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RÉSUMÉ EN FRANÇAIS

Au cours des dernières années, il y a eu une volonté croissante parmi les consom-
mateurs de vivre des expériences immersives et réalistes dans diverses applications, y
compris les films, les vidéoconférences, la réalité virtuelle et augmentée, et les jeux vidéo.
Cette demande croissante signifie un marché commercial substantiel avec des perspectives
d’investissement prometteuses, capturant l’attention à la fois de l’industrie et du monde
académique.

La synthèse de points de vue novateurs a été l’un des domaines de recherche les plus
populaires, montrant un grand potentiel dans diverses applications de graphiques et de
vision par ordinateur. Parmi les algorithmes de synthèse de points de vue novateurs, le
rendu neuronal exploite la puissance des réseaux neuronaux pour générer de nouvelles
perspectives visuellement réalistes, présentant de nouvelles possibilités pour une synthèse
d’image contrôlée et photoréaliste tout en évitant la nécessité d’une adhérence stricte aux
paramètres physiques. En utilisant des méthodes d’apprentissage profond et en exploitant
d’importants ensembles de données d’observations visuelles préexistantes, le rendu neu-
ronal montre la capacité de gérer des scènes complexes et de produire des résultats visuels
réalistes. Une illustration marquante de cette approche est les Champs de Radiance Neu-
ronaux (NeRF), qui déploient un perceptron multicouche (MLP) pour approximer les
champs de radiance et de densité au sein d’une scène 3D. En acquérant cette représen-
tation volumétrique, NeRF facilite le rendu de scènes à partir de divers points de vue de
caméras virtuelles grâce à des techniques de rendu analytiquement différentiables, telles
que l’intégration volumétrique.

Néanmoins, le modèle NeRF original implique des réseaux neuronaux complexes, des
algorithmes intensifs en calcul, et une demande pour un grand nombre d’images métic-
uleusement calibrées, entraînant des exigences élevées en mémoire computationnelle et des
temps de formation prolongés. Par exemple, le NeRF conventionnel nécessite généralement
environ dix heures pour la formation d’une seule scène, limitant ainsi sa viabilité pratique
dans les applications réelles. De plus, une baisse notable de la qualité des points de vue
novateurs synthétisés devient évidente à mesure que le nombre de vues d’entrée diminue.

Parmi ces défis, la capacité à générer de nouveaux points de vue à partir de données
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d’entrée clairsemées est d’une importance primordiale, non seulement pour les champs
de radiance neuronaux, mais aussi pour d’autres scénarios et applications, tels que les
réseaux de champs lumineux ou le rendu de plusieurs sujets humains. En particulier, la
tâche de synthétiser de nouveaux points de vue pour plusieurs sujets humains présente un
défi significatif, surtout lorsqu’il s’agit de traiter des problèmes liés aux occlusions, aux
détails complexes et aux poses humaines compliquées. La synthèse de nouveaux points de
vue pour des scénarios multi-humains à partir d’entrées clairsemées introduit un objectif
encore plus redoutable mais très prometteur, capable de fournir des expériences immer-
sives et interactives. Surmonter ces défis permettrait non seulement de faire progresser
le domaine de la synthèse de nouveaux points de vue (y compris les champs de radiance
neuronaux et les réseaux de champs lumineux) mais aussi d’ouvrir une multitude de pos-
sibilités passionnantes dans les applications réelles, couvrant la réalité virtuelle, la réalité
augmentée, la robotique, la création de contenu, et divers autres domaines où la capacité
de synthèse d’images réalistes est d’une importance primordiale.

Contributions de cette thèse

Notre thèse s’est concentrée sur un sujet important concernant la synthèse de points de
vue novateurs à partir d’entrées clairsemées. Plus précisément, nous étudions et proposons
des solutions pour trois techniques importantes en matière de synthèse de points de vue
novateurs à partir d’entrées clairsemées : les champs de radiance neuronaux avec peu
d’exemples et la synthèse de points de vue novateurs, les réseaux de champs lumineux
avec peu d’exemples et la synthèse de points de vue novateurs, la reconstruction multi-
humaine et la synthèse de points de vue novateurs. Nous introduisons chacune de ces
méthodes.

Champ de radiance neuronal à partir d’entrées clairsemées:Nous avons exploré
les champs de radiance neuronaux souffrant d’une dégradation de la qualité à partir de
vues clairsemées. Nous avons présenté une nouvelle approche pour améliorer le champ de
radiance neuronal (NeRF) à partir d’entrées clairsemées pour relever ce défi. Nos méth-
odes proposées comprennent une stratégie d’échantillonnage global, une régularisation
géométrique utilisant des pseudo-vues augmentées, et un schéma d’échantillonnage local
par patch avec une régularisation basée sur des patchs. Nous avons introduit l’utilisation
d’informations de profondeur pour une régularisation géométrique explicite. L’approche
proposée a surpassé plusieurs références sur des benchmarks réels et a obtenu des résul-
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tats à la pointe de la technologie. Cependant, l’une des limitations est qu’elle nécessite
des informations de profondeur précises à partir de vues clairsemées. Dans cette thèse,
nous avons choisi d’utiliser la profondeur du capteur à partir de l’ensemble de données,
tandis que des études futures pourraient explorer comment utiliser la profondeur estimée
à partir du réseau. De plus, les recherches futures pourraient incorporer l’amélioration du
champ de radiance neuronal et la reconstruction de surface implicite à partir d’entrées
RGBD clairsemées.

Champ lumineux neuronal à partir d’entrées clairsemées: Nous avons pro-
posé une nouvelle approche basée sur une représentation neuronale de champ lumineux
pour une synthèse de points de vue novateurs avec peu d’exemples. Notre méthode pro-
posée utilise un réseau neuronal implicite conditionné sur des caractéristiques locales de
rayon générées à partir d’un rendu volumétrique grossier. Nous avons exploré différentes
architectures de réseaux neuronaux convolutionnels. Avec l’échantillonnage basé sur la
profondeur et le réseau MVS, nos méthodes peuvent généraliser l’apparence réaliste à
travers les scènes. La méthode proposée offre des performances compétitives sur différents
ensembles de données et offre une vitesse de rendu bien plus rapide. Les méthodes pro-
posées nous permettent de bien généraliser vers de nouveaux points de vue de scènes
vues et non vues à partir de quelques entrées. Parallèlement, notre approche réduit con-
sidérablement le coût computationnel du rendu tout en maintenant l’apprentissage de
relations complexes. Bien que notre méthode offre un rendu efficace, elle éprouve encore
des difficultés à reproduire le plus haut niveau de détails dans de grandes images réelles
comme le font les méthodes basées sur NeRF. Cela est dû à la résolution réduite de notre
volume de caractéristiques et à notre rendu grossier de caractéristiques, ce qui contribue
à réduire la mémoire.

Rendu de forme 3D et de radiance de multi-humains à partir d’entrées
clairsemées: Nous avons proposé une méthode basée sur l’apprentissage pour générer
plusieurs humains à partir d’images clairsemées. Notre approche a abordé les défis de
l’occlusion et du désordre dans les scènes multi-humaines en incorporant des contraintes
géométriques à l’aide de maillages pré-calculés, une régularisation de rayon basée sur
des patchs pour la cohérence de l’apparence, et une régularisation de saturation pour
une optimisation robuste. Des expériences approfondies sur des données réelles et syn-
thétiques ont démontré les avantages de notre méthode et ses performances de pointe
par rapport aux méthodes existantes de reconstruction neuronale sur des ensembles de
données multi-humains réels (CMU Panoptic [1], [2]) et sur des données synthétiques
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(MultiHuman-Dataset [3]). Notre approche présente encore plusieurs limites. Première-
ment, nous nous appuyons sur des ajustements SMPL, qui ne sont parfois précis que dans
certains cas, en particulier pour des scènes avec de nombreux humains. Une solution pos-
sible est d’améliorer les reconstructions SMPL tout en formant les réseaux de géométrie
et d’apparence. Deuxièmement, notre méthode ne modélise pas les interactions humaines
proches, car il s’agit d’un cas bien plus difficile.

Notre thèse a centré son attention sur un sujet pivot, à savoir, la synthèse de points
de vue novateurs à partir d’entrées clairsemées. Étant donné les exigences inhérentes en
données de la plupart des algorithmes de synthèse de points de vue novateurs pour une for-
mation précise, notre recherche s’efforce de concevoir un algorithme capable d’apprendre
habilement à partir de données limitées ou clairsemées. Notre exploration englobe des
algorithmes de premier plan, y compris les champs de radiance neuronaux, les réseaux
de champs lumineux, et le rendu et la reconstruction multi-humains. Dans chacun de ces
domaines, nous avons introduit des solutions innovantes visant à améliorer la performance
des algorithmes de synthèse de points de vue novateurs lorsqu’ils sont confrontés à des
vues d’entrée clairsemées. Notre aspiration est que ce travail serve à étendre les frontières
de la connaissance et offre des orientations précieuses aux chercheurs qui se lancent dans
de futures avancées dans ce domaine de recherche dynamique.

Les limites et les défis

Malgré ces contributions, plusieurs limites existent dans notre travail. Cependant, de
nombreuses voies prometteuses existent pour relever ces défis et pour faire progresser et
améliorer les découvertes et méthodologies articulées dans cette thèse.

Notre approche introduit des techniques de régularisation pour les champs de radi-
ance neuronaux, mettant l’accent sur la régularisation de la profondeur et la déformation
basée sur l’image. Pour améliorer davantage les champs de radiance neuronaux à partir
d’entrées limitées, une exploration des modalités supplémentaires, comme les normales de
surface, l’intégration d’informations temporelles pour la synthèse basée sur la vidéo, ou
l’adoption de méthodes d’apprentissage non supervisées ou auto-supervisées pour atténuer
la dépendance aux données étiquetées, est justifiée. La dépendance à une information de
profondeur précise est une limitation ; donc, les travaux futurs peuvent se pencher sur
la substitution de la profondeur dérivée du capteur par une profondeur monculaire es-
timée via des réseaux neuronaux ou en exploitant l’information de profondeur à travers
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des techniques de structure à partir du mouvement. De telles améliorations pourraient
notablement élever la qualité des surfaces estimées et des apparences rendues.

De plus, notre méthode dans ce chapitre utilise des coordonnées plus robustes et condi-
tionne les représentations de rayons à l’aide de volumes de caractéristiques extraits. Pour
renforcer la qualité du rendu, les efforts futurs devraient explorer l’utilisation de tech-
niques de conditionnement avancées. Par exemple, l’incorporation de modèles d’attention
ou de diffusion dans le processus d’extraction du volume de caractéristiques a le potentiel
d’améliorer les résultats. Les modèles d’attention facilitent l’apprentissage par le réseau
d’informations plus pertinentes, capturant des détails complexes et améliorant finalement
la qualité du rendu. Pendant ce temps, les modèles de diffusion permettent le transfert
efficace d’informations à travers différentes régions, permettant au réseau de mieux com-
prendre et modéliser les relations complexes au sein de la scène. De plus, l’utilisation de
modèles pré-entraînés avancés sur d’importants ensembles de données peut aider le réseau
à capturer des détails de scène complexes, conduisant à des rendus de meilleure qualité.

De plus, notre méthodologie pour le rendu de scénarios multi-humains, impliquant
l’utilisation de SMPL à partir d’entrées clairsemées, ouvre des possibilités pour une généra-
tion de scène plus complexe. Bien qu’une limitation soit l’accent mis sur les scènes sta-
tiques, les travaux futurs devraient étudier des méthodes pour améliorer les résultats de
rendu vidéo en considérant l’information temporelle. Il est possible d’étendre l’approche
proposée au rendu multi-humain à partir de vidéos monculaires ou de vidéos multi-vues,
permettant la synthèse de scènes multi-humaines dynamiques. De plus, relever les défis
associés à divers objets, à des arrière-plans variés et à des conditions d’éclairage difficiles
dans des scènes complexes présente une direction intrigante pour une exploration plus
approfondie.

En conclusion, la montée en puissance de la synthèse de points de vue novateurs dans
divers domaines souligne son importance. Cette thèse a apporté d’importantes contribu-
tions pour relever les défis de la synthèse de points de vue novateurs à partir d’entrées
limitées. Les avancées dans ces domaines faciliteront une adoption plus large et une ap-
plication pratique des technologies de synthèse de points de vue novateurs à travers di-
verses industries et disciplines académiques. Les travaux et perspectives futurs énoncés
ci-dessus sont prêts à repousser encore plus les limites, favorisant le progrès dans ce do-
maine de recherche passionnant et bénéficiant à la communauté élargie travaillant dans
des domaines connexes, tels que la réalité virtuelle, la réalité augmentée et les graphiques
informatiques.
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Chapter 1

INTRODUCTION

1.1 Context
In recent years, there has been a growing desire among consumers for immersive and

realistic experiences in various applications, including movies, video conferences, virtual
and augmented reality, and video games. This increasing demand signifies a substantial
commercial market with promising investment prospects, capturing the attention of both
industry and academia.

Classic view synthesis is widely used in computer graphics and computer vision to
simulate the appearance of a scene or object from different viewpoints or under different
conditions. However, it requires the explicit input of all physical parameters associated
with the scene, including camera parameters, illumination conditions, and material prop-
erties of the objects. When generating controllable imagery of real-world scenes, classic
view synthesis methods face significant challenges due to the lack of explicit physical
parameters. The absence of complete physical parameter information constrains the de-
velopment of many practical applications, such as real scene editing, augmented reality
(AR), and virtual reality (VR).

In contrast, neural rendering utilizes neural networks to synthesize visually realistic
novel views, which offers new possibilities for controllable and photo-realistic image syn-
thesis alleviating the requirements of all physical parameters. By leveraging deep learning
techniques and learning from large datasets of existing observations, neural rendering
could handle complex scenes and produce realistic appearances. A prominent example of
such techniques is Neural Radiance Fields (NeRF) [4]. NeRF employs a multi-layer per-
ceptron (MLP) to approximate the radiance and density fields of a 3D scene. By learning
this volumetric representation, NeRF enables the rendering of the scene from any virtual
camera viewpoint using analytic differentiable rendering techniques, such as volumetric
integration.

However, original NeRF involves complex neural networks, computationally algo-
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rithms, and hundreds of calibrated images, which costs high computational memory and
a long time for training. For instance, original NeRF usually takes ten hours to learn
one scene, constraining the development of real-world applications. Moreover, the quality
of synthesized novel view drops dramatically with the decrease of input views’ number.
Among those challenges, generating novel views from sparse inputs is not only crucial for
neural radiance fields but also important in other novel view synthesis scenarios or ap-
plications such as light field networks or multiple humans rendering. Specifically, though
multiple humans rendering brings many universal and significant applications, novel view
synthesis of multiple humans remains a challenging task, especially in handling occlusions,
fine details, and complex human poses. Synthesizing novel views of multi-humans from
sparse inputs becomes an even more challenging but potential task for providing immer-
sive and interactive experiences. Addressing these challenges would not only advance the
field of novel view synthesis (e.g. neural radiance fields, light field network, etc.) but also
unlock a range of exciting possibilities in real-world applications, such as virtual reality,
augmented reality, robotics, content creation, and other domains where realistic image
synthesis is crucial.

Synthesizing novel views from a limited number of input images holds great signifi-
cance and offers numerous practical applications across various fields. Examining these
algorithms and their application contributes to the advancement of novel view synthe-
sis techniques and their practical use in various fields. The potential impact of these
approaches extends beyond academic research, as they hold promise for transforming
industries and enhancing immersive experiences.

1.2 Motivation and goals

Novel view synthesis from sparse inputs is a crucial area of research in computer
vision and computer graphics with various potential practical applications. It involves
generating new viewpoints of a scene or object from a limited number of input images,
typically fewer than ten [5]. This task presents several challenges due to the limited
availability of input data, such as inconsistent geometry representation, degradation of
rendering quality, etc. This thesis focuses on addressing these challenges associated with
view synthesis algorithms when trained on sparse inputs. Specifically, we investigate and
propose solutions for three important techniques regarding synthesizing novel views from
sparse inputs: neural radiance fields, light field networks, and novel view synthesis for
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multi-humans.

Figure 1.1 – Neural Radiance Fields (NeRFs) optimize a continuous 5D neural radiance
field representation (volume density and view-dependent color at any continuous location)
of a scene from a set of input images. It achieves impressive photo-realistic view synthesis
results when trained on dense input images [4]. Image is taken from NeRF [4].

Recently, Neural Radiance Fields (NeRF) stands up as one of the most popular novel
view synthesis algorithms [4]. NeRF optimizes a continuous 5D neural radiance field rep-
resentation (volume density and view-dependent color at any continuous location) of a
scene from a set of input images, e.g. 100 images. It achieves photo-realistic renderings
when given dense inputs (see Figure 1.1), while its performance drops dramatically with
the decrease of training views. We observe that the original NeRF is prone to over-fitting
inputs rapidly at the beginning of training and lacks geometry regularization due to the
scarcity of training views, usually resulting in rendering quality degradation. To address
those challenges, we have chosen to explore classic image-based rendering and depth-based
rendering algorithms, such as the image-warping technique. On the one hand, novel views
generated by image warping can serve as pseudo truth and alleviate the over-fitting of
NeRF’s training. On the other hand, the powerful 3D scene representation capability of
NeRF assists to remove artifacts in the warped images and render photo-realistic novel
views. In addition, we propose to utilize sensor depth as explicit geometry regularization,
so as to improve the synthesized quality of novel views. The combination of the classic
rendering algorithm with NeRF together with the utilization of depth information helps
to improve the rendered novel views’ quality in NeRF when the training views are limited.

Light field network is another ongoing and representative algorithm for novel view syn-
thesis. Recent method [6] leverages an implicit neural network to map each ray directly
to its target pixel’s color based on a given target camera pose. This light field represen-
tation facilitates faster rendering speed compared to volumetric rendering methods (e.g.
NeRF), while the light field network still suffers from several challenges: rendering qual-
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ity degradation from sparse inputs, limited generation capability across scenes, etc. Our
work addresses those challenges and explores how to enhance the light field network’s
generation ability, including from limited input views and across scenes. We propose to
utilize convolutional networks to extract feature volumes and condition the light field
network with extracted local ray features. On one side, the convolutional network aids
in inferring the implicit scene geometry of both unseen scenes as well as unseen views,
enabling the light field network generalizable across scenes. On the other side, the light
field network also enhances the quality of rendered novel view, effectively addressing the
issue of blurriness commonly associated with convolutional networks.

The challenges of novel view synthesis become more pronounced when dealing with
complex scenes, such as those involving multiple human shapes and radiance generations.
These challenges mainly come from the complexity and variability of multiple humans’
appearances, poses, occlusions, and interactions. Limited training views further exacer-
bate these difficulties due to insufficient geometry and appearance information available.
Our key insight is that human-specific geometric constraints can be leveraged to tackle the
challenging sparse-view setting. We propose to utilize the Skinned Multi-Person Linear
Model (SMPL), a human body model, as a geometry prior and explicit geometry regu-
larization. To further enhance the rendering quality when training views are sparse, we
propose a patch-based regularization technique. This regularization ensures consistency
across different rays, allowing for improved synthesis of novel views. By incorporating
these strategies, our approach aims to overcome the challenges posed by complex scenes,
limited training views, and the need for accurate geometry and appearance information
in novel view synthesis tasks involving multiple human subjects.

In summary, our main goal is to enhance various algorithms regarding novel view
synthesis from a limited number of input images. We have focused on the current most
popular novel view synthesis algorithms. There are some common difficulties in those novel
view synthesis techniques when given sparse inputs. For instance, the scarcity of input
data will lead to the over-fitting of training and inconsistency in geometry estimation.
Our proposed algorithms not only address those general challenges but also could serve as
sub-modules within larger systems to tackle broader problems related to different novel
view techniques, such as neural radiance fields and light field networks. By utilizing these
algorithms as standalone solutions or as part of larger systems, we can effectively address
the challenges and improve novel view synthesis from sparse inputs. In addition, our
methods strive to develop algorithms that can adapt to different types of data, including
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both synthetic and real-world data with varying baseline ranges, including light field
data, multi-human data etc. Furthermore, the ability of our methods to learn from sparse
inputs brings additional advantages in terms of data transportation, memory usage, and
computational complexity, making it well-suited for industrial and real-world applications,
where versatility and efficiency are key considerations.

1.3 Thesis structure and contributions

The dissertation is organized in the following manner:
In Chapter 1, we first present context, motivations, and goals in this chapter.
Chapter 2 provides a comprehensive overview of novel view synthesis. The initial

part presents the state of the art of existing approaches and the associated challenges in
generating novel views. It specifically highlights recent representative approaches such as
neural radiance fields and light field networks. The subsequent section focuses on state-
of-the-art methods for generating novel views of both single-human and multi-human.

Chapter 3 introduces our work of improving neural radiance fields (NeRF) from
sparse inputs. We propose a global sampling strategy together with a geometry regu-
larization utilizing warped images as augmented pseudo-views to encourage geometry
consistency across multi-views. In addition, a local patch sampling scheme with a patch-
based regularization is introduced to guarantee appearance consistency. Furthermore, our
method exploits depth information for explicit geometry regularization and faster train-
ing. Our approach outperforms existing baselines on real benchmarks from sparse inputs
and achieves the state of the art performance.

Chapter 4 proposes a novel approach for few-shot novel view synthesis based on a
light field representation. Our method leverages an implicit neural network to map each
ray directly to its target pixel’s color based on a given target camera pose. We propose
to condition the network with local ray features generated by coarse volumetric rendering
from an explicit feature volume through convolutional neural networks. Our proposed
conditioning scheme enables us to generalize well to novel views of both seen and unseen
scenes from sparse inputs. Our approach achieves competitive performance across different
datasets and offers a much faster rendering speed than those baselines.

Chapiter 5 presents a learning-based method for reconstructing multiple humans
from sparse images including the following contributions: First, we propose to use geom-
etry constraints by exploiting pre-computed meshes using a human body model (SMPL).
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Specifically, we regularize the signed distances using the SMPL mesh and leverage bound-
ing boxes for improved rendering. Second, we propose a patch-based ray regularization to
minimize rendering inconsistencies and a saturation regularization for robust illumination
conditions. Extensive experiments on both real and synthetic datasets demonstrate the
benefits of our approach and show state-of-the-art performance against existing neural
reconstruction methods.

In the Chapiter 6, we conclude our thesis by summarizing our contributions and
discussing the future perspectives of our work.
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Chapter 2

BACKGROUND

2.1 Novel view synthesis: definition and development
Novel view synthesis refers to generating images or views of a scene from unseen or

unobserved viewpoints, as shown in Figure 2.1. It has gained significant attention from
the computer vision and graphics communities, leading to numerous advancements and
applications [7].

Previous classic novel view synthesis techniques have explored diverse representations
such as multi-plane images [8], depth-layered images [9], light fields [10], and depth-based
warping [11], and so on. Those works usually use geometric modeling, optimization, and
image warping to generate novel views.

Figure 2.1 – Example of novel view synthesis [5]. It refers to generating new views of a
scene or object from a limited set of input views or data. This task has applications in
virtual reality, augmented reality, 3D content creation, and computer graphics. Image is
taken from [5].

For instance, depth-based methods aim to estimate the depth information of a scene
or object to synthesize novel views [12], [13]. Techniques like stereo matching, structure
from motion, or depth from focus/defocus can be employed to recover depth maps. These
depth maps are then used in the rendering process to generate novel viewpoints. Image-
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based rendering approaches [14] leverage the available views to synthesize novel views
by warping and blending the existing images. These techniques typically rely on the
assumption of image consistency and use algorithms like texture mapping, morphing,
and image-based modeling. They can be effective in generating new views by leveraging
existing information. Multi-view stereo techniques aim to reconstruct the 3D geometry
of the scene or object from multiple views [15]. Once the 3D geometry is obtained, novel
views can be generated by rendering the scene from different viewpoints. MVS techniques
often involve depth map estimation, surface reconstruction, and rendering algorithms to
synthesize new views [16]. These techniques formed the foundation for subsequent research
in novel view synthesis and provided valuable insights into the field.

While those traditional approaches have contributed significantly to novel view synthe-
sis, they often had limitations in handling complex scenes, occlusions, and large disparities
between views. They heavily relied on accurate depth estimation and geometric modeling,
which could be challenging in certain scenarios. However, recent advances in deep learning
have led to the development of more sophisticated and data-driven methods.

In recent years, deep learning-based approaches have shown promising results in gener-
ating high-quality novel views, which include convolutional neural networks (CNNs [17]),
generative adversarial networks (GANs [18]), and variational autoencoders (VAEs [19]).
In the early stages of deep learning-based novel view synthesis, 2D convolutional encoder-
decoder architectures were commonly employed. These architectures aimed to map the
sparse input to the target image while conditioning on the desired view. Some methods
directly predicted colors [20], [21], while others predicted 2D flow fields [22]–[24] that
were subsequently applied to the input. However, these approaches were outperformed by
3D-aware convolutional methods. These 3D-aware convolutional approaches utilized tech-
niques such as volumetric rendering [25], rasterization [26], or learnable neural rendering
[27], [28] to encode and render explicit 3D latent. These latents took the form of intrinsic
scene representations [26], [29], [30] or extrinsic volume grids [25], [27], [28]. Later works
[31] learn complex mappings between input views and target views, capturing intricate
scene details and handling challenging scenarios more effectively. Although many of these
methods could learn to generate 360-degree views from very sparse inputs, especially for
synthetic central object data, most of them could not scale to high-resolution images,
complex scenes, and real data such as multi-view stereo datasets (DTU [32]). Some also
require foreground segmentation masks at training (e.g. [27]).

More recently, there has been a recent surge of interest in implicit neural shape and
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Figure 2.2 – Example of transformable bottleneck networks [27]. It consists of three main
parts: an encoder, a resampling layer, and a decoder. The encoder includes 2D convolu-
tional layers, reshaping operations, and 3D convolutional layers. The decoder is a mirror
image of the encoder architecture. Image is taken from the transformable bottleneck net-
works [27].

appearance representations, exemplified by works like Neural Radiance Field (NeRF [4]),
Scene Representation Networks [33], Neus [34], Neural Stages [35], SHARP [36], and
NerfingMVS [37]. Additionally, neural rendering techniques such as Free View Synthesis
[38], Stable View Synthesis [39], Deferred Neural Rendering [40], and Neural Volumes
[41] have gained attention. Among those works, implicit neural radiance fields (NeRF [4])
stand up as a powerful representation for novel view synthesis and demonstrate photo-
realistic renderings. In addition, light Field Networks (LFNs [6]) are ongoing research
topics designed to process and leverage light fields and have shown promising results
in exploiting the additional information available in light field data for various computer
vision tasks. Our work includes investigating and exploring these two recent representative
approaches for novel view synthesis, including neural radiance fields and neural light fields.
Except for object rendering, we also explore human rendering and reconstruction methods.
The following section highlights these two types of research.

2.2 Novel view synthesis: state of the art

2.2.1 Neural radiance field

The neural radiance fields (NeRF [4]) technique represents a scene as a continuous 5D
function that maps spatial coordinates to radiance values. It has demonstrated remarkable
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success in generating realistic novel views of scenes, even for intricate and highly detailed
scenes. The NeRF network comprises a multi-layer perceptron (MLP) that maps spatial
points to volume density and view-dependent colors (Figure 2.3 [4]). Images are rendered
using hierarchical volumetric rendering. However, NeRF suffers from several limitations,
including high computational and rendering time complexity, the requirement for dense
training views, limited generalization capability across scenes, and the need for test-time
optimization. In recent research, various approaches have targeted these challenges in-
dividually or jointly. The goals in those works include but are not limited to improving
rendering speed, enhancing rendering quality from sparse views, and extending the gener-
alization ability across different scenes or datasets. This section introduces recent research
efforts in addressing these challenges.

Figure 2.3 – Scene representation and differentiable rendering procedure in neural radiance
field [4]. Image is taken from NeRF [4].

Fast neural radiance field The original neural radiance field (NeRF) [4] requires a
significant amount of training time (hours or even days) to achieve photo-realistic ren-
dering results. Extensive research has been conducted to explore different approaches for
improving the efficiency of training and rendering speed while maintaining high-quality
results [42]–[47].

Among those methods, Yu et al. [42] predict radiance spherical harmonic coefficients
instead of density and continue to improve the efficiency leveraging plenoxels [48], allevi-
ating NeRFs’ rendering complexity by learning view independent radiance features. More
recently, instant NGP utilizes hash encoding, and TensoRF adopts tensor decomposition;
both achieve significant improvements in real-time training and rendering. Though those
related works improve NeRF’s training and inference speed more or less, most of them [43],
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[48], [49] still focus on the single scene representing and require a dense well-calibrated
view for training, ignoring the generalization ability across scenes. Sitzmann et al. [6]
recently introduced a new implicit representation for modeling multi-view appearance. A
neural light field function maps rays i.e. target pixels directly to their colors without any
need for physical rendering. However, the method uses a hypernetwork for conditioning,
making it expensive to scale to bigger images in computing and memory. This method
was not demonstrated on real-world datasets (e.g. DTU [32], LLFF [10]). It was imple-
mented in the auto-decoding setup, which means it requires test time optimization. We
take an insight into light field networks [6] and explore strengthening light field networks’
generalization ability across real-world data, especially on sparse setups.

Neural radiance field from sparse inputs The original NeRF demonstrated a photo-
realistic rendering capability by representing a scene as a neural radiance field, while at
the expense of well-calibrated dense views for training. The rendering quality of vanilla
NeRF [4] drops significantly with fewer inputs due to the lack of geometry regularization.
Current research works are trying to solve this issue (e.g. [42], [49]–[59]) in different ways,
e.g. utilizing image encoder [50], [55], [56], additional depth information [51], [59], different
regularization [52], [53], and so on.

Specifically, regularization-based methods adopt additional supervision on unobserved
viewpoints to improve the generation capability of NeRF, particularly in sparse setups.
These methods introduce extra supervision using various techniques, such as utilizing
features extracted from a pre-trained visual encoder like CLIP-ViT [50], incorporating
rendered depth or density from sampled patches [52], [53], and so on. These regularization
techniques enhance NeRF’s ability to generate novel views from sparse inputs, but they
often ignore training efficiency and computational complexity.

Depth-based methods [51], [59], [60] highlight the significance of depth information
in achieving faster rendering and higher rendering quality. However, these methods pri-
marily focus on per-scene fine-tuning, limiting their generalization ability across different
scenes. Several approaches propose augmenting NeRF with 2D [56], [61], [62] and 3D con-
volutional features [55] extracted from input images. By incorporating encoded features,
these methods offer forward-pass prediction models that eliminate the need for test-time
optimization and enable generalization across scenes. However, they still rely on evaluat-
ing hundreds of 3D query points per ray during inference, similar to NeRF, resulting in
slow rendering speeds. In this thesis, we investigate and propose solutions to improve the
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neural radiance fields from sparse inputs.

NeRF PixelNeRF MVSNeRF LFN
Scene prior % " " "

Features % 2D 3D HyperNet
Generalization % " " "

Speedup % % % "

Real-world scene " " " %
Coordinate Point + direction Point + direction Point + direction Ray

Table 2.1 – Neural radiance fields (NeRFs [4]) map a 5D coordinate to its’ corresponding
radiance and composites the color via volumetric rendering. PixelNeRF [56] and MVS-
NeRF [55] are conditional versions of NeRF that aim to improve its generalization ability
using an image encoder. LFN [6] learns a function that maps 4D light field samples to
color space.

2.2.2 Neural light field

Light field networks have shown great promise in novel view synthesis with high effi-
ciency and rendering quality, enabling multiple applications such as virtual reality, aug-
mented reality, and image and video processing [63]–[67]. There are types of light field
networks, including convolutional neural networks (CNNs) [63], [65] and recurrent neural
networks (RNNs) [66], [68]–[70], etc. Recent works combine light field networks with neu-
ral rendering, which leads to improved rendering quality, as it allows for more accurate
modeling of complex scenes and better handling of reflections. However, challenges remain
in dealing with large-scale scenes and generating high-quality, photo-realistic images.

To address these challenges, researchers continue to progress in the cross-domain of the
neural light field with large-scale scenes, and efficient and photo-realistic rendering. For
instance, Wang et al. [64] distill a neural radiance field to a neural light field to produce
a compact and lightweight model that could generate high-quality light field data with
fewer computational resources. However, the quality of the generated light field data may
be lower than that produced by the original NeRF [4], especially in complex lighting
conditions and scene geometries. To model complex scenes’ appearance and geometry
accurately, Suhail1 et al. [70] combines epipolar geometry with a light field network to
represent a novel view dependently. However, generating novel views across different scenes
remains challenging for the above works [64], [69], [70].
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Figure 2.4 – Light field networks (LFNs) encode the full 360-degree light field of a 3D
scene [6], which enables subsequent real-time novel view synthesis of simple scenes. Image
is taken from [6].

The later work [68] learns a light field representation across different scenes by leverag-
ing an epipolar geometry transformer and directly predicting the color of a target. It en-
ables novel view generation across scenes with considerable good quality at the expense of
more training views than existing conditional NeRF methods. Specifically, MVSNeRF [55]
demonstrates realistic rendered novel views by using only three reference views as inputs,
whereas [68] requires ten input views for achieving similar performance as shown in its
paper. To sum up, synthesizing novel views with neural light fields from sparse views is
still promising yet under exploring methods. Thus, we explore and address the challenges
of novel view synthesis with neural light fields from sparse inputs.

2.2.3 Hybrid surface and volume rendering

Surface and volume rendering of object Neural implicit surface rendering has lever-
aged neural networks to approximate the implicit surface function and extended to novel
view synthesis and rendering of implicit surfaces, [35], [71]–[73]. By describing the 3D
geometry as the zero-level set of the function, the neural network takes input parameters
(e.g., 3D coordinates [71], occupancy values [72]) and outputs a value representing the
signed distance to the surface or a signed distance function (SDF [74]). The rendering
process involves sampling points in 3D space and evaluating the neural network to obtain
the SDF values. These values provide information about the distance to the surface and
can be used to estimate surface normals, shading, and appearance properties (Figure.
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2.5). Techniques such as ray marching, sphere tracing, or volume rendering are used to
generate high-quality renderings, [71].

Figure 2.5 – Example of multi-view 3D surface reconstruction [71]. The network aims to
learn the geometry surface from given input images and model a wide range of lighting
conditions and materials. By incorporating the rendering equation principles, the neural
renderer captures the complex interplay of light and surface properties, enabling realistic
rendering of various lighting scenarios and material appearances. Image is taken from [71].

Specifically, various neural network architectures have been employed for Neural im-
plicit surface rendering, including multi-Layer perceptrons (MLPs) [35], [71], [72], convo-
lutional neural networks (CNNs) [74], and more advanced architectures like deep implicit
functions (DIFs) [73], occupancy networks [75], and neural radiance fields (NeRF [4]).
These architectures capture the intricate details and complex topology of implicit sur-
faces.

Among those works, implicit differentiable renderer (IDR [71]) proposes to learn an
implicit representation directly from multi-view images to recover more accurate 3D geom-
etry along with appearance. The geometry is represented as the zero-level set of a neural
network, which allows for flexible and adaptable modeling of the scene’s shape. Given a
set of masked 2D images as inputs, IDR aims to learn three components simultaneously:
the unknown geometry of the scene, the camera parameters, and a neural renderer that
approximates the light reflected from the surface to the camera. As shown in Figure 2.6,
the MLP takes the surface point x and normal n, the viewing direction v, and a global
geometry feature vector z as inputs and outputs the RGB values of corresponding cam-
era position. Optimization mainly depends on the pixel color of the input images while
enabling simultaneous learning of the geometry, its appearance, and camera parameters.
However, this work requires accurate mask images as inputs, which are unavailable in
many real-life applications.

Consequent works propose to combine implicit representations with volume rendering
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Figure 2.6 – The implicit differentiable renderer (IDR [71]) forward model generates dif-
ferentiable RGB values of a learnable camera position c and a fixed image pixel p. This
is accomplished by defining a viewing direction v based on the camera parameters and
pixel. IDR computes the intersection x of the viewing ray, represented as c + tv, with the
implicit surface. Image is taken from [71].

[34], [76], [77]. Precisely, VolSDF [77] is proposed to combine an implicit SDF representa-
tion with volume rendering, transforming SDF values into volume densities by using the
cumulative distribution function of the Laplace distribution. NeuS [34] uses an SDF to
represent the surface and develops a new volume rendering method to train a neural SDF
representation. Though those methods could reconstruct 3D geometry and appearance
simultaneously, it remains challenging to reconstruct a geometry-consistent surface, espe-
cially for scenes containing complex geometry. Moreover, these methods show remarkable
reconstruction results but still suffer from rendering degradation when the number of
input views is limited.

Surface representation and volume rendering of human Nowadays, there has
been extensive research on reconstructing 3D humans from various types of input data,
including from single images [78]–[82], monocular video [83]–[85], RGB-D data [86]–[88]
and multi-view data [89]–[92]. Most existing methods are focused on single human recon-
struction, especially in multi-view settings.

Some early works proposed by Starck and Hilton et al. [89], employ a combination of
visual hull and stereo reconstruction techniques to capture the human surface. However,
these high-end multi-view capture systems require complex studio setups that are expen-
sive and not easily accessible. To address this issue, researchers have developed methods
that utilize a sparse set of RGB cameras, typically ranging from 2 to 15 cameras. These
methods compensate for the limited views and comprehensive baselines by employing vari-
ous strategies. One approach is to track a pre-scanned template using the available camera
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views. Gall et al. [93] and Vlasic et al. [94] proposed methods that rely on template track-
ing and utilize temporal information to reconstruct the 3D human shape. Carranza et al.
[95] and De Aguiar et al. [96] also explored template-based techniques for reconstructing
human motion from multi-view data. Another direction of methods involves leveraging
parametric body models to aid the reconstruction process. Researchers like Huang et al.
[97] and Balan et al. [98] introduced parametric models of the human body, which can be
fitted to the observed views and used to estimate the 3D shape and pose.

Figure 2.7 – Novel view synthesis and shape reconstruction of single human [99]. Image
is taken from [99].

More recently, deep learning techniques have been applied to tackle the problem of
multi-view human reconstruction. Huang et al. [92] proposed a deep learning approach
that employs a convolutional neural network (CNN) to estimate the 3D human shape
from multiple camera views. Liang et al. [100] introduced a method that combines a CNN
with a differentiable renderer to reconstruct detailed 3D human shapes from sparse views.
Current works have explored the use of neural networks and deep learning for multi-view
human reconstruction, such as ARAH [101], Neural Body [102], HumanNeRF [103], and
so on [99], [104]. These methods utilize neural networks to learn the mapping between
the input views and the 3D human shape, enabling more accurate reconstructions. It’s
important to note that the field of single-human reconstruction is rapidly evolving, and
new techniques and advancements are being proposed to improve the quality and efficiency
of the reconstructions.

Despite the great progress of existing research on single human generation, only a
limited number of studies have addressed the challenging problem of multiple human
generations [105]. This task becomes difficult due to the increased geometric complexity
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introduced by the presence of multiple people, resulting in occlusions and amplified am-
biguities that hinder the accurate assignment of commonly used features such as color,
edges, or key points.

The predominant approach for generating multi-human models from single images
and videos involves regressing the parameters of the SMPL [106] body model [105], [107]–
[117]. While this approach can robustly handle even a single view, the resulting recon-
structions need more fine geometric details and accurately capture characteristics such as
hair, clothing, and intricate details. Notably, Mustafa et al. [118] proposed an exception
to this approach by performing model-free reconstruction of multiple humans, combining
an explicit voxel-based representation with an implicit function refinement. However, this
method requires training on a large synthetic dataset specific to multiple people, limiting
its generalization to diverse scenes.

Multi-view capture setups can help resolve depth ambiguities and some of the occlu-
sions. Classic methods for estimating multiple humans rely heavily on segmentation masks
and template mesh tracking [119]–[121]. We avoid using segmentation masks by adopt-
ing volumetric rendering for implicit surfaces [34]. More recently, deep learning-based
approaches were proposed, but they either require temporal information [3], [122]–[124],
pre-training on a large dataset [3] which cannot work on general scenes, or a coarse body
model [122]–[124] which lacks geometric detail.

Our work focuses on novel view synthesis of multi-human on static scenes from sparse
inputs and proposes a method that recovers accurate reconstructions and produces ren-
derings of novel viewpoints.
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Chapter 3

FEW SHOT NEURAL RADIANCE FIELD

BASED NOVEL VIEW SYNTHESIS

3.1 Introduction
NeRF [4] has achieved photo-realistic rendering, while it requires many well-calibrated

dense inputs for training. The rendering quality of original NeRF [4] drops significantly
with few shot inputs due to the lack of geometry regularization and over-fitting to training
views.

Recent approaches solve this issue by utilizing image encoder [55], [56], depth regular-
ization [51], [52], [59], ray density regularization [53], etc. On the one hand, those methods
require pre-training on a large-scale dataset [50], [56] or ignore the training efficiency [52].
On the other hand, depth information is one of the key factors for 3D geometry learning
in previous works [51], [52], [59], which improves the rendering quality of NeRF efficiently.
Thus, we propose to utilize depth information and introduce a novel framework combin-
ing geometry and appearance regularization to improve neural radiance fields from sparse
views.

In this chapter, instead of sampling rays randomly like vanilla NeRF [4], we propose a
local patch-based ray sampling scheme and a global patch-based ray sampling scheme for
different purposes. Firstly, it remains challenging for the neural radiance field to infer a
reasonable 3D geometry from only a limited number of views. To encourage geometry con-
sistency across multi-views, we propose to sample a patch from images globally, warp those
patches from an observed camera to an unobserved camera, and optimize the rendering
of unobserved views using those warped patches’ feature extracted by a pre-trained visual
encoder (CLIP-ViT) [125]. In addition, NeRF’s supervision depends on mean squared er-
ror (MSE) loss to optimize the pixel’s color prediction while not considering each pixel’s
neighborhood information. By utilizing 2D local neighborhood information of each pixel,
we sample the local patch from the training image and supervise the rendering with per-
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ceptual loss. Moreover, depth information could provide essential geometry cues for 3D
reconstruction and also facilitate the training and rendering. Our method exploits depth
information for explicit geometry regularization and faster training and inference speed.
Each part of the proposed method is analyzed and evaluated in ablations.

We evaluate our approach on real-world dataset (DTU dataset [32]) and compare it
with recent representative NeRF-related works [43], [50], [52], [55], [56], [59], [60], [126].
It outperforms existing methods quantitatively and qualitatively, and achieves state-of-
the-art performance.

3.2 Related work

Novel View Synthesis: There has been a vast amount of research focused on novel
view synthesis, which is classified into traditional methods (e.g. light field [127], image-
based warping [12] etc.) and learning-based methods (e.g. neural rendering [38], implicit
neural representations [4], [43], [45], [50], [52], [56], [126], etc.). Among those, NeRF [4]
stands out by representing 3D scenes as neural radiance fields and demonstrating the
photo-realistic quality of the synthesized novel view. While NeRF requires dense training
views, a long time for training, etc.

Current research work is tackling each of these limitations (e.g. [42], [43], [48], [126],
[128], etc.). For instance, some research improve NeRF for faster training and rendering
speed, including octree-based 3D representation [42], [48], multi-resolution hash encod-
ing [45], tensor decomposition (TensoRF [43]). However, those methods still require dense
training views, and the rendering quality decreases when given sparse inputs. We build
our work on TensoRF [43] for faster training speed. While our goal is to improve the
rendering quality from sparse inputs directly and our proposed regularization applies to
most of the existing NeRF and fast NeRF architecture.

Few Shot Radiance Field: Existing methods improve NeRF’s generalization ability
from few shot inputs by exploiting conditional encoder [55], [56], different regulariza-
tion( e.g. multi-view Stereo [129], feature [50],color [52], density [53], etc.) or depth-based
method [51], [59], [60]. Among those, conditional NeRF leverages convolutional neural
network (CNN) to extract 2D features [56], [129] or 3D cost volumes [55]. Although
those methods improve rendering quality, they require pre-training on large-scale data
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and cost more computation and time complexity. The regularization approaches often
introduce additional information for supervision, e.g. a pre-trained visual encoder such
as CLIP-ViT [50], [125], rays sampled from unobserved cameras [52], [53] to enhance the
NeRF’ generation ability, while ignoring training efficiency. Depth-based methods [51],
[59], [60] have proven that depth is an important factor for fast and high-quality render-
ing. We take advantage of both the regularization and depth-based methods and propose
a novel framework combining geometry and appearance regularization with an assistant
of depth for view synthesis from sparse inputs.

3.3 Methodology

3.3.1 Preliminary

NeRF represents 3D scenes as neural radiance fields using a multi-layer perception(MLP).
For a sampled ray r starting at camera origin o with view direction v, the color C(r) is
rendered as follows [4]:

C(r) =
N∑

i=1
T (pi)α(pi)c(pi), T (pi) =

i−1∏
j

(1 − α(pj)) (3.1)

where pi(pi = o+tiv, i = 1, ..., N) is a sampled point along the ray r, c(pi) is the predicted
color at the point pi, T (pi) is the accumulated transmittance, and α(pi) is the opacity
value.

When given dense inputs, NeRF [4] could achieve realistic rendering quality by opti-
mizing the network through photo-metric loss [4]:

Lr = ||It − Ir||22 (3.2)

where It is the ground truth of the target image and Ir is the rendered image.
TensoRF [43] models radiance field scenes as 4D tensors and factorizes those tensors

into multiple compact low-rank components aiming at speedup and higher rendering qual-
ity from dense inputs, see Figure 3.1. When given sparse inputs, the rendering quality
of the synthesized novel view of TensoRF [43] decreases significantly as NeRF. Our ap-
proach builds on TensoRF [43] for faster training speed, but it could be plugged into most
NeRF [4] based methods.
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Figure 3.1 – Overview of TensoRF [43]: it models a scene as a tensorial radiance field
using a set of vectors (v) and matrices (M). These vectors and matrices are utilized to
represent and encode the appearance and geometry of the scene along their corresponding
axes. Image is taken from [43].

Our goal is to improve neural radiance fields from sparse inputs. The framework is
shown in Figure. 3.2. Instead of randomly sampling rays like vanilla NeRF [4], we propose
a combined local and global patch-based ray sampling strategy. Specifically, we sample a
patch from an input image globally, warp the sampled patches from seem camera to an
unobserved camera and optimize the rendering of unobserved views using those warped
patches’ feature extracted by a pre-trained visual encoder (CLIP-ViT [125]). While for
rays sampled on a local patch from a training image, we supervise its’ rendering with
features encoded by VGG network [130]. It enables the use of 2D local neighborhood
information of each pixel. Moreover, we utilize depth information for explicit geometry
regularization and faster training and inference speed. The following section will introduce
the proposed geometry regularization, appearance regularization, and joint optimization
with depth regularization separately.

Figure 3.2 – Overview of the proposed framework. Our proposed regularizations include
photo-metric loss Lr, global geometry regularization Lg, local patch appearance regular-
ization Ll and depth regularization Ld.
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3.3.2 Geometry regularization

Vanilla NeRF [4] is prone to over-fit to sparse inputs when only a few training views
are available. Meanwhile, the neural network is hard to estimate a reasonable 3D ge-
ometry based on sparse images. To address this challenge, we utilize depth information
corresponding to the sparse training views and augment the training data with a forward
warping scheme. As suggested by [52], [53], regularizing the unobserved rays with seen
rays could improve the overall rendering quality.

Thus, we take insight from that and transfer the pixel xs from the observed camera
to the unobserved camera as follows:

xt = KtTtD(xs)K−1
t xs (3.3)

where xt is the pixel in the target view from the unobserved camera, Kt, Tt is the camera
intrinsic matrix and camera transformation matrix, respectively, and D(xs) is the depth
map corresponding to seen views. The depth map could be obtained from Structure from
Motion (SfM), e.g. COLMAP [131].

Due to the forward warping and sometimes inaccurate depth map, the warped image
usually contains some holes, which might degrade the rendering quality if the supervi-
sion entirely depends on those warped pixels. To optimize the geometry estimation while
minimizing the influence of unreliable pixels, we propose to sample a patch globally (e.g.
sampling a down-sampled image). We render the hole patch and optimize it using the
warped pseudo-views as follows:

Lg = ||ϕ(Iw) − ϕ(Ir)||22 (3.4)

Iw is the warped patch of pseudo-views, Ir is the rendered patch, and ϕ denotes an image
encoder, where we use a pre-trained visual encoder (CLIP-ViT [125]) for it. Please note
that DietNeRF [50] adopts CLIP-ViT to ensure semantic information and uses only train-
ing views for supervision. Different from it, we take the warped image as a pseudo-view and
utilize it to optimize the unobserved views’ rendering. This function encourages geometry
consistency across multi-view by utilizing depth information and forward warping.
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3.3.3 Appearance regularization

NeRF and its related works [4], [52], [53] usually utilize mean squared error(MSE) loss
to optimize the pixel’s color prediction. However, depending on MSE loss solely ignores
each pixel’s information regarding its’ neighborhood, which might result in blur images.
Different from sampling pixels randomly in vanilla NeRF [4] and global patch sampling
above, we propose to sample a complete patch from training images. The appearance
regularization is defined based on the sampling strategy:

Ll = ||φ(It) − φ(Ir)||22 (3.5)

where It and Ir is ground truth patch and the rendered patch respectively, φ denotes image
encoder. We use a pre-trained VGG model [132] to extract features in our experiments.
By regularizing the extracted features, the key point is to take advantage of each pixel’s
2D local neighborhood to encourage more realistic appearance rendering.

3.3.4 Joint optimization

During the training, we optimize all parameters of the network jointly by back-
propagating a combination of total loss L:

L = Lr + λgLg + λlLl + λdLd (3.6)

Lr is the L2 reconstruction loss between the predicted image and ground truth in equa-
tion 3.2, Lg and Ll are the geometry consistency loss and appearance regularization loss
in equation 3.4 and equation 3.5 respectively, Ld denotes depth regularization, λg, λl and
λd are hyper parameters setting to 0.01, 0.01,1 in experiments. We exploit a depth map
for explicit geometry regularization:

Ld = ||M ⊙ (Dr − Dt)||11 (3.7)

where ⊙ denotes hadamard product, M is the mask for removing invalid depth infor-
mation, Dt is the ground truth depth, and Dr is the rendered depth. Dr is rendered as
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follows [4]:

D̃r = 1∑N

z=1 Tzαz

N∑
z=1

Tzαztz (3.8)

where T and α are detailed in equation 3.1.

3.4 Experiments

3.4.1 Implementation details

We implement our approach on TensoRF [43] codebase with the PyTorch framework
on a Quadro RTX 5000 gpu. We optimize the training with the Adam solver using learning
rate decay from 10−4 to 10−5. Each scene’s training takes around one hour. Please note
that the original NeRF takes around 8 hours in training, the proposed methods enable
much faster training speed.

Method Setting PSNR↑ SSIM↑ LPIPS↓
3-view 6-view 9-view 3-view 6-view 9-view 3-view 6-view 9-view

SRF [129]
Trained on DTU

15.32 17.54 18.35 0.671 0.730 0.752 0.304 0.250 0.232
PixelNeRF[56] 16.82 19.11 20.40 0.695 0.745 0.768 0.270 0.232 0.220
MVSNeRF[55] 18.63 20.70 22.40 0.769 0.823 0.853 0.197 0.156 0.135
SRF [129] Trained on DTU

&
Optimized Per-scene

17.07 16.75 17.39 0.436 0.438 0.465 0.529 0.521 0.503
PixelNeRF[56] 16.17 17.03 18.92 0.438 0.473 0.535 0.512 0.477 0.430
MVSNeRF [55] 17.88 19.99 20.47 0.584 0.660 0.695 0.327 0.264 0.244
FWD [60]

Optimized Per-scene

21.98 - - 0.791 - - 0.208 - -
mip-NeRF [126] 8.68 16.54 23.58 0.571 0.741 0.879 0.353 0.198 0.092
TensoRF [43] 13.77 15.84 17.27 0.545 0.614 0.662 0.382 0.296 0.267
DietNeRF [50] 11.85 20.63 23.83 0.633 0.778 0.823 0.314 0.201 0.173
RegNeRF [52] 18.89 22.20 24.93 0.745 0.841 0.884 0.190 0.117 0.089
DSNeRF [59] 16.9 20.60 22.30 0.57 0.75 0.81 0.45 0.29 0.24
Ours 22.02 24.16 25.74 0.802 0.829 0.858 0.135 0.151 0.076

Table 3.1 – Comparison of the average PSNR, SSIM, and LPIPS of reconstructed images in
the DTU [32] dataset, using 3/6/9 views for training. The higher the better for both PSNR
and SSIM. The lower the better for LPIPS [133]. The color represents the performance of
ranking, the darker the better.

3.4.2 Evaluation on DTU dataset

We demonstrate our method for novel view synthesis from sparse inputs using real-
world multi-view datasets DTU benchmark [32]. Following the PixelNeRF [56] and MVS-
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3 input views

6 input views

9 input views

GT TensoRF RegNeRF Ours

Figure 3.3 – Qualitative comparison with TensoRF [43] and RegNeRF [52] from 3/6/9
input views on the DTU dataset [32].

NeRF [55] experimental settings, the data is split into 88 training scenes and 16 testing
scenes, each scene including 49 images with an orginal resolution of 1600 × 1200. We note
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that this is a challenging scenario due to the complex illumination, geometry, and so on.
For instance, the lighting and backgrounds are also inconsistent between the scenes. We
pick the same training and testing views as RegNeRF [54].

Following the RegNeRF [52] experimental settings, we evaluate all experiments on
their reported test set of 15 scenes with down-sampled resolution (400 × 300). For quan-
titative comparison, we report the peak signal-to-noise ratio (PSNR), structural similar-
ity (SSIM), and learned perceptual image patch similarity (LPIPS) reconstruction metrics
in Table 3.1 for 3/6/9 training views averaged across all testing scenes. We report eval-
uations of both generalizable approaches (SRF [129], PixelNeRF [56], MVSNeRF [55])
and unconditional baselines (MipNeRF [126], DietNeRF [50] and RegNeRF [52]). We
build our work on TensoRF [43] and improve it with sample space annealing [52], so we
report the evaluation of improved TensoRF on Table 3.1. Moreover, we compare with
depth-based methods, including the method using colmap depth (DSNeRF [59]) and the
method using sensor depth (FWD [60]). Table 3.1 demonstrates that our method is ro-
bust and achieves comparable performance with generalizable approaches [55], [56], [129]
and unconditional baselines [43], [50], [52], [59], [126] in all three metrics. Especially, our
method also outperforms methods utilizing depth information [59], [60].

We demonstrated qualitative comparisons in Figure 3.3 from different scenes in 3/6/9
input views. Since RegNeRF [52] is the former state of art method average on 3/6/9
inputs on Table 3.1, we mainly compare our visual results with RegNeRF and our baseline
TensoRF [43]. Figure 3.3 shows that our model improves TensoRF’s generation capability
on 3/6/9 settings and could render images with higher frequency details than RegNeRF.
Furthermore, Figure 3.4 shows that compared with baseline TensoRF [43], our methods
not only render a realistic appearance but also reconstruct more accurate depth.

3.4.3 Evaluation on LLFF dataset

We also demonstrate our method for novel view synthesis from sparse inputs using real
forward-facing datasets (LLFF benchmark) [10]. The LLFF dataset consists of 8 scenes.
Each scene includes 20-62 images with a resolution of 1008 × 756. This dataset has a
different camera distribution from the DTU dataset. We follow standards from [4], [52] to
choose every 8th image as testing views and sampling training views from the remaining
images.

Specifically, similar to baseline [52], we first compare with generalizable approaches,
including SRF [129], PixelNeRF [56], and MVSNeRF [55] using its pre-trained model from
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Figure 3.4 – Qualitative comparison of depth and appearance with TensoRF [43] from 9
input views on the DTU dataset [32].

3/6/9 input views. Table 3.2 also demonstrates the per-scene optimization evaluations of
generalizable methods [55], [56], [129] from 3/6/9 input views. More importantly, we
also evaluate recent representative methods relating to sparse neural radiance fields. As
shown in Table 3.2, our method not only outperforms baseline TensoRF [43], generalizable
methods [55], [56], [129], but also achieves better results than recent sparse NeRF methods
in most cases, including InfoNeRF [53], DietNeRF [50] and RegNeRF [52].

Figure 3.5 demonstrates qualitative comparison with baselines from three input views.
Compared with the baseline [43] and sparse NeRF method [52], our method generates a
more realistic appearance with fewer geometry errors.

Method Setting PSNR↑ SSIM↑ LPIPS↓
3-view 6-view 9-view 3-view 6-view 9-view 3-view 6-view 9-view

SRF Tested on LLFF
without Optimization

12.34 13.10 13.00 0.250 0.293 0.297 0.594 0.594 0.605
PixelNeRF 7.93 8.74 8.61 0.272 0.280 0.274 0.682 0.676 0.665
MVSNeRF 17.25 19.79 20.47 0.557 0.656 0.689 0.356 0.269 0.242
SRF Tested on LLFF

with
Per-scene Optimazation

17.07 16.75 17.39 0.436 0.438 0.465 0.529 0.521 0.503
PixelNeRF 16.17 17.03 18.92 0.438 0.473 0.535 0.512 0.477 0.430
MVSNeRF 17.88 19.99 20.47 0.584 0.660 0.695 0.327 0.264 0.244
mip-NeRF

Tested on LLFF
with

Per-scene Optimization

14.62 20.87 24.26 0.351 0.692 0.805 0.495 0.255 0.172
TensoRF 11.85 12.95 13.72 0.224 0.275 0.312 0.563 0.559 0.542
DietNeRF 14.94 21.75 24.28 0.370 0.717 0.801 0.496 0.248 0.183
RegNeRF 19.08 23.10 24.86 0.587 0.760 0.820 0.336 0.206 0.161
Ours 19.21 23.21 24.73 0.590 0.765 0.811 0.329 0.201 0.159

Table 3.2 – Comparison of the average PSNR, SSIM, and LPIPS of reconstructed images
in the LLFF [134] dataset, using 3/6/9 views for training. The higher the better for
both PSNR and SSIM. The lower the better for LPIPS [133]. The color represents the
performance of ranking, the darker the better.
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Ground Truth TensoRF RegNeRF Ours

Figure 3.5 – Qualitative comparison on LLFF dataset [134] with 3 training views, respec-
tively. Compared with baselines, our methods generate realistic appearances with more
details and fewer geometry errors.

3.4.4 Ablations and analysis

We demonstrate an ablative analysis showing the importance of each part proposed in
our method. Specifically, we add each regularization individually, including only with
global patch regularization (Lg), only with local patch regularization (Ll), only with
depth regularization (Ld), and a combined full model. Table 3.3 shows the numerical
improvement of each part of our proposed methods from 3/6 input views on the DTU
scene(scan 41). In addition, figure 3.6 demonstrates qualitative comparisons for 3-view
and 6-view cases. Compared with the baseline [32], each regularization in our proposed
method improves the results quantitatively and qualitatively. More importantly, the full
model (Lg + Ll + Ld) achieves the state of art performance.

3.5 Conclusion

This chapter introduces a novel approach to improve neural radiance fields(NeRF) from
sparse RGBD inputs. Specifically, we propose three different regularizations, including
geometry regularization, appearance regularization, and depth regularization. We evaluate
our method quantitatively and qualitatively on a real benchmark DTU dataset. Compared
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Figure 3.6 – Qualitative ablations of different regularization from 3/6 input views on the
DTU dataset [32].

Method PSNR↑ SSIM↑ LPIPS↓
Baseline [43] Lg Ll Ld 3 6 3 6 3 6

✓ 12.45 13.34 0.472 0.498 0.455 0.453
✓ ✓ 16.97 20.65 0.614 0.706 0.295 0.235
✓ ✓ 17.28 19.46 0.635 0.691 0.357 0.241
✓ ✓ 21.09 23.27 0.695 0.752 0.332 0.127
✓ ✓ ✓ ✓ 21.80 24.16 0.760 0.801 0.132 0.097

Table 3.3 – Quantitative ablations of different regularization approaches from 3/6 inputs
on the DTU dataset [32].

with existing approaches [43], [50], [52], [55], [56], [59], [60], [126], our work achieves state
of art performance across different metrics. However, one of the limitations is that it
requires accurate depth information, e.g. sensor depth. Future work could explore how to
replace the sensor depth with a monocular depth estimated by networks. More research
includes improving the neural radiance field together with implicit surface reconstruction
from sparse RGBD inputs.
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Chapter 4

FEW SHOT NEURAL LIGHT FIELD BASED

NOVEL VIEW SYNTHESIS

4.1 Introduction
In this thesis, we aim to build a novel view machine that could generalize novel views

outside the training data. Given a few input-calibrated color images at test time, we
expect our method to generate novel target images given new query viewpoints. We are
also interested in fast rendering novel view synthesis that can generate novel views in a
single forward pass without test time optimization.

The recently popularized implicit neural representations offer numerous advantages
in modeling 3D shape [74], [135] and appearance [4], [33] in comparison to their tra-
ditional alternatives, while being conditionable using e.g. encoders [56], [75], [136] and
meta-learning [137]. In particular, neural radiance fields (NeRF) [4] provide impressive
novel view synthesis performances from dense input images. When coupled with convolu-
tional encoders (e.g. [55], [56]), they can additionally achieve across-scene generalization
and test-time optimization free inference, in addition to reconstructing from fewer inputs.
However, the rendering of these methods is expensive. They require sampling hundreds
of 3D points along each target pixel ray, evaluating densities and view-dependent colors
for all these points through a multi-layer perceptron (MLP), and building the final im-
age through the volumetric rendering of all the samples’ colors and densities. Multi-scale
sampling is also necessary to achieve satisfactory results.

To reduce this complexity, we propose to use an implicit neural network operating in
ray space rather than the 5D Euclidean × direction space, thus alleviating the need for
per-ray multi-sample evaluation and physical rendering. For a given target pixel, an MLP
(i.e. light field network) maps its ray coordinate and ray features to the color directly.
Key to efficient generalization, and differently from [6], we build the ray features by
computing and merging 3D convolution feature volumes from the input images. These
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features are then rendered volumetrically into a coarse ray feature image. The method is
fully differentiable and trained end-to-end.

We evaluate our method on both synthetic (ShapeNet [138]) and real multi-view stereo
data (DTU [32]). In the few-shot novel view optimization-free setting, we outperform
comparable convolutional methods, including our 3D convolutional baseline, and extend
them to real complex data. Our proposed method achieves competitive results compared
to generalizable encoder-decoder NeRF-based models while providing orders of magnitude
faster rendering.

Figure 4.1 – Our method enables the fast generation of novel views from sparse input
images without 3D supervision in training. We generate the above novel views for objects
(ShapeNet dataset [138]) and a scene (DTU dataset [32]) never seen at training.

4.2 Related work

Few Shot Radiance Fields Valline NeRF demonstrated a photo-realistic rendering
ability by representing a scene as a neural radiance field at the expense of well-calibrated
dense views for training. The rendering quality of vanilla NeRF [4] drops significantly with
fewer inputs due to the lack of geometry regularization. Recent researchers are keening
to tackle this issue in various ways (e.g. [42], [49]–[59], [139]), including utilizing image
encoders ( [50], [55], [56]), exploiting additional depth information [51], [59], or using
different regularization techniques [52], [53], etc.

Specifically, one line of work has explored various regularization-based methods for
NeRF. These methods introduce extra supervision on unobserved viewpoints, such as
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using pre-trained visual encoders like CLIP-ViT [50], or rendered depth or density from
sampled patches [52], [53]. These approaches improve the generation ability of NeRF, espe-
cially from sparse inputs, at the expense of training efficiency and computation complexity
or generalization ability across scenes. Other lines of approaches propose to improve the
rendering quality of neural radiance field using depth information ([51], [59], [60], [140],
[141]) from sensors, colmap [131] and so on. Those methods prove that accurate depth
maps contribute to higher rendering quality and speed. However, obtaining precise depth
information can be expensive or computationally intensive. To further enhance NeRF’s
generation ability and generalization across scenes, another line of approaches augment
NeRFs with 2D ([56], [61], [62], [140]) or 3D [55] convolutional features extracted from
input images. These methods offer forward pass prediction models, which do not require
test-time optimization. However, they still need to evaluate hundreds of 3D query points
per ray for inference, making them slow to train and render.

Taking inspiration from conditional-based NeRF method ([56], [61], [62]) and light filed
network [6], we explore here a tangent strategy, consisting in bypassing 3D implicit radi-
ance modeling altogether. Unlike PixelNeRF [56] and MVSNeRF [55] conditioning NeRF
with local image features, we propose here a more efficient local conditioning mechanism
for the light field network [6]. In addition, different from LFN utilizing hyper-network to
condition network and lacking demonstration on real-world scenes, our proposed local ray
conditioning approach enables real-world scene reconstruction and offers optimization-free
inference.

Fast Neural Rendering To achieve photo-realistic renderings, original neural radiance
fields (NeRF) [4] require a long time (hours or days) to converge. Large amounts of recent
works target faster training and rendering speed and have explored different techniques
([42]–[47]), such as utilizing sparse voxel grids ([42], [47]), hash encoding [45], tensor
decomposition [43], and light field networks [6].

Among those, Plenoctrees [42], [48] predicts radiance spherical harmonic coefficients
instead of density and uses plenoxels to improve efficiency and learn view-independent
radiance features. Instant NGP [45] incorporates hash encoding into NeRF’s representa-
tion and accelerates training with multi-GPUs. TensoRF [43] models the radiance field as
a 4D tensor and factorizes it into multiple compact low-rank tensor components for real-
time training and rendering. These methods improve training and inference speed and
offer better rendering quality than original NeRF [4]. However, most of those methods

47



Partie , Chapter 4 – Few Shot Neural Light Field based Novel View Synthesis

still concentrate on representing a single scene and require dense, well-calibrated views
for training. More and more research may be needed to explore how to render novel views
across scenes with higher efficiency, such as feature domain adaptation, multi-task learn-
ing, or meta-learning, to better generalize to unseen scenes and data. Our work explores
feed-forward optimization-free inference of a generalizable model while maintaining high
computational efficiency.

Light Field Network Light field networks have shown great promise in generating
high-quality 3D visualizations, particularly for applications such as virtual reality, aug-
mented reality, and image and video processing ([63]–[67]). There are types of light field
networks, including convolutional neural networks (CNNs) ([63], [65]) and recurrent neu-
ral networks (RNNs) ([66], [68]–[70]). Recent works Combine light field networks with
neural rendering, which could lead to improved rendering quality, as it allows for more ac-
curate modeling of complex scenes and better handling of reflections. However, challenges
still remain, particularly in dealing with large-scale scenes and generating high-quality,
photo-realistic images.

To address these challenges, researchers continue to progress in the cross-domain of
neural light fields and rendering. For instance, Wang et al. [64] distill a neural radiance
field to a neural light field to produce a compact and lightweight model that can generate
high-quality light field data with fewer computational resources. However, the quality of
the generated light field data may not be as high as that produced by the original NeRF [4],
especially in complex lighting conditions and scene geometries. To model complex scenes’
appearance and geometry accurately, Suhail1 et al. [70] combines the light field with
epipolar geometry to represent a novel view dependently, and Attal et al. [69] propose a
ray-space embedding network to map the 4D ray-space into an intermediate interpolable
latent space to learn a neural light field. While generating novel views across different
scenes still remains a challenge for the above works ([64], [69], [70]). Sitzmann et al. [6]
introduced a new implicit representation for modeling multi-view appearance, which uses a
neural light field function to directly map rays to their colors without the need for physical
rendering such as volumetric rendering, i.e., volumetric rendering [4]. Though this method
has shown promising results on synthetic data, it has not yet been demonstrated on data
containing large images and real-world scenes, such as those found in the DTU and LLFF
datasets. Furthermore, it was implemented in the auto-decoding setup, which requires
test-time optimization. It uses a hyper-network for conditioning, making it expensive to
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scale to larger images in computing and memory.
The later work [68] learns a light field representation across different scenes by lever-

aging an epipolar geometry transformer and directly predicting the color of a target patch
at the expense of many training views. Specifically, MVSNeRF [55] demonstrate realistic
rendered novel views by using only 3 reference views as inputs, whereas [68] requires
10 input views for its best performance demonstrated in their paper. Unlike the above
method, our approach achieves competitive results with fewer inputs, which utilizes a deep
convolutional network to extract features, aggregate those features with learnable weights,
and composite and render those feature volumes to achieve generalizable representation
across scenes.

Figure 4.2 – Overview of our method. Given an input image, a 3D feature volume is built
with a series of convolutional neural networks. The volume represents features inside the
input view frustum. Given a targeted view, these features are resampled into a volume
representing the target view frustum. Target feature volumes originating from different
input views are aggregated using learnable weights. An image of ray features is produced
by rendering the target aggregated feature volume with α-compositing. Finally, the light
field network maps a ray stemming from a target camera origin T and spanning a direction
d, along with its convolutional feature F , to the corresponding pixel color of the target
image.

4.3 Methodology
A summary of our method is illustrated in figure 4.2. Given one or few images {Ii}

of a scene or an object with their known camera parameters, i.e. camera poses {Ri, Ti},
Ri ∈ SO(3), Ti ∈ R3, and intrinsics K ∈ R3×3, our goal is to generate images {It} for
novel target views, i.e. new camera poses {Rt, Tt}. We are interested in generalization to
scenes and objects unseen at training, and target views beyond input view interpolation,
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using merely sparse input views. We also seek fast rendering time, and we do not assume
the availability of any segmentation masks neither at training or testing.

To this end, we propose a single forward pass inference deep learning method, that uses
a deep neural network to map a ray r in a projective pinhole camera model, to its desired
color in the target view image cr, using an implicit neural representation i.e. a neural light
field network f . This network is conditioned with ray features Fr, i.e. cr = f(r, Fr). The
ray features are generated through the volumetric rendering of explicit 3D convolutional
features built from the input images. In the remaining section, we present the components
of the two stages of our method, namely the convolutional stage, and the neural light field
network.

4.3.1 Feature volume

Following seminal work (e.g. [27], [28], [55]), we build an explicit volume of features
from an input image Ii using a fully convolutional neural network E consisting of a
succession of a 2D convolutional U-Net and several 3D convolutional blocks:

Fi = E(Ii), (4.1)

where Ii ∈ RH×W ×3, H and W are the height and width of the input RGB image, and
Fi ∈ RHV ×WV ×D×C , HV , WV , D and C being respectively the height, width, depth, and
the number of channels of the 3D feature volume. The feature volume Fi is expected to
encode 3D shape and appearance information of the captured object or scene in the view
frustum associated with the input image and is hence aligned pixel-wise with the latter.
As we will show in the following sections, this volume will encode prediction confidence,
volume density [4], colors, and more generic appearance features. One limitation of these
features being modeled explicitly and not implicitly as in NeRF [4] based methods is that
they cannot be view direction dependent.

4.3.2 Feature resampling

Using the input feature volume Fi aligned with the input image, we would like to cre-
ate a feature volume Ft/i aligned to the target image, that could be used subsequently to
render a target feature image given the target camera pose {Rt, Tt}. Following the princi-
ples of volumetric rendering ([4], [142]), in order to recreate a target image of dimensions
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HV × WV , we need to evaluate N points {pz
u,v}N

z=1 along each ray ru,v with direction du,v,
where u ∈ J1, HV K and v ∈ J1, WV K:

du,v = RtK
−1


u

v

1

+ Tt, pz
u,v = Tt + tz

du,v

||du,v||
, (4.2)

where tz ∼ U
[
zn + z−1

N
(zf − zn), zn + z

N
(zf − zn)

]
following [4], zn and zf being the

depth near and far bounds of the visual frustum. K is the intrinsic camera matrix. The
target volume Ft/i is obtained then as the resampling of input volume Fi with trilinear
interpolation, using points {pz

u,v} aligned rigidly to the input camera coordinate frame:

Ft/i(u, v, z) = Fi(R⊤
i (pz

u,v − Ti)), (4.3)

where Ft/i ∈ RHV ×WV ×N×C and {Ri, Ti} is the input camera pose. In practice, we nor-
malize the aligned points’ coordinates prior to sampling as Fi is assumed to represent
features in the input view normalized device coordinate (NDC) space. We use the NDC
parametrization for optimal spatial exploitation of the input feature volume Fi and gener-
alization across objects and scenes with different scales and datasets with different camera
settings (e.g. intrinsics, zn, zf ).

4.3.3 Feature aggregation

As different input views provide different information about the observed scene, we
merge subsequently the 3D features obtained from the various inputs. We note that all
target feature volumes {F k

t/i}k provided by input images {Ik
i }k are represented in the

same target view camera coordinate frame. A naive merging strategy would be to simply
average these volumes element-wise. However, for a given 3D location in the target view
frustum, different input views contribute appearance information with varying confidence,
based on the visibility/occlusion of this spatial location in the input views. In order to
emulate this principle, and inspired by attention mechanisms, we propose to learn a 3D
confidence measure per input view in the form of a weight volume Wi ∈ RHV ×WV ×D.

This volume is obtained as one of the channels of the input volume features Wi = Fi(1)
(i.e. Wt/i = Ft/i(1)). As this confidence volume depends naturally on the input image and
the relative camera pose of the target with respect to the input, similarly to [24], we
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append these relative poses to the input image pixel values as additional input to the
encoder E. After resampling the input features {F k

i }k into the target ones {F k
t/i}k, we

use the resampled weights {W k
t/i}k normalized with Softmax across the input views to

compute a weighted average of the target volumes:

Ft =
∑

k

Softmax
k

(W k
t/i)F k

t/i(K1, CK), (4.4)

where index k is over the number of input views, and Ft ∈ RHV ×WV ×N×C−1. Let us
recall that this tensor represents features of N points, within [zn, zf ] depth-wise, for all
rays associated with a target image of dimension HV × WV . This aggregation allows our
method to use an arbitrary number of input views at both training and testing. In the
single input case, we note that Ft = Ft/i(K1, CK).

4.3.4 Feature rendering

Following volumetric rendering ([4], [142]), we generate a target feature image F̃ for
a given target view differentiably using α-compositing of the target feature volume Ft

along the depth dimension. To this end, we assume one of the target feature channels to
represent volume density σ = Ft(1) ∈ RHV ×WV ×D [142]. We recall that the dimensions
of tensor Ft span the pixels of the target feature resolution Hv × Wv in the first two
dimensions, and N points sampled along each ray for the third dimension. The rendered
target feature image then writes:

F̃ =
N∑

z=1
TzαzFt(K1, C − 1K), (4.5)

Tz = e−
∑z−1

j=1 σ(j)δj , αz = 1 − eσ(z)δz , (4.6)

where T represents transmittance, δz = tz+1 − tz and F̃ ∈ RHV ×WV ×C−2. In order to
reduce the memory cost and increase the rendering speed of our method, the size of the
rendered feature image is chosen to be lower than the size of the target image resolution,
i.e. HV = H/4 and WV = W/4.
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4.3.5 Neural light field

At this stage, the convolutional rendered features produce a low-resolution feature
image representative of all rays making up the target view. We propose to learn a light
field function f , which performs both upsampling and refinement of the result of the
convolutional first stage of our method. This implicit neural network maps rays of the
target image to their colors, while being conditioned on ray features extracted from the
convolutional rendered features.

Given a ray ru,v with direction du,v corresponding to the target image pixel coordinates
(u, v), with (u, v) ∈ J1, HK × J1, W K, we encode rays using Plücker coordinates similarly
to Sitzmann et al. [6]:

ru,v = (du,v, Tt × du,v)
||du,v||

, (4.7)

where ru,v ∈ R6. This representation ensures a unique ray encoding when the origin Tt

moves along direction du,v. We recall that the expression of du,v as a function of the target
camera pose {Rt, Tt} can be found in equation 4.2.

The feature Fu,v of a ray ru,v at the final image resolution H × W is obtained from
the lower resolution rendered feature image F̃ ∈ RHV ×WV ×C−2 through a learned up-
samplings. Specifically, the rendered feature image undergoes two successive 2D con-
volutions and up-samplings to produce a feature image at the desired resolution F ∈
RW ×H×C−2. The final target RGB image It = {cu,v}u∈J1,HK,v∈J1,W K is predicted then from
the concatenation of the ray coordinate and its feature with an MLP f accordingly:

cu,v = f(ru,v, Fu,v). (4.8)

Notice that while convolution equipped NeRF [4] methods (e.g. PixelNeRF [56], MVS-
NeRF [55], GRF[61]) require querying H ×W ×N 3D points through their implicit neural
radiance fields, our light field network only needs to evaluate H × W rays, which enables
our method offering faster rendering speed.

4.3.6 Network structure

Table 4.1 describes the detailed architecture of our convolutional network E. The main
structure follows [28], we use a much smaller feature cube and add two extra up-sampling
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layers. Table 4.2 shows the detailed architecture of our network f introduced in this
section. Please note that the baseline work PixelNeRF [56] uses MLP with 512 channels
in each layer.

Input Shape Output shape Operation
(3, H, W ) (52, H, W ) 1×1 Conv Image
(12, H, W ) (12, H, W ) 1×1 Conv Relative Pose

(52 + 12, H, W ) (64, H, W ) 1×1 Conv

2D Conv

(64, H, W ) (64, H, W ) 2× ResBlock
(64, H, W ) (128, H/2, W/2) 4×4 Conv,Stride2

(128, H/2, W/2) (128, H/2, W/2) 1× ResBlock
(128, H/2, W/2) (128, H/4, W/4) 4×4 Conv,Stride2
(128, H/4, W/4) (128, H/4, W/4) 1× ResBlock
(128, H/4, W/4) (256, H/8, W/8) 4×4 Conv,Stride2
(256, H/8, W/8) (256, H/8, W/8) 1× ResBlock
(256, H/8, W/8) (128, H/4, W/4) 4×4 Conv.T,Stride2
(128, H/4, W/4) (128, H/4, W/4) 2× ResBlock
(128, H/4, W/4) (256, H/4, W/4) 1×1 Conv

2D to 3D
(256, H/4, W/4) (512, H/4, W/4) 1×1 Conv
(512, H/4, W/4) (2048, H/4, W/4) 1×1 Conv
(2048, H/4, W/4) (32, 64, H/4, W/4) Reshape
(32, 64, H/4, W/4) (32, 64, H/4, W/4) 1×1 Conv

3D Conv

(32, 64, H/4, W/4) (32, 64, H/4, W/4) 2× ResBlock
(32, 64, H/4, W/4) (64, 32, H/8, W/8) 4×4 Conv,Stride2
(64, 32, H/8, W/8) (64, 32, H/8, W/8) 2× ResBlock
(64, 32, H/8, W/8) (32, 64, H/4, W/4) 4×4 Conv.T,Stride2
(32, 64, H/4, W/4) (32, 64, H/4, W/4) 2× ResBlock
(31, 64, H/4, W/4) (31, H/4, W/4) - Rendering

(30, H/4, W/4) (30, H/2, W/2) 1×1 Conv,Upsampling
Upsampling

(30, H/2, W/2) (30, H, W ) 1×1 Conv,Upsampling

Table 4.1 – The architecture of network E used in this section.
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Layer Channels Inputs

LR0 30/256 Fu,v

PE 6/78 ru,v

LR1 78/256 PE

LR2 256/256 LR1 ⊙ LR0

LR3 256/256 LR2 ⊙ LR0

LR4 256/256 LR3 ⊙ LR0

LR5 256/256 LR4 ⊙ LR0

LR6 256/256 LR5 ⊙ LR0

cu,v 256/3 LR6

Table 4.2 – The structure of MLP is shown here. ru,v is the Plücker coordinate of the ray.
Fu,v is the feature of the ray. cu,v is the target pixel color. PE is the positional encoding
in [4]. ⊙ is the element-wise product. All layers are linear with Relu activation, except
the last layer which uses a Sigmoid.

4.3.7 Novel structure for feature extraction

In this subsection, we show an improved version of the framework to improve the
generalization ability of light field networks on real-world datasets. A summary of our
method is illustrated in Figure 4.3.

55



Partie , Chapter 4 – Few Shot Neural Light Field based Novel View Synthesis

Figure 4.3 – Overview of our method. When presented with an input image, a 3D feature
volume is constructed using a sequence of convolutional neural networks, visualized as a
purple cube. This volume encapsulates the features found within the input view frustum.
These features are then transformed into a volume representing the desired target view
frustum, illustrated as a blue cube. These target feature volumes, originating from vari-
ous input perspectives, are combined utilizing adaptable weights. The next step involves
generating an image of ray features by rendering the aggregated target feature volume
through an alpha-compositing process. To complete the process, the light field network is
responsible for mapping a ray, emerging from the viewpoint of a target camera located at
point T and extending along a specific direction d, along with its associated convolutional
feature, to the corresponding pixel color within the target image.

Following similar work (e.g. [16], [27], [28], [55], [143]), our methods build multi-level
features volume from an input image using a fully convolutional neural network 2D UNet
networks U [144]:

Fi = U(Ii) (4.9)

where Ii ∈ Rh×w×3, h and w being the height and width of the scale images. The feature
extractor U used in this work produces three different scale feature volumes with scale
value l, l = 1, 2, 4. In this case, for an original input RGB image size with width W and
height H, the scaled input size is h = H

l
, w = W

l
. Fi ∈ RhV ×wV ×C , hV , wV , D and C being

respectively the height, width, and the number of channels of multi-scale feature volumes.
The feature maps with a different resolution provide different frequency information, i.e.
with higher resolution capture more detailed information about the image, while the
feature maps with lower resolution capture more global information.

After obtaining the input feature volume Fi aligned with the input image, the next
step is to create a feature volume Ft/i aligned with the target image. Following MVS
stereo methods [16], [37], [143], we construct the 3D feature volume by warp extracted
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2D feature volume:

Ft/i(u, v, z) = Fi

(
Hi(z)

[
u v 1

]T)
(4.10)

where Ft/i(u, v, z) is the feature value at a pixel location (u, v) in the target image, ob-
tained by warping the corresponding pixel in the source image at depth z using the
homography warping Hi(z) and extracting the feature value Fi at that location in the
source image. The homography warping Hi(z) is defined as:

Hi(z) = KiRi

(
I +

(
R−1

i ti − R−1
t tt

)
nT R−1

t /z
)

R−1
t K−1

t (4.11)

where [Ri, Ti, Ki] and [Rt, Tt, Kt] are the camera intrinsic, rotation, and translation of the
input view and target view, respectively, n that represents the normal direction of the
plane on which the image lies,(u, v) is a pixel location in the reference view. In practice,
we normalize the aligned points’ coordinates prior to sampling as Fi is assumed to rep-
resent features in the input view normalized device coordinate (NDC) space. We use the
NDC parametrization for optimal spatial exploitation of the input feature volume Fi and
generalization across objects and scenes with different scales and datasets with different
camera settings (e.g. intrinsics, zn, zf ).

Next, we encode the warped feature volumes using several 3D convolutional blocks.
It allows the network to capture both 2D and 3D features [16]. Specifically, following
[143], the 3D convolutional blocks also predict per-pixel depth probability distributions,
which are used to predict more accurate depth maps for finer feature volume sampling
and rendering. As we have showed above, this feature volume will encode prediction
confidence, volume density [4], colors, and more generic appearance features. This target
feature volume can be subsequently used to render a target feature image given the target
camera pose Rt, Tt.

As different input views provide different information about the observed scene, we
merge subsequently the 3D features obtained from the various inputs. We note that all
target feature volumes {F k

t/i}k provided by input images {Ik
i }k are represented in the

same target view camera coordinate frame. A naive merging strategy would be to simply
average these volumes element-wise. However, for a given 3D location in the target view
frustum, different input views contribute appearance information with varying confidence
based on the visibility/occlusion of this spatial location in the input views. In order to
emulate this principle, and inspired by attention mechanisms, we propose to learn a 3D
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confidence measure per input view in the form of a weight volume Wi ∈ RHV ×WV ×D. This
volume is obtained by encoding the input volume features with 3D conv ϕ:

{Wt/i}k = ϕ({Ft/i}k, δP ), (4.12)

where Fi ∈ RHV ×WV ×D×C , Wi ∈ RHV ×WV ×D×1 is the learnable weights of the target
volumes. As this confidence volume depends naturally on the input image and the relative
camera pose of the target with respect to the input δP , similarly to [24], we append these
relative poses to the input image pixel values as additional input to the encoder U .

After re-sampling the input features {F k
i }k into the target one {F k

t/i}k, we follow the
method illustrated in the above subsection (4.3.2, 4.3.3, 4.3.4) to do feature aggregation,
feature rendering and learning the neural light field.

4.3.8 Training objective

Our model is fully differentiable and we optimize all parameters of the model to-
gether, namely the convolutional network E and the light field network f jointly, by
back-propagating a combination of a reconstruction loss Lr, perception loss Lp and depth
loss Ld:

L = Lr + λp ∗ Lp + λd ∗ Ld. (4.13)

where λp and λd are hyper parameters and set to 0.01 in experiments.
Lr is a L2 reconstruction loss between the final image It predicted by the light field

network and the ground-truth Igt
t :

Lr = ||It − Igt
t ||22. (4.14)

Except for the reconstruction loss Lr for each rendered pixel, we supervise the rendered
image patches with perceptual loss:

Łp = ||ϕ(It) − ϕ(Igt
t )||, (4.15)

where ϕ is the definition of VGG network(we use VGG16 in this work).
Additionally, we regularize the gradient of the low-resolution depth image d̃t rendered

from the density volume σ of the first stage. Similarly to [145], we weight this cost with
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an edge-aware term using the ground-truth image gradient:

L̃d = 1
HV ×WV

∑
u,v

|∂ud̃t|e−||∂uĨgt
t || + |∂vd̃t|e−||∂v Ĩgt

t ||. (4.16)

The depth image d̃t can be expressed as a function of transmittance T and α values as
follows:

d̃t = 1∑N

z=1 Tzαz

N∑
z=1

Tzαztz. (4.17)

We note that the expressions of T and α are detailed in equation 5.4.

Figure 4.4 – The left side shows inputs and synthesized novel views on DTU dataset [16].
For given three input images, our method could generate novel views using a pre-trained
model trained on different scenes of that dataset. The right side shows inputs and syn-
thesized novel views on LLFF dataset [10]. For given three input images from a new
dataset(e.g. LLFF dataset [10]), our method could generate novel views using a pre-
trained model trained on a totally different dataset(e.g. DTU dataset [16]).

4.4 Experiments

4.4.1 Implementation details

We implemented our method with the PyTorch [146] framework on a Quadro RTX
5000 gpu. We optimize with the Adam [147] solver using learning rate 10−4 in training and
10−5 in fine-tuning. The depth of the convolutional feature volume is set to D = 32, and
the number of channels C = 32. For the MLP of the light field network, we use 5 layers
with a hidden dimension of 256, similar to NeRF [4]. For volumetric feature resampling,
we use the coarse and fine sampling strategy similarly to previous work (e.g. [4], [56]),
with N = 64 coarse samples and N = 32 fine samples.
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4.4.2 Dataset

ShapeNet V2 Following the settings in GRF [61] and PixelNeRF[56], we evaluate first
our synthesis results on the car and chair classes of dataset ShapeNet-V2[33]. Precisely, the
cars amount to 2151 training objects, 352 validation objects and 704 testing objects, while
the chairs count 4612 training objects, 662 validation objects, and 1317 testing objects.
Hence the testing objects are not seen in training. In the training split, each object has 50
images with size 128 × 128. For testing, there are 251 views per object. Our model takes
1 or 2 fixed views as input and infers novel views for evaluation.

DTU dataset We demonstrate our method for novel view synthesis from sparse inputs
using real-world multi-view datasets DTU benchmark [32]. Following the PixelNeRF [56]
and MVSNeRF [55] experimental settings, the data is split into 88 training scenes and
16 testing scenes, each scene including 49 images with original resolution of 1600 × 1200.
During testing, MVSNeRF selects 16 views as seen views and the remaining 4 views as
test views. We note that this is a challenging scenario due to the complex illumination,
geometry, and so on. In fact, the training scenes are limited, and the training and testing
scenes do not share any semantic similarities as can be seen in figure 4.14. The lighting
and backgrounds are also inconsistent between the scenes. Hence, this is a few-shot novel
view synthesis task that demands considerable scene category generalization as well.

Real Forward-facing dataset The real forward-facing data (LLFF [10]) contains 8
scenes and each scene has 20-62 images with a resolution of 1008 × 756. This dataset
has different camera distribution from the DTU dataset. We follow MVSNeRF’s [55]
experimental setup and select 3 center views as input.

Synthetic NeRF dataset The synthetic NeRF dataset [4] also has 8 scenes and images
in each scene has the same resolution 800 × 800. We follow [55] for evaluation and fine-
tuning settings.

4.4.3 Generalization on synthetic data

We first demonstrate our proposed first framework on synthetics dataset [33]. Table
4.3 shows a quantitative comparison of our method with the recent state-of-the-art in
few-shot view synthesis. We report the peak signal-to-noise ratio (PSNR) and structural
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similarity (SSIM) reconstruction metrics. We relay the numbers for methods TCO [20],
WRL [21], dGQN [148] SRN [33] and GRF [61] as they were reported in [61]. We report
the numbers of ENR [28] and PixelNeRF [56] from [56], and the numbers for LFN [6]
from their paper. Figure 4.9 shows a qualitative comparison of these methods. We obtain
the visualizations for PixelNeRF [56] and LFN [6] using their publicly available codes and
models.

The results confirm that the 3D-aware ones (e.g. ENR, SRN, etc) outperform the 2D-
based image-to-image novel view methods (e.g. TCO). Furthermore, 3D aware methods
that use implicit 3D representations (e.g. PixelNeRF, GRF, SRN) outperform generally
their counterparts relying on explicit 3D latent (e.g. ENR). Our method is hybrid, in that
it uses an explicit 3D latent, combined with a 2D implicit representation.

Method PSNR(Cars)↑ SSIM(Cars)↑ PSNR(Chairs)↑ SSIM(Chairs)↑
1-view 2-view 1-view 2-view 1-view 2-view 1-view 2-view

SRN[33] 20.72 22.94 0.85 0.88 22.89 24.48 0.91 0.92
LFN[6] 22.42 – 0.89 – 22.26 – 0.90 –
TCO[20] 18.15 18.41 0.79 0.80 21.27 21.33 0.88 0.88
WRL[21] 16.89 17.20 0.77 0.78 22.11 22.28 0.90 0.90
dGQN[148] 18.19 18.79 0.78 0.79 21.59 22.36 0.87 0.89
PixelNeRF[56] 23.17 25.66 0.90 0.94 23.72 26.20 0.91 0.94
GRF[61] 20.33 22.34 0.82 0.86 21.25 22.65 0.86 0.88
ENR[28] 22.26 – – – 22.83 – – –
Ours 22.31 23.82 0.87 0.91 22.52 24.10 0.90 0.92

Table 4.3 – Comparison of the average PSNR and SSIM of reconstructed images in the
ShapeNet-V2 [33] dataset. The higher the better for both PSNR and SSIM. SRN [33] and
LFN [6] require test time optimization.

Figure 4.5 and 4.5 show 360-degree novel view synthesis results in the ShapeNet-V2
[33] dataset. Figure 4.7 shows qualitative comparison with LFN [6] in the ShapeNet-V2
[33] dataset. As seen in the 4.7, compared with the baseline [6] on ShapeNet-V2 [33]
dataset, our method could generate an object with fewer artifacts and more details based
on only single input view. Moreover, Figure 4.10 and figure 4.11 show 360-degree novel
view synthesis results on a single input view in the ShapeNet-V2 [33] dataset.
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Inputs Rendered novel views

Figure 4.5 – Novel view synthesis of chairs from ShapeNet-V2 [33] given 2 input views
using our method.
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Inputs Rendered novel views

Figure 4.6 – Novel view synthesis of cars from ShapeNet-V2 [33] given 2 input views using
our method.
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Figure 4.7 – Qualitative comparison to [6] on novel view synthesis of chairs from ShapeNet-
V2 [33] using a single input view. Compared with the baseline [6] on ShapeNet-V2 [33],
our method could generate object with less artifacts and more details based on only single
input view.
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1 input view

2 input views

Input LFN PixelNeRF Ours GT

Figure 4.8 – Qualitative comparison of novel view synthesis of unseen chairs from a single
and two input views on ShapeNet-V2 [33].
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1 input view

2 input views

Input PixelNeRF Ours GT

Figure 4.9 – Qualitative comparison of novel view synthesis of unseen cars from a single
and 2 input views on ShapeNet-V2 [33]. Compared with the baseline [6] on ShapeNet-V2
[33], our method could generate an object with fewer artifacts and more details.
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Input Rendered novel views

Figure 4.10 – Novel view synthesis of chairs from ShapeNet-V2 [33] given a single input
view using our method.

Input Rendered novel views

Figure 4.11 – Novel view synthesis of cars from ShapeNet-V2 [33] given a single input
view using our method.

We then show the visual comparison in the ShapeNet-V2 [33] dataset. While our per-
formance is generally close to LFN across the benchmark, we note that LFN requires
auto-decoding test time optimization. It also requires training hypernetworks, which are
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prohibitively expensive in computing and memory, thereby limiting the resolution of the
reconstructed images. This hinders in turn the applicability of this method to real datasets
with images larger than 128 × 128. Conversely, we demonstrate the ability of our method
to model complex real scenes with bigger images using moderate computational resources,
while providing optimization-free single forward pass prediction. We note that SRN re-
quires test-time optimization as well.

4.4.4 Generalization on real data

In this section, we demonstrate that our method is capable of reconstructing novel
views for real-world scenes unseen at training using the DTU dataset [32]. Following the
PixelNeRF [56] experimental settings, the data is split into 88 training scenes and 16
testing scenes, each scene including 49 images with resolution 300 × 400. We note that
the training scenes are limited, and the training and testing scenes do not share any
semantic similarities as can be seen in figure 4.14. The lighting and backgrounds are also
inconsistent between the scenes. Hence, this is a few-shot novel view synthesis task that
demands considerable scene category generalization as well.

Table 4.6 shows a quantitative comparison of our method with the recent state-of-
the-art in optimization-free few-shot view synthesis. We report the peak signal-to-noise
ratio (PSNR), structural similarity (SSIM), and learned perceptual image patch similarity
(LPIPS) reconstruction metrics, for the same 3 and 6 view inputs averaged across the
same testing scenes. For a fair comparison, we report the performance of PixelNeRF
[56] from their paper, and the numbers of methods MVSNeRF [55] and SRF [129] from
RegNeRf [54], as the authors in the latter reproduce the performance of these methods in
PixelNeRF’s DTU setup. Figure 4.7 shows a qualitative comparison between our method
and methods PixelNeRF [56] and MVSNerf [55] on synthesized views from testing scenes
given the same inputs. We produce the results of PixelNeRF using their publicly available
code and DTU model. For MVSNeRF, as their original model was trained on a different
DTU setup, we fine-tune their model on the PixelNeRF DTU setup similarly to RegNeRF
[54].
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Method PSNR↑ SSIM↑ LPIPS↓
3 6 3 6 3 6

PN[56] 18.74 21.02 0.618 0.684 0.401 0.340
MN[55] 16.33 18.26 0.602 0.695 0.385 0.321
Ours 19.86 21.36 0.657 0.697 0.382 0.355

Table 4.4 – Quantitative comparison of reconstructed images in the DTU [32] dataset
without test time optimization.

Table 4.9 shows a quantitative comparison of our method with the recent few-shot
novel view synthesis state-of-the-art with test time optimization. We outperform all meth-
ods in the PSNR and SSIM metrics, including conditional baseline PixelNeRF [56] and
MVSNeRF [55], and unconditional baselines DietNeRF [50] and RegNeRF [52].
Figure 4.12 shows a qualitative comparison to MVSNeRF and PixelNeRF with 6 input
views after finetuning. We obtain overall comparable performances with generalizable
methods [55], [56]. We recall again that competition methods here require renderings that
are orders of magnitude slower than ours.

Method PSNR↑ SSIM↑ LPIPS↓
3 6 3 6 3 6

PixelNeRF [56] 17.33 21.52 0.548 0.670 0.456 0.351
MVSNeRF [55] 16.26 18.22 0.601 0.694 0.384 0.319
DietNeRF [50] 10.01 18.70 0.354 0.668 0.574 0.336
RegNeRF [52] 15.33 19.10 0.621 0.757 0.341 0.233
Ours 20.72 22.60 0.677 0.786 0.376 0.335

Table 4.5 – Quantitative comparison of reconstructed images in the DTU [32] dataset
with test time optimization.
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PixelNeRF MVSNeRF Ours GT
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PixelNeRF MVSNeRF Ours GT

Figure 4.12 – Qualitative comparison of novel view synthesis of unseen scenes without
test time optimization from 6 input views on the DTU dataset [32].

Although PixelNeRF and MVSNeRF are based on implicit radiance fields and hence
require more evaluations and time for rendering, our implicit light field-based method
provides competitive performances in comparison. In the single forward prediction setting,
our method is overall second to PixelNeRF in PSNR, while providing much faster inference
speed. As illustrated in the visual comparison in figure 4.12, we manage to reproduce
the shape and appearance of the scene to a good extent and also recover from some of
the competition’s failures. Our method appears to be better in fact at preserving the
coarser structure of the scene. Specifically, some elements of the ground truth that we
manage to reproduce are not recovered by the competition, such as the pigtail in the
last row, the background table’s yellow lines, and the rabbit’s eyes. Although we found
MVSNeRF encounters multiple failures compared to PixelNeRF, it is apparent that NeRF
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base methods (PixelNeRF and MVSNeRF) are able to produce some relatively higher
frequency details, albeit at a considerably higher rendering cost.

Table 4.9 shows a quantitative comparison of our method with the recent few-shot
novel view synthesis state-of-the-art with test time optimization. We report PSNR, SSIM,
and LPIPS for the same 3 and 6 input views averaged over the same testing objects. All the
method’s numbers on the PixelNeRF DTU setup are reported as reproduced in RegNeRF
[54]. Methods mip-NeRF [126], DietNeRF [50] and RegNeRF [54] are optimized per scene
only, while PixelNeRF [56], MVSNeRF [55] and ours are trained on the DTU training set
then finetuned per scene. Following the experimental setting in RegNeRF, only the input
views were used for fine-tuning. Similarly to the finetuning of MVSNeRf and PixelNeRF,
we reduce the learning rate from 10−4 to 10−5 and constrain the finetuning within 10k
iterations for better performance. Figure 4.13 shows a qualitative comparison to MVSNeRf
and PixelNeRF given 6 input views after finetuning.

In the 3-input view case, we outperform all methods in the PSNR and SSIM metrics.
We obtain overall comparable performances with generalizable (PixelNeRF and MVS-
NeRF) and single scene optimization (RegNeRF) NeRFs. Figure 4.13 shows that we can
achieve relatively comparable results to the encoder-endowed NeRF approaches after op-
timization. We recall again that competition methods here require renderings that are
orders of magnitude slower than ours.
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PixelNeRF MVSNeRF Ours GT
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PixelNeRF MVSNeRF Ours GT

Figure 4.13 – Qualitative comparison of novel view synthesis with test time optimization
using 6 input views on the DTU dataset [32].

4.4.5 Generalization across different datasets

In this section, we demonstrate the results of our proposed second framework. Table
4.6, Table 4.7, and Table 4.8 shows a quantitative comparison of our method with the
recent state-of-the-art on optimization free few-shot view synthesis from different datasets,
respectively. We report PSNR, SSIM, and LPIPS for the 3 inputs averaged across the same
testing scenes.

Specifically, we trained our model on the DTU dataset following MVSNeRF [55] and
PixelNeRF [56] experimental settings. Table 4.6 demonstrate quantitative evaluations of
PixelNeRF [56], IBRNet [62] and MVSNeRF [55] from their paper, and the numbers of
SRF [129] from RegNeRF [54] paper, as the authors in the latter reproduce the perfor-
mance of these methods in DTU setup. Although the above baselines are based on implicit
radiance fields and hence require more evaluations and time for rendering, our implicit
light field-based method provides more competitive performances in comparison. In the
single forward prediction setting, our method achieves state of art performance, while
providing faster inference.
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Method PSNR↑ SSIM↑ LPIPS↓
SRF [129] 15.32 0.671 0.730
PixelNeRF [56] 19.31 0.789 0.38 2
MVSNeRF [55] 26.63 0.931 0.168
IBRNet [62] 26.04 0.917 0.191
Ours 27.29 0.966 0.092

Table 4.6 – Comparison of the average PSNR, SSIM, and LPIPS of reconstructed images
on the DTU [32] dataset. The higher the better for both PSNR and SSIM. The lower the
better for LPIPS. The bold represents the best performance.

To further evaluate our proposed methods on generalizable tasks, we follow MVSNeRF
[55] protocol, i.e. trained on DTU data while tested on different Real Forward-facing
dataset (LLFF) [10] and NeRF synthetic dataset [4]. Table 4.7 reports evaluations on
Table 4.8 reports evaluations on NeRF synthetic dataset [4] and Real Forward-facing
dataset (LLFF) [10]. Except for evaluations on PixelNeRF and MVSNeRF, we added
evaluations with recent light field network GPNR [68] on LLFF data. We report GPNR
evaluation results from GPNR paper and supplementary file. Please noted that even
though GPNR [68] reaches higher evaluations on the DTU dataset (28.50/0.932/0.167 in
PSNR/SSIM/LPIPS), it requires 10 views inputs, while other baselines and our methods
only take 3 views as inputs. Table 4.7 and Table 4.8 demonstrate that our method reaches
the best performance when evaluated on NeRF synthetic dataset [4] and Real Forward-
facing dataset (LLFF) [10].

Method PSNR↑ SSIM↑ LPIPS↓
PixelNeRF[56] 11.24 0.486 0.671
MVSNeRF [55] 21.93 0.795 0.252
IBRNet [62] 21.79 0.786 0.279
GPNR [68] 20.69 0.808 0.281
Ours 23.38 0.858 0.203

Table 4.7 – Comparison of the average PSNR, SSIM, and LPIPS of reconstructed images
on Real Forward-facing dataset (LLFF)[10] without test time optimization using a model
trained on DTU dataset. The higher the better for both PSNR and SSIM. The lower the
better for LPIPS. The bold represents the best performance.

Table 4.9, Table 4.11 and Table 4.10 show quantitative comparisons between our
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Method PSNR↑ SSIM↑ LPIPS↓
PixelNeRF[56] 7.39 0.658 0.411
MVSNeRF [55] 23.62 0.897 0.176
IBRNet [62] 22.44 0.874 0.195
GPNR [68] 24.10 0.933 0.097
Ours 25.89 0.948 0.090

Table 4.8 – Comparison of the average PSNR, SSIM, and LPIPS of reconstructed images
on NeRF synthetic dataset [4] without test time optimization using the model trained on
the DTU dataset. The higher the better for both PSNR and SSIM. The lower the better
for LPIPS. The bold represents the best performance.

method and the recent state-of-the-art method with test time optimization. In the fine-
tuning stage, we reduce the learning rate from 10−4 to 10−5.

We first evaluate our per-scene fine-tuning results on DTU data [16]. Except for com-
parison with generalizable methods ([55], PixelNeRF [56], IBRNet [62]), we also compare
with per-scene fine-tuning methods, including NeRF [4], DietNeRF [50] and RegNeRF
[54]. All experiments follow MVSNeRF protocol to perform fine-tuning experiments and
evaluation experiments. Specifically, our approach is fine-tuned within a minimal time
(15 minutes). Table 4.9 demonstrates quantitative evaluations on the DTU dataset with
per-scene finetuning. We reported numerical results of NeRF, MVSNeRF, and IBRNet
from MVSNeRF paper [55], where NeRF is fine-tuned with 10 hours, IBRNet is fine-tuned
with 1 hour and MVSNeRF is fine-tuned with 15 minutes. In addition, we report fine-
tuning results of MipNeRF [126], DietNeRF [50], PixelNeRF [56] and RegNeRF [54] from
RegNeRF paper. As we can see in Table 4.9, for a given task on novel view synthesis from
few shot inputs, generalizable method (e.g. PixelNeRF, IBRNet, and MVSNeRF) usually
outperforms single scene optimization methods (e.g. NeRF, DietNeRF and RegNeRF) on
average. Moreover, our approach obtains overall comparable performances with general-
izable methods (SRF, IBRNet, and MVSNeRF) and single scene optimization methods
(NeRF, DietNeRF and RegNeRF) on the DTU dataset, see Table 4.9.

In addition, Table 4.10 and Table 4.11 demonstrate our fine-tuning results on NeRF
synthetic dataset [4] and Real Forward-facing dataset (LLFF)[10]. Noted that all methods
in Table 4.10 and Table 4.11 are fine-tuned using a model pre-trained on DTU data.
Compared with generalizable methods, our methods achieve better performance with test
time optimization.
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Method PSNR↑ SSIM↑ LPIPS↓
SRF ft[129] 15.68 0.698 0.281
MVSNeRF ft[55] 28.51 0.933 0.179
IBRNet ft [62] 31.35 0.956 0.131
PixelNeRF ft[56] 18.95 0.710 0.269
NeRF ft[4] 27.01 0.902 0.263
MipNeRF ft[126] 8.68 0.571 0.353
DietNeRF ft[50] 11.85 0.633 0.314
RegNeRF ft[54] 18.89 0.190 0.112
Ours ft 27.86 0.967 0.043

Table 4.9 – Comparison of the average PSNR, SSIM and LPIPS for synthesized novel
views on the DTU [32] dataset with test time optimization. The higher the better for
both PSNR and SSIM. The lower the better for LPIPS. The bold represents the best
performance.

Method PSNR↑ SSIM↑ LPIPS↓
MVSNeRF ft [55] 25.45 0.877 0.192
IBRNet ft [62] 24.88 0.861 0.189
Ours 26.55 0.904 0.111

Table 4.10 – Comparison of the average PSNR, SSIM, and LPIPS for synthesized novel
views on the Real Forward-facing dataset [10] with test time optimization. The higher the
better for both PSNR and SSIM. The lower the better for LPIPS. The bold represents
the best performance.

Method PSNR↑ SSIM↑ LPIPS↓
MVSNeRF ft [55] 27.07 0.931 0.168
IBRNet ft [62] 25.62 0.939 0.111
Ours 27.77 0.956 0.054

Table 4.11 – Comparison of the average PSNR, SSIM and LPIPS of reconstructed images
on the NeRF synthetic dataset [4] with test time optimization. The higher the better for
both PSNR and SSIM. The lower the better for LPIPS. The bold represents the best
performance.

GT PixelNeRF MVSNeRF Ours MVSNeRF-ft Ours-ft
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GT PixelNeRF MVSNeRF Ours MVSNeRF-ft Ours-ft

Figure 4.14 – Qualitative comparison of novel view synthesis of unseen scenes with and
without test time optimization from 3 input views on the DTU dataset [32]. For 3 input
views, our method could generate more accurate sharp details.
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Figure 4.15 – Qualitative comparison of rendered novel view on unseen scenes from the
NeRF synthetic dataset [4]. From the left to the right are the ground truth, novel view
rendered by IBRNet without test time optimization, novel view rendered by MVSNeRF
without test time optimization, our result without test time optimization, novel view of
MVSNeRF and our result with test time optimization, respectively.
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Figure 4.16 – Qualitative comparison of rendered novel view synthesis on unseen scenes
from the Real Forward-facing dataset [10]. From the left to the right are the ground truth,
novel view rendered by IBRNet without test time optimization, novel view rendered by
MVSNeRF without test time optimization, our result without test time optimization,
novel view of MVSNeRF and our result with test time optimization, respectively.

For qualitative comparison, we reproduce baseline methods’ results with their provided
code and pre-trained model. Figure 4.14 demonstrates a comparison with PixelNeRF and
MVSNeRF on the DTU dataset. Our method could achieve much better results before
test time optimization, i.e. more accurate shapes and edges, clear texture details, etc.. On
per-scene fine-tuning comparison, we show the qualitative evaluation of MVSNeRF [55]

80



4.4. Experiments

since it achieves better performance than the other one [56]. Figure 4.14 demonstrates that
MVSNeRF achieves much better performance after test time optimization than before on
the testing scene. Our results also improve after a short time(15 minutes) of fine-tuning
and achieve relatively comparable results to the encoder-endowed NeRF approaches after
optimization. We recall again that competition methods here require renderings that are
orders of magnitude slower than ours.

Figure 4.15 demonstrates the qualitative comparison between our method and IBRNet
[62] and MVSNeRF [55] on the NeRF synthetic dataset [4]. Even though only using a pre-
trained model on the DTU dataset, our method achieves much better visual results than
baselines without test-time optimization [55], [62], especially at preserving the structure
of the scene and more robust to the shiny parts. When given short-time optimization(e.g.
15 minutes), our method could render less noisy novel views and outperform the baseline
methods.

Figure 4.16 shows more visual results on the Real Forward-facing dataset [10]. Before
fine-tuning, our methods manage to reproduce the shape and appearance of the scene to
a good extent and also recover from some of the competition’s failures, i.e. the leaves in
Figure 4.16. As illustrated in the visual comparison in Figure 4.16, the fine-tuning process
will recover more details in rendered novel view, i.e. the color of the trunk in the third
row.

4.4.6 Computation complexity

As shown in Table 4.12, compared with PixelNeRF[56] and MVSNeRF [55], our
method requires less inference time on the DTU dataset with 3 input views. Table 4.12
also demonstrates model sizes to complete the complexity comparison. We note that for
our generalizable NeRF competition (e.g. PixelNeRF), the main computational bottleneck
is the radiance field inference (MLP querying 192 points per ray to render volumetrically).
Hence, our model circumvents this bottleneck by modeling a neural light field instead of
a radiance field (our MLP only needs to query a ray once).
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PixelNeRF[56] MVSNeRF[55] Ours
Clock time 27.01 10.43 0.2
Param 28.162M 0.34M 0.57M
Flops 123T 61.74G 39.86G

Table 4.12 – Comparison of model complexity on DTU dataset [32].

4.4.7 Ablations and analysis

We propose here an ablative analysis of our method from the DTU [32] and shapeNet-
V2 [33] datasets. Specifically, we disable the light field function (ours w/o light field),
and we render the final image directly from the target view aligned convolutional feature
volume. We also reproduce our method without using the ray coordinates (ours w/o ray
coordinates).

w/o lf Ours w/o lf Ours

Figure 4.17 – Qualitative ablation of our method on unseen DTU [32] scenes (6 input
views).
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w/o lf Ours w/o lf Ours

Figure 4.18 – Qualitative ablation of our method on unseen ShapeNet-V2 [33] cars (1
input view).

4.5 Conclusion
We proposed a method for generating novel views from a few input-calibrated images

with a single forward pass prediction deep neural network. We learn an implicit neural
light field function that models ray colors directly. In comparison to [6], we proposed a
more efficient local ray conditioning and an optimization-free inference. Our method com-
bines the advantages of 3D-aware convolutional approaches and implicit representations
and requires only image data in training. We demonstrated our method successfully on
synthetic and real benchmarks for few-shot novel view synthesis. Our method outper-
forms the convolutional baselines (see Table 4.3) and provides competitive performances
compared to locally conditioned radiance fields (e.g. PixelNeRF [56]) while being much
faster to render.
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Chapter 5

FEW SHOT MULTI-HUMAN

RECONSTRUCTION AND NOVEL VIEW

SYNTHESIS

5.1 Introduction
Human reconstruction and rendering is a fundamental problem in computer vision

and graphics enabling various applications, e.g. human modeling, behavior analysis etc.
Recent research has explored generating human shapes and novel views from diverse data,
such as single images ([79], [80], [82]), multiple images ([90], [91]), RGB videos ([84], [149])
or RGB-D data ([86], [87]). However, these tasks are mainly focused on a single human or
generation from videos. Generating multiple human shapes and appearances from sparse
multi-view images is much less explored, which exhibits significant potential by providing
3D cues and requires less memory in computation and transmitting.

Despite the exhibited great potential, generating 3D shapes and radiance of multiple
humans from sparse images remains challenging. One part of challenge comes from the
complexity and variability of multiple human appearances, poses, occlusions, and inter-
actions. One line of existing methods targeting this require segmentation masks and a
pre-scanned template mesh ([119], [121]), rely on a coarse body model ([122], [123]), or
require temporal information ([3], [122]). However, most of those work has been leveraged
to obtain geometry and appearance from monocular video ([150], [151]), RGB-D video
[152], and sparse multi-view video ([3], [99], [101]–[103], [153]–[155]). None of them were
designed to handle multi-human’s increased geometric complexity and occlusion from
sparse static multi-view images. The other line of solutions simultaneously tackle the
novel-view-synthesis and geometry-reconstruction problems by combining implicit signed
distance functions (SDFs) ([74]), with differentiable rendering ([4], [34], [71], [77]). This
approach has the advantage of producing geometry with renderings from novel viewpoints
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that could capture complex surface/light interactions, increasing the scope of applications.
We take an insight from both the human reconstruction methods and hybrid surface and
volumetric reconstruction approach, make an assumption that utilizing human templates
could provide 3D geometry cues for higher quality surface reconstruction and appear-
ance rendering, which allows modeling the complexity and variability of multiple human
appearances.

Except the challenges in multi-human settings, the other part of challenge lies in
the static sparse inputs setting lacking sufficient geometry and appearance informa-
tion. Recent approaches tackle sparse inputs utilizing image encoder [56], depth reg-
ularization ([51], [52], [59]), ray density regularization [53], etc. However, those meth-
ods are mainly focused on general objects, either requiring pre-training on a large-scale
dataset ([50], [56]) or ignoring the training efficiency [52]. When generating 3D shapes
and radiance of multi-human from sparse images, the human templates(e.g. A Skinned
Multi-Person Linear Model (SMPL) [106]) becomes essential to enhance the geometry
estimation in surface and volume rendering.

In this work, we address the problem of generating 3D shapes and radiance of multiple
humans from sparse multi-view images. Our key insight is that human-specific geometric
constraints can be leveraged to tackle the challenging sparse-view setting. Specifically, we
first obtain an SMPL body model from the input data and use this to train a geometry-
only implicit SDF network, where we define the multi-human surface as the zero-level set
of the SDF. The geometry network is optimized using multi-view images by leveraging
hybrid surface and volume rendering [34] along with uncertainty estimation ([51], [59]),
where the SMPL meshes are treated as noisy estimations. To achieve higher rendering
quality from sparse inputs, we additionally propose a patch-based regularization that
guarantees consistency across different rays and a saturation regularization that ensures
consistency for variable image illuminations within the same scene.

We evaluate our method on both real-world multiple human datasets (CMU Panop-
tic [1], [2]) and synthetic datasets (MultiHuman [3]) both quantitatively and qualitatively.
We demonstrate results on 5,10,15 and 20 training views and achieve state-of-the-art per-
formance in terms of surface reconstruction and image quality in all settings.

In summary, our contributions include:
— We propose the first neural implicit surface and volume rendering for multiple

humans using a sparse set of static images;
— To address the problem of occlusion, we propose the use of SMPL for geometric
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regularization;
— we propose a patch-based ray consistency regularization and an image saturation

regularization that ensures illumination consistency across views.

Figure 5.1 – With the SMPL initialization, our method could reconstruct high-quality 3D
shapes and appearances of multi-humans by training only on sparse input views. It also
enables editing applications on 3D space during rendering, including rotation, translation,
scaling, and removal.

5.2 Related work

Single-Human Reconstruction. There is a vast amount of work on reconstructing 3D
humans from single images ([78]–[82]), monocular video ([83]–[85]), RGB-D data ([86]–
[88]) and multi-view data ([89]–[92]). We concentrate here on the multi-view setting.
High-end multi-view capture systems can achieve reconstructions of outstanding quality
([2], [90], [91], [156]–[158]), but require a complex studio setup that is expensive to build
and not easily accessible. To alleviate this, numerous works have been proposed that use
instead a sparse set of RGB cameras (e.g. between 2 and 15), where the lack of views and
presence of wide baselines is compensated by tracking a pre-scanned template ([93]–[96],
[159]), using a parametric body model ([97], [98]), or more recently, by the use of deep
learning ([92], [99]–[103], [153]–[155]).
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Multi-Human reconstruction. In contrast, a limited number of works have addressed
the problem of multiple human reconstruction. This is a difficult task since the presence of
several people increases the geometric complexity of the scene, introduces occlusions, and
amplifies ambiguities such that commonly used features like color, edges, or key points
cannot be correctly assigned.

For single images and video, the problem has been mainly tackled by regressing the
parameters of the SMPL [106] body model ([105], [107]–[117]). Although this can work
robustly with as little as one view, the reconstructions are very coarse and cannot ex-
plain hair, clothing, and fine geometric details. The only exception is the work of Mustafa
et al. [118], which performs model-free reconstruction of multiple humans by combining
an explicit voxel-based representation with an implicit function refinement. However, the
method requires training on a large synthetic dataset of multiple people which hinders
generalization. Our work, on the other hand, performs 3D reconstructions, produces ren-
derings of novel views, and can generalize to arbitrary multi-human scenes.

Multi-view capture setups can help resolve depth ambiguities and some of the oc-
clusions. Classic methods for estimating multiple humans rely heavily on segmentation
masks and template mesh tracking ([119]–[121]). We avoid the use of segmentation masks
by adopting volumetric rendering for implicit surfaces [34]. More recently, deep learning-
based approaches were proposed, but they either require temporal information ([3], [122]–
[124]), pre-training on a large dataset ([3]) which cannot work on general scenes, or a coarse
body model ([122]–[124]) which lacks geometric detail. Here, we focus on the multi-human
setting on static scenes and propose a method that recovers accurate reconstructions and
at the same time produces renderings of novel viewpoints.

Neural surface and radiance rendering. When the goal is to generate free-viewpoint
video, image-based rendering has been considered as an alternative or complement to 3D
reconstruction ([95], [102], [103], [153]–[155], [160]).

Recently, NeRF ([4]) demonstrated impressive rendering results by representing a 3D
scene as a neural radiance field, trained only with calibrated multi-view images through
the use of volume rendering. However, due to the unconstrained volumetric representation
and self-supervised training on RGB values, reconstructed geometries tend to be too noisy
to be useful for 3D applications.

To recover more accurate 3D geometry along with appearance, DVR [72], IDR [71],
and NLR [35] propose to learn an implicit representation directly from multi-view images
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but require accurate object masks to work. To avoid the need for segmentation masks,
recent works propose to combine implicit representations with volume rendering ([34],
[76], [77]).

These methods show remarkable reconstruction results but struggle when the number
of input views is low. Implicit neural representations from sparse views can be obtained
by using pre-trained pixel-aligned features ([56], [161]–[166]), but this requires ground-
truth geometry and is limited by the training data, struggling to generalize to new scenes.
Sparse variants that do not require pixel-aligned features were proposed in ([52], [53],
[167]). InfoNeRF [53] regularizes sparse views by adding an entropy constraint on the
density of the rays, RegNeRF [52] uses a patch-based regularizer over generated depth
maps, and SparseNeuS [167] uses a multi-scale approach along with learned features that
are fine-tuned on each scene.

Our approach builds on NeuS [34], and tackles the sparse view challenge by adding
human-specific geometric priors [78] and novel regularizations.

5.3 Methodology

Figure 5.2 – Overview. We address the multi-human reconstruction problem by regu-
larizing the geometry using SMPL, along with uncertainty-based SDF training and novel
photo-metric regularizations designed to compensate for the lack of views.

Given a sparse set of views {Ii}N
i=1 of a multi-human scene with camera intrinsics and

extrinsic {Ki, [R|t]i}, our goal is to reconstruct geometry and synthesize the appearance
of multiple humans from arbitrary viewpoints. The pipeline is illustrated in Fig. 5.3. Our
approach builds on NeuS [34], which combines an implicit signed distance representation
for geometry with volumetric rendering.
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In order to solve the challenging case of multiple humans occluding each other, we
hypothesize that a naive RGB reconstruction loss is insufficient and propose to use a
strong geometric prior before training with multi-view images. Towards this, we first train
the implicit SDF network independently by leveraging off-the-shelf SMPL estimations
(Sec. 5.3.2). To handle details and represent appearance, the geometry network is then
fine-tuned considering foreground and background objects. Moreover, we propose the use
of hybrid bounding box rendering to handle the multi-human setting (Sec. 5.3.3).

Additionally, we define an explicit SDF constraint based on the uncertainty of the
SMPL estimations, together with a ray consistency loss, and a saturation loss to improve
image rendering quality for sparse views (Sec. 5.3.4).

5.3.1 Scene representation and rendering

We define a multi-human surface S as the zero-level set of a signed distance function
(SDF) fθ0 : R3 → R, encoded by a Multilayer Perceptron (MLP) fθ0 with parameters θ0:

S =
{
p ∈ R3|fθ0(p) = 0

}
. (5.1)

Following NeuS ([34]), we train the geometry network fθ0 along with a color network
cθ1 , with parameters θ1, mapping a point p to color values (more details in Sec. 5.3.3).
Combining the SDF representation with volume rendering, we approximate the color along
a ray r by:

C(r) =
N∑

i=1
w(pi)cθ1(pi), (5.2)

w(pi) = T (pi)α(pi), (5.3)

T (pi) =
i−1∏

j

(1 − α(pj)), (5.4)

where pi = o + tiv is a sampled point along the ray r starting at camera center o with
direction v; cθ1(pi) is the predicted color at pi, w(pi) is the weight function, T (pi) is
the accumulated transmittance, and α(pi) is the opacity value. Following NeuS, α(pi) is
defined as a function of the signed distance representation:

α(pi) = max

(
Φ(fθ0(pi)) − Φ(fθ0(pi+1))

Φ(fθ0(pi))
, 0
)

(5.5)
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where fθ0(pi) is the signed distance of pi, Φ(fθ0(x)) = (1 + e−sx)−1 is the cumulative
distribution function (CDF) of the logistic distribution, and s is a learnable parameter
(see [34] for more details).

5.3.2 Geometric prior

Typically, the SDF function fθ0 and the color function cθ1 are simultaneously optimized
by minimizing the difference between the rendered and ground-truth RGB values ([4], [34],
[71]). While this allows for training without the need for geometric supervision, it has been
noted that a photometric error alone is insufficient for the challenging sparse-view setting
([51], [59]), since there are not enough images to compensate for the inherent ambiguity
in establishing correspondences between views. For the multi-human setting this becomes
more problematic, as correspondences are even more ambiguous due to clutter.

To address this, we propose to regularize using geometric information by first inde-
pendently training fθ0 using off-the-shelf SMPL fittings, which can be robustly computed
from the input data. We train this network in a supervised manner by sampling points
with their distance values as in [74].

Given that SMPL can only coarsely represent the real surface, we treat this geometry as
a ’noisy’ estimate that will be later improved upon using the multi-view images. Preparing
for this, and inspired by ([51], [59]), we model the SMPL “noise” as a Gaussian distribution
N (0, snoise(pj)2) with standard deviation snoise(pj), and train fθ0 to output an estimate
of the uncertainty snoise(pj) along with the distance value; that is, fθ0(pj) = (dj, snoise).
The geometry network fθ0 is then optimized by minimizing the negative log-likelihood of
a Gaussian:

Ls = 1
n

n∑
j=1

log(snoise(pj)2) +
(dj − d′

j)
2

snoise(pj)2

 , (5.6)

where n is the number of sampled points, dj is the predicted SDF value for point pj, and
d′

j is the signed distance sampled directly from the SMPL meshes.

5.3.3 Hybrid rendering with geometry constraints

To work with unbounded scenes, NeRF++ proposed to separately model the fore-
ground and background geometries using an inverted sphere parameterization, where the
foreground is parameterized within an inner unit sphere, and the rest is represented by
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an inverted sphere covering the complement of the inner volume. We follow this and train
separate models for foreground and background. Specifically, we use a simple NeRF [4]
architecture for the background and train the foreground model using fθ0 and the color
network cθ1 , where the output color C(pi) is predicted as:

C(pi) = cθ1(γ(pi), γ(vi), f0, f1). (5.7)

Here, γ(pi) and γ(vi) are the positional encodings [4], [168] of the sampled point pi and
its ray direction vi, and f0 includes the gradients of predicted SDF and predicted feature
from the geometry network fθ0 [71]. Additionally, to inject geometric prior knowledge
into the appearance network we condition cθ1 on the rasterized depth feature from the
corresponding SMPL mesh.

For reconstructing multiple humans, one difficulty in modeling the foreground as in
NeRF++ is that the bounding sphere will contain a large empty space, making it costly
to search for the surface during hierarchical sampling and adding non-relevant points to
the training. To resolve this, we propose to use instead multiple 3D bounding boxes as the
foreground volume. Specifically, we define a bounding box Bj for the j−th human using
the SMPL fittings, with minimum and maximum coordinates [Bj

min − δ, Bj
max + δ], where

Bj
min and Bj

max are the minimum and maximum coordinates of SMPL along the x, y, z

axes respectively, and δ is a spatial margin (here we set to 0.1). The foreground volume
is then defined as B = ∪j=1..MBj, and we define b(pi) as:

b(pi) =
1, pi ∈ B,

0, pi /∈ B
(5.8)

For points that fall inside the foreground, p ∈ B, we calculate the opacity value αF G(pi)
using the predictions of fθ0(pi) according to Equation 5.5, and the color C(pi)F G using
cθ1 . The points that fall outside the bounding box are modeled as background using a
NeRF model, where the opacity is calculated as αBG(pi) = 1 − eσ(pi)δ(pi), with δ and σ

defined as in [4], and the color CBG is predicted using αBG. Given a point pi, its color
and opacity values are updated as follows:

C(pi) = b(pi)CF G(pi) + (1 − b(pi))CBG(pi) (5.9)
α(pi) = b(pi)αF G(pi) + (1 − b(pi))αBG(pi) (5.10)

Finally, following [169], given a ray r with n sampled points {pi = o + tiv}n
i=1, the
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color is approximated as:

C(r) =
∑N

i=1 W (pi)C(pi)∑N
i=1 W (pi)

, (5.11)

where W (pi) = T (pi)α(pi), T (pi) = ∏i−1
j (1−α(pj)). This function allocates higher weights

to points near the surface and lower weights to points away from the surface and is used
to improve the rendering quality.

5.3.4 Optimization

Given a set of multi-view images, and a pre-trained SDF network f ′
θ0 (Sec. 5.3.2), we

minimize the following objective:

L = Lr + λeikLeik + λsdfLsdf + λrLr + λsLs, (5.12)

where Lr is a L1 reconstruction loss between the rendered image Ir and the ground-truth
I

′
r and Leik is the Eikonal loss [170].

Additionally, we propose to use an uncertainty-based SDF loss Lsdf, a novel ray con-
sistency loss Lr, and saturation loss Ls which are explained in the following. Fig. 5.3
illustrates the losses involved in the training of our method. Rays with available ground-
truth pixels are supervised with pixel colors. Sub-pixel rays without available ground truth
are supervised using color and density pseudo-ground-truth from neighboring rays.

Figure 5.3 – Illustration of our losses. Rays without ground truth are supervised using our
ray consistency loss. For rays corresponding to pixels in the training data, we supervise
points using a combination of SDF losses and color losses.
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SDF Loss. As detailed in Sec. 5.3.2, we treat the SMPL mesh as a noisy estimate of
the real surface. When the sampled points are not within the foreground box B, or the
absolute sdf value predicted by the geometry network fθ0 is greater than a pre-defined
threshold ξ0, or the standard deviation sj = snoise(p)j is bigger than the threshold ξ1, we
use the following loss:

Lsdf =


1
n

∑n
j=1(log(s2

j) + (d′
j−dj)2

s2
j

),
s.t.(pi /∈ B, |dj| > ξ0 or sj > ξ1)

0, otherwise

(5.13)

where dj and d
′
j are the SDF predictions from the final fθ0 and initial network f̃θ0 ,

and ξ0, ξ1 are set to 0.2 and 0.5, respectively. This function encourages the network to
maintain geometry consistency during learning while allowing some freedom to learn the
details encoded in the images.

Ray Consistency Loss. We introduce the following ray consistency loss Lr to ensure
photometric consistency across all images under sparse views:

Lr = ||C(ri) − C(r∗)||1 + DKL(P (ri)||P (r∗)) (5.14)

where C(ri) is the ground truth color of a randomly sampled ray ri on a small patch and
C(r∗

p) denotes the rendered color of an interpolated ray on a small patch. Inspired by [53],
we introduce a KL-divergence regularization for the ray density, where P (ri) = αi∑N

i=1 ai
.

The goal of this loss is to ensure consistency and smoothness of unseen rays by con-
straining the interpolated rays on a small patch to have a similar distribution, both for
color and density.

Saturation loss. Finally, we observe that real-world images might contain variable
illumination or transient occluders among different views (this is the case for example
in the CMU Panoptic dataset ([1], [2])), which can degrade the rendering quality due
to inconsistency across views. Instead of learning complex transient embeddings as in
[171], we propose to convert the RGB image into the HSV space and calculate the L1
reconstruction loss of the saturation value between the rendered image and the ground
truth: Ls = ||Is − Igt

s ||1.

94



5.4. Experiments

5.3.5 Network structure

Fig. 5.4 shows the architecture of our network in more detail. The geometry MLP has
8 layers of width 256, with a skip connection from the input to the 4th layer. The radiance
MLP consists of an additional 4 layers of width 256 and receives as input the positional
encoding of the point γ(p), positional encoding of the view direction γ(v), rasterized depth
feature f1, and gradient of the SDF n(p). All layers are linear with ReLU activation, except
for the last layer which uses a sigmoid activation function. During training, we sample
512 rays per batch following the coarse and fine sampling strategy of ([4], [34]). For a fair
comparison, we unified the number of sampled points on each ray for all methods, namely,
each ray with N = 64 coarsely sampled points and N = 64 finely sampled points for the
foreground, and N = 32 for the background.

Figure 5.4 – Network architecture. p is a sampled point along a ray. γ is the positional
encoding [4], [168]. n(p) is the gradient of predicted sdf w.r.t the input point p. v is the
direction of the ray, and f1 the rasterized depth feature.

5.4 Experiments

5.4.1 Implementation details

In this section, we first provide implementation details (Sec. 5.4.1), and next demon-
strate the performance against baselines on real (Sec. 5.4.3) and synthetic ( 5.4.4) datasets,
where both are tested in terms of novel-view synthesis and visual reconstructions and the
latter is used to quantify geometry error. Finally, we show ablation studies (Sec. 5.4.5)
that demonstrate the importance of the proposed components.

Our method was implemented using PyTorch [146], and trained on a Quadro RTX
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5000 GPU. We use ADAM optimizer [147] with a learning rate ranging from 5 × 10−4

to 2.5 × 10−5, controlled by cosine decay schedule. Our network architecture follows ([4],
[71]). For a fair comparison, we sample 512 rays per batch and follow the coarse and fine
sampling strategy of [34].

5.4.2 Dataset

CMU panoptic dataset We first evaluate our approach on the CMU Panoptic Dataset ([1],
[2]). This dataset contains multiple humans containing 3D key points, which are used to
fit human SMPL. Our experiments were performed on five different scenes, where each
scene originally included 30 views containing 3/4/5/6/7 people. The camera of each scene
includes 30 views located on a spherical spiral. The training views were randomly ex-
tracted from the HD sequences ‘Ultimatum’ and ‘Haggling’. Specifically, we used static
frames from those sequences, including frame 9200 from the Video ’Haggling’ and frames
5500,7800,9200,22900 from ’Ultimatum’. We uniformly sampled 5, 10, 15, and 20 views
as training and we used the remaining 25, 20, 15, and 10 views respectively as testing.
The image resolution in training and testing is 1920 × 1080. We compare with two major
baselines: NeuS [34] and VolSDF[77], both in terms of novel-view synthesis and geometry
reconstructions (qualitatively). For quantitative evaluation, we report three commonly
used image metrics: peak signal-to-noise ratio (PSNR) [172], structural similarity index
(SSIM) [173] and learned perceptual image patch similarity (LPIPS) [174]. For qualitative
comparison, both rendered images and rendered normal images are shown.

Synthetic dataset Based on the multi-human dataset ([3], [175]), we used Unity 3D to
create a synthetic dataset with 29 cameras arranged in a great circle. This includes three
scenes with similar backgrounds but different camera locations and orientations. Each of
the scenes contains 1/5/10 humans respectively. The image resolution is 1920 × 1080.

5.4.3 Generalization on real multi-Human dataset

Table 5.1 demonstrates novel view synthesis results with different training views
(5/10/15/20) compared to the baselines. Our proposed method outperforms these in
PSNR and SSIM in all the scenes and consistently performs better or equal in terms
of LPIPS. For qualitative comparison, we demonstrate both rendered novel views and
normal images in Fig. 5.7. As depicted in the figure, when only given 5/10 training views,
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Scene Method PSNR↑ SSIM↑ LPIPS↓
5 10 15 20 5 10 15 20 5 10 15 20

NeuS 17.83 18.84 19.39 21.97 0.62 0.67 0.69 0.55 0.74 0.51 0.49 0.45
1 VolSDF 17.50 18.08 19.51 22.31 0.64 0.61 0.67 0.71 0.61 0.54 0.51 0.48

Ours 18.41 20.32 21.60 23.19 0.67 0.73 0.73 0.74 0.55 0.50 0.50 0.49
NeuS 16.87 18.51 19.40 21.05 0.60 0.65 0.70 0.71 0.57 0.53 0.51 0.49

2 VolSDF 16.36 17.52 19.40 21.60 0.57 0.59 0.67 0.70 0.62 0.53 0.49 0.47
Ours 19.72 21.15 21.40 23.12 0.70 0.73 0.73 0.74 0.50 0.49 0.48 0.47
NeuS 16.03 17.39 19.17 21.21 0.56 0.61 0.70 0.73 0.62 0.54 0.47 0.46

3 VolSDF 16.36 18.21 19.56 21.06 0.57 0.59 0.64 0.68 0.62 0.52 0.48 0.47
Ours 18.57 20.94 21.86 23.16 0.66 0.73 0.74 0.74 0.52 0.48 0.47 0.47
NeuS 14.16 17.14 19.87 21.37 0.49 0.51 0.70 0.72 0.60 0.57 0.48 0.46

4 VolSDF 13.51 17.07 18.68 20.89 0.50 0.57 0.65 0.68 0.64 0.54 0.53 0.46
Ours 19.54 20.94 21.35 23.29 0.69 0.72 0.73 0.75 0.50 0.47 0.47 0.45
NeuS 17.69 18.60 20.03 21.50 0.57 0.62 0.69 0.70 0.55 0.54 0.50 0.47

5 VolSDF 14.85 17.32 19.04 20.91 0.53 0.57 0.66 0.68 0.63 0.58 0.53 0.48
Ours 19.34 20.55 21.08 22.55 0.67 0.70 0.72 0.72 0.51 0.47 0.47 0.47
NeuS 16.52 17.79 19.57 21.42 0.57 0.62 0.69 0.72 0.58 0.54 0.49 0.47

Average VolSDF 15.81 17.68 19.23 21.35 0.56 0.59 0.66 0.69 0.62 0.54 0.50 0.47
Ours 19.12 20.78 21.46 23.06 0.68 0.72 0.73 0.74 0.52 0.48 0.48 0.47

Table 5.1 – Comparison against NeuS [34] and VolSDF [77] on the CMU Panoptic dataset
[1], [2], using 5/10/15/20 views for training.

the baseline methods fail to reconstruct a good geometry or render a realistic appearance.
Although the quality of the geometries improves with 15/20 training views, the results
still exhibit missing body parts or can mix the background with the subjects. In con-
trast, our method can reconstruct a complete geometry for all humans in all sparse-view
cases. The following figures demonstrate qualitative comparison against NeuS [34] and
VolSDF [77] of synthesized novel views and reconstructed normal images from varying
different training views.

Comparison to single human NeRF. We compare our method to the single human
nerf state-of-the-art method ARAH [101]. We note that adapting such methods to our
setup requires tedious manual pre-processing (detecting and segmenting people, associat-
ing detections across views), which is not required by our approach. We run a separate
ARAH model for each person in the scene using 5 training images. Figure 5.8 shows the
training images used in this experiment. It also shows the segmentation masks used for
ARAH for 3 people in the scene, which we built using a state-of-the-art method. Fig-
ure 5.8 shows additional comparative results for reconstructed appearance and geometry.
Fig. 5.9 shows novel view and reconstruction results. Learning for each person separately
implies providing erroneous supervision to the model whenever the person is occluded in
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training with 5 input views

training with 10 input views

Ground Truth NeuS VolSDF Ours
Figure 5.5 – Qualitative comparison against NeuS [34] and VolSDF [77] of synthesized
novel views and reconstructed normal images of multiple humans on CMU Panoptic
dataset [1], [2], using 5/10 training views.
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training with 15 input views

training with 20 input views

Ground Truth NeuS VolSDF Ours
Figure 5.6 – Qualitative comparison against NeuS [34] and VolSDF [77] of synthesized
novel views and reconstructed normal images of multiple humans on CMU Panoptic
dataset [1], [2], using 15/20 training views.
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training with 20 input views

Ground Truth NeuS VolSDF Ours
Figure 5.7 – Qualitative comparison against NeuS [34] and VolSDF [77] of synthesized
novel views and reconstructed normal images of multiple humans on CMU Panoptic
dataset [1], [2], using 20 training views.

the scene or segmentation masks are not accurate. As a result, ARAH’s renderings and
geometry display many artifacts compared to our results. Our method is more robust
to sparser information and occlusions due to the proposed hybrid box-based rendering
with geometry constraints. Further, ARAH fails to converge on some persons with a large
area of occlusions. Conversely, our method avoids this by learning through rendering the
union of SMLP bounding boxes conjointly. We also noticed that ARAH’s results are very
sensitive to the sparsity and choice of the training views.
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Figure 5.8 – The five training views and person segmentations used to produce results of
single human.

GT Arah Arah Ours Ours
Figure 5.9 – Comparison against single human method ARAH [101] using 5 training views.
The average PSNR in these examples is 24.11/27.40 (ARAH/Ours).
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Comparison to SparseNeRF. We further compare with a recent NeRF method
that was specifically designed to handle sparse views, namely InfoNeRF [53]. We compare
both against the original InfoNeRF, and a version of NeuS trained with InfoNeRF’s regu-
larization. For this experiment, we use again the CMU Panoptic dataset [1], [2] with five
training views. Tab. 5.12 shows that, compared to InfoNeRF and NeuS with InfoNeRF’s
regularization, our method improves the rendering quality in all of the scenes.

Scene Method PSNR↑ SSIM↑ LPIPS↓
InfoNeRF 14.64 0.50 0.64

1 NeuS w/ info 17.98 0.65 0.58
Ours 18.41 0.67 0.55
InfoNeRF 14.21 0.49 0.63

2 NeuS w/ info 18.21 0.64 0.57
Ours 19.72 0.70 0.50
InfoNeRF 13.78 0.45 0.63

3 NeuS w/ info 16.31 0.59 0.60
Ours 18.57 0.66 0.52
InfoNeRF 12.26 0.41 0.68

4 NeuS w/ info 14.42 0.51 0.60
Ours 19.54 0.69 0.50
InfoNeRF 12.17 0.45 0.63

5 NeuS w/ info 17.89 0.60 0.61
Ours 19.34 0.67 0.51
InfoNeRF 13.61 0.46 0.64

Ave NeuS w/ info 16.96 0.60 0.59
Ours 19.12 0.68 0.52

Table 5.2 – Comparison against sparse-view NeRF approaches: InfoNeRF [53] and NeuS
with InfoNeRF’s regularizations, on the CMU Panoptic dataset [1], [2] using 5 training
views.

Comparison of different input numbers. Fig. 5.10 additionally shows the relation-
ship between the number of training views and the quality of the synthesized images. The
fewer the number of views, the harder it is for all methods to reconstruct high-quality im-
ages, whereas our approach is more robust to fewer training views. For denser inputs (e.g.
more than 20 views), our method reaches a similar albeit slightly better performance than
the baselines, since the proposed work focuses on sparse scenarios.
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Figure 5.10 – Quantitative comparison of average PSNR (↑), SSIM (↑), and LPIPS (↓)
with increased number of training views.

5.4.4 Generalization on synthetic dataset

On the synthetic dataset, we train with 5/10/15 views on each scene and test with 14
fixed views. Table 5.3 reports the average error for all testing views in PSNR, SSIM, and
LPIPS metrics. Our method reaches state-of-the-art performance on synthesized novel-
view results. Figure 5.11 shows generated novel views and corresponding normal images
using 10/15 training images. Our approach can reconstruct the complete geometry of all
humans in the scene, while the baseline methods might miss some of the people when
they have similar color with the background, e.g. the shadow area in Fig. 5.11.

In the 5/10 input views case, the baseline methods usually fail to reconstruct the full
geometry of humans due to the sparse inputs. Thus, we report Chamfer distance in Tab.
5.3 only for the 15-views case. Since the baseline methods usually contain extra floor, for
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# Humans Method PSNR↑ SSIM↑ LPIPS↓ Chamfer ↓
5 10 15 5 10 15 5 10 15 15

NeuS 14.04 17.89 23.25 0.63 0.72 0.84 0.55 0.53 0.44 0.308
1 VolSDF 13.93 21.75 25.89 0.61 0.81 0.86 0.55 0.51 0.44 0.019

Ours 15.36 23.85 26.28 0.65 0.84 0.87 0.55 0.43 0.41 0.018
NeuS 14.15 18.14 18.54 0.61 0.72 0.72 0.54 0.46 0.44 0.321

5 VolSDF 12.97 15.11 18.59 0.58 0.63 0.73 0.56 0.55 0.47 0.151
Ours 17.63 20.10 20.33 0.71 0.79 0.77 0.47 0.40 0.40 0.020
NeuS 14.09 15.69 19.27 0.58 0.65 0.75 0.52 0.48 0.42 0.383

10 VolSDF 12.66 16.99 19.30 0.56 0.70 0.77 0.56 0.50 0.41 0.248
Ours 16.52 18.39 21.01 0.65 0.71 0.80 0.50 0.44 0.37 0.043
NeuS 14.09 17.24 20.35 0.60 0.70 0.77 0.54 0.49 0.43 0.337

Average VolSDF 13.18 17.95 21.26 0.58 0.71 0.79 0.56 0.52 0.44 0.139
Ours 16.50 20.78 22.54 0.67 0.78 0.81 0.51 0.42 0.39 0.026

Table 5.3 – Comparison against NeuS [34] and VolSDF [77] on the synthetic dataset,
for different numbers of humans in the scene. We measure novel-view synthesis quality in
terms of PSNR, SSIM, and LIPIS, as well as geometry error in terms of Chamfer distance.

a fair comparison, we sample points from ground-truth meshes and compute the distance
towards the reconstructed mesh for all methods. We also report the bi-directional Chamfer
distance. Table 5.3 shows that, with an increasing number of humans in the scene, the
quality of the reconstructed geometry of all methods decreases. However, compared with
the baselines, our method can better handle multiple human scenes, achieving an order
of magnitude less error.

Quantitative results. Table 5.4 provides a full Chamfer distance comparison in the
synthetic data setup. In the 5/10 input views case, the baseline methods usually fail to
reconstruct the full geometry of humans due to the sparse inputs. Symbol ‘−’ represents
cases where the baselines fail to reconstruct a meaningful geometry, and hence the error
is too large. To favor the baselines NeuS [34] and VolSDF [77], we computed the uni-
directional Chamfer distance from ground-truth to source, as the baselines reconstructed
the ground of the scene in addition to the people. For a more standard evaluation, we
additionally show here the bi-directional Chamfer distance after removing the floor for
the competing methods. Table 5.3 shows that, with an increasing number of humans in
the scene, the quality of the reconstructed geometry of all methods decreases. However,
Compared with the baselines, our method can better handle multiple human scenes,
achieving an order of magnitude less error.

104



5.4. Experiments

10 training views

15 training views

Ground Truth Neus Volsdf Ours
Figure 5.11 – Qualitative comparison of synthesized novel views and reconstructed normal
images on the synthetic dataset (MultiHuman-Dataset [3]) with 10 and 15 training views
respectively.

People Method one-way Chamfer ↓ bidirectional Chamfer ↓
5 10 15 5 10 15

NeuS - - 0.308 - - 3.026
1 VolSDF - 0.020 0.019 - 0.039 0.167

Ours 0.025 0.019 0.018 0.271 0.211 0.154
NeuS - - 0.321 - - 3.044

5 VolSDF - - 0.151 - - 1.478
Ours 0.025 0.023 0.020 0.391 0.289 0.138
NeuS - - 0.383 - - 4.639

10 VolSDF - - 0.248 - - 1.579
Ours 0.082 0.063 0.043 0.111 0.085 0.081

Table 5.4 – Geometry reconstruction error under a different number of people, compared
to NeuS [34] and VolSDF [77] using the synthetic dataset, and 5/10/15 views for training.
Symbol ‘−’ represents cases where the baselines fail to reconstruct a meaningful geometry.

105



Partie , Chapter 5 – Few Shot Multi-human Reconstruction and Novel View Synthesis

5.4.5 Ablation and analysis

Provided loss function. To prove the effectiveness of our proposed components we
performed ablation studies on the CMU Panoptic dataset [1], [2]. We demonstrate quan-
titative comparisons in Table 5.5 and qualitative results in Fig. 5.12. We test the fol-
lowing settings: Without geometry regularization (“w/o geometry”). We compare
our full model against the model without geometry regularization (Sec. 5.3.2) and SDF
uncertainty regularization (Eq. 5.13). We can see here that, although the method is still
capable of isolating humans thanks to the bounding box rendering, both geometry and
novel views are much less accurate, and the rendered images exhibit background artifacts
and overly smooth results.
Without ray consistency loss (’w/o ray loss’). Here we remove the proposed ray
consistency loss, without which the average rendering quality also degrades.
Without saturation loss. Finally, we remove the saturation loss from our methods,
which decreases by about 0.5 in PSNR on average. Fig. 5.12 shows that, without this, the
image tone can contain artifacts due to changes in lighting (see for example the back of
the rightmost subject).

Method PSNR↑ SSIM↑ LPIPS↓
5 15 5 15 5 15

Neus [34] 16.87 19.40 0.60 0.70 0.51 0.53
Volsdf[77] 16.03 19.40 0.53 0.67 0.60 0.49
w/o Geometry 17.54 20.28 0.60 0.70 0.53 0.48
w/o Ray loss 19.07 20.95 0.67 0.72 0.52 0.47
w/o Saturation 18.95 20.92 0.65 0.72 0.54 0.49
Ours(Full) 19.72 21.40 0.70 0.73 0.50 0.48

Table 5.5 – Ablation study on the CMU Panoptic dataset [1], [2] with 5/15 training
views respectively. Comparison against our method without geometric regularization (w/o
Geometry), without ray consistency regularization (w/o Ray loss), and without saturation
regularization (w/o Saturation).

Comparisons with a varying number of people. In Fig. 5.7 we provide additional
qualitative comparisons against NeuS [34] and VolSDF [77], where we show results on the
CMU Panoptic dataset [1], [2] with a varying number of people in the scene (3-7). Note
here how increasing the number of people causes the baselines to reduce the quality of
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NeuS VolSDF w/o GL w/o RL w/o SL Ours (Full)
Figure 5.12 – Ablation study on CMU Panoptic dataset [1], [2]. Comparison against our
method without geometric regularization (w/o geometry), our method without ray con-
sistency regularization (w/o ray loss), and our method without saturation regularization
(w/o saturation).

the results, mixing background with humans or generating noisy geometries. Meanwhile,
our method performs consistently, independently of the number of people.

5.5 Additional applications

We show here how our method can be used to perform post-learning scene editing
without any additional training. Thanks to the human bounding-box-based modeling of
the foreground scene, it is straightforward to rigidly transform or omit each person by
simply applying, before rendering, the corresponding manipulation to the points sampled
inside the defined bounding box. Figure 5.15 shows qualitative results of such application,
trained on scene #5 from the CMU Panoptic dataset [1], [2] using 20 training views.
We can see here that our approach can generate realistic new scenes as well as plausible
paintings of the missing regions.
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Edit with Removing

Edit with Moving

Figure 5.14 – Qualitative results for the editing application. We show synthesized novel
views and reconstructed normal images of multiple humans when (1) removing, (2) trans-
lating, (3) rotating, and (4) scaling subjects in the scene.
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Edit with rotation

Edit with scaling

Figure 5.15 – Qualitative results for the editing application. We show synthesized novel
views and reconstructed normal images of multiple humans when (1) removing, (2) trans-
lating, (3) rotating, and (4) scaling subjects in the scene.
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5.6 Conclusion
We presented an approach for novel view synthesis of multiple humans from a sparse

set of input views. To achieve this, we proposed geometric regularizations that improve
geometry training by leveraging a pre-computed SMPL model, along with a patch-based
ray consistency loss and a saturation loss that help with novel-view renderings in the
sparse-view setting. Our experiments showed state-of-the-art performance for multiple
human geometry and appearance reconstruction on real multi-human datasets (CMU
Panoptic [1], [2]) and on synthetic data (MultiHuman-Dataset [3]). Our method still has
several limitations. First, we rely on SMPL fittings which might not always be accurate,
particularly for scenes with a very large number of humans. A possible solution is to
improve the SMPL reconstructions while training the geometry and appearance networks.
Second, our method does not model close human interactions, as this is a much more
challenging case. Addressing this is an interesting direction for future work.
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Chapter 6

CONCLUSION

6.1 Summary

Novel view synthesis has been one of the most popular research fields recently. Though
novel view synthesis from sparse views has shown great potential in various computer
graphics and computer vision applications, it remains challenging to infer the underlying
3D structure of the object or scene and infer the appearance of unseen views from a limited
number of inputs. This thesis has addressed these challenges regarding novel view synthe-
sis from sparse inputs, making the process more practical in real-world scenarios where
obtaining massive datasets may be challenging. We have investigated those problems and
proposed different solutions for three important techniques regarding novel view synthesis
from sparse inputs: neural radiance fields, light field networks, and novel view synthesis
of multi-humans, which are introduced in three chapters (Ch.2, Ch.3, Ch.4) respectively.
Let’s summarize our work:

Neural radiance field from sparse inputs: We have explored neural radiance fields
suffering from quality degradation from sparse views. We have presented a novel approach
to improve neural radiance field (NeRF) from sparse inputs to address this challenge.
Our proposed methods include a global sampling strategy, geometry regularization using
augmented pseudo-views, and a local patch sampling scheme with patch-based regular-
ization. We introduced the use of depth information for explicit geometry regularization.
The proposed approach outperformed several baselines on real benchmarks and achieved
state-of-the-art results. However, one of the limitations is that it needs accurate depth
information from sparse views. In this thesis, we have chosen to use sensor depth from
the dataset, while future studies could explore how using estimated depth from the net-
work. Moreover, future research could incorporate improving the neural radiance field and
implicit surface reconstruction from sparse RGBD inputs.

Neural Light field from sparse inputs: We proposed a novel approach based on a
neural light field representation for a few-shot novel view synthesis. Our proposed method
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employs an implicit neural network conditioned on local ray features generated from a
coarse volumetric rendering. We explored different convolutional neural network architec-
tures. With the depth-based sampling and MVS network, our methods could generalize
realistic appearance across scenes. The proposed method achieves competitive perfor-
mance across different datasets and offers a much faster rendering speed. The proposed
methods allow us to generalize well to novel views of seen and unseen scenes from a
few-shot input. Meanwhile, our approach significantly reduces the computational cost of
rendering while maintaining complex relationship learning. While our method offers an
efficient rendering, it still has difficulties reproducing the highest level of details in real
large images as the NeRF-based methods. This is due to the reduced resolution of our fea-
ture volume and our coarse feature rendering, which contributes to reducing the memory
footprint.

3D shape and radiance rendering of multi-Human from sparse inputs: We
proposed a learning-based method for generating multiple humans from sparse images.
Our approach addressed the challenges of occlusion and clutter in multi-human scenes by
incorporating geometry constraints using pre-computed meshes, patch-based ray regular-
ization for appearance consistency, and saturation regularization for robust optimization.
Extensive experiments on real and synthetic data demonstrated the benefits of our method
and its state-of-the-art performance against existing neural reconstruction methods on
real multi-human datasets (CMU Panoptic [1], [2]) and on synthetic data (MultiHuman-
Dataset [3]). Our approach still has several limitations. First, we rely on SMPL fittings,
which might only sometimes be accurate, particularly for scenes with many humans. A
possible solution is to improve the SMPL reconstructions while training the geometry and
appearance networks. Second, our method does not model close human interactions, as
this is a much more challenging case.

To sum up, our thesis has focused on an important topic regarding novel view synthe-
sis from sparse inputs. Since most novel view synthesis algorithms require a large amount
of data to train accurately, our research aims to develop an algorithm that can learn from
limited or sparse data. Our investigated algorithms include neural radiance fields, light
field networks, and multi-human rendering and reconstruction. We have proposed solu-
tions to improve those novel view synthesis algorithms from sparse views. Our proposed
methods have advanced the state-of-the-art in each specific topic. We wish this work could
push the boundaries further and help researchers for future advancements in this research
area.
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6.2 Future work and perspectives

In the future, there are several potential avenues for further exploration and improve-
ment based on the findings and methodologies presented in this thesis:

In Chapter 3, our method regularizes the neural radiance fields via depth regularization
and image-based warping. More solutions for improving the neural radiance fields from
sparse inputs can be explored, such as leveraging additional modalities such as surface
normal, incorporating temporal information for video-based synthesis, or using unsuper-
vised or self-supervised learning approaches to reduce the reliance on labeled data. One
limitation of our method is that it depends on accurate depth information. Future work
can explore how to replace the sensor depth with a monocular depth estimated by neural
networks or use some depth information using structure from motion. Also, depth infor-
mation could improve the quality of estimated surface and rendered appearances. More
work could be explored here.

In Chapter 4, our methods utilize pluckier coordinates and condition these ray rep-
resentations with extracted feature volumes. Future work to enhance rendering quality
includes leveraging more advanced conditioning methods. For example, incorporating at-
tention or diffusion models into the feature volume extraction process may improve results.
Attention models help the network to learn more relevant information, allowing it to cap-
ture more intricate details and improve overall rendering quality. Diffusion models, on
the other hand, can facilitate the transfer of information across different regions, enabling
the network to understand better and model complex relationships within the scene. Ad-
ditionally, advanced pre-trained models on big datasets could help the network better
capture intricate scene details, resulting in higher-quality renderings.

In Chapter 5, our method of rendering multi-humans by utilizing SMPL from sparse
inputs opens up possibilities for more complex scene generation. Since one limitation is
that we focus on static scenes, we could explore how to improve video rendering results
by considering temporal information. Future work can focus on extending the proposed
approach to multi-human rendering from monocular videos or multi-view videos, enabling
the synthesis of dynamic multi-human scenes. Additionally, addressing challenges posed by
diverse objects, varying backgrounds, and challenging lighting conditions in more complex
scenes would be an interesting direction for further exploration.

Despite the above possibilities in each topic, some common extensions regarding our
current works exist. For instance, integrating neural radiance and light fields might yield
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even more powerful few-shot novel view synthesis techniques. Integrating user interaction
and feedback mechanisms into our frameworks would enable users to participate actively
in the synthesis or reconstruction process, improving the quality and personalizing the
results. In addition, estimation of scene geometry, such as depth maps and surface normals,
is crucial for synthesizing novel views. Future work will focus on improving the robustness
and accuracy of geometry estimation methods, leveraging deep learning approaches, and
incorporating semantic scene understanding. Moreover, novel view synthesis techniques
often struggle to generalize well to unseen or diverse scenes or objects. Future research
will aim to improve the generalization capabilities of these methods, enabling them to
work effectively across different domains, lighting conditions, and object categories.

In conclusion, novel view synthesis has gained significant attention recently due to its
applications in various fields. This thesis has made valuable contributions by addressing
the challenges of synthesizing novel views from sparse inputs. Advancements in these areas
will contribute to the broader adoption and practical application of novel view synthesis
technologies in various industries and academic domains. The future work and perspectives
outlined above aim to push the boundaries further, fostering progress in this exciting area
of research and benefiting the broader community working in related domains, such as
virtual reality, augmented reality, and computer graphics.
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Titre : Synthèse de nouvelles vues à partir d’entrées limitées

Mot clés : Synthèse de nouvelles vues, champs de rayonnement neuronal, réseau de champ

lumineux, génération de formes multi-humaine, entrées éparses

Résumé : Malgré le potentiel important de la
synthèse de nouvelles vues à partir d’entrées
éparses dans les applications d’infographie et
de vision par ordinateur, plusieurs défis sub-
sistent dans ce sujet. Cette thèse étudie trois
aspects concernant la synthèse de nouvelles
vues. Tout d’abord, nous avons présenté une
nouvelle approche pour améliorer les NeRF à
partir d’entrées éparses. Les méthodes pro-
posées comprennent échantillonnage global
avec régularisation, l’augmentation des don-
nées, l’échantillonnage de patchs locaux avec
régularisation basée sur les patchs et la ré-
gularisation de profondeur explicite. Des éva-
luations approfondies démontrent que notre
méthode surpasse les performance de réfé-
rence. Deuxièmement, nous avons proposé

d’améliorer le champ lumineux neuronal à par-
tir d’entrées éparses. Nous utilisons un réseau
neuronal implicite conditionné sur les carac-
téristiques des rayons locaux d’un encodeur
à convolutions. Nous atteignons des perfor-
mances compétitives et offrons une vitesse de
rendu beaucoup plus rapide. Troisièmement,
nous avons introduit une nouvelle approche
pour génération de forme et rayonnement 3D
d’un scène contenant plusieurs personnes à
partir d’images éparses. Notre approche in-
tègre des contraintes géométriques à l’aide
de maillages pré-calculés, de la régularisation
des rayons basée sur les patchs et de la ré-
gularisation de la saturation. Nous atteignons
des performances de pointe sur des données
réelles et synthétiques.

Title: Novel View Synthesis from Sparse Inputs

Keywords: neural radiance fields, light field network, multi-human generation, sparse inputs

Abstract: Despite the significant potential of
novel view synthesis from sparse inputs in
computer graphics and computer vision ap-
plications, several challenges remain in this
topic. This thesis investigates and provides
solutions in three aspects regarding novel
view synthesis. Firstly, we presented a novel
approach to improve NeRF from sparse in-
puts. The proposed methods include global
sampling with regularization, data augmenta-
tion, local patch sampling with patch-based
regularization, and explicit depth regulariza-
tion. Extensive evaluations demonstrate our
method outperforms baselines. Secondly, We

proposed to improve the neural light field from
sparse inputs. It employed an implicit neu-
ral network conditioned on local ray features
from the convolutional encoder. It achieved
competitive performance and offered a much
faster rendering speed. Thirdly, We introduced
a novel 3d shape and radiance generation
approach for multiple humans from sparse
images. Our approach incorporates geome-
try constraints using pre-computed meshes,
patch-based ray regularization, and saturation
regularization. It achieved state-of-the-art per-
formance on real and synthetic data.
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