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Résumé:Dans le paysage en constante évo-
lution de I'Industrie 4.0, cette thése aborde
deux défis cruciaux visant a améliorer le di-
agnostic de défauts : une interprétation ef-
ficace des données multimodales provenant
de divers capteurs et une exploitation intel-
ligente des informations contenues dans des
rares rapports de maintenance spécialisés.

Le premier défi implique la synthése de flux
de données de diverses modalités en une
représentation expressive s’adaptant aux con-
ditions dynamiques du systéme. Ceci né-
cessite le développement de stratégies inno-
vantes pour traiter les données complexes
efficacement en temps et en mémoire.

Le second défi concerne [I'extraction
d’informations précieuses a partir d’'un nom-
bre limité de rapports de maintenance rédigés
par des experts. Cette tache est rendue com-

plexe par le vocabulaire spécifique que ces
rapports possédent.

En réponse a ces défis, la thése présente une
architecture d’apprentissage profond unique
qui gére habilement les longs flux de don-
nées multimodales non alignées. De plus,
elle propose une méthode transductive in-
novante pour |'apprentissage a quelques ex-
emples textuels, qui exploite les données éti-
quetées limitées disponibles pour améliorer les
performances de prédiction, tout en assurant
la confidentialité des informations sensibles.
Cette thése est organisée en deux parties prin-
cipales, la premiére traite de |'apprentissage
multimodal pour le diagnostic des défauts,
et la seconde cible I'apprentissage a quelques
exemples en TAL pour I'analyse des données
textuelles.

Title: Harnessing the Power of Multimodal and Textual Data in Industry 4.0
Keywords: Deep Learning, Multimodal Fusion, Natural Language Processing, Few-shot learning, Fault

diagnosis, Predictive maintenance

Abstract: In the ever-evolving landscape of
Industry 4.0, this thesis addresses two criti-
cal challenges aimed at enhancing fault diag-
nosis: effective interpretation of multimodal
data from diverse sensors and smart exploita-
tion of the information contained in scarce,
specialized maintenance reports.

The first challenge involves the synthesis of
data streams from various modalities into an
expressive representation that can adapt to
dynamic system conditions. This necessitates
the development of innovative strategies to
process complex data in a time and memory-
efficient manner.

The second challenge focuses on extracting
valuable information from the limited number
of expert-written maintenance reports. This

task is made complex due to the highly spe-
cialized industry-specific vocabulary these re-
ports possess.

In response to these challenges, the thesis
presents a unique deep learning architecture
that handles long, unaligned multimodal data
streams. Furthermore, it proposes an innova-
tive transductive method for textual few-shot
learning, which leverages the limited available
labeled data for improved prediction perfor-
mance, while ensuring confidentiality of sen-
sitive information.

Divided into two parts, the first addresses
multimodal learning for fault diagnosis, and
the second targets few-shot learning in NLP
for textual data analysis.
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1 INTRODUCTION

1.1 CONCRETE MOTIVATIONS AND CONTEXT

PREDICTIVE MAINTENANCE AT THE AGE OF INDUSTRY 4.0

The Fourth Industrial Revolution, often referred to as ndustry 4.0, is currently shaping our era
with a new phase in the transformation of the industrial sector. Built on the digital revolution
(the Third Industrial Revolution), Industry 4.0 is characterized by a fusion of technologies that
blur the lines between the physical, digital, and biological spheres, leading to a systemic trans-
formation of the entire value chain of the manufacturing sector (Schwab 2017). At the heart of
Industry 4.0 lies a series of technological advancements, represented in Figure 1.1, such as the
Internet of Things (IoT), Cyber-Physical Systems, Cloud Computing, Digital Twins, and Arti-
ficial Intelligence (AI). These advancements have resulted in a paradigm shift from traditional,
linear manufacturing processes to complex, integrated systems where machinery and equipment
can communicate and cooperate with each other and with humans in real time. This concept
is commonly referred to as the smart factory (B. Chen et al. 2017). To illustrate, in a smart fac-
tory environment, an assembly line robot is capable of autonomously communicating with other
machinery to adjust its production pace based on real-time demand or even preemptively order
replacement parts when a failure is anticipated. Similarly, smart logistics systems in Industry 4.0
can dynamically reroute shipments based on real-time conditions, reducing delays and enhancing
efficiency.

Cyber-Physical Additive
Systems Manufacturing

Automation and
Industrial Robots

Internet of
Things

o

Simulation
m and Modelling
==

Arifcial Industry 4.0

Intelligence

Cloud
Computing Blockchain

Augmented Reality

Big Data Analytics

Figure 1.1: Pillars of Industry 4.0. Figure from (Ryalat et al. 2023).



1 Introduction

One of the most significant transformations in Industry 4.0 is the shift towards predictive main-
tenance. Traditional maintenance policies based on estimated lifetimes are giving way to systems
that can predict failures and schedule maintenance in real time. Predictive maintenance, driven
by real-time data from various sensors and machines, aims to prevent unplanned downtime, en-
hance efficiency, and increase the overall life span of the machinery (Mobley 2002). The emergence
of predictive maintenance systems has been fueled by the massive availability of data from in-
terconnected and intelligent automation systems that Industry 4.0 puts at the center of global
production, particularly through the integration of smart sensors aiming to build global control
systems such as Supervisory Control And Data Acquisition (SCADA). The induced challenge
and opportunity - that motivate this thesis - lies in exploiting the vast data acquired by these sen-
sors for fault monitoring, diagnosis, and more generally predictive maintenance.

Central to these developments is the role of data, that is the cornerstone of Industry 4.0. The
interconnected sensors and devices nowadays generate an unprecedented amount of data that em-
bodies a rich source of insight into the functioning, performance, and potential anomalies within
the systems, but that are collected from various sources and in various forms, leading to the emer-
gence of complex and often heterogeneous data sources. Consider the example of an automated
production line in a smart factory. As part of its operation, it continuously generates multiple
types of data through various sensors and systems. For instance, vibration sensors on the machin-
ery provide data on the machine’s physical state, indicating its stability or any unusual shaking
that could signify a potential issue. Temperature sensors provide another form of data, offering
insight into the machine’s thermal conditions, and cameras installed in strategic locations capture
real-time visual data of the machine’s operation and the production process. Simultaneously, the
system also generates textual data in the form of operational logs or maintenance reports that pro-
vide contextual information about the machine’s operational status, historical issues, or previous
performed maintenances.

The key advantage of considering this multimodal data is that it offers a comprehensive and
detailed perspective of the system’s state. Each modality, whether it be sensor readings, images,
or textual reports, captures different facets of the system’s condition, thereby enriching the in-
formation available for fault diagnosis or other predictive maintenance tasks. For instance, while
real-time sensor data could provide immediate insights about the system’s performance parame-
ters such as temperature or vibration, image data could reveal physical anomalies or damages, and
textual reports could offer context or detailed accounts of previous incidents or interventions.
Besides, multimodal data introduces the capability for cross-verification of faults. An anomaly
detected in one modality can be cross-checked and confirmed with information from another
modality, adding a layer of redundancy and increasing the confidence of the fault detection pro-
cess. This becomes particularly crucial when dealing with complex or subtle faults that may not
be readily discernible in a single data modality, but become evident when multiple data types are
analyzed collectively. But even more significantly, the integration of different modalities allows us
to identify faults that might remain hidden when considering each modality in isolation. A mi-
nor anomaly in one modality, seemingly insignificant on its own, could be the critical piece of the
puzzle when viewed in the context of other modalities, leading to the identification of a potential
fault.



1.1 Concrete motivations and context
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Corrective Maintenance Report

Instrument: RAMAN LIDAR
Location: Central Facility
Date/Time (GMT) 12/15/2000 2000
Technician: Chris Martin
Maint. Type: Unscheduled CM
Problem Fixed: No

Suspected Cause: HW Failure
Component: Laser

Problem Description: The Raman Lidar laser energy
had fallen to around 200 mJ.
The lamps were due to be
replaced, but the energy
seemed to drop off rather
quickly the past couple of
days.

Action Performed:  Inspection of the optics
during lamp replacement
found that the Pockells Cell
was bumed. The Pockells cell
had just been installed by
Continuum on 10/19 and
should be under warranty.
Scheduled a Continuum
service call for 12/18. System
off line until then.

Figure 1.2: An example of a corrective maintenance report of a climate research facility. Figure from (Teske
etal. 2001).

However, the process of integrating these diverse data types presents a unique set of chal-
lenges, necessitating careful and innovative approaches for successful implementation.

While the advantages of using multimodal data are apparent, the unique role of textual data
must be emphasized. Textual data, often generated in the form of operational logs, or mainte-
nance reports, provide a rich and contextualized understanding of system operations and past
incidents (see Figure 1.2). Unlike numerical or visual data, textual data contains nuanced infor-
mation that directly reflects the expert knowledge and interpretative insights of human operators,
making it a valuable resource for fault diagnosis. For example, maintenance records can provide
crucial insights into the system’s historical problems, the repairs undertaken, and their effective-
ness, aiding in the prediction of future faults. Even more, incident reports often describe the cir-
cumstances leading up to a fault, providing a narrative that can help identify patterns or triggers
associated with system failures. Moreover, textual data can serve as a connecting bridge among
different modalities, providing context and interpretive lens to raw numerical or visual data. A
notation in a maintenance report might clarify, nuance or amplify an anomaly in the vibration
data, mainly depending on the chosen words. This integration of textual data into the fault di-
agnosis process illuminates these connections and therefore enriches the analysis. However, the
challenge lies in the fact that this rich textual data is not abundant, making it harder to
effectively leverage for our analyses.

In essence, multimodal data, including textual data, are a cornerstone of Industry 4.0, provid-
ing a more comprehensive understanding of system operations. Each modality, with its distinct
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perspective, enriches the information available for predictive maintenance. Particularly, textual
data, encapsulating the richness of human language and expert insight, provides subtleties and nu-
anced patterns that sensor or image data may overlook. Through the integration of these diverse
modalities, we aim to design a global representation of a system’s state, enhancing the reliability
of fault detection and predictive maintenance strategies. Ultimately, this leads to improved oper-
ational efficiency, reduced downtime, and optimized performance within the industry. However,
the handling and interpretation of such complex data require advanced methods, which is where
deep learning (DL) and other Al techniques come into play.

JOURNEY THROUGH ARTIFICIAL INTELLIGENCE: FROM EARLY ENDEAVORS TO THE
ADVENT OF DEEP LEARNING

The field of AT has seen rapid development since its inception in the 1950s. The historic Dart-
mouth workshop (McCarthy etal. 2006), along with Alan Turing’s groundbreaking paper Comput-
ing Machinery and Intelligence (Turing 1950), laid the foundations for this exciting field of study.
While the original question -"Can machines think?" - and the pursuit of strong Al including arti-
ficial consciousness, still remains elusive, it has nonetheless inspired the creation of autonomous
systems that rival, and sometimes surpass, human performance in specific tasks. Thus, IBM Deep
Blue literally beat chess world champion Gary Kasparov in 1997, while more recently Deepmind
reinforcement learning models AlphaGo (Silver et al. 2016) and AlphaStar (Vinyals, Babuschkin, et
al. 2019) achieved the same performance in more complex games, respectively Go and Starcraft
2. In addition to gaming, Al has been instrumental in transforming many industrial sectors. For
instance, in healthcare, Al has not only been used for skin cancer detection (Esteva et al. 2017) but
has also demonstrated promising results in diagnosing diabetic retinopathy (Gulshan et al. 2016).
In biology, apart from revolutionizing protein-structure prediction with AlphaFold (Jumper et al.
2021), AT has been utilized in drug discovery and development (Stokes et al. 2020). The aeronau-
tics sector has witnessed the conception of autonomous vehicles powered by Al (Grigorescu et al.
2020), while in Natural Language Processing (NLP), neural machine translation systems have sig-
nificantly improved thanks to AI, notably in 2014 (Sutskever, Vinyals, etal. 2014), and more recently
with the introduction of Transformer architecture (Vaswanietal. 2017). Furthermore, Al has made
significant strides in predictive maintenance through machine health monitoring (Yiwei Cheng et
al. 2019).

These advancements can be attributed largely to the success of Machine Learning (ML), and
more recently, Deep Learning (LeCun etal. 2015; M. Raghu et al. 2020). Machine learning, a branch
of subsymbolic Al, leverages past experiences, represented by annotated datasets, to build pre-
dictive models. This process involves an iterative optimization problem using the available data,
placing significant importance on the representation of the input data. Unlike traditional ML,
DL architectures use generic priors to learn a suitable representation of input data through non-
linear transformations (Bengio, Courville, et al. 2013). This learned representation aims to extract
salient features from the raw data structure, which is then used by a classifier to make relevant
decisions. Over the past years, the community put a lot of emphasis on Representation Learning:
the more expressive the representation is, the more effective and generalizable the model will be.
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However, a key challenge that constrains DL models is the data requirement. These models
typically require vast amounts of data to perform optimally, and this prerequisite often outstrips
the available labeled data, especially in niche or sensitive domains. While the initial successes of
Deep Learning were largely popularized by supervised learning approaches, where models were
trained on large labeled datasets, the Al research community therefore quickly recognized the
need for more versatile learning paradigms, especially for scenarios where labeled data is scarce or
non-existent. This gave rise to the development of multiple learning paradigms to optimize data
usage:

* Unsupervised Learning: These approaches, such as clustering (J. Xie et al. 2016) and dimen-
sionality reduction(Geoffrey E Hinton etal. 2006), train models using unlabeled data, discov-
ering hidden patterns and structures without guidance.

* Semi-Supervised Learning: As the name suggests, this technique utilizes a mix of labeled
and unlabeled data for training (Zhu 2005). The idea is to leverage the unlabeled data to
enhance the learning process, particularly when labeled data is limited.

* Transfer Learning: This paradigm revolves around the reuse of pre-trained models on new,
related tasks. The principle is to leverage the knowledge acquired from one task to improve
learning in another, reducing the need for extensive labeled data in the new task (S.]. Pan
etal. 2010).

* Domain Adaptation: This approach aims to adapt models trained on one domain (source)
to perform well on a different but related domain (target), especially when the target do-
main has limited labeled data (Ganin et al. 2016). It is a subset of transfer learning that ad-
dresses shifts in data distribution between tasks.

* Few-Shot Learning (FSL): FSL (Vinyals, Blundell, et al. 2016) focuses on training models to
make accurate predictions with minimal labeled examples. It leverages techniques that em-
phasize generalization, enabling models to learn eftectively from a small sample size.

More recently the AI community has turned towards self-supervised learning, a paradigm in
which models are pre-trained on large amounts of unlabeled data and then fine-tuned on a smaller
labeled dataset. This approach not only makes efficient use of the available data but also equips
models with a better generalization capacity. The advent of self-supervised learning is comple-
mented by the scaling paradigm (Kaplan et al. 2020; Rosenfeld et al. 2020), which posits that model
performance can be improved by simply increasing the model size, data size, and the computa-
tional resources, given the right model architecture and learning algorithm. This has lately led to
the rise of ’Foundation Models’, such as GPT-4 (OpenAlI 2023), which are large, general-purpose
models trained on massive data from the internet. These models can be fine-tuned on specific
tasks with relatively little data, redefining the state of the art in numerous Al applications. As we
advance, the focus remains on harnessing these paradigms to build more eftective, robust, and
versatile Al systems.
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1.2 OBJECTIVES AND CHALLENGES

In the evolving landscape of Industry 4.0, this thesis takes place in the project Maintenance Prévi-
sionnelle et Optimisation' (MPO) of IRT SystemX. This project aims to overcome the technolog-
ical and methodological barriers of predictive maintenance and the combination of maintenance
policies in production systems, made possible by new technologies and artificial intelligence, and
the computing power of the machines, in order to optimize their maintenance in operational
condition. In the context of this project, the global objective of this thesis was to study predictive
maintenance and more precisely fault diagnosis under the spectra of deep learning and multi-
modal and heterogeneous data sources. It also includes some works on designing a specific use
case, based on a three-tank system, aiming to illustrate the fault diagnosis on a simple applica-
tive example and proposing baselines to tackle the challenges of predictive maintenance data and
tasks. The related article (Pellegrain, Batteux, et al. 2022) was published in a national conference and
is relegated to Section 9.2. While situated within the highly applied context of Industry 4.0 and
the MPO project, the ambition of this thesis extends beyond the development of models for spe-
cific applications. Instead, the main goal is to address the challenges methodologically, intending
to introduce novel techniques for the general framework of harnessing multimodal and hetero-
geneous data. These newly proposed methods aim to unlock the potential of data diversity in
Industry 4.0, thereby enabling enhanced fault diagnosis and other predictive maintenance tasks.
As such, the focus of this thesis lies not in crafting a solution for a specific application, but rather
in contributing methodological advancements that can be universally applied in the realm of data
exploitation in Industry 4.0.

However, each of these ambitious goals also presents its unique set of challenges and considera-
tions that requires careful and meticulous addressal.

(i) A first objective deals with the dynamic and real-time nature of industrial systems.
These systems generate data streams that are continuously acquired, often with heteroge-
neous acquisition frequencies. For instance, some sensors might collect data at millisecond
intervals, while others might gather information every few minutes or even hours. The chal-
lenge here is to manage these data streams effectively, in a time and memory-efficient
manner. Due to the real-time demands, it is crucial to devise strategies that are capable of
rapidly adapting to changing conditions. These strategies must be able to provide mean-
ingful insights for fault diagnosis while maintaining acceptable computational efficiency.
Within this context, the task of revealing a strong diagnostic signal from potentially weak
individual signals becomes even more critical. As an example, an immediate increase in
temperature might be less alarming than a slower, yet consistent, increase over a period of
time, which could indicate a potential failure or malfunction.

(i) The second objective emerges from the need to tackle the complexity of integrating data
with heterogeneous structures. This data is frequently sourced from various sensors or
systems, with each source providing a unique perspective on the system’s condition. An
example that illustrates this scenario could be a vibration sensor indicating an anomaly.
However, when this data is coupled with additional information such as system’s images

1https:/ /www.irt-systemx.fr/en/projets/mpo/
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or noise, the diagnostic potential becomes far more precise and insightful. It is clear that
considering such heterogeneity in data sources and their representations is crucial in im-
proving the accuracy and reliability of fault diagnosis. This challenge is not unique to
industrial systems but common to many domains, which has led to the introduction of
multimodal learning and fusion paradigms. Many approaches have been proposed under
these paradigms, aiming to capture the richness of these multiple perspectives and trans-
late them into robust decision-making strategies. These strategies seek to consolidate data
from different modalities, each contributing uniquely to the overall understanding of the
system. However, a closer look reveals an under-explored aspect within these strategies: the
interactions among features from different data sources. While these interactions can bring
critical insights, they are often not explicitly considered in the fusion models. Therefore, we
do not fully control how they influence the decision-making process. Further, when these
interactions are taken into account, it is typically the redundant interactions that are most
often considered. The complementary interactions, that amplify or refine the understand-
ing of a system when considered together, are frequently overlooked. Therefore, the second
objective is twofold: firstly, to better integrate multisource heterogeneous data; secondly, to
reinforce our understanding and control the interactions among these data sources. This
poses a broader question: how can we design fusion models that not only effectively
integrate data from multiple sources and modalities but also take advantage of the
redundancy and complementarity among these features?

(iif) The third objective focuses on leveraging the wealth of information captured in textual
data, particularly in maintenance reports. These documents, often written by experts, en-
capsulate rich, contextual information about the system’s state, historical issues, and previ-
ous maintenance activities. The growing interest in exploiting all modalities far addressing
Industry 4.0 tasks results in more open-access resources (Akhbardeh et al. 2020). However in
real-world, the scarcity of such reports, combined with the highly specialized and industry-
specific vocabulary, makes their processing and understanding a challenging task. Tradi-
tional methods of training DL models require many annotated data to understand and
adapt to this specific language use. Given the rarity and specificity of these maintenance re-
ports, applying usual supervised learning paradigms becomes unrealistic. Recent advance-
ments in language models provide a promising direction for interpreting these reports, yet
their application is not straightforward. How can we effectively harness the expres-
siveness of human language encapsulated in these reports, especially when they are
scarce? How can we adapt these advanced language models to the specific language
used in these maintenance reports? Moreover, the usage of these models should not
compromise the privacy and confidentiality of sensitive information, adding another layer
of complexity.

Addressing these challenges forms the core of this thesis. By exploring novel strategies and tech-
niques, we aim to help in surmounting these obstacles and reveal the full potential of multimodal
and textual data in predictive maintenance.
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1.3 OUTLINE AND CONTRIBUTIONS

In line with the previously defined challenges, this thesis presents two distinct contributions, each
devoted to a specific area of research: Multimodal Learning and FSL in NLP. This also defines the
outline of the thesis, divided in two primary parts.

I. Exploiting multimodal data for fault diagnosis. The first part begins with a clear, prag-
matic need from the industrial field to diagnose faults in complex, multimodal systems. This con-
crete motivation led us towards the development of a more abstract theoretical framework based
on multimodal learning, which is inherently motivated by the multimodal nature of our real-
world environment.

In Chapter 2, we revisit related established concepts such as multimodal fusion and representa-
tion. We analyze the evolution of these paradigms, from their early stages to the advent of DL-
based multimodal representations. This comprehensive review also includes an analysis of the
few attempts that have applied ML for fault diagnosis, focusing on the pragmatic constraints of
fault diagnosis that have not been addressed by previous multimodal approaches. Specifically, the
challenges of handling arbitrarily long data streams in a memory and time-efficient manner, and
performing inferences in streaming mode, are examined in depth.

Bridging the gap between theory and application, in Chapter 3 we introduce "StreaMulT," a
Streaming Multimodal Transformer. This innovative algorithm offers a unique solution to the
challenges posed by Industry 4.0 systems’ complexity. By employing cross-modal attention and a
memory bank, StreaMulT is capable of processing arbitrarily long input sequences during train-
ing. Further, it operates in a streaming mode during inference, thereby managing the temporal
unalignment of multimodal data and balancing the differences in data acquisition frequency. This
contribution led to the article (Pellegrain, Tami, et al. 2022), published in the Conférence Nationale
d’Intelligence Artificielle 2022.

Chapter 4 extends the discussion to the theoretical realm, presenting an exploration of multi-
modal representation and fusion and highlighting the need for further research in datasets and
architectures for effective multimodal learning.

IL. Leveraging scarce and specific textual data in a realistic setting The second part of the

thesis begins with Chapter S, offering an extensive overview of NLP methodologies, starting with
early techniques centered on feature engineering and statistical word properties and transitioning
towards DL approaches and recent Foundation models. Furthermore, the chapter examines as-
sociated works in Few-shot learning, shedding light on the latest progress and challenges in this
research area.
In light of these developments, we notice a gap in the field when dealing with scenarios where la-
beled data are rare. Current FSL methods in NLP, mainly based on the prompting strategy, show
limitations, especially for realistic classification tasks with a large number of classes. These limi-
tations are primarily due to engineering efforts required to make these methods work effectively
in such situations. To cope with these issues, in Chapter 6 we revisit transductive learning in the
NLP field, trying to reproduce the success encountered in computer vision. This paradigm, un-
like inductive learning, enables the effective utilization of limited labeled data by taking advantage
of the statistics of unlabeled data.
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Then, we consider the increasing prevalence of proprietary and closed Application Programming
Interfaces (APIs) for Large Language Models (LLM) in Chapter 7. We introduce a new parameter-
free regularizer based on the Fisher-Rao loss, which demonstrates its effectiveness and applicability
in this setting. This differs from current methods and provides a novel way to tackle FSL prob-
lems. In such a scenario, our transductive approach enables fast and efficient predictions without
the need to share sensitive label information, thus adapted data-privacy constraints. This not only
paves the way for improved performance but also opens new research ideas for practical applica-
tions in the field of FSL. The article that emerged from this contribution is currently under review
for publication in an international journal.

Finally, Chapter 8 concludes this thesis and proposes perspectives for both parts.
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2 BACKGROUND AND RELATED WORK

CHAPTER’S SUMMARY

In this chapter, we give the reader the background needed to motivate and understand
the first part of this thesis. We start by presenting fundamentals of Fault diagnosis theory
in Section 2.1 and we review existing strategies to tackle this problem, focusing on ML
approaches and exploring the few attempts that considered data from heterogeneous
modalities. In Section 2.2, we introduce the multimodal learning paradigm, with a
particular emphasis on multimodal fusion. From there, we propose an overview of
developed methodologies, beginning with older works relying on simple fusion strategies
such as concatenation, and more focused on which level to realize the fusion. We then
point out the advantages of building expressive data representations, which is mostly
feasible by the mean of Deep-Learning-based architectures, and the closeness between
multimodal fusion and multimodal representation. We therefore explore approaches
on Multimodal Representation Learning, which are nowadays mainly based on the
Transformer architecture.

2.1 ADDRESSING FAULT DIAGNOSIS WITH MACHINE LEARNING AND
DEEP LEARNING

Due to plenty of causes - both internal and external - industrial machines are likely to suffer a fault
at some point (e.g., corrosion). If not detected, these faults can lead to the incidence of failures
(e.g., leakage). That is a major issue since it means a financial loss for the company and sometimes
much more when human lives are at stake. To address this problem, it is common to perform
fault diagnosis. Following (Isermann 2005) terminology, we properly define these previous terms.

DEFINITION

Definition 1. A fault is an uppermitted deviation of at least one characteristic property
(feature) of the system from the acceptable, usual, standard condition.

A failure is a permanent interruption of a system’s ability to perform a required function
under specified operating conditions.

Fault monitoring refers to the detection of a fault occurrence.

Fault diagnosis consists in determining the type, size and location of the most possible
fault, as well as its time of detection.

13
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In practice though, in the literature it is common to write fault diagnosis to refer to both fault
detection and its diagnosis as defined above.

The pioneer series of three articles of Venkatasubramanian et al. (Venkatasubramanian et al. 2003)
is one of the first works to list and categorize the different methods of fault diagnosis; and there-
fore constitutes the starting point of our review. This series classifies fault diagnosis approaches
depending on both the a priori knowledge one has on eventual faults, along with how they would
be expressed through the acquired data of the system (z.e. fault symptoms). Two different kinds of
strategies can be distinguised in the litterature. A first family of approaches, named model-based,
uses the a priori knowledge by the system by a physical model. On the other side, the approaches
only relying on the history of acquired data are called data-based. While model-based methods
can be well suited when one has a nice a priori understanding of physical laws governing the sys-
tem, they become less relevant otherwise. Thus, when the considered system reaches a certain
level of complexity, inter-components interactions can less easily be modelled. To address this,
data-based approaches provide a viable alternative: the designed model aims to learn these com-
ponents dependencies from the data history. We mostly focus on data-based works in our review,
and more precisely on ML ones.

In the next section, we first introduce the paradigm of Machine Learning (ML) and Deep
Learning (DL) through the lens of Statistical Learning theory and the popular supervised learning
framework. In a second time, we review the different approaches that make use of ML and DL to
tackle Fault diagnosis.

2.1.1 BACKGROUND: PRINCIPLES OF THE MACHINE LEARNING AND DEEP
LEARNING PARADIGMS

Given a set of observations of a phenomenon, the aim of Statistical Learning (V. Vapnik 2000) is
to build a model of this phenomenon than can then perform inference on new data, that is, make
predictions. Machine Learning is a framework that tries to automate this learning process using
algorithms to design a function that maps input observations to desired outputs. Based on statis-
tics and optimization problems, this procedure selects the function that both best fits the observed
data, and stays generalizable to unobserved data.

Formally, we consider an input space X and an output space ). We consider tuples of ob-
servations (x,y) € X x Y, that are viewed as realizations of the random variables X and Y’
respectively. Considering a dataset D = (x*;y*)™_; containing n independent and identically
distributed data pairs sampled from a distribution density pxy, unknown but such that:

pxy (%, y) = pyx (Yl f*(x))px (x)

we seek to address the related task, thatis learning a function (z.e. amodel) f : X — ) approach-
ing f*, the true unknown mapping of the task.

To assess for the quality of the model f, we consider a loss function £ : Y x Y — RT, such
that £( f(x), y) measures the point-wise error when the model predicts f(x) instead of y.

14
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To fulfill the objective of learning a model close to the true mapping f*, the usual learning
paradigm is to minimize the population risk R( f) defined in the following:

DEFINITION

Definition 2. Population Risk

Let D = (x%;y*)"; a dataset of 7.2.d. data pairs sampled from a distribution px .y, f :
X — Y aprediction function, £ a loss function. The population risk associated to f is
defined as the expected loss:

R(f) = Epy y [L(f(X), )] (2.1)

where [E,, . . is the expectation associated to distribution px y. As we usually cannot
access the true distribution p, a common surrogate is to minimize the Empirical Risk.

DEFINITION

Definition 3. Empirical Risk

LetD = (x% yi)?:1 a dataset of 7.7.d. data pairs sampled from a distribution p, f : X —
Y a prediction function, £ a loss function. The empirical risk R,,(h) is defined as the
empirical mean loss measured on the dataset:

Bulf) = = D2 L), 9) (2.2)
=1

Hence, for a class of functions F, the Empirical Risk Minimization (ERM) algorithm consists
in finding f := argmin feF Ry (f). The hypothesis space F represents the family of models
(for instance linear functions) on which to minimize the Empirical Risk, and is usually chosen
by the learner in preamble of the procedure, following inductive biases regarding the input data
and the task. From then, we note our model fy,, where ¢ € W are learnable parameters, and W
is the parameter space defined by the chosen family of models (for instance, vectors of weights
and biases defining the linear models). The learning objective is now to find 1[1 that minimizes the
empirical risk:
Y :=argmin R, (fy)
e

Finally, we can decompose f as f = h o g, in which g : X — Z represent a feature extraction
module, that maps input observations to a latent space Z and h : Z — Y a predictor that maps
the latent representations to the output space. By writing g and h as parametric functions, and
noting ¢ = (0,¢) € © x &, wenote fy, = hy © gg. In the classical shallow ML setting, the
manually designed feature extraction module g is fixed, and the ERM thus consists in optimizing
only the predictor hg on parameter space ®, that is, find (;AS such that:

¢ := arg min Rn(h¢ °g)
pcd
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DEEP LEARNING

Over the last decade, the advent of DL architectures (LeCun et al. 2015), demonstrated their su-
periority over classical ML approaches in numerous application fields and their related tasks. At
the heart of this paradigm: deep neural networks. A deep neural network of L layers is a function

f X = Ysuch that:

Vee X, f(x)=hog(x)=hogio...gr(x)

Compared to previously formalized shallow models f = h o g considered in classical ML ap-
proaches, deep neural networks’ feature extraction modules g are composed of L stacked layers,
that will also be optimized during the learning procedure, and thus not manually designed. These
layers essentially characterize the whole network as they condition the learned representations of
input data, which, if expressive enough, only needs a simple predictor / to effectively address a
task.

A traditional neural network architecture is for instance the Multi-Layer Perceptron (MLP), that
is composed of stacked linear functions, followed by non-linear activations, z.e. fori = 1,..., L,

gi(x) = ai(wiTx + b;)

with w; and b; being the ith —layer associated weights and bias, and a; being the non-linear activa-
tion function, usually hyperbolic tangent, sigmoid function, softmax function, or rectified linear
unit function (Goodfellow et al. 2016).

This breakthrough in AI quest is mainly explicable in DL ability to learn good representations
from input data (Bengio, Courville, et al. 2013), compared to classical feature extraction modules.
Their design consisting of stacked modules followed by non-linear activations offers the possibility
to learn hierarchical and distributed representations in which last layers thus represent concepts
of a higher abstraction, expressed as a combination of simpler components learned in first layers.
These properties tend to facilitate the encoding of factors of variation of the input data, while
being more invariant to meaningless noise. Therefore, many current works focus their energy on
the design of representation learning algorithms that integrate such generic properties.

From there, we can rewrite the true mapping from inputs to outputs f* such as f* = h* o g*
with g* : X — Z being the true mapping from input to latent space and h* : Z — Y the true
mapping from latent to target space. The sampling distribution px y of the considered dataset
D can now be written as:

pxy = py|x(ylh* o " (x))px(x) (2.3)

and we now aim to find f that minimizes the associated empirical risk:
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f:=argmin Rn(f) (2.4)
feF
= arg min Rn(f) (2.5)

f€{hoglgeG,heH}

with F, G, H the class functions defining the hypothesis spaces. Using the parametric notation,

we aim to find (6, ¢) such that

A A N

(0,¢) = argmin Ry(ge o hy)
(0,0)€OX D

When solving this optimization problem, we hope that the learned parameters (6, ¢) also min-
imize the population risk over unseen new samples, so that the inference function can be reliably
used to solve the task of interest. To realize an effective learning procedure, the learner should
then, based on priors regarding the task of interest and input data:

* Define an adequate hypothesis space defining the family of considered models (for instance
Convolutional Neural Networks), through the parameter space ¥ = © x &;

* Specify an adequate loss function £ to measure the pointwise prediction error of the model
(for instance the Cross-Entropy loss);

* Select an appropriate learning procedure to solve the optimization problem induced by
ERM (for instance, using Stochastic Gradient Descent algorithm or derivatives such as
SGD with momentum (Sutskever, Martens, et al. 2013) or Adam optimizer (Kingma et al.
2015));

* Design a testing procedure to evaluate the model’s performance on unseen data and there-
fore get insight on its generalization ability.

2.1.2 MACHINE LEARNING AND DEEP LEARNING MODELS FOR FAULT DIAGNOSIS

Several reviews (cited thereafter) list the different ML architectures designed for tackling the fault
diagnosis problem. Some of these reviews adopt an industrial-domain-specific position: while
(Nor et al. 2019) expose fault diagnosis methods that have been used for chemical process systems,
(S. Zhang et al. 2020) focus on bearing faults, whereas (Rogers et al. 2019) only consider residen-
tial air conditioning systems. These studies mainly motivate their approach by the consequences
of fault occurrences in their relative fields, such as the over-consumption of electricity and the
induced economic costs (Rogers et al. 2019). Besides, the methods listed in these reviews are pre-
sented as relevant for dealing with data relative to these applicative fields. Therefore, (S. Zhang
et al. 2020) essentially consider vibration and stator current data, as contained in the Paderborn
dataset'; whereas (Rogers et al. 2019) rather present models calibrated for thermostat and humid-
ity data, with for each of these approaches an important and non-scalable work that consists in

! Available online: https://mb.uni-Paderborn.de/kat/forschung/datacenter/bearing-datacenter
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designing specific hand-crafted feature extractor g for the specific applications.

By contrast, other works adopt a more methodological position regarding their reviews of state-
of-the-art algorithms for addressing fault diagnosis (Palade et al. 2006). This is more in adequation
with our positioning. Most recent ones (Angelopoulos et al. 2019; Z. Li 2018; Reis et al. 2017) mo-
tivate their work by the emergence of new practical challenges induced by the arrival of Industry
4.0 era, such as notably the ability to handle massive and multi-sources data with a short-time
response. These reviews qualify ML methods as more effective compared to model-based ap-
proaches when fault profiles are complex, such as (S. Zhang et al. 2020), which mention the limits
of model-based approaches for the early detection of faults, due to symptoms that are untraceable
by this kind of models. They also point out model-based approaches’ difficulty to disentangle the
simultaneous occurrences of different faults.

Although somearticles only consider fault detection (Luo etal. 2018; Wen etal. 2019), the vast major-
ity also considers fault isolation and identification”. However as emphasized by (Reis et al. 2017),
in practice two methodologies co-exist. On the one hand, Statistical Process Control commu-
nity sequentially processes fault detection and fault isolation and identification. On the other
hand, ML community often processes these two tasks in a simultaneous fashion, in the form of
a (C' + 1)-classes classification, decomposed into one class of normal functioning mode and C'
distinct faulty functioning modes.

As presented in (Z. Li 2018), ML models used for fault diagnosis are generally composed of a
feature-extraction module and a diagnosis module. In that configuration, the former feeds the
latter relevant elements computed from raw data. Some feature-extraction modules focus on time
domain to catch and characterize information contained within time series acquired from the sys-
tem sensors, using for instance neural networks (Zarei et al. 2014). It is also common to use signal
processing tools in order to exploit features from the time series in the frequency domain. (Yukun
Liuetal. 2010) and (Taj et al. 2017) thus respectively use Fourier and Laplace transforms to this pur-
pose. Finally, other approaches choose to work in the time-frequency domain, through the usage
of wavelet transforms for instance (Z. Zhang et al. 2013). The choice of feature-extraction module
is strongly influenced by the structure of input data and the subsidiary task, therefore by the a
priori knowledge of its designer. The very diagnosis module is then composed of:

* cither a first detection submodule aiming to perform fault monitoring, followed by a sec-
ond classification submodule performing fault isolation and identification;

* cither a unique classification module carrying out simultaneously both fault detection, and
fault isolation and identification.

In a supervised setting, the unique classification module fed with extracted features is free to
use any ML model: Support Vector Machine (Konar et al. 2009), Random Forest (B.-S. Yang et al.
2008), shallow neural networks (Jafar et al. 2010), Recurrent Neural Networks (RNN) (Yam et al.
2001), and so on. This scheme of performing simultaneously fault detection and classification has
however been sometimes criticized (Reis et al. 2017), as it might lead to practical issues:

* faultoccurrences that mightlead to failures and dreaded event are often scarce in real datasets.
This results in an imbalanced dataset problem, exacerbated the more faulty classes one con-
siders.

“note that (Angelopoulos et al. 2019) sometimes use the word "diagnosis” to evoke fault detection though
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* For thiskind of tasks, a prediction error will have the same weight during the learning phase,
regardless of which misclassification has been made. However, depending on the system
criticality, one would like to put a lot more emphasis on the fault detection rather than on
its proper identification.

To cope with these issues, a prior monitoring task can be realised using anomaly detection meth-
ods (Goldstein et al. 2016). Similarly to the architectures designed in Statistical Process Control
community’s works, these semi-supervised methods model the normal functioning mode of the
system during the learning stage, and classify as fault the datapoints which deviate significatively
from this model’s prediction at test time. These approaches are more robust to imbalanced datasets
and can then be coupled with a classification model to perform the isolation and identification
task. Lastly, if the normal functioning mode conditions are unknown (z.e. in an unsupervised set-
ting), it is also possible to design the diagnosis module by using clustering approaches (Diaz Rozo
etal. 2017).

Similarly to model-based methods, classical ML approaches faced some limitations induced by
growing complexity of industrial system data. As described in (Z. Li 2018; Y. Peng et al. 2010; S.
Zhang et al. 2020), classical feature-extraction-based models based on a certain a priori knowledge
on input data structure, may no longer be effective to perform a correct fault diagnosis. Indeed,
with a growing complexity in studied systems, the manual feature engineering struggles in design-
ing representations encompassing all the expressiveness and complexity of input data. As such,
these approaches are less prone to model more abstract inter-dependencies between data signals
and to be robust to noise. To answer these challenges, DL models are designed, as they integrate
a representation learning part in the layers g1, ..., gr. This part aims to automatically extract
the most salient features for a subsidiary task (here the fault diagnosis), with no - or few - a priori
knowledge on input data structure required (Bengio, Courville, et al. 2013; LeCun et al. 2015). Thus,
numerous articles have shown the superiority of DL models over classical ML ones for fault di-
agnosis, using as representation learning algorithms either discriminative models (like Convolu-
tional Neural Networks (CNN) (J. Pan etal. 2017; Wen et al. 2017; Xia et al. 2017), deep RNN (Abed
2015; L. Guo et al. 2017), Transformers (B. Wu et al. 2021), etc.) or generative models (like Proba-
bilistic Graphical Models (PGM) (T. Liang et al. 2018; K. Yu et al. 2019), autoencoders (Jia et al. 2015;
Shao et al. 2018; J. Sun et al. 2017), GANs (Han Liu et al. 2018; Y. Xie et al. 2018)). However, all these
works consider unimodal data (namely sensors measurements), and therefore do not address the
multimodal input challenge.

2.1.3 FAULT DIAGNOSIS APPROACHES USING MULTIMODAL DATA

The complexity of industrial systems and of the relative acquired datasets, reaches nowadays a
new level, with sensors producing multimodal data. While some previous works tackled the chal-
lenge of fault diagnosis from various unimodal data such as thermal images (Choudhary et al. 2018;
Janssens et al. 2015; Taheri-Garavand et al. 2015), x-ray data (Reid et al. 2013), photographs (J. Wang
etal. 2019; Sen Wang et al. 2018) or textual maintenance reports (Sipos et al. 2014; F. Wang et al. 2016),
the application of such models to multimodal data (ze. of heterogeneous natures) is still in its
infancy. Most previous works addressing the fault diagnosis task and mentioning "multimodal”
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data actually refer to the different functioning modes of the considered system (such as an air con-
ditioner functioning in eco-mode or in normal mode) (Sipple 2020). For (F. Zhou et al. 2018), the
word "multimodal” refers to the different orders of derivatives of the input time series. To the
best of our knowledge, only two articles properly consider multimodal data (as of heterogeneous
natures) in a perspective of industrial maintenance. (Mian et al. 2022) fuse numerical time series
of vibration signals with thermal images in order to improve classification performances in the
context of bearing fault diagnosis of rotating machine. They use a classical ML approach, with
an Hilbert transform module for feature extraction and a concatenation module for data fusion.
Yang et al. (Zhe Yang et al. 2021) design a multimodal architecture to address failure prognostics, a
related task. The aim of this challenge is to forecast the Remaining Useful Life (RUL) of a system,
that is the duration before the system encounters failure. In thatsense, the ultimate task is a regres-
sion, but the studied framework can be transferred to the one we consider. Their approach han-
dle three modalities (sensors numerical measurements, images and texts) as three distinct blocks,
learning respective unimodal representations using either convolutive layers (images and texts) or
linear layers (numerical measurements). These unimodal representations are then concatenated
and eventually fused using a regression layer. While these approaches are interesting and are close
of our objective, they suffer some important limitations. A first limitation is the fact that they are
focused on their specific application, rather than interesting in providing general methods for han-
dling multimodal data in predictive maintenance related tasks. As a consequence their results are
difficult to generalize to other systems. For instance, a strong limitation is related to their datasets.
While in (Mian et al. 2022), the dataset is not publicly available thus preventing the community to
compare one’s work to theirs, in (Zhe Yang et al. 2021) the dataset is synthetic, which implies a lack
of richness and diversity, especially for the textual modality. Indeed, the numerous appearances of
the exact same sentences in different examples make the usually unstructured nature of raw text
less prominent and representative in that case. Besides, the considered images are actually only
curve plots corresponding to the acquired numerical measurements. Hence, they do not repre-
sent actual visual captures of the system, which have a much different local structure and would
have brought additional information.

TAKEAWAYS

A large body of works has been proposed regarding ML learning approaches for fault di-
agnosis with two main strategies: sequentially processing fault detection then fault iden-
tification or processing the two tasks simultaneously. However, as in other domains these
ML approaches have been limited by the hand-crafted feature engineering part and has
open an avenue for DL models, that enable to automatically learn an expressive represen-
tation that can more easily and eftectively be processed.

While the fault diagnosis in Industry 4.0 is multimodal by nature, only few approaches
have taken interest in this challenge yet, handling either private or synthetic data. These
observations emphasize an important and critical point for the study of multimodality in
the context of industrial system monitoring: the unavailability of real multimodal dataset
in the Industry 4.0 community. As for the MPO project, we did not either access multi-
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modal datasets, as a main part of the objectives was rather to structure the data acquisition
pipeline. As a consequence, in our study, while still motivated by the challenges that come
from the predictive maintenance field, we will mostly consider datasets coming from al-
ternative fields. Therefore, we hereby invite industrial actors to provide such public repre-
sentative data, in order to encourage the development of future works on these high-stakes
challenges.

Building upon this clear need for enhanced multimodal analysis in the realm of indus-
trial systems, we delve deeper into the specific methodologies and potential applications
of multimodal learning in the subsequent section.

2.2 MULTIMODAL LEARNING

2.2.1 FROM MULTIMODAL PERCEPTION TO MULTIMODAL LEARNING

Human beings perceive the world through a multimodal lens, integrating various sensory inputs
to better understand and interact with their environment. Multimodal perception encompasses
the following:

¢ Situating ourselves in space and navigating using sight to generate images of our surround-
ings,

* Communicating with one another through speech, thus producing and interpreting sounds,
* Smelling odors,

* Tasting flavors,

* Experiencing different temperatures and textures, and more.

Hence, from a cognitive perspective, the term "multimodal” here refers to the nature of different
sensory stimulations that we, human beings, receive when engaging with the environment. The
field of multisensory processing, also known as multisensory integration, investigates how distinct
parts of the nervous system and brain process and combine these stimuli to form accurate beliefs
about the environment. According to (Maragos et al. 2008), this whole process can be divided into
three stages:

* Sensation: The electrical signal generated by a specific organ in response to a stimulus,

* Perception: The more complex process of filtering, aggregating, and organizing sensa-
tions,

¢ Cognition: The ultimate comprehension and decision-making component.

Although the boundaries between these stages are often blurred, the term maultimodal percep-
tion is commonly employed to describe sensory-based reasoning about the environment, particu-
larly the reverse path of inferring the world state from various stimuli. The accuracy and robust-
ness of Human multimodal perception are either innate (determining the localization of a speaker
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using sight and sound) or learned over time through repeated exposure to similar situations. To
demonstrate the significance of this phenomenon, consider a person strolling alone on a cloudy
beach. They can smell the aroma of meat cooking on a barbecue at a nearby restaurant. Suddenly,
they hear a rumble of thunder. In this instance, the individual experiences three unimodal stimuli:

* The sight of the desolate, cloudy beach,
* The sound of thunder,
* The smell of barbecue.

These stimuli activate different sensory organs and their associated acquisition systems, namely
the visual, auditory, and olfactory systems. Thus, the person’s brain and nervous system will asso-
ciate visual and auditory modalities as both indicate the presence of a storm (the sight of clouds
and the sound of thunder), while filtering out irrelevant information, such as the smell of bar-
becue. Drawing from past experiences or learned information, the person will recognize this
multimodal situation as dangerous by combining visual and acoustic complementary modalities
(beaches are unsafe during thunderstorms due to the risk of lightning strikes). This example is
illustrated in Figure 2.1.

Sensation Perception Cognition

Danger

Leave / Get safe

Figure 2.1: Example of multimodal perception of the environment.

As (Lachs 2017) highlight, multisensory integration not only aggregates relevant unimodal stim-
uli or filters out irrelevant ones but also enhances the strength of neural responses when process-
ing multimodal events compared to unimodal ones. This phenomenon, known as multimodal
enbancement, means that the measured response to a multimodal event exceeds the sum of mea-
sured responses when experiencing the same event unimodally. The enhancement capacity is even
greater when the strongest response to unimodal stimuli is weak: this is the Principle of Inverse
Effectiveness (Stein etal. 1993). (Lachs 2017) illustrate this principle by considering a task of speech
comprehension in a crowded place. If the environment is excessively noisy, the auditory modality
alone may not suffice for proper comprehension. Simultaneously, lipreading (the visual modal-
ity) can help decipher some words but is generally insufficient to understand an entire sentence.
However, the combination of visual and acoustic cues can provide the listener with a general un-
derstanding of the conversation. Therefore, although both unimodal responses are relatively weak
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for this task, the enhancement resulting from multisensory integration is substantial. Conversely,
in a quiet environment, the listener only requires the auditory modality, which will generate a
strong response, and the multimodal enhancement will be minimal. As a result, in the beach ex-
ample, multisensory integration led the person to take the decision to seek safety. Meanwhile, if
they had processed only unimodal signals independently, they would not have arrived at this con-
clusion, as none of the unimodal information (sight of a beach, sound of thunder, or smell of
meat) typically suggests the need to urgently find shelter.

This scenario intuitively demonstrates the advantages of processing multisensory signals over
unimodal ones: the human brain ingeniously gathers relevant modalities to exploit redundant
and/or complementary information, resulting in an improved decision-making capacity. The pri-
mary motivation behind multimodal learning is to emulate the role of the human nervous system
in its biological ability to aggregate pertinent data from different modalities in such a way that it
enhances knowledge for a downstream task.

The parallel with our application is obvious. Indeed, in our industrial system case, the auditory
stimuli can be replaced by sensors measurements that are continuously acquired, while the visual
stimuli can be replaced by images of a part of the system that are regularly acquired (see Figure 2.2).

P INTERVENTION REPORT

| Time : >

Figure 2.2: Example of multimodal data acquirement in Industry 4.0 setting.

The challenge lies in the fact that while the human nervous system naturally converts stim-
uli from various modalities into electrical signals through receptors from corresponding sensory
organs and integrates them via multisensory neurons, numerical data from different modalities
exist in distinct mathematical spaces and possess inconsistent distributions. For example, con-
sidered modalities can be either continuous (analog signals like audio recordings) or sparse and
discrete (one-hot encoding vectors of raw text, z.e., a symbolic modality). This issue is referred to
as the heterogeneity gap and constitutes one of the main challenges of multimodal learning. In
other words, as depicted in Figure 2.3, vectorial representations of semantical close concepts from
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different modalities are generally also heterogeneous, which lead to the difficulty to measure the
content similarity between different modalities.
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Figure 2.3: Illustration of the heterogeneity gap. Image from (W. Guo et al. 2019).

In particular, (Baltrusaitis et al. 2019) identify five primary challenges within the Multimodal
Learning field:

* Representation, 7.c. learning how to represent and summarize multimodal data in a way
that exploits the complementarity and redundancy of multiple modalities

* Translation, 7.c. mapping a data point from a source modality space to a corresponding
point in a target modality space

* Alignment, .. identifying elements from different modalities related to the same seman-
tic concepts or generative temporal events

* Fusion, z.e. determining the most effective and robust method of combining relevant in-
formation from different unimodal signals to enhance a decision-making procedure for a
downstream task

* Co-learning, 7.c. applying knowledge learned in one modality space to enhance inference
in another modality with limited resources

From a pragmatic perspective, in the first part of this thesis we focus on Multimodal Fusion
for predictive maintenance downstream tasks such as fault diagnosis. Successfully address-
ing this task is intrinsically linked to the challenges of Multimodal Representation and Alignment
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challenges. Indeed, tackling these two challenges implicitly helps narrow the heterogeneity gap,
making it a valuable preliminary step for Multimodal Fusion. In contrast, we do not explicitly
prioritize Multimodal Translation, nor Multimodal Co-learning. These challenges are nonethe-
less once again ultimately dealing with the heterogeneity gap issue and very linked to the previous
ones. For instance, the recent DALL-E 2 model (Ramesh et al. 2022)), which addresses the popular
challenge of text-to-image generation, relies on the CLIP (Radford, Kim, Hallacy, et al. 2021) pre-
trained model, which aims to learn a joint text-image representation using contrastive learning
(Bachman et al. 2019; Hjelm et al. 2019).

In the next section we essentially review previous works on Multimodal Fusion approaches,
that sometimes thus also address other issues as stated above, and especially Multimodal Repre-
sentation learning.

2.2.2 MULTIMODAL FUSION: AN OVERVIEW

We begin by formalizing the Multimodal Fusion framework by extending the setting introduced
in Subsection 2.1.1, in a similar way as (Y. Huang et al. 2021).

We now consider that a datapoint x = (1, ..., 2 ) is composed of M modalities and thus

lives in a multimodal input space ¥ = X1 X Xo X ... x X, de V1< a < M, z, € X,,
with X, the definition space of the modality cv, with its specific dimension.
Tuples (x,y) € X x Y are viewed as realizations of the random variables X = (X1, ..., X/)
and Y respectively. We still consider a dataset D = (x’; y*)™__; containing independent and iden-
tically distributed data pairs sampled from a distribution density px y-, unknown but factorizing
as: pxy (X, ¥) = py|x (y|f*(x))px (x), with f* the true mapping from input to output space.
We still seck to learn a function fy, : X — Y, with f, = hg o gg approaching f* = h* o g*.
The main difference with unimodal framework is that functions gy and h shall now be designed
in a way such that they are able to effectively fuse information from input modalities.

MULTIMODAL FUSION IN EARLY ML APPROACHES: EARLY, LATE, HYBRID FUSION

Historically, ML research primarily focused on determining the optimal level for data fusion.
Consequently, various approaches were categorized into three distinct groups: early fusion (or
feature-level fusion), late fusion (or decision-level fusion), and hybrid fusion methods. Figure 2.4
represents the different fusion strategies: early (d), late (¢) and hybrid (f), with the help of Anal-
ysis Units (AU), Feature Fusion (FF) and Decision Fusion (DF) units, represented in schemas (a),
(b) and (c), respectively. As their names suggests, FF and DF units represent the different fusion
modules, while AU units aim to output a decision from an input vector. In the decomposition
fu = hgoge, go operates at a feature level, transforming raw inputs into exploitable features, that
can then be exploited by h to produce decisions. In that sense, we can see Feature-Fusion units as
part of gy, rendering features in a well-suited structure, while Analysis Units and Decision-Fusion
units as part of predictor A, in charge of producing decisions.

25



2 Background and Related Work

In early fusion (d) (or feature-level fusion), the fusion mechanism operates within gg: input
unimodal features are combined within the FF unit and sent to an AU to produce a final decision.
Conversely, in the late fusion scheme (e), the fusion mechanism operates within hg: unimodal
features are passed through unimodal AU to produce respective unimodal decisions, which are
then fused within a DF unit to output the final decision. Lastly, the hybrid fusion technique
(f) involves repeating either early or late fusion strategies on different sets of unimodal features,
ultimately fusing intermediate decisions with a final DF unit, followed by a final AU to produce
the ultimate decision. In that sense, in this strategy the fusion mechanism operates partly in gg
and partly in .
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Figure 2.4: Different fusion techniques: early (d), late (¢) and hybrid (f). Figure adapted from (Atrey et al.
2010). AU, FF and DF represent Analysis, Feature Fusion and Decision Fusion units, respec-
tively.
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Early fusion presents the opportunity to model inherent correlations between different modali-
ties, expressed through low-level features, in order to capture inter-modality dependencies. How-
ever, due to the heterogeneity gap, modeling relationships between inconsistent distributions is a
nontrivial task and is scarcely achievable when using standard feature fusion strategies, such as sim-
ple vector concatenation (Pérez-Rosas et al. 2013; Poria et al. 2016). Conversely, late fusion methods
circumvent the heterogeneity gap problem by fusing unimodal decisions only, notably employ-
ing rule-based strategies like weighted combinations and majority votes, or by learning the fusion.
For instance, (Neti et al. 2000) employ a rule-based strategy for addressing a audio/video Speaker
recognition task using as prediction a combined score D' = cosa fui + sinafq i, where fq ;
and f, ; represent the scores from audio and video unimodal models, respectively. The weighting
coefhicient o is an hyperparameter chosen to minimize a cost function on the training set. (Fiérrez-
Aguilar et al. 2003) propose to use an SVM to perform Biometric Verification from unimodal face,
fingerprint, and signature recognition scores.

Overall, these early works on different fusion levels generally emphasized the advantages of late
fusion over early fusion:

* itdoes not deal with heterogeneity gap between low-level features as it combines unimodal
decision scores;

* it does not need to consider different acquisition times between modalities;
* itis usually more robust when one of the modalities is missing.

Nonetheless, late fusion does not exploit correlation at low-level features between modalities,
and thus is not ideally suited for modeling multimodal complementarity. Additionally, from a
practical standpoint, early fusion also requires to train only one model (for fusion), as opposed to
late fusion.

To leverage the strengths of both approaches, some architectures adopt a hybrid strategy. (Z.-z.
Lan et al. 2014) for instance addresse video event detection by first training n + ¢ + 1 classifiers in
a early-fusion scheme, in which n is the number of extracted features (individual classifiers), c is
the number of categories for which features have been combined in an early-fusion fashion, and
the last classifier is fed with all input features. After the training of these classifiers, their outputs
(score vectors) are combined at test time to produce the final prediction.

This double-fusion architecture hence benefits from the correlation modelized by early classifiers
and robustness of late classifier to eventually provide better results than a single fusion method.

THE POWER OF REPRESENTATION LEARNING, AND ITS IMPACT ON MULTIMODAL FUSION

When considering deep neural networks, the feature-extraction module g4 becomes a representa-
tion learning module composed of stacked layers: g4 = g1 0- - -0 gr. When considering adequate
priors to effectively design parameter space ©, these layers learn deep, hierarchical, distributed rep-
resentations that can easily be exploited subsequently by a simple predictor h. Indeed, (Y. Huang
etal. 2021) recently linked the performance of a multimodal algorithm to the quality of the learned
latent representation:
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DEFINITION

Definition 4. Latent Representation quality
Considering the framework previously defined, the latent representation quality 7(g) of
alearned mapping g € G is defined as:

n(g) = ggyf{[R(h og)— R(h"og")] (2.6)

with g* and h* the true mappings from input to latent space and from latent space to output
space, respectively. Here infj,c R(h o g) is the best achievable population risk with the fixed
latent representation g. Thus, to a certain extent, 77(g) measures the loss induced by the distance
between g and g*.

Using this definition of the representation quality and extending it to a multimodal framework
as defined in the beginning of this Subsection, (Y. Huang et al. 2021) theoretlcally showed that the
difference of population risks of models fN =h A © gn and f M= h M © g learned on two
different modalities subsets A and M was bounded by the difference of the corresponding latent
representation qualities on these subsets. This directly suggests that an adequate proxy to ensure
better performances on a multimodal learning task is to build a latent representation closer to
the true mapping, as long as the sample size is sufficient. Besides, they also show that considering
more modalities, with a sufficient sample size, implies a better latent representation quality, hence
better learning performances. The intuition, depicted on Figure 2.5, is that for two subsets of
modalities M and NV such that N' C M, the representation learning module § a4, minimizing
empirical risk on M has a more sufficient space to explore than g
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Figure 2.5: Different multimodal representations mappings gas and g for relative modalities subsets
N C M. These mappings produce respective images zxr and z 4, for which the latter is closer
to z*, the image corresponding to the true mapping ¢g*. Figure from (Y. Huang et al. 2021).

As in other Deep Learning fields, focus is therefore on designing the most expressive and gen-
eralizable representation, thus on finding the best architecture for function class G, while the clas-
sifiers considered when defining H are often common architectures such as Multi-Layer Percep-
trons. In that sense, the boundary between Multimodal Fusion and Multimodal Representation
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Learning has become fuzzy. We thus focus on the following on multimodal representation learn-

ing.

MULTIMODAL REPRESENTATION LEARNING

Multimodal representation learning strategies are mainly divided into Joint Representation Learn-
ing and Coordinated Representation Learning. These two frameworks are illustrated in Fig-
ure 2.6. The aim of the former is to embed unimodal representations together into a shared
multimodal representation. Differently, Coordinated Representation Learning approaches learn
distinct unimodal representations that are coordinated, using constraints during training, such
as similarity maximization for close concepts. Contrastive approaches (Bachman et al. 2019; Hjelm
et al. 2019; Radford, Kim, Hallacy, et al. 2021) are examples of strategies learning coordinated repre-
sentations.

constraint
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Figure 2.6: (left) Joint representation learning, (right) Coordinated representation learning. Figure from
(W. Guo etal. 2019).

2.2.3 DEEP NEURONAL ARCHITECTURES FOR MULTIMODAL REPRESENTATION
LEARNING

In this section, we present the different neural architectures that have been proposed in the lit-
terature to implement multimodal representation learning and the two strategies described in the
previous section. These architectures can be divided into model-agnostic or specific architectures.

The most straightforward strategy for addressing deep multimodal representation learning is
Model-agnostic approaches, like early additive or multiplicative fusion (Bruni et al. 2012; Zadeh,
Minghai Chen, et al. 2017). These methods design a shared subspace for joint representation learn-
ing using a shared hidden layer. Here, encoded data from various modalities are either concate-
nated, added, or multiplied before activation, thus enabling the fusion of semantics. Figure 2.7
illustrates such concatenation and multiplication from different modalities.

In contrast to these architectures, typical models used for Deep Multimodal Representation
Learning notably include Probabilistic Graphical Models (PGM), Autoencoders or Attention-
based models. We recall the principles of these different models in the following.
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Figure 2.7: Early fusion techniques in neural networks: concatenation (left) and tensor multiplication
(right). Figure from (Zadeh, Minghai Chen, et al. 2017).

PROBABILISTIC GRAPHICAL MODELS

PGM, like Multimodal Deep Boltzmann machines (Srivastava and R. R. Salakhutdinov 2012), or
Multimodal Deep Belief Networks (Srivastava and R. Salakhutdinov 2012) are generative models,
and thus learn a joint distribution over different modalities mainly using Maximum Likelihood
Learning. Their main characteristic lies in their ability to handle missing modalities by generat-
ing them, permitting unsupervised training. Nevertheless, these models suffer from substantial
drawbacks: the intractability of Maximum Likelihood Learning and the prohibitively expensive
approximation inference algorithm. These limitations challenge the feasibility of employing these
methods.

AUTOENCODERS

Similarly, autoencoders provide another unsupervised learning approach as they aim to encode
input data in a condensed representation, while ensuring the preservation of essential semantic
features through input reconstruction. Multimodal adaptations have been proposed (Ngiam et
al. 2011; Silberer et al. 2014), with hidden representation layer taking as input both modalities, sub-
sequently attempting to reconstruct them (see Figure 2.8). However, training solely depends on
the reconstruction loss, which results in a task-agnostic representation. Constraints (such as the
corruption of the input) or subsequent supervised objective need to be set up to add desired prop-
erties (like robustness) to the multimodal representation (Silberer etal. 2014).

ATTENTION-BASED MODELS AND TRANSFORMERS

Attention-based models are now well-known models that possess the ability to focus on a specific
part of the input, depending on the context. They are widely used since apart from increasing
performance, they bring some interpretability to decisions, evaluating the importance of features.
Regarding multimodality, they have some interesting properties. Indeed, on the intra-modality
level, they enable the selection of the most prominent features from each modality, guided by
contexts from other modalities, like in Visual Question Answering (Zichao Yang et al. 2016). At
the inter-modality level, they balance the contribution from different modalities, assigning more
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Figure 2.8: Multimodal autoencoder. The model aims to encode the bi-modal input into a joint com-
pressed representation before reconstructing the two modalities’ inputs from this representa-
tion. Figure from (Silberer et al. 2014).

weight to the ones with greater importance (Long et al. 2018). This two-level impact is illustrated
in Figure 2.9.
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Figure 2.9: Intra-modality (left) and inter-modality (right) impacts of attention mechanism. On the left-
side picture, the attention mechanism forces the model to focus on specific parts of the image
input, conditioned by the textual input to perform VQA. On the right-side picture, the atten-
tion mechanism balances the weight of each input modality depending on their relevances for
identifying a scene. Figures from (Zichao Yang et al. 2016) (left) and (Long et al. 2018) (right).

The advent of the Transformer architecture (Vaswani etal. 2017) marked a significant shift in this
domain. This type of encoder-decoder model has gained a massive interest, with numerous deriva-
tives and impressive performances on applicative tasks across different modalities, e.g. in NLP
(Devlin et al. 2019) or in computer vision (Dosovitskiy et al. 2021). Their building block, Multi-head
Self-Attention mechanism, aims to learn a contextual representation Z of an input sequence X.
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2 Background and Related Work

Each attention head first maps the input X to a set of key K, value V' and query () matrices. The
queries and keys are combined through a matrix product to produce attention weights (through
a softmax function), representing the contextual interdependencies of the input elements. The
values elements are finally multiplied by these weights to produce the output representation Z.
Formally:

QK T>
Z = softmax \%4 (2.7)
< Vi,
XWoWEXT )
= soft ——8 | XW, 2.8
S0 tmax< o v (2.8)

Here, dj;, denotes the dimension of queries and keys, while W¢, Wi, Wy, represent weight ma-
trices. Transformer encoder blocks are commonly used to learn contextual representations that
can afterward be used for subsidiary tasks.

Remark (Preprocessing). Itisessential to note that the variable X in Equation 2.8 is not typically
raw input data, but rather the initial embedding of tokenization of X:

X = E(T(X)) (2.9)

where F is an embedding block and T"a tokenizer. The considered input data hence does not need
to be initially a sequence (as for textual data) to be processed by the Transformer: this sequential
formatting is the task of a designed tokenizer. For instance, Visual Transformer (ViT) (Dosovitskiy
etal. 2021) uses small patches as tokens to represent an image (see Figure 2.10).
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Transformer Encoder
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[class] embedding Lmear Pro;ectlon of Flattened Patches
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Figure 2.10: Visual Transformer architecture. Input images are tokenized in small patches that are encoded
with positional embeddings. Figure from (Dosovitskiy et al. 2021).
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2.2 Multimodal learning

The intent of the embedding block is to map the sequence into an initial expressive latent space,
typically achieved through a linear projection (Dosovitskiy et al. 2021; Vaswani et al. 2017). It is com-
monplace to fuse several types of embeddings at the token level, thereby injecting pertinent in-
formation into the model. For example, the Self-Attention mechanism, being invariant to the
positioning of tokens within the sequence, can utilize absolute positional embeddings added to
the initial token embeddings as an inductive bias for positional relevance information. Numerous
works have sought to ascertain the most effective and efficient methodologies for computing these
positional embeddings. The original transformer proposed in (Vaswani et al. 2017) employs either
learnable vectors or sinusoidal functions to offer absolute embeddings, with little noticeable varia-
tion in performance outcomes. The approach of absolute positional encoding through alearnable
vector has been adopted widely in subsequent works (Devlin et al. 2019; Z. Lan et al. 2020; Radford,
Narasimhan, et al. 2018; Radford, J. Wu, etal. 2019). (Shaw et al. 2018) proposed to encode relative po-
sitions, predicated on the intuition that the distance between two tokens holds more significance
than their absolute positions. In that case, learned relative positional embeddings based on the to-
ken distances are added to keys and values matrices during attention calculation (Equation 2.7).
This methodology has been replicated in subsequent studies (He et al. 2021; Z. Huang et al. 2020;
Ke et al. 2021; Raffel, Shazeer, et al. 2020).

For the multimodal framework, segment encoding may be incorporated at the token level in a
similar manner to positional encoding, thereby informing the model of the token modality (G. Li
etal. 2020; L. H. Li et al. 2019). This embedding fashion is illustrated in Figure 2.11.
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red truck driving on the road at sunset ™"

Figure 2.11: Multimodal segment embeddings. Besides the positional embeddings, each image patch and
textual input is encoded with a special segment embedding indicating its input modality. Fig-
ure from (G. Li et al. 2020).

Transformers have since then been used to handle multimodal data in many variants of the
Vanilla architecture, as exemplified in Figure 2.12. Much like traditional approaches discussed in
Subsubsection 2.2.2, architectural decisions are primarily guided by the fusion timing —early (a,
b, d), late (c), or throughout the model (e and f)— and the aspiration to generate either joint or
coordinated representations. For instance, VideoBERT (C. Sun, Myers, et al. 2019) applies early
concatenation of visual-text sequences to learn high-level joint features (b) in a self-supervised
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2 Background and Related Work

fashion. (Tsai et al. 2019) employ cross-attention-to-concatenation (f) on three modalities (audio,
visual and textual) to model cross-modal interactions in all modality pairs. In contrast, (R. Li et al.
2021) proceed to a later fusion (c) by initially encoding intermediate modality-specific representa-
tions for music pieces and 120-frames seed motion sequences, which are subsequently fused in a
cross-modal transformer to learn the correspondence between both modalities and generate the
future motion sequences. Advantages and limitations of studied approaches are summarized in

Table 2.1.

Transformer Layer
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(d) Hierarchical Attention (one-stream to (e) Cross-Attention (f) Cross-Attention to Concatenation
multi-stream)

Figure 2.12: Different variants of Transformer for processing multimodal data. Colors represent modali-
ties. Figure from (P. Xu et al. 2022).

PRE-TRAINING AND SELF-SUPERVISED LEARNING

Apart from initial encodings at the token level and architecture design (Figure 2.12), effective mod-
eling of cross-modal interactions can be achieved through the pre-training objective. Originally
developed for NLP and related tasks, transformers have revolutionized the field by enabling effec-
tive modeling of contextual dependencies within sequences. The trend of pre-training transformer-
based models on vast quantities of unlabeled data using self-supervised objectives to learn general
language knowledge has led to the development of large foundation models (see Section 5.7).
These models demonstrate impressive performance across diverse tasks and exhibit robust gen-
eralization ability.
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2.2 Multimodal learning

Table 2.1: Comparison of different approaches for multimodal representation learning.

Approach Advantages Drawbacks

Model-Agnostic Simple and flexible. May miss complex dynamics.

PGM Handles missing modalities. | Computationally expensive.
Unsupervised training.

Autoencoders Unsupervised. Captures es- | Task-agnostic ~ representa-

sential semantics.

tion.

Attention-based Models Interpretable. Balance | Performance varies with task
modalities. complexity.
Transformers High performance. Some- | Requires careful tokenizer

times interpretable through
attention maps. Offers many

and embedding layer designs.

Requires consequent com-

architecture variants.

putational power.

Self-supervised learning is a learning setting in which the objective is defined by the data them-
selves. Aside from having the advantage not to need labeled data, these methods force the models
to learn representations that leverage the structure of the data, as it constrains the learning objec-
tive. For instance, it is common to try to predict a hidden part of the input:

* The seminal work (Devlin etal. 2019) introduced the Masked Language Modellingloss (MLM),
that needs the model to predict a masked token in a sentence.

* Thatapproach has been adapted to other modalities. (Dosovitskiy etal. 2021) hence explored
a Masked Patched Prediction pre-training objective, consisting in predicting the mean color
of corrupted image patches, while (Junkun Chen et al. 2020) similarly mask some frames of
speech inputs, and tries to reconstruct the initial sequence from the corrupted data.

These modality-specific learning objectives have been quite straightforwardly extended to the
multimodal framework, especially for unlabeled and unaligned datasets. Although the corre-
sponding losses remain unimodal, the associated learning process leverages the cross-modal de-
pendencies between multimodal inputs to gain information from the other modalities. It is also
frequent to consider a general loss composed of the sum of modality-specific losses. For instance,
the VideoBERT (C. Sun, Myers, etal. 2019) model’s training consists in encoding textual and visual
sequences and to predict masked tokens (either textual or visual) using modality-specific input
sequences and the MLM objective. Besides the text-only and video-only objectives, a third cross-
modal objective is tackled: after encoding a bimodal sequence formed by the concatenation of
textual and video sequences (see Figure 2.13), the model shall predict if the two sequences are
temporaly aligned using as input the C'LS token. The global pre-training objective is composed
of the sum of the three objectives.

In the case in which we possess aligned modalities however, we can use this alignment as a self-

supervised objective. A popular framework of SSL that is suited for aligned modalities is con-
trastive learning, which encourages representations of input data and their augmented views to be
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Figure 2.13: VideoBERT architecture and pre-training. Figure from (C. Sun, Myers, et al. 2019).

close in latent space, while pushing apart representations of different inputs. This way, the learned
representations should be invariant to small perturbations, while encoding salient features. Given
a context vector ¢, the popular InfoNCE loss (Oord et al. 2018) uses categorical cross-entropy to
identify the positive sample x drawn from the distribution p(x|c) from unrelated noises z’. This
loss optimizes the negative log probability of classifying the positive sample correctly:

f(x,¢c)

S0 (2.10)

Lingonce = E [log Z

where f(x, c) estimates the density ratio 2 (x|c)
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Figure 2.14: CLIP Architecture. Figure from (Radford, Kim, Hallacy, et al. 2021).

This loss inspired Radford et al. to design CLIP (Radford, Kim, Hallacy, et al. 2021) architecture,
illustrated in Figure 2.14. The model consists of mapping related image and text embeddings in a
common subspace by simple linear projections. For a batch of N image-text pairs, all N 2 cosine
similarities are then computed. The first term of the loss then fixes each image as the context cand

minimizes the corresponding LinfoncE. The second term of the loss replicates the same procedure
by fixing each text as context.
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2.2 Multimodal learning

Despite the simplicity of the architecture, this self-supervised setting enabled to pre-train CLIP on
400 million unlabeled image-text pairs. This results in impressive results, the model achieving for
instance the same performances in Zero-Shot setting on ImageNet as a fully supervised ResNet
50. Besides CLIP, many works have explored the contrastive framework to pre-train multimodal
architectures (Alayrac, Recasens, et al. 2020; Bachman et al. 2019; J. S. Chung et al. 2016; Hjelm et al.
2019; Miech et al. 2020; C. Sun, Baradel, et al. 2019).

In summary, the popularized paradigm consisting in pre-training transformers on self-supervised
objectives has also been explored intensively in the multimodal paradigm. Taking inspiration from
the BERT introduced Masking Language Modeling loss, these architectures’ pre-training objec-
tives mainly consist in reconstructing masked tokens from inputs, in cross-modal or modality-
conditional fashions (J. Lu et al. 2019; C. Sun, Myers, et al. 2019). Moreover, in these approaches the
alignment between different modalities also constitutes an interesting supervision. This align-
ment is even the main self-supervised objective of contrastive methods.

CONCLUSION

In conclusion, there has been extensive work in the realm of machine learning and deep
learning for unimodal fault diagnosis. However, the area of multimodal diagnosis has
been less thoroughly explored, reflecting a significant gap in research that is waiting to be
addressed. Notably, the field of fusion and multimodal representation learning has wit-
nessed considerable development. These advancements are mostly driven by challenges
in text/image tasks, with recent trends highlighting the supremacy of transformer-based
architectures. However, the general framework for these multimodal transformer archi-
tectures can still be improved and adapted for new scenarios, such as multimodal fault di-
agnosis. Despite these advancements, the distinctive properties of the corresponding data
in industrial applications, including the presence of unaligned and long temporal streams,
add a layer of complexity. Furthermore, the multimodal nature of these streams has not
been considered enough within the realm of fault diagnosis, hence there is a rich oppor-
tunity for exploration and development. In addressing this complex problem, it is vital
to note that the heterogeneity gap remains a significant challenge. Given this, there is a
pressing need to define a new setting for this kind of data, an undertaking we will focus on
in the subsequent chapter. In parallel, we will also introduce a new architecture, named
StreaMul T, specifically designed to confront these emerging challenges.
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3 STREAMULT: A STREAMING MULTIMODAL
TRANSFORMER FOR HETEROGENEOUS AND
ARBITRARILY LONG SEQUENTIAL DATA

CHAPTER’S SUMMARY

In this chapter, we tackle the new challenges posed by the rising complexity of Industry
4.0 systems, and their relation to fault detection and diagnosis tasks. We explore these
challenges in a realistic environment that involves multi-source data streams from vari-
ous modalities, including time series sensor measurements, machine images, and textual
maintenance reports. These heterogeneous multimodal streams also differ in their acqui-
sition frequency, may embed temporally unaligned information and can be arbitrarily
long, depending on the considered system and task. Building on the previous chapter,
wherein we examined principal approaches to multimodal fusion, we broaden our scope
to this setting. We consider arbitrarily long multimodal streams in conjunction with re-
lated tasks, such as prediction across time. To tackle this challenge, we propose StreaMul T,
a Streaming Multimodal Transformer. StreaMulT employs cross-modal attention and a
memory bank to process arbitrarily long input sequences during training and operates
in a streaming mode during inference. Our findings indicate that StreaMulT elevates the
state-of-the-art metrics on the CMU-MOSEI dataset for the Multimodal Sentiment Anal-
ysis task. Remarkably, it outperforms other multimodal models in managing considerably
longer inputs. Finally, the experiments conducted underscore the criticality of the textual
embedding layer, leading us to question recent advancements in Multimodal Sentiment
Analysis benchmarks. This chapter, therefore, offers a comprehensive exploration of the
challenges and potential solutions associated with the application of multimodal learning
in streaming settings.

3.1 INTRODUCTION

As explained in the previous chapters, the availability of massive amounts of data, coupled with
recent ML breakthroughs ofters great potential in numerous domains and particularly for the in-
dustry. More specifically, in Industry 4.0 era, one major challenge is to exploit all information
sources related to a system in order to perform data-driven diagnosis for corrective and predictive
maintenances. To represent a typical example of studied industrial system, we consider an aircraft
engine that is continuously running and from which we acquire feedback data of different modal-
ities (numerical time series, raw text, images, sound, etc.) over time. For example, these modalities
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Sequential Data

can correspond to sensors measurements, textual maintenance reports, system photographs, sys-
tem audio recordings, and so on. From these data, our goal is, depending on the task, either to
detect if the system is in a faulty mode (fault monitoring) or to determine which fault is occurring
(fault diagnosis). This setting is illustrated in Figure 3.1.

Maintenance
reports

Engine \ ]
photos -~

Sensors
measurements

,,,,,,,,,,,,,,,,,,,,,,,,,
10 minutes 2 weeks

Figure 3.1: Typical example of fault diagnosis task in the context of Industry 4.0: case of an aircraft en-
gine. Each modality present fault symptoms through acquired data (red circles), that, if fused
together, can enable the fault detection (and identification).

This paradigm comes with different challenges, from which we decide to consider the follow-
ing:

* Heterogeneous modalities: The different sources of acquired data can come in differ-

ent modalities, hence resulting in a heterogeneity gap issue when combining them. It is

therefore relevant to develop methods aiming to narrow this gap, to exploit redundant and
complementary information across modalities (see Section 2.2).

* Heterogeneous acquisition frequencies: Despite their heterogeneous nature (end there-
fore structures), different sources of data generally possess their own acquisition frequen-
cies. For instance on illustrated Figure 3.1, numerical sensors measurements of physical
quantities such as temperature, pressure, vibration or current signals, can be acquired at
a regular high frequency, in the order of few seconds. On the other hands, system pho-
tographs, are also obtained at a regular acquisition frequency but with a greater period (say
hours). Eventually, textual maintenance reports are acquired only every time following a
maintenance, that is at a low and sporadic frequency.

* Unaligned modalities: The different acquired streams are generally not aligned on the
temporal axis. Indeed, as illustrated on Figure 3.1, a fault occurring at a specific time step
may be highly correlated with very recent sensors measurements or system photographs,
while the related relevant information for the textual modalities would be contained in a
much former report.

* Arbitrarily long input sequences: As introduced in the previous point, depending on
the fault, the relevant part of the input data to perform fault monitoring or diagnosis can
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be located far back in time for one modality, relatively to another one. Thus we consider
that the acquired streams can be arbitrarily long and we do not bound them.

* Streaming mode: Depending on the level of criticality of the system, it can be imperative
to perform the fault monitoring/diagnosis task with a relatively short response time. Plus,
we can also imagine industrial systems that have to run uninterruptedly. In both cases it
is either not desirable or not feasible to wait for the system to stop before executing the
diagnosis module. Consequently, we consider as mandatory the ability to the designed
approach to work in a streaming fashion, that is processing the input streams as they are
acquired over time.

These different challenges have been tackled in the literature but separately to the best of our
knowledge. If a large avenue of research exists in multimodal learning, and from now on recently
mainly based on the Transformer architecture (see Subsection 2.2.3), the quadratic dependency
of space and time complexities of the architecture with the input length limits its use for arbitrarily
long inputs or streaming inference. By the mean of StreaMulT, we thus propose to tackle these
five problems jointly.

CHAPTER’S CONTRIBUTIONS

In this chapter, our contributions are threefold:

* Motivated by this industrial application and its key challenges, we formally define a
new applicative paradigm, in which one aims to solve a prediction task across time,
from heterogeneous (by nature and acquisition frequency) multimodal sequential
data and in a streaming fashion, hence handling arbitrarily long input data at both
training and inference time.

* We then introduce StreaMulT, a Streaming Multimodal Transformer architecture
based on cross-modal attention and conveying a memory bank to tackle these issues
and deal with unaligned input streams.

* Due to the lack of a either public or private (within the MPO project) datasets
adapted to our task, we propose to evaluate our model with the CMU-MOSEI
dataset on a multimodal sentiment analysis task, in order to compare StreaMulT
performances with previous approaches. It includes both multimodal and un-
aligned streams. We show that our model can deal with arbitrarily long sequences
without suffering from performance loss. When improving the textual pre-trained
embedding, we even improve the state-of-the-art metrics on this dataset.

In Section 3.2 we formalize the multimodal setting with arbitrary long sequential data and we
define the positioning we decided to adopt to tackle the task of industrial diagnosis in this setting.
We then review the connected works that brought us to develop the architecture of StreaMulT
in Section 3.3. We introduce the StreaMulT model in Section 3.4, and we finally conduct experi-
ments on CMU-MOSEI dataset and ablation study in Section 3.5.
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3.2 MULTIMODAL LEARNING WITH HETEROGENEOUS AND
ARBITRARILY LONG SEQUENTIAL STREAMS

3.2.1 PROBLEM FORMALIZATION

In order to avoid confusion between modality, sample, feature dimension and time indices, we
use greek letters to index the modalities.

Let M € N be the number of considered modalities. For each modality o, with o € [1, M],
we consider the corresponding time series X, indexed by time according to its own acquisition
times and lying in its own definition space:

Xo = (Xa(t))jer, and Vt € To, Xa(t) € Xa

where 7, and X, are respectively the countable (possibly not finite) set containing acquisition
times of modality o and its associated definition space. We can for instance suppose real compo-
nents without loss of generality, i.e. X, = R% with d,, the feature dimension.

Let X be the set defined as:

X = {X(t),t S R} WhCl‘CX(t) = (Xl(sl)) 81§7§ X ... X (XM(SM)) SM%}‘/ (31)
s1€1 SMETMm

The elements of X are basically M-tuples whose the a™ term is composed of the elements of the
sub-sequence X, up to a specific time step ¢ that is common to all modalities.

A label space ) and the corresponding set of ground truth time steps 7y are defined depending
on the considered specific task and on the input data. From these elements, one can construct
adataset D = (xi, yi)izl,...,n composed of realizations of previously introduced random vari-

ables:
t; := Tyli], where T,[i] denotes the i element of 7,

Vi € [1,n] x? = X (t;)
y' = y(ti)
The global objective of this setting is thus to perform a supervised prediction task (classification

or regression) on this dataset. Hence, given £ : J X V — R aloss function and F a function
class, we aim to find f € F minimizing the associated empirical risk (see Equation 3):

R 1< o
* = argmin R, (f) = arg min — L(f(x"),y" .
f* = argmin R (f) = argm n; (F),9) (3.2)

Example 1. Ideal fault diagnosis

In an ideal setting of fault diagnosis, one would like to be able to give a prediction of the state
of the system in real time, that is, every time one acquires a new data point, from any modality.
Hence in that case,

_ [ {0, 1} for fault monitoring _
V= { [1,C] for fault diagnosis  * ¥ 1<0%M7;
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The elements of the dataset D = (x, 3/*) are thus the M-tuples composed of subsequences of
all modalities up to a time step ¢;, associated with y(%;), the state of the system at time ¢;, where
t; takes all possible values of data acquisition times among all modalities.

Example 2. Fault diagnosis with resources or user constraint

The ideal setting of fault diagnosis described above is nonetheless in general not realistic for in-
ference, as the acquisition frequencies and the available resources can make the diagnosis module
impossible to run in real time. In such a case, or if the user wants to put a specific constraint on
the time to output a prediction, Ty can be constructed iteratively:

Algorithm 1 Creation of custom 7, with constraints.

t; < 0
while data_acquisition do
ti+—t;+1
if condition_on_t; then
Ty < Ty U{ti}
end if
end while

In Algorithm 1, the condition "data_acquisition" refers to the state of the data acquisition pro-
cess and can be seen as the upper bound of the value of ¢;. Namely, this condition is set to True
while ¢; has not reached the last time step of acquired time series for the training set, and can in-
definitely be set to True for inference in streaming.

The "condition_on_t;" includes all different constraints defined by the task or the user. For in-
stance, in the current case of industrial diagnosis, with a resource constraint imposing a minimum
of 10 time steps between two predictions:

"condition_on_t;” ="t; € { | ) Ta 37 A(T, =07V 7t — Ty[-1] > 107)
1<a<M

in which A represents the logical AND and V represents the logical OR.

Remark. When the inference is realized in a streaming fashion, the construction of 7, and the
execution of the diagnosis module are simultaneous.

Example 3. Multimodal Sentiment Analysis

If we consider now a sentiment analysis task in which the objective is to assign a score from -3
to 3 to each sentence contained in a long sequence (keeping past sentences in input), then for a
sequence of s multimodal sentences, the associated ground truth time steps are the last acquisition
time steps of each sentence:

V=1[-33, T,= {max(ﬁ ﬁ),léjés}

a=1
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where j is the sentence index and 77 are the acquisition time steps of modality « for sentence j.

We now describe the positioning we decided to adopt regarding this global problem.

3.2.2 POSITIONING

To the best of our knowledge, the previous framework has never been introduced as such, hence
the related task of Multimodal Fault diagnosis (addressing the five challenges) has never been dealt
with. Therefore, there is no existing and available public dataset to evaluate models on this task.
There exist many multimodal datasets, for other different applications fields, like Visual Question
Answering (Microsoft COCO (Lin et al. 2014)), Aftective Computing (CMU-MOSEI (Zadeh,
P. P. Liang, et al. 2018)), Healthcare (MIMICHiii (Johnson et al. 2016)) and so on, but none of these
datasets possess the five desired properties of our challenge. Recently, (P.P. Liang, Y. Lyu, et al.
2021) proposed a unified benchmark spanning 15 datasets, 10 modalities, 20 prediction tasks, and
6 research areas. Among these datasets, the ones related to the affective computing field appeared
to us as the closest to our problem, as they present a sequential setting, with unaligned streams
from different modalities and with different acquisition frequencies. We thus chose to conduct
experiments on the CMU-MOSEI dataset, addressing a Multimodal Sentiment Analysis task, as
introduced in Example 3.

This decision - by lack of dataset considering Multimodal Fault Diagnosis task - is compatible
with the lens we see our challenge through: by seeing the tasks of fault monitoring and diagnosis
as a unique classification in C' + 1 classes as in Subsection 2.1.1, and by writing the function f in
Equation 3.2 as f = h o g, we now seek f that minimizes the related empirical risk as defined in
2.5:

N

f= —argmin  R.(f) (3.3)
fe{hoglgeG,heH}

Following the discussion pointing out the importance of the quality of a multimodal represen-
tation in Subsubsection 2.2.2, and its link to the subsidiary prediction performances, we mainly
focused our research work on finding an architecture dealing with data presented in Section 3.2
and maximizing their multimodal representation, in a task-agnostic manner. The only assump-
tion we make on the considered task is that we are in a supervised setting.

3.3 RELATED WORK

While Transformers architectures have been widely used on numerous applicative tasks, we show
in Subsection 3.3.1 that their complexity prevents them to cope with long inputs or to run in a
streaming fashion as such. We present some variants addressing this limitation in Subsection 3.3.2.

3.3.1 TRANSFORMER ARCHITECTURES AND UNALIGNED MODALITIES

Classical approaches dealing with multimodal sequential data, such as RNN-based architectures,
do not tackle the unalignment issue (Zadeh, P.P. Liang, et al. 2018; Zadeh, Poria, et al. 2018), and
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hence consider the input multimodal data are temporally aligned. Furthermore, the autoregres-
sive nature of these architectures generally implies to consider same acquisition timesteps along
different modalities.

Multimodal Transformer (Tsai et al. 2019) adresses both these issues, taking advantage of its cross-
modal transformer modules, that aims to learn a contextual and cross-modal representation of
unaligned input sequences as depicted in Figure 3.2. At the heart of this module, cross-modal
attention blocks indeed express a target modality o with raw features from a source modality /3.
Formally, considering our input sequences X, and X g from modalities o and /3, the cross-modal
attention for X, attending to X, denoted X3_,,, is computed as:

QuKT
X : = softmax| ——— |V} (3.4)
B—a Nz B
X Wo WE XT
— softmax | — Qo Ks P XpWy, (3.5)

Vi

with @), the query matrix for modality o, Kg, Vg the key and value matrices for modality 3;
WQu Wiks, Wy, being learned weights, and dj, being the common embedding dimension for
query and key matrices.
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Figure 3.2: Cross-modal attention block between sequences X, X3 from distinct modalities (left) and
cross-modal transformer module (right). Figures found in (Tsai et al. 2019).

Unalignment is mainly handled by the matrices product (QQKE) which sets the receptive
field of cross-modal interactions to the entire input sequences X, and X g, hence enabling long-
range dependencies modeling, whereas prior works first realign multimodal sequences with the
same length and then use autoregressive nature of a model (such as RNN) to iteratively fuse cross-
modal information. This makes these approaches inadequate for asynchronous modalities, and
less effective, as intermodal interactions are only computed through a compressed hidden state,
resulting in a loss of information for long-range dependencies. This cross-modal alignment can
be viewed as a step diagonal activation in the cross-modal attention matrix, as pictured in Fig-
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ure 3.3, hence as a temporal monotonic attention. Another drawback of these models lies in their
autoregressive nature, making it difficult to parallelize.

Time Modality —no attention weight
——
@
Explicit alignment written in Lhe form of a crossmodal atlention matrix

l'ime =little attention weight

Modality o

Time

A learned crossmodal attention in Mul'T

Figure 3.3: Examples of cross-modal attention matrices: explicitly aligned data on top and unaligned data
on bottom. Orange boxes correspond to cross-modal pairs the model attends to, with higher
weights on brighter boxes. Figure from (Tsai et al. 2019).

However, due to the arbitrarily long size of input sequences in our setting, Multimodal Trans-

former architecture faces two main issues. Training is intractable due to its space and time com-
plexities, and inference cannot be done in a streaming way, as the vanilla model needs the whole
sequence as input to compute the relative matrix product. The construction of efficient trans-
formers is actually a well studied subject, as stated in a recent survey (Tay et al. 2022). Indeed, the
self-attention module essentially implies to compute the product of two I x | matrices (where [
is the length of the input sequence), and hence has a complexity in O(I2). Thus, many works try
to reduce this quadratic complexity, up to a linear one, in order to speed up computation time or
to enable longer history for input data.
These approaches approximate the full quadratic-cost attention matrix by adding some sparsity
to it, using essentially either Low-rank methods (Sinong Wang et al. 2020), fixed (Child et al. 2019)
or learned (Kitaev et al. 2020) sparsification patterns, side memory modules (Zaheer et al. 2020), ker-
nalization (Katharopoulos et al. 2020), or recurrence (Dai et al. 2019).

Remark. From this point, and until the end of the chapter, for the sake of clarity we adopt new
notations:

* X; will denote the i™ segment of input X, whereas X; o, will refer to the ith segment of
modality o of input X
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o X! will refer to the value of variable X at the layer [

* M,, will be used to refer to the memory bank of modality «, whereas M still refers to the
number of modalities

* n will be used to refer to the number of segments, rathen than the number of samples

3.3.2 STREAMING INPUT DATA

To our knowledge, none of the previous papers (Tay et al. 2022) (so-called Efficient Transform-
ers) yet considered arbitrary long or streaming data frameworks. This is an issue, as even a matrix
whose computation complexity is linear in the input length becomes intractable for very long
sequences. In the same way, for input sequences acquired on the fly, modeling inter-modalities
dependencies with a cross-modal Transformer requires to recompute the whole attention matrix,
which is also intractable. On the other side, some prior works focus on dealing with streaming
scenarios, although unimodal. That is the case of papers addressing Automatic Speech Recogni-
tion (ASR), or Simultaneous Machine Translation (SMT) tasks, for which there is a need to keep
a relevant temporal information flow, coupled with a necessary low latency at inference. This re-
sults in a quality-latency trade-off, in which the model needs to produce an output with only a
partially available input sequence to ensure low latency. If some works choose to mask previous
and future contexts using a sliding window (Moritz et al. 2020; Tripathi et al. 2020; Q. Zhang et al.
2020), a strategy so called time-restricted attention, other ones segment input sequences in smaller
chunks before performing self-attention on those chunks (Z. Tian et al. 2020; C. Wang et al. 2020).
The main drawback of the former strategy is that the receptive span of the self-attention is linearly
growing with the number of transformer layers (see Figure 3.4), implying more latency ; while the
issue of the latter strategy is on the contrary that the relation between different chunks is lost,
undermining the performances of the model as long-range dependencies cannot be computed.

)
x/

x2 x3 x4 x5 x6 x7 x8 x9 x10

Figure 3.4: Examples of receptive field linearly growing with the number of layers: context masking for the
y7 position (left=2, right=1). Figure from (Q. Zhang et al. 2020).
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To alleviate the issue of chunk-wise methods, (C. Wu et al. 2020; Yeh et al. 2021) add a memory
bank of multiple slots to this architecture, aiming to store salient history from long-range his-
tory. Thus, whereas a recurrent-connection-based approach such as Transformer-XL (Dai et al.
2019) can only attend to a segment that is k steps away after O(k) steps, Augmented-memory
Transformer (AM-TRF) (C. Wu et al. 2020) can already attend to previous segments embeddings
through attention performed on memory bank.

® memory slot

n-th segment's embedding for n-th
© hidden activation forward segment
A
.. Support of attention "4 N

distribution [o oI 0O 0O0O0O0OO0O0O0o IO Ol

—» attention output

- - pooling Memory bank for

n-th segment query =h,
[ leftcontext
attention distribution for h,
=1 right context ' Y
i °o o lo ofooooo0o0o0o0 |00
[:] » Se P [
m* . (M (n— DB hy =" nB my
y =S atiention diswibation for 8, Q"
query n—| n query = §,

store into memory bank store Into memory bank

Figure 3.5: Illustration of one forward step for the augmented memory transformer on the n-th segment.
B refers to the segment length. Figure from (C. Wu et al. 2020).

Formally, input sequence s first chunked into non-overlapping smaller segments (C; ) >0, which
are concatenated with left L; and right R; context blocks to prevent boundary eftects, hence form-
ing contextual segments X; := [L; : C; : R;]. Considering a contextual segment X; and a mem-
ory bank M; = [my, ..., m;_1] containing compressed information from previous segments,
the output X" of the n-th layer is computed as:

X = LN(X})

K} = WM}, X]']
V= Wy M, X
Qr = WoX7'

(2L 28, ZRa) - = Amn(QF, K1, Vi) + X7
X7+ FEN(LN([Z7, : 28, Z33)))
Xptt = LN()AQ"+1 +[ZL 28 Zﬁ,i])

my = Atn(Wosi, K*, V")
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where 57 is the mean of C* and LN, FEN, Attn respectively correspond to Layer Normalization,
Feed-Forward and Attention layers. After passing through all IV layers, outputs corresponding to
left and right contexts are discarded to keep only center segments representations (C¥ );>. Fig-
ure 3.5 illustrates this architecture.

Emformer architecture (Shi etal. 2021) is an improved version of AM-TREF, in the sense that it
performs attention on the memory bank from the lower layer, hence dumping its autoregressive
nature and becoming parallelizable during training. Besides, it considerably reduces the amount
of computation by caching Key and Value matrices from previous segments, and optimizes global
performance by cutting off some dependencies during self-attention computation. Figure 3.6
sums up the main differences between both architectures.
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Figure 3.6: Comparison of AM-TRF (left) with Emformer (right). The two approaches mainly differ in the
content of M7, that contains summarized information from lower layer in Emformer (enabling
to parallelize the computations on all layers); and in the cached keys and values from previous
segments. All these optimized changes render the architecture more efficient and prone to work
in a streaming scheme. Figure from (Shi et al. 2021).

3.4 PROPOSED MODEL

We propose StreaMulT, a Streaming Multimodal Transformer architecture, taking advantages of
both a cross-modal attention mechanism and a block processing approach to tackle the different
challenges of this framework. Finally, we optimize the training scheme of the model to lower space
complexity, training time and enabling inference short-time response at the same time.

Our global end-to-end architecture combines benefits from block processing and cross-modal
attention. The architecture is illustrated in Figure 3.7. We describe here the processing of the data
of modality o, with 1 < o < M.

X is first passed through a 1D convolutional layer aiming to model some local temporal struc-
ture, and map all modalities to a common feature dimension d. Segment bounds are then fixed.
Extending the block processing method to input data with heterogeneous sampling rates, we de-
fine hard segment bounds with respect to the temporal axis, hence producing shared segments
across modalities, as illustrated in Figure 3.8. Thus, following block processing approach, every
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Figure 3.7: Streaming Multimodal Transformer architecture. SCT stands for Streaming Cross-modal
Transformer. Different colors represent heterogeneity nature of different modalities, and shad-
ings represent cross-modal features. Each modality-specific time series is passed through a 1D-
convolutional layer, and then through a unimodal Emformer block to initialize its modality-
specific memory bank. Cross-modal interactions are then captured through SCT blocks, that
express a target modality with the help of source modalities’ features and memory banks. Target
modalities representations computed from different source modalities are then concatenated
and passed through modality-specific Transformer encoders, that output contextual cross-
modal representations, summarizing the whole sequences. These outputs are then processed
by a final FFN to produce the prediction.

contextual segments X ; = [Lq,; : Ca,i : R, are processed in a parallel way. They are first
given to a modality-specific Emformer module to initialize its own modality memory bank M.
Then, each source modality / target modality (/3 / o) pair (8 # «) is processed by its own Stream-
ing Cross-modal Transformer (SCT) module. Specifically, each segment from the target modality
X, is expressed using the same temporal segment from the source modality X ; along with the
source modality memory bank Mg ;. For each layer n:

[égmégz} = LN([ 217RZ7,:|) (3-6)
[C‘E‘,m AZJ = LN([C3, Rp.]) (3.7)
Kg, = [KK/I,B—ML,Z"KZ,B—)a,i’Kg’,,Baoz,i?KI%,B—HJLJ] (3.8)
Vi = [Vl\v/ll,ﬁaa,iv VI 8ais VO Bsasis Vlg,ﬁ%oz,i] (3.9)
Z8 g0 = ANQE g0,y K5 is Vi) + Cha (3.10)
Zh psai = An(QR gy K50 Vi) + R o (3.11)
|Gt Rt | = FEN(N(IZE s s 28 poseni]) (3.12)
[Cott RIEY = IN(|CI Y R + (22 psis Zi s (313)
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Figure 3.8: Block processing for Multimodal learning in a streaming scheme. For modality a:
Xa,Cais Lo, and R, ; respectively correspond to the full input sequence, the initial ¢-th
block, and the left and right contexts associated to this block to form the contextual ¢-th seg-
ment. S,; corresponds to the mean of current segment Cy, ;. Blue area represents an initial
block for modality 3 while the pink one represents a contextual segment for modality .

where,
(K5 a,is K& gsa,is KR goai] = Whsoa [Mﬁm Cs., REZ] (3.14)
(VR 6—ais VE osais VR gosai] = Wo Bosa [Mﬁ,h C5.is RZZ] (3.15)
[Qg,ﬁ%a,'ﬁ Q%,ﬁ%a,i} = Wq,ﬁ%a [Cg—nx,'h Rg—nx,i:l (316)

n n . . .
and (K LB—ai VL s a,i) are the key and value copies (cached) corresponding to previous seg-
ments, up to left context size. This module is illustrated in Figure 3.9.
. . N ) . N )
After the last layer IV, right contexts representations (g, , ;)i>0 are discarded. (C3', , ;)i>0
are concatenated to form the final cross-modal representation X g_,,. We then concatenate along
the feature dimension all cross-modal outputs corresponding to the same target modality cv in a

X1~>a
Xa—l—)a

vector Zy, 1=
Xa+1—>a

, thatis given as input to a Transformer Encoder exploiting sequential

XM—a
nature of data, to produce modality output y. All modality outputs are eventually concatenated

and passed through a final fully-connected layer to output prediction g.

TRAINING SCHEME: BALANCING SPACE AND TIME COMPLEXITIES

The main motivation to design StreaMul T architecture is to handle the arbitrarily long nature of
considered multimodal input sequences. In that sense, the block processing mechanism we use
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Figure 3.9: Streaming Cross-modal Transformer module.

aims to alleviate the quadratic complexity of cross-modal attention modules, similarly to several
speech recognition works (Shi et al. 2021; C. Wu et al. 2020). However, these applications focus on
getting short-time response at inference to perform simultaneous speech translation or recogni-
tion and hence essentially differ from our framework. Indeed, to handle very long sequences we
are at least as concerned about space complexity as time complexity. We thus cannot train our
model in the same fashion as these approaches, that is by parallelizing on all input segments the
cross-modal attention computation. Thisindeed still implies a quadratic space complexity to store
cross-modal attention weights matrix.

To fulfill both space capacity and efficient training time constraints, we introduce a flexible train-
ing scheme. This is illustrated in Figure 3.10. More specifically, at training time we parallelize
operations of Memory bank initialization and Streaming Cross-modal Transformer modules on
subsequences of h consecutives segments. / is chosen in an empiric way, as the highest integer
enabling one’s memory capacity to run the model. This training scheme enables StreaMulT to
run arbitrarily long sequences by only storing limited-size matrices, while still benefiting from si-
multaneous computations through parallelization. Space and time complexities for different layer
types are derived in Section 3.6. Note that we do not change the segment length but rather con-
catenate them in a single matrix product. This enables to keep short segments at inference and
thus still work in a short-time response for streaming application.

3.5 EXPERIMENTS

3.5.1 DATASET AND EVALUATION TASK

Despite having a public or private dataset compatible with the Streaming Multimodal Learning
challenge, involving long, heterogeneous and unaligned input sequences, we conduct experiments
on CMU-MOSEI dataset (Bagher Zadeh et al. 2018), to empirically evaluate the StreaMulT archi-
tecture and compare it with existing approaches handling sequential unaligned multimodal data.
CMU-MOSEI dataset consists of 23,454 movie review video clips on YouTube, from which are
extracted audio and video features using Facet (based on CERT (Littlewort et al. 2011)) and CO-
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Figure 3.10: Flexible scheme. At training time (left), subsequences of i consecutive segments are created
to parallelize cross-modal attention operations. At inference (right), one can still process seg-
ments one by one to obtain a short-time response.

VAREP (Degottex et al. 2014). Textual features are also extracted from words transcripts, using
GloVe (Pennington etal. 2014) pre-trained embeddings. This produces an unaligned version of the
dataset, which is used to create a word-aligned version, using P2FA algorithm (J. Yuan etal. 2008).
All aligned sentences are padded to a fixed length of 50 time steps.

The related task aims to perform sentiment analysis on these clips, labeled by human annotators
with a sentiment score from -3 to 3. As in (Tsai et al. 2019) and previous works, we evaluate model
performances using various metrics: 7-class-accuracy, binary accuracy (positive or negative state-
ments), F1-Score, MAE and correlation between model’s predictions and labels.

3.5.2 EXPERIMENTAL SETTING AND RESULTS

To highlight StreaMulT added value, we conduct experiments in different settings. We first con-
sider input video clips as our whole input sequences, and observe StreaMul T performances when
dividing these clips into smaller segments. As we need to define hard segment temporal bounds,
which are not given in the unaligned version of CMU-MOSEI, we conduct this experiment with
the aligned version of the dataset. For StreaMulT, we choose to divide the input sentences into 5
segments of length 10.

We compared StreaMul T performances with Multimodal Transformer (MulT) and other mod-
els addressing Multimodal Sentiment Analysis challenge, among which the recent SOTA methods
(W. Han et al. 2021; W. Yu et al. 2021). We strongly emphasize that the added value of StreaMulT
is its ability to deal with arbitrarily long unaligned multimodal inputs, and that it does not in-
tend to address Multimodal Sentiment Analysis specific task. Hence at first we only reported
Multimodal Transformer metrics scores given in (Tsai etal. 2019) for a fair comparison, as both ap-
proaches use GloVe embeddings for text modalities whereas most recent works (W. Han etal. 2021;
W. Yu et al. 2021) use BERT embeddings. We also used the available official code' for Multimodal
Transformer architecture to run the experiments, with hyperparameters given in (Tsai et al. 2019).

1https:/ /github.com/yaohungt/Multimodal-Transformer
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We could not reproduce the results shown in the paper, hence we present the results we obtained,
that are not as good as the given ones. All scores from our experiments are averaged on 5 runs.
The corresponding results are represented in the upper part of following Table 3.1. This shows
that our architecture globally reproduces the results of Multimodal Transformer (even performs a
little bit better on some metrics), which highlights the availability of its memory bank to properly
convey salient information through time, as StreaMulT receptive field only attends to segments
of length 10, while MulT attends to whole sequence of length 50.

We then decided to use contextual pre-trained embedding layers for textual modality, namely
BERT (Devlin et al. 2019) and BART (Lewis et al. 2020). The corresponding results are described
in the lower part of Table 3.1, with a significant improvement in all metrics, StreaMult-BART
achieving now the best results on the aligned version of CMU-MOSEI dataset.

Metric MAE'  Cort™ Accl AcclgI F1*
MulT? 0.580 0.703  51.8 82.5 82.3
MulT™ 0.615 0.666 4932 81.05 8142
StreaMulT* 0.608 0.671 50.08 81.08 81.01
MulT-BERT™ 0.563  0.771  50.85 85.59  85.63
StreaMul T-BERT™ 0.551  0.764 52.04 85.46  85.56
MulT-BART* 0.543 0.782 53.83 86.28  86.29
StreaMul T-BART™ 0523 0.786 54.54 86.97 86.97

Table 3.1: Results on CMU-MOSEI aligned. Best results are marked in bold.f: results from (Tsai et
al. 2019). *: Own implementation or reproduced from official code with provided hyper-
parameters.

We then trained the Multimodal Transformer and StreaMulT architectures on unaligned ver-
sion of CMU-MOSEI dataset and reported the results in Table 3.2.

Metric MAE'  Cort™  Acch Acch F1*
TFN? 0593 0700 S0.2 /825 -/82.1
LMF? 0.623  0.677  48.0 -/82.0 -/82.1
MFM?E 0568 0717  SL3 -/84.4 -/84.3
ICCN? 0565 0713 516 -/84.2 -/84.2
MulT® 0591  0.694  50.7 -/81.6 -/81.6
MISA* 0568  0.724 - 82.59/84.23  82.67/83.97
MAG-BERT? 0539  0.753 - 83.8/85.2 83.7/85.1
Selt- MM 0.530  0.765 - 82.81/85.17  82.53/85.30
MMIM?! 0.526  0.772 S54.24 82.24/85.97  82.66/85.94
MulT-BERT 0544 0776 52.86 82.85/85.95 83.18/85.97
MulT-BART 0532  0.792 5417  84.11/86.9 84.51/86.95
StreaMulT-BERT || 0.570 0.774 50.89  82.31/85.98  82.71/86.13
StreaMulT-BART || 0531 0778 53.89  83.30/86.35  83.74/86.39

Table 3.2: Results on CMU-MOSEI unaligned. Best results are marked in bold. : results from (W. Han
etal. 2021). b: results from (Tsai et al. 2019).

Once again, the usage of a contextual pre-trained embedding layer significantly improves per-

formances. The Multimodal Transformer architecture coupled with a BERT embedding layer
now equals the performances of SOTA MMIM model on several metrics, questioning the real
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improvement on the Multimodal Sentiment Analysis task over the last three years. Besides, it em-
phasizes the power of language models, which is supported by the performances of MulT-BART,
defining a new SOTA for several metrics on this dataset.

We finally simulated arbitrarily long sequences by concatenating all video clips related to the
same speaker and considering these as inputs streams. In this setting, StreaMulT architecture
successfully parallelizes its training along segments and handles long sequences at inference in a
streaming way. On the other side, Multimodal Transformer faces memory issue.
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Figure 3.11: Heatmap of StreaMulT attention weights for the Visual/Textual cross-modal module. The
sequence of length 50 is chunked into segments of length 10, with left and right contexts of
respectively lengths 10 and 3.

To qualitatively validate our architecture, we also plot the heatmap of the different attention
weights of the model in Figure 3.11.
This plot represents the different attention weights of the Streaming Cross-modal Transformer
related to the visual/textual modalities, for a multimodal sequence of length 50. For consistence
with previous notations, we call « the visual modality and /3 the textual modality. On the x-axis,
the key matrix K is organized as: [memory bank; right contexts; segments utterances|. On the y-
axis, the query matrix ) is organized as: [right contexts; segments utterances; summary vectors.
Different blocks are delimited on Figure 3.11 by vertical and horizontal blue lines.

This figure first reminds us, as stated in (Tsai et al. 2019), that language sequences are unaligned
across modalities. This is indeed shown by the several activations on vertical lines (differing from
a temporal monotonic diagonal line), corresponding to specific word embeddings correlated to
many visual frames.

If some of these unalignments remain in the scope of the same temporal segment, as illustrated in
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the fourth segment by the green box, the access to the memory bank enables the model to attend
beyond the current segment and to catch unalignments at longer range, as illustrated in the third
segment by the yellow boxes. The yellow box on the right witnesses the unaligned dependencies
within the third segment, while the left yellow box illustrates that some textual features of the past
history activate the visual frames of the current segment.

These different behaviors show the ability of the StreaMulT architecture to adapt its strategy de-
pending of the context, attending to unaligned data from past history via memory bank when
necessary.

3.5.3 ABLATION STUDY

We conducted some ablation experiments to assess for the importance of specific parts of the
model or of the data. The results of these experiments are displayed in Table 3.3. Specifically, we
tried to highlight the importance of each modality for the considered MSA task by sequentially
leaving it out.

While omitting sound or images streams does not affect much the performances of the model
(less than 1% loss in binary accuracy and F'1-score), the absence of textual modality results in an
impressive drop of more than 15% in binary accuracy and Fl-score, that cannot be compensated
by visual and audio modalities.

Metric MAE'  Cor” Acc’7L Acch F1*
(audio, visual) 0.826 0.274 4111 65.36/67.59 66/68.69
(audio, textual) 0546  0.775 53.07  81.92/86.13 82.46/86.11
(textual, visual) 0542 0.784 5359  82.32/86.61 83.21/86.76
StreaMulT-BART || 0.523 0.786 54.54 82.99/86.97 83.46/86.97

Table 3.3: Ablation study on CMU-MOSEI aligned. Best results are marked in bold.

3.6 TIME AND SPACE COMPLEXITIES STUDY

Layer Type Time Complexity by layer Space Complexity by layer Sequential Operations
Self-Attention O(n?.d) O(n? + n.d) o(1)
Cross-modal Attention O(ng.ng.d) O(ng-ng +nq.d+ng.d) O(1)
Streaming Cross-modal Attention
(regular training scheme) O(na-ng.d) O(na.ng + na.d+ng.d oM
Streaming Cross-modal Attention 2 ng
(flexible training scheme) O(ng.h.Cg.d) O(h*.Ca.Cg + h.Cq.d + h.Cg.d) O<7hc’a)

Table 3.4: Time and space Complexities for different layer types.

Table 3.4 derives the different time and space complexity classes for difterent types of layers,
along with the number of sequential operations. Vanilla self-attention layers have a quadratic
complexity both in time and in space, which is problematic for handling long sequences. Simi-
larly, cross-modal attention, as defined in (Tsai et al. 2019) also has a quadratic complexity in the
sequence length. More precisely, the complexity class depends of the product of the two modali-
ties lengths ny, .1 g, as they can differ.

Streaming Cross-modal Attention modules trained in regular fashion for blocks processing (as in
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(Shi et al. 2021)) have the same space and time complexity classes, which make them intractable for

arbitrarily long sequences. This indeed requires to compute the matrix product of Q, € R%a x4

and K5 € R ™%, with dy, = nyeg.(Ra + Co + 1) and di, = g (R + Cg + lnem)- T
is the number of segments of the input sequence, R, and Rg correspond to the length of right
contexts for modalities o, 3, and C, and Cjg to the length of their central segments. Last, lyem
corresponds to the length of a memory cell. We suppose that R and /e are negligible before C,

. n . .
and noting that ng, = #* = —’;, one obtains the results mentioned above.
«@
If we train this layer in the flexible scheme as described in Section 3.4, for each subsection of h con-

. . di o Xd
secutive segments we need to handle the product of matrices @, € R4 ¥d ynd K 3 € R™8™Y,

withnow dg, = h.(Ra+Cq+1)anddy, = h.(Rg+Cg+lmem), which has a time complexity
class of O(h%.C,,.Cj3.d). As mentioned in the third column, to process the whole sequence we
need to perform h%a sequential operations, which also derives the whole time complexity class.

Note that the space complexity now only depends on i, C' and d, as we only need to store a sub-

sequence at a time.
At inference, one can thus choose i = 1 to process the input sequence in streaming, enabling a
short-time response with time and space complexity classes being respectively O(C.Cp.d) (for

one segment) and O(Cy.Cs + Co.d + C3.d).
3.7 IMPLEMENTATION DETAILS

We now describe the different parts of the implementation of the StreaMulT algorithm for the
example of Multimodal Sentiment Analysis.

Algorithm 2 StreaMulT Training loop.

Require: train_loader, model, text_encoder, optimizer, criterion
fori =1,...,nb_sequences_batches do
sequences, labels < iterate(train_loader)
raw_text, audio, vision <— sequences
text <— text_encoder(raw_text)
segments_batches <— sequence_to_segments_batches(text, audio, vision, labels,
segment_size, memory_batch_size,
left_context, right_context)
state <— None
for j = 1,...,nb_segments_batches do
text, audio, vision, labels <— segments_batches][j]
preds, state <— model(text, audio, vision, state)
loss <= MAE(preds, labels)
model < backward_propagation(loss, model)
model < update(model, optimizer)
end for
end for
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Algorithm 3 StreaMulT forward loop.

Require: text, audio, vision, state
X, Xa, Xy < [ConvlDy(text), ConvlD, (audio), ConvliD, (vision)]
state, Xy, Xq4, Xy < Emformer;(X;), Emformer, (X, ), Emformer, (X,)
Za—st, state < SCT gy (X, X, state)
Zy—t, state <— SCTy1(X¢, X, state)
Zy < [Zast + Zy—i]
Zy < resize_segments(Z;)
Z; < TransformerEncodery(Z;)
Zi—a, state < SCTy_,q(Xq, Xy, state)
Zy—sas state «— SCTyq(Xq, Xy, state)
Lo [Zt—m : Zv—m]
Z, < resize_segments(Z,)
Z4 < TransformerEncoder, (Z,,)
Zt—yy, state <— SCTyy (X, Xy, state)
Za—sp, state < SCT (X, X, state)
Zy [Zt—w : Za—w]
Z, < resize_segments(Z,,)
Zy < TransformerEncoder,(Z,)
Z « [Zy[-1] : Zo[-1] = Zy[—1]]
preds <— projection_layer(Z)
return preds, state

In Algorithm 2, the function sequence_to_segments_batches splits the input batches of long
sequences into smaller segments batches whose size is controlled by the parameter memory_batch_size,
depending on the available memory of the hardware (this is illustrated by the batches of h paral-
lelized segments in Figure 3.10). The variable "state" is initialized as None and will contain the
different memory banks, along with the cached left contexts (keys and values). The forward loop
of the model is detailed in Algorithm 3.

In Algorithm 3, the different unimodal segment_batches are passed through unimodal Em-
formers to initialize memory banks and get a first intramodal representation. All cross-modal rep-
resentations Z,_,g are then obtained through related SCT modules, which also update the con-
tent of the variable "state”. The function "resize_segments” splits the different segments_batches
into segments, from which contextual representations are learned thanks to a modality-specific
Transformer Encoder. A last projection module composed of feed-forward layers with residual
connections and dropout regularization (for training) produces the final representations, from
which the predictions related to these segments are obtained thanks to an usual classifier (a linear

layer).
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Algorithm 4 Streaming Cross-modal Transformer (8 — «) forward loop.

Require: X, Xg, state, rpe

Xﬁﬁa +— Xa

fori =1,...,nb_layersdo
rc_blocksg_,q, central_segmentsﬁ Yo & Xpoa
summaryg ,, ¢ summarize(rc_blocksg_,,, central_segmentsﬁ o)
rc_blocksg, central_segments 5 Xp
Xp—a < [LN([rc_blocksg_,, : central_segments; , ])]: summary, , |
X « [memory : LN([rc_blocksg : central_segments ])]
Qp—a — XpaWa, .,
Kg, Vg + split(XgWKVB)
Kp < [Kp[: mem_size+rc_size] : cached_Kp : Kg[—central_segments_size |
Vg < [Va[: mem_size+rc_size] : cached_V g : Vg[—central_segments_size :]
QB—sa, Kp, V3 < reshape_multihead_scaling(Qg—q, K3, V3)
Oyeights < attention_mask(Qgq (Kpg + rpek)T)
Qprobs ¢ dropout(softmax(Gueighes))
output 4= aprebs (Vs + rpe_v)
XB—q,state <— after_attention_operations(output)

end for

Zﬁ—ml «— X,B—>a

return Zg_,, state

In Algorithm 4, a cross-modal representation Z3_, , is computed from unimodal input streams
Xa, X3, along with the variable "state” that contains global information such as memory banks
or cached keys and values from previous segments (used as left context). Therefore, at the begin-
ning of each layer, right context blocks and central segments are extracted from the input streams
used for queries and keys/values. Summary vectors are then computed for query stream as a
temporal average pooling of each segment. The queries and keys/values input streams are then
reordered on temporal axis, respectively as [right_context_blocks, central_segments, summary]
and [memory_bank, right_context_blocks, central_segments], in order to compute all attention
weights in a single matrix product. Matrices ()3, K3 and Vj are thus computed thanks to
linear projection layers (K and V' are computed as once and split in two halves), and cached keys
and values are concatenated at the relevant time steps on temporal axis. As its name suggests, the
function "reshape_multihead_scaling” reshapes these matrices along the feature dimension axis
to perform multihead-attention, and rescales their corresponding elements by the factor /dj,
(see Equation 3.4). The queries/keys matrix product is then computed, with an additive term
"rpe_k" in the key matrix corresponding to relative positional embeddings, implemented in the
same way as in (Shaw et al. 2018). "rpe_k" and "rpe_v" are obtained as linear projections of a dis-
tance matrix "rpe”, global for the whole StreaMult architecture. An attention mask is also applied
to ensure the fact that queries attend to relevant keys. At the end, the output representation of
X35 is fed to several output layers (feed-forward layers, residual connections, layer normaliza-
tions; see Equation 3.12 and Equation 3.13) and is given as input for the next SCT layer. The
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"after_attention_operations” function also contains update steps for the variable "state".

We realized an hyperparameters tuning when training the StreaMul T model, evaluating differ-
ent parameters configurations on a validation set. The optimized hyperparameters are listed in
Table 3.5, alongside with their different values.

Hyperarameter Value
batch size 16
nb layers Emformer 3
nb layers SCT 4
nb heads attention 8
embedding dimension 40
segment size S
memory size S
left context 5
right context 3
keep raw False
fine-tune text encoder True
learning rate le-3

learning rate text encoder | 1le-5

Table 3.5: Optimal hyperparameters configuration for StreaMulT on CMU-MOSEI aligned.

The training has also been realized with Adam optimizer (Kingma et al. 2015), early stopping
procedure and gradient clipping. Dropout is frequently used throughout the network, mostly
with a weight of 0.1.

CONCLUSION

In this chapter, we introduced StreaMul T, a model that merges the power of cross-modal
attention for multimodal representation and the efficiency of the block processing ap-
proach to manage arbitrarily long sequences in a streaming manner. In doing so, Strea-
MulT effectively responds to the novel challenges of Multimodal Learning with heteroge-
neous and arbitrarily long sequential streams—a task that previous approaches have strug-
gled with. Experiments carried out on the CMU-MOSEI dataset demonstrated promis-
ing results, with a notable enhancement in state-of-the-art metrics and a demonstrated
capacity to handle arbitrarily long data during training and process sequences in a stream-
ing manner during inference. The paradigm has numerous applications such as Industrial
Monitoring, which necessitates an adapted dataset for benchmarking future related works.
A main drawback of StreaMulT and similar multimodal architectures though, is that we
do not control how the cross-modal interactions are captured through the learned repre-
sentations. Thus, in the next chapter we present some thoughts on the characterization
of relevant information across modalities.
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4 THOUGHTS ON THE CHARACTERIZATION OF
INFORMATION ACROSS MODALITIES

CHAPTER’S SUMMARY

This chapter presents a discussion of diverse multimodal interactions, rather than advanc-
ing a specific contribution. It begins by decomposing the relevant content into redundant
and complementary types of information. Subsequently, it delves into the exploration of
research focused on maximizing redundant information, predominantly within the multi-
view setting, and the frameworks employed therein. The final section attempts to broaden
these approaches to encapsulate the characterization of complementary information, and
articulates critiques of both existing methodologies and the deficit of evaluation bench-
marks. This analysis offers a comprehensive understanding of the ongoing challenges and
potential paths forward in the field of multimodal learning.

4.1 INTRODUCTION

The preceding chapter delved into the development and understanding of StreaMulT, a stream-
ing multimodal transformer capable of managing arbitrarily long, unaligned heterogeneous data
streams. This innovative model, like its multimodal counterparts, attempts to model relation-
ships between different modalities. It does so in a supervised manner, employing the powerful
backpropagation algorithm to devise meaningful and insightful latent multimodal rep-
resentations. The pragmatic capability of the StreaMulT architecture has been underscored,
particularly in relation to handling voluminous, unaligned, and diverse data streams.

However, as we turn the page onto this chapter, our focus shifts subtly, yet significantly. While
previous models, including StreaMul T, have offered valuable contributions to multimodal learn-
ing, an under-explored area has emerged — the lack of models that rely on well-defined theoretical
tools and assumptions, such as mutual information losses, to leverage and control complementary
information between modalities.

In a multimodal setting, various modalities often bring forward information that may appear
redundant on the surface. Many multimodal models, accordingly, tend to focus primarily on
multi-view settings where the redundant information is the primary target. This, indeed, is a valid
and essential task, as redundant information is assumed to essentially be relevant for downstream
prediction tasks. However, in doing so, we should not lose sight of another equally crucial aspect
— the potential complementarity that exists between different modalities. Indeed, differ-
ently to multi-view settings in which inputs generally consist in variations of a same scene (such as
data augmentations or different point of views), we may also be interested in different multimodal
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settings, in which input may describe a scene at different scales or times. In that configuration,
different modalities may share less (down to none) information, making the exploitation of com-
plementary information crucial.

Complementarity, in this context, refers to the unique and supplementary information that
different modalities may bring to the table, which could be key to building a more comprehensive
understanding of the data at hand. Complementary information, when effectively utilized, may
not only enhance the richness of multimodal representations but also bring insights that could
potentially be overlooked otherwise.

Thessignificance of harnessing the potential of complementarity in multimodal learning is clear.
However, how to integrate such a notion into our existing models in a theoretically robust and
practical way is a challenge yet to be fully tackled.

This chapter reflects our exploration into this very challenge, without delving into specific ex-
periments. It encapsulates an important question that has persistently emerged throughout the
course of this thesis work: How can we effectively integrate complementarity into multi-
modal learning, and how should we measure the performance of such endeavors? This
exploration is crucial and deserves to be highlighted here, as it forms the groundwork for future
investigations and implementations.

4.2 THEORETICAL BACKGROUND

4.2.1 MULTIMODAL LEARNING PROVABLY PERFORMS BETTER THAN UNIMODAL

For the sake of clarity, we limit the scope of this chapter to a setting with only two modalities.
However, the discussions and conclusions outlined here are applicable to any number of modal-
ities. Thus, we restrict the setting introduced in Subsection 2.2.2 to M = 2 modalities, where
data points are represented as x = (1), (2)) and modeled by random variables (X1, X2) €
X = A1 x Xy. We denote F;, G;, H; as the restriction of the classes of functions F, G, H (re-
spectively) to the unimodal input space &j, fori € {1, 2}.

The multimodal fusion framework is motivated by the fundamental assumption:

win R(f) < min ( puin R(f1), Jnin R(f2)> (4.1)

that is, that considering more modalities is beneficial for a task. Noting (h, §) and (h;, §;) the
empirical risk minimizers learned on (4, G) and (#;, G;) fori € {1, 2}, respectively, (Y. Huang
etal. 2021) show that :

R(ho§) < min

i=1,2 n

R(hi 0 §i) +n(§) — n(3:) + O 1)] : (4.2)

where 7(g) is the latent representation quality introduced in Equation 4, and n is the sample
size of the training dataset. As X = X} x Xy, fori € {1,2} any candidate g; € G; can be
retrieved in G, and thus 1(g) — 7(g;) < 0. In essence, this proposition argues that for a suf-
ficient sample size n, the inclusion of more modalities enhances performance on learning tasks,
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and this enhancement is measured by the quality of its latent representation. This hypothesis ap-
pears quite intuitive: augmenting the number of modalities leads to an increased data availability,
which can help the model in refining its predictions. The additional modality either reinforces the
model’s current belief (thereby increasing its predictive confidence) or introduces a novel element
to the input data. This new element, coupled with information from other modalities, may alter
the model’s belief, reducing its confidence in the prior prediction and perhaps even producing a
change in the prediction itself. Therefore, we can classify this flux of information as either redun-
dant or complementary. The information theory, as proposed by (Shannon 1948), provides a solid
framework to formalize these concepts.

4.2.2 A BRIEF RECAP ON INFORMATION THEORY

Considering two random variables X and Y, the mutual information between X and Y is defined
by :
I(X;Y)=H(X)—- HX|Y)

as the difference between the entropy of X and the conditional entropy of X given Y. In the con-
text of information communication, I (X'; Y) quantifies the average reduction in bits required to
encode X given knowledge of Y, compared to the scenario where Y is unknown. As entropy
measures the uncertainty of a random variable’s value, J(X;Y") can also be interpreted as the
reduction in uncertainty about one variable’s value when the other is observed. In our multi-
modal context, we use the mutual information operator to measure the interdependencies be-
tween modalities X and X5, and between these modalities and the prediction task at hand rep-
resented by the random variable Y.

From there, one can define redundancy between modalities, as in (Federici et al. 2020):

DEFINITION

Definition 5 (Redundancy). X is redundant with respect to X» for Y if and only if
I(Y; X1]X2) = 0. If we also have I(Y; X3/ X1) = 0, we say that X; and X are
mutually redundant.

The redundancy between modalities X7 and X5 for Y can thus be measured by I(X1; X2;Y).
It corresponds to the quantity of predictive information shared by both modalities.

Inversely, we define the complementarity of one modality relative to another as follows:

DEFINITION

Definition 6 (Complementarity). X is complementary with respect to X5 for Y if and
onlyif I(Y; X;1|X3) > 0.

The complementarity between modalities X1 and X5 for Y can thus be measured by
I(X1,X9:Y) — I(X1; X0;Y) = I(Y;X4|X2) + I(Y; X2|Xy). It corresponds to the
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quantity of predictive information that is modality-specific, hence not shared by both modalities.

In the rest of the chapter, we focus on these two parts of the information. We first review works
that focused on maximizing the redundancy across modalities, and then discuss the limitations of
current multimodal approaches when characterizing the complementarity.

4.3 MAXIMIZING REDUNDANT INFORMATION

Numerous studies in the field of multimodal learning have aimed to exploit redundant informa-
tion across modalities to construct more expressive latent representations. This is particularly the
case of all works concentrating on multi-view scenarios, where redundancy is inherently assumed
between the two views. In the multi-view learning paradigm, the input variable is partitioned into
two different views X1 and X and there is a target variable Y of interest. As a consequence, it is
highly connected to our multimodal setting in which X1 and X are two different modalities of
a same observed phenomenon.

As formulated by (Sridharan et al. 2008):

Assumption (Multi-view assumption). There exists an €;,, 7, > 0 such that:

I(Y; X2|X1) <€inpo and  I(Y; X1|X2) < €inyo

The Multi-view assumption states that (on average) if we already know X1, then there is little
more information that we could gain about Y from observing X2 (and vice-versa). This small
potential gain is quantified by €;, fo.

This hypothesis is however generally not assumed (for a small €;,f,) in the multimodal setting,
as different modalities, compared to different views of a same scene, may contain a non-negligible
quantity of modality-specific information that is of use for prediction.

Building on this assumption, various frameworks have been developed to capitalize on this in-
formation without requiring supervision. Many studies, for instance, employ the self-supervised
paradigm and particularly the contrastive learning framework, conjecturing that "a powerful rep-
resentation is one that models view-invariant factors” (Y. Tian, Krishnan, et al. 2020). These works,
driven by the InfoMax principle (Linsker 1988), aim to bring representations of different views
closer to each other and hence maximize mutual information between them (Bachman et al. 2019;
Henaff 20205 Ji et al. 2019; Y. Tian, Krishnan, et al. 2020). Similarly, (Alayrac, Recasens, et al. 2020)
extend this framework to the multimodal setting, using Infoncg loss (Oord et al. 2018) between
the modality representations of videos (audio, visual, textual modalities) in a shared latent space.

Concurrently, alternative strategies have been proposed to refine this approach by discarding
superfluous information. These strategies mainly build on the concept of a sufficient representa-
tion (Achille et al. 2018):
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DEFINITION

Definition 7 (Sufficient representation). A representation Z of X is sufficient for Y if
and only if I(X;Y|Z) = 0.

The mutual information between X and its representation Z can then be decomposed as fol-
lows:

I(X;2)=1(Y;Z2)+ [(X; Z]Y) (4.3)
Proof. Using the multivariate mutual information chain rule (Cover 1999), we have:

I(X;2|)Y)=I(X;Z) - I(X;Y; Z)
=I(X;2)-1(Y;2) = I(Y; Z|X)

As Z is a representation of X, we have I(Y'; Z| X)) = 0, which concludes the proof. O

The first term represents the predictive information we seek to preserve for effective predic-
tion, while the second term, devoid of predictive power, is considered as superfluous for the task
at hand. The information bottleneck principle (Tishby et al. 2000) provides a suitable approach
to construct expressive representations in a supervised manner. This principle seeks to minimize
I(X; Z), while simultaneously maximizing I(Y"; Z). In other words, it constraints Z to be a
minimal sufficient statistics (Soatto et al. 2016) of X to predict Y. Given the complexities associ-
ated with computing mutual information, proxies such as variational lower bounds are often used
(Alemi et al. 2017).

The information bottleneck principle was further adapted to the multi-view setting by (Qi
Wang et al. 2019), and to an unsupervised framework by (Federici et al. 2020). The key theoretical
contribution of their work is Corollary 1.

Corollary 1. Let X; and X3 be two mutually redundant views for a target Y and let Z1 be a
representation of X;. If Z is sufficient for Xo (z.e. 1(X1; X2|Z1) = 0) then Z) is as predictive
for Y as the joint observation of the two views (1 (X1, X2;Y) = I(Z1;Y)). In that case:

I(Xl; Zl) = I(XQ; Zl) + I(Xl; Z]_’XQ)

In the latter equation, the first term is predictive for X9, while the second term represents su-
perflous information for the task (because of the mutual redundancy of the views). This result
suggests an unsupervised learning objective: to maximize the first term while simultaneously mini-
mizing the second one. By doing that, we force the representation Z to be sufficient for X (hence
conserving its predictive power following the corollary), while discarding superfluous information
to make the representation more robust. The global objective simultaneously optimizes the same
tradeoff by symmetrically decomposing I (X2; Z2). These quantities can be approximated using
lower bounds on mutual information (Hjelm et al. 2019; Oord et al. 2018; Poole et al. 2019).

The hypothesis that the learned representation should contain the minimal sufficient information
is supported by (Y. Tian, C. Sun, et al. 2020), that focus on identifying good views for contrastive
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H(X,) H(X)

Figure 4.1: Information diagram of two modalities X, X that are mutually redundant for a given target
Y. The amount of information conveyed by X; and X are represented by red and blue areas,
respectively, while the purple area represents the amount of information share by both modal-
ities. The amount of predictive information, conveyed by the variable Y, is represented by the
green area. The only amount of predictive information that is accessible is I (Y'; X7; X5). This
piece of information is shared by both modalities (mutual redundancy), hence its representa-
tion area on the diagram is encapsulated in the purple area, representing I (X7; X3). Itis worth
noting that we generally lack access to the entirety of the information conveyed by Y'; this un-

available quantity is H (Y| X1; X2).

learning in a multi-view setting.

The goal of maximizing redundant information between views in the latent representations
is largely driven by the mutual redundancy assumption intrinsic to the multi-view scenario. In-
deed, from a multi-view standpoint, where the same object is observed from difterent angles, view-
specific data is often treated as noise that does not contribute to prediction. Figure 4.1 illustrates
a setting of total mutual redundancy between tho modalities X1 and X for a target Y, with the
help of an information diagram, a type of Venn diagram.

As a result of this assumption, methods that learn representations to maximize this information
perform well on multi-view downstream tasks (Tosh et al. 2021). This framework has been ex-
tended to the multimodal setting, in which the modalities are considered as the different views.
The related works essentially rely on contrastive methods to tackle the multimodal coordinated
representation learning in a self-supervised manner (Alayrac, Recasens, et al. 2020; J. S. Chung et al.
2016; Miech et al. 2020; Radford, Kim, Hallacy, et al. 2021; C. Sun, Baradel, et al. 2019), where modali-
ties are for instance videos, text or sound. The contrastive framework implicitly rely on the same
assumption, as several works have shown the parallel between used contrastive losses and the max-
imization of mutual information between views (Y. Tian, C. Sun, et al. 2020; M. Wu et al. 2020).
However, by focusing solely on shared factors, these approaches neglect the complementary part
of the information, thereby failing to harness all synergies between modalities.
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4.4 CHARACTERIZING COMPLEMENTARY INFORMATION

When considering modalities that comprise complementarity, the general setting is the one de-
picted in Figure 4.2, where the predictive information available is distributed across both modal-
ities, with some information being shared and some being specific to each modality.

H(X)) H(X>)

T

Figure 4.2: Information diagram of two modalities (X7, X2) that are mutually complementary for a given
target Y. The amounts of information conveyed by X1, X and Y are still represented by
red, blue and green areas, respectively, while the purple area still represents the amount of in-
formation shared by both modalities. While some predictive information is shared by both
modalities, z.e. I(Y; X7; Xo) > 0, there is modality-specific predictive information, i.e.
I(Y; X1]X2) > Oand I(Y; X2|X;) > 0, represented by the intersections of red/green and
blue/green areas that are outside of the purple area.

In an attempt to preserve modality-specific information, (Y.-C. Liu et al. 2021) propose to di-
rectly contrast multimodal input tuples describing the same scene, as opposed to learning a cross-
modal embedding space by contrasting distinct modalities. This strategy enables the model to
retain unique information associated with each modality. This approach is further refined by
(Yunze Liu et al. 2021), who enhance negative sampling and positive sample generation, ensuring
equal weight is given to each modality during the process of learning representations. Subsequent
research, such as (W. Han etal. 20215 W. Yu etal. 2021), seek to exploit modality-specific information
in conjunction with shared information. Nevertheless, these studies primarily rely on backprop-
agation to leverage this information, rather than exploiting theoretical insights to develop repre-
sentations that accurately depict and manage the complementarity between modalities.

These work hence aim to leverage modality-specific information through supervision, assum-
ing that predictive information I(Y; X;|X5) and I(Y; X2|X1) will be retained in the learned
representation, facilitated by backpropagation. However, the acquisition of substantial annotated
data is costly and not always feasible. In such scenarios, an unsupervised approach is more suitable
to effectively and affordably leverage predictive information. The task becomes more challenging
when we relax the redundancy assumption, as it becomes harder to differentiate relevant informa-
tion from noise and superfluous information within modality-specific content.

Besides, by using only backpropagation to guide the learning, there is no real control over the type
of information embedded in that representation that aims to leverage modality-specific content,
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for instance whether redundant information is also included (W. Han et al. 2021; Y.-C. Liu et al.
2021; Yunze Liu et al. 2021; Wan et al. 2021; W. Yu et al. 2021).

To address this latter limitation, and taking inspiration from (M. Lee et al. 2021) we tried to
implement an architecture that aims to build shared and private (z.e. modality-specific) represen-
tations that are also disentangled. The proposed model was based on a Variational AutoEncoder
(VAE) architecture that produced for each bimodal input a shared representation and modality-
specific (private) representations. A global learning objective aimed to simultaneously minimize
the reconstruction and disentanglement losses. The framework was appealing:

* itleveraged self-supervised framework through reconstruction loss;

* it was motivated by theoretical assumptions, using mutual information estimators for dis-
entangling shared and private representations;

¢ itwould have provided an accessible latent space (to observe learned patterns) and easy sam-
pling process.

Unfortunately we never succeeded in training the model, either the representations did not carry
relevant information or they were not disentangled.

The balanced setting of Figure 4.2 might also be unrealistic. There could be situations where
one modality significantly influences the prediction due to possessing more information relevant
to the target Y. Contrary to the assumption in (Yunze Liu et al. 2021), which aims to give more
weight to weaker modalities, the ideal model should prioritize the dominant modality. If we go
one step further, we can imagine a setting in which all the predictive information is contained in a
single modality, as illustrated in Figure 4.3. In an extreme case, all predictive information could be
modality-specific, rendering the other modality superfluous and approaches based on maximizing
redundant information ineffective.

H(X1) H(X2)

Figure 4.3: Modality-domination setting. In that setting, modality X; has a much bigger impact than
modality X5, which does not encompass any modality-specific predictive information, Ze.
I(Y; X2|X1) = 0 (left). In the extreme case, all predictive information is made unavailable
from the perspective of X view, thatis I(Y; Xo) = 0 (right).
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On the other hand, we can also envisage a setting in which both modalities are predictive but
do not share any predictive information, as illustrated in Figure 4.4.

H(X)) H(X>)

Figure 4.4: Information diagram of two modalities (X7, X ) that do not share predictive information for
atarget Y, ze I(Y; Xq; X2) = 0. The model shall thus combine modality-specific contents
to provide correct prediction.

Observations drawn from these scenarios reveal a potential problem in the approach to multi-
modal learning tasks, which might originate from an ill-defined problem statement. While some
research has started to leverage modality-specific information, they mostly create representations
that are developed through supervised backpropagation. However, the global complementary set-
ting actually encompasses many different configurations, therefore the objective seems ambitious
as to design representations that are robust to these different situations only using supervision.
This problem is dual, as the considered tasks and related public datasets do not always represent
the different situations depicted above. If some recent datasets aims to address tasks that require
to combine modality-specific information, such as sarcasm detection (Castro et al. 2019), or multi-
modal disambiguation (Talmor etal. 2021), there is no (to our knowledge) public dataset or bench-
mark that focuses on explicitly evaluating models on their ability to design representations that
leverage complementary information across modalities and that are robust to specific configura-
tions depicted above. (P.P. Liang, Y. Lyu, etal. 2021) however show a promising direction by gather-
ing many datasets and related tasks, that for some require the model to have an ability to leverage
a certain level of complementarity to perform well.

Finally, the interaction between modalities can fluctuate based on the specific requirements of
a task. Some classification tasks only necessitate the additive interaction of data from multiple
modalities, as the labeling is dependent on elements that are only jointly available in these modali-
ties. For instance, in the case of identifying a "green pencil” one modality might provide the visual
representation of a pencil, while another may furnish the color information, namely, green.
Conversely, certain tasks demand a more sophisticated integration of the modalities, 7e. a proper
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reasoning step. These tasks require the combination of elements from different modalities in an
insightful manner that utilizes the content from both. For instance, consider a medical diagnostic
Al system that uses three modalities: medical imaging (like CT scans), patient medical history,
and real-time vital sign data. The medical imaging modality offers visual evidence of potential
physical abnormalities. The patient’s medical history provides context on past health issues, fam-
ily history, etc. The real-time vital sign data delivers immediate health information, like heart rate,
blood pressure, and oxygen levels. Diagnosing a complex condition like a lung disease might in-
volve reasoning across all three modalities. A CT scan might reveal a lung nodule, the patient’s
medical history could indicate a long history of smoking, and the real-time vital sign data might
show low oxygen levels in the blood. The Al system must then reason that the lung nodule might
be cancerous, potentially exacerbated by the patient’s smoking history, and the low oxygen levels
could be due to impaired lung function from the cancer. This reasoning process creates a possible
diagnosis like "Lung Cancer - Identified through CT scan, corroborated by smoking history and
low oxygen levels". This diagnosis involves a nuanced understanding and combination of data
across all three modalities.

Very recent research attempts to tackle this complex challenge. For example (P. P. Liang, Yun Cheng,
etal. 2023) propose to decompose multimodal interactions into redundancy, uniqueness and syn-
ergy. This approach acknowledges the varying complexity of tasks and the different types of in-
terplay that may exist between modalities. The future of multimodal learning research will likely
involve further exploration of these dynamics, working towards more sophisticated models that
can adaptively handle a range of scenarios and tasks.

CONCLUSION

In this chapter, we delved into the different natures of multimodal interactions, distin-
guishing the distinct redundant and complementary information. Through a review of
contemporary works, we have underscored the importance of maximizing redundant
information within the multiview setting, while concurrently highlighting the important
role that complementary information plays in multimodal landscape. Nevertheless,
current methodologies overwhelmingly rely on backpropagation as the central tool
for learning modality-specific representations. This strategy, while effective in certain
contexts, tends to undermine the development of truly robust and versatile multimodal
representations that can adapt to a wide array of scenarios. The lack of evaluation
benchmarks stresses this issue, preventing accurate assessments of models’ proficiency in
leveraging complementary information.

As a conclusion, the task of adequately leveraging and understanding multimodal inter-
actions remains a formidable challenge. The redundancy-complementarity dichotomy
provides a useful lens through which to approach the problem, but it is clear that more
sophisticated methods and robust evaluation measures are needed to tackle the diverse
and complex nature of multimodal interactions.

From the experiments conducted on StreaMulT architecture in Subsection 3.5.3, textual
modality appeared to be the most informative one, as its ablation leads to the biggest per-
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formances drop. This observation endorses our hypothesis that the semantics of a pre-
cise and detailed textual maintenance report, coupled with the expressive power of high-
dimension pre-trained textual encoders, can place the text as the predominate modality
for a fault diagnosis task. Thus, in the second part we decide to put a special emphasis on
text. In the following chapter, we give the reader some background on NLP research di-
rections, from the classic tasks and architectures, up to recent interest for large foundation
models and their application to FSL tasks.
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S BACKGROUND AND RELATED WORK IN NLP:
FROM SYMBOLIC METHODS TO FOUNDATION
MODELS

CHAPTER’S SUMMARY

This chapter offers an overview of Natural Language Processing (NLP) methodologies,
up to the development of recent large Foundation Models, and then transitions towards
Few-shot learning, a strategy for learning from limited labeled data, before culminating in
a discussion of FSL applied to NLP.

The initial section of this chapter outlines the progression of NLP research in understand-
ing human language. This includes early rule-based or feature engineering methods, the
utilization of word embeddings to create distributed, meaningful representations, and the
development of various architectures for effective Language Models. In Section 5.7, we in-
vestigate the prevailing approach to addressing NLP tasks, which involves large pre-trained
transformer-based Language Models and their subsequent evolution towards creating ver-
satile central models capable of handling a diverse range of tasks, despite their distinct na-
ture. Finally, we explore in Section 5.8 the realm of Few-Shot Learning, examining its
principal techniques and intersection with current NLP paradigms, while shedding light
on the latest progress and challenges in this research area.

S.1 INTRODUCTION

Natural Language Processing is a crucial subdomain of computer science and Al focused on en-
abling computers to comprehend, interpret, and generate human languages. NLP methods have
evolved over the years to handle the messiness of textual data. The primary challenges in NLP in-
deed stem from the inherent complexity of natural language, which is often ambiguous, context-
dependent, and unstructured (Manning and Schiitze 2001). To tackle these challenges, NLP en-
compasses a wide range of tasks:

* low-level tasks, such as tokenization (K. Church et al. 2021), filtering (Manning, Raghavan, et
al. 2008), and stemming (Porter 1980), which prepare and process raw text,

* intermediate-level tasks, like part-of-speech tagging (Marcus et al. 1993) and named entity
recognition (Bunescu et al. 2005), which analyze and label the data,
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* and high-level tasks, including machine translation (Sutskever, Vinyals, etal. 2014), sentiment
analysis (Pang etal. 2002), and question answering (Woods 1977), that draw from this analysis
to perform complex language understanding and generation.

This section traces the history of NLP advances, beginning with early rule-based methods and
feature engineering techniques. We then explore the development of word representation meth-
ods, focusing on word embeddings, which have become a crucial component in modern NLP sys-
tems. The next part delves into language models, from count-based approaches such as N-grams
to neural language models based on RNN, encoder-decoder architectures, and attention mecha-
nisms. Finally, we discuss the recent emergence of transformer-based models and large Founda-
tion models, which bridge the gap between word embeddings and language models by leveraging
contextual word representations.

5.2 EArRLY NLP METHODS

RULE-BASED AND FEATURE ENGINEERING

Rule-based methods, which originated in the early days of NLP and Al in the 1950s, relied on
manually crafted rules and expert knowledge to process and analyze text. These methods were
based on a set of predefined linguistic rules or patterns that were applied to the text to extract or
manipulate information (William John Hutchins 1986). Some popular rule-based NLP techniques
included phrase structure grammars, and context-free grammars (Chomsky 1956). Techniques
such as regular expressions and finite-state automata (Mohri 1997) were also used to identify pat-
terns and perform basic text processing tasks, such as tokenization and stemming. Rule-based
methods were widely used in early machine translation systems, such as the 1954 Georgetown-
IBM experiment (W. John Hutchins 2004), and natural language interfaces (Androutsopoulos et al.
1995; Woods 1977). Rule-based methods have limitations, such as scalability and adaptability to
new languages or domains, that respectively require the developments of new and complex rules.
The manual creation of rules is time-consuming and requires significant domain knowledge, mak-
ing these methods less efficient compared to more recent data-driven approaches.

Feature engineering is a process of extracting relevant features from raw data that can be used to
build effective ML models. In the context of NLP, feature engineering often involved using expert
knowledge to design features based on linguistic properties and domain-specific knowledge (Ju-
rafsky 2000). Part-of-speech (POS) tagging was used as a preprocessing step in early NLP systems,
identifying the grammatical role of each word in a sentence (Marcus et al. 1993). This informa-
tion could then be used as input for other NLP tasks, such as parsing or information extraction.
Named entity recognition (NER) is another example of feature engineering in early NLP systems,
where the goal is to identify and classify proper nouns, such as people, organizations, and loca-
tions, within a text (Bunescu et al. 2005). Dependency parsing extracts the syntactic structure of
a sentence by identifying the relationships between words (i.e., subject, object, modifiers). Like
POS tagging and NER, dependency parsing was used as a feature in other NLP tasks (Y. Zhang
et al. 2011). Similarly to rule-based methods, feature-engineering-approaches face several major
limitations, such as the need for time-consuming expert knowledge for designing effective feature
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extraction methods, that may not be generalizable to new tasks and do not scale efficiently to large
datasets or long sequences. While feature engineering and expert knowledge played a significant
role in early NLP tasks, another approach that emerged for handling unstructured textual data
was the use of vector space models.

VECTOR SPACE MODELS: BAG-OF-wORDS AND TF-IDF

In these models based on linear algebra, documents and words are represented as vectors (Salton
etal. 1975) with the aim of leveraging some similarity between them. Bag of Words (BoW) (Harris
1954) is a simple and widely-used method for representing text data in NLP tasks. BoW converts
text into a fixed-size vector by counting the frequency of words in a document and disregarding
the order of words. BoW represents each document as a vector with the same length as the vo-
cabulary size. Each element in the vector corresponds to a word in the vocabulary and contains
the frequency of that word in the document. The main limitation of BoW is that it ignores word
order and contextual information, making it less effective for capturing semantic relationships be-
tween words. Additionally, BoW can lead to high-dimensional and sparse representations, which
can be computationally expensive for large vocabularies.

Term Frequency-Inverse Document Frequency (TF-IDF) is a technique that extends the BoW
approach by incorporating the importance of words in a document relative to their importance
in the entire corpus. TF-IDF is calculated as the product of the term frequency (TF) (Luhn 1957),
which is the number of times a word appears in a document, and the inverse document frequency
(IDF) (Sparck Jones 1972) , which is the logarithm of the ratio of the total number of documents
in the corpus to the number of documents containing the word. Hence, for a word w and a doc-
ument d from a corpus C:

TE-IDF(w, d, C') = TF(w, d) x IDF(w, C)
Card(C)
Card({c € C|w € c})

= Card({z € d|lz = w}) x log

where Card(C') denotes the cardinality of set C. The IDF weighting scheme assigns higher
weights to words that are less frequent in the entire corpus, effectively reducing the impact of
common words and emphasizing the importance of more informative words for a given docu-
ment. Although TF-IDF provides a more sophisticated representation of text data compared to
the BoW approach, it still has limitations. Similar to BoW, TF-IDF does not capture word order
or contextual information.

While vector space models such as BoW and TF-IDF have proven effective in capturing document-
level information and enabling the application of ML techniques to textual data without requiring
engineering or expert knowledge, they do notinherently account for the sequential and structured
nature of language. To address this shortcoming, researchers have turned to probabilistic frame-
works that can model the dependencies and relationships between words in a sequence.
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PROBABILISTIC FRAMEWORKS

Probabilistic frameworks, such as Conditional Random Fields (CRFs) and Hidden Markov Mod-
els (HMMs), have been widely used in early NLP tasks to model sequences and dependencies
between elements in a text. HMMs are generative probabilistic models that represent the joint
probability distribution of observed and hidden variables (Rabiner 1989). CRFs, on their side, are
discriminative probabilistic models that directly model the conditional probability of the hidden
variables given the observed variables (Lafferty et al. 2001). These probabilistic models have been
used in tasks like POS tagging, NER, and shallow parsing, among others (Finkel et al. 2005; Sha
etal. 2003). While they have proven to be effective in capturing relationships and dependencies in
sequential data, some limitations remain, such as their lack of scalability (when dealing with long
sequences or datasets, CRF are computationally expensive, whereas HMM struggle in capturing
long-range dependencies due to the Markov assumption) or the lack of semantic representation
(these models operate at the level of individual words), preventing them to leverage the deep se-
mantic structure of natural language.

Scalability to large datasets
Robustness to Unknown Words
Dependencies Between Words
Long Sequences Scalability
Semantic Representation

Adaptability

Methods
Rule-based
Feature-Engineering Based - |+
Vector Space Models (BoW, TF-IDF) +/- | +
Probabilistic Frameworks (HMMs, CRFs) | - -

\
\
\
\
\
\

+
S~
\

\

\

\

- - +/-
+/- | + | - -

+ + + + | Expert Knowledge

Table 5.1: Summary of limitations of early NLP methods. "+" denotes significant presence/requirement
of the criterion, "-" denotes significant lack/limitation, and "+/-" denotes moderate pres-
ence/requirement.

TAKEAWAYS

Despite the success of early NLP methods in addressing various language processing tasks,
these early techniques struggle in capturing the rich semantic and syntactic information
present in natural language. The BoW and TF-IDF models, for example, lack the ability
to represent the semantic relationships between words and fail to account for word or-
der, which is crucial for understanding the meaning of a text. Similarly, while probabilis-
tic frameworks like HMMs and CRFs offer a way to model sequences and dependencies,
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they still rely on hand-crafted features and do not scale well to large vocabularies or com-
plex dependencies. The limitations of each of these methods are synthesized in Table 5.1.
As the field of NLP evolved, researchers recognized the need for better word represen-
tations that could capture both the syntactic and semantic information in text. The de-
velopment of word embeddings, which are continuous vector representations of words,
emerged as a promising solution to address these limitations. In the next section, we delve
into the world of word embeddings, exploring the various techniques that have been pro-
posed to learn these representations, from count-based to prediction-based methods, and
how they have significantly advanced the state-of-the-art in NLP.

5.3 WORD EMBEDDINGS

The limitations of early NLP methods led to the development of word embeddings as a way to
better represent and capture semantic and syntactic information about words. Word embeddings
are continuous and dense vector representations that map words from a large vocabulary into a
lower-dimensional space. These embeddings are based on the distributional hypothesis, which
states that words that occur in similar contexts tend to have similar meanings (Firth 1957; Harris
1954)!. They can be generated using various techniques, broadly categorized into count-based and
prediction-based methods.

COUNT-BASED WORD EMBEDDINGS

Count-based word embedding techniques take the idea to put information about contexts into
word vectors literally, by manually designing a word-context matrix M in which columns repre-
sent potential contexts and rows represent words. In a second step, a dimension reduction tech-
nique is applied to the matrix to produce dense embeddings. As their name suggests, these ap-
proaches are based on global corpus statistics, and in that sense share some similarities with BoW
and TF-IDF. However, those latter methods are not considered as count-based word embeddings
because they represent documents rather than individual words and produce sparse vectors in-
stead of dense embeddings.

From there, the different count-based word embeddings strategies difter in the way to consider
what is context (hence defining what represent the matrix columns) and how to compute ma-
trix elements. A simple co-occurrence-based approach is for instance to consider as contexts the
surrounding words contained in a fixed-size sliding window, and to define M as a word-word ma-
trix with M;; being the number of times word w; appears in context w; (Lund et al. 1996). Based
on the same definition of contexts, information theoretic measures such as Pointwise Mutual In-
formation (PMI) (K. W. Church et al. 1990) and Positive Pointwise Mutual Information (PPMI)
(Bullinaria et al. 2007) have been used to define word representations in matrix M. PMI of a
words pair (w;, w;) is defined as the log ratio between joint probabilities and product of marginal

probabilities: PMI(w;,w;) = log %. Intuitively, designing the matrix M such that
i 3

! Also found as "You shall know a word by the company it keeps”
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M;; = PMI(w;,w;) will associate positive values to word pairs (w;, w;) that appear more fre-
quently in a same context than if they were independent, and negative values to word pairs that
appear less frequently than being independent. (Bullinaria etal. 2007) extend this idea by consider-
ing only positive values, that is defining M;; = PPMI(w;, w;) = max(PMI(w;, w;),0).
Finally, a popular count-based word embedding technique is Latent Semantic Analysis (LSA)
(Deerwester etal. 1990). Alternatively, LSA considers different documents from a corpus C' as con-
texts, and hence designs matrix M as a word-document matrix, with M;; = TF-IDF(w;, d;, C).
The second step is then to reduce the dimensionality of the term-document matrix through a
singular value decomposition (SVD) to capture latent semantic relationships between words and
documents. By doing so, LSA can identify and represent synonyms, polysemes, and other linguis-
tic relationships in the reduced-dimensional space.

While count-based word embeddings capture dependencies between words and semantic rela-
tionships through their term-context matrix, constructing and factorizing such large matrices may
undermine their scalability. Besides, count-based models generally struggle with out-of-vocabulary
words since they are based on direct observation of the training corpus.

PREDICTION-BASED WORD EMBEDDINGS

Prediction-based word embeddings are generated by training models to predict words or their
contexts based on the local context information, which is generally a sliding window surrounding
the target word. This approach aims to learn word representations that can effectively capture
semantic and syntactic information while exploiting the co-occurrence patterns of words in their
local contexts. Two popular prediction-based word embedding techniques are Word2Vec and
FastText.

Word2Vec, developed by Mikolov et al., is a highly influential prediction-based word embed-
ding method. Word2Vec consists of two main model architectures: Continuous Bag of Words
(CBoW) (Tomds Mikolov, K. Chen, et al. 2013) and Skip-Gram (Tomas Mikolov et al. 2013). CBoW
aims to predict the target word based on the surrounding context words, while Skip-Gram focuses
on predicting context words given a target word (see Figure 5.1). For both architectures, word
vectors are model parameters that are updated along the training through Maximum Likelihood
Estimation (MLE) when moving the sliding window along the training corpus and predicting ei-
ther target word or context words at each position. Word2Vec embeddings have been shown to
produce state-of-the-art results on various NLP tasks when released.

FastText (Bojanowski et al. 2017) is an extension of the Word2Vec algorithm that focuses on
learning representations for subword units. By representing words at the character scale, Fast Text
can efficiently learn embeddings for rare and out-of-vocabulary words. FastText has been shown
to improve performance on a range of NLP tasks, such as text classification (Dharma et al. 2022).
Finally, GloVe, a popular hybrid approach between count-based and prediction-based techniques
has been developed in 2014 (Pennington et al. 2014). GloVe combines the benefits of matrix fac-
torization techniques, like LSA, and local context window-based methods, such as Word2Vec.
It constructs a word co-occurrence matrix from a large corpus and uses a weighted least squares
objective function to learn word vectors that can effectively capture semantic and syntactic infor-
mation. It hence captures both global and local context information, allowing for a more com-
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Figure 5.1: Comparison of CBoW and Skip-Gram approaches. CBoW projects context words to predict
a central word (left), while Skip-Gram inversely projects a unique word to predicts its context
(right). Figure from (Tomds Mikolov, Le, et al. 2013).

prehensive representation of word meaning. However, it requires explicit construction of the
co-occurrence matrix, which can be computationally expensive for larger corpora, and it can be
sensitive to the choice of hyperparameters, such as the window size and weighting scheme.

Interestingly, using similarity to build rich word representations is not reflected only in quan-
titative metrics of subsidiary tasks. (Tomas Mikolov et al. 2013) indeed qualitatively analyzed the
learned vector space and pointed out geometrical patterns based on meanings similarity (see Fig-
ure 5.2). Thus, the difference between the representation vectors of many country/capital pairs
seem to produce the same vector. Another example (Tomés Mikolov, Le, et al. 2013) shows the sim-
ilar distribution of embedding vectors from a language to another one, suggesting a simple linear
mapping for translation.
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Figure 5.2: Qualitative results for Word2Vec embeddings. Subtracting capital vector to its related country
vector produces similar vector among all country/capital pairs (left). Learned embeddings of
number and animal words have very similar spatial distribution in English and Spanish (right).
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Table 5.2: Summary of limitations of early NLP methods and word embeddings techniques. "+" denotes
significant presence/requirement of the criterion, "-" denotes significant lack/limitation, and
"+/-" denotes moderate presence/requirement.

TAKEAWAYS

Word embeddings have become an essential tool in NLP, capturing semantic and syntactic
relationships between words and providing a foundation for more advanced techniques.
However, despite their ability to capture word relationships, word embeddings have limi-
tations, particularly in representing context-dependent word meanings. Indeed, these rep-
resentations are pre-computed in a static corpus, which may not be convenient when using
aword in a different context afterwards (this is notably the case for polysemous words that
have in this framework only one representation). Besides, long sequences can be handled
well as the window size can be varied, but distant dependencies might be missed. The
comparison of approaches is thus updated in Table 5.2.

We now delve into language models, which offer a comprehensive approach to capture the
structure and context of language. Their development have led to powerful and versatile
models capable of handling complex linguistic phenomena and significantly improving
performance on a wide range of tasks, such as machine translation, speech recognition,
and text generation.

S.4 LANGUAGE MODELS

Language models play a critical role in various NLP tasks by predicting the likelihood of a se-
quence of words, represented as a probability distribution over words. Given a sequence of words
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(w1, wa, ..., wy ), alanguage model assigns a probability P(w1, wa, ..., wy,) to this sequence. This
can be used for numerous applications such as machine translation (Bahdanau et al. 2015; Kochn
etal. 2003; Sutskever, Vinyals, et al. 2014), speech recognition (G. Hinton et al. 2012; Jelinek 1991), and
text generation (Graves 2013). In this section, we explore the evolution of language modeling tech-
niques, from early count-based approaches to more sophisticated neural models that have driven
significant advances in the field of NLP.

COUNT-BASED LANGUAGE MODELS

The early days of language modeling were dominated by count-based methods, with N-gram
models being one of the most widely-used approaches (Jelinek 1991). N-grams are simply con-
tiguous sequences of N words, where N is a fixed integer. An N-gram language model predicts
the probability of a word given its preceding N — 1 words by estimating the frequency of N-
grams in a large corpus. Thus, an N-gram model makes a Markov assumption, which states that
the probability of a word depends only on the previous N — 1 words:

P(wy|w, ...y wp—1) = P(wp|wp—Ni1s- -, Wnp—1)
N-gram probabilities P(wy, |wp— N1, - - ., Wp—1) can be estimated by counting in a corpus the
occurrences of N-gram (Wp—N+41, - - -, Wp—1, Wy ) and normalizing by the number of occur-
rences of (Wy— N1y« s Wp—1)-

Despite their simplicity, N-gram models suffer from several limitations, such as data sparsity,
which occurs when certain N-grams do not appear in the training corpus, leading to inaccurate
probability estimates. To overcome this issue, various smoothing techniques have been proposed
(S.F. Chen et al. 1996). Other drawbacks of N-gram models are their inability to capture long-
range dependencies, as they only consider a fixed number of preceding words to predict the next
word, or the curse of dimensionality they may face when considering large vocabulary (Bengio,
Ducharme, et al. 2000).

While count-based language models have provided a foundation for early NLP research, their
limitations have led to the development of more advanced techniques such as neural language
models (Bengio, Ducharme, et al. 2000), that afterwards leveraged the power of deep learning to
better understand and represent natural language.

NEURAL LANGUAGE MODELS

Neural language models aim to provide a continuous representation of words and capture se-
mantic and syntactic information in dense vector space. They have demonstrated their ability to
overcome some of the limitations of count-based language models, such as the curse of dimen-
sionality and the sparsity of N-grams. One of the first neural language models was a feedforward
neural network (FFN) language model (Bengio, Ducharme, et al. 2000). This model aimed to pre-
dict the next word in a sequence by concatenating word embeddings of previous words and feed-
ing them into the FFN. The output models the word probability given a context. The model’s
architecture is illustrated in Figure 5.3.
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Figure 5.3: Neural Language Model architecture. The input sentence (w;—pn41, - - ., W;—1) is converted

to feature vectors stored in a matrix C', which are then fed to a neural network g represented by
the green plain lines. The output of g estimates the probability of each word in the vocabulary,
conditioned the input context. Figure from (Bengio, Ducharme, et al. 2000).

Recurrent Neural Networks were introduced as an extension to feedforward neural language
models to better capture long-range dependencies in natural language data (Elman 1990). RNNs
are designed to process sequences of variable length by maintaining a hidden state that can store
information from previous time steps (Tomds Mikolov, Karafidt, et al. 2010). However, RNNs have
some limitations, such as the vanishing gradient problem that makes learning long-range depen-
dencies difficult (Hochreiter, Bengio, et al. 2001). To overcome the vanishing gradient problem in
RNNs, Long Short-Term Memory (LSTM) networks were proposed (Hochreiter and Schmid-
huber 1997). LSTMs introduce a gating mechanism that helps to maintain and propagate infor-
mation over long sequences, making them more effective for learning long-range dependencies.
LSTMs have thus been used as building blocks for Language Models (Sundermeyer et al. 2012).
Finally, Gated Recurrent Units (GRU) are another variant of RNNs that simplify the LSTM
architecture while retaining its ability to model long-range dependencies (Cho et al. 2014). GRUs
use update and reset gates to control the flow of information in the hidden state, making them
computationally more efficient than LSTMs, however they may not capture long-term depen-
dencies as well as LSTM.
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5.5 ENCODER-DECODER ARCHITECTURE

Many NLP tasks require not only an understanding of the input text but also the generation of a
meaningful output sequence, such as in neural machine translation and text summarization. To
tackle these challenges, a new class of models has emerged: encoder-decoder architectures, also
known as sequence-to-sequence models (Sutskever, Vinyals, et al. 2014). The encoder-decoder
architecture is composed of two main components: the encoder and the decoder. The encoder
processes the input sequence and generates a fixed-length context vector that encapsulates the es-
sential information of the input. The decoder, in turn, takes this context vector and generates an
output sequence, conditioned on the input sequence. These architectures split the model into
two parts, with one component (the encoder) focusing on processing the input sequence and the
other (the decoder) generating the output sequence (Cho et al. 2014). In the early encoder-decoder
models, both the encoder and decoder were typically implemented as RNNs, LSTMs, or GRUs.
The encoder processes the input sequence one token at a time, updating its hidden state at each
step. The final hidden state of the encoder is then used as the initial hidden state of the decoder,
which generates the output sequence one token at a time. An illustration of this family of archi-
tectures is given in Figure 5.4 .

Er liebte zu essen

He loved to eat

Figure S.4: Sequence-to-Sequence architecture”. Every words of the input sentence are embedded and then
sequentially fed to the encoder module, that stores the input information in a context S. Using
this context and the previous generated token (starting with a special token), the decoder mod-
ule sequentially generates the output.

While the encoder-decoder architecture was a significant improvement over the previous mod-
els, itstill faced some limitations. One of the main challenges was that the encoder had to compress
the entire input sequence into a single fixed-size context vector, which could result in loss of in-
formation, especially for long input sequences (Bahdanau et al. 2015). This limitation prompted
researchers to explore more sophisticated ways to better capture and leverage the information in
the input sequence, leading to the development of attention mechanism.

ATTENTION MECHANISM

The key idea behind attention mechanism (Bahdanau et al. 2015) is that the decoder should be
able to focus on different parts of the input sequence at different time steps, rather than relying

2Figurc from https://www.guru99.com/seq2seq-model.html
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solely on a single context vector. This allows the model to weight the importance of different
input tokens and selectively retrieve information from the input sequence. In an attention-based
encoder-decoder model, the encoder produces a sequence of hidden states, one for each input
token. The decoder, at each time step, computes a weighted sum of these hidden states, where
the weights are determined by the attention mechanism. These weights, also known as attention
scores, indicate how much the decoder should "attend” to each input token when generating the
output token at a given time step. The attention mechanism computes attention scores using a
scoring function that takes as input the current hidden state of the decoder and the hidden states
of the encoder. There are several variants of the scoring function, such as dot product, additive,
and multiplicative attention (T. Luong et al. 2015). The introduction of attention mechanisms
significantly improved the performance of encoder-decoder models on a wide range of NLP tasks,
including neural machine translation (Bahdanau et al. 2015), text summarization (Rush et al. 2015),
and speech recognition (Chorowski etal. 2015). The success of attention mechanisms in these tasks
paved the way for further advancements in NLP, such as the development of transformers.

5.6 TRANSFORMERS

Despite the success of attention mechanisms in improving the performance of encoder-decoder
models, researchers continued to explore ways to further enhance the capabilities of NLP models.
One significant drawback of the RNN-based models was their sequential nature, which makes it
difficult to parallelize the computations and exploit the full potential of modern hardware, such as
GPUs. In response to this challenge, (Vaswani et al. 2017) introduced the Transformer architecture,
which replaces the recurrent layers in encoder-decoder models with self-attention mechanisms.
This groundbreaking innovation has become the foundation for many state-of-the-art models in
NLP, including BERT (Devlin et al. 2019), GPT(Radford, Narasimhan, et al. 2018), and their vari-
ants, as well as in other domains (vision (Dosovitskiy et al. 2021), speech (Radford, Kim, T. Xu, et al.
2022), etc.).
The self-attention mechanism is at the core of the Transformer architecture. Unlike the attention
mechanism used in encoder-decoder models, self-attention operates within a single sequence, al-
lowing each token to attend to all other tokens in the sequence. This mechanism enables the
model to capture long-range dependencies more effectively and allows for parallel computation
across tokens. See Subsubsection 2.2.3 for a more detailed overview of the self-attention mecha-
nism. The Transformer architecture is built upon a stack of self-attention layers and feed-forward
layers, with residual connections and layer normalization applied throughout the model. The
original Transformer model proposed in (Vaswani et al. 2017) consists of an encoder and a decoder,
similar to the earlier encoder-decoder models. The encoder is composed of a stack of identical
layers, each containing a multi-head self-attention mechanism followed by a position-wise feed-
forward network. The decoder has a similar structure, with an additional layer of cross-attention
that attends to the encoder’s output. The global architecture is presented in Figure 5.5.
Transformers can also be designed as standalone encoders or decoders for various NLP tasks,
depending on the nature of the problem and the desired model architecture. For instance, BERT
(Devlin etal. 2019) is built upon a stack of Transformer encoder layers, while GPT (Radford, Narasimhan,
et al. 2018) uses a stack of Transformer decoder layers. Using only the encoder part of the Trans-
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Figure 5.5: Original Transformer architecture. Similarly to encoder-decoder models, the embedded input
is first encoded in a specific module before the decoder module generates the output autore-
gressively. The main difference is the use of Self-attention modules that make possible to model
contextual dependencies between all parts of the sequences. The masking process in the decoder
modules enables to parallelize the training. Figure from (Vaswani et al. 2017).

former architecture can be more suitable for tasks that require a fixed-length representation of
the input sequence, such as sentence classification. The Transformer encoder processes the input
sequence and produces a contextualized representation for each token, which can be aggregated
or pooled to generate a fixed-length vector. On the other hand, using only the decoder part of
the Transformer can be advantageous for tasks that involve generating text or predicting the next
token in a sequence, such as language modeling, text generation, and summarization. The Trans-
former decoder is designed to handle autoregressive decoding, where the model generates one
token at a time and feeds the generated tokens back as input for the subsequent steps. This archi-
tecture enables the model to leverage the self-attention mechanism for capturing dependencies
between generated tokens, while still benefiting from the parallelizability and efficient handling
of long-range dependencies offered by the Transformer architecture.
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Rule-based - - + - - - -
Feature-Engineering Based - +/- | + | +/- - - -
Vector Space Models (BoW, TF-IDF) +/- | + - - - |+ - -
Probabilistic Frameworks (HMMs, CRFs) - - + | +/- | + - - -
Count-Based Word Embeddings +/- |+ | - - + |+ -
Prediction-Based Word Embeddings + + - + + | +/-] + -
Count-based Language Models +/- | +/-| - - |+ - - -
Recurrents Neural Networks (LSTM,GRU) | + + - + + | +/-] + +
Transformers + + + + + + | ++ | ++

Table 5.3: Summary of advantages and limitations of general NLP methods and word embeddings tech-
niques. "+" denotes significant presence/requirement of the criterion, "-" denotes significant
lack/limitation, and "+/-" denotes moderate presence/requirement.

TAKEAWAYS

Driven by the diverse requirements of NLP tasks and the inherent pursuit of comprehend-
ing and generating human language automatically, numerous frameworks and method-
ologies have been pursued and refined, successively diminishing the constraints of preced-
ing methods (see Table 5.3). The advent of word embedding methods marked a significant
milestone, providing dense, vector-based semantic representations that proved invaluable
for a multitude of downstream tasks.

Recurrent Neural Networks, particularly LSTM, advanced this paradigm by capturing
distributed, contextually-dependent representations via their hidden state. They led to
the introduction of a new architectural framework: the Encoder-Decoder model. This
approach is exceptionally suitable for tasks requiring contextual generation, such as ma-
chine translation.

The colossal breakthrough came with the advent of Transformer models, inspired by the
Encoder-Decoder architecture and the introduction of the Attention Module. These
models offer outstanding semantic and context-aware representations through their self-
attention module, directly capturing all types of dependencies across sequence elements,
rather than compressing pertinent information within a hidden state as is the case with
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LSTM. Furthermore, the ability of Transformer models to parallelize efficiently permits
impressive scaling, aligning seamlessly with the capabilities of modern hardware. This has
resulted in Transformers becoming the cornerstone for the vast majority of today’s archi-
tectural designs in NLP and other applications of Deep Learning.

S.7 FOUNDATION MODELS

Transformers have significantly impacted the field of NLP, and their introduction came with a
change of paradigm in the field. Rather than using an end-to-end supervised framework com-
posed of task-specific neural networks, most works in the recent years follow the pre-training and
fine-tuning paradigm to achieve state-of-the-art performance across a wide range of NLP tasks.
This has today led to the Foundation models era, that aim to unify all kind of NLP tasks within a
single architecture.

Remark. Following the Center for Research on Foundation Models of Standford University”,
we refer to Foundation models (Bommasani et al. 2021) as the following: "In recent years, a new
successful paradigm for building Al systems has emerged: Train one model on a huge amount
of data and adapt it to many applications. We call such a model a foundation model.". These
models are based on Pre-trained Language Models (PLMs) architectures (see thereafter), and as
they become larger and larger, are often referred to as Large Language Models. The interchange
of these terms is hence frequent in the literature.

PRE-TRAINING AND FINE-TUNING PARADIGM

The pre-training and fine-tuning paradigm has emerged as a successful approach for building
Pre-trained Language Models in NLP. The idea is to first train a large neural network (mainly
transformer-based one) on a massive amount of unsupervised text data (such as the C4 dataset
(Raffel, Shazeer, et al. 2020)), and then fine-tune the pre-trained model on a specific supervised task
(Howard et al. 2018; Peters et al. 2018). This approach leverages the ability of DL models to learn
rich and meaningful representations from large-scale data, which can then be adapted to specific
tasks with relatively small amounts of labeled data (see Figure 5.6).

Transfer learning is a key concept underlying the pre-training and fine-tuning paradigm. It
refers to the process of transferring knowledge learned in one task or domain to another, usually
related, task or domain (S.J. Pan etal. 2010). In NLP, transfer learning has been shown to be highly
effective, as the knowledge learned from large-scale unsupervised text data can be generalized to
a wide range of tasks (Ruder et al. 2019). The benefits of transfer learning in NLP are numerous.
Firstly, it allows for more efficient learning and better generalization, as the pre-trained model has
already learned meaningful language representations (Bengio, Courville, et al. 2013). Secondly, it
reduces the need for labeled data in the target task, as the pre-trained model can be fine-tuned with
relatively small amounts of labeled data (Peters et al. 2018). Finally, it leads to faster convergence

3https:/ /crfm.stanford.edu/
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Figure 5.6: Pre-training and fine-tuning paradigm.4Large Language Models are first trained in an unsuper-
vised fashion on massive textual corpora, and then fine-tuned on a specific supervised dataset
for a related task.

and improved performance, as the model can leverage the knowledge learned during pre-training
(Howard et al. 2018; Ruder et al. 2019).

PIONEERING WORKS: PRE-TRAINED LANGUAGE MODELS TO PRODUCE
CONTEXTUAL WORD REPRESENTATIONS

As we discussed, Foundation models aim to acquire a vast amount of knowledge by pre-training
on massive unsupervised corpora. The choice of pre-training tasks and associated losses is there-
fore crucial in enabling these models to gain the general linguistic knowledge necessary for eftective
downstream task performance. By carefully designing the pre-training objective, we can encour-
age the model to learn valuable patterns, structures, and relationships within the data that can
be effectively transferred to a wide range of downstream tasks. In this context, pre-training losses
play a pivotal role in guiding the learning process of foundation models and shaping their ability
to generalize and adapt to various NLP challenges.

In the initial stages, ELMo (Peters et al. 2018) was developed to obtain context-sensitive word
representations by first pre-training a bidirectional LSTM (biLSTM) network (rather than ac-
quiring fixed word representations). Subsequently, the biLSTM network was fine-tuned to cater
to particular downstream tasks.

BERT (Devlin et al. 2019) is a powerful model based on the Transformer encoder architecture.
BERT is pre-trained on a large corpus of text using a Masked Language Modeling (MLM) objec-
tive, which enables it to learn bidirectional contextual representations. In this objective, a certain
percentage of the input tokens are randomly masked (literally replaces by a MASK token), and
the model is trained to predict the original token based on the context provided by the surround-
ing unmasked tokens. The MLM loss is calculated by comparing the predicted probabilities for
the masked tokens with the true tokens using cross-entropy. This objective allows BERT to learn

“Figure from hetps://ai.stanford.edu/blog/linkbert/
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deep bidirectional representations, capturing both the left and the right context of each token.
BERT is also pre-trained using a Next Sentence Prediction (NSP) loss, in which the model shall
predict if a sequence is subsequent to another one (but the NSP loss appeared to have low impact
on performance). (Yamaguchi et al. 2021) explored other cheaper pre-training objectives, similar
to MLM, and showed comparable performance (see Figure 5.7). Context-aware word represen-
tations of BERT and its variants (such as RoBERTa (Yinhan Liu et al. 2019)) have demonstrated
state-of-the-art performance on a wide range of NLP predictive tasks, such as sentiment analysis,
named entity recognition, and question-answering. Fine-tuning BERT on task-specific datasets
allows it to adapt its powerful pre-trained representations to the target task, often with minimal
additional training.

Original: “I cooked dinner for my family.”

cooked wmp ) shuffled | — mm Original | — ) Original
| — wp shuffled  played wep wmp random  played wep wmp random
dinner wmp, mmp OFiginal dinner wmp mmp Original  dinner mmp wmp Original
for mmp BERT wm OFiginal for wep BERT ) Original my wep BERT wmp shuffled
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Figure 5.7: Masked Language Modeling and similar pre-training objectives. In each scenario, | C'| represents
the number of classes of the pre-training objective, which considerably impacts computational
efficiency. Figure from (Yamaguchi et al. 2021).

GPT (Radford, Narasimhan, et al. 2018) is another significant milestone in contextual word rep-
resentations. GPT models are based on the Transformer decoder architecture and are pre-trained
using a unidirectional autoregressive Language Modeling (LM) objective. The primary goal of
GPT is to predict the next token in a sequence given its preceding context. The LM loss is com-
puted by comparing the predicted probabilities for the next token in the sequence with the true
next token using cross-entropy. The unidirectional nature of GPT allows it to learn powerful
contextual representations, capturing the left context of each token. However, due to their au-
toregressive loss, these models are especially suitable for generative tasks such as dialogues and
document summarization. There have been several iterations of the GPT model, with GPT-2
(Radford, J. Wu, et al. 2019) and GPT-3 (Brown et al. 2020), especially differing by their sizes, both
in number of parameters and training corpora. More recently, GPT-4 (OpenAI 2023) was released,
once again crushing its previous version size with now 1 trillion (10'2) parameters, and now being
multimodal, as it can process both text prompts and images as input. Like BERT, GPT models
can be fine-tuned on task-specific datasets to adapt their pre-trained representations to the target
tasks.
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Conditional Language Modeling (CLM) objective is another type of pre-training loss used
in some foundation models. Unlike standard LM loss used in GPT, which focuses on predicting
the next word in a sequence given the previous words, or the MLM loss used in BERT that con-
centrates on predicting randomly masked words within a sentence, the CLM loss aims at recon-
structing the input sequence after a specific kind of perturbations. A prominent encoder-decoder
architecture that employs CLM objective is T5 (Raffel, Shazeer, et al. 2020), that adopts a text-to-
text transfer learning approach, where both input and output sequences are represented as text
strings. It is pre-trained on a denoising autoencoder task, which involves reconstructing the orig-
inal text from a corrupted version. During pre-training, T introduces noise to the input text by
applying transformations such as token masking or deletion. The model then learns to recover
the original input sequence from the perturbed version. By learning to reconstruct the original
sequence, T'S captures bidirectional context and adapts well to various NLP tasks. Another no-
table architecture that uses CLM loss is BART (Lewis et al. 2020). BART also adopts a denoising
autoencoder setup, applying transformations such as token masking, token deletion, or text shuf-
fling. The combination of bidirectional context and autoregressive nature allows both TS and
BART to excel in a wide range of tasks, taking advantage of both LM and MLM frameworks.

The different pre-training objectives are listed in Table 5.4. For each objective, the considered
network aims to model the conditional probability p. It can be trained with maximum likelihood
estimation.

Objective Loss
MLM | Lym = — Z log p(W0 | W\ (w))
wem(w)
T
LM Loy =— Z log p(wi|w<t)
t=1
T
CLM Loy =— Y logp(we|W, W)
t=1
Table 5.4: Pre-training objectives and their respective loss functions for a sentence w = (w1, ..., wr).
Woy = (wi,...,ws_1), while m(w) designs masked words of W, W\, (w) designs the un-

masked elements of w and W designed corrupted sentence.

In summary, the introduction of PLM have revolutionized the field of NLP, providing general-
purpose contextual word representations that have significantly improved performance across var-
ious tasks. Building on this success, following works developed larger architectures to still improve
performances on downstream tasks.

LARGE LANGUAGE MODELS

Several studies (Hoffmann et al. 2022; Kaplan et al. 2020; Rosenfeld et al. 2020) have demonstrated
the advantages of scaling up language models in terms of model size, dataset size, and computa-
tional resources, by introducing scaling laws in terms of loss reduction. This led to the emergence
of Large Language Models (LLMs). LLMs, typically composed of Transformer-based architec-

92



S.7 Foundation models

Model Architecture Pre-training Loss Corpus
ELMo LSTM biLM WikiText-103
GPT Transformer Decoder LM BookCorpus
BERT | Transformer Encoder MLM & NSP WikiEn+BookCorpus
RoBERTa | Transformer Encoder MLM BCOS
BART Transformer CLM BCOS
T5 Transformer CLM C4

Table 5.5: Overview of different Transformer-based models. BCOS stands for BookCor-
pus+CCNews+OpenWeb Text+STORIES. biLM is a bidirectional LM loss.

tures with hundreds of billions or more parameters, are trained on extensive text datasets. These
scaled-up models, despite adopting similar Transformer architectures and pre-training objectives
as smaller PLMs, benefit significantly from increased model size, data size, and computational
power. Over the last years, several tech resource-rich organizations launched their own LLM, with
for instance Google’s PALM (Chowdhery etal. 2022) and LaMDA (Thoppilan et al. 2022), OpenAI’s
GPT-4(OpenAI2023), DeepMind’s Chinchilla (Hoffmann etal. 2022), or Meta’s LLaM A (Touvron
etal. 2023). In parallel, a team of researchers released BLOOM (Scao et al. 2022), a 176B-parameter
open-access language with the aim to make this kind of models publicly accessible. Figure 5.8 pro-
vides an overview of the main LLM released over the last years.
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Figure 5.8: Timeline (left-to-right) of the released LLMs (bigger than 10B parameters) over the last years.
The models marked in yellow are the ones made available for public use. The figures along the
timeline represent the month of release. Figure from (W. X. Zhao et al. 2023).
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Interesting learning abilities

LLMs exhibit strong capacities to understand natural language, generate text, and display emer-
gent abilities, that "are not present in small models but arise in large models” (Wei, Tay, et al. 2022).
These abilities include In-context learning (ICL) and Instruction formatting.

Introduced by GPT-3 (Brown et al. 2020), ICL allows language models to generate outputs at test
time, given demonstrations of a task, without requiring additional fine-tuning or gradient up-
dates. While the 175B GPT-3 model exhibits strong ICL abilities, the GPT-1 and GPT-2 models
do not.

Besides, when fine-tuned on multi-task datasets using instructions (natural language descriptions),
LLMs show considerable performance on unseen tasks that are also described by instructions
(Ouyang et al. 2022; Sanh et al. 2022), without necessarily giving the model explicit examples, im-
proving generalization abilities. Some studies (H. W. Chung et al. 2022; Wei, Bosma, et al. 2022)
showed that this phenomenon induced by instruction-formatting essentially appears once a suf-
ficient size has been reached. Some models such as Galactica (R. Taylor et al. 2022) even include
Instruction formatting within the pre-training stage to achieve superior performance and better
generalization capacity.

These emergent abilities are illustrated in Figure 5.9.

Answer the following
Instruction yes/no question.

without o e e =) Yes
exemplars an you write a whole

Haiku in a single tweet?

Q: Answer the following
Demonstrations yes/no questlor].
Circulation revenue has increased by 5% in Finland. ~ \n Positive . ?ouldha dat’.‘ge;'on suffer
Panostaja did not disclose the purchase price. \n Neutral Instruction r.om BRSHUSE
i i i i i with exemplars | A:no
Paying off the national debt will be extremely painful. ~ \n Negative p yes
The acquisition will have an immediate positive impact. \n Q: Answer th_e following
Test input } yes/no question.
Can you write a whole Haiku
in a single tweet?
A:
Prediction  Positive U 4

Figure 5.9: In-context learning (left): The model is given a prompt containing k input-label pairs (here
k = 3) alongside with a test input (in the same prompt), and is asked to predict in response the
test label. The model leverages the information contained in the demonstrations to effectively
generate the label with no gradient update. Figure from (S. Min, X. Lyu, et al. 2022).
Instruction fine-tuning (right): The modelis fine-tuned by providing Natural language descrip-
tions of the task in preamble. It can also contain labeled examples in the prompt (bottom). Fig-
ure from (H. W. Chung et al. 2022).

Some limitations

Whereas LLMs have demonstrated impressive performance across a broad spectrum of NLP tasks,
they sometimes produce unexpected outputs, or hallucinations, that may cause harm or mislead
the user. To prevent this behavior, the concept of human alignment has been introduced to ensure
LLMs outputs align with human expectations (Glaese et al. 2022; Ouyang et al. 2022). Reinforce-
ment learning from human feedback (RLHF) (Christiano et al. 2017; Ziegler et al. 2019) for instance
uses a policy-gradient RL algorithm to adjust LLMs based on human feedback. The integration
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of human preferences via instructions, combined with training on both code and natural text seg-
ments, resulted in the development of the GPT-3.5 series. After undergoing a conversation-like
training process, the widely-adopted chatbot ChatGPT was introduced, significantly influencing
future AI research and underscoring the potential of human-like Al systems. Google similarly
then released their chatbot BARD, aligned on human preferences with their own instruction fine-
tuning method FLAN (Wei, Bosma, et al. 2022). Anthropic’s Claude chatbot has on its side been
aligned with human moral behavior using a technique called Constitutional Al (Bai et al. 2022),
providing a principle-based approach to produce harmless outputs.

TAKEAWAYS

Large Language Models have made remarkable strides in the field of NLP by employing
the pre-training and fine-tuning paradigm. This approach has enabled these models to
achieve impressive results on a wide range of NLP tasks, even though the tasks themselves
are quite diverse. While these models are yet subject to hallucinations, human align-
ment appeared as first step to ensure more control on their output. However, the fine-
tuning process needs sizable labeled datasets for adapting the model to a new task, given
the significant number of parameters involved. The challenge of gathering annotated data
is amplified by the expenses involved and the scarcity of such data across different lan-
guages and domains. Consequently, there is a pressing need to develop effective methods
for learning with limited annotated data. In parallel, LLMs show emergent abilities,
such as In-Context Learning, that may be suitable for addressing this challenge. This
leads us to the next section, which focuses on Few-Shot Learning (FSL) techniques for
NLP.

5.8 FEW-SHOT LEARNING IN NLP

FEW-SHOT LEARNING PARADIGM

Few-Shot Learning (FSL) refers to the ability to learn tasks with limited annotated examples. This
ability of humans, that are able to use their previous experience to adapt fastly to new context, has
been largely studied recently in the context of machine learning algorithms (Lake et al. 2015). As
illustrated in Figure 5.10, it can concern many tasks: classification , generation, etc.

Historically, Meta-learning -or learning to learn (Thrun et al. 1998)- approaches have for quite
long stood as the de-facto paradigm for FSL (K. Lee et al. 2019; A. Raghu et al. 2020; A. Rusu et al.
2019; Snell et al. 2017; Q. Sun et al. 2019; Sung et al. 2018). Meta-learning refers to the process of im-
proving a learning algorithm with multiple learning episodes (episodic training). These learning
episodes are a distribution of tasks and not data samples. This improved learning ability has then
been applied to the FSL realm. For instance, MAML (Antoniou etal. 2019; Finn etal. 2017), arguably
the most popular meta-learning method, tries to train a model such that it can be fine-tuned end-
to-end using only a few supervised samples while retaining high generalization ability.
Meta-learning approaches are mainly divided into optimization-based, model-based, or metric-
based. Optimization-based meta-learning methods focus on finding an optimal initialization
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Figure 5.10: Few-shot learning paradigm. The objective is to leverage information from one or few anno-
tated examples in order to perform many downstream tasks such as classification (i), generation
of new examples (ii), segmentation and parsing (iii), new concepts generation (iv). Figure from
(Lake et al. 2015).

of model parameters, such that they can be fine-tuned efficiently with minimal supervision data
(Finn etal. 2017; Ravi et al. 2017). Model-based approaches involve learning a model that can gen-
erate or adapt parameters for new tasks with the help of limited examples, often by using memory-
augmented networks or modular architectures (Graves et al. 2014; N. Mishra et al. 2017). Lastly,
metric-based methods rely on learning a similarity metric between instances, such that classi-
fication can be performed by comparing the relationships between few-shot examples and new
instances in a latent space (Snell et al. 2017; Vinyals, Blundell, et al. 2016). Semi-supervised learning
methods with few annotations also contribute to the FSLlandscape, combining a small amount of
labeled data with a larger pool of unlabeled data to improve performance on specific tasks (Oliver
etal. 2018; Rasmus et al. 2015).

The majority of these methodologies have primarily been developed and tested within the realm of
computer vision. Nonetheless, certain articles have shown that straightforward techniques rooted
in transfer learning can competently compete with meta-learning approaches (Jiaxin Chen et al.
20205 Y. Tian, Yue Wang, et al. 2020). As a result, a significant number of modern investigations are
centered around the pre-training and efficient fine-tuning paradigm as a means of develop-
ing effective methods for FSL (Jiaxin Chen et al. 2020). Similarly, in state-of-the-art NLP, FSL is
predominantly executed through strategies that harness the power of Pre-trained Language Mod-
els.

FEW-SHOT LEARNING FOR NLP TASKS USING LARGE LANGUAGE MODELS

A significant body of research has addressed the challenge of FSL in NLP by leveraging Pre-trained
Language Models (PLMs) (Devlin et al. 2019; Yinhan Liu et al. 2019; Radford, J. Wu, et al. 2019;
Zhilin Yang et al. 2019). These approaches can be broadly categorized into three primary groups:
parameter-efficient tuning, prompt-based learning, and in-context learning. Parameter-
efficient tuning aligns with methods in the field of computer vision, introduced at the end of
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5.8 Few-shot learning in NLP

previous paragraph, drawing heavily on the principles of transfer learning. On the other hand,
the approaches of prompt-based learning and in-context learning are specific to the domain of
NLP. They innovatively restructure tasks into natural language "prompts” and take advantage of
Pre-trained Language Models (PLMs) to fill in these prompts.

Parameter-efficient tuning: These methods, such as adapters (Houlsby etal. 2019) have emerged
as a promising solution for transfer learning and FSL in NLP tasks. These approaches involve
adding lightweight, task-specific adapter layers to pre-trained transformer models, which allow for
fine-tuning on limited labeled data while keeping the majority of the pre-trained model’s param-
eters fixed (see Figure 5.11). Examples of such methods include AdapterHub (Pfeiffer et al. 2020),
a framework for adapting transformers, and (D. Guo et al. 2021), referred to as "Diff-Pruning”,
accomplishing a similar objective by incorporating a sparse, task-specific difterence vector to the
original parameters. Moreover, in some cases, fine-tuning just a small fraction of the pre-trained
model has proven to be eftective. For instance, BitFit (Ben Zaken etal. 2022) only fine-tunes the bias
parameters, which account for less than 1% of the total model parameters, yet it achieves compet-
itive results on downstream tasks. More recently, T-FEW (Haokun Liu et al. 2022) proposed an
approach consisting in adding learned vectors that rescale the network’s internal activations.
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Figure 5.11: Adapter architecture (right) and its integration in Transformer (left). The Adapter consists in
few-parameter modules that are inserted after Transformer FFN. When fine-tuning the modi-
fied architecture on a downstream tasks, only green modules (within Adapter and Layer Nor-
malization) are updated. Figure from (Houlsby et al. 2019).

Prompt-Based Few-Shot Learning: In recent years, Pre-trained Language Models (PLMs)
have been used to solve FSL tasks in NLP, notably using a prompting strategy. The idea is to frame
the task as a language modeling problem by designing a template that guides the model towards
generating a desired output. The seminal work (Schick et al. 2020) formalizes the prompt setting
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by defining the template as pattern-verbalizer pairs, in which the pattern is a function mapping a
set of input sentences to a cloze question. Verbalizers, on the other hand, are injective functions
that map discrete labels into natural language phrases or tokens. This association leverages the
generation capability of PLM:s to perform classification tasks using a template, allowing the clas-
sification task to be formatted in a way that is intelligible to the PLM (Ding et al. 2022; P. Liu et al.
2023). This framework is illustrated in Figure 5.12. By varying the patterns and verbalizers, it is
then possible to annotate a larger unlabeled dataset with soft labels, on which a classic classifier
will be fine-tuned.

Excellent pizza! n

v Pattern

Excellent pizza! It was . P(x) = x It was [MASK] .
|
y ———— Verbalizer

good (0): 2.79 v(0) = good v(1)= bad
bad (1):1.34

Figure 5.12: Prompt-based few-shotlearning. The considered objective is to classify the input sentence "Ex-

cellent pizza!" as good or bad. The pattern P is first transforming the input as a cloze question
P(x). P(x) is then fed to a PLM that outputs prediction scores for the masked word. Even-
tually, the verbalizer v converts the token prediction scores as classification logits.S

In-Context Learning: GPT3 (Brown et al. 2020), GPT4 (OpenAI 2023) and related chatbot
ChatGPT based on InstructGPT model (Ouyang et al. 2022) showed that PLMs were also efficient
for in-context FSL tasks. In this setting, the prompt is composed of the task description, but also
some support input examples with their corresponding outputs and a query input with the objec-
tive to predict the query output (Wei, Xuezhi Wang, etal. 2022). ICL hence requires no parameter
update, produces a new prediction model for each new prompting, and therefore quickly adapts
to a new task (see Figure 5.9).

INDUCTIVE VS TRANSDUCTIVE FEW-SHOT LEARNING

Learning an inductive classifier on embeddings generated by a pre-trained model, as proposed by
(Snell et al. 2017), is a common baseline for performing FSL. This approach is prevalent in NLP,
where a parametric model is trained on data to infer general rules that are applied to label new, un-
seen data (known as inductive learning (V. N. Vapnik 1999)). However, in FSL scenarios with lim-
ited labeled data, this approach can be highly ambiguous and lead to poor generalization. Trans-
duction offers an attractive alternative to inductive learning (Sain 1996). Unlike inductive learn-
ing, which infers general rules from training data, transduction involves finding rules that work
specifically for the unlabeled test data. By utilizing more data, such as unlabeled test instances, and

SFigure from http://timoschick.com/explanatory%20notes/2020/10/23/pattern-exploiting-training.html
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aiming for a more localized rule rather than a general one (see Figure 5.13), transductive learning
has shown promise and practical benefits in FSL for computer vision (Dhillon et al. 2020; Y. Guo
etal. 2020; R. Hou et al. 2019; S. X. Hu et al. 2020; Y. Hu et al. 2021; J. Liu et al. 2020; Yanbin Liu et al.
2019; Yaoyao Liu et al. 2020; Qiao et al. 2019; Veilleux et al. 2021; Yikai Wang et al. 2020; Ling Yang et al.
2020; Ziko et al. 2020).
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Figure 5.13: Inductive vs transductive settings. In the inductive setting (left), the model aims to learn gen-
eral rules from labeled data, that will then serve to classify all unlabeled test samples, one by
one. In the transductive setting (right), the model leverages information from both labeled
data and all available unlabeled samples to adapt its classification to these samples. In this ex-
ample, the same datapoint represented by a red circle is not classified the same way by the two
approaches.

Transductive methods yield substantially better performance than their inductive counterparts
by leveraging the statistics of the unlabeled data (such as batch normalization statistics (Nichol et
al. 2018)). While (R. Hou et al. 2019; Yanbin Liu et al. 2019) use graphs or cross-attention modules to
perform label propagation from support to query samples, other main strategies consist in mini-
mizing the entropy of query samples predictions (Dhillon et al. 2020), using prototype rectification
(J. Liu et al. 2020), Laplacian regularization (Ziko et al. 2020), optimal transport (Y. Hu et al. 2021),
or maximizing Mutual Information measures (Boudiaf et al. 2020; Y. Guo et al. 2020; Veilleux et al.
2021). However, despite their success experienced in the vision community, this framework has
not yet been explored in the context of textual data.

CONCLUSION

In conclusion, this chapter provided a comprehensive overview of the evolution and cur-
rent state of NLP, delving into the various methodologies and techniques that have shaped
the field. We began with early NLP approaches, including rule-based methods, vector
space models, and probabilistic frameworks, before moving on to the groundbreaking de-
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velopment of word embeddings that significantly advanced the state-of-the-art. The chap-
ter then explored the emergence of language models and the attention mechanism, which
have led to the transformative introduction of transformer architectures.

Large PLMs have revolutionized NLP by providing general-purpose contextual word rep-
resentations that have greatly improved performance across a wide range of tasks. The pre-
training and fine-tuning paradigm has proven highly successful, and has further pushed
the boundaries of what is possible in NLP. However, these advancements based on the
scaling paradigm require huge computational resources and available annotated data for
fine-tuning. To handle this challenge, an interest in Few-shot Learning for NLP has
grown. If universal efficient transfer-learning-based have been explored, new NLP-specific
FSL paradigms have been developed, based on natural language prompts, and leveraging
PLM:s generation ability. Yet, they may not be suitable for realistic assumptions. A possi-
ble solution could be the use of transductive paradigm, that has not been explored in NLP.
This is the main focus of Chapter 6.









6 A TRANSDUCTIVE APPROACH FOR

PERFORMING FEW-SHOT CLASSIFICATION IN
NLP

CHAPTER’S SUMMARY

In this chapter, we explore the potential of transductive methods for textual classification
in the context of ew-shot learning, aiming to address the limitations of current FSL meth-
ods in NLP, specifically the engineering efforts required for realistic classification tasks
with a large number of classes. We first discuss the limitations of current FSL methods,
such as prompt-based strategies or in-context learning. Then, in Section 6.3 we explore
the application of transductive approaches, which have shown promising results in com-
puter vision, to NLP classification. Finally, in Section 6.4 we evaluate the performance of
traditional transductive regularizers in comparison to inductive techniques on textual few-
shot classification tasks and investigate the impact of different factors, such as the number
of backbone parameters and fine-tuning strategies, on the performance of transductive
methods. The results indicate that transductive methods have difficulty outperforming
inductive cross-entropy-based fine-tuning when there is some flexibility in the pre-trained
feature extractor parameters. However, by fixing all parameters of the feature extractor,
the transductive approach finally rivals the inductive one.

6.1 INTRODUCTION

As discussed in previous chapter, Few-Shot Learning (FSL) has gained significant attention in the
field of NLP due to its ability to rapidly adapt to new tasks using limited labeled data. Current
FSL methods, such as prompting and ICL, have demonstrated promising results in a wide range of
NLP tasks. However, as the complexity of the classification problem grows, especially in cases with
alarge number of classes, these methods are confronted with inherentlimitations, such as the need
for extensive engineering to achieve practical results. This chapter aims to address these limitations
by exploring the potential of transductive methods for textual classification in the context of few-
shotlearning. Transductive methods, which have been successfully applied in other domains, ofter
a promising alternative to traditional FSL techniques by leveraging the structure of the input data
to make predictions for the unseen data points. By adapting these methods for textual tasks, we
seek to harness their potential to tackle the challenges posed by the ever-increasing complexity and
scale of classification problems in NLP, hence meeting more realistic assumptions.
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CHAPTER’S CONTRIBUTIONS

The primary contributions of this chapter are three-fold:

* We provide an analysis of the limitations of current FSL methods in NLP, specifi-
cally in terms of the engineering efforts required for realistic classification tasks with
alarge number of classes, and we formulate the textual few-shot classification prob-
lem.

* We propose a novel adaptation of transductive methods for textual classification in
the context of FSL, enabling eftective utilization of limited labeled data.

* We present a series of research questions and their related experiments conducted
to validate or rebut the effectiveness of our proposed methods, comparing their
performance to the inductive techniques in FSL for NLP.

6.2 PROBLEM STATEMENT

The main assumption of FSL in modern NLP paradigm supposes the availability of a large pre-
trained backbone model. The objective is to leverage this model’s learned representations to adapt

to a novel classification task when only a handful of annotated samples are at our disposal.

6.2.1 CURRENT METHODS LIMITATIONS

While previous works on NLP-FSL present promising results, they mainly focus on datasets with
areduced number of classes (.. always less than 10 classes and often less than S classes) (Mahabadi
etal. 2022; Perez et al. 2021). However, when considering realistic setting, a few-shot classifier shall
be able to classify among much more unseen classes, or to have a generalization ability that makes
it prone to quickly adapt to a new set of classes. Under this consideration, current NLP-FSL
strategies face practical limitations:
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* Using a prompt-based approach demands a cumbersome handcraft engineering to design
every Pattern-Verbalizer pairs. Thus, recent studies have questioned the benefits of prompt-
based learning due to the high variability in performance caused by the choice of prompt
(Haokun Liu et al. 2022). As the number of classes increases, crafting appropriate prompts
and verbalizers becomes increasingly difficult, and the resulting prompts may not be equally
effective for all classes. This can lead to a performance degradation in complex classification
problems. Besides, this engineering is mainly validated on held-out labeled examples, which
could notbe available in general (Perezetal. 2021). The prompting setting is therefore hardly
scalable for tasks with realistic settings. To cope with these limitations, recent NLP-FSL ap-
proaches try to alleviate the importance of template design (Logan IV etal. 2022), or to break
with prompt paradigm (Fei et al. 2022).

* Several works have shown that in-context-learning design, along with the choice and order-
ing of training samples, is highly sensitive and not robust to the choice of PLM (Y. Lu et al.



6.2 Problem statement

2022; Z. Zhao et al. 2021). Second, as the number of classes increases, the need for longer
contexts to provide sufficient examples for all classes can exceed the maximum input length
of the models. This can result in the truncation of important information or the inability
to adequately represent the full range of classes. These drawbacks prevent the usage of such
strategy for realistic NLP-FSL tasks.

* Finally, parameter-efficient tuning methods shall be considered on a case-by-case basis. While
T-FEW (Haokun Liu et al. 2022) additionally requires a set of manually created prompts for
each dataset making it hard to use in practice, Diff-Pruning (D. Guo et al. 2021) consid-
ers an inconsistent set of parameters that change values across different tasks, which may
prevent us to use it on highly variable number of test classes for hardware practical rea-
sons. Nonetheless, some approaches such as (Houlsby et al. 2019), or BitFit (Ben Zaken et al.
2022) (consisting in fine-tuning only bias terms in transformer-encoder layers) seem not to
present specific drawback for our setting, hence we will compare the latter with transduc-
tive approaches in the conducted experiments.

6.2.2 TEXTUAL CLASSIFICATION IN FEW-SHOT SETTING

In response to the constraints inherent in NLP-specific methodologies such as prompt-based
and ICL strategies, we propose using the episodic framework popularized by meta-learning and
mostly used to formalize few-shot learning setting in computer vision, and we adapt it to the NLP

paradigm.

Let €2 be the considered vocabulary, we denote €2* its Kleene closure. The Kleene closure corre-
o

sponds to sequences of arbitrary size written with tokens in €, ze., " = |J Q¢ Given an input
space X with X' C Q*, alatent space Z and a label space Y, we consider ;p?‘e-trained backbone
model gg : X — Z = R% where§ € © represents the parameters of the encoder and d is the
embedding dimension size.

The objective of few-shot classification is to learn a classifier hg : Z — ) from limited la-
beled data and generalize to new, unseen tasks or classes. To accomplish this, we consider transfer-
learning-based strategies that are evaluated on an episodic testing setting. In such setting, ran-
domly sampled few-shot tasks are created from a test dataset Dyesr := { (2%, y)} fvzti“ that hasa
set of classes Vyest, unseen by the backbone during pre-training. To follow the nomenclature of
the FSL literature, each few-shot classification task is defined by the number of targeted classes K
and is composed of a support set S and a query set Q).

Foreach class 1 < k£ < K, Ng labeled samples from the class k are randomly sampled from
Diest to compose S, while N different and unlabeled samples from the class £ are randomly
sampled from Dy to compose Q. Thus, S = {xi, yi}ielg with Card(S) = Ng x K, and
Q= {mi}z’eIQ’ with Card(Q) = Ng x K. Zg and Zg represent the drawn indices during the

sampling process for support set and query set, respectively. The task is thus named a Ng-shot
K -way task. Pre-trained models use few-shot techniques and the labeled support sets to adapt to
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the tasks at hand and are evaluated based on their performances on the unlabeled query sets. This
setting is illustrated in Figure 6.1 for a computer vision application.

A Single Task

Support Set

Ng query samples

Query Set

Figure 6.1: 3—shots 3—ways tasks example for a computer vision task. Figure from (Ouali 2023).

Remarks.

* Contrary to the works of computer vision, there is no necessary distinction between the
dataset used to pre-train the backbone gg and the test dataset Dyeq¢. Indeed, as the current
pre-training corpora are mostly composed of pages of the entire internet (or a large part of
it), it seems difficult to check that the model did not see test samples during pre-training
stage. However, in NLP the backbone is pre-trained using self-supervised objectives (rather
than supervised tasks), therefore there is no risk of overlap between pre-training and testing
tasks.

* Episodic testing is slightly different than the original episodic training introduced in meta-
learning approaches. In the latter, a single model is incrementally trained or fine-tuned
on the different tasks, improving its robustness and generalization task after task. Differ-
ently, we use the episodic setting as an evaluation protocol, meaning that a different model
is initialized for each generated few-shot task, and all tasks are compiled independently in
parallel. This approach allows to compute more reliable performance statistics by evaluat-
ing the generalization capabilities of each method on a more diverse set of tasks. Finally, as
we want to evaluate the performance of NLP-FSL approaches for larger number of classes,
in this very chapter we fix the number of ways to be equal to the number of classes of the

test dataset, z.e. K = Card(Viest).

6.3 TRANSDUCTIVE APPROACHES FOR FSL INn NLP

To alleviate the drawbacks of few-shot approaches using prompting strategies, and especially the
extensive manual engineering needed for designing all verbalizers for multiclass classification, we
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explore transductive approaches that achieved promising results in computer vision community
such as TIM (Boudiaf et al. 2020), and their application to NLP classification.

Specifically, we train a classification head hy : Z — R¥ mapping the representations features to
the posterior distribution space to perform prediction. To simplify the equations for the rest of
the paper, we use the following notations for the posterior predictions of each i € Zg U Zgy and
for the class marginals within Q):

, , . R 1 .
Pl = holgn(a')k = P(Y = X = '30,6) and pi = > ph=P(Yg = k;6,9)
e
where X and Y are the random variables associated with the raw features and labels, respectively,
and where Yy means restriction of the random variable Y to set Q).

The global classifier fy« g« = hg« 0 gg+ is obtained by simultaneously training the classification
head and fine-tuning the feature extractor such that they solve the following objective:

(¢*,0") = argmin CE — A X Rg (6.1)
¢70
1 LI ,
with CE:= — 5] Z Z y;. log(pj,) being the cross-entropy supervision on the support set (in
i€Zg k=1

which ¢ is the k™ coordinate of the one-hot encoded label vector associated to sample i) and
Rg being a transductive loss on the query set (). The exact definition of R depends on the
transductive approach. It is worth noting that transductive regularization has been introduced
in literature, grounded in the InfoMax principle (Cardoso 1997; Linsker 1988). In the upcoming
paragraph, we provide an overview of the transductive techniques presented in prior works.

Entropic Minimization An effective regularizer for transductive FSL can be derived from the
field of semi-supervised learning, drawing inspiration from the approach introduced in (Grand-
valet et al. 2004). This regularizer, proposed in (Dhillon et al. 2020), utilizes the conditional Shan-
non Entropy (Cover 1999) of forecast results from query samples during testing to enhance model
generalization. Formally:

K
RH = @ S v log(v}) (6.2)

1€Lg k=1

Mutual Information Maximization A promising alternative to the entropic minimization for
addressing the challenges of transductive FSL is to adopt the Info-max principle. (Boudiaf et al.
2020) extended this idea, introduced in (W. Hu et al. 2017), and proposed as regularizer a surrogate
of the mutual-information Ré (B):

K K

Rb(8) = =3 rlog o, + %, ST v log(vi) (63)
k=1 i€Tg k=1

= F(Yo) + B(—H (Yol Xq)) (6.4)
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where ’H(YQ) and —H(Yé | Xq) are Monte-Carlo estimators of the marginal entropy of the
query set and the negative conditional entropy over labels given features on the query set, respec-
tively. Hence the maximization of the second term (when minimizing —Ré (B)) in Equation 6.1
makes the classifier more confident, making its posterior distribution more spiky, while the max-
imization of the first term prevents the model to degenerate by always predicting the same class.
The balance between the two terms of the loss is controlled by the hyperparameter 3.

The a—TIM method (Veilleux et al. 2021) extends the TIM setting by considering imbalanced
datasets, hence non-uniform labels distributions. The corresponding Réj" loss is in that sense

based on empirical Tsallis «—entropy H,, rather than on Shannon entropy:

1 1 1 - i\« = oY
kG ==\ 1a 2D ) =D 0 (6.5)
k=1

i€T¢ k=1
= Ha(Yy) — Ha(Yq|Xq) (6.6)

(Veilleux et al. 2021) empirically show that using estimators of Tsallis entropy is indeed better suited
to handle imbalanced classes than Shanon entropy.

We finally compare these methods with an inductive baseline:

Linear probing The inductive baseline loss can be obtained by assigning A = 0. We refer to this
approach as Linear Probing: fine-tuning a linear head on top of a pre-trained model is a popular
approach to learn a classifier for various classification tasks and was originally proposed in (Devlin
etal. 2019).

6.4 EXPERIMENTAL STUDY OF TRANSDUCTIVE FEW-SHOT
INFERENCE FOR NLP CLASSIFICATION

In this section we describe the experimental protocol and results to compare the performances of
these different transductive methods for the task of few-shot text classification in realistic settings.

6.4.1 LIMITATIONS OF EXISTING BENCHMARKS

Previous studies on textual few-shot classification (Gao, Fisch, et al. 2021; Mahabadi et al. 2022; Schick
et al. 2021; Schick et al. 2022; Tam et al. 2021) have predominantly assessed their algorithms on clas-
sification tasks with a restricted number of labels (typically less than five). The statistics of mostly
used datasets in these works are depicted in Table 6.1. Real-world problems yet often comprise
larger multi-class classification tasks, which could undermine current FSL methods due to the
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significant required handcraft engineering. We take a step forward and consider datasets that are

more representative of real-world scenarios. Hence, we decided to run our tests on the following

datasets:

* Tweet eval (Barbieri et al. 2020) contains english tweets annotated with 20 different emojs.

* Banking77 (Casanueva et al. 2020) contains online banking customer service queries anno-
tated with their intents, distributed among 77 classes.

Dataset Task Description Number of Classes
BoolQ Binary Classification 2
CB Natural Language Inference 3
COPA Choice of Plausible Alternatives | 2
WiC Word-in-context 2
WSC-DistilBERT Coreference Resolution 2
SST-2 Sentiment Analysis 2
SST-5 Sentiment Analysis 5
MR Sentiment Analysis 2
CR Sentiment Analysis 2
MPQA Opinion Polarity Detection 2
Subj Subjectivity/Objectivity Analy- | 2
sis
TREC Question Classification 6
CoLA Linguistic Acceptability 2
MNLI Natural Language Inference 3
SNLI Natural Language Inference 3
QNLI Question Answering/Natural | 2
Language Inference

RTE Natural Language Inference 2
MRPC Paraphrase Detection 2
QQP Duplicate Question Detection | 2
AG’s News News Category Classification 4
Yelp Reviews Full Star Sentiment Analysis 5
Yahoo Questions Topic Classification 10
Tweet_eval Emoji prediction 20
Banking77 Customer queries Classification | 77

6.4.2 RESEARCH QUESTIONS AND RELATED RESULTS

Table 6.1: Overview of the various datasets.

RQI: Do transductive methods improve few-shot classification performances over classic

transfer learning?

To answer this question, we trained different transductive methods presented in Section 6.3,

and we compare their performances with the linear probing inductive baseline (by setting A = 0
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in Equation 6.1). The different plots in Figure 6.2 represent the classification accuracy on test
set for different values of Ng, consider K = 20 classes. These specific plots correspond to the
Tweet_eval dataset, with BERT as the pre-trained backbone, and a classification head composed
of two linears layers (768 X768 and 768 x20) separated by a relu activation. For each bar, the
accuracy is averaged on S different seeds and a 95% confidence interval is given.

method
s CE
e TIM
mm Alpha_TIM
BN Entropy

Accuracy

5 10
Number of shots

Figure 6.2: Comparison of cross-entropy-based and transductive-based approaches for different Vg values
on Tweet_eval dataset. We consider K = 20 classes.

While the method consisting in minimizing Shannon entropy for conditional output distri-

butions struggles to compete with other strategies for one-shot setting, none of the presented
approaches clearly has an edge over the other ones and especially not significatively on the induc-
tive baseline consisting in fine-tuning a classification head with cross-entropy (CE).
From there, we try to explore the different reasons that could explain the inefficiency of trans-
ductive methods over inductive ones on NLP tasks, as the performance improvement claimed on
vision tasks was promising. Specifically, we focused on comparing the inductive baseline only with
the TIM approach, as it was proven to be effective on the vision tasks.

RQ2: Does the number of parameters of backbone have an impact ?
A possible way to explain the fact that transductive methods struggle to beat inductive fine-
tuning on few-shot textual classification may reside in the quality of representations learned by

the pre-trained backbone. Thus, we try here to compare the difference of performances between a
pre-trained BERT-base architecture (110M parameters) and a RoBERTa-large architecture (354M
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parameters). In the meantime, we focus on the Banking77 dataset for evaluation, as its test set is
balanced with 40 samples per class. Indeed, the Tweet_eval set is unbalanced, which may under-
mine TIM performances, as the intuition of this approach is to push the label distribution towards
a uniform distribution.

10 ™= BERTCE
m=s BERT TIM
=== RoBERTa CE
=== RoBERTa TIM

0.8 1

0.6

Accuracy

0.4 1

0.2 1

0.0 -

1 5 10 100
Number of shots

Figure 6.3: Comparison of cross-entropy-based and TIM-based approaches for BERT and RoBERTa back-
bones on the Banking77 dataset, considering K = 77 classes.

The results are illustrated in Figure 6.3. This plot clearly denies this hypothesis: if improving
the initial representation by increasing the capacity of the pre-trained backbone clearly results
in a performance improvement, the transductive method does not compete with its inductive
counterpart.

Finally we also compare the performances of such architecture with a different classification
head. Namely, as in (Boudiaf et al. 2020), we suppose that:

i T i
ph o exp (=S llon — 1) (67)

wi
representations produced by pre-trained backbone and 7 is a temperature parameter. In this set-
ting, classication head weights ® are initialized as the prototypes of the support set, as introduced
in (Snell et al. 2017):

where @ := [¢1, ..., ¢k denotes learnable classifier weights, 2= ﬁ are the normalized

ZiGIS yi:zl
ZiEIS y]’i:

The results of the experiment are illustrated in Figure 6.4.

¢ =
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Accuracy

10 W CE

0.8 4

0.6 4

0.4

0.2

0.0-

I CE with prototypes init
. TIM
W= TIM with prototypes init

5

10

Number of shots

Accuracy

1.0

0.8 1

0.6 1

0.4 1

0.29

0.0~

. CcE
I CE with prototypes init
s TIM
== TIM with prototypes init

5 10
Number of shots

Figure 6.4: Comparison of BERT (left) and RoBERTa (right) backbones performances on Banking77
when initializing classification head as support set prototypes. We consider K = 77 classes.

As we can see, initializing the weight matrix of the classification head according to the proto-
types of the support set also does not help the transductive method, which faces a decrease in
performance across all few-shot regimes (with only an accuracy similar to CE for Ng = 100).

RQ3: Which fine-tuning strategy improve results?

Eventually, we try different fine-tuning strategies to improve accuracy on the few-shot classifi-

cation task:

* Freezing all the weights of the pre-trained backbone, and only fine-tuning the classification
head. This strategy is referred as "Frozen LM" on the plots.

* Freezing all the weights of the pre-trained backbone except the parameters controlling the
layer normalization procedures, and the classification head. This strategy is referred as "Lay-

erNorm" on the plots.

* Freezing all the weights of the pre-trained backbone except the bias parameters, and the
classification head. This strategy is referred as "BitFit" (Ben Zaken et al. 2022) on the plots.

* Fine-tuning all parameters of the model. This strategy is referred as "Complete” on the

plots.

The detailed results are reported in Table 6.2 with relative gains of TIM regularizer over inductive-
based method, while Figure 6.5 illustrates them as bar plots.

Our analysis reveals that exhaustive fine-tuning of all model parameters does not necessarily
guarantee superior outcomes when juxtaposed with alternative strategies like BitFit or LayerNorm.
Interestingly, these strategies offer a more cost-effective approach to fine-tuning, and in certain
data regimes, they even surpass the performance of complete fine-tuning. It is noteworthy (but
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Number of shots: 1 Number of shots: 5 Number of shots: 10 Number of shots: 100

CE

Accuracy

TIM

Complete  BitFit  Frozen LM LayerNorm  Complete  BitFit  Frozen LM LayerNorm  Complete  BitFit  Frozen LM LayerNorm  Complete  BitFit ~ Frozen LM LayerNorm

Figure 6.5: Comparison of cross-entropy-based and TIM-based approaches for different fine-tuning strate-
gies on the Banking77 dataset (K = 77).

1 5 10 100
CE TIM Gain | CE TIM Gain | CE TIM Gain CE TIM Gain

C 3318 2799  |-519 | 82.01 7687 |-5.15 | 8774 8552  |-2.22 | 9617 9280  |-3.37
BF 3792 3292 |-5.00 | 82.08 80.52  |-156 89.16  88.05 J-1.10 | 95.84  94.42  |-1.43
FLM 1071 10.84 10.13 | 3838 38.09 [-0.29 | 5422 5337 ]-0.85 | 8123 8136 10.13
LN 36.04 29.09 |-695 | 80.26 80.52 10.26 | 88.90 8753  [|-1.36 | 96.23 9455  [-1.69

Table 6.2: Results of the different fine-tuning methods for the Banking77 dataset (K = 77), along with
the relative gain of TIM against CE method: Complete fine-tuning (C), BitFit (BF), Frozen LM
(FLM), LayerNorm (LN).

not surprising) that maintaining frozen weights for the pre-trained feature extractor gg consis-
tently resulted in inferior performance, as the model ability to adapt to unseen classes is restricted
to the classification head parameters. However, if we focus on the Gain column in Table 6.2, we
observe that this fine-tuning configuration is the one in which TIM regularizer most competes
(and sometimes slightly surpasses) CE-based fine-tuning. This is more coherent with the results
obtained in original TIM work (Boudiaf et al. 2020), for which the parameters of the visual feature
extractor are frozen.

CONCLUSION

In this chapter, we delved into the utilization of transductive losses as supplementary ob-
jectives for textual few-shot classification, aiming to address the limitations of prompting-
based and in-context-learning-based approaches in real-world few-shot scenarios with a
vast number of classes. Throughout our experiments, we evaluated the performance of
traditional transductive regularizers applied to textual few-shot classification. We discov-
ered that transductive methods have difficulty outperforming inductive cross-entropy-
based fine-tuning when there is some flexibility in the pre-trained feature extractor gy pa-
rameters, regardless of gg’s capacity or the classification head h¢’s initialization. Last but
not least, we found that by fixing all parameters of g, the transductive approach finally
rivals the inductive one. Building on this insight, the next chapter will focus on examining
textual few-shot classification in an API-based setting.
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7 TeExTUAL FEW-SHOT CLASSIFICATION FOR
API-BASED MODELS

CHAPTER’S SUMMARY

In this chapter, we address the increasing prevalence of proprietary and closed APIs for
large language models like GPT-4 and ChatGPT, which have significant implications for
practical applications of NLP, including few-shot classification. Few-shot classification
entails training a model to execute a new classification task with minimal labeled data. Our
investigation presents three key contributions. Firstly, we introduce a situation in which a
pre-trained model is made accessible through a gated AP], taking into account compute-
cost and data-privacy constraints. Secondly, we delve deeper into the application of trans-
ductive inference, a learning paradigm that has been relatively underexplored within the
NLP community. As opposed to traditional inductive learning, transductive inference
takes advantage of the statistics of unlabeled data. In this context, we also introduce a new
parameter-free transductive regularizer based on the Fisher-Rao loss, demonstrating its ap-
plicability and effectiveness in the gated API embedding setting. This approach fully lever-
ages unlabeled data, avoids sharing any label information with third-party API providers,
and could serve as a baseline for future research. Finally, we propose an enhanced experi-
mental setting and compile a benchmark of eight datasets encompassing multiclass classi-
fication in four different languages, with up to 151 classes. We evaluate our methods using
eight backbone models and an episodic evaluation across 1,000 episodes, which demon-
strate the superiority of transductive inference over the standard inductive setting.

7.1 INTRODUCTION

Recent advances in NLP have been largely driven by the scaling paradigm (Kaplan etal. 2020; Rosen-
feldetal. 2020), where larger models with increased parameters have been shown to achieve state-of-
the-art results in various NLP tasks (Radford, J. Wu, et al. 2019; Touvron et al. 2023). This approach
has led to the development of foundation models such as ChatGPT (Kocon et al. 2023; Lehman
etal. 2023), GPT-4 (OpenAI 2023), GPT-3 (Brown et al. 2020), T'S (Raffel, Shazeer, et al. 2020), and
BERT (Devlin et al. 2019), which have achieved unprecedented performance in text classification
(Yinhan Liu et al. 2019), language modeling, machine translation (Fan et al. 2021), and coding tasks
(Mark Chen etal. 2021).

Despite the success of the scaling paradigm, significant challenges still exist especially when the
many practical constraints of real-world scenarios have to be met: labeled data can be severely lim-
ited (z.e., few-shot scenario (Y. Songetal. 2022; Ye etal. 2021)), data privacy is critical for many indus-
tries and has become the subject of increasingly many regulatory pieces (Commission 2016; Com-
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mission 2020), compute costs need to be optimized (Strubell et al. 2019). Furthermore, these chal-
lenges are made even more complex as stronger foundation models are now available only through
APIs (e.g., OpenAl’s GPT-3, GPT-4 or ChatGPT, Anthropic’s Claude or Google’s PALM (Chowd-
hery et al. 2022)) which has led to some of their parameters being concealed, presenting new chal-
lenges for model adaptation (Solaiman 2023). This chapter is still centered on the fundamental task
of few-shot text classification, but with a specifical focus on cloud-based/API access, as their ease
of integration, reduced infrastructure overhead, and the ability to leverage cutting-edge models is
likely to become the standard approach for numerous enterprises looking to implement few-shot
NLP classification tasks. Specifically, we formulate three requirements for API-based FSL (see
Figure 7.1):

(R1) Black-box scenario. We focus on learning from models that are opaquely deployed in
production to the end-user, who only has access to the end-point of the encoder, Ze., the
resulting text embedding produced by the final layer of the network.

(R2) Low resources / computation time. Al systems are often required to make rapid pre-
dictions at high frequencies in various real-world applications. Therefore, any few-shot
classifier used in such scenarios should have a low training and inference time, as well as
require minimal computational resources.

(R3) Limited Data Sharing. When utilizing API models, data sharing becomes a major con-
cern. In the current landscape, providers are increasingly offering less transparent proce-
dures for training their networks. As a result, users prefer sharing as little information as
possible, such as labeling schema and annotated data, to safeguard their data privacy.

While numerous previous studies have addressed the popular few-shot classification setting, to
our knowledge no existing line of work adequately satisfies the three API requirements described
above. In particular, prompt-based FSL (Schick et al. 2020) and parameter-efficient fine-tuning
FSL (Houlsby et al. 2019) both require access to the model’s gradients, while In-Context learning
scales poorly with the task’s size (e.¢ number of shots, number of classes) (Brown et al. 2020; Y.
Chen etal. 2022; S. Min, Lewis, et al. 2022; S. Min, X. Lyu, et al. 2022) and requires full data sharing.
Instead, in this work, we focus on methods that can operate within API-based constraints.
Under R1, R2, and R3 requirements, the standard inductive learning (Haokun Liu et al. 2022)
may be quite limiting. To mitigate the labeled data scarcity while retaining API compliance, we
once again explore transduction (V. N. Vapnik 1999) in the context of textual few-shot classification.
Specifically, in the context of few-shot learning, transductive FSL (Yanbin Liu et al. 2019) advocates
leveraging unlabeled test samples of a task as an additional source of information on the underly-
ing task’s data distribution in order to better define decision boundaries. Such additional source
essentially comes for free in many offline applications, including sentiment analysis for customer
feedback, legal document classification, or text-based medical diagnosis.

For this API-based setting, our findings corroborate the recent findings in computer vision (Boudiaf
et al. 2020; Y. Hu et al. 2021; Lichtenstein et al. 2020; Yanbin Liu et al. 2019; Ziko et al. 2020), that
substantial gains can be obtained from using transduction over induction, opening new avenue
of research for the NLP community. This is in adequation with the last findings of Chapter 6,
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when we considered a frozen backbone. We discuss the links between the two chapters in Subsec-
tion 7.4.9.

However, the transductive gain usually comes at the cost of introducing additional hyperparam-
eters, and carefully tuning them. Motivated by Occam’s razor principle, we propose a novel
hyperparameter-free transductive regularizer based on Fisher-Rao distances and demonstrate the
strongest predictive performances across various benchmarks and models while keeping hyper-
parameter tuning minimal, thereby emphasizing its effectiveness and practicality in the current
context. We believe that this parameter-free transductive regularizer can serve as a baseline for
future research.

CHAPTER’S CONTRIBUTIONS

In this chapter, our contributions are threefold:

A new textual few-shot scenario: We present a new scenario for FSL using tex-
tual API-based models that accurately captures real-world constraints. Our novel
scenario opens up new research avenues and opportunities to address the challenges
associated with FSL using API-based models, paving the way for improved perfor-
mance and practical applications in the field. We show that current NLP FSL ap-
proaches all face limitations to tackle classification in this setting.

A novel transductive baseline: We propose a transductive FSL algorithm that uti-
lizes a novel parameter-free Fisher-Rao based loss. By leveraging only the network’s
embedding (R1), our approach enables fast and efficient predictions (R2) without
the need to share the labeling schema or the labels of few-shot examples making it
compliant with (R3). This innovative method marks a significant step forward in
the field of few-shot learning, oftering improved performance and practicality for
real-world applications.

A truly improved experimental setting: Previous studies on textual few-shot
classification (Gao, Fisch, et al. 2021; Mahabadi et al. 2022; Schick et al. 2021; Schick et
al. 2022; Tam et al. 2021) have predominantly assessed their algorithms on classifica-
tion tasks with a restricted number of labels (typically less than five). In line with the
previous chapter, we take a step forward and create a benchmark that is more repre-
sentative of real-world scenarios. Our benchmark relies on a total of eight datasets,
covering multiclass classification tasks with up to 151 classes, across four different
languages. Moreover, we further enhanced the evaluation process by not only con-
sidering 10 classifiers trained with 10 different seeds (Logan IV et al. 2022; Mahabadi
etal. 2022), but also by relying on episodic evaluation on 1,000 episodes (Hospedales
etal. 2021). Our results clearly demonstrate the superiority of transductive methods.
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7.2 API BASED FEW-SHOT LEARNING

7.2.1 PROBLEM STATEMENT

As in the framework defined in Subsection 6.2.2, we consider a vocabulary 2, an input space X
with X C " and alatent space Z. We then seek to learn a classifier from limited labeled data and
generalize to new, unseen tasks or classes by adapting a pre-trained backbone model gg : X — Z,
by the mean of few-shot tasks created from a test dataset Dye¢. Each task has a supportset S com-
posed of Ng x K labeled examples and a query set () composed of N x K unlabeled examples,
sampled between K unseen classes.

Setting the values of N and K in textual FSL is not standardized. Therefore, in all of our ex-
periments, we have relied on setting (N, K) € {5,10}2. In the API-based setting, the main
difference is that we assume that we are unable to access the exact structure of gg as mentioned in
R1. However, we do have access to the last embedding of the encoder which is available for our
use (see R1). The other desiderate R2 and R3 are represented in the schema of the API-based FSL
setting depicted in Figure 7.1.

@ Black-box access to the encoder

! |
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Figure 7.1: API-based few-shot learning scenario. The black-box API is providing embeddings from the
pre-trained encoder gg. The black-box scenario discards existing inductive approaches and ICL
methods due to inaccessible of model’s parameters (R1) and privacy concerns (R3). This sce-
nario allows to tune a classification head h (using induction or transduction) at low computa-
tional cost (R2), while retaining all support labels locally.

7.2.2 LIMITATIONS OF CURRENT METHODS

Besides the drawbacks of current NLP FSL techniques for large number of classes (explored in
Subsection 6.2.1), including important engineering or poor generalization ability, new limitations
to these strategies are pointed out by the considered API-based setting.
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Prompt-based few-shot learning: These approaches (Ding et al. 2022; P. Liu et al. 2023; Schick
etal. 2020) face limitations when learning from API: (i) encoder access for gradient computation
is infeasible (as in R1), (ii) prompting requires to send data and label which raises privacy con-
cerns (as in R3), and (iii) labeling new points is time-consuming (see in R2) and expensive due to
the need to send all shots for each input token'. Parameter-efficient fine-tuning. Relying on
parameter—efﬁcient ﬁne—tuning methods (Ben Zaken etal. 2022; Houlsby etal. 2019; Haokun Liu et al.
2022; Pfeiffer et al. 2020) with an API is not possible due to the need to compute gradients of the
encoder (as per R1) and the requirement to send both the labeling schema and the labels, which
violates R3. In Context Learning. A significant drawback of this approach (Wei, Xuezhi Wang, et
al. 2022) is that the user must supply the input, label examples, and task description, which is both
slow (Haokun Liu et al. 2022) (R2) and raises data privacy concerns (as highlighted in R3). Addi-
tionally, the inability to reuse text embeddings for new tasks or with new labels without querying
the model’s API limits practicality and scalability, making reusable encoding unfeasible for ICL
models. Meta-learning. Unlike the three previous lines of work, meta-learning methods operate
by modifying the pre-training procedure and therefore assume access to both the training data

and the model, which wholly breaks both R1 and R3.

7.2.3 PROPOSED TRANSDUCTIVE APPROACHES AND BASELINES

As in Chapter 6, our goal is to learn a classifier fg« g« = hg o go. However, as in the API-based
setting we cannot access backbone parameters ), we aim to train only the classification head hy
by solving the related objective:

Q" = arg;nin CE - A X Rg (7.1)

K
with CE= |;| Z Z yi: log(pfc) being the cross-entropy supervision on the support set
i€ls k=1

and R being a transduitive loss on the query set (. In the conducted experiments, we chose to
compare the transductive methods based on Entropic Minimization (H') and TIM algorithm
(I), associated to respective regularizers Rg and Ré (B) (as introduced in Equation 6.2 and
Equation 6.3) with the Linear probing inductive baseline (C'E). All three methods were in-
troduced in Chapter 6. We finally consider another inductive baseline: Prototypical Networks
(PT). Prototypical Networks learn a metric space where the distance between two points cor-
responds to their degree of similarity. During inference, the distance between the query example
and each class prototype is computed, and the predicted label is the class with the closest proto-
type. Prototypical networks have been widely used in NLP and are considered as a strong baseline
(Gao, X. Han, et al. 2019; Snell et al. 2017; S. Sun et al. 2019).

Limitation of existing transductive strategies: Despite its effectiveness, the TIM method im-
plies the need to fine-tune the weight of different entropies using the hyperparameter 3. This
hyperparameter-tuning process can be time-consuming and may require extensive experimenta-
tion to achieve optimal results. Additionally, recent studies have shown that relying solely on the

"The cost of API queries is determined by the number of input tokens that are transmitted.
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first entropic term, which corresponds to the Entropic Minimization scenario in Equation 6.2,
can lead to suboptimal performance in FSL.

7.2.4 A FISHER-RAO BASED REGULARIZER

In the FSL scenario, minimizing parameter tuning is crucial. Motivated by this, in this section we
introduce a new parameter-free transductive regularizer which fits into the InfoMax framework.
Additionally, our loss inherits the attractive properties of the recently introduced Fisher-Rao dis-
tance between soft-predictions q := (q1, . .., ¢k ) and p := (p1, . . ., px ), which is given by (Pi-
cotetal. 2023) and (Gomes et al. 2022):

K
drr (q, P) := 2arccos (Z Vi X pk> ) (7.2)
k=1

The proposed transductive regularizer denoted by RFQR, for each single few-shot task, can be de-
scribed as measuring the Fisher-Rao distance between pairs of query samples:

K - . d (Y]
DI S SRR ) St (o S

1€EQ JEQ k=1 1€Q JjeEQ

where dgg (p*, p’) is the Fisher-Rao distance between pairs of soft-predictions (p?, p?). Further-
more, it is shown that expression (7.3) yields a surrogate of the Mutual Information as shown by
the following proposition. This result to the best of our knowledge is new, as far as we can tell.

Proposition 1. (Fisher-Rao as a surrogate to maximize Mutual Information) Let (q;)icq be a
collection of soft-predictions corresponding to the query samples. Then, it holds that:

R +1og|Q| < RH(1) < Rb(a), VO<a <1 (7.4)

Proof: Further details are relegated to Section 9.1.
Advantage of RgR over Ré (B): Similarly to Ré(ﬁ )s RER can be exploited to maximize the

Mutual Information. However, RFQR is parameter free and thus, it does not require to tune /3.

7.3 AN ENHANCED EXPERIMENTAL SETTING

In this chapter, we put a special emphasis on the experimental setting, which builds upon the
limitations from prior studies and observations outlined in Chapter 6. Specifically, we underscore
the diversity in our evaluation datasets. These datasets are characterized by a broad range of classes
and varied label distributions, further enhancing their robustness. Moreover, drawing from the
performance disparities observed between the BERT and RoBERTa backbones in the previous
chapter, we initiate an in-depth exploration involving multiple pre-trained backbones, spanning
both monolingual and multilingual scopes. Finally, we direct our attention towards the capacity
for generalization and adaptability in this chapter. As such, we integrate a greater number of tasks
that contain fewer sampled classes per task.
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7.3.1 DATASETS

Benchmarking the performance of FSL methods on diverse set of datasets is critical to evaluate
their generalization capabilities in a robust manner as well as their potential on real-world appli-
cations. As mentioned in Subsection 6.4.1, previous work on FSL (Mahabadi et al. 2022; Perez et al.
2021) mainly focus on datasets with a reduced number of classes (z.c., K < 5). Motivated by
practical considerations we choose to build a new benchmark composed of datasets with a larger
number of classes.

Dataset Number of classes
Multilingual Amazon Reviews Corpus (Keung et al. 2020) 32
Go Emotion (Demszky et al. 2020) 22
Tweet_eval (Barbieri et al. 2020) 20
Banking77 (Casanueva et al. 2020) 77
Clinc (Larson et al. 2019) 151

Table 7.1: Statistics of the considered datasets.

Specifically, besides Tweet_eval (Barbieri et al. 2020), Banking77 (Casanueva et al. 2020) studied
in Chapter 6, we consider:

* Multilingual Amazon Reviews Corpus (MARC) (Casanueva et al. 2020), that consists of re-
views extracted from different Amazon marketplaces. The reviews comprise six languages:
English, German, French, Spanish, Japanese, and Chinese.

* Go Emotion (Demszky et al. 2020), which contains Reddit comments extracted from pop-
ular English-language subreddits and labeled with emotion categories.

* Clinc (Larson et al. 2019), that consists of thousands of annotated examples of natural lan-
guage queries and responses, covering 150 intent classes over 10 domains, and one out-of-
scope class.

These datasets cover a wide range of text classification scenarios and are of various difficulty. A
summary of the datasets used can be found in Table 7.1. They are all available in Dataset (Lhoest
etal. 2021).

7.3.2 MODEL CHOICE

The selection of an appropriate backbone model is a critical factor in achieving high performance
in few-shot NLP tasks. To ensure the validity and robustness of our findings, we have included a
diverse range of transformer-based backbone models in our study, including:

* Three different sizes of RoBERTa-based models (Yinhan Liu et al. 2019). Similar to BERT,
RoBERTa is pre-trained using the cloze task (W. L. Taylor 1953). We consider two different
sizes of the RoBERTa model, namely RoBERTa (B) with 124M parameters and RoBERTa
(L) with 355M parameters and Distil RoBERTa, alighter version of RoBERTa trained through
a distillation process (Geoffrey E. Hinton et al. 2015), for a total of 82M parameters.
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* Three sentence-transformers encoder (Reimers et al. 2019). Following the recommendation
of (Muennighoff et al. 2023), we consider MPNET-base (K. Song et al. 2020) (109M parame-
ters), MiniLM (33M parameters) (W. Wang et al. 2020), and Albert Small V2 (11M parame-
ters) (Z. Lan et al. 2020).

* Multilingual models. To address realistic scenarios, we do not restrict our study to the
English language. We rely on three sizes of XLM-RoBERTa (Conneau et al. 2020): base (B)
with 124M, large with 355M (L) and XL (XL) with 3.5B of parameters.

* GPT-3.5 model: to mimic the typical setting of API-based models, we also conduct exper-
iments on GPT-3.5 (Brown et al. 2020), only accessible through OpenAI’s APL

Preliminary Experiment. In our experiments, the backbone models are of utmost importance.
Our objective in this preliminary experiment is to assess the efficacy of these models when fine-
tuning only the model head across a variety of datasets. Through this evaluation, we aim to gain
insight into their generalization abilities and any dataset-specific factors that may influence their
performance. This information is used to analyze the performance of different models in the few-
shot scenario, as described in Section 7.4. We present the results of this experiment in Table 7.2,
noting that all classes were considered, which differs from the episodic approach detailed in Sec-
tion 7.4.

Model Params Emotion Twitter Clinc Banking77 Amazon

en en en en en fr es de

Albert Small V2 (XS) 1M 25.2 18.3 67.0 88.1 33.5 X X X

MiniLM (S) 33M 30.2 19.3 67.1 92.3 39.5 X X X

MPNET-base (B) 109M 30.2 22.5 67.4 94.3 41.3 X X X

DistilRoBERTa (S) 82M 23.3 26.0 68.5 90.9 40.0 X X X

RoBERT: (B) 124M 210 255 667 94 392 X X X

RoBERTa (L) 355M 15.0 23.0 64.5 90.0 38.1 X X X
XLM-RoBERTa (B) 278M 21.0 22.1 66.5 87.0 40.1 192 175 183
XLM-RoBERTa (L) 559M 14.0 18.0 64.5 86.2 382 175 156 181
XLM-RoBERTa (XL) 3.48B 25.4 19.0 68.9 95.0 41.0 189 179 220
GPT-3.5 175B 38.9 35.3 70.4 98.7 48.4 30.4 34.0 335

Table 7.2: Preliminary experiment results. Accuracy of the different backbone trained on each training set.

7.3.3 EVALUATION FRAMEWORK

Prior research in textual FSL typically involves sampling a low number of tasks, generally less than
S, of each dataset. In contrast, we utilize an episodic testing framework that generates a large
number of N-shots K-ways tasks. To account for the model’s generalization ability, we average the
results for each dataset over 1000 episodes, with the K considered classes varying in every episode.
For each experiment, we consider the F1-Score as the evaluation metric.
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7.4 EXPERIMENTS

7.4.1 OVERALL RESULTS

Global results: To evaluate the effectiveness of
various few-shot methods, we conducted a com-
prehensive analysis of their classification perfor-
mance across all datasets, all backbones, and all
considered N-way/K-shot scenarios. Results are
reported in Table 7.3.

An interesting observation is that transduc-
tive approaches based on TIM (I) and Fisher-
Rao (FR) regularizers outperform their induc-
tive counterparts based on Linear Probing (CE)
and Prototypical Networks (PT) strategies. No-
tably, we found that vanilla entropy minimiza-
tion, on which solely relies H, consistently un-
derperforms in all considered scenarios. Our
analysis revealed that FR surpasses traditional
fine-tuning based on cross-entropy by a margin
of 3.7%.

Mono-lingual experiment:

In order to thoroughly analyze the performance of
each method, we conducted a per-dataset study, be-
ginning with a focus on the mono-lingual datasets.
Figure 7.2 reveals that the global trends observed in
Table 7.3 remain consistent across datasets of vary-
ing difficulty levels. Notably, we observed consis-
tent improvements achieved by transductive regu-
larizers (such as I or FR) over CE. However, the
relative improvement is highly dependent on the
specific dataset being evaluated. Specifically, FR
achieves +6.5% F1-score on Banking77, but only a
shy +1.5% on Tweet_eval. A strong baseline gener-
ally suggests highly discriminative features for the
task, and therefore a strong upside in leveraging ad-
ditional unlabeled features, and vice versa. There-
fore, we hypothesize that the potential gains to be
obtained through transduction correlate with the
baseline’s performance. Additional results can be

7.4 Experiments

Table 7.3: Aggregated performance over the dif-

ferent datasets and considered back-

bones.

K-shots 10 5

N-ways 10 5 10 5
FR 52.09 61.99 48.71 56.55
I 50.07 59.17 46.42 55.74
H 15.07 2739 1533 25.84
CE 48.31 56.87 4527 53.94
PT 4729 56.05 44.32 53.20
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Figure 7.2: Performance of the different pre-
trained encoders on the monolin-
gual datasets.

found on Subsection 7.4.5 multilingual experiments (%.c., on es, de, fr) which exhibit the same

behavior.
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7.4.2 STUDY UNDER DIFFERENT DATA REGIMES

In this experiment, we investigated the performance of different loss functions under varying con-
ditions of *ways’ and ’shots’. As shown in Figure 7.3, we observed that increasing the number of
classes ("ways’) led to a decrease in Fl-score while increasing the number of examples per class
(’shots’) led to an improvement in Fl-score. This can be explained by the fact that having more
data enables the classifier to better discern the unique characteristics of each class.

Interestingly, the relationship between the number of shots and classification F1-score may not
be the same for all classes or all loss functions. Figure 7.3 shows that different loss functions (e.g.
FR on Banking77) benefited greatly from adding a few shots, while others did not show as much
improvement. However, this variability is dependent on the specific dataset and language being
used, as different classes may have different levels of complexity and variability, and some may be
inherently easier or harder to classify than others.
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Figure 7.3: The eftect of different ways and shots on test performance. Monolingual experiments are shown
on top, and multilingual experiments on bottom.

7.4.3 ABLATION STUDY ON BACKBONES

In this experiment, we examined how different loss functions perform when increasing the num-
ber of parameters in various models. The results, presented in Figure 7.4, show the average perfor-
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mance across the experiments (with multilingual datasets on the left, without on the right) and
are organized by loss function. We observed an inverse scaling law for both the RoBERTa and
XLM-RoBERTa family of models, where increasing the number of parameters led to a decrease
in performance for the losses we tested. However, within the same family, we observe that the
superiority of FR remains consistent. An interesting finding from Figure 7.4 is that the transduc-
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Figure 7.4: Impact of backbone’s size on performances. Both multilingual (left) and monolingual (right)
model families show some inverse scaling laws and a superiority for the FR regularizer over other
methods.

tive regularization technique using FR outperforms other methods on GPT-3.5. This highlights
the effectiveness of FR in improving the performance of the model and suggests that transductive
regularization may be a promising approach for optimizing language models.

7.4.4 A DIVE INTO GPT-3.5 RESULTS

GPT-3.5 appears to be the backbone providing the most informative a priori embeddings in Ta-
ble 7.2 and could be considered as the prime model for API-based FSL, showcasing the current
requirements in this area. It is thus a typical candidate for application uses that must meet the
following criteria (R1) - (R3). Therefore, we put a special emphasis on its related results.

Figure 7.5 (left) details the GPT-3.5 results of the experiments conducted on the mono-lingual
datasets. These plots highlight the consistency of the tendencies emerged in Table 7.2, Table 7.3
and Figure 7.2, namely: the superiority of transductive approaches (FR and I) over inductive ones
(CE and PT), the underperformance of the entropic-minimization-based strategy (H), and the
higher amount of information conveyed by GPT-3.5 learned embeddings over other backbones,
resulting in higher Fl-scores on all datasets.

These phenomena still occur in the multi-lingual setting, as illustrated in Figure 7.5 (right),
stressing the superiority of transductive (and especially FR) over other approaches for presumably
universal tasks, beyond english-centered ones, and without the need of using language-specific
engineering as for prompting-based strategies.

123



7 lextual Few-Shot Classification For API-based Models

Note that for both of these settings, the entropic-minimization-based strategy (H) seems to
be capped at a 15% Fl-score, thus with no improvement over other backbones embeddings, and
independently of the dataset difficulty.

1.0 . mo|de'l =GPT-3.5 . . 0.8 model = GPT-3.5
CE CE
08 PT 0.7 ‘ |
H 06 PT
(0] ! [0] H
5 06 FR || || 5 0.5 ||| FR
(6] [$]
¢ 204 ] i ]
L 04 | w
|| | 03
2
i ! | | | 0.2
' | | |
0.0 0.1
2 O & O
&A@ (\\{}(\ O;QOQ O\\(\ 0.0
& $ & & & &
Task Language
Figure 7.5: The different losses when training a on GPT3.5 embeddings.
7.4.5 MULTILINGUAL EXPERIMENT
To provide an exhaustive analysis, we report the
same experiment that is made in Subsection 7.4.1 y
for multi-lingual models on the MARC dataset. & © R CERT

The observations made in Subsection 7.4.4 are 13 18 23 28 33 38 43 48 53
not specific to GPT-3.5 backbone and extend to
the other multi-lingual encoders (that is XLM-

es
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RoBERTa-based ones). While both latin languages 13 18 23 %
(French and Spanish) share almost identical results,

with a trend very similar to the one of Englishlan- & o asn &
guage (an Fl-score gain of around 4% for FR over 13 18 23 28
CE), the results on German language exhibit an F1-

score increased by more than 6% when switching & ¢ efo &
from inductive CE to transductive FR, flirting with 13 18 23 28 33

performances obtained on English tasks.

Figure 7.6: Performance of the different losses
7.4.6 IMPORTANCE OF MODEL BACKBONES on multilingual datasets.
ON MONOLINGUAL EXPERIMENT

In this section, we report the results of our exper-
iment aggregated per backbone. The goal is to understand how the different losses behave on
the different backbone. The results are presented in Figure 7.7. While the trends observed in
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the previous charts are retrieved for the majority of backbones, some of these models are excep-
tions. For example, while transductive methods perform generally better than inductive meth-
ods, the CE-based method seems to perform slightly better than I for XLM-RoBERTa-xl. Ad-
ditionally, while FR is the most effective method for the majority of backbones, it is surpassed
by I for the all-distilroberta-vl model. Furthermore, the inverse-scaling-law details are found for
the RoBERTa(B/L) and XLM-RoBERTa (B/L) models per dataset. In general, it is interesting to
note that although model performance is constrained by dataset difficulty, the performance order
of each method is consistent across all 4 datasets for each considered backbone.
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Figure 7.7: Performance of different pre-trained encoder on the monolingual datasets.

7.4.7 IMPORTANCE OF MODEL BACKBONES ON MULTILINGUAL EXPERIMENT

In this experiment, we report the performance of different losses on the Amazon dataset by aver-
aging the results over the number of shots, ways for the different losses. The results are presented
in Figure 7.8. Our observations indicate that the transductive regularization, both for I and FR,
consistently improves the results for different models, including base and large models, as well as
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GPT-3.5. Similar to the findings reported in the main paper, we observe an inverse scaling law,
with XLM-RoBERTa-base outperforming the larger versions.
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Figure 7.8: Performance of different pre-trained backbones on multilingual Amazon dataset.

RESULTS PER LANGUAGE

In this experiment, we report the performance of different losses on the Amazon dataset by aver-
aging the results over the number of shots, ways, and model backbones. The results are presented
in Table 7.4. Our observations indicate that the transductive regularization improves the results
for two languages over the inductive baseline (i.e., CE). Additionally, we note that the observed
improvements for FR are more consistent. This further demonstrates that the transductive loss
can be useful in few-shot NLP.

fr de en es
FR 2936 33.98 53.89 28.47
I 2774 3141 5175 26.79
H 15.04 1513 15.04 15.04
CE 2715 3024 5089 26.21
PT 2637 2916 50.34 25.44

Table 7.4: Global results for multilingual Amazon dataset.

7.4.8 PRACTICAL CONSIDERATIONS

In this experiment, we adopt a practical standpoint and aim to evaluate the effectiveness of an API
model, specifically GPT-3.5. In Subsection 7.4.8, we report the training speed of one episode on
a MAC with CPU. Overall, we observed that the transductive loss is slower as it necessitates the
computation of the loss on the query set, whereas PT is faster as it does not involve any optimiza-
tion. Furthermore, we note that FR is comparable in speed to I. To provide a better understanding
of these results, we can compare our method with existing approaches (in the light of R2). For
instance, PET (Schick et al. 2020) entails a training time of 20 minutes on A100, while ADAPET
(Tam et al. 2021) necessitates 10 minutes on the same hardware.
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Loss CPU Time

CE 0.45s
FR 0.83s
H 0.75s

I 0.83s
PT 0.01s

Table 7.5: Training time for 1 episode on a M1-CPU.

7.4.9 LINKS WITH THE OBERVATIONS OF CHAPTER 6

In the previous chapter, our comparison between transductive and inductive methods under dif-
ferent fine-tuning conditions yielded mixed results. When the backbone parameters were acces-
sible for fine-tuning, our experiments indicated an advantage for inductive methods. However,
when the backbone parameters were frozen, the performance of the two methods was comparable,
with a slight advantage for transductive methods in some data regimes, although the performance
difference was not statistically significant.

The results obtained in the current chapter confirm and expand upon these initial promising
observations. We find that transductive methods not only perform at least as well as the inductive
ones when the backbone parameters are frozen, but also exhibit even better performance in this
setting. One potential explanation for this superior performance of transductive methods in the
API-based setting is the adoption of episodic evaluation, where we consider a fixed number of
classes during inference. This evaluation approach difters from the one used in the previous chap-
ter, where all classes were considered simultaneously. Indeed, the fixed number of classes during
inference reduces the complexity of the problem, allowing transductive methods to better exploit
the structure and relationships among the few-shot examples, which is one of the key strengths of
transductive learning. Furthermore, episodic evaluation does not discredit the generalization abil-
ity of the studied approach, as the reported performances are averaged over 1000 parallel episodes,
with different classes sampled for each episode.

In summary, our findings in this chapter provide strong empirical evidence that transductive
methods are a serious candidate for few-shot classification in an API-based setting, where the back-
bone parameters are unavailable.

CONCLUSION

In this chapter, we have presented a novel few-shot learning framework that eftectively
leverages API models while adhering to the critical constraints of real-world applications
(i.e., R1,R2,R3). The R1 constraint is particularly relevant and crucial, as current com-
petitive models are only accessible via API, preventing access to model parameters. Our
approach is especially appealing as it shifts the computational requirements R2, eliminat-
ing the need for heavy computations for the user, and enables training classifiers on-the-fly
in web browsers without sharing labels of the data R3.

Building upon the mixed results from the previous chapter, we have demonstrated the sig-
nificant advantages of using transductive losses to perform NLP FSL in this API-setting,
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that exhibit better performances than inductive ones when the backbone parameters are
frozen, with a significant power of generalization across a large number of new classes and
at a consequently affordable cost. The regularizer based on the Fisher-Rao distance pro-
vides a promising candidate, which is parameter-free and could serve as a straightforward
baseline in future studies. In conclusion, in this chapter we successfully addressed the ini-
tial motivations for developing an efficient and effective FSL framework that meets real-
world constraints. By shedding light on the potential of transductive losses and demon-
strating their practicality in various use-cases, we hope to inspire further exploration and
refinement of these methods, ultimately contributing to the advancement of FSL in the

field of NLP.









8 CONCLUSION AND PERSPECTIVES

8.1 SUMMARY OF THE CONTRIBUTIONS

The first part of this thesis addresses the challenge of exploiting multimodal data for fault
diagnosis in the context of Industry 4.0 systems. Motivated by a tangible need in the indus-
trial field, we dove into the exploration of complex multimodal systems. Our journey begins in
Chapter 2 with the development of a theoretical framework based on multimodal learning, mo-
tivated by the intricate multimodal nature of our real-world environment. In this framework, we
examined established concepts such as multimodal fusion and representation, taking a compre-
hensive view of the evolution of these paradigms from their early stages to the advent of DL-based
multimodal representations. Our analysis, enriched by a focus on previous few attempts to apply
Machine Learning for fault diagnosis, highlights the practical constraints of this application that
have been overlooked by previous multimodal approaches.

In Chapter 3, our investigation led to the identification of five significant challenges arising from
the considered setting. In response, we developed StreaMulT, a Streaming Multimodal Trans-
former. This architecture employs cross-modal attention and a memory bank to process arbitrar-
ily long input sequences during training and operate in a streaming mode during inference. This
approach uniquely addresses the complexity posed by Industry 4.0 systems, efficiently manag-
ing the temporal unalignment of multimodal heterogeneous data and differences in data acqui-
sition frequency. Despite an access to an adapted industrial dataset, its evaluation on the con-
nected multimodal sentiment analysis task revealed that our model can manage arbitrarily long
sequences without a loss in performance. With a carefully selected textual embedding module,
StreaMulT surpassed existing methods, setting a new state-of-the-art performance on the CMU-
MOSEI dataset. Coupled with the ablation study, this underscored the significant influence of
the textual modality, thus justifying the emphasis placed on it in the second part of the thesis.

In Chapter 4, we investigated the various interactions within multimodal data, which are catego-
rized into redundant and complementary information types. We underscored the crucial role of
complementary information, while simultaneously noting the scarcity of robust methodologies
and benchmarks to evaluate the capacity of models to exploit this type of information.

The second part of the thesis is dedicated to harnessing the unique value of textual data in
the realm of Industry 4.0, offering a rich, contextual understanding of system operations,
past incidents and expert knowledge. Such insights are crucial for fault diagnosis and predic-
tive maintenance. However, these reports are scarce and use industry-specific language, presenting
challenges in processing and interpretation. To overcome this challenge, we adopt the few-shot
learning paradigm. As detailed in Chapter 5, our exploration dives into the realm of Natural Lan-
guage Processing, investigating its progression from early methodologies to DL approaches and
large Foundation Models. We further highlight the function of FSL and the primary frameworks
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that facilitate the application of large PLMs within this paradigm.

In Chapter 6, the limitations of current FSL methods, specifically the engineering efforts required
for realistic classification tasks with a large number of classes, are explored. In response, we pro-
pose a novel adaptation of transductive techniques for textual classification. The study
demonstrates that transductive methods rival inductive ones when all parameters of the feature
extractor are fixed.

Finally, in Chapter 7 we take into consideration the increasing prevalence of proprietary and
closed APIs for LLMs. A new scenario for FSL using textual API-based models is pre-
sented, highlighting the constraints related to computation cost and data privacy. The
chapter introduces a new parameter-free transductive regularizer based on the Fisher-Rao
loss, demonstrating its effectiveness in the gated API embedding setting. Moreover, it proposes
an enhanced experimental setting for compiling a benchmark of datasets encompassing multi-
clasThiss classification in different languages.

GENERAL TAKEAWAYS

In summary, this thesis we have provided two methodological contributions in two major
areas:

1. the proposal of the StreaMulT architecture (Pellegrain, Tami, et al. 2022), a multi-
modal approach that serves as a pivotal contribution to the evolution of fault diag-
nosis methodologies,

2. the introduction of novel transductive methods for Few-Shot Learning in Natural
Language Processing, framed in a realistic and API-based context (under review for
publication in an international journal).

Apart from these methodological contributions, we have also proposed:

* asignificantly expanded state-of-the-art in fault diagnosis, with an illustrative de-
signed case study (Pellegrain, Batteux, et al. 2022).

* important discussions regarding the formalization and characterization of multi-
modal interactions, particularly the roles of redundancy and complementarity in
multimodal representation learning.

This thesis, while offering significant advancements, is a stepping stone in a continually
evolving field of research. As we move forward, it is important to remember that the ap-
plications and methodologies described here will need to be tested further and refined in
response to the challenges and opportunities presented by new developments in Industry
4.0. In the following section, we critically examine the contributions of this thesis, and
propose possible directions for future research, further strengthening the impact of this
work on the broader landscape of Industry 4.0 systems.
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8.2 PERSPECTIVES

8.2.1 CRITICISM AND SHORT-TERM PERSPECTIVES

While StreaMulT presents an effective framework in handling multi-modal data processing, it falls
short in certain areas that demand closer examination. We thereby list its limitations, focusing on
the lack of robustness in performance, issues with missing modalities and imbalanced datasets,
and the fully supervised approach it embodies.

Performance Limitations First and maybe most importantly, we did not conduct an exhaustive
study of running and latency time. Even though the architecture theoretically allows the handling
of arbitrarily long inputs during training and can be deployed in a streaming fashion at inference,
the latency becomes a crucial factor. In the case that the system’s speed is less than optimal, it un-
dermines the capability of real-time deployment, which is a crucial aspect of the streaming aspect
of StreaMulT. This oversight is a significant drawback, particularly for industrial applications,
where timeliness often equals efficiency. Our choice has been to use a chunk-wise approach with
augmented memory, but different strategies exist, such as monotonic attention (Arivazhagan et al.
2020; X. Maetal. 2020; Raffel, M. T. Luong, et al. 2017), in which one should alternate between read-
ing the input and writing the output.

Robustness and Handling of Missing Modalities Further, StreaMulT does not address the
issue of missing modalities which can impact the functionality of cross-modal attention mod-
ules. It also does not explicitly tackle problems related to imbalanced datasets and concept drifts.
Consequently, the model does not account for the adaptation of training in streaming, a critical
requirement for maintaining the system’s robustness. By not taking these aspects into account,
the model could potentially be unsuitable for deployment in a dynamic and ever-evolving indus-
trial setting where data is rarely perfect or consistent. A straightforward perspective is therefore to
consider strategies that tackle concept drifts (Souza et al. 2020), for instance leveraging continual
learning (Kirkpatrick et al. 2017).

Fully Supervised Approach and Its Implications The assumptions made when designing
StreaMulT raise some critical questions as well. The model presumes a fully supervised approach
and relies heavily on the availability of numerous datapoints from all modalities. This assumption
is somewhat contradictory with the assertions made in Part 2 of the thesis, where we advocate that
textual data are scarce. In addition, StreaMulT relies heavily on supervision and backpropagation.
These methods are the precise limitations pointed out in Chapter 4. StreaMulT hence does not
exploit complementary information effectively to provide control over representation. Therefore,
it is essential to acknowledge that StreaMul T, while being a promising tool, remains bound by the
constraints and limitations characteristic of current approaches. Weakly supervised and unsuper-
vised settings could be handled using anomaly detection approaches, if the fault occurrences are
rare in the considered setting.

In conclusion, while StreaMulT presents a step forward in multimodal data processing, it faces
several critical areas, which must be addressed for its successful implementation in real-world sce-
narios. Further research is necessary to address these limitations and explore possible solutions
that would allow StreaMulT to fully fulfill its potential.
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Our transductive approach introduced in Chapter 7 to perform textual classification in FSL
paradigm with API-based language models introduces an innovative methodology. Nevertheless,
there are several key criticisms that should be addressed in order to truly judge the applicability
and efficacy of this approach.

Method Specificity and Inference Latency One primary concern is that this method performs
optimally for API-based LLMs. The efficacy of transductive methods as compared to their induc-
tive counterparts, in settings not based on API, was shown to be significantly lower in Chapter 6.
This creates a strong limitation on the scope and utility of this method. Moreover, the inherent
latency of transductive methods surpasses that of inductive methods. While the training time has
been studied thoroughly, the inference time, a critical factor for real-world applications, was not
analyzed exhaustively. For this methodology to be applicable in an industrial setting, where real-
time responses are often crucial, this aspect needs to be studied in depth.

Dependence on Annotations and Application to Multi-Source Data This approach, even
though it employs few annotations, still relies on them. In an industrial setting, one might ac-
cess a labeled multimodal dataset of faults, but the alignment of these labels with the associated
maintenance reports is not guaranteed. Consequently, the challenge arises of how to ensure an
appropriate annotation scheme for these reports. Similarly, this approach concentrates solely on
textual data. Given the initial goal of incorporating data from multiple sources, a question arises:
how can this methodology be implemented in a broader multimodal framework? Some recent
works such as (Alayrac, Donahue, et al. 2022) extend the paradigm of pre-trained LLMs to other
modalities, such as images, to perform multimodal FSL with In-Context learning paradigm. Ex-
ploring an adaptation of transductive framework to these architectrure thus constitutes an inter-
esting perspective.

Privacy Concerns and Dependence on Contemporary Framework Finally, while this ap-
proach addresses privacy concerns by leveraging API-based models, the underlying assumption
may seem unrealistic. It assumes that labels carry the most sensitive data, rather than the input
data. In practice, the input data are often also sensitive and thus of higher concern from a privacy
perspective, and anonymization of textual documents might undermine expressive content that
is already scarce. As a result, the approach might not be as effective in scenarios where privacy of
the input data is crucial.

In summary, while our transductive approach offers a promising solution for NLP few-shot classi-
fication with API-based LLM, several criticisms highlight the areas where further work is needed.
This includes the inference latency, reliance on annotations, suitability for multimodal data in-
tegration, and privacy concerns related to input data. Addressing these issues could potentially
expand the applicability and usefulness of this approach in varied settings.

8.2.2 LONG-TERM PERSPECTIVES

At the time of Al is preponderant and completely questioning the perspectives of the society,
mainly through the Large Language Models breakthrough, the multimodal quest strikes back as
a mean of grounding world concepts (Girdhar et al. 2023). As the last section of this manuscript,
we chose to discuss what can appear as a philosophical yet central question: "What is a modality?".
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Despite the many previous works studying the best ways to perform multimodal data fusion,
mainly through representation learning, there is no formal definition of what is called a modality,
and therefore how two different sources of data can be considered as coming from either same or
different modalities. Indeed, (Baltrusaitis et al. 2019) informally define a modality as "the way in
which something happens or is experienced” and adds that "a research problem is characterized as
multimodal when it includes multiple such modalities”. Besides, most of previous works follow
this kind of informal definitions, and often give as examples of multimodal data the human expe-
rience of the world, through human multisensory integration (see Subsection 2.2.1).

In light of the beterogeneity gap paradigm, a first attempt to define the modalities v, 8 of two
data sources X, and X g could be through their definition domain. For instance, a RGB picture
(of height h and width w) of a dog in R *w*3%256 and a text describing a dog, encoded as [ dif-
ferent d-length one-hot vectors, lie in vastly different spaces even though they share redundant
information and can be semantically close (they both embed the concept of a dog). However,
this definition seems insufficient, as two images of different resolutions exist in different spaces,
yet intuitively do not exhibit heterogeneity gap. On the other hand, some studies treat similar
structured inputs, such as RGB and LIDAR images, as distinct modalities under a multimodal
framework. Yet, no framework provides tools to determine if these modalities are closer to each
other than an image and a text of a dog are.

The heterogeneity gap paradigm supports the previous informal definitions of modality and
multimodality, in the sense that all these considerations are human-centered. The challenge it
presents is that a prediction model designed for a modality o may not perform efficiently when
applied to a different modality /3, as the data structure differs. However, this model design choice
is determined according to the assumptions the human learner makes on the input data: namely,
an znductive bias. In that sense, we propose to define a modality through the lens of inductive
biases.

Considering the multimodal fusion framework of Subsection 2.2.2, aside from training algo-

rithm selection, optimization, and loss selection, the model choice is essentially determined by the
hypothesis space F. This parameter space is where an inductive bias can be added, particularly in
response to the nature and structure of input data, hence their modality. For example, assuming
spatial structures in images such as locality or translation invariance, CNNs are a popular choice
due to their ability to share weights locally in space. Similarly, RNN are employed to manage the
presumed recurrent structure of text.
By writing ' = H o G where H is the representation’s hypothesis space and G is the classifier’s
hypothesis space, one can define the notion of modality in a relational way: two sources of data
X and X are said to be from the same modality if and only if they are processed with the same
representation’s hypothesis spaces, z.e. G, = Gg. This means that the learner applies the same bias
when encoding them prior to classification. With this consideration, we could define a distance
between two modalities using a distance between their representation’s hypothesis spaces.

Eventually, if this section is just a discussion and a proposition, we truly believe that the def-
inition and characterization of a modality, and understanding its distance with other modalities
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could benefit the multimodal learning field by offering frameworks to address the heterogeneity
gap challenge more effectively.
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9 APPENDIX

9.1 PROOF OF THEOREM 1

In this Appendix, we prove the inequality (Equation 7.4) provided in Proposition 1. The right-
hand side of (Equation 7.4) follows straightforwardly from the definition of Ré (8) and the non-
negativity of the Shannon entropy. In order to prove the first inequality, we need to introduce the
following intermediate result.

For any arbitrary random variable X and countable random variable Y, and any real number
B, let
P(Y|X) 1’
P(Y|X *)] ’
where the random variable X™* follows the same distribution than X. Notice that it is obvious
that 1 (X;Y) = I(X;Y), where I(X;Y') is Shannon Mutual Information.

Iﬁ(X;Y) = —]Ex*y logIEX[

Lemma 1. For any arbitrary random variable X and countable random variable Y, we have
I(X;Y) > I3(X;Y), for 0< B <1,

Proof of the lemma: We must show that the different of I(X;Y) — I3(X;Y) is nonnegative.
To this end, we write this difference as:

PIA(Y|X*)ExP(Y|X)

I(X;Y) = I3(X;Y) = —Ex+y log Ex PP (V) (9.1)
P=B(Y|X*)ExP(Y|X)
> —logEx~y Ex P(Y|X) (9:2)
P17 (y| X*)Ex P(y| X

= —log Y Ex-P(y|X*) %}’( - ﬁ) (ny)(m ) 93)

yey
Ex+PP(y| X*)Ex P(y|X)

=1 9.4

D D by 04

= —log ¥ ExP(y|X) (9.5)
yey

=0, (9.6)

where the first inequality follows by applying Jensen’s inequality to the function ¢ — — log(%).
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Proof of Proposition I: From Lemma 1, using Jensen’s inequality, we have

I(X, Y) = —Ex*y log EX [m] , (97)
B
Z —Ex*y log EX |:§((}z/§i)):| (98)
B
= —Ex-logEx »  PY(Y|X)P"#(V]|X"), (9.10)

yey

where inequality (9.8) follows by applying Lemma 1 and inequality (9.9) follows by exploiting the
convexity of the function t +— —log(t) forany 0 < 8 < 1. Finally, it is not difficult to check
from the definition of the Fisher-Rao distance given by expression (7.2) that

(dFR(P(y|X = 1), P(y|X = l‘*)))
2

COS

=Y VPIX =2)PylX =a%). (911)

yeyY

Using the identity given by (9.11) in expression (9.10) setting 5 = 1/2, we obtain the desired
inequality

I(X:Y) > —Ex. logEx COS<dFR(P(y\X)7P(y|X*))>_

5 (9.12)

The inequality (7.4) immediately follows by replacing the distribution of the random variable X

with the empirical distribution on the query and P(y|x) with the soft-prediction corresponding
to the feature x, which concludes the proof of the proposition.

9.2 PUBLICATION IN THE CONTEXT OF THE MPO PROJECT

In the next pages, we provide the reader the publication (Pellegrain, Batteux, et al. 2022).
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Résumé — La gestion de la maintenance d'installations

industrielles de production est un facteur important de compétitivité.
Différentes techniques existent afin d’assurer au mieux les stratégies
de maintenance, par exemple la surveillance et le diagnostic
permettant de détecter et d’identifier une défaillance a la suite de son
occurrence. Les travaux présentés dans cette publication consistent
a montrer 1’application d’un algorithme de surveillance pour
détecter des occurrences de défaillances sur un exemple applicatif
virtuel du projet de recherche MPO, pour Maintenance
Prévisionnelle et Optimisation, de I’IRT SystemX. L’exemple est le
systtme 3-Réservoirs, déja présenté dans une précédente
communication, et nous y avons appliqué un algorithme
d’apprentissage automatique afin de construire un outil de
surveillance de défaillances.

Mots-clefs — Surveillance, Diagnostic, Réseau de neurones
récurrents, LSTM

Abstract— Managing the maintenance of industrial plants is an
important factor of competitiveness. Different technics can be used
to ensure maintenance strategies: fault monitoring and diagnosis, for
instance, to detect and identify a failure after it occurs. Works
presented within this publication show the application of a
monitoring algorithm to detect occurrences of failures on an
applicative example. These works are realized within the MPO
project (Predictive maintenance and Optimization) at IRT SystemX.
The example is the 3-Tanks system, already presented in previous
works. A machine learning algorithm was implemented, based on
data generated by simulation.

Keywords — Monitoring, Diagnosis, Recurrent neural
network, LSTM

I. INTRODUCTION

La gestion de la maintenance d'installations industrielles
de production est un facteur important de compétitivité. En
effet, de tels systémes sont composés d’une multitude de
composants hétérogénes en interactions les uns avec les
autres : des composants physiques, des actionneurs, des
capteurs, des calculateurs de controle/commande. Ajoutons
que certains composants embarquent en eux-mémes de tels
¢léments logiciels de contrdle/commande, comme les capteurs
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dits ‘intelligents’. De plus certains de ces systémes peuvent
étre distribués en différents endroits physiques, demandant de
ce fait des liens de connexions par réseaux (internet par
exemple). De tels systémes combinant des composants
physiques, logiciels et en réseaux sont également appelés des
‘systemes cyber-physiques’ [10].

Les composants et parties de ces systémes sont
naturellement sujets a des défaillances (qui se nomment
également fautes dans la communauté du diagnostic), pouvant
mener a des dysfonctionnements ou pannes du systéme.
Certaines de ces défaillances peuvent avoir des conséquences
négligeables, méme si le systéme ne remplit plus sa fonction :
par exemple l’oxydation d’un céble de haut-parleur, qui
occasionne soit un mauvais son, soit pas de son, sortant du
haut-parleur, et impactant le confort de 1’utilisateur. D’autres
défaillances peuvent, au contraire, avoir des conséquences
catastrophiques : par exemple I’usure de joints d’étanchéité de
durites de freinage, qui améne a un dysfonctionnement, voire
méme une perte d’un systéme de freinage. Dans ce cadre et
suivant la sévérité des dysfonctionnements et pannes du
systéme considéré, il est nécessaire de mettre en ceuvre des
solutions de maintien en conditions opérationnelles du
systtme. Méme si D’amélioration de la fiabilit¢é des
composants, ou les techniques de redondances matérielles,
peuvent étre des solutions, elles ne sont néanmoins pas
suffisantes. En effet, tout composant physique est li¢ a ’usure
matérielle et ménera a des dysfonctionnements ou des pannes.
La maintenance joue donc un réle important pour réduire les
risques d’occurrence de pannes, en particulier pour des
systétmes dont la panne peut impacter la sécurit¢ des
personnes.

Différentes stratégies de maintenances existent, et sont
résumées en Figure 1. Les maintenances correctives se
réalisent & la suite des occurrences des défaillances. A
I’inverse les maintenances préventives anticipent les
défaillances en se réalisant avant leurs occurrences. La
maintenance préventive est un levier important pour réduire
les risques de panne et les colits de maintenance. Cependant,
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réaliser trop d’actions de maintenance préventives pourrait se
révéler plus coliteux que nécessaire. Il existe un équilibre entre
I’investissement en maintenance préventive et le risque de
défaillance. Une analyse de la fiabilité du systéme, a travers
I’¢tude des données historique de panne et/ou 1’élicitation
d’expert de son fonctionnement, permettra de calculer des
indicateurs d’aide a la décision permettant de trouver un
équilibre optimal.

Maintenance

Maintenance
préventive

Maintenance
corrective

Maintenance
systématique

Maintenance
palliative curative

Maintenance Maintenance

conditionnelle

Maintenance
prévisionnelle

Figure 1 : Les différents types de maintenances

Différentes techniques existent afin d’assurer au mieux les
stratégies de maintenance. La surveillance et le diagnostic
permettent de détecter et d’identifier un comportement
anormal du systéme (défaillance de I’'un des composants)
avant que cela ait un impact important. Le pronostic permet
d’estimer la durée avant I’occurrence de la défaillance ou la
panne (nous reviendrons sur ces notions en section II.C). La
premiere technique est principalement utile dans le cadre de
maintenances conditionnelles, et la seconde 1’est
principalement dans le cadre des maintenances
prévisionnelles. Néanmoins quelle que soit la technique, il est
nécessaire d’avoir une connaissance du fonctionnement et des
dysfonctionnements du systéme.

Dans le cadre des travaux présentés dans cette publication,
nous nous intéressons a I’application de techniques et
d’algorithmes de surveillance et diagnostic pour détecter des
occurrences de défaillances sur un exemple applicatif. Ces
travaux sont réalisés au sein du projet de recherche MPO, pour
Maintenance Prévisionnelle et Optimisation, de I'IRT
SystemX'. Ce projet, en partenariat avec plusieurs acteurs
industriels et académiques, porte sur 1’optimisation des
stratégies de maintenance des systémes de production.
L’exemple applicatif considéré est un systeme virtuel
construit durant ce projet : le systéme 3-Réservoirs présenté
dans [2]. Nous avons appliqué un algorithme d’apprentissage
automatique sur des données générées par simulation du
systéme 3-Réservoirs.

La suite de cette publication est organisée de la manicre
suivante. La section II fera un rappel de I’état de I’art sur la
surveillance et le diagnostic. Cette section II nous permettra
de justifier d’une part la définition de défaillances du systéme
3-Réservoirs, ainsi que le choix d’un algorithme de diagnostic
basé sur les données. La section IIl fera une présentation
succincte du systéme 3-Réservoirs, issu des travaux présentés
dans [2]. Les sections IV et V montreront I’implémentation de
I’algorithme de surveillance du systéme 3-Réservoirs, ainsi
que les premicres expérimentations réalisées. La section VI
discutera des perspectives envisageables sur ces travaux.
Enfin la derniére section VII conclura cette publication.

II. RAPPEL D’ETAT DE L’ART SUR LA SURVEILLANCE ET LE
DIAGNOSTIC

Comme indiqué en introduction, les défaillances de
composants ou parties d’un systtme ne peuvent étre
complétement éviter. Un levier pour limiter le risque
d’occurrence de défaillance du systéme ou de sa conséquence
est de mettre en place des techniques permettant de détecter
au plus vite une anomalie Ces techniques sont connues sous
les termes de ‘surveillance’ et ‘diagnostic’. 1l y a deux
principales approches pour la surveillance et le diagnostic [9] :
les approches dites ‘basées modeles’ et les approches dites
‘basées données’.

A. Les approches basées modeéles

Les approches a base de mode¢les consistent a comparer le
comportement réellement observé du systtme a un
comportement prédit, issu d'un modéle de fonctionnement
nominal et avec défaillances du systéme. Les modéles utilisés
par ces méthodes peuvent étre de deux types : les modéles
quantitatifs et les modéles qualitatifs.

Les approches par modéles quantitatifs sont celles issues
de la communauté¢ de I’automatique, et classiquement
nommées par I’acronyme FDI pour ‘fault detection and
isolation’. L'utilisation d'un modéle de fonctionnement
nominal du systéme permet d'engendrer des incompatibilités
entre le comportement réel du systéme et celui prédit par le
modele. Ces incompatibilités, appelées ‘résidus’, sont
générées a partir des mesures effectuées sur le systéme et de
calculs fondés sur le modéle du systéme. Ces résidus sont des
signaux devant refléter la cohérence des données mesurées du
systéme par rapport au modele de fonctionnement. L'objectif
d'un résidu est d'étre sensible aux défaillances : c'est-a-dire
qu'il doit refléter 1'éventuelle présence d'une défaillance. Cela
signifie donc qu'un résidu est en général proche d'une valeur
de référence si aucune défaillance n'affecte le systéme, et qu'il
est dévié vers une valeur différente dés 1’occurrence d'une
défaillance.

Les approches basées sur les modeles qualitatifs sont
celles issues de la communauté de I’intelligence artificielle
(communauté historique, et pas celle actuelle liée a
I’apprentissage automatique), et nommeées par I'acronyme DX
pour ‘Data eXtraction’. Les modéles qualitatifs permettent
d'abstraire, a un certain degré, le comportement du systéme a
travers des modéles de type symbolique. Ces modéles
décrivent d'une maniére qualitative 1'espace d'état continu du
systéme et ne représentent pas la physique du systéme,
contrairement aux mode¢les quantitatifs, car ils le décrivent en
termes de mode de fonctionnement. Les méthodes a base de
modeles qualitatifs peuvent étre classifiées soit selon le niveau
d'abstraction considéré du systéme a diagnostiquer (les
graphes causaux pour les systémes continus, les systémes a
événements discrets, ou encore les systémes hybrides
dynamiques) ; soit selon la prise en compte, ou non, des
défaillances (les modéles de dysfonctionnement comme dans
les techniques de propagation des défaillances ou pour les
graphes causaux, ou les mod¢les de bon fonctionnement dans
le cas du diagnostic a partir des principes premiers ou par
simulation qualitative).

B. Les approches basées données

Contrairement aux méthodes a base de modé¢les, celles a
base de données reposent sur un nombre important de données
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qui sont supposées représenter convenablement le systéme.
Les seules informations disponibles sont les signaux issus des
capteurs du systéme, ce qui implique que ces approches
présupposent donc que ce systéme puisse étre complétement
décrit par ses observations passées et présentes. L'objectif de
ces approches est alors de construire un mode¢le ajusté sur les
données collectées, et la principale difficulté va donc étre de
définir non seulement la structure appropriée du modele, mais
aussi le calage appropri¢ entre ce modele et le systéme.

Les méthodes par reconnaissance de formes ont pour
objectif de classifier des objets, nommés des ‘formes’, qui sont
représentées par des données, dans des classes prédéterminées
en les comparant a des prototypes. Ces méthodes reposent
donc sur une description compléte de ces formes et de chacune
des différentes classes prototypes. Un probléme de diagnostic
peut ainsi se définir comme un probléme de reconnaissance de
formes ou les classes sont les modes de fonctionnement du
systéme (nominal ou sous la présence de défaillances) et les
formes sont représentées par les observations du systéme.

Les méthodes par systémes experts sont utilisées dans des
applications ou l'expertise humaine y est importante et le
développement de modeles y est faible. Ce sont des systémes
a base de régles du type ‘si’, ‘et’, ‘ou’, ‘alors’ qui utilisent une
information heuristique pour lier les symptomes aux
défaillances, établissant ainsi des associations empiriques
entre effets et causes des défauts. Ces associations sont
généralement fondées sur l'expérience de spécialistes, dits
‘experts’, plutot que sur une connaissance de la structure et/ou
du comportement du systéme. Leur fonctionnalité est de
trouver la cause de ce qui a été observé en parcourant, par un
raisonnement abductif, les régles préalablement établies.

Enfin les méthodes par apprentissage machine (ML pour
‘Machine  Learning’)  appréhendent  également la
problématique de la surveillance et du diagnostic [8]. De plus
récents travaux, [1] et [13] par exemple, motivent d’ailleurs
leur démarche par 1’apparition de nouveaux challenges
pratiques liés a 1’arrivée de l’industrie dite ‘4.0°, comme
notamment la capacité a gérer des quantités massives de
données multi-sources en temps rapide. Ces études présentent
les approches de ML comme plus adaptées lorsque les profils
de défaillances sont complexes. Les approches utilisent des
réseaux de neurones, des outils de traitement du signal
(transformées de Fourier et de Laplace), etc.

C. Les notions de défaillances, dysfonctionnements, et
pannes

Quelles que soient les approches de surveillance et
diagnostic basées modeéles ou basées données, nous
considérons des défaillances pouvant mener a des
dysfonctionnements ou des pannes. Nous présentons donc ces
notions, que nous reprenons de [9] :

e Une défaillance, également nommée ‘faute’ par
la communauté du diagnostic, est une dérive non-
permise d’au moins une propriété caractéristique
du systéme par rapport aux conditions standard et
acceptables de fonctionnement du systéme. Une
défaillance est un état anormal de
fonctionnement du systéme pouvant causer une
réduction, voire une perte de la capacité de l'unité
fonctionnelle a exécuter sa fonction requise. Une
défaillance est indépendante du fait que le
systéme soit opérationnel ou non et peut trés bien
ne pas affecter le fonctionnement normal du
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systéeme. Enfin une défaillance peut initier un
dysfonctionnement ou une panne du systéme.

e Un dysfonctionnement est une irrégularité
intermittente dans la réalisation d'une fonction
désirée du systéme. Un dysfonctionnement est
donc une interruption temporaire de la fonction
du systéme, et il s'agit d'un événement résultant
d'un ou plusieurs défauts.

e  Enfin une panne est une interruption permanente
de la capacité du systéme a exécuter une fonction
requise sous des conditions opérationnelles
spécifiées. Comme pour un dysfonctionnement,
une panne est un évenement résultant d'un ou
plusieurs défauts. Différents types de pannes
peuvent étre distingués suivant leurs nombres
(panne simple ou pannes multiples) et leurs
prévisions (panne aléatoire donc non prévisible,
panne déterministe donc prévisible sous certaines
conditions, panne systématique ou causale
dépendant de conditions connues).

Selon [3], une défaillance peut étre spécifiée par trois
caractéristiques : son comportement, son effet et sa
conséquence. Le comportement d'une défaillance qui
détermine son instant d'occurrence dans le temps, sa force
d'apparition ainsi que sa durée de présence. L'instant
d'occurrence peut étre aléatoire, systématique ou dépendant
d'un événement interne ou externe au systéme. La force
d'apparition peut étre brusque ou progressive. La durée de
présence d'une défaillance peut étre permanente, transitoire ou
intermittente. L'effet d'une défaillance détermine sa prise en
compte dans le systéme. Il s'agit de déterminer sa localisation
dans le systéme ainsi que la ou les perturbations induites.
Enfin la conséquence engendrée par une défaillance, sur le
systéme lui-méme et/ou son environnement, sont a déterminer
suivant les pertes potentielles (matérielles et/ou humaines)
qu'il peut générer. Ces caractéristiques permettent de bien
définir une défaillance afin de la modéliser si nécessaire.

ITI. LE SYSTEME 3-RESERVOIRS

Le systéme 3-Réservoirs, présenté dans [2], est un systéme
dynamique hybride, au sens ou ils combinent des phénomenes
qui seront décrits par des évolutions continues et des
phénomeénes qui seront décrits par des évolutions discrétes.
Comme montré en Figure 2, ce systéme est constitué de
différents composants : deux réservoirs amonts L1 et L2 et un
réservoir aval L3, deux pompes P1 et P2, trois vannes V1, V2
et V3, ainsi que trois capteurs CH1 CH2 et CH3 de hauteurs
d’eau dans chaque réservoir, et un capteur de température CT3
dans le réservoir L3. Le réservoir aval L3 contient une source
de chaleur qui fonctionne en continu et qui doit étre refroidie
par de I’eau froide venant des deux réservoirs L1 et L2 en
amont.
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Figure 2 : Représentation schématique du systeme 3-Réservoirs

Thermométre Source de chaleur

A. Fonctionnement du systeme 3-Réservoirs

L’objectif du systétme 3-Réservoirs est de refroidir la
source de chaleur dans le réservoir L3 avec de I’eau dans les
réservoirs L1 et L2. Pour cela il est nécessaire d’assurer un
certain niveau de température et de hauteur d’eau dans ce
réservoir L3.

L'eau circule de la fagon suivante. Les deux réservoirs L1
et L2 sont alimentés par deux sources froides indépendantes
grace aux deux pompes Pl et P2. Ces réservoirs L1 et L2
alimentent en eau le troisiéme réservoir L3 dans lequel se situe
la source de chaleur. L'alimentation de L3 par L1 est gérée par
la vanne V1, et 'alimentation de L3 par L2 est gérée par la
vanne V2. Enfin 1'évacuation de l'eau de L3 est gérée par la
vanne V3. Initialement, les deux pompes P1 et P2
fonctionnent et les vannes V1, V2 et V3 sont ouvertes.

Les fonctionnements des ouvertures et fermetures des
vannes V1, V2 et V3 dépendent du niveau d’eau dans le
réservoir L3. Les vannes V1 et V2 se ferment quand la hauteur
d’eau dans le réservoir L3 dépasse une certaine valeur seuil
maximum, correspondant & un niveau maximum dans les
réservoirs, et elles s’ouvrent quand la hauteur est inféricure a
une certaine valeur seuil minimum. La vanne V3 s’ouvre
quand la hauteur dépasse la valeur de seuil maximum, et se
ferme quand la hauteur est inférieure a la valeur de seuil
minimum.

Les fonctionnements des démarrages et arréts des pompes
sont similaire aux fonctionnements des ouvertures et
fermeture des vannes. La pompe P1, respectivement P2,
démarre quand la hauteur d’eau dans le réservoir L1,
respectivement L2, est inférieure a une valeur seuil minimum ;
et elle s’arréte quand cette hauteur d’eau est supérieure a une
valeur seuil.

B. Dysfonctionnements du systeme 3-Réservoirs
Les trois événements redoutés considérés sur ce systéme
3-Réservoirs sont les suivants :
e Leréservoir L3 a débordé ;

e Leréservoir L3 est vide ;

e La température dans L3 a dépassé un niveau
critique.

Les défaillances menant aux dysfonctionnements du
systétme 3-Réservoirs sont multiples. Des défaillances
intempestives des vannes : une vanne peut soit se coincer dans
I’¢état dans lequel elle se trouve au moment de la défaillance,
soit changer brusquement d’état, ¢’est-a-dire s’ouvrir si elle
est fermée ou se fermer si elle est ouverte. Les défaillances
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intempestives des pompes ont les mémes comportements que
celles des vannes. Enfin pour chaque réservoir, une fuite qui
apparait a la suite d’une fissure de la paroi.

C. Modélisation et génération de données du systeme 3-
Réservoirs

Dans [2], nous présentions la modélisation et la génération
de données simulées, c’est-a-dire des séries temporelles, pour
ce systéme 3-Réservoirs. Nous avons en effet généré des
séries temporelles en fonctionnement normal, et des séries
temporelles avec les défaillances.

Le systéme a été modélisé par un PDMP pour ‘ Piecewise
Deterministic Markov Process’ (voir [5] et [6]), et les séries
temporelles ont été générées en simulant, par Monte-Carlo, a
I’aide de I’outil PyCATSHOO (PythoniC Object Oriented
Hybrid Stochastic AuTomata) développé par EDF R&D [4].

IV. IMPLEMENTATION DE L’ ALGORITHME DE SURVEILLANCE

Nous avons utilis¢ les séries temporelles en
fonctionnement normal et avec les défaillances des
composants afin de produire un outil de surveillance de ce
systeme 3-Réservoirs. La partie surveillance est donc celle qui
permet d’établir si le systéme est en bon fonctionnement ou en
fonctionnement dégradé a la suite de 1’occurrence d’une
défaillance d’un des composants. Nous avons utilisé une
approche basée sur les données avec un algorithme
d’apprentissage machine.

La construction de I’outil de surveillance s’est réalisée en
trois étapes. La premiére étape a consisté a prétraiter les
données. La deuxiéme étape a consisté a définir et entrainer
un modele d’apprentissage. Enfin la troisiéme étape a consisté
a construire I’outil de surveillance par rapport au modéle
d’apprentissage entrainé. Cette implémentation est inspirée

de [12].

A. Prétraitement des données

Les séries temporelles, issues de la base de données
générées dans [2], ont été prétraitées afin de concaténer les
valeurs des capteurs, les valeurs des manceuvres sur les
actionneurs (c’est-a-dire les ouverture et fermetures des
vannes, et les démarrages et arréts de pompes) et les valeurs
des défaillances des vannes et des pompes. Certaines
modifications ont également été réalisées sur ces séries
temporelles. Dans la suite, une défaillance correspond a une
défaillance d’un des composants (vannes ou pompes) et pas a
la défaillance du systéme.

D’abord une étiquette (label) a été ajoutée pour réaliser la
surveillance. Cette étiquette est a la valeur 0 quand le systéme
n’a pas eu de défaillance a I’instant de temps courant
considéré. Cette étiquette est a la valeur 1 a partir de I’instant
de temps d’occurrence d’une défaillance (quelconque).

Ensuite les différentes défaillances ont été scindées en
deux ensembles. Un ensemble des défaillances visibles des
vannes et des pompes : ‘blocage en position fermée d’une
vanne ouverte ’ et ‘blocage en position ouverte d’une pompe
fermée ’ pour les vannes, et ‘blocage en position démarrée
d’une pompe arrétée’ et ‘blocage en position arrétée d’une
pompe en fonctionnement’ pour les pompes. Un ensemble des
défaillances invisibles : ‘blocage en position ouverte d’une
vanne ouverte’ et ‘blocage en position fermée d’une vanne
fermée’ pour les vannes, et ‘blocage en position arrétée d’une
pompe arrétée’ et ‘blocage en position démarrée d’une pompe
en fonctionnement’ pour les pompes. Seules les défaillances
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visibles ont été étiquetées avec la valeur 1. En effet, les
défaillances dites invisibles ne sont pas visibles via les
mesures des capteurs ; il est ainsi impossible de réaliser la
tdiche de détection car il n’y a pas d’information sur
I’occurrence de cet événement dans les données.

B. Entrainement du modéle de prévision

Le modéle de prévision est un réseau de neurone récurrent
de type LSTM, pour ‘Long Short-Term Memory’ [8],
modélisant la dépendance temporelle des capteurs. Ce modeéle
a ¢été entrainé de facon semi-supervisée sur les séries
temporelles saines, c’est-a-dire celles pour lesquelles aucun
dysfonctionnement n’a été généré. L entrainement est réalisé
sur une fenétre glissante de taille L. Au temps t, le modele
estime les valeurs de capteurs des temps t + 1 a t + L. Ainsi,
pour un méme pas de temps 7, on peut obtenir L prévisions
d’horizons temporels variables (de 1 a L), selon si on se place
at—1oujusquat— L. Ces prévisions sont stockées dans
un vecteur X, de taille L, et on peut calculer le vecteur d’erreur
e; correspondant :

e, =%, —x;.1;,

en notant 1; le vecteur de taille L ne contenant que des 1. De
1a, on peut calculer la moyenne et la variance empiriques de
ces vecteurs d’erreur correspondant & un comportement sain
du systéme :

n

u= %i e, L= %Z(Gi — (e — "

i=1 i=1
qui seront utiles pour I’outil de surveillance. L’indice i itére

sur ’ensemble des pas de temps de ’ensemble des trajectoires
d’entrainement du modéle, pour un total de n points.

Pour I’entrainement du modéle de prévision, les données
d’entrée correspondent aux séries temporelles des 4 capteurs
(3 de niveaux d’eau et 1 de température), de la premicre
jusqu’a I’avant-derniére mesure (incluse). Les labels a prédire
correspondent a ces mémes séries temporelles décalées d’un
pas de temps dans le futur : de la deuxiéme mesure jusqu’a la
derniére (incluse) ; le but étant de prédire la prochaine mesure
de capteurs a partir des précédentes. Ces valeurs sont enfin
standardisées (centrées et réduites). L’outil de surveillance
utilisant les prévisions du modele de prévision LSTM sur un
horizon temporel variable (majoré par le paramétre L), il est
nécessaire d’entrainer ce LSTM a réaliser des prévisions
récursives précises (multi-step). Cet objectif pouvant
impliquer un comportement instable lors de 1’entrainement
(les erreurs de prévision s’accumulent au fil des étapes), on
ajoute a la fonction de perte multi-step une fonction de perte
one-step, pénalisant I’erreur du modéle sur un seul pas de
temps. Ceci est réalisé en suivant une procédure de teacher
forcing [14], redonnant la vérité terrain au modele a chaque
pas de temps pour guider son apprentissage. Enfin, pour
renforcer cette notion de guidage, on ajoute une derniére
fonction de perte, visant a minimiser 1’écart entre les états
cachés du LSTM, entre la prévision multi-step ou la prévision
one-step.

La fonction de perte utilisée est la Mean Squared Error
(MSE), et I’outil d’optimisation utilis¢ pour la descente de
gradient est la méthode d’Adam [7].

C. Construction de I’outil de surveillance

L’algorithme de surveillance consiste en la comparaison
d’un score d’anomalie a un seuil, permettant de discriminer
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entre les comportements normaux et les comportements avec
les défaillances.

Pour chaque trajectoire, le score d’anomalie s; ,
correspondant au pas de temps 7, est calculé en fournissant le
vecteur d’erreur e; a un modele gaussien multivarié,
paramétré par y et X :

S¢ = (eT - ‘Ll)z_l(e.[ - .u)T

Ce score d’anomalie s; est ensuite comparé a un seuil €
(hyperparamétre optimisé sur un espace de validation) pour
obtenir la prédiction du modéle J, sur la présence de
défaillance au temps 7 :

Ve = 1sT>€
avec 1 la fonction indicatrice.

V. EXPERIMENTATIONS

Les expérimentations sont évaluées via le calcul de
plusieurs métriques dépendant de la valeur du seuil €, comme
la précision, le rappel, et le score F1. Afin de garantir le
meilleur équilibre entre faux-positifs et faux-négatifs, nous
avons choisi cette derniére comme métrique de décision pour
la valeur du seuil €. Sur la Figure 3, on observe 1’évolution de
ces métriques sur un ensemble de validation, selon la valeur
du seuil choisi. Sur notre jeu de test, ’outil de diagnostic
affiche un score F1 de 0.9555
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Figure 3 : Evolution des métriques selon la valeur du seuil

VI. PERPESPECTIVES

Les travaux présentés dans cette publication concernent la
mise en place d’un outil de surveillance, et donc de détection
de défaillances du systéme virtuelle 3-Réservoirs. Ces travaux
peuvent étre étendus et poursuivis suivant différentes
orientations afin d’atteindre un niveau plus élevé de
polyvalence, de performance et de généricité.

A. Introduction d’une notion de temporalité

Une premiere perspective de poursuite serait d’intégrer la
notion de temporalité dans la détection d’une défaillance. En
effet une exigence communément définie pour un tel outil de
surveillance et de diagnostic concerne la temporalité : ¢’est-a-
dire le délai entre I’instant ou la défaillance apparait, et
I’instant ou elle est détectée, puis isolée et identifiée.

Il y a des cas ou ce délai doit étre court afin de mettre le
systéme dans un mode sir. Ce délai doit, bien entendu, étre
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mis en relation avec la sévérité de la défaillance et la
dynamique de ses conséquences. Cette exigence de délai de
détection peut de plus impacter le maintien des performances
du systéme. En effet, un tel outil congu avec une exigence de
délai de détection rapide sera trés certainement sensible aux
bruits ou perturbations furtives (courtes et temporaires), ce qui
impliquera une augmentation potentielle des fausses alarmes
en fonctionnement normal et impactera ainsi les performances
du systéme.

Dans I’état actuel de ’implémentation de 1’algorithme de
surveillance, il est nécessaire d’y apporter des modifications
complémentaires.

B. Considération de données complémentaires « en I’état »

Une deuxiéme perspective de poursuite serait de tester
I’algorithme sur d’autres données du systéme 3-Réservoirs,
mais sans changer ce systéme 3-Réservoirs, plus précisément
sans changer le modéle de simulation. En effet, les travaux
réalisés ont considéré un ensemble de données générées
initialement pour une problématique de pronostic (voir [2]) ;
ce qui a potentiellement un impact sur la pertinence des
données dans un cadre de détection et diagnostic de
défaillances, et qui demanderait a étre évalué.

Pour le moment, et comme expliqué dans la partie IV, le
jeu de données a été divisé en deux parties : une partie servant
a ’entrainement du mod¢le et une autre partie servant de tests,
ce qui est d’ailleurs une approche classique. L’ajout d’autres
données simulées, suivant bien slir d’autres consignes de
fonctionnement du systeme 3-Réservoirs, devraient ajouter de
la précision dans le modele de surveillance. Cette deuxiéme
poursuite nécessiterait de réaliser de nouvelles simulations du
modele du systeme 3-Réservoirs.

C. Prise en compte du diagnostic

Une troisiéme perspective de poursuite serait
d’implémenter la partie diagnostic, plus précisément les
étapes d’isolation et d’identification d’une défaillance. En
effet, en 1’état seule la partie surveillance, c’est-a-dire la
détection des occurrences de défaillances, est implémentée.
De plus comme le modéle 3-Reservoirs et les simulations
générées n’ont pas €té initialement construits pour une
approche de diagnostic, le passage au diagnostic nécessite des
travaux complémentaires a plusieurs niveaux : au niveau du
modeéle, au niveau des simulations, et au niveau de I’outil de
surveillance/diagnostic.

D. Modifications du modéle du systéeme 3-Réservoirs

Au niveau des modifications du modele du systeme 3-
Réservoirs, nous pouvons envisager différentes perspectives.
En premier lieu 1’ajout de défaillances ou de pannes. Par
exemple un encrassement dans les tuyaux ou les pompes ou
encore les vannes meénerait a de mauvais débits qu’il serait
possible de modéliser sous la forme d’ajouts d’aléas dans ces
calculs de débits dans le modele. Par exemple encore des
fuites des réservoirs qui seraient causées par des fissures sur
les parois de ces réservoirs modélisées (les fissures) au moyen
d’un processus Markovien pour la taille de la fissure et sa
hauteur sur le réservoir.

Il serait également possible de rendre des défaillances qui
ne sont pas diagnosticables actuellement en défaillances qui
deviendraient diagnosticables par 1’ajout de tests dans le
modele. Cela équivaudrait a rajouter une instance virtuelle
d’un outil de surveillance dans le modele afin de fournir les
informations de tests.
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Ces perspectives nécessitent donc de modifier le modele
de différentes maniéres :

e Soit en ajoutant de nouveaux observateurs dans
le modéle, c’est-a-dire des variables d’intérét qui
n’ont pas d’impact sur les phénomeénes physiques
représentés ;

e Soit en modifiant les phénoménes physiques
représentés au moyen de nouvelles variables et
de nouvelles relations liant ces variables, avec
potentiellement des impacts sur les variables et
relations existantes ;

Ces modifications signifient par la suite de réaliser de
nouvelles simulations, comme nous allons 1’expliquer dans la
sous-partie suivante.

E. Modifications au niveau des simulations du systéme 3-
Réservoirs

Au niveau des simulations, nous pouvons envisager soit la
réalisation de nouvelles simulations, soit la modification des
simulations existantes.

La réalisation de nouvelles simulations sera nécessaire
dans le cas ou le modéle a été¢ modifié¢, comme expliqué dans
les perspectives indiquées dans les sous-parties précédentes.
Dans le cas ou le modéle n’intégre que de nouveaux
observateurs, ce pourront étre les simulations existantes qui
seront rejouées, afin de capturer, dans les données, ces
nouvelles observations. Dans le cas ou le mod¢le intégre de
nouveaux phénomenes, il faudra d’une part définir les plans
de simulation, c’est-a-dire spécifier quelles sont les consignes
et trajectoires a simuler, car les simulations existantes seront
obsolétes et ne pourront étre rejouées, et il faudra d’autre part
réaliser ces nouvelles simulations suivant ces nouveaux plans
de simulation.

Pour la modification des simulations existantes, il s’agit
par exemple de supprimer certaines valeurs ou ensembles de
valeurs. Ces suppressions peuvent &tre soit suivant les
observateurs, c’est-a-dire de supprimer les données d’un ou
plusieurs observateurs, soit suivant une plage temporelle de
fonctionnement. Il peut également s’agir de modifier certaines
valeurs, par exemple en ajoutant une valeur aléatoire pour
représenter du bruit, ou encore d’ajouter des nouvelles
données construites via les données existantes.

Enfin a la suite de la production de nouvelles simulations,
ou la modification des simulations existantes, il sera
nécessaire d’en faire un prétraitement, c’est-a-dire de les
mettre au bon format, afin que 1’algorithme de surveillance et
de diagnostic puisse les considérer.

F. Implémentation de I’algorithme de diagnostic

Au niveau de l’outil de surveillance/diagnostic, nous
pouvons envisager 1’implémentation d’algorithmes dédiés
pour le diagnostic. Les algorithmes abordant une vision
Machine Learning se distinguent selon s’ils traitent de la
détection et de I’isolation/identification de maniére
simultanée, ou de maniére séquentielle.

Pour le cas séquentiel, les données d’entrée du module de
diagnostic correspondent aux plages temporelles des données
ayant conduit a une prévision de défaillance de la part du
module de détection. Dans ce cas-1a, il serait possible de
réutiliser I’approche de détection déja implémentée comme
premiere brique du modele de diagnostic global. Dans le cas
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d’une détection et isolation/identification simultanées, la
majorité des algorithmes se placent dans un cadre supervisé,
et congoivent un modéle de classification en N+1 classes,
composée d’une classe correspondant & un fonctionnement
normal du systéme, et de N classes de défaillances différentes.

Les modeles de classification sont en général précédés
d’un module d’extraction de ‘features’ permettant de
représenter les données d’entrée sous une forme exploitant
leurs caractéristiques pertinentes pour faciliter la tache de
classification. Cela peut étre réalisé¢ de fagon automatique ou
sur la base de compréhension du phénoméne physique, et est
communément appelé ‘feature engineering’.

Dans le cadre du jeu de données 3-Réservoirs, il pourrait
étre possible d’utiliser des outils de traitement du signal, tels
que présentés en sous-partic LB de [’é¢tat de [Iart
(transformées de Fourier, transformées de Laplace, ou en
ondelettes dans le domaine temps-fréquence). Le module de
classification pourra ensuite exploiter ces ‘features’,
notamment via 1’utilisation de SVM, de réseaux de neurones
peu profonds, ou de foréts aléatoires. Des méthodes
d’apprentissage profond, intégrant la phase d’apprentissage de
représentation de maniere automatique, peuvent également
s’appliquer a ce jeu de données : des réseaux de neurones
convolutifs, des réseaux de neurones récurrents profonds, des
transformers, ou des auto-encoders.

VII. CONCLUSION

Dans cette publication, nous avons montré
I’implémentation d’un algorithme de surveillance sur un
exemple virtuelle du projet MPO de I'IRT SystemX. Cet
exemple, nommé systéme 3-Réservoirs, est constitué d’un
ensemble de composants (pompes, vannes, réservoirs,
capteurs) sujets a des défaillances. De précédent travaux ont
montré la modélisation et la génération de données, plus
précisément des séries temporelles, sur cet exemple.

Nous nous sommes donc servis de ces données générées
pour définir et implémenter un outil de surveillance de ce
systtme 3-Réservoirs. Nous avons utilis¢é un modéle
d’apprentissage de type réseau de neurone récurrent (plus
précisément de type LSTM), qui a été entrainé sur les séries
temporelles sans les défaillances. L algorithme implémenté de
surveillance a consisté en un vecteur d’erreur, issus du modeéle
appris, fourni a un modele Gaussien afin de produire un score
d’anomalie. Ce score est ensuite comparé a un seuil
permettant de discriminer entre les comportements normaux
et les comportements avec les défaillances.

Nous avons ensuite présenté différentes perspectives
permettant de complémenter ces travaux dans différentes
directions, soit en augmentant ’ensemble des données
générées a partir du modéle du systéme 3-Réservoirs, soit en
modifiant le modele du systeme 3-Réservoirs, enfin soit en
modifiant 1’algorithme implémenté. Les objectifs principaux
de ces compléments étant d’une part de traiter la partie
diagnostic, c’est-a-dire d’identifier la défaillance apparue, et
d’autre part d’ajouter des défaillances a diagnostiquer, ou a
minima d’en rendre certaines actuelles diagnosticables.
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9 Appendix

9.3 RESUME DE LA THESE EN FRANGAIS

La Quatrieme Révolution Industrielle, également appelée Industrie 4.0, marque une transfor-
mation profonde du secteur industriel en fusionnant les domaines physiques, numériques et bi-
ologiques. Se batissant sur une transformation numérique, elle est caractérisée par des avancées
telles que 'Internet des Objets, I'Intelligence Artificielle, et les systemes cyber-physiques. Au coeur
de cette révolution se trouve la smart factory (usine intelligente), ot1 les machines interagissent
en temps réel avec ’homme et d’autres équipements. Un des enjeux majeurs de 'Industrie 4.0
est la maintenance prévisionnelle, visant a prévenir les pannes des systemes industriels. Lobjectif
principal de cette these de doctorat est détudier la maintenance prévisionnelle, en particulier le
diagnostic des défauts, a travers le prisme de I'apprentissage profond et des sources de données
multimodales et hétérogenes de 'Industrie 4.0. Ces données, qu’elles proviennent de capteurs de
vibration, de température, de caméras ou de rapports de maintenances, offrent une perspective
multimodale (séries temporelles, images, texte...) riche et détaillée de I¥état des systemes de pro-
duction. L’analyse intégrée de ces modalités distinctes permet non seulement une détection plus
précise des défauts, mais aussi une vérification croisée pour une plus grande fiabilité, révélant par-
fois des anomalies qui pourraient rester inapergues si chaque modalité était considérée isolément.
Lutilisation de données multimodales offre de nombreux avantages, mais 'importance des don-
nées textuelles est également particulierement remarquable. Ces données, tirées principalement
de rapports de maintenance ou de journaux opérationnels (logs), offrent une vue approfondie
des opérations des systemes et des incidents précédents. Elles sont uniques car elles contiennent
des détails nuancés provenant de I'expertise humaine, essentiels pour diagnostiquer les défauts.
Ces données textuelles relient diverses modalités, ajoutant du contexte et une interprétation aux
données numériques et visuelles. Toutefois, leur rareté représente un défi pour leur exploitation
optimale dans les analyses.

Bien ancrée dans le contexte tres appliqué de I'Industrie 4.0 et du projet "Maintenance Prévi-
sionnelle et Optimisation” de 'IRT SystemX, 'ambition de cette these va au-dela du développe-
ment de modeles pour des applications spécifiques et vise & répondre méthodologiquement aux
défis considérés. Le premier objectif concerne la nature dynamique et en temps réel des systemes
industriels, générant des flux de données continus avec des fréquences d’acquisition hétérogenes.
Le second objectif émerge du besoin de gérer la complexité d’intégration de données a structures
hétérogenes, en soulignant I'importance des interactions entre les caractéristiques de différentes
sources de données. Le troisi¢éme objectif se concentre sur I'exploitation de la richesse des données
textuelles, en particulier dans les rapports de maintenance. Ces documents encapsulent une infor-
mation contextuelle riche, mais leur rareté et le vocabulaire spécifique qu’ils contiennent rendent
leur traitement difficile.

Conformément aux défis précédemment définis, cette these présente deux contributions dis-
tinctes, chacune dédiée a un domaine de recherche spécifique : PApprentissage Multimodal et
Apprentissage avec peu de données (Few-Shot Learning) en TAL (Traitement Automatique du
Langage). Ceci définit également la structure de la these, divisée en deux parties principales.
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9.3 Résumé de la thése en Frangais

La premiére partie commence par un besoin pragmatique clairement défini dans le domaine in-
dustriel pour diagnostiquer des pannes dans des syst¢emes multimodaux complexes. Cette motiva-
tion concréte nous a orientés vers le développement d’un cadre théorique basé sur 'apprentissage
multimodal, intrinsequement motivé par la nature multimodale de notre environnement réel.
Dans le Chapitre 2, nous fournissons au lecteur les bases nécessaires pour motiver et comprendre
la premiere partie de cette these. Nous commengons par présenter les fondamentaux de la théorie
du diagnostic de pannes et nous passons en revue les stratégies existantes pour aborder ce prob-
leme, en nous concentrant sur les approches basées sur I'apprentissage et en explorant les rares
tentatives ayant pris en compte des données issues de modalités hétérogenes. Nous introduisons
ensuite le paradigme de 'apprentissage multimodal, avec un accent particulier sur la fusion multi-
modale. Del4, nous proposons un apergu des méthodologies développées, en commengant par les
travaux plus anciens reposant sur des stratégies de fusion simples comme la concaténation, et en
se concentrant davantage sur le niveau auquel réaliser la fusion. Nous soulignons ensuite les avan-
tages de construire des représentations de données expressives, qui sont principalement réalisables
grice aux architectures basées sur 'apprentissage profond, et la proximité entre la fusion multi-
modale et la représentation multimodale. Nous explorons donc les approches d’apprentissage de
représentation multimodale, qui sont aujourd’hui principalement basées sur I'architecture Trans-
former.

Dans le Chapitre 3, nous abordons les nouveaux défis posés par la complexité croissante des sys-
temes Industrie 4.0 et leur relation avec les tiches de détection et de diagnostic de pannes. Nous
explorons ces défis dans un environnement réaliste qui implique des flux de données multi-sources
provenant de diverses modalités, incluant des mesures de capteurs en séries temporelles, des images
de machines et des rapports de maintenance textuels. Ces flux multimodaux hétérogenes different
également dans leur fréquence d’acquisition, peuvent intégrer des informations temporellement
non alignées et peuvent étre arbitrairement longs, en fonction du systeme et de la tiche consid-
érés. Sappuyant sur le chapitre précédent, ol nous avons examiné les principales approches de
fusion multimodale, nous élargissons notre champ d’application i ce contexte. Nous considérons
des flux multimodaux arbitrairement longs conjointement avec des tiches associées, telles que la
prédiction dans le temps. Pour relever ce défi, nous proposons StreaMulT, un Transformer mul-
timodal. StreaMulT utilise un mécanisme d’attention cross-modale et une banque de mémoire
pour traiter des séquences d’entrée arbitrairement longues pendant I'entrainement et fonctionne
au fil de I'eau a I'inférence.

Le Chapitre 4 présente une discussion sur les diverses interactions multimodales. Nous com-
mengons par décomposer le contenu pertinent des données en tant qu’information redondante
et complémentaire. Par la suite, nous nous plongeons dans I'exploration des recherches axées sur la
maximisation de 'information redondante, principalement dans le cadre multi-vues, et les outils
utilisés dans ce domaine. La derniére section tente d*élargir ces approches pour incorporer la carac-
térisation de I'information complémentaire, et formule des critiques 4 la fois sur les méthodologies
existantes et sur le manque de reperes dévaluation. Cette analyse offre une compréhension exhaus-
tive des défis actuels et des pistes potentielles dans le domaine de 'apprentissage multimodal.

La deuxieme partie de la these se concentre sur 'exploitation de données textuelles rares et spéci-

fiques dans un contexte réaliste. Elle débute avec le Chapitre S, qui offre un apergu des méthodolo-
gies de Traitement Automatique du Langage (TAL), jusqu’au développement des récents grands
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9 Appendix

modeles dits "fondateurs”, puis se tourne vers 'apprentissage a partir de peu d’exemples (Few-shot
learning), une stratégie pour apprendre a partir de données étiquetées limitées, avant de conclure
par une discussion sur I'application du FSL au TAL. La premiere section de ce chapitre décrit la
progression de la recherche en TAL pour comprendre le langage humain. Celainclutles premieres
méthodes basées sur des regles établies ou sur de 'ingénierie des caractéristiques (feature engineer-
ing), I'utilisation des plongements de mots pour créer des représentations distribuées et significa-
tives, et le développement de diverses architectures pour des modeles de langage efficaces. Nous
étudions ensuite l'approche dominante pour traiter les tiches du TAL, qui implique de grands
modeles de langage basés sur des transformateurs pré-entrainés et leur évolution ultérieure vers
la création de modeles centraux polyvalents capables de gérer une gamme variée de tiches, mal-
gré leurs natures distinctes. Enfin, nous explorons le domaine de 'apprentissage a partir de peu
d’exemples, en examinant ses principales techniques et son intersection avec les paradigmes actuels
du TAL, tout en mettant en lumiere les derniers progres et défis de ce domaine de recherche.
Dans le Chapitre 6, nous explorons le potentiel des méthodes transductives pour la classifica-
tion textuelle dans le contexte de 'apprentissage a partir de peu d’exemples, dans le but de pallier
les limites des méthodes actuelles de FSL en TAL, notamment les efforts d’ingénierie nécessaires
pour des tiches de classification réaliste avec un grand nombre de classes. Nous discutons d’abord
des limites des méthodes actuelles de FSL, telles que les stratégies basées sur des prompts ou de
apprentissage en contexte. Puis, nous explorons I'application des approches transductives - qui
ont montré des résultats prometteurs en vision par ordinateur - 2 la classification en TAL. Enfin,
nous évaluons la performance des régularisateurs transductifs traditionnels par rapport aux tech-
niques inductives sur des tiches de classification textuelle avec peu d’exemples et étudions 'impact
de différents facteurs, tels que le nombre de parametres du modele principal et les stratégies de fine-
tuning, sur la performance des méthodes transductives. Les résultats indiquent que les méthodes
transductives ont du mal 4 surpasser le fine-tuning inductif basé sur la cross-entropie lorsqu’il y a
une certaine flexibilité dans les parametres de I'extracteur de caractéristiques pré-entrainé. Cepen-
dant, en fixant tous les parametres de l'extracteur de caractéristiques, 'approche transductive ri-
valise finalement avec I'approche inductive.

Enfin, dans le Chapitre 7 nous abordons la prévalence croissante des API propriétaires et fermées
pour les grands modeles de langage tels que GPT-4 et ChatGPT, qui ont des implications signi-
ficatives pour les applications pratiques du TAL, y compris la classification avec peu d’exemples.
La classification avec peu d’exemples implique de former un modele pour exécuter une nouvelle
tiche de classification avec un minimum de données étiquetées. Notre investigation présente trois
contributions clés. Premiérement, nous introduisons une situation dans laquelle un modele pré-
entrainé est accessible via une API protégée, en tenant compte des contraintes de cotit de calcul et
de confidentialité des données. Deuxi¢émement, nous approfondissons I'application de 'inférence
transductive, un paradigme d’apprentissage qui a été relativement peu exploré au sein de la com-
munauté du TAL. Contrairement a 'apprentissage inductif traditionnel, I'inférence transductive
tire parti des statistiques des données non étiquetées. Dans ce contexte, nous introduisons égale-
ment un nouveau régularisateur transductif sans parametre basé sur la perte de Fisher-Rao, dé-
montrant son applicabilité et son efficacité dans le cadre de I'incorporation via une API protégée.
Cette approche exploite pleinement les données non étiquetées, évite de partager toute informa-
tion d¢tiquette avec les fournisseurs d’API tiers et pourrait servir de référence pour les recherches
futures. Enfin, nous proposons un cadre expérimental amélioré et compilons un benchmark de
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huitensembles de données englobantla classification multi-classes dans quatre langues différentes,
avec jusqu’a 151 classes. Nous évaluons nos méthodes a I'aide de huit modeles principaux et d’une
évaluation épisodique sur 1 000 épisodes, qui démontrent la supériorité de 'inférence transduc-
tive par rapport au cadre inductif standard.
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NOTATIONS
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Card(A)

Random variable

Random vector or multivariate random variable
Random variable modeling the modality @ of the random vector
Restriction of random variable Y to set ()
Realization of a random variable

Realization of a random vector

Modality o of the 7™ realization (sample) of random variable X
Probability of X

Probability distribution of X

Expectation of X ~ p

Input space

Associated definition space of the modality o
Representation space

Cardinality of the set A

Label space

Model parameters

Parameters spaces

Vocabulary

Vocabulary Kleene closure

Support and Query sets

Number of support and query shots

Number of ways

Logical AND

Logical OR
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Acronyms

ACRONYMS
Al Artificial Intelligence
AM-TRF  Augmented-memory Transformer (C. Wu et al. 2020)
API Application Programming Interface
ASR Automatic Speech Recognition
BitFit Blas-Term FIne-Tuning
BoW Bag of Words
CBoW Continuous Bag of Words
CE Cross Entropy
CLM Conditional Language Modeling
CNN Convolutional Neural Network
CRF Conditional Random Fields
CT Computerized Tomography
DL Deep Learning
ERM Empirical Risk Minimization
ERR Error Reduction Rate
FFN Feed Forward Network
FSL Few-Shot Learning

GAN Generative Adversarial Network
GRU Gated Recurrent Unit
HMM Hidden Markov Model

ICL In-Context Learning

IoT Internet of Things

LLM Large Language Model

LM Language Modeling

LN Layer Normalization

LSA Latent Semantic Analysis

LSTM Long Short-Term Memory

MAE Mean Absolute Error

MI Mutual Information

ML Machine Learning

MLE Maximum Likelihood Estimation
MLM Masked Language Modelling
MLP Multi-Layer Perceptron

MSE Mean Squared Error

MulT Multimodal Transformer (Tsai et al. 2019)
NER Named Entity Recognition

NLP Natural Language Processing
PGM Probabilistic Graphical Models
PLM Pretrained Language Models
PMI Pointwise Mutual Information
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POS
PPMI
RLHF
RNN
RUL
SCADA
SCT
SMT
SOTA
SVD
TF-IDF
VAE
ViT

Acronyms

Part-Of-Speech

Positive Pointwise Mutual Information
Reinforcement Learning from Human Feedback
Recurrent Neural Network

Remaining Useful Life

Supervisory Control And Data Acquisition
Streaming Crossmodal Transformer
Simultaneous Machine Translation
State-Of-The-Art

Singular Value Decomposition

Term Frequency-Inverse Document Frequency
Variational AutoEncoder

Visual Transformer
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