived from the STL model. We observe a satisfactory agreement compared to
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the NOR model, which can only predict a critical slope Σc= h′n(X)=−ξ/9 given by
the normal height profile hn(X).

4. Conclusion

We have shown that the STL model, based on a similarity assumption u=T(y/h)/h
for the streamwise velocity u(X, y), could provide a reasonable approximation of the
TLM model that takes into account the X-dependency of u= T(X, y/h)/h beyond that
of the height profile h(X). We proved this to be the case for the critical transition
of a laminar shallow-water flow in the presence of a bottom with increasing slope
Γ (X). Through numerical simulations of the TLM model, which involve the resolution
of an implicit nonlinear differential equation, we have checked the validity of the
relation (3.2) between the critical surface slope Σc = h′(Xc) and the bottom curvature
factor ξ = Γ ′(Xc) computed at the critical location X = Xc.

We have shown that the critical values were hc = 1 and Γc = 3 for a Newtonian
rheology in the laminar case, contrarily to the commonly used NOR model that leads
to hc= 1.21/3∼ 1.06 and Γc= 2.5, as shown in § 2.3. Other rheologies would provide
different values in the framework of the STL approach. Indeed, these generalizations
lead to different functions α(∆) = T ′(0), related to the bottom friction, and β(∆) =∫ 1
0 T2 dY , related to the shape of the velocity profiles. These functions provide the

values of h3
c = lim∆→∞ β(∆) and Γc as the solution of ∆n = α(∆n) with ∆n = h3

cΓc.
But there is a universality of the critical slope expression through (2.7) that involves
only hc, Γc and ξ = Γ ′(Xc).

The STL model is likely to provide a good approximation of the TLM model
for other shallow-water regimes, as is suggested by comparison of the backwater
curves of the two models, for instance in the (h, Σ) representation of figure 3. Such
an exhaustive plot in the case of the TLM model could not be shown here due
to numerical problems that lead to instabilities or failure of the implicit problem
resolution for some regions of the (h, Σ) plane. Numerical methods to overcome this
difficulty are to be explored. This could validate the complex classification of the
backwater curves associated with the STL model, due to multiple values of Σ = h′(X)
as a function of h for Γ ∈ [1.82, 3].



An extension of our approach to unsteady flows is under way. This could improve
the temporal and spatial stability analysis of the normal flows (Thual, Plumerault &
Astruc 2010, and references therein). We think that numerous flow analyses, such as
roll waves or hydraulic jumps (Thual 2013, and references therein), could be enriched
in the light of these TLM and STL shallow-water models. Their generalization to non-
Newtonian rheologies and turbulence parameterization is possible. Finally, taking into
account capillarity effects in these models is worth pursuing in order to address, with
our approach, the vast literature devoted to thin viscous films.
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1D Steady State Saint Venant model for mud flow
in Venturi flumes

Miloud Mouzouri1,2, Olivier Thual 2, Laurent Lacaze2 and Prasanna Amur Varadarajan1

1Geoservices, Roissy-en-France, 95700, FRANCE
2Institut de Mecanique des Fluides de Toulouse, Toulouse, 31400, FRANCE

Abstract—A Venturi flume is an open channel flowmeter, which is a flow line with a constrict in that causes a drop in the
hydraulic grade line, creating a critical depth. This critical state appears when the flow transitions from subcritical to
supercritical state. This solution is commonly used in water engineering to measure the flow rate. The challenge here is
to extend this solution to non-Newtonian mud flows. Venturi flume flows have been simulated using a simplified 1D model
based on Shallow Water theory and a friction model taking into account the rheology of the fluid and the variation of the
geometry along the open channel. The model is validated by series of experiments with both Newtonian & non-Newtonian
fluids, and also validated by using 3D CFD.

Keywords—Venturi flume, Flow rate measurement, Open channel flow, 1D Saint Venant/Shallow water Equations, Non-
Newtonian fluids, CFD, OpenFoam.

I. INTRODUCTION

A. Background & Motivation

C
ONTROL of the downhole pressure is critical in drilling
operations. If the downhole pressure exceeds the strength

of the formation, the wellbore can be fractured, causing a loss
of drilling fluid to the formation and possibly damaging the
reservoir. In the worst case, such a damage may cause an un-
controlled reduction in the downhole pressure. If, on the other
hand, the downhole pressure reduces below the formation pore
pressure, this may cause an unwanted influx of formation
fluid into the wellbore and up the annulus, referred to as a
kick, which in the worst case could escalate to a blow-out of
hydrocarbons on the rig, e.g. the Deepwater Horizon incident
in 2012 [1]. For safe operations, the downhole pressure should
thus be kept within a window defined by the formation fracture
pressure and the formation pore pressure.

Early detection of loss of drilling fluid to the formation
or of a kick is the most effective measure that can be taken
to eliminate or limit the consequences of such incidents. A
prerequisite for detecting loss to the formation or kick during
drilling operations is monitoring the mass balance of the well,
i.e. the flow of drilling fluid out of the well compared to that
pumped into the well.

The most basic method of monitoring the flow out of
the well while drilling is using simple paddle (Figure 1 :
solution 1) which is an inaccurate measurement that limits
the resolution of kick/loss detection. The other solution it to
use a Coriolis flow meter (Figure 1 : solution 2) which is
quite an accurate solution but involves expensive installation
costs and setup. A possible alternative is to use a Venturi
flume (Figure 1 : solution 3) which is an open channel with a
constriction designed to give a jump in the fluid level which
holds information about the flow rate. Venturi flumes are

Manuscript received May 10, 2016; revised May 15, 2016. Corresponding
author: Miloud Mouzouri (MMouzouri@slb.com)

typically used to measure large flows of water but rarely used
for other fluids. The challenge here is to extend this solution
to our drilling application.

Fig. 1: Solution to measure the flow out the well.

The summary of this paper is as follows, we describe a 1D
model for the non-Newtonian mud flow in Venturi flume to
provide the relationship of the flow rate with the free surface
height of the flow. The steady-state 1D Saint Venant Equations
were extended for mud flow through flume including the non-
Newtonian flow friction model. The numerical strategy to
solve the equations are described by adressing the technical
challenge near the critical point for the transcritical flows. The
1D model is validated against a series of experiments with both
Newtonian and non Newtonian fluids. Few computations are
done using 3D CFD with OpenFoam. The results are compared
and validated with good accuracy.
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This paper is organized as follows, we described the princi-
ple of the flume on section I. Section II describes the governing
equations of the 1D model, the numerical strategy for solving
the model. Serction III describes in details the friction term
for the 1D model. Section IV describes experimental setup
and the series of experiments. Section V describes the 3D
CFD model using open source software. Section VI compares
and validates models with experiments.

B. Principle

The principle behind Venturi flume is to impose a critical
condition in the flow regime (since it is an open channel
flow, the critical condition is obtained when Froude number
is equal to 1). This is obtained by having a subcritical flow at
the inlet of the flume and accelerating it to supercritical flow
at the outlet. The flume is designed with a convergent part,
throat and a divergent part to obtain the above mentioned
flow configuration. The reason for making the flow critical
is that, once we have a measurement of critical height we
can relate it directly to the flowrate without measuring the
velocity. However, it is difficult to measure the critical height
with sufficient accuracy because of its location and the slope
in the height along the flume at the critical point. Instead, we
must measure the height upstream (h in Figure 2), relate it to
the critical height (hc in Figure 2) and compute the flow rate
(Q). This is done by modelling the height variation along the
flume.

Fig. 2: Transitional flow along a trapezoidal venturi flume.

C. Earlier works

Flume has been mainly used in the water industry as
described in the ISO standard [2], but we wish to extend this
device to measure mudflow rates in our drilling environment
which means that we have to take into account the rheology
of the mud. Thus to use this device and relate the height
measurement to flow rate, we require more detailed model than
the ISO standard that describes the flow through this device.
One method is to model free surface flow using 1D Saint
Venant Equations for our device.

II. GOVERNING EQUATIONS

Saint Venant Equations (SVE), from Saint Venant [18],
can be derived by averaging the three dimensional Navier-
Stokes equations over the cross-section of the channel, as

described Aldrighetti [3]. The basic assumptions for the ana-
lytical derivation of the Saint Venant Equations are

• the flow is one-dimensional, i.e. the velocity is uniform
over the cross-section and the fluid level across the
section is represented by a horizontal line,

• the streamline curvature is small and the vertical accel-
erations are negligible, so that the pressure can be taken
as hydrostatic.

The detailed analysis of transient Saint Venant Equations
and its appropriate numerical solvers are discussed in the
works of Leveque [13]. Since we are interested in the steady
state conditions, the equations in the 1D approximation for
our vayring geometry along the flume can be written as Chow
[8]

au = Q (1)

∂x(βau
2) = −ga∂x(h) + ga∂x(zb)−

1

2
fPwu

2 (2)

Where Q is the flow rate, u the mean velocity of the fluid,
a the cross section area occupied by the fluid, h the height
of the fluid, g acceleration due to gravity, zb the bottom level
of the flume, Pw the wetted perimeter, f the fanning friction
coefficient and β the momentum coefficient.

There are different geometries of Venturi flume, as described
in the ISO standard, but we have chosen to use a trapezoidal
shape. Indeed, trapezoidal Venturi flumes are more adapted to
measure large range of flow rates and even small flow rates
with good accuracy. We introduce parameters (b and m) to
characterise our trapezoidal geometry as described in the figure
3.

Fig. 3: Venturi flume parameters.

Where b is the bottom width and m the side slope of the
flume. Then, we can rewrite the equations (1) and (2) as a
function of height h and the other geometrical parameters b
and m, as currently done in the literature with Thual [4].

∂h

∂x
=

βFr2Ig1 − ∂x(zb)− Fr2f(Re)Ig2
1− βFr2

(3)
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where non-dimension numbers in the above equations are
• Fr : Froude number

Fr =
u

g a
b+2mh

(4)

• Re : Generalized Reynolds number

Reg =
8ρu2

τ0 + k
(

8u
Dh

)n (5)

• Ig1 : Geometrical number 1

Ig1 =
h∂x(b) + h2∂x(m)

b+ 2mh
(6)

• Ig2 : Geometrical number 2

Ig2 =
b+ 2h

√
1 +m2

b+ 2mh
(7)

where Dh is the hydraulic diamater (equal to 4a/Pw) and
(τ0, k, n) are the parameters of the Herschel Bulkley model
used to characterise non-Newtonian fluids. When β = 1, we
see directly that in equation 3 the denominator is equal to 0
at Fr = 1 indicating the three regimes of the flow which are

• Fr < 1 : subcritical flow, where the fluid velocity is
smaller than the wave velocity

• Fr = 1 : critical flow, where the fluid velocity is equal
to the wave velocity

• Fr > 1 : supercritical flow, where the fluid velocity is
bigger than the wave velocity

The form of the equation (3) is currently used to model
transcritical transition. It is an ordinary differential equation
on height but needs to be solved taking into account the
singularity, i.e. when the denominator is equal to 0. In our
case, this singularity happens when the flow transitions from
subcritical to supercritical regime.

Numerical strategy

To avoid the difficulty of the singularity, we have to solve
separately the three regimes : subcritical flow, critical flow and
supercritical flow. Then the singularity will happen only on the
critical flow. The critical flow appears when the derivative of
h is undefined, which is when

numerator : βFr2Ig1 − ∂x(zb)− Fr2f(Re)Ig2 = 0 (8)

denominator : 1− βFr2 = 0 (9)

These equations 8 and 9 are solved to get the critical height
hc and the critical location xc. In our configuration and our
range of flow rates, the location of the critical point xc is
always found at the end of the throat and before the divergent
part. Then we can define the critical flow at xc with values of
height hc computed for each flows.

To solve the subcritical flow, we have to integreate the dif-
ferential equation 3 from (xc−ǫx, hc+ǫh) and the supercritical
flow from (xc + ǫx, hc − ǫh). Values of ǫx and ǫh are small
variations of x and h and need to be determined by doing a
Taylor series expension around the critical point. With this
strategy, we can solve for transcritical flows along Venturi
flume.

We use matlab and ode45 function solver to solve the
equation 3 using the strategy defined before. Ode45 is based
on an explicit Runge-Kutta formula as the Dormand-Prince
pair [17]. That means the numerical solver ode45 combines a
fourth order method and a fifth order method, both of which
are similar to the classical fourth order Runge-Kutta method.
This solver appears accurate and faster with computation time
less than 1 seconde for 1000 spatial points along 2m length.

The other difficulty is to model the friction. Indeed, the
friction will model the effect of rheology on the flow and will
have an important impact on results. So we have to model
it properly and estimate it at each location along the flume
because of the change in geometry. So we will use the SVE
model to compute the height profile along the Venturi flume
with a sub-model for friction, with estimation of f and β,
taking into account the rheology and change of geometry. The
details are given bellow.

III. FRICTION MODEL

The biggest challenge is to model the friction coefficients f
and β for a change of geometry and rheology, which capture
the 3D nature of the flow, in 1D. These are well known for
closed channel pipe flows and rectangular channel flows but
not for open channel flows with changing geometry.

A. Fanning friction coefficient

The fanning friction coefficient f , named after J. T. Fanning,
is a non dimensional number that relates shear stress at the
wall τ to the velocity u.

τ =
1

2
ρfu2 (10)

It can be relat to the pressure loss due to the friction.
This friction factor is one-fourth of the commonly used Darcy
friction factor. For laminar flow, this friction factor can be
written as

f =
K

Reg
(11)

With a coefficient K depending on the geometry, as de-
scribed Burger [5], and is equal to 14.6 for triangular flumes
with a vertex angle of 90◦, 16.2 for semi-circular flumes,
16.4 for rectangular flumes and 17.6 for trapezoidal flumes
with 60◦ sides. For simple geometries like circular pipes, this
coefficient can be computed analytically and is equal to 16, but
still difficult to compute analytically for complex geometries.

For turbulent flow, there are a lot of models based on pipes
experiments and correlations to approximate this factor. The
best known is the implicit relation of Colebrook [6]. Various
explicit approximations of this relation have been developed.
Churchill [7] developed a formula that covers the friction
factor for both laminar and turbulent flow for pipe. This was
originally produced to describe the Moody chart, which plots
the Darcy friction factor as a function of Reynolds number.
The idea here is to adapt the Churchill relation given for
pipe to a general relation working for other shape using the
K coefficient, working for non-Newtonian fluids using the
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generalized Reynolds number Reg and adapt to open channel
flow with the hydraulic diameter Dh and surface roughness ǫ

f =

((
K

Reg

)12

+ 212 (A+B)
−1.5

) 1

12

(12)

A =


2.457ln



((

7

Reg

)0.9

+ 0.27
ǫ

Dh

)
−1





16

(13)

B =

(
37530

Reg

)16

(14)

B. Momentum coefficient β

The momentum coefficient is a dimensionless number based
on the velocity profile and is defined as

β =
1

a

∫
u2dS

(
1

a

∫
udS

)2 (15)

Few experimental investigations on the computation of β
has been done by Chow [8] who proposed a way to estimate
this coefficient for simple velocity distribution like linear or
logarithmic but for water flows in turbulent regime. It was
found, as in Al-Khatib [16], that β is around 1 but still depends
of the channel geometry. Typically, for an ideal inviscid fluid
β is equal to 1, and for Newtonian turbulent flows currently
β is assumed to be 1. But for other fluids, as muds in laminar
regime, we cannot assume β = 1 and it needs to be modeled.

C. Velocity profile model

To estimate the friction, a first approximation would be to
take K and β constant and calibrate on experiments. A better
approximation would be to relate them to the velocity profile
based on rheology and geometry. So we consider a steady
flow with constant free stream velocity (similar to Blasius
assumption of flat plate flow), which corresponds to a flow
over a flat plate that is oriented parallel to the free surface
flow.

With this assumption, consider a laminar non-Newtonian
fluid flow on an infinite plane, inclined with an angle θ with
the horizontal direction as shown in the figure 4. In the case of
a yield stress fluid, the flow is characterized by the existence
of a solid phase in a field such that y ∈ [hy, h], where hy

denotes the height of the sheared fluid layer and h the height
of the free surface. We consider a normal flow with velocity
u(y) along x and a constant height.

We solve the momentum equation (16) considering only the
pressure gradient and the shear stress terms as

0 = −∂p

∂x
+

∂τ

∂y
(16)

with an hydrostatic pressure defined as

p = ρg(h− y0) + patm (17)

Fig. 4: Free surface flow on an inclined plane with a velocity
profile u(y) and a shear stress τ(y).

and a shear stress following the Herschel-Bulkley law as

τ = τ0 + k

(
∂u

∂y

)n

(18)

We solve the equation (16) using an implicit scheme to find
a solution u(y) as described by Guillet [14]. For a turbulent
flow, the velocity profile is more flat and we approximate β
to be 1.

D. β and f computation

Using the previous model, we can compute β using the
equation (15), f using the equation (12) and K using the
equation 19.

K =
−2b ∂p

∂x
Reg

ρu2
(19)

To compute f and β consider scenarios of three different
fluids over a flat plate of width b = 0.12, height h = 0.2m
and flow rate Q = 200L/min.

• Fluid 1 : Newtonian fluid with τ0 = 0Pa, k = 0.2Pa.sn

and n = 1
• Fluid 2 : Bingham fluid with τ0 = 1Pa, k = 0.2Pa.sn

and n = 1
• Fluid 3 : Herschel Bulkley fluid with τ0 = 1Pa, k =

0.2Pa.sn and n = 0.5

Fig. 5: Velocity profile computed for the 3 different fluids.

Based on this theory, we find for a Newtonian fluid and a
laminar flow K = 24 and β = 1.2 (which is approximately
known for laminar flows). But for an other fluid, the value of
K and β vary and depend on the rheology, on the height and
fluid velocity.
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K Reg f β

Fluid 1 24 555 0.04 1.2
Fluid 2 22 120 0.18 1.09
Fluid 3 20 124 0.16 1.05

TABLE I: Value of friction coefficients computed for the 3
different fluids

As mentioned earlier, we use this sub-model of friction to
estimate f and β and then taking into account the rheology
and change of geometry in the SVE model.

IV. EXPERIMENTS FOR VALIDATION

At Geoservices, we have a flow loop that allows us to
circulate fluids through the Venturi flume, shown in figure
6. The flow loop works by pumping the fluid with pumps
(1), measuring the flow rate with Coriolis flow meter (2) for
reference and measuring heights of the fluid with eight height
sensors (3) at different locations along the Venturi flume.
This flow loop was designed with scale down version of the
geometry in the field (with the geometrical ratio of 1:3) and
to match the required flowrates (with the flow rate ratio of
1:12). The scaling is based on the conservation of the non
dimensional numbers which are governing the flow.

Fig. 6: Flow loop at Geoservices equiped with a Coriolis flow
meter and eight ultra-sonic height sensors.

The experimental campaign carried out to circulate different
fluids into the loop, measure the flow rate at different steady
state, measure the density, measure the 8 height along the
Venturi flume and measure the rheology of the fluid few times
a day.

Sensor Measurement Accuracy

CMF 200 Flow rate +/- 0.1 %
CMF 200 Density +/- 0.2 kg/m3

UNAM12 Height +/- 1 mm

TABLE II: Performance specifications of sensors used

We conducted experiments with the trapezoidal Venturi
flume for differents fluids: water, viscous Newtonian fluids
(mixture of glycerin & water) and non-Newtonian mud-like
fluids (mixture of carbopol & water). We conclude on a dataset
of 17 different fluids and for each series of fluid 20 different
flow rates and for each flow rates we measure the all 8 heights
along the Venturi flume.

N◦ Mixture Conc. [%] App. Viscosity [cP]

1 Water - 1
2 to 11 Glycerin 60 to 100 17 to 900
12 to 17 Carbopol 0.095 to 0.13 10 to 300

TABLE III: Fluids and range of viscosities studied

The plot show in figure 7 an upstream height measured by
the ultra-sonic sensor on the Venturi flume versus the flow
rate measured by the Coriolis flow meter for only 6 different
fluids.

Fig. 7: Upstream height vs. flow rate for different fluids for
our trapezoidal Venturi flume

The fluid number 2 (in black on the figure 7) is the more
viscous that we have, opposed to the fluid number 1 (in blue
on the figure 7) which is water. Figure 7 show the big impact
of the rheology on the relation height versus flow rate.

In addition to the experiments we study the flow using 3D
computation. This is done for two purposes one to establish
and validate the 3D features not modelled by by 1D model
and to establish further database of flume characteristics for
different geometries.

V. 3D CFD MODEL

The 3D open channel flow simulation was done using the
Open source CFD software OpenFoam [15]. This software
uses a large library of solver for the fluid flow models and
that can be found on OpenFoam user guide. For our 3D
simulation, we use the solver InterFoam which is used to
model incompressible multiphase flow. This solver uses the
volume of fluid (VOF) method for tracking and locating the
free surface of the flow. This method is based on the idea of
fraction function, a scalar defined as the integral of the fluid
in the control volume. In our case, when the cell is empty of
liquid (so only air), this fraction function is equal to 0 and
when the cell is full of liquid, this fraction function is equal
to 1. Then the interface is tracked when the fraction function
is between 0 and 1, as shown in the figure 8.

The computational domain in 3D consists of a Venturi
flume and a flow line upstream as shown in the figure (9).
This rectangular channel upstream is important to maintain a
length of stabilisation of the flow. The boundary conditions
are described such that we have a flow rate at the inlet, means
at the entrance of the flow line.
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Fig. 8: Fraction function value.

The open surface is described with air at atmospheric
pressure and no slip condition is described for the velocity
along the walls. At the outlet a zeroGradient on height is
described which allows the flow to evacuate whitout affecting
the flow upstream.

Fig. 9: 3D geometry composed by a rectangular channel and
a trapezoidal Venturi flume.

We choose non uniform rectangular meshes along the do-
main with fine mesh along the Venturi flume and coarser mesh
away from the Venturi, to increase computational efficiency.
Along the Venturi flume, the size of the mesh along x direction
equals 11 mm, along y direction equals 12mm and along z
direction equals 6mm, with a total around 100 000 meshes.
The computation time step is chosen automatically with using
the adjustTimeStep option in OpenFoam, this function adjusts
the time step during the simulation according to the Courant
number and ensure the time step for wave stability. All
numerical residuals are checked to ensure the convergence of
the computations to ensure steady solution. We used k − ω
model for turbulent flows.

VI. RESULTS : 1D-SWE VS. EXP VS. CFD

A. Height profile comparison

1) Newtonian case: water
We considered the water serie and selected data for the flow

rate equal to 477L/min where the flow is turbulent.
The plot of eight height measured by the ultra-sonic sensors

from the experiments, the height profile computed by the 1D
steady state Saint Venant model and the medium height profile

Properties Fluid

density, ρ [kg/m3] 1000
yield stress, τ0 [Pa] 0
fluid behaviour index, k [Pa.sn] 10−3

fluid power index, n [-] 1

TABLE IV: Water properties

Fig. 10: Plots comparing experiments, 1D computation and
3D computation of a water flow along the trapezoidal Venturi
flume.

computed by the 3D CFD model for this Newtonian flow is
shown in figure 10.

2) Non-Newtonian case: carbopol mixture
Now we consider the mixture of carbopol series, which has

a rheology closer of drilling muds, and selected data for the
flow rate equal to 440L/min where the flow is laminar.

Properties Fluid

density, ρ [kg/m3] 1000
yield stress, τ0 [Pa] 1.6
fluid behaviour index, k [Pa.sn] 0.79
fluid power index, n [-] 0.54

TABLE V: Carbopol mixture properties

The plot of the eight height measured by the ultra-sonic
sensors during the experiments, the height profile computed
by the 1D steady state Saint Venant model and the medium
height profile computed by the 3D CFD model for this non-
Newtonian flow is shown in figure 11.
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Fig. 11: Plots comparing experiments, a 1D computation and a
3D computation of a non-Newtonian flow along the trapezoidal
Venturi flume.

3) Discussion: The 1D model is able to capture accurately
the real height profile of the flow, for Newtonian and non-
Newtonian fluid, but has less accuracy around the critical
point. As described earlier this could be based on the lack
of diffusion term, higher order term orturbulent dissipation
present in the 1D model and also the condition for the critical
point which is derived for the inviscid assumption. In terms of
our application of flow metering, the important height is the
upstream height and the accuracy is described in the following
section.

For the 3D model, we have accurate results along the
Venturi flume (2%) and also around the critical point. There
is no assumption of the location of the critical point and any
empirical relation for the friction terms in the 3D model which
are the possible uncertainties in the 1D model.

B. Upstream height comparison

The figure 12 show the error between upstream height
measured and computed by the 1D model for all fluids, at
the location x = 0.5m.

errorh =
hcomp(x = 0.5)− hexp(x = 0.5)

hexp(x = 0.5)
× 100 (20)

For all the data, we establish an envelope of error that we
have on upstream height shown by red dotted line in figure
12.

• if Q < 100L/min, max(|errorh|) < 3mm
• if Q > 100L/min, max(|errorh|) < 3%

Then, we can quantify that our 1D model is able to predict
upstream height of Venturi flume with an accuracy of 3% on
height (for flow rates bigger than 100L/min).

Fig. 12: Error on height between experiments and 1D compu-
tations for all fluids.

VII. CONCLUSION

A simplified 1D model based on the Saint Venant Equations
(SVE) has been developed with a sub-model for the friction.
It is found to give good agreement with the experiments and
with the 3D CFD model. The study was done for 17 different
fluids (for both Newtonian & non-Newtonian fluids) and 20
different flow rates for each fluid (in both laminar & turbulent
regimes). The 3D simulation is also a reference to quantify
our simplification, indeed we can compare the friction and the
momentum coefficient with our friction model and improve it.

In terms of our application the important height is the
upstream height and the 1D model is very accurate at this
location, because our assumptions seems to be valid far of
the critical point and are possibly absorbed by the modelled
friction terms. We have a good 1D model able to predict
the height with a good accuracy. Based on this 1D steady
state model, we develop an inverse model to predict the flow
rate based on the upstream height measured and the fluid
properties. Then we quantified this solution in term of flow rate
measurement with an accuracy of 5% based on 340 different
flow rates and 17 different fluids. This study highlights the
potential of using a Venturi flume as a new low cost flow
meter for drilling operations [11].
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APPENDIX D

Various flume shapes
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Section Area Wetted Hydraulic Surface
perimeter radius width

a Pw Rh ση

bh b + 2h bh
b+2h

b

bh + mh2 b + 2h
√

1 + m2 bh+mh2

b+2h
√

1+m2 b + 2mh

mh2 2h
√

1 + m2 mh
2
√

1+m2 2mh

1
8(θ − sin θ)D2 1

2θD 1
4

(

1 − sin θ
θ

)

D 2
√

h(D − h)

Table D.1: Various flumes shapes with their area, wetted perimeter, hydraulic radius
and surface width
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