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Apercu de la these

La métastabilité est un phénomene observé dans de nombreux modeles physiques tels que la surfusion: un
état dans lequel un liquide dont la température est sous le point de solidification demeure a 1’état liquide
au lieu de passer a 1’état solide. En chimie, le diamant est caractérisé par la métastabilité & température
ambiante car il se transforme en graphite a une vitesse tellement lente qu’elle est inobservable, et lorsque
la température augmente, la transformation s’accélere. La métastabilité décrit alors 1’existence des états
stables pour un systéme dans lesquels ce dernier demeure pour une longue durée avant de rejoindre son
état d’équilibre sous I’action de perturbations diverses.

Un exemple de systeme plus proche du contexte de la thése est de considérer une bille qui glisse dans
un potentiel a double puit. Sans perturbation, la dynamique du systéme emmene la bille dans 1’un des
puits du potentiel. Lorsque le systéme est soumis a des forces, la bille pourra effectuer des transitions
entre les deux puits selon I’intensité de la perturbation. Et dans ce cas le systeme va passer un temps
relativement long dans le voisinage de 1’'un des deux minima avant d’effectuer une transition vers I’autre
minimum. Un tel systéme peut étre modéliser par une équation différentielle stochastique (EDS).

Cette these porte sur 1’étude de la métastabilité pour des systemes modélisés par des équations aux
dérivées partielles stochastiques (EPDS) soumis a deux types de perturbations: une force de dérive
périodique déterministe et un bruit additif qui modélise une perturbation aléatoire. On est intéressé par
ce type d’EPDS

Op(t, ) = Ag(t,x) + F(et, ¢(t,x)) + o&(t, x) , (0.0.1)

ol ¢ est I’état du systeme, A est le Laplacien, F' est le terme de dérive périodique, &t est le temps lent, o
est un parametre qui mesure 1’intensité du bruit blanc espace-temps noté par ¢. Les objets modélisant le
bruit aléatoire sont connus d’€étre tres irréguliers et cela rend 1’ étude des équations aux dérivées partielles
(EDP) associées sensible lorsque des produits entre deux objets irréguliers apparaissent. Et dans ce cas
les équations ne peuvent pas €tre résolues dans des espaces fonctionnels classiques. En dimension 1, ces
équations sont bien posées mais lorsqu’on passe a des dimensions supérieures on ne peut plus définir une
notion de solution. On développe dans le Chapitre 5 une approche permettant de contourner ce probléme
en dimension 2.

Un exemple intéressant d’un systéme montrant la métastabilité est 1’équation d’Allen-Cahn péri-
odiquement forcée

oot x) = Ag(t,x) + d(t,x) — ¢(t,2)> + Acos(et) + o&(t,z) .

Quand A = 0 et 0 = 0, I’équation déterministe a ét€ étudiée par W. Cahn et Sam Allen pour modéliser
la séparation de phase dans des alliages [1]. Une particularité de cette EDP est qu’elle admet deux
solutions stationaires stables &1 et une instable égale a 0 dans laquelle ¢ change de signe. On peut
représenter les solutions stables par un mélange de deux fluides différents, tels que I’huile et I’eau,
et on interprete le changement de signe comme des interfaces entre ces deux phases. Une question
naturelle est de se demander combien de temps il faut pour qu’ un systeme perturbé par un bruit aléatoire
passe d’un de ces états stables a I’autre. Des phénomenes intéressants et inattendus peuvent se produire
lorsque I’équilibre perd sa stabilité et lorsque le systéme s’approche d’un point de bifurcation tels que la
résonance stochastique et le retard a la bifurcation qu’on discutera plutard.
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Dans cette thése, on donne des estimées de concentrations sur les solutions des EDPS considérées.
Soient E un espace fonctionnel et A un ouvert borné de R x E. L approche est basée sur le premier
temps de sortie qui est défini par un temps d’arrét

Les problémes de sorties ont été initialement étudiés dans la théorie des grandes déviations qui donne les
comportements asymptotiques des systemes métastables. Mais dans la littérature il existe des résultats
plus précis utilisant d’autres méthodes, obtenus pour des EDS voir [10]. On généralise ces méthodes pour
des systemes de dimensions infinis modélisés par des EDPS. On montre que sous certaines conditions
sur les parametres en jeu les solutions sont concentrées dans un certain voisinage avec une probabilité
exponentiellement petite. Dans le sens, ou pour tout 2 > 0 mesurant la largeur du voisinage, il existe
une constante positive x telle que

P{ry <t} < C(t,e)e /7"

pour tout £ > 0.

Les Chapitres 3 et 4 concernent la résonance stochastique (RS) pour les EDPS sur le tore de dimension
1,T=R/(LZ). LaRS aété introduite initialement dans le contexte du climat pour expliquer I’apparition
presque périodique des périodes glaciaires et depuis, elle est apparu dans de nombreux d’autres systémes
biologiques et physiques y compris les lasers, les circuits électroniques [48], 1a neuroscience [38]. Ce
mécanisme se produit lorsqu’un systeme bistable ou multistable est forcée périodiquement en temps tout
en étant soumis également a un bruit. Lorsque la période du forcage est proche du temps nécessaire au
bruit pour faire passer le syst¢éme d’un état métastable a 1’autre, des oscillations périodiques ont lieu. Les
principaux résultats sur la RS sont obtenus pour des EDS de la forme suivante

dX; = f(et, X;) dt + o AW, 0.0.2)

ou ¢ détermine la dépendance en temps, W; est le processus de Wiener standard et f est le terme dérive
périodique en temps. Le terme de dérive peut modéliser le mouvement d’une particule dans un potentiel
a double puits. On étend 1’analyse effectuée pour des EDS de la forme (0.0.2) dans [8] a des EDPS
de dimension infinie de la forme (0.0.1). L’exemple de référence qu’on traite dans ce manuscrit est
I’équation d’Allen-Cahn qui décrit une situation bistable

flet,o(t,z)) = o(t,z) — o(t, 1:)3 + Acos(et) .

Des que A est plus petit qu’une certaine valeur critique A, f s’annule en 3 branches, deux parmi eux
deviennent proches ou se touchent une fois par période. La distance minimale entre les différentes
branches est mesurées par un petit parametre . Toutefois, les résultats obtenus s’appliquent pour des
termes de dérives plus généraux qui doivent satisfaire certaines conditions de régularité. La description du
comportement des solutions prés des branches d’équilibres et les relations entre les différents parametres
assurants les oscillations périodiques entre les puits pour les EDPS sont similaires a celles établies pour
les EDS dans [8]. La difficulté de cette généralisation est qu’on travaille avec du bruit blanc espace-
temps en dimension infinie, nous empéchant d’utiliser directement les méthodes développées dans [8].
On estime les termes d’erreurs apparaissants dans des espaces de Sobolev. Ces espaces sont liés a la
décomposition en Fourier des équations étudiées. Les résultats se résument comme suit:
On effectue tout d’abord une étude prés d’une branche d’équilibre stable ¢*(¢) ou on suppose que

F(t,0" (1)) = 0eta(t) = dsf(t, ¢"(t)) <0, Vt € T = [0,T] .
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* En absence du bruit, quand o = 0, le comportement de la solution déterministe ¢(¢, z) prés d’un
équilibre stable est décrit par le résultat suivant

[6(t, ) — ¢* (t)eo|| ;o < Ce |

pour tout t € I et eg(z) = 1/v/L. En d’autres termes, la solution déterministe reste proche de
I’équilibre stable d’une distance d’ordre ¢ tout au long de I’intervalle du temps.

* Lorsqu’on ajoute du bruit et lorsque les branches d’équilibre sont bien séparées les solutions de
I’EDPS restent concentrées dans un voisinage centré autour de la solution déterministe qui reste
proche de I’équilibre stable avec grande probabilité. Ceci est justifié par la borne obtenue dans le
Théoréme 3.3.1 suivante

P{l6 - 6t ). > 1} < Clostezsyexpd —n [1- 0 L)] 1,
H o2 eV
forallt € Tets < 1/2.
Quand le systeme perd sa stabilité, les branches d’équilibres se rapprochent I’une de I’autre engendrant

des bifurcations. On décompose la solution ¢(¢, x) en une partie constante en espace ¢o(¢) et une partie
oscillante ¢, (¢, ) ou I’étude de chacune des EDS et EDPS relatives donne les résultats ¢i-dessous:

* Les solutions de ’EDPS en ¢ (¢, ) se comportent comme les solutions de ’EDPS prés d’un
équilibre stable. Le Théoreme 3.3.1 reste valide pres des points de bifurcations et on conclut que
les solutions restent concentrées pres de 1’équilibre stable avec grande probabilité.

* Alors que le comportement de ¢(¢) dépend de I’intensité du bruit o et on distingue deux régimes
de bruit. Pour des intensités de bruit inférieures 2 o, = (J VV £)®/%, les solutions restent proches de
I’équilibre stable et la probabilité de passer a I’autre équilibre stable est exponentiellement petite.

* Tandis que pour une intensité de bruit supérieure a o, des transitions entre les différentes branches
d’équilibres ont lieu avec grande probabilité au dela d’un temps d’ordre —o2/3.

Dans le Chapitre 5, on traite un autre phénomene intéressant le retard a la bifurcation qui a lieu
quand les solutions reste proche de I’équilibre instable pendant un certain temps apres qu’une bifurcation
de fourche s’est produite. Ceci est du au fait que les solutions deviennent exponentiellement proche de
0 durant la phase stable et un temps d’ordre 1 apres la bifurcation est nécessaire pour que la solution
atteind de nouveau un état stable. Une étude de ce phénomene pour des EDS de 1a forme (0.0.2) a montré
que 1’ajout du bruit blanc a réduit le retard 2 la bifurcation d’ordre 1 4 d’ordre (¢ log(o—1))'/2, voir [7].
Une extension de ces résultats en dimension infinie pour des EDPS du type (0.0.1) est élaborée dans ce
chapitre, sur le tore de dimension 2.

L’EDPS dans ce cas n’est pas bien posée due au fait que le bruit blanc espace temps est plus irrégulier
en dimension 2 qu’en dimension 1. On peut le voir comme une distribution aléatoire non pas une
fonction aléatoire. L’existence des solutions via le théoréme de point fixe de Banach demande une
certaine régularité qui n’est pas assurée i¢i. Cette irrégularité est causée par la convolution stochastique,
le terme de I’équation du point fixe faisant intervenir le bruit blanc espace-temps. Ceci induit des produits
de termes non définis surtout en analysant le terme non linéaire de I’EDPS évalué en la différence entre
¢ et la convolution stochastique. Giuseppe Da Prato et Arnaud Debussche dans [42] ont introduit une
méthode pour contourner ce probleme en dimension 2. Elle consiste a soustraire une constante divergente
de la partie droite de I’EDPS ou on se ramene a étudier une version renormalisée de ’EDPS

do(t,z) = [Ad(t,x) + : Fet, ¢(t,z)): | dt + o dW (¢, 2)
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ou : F': est la renormalisation de Wick. Un exemple de non linéarité est de nouveau I’équation d’Allen
Cahn renormalisée donnée par

F(et, ¢(t,x)): = a(t)d(t,z) — :¢(t,z)3:,

ou : p(t,x)3: = ¢(t,2)3 — 3CNé(t, ) et Cy est une constante divergente. Ils ont élaboré ensuite une
nouvelle idée qui est basée sur I’équation de la différence ¢, entre ¢ et la convolution stochastique ou
¢1 appartient a un espace avec une meilleure régularité. On se base sur cette idée pour construire les
estimées de concentration dans des espaces de Besov appropiés. Des résultats similaires aux résultats
obtenus en dimension 1, sur le comportement des solutions aux voisinages des branches d’équilibre
stable et instable sont attendus et se résument de la facon suivante:

* Comme les puissances de Wick de la convolution stochastique sont les termes les plus irréguliers
de notre étude, le Théoreéme 5.3.12 montre qu’ elles sont concentrées avec grande probabilité dans
un voisinage de la branche d’équilibre stable. Cette distance est mesurée dans des normes de
Besov ||| pg__ pour des a < 0. En appliquant la méthode élaborée par Da Prato et Debussche,
Théoréme 5.4.7 montre que des estimées de concentration reste valide pour ¢; dans un espace de
Hoélder a indice positive.

* D’une autre part, on montre que méme si la convolution stochastique est singuli¢re, on peut motiver
ces estimations et voir le coté pratique. Effectivement, les théoréemes 5.5.1 et 5.5.3 concerne une
généralisation de 1’étude de la dynamique pres d’une bifurcation de fourche, étudiée auparavant
pour des EDS dans [7]. Suivant une démarche similaire a celle utilisée sur le tore de dimension 1,
on divise la solution en une partie constante en espace et une autre oscillante. L’étude de chacune
se résume de la facon suivante: La dynamique de la partie oscillante a un comportement analogue
a celle pres d’un équilibre stable alors que 1’autre montre que les solutions quittent un voisinage
de I’équilibre instable de taille o a un temps d’ordre /¢ log(o—1).



CHAPTER 1

Introduction

Contents
1.1 Goalofthethesis. . . . . . . . i v i i i it ittt ittt et ottt et nnsnas 1
1.2 Stochasticresonance . . . . . . . v v v v v v v v v v o v ot o e st 3
1.3 Bifurcationdelay . . . . . . . . . it e e e e e e e e e e e e 4
1.4 Singular SPDEs and renormalisation . ... ....................... 5
1.5 Resultsand perspectives . . . . . . v v v v v i i i it et e e e e e e e e 7
1.6 Aboutthisthesis . . . . . . . . . i i it i i it ittt e e e e e 9

1.1 Goal of the thesis

Metastability is a dynamical phenomenon that is observed in a large variety of situations in nature. A
classical example is a glass of water, suddenly exposed to an environment of below-freezing temperature:
its content may stay liquid for a very long time, unless the glass is shaken, in which the water freezes
instantly and we are again in an equilibrium state. It is called the supercooled water. Generally speaking,
metastability is a common physical phenomenon in which a system spends a long time in metastable
states before reaching its equilibrium.

A metastable state can be illustrated in another example, considering a hill on a golf course. The
valley around that hill can be related to the stable states while the top of the hill represents a metastable
state. If we hit the ball lightly from the right valley, it remains where it is. If we hit the ball harder, it
crosses the hill and reaches the second valley. But if we hit it such that it lands at the top of the hill and
stays there, even the slightest perturbations, like the wind, will make the ball fall into one of the valleys.
The hill top is the metastable state because, even if the ball can reach this state, it can’t stay there infinitely
because of the different pertubations to which it is subjected. We know that the ball will eventually fall
but we don’t know when.

It is then interesting to describe the long time behaviour of such systems. The first mathematical
description of metastable systems was introduced by Eyring [22] and Kramer [36] in the context of
chemical reactions where they consider a one-dimensional diffusion process in a double-well potential
as a model. Then, it set the way for the study of metastability as a phenomenon that occurs in dynamical
stochastic models or stochastic processes. This is the framework considered in this thesis.

Many of the systems that display metastability are described by ordinary differential equations
(ODEs) or partial differential equations (PDEs). In this manuscript, we are interested in physical systems
that can be modeled by PDEs of the form

Bio(t, 1) = Ag(t,z) + F(et, o(t,z)) , (1.1.1)



2 1.1. Goal of the thesis

where ¢ is the state of the system, A is the Laplacian, t denotes a slow time and F' is a non-linearity
depending on ¢ and periodic in the time variable. This model does not produce any interesting dynamics
from our point of view: we are interested in systems subjected to two kinds of perturbations, in particular
in the combined effect of them. These perturbations are
* A deterministic periodic driving force, which describes the change of an exterior influence, such
that a control parameter in an experiment, or the periodic variation of insolation, which depends
on the Earth’s orbital parameters.

* An additive noise, which models the random influence of internal perturbation in the system such
that the thermal fluctuations in laboratory experiments, or the random influence of the weather in
climate models.

The perturbation of (1.1.1) by an additive noise can be modeled by a stochastic partial differential
equation (SPDE) of the form

Op(t, ) = Ag(t,x) + F(et, p(t,x)) + o&(t, x) , (1.1.2)

where o measures the noise intensity and £ denotes the space-time white noise that can be understood as
a Gaussian random forcing acting independently at different points in space and time. Since it does not
belong to any classical functions space because of its roughness, the SPDE is not always well-posed. A
way around this difficulty is developed later.

An example of system displaying metastability is the periodically forced Allen—Cahn equation
perturbed by a small noise term. It is given by the stochastic PDE

Op(t, ) = Ag(t,x) + ¢(t,x) — ¢(t,z)> + Acos(et) + o&(t, x) . (1.1.3)

For A = 0 and 0 = 0, the deterministic version of this equation was studied by W. Cahn and Sam
Allen to model phase separation in multi-componet alloys in [1] and by Nathaniel Chafee and Ettore
Infante in [18] to describe PDEs admitting bifurcations. A particularity of this PDE is that it admits
three stationary solutions: two stable ones +1 and an unstable equals to 0 in which ¢ changes its sign.
Stable solutions can represent a mixture of two different fluids, such as oil and water, and we interpret
the change of sign as interfaces between two different phases. It is natural to ask how long a small noise
intensity needs to move the system from one of these stable states to the other one. In that case, the
equilibium branch loses its stability and undergoes a bifurcation. Interesting and unexpected phenomena
may occur, for instance stochastic resonance and bifurcation delay that we discuss later.

This thesis concerns the sample-path behaviour of stochastic processes, which are solutions of (1.1.2).
Our approach is based on the concept of first exit times. Let E be a functional space and .A be a bounded
open subset of RT x E. Fix an initial condition (¢, ¢o) € .A, the exit problem consists in characterising
the laws of first-exit time

TA = inf{t > 0: (t7¢(t7 )) ¢ ‘A}

For each realisation w of the noise, 74(w) is the first time where the sample path ¢(w) leaves .A. The
theory of large deviations is the fisrt step in the study of the exit problems. It gives an exponential
asymptotics on the probability of rare events like transitions between potential wells, by minimising the
so-called rate function over the set of all possible escape paths. There are more precise mathematical
results using other methods, obtained for one-dimensional SDEs, see for instance [10]. A generalisation
to the infinite dimensional setting of sample-path method introduced in that work is developed below.
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We show that paths under appropriate conditions on the different parameters are concentrated in a certain
neighbourhood of the equilibrium branch with an exponentially small probability. In the sense that for
any h > 0 measuring the width of A, there exists a positive constant x such that for all £ > 0,

P{TA < t} < Clt,e) e rh?/o? ,

where o is the constant in front of the noise in (1.1.2).

1.2 Stochastic resonance

Stochastic resonance (SR) was initially introduced in the context of climate science in order to explain the
close-to-periodic appearance of the major Ice Ages [3,39]. Since then, SR has shown up in a large number
of physical and biological systems, including lasers, quantum electronics [48] and neuroscience [38].

It can be illustrated in a simple model: we consider an overdamped particle in a double well potential
subjected to two different perturbations: a deterministic periodic driving force as well as an additive
noise. The periodic forcing, with its small amplitude, is not sufficient to allow transitions between the
wells in the absence of noise. While the additive noise, without the periodic forcing, allows the particle
to switch from one potential well to the other at random times. When both perturbations are combined
and their amplitudes suitably tuned, the particle will flip back and forth between the wells in a close to
periodic way.

Then, SR is a mechanism that occurs when a bistable or multistable dynamical system is forced
periodically in time, while also subjected to noise. When the forcing period is close to the typical
time needed by the noise to move the system from one metastable state to another one, large-amplitude,
periodic oscillations may occur, hence the name of resonance. Even if this resonance condition is not
exactly met, the response of the system shows a trace of the periodic forcing in its power spectrum.

The most mathematical results on SR have been obtained for one-dimensional SDEs of the form

dX, = f(et, X;) dt + o AW, , (1.2.1)

where W, is a standard Wiener process, and f is a time-periodic bistable drift term. One can model the
dynamics of an overdamped particle in a double-well potential by

f(et,x) = 2 — 2> + Acos(et) = —% <ix4 - %x2 - Acos(et)$> .
Whenever A is smaller than a critical value A., the drift term vanishes in three different values of x,
which correspond to equilibrium states of the system with a frozen value of £¢. These states are also
critical points of the double-well potential V (z,et) = tz* — 12 — A cos(et)z, where the middle point
is the unstable saddle, and the two outer points are stable potential minima.

Since the SR involve several parameters such noise intensity o, amplitude A and frequency ¢ of the
forcing, many of its aspects are not yet fully understood. The first investigations of SR in systems of the
form (1.2.1) focused on the case of small amplitude A [24,25,35], but many other parameter regimes
have been considered as well (see [32] for an overview of mathematical results). We are mainly interested
in the case where A is slightly smaller than A, and for small and finite parameter ¢ and €.

A precise description of the behaviour of paths and on the optimal noise intensity as a function
of the driving frequency and the minimal barrier height, guaranteeing periodic oscillation between the
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Ficure 1.1. A solution of (1.2.1) in an asymmetric potential. The upper and lower curves represent the
position of the wells, while the middle curve indicate the saddle.

two wells is given in [8] for one-dimensional SDEs of the form (1.2.1). One can study the dynamics
near uniformly hyperbolic, stable or unstable equilibrium branches as one can also see other situations,
arising when an equilibrium branch undergoes a bifurcation point (loss of hyperbolicity) or an avoided
bifurcation in which equilibrium branches come close without actually touching and it can be sufficient
to produce transitions. Let us resume their results. Without noise, when ¢ = 0, solutions of the PDE
(1.2.1) remain in the same potential well and never approach the saddle closer than a distance of order /.
When adding noise, paths, near a stable equilibrium branch, remain close to the deterministic solutions
where transitions between potential wells are very rare. When approaching a transcritical bifurcation
or an avoided bifurcation, transitions between the potential wells may occur and depend on the noise
intensity. For small values of o, the probability of overcoming the barrier is exponentially small and
have similar behaviours as in a neighbourhood of a stable equilibrium branch. For larger o, it is very
likely that the system goes back and forth between the local minima twice per period. The probability of
jumping from the less deep potential well to the deeper one is exponentially close to 1, while paths are
unlikely to come back, see Figure 1.1.

Extanding the methods developed in [8] to infinite-dimensional SPDEs of the form (1.1.2) is devel-
oped later in this thesis. A first step towards this generalisation has been taken in [26]. However, that
work considers noise that is coloured in space and white in time, given by a ()-Wiener process with trace
class covariance, while we consider a more difficult situation of space-time white noise.

1.3 Bifurcation delay

Another interesting situation arises when a single-well potential transforms into a double well potential
as time increases, the overdamped particle will fall into one of the new wells or it remains in the unstable
equilibrium, on the top of the barrier, see Figure 1.2. It can be described by an SDE of the form (1.2.1)
where f undergoes a pitchfork bifurcation, at (0, 0), where all equilibria meet.

In the deterministic case, when o = 0, the system displays what is called bifurcation delay: solutions
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Ficure 1.2. Overdamped particle in a potential undergoing a pitchfork bifurcation.

Ficure 1.3. A deterministic solution is attracted by = 0 and stays close to the origin for a finite time
after a bifurcation: phenomenon known as bifurcation delay.

attracted by the stable equilibrium branch (the bottom of the well) for ¢ < ¢* remain close to 0 for a
time of order 1 beyond the bifurcation time ¢*, even though the equilibrium branch has become unstable
(broken line in the Figure 1.3 ). This is due to the solution becoming exponentially close to 0 during
the stable phase, and a time of order 1 being required for the solution to reach again values of order 1,
see Figure 1.3. On the other hand, adding white noise may affect the delayed jump which accompanies
the slow passage through a pitchfork bifurcation. In fact, the fluctuations around the saddle push the
paths away from it, which decreases the bifurcation delay. In the one-dimensional SDE case, the effect
of noise on such system has been studied in [7]. The main result of that work is that sample path remain
with high probability at a distance of order oe~/* from zero up to a time t* + O(£'/2), but are unlikely
to remain close to 0 after times of order t* + O((elog(o~1))/?). The effect of noise is thus to reduce
the bifurcation delay from order 1 to order (¢ log(c~"))'/2. We develop in Chapter 5 similar results on
bifurcation delay for infinite-dimensional SPDEs of the form (1.1.2).

1.4 Singular SPDEs and renormalisation
We consider in this thesis parabolic SPDEs of the form (1.1.2) that describe the time-evolution of spatially

extended systems subjected to random driving. As we already mention, these SPDEs are not always
well-posed due to the irregularity of the space-time white noise. A process known as renormalisation is
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needed to define a notion of solution. It consists on subtracting an "infinite constant” from the righ hand
side of (1.1.2) to encounter the singularity. In order to understand the well-posedness problem, we first
discuss a classical example: the stochastic heat equation on R x T¢

at¢(t, 1‘) = A¢(ta ':L‘) + Of(t, :L‘) ) (1.4.1)

with initial condition ¢(0, 2) = 0 for all 2 € T<. It can be solved by the method of variation of constant,
also known as Duhamel principle in the theory of PDEs:

t t
o(t,x) = O'/O (e(t_s)A €)(s,x)ds = 0/0 /11‘2 P(t— s,z —y)&(s,y)dyds,

where P(t, ) is a periodicised version of the heat kernel, since we are working in T¢ = (R/(LZ))%. In
fact, this term is called the stochastic convolution (P *&)(t, x), where the star here denotes the space-time
convolution. One can see it as applying £ to a test function, knowing that P is not strictly a test function
since it has a singularity at the origin.

One can show that space-time white noise on the d-dimensional torus belongs to €* for any
a < —(d + 2)/2, with respect to the parabolic metric \/|t — t/| 4+ |x — /| between space-time points.
Then, convolving £ against the heat kernel should gain two derivatives so we would guess that the
stochastic convolution has regularity (2 — d)/2, see for instance [5]. When d = 1, the stochastic
convolution belongs to € for any o < 1/2 which is well-defined function. While for d > 2, it belongs
to Holder spaces with negative index, which is distribution-valued.

We turn out to a more general SPDE of the form (1.1.2) which solution is given by the fixed point
equation with initial condition ¢(0, z) = 0 for all x € T?,

t t
o(t) = / elt=9)A F(es,¢(s))ds + O'/ elt=9)A d¢(s), (1.4.2)
0 0

The existence of such solution via Banach’s fixed point theorem needs a certain regularity in a sense
that the right hand side of (1.4.2) belongs to a functional space. This can be problematic because the
stochastic convolution is the most irregular object in (1.4.2) and it is not necessarly a function. Due
to the embeddings between Besov, Holder and Sobolev spaces, we analyse in Chapter 3 the stochastic
convolution in fractional Sobolev spaces where we show that it belongs to H* for any s < 1/2. Therefore,
on the one-dimensional torus, the stochastic convolution is a well-defined function. Then, on the two-
dimensional torus, we analyse it in Besov spaces and one can see it as a distribution in 55, for any
a < 0. This poses a problem when trying to study the non-linearity F' evaluated in the difference
between the solution and the stochastic convolution. There is no canonical way of defining the product
of distributions. It is known that given two distributions f € €* and g € €7, the product fg can be
defined as a bilinear and continuous form if and only if a 4+ 8 > 0.

A way around this difficulty in dimension 2 was found by Giuseppe Da Prato and Arnaud Debussche
in the landmark work [42]. They considered renormalised equation of the form

do(t,z) = [A(t, z) + : F(et, ¢(t,z)): ] dt + o dW (¢, z) , (1.4.3)
where : F': denotes Wick renormalisation detailed later. An example of F' is

(F(et, p(t,x)): = :¢(t,x)>: = ¢(t, ) — 3Cno(t, x)
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where Cy is a logarithmically divergent constant depending on a cut-off N.

The main idea of their approach is to write an equation for the difference ¢; between the solution and
the stochastic convolution, which solves a linear equation. The observation is that ¢; belongs to a Besov
space with a better regularity. This means that the solution of the renormalised equation (1.4.3) differs
from the stochastic convolution by a smoother object, see [20]. While the method has been spelled out
for time-independent systems, extending it to time-dependent equations is straightforward.

The work [20] has later given rise to far-reaching generalisations, that allow to solve large classes of
singular SPDEs. These generalisations include the theory of regularity structures, introduced by Martin
Hairer in the work [28] and further developed with Ajay Chandra, Yvain Bruned, Ilya Chevyrev and
Lorenzo Zambotti in [16, 17, 19], and the theory of paracontrolled distributions, introduced in [27] by
Massimiliano Gubinelli, Peter Imkeller and Nicholas Perkowski. Most of these more general singular
SPDEs require more refined renormalisation methods than Wick renormalisation.

For time-independent versions of the equation (1.4.3) on the two-dimensional torus, many results
going beyond well-posedness and existence/uniqueness of solutions have been obtained. For instance, the
fact that their solutions satisfy the Markov property and are reversible with respect to the Gibbs measure
was proved in [44] using Dirichlet forms, while uniqueness of the Gibbs measure and convergence to
it were obtained in [43]. The fact that solutions satisfy the strong Feller property and are exponentially
mixing was shown in [46] using a dissipative bound, while the strong Feller property was also proved
(for more general equations) in [30], using the theory of regularity structures. The work [31] provided
a large-deviation principle, valid for a class of two- and three-dimensional singular SPDEs. In the
particular case of the Allen—Cahn equation, sharper asymptotics on transition times between metastable
states than those provided by large-deviation estimates have been obtained in [6] and [47].

In this thesis, we are interested in obtaining more detailed non-equilibrium properties for time-
dependent renormalised SPDEs on the two-dimensional torus similarly to the properties obtained for
SPDEs on the one-dimensional torus, see Chapter 3 and 4. We are interested in results concerning
the motion near the so-called stable equilibrium branches of the system. These are curves of the form
t — ¢*(t, x) on which the right-hand side of the equation vanishes in the absence of noise. In the other
hand, we want results concerning certain situations involving bifurcations, or avoided bifurcations. These
occur when the equilibrium branch ¢ — ¢*(¢, z) (almost) loses stability at some time, usually because
of the presence of a nearby unstable equilibrium branch. This can lead to an interesting phenomena
such as stochastic resonance, where solutions of the equation make fast jumps in a close-to-periodic way
discussed on the one-dimensional torus in [13]. Or bifurcation delay when solutions keep tracking a
branch of unstable equilibria for some time after a bifurcation has occurred and which will be discussed
for renormalised SPDEs in Chapter 5.

1.5 Results and perspectives

On the one-dimensional torus T, the results can be summarised as follows. We recall the stochastic Allen-
Cahn equation (1.1.3) where the time-periodic drift term describes a bistable situation and vanishes on
three branches, two of which come close to each other or meet once per period. The minimal distance
between the branches at these close encounters is measured by a small parameter §, which corresponds
to A. — A. The results apply to more general drift terms satisfying certain conditions detailed later. We
point out that the system depends on three small parameters €, o and  and the relation between them
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determines the transistion probability.

* Theorem 3.3.1 states that as long as the equilibrium branches are well-separated, solutions of the
SPDE (1.1.2) are likely to remain close to deterministic solutions tracking the stable branches.
Closeness is measured in the H® Sobolev norm, where s is strictly smaller than %, but can be
arbitrarily close to %

* When equilibrium branches become close to each other, we decompose the solution ¢(¢, z) into
its spatial mean ¢ (t), and its zero-mean transverse part ¢, (¢,x). Theorem 4.3.1 says that the
conclusion of Theorem 3.3.1 remains valid at bifurcation points for the transverse part.

* The behaviour of the spatial mean ¢((¢) depends on the value of the noise intensity o. Theo-
rem 4.3.4 implies that in the weak-noise regime 0 < o, = (0 V 5)3/ 4, sample paths are still likely
to remain close to the same stable equilibrium. The probability of making a transition to the other
stable equilibrium is exponentially small in o2 /2.

« In the strong-noise regime o > o, = (& \V £)3/4, transitions between equilibrium branches
become more likely. Theorem 4.3.5 implies that the probability not to make a transition to
the other stable equilibrium when approaching an avoided bifurcation point decays roughly like

expl—o?/? /(¢ log(o~))].

Our results thus show that similarly to the one-dimensional situation considered in [8], depending on
the noise intensity, transitions between stable equilibria are either exponentially rare, or happen with a
probability exponentially close to 1. There are some differences in the error terms, which are due to the
fact that we have to deal with the transverse part ¢ of the solution. The main difficulty of the analysis
comes from the fact that we work with space-time white noise in an infinite-dimensional situation. This
prevents us from applying directly the methods from [9], which work in finite dimension, and include
dimension-dependent error terms. These error estimates can be adapted to trace class noise, as was done
in [26], but the white noise case needs a different approach, relying on more careful estimates in various
Sobolev norms. Key results are an estimate for a linearised equation based on the Fourier decomposition,
presented in Section 3.3, and a Schauder estimate given in Lemma 3.3.7.

On the two-dimensional torus T?, similar non-equilibrium properties are expected for renormalised
SPDEs of the form (1.4.3).

* Theorem 5.3.12 shows that the Wick powers of the stochastic convolution remain concentrated,
with high probability, in a neighborhood of a stable equilibrium branch {¢* (¢, z)}o<t<7. The
distance is measured in the Besov norm ||-|| pg__ forany ar < 0. Theorem 5.4.7 shows that similar
concentration estimates remain valid for the difference ¢1 between the solution of the SPDE and
the stochastic convolution but in a stronger Holder norm of positive index.

* Despite this concentration result, one may be concerned that it is of little practical use, because it
does only concern the difference between a solution and the more singular stochastic convolution.
Theorems 5.5.1 and 5.5.3 show that this is not the case by discussing the particular situation of a
dynamic pitchfork bifurcation, which was previously considered in [7] for one-dimensional SDEs.
We show that until some time after the bifurcation, the solutions are concentrated in a region of

1/4 around the bifurcating equilibrium. They leave a neighbourhood of this equilibrium

at times of order /¢ log(o~!) and they are likely to stay close to the deterministic solution.

size oe~

Finally, it would be of interest if one can have answers to other questions that may arise.

* In Chapter 2 and 3, we give concentration estimate in Sobolev spaces. Could we have similar
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1.6

exponential decays in other spaces like Besov spaces?

When a system admits a bifurcation point, several phenomena may occur. We studied in this thesis
two of them: SR in one-dimensional SPDEs when the system approaches a transcritical bifurcation
and bifurcation delay in two dimensional SPDEs where it approaches a pitchfork bifurcation. One
can study the effect of noise on dynamical hysteresis appearing in SPDEs where the state of a
periodically forced system, for a given value of the forcing can depend on whether the forcing
increases or decreases.

As we have seen, to encounter the problem of well-posedness of two-dimensional SPDEs, we
introduce a renormalisation process. If we consider the three dimensional Allen-Cahn equation
(1.1.3) where x belongs to T3, it is known that the deterministic PDE is well-defined. Therefore,
the stochastic PDE remains ill-posed, even when the nonlinear term is replaced by its Wick
power. This is a consequence of space-time white noise being more singular in three than in
two space dimensions. There exist several methods to make sense of the singular equation after
renormalisation. One of them is the regularity structures, see [28]. Once the SPDE is well-defined,
could we expect concentration estimates like those obtained in dimensions one and two?

About this thesis

We provide now a more detailed account of the content of each chapter.

In Chapter 2, we recall some known inequalities which have been used throughout this thesis. We
introduce Besov and Sobolev spaces which are important in solving singluar SPDEs. We define
rigorously the space-time white noise, since it is the most irregular object in the study. Since
in dimension greater or equal to 2 equations are not well-posed, they require a renormalisation
procedure to make sense. An important tool to understand how it works is Wick calculus for
Gaussian random variables and its relation with Hermite polynomials.

Chapter 3 is dedicated to the one-dimensional Allen-Cahn SPDE. It contains a description on the
deterministic dynamics and a precise concentration estimate on the behaviour of the solutions near
a stable equilibrium branch. We divide the work in two steps, we start by evaluating the linear
version of the equation and then we consider more general drift terms.

In Chapter 4, we pursue the study started in Chapter 3 with the only difference that we assume
that the system admits a bifurcation point or an avoided bifurcation. We describe the effect of the
stochastic resonance by describing the paths behaviour. We thus distinguish two different regimes
depending on the noise intensity where the dynamics are quite different. A discussion on the
optimal parameter one can obtain, ends the study in the one-dimensional setting.

The final Chapter 5 concerns two-dimensional singular SPDEs. As we have seen previously these
equations are not well-posed and require a renormalisation. We give a precise description on the
renormalised equation. Then, with the Da Prato-Debussche trick, we obtain a solution in a space
with better regularity and we give concentration estimates around a stable equilibrium branch. We
end up discussing a case involving a pitchfork bifurcation.

Chapter 5 is completed in Appendix A, that contains technical proofs.

Table 1.1 lists some notations frequently used throughout this manuscript.
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Symbol Meaning
|| absolute value, /! norm
||| Euclidean norm
By, Besov space
ce Holder space
Hs fractional Sobolev space
JPtosbo probability with initial value
[Eto-%o expectation with initial value
[y] smallest integer which is greater than or equal to y
yVz maximum
YNz minimum
X<Y bounded up to a constant
X=xY X<SYandY S X
X =0(Y) Landau symbol

(K = (1+12)
1p(x)

Japanese bracket’s

indicator function

TaBLE 1.1. Frequently used notations.



CHAPTER 2

Preliminaries

In this chapter, we collect some classical results and useful tools which we will need in the sequel. It
will be important to define the spaces to which belongs our different objects: Besov spaces are the most
used when dealing with singular SPDEs. It coincides with Sobolev spaces for particular parameters.
Since space-time white noise is an irregular object, we define it properly to understand the reason for the
singularity. We recall in the end some properties on Hermite polynomials and its relation with the Wick
calculus for Gaussian random variables.

Dans ce chapitre, on rappelle quelques résultats classiques qu’on utilise dans les preuves des résultats
évoqués plutard. On définit les différents espaces fonctionnels auxquels appartiennent les différents
objets: les espaces de Besov et Sobolev. Ces espaces sont utilisés le plus souvent pour I’étude des EDPS
singulieres. On donne une définition du bruit blanc espace-temps et quelques propriétés, comme étant
lobjet le plus irrégulier dans 1’étude. Et enfin, comme les EDPS se sont pas toujours bien posées une
renormalisation est demandée. Cette procédure est basée sur les calculs de Wick pour les variables
aléatoires gaussiennes qui ont des propriétés similaires aux polynomes d’Hermite qu’on rappelle.

Contents
2.1 Usefulinequalities . . . . . . . . ..ottt i i i e e e e e 11
2.2 Fractional Sobolev space and inequalities . . . ... ... .... ... 12
2.3 Besovspacesandinequalities . . . . . . . . .. .. L L e e e e 14
2.4 Space-time white noise and stochastic convolution . ................... 15
2.5 Hermite polynomials and Wickcalculus . . . . .. ... ... ..., 16

2.1 Useful inequalities

We recall the following fundamental inequalities which we use constantly whose proof is given in [2].

Lemma 2.1.1 (Holder’s inequality). Let p, g, € [1, 00| be such that Zl, + % = 1. Then

lwvll e < llullge [0l Lo -

Lemma 2.1.2 (Young’s inequality for convolution). Let p,q,r € [1,00] be such that ;1) + % =1+ %
Then

lw s vl < lullpp 0]l Lo -
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We recall the following inequality that allows to estimate the probability of a positive submartingale
surpassing a level during the time interval [0, ¢] depending on its expected value at the endpoint, see [10].

Lemma 2.1.3 (Doob’s submartingale inequality). Let {M;},>0 be a positive submartingale with contin-
uous paths. Then, for any L > 0 andt > 0,

1
P{ sup M, > L} < —E[M,].
0<s<t L
A consequence of this result is

Lemma 2.1.4 (Bernstein-type inequality). Let @(u) be a Borel-measurable deterministic function such
that

q)(t):/o o(u)? du

exists. Then

IP’{ sup /OS o(u)dW,, > 5} < exp{—z(g?t)} ) (2.1.1)

0<s<t

A variant of Gronwall’s lemma, not requiring a differentiability is

Lemma 2.1.5 (Gronwall’s inequality). Let ¢, : [0, 00) — [0, 00) be continuous functions, satisfying

o) <L+ K /O $(s)6(s) ds

for all t > 0 with positive constants K and L. Then,

o(t) < Lexp{K/Otz/J(s) ds} 2.1.2)

forallt > 0.

2.2 Fractional Sobolev space and inequalities

Let L be a positive constant. We define, on the one-dimensional torus, an orthonormal basis {ej } ez of

L*(T,R) by
2 k
\/Lcos<zx> ifh>0,

ep(x) =< —F= ifk=0, (2.2.1)

1 ifk=1
where = € T = [0, L] with periodic conditions. Note that (e, ¢;) = 0 = .
0 ifk#I
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Remark 2.2.1. It might seem more convenient to use a complex Fourrier basis of the form

1 .
en(x) = 77 2ikme/L (2.2.2)

when analysing non-linear terms. Real Fourier series are usually used when dealing with linear equations.

¢
When working with complex Fourier basis of the form (2.2.2), we have the following properties
ek, (x)ex, (z) = \/:lzelirkZ (z) Vki, ko € Z2,
er(z1)er(w2) = \15616(961 +a2) Vk € 22,
ex(z) = e_p(x) Vk € Z°.
While on the two-dimensional torus, we define the orthonormal basis {ej } pcz2 of L2(T2, R), by
er(x) = ex, (x1)ep, (x2), k = (k1, ko) € 72, (2.2.3)

where ey, are the one-dimensional basis functions defined above by (2.2.1) or (2.2.2) depending on
whether we want to work in complex Fourier basis or not. We use the same symbol for one and two-
dimensional basis functions to not overload the notation. We write the expansion of ¢ € L?(T9) in a
Fourier basis

o) = Y drex(x) .

kezd

Fourier series are intimately related to the scale of fractional Sobolev spaces (also called Bessel
potential spaces).

Definition 2.2.2. (Fractional Sobolev spaces). For s > 0, the fractional Sobolev space H*(T,R) is
given by the subspace of functions ¢ € L*(T,R) such that

N7 =D (k)*°¢3 < oo

keZ
Note that H? is a Hilbert space, and HO = 12,
We recall some useful inequalities on Sobolev spaces H*(T,R) = H*:

Proposition 2.2.3 (Sobolev embedding). For any p > 2 and s > % — }D, there exists a finite constant
Csop(8,p) such that

191l 2o < Cson(s,0) 19l g5 - (2.2.4)

An estimate on the product of two functions in Sobolev spaces is given by the following lemma. A
concise proof can be found in [14, Théoréeme 7].

Lemma 2.2.4 (Product in Sobolev spaces). If s > % then there is a bilinear application

H* x H® — H*
(h,0) — o,
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which coincides with the pointwise product and satisfies the estimate

[0l s < CNYl s 0]l s
for some finite constant C = C(s).

While the above result does not hold if s < %, we have the following consequence of Young’s
inequality, a proof of which can be found, for instance, in [11, Lemma 4.3].

Lemma 2.2.5 (Young-type inequality). Let 1, s,t € (0,3) be such thatt < r+ s — 3. Then there exists
a finite constant C = C(r, s,t) such that

19 % 0l e < C Nl gr 1l s < 00 (2.2.5)

2.3 Besov spaces and inequalities

Measuring the size of each Fourier coefficient separately does not provide enough information. Instead
it is more useful to group the different frequency ranges into blocks, known as dyadic Fourier blocks.

Definition 2.3.1 (Besov spaces). Let ¢ admit the Fourier series (2.2.1). We define a collection of annuli
by setting Ay = {(0,0)} and A, = {k € Z?: 2471 < |k| < 29} for any q € N. The projection of ¢ on
Ay is defined by

Syp(x) = > dren(x) .

kEAq

For o € Rand p,r € [1,00|, define the norm

16y = {279 16060 10 } oy v

1/r
(Z grao ||6q¢||m) #1<r < oo,
= q=0

sup 29% H5q¢\|m ifr=o0.
q=0

(2.3.1)

Then the Besov space BY, = B%,.(T?) is defined as the set of all ¢ such that ||¢||g. < oo.
s ’ p,r
The Besov space By, is a Banach space for all & € R and p,r € [1, o0]. In particular,
C* =By ~ and H® = B3,

coincide with the usual Holder and (fractional) Sobolev spaces respectively.
We recall the classical Besov embeddings, see for instance [37].

Proposition 2.3.2. Let1 < p; < pa < ooandl < q1 < ¢ < 0. Then thql is continuously embedded
1 1
)

. pomdlpr—gs
in Bp, g .

Proposition 2.3.3. For any a1, aa € R such that ay < ag, any p,q € [1,00] the Besov space By}, is
compactly embedded into Bp?.
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The following lemma shows that the product of two functions in Besov spaces is not always well-
defined.

Lemma 2.3.4 (Product in Besov spaces). Let o, 8 € R satisfy a« + B > 0. Then there exists a bilinear
map B : €% x €% — € with the following properties:
1. If f € €% and g € €° are continuous functions, then

B(f,9)(2) = f(2)g(2)-
2. For arbitrary f € € and g € €7, one has the bound

| B(f, Q)H%Mﬁ S ||f||<ga ||9||<m .

If o + B < 0, then no bilinear map satisfying these two properties exists.

2.4 Space-time white noise and stochastic convolution

We turn now to the precise definition of the space-time white noise process & formally introduced in
(1.1.2). It should have the following properties:

* Each &(¢, x) should be a Gaussian random variable.
* Each {(t, x) should be centered.

* The values of ¢ at different space-time points should be independent, and thus uncorrelated, which
is sometimes written informally as

E[§(t, 2)E(s,y)] = 0(t — 5)d(z —y) -

It turns out that there is no random function having the above properties but there exists a random
Schwartz distribution instead. One can consider £ as a random linear functional acting on test functions.
We denote by .77 the Hilbert space L?(R x T¢). Let.#’(.#) be the space of Schwartz distributions,
and denote by (£, ¢) the duality pairing between a distribution § € ./(#) and a test function ¢ € J7.

Definition 2.4.1 (Space-time white noise). Space-time white noise on R x T% is a random distribution
& on a probability space (S0, F,P) such that for any smooth test function p € €, (£, ) is a centered
Gaussian random variable of variance ||p||%, and the covariance is given by

E[{£, p1)(§, 2)] = (1, p2)

Sor any two smooth test functions @1, w2 € F.

Since for Gaussian random variables, second moments determine all other moments. A consequence
of this property is given by the folllowing important result.

Theorem 2.4.2 (Regularity of space-time white noise). We have & € €~ (4+2/275 for any 1 > 0.

Proof. See Theorem 2.2.8 in [5] for d = 1 and by making the necessary changes in that proof we find
the result for higher dimensions. O
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We define a probability space (€2, F,P), generated by a stochastic process W (t,x), known as
cylindrical Wiener process. It sometimes denotes space-time noise, in the following sense

of(t,x)dt = o dW (t,z) ,
with & ~ A(0,1). The projection of the stochastic heat equation (1.4.1) on the kth basis vector gives

dop(t) = —purdr(t) dt + o dWi(t),

where (i, are the eigenvalue of the Laplacian and W (¢) is an independent Wiener process. Its solution
is an Ornstein-Uhlenbeck process and it is given by

op(t) =0 /0 te—mf—S) AW (s) .

We recall a periodicised version of the heat kernel on the one-dimensional torus

1 2
Pt ) = Z o (@—FkL)?/(41) 10
jez Vit

Therefore, the stochastic convolution can be written as

(Px&)(ta)=0) / = AW P ey (z)
0

kEZ

and its variance is given by

E[(P=&)(t, x)Q} =02 Z e 2R, [(/t eHks dWs(k))Q} er(z)?

keZ 0
t
=02 Z e 2Ht (/ e2Hns ds)ek(ac)2
keZ 0

t
_ 0_2/ Q298 g
0

owing to Ito’s isometry.
A proof of the following theorem can be found in [5].

Theorem 2.4.3 (Regularity of the stochastic convolution). The stochastic convolution (Px&)(t, -) belongs
10 €2=D/12=5 forany k > 0.

Remark 2.4.4. The Besov embeddings introduced above allow to extend the result on the regularity of
the stochastic convolution to Sobolev spaces or to more general spaces. &

2.5 Hermite polynomials and Wick calculus

We recall some properties of Hermite polynomials and Wick calculus needed in Chapter 5. Proofs
of these properties can be found, for instance, in the monographs [40,41], the lecture notes [29], and
Section 4.2.2 and Appendix D of [5].
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Hermite polynomials are defined recursively by setting

Hy=1
H,=xzH, 1—-Co,H,_1 neN

The first few of them are given by
Hy(5;0) =,
Hy(z;C) =2 - C,
Hs3(z;C) = 2 — 3Cx
Hy(z;C) = z* —6Cz? + 3C? .

We consider here Hermite polynomials with variance C. Some of the above references consider the
special case C' = 1, but results for that case can easily be converted into results for the general case by

using the scaling property
Hy,(z;C) = CY2H,(C™%z) .

The first n Hermite polynomials and the monomials 1, ..., 2™ both form a basis of the vector space
of polynomials of degree n, where the change of basis is given by the formulas

& 0, n—20 (=1)‘n!
H,(z;C) = n et = 2.5.1
(z;C) % e Ut = 501 (n — 20)! 2.5.1

[n/2] nl
no_ b KH B . b= —— — .
T ; neC" Hy—9¢(2;C) "= S0 — 20)] (]
The Hermite polynomials admit the generating function
T Cf2 O

G(t,z;C) = !*=C1/2 = Z% mHn(z; c), (2.5.2)

which can be used to establish the following identity.

Lemma 2.5.1 (Expectation of products of Wick powers). Let X and Y be jointly Gaussian centered
random variables, of respective variance C and Cs. Then for any n,m > 0, one has

E[H(X; C1)Hp (Y Cy)] = {Z!E[Xy] P

otherwise .

Another consequence of the expression (2.5.2) of the generating function is the following binomial
formula.

Theorem 2.5.2 (Binomial formula for Hermite polynomials). Forany x,y € R, C1,Co > 0andn € Ny,

Ho(z+9,C1+Co) =Y (;) Hyn (2, C1) Hp— (, C) - (2.5.3)
m=0
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A generalisation of the binomial formula (2.5.3) is obtained by induction.

Lemma 2.5.3 (Multinomial formula for Hermite polynomials). Let (aq)q>0 be a sequence of real numbers
in (2. Then for any convergent sequence (¢)g>0, one has

Hm<2xq;2ag> =Y %!Han(xq;ag),

q=0 q=0 [njJ=m ~ ¢=0
No — _ —
where the sum runs over all n € Ny° such that |n| =} ~,ng =m, and n! := [ ., ngl.

Given a set {14} of independent centered Gaussian random variables, one defines the mth homo-
geneous Wiener chaos H,,, as the vector space generated by all Wick powers of the 1), of total degree m,
that is, all

Pn = | [ Hn, (v; Var(vy))
q=0
with |n| = m. Then one has the following result on equivalence of norms, which is a consequence of
hypercontractivity of the Ornstein—Uhlenbeck semigroup. See for instance [21, Theorem 4.1] or [40,
Theorem 1.4.1].

Lemma 2.5.4 (Equivalence of moments). Let X be a random variable, belonging to the m-th homoge-
neous Wiener chaos. Then for any p > 1 one has

E[X*] < (2p — 1)™E[X?]". (2.5.4)



Part I

Analysis on the one-dimensional torus






CHAPTER 3

The stable case

The description of paths behaviour of systems described by 1-dimensional SDEs has been studied in [8].
In this chapter, we extend the methods developed in that work to infinite dimensional SPDEs. We are
interested, here, in dynamics near a stable equilibrium branch. First, we set up the problem and give some
assumptions on the periodic drift term f. Then, it is useful to understand the deterministic dynamics
without noise before turning on to the stochastic dynamics, when a noise is added. We give concentration
estimates of solutions in Sobolev space, for a linear version of f and then for more general drift terms
where we have to handle in addition nonlinear terms.

Dans ce chapitre, on généralise les méthodes développées pour la description du comportement des
solutions d’un systéme décrit par une EDS en une dimension, pour des EDPS en dimension infinie.
On s’intéresse a la dynamique dans un voisinage d’une branche d’équilibre stable. On commence par
présenter le probléeme et donner les différentes hypothéses sur le terme de dérive périodique en temps.
On étudie la dynamique déterministe sans bruit pour ensuite décrire la dynamique stochastique dans des
espaces de Sobolev.
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3.1 Set-up

Let L,T > 0 be real parameters. We consider time-dependent SPDEs on the torus T = R/LZ of the
form

dg(t,z) = [Ad(t,x) + f(et, d(t,x))] dt + o dW (t,2) ,
for the unknown ¢ : I x T — R, where I = [0,T]. Here

* ¢ > (0 1is a small parameter quantifying the slow time dependence;

* ¢ > 0 is a small parameter measuring the noise intensity;
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e f:]0,7] x R — Ris a forcing term satisfying a number of assumptions given below;

* A¢ denotes the one-dimensional Laplacian, J,;

» dW (t,x) denotes space-time white noise on Ry x T, given by a cylindrical Wiener process on
some probability space (€2, F,P).

Notice that interesting dynamics can only be expected when et varies by an amount of order 1 and the
system has to be considered on the time scale ¢ ~'. This is done, by introducing the slow time s = et
which yields the equation

1 o
do(t,z) = . [Ag(t,z) + f(t, ¢(t,z))] dt + ﬁdW(t,x) , (3.1.1)

where we have replaced s by ¢ to avoid confusions. The choice of an initial condition ¢ is always
assumed to be independent of W (¢, z) forallt > 0 and x € T.

The drift term f is periodic in the time variable with period 7" and describes a bistable situation. We
consider throughout this thesis that f is the periodically forced Allen-Cahn equation

f(t,¢) = — ¢+ Acos(t) . (3.1.2)

Our results apply, however, to more general drift terms f, that only need to satisfy a number of regularity
and growth conditions. One can extend naturally the drift term to a more general case where f : RxXR —
R. It will sometimes be useful to work with a potential U associated with f, satisfying

The following assumption on the behaviour of U for large values of ¢ will be assumed to hold all over
this study.

Assumption 3.1.1 (Global behaviour of the drift term). The potential U admits, for all (t,¢) € I x R,
a decomposition

Ut ¢) = P(t, ¢) +g(t, 0)
into a polynomial part and a bounded part. More precisely,

o there exists an integer py > 1 such that the map ¢ — P(t, @) is a polynomial of degree 2py, of the

form
2po

P(t,¢) =) Aj(t)¢’
j=0

with coefficients A; € C(I,R) such that |A;(t)| and |A%L(t)| are bounded uniformly, and
Agp,(t) > 0 forallt € I;

e the function g € C*(I x R, R) satisfies

98, @)1 1959(t, 9|+ 10a0g(t, @), 10k (t 9)] < M
forall (t,¢) € I x R and some constant M > 0.

We consider the case where the potential U (¢, ¢) admits a strict local minimum at all times ¢, in a way
that the drift term f admits a stable equilibrium branch. More precisely, we will require the following.
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Assumption 3.1.2 (Stable case). There exists a map ¢* : I — R such that
f(t,0"(t) =0 Vtel.
Furthermore, the linearisation a(t) = 04 f(t, ¢*(t)) satisfies
—at <a(t) < —a- Vtel
for some constant a+ > 0.

We notice that assumption 3.1.1 and 3.1.2 implies that ¢* € C!(I,R) due to the implicit function
theorem.

3.2 Deterministic dynamics

We sart by analysing (3.1.1) in the deterministic case when o = 0. It takes the form of the PDE

edp(t,x) = Agp(t,z) + f(t, o(t, x)) , (3.2.1)

where ¢t € I and x € T implying implicitly periodic boundary conditions. The drift term f satisfies
Assumptions 3.1.1 and 3.1.2.

We are interested in the deviation from the equilibrium branch, given by the difference v (t, ) =
o(t,-) — ¢*(t)ep. Using Taylor’s formula to expand f (¢, p*(t)ep + 1), we obtain that 1) satisfies the
equation

O (1) = A(t,2) + alt)(t,2) + b(t, (6, 2)) e 6" (Deo()

where

a(t) = 9y f(t, ¢"(t)eo) ,
b(t, ) = %O;f(t, o (t) + 9111)1/}2 for some 6 € [0,1] .

This shows in particular that there exist constants d, M > 0 such that
|b(t, )| < My? | 9gb(t, )| < MY (322)

forall ¢ € I and all ¢ € R such that || < d.

There are well-known results in finite dimension on the theory of singular perturbation, see in par-
ticular [23,45]. The deterministic dynamics in infinite-dimension is given by the following proposition.
It describes the behaviour of the deterministic solution near the stable equilibrium branch.

Proposition 3.2.1 (Deterministic dynamics in the stable case). There exist constants C', g > 0 such that
for 0 < e < &g, the equation (3.2.1) admits a particular solution ¢(t, ) satisfying

|t ) — ¢ (t)eo|| n < Ce Vt € I and eg(z) =

5~
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Proof of Proposition 3.2.1. Following the main idea of the proof in [45] in the finite-dimensional case,
we define a Lyapunov function

L?

N

1
Vi) =5 lelF = H@bIIL2 +

Let (-,-) denote the L? inner product. Observing that | V¢)||32 = (Ve), Vo)) = —(1h, Avp), and using
self-adjointness of the Laplacian, we obtain that the time derivative of the Lyapunov function along a
solution of (3.2.1) satisfies

2
5£V(w(t, ) = (W, edpp) — %<ijec‘w>

dt
= (0, AY) + a(t) [$ll72 + (¥, b(t ) — 6dg¢ ()(¢, eo)

2
— 2 (18wl + ateyia, v + b0, 0)

In the last line, we have used the fact that (A, eg) = 0 (here and below, we sometimes write 1) instead of
¥(t, ) in order not to overload the notation). Regrouping terms, and bounding some obviously negative
terms above by zero, we get

2
e V() < 2OV () + (9, blt, ) — 5 (A, blt, ) — <

Let Cy > 0 be a constant to be fixed below. Assume that ||1(0, -)|| ;1 < Cp, and define the first-exit time

F=inf{t>0: |0t )| g = Co} .

¢*(t)(¥, eo) - (3.2.3)

By convention, we set 7 = oo whenever ||¢(t,-)|| ;1 < Cp for allt € I. Thus, forall t < 7in I, we
have ||9(t, )|l ;1 < Co. By Sobolev’s inequality (2.2.4), this implies that for these ¢, one has

[9(t,2)] < ()l < Cson 6621 < CsanCo
for all x € R and some numerical constant Csop. By (3.2.2), provided Cso,Co < d, it follows that
|b(ta¢(t7$))’ < C1S20b]\4 ||¢(t) )”?’{1 y
and thus
Ib(t o (t, )72 < CoopMPL [, )l -
By the Cauchy—Schwarz inequality, we get
(W (t, ), bt ()] < 0t ) g2 10CE D (E, )l g2 < CopMLY2 [l4b(t, )31 -

Furthermore, integration by parts and (3.2.2) yield

(A%(t,), b )| = / Vab(t, 2)20ub(t, (L, 2)) da

< M ()| e V92, )72
< CsonM [[(t, )3 -
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Finally, owing to the implicit function theorem and Assumption 3.1.2, the derivative of ¢*(¢) is bounded
by a constant ¢, so that

d

3¢ O ) eo)| <9t )l < clld )lim -

Plugging the last three estimates in (5.4.2), since a(t) is negative and bounded away from zero by
Assumption 3.1.2, we obtain that V' (¢) = V (¢(¢, -)) satisfies

eV < —CO1V + Cu V32 4 O3V /2

202y ey V2 (3.2.4)

for all ¢ < 7, and some constants C'y, Ca, C3 > 0. Choosing Cj such that C’é/ 2 < 2%2 we obtain

. 1
V<OV + eC3V1/2
for all t < 7. Setting V() = Z(t)? and dividing by 2Z(t), we get
7<-tozyle
€4 % 4 1 9 3€ .
Since the variable W = Z — %5 satisfies e T < —%Cl W, Gronwall’s inequality (2.1.2) yields
W (t) < W(0)e @1t/(4)

for all ¢ < 7. Thus for any W (0) of order ¢, we find that Z(¢) remains of order ¢ for all ¢ < 7, and
thus V(¢) remains of order 2. Choosing £g small enough and 0 < & < ¢(, we obtain in particular that
V(t) < Cp for all t < 7, so that assuming 7 < T would lead to a contradiction. We conclude that
7 > T, showing that V (¢) = O(&?) for all t € I, which is the claimed result. O

Remark 3.2.2. Another choice of Lyapunov function would have been

L
V() = 6] + /0 Ut (x)) de |

where Uy (t,¢) = U(t, ¢*(t)ep + 1) is a shifted version of the potential U introduced in (3.1.3). This
function is useful to control the behaviour of solutions of large H'-norm. Indeed, one can show that
there exist constants M7, My > 0 such that

— My < V() <M (14 IY) el

forall t € I, and that V'(¢,(t, -)) is decreasing at least exponentially fast when it is large. O



26 3.3. Stochastic dynamics

3.3 Stochastic dynamics

We return now to the SPDE (3.1.1) with o > 0. We are interested in the stochastic process ¢ (¢, x) =

o(t, x) — ¢(t, x), which describes the deviation due to noise from the deterministic solution tracking the
stable equilibrium branch ¢*(t)eg. It obeys the SPDE

1

d(t,2) = < [Av(t ) + a(t)(tx) + blt, ¥(t, )] dt + % AW (t,z) , (3.3.1)

where
a(t) = 0y f(t, " (t)eo)
and
b(ta 1/}) =a (tv )1/1 + bl(tv 1/}) :

Proposition 3.2.1 shows that ||a1(t, )| ;1 = O(e) while b1(¢,v) denotes a nonlinear term, satisfying
bounds analogous to (3.2.2). In the finite-dimensional case, it is known (see [7, Theorem 2.4]) that
solutions of the stochastic equation (3.1.1), starting near the equilibrium branch ¢*, remain close to that

branch with high probability. To quantify this in our infinite-dimensional situation: for a given s > 0,
we define for any h > 0 the following set, centered around ¢(t, -),

B(h) = {(t.9): te L6 =6t . <h}.
Given an initial condition (0, ¢g) in B(h), the first-exit time from B(h) is the stopping time

() = inf{t > 0: (t,¢(t,-)) & B(h)}
=inf{t>0: ||¢ — &(t,")|| ;o = h} .

By convention, we set 75(;) = +00 whenever (, ¢(t,-)) € B(h) forall t € I.
The following theorem describes the dynamics in a neighborhood of the deterministic solution,

Q_S(ta )
Theorem 3.3.1 (Stochastic dynamics in the stable case). For any s € (0, %) and any v > 0, there exist

constants k = k(s), €0, ho and C(k,t, e, s) > 0 such that, whenever 0 < & < g9 and 0 < h < hoe”, the
solution of (3.1.1) with initial condition $(0,-) = ¢(0, -) satisfies

2
]P’{Tzs(h) <t} < C(k, te,s) exp{—/{h2 [1 — (9<h>} } ’
o

EV

forallt € 1.

Remark 3.3.2. The exponential factor in the bound is very small as soon as h is significantly larger than
o, so it is unlikely to leave the set B(h). The proof yields explicit bounds on C'(k, t, ¢, s). In particular,
this quantity can be taken proportional to ¢ /e, while its dependence on « and s is more complicated.

Remark 3.3.3. The result also holds for general initial conditions ¢(0,-) in an H®-neighbourhood of
order 1 of $(0,-), provided one only considers the probability of leaving B(h) after a time of order
elog(||¢(0, )| s K1), since solutions need a time of that order to reach B(h). See [10, Theorem 5.1.6]
for a precise formulation, which can be adapted to the present situation by a similar argument. &

We perform the proof of Theorem 3.3.1 in two steps: we study first the linear case where b vanishes
and second we consider a more general case where the drift term is nonlinear.
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3.3.1 Linear case

We consider the linearised version of (3.3.1) given by

du(t, ) = é[Aw(t, 2) + a(t)w(t, z)] dt + % AW (t,z) . (33.2)

We recall the Fourier basis (ey)rcz, defined in (2.2.1). These basis satisfy the eigenvalue problem

k22
Aep = —ppek, pk = T2 (3.3.3)
Projecting (3.3.2) on the k-th basis vector e, we obtain
1 o
doo(t) = —ag(t t)dt + —= dWi(t 334
Yi(t) = Zar(t)yu(t) + k(t) (3.3.4)
where a(t) = —p +a(t) and the { Wy (t) }+>0 are independent Wiener processes (see for instance [34]).

The solution of (3.3.4) is a Gaussian process and can be represented by the Ito integral (cf. Duhamel’s
principle)

t
welt) = 72 /0 /2 VY (1),

where a(t,t1) = fttl ay(ta) dte. Thus, for each time ¢, ¥y (t) is characterised by its mean being zero
and its variance given by

a’ [ 20, (tt1) /e
Var{wk(t)}zg/ o2ou(tt)/e gy,

0

3.3.1.1 Some useful bounds

In order to bound the probability of leaving 5(h), we provide the following lemmas. We assume that
there are positive constants i such that for all ¢ € T

co (k) < i+ a— < ag(8)] < g+ ay < (k)%
Due to the implicit function theorem, we also have the existence of a constant C' such that
la@®)|<C  VtelI=[0,T].
The following lemma gives a bound on the variance which is decreasing when k increases.
Lemma 3.3.4 (Bound on the variance). There exists a constant Cy > 0 such that the variance satisfies

the bound )

Var {¢(t)} < CO(Z? Vtel.

Proof. Using integration by parts, we obtain

Var {¢x(t)} :/t L 2a(s) 200 (5)/2 g
0

o2

2ai(s) ¢

R S S O YA | / L a(8)  say(ts))e
a 2ay(t) 2ak(0)e +2 0 ak(s)2e ds,
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where we write o (t,0) = ay(t) for brevity. The absolute value of integral can be bounded by

/t L(S)‘ e 2(upta)(t=s)/e 44 < Lg
o (

— i — a-)? 2(uk +a-)3
Therefore,
Var {1/;k(t)} < 1+ 0(¢) <Ot
o 2 +a) S k)
as claimed. 0

To investigate 1x(¢) which is a one-dimensional process, we need to estimate the stochastic integral
I b eak(tt1)/e AW, (¢1). Applying the Bernstein-type inequality (2.1.1) on a partition of [0, 7], we can
easily adapt Theorem 2.4 in [7] to obtain the following estimate.

Lemma 3.3.5. Fix~ > 0. Then for any k € Z, we have the bound

p{Sup [ (t)] > h} < Gle) eXp{’“’“yhz} ’

tel o?

where C(T,¢) = 200 < PT and k = 2;;

Proof. As in [7, Theorem 2.4], we introduce a partition 0 = uy < u; < ... < uy = T of [0,7]

by requiring oy (ug1,14) = —vye for 1 < 1 < N = [cg (k)>T/(ve)]. The proof then follows
by approximating the process by a martingale on each interval [u;,u; 1] and using a Bernstein-type
inequality that follows directly from Doob’s submartingale inequality. O

3.3.1.2 Proof of Theorem 3.3.1 in the linear case

Having all the needed tools, we can develop an upper bound on the probability of escaping the neighbor-
hood of ¢(t, x) before time ¢.

Proof of Theorem 3.3.1 in the linear case. Fix constants 7, p > 0 and s € (0, 2) such that s = % - p.

For every decomposition h? = > ke h? i one has
Plraon <t} = B{supllu(e. 1% > hQ}

- few S 0o > 1

tel keZ

<> efsw ) > hz<k>—2$}

keZ tel

2
< Z Ci(T¢) exp{—ﬁgg<k>22s} ‘

kEZ

Choosing
hi = C(n, s)h*(k)=2+2s+n (3.3.5)
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the condition h? = Y, ., h? yields

C(n,s) = W .
kEZ
Since the Riemann zeta function {(v) = -, n~" converges for v > 1, we get
1 — 1
ZW < 1+2Zm =14+2012—-25—n)<oo YO<n<2. (3.3.6)
kEZ k=1
With hj given by (3.3.5) and 7 satisfying this condition, we get

P{stg) ()1 > h2} <Y Cr(Te) exp{—/iC(n,s)ZZUf}"}

keZ

_aTZ 2 _B

keZ
where we write ap = ?—ET and 8 = kC(n, s) Z—; for simplicity. In order to bound the sum, we write
F(x) = (1 + 22) e B+a?)"2

Note that we may assume that f is decreasing by taking h /o larger than an 7-dependent constant of order
1 (which we may do, because otherwise the result is trivially true). Therefore, we obtain

S = 5O +23 ) <e 42 [ pa)da
k=1 0

keZ

In what follows, we show that the integral
- T 4 22) e By
I:/ f(z)dx:/ (1+z%)e v dz
0 0

is finite, and, more precisely, has order 3~1/2 ¢~#. We first make the change of variable y = 3 (1 —i—xQ)”/ 2,

yielding
1 0 4/77 1
- 7754/77/5 e / 2/7]

The further change of variable y = 3 + z gives
(B!

54/77 /1+ 2/77_1

Using Taylor’s formula, we get the lower bound

(1+;)2/"—1>727;.
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Therefore,
\| = 4/77_1 dz
?764/ " /
4/17 1 4/n—1
54/77\/ [/ \fﬁ+z dz—i—/ \f ) dz]
- /n—1 . - 94/n-1 Z 4/l
-8B -B
< el + el oy
VB G172
where c¢;(n) and ¢3(n) are bounded uniformly in 53, provided n < 8. It follows that
-B -8
2 BT < 0B ¢ ©
kezz<k> e <e 7 +2e1(n) VB + 2¢2(n) /84/1771/2
2\ 4/n-1/2
= O )T ram(5)

We thus conclude that

2\ 4/n-1/2 2 /52
N _ g g —kC(n,8)h? /o
plsup lote )l > 12} < ar [t + (7))
=: C(’Y? Ta & 8) e—liC(??78)h2/o'2 ) (337)

where we can fix, for instance, n = p = 1 — s, which yields C(, s) = [14+2¢(3 —s)] "1 by 3.3.6). O

3.3.2 Nonlinear case

We return now to the general nonlinear equation (3.3.1). By Duhamel’s principle, its solution satisfies
the equation

t 1 t
P(t,) = % /0 ea(ttr)/e [(t—t1)/e]A dW (ty,-) + - / ea(titr)/e f(t—t1)/e]A b(ty,p(t1,-)) dty

0

=0t )+t ) - (33.8)
Here «(t,11) j; u) du, and e*” denotes the heat kernel. We notice that 1/°(¢, ) is the solution of
the linear equation (3. 3 2) and therefore satisfies the estimate (3.3.7).
3.3.2.1 Some technical results

We give some technical results that will be needed to show that 1! (¢, -) belongs to a certain Sobolev
space included in H”.

Lemma 3.3.6. Let the potential U (t,¢) satisfy Assumption 3.1.1, and assume (t,-) € H® for all
0<s< % Then

Bi(t) = bi(t,¥(t,-)) -
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belongs to H" for all r < 3. Furthermore, for all7 < 3 — (2po + 1)(3 — s), there exists C(r, s) < oo
such that

1B1) Iz < Cry o) max{ ||l [ 17707} - (3.3.9)

Proof. Consider first the case where U is a polynomial in ¢ of degree 2py. Then f(¢,v) and /31 (t)
are polynomials of degree 2pg 4+ 1. Applying Young’s inequality (2.2.5), we obtain by induction that if
P(t,-) € H2 "% fora k > 0, then for any k > 2, (¢, )k € H" for any r <  — kr. It follows that
Bi(t) € H forallr < 1 —(2pg+1)k. Since k > 0 is arbitrary, we conclude that indeed 31 (t) € H" for
all 7 < % The bound (3.3.9) is then a consequence of Young’s inequality (2.2.5), the bound (3.2.2) on
b1 (t, 1) for small 1), and the fact that 3; (¢) is a polynomial of degree 2py + 1. Consider now the general
case. By Assumption 3.1.1, f(t,) and 31 (t) are each the sum of a polynomial of degree 2py + 1 and a
bounded function g(t, ). For 0 < s < 2and 1 < p,q < oo, consider the Besov space B,?. Then, [15]
shows that there exists a constant R(p, ¢, s, M) > 0 such that for all ¢ in the positive cone, (B,?)", we
have

Hg © ¢HB;Q < R(p,q,s,M) HwHB;’q :

In particular, whenever p = ¢ = 2 the Besov space 85’2 is nothing but the Sobolev space H®. Thus, if
Y(t,-) € H, thengoy € H® and By(t) € H" forall r < 3. O

Then,
B(t) =a (t7 ')¢<t7 ) + 61(0

belongs to H" for all r < % By the triangle inequality and the previous lemma, we get

1B gz < llas(t, Yot Mgz + 181 gy < €10l grs + O (ry ) max{ 3 191172} -

A way to analyse the stochastic convolution is based on Schauder estimate. Here is a variant of it.

Lemma 3.3.7 (Schauder-type estimate). Assume 3 € H" for some r € (0, %) Then for all ¢ < r + 2,
there exists a constant M (q,r) < oo such that

A _g-r
1€ Bl o < Mg, )t 2 ||Bll -
forallt > 0.
Proof. Lety = 45", Writing the Fourier expansion of 3 as $(x) = 3,5 Brex(x), we have

' B(x) =) e M Breg(x)

keZ

where the — i, are the eigenvalues of the Laplacian, cf. (3.3.3). By definition of the fractional Sobolev
norm, we obtain

Ht'yetABHZq _ Z<k>2qt2% e—Q,ukt /813
k

<[] e W Ry

k
=" H((k)*) (k)57
k
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where H(z) = 297" e~ ? reaches its maximum at z* = “="_ Therefore,

€o

2 * q—r o —(g—r)
0< H(z) < M(q,r)*=H(z") = — e \d

Co

for all z > 0. We conclude that for all ¢ € I,
| Zﬂm, (k)*" B = M(g,7)* |18 7r

as claimed. O

Applying the previous lemma appropriately to ! (¢, -) defined in (3.3.8), we obtain the following
key estimate.

Corollary 3.3.8. Assume there existsr € (0, 3) such that B(t) € H" forallt € I. Then forall ¢ < r+2,
there exists a constant M'(q,r) < oo such thatfor all t € I, one has '(t,-) € H? and

q-r__
[, ) o < M'(@r)e = 7 sup |8t e -
o<t1<t
Proof. Note that a(t,t1) < % (t — t1) whenever ¢1 < t. Furthermore, the previous result implies that
for any ¢ < r + 2, one has

q—r

9

692 50y < 31007) (5) T 18O

Therefore
I
44l < ¢ o792 ),
0
—T t —T
< Mg ) sup (B0 [ (0 0)7F dn,
0<t1 <t 0
and the integral over ¢; is bounded whenever ¢ — r < 2. O

3.3.2.2 Proof of Theorem 3.3.1

Now, if s < g then H? C H* and thus ¥ (¢,-) € H® whenever (t,-) € H*. With these results, we can
now prove immediately Theorem 3.3.1 in a general framework.

Proof of Theorem 3.3.1. For every decomposition h = hy + h; with hg, hy > 0, one has

IP’{TB(h) < t} = IF’{ sup |t ) gs > h}

Ogth/\TB(h)

< sw 0+ 900 e > 0

0<t<T/\7—3<h)

< IP’{ sup Hwo(t,-)HHS > ho}

o<t<T

P swp el > b s [0 < o

OgtST/\TB(h) Ogt\



3.3. Stochastic dynamics 33

The first term on the right-hand side can be estimated by (3.3.7). Furthermore, for all ¢ < 75(5,), we have
1B < e 1ot )l gs + M1, )7 < eh + MB?, s0 that

6t 2) | o < M (g, 7)™ " (eh + MA?) .

Choosing hy = M’(q,r)e’z ~(eh + Mh?), we get

Pl s 0oy > sup 0900 0) . < Ao =0

OEST AT (R)

We thus obtain the result by choosing hg = h—hy = h—M'(q,7)e"z ~*(ch+Mh?) = h(1—O(h/c"))

andv =1- 57, O



34




CHAPTER 4

The case of bifurcations

When solutions are close to a neighbourhood of the equilibrium branch, noise term may help sample paths
to escape from the deterministic solution and to reach the unstable equilibrium branch. Bifurcations or
avoided bifurcations may occur during this process. First, we define the dynamic transcritical bifurcation
and give some useful bounds on the non linear terms. Then, we describe the dynamics without noise
near an unstable equilibrium. After adding noise, we distinguish two qualitatively different regimes that
depend on the noise intensity and in which we describe the behaviour of sample paths. Finally, we
discuss the relation between the different parameters.

Dans ce chapitre, on traite le cas ou le systéeme perd sa stabilité et s’approche d’une bifurcation
transcritique. On donne des estimées sur les termes non linéaires ainsi qu’'on décrit la dynamique
déterministe dans un voisinage d’une branche d’équilibre instable. Lorsque’on ajoute du bruit, on
distingue deux régimes de bruit qualitativement différents dépendants de 'intensité du bruit. On décrit
les comportements des solutions dans chacun des régimes. On termine I’étude des EDPS d’une dimension
par une discussion sur les relations entre les différents parameétres en jeu.
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4.1 Coupled SDE-SPDE system

We consider again the periodically forced Allen-Cahn equation

dp(t,z) — % [AG(t,2) + b(t, 2) — o(t,)® + Acos(t)] dt + % AW (t,z)

4.1.1 Bifurcations or avoided bifurcations

Let A, = 3—\2/5 be the critical driving amplitude above which the potential ceases always to have two
wells. When ¢ = 0 and whenever A < A, transitions between potential wells are impossible. The
equation

¢ — ¢ + Acos(t) =0

has exactly three solutions
P1(t) < @a(t) < d3(1) -

If ¢ is replaced by a fixed parameter ¢y, the equilibrium branches ¢ (to) and ¢3(t) are stable for the
deterministic fast system

Dt w) = Ag(t, z) + ¢(t,x) — 6(t,2)° + Acos(to) ,

while ¢3(tp) is unstable. If A = A, a stable branch and the unstable branch meet a transcritical
bifurcation point whenever ¢ is a multiple of 7. If A is slightly smaller than A., the branches approach
each other without quite touching.

If o > 0 and A = 0, noise will cause the particle to jump from one well to the other one at random
times. If both parameters A and o are positive, however, and suitably tuned, transitions between the
branches likely occur, which is one of the basic mechanisms responsible for stochastic resonance.

In what follows, we are mainly interested in the case where A is slightly smaller than A, which was
analysed in the one-dimensional setting in the work [8]. And we consider more general equations of the
form (3.1.1), assuming that the drift term f(¢, ¢) vanishes on three equilibrium branches, two of which
come close to each other at particular times. Whenever the three branches are well-separated, we can
describe the dynamics near stable branches by adapting previous results. It is thus sufficient to describe
the dynamics near times of bifurcation, or avoided bifurcation.

By an affine change of variables, it is possible to translate these (avoided) bifurcation points to the
origin (¢, ¢) = (0,0). We then make the following assumptions.

Assumption 4.1.1 (Bifurcation point near ¢t = 0). The drift term f is of class C3, and satisfies

f(t,0) =04+ art> + O(t3) ,
dsf(t,0) = O(t)
8¢¢f(0, 0) <0

for constants § > 0 and aq > 0.
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We can always assume that a; = 1 due to scaling properties. Under Assumption 4.1.1, one can
check (see [8, Section 4]) that in a neighbourhood of (0, 0), the drift term f(¢, ¢) vanishes only on two
branches ¢% (), satisfying

L) = (Vo +[t])
ax(t) = Bpf (t, ¢4(1) < F(VO + It]) -

In particular, ¢7 is stable, while ¢ is unstable, unless 6 = 0 and ¢ = 0, when there is a transcritical
bifurcation (Figure 4.1). We rewrite the SPDE (3.1.1) in the form

dé(t, z) = é[m(t, £) + 9() — 6(t,2)” — b(t, 6(t,2)] dt + \% AW (t,z) | @.1.1)

where
g(t) =0+t + 03,
b(t, ¢) = O(¢%) + O(tp?) + O(t%¢) .

4.1.2 Spatial mean and oscillating part

It will be convenient to decompose the solution of (4.1.1) into its spatial mean and oscillating part, by
writing
o(t,x) = ¢o(t)eo(z) + o1 (t,x) / ¢ (t,x)de =0.
T

Let us start with a preliminary change of variables. Let o, 3, v € R. Using the scaling t = at, z = T
and ¢ = ¢ in (4.1.1), we obtain the following SPDE. For all Z € [0, L = %], one has

40(0.3) = Z[Ad(0.7) + Go(D) — FO(0.7)* ~ Tb(E. 6. 2)] di + T aW(i.a)
e 9

where & = %5, a= @, B=78%7=~*6%and 57 = ‘6{—50 (below, we drop the bars in order not to

overload the notation). Taylor’s formula yields

b(t, poeo + ¢ 1) = b(t, poeo) + Osb(t, doeo)d 1 + %%%b(t, doeo)p? + R(t, doeo, d1)

where )
R(t, doco, 6.1) = 505b(t, doco + 06.1)¢1

for some 6 € [0,1]. Therefore, the spatially constant part ¢o(¢) of the solution ¢(¢,x) satisfies the
equation

Ab0(t) = e A1) + 0g(0) = O(L. 2 = 2b(0.0(t,)) it + T {eo. A1)
= 2 |aVEglt) = <z on(t) = = o1l — Vbt (Do)
- %@ib(t, do(t)eo) |6 (¢, )22 —(eo, R(t, do(t)eo, &1 (1, ) | dt
+ \% dWo(t) .
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On the other hand, the mean zero part ¢, (t,2) = ¢(t,x) — ¢o(t)eo(x) satisfies
do (t,2) = dé(t, ) — dgo(t)eo(x)
= % |:A¢J_ (t, .’L’) — <2\/ﬁf(f)0(t) + 78¢b(t, ¢0(t)€0($))> (m_ (t, (L‘)

- (B + S 030, ¢0(t)€0(96))> <m(t, 2 - AL -)|32)

V[R(t,gbo(t) o(z), 01 (t, ) <60, (t, do(t)eo, ¢ (t, -))>} dt
+ % AW, (t,z) .
Choosing o = ﬁ, f=+Land~y = % yields the coupled SDE-SPDE system
A6u(t) = [ a(6) = 6o(0? = b0, dn(0)e) + ot 6u(e) 610,)] e + T Wil
dé o (t,z) = % [Add(t»l“) +a(t, ¢o(t))d1(t, ) +bi(t, dol(t), Pu(t, '))] dt + % dW_o(t,z),
4.1.2)
with
bolt, 60,61) = — (14 5-030(t, duco)) 1612 \/E<607 R(t, doeo, 61))
aft o) = = 200 — —=0,b(t. oeo).
but,00,61) = ~ VE(1 + 570300t 0c0) ) (610 — 7 6l
- \1f (t, poeo, ¢1) + ! (60, R(t, poeo, ¢1)) - (4.1.3)

Note that Wy (¢) is a standard Brownian motion while W (¢, z) is an independent zero-mean space-time
white noise. The terms by, b, are no longer local non-linearities, since they involve integrals over the
whole torus. This remains, however, a relatively harmless non-locality, that will not cause any problems.

4.1.3 Bounds on the remainder terms

We give some estimates on the remainders which will be useful for what follows. By similar arguments
as in the proof of Proposition 3.2.1, there exist constants d,d > 0 such that whenever |¢g| < d and

|¢.L]l 1 < d, one has
[R(t, doco, 61(2))] < M| (@) < MCsap |61 3

for some finite constant M. Therefore, under these conditions on ¢ and ¢ , we obtain

b1 (t, d0, D1 ()| < My |61 150 (4.1.4)
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for some constant M;. Furthermore, the same argument as in Lemma 3.3.6 shows that for all » <
2 — (2po +1)(3 — s), there exists C(r, s) < oo such that

1R(t, doco, 1)l g < C(rys) max{||d1 177, 677"} -

Combining this with the Cauchy—Schwarz inequality, we obtain the existence of a constant M5 such that
the bounds

My max{ || (17, o7} (4.1.5)
2po—1
MyC (r, s) max{ |l oL |7, loLlF7 "}

}bO(tv ¢07 (ZSJ_)‘
Hbl(ta ¢07 (bJ_)HHr

<
<
hold for all ¢y € R such that |¢g| < d.

4.2 Deterministic dynamics

The deterministic behaviour of the solution (¢ (%), ¢ (¢,)) is described by the following result.

Proposition 4.2.1 (Deterministic dynamics near the origin). The deterministic system given by (4.1.2)
with o = 0 admits a particular solution satisfying ¢ (t,z) = 0, while ¢y obeys the ordinary differential
equation

eo(t) = g(t) — do(t)? — b(t, do(t)eo) - (4.2.1)

The equation (4.2.1) for ¢y(t) is exactly of the form previously analysed in the work [8]. In particular,
Theorem 2.5 in that article states that there exists a particular solution ¢(t) tracking ¢7 (¢), in the sense
that there are constants 7g, cg > 0 such that

% for =Ty <t < —co(VIVe),
Po(t) — @3 (t) <
—m forcgvd Ve <t < Ty

(Figure 4.1). Furthermore, one has
po(t) < VéVve  for|t|<coVéVe.
As a consequence, the linearisation

alt, do(t)) = Dy [g(t) — &* — b(t. 0)]|
= —2¢0(t) — gb(t, Po(t))

d=do(t)

satisfies

alt,go(t)) < —(Jt| vVéve) 4.2.2)

for all t € [Ty, Tp]. By a symmetry argument, similar results, with some signs reversed, hold for a
particular solutions ¢¢(t) tracking the unstable equilibrium branch ¢* ().
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Ficure 4.1. Equilibrium branches and associated adiabatic solutions near the avoided bifurcation point (0, 0).

Proof of Proposition 4.2.1. The proof for the oscillating part ¢ | is almost the same as the proof of Propo-
sition 3.2.1, so that we only comment on the differences. We recall the deterministic equation for ¢

d¢L(t7 l’) = é A¢L(ta l‘) + a(ta ¢0(t))¢L(tv l’) + bL(ta ¢0(t)7 ¢L(ta )) de .

We define the Lyapunov function

1 1 L?
V(or) =5 lloslm =5 lloclie + 55 VoLl -

Its time derivative satisfies

sd—iV(qﬁL(t, ) = (b1, A1) +alt,po) |oLl|72 + (b1, bi(t, do,d1))

L2
— S [IAGLIIZz +alt, 60)(AdL, 61) + (AL bL(t b0, 61))
2

< 2a(t, ¢o)V(pL) + (@1, b1 (¢ do,61)) — %@fm,bﬂta(ﬁo,(ﬁ» -

Using (4.1.4) and the Cauchy—Schwarz inequality, we obtain that for ¢ and ||¢ | || ;1 small enough, the
term (¢, b, (¢, ¢o, P )) has order ||¢ | ||?I’{1 As for the last term, it follows from the expression (4.1.3)
of b that it has the form

(Ap1,bi(t, o, 1)) = A{t)(Ad1,¢2) + Bt) (A1, 1) |[p1 |72
- \%<A¢>L,R(t, boeo, 1)) + %(ACM, 1){eo, R(t, poeo, 1))

for some bounded functions A and B. The first term on the right-hand side can be bounded using
integration by parts. The third one has order ||¢ | || 31 ||¢1 || 3o, and the other two terms vanish because
(A¢1,1) = 0. It follows that (A¢ | ,b (¢, ¢o, ¢ )) has also order HGZHH?{l, provided ¢g and ¢ || ;1
are small enough. Writing as before 7 for the first-exit time from the set {V (¢ (¢, -)) < Cp}, we obtain

05/202}‘/

V< —CV 4+ V32 <~y {1 -5
1
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for all ¢ < 7, and some constants C', Co > 0. Choosing Cy such that C’é/ 2 < 2%2, we obtain

. 1
eV < —§C1V y

which allows to show that there exists a particular solution satisfying V' (¢t) = 0 for all ¢t € I. As for
¢o(t), it obeys the ODE

eo(t) = g(t) — do(t)* — blt, do(t)eo) ,

which can be analysed in exactly the same way as in [8], concluding the proof. g

4.3 Stochastic dynamics

We return now to the coupled SDE-SPDE system (4.1.2) with ¢ > 0. In this section, we analyse
separately the dynamics for the spatial mean solution and the one for the oscillating part.
Let ((t) be the solution of

e((t) = 2a(t, go(1))¢() + 1
with initial condition ¢(—Tp) = (2|a(—Tp, ¢o(—Tp))|)~*. This function is related to the variance of the
linearisation around ¢q(t) of the equation for ¢g. It can be written explicitly as

¢(t)

t
_ 1_ eQa(t,—To)/a+1/ p2a(ttr)/e dty |
2|a(—=To, ¢o(—To))| eJom

where a(t, t1) = fttl a(u, ¢o(u)) du is the curvature accumulated between times ¢1 and ¢. Using (4.2.2),
one obtains

()= s
T alt, ¢o(t)| Tt vVIVe

see [8, Equation (4.18)]. With these notations in place, we are able to define the sets
Bo(h) = {(t,60): t € [~ Tv, To], 160 — do(H)] < h/CB) }
Bi(hy) = {(t,61): t € [=To, Tol, 61 e < b1}

Vt € [Ty, Ty 43.1)

where s € (0, %), and h,hy > 0. Denote by 7,(;) and 75 (5, ) the first exit times of ¢g from By(h)
and ¢ from B (h, ) respectively.

4.3.1 Transverse stochastic dynamics for ¢

For a given realisation of ¢ (), we recall the equation for ¢ |
1 o
461 (t,0) = | 801(0,2) + a0 (0)6.(t2) + b (0,600, 6. (02| -+ T AW 1.0).

As in Subsection 3.3.2, it admits a solution given by

t
Pu(t,") = \J@/O ett)/e Qlt=t)/ElA quy (¢ )

1/t
+ 5/ e(tt1)/e pl(t=t1)/e]A bi(t1,po(t1), ¢ (tr,-))dtr,
0
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where a(t, t1) ft )) du. The exit from B (h, ) is described by the following analogue
of Theorem 3.3.1 and 1t has 51m11ar consequences only with different values of exponents. Thus,
the probability of leaving B, (h ), or making a transition to the other stable equilibrium branch is
exponentially small.

Theorem 4.3.1 (Transverse stochastic dynamics for ¢, ). If Ty is sufficiently small, then for any s € (0, 5)
and any v > 0, there exist constants = r(s),e0,h and C(k,t,e,s) > 0 such that, whenever
0<e<egand0 < hy < hY e, the solution of (4.1.1) with initial condition ¢(—Tp, ) = d0(—T0)eo
satisfies

h? h
P{Tlgl(hl) <tA ’TBO(h)} < C(k,t, e, 8) exp{—/i%:2 [1 — O()] } ,
forallt € [Ty, Tp).

Proof of Theorem 4.3.1. The proof is virtually the same as the proof of Theorem 3.3.1, the only difference
being that we use here the fact that ¢(¢) is bounded by a constant of order 7y, owing to the definition of
Bo(h). Therefore, a(t, ¢o) is bounded above by a constant of order Tj. Since the largest eigenvalue of
the Laplacian acting on mean-zero functions ¢, is equal to —7% /L2, taking T, small enough we obtain
again a bound of the form (3.2.4) for the Lyapunov function V = ||¢, |51 O

Remark 4.3.2. The result remains true when 75,5 is replaced by inf{t € [~Tp, To]: |po(t)| > d} for
any sufficiently small d of order 1. &

Remark 4.3.3. As before, the result also holds for initial conditions with a transverse part ¢, (—7p, -)
having H*® norm up to order 1, provided one considers the probability of leaving 3 (h, ) after a time of

order £ log([|¢L (=Tb, )|l 1 h1"). ¢
4.3.2 Stochastic dynamics for ¢(?)

In this section, we discuss the exit or not from a neighborhood of ¢q(#), tracking the stable equilibrium
branch ¢7 . We fix now a realisation ¢ (t).

4.3.2.1 Before the jump

We introduce the difference 1(t) = ¢o(t) — ¢o(t), which satisfies the SDE

Abalt) = 2 [a(t o0 olt) + Bt () at + T aWie) “32)

m

where Taylor formula yields the relations

a(t, do) = —2¢0 — g, b(t, doeo)

and

b(t, o) = — (1 + %&pob(f, doeo + 9?/)060))7/)3
+ bo(t, go(t) + 1o, @1 (t,+)) — bo(t, ¢o(t), d1(t,-))
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for some 6 € (0,1). By (4.1.5), there is a constant M > 0 such that b(¢, 1o (t)) satisfies

‘B(t, wo(t))‘ < Ml/}o(t)2 + 2M2”¢J_||%{s < Mi/)o(t)2 + 2M2h2l vVt < TB (hy) -

A solution of (4.3.2) is given by
Yo(t) = ¥ (t) + (1),

where 1) (t) is the solution of the linearisation of (4.3.2), and

1 t
o) = - / /b (1, o ty)) dty (4.3.3)
€ —Tp
where Oé t tl ft tz,qbo to )dtQ.
The stochastic dynamics near ¢o(t) is described by the following theorem.

Theorem 4.3.4 (Stochastic dynamics near ¢o(t)). For anyt € [Ty, Tp), let

C(t)y= sup ((s) =((t).
—Th<s<t
Then there exist constants €, hg, c| , k > 0 such that, whenever 0 < ¢ < gg, 0 < h < hoé(t)_3/2 and
0 < hy < ¢y hC(t)Y?, the solution of (4.1.1) with initial condition ¢(—Tp, -) = ¢o(—Tp)eg satisfies

h2
P{Tgo(h) <tA TBL(hL)} < Clt,e) exp{—%w} ,
where k =1 — O(h((t)3/2) and C(t,¢) = @ + 2. As before, the bound extends to general initial
conditions in B (h ) with (=Ty, ¢o(—=Tv)) in Bo(h).

Notice that ((t) has similar asymptotic behaviour as ¢(t) in (4.3.1). Then, a consequence is that

there are two qualitatively different regimes, depending on the noise intensity:

* Weak-noise regime: if o < (6 \VV €)3/%, Theorem 4.3.4 can be applied for any t € [—Tp, Tp),
and shows that ¢g(t) remains close to ¢o(t) with high probability during the whole time interval
(Figure 4.2).

* Strong-noise regime: if 0 > (0 V 5)3/ 4, Theorem 4.3.4 can only be applied up to times ¢ of order
—02/3, showing that ¢o(t) is unlikely to become negative up to times of that order (Figure 4.3).

In weak noise regime, the probability of leaving either By(h) or B (h, ) before time ¢ is given by

P{TBo(n) A\ B (hy) <t}
= ]P){TBO(h) ANTB (hy) <t TBy(h) < TBJ_(hJ_)} + P{TBo(h) ANTB (hy) <t TB (hy) S TBO(h)}
=P{750n) <1, T800) < TB.(h1) } +PLTBL (1) <6 TBL(h1) < TBo(h) }
=P{75,) <tATB )} HP{TBL () <EATBM) )

where the first probability on the right-hand side is bounded by Theorem 4.3.4 and the second one by
Theorem 4.3.1. Thus, we conclude that the behaviour of ¢((t) in this regime does not differ much from
the behaviour of the deterministic solution ¢q(t) during the whole time interval [—Tp, Ty]. However, in
the strong-noise regime, the situation is different.
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bo

do(t)

FIGURE 4.2. Weak noise regime o < (§ V £)3/4. The equilibrium branches ¢% (¢), as well as the

deterministic solution ¢ (t), belong to the hyperplane {¢, = 0}, while ¢(t) denotes the projection of
the solution ¢ (¢, x) on this hyperplane.

4.3.2.2 Transition regime

We consider now that o is sufficiently large for a transition to take placei.e. o > (eVJ )3/ 4. Theorem4.3.4
shows that sample paths are concentrated near the adiabatic solution tracking the stable potential well at
¢’ up to times of order —02/3. The following theorem describes the behaviour of sample paths as time
increases. We recall the linearisation of f at ¢q satisfies
LA - 1
a(t, ¢o(t)) =< ([t v Véve) =< |alt,dot))] =< oh (4.3.4)

Theorem 4.3.5 (Strong-noise regime). Fix sufficiently small constants d,cy > 0. Let h > 0 be such that
do(t) +h/C(t) <d  Vte[—c10%3,c10%7]. (4.3.5)
Then there exist constants «,c| > 0 such that for

0<h, <c, [02/3 A \/Hf(t)‘l/ﬂ ,

any solution of (4.1.1) starting at time —c10%/3 with an initial value ¢y belonging to the interval

(—d, do(—c10?/® + %h\/m)] satisfies

3 a(t, —cr0%/3)
2/3 )
P{¢Q(t1) > —d th S [—C]_O' / ’t/\TBL(hL)} < QGXP{—K/SIOg(Jl)

+ Ot ) e M/ (4.3.6)
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o(t)

3/4

FiGure 4.3. Strong noise regime o > (6 V €)3/%. Solutions are likely to cross the unstable equilibrium

branch ¢* ().

forallt € [—c10%/3,¢10%/3), where

aft,ty) = /t afte, do(ta)) dtz, alt, do(t)) = Do[g(t) — &% + b(t, 9)] ’fb:d;o(t)

and C(t,e) = 7'07(75’_;%02/3)' + 2

As time increases, it quickly becomes very unlikely not to reach and overcome the unstable solution
do(t) tracking ¢* .
Remark 4.3.6. The condition (4.3.5) is required since we did not make any assumptions on the behaviour
of f for x > d. For instance, our results apply if there exist more equilibrium branches above d. If,
however, there are no such branches, as in the case of the Allen—Cahn equation with drift term (3.1.2) ,
this condition can probably be relaxed. O

One can show also that if ¢ reaches ¢* , then it is likely to reach a neighbourhood of the next stable
equilibrium branch as well, see Proposition 4.7 in [8]. The following result finishes the description of
the dynamics.

Proposition 4.3.7 (Reaching level —dy < —d). There exists a constant M > O such that if the drift term
f satisfies

f(t7¢) < _fO_Mhi \V/(t,l‘) S [_T(]vTO] X [—d(],—d+,0}
for some constants dy, fo > 0 and p € (0,d), then there exist constant ¢,k > 0 such that for all
to € [—=To, Ty — Cel, the solution of (4.1.1) with initial condition ¢y(ty) = —d satisfies

P{o(t1) > —do V1 € [to, (to + &) AT, (h1)]} < e ™7

We notice that once we reach a neighbourhood of the next stable equilibrium branch ¢*, one can
apply Theorem 3.3.1 to describe the dynamics up to the next (avoided) bifurcation point (Figure 4.4).
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Ficure 4.4. Strong noise regime, behaviour after reaching level —d. If the drift term is negative, bounded
away from zero, in an interval [—dy, —d], solutions are likely to reach —dy after another time of order .

4.3.2.3 Proof of Theorem 4.3.4

According to [8, Proposition 3.8], ¥3(¢) is likely to remain in a strip of width proportional to /(#).
More precisely,

[ (t)] } { h? }
P > hy <C(t, —(1-0 , 4.3.7
{ s > n} < o2 550~ 0) @37)
where
‘@(ta_T)’

We now use this estimate to prove Theorem 4.3.4.
Proof of Theorem 4.3.4. For any decomposition h = hg + hy with hg, hy > 0, one has

P{TBo(h) <tA TBL(hL)} = P{TBO(’I) < t’TBO(h) < TBL(hL)}

[90(t1)] }
<P sup > h,T, <7
{—T0<t1<t/\750<h) C(tl) BO(h) BL(hl)
¥ (1)) } { b (t1)]
<IP’{ sup ——= = hgp +P sup > hi, 5. < 7B (h
—To<ti<t C(tl) —Toétlét/\ﬂrgo(h) C(tl) o(h) 1(hL)

The first probability satisfies the bound (4.3.7), so that it remains to control the second one. By (4.3.3)
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and forallt; <t A TBo(h) < TB (h,)> @S in [8, Proposition 3.10], we have the bound

—~

4o (t1)] < (Mh*¢ t1)+M2h2¢)1/t1 ealti)/e gy
C(tl) Ctl) € J-Ty

< MR2()%? + Mah% ((t)Y? .

~—

Choosing h?3 < MMQh%(t) and h; = const h2C(t)3/2, we get

1
t
IP’{ sup |15 (t1)]
—To<t1<tATBy (1) C(tl)

= h1, 7By (n) < TBL(hL)} =0.

Therefore,

h2
P{Tgo(h) < t/\TBi(hL)} < C(t,a’:‘) exp{—%‘%(l — O(E))} .

We thus obtain the result by choosing ho = h — hy = h — O(h2C(¢)3/2) = h(1 — O(K((1)*/?)). O

4.3.2.4 Proof of Theorem 4.3.5

In what follows we prove Theorem 4.3.5, where the two terms on the right-hand side of (4.3.6) bound,
respectively, the probability that ¢ does not reach —d before time ¢, while staying below ¢q + h+/C, and
the probability that ¢ crosses the level ¢g + h+/C before time t.

Proof of Theorem 4.3.5. Let h be such that ¢o(t) + h\/C(t) < d for all t € [—c10%/3,¢10%/3]. We
introduce the stopping times

: do(t1) — o(t1)

T4 = mf{tl € [—0102/3,T0]: —————=>h;,
VE(th)

T_ = inf{t1 S [—610'2/3,T0]: ¢0(t1) < —d}
Then, the probability that ¢y does not reach —d while ¢ remains in B, (h, ) is given by

IP{T_ >t/\TBJ_(hJ_)}
= P{T_ > t/\TBL(hL)vT—O— < t/\TBL(hL)} —i—P{T_ > t/\TBL(hL)aT—F > t/\TBL(hL)}
< P{T+ < t/\TBL(hL)} —|—]P){7L NTy > t/\TBL(hL)}
We estimate these two terms separately and the crucial term is the second one. Since we are going

to use the Markov property and restart the process at certain times, we recall the notation P%0-% for the
law of the process started at time t( in ¢»9 whenever necessary.

Proposition 4.3.8. Under the assumptions of Theorem 4.3.5, there exist constants k1, M3 > 0 such that
whenever (—c10%/3, ¢o0) € Bo(h/2), one has

paoPbo0rr <t <Ot M= Mah? \/E(t i
Y{T'ﬁ‘\ /\TBL(}LL)}\ (,E)GXp _T‘_Q - 3] C() ’

forall t € [—c10?/3, Ty), where C(t, ) = W%{‘Q/S)l + 2.
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Proof. The solution of (4.3.2) is given by

t
wo(t) = 1/}8(t) + 1/ ea(t’tl)/s B(tl, wo(tl)) dtq .

€ J_ci02/3
We define a partition —c10?3 =yy <up < -+ <ug =tof [—0102/3, t] by

a(t. — 2/3
a(ug, up—1) =€ forl1<k< K= {a(,cm)" _

9

We also introduce the notation p, = %h\ /C(ug). As shown in [8, Proposition 3.12], the Markov property
implies

) : "
]P)7610'2/37¢0,0{7-+ <tA TBJ_(hJ_)} _ Pcwz/g#ﬁo,o{ sup @Z)O( 1) > h}
_01‘72/3<t1<t/\78l(hL) C(tl)
K-1
< Qk »
k=0

where

Qr = sup [[P“k’%(uk){ sup Yo (t1) >h}

Yo (ur) <Pk up<ti<upyr \/C(t1)

t
+]P>“k:¢0(“k){ sup Yolty) < hy Po(ugy1) > Pk+1)}] :

U<t <UE41 C(tl)

For h smaller than a constant of order 1 and t; < 73, (4, ), (4.1.5) shows that b(t1,10(t1)) is bounded
by M>h? . It follows that for any 1 € [ug, ug1], one has

t 1 —C_L(t QZ_) (tl)) o
1t<Mm/‘ 3 DO eatt/e gy
1/}0( 1) 2 —c102/3 —d(tla%(tl)) € 1

1
< Mzhi_ sup

N 4.3.8)
UE[ug, upt1] ’a(uv ¢0 (U)) |

Therefore, there is a constant M3 such that for any ¢ € [uy, uj1] one has

Yo (t1)
¢(t1)

Proceeding as in the proof of [8, Proposition 3.12], but with a shifted value of h, one obtains

2
P, < exp{—:; (h - Msﬁ_\/@) }

for some k1 > 0, which implies the claimed result. 0

< Msh3 4/ ((ug1) -

The main part of the proof is contained in the following estimate, whose proof is very close in spirit
to the proof of [8, Proposition 4.6], but with some changes due to the zero-mean part ¢ of the field.
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Proposition 4.3.9. Under the assumptions of Theorem 4.3.5, there exists a choice of c; > 0 and
constants ¢ and ko > 0 such that for 0 < h| < 5L0'2/3, and all initial conditions ¢ in the interval

(—=d, po(—c10%/3) 4+ hr/C(—c102/3) |, one has
P_CIUZ/S’(bO’O{T_ A\ Ty > tA TBi(hL)}

=P ol d < go(t) < do(tr) + h/C(t) Vh € [—e10™t AT, )] |

3 a(t, —c10?/3)
<= —Hg
2 exp{ "2 log(c—1)e

Proof. Let o > 1 and define a partition —0102/3 =u<u <---<ug=tby

At —e102/3
Q(up,up_1) = 0e forl <k <K = [0‘(;}0)} . (4.3.9)
Writing
Qr = sup ]P’u""(z)o(uk){—d < ¢g < (Eo(h) + hv/ C(tl) Yt € [uk, uk+1]} ,

do(ur)€(—d, o (up)+hr/C(ug)]

we have, by the Markov property,
P 900 f _d < go(t1) < Go(tr) + h/C(tr) W € [—e10?3, 4]}
= g7 00 {1{—d<¢o(t1><$0<t1)+h\/@ Vir€[-e102/3 uge 1]}
x Pt o) (o < go(tr) < Go(t) + hy/C() Vi € furc1,uxc]} |
< QK_1P_6102/3’¢0’0{—d < do(t) < do(tr) + h/C(t1) Vi € [—cr0®/? ugc 1]}

K-1
<< T o
k=0

Our plan is to show that for an appropriate choice of o, Q)i is bounded away from 1 fork = 0,..., K —1.
In order to estimate ()}, we shall distinguish three cases corresponding to ¢ crossing the levels ¢, and
¢o before reaching —d. We set

My = Mahy sup —————, My = Myhy sup @————,

UE Uk, Upt1] |EL(U, QZ)O(U))‘ UE [Up Upy1] d(uv (;50('&))

and introduce a further subdivision uy, < 11 < U2 < ug1 defined by

o 1 s 2
G(g,1, up) = 39 a(tg 2, ug) = 3¢

Define the stopping times
Tk = inf{h € [ug, 1] = do(t1) < dolt1) ‘|’Mk} :

Tho = inf{tl € [ug, k2] : dot1) < doltr) + ]/\/-Tk} -
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Then we can write

Pt ) f—d < o (t1) < do(ts) + ha/C(t1) Vi1 € [ug, wpsr]}
< Pumo(uk){qgo(tl) + My, < do(ty) < do(tr) + h/C(t1) Vi1 € [uk,ﬂk,ﬂ}
+ Euk’¢0(Uk){1{Tk,1<ﬂk,1}

x P90 ) L < do(t1) < o(t1) + h/C(tr) Vit € [Tk,l,uk+1]}} : (4.3.10)

We start by bounding the first term on the right-hand side. Let

_ t o
D (1) = o (uy) X ruw)/e +% ™ )/E AT (v)
Uk

be the solution of the equation linearised around ¢ (t), starting in 1o (uz) = ¢o(ur) — ¢o(us). Then in
follows from (4.3.8) that

k JR—
’(ZJo(t) < ¢é )(t) + My YVt € [uk,uk_H} .
Note that @Z)ém (ig,1) is a normal random variable with parameters

E[w(()k) (ak,l)] = ¢o(uk) e@(ﬁk,l,uk)/s < '¢0(Uk) e—g/3R

2 paka
Var(w(()k)(akjl)) = Ug/ o2a(t10)/e gy
Uk
2
Z g inf ;[1 _ e*29/3R} 7

? U <t1<Ug41 ‘C_l(ua ¢0(u))‘

where R > 0 is a constant such that a(t1, ¢o(t1)) < Rla(ty, ¢o(t1))| for all t; € [—c102/3,¢]. Then
André’s reflection principle shows that the first term on the right-hand side of (4.3.10) is bounded above

by

P o) L) (1) > 0ty € [up, @]} = 1 — 2P0 {50 (,) < 0}
— 2[P“k7¢0(uk){wék)(tl) > 0} _1
2 h e ¢/3R

< Ci(k)—F—,
VT o i )«/1_6—29/33

4.3.11)

where

Ci(k) = sup |a(ur, do)|\/¢ (ur)
Up St <UK 1
is a constant of order 1, owing to (4.3.4).
In order to bound the second term on the right-hand side of (4.3.10), we set set g (t) = ¢o(t) — do(t),
where we recall that ¢ (t) is the deterministic solution tracking ¢* . Observe that if T,1 < Ug,1, We also
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have

]P;Tk,MOO(TkJ){_d < é{)(tl) + SOO(tl) < &O(tl) + h\/C(tl) Vt1 € [Tk’l,ukJrﬂ} 4.3.12)
< IP)Tk,MPO(Tk,l){]\/Zk < (po(tl) < éo(tl) - QBO(tl) + h\/ C(t1) th S [Tk’l,ﬂk’g]}
+ Evovolus) { 1{7%,2<11k,2}

x P20 {—d < Go(tr) + po(tr) < do(tr) + hy/C(lr) Wi € [rk, wiia]}} -

To bound the first term on the right-hand side, we introduce the linear process

~ a(ty,a g
20 (1) = pofig 1) e 1 T/E 4 T

t1
a(ti,w)/e AW,
(§ olv
I )

which satisfies
k = r -
wo(t) < <P(() )(t) + My, Vit € [Qg,1, upt1] -

Then we have the estimates

E[goék) (g 2)] = po(Tk,1) e0(lk2,7k,1)/E

< [Go(Tr1) + My — do(m31)] €22,
2
e 202 /e Var(0®) (g 5)) > inf  —— T [1— e 2/3]
(o (tg,2)) i 2&(t1,¢0(t1))[ ]

The first term on the right-hand side of (4.3.12) can then be bounded by

21 1
2 Oy(k)—— 4.3.13
Tro 2(k) s ( )
where
Co(k) = sup a(t, do(h))  sup  (Go(tr) + My — do(t1)) -
U<t SUg 11 U St SUE4+1
Finally, in order to estimate the second summand in (4.3.12), we use the end point estimate
P02 { —d < Go(t1) + o(tr) < do(tr) + hy/C(tr) Vi € [z, wp]}
< Pm,z,cpo(m,z){_d < qgo(ukﬂ) + S00(uk+1)}
<l 1C(k)[d+g§( )+z\7] e (4.3.14)
<-4+ —=-— U _— 3.
2t Jro 3 0(Uk+1 k (T

where

Cs3(k) =  sup a(ty, ng(tl)) .

Up ST <UK 41

Summing (4.3.11), (4.3.13) and (4.3.14) we get the existence of a constant Cy > 0 such that

1 h 1 1 —~
Qr < B + Cy p e ¢/3R Cl(k) + ;CQ(]C) + p e 9/3 Cg(k)(l + Mk)] .
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Since

‘t1| < 61(72/3 N
a(t, do(tr)) < [ti| VVE Ve,
¢o(t1) — go(t1) < & lta]

where ¢, is proportional to ¢; and o > 1, there exists another constant C'y such that

1 h ) h? . 1
- o —e/3R | 23/2 1 —0/3 —o/3
Qk<2+(3’4[0e +¢4 +04/3(1+e )+02/3e }

Choosing h| < ¢ 0%/3 we get

1 h
L v —e/3R | Z3/2 | 52 —9/3}
Qk<2+04[ae +¢4 +20L+02/36 :
For ¢1 such that &7/ = 2% = -1 107 and

h 1
0= 3Rlog(3604—) \% 3log(87§4) V1,
o cro2/3

Q. is bounded by % for k =0,..., K — 1. We conclude that with this choice of o, we have

]P’_Cl"2/3’¢0{ —d < ¢o(t1) < go(t1) + h/C(t1)Vt € [—0102/3,t]}

()" <l ()

which yields the claimed result, owing to our choice (4.3.9) of K, and the fact that  has order log(c—1).
O

The conclusion of Theorem 4.3.5 now follows immediately by combining the last two propositions. [

4.3.2.5 Proof of Proposition 4.3.7

By continuity of the drift term, we can assume that f is bounded away from zero on an interval slightly
larger than [—dj, —d]. With this additional assumption, we are able to prove the Proposition 4.3.7.

Proof of Proposition 4.3.7. We introduce the stopping times

Ty = inf{t1 € [to,to + ¢g]: ¢o(t1) > —d + ,0} )
T_ = inf{tl € [to, to + ¢g]: ¢o(t1) < —do} ,

and the process

do(t) = —d — éfo(t — o) + \%Wt—to .
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Taking the constant M in the statement of the proposition equal to M», one can check, in a similar way
as before, that ¢o(t1) < ¢o(t1) forallty < 7 A7y ATg, (5,)- Now we observe that

P{¢o(t) > —do Vt € [to, to + €]}

<{ sw (a0 + it - )] > ~d+

tEto,to+ce]

P{—do < Go(t) < —d+p— éfo(t — to) Vt € [to, to +ée}} :

The second term on the right-hand side vanishes as soon as we take ¢ > (dy — d + p)/ fo, while the first
one is equal to
g

IP’{ sup
te[to,t0+5€} \/g

by a Bernstein-type inequality. Now we note that for any ¢ € [t, o + €|, we have

Wy > p} < o/ (200?)

IP’{T_ > t} = IP’{T_ >ttt T ATy /\TBL(M)} —|—IP’{T+ ATB (h) <t < T_}
< P{go(t) > —do Vt € [to, to + €]} + P{ry A7p, (n,) <tAT_}.

We have already shown that the first term on the right-hand side is exponentially small, and the second
term can be controlled as in the preceding results. O

4.4 Discussion

Let us first consider the weak-noise regime o < (§ V 5)3/ 4. For Theorems 4.3.1 and 4.3.4 to yield useful
results, we need

h>o, hl>o. 4.4.1)

If t > 0, then ((¢) < (6 V €)~!/2. For the theorems to be applicable, we then need the conditions
h<(@ve)yt, hy <hEVe) VA,

where v > 0 can be chosen arbitrarily small. The weak-noise condition implies that all conditions on
h and h can indeed be met simultaneously. In particular, since the minimal value of ¢q(t) has order
(6 V €)'/2, we can take h of order (6 \V £)3/4, and h of order (6 VV €)'/ A £”. We thus obtain

]P){Ht S [—To,To]I gbo(t) < 0} < ]P){TBO(h) /\TBL(hL) < To}
= IP){TBJ_(hJ_) <Ty A TBo(h)} +P{T30(h) < Ty /\TBJ_(hJ_)}

3/2 2v
< Ci(e) eXp{_f{((S\/@)/\s} . (4.4.2)

o2

The term £2” can be disregarded as soon as ¢ is sufficiently small. In other words, the probability of

making a transition from a neighbourhood of the stable branch ¢ to the unstable branch ¢* or to the
other stable branch is exponentially small, with a parameter of order (6 V £)%/2 /2.
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Consider now the strong-noise regime o > (J V 5)3/ 4. We still require the conditions (4.4.1) to hold,
but modify the upper bounds on h and h . As long as t < —c102/3, Theorem 4.3.4 can be applied with
h < |t|3/2, yielding

t 3
P{TBo(h) A\ TB1(h1) < t} < C(t, E) exp{—/@/‘a‘g}
for some £’ > 0. This shows in particular that ¢ is unlikely to reach 0 before times of order —o%/3.

To see what happens for larger times, we do no longer use Theorem 4.3.4, but only Theorems 4.3.1
and 4.3.5, applied to an interval of the form [—0102/3, —0202/3]. Then &(—0202/3, —0102/3) has order
o*/3 and the conditions on / and h | can be summarised as

h<oll3, hy <Vho VB A3 N

In particular, it is possible to take & of order o'/3 and h, of order %/3 A &”. This yields

3 o4/3 ot/3 /) 4/3
_ _ 2/3 _ 2/310 « 2 e —K'/o
e L B e R ]
4.4.3)

To summarise, we have thus obtained that with a probability exponentially close to 1, the transverse
component ¢ | of the solution remains small in H' norm, while the spatial mean ¢ behaves in the same
way as the solution of the one-dimensional SDE studied in [8]. In particular, there exist a weak-noise
regime in which transitions between stable equilibria are very unlikely, cf. (4.4.2), and a strong-noise
regime, in which transitions are very likely, see (4.4.3).

An interesting question that remains open so far, is what can be said on regimes where the periodic
forcing has a smaller amplitude, so that one stays in the weak-noise regime, but transitions still become
likely over very long time spans. In the one-dimensional case, very precise results on the distribution
of transition times have been obtained, for instance, in [4, 12]. Generalising these results to the infinite-
dimensional situation would require a good understanding of the effect of the dynamics of ¢ | on transition
times.
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CHAPTER 5

Concentration estimates for slowly
time-dependent singular SPDEs

The two-dimensional SPDEs, introduced previously are no longer well posed due to the fact that space-
time white noise is more irregular in dimension 2 than in dimension 1. Previous arguments and estimates
do not hold in higher dimensions, other methods are developed in this chapter. We introduce first
the Wick-renormalised SPDE and we discuss the Da Prato-Debussche argument, see [20]. Since the
stochastic convolution, solution of the linear equation is the most irregular object in the study, we start
by controlling its Wick’s power. We give after that concentration estimates around a stable equilibrium
branch and in a neighbourhood of pitchfork bifurcation.

Dans ce chapitre, on developpe de nouvelle méthode pour étudier les EDPS singuliéres sur le tore de
dimension deux. Les méthodes utilisées dans les chapitres précédents ne s’appliquent pas dans ce cas
car le bruit blanc espace-temps est plus irrégulier en dimension deux qu’en dimension une. On présente
le probléeme renormalisé et I’argument de Da Prato-Debussche. Cet argument permet de définir une
solution de I’EDPS dans un espace fonctionnel et ainsi construire des estimées de concentration. Comme
la convolution stochastique et ses puissances de Wick sont les termes les plus irréguliers, on commence
par controler leur comportements. Pour ensuite établir des estimées de concentration dans un voisinage
d’une branche d’équilibre stable. Et on motive les résultats par une étude prés d’une bifurcation de
fourche ou un retard a la bifurcation a lieu.
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5.1 Set-up
We are interested in renormalised versions of the SPDE
do(t, ) = [Ad(t, ) + F(et, ¢(t,2)] dt + o dW (¢, ) , (5.1.1)

where time ¢ belongs to aninterval [ = [0, 7] C R, the spatial variable = belongs to the two-dimensional
torus T2 = (R/Z)?, and the solution ¢(t, z) is real-valued. In addition, we assume that

* ¢ > 0 and ¢ > 0 are small positive parameters;

* A = Oy 2, + Oz,z, is the Laplacian acting on both components of x;

* F'is polynomial, of the form

F(t,¢) =Y Aj(t)¢’ (5.1.2)
j=0

for some odd n > 3, where the coefficients A; : I — R are of class C', and the leading coefficient
Ay (t) is strictly negative for all ¢ € I, to avoid blow-up of solutions;
 dW (t, ) denotes space-time white noise on I x T,
It is well-known (see for instance [20]) that the SPDE (5.1.1) is not well-posed, and that a renormalisation
procedure is required to define a notion of solution. It consists on subtracting an "infinite constant” from
the right hand side of (5.1.1).
We recall the complex Fourier basis of L?(T?) introduced in (2.2.3)

{ek(x) — eQﬂik-m}kGZQ ’

where we assumed that . = 1 and by rescaling, the result will be true for every L > 0. We write any
¢ € L*(T?) as
dx) = prer() .

keZ?

For our purposes, it will be convenient to work with a finite-dimensional approximation of the infinite-
dimensional system and then pass to the limit. We use a spectral Galerkin approximation, which has
the advantage that the relevant eigenvalues are independent of any cut-off N € N. For ¢ € L%(T?), we
define the spectral Galerkin approximation at order IV of ¢ by

on(z) = (Pvo)(@) = > dre(x),

keZ?: |k|<N
where |k| = |k1| + |k2|. We denote the eigenvalues of the Laplacian on T? by — i, where
= 2m)° K|, keZ?, (5.1.3)

where || k|| denotes the Euclidean norm of & and define the renormalisation constant

1
_ 2m(_ 1) _ 2
On=o0 Tr([ PyA +1] ) D Pt (5.1.4)
keZ?: |k|I<KN

Lemma 5.1.1. C\y diverges like 0®log N/(27) as N — o<.
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Proof. One can view C'y as a Riemann sum then we integrate using Polar coordinates:

Z _ Z ————— < o5 g o rdrdd
pret o2 |kIF+1 " Jo Jo (2m)*r?41

keZ?: |k|<N keZ2: |k|<N
2 N 2(2m)? log(N
[ e ) o
22m)? Jo (2m)%2r2+1 27

d

Remark 5.1.2. Note that the shift +1 in the definition (5.1.4) of Cy is only there to avoid problems with
the £ = 0 mode, and can be replaced by any other strictly positive constant. &

We recall the mth Wick power of ¢ defined by
N = 10N oy = Hm(on; On)

where H,,(z; Cy) is the Hermite polynomials with variance C'y, see Section 2.5. The renormalised
version of (5.1.1) that we want to study is given by the limit, as N — oo, of

don(t,x) = [Apn(t,x) + : F(et, on(t, x)): ¢ ] dt + o dWi(t, z) (5.1.5)

where dWy = Py dW, and

n

:F(t,d)):cN ::ZAj(t):qﬁj:CN.

J=0

As proved in [20], solutions of the renormalised equation (5.1.5) do admit a well-defined limitas N — oo,
in an appropriate Besov spaces that we precise below. The limiting equation is denoted by

do(t,z) = [A¢(t, z) + : F(et, ¢(t,x)): ] dt + o dW (¢, z) .

In what follows, it will be convenient to rescale time by a factor €, which results in the SPDE

1 o
do(t,z) = - [Ap(t,z) + : F(t, ¢(t,z)): ] dt + NG dW (t,z) .

An example of renormalised SPDE:s is the renormalised Allen-Cahn equation

dé(t, z) = %[Agb(t, 7) + Acos(t) + Bt z) — : 6(t, 1)1 ¢, ] dt + % AW (t, ) |

where : ¢3: Oy = #> — 3CN¢ is the third Wick power of ¢.

5.2 Da Prato-Debussche trick

In this section, we discuss briefly the idea exploited by Da Prato and Debussche in [20]. The results that
we will discuss later are mainly based on this idea. Let ) denote the stochastic convolution, that is, the
solution of the linear equation

dy(t,z) = Ay(t,x) dt + o dW (¢, z)
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with initial condition (0, z) = 0. Since the stochastic convolution belongs to all Besov spaces with
negative regularity «, but not with positive «, this means that ¢ is a distribution, but not a function, see
for instance Lemma 3.2 in [20]. The trick is to write ¢ as a sum of ¢ and ). Then, the observation is
that ¢»; is much smoother then ¢ and one write the problem in terms of ¢; where the nonlinear term is
a continuous function with respect to ¢. So, ¢1 enjoys much better regularity properties. The price to
pay is to work with Besov spaces which are well suited to define the product of distributions. The main
result in this paper is the following.

Theorem 5.2.1 ( [20, Theorem 4.2]). For any p > n andr > 1, let a and s satisfy

2 1 n 2
0> a > maxq — ,— 1—-— , s=—-+2a.
pn+1) n-—1 P P

Then, for almost any initial condition (with respect to a natural probability measure), the renormalised
SPDE admits for any T' > 0 a unique solution ¢ such that

<Z> - ¢ € C([OvTLBg,r) N Lp([07 T]7 Bf),r) .

Note in particular that s > 0, implying that the difference ¢ — v takes values in the space of functions

B2 .., which have some Holder regularity in space.

p,r

5.3 Wick powers of the stochastic convolution

This section concerns the most irregular terms in the study: the stochastic convolution and its Wick
powers. Let a : I — R be a continuously differentiable function satisfying

—ay <a(t) < —a— Vtel (5.3.1)

for some constants ay > a— > 0. The stochastic convolution is defined as the solution of the linear
equation

1 o
dop(t,z) = - [AY(t, ) + a(t)p(t, z)] dt + NG dW (t,x) (5.3.2)

with initial condition (0, z) = 0 Vo € T?. Its projection on the kth basis vector ey, gives

1 o

dyog(t) = —ak(t t)dt + —= dWi(t) , 533

Yi(t) = Zan(t)yu(t) + k() (5.3.3)

where a(t) = —p + a(t) and the {Wy(t) }+>0 are independent Wiener processes. The solution of

(5.3.3) is a Gaussian process and can be represented using Duhamel’s principle by the Ito integral

t

Du(t) = -2 / cor(t0)/2 () | (5.3.4)
€Jo

where i (t,t1) = fttl ay(ta) dte. Thus, for each time ¢, ¥y (t) is characterised by its mean being zero
and its variance given by

2 t
Var{iy(t)} = % /0 2ok (LI/E AW (1) .

One can bound the variance similarly to Lemma 3.3.4
2

— <_ 9

Vtel. (5.3.5)
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Remark 5.3.1. For any N and = € T?, we consider the truncated Gaussian free field at any fixed time ¢
€k
it = Y =)= > (),
keZ?: [k|<N ¥ Lo+ g kEZ2: |k|<N

where &, are i.i.d. standard normal random variables. The v}, are complex-valued Gassian random
variables which satisfy

v, ifk=1

0 else.

Elowsa] -
&

It is known that the Wick powers of the stochastic convolution : 7)™ : belong to any Besov space By, .
forany m € N, p,r > 1 and o < 0. The proof exists in [20, Lemma 3.2]. We adapt it in our context. In
particular, we prove the following result for m = 1 and for any m € N separately.

Lemma 5.3.2. Let o < 0. Then for any m € N, :¢™: belongs to B, (T?).

Proof of Lemma 5.3.2 for m = 1. For any a < 0, p = 2 and r = oo, Definition 2.3.1 gives

— —lalg
1Pl _21;%2 1649l 12 -

B[l ] = E[sup2 1 18l,2] < 3 2B 15,01,5]

q=20

By Cauchy Schwarz’s inequality, we get

[l | < 3 2B 612

q=0

We recall that

Sgp(x) = > ren(x)

ke Ay

its L2-norm is given by
O = [ (o) de
= Z wklﬁkz /2 Ck; (x)ék'Z (3?) dz

k1 ko€ A, T
= ) Uk PkaOraky
k1,k2€A,
2
= Z wkﬂﬁfkl = Z Wkl‘ .
k1€.Aq k1€Aq

It follows that

B[l | <32 ( Y B[l ) = 2l (3 w,)

q=0 ki1eA, q=0 ki1€Ay
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We notice that the sum over k1 in the annulus A, is of O(c?). In fact, by using polar coordinates we get

2 24 2 2%
Z 'Uklg Z 0-2§0-2/ 1Td7"2 20-210g<1H2_2?q_1)> <20210g(2)
ki1eAq 20-1< |k |21 L+ [[ka]] 2¢-1 1+ 7 4
(5.3.6)

Therefore,

< Ialq
E|lllsg | So Y 27 < T <00

q=0

O]

Proof of Lemma 5.3.2 for any m € N. For any p, r > 1, one can see the proof in [20]. In our case, we
take [ > 1, p = 2 and r = oo and we obtain

B[l 6 sl | = B[ (sup2r 18,7 ,2) | <B[( 20 6,507 0,) |

920 q=0
By Holder’s inequality with ;1) = lle, % = %, we get
-1
E[H Y™ ||i32aoo} < E[(Z 2qla/2(171)) (Z gqla/2 165500 HZL2):|
7 q=0 q=
-1
_ (Z 2(1104/2(1—1)) Z 2qla/2E|:H5q:¢m: Hle} '
q=0 q=0

Since o < 0, one can bound the following geometric series,

1

q=0

2 1 _ 1-2
g~ 1 2 we obtain

]E{H(Sq:wm:HlLQ} :JEK/T2 |5q:1/)m:]2dx)l/2} < /TQ]E“&(]:@ZJ’”:V] dz

Since the d,: 9™ : belongs to the mth Wiener chaos, we can use the hypercontractivity argument (2.5.4)
to obtain the bound

Again by Holder’s inequality with % =

E[|6,: 0™ 1] < (1 - 1)™/2E[|5,: 4™ ﬂl/z .
Therefore,

E[|(5q:wm: ]2} = E“ Z (zp™: ,ek>ek|2}

keAq

= Z E[/TZ - 2™ () ™ (x2) ek (x1) ey (x2)er(x) ey (x) day d$2}

kleAq

- Z /Tz /Tz rp™ () (22): }e k(x1)e(z2)er(x)e—y(v) day dos .

kleA,
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By Wick’s theorem, see Theorem 2.5.1 we have

E[:wm(m): :wm(l’z):} = m!E{w(wl)lﬁ(m)}m :

where
E[p@)e)] = 3 Bl |en@)en ()
k‘1,k2€Z2
= Z Vky Oky ks €1y (T1) €1y (T2)
k’l,kQGZQ
= Z Vg €y (X1 — T2)
k‘1€Z2
We define
m 1 m
’Y(l‘):(zlkgkl ) Zﬁ Jek, (z
k1€Z2 + H H leZQ
Thus
E[w L™ ﬂ
= mlg?™ Z / / Z B™(N)ek, (x1 — z2)e—k(x1)er(z2)exr(x)e—i(x) dry dze
kleAq k€72
= mlg?™ Z Z B™ (N )0k k0ky1 -
k,lE.Aq k1€7Z2
Then,

B[y v 4] < m (30 amn)

keA,

By Cauchy Schwarz’s inequality, we get

E[\y(sq:wz H’LQ} < c’(m,l)2lq/2(z m(N)?)M.

keAq

We fix a § < 0. Then, we have

Z ,Bm(N)2 < 272(q71)(1+§) Z ||k||2(1+§) ,Bm(N)2 <2 2(g—1)(1+3) ||7m||Hl+s )

ke Ay kez?

With similar argument as [20, Lemma 3.2], we get
Y™ s < e(m,3) .
For 5§ = 2s/1, it folllows that

E[quwm HZLQi| < C(m7l>5)2_q8 )
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for all s < 0. Choosing s = la/4

E[H: Y™ ;||;,,37w] = Cla,l,m) Y 209/ < oo,

q=0

where Z 2dle/4 ig g convergent geometric series for any a < 0. O
q=0

Remark 5.3.3. For instance, we have

E[l0(t)lge ] = sup 2% 37 Efjes(0)]] -

-1 peq,

Since the random variables 1, (¢) follow centred normal distributions of variance of order ||k|| ™2, the
sum over k € A, of the expectations of |15, ()| has order 2. Therefore, the expectation of ||1)(t, -)|| za

diverges with the cut-off N as N®tlif o > —1. O

5.3.1 Tail estimates for a fixed time ¢ € [

With the tools put in place above, we can now establish tail estimates on Wick powers of the stochastic
convolution. We first construct concentration estimates for any fixed time ¢ € I. It will help us to
understand the main result of this section: the behaviour of the probability when adding a supremum
over all ¢ € I. We consider that ¢ (¢, -) = 1(-) for any ¢ € I and we have the following result.

Theorem 5.3.4. Forany o < 0and foranym € N, there exist constants Cy, () and kp, (), independent
of the cut-off N, such that

P{”:w”m: lsg... > hm} < C(a) e~ rmleh/o*

holds for all h > 0.

Remark 5.3.5. The proof yields explicit bounds on C),(«) and Ky, (). &

For a better understanding of the proof, it is helpful to start with proving the particular case m = 1.
The case m = 2 is proved in Appendix A.

5.3.1.1 Proof of Theorem 5.3.4 form =1

Proof of Theorem 5.3.4 for m = 1. Fix a < 0. By Definition 2.3.1,
P{Iw0llsg,, >} = B{sup2™ 0 6,00) 2 > ]

P{ 0: |68l 2 > hzla\q}

< SR80 2 > 2l

q=0
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Fix v € R and let ¥ = /0. By Markov’s inequality, we get

P{Hw(')nggm > h} < Zp{ewéqwcmiz S e«}h222\alq}

q=0

< Ze—’?h222‘a|q E[eﬁZkeAq ‘¢k|2] ) (5.3.7)

q=0
Since {4k } 1.cz2 are zero-mean gaussian random variables i.i.d of variance vy, we have
Ny 2 o
E|:e’szeAq || ] _ H E[Q’YWHQ]
keAy

where
+
E[e’?lwkﬂ — / = Pt L o220 44
oo 2TUg

2(1=24v) /200 g,

il

The bound (5.3.5) on vy, implies that 1 — 29w, > 0 for any v < 1/2. We can thus make the change of
variable u = z+/1 — 24wy, yielding the estimate

E[ealwkﬂ N
V1= 2%v

We can thus bound the product of expectations by

H E[eﬁlwkq - H \/1—271)

keAq keA,
! > In(1 — 24y)
= expy —— — )
p 5 n YUk
keAq
There exists a positive constant ¢ such that In(1 — z) > —cz for 0 < x < % Therefore,

H E{&/WHT < exp{Cﬂ/ Z Uk} . (5.3.8)

keA, keA,

The sum over k is of order o2, see (5.3.6). Replacing (5.3.8) in (5.3.7), we get
p g g
P60y > b} < e Yoo

q=0

It remains to bound the sum over ¢. Choosing v < 1/4 and let f(z) = ¢=#2"*"* where 8 = h2/(402).
One checks that f is decreasing and bounded

> fl@) = F0)+ f(1 +Zf <e P e P4 /f

q=0
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To compute the integral, we give the following bound 2217 = e2lal#1n(2) > 9|o|21n(2). Then, we

obtain - . )
z)dr < / e2Blalzin(2) 3, — ___ ~  —2BlalIn(2)
/1 i) 1 26| a| In(2)

We conclude that
Pl >h} < Cla)e@n®/e® (539)

5.3.1.2 Proof of Theorem 5.3.4 for any m

In what follows, it will be convenient to introduce multiindex notations. For any n € NY with finitely
many nonzero components, we write

In| = an and n! = an! :

q=0 q=0

Since n has finitely many nonzero components, these quantities are indeed well-defined. Let
n] = #{¢:n, > 0}
be the number of these nonzero components. We can order them as g1 < g2 < ... < gy, Where
qn) = max{q : n, > 0}

is the index of the largest nonzero entry of n. In what follows, we will always assume that [n| = m. We
notice that this implies [n] < m.
As we have already seen, the projection of (¢, -) on the annulus .4, has constant variance

¢ = B[00t )3 = 3 v (53.10)

keA,
In fact, 0,4 (¢, z) has variance c, for all z € T?. We recall the important feature of this projection
cqg < o2log?2,

for all ¢, see (5.3.6). In addition, at any fixed time ¢, the law of (¢, -) is that of the truncated Gaussian
free field, with variance
> we=0Cy,

kEZ?: |k|<N

which diverges like o log(N)/(27), as mentioned in (5.1.4). Finally note that the cut-off condition
|k| < N implies ¢ < ¢y = |logy N |, and that

With these notations in place, we can introduce the binomial formula for Hermite polynomials, see
Lemma 2.5.3 in Section 2.5 and give a proof for Theorem 5.3.4 for any m € N.
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Lemma 5.3.6. Forany m € N, we have
m)!
H((t,),Cn) = Y 7 [ [ Hny (0t ). cq)
[njJ=m = ¢=0

Proof of Theorem 5.3.4 for any m € N. Fix a < 0, Definition 2.3.1 gives
Po(h) i=P{I: ()" Iz > A"} = P{ sup 2710 o, (: ()™ )| 2 > B}

qo=0

= P{qu = 0; Héqo(:w('>m:)”[/2 > hm2|0‘|%}

< 0 P{lo0 (o)) > A2l L

q0=0

Binomial’s formula for Hermite polynomials given in Lemma 5.3.6 yields

Prm(h) < Z IP{H(SQO( Z %' H g (t, )P )| L > hm2|°“qo}

%0>0 Inj=m — ¢>0
!
< Z P{ Z %H(SQO(H 10q1(t, ')nq:)HL2 > hmg\alqo} ‘
qo=0 [nj=m 40

Remark 5.3.7. Note that for any q1, g2 > 0, one has 29 + 292 gmax{qi,g2}+1, Therefore,

qo H 5qw 7& 0 = qo < ,rgax{(h + nqz‘} < 4[n] + Dy
q>0 l\q[n]
for any n, which will be useful in restricting the domains of the sums. &

Then, by the equivalence of [P-norms we get

n< SR> %!H%(H S0t -)nq;)HLQ)Q/m > p2alelno/m)
q=0

q0=0 |n|=m
|
<SP ) 0 (T atett, yme) [ > w22elao/md 5300
q0=0 |njl=m q=0

Fix v € R such that ¥ = v/02. By Markov’s inequality, we get

Pr(h) < ) exp{—422*le/mp?)

q0=0
<Blew3 S ()" an ([T ot H”’”}]
[n[=m 720
= Zexp{—”yfla'%/mhz}
q0=>0
< ]I E[exp{ O o ([T s 7 ||2/m}], (53.12)
|n|—m q=0

the last operation is due to the independence of the projections.



68 5.3. Wick powers of the stochastic convolution

Remark 5.3.8. Corollary 6.13 in [33] implies that if X is a polynomial of degree m in the field, then
E [e”X ‘] is finite for m = 2, and is in general infinite if . > 3. This explains the mthrootin (5.3.11). <

In order to bound the exponential moment in (5.3.12), we provide the following technical lemma,
whose proof is postponed to Appendix A.

Lemma 5.3.9. There exists a numerical constant Cy > 0 such that for any l, one has
B a0 £, )% )|[2] < ™
q=0
where C,, = Cg'm/!.
With this bound, we get the following result.
Proposition 5.3.10. For any v < (2C},) ~192(am=10)/™ pne has

2/m n 2/m 1
exp{ ( H(S‘IO H Oqp(t, )™ H }] < 1— 2707/7122(%—‘1[11])/”1 ’

q>0

E

where C},, = Coe((m! )3/(n! )2)1/m.

Proof. Expanding the exponential, we get

E exp{ ( 2/mH6q0 H 5qw nq H?/m}]
q>0
- Z 2ppl Il' 2p/m |:H5qo H 5q¢ nq Hzp/m:| .
p=0 q=0
By Holder’s inequality with p = m, q = , We obtain

m n 1/m
B[ (T + gt )™ \\2”/ } E |16 ([T <ot ) [72]

q=0 q=0

Since the square of the L?-norm of the projection belongs to the 2mth Wiener chaos, we get by the
hypercontractivity inequality (2.5.4) the following bound

B[[165 (T 00t )™ )|[72] < (20 = 17" B[00 ([T : 8t ) )]

q=0 q=0

By Lemma 5.3.9, we have

E

exp{ ( 2/mH5q0 H 5qw nq H?/m}

q>0

3 (i oy ool
p>0 0—2ppl n'
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Stirling’s formula yields p? /p! < eP. Then the result follows by summing a geometric series

E eXp{ ( 2/m”5q0 (I - 640 (t, )" HQ/m}] S ey (n')Qp/me/mzz(qo .

q=0 p=0

1
1 — 24C, 220 dm))/m

)

for any v < 20 22(am)—10)/™m anq Cl = e(@!)g/mC,ln/m. Note that in what follows, we choose a

n!
numerical 1ndependent of go and gy, O

We can thus bound the product of expectations

2/m n 2/m 1
H E exp{ H‘Sqo H qtp(t, )™ H }] < H 1_2707/7122(%*!1@])/7”

[n|=m q=0 In|=m

= exp{ Z In(1 - 2~vC/, 22(20—4[n )/m)}.

In|=m

Using the existence of ¢ > 0 such that In(1 — ) > —cx for 0 < z < 3 yields

Z In(1 — 2yC! 220 =am)/my > _9en ! Z 92(90—qpm)) /™M
In|=m n|=m
The proof of the following Lemma is given in Appendix A.

Lemma 5.3.11. There exist numerical constants cy, c1 > 0 such that

1
- | m
||Z 2 —aoiym < 0t (q0 Fe)™ (5.3.13)
nl=m
It follows that
h?2 _

P, (h) < Z eXp{_’ﬁQ'a‘qO/mﬁ}eXp{’yCm(qo +cl)m} ' (5.3.14)

qo0=0

Choosing v = 1/(4C! ), we compute the following sum

o z4c )™ — 22\04\1/771, . Cm . h2
Zf(%)af(fc)—eﬁl(+1) e 761—@752—W

q0=0
One can checks that f is decreasing, so that one has the upper bound
o0
S Flao) = SO+ F0) + X fla) < 8F e e 32 [ ) g
q0=>0 q0>2 1
We notice that

(g0 + €)™ < ()220, ey () = 0(2201|°‘|/m7‘7(j2|) .
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It follows that

/Oo f(CU) dz < /oo e7(6222|a‘$/m*Blcm(a)22‘a‘x/m) dx
1 1
< / ) e~ 2alin(2)(B2=Brem(a))z/m 4,
1

m2lalBrem (@) /m
= €

(B2 = Prem(a))2]e In(2)

—2la|In(2)f2/m

Replacing this in (5.3.14) yields a proof on P,,(h), completing the proof of Theorem 5.3.4.

5.3.2 Tail estimates for all time ¢ €

Now, as we understood the bound for a fixed ¢ € I, we can expect similar bounds when replacing

|:(t,z)™: HBI21 by sup |:¢(t,x)™: ||Bg for all # € T2. Similar approach as in Subsection 5.3.1
o0 0<t o0

will be used to get the f;)ll\owing result. We give below a particular case of the proof when m = 1 then
we turn on to a generalised proof for any m € N.

Theorem 5.3.12 (Tail estimates on Wick powers of the stochastic convolution). For any o < 0 and for
any m € N, there exist constants Cy, (T, €, ) and Kk, (), independent of the cut-off N, such that

B s 00,7 g > 7 ) < Gl 2,) 7o

Ux

holds for all h > 0. Furthermore, there are constants cy, c1, uniform in m, o, I' and ¢, such that

Oé2 Tm3/2 ™ mm

ﬁm(a) 2 COW ) Cm(T,é‘, Oé) < Clg

|

Remark 5.3.13. Comparable results cannot be expected to hold in any B .. Since the limiting random
variable does not admit a first moment, its tail probabilities have to decay more slowly than 1/h. &

The following observation may provide some intuition on what it means for a distribution to be
concentrated in a ball in the Besov space B ..

Proposition 5.3.14. Let 1) : T? — R be a compactly supported function of class C1, with |||, = 1.
For any p € [2,00] and any p € (0,1], let

1 T
0= eb(3)

Then Hngp)”Lr = |[n|| ;- for all p € (0,1], where r is the Holder conjugate of p. Moreover, for any
P e Bz?,oo with o € (—1,0), and any q € Ny, one has

(0] S 2110 ]l
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1 xz\"
(p) TT = —5 - d == Td = T"r
Nz p /T277(p) x /Wn(y) y=nlz-

where we have used the change of variables x = py, and the fact that the integration domain does not
change because 7 is compactly supported. For the same reason, we have

Proof. We have

/ e*ipk'yn(y)dy < L/p
T2 LV p?[kik|

where we have used one integration by parts if p*|k1k2| < 1. In particular, for k € A, and p = 27%,
this yields

[{exsni)| = p*/7

—2q0/p
(») 2
}<€k,772_q0> S 1V 22(g—q0) ~

Using Holder’s inequality, we obtain
(Bt )| = 10, 64mi?, )| < 185011 o 16gmg?, 12

1/p
< 16,610 (Z e n®, ) )

keAq

92(a—qo)/p

< 2l HwHBE’,oo 1v 22(a—q)

The result then follows by summing over all ¢ € Ny, noticing that this sum is dominated by the term
4 = 4o- Ul

So that, Theorem 5.3.12 implies
h2
IF’{ sup (:(t)™:,7p-a0) > hm} < C(T€) eXp{F»mTQ'“'qO/mQ}
0<t<T o
for any m € N and any gy € Ny. This shows that sample paths of (:¢(¢)":,1,-q,) are concentrated in
a strip of width ¢™2!2l%0_ The same holds of course for 1, (z — xp), for any z¢ € T2.
5.3.2.1 Proof of Theorem 5.3.12 for m = 1

Proof of Theorem 5.3.12 for m = 1. Fix a < 0. Definition 2.3.1 of Besov norms, gives

P sup (t, gy >h}=P{ sup sup2 o o(t, ) s > b}

0<t<T ’ 0<t<T ¢=0

IP{EI > 0; sup [16,0(¢ )||L2>h2|‘“|‘7}

1@{ sup (1043 (t,) 2 > h2|““1}. (5.3.15)

We recall that
qw t x Z 1/% ek

kEA,
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and its variance is given by (5.3.10). For a fixed ¢ > 0, we estimate one term of the sum (5.3.15)

P,(h) = IE”{ sup |[0g9(t, )| 2 > h2|°‘|q} =P{ sup Z [ (t)]2 > h222|°“q} .
0<t<T 0<t<T 7,

We notice that the stochastic integral 1 () is not a martingale. However,

e=arO/2 (1) - = / —ak(0)/= Q7 (#,) (5.3.16)

is a martingale. We approach these processes by introducing a partition 0 = ug < uy < ... < up, =T
of [0, 7. Given vy > 0 and any |ko| = 29 we define the partition by

2m)2 || koll? + 1)T
Qo (Up1,u1) = —0€ for1<I< L= {(( )| O! ) J )
Yo

and write I; = [u;, uy41]. Multiplying (5.3.16) by e®(“+1)/¢ we obtain the martingale

A~

wk(t) = g% ag(ui41,t)/e wk f/ % (ui41,t1)/e de(tl)
Applying Holder’s inequality with p = 1, ¢ = oo, we get

Z |¢k(t)‘ S Sup e —2a(upy1,t)/e Z ‘"(pk

keA, keAq

The process (Z |1ﬂk(t)|2) tcq, 18 @ submartingale, because it is a sum of squares of independent

ke A,
martingales. It follows that

Py(h) < IP’{EIZ € (Lo Lysup > [ihp(t)? > h222|a\Q}
tel pea,
L 1
< 7 2 262|alg }
= 2;]?{?25 kz Wk( )" > 12 ulgigilﬂ sup e —2ak (ur41,t) /e
- A keAq

< QZ]P’{sup Z ”(ZJR( )|2 > p222lele jpf 620"“0("’+1’t)/€}

upSESU 41

< QZ]P’{sup Z by (£)[2 > e~ 20 h222|°“q} .
q

exp{ > ()] }] . (5.3.17)

keAq
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Since {1 (t) } cz2 are zero-mean gaussian random variables i.i.d with variance oy, (t) = vy, €2 (Wr1.0)/¢,

we have
eXP{ Z |r ()| }] H E[GXP{ |bpe (g 1) }}

kEA, kEA,

We bound the expectation

2)} dz .

1 oo
B V 27”7k /—oo
The bound (5.3.5) on @, implies that 1 — 27y, /0? > 0 for any v < 1/2. We can thus make the change
of variable u = z4/1 — 2v0y /02, yielding the estimate

E[exp{%mk(qu)F}]

1

[GXP{ |k (wis1))| }} W-

We can thus bound the product of expectations by

ex l b u 2
kng[ p{o_g‘wk( l+1)‘ }:| kg \/W

= exp{; Z In(1 — QV@k/a2)} .

keAq

There exists a positive constant ¢ such that In(1 — z) > —cz for 0 < x < % Therefore,

11 E[exp{ | (w41))| }] exp{c > vk} < exp{c}, (5.3.18)

kA, keA,

where the sum is bounded exactly in the same way as vy, in (5.3.6) since oy (u;41, t) is negative whenever
uj+1 = t. Replacing this bound (5.3.18) in (5.3.17), we get

QZexp{c }exp{ 2 22|aqe—2%}
<2{(( )2 ol + 1)

Yo€

h2
J exp{c'~} exp{ —7—222|a‘q e 20 }
o

Thus, choosing v = i we get

P{ sup ||¢J(t,)||B§ } c(T,e ZQQqexp{ 22|04(I}

0<t<T =0

The sum we have to compute is of the form

2
Zf _ 2236 *522‘0‘”’ /B _ 672’70 L )

402
q=0
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One checks that f is decreasing, so that one has the upper bound

S @) = £O0)+ £0)+ [ fla)da

q=0

= o P pae 2 +/ f(z)dx
1

To evaluate the integral, we bound 221%* > 21n(2)|a|x and we get

/ N f(z)dz < / ” o~ 2m@)Blal-2@)r g,
1 1

_ 4 o—2In(2)Bla|
2In(2)Sla| — 21n(2)

It follows that

p{ sup [[6(t. gy > h} < C(T.c.a)e </
< ,

b

O
5.3.2.2 Proof of Theorem 5.3.12 for any m
We first give a proof of Theorem 5.3.12 in the particular case where a(t) = —1 for all . That is, we
consider the linear equation
1 o
dop(t,z) = = [AY(t, x) — (t,z)| dt + —= dW (¢, z) .
Y(t.) = L [A(t.0) = 9l 2)] e+ 2 AW (1,2
Its projection on the kth basis vector ey, is given by
1 o
dyg(t) = —— 1 t)dt + — dW(t 5.3.19
Yi(t) = = (i + 1)v(t) +\@ k(1) ( )

where the 1 are the eigenvalues (5.1.3) of the Laplacian, and the {W}(t)}+>0 are independent Wiener
processes. We write o (t,t1) = —(ux + 1)(t — t1) and ax(¢,0) = ax(t) for brevity. The solution of
(5.3.19) is an Ornstein—Uhlenbeck process, which can be represented using Duhamel’s principle by the
Ito integral

t
Pi(t) = e /e 4 (0) + \% / ek (BR)/E AW (1)) . (5.3.20)
0

At any time ¢ > 0, ¢ (t) is a zero-mean Gaussian random variable of variance

0i(8) = Var (i (0)) 2 1 -
0
= Var(z/;k(o)) QQO‘k(t)/E _’_0-72 |:1 _ ezak(t)/5i|
2(ur + 1) '

2 t
/ e2ak(t,t1)/€ dtl
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In order to obtain a stationary process, we assume that the initial conditions v (0) follow centred normal
distributions with variance vj, = 02/[2(us, + 1)], which are mutually independent, and independent of
the Wiener processes. In this way, we have vy (t) = vy, for all .

Fix o < 0. By Definition 2.3.1 of Besov norms,

Po(h) = IP’{ sup |19t )™ e > hm}
0<t<T 200

= IP’{ sup sup 27149 |5, (: (¢, V"2 > hm}

0<t<T qo=0

= P{qu > 0; 0sup 1660 (40t )™ )| 12 > hmz\am}

<> p{ sup 3o (01, )™ )l 2 > gt}

qo=0 0st<

By the multiindex notations introduced in the beginning of subsubsection 5.3.1.2 and the multinomial
formula for Hermite polynomials given in Lemma 5.3.6, it follows that

Pun(h) < 7 P{ sup [|oga( Y- ] 5, )]0 > hmalels)

@o>0 OSIsT n=rn .q>0
B D00 (t, )" hmg\alqo}
2 {oi?fT”|Zm ~ <H () s >
m!
S P{ =) DOqp(t, )™ hm2|a\qo}_
%220 OiltlfT Z n! | qO(ql;[o ()" )| 2 >

We recall Remark 5.3.7 which is useful in restricting the domains of the sums for any n. For any
decomposition "™ = Z hyt, one has

[n|=m
n!
| | . molol
Z:orgz P{O?ETH&% q=0 Pl q')HLQ ” m!hn2 qo} ’ (5.3.2D)

From now on, we fix ¢o > 0 and n € NY with |n| = m. Our aim is to estimate one term in the double
sum (5.3.21). We notice that the stochastic integral 1 (¢) is not a martingale. However,

t
e—ak(t)/e V() = ¥(0) + % /0 e—ak(t)/e dWi(t1) (5.3.22)

is a martingale of variance e =22 (!)/< . The variances of v (t) and ¢, (t) are too different on the
whole time interval [0, 7] to allow a useful comparison of the two processes. This is why we introduce
a partition 0 = ug < w1 < --- < uyp = T of this interval. Given vy > 0 and any kg € Z? such that
|ko| = 29n1, we define the partition by

21)2 kol + 1)T
ko (U1, ) = —y0e  forl <I< L= {(( Gl 0! 1) J (53.23)
Y0
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and write I; = [u;, uy41]. Multiplying (5.3.22) by e®(“+1)/¢ we obtain the martingale

t
P (t) == ek (uig1,t) /e Y(t) = ok (uy1)/e ¥e(0) + \2/0 ek (uig1,t1)/e AWi(t1) |

where we do not indicate the {-dependence of 1/Azk (t) in order not to overload the notations. The variance
of Y (t) is
U, (t) = Vg (320”“(ul"'1’t)/5 .

They key observation is the following property of Hermite polynomials.

Lemma5.3.15. Foranym > 1, and { Hy, (¢ (t); 0%(t)) }e>0 is a martingale with respect to the canonical
filtration Fy of the Wiener process (W (t)):>o.

Proof. We write Hy, (¢, (t): vi(t)) = Hp((t)) in order not to overload the notation. For any
0 < s <, we have

E[Hpn (1) | Fo] = E[Hm (Vk(s) + (i (t) — dr(s))) | fs] (5.3.24)
By the binomial formula (2.5.3),
Hin(i005) + 00 = u(60) = 30 (") (60 Hono (5006~ (5)
n=0

A~ ~

We replace this expression in (5.3.24). Since H,, (1 (s)) is Fs-measurable and H,y,_p (45 (£) — 1i(s))
is independent of F; we obtain

E[Hp(d(8) | Fs] = D <m)E[Hn<wk<s))Hmn(wk<t) —i(s)) | Fo]

n=0

= H($1(s)) -

The last equality is due to the fact that mth Hermite polynomials are centred variables for m > 1 and for
m = n, Ho(¢r(t) — ¢i(s)) = 1. [

This observation will allow us to deal with the supremum over times in (5.3.21), by using Doob’s
submartingale inequality. We will thus be interested in the martingales

sita) = 3 delDer(a) |

keAq

as well as of the related quantities

X2(t) = (100 (T : 008t -

q=0

Later on, we will extend the obtained bounds to functions of 6,1 (t, z).
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Proposition 5.3.16. Fix a constant vy, q,, € Randl € {0,..., L}. Then the bound

o2

n! 2
P{ sup X2(t) > ( —hmalelo }gC’n le)ex {—
{sup a0 > ()| < cutepenp

holds, where

’Y "din m
Ca(l,e) = ™! -i-E[exp{ q:;g[ X2 (ug40)] Y H , (5.3.25)

Halio.) = 227002 )

Proof. The process (X2(t))icy, is a submartingale, because it is the projection of a sum of squares of
independent martingales. We note that the function f,, : Ry — R, given by
_1\m
em—1 ifx < u ,
m—1 vwl/m} _ v
) € -
™ if g > (m-1"
~

f+(z) = max{e

is non-decreasing and convex. By Doob’s submartingale inequality, we get

loup i > ()} =e{a 1 06i0) > 1 ((Fprwe))

tel; tel;
1

) fv((ﬁ;’!hmlalqof)E{fv(xrzl(“m))} |

In the denominator, we bound f,(z) below by @™ In the expectation, we bound the maximum
defining f, above by the sum. Setting v = V40.q(n] /o? yields the result. O

Following the same reasoning of Remark 5.3.8 we explain the mth root in Proposition 5.3.16. In
order to bound the exponential moment in (5.3.25), we recall the following technical lemma introduced
before and whose proof is given in Appendix A.

Lemma 5.3.17. There exists a numerical constant Cy > 0 such that for any [, one has

2 2m 22(10
E[Xn(ul-i-l)] < COmo 220
where C,, = Cg'm/.

This bound says that although high frequency modes, of order 2‘[In], have some influence on lower
modes of order 29°, this influence decreases exponentially in their ratio.

Proposition 5.3.18. For any 74,4, < e H(Cyy) " H/m22am = 0)/™  ope has

E[exp{%o’q[n] [Xﬁ(wﬂ)]l/mﬂ < .
1

2 1/mo2(q0—qiy ’
g ~ Vg0.qp € Om 2 (90=4ga))/m
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Proof. Expanding the exponential, we get

B exp{ 24 3]} = 3 ot (52 u1,1))""]

2pp!
S0 C p!
By Jensen’s inequality (or Holder’s inequality with conjugates m and "), we have
1/m

E [(Xg(ulﬂ))p/m} < E[(Xg(ulﬂ))p}

Since X2 (u;11) belongs to the 2mth Wiener chaos, we can use for even p equivalence of norms (see
Lemma 2.5.4) to obtain the bound

E[(X2(u1))"] < (0= )"E[X2(1)]” < [(p = 1) Cpro®m22a-am)|”

where we have used Lemma 5.3.9 in the last inequality. A similar bound follows for odd p by the
Cauchy—Schwarz inequality. Combining these inequalities, we get

/y '1in 1/m - 1 p m _ m p
E[exp{ qgg[ VX2 (uy )] H gz(pp')[,yqo’q[n]%/ 92(d0—dpm)/ } .
p=0 ’

Stirling’s formula yields p? /p! < eP. The result follows by summing a geometric series. O
Choosing 7gg,q;, = (2€ C’Tln/m)_122(ql"17q0)/m, we obtain
Cu(lie) <2+4e™ L,

1 n! |l 2/m
Ha(qo,1) = ———— [ —2lel90dm—00 pm .
n(QO7 ) QGCrln/m <m' n>

This motivates the choice

1 m! 1

= m

" Km(QO) EQ(q[n]_QO)/z 1{f1[n]+nq[n] >qo}

where the indicator is due to Remark 5.3.7, which yields

! 2 2 (4m)—40)/29|alqo \ 2/m
P{supXﬁ(t) > (Ehg”z'“‘%) }< (2+em1)exp{— h 2<2 e > } (5.3.26)
tel; m! 2eo0 Km(QO)Crln/

The condition A" = Z hy! imposes

[n|=m

m! 1
Km(qo) = ; P EEToR (5.3.27)

q[n] +HQ[n] 2‘10

The proof of the following bound is postponed to Appendix A.
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Lemma 5.3.19. There exist numerical constants cy, c1,co > 0 such that
Kn(qo) < com!(m + c2)™(qo +c1)™ .

Substituting in (5.3.26) yields the bound
hmolelqo

9(4n)—g0)/m92|algo/m p2 }

(g0 +c1)? a2
(5.3.28)

P{supXﬁ(t) >

2
< m—1 _
30> (o) <@ en{ -

where

1 0 1
fom = 2/m 2\1 2 T \md )
2ecy’ " (Crn(m)2)V/m(m + cg)
We now have to convert the estimate (5.3.28) into an estimate involving Wick powers of 6,1 (t, -)

instead of (5qzﬂ(t, ). For that, we are going to use the following, rather rough bound. For any 1 € NY
with finitely many nonzero components, we write

=>"1,, 1:=]J1', ad 1<[3] & L, <[3|Yg>0.

q=0 q=0

We introduce the shorthands

So(t7 ) = H an <5q¢(t7 '); Cq) s

q=0

P(t,-) = H an((sq’lﬁ(t, s éQ(t)) :

q=0
The proof of the following result is postponed to Appendix A.

Proposition 5.3.20. There is a numerical constant cy such that for all t € I}, one has
H6q0 (@(ta ) - Sb(t7 )) HLQ

<2 (c170) ™ < I1 nq> DR REGLRE | [EXICD] (5.3.29)

q=0 1:1<|n/2] q=0
ng>0
where |
n!
¢(t) = supé,(t and Ay = ————2%m(0l=201)
2 q>€ (1) n! 211! (n — 21)!

Note that the first product over q in (5.3.29) can be bounded above by mMml,
We can now derive the main estimate of this section.

Proposition 5.3.21. There is a constant Q,, = O(mfl/ 2) such that, if one chooses Yy of order
q()”QmQ_(mH)q[n], there exists a constant K,,, comparable to k,, such that

9lelqo pym
P ) t, . > < Cm —Em
{félg e et Km(qU)Q(q[n1—q°)/2} () exp{ :

9(qaj—q0)/m92lalge/m p2
(q0 + c1)? 02}

holds for all h > o, where Cr(n) = 2 4 €™~ +co(qpn) + m) for a numerical constant c.
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Proof. The argument is essentially deterministic. We introduce the two events

0 () = {0 <+ g, 500 10,502 <}
¥4

1 9lelqo pym
2 Km(qo)Q(Q[n] —qo)/2 }

Ol q0) — {sup 10w @ ()2 <
tely

The estimate (5.3.28) provides an upper bound on P(€23(h, qo)€). As for €1 (h), the bound
P(1(R)°) < co (g + Dgy,y) €077

follows as a particular case of (5.3.28), applied separately to all n of size [n| = 1. We now choose his
such a way that
sy 2(9m)—a0)/m92lalqo/m
Kkoh® = km 5 h*
(q0 + 1)

so that P(Q (h)¢) and P(Qy(h, qo)¢) are of comparable size. This allows us to bound the quantity

sup ||6q090(t7 ')HLZ < sup H(Sqo@(tv ')HL2 + sup ||(5q0(p(t, ) - 6110@(75’ ')”L2 .
tely tely tel,

on 1 (h) N Qs (h, qo). By Proposition 5.3.20, we have

R o n! e\ ~\ In|—2[1
bup||5qo¢( ) = Gty )| 2 < 290 (1 ygm) ™) Z 1'(10—21)'(()) (22q[n1h)| =2
tely L1<|n/2) ’

Note the relation

n! n-— qnq_q
P Tl | N DR e il

LI<|n/2] q=0 lqg an/2j q
H (Va+b)™ <2 (Va+p)
nq/2
q=0
Since |n| = m, it follows that
olalqo pm -

1 ~ m
sup 190t )2 < 5 + 29 (cyyom) 2™ (&(2) + 2% R)

Ko (qo)2(9m1—90)/2
holds on Q; (k) N Qa(h, go). Choosing 7o such that both summands are equal yields the result. O

Corollary 5.3.22. We have

!
{SupH(s% H Sqo(t, ) :)|| . > ;!h;nglaqo}

q=0

(qo + 01)2 ?

m\’ﬂ

~ (am)—90)/m92|algo/m p2
C ( ) O—m2(m+3)Q[n] exp{_ﬁmz 2 h }’

where Cp,(n) = Q-1 Cpp(n).
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Proof. 1t suffices to sum the previous estimate over all £ € {1,..., L}, where L has been introduced
in (5.3.23). O

Replacing the bound obtained in Corollary 5.3.22 in (5.3.21), we get

T~ = A o
Pm(h) < ; Z 40 Z Cm(n)Q( +3)Q[n] exp{_ﬂ(m’ qO)Q(Q[n] q)/ } ,

q020 Inj=m
where Slalan/ )
_ 2@lalqo/m |y
m, = Rp—————s—% .
Blm, o) = Fm T oy o2

We will first perform the sum over n. To this end, we write
Bnp(ao) = 3 a2 exp{—mm, qo>2<q[nrq0>/m} 7
[n|=m
The following lemma is obtained in a similar way as Lemma 5.3.23. We give its proof in Appendix A.

Lemma 5.3.23. There are numerical constants ¢y, By such that for all B(m, qo) = Po, one has the bound

Komp(qo) < crgtomm2m+3)w =Bm.a)
Using the expression for Cyy, (1) given in Proposition 5.3.21,we thus obtain

Prn(h) < g@%l Z a% " [(2 + e teom) Kimyo(qo) + f_(m,l(QO)]

q0=0

< Zam™Qut Y [2 e yeom + coqo] 9(m+3)q0 o=B(m.q0) (5.3.30)
qo=0

~

It remains to perform the sums over gg.These are of the form

glale/m } R

S — = 3’ == -
@t+a) a=m+ Y Iﬁ}mO_Q

> fla),  fla)=ab2 eXp{—v

q0=0

One checks that f is decreasing, so that one has the upper bound

S Flqo) < F0) + (1) + /100 f(z)dz .

q0=0

The terms f(0) and f(1) are both exponentially small in 22 /o2, To evaluate the integral, we can absorb
the constant ¢; in 7, and the term z® into 2%, by changing slightly the definitions of v and a. We
first consider the case where the term 22 in the denominator is absent, where the changes of variables
y = 201/ and z = vy yield

> ||z /m m >
/ 207 o =72 de = ——— / yam/|a|_1 e Wdy (5.3.31)
1 lallog2 Jojal/m

o
< _ )\lﬂ/ e ?dz,
aflog2 2t /)
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where A = am/(2|a|). The asymptotics of the incomplete Gamma function shows that

/OO gaz o =721/ g < me? < T o=v/2
1 al v ol

In order to incorporate the effect of the denominator 22, we use the upper bound
- 2
$22—|a\a: /m de m
= (log2)? 2) [af?

We can thus bound the integral of f by the integral (5.3.31), with ~ multiplied by a constant times
|r|?/m?2, and « divided by 2. In other words, we get

1 [e

Replacing this in (5.3.30) yields a bound on P,,(h), completing the proof of Theorem 5.3.12 in the case
of a constant linearisation a(t).
Recall that we actually want to consider the more general linear equation (5.3.2)

dd(t,z) = é[mﬁ(m ©) + a(t)d(t, )] dt + \%

where here a(t) satisfies (5.3.1), and we write ¢ = 1; to avoid confusion in the notations. Project-
ing (5.3.32) on the kth basis vector ey, we obtain

dW (t,x) ,

~ 1 o
depi(t) = —an(t YOk (t) dt + —= dWi(t) , (5.3.32)
Ve
where ay,(t) = —uy + a(t) and the {Wy(¢) }>0 are the same independent Wiener processes as before.

The solution of (5.3.32) with the same initial condition ¢;(0) as in (5.3.20), is given by

Di(t) = <O/ (0 / () QW (1) |

where

t

Gu(tst) = an(tit) + [ (L+ alta))dta = an(t.t2) + O(ft ~ ]
t1

For given qo, we use the same partition of [0, 7] into intervals I; as before. On each interval, we can

write

~

Dp(t) = el (uiy1,t)/e &k(t) — %k (uig1)/e Q) / ap(uig1,t1)/e AWy (t1) .

&k (t) is again a martingale, so that its supremum over the interval [; can be estimated as before. Note
however that the variance of the associated sums over k£ € Ay is not exactly equal to ¢,(¢): it is rather of
the form

Vy(t) = &4(t) [1 4+ O(r2 2 =9))] .
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Therefore, the Wick powers of this martingale with respect to ¢, () are not martingales. One can however
estimate the supremum of the Wick powers with the correct variance as before, and then compare the
two types of Wick powers. In fact, we want to bound the supremum over ¢ € I; of
HéfIO(H an (5qw(ta ')’ Cq)) HL2 .
q=0
By the binomial formula introduced in Lemma 2.5.2, we obtain
H an (6q77/;(t7 33)> Cq)

>0

= ] Hn, (0 (t,2) + 840(t, 3) — Sqb(t, ), Vy(t) + cq — Vy(t))

q=0
- (Ill) [ 1, G (t,) = 8yb(t, ) €4 = Va(t)) Hny1, (b (t,2), Va8))
0<|1|<|n| q=0
= 1T Ha, (04t 2), Vy(2)
q=0
> @ L1 #, 0t 2) = dqib(t, ), ¢q = V() Hi, 1, (3430t ), Vi (1))
1<|1|<n| q=0

Therefore, by the triangle inequality we get

H(Sqo(Han (5q1/~’(t7 ), cq))HL2

q=0
< 100 (L] Hy (0t (t:-). V()] 2
q=0
+ D <>2quHqu Sth(t. ) = 0q¥h(t, ) cq = V(1)) 12
1<|1<n| q=0

< ||TT Hageta (0t (t, ), Va1 -

q=0
where the last inequality is a rough bound, obtained by Cauchy—Schwarz’s inequality. The first norm can
be bounded as in (5.3.28), and one can see the last norm as a particular case of it. In the same spirit as
in the proof of Proposition 5.3.20, for |[1| > 1 one can bound

ITT H, (5o () = 685(8). cq — Va(D)|| o < (c170)™ S Awpe(t) P T ||6,02, )| P

=0 p:p<|1/2] >0
with I
¢(t) = sup éq(t and A =-—— 2%m(1-2[P])
(6) =0 () P 2lPlpl(1 - 2p)!

Notice that
‘Cq _ Vq(t)} - ‘éq(ﬂ"e—Qauq)(UzH»t)/E 1 (9(702—2(%1]—11))‘ < coo.

Choosing 7y small enough in the sense taken in Proposition 5.3.21 yields the result.

Finally, similar results holds for processes &(t, x) with another initial condition. In particular, when
it is equal to 0, one can proceed exactly in the same way and bound the variance of the associated
martingale by V(t).
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5.4 Concentration around stable equilibrium
‘We recall the renormalised SPDE that interests us

do(t,z) — %[Aqﬁ(t,x) P ot 2):] dt + \% AW (t,z)

We assume that F' admits a non-bifurcating equilibrium branch ¢* in the following sense

Assumption 5.4.1 (Stable case). There exists a map ¢* : I — R such that
F(t,p*(t))=0Vtel.

Furthermore, the linearisation a(t) = 0y F(t, ¢*(t)) satisfies

—at <a(t) < —a- Vtel
for some constant a > 0.
5.4.1 Deterministic dynamics
Consider the deterministic equation
1
dg(t, ) = Z[Ad(t,z) + F(t,6(t, 2))] dt , (5.4.1)

where the renormalisation counterterm C'y vanishes for ¢ = 0. This PDE is perfectly well-defined. We
then have the following generalisation of Tihonov’s theorem (cf. [45]).

Proposition 5.4.2 (Deterministic case). There exist constants g, C' > 0 such that, when 0 < € < g,
(5.4.1) admits a particular solution ¢(t) satisfying

l6(t,) = 8" (B)eol| o < Ce WEET,

Proof of Proposition 5.4.2. The proof of Proposition 5.4.2 is almost the same as the proof of Proposi-
tion 3.2.1, the only difference being that x belongs to the two-dimensional torus. We give here only a
few hints of the proof. Recall that the drift terms F' satisfies (5.1.2) and Assumption 5.4.1. We consider
the difference 1 (t) = ¢(t) — ¢*(t)ep. Using Taylor’s formula to expand F'(t, ¢ (t) + ¢*(t)eq), we obtain
that 1) satisfies the equation

Ot ) = A1) + altb(t, ) + b1, Y, 2)) — e 6" (eolz)

where

a(t) = Oy F(t, ¢"(t)eo) ,
b(t, ) = %835}7(15, o*(t) + OY)? for some 6 € [0, 1] .

We define the Lyapounov function

1 2 1 2 L? 2
V()= 3 [l = 3 ]z + Gy} INEZP
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Its time derivative satisfies

d

2
e V() < 2OV (W) + (bt ) — S5 (AY,blt8)) — e s B Oren) . (542

dt

We introduce for a fixed C > 0, 7, the first exist-time from the set {V'(¢(¢,-)) < Co }. Then, we bound
the different terms in (5.4.2) similarly to the proof in [13]. We arrive at the relation

. 1
V<50V + O, V12

for all ¢ < 7, and some constants C, Co > 0. Using Gronwall’s inequality, we find that there exists a
particular solution satisfying V (¢ (¢, -)) = O(e?) for all t < 7. The result extends for all ¢ € I. O

5.4.2 Stochastic dynamics

For o > 0, we are interested in the deviation from the deterministic solution given by the difference

¢o = ¢ — ¢ which satisfies the SPDE
1

don(t, 2) = Z[Adolt,2) +  Folt, 2, 0(t,)):] dt + —= AW (1,2) (5.43)

where

LEo(t @, g0ty @) = F(t, 6t @) + do(t, 2)): — F(t, ¢(t, )
has similar properties as F’, and satisfies in addition Fy(¢,2,0) = 0 for all t € I and all z € T?. More
precisely, we have the following result.
Lemma 5.4.3. The renormalised forcing term is given by

n

Pyt do(t, @) = a(t)go(t, ) + Y Aj(t,x): ¢o(t,x) (5.4.4)

j=1
where the flj (t,-) belong to H' (which is embedded in Bioo)for allt € I, and are given by

n

D iA) [bt ) = 6" (1) eo()] , J=1,

A 1=2

v ) (?>Ai<t>¢<t, )" TR

= M
Proof. The binomial formula for Hermite polynomials yields
, YA o ,
Bty =) ( 4>¢>(t,1»‘)"] po(tx): .
— \J
j
Using the definition (5.1.2) of F' and swapping the sums, we obtain

n n

Btz n(ta))s = 3|3 (5) oottt o)

j=1ti=;
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(note that the terms j = 0 cancel). This proves the claim for the terms with j > 2. For j = 1, we note
that

n

a(t) = O,F(t, 9" (1)) = Y iAi(t)d" ()" .

i=1
Rearranging terms yields the claimed result. Proposition 5.4.2 shows that ¢(t,-) € H', and that
| A1 (t, )|z = O(e). By [14, Théoréme 7], powers of ¢ belong to H! as well. O

We rewrite (5.4.3) as

1 o
deo(t,z) = - [Ago(t, ) + a(t)do(t, x) + :b(t,z, do(t,2)): | dt + 7 dW(t,z) ,
where : b: denotes the sum over j in (5.4.4). Note that : b: contains a linear term in ¢»9. However, it has a
coefficient of order ¢, since ¢ and ¢* are at a distance of order . We now apply the Da Prato—Debussche
trick, and consider the difference ¢; = ¢g — . It satisfies the equation

g (t,7) = % [Ad(t,2) + a(t)br(t, ) + < bt 2, (¢, ) + u(t,2)): ] dt | (5.4.5)
where

J .
b(t, z, b (t, ) + ¢ (t,x)) ZA ta:Z()gZ)ltxJZQ/)(tx)
j=1 £=0

By Duhamel’s principle, solution of (5.4.5) is given by
I =
or(ti) = 2 [0 bty (10, 2) + i (t1,): s
€Jo

In what follows we give some technical results that will be needed several times in order to show that
¢1(t, ) belongs to a certain Besov spaces with a regularity better than the regularity of the stochastic
convolution. We recall first the following properties on products in Besov spaces which can be found,
for instance, in [20, Proposition 2.1], in [20, Lemma 3.3].

Proposition 5.4.4 (Products in Besov spaces).
1. Letp,r 2 land a4+ B > 0, with o, 5 < %. Then, if ¢ € By, and ¢ € B’Bm, one has

¢peBy,  and  |¢Yllsy, SIellsg, 1Vl (5.4.6)

where7:a+ﬁ—%.

2. Letn € N, p,r > 1 and —
one has

m<a<0. Sets:%+2oz. Then, if ¢ € By . and ¢ € By,
oy € BRDS  and \|¢£¢HBZ<)25+1M S H<Z5H§s;;,r 19l sg G47)
fort € {0,...,n— 1}, with a constant depending on «, s, p, r and n.

Proposition 5.4.5 (Schauder estimate on the heat kernel). Ler g € BY  for some o € R, and let etd
denote the heat kernel. hen there exists a constant M depending on 3 — « such that

e gl s < Mot™"%" liglsy

holds forallt > O and all B < o + 2.
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Proof. Denoting by iy, the eigenvalues of the Laplacian (cf. (5.1.3)) and by (gx)rczz the Fourier

coefficients of g, there is a constant ¢ > 0 such that

2 _ 92 — 22 _
H(Sq(etA g)HL2 _ Z e 21kt ’gk|2 <e c224¢ ||5ng%2 <e €279t 9—2qa HQH%S‘OO
ke Ay

for all q. Therefore,

=

Now we observe that for any v > 0,

9u(B—a) —5c2%1t _ 2d(B—a=27)4=v(9241)Y e~ 202t My(27)208—a=2)¢=y

by boundedness of the map z +— 27 e~ *.Choosing v = 5%0‘ yields the result.

d

Corollary 5.4.6 (Schauder estimate on convolutions with the heat kernel). Let g(t) € B ., for all

t € [0,T], where o € R. Let ¢ be the solution of

do(t,r) = %[Aw, z) +a(t)p(t,z) + g(t,z)] dt ,

starting from 0, where a € C1([0,T],R_) is bounded away from 0 (cf. (5.3.1)). Then ¢(t) €

all B < a+2andallt € [0,T), and there is a constant M = M (8 — «) such that

B-a
606 lsp _ < M50 oo fgten, )l
’ 1 ’

holds for all f < a+2and allt € [0,T).

Proof. The solution of (5.4.8) can be written as

t _
¢(t’x) = i/ ea(t,t1)/8 (et stlA g) (tlv Q?) dt; |
0

where a(t, t1) = fttl a(t2) dty is negative whenever ¢ > ¢;. Therefore

1 t Ll W
ot Mg <2 [ IE29) 0yt

B—a
1 brt—ti\~ =
<twn@-a) [(F0) T ool do

9

t
B—a _ _B—«a
<ez 'Mo(B—a) sup |g(tr,-)llng /(t—tl) z dt .
t1€[0,T7] > Jo

The integral is bounded whenever 8 < a + 2.

It follows from Proposition 5.4.4 that if ¢, € Bgoo and :yf: € By fora <0andl=0,...

then
tb(t, @, + ¢1): € By o Va < (2n—1a,

(5.4.8)

Bgoo for
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provided 5 > 1 + 2a.. By the Schauder estimate recalled in Proposition 5.4.5, the solution of (5.4.5)
belongs to By  for v < 2 — (2n + 1)|al, which allows to close the fixed-point argument, in accordance

with Theorem 5.2.1. By the embedding B; ., — B4 = C71, we see that the solution of (5.4.5) is
Holder continuous, with exponent almost 1. In other words, the solution is almost Lipschitz continuous.
The main result is then the following.

Theorem 5.4.7 (Concentration estimate for ¢1). For any choice of v < 2 and v < 1 — % there exist
constants C(T, &), M, k, ho, g0 > 0 such that, whenever € < £y and h < hge", one has

P{ sup [|¢1(t)llzy > Me " h(h + e)} < O(T,e) e~ /7"
t€[0,T 2,00

P sup or(0lles > Mehi+2) ) < O ) e
t€[0,T]

This result shows in particular that sample paths of ¢; are concentrated in a ball in C?¥~!-norm of

size

e Vo? ifo>e,

e Vo(o+¢e) = {

el=vg ifo<e.

5.4.2.1 Proof of Theorem 5.4.7

Recall that ¢; (¢, z) solves the equation

d¢1 (t7 x) = é [Agi)l (ta .T) + a(t)¢l (ta .T) + b(t, x, ¢(ta .’E) + d)l (t> l‘)) :] dt )
where 1) (¢, x) is the stochastic convolution, and
n i .
b(t,z, () + o1t x)): = ;Aj(t,x) ;} @) 1t )Y gt x)t (5.4.9)

Proof of Theorem 5.4.7 . Assume that ¥(t,-) € B, and ¢1(t,-) € Bg}oo for all t € [0,7]. The
bound (5.4.7) on products in Besov spaces shows that

. -
1 (8, )7~ (1)l ggzo -0 < M 612, )l N0, ) lsg

for a constant My = M (S, a,n), provided 8 > 1 + 2.
We treat separately the term j = 1 in the sum (5.4.9) and the remaining terms. For ;7 = 1, we use
the fact that A;(¢,-) € Bioo has a norm of order € and (5.4.6) to obtain that

s, (8, ) + 608 Dlsg. < Moe(la(t Mg+ Nt )l )

for any @ < «. For j > 2, we have a similar bound, but without the factor ¢, since the Aj are of order 1
in H'. Now let h, H € (0, 1] be constants such that

. t.
9 ) e B lat g < H-
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Summing over j, since h, H < 1 we get the existence of constants M3, My such that

noJ
I:b(t, 2,9 + 1) ||y < Moe(H + h) + Ms [HQ +Y > Hj‘fh’f]
’ =2 t=1
< My(H + h)(H+h+e)
forany & < (2n — 1)a. We now fix a y < & + 2 and introduce the stopping time

r= inf{t €0.7]: llon(t, sy _ > H} .

Then we have
P{r < T} < IP’{HE e{l,...,n}: sup||:9(t, )" g > h’f}
t<T ’
+ P{T <T, sup|:e(t, ) |lgg <A VEELL,... ,n}} . (5.4.10)
t<T !

The first term on the right-hand side can be bounded using Theorem 5.3.12. As for the second term, we
use the fact that under the condition on the Wick powers of the stochastic convolution being small, the
Schauder estimate given in Corollary 5.4.6 yields
v -

2

lor(T AT gy < Me(H+h)(H+h+e), v=1-

for a constant M. Choosing first H = 2Me "h(h + ), and then ¢ small enough and h < hoe” for a
sufficiently small /g, one can ensure that (H +h)(H 4+ h+¢) < 2h(h+¢), so that the second probability
is actually equal to zero.

To conclude the proof, we first pick a ¥ < 2, and then & € (y — 2,0), and finally o € (527,0).
We also require that 5 < -y, which is possible by choosing 3 = 1 + 2« and asking that o < —%( 1—7).
This yields the claimed result, thanks to the embedding B; |, — Bl i =Cr L O

5.5 Concentration around pitchfork bifurcation

In this section, we comment on how the results of the last section can be extended to situations where
the nonlinearity F’ fails to satisfy Assumption 5.4.1, that is, in the case of a bifurcation. In Chapter 3 and
Chapter 4 which concerned SPDEs on the one-dimensional torus, we considered the case of an avoided
transcritical bifurcation, where F' is given locally by

F(t,¢) =3 +1* = ¢" + O((t| + |¢])*)

with 0 < § < 1. In that case, there is a stable equilibrium branch ¢% () ~ /6 + t? approaching an
unstable branch ¢* (t) ~ —+/d + 2 at distance 2v/0. While the linearization a(t) = 9,F(t, $*(t))
remains positive, its value becomes small in terms of J near ¢ = 0. As a result, while the system still
behaves as in the stable case when o < (§ V €)3/4, a new behaviour emerges for o > (§ V £)%/4: it
becomes likely for sample paths to cross the unstable equilibrium branch, and travel in a short time to a
distant region of space.
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Here we illustrate how these results can be transposed to singular SPDEs on the two-dimensional
torus. However, for a change, we are going to take as an example the equation

dp(t, z) = é[Aqﬁ(t, 2) + a(t)d(t,x) — bt x)P:] dt + % AW (t,z) | (5.5.1)
which describes a pitchfork bifurcation when a(t) changes from being negative to being positive at a
time ¢t*. In the deterministic case o = 0, there is a phenomenon known as bifurcation delay: solutions
attracted by the stable equilibrium branch ¢*(¢) = 0 for ¢ < ¢* remain close to 0 for a time of order 1
beyond the bifurcation time ¢*, even though the equilibrium branch has become unstable. This is due
to the solution becoming exponentially close to 0 during the stable phase, and a time of order 1 being
required for the solution to reach again values of order 1.

In the one-dimensional SDE case, the effect of noise on such a system has been studied in [7].
The main result of that work is that sample path remain with high probability at a distance of order
oe~1/* from zero up to a time t* + O(c'/2), but are unlikely to remain close to 0 after times of order
t* 4+ O((elog(c~1))!/2). The effect of noise is thus to reduce the bifurcation delay from order 1 to order
(elog(o™1))1/2.

In order to analyse the SPDE (5.5.1), we start by carrying out the change of variables

¢(t’ ‘T) = wL(tvx) + ¢1(t’ ‘T) )

where the stochastic convolution 1) | solves the SPDE

AU (t.2) = Z[A L1 (02) + (1)) (1.2)] At + T AW 1.2)

with zero initial condition. Here the noise dW acts only on non-zero Fourier modes, implying that the
spatial average of ¢ | (¢, ) always remains equal to zero. We use the notation A | to emphasize that the
Laplacian only acts on non-zero Fourier modes, although it has the same effect as the usual Laplacian.
The resulting equation for ¢; reads

deyi(t,z) = E[Aqﬁl(t, z) +a(t)pr(t,x) + : F(o(t, ), ¢1(t, x)): ] dt + % dWo(t, z) ,

where
F(h1,01): = =t = 36107 =361 — 67 .
The next step is to split ¢ into its mean and oscillating spatial part, writing
(bl(tv x) = ¢(1)(t)60(x) + (ﬁ_(t? 1‘) ) (b(l](t) = <607 ¢1(t7 )> .

This results in the coupled SDE-SPDE system

dei(t) = é[a(t)aﬁ?(t) — A ®° + Fo(vr, ¢, é1)] dt + % AWo(t) . (5.5.2)
A61 (t,0) = ~[A16t(2) + a(t)6t (4.0) +  FL (1, 6%, 0] di (5.53)
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where Fp and : F') : are nonlocal nonlinearities given by

FO(wJJ(b??(bi—) = <€0’ :F<¢J_7 ?60 + ¢f)> ’
=00(: F(1h1, dleo + 1)1 ),
Fi(¢1,¢9,01) = F(¥1, 00+ ¢1): — Fo(vu,8), ¢7) -

We start by describing concentration properties of qﬁf. For that, given a parameter Hy > 0, we introduce
the stopping time
70(Ho) = inf{t € [0,T]: |¢7(t)| > Ho} .

Theorem 5.5.1 (Concentration estimate for (;Sf). Assume there exists a constant ag > 0 such that
a(t) < (2m)% — ag for all t € [0, T). Then for any choice of v < 2 and v < 1 — 3, there exist constants
C(T,e), M, k,ho > 0 such that, whenever h + Hp < hoe?/?, one has

IP’{ sup g (8)]lcr-1 > Me " (h+ H0)3} < O(T,e) e "M/*
tE[O,T/\T()(H())]

Proof of Theorem 5.5.1 . The proof is very similar to the proof of Theorem 5.4.7, so we only comment
on the differences. Given o < 0 and H; > 0, we introduce stopping times

ro(h) = if{r € 0.7]: max -0 (1, ) g, > b}

Itx

rU(HL) = inf{t e [0,7: |6t (t ) sy > HL} .

For any & < bav, writing 7 = 7, (h) A7 (H ) ATo(Hp), one obtains the existence of a constant M such
that, for any ¢ < 7, one has

= Fir(t), @00t ), o1 (1) llsg . < M(h+ Ho+ Hi)? .

Using Duhamel’s formula to write the solution of (5.5.3) in integral form, and the Schauder estimate in
Corollary 5.4.6 (adapted to the eigenvalues of the new linear part), one obtains

lov (¢ AT)lsy < Mie™(h + Ho+ Hy)®

for v < 1 — (v — @) and a constant M; (v) > 0, provided 1 + 2a > ~. Then it suffices to decompose
the probability as in (5.4.10). Choosing H| = 2Mye~%(h + Hy)? and h + Hy of order ¥/2 yields the
result. i

Remark 5.5.2. Note in particular the weaker condition on a(t): instead of having to stay negative, a(t)
may become positive, as long as it stays smaller than (27)2. This is because the eigenvalues of the
Laplacian A, are bounded above by —(27)2. One can easily extend the result to cases where a(t)
exceeds the value (27)2 by incorporating more Fourier modes in the variables ¢!. &

It is now relatively straightforward to extend the one-dimensional results from [7] to the SDE (5.5.2)
governing the zeroth Fourier mode. The idea is that its solution is likely to remain close, on some time
interval, to the solution of the linearised equation

1

d6°(t) = < a(t)é° (1) dt + \% AWo(t) (5.5.4)
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which is a Gaussian process, with variance

2

t t
UO(t):vO(oH% / ette gy - aft,ty) = / a(t, tz) dts .
0 t1

One can show (see [7, Lemma 4.2]) that for an initial variance v°(0) of order o2, bounded away from
zero, one has

g
= for0 <t <th— /e,
o2

vo(t) < % for —/e <t —t* < /e,
o 20(t,t*)/
—es\B)/E fort > tF + /e .
Ve ve

Note that the variance increases slowly up to time ¢* + /¢, and then increases exponentially fast. This
suggests defining sets

B_(h_) = {(t, &) € 0,6 + vE] x R: [0] < fﬁ;v"(t)} ,

. h
Buthy) = {(t.60) < "+ VET] xRs of] < - b
The first set is a union of confidence intervals associated with the variance v°(¢). The second set is
motivated by the form of the exponential growth of the variance after the bifurcation. One then has the
following generalisation of [7, Theorem 2.10] and [7, Proposition 4.7].

Theorem 5.5.3 (Behaviour of qﬁ(l) (t) near a pitchfork bifurcation). There exist positive constants M, £, ho
such that, for any ¢ < g9 and h_ < h051/2, and any t < t* + el/2 one has

hZ hZ
P{rs_(n_y <t} < C(te) exp{—%2 {1 - 0We) - O(eﬂ } : (5.5.5)
where C(t,e) = O(a(t)/e?). Furthermore, for hy = olog(c=")Y/? and any t > t* + /2, one has
hy aft,t*) —klog(o™1
P{5,(ny) > 1} < aexp{mg} +C(t,e) I8l DIVE (5.5.6)

for a constant k > 0.

The bound (5.5.5) shows that when 0 < h_ < 4/, sample paths are likely to stay in B_(h_) up to
time t* 4 /2. At time t* + /€, typical fluctuations have a size of order o~ /4. Since a(t,t*) grows
like (t — t*)?2, the bound (5.5.6) shows that sample paths are likely to leave a neighborhood of size o of
0 at times of order /¢ log(o—1).

Proof of Theorem 5.5.3. The proof is essentially the same as the proof of [7, Theorem 2.10] and [7,
Proposition 4.7], except that one has to account for the effect of the extra term Fy(v), , QS?, qSll) in the
equation. The solution of (5.5.2) admits the integral representation

ROy =6 0+ 1 [ V@) + ), ot @) an, 6550

0
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where ¢° is the solution of the linear equation (5.5.4). Proposition 4.3 in [7] provides a similar estimate
as (5.5.5) for ¢°. Furthermore, up to time 75_(;,_y A 7y (h) A 71 (H ), we have the bound

3
|~ (@0(00)) + Fo(wo (), ) (11), 6 ()] < M(”/ +h+Hl>

for a constant M. The integral over ¢; in (5.5.7) yields an extra factor 1//c. This allows to bound the
supremum of ¢?(¢) in terms of the supremum of ¢°(¢) on the event

Qnpm, = {Tw(h) ATL(HL) > TB,(h,)} .
The probability of the complement 2}, g, can be estimated by Theorems 5.3.12 and 5.5.1. Choosing
Hy=h_e V" h=h_and H =e"(h+ Hpy)?, one finds that P(Q ,; ) is negligible with respect

to the probability of ¢° leaving B_(h_[1 — O(h2 /¢)]), which proves (5.5.5).
To prove (5.5.6), we use the fact that for t < 73, (4, ) A 7y (h) A 7L (H), one has

3
|—(9(t1))® + Fo(w 1 (t1), ¢1(t1), ¢1 (t1))| < My (a(t}?)rl/Q +h+ HJ_)

hay 3
<M2(€1/4+h+HJ_>

for constants M, M. This motivates the choice h = H|; = ¢ /*h,. Proceeding as in the proof
of [7, Proposition 4.7], one obtains

h
P{s, (h,) > t,7p(h) VTL(HL) >t} < ;exp{—

3

The second term on the right-hand side of (5.5.6) bounds P{r,,(h) vV 7 (H) < t}. O
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APPENDIX A

Some technical proofs for Section 5.3

A.1 Proof of Theorem 5.3.4 for m = 2

Fix v < 0. By Definition 2.3.1, we have
P{[|:0()%: [lgg _ > h*} = P{sup 2710 o, (:0()21)]| . > 12}
2,00 q0=0
=P{300 > 0: [0, (::()%5)]| o > h220oM0 |
< S P{ 00w ():)|| o > A2t}
q0=0
The multinomial formula for Hermite polynomials given by Lemma 2.5.3 gives

B[00 g >0} < D B8 ( X fl—!,H 8 ()| o > B2l |

90=0 Inj=2 """ ¢>0
2!
<SPS S0 ([ 00 o > h221l )
q0=0 In|=2 )

For every n = (ng)o<g<log,(Iv), We introduce the canonical basis e; = (0, ..., 0, 1,0, ...) where ”1” is on
the gth place. There are two ways of writing |n| = 2, either n = 2e, or n = ¢4, + €4, Then,

P{H:UJ(-)?; HB?m > h2} < Z [P{Z;HCSQO(:(Sqw(')Q:)HLQ S %h22|a‘qo}

q=0

5203 %H5qo(<5q1¢(-)5q2w(.))HL2 > ;h22|06|%}]

= [Pl(QO) + PQ(QO)}

qo=0

We establish a bound on every probability separately. First, we decompose dg, (: 8,2 (x)?:) into its
Fourier series

Z( Z ¢k1wk2)ek(x) ifk>0

kc A k1,ka€ A
80 (:0q0()2:) = 000 (Bytb ()2 — ) = Ii'vka=k

Z Uiy gy — cq> eoz) ifk=0.

k1eA,
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We notice that cq acts only on the zero-mode of Fourier and by convention £ = 0 if and only if g9 = 0
and for any ¢ > 0, one has |k| < |k1| + |k2| < 2971, Therefore

Sg0(: 640(-)? 1) # Oifand only if go < g + 1 .

= Z wkﬂ/}—kl — Cq

kieA,

Let

and fix v € R such that ¥ = 07—2 By Markov’s inequality, we get

PN 20(@)] 2 > 342} < o VAR ool Zl@lie]

q=0

o2 /4 HE{eﬂzo(q)q ,

q=0

since the projections ¢, are independent for different ¢q. Expanding the exponential, we get

ofei] - = Safvar]

Then, by the hypercontractivity argument (2.5.4)

e(1zoa)r] < - 17E[1 20"

In fact,
E||Z0@)] =E[( 3 vrtn)’] ~ 20| 3 vivin ] +e

L kA, ki€Ay

= E- Z ¢k1w—k1¢k2¢—k2] - CC2]
_kl,kQG.Aq

= E > |¢k1|4} +E[ > ‘/’kﬁb—kl}E{ > w’@w"m] <
k1€, kieAq ka€Aq

= Z E[‘wk1‘4]’

k‘lE.Aq

It can be bounded

Stirling’s formula yields

Therefore

3
WV
o
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for any v < %2‘1. Then, we bound the product of expectations

H E [eﬁlZo(q)l} < exp{ey Z %} = exp{cov}

q=0 q=0

by summing a geometric series. We conclude that

1
P{> 11 Zo(@)]| > 7} < expleor}e /0 1y gy (A.L)

q=0

For any k > 0, let
Zi(@) = > ks

k1,k2 E.Aq
k1+ko=k

and fix another 4 = % where here we use the same symbol as before to not overload the notations. By

Markov’s inequality, we get

PIYS Ze@ent)]| 2 > ﬁh%'a‘%} < exp{—zmzlawo}x

=0 keAy,
o3 3 zk<q>ek<~>HL2}] .

keAq,

[1E

q=0

Expanding the exponential and applying the hypercontractivity inequality (2.5.4), we get

E[exp{&u 3 Zk<q>ek<->HL2}] = OUZ;p!E[H > Zi@en()ll5)]
P>

kEAg, keAq,

<YL B[l Y et

2pp)
g .
0P keAq,

}p/Q‘

Then,

B[l 3 Z@e0ls] = Y B[lz4@r)

kEAg, keAq,

- Z Z E {1% Vi, Vi, @%] .

kE.AqO k1,k2 7k/1 ,ké €Ay
ki1+ko=k
K +kh=—k

By Wick’s theorem 2.5.1, one obtain 3 different pairings for 4 random variables

E[H > Zk(fJ)ek(')Hiz] - > > (vklvkﬁkl,—kg%,% +2vklvkz5k1,fk15kz,—kg) :

kGAqO kEAqO kl,k‘g,kll,k"ZEAq
k1+ko=k
K k= —k
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Since gp > 0 due to k > 0, the first term in the bracket is zero (k; = —k» implies that £ = 0). It remains

2

Bl 3 Zdaatly] =2 3 3 s 1+]k2|!

keAq, keAqq k1,ka€Aq
k1 +k2:k

A bound of this sum is given by

> Lo« 1 1
2 X 5 5
k1,k2€A, Hk H | k2| ke, KL ||” || & — K|
k1+ko= k:
By the second triangle inequality, we get
Nk — k|| = [I1E] = |kl | = &l = 11E]l = || Eall s

the last inequality is due to the fact that & < kq Thus,

E[| Y Zu@eO):] S0t Y Y
keAy, k€Aqy k1€Aq
1 22‘10
oty 7 <
kEAq,

Z/M

4 N
||k1|| =y

Stirling formula and summing the geometric series yield

exp{’AyH Z Zk(‘l)ek(')HLZ}] < 1_»},12(1()—(1’

keAqq

E

for any v < e~! 297%_ Then, the product of expectations is bounded by

H E exp{’yH Z Zk(‘])ek(')HLz}] < H MquO—q

q=qo—1 keAq, q9=qo—1
1
< expley Y sa—a0 )
q=qo—1
where . X
Z 2a—q0 9¢—1 — 4
q=q0— q'>0
We conclude that
1 «
P{ZH > Ze(@er()]| . > 1h22“”"q°} < exp{dey} e 40 (A.12)

=20 k€A,

Combining (A.1.1) and (A.1.2), we get the following bound

Pi(qo) < expfeoyy e MU 11 gy + exp{dey} e/ (A.13)
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In second part, we develop a bound for P(qo), on the two annulus A, and A, such that ¢; < g¢o.
We express the projection into its Fourier series and we get

RORTOLRTS) S S (D SRS YO E S ACATOR

kEAqy k1EAg ko€ Aqgy kEAq,
k1+ko=k

We notice that for any ¢1, g2 > 0, one has |k| < |k1 + ko| < 29 4 2% < omax{q1,92}+1 Therefore

0g0(0g1¥(-)0gy1(+)) # O if and only if go < max{q1,q2} +1=¢q+1.

Following same arguments as before, we fix another v € R such that 4 = /0%, We use again the same
symbol to not overload the notations. By Markov’s inequality, we get

1 ~
P{ > 11600 0y ()30, ()| 12 > §h22|0‘“10} < exp{_%h22|04‘10}><

q1,92
q1<q2

11 E[eXP{W > Zk((h,@)@k(')HLz}] 7

41,92 ke A
0<q1<q2 %

By equivalence of moments (2.5.4), we get

E[exp{fyu > Zk<q1,qz>ek<->um}] < Lto-E[| Y Adawao]”

2pp)
o*Pp!
kEAq p>0 7P kEAqq

Theorem 2.5.1 of Wick gives the following pairings

E[H Z Zk(Q17CJ2)€k(')Hiz} = Z E[!Zk(th,%)b}

k€A, keAg,

_ Z Z E[wkﬂbkﬁbkg%g}

kGAqO k1 ,kll E.Aql
k2,ky € Aq,
k1+ko=k

K+ ky=—k

= Z Z (2Uklvk’15k1,—k25k/1,fk/2+Uklvk25k1,—k/15k2,fkg)'

kEAqO k1 ,kll E.Aql
k2 kheAq,
k1+ko=k

[ —

Since ¢1 < g2 then |k1|, |k]| < |ka|, |k5| therefore the first term in the bracket is zero.

2 4 1 1
E| Y Zianaeatl:] <ot > 2 IR

kE.AqO kEAqO k1 G.Aql ,k?QE.AqQ
k1+ko=k

The second triangle inequality yields

[k = Fall = [kl = lIkall | = lIR2ll = 1B Z ([l -
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Thus,
1 1 1 1
2 2 = 2 2
HZ,;A e I o] kZA e = Ko s
k1 +ho=Fk
1
S S
o2, Ikl
202
1 1
< =
< /2 Srdr< o
and

9240

DR D n——
k|| ko> 2202

kEAqy k1€Aq; ko€ Aq,
k1+ko=k

Therefore, by summing the geometric series we get

E

exp{@” Z Zk(Q1>Q2)6k(‘)HL2}] < 1_7812%_[12’

keAq,

for any v < e~! 29279 Then, the product over ¢; and ¢ is bounded

5800 (8ay (@) (@) | 2} I
I =l e Tt
q1,92 q1,92
0<q1<q2 0<q1<q2
< exp{cve E 2‘10_‘72} :
q1,92
0<q1<q2

One can see the previous sum as geometric series

1 = 1 q2
Z 2%*(]0: Z ZQQQ*(,‘{O< Z 292—40

q1<q2 g22q90—1 g1=0 g22qo0—1
q2=qo—1
qQo+q -1
< T or—1 <c(g+1).
q'>0
Finally,
Py(qo) < e70+D) g=11?2150/20) (A.14)

Choosing v = 1/(2e) and combining (A.1.3) and (A.1.4), we obtain

P{H: Y(t,-)? :HBS‘ > hQ} < Z [Cl o~/ Lig=0} + C2 or2h?2110 /o2

q0=>0

+ e (20+1) efH3h22‘a\qo/02

)
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for C'1,Cy, K1,k3 and k3 are positive constants. We approximate the sums by integrals. We have from

inequality (5.3.9) that
S a2/t () e/
q0=0
cx 6—522| oz

We consider now f(z) = e , where g = /<;3 . One can easily checks that f is decreasing.

Therefore we obtain
ST H@) = FO) + FQ) + Y fla) Se P e ey / " f@)da
q=0 q=2

Thus,

[e’] 00 1
f(z)dz < / e~ lalen@)+ee gy —9—26|a|1n<2>+c
/1 (@) 1 26|alIn(2) — ¢

‘We conclude that,
Z o't g a2 0N /0% o) grl@h? /o
q0=0

yielding the claimed result.

A.2 Proof of Lemma 5.3.9

We divide the proof of the lemma into the following two parts.

Lemma A.2.1. Forany qy = 0, t € I} and n, one has

E[X?2] = n! > Hﬁ@kgq)(t). (A2.1)

k.(‘]) kgl)7 ,k’<q)€A qu>0 =1

PORS D ki”eAqo

Proof. Let ¢ H 5qw ¢:. The L%-norm of its projection on A, is given by
q=0

10000t ) |72 = > (Pt
keAy,

where (Py)(t, x) is the projection of ¢ on the kth Fourier basis vector ex(x), given by

(Peo)(t.) = [ eosan)ett.an) doien(a)

Therefore,

E[l6w et )72 = 3 B[lA)e )]

kEAq
For a fixed k € Ay, we have

B[Pt 0] =E[ [

/ e_r(z1)p(t, x1)er(x2)@(t, x2) dry deseg(x)e_g ()

= / e—p(z1 — 22)E[(t, 31)@(t, 32)] doy dag
T2 JT?
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where

= TTE[: 0t w1)™: oyt wa)a: ]

since the projections d, and d, are independent for ¢ # ¢’. By Lemma 2.5.1, we get

E[:éqz/;(t,:nl)nq: :5q1/}(t,m2)an: ] = nq!E[éq@Z}(t,azl)éq@@(t,:cg)}nq ,

where
E[04(t,21)000(tx2) ] = Y E[thk, (), (1)) r, (1) ey (2)
k1,k2eAq
= D O (D) keer (T1)ery (22)
kl,kQE.Aq
= > b (er, (21— x2) .
kieA,
Therefore,
Elp(t,z1)p(t, z2)] = an!( Z Uk, (t)ek, (21 _x2)>nq
q=0 k1€Ay
= (H nq!) H< D Ok (1) bk, (ko ki, (21 — 962)) :
q=0 q20 “k1,....kng€Aq

Integrating over x; and x2, we get

E[(Ae)ta)f] =n > [[IIo0®

KDk e A, vg 120151

X e_r(x1 —x9)e r1 — x9) dxy dxo
/1r2 /TQ ( ) 450 kg(I)—&-...—&-k,(,‘{])( )

b D DR 1§ | EAIOLY S|

K, kD €A, Vg 170 =1

=n! Z H H ’(A)kl(q) (t) .

KO, kD e Ay, vg 120 =1
zq>0 Z?gl kgq):k

Summing over ko € Ay, yields the claimed result. O

Lemma A.2.2. There exists a numerical constant Cy such that

240 2290

< Cmlo®™

E[X2] < Ci'nle®™ 2

924[n) 922q[m]
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Proof. We have to evaluate the sum given by (A.2.1). Recall that g1 < g2 < -+ < [ denote the
indices of the [n] nonzero entries of n, and that there is a numerical constant ¢ such that

2
1+ ||k
for all t € I;. For a fixed ko € Ag,, we get the bound

Sk = | H By (B) < > 11 H

kg‘l)’“.’kﬁg])eAq’ Vq q}O =1 k(‘])7 ,k(q)GA V (]>OZ 1
2@0 Z?:ql ki'q):kO Zq>0 Z:)ql ]‘71

o (t) <

L+ H/-C ‘”H

Note that .
q
[T TT(cor®) = [T(coo)™ = (cor®)=e0"s = (o)™,
¢=01i=1 q=0

and that we can write
[n] [n] ng

MY =k =Y k9 -3 S k) (A22)
j=2 7j=1 =2
Since K] < K] < .. < K% and [1ro| < [ we
get
m [l on [n] [m] 0
\ko—zkﬁ“ DI 1uko>| DI LRSI L \»1 (A2.3)
Jj=2 Jj=11i=2 7j=2 j=11i=2
n] ng
ZHW)!HZZH’C‘” = [*oll
J=11=2

ch:l

for a numerical constant ¢ > 0. Replacing kzgql) by (A.2.2) and bounding its norm by (A.2.3), we obtain

2 il 1 i 1
Snke S (coo”)™ H( Z Hk(qj)Hz> Z

=1\, (e (@) ; ([ ||k§q["])H4
= j j ) n
Ry kg, €Ag, by e g,

For a fixed ¢;, we view these sums as Riemann sums, and integrating using polar coordinates yields

q;—1 r2

1 2%
Z k(TH? S /2 S dr < log(2%) — log(2%~") = log(2) ,

kiqj), (q] e, Hz

and

1 2l 1
- < Zar<
Z Hkﬁq[“])Hll ~ /2%11 ri dr 3 924[n]

(an))
kq (=] eAq[n]
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We conclude that
[n]

1 1
2 ; 2
Sn,ko S (COO )m ]1(61 log(Q))an 22‘1[n] - 6”0. m22‘I[n]
j=
for some numerical constant c¢;, C. The result follows again by summing over k € A,,. O
A.3 Proof of Lemma 5.3.11
We decompose the sum (5.3.13) as
1 m
Z W = Z Sm([n],0) , (A3.1)
[n|=m [n]=1

where fora € {1,...,m} and b € Ny, we define

b
_ Un)

n:n|=m
[n}:a7 q[n] +nQ[n] 240

We will estimate this sum by induction on a, for arbitrary b € Ny. For a = 1, the only possible n are
those with one component, say g, equal to m, and all other components equal to 0. Therefore,

b

q
Sm(1,0) < Z 22(q—q0)/m

q=>(qo—m)VO0

(since one must have ¢ > 0). The sum can be computed via the inequality

b!

bq

Nk

Il
o

q

valid for any z € [0,1) and b € N, which follows directly from the definitions of the polylogarithm
function and Eulerian numbers. Setting z = ﬁ, we have

Sm(1,0) < Z AR Z (gop —m+ p)bzp

q=(qo—m)V0 p=0V(m—qo)

b
< () T
=0

p=0

where (1 — z)_l < ¢1. Assume now that a > 1 and [n] = a + 1. We decompose n = n; + ny, with
[n1] = a and [n2] = 1, and |n;| = my, |n2| = mg with m; + ma = m. We may assume that the largest
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nonzero component of n appears in ny, so that g,,) = [ and gpn,] = ¢ < qy)- It follows that

b,
Sm(a+1,b) = Z Z Z 22((1[n1[]7—1110)/m

mi+ma=m q<q[n [ny|=m1
[n1]=a
iny]t0gp, 1290

mz: (a,b+1)

where we have bounded the sum over g by g[) = g[n,]- Itis then straightforward to show by induction
that

Sm(a,b) < colqo + 1) a+b—1)!

for all a, b. In particular,
Sp(a,0) < colgo + 1) Ha —1)!.

Replacing this in (A.3.1) yields the result.

A.4 Proof of Lemma 5.3.19

We decompose the sum (5.3.27) as

Km(q) = > Sm([0],0), (A4.1)
n]=1
where fora € {1,...,m} and b € Ny, we define
m!
Sm(a,b) = n_%;m n! Q(Q[n][:lf}lo)/Q ’

[n]:az Q[n] +nq[n] >q0

We will estimate this sum by induction on a, for arbitrary b € Ny. For a = 1, the only possible n are
those with one component, say g, equal to m, and all other components equal to 0. Therefore,

b
q
Sm(1,0) < Z 9(g—q0)/2

q=(qo—m)V0

(since one must have ¢ > 0). The sum can be computed via the inequality

1 7'
2l e
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valid for any z € [0,1) and b € N, which follows directly from the definitions of the polylogarithm
function and Eulerian numbers. Setting 1/ V2 = 2, we have

Sm(LD)< D 0= Y (@—m+p)’P

¢=(qo—m)V0 p=0V(m—qo)
b /b
—m b—¢ %)
SONATEWE
=0 p=0

b b—¢
. b b\ qp
< m____
S 1—2%(5)(1—2%

= 2™/2pl ¢y (qo + 1)?

where c; = (1 —2)7! =24+ /2.

Assume now that @ > 1 and [n] = a + 1. We decompose n = n; + ng, with [n;] = a and [ny] = 1,
and [nj| = my, |ng| = mg with m; + mo = m. We may assume that the largest nonzero component of
n appears in ny, so that gjy,] = gjn) and ¢n,) = ¢ < q[y)- It follows that

b
B m‘ q[nﬂ
Sm<a +1,b) = Z Z Z ny!msy! 9(dm;1—=90)/2

mi1+me=m q<q[n) [n1|=mq
[n1]=a
Q[nl] -‘rl’lq[ 1] /qO

m—1
m
< Z <m1>5’m1(avb+l) )

mi1=1

where we have bounded the sum over g by g[,) = g[n,]- Itis then straightforward to show by induction
that

Sm(a,b) < e1(V2+a —1)"(go + 1) a +b - 1)!

for all a, b. In particular,
Sp(a,0) < e1(V2+a—1)"(qo+ 1) Ha—1)!.

Replacing this in (A.4.1) yields the result, with ¢y = /2 — 1. O

A.5 Proof of Proposition 5.3.20

Using the relation (2.5.1) between Wick polynomials and monomials, we get

[ng/2] | a1
H an (5q¢(t’ '); cq) = H< Z anqlchq (6111/)@7 '))nq_ q)

=0 a0 \ 1,=0
n —2ly
= E anl H Cq tﬂ/} !
L<|n/2] >0

ng>0
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where | )
(—1)'m,! (—1)n!
an] = an.1, = _ .
n (g) nglg ql;[O 21qlq!(nq — 2]q)! 2|1|l!(n _ 21)!
ng>0 ng>0
Recall that

Sg(t,x) = ) Yu(t)ex(x

keA,

which implies

H (5(11/1(75,.’1,'))“4721(1 _ H < Z Qbkl (t)"'wkanmq (t)ekl+~~~+knq72lq <$)>

q=0 920 “ki,...kng—21,€Ag
ng>0 ng>0

ng—2l,

= Z H H ¢k£q) (t)ezn -0 E;‘g;?lq kl(q) (.1‘) )

(a) (a) q=0 =1
kq ""’knq72lq €Ay Vg nq/>0

whose projection on the kp-th Fourier basis vector is given by

ng—2l,

Pu( TGy ) = S TT T vy et

920 B(ko) 40 i=1
Ilq>0 nq>0
where the sum runs over all tuples (k%q), ey kfi)_mq) ¢>0 in the set
ng—2l
B(ko) = {%Q)""?kﬁqq)_2lq € A, Vg Z Z kl(q) _ ko} _

=0 i=1
Similar relations hold with (¢, ). We now note that

H5q0 (Qp(ta ) - @(ta )) Hi2 = Z ‘<€ko7pk0§0(t7 ) - Pko@(ta )>’2 )
ko€Aq,

where

<6k:0a Pk;o(p(t’ ) - Pk:o@(ta )>

ng—2lg ng—2l,

= > am Y [H cq H Yy (1) - [T aw" I1 iﬁkgq)(t
i=1

L:1<|n/2] B(ko) - ¢=0 q=0
ng>0 ng>0
Observe that
ng—2l, 1 ng—2l, ng—2l,
'1_[1 0 (t) = exp{—g 21 Q@ (wig1,t } H ?ﬂk(q)
1= 1=

2

e < exp{ hongy . ) (0"

)] . (A5
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for some k(q) € Ay. The definition of the partition implies that |u;; — ¢| has order 27 24ml e, and
therefore there is a numerical constant ¢ such that

1
B gak(ulﬂ,t) < o2 2 Um =0,

holds for all k € A,. Therefore,

1 ng—2lg

2 _ _
— Z @, @ (Wt1,t) — glqak(q)(uz+1,t) < coo/ng2 2 Wm=D)
i=1 ’

Replacing this in (A.5.1) yields

‘(ekm Pko(p(tﬂ ) - Pko@(tv )>‘

—2(q—a) ng—2l, R
< Z ‘anl‘ Z H ( coo|ng|2 2(d[n)—q _1) H (éq(t)lq H ‘wk(q)(t)o . (A52)
1< |n/2] ko nq>>00 I§;>>00 i=1 §
q q

Since the exponent cgyg |nq|2_2(q["] —4) jg bounded, we can write, for a numerical constant ¢,

—2(q[n)—9)
IT (eoleal™ ™ 1) < TT (errolmgl22m0))

q=0 q=0
ng>0 ng>0
fn]
< (CI’YO) H ng,
q=0
ng;>0

since the product of powers of 2 is bounded by 1 (in fact, it can even be bounded by 2-2("/=1) 'but this
just decreases the constant c;). Since

bt )72 = D Wn®),
keAq

we have the rough bound

k()2 < |0t )2 VE € A, .
Plugging the last bounds into (A.5.2), we get

‘(ekako(p(tﬂ ) - Pko@(ta )>‘

< (01’70)[n] ( H nq> Z |am|é(t) H (H5qw = 2lq)#3(/€o)

q=0 LI<|n/2] q=0
ng>0 ng>0

(@)

Finally, by counting the number of choices of the k;"’, we obtain
#B(ko) < 2% (=2M1)

This yields the claimed result, noticing that this bound is independent of kg, so summing over all kg € A,
only yields an extra factor 229 in the L?-norm squared. O
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A.6 Proof of Lemma 5.3.23

We decompose the sum as

Km,b(QO) = Z Sm,m(a7 b) y
a=1
where fora € {1,...,m} and b € Ny, we define
Sm,mo (av b) = Z qf)n}2(m0+3)q[n] exp{ —B(Tno, QO)2(q["]_q0)/m0 } .

n:n|=m
[n]=a, gn)+nq;,>q0

We will proceed similarly to the proof of Lemma 5.3.23, and estimate this sum by induction on a, for
arbitrary b € Ny. For a = 1, the only possible n are those with one component, say ¢, equal to m, and
all other components equal to 0. Then g, = ¢, and writing x4 = x V 0 we get

Srm,meo(1,0) < Z qbQ(mo+3)q eXP{_B(mO,QOﬂ(q_qO)/mO}

q=(qo—m)+

= > (qo—m+p)P2tmorderemm exp{_ﬁ(mm QO)Q(p_m)/mO}
p=(m—qo)+

:2(m0+3)(610*m) Z (QO —m4+ p)b2(mg+3)p eXp{—B(mo, q0)2(pm)/m0} .

p=(m—qo)+

One checks that for 8(my, qo) larger than a numerical constant of order 1, the general term of this sum
is decreasing in p. Estimating the sum by an integral, we get

Simmo(1,6) < ¢1(go — m)P20moF3)@o—m): eXp{—Z_m/moﬁ(mo, qo)}

for a numerical constant ¢;. Assume now that a > 1 and [n] = a + 1. We decompose n = n; + ng,
with [n1] = a and [n2] = 1, and |n;| = mq, |n2| = ma with m; + ma = m. We may assume that the
largest nonzero component of n appears in ny, so that g,,) = ¢[n) and qpn,) = ¢ < qy)- It follows that

Sm,mo (CL +1, b) = Z Z Z an]2(mo+3)Q[n] exp{ _ﬁ(mO’ q0)2(q[n]—q0)/mg}

mi+mo= m(I<q [n] \n1|—m1
[ni]=a
q[nl] +n(I[n1] >q0

Z mamo (@, 0+ 1) .

where we have bounded the sum over ¢ by gjn] = q[n,]- It is then straightforward to show by induction
that

S (,5) < cyme=Lgab=To(mo+ 3 exp{—/3<mo,qo>}

for all a, b. Summing over a and setting m = my yields the result.
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Rita NADER

Métastabilité dans des EDP stochastiques lentement dépendantes du temps
non singuliéres et singuliéres

Résumé :

On considére des équations aux dérivées partielles stochastiques (EDPS) lentement dépendantes
du temps soumises a un bruit blanc espace-temps. Ces EDPS ne sont pas toujours bien posées. On
montre que sur le tore de dimension une, ce probléme n’apparait pas. On s’intéresse a des EDPS
soumises aussi a un forcage périodique en temps. Ce dernier s’annule en trois branches
d’équilibres dont deux stables et une instable, qui s’approchent 'une de l'autre a un certain temps.
On décrit l'effet de la résonance stochastique sur le systtme. On montre I'existence d’'une
intensité de bruit critique dépendante de la période du forgage et de la distance minimale entre
les branches d’équilibres. Pour une intensité de bruit inférieure a lintensité seuil, la probabilité
que les solutions de 'EDPS passent d’un équilibre stable a l'autre est exponentiellement petite,
tandis que ces transitions ont lieu avec une probabilité exponentiellement proche de 1 pour des
intensités de bruit plus grandes. Les estimées de concentration des solutions sont données dans
des normes de Sobolev. D’'un autre coté, sur le tore de dimension deux, les EDPS ne sont pas bien
définies et une renormalisation au sens de Wick est nécessaire pour définir une solution de
’équation. On donne des estimées de concentration des solutions dans des normes de Bessov
et Holder et on montre qu’elles sont concentrées avec grande probabilité prés de la branche
d’équilibre stable. Ensuite, on discute le cas ou le systéme s’approche d’une bifurcation fourche
ou un phénomeéne intéressant a lieu : le retard a la bifurcation. Les résultats obtenus sont une
généralisation a une dimension infinie de résultats obtenus pour des EDS en dimension finie.

Mots clés : EDP stochastiques, résonance stochastique, estimées de concentration, renormalisation,
bifurcations, systémes lents-rapides

Metastability in slowly time-dependent non-singular or singular stochastic PDEs

Abstract :

We consider slowly time-dependent stochastic partial di‘erential equations (SPDEs) driven by space-
time white noise. These SPDEs are not always well-posed. On the one-dimensional torus, we show that
this problem does not occur. We are interested in SPDEs subjected also to a time-periodic driving force
which vanishes on three equilibrium branches, two of which come close to each other at particular times.
We show the e’ect of stochastic resonance on the system: the dynamic changes when the noise
intensity crosses a critical value. The probability that solutions of the SPDE make transitions between
stable equilibria is exponentially small below the threshold, while for a larger noise intensity transitions
happen with high probability. Concentration estimates of solutions are given in Sobolev norms. On the
other hand, on the two-dimensional torus, the SPDEs are ill-defined and a renormalisation in the Wick
sense is needed because space-time white noise is more singular in dimension two than in dimension
one. We show that sample paths stay near stable equilibrium branches with high probability. This
distance is measured in Besov and Holder spaces. We discuss a case involving a pitchfork bifurcation
characterized by a delay of the transition from the unstable to the stable state. The results on the one
and two-dimensional torus generalise to an infinite-dimensional setting those obtained for finite-
dimensional SDEs.

Keywords : Stochastic PDEs, stochastic resonance, sample-path estimates, renormalisation, bifurcations,
slow-fast systems
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