
HAL Id: tel-04279919
https://theses.hal.science/tel-04279919v1
Submitted on 16 Oct 2013 (v1), last revised 10 Nov 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Methodology for conjugate heat transfer simulations
relying on Large Eddy Simulations in massively parallel

environments.
Stéphan Jauré

To cite this version:
Stéphan Jauré. Methodology for conjugate heat transfer simulations relying on Large Eddy Simu-
lations in massively parallel environments.. Fluids mechanics [physics.class-ph]. Institut National
Polytechnique de Toulouse - INPT, 2012. English. �NNT : �. �tel-04279919v1�

https://theses.hal.science/tel-04279919v1
https://hal.archives-ouvertes.fr

����������
����	A�BA�CDEF�A���E��B	

��

��C����� !�����������	��A�	B�CABD�EF�����E��E��A�BA��E
��"#� C��A�E	�" �#�!C����$�D�	����E��E���B���E�

%��&

�	�F�C	�B����E�	
�E�����ED�	��E
�	��E�����F��EB
�BA�E�����F�	��E

��F����	��
�E����A��������EBBE�

 A�	���	!�A�

 	""A��E��
 	""A��E��
���EF�E����E���#�E
$A���EF�E����E���#�E
�%	���	�E��
�%	���	�E��
�%	���	�E��

�#ECA�BE#�E�!CA�$�&F	����E'���E�(&����E'��&��E�F�!�B'�C�AF&�&�
������BA��A#'A�#'A�$$� �)$*

���A#�A	�(")�BA��'*"A�$�	��E�����F��EB'��BA�E�����F�	��E
�! E��A	�"�$�	�F�C	�B����E�	'��E�����ED�	��E

+��"A���A�A��"E	�A�	A� !��*�&"�	���	��&
�A�����&FE�+�E�,-.,

����A�$
�E��A�ABA(D�/A��FA�0�(�E��E	����	��/E������B	��A����EBD��(�A��
�	�(E����D�*���B	��A�������	���!EBD�"	�	BBEB�E�!��A��E���

2

Contents

1 Scientific Context 9

1.1 Introduction . 9

1.2 Multi-physics in computer simulation . 13

1.3 State of the art of multi-physic simulations and solutions 14

1.4 The goal: Coupling unsteady LES solver in massively parallel environments, application
to a conjugate heat transfer case . 17

I Physical modelisation 19

2 Fluid Simulation 25

2.1 Compressible Navier Stockes equations of multi species flows 25

2.2 Large Eddy Simulation . 28

2.2.1 Sub-grid closures . 29

2.2.2 Sub-grid scale models . 30

2.2.3 Wall law model . 31

2.2.4 The thickened flame model for LES . 31

2.3 Basic validation cases . 32

2.3.1 Turbulence validation . 32

2.3.2 Wall model validation . 36

2.3.3 Combustion validation . 39

3 Solid thermal conduction 41

3.1 The equation solved: the unsteady heat equation . 41

3.2 Validation . 42

3.2.1 Analytical resolution of the problem . 42

3.2.2 Comparison with AVTP results . 44

3

4 CONTENTS

4 LES computation 45

5 The solid domain 47

II Coupling stability and convergence analysis 51

6 Influence of fluid instabilities on solid’s temperature convergence 57

6.1 Influence of fluid unsteady features on a 1D solid’s temperature domain 58

6.2 Influence of the coupling frequency on the convergence of an unsteady conjugate heat
transfer problem . 59

6.3 Conclusion: what should we do? . 68

7 Numerical stability of a tightly coupled algorithm 69

III Interpolation methods for unstructured grid coupling 77

8 The basics of interpolation 85

8.1 Sampling based interpolation . 85

8.1.1 Signal reconstruction . 85

8.1.2 Grid to Grid Interpolation example . 88

8.2 Conservative interpolation . 93

8.2.1 Conservative interpolation in 1D . 93

8.3 Basic comparison of the interpolation methods . 97

9 Interpolations based on linear transforms 107

9.1 Nearest neighbor interpolation . 108

9.2 Linear interpolation . 109

9.3 Conservative interpolation . 110

9.3.1 Conservative Interpolation on surface meshes 110

10 Efficient geometrical search methods for unstructured grids 119

10.1 The Nearest neighbor problem . 119

10.1.1 Kd-Tree search algorithm . 120

10.1.2 Validation of the Kd Tree implementation . 125

10.2 Element scan methods . 128

CONTENTS 5

10.2.1 For linear interpolation: Finding the containing element 128

10.2.2 For linear conservative interpolation: efficient projection algorithm 130

10.3 Binary space partitioning applied to elements AABB trees 131

IV Code coupling methods designed for high performance computing 135

11 Issues specific to HPC 143

11.1 Introduction . 143

11.2 Massively parallel architectures . 144

11.3 Issues specific to Massively parallel . 144

12 Computational view of code-coupling for unstructured meshes 149

12.1 The setup phase . 150

12.2 The initialization phase . 152

12.3 The runtime phase . 152

13 Algorithms and Methods implemented 157

13.1 The geometrical search, first step: the coarse routing step 157

13.1.1 Routing using a distributed hash table . 158

13.2 The geometrical search, second step: building the communication graph and the parti-
tioned interpolation matrices . 162

13.3 Direct Communication using Interpolation overlap . 165

13.4 Tests of the proposed method . 167

V Application to an aeronautical burner 173

14 Coupled application 179

14.1 Coupled application setup . 179

14.2 Application scalability assessment . 182

15 Results 185

VI Appendix 191

A Software developed during this thesis 195

6 CONTENTS

A.1 A basic solution Interpolator . 195

A.2 The coupling library . 197

A.3 A graphical user interface for 3D unstructured mesh coupling 199

B Geometric formulas and algorithms for interpolation 205

B.1 Barycentric coordinates for linear interpolation . 205

B.1.1 Barycentric coordinates for a segment in 1D . 206

B.1.2 Barycentric coordinates for a triangle in 2D . 206

B.1.3 Barycentric coordinates for a tetrahedron in 3D 208

B.2 Calculating the integral of a linear function over P1 elements 210

B.2.1 Calculating the integral of a linear function on a triangle 210

B.2.2 Calculating the integral of a linear function on a tetrahedron 212

B.3 Intersection calculation . 213

B.3.1 Intersection procedure for two segments . 214

B.3.2 Algorithm: The jarvis March - Convex Hull in 2D 216

B.3.3 Possible method for volumetric conservative interpolation 218

Disclaimer

Some of the material used/shown/discussed within this thesis was considered confidential and hence
not suitable for a public release. Therefore some parts of the original manuscript have been modi-
fied/hidden or stripped to produce this public release. This includes stripping entire chapters, namely
4,5 and 15.

7

8 CONTENTS

Je tiens tout d’abord à remercier mon encadrement (un grand merci à Florent, Laurent et Gabriel)
pour m’avoir accompagné durant ces quelques années de thèse. J’ai énormément appris durant ces
quelques années et c’est en grande partie grâce à vous. Mais également un grand merci à l’ensemble
de l’équipe CFD du CERFACS: aux seniors ainsi qu’aux thésards/postdocs, notamment ceux qui sont
partis Alex, Ignacio, JB, Thomas, Anthony, Damien, Jorge ceux qui sont encore David, Jean-Phi,
Remy, Damien...). Merci au département des méthodes aérothermique de Snecma Villaroche qui a
financé mes travaux (tout particulièrement merci à Eric Mercier, Juan Carlos Larroya, Emilie Lachaud,
Sebastien Roux, Ronan Daviot). Merci au jury pour avoir pris le temps d’étudier ce manuscrit (ce qui
ne devait pas être facile). Finalement merci à ceux qui m’ont supporté hors laboratoire: ma famille
et Marie!

Poets say science takes away from the beauty of the stars - mere globs of gas atoms. I, too, can see
the stars on a desert night, and feel them. But do I see less or more?

Richard P. Feynman

Chapter 1

Scientific Context

1.1 Introduction

Figure 1.1: Source: Energy Information Administration (2008) International Energy Outlook 2008,
June 2008

A difficult challenge is facing aeronautical engineering: due to oil shortage fuel price is rising,
Fig 1.1, concerns about pollution and global warming are increasing while the FAA forecasts that air
travel should continue to grow on average of 2% per year [1]. In order to cope with this situation,
improvements in aeronautical engine design is necessary. The objective is to increase the engine
overall efficiency, that is to say, the produced power in relation to the input fuel. Looking at a basic
thermodynamic model, namely the Brayton-Joule cycle [102], Fig 1.2, it is possible to deduce a simple
model for the gas turbine engine efficiency. The Brayton-Joule cycle divides the thermodynamic
evolution of the gas in the engine into 4 steps:

1 isentropic compression of the gas in the compressor (a→ b on Fig 1.2),

2 isobar combustion (b→ c),

9

10 CHAPTER 1. SCIENTIFIC CONTEXT

3 isentropic expansion of the gas in the turbine (c→ d),

4 isobar heat rejection in the atmosphere (d→ a).

The Brayton-Joule cycle efficiency η is defined by the ratio of the net work Qin −Qout and the input
heat Qin:

η =
Qin −Qout

Qin
(1.1)

Qin being the heat brought in the system by combustion and Qout the heat lost through exhaust.
The input and exhaust heat can be expressed by enthalpy differences, the definition is chosen to be
positive :

Qin = hc − hb Qout = hd − ha (1.2)

Assuming that the specific heat capacity cp remains constant, the efficiency can hence be expressed
by:

η =
cp ((Tc − Tb)− (Td − Ta))

cp (Tc − Tb)
= 1− Td − Ta

Tc − Tb
= 1−

Ta
(
Td
Ta
− 1

)

Tb
(
Tc
Tb
− 1

) (1.3)

Because the transformation between a→ b and c→ d are isentropic we can write that

(
Ta
Tb

)γ
=

(
Pb
Pa

)1−γ (
Tc
Td

)γ
=

(
Pd
Pc

)1−γ
(1.4)

Noting that the combustion and exhaust process are isobar processes, Pa = Pd and Pb = Pc, we obtain
Ta
Tb

= Td
Tc
⇒ Tc
Tb

= Td
Ta

. The Brayton-Joule cycle can hence be simplified to

η = 1− Ta
Tb

= 1− 1
Pb
Pa

γ−1
γ

(1.5)

Hence increasing engine efficiency requires increasing the compressor pressure ratio Pb
Pa

, this also means
higher temperature levels.

Figure 1.2: Thermodynamic cycle of gas turbine engines

Historically engines have been designed with rather low compressor pressure ratios. At low com-
pressor ratios engines are not very efficient but because of the low combustion temperature levels the
design remains relatively simple. With the need to increase engine efficiency the compressor pressure
ratio has increased, Fig. 1.3, leading to higher temperatures, notably combustion temperatures. Indeed
looking at the first industrial usage of a gas turbine engine, in 1939 at Neuchâtel Switzerland [125]

1.1. INTRODUCTION 11

Figure 1.3: Gas turbine engine pressure ratio trends (www.mit.edu - Jane’s Aeroengines, 1998)

for electrical power generation, Fig. 1.4. That gas turbine had an output power of 4MW and its
highest temperature obtained within the thermodynamic cycle was 538°C [125]. At that time, engi-
neers willing to improve the generator’s efficiency increased the highest temperature to 648°C [125].
The efficiency increased from 18% to 23% [125]. By contrast, modern gas turbines such as industrial
generators or aeronautical engines, Fig. 1.5, generally burn kerosene at temperatures above 2000°C.

Figure 1.4: Neuchâtel first industrial gas turbine

Unfortunately such temperatures are not compatible with the materials used to build engines: at
these temperatures the metallic parts of the engine melt. To prevent the combustor walls and the
turbine from having their life span shortened, the engine parts have to be cooled down. Designing
efficient cooling systems relies on knowing where the hot spots are. This knowledge has long been
based on engineer intuitions and expensive experiments with trial and error tests.

Today, turbine experts commonly acknowledge that computer simulation is a very promising path
for optimization, which can reduce costs and diminish the duration of the design process. Up to today
most conjugate heat transfer simulations have essentially relied on Reynolds Average Navier Stokes
(RANS) [114, 90]. While RANS simulations become more and more accessible, its accuracy remains
limited by the quality of its models. On the contrary, Large Eddy Simulation [91, 99] (LES) accuracy
is far less limited by its models provided that the meshes used are fine enough [33]. LES can therefore
be seen as a good trade off between high accuracy Direct Numerical Simulation [82] (DNS) and low
computational cost RANS, Fig 1.6. LES computations however remain a great challenge notably
in the High Performance Computing context (HPC) since LES is far more expensive than RANS.

12 CHAPTER 1. SCIENTIFIC CONTEXT

(a) (b)

Figure 1.5: (a) An industrial gas turbine(Siemens), (b) The cfm-56 Turbofan Engine (Snecma)

But noting that LES is less limited by closure models it can take advantage of massively parallel
super computers to increase prediction accuracy, Fig 1.7, which is not the case for RANS simulation.
With the increase of computational power, LES simulations become accessible for specific components
of gas turbines [43, 13, 14, 106]. However these stand-alone simulations and solutions now face a
new challenge: to improve the quality of the results, new physics must be introduced with specific
and distinct numerical models. For example, in the context of multi-component simulations, further
improving the accuracy of turbine wall models is of limited interest if wall temperature boundary
conditions are still set approximately. Hence the next milestone to improve simulation accuracy is
multi-physics simulation.

(a) (b)

(c)

Figure 1.6: Comparison of flames using DNS (a), LES (b), RANS (c)

Figure 1.7: Example of LES outperforming RANS in terms of accuracy

1.2. MULTI-PHYSICS IN COMPUTER SIMULATION 13

1.2 Multi-physics in computer simulation

Figure 1.8: Coupled climate model

Multi-physics is a recent transverse discipline which has been pioneered essentially by the climate
community. Climate models comprise many interdependent models: one for each key component of
climate modeling, e.g. the atmosphere, the ocean, the biosphere, the cryosphere, etc... (Fig 1.8)
Each of these models require boundary conditions from another model and in turn provide data
to the other models input. At the origin these models were developed independently by different
specialists. Those models were thus run in isolation using data known a priori for the boundary
conditions: measurements, results from other simulations or rough approximations of other models.
Further improving each model’s accuracy independently was of limited interest as long as the boundary
conditions were fixed approximately. On the contrary coupling the different models could lead to
improved predictability of the global model. One of the first notable coupled simulations was performed
by Boville and Gent [16] which showed more realistic variability in simulation results. Similar work is
carried out within CERFACS GLOBC team [95].

Figure 1.9: FSI in Hemodynamics: investigating the interaction between deformable arteries and blood
flow [49]

An other field where many different physics interact is the new field of computational biology. An
illustration of the multi-disciplinary aspect of this field is in hemodynamics, Fig 1.9: Fluid Structure
Interaction (FSI) may be used to study the interaction between the deformable walls of the arteries and
the blood flow. This new field of study is clearly at the cross roads of many very different disciplines:
biology, fluid and structural dynamics. Mathematical models are currently being developed to solve
this problem [67, 123, 49].

14 CHAPTER 1. SCIENTIFIC CONTEXT

FSI is a fundamental problem for mechanical and structural engineering. Indeed failing to evaluate
the interaction between the fluid flow and the mechanical structures can impair the time of life of those
structures, and in the worse case even result in their destruction: a notable example is the accident of
the Tacoma narrow bridge in 1940 [18]. Another notable FSI problem is the Pogo effect which appears
in liquid engine rockets: a vicious circle between combustion instability in the engine, the rocket
structure vibration and the engine fuel input generates a self exciting vibration mode. This almost
resulted into complete failure on the unmanned Apollo 6 mission. A more contemporary application
of FSI is in wind turbine rotor design: atmospheric turbulence generates a time varying pressure field
across the blades, Fig 1.10. Hence generating vibrations on the blades leading to increased noise and
reduce life span of the wind turbine components [85, 9]. Therefore investigating this matter is of great
importance to improve design methods in mechanical engineering.

Figure 1.10: FSI for wind turbine design (ACUSIM - http://www.acusim.com/html/apps/windTurbFSI.html)

Considering design optimization, influence of heat stresses on metallic structures is of fundamental
importance: in the context of gas turbine engineering, a critical problem is to predict the temperature
levels within the combustor or the turbine blades. Even though the combustor walls and turbine
blades may use special thermal coating, they can not withstand the heat levels generated by the
flame without cooling systems. These cooling systems rely on complex dilution jets, cold air films,
and porous materials. Maintaining the life span of the engine components requires evaluating the
efficiency of these cooling systems by solving the interactions between the flow and solid domain, i.e.
solving the conjugate heat transfer problem. In other contexts incorrect prediction of the temperature
levels may have critical consequences. An application where the conjugate heat transfer problem is
even more critical is hypersonic space reentry [81].

1.3 State of the art of multi-physic simulations and solutions

Multi-physics simulation was first obtained by manual transfers of simulation results into input pa-
rameters for other simulations and iterating this process until convergence. Slightly more advanced
methods have then been developed in order to automate this process using basic tools such as shell
scripts, python ,etc... Such methods remain very popular in the industry, however these methods are
generally developed for a target application using ad-hoc tools and methods to transfer data from the
different formats and numerical discretizations which make them difficult to upgrade and maintain on
the long-term, Fig 1.11.

Therefore software dedicated to multi-physics has been developed. These software can be catego-
rized into two main classes: on the first hand there are all-in-one solvers, on the other hand there
are multi-physic couplers. The first method implies building a set of solvers for each physic which all
share the same computational structure and can therefore run all together within the same process.

1.3. STATE OF THE ART OF MULTI-PHYSIC SIMULATIONS AND SOLUTIONS 15

Figure 1.11: N3S-ABAQUS Coupled chain developed at Snecma

Generally these solvers are based on finite element discretization since it is the most general way to
describe a large range of physical phenomena. While this concepts seems appealing its cost is gen-
erally loss of performance and scalability for specific physical modules such as unsteady LES solvers
which rely on specific data structures and solvers for optimal performance. A clear example is the
popular solver COMSOL [25] which contains finite element method based modules for physics rang-
ing from fluid dynamics, acoustics, structural mechanics, heat transfer to electro-chemistry. But this
all-in-one solver has not demonstrated interesting scalability properties yet: roughly 80% efficiency on
24 processors [26]. Therefore this tool is not suited for intensive computational tasks such as LES
simulation.

The other path is to reuse already existing state of the art solvers and to interface them using
a dedicated software named a code coupler. The most popular coupler used actually in the CFD
community is MpCCI [53]. This coupler is already interfaced to the most popular commercial solvers
used in industry. Considering MpCCI from a HPC perspective it is clear that flexibility is the key
choice driving its development: MpCCI communicates with the simulations solvers using standard
TCP/IP sockets [112] instead of using the more HPC specific oriented communication library MPI [44].
Therefore MpCCI is almost not intrusive and can handle heterogeneous computing environments, on
the other hand using standard TCP/IP communications instead of MPI reduces greatly communication
performance in terms of bandwidth and latency. Also MpCCI is based on a client server structure
which is limiting for massively parallel applications: each process communicating with MpCCI within
a simulation code needs a dedicated MpCCI server. In a massively parallel context a simulation
running on a thousand processors would require a thousand MpCCI servers which is clearly not the
most suited choice. Another method is to add internal communications within the solver and transfer
all the data to a master processor which communicates with MpCCI. This solution however implies
centralization which is generally a limitation to scalability (see part 11).

16 CHAPTER 1. SCIENTIFIC CONTEXT

A popular open source coupler is Open-Palm [86] developed by CERFACS and ONERA. Some
parts of the methods and concepts established during this thesis are transferred progressively to this
coupler. Open-Palm has been designed differently than MpCCI: all the solvers run in the same
MPI environment, therefore allowing higher communication performance. A consequence is that it is
harder to interface a code to this coupler because sharing the same MPI environment generally requires
compiling the code for a specific environment which is only possible if the source code is available.
New developments allowing to communicate with closed source codes have been added. However in
its actual version this coupler relies on a client server structure which may be seen as a limitation for
massively parallel environments.

These different solutions imply different types of computations. All-in-one solvers are generally
reserved for relatively small cases such as prototype simulations. Couplers such as MpCCI have been
extensively used with steady state solvers such as Fluent [5], Abaqus [46], StarCD [24], etc... The goals
of such simulations can be obtaining a converged solution or in some more advanced cases solving a
multi-physical optimization problem. The low communication performance of such couplers is not a
great penalty because generally steady state solvers have long computation times for each iteration
and the aggregate converged solution is obtained after a relatively low count of coupling iterations.

The introduction of unsteady solvers such as LES solvers modifies clearly the problem. Such solvers
generally require much more computational power and rely essentially on parallelization. Solvers such
as AVBP [104] or YALES [76, 75] can scale linearly over thousands of cores almost perfectly with
relatively low iteration execution times, Fig 1.12. Also because they are unsteady solvers different
strategies have to be imagined to couple them: their response to a set of boundary conditions is not
unique and depends greatly on time. Signal sampling issues have thus to be considered when coupling
such solvers. A scalable coupler with low latency data transfers is mandatory to perform code coupling
using such solvers without degrading their performance.

(a) (b)

Figure 1.12: Scaling curves of AVBP (a) and YALES (b)

Note that simulations have already been attempted using Open-Palm’s predecessor Palm [37, 4].
The two main contributions are a turbine blade calculated by Duchaine et al. [32], and a full combustion
chamber by Amaya et al. [2]. Both simulations remain essentially demonstrator applications. In the
first case the simulation was performed by loosely coupling the solid and the fluid simulation, this
methodology was then applied to the combustion chamber. However the simulation demonstrated
convergence problems of the conjugate heat transfer problem due to the unsteadiness brought by
combustion. Converging a conjugate heat transfer problem while undergoing unsteady temperature
fluctuations produced by a flame is investigated within this thesis. Also in that version of Palm [37, 4]
no unstructured grid interpolation support was provided, hence a solution to this problem is proposed.
Finally the communication schemes used are based on a centralized client server scheme, this is
a bottleneck for massively parallel applications on the long term. A direct processor to processor
coupling communication scheme is hence developed.

1.4. THE GOAL: COUPLING UNSTEADY LES SOLVER IN MASSIVELY PARALLEL ENVIRONMENTS, APPLICA

1.4 The goal: Coupling unsteady LES solver in massively parallel

environments, application to a conjugate heat transfer case

Figure 1.13: An aeronautical burner

The work presented throughout this thesis attempts to propose a complete methodology to perform
multi-physic calculations relying on unsteady solvers in the context of high performance computing
(HPC). The methodologies developed in this thesis are applied to a conjugate heat transfer problem
relying on LES but should be extensible to other types of code coupling problems. Efforts have been
focused to challenge the numerical and computational problems inherent to code coupling in the HPC
context. The solutions to these problems are presented within this work and have been implemented
within a multi-physic coupling library presented in appendix A.2. This library has been used to
produce the demonstrator application. This implies complex development because such software must
be able to adapt to the solver’s numerical needs, maintain solvers scalability in HPC environments,
and be portable.

Also the issues specific to industrial calculations such as complex geometry handling has been taken
into account: the work has been developed with a target application which is the aeronautical combus-
tion chamber, Fig 1.13. Indeed setting up a standard industrial LES means managing a complex mesh
with approximately 70 boundary conditions and hundreds of parameters. Coupling such a simulation
to a thermal solver implies definition and matching of geometrical interfaces, matching boundary con-
ditions and even more parameters. This brings to a less scientific but nonetheless important aspect of
this work which should also be taken into account: complex computation setup. In order to ease this
task (added precomputation checks and diagnostic tools) a tool capable of visualizing different multi-
physical computations and their specific features has been developed. This tool is briefly presented
in A.3.

Due to the nature of this industrial application, no experimental data was available to validate the
target simulation calculations so it can only be seen as a demonstrator case. The results of this thesis
are more in the methods and algorithms developed to produce the demonstrator application than in
actual the computational results.1

1Indeed software based on the methods explained throughout this thesis have been used by others for different
multiphysic problems.

18 CHAPTER 1. SCIENTIFIC CONTEXT

The outline of this document is

Part I First the different physics and their solvers, namely AVBP and AVTP, are presented and vali-
dated on some basic test cases.

Part II The conjugate heat transfer problem relying on an unsteady LES is investigated. A methodology
is proposed and its convergence and stability are assessed.

Part III The numerical methods used for unstructured grid interpolation are explained. The discussion
starts by the fundamentals of interpolation and explains the actual methods implemented within
the coupled application.

Part IV The issues specific to the HPC aspect are treated and a scalable method for code coupling is
proposed.

Part V The results obtained on the demonstrator are presented.

Part I

Physical modelisation

19

Table of Contents

2 Fluid Simulation 25

2.1 Compressible Navier Stockes equations of multi species flows 25

2.2 Large Eddy Simulation . 28

2.2.1 Sub-grid closures . 29

2.2.2 Sub-grid scale models . 30

2.2.3 Wall law model . 31

2.2.4 The thickened flame model for LES . 31

2.3 Basic validation cases . 32

2.3.1 Turbulence validation . 32

2.3.2 Wall model validation . 36

2.3.3 Combustion validation . 39

3 Solid thermal conduction 41

3.1 The equation solved: the unsteady heat equation . 41

3.2 Validation . 42

3.2.1 Analytical resolution of the problem . 42

3.2.2 Comparison with AVTP results . 44

4 LES computation 45

5 The solid domain 47

22 TABLE OF CONTENTS

Nomenclature

α Material heat diffusivity

ǫ Rate of energy dissipation

λ Material heat conductivity

µ Dynamic viscosity

ν Kinematic viscosity

ρ Fluid density

c Material specific heat capacity

Cp Specific heat capacity and constant pressure

CS Smagorinsky constant

Cv Specific heat capacity and constant volume

E Energy

hs Sensible enthalpy of specie k

K Von Karman constant

L Length of domain

LT Turbulent length scale

P Pressure

Pr Molecular Prandtl number

Prt Turbulent Prandtl number

Qj Reaction rate of chemical reaction j

R Ideal gas constant

r Specific ideal gas constant

SL Flame laminar velocity

Sij Rate-of-strain tensor

Sct
k Turbulent Schmidt number Sct

k of specie k

T Temperature

ui Velocity in direction i

Wk Molecular weight of specie k

Xk Molar fraction of specie k

Yk Mass fraction of specie k

1

24 TABLE OF CONTENTS

In this thesis multiphysics simulation relies on independent solver coupling: well proven and op-
timized solvers are used to simulate each physic and additional code allows them to communicate.
Before considering the coupled problem it is first important to consider each solver. Also to under-
stand the different issues brought by the target application, the configuration for each physic is also
presented.

Chapter 2

Fluid Simulation

In this chapter the equations governing the flow in the fluid domain are presented. First the equations
governing a compressible reactive multi-specie flow are introduced, then the Large Eddy Simulation
concept is introduced with the filtered version of those equations. Finally basic validation cases using
the CERFACS/IFP fluid solver AVBP are described. AVBP is a compressible multi-specie DNS/LES
solver capable of simulating accurately turbulent reactive flows on hybrid unstructured grids. A more
thorough description of AVBP is available in the official AVBP handbook.

2.1 Compressible Navier Stockes equations of multi species flows

The equations presented throughout this section govern a compressible fluid. They are expressed in
Einstein’s summation convention, except for the k index which represents the species index. Species
summations are expressed explicitly.

∂ρ ui
∂t

+
∂

∂xj
(ρ ui uj) = − ∂

∂xj
[P δij − τij], (2.1)

∂ρ E

∂t
+

∂

∂xj
(ρ E uj) = − ∂

∂xj
[ui (P δij − τij) + qj] + ω̇T , (2.2)

∂ρYk
∂t

+
∂

∂xj
(ρYk uj) = − ∂

∂xj
[Jj,k] + ω̇k. (2.3)

These equations describe the conservation of respectively momentum, energy and mass of specie k
and depend on the following variables:

- ui the velocity in direction i,

- ρ the density of the mixture,

- E the total energy of per unit mass of the mixture,

- Yk the mass fraction species k.

And on the following quantities which are detailed in the following paragraphs:

- Jj,k is the diffusive flux of specie k in direction i,

25

26 CHAPTER 2. FLUID SIMULATION

- τij is the viscous stress tensor,

- qj is the heat flux,

- P the pressure which is obtained using the equation of state,

- ω̇T and ω̇k are respectively the heat and chemical production rates.

The diffusive flux of species

Mass conservation in multi-species flows implies that:

N∑

k=1

YkV
k
i = 0 (2.4)

Where Yk is the mass fraction of specie k and V ki are the components of the diffusion velocity of
species k. They are often expressed as a function of the species gradients using the Hirschfelder Curtis
approximation:

XkVk,i = −Dk
∂Xk
∂xi

(2.5)

Where Xk is the molar fraction of species k: Xk = Yk
W
Wk

and Dk is the diffusion coefficient of
species k. In terms of mass fraction, the approximation may be expressed as:

YkV
k
i = −Dk

Wk
W

∂Xk
∂xi

(2.6)

Summing Eq.(2.6) over all species shows that the Hirschfelder Curtis approximation does not
conserve mass. In order to achieve this, a correction diffusion velocity Vc is added to the convection
velocity to ensure global mass conservation [89] as:

V ci =
N∑

k=1

Dk
Wk
W

∂Xk
∂xi

(2.7)

The diffusive species flux for each species k is hence modeled by:

Ji,k = −ρ
(
Dk

Wk
W

∂Xk
∂xi

− YkV ci
)

(2.8)

The viscous stress tensor and rate of strain tensors

The viscous stress tensor τij is modeled by

τij = 2µ

(
Sij −

1

3
δijSll

)
(2.9)

Where µ is the shear viscosity and Sij is the rate-of-strain tensor

Sij =
1

2

(
∂uj
∂xi

+
∂ui
∂xj

)
(2.10)

2.1. COMPRESSIBLE NAVIER STOCKES EQUATIONS OF MULTI SPECIES FLOWS 27

The heat flux vector

The heat flux vector for a multi-species is composed by the sum of the conductive flux and a flux due
to the heat transport by species diffusion. Hence the heat flux writes:

qi = −λ ∂T
∂xi
− ρ

N∑

k=1

Ji,khs,k (2.11)

Where λ is the heat conduction coefficient of the mixture and hs,k the sensible enthalpy of species
k.

The equation of state

The model is closed using the perfect gas equation of state which reads:

P = ρrT (2.12)

Where r is defined by r = R
W

withW being the mixture’s molecular weight (whereR = 8.314J.mol−1.K−1).
W can be expressed using

- the molar fractions Xk and the molecular weight Wk of species k by

W =
N∑

k=1

XkWk (2.13)

- the mass fractions Yk and the molecular weight Wk of species k by 1
W

=
∑N
k=1

Yk
Wk

,

The heat capacities Cp and Cv of the gas mixture depend on the composition.

Cp =
N∑

k=1

YkCp,k (2.14)

Cv =
N∑

k=1

YkCv,k (2.15)

The heat and chemical source terms and reaction rate

The source terms in the energy and mass fraction conservation equations are respectively ωT and ωk.
These source terms are linked via Eq.(2.16)

ω̇T = −
N∑

k=1

ω̇k∆h
0
f,k (2.16)

where ∆h0
f,k is the formation enthalpy of species k.

The species k source term is given by Eq.(2.17):

ω̇k = Wk

M∑

j=1

(ν ′′kj − ν ′kj)Qj (2.17)

28 CHAPTER 2. FLUID SIMULATION

where ν ′kj and ν ′′kj are the stochiometric coefficients and Qj the reaction rate of chemical reaction
j, Eq. (2.18). ∑

ν ′kjRk ⇄

∑
ν ′′kjRk (2.18)

With Rk the species involved in this reaction. The reaction rate in AVBP is given by an Arrhenius
law.

2.2 Large Eddy Simulation

(a) (b)

Figure 2.1: Idealized spectrum comparison LES (a) and RANS (b)

The equations governing LES are obtained by applying spatial low pass filtering operators to the
governing equations. Mathematically this can be described by calculating the convolution of the exact
quantity Q using a filter noted here G∆.

Q̄ =

∫

D
Q(x′)G∆(x− x′)dx′ (2.19)

This operation filters out the small scales while keeping the large scales. In this example G∆ filters
out the turbulent motions of wave number higher than kc = π

∆
1.

The small scales are thought to be independent of the macroscopic features of the flow [92], meaning
that models used for the small scales can be applied to complex flows without particular tuning. The
large scales still need to be resolved, but this clearly reduces the simulation cost compared to a DNS
while maintaining high accuracy, Fig 2.1(a).

This is a fundamental difference with RANS simulation: in RANS simulation all the turbulence
scales are modeled, Fig 2.1(b), hence allowing turbulent simulation at relatively cheap computational
costs. But because the large scales are clearly dependent on the macroscopic properties of the flow,
notably the flow geometry, RANS simulations generally require complex model tuning for each case.

For variable density flows applying directly the filtering operator to the governing equations yields
products of fluctuations between density and other variables which is complex to solve. In order to
avoid these terms a mass weighted filtering procedure is applied called Favre filtering:

ρ̄Q̃ =

∫

D
ρQ(x′)G∆(x− x′)dx′ (2.20)

1In solvers such as AVBP the filtering procedure is implicitly provided by the mesh, hence the local grid spacing
determines the filter cutoff length ∆.

2.2. LARGE EDDY SIMULATION 29

Using this filtering procedure the LES equations obtained are:

∂ρ ũi
∂t

+
∂

∂xj
(ρ ũi ũj) = − ∂

∂xj
[P δij − τij − τijsgs] (2.21)

∂ρ Ẽ

∂t
+

∂

∂xj
(ρ Ẽ ũj) = − ∂

∂xj
[ui (P δij − τij) + qj + qj

sgs] + ωT (2.22)

∂ρ Ỹk
∂t

+
∂

∂xj
(ρ Ỹk ũj) = − ∂

∂xj
[Jj,k + Jj,k

sgs
] + ωk (2.23)

This filtering operation yields unclosed terms due to the nonlinearity of the Navier Stockes equations
noted with the super script sgs.

The filtered viscous stress tensor is approximated as follows:

τ ij = 2µsij −
2

3
µsllδij ≈ 2µs̃ij −

2

3
µs̃llδij (2.24)

where

s̃ij =
1

2

(
∂ũj
∂xi

+
∂ũi
∂xj

)
(2.25)

Likewise the species diffusive flux and heat flux are approximated:

Ji,k = −ρ
(
Dk

Wk
W

∂Xk
∂xi

− YkV ck,i
)
≈ −ρ

(
Dk

Wk
W

∂X̃k
∂xi

− ỸkṼk,i
c

)
(2.26)

qi = −λ ∂T
∂xi

+
∑

k

Jj,khs,k ≈ −λ
∂T̃

∂xi
+
∑

k

Ji,kh̃s,k (2.27)

2.2.1 Sub-grid closures

Turbulence increases mixing of momentum, heat and species. A basic modeling idea then consists in
representing the unclosed terms as diffusive contributions with an associated turbulent viscosity µt
(eddy-viscosity models). Under this assumption, the sub-grid stress tensor may be rewritten as:

τ sgsij = −ρ(ũiuj − ũiũj) = 2µts̃ij −
2

3
µts̃llδij (2.28)

This supposes that the principal axes of the strain rate tensor are aligned with those of the sub-grid
stress tensor which is not fulfilled in general [101]. The turbulent viscosity may be derived from
algebraic relations or through the resolution of additional transport equations. A model for turbulent
viscosity is detailed in subsection 2.2.2.

The sub-grid species flux is modeled in an analogous manner to the sub-grid stress tensor:

J
sgs
i,k = ρ

(
ũiYk − ũiỸk

)
(2.29)

J
sgs
i,k = −ρ

(
Dtk

Wk
W

∂X̃k
∂xi

− ỸkṼk,i
c,t

)
(2.30)

30 CHAPTER 2. FLUID SIMULATION

with:

Ṽk,i
c,t ≈

∑

k

Dtk
Wk
W

∂X̃k
∂xi

(2.31)

The turbulent species diffusion is deduced from a turbulent Schmidt number Sctk:

Dtk =
µt
ρSctk

(2.32)

The constant value Sctk = 0.7 is chosen for all species.

For the sub-grid heat flux, one obtains:

qsgsi = ρ
(
ũiE − ũiẼ

)
(2.33)

qsgsi = −λt
∂T̃

∂xi
+
∑

k

J
sgs
i,k h̃s,k (2.34)

with:

λt =
νtcp
Prt

(2.35)

The turbulent Prandtl number Prt = 0.6 is also assumed constant [72].

2.2.2 Sub-grid scale models

The main task of the sub-grid scale model is to correctly reproduce the energy fluxes between resolved
and unresolved turbulent scales. This involves interactions among the whole turbulence spectrum, that
is to say the sub-grid scale model must ideally account for interactions between turbulent structures
of different sizes as well as between structures of comparable sizes. Due to the difficulty of this task,
one may only expect sub-grid scale models to be correct in the statistical sense.

Eddy-viscosity sub-grid scale models require the determination of a turbulent viscosity. As the
kinetic viscosity is the product of a length and velocity and that the most energetic unresolved scales
are found at the cut-off frequency kc of the LES filter, the filter width ∆ is a natural choice for the
length scale of the turbulent viscosity. The characteristic velocity scale is determined from the sub-grid
scale energy. The models based on an eddy viscosity assumption make different levels of simplification
to obtain an estimate for this energy.

Many different sub-grid scale models exist (filtered Smagorinsky [79], dynamic Smagorinsky [11],
WALE [78, 79], ...) but only the Smagorinsky model [29, 111] is presented here because it is one
of the first sub-grid scale models and is probably the most popular sub-grid scale models due to its
simplicity. It assumes equilibrium between production and dissipation of turbulent kinetic energy
at the sub-grid scales. This assumption is justified in regions of isotropic turbulence for which the
Smagorinsky model reproduces correct dissipation levels. In regions of anisotropy however, the model
shows to be over dissipative as it cannot predict the occurrence of back-scatter, i.e. the instantaneous
and localized back-flow of turbulent energy from smaller to larger scales. Piomelli et al. [88] showed
that the failure to reproduce this phenomenon may result in wrong prediction of perturbation growth
in transitional flows. It writes:

νt =
(
CS∆

)2√
2s̃ij s̃ij (2.36)

Smagorinsky determined an analytical value of 0.18 for the constant CS . However, CS is often adjusted
to the given application case and values ranging between 0.1 and 0.18 may be found in the literature.

2.2. LARGE EDDY SIMULATION 31

2.2.3 Wall law model

Wall bounded flows are difficult to solve using LES. Indeed, in order to accurately compute the wall
shear stresses and heat fluxes, high resolution meshes are required. An alternative commonly used is
to model the wall shear stress and heat fluxes using Wall law models. In this document the basics
of the law of the wall model are presented, a more thorough description of the wall models used by
AVBP has been done by Schmitt [103].

First the wall units are introduced, using the wall shear stress τw and the fluid density ρ the friction
velocity can be defined Eq. (2.37).

uτ =

√
τw
ρ

(2.37)

The non-dimensional wall distance is defined comparing the wall distance y with the wall viscous
length uτ

ν
, Eq. (2.38).

y+ =
yuτ
ν

(2.38)

The non-dimensional velocity u+ is defined by comparing the velocity parallel to the wall u to the
wall velocity, Eq. (2.39).

u+ =
u

uτ
(2.39)

The log-law model establishes a relation between u+ and y+:

y+ ≤ 7 This region near the wall is called the viscous sub-layer, the variation of u+ is almost proportional
to y+: u+ = y+

y+ > 30 This is the Log law region, the evolution u+ can be described by:

u+ =
1

K
ln(y+) + 5.5 (2.40)

where K is the Von Karman [117] constant determined experimentally to 0.41.

7 ≤ y+ ≤ 30 This region is called the buffer region, this is where the two equations combine. Strictly speaking
neither the linear nor logarithmic laws can be applied here, but in practice the linear law may
be used up to y+ ≃ 11 and then the log law is used.

Hence the kinematic model is defined with u+, but for conjugate heat transfer simulation a thermal
model is also needed. This model is based on the Kader law [55] and the Van Driest transformation [31].
The non-dimensional temperature T+ follows a smooth function between the linear and the turbulent
parts.

T+ = (Pr y+) eΓ + (Prt u+ +K) e
1
Γ (2.41)

where Pr is the molecular Prandtl number, Prt is the turbulent Prandtl number (Prt = 0.85), K
is a constant depending exclusively on the molecular Prandtl number K(Pr) = 2(3.85Pr1/3 − 1.3) +

2.12ln(Pr) and Γ is the Kader smooth function Γ = −10−2(Pr y+)4

1+5Pr3y+
.

2.2.4 The thickened flame model for LES

Combustion simulation adds an additional difficulty: generally the laminar flame thickness δ0
L is smaller

than the mesh size ∆x. To cope with this situation a thickened flame model is introduced, i.e. the real

32 CHAPTER 2. FLUID SIMULATION

flame (non solvable on the current mesh because it is too coarse) is replaced by an equivalent thicker
flame. For laminar flows, the diffusion is increased and the reaction rates are decreased proportionally
using F the thickening flame factor. Because of these two reciprocal modifications the proper flame
speed of the non thickened laminar premixed flame is guarantied. For turbulent flows the problem
is slightly more complex because turbulence wrinkles the flame front and hence increases the flame
surface. The thickened flame model is not able to take into account this phenomenon at the sub-grid
scale level, the reaction rate is hence underestimated. To correct this effect, an efficiency function E ,
based on DNS results, has been added by Colin et al. [22]. This model modifies the species diffusion
flux, energy flux, and source term equations:

- The species diffusion flux Ji,k:

Ji,k = −EF ρ̄
(
Dk

Wk
W

∂X̃k
∂xi

− ỸkṼi
c

)
(2.42)

- The energy flux qi:

qi = −EF
(
λ
∂T̃

∂xi
+
N∑

k=1

ρ̄

(
Dk

Wk
W

∂X̃k
∂xi

− ỸkṼi
c

)
h̃s,k

)
(2.43)

- The reaction rate ω̇k of the species k:

ω̇k(Ỹk, T̃) =
Eω̇k(Ỹk, T̃)

F (2.44)

- The heat released by combustion ω̇T :

ω̇T (Ỹk, T̃) =
Eω̇T (Ỹk, T̃)

F (2.45)

2.3 Basic validation cases

The purpose of code coupling is to use already validated solvers. It is therefore necessary to asses
the capacity of AVBP to solve fluid dynamics and more specifically combustion problems. Several
basic validation tests are briefly presented in this section, each demonstrating the capacity of AVBP
to solve a key aspect necessary for a coupled combustion simulation in an industrial burner. The
validation cases presented in this section are issued from a series of basic validation cases, named
Quality Program Form (QPF), which are carried out at each major release of AVBP.

2.3.1 Turbulence validation

Flows in industrial burners are essentially turbulent, a first key aspect to investigate in AVBP is
turbulence simulation. First the ability of AVBP to simulate properly turbulence has been investigated
using direct numerical simulation to solve a homogeneous isotropic turbulence (HIT) case. Then AVBP
Large Eddy Simulation models are tested on a lower resolution HIT case.

The following quantities are introduced:

- The two point correlation between points A and B

Qij(A,B) = u′i(A)u′j(B) (2.46)

2.3. BASIC VALIDATION CASES 33

- The correlation coefficients Rij :

Rij(A,B) =
Qij(A,B)√

u′i(A)2
√
u′i(B)2

(2.47)

- The longitudinal, lateral and transverse integral length scales L1
11, L2

22, L3
33:

Llij =

∫ ∞

0
Rij(xl, 0, 0)dxl (2.48)

- The corresponding Reynolds number (linked to the integral length scale):

ReLi
ii

=
u′Liii
ν

(2.49)

- The characteristic time scale based on kinetic energy dissipation:

τǫ =
k

ǫ
(2.50)

For more details on the various quantities used for HIT computations readers are referred to Boughanem [15].

For the DNS HIT a 3D box of length L = 2.78510−4m is discretized by 643 hexahedral cells. The
initial field is generated using a Passot Pouquet spectrum [83] with ReLi

ii
= 42. The solver is then

applied and the temporal evolution of statistical quantities are extracted:

- the longitudinal, lateral and transverse integral length scales,

- the dissipation rate ǫ and kinetic energy k.

2.2

2.0

1.8

1.6

1.4

1.2

1.0

L
i ii

86420

L
1

11

L
2

22

L
3

33

t/τ
ε

0

Figure 2.2: Temporal evolution of the integral scales of auto-correlation

First looking at the the evolution of the different integral length scales, Fig 2.2, it is clear that the
isotropic property of turbulence is preserved:

L1
11 ≃ L2

22 ≃ L3
33 (2.51)

34 CHAPTER 2. FLUID SIMULATION

Also the monotonic growth of the length scales agrees with the evolution of the turbulent length scale
LT predicted by the k − ǫ model [52, 64], Eq (2.52).

LT
LT0

=

[
1 + (Cǫ2 − 1)

t

τǫ0

] 2Cǫ2−3

2(Cǫ2−1)

(2.52)

Where Cǫ2 is a k − ǫ model constant [122].

The evolution of the dissipation and kinetic energy in the HIT case has been evaluated using AVBP,
NTMIX [8, 15] a well proven DNS solver and the k−ǫ model. Figures 2.3 and 2.4 show good agreement
between NTMIX and AVBP and a rather good agreement with the k−ǫ model for which the evolution
reads (for large Reynolds number flows):.

k

k0
=

[
1 + (Cǫ2 − 1)

t

τǫ0

]− 1
Cǫ2−1

(2.53)

ǫ

ǫ0
=

[
1 + (Cǫ2 − 1)

t

τǫ0

]− Cǫ2
Cǫ2−1

(2.54)

Initial quantities are marked with the subscript 0.

0 2 4 6 8
t/τε0

0

0.2

0.4

0.6

0.8

1

ε/
ε 0

AVBP
NTMIX
Analytic (Cε2

=1.6)

Figure 2.3: Comparison of the evolution of dissipation between AVBP, NTMIX and analytical predic-
tions from k − ǫ model. Cǫ2 is chosen to 1.6 which is a typical value for low resolution DNS

For real geometries direct numerical simulation is not yet affordable, it would need extremely refined
meshes. On the other hand solving turbulence by modeling the smallest eddies and simulating the
largest eddies allows to use coarser meshes. This is implemented in AVBP by several LES models,
namely: Smagorinsky, Dynamic Smagorinsky, WALE. In the configuration presented in this thesis
(chapter 4) the Smagorinsky model is chosen for its simplicity and because of wall models are used
instead of solving the wall boundary layers. It is therefore important to at least validate AVBP’s LES
Smagorinsky model. A basic validation test has been carried out by comparing HIT performed using
DNS to LES on a coarser mesh (323 points), Fig 2.5. A third simulation used to control the impact
of LES models is performed using no models on the coarse grid.

This test clearly shows that the LES models in AVBP are capable of providing an accurate simu-
lation using a coarser mesh than a DNS would require.

2.3. BASIC VALIDATION CASES 35

0 2 4 6 8
t/τε0

0

0.5

1
k/

k 0

AVBP
NTMIX
Analytic (Cε2

=1.6)

Figure 2.4: Comparison of the evolution of kinetic energy between AVBP, NTMIX and analytical
predictions from k − ǫ model. Cǫ2 is chosen to 1.6 which is a typical value for low resolution DNS

0 2 4 6
t/τε0

0

0.5

1

k/
k 0

No Model
DNS
Smagorinsky

Figure 2.5: Comparison of LES and DNS on a HIT case

36 CHAPTER 2. FLUID SIMULATION

2.3.2 Wall model validation

y

x

z

flow

Lz

Lx

Ly = 2h

Figure 2.6: Turbulent channel diagram

Conjugate heat transfer simulation requires the ability to compute the wall heat flux from the fluid.
This work relies on wall laws for this task, therefore their behavior should be investigated. A simple
configuration which has the advantage of having both analytical and DNS results is the turbulent
channel configuration. The channel is composed of a fluid domain between two walls separated by
the distance 2h (each wall is at y = ±h), and periodic boundary conditions in the streamwise and
spanwise directions, Fig 2.6. The flow motion is obtained by imposing a pressure gradient on the
streamwise direction. Wall laws are used for each wall and key wall quantities are extracted: velocity
profile and wall friction, Fig 2.7, on one hand and on the other temperature profile and wall heat flux,
Fig 2.8. These quantities are then compared to values obtained through DNS and analytical models:
the logarithmic wall model for velocity and the Kader law for temperature.

The results presented in figure 2.7 and 2.8 are for the Lax Wendroff [65] numerical scheme. They
show that the wall quantities computed with LES and DNS have a rather good agreement, for the
cinematic and thermal laws. Of course this configuration is far simpler than an industrial configuration
but this does show that the wall law model produces rather good predictions.

2.3. BASIC VALIDATION CASES 37

(a)

1 10 100 1000

y+
0

5

10

15

20

25

30

U
+

DNS Hoyas & Jimenez - Re
τ
= 2000

classical log. law - U+ = 1/0.41 ln y+ + 5.5
LES

(b)

0.2 0.4 0.6 0.8 1

y/h

0

0.2

0.4

0.6

0.8

1

τ/
τ w

τtot (theoretical)
τlam.
τsgs
τresolved turb.
τtot = τlam. + τsgs + τresolved turb.

Figure 2.7: Turbulent channel diagram

38 CHAPTER 2. FLUID SIMULATION

(a)

1 10 100 1000

y+
0

5

10

15

20

25

T+

DNS Kawamura - Re
τ
= 1020, Pr = 0.71

Kader law - T+ = 2.12 ln y+ + β(Pr)
LES

(b)

0 0.2 0.4 0.6 0.8 1

y/h

-1

-0.8

-0.6

-0.4

-0.2

0

q/
q w

qtot (theoretical)
qlam.
qsgs
qresolved turb.
qtot = qlam. + qsgs + qresolved turb.

Figure 2.8: Turbulent channel diagram

2.3. BASIC VALIDATION CASES 39

2.3.3 Combustion validation

An other fundamental aspect to validate for industrial burner simulation is combustion. Before con-
sidering turbulent combustion of industrial burners the first step is to validate the code at least
for laminar combustion. A test has been carried out comparing results obtained through the solver
PREMIX[57] from the CHEMKIN[30] package and AVBP on a laminar one dimensional premixed
methane air flame. The domain is discretized by 200x1 quads with symmetry conditions on the top
and bottom sides to reduce to a one dimensional problem. A two step chemical scheme is chosen to
check the chemical equilibrium. The chemical species considered are O2, N2, CH4, CO2, CO, H2O.
The two reactions are:

- R1:

CH4 +
3

2
O2 → CO + 2H2O (2.55)

- R2:

CO +
1

2
O2 ⇄ CO2 (2.56)

First a calculation is performed using PREMIX, the velocity, temperature and composition profiles
are extracted and used as initial conditions for AVBP. Also the flame velocity calculated by PREMIX
is used as inlet velocity for AVBP, SPREMIXL = 0.263ms−1. The flame is then calculated using AVBP
until the profiles are stabilized (this is obtained after 15ms of simulation) and the profiles are extracted
and compared to the profiles given by PREMIX, Fig 2.9.

The results show a slight shift to the left of the profiles which can be explained because AVBP
slightly over predicts the flame speed SAV BPL = 0.27ms−1, therefore the flame front is slowly moving
upstream. Despite this small difference (the difference of flame velocity is less than 3%) it is clear that
AVBP and PREMIX are in good agreement.

40 CHAPTER 2. FLUID SIMULATION

(a)

-0.010 -0.005 0.000 0.005 0.010
x [m]

0

500

1000

1500

2000

2500

3000

Temperature T [K]

(b)

-0.010 -0.005 0.000 0.005 0.010
x [m]

0.0

0.5

1.0

1.5

2.0

Velocity u [m.s
-1

]

(c)

0.0e+00

5.0e+08

1.0e+09

1.5e+09

2.0e+09

2.5e+09

-0.01 -0.005 0 0.005 0.01
x [m]

Heat Release [J.m
-3

.s
-1

]

(d)

0.0

500.0

1000.0

1500.0

2000.0

2500.0

3000.0

-0.01 -0.005 0 0.005 0.01
x [m]

q
1f

[mol.m
-3

.s
-1

]

(e)

0.0

500.0

1000.0

1500.0

2000.0

2500.0

-0.01 -0.005 0 0.005 0.01
x [m]

q
2f

[mol.m
-3

.s
-1

]

(f)

-200.0

-150.0

-100.0

-50.0

0.0

-0.01 -0.005 0 0.005 0.01
x [m]

q
2r

[mol.m
-3

.s
-1

]

Figure 2.9: Comparison between AVBP (Lax Wendroff) and PREMIX profiles (Dashed line AVBP,
continuous line PREMIX)

Chapter 3

Solid thermal conduction

AVTP has been derived from AVBP, therefore it shares the computational structure of AVBP, however
its numerical methods are explicit which is clearly not optimal for solving the heat equation. Recently
an implicit scheme has been added to the solver but this scheme was not available during this thesis,
hence only the explicit scheme is used.

3.1 The equation solved: the unsteady heat equation

The unsteady heat equation solved reads:

∂T

∂t
=

1

ρc

[
∂

∂xi

(
λ
∂T

∂xi

)
+Q

]
(3.1)

In AVTP λ, ρ and c depend on the material used and the local temperature. Q is a heat source.
Equation (3.1) shows almost explicitly how the calculation is performed within AVTP:

Step Description

1 Calculate the λ,ρ,c from the temperature and the material tables

2 Compute the temperature gradient

3 Compute the heat flux using the gradient and λ

4 Sum an eventual source term

5 Apply boundary conditions (Neumann boundaries)

The gradient computation on the unstructured grid is in fact the only difficult operation, it is
explained in N. Lamarque PhD thesis [62].

At the end of the entire Runge-Kutta integration the Dirichlet boundary conditions are set. It is
clear that using an explicit time integration scheme is not the best adapted method to solve the heat
equation, this is why during this thesis an implicit solver has been added to AVTP. In this thesis
only the explicit solver is used because the implicit solver was implemented too late. However as it is
shown in chapters 4 and 5 the thermal solver is still much faster than the LES solver. Also there is
no point in advancing in time the thermal solver too much compared to the LES solver, this can lead
to instabilities (see chapter 7).

41

42 CHAPTER 3. SOLID THERMAL CONDUCTION

3.2 Validation

A basic configuration for which an analytical solution exists is used to validate AVTP. The configura-
tion consists of a square domain at initial temperature 300K which is heated using Dirichlet boundaries
at 400K on the left and right sides. In order to obtain a one dimensional problem symmetries are
applied on the top and bottom boundaries, Fig 3.1.

������������������ ���������

Figure 3.1: Heating setup

First an analytical solution is established, then this reference solution is compared to the AVTP
solution.

3.2.1 Analytical resolution of the problem

The one dimensional problem can be described by the following system:





∂T
∂t

= α∂
2T
∂x2

T (x, 0) = TI ,∀x
T (0, t) = T (L, t) = Tbc, t > 0

(3.2)

Where α = λ
ρCp

is the heat diffusivity, L the length of the domain, TI the initial temperature and Tbc
the Dirichlet boundary temperature.

First it is clear that the stationary solution T = Tbc satisfies the partial differential equation and
the boundary conditions, therefore to simplify resolution a function T̃ = T −Tbc is introduced. System
(3.2) thus becomes (3.3) which is homogeneous allowing to use the separation of variables method[80],
i.e. the solutions searched are in the form T̃ = v(x)w(t).





∂T̃
∂t

= α∂
2T̃
∂x2

T̃ (x, 0) = TI − Tbc,∀x
T (0, t) = T (L, t) = 0, t > 0

(3.3)

Injecting T̃ = v(x)w(t) into the unsteady heat equation yields

vw′ = αv′′w ⇔ 1

α

w′

w
=
v′′

v
(3.4)

where the w′ and v′′ stand for ∂w
∂t

and ∂
2v
∂x2 . Because Eq. (3.4) is true ∀x, t, 1

α
w′

w
= v′′

v
remains constant,

noted here k. Hence the following system should be solved:

{
v′′ − kv = 0

w′ − kαw = 0
(3.5)

3.2. VALIDATION 43

Considering the boundary conditions, the only non null solutions to v′′ − kv = 0 are obtained with
k < 0. For k < 0 the form of the solution for v is:

v(x) = A cos
(√
−kx

)
+B sin

(√
−kx

)
(3.6)

The boundary condition at x = 0 implies that A = 0. The boundary condition at x = L implies that
either

- B = 0 which would lead to a trivial solution,

- or if we assume that B 6= 0 then sin
(√
−kL

)
= 0 which leads to

√
−k = nπ

L
with n = 1, 2, 3,

Therefore vn(x) = Bsin
(
nπ
L
x
)

are solutions of v′′−kv = 0. Using the expression for k, we can calculate
a homogeneous solution for w′ − kαw = 0 depending on n:

w′n +
n2π2α

L2
wn = 0⇒ wn(t) = Dne

−n2π2α
L2 t (3.7)

Where Dn are constants. Noting Cn = BDn, T̃n(x, t) = vn(x)wn(t) = Cnsin
(
nπ
L
x
)
e−
n2π2α
L2 t with

n = 1, 2, 3, are solutions to system (3.3).

Hence also a solution to system (3.3) is

T̃g(x, t) =
∞∑

n=1

Cnsin

(
nπ

L
x

)
e−
n2π2α
L2 t (3.8)

Using the initial condition we obtain Eq. (3.9).

T̃g(x, 0) =
∞∑

1

Cnsin

(
nπ

L
x

)
= TI − Tbc (3.9)

Noticing that Eq. (3.9) is in fact a decomposition of TI − Tbc using Fourier series the coefficients can
be obtained :

Cn =
1

L

∫ +L

−L
(TI − Tbc)sin

(
nπ

L
x

)
dx =

2(TI − Tbc)
L

∫ +L

0
sin

(
nπ

L
x

)
dx

= −2(TI − Tbc)
nπ

[cos (nπ)− 1] (3.10)

Which can be expressed for n odd or even:




n = 2p, C2p = 0

n = 2p+ 1, C2p+1 = 4(TI−Tbc)
(2p+1)π

(3.11)

Finally the solution to the original problem (3.2) is obtained:

T (x, t) = Tbc −
4

π
(Tbc − TI)

∞∑

p=1

1

(2p+ 1)
sin

(
(2p+ 1)π

L
x

)
e−

(2p+1)2π2α

L2 t (3.12)

44 CHAPTER 3. SOLID THERMAL CONDUCTION

3.2.2 Comparison with AVTP results

The calculation is performed using the explicit forward Euler temporal scheme on a square uniform
triangular mesh with 32 nodes per side (of size 1). Two sensors at locations (x = 0.5, y = 0.5) and (x =
0.74, y = 0.5) record the evolution of the simulated temperatures. Figure 3.2 shows the comparison
of the simulated and analytical temperatures. These results clearly show agreement between the
analytical and simulated solutions therefore demonstrating the ability of AVTP to solve thermal
conduction problems.

(a)

0 10000 20000 30000 40000

Time (s)

300

320

340

360

380

400

T
 (

k)

Theory

AVTP

(b)

0 10000 20000 30000 40000

Time (s)

300

320

340

360

380

400

T
 (

k)

Theory

AVTP

Figure 3.2: Comparison of analytical and resolved temperature temporal evolution

Chapter 4

LES computation

Due to confidential material this chapter has been stripped from the public release of this manuscript.

45

46 CHAPTER 4. LES COMPUTATION

Chapter 5

The solid domain

Due to confidential material this chapter has been stripped from the public release of this manuscript.

47

48 CHAPTER 5. THE SOLID DOMAIN

Conclusion

The objective of this thesis is to investigate methods for conjugate heat transfer relying on LES and
to apply these methods on a target configuration: an aeronautical burner. The fluid and the thermal
solver, namely AVBP and AVTP, as well as their respective physics have been presented in chapters 2
and 3. These solvers have been validated using simple test cases. Finally an aeronautical burner fluid
and thermal configurations and uncoupled computations have been presented. The two configurations
are based on a complex geometry which has been discretized according to each problems specific needs.

The LES results show complex unsteady structures in the fluid domain, notably for the flame. This
implies unsteady heat release and hence unsteady fluid wall temperature and heat flux. Since the wall
heat flux and temperature may be used to couple the thermal solver, and that the coupling procedure
may be executed at a given frequency, the effect of such temporal variations should be investigated.

49

50 CHAPTER 5. THE SOLID DOMAIN

Part II

Coupling stability and convergence

analysis

51

Table of Contents

6 Influence of fluid instabilities on solid’s temperature convergence 57

6.1 Influence of fluid unsteady features on a 1D solid’s temperature domain 58

6.2 Influence of the coupling frequency on the convergence of an unsteady conjugate heat
transfer problem . 59

6.3 Conclusion: what should we do? . 68

7 Numerical stability of a tightly coupled algorithm 69

54 TABLE OF CONTENTS

Nomenclature

µ Dynamic viscosity kg.m−1.s−1

ω Pulsation rad.s−1

φ Thermal flux W.m−2

ρ Density kg.m−3

ρ(M) Spectral radius of matrix M

τ Characteristic time

a Convergence acceleration parameter

c Thermal capacity J.K−1

cm Thermal specific capacity J.kg−1.K−1

D Thermal diffusivity m2.s−1

d Fourier Number

f Frequency s−1

Hc Convective exchange coefficient

k Thermal conductivity W.m−1.K−1

Pr Prandtl number

T Temperature K

Tc Convective temperature

1

56 TABLE OF CONTENTS

As has been seen in chapter 4, combustion incorporates strong unsteady components and LES
has already proved to be a powerful tool to simulate them accurately. Promising results have been
obtained not only on academic combustion chambers [63] but also on industrial ones [13, 58]. LES is
therefore a natural choice for burner simulation, however coupling an unsteady LES raises questions
about the coupled simulation’s convergence, specially when the two solvers are coupled at a given
frequency which may be very different than the frequencies of the unsteady combustion components.
In the case of conjugate heat transfer simulation it is the temperature fluctuations which are essentially
of interest. Such fluctuations can be the result of different mechanisms but in a combustion chamber
the main producer of such fluctuations is the flame.

In this part the effect of such temperature fluctuations on the convergence of the conjugate heat
transfer application is investigated. Based on this analysis, a coupling methodology relying on LES
to compute stationary thermal solutions is proposed, investigated and its stability is verified. Simple
systems, Fig. 5.1, are used to study these more fundamental aspects of coupling neglecting the complex
geometrical issues inherent to industrial applications. These aspects will be treated in parts III and
part IV. Throughout this study it is considered that from an unsteady point of view the conjugate
heat transfer can be studied as a one way coupling from the LES solver to the conduction solver.
Granted this is a strong hypothesis but it is supported by the difference in the characteristic times of
both problems.

Figure 5.1: A simple partitioned domain

Chapter 6

Influence of fluid instabilities on solid’s

temperature convergence

Finding a stationary solution to a heat conduction problem corresponds to solving a Laplace equation
and thus has a nice property: for a set of fixed boundary conditions (Dirichlet boundaries), there
is only one solution possible. In other words, the solution within the domain is entirely defined
by its boundary conditions. This point is fundamental to assess the quality of the solutions found
with the proposed coupling strategy: if the boundary conditions transferred from the fluid solver
to the conduction solver are physical then the thermal solver will converge to the physical solution.
Unfortunately the coupling process is an iterative process with an unsteady fluid solver providing
boundary conditions which may vary greatly from a coupling step to an other. For example a turbine
blade located after a combustion chamber can see a succession of hot and cold structures impacting
on it due to the instabilities within the combustion chamber and the mixing with the dilution jets.

coupling frequency can thus lead to an incorrect prediction of the temperature field within the
blade, e.g. if due to the coupling frequency the blade only sees hot or cold spots.

In RANS this problem does not exist because a RANS solver does not resolve the instantaneous
temperature fields but only to their statistical mean which is also thought to be the average over an
infinite period of time Eq. (6.1).

TRANS (x) = lim
τavg 7→∞

1

τavg

∫ τavg
0

T (x, t) dt (6.1)

LES on the other hand only gives access to instantaneous fields or averaged fields over a finite
period of time τavg.

TLES (x, t0, τavg) =
1

τavg

∫ t0+τavg

t0

T (x, t) dt (6.2)

Adapting existing RANS methodology to LES would hence impose to choose τavg big enough such
that TLES only depends on space, x. LES being much more expensive than RANS, having to reconverge
and average the LES after each coupling iteration may in some situations be very expensive.

On the other hand if τavg is not big enough then the averaged temperature depends on t0 and
the averaging period TLES = TLES (x, t0, τavg). Since the averaging period is linked to the coupling

57

58CHAPTER 6. INFLUENCE OF FLUID INSTABILITIES ON SOLID’S TEMPERATURE CONVERGENCE

frequency and averaging over a finite time segment is a sampling process: it obeys to sampling the-
ory [10, 70, 71, 100]. Special care must therefore be taken to avoid aliasing effects. Typically if LES
reaches a limit cycle of period τL, if τavg >

1
2τL, TLES (x, t0, τavg) can oscillate at low frequencies. To

avoid such problems a simple condition is to impose τavg <
1
2τL, of course this requires that τL is

known a priori.

To investigate these issues implied by the use of a LES solver, the effect of an unsteady fluid coupled
to a solid is first studied. The influence of the coupling frequency on the convergence of a conjugate
heat transfer problem when subject to an unsteady fluid is in this context specifically assessed since
of clear importance for the target problem.

Prior to the theoretical analysis of the aforementioned problem several aspects need to be clarrified
or defined. In this section, strong coupling refers to two systems which are synchronized continuously
whereas loose coupling refers to two systems which synchronize at a given frequency. In order to sim-
plify the following discussion we will assume that there is a linear relation between the two simulation
times such as

ts = Ns∆ts (6.3)

tf = Nf∆tf (6.4)

Ns = aNf (6.5)

With Nf and Ns being the iterations of each solver between two coupling updates (subscript f for the
fluid side, s for the solid), ∆tf and ∆ts their respective time steps (enforced by the stability of the
individual solvers). As long as the goal of the coupled simulation is to obtain a stationary solution
in the solid, the ratio a has no physical meaning and can be chosen arbitrarily as long as the coupled
simulation remains stable. This means that it can be used to improve load balancing for example.
Since ts = a∆ts

∆tf
tf , throughout the remaining we will work in the solid’s time space t = ts (all flow

frequencies are apparent frequencies for the solid taking into account the scaling rule).

6.1 Influence of fluid unsteady features on a 1D solid’s temperature

domain

In this case an unsteady fluid is in contact with a 1D solid domain at x = 0, the coupling is modeled
by imposing the fluid temperature to the solid’s border temperature. The fluid unsteady temperature
is modeled by a sinusoidal wave, hence at x = 0 the temperature applied at x = 0 is a sinusoidal signal
T (t) = ∆T cos (ωt). Only the harmonic response of the solid is considered here, to simplify the solid
temperature at x =∞ is 0. The unsteady heat equation reads:

∂T

∂t
= D

∂2T

∂x2 (6.6)

Where D = k
ρcm

is the thermal diffusivity. To solve Eq. (6.6) a complex notation ∂T̄
∂t

= D ∂
2T̄
∂x2 is

introduced. The solutions searched are in the following form T̄ = ∆Tei(ωt−kx). In order to respect
Eq. (6.6), k2 = −i ω

D
must be satisfied.

Noting that1

− i = e
3π
2 =

(
e

3π
4 epπ

)2
=

(
(1− i)√

2
epπ
)2

with p ∈ Z (6.7)

We can write that

k =

√
ω

2D
(1− i)epπ (6.8)

1This resolution of the problem can be found i[61].

6.2. INFLUENCE OF THE COUPLING FREQUENCY ON THE CONVERGENCE OF AN UNSTEADY CONJUGA

By inserting this into T̄ and writing T = ℜ(T̄):

T = ∆Te−
√
ω

2D
epπxcos(ωt−

√
ω

2D
epπx) (6.9)

There are two solutions, one for p odd, one for p even, the only physical solution is for p even, thus
epπ = 1, the final solution is:

T = ∆Te−
√
ω

2D
xcos(ωt−

√
ω

2D
x) (6.10)

Eq. (6.10) shows that the amplitude of the perturbation set within x = 0 decreases exponentially and
the higher the frequency, the faster the decay is. From this expression we can derive the perturbation
length at 1%:

x1% = ln (100)

√
2D

ω
(6.11)

Table 6.1(a) shows perturbations depths at 1% for different frequencies and for a metallic (iron) domain
k = 50W.m−1.K−1, cm = 440J.kg−1.K−1, ρ = 8000kg.m−3 giving D = k

ρcm
= 14.10−6m2.s−1. These

values show that low frequency excitations do have an impact on the solid’s temperature. Also due to
the acceleration of convergence methodology the apparent frequencies of the fluid unsteady features
are lowered, hence the perturbation depths are over predicted. Therefore convergence acceleration can
yield unrealistic instantaneous solutions. However at each point in space the temperature oscillates
in time around the average solution at the forcing frequency, meaning that averaging over a period of
the forcing frequency should yield the converged time independent solution.

ff (Hz) fs(Hz) x1%(mm)

1 9.67E-04 315

100 9.67E-02 31.5

500 4.83E-01 14.1

1000 9.67E-01 9.96

2000 1.93 7.04

5000 4.83 4.45

10000 9.67 3.15

Table 6.1: Perturbation depth at 1% for a metallic solid, for different frequencies considering the

conversion from the fluid time line to the solid time line fs = 1
a

∆tf
∆ts

ff with Nf=5, Ns=15, ∆tf=3.8E-
8s, ∆ts=1.3E-5s

6.2 Influence of the coupling frequency on the convergence of an

unsteady conjugate heat transfer problem

Having investigated the influence of fluid unsteadinesses on a solid’s temperature field it is now impor-
tant to investigate the effect of a key parameter of a coupling methodology: the coupling frequency.
First a 0D conjugate heat transfer model will be considered where instantaneous values are exchanged.
The response of the solid to the unsteady fluid system will be investigated in different circumstances:

- first monochromatic harmonic forcing will be considered for strong and then loose coupling,

- then solution for polychromatic forcing will be considered for loose coupling

Finally extension to averaged quantities will be considered.

60CHAPTER 6. INFLUENCE OF FLUID INSTABILITIES ON SOLID’S TEMPERATURE CONVERGENCE

The physical setup

The physical model (Fig 6.1) is the composition of 2 zero dimensional domains:

- a fluid which has a pulsating temperature, this represents the effect of high frequency phenomena
inside a reactive fluid, for example hot pockets of gas which are convected out of a pulsating
flame.

- a solid domain which is in contact with the fluid.

The aggregate system is considered to be isolated, the coupling condition between the fluid and
the solid is a simple convective flux, Eq. (6.12), applied to the solid.

φS = Hc (TF − TS) (6.12)

Figure 6.1: Conjugate heat transfer convergence analysis setup

Only one way coupling of instantaneous quantities is studied at this stage to illustrate the difficulty
introduced by the LES solver: i.e. from the fluid to the solid.

Taking the fluid’s temperature signal to be modeled by a sinusoidal function:

TF (t) = Tfluccos(ω0t) + TF0 (6.13)

where ω0 = 2πf0 is the pulsation of the temperature signal, TF0 the average temperature within
the fluid.

The solid is modeled by a simple thermal capacity which receives a flux φS continuously. Since we
consider coupling at a given frequency (potentially different from ω0) the value of φS of the model
is updated at each coupling iteration according to Eq. (6.12). At each local time step the solid’s
temperature hence satisfies Eq. (6.14).

c
dTS
dt

= φS (6.14)

Strong coupling analytical model

With c being the solid’s thermal capacity(J.K−1) and Hc being a convection coefficient (W.K−1), the
solid’s temperature TS satisfies:

TS(t) =

∫ t

0

φ(t)

c
dt+ TS0 (6.15)

With TS0 the initial temperature of the solid. And

φ(t) = Hc (TF (t)− TS(t)) (6.16)

6.2. INFLUENCE OF THE COUPLING FREQUENCY ON THE CONVERGENCE OF AN UNSTEADY CONJUGA

With
TF (t) = Tfluccos (ω0t) + TF0 (6.17)

Combining Eq. (6.15), (6.16), and (6.17) and taking the derivative leads to:

dTS(t)

dt
=
Tfluc
τ

cos(ω0t) +
TF0

τ
− 1

τ
TS(t) (6.18)

with τ = c
Hc

. Solving for Eq. (6.18), knowing that TS(0) = TS0, leads to:

TS(t) =

(
TS0 − Tf0 −

Tfluc
1 + ω0

2τ2

)
e
−t
τ +

Tfluc√
1 + ω0

2τ2
cos

(
ω0t− arcsin

(
ω0τ√

1 + ω0
2τ2

))
+ Tf0 (6.19)

This expression shows that the system never completely obtains a stationary solution, instead it
continues to oscillate at a pulsation ω0. It is interesting to see that the amplitude of the oscillating
part is in fact the gain of a first order linear low pass filter (with a cutoff frequency of 1

2π
Hc
c

).

Loose coupling model

The loose coupling of instantaneous quantities can be viewed as a process which samples the fluid
temperature every τcpl. This can be modeled by introducing a new function ψ which transforms the
continuous time into a discrete time of granularity τcpl. Hence ψ is defined by

ψ(t) = E

(
t

τcpl

)
τcpl (6.20)

with E(x) the integer part of x. The loose coupling effect is implemented by replacing the flux φ(t) by
φ(ψ(t)) where τcpl is the period in physical time between flux updates. The solid temperature thus
reads:

TS(t) =

∫ t

0

φ(ψ(t))

c
dt+ TS0 (6.21)

Coupling can in this case be seen as a sampling procedure. Therefore to ensure a proper con-
vergence, the Nyquist-Shannon theorem should be respected, meaning that the coupling frequency fc
should be at least twice the frequency of the pulsating phenomenon in the fluid f0. Not respecting this
constraint leads to aliasing effects appearing as low frequency oscillations in the solid temperature.
This is important because as demonstrated in 6.1, low frequencies penetrate further inside the solid
domain than higher frequencies. The lowest low frequency mode is called principal alias and can be
estimated using sampling theory [119] to

falias = min
l∈Z

(|f0 + lfc|) (6.22)

Solving analytically such a differential system is difficult because ψ is non continuous, this is why a
numerical approach is used instead. The analysis has been carried out using a simple FORTRAN
code where the temporal integrations are discretized using a simple first order Euler explicit scheme.
Several observations are underlined in Fig 6.2 which shows the temperature evolution and convergence
of the model for different coupling frequencies:

- In the first case(Fig 6.2(a)), the coupling frequency is chosen to be twice the frequency of the
physical phenomenon in the fluid, as expected, the solid oscillates around the stationary solution
with a frequency corresponding to the original forcing frequency. We can see that this case agrees
with the analytical or exact resolution (Case-4), Fig 6.2(b).

62CHAPTER 6. INFLUENCE OF FLUID INSTABILITIES ON SOLID’S TEMPERATURE CONVERGENCE

(a)

(b)

Figure 6.2: Evolution of solid temperature in loose coupling environment: (a) cases 1, 2, 3 and 4 (b)
comparison of 1 and 4

- The second case illustrates a coupling which is not respecting the Nyquist-Shannon’s theorem:
a low frequency mode appears within the solid, its frequency can be predicted using Eq. (6.22)
with f0 = 10Hz, fc = 9Hz we obtain falias = 1Hz

- The third case is a particular case where the coupling frequency is very badly chosen: the
coupling period is a multiple of the forcing period, meaning that at each coupling exchange the
fluid is at the same phase. In this case the solid sees a stationary fluid at 305K. There again
the alias frequency can be predicted using Eq. (6.22) with f0 = 10Hz, fc = 2Hz we obtain
falias = 0Hz.

In practice, respecting the Nyquist-Shannon theorem may impose a lot of coupling exchanges and
thus increase the coupled computation cost. On the other hand not respecting the Nyquist-Shannon
may have an impact on the solid’s core temperature depending on the perturbation depth (Eq. (6.11))
for the principal alias frequency falias. If this perturbation depth can not be neglected then the solid’s
temperature should be averaged over at least 1

falias
and not over 1

f0
.

This conclusion is valid for a monochromatic harmonic excitation coming from the fluid, however

6.2. INFLUENCE OF THE COUPLING FREQUENCY ON THE CONVERGENCE OF AN UNSTEADY CONJUGA

Figure 6.3: An example of a setup which can not converge

it is not directly generalizable to more complex signals. Figure 6.3 shows a case where the solid mean
temperature will never converge to TF0: a fluid with a temperature signal composed of two harmonics
at 10Hz and 18Hz with amplitudes of 5K and 3K is coupled at a frequency of 9Hz. This sampling
process would yield respectively two aliases at 1Hz and 0Hz. This 0Hz alias means that the solution
will be shifted by a constant value. In this example the solid temperature oscillates around 303K
instead of 300K with a frequency of 1Hz and an amplitude of 1K. This also shows that the relative
amplitudes of the two signals between the input and the response have been modified. In order to
couple real applications with complex signals the polychromatic case must be studied to approach a
fully turbulent unsteady flow.

Extension to a polychromatic signal

To extend the monochromatic results to polychromatic signals it is important to consider the response
of the system to multiple frequencies. Considering only the harmonic forcing, the system’s response
can be modeled by a sampler linked to a low pass filter. Hence the transfer function of the filter should
be established, first in continuous form then in discrete form.

Once the limit cycle is established, the systems obeys the following equation (only the harmonic
components are kept):

TS(t) =

∫ t

0

1

c
φ(t)dt =

1

τ

∫ t

0
(TF (t)− TS(t)) dt (6.23)

where τ = Hc
c

. Using the Laplace transform we can write

TS(s) =
1

τ

1

s
(TF (s)− TS(s)) (6.24)

Hence

Hcont(s) =
TS(s)

TF (s)
=

1

1 + τs
(6.25)

Note that by taking the amplitude Acont(ω) = ‖Hcont(jω)‖ = 1√
1+τ2ω2

which is the amplitude of

the oscillating part in Eq. (6.19). This indicates that in the continuous time space, frequencies higher

64CHAPTER 6. INFLUENCE OF FLUID INSTABILITIES ON SOLID’S TEMPERATURE CONVERGENCE

than τ−1 will be damped by the first order filter. However in the discrete time space the conclusion
is different. To illustrate the discretization, the z-transform [54, 45] is introduced2. In the numerical
method used to solve the loosely coupled problem, the continuous integral is solved using the forward
Euler method.

Discretizing Eq. (6.23) with forward Euler3 yields:

TS(t+ ∆t) = TS(t) +
∆t

τ
(TF (t)− TS(t)) (6.26)

The discrete notation uk = u(k∆t) is introduced:

T k+1
S = T kS +

∆t

τ

(
T kF − T kS

)
(6.27)

Applying the z-transform gives

zTS(z) = TS(z) +
∆t

τ
(TF (z)− TS(z)) (6.28)

Hence the discrete transfer function Hdisc writes:

Hdisc(z) =
TS(z)

TF (z)
=

∆t

∆t− τ + τz
(6.29)

The gain Adisc(ω) = ‖Hdisc(ejω)‖ reads:

Adisc(w) =
1√

1 + 4 τ(τ−∆t)

∆t2
sin
(
ω∆t

2

)2
(6.30)

In the following ωN is the Nyquist frequency, which is defined as half of the sampling frequency ωs.
It is important to understand the fundamental difference between Acont(ω) and Adisc(ω). Acont(ω)
is the gain of a standard first order low pass filter. Adisc(ω) is similar to Acont(ω) on the interval
[0, ωN], however it is mirrored on [ωN , ωs] (Fig. 6.4(a)). The pattern between [0, ωs] is then repeated
infinitely (Fig. 6.4(b)). This can be seen as a consequence of the Shannon Theorem: the spectrum
of a sampled signal is composed of the repetition of the continuous signal’s spectrum translated by
the multiples of the sampling frequency. However it has an important consequence if the input TF (t)
contains frequencies which are higher than ωN :

- not only will these frequencies be aliased to low frequencies,

- but the closer they will be to a multiple of ωs, the less they will be damped.

Hence it is important to investigate the effects of a real world polychromatic signal provided by
an unsteady LES solver coupled to an unsteady solid solver. In this work we are interested in the
temperature fluctuations in a combustion chamber. Such fluctuations may be produced by combustion
instabilities or turbulence [74]. Combustion instabilities provide through complex mechanisms high
temperature fluctuations at a relatively low frequency whereas turbulence provides low temperature
fluctuations over a larger frequency range.

To study the response of this coupled system, a simple model for TF (t) is proposed: the combus-
tion instability is modeled by a monochromatic signal at low frequency and high amplitude, while

2The z-transform is commonly used in digital signal processing in the same way the Laplace transform is used on
continuous systems.

3Forward Euler is used here because it simplifies the equations, similar results can be obtained using higher order
integration methods.

6.2. INFLUENCE OF THE COUPLING FREQUENCY ON THE CONVERGENCE OF AN UNSTEADY CONJUGA

(a)

(b)

Figure 6.4: Comparison between the continuous and the discrete low pass/integrator filter: (a) on a
[0, ωs] period on a log-log diagram, (b) on [0, 2ωs] on a semi-log diagram.

turbulence on the other hand is modeled by a polychromatic signal. The amplitudes of the differ-
ent harmonics are given by a Passot-Pouquet [83] spectrum4. The hypothesis used to build TF (t) is
to consider these two characteristics to be independent, hence TF (t) is composed of the sum of the
combustion instability signal and the turbulence signal. The ratio between the combustion instability
amplitude and the maximum amplitude for the Passot-Pouquet signal is chosen arbitrarily to be 10.

Figure 6.5 shows the spectrum of the input signal TF (t). Based on this input model, the frequency
response is studied for 5 different coupling frequencies. For easier understanding the Nyquist frequency
(half the sampling frequency) for each case is shown in Fig 6.5:

- A - the Nyquist frequency is at 70Hz(point A in Fig. 6.5). At this frequency the entire spectrum
of TF (t) is almost correctly sampled.

- B - the Nyquist frequency is at 45Hz. At this frequency almost half of the turbulent part
of TF (t)’s spectrum is not correctly sampled. But the turbulent most energetic peak and the
combustion instability peak frequencies are correctly sampled.

- C - the Nyquist frequency is at 32Hz. Point C is similar to point B. However a greater portion

4In reality the temperature fluctuation spectrum and the velocity fluctuation spectrum are different, this has been
investigated by Corrsin [28]. The choice of a Passot-Pouquet spectrum is to obtain a spectrum representative of turbu-
lence.

66CHAPTER 6. INFLUENCE OF FLUID INSTABILITIES ON SOLID’S TEMPERATURE CONVERGENCE

Figure 6.5: The spectrum of TF (t)

of the turbulence spectrum is under-sampled.

- D - the Nyquist frequency is at 17Hz. The turbulent input spectrum is almost entirely under-
sampled, but the combustion instability remains correctly sampled.

- E - the Nyquist frequency is at 6Hz. Both the combustion and the turbulence parts of TF (t)
spectrum are under-sampled.

For each case A,B,C,D and E, the output signal TS is calculated using the numerical code described
in 6.2. The spectral responses for each case are then calculated using the Fourier transform, these
responses are then grouped into two groups:

- Cases A, B and C are shown on Fig. 6.6. These three cases show almost no aliasing effects. Hence
averaging TS over a period corresponding to the combustion instability should yield a converged
result. In cases A and B turbulence undersampling can be neglected because the portion of the
spectrum aliased contains very little energy. However in case C the portion of the turbulent
spectrum undersampled is sufficient to have a slight impact on the converged temperature, in
this case it is shifted by 1K.

- Cases D and E are shown on Fig. 6.7. Both cases show important aliasing effects which would
not lead to convergence as fast as cases A, B and C. The combustion instability is still correctly
sampled in case D: the peak component of the spectrum remains at the combustion instability
frequency. However in case E, the combustion instability harmonic is under-sampled, hence
the main peak is aliased to a lower frequency. It is also very interesting to notice that in the
input signal the ratio between the amplitude of the temperature fluctuations due to turbulence
compared to combustion instabilities is 10%, whereas in the output signal the ratio is almost
50%. This non intuitive behavior is due to the symmetrical shape of the gain of the discrete
low-pass filter.

Of course these results depend on the cutoff frequency 1
2π
h
c

of the low pass filter and on the ratio
of temperature fluctuations between the combustion instability and turbulence. However, such results

6.2. INFLUENCE OF THE COUPLING FREQUENCY ON THE CONVERGENCE OF AN UNSTEADY CONJUGA

Figure 6.6: Comparisons of the spectrums of TF and TS for cases without important aliasing effects

Figure 6.7: Comparisons of the spectrums of TF and TS for cases with important aliasing effects.

show that the relative amplitude of the aliased signals compared to the correctly sampled signals may
be much higher than in the input. Hence secondary effects such as turbulence may be amplified if
undersampled.

68CHAPTER 6. INFLUENCE OF FLUID INSTABILITIES ON SOLID’S TEMPERATURE CONVERGENCE

Extension to averaged quantities obtained from a finite time interval integration

It may seem intuitive to average the coupled quantities over an inter-coupling interval in order to
filter out the high frequencies which may cause the aliasing problems identified previously or simply
by trying to recover a RANS type conjugate heat transfer approach. Introducing a sliding integration
window to obtain mean quantities from LES, the temporal average of TF (t) on the interval [t, t+ τcpl]
is:

1

τcpl

∫ t+τcpl
t

TF (t)dt =
2Tfluc
τcplω0

sin

(
ω0τcpl

2

)
cos

(
ω0t+

ω0τcpl
2

)
+ TF0 (6.31)

It is important to note that this function maintains its pulsating component at ω0 with an amplitude

of 2Tfluc
sin
(ω0τcpl

2

)
ω0τcpl

. Comparing τcpl and 2π
ω0

yields:

- if τcpl ≫ 2π
ω0

then the oscillating component of the averaged signal can be neglected, meaning
that the aliasing problems may be neglected.

- if τcpl is a multiple of 2π
ω0

(an entire period is averaged), then the integrated signal remains
constant, hence no aliasing problems can exist. This is a special case which is very unlikely in
real applications, notably when the signal is composed of several harmonics.

- if τcpl ∼ 2π
ω0

then the averaged signal contains an oscillating component at pulsation ω0 meaning

that if the Nyquist-Shannon theorem is not respected (τcpl <
1
2

2π
ω0

), aliasing will occur and may
not be negligible.

Such procedures are clear alternatives especially if ω0 is known a priori. The associated computing
cost needs however to be quantified.

6.3 Conclusion: what should we do?

The previous study shows that there are at least two different paths which lead to an accurate con-
verged solution if coupling relies on a fully unsteady flow solver:

- the first one corresponds to the RANS like coupling strategy: averaged quantities are exchanged
every τcpl ≫ 2π

ω0
which means that we have to converge the signals provided by the unsteady

solvers and then exchange them. This is well suited for stationary solvers, however for unsteady
solvers this may be very expensive since the primary constraint scales inversly with ω0.

- On the other hand, an accurate solution may be obtained by averaging the unsteady solid
temperature obtained through a tightly5 coupled simulation. The draw back is that it requires
a lot of inter solver communications. The main advantage however is that no apriori knowledge
of the flow physics is required.

Generally coupling very tightly is assumed to be expensive, however a methodology capable of
tightly coupling two solvers without loss of performance is developed in this work. Now the stability
of this methodology needs to be assessed.

5The Nyquist frequency associated to the coupling frequency should be chosen inorder to ensure that aliasing can be
neglected.

Chapter 7

Numerical stability of a tightly coupled

algorithm

Using the Godunov Ryabenkii[41] method Giles[39] studied the stability of a basic one dimensional
conjugate heat transfer problem. Different coupling schemes were studied, notably the explicit time
marching scheme which is of interest to our problem. For this scheme, Giles[39] demonstrates that
the coupled problem is stable if at the interface a Dirichlet condition is applied to the fluid and a
Neumann condition to the solid, Fig 7.1. This result is proved for a simulation with equal time steps
in each domain, i.e. the fluid and solid simulations. It is then generalized to the case where each
solver has its own time step (see Giles conclusion[39]). However this result is true as long as the two
domains are very tightly coupled, in this study the domains exchange information at each time step.
Unfortunately when several solvers are involved this is not always possible due to exchange overhead.

Figure 7.1: Dirichlet Neumann coupling

To remedy stability issues due to weak coupling, Chemin et al.[20] and Duchaine et al.[32] intro-
duced a mixed boundary condition1, Fig 7.2, where relaxation coefficients are used to stabilize the
coupling scheme.

However, finding the best relaxation coefficient to remain stable while maintaining a good conver-
gence rate is not obvious. To solve this optimization problem, Duchaine et al.[32] uses a numerical
method called the amplification matrix[47] to compute stability domains for these simulations. A
clear alternative to that methodology, is to exchange information far more often between the solvers
without loosing computational performance. However Giles’ result is only valid if we couple at every
time step, which is a very restrictive condition. This is why the stability of a very tightly coupled
Dirichlet/Neumann coupling for conjugate heat transfer simulation still needs to be investigated.

1A mixed boundary condition, also known as Robin boundary condition is in fact a linear combination of a dirichlet
and a Neumann boundary condition.

69

70 CHAPTER 7. NUMERICAL STABILITY OF A TIGHTLY COUPLED ALGORITHM

Figure 7.2: Dirichlet Robin coupling

The model used here is the the explicit time marching algorithm described in sect 4.1 of Giles[39].
For the analysis, the heat equation is discretized using finite differences on two one dimensional
domains. These domains are coupled using a Dirichlet/Neumann interface at j=0. The negative
domain (j < 0) receives the flux computed from the positive domain (j > 0). In the original analysis,
each domain is semi-infinite and keeping Giles notations the following equations are obtained:

Tn+1
j = Tnj + d−

(
Tnj+1 − 2Tnj + Tnj−1

)
, j < 0 (7.1)

Tn+1
0 = Tn0 − 2d−

(
Tn0 − Tn−1

)
+ 2rd+ (Tn1 − Tn0) (7.2)

Tn+1
j = Tnj + d+

(
Tnj+1 − 2Tnj + Tnj−1

)
, j > 0 , (7.3)

(7.4)

with

d± =
k±∆t

c±∆x±
2 (7.5)

r =
c+∆x+

c−∆x−
. (7.6)

Using the Godunov Ryabenkii method[41] Giles then proves that this system remains stable pro-
vided that

r < rlim , (7.7)

with

rlim =

√
1− d−

1−
√

1− d+
. (7.8)

However this model is not compatible with a situation where each solver runs independently and
exchanges information with a different iteration count between two coupling events. A looser model
(Fig 7.3) with different time steps ∆t±, different interface temperatures T0+, T0− and different iteration
count N+ and N− between each coupling update would write:

- In the domain (-), the iteration number is n−:

T
n−+1
j = T

n−
j + d−

(
T
n−
j+1 − 2T

n−
j + T

n−
j−1

)
, j < 0 (7.9)

71

Figure 7.3: Loose coupling model, 3 temporal lines (in iteration count) are presented: one for the
domain(-) one for the domain(+) and one for the coupled system.

- In Giles paper the equation (4.1) describing the evolution of the temperature at j=0 reads

c−∆x−
2∆t

(
Tn+1

0 − Tn0
)

= −qw −
j−

∆x−

(
Tn0 − Tn−1

)
(7.10)

with

qw = − k+

∆x+
(Tn1 − Tn0) (7.11)

Because in Giles case ∆t+ = ∆t− = ∆t combining Eq. (7.10) and Eq. (7.11) resulted in Eq. (7.2).
However with two separate time steps the equation obtained is slightly different:

T
n−+1
0−

= T
n−
0−
− 2d−

(
T
n−
0−
− Tn−−1

)
+ 2

∆t−
∆t+

rd+

(
T̃nc1 − T̃nc0+

)
(7.12)

The Temperatures marked with a T̃ are the values which are updated at each coupling iteration
nc, i.e. these values are exchanged between the solvers every N+ for the domain (+), N− for the
domain (-).

- In the domain (+), the iteration number is n+:

T
n++1
0+ = T̃nc0+ (7.13)

T
n++1
j = T

n+

j + d+

(
T
n+

j+1 − 2T
n+

j + T
n+

j−1

)
, j > 0 (7.14)

To study the stability of this new system the same numerical approach as Duchaine et al.[32] has
been used. The domains have now a finite length m, they both have imposed temperatures on the
borders. The entire system is thus written in matrix form. To represent the inter-coupling iterations
and the coupling iterations, a matrix is built for each domain so that:

Tn+1
j = M−Tnj , for domain (−) (7.15)

=




1
d− 1− 2d− d−

. . .
. . .

. . .

d− 1− 2d− d−
−2d− 1− 2d− −2∆t−

∆t+
rd+ +2∆t−

∆t+
rd+

1
1







T−m
T−(m−1)

...
T−1

T0−
˜T0+

T̃1




72 CHAPTER 7. NUMERICAL STABILITY OF A TIGHTLY COUPLED ALGORITHM

Tn+1
j = M+T

n
j , for domain (+) (7.16)

=




1
d+ 1− 2d+ d+

. . .
. . .

. . .

d+ 1− 2d+ d+

1







T0+

T1
...

Tm−1

Tm




These matrices are then raised to the power of the domain inter-coupling iteration count N± and
assembled as follows:

Massemble =




(
M−

)N−
(
M+

)N+


 (7.17)

Using a new matrix Mcpl we can write that domain(-) transfers its current wall temperature to do-
main(+) and domain(+) transfers its current wall flux, through two border temperatures, to domain(-).
This matrix is defined by

Mcpl =




T i−m . . . T i0−
˜T i0+ T̃ i1 T i0+ T i1 . . . T im

T o−m 1
...

. . .

T o0− 1
˜T o0+ 0 1
T̃ o1 0 1
T o0+ 1 0
T o1 1
...

. . .

T om 1




(7.18)

where the input values and output values to this linear transform are noted respectively with the
superscripts i and o.

The complete system is then built by multiplying Massemble and Mcpl resulting in the amplification
matrix of the system Mamp.

Mamp = Mcpl ·Massemble (7.19)

The system is unstable if the spectral radius of Mamp is greater than 1. Using a numerical code it
is possible to compute the eigen values of Mamp and thus deduce the stability of the system.

To validate this numerical approach, the simple test case of Giles is recomputed and compared
to its analytical result. In this case the amplification matrix for the system which is tightly coupled
(at each iteration) is built. This procedure is applied for varying values of the physical properties
of domain (+) as described in Table 7.1, where u is a scalar which varies linearly between 0 and 1
(500 steps). Hence at each time step the Fourier values r and rlim vary with u. The spectral radius
Mamp is also computed for each u. The physical constants used for the computation are summarized
in Table 7.1.

The results showed on Fig 7.4 show that both methods do agree:

- when r < rlim the system remains stable ρ(Mamp) ≤ 1,

- when r > rlim the system becomes unstable ρ(Mamp) > 1.

73

Figure 7.4: This graph shows two stability conditions together we can see that when r > rmax,
ρ(M) > 1.

Domain k c ∆x ∆t

- 0.2 2000 0.005 0.1

+ 0.1 + 0.4u 900 + 1300u 0.005 0.1

Table 7.1: Parameters used for the validity test

In this work we are interested in applying this methodology to an industrial application (part V).
Hence all the numerical values used such as time step, grid size, capacity and conductivity are charac-
teristic values for the target application (Table 7.2). The spectral radius of Mamp has been calculated
for N+ varying between 1 and 100 and N− varying between 1 and 500 and results are presented on
Fig. 7.5. It shows that for all points calculated the spectral radius is below 1, meaning that the
simulation is stable within these limits. This result is coherent with Duchaine et al.[32] which showed
that the Dirichlet/Neumann is stable for very tightly coupled systems.

Hence thightly coupling the flow and the conduction solver ensures that:

- the coupling scheme remains stable,

- the aliasing problems are avoided, meaning that the average of the coupled problem can converge
over a minimal time interval.

The main constraint is however to minimize the coupling overhead in a massively parallel environ-
ment. To do so a methodology targeting modern hardware treating coupled problems is developed.

74 CHAPTER 7. NUMERICAL STABILITY OF A TIGHTLY COUPLED ALGORITHM

Domain k(W.m−1.K−1) cm(J.kg−1.K−1) ρ(kg.m−3) ∆x(mm) ∆t(s)

(-) - solid 50 440 7900 0.3 1e-5

(+) - fluid 0.1 1000 1.3 0.3 1e-7

Table 7.2: Characteristic parameters used in the simulation

Figure 7.5: Spectral radius of the system function of N+ and N−

Conclusion

In this part a methodology for coupling an unsteady LES solver to a thermal solver has been es-
tablished, its accuracy and stability have been assessed. Also some numerical alternatives to handle
unsteady coupling remain to be investigated: the aliasing problem illustrated may be handled by
adding a tuned low pass filter inside the unsteady fluid solver and exchange the filtered quantities.
However the problems considered in this part have been reduced to simple zero or one dimensional
problems. Hence in these simplistic problems exchanging boundary conditions between the solvers is
trivial, i.e. one only needs to transfer one or two scalars. Yet to be able to handle complex geometries,
such as those used in an aeronautical burner, the problem is somewhat more complex. Indeed the
boundary conditions are discretized on complex non matching grids. This leads to the next topic
investigated in this thesis.

75

76 CHAPTER 7. NUMERICAL STABILITY OF A TIGHTLY COUPLED ALGORITHM

Part III

Interpolation methods for unstructured

grid coupling

77

Table of Contents

8 The basics of interpolation 85

8.1 Sampling based interpolation . 85

8.1.1 Signal reconstruction . 85

8.1.2 Grid to Grid Interpolation example . 88

8.2 Conservative interpolation . 93

8.2.1 Conservative interpolation in 1D . 93

8.3 Basic comparison of the interpolation methods . 97

9 Interpolations based on linear transforms 107

9.1 Nearest neighbor interpolation . 108

9.2 Linear interpolation . 109

9.3 Conservative interpolation . 110

9.3.1 Conservative Interpolation on surface meshes 110

10 Efficient geometrical search methods for unstructured grids 119

10.1 The Nearest neighbor problem . 119

10.1.1 Kd-Tree search algorithm . 120

10.1.2 Validation of the Kd Tree implementation . 125

10.2 Element scan methods . 128

10.2.1 For linear interpolation: Finding the containing element 128

10.2.2 For linear conservative interpolation: efficient projection algorithm 130

10.3 Binary space partitioning applied to elements AABB trees 131

80 TABLE OF CONTENTS

Nomenclature

λi Barycentric coordinates

ω Signal frequency

dist(A, B) Euclidean distance between points A and B

Ed
i Element i of destination mesh

Es
i Element i of source mesh

Ei Edge Ei

Edge(T, i) ith edge of traingle T

Gd Destination grid

Gd
i Vertex i destination grid

Gd
i Vertex i of destination mesh

Gs Source mesh

Gs
i ith vertex of source mesh

hBox Impulse response of the box filter

htent Impulse response of tent filter

Nd Number of vertices of the destination mesh

Ns Number of vertices of source mesh

Nv(E) Vertex count of element E

Sk
i kth point of segment Si (k = 0 or 1)

TB
i ith vertex of triangle B

T s
j Triangle j of source mesh

Tij Transformation matrix

U Field to transport

1

82 TABLE OF CONTENTS

Figure 7.6: An example of an interface discretized by two separate grids

Using multiple codes to perform multi-physical simulations generally implicates using several com-
putational grids since each solver focuses on a particular physic and therefore has different numerical
constraints. In such a situation the grid interfaces can be computed in order to match in which case
transferring data between the grids is straightforward. However this is not always possible, therefore
when the grids do not match, Fig 7.6, the data fields have to be interpolated in order to be exchanged.

Using structured solvers interpolation can be relatively easily computed because there is gener-
ally an explicit relation between the points spatial positions and their memory locations2. With
unstructured solvers performing interpolation is harder because this relation is not explicit, complex
geometrical search algorithms are required. Considering the geometrical search problem solved and
that for each point of the destination mesh the nearby source mesh data points are known, the actual
procedure to build the destination data has still to be defined. Knowing that the computations in
this thesis use simplicial elements3, only interpolation methods relying on linear transforms have been
considered. The available methods are hence compared on simple basic cases and the differences are
explained using basic signal theory. Then the construction of the linear transforms from a source grid
Gs to a destination grid Gd is treated. Finally the geometrical algorithms used are presented.

2For a 3D problem the relation between the location i, j, k of each point in a 3 dimensional buffer and the spatial
coordinates x, y, z can be given by a set of polynomials.

3Elements composed of n+1 points in a n dimensional space: a line segment is simplex in a 1D, a triangle is a simplex
in 2D, a tetrahedron in 3D...

TABLE OF CONTENTS 83

Looking at the summary problem, Fig 7.7, this part corresponds to the interpolation row.

Figure 7.7: Summary of the technical issues for data coupling. In the context of this thesis coupling
involves two unstructured partitionned meshes which are connected at geometrical interfaces. These
interfaces may have different discretizations and partitionning. The goal is to transfer data between
them efficiently while preserving the original signals.

84 TABLE OF CONTENTS

Chapter 8

The basics of interpolation

To understand the complex algorithms and interpolation methods it is first necessary to understand
the fundamental aspects behind interpolation, notably sampling theory.

8.1 Sampling based interpolation

In the coupling community and more generally in the CFD community interpolation refers to the
process which transfers data fields from a grid to an other. The interpolation process can be broken
down into several steps:

- the first is signal reconstruction: a signal is reconstructed from the sampled data on grid Gs

through convolution with a low pass filter, resulting into an interpolated signal.

- this interpolated signal is sampled using the destination grid Gdi

In order to understand this process, the basics of signal reconstruction will be discussed, then the
entire process of signal interpolation will be illustrated through detailed examples. Note that in this
discussion the function are interpolated in space therefore the time variable t which is present within
many similar discussions is replaced by the space variable x.

8.1.1 Signal reconstruction

In the strict sense interpolation is the construction of a continuous signal fi(x), Fig. 8.2, from a
sampled signal fs(x), Fig. 8.1.

To understand the properties of interpolation it is important to introduce the continuous signal
f(x). Sampling f(x) on the source grid points Gsn = n∆x yields the sampled signal fs(t):

fs(x) =
+∞∑

n=−∞
f(Gsn)δ(x−Gsn) =

+∞∑

n=−∞
f(n∆x)δ(x− n∆x) = f(x)

+∞∑

n=−∞
δ(x− n∆x) (8.1)

where δ(x) is the Dirac function and
∑+∞
n=−∞ δ(x − n∆x) a Dirac comb. As states the first part of

the Shannon theorem, because of the sampling process the spectrum of fs(x) is the composed of an
infinite number of duplicates of the spectrum of f(x) spaced by the sampling frequency called here
fGs = 1

∆x
. Hence to be able to reconstruct the original signal the duplicates of f(x)’s spectrum must

85

86 CHAPTER 8. THE BASICS OF INTERPOLATION

Figure 8.1: A sampled signal

be eliminated. This can be performed in frequency domain by multiplying the spectrum of fs(x) by
a function Gideal defined by:

Gideal(f) =





1 on
[
−fGs

2 , fGs2

]

0 elsewhere
(8.2)

Hence Gideal is an ideal low pass filter.

Figure 8.2: The reconstructed continuous signal through interpolation

However instead of doing the low pass filtering in the frequency domain which would require a
Fourier transform and inverse transform to pass from the time domain to the frequency domain and
vice versa, the low pass filtering is obtained by calculating the convolution in spatial domain of the
spatial function associated to Gideal(f) called the impulse response hideal(x).

fi(x) = hideal(x) ∗ fs(x) =
+∞∑

n=−∞
f(Gsn)hideal(x−Gsn) (8.3)

The impulse response of Gideal is a sinc function (sinc : x 7→ sin(x)
x

), this is unfortunate because
sinc’s support is not bounded, i.e. there is no segment S such as x 6∈ S ⇒ sinc(x) = 0. Meaning that
in space the stencil used to compute the convolution between hideal and fs(x) is infinite. In order to
compute this convolution, approximations to the ideal filter are used. In this discussion only the box
and the tent filter will be considered because they are the only filters which are useful when dealing
with non structured grids composed of P1 elements1. Also studying basic interpolation problems using
these filters is enough to demonstrate the fundamentals of signal reconstruction.

1Although the sinc function converges rapidly to 0, interpolation with Gideal would require a stencil larger than one
element which is very complex to implement on unstructured grids.

8.1. SAMPLING BASED INTERPOLATION 87

8.1.1.1 The Box filter

The box filter [10], Fig. 8.3, is defined in space by hBox(x):

hBox(x) =





1 x ∈
[
−1
2 ,

1
2

]

0 x /∈
[
−1
2 ,

1
2

] (8.4)

Figure 8.3: The impulse response of the box filter

This filter can be used to produce the nearest neighbor interpolation. The signal obtained through
this interpolation is composed of a succession of steps. In the frequency domain the spectrum of
hBox is ∆xsinc(πf∆x), Fig. 8.4. The spectrum of the impulse response of the box filter hBox can be
considered as the filter’s frequency domain transfer function.

Figure 8.4: The Fourier transform of the box filter’s impulse response

8.1.1.2 The tent filter

The tent filter [10], Fig. 8.5, is defined in space by htent(x):

htent(x) =





0, x ∈]−∞,−1]

x+ 1, x ∈ [−1, 0]

−x+ 1, x ∈ [0, 1]

0, x ∈ [1,∞[

(8.5)

This filter can be used to produce the linear interpolation. The signal is obtained by linking the
sampled points with straight lines.

It is interesting to notice that the impulse response of the tent filter, Fig. 8.6, is obtained by the
convolution of a box filter with it self, hence in the frequency domain the spectrum of htent is the
square of the box filter’s spectrum [10]: (∆xsinc(πf∆x))2.

88 CHAPTER 8. THE BASICS OF INTERPOLATION

Figure 8.5: The impulse response of the tent filter

Figure 8.6: The Fourier transform of the tent filter’s impulse response

8.1.2 Grid to Grid Interpolation example

In order to fully illustrate the interpolation from a grid Gs to a grid Gd, the process from the original
continuous signal to the final continuous signal is detailed in 3 steps. In this example the original
continuous signal is a sinusoid of period 5, the source grid is a regular grid spaced by ∆xs = 0.66, the
destination grid is also a regular grid spaced by ∆xd = 0.3.

1 at first the continuous signal, Fig. 8.7, is sampled on to the source grid Gs, yielding a sampled
signal which is only defined at the source grid points Gsi , Fig. 8.8,

Figure 8.7: The continuous signal

2 in order to calculate the values of the signal on the destination grid points Gdi , a new signal
defined everywhere must be reconstructed, hence the sampled signal is convoluted with a chosen
low pass filter, Fig. 8.9. Therefore a new signal called the interpolated signal is defined for every
point in space, Fig. 8.10.

3 The interpolated signal is sampled on the destination grid points Gdi , Fig. 8.10, yielding a signal
defined only at Gdi , Fig. 8.11.

8.1. SAMPLING BASED INTERPOLATION 89

Figure 8.8: The sampled signal on source grid

(a) (b)

Figure 8.9: The convolution with the low pass filter: (a) box filter, (b) tent filter

(a) (b)

Figure 8.10: The reconstructed signal: (a) box filter, (b) tent filter

(a) (b)

Figure 8.11: The sampled signal on destination grid: (a) box filter, (b) tent filter

4 Finally to visualize the signal represented on the destination mesh a continuous signal is re-
constructed using polynomial interpolation, Fig. 8.12. This view is added to compare with the
original continuous signal in, Fig. 8.7.

It is important to understand that the grid to grid interpolation process is represented by the
figures 8.9, 8.10, 8.11.

This example shows the clear difference between the two interpolation methods. It is important
to notice that in this example the Nyquist frequency is respected for the sampling processes, however
the reconstruction process does not respect the Shannon theorem: the perfect signal reconstruction is
approximated using either the box or the tent filter instead of the perfect low pass filter. Therefore

90 CHAPTER 8. THE BASICS OF INTERPOLATION

(a) (b)

Figure 8.12: The final continuous signal: (a) box filter, (b) tent filter

Figure 8.13: Comparisons of the Fourier transform of the tent and box filter’s impulse response

even if the spectrum of the continuous signal does not contain components at frequencies higher than
the Nyquist frequency, during the signal reconstruction phase the replicates of the continuous signal
spectrum are not eliminated by the non-perfect low pass filter. Better results are obtained using the
tent filter which can be simply explained by looking at the Fourier transform of the filters impulse
response (it’s transfer function): the tent filter’s transfer function is the square of the box filter’s,
Fig. 8.13. Hence the tent filter damps more the replicates of the continuous signal spectrum than the
box filter, Fig. 8.14. On this example a continuous signal having a parabolic spectrum is interpolated
on a regular grid. The figures shows the sampled signal spectrum, the filter transfer function (Fourier
transform of the impulse response) and the reconstructed signal’s spectrum. Figure 8.15 shows the
comparison of the spectrum of the two reconstructed signals.

8.1. SAMPLING BASED INTERPOLATION 91

(a)

(b)

Figure 8.14: Frequency view of signal reconstruction using: (a) box filter, (b) tent filter

92 CHAPTER 8. THE BASICS OF INTERPOLATION

Figure 8.15: Comparisons of reconstructed signal spectrum using box and tent filters

8.2. CONSERVATIVE INTERPOLATION 93

8.2 Conservative interpolation

In some problems such as flux transport between grids, it is necessary to add an extra constraint to
the interpolation process: the interpolation process should preserve the integral of the signal from Gs

to Gd:

- for 1D methods: ∫

Gd
xddu =

∫

Gs
xsdu (8.6)

- for surface methods: ∫

Gd
xdds =

∫

Gs
xsds (8.7)

- for volumetric methods: ∫

Gd
xddv =

∫

Gs
xsdv (8.8)

Methods respecting this constraint are referred in this thesis as conservative interpolation methods.
Different approaches exist to obtain conservative interpolation: a first approach is to consider the
interpolation coefficients as a set of free scalars and then derive a set of constraint equations which
ensure that the interpolation method remains conservative[21]. An other approach consists in comput-
ing mesh-to-mesh intersections (Cell-Intersection-Based Donor-cell method) or by approximating the
mesh-to-mesh intersection (Simplified Face Based Donor-Cell)[69]. A third approach (still based on
mesh-tomesh intersections) is called the supermesh approach, a mesh containing the set of intersection
elements between two meshes[35] is built and used to transfer data from and to the input meshes. A
conservative interpolation method has been developed during this thesis, it is based on element over
element projection (Similar to the Cell-Intersection-Based Donor-cell[69]). Projecting elements over
elements in the three dimensions is a complex task which is described in 9.3.1.

8.2.1 Conservative interpolation in 1D

Figure 8.16: Conservative interpolation example

In order to introduce the concepts of conservative interpolation, the one-dimensional case is pre-
sented. In this discussion a signal xs known on the source grid Gs is transferred to the destination grid

94 CHAPTER 8. THE BASICS OF INTERPOLATION

Gd, Fig. 8.16 shows an example of this setup. The source grid has N points the destination grid has
M points. The axis is called (O, ~u), the coordinates of the source grid points are noted Gsi = ~u · ~OGsi ,

the destination grid points are noted Gdi = ~u · ~OGdi . The grids Gs and Gd are supposed to be arbitrary.
The points are indexed such as Gs1 < Gs2 < . . . < GsN and Gd1 < Gd2 < . . . < GdM . Both grids discretize
the same portion of space, hence Gs1 = Gd1 and GsN = GdM .

The elements of the source grid are segments which link the points Gsi and Gsi+1, the segment
between Gsi and Gsi+1 is noted Esi . Therefore the segment of the destination grid between Gdi and
Gdi+1 is noted Edi . The destination grid has M − 1 segments, the source has N − 1 segments.

The projection step is applied for each segment of the destination grid Edi . The idea is to decompose
Edi in a set of elements defined using Gs points. The projection of Edi on Gs is noted P (Edi 7→ Gs)
and P (Edi 7→ Gs) = ∪jSj where Sj are segments. The points defining the segments Sj are linear
combinations of points of the source grid Gs. For convenience the notation S(A,B) is the segment
defined by the points A and B, S0

i and S1
i are the two points defining the segment Si with S0

i < S1
i .

In a one dimensional case P (Edi 7→ Gs) can be simply expressed:

- if Esj satisfies Gdi < Gsj and Gsj+1 < Gdi+1 then S(Gsj , G
s
j+1) ∈ P (Edi 7→ Gs), Fig. 8.17(a),

- if Esj satisfies Gsj < Gdi and Gdi+1 < Gsj+1 then noting that Gdi = αGsj + (1 − α)Gsj+1 and

Gdi+1 = βGsj+(1−β)Gsj+1, with α, β ∈ [0, 1] we can write S(αGsj+(1−α)Gsj+1, G
s
j+(1−β)Gsj+1) ∈

P (Edi 7→ Gs), Fig. 8.17(b),

- if Esj satisfies Gsj < Gdi and Gdi < Gsj+1 then noting that Gdi = αGsj+(1−α)Gsj+1, with α ∈ [0, 1]

we can write S(αGsj + (1− α)Gsj+1, G
s
j+1) ∈ P (Edi 7→ Gs), Fig. 8.17(c),

- if Esj satisfies Gsj < Gdi+1 and Gdi+1 < Gsj+1 then noting that Gdi+1 = βGsj + (1 − β)Gsj+1, with

α ∈ [0, 1] we can write S(Gsj , βG
s
j + (1− β)Gsj+1) ∈ P (Edi 7→ Gs), Fig. 8.17(d),

A method to conserve the integral during the interpolation process is to break the integral over the
destination grid into the integral over each element of the destination grid:

∫

Gd
xd(u)du =

M−1∑

i=1

∫

Ed
i

xd(u)du (8.9)

Where the integral over Edi can be calculated using P (Edi 7→ Gs):
∫

Ed
i

xd(u)du =
∑

Sj∈P (Ed
i
7→Gs)

∫

Sj

xs(u)du (8.10)

The integral can be calculated using different methods, here two are considered.

The first method considers that the field value is uniform on each source element. Therefore the
integral is calculated using the ratio of the intersection segment length |Sj | over the source element
length |Esk|. ∫

Sj

xs(u)du =
|Sj |∣∣Esk
∣∣
x(Gsk) + x(Gsk+1)

2
(8.11)

This method is called in this document the conservative interpolation method. While simple this
method does not preserve the element gradients which can be problematic notably when data is
interpolated from low resolution grids to high resolution grids.

In this work a more accurate method is considered, since the elements are P1 the integral can be
calculated using a trapezoidal integration rule. Therefore the gradient on the element is preserved

8.2. CONSERVATIVE INTERPOLATION 95

(a)

(b)

(c)

(d)

Figure 8.17: (a) Esj is contained in Edi , (b) Edi is contained in Esj , (c) Esj has intersection with Edi on

its left, (d) Esj has intersection with Edi on its right

and considered in integral calculation. This method is called in this document linear conservative
interpolation. The integral

∫
Sj
xs(u)du is calculated using the trapezoidal rule which is natural choice

for P1 elements, hence in 1D:

∫

Sj

xs(u)du =
(
S1
i − S0

i

) xs(S0
i) + xs(S1

i)

2
(8.12)

If Ski is a point of Gs then xs(Ski) is known since xs is defined on Gs. On the other hand if Ski is linear
combination of Gs points, Ski =

∑
j αjG

s
j , then by supposing that xs varies linearly over each element

(valid for P1 elements) of Gs, we can write that xs(Ski) =
∑
j αjx

s(Gsj). Therefore the integral over

each element of the destination grid Gd can be calculated using element on grid projection and the
trapezoidal integration rule. This method can be viewed as a procedure to establish a mesh aware
quadrature to calculate element integrals.

96 CHAPTER 8. THE BASICS OF INTERPOLATION

The value obtained is defined for the element (or cell), not for the vertices. In this thesis the solvers
used store their data at the vertices therefore the cell-centered integral value must be distributed to the
vertices in a conservative way, i.e. the integral over Gd must be preserved, Fig. 8.18. The distribution

Figure 8.18: Conservative transfer from cells to vertices

method uses the dual cell concept to transfer conservatively the integral from the cells to the vertices.
The dual cell concept is presented for complex elements in 9.3.1, in 1D the dual cells are simply defined
by cutting each element Edi into two equal parts. The union of the parts which are adjacent to the
vertex Gdi are noted Adj(Gdi) which is the dual cell centered on Gdi . The left and right halves of Edi
are noted lh(Edi) and rh(Edi).

For the destination grid we can write that

Adj(Gd1) = {lh(Ed1)} (8.13)

Adj(Gdi) = {rh(Edi−1), lh(Edi)}, for 1 < i < M (8.14)

Adj(GdM) = {rh(EdM−1)} (8.15)

(8.16)

xd is considered to be uniform on Adj(Gdi), therefore the vertex centered value is calculated by dividing
the integral of xd over the dual cell by the dual cell’s weight (length, area, volume) noted w(Gdi) =
w(Adj(Gdi)) =

∫
Adj(Gd

i
) du:

xd(Gdi) =

∫
Adj(Gd

i
) x
d(u)du

w(Gdi)
(8.17)

Calculating the integral of xd using the vertex centered values yields

M∑

i=1

xd(Gdi)w(Gdi) =
M∑

i=1

∫

Adj(Gd
i
)
xd(u)du =

M∑

i=1

∑

E∈Adj(Gd
i
)

∫

E
xd(u)du (8.18)

Considering the definition of Adj(Gdi):

M∑

i=1

∑

E∈Adj(Gd
i
)

∫

E
xd(u)du =

∫
lh(Ed1) x

d(u)du+
∫
rh(Ed1) x

d(u)du+ (8.19)

∫
lh(Ed2) x

d(u)du+ . . .+
∫
rh(Ed

M−1) x
d(u)du

Hence

M∑

i=1

∑

E∈Adj(Gd
i
)

∫

E
xd(u)du =

M−1∑

i=1

∫

Ed
i

xd(u)du =

∫

Gd
xd(u)du (8.20)

Therefore Eq 8.17 preserves the integral over Gd while transporting the data from the cells to the
vertices. It is important to understand that this operation is a linear filter which diffuses information
while conserving the global integral.

8.3. BASIC COMPARISON OF THE INTERPOLATION METHODS 97

8.3 Basic comparison of the interpolation methods

The interpolation methods considered in this chapter have been compared on basic test cases. The
tests have been carried out on simple two dimensional meshes2 using the interpolation code developed
in the coupling library.

The domain is a square with x and y ranging from -30 to 30 which is discretized by two uniform
grids: a low resolution and a high resolution one. The grid vertices are joined using triangles, Fig. 8.20
in order to avoid favoring a particular discretization the triangles are arranged using a diamond scheme.
A first test has been carried out to measure the accuracy of each interpolation method. A reference

Figure 8.19: Error comparison of interpolation methods

sinusoidal signal f(x, y) = |cos(ω0x)cos(ω0y)| is sampled on a grid Gs, this signal is then interpolated
onto a grid Gd yielding a signal g. The interpolated values on grid Gd are then compared to the values
from the original sinusoidal signal yielding an error value ǫ(Gdi) = |g(Gdi)−f(Gdi)| for each point of Gd.
Also the distance between the closest point of Gs is calculated for each point of Gd yielding ∆x(Gdi).
These values are then averaged for the entire mesh. This procedure is then applied for several sets of
source and destination meshes. The destination mesh element size is chosen be half the source element
size.

Figure 8.19 shows the evolution of log10(ǫ) function of log10(∆x) for the different interpolation
methods considered in this document. These results show that the error for the linear and linear
conservative methods scale with ∆x2 whereas the nearest neighbor method (and conservative method)
scale with ∆x. Note also that the linear conservative method is less accurate than the linear method.

A second test illustrating both the aliasing conclusions of this chapter and the conservation prop-
erties of the different interpolation schemes has been carried out. The nearest neighbor, linear and
linear conservative methods have been tested in two situations: in the first case the data is transferred

2The extension of the different interpolation methods to surfaces is described in chapter B.3.3.

98 CHAPTER 8. THE BASICS OF INTERPOLATION

from a coarse grid to a fine grid, Fig. 8.22, in the second data is transferred from a fine grid to a coarse
grid, Fig. 8.22. The responses are analyzed in two ways:

- the first is qualitative: does the resulting data field look like the source data field?

- the second is quantitative: how much of the integral is lost through the interpolation process?

Interpolation Method fine to coarse coarse to fine

Nearest Neighbor 14.9% 9.37e-02%

Linear 12.6% 9.56e-04%

Conservative 5.7e-13% 5.0e-12%

Linear conservative 1.04e-12% 7.2e-13%

Table 8.1: Global integral conservation results for different interpolation methods

Description of the test:

- in the coarse to fine test, the coarse grid is a 21x19 vertex grid, the fine grid is a 200x200 vertex
grid,

- in fine to coarse test, the fine grid is a 200x200 vertex grid, the coarse is a 51x49 vertex grid,

(a) (b) (c)

Figure 8.20: (a) Fine grid(200x200), (b) coarse Grid(51x49), (c) a section of the fine and coarse grids
overlapped.

The source signal is generated using the following ad-hoc formulas:

- For the coarse to fine case the source signal is a low frequency signal:

f(x, y) = |cos(ω0x)cos(ω0y)| (8.21)

Where pulsation ω0 = 0.1 has been chosen to be clearly lower than the maximal frequency that
the coarse grid may support.

- For the fine to coarse case the source signal is the sum of a low frequency signal and a high
frequency signal:

f(x, y) = |cos(ω0x) ∗ cos(ω0y)|+ 0.4cos(ω1x) ∗ cos(ω1y) (8.22)

Where ω1 = 5π
3 ≃ 5.236 has been chosen to be clearly higher than the highest frequency the

coarse grid may support.

8.3. BASIC COMPARISON OF THE INTERPOLATION METHODS 99

The global Integral results presented are relative differences between interpolated integral and source
integral, Table 8.1.

Looking at the results for the coarse to fine interpolation, Fig. 8.21, it is obvious that the nearest
neighbor method clearly provides bad results compared to the linear method. This is explained by
the comparison of the low pass filtering properties of the box filter and the tent filter. Both linear and
linear conservative methods take into account the element gradient hence they have similar results on
the coarse-to-fine interpolation case. However quantitatively the linear conservative method provides
a much better integral conservation then the linear method, Table 8.1.

100 CHAPTER 8. THE BASICS OF INTERPOLATION

Figure 8.21: Interpolation from coarse to fine grid

Figure 8.22: Interpolation from fine to coarse grid

For the fine to coarse interpolation results, Fig. 8.22, it is clear that the nearest neighbor and the
linear methods demonstrate aliasing, however the linear conservative does not show this phenomenon.
It is also clear that the aliasing is stronger with the nearest neighbor interpolation than with the
linear interpolation, there again the low pass filtering properties of the box and tent filters explain
these differences. Quantitatively the aliasing has a severe impact on the nearest neighbor and linear
methods integral conservation, whereas the linear conservative method maintains very good integral
conservation.

8.3. BASIC COMPARISON OF THE INTERPOLATION METHODS 101

An other characteristic of the result is that the linear and nearest neighbor interpolated fields show
clear anisotropy. To verify that this property comes from the mesh choice (51x49), different target
meshes have been tried, Fig. 8.23. This test shows that the anisotropy is clearly a consequence of the
target mesh, i.e. in the cases (c) and (d) on Fig. 8.23 the isotropy is conserved. Similar results can
be viewed for the linear interpolation method, Fig. 8.24. However for the linear conservative method,
the interpolated field does not show as much dependence on the target mesh, Fig. 8.25.

(a) (b) (c) (d)

Figure 8.23: Nearest neighbor results for different meshes: (a) 51x49, (b) 49x51, (c) 49x49, (d) 51x51

(a) (b) (c) (d)

Figure 8.24: Linear interpolation results for different meshes: (a) 51x49, (b) 49x51, (c) 49x49, (d)
51x51

(a) (b) (c) (d)

Figure 8.25: Linear conservative interpolation results for different meshes: (a) 51x49, (b) 49x51, (c)
49x49, (d) 51x51

102 CHAPTER 8. THE BASICS OF INTERPOLATION

To further investigate the results, one dimensional profiles are extracted for each interpolation
method. These profiles are extracted for the target mesh 51x49, at locations described on figure 8.26.

Figure 8.26: Position of the profiles

The profiles are shown on Fig. 8.27, 8.28, 8.29, 8.30. Also the low frequency signal, corresponding
to the reference signal, is plotted on each graph. The results show that the interpolated signal
calculated using the conservative interpolation methods clearly match the low frequency signal. On the
other hand the nearest neighbor and linear interpolation methods fail to reproduce the low frequency
signal. This can also be seen looking at the signals spectrum: Fig. 8.31 shows the source signal
spectra, the low frequency signal spectrum and the spectrum obtained through nearest neighbor and
linear conservative interpolations. To better visualize the results, the difference between the nearest
neighbor and linear conservative spectra with the reference signal are plotted in Fig. 8.32. The linear
conservative interpolation method is capable of correctly filtering out the high frequency peak of the
source signal, yielding the almost the same spectrum as the reference signal. On the contrary the
nearest neighbor interpolation method shows aliasing responsible for the high differences on Fig. 8.32.

The results shown in this discussion emphasize the differences between the interpolation meth-
ods on basic signals. These results have been summarized in Table 8.2. It is clear that looking at
these results the best interpolation method is the linear conservative method: it maintains second
order error growth, extremely low integral conservation errors and is almost not prone to aliasing
problems. However the signals and meshes used in these tests have been chosen voluntarily as worst
case scenarios in order to point out the weaknesses of the more standard methods: nearest neighbor
and linear interpolation. For signals containing essentially low frequencies (relative to the maximal
frequency supported by the meshes), linear interpolation remains a good approximation, simple to
implement. On the other hand the nearest neighbor interpolation should be avoided because of its
higher vulnerability to aliasing artifacts3.

Interpolation Method Error growth order Integral conservation Aliasing vulnerability

Nearest Neighbor First order mesh dependent very high

Linear Second order mesh dependent moderate

Conservative First order almost exact very low

Linear conservative Second order almost exact very low

Table 8.2: Summary of interpolation methods comparison results

3In this comparison the cost of the interpolation methods is not discussed. The interpolation cost greatly depends on
implementation choices which are discussed in chapter B.3.3 and chapter 10.

8.3. BASIC COMPARISON OF THE INTERPOLATION METHODS 103

Figure 8.27: Interpolation profile on line x = 0

Figure 8.28: Interpolation profile on line y = 0

104 CHAPTER 8. THE BASICS OF INTERPOLATION

Figure 8.29: Interpolation profile on line x = 15

Figure 8.30: Interpolation profile on line y = 15

8.3. BASIC COMPARISON OF THE INTERPOLATION METHODS 105

(a) (b)

(c) (d)

Figure 8.31: x = 0 profile spectrum for different signals: (a) Source (low+high freq.), (b) Low frequency
reference, (c) Linear conservative, (d) Nearest neighbor

Figure 8.32: Difference between spectra of nearest neighbor interpolated and linear conservative signals
with reference signal on profile at x = 0

106 CHAPTER 8. THE BASICS OF INTERPOLATION

Chapter 9

Interpolations based on linear

transforms

To use the interpolation methods introduced in chapter 8 on realistic unstructured geometries more
complex algorithms and methods have to be introduced. In order to explain these algorithms and
methods in a comprehensive way a set of notation are introduced:

- The destination and source grids are respectively noted Gd and Gs which have respectively Nd

and N s vertices.

- The notation Gdi refers to the ith vertex of the destination grid, and likewise for Gsi .

- U is the field to transport, Ud and U s are respectively the fields defined on the destination and
source grids.

- The notation Udi refers to the value of the field Ud at the vertex i of Gd: Udi = Ud(Gdi). Likewise
U si = U s(Gsi).

- The ith element of the destination grid is noted Edi , likewise for the source grid.

- The vertex count of Edi is noted Nv(E
d
i), likewise for Esi .

- The jth vertex index of Edi is noted Edi,j , likewise for Esi .

- The element count of Gd and Gs is noted respectively Md and M s.

The interpolation methods described in 8 rely on linear transformations, therefore each destination
value can be written as a linear combination of the source values:

Udi =
Ns∑

j=1

αi,jU
s
j (9.1)

Hence computing all the destination values can be written in matrix form:

Ud = TU s (9.2)

107

108 CHAPTER 9. INTERPOLATIONS BASED ON LINEAR TRANSFORMS

Where T is the transformation (interpolation) matrix

T =




U s1 . . . U sj−1 U sj U sj+1 . . . U sNs

Ud1
...
Udi αi,1 . . . αi,j−1 αi,j αi,j+1 . . . αi,Ns
...
Ud
Nd




(9.3)

The matrix T has Nd rows and N s columns, therefore storing T in dense form is extremely ex-
pensive. Fortunately the interpolation methods that are described in this chapter are local, i.e. each
interpolated value depends on a rather small amount of points. Hence each row of T contains very
few non zero values, implying that the storage cost of T in sparse form is reasonable.

The objective of this chapter is to explain the computation of the interpolation matrix T . The
algorithms presented hereafter are naive brute force algorithms and hence should only be considered
for comprehension, not for implementation. The algorithms implemented in the geometric part of the
coupling library are presented in 10.

9.1 Nearest neighbor interpolation

This method is the most basic interpolation method, easy to implement: for each vertex of the
destination grid Gdi find the closest vertex in the source grid Gs.

The matrix T is a Boolean matrix. For every Gdi compute the closest Gsj , and set Tij = 1. The rest
of the matrix should be filled with zeros.

initialize the matrix T the null matrix (0 everywhere);
T ← 0;

for i← 1 to Nd do

j ← FindClosest(Gdi);
Ti,j ← 1

end

Algorithm 1: Nearest neighbor interpolation matrix calculation

Where the FindClosest(V) is a function which returns the index of the closest vertex to V in the
grid Gs. This can be calculated using this brute-force algorithm:

initialize the search;
closest index← 1;
closest dist← ‖V −Gs1‖;
for i← 2 to N s do

if ‖V −Gsi‖ < closest dist then

closest index← i;
closest dist← ‖V −Gsi‖;

end

end

return closest index
Algorithm 2: Brute force algorithm for nearest neighbor search

Since the complexity of this brute force algorithm is O(N s), the overall complexity of the nearest

9.2. LINEAR INTERPOLATION 109

neighbor method is O(NdN s) which is far from optimal. Therefore this algorithm should only be
considered in cases where the grid sizes are very small.

More efficient algorithms are presented in 10.1.

9.2 Linear interpolation

Linear interpolation can be derived quite simply from a Taylor development of a function f :

f(x0 + h) = f(x0) + h
df(x)

dx
|x0 +

h2

2

d2f(x)

dx2
|x0 + ...+

hn

n!

dnf(x)

dxn
|x0 +O(hn) (9.4)

if x is a vector we can write:

f(x0 + h) = f(x0) +∇f(x0) · h+
1

2
hTH(x0)h+ o(||h||2) (9.5)

The Linear interpolation method is derived from this formula, using only the first order term ∇f .

For linear elements (segments in 1D, triangles in 2D, tetrahedrons in 3D) linear interpolation can
be performed by calculating barycentric coordinates, the calculation of such coordinates is presented
in B.1 and can be implemented by using explicit formula’s.

The only computational difficulty is to find the element containing the vertex V . What is more
when interpolating on surfaces in 3D the vertex V must first be projected onto the surface before the
vertex-in-element test is performed.

In some cases no element may contain the vertex V even after projection, in such case a simple fix
is to fall back to nearest neighbor interpolation, therefore assign the value of the closest vertex.

initialize the matrix T the null matrix (0 everywhere);
T ← 0;

for i← 1 to Nd do

j ← FindContainingElement(Gdi);
if j < 0 then

Fallback to nearest neighbor ;

j ← FindClosest(Gdi);
Ti,j ← 1 ;

end

else Esj contains Gdi
Calculate barycentric coordinates of Gdi in Esj ;

λk ← ComputeBarycentricCoords(Gdi , E
s
j) ;

for k ← 1 to Nv(E
s
j) do

col← Esj,k ;

Ti,col ← λk ;

end

end

end

Algorithm 3: Linear interpolation matrix calculation

The FindContainingElement(V) returns an integer j which is the index of the element of Gs

which contains V (V ∈ Esj), if no element of Gs contains V then FindContainingElement returns
a negative value.

110 CHAPTER 9. INTERPOLATIONS BASED ON LINEAR TRANSFORMS

The function ComputeBarycentricCoords(V,E) calculates the barycentric coordinates of the ver-
tex V in the element E. It returns a vector of scalars Λk, one for each vertex of the element E.
The implementation of this function is straightforward for P1 elements and only requires selecting
the correct formulas for the correct element type. Hence this function is extremely cheap in terms of
execution time since no sub iterations are required.

An interesting property of barycentric coordinates is that the barycentric coordinates calculation
can be used for vertex in element testing: the vertex V is contained in E as long as its barycentric
coordinates remain between 0 and 1, hence TestV ertexInElement(V,E) can be defined by:

Calculate barycentric coordinates of V in E;
λ← ComputeBarycentricCoords(V,E) ;
if ∀k ∈ J1, Nv(E)K, λk ∈ [0, 1] then

return True
end

return False
Algorithm 4: Vertex in Element test using barycentric coordinates

Therefore a simple FindContainingElement algorithm may be written

for i← 1 to Md do

if TestV ertexInElement(Gdi , E
s
j) then

return i
end

end

return −1
Algorithm 5: Find containing element brute force algorithm

Of course this algorithm is clearly not optimal since for each vertex of the destination grid, all the
elements of the source grid have to be processed resulting in a complexity in O(NdM s).

9.3 Conservative interpolation

In some problems integrals have to be conserved during the interpolation process, Fig 9.1, for example
when transferring a flux, the flux should be the same on the source and on the destination mesh.
However by using interpolation methods based on sampling, there is no way to guarantee that the
integral is conserved. A method to do conservative interpolation is presented here (similar to the Cell-
Intersection-Based Donor-Cell method[69]). The method is based on intersection calculation between
both meshes. Once the intersection polygons are calculated, the integral on each polygon is evaluated
using a shape function. The resulting integral is the sum of the integrals on all the intersection
polygons.

9.3.1 Conservative Interpolation on surface meshes

In this problem we have two grids Gs and Gd discretizing the same surface S but in a different way,
Fig 9.2, i.e. the cell sizes may differ. The field U must be transferred from Gs to Gd without integral
loss over the surface S. The methodology presented here is based on element to element intersection.
To simplify we will consider triangular surface meshes, but the methodology can be extended to other
element types.

9.3. CONSERVATIVE INTERPOLATION 111

Figure 9.1: Conservative interpolation preserves global integrals

Figure 9.2: Surface to surface interpolation problem

112 CHAPTER 9. INTERPOLATIONS BASED ON LINEAR TRANSFORMS

9.3.1.1 Step 1: Projection step

For each triangle Edi of Gd find the set of elements I =
{
Esj

}
on Gs such as Edi ∩ Esj 6= ∅.

In the 3D case S may be curved, Fig 9.2, therefore in order to obtain true intersection polygons, the
elements Edi and Esj are projected onto the plane obtained by averaging the support planes of Esj and

Edi , Fig 9.3. The intersection calculation is then performed in 2D allowing to calculate intersection
polygons (if the calculation was done in 3D most intersection calculations would result in obtaining
either no intersection or intersection lines). The projection is a source of integral conservation loss if
the support planes of Esj and Edi are very different: the area of the projected elements may be very
different than the area of the original elements. This is one of the limits of the method: important
deviations between the discretizations of S may induce conservation loss.

Figure 9.3: Before calculating the intersection polygons the source and destination elements are pro-
jected on a average plane

Reducing the set of elements of Gs to calculate I is the key to accelerate this method, for now the
reader can consider applying the following procedure to all the elements of Gs therefore obtaining a
naive but functional method. A more efficient way is presented in chapter 10.

9.3. CONSERVATIVE INTERPOLATION 113

(a) (b)

(c) (d)

Figure 9.4: Examples of intersections between destination and source triangles T d and T s: (a) 3 point
intersection, (b) 4 point intersection, (c) 5 point intersection, (d) 6 point intersection

114 CHAPTER 9. INTERPOLATIONS BASED ON LINEAR TRANSFORMS

9.3.1.2 Step 2: Intersection step

After the projection on the mean plane the intersection polygon of the two triangles T sj has to be

calculated T di , Fig 9.4, a general procedure is described in procedure 6.

intersectpoints = ∅
Test points of TA in TB;
for i← 1 to 3 do

Calculate barycentric coordinates of TAi in TB;
λ← ComputeBarycentricCoords(TAi , T

B) ;
if ∀k ∈ J1, 3K, λk ∈ [0, 1] then

intersectpoints← intersectpoints ∪ TAi ;
end

end

Test points of TB in TA;
for i← 1 to 3 do

Calculate barycentric coordinates of TBi in TA;
λ← ComputeBarycentricCoords(TBi , T

A) ;
if ∀k ∈ J1, 3K, λk ∈ [0, 1] then

intersectpoints← intersectpoints ∪ TBi ;
end

end

Add segment intersections TB in TA;
for i← 1 to 3 do

for j ← 1 to 3 do

intersectpoints← intersectpoints ∪ SegmentIntersection(Edge(TA, i), Edge(TB, i)) ;
end

end

Filter point duplicates;
...

Algorithm 6: Intersection point set of triangles TA and TB in 2D

The test vertex in element has already been presented for the linear interpolation method, the next
difficulty is properly computing segment intersection. Indeed degenerated intersection cases must be
considered, i.e. the intersection of two segments may also be a segment. Such cases may seem unlikely
but considering the mount of elements in each grid, such situations may happen. Also because the two
meshes are discretizations of the same surface, their borders are thus defined using the same curves,
leading to a high probability of coinciding segments on the borders. Hence the output of the procedure
should be a variable size point set O:

- if O = ∅ then no intersection found between the two segments (this does not mean that the lines
supporting the segments do not intersect)

- if O contains 1 point then the two segments intersect and have only 1 intersection point.

- if O contains 2 points then the two segments are parallel and have a common portion (which
can be the entire segment), therefore the segments have an infinite number of intersection points
defining an intersection segment. Only the extremal points of the intersection segment are
returned.

Therefore a general procedure to calculate the intersection of two segments in 2D is presented
in B.3.1. The intersection point set Pi is available. It is important to understand that this procedure

9.3. CONSERVATIVE INTERPOLATION 115

only calculates a set of points which are on the intersection polygon’s border, these points are not
ordered and therefore the polygon formed by linking the points Pi by lines may be self intersecting,
Fig 9.5.

Sorting an arbitrary set of points in order to obtain a non self intersecting polygon is a complex task.
Yet if the target polygon is convex1 then the problem can be solved using a convex hull algorithm [6, 93].
In this case the intersection of two triangles is considered, since triangles are convex polygons their
intersection must also be convex 2. Therefore using a convex hull algorithm it is possible to sort Pi to
obtain the intersection polygon.

Figure 9.5: Unsorted intersection point set

Figure 9.6: Sorted intersection point set

The algorithm used here is a Jarvis March algorithm [50, 27] (also called Gift Wrapping algorithm).
The output of this algorithm is an ordered list of vertices which define the intersection polygon. Since
the intersection polygon is convex it can then be easily cut into triangles. The new triangles can be
formed by using a vertex V0 as base by taking successively V0V1V2, V0V2V3,..., V0VN−1VN where N
the number of vertices of the intersection polygon. This new set of triangles forms the intersection
polygon’s mesh.

The Jarvis March algorithm is presented in Appendix B.3.23.

9.3.1.3 Step 3: Intersection polygon triangulation and Integral calculation step

The intersection step has provided an intersection polygon noted here Ip. The intersection polygon
vertex count is noted Nv(Ip) each vertex is noted Ipi. In order to calculate the integral over the

1if A convex polygon is a polygon P for which if A ∈ P and B ∈ P then AB ⊂ P
2The proof is simple: consider two triangles T1 and T2, their intersection I = T1 ∩ T2, if A ∈ I and B ∈ I then

AB ⊂ T1 and AB ⊂ T2 hence AB ⊂ I
3Sorting the intersection point set allows to triangulate the intersection polygon directly without needing to use more

advanced algorithms such as Delaunay triangulation[36].

116 CHAPTER 9. INTERPOLATIONS BASED ON LINEAR TRANSFORMS

Figure 9.7: Triangulating a convex polygon into a triangle fan

intersection polygon, the intersection polygon is broken down into basic triangles. For a convex
polygon this can be simply done by braking the polygon into a triangle fan, Fig 9.7.

A triangle fan is a term used in computer graphics. A triangle fan is a set of connected triangles
which all share a base vertex. For example the triangle fan formed by the set of points P0,P1,P2,P3,P4

is the set of triangles P0P1P2, P0P2P3, P0P3P4.

A convex polygon P (its vertices are noted Pi with i ∈ J0, Nv(P)−1K) can be decomposed using this
scheme: Considering the edge Ei between PE0

i
and PE1

i
, every point M ∈ Ei is also in P , because P is

convex the segment S(M,P0) ⊂ P 4. Therefore sliding M on Ei shows that the triangle P0PE0
i
PE1
i
⊂

P . Hence the triangle set
(
∪Nv(P)−1
i=0 P0PE0

i
PE1
i

)
⊂ P . The equality

(
∪Nv(P)−1
i=0 P0PE0

i
PE1
i

)
= P

can be proven by supposing that
(
∪Nv(P)−1
i=0 P0PE0

i
PE1
i

)
6= P therefore ∃M such as M ∈ P but

M /∈ ∪Nv(P)−1
i=0 P0PE0

i
PE1
i

which contradicts that Pi is the border of P .

Thus ∪Nv(P)−1
i=0 P0PE0

i
PE1
i

= P .

The edges E0 and ENv(P)−1 can be ignored because they produce degenerate triangles (flat trian-

gles). Therefore P is decomposed into ∪Nv(P)−2
i=1 P0PE0

i
PE1
i
.

Now that the intersection polygon has been triangulated calculating the integral over Ip can be
decomposed into the integral calculation over each simplex (triangle) composing Ip.

The integral over a triangle of a linear function is presented in B.2.1 (it is similar to a trapezoidal
integration in 1D). This integral only depends on the values of the function on the triangles summits
P0, PE0

i
, PE1

i
. Since we know that all the points Pi are vertices of Ip the intersection of T d and T s we

know that Pi ∈ T s, therefore the value of the field at U s(Pi) and be calculated by linear interpolation
on the triangle T s.

Noting λi,0, λi,1 and λi,2 the barycentric coordinates of Pi in T s.

4For a convex polygon if two points A,B ∈ C then the segment S(A,B) ⊂ P

9.3. CONSERVATIVE INTERPOLATION 117

The integral over P0PE0
i
PE1
i

can be calculated:

∫

P0PE0
i
P
E1
i

U sds = 1
6 |JΦ|

(
U s(P0) + U s(PE0

i
) + U s(PE1

i
)
)

= 1
6 |JΦ|(λ0,0 + λE0

i
,0 + λE1

i
,0)U s(T s0) +

1
6 |JΦ|(λ0,1 + λE0

i
,1 + λE1

i
,1)U s(T s1) +

1
6 |JΦ|(λ0,2 + λE0

i
,2 + λE1

i
,2)U s(T s2) (9.6)

Hence the integral over Ip = T d ∩ T s can be expressed by:
∫

T d∩T s
U sds =

∑
i

∫
P0PE0

i
P
E1
i

U sds (9.7)

= 1
6 |JΦ|

∑
i



λ0,0 + λE0

i
,0 + λE1

i
,0

λ0,1 + λE0
i
,1 + λE1

i
,1

λ0,2 + λE0
i
,2 + λE1

i
,2


 ·



U s(T s0)
U s(T s1)
U s(T s2)


 (9.8)

Finally the integral over T d is expressed by summing the integrals over each intersection polygon
of Gs and T d:

∫

T d
U sds =

1

6

∑

T s ∈ Gs
T s ∩ T d 6= ∅

|JΦ(T s)|
∑

i



λ0,0 + λE0

i
,0 + λE1

i
,0

λ0,1 + λE0
i
,1 + λE1

i
,1

λ0,2 + λE0
i
,2 + λE1

i
,2


 ·



U s(T s0)
U s(T s1)
U s(T s2)


 (9.9)

9.3.1.4 Step 4: cell to vertex data transfer

(a) (b)

Figure 9.8: (a) The dual-cell associated to vertex Vi, (b) Cell to vertex value transfer

The following notations are introduced:

- NC(Gdi) is the number of cells associated to the vertex Gdi in the grid Gd.

118 CHAPTER 9. INTERPOLATIONS BASED ON LINEAR TRANSFORMS

- C(Gdi , j) is the jth cell associated to the vertex Gdi in the grid Gd, cells are indexed from 1 to
NC(Gdi).

- w(C) is the weight of the cell C. If the cell is a surfacic element then w(C) is its area, likewise
if C is a volumetric element then w(C) is its volume.

- w(Gdi) is the weight of the dual-cell associated to Gdi .

- NV (C) is the number of vertices defining the cell C, e.g. for a triangle 3, for a tetrahedron 4,
etc...

The integral value calculated in the previous step must first be scaled by the inverse of the cell’s
area to remain homogeneous with the source signal. The cell value is therefore defined, Eq 9.10.

UC(T d) =
1

w(T d)

∫

T d
U sds (9.10)

Because the solvers work with fields defined at the cell vertices, this value must be distributed to
the cell’s nodes while preserving the global integral over the grid Gd. To do this the dual-cell concept
is used. Each vertex Gdi of Gd is assigned a dual-cell, Fig 9.8(a). The dual-cell of Gdi is not defined
explicitly. However it is built by aggregating a portion of each cell C(Gdi , j) associated to Gdi . The
cells C(Gdi , j) are distributed evenly to the different vertices which are associated to them, hence the
portion of C(Gdi , j) distributed is divided by NV (C(Gdi , j)).

Thus the dual-cell of Gdi ’s weight is defined by summing the weights of the portions of the associated
cells:

w(Gdi) =

NC(Gdi)∑

j

w(C(Gdi , j))

NV (C)
(9.11)

The vertex value UV (Gdi) is defined by a weighted average of the associated cell values UC(C(Gdi , j)):
each cell value is weighted by the ratio of the cell C(Gdi , j) contribution to the dual-cell of Gdi over the
weight of that dual-cell, Eq (9.12).

UV (Gdi) =
1

w(Gdi)

NC(Gdi)∑

j=1

UC(C(Gdi , j))
w(C(Gdi , j))

NV (C(Gdi , j))
(9.12)

Noting that Udi = UV (Gdi), the final interpolation matrix Tij is built by expanding Eq (9.12) using
Eq (9.10) and the quadrature issued from the projection step, Eq (9.9).

Chapter 10

Efficient geometrical search methods

for unstructured grids

In chapter 8 the different interpolation methods used within this thesis have been explained, and in
chapter B.3.3 basic algorithms allowing their implementation have been detailed. This chapter focuses
on improving these methods by replacing the brute force search algorithms by more efficient ones. In
most coupling problems relying on static meshes like in this thesis this problem may seem secondary
since the geometrical search is done only once. Nevertheless algorithmic efficiency in these geometrical
search problems remains a fundamental problem to consider when one wants to deal with large meshes.
For example considering the nearest neighbor brute force search algorithm, it requires computing the
distances between all the vertices of a mesh with all the vertices of an other, hence its execution
time scales with the product of the two meshes vertices count. Considering for simplicity that the
two meshes contain the same point count N the algorithm execution time would scale with N2. On
current hardware with well written code this algorithm can still perform with reasonable restitution
times (≃ 1h) for problems of sizes up to N ≃ 105. However because the execution time scales with
the square of the problem size this is extremely limiting: if the execution time for a problem of size N
is 1 hour, the execution time for a problem 10 times larger would be a little more than 4 days. And
looking at the evolution of CFD other the past years, it is clear that mesh sizes keep increasing. It
is therefore clear that to develop multi-physical applications capable of performing on the long term
algorithmic efficiency should not be taken lightly.

The algorithms presented in this chapter have been implemented in the coupling library which
is used for the target application, Appendix A.2, also the algorithm used for the nearest neighbor
problem has been implemented in a tool named projector actually used at Snecma, Appendix A.1.

10.1 The Nearest neighbor problem

To find vsj such as dist(vsj , v
d
i) is minimal, many different algorithms exist. This can of course be done

by a direct computation of all the distances between vertices of Gs and vdi . Such an algorithm is very
expensive, it requires N s distance evaluations and comparisons. What is more if it has to be done for
all vertices of Gd then the algorithm scales in NdN s, generally noted as O(N2). Fortunately there are
more optimal solutions to this problem.

A very basic method is simply to use a coarse uniform grid to accelerate searches. Each cell C of
the uniform grid maintains a list of the vertices which project onto C. The grid accelerates searches by
mapping vertices to locations in space. The grid’s resolution is the main parameter which drives the
efficiency of this method: refining the mesh accelerates the searches but increases the memory required

119

120CHAPTER 10. EFFICIENT GEOMETRICAL SEARCH METHODS FOR UNSTRUCTURED GRIDS

to store the grid structure. This method performs very well for vertices evenly distributed in space.
However this method may loose efficiency for meshes which are not homogeneous such as meshes used
in combustion unless the grid resolution is chosen to match the size of the smallest elements of the
mesh. Hence the drawback of this method is the storage waste induced by over discretizing parts of
space which would only need a low resolution grid. This adaptivity problem can be dealt by storing
the grid in a sparse form (storing only the non empty zones of the grid), a more advanced method
using this idea is presented in 13.1.1. In this chapter a different approach is considered: a tree based
algorithm is used.

Figure 10.1: Kd-Tree graphical representation used for fast geometrical searches

10.1.1 Kd-Tree search algorithm

The Kd-Tree [107, 124] algorithm will be briefly introduced in this chapter. Kd-Trees allow to resolve
nearest neighbor problems almost in logarithmic time, i.e. finding the closest element to MTarget in a
set of points. A Kd-Tree is a Binary Space Partitioning (BSP) [38] tree for which the cutting planes
are orthogonal to one of the basis directions(~x, ~y, ~z, ...). Kd-trees are primarily used in computational
graphics where they play an important part in video games or ray tracing algorithms. Kd-Trees are
a more general tree structure than quad-trees or oct-trees [66], since they can handle K dimensions.
They are also easier to balance than quad-trees or oct-trees, which ensures a better performance. A
graphical representation of a Kd-Tree for a portion of an aeronautical burner solid domain is shown
on figure 10.1.

In this section the Kd-Tree construction and search procedure are presented. In this discussion a
K dimensional space E is considered, (O, ~x1, ~x2, . . . , ~xK) is an orthonormal basis of E.

10.1.1.1 Constructing a Kd-Tree

The procedure to build a Kd-Tree for a set of N points (M1, . . . ,MN). The building procedure is a
recursive algorithm, at each step

1 a cut plane is calculated from the set of points, this cut plane should be chosen to cut the point
set in two equal parts.

10.1. THE NEAREST NEIGHBOR PROBLEM 121

2 all the points on the left of the cut plane are put in a new set which will form the left branch of
the tree.

3 all the points on the right of the cut plane are put in a new set which will form the right branch
of the tree.

This procedure is then applied to the left and the right sets in a recursive way. The algorithm is
stopped when the size of the sets are small enough (this is a parameter to the method). In practice
there is no need to build the entire tree (recursing until the sets contain only one point), in the
version implemented the algorithm is used until the sets contain less than 32 points. The Kd-Tree is
constituted by the different cutting planes (direction ~xj and pivot Pj), their relations and the leaves
containing the points Mi. In practice only the indices of the points are stored.

An important difference between Kd-Trees and other types of tree such as quad-trees or oct-trees
is that Kd-Trees are simple to balance, i.e. at each node of a balanced tree the left and right branches
contain the same amount of elements. A balanced tree is the smallest binary tree possible, and
therefore storage and search efficiency is maximal.

Therefore the choice of the cut plane is essential. The Kd-Trees are axis aligned binary space parti-
tioning trees therefore the cut plane is defined by a direction ~xj and a value on this axis Pj . For a set of

points S = {M1,M2, . . .} a perfectly balanced tree is obtained by choosing Pj = medianM∈S(~OM · ~xj).
Choosing the direction of the cut plane is the next difficulty. A practical solution is to choose the
direction which after projection on its axis yields the greatest distance between the extremal points, an
other more accurate method is to calculate the root mean squared of the coordinates for each direction
1. In the following examples and in the implementation the extremal distance method is used. In the
implementation the median is approached by using a dichotomic procedure until the balance is good
enough, i.e. the balancing is stopped when the relative difference of the left and right sets is smaller
than a given parameter. The complexity of the construction of a Kd-Tree depends on the algorithms
used to choose the direction or compute the pivot but it is of the order of O(nlog(n)).

10.1.1.2 Searching in a Kd-Tree

A Kd-Tree is searched by successively testing the target element MTarget with the different cutting
planes (~xj , Pj) until the current position in the tree is a leaf. If the current position is not a leaf then

- if OMTarget · ~xj < Pj the search procedure is applied to the left child branch.

- if OMTarget · ~xj >= Pj the search procedure is applied to the right child branch.

If the current position is a leaf, a linear nearest neighbor search is performed. This is why the
parameter defining the size of the leaves is an important parameter for performance. A first result is
obtained Mtemp. Ending the search here results in very fast look-ups (exactly log2(N) for a balanced
tree) but the algorithm would not be not exact. Mtemp may not be the closest element to MTarget. A
simple test must be performed:

- if ‖MTargetMtemp‖ > | ~OMTarget · ~xj − Pj | then the other branch of the cutting plane must be
searched recursively.

- if ‖MTargetMtemp‖ <= | ~OMTarget · ~xj − Pj | then the result is satisfying for this stage.

1Some authors simply specify to cycle through the directions, this can be problematic if there are parts of the mesh are
flat and are axis aligned (this happens with boxes). If by cycling on the directions the cut plane’s direction is orthogonal
to the flat part of the mesh then that sorting stage will be inefficient.

122CHAPTER 10. EFFICIENT GEOMETRICAL SEARCH METHODS FOR UNSTRUCTURED GRIDS

In other words, the test compares the distance between the found point Mtemp and MTarget with the
distance between the MTarget and the current cutting plane. If that cutting plane is closer to the target
than the temporary result, a better result might be on the other side of that cutting plane. Hence the
search should continue on the other side. The search process is a recursive up-down process, in most
cases there are few side changes (especially if the bucket size is not too small) keeping the average
complexity near to O(log(n)). However if there are a lot of side changes then the search performance
can be drastically degraded.

10.1.1.3 Example of a Kd-Tree in 2D

Figure 10.2: The point set with the different cut planes, the recursive level of the cut plane is noted
by over-lined numbers

To help understand a simple example is detailed. The point set is S0 = ((2, 2), (1, 0), (3, 9), (20, 2), (5, 3), (12, 8), (2, 9)
Fig 10.2.

1. Evaluate the extremal distance for each direction, ∆x = 20− 1 = 19, ∆y = 9− 0 = 9 so the first
cut plane is orthogonal to ~x.

2. Find a pivot for the x coordinates of the point set S. By writing them in ascending order
1, 2, 2, 3, 5, 8, 12, 20, it is clear that 4.5 splits the set into two equal subsets. hence two subsets
are created:

Sleft0 the left subset ((1, 0), (2, 2), (2, 9), (3, 9))

Sright0 the right subset ((5, 3), (8, 7), (12, 8), (20, 2)).

The procedure is then applied recursively to Sleft0 and Sright0 , the tree produced is shown on Fig. 10.3.

To illustrate the search process two different searches will be considered.

This first example shows a result obtained through a direct tree descent which is the best case, the
target point is MTarget = (1,−1). The search starts at Node0, the successive steps are, Fig 10.4:

1. Test MTarget with plane x = 4.5, MTarget is on the left of x = 4.5 (1¡4.5). Continue on left
branch, the current location in the tree is Node1.

10.1. THE NEAREST NEIGHBOR PROBLEM 123

Node0

x=4.5

Node1

y=3

Node3

y=1

Leaf0

(1,0)
Leaf1

(2,2)

Node4

x=2.5

Leaf2

(2,9)
Leaf3

(3,9)

Node2

x=10

Node5

y=5

Leaf4

(5,3)
Leaf5

(8,7)

Node6

x=16

Leaf6

(12,8)
Leaf7

(20,2)

Figure 10.3: A Kd Tree in 2D (cut planes (pivots) are marked with rectangular boxes)

2. Test MTarget with plane y = 3, MTarget is on the left of y = 3 (-1¡3). Continue on left branch,
the current location in the tree is Node3.

3. Test MTarget with plane y = 1, MTarget is on the left of y = 1 (-1¡1). Continue on left branch,
the current location in the tree is Leaf0.

4. A leaf has been reached, a temporary result obtained through linear nearest neighbor search is
MTemp = (1, 0).

5. Compare distance between MTemp = (1, 0) and the cut plane of the parent node Node3: y = 1.
dist(MTemp,MTarget) = 1 smaller than dist(MTemp, y = 1) = 2, therefore there is no need to
check Leaf1. The location in the tree moves up to Node3.

6. Compare distance between MTemp = (1, 0) and the cut plane of the parent node Node1: y = 3.
dist(MTemp,MTarget) = 1 smaller than dist(MTemp, y = 3) = 3, therefore there is no need to
check Node4. The location in the tree moves up to Node1.

7. Compare distance between MTemp = (1, 0) and the cut plane of the parent node Node0: x = 4.5.
dist(MTemp,MTarget) = 1 smaller than dist(MTemp, x = 4.5) = 3.5, therefore there is no need to
check Node2. The closest point of MTarget is therefore (1, 0).

This second example shows a result obtained through a up-down tree walk, the target point is
MTarget = (0.5, 1.1). The search starts at Node0, the successive steps are, Fig 10.5:

1. Test MTarget with plane x = 4.5, MTarget is on the left of x = 4.5 (0.5¡4.5). Continue on left
branch, the current location in the tree is Node1.

2. Test MTarget with plane y = 3, MTarget is on the left of y = 3 (1.1¡3). Continue on left branch,
the current location in the tree is Node3.

3. Test MTarget with plane y = 1, MTarget is on the right of y = 1 (1.1¿1). Continue on right
branch, the current location in the tree is Leaf1.

4. A leaf has been reached, a temporary result obtained through linear nearest neighbor search is
MTemp = (2, 2).

124CHAPTER 10. EFFICIENT GEOMETRICAL SEARCH METHODS FOR UNSTRUCTURED GRIDS

Node0

x=4.5

Node1

y=3

Node3

y=1

Leaf0

(1,0)
Leaf1

(2,2)

Node4

x=2.5

Leaf2

(2,9)
Leaf3

(3,9)

Node2

x=10

Node5

y=5

Leaf4

(5,3)
Leaf5

(8,7)

Node6

x=16

Leaf6

(12,8)
Leaf7

(20,2)

Figure 10.4: Search path for MTarget = (1,−1). Descent is in red, Ascent in Blue

5. Compare distance between MTemp = (2, 2) and the cut plane of the parent node Node3: y = 1.
dist(MTemp,MTarget) ≃ 1.75 greater than dist(MTemp, y = 1) = 0.1, therefore Leaf0 should be
checked. The left leaf (Leaf0) is searched using the normal recursive up-down algorithm. The
new temporary target is MTemp = (1, 0). The location in the tree moves up to Node3.

6. Compare distance between MTemp = (1, 0) and the cut plane of the parent node Node1: y = 3.
dist(MTemp,MTarget) ≃ 1.75 smaller than dist(MTemp, y = 3) = 3, therefore there is no need to
check Node4. The location in the tree moves up to Node1.

7. Compare distance between MTemp = (1, 0) and the cut plane of the parent node Node0: x = 4.5.
dist(MTemp,MTarget) = 1 smaller than dist(MTemp, x = 4.5) = 3.5, therefore there is no need to
check Node2. The closest point of MTarget is therefore (1, 0).

Node0

x=4.5

Node1

y=3

Node3

y=1

Leaf0

(1,0)
Leaf1

(2,2)

Node4

x=2.5

Leaf2

(2,9)
Leaf3

(3,9)

Node2

x=10

Node5

y=5

Leaf4

(5,3)
Leaf5

(8,7)

Node6

x=16

Leaf6

(12,8)
Leaf7

(20,2)

Figure 10.5: Search path for MTarget = (0.5, 1.1). Descent is in red, Ascent in Blue

10.1. THE NEAREST NEIGHBOR PROBLEM 125

10.1.2 Validation of the Kd Tree implementation

The Kd Tree implementation has been tested on a simple problem. A program generates randomly
two sets of N points in a three-dimensional space, these sets correspond to the vertices of two grids Gs

and Gd. Then the Kd Tree code is used to find the nearest neighbor of each vertex of Gd in Gs. The
same projection is also performed using the brute force algorithm. This procedure has been carried
out for problem sizes varying between 2048 points to 262144 (problem sizes chosen here were powers of
2 but this is not mandatory). The first result, yet mandatory, obtained is that both methods returned
exactly the same nearest neighbor for each point of Gd.

�

����

�

��

���
�	A
A

B	
CD
A�
EF
	�
A

Figure 10.6: Scaling of the Kd Tree method versus the brute force method

Having validated that the Kd Tree implementation returned the correct results the methods have
been timed to check the actual scaling of the implemented algorithm. The two methods performance
is as expected: looking at figure 10.6 it is clear that the Kd Tree almost scales linearly to the problem
size whereas the brute force scales with the square of the problem size.

As mentioned earlier a solution to the Kd Tree’s drawback (the memory needed to store the tree) is
to store more than 1 vertex per leaf (bag size> 1). However the effect on search performance needs to
be investigated, therefore the same tests have been performed for different bag sizes. The interesting
quantities are the search time, Fig 10.7, and the memory foot print of the method, Fig 10.8.

These results show that even the slowest Kd Tree solutions considered here clearly outperform the
brute force approach, also choosing larger bag sizes is detrimental to performance but clearly decreases
the memory required. It is difficult to actually decide which bag size is optimal, though the trends
are clearly generalizable, the results obtained here are machine dependent (these results will depend
on the processor type, frequency, cache size and memory latency). Furthermore the actual choice of
the bag size depends on the problem to solve and the target machine:

- if the nearest neighbor searches have to be very fast (because they are part of a complex looping
algorithm) and memory is not an issue then the bag size should be chosen to low values (generally

126CHAPTER 10. EFFICIENT GEOMETRICAL SEARCH METHODS FOR UNSTRUCTURED GRIDS

Figure 10.7: Timings for different nearest neighbor solutions

2 or 4 are as fast as 1)

- on the other hand if the CPU time is less critical than memory usage then choosing higher values
is interesting (32 or 64)

In the coupling application the nearest neighbor calculation is done only once and memory may be an
issue therefore the bag size is chosen to 32.

10.1. THE NEAREST NEIGHBOR PROBLEM 127

Figure 10.8: Kd-Tree memory consumption for different bag sizes

128CHAPTER 10. EFFICIENT GEOMETRICAL SEARCH METHODS FOR UNSTRUCTURED GRIDS

10.2 Element scan methods

Interpolation methods such as linear interpolation or linear conservative interpolation rely on geometry
localized in small portions of space. Therefore reducing the search space to a small region can greatly
optimize the search methods used. A simple idea is to scan a portion of space using the mesh adjacency,
i.e. the relation between each mesh element and its neighbors 2.

Two procedures are described, each are used to accelerate a key process of the linear and linear
conservative interpolation coefficient calculations.

10.2.1 For linear interpolation: Finding the containing element

Figure 10.9: A situation where the list of elements associated to the closest vertex does not contain
the target point M

Computing linear interpolation seems fairly simple, for each vertex Gdi the source grid Gs is searched
for the element EG

s

j such as Gdi ∈ EG
s

j . Then the barycentric coordinates of Gdi in EG
s

j are calculated.

Hence the difficulty resides in finding the element EG
s

j containing Gdi . Two different approaches are
described in this section. The first method uses the nearest neighbor algorithms to find the closest
vertex of Gdi in Gs, then an element to element scan is executed in order to find the element containing
the vertex Gdi .

An other approach is to use a binary space partitioning approach to sort elements, a method named

2Mesh adjacency can be computed using optimal sort algorithms therefore in almost linear time O(nlog2(n))

10.2. ELEMENT SCAN METHODS 129

AABB tree [118] search is described in 10.3.

Data: Element Processed a Boolean array initialized to false marking if elements have
already been processed

recursive walk test(element index, point to test, recursion level) : begin
Mark element as processed Element Processed[neighbor index]← True
Retrieve element from element index E ← Element From Index(element index) ;
Do the vertex in element test ;
if TestV ertexInElement(point to test, E) then

vertex is in element return element’s index return element index
end

else

continue only if recursion level is not too high if recursion level < max rec level then
retrieve adjacency neighbor indices for element element index
neighbor indices← Get Element Neighbors(element index) ;
for each neighbor check if it has already been processed foreach neighbor index in
neighbor indices do

if not Element Processed[neighbor index] then
element has not yet been processed apply recursion on this neighbor
r ← recursive walk test(neighbor index, point to test, recursion level + 1);
if r ≥ then test was successful ;
if r ≥ 0 then

return r
end

end

end

end

end

no element found ;
return −1

end

Algorithm 7: Recursive walking algorithm

For linear interpolation and higher order interpolation methods it is necessary to know in which
element of Gs each point of Gd is projected to. A simple method is to use the Kd-Tree algorithm
detailed above coupled with the node-to-element connectivity. For a target point MTarget of Gd:

1. using the Kd-Tree find the closest node of MTarget in Gs, noted Gsclosest,

2. use the node-to-element connectivity to obtain a list of elements associated to Gsclosest.

Hence this algorithm requires precomputing the list of elements associated to each vertex of Gs3.
However in some cases the elements associated to the closest vertex may not contain the target point
MTarget. Figure 10.9 shows an example situation where the closest vertex to MTarget is V4, but the
elements associated to V4 namely T2, T3, T4, T5 do not contain MTarget.

In such a situation two strategies are possible: either fall back to nearest neighbor interpolation, or
do a more exhaustive search to find the element containing MTarget. An efficient method to do this,
provided that the mesh adjacency is calculated, is to march through the mesh moving from each face
to its neighbors recursively (Fig 10.10). This may require storing the elements which have already
been treated to avoid an infinite recursive loop4 A strong stop condition, for example a maximum

3This can be computed in linear time, and for static meshes this needs to be done only once.
4In the example algorithm presented a Boolean array is used, however this requires resetting the array at each new

130CHAPTER 10. EFFICIENT GEOMETRICAL SEARCH METHODS FOR UNSTRUCTURED GRIDS

Figure 10.10: A recursive mesh marching algorithm (with maximum recursive level of 2)

recursion level or a maximal distance, is mandatory to prevent the algorithm to propagate too far
from the interesting zone. Also choosing the correct propagation direction, i.e. propagate the recursive
march towards the target point by selecting the correct propagation face first (this is possible using
the face normal) is crucial for the performance of the algorithm.

10.2.2 For linear conservative interpolation: efficient projection algorithm

The essential part to optimize in this algorithm is not the intersection calculation but make sure that
this procedure is executed on the smallest set of elements possible. The solution to optimize the
intersection calculation of element Edi on the source grid Gs which has been implemented is also based
on an element recursive march on the source grid. The march is carried out in two phases:

1. At first the algorithm propagates recursively from an initial guess element Esinit search until a non
empty intersection between the target element Edi and the current source element Esj is obtained

Edi ∩ Esj 6= ∅. The first march is stopped, the current source Esj element is noted Esinit intersect.

2. A second recursive march is propagated from Esinit intersect, at each element the intersection
with Edi is calculated. If the intersection is non empty then it is used for the integral calcula-
tion and the algorithm continues propagating from that element, otherwise the algorithm stops
propagating.

The first phase is the actual search phase, in practice it should be accelerated by choosing an initial
element Esinit search close to Ed (this can be done using nearest neighbor search and node to element
connectivity). Also the propagation direction towards the element Edi should be privileged.

The second phase is the actual element on element projection phase.

search. A slicker way to do this is to use an integer array and identify each new search by a different integer. Each time
an element is processed it is marked using the current search integer therefore the array does not need to be reinitialized
at each new search.

10.3. BINARY SPACE PARTITIONING APPLIED TO ELEMENTS AABB TREES 131

10.3 Binary space partitioning applied to elements AABB trees

An alternative approach to solve the find-the-containing-element problem is presented here. The idea
is to use an extended version of the Kd-Tree to sort elements directly, the method described here is
the AABB tree [118] search method. This algorithm has not been implemented within the coupling
library but in the graphical tool presented in A.3. The fundamental idea used in this algorithm is to
sort the geometry using axis aligned bounding boxes. At first all the geometry is contained within a
global box. Using a similar method to the Kd-Tree an axis aligned cut-plane is calculated splitting the
geometry into two new balanced sets. An axis aligned bounding box is calculated for each new subset,
if elements are intersected by the cut plane then they are added to the two sub-sets. This procedure is
applied recursively until the sets of elements are small enough (controlled by a parameter). The search
procedure is simpler because in this case if a point is contained within an bounding box the element
is in that in that bounding box. Therefore there is no up-down motion like in the Kd-Tree method. If
the balancing is properly done the algorithmic complexity is comparable to the Kd-Tree initial root
to leaf search. However in this case the search is performed on the elements instead of the vertices.
This can make a non negligible difference: in a mesh the element count can generally be several times
greater than the vertex count. Also the storage needed for each node of the tree is greater than in the
Kd-Tree case since a bounding box needs to be stored at each node of the tree instead of a cut plane.
This algorithm allows to solve the find-the-containing-element problem without needing the vertex to
element connectivity and the element to element scan search, hence simplifying the implementation
code needed.

Figure 10.11: AABB-Tree projection process

There is however a fundamental difference between the two approaches. This algorithm is not
suited for vertex projection onto meshes. As it can be seen on figure 10.11, if the point projected
is outside of the meshes element bounding boxes then the point is considered to be outside of the
domain. On the contrary the Kd-Tree considers infinite bounding volumes since it only uses cut
planes to partition space, fig 10.12. This means that this algorithm can be very interesting to test
if a location is contained within an arbitrary mesh. Yet using this algorithm for surface to surface
projection in 3D cases is not a good choice because of the likelihood of having the source mesh points
outside of the destination mesh element bounding boxes. This algorithm can be used for more than
only interpolation, it can be used for contact computation or ray tracing. An example of usage of this
algorithm is presented in appendix A.3.

132CHAPTER 10. EFFICIENT GEOMETRICAL SEARCH METHODS FOR UNSTRUCTURED GRIDS

Figure 10.12: Kd-Tree projection process

Conclusion

In this part interpolation methods have been investigated. First two standard signal sampling based
techniques have been considered: nearest neighbor interpolation, linear interpolation. Then more
advanced methods called conservative methods capable of preserving signal integrals have been built,
namely the conservative and linear conservative interpolation methods. These methods have been
compared on basic problems involving simple harmonic based signals on simplicial meshes. Different
characteristics of these methods were studied, their accuracy, their integral conservation and their
sensitivity to aliasing. The best method obtained was the linear conservative method as it obtains the
same accuracy as the linear interpolation method while maintaining high integral conservation and
very low sensitivity to aliasing. Then geometrical search algorithms allowing efficient implementation
of these interpolation methods have been explained.

However in this part a complex aspect of parallel computing has not been considered: mesh parti-
tioning. Indeed as shown in part I the high computational power required by LES means are only met
by massively parallel machines. On such machines the mesh is subdivided into smaller sub meshes
which are solved individually by each processor. This partitioning procedure applies also to the cou-
pling interfaces hence meaning that these interpolation problems have to be solved considering an
additional difficulty: the geometrical searches have to consider geometry distribution. This leads to
the next topic of this thesis, part IV.

133

134CHAPTER 10. EFFICIENT GEOMETRICAL SEARCH METHODS FOR UNSTRUCTURED GRIDS

Part IV

Code coupling methods designed for

high performance computing

135

Table of Contents

11 Issues specific to HPC 143

11.1 Introduction . 143

11.2 Massively parallel architectures . 144

11.3 Issues specific to Massively parallel . 144

12 Computational view of code-coupling for unstructured meshes 149

12.1 The setup phase . 150

12.2 The initialization phase . 152

12.3 The runtime phase . 152

13 Algorithms and Methods implemented 157

13.1 The geometrical search, first step: the coarse routing step 157

13.1.1 Routing using a distributed hash table . 158

13.2 The geometrical search, second step: building the communication graph and the parti-
tioned interpolation matrices . 162

13.3 Direct Communication using Interpolation overlap . 165

13.4 Tests of the proposed method . 167

138 TABLE OF CONTENTS

Nomenclature

(p, q, r) Integer grid coordinates on cartesian projection grid

∆tA Solver A iteration duration

∆tB Solver B iteration duration

∆x,∆y, ∆z Projection grid stride in x,y,z directions

Ccj
n Cell of index n on client processor of rank j

Csj
n Cell of index n on server processor of rank j

Gc Client grid

Gu Uniform grid

NA
iter Iteration count between two couplng synchronizations for solver A

NB
iter Iteration count between two couplng synchronizations for solver B

PC
i Client process of rank i

PS
i Server process of rank i

Tij Interpolation matrix

1

140 TABLE OF CONTENTS

(a) (b)

Figure 10.13: (a) 93M Tetra LES by Boileau et al. [12] (b) 336M Tetra LES by Wolf et al. [120]

It has been seen in chapter 2 that simulating configurations such as an aeronautical burner with
LES requires important computational power. Similar simulations have already been accomplished
with much bigger meshes. For example Boileau et al. [12] and Wolf et al. [120] have applied LES to
simulate complex combustion in a full Turbomeca Ardiden burner using respectively 93 and 336 million
tetrahedral meshes, Fig 10.13. At the time this work has been carried out, such computational power is
only achievable using massively parallel computers. These specific computer architectures imply many
HPC specific problems which must be dealt with in order to take advantage of the huge computational
power available. In this thesis the objective is to establish a code coupling methodology for large LES
simulations using massively parallel computers. Even though the LES configuration considered in this
work is more modest in size and geometrical extent, the problem remains still very challenging.

Figure 10.14: Summary of the technical issues for data coupling

Simulating this configuration using typical massively parallel machines implies handling complex
partitioned geometries distributed over huge networks of processors. Typically if using the BlueGene/P
massively parallel super computer architecture, important constraints on communication patterns and
memory foot print for the algorithms have to be considered. This is of particular importance for
parallel coupled problems: to exchange data between parallel solvers, communication routes have to
be established. These routes may be designed using different patterns: one can choose to gather the

TABLE OF CONTENTS 141

interface data on one or a few processors and then scatter this information to the other solver. Or one
can choose to communicate directly between processors of the two solvers. The comparison of these two
choices is carried out in this part and the results show that direct communication is clearly the most
scalable pattern. However directly connecting processors from a solver to an other requires computing
communication routes based on the coupling interfaces. This requires defining the coupling interfaces:
it is important to identify the geometrical surfaces which are to be connected in the coupled problem.
Dealing with complex geometry a very specific problem may appear due to different discretizations on
curved surfaces. This problem may lead to improper interface connection and hence inaccuracies in the
coupled computation. To solve this problem the problematic cases have been identified and a simple
methodology has been proposed. Having identified geometrically the interfaces, the connection step
can be performed. Connecting two geometrical interfaces requires geometrical search algorithms. On
large meshes the interface mesh can become considerable, it is hence important to use efficient search
algorithms. But such algorithms are generally based on additional data structures (notably trees, see
chapter 10) which may have a considerable memory foot print. Gathering the entire interface meshes
on a single processor in order to use such algorithms may lead to exceeding the local available memory
and eventually to a software failure. To avoid the memory limitation at this step, it is important to
design a parallel geometrical search method capable of directly handling the distributed geometrical
interfaces provided by the available mesh partitioning, Fig 10.14. A method based on distributed hash
tables and geometrical hashing is proposed in this thesis. This method is first validated on a basic
test case and then used on a real industrial geometry.

142 TABLE OF CONTENTS

Chapter 11

Issues specific to HPC

11.1 Introduction

Figure 11.1: Moore’s law

As shown in chapter 1, LES is a promising path for greater simulation accuracy. However the
drawback of LES is that it is computationally expensive. This is why high performance computing
(HPC) is essential to LES. The HPC world evolves very rapidly, Fig 11.1, notably due to the cost
improvements made on consumer products hardware. The scientific computational community which
traditionally used very expensive high end processors, now begins to use more low cost processors
while still obtaining a performance gain 1. Finally because of the thermal dissipation constraints, CPU
frequencies have reached a threshold since about 2005, redirecting modern HPC towards massively

1This has started with the transfer from vector processors to scalar processors and is continuing with the progressive
usage of the GPGPU

143

144 CHAPTER 11. ISSUES SPECIFIC TO HPC

parallel solutions. The goal of this part is to be able to run coupled codes on modern massively parallel
architectures.

11.2 Massively parallel architectures

Presenting parallel machines could lead to a very exhaustive discussion. Instead only three main
classes of parallel machines will be considered here:

The first class is built by connecting a set of computers using a high speed network such as in-
finiband. Generally these clusters of computers are composed of high-end processors connected to
large memory banks. Because they use powerful processors and large memory banks even poorly
parallelized codes can perform well on such machines. These machines are generally the easiest ma-
chines on which a simulation code can be ported. However because of the use of powerful processors
with large memory banks (which are rarely entirely used, at least for a solver like AVBP), they are
expensive and consume a lot of power.

Figure 11.2: An IBM BlueGene super computer

A solution proposed by IBM to this cost and power consumption is the BlueGene architecture,
Fig 11.2. Thousands of low-end processors with small memory banks are connected using a specially
designed high performance network. The software environment is maintained extremely lightweight: a
primitive operating system is provided giving access to most of the key functionalities needed for basic
code execution. However many standard functions commonly present on UNIX/Linux systems are
not implemented. Porting codes to this architecture is not a simple task. What is more because this
architecture is based on rather slow cores (850Mhz for BlueGene/P) and since the memory accessible
per core is low (512Mb on BlueGene/P when all cores are used), algorithms centralizing computation
or memory load have to be rethought. The advantage is that these machines are less expensive
and provide a much a higher GFlop/Watt ratio than standard computational clusters. BlueGene
supercomputers can count several hundreds of thousands of cores and have lead the TOP-500 super
computer ranking during several years.

Finally a very recent type of processor, namely the General Purpose Graphics Processing Unit
(GPGPU), is introducing a new type of computing paradigm [60]. Porting codes to GPGPU is very
difficult and specially for solvers using hybrid unstructured grids such as AVBP. Use of GPGPUs is
however beyond the scope of this thesis.

11.3 Issues specific to Massively parallel

Scalability or code performance response to an increase of processors used is therefore the key for
modern software development in HPC environments. A key for scalability is to reduce the quantity of

11.3. ISSUES SPECIFIC TO MASSIVELY PARALLEL 145

sequential code. This is explained through Amdahl’s law[3]:

S(N) =
1

(1− P) + P
N

(11.1)

Here P is the proportion of a program that can be parallelized, 1− P the proportion of the code
which is sequential, S(N) is the maximum speed-up obtained using N processors. Hence the maximal
speed-up using an infinite number of processors is given by the limit limN→∞ S(N) = 1

1−P which
depends solely on the sequential proportion of the code. Therefore designing scalable methods implies
reducing the sequential proportion of the code.

Note also that Amdahl’s law[3] only considers execution time, but in practice an increase of the
computational power (more processors) is generally linked to a larger problem to solve. If the sequential
portions of the code contain algorithms which process amounts of data scaling with the problem size,
then a hard limit is reached when the memory required for those algorithms reaches the available
memory. This constraint is very architecture dependent. On clusters equipped with large memory
banks per processor this is not an issue. On architectures such as BlueGene this rapidly becomes the
most important constraint: if there is not enough memory for the sequential algorithms the code can
not continue. Therefore data distribution is also a key aspect of scalability.

A final scalability aspect to take into account is communication. Sequential code generally implies
many-to-one and one-to many communication patterns. These patterns generally imply important
communication stress, notably long message queuing and possible packet collisions.

Since the fundamental task in code coupling is to transfer and transform data between two separate
solvers, efforts should be made to parallelize the coupling portion of the code, avoid data centralization,
and therefore communication stress. Most methods implemented yet are based on a client server
model: the entire distributed interface is gathered on to a service processor. The service processor
hence performs the remapping or interpolation and then scatters this interface information on to the
destination solver’s interface.

Figure 11.3: Centralized Communication scheme (CCS)

The following problem illustrates these scalability issues. Interface data has to be transferred from
a parallel solver A to a parallel solver B. Solvers A and B have partitioned non matching interfaces (the
most general case), therefore a transformation must be applied to transfer this data. This operation can
be performed using two different schemes: the Centralized Communication Scheme (CCS), Fig. 11.3,
and the Direct Communication Scheme (DCS), Fig. 11.4.

CCS implies using at least one or many service processors. In many cases only one service processor
is used, therefore only one is considered here. CCS can be broken into three main steps:

1. The data is gathered from solver A to the service processor (many-to-one communication pat-
tern).

146 CHAPTER 11. ISSUES SPECIFIC TO HPC

2. The data is processed on the service processor.

3. The data is scattered from the service processor to solver B (one to many communication).

Hence this scheme focuses the stress on the service processor:

- receiving data from all the processors can lead to network collisions and therefore degraded
message passing performance.

- enough memory to gather the entire data on the service processor is mandatory, and in some
cases may not be possible (BlueGene).

- the service processor has to process all the data in a sequential way.

Also due to the two levels of communication the latency expected by this method is the sum of the
latency of the gather and scatter operations and the execution time of the data processing. For large
set of data this scheme may thus lead too high latencies.

Figure 11.4: Direct Communication scheme(DCS)

On the contrary the DCS scheme does not rely on a service processor. It requires that all the
processors know a priori the communication routes between solver A and solver B processors, and if
the data has to be transformed, the operation must be done in a partitioned way, either on the sending
processor or on the receiving processor. In DCS only one level of communication is needed, leading
to lower latencies than in CCS. Also the quantity of data processed by each processor remains small
because the communication routes are based on the adjacency between processors of solver A and of
solver B at the interface. Therefore this scheme implies less memory, communication and CPU stress.

A toy application demonstrating the difference between these two schemes is built. This application
does not implement the full transformation stage. For CCS, the service processor can be viewed as
a network router transferring messages from solver A processors to solver B processors (the routing
is known a priori). For DCS the messages are sent directly from processors of A to processors of B.
The same start and end points for each message are used with CCS and DCS. The toy application is
timed for each scheme with messages of size 100Kb and different processor counts: from 64 to 4096
processors (the processors are evenly distributed among the solvers), Fig. 11.5. This test has been
performed on an SGI-ALTIX ICE super computer. Looking at Fig. 11.5 which shows the two scheme
responses as a function of processors involved in coupling, it is clear that the transfer time on the
CCS scales with the number of processors used, whereas the DCS maintains almost constant timings
regardless of the processor count.

The conclusion is obvious, in order to remain scalable the communication scheme must stay direct
(DCS). The result is not surprising since all scalable codes use this direct communication schemes

11.3. ISSUES SPECIFIC TO MASSIVELY PARALLEL 147

Figure 11.5: Comparison transfer time between CCS and DCS

for their internal communications. Therefore the inter-solver communications should also follow this
model. Choosing this model however implies identifying a priori the communication routes between
the processors involved in coupling. The interpolation methods must also be adapted to operate in
this distributed model.

148 CHAPTER 11. ISSUES SPECIFIC TO HPC

Chapter 12

Computational view of code-coupling

for unstructured meshes

From the computer science point of view code-coupling is merely an inter program communication
mechanism. However because unstructured meshes are used in parallel environments, additional com-
plexity is added: first the interfaces between the solvers have to be identified on the different meshes.
Once the meshes are partitioned, the solvers must be connected according to the partitioned inter-
faces. Then the transforms to apply to the data in order to transfer the data between the partitioned
interfaces must be computed. Finally, during the execution of the solvers data must be transferred
and transformed according to the connection and transformations established in the previous points.

In this work the coupling mechanism is broken into 3 phases:

- the first phase is the setup phase, in this phase the interface to couple are identified,

- the initialization phase, the communication routes and transformations are established,

- the runtime phase, the actual inter-solver communications are performed.

Each of these points are presented in this chapter.

149

150CHAPTER 12. COMPUTATIONAL VIEW OF CODE-COUPLING FOR UNSTRUCTURED MESHES

12.1 The setup phase

As presented in chapter 5, in the aeronautical chamber, several different complex geometrical surfaces
have to be coupled, Fig 12.1. Some methods have to be developed to handle the specific difficulties of
complex geometry. Although the following methods will seem to be details, they are mandatory for
correct handling of such problems.

Figure 12.1: Regions which should be coupled between the solid and the fluid solvers in the aeronautical
burner configuration

When dealing with industrial aeronautical burners, the solid domain is essentially composed of thin
metallic walls which will be coupled on both sides. Locally strong curvature and surface discretization
imposed by meshing can lead to improper interpolation. These are emphasized by the different dis-
cretizations in the fluid and the solid meshes. In extreme cases, the outside of a mesh can be projected
on the inside of the other and vice versa, Fig. 12.2. An example of such situation on a real case is
shown on Fig. 12.3.

Figure 12.2: Interpolation inversions

To handle such situations properly the coupled nodes are not treated in a global pool but in separate
coupling regions. These coupling regions define a subset of the entire geometry allowing the restriction
of the geometrical searches and interpolations to a subset of the global geometry. A coupling interface
between solver A and B is defined by the couple of coupling region meshes in solvers A and B. In
this application the coupling regions are defined by joining individual boundary conditions of the
uncoupled configuration, Fig 12.4. This method requires that the different mesh surfaces are divided
in a compatible way, but this should always be possible as long as the surface meshes involved in
coupling discretize the same region in space.

12.1. THE SETUP PHASE 151

Figure 12.3: Interpolation inversion example

Figure 12.4: Example of the definition of a coupling region defined by the union of boundary condition
regions

The identification of the different surfaces which define a coupling region is a complex task: in
the aeronautical burner configuration case considered the fluid mesh is divided into 70 boundary
surfaces and the solid mesh is divided into 50. In order to ease this work phase a graphical tool has
been developed. It allows to identify visually the surfaces of each mesh and hence obtain the lists of
boundary conditions within each mesh defining the coupling regions. Not only does this tool improve
the user efficiency but it also adds analysis and verification of projections to check if the coupling
region meshes are compatible. This tool is presented in A.3.

152CHAPTER 12. COMPUTATIONAL VIEW OF CODE-COUPLING FOR UNSTRUCTURED MESHES

12.2 The initialization phase

The initialization phase uses the identified coupling regions and the mesh partitioning to calculate
communication routes and linear transforms.

Figure 12.5: Communication graph example

In the context of parallel solvers, the global mesh is cut into smaller sub meshes called partitions.
This partitioning mechanism is applied to each mesh independently, depending on the processor count
assigned to each solver. Hence the coupling regions identified within the setup phase are also cut
into smaller regions. In order to exchange data between the solvers these partitioned coupling regions
have to be connected. Considering that neither the interface meshes, nor the coupling regions par-
titions coincide, each partitioned coupling region can be connected to several other coupling region
partitions. The communication routes can be represented for each solver using two graphs: the first
being the emission graph, the second the reception graph. Both graphs do share the same sources
and destinations but they each store different data. The emission graph has to indicate to the emitter
the selection of data it must gather, and to whom it should send the data. Because we are dealing
with unstructured solvers, the data selections are necessarily irregular, hence they are implemented as
node lists. The order of the nodes within these lists is also important because this ordering has to be
shared with the receiver when it will decode the message which will be transferred between GS and
Gd. The receiver graph indicates to the receiver from who it should wait data, how much data and
where it should place this data within its local reception space. An example of an emission graph is
shown on Fig. 12.5. Methods to efficiently calculate these connections are described in 13.1.

After having established the communication routes, the transforms allowing to interpolate the data
from mesh A to mesh B and vice versa have to be determined. It is important to understand that each
vertex may have several possible sources (process ranks) for interpolation. Selecting or combining these
sources is dependent on the interpolation method used. Determining these interpolation coefficients
is a complex task which is described in 13.2.

12.3 The runtime phase

The runtime phase corresponds to the actual execution of the solvers. In this phase the coupling
procedures should essentially focus on reducing the time spent in the coupling routines. The time

12.3. THE RUNTIME PHASE 153

spent in the coupling routines can be separated into two different parts:

- the time used by the coupling procedures for data processing (interpolation),

- the time spent during communication.

The time used by the coupling procedures for data processing depends on the implementation of
the code, the type of interpolation, the machine type... For linear interpolation with precomputed
coefficients this time remains extremely low. However the time spent during communication is more
difficult to maintain low. In-fact this time is composed of two contributions: a wait time corresponding
to the synchronization time between the two communicating processors and the actual communication
time. Although it is possible to use communication schemes allowing to do some processing during
the communication wait phase1, it is generally not applicable to physics simulation (it would mean
advancing a processor even if its input boundary conditions have not arrived). However reducing
synchronization times is fundamental to be able to correctly take advantage of massively parallel
machines and these synchronization times are highly dependent on the load balancing.

Load balancing in parallel solvers relying on space partitioning is based on the assumption that
each processor applies the same operations every where in space. Hence load balancing is obtained by
ensuring that the amount of geometry (elements, nodes...) is evenly distributed among the processors.
In a coupled application each solver’s processors apply different operations. Hence the amount of time
for each solver may vary for each iteration. This difference in processing time results in potential wait
periods at each synchronization between the solvers (communication). By recording for each process
the instant when it starts and stops communicating it is possible to represent these activity and idle
periods on Gant diagrams2.

AVBP AVTP

Niter 30 30

Nproc 128 128

∆t 1.5s 0.07s

Table 12.1: Ill balanced example parameters

An example of an ill balanced application is presented in Fig. 12.6. This example corresponds to a
AVBP/AVTP coupled simulation on BlueGene3. AVBP is noted solver A and AVTP is noted solver
B. In this example each solver is assigned 128 processors: NAprocs = NBprocs = 128 4. In this test

case each solver executes NAiter = NBiter = 30 iterations between each communication and the iteration
duration for AVBP and AVTP are respectively ∆tA = 1.5s, ∆tB = 0.07s. All the parameters defined
here are summarized in Table 12.1. Even though all the processors in a solver do not communicate
(all processors are not on the coupling interface), these synchronization waits end up blocking all the
processors in a solver because of the internal communications within that solver.

The machine load L can be defined the ratio between the active time and the total time (TActive+
TWait):

L =
TActive

TActive + TWait
(12.1)

1This is exploited in this application to overlap communication and interpolation when possible see section 13.3.
2This requires a common clock between the processors. The MPI specification states that MPI Wtime provides this

service.
3The test case used for this example is the same test case as the one used for the validation of the distributed

geometrical searches in section13.4.
4On BlueGene the processor count per solver must be a multiple of a hardware defined value which depends of the

machine.

154CHAPTER 12. COMPUTATIONAL VIEW OF CODE-COUPLING FOR UNSTRUCTURED MESHES

Figure 12.6: A portion of the Gant diagram of an ill balanced coupled application. The white areas
represent processors waiting, the gray areas represent active processors. Each cell corresponds to 5s

The times are counted as CPU time which means that the number of processors is considered. The
total active is the sum of the active time for each solver:

TActive = NAiter∆t
ANAprocs +NBiter∆t

BNBprocs (12.2)

To express the wait time it is assumed that the solver having the less activity time waits the solver
having the longest activity time (the solver having the longest activity time does not wait). The wait
time for solver A can be modeled by:

TAWait = max
(
0, NBiter∆t

B −NAiter∆tA
)
NAprocs (12.3)

This expression computes a non zero wait time for solver A only if (and only if) solver A’s activity
time is shorter than solver B’s activity time. Similarly for solver B one gets:

TBWait = max
(
0, NAiter∆t

A −NBiter∆tB
)
NBprocs (12.4)

The total wait time is the sum of the wait time for each solver (only one of the wait times can be non
zero):

TWait = TAWait + TBWait (12.5)

Applying this model to the current example we can calculate a load of L = 52%. Meaning that due
to an inappropriate load balance only 52% of the machine is efficiently used. Graphically the load L
represents the ratio of the gray area over the total area on the Gant diagram.

AVBP AVTP

Niter 5 15

Nproc 108 12

∆t 2.4s 0.6s

Table 12.2: Well balanced example parameters

This means that improving load balancing does not mean reducing the wait time for each processor
in a blind way. The amount of processors for each solver should also be considered and in some cases
sightly increasing the wait time for a solver may reduce the global wait time and hence improve the
load factor. Graphically improving the machine load means reducing the white area on the Gant
diagram.

12.3. THE RUNTIME PHASE 155

Figure 12.7: A portion of the Gant diagram of a well balanced coupled application. The white areas
represent processors waiting, the gray areas represent active processors. Each cell corresponds to 5s

To illustrate this an example of a well balanced application is introduced. Its parameters are
summarized in Table 12.2 and a portion of its Gant diagram is shown on Fig. 12.7. This example
corresponds to a coupled AVBP/AVTP application5 executed on a CERFACS internal cluster HP-
C7000 (AMD MagnyCours 2.2Ghz) (the processor split is chosen to match the hardware architecture,
on this machine there is 12 cores per node). Using the above formula the load is 97.6%. To visualize the
difference between the well and ill balanced applications the entire Gant diagrams (all the processors
are included) are presented in Fig. 12.8.

(a) (b)

Figure 12.8: Gant diagram of: (a) the well balanced application, (b) the ill balanced application

This discussion has provided a simple method to understand and model the load balancing problem,
provided that basic timings are known for each solver. This method should be easily extensible to
more solvers. However no general solution has been proposed to solve the load balancing problem. For
this application it is possible to use the iteration ratio within the limits shown in part II to modify the
load balance. This is not always possible, notably if the coupled solvers are synchronized in physical
time. In such cases a solution is to modify the processor split, however this is not possible on all
architectures. Finally an interesting path would be to dynamically modify the work load (maybe
by on the fly repartitionning). Although this seems to be a very complex task, it has already been
developed in the YALES solver. But extending this feature to coupled applications may be even more

5The test case used is the target application presented in part V.

156CHAPTER 12. COMPUTATIONAL VIEW OF CODE-COUPLING FOR UNSTRUCTURED MESHES

difficult.

Chapter 13

Algorithms and Methods implemented

The algorithms and methods implemented within this thesis dealing with parallel communications,
transforms and distributed geometrical searches are presented in this chapter. These problems are
tightly linked because it is the geometrical searches that provide the communication routes which are
after used for the parallel communications and transforms. The geometrical search is done in two steps.
First a coarse step which calculates for each processor involved in coupling a list of candidates which
may share data with it. The second step is the actual calculation of the communication routes. Each
possible candidate analyzes the data which may be exchanged and computes a response indicating
the portion of the interface it actually shares. Finally the methods used to actually perform the data
transfer and transformation are applied and are further detailed here.

13.1 The geometrical search, first step: the coarse routing step

Geometrical searches may be done using a variety of different methods: a first method would be
to simply gather all the geometry on a single processor and use the search algorithms presented in
chapter 10. While this method remains simple it has an essential drawback, it is clearly not scalable
due to the data centralization.

Another simple method is to calculate each process’s local geometry bounding box. The bounding
boxes are then exchanged with all the other processes. A step that can be performed optimally using
collective communication methods. Finally each processor calculates the list of processes with which it
is susceptible to exchange data. This technique is rather straightforward however its drawback is that
the bounding boxes, specially if they are axis aligned which is the case in this algorithm, give a very
coarse representation of the geometry. The bounding box volumes may be far greater than the actual
geometry, hence resulting in long lists of possible candidates for the calculation of the geometrical
routes.

A more complex method has been developed, implemented and used within this thesis. This method
maps objects or values to geometrical location in space using a distributed data structure. In the case
of geometrical searching for routing calculations, the method maps lists of processors to geometrical
locations. Since this mapping task only needs to be done once, the implementation done in this thesis
is a static version of this method. However the data structures and algorithms a clearly adapted to
dynamic mapping. So the method could be extended to geometrically map other problems such as
particles for Lagrangian problems or moving meshes.

157

158 CHAPTER 13. ALGORITHMS AND METHODS IMPLEMENTED

13.1.1 Routing using a distributed hash table

The routing method discussed in this section introduces a structure which allows to map data to
space in a distributed way. Originally distributed object location has been developed to provide
scalable and decentralized internet search services [113], with famous applications being peer-to-peer
file transfer protocols. These methods have been described in detail by Rowstron et al. [98]. However
these methods are generally used to locate objects using simple keys such as character strings (names,
addresses, telephone numbers) not geometrical coordinates. In this thesis a method capable of locating
objects from their coordinates on a distributed server is presented. This method relies on coupling
two methods, namely the spatial hashing mechanism [115] and the distributed hash table [77]. These
methods are described in the following paragraphs.

Hashing mechanisms

A hash table [51, 59, 87] (also referred as hash map) is a data structure implementing an associative
array, Fig 13.1, between identifying values called keys and their associated values. The association
couples (key, value) are sorted and stored into a data table T .

Figure 13.1: Associative array

The sorting mechanism uses a function, named hash function noted here h, to associate each
identifying object k to an integer i named hash code, hence h(k) 7→ i. This function is chosen in order
to map as evenly as possible the input values over the output range, in other words every hash code has
almost the same probability of being generated. Many hash functions are capable of treating variable
size keys, they generally generate machine size integers, hence on most machines a hash function
associates a 32-bit integer to a variable length sequence of bytes (which can be an array, a string,
an object, ...). In this thesis the hash function used is a function called one-at-a-time published by
Jenkins [51]. The hash code i is then used to generate an index in a data table T to store k .

The data table T is composed of Nhash size variable size sets of elements noted e1, e2, . . . , en for
each index j ∈ 0 . . . Nhash size − 1. The sets of elements are called hash buckets (also hash slots
or hash directories), Tj = e1, . . . , en is the hash bucket j and it contains n elements: e1, . . . , en. A
common implementation of these data tables is to use linked lists to allow variable size sets of elements.
Generally the hash code can be any integer within the range 0..2Machine Word Size − 1 which is huge,
it can not be directly used as an index for T . In most implementations the index to T is generated
taking the remainder of the integer division of i by Nhash size, hence j = i modulo Nhash size (where
a modulo q is the positive remainder r of a = pq + r).

When the value associated to the key k is requested, instead of comparing k to all the keys of
each association, k is compared only to the keys which have the same hash code. Hence the search
space is reduced to the hash bucket associated to k through the hashing mechanism. Since the hash
function is chosen to be as uniform as possible, the associations are evenly distributed within the
buckets. Therefore the look-up operation within a hash table containing N associations is performed

13.1. THE GEOMETRICAL SEARCH, FIRST STEP: THE COARSE ROUTING STEP 159

Figure 13.2: Adding an association to a hash table

in N/Nhash size tests in average, by contrast linear searching would require N tests. Hence choosing
high Nhash size can greatly speed up association look-ups. What is more, in many implementations the
hash buckets are implemented using linked lists. Therefore a high Nhash size only requires allocating
Nhash size list heads which is cheap (linked list heads are generally implemented using computer
pointers).

In the special case where the hash table usage can be cut into two phases: at first the hash table is
only used to add associations. Then only look-ups are performed to the hash table. The hash buckets
can be implemented by simple arrays which can be sorted efficiently (using standard quick sort [48]
or heap sort [19], both in average of O(nlog2(n)) operations) allowing the look-ups to be performed
using binary searches (complexity of O(log2(n))).

Distributed Hash tables

A Distributed hash table [77] is a special hash table for which the hash buckets have been distributed
over a network (Fig. 13.3). Such data structures allow to divide the memory load of the hash table
over a cluster of computers. The load balancing of this method is ensured by the hash function’s
uniformity property.

Figure 13.3: Distributed hashing

160 CHAPTER 13. ALGORITHMS AND METHODS IMPLEMENTED

Spatial hashing

Spatial hashing, also called geometric hashing [121], is a mechanism relying on hash tables to associate
spatial coordinates (x, y, z) to an object O. The idea is to generate from the spatial coordinates a
deterministic identifying value which can then be used as a key k to store the association (k,O) in a
hash table. The method demonstrated by Teschner [115] is to project the (x, y, z) coordinates onto a
uniform grid, Fig 13.4. The grid coordinates are represented by triplets of integers (p, q, r), ∆x,∆y,∆z
are the grid steps in each direction. The projection p from (x, y, z) 7→ (p, q, r) is defined by:

p((x, y, z)) 7→





p = E
[
x

∆x

]

q = E
[
y

∆y

]

r = E
[
z

∆z

]
(13.1)

where E [u] represents the integer part of u.

Figure 13.4: Geometry projection to cell list

Using Spatial hashing with distributed hash tables to compute communication routes

The calculation of the communication routes between the solvers A and B is divided into two phases:
at first the solver A acts as a server and B as a client, then the roles are inverted. The server processes
are noted PSi , the client processes are noted PCi . The server solver A maps its interface geometry
into the DHT which is localized on the server solver processors. Hence the server solver processors
have a dual role since they both act as clients and servers of the DHT, this is typical of peer-to-peer
networking.

The DHT is initialized on the server processes with a bucket count, i.e. the count of hash buckets
which are to be distributed over the server processors. A server process can only handle 1 hash bucket,
therefore the hash index generated can be used to identify a process. In the implementation it is
possible to choose the amount of processors handling a hash bucket, in practice to obtain the maximal
data distribution all servers processors are used. To simplify the discussion it will be considered that
all the server processes manage a hash bucket.

The common way to implement peer-to-peer protocols [68] is to use concurrent threads, with at
least one thread for the server task. However in this case the code is targeted to run on hardware
which may not be thread compatible and with only basic MPI support.

Therefore the communication patterns with the DHT are broken down into two phases:

13.1. THE GEOMETRICAL SEARCH, FIRST STEP: THE COARSE ROUTING STEP 161

Figure 13.5: Peer to peer communication step 1

1 In the first phase all the peers send to their peers the amount of data they are going to send,
Fig 13.5. When no data needs to be exchanged the communication size sent is zero.

2 Each peer allocates the memory for the incoming messages and initiates the emission and re-
ception of the non empty messages, Fig 13.5. Each peer then waits for the messaging process to
end.

The communications rely on all-to-all communication1 for the first phase and on non blocking
communication for the second. This is not performed by only one all-to-all communication because
MPI specifies that the all-to-all primitive operates on fixed size messages. Therefore to create a
unstructured form of all-to-all primitive the MPI all-to-all is used to transfer only one integer, i.e. the
size of the message2 .

To map the server’s geometry each process of the server PSi performs the following actions:

S1 PSi ’s interface geometry is projected onto the uniform grid Gu yielding a list of cell coordinates
Csin = (rin, q

i
n, p
i
n),

S2 PSi then uses the DHT through the unstructured all-to-all communication protocol to mark the
association between Csin and the processor rank i.

At the end of this phase the server’s geometry is mapped in the DHT. Now the server listens for
incoming messages from the client server. The unstructured all-to-all communication protocol is still
used but in this case no messages are received or sent between the clients and the servers.

Concurrently the clients processes perform the following actions:

1This type of communication can be greatly optimized by the MPI library even on unstructured communicators using
torus communication algorithms.

2It may seem possible to implement this protocol using a simple MPI AlltoAllv call but the problem is that
MPI AlltoAllv requires knowing a priori the amount of data it has to receive. Therefore the first MPI AlltoAll trans-
ferring the message size is necessary. A solution using an MPI AlltoAll to transfer the message size followed by an
MPI AlltoAllv may also be considered instead of using direct non-blocking point-to-point communications to transfer
the messages. This last solution has not yet been implemented nor tested.

162 CHAPTER 13. ALGORITHMS AND METHODS IMPLEMENTED

Figure 13.6: Peer to peer communication step 2

C1 Each process PCj of the client projects its interface geometry onto the uniform grid Gu yielding

another cell list Ccjn = (rjn, q
j
n, p
j
n).

C2 Each process PCj interrogates the DHT to look-up the process ranks associated to the cell list

Ccjn = (rjn, q
j
n, p
j
n). This phase requires the server to be in listen state, i.e. it needs phase S2 to

end. The DHT replies a list of couples of cells and process ranks ((rjn, q
j
n, p
j
n), Rankn)

At this stage the client processors have a list of possible candidates with which they may commu-
nicate during the runtime phase.

Each possible candidate is also associated to a list of cells therefore to a certain portion of geometry.
Hence more precise information on which process ranks may share which geometrical parts is available.
Also the size of the cells of the uniform grid Gu drives the precision of this method and can therefore
be adapted.

13.2 The geometrical search, second step: building the communica-

tion graph and the partitioned interpolation matrices

After the coarse routing step, each client process has a list of candidate server processes and for each
candidate a set of cells associated to it. The client’s interface grid Gc is split for each candidate process
Si using the cell set CellsSi associated to it. Hence a set of grids GSi are calculated by intersecting
the client’s interface grid and the candidate Si cell set: GSi = Gc ∩ CellsSi . The grids GSi are then
sent to the candidate processes Si using a the unstructured all-to-all protocol described earlier.

Consequently the server processes receive a set of grids, one for each client process which may be
related to it. Using the methods and algorithms presented in chapters B.3.3 and 10 interpolation
matrices are computed. An additional quality of interpolation scalar Q ≥ 0 is also calculated for each
vertex of the destination (client’s) grid. The value is interpolation type dependent:

- For nearest neighbor interpolation, this scalar is defined by the distance between the source and
target vertices,

13.2. THE GEOMETRICAL SEARCH, SECOND STEP: BUILDING THE COMMUNICATION GRAPH AND

- for linear interpolation, the scalar is defined by the distance between the orthogonal projection
of the target vertex onto the source element,

- for linear conservative interpolation, the scalar is defined by the ratio of intersected area from
the element on element projection.

This value is used to combine or discriminate the sources for each vertex of the client’s grid: each
vertex of the client may be sent to several server processes to evaluate interpolation coefficients (several
processors may share the same cells of the uniform grid Gu, the coarser Gu is the more this happens).
How the client actually deals with these cases is interpolation type dependent.

Hence each client receives for each GSi a response consisting in an interpolation matrix Tij and a
quality of interpolation scalar for each vertex (or row of the matrix Tij) Qi. Therefore each vertex
of the client’s grid Gc obtains a set of interpolation coefficients assessed by a scalar Q. Only the
nearest neighbor and linear interpolation methods have been implemented yet. For these two interpo-
lation methods, the lower Q is the closer the source data is from the destination point, therefore the
interpolation coefficients of the source having the lowest Q are selected. In the linear interpolation im-
plementation interpolation coefficients are always defined even if no element containing the projection
of the destination vertex is found. In such a case the implementation falls back to nearest neighbor
interpolation.

(a)

(b)

(c)

Figure 13.7: Interpolation data sources after data source selection: (a) for the nearest neighbor case,
(b) for the linear interpolation case, (c) for the linear conservative interpolation case

For conservative interpolation, the process would be more complex because some elements may be
partially projected onto the interface geometry of several processors in which case sums of coefficients
should be considered. This may be more complex than imagined here, it may require more testing
and proofing and has not yet been implemented.

Therefore each vertex of the client’s interface has now a set of interpolation coefficients, each

164 CHAPTER 13. ALGORITHMS AND METHODS IMPLEMENTED

coefficient can be associated to a vertex of the interface of one of the server processors.

This is represented on Fig 13.7:

- for the nearest neighbor interpolation the data for each vertex can only come from the same
source, only one vertex is associated to the destination vertex.

- for the linear interpolation the data for each vertex can only come from the same source, however
in the normal interpolation case with triangles 3 coefficients are given.

- for the linear conservative the data may come from several sources.

Figure 13.8: Construction of the reception vector by sorting the data sources

To build the data structures used for actual communication this information must become commu-
nication friendly. Hence the triplets (source rank, source vertex index, coefficient) are sorted using
the source rank as primary key and the source vertex index as secondary key 3, Fig 13.8.

By analyzing the sorted triplets it is possible to determine the amount of unique vertex data to
receive from each processor RSi . It is important to keep in mind that the sorted list may contain
several times the same location (source rank, source vertex index) (if several vertices of the client
depend on this same source vertex), in such a case only one location should be considered.

Once this has been determined the reception vector can be built:

- the reception vector’s size is the sum of the amount of data to receive from each individual
source:

∑
Si
RSi .

- the offset of Si’s data in the reception vector is built by summing successively RSi .

Therefore each row in the reception vector corresponds to a unique vertex
location (source rank, source vertex index), hence it is possible to generate a list for each source Si
of vertex indices using the source vertex index value. Also the emission list for source rank can be
built using the source vertex index value for each unique location. This list is then sent to each

3 The list of (source rank, source vertex index, coefficient) is sorted using the source rank if two triplets have the
same source rank then they are sorted using source vertex index

13.3. DIRECT COMMUNICATION USING INTERPOLATION OVERLAP 165

source Si therefore the source knows which data should be sent to each receiver, of course the order
is important.

Figure 13.9: Reception vector and matrix

The final transformation matrix can be built using the interpolation matrix, the interpolation
coefficients for each destination grid vertex considering the index remapping issued from the reception
vector construction (sorting, and double locations eliminations). To maintain efficiency the remapping
process uses hash tables. Figure 13.9 shows the data structures obtained.

For efficient storage and faster matrix vector operation, the interpolation matrix is stored in a form
similar to the compressed sparse row format (CSR). However instead of storing the row pointer the
row width is stored, the matrix is stored in 3 arrays described in Table 13.1.

Array Dimensions Description

Row Widthi 0..row count the number of non zero values in row i

Col Indexi 0..(
∑row count
i=1 Row Widthi − 1) the column index of each non zero value

scanned from left to right and top to bot-
tom

V aluei 0..(
∑row count
i=1 Row Widthi − 1) each non zero value scanned from left to

right and top to bottom

Table 13.1: Storage of the interpolation matrix

13.3 Direct Communication using Interpolation overlap

Generally each interface processor of a solver has several counterparts, and in a physical simulation
one must transfer several variables, all the communications being implemented using non blocking
schemes. The communication/interpolation process allows to overlap communications and interpo-
lations if possible, Fig 13.10. At first each processor of the solver initiates all its sends and all its
receives. Then it waits for all its pending communications to end. When data messages are received,
it checks if it has received an entire physical variable from its counterparts (all the partitions of the
field of a specific variable). Once at least an entire field is received, the linear transform is applied

166 CHAPTER 13. ALGORITHMS AND METHODS IMPLEMENTED

Figure 13.10: Communication algorithm with overlapped interpolation

to that field and the output is directly written inside the solvers buffers (which have been registered
to the coupling layer before). All this transformation is executed while data messages can still be
received.

k ← 0 for i = 0 to row count− 1 do

w ← Row Width[i];
s← 0;
for j = 0 to w − 1 do

s← s+ V aluekReception V ector[Col Index[k]]
end

Interpolated Data[i]← s
end

Algorithm 8: Interpolation computation

13.4. TESTS OF THE PROPOSED METHOD 167

13.4 Tests of the proposed method

The presented methods have been implemented using object oriented modular C++ code. The code
has been heavily instrumented with self checks, notably assertions [97, 42] have been used to test all
the key hypothesis, pre-conditions and post-conditions of the class methods. Each key algorithmic
feature has been developed using a specific class, allowing for basic testing via unitary tests. Of
course presenting in detail these technical tests process is of little interest for this thesis. Rather only
fundamental key results are presented in this section. The first test evaluates the scalability of the
DHT implementation. Indeed the DHT implementation is the key feature allowing the communication
route computations in a distributed way. Then a complete test including the initialization phase and
the runtime phase on a complex geometrical configuration is presented.

Scalability of the route computation algorithm

Figure 13.11: Peak memory usage on server solver

Figure 13.12: Interface connection time

In this first test, a key functionality is checked: the distributed hash table mechanism. The test is
carried out in the following way:

168 CHAPTER 13. ALGORITHMS AND METHODS IMPLEMENTED

- Two pseudo solvers are started, one will act as a server the other one as a client. The solvers do
not have an equal processor count.

- A global set of nodes is distributed throughout each solver’s processors.

- The server solver maps it’s nodes using the distributed hash table.

- Each processor of the client solver asks the server through the distributed hash table the loca-
tion(s) of its local nodes (several locations are possible).

The algorithm has been first developed and tested on small amounts of nodes. Then the test
presented has been carried out using a 1024 core partition on a SGI ALTIX ICE super computer
(JADE): the 1024 cores are partitioned into a server solver with 768 computing cores and a client with
256 computing cores. The server solvers manages 100 million nodes and maps them using its DHT.
The client solver interrogates the server solver’s DHT to obtain the location of the 100 million nodes.
This test is performed for different DHT master processor counts.

As explained before, scalability must be analyzed from a general point of view, that is not only
considering CPU stress, but also memory stress. This is why the results presented in this discussion
include algorithm timings and memory footprint. These values are obtained by instrumenting the
code, that is adding timers at strategic points and instrumenting the dynamic allocator.

The local peak memory consumption used by the method for different master processor count,
Fig. 13.11, shows that the main goal has been achieved: by increasing the number of master processors,
the memory load can be distributed over the solver’s processors. An added benefit seen on Fig. 13.12
is a global application speed that is also increasing with the number of master processors. This is
explained by the reduction of the quantity of data that each master processor has to process.

Further testing: application on an industrial geometry

The entire interface processor adjacency computation and interpolation process has been tested on a
complex geometrical configuration. The geometrical configuration is a simpler version of the aeronau-
tical burner combustion chamber used for different calculations (Projet ANR CIS 2007- SIMTUR),
Fig. 13.14. This is simply a preliminary test used to validate the computational methods, it has not
been converged. The fluid mesh is composed of a 9.2 million tetrahedra, the solid mesh of 6.7 million
tetrahedra. The test consists in coupling the flame tube liners, involving 170 thousand nodes on the
fluid side and 226 thousand nodes on the solid side. Since the tests on the DHT have shown that
the most effective configuration is when all processors are master processors, the tests have been exe-
cuted in pure peer-to-peer mode. These tests have also been carried out on a SGI ALTIX ICE super
computer (JADE). The results have been summarized in Table 13.2.

Processors Memory peak Connection wall
clock timeAVBP AVTP AVBP AVTP

128 32 12Mb 26Mb 15.5s

256 64 9Mb 17Mb 11s

512 128 7Mb 15Mb 9s

Table 13.2: Full connection process test results

The primary objective which is maintaining a reasonable memory consumption has been clearly
obtained. Note also that the connection timings remain relatively low and do decrease with processor
count. These values do not decrease linearly with processor count: due to partitioning the processors
handling the boundaries do not scale linearly with processor count.

13.4. TESTS OF THE PROPOSED METHOD 169

Figure 13.13: Illustration of the transfer process on the flame tube face of the external combustion
liner wall

Runtime tests have also been carried out, to check the implementation of the communication and
interpolation methods and to assess the efficiency of the transfer method. The extensive tests of the
interpolation methods implementation have already been presented in part III. Figure 13.13 shows a
data transfer on a flame tube liner wall using linear interpolation. This result shows qualitatively that
the communication and interpolation routines are correctly implemented.

As for the transfer efficiency, the transfer process has been timed on the fluid and solid sides.
Artificial synchronization between the solvers has been added to ensure that the synchronization
time due to load balancing problems is not measured. Hence the actual transfer time, that is to
say, the communication time and the interpolation time, measured is of the order of 10−4s. This is
clearly consistent with the low latency characteristic of the direct communication scheme shown in
section 11.3. What is more the iteration time for each code being in these case of the order of 1s, the
transfer timings can be neglected.

Figure 13.14: An instantaneous view of the coupled preliminary test application

mesh connection methods must also be stated here, notably the methodology developed in the
PUNDIT program [110].

170 CHAPTER 13. ALGORITHMS AND METHODS IMPLEMENTED

Conclusion

In this part the issues inherent to HPC have been explained. The solution as explained by Ahmdahl’s
law[3] is to reduce the amount of sequential code. For code coupling this means implementing parallel
routines for data exchange and interpolation. Also new difficulties rise as massively parallel computer
architectures tend to change: new machines tend to use less powerful processors with small memory
banks but in greater numbers. This implies that algorithms should not only be thought to run as fast
as possible but also within a small memory footprint which is a clear difficulty for sequential parts of
the code which have to treat the entire geometry. The geometrical search algorithms used to determine
the interpolation coefficients may suffer from these difficulties. A solution allowing to perform these
geometrical searches in a purely distributed way has been proposed, explained and tested.

Also problems specific to coupling complex geometry have been shown and a simple solution con-
sisting in dividing the coupling interface mesh into sub-surfaces has been proposed. While this solution
allows better control of the geometrical projections, it requires human intervention. A tool capable of
simplifying this task is presented in A.3.

Now that all the methods required to solve the technical problems of conjugate heat transfer relying
on LES have been explained the next step is to consider the full application.

171

172 CHAPTER 13. ALGORITHMS AND METHODS IMPLEMENTED

Part V

Application to an aeronautical burner

173

Table of Contents

14 Coupled application 179

14.1 Coupled application setup . 179

14.2 Application scalability assessment . 182

15 Results 185

176 TABLE OF CONTENTS

Nomenclature

a ratio between the number of iterations within the solid and the fluid

s Curvilinear coordinate used as abscissa or the profiles

t time (s)

T i
j the temperature at node j of the stored temperature field i

x′ Flame tube axial coordinate

Y + boundary layer distance evaluated by the wall model

1

178 TABLE OF CONTENTS

In this final part a coupled application is built relying on the coupling methodology, interpolation
methods and computational methods developed in parts II, III and IV. The configuration is the
aeronautical burner which is presented in part I. First of all, the setup of the coupled application
is presented. Then this application is used to perform scalability tests of the coupling methodology,
hence supplying a complete validation of the efficiency of the work presented in part IV. Then results
are discussed and analyzed, notably by comparisons between uncoupled and coupled results.

Chapter 14

Coupled application

Due to confidential material in this chapter, portions of the original text of this chapter have been
stripped and/or modified. The non confidential information has been left, essentially the information
relative to the computational aspect of code coupling, e.g. the number of vertices/elements per
coupling region, the scalability of the algorithms, etc. Of course this information is higly dependent
on the context but the main purpose of the original chapter was to show the complexity of the coupled
application developped and its scalability.

14.1 Coupled application setup

The coupled application is built by associating a fluid mesh and a solid mesh. The fluid surface mesh
is divided into 70 sub surfaces and the solid surface is divided into 50 sub surfaces. The coupling
surfaces are built by joining sub surfaces in each configuration’s sub-surface. This is a complex task
because the corresponding coupling surfaces in each solver must match in order to transfer correctly
the data fields. A solution to this problem has been proposed in this thesis: a graphical tool has
been developed capable of displaying the different meshes, their sub surfaces and of building coupling
regions interactively. This tool is presented in appendix A.3.

The vertices count, element count and processors used for each coupling region are reported in
Tables 14.1 and 14.2. It is interesting to note that the solid coupling regions contain more elements
than the fluid coupling regions. As explained in part I this is due to the thin walls in the solid
domain and that for industrial reasons (at least 4 elements should be in each wall). It is clear that
this situation could be better dealt with using elements more adapted to high anisotropy such as
hexahedrons. But keeping in mind that the thermal solver is at least an order of magnitude faster
than the fluid solver and that the goal of this application is also to test these computational methods
on complex geometrical problems, a high vertex count is acceptable as long as it does not penalize
severely the application. This is also interesting for flux conservation: the linear interpolation method
was used for this computation (the linear conservative method is not yet been implemented for parallel
computations), interpolating from a coarse to a fine mesh is therefore preferable. The flux conservation
has been measured (by on the fly inline diagnostics) for the different region groups, Table 14.3, the
average flux conservation error being 0.12%, meaning that the flux is correctly preserved from the fluid
to the solid computation. Another interesting feature is that each processor can be used for several
coupling regions and that the ratio of processors involved in the coupling process is clearly different
between the solvers: 33% of AVBP processors handle at least a coupling region while 98% of AVTP
processors do.

179

180 CHAPTER 14. COUPLED APPLICATION

Region Group Region Vertex count Triangle count Processors
concerned (*)

Snout
St1 30512 52638 61
St2 27913 48832 64
St3 109761 207319 64
St4 116859 221156 61

Internal support
Is1 13347 24065 29
Is2 2612 3958 16
Is3 16393 29416 32

External support
Es1 10591 18759 21
Es2 2279 3484 12
Es3 7814 13903 12

Flame tube

Ft1 118296 222344 65
Ft2 118290 222884 64
Ft3 78645 146519 53
Ft4 80275 150066 52

Total 733587 1365343 250

Table 14.1: Solid region information. (*) A processor can manage several coupling regions.)

Group Region Vertex count Triangle count Processors
concerned (*)

Snout
St1 19607 30305 157
St2 9817 15096 74
St3 8140 12473 84
St4 8321 12913 77

Internal support
Is1 1193 1677 28
Is2 267 236 16
Is3 3455 5749 25

External support
Es1 1451 1901 35
Es2 255 237 16
Es3 716 882 22

Flame tube

Ft1 32726 54686 163
Ft2 31245 52013 155
Ft3 20326 33474 113
Ft4 22042 36613 124

Total 159561 258255 588

Table 14.2: Fluid region information. (*) A processor can manage several coupling regions.

Region group flux conservation error

Snout 0.13%

Internal support 0.05%

External support 0.13%

Flame tube 0.16%

Table 14.3: Flux conservation for the different region groups.

14.1. COUPLED APPLICATION SETUP 181

Computation details

Apart from the coupling regions, the boundary conditions in both solvers remained unchanged. The
fluid field was initialized using the computation presented in chapter 4. The solid field was initialized
using the same start point than the non coupled simulation presented in chapter 5. Off course it would
have been a better choice to start it from the converged uncoupled solution, convergence would have
certainly been faster.

As for the variables transferred between the solvers, at first the solid solver transferred its border
temperature, and the fluid solver transferred its convective temperature, heat coefficient and heat
flux. During the first tests different coupling methods have been tried out: using the fluid convective
temperature and heat coefficient or using directly the fluid heat flux. Due to the numerical construction
of the heat coefficient in AVBP wall models, it seemed safer numerically to use the fluid heat flux.
Indeed the heat coefficient, Hc, is computed by dividing the heat flux, φ, by a temperature difference
between the fluid convective temperature, Tc, and a reference temperature, Tref , which is set to the
border temperature (which is the solid temperature at the last coupling iteration), Eq (14.1).

Hc =
φ

Tc − Tref
(14.1)

The fluid convective temperature is computed by averaging the temperatures of the cells connected
to the first off-wall node, Fig. 14.1. This procedure can generate serious numerical problems when the
convective temperature and the reference temperature are very close, Hc can become extremely large
which can destabilize the conduction solver. This problem is specific to LES, in RANS such problems
are less likely to happen since such situations clearly happen in transient phases and are very unlikely
to appear for a stationary converged solution. Therefore the heat flux φ coupling was preferred to

�����

���	AB
C

B
DEF

�

Figure 14.1: Wall heat flux

the Hc, Tc formulation. Hence the three variable transfers were only done during the preliminary and
scalability tests, during the rest of the simulation only the heat flux φ was transferred from the fluid
solver to the solid solver.

182 CHAPTER 14. COUPLED APPLICATION

14.2 Application scalability assessment

The scalability tests have been carried out on an IBM BlueGene/P machine1 allowing to perform runs
with thousands of cores. This type of machine has been designed for massively parallel applications,
it allows access to thousands of relatively small cores: each core runs at 850Mhz and has access to less
than 512Mb of ram when all cores on a compute node are used. This architecture is presented in more
details in chapter 11. These machines are adapted to extremely highly scalable kernels making them
difficult to use for complex versatile solvers. Hence very few examples of code coupling have already
been attempted on such machines.

Another difficulty on the BlueGene/P architecture is that even if MPMD is possible, load balancing
is made very difficult because each process core count must be a multiple of a hardware defined constant
(it corresponds to the number of compute nodes per IO node which is a specific characteristic of the
machine). On the machine used (Babel) the value is 256. Hence load balancing for this application is
almost impossible: the thermal solver runs much faster than the LES solver and we have to assign at
least 256 cores to it.

The objective of these tests is to assess the impact of the coupling procedure on the aggregate
application’s performance. As said earlier, on this machine proper load balancing is not achievable:
the thermal solver has too many processors compared to the LES solver. The global application’s
performance is hence driven by the LES solver, that is to say increasing or decreasing the LES solver’s
performance changes the coupled application’s performance. Hence only the LES scalability curve
is relevant in this test. The effect of the coupling procedures on the LES solver’s performance is
measured by modifying the LES iteration count between two coupling iterations.

Figure 14.2: LES solver scalability curve for different coupling frequencies. Coupling Freq. 50 means
that 50 LES iterations are executed between two coupling updates. Coupling Freq. 1 means that a
couling update is done at each LES iteration.

The scalability curves, Fig. 14.2 and 14.3, and the timings in Table 14.4, show that the inter-solver
communication has no noticeable impact on the LES solver’s performance. The non ideal scalability
of AVBP for this case can be explained by the use of a relatively small mesh only 15M Cells for 2048

1The machine used is Babel, IDRIS BlueGene/P system.

14.2. APPLICATION SCALABILITY ASSESSMENT 183

cores and the use of a less optimal partitioning algorithm: RIB [109], according to Gourdain [43] using
METIS [56] should provide better scalability.

To understand the amount of data transferred between the solvers it is important to state that at
each coupling iteration a complete information exchange, with interpolation, in both directions for
every processor on the coupling interface is executed: 3 variables are transferred from the LES to the
conduction solver (convective temperature, heat coefficient and heat flux), one from the conduction
solver to the LES computation (border temperature). Using 2048 cores, the longest transfer took
approximately 2.96ms which represents less than 0.5% of a LES iteration, 660ms, for that configuration
on that machine. Also the actual average transfer time measured was 0.17ms and 86% of the transfers
are finished in less than 0.4ms. These statistics do not include the processors which are not involved
in coupling. Hence 260 thousand triangles are interpolated onto 1.3 million triangles and vice versa
three times in less than 3ms.

Considering that in a typical application it is not required to synchronize the solvers at every time
step the actual price of the coupling procedure is even lower, e.g. on this case coupling every 10 LES
iterations means that the coupling procedures account for 0.05% of the time spent in the simulation.
These results show that the methodologies built throughout this thesis work and that multiphysics is
possible using the MPMD paradigm efficiently on massively parallel machines.

Figure 14.3: LES solver efficiency for different coupling frequencies

cores performance/ideal performance

Total AVBP AVTP Ideal 100 50 1

512 256 256 1 1 1 1

1024 768 256 3 2.864 2.862 2.860

2048 1792 256 7 6.433 6.431 6.403

Table 14.4: Scalability results

184 CHAPTER 14. COUPLED APPLICATION

Chapter 15

Results

Due to confidential material this chapter has been stripped from the public release of this manuscript.

185

186 CHAPTER 15. RESULTS

Conclusion

In this final part the coupled application has been presented. Then results considering scalability,
convergence, heat transfer have been presented. And for each domain two simulations have been
compared: with and without coupling. The scalability results have demonstrated the efficiency of the
methods developed during this thesis. As for convergence, although the simulation was not completely
converged, the coupled simulation has been executed until the variation between two consecutive
solid mean temperature fields was inferior to 0.04%. Comparing the coupled temperature field to
the uncoupled temperature field the benefits of code multiphysics become clear: using the coupling
procedure it is possible to see the position of the actual hot spots and hence deduce the positions of
high thermal stress. Also some non intuitive but nonetheless very interesting features can be seen such
as the difference of temperature between the internal and external liners in the aeronautical burner
case. Finally looking at the fluid simulation the differences are less striking, still subtle differences
in the output temperature can be seen which can be very interesting for turbine engineers. Indeed
according to Sehitoglu, H. [105] a difference of 56°C of the blade operating temperature reduces the
life expectancy by a factor of 1.6. Even though this simulation can not be used to compared to the
actual engine due to the lack of models for the multiperforated plates, it still illustrates the potential
of conjugate heat transfer coupling for industrial applications.

187

188 CHAPTER 15. RESULTS

General Conclusion

The objective of this thesis was to investigate the issues for multiphysical code coupling on industrial
configurations considering the HPC context. More particularly one of the solvers used is a combustion
LES solver, the other is a thermal solver, hence bringing difficulties such as the impossibility to run the
two simulations in a time synchronized manner due to very different characteristic times. Also due to
combustion unsteady and nonlinear nature when solved using LES, steady state coupling algorithms
based on optimization methods, which can be used with RANS, do not seem adapted. It is true that
this direction has not been clearly investigated throughout this work and may be an alternative to the
tight coupling methodology proposed in this thesis. But in that case probably the only way to cope with
LES unsteadiness would be to average over long time periods which may be more expensive than the
tight coupling methodology. This is especially true considering the large computational requirements
of LES compared to RANS. However this tight coupling methodology requires the ability to exchange
data fields between the LES and the thermal solver at very high frequency, meaning that the data
transfers between the two solvers have to be as fast as possible. Hence the data transfers must be fast,
but since this work is essentially to investigate and demonstrate methods for future computations, one
must also consider that the data transfer solutions should be scalable. When scalability is considered
traditionally only speed is considered but as super computers evolve, more and more cutting edge
machines appear with great quantities of cores disposing of very limited memory banks. This is why
it is important to consider this limitation notably during the initialization phases. A distributed
geometrical search and interpolation coefficient computation method has thus been devised. This
method uses modern computing paradigms such as peer-to-peer computing, geometry hashing and
recursive binary space partitioning algorithms to achieve this goal. The bases of non matching grid
interpolation have also been treated, starting from the original interpolation theories coming from
signal sampling theory. But also a slight alternative to the traditional signal sampling method has
been investigated: conservative interpolation. It has been shown that using slightly different method
it is possible to eliminate a great deal of the aliasing artifacts inherent to standard sample based
interpolation methods. Unfortunately due to lack of time this method has not been tested within the
full scale target application.

This works is thus at the cross roads of various different disciplines. Indeed not only computational
fluid dynamics and thermal conduction were required to tackle these problems but also computational
science, numerical methods and signal theory play an important role in this thesis.

The resulting target application has shown promising results notably regarding scalability. Unfor-
tunately proper modeling for the thermal flux of the multiperforated plates used in the real engine is
the missing feature of the target application. Accurate wall thermal flux modeling is a necessary point
to take advantage of the increased predictability potential provided by multiphysics. Nevertheless
some interesting features can still be seen when the non coupled computations have been compared
to the coupled computations.

As for the actual industrial spin-offs, even though this work is not directly industry ready, a simple
tool based on the interpolation methods presented in this work has been implemented and is actually
used within Snecma Villaroche teams to transfer data from different solvers efficiently and integrated

189

190 CHAPTER 15. RESULTS

into larger computations chains. Also the code developed for the sequential geometrical searches
and interpolation methods have been packaged into a library which has been used by different PhD
students at CERFACS, notably E. Collado [23], T. Pedot [84] and J. Richard [96]. Many concepts
and ideas developed during this work has also been transferred by F. Duchaine into the CERFACS
official coupler Open-Palm, notably the coupling region concept. Of course the source code developed
during this thesis, the interpolation code, the coupling library, the graphical interface may be reused
or extended for future works.

Part VI

Appendix

191

Table of Contents

A Software developed during this thesis 195

A.1 A basic solution Interpolator . 195

A.2 The coupling library . 197

A.3 A graphical user interface for 3D unstructured mesh coupling 199

B Geometric formulas and algorithms for interpolation 205

B.1 Barycentric coordinates for linear interpolation . 205

B.1.1 Barycentric coordinates for a segment in 1D . 206

B.1.2 Barycentric coordinates for a triangle in 2D . 206

B.1.3 Barycentric coordinates for a tetrahedron in 3D 208

B.2 Calculating the integral of a linear function over P1 elements 210

B.2.1 Calculating the integral of a linear function on a triangle 210

B.2.2 Calculating the integral of a linear function on a tetrahedron 212

B.3 Intersection calculation . 213

B.3.1 Intersection procedure for two segments . 214

B.3.2 Algorithm: The jarvis March - Convex Hull in 2D 216

B.3.3 Possible method for volumetric conservative interpolation 218

194 TABLE OF CONTENTS

Appendix A

Software developed during this thesis

In this chapter the main software which have been developed in this thesis are briefly presented.

A.1 A basic solution Interpolator

Figure A.1: Visualization tools associated to the basic interpolator

This thesis started by a two month internship at Snecma Villaroche. The objective was to provide
an efficient and flexible tool to couple a RANS solver N3S, Abaqus used as a thermal solver and
a radiative solver ASTRE in an industrial context. Snecma already had tools to transfer interface
data from the different solvers but the transfers relied on a complex pool of tools which were not
necessarily optimized. In order to simplify the coupling process a unique tool was developed using
the Kd-Tree search algorithm for interpolation. The tool was developed in object oriented C++ using
a concept of input and output modules allowing the tool to be extended easily to the different file
formats used by each code. Also because custom treatment needed to be applied to the interpolated
data a concept of external user functions was devised. During the tests and development of this tool
it became clear that viewing the exact geometries involved during the interpolation process was a key
issue. Therefore small viewers relying on OpenGL were developed allowing to view the input meshes,
output meshes and the data interpolated, Fig A.1. Also a clear view of the connectivities was then
available, Fig A.2. An other key aspect understood during this work was that industrial geometries
can be extremely complex and some times geometrical searches do not provide the result expected. In
those cases it is important to be able to guide the interpolation process by subdividing the interfaces
into sub sets of geometrical elements to avoid those ill effects. Finally this work was an excellent

195

196 APPENDIX A. SOFTWARE DEVELOPED DURING THIS THESIS

testing ground for the Kd-Tree implementation and allowed to measure its actual benefits (on some
geometries the interpolation time was reduced from several hours to a few seconds). This set of tools
represents 25000 lines of code for the interpolation routines, the input-output readers and writers and
visualisation tools. The development of this tool has continued and it has been integrated into the
actual thermal conception chain.

Figure A.2: Basic visual connectivity checker associated to the interpolator

A.2. THE COUPLING LIBRARY 197

A.2 The coupling library

Figure A.3: Interface of the multiphysics setup tool

The coupling library developed during this thesis has been written essentially in object oriented
C++ (58000 lines of code) and is interfaced to the solvers via 4600 FORTRAN lines of code. The
C/FORTRAN interfaces use the ISO-C-FORTRAN 2003 bindings to ensure clean portability. The
library is linked with solver executable, the program main is relocated inside the library, the solver
main becoming a subroutine. The library is responsible of initializing the MPI environment, creating
different communicators and modifying each solver’s environment. It allows the solver to run as if they
were independent while providing simple functions to exchange data. It is placed as an abstraction
layer between the solver and MPI for inter-process communications, Fig A.3.

Figure A.4: The main elements of the coupling library code

The coupling library contains code required for interpolation, sequential and distributed geometrical
searches but also for process management and code debugging (UNIX signal handlers), Fig A.4. Ad-
ditional instrumentation has been also included such as the possibility to export the transferred fields
to ensight compatible files or compute statistics on the transferred values (min, max, average, surface
integral). The entire configuration of the coupled application is contained in a single XML[17] file,
see listing A.1. The XML parser used is the light-weight open-source portable library TinyXML[116].
This file details the environment parameters, specific solver parameters related to coupling and the
coupling definitions.

198 APPENDIX A. SOFTWARE DEVELOPED DURING THIS THESIS

1 <?xml v e r s i o n=” 1 .0 ” encoding=”UTF−8” standa lone=”no”?>
<mult iphys i c s prob lem name=” sample problem ” so lv e r count=”2”>

3

<s o l v e r c p l f r e q=”10” dht node count=”35” f o r c e b a r r i e r s y n c=”1”
5 name=”avbp” p r i n t i n f o=”1” show mem stats=”1” p r i n t h t m l i n f o=”0”

i g n o r e r o o t p r o c e s s=”1” u s e c o n n e c t i v i t y c a c h e=”1” w r i t e c o n n e c t i v i t y c a c h e=”1”
7 s t d e r r=” . / logs avbp /ERR %07 i . l og ” stdout=” . / logs avbp /OUT %07 i . l og ”

group outputs=”1” g r o u p d i r b a s e=” . / l o g s %s / grp %04 i /”
9 w r i t e e mi s s i o n g ra p h=”0” w r i t e r e c e p t i o n g r a p h=”0”

workdir=” . / f l u i d p r e p a r t ” worker count=”35” cpl dump data=”0” cpl dump temporal=”0”
11 c p l c hec k da ta=”0” c p l m a x i t e r=”10” c p l x f e r t e m p e r a t u r e=”1”

c p l x f e r h c o n v t c o n v=”1” c p l x f e r f l u x=”1” c p l u s e q r e s o l v=”0” write dbg geom=”0”
13 arguments=”dummy −s e r v e r k p l d i s t i n c t s e r v e r −n c l i e n t 35”>

<c p l r e g i o n c p l r e g i d=”5” e x t r a l a y e r s i z e=”1” i n t e r p t y p e=”1” name=”CAV BAS PAS”
patch names=”CAVITE BAS PASSAGE” patchs=”34” r emote so l v e r=”1” resX=” 0 .03 ” resY
=” 0 .03 ” resZ=” 0 .03 ”/>

15 (. . .)
<c p l r e g i o n c p l r e g i d=”14” e x t r a l a y e r s i z e=”1” i n t e r p t y p e=”1” name=”TAF BAS EXT”

patch names=”MP INT AM 5 , MP INT AM 6 , MP INT AM 7 , MP INT AM 8 , MP INT AM 9 ,
MP INT AM 10” patchs=” 58 ,59 ,60 ,61 ,62 ,63 ” r emo te so l v e r=”1” resX=” 0 .03 ” resY=”
0 .03 ” resZ=” 0 .03 ”/>

17 <c p l r e g i o n c p l r e g i d=”16” e x t r a l a y e r s i z e=”1” i n t e r p t y p e=”1” name=”FOND CHAMBRE
” patch names=”FOND CHAMBRE INT,SWIRLER OUTPUT 1,SWIRLER OUTPUT 2,
SWIRLER OUTPUT 3” patchs=” 12 ,27 ,28 ,29 ” r emo te so l v e r=”1” resX=” 0 .03 ” resY=” 0 .03
” resZ=” 0 .03 ”/>

<c p l r e g i o n c p l r e g i d=”1” e x t r a l a y e r s i z e=”1” i n t e r p t y p e=”1” name=”COUPELLE INT”
patch names=”COUPELLE INT 1 , COUPELLE INT 2” patchs=” 36 ,38 ” r emo te so l v e r=”1”

resX=” 0 .03 ” resY=” 0 .03 ” resZ=” 0 .03 ”/>
19 <c p l r e g i o n c p l r e g i d=”2” e x t r a l a y e r s i z e=”1” i n t e r p t y p e=”1” name=”COUPELLE EXT”

patch names=”COUPELLE EXT 1,COUPELLE EXT 2” patchs=” 37 ,39 ” r emo te so l v e r=”1”
resX=” 0 .03 ” resY=” 0 .03 ” resZ=” 0 .03 ”/>

<c p l r e g i o n c p l r e g i d=”3” e x t r a l a y e r s i z e=”1” i n t e r p t y p e=”1” name=”BASE COUPELLE
” patch names=”FOND CHAMBRE EXT,TUBE WALLS TOP,TUBE WALLS BOTTOM,OUT COUPELLE”
patchs=” 13 ,14 ,15 ,66 ” r emote so l v e r=”1” resX=” 0 .03 ” resY=” 0 .03 ” resZ=” 0 .03 ”/>

21 </ s o l v e r>
<s o l v e r c p l f r e q=”10” dht node count=”11” f o r c e b a r r i e r s y n c=”1”

23 name=” avtp ” p r i n t f i n f o=”1” show mem stats=”1” p r i n t h t m l i n f o=”0” (. . .)>
<c p l r e g i o n c p l r e g i d=”5” e x t r a l a y e r s i z e=”1” i n t e r p t y p e=”1” name=”CAV BAS PAS”

patch names=”BRIDE BAS PASSAGE” patchs=”41” r emo te so l v e r=”0” resX=” 0 .03 ” resY=
” 0 .03 ” resZ=” 0 .03 ”/>

25 (. . .)
<c p l r e g i o n c p l r e g i d=”3” e x t r a l a y e r s i z e=”1” i n t e r p t y p e=”1” name=”BASE COUPELLE

” patch names=”FOND CHAMBRE” patchs=”32” r emo te so l v e r=”0” resX=” 0 .03 ” resY=”
0 .03 ” resZ=” 0 .03 ”/>

27 </ s o l v e r>

29 </ mult iphys i c s prob lem>

Listing A.1: Example of an XML configuration file for the coupled application

A.3. A GRAPHICAL USER INTERFACE FOR 3D UNSTRUCTURED MESH COUPLING 199

A.3 A graphical user interface for 3D unstructured mesh coupling

Figure A.5: Interface of the multiphysics setup tool

As has been shown throughout this thesis the setup of complex coupled applications is a difficult
task. It requires a simultaneous visualization of the geometries and to some of their specific features.
For the AVBP/AVTP case considering the choice to build coupling regions from the existing boundary
surfaces, simple access to those features was mandatory. A solution to this problem has been proposed
in this thesis: a graphical tool has been developed capable of displaying the different meshes and their
sub surfaces. The tool can greatly simplify the process of coupling region creation but also provides
some other useful features. Indeed the tool is also capable of giving a visual aid to control whether
coupling regions in each mesh match.

The tool was built using the Java programming language [34] (20000 lines of code) and uses the
industry standard rendering library OpenGL [108]. Although parts of its code had already been
developed in the visualization tools presented in section A.1, this tool by its structure allows far more
advanced features. Its interface is composed of 3 main parts, Fig A.5:

- the viewport, this is where all the geometry is displayed,

- the object panel, each object which can be edited is displayed within a tree, the selected object
properties and actions are displayed on the sub-panel which is beneath the object tree.

- the output panel, this panel is located underneath the viewport and displays messages from the
application’s core: progress messages, error messages, results computed, etc...

Interactivity has been added by full support of the mouse for rotating, zooming and translation.
Also it is possible to select objects using either the object tree or their visual representation in the
viewport, Fig A.6. The implementation of this feature is actually an other application of AABB trees

200 APPENDIX A. SOFTWARE DEVELOPED DURING THIS THESIS

Figure A.6: The viewport is allows to select objects such as boundary surfaces by simply clicking on
them

presented within part III. Indeed when a user clicks on the screen, a line is actually computed from an
imaginary viewpoint (corresponding to the user’s eye in 3D rendering theory [73]) to the point clicked
by the user, Fig A.7. This hit ray is then tested with the geometry to find possible intersection points.
The process is actually greatly accelerated by building an AABB tree (see chapter 10) which allows
to eliminate unnecessary tests by testing if the hit ray intersects the tree’s successive boundary boxes.
This process is actually the basic process which is implemented in Ray-Tracers [40]. This interactivity
comes out to be quite handy to select and handle the different boundary regions.

The coupling boundary regions are built by selecting boundary patches from two lists, the corre-
sponding coupling regions are displayed interactively in the viewport, Fig A.9.

Also an other useful feature is that the tool can help in controlling the interpolation quality. The
tool projects using geometry of a coupling region onto the other and then vice-versa. The distance
between the original point and its projected point are recorded and the 50 worst projections (which are
the most apart) are displayed by small segments. The projection method only uses nearest neighbor
projection so it can show that some projections are bad because the two meshes are discretized very
differently but the actual linear interpolation would be of good quality. However it is clearly capable
of finding small gaps between surfaces or incorrect coupling region constructions. The XML files used
for the coupling region definition are created and edited by this tool.

Other features such as computing fluxes through holes, Fig A.10, have also been coded and much
more. This tool has actually been a great aid to perform some very specific tasks which are not

A.3. A GRAPHICAL USER INTERFACE FOR 3D UNSTRUCTURED MESH COUPLING 201

Figure A.7: Process to do a hit test from a user click: user clicks on a 2D image the search is performed
in a 3D space using a hit test ray

Figure A.8: Construction of a coupling region by simply selecting the boundary surfaces of each mesh

necessarily available in commercial products. The interpolation problems showed in part IV have
actually been understood using this tool. A great deal of the images present in this thesis have been
rendered using this tool.

202 APPENDIX A. SOFTWARE DEVELOPED DURING THIS THESIS

Figure A.9: Using the association tool checker can help locate mistakes or non matching surfaces.
This example shows a mistake in the construction of a coupling region: when two coupling regions
match properly the distance between the source and destination points are extremely small. The
tool displays in yellow the 50 longest paths between source and destination points between the two
coupling regions. On this example a surface located on the casing side of the wall of the flame tube
is associated with a surface on the other side. The long yellow lines help to find the location of the
problem.

A.3. A GRAPHICAL USER INTERFACE FOR 3D UNSTRUCTURED MESH COUPLING 203

Figure A.10: Using this tool it is possible to measure fluxes passing through holes by meshing extra
surfaces in those holes and interpolating solutions onto them. The construction of the surfaces is done
visually by clicking on the geometry.

204 APPENDIX A. SOFTWARE DEVELOPED DURING THIS THESIS

Appendix B

Geometric formulas and algorithms for

interpolation

B.1 Barycentric coordinates for linear interpolation

Figure B.1: Barycentric coordinates for a triangle E = (P1P2P3)

Let the space dimensions be N . For a simplex E, i.e. a polyhedron composed of N + 1 vertices
(segments in 1D, triangles in 2D, tetrahedra in 3D), N + 1 barycentric coordinates λi can be defined.

205

206 APPENDIX B. GEOMETRIC FORMULAS AND ALGORITHMS FOR INTERPOLATION

These barycentric coordinates allow to interpolate linearly f for any point inside E. Let λi be the
barycentric coordinates of M inside E. Let Pi be E’s vertices. E can be split into N+1 new simplexes
Si using M . λi can be defined by :

λi =
V olume(Si)

V olume(E)
(B.1)

Here V olume is in a generic sens, for a segment it is its length, for a triangle its area, for a tetrahedron
its volume.

Properties

- For M inside E, 0 ≤ λi ≤ 1.

- For any M ,
∑
λi = 1

Calculating barycentric coordinates is fairly simple, the equations used to define them for segments,
triangles and tetrahedrons are included in the following part of this section.

B.1.1 Barycentric coordinates for a segment in 1D

Figure B.2: A P1 segment

Let f be a function varying linearly on (AB), f(xA) and f(xB) are known, and the coordinates
xA,xB.

The gradient of f is ∇f = f(xB)−f(xA)
xB−xA . We can write:

f(x) = ∇f · (x− xA) + f(xA) (B.2)

Lets now define the barycentric coordinates λi such as f(xM) = f(xA) · λ1(xM) + f(xB) · λ2(xM)

λ1(x) = 1− x− xA
xB − xA

(B.3)

λ2(x) =
x− xA
xB − xA

(B.4)

B.1.2 Barycentric coordinates for a triangle in 2D

Let f be a function varying linearly on (ABC), f(A),f(B) and f(C) are known, and the coordinates
of A,B,C.

B.1. BARYCENTRIC COORDINATES FOR LINEAR INTERPOLATION 207

Figure B.3: A P1 triangle

We can thus write:

f(x, y) = a · x+ b · y + c (B.5)

∇f = a~x+ b~y (B.6)

(B.7)

and for a point M :
f(M) = ∇f · ~AM + f(A) (B.8)

Thus for B and C:
{
f(B)− f(A) = ∇f · ~AB
f(C)− f(A) = ∇f · ~AC

(B.9)

Introducing the following notations,

{
P = f(B)− f(A)

Q = f(C)− f(A)
(B.10)

{
m11 = xB − xA,m12 = yB − yA
m21 = xC − xA,m22 = yC − yA

(B.11)

Eq. B.28 becomes:

{
P = a ·m11 + b ·m12

Q = a ·m21 + b ·m22

(B.12)

Which can be solved:
{
a = P ·m22−Q·m12

det

b = Q·m11−P ·m21

det

(B.13)

(B.14)

with det = m22 ·m11 −m12 ·m21

208 APPENDIX B. GEOMETRIC FORMULAS AND ALGORITHMS FOR INTERPOLATION

Now lets introduce the barycentric coordinates λi, they are affine functions defined by




λ1(A) = 1, λ1(B) = 0, λ1(C) = 0

λ2(A) = 0, λ2(B) = 1, λ2(C) = 0

λ3(A) = 0, λ3(B) = 0, λ3(C) = 1

(B.15)

Using Eq.B.14 and the 3 point definition of each λi we obtain

λ1(x, y) =
−m22 +m12

det
· (x− xA) +

−m11 +m21

det
· (y − yA) + 1 (B.16)

(B.17)

λ2(x, y) =
m22

det
· (x− xA) +

−m21

det
· (y − yA) + 0 (B.18)

(B.19)

λ3(x, y) =
−m12

det
· (x− xA) +

m11

det
· (y − yA) + 0 (B.20)

(B.21)

And can check that for any (x, y),

λ1(x, y) + λ2(x, y) + λ3(x, y) = 1 (B.22)

These barycentric coordinates are the interpolation weights for a linear interpolation:

f(M) = f(A) · λ1(M) + f(B) · λ2(M) + f(C) · λ3(M) (B.23)

B.1.3 Barycentric coordinates for a tetrahedron in 3D

Let f be a function varying linearly on (ABCD), f(A),f(B),f(C) and f(D) are known, and the
coordinates of A,B,C,D.

We can thus write:

f(x, y) = a · x+ b · y + c · z + d (B.24)

∇f = a~x+ b~y + c~z (B.25)

(B.26)

and for a point M :
f(M) = ∇f · ~AM + f(A) (B.27)

Thus for B and C:




f(B)− f(A) = ∇f · ~AB
f(C)− f(A) = ∇f · ~AC
f(D)− f(A) = ∇f · ~AD

(B.28)

B.1. BARYCENTRIC COORDINATES FOR LINEAR INTERPOLATION 209

Figure B.4: A Tetrahedron

Introducing the following notations,





P = f(B)− f(A)

Q = f(C)− f(A)

R = f(D)− f(A)

(B.29)





m11 = xB − xA,m12 = yB − yA,m13 = zB − zA
m21 = xC − xA,m22 = yC − yA,m23 = zC − zA
m31 = xD − xA,m32 = yD − yA,m33 = zD − zA

(B.30)

Eq. B.28 becomes:





P = a ·m11 + b ·m12 + c ·m13

Q = a ·m21 + b ·m22 + c ·m23

R = a ·m31 + b ·m32 + c ·m33

(B.31)

Which can be solved:




a = P (m33·m22−m32·m23)−Q(m33·m12−m32·m13)+R(m23·m12−m22·m13)
det

b = −P (m33·m21−m31·m23)+Q(m33·m11−m31·m13)−R(m23·m11−m21·m13)
det

c = P (m32·m21−m31·m22)−Q(m32·m11−m31·m12)+R(m22·m11−m21·m12)
det

(B.32)

(B.33)

with

det = m11(m33 ·m22 −m32 ·m23)−m21(m33 ·m12 −m32 ·m13)−m31(m23 ·m12 −m22 ·m13) (B.34)

Now lets introduce the barycentric coordinates :





λ1(A) = 1, λ1(B) = 0, λ1(C) = 0, λ1(D) = 0

λ2(A) = 0, λ2(B) = 1, λ2(C) = 0, λ2(D) = 0

λ3(A) = 0, λ3(B) = 0, λ3(C) = 1, λ3(D) = 0

λ4(A) = 0, λ4(B) = 0, λ4(C) = 0, λ4(D) = 1

(B.35)

210 APPENDIX B. GEOMETRIC FORMULAS AND ALGORITHMS FOR INTERPOLATION

By combining Eq. B.35 and Eq. B.33 gives (the equation is written as a vector dot product for
concision)

λ1(x, y, z) = 1 +


x− xA
y − yA
z − zA


 ·




−(m33·m22−m32·m23)+(m33·m12−m32·m13)−(m23·m12−m22·m13)
det

(m33·m21−m31·m23)−(m33·m11−m31·m13)+(m23·m11−m21·m13)
det

−(m32·m21−m31·m22)+(m32·m11−m31·m12)−(m22·m11−m21·m12)
det




λ2(x, y, z) =



x− xA
y − yA
z − zA


 ·




(m33·m22−m32·m23)
det

−(m33·m21−m31·m23)
det

(m32·m21−m31·m22)
det




λ3(x, y, z) =



x− xA
y − yA
z − zA


 ·




−(m33·m12−m32·m13)
det

(m33·m11−m31·m13)
det

−(m32·m11−m31·m12)
det


 (B.36)

λ4(x, y, z) =



x− xA
y − yA
z − zA


 ·




(m23·m12−m22·m13)
det

−(m23·m11−m21·m13)
det

(m22·m11−m21·m12)
det


 (B.37)

Using λi, we can interpolate linearly f over (ABCD):

f(M) = f(A) · λ1 + f(B) · λ2 + f(C) · λ3 + f(D) · λ4 (B.38)

B.2 Calculating the integral of a linear function over P1 elements

B.2.1 Calculating the integral of a linear function on a triangle

To calculate the integral of an affine function over a triangle, we will use a transformation Φ defined
by:

Φ(u, v) = (x, y) (B.39)

and 



Φ(0, 0) = (xA, yA)

Φ(0, 1) = (xB, yB)

Φ(1, 0) = (xC , yC)

(B.40)

Φ(u, v) =

{
x = xA + u · (xC − xA) + v · (xB − xA)

y = yA + u · (yC − yA) + v · (yB − yA)
(B.41)

The Jacobian of Φ is thus

JΦ =

[
xC − xA xB − xA
yC − yA yB − yA

]
(B.42)

And
|JΦ| = |(xC − xA)(yB − yA)− (yC − yA)(xB − xA)| (B.43)

Now lets calculate the integral of f over (ABC):

B.2. CALCULATING THE INTEGRAL OF A LINEAR FUNCTION OVER P1 ELEMENTS 211

Figure B.5: Calculating an integral on a triangle

I =

∫∫

(ABC)
f · dx · dy = |JΦ|

∫∫

T2

(f ◦ Φ) · du · dv (B.44)

= |JΦ|
∫ 1

v=0

(∫ 1−v

u=0
f(Φ(u, v)) · du

)
dv

And injecting the definition of Φ from Eq. B.41:

f(Φ(u, v)) = fA

+ u [a(xC − xA) + b(yC − yA)]

+ v [a(xB − xA) + b(yB − yA)]

f(Φ(u, v)) = fA + u [fC − fA] + v [fB − fA] (B.45)

The following notations are introduced:





P = fC − fA
Q = fB − fA
R = fA

(B.46)

∫ 1−v

u=0
f(Φ(u, v)) · du =

[
u2

2
P + u(R+ vQ)

]1−v

0

(B.47)

=
(1− v)2

2
P + (1− v)(R+ vQ)

= v2
(

1

2
P −Q

)
+ v (Q− P −R) +R+

P

2

212 APPENDIX B. GEOMETRIC FORMULAS AND ALGORITHMS FOR INTERPOLATION

Injecting Eq. B.48 in Eq. B.45 yields:

I = |JΦ|
[
v3

3

(
1

2
P −Q

)
+
v2

2
(Q− P −R) + v(R+

P

2
)

]1

0

= |JΦ|
(

1

3

(
1

2
P −Q

)
+

1

2
(Q− P −R) +R+

P

2

)

= |JΦ|
(

1

6
P +

1

6
Q+

1

2
R

)

Finally using Eq. B.46 we obtain:

I =
1

6
|JΦ| (fA + fB + fC) (B.48)

B.2.2 Calculating the integral of a linear function on a tetrahedron

Figure B.6: Calculating an integral on a tetrahedron

To calculate the integral of an affine function over a tetrahedron, we will use a transformation Φ
defined by:

Φ(u, v, w) = (x, y, z) (B.49)

and 



Φ(0, 0, 0) = (xA, yA, zA)

Φ(1, 0, 0) = (xB, yB, zB)

Φ(0, 1, 0) = (xC , yC , zC)

Φ(0, 0, 1) = (xD, yD, zD)

(B.50)

Φ(u, v, w) =





x = xA + u · (xB − xA) + v · (xC − xA) + w · (xD − xA)

y = yA + u · (yB − yA) + v · (yC − yA) + w · (yD − yA)

z = zA + u · (zB − zA) + v · (zC − zA) + w · (zD − zA)

(B.51)

B.3. INTERSECTION CALCULATION 213

The Jacobian of Φ is thus

JΦ =



xB − xA xC − xA xD − xA
yB − yA yC − yA yD − yA
zB − zA zC − zA zD − zA


 (B.52)

And

|JΦ| = |(xB − xA)(yC − yA)(zD − zA)

+ (xC − xA)(yD − yA)(zB − zA)

+ (xD − xA)(yB − yA)(zC − zA)

− (xD − xA)(yC − yA)(zB − zA)

− (yD − yA)(zC − zA)(xB − xA)

− (zD − zA)(xC − xA)(yB − yA)|

(B.53)

Now lets calculate the integral of f over (ABCD):

I =

∫∫∫

(ABCD)
f · dx · dy · dz = |JΦ|

∫∫∫

T2

f ◦ Φ · du · dv · dw (B.54)

I = |JΦ|
∫ 1

w=0

(∫ 1−w

v=0

(∫ 1−w−v

u=0
f(Φ(u, v)) · du

)
dv

)
dw (B.55)

With

f(Φ(u, v, w)) =u · [a · (xB − xA) + b · (yB − yA) + c · (zB − zA)]+

v · [a · (xC − xA) + b · (yC − yA) + c · (zC − zA)]+

w · [a · (xD − xA) + b · (yD − yA) + c · (zD − zA)] + fA

(B.56)

By calculating successively the integrals and injecting the expressions of fB, fC , fD:

I =
1

24
|JΦ|(fA + fB + fC + fD) (B.57)

This result can be checked, for f : x→ 1, the integral I should give the volume of tetrahedron:

V olABCD =
1

6

∣∣∣
(
~AB ∧ ~AC

)
· ~AD

∣∣∣ (B.58)

V olABCD =
1

6

∣∣∣∣∣∣∣






xB − xA
yB − yA
zB − zA


 ∧



xC − xA
yC − yA
zC − zA





 ·



xD − xA
yD − yA
zD − zA




∣∣∣∣∣∣∣
(B.59)

V olABCD =
1

6
|JΦ| (B.60)

And if fA = fB = fC = fD = 1:

I =
1

24
|JΦ|(1 + 1 + 1 + 1) =

1

6
|JΦ| = V olABCD (B.61)

B.3 Intersection calculation

In this section a few algorithms usefull for geometrical intersection calculations are presented. These
algorithms are used in chapter B.3.3 for surface to surface projections. Finally an extension to volu-
metric conservative interpolation method by element on element projection is discussed.

214 APPENDIX B. GEOMETRIC FORMULAS AND ALGORITHMS FOR INTERPOLATION

B.3.1 Intersection procedure for two segments

This section details the intersection procedure used to compute the intersection of two segments in
space. While this problem seems trivial, proper implementation of the intersection of two segments
in a 2D space should consider all possible intersection cases:

- No intersection,

- a single intersection point

- an intersection segment.

A generic procedure capable of handling these different cases is presented here. The input of the
procedure is composed of:

- the two segments A and B, A is defined by A1 = (A1,x, A1,y and A2 = (A2,x, A2,y, likewise B is
defined by B1 and B2.

- a tolerance value ǫ

This procedure does not accept degenerate segments, i.e. ||A1A2|| > ǫ and ||B1B2|| > ǫ.

The output is a set of points:

- no intersection results in an empty set,

- a single point of intersection results in a point set containing only one point.

- an intersection segment results in a point set containing 2 points, the points which define the
intersection segment.

The first operation to do is to determine whether the segment vectors are co-linear, this can be
done by checking if ‖det(~A1A2, ~B1B2)‖ ≤ ǫ.

If the segment vectors ~A1A2 and ~B1B2 are co-linear, the two segments are parallel, they have
either no intersection or they may have an intersection segment. To determine if the two segments
may have an intersection a simple test is to check if ~A1A2 and ~A1B1 are co-linear (this can also be done
using a determinant calculation). If ~A1A2 and ~A1B1 are co-linear, a simple procedure to determine
the intersection segment is to project A1, A2, B1 and B2 on a vector of the line supporting the two
segments (in this example O = A1 and u = normalize(~A1A2) where normalize : ~u 7→ ~u

||u||). Then by
comparing the projected coordinates of the 4 points it is relatively simple to deduce the two points

B.3. INTERSECTION CALCULATION 215

defining the intersection segment. If no intersection is found return an empty set.

if ‖det(~A1A2, ~B1B2)‖ ≤ ǫ then
Direction vectors are parallel, either the segment do not intersect or their intersection is a
segment
calculate if ~A1A2 and ~A1B1 are parallel if ‖det(~A1A2, ~A1B1)‖ > ǫ then

~A1A2 and ~A1B1 are not parallel, no intersection possible
return ∅ ;

end

~A1A2 and ~A1B1 are parallel, calculate segment of intersection
~u← normalize(~A1A2) ;
O ← A1 ;
uAmin ← min((A1 −O) · ~u, (A2 −O) · ~u) ;
uAmax ← max((A1 −O) · ~u, (A2 −O) · ~u) ;
uBmin ← min((B1 −O) · ~u, (B2 −O) · ~u) ;
uBmax ← max((B1 −O) · ~u, (B2 −O) · ~u) ;
R← ∅ ;
The point check within R should consider the tolerance ǫ This will return at most 2 points:
it can return no points if no intersection found, if the segments are placed exactly one next
to the other, then only one point is returned if the segments intersect, then the two
intersection points are returned if uAmin ∈ [uBmin, u

B
max] and (O + uAmin~u) 6∈ R then

R← R ∪ (O + uAmin~u) ;
end

if uAmax ∈ [uBmin, u
B
max] and (O + uAmax~u) 6∈ R then

R← R ∪ (O + uAmax~u) ;
end

if uBmin ∈ [uAmin, u
A
max] and (O + uBmin~u) 6∈ R then

R← R ∪ (O + uBmin~u) ;
end

if uBmax ∈ [uAmin, u
A
max] and (O + uBmax~u) 6∈ R then

R← R ∪ (O + uBmax~u) ;
end

return R
end

Algorithm 9: A general calculation procedure of the intersection of two segments, case with
~A1A2 and ~B1B2 are co-linear

If the segment vectors ~A1A2 and ~B1B2 are not co-linear the intersection of the lines containing
the segments A a and B is calculated. A simple way to do this is to write for the intersection point
M = (Mx,My):

{
M ∈ (A1A2)⇔ det(~A1M, ~A1A2) = 0

M ∈ (B1B2)⇔ det(~B1M, ~A1B2) = 0
(B.62)

Therefore the following equation system can be written

{
dyAMx − dxAMy = A1,xdyA −A1,ydxA = P

dyBMx − dxBMy = B1,xdyB −B1,ydxB = Q
(B.63)

216 APPENDIX B. GEOMETRIC FORMULAS AND ALGORITHMS FOR INTERPOLATION

with dxA = A2,x−A1,x, dyA = A2,y −A1,y and likewise for dxB and dyB. The solution to this system
is




Mx = Qdxa−Pdxb

−dyadxb+dxadyb
My = Qdya−Pdyb

−dyadxb+dxadyb
(B.64)

Then by checking the position of M with the points A1 and A2 it is simple to deduce if M is on
the segment A. The same method is used to determine if M is on segment B.

If M is on both segments then return M , otherwise return an empty set.

if ‖det(~A1A2, ~B1B2)‖ > ǫ then
In this case the support lines intersect, therefore there can be no intersection or a single
intersection point ;
Solve system of equations to find intersection point M = (Mx,My) ;
dxA ← A2,x −A1,x ;
dyA ← A2,y −A1,y ;
dxB ← B2,x −B1,x ;
dyB ← B2,y −B1,y ;
P ← A1,xdyA −A1,ydxA ;
Q← B1,xdyB −B1,ydxB ;

idet← 1/det(~A1A2, ~B1B2);
Mx = (QdxA − PdxB)idet ;
My = (QdyA − PdyB)idet ;
Check if M in segment A ;

if ~A1M · ~A1A2 < −ǫ or ~A2M · ~A1A2 > ǫ then

M is outside of segment A ;
return ∅

end

Check if M in segment A;

if ~B1M · ~B1B2 < −ǫ or ~B2M · ~B1B2 > ǫ then

M is outside of segment B ;
return ∅

end

M is inside segments A and B ;
return M

end

Algorithm 10: A general calculation procedure of the intersection of two segments, case with
~A1A2 and ~B1B2 are not co-linear

B.3.2 Algorithm: The jarvis March - Convex Hull in 2D

This is a brief presentation of a simple convex hull algorithm called Jarvis March Fig. B.7, published
by R. A. Jarvis in 1973 [50]. It’s purpose is to find the convex hull of a set of points, in other words,
finding the minimal convex polygon englobing the set of points. This algorithm is used to compute
the intersection polygons after the computation of the intersection points. Lets consider a set of N
points p0, p1, . . . , pN in a 2D space E.

1. First find a point that will be on the convex hull, for example the left most point (with the
minimal x) this point is noted H0.

B.3. INTERSECTION CALCULATION 217

Figure B.7: The Jarvis March algorithm

2. At Hi calculate the polar coordinates of the other points relative to Hi and vector ~Hi−1Hi and
select point that gives the minimal angle (left most point). Add this point to the Hull as Hi+1.

3. continue (2) until the selected point is H0 which means the loop has been calculated, the convex
hull is defined by H0, . . . ,HM .

This algorithm’s complexity is O(nh) where n is the number of points in the point set , h the
number of points on the convex hull. More efficient algorithms exist to solve this problem, notably
Graham scan, however in this problem the points sets are very small so using this algorithm is still
acceptable.

This algorithm can not be extended to 3D, however other algorithms exist to solve this problem in
3 or more dimensions, notably incremental hull algorithm.

pointOnHull← leftmostpointinS ;
i← 0 ;
repeat

Pi ← pointOnHull;
endpoint← S0;
for j ← 1 to Sizeof(S)− 1 do

if Sj on left of line from Pi to endpoint orendpoint = pointOnHull then

endpoint← Sj ;
end

end

pointOnHull← endpoint;
i← i+ 1

until endpoint = P0;

Algorithm 11: Sort intersection point set to obtain an intersection polygon - Convex Hull
Algorithm(Jarvis march)

218 APPENDIX B. GEOMETRIC FORMULAS AND ALGORITHMS FOR INTERPOLATION

B.3.3 Possible method for volumetric conservative interpolation

This section describes an extension of conservative interpolation to volumes. To extend the conserva-
tive interpolation method to volumes it is necessary to compute the intersection of two tetrahedrons,
then compute the integral of a data field on that intersection.

To terahedron/terahedron intersection procedure can be extended from the triangle/triangle in-
tersection procedure described in chapter . Though the problem is slightly more complex it can be
computed in the same way:

1 First compute the set of intersection polyhedron vertices.

2 Build the intersection polyhedron from the intersection polyhedron vertices.

The computation of the intersection polyhedron vertices can be carried out in the same way as
for the triangle case: first all the vertices of each tetrahedron are tested to see if they are inside the
other tetrahedron. The vertices which are found to be inside the other polyhedron are added to the
intersection polyhedron point set. Then the intersection points coming from the tetrahedrons faces
need to be computed. Since the faces are triangular this can be done by using the triangle/triangle
intersection computation procedure (in chapter).

The intersection polyhedron vertices are now calculated, but like in the triangle/triangle inter-
section, the intersection polyhedron still needs to be constructed. Knowing that the intersection
polyhedron must be convex (the intersection of two convex polyhedrons is convex), the intersection
polyhedron can be constructed using convex hull algorithms. The Jarvis march (Gift Wrapping) al-
gorithm described in appendix B.3.2 is only valid for 2D space, for 3D space different algorithms have
to be considered such as Incremental Hull [94] or QuickHull [7, 94, 6]. In a demonstration program
written using the code presented in appendix A.2, the intersection polyhedron of two arbitrary tetra-
hedrons is computed, Fig B.8. The algorithm used for this demonstration is Incremental Hull [94].
Though this algorithm is not very efficient (complexity O(n2)), it is a very straightforward method
to build a convex hull in arbitrary space and the tetrahedron intersection problem yields very small
intersection point sets. If efficiency is a concern QuickHull (complexity O(nlog(n))) could be used
instead.

The intersection polyhedron can be broken into a set of tetrahedrons (in the same way that a convex
polygon can be broken into a triangle fan). Then using the formula presented in appendix B.2.2 on each
tetrahedron of the intersection polyhedron decomposition it is possible to obtain an approximation of
the integral on the intersection polyhedron. This integral is exact for a mesh of P1 elements. Using
similar methods as described in chapter it is also possible to build a sparse matrix containing all the
coefficients to compute those integrals. Finally this method can be used for hybrid mesh projection
by breaking the mesh elements into tetrahedrons.

B.3. INTERSECTION CALCULATION 219

(a) (b)

(c) (d)

Figure B.8: Demonstration of the intersection of two tetrahedra. Two tetrahedra are presented in (a),
their intersection polyhedron is computed by first computing the intersection points and then using
incremental hull. Different views of the tetrahedrons and their intersection polyhedron are showed in
(b),(c) and (d).

220 APPENDIX B. GEOMETRIC FORMULAS AND ALGORITHMS FOR INTERPOLATION

Bibliography

[1] Federal Aviation Administration. FAA Aerospace Forecast Fiscal Years 2012-2032 . Technical
report, U.S. Department of Transportation Federal Aviation Administration Aviation Policy and
Plans, 2012.

[2] J. Amaya, E. Collado, B. Cuenot, and T. Poinsot. Coupling LES, radiation and structure in gas
turbine simulations. In NASA Ames/Stanford Univ. Center for Turbulence Research, editor,
Proc. of the Summer Program, volume in press, 2010.

[3] G.M. Amdahl. Validity of the single processor approach to achieving large scale computing
capabilities. In Proceedings of the April 18-20, 1967, spring joint computer conference, AFIPS
’67 (Spring), pages 483–485, New York, NY, USA, 1967. ACM.

[4] A. Piacentini and. PALM: A Dynamic Parallel Coupler. In José Palma, A. Sousa, Jack Dongarra,
and Vicente Hernández, editors, High Performance Computing for Computational Science —
VECPAR 2002, volume 2565 of Lecture Notes in Computer Science, pages 355–367. Springer
Berlin / Heidelberg, 2003. 10.1007/3-540-36569-9 32.

[5] ANSYS. ANSYS FLUENT 12.1 User’s Guide, 2010.

[6] D. Avis, D. Bremner, and R. Seidel. How good are convex hull algorithms? Computational
Geometry, 7(5–6):265–301, 1997. 11th ACM Symposium on Computational Geometry.

[7] C. Bradford Barber, D.P. Dobkin, and H. Huhdanpaa. The quickhull algorithm for convex hulls.
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 22(4):469–483, 1996.

[8] T. Baritaud, T. Poinsot, and M. Baum. Direct Numerical Simulation for Turbulent Reacting
Flows. Centre de recherche sur la combustion turbulent. Éditions Technip, 1996.

[9] Y. Bazilevs, M.C. Hsu, I. Akkerman, S. Wright, K. Takizawa, B. Henicke, T. Spielman, and T. E.
Tezduyar. 3D simulation of wind turbine rotors at full scale. Part I: Geometry modeling and
aerodynamics . INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS,
July 2010.

[10] J. Blinn. Jim Blinn’s Corner: Dirty Pixels. Morgan Kaufmann Series in Computer Graphics
and Geometric Modeling. Morgan Kaufmann, 1998.

[11] C. Bogey and C. Bailly. Large eddy simulations of round free jets using explicit filtering with-
/without dynamic Smagorinsky model. International Journal of Heat and Fluid Flow, 27(4):603–
610, 2006. Special Issue of The Fourth International Symposium on Turbulence and Shear Flow
Phenomena - 2005 - Special Issue of The Fourth International Symposium on Turbulence and
Shear Flow Phenomena - 2005.

[12] M. Boileau, G. Staffelbach, B. Cuenot, T. Poinsot, and C. Bérat. LES of an ignition sequence
in a gas turbine engine. Combust. Flame, 154(1-2):2–22, 2008.

221

222 BIBLIOGRAPHY

[13] G. Boudier, L. Y. M. Gicquel, T. Poinsot, D. Bissières, and C. Bérat. Comparison of LES, RANS
and Experiments in an Aeronautical Gas Turbine Combustion Chamber. Proc. Combust. Inst.,
31:3075–3082, 2007.

[14] G. Boudier, L. Y. M. Gicquel, T. Poinsot, D. Bissières, and C. Bérat. Effect of mesh resolution
on Large Eddy Simulation of reacting flows in complex geometry combustors. Combust. Flame,
155(1-2):196–214, 2008.

[15] H. Boughanem and A. Trouvé. Validation du code de simulation directe NTMIX3D pour le
calcul des écoulements turbulents réactifs. Technical Report 42907, Institut Français du Pétrole,
1996.

[16] B. A. Boville and P. R. Gent. The NCAR Climate System Model, version one. J. Climate,
11:1115–1130, 1998.

[17] T. Bray, J. Paoli, and C.M. Sperberg-McQueen. Extensible Markup Language (XML) 1.0. W3C
standards, 2000.

[18] K.Y. Bülah and R.H. Scanlan. Resonance, tacoma narrows bridge failure, and undergraduate
physics textbooks. Am, J. Phys, 59:2, 1991.

[19] S. Carlsson. Average-case results on heapsort. BIT Numerical Mathematics, 27(1):2–17, 1987.

[20] S. Chemin. Etude des Interactions Thermiques Fluide-Structure par un Couplage de Codes de
Calcul. PhD thesis, Université de Reims Champagne Ardenne, 2006.

[21] G. Chesshire and W. Henshaw. A scheme for conservative interpolation on overlapping grids.
SIAM Journal on Scientific Computing, 15(4):819–845, 1994.

[22] O. Colin, F. Ducros, D. Veynante, and T. Poinsot. A thickened flame model for large eddy
simulations of turbulent premixed combustion. Phys. Fluids, 12(7):1843–1863, 2000.

[23] E. Collado-Morata, N. Gourdain, F. Duchaine, and L.Y.M. Gicquel. Effects of free-stream
turbulence on high pressure turbine blade heat transfer predicted by structured and unstructured
les. International Journal of Heat and Mass Transfer, (0):–, 2012.

[24] Computational Dynamics Limited. STAR-CD Version 3.15, User Guide and Methodology Man-
uals, 2001.

[25] COMSOL AB, Stockholm: COMSOL AB. Multiphysics User’s Guide, 2005.

[26] COMSOL Conference. Large Scale Simulation on Clusters using COMSOL 4.2 , October 2011.

[27] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C Stein. Introduction to Algorithms, pages
947–957. MIT Press and McGraw-Hill, Second Edition, 2001.

[28] S Corrsin. On the Spectrum of Isotropic Temperature Fluctuations in an Isotropic Turbulence.
Journal of Applied Physics, 22(4):469–473, April 1951.

[29] J. W. Deardorff. A numerical study of three-dimensional turbulent channel flow at large Reynolds
numbers. Journal of Fluid Mechanics, 41:453–480, 1970.

[30] Reaction Design. THE CHEMKIN THERMODYNAMIC DATABASE, 2000.

[31] E. R. Van Driest. Turbulent Boundary Layer in Compressible Fluids. J. Aeronaut. Sci.,
18(3):145–160, 216, 1951.

BIBLIOGRAPHY 223

[32] F. Duchaine, A. Corpron, L. Pons, V. Moureau, F. Nicoud, and T. Poinsot. Development
and assessment of a coupled strategy for conjugate heat transfer with Large Eddy Simulation.
Application to a cooled turbine blade. International Journal of Heat and Fluid Flow, 30(6):Pages
1129–1141, 2009.

[33] U.S. Departement Of Energy. The Opportunities and Challenges of Exascale Computing. pages
12–13, 2010.

[34] J. Farrell. Java Programming. SAM 2010 Compatible Products Series. Course Technology, 2011.

[35] P.E. Farrell, M.D. Piggott, C.C. Pain, G.J. Gorman, and C.R. Wilson. Conservative interpola-
tion between unstructured meshes via supermesh construction. Computer Methods in Applied
Mechanics and Engineering, 198:2632–2642, 2009.

[36] D.A. Field. A generic delaunay triangulation algorithm for finite element meshes. Advances in
Engineering Software and Workstations, 13(5â€“6):263–272, 1991.

[37] A. Fouilloux and A. Piacentini. The PALM Project: MPMD Paradigm for an Oceanic Data
Assimilation Software. Lecture Notes In Computer Science, pages 1423 – 1430, 1999.

[38] H. Fuchs, Z.M. Kedem, and B. F. Naylor. On visible surface generation by a priori tree structures.
SIGGRAPH Comput. Graph., 14(3):124–133, July 1980.

[39] M.B. Giles. Stability analysis of numerical interface conditions in fluid-structure thermal anal-
ysis. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1997.

[40] A.S. Glassner. An Introduction to Ray Tracing. Morgan Kaufmann Series in Computer Graphics
and Geometric Modeling. Academic Press, 1989.

[41] S.K. Godunov and V.S. Ryabenkii. The Theory of Difference Schemes. An Introduction. North
Holland, Amsterdam, 1964.

[42] O. Goloubeva, M. Rebaudengo, M. Sonza Reorda, and M. Violante. Soft-error detection using
control flow assertions. In Defect and Fault Tolerance in VLSI Systems, 2003. Proceedings. 18th
IEEE International Symposium on, pages 581–588, nov. 2003.

[43] N Gourdain, L Gicquel, M Montagnac, O Vermorel, M Gazaix, G Staffelbach, M Garcia,
JF Boussuge, and T Poinsot. High performance parallel computing of flows in complex ge-
ometries: I. Methods. Comput. Sci. Disc., 2:015003, 2009.

[44] W. Gropp, E. Lusk, and A. Skjellum. Using MPI, Portable Parallel Programming with the
Message Passing Interface. The MIT Press, 2nd edition edition, 1999.

[45] F. Haugen. Discrete-time signals and systems. TechTeach, February 2005.

[46] Karlsson Hibbitt and Sorensen. ABAQUS/standard: user’s manual, version 5.7. Number vol. 3
in ABAQUS/standard: User’s Manual, Version 5.7. Hibbitt, Karlsson & Sorensen, 1997.

[47] C. Hirsch. Numerical Computation of Internal and External Flows. John Wiley, New York,
1988.

[48] C. A. R. Hoare. Quicksort. The Computer Journal, 5(1):10–16, 1962.

[49] S.S. Hossain, S. Hossainy, Y. Bazilevs, V.M. Calo, and T.J.R. Hughes. Mathematical Modeling
of Coupled Drug and Drug-encapsulated Nanoparticle Transport in Patient-Specific Coronary
Artery Walls. Technical report, Institute for Computational Engineering and Sciences (ICES)
The University of Texas at Austin, USA, 2011.

224 BIBLIOGRAPHY

[50] R.A. Jarvis. On the identification of the convex hull of a finite set of points in the plane.
Information Processing Letters, 2(1):18–21, 1973.

[51] R. Jenkins. Algorithm Alley. Dr Dobbs Journal, 22(9):107–110, 1997.

[52] W.P Jones and B.E Launder. The prediction of laminarization with a two-equation model of
turbulence. International Journal of Heat and Mass Transfer, 15(2):301–314, 1972.

[53] W. Joppich and M. Kürschner. MpCCI—a tool for the simulation of coupled applications.
Concurrency and Computation: Practice and Experience, 18:183–192, feb 2006.

[54] E.I. Jury. Theory and Application of the Z-Transform Method. Krieger Pub Co, 1973.

[55] B. A. Kader. Temperature and Concentration Profiles in Fully Turbulent Boundary Layers. Int.
J. Heat and Mass Transfer, 24(9):1541–1544, 1981.

[56] G. Karypis and V. Kumar. Multilevel algorithms for multi-constraint graph partitioning. Tech-
nical Report 98-019, University of Minnesota, Department of Computer Science/Army HPC
Research Center, 1998.

[57] R.J. Kee, J.F. Grcar, M.D. Smooke, and J.A. Miller. FORTRAN program for modeling steady
laminar one-dimensional premixed flames. Sandia National Laboratories Report, SAND 85-
82(SAND85-8240):114 p, 1985.

[58] G. Kelsall and C. Troger. Prediction and control of combustion instabilities in industrial gas
turbines. Applied Thermal Engineering, 24(11 - 12):1571–1582, August 2004.

[59] D. Knuth. The Art of Computer Programming, volume 3, Sorting and Searching, pages 506–542.
Addison-Wesley, 1973.

[60] J. Krüger and R. Westermann. Linear algebra operators for GPU implementation of numerical
algorithms. In ACM SIGGRAPH 2005 Courses, SIGGRAPH ’05, New York, NY, USA, 2005.
ACM.

[61] P.Y. Lagrée. Equation de la chaleur en instationnaire, March 2010.

[62] N. Lamarque. Schémas numériques et conditions limites pour la simulation aux grandes échelles
de la combustion diphasique dans les foyers d’hélicoptère. Phd thesis, INP Toulouse, 2007.

[63] G. Lartigue, U. Meier, and C. Bérat. Experimental and numerical investigation of self-excited
combustion oscillations in a scaled gas turbine combustor . Applied Thermal Engineering, 2004.

[64] B. E. Launder and B. I. Sharma. Application of the energy-dissipation model of turbulence to
the calculation of flow near a spinning disc. Letters Heat Mass Transfer, 1:131–137, December
1974.

[65] P. D. Lax and B. Wendroff. Difference schemes for hyperbolic equations with high order of
accuracy. Commun. Pure Appl. Math., 17:381–398, 1964.

[66] R. Löhner. Applied Computational Fluid Dynamics Techniques: An Introduction Based on Finite
Element Methods. John Wiley & Sons, 2008.

[67] C.C. Long, Y. Bazilves, M.-C. Hsu, J. Feinstein, and A. Marsden. Fluid Structure Interaction
Simulations of the Fontan Procedure using Variable Wall Properties. International Journal for
Numerical Methods in Biomedical Engineering, 2012.

[68] A.W.S. Loo. Peer-To-Peer Computing. Computer Communications and Networks. Springer,
2007.

BIBLIOGRAPHY 225

[69] L.G. Margolin and Mikhail Shashkov. Second-order sign-preserving conservative interpolation
(remapping) on general grids. Journal of Computational Physics, 184(1):266–298, 2003.

[70] R. J. II Marks. Introduction to Shannon Sampling and Interpolation Theory. Springer-Verlag,
1991.

[71] R.J. Marks. Advanced topics in Shannon sampling and interpolation theory. Springer texts in
electrical engineering. Springer-Verlag, 1993.

[72] P. Moin, K. D. Squires, W. Cabot, and S. Lee. A dynamic subgrid-scale model for compressible
turbulence and scalar transport. Phys. Fluids, A 3(11):2746–2757, 1991.

[73] T. Möller, E. Haines, and N. Hoffman. Real-Time Rendering. Ak Peters Series. A.K. Peters,
2008.

[74] E. Morata Collado, N. Gourdain, F. Duchaine, and L.Y.M. Gicquel. Effect of free-stream tur-
bulence on high pressure turbine blade heat transfer using structured and unstructured LES.
submitted to ĲHMT.

[75] V. Moureau. YALES2 home page on www.coria-cfd.fr.

[76] V. Moureau, P. Domingo, and L. Vervisch. Design of a massively parallel CFD code for complex
geometries. Comptes Rendus Mécanique, 339(2–3):141–148, 2011. High Performance Computing.

[77] M. Naor and U. Wieder. A Simple Fault Tolerant Distributed Hash Table. In M. Kaashoek and
Ion Stoica, editors, Peer-to-Peer Systems II, volume 2735 of Lecture Notes in Computer Science,
pages 88–97. Springer Berlin / Heidelberg, 2003.

[78] F. Nicoud and F. Ducros. Subgrid-Scale Stress Modelling Based on the Square of
the Velocity Gradient Tensor. Flow, Turbulence and Combustion, 62(3):183–200, 1999.
10.1023/A:1009995426001.

[79] F. Nicoud, F. Ducros, and T. Schønfeld. Towards Direct and Large Eddy Simulations of Com-
pressible Flows in Complex Geometries. In Notes in Numerical Fluid Mechanics, pages 157–171.
1998.

[80] J. Nolen. Partial differential equations and diffusion processes. Technical report, Stanford
University. Department of Mathematics, 2009.

[81] G. Oppattaiyamath, N. Reddy, S. Jammy, and V. Kulkarni. Conjugate Heat Transfer Analy-
sis for Hypersonic Flow over Finite Thickness Flat Plate. Journal of Aerospace Engineering,
November 2011.

[82] S.A. Orszag. Analytical theories of turbulence. Journal of Fluid Mechanics, 41(02):363–386,
1970.

[83] T. Passot and A. Pouquet. Numerical simulation of compressible homogeneous flows in the
turbulent regime. J. Fluid Mech., 181:441–466, 1987.

[84] T. Pedot. Prediction of Coke/Deposit in Industrial Furnace Burner (Fluid Mechanics, Combus-
tion, Heat). PhD thesis, Institut National Polytechnique de Toulouse, 2011.

[85] G. Petrone, C. de Nicola, D. Quagliarella, J. Witteveen, and G. Laccarino. Analysis and Op-
timization of Wind Turbine Noise under Uncertainty. Technical report, Fourth International
Meeting on Wind Turbine Noise, 2011.

[86] A. Piacentini, T. Moreland, A. Thévenin, and F. Duchaine. Open-PALM: an Open Source
Dynamic Parallel Coupler. Proceedings of Coupled Problems 2011, pages 183–192, 2011.

226 BIBLIOGRAPHY

[87] J. Pieprzyk and B. Sadeghiyan. Design of hashing algorithms. Lecture notes in computer science.
Springer-Verlag, 1993.

[88] U. Piomelli, W. H. Cabot, P. Moin, and S. Lee. Subgrid-scale backscatter in turbulent and
transitional flows. Phys. FluidsA, 3(7):1766–1771, July 1991.

[89] T. Poinsot and D. Veynante. Theoretical and Numerical Combustion. R.T. Edwards, 2001.

[90] S. B. Pope. Turbulent flows, chapter 10. Cambridge University Press, 2000.

[91] S. B. Pope. Turbulent flows, chapter 13. Cambridge University Press, 2000.

[92] S. B. Pope. Turbulent flows, chapter 6. The scales of motion, pages 182–189. Cambridge
University Press, 2000.

[93] F.P. Preparata and M.I. Shamos. Computational Geometry: An Introduction. Texts and Mono-
graphs in Computer Science. Springer-Verlag, 1985.

[94] F.P. Preparata and M.I. Shamos. Computational Geometry: An Introduction. Texts and Mono-
graphs in Computer Science. Springer-Verlag, 1985.

[95] R. Redler, S. Valcke, and H. Ritzdorf. OASIS4 – a coupling software for next generation earth
system modelling. Geoscientific Model Development, 3(1):87–104, 2010.

[96] J. Richard, F. Nicoud, et al. Towards the effect of the fluid ftructure coupling on the aeroacoustic
instabilities of solid rocket motors, 2011.

[97] D.S. Rosenblum. A practical approach to programming with assertions. Software Engineering,
IEEE Transactions on, 21(1):19–31, jan 1995.

[98] A. Rowstron and P. Druschel. Pastry: Scalable, Decentralized Object Location, and Routing for
Large-Scale Peer-to-Peer Systems. In Rachid Guerraoui, editor, Middleware 2001, volume 2218
of Lecture Notes in Computer Science, pages 329–350. Springer Berlin / Heidelberg, 2001.

[99] P. Sagaut. Large eddy simulation for incompressible flows: an introduction. Scientific computa-
tion. Springer, 2006.

[100] S. Sampath. Sampling Theory And Methods. Alpha Science International, 2005.

[101] F. Sarghini, U. Piomelli, and E. Balaras. Scale-similar models for large-eddy simulations. Phys.
FluidsA, 11(6):1596–1607, 1999.

[102] J.W. Sawyer. Sawyer’s Gas Turbine Engineering Handbook: Application. Sawyer’s Gas Turbine
Engineering Handbook. Gas Turbine Publications, 1972.

[103] T. Schmitt. Simulation des grandes échelles de la combustion turbulente en régime supercritique.
PhD thesis, Université de Toulouse - Ecole doctorale MEGeP, CERFACS - CFD Team, Toulouse,
June 2009.

[104] T. Schönfeld and M. Rudgyard. Steady and unsteady flow simulations using the hybrid flow
solver AVBP. AIAA, 37(11):1378–1385, 1999.

[105] H. Sehitoglu. Thermomechanical Fatigue Behavior of Materials, page 233. Number n° 1186 in
ASTM special technical publication. ASTM, 1993.

[106] L. Selle, G. Lartigue, T. Poinsot, R. Koch, K.-U. Schildmacher, W. Krebs, B. Prade, P. Kauf-
mann, and D. Veynante. Compressible Large-Eddy Simulation of turbulent combustion in com-
plex geometry on unstructured meshes. Combust. Flame, 137(4):489–505, 2004.

BIBLIOGRAPHY 227

[107] M. Shevtsov, A. Soupikov, and A. Kapustin. Highly Parallel Fast Kd-tree Construction for
Interactive Ray Tracing of Dynamic Scenes. EUROGRAPHICS 2007, 26, Number 3, 2007.

[108] D. Shreiner, B. Licea-Kane, and G. Sellers. OpenGL Programming Guide: The Official Guide
to Learning OpenGL, Versions 4.1. OpenGL Series. Addison Wesley Professional, 2012.

[109] H.D. Simon. Partitioning of unstructured problems for parallel processing. Computing Systems
in Engineering, 2(Issue 2-3):135–148, 1991.

[110] J. Sitaraman, M. Floros, A. M. Wissink, and M. Potsdam. Parallel Unsteady Overset Mesh
Methodology for a Multi-Solver Paraidgm with Adaptive Cartesian Grids. 26th AIAA Applied
Aerodynamics Conference, 2008.

[111] J. Smagorinsky. General Circulation Experiments with the Primitive Equations. Monthly
Weather Review, 91:99, 1963.

[112] W. Richard Stevens and Gary R. Wright. TCP/IP Illustrated: the protocols, volume 1. Addison-
Wesley Professional, 1994.

[113] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrishnan. Chord: A scalable peer-
to-peer lookup service for internet applications. SIGCOMM Comput. Commun. Rev., 31(4):149–
160, August 2001.

[114] H. Tennekes and J.L. Lumley. A First Course in Turbulence. Mit Press, 1972.

[115] M. Teschner and B. Heidelberger. Optimized Spatial Hashing for Collision Detection of De-
formable Objects. Proc. VMV, Munich, Germany, 2003.

[116] L. Thomason. Tinyxml website, 2000.

[117] Th. v. Karman. Mechanical similitude and turbulence. National Advisory Committee for Aero-
nautics, 1930.

[118] G. van den Bergen. Efficient collision detection of complex deformable models using AABB
trees. Journal of Graphics Tools, 2(4), 1997.

[119] Wickert. Lectures Notes - Introduction to Signals and Systems, chapter 4 - Sampling and Alias-
ing. University of Colorado Colorado Springs, 2010.

[120] P. Wolf, G. Staffelbach, A. Roux, L. Gicquel, T. Poinsot, and V. Moureau. Massively parallel LES
of azimuthal thermo-acoustic instabilities in annular gas turbines. C. R. Acad. Sci.Mécanique,
337(6-7):385–394, 2009.

[121] H.J. Wolfson and I. Rigoutsos. Geometric Hashing: An Overview. IEEE Comput. Sci. Eng.,
4(4):10–21, October 1997.

[122] V. Yakhot, S. A. Orszag, S. Thangam, T. B. Gatski, and C. G. Speziale. Development of
turbulence models for shear flows by a double expansion technique. Physics of Fluids A: Fluid
Dynamics, 4(7):1510–1520, 1992.

[123] Z. Yosibash and E. Priel. Simulating the coupled active and passive mechanical response of the
artery wall by high order finite elements. Technical report, Computational Mechanics Labo-
ratory, Mechanical Engineering Department,Ben-Gurion University of the Negev, Beer-Sheva,
Israel, 2011.

[124] K. Zhou, Q. Hou, R. Wang, and B. Guo. Real-time KD-tree construction on graphics hardware.
ACM Trans. Graph., 27(5):126:1–126:11, December 2008.

228 BIBLIOGRAPHY

[125] U. Zurcher, J.C. Badoux, and M. Mussard. The World’s First Industrial Gas Turbine Set at
Neuchâtel (1939). An International Historic Mechanical Engineering Significance of Landmark,
September 1988.

	Scientific Context
	Introduction
	Multi-physics in computer simulation
	State of the art of multi-physic simulations and solutions
	The goal: Coupling unsteady LES solver in massively parallel environments, application to a conjugate heat transfer case

	I Physical modelisation
	Fluid Simulation
	Compressible Navier Stockes equations of multi species flows
	Large Eddy Simulation
	Sub-grid closures
	Sub-grid scale models
	Wall law model
	The thickened flame model for LES

	Basic validation cases
	Turbulence validation
	Wall model validation
	Combustion validation

	Solid thermal conduction
	The equation solved: the unsteady heat equation
	Validation
	Analytical resolution of the problem
	Comparison with AVTP results

	LES computation
	The solid domain

	II Coupling stability and convergence analysis
	Influence of fluid instabilities on solid's temperature convergence
	Influence of fluid unsteady features on a 1D solid's temperature domain
	Influence of the coupling frequency on the convergence of an unsteady conjugate heat transfer problem
	Conclusion: what should we do?

	Numerical stability of a tightly coupled algorithm

	III Interpolation methods for unstructured grid coupling
	The basics of interpolation
	Sampling based interpolation
	Signal reconstruction
	Grid to Grid Interpolation example

	Conservative interpolation
	Conservative interpolation in 1D

	Basic comparison of the interpolation methods

	Interpolations based on linear transforms
	Nearest neighbor interpolation
	Linear interpolation
	Conservative interpolation
	Conservative Interpolation on surface meshes

	Efficient geometrical search methods for unstructured grids
	The Nearest neighbor problem
	Kd-Tree search algorithm
	Validation of the Kd Tree implementation

	Element scan methods
	For linear interpolation: Finding the containing element
	For linear conservative interpolation: efficient projection algorithm

	Binary space partitioning applied to elements AABB trees

	IV Code coupling methods designed for high performance computing
	Issues specific to HPC
	Introduction
	Massively parallel architectures
	Issues specific to Massively parallel

	Computational view of code-coupling for unstructured meshes
	The setup phase
	The initialization phase
	The runtime phase

	Algorithms and Methods implemented
	The geometrical search, first step: the coarse routing step
	Routing using a distributed hash table

	The geometrical search, second step: building the communication graph and the partitioned interpolation matrices
	Direct Communication using Interpolation overlap
	Tests of the proposed method

	V Application to an aeronautical burner
	Coupled application
	Coupled application setup
	Application scalability assessment

	Results

	VI Appendix
	Software developed during this thesis
	A basic solution Interpolator
	The coupling library
	A graphical user interface for 3D unstructured mesh coupling

	Geometric formulas and algorithms for interpolation
	Barycentric coordinates for linear interpolation
	Barycentric coordinates for a segment in 1D
	Barycentric coordinates for a triangle in 2D
	Barycentric coordinates for a tetrahedron in 3D

	Calculating the integral of a linear function over P1 elements
	Calculating the integral of a linear function on a triangle
	Calculating the integral of a linear function on a tetrahedron

	Intersection calculation
	Intersection procedure for two segments
	Algorithm: The jarvis March - Convex Hull in 2D
	Possible method for volumetric conservative interpolation

