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ABSTRACT

Environmental sounds emanate from a variety of sources, such as human and non-
human activities, traffic sounds, birds, rain, and sounds produced by human activity in
houses, offices, cafes, and numerous others. The automatic classification of these sounds
has recently attracted a lot of interest due to its great potential for application in various
domains, such as human-machine interaction, smart homes, robotic hearing, automatic
activity recognition, automatic surveillance systems, etc. In the case of a smart home,
the heterogeneity of the events to be monitored leads to the use of a large number of
sensors of different types, which impacts the cost, energy consumption, and complexity
of installation and management, as well as on the volume of data to be processed. The
objective of this thesis is to demonstrate that the use of ESC (Environmental Sound
Classification) provides a solution to the problem of reducing the number and diversity
of sensors by replacing all or part of these sensors with acoustic sensors. The feasibility
of this solution has been validated by the development of a system, implemented on an
edge device composed of a microcontroller (Cortex M4) with a small memory footprint
and low power consumption and a microphone, for the automatic recognition in real-time
of four environmental sounds (rain, wind, human footsteps, and passing cars). For better
algorithm-architecture matching, different feature extraction and selection methods and
different machine-learning models are studied and compared. A new feature extraction ap-
proach based on the Instantaneous Amplitude (IA) and Frequency (IF) spectrogram has
been proposed and compared to the traditional approach using the Mel spectrogram. To
overcome the limitations of the traditional approach, related to the fact that environmen-
tal sounds signals are multi-component, non-stationary signals from non-linear systems,
the construction of the instantaneous amplitude and frequency spectrogram is carried
out by Empirical Mode Decomposition (EMD) coupled with the Teager-Kaiser Energy
Operator (TKEO). To generate a model for ESC, a database of selected environmental
sounds was constructed. The selected learning models are convolutional neural networks
(CNN) and depth-wise separable convolutional neural networks (DSCNN), optimized in
terms of the number of parameters and features. The feature size reduction and optimiza-
tion are carried out using a recurrent neural network (RNN) feature selection method.
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This developed automatic recognition system was evaluated with new signals for real-time
classification.

Key words: Environmental sound classification (ESC), empirical mode de-
composition (EMD), Teager-Kaiser energy operator (TKEO), instantaneous
amplitude (IA), instantaneous frequency (IF), convolutional neural networks
(CNN), depth-wise separable convolutional networks (DSCNN), recurrent
neural networks (RNN).
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RESUMÉ

Les sons environnementaux proviennent généralement de sources diverses et variées,
telles que l’activité humaine, les objets et la nature. La classification automatique de
ces sons suscite récemment un grand intérêt grâce à son grand potentiel d’application
dans divers domaines, comme l’interaction home-machine, l’habitat intelligent, l’audition
robotique, la reconnaissance automatique d’activités, les systèmes de surveillance automa-
tique, etc. Dans le cas d’un habitat intelligent, L’hétérogénéité des événements à surveiller
conduit à l’usage d’un grand nombre de capteurs, de différentes natures, ce qui impacte
le coût, la consommation énergétique, la complexité d’installation et de gestion ainsi que
l’encombrement et le volume de données à traiter. L’objectif de cette thèse est de démon-
trer que l’utilisation de la classification automatique des sons environnementaux (ECS
pour Environmental Sound Classification en anglais), apporte une solution à cette prob-
lématique de réduction du nombre et de la diversité des capteurs en remplaçant tout ou
une partie de ces capteurs par des capteurs acoustiques. La faisabilité de cette solution
a été validée par le développement d’un système, implémenté sur une carte composée
d’un microcontrôleur (Cortex M4) à faible empreinte mémoire et à basse consommation
et d’un microphone, pour la reconnaissance automatique en temps réel de quatre sons
environnementaux (pluie, vent, pas humain et passage de voiture). Pour une meilleure
adéquation algorithme-architecture, différentes méthodes d’extraction et de sélection de
caractéristiques et différents modèles d’apprentissage automatique ont été étudiés et com-
parés. Une nouvelle approche d’extraction de caractéristiques à partir du spectrogramme
d’amplitude et de fréquence instantanées (SAFI), a été proposée et comparée à l’approche
traditionnelle utilisant le spectrogramme de Mel. Pour s’affranchir des limitations de
l’approche traditionnelle, liées au fait que les sons environnementaux sont des signaux
multi-composantes, non-stationnaire et issus de systèmes non-linéaires, la construction du
spectrogramme d’amplitude et de fréquence instantanées est effectuée par décomposition
en modes empiriques (EMD) couplée à l’opérateur d’énergie de Teager-Kaiser (TKEO).
Pour générer le modèle d’apprentissage, une base de données de sons environnementaux
choisis a été construite. Les modèles d’apprentissage retenus sont les réseaux de neurones
convolutifs (CNN) et convolutifs profonds (DSCNN), optimisés en termes du nombre de
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paramètres et de caractéristiques. Cette optimisation est effectuée grâce à une méthode
de sélection de caractéristiques par réseau de neurones récurrent (RNN). Ce système de
reconnaissance automatique développé a été évalué avec de nouveaux signaux pour une
classification en temps réel.

Mot clés : Classification Automatique des Sons Environnementaux (ECS),
amplitude instantanée, fréquence instantanée, décomposition en modes em-
piriques (EMD), Teager-Kaiser energy operator (TKEO), réseau de neurones
récurrents (RNN), réseau de neurones convolutif (CNN), réseau de neurones
convolutif profond (DSCNN).

xii



TABLE OF CONTENTS

Introduction 1
General Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Thesis Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
List of Publication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

I Background 11

1 Background 13
1.1 Environmental Sound Classification . . . . . . . . . . . . . . . . . . . . . . 13
1.2 Sound Representation / Feature Extraction . . . . . . . . . . . . . . . . . . 14

1.2.1 Steps involved in acoustic feature extraction . . . . . . . . . . . . . 15
1.2.2 Spectrogram construction . . . . . . . . . . . . . . . . . . . . . . . 17
1.2.3 Mel Spectrogram Construction . . . . . . . . . . . . . . . . . . . . 17
1.2.4 Mel-frequency cepstral coefficients (MFCC) . . . . . . . . . . . . . 19
1.2.5 Other feature extraction methods . . . . . . . . . . . . . . . . . . . 20

1.3 Machine Learning for Environmental sound classification . . . . . . . . . . 21
1.4 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.4.1 Feed-forward Neural Networks . . . . . . . . . . . . . . . . . . . . . 25
1.4.2 Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . . . . 27
1.4.3 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . 31
1.4.4 Depthwise separable convolution networks . . . . . . . . . . . . . . 34

1.5 Neural network model training and evaluation . . . . . . . . . . . . . . . . 36
1.5.1 Training of Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
1.5.2 Optimization by Gradient Descent Based Optimization Algorithms 36

xiii



TABLE OF CONTENTS

1.5.3 Network Regularization . . . . . . . . . . . . . . . . . . . . . . . . 41
1.5.4 Evaluation of sound classification model . . . . . . . . . . . . . . . 42
1.5.5 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 42
1.5.6 Cross Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

1.6 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
1.6.1 Acoustic Scene Classification Dataset . . . . . . . . . . . . . . . . . 45
1.6.2 Low-Complexity Acoustic Scene Classification Dataset . . . . . . . 46
1.6.3 Urbansound8k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
1.6.4 Custom Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

II Feature Engineering 47

2 Environmental Sound Classification Systems based on Empirical Fea-
tures 49
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.2 Proposed method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.2.1 Signal representation . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.2.2 Empirical Mode Decomposition . . . . . . . . . . . . . . . . . . . . 52
2.2.3 Sifting Process for IMFs . . . . . . . . . . . . . . . . . . . . . . . . 53
2.2.4 Teager–Kaiser Energy Operator (TKEO) . . . . . . . . . . . . . . . 57

2.3 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.3.1 Mel Band Energies . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.3.2 EMD-Mel Band Energies . . . . . . . . . . . . . . . . . . . . . . . . 60
2.3.3 S-MBE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.3.4 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.4.2 Custom dataset creation description . . . . . . . . . . . . . . . . . 70
2.4.3 Classification Model . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3 Feature Selection 79
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

xiv



TABLE OF CONTENTS

3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.2.1 Feature Selection Method . . . . . . . . . . . . . . . . . . . . . . . 82

3.3 Method description and Experimental Setup . . . . . . . . . . . . . . . . . 86
3.3.1 Acoustic Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.3.2 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.3.3 Experimental setup description . . . . . . . . . . . . . . . . . . . . 88

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

III Hardware Implementation 100

4 Machine Learning on Edge devices 101
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.2.1 Hardware Description . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.3 Dataset and Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.3.1 Custom Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.3.2 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.3.3 Z-Score Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.3.4 Audio signal accusation and feature extraction . . . . . . . . . . . . 108

4.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

IV Conclusion 117

Conclusion 119

Bibliography 131

xv





LIST OF TABLES

2.1 Dataset Recordings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.2 Convolutional neural network model specifications . . . . . . . . . . . . . 73
2.3 System performance comparison. . . . . . . . . . . . . . . . . . . . . . . . 75
2.4 Classification accuracy of each class for the Acoustic Scene Classification

Dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
2.5 Classification accuracy of each class for the Low Complexity ASC Dataset. 76
2.6 Classification accuracy of each class for the Urbansound8k dataset. . . . . 76
2.7 Classification accuracy of each class for the custom dataset. . . . . . . . . . 76

3.1 Sound event categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.2 Neural network construction . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.3 Classification accuracy with different subsets . . . . . . . . . . . . . . . . . 97
3.4 Classification accuracy per category at k = 35 . . . . . . . . . . . . . . . . 98
3.5 Parameters trained versus accuracy . . . . . . . . . . . . . . . . . . . . . . 98

4.1 Neural Network Mode Description. . . . . . . . . . . . . . . . . . . . . . . 113
4.2 Convolutional neural networks model description . . . . . . . . . . . . . . . 114
4.3 Depth-wise separable convolutional neural networks model description . . . 114
4.4 CNN and DSCNN computational complexity . . . . . . . . . . . . . . . . . 115
4.5 CNN and DSCNN parameters, activations and weights . . . . . . . . . . . 115
4.6 Model Accuracy inference Time and MACCs . . . . . . . . . . . . . . . . . 115

xvii





LIST OF FIGURES

1 Smart Home. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Environmental sound classification system block diagram. . . . . . . . . . . 3

1.1 Feature extraction stages from an audio signal. . . . . . . . . . . . . . . . . 16
1.2 Mel scale vs Hertz scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3 Triangular Mel filter banks. . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.4 Log Mel spectrograms of different environmental sounds. . . . . . . . . . . 20
1.5 Mel frequency cepstral coefficients of different environmental sounds. . . . 21
1.6 Block diagram of machine learning method with neural networks. . . . . . 23
1.7 Biological neuron and artificial neuron. . . . . . . . . . . . . . . . . . . . . 24
1.8 Feed forward neural network. First layer is the input layer, followed by two

hidden layers and a output layer at the end. . . . . . . . . . . . . . . . . . 28
1.9 Recurrent Units in Recurrent neural networks. . . . . . . . . . . . . . . . . 29
1.10 LSTM and GRU Cell. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.11 Convolution operation in convolutional neural networks (CNN) . . . . . . . 33
1.12 Convolutional neural network (CNN) on a spectrogram. . . . . . . . . . . . 34
1.13 Depthwise convolution operation on an input image. . . . . . . . . . . . . . 35
1.14 Pointwise convolution operation on an input image. . . . . . . . . . . . . . 35
1.15 Relu, Tan hyperbolic function, and sigmoid activation function response. . 41
1.16 Multi fold cross-validation setup. . . . . . . . . . . . . . . . . . . . . . . . 44

2.1 Block diagram of proposed system—feature extraction using EMD-TKEO
method and classification using neural networks. . . . . . . . . . . . . . . . 52

2.2 Flow chart of sifting process. . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.3 Empirical mode decomposition and intrinsic mode function extraction. . . 56
2.4 Block diagram of smoothing the output of the energy operator. . . . . . . . 58
2.5 Empirical mode decomposition-based Mel filter bank energies extraction

block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.6 SMBE feature extraction block diagram. . . . . . . . . . . . . . . . . . . . 62
2.7 SFT-MBE spectrogram extracted from a 10-sec audio file of a car passing. 63

xix



LIST OF FIGURES

2.8 S-MBE spectrogram extracted from a 10-sec audio file of a car passing. . . 64
2.9 Empirical mode decomposition-based Mel spectrogram from a 10-sec audio

file of a car passing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.10 Signal representation of a person walking . . . . . . . . . . . . . . . . . . . 65
2.11 Empirical mode decomposition-based Mel spectrogram from a 10-sec audio

file of a person walking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.12 IMF(s) 1 - 4 and the resulting EMD-MBE per IMF and combination of

EMD-MFB of IMF(s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.13 IMF(s) 5 - 8 and the resulting EMD-MBE per IMF and combination of

EMD-MBE of IMF(s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.14 IMF(s) 9 - 12 and the resulting EMD-MBE per IMF and combination of

EMD-MBE of IMF(s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
2.15 IMF(s) 13 - 16 and the resulting EMD-MBE per IMF and combination of

EMD-MBE of IMF(s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.1 Sequential Forward Floating Selection (SFFS) Algorithm. . . . . . . . . . . 85
3.2 Block diagram of feature selection training and testing process. . . . . . . . 86
3.3 Plots of All feature selected. (k = 52) for FFT-MFCC-SFS. . . . . . . . . . 91
3.4 Plots of SFS feature selected. (k = 35) and Plots of SBS feature selected.

(k = 35) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.5 Plots of All feature selected. (k = 52) for EMD-MFCC-SFS. . . . . . . . . 92
3.6 Plot of All feature selected. (k = 52) for FFT-MFCC-SFS. . . . . . . . . . 93
3.7 Plot of SFS for EMD-MFCC feature selected (k = 35). . . . . . . . . . . . 93
3.8 Plot of SFS for S-MFCC feature selected (k = 35). . . . . . . . . . . . . . 94
3.9 Plot of SBS for EMD-MFCC feature selected (k = 35). . . . . . . . . . . . 94
3.10 Plots of SBS for S-MFCC feature selected. (k = 35) . . . . . . . . . . . . . 95
3.11 Feature performance of SFS-FFT-MFCC, SFS-EMD-MFCC, and SFS-S-

MFCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.12 Feature performance of SBS-FFT-MFCC, SBS-EMD-MFCC, and SBS-S-

MFCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.13 Feature performance of SFFS-FFT-MFCC, SFFS-EMD-MFCC, and SFFS-

S-MFCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.14 Feature performance of SBFS-FFT-MFCC, SBFS-EMD-MFCC, and SBFS-

S-MFCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

xx



LIST OF FIGURES

4.1 SensorTile board size and microprocessor and sensors equipped onboard. . 104
4.2 SensorTile Cradle and onboard components description. . . . . . . . . . . 105
4.3 SensorTile board components and connectivity with STM32L4 processor

block diagram [133]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.4 Block diagram of classification process on a microcontroller. . . . . . . . . 109
4.5 Processing chain for inference on STM32 SensorTile. . . . . . . . . . . . . 110
4.6 Model accuracy over five-fold cross-validation. . . . . . . . . . . . . . . . . 112
4.7 Inference rate vs MACCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

xxi





INTRODUCTION

General Introduction

Environmental sounds emanate from a variety of sources and are a ubiquitous part
of our daily lives. The sounds that we hear in our surroundings are generated by both
human and non-human activities, such as traffic sounds, birds, rain, and human activities
taking place in homes, offices, cafes, and many other places. In recent years, the auto-
matic classification of these sounds has attracted a significant amount of interest due to
its potential applications in a wide range of domains including human-machine interac-
tion, smart homes, robotic hearing, automatic activity recognition, automatic surveillance
systems, and many others.

The concept of smart homes has been gaining traction in recent years, as more and
more people look for ways to improve their living spaces through the use of technology.
With the increasing use of smart homes and the rapid advancements in technology, the
need for effective and efficient ways of recognizing environmental sounds has become even
more pressing. In addition, smart homes typically rely on a large number of sensors to
monitor various events within the home, including the presence of people, the state of
the environment, and other factors. However, this approach has a number of drawbacks,
including high costs, energy consumption, complex installations, and the need to process
a large volume of data.

Automatic detection of environmental sounds or simply environmental sound classifi-
cation (ESC), based on simple acoustic sensors, can resolve the aforementioned problems.
Acoustic sensors are able to detect a wide range of environmental sounds, from footsteps
to door slams, and can provide a plethora of information about the environment. These
sensors are also much easier to install and manage than other types of sensors, as they
can be easily integrated into existing systems. Furthermore, acoustic sensors typically
consume less power than other types of sensors, which can help to reduce the energy
consumption associated with the implementation of smart homes. Another advantage of
automatic sound detection is its ability to recognize environmental sounds in real-time.
This is a crucial feature for many applications, as it enables the quick and accurate de-
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tection of events taking place in the environment. For example, in the case of automatic
surveillance systems, the real-time recognition of environmental sounds can be used to
quickly detect and respond to potential security threats. Similarly, in the case of robotic
hearing, the real-time recognition of environmental sounds enables robots to respond
quickly to changes in their environment, such as the approach of a person or the presence
of a new object. In human-machine interaction, ESC can improve the overall user expe-
rience by creating more intuitive and responsive systems that can recognize and respond
to environmental sounds in real-time. In automatic activity recognition, ESC can detect
and recognize different activities taking place in the environment and provide relevant
information or feedback to the user. ESC systems offer a number of advantages over other
approaches to the implementation of smart homes depicted in Figure 1. For example,
they can be easily integrated into existing systems and implemented on edge devices with
low power consumption. This allows for monitoring the environment without consuming
a large amount of energy.

Figure 1 – Smart Home.

Environmental Sound Classification (ESC) involves the application of machine learning
that deals with the categorization of sounds found in the environment. Its aim is to
detect sounds into various categories automatically, based on their acoustic characteristics.
The utilization of machine learning algorithms is a crucial aspect of ESC, as they are
employed to model the connections between different sound attributes and the associated
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class labels. The general representation of the ESC system is depicted in Figure 2. ESC
systems are built using a database of recorded sounds and associated labels. The database
is created by recording target environmental sounds and labeling each recording with
a corresponding label. The recordings are then processed and transformed into other
domains to prepare them for the classification algorithm. The final step is the application
of a machine learning algorithm to automatically detect and classify the input sound
based on the transformed features.

Figure 2 – Environmental sound classification system block diagram.

The classification capabilities of machine learning algorithms have improved signifi-
cantly as a result of the re-introduction of old architectures and the development of new
architectures in the past decade. Modern machine learning models such as neural networks
have significantly improved the system capability over the legacy machine learning modes.
The neural network image classification achieved a higher accuracy rate of classification by
the introduction of convolutional neural networks (CNN) as compared to legacy machine
learning algorithms [1]. Classifying sound is a more complex task as compared to image
classification. The sound classification includes the conversion of an audio signal into an
image by using time-frequency representation as a spectrogram, the most commonly used
representation. Spectrograms as features have proven to be robust to noise and compact.
The spectrogram is utilized as input to machine learning models to learn the patterns and
perform the classification of different sounds. In this thesis, we will focus on the sounds
generated in the environment due to human or nature related activities in the domain of
environmental sound classification in the context of a smart home.

Challenges

Environmental sound classification focuses on the detection and classification of sounds
present in the indoor or outdoor environment. This presents a huge potential in different
types of applications where ESC can be applied. However, the progress in the research
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field has been a little slow due to several factors that affect the performance of ESC
systems. Some of the challenges faced by ESC systems are:

— Intra-class and inter-class variability: Intra-class and inter-class variability are
two significant challenges in environmental sound classification (ESC). Intra-class
variability refers to the significant variations that can exist within the same class of
sounds in terms of their characteristics such as duration, frequency, and amplitude.
For example, the sound of a car engine can vary depending on the make and model
of the car, and the driving conditions such as if it is on a highway or in a city. This
variability makes it challenging to develop a single model that can accurately classify
all instances of a specific class of sound. This is because the model needs to be able
to adapt to the different variations of the sound in order to classify it accurately.
Intra-class variability can be caused by various factors such as the different sources
that produce the sound, the environmental conditions, and the recording conditions.
On the other hand, Inter-class variability refers to the similarities between different
classes of sounds, making it difficult to distinguish them. For example, the sound of
a car and a motorcycle may be similar, making it challenging to determine which one
is present. This variability can be caused by the similarity in the physical properties
of the sound, such as frequency and amplitude, or the similarity in the sources that
produce the sound. Inter-class variability can make it challenging to develop models
that can accurately classify the different classes of sounds, as the model needs to
be able to distinguish between the sounds that are similar in order to classify them
correctly.

— Overlapping Events: Overlapping events refer to situations where multiple sounds
happen at the same time, making it hard to separate and categorize them individ-
ually. For example, in a noisy urban setting, the sounds of cars, buses, trains, and
pedestrians might overlap making it challenging to pinpoint a specific sound. This
is due to the fact that the different sounds might share similar features such as
frequency and amplitude, and may originate from different directions, making it
difficult to differentiate between them.

— Noise: Environmental noise poses a significant challenge for ESC, as it can introduce
noise, variability, and distortion into the recordings, making it difficult to accurately
hear and classify the sounds of interest. Background noise such as wind or ambient
traffic can mask or interfere with the target sound and make it harder to identify the
specific characteristics of the sound needed for accurate classification. Additionally,

4



Introduction

the quality of the recording equipment and the proximity of the microphone to the
sound source can also affect the accuracy of the classification.

— Underlying Pattern: Unlike speech or music, which have a clear structure or
pattern, environmental sounds do not have a well-defined structure or pattern that
can be used to classify them. This makes it challenging to develop models that
can accurately identify specific sounds, as the models need to be able to learn the
underlying structure of the sounds in order to classify them correctly. In ESC, it
makes it difficult to develop models that can accurately identify specific sounds.

— Limited Feature extraction techniques: ESC faces a significant challenge in
terms of the limited type of feature extraction methods available. Feature extrac-
tion is the process of extracting relevant information from a sound signal that can
be used to identify its category. However, there are only a limited number of feature
extraction methods available, and most of them are based on hand-engineered fea-
tures that were designed for speech recognition tasks. These methods are often not
suitable for ESC, as environmental sounds are much more diverse and complex than
speech sounds. The lack of suitable feature extraction methods makes it difficult
to capture the full complexity of environmental sounds, which can lead to lower
accuracy in classification tasks.

— Labels availability: Obtaining labeled data is a significant challenge in ESC as
a large dataset of labeled sound samples is required to train a model. However, it
can be difficult to obtain labeled data, particularly for rare or specific classes of
sounds. The main challenges include the time and resources required to manually
label large amounts of sound data, and the difficulties in finding experts who can
accurately label specific classes of sounds. Additionally, it can be challenging to
obtain a representative sample of sounds for each class, as environmental sounds
can vary greatly depending on location, weather conditions, and time of day.

In addition to the challenges of developing ESC systems, the deployment of ESC
systems on edge devices also presents additional challenges. These challenges are mostly
related to the inherent limitations of edge devices, such as limited processing power,
memory, storage, and power consumption. These limitations can make it difficult to run
complex ESC algorithms and models on edge devices, and may also affect the overall
performance and accuracy of the system. Other challenges may include the need for real-
time processing, handling large amounts of data, and dealing with variations in the sound
environment. Due to these challenges, developing and deploying ESC systems on edge
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devices requires careful consideration and optimization to ensure that the system can
effectively operate in the intended environment. Some of the challenges are described
below:

— Limited storage and memory: Edge devices typically have limited computational
resources such as memory and storage which can make it difficult to run large and
complex machine-learning models for ESC. The storage constraints in edge devices
limit the size of the models and decreases their performance. Also, the memory is
scarce and the input to the models i.e. features, are also needed to be tailored to be
memory bound.

— Limited processing power: Edge devices are generally designed to have limited
processing power. Different machine learning models have different computation
requirements, only the models that have relatively less computational requirements
are eligible to be deployed on the edge devices. This also bounds the research to
only use the models that require less processing power.

— Model compression and optimization: The computational resources of the edge
device are limited, so it is necessary to find ways to optimize the model to make
it lightweight and run on low-power devices. In most cases, the compression of the
machine learning model also reduces the performance of the model.

— Adaptability: During the construction of data-sets, different recording devices
record the sounds with different sensitivities. For example, the recording done through
mobile phones may be slightly different from professional recording devices due to
the internal active filters present in mobile phone microphones. The deployment
of the model trained with a different recording device also deteriorates the perfor-
mance of ESC on the edge device. The sound characteristics, type, and context of
the environment may change rapidly, so the model must adapt accordingly.

Problem Formulation

The goal of environmental sound classification is to detect the sound present in the
given set of environmental audio recordings and estimate the associated textual label of
the sound. The labels are the representation of the sound class present in the recording.
ESC can constitutes of two steps: sound representation and classification. The sound rep-
resentation stage is also called the feature extraction stage. In the sound representation
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stage, acoustic features are extracted from the audio recording. In the classification stage,
a machine learning model is trained to estimate the probability p(yt|xt, θ) ∈ [0, 1]t of the
sound class present in the recording. Here, θ represents the model parameters of the classi-
fier that are optimized to learn the acoustic features. The trained acoustic model performs
the inferences on the input features xt and results in an output vector of probabilities yt,
corresponding to the number of classes, the highest value representing the class present
in the input class.

To perform the classification between different classes the model learns patterns present
in the input. In ESC, the input is represented by sound features, generally time-frequency
images. This image contains the information of the sound signal at the of the class to
be classified. The machine learning model learns the information presented in the form
of a time feature image and generates the output according to the label associated with
the input feature. The features plays important role in training the model and its ability
to generalization on unseen data. Feature engineering reflects on the aspect of machine
learning where the input data to the machine learning model is provided as such that the
model’s capability of inference should be high. Feature engineering involves techniques
such as creating new features from existing ones, altering existing features, or selecting
the most useful features. This process is crucial in the machine learning process as it can
greatly affect the outcome of the final model.

The input features play an important role in the classification performance of the
machine learning model. The most commonly used features are Mel band energies (MBEs)
and Mel cepstral coefficients (MFCCs) for training machine learning models. In order
to construct the time-frequency representation Fourier transform is applied to an input
signal. Fourier spectral analysis requires a linear system with stationary and ergodic data
to produce accurate results. However, when analyzing sound, this can be a challenge as
the frequency and energy of the signal can vary depending on the source, resulting in non-
uniform and non-stationary data. This may require additional components to be added to
the analysis, which can cause energy to be spread over a wider frequency range. To analyze
non-stationary data, multiple Fourier components are used which increases the range of
frequencies affected. Furthermore, the pre-defined basis functions used in Fourier spectral
analysis may not accurately capture the characteristics of non-uniform and non-stationary
data. Features based on short-time fast Fourier transform (STFT), introduced by Cooley
and Tukey in 1965 [2], are predominately used in extracting frequency domain features
[3]–[7]. Another problem is that these features require large memory and computational
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power to train the network. Additionally, increasing the number of layers in the network
also increases the cost in terms of computational power, time, and resources. To make
the model more efficient, reducing the dimensionality of the input features and avoiding
over-fitting can be done to decrease the computational cost.

The implementation of ESC models in the real world poses several challenges in terms
of model capability, scale, and computational resources. Current models are designed to
achieve high accuracy and generalization, but they are computationally expensive and
costly to deploy in terms of energy and other resources. To address this issue, researchers
are focusing on reducing the complexity of models while maintaining accuracy. However,
they often overlook the complexity of the feature extraction stage, which can be more
complex than the trained model itself. With the growth of the Internet of Things, there is
an increasing focus on processing data at the edge nodes, rather than transmitting it to
a central hub. This reduces power consumption by avoiding data transfer and allows for
the development of applications with a balance between accuracy and complexity, taking
into account the limited resources of battery-powered edge nodes.

Thesis Objectives and Motivation

The objective of this thesis is to study feature extraction methods used for environ-
mental sound classification and study the implementation of these classification methods
on edge devices in the context of smart homes. Modern machine learning techniques, such
as artificial neural networks or deep neural networks, and convolutional neural networks,
are used for the detection and classification tasks of sounds present in the environment.
In this thesis, we tackled the question related to:

— The impact of different forms of time-frequency representation on the performance
of machine learning models for ESC.

— The impact of input feature reduction and impact on the classification model.

— The implementation of sound classification related task models on the edge devices
and validation on low processing power micro-controllers.

— Feasibility of running edge ESC by validating the implementation of machine learn-
ing model on low processing power edge device.
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Contribution

— A novel method of feature extraction to construct a time-frequency image is pro-
posed. Empirical Mode Decomposition (EMD) is used to analyze non-linear and
non-stationary signals. EMD is highly adaptive and based on the direct extraction
of energy with local time scales. Teager–Kaiser energy operator (TKEO) is used to
extract instantaneous frequency and amplitude from the IMFs.

— We proposed the use of sequential feature selection from the family of wrapper-based
methods for handpicking the features. The proposed system is composed of LSTM
and features extracted from MFCC, by adding another abstraction level for feature
extraction and compared with CNN trained with MBEs.

— The edge node based is used to validate the concept of performing sound classifica-
tion using an artificial intelligence-based model running on a limited computational
power micro-controller device. We showed that the low-processing powered devices
could be employed to perform environmental sound classification both on recorded
audio and through audio acquisition in real-time.

Thesis Structure

In the first part, the background of environment sound classification is presented. The
sound representation and machine learning models are discussed. Later in the thesis, the
studies on two aspects of the environmental sound classification are presented. In the first
part, feature extraction methods for ESC are described and a novel method is presented.
In the second part, the implementation related aspect of ESC is presented, where the
development of ESC in an edge node is presented. In the last part, the conclusion and
perspectives are discussed.
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Chapter 1

BACKGROUND

1.1 Environmental Sound Classification

Environmental sound classification (ESC) is the task of detecting and classifying
sounds that originate from human or non-human activities, such as sound emanated by
the passing of a car, a dog barking, or sound produced by the drops of rain. Environmen-
tal sound classification is a general term and includes many fields such as sound event
detection (SED) [8], [9], acoustic scene classification (ASC) [10], [11], bird sound detection
[12], [13] and many more [14]–[18].

Recently, ESC has been a hot topic for researchers. This increase of interest in ESC
is due to the introduction of neural networks and their application in image and speech
recognition [19]–[21] and partly because of competitions organized [6], [22]–[24] to im-
prove the performance in the recognition of daily life sound events. Another reason for
this interest is the increasing potential application of ESC. These applications of sound
event recognition are spread in various domains such as wildlife monitoring, traffic analy-
sis, industrial noise control, smart homes, and smart cities. For example, bird sounds and
wildlife sound recognition [25] can be used for the preservation of wildlife in forests, break-
age and gunshot detection [26] for security purposes, activity detection in smart homes,
fall detection for elderly persons[27]. The use of advanced machine learning techniques
and new technologies like deep learning allows us to improve the accuracy and robustness
of the classification process, making it more reliable in real-world settings. The detection
and recognition of the events in surroundings and their use to ameliorate life experiences
and improve automation in different applications.

Environment sound classification systems are composed of sound recording, sound
representation, and classifying systems. The sound recording is the phase where different
sounds are recorded using a digital microphone and a database is created. The second
step, after obtaining audio recordings and labels, is processing the sound recordings for
the classification stage. This processing stage is generally called sound representation or
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feature extraction. In this stage, the audio recording is processed, and depending on the
process the sound is manipulated in other domains, for example, the transformation from
a one-dimensional time domain to a two-dimensional time-frequency domain. In this stage,
the sound is represented as an image, further discussed in detail in the next section.

The last stage of the ESC system is the classification stage, where the sounds after
processing are sent to the classifier with the target label during the learning stage, and
in the testing stage only the processed input is applied and the label associated with the
sound is obtained. This is the most important stage in the ESC system and hence the
most difficult. To classify sounds, several methods have been studied in the past. Machine
learning algorithms have performed better on the task of classifying sounds and recently
neural networks are being used to classify sounds. The neural networks are part of machine
learning algorithms that are based on the neuron in the brain cell. Neural networks are
quite handy in the task of classifying images and sounds. Nowadays, machine learning
models such as CNN, RNN, and LSTM are considered the first choice and state of the art
for various tasks including ESC, due to their ability to model complex relationships and
non-linear patterns in data, as well as their ability to handle large and high-dimensional
data such as sound [18], [28]–[30].

1.2 Sound Representation / Feature Extraction

Audio signals are discrete streams of bits when recorded with a digital microphone.
These signals are generated by several sources and are recorded in real-life environments or
are generated synthetically. The signals are represented in the time domain with changing
amplitudes with respect to time. The sequence is the lowest possible method for repre-
senting any sound events. However, this lowest level representation is extremely difficult
for a machine learning model to learn to which category the sound belongs and performs
inferences afterward. To address this issue, often the sounds are converted into a different
form of representation which the classifier can learn. This representation of sound derived
from the lowest level to a different form is known as features or specifically for audio
signals acoustic features. The most common method to extract acoustic features consists
of converting the time domain signal into a frequency domain. Signals belonging to the
same category often share characteristics in the frequency domain. Another advantage
of frequency domain representation is that it is more robust to noise and compact and
allows more processing as compared to time domain representation. The number of stages
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of processing over the time domain signal, to obtain the acoustic features, defines the
level of abstraction for the representation of sound. For example, fast Fourier transform-
based spectrograms are most commonly used and Mel frequency-based cepstral coefficients
(MFCCs) are one abstraction level above the spectrograms. The calculation of MFCCs
requires more processing steps in the frequency domain and therefore represents a higher
abstraction level as shown in Figure 1.1.

1.2.1 Steps involved in acoustic feature extraction

Fourier transform is the most commonly used method for representing acoustic features
in frequency domain[28]–[30]. The algorithm to apply Fourier transform in short widows
is called Short-Time Fourier Transform (STFT) and involves three stages: framing, win-
dowing, and frequency spectrum calculation. To obtain the frequency spectrum through
STFT, the inherent property of STFT is assumed i.e. the signal is a sum of stationary
sinusoids. Therefore, the audio signal is first divided into short time frames and later the
frequency spectrum of each frame is calculated. This stage is known as the framing of
the signal. In this scenario we are faced with a trade-off between frequency resolution
and time resolution, depending on the length of the frame. The larger the frame length,
the higher the frequency resolution and consequently the smaller the time resolution. The
length of the frame is selected according to the task at hand. For environmental sound
classification, generally, the range between 20 to 50 ms is often adopted [8]. To have a
smooth transition between frames an overlap of 20% to 50% of the frame is often selected.
This process is done in the windowing operation, where each frame is multiplied with a
window function to avoid spectral leakage and discontinuities at the edge of each frame,
which could lead to the corruption of the estimation of the frequency spectrum. Most
popular windowing functions such as Hamming, Hann, and Blackman functions are com-
monly used for window operations in the feature extraction stage. In the next step, the
frequency spectrum representation of each frame, subjected to the windowing function,
is calculated using a discrete Fourier Transform. Discrete Fourier Transform calculates
the spectral information in the window. The frequency and the power related to each
frequency are later stacked on a time scale to obtain a time-frequency representation,
commonly known as a spectrogram. Transformation is depicted in Figure 1.1.
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Figure 1.1 – Feature extraction stages from an audio signal.
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1.2.2 Spectrogram construction

The spectrogram is a time-frequency feature matrix, obtained by extracting vectors
containing spectral components for each consecutive time frame and concatenating them
with other vectors according to the time frame of the audio signal. The spectrogram
provides the first level of abstraction of the signal as a feature for environmental sound
classification. The Fourier transform provides complex values and hence the spectrogram
consists of complex values. However, only magnitude is employed and the phase informa-
tion of the spectrogram is discarded. The reasoning behind such an operation is that the
phase information is deemed to be less informative for the classification system. Sound
events mostly demonstrate high energy in a lower frequency range and in time frequency
feature representation they dominate the lower frequency components. The logarithm can
be employed to compress the dynamic range of the magnitude spectrogram by obtaining
the log magnitude spectrogram.

Spectrograms are considered to be a useful tool for the classification of sound events, as
compared to the raw sound signal. Similar to images, spectrograms are multidimensional
and this allows the image classification systems developed for image-based classification
applicable to sound classification. In addition, as compared to raw audio signals the spec-
trograms contain more information about the sound event. The spectrogram manifests
information in the time domain as well as the relative distribution in the frequency domain.
Spectrograms are also considered to be more robust to noise present in the environment
as compared to time domain signal, as the environmental noise generally presents in the
lower frequencies, resulting in higher performance of sound classification systems.

1.2.3 Mel Spectrogram Construction

There are several ways to represent sounds as spectrograms that are based on how
humans perceive sound. The article [31] has shown that human perception of sound is
not linear with respect to frequency and that we are more sensitive to changes in lower
frequencies than higher frequencies. One way to represent the sound that takes this into
account is the Mel scale, which adjusts pitches so that they are perceived as equally spaced
[32]. The Mel scale is used in the creation of Mel spectrograms and Mel frequency cepstral
coefficients (MFCCs).
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Mel Filter Banks

The Mel scale is a way of measuring the perceived pitch of a sound based on how it is
perceived by the human ear. The Mel scale is designed to replicate the way the human ear
perceives sound, which is non-linear. It is more sensitive to differences in pitch at lower
frequencies and less sensitive at higher frequencies. It is often calibrated so that a pitch
of 1000 Mels is equal to 1 kHz as shown in Figure 1.2. To convert a pitch measured in
hertz to the Mel scale is defined as [33]:

m = 2595 ∗ log10

(
1 + f

700

)
(1.1)

f = 700
(
10 m

2595 − 1
)

(1.2)

Figure 1.2 – Mel scale vs Hertz scale.

The Mel filter-bank magnitude response denoted as F ∈ RB×M , is made up of coef-
ficients for B triangular band-pass filters that have central frequencies that are evenly
spaced on the Mel scale. This results in filters that are closely spaced at lower frequen-
cies and widely spaced at higher frequencies. The coefficients of the triangular filters are
chosen from the range [0, 1] and are scaled so that the area under each triangle for the
magnitude response is roughly the same across the Mel bands. A visualization of the Mel
filter-bank magnitude response can be found in Figure 1.3.
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Figure 1.3 – Triangular Mel filter banks.

Mel Spectrogram

Mel spectrograms are matrices that contain Mel band energy feature vectors for consec-
utive time frames generated by applying a Mel filter bank to the magnitude spectrogram
at each time frame. The Mel filter bank uses the Mel scale and consists of triangular filters
whose bandwidths increase with the central frequency of the filters. This results in higher
frequency resolution in the lower frequency range and lower resolution in the higher fre-
quency range. Log Mel spectrograms, which are created by taking the logarithm of Mel
spectrograms, are a popular representation for tasks related to sound classification and
have been used in many methods for environmental sound, rare sounds, sound events, and
acoustic scenes [28]–[30], [34], [35]. The number of Mel filter banks used in ESC is typically
between 30 and 80, which is often smaller than the number of frequency bins used in the
Short-Time Fourier Transform (STFT). As a result, Mel spectrograms provide a more
compact representation than magnitude spectrograms. Several sound representations are
illustrated in Figure 1.4.

1.2.4 Mel-frequency cepstral coefficients (MFCC)

MFCCs, which stand for Mel-frequency cepstral coefficients, are a popular method
of representing speech and audio data in processing applications. This method involves
converting the Mel spectrogram into a log Mel spectrogram by taking the logarithm and
then using the DCT (Discrete Cosine Transform) to calculate cepstral coefficients from the
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Figure 1.4 – Log Mel spectrograms of different environmental sounds.

Mel-scaled log-power spectrum. DCT is used to decorrelate the features in the adjacent
windows obtained in the log Mel spectrogram, as visualized in Figure 1.5. MFCCs are
widely used in speech recognition, speaker identification, and music classification tasks.

1.2.5 Other feature extraction methods

There are several methods for representing sounds that use a magnitude spectrogram
as the base, a visual representation of the frequency content of a sound over time. One such
method is the Gamma-tone spectrogram [36], [37], which has also been used for machine
hearing and has been proposed for detecting rare sound events [38]–[40]. It is based on
the equivalent regular bandwidth scale and is used to extract acoustic features related to
human auditory perception. Another method is the Spectrogram Image Feature (SIF),
which involves converting the magnitude spectrogram into an RGB image based on the
normalized amplitudes of the spectrogram [41]. This method has been suggested for sound
event classification [42]. The histogram of oriented gradients (HOG) is another image
processing-based feature extraction method that uses the change in intensity (amplitude)
in the spectrogram to classify acoustic scenes and events[43].

In addition to spectrogram-based features, another signal-to-feature transformation
is the wavelet transform. The wavelet transform is a windowed Fourier transform in the
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Figure 1.5 – Mel frequency cepstral coefficients of different environmental sounds.

time domain. Wavelet analysis provides the solution for analyzing non-stationary data [44]
overcome limitations of STFT because the window is scaled in both time and frequency
[45].

1.3 Machine Learning for Environmental sound clas-
sification

Machine learning is a part of artificial intelligence that deals with the development
of algorithms or models that can learn from data and make predictions on new data. In
machine learning, a computer is trained on a dataset and makes predictions or decisions
without being explicitly programmed to perform the task. The goal of machine learning is
to build models that can be generalized to new, unseen data, rather than just memorizing
the patterns in the training data.

Machine learning methods have been widely used for the detection of sound events,
which are described by the discrete occurrence of specific noise or sound patterns in an
audio signal. These methods are comprised of training a model on a large dataset of
audio examples, annotated by humans or machines, where the specific sound event has
been identified or labeled. Once the model is trained, it is tested with an unseen audio
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example to detect and classify the sound automatically. Machine learning approaches can
be highly effective for sound event detection, as they can learn complex patterns and
relationships in the data that may be difficult to capture using traditional, rule-based
methods. There are a variety of machine learning algorithms that have been applied to
sound event detection, including Support Vector Machines (SVM), random forests, and
deep neural networks.

A formal definition for machine learning algorithm is provided by [46]:

"A computer program is said to learn from experience E with re-
spect to some class of tasks T and performance measure P, if its
performance at tasks in T, as measured by P, improves with expe-
rience E".

Machine Learning

In this thesis, the task T is globally defined as an environmental sound classification in
this thesis. For environmental sound classification, the experience, E, is often represented
by the acoustic features accompanied by the labels of the audio recordings in the database.
The acoustic features can be represented by an input matrix, X, which comprises of M

acoustic features extracted from each frame of the audio recording divided into T time
frames. The labels are encoded, generally one hot encoding, as a binary target output
matrix Y , with C referring to the total number of classes of sound events. The target
output labels are the annotations of the target sound input. If a particular sound event p

is present in an audio recording then Yp is set to 1, otherwise, it is set to 0. The reference
labels are used in the machine learning model for classification. Then the performance
of this model is evaluated using metrics such as accuracy and error rate discussed in the
upcoming section.

The objective of the machine learning task is to develop a function F that can accu-
rately map input data X to target output Y . In sound classification, the input is repre-
sented by X, the acoustic feature, and the output target is the label or the target output
matrix Y . The function F takes an acoustic feature matrix and produces a probability
vector Ŷ indicating the likelihood of the sound event being present in that input. During
the learning phase, the parameters of this function are adjusted to minimize the differ-
ence between the predicted output Ŷ and the actual target output Y . In the usage phase,
when the target output is either not available or being used for evaluation purposes, the
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predicted output Ŷ is used to identify the most likely sound event label in a given input.
In the case of ESC, this is the sound event label with the highest probability as shown in
Figure 1.6.

Figure 1.6 – Block diagram of machine learning method with neural networks.

1.4 Artificial Neural Networks

An artificial neural network (ANN) is a type of machine learning algorithm that is
inspired by the structure and function of the human brain as depicted in Figure 1.7 [47].
The human brain is composed of billions of interconnected neurons, which are stimulated
by various electrochemical signals in order to process and transmit information. ANNs
attempt to replicate the structure and function of a biological neural network, but use a
simplified set of concepts from biological neural systems. ANNs are specifically designed
to simulate the electrical activity of the brain and nervous system and are composed of
processing elements (also known as neurons or perceptrons) that are connected to each
other in a way that emulates the connections between neurons in the brain. The processing
elements in an ANN receive input data, perform a computation on the data, and transmit
the output data to other processing elements or external destinations.

Different types of signals, such as sensory, audio, and visual signals, can stimulate
different paths of neurons in the brain, and the signal information is processed through a
collective set of neuron stimulations. From the moment of birth, the neurons in the brain
specialize in processing certain types of signals and continuously improve their ability to
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Figure 1.7 – Biological neuron and artificial neuron.

create a mapping between the input signal and its cognitive representation. For example,
when we hear human speech, a special kind of audio signal used for communication, it is
first transformed into electrochemical signals in the ear and brain. The cochlea is a spiral-
shaped structure in the ear that is responsible for converting sound waves into electrical
signals. These signals are then processed by the neurons in the brain through a series of
stimulations, which map the signals to a set of phonemes, or units of sound, which have
a shared cognitive representation for human communication.

ANNs attempt to replicate this process of information processing and mapping by
using a set of interconnected processing elements, which receive input data and transmit
output data based on the weights of their connections and the activation functions applied
to the input data. Each neuron has certain parameters, such as weights and biases, which
are adjusted iteratively through a process such as a gradient optimization in order to
minimize an error function between the desired output and the estimated output. The
layer that receives the input signal is called the input layer, the layer that determines
the final output of the network is called the output layer, and the layers in between are
called hidden layers. ANNs have a set of hyper-parameters that determine the network
architecture, such as the number of hidden units and layers, and the training procedure,
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such as the optimization method and regularization parameters. ANNs with multiple
hidden layers are often referred to as deep learning or deep neural networks (DNNs). In
this context, "deep learning" refers to all ANN methods that utilize multiple hidden layers.
Deep learning has become increasingly popular in the field of machine learning due to the
availability of large datasets, advanced training techniques, and increased computational
power by GPUs.

1.4.1 Feed-forward Neural Networks

Feed-forward neural networks (FNN) are a type of artificial neural network that
processes input data and generates output data in a single direction, without looping
back. These networks, also known as fully connected networks or multi-layer perceptrons
(MLPs), consist of layers of interconnected artificial neurons, or processing elements, that
receive input data, apply computation based on the weights of their connections and
activation functions and transmit output data to the next layer.

Each neuron in a feed-forward network receives input from multiple other neurons in
the previous layer, performs a computation on the input data, and transmits the output
to multiple neurons in the next layer. The input layer receives the raw input data, and the
output layer generates the final output of the network. The layers in between the input
and output layers are called hidden layers, and their purpose is to extract features and
patterns from the input data that can be used to make predictions or classifications.

The calculation of FNN is calculated in two stages, first, the weighted sum z of the
output of the previous connected layer of neurons is calculated and an additional bias b
is added, and represented as:

z
(l)
j =

∑
1≤k≤n(l−1)

w
(l)
j,kh

(l−1)
k + b

(l)
j (1.3)

where W
(l)
j = (w(l)

j,k)1≤k≤n(l−1) represents the input weights in the neuron j from the
layers l, n(l−1) is the number of outputs of the layer (l − 1), h

(l−1)
k is the output for the

neuron k in the layer l-1, z
(l)
j is the weighted sum for the neuron j in lth layer.

Secondly, a non-linear function is applied to the output of the neuron k in the layer
l − 1, to map the non-linear relationship in the input. In a neural network, non-linear
functions are used to introduce non-linearity into the model. This is important because
many real-world problems are non-linear in nature, and a model that is only capable of
learning linear relationships will not be able to accurately capture the complexity of these
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problems. The non-linearity function is defined as σ and the relation is defined as:

hl
k = σ(z(l)

k ) (1.4)

The non-linearity function is most commonly known as activation function, and this
activation function empowers the neural networks to approximate complex functions. Let
h(l−1) ∈ Rn(l−1) be input to the lth layer (outputs of the (l− 1)thlayer), and h(l) ∈ Rn(l) is
its output, then the output of the neuron k in the layer l is defined as :

h
(l)
k = σ(W (l)

k

(
h(l−1)

)T
+ b

(l)
k ) (1.5)

and h(l) ∈ Rn(l) is defined as:

h(l) = σ(W (l)
(
h(l−1)

)T
+ b(l))

where
W (l) = (w(l)

j,k)
1 ≤ j ≤ n(l)

1 ≤ k ≤ n(l−1)

b = (b(l)
j )1≤j≤n(l)

Non-linear functions that are frequently used include the logistic sigmoid function
(sigm), the hyperbolic tangent function (tanh), and the rectified linear unit function
(ReLU ). These functions are element-wise, meaning that they operate on individual ele-
ments in an array or matrix, and their equations are discussed in the following section.

Feed-forward neural networks are characterized by the fact that information flows
through the model in a single direction, from the input x∈ Rn to the output y ∈ Rm,
without any feedback connections. In these models, the output is determined by the
intermediate computations used to define the function, [48]:

f : Rn → Rm

x = (x1, ..., xn) → y = (y1, ..., ym) = f(x)

The goal of a feed-forward network is to find the appropriate parameters (weight and
biases: W and b) that result in the best function approximation. The weight W and
biases b are defined as:
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W = (w(l)
j,k)

1 ≤ j ≤ n(l)

1 ≤ k ≤ n(l−1)

1 ≤ l ≤ L

b = (b(l)
j )

1 ≤ j ≤ n(l)

1 ≤ l ≤ L

So the variables are the parameters, that we denote for simplification θ = (W , b) and
the feed-forward network can be defined as :

f̂ : Rn+p → Rm

(x, θ) → y = (y1, ..., ym) = f̂(x, θ)

where, n is the number of input and p is parameters and f̂ represent the neural network
model. A feed-forward neural network is illustrated in Figure 1.8. For the model shown in
the figure, the model takes the input feature vector, in our case acoustic feature per time
frame, as input and calculates the probability for each fourth output nodes, sound classes
present in the acoustic feature in our case. If the target output vector y is binary-encoded
(common in SED tasks), the weighted sum of each neuron in the output layer is passed
through an activation function that bounds the output between 0 and 1, allowing the
network output ŷ to be interpreted as the estimated probabilities of the sound events
being present in the frame.

Feedforward neural networks play a crucial role in the field of machine learning and
are the foundation of many practical applications. For instance, convolutional neural net-
works, which are used for object recognition from images, are a type of feed forward
network. Feedforward networks are a fundamental concept that leads to the development
of recurrent neural networks, which are used in natural language processing applications.

When feed-forward networks are extended to include feedback connections, they be-
come recurrent neural networks, which will be discussed in a later section.

1.4.2 Recurrent Neural Networks

Recurrent neural networks (RNN) are a type of artificial neural network that is specif-
ically designed to handle sequential data. This quality has made RNNs popular in the
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Figure 1.8 – Feed forward neural network. First layer is the input layer, followed by two
hidden layers and a output layer at the end.

tasks related to language translation, speech recognition, and natural language processing
[49]–[56]. In a deep neural network, the input data is typically transformed into a fixed-
length feature vector. This feature vector is passed and processed by the hidden layers
before generating class estimation at the output layer. This means that at each time step,
the prediction made by the y is only based on the input x at present and does not take
into account any context from the previous input. This can be problematic for certain
models where context is important. In contrast, RNN processes the input data element
one at a time while keeping the states of elements passed before in the sequence by using
hidden layers or hidden states. In RNN, the value of each hidden layer depends not only
on the values of the layers below it at the current time step but also on the value of the
same layer at the previous time step. The value of the hidden layer, represented by h

(l)
t of

the l − th layer at time t, is given by:

h
(l)
t = σ(U (l)h

(l)
t−1 + W (l)h

(l−1)
t + b(l)) (1.6)

Here, U (l) matrix is the recurrent weight matrix. At each time step, the RNN cell
processes the current input and the previous hidden state, producing a new output and
updating the hidden state with the new information as shown in Figure 1.9 [57]. This
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process is repeated for each element in the sequence, allowing the RNN to build up a
representation of the entire sequence over time.

RNNS processes an input sequence in a single direction, using information from past
contexts to calculate the output for the current time step. In some cases, it may be
beneficial to also process the input sequence in the opposite direction in the future context.
In this case, bidirectional RNN have been proposed [58]. In addition to the forward chain
in the hidden layer in RNN, a backward chain is also included. Both chains of the hidden
layer are connected to the forward and backward chains in the next hidden layer. Let

−→
h

(l)
t

represent the output of the l − th layer in forward direction,
←−
h

(l)
t represent the output of

the lth layer in backward direction and h
(l)
t represents the concatenation of the two. The

relation is described by :

−→
h

(l)
t = σ(−→U (l)−→h (l)

t−1 + W (l)h
(l−1)
t +−→b (l)) (1.7)

←−
h

(l)
t = σ(←−U (l)←−h (l)

t−1 + W (l)h
(l−1)
t +←−b (l)) (1.8)

Here, −→U (l) and −→b (l) are the forward recurrent weights and biases. Similarly, ←−V (l) and
←−
b (l) are the weights and biases in the backward direction. A bidirectional RNN has access

to the entire input sequence when making a prediction at any time step, providing it with
unlimited context.

Figure 1.9 – Recurrent Units in Recurrent neural networks.

RNNs face difficulty in modeling long-term dependencies, as the impact of past time
steps on the current output tends to decrease exponentially over time due to the gradients vanishing
problem. This limits the ability of RNNs to effectively incorporate long temporal context,
despite their theoretical potential to do so [59].

To address the issues with traditional RNNs, gated recurrent layer methods such as
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gated recurrent units (GRUs) and long short-term memory networks (LSTMs) were intro-
duced. These methods use units called cells, which combine multiple gate activations to
produce their output. LSTMs have external input, forget, and output gates, while GRUs
have an update and reset gates. These gates, which are made up of weights and an acti-
vation function, allow the cells to accumulate and selectively preserve information from
past time steps in a cell state. During training, the gate weights learn how to combine
the cell state and the input for the current time step to produce the gated unit output
for the current time step.

The cell structure of LSTM and GRU are shown in figure 1.10(a) and 1.10(b) respec-
tively [57]. The three types of gates in an LSTM network are the input gate, forget gate,
and output gate. These gates use the following equations to determine how to update the
state of the network at each time step:

it = σ(Wi · xt + Ui · ht−1 + bi) (1.9)
ft = σ(Wf · xt + Uf · ht−1 + bf ) (1.10)
ot = σ(Wo · xt + Uo · ht−1 + bo) (1.11)
ct = ft · ct−1 + it · tanh(Wc · xt + Uc · ht−1 + bc) (1.12)
ht = ot · tanh(ct) (1.13)

where,

· xt is the input at time step t

· ht−1 is the hidden state at time step t− 1

· it, ft, ot are the input, forget, and output gates, respectively, at time step t

· W , U , and b are learn-able weight matrices and biases

· ct is the cell state at time step t

· ct−1 is the cell state at time step t− 1

· ht is the hidden state at time step t

· σ is the logistic sigmoid function

Both LSTMs and GRUs are able to capture long-term dependencies in data, however,
they differ in a few aspects as shown in Fig.1.10. LSTMs have three types of gates (input,
forget, and output gates) while GRUs have only two (reset and update gates). LSTMs
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(a) Long short term memory cell (b) Gated Recurrent unit cell

Figure 1.10 – LSTM and GRU Cell.

have a separate cell state that is updated using the input, forget, and output gates, while
GRUs do not have a separate cell state and update their hidden state directly using the
reset and update gates. LSTMs have more parameters than GRUs, which can make them
more difficult to train and may require more computational resources. In general, LSTMs
and GRUs perform similarly on many tasks, but LSTMs may be more suitable for tasks
that require long-term dependencies to be captured over longer sequences, while GRUs
may be more suitable for tasks that require the model to learn more quickly.

1.4.3 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a type of deep neural network that performs
relatively well for image classification and recognition tasks. They are able to learn the
important features and objects in an image by assigning weights and biases to different
aspects of the input data. The design and architecture of CNNs are inspired by the
structure of the visual cortex in human and animal brains. Each neuron is responsible
for processing a specific region of input data, known as receptive field that is sensitive to
the specific patterns in the visual environments. The receptive field of multiple neurons
overlaps to cover the entire input data.

The fundamental component of CNN is a convolutional layer inter-weaved with pooling
layers, which are responsible for extracting features from the input data. The convolutional
layer contains a collection of filters, also called kernels or weights, which are scanned over
the input data and detect specific patterns. Each filter is a small matrix of weights that
is applied to a small region of the input data. The output of this process is a feature map,
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which is the representation of the responses of the filters at each location in the input
data.

In a multi-layer convolutional network, the output of one layer serves as the input for
the next layer. This output typically consists of the results of multiple convolutions at each
position. When working with images, we typically represent the input and output of the
convolutional operation as 3-dimensional tensors, with indices for the different channels
and the spatial coordinates within each channel. In practice, software implementations of
convolutional networks often use batch processing, which involves 4-dimensional tensors
with an additional index for the different examples in the batch. For simplicity, we will
describe the operations here without considering the batch axis.

The convolution operation between a filter F and an input image X with height h,
width w, and number of channels c can be represented mathematically as:

Hi,j,k = σ

(
C∑

c=1

S∑
m=1

S∑
n=1

Xs·i+m,s·j+n,c · Fm,n,c,k + Bk

)
(1.14)

Where Hi,j,k is the activation at position (i, j) in the output feature map for channel
k, C is the number of channels in the input image, S is the size of the filter, s is the
stride, Bk is the bias for channel k, and Fm,n,c,k is the entry of the filter F at position
(m, n) for channel c and channel k. The double summation over m and n is taken over
the height and width of the filter, while the summation over c is taken over the number
of channels in the input image. The i and j indices indicate the position of the filter in
the input image.

The final output feature map has shape (h′, w′, k), where h′ and w′ are the height and
width of the output feature map, and k is the number of channels in the output feature
map. Where σ is the activation function. The kernel slides over the input to extract the
local representation and is generally smaller in size as compared to the input as visualized
in Figure 1.11.

A pooling layer operates by dividing the input feature map into non-overlapping re-
gions, each containing m×n pixels. The stride of the pooling layer is equal to m×n. For
each region, the pooling layer computes a statistic, which can be either the maximum or
the average value. These are the most commonly used statistics in pooling layers.

When applied to image recognition tasks, a neural network typically makes a predic-
tion for an entire image represented as 1 or 3 input feature maps (for gray-scale or color
images, respectively). The layers of the network are usually arranged in a way that in-

32



1.4. Artificial Neural Networks

Figure 1.11 – Convolution operation in convolutional neural networks (CNN)

volves increasing the number of feature maps through the use of convolutional layers and
decreasing the size of the feature maps through the use of pooling layers. Once the feature
maps become small enough, they are often flattened into a single vector and processed by
fully connected layers to make the final prediction.

The Convolutional layers are applied to the feature image, time-frequency represen-
tation for sound, along with pooling layers. The image is transformed into a sequence
by subsequent application of convolutional and pooling layers as shown in Figure 1.12.
This sequence is used as input to fully-connected neural networks. In contrast to fully-
connected neural networks, where each input feature is connected to a hidden unit in
the next layer, convolutional layers use shared parameters among the input features and
train the kernel parameters to learn local patterns that can be found anywhere in the
input. This is particularly useful for ESC, where a sound event should be detected from
a spectrogram regardless of its position in time. Additionally, convolutional layers, which
typically consist of tens or hundreds of kernels, are often more memory-efficient than fully-
connected neural networks due to the reduced number of weights. Convolutional layers
in ANNs are typically used to identify important features. These features are then intro-
duced into another layer in the ANN. If this input needs to be in the form of a vector,
such as for use in an RNN, the features from each feature map are combined along the
frequency axis to form a single vector for each time step.

CNNs have several advantages, including shift in-variance and locality. Shift in-variance
means that the prediction for an image should not change if the object of interest moves
within the image. This property is also desirable for audio signals, as a phoneme or sound
event should be recognized regardless of its position in the audio signal, and a limited shift
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along the frequency axis should not affect the prediction. CNNs achieve shift in-variance
by applying the same convolution kernel to all parts of the input. Locality means that the
network has a sense of which parts of the input are close to each other and which parts
are far apart. This is achieved through the use of neurons that only receive information
from neurons representing a neighboring region in the lower layer. As a result of locality,
CNNs do not have the unlimited context that RNNs do when applied to audio. However,
tasks involving audio may not require unlimited context, as audio usually does not exhibit
long-range dependence in the same way that natural language does.

Figure 1.12 – Convolutional neural network (CNN) on a spectrogram.

1.4.4 Depthwise separable convolution networks

A depthwise separable convolutional network (DS-CNN) is a type of CNN architecture
that aims to reduce the number of parameters and computation required by a traditional
CNN. This is achieved by breaking a standard convolutional layer into two separate layers:
a depthwise convolution layer and a pointwise convolution layer [60].

The depthwise convolution layer applies a single filter to each input channel, rather
than applying the same filter across all channels as in a traditional CNN. This results in a
set of feature maps, one for each input channel. Let the input image tensor be denoted as
X with dimensions (h, w, c) where h is the height, w is the width, and c is the number of
channels. The first step of the DSCNN operation is the depthwise convolution operation,
which is defined as follows:

Zi,j,k =
k−1∑
m=0

fh−1∑
n=0

fw−1∑
p=0

Xi−n,j−p,m · Fn,p,m,k (1.15)

Where Z is the intermediate feature map with dimensions (h, w, c), F is the depth-
wise filter with dimensions (fh, fw, c, 1), i and j are the indices for the height and width
respectively, k is the channel index, and m, n, and p are the indices for the filter height,
width, and channel, respectively. As shown in Figure 1.13.
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Figure 1.13 – Depthwise convolution operation on an input image.

The pointwise convolution layer then applies a 1x1 convolution to the set of feature
maps output by the depthwise convolution layer. This combines the information across
all channels and produces a single output feature map, which is defined as follows::

Yi,j,k =
c−1∑
m=0

Zi,j,m ·Gm,k (1.16)

Where Y is the output feature map with dimensions (h, w, k), G is the pointwise filter
with dimensions (c, k), and k is the index for the number of output channels, depicted in
Figure 1.14.

Figure 1.14 – Pointwise convolution operation on an input image.

The use of depthwise separable convolutions can greatly reduce the number of pa-
rameters in a CNN, as the number of parameters in the depthwise layer is equal to the
number of input channels, while the number of parameters in the pointwise layer is equal
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to the number of input channels times the number of output channels. This can lead to
faster training and better performance on some tasks.

1.5 Neural network model training and evaluation

1.5.1 Training of Model

Training of a neural network model involves the adjustment of the model’s weights
and biases to minimize the error between the predicted output and the true output based
on the dataset presented. This is typically done using an optimization algorithm, such
as stochastic gradient descent (SGD), which adjusts the weights and biases iteratively to
minimize the loss function. The loss function is a measure of the difference between the
predicted output and the true output, and the optimization algorithm attempts to find
the best combination of weights and biases that minimizes this difference.

The parameters of the neural network θ are typically initialized with small, randomly
generated values drawn from a normal distribution. The input data is then passed through
the network, and the output of the network is calculated ŷ = f(x, θ). This process is known
as forward pass or forward propagation. To evaluate how close the predicted output ŷ is
to the true output y, we calculate the loss l(y, ŷ) using a loss function, such as mean
squared error or cross-entropy. It is important that the loss function is non-negative and
differentiable everywhere, as we use gradient-based optimization algorithms to update the
network parameters.

1.5.2 Optimization by Gradient Descent Based Optimization
Algorithms

To train a neural network, we need to find the values for the model’s parameters
that minimize the loss function [48]. There are various optimization algorithms that can
be used for this purpose, and many of these algorithms rely on the gradient of the loss
function with respect to the parameters.

The gradient ∇l of the loss function with respect to the parameters θ, which includes
the weight and biases, is calculated and used to update the parameters according to the
gradient descent algorithm.
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∇l =
(

∂l

∂θ

)
(1.17)

The gradient can be calculated using back-propagation algorithm [61], which involves
applying the chain rule of differentiation repeatedly. Many deep learning frameworks, such
as Theano [62], TensorFlow [63], PyTorch [64], can perform back-propagation automati-
cally, so it is not necessary to derive the gradient formulas manually. One such algorithm
is gradient descent, which involves iteratively computing the gradient of the loss function
and updating the parameters by subtracting the gradient multiplied by a learning rate.
The change in the loss l denotes as ∆l can be calculated by multiplying it with the change
∆θ in the parameters θ as:

∆l ≈ ∇l ·∆θ (1.18)

The objective of the gradient descent is to minimize l, by updating ∆l based on ∆θ,
which would make the change in loss ∆l negative. We use the negative sign in the relation:

∆θ = −η∆l (1.19)

Where η is the learning rate and is always greater than zero, η > 0.Substituting 1.19
in 1.18 gives us:

∆l ≈ −η||∇l||2 (1.20)

This entails that ∆l ≤ 0 and therefore l will decrease. The weights and biases will be
updated as:

θ ← θ + ∆θ = θη∇l (1.21)

W←W− η
∂l

∂W
(1.22)

b← b− η
∂l

∂b
(1.23)
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Stochastic Gradient Descent (SGD)

In order to update the weights and biases one option is to calculate the loss for each
input after the forward pass and then calculate the average loss [48]. This method is
known as batch gradient descent. In this method, all training input needs to be forward
propagated before any parameter update. In contrast to full batch gradient descent, which
uses the entire dataset to calculate loss and update the network’s parameters at once,
stochastic gradient descent uses a smaller, randomly selected subset of the data to compute
the average loss and makes updates. This is typically done iteratively until all data has
been used for training. This method is more common, especially during the early stages
of training a neural network when the model is less accurate and requires more frequent
updates to improve its performance.

In SGD, the training input data is converted into mini-batches. Updating the network’s
parameters based on the gradients calculated from each mini-batch helps prevent the
model from getting stuck in sub-optimal solutions. The process of going through the entire
training dataset is called an epoch. To reduce the risk of the model learning invalid patterns
from the order of the mini-batches, it is common to shuffle them. The learning rate is
typically adjusted after each epoch, and when the training data is very large, additional
validation steps may be inserted, with one epoch containing multiple checkpoints.

In the SGD optimization method, the network is trained for a set number of epochs,
typically ranging from 100 to 500 for sound event detection tasks. As the training pro-
gresses through each epoch, the updates to the network’s parameters result in different
loss values for the same input. When the updates become sufficiently small, the network’s
parameters converge and the training process is terminated.

Momentum

Due to the increasing complexity of deep neural networks (DNNs) and the use of large
datasets, the efficiency and speed of training networks using SGD have become a concern.
DNNs often have millions of parameters, making the process of calculating gradients and
updating parameters time-consuming. The vanishing gradient problem can also cause the
number of updates to be smaller for parameters in lower layers compared to those in higher
layers, even with a fixed learning rate. In addition, large datasets, which are beneficial for
training complex networks such as DNNs, can take a long time to process. To speed up
the training process of DNNs another commonly used technique momentum is used.
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In the momentum optimization method, the update to the network’s parameters takes
into account not only the gradient from the current mini-batch but also the total update
from previous iterations. It does this by adding a fraction of the update from the current
iteration to the update from the previous iteration. This can help the model escape from
local optima and saddle points, and can also help the optimization algorithm to continue
moving in the same direction when making progress. Let δi+1, be the difference between
the parameter and after (i + 1)th minibatch, then momentum with SGD can be described
as:

θi+1 = θi + δi+1 (1.24)

δi+1 = µδi − η∇l (1.25)

The momentum coefficient, often denoted as µ ∈ (0, 1), determines the weight of the
previous update in the current update. A high µ value means that the previous update
will have a large influence on the current update, while a low µ value means that the
previous update will have a small influence. Momentum helps optimization algorithms
navigate narrow ravines in the loss function by adding a component of the gradient from
previous iterations to the current iteration. This can allow the learning rate to be set to a
higher value, leading to faster convergence. Without momentum, the learning rate must
be set to a smaller value to avoid oscillation in the ravine, which slows progress.

Adaptive Moment Estimation (Adam)

Adjusting the learning rate η is one of the most crucial steps in fine-tuning the hyper-
parameters for the neural networks. The learning of the neural network is directly affected
by the learning rate. Fixed learning rate, as in SGD, means that the optimization is heavily
influenced by the chosen learning rate. However, it is more effective to have larger updates
at the beginning of training when the network is not yet familiar with the task and tends
to make larger errors in its output estimates, and smaller updates as training progresses
and the network only needs minor adjustments to the parameters before convergence.
There are optimization algorithms available that adjust the learning rate during training
to address the issue of having a fixed learning rate in SGD. One example is Adam [65],
which takes into account both the first and second moments of the gradient and includes
bias correction to reduce bias early in training. Adam has gained popularity among deep
learning researchers due to its strong performance across a range of hyper-parameter
values.
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Activation Functions

In equation 1.4 we introduced the use of activation function a non-linear function
denoted by σ. The output of hl

k of the neuron k in the layer l is obtained by applying
the activation function to the weighted sum of the neuron outputs for the layer (l − 1).
Commonly used non-linear functions including element-wise functions such as the logistic
sigmoid function (sigm), the hyperbolic tangent function (tanh), and the rectified linear
unit function (ReLU). These functions are shown in Figure 1.15 and are defined as:

σ(z) = 1
1 + e−z

(1.26)

tanh(z) = ez − e−z

ez + e−z
= 1− e−2z

1 + e−2z
(1.27)

Relu(z) = max(0, z) (1.28)

For all the layers, the choice of activation function is flexible except for the output layer.
The activation function of the output layer must be chosen based on the task that the
network is attempting to solve. If the task is regression, then the identity function should
be used. If the task is binary classification, the logistic sigmoid function should be used
to generate probabilities between 0 and 1. If the task is multi-class classification, a non-
element-wise softmax function σ(zi) should be used to create a probability distribution.
let z1, z2, . . . , zk the elements of the vector input to the softmax function, then the i− th

component of the output will be calculated as :

σ(zi) = ezi∑K
j=1 ezj

for i = 1, 2, . . . , K (1.29)

The σ(zi) gives a probability distribution at the output as it can be easily demonstrated
that σ(zi) > 0, ∀i and ∑K

i=1 σ(zi) = 1.

Hyper-parameter Fine Tuning

Hyper-parameter tuning involves adjusting specific parameters in a machine learning
model to improve its performance on a given dataset. These hyper-parameters, which
are set before training the model, are not determined by the data and can include op-
tions like the learning rate or the number of hidden units in a neural network. There
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(a) Relu activation function (b) Tan hyperbolic activation
function

(c) Sigmoid activation

Figure 1.15 – Relu, Tan hyperbolic function, and sigmoid activation function response.

are different methods for tuning hyper-parameters, such as manually adjusting them and
evaluating the model’s performance, using a grid search to test all possible combina-
tions of hyper-parameters, or sampling random combinations using random search. While
hyper-parameter tuning is crucial for maximizing a model’s performance, it can be time-
consuming and resource-intensive.

1.5.3 Network Regularization

Regularization is a technique used in machine learning models, especially neural net-
works, to prevent over-fitting. Over-fitting occurs when the model is too complex and has
too many parameters, fitting the noise or random variations in the training data rather
than the underlying pattern. This can lead to poor generalization performance for new
unseen data. We used two most commonly used regularization techniques: Dropout and
batch normalization.

Dropout [66] is a technique used in neural networks to prevent over-fitting by randomly
"disabling" or dropping out a subset of the neurons during training. During training,
randomly a fraction of the activations of the hidden units to zero, typically done with
a probability of around 0.1 to 0.5. The probability of dropping out of the activation of
each hidden unit is randomly sampled for each epoch of training. This forces the network
to learn more robust features that are useful in different contexts, reducing complexity
and improving generalization. During test time, all neurons are used but the activations
are scaled down to compensate for the dropout rate used during training. Dropout is
commonly used in combination with other regularization methods and has been shown to
be effective in deep neural networks.

Batch normalization [67] is a technique used to speed up the training of deep neural
networks and improve their ability to generalize. It works by normalizing the activations
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of neurons within layers for each mini-batch during training. Neuron activation values are
typically distributed around a mean and vary in magnitude. This can cause problems in
the optimization process. This is because the gradient of the weights can be very small
or very large, depending on the range of activations. This can slow down training and
makes the gradient disappear or explode. Batch normalization addresses this problem by
normalizing neuronal activations so that each mini-batch has a mean and unit variance of
zero. This results in a stable distribution of activations, more consistent gradients, faster
training, and better generalization. Batch normalization is usually applied after linear
transformations of activation and before nonlinear activation functions.

1.5.4 Evaluation of sound classification model

Evaluating the performance of a proposed method is essential to determine its effec-
tiveness. This evaluation should use metrics that reflect the real-world application of the
method. Using standardized performance metrics makes it easier to compare and measure
the progress made by the proposed method.

1.5.5 Performance Metrics

To evaluate the performance of the ESC system, a performance metric is calculated
using the binary detection outputs and the target outputs for a test or evaluation set.
Commonly used performance metrics for ESC include accuracy, precision, recall (also
called the true positive rate), F1 score, error rate. For polyphonic sound event detection,
metrics such as accuracy are less effective to evaluate the performance, and error rate is
generally used. Discussed in more detail in [68].

To evaluate the performance of the ESC system, a set of intermediate statistics, in-
cluding true positives, true negatives, false positives, and false negatives, are calculated.
These statistics can be used to calculate performance metrics at either the segment or
event level.

A true positive is when both the reference and system output show that an event is
happening during a specific time period. A false positive is when the reference says that
an event is not happening, but the system output says it is. A false negative is when the
reference says an event is happening, but the system output says it is not. True negatives
are when both the reference and system output shows that an event is not happening.
The total number of true positives, false positives, false negatives and true negatives are
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represented as TP, FP, FN, and TN, respectively.

Accuracy

Accuracy is a measure of the classifier’s performance, calculated as the percentage
of correct predictions made by the classifier out of the total number of predictions. It
indicates how often the classifier is able to correctly identify the class of an input sample.

ACC = TP + TN

TP + TN + FP + FN
(1.30)

Precision

Precision is a measure of the accuracy of the detection made by the system. It is
calculated as the ratio of the number of correctly detected examples to the total number
of detection made by the system.

P = TP

TP + FP
(1.31)

Recall

Recall, also known as sensitivity or true positive rate, is a measure of a classifier’s per-
formance that indicates the proportion of positive instances that were correctly identified
by the classifier.

R = TP

TP + FN
(1.32)

F1 Score

The F1 score is a measure of a classifier’s performance that combines precision and
recall. It is calculated as the harmonic mean of precision and recall, with a higher score
indicating better performance. The F1 score is defined as:

F1 = 2.P.R

P + R
(1.33)

The F1 score is useful for evaluating the performance of a classifier because it can be
applied to both single-label and multi-label classification tasks and considers both preci-
sion and recall equally. However, the F1 score does not take into account true negatives
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in its calculation.

1.5.6 Cross Validation

Cross-validation is a statistical method used to evaluate the performance of a predictive
model by partitioning the original sample into a training set to train the model, and a test
set to evaluate it. Cross-validation is an important aspect of comparing and reproducing
results in experiments. It is important to carefully set up the cross-validation procedure
to ensure that all classes are represented in each fold, as missing classes can result in
errors in the calculation of some performance metrics [69]. The model is trained on the
training set and then tested on the test set. This process is repeated a number of times,
with each partition serving as the test set once as depicted in Figure 1.16 [70]. The
average performance across all iterations is used to assess the model’s performance. It
is important to treat the cross-validation folds as a single experiment and only calculate
the final metrics after testing all the folds. Cross-validation helps to reduce the risk of
over-fitting, as the model is trained and evaluated on different data each time. It is a
widely used technique for model selection and evaluation.

Figure 1.16 – Multi fold cross-validation setup.
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1.6 Datasets

The dataset used to train and evaluate the ESC method should be diverse and repre-
sentative of the range of ESC tasks it is intended to handle. This dataset can be created
using sounds recorded in real-world environments and annotated manually, or by syn-
thesizing sounds using individual sound events and mixing them to mimic real-world
conditions. Synthesizing the dataset has the advantage of providing more accurate anno-
tations, but it can be challenging to create sound event mixtures that accurately simulate
a real-world recording.

The database consists of the audio recording and their associated labels. There are two
types of labels that describe the granularity of the labels: strong labels and weak labels.
In strong labeling, the desired sound and its time stamp are both present, for example, in
an audio recording the time stamps of the start and end of the dog bark is presented along
with the label. In weak labeling, only the general label is present without any information
about the locality of the sound event present in the audio recording. Obtaining strong
labels is a difficult and arduous task and is required for overlapping sound events. In
this thesis, weak-labeled sound databases are used. The databases are described in the
following section. The usage of these datasets for the development of proposed methods
is discussed in the experimental section of the following chapters.

1.6.1 Acoustic Scene Classification Dataset

Detection of an acoustic scene has been considered a complex problem by the research
community for several years, and various efforts have been dedicated to solving this issue.
Acoustic scenes contain acoustic events in a particular environment such as metro stations,
airports, train stations, etc. Classifying these categories becomes complex due to the
similar nature of the sound events occurring in those environments. To solve this issue, the
Detection and Classification of Acoustic Scenes and Events (DCASE) provided a dataset
that contains audio recordings of 10 different categories: airports, indoor shopping malls,
metro stations, pedestrian streets, public squares, streets with a medium level of traffic,
traveling by train, traveling by bus, traveling by an underground metro, and urban park
(TUT Urban Acoustic Scenes 2018 dataset) [71].
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1.6.2 Low-Complexity Acoustic Scene Classification Dataset

This dataset is provided by the DCASE community [71] and contains three categories.
The dataset comprises recordings from 12 European cities in 10 distinct acoustic scenes.
The 10 different categories are then divided into three separate categories as follows:

· Indoor scenes: airport, indoor shopping mall, and metro station;

· Outdoor scenes: pedestrian street, public square, a street with a medium level of
traffic, and urban park;

· Transportation-related scenes: traveling by bus, traveling by tram, traveling by un-
derground metro.

The audio signal is recorded at 48kHz and in 24-bit in a binaural format using only
one recording device. The dataset is divided into two categories: the development set and
the evaluation set. Due to the unavailability of the labels of the evaluation set, the system
was evaluated on the development set only. The development set contains 40 hours of
audio recordings divided into a training set and a test set. Each audio file is 10 seconds
long. The baseline system [72] is evaluated using the development set by log Mel filter
bank energy features.

1.6.3 Urbansound8k

Urbansound8k is a dataset containing 10 different classes and 8732 short-duration (less
than or equal to 4 seconds) files [17], [18]. The collection is composed of environmental
sounds such as air conditioners, car horns, playing children, dog bark, drilling, engine
idling, gunshot, jackhammer, siren, and street music. Recordings are available in 10-fold
cross-validation and recorded at 22.05KHz sampling frequency.

1.6.4 Custom Database

The audio recordings are collected from FreeSound [73] from several contributors. Each
recording was registered by a different publisher and with different locations, lengths,
equipment, and sampling rates. The recordings are gathered for four categories, i.e., rain,
wind, car passing, and human walking. The recording’s sampling rates were from 44100 Hz
to 96000 Hz. The database was processed to obtain uniform characteristics. Ten-second
audio files were extracted with a sampling rate of 441000 Hz, resulting in 750 files of
10-second length with a total duration of 125 minutes for each recording[74].
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Chapter 2

ENVIRONMENTAL SOUND

CLASSIFICATION SYSTEMS BASED ON

EMPIRICAL FEATURES

2.1 Introduction

Neural networks, described in the previous chapter, have played a vital role in the
growth of classification systems for environmental sounds. Convolutional neural networks
(CNN) are at the forefront of this change, along with recurrent neural networks (RNN)
and long short-term memory (LSTM), which are still used in many systems [6], [75]–
[81]. As mentioned before the performance of these ANNs depends on the quality of
the features used. In image classification, an image is used as a feature. In speech and
sound classification, an image form of the sound is provided through the time-frequency-
energy information of the signal, namely, a spectrogram. Mel spectrogram, the most widely
used spectrogram, is extracted from Mel filter bank energies by applying Mel triangular
filter banks to the spectrogram calculated from the application of fast Fourier transform
(FFT) on a signal. This resulted in the general use of Fourier transforms, even implicitly,
for spectrogram construction and feature extraction. However, there are some crucial
restrictions to performing Fourier spectral analysis, which make Fourier transform valid
under extremely general conditions [82], [83].

To perform Fourier spectral analysis on a signal provided by a system, the system
must be linear and the signal must be ergodic and stationary; failing to meet these cri-
teria will result in little physical sense. Sound is a time-varying signal whose frequency
and energy change depending on the source generating the sound, which implies that the
assumptions of stationarity and ergodism may not be satisfied. In addition, the Fourier
spectrum establishes global uniform harmonic components, resulting in the necessity of
additional components to simulate data that is non-stationary and globally non-uniform.
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Consequently, it spreads the energy over a wide frequency range. To analyze data of a
non-stationary nature in the time domain, numerous Fourier components are applied,
causing energy dispersion to a much wider frequency scale. Furthermore, Fourier spec-
tral analysis employs a priori-defined basis functions that require additional harmonic
components to analyze deformed wave profiles. Features based on short-time fast Fourier
transform (STFT), introduced by Cooley and Tukey in 1965 [2], are predominately used
in extracting frequency domain features [3]–[7]. The wavelet transform, which is a win-
dowed Fourier transform in the time domain, provides the solution to the limitations of
STFT. Wavelets [44] overcome limitations because the window is scaled in both time and
frequency [45]. Wavelet analysis provides a solution for analyzing non-stationary data.
However, in wavelet transform, we still require a priori-defined basis in terms of a wavelet
function, which makes wavelet analysis non-adaptive in nature. The most commonly used
Morlet wavelet function is based on Fourier and suffers from the same shortcomings as
Fourier analysis [83]–[85].

Due to the ubiquitous usage of Fourier spectral analysis, the notions of instantaneous
frequency (IF) and instantaneous amplitude (IA) are relatively less accepted [83]. Tra-
ditionally, the frequency is defined with the sine and cosine functions as basis functions
spanning the whole data length with constant amplitude. According to this approach, the
instantaneous frequency also must be defined on either the cosine or sine basis function.
As result, it would be compulsory to have one complete oscillation. This approach would
make no sense for a non-stationary signal that changes from time to time. In real life,
most systems are non-linear and operate or generate non-stationary data [86], [87]. To
analyze non-stationary and non-linear time series data and processes, a novel method of
decomposing temporal signals called empirical mode decomposition was introduced by
Huang [83]. This decomposition is adaptive and highly efficient. This method decomposes
the signal into a finite number of oscillatory units called intrinsic mode functions (IMFs).
These modes are extracted based on characteristics of local time series data with zero
mean with symmetric AM–FM components. The decomposition of the signal is highly
adaptive and is based on the direct extraction of energy with local time scales. Using the
Teager–Kaiser energy operator (TKEO)[88], we can extract instantaneous frequency and
amplitude from the IMFs, thus, allowing us to locate any event on a time scale and a fre-
quency scale. The IMFs serve as the basis in this case and are calculated for every signal
rather than being defined a priori. The EMD combined with the TKEO method provides
the estimation of instantaneous amplitude (IA) and instantaneous frequency (IF) for any
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non-stationary signal without defining an a priori basis function; this method generates
the basis function dynamically for each signal. In addition, this preliminary work adds
another path for future development and applications of IA and IF in different domains
where time-frequency analysis is required. The EMD method has been used in speech
recognition systems [89]–[91] and human emotion recognition systems [55]. The EMD
method has also been used to perform the classification of respiratory sound in conjunc-
tion with FFT to extract features [92]. The EMD extracts IMFs and later selects the best
IMF based on the entropy parameters.

In the ESC system, we are interested in the feature extraction stage. The system
relies heavily on the type of features to learn sound events. In this study, we introduce
the use of empirical mode decomposition along with the Teager–Kaiser energy tracking
operator to estimate instantaneous frequency and amplitude, which are used to construct
features in terms of spectrogram for classification using neural networks. We apply the
most commonly used Mel filter banks for the spectrogram. In this study, we introduced the
novel Mel filter based on a spectrogram generated through IA and IF. The EMD method
decomposes the signal into several mono-component IMFs; on each, the IMF TKEO and
DESA methods are applied to obtain the IA and IF information of the signal. We call this
Mel spectrogram obtained through EMD and TKEO the empirical mode decomposition
Mel filter bank energies (EMD-MBE). We also introduce SMBE, in which we remove the
signal trend from the signal using the EMD method. We compare our proposed features
with fast Fourier-based Mel filter bank energies (FFT-MBE) on four ESC data sets. We
propose an aggregation of all three features, which results in an improvement of accuracy
over traditional FFT-based log Mel filter bank energies.

2.2 Proposed method

We use the empirical mode decomposition method to decompose the environmental
sound signal into its intrinsic mode functions (IMFs), as described in the next section.
The combination of EMD decomposition and TKEO is used to estimate instantaneous
amplitude (IA) and instantaneous frequency (IF). Using the components of IA and IF we
construct a spectrogram. Afterward, a Mel filter bank is applied to obtain Mel filter bank
energies (MBE). These features are then used to train machine learning algorithms. The
proposed method is depicted in Figure 2.1.
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Figure 2.1 – Block diagram of proposed system—feature extraction using EMD-TKEO
method and classification using neural networks.

2.2.1 Signal representation

In this study, we extend the work of P. Maragos [88], [93], [94] from the application
of speech and underwater acoustic signals to extracting AM–FM modulation information
from environment sound signals. In [93], the authors defined the real-valued signal with
combined AM and FM structure as :

ri(t) = Re(ai(t)× exp(jϕi(t))) (2.1)

This expression can be used to formulate a signal as [95]:

x(t) =
N∑

i=1
ri(t) + restN(t) (2.2)

and

fi(t) = 1
2π

dϕi(t)
dt

(2.3)

where, rest(t) is the last component containing very low-frequency information, which
could be neglected from the original signal. Re represents the real part, ϕi(t) is the phase,
and ai(t) and fi(t) are instantaneous amplitudes and instantaneous frequencies respec-
tively of the ith IMF.

2.2.2 Empirical Mode Decomposition

EMD is a method of decomposing a non-stationary signal into a collection of mono-
component AM–FM signals. These mono-component signals are referred to as intrinsic
mode functions (IMFs). The extraction of the IMFs follows an envelope subtraction process
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and a linear combination of all the IMF-extracted results into the original signal. The
signal is decomposed in the time domain, hence preserving the time-varying frequency
and amplitude of the signal. As compared to Fourier transform, EMD does not require a
priori-defined basis function for the computation of IMFs. Fourier transform uses harmonic
components of the signal, whereas EMD is based on the oscillation present in the signal.
The oscillatory decomposition is defined by the sifting process. The signal is examined for
local maxima and minima. Using the information of local maxima and minima, the upper
envelope and lower envelope are determined using via cubic spline. The mean envelope is
generated using the upper and lower envelopes, which represents the trend of the signal.
This mean envelope is subtracted from the original signal to create an IMF candidate.
Before counting this candidate as an actual IMF, a test is conducted, i.e., if the number
of zero crossings and the number of extrema differs by no more than one. If the candidate
satisfies the criteria, it is counted as an IMF and the counter is incremented; otherwise,
the counter is set to zero. Verification is conducted to check if the candidates meet the
criteria of IMF for each generated IMF. If the criteria are not fulfilled, the sifting process
is applied again until the conditions are matched. The obtained IMF is then stored and
subtracted from the original signal to start a new sifting process for another IMF. The
method is repeated until the signal is deconstructed to a level that it contains no more
than two extrema [83].

2.2.3 Sifting Process for IMFs

The EMD method could be defined in simplest terms as a filter that sifts through
the signal and breaks it down into a mono-component signal, defined above as IMFs. A
function is defined as an intrinsic mode function when it satisfies the following criteria:

1 The number of extrema (maxima and minima) in a signal must be equal to the
zero-crossing number or differs at most by one.

2 The mean of the envelopes obtained through local maxima and local minima must
be equal to zero at all times.

The IMFs are obtained through a process known as the sifting process. which is de-
scribed in Algorithm 1 [55]:

The number of IMFs extracted from a particular signal depends on two factors.

1 The process terminates when the res(t); the last IMF, is either a monotonic function
or function with only one extremum.
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Algorithm 1 Sifting process for intrinsic mode functions
Input: a sound event signal
Output: a collection of IMFs

1 Compute all local extrema in the signal x(t) : local maxima and local minima;
2 Construct the upper envelope eup(t) and lower envelope elow(t) by joining the local

maxima and local minima with a cubic spline on the given signal x(t);
3 Calculate the mean of the envelopes m(t) = (eup(t) + elow(t)) / 2 ;
4 Subtract the mean from the original signal x(t), then obtain a new data sequence r(t)

from which the low frequency is deleted r(t) = x(t) - m(t);
5 Repeat steps 1− 4 until r(t) is an IMF (satisfying the two conditions above);
6 Subtract this IMF r(t) from the original signal x(t) : res(t) = x(t) - r(t) ;
7 Repeat steps 1− 6 until the residual signal res(t) is obtained that does not meet the

above-mentioned conditions of an IMF, resulting in all IMFs r1(t), r2(t), ..., rN(t) of
the signal x(t).

2 The number of IMFs is subjected to stopping criteria, where the user terminates the
sifting process after a particular number of IMFs have been created.

In the first case, the output of the EMD sifting process delivers N IMFs r1(t), r2(t), ...,
rN(t) along with the residual signal res(t) of the original signal x(t). x(t) can be presented
as a linear combination of all the IMFs and res(t).

x(t) =
N∑

i=1
ri(t) + restN(t) (2.4)

With this method, the signal x(t) is decomposed empirically into a finite number of
functions also depicted in Figure 2.2 [96]. The IMFs of an audio of car passing are shown
in Figure 2.3. Each IMF can be used separately to obtain instantaneous Frequency (IF)
and instantaneous amplitude (IA) for sound event detection systems, explained in the
next section.

In the case of early stopping, the original signal cannot be reconstructed, as some
information is discarded deliberately. However, in some cases, it could be used to remove
low-frequency components from the parent signal. In [97], the authors used the first five
IMFs, on the basis that those IMFs gave an ample amount of information about energy
and pitch in their study.
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Figure 2.2 – Flow chart of sifting process.
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Figure 2.3 – Empirical mode decomposition and intrinsic mode function extraction.
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2.2.4 Teager–Kaiser Energy Operator (TKEO)

The energy separation algorithm (ESA) is applied to extract the IA and IF information
from the signal, as standalone IMFs do not provide meaningful information about IA and
IF. The EMD method takes a multi-component signal and provides us with IMFs that
are mono-component. Introduced by J.F. Kaiser [98], the TKEO, an energy tracking
operator used with an energy separation algorithm, computes these IA and IF features
without using integrals, as in the Hilbert transform and Fourier transform. Rather, it is
completely comprised of differentiation. The property of differentiation gives the TKEO
the advantage of good localization [88]. It becomes more natural to use the TKEO for
local estimation of IA and IF functions. The TKEO is a non-linear operator that computes
the energy of the signal as a product of the square of the amplitude and frequency of the
signal [99]:

Ψ[ri(t)] = [ṙi(t)]2 − ri(t)r̈i(t) (2.5)

where ṙi(t) and r̈i(t) are the first and second order derivatives of ri(t). For a discrete time
signal ri(n), Equation 2.5 can be written as [100]:

Ψ[ri[n]] = r2
i [n]− ri[n + 1]ri[n− 1] (2.6)

The instantaneous features are extracted by applying ESA in a discrete form to the
signals. The discrete energy separation algorithm (DESA) [99] provides us with IA and
IF. We used DESA-1 in this study, given as :

y[n] = x[n]− x[n− 1]

f [n] ≈ arccos(1− Ψ[y[n]] + Ψ[y[n + 1]]
4Ψ[y[n]] ) (2.7)

|a[n]| ≈ 2Ψ[x[n]]√
Ψ[x[n + 1]− x[n− 1]]

(2.8)

Here, x[n] is a mono-component signal. The DESA-1 algorithm should be applied to
mono-component signals only. In [94] authors proposed the use of a low pass filter to
smooth the output of the energy tracking operator. They found that a high-frequency
error component was introduced by the energy operator. To eliminate this issue, a seven-
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Figure 2.4 – Block diagram of smoothing the output of the energy operator.

point linear binomial low-pass smoothing filter with impulse response (1,6,15,20,15,6,1) is
applied after TKEO as shown in Figure 2.4 [55], [94].

2.3 Feature Extraction

2.3.1 Mel Band Energies

The general Mel band energies (MBEs) are computed through discrete Fourier trans-
form as follows. Let x[n] be a discrete audio signal having sampling rate fs. It is di-
vided into P frames, each of length N samples with N/2 overlapping samples, such that
{x⃗1[n], x⃗2[n], ..., x⃗p[n], ..., x⃗P [n]}, where x⃗p[n] represents the pth frame of the signal x[n]
and is given as :

x⃗p[n] =
x

[
p ∗

(
N

2 − 1
)

+ i
]

N−1

i=0

(2.9)

The input signal x[n] can be represented as a matrix of size N×P as X = [x⃗1, x⃗2, ..., x⃗p, ..., x⃗P ].
When calculating DFT, the signal for each x⃗p, one assumes that the signal is repeated
infinitely, which introduces an issue of spectral leakage. To reduce spectral leakage, the
Hanning window is applied.

w[n] = 0.5 ∗
(

1 + cos
[

2πn

Np

])
(2.10)

and the discrete Fourier transform of the signal is given as :

Xp[k] =
Np−1∑
n=0

xp[n]w[n] exp−j 2πkn
Np (2.11)

Here, k = 0, 1, 2, ..., Np−1, where Np represents the number of points used by FFT for
a particular frame x⃗p. Using the sampling rate fs of the input signal, the corresponding
frequency can be computed using the frequency bin as lf (k) = kfs/N and the frequency
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resolution can be computed as fres = lf (k + 1)− lf (k). The DFT of the pth frame xp can
be represented as X⃗p = [Xp(0), Xp(1), Xp(2), ..., Xp(N − 1)]T ; similarly, for the complete
signal x[n] we obtain X = [X⃗1, X⃗2, ..., X⃗P ]. Here, the X matrix has the dimensions N ×P

and is defined as a short-time Fourier transform. The magnitude spectrum of the signal
is obtained by taking the modulus of X. The magnitude spectrum is warped according to
the Mel scale to obtain human ear-like properties. The Mel frequency (ϕf ) and the linear
frequency lf are defined by the relation ϕf = 2595 ∗ log10(1 + lf

700). Mel filter banks, which
are comprised of overlapping triangular filters defined by their center frequencies lfc(m),
are used to segment the spectrum X depending on the band number m. The Mel filter
bank is shown in Figure 1.3.

The three parameters that define Mel filter banks are:

· Number of Mel filters, F ;

· Minimum frequency, lfmin
;

· Maximum frequency, lfmax .

Using the minimum and maximum frequencies and the number of Mel filters, the con-
stant frequency resolution is calculated using the relation δϕf = (ϕfmax − ϕfmin

)/(F + 1),
where ϕfmax and ϕfmin

are frequencies on the Mel scale defined by the corresponding
linear frequencies lfmax and lfmin

, respectively. The centre frequencies on the Mel scale
are obtained through ϕfc(m) = m.δϕ and m ∈ {1, 2, 3, ..., F}. Similarly, we can in-
verse the relation to obtain center frequencies in the linear frequency in Hz as lfc(m) =
700(10ϕfc (m)/2595−1). The resulting Mel filter bank matrix M (m,k) of size F ×N is given
by:

M(m, k) =



0 for lf (k) < lfc(m− 1)
lf (k)−lfc (m−1)

lfc (m)−lfc (m−1) for lfc(m− 1) ≤ lf (k) < lfc(m)
lf (k)−lfc (m+1)

lfc (m)−lfc (m+1) for lfc(m) ≤ lf (k) < lfc(m + 1)

0 for lf (k) > lfc(m + 1)

(2.12)

To obtain Mel filter bank energies, we multiply the DFT matrix Xp(k) by the Mel
filter bank matrix M(m, k). A logarithm is applied to obtain log Mel band energies of the
size F × P , as given in the following equation:

Sp(m, k) = log

Np−1∑
k=0

M(m, k) ∗ |Xp[k]|
 (2.13)
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2.3.2 EMD-Mel Band Energies

In this method, AM and FM components are used to construct the magnitude spec-
trum; later a Mel filter bank is applied to obtain Mel band energies. Figure 2.5 demon-
strates the process of obtaining MBEs; in this case, we call these features empirical mode
decomposition-based Mel filter bank energies (EMD-MBE). The first step is the decompo-
sition of the signal into its components using EMD. These distinct, adaptive decomposed
components are known as intrinsic mode functions (IMFs). For each distinct IMF, in-
stantaneous amplitude a(i, n) and instantaneous frequency f(i, n) are obtained through
the energy tracking operator and energy separation algorithm, where i = 1, 2...NIMF s and
n = 1, 2, 3, ..., Nb, and Nb represents the number of samples in the input signal. In this
study, we used the Teager–Kaiser energy tracking operator (TKEO) and the discrete en-
ergy separation algorithm (DESA-1). The TKEO and DESA estimates the IA and IF
over the complete length of the IMF. The TKEO and DESA algorithms in [94], [101],
[102] have shown estimations of IA and IF with an error less than 10−3 . The framing
/windowing function is applied later to the IA and IF obtained from the TKEO. In the
next stage, we apply the Hanning windowing function to obtain short overlapping frames
of instantaneous frequency fp(i, np) and instantaneous amplitude ap(i, np). Afterward, to
obtain the magnitude spectrum, we use the definition provided by [95], where the authors
defined the Hilbert Huang Transform as a generalized Fourier Transform and defined the
spectrum using the Hilbert spectrum, which is derived from the time-frequency distribu-
tion of the instantaneous energy envelope, which is the square magnitude of the amplitude
envelope. In this study, we used the instantaneous energy envelope (|a(i, n)|2) and summed
them over a large number of frequency bands, as compared to the Hilbert spectrum [55],
[95]. This enables us to distribute the energy over a large number of frequencies and to
obtain higher frequency resolution. To derive Mel band energies, we summed the energies
similarly to the number of frequency bands defined in the previous section. The relation
is defined as (2.14) :

Xp(k) =
NIMF s∑

i=1

Np∑
np=1
|ap(i, np)|21Bk(fp(i, np)) (2.14)

where i is a single IMF, Np represents the number of samples in the frame p, and
Bk represents the particular sub-band defined as Bk = [lf (k), lf (k + 1)], where k ∈
{1, 2, 3, ...N − 1} and lf (k) = kfs/N . The indicator function of set Ω is given as:
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1Ω(a) =

0 if a ∈ Ω

1 if a /∈ Ω

After using (2.14), we obtain a matrix of size N×P . This matrix is multiplied, similarly
to equation (2.13), by the Mel filter bank matrix M(m, k) of shape F ×N . The resulting
matrix will have the shape F × P . By taking the log, we obtain log Mel band energies.

Figure 2.5 – Empirical mode decomposition-based Mel filter bank energies extraction
block diagram.

2.3.3 S-MBE

Sounds produced in any environment are composed of complex and random changes,
and the presence of a signal trend causes a negative effect in frequency domain power
spectral analysis or time-domain correlational analysis, which could result in the loss
of information in the low-frequency spectrum. To counter such problems, we apply a
method of extracting Mel filter bank energies (MBEs) by removing the signal trend, calling
these S-MBEs. In the literature, researchers have used a version of SMFCC for emotion
recognition [103]; we present a different version that extracts the feature before applying
discrete cosine transform (DCT) to the MBEs. The complete process of extracting S-
MBEs is presented in Figure 2.6. In this method, EMD performs the decomposition on
the signal and extracts the signal trend information from the IMFs. The signal trend is
denoted by T [n] and is computed by Equation (2.15) [103]:

T (n) =
NIMF s∑

i=id

ri[n] (2.15)
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where,

id = min
[
i ∈ [2, n], Rri

Rr1
< 0.01

]
(2.16)

The signal trend is removed from the input signal by applying the zero-crossing rate
(ZCR) detection method. T [n] is defined as the sum of all IMFs that satisfy the following
condition equation (2.17):

Rri

Rr1
< 0.01 (i = 2, ...n) (2.17)

where R represents the zero-crossing rate. Afterward, the reconstructed signal S[n] is
obtained by removing the signal trend T [n] from the input signal.

S[n] = x[n]− T [n] (2.18)

Figure 2.6 – SMBE feature extraction block diagram.

Finally, the MBEs are calculated using FFT and Mel filter banks on the reconstructed
signal, as shown in Figure 2.6.

2.3.4 Features

The Mel spectrograms from the aforementioned techniques are extracted for a 10-sec
recording of car passing and are depicted in Figure 2.7, 2.8, and 2.9. The FFT-based Log
Mel spectrogram is shown in Figure 2.7 along with Log S-MBE in Figure 2.8. The EMD
of the input signal is shown in Figure 2.3 and the resulting Log EMD based MBE is
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depicted in Figure 2.9. Figure 2.10 shows a signal recording of a person walking and the
resulting Log EMD-MBEs is shown in Figure 2.11. The IMFs obtained from EMD and
the Log EMD-MBE estimation along with the Log EMD-MFB of the combination of the
previously calculated IMFs are presented in Figures 2.12, 2.13, 2.14, and 2.15.

Figure 2.7 – SFT-MBE spectrogram extracted from a 10-sec audio file of a car passing.

2.4 Experimental Setup

2.4.1 Datasets

The development of an ESC system relies heavily on the dataset. Sound classification
is a vast topic and contains many categories such as acoustic scene classification, sound
event classification, environmental sound classification, and many more. We used datasets
comprised of acoustic scenes, sound events, and environmental sounds for classification as
the datasets are mentioned in the section 1.6, namely:

· Acoustic scene classification dataset

· Low-complexity acoustic scene classification dataset

· UrbanSound8k dataset

· Custom dataset
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Figure 2.8 – S-MBE spectrogram extracted from a 10-sec audio file of a car passing.

Figure 2.9 – Empirical mode decomposition-based Mel spectrogram from a 10-sec audio
file of a car passing.
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Figure 2.10 – Signal representation of a person walking

Figure 2.11 – Empirical mode decomposition-based Mel spectrogram from a 10-sec audio
file of a person walking.
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(a) IMF 1 (b) IMF 1 Log EMD MBE (c) Sum of 1 IMF(s) Log EMD
MBE

(d) IMF 2 (e) IMF 2 Log EMD MBE (f) Sum of 2 IMF(s) Log EMD
MBE

(g) IMF 3 (h) IMF 3 Log EMD MBE (i) Sum of 3 IMF(s) Log EMD
MBE

(j) IMF 4 (k) IMF 4 Log EMD MBE (l) Sum of 4 IMF(s) Log EMD
MBE

Figure 2.12 – IMF(s) 1 - 4 and the resulting EMD-MBE per IMF and combination of
EMD-MFB of IMF(s).
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(a) IMF 5 (b) IMF 5 Log EMD MBE (c) Sum of 5 IMF(s) Log EMD
MBE

(d) IMF 6 (e) IMF 6 Log EMD MBE (f) Sum of 6 IMF(s) Log EMD
MBE

(g) IMF 7 (h) IMF 7 Log EMD MBE (i) Sum of 7 IMF(s) Log EMD
MBE

(j) IMF 8 (k) IMF 8 Log EMD MBE (l) Sum of 8 IMF(s) Log EMD
MBE

Figure 2.13 – IMF(s) 5 - 8 and the resulting EMD-MBE per IMF and combination of
EMD-MBE of IMF(s).
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(a) IMF 9 (b) IMF 9 Log EMD MBE (c) Sum of 9 IMF(s) Log EMD
MBE

(d) IMF 10 (e) IMF 10 Log EMD MBE (f) Sum of 10 IMF(s) Log EMD
MBE

(g) IMF 11 (h) IMF 11 Log EMD MBE (i) Sum of 11 IMF(s) Log EMD
MBE

(j) IMF 12 (k) IMF 12 Log EMD MBE (l) Sum of 12 IMF(s) Log EMD
MBE

Figure 2.14 – IMF(s) 9 - 12 and the resulting EMD-MBE per IMF and combination of
EMD-MBE of IMF(s).
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(a) IMF 13 (b) IMF 13 Log EMD MBE (c) Sum of 13 IMF(s) Log EMD
MBE

(d) IMF 14 (e) IMF 14 Log EMD MBE (f) Sum of 14 IMF(s) Log EMD
MBE

(g) IMF 15 (h) IMF 15 Log EMD MBE (i) Sum of 15 IMF(s) Log EMD
MBE

(j) IMF 16 (k) IMF 16 Log EMD MBE (l) Sum of 16 IMF(s) Log EMD
MBE

Figure 2.15 – IMF(s) 13 - 16 and the resulting EMD-MBE per IMF and combination of
EMD-MBE of IMF(s).
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2.4.2 Custom dataset creation description

In this study a custom dataset was created, briefly explained in chapter 1.6. The
dataset is created in the context of developing an ESC system, with applications in security
and automation in smart homes. The dataset consists of 4 categories, two categories
belong to naturally occurring event and two belongs to human activities: rain, wind,
human walking, and car passing respectively. The audio recordings are collected from the
open-source repository Freesound [73]. The sound files were stored with associated labels,
assigned to each audio recording. Recordings were sampled in the range of 44100Hz to
96000Hz and recorded with different recording devices and some in different formats and at
non-similar bit rates. Initial processing of the dataset was applied to modify the recordings
into a more standard form. The audio files were processed and set to a sampling rate of
44100Hz, 16-bit ".wav" files. In the later stage, 10 seconds audio chunks were extracted
and stored as separate audio files. The total duration of the recordings was 125 minutes
long for each category.

The advantage of using an open repository is that it provides heterogeneous recorded
data. Audio recordings were made by different contributors, in different locations, with
different environmental factors affecting the recordings, such as noise. Another advantage
is the heterogeneity of recordings for each class, for example, audio recording in different
shades during rain provides the different intensities of sound produced by the hitting of
raindrops on the shade. The disadvantage is that it is a tedious task to listen to every
recording and label each class.

The final taxonomy of the total number of recording minutes added to the dataset is
presented in Table 2.1. The table also presents the division of dataset in train and test
data, which is a standard procedure in developing a machine learning model. The test
set contains examples that the classifier has not seen during the process of training the
model. The training set is further divided into 80-20 percent for training and validation.

Table 2.1 – Dataset Recordings

Category Train Set (mm:ss) Test Set (mm:ss)
Rain 98:05 24:07
Wind 102:24 25:37

Car passing 90:26 22:57
Human walk 93:28 23:48

Total 384:23 96:29
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2.4.3 Classification Model

We used convolutional neural networks (CNNs) in this study. CNNs have been widely
used with Mel band energies for the classification of environmental sounds. For the Acous-
tic Scene Classification Dataset and the Low-Complexity Acoustic Scene Classification
Dataset, we used baseline [71] CNN1 model. All the parameters were selected according
to the baseline model mentioned by the authors in order to evaluate the same system
using different feature inputs. For Urbansound8K and the custom dataset, we used the
CNN2 model [74] given in Table 2.2.

In this study, we made a comparison between two feature extraction techniques. We
have proposed an EMD-based feature extraction technique compared to the FFT-based
feature extraction technique. In order to compare the performance of both methods, we
employed baseline systems. We used baseline systems since they are built on the simple
extraction of Mel band energies features, and no additional pre- or post-processing is
applied during the training and testing of the systems. The systems that reached the
highest score of accuracy on the evaluation of acoustic scene classification datasets [104]
use an ensemble of features based on adaptive temporal division and classify using a
VGGish-based neural network. In addition, the score on the development dataset is not
published. The leading system on the development dataset [105] uses MFCC features with
I-vector back-end processing with a fusion of CNNs and I-vectors to make predictions.
Similarly, for the low-complexity acoustic scene classification dataset, the leading system
uses Resnet with a receptive field. For Urbansound8k, different systems are proposed [106],
[107]. These systems use feature pre-processing and post-processing, transfer learning, and
other methods to enhance the accuracy of the system. Compared to the state-of-the-art
methods, which employ different systems and employ different pre and post-processing
methods, we followed the path of baseline systems. To compare with FFT-based log Mel
band energies, we proposed EMD-based log Mel band energies. This allows the evaluation
of the performance of both features on the same system and with the same parameters
without any pre- or post-processing of the feature. The specifications of the systems used
are described below.

— Log-scaled Mel band energies were extracted for every dataset. For the Acous-
tic Scene Classification Dataset and Low-Complexity Acoustic Scene Classification
Dataset, we extracted 40 Mel bands using an analysis frame of 40 ms with a 50
% overlap. Similarly, the EMD-Log Mel band energies and log-scaled S-MBEs were
calculated for both datasets with similar characteristics, resulting in a similar shape.
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The input shape is 40×500, trained for 200 epochs with a mini-batch size of 16 and
data shuffling between epochs. An Adam optimizer [65] is used for optimization,
with a learning rate of 0.001. Model performance is checked after each epoch on the
validation set, and the best performing is chosen.

— For Urbansound8k, the log Mel band energies, EMD-log Mel band energies, and log
scaled S-MBEs were extracted with 60 Mel bands; a window size of 1024 samples
with a hop length of 512 samples is used. The input size for the CNN was 60× 41
and silent segments were discarded. The Urbansound dataset was trained using 10-
fold cross-validation. The network was trained for 300 epochs with the Adagrad
optimizer [108].

— For the custom dataset, the log Mel band energies, EMD-log Mel band energies,
and log scaled S-MBEs were extracted with 128 Mel bands with 50 % overlap.
The custom dataset was trained using seven-fold cross-validation. The system was
trained for 200 epochs with an Adagrad optimizer, with an initial learning rate of
0.001.

— To evaluate the experimental results, this study uses classification accuracy as a
metric:

Accuracy = TP + TN

TP + TN + FP + FN

where TN and TP are defined as the number of negative and positive examples
that are classified successfully, respectively. FN and FP are the numbers of misclas-
sified positive and negative examples, respectively. The evaluation metric is chosen
according to the baseline system [71] to perform comparisons between the feature
extraction methods under the same evaluation metrics.

2.5 Results and Discussion

We trained the convolutional neural networks with the parameters given in the previ-
ous section. The model was evaluated using a test set and average classification accuracy is
computed. First, we trained the models using only one feature at a time; for each feature,
the system was trained and evaluated. Afterward, we combined the time-frequency anal-
ysis techniques. In the first case, we combined FFT-MBEs and EMD-MBEs. The model
was trained and evaluated by aggregating these two features. Later, we combined the two
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Table 2.2 – Convolutional neural network model specifications

Layers Model specifications
CNN1 CNN2

Layer 1 Conv2D (32, (7,7)) Conv2D (64,(4,4) )
Relu, strides = 1 tanh, strides = 1
MaxPool2D (5, 5) MaxPool2D (2, 2), stride=2

Dropout (0.3)
Batch normalisation

Layer 2 Conv2D (64, (7,7)) Conv2D (32,(4,4) )
Relu, strides = 1 tanh, strides = 1

MaxPool2D (4, 100) MaxPool2D (2, 2), stride=2
Dropout (0.3) Dropout (0.2)

Batch normalisation
Layer 3 - Conv2D(16,(4,4) )

tanh, strides = 1
MaxPool2D (2, 2), stride=2

Dropout (0.2)
Layer 4 Dense (100) 2 X Dense (400)

Activation = relu Activation = tanh
Dropout = 0.3

Layer 5 - Dense (300)
Activation = tanh

Dropout = 0.2
Layer 6 Dense (classes,softmax)
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proposed features extracted using EMD-MBEs and SMBEs with traditional FFT-MBEs.
Similarly, we trained and evaluated the models by aggregating all the features.

The average classification accuracy of each dataset with different features are pre-
sented in Table 2.3. The class-wise average classification accuracies for the Acoustic Scene
Classification Dataset with FFT-based log MBE, EMD-based log MB, log SMBE, and a
combination of these features are presented in Table 2.4. Similarly, for the Low-Complexity
Dataset, Urbansound8k, and the custom dataset, class-wise mean classification accuracies
are presented in Table 2.5, Table 2.6, and Table 2.7, respectively.

It is evident that the FFT-based log MBEs performed better than EMD-based log
MBEs and log S-MBEs for every dataset. However, the combination of all the features
improves the performance of the system with respect to single FFT-based log MBE-
based features in some cases. The EMD-MBE method outperforms FFT-MBE in some
categories, as shown in the Tables 2.3, 2.4, 2.5, 2.6 and 2.7. The CNNs were able to
perform better inferences for some categories than others. It is, however, uncertain what
led the CNNs to better learn features of one method over another, and of one category over
another. There are no evaluation methods available in the research domain to understand
what leads to better performance of CNNs. In EMD-MBE, for each sample of monotonic
IMF in the time domain, we obtained an equivalent instantaneous amplitude IA and
instantaneous frequency IF component. To obtain a similar shape as that for FFT-MBE,
we performed framing on the training sample, and later we performed summation over
frequency bands. The frame consists of IA and IF samples. The total number of frequency
components in a single frame of EMD-MBE for the original signal is defined by the number
of samples in the window summed over frequency bands and the number of IMFs extracted.
Contrary to this, in FFT, the windowing function is applied directly to the input signal
then frequency and energy components are computed over this window. This method may
introduce spurious higher harmonics in the result, as mentioned earlier. The FFT-MBE
is smoother and contains more components per frame, whereas EMD-MBE is limited by
the number of IMFs and the number of samples in the window.

Furthermore, empirical mode decomposition suffers from mode mixing. Mode mixing
of EMD is mainly caused by intermittence and noise. Sudden changes in the signal are
one of the main causes of mode mixing, such as noise interference or a high-frequency
wave discrete distribution in the original signal, which results in the signal being a local
high-frequency signal, thus producing a local extreme value. The envelope generated by
this local extreme value point jump phenomena results in the IMF not agreeing with the
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Table 2.3 – System performance comparison.

Features Accuracy per dataset
ASC Dataset Low Complexity ASC Urbansound8k Custom

FFT 54.77 % 84.18 % 63.36 % 75.61%
EMD 52.5 % 79.74 % 54.64 % 75.05%
SMB 48.25 % 79.55 % 52.41 % 71.93%
FFT+EMD 56.08 % 84.49 % 63.70 % 78.87 %
FFT+EMD+SMB 57.78 % 84.83 % 62.31 % 79.25 %

Table 2.4 – Classification accuracy of each class for the Acoustic Scene Classification
Dataset.

Classes Features
FFT-MBE EMD-MBE SMBE FFT + EMD SMBE + FFT + EMD

Airport 53.90% 40 % 37.36 % 40 % 55.094 %
Bus 52.89% 82.23% 40.9 % 63.22 % 76.033 %

Metro 60.53% 32.18% 34.1 % 51.34 % 57.85 %
Metro Station 57.14% 42.85 % 52.5 % 54.44 % 54.44 %

Park 70.24% 63.22 % 66.11 % 74.38 % 65.29 %
Public Square 42.12% 44.9 % 33.33% 47.22 % 49.07 %
Shopping Mall 56.27% 64.87 % 55.91 % 59.50 % 62.72 %

Street Pedestrian 32.79% 28.34 % 37.25 % 39.27 % 36.03 %
Street Traffic 75.61% 72.76 % 72.76 % 76.83 % 80.08 %

Tram 46.74% 54.4 % 50.96% 55.17 % 41.37 %

time scale and continues to the different frequency components in the original signals,
which cannot be effectively separated according to the characteristics of time scale [109].
Mode mixing will affect the subsequent decomposition components; afterward, the time-
frequency distribution of the following IMFs will be ambiguous, and, eventually, the EMD
decomposition process loses physical meaning [110], [111]. Many researchers have studied
this issue and there are several solutions have been given [112]–[114].

The EMD-MBE method requires more computational resources and time to extract
features as compared FFT-based MBE. One evident reason is the calculation of IMFs
during the decomposition of the signal. Secondly, the programming methods for the cal-
culation of FFT have been highly optimized, which resulted in the current algorithm of
Cooley and Tukey [2]. Similar efforts could be made in future for the EMD method in
order to reduce the computational overheads.
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Table 2.5 – Classification accuracy of each class for the Low Complexity ASC Dataset.

Classes Features
FFT-MBE EMD-MBE SMBE FFT + EMD SMBE + FFT + EMD

Indoor 78.72 % 77.87 % 73.01% 81.34 % 78.72 %
Outdoor 81.67 % 76.80 % 84.54 % 80.54 % 82.29 %

Transportation 92.83 % 85.28 % 79.90 % 92.60 % 94.15 %

Table 2.6 – Classification accuracy of each class for the Urbansound8k dataset.

Classes Features
FFT-MBE EMD-MBE SMBE FFT + EMD SMBE + FFT + EMD

air_conditioner 39.2 % 41.5 % 30.6 % 44.9 % 43.1 %
car_horn 70.92 % 32.38 % 20.9 % 74.90 % 71.52 %

children_playing 70.4 % 50.5 % 55.6 % 66.5 % 61.4 %
dog_bark 71.3 % 63.6 % 66.1 % 69.4 % 64.2 %

drilling 60.3 % 60.7 % 54.6 % 65.6 % 64.1 %
engine_idle 51.49 % 51.54 % 40.3 % 52.26 % 58.61 %
gun_shot 84.60 % 52.80 % 24.2 % 76.54 % 70.82 %

jack_hammer 61.58 % 51.73 % 38.9 % 60.00 % 56.35 %
siren 69.18 % 73.35 % 66 % 77.14 % 72.80 %

street_music 78.3 % 57.7 % 62.3 % 72 % 73.7 %

Table 2.7 – Classification accuracy of each class for the custom dataset.

Classes Features
FFT-MBE EMD-MBE SMBE FFT+EMD SMBE + FFT + EMD

Car Passing 74.24% 53.63 % 65.67 % 81.14 % 81.48 %
Rain 85.28 % 81.42 % 79.09% 89.33 % 88.71 %

Walking 61.57 % 71.09 % 80.52 % 66.29 % 71.81 %
Wind 83.28 % 70.57 % 62.43 % 78.71 % 75 %
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2.6 Conclusion

The main objective of this study was to introduce an adaptive time-frequency analysis
method for an audio signal and perform a comparative analysis with the traditionally used
time-frequency analysis method. These methods were evaluated on their performance as
features in an environmental sound classification system. The traditionally used method,
Fourier transform, is valid under some general conditions and relies on a priori-defined
basis. An adaptive method for signal decomposition into multiple components introduced
by Huang et al., empirical mode decomposition (EMD), is applied to obtain intrinsic mode
function (IMFs) as components. A discrete energy separation algorithm, the Teager–Kaiser
energy operator (TKEO), is applied to each IMF individually to obtain instantaneous
amplitude (IA) and instantaneous frequency (IF) on a local time scale. Afterward, a win-
dowing function is applied to generate spectrograms, which are summed together. Later,
a Mel filter bank is applied to generate log Mel band energies. We also proposed S-MBEs
in this study, which use EMD to compute the signal trend, which is subsequently removed
from the original signal; later, log Mel band energies are computed using Fourier trans-
form (FFT). The features extracted from the proposed method estimated the change of
frequencies with respect to time similar to the traditional method with different intensi-
ties. This could be attributed to the fact that the EMD-TKEO method is estimating the
IA and IF, which were summed together with a fixed window size to match the dimen-
sions of Mel filter banks. We compared the performance of features extracted with the
proposed methods with features extracted from fast Fourier transform-based log Mel band
energies. Two different CNN systems were employed in this study to evaluate the feature
performance on four different datasets. The results demonstrate that the EMD-based Mel
band energies (EMD-MBEs)’s performance lagged behind FFT-based Mel band energies
(FFT-MBEs). S-MBE performed the worst among the three features under evaluation
for every dataset. The aggregation of all three features resulted in an improvement in ac-
curacy over FFT-MBEs. The improvement reflects the fact that EMD-MBEs performed
better for some classes than FFT-MBEs, and the combination of these methods improves
the overall result. The analysis of the low performance of the proposed method reveals
that in the estimation of time-frequency representation, the resolution is limited by the
number of IMFs and window size. Furthermore, during the process of decomposition of
the signal into IMFs, the EMD method suffers from the mode mixing problem, which
degrades the quality of the extracted features. In the future, different EMD methods will
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be under consideration to obtain a better estimation of features with similar performance
compared to FFT-based features.
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Chapter 3

ENVIRONMENTAL SOUND

CLASSIFICATION SYSTEM OPTIMIZATION

3.1 Introduction

In the previous chapter, a novel feature extraction method is discussed which uses
the empirical mode decomposition method along with the Teager-Kaiser energy opera-
tor and discrete energy separation algorithm (DESA) to generate a time-frequency image.
Traditionally, ESC systems are trained using spectrograms as input features. Speech recog-
nition methods have employed Mel frequency cepstral coefficients (MFCCs). MFCCs are
obtained by applying discrete cosine transform (DCT). The DCT decorrelates the corre-
lation introduced by the overlapping triangular filter banks. Generally, only the first 13
MFCCs are used for classification, as the remaining coefficients provide less valuable in-
formation. In this way, a feature size reduction is also obtained. For a classification sound
system operating on a small processing footprint, it is essential to reduce the number of
input feature size. The larger the input, the more processing time it requires for inference.
The goal here is to use fewer parameters while achieving the same results.

For machine learning algorithms, especially neural networks, the accuracy of recogni-
tion is dependent upon the scale of the dataset used to train the network. Neural networks
perform better when an ample amount of samples are available to train the network. Com-
petitions such as DCASE [6], [22], [23] provides a good source of audio data to use or
build custom datasets as the audio files are tagged and provided in a standard form for
the competition. Freesound [115], an open-source library for audio files becomes an excel-
lent platform to build over datasets by processing and tagging each audio file. Audioset
[116] from Google provides sounds collected from Youtube videos. In this study, we built
a custom dataset using the recordings from Freesound[115] of four categories: wind, rain,
car passing, and human walk. Though the span of ESC applications overlaps many dis-
ciplines, this study focuses on the application of activity detection outside and around a
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smart home. The activities such as the passing of a vehicle, rain shower, wind flow, and
human gait detection. These categories manifest their usage in the domain of security,
development of smart sensors, and automation of smart homes.

In neural networks, apart from the scale of the dataset, the classification accuracy relies
on the input of the model. The features are the input of the neural network in audio classi-
fication. These features are extracted from spectrograms such as the Mel frequency band
(MFB), or from cepstral analysis such as Mel frequency cepstral coefficients (MFCC).
MfCC has demonstrated its usefulness successfully in the field of acoustic speech recog-
nition and MFB has been used in research for sound event classification. These features
occupy a large amount of memory and cost a lot of computing power in the training of neu-
ral networks. The increment of layers of neural networks increases the number of training
parameters. Training huge neural networks also cost a significant amount of computa-
tional power, time, and energy resources. The computational power could be conserved
through the reduction of dimensionality of the input features and also avoid over-fitting of
the data on the model. In order to achieve the objective of using fewer parameters while
maintaining the same level of accuracy, it is essential to optimize the features used in the
classification system. One approach to feature optimization is to extract statistical pa-
rameters from the existing features. For example, the mean, standard deviation, skewness,
and kurtosis of the extracted features can be calculated and used as input features. This
can provide additional information about the distribution of the signal and potentially
improve classification accuracy. Another approach is to perform feature selection. Feature
selection is a technique that aims to identify the most relevant features that contribute the
most to the classification task while discarding redundant or irrelevant ones. This can be
done by using various algorithms, such as the sequential feature selection algorithm, which
iteratively selects the best subset of features that maximizes the classification accuracy.

Feature selection is utilized to extract useful information from the features. The feature
selection methods are categorized into filter method and wrapper method. Filter-based
methods select features by measuring the relevancy of features and feature importance
by correlation with dependent variables and use statistical methods for the evaluation
of features. The wrapper method includes methods whose foundations are derived from
nature such as genetic algorithms and ant bee-colony [117], [118]. Wrapper based method,
contrary to the filter-based method, uses a classifier to validate the selection of the subset
of features. In this study, we used sequential feature selection from the family of wrapper-
based methods for handpicking the features. It is an agile search algorithm and has been
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applied in various studies. Sequential feature selection [119] is further categorized into
four methods: sequential forward Selection (SFS), sequential backward selection (SBS),
sequential forward floating selection (SFFS), and sequential backward floating section
(SBFS). These methods differ in defining the subset of characteristics, mainly inclusion
and exclusion in a top-bottom or bottom-up search, hence reducing the dimension of the
feature set to a desired number. The system is trained with an actively sought feature set
and tested with a well-performing feature set. The process is illustrated in Figure 3.2.

The rest of the study is organized as follows. In the first section, the background
is discussed, followed by a description of the dataset and feature extraction. Later, the
proposed system is described, afterward, the experimental set is explained and in the last
section results and conclusion are discussed.

3.2 Background

Dimensionality reduction and feature selection are two techniques used in machine
learning and data science to reduce the number of variables or features in a dataset.
Dimensionality reduction involves transforming the data into a lower-dimensional space
while retaining as much information as possible. The most common method of dimension-
ality reduction is Principal Component Analysis (PCA)[48], which identifies a new set of
uncorrelated variables capturing the most significant variation in the original data. Other
techniques for dimensionality reduction include Linear Discriminant Analysis (LDA) [120],
which identifies a set of variables that best separate the classes, and Non-Negative Matrix
Factorization (NMF) [121]. All of these methods require additional processing steps to
transform the data into a lower-dimensional space, which can be computationally expen-
sive and may lead to loss of information. Feature selection is a technique used in machine
learning and data science to reduce the number of features in a dataset while retaining
the most important ones. By selecting the most relevant subset of features, the size of the
feature set can be reduced, which can be crucial for classification or prediction tasks that
operate on a small processing footprint. The process of feature selection involves ranking
the features based on their importance, which is usually determined by a scoring metric
such as mutual information or correlation coefficients. Alternatively, machine learning al-
gorithms can be used to automatically select the most relevant features. These algorithms
use different criteria to evaluate the importance of features, such as SVM.

The result of feature selection is a reduced set of features that still contains the most
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important information for the prediction task. This can lead to faster training and infer-
ence times and more interpretable models. Furthermore, reducing the number of features
can also help to prevent overfitting, which is a common problem in machine learning
where a model becomes too complex and starts to fit noise in the data rather than the
underlying patterns.

In this study, we use the feature selection method, sequential feature selection. Se-
quential feature selection is a type of feature selection method that works by iteratively
adding or removing features from a dataset until an optimal subset of features is selected.
It is a wrapper method that uses a machine learning model to evaluate the performance
of each subset of features. The algorithm starts with an empty set or complete set of
features depending on the type of method and adds or eliminates one feature at a time,
evaluating the performance of the model after each addition or removal. The feature with
the highest score is selected and added to the subset, and the process is repeated until a
stopping criterion is met.

Sequential feature selection, contrary to dimensionality reduction, works directly with
the original data and does not require any additional processing steps. This can be an
advantage in situations where the computational resources are limited or when the original
features are important for the analysis. Additionally, sequential feature selection can be
used with any machine learning model, making it a flexible and widely applicable method
for feature selection. Sequential feature selection and its types are discussed in the next
section.

3.2.1 Feature Selection Method

Feature selection is performed to select a subset of features more applicable to the task
from all the available feature sets. Thus enhancing computational efficiency and removing
unnecessary features such as noise. There are two methods of feature selection known as
the filter method and the wrapper method. Here we used the sequential feature selection
method which belongs to the wrapper method family. The wrapper method is used to
calculate feature weight by using the classification model to analyze the performance
of the feature. A classifier is carried out in this technique to examine the subsets by
their prediction accuracy after cross-validation. The wrapper technique provides better
classification accuracy as compared to the filter technique as the former uses a classifier
to fine-tune the particular interactions between the classifier and data set[122]. Also, with
the cross-validation it is able to avoid over-fitting of data [122], [123].
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Sequential Feature selection is a branch of the greedy search algorithm family which are
quite handy in feature dimensional reduction. Converting a p-dimensional feature space
into a reduced q-dimensional feature space, where q < p. As feature dimension vectors
could be in immense order depending upon the task, but all features do not play a role
when classification is performed. The selection of relevant features becomes indispensable
to improving the computational efficiency of the system. SFS will add or remove one
feature at a time until a q-dimensional subset of features limited by input is reached. The
addition or removal of features is performed on the basis of the classification performance
of a classifier. Sequential feature selection is further categorized into four methodologies
differentiated by underlying algorithms.

Sequential Forward Selection

Sequential forward selection (SFS) is a straightforward greedy search algorithm de-
piction. SFS begins with an empty subset of features. In each iteration, it adds a new
feature from the given feature set as described in the algorithm 2 [124]. The performance
of each added feature is analyzed through a classifier using cross-validation and only the
best-performing features are kept in the subset. Afterward, a new iteration commences
with a tuned selection. The process is repeated until it matches the desired number of
features. Hence, only the features which perform better are selected and added to the
subset by the SFS algorithm.

Sequential Backward Selection

Sequential backward selection (SBS) functions in a manner contrary to SFS. SBS be-
gins with the complete set of features and, in each iteration, it discards a feature from
the remaining set of features. In each iteration, the performance of features is calculated
through a classifier using cross-validation, for the removal of a feature. The feature result-
ing in the least performance is removed from the subset. Afterward, a new iteration begins
with a tuned selection. The process is repeated until it matches the desired number of
features described in algorithm 3. This removal method has two-fold advantages: firstly,
various features can be eliminated and secondly, it permits the option of backtracking, if
the removal of feature results in worse performance as compared to the previous subset
of the feature, some features removed before can be added back to the new subset in the
next iteration for re-evaluation.
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Sequential Forward Floating Selection

Sequential forward floating feature selections (SFFS) is an extension to SFS and it
rectifies the issue with SFS. In SFS the features added in the subset can not be removed.
This issue is addressed in SFFS and a feature selected at any point of iteration can be
eliminated. SFFS starts with the selected feature set by SFS and compares the signifi-
cance of the features discarded before with the selected set and includes or excludes the
feature with less or high significance [125]. Therefore, feature selected in the previous
stage can be removed one by one, and a feature selected is evaluated with the subset
to find out whether the previously shortlisted features contains the most significant set
of features. This method permits the removal of undesired and least significant features
selected from the initial set, as shown in Figure 3.1. In this way, an optimal feature is
added to the subset previously chosen, by elimination of the sub-optimal feature. Thus,
resulting in an optimal selection of features for the desired subset. There is no guarantee
that the SFS may include sub-optimal features. In that case, SFFS would evaluate each
feature and the resulting feature set could be the same as the set of features picked by SFS.

Sequential Backward Floating Selection

Sequential backward floating feature selection (SBFS) is an extension to SBS, just like
SFFS is an extension of SFS, and aims to overcome the shortcoming of SBS. The SBFS
works like SBS, except this could add the features that were previously eliminated. After
adding the feature to the feature set it examines the performance of the classification
and measures whether the previously removed feature is an optimal feature to the rest of
the eliminated or added features to the subset and only eliminates the features with sub-
optimal performance. Similar in goal to SFFS, this process results in an optimal selection
of features for the desired subset.

Algorithm 2 Sequential forward selection
1: Start with empty feature set F 0 = ∅ and k = 0
2: Select the next best feature f ∗ = arg max

f∈F−Fk

J (Fk ∪ {f})
3: Update Fk+1 = Fk ∪ {f ∗} ; k = k + 1
4: Go to 2 till k == q.
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Algorithm 3 Sequential backward selection
1: Start with empty feature set F 0 = F and k = p

2: Select the next best feature f ∗ = arg max
f∈Fk

J (Fk \ {f})
3: Update Fk−1 = Fk \ {f ∗} ; k = k − 1
4: Go to 2 till k == q.

Let k = 0

Apply one
step of SFS

Let k = k+1

k = d+ △ k = k+1Stop

Conditionally
exclude

one feature
found by

applying one
step of SBS

Leave out the
conditionally

excluded
feature

Return the
conditionally

excluded
feature

Is this the
best k-1

subset so far ?

Figure 3.1 – Sequential Forward Floating Selection (SFFS) Algorithm.
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3.3 Method description and Experimental Setup

The training of neural networks comprises updating the weights and biases of the
neuron in the fully connected layer. System complexity increases with the addition of
layers of neurons which would make the system take more time to update the biases,
weights, and backtracking. Costing valuable time and energy. An increment of layers of
neurons does not guarantee higher performance. Nor, in the case of CNN and RNN,
it is guaranteed the increment of convolutional layers or recurrent layers might result in
optimal results. Researchers have developed other techniques to better use features rather
by increasing the depth of the system [126], [127]. Our focus is to have a good classification
rate by using fewer parameters to train the network using a dataset developed for smart
homes. Another way of reducing the number of parameters is by using reducing the
dimensionality of features. We propose a system to reduce feature dimensions by using a
feature selection technique. Afterward, the obtained features are presented to the Long-
short term memory neural network. The proposed system is shown in Figure 3.2.

Figure 3.2 – Block diagram of feature selection training and testing process.

3.3.1 Acoustic Data

The acoustic data is a collection of recordings collected from an open-source audio
library. A similar dataset was created for the DCASE competition [128], using recordings
from the open-source data repository. Each audio file was verified before including in the
dataset. The acoustic data contains four categories of sounds present in the environment
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i.e. rain, human walk, wind, and car passing. These recordings were gathered through
various contributors on FreeSound [115]. Recordings are registered by different users in
different environments, and of different audio lengths. They were present in the range of
44100Hz to 96000Hz sampling rate, recorded with various kinds of recording devices, and
some in different formats and at a non-similar bit rate. Initial processing of the dataset
was applied to modify the recordings into a more standard form. The audio files were
processed and set to a sampling rate of 44100Hz, 16-bit .Wav files. In the later stage,
10 seconds audio chunks were extracted and stored as separate audio files. The chunks
shorter than 10 seconds were discarded resulting in 750 files. The total duration of the
recordings were 125 minutes long for each category. Given in Table 3.1.

Table 3.1 – Sound event categories

Category Duration in minutes
Rain 125
Wind 125

Car passing 125
Human walk 125

3.3.2 Feature Extraction

To obtain a set of features from the audio samples, Mel Frequency Cepstral Coefficients
(MFCC) based on the perceptual Mel scale were used. The 10-second file is divided into
blocks of 46 ms with a sliding Hamming window of 2048 samples to upscale the frequency
resolution of Discrete Fourier Transform (DFT). With an overlap of 50% of the sliding
window. These blocks are converted into the frequency domain using DFT to analyze the
contribution of every band of the spectrum. A filter bank is used commonly known as a
Mel filter bank which consists of a 48 Mel scale filter. Finally, Discrete Cosine Transform
is applied to reduce the correlation and the first 13 coefficients are used. Consequently, we
obtain a vector of 13 coefficients that characterizes the 46 ms frame of the audio signal.
Using Hamming window, 13 MFCCs are obtained for a 10-sec file and are concatenated
into one tensor. For each coefficient, four values: mean, variance, kurtosis, and skewness
are calculated. These four values for every coefficient are calculated and concatenated into
a sequence of 52 features. For MFB features we used 128 Mel bands with the rest of the
configuration similar to MFCC. In this study, we denoted MFCCs as FFT-MFCCs and
MFB as FFT-MFB, due to the underlying algorithm used to extract these features. In
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the previous chapter, two new features were introduced i.e. EMD-MFB and S-MFB. In
this section, we used those features to extract EMD-MFCC and S-MFCC. Similar to the
process described above for extracting FFT-MFCC, 13 cepstral coefficients for each type
of feature were extracted.

3.3.3 Experimental setup description

Features extracted are subjected to the feature selection stage. The aforementioned
feature selection techniques are applied with a support vector machine (SVM) classifier,
cross-validation is set to 5, and simulated with different subset sizes. The selected feature
set is trained on recurrent neural networks, using long short-term memory layers described
in Table 3.2. The dataset is divided into the training set and test set, the former containing
600 audio files and the latter containing 100 audio files. From the test set 10% is reserved
for evaluation during the training of the neural network. 7-fold cross-validation is applied
by dividing the whole dataset into 7 segments and using 6 as the training data set and 1
as the testing data set. As depicted in Figure 3.2, the training of LSTM given in Table
3.2 is performed. In the case of training with feature selection techniques, we used relu
units, and tanh in the case of training LSTM directly with MFCC features and not
using feature selection techniques. Optimizer for the network used in both cases Adadelta
optimizer and metric is set to accuracy. Each neural network was trained for 100 epochs.
In the testing phase, the input features are extracted and then transformed into a feature
set corresponding to features selected by the corresponding selection method. In the last
stage, the transformed feature set is sent to the trained model of the neural network,
where classification is performed on the input features.

3.4 Results

In the feature selection stage, each set of features is cross-validated with the SVM
classifier. Figures 3.3, 3.5, and 3.6 represent the performance of all 52 features selected
with the SFS algorithm. Starting from an empty set, the algorithms start by including a
feature in a different feature set. After the inclusion of a new feature, the set is subject
to cross-validation using an SVM classifier to analyze the performance of the new feature
set created. In the beginning, the performance depicts an exponential rising trend. After
including a certain amount of features the performance does not increase and remains
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Table 3.2 – Neural network construction

Layers Model specification
RNN CNN

Layer 1 LSTM(52,Relu/tanh)) Conv2D(10, Relu)
(4,4),stride = 1

MaxPool2D((2, 2), stride=2
Layer 2 LSTM(300,Relu/tanh)) Conv2D(4, Relu)

(4,4),stride = 1
MaxPool2D((2, 2), stride=2

FCNN Two hidden unit (400, Relu) each
#1-3 Hidden unit(300,Relu))

Hidden unit(4,softmax)))

constant. After adding all we observed a sudden fall in performance as we reached feature
51. If all the features are selected irrelevant features which depreciate the performance
might also be included, as evident from the Figure3.3, 3.5, and 3.6. Further investigation
into the performance of different subsets to obtain reveals an optimal subset as shown in

Figure 3.4(a) and Figure 3.4(b). Similarly, subsets for EMD-MFCC and S-MFCC are
presented in Figures 3.7, 3.9, and Figures 3.8, and 3.10. Different subsets were selected
to find the optimal feature combination and were trained on LSTM neural network. The
four feature selection algorithms are tested with 7-fold cross-validation and a different size
of subsets as shown in Table 3.3.

Table 3.3 displays the classification accuracy of different feature selection methods
and input feature types. The feature selection methods used in this study include Sequen-
tial Forward Selection (SFS), Sequential Backward Selection (SBS), Sequential Float-
ing Forward Selection (SFFS), and Sequential Floating Backward Selection (SBFS). The
input feature types used in this study include Fast Fourier Transform-Mel Frequency
Cepstral Coefficients (FFT-MFCC), Ensemble Empirical Mode Decomposition-Mel Fre-
quency Cepstral Coefficients (EMD-MFCC), and S-Mel Frequency Cepstral Coefficients
(S-MFCC). The classification accuracy is measured and the results are presented for dif-
ferent values of k (k=10, 20, 30, 35, 40, and 52). The accuracy is reported as a percentage
value.

From the table, it can be observed that the classification accuracy varies with dif-
ferent feature selection methods and input feature types. For example, in the case of the
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FFT-MFCC input feature type, the SBS feature selection method shows the highest classi-
fication accuracy (80.40%) for k=35, whereas the SFS feature selection method shows the
highest accuracy (81.42%) for k=40. In contrast, for the EMD-MFCC input feature type,
the SFFS feature selection method shows the highest classification accuracy (68.16%) for
k=40 and S-MFCC shows the highest classification accuracy (61.07%) for k=35 with SFS.
The trend in the feature performance is also evident in Figures 3.11, 3.12, 3.13, and 3.14.

It is also important to note that the classification accuracy is generally lower for the
features extracted from the S-MFCC input feature type compared to the other input
feature types. This suggests that the S-MFCC feature extraction method may not be
as effective in distinguishing between the different types of environmental sound. Also,
features extracted from EMD-MFCC were far behind FFT-MFCC, revealing the ineffec-
tiveness of this type of feature in this case.

All the sequential feature selection methods were trained with RNN (SFS-RNN) and
performed well in achieving classification accuracy above 75%. At k= 40 and 35, we
obtained slightly higher classification among all the feature selection techniques. CNN
trained with MFB feature and RNN trained with MFCCs were trained and compared to
feature selection techniques, given in.

Table 3.5 presents the results of various feature-classifier combinations in terms of
the number of features used, the number of trained parameters, and the classification
accuracy. The first row of the table, FFT-MFB-CNN, shows the highest number of trained
parameters with 5,812,718 but the lowest classification accuracy of 77.077%. This may be
due to the overfitting of the model, this can lead to the model memorizing the training
data rather than generalizing well to new data. The second row, FFT-MFCC-SFFS-RNN
with k=10 features used, has a lower number of trained parameters and a slightly higher
classification accuracy of 78.5%. This indicates that selecting the most relevant features
through Sequential Forward Floating Selection (SFFS) can lead to better performance
with fewer parameters. As the number of selected features increases to k=35 and k=40,
the classification accuracy also increases to 81.35% and 81.152%, respectively. This shows
that there is an optimal number of features that can lead to the best performance of the
model. However, when the number of selected features increases to k=52, the classification
accuracy drops to 79.61%. This suggests that adding too many features can introduce noise
and decrease the performance of the model.

Moving on to EMD-MFCC-SFFS-RNN, we see that this feature extraction method
does not perform as well as FFT-MFCC-SFFS-RNN. Even with the same number of
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selected features, the classification accuracy is lower, indicating that EMD may not be
as effective in capturing the relevant information in the audio data. Lastly, S-MFCC-
SFFS-RNN also performs poorly compared to FFT-MFCC-SFFS-RNN, with the lowest
classification accuracy of 44.71% when k=35 features are used

It is clear that for the proposed system with less amount of features, we obtained a
relatively higher classification using only fewer parameters as compared to CNN. RNN
trained with MFCC features uses more parameters as compared to feature selection tech-
niques due to the size of the input and fewer parameters than CNN. The accuracy achieved
is very low. Table 3.4, further demonstrates the recognition rate per category. Overall, the
results suggest that FFT-MFCC-SFFS-RNN with a moderate number of selected features
(k=35 or k=40) leads to the best performance in terms of classification accuracy while also
having a relatively small number of trained parameters. This indicates that the combina-
tion of FFT for feature extraction, SFFS for feature selection, and RNN for classification
is effective in recognizing environmental sounds. The results provide useful insights into
the effectiveness of different feature selection methods and input feature types using sta-
tistical features derived from MFCCs in classifying environmental sounds. The results can
be used to inform the development of more accurate and reliable environmental sound
classification systems using fewer parameters.

Figure 3.3 – Plots of All feature selected. (k = 52) for FFT-MFCC-SFS.
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(a) Plots of SFS feature selected. (k = 35) (b) Plots of SBS feature selected. (k = 35)

Figure 3.4 – Plots of SFS feature selected. (k = 35) and Plots of SBS feature selected. (k
= 35)

Figure 3.5 – Plots of All feature selected. (k = 52) for EMD-MFCC-SFS.
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Figure 3.6 – Plot of All feature selected. (k = 52) for FFT-MFCC-SFS.

Figure 3.7 – Plot of SFS for EMD-MFCC feature selected (k = 35).
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Figure 3.8 – Plot of SFS for S-MFCC feature selected (k = 35).

Figure 3.9 – Plot of SBS for EMD-MFCC feature selected (k = 35).
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Figure 3.10 – Plots of SBS for S-MFCC feature selected. (k = 35)

Figure 3.11 – Feature performance of SFS-FFT-MFCC, SFS-EMD-MFCC, and SFS-S-
MFCC
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Figure 3.12 – Feature performance of SBS-FFT-MFCC, SBS-EMD-MFCC, and SBS-S-
MFCC

Figure 3.13 – Feature performance of SFFS-FFT-MFCC, SFFS-EMD-MFCC, and SFFS-
S-MFCC
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Figure 3.14 – Feature performance of SBFS-FFT-MFCC, SBFS-EMD-MFCC, and SBFS-
S-MFCC

Table 3.3 – Classification accuracy with different subsets

Feature
Selection

Input Feature
Type

Classification accuracy
k = 10 k = 20 k = 30 k = 35 k = 40 k = 52

SFS FFT-MFCC 79.29% 78.78% 79.01% 80.00% 81.42 % 79.6%
SBS FFT-MFCC 77.06% 80.19% 80.07% 78.652% 80.40 % 79.6%

SFFS FFT-MFCC 78.5% 80.048% 79.59% 81.35% 81.15% 79.6%
SBFS FFT-MFCC 78.19% 80.78% 79.27% 80.54% 80.54 % 79.6%
SFS EMD-MFCC 63.64 % 62.89 % 65 % 65 % 64.53 % 48.29 %
SBS EMD-MFCC 59.42 % 59.78 % 60.5 % 61.21% 57.16 % 48.29 %

SFFS EMD-MFCC 63.5 % 64.35 % 62.71 % 65.75% 68.16 % 48.29 %
SBFS EMD-MFCC 61.21 % 60 % 62.21 % 60.17% 60.14 % 48.29 %
SFS S-MFCC 60.82 % 59.71 % 58.35 % 61.07 % 60.75 % 55.21 %
SBS S-MFCC 44.75 % 54.6 % 54.71 % 48.46 % 50.21 % 55.21 %

SFFS S-MFCC 60.64 % 48.67 % 51.21 % 44.71 % 49.32 % 55.21 %
SBFS S-MFCC 46.64 % 47.21 % 49.46 % 51 % 51.78 % 55.21 %

k is the number of features selected
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Table 3.4 – Classification accuracy per category at k = 35

Feature
Selection

Input
Feature Classification Categories

Method Type Car passing Rain Human Walkig Wind
MFCC-RNN FFT-MFCC 61.95% 60.14% 40.42% 58.47%
MFB-CNN FFT-MFB 71.8 % 74.21 % 83.86% 77.92 %
SFS-RNN FFT-MFCC 67% 82% 85% 73 %
SBS-RNN FFT-MFCC 75.29 % 84.86% 85.29% 69.71%

SFFS-RNN FFT-MFCC 81.71% 82.85 % 87.43 % 73.86 %
SBFS-RNN FFT-MFCC 74.28 % 82.71% 87 % 73.14%
SFS-RNN EMD-MFCC 60.28 % 71.57 % 78.85 % 59.28 %
SBS-RNN EMD-MFCC 53.71 % 62.85 % 73.85 % 54.42 %

SFFS-RNN EMD-MFCC 61.85 % 63.42 % 71.85 % 65.85 %
SBFS-RNN EMD-MFCC 51.28 % 64.42 % 71.42 % 54.42 %
SFS-RNN S-MFCC 55 % 75 % 66.42 % 47.85 %
SBS-RNN S-MFCC 26.28 % 67.71 % 55.86 % 46 %

SFFS-RNN S-MFCC 9.85 % 78 % 48.14 % 42.85 %
SBFS-RNN S-MFCC 13.85 % 79.42 % 66.42 % 38.14 %
k is the number of features selected

Table 3.5 – Parameters trained versus accuracy

Type of
Feaure-Classifier

combination

Number of
features used

Number of
Parameters

trained

Classification
accuracy

FFT-MFB- CNN - 5,812,718 77.077%
FFT-MFCC-SFFS-RNN k =10 839,008 78.5%
FFT-MFCC-SFFS-RNN k =35 844,208 81.35%
FFT-MFCC-SFFS-RNN k =40 845,248 81.15%
FFT-MFCC-SFFS-RNN k =52 847,744 79.61%
EMD-MFCC-SFFS-RNN k =10 839,008 63.5 %
EMD-MFCC-SFFS-RNN k =35 844,208 65.75%
EMD-MFCC-SFFS-RNN k =40 845,248 68.16 %
EMD-MFCC-SFFS-RNN k =52 847,744 48.29 %

S-MFCC-SFFS-RNN k =10 839,008 60.64 %
S-MFCC-SFFS-RNN k =35 844,208 44.71 %
S-MFCC-SFFS-RNN k =40 845,248 49.32 %
S-MFCC-SFFS-RNN k =52 847,744 55.21 %

FFT-MFCC-RNN - 926,576 55.27%
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3.5 Conclusion

The chapter presents a study on the effectiveness of different feature selection methods
and input feature types in classifying environmental sounds using neural networks. The
database comprised of four categories: rain, wind, passing of car, and human gait. LSTM
was trained with the subset of features obtained from the feature selection algorithm.
The optimal amount of features also contributed to the less utilization of resources. The
results suggest that the combination of FFT for feature extraction, SFFS for feature
selection, and RNN for classification is effective in recognizing environmental sounds,
particularly with a moderate number of selected features (k=35 or k=40), leading to
the best performance in terms of classification accuracy while having a relatively small
number of trained parameters. In contrast, the EMD-MFCC-SFFS-RNN and S-MFCC-
SFS-RNN combinations show lower accuracy rates compared to FFT-MFCC-SFFS-RNN.
Additionally, the results show that the FFT-MFB-CNN combination has a higher number
of trained parameters and lower accuracy than the FFT-MFCC-SFFS-RNN combination.
The optimal amount of features also contributed to the less utilization of resources. For
future work, implement different feature selection techniques on this custom dataset and
with different feature extraction techniques. These results provide useful insights into
the effectiveness of different feature-classifier combinations in classifying environmental
sounds and can inform the development of more accurate and reliable environmental
sound classification systems using fewer parameters.

Futur work involves implementing different feature selection techniques on this custom
database and with different feature extraction techniques. Also, applying features selection
techniques on the different available datasets. Further investigation is required for the
development of the proposed method for a shorter duration. In this study, 10-sec long
files were used. The results may differ depending on the length of the signal. For example,
the passing of a car is completely represented in a 10-sec file, however, in a shorter duration
such as 1 sec, the stats may change and may lead to different results. In the future, further
optimization in terms of the reduction of the size of the number of layers could be done
for the implementation on a low processing power edge device.
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Chapter 4

HARDWARE IMPLEMENTATION OF

ENVIRONMENTAL SOUND

CLASSIFICATION SYSTEM

4.1 Introduction

Environmental sound classification is a crucial technology that finds its applications in
various real-world applications, including home automation, security systems, and acous-
tic event detection. In the previous chapter, the optimization of the Environmental Sound
Classification (ESC) system was discussed using sequential feature selection. This opti-
mization approach involved reducing the number of features used in the system to enhance
its efficiency. In this chapter, the implementation of ESC on an edge device is presented.
This implementation of ESC on the edge device is critical as it enables the system to pro-
cess sound data in real-time and hence provide timely responses in various sound-based
applications including ESC.

Traditional approaches to sound classification involve processing audio signals on pow-
erful computers or cloud servers, which can be costly and not practical for resource-
constrained devices With the proliferation of low-power microcontrollers, there is a grow-
ing interest in implementing sound classification algorithms on these devices. Machine
learning techniques, such as Convolutional neural networks (CNNs), have improved the
classification of environmental sounds[129]. Recent developments in this domain lead to
numerous public competitions and several data sets have been published for the research
community [11], [18], [130]. These datasets consist of recordings for environment clas-
sification and acoustic event detection. Few publicly available data sets contain audio
recordings in a particular environment for detection of sound events [130], [131]. Other
datasets have been gathered with a focus on the detection of acoustic scenes [11], [132].
The systems that are developed using these databases in the competition mostly focus on
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achieving high accuracy as compared to the baseline systems based on the evaluation met-
rics proposed by the organizers [22]. These systems are tailored to achieve high accuracy
scores regardless of the complexity and computational costs involved. Recently, organizers
of such competitions have encouraged the researchers to tackle the issue of complexity
and propose solutions to cater accuracy vs complexity problem [68]. The researchers are
bound to focus on the complexity of the models trained and disregard the complexity
of the feature extraction stage and processing time of the inference of the model, which
requires more attention for the implementation stage on the microcontroller.

The emergence of the Internet of Things (IoT) has led to a significant shift towards
performing data processing on edge nodes rather than transmitting the data to a central
hub. This approach enhances the ability of nodes to process data at the edge, reducing
the need for power-intensive data transfer. Since edge nodes are often battery-operated,
there is a growing need for energy-efficient applications with a small footprint. However,
traditional approaches to sound classification involve processing audio signals on powerful
computers or cloud servers, which may not be practical for resource-constrained devices.
With the rise of machine learning on microcontrollers, there has been an increased interest
in implementing sound classification algorithms on these small, low-power devices. This
chapter will explore the feasibility of using machine learning models, specifically Convolu-
tional Neural Networks (CNN) and Depthwise Separable Convolutional Neural Networks
(DS-CNN), for sound classification on microcontrollers, including an evaluation of their
accuracy and processing time. The focus will be on developing a less processing time
application, with a trade-off between complexity and accuracy, for resource-constrained
IoT devices. We will then discuss the implementation of these models on microcontrollers,
including memory and processing time. The STM32L4-based SensorTile and CMSIS-NN
Library will be used as the platform for this study. The results of this study will be useful
for researchers and developers interested in deploying sound classification applications on
resource-constrained IoT devices.

In the experimental section, we will evaluate the performance of CNN and DS-CNN
models on a microcontroller platform, specifically the SensorTile. We will use the custom
dataset to train and test the models and evaluate their accuracy, memory usage, processing
time, and complexity. We will compare the performance of the two models and analyze
their trade-offs in terms of accuracy, complexity, and inference duration.
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4.2 Background

The development of a sound classification system consists of three major steps i.e.
database creation, feature extraction, and machine learning mode training and testing.
Among hundreds of event classes present in the environment, datasets are usually con-
structed with a limited number of classes. In this work, four classes are selected and
the selection of these classes was made in the context of smart homes, where these edge
devices can be installed to detect the sounds in the environment and pass this informa-
tion to a central hub. A classification model based on a convolutional neural network is
generated by training the model with the subset of the database and testing it with the
rest of the recordings. A similar model using a depth-wise separable convolutional neural
network is trained to perform the comparison between the models. In order to ensure that
the model can be deployed on microcontrollers, it is compressed to match the available
storage capacity and RAM. The model is then implemented on a microcontroller, and its
processing time is measured to evaluate its performance.

4.2.1 Hardware Description

The environmental sound classification system is operated on the SensorTile develop-
ment kit shown in 4.1(a) [133]. The STM32 SensorTile is a compact, low-power, and high-
performance sensor development kit designed by STMicroelectronics. The kit includes a
small printed circuit board (PCB) with a wide range of sensors and a powerful micro-
controller as shown in Figure 4.1(b) [133]. The STM32 SensorTile is ideal for developing
and prototyping a wide range of Internet of Things (IoT) applications, including wearable
devices, smart homes, and industrial automation. The STM32 SensorTile is designed for
low power consumption, making it an ideal choice for battery-powered applications. The
STM32 SensorTile is powered by a powerful STM32L4 microcontroller, which is based on
the ARM Cortex-M4 core. The microcontroller has a maximum clock speed of 80 MHz
and comes with 1 MB of Flash memory and 128 KB of SRAM. The STM32 SensorTile
also includes a built-in digital MEMS microphone. This allows for capturing and analyz-
ing sound data in IoT applications. It is connected via inter ic sound (I2S) protocol and
is connected to the direct memory access (DMA) controller and provides a digital filter
for pulse density modulation to convert pulse density modulation (PDM) bitstream into
pulse code modulation (PCM) in hardware depicted in Figure 4.3. The STM32 SensorTile
also includes an SD card slot, which allows for expandable storage of sensor data or other
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information and also accessing stored files using a microSD card as shown in Figures 4.2,
[133].

(a) SensorTile board size comparison. (b) SensorTile onboard components.

Figure 4.1 – SensorTile board size and microprocessor and sensors equipped onboard.

4.3 Dataset and Pre-processing

4.3.1 Custom Dataset

The recordings of four categories i.e. rain, wind, human walk, and car passing are
collected through an open-source repository Freesound [134]. Each audio recording was
verified before adding to the database. Recordings were made available by different users
with different specifications and were open for public access. The dataset had different
lengths, and sampling rates and was recorded with different devices. A few recordings
were made by the authors using the commercially available multi-sensor board, named
SensorTile [133]. The SensorTile comprises multiple sensors, which allow collecting, and
storage on the board using µSD mass storage or transmitting to the computer using a
USB port the data coming from different sensors on the board. In view of our application,
audio signals were obtained from a digital MEMS microphone on the board implemented
through audio pre-processing pdm2pcm conversion and a high bass pass band tuned to
acoustic bandwidth. The audio recordings were first converted to 16-KHz sampling rate
and 16-bit Wav files. The recordings from SensorTile were recorded in 16-KHz format.
Afterward, the total dataset was distributed into two categories i.e. Training set and
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Figure 4.2 – SensorTile Cradle and onboard components description.

Figure 4.3 – SensorTile board components and connectivity with STM32L4 processor
block diagram [133].
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Testing set with 80-20 distribution. The recordings made with SensorTile were added to
the test set only. The length of recordings present in each set with respect to each category
is presented in Table 2.1. The train set is further divided into train and validation sets,
where 20 percent of recordings were used as validation data during the training of the
neural network.

4.3.2 Feature Extraction

In machine learning, pre-processing raw audio data is an essential step before passing
it to a neural network for classification. The pre-processing step involves transforming raw
audio signals into a format that can be easily analyzed by a machine learning algorithm.
This process may include several steps such as sampling, filtering, and feature extraction.
Sampling involves converting continuous audio signals into discrete signals at a specific
frequency, known as the sampling rate. This process allows the audio signal to be digitized
and processed by a digital processor. In this chapter, the data is provided in the form of
a PCM audio stream. Filtering is used to remove unwanted noise or interference from the
audio signal. This can be achieved using various filtering techniques such as high-pass,
low-pass, or band-pass filters. Feature extraction is the process of selecting and extracting
relevant information from the audio signal, such as pitch, frequency, and amplitude. The
extracted features are then used as inputs to a neural network to train a model for
classification or analysis.

Another step that is included in the feature extraction process, is the scaling of the
feature extracted. The feature is scaled to ensure the features in a data set are measured
on a consistent scale. In this study, we used a z-score scaling to measure the impact of the
scaling on the input data and the classification score. z-score scaling is more commonly
applied to the Mel spectrogram as compared to other scaling methods such as min-max
scaling. Min-max scaling (also known as normalization) rescales the data to a fixed range
between 0 and 1. In spectrograms, the amplitude of the signal can vary widely depending
on the characteristics of the sound being analyzed. Min-max scaling would not be ideal
for spectrograms since it may distort the original amplitude range of the signal, resulting
in loss of information. On the other hand, Z-scaling standardizes the amplitude of the
signal by dividing each data point by the standard deviation, resulting in values that are
centered around zero with a standard deviation of one. This can be helpful when working
with spectrograms since it helps ensure that the features are not influenced by the signal
amplitude and are comparable across different spectrograms.
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Pre-processing audio data is a crucial step in machine learning, as it enables the
neural network to better understand the characteristics of the audio signal and make
accurate predictions or classifications. Therefore, careful consideration should be given to
pre-processing techniques to ensure that the audio data is appropriately transformed for
optimal performance of the machine learning algorithm.

4.3.3 Z-Score Scaling

Feature scaling is an aspect of Machine Learning that ensures the features in a data set
are measured on a consistent scale. This concept originated from statistics and involves
placing various variables on the same scale, particularly when dealing with data sets
that have varying scales. In some cases, the range of features in a dataset may vary
significantly, and standardization is employed to bring all features onto the same scale.
Therefore, feature scaling is a commonly used technique to address differences in feature
ranges and ensure consistency in data analysis.

Z-score scaling, also known as standardization, is a common technique used in fea-
ture scaling for Machine Learning. It involves transforming the features in a data set to
have a mean of zero and a standard deviation of one. In [135], authors applied z-score
standardization on the Log Mel spectrogram to standardize the features.

To apply z-score scaling, one can subtract the mean of the feature from each value
and then divide the result by the standard deviation. The resulting transformed values,
known as z-scores, provide a relative measure of how far each data point is from the mean
in terms of the number of standard deviations. This technique ensures that all features
have the same scale and allows for easier comparison of features. The equation of z-score,
also known as the standard score, can be written as:

z = x− µ

σ

where x is the raw score, µ is the mean of the population, and σ is the standard
deviation of the population. The z-score measures how many standard deviations away
from the mean of a particular raw score is, and it is useful for comparing values from
different populations or distributions. A z-score of 0 indicates that the raw score is equal
to the population average. In contrast, positive and negative z-scores indicate that the
raw score is above or below the mean, respectively, in terms of standard deviations.
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4.3.4 Audio signal accusation and feature extraction

The feature extraction method involves using a 2D time-frequency representation of
the audio signal. To achieve this, log-Mel energies are computed from the audio PCM
samples, the commonly used method in ESC [136]. The PCM samples are divided into
non-overlapping frames of 1024 samples (64ms), and a feature matrix is computed every
32ms with 50% overlapping. Each frame contains 512 new samples at a sampling rate of
16 KHz. An asymmetric Hanning window is applied to avoid spectral leakage. Next, 1024
samples are subjected to an FFT calculation using floating-point 32 to obtain a power
spectrum. A Mel filter bank lookup table is then used to calculate Mel energies, and a
logarithm is applied to obtain log Mel band energies. A total of 30 Mel filter banks are
used for each frame, resulting in a 30x32 matrix.

Finally, this matrix is used as the input to a convolutional neural network, which is used
to classify the audio based on its features. By using a pre-processed feature matrix, rather
than raw audio data, we can improve the performance and efficiency of the neural network,
making it easier to train and deploy on a device. The description of audio accusation,
feature extraction, and inference is depicted in Figure 4.5. In the case of scaling the
feature, the z-scaling parameters i.e. means and variances are computed for the training
set. The z-scaling is applied to each input log Mel spectrogram before the inference step.

4.4 Experimental Setup

In this chapter, we present the evaluation of five deep neural network models for envi-
ronmental sound classification tasks. The models were trained and evaluated on a custom
dataset consisting of four categories: walk, rain, wind, and car passing. The input features
for the models are log Mel spectrograms and z-scaled log Mel spectrograms described in
the feature extraction section. The dataset is divided into train set and test set 2.1. Five-
fold cross-validation is applied on the dataset as defined in section 1.5.6. The classification
model are presented in Tables 4.1, 4.2 and 4.3. The classification model in Table 4.1 is
named CNN-0. Table 4.2 contains two CNN classification models, CNN-1 and CNN-2.
Table 4.3 also consists of two DSCNN models, DSCNN-1 and DSCNN2. The models are
trained using TensorFlow libraries and later converted into TFLite model [137].

Afterward, int8-bit quantization is applied to reduce the size and complexity of the
model. The inputs and outputs are also changed to 8bit from float32 using scaling and zero
point information extracted from the quantized model. The quantized model is validated
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Figure 4.4 – Block diagram of classification process on a microcontroller.

with the quantized inputs using the train set. In the next stage, the quantized models are
implemented on STM32 SensorTile using CMSIS and STM32 AI libraries. The model is
then tested on the micro-controller by running the model completely on the microprocessor
and the audio files for the test set are stored on the SD card. The audio is read through the
memory by the DMA controller in a 16-bit PCM buffer of 1024 samples with 50% overlap.
The feature matrix is calculated every 32ms seconds. The chain of feature extraction is
shown in Figure 4.5. These features are fed to the quantized model to perform inference.
The classification models are run on the devices and the inference time of each model is
measured. The block diagram 4.4 depicts the process starting from signal acquisition to
the inference and classification results.
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Figure 4.5 – Processing chain for inference on STM32 SensorTile.
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4.5 Results and Discussion

Figure 4.6 provides the overview of the accuracies of nine different results of five neural
network models on five different folds of the dataset. The neural network models CNN-0,
CNN-1, CNN-2, DSCNN-1, and DSCNN-2 are described before. The models CNN-1-
zScaled, CNN-2-zScaled, DSCNN-1-zScaled, and DSCNN-2-zScaled uses the same model
as aforementioned but with z-score scaling applied to the Mel spectrograms. For each
model, five-fold cross-validation is applied. The CNN-0 model has an average accuracy
of 82.03% and it is the first model trained to perform classification. The parameters
used by this model are 311,584, which is the highest number of parameters among all
the models presented. Further optimization is done, in terms of reducing the number
of parameters by using a different combination of CNN. The models CNN-1, CNN-2,
DSCNN-1, and DSCNN-2 are trained with the goal of reducing the number of parameters
and also producing similar results. CNN-1 has an average accuracy of 79.37%, with a range
of 74.38% to 83.04%. This model has 50,212 parameters and uses 1,044,336 Multiply-
Accumulate Operations (MACCs) as shown in Table 4.4. CNN-2 has an average accuracy
of 80.08%, with a range of 77.47% to 82.43%. It has 55,575 parameters and uses 1,221,875
MACCs, which is relatively higher than CNN-1 because of the difference in the number
of filters used in CNN and the number of neurons in the first layer of deep layers.

Depth wise separable convolutional neural networks are also used, as they use less
number of parameters and consequently less number of MACCs. DSCNN-1 has an aver-
age accuracy of 80.72%, with a range of 77.60% to 86.60%. It is a depthwise separable
convolutional neural network. DSCNN-2 has an average accuracy of 79.10%, with a range
of 76.14% to 82.71%. The results of the z-scaled are as follows: CNN-1-zScaled has an
average accuracy of 78.97%, with a range of 76.01% to 79.01%. NN-2-zScaled has an av-
erage accuracy of 79.06%, with a range of 78.04% to 80.17%. DSCNN-1-zScaled has an
average accuracy of 77.80%, with a range of 71.68% to 81.10% and DSCNN-2-zScaled has
an average accuracy of 76.08%, with a range of 68.83% to 77.56%.

Overall, we can see that the best-performing models are DSCNN-1 and CNN-2, with
average accuracies of 80.72% and 80.08%, respectively. These models have a range of
accuracies that is not too wide, indicating that they perform consistently well across the
five folds. On the other hand, the worst-performing models are DSCNN-2-zScaled and
DSCNN-1-zScaled, with average accuracies of 76.08% and 77.80%, respectively. These
models have a wider range of accuracies, indicating that they are less consistent in their
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Figure 4.6 – Model accuracy over five-fold cross-validation.

performance across the five folds.
Table 4.6 shows the accuracy metric measures how often the neural network correctly

predicted the class of the input data. It is calculated by dividing the number of correct
predictions by the total number of predictions. In this table, we can see that the DSCNN-
1 model achieved the highest accuracy of 0.8659, while CNN-2 achieved an accuracy
of 0.8467. The table also demonstrates the inference duration of each neural network,
measured in milliseconds. Inference refers to the process of using a trained neural network
to make predictions on new, unseen data. Inference duration is an important performance
metric, especially for real-time applications that require quick predictions. In this table,
we can see that the DSCNN-1 model has the shortest inference duration of 52 ms, while
CNN-2 takes 68 ms to make a prediction. The last column shows the number of multiply-
accumulate operations (MACCs) required for each neural network’s inference. MACCs
are a measure of the total computational workload of the neural network, and they are
calculated by multiplying the number of weight parameters in the network by the input
size. In this table, we can see that DSCNN-1 requires the fewest MACCs, with only
249,997, while CNN-2 requires the most, with 1,221,875. The inference rate vs number of
MACCs is also depicted in Figure 4.7.
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Figure 4.7 – Inference rate vs MACCs

Table 4.1 – Neural Network Mode Description.

Layer (type) Output shape Param#
Input Layer Input shape (, 30, 32, 1) 0
conv2d (Conv2D) (, 30, 32, 20) 340
max_pooling2d (Pool) (Max-Pool 2D) (, 15, 16, 20) 0
conv2d_1 (Conv2D) (, 15, 16, 8) 2568
max_pooling2d_1 (Max-Pool 2D) (, 8, 8, 8) 0
dropout_1 (Dropout) (, 8, 8, 8) 0
conv2d_2 (Conv2D) (, 8, 8, 4) 516
max_pooling2d_2 (Max-Pool 2D) (, 4, 4, 4) 0
dropout_2 (Dropout) (, 4, 4, 4) 0
flatten_1 (Flatten) (, 64) 0
batch_normalization (BatchNorm) (, 64) 256
dense (Dense) (,400) 26000
dense_1 (Dense) (,400) 160,400
dense_2 (Dense) (,300) 120,300
dropout_3 (Dropout) (,300) 0
dense_3 (Dense) (,4) 1,204
Trainable parameters 311,456
Non-trainable parameters 128
Total parameters 311,584
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Table 4.2 – Convolutional neural networks model description

CNN Layers and Type CNN-1 CNN-2
Layer (type) Output shape Param# Output shape Param#

Input Layer Input shape (, 30, 32, 1) 0 (, 30, 32, 1) 0
conv2d (Conv2D) (, 30, 32, 20) 340 (, 30, 32, 20) 340

max_pooling2d (Pool) (Max-Pool 2D) (, 15, 16, 20) 0 (, 15, 16, 20) 0
conv2d_1 (Conv2D) (, 15, 16, 8) 2568 (, 15, 16, 10) 3210

max_pooling2d_1 (Max-Pool 2D) (, 8, 8, 8) 0 (, 8, 8, 10) 0
dropout_1 (Dropout) (, 8, 8, 8) 0 (, 8, 8, 10) 0
conv2d_2 (Conv2D) (, 8, 8, 4) 516 (, 8, 8, 5) 805

max_pooling2d_2 (Max-Pool 2D) (, 4, 4, 4) 0 (, 4, 4, 5) 0
dropout_2 (Dropout) (, 4, 4, 4) 0 (, 4, 4, 5) 0
flatten_1 (Flatten) (, 64) 0 (, 80) 0

batch_normalization (BatchNorm) (, 64) 256 (, 80) 320
dense (Dense) (,64) 4160 (, 80) 6480

dense_1 (Dense) (,128) 8320 (,128) 10368
dense_2 (Dense) (,256) 33024 (,256) 33024

dropout_3 (Dropout) (,256) 0 (,256) 0
dense_3 (Dense) (,4) 1028 (,4) 1028

Trainable parameters 50,084 55,415
Non-trainable parameters 128 160

Total parameters 50,212 55,575

Table 4.3 – Depth-wise separable convolutional neural networks model description

DCSNN Layers and Types DSCNN-1 DSCNN-2
Layer (type) Output shape Param# Output shape Param#

Input Layer Input shape (, 30, 32, 1) 0 (, 30, 32, 1) 0
conv2d (Separable_Conv2D) (, 30, 32, 20) 56 (, 30, 32, 20) 56

max_pooling2d (Pool) (Max-Pool 2D) (, 15, 16, 20) 0 (, 15, 16, 20) 0
conv2d_1 (Separable_Conv2D) (, 15, 16, 8) 488 (, 15, 16, 10) 530

max_pooling2d_1 (Max-Pool 2D) (, 8, 8, 8) 0 (, 8, 8, 10) 0
dropout_1 (Dropout) (, 8, 8, 8) 0 (, 8, 8, 10) 0
conv2d_2 (Separable_Conv2D) (, 8, 8, 4) 164 (, 8, 8, 5) 215

max_pooling2d_2 (Max-Pool 2D) (, 4, 4, 4) 0 (, 4, 4, 5) 0
dropout_2 (Dropout) (, 4, 4, 4) 0 (, 4, 4, 5) 0
flatten_1 (Flatten) (, 64) 0 (, 80) 0

batch_normalization (BatchNorm) (, 64) 256 (, 80) 320
dense (Dense) (,64) 4160 (, 80) 6480

dense_1 (Dense) (,128) 8320 (,128) 10368
dense_2 (Dense) (,256) 33024 (,256) 33024

dropout_3 (Dropout) (,256) 0 (,256) 0
dense_3 (Dense) (,4) 1028 (,4) 1028

Trainable parameters 47,368 51,861
Non-trainable parameters 128 160

Total parameters 47,496 52,021
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4.5. Results and Discussion
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Partie III, Chapter 4 – Machine Learning on Edge devices

4.6 Conclusion

Environment sound classification on edge nodes is a complex task and requires atten-
tion on various aspects for the classification of environmental sounds such as constraints
of resources, and power on board. The machine-learning algorithms are usually trained
to operate on high computational power devices. The SensorTile is used to validate the
concept of performing sound classification using an artificial intelligence-based model run-
ning on a limited computational power micro-controller device. In this chapter, a feasibility
study is provided which evaluates different neural network models on the edge device and
provides insight into the resources required and also the computational duration. This
chapter presents the evaluation of five different neural network models, CNN-0, CNN-1,
CNN-2, DSCNN-1, and DSCNN-2, for the classification of environmental sounds. The
models were evaluated using five-fold cross-validation, and the results show that DSCNN-
1 and CNN-2 are the best-performing models, with average accuracies of 80.72% and
80.08%, respectively. These models have a relatively narrow range of accuracies, indicat-
ing consistent performance across the five folds. On the other hand, DSCNN-2-zScaled
and DSCNN-1-zScaled are the worst-performing models, with wider ranges of accuracies,
indicating less consistent performance. The evaluation also includes the inference time
and the number of multiply-accumulate operations (MACCs) required for each neural
network, with DSCNN-1 achieving the highest accuracy with the shortest inference du-
ration and lowest number of MACCs. These results can guide the selection of the most
suitable model for environmental sound classification, depending on the trade-offs between
accuracy, consistency, and calculation efficiency. We showed that the low-powered devices
could be employed to perform environmental sound classification both on recorded audio
and through audio acquisition in real-time. The low memory usage and real-time perfor-
mance of the system enable us to address future developments in more sound categories
or multi-inference model applications.
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Part IV

Conclusion
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GENERAL CONCLUSION

The objective of the thesis, presented in this manuscript, was to study the feasibility
and to propose a prototype, of a low-complexity, low-power, small memory footprint,
and low-cost system for environmental sound automatic recognition (or classification,
ESC). A smart system embedded on an edge device with a low processing power micro-
controller was realized and demonstrates the feasibility of such a system as a practical
and cost-effective solution for monitoring environmental sounds in smart homes and other
applications.

The first contribution of the thesis is the introduction of a novel approach to fea-
ture extraction based on the Instantaneous Amplitude (IA) and Frequency (IF) spectro-
gram, which is constructed using Empirical Mode Decomposition (EMD) coupled with the
Teager-Kaiser Energy Operator (TKEO). This method provides estimated time-frequency
characteristics of the signal compared to traditional approaches, such as FFT-based Log
Mel spectrograms. The IA-IF spectrogram has several advantages over the FFT-based
spectrogram, including improved temporal and spectral resolution and better handling
of non-stationary signals. The study compares the IA-IF spectrogram with traditional
FFT-based spectrograms using log Mel spectrograms and shows that the IA-IF approach
provides promising results and has overcome the limitations of traditional approaches.

Secondly, a feature size reduction method is discussed that involves extracting statis-
tical parameters from Mel Cepstral Coefficients (MFCCs) in the cepstral domain. These
parameters are then optimized using the Sequential Feature Selection (SFS) method. The
study provides a detailed analysis of how the SFS algorithm can be used to select a subset
of the most relevant features from a large set of features. This method can help reduce the
computational burden and improve the performance of environmental sound classification
(ESC) systems. Furthermore, the study discusses the impact of feature size reduction on
the overall accuracy and efficiency of ESC systems.

Finally, the thesis explores the use of machine learning models for the efficient classi-
fication of environmental sounds. Specifically, it delves into two types of models: convo-
lutional neural networks (CNN) and depthwise separable convolutional neural networks
(DSCNN), both of which are optimized in terms of the number of parameters to im-
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prove efficiency. These models have proven effective in accurately classifying environ-
mental sounds, and the thesis evaluates their performance using a low-processing power
microcontroller. The study measures the processing time and complexity of the models,
providing insights into their efficiency and scalability. Overall, the study provides valuable
information for developing more efficient and accurate environmental sound recognition
systems.

The new method EMD-TKEO of extracting IA and IF and generation of spectrograms
provides a huge potential in analysis of non-stationary signals. This method could be
extended to other fields such as biomedical signals, vibration signal analysis, seismic signal
analysis, underwater acoustic signals, etc. The EMD-TKEO-based log MBEs showed good
results for some datasets and in others for a few classes, it surpassed traditionally used
features. In the case of feature selection, it has been shown that handpicking features and
removing irrelevant ones can improve the system performance by a significant amount.
Finally, the implementation of the ESC system on the microcontroller and analysis of
the performance of different neural networks on board provided significant insight into
the complexity vs performance problem. The analysis of operations with respect to time
and available resources serves as the basis for future development in this domain. Overall,
the proposed systems have demonstrated the potential of using ESC for the automatic
recognition of environmental sounds in smart homes and other applications. The thesis
provides a contribution toward the advancement of the field of automatic environmental
sound classification and provides a foundation for future research in this area.

Prespectives

The thesis provides a foundation for future work in the field of environmental sound
recognition.

— The proposed IA-IF spectrogram feature extraction method has shown promising
results in environmental sound classification. However, there is always room for
improvement, and further research can be conducted to enhance this approach’s ac-
curacy and efficiency. One potential area of improvement is the use of more advanced
methods such as Multivariate Empirical Mode Decomposition (MEMD), which can
overcome some of the limitations posed by EMD. Future studies can explore the
performance of MEMD in constructing IA-IF spectrograms and compare them with
the traditional EMD-based approach. Additionally, as the proposed system is de-
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signed to operate on high-processing power computers, the development of EMD
libraries for low-processing power devices, such as microcontrollers, can improve the
applicability of the system. These libraries can enable the efficient implementation
of the feature extraction process on microcontrollers with limited computational
resources.

— The thesis has focused on the classification of four environmental sounds, but in
reality, there are many more environmental sounds that need to be classified for
effective monitoring in smart homes and other applications. Future research could
focus on the expansion of the database of environmental sounds and the develop-
ment of more advanced machine-learning models for ESC. Moreover, the proposed
system can be extended to other applications beyond smart homes, such as auto-
matic activity recognition and surveillance systems. Additionally, the system’s low
power consumption and small memory footprint make it suitable for deployment
in resource-constrained environments, such as in remote or low-power locations.
Overall, the proposed system has demonstrated the potential of using ESC for the
automatic recognition of environmental sounds in smart homes and other appli-
cations. The thesis has contributed to the advancement of the field of automatic
environmental sound classification and provides a foundation for future research in
this area.

— Future work can explore the use of transfer learning techniques to further improve
the performance of the models, as well as the evaluation of other types of deep
neural network models and input features for environmental sound classification
tasks. Also, in the future, systems can be designed for multi-label sound classification
and sound classification in noisy environments. Multi-label sound classification is a
more complex problem in the development of sound classification systems. Similarly,
designing a sound classification for noisy environments requires careful attention.
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RÉSUMÉ

Inroduction générale

Problématique générale

Les sons environnementaux proviennent généralement de sources diverses et variées,
telles que l’activité humaine, les objets et la nature. La classification automatique de
ces sons (ESC pour environnement sound classification) suscite récemment un grand in-
térêt grâce à son grand potentiel d’application dans divers domaines, comme l’interaction
home-machine, l’habitat intelligent, l’audition robotique, la reconnaissance automatique
d’activités, les systèmes de surveillance automatique, etc. Cette classification, qui con-
siste à identifier automatiquement le son présent dans un enregistrement en lui attribuant
une étiquette, est composée essentiellement de plusieurs étapes dont les plus essentielles
sont l’extraction des caractéristiques les plus pertinentes pour différentier les sons et
l’élaboration d’un modèle d’apprentissage automatique performant. La recherche des car-
actéristiques les plus pertinentes, qui relève de l’ingénierie des paramètres, est un aspect
important de l’apprentissage automatique, puisque la qualité de celles-ci impacte signi-
ficativement la capacité du modèle à faire des prédictions précises. Les techniques utilisées
dans cette ingénierie incluent la définition de nouvelles caractéristiques, la modification de
celles existantes et la sélection des caractéristiques les plus pertinentes. Dans le contexte de
la classification de sons environnementaux, les caractéristiques les plus couramment util-
isées sont les énergies dans des bandes fréquentielles réparties selon l’échelle de Mel (MBE
for Mel Bands Energy) et les coefficients cepstraux (MFCC). L’extraction de ces carac-
téristiques est basée sur une analyse temps-fréquence par transformée de Fourier. Cette
analyse est adaptée pour des signaux vérifiant l’hypothèse de stationnarité et d’ergodisme.
Cependant, dans les sons environnementaux, ne sont pas des signaux stationnaires mais
peuvent être considérés comme stationnaire à court-terme. Pour ce type de signaux la
transformée de Fourier à court terme (STFT) est utilisée dans l’extraction des caractéris-
tiques. Cette analyse à court-terme augmente la dimension de l’espace des caractéristiques
et engendre ainsi une augmentation en termes de mémoire et de puissance de calcul pour
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l’extraction des caractéristiques et pour l’entrainement du modèle. Pour rendre le mod-
èle plus efficace, il est possible de réduire la dimensionnalité des caractéristiques afin
de réduire le coût de calcul. La mise en œuvre de modèles d’apprentissage automatique
pour l’ESC dans le monde réel pose plusieurs défis en termes de capacité du modèle,
d’échelle et de ressources. Les modèles actuels sont conçus pour atteindre une précision
et une généralisation élevées, mais ils ne sont pas optimaux en termes de complexité,
d’empreinte mémoire, de consommation énergétique et de coût. Pour résoudre ce prob-
lème, la plupart des travaux de recherche sont orientés vers la réduction de la complexité
des modèles tout en maintenant leur précision. Cependant, ils négligent souvent la com-
plexité de l’étape d’extraction des caractéristiques, qui peut être plus complexe que le
modèle formé lui-même. Ces défis sont plus accentués lorsque le système de classification
de son environnementaux est conçu pour être implémenté sur des nœuds périphériques.
En effet, avec la croissance de l’Internet des objets, l’accent est de plus en plus mis sur le
traitement des données aux nœuds périphériques, plutôt que sur leur transmission à un
concentrateur. Cela réduit la consommation d’énergie en évitant le transfert de données
et permet le développement d’applications avec un équilibre entre précision et complexité,
en tenant compte des ressources limitées des nœuds périphériques.

Objectifs et motivation de la thèse

L’objectif de cette thèse est d’étudier les méthodes d’extraction de caractéristiques
utilisées pour la classification des sons environnementaux et d’étudier l’implémentation
de ces méthodes de classification sur des nœuds de périphérie dans le contexte d’habitat
intelligent. Les techniques modernes d’apprentissage automatique, telles que les réseaux de
neurones artificiels, les réseaux de neurones profonds et les réseaux de neurones convolutifs,
sont utilisées pour la détection et la classification de sons environnementaux. Dans cette
thèse, nous avons abordé :

— L’impact de différentes formes de représentation temps-fréquence sur les perfor-
mances des modèles d’apprentissage automatique pour l’ESC.

— L’impact de la réduction des caractéristiques d’entrée.

— L’étude de la faisabilité et l’implémentabilité de systèmes optimaux, pour la clas-
sification de sons environnementaux, sur des nœuds de périphérie à base de micro-
contrôleurs à faible puissance de traitement.
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Contribution

— Une nouvelle méthode d’extraction de caractéristiques pour construire une image
temps-fréquence est proposée. La décomposition en mode empirique (EMD) est util-
isée pour analyser des signaux issus de systèmes non linéaires et non stationnaires.
L’EMD est hautement adaptative et basée sur l’extraction directe d’énergie avec
des échelles de temps locales. L’opérateur d’énergie de Teager – Kaiser (TKEO) est
utilisé pour extraire la fréquence et l’amplitude instantanées.

— La sélection séquentielle des caractéristiques est adoptée et adaptée. Le système
proposé est composé de LSTM (pour « long short terme memory » en anglais) et
de paramètres extraits, par ajout d’un niveau d’abstraction, à partir des coefficients
cepstraux, et il est comparé à un autre système basé sur un réseau CNN formé avec
des MBE.

— Le système de classification de son environnementaux développé est implémenté sur
un nœud à base d’un microcontrôleur à faible puissance de calcul, à faible empreinte
mémoire et à basse consommation. Le système a été validé et testé en temps réel,
en prouvant ainsi le concept et la faisabilité d’un ESC sur un nœuds de périphérie
en temps réel.

Conception d’un système de calssaification de sons en-
vironnementaux

Décomposition en modes empiriques - Opérateur d’énergie Teager-
Kaiser et représentation temps-fréquence

La classification d’images repose sur l’utilisation de l’image elle-même comme car-
actéristique, tandis que la classification de la parole et des sons nécessite l’utilisation
d’un spectrogramme, qui est une représentation en image des informations temporelles,
fréquentielles et énergétiques du son. Le spectrogramme le plus couramment utilisé est le
Mel-spectrogramme, qui est créé en appliquant des bancs de filtres en échelle de Mel à
un spectrogramme généré par la Fourier rapide à court terme (STFT). Dans cette étude,
nous introduisons l’utilisation de la décomposition en modes empiriques (EMD) avec
l’opérateur d’énergie de Teager-Kaiser (TKEO) pour estimer la fréquence et l’amplitude
instantanées, qui sont utilisées pour construire un nouveau type de spectrogramme pour
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la classification des sons environnementaux. Cette méthode, adaptative et efficace, dé-
compose le signal en un nombre fini d’unités oscillatoires appelées fonctions de mode
intrinsèque (IMF). Ces modes, extraits en fonction des propriétés locales du signal sup-
posé multi-composantes et modulé en amplitude et en fréquence, sont ses composantes
AM-FM symétriques et avec une moyenne nulle. En utilisant l’opérateur d’énergie de
Teager-Kaiser (TKEO), nous pouvons extraire la fréquence et l’amplitude instantanées
des IMFs, permettant ainsi de localiser tout événement sur une échelle de temps et de
fréquence. A partir de ces amplitudes et fréquences instantanées, nous construisons le
spectrogramme, en utilisant des bancs de filtres en échelle de Mel. En supprimant la ten-
dance du signal à l’aide de la décomposition EMD, nous avons également introduit une
autre catégorie de caractéristiques appelées SMBE. Nous avons comparé les performances
de ces caractéristiques, extraites par les méthodes proposées, avec celles extraites à partir
des énergies en bandes fréquentielles réparties selon l’échelle de Mel et calculées par la
transformée de Fourier à court terme.

Optimisation du système par sélection de caractéristiques

La réduction du nombre de caractéristiques dans un système de classification per-
met à la fois d’améliorer la précision, en supprimant la redondance, et de diminuer la
complexité du modèle. Cette réduction peut être faite par sélection des meilleures carac-
téristiques ou par projection de celles-ci dans un espace de dimension réduite. Dans cette
étude, nous utilisons la méthode de sélection séquentielle de caractéristiques. La sélec-
tion séquentielle de caractéristiques consiste à ajouter ou à éliminer de manière itérative
des caractéristiques jusqu’à ce qu’un sous-ensemble optimal de caractéristiques soit con-
struit. Elle utilise un modèle d’apprentissage automatique pour évaluer les performances
de chaque sous-ensemble de caractéristiques. L’algorithme commence avec un ensemble
vide ou complet de caractéristiques en fonction du type de méthode et ajoute ou élimine
une caractéristique à la fois, tout en évaluant la performance du modèle après chaque
ajout ou élimination. La caractéristique ayant le score le plus élevé est sélectionnée et
ajoutée au sous-ensemble, et le processus est répété jusqu’à ce qu’un critère d’arrêt soit
atteint. Dans notre étude, différentes méthodes de sélection sont adaptées et comparées.
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Évaluation des méthodes proposées

Bases de données

Dans cette étude nous avons utilisé plusieurs bases de données pour évaluer les per-
formances de notre système. Trois de ces bases sont issues d’autres travaux de recherche
relatives à la problématique de la classification de sons environnementaux : acoustic scene
classification, low complexity acoustic scene classification et urbansound8k. Ces trois bases
ont été utilisé pour valider la première version de notre système et comparer ses perfor-
mances avec les autres travaux de recherche.

Pour avoir une base de données dédiées au contexte d’habitat intelligent , nous avons
créé une quatrième base de données. Cette base de données contient des enregistrements
pour quatre scènes : pluie, vent, passage de voiture et bruit de pas humain. Le système
optimisé, ainsi que le système implémenté sur un microcontrôleur, ont été évalués par
rapport à cette base de données.

Résultats

Pour l’évaluation des méthodes d’extraction de caractéristiques proposées, nous les
avons comparées aux caractéristiques extraites par des méthodes traditionnelles basées
sur la transformée de Fourier. Deux systèmes, basées sur des réseaux de neurones convo-
lutifs ont été utilisés dans cette étude pour évaluer les performances des caractéristiques
pour quatre bases de données. Les résultats montrent que les méthodes basées sur la
décomposition EMD (EMD-MBE) ont des performances inférieures à celles basées sur
la transformée de Fourier (FFT-MBE). Les caractéristiques S-MBE sont les moins per-
formantes des trois catégories de caractéristiques évaluées pour chaque base de données.
Par contre la combinaison de ces trois catégories de caractéristiques permet d’obtenir
une amélioration en termes de précision de classification. Cependant nous constatons que
les EMD-MBEs ont de meilleurs résultats pour certaines classes que les STFT-MBEs.
L’analyse de la faible performance de la méthode proposée révèle que dans l’estimation
de la représentation temps-fréquence, la résolution est limitée par le nombre d’IMFs et
la taille de la fenêtre. De plus, lors du processus de décomposition du signal en IMFs, la
méthode EMD souffre du problème de mélange de modes, ce qui dégrade la qualité des
caractéristiques extraites.

Pour l’évaluation des méthodes basées sur la sélection de caractéristiques, nous avons
adopté et adapté un système de sélection séquentielle basé sur un réseau de neurones
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récurent LSTM (pour « long short terme memory » en anglais). Les résultats affirment
que la combinaison, des méthodes d’extraction de caractéristiques traditionnelles avec la
sélection des celle-ci par la méthode SFFS ( pour «sequential floating forward selection»
en anglais) et un réseau de neurones récurrent RNN pour la classification, est efficace
pour la reconnaissance automatique de sons environnementaux. Cette combinaison permet
d’atteindre des un taux de calssification moyenne de (81.35% et 81.15%), avec un nombre
faible de caractéristiques sélectionnées (k=35 et k=40), et un nombre relativement faible
de paramètres entraînés (844,208 et 845,248).

Implémentation sur une carte à base d’un microcon-
trôleur à faible puissance de calcul

Les approches traditionnelles d’ESC nécessitent le traitement des signaux sur des
ordinateurs puissants ou sur des serveurs cloud. Cependant de nombreuses applications
d’ESC, comme dans le contexte d’habitat intelligent, nécessitent des systèmes à basse con-
sommation énergétique et a faible empreinte mémoire. Ces contraintes justifient l’intérêt
accru pour la réalisation des systèmes d’ESC sur des microcontrôleurs. Avec l’avènement
des microcontrôleurs à faible consommation d’énergie et de l’Internet des objets (IoT), il
existe un intérêt croissant pour la mise en œuvre d’algorithmes d’ESC sur ces nœuds de
périphérie. Cette approche réduit le besoin de transfert intensif de données et améliore la
capacité des nœuds à traiter les données localement.

Dans cette partie nous avons étudié la faisabilité de l’utilisation de modèles d’apprentissage
automatique, en particulier les réseaux de neurones convolutifs (CNN) et les réseaux de
neurones convolutifs à séparation en profondeur (DS-CNN), pour la classification de sons
environnementaux sur des microcontrôleurs. L’accent a été mise sur le développement
d’une application à faible temps de traitement, en assurant un compromis entre complex-
ité et précision. La carte SensorTile basée sur STM32L4 et la bibliothèque CMSIS-NN
sont utilisées pour valider le concept et évaluer les performances du système d’ESC pro-
posé. Nous avons évalué cinq modèles de réseaux de neurones différents, CNN-0, CNN-1,
CNN-2, DSCNN-1 et DSCNN-2, pour la classification de sons environnementaux. Les
modèles ont été évalués en utilisant une validation croisée à cinq volets, et les résultats
montrent que DSCNN-1 et CNN-2 sont les modèles les plus performants, avec des pré-
cisions moyennes de 80,72% et 80,08%, respectivement. Ces modèles ont une plage de
précisions relativement étroite, indiquant une performance cohérente sur les cinq volets.
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Le temps d’inférence et le nombre d’opérations de multiplication-accumulation (MACC)
requis pour chaque réseau de neurones ont été aussi évalué. Le réseau DSCNN-1 permet
d’atteindre la précision la plus élevée avec la durée d’inférence la plus courte et le nombre
le plus faible de MACC. Ces résultats peuvent guider la sélection du modèle le plus ap-
proprié pour la classification de son environnementaux, en fonction des compromis entre
précision et complexité.
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Titre : Capteur polyvalent acoustique pour l’habitat intelligent

Mot clés : Classification Automatique des Sons Environnementaux (ECS), amplitude ins-

tantanée, fréquence instantanée, décomposition en modes empiriques (EMD), Teager-Kaiser

energy operator (TKEO) , réseau de neurones récurrents (RNN), réseau de neurones convo-

lutif (CNN), réseau de neurones convolutif profond (DSCNN).

Résumé : Les sons environnementaux pro-
viennent généralement de sources diverses et
variées, telles que l’activité humaine, les ob-
jets et la nature. La classification automatique
de ces sons suscite récemment un grand in-
térêt grâce à son grand potentiel d’applica-
tion dans divers domaines, comme l’interac-
tion home-machine, l’habitat intelligent, l’audi-
tion robotique, la reconnaissance automatique
d’activités, les systèmes de surveillance auto-
matique, etc. Dans le cas d’un habitat intelli-
gent, L’hétérogénéité des événements à sur-
veiller conduit à l’usage d’un grand nombre
de capteurs, de différentes natures, ce qui im-
pacte le coût, la consommation énergétique,
la complexité d’installation et de gestion ainsi
que l’encombrement et le volume de don-
nées à traiter. L’objectif de cette thèse est
de démontrer que l’utilisation de la classifi-
cation automatique des sons environnemen-
taux (ECS pour Environmental Sound Clas-
sification en anglais), apporte une solution à
cette problématique de réduction du nombre
et de la diversité des capteurs en rempla-
çant tout ou une partie de ces capteurs par
des capteurs acoustiques. La faisabilité de
cette solution a été validé par le dévelop-
pement d’un système, implémenté sur une
carte composée d’un microcontrôleur (Cortex
M4) à faible empreinte mémoire et à basse
consommation et d’un microphone, pour la re-
connaissance automatique en temps réel de
quatre sons environnementaux (pluie, vent,

pas humain et passage de voiture). Pour une
meilleure adéquation algorithme-architecture,
différentes méthodes d’extraction et de sélec-
tion de caractéristiques et différents modèles
d’apprentissage automatique ont été étudiés
et comparés. Une nouvelle approche d’extrac-
tion de caractéristiques à partir du spectro-
gramme d’amplitude et de fréquence instan-
tanées (SAFI), a été proposée et comparée
à l’approche traditionnelle utilisant le spectro-
gramme de Mel. Pour s’affranchir des limita-
tions de l’approche traditionnelle, liées au fait
que les sons environnementaux sont des si-
gnaux multi-composantes, non-stationnaire et
issues de systèmes non-linéaires, la construc-
tion du spectrogramme d’amplitude et de fré-
quence instantanées est effectuée par décom-
position en modes empiriques (EMD) cou-
plée à l’opérateur d’énergie de Teager-Kaiser
(TKEO). Pour générer le modèle d’apprentis-
sage, une base de données de sons envi-
ronnementaux choisis a été construite. Les
modèles d’apprentissage retenus sont les
réseaux de neurones convolutifs (CNN) et
convolutifs profonds (DSCNN), optimisés en
termes du nombre de paramètres et de ca-
ractéristiques. Cette optimisation est effectuée
grâce à une méthode de sélection de carac-
téristiques par réseau de neurones récurrent
(RNN). Ce système de reconnaissance au-
tomatique développé a été évalué avec de
nouveaux signaux pour une classification en
temps réel.



Title: Capteur polyvalent acoustique pour l’habitat intelligent

Keywords: : Environmental sound classification (ESC), empirical mode decomposition (EMD),

Teager-Kaiser energy operator (TKEO), instantaneous amplitude (IA), instantaneous frequency

(IF), convolutional neural networks (CNN), depth-wise separable convolutional networks (DSCNN),

recurrent neural networks (RNN).

Abstract: Environmental sounds emanate
from a variety of sources, such as human
and non-human activities, traffic sounds, birds,
rain, and sounds produced by human activ-
ity in houses, offices, cafes, and numerous
others. The automatic classification of these
sounds has recently attracted a lot of inter-
est due to its great potential for application
in various domains, such as human-machine
interaction, smart homes, robotic hearing, au-
tomatic activity recognition, automatic surveil-
lance systems, etc. In the case of a smart
home, the heterogeneity of the events to be
monitored leads to the use of a large number
of sensors of different types, which impacts
the cost, energy consumption, and complex-
ity of installation and management, as well as
on the volume of data to be processed. The
objective of this thesis is to demonstrate that
the use of ESC (Environmental Sound Clas-
sification) provides a solution to the problem
of reducing the number and diversity of sen-
sors by replacing all or part of these sensors
with acoustic sensors. The feasibility of this
solution has been validated by the develop-
ment of a system, implemented on an edge
device composed of a microcontroller (Cor-
tex M4) with a small memory footprint and
low power consumption and a microphone,
for the automatic recognition in real-time of
four environmental sounds (rain, wind, hu-

man footsteps, and passing cars). For bet-
ter algorithm-architecture matching, different
feature extraction and selection methods and
different machine-learning models are stud-
ied and compared. A new feature extraction
approach based on the Instantaneous Am-
plitude (IA) and Frequency (IF) spectrogram
has been proposed and compared to the tra-
ditional approach using the Mel spectrogram.
To overcome the limitations of the traditional
approach, related to the fact that environmen-
tal sounds signals are multi-component, non-
stationary signals from non-linear systems,
the construction of the instantaneous ampli-
tude and frequency spectrogram is carried out
by Empirical Mode Decomposition (EMD) cou-
pled with the Teager-Kaiser Energy Opera-
tor (TKEO). To generate a model for ESC, a
database of selected environmental sounds
was constructed. The selected learning mod-
els are convolutional neural networks (CNN)
and depth-wise separable convolutional neu-
ral networks (DSCNN), optimized in terms of
the number of parameters and features. The
feature size reduction and optimization are
carried out using a recurrent neural network
(RNN) feature selection method. This devel-
oped automatic recognition system was eval-
uated with new signals for real-time classifica-
tion.

149


	Introduction
	General Introduction
	Challenges
	Problem Formulation
	Thesis Objectives
	Contribution
	Thesis Structure
	List of Publication

	I Background
	Background
	Environmental Sound Classification
	Sound Representation / Feature Extraction
	Steps involved in acoustic feature extraction
	Spectrogram construction
	Mel Spectrogram Construction
	Mel-frequency cepstral coefficients (MFCC)
	Other feature extraction methods

	Machine Learning for Environmental sound classification
	Artificial Neural Networks
	Feed-forward Neural Networks
	Recurrent Neural Networks
	Convolutional Neural Networks
	Depthwise separable convolution networks 

	Neural network model training and evaluation
	Training of Model
	Optimization by Gradient Descent Based Optimization Algorithms
	Network Regularization
	Evaluation of sound classification model
	Performance Metrics
	Cross Validation

	Datasets
	Acoustic Scene Classification Dataset
	Low-Complexity Acoustic Scene Classification Dataset 
	Urbansound8k
	Custom Database



	II Feature Engineering
	Environmental Sound Classification Systems based on Empirical Features
	Introduction
	Proposed method
	Signal representation
	Empirical Mode Decomposition
	Sifting Process for IMFs
	Teager–Kaiser Energy Operator (TKEO)

	Feature Extraction
	Mel Band Energies
	EMD-Mel Band Energies
	S-MBE
	Features

	Experimental Setup
	Datasets
	Custom dataset creation description 
	Classification Model

	Results and Discussion
	Conclusion

	Feature Selection
	Introduction
	Background
	Feature Selection Method

	Method description and Experimental Setup
	Acoustic Data
	Feature Extraction
	Experimental setup description

	Results
	Conclusion


	III Hardware Implementation
	Machine Learning on Edge devices
	Introduction
	Background
	Hardware Description

	Dataset and Pre-processing
	Custom Dataset
	Feature Extraction
	Z-Score Scaling
	Audio signal accusation and feature extraction

	Experimental Setup
	Results and Discussion
	Conclusion


	IV Conclusion
	Conclusion
	Bibliography


