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Introduction (francais)

Introduction générale

Le théoréme de dilatation d’Akcoglu [1, 2| affirme que pour tout 1 < p < +00, pour tout
espace mesuré (X, p) et pour toute contraction positive 7': LP(¥) — LP(X), il existe une
isométrie J: LP(X) — LP(3), il existe un isomorphisme isométrique U: LP(X') — LP(X')
et il existe une contraction Q: LP(¥') — LP(X) tels que pour tout k > 0 on a T* = QU*J.
Ce résultat est primordial dans de nombreux domaines des opérateurs sur LP, par exemple
il est utile pour le calcul fonctionnel, en analyse harmonique ou dans la théorie ergodique.
Pour plus de détails, voir [8, 14, 31, 42, 44] ou [33, Section .

Pendant les deux derniéres décennies, la théorie des opérateurs et ’analyse har-
monique dans les espaces LP non -commutatifs ont été étudiés et beaucoup de résultats
sur LP(X), ont été transférés dans la cadre non-commutatif. Cependant le théoréme
d’Akcoglu ne peut étre étendu au cas non-commutatif. Plus précisément, si on prend
une algebre de von Neumann N équipée d’une trace normale semi-finie fidéle 7, on dit
que (N,7) est une algébre de von Neumann traciale. Pour tout 1 < p < 40, on
note LP(N) lespace LP non-commutatif associé a (N, 7). On dit qu'une contraction
T: LP(N) — LP(N) admet une p-dilatation isométrique s’il existe une autre algebre de
von Neumann traciale (N, 7'), il existe une isométrie J: LP(N) — LP(N), il existe un
isomorphisme isométrique U: LP(N) — LP(N) et une contraction Q: LP(N) — LP(N)
tels que pour tout k > 0 TF = QU*J.

LPN) 5 V)
J1 1Q
r(N) L ey
Il est démontré dans [34] que certaines contractions positives T: LP(N) — LP(N)
n’admettent pas de p-dilatation isométrique. Aprés que ce résultat a été publié, il est
devenu important d’exhiber des classes de contractions positives dans les espaces LP non-
commutatifs qui admettent une p-dilatation isométrique. Pour des résultats de ce type,
on peut regarder par exemple dans [35, Chapters 8-10], [4, 5] ou [32]. En particulier,
dans Darticle [4], C. Arhancet montre que tout multiplicateur de Schur B(I2) — B(I2)
auto-adjoint, unitaire et positif est absolument dilatable, donc il admet une p-dilatation
isométrique (voir ci-dessous). Il démontre aussi que, pour tout groupe discret G, tout
multiplicateur de Fourier VN(G) — V N(G) auto-adjoint, unitaire et complétement posi-
tif est absolument dilatable.
La notion d’absolument dilatable est la suivante. Soit (N,7) une algébre de von
Neumann traciale et soit une contraction 7: N — N, on dit que T est absolument
dilatable (ou admet une dilatation absolue) s’il existe une autre algebre de von Neumann

5



traciale (N, 7'), il existe un *-homomorphisme préfaiblement continu, préservant la trace
et unitaire J: N — N et un =automorphisme préservant la trace U: N' — N tel que
pour tout k > 0 TF = EU*J, ot E: N — N est l’espérance conditionnelle associée & J.

W, LW,
J 1 |E (0.0.1)

N7 5V

Il s’avere que si T: N — N est absolument dilatable, alors, pour tout 1 < p < 400,
T s’étend en une contraction positive admettant une p-dilatation isométrique (voir la
proposition 1.3.5). La notion de dilatation absolue apparait implicitement dans [4, 5,
41, 28, 35|. Beaucoup de constructions de p-dilatations isométriques pour des classes
d’opérateurs de LP proviennent de dilatations absolues. De plus les dilatations absolues
sont étroitement liées aux opérateurs factorisables [3, 28, 56].

Une autre propriété de dilatation est la notion de complétement p-dilatable. Elle
est analogue a la notion de p-dilatation isométrique mais J et () sont des contractions
complétes et U est une isométrie compléte inversible. De plus si T: N — N est une di-
latation absolue, alors pour tout 1 < p < 400, T s’étend en une contraction complétement
p-dilatable sur LP(N) (voir la proposition 1.3.8).

L’objet de cette thése est I'étude des propriétés de dilatation de différentes classes
d’opérateurs. En particulier on regarde les multiplicateurs de Schur dans les parties 2,3,4
et les multiplicateurs de Fourier dans la partie 5. De plus, dans chacun cas on regarde
un dilatation jointe pour une famille finie de tels opérateurs. L’article [54] donne des
résultats dans ce cas.

Contenu de la thése

La thése commence avec toutes les définitions et propriétés nécessaires sur les multi-
plicateurs de Schur, les multiplicateurs de Fourier et les dilatations. D’abord, on se
focalisera sur les multiplicateurs de Schur. On prouvera que tout multiplicateur de Schur
mesurable, auto-adjoint, unitaire et positif est absolument dilatable. On caractérisera
alors le fait qu’un multiplicateur de Schur est absolument dilatable. Ensuite on démon-
trera une caractérisation pour les multiplicateurs de Schur unitaux, positifs et compléte-
ment p-dilatable dans le cas de la dimension finie puis dans le cas discret. On finira par
étudier les multiplicateurs de Fourier. On prouvera que tout multiplicateur de Fourier
auto-adjoint, unitaire et complétement positif est absolument dilatable.

Premiére partie

L’objet de ce chapitre est de présenter les outils qui seront utilisés dans notre travail.
On présentera d’abord les espaces LP non commutatifs. Ainsi, on travaillera avec une
algébre de von Neumann équipée d’une trace normale semi-finie et fidéle. Les espaces
LP non-commutatifs sont une généralisation des espaces LP(X) classiques ou (X, F(X), u)
est un espace mesuré. On considérera aussi les algébres de von Neumann a un poids. La
construction des espaces LP a partir d'une algébre de von Neumann a poids est fondée sur
le produit croisé. Les propriétés de ces espaces LP a poids sont similaires au cas tracial.




Dans cette partie on présentera aussi les différents types de dilatation cités précédem-
ment. Ensuite on donnera la définition des multiplicateurs de Schur et la définition des
multiplicateurs de Fourier ainsi que leur propriétés de base. On note B(L?*(X)) I'espace
des opérateurs bornés sur L?(¥) associé a un espace mesuré o-fini (3, p). L’étude des
multiplicateurs de Schur agissant sur B(L?*(X)) remonte au moins & Haagerup [26] et
Spronk [59]. Le papier de Haagerup-Musat [28] donne une caractérisation des multipli-
cateurs de Schur admettant une dilatation absolue dans le cas de la dimension finie. On
présentera trois types de multiplicateurs de Schur en fonction de le forme de l'espace
L? considéré. La définition dans le cas mesurable est la suivante: soit (3, ¢) un espace
mesuré o-fini, pour tout f € L*(X?), on note Sy: L*(X) — L*(X) Popérateur borné défini
par

[S¢(R)](s) = L f(s,t)h(t) dt, he L*(%).

L’opérateur Sy € S?(L*(X)) est un opérateur de Hilbert-Schmidt. De plus, 'application
[+ S} est un unitaire de L*(X?) dans S?*(L*(X)).
Soit p € L*(X?), on définit M,: S*(L*(X)) — S?*(L*(X)) par

My (Sy) = Ser, fe (7).

Cet opérateur est appelé opérateur de multiplication de Schur. De plus, s’il existe C' > 0
telle que

My () B2y < C|S| B2y, SeS*HLA(D)).

On dit que M,, est un multiplicateur de Schur mesurable sur B(L*(X)) (ou multiplicateur
de Schur borné).

Une autre famille classique d’opérateurs est la famille des multiplicateurs de Fourier
sur VN(G) ou G est un groupe localement compact. Ce sujet a beaucoup d’applications
aux propriétés d’approximation d’algébres d’opérateurs, en probabilités non-commutatives,
en information quantique, aux intégrales singuliéres ou aux opérateurs de Calderon-
Zygmund (voir [6, 24, 36, 37, 43, 47, 48|). On introduira les multiplicateurs de Fourier
dans le cas non unimodulaire puis dans le cas unimodulaire.

Soit G un groupe localement compact, on note A\: G — B(L?*(G)) la représentation
réguliere & gauche de GG. On définit I'algebre de von Neumann associée au groupe G
par VN(G) = MG)" < B(L*(G)). On note wg : VN(G); —> [0;+0] le poids de
Plancherel sur VN (G), qui est une trace dans le cas unimodulaire. On dit quun opérateur
préfaiblement continu 7' : VN(G) — VN(G) est un multiplicateur de Fourier, s’il existe
une fonction continue bornée u: G — C telle que pour tout s € G, T'(A(s)) = u(s)A(s).

La derniére partie de ce chapitre portera sur les espaces de Fock. Le but est de cet
espace est de construire une algebre de von Neumann & partir d'un espace de Hilbert
réel.

Seconde partie

On a mentionné plus tot 'article de C.Arhancet [4]. Il a prouvé que tout multiplicateur de
Schur auto-adjoint unitaire et positif de B(¢2) dans B(¢%) admet une dilatation absolue.
Son article repose sur une construction d’E. Ricard introduite dans [56]. L’objectif de
cette partie est de généraliser ce résultat aux multiplicateurs de Schur mesurables.

7



Théoréme (A). Soit & un espace mesuré o-fini et soit ¢ € L*(X?), on suppose que M,
est un multiplicateur de Schur auto-adjoint unitaire et positif sur B(L*(X)). Alors M,
est absolument dilatable.

On regardera aussi la version multi-variables du théoréme précédent. On obtient le
théoréme suivant:

Théoréme (C). Soit ¢1,...,p, € L*(X?) et supposons que les My, sont des multipli-
cateurs de Schur auto-adjoints unitaires et positifs sur B(L*(X)). Alors il existe une
algébre de von Neumann traciale (M, T), un n-uple d’+-homomorphismes préservant la
trace (Uy, ..., U,) qui commutent entre euzx sur M et un homomorphisme injectif préser-
vant la trace et préfaiblement continu J : B(L*(X)) — M tels que pour tout k; € Ny,
1<i<n,

k kn _ k kn
Mk ME = EU - UF T
ou B : M — B(L*(X)) est l’espérance conditionnelle associée a J.

On a ainsi une condition suffisante pour un multiplicateur de Schur d’admettre une
dilatation absolue. L’idée de la prochaine partie est de retirer I’hypothése auto-adjoint
du multiplicateur de Schur et de voir ce que l'on obtient.

Troisiéme partie

Le but de cette partie est d’établir une caractérisation pour les multiplicateurs de Schur
de B(L*(X)) dans B(L?*(X)) absolument dilatables. On introduit dans cette partie une
nouvelle notion de dilatation. On dit qu’un opérateur T': N — N admet une dilatation
absolue séparable si N a un prédual séparable et que T vérifie (0.0.1) avec un N possédant
un prédual séparable aussi.

On regarde déja le cas discret. Pour tout n > 1, on note M,, I'espace des matrices
de taille n x n & coefficients complexes. Soit m = {my;};;>1 une famille de nombres
complexes. On rappelle que m est un multiplicateur de Schur borné s’il existe un (néces-
sairement unique) opérateur préfaiblement continu My : B(¢?) — B(f?) tel que pour
tout n > 1 et pour tout [a;;] € M,, = B(¢*) Mu([a;;]) = [ms;a;]. On montrera que My,
admet une dilatation absolue si et seulement si il existe une algébre de von Neumann
traciale normalisée (N, 7y) avec un prédual séparable et il existe une suite d'unitaires de
N (dg)k=1, tels que

Dans ce cas, M, admet en fait une dilatation absolue séparable, voir corollaire 3.5.2.
Dans le cas général, 'espace des familles bornées, dont les coefficients sont dans
une algebre de von Neumann N qui a un prédual séparable, est remplacé par 1'espace
L¥(X; N) qui est 'ensemble des (classes de ) fonctions essentiellement bornées et w*-
mesurables de ¥ dans N. Ces espaces sont utilisés dans e.g [58, Theorem 1.22.13]. On a
'identification LX(X; N) ~ L®(X)®N, pour plus de détails voir la section 3.1.
A noter que dans le cas général, (0.0.2) est remplacée par (0.0.3).

Théoréme. On suppose que (3, 1) est séparable et soit ¢ € L*(X?), les assertions suiv-
antes sont équivalentes:




(i) la fonction ¢ est un multiplicateur de Schur borné et M,: B(L*(X)) — B(L*(%))
admet une dilatation absolue séparable;

(i1) il existe une algébre de von Neumann traciale normalisée (N, Ty) qui est a prédual
séparable et un unitaire 0 € L (X; N) tels que

o(s,t) = v (0(s)*0(1)), pour presque tout (s,t) € X2, (0.0.3)

On donnera une version du théoréme précédent dans le cas des multiplicateurs de
Schur qui admettent une dilatation absolue (non nécessairement séparable). Cette version
est dans le langage des produits tensoriels.

Théoréme. Soit p € L*(X?) et soit e € L*(X) tel que |es = 1, les assertions suivantes
sont équivalentes:

(i) la fonction ¢ est un multiplicateur de Schur et M,: B(L*(X)) — B(L*(X)) est
absolument dilatable;

(i) il existe une algébre de von Neumann traciale normalisée (N, Ty) agissant sur un
espace de Hilbert H, et un unitaire D € L*(X)®B(H) tels que:

(i1); le produit (1, ® D¥)(1, ® Dy) est dans L (X)RLF (X)RXN et on a
¢ = [Ipe2@mn] (L ® D) (1, ® Dy));

(ii)y la trace de D*(e ® e ® Iy)D dans B(L*(X))®N est égale 1.

Quatriéme partie

Dans la section 4.1, on considérera des propriétés de dilatation pour les multiplicateurs de
Schur, unitaires et positifs, sur les matrices. On prend T}, : M,, — M,, un multiplicateur
de Schur défini par T ([aij]1<ij<n) = [M4j@ij]1<ij<n, POUr toute matrice A = [a;;]1<ij<n-
On suppose que T); est unitaire et positif. On prouvera que si Ty, (vu comme agissant
sur S?) est complétement p-dilatable pour un certain 1 < p # 2 < +0 alors il existe une
algeébre de von Neumann traciale normalisée (N, 7) et il existe des unitaires vy, ..., v, de
N tels que pour tout 1 < 1,7 <n,

mi; = 7(v]v;).

En combinant ceci avec les résultats de [28], on en déduit que tout multiplicateur de Schur
Ty comme précédemment est complétement p-dilatable pour un certain 1 < p # 2 < 4+
si et seulement si Ty, est absolument dilatable.

Dans la section 4.2, on étendra le théoréme précédent aux multiplicateurs de Schur
sur B(I*(I)) ou I est une famille infinie d’indices. On obtiendra le théoréme suivant:

Théoréme. Soit Ty un multiplicateur de Schur unitaire, positif et borné sur B(I*(I)),
les assertions suivantes sont équivalentes:

1. il existe 1 < p # 2 < +00 tel que Ty est complétement p-dilatable;

2. pour tout 1 < p < 400, Ty est completement p-dilatable;




3. Ty est absolument dilatable;

4. il existe une algébre de von Neumann traciale normalisée (N, T) et il existe une
famille d’unitaires de N (v;);er tel que pour tout i,j € I:

mi; = 7(v]v;).

Dans la derniére section de ce chapitre, on considérera des familles finies de multipli-
cateurs de Schur qui sont simultanément absolument dilatable. On obtiendra que toute
famille finie de multiplicateurs de Schur est simultanément absolument dilatable si et
seulement si chaque multiplicateur de Schur est absolument dilatable.

Cinquiéme partie

L’objectif de cette partie est de prouver que tout multiplicateur de Fourier sur VN (G)
auto-adjoint, unitaire et complétement positif est absolument dilatable. On traitera deux
cas. Le premier: on supposera que G est un groupe unimodulaire. Dans un second temps
on retirera I’hypothése unimodulaire. La démonstration est assez similaire dans les deux
cas. Cependant dans le cas non unimodulaire, on perd la propriété traciale du poids
de Plancherel. La notion de dilatation absolue doit ainsi étre modifiée pour inclure les
espaces LP a poids. Le théoréme principal de cette partie est le suivant:

Théoréme. Soit T, : VN(G) — VN(G) un multiplicateur de Fourier auto-adjoint,
unitaire et complétement positif, alors T, est absolument dilatable.

Comme dans la deuxiéme partie, on généralisera le théoréme précédent pour un n-
uple de multiplicateurs de Fourier auto-adjoints, unitaires et complétement positifs. On
établira donc le résultat suivant.

Théoréme (D). Soit G un groupe localement compact et soient T, ..., T,, des multi-
plicateurs de Fourier sur VN(G) auto-adjoints, unitaires et complétement positifs. Alors
il existe une algébre de von Neumann traciale (M, T), un n-uplet de =-automorphismes
sur M préservant la trace et commutant entre eux (Uy,...,U,) et un x-homomorphisme
injectif, préservant la trace et préfaiblement continu J : VN(G) — M tels que pour tout
k?i € No, 1 < ) <n

Ty Tiy =BU - U,

ou E: M — B(L*(X)) est 'espérance conditionnelle associée a J.
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Cette these repose sur trois articles. La partie 2 et le début de la partie 5 viennent
de larticle:
e C.Duquet, Dilation properties of measurable Schur multipliers and Fourier multipliers,
Positivity. Volume 26, 2022, n.4, Paper No. 69.

La troisiéme partie est fondée sur I'article:
e C.Duquet and C.Le Merdy, A characterization of absolutely dilatable Schur Multipliers,
https://arxiv.org/abs,/2303.08436, 2023.

Enfin la quatriéme partie fera ’objet d’un article en cours d’écriture nommé Unital
positive Schur multipliers on S? with a completely isometric dilation.
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Introduction

General introduction

Akcoglu’s dilation theorem [1, 2] asserts that for any 1 < p < oo, for any measure space
(33, 1) and for any positive contraction T': LP(¥X) — LP(X), there exist another measure
space (X', ), an isometry J: LP(¥) — LP(X'), an isometric isomorphism U: LP(¥') —
LP(¥) and a contraction Q: LP(X') — LP(X) such that T% = QU*J for all integer k > 0.
This result is of paramount importance in various topics concerning LP-operators, such
as functional calculus, harmonic analysis and ergodic theory. For specific results, see
[8, 14, 31, 42, 44] as well as [33, Section I| and the references therein.

In the last two decades, operator theory and harmonic analysis on non-commutative
LP-spaces gained a lot of interest and many classical results concerning LP(X)-spaces
have been transferred to the non-commutative setting. However Akcoglu’s theorem does
not extend to non-commutative LP-spaces. More precisely, let N be a von Neumann
algebra equipped with a normal semi-finite faithful trace 7. In this situation, we say
that (N,7) is a tracial von Neumann algebra. Let 1 < p < oo and let LP(N) be the
associated non-commutative LP-space. Let us say that a contraction T': LP(N) — LP(N)
admits an isometric p-dilation if there exist another tracial von Neumann algebra (N, 7/),
an isometry J: LP(N) — LP(N), an isometric isomorphism U: LP(N) — LP(N) and a
contraction Q: LP(N') — LP(N) such that T% = QU*J for all integer k = 0.

W) 5w
J1 1Q

Tk

r(N) I )

Then it was shown in [34] that not all positive contractions 7": LP(N) — LP(N) admit
an isometric p-dilation. After this negative result was published, it became important to
exhibit classes of positive contractions on non-commutative LP-spaces which do admit an
isometric p-dilation. For results of this type, see for example [35, Chapters 8-10], [4, 5]
and [32]. More precisely, in the article [4], C. Arhancet proved that any self-adjoint unital
positive Schur multiplier B(I2) — B(I%) is absolutely dilatable and that whenever G is
discrete group, any self-adjoint unital completely positive Fourier multiplier VN(G) —
V N(QG) is absolutely dilatable. Thus it admits an isometric p-dilation.

The notion of absolutely dilatable is the following. Consider (N, 7) as above and
let T: N — N be a contraction. We say that T is absolutely dilatable (or admits
an absolute dilation) if there exist another tracial von Neumann algebra (N, 7), a w*-

continuous trace preserving unital *-homomorphim J: N — A and a trace preserving
+-automomorphim U: ANV — N such that T% = EU*J for all k > 0, where E: N’ — N is
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the conditional expectation associated with J.

W, LS W)
J 1 |E (0.0.4)

k

(N,7) 1> (N,7)

It turns out that if T: N — N is absolutely dilatable, then for all 1 < p < o0, T' extends
to a positive contraction on LP(N) which admits an isometric p-dilation (see Proposi-
tion 1.3.5). Absolute dilations appear implicitly in [4, 5, 41, 28, 35] and many known
constructions of isometric p-dilations for specific classes of LP(N)-operators arise from
absolute dilations. Also, absolute dilations are closely related to the so-called factorisable
operators [3, 28, 56].

Another related dilation property is the completely p-dilatable property. This notion
is analogue to the notion isometric p-dilation but J and @) are complete contractions and
U is a invertible complete isometry. In addition, if 7": N — N is absolutely dilatable,
then for all 1 < p < +0o0, T extends to a positive completely p-dilatable contraction on
LP(N) (See Proposition 1.3.8).

The purpose of this thesis is to study dilation properties of different classes of oper-
ators. In particular we look at Schur multipliers in part 2,3,4 and Fourier multipliers in
part 5. In addition, we establish a multi-variable version in each case. In Article [54],
results about mutli-variables are proved.

Contents of the thesis

This thesis starts with all definitions and needed properties of Schur Multipliers, Fourier
Multipliers and Dilations. Firstly we will focus on Schur multipliers. We prove that
any self-adjoint unital positive measurable Schur multiplier admits a absolute dilation.
Then we characterize the fact that a measurable Schur multiplier is absolutely dilatable.
Next we prove a characterisation for unital, positive, completely p-dilatable Schur mul-
tipliers in the finite dimensional case and in the discrete case. In the last part, we study
Fourier multiplier. We will prove that any self-adjoint, unital, completely positive Fourier
multiplier is absolutely dilatable.

First part

This first chapter is devoted to all tools that we use in our work. Firstly we present
the classical non-commutative LP-Spaces. In this case, we work with a von Neumann
algebra equipped with a normal semi-finite faithful trace. Non-commutative LP-Spaces
are a generalisation of the LP-spaces LP(X) where (2, F(X), 1) a measure space. We also
consider von Neumann algebras equipped with a weight, and the non-commutative LP-
spaces associated to them. The construction of these LP-spaces is based on the crossed
product. Properties of these spaces are similar to the ones associated to traces.

In this part, we also present the different types of dilation previously mentioned.
Next we give definitions of Schur Multipliers and Fourier Multipliers. We also recall ba-
sic properties. The study of bounded Schur multipliers acting on B(L?(X)), the space of
bounded operators on the L2-space associated with a o-finite measure space (3, i) goes
back at least to Haagerup [26] and Spronk [59]. Further the Haagerup-Musat paper [28|
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provides a characterization of absolutely dilatable Schur multipliers in the finite dimen-
sional setting. We present three types of Schur multipliers depending of the considered
L? space. We recall the definition in measurable case. Let (X, i) be a o-finite measure
space. For any f € L?(X?), we let Sp: L*(X) — L*(X) be the bounded operator defined
by

1S, (m)](s) = f fs.Oh@)dt,  he I3

We recall that S; is a Hilbert-Schmidt operator, that is, S; € S?(L?(X)). Further the
mapping f — S is a unitary from L?*(¥?) onto S*(L*(X)).
Let ¢ € L*(X?). We define M,: S*(L*(X)) — S*(L*(X)) by setting

My (S5) = Sef, fe (7).

This operator is called a Schur multiplication operator. Furthermore there exists C' > 0
such that

Mo ()2 < ClSIBuewy, S SHLA(D)).

We say that M, is a measurable Schur multiplier on B(L*(X)) (or a bounded Schur
multiplier).

Another classical family of operators is the family of Fourier multipliers VN (G) —
VN(G) where G is a locally compact group. This topic have a lot of applications
to approximation properties of operator algebras, to noncommutative probability and
quantum information and to singular integrals and Calderon-Zygmund operators. See
[6, 24, 36, 37, 43, 47, 48]. We introduce Fourier multipliers in two cases: in the non
unimodular case and in the unimodular case.

Let G be a locally compact group. We let VN(G) = A\(G)” = B(L*(G)) be the group
von Neumann algebra of G where A\: G — B(L?*(G)) is the left regular representation of
G. We denote the Plancherel weight on V N (G) by wg, which is a trace in the unimodular
case. We say that a w*-continuous operator 7" : VN (G) — VN (G) is a Fourier multiplier,
if there exists a bounded continuous function v : G — C such that for all s € G,
T(A(s)) = u(s)A(s).

The last part of this chapter is devoted to Fock Spaces. The purpose of this space is
to construct a von Neumann algebra from real Hilbert space.

Second part

We mentioned earlier the C.Arhancet article [4]. He proved that any self-adjoint unital
positive Schur multiplier from B(¢%) into B(¢%) admits an absolute dilation. This article
is base on a construction of E. Ricard in [56]. The purpose of the part is to generalize
this result to measurable Schur multipliers.

Theorem (A). Let ¥ be a o-finite measure space. Let p € L*(X?) and assume that M,

is a self-adjoint, unital, positive Schur multiplier on B(L*(X)). Then M, is absolutely
dilatable.

We will look at the mutli-variable of the previous theorem. We obtain the following
theorem.
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Theorem (C). Let ¢1,..., 0, € L¥(X?) and assume each M,, is a self-adjoint, unital,
positive Schur multiplier on B(L*(X)). Then there exist a tracial von Neumann algebra
(M, T), a commuting n-tuple (Uy, ..., U,) of trace preserving *-automorphisms on M and
a w*-continuous trace preserving one-to-one x-homomorphism J : B(L*(X)) — M such
that

k1 kn __ k1 kn
Mb L ME— RUR U

for all k; € Nog, 1 < i < n, where E : M — B(L*(X)) is the conditional expectation
associated with J.

Thus we have a sufficient condition for a Schur multiplier to admit a absolute dilation.
The idea of next part is to remove the self-adjoint hypothesis and see what we can obtain.

Third part

The objective of this part is to establish a characterization of absolutely dilatable Schur
multipliers B(L*(X)) — B(L?*(X)) in the general case. We introduce a new notion of
dilation. We say that an operator 7': N — N admits a separable absolute dilation if N
has a separable predual and if T" verifies (0.0.4) for some N with a separable predual.

Let us start with the discrete case. For any n > 1, let M,, denote the space of n x n
matrices with complex entries. Let m = {my;};;j>1 be a family of complex numbers.
Recall that m is a bounded Schur multiplier if there exists a (necessarily unique) w*-
continuous operator My: B(?) — B((?) such that My ([a;]) = [mijai;] for all n > 1
and all [a;;] € M,, © B(¢*). We show that M,, admits an absolute dilation if and only
if there exist a normalized tracial von Neumann algebra (N, 7y) with separable predual
and a sequence (dy)g>1 of unitaries of N such that

miy = Tn(didy), 1,5 =1 (0.0.5)

In this case, M,, actually admits a separable absolute dilation, see Corollary 3.5.2.

In the general separable case, spaces of bounded families with entries in a von Neu-
mann algebra N with a separable predual are replaced by spaces L¥(3; N) consisting of
(classes of ) w*-measurable essentially bounded functions ¥ — N. These spaces are used
e.g. in [58, Theorem 1.22.13] and we have an identification LY (X; N) ~ L*(X)QN, see
Section 3.1 for details and information.

Note that is this general case, (0.0.6) replaces (0.0.5).

Theorem. Assume that (3, i) is separable and let ¢ € L*(X?). The following assertions
are equivalent.

(i) The function ¢ is a bounded Schur multiplier and M,: B(L*(X)) — B(L*(X))
admits a separable absolute dilation.

(ii) There exist a normalized tracial von Neumann algebra (N, Tn) with a separable
predual and a unitary 9 € L (3; N) such that

e(s,t) = v (0(s)*0(1)), for a.e. (s,t) € X2 (0.0.6)
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We give a version of the previous theorem for Schur multipliers which admit a (not
necessarily separable) absolute dilation. This version is in the language of von Neumann
tensor products.

Theorem. Let p € L*(X?) and let e € L*(X) with |e|s = 1. The following assertions
are equivalent.

(i) The function ¢ is a bounded Schur multiplier and M,: B(L*(X)) — B(L*(X)) is
absolutely dilatable.

(ii) There ezist a normalized tracial von Neumann algebra (N,Ty) acting on some
Hilbert space H, and a unitary D € L*(X)®B(H) such that:

(i), The product (1; ® D¥)(1 ® D;) belongs to LY (L)RLP(X)QN and we have
p = [T @7 ] (1 ® DF) (1, ® Dy)).

(ii)y The trace of D*(e® e ® I)D in B(L*(X))®N is equal to 1.

Fourth part

In Section 4.1, we consider dilation properties of unital positive Schur multipliers on
matrices. Let Ty : M,, — M, be the Schur multiplier defined by T ([aij|i<ij<n) =
[m;aij]1<i j<n, for some A = [a;;]1<ij<n I M,. Assume that T); is unital and positive.
We prove that if Th; (regarded as acting on SP) is completely p-dilatable for some 1 <
p # 2 < +o0, then there exist a tracial normalised von Neumann algebra (N, 7) and
unitaries vy, ..., v, in N such that for all 1 <1,5 < n,

mg; = T(U;Uj).

By combining with results of [28], we deduce that any Schur multiplier T}, as before is
completely p-dilatable for some 1 < p # 2 < +o0 if and only if T}, is absolutely dilatable.

In Section 4.2, we extend the above result to Schur multipliers on B(I*(I)) for any
infinite index set . We obtain this theorem

Theorem. Let Ty, be a unital positive bounded Schur multiplier on B(1*(I)). The fol-
lowing assertions are equivalent:

1. there exists 1 < p # 2 < 4+ such that Ty s completely p-dilatable;
for all 1 < p < +o0, Ty 1s completely p-dilatable;

T 1s absolutely dilatable;

there exist a tracial normalised von Neumann algebra (N, 1) and a family (v;)ie; of
unitaries of N such that for alli,j € I:

mij = T(U?'Uj).

In the last section of this chapter, we consider simultaneous absolute dilations for
finite families of Schur multipliers. We obtain that a finite family of Schur multipliers
is simultaneously absolutely dilatable if and only if each of these Schur multipliers is
absolutely dilatable.
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Fifth part

The purpose of the part is to prove that any self-adjoint, unital and completely positive
Fourier multiplier on VN (G) is absolutely dilatable. We will treat two different cases.
In the first one, we will suppose that G is unimodular locally group. In the second, we
remove the unimodular hypothesis. The proof of both cases is quite the same. However,
in the non unimodular case, we lose the tracial property of the Plancherel weight. We
have to change the notion of absolute dilation to include weighted LP-spaces. The main
theorem is the following:

Theorem (B). Let T, : VN(G) — VN(G) be a self-adjoint, unital, completely positive
Fourier multiplier. Then T, s absolutely dilatable.

As in the second part, we will generalize above Theorem for any n-tuple of either
Fourier multipliers satisfying the assumptions of Theorems B. We will establish the fol-
lowing result.

Theorem (D). Let G be a locally compact group and let T,,,...,T,, be self-adjoint,
unital, completely positive Fourier multipliers on VN(G). Then there exist a tracial
von Neumann algebra (M, T), a commuting n-tuple (Uy,...,U,) of trace preserving =-
automorphisms on M and a w*-continuous trace preserving one-to-one *-homomorphism
J:VN(G) — M such that

Tfll~--Tf:=EUf1---Uff”J

for all ki € Ng, 1 < i < n, where E : M — B(L*(X)) is the conditional expectation
assoctated with J.

This Thesis is based on three articles. Part 2 and Beginning of Part 5 comes from
Article:
e C.Duquet, Dilation properties of measurable Schur multipliers and Fourier multipliers,
Positivity. Volume 26, 2022, n.4, Paper No. 69.

The third part is based on Article:
e C.Duquet and C.Le Merdy, A characterization of absolutely dilatable Schur Multipliers,
https://arxiv.org/abs/2303.08436, 2023.

Finally the fourth part will be a future article named Unital positive Schur multipliers
on SP with a completely isometric dilation.
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Chapter 1

Tools

1.1 Notation

For any Banach space X and any (x,2*) € X x X* we let (x*, x) denote the action of
x* on x. Whenever H is a Hilbert space, we let (-, )y denote the inner product on H,
that we assume linear in the first variable and anti-linear in the second variable.

1.2 Non-commutative LP-spaces

1.2.1 Tracial LP-spaces

Let N be a von Neumann algebra. We let N, denote its positive part and unless otherwise
stated, we let 1y denote its unit. If NV is equiped with a normal semi-finite faithful trace
Tn: Ny — [0,00], we say that (IV,7y) is a tracial von Neumann algebra. We further
say that (NN, 7y) is normalized if 75(1y) = 1. In this case, 7y is finite and extends to a
normal tracial state on V.

Given any tracial von Neumann algebra (N, 7y) acting on some Hilbert space H.
Let L°(N, 7x) denote the #-algebra of all possibly unbounded operators on H which are
measurable respect to 7n. Let z be a closed densely defined operator on H. We let
D(z) < H denote the domain of z. If x is selfadjoint, then we let s(x) : H — H denote
the support of x, which is equal to the orthogonal projection whose range is Im(z). The
map 7y extends naturally to a functional on the positive part of L°(IN, 7y) into [0, c0].
We still denote it by 7. Any x € Ly(N) admits a (unique) polar decomposition = = u|z|
with uw € N and |z| € Lo(N). For 1 < p < +o0, the noncommutative LP-space associated
with (N, 7xn) is defined as

LP(N) := {w € Lo(N) : mn(jz]’) < +o0}.

This is a Banach space for the norm |z], = (7’(|x|p))% In addition we recall that
LP(N,7n)+ = LP(N,7n) N Lo(N,7n)+ and for all elements x of LP(N,7y), z* belongs
to LP(N,7yn). We further set L*(N) = N. It turns out that N n LP(N, 7y) is dense in
Lp(N, TN).

The trace 7y is finite on L'(N,7xy) n N, and extends to a functional on L'(N, 7y),
still denoted by 7. Let 1 < p < o0 and let p' = zﬁ be its conjugate index. For any
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/

xr € LP(N,7y) and any y € L? (N, 7y), the product zy belongs to L'(N, 7y) and we have
a Holder inequality |7n(zy)| < |z|,|y[,- We further have an isometric isomorphism

LP(N,75)* ~ L” (N, 7x),

for the duality pairing given by (y, ) = 7y (xy) for all z € LP(N, 7y) and y € LP (N, 7).
In particular,

N ~ LY(N, 7y)*. (1.2.1)

The space L*(N, 7x) is a Hilbert space, with inner product given by {z, y)r2(nry) =
7 (zy*) for all x,y € L*(N, 1y).

Let H be a Hilbert space and let B(H) denote the von Neumann algebra of all
bounded operators on H. Let tr: B(H); — [0, 0] denote the usual trace. Then for all
1 < p < oo, LP(B(H),tr) is equal to the Schatten p-class SP(H). We note that S?(H)
coincides with the space of Hilbert-Schmidt operators on H. Let I be an index set. If
H = [%(I) then we denote the Schatten p-class SP(I1*(I)) by S? for all 1 < p < o0.

The reader is referred to |62, Section V.2| for information on traces and to [52] and
[30, Section 4] for details on non-commutative LP-spaces.

Lemma 1.2.1. Let (N, 7) be a tracial von Neumann algebra, let x € Lo(N) be a positive
element and let z € s(x)Ns(x) such that xzz = 0. Then z = 0.

Proof. Changing N into s(z)Ns(z), we may assume that s(z) = 1. This means that
ker(s) = {0}. Let z € N such that zzz = 0. For any £ € D(xzx), we have,

zzx(€) = 0,

hence zz(§) = 0. By density of D(zzz) in D(zx), this implies that zz = 0. We deduce
that xz* = 0. Then arguing as above, we obtain that z* = 0, and hence z = 0. O]

Remark 1.2.2. Let (X, F, u) be a o-finite measure space. The space (L* (%), {) is a
tracial von Neumann algebra. For any 1 < p < 400, the non-commutative LP-space
LP(L*(X)) coincides with the usual LP(3).

Let (N, 7n) and (NVq, T, ) be two tracial von Neumann algebras and let U: N — N; be
a positive map, that is, U(N, ) < (N7),. We say that U is trace preserving if 7y, oU = Ty
on N,. If U is a trace preserving =-homomorphism, then U is 1-1 (because 7y is faithful)
and the following is well-known.

Lemma 1.2.3. Let (N,7),(Ny,7") be two tracial von Neumann algebras and let T :
N — Ny be a positive trace preserving contraction. Then for all 1 < p < oo, there
exists a necessarily unique contraction T, : LP(N,7) — LP(Ny,7') such that for all x €
N n LP(N,7), T(x) = T,(x).

If further T' is a one-to-one x-homomorphism, then T, is an isometry. Moreover T,
s onto if T is onto.

We refer to |67, Theorem 2| for the last fact and to [39, Lemma 1.1] for complements.
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1.2. NON-COMMUTATIVE LP-SPACES

1.2.2 Weighted LP-spaces

In the sequel, we will mostly follow [27]. We call weighted von Neumann algebra any
pair (M, ), where M is a von Neumann algebra acting on a Hilbert space H and ¢
is a normal semi-finite faithful weight (n.s.f in short) on M. We denote the modular
automorphism group of the weight ¢ by 0¥ := (0¢)sr (see |63, Section VIIL.1]). We will
work on Haagerup non-commutative LP-spaces. We denote the crossed product M x,- R
of M by R with respect to the modular automorphism group ¢¥ by R. R is the von
Neumann subalgebra of B(L?*(R, H)) generated by the operators m,+(z), z € M, and
A(s), s € R, defined by

(R (1)E)(5) = (0%) " () (€(5)) and (A()(E)(t) 1= E(t—5), 5,1 € R, £ € L*(R, H).
These operators satisfy the following commutation relation:
A(8)Toe ()A(8)* = Toe (0f(x)), x € M seR.
For all s € R, we let w(s) be the unitary operator on L?(R, H) defined by:
(w(s)€)(t) == e™E(t), € LR, H), teR.
Following [63, Definition X.2.4], we denote by ¢ : R — Aut(R) the dual action defined

by:
0s(x) == w(s)zw(s)*, r e R seR.

By [63, Theorem X.2.3|, m,+ (M) is exactly the fixed point algebra of R under &:
oo (M) ={x e R ;d4(x) =z, for all se R}. (1.2.2)

From now on, we identify M and 7,+(M) < R. Let 1) be a normal semifinite weight on
M. We denote the dual weight on the crossed product R of ¥ by @E (see |63, definition
X1.16]). By [25, Lemma 5.2 and Remark p.343], the crossed product R is semifinite and
there exists a unique normal semi-finite faithful trace 7 on R such that

(D¢ : D1)s = A(s), seR, (1.2.3)

where (D¢ : D7)s denotes the Radon-Nikodym cocycle of ¢ with respect to 7 (see |63,
Definition VIIL.3.4]). In addition, by [25, Lemma 5.2], we have for all s € R,

TOoOs =€ °T.

We denote the Radon-Nikodym derivative of the dual weight z/} respect to 7 by hy (see
[65, Definition I1.3]). Then we have the following relation,

(z) = 7(hyz), z€R,.

By [65, Proposition II.4], the map i: ¢ — hy is a bijection from the set of all normal
semifinite weights on M onto the set of all positive selfadjoint operators affiliated with
R satisfying

&s(hw) = e_shw, seR.
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We set D, := h,. By Equality (1.2.3), we have for all s € R,
A(s) = D

We let Lo(R,7) be the *-algebra of all unbounded operators on L?(R, H) which are
measurable respect to 7. Let 1 < p < 400, we define the Haagerup LP-space associated
with (M, ¢) by

LP(M, ) = {x € Ly(R,7), 6%(x) = e vz, Vs e R} :

By (1.2.2), M and L*(M, ¢) coincide. The spaces LP(M, ) are self-adjoint closed spaces
of Ly(R, 7). We also have LP(M, ), = LP(M, ) n Lo(R,7)+. By [65, Theorem II.7],
the restriction of i on (M, ), induces a one to one mapping j: w — h,, from (M,), onto
LY(M,),. In addition the mapping j extends to a linear homeomorphism from M,
onto L'(M, ). For any x € L'(M, ), we define the norm of x by |z|; := i~ ()] as,-
Moreover, we define tr : L'(M, p) — C by

tr(hy) = w(l) , we M,.

This is a positive and contractive functional. Then for all h € L*(M, @), |h], = tr(|h]).
Let 1 < p < +oo, if £ = ulz| is the polar decomposition of = € Lo(R,7), then by [65,
Proposition II1.12], we have

velP(M,p) < ue M and || e LP(M,p) <= ue M and |z|’ € L'(M, ).

We set for all z € LP(M, p)
1
|zl = [[|z[?[If -

It defines a norm on LP(M, ). The spaces LP(M, @) are Banach spaces.

Let 1 < p,p/ < 400, with 210 + ]% =1, for all z € LP(M, ) and for all y € L¥ (M, ),
we have xy,yz € L'(M, ) and tr(zy) = tr(yz) (see [65, Proposition 11.21]). Moreover,
if 1 < p < 4o, the bilinear from LP(M, ) x L¥ (M, p) — C, (z,y) — tr(zy) defines a
duality bracket which induces an isometric isomorphism

LP(M, )" ~ L (M, ).

For the rest of this subsection, (M, ¢) and (M, ¢’) are both weighted von Neumann
algebra. We define these three classical spaces:

Pl i={ze M., o(zx) < +oo};
N = {x e M, p(a*z) < +o0};
./\/li\f = span{y*z : x,y€ /\/’é\/[}
We recall some properties of these three spaces in the following lemma.

Lemma 1.2.4.
M ; :
1. /\/:p 15 a left ideal of M,

2. Mfy is a =-subalgebra of M such that /\/lfy NM, = 7;£4 and every element of ./\/lfy
15 a linear combination of four elements of Pé”;
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3. Mfy C./\/:é\/[ﬁ (NM) ;
4. /\/lfy is w*-dense in M.

Proof. By [63, Definition VIL.1.1 and Lemma VII.1.2], we have 1 and 2. By Definition
of M and 1, we deduce that MY < N (Né‘/[ )* The fourth one comes from the
semi-finite property of . O]

The weight ¢ can be extended to a functional on ./\/lfy . We still denote it by . We

1
give two properties relating ./\/ly and D} (cf e.g. [27, end of the page 2130 and Remark
5.6]).

Lemma 1.2.5.

)7.

B~

1. Yoz e MY o(x) = tr(DZzD

2. the space D?M%D? is dense in LP(M, ).

We say that a positive operator T : (M, p) — (My,¢') between two weighted von
Neumann algebras is weight preserving, if for all x € M, m/\/lg[ , we have o' (T'(x)) = ¢(x).
Spaces Né‘” and ./\/li/[ are stable by weight preserving *-homomorphisms.

Lemma 1.2.6. Let (M,p) and (My,¢’) be two weighted von Neumann algebras. Let
J (M, p) — (M, ¢") be a weight-preserving =-homomorphism. Then

1. me NM = J(m) e NJI;
2. me MY = J(m)e M.
Proof. The proof is straightforward. O]
We recall the definition of the centralizer of a weight (cf |63, Definition VIIL.2.1].
M? ={zxeM:o?(x)==x VseR}.

This space is a von Neumann subalgebra of M and we have the following characterization
(cf |63, Theorem VIII.2.6]).

Theorem 1.2.7. Let a € M. The following assertions are equivalent:
1. ae M¥;

2. (a) aM}) < MY and MYa = MY (a is a multiplier of M) );
() pla2) = p(za), 2 & MY.

Theorem 1.2.8. Let (M, ) and (My,¢") be two weighted von Neumann algebras. Let
U: (M,p) — (My,¢") be a weight preserving =-isomorphism. Then

U(M?) = M?
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Proof. Let x € M?. By Theorem 1.2.7, we just have to prove that for all y € Mi{l,
Uz)y € Mi{l, yU(x) € /\/li\fl and ¢'(U(z)y) = ¢'(yU(z)). Firstly we observe that
U(z)y = U(zU " (y)). By Lemma 1.2.6 and Theorem 1.2.7, we deduce U(zU~!(y)) €
Mfgl. Thus yU(z) € M%l. Likewise U(x)y € M%l. It remains to prove that ¢’ (U(z)y) =
¢ (yU(z)). By weight preserving property of U, we obtain

¢ (U(x)y) = ¢ (UU(y))) = o(zU(y))

We recall that U~'(y) € M} and x € M¢. By Theorem 1.2.7, the latter is equal to

(U (y)z) = ¢ (UU (y)x)) = ¢ (yU(x)).
The result follows. O

We need one more property. We say that an element x € M is entire if the function
s € R — o4(x) € M can be extended to a analytic function from C into M. We denote
the set of all entire elements of M by M, (see [63, Definition VIII.2.2]). This space is
called the analytic part of M. Let

NZ :={x e M,, oy(x) e N} (/\/:y)* , for all s € C};
M7 = span{y*z : x,ye N}

By [23, end of p.46] and Lemma 1.2.4, N and M are s-subalgebras of M such that

NP e N A (Nf,”)* N My, MP < MY A NP Moreover there are both invariant under
{os: seC}.

These two new spaces work like ./\/;y and /\/lfy in terms of density (cf |23, Theorem
2.4 and Proposition 2.11]).

Lemma 1.2.9.

1. N and M3 are w*-dense in M;

a1 a1
2. the space D" MZ Dg" is dense in LP(M, ) (1 <p < +x).
We state [23, Proposition 2.13| in our setting.

Lemma 1.2.10.

1. tr(a:DéyDé) = p(oi(y)x) for all x € N} and y e M,

2. tr(xD&yDZ) = gp(xa_%(y)) for all x € (./\féw)* and y € M.
We give a version of Lemma 1.2.6 for M7

Lemma 1.2.11. Let (M,p) and (My,¢') be two weighted von Neumann algebras. Let
J (M, p) — (M, ¢) be a weight preserving =-homomorphism such that

/

o? (J(m)) = J(cf(m)) s€ R and m e M. (1.2.4)

S

Then
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1. meNF = J(m)eNZ;
2. me M% = J(m)e M3.

Proof. Let m e NY © M,. By (1.2.4) and linearity of J, we deduce that J(m) € (M ),.
Let s € C, we have that

We obtain o#'(J(m)) € NI With the same computation, we have also o?' (J(m)) e
(./\/;J,Wl)*. Thus J(m) e N2
By linearity of J, we deduce the second point. O

Remark 1.2.12. 1. LP(M,¢) n LY(M, p) = {0} if and only if p # q.

2. LP(M, ) is independent of ¢ up to an isometric isomorphism preserving the order
and modular structure of LP(M, p) (see |65, p.59] for details).

3. If ¢ is tracial, then we have ¢¥ = id and
R=Mx,R=VNR)®M = L°(R)QM.

The last equality is obtained via the Fourier transform. The trace 7 becomes
§.e'dt ® . For any 1 < p < +o0, we denote LP(M) the LP-space of Subsection
1.2.1. We have

LM, ) = {t— ¢ ry: ye L (M)} = e 5 @ L'(M),

with He_% ® Y| ey = |Yllrary (see [30, Remark 8.16 and Example 9.11]).

1.2.3 Complete properties

We recall definitions of a complete contraction, a complete isometry and a completely
positive map.

For any n > 1 and any 1 < p < o, we identify LP(M, (N)) with S? ® LP(N) in the
usual way. Let T : LP(M) — LP(N) be a linear map, where M and N are both tracial
von Neumann algebras. For any n > 1, let T,, : L*(M,,(M)) — L?(M,(N)) be defined by

Tu(lag]) = [T(ai)],  laiyl € LP(My(M)).

We say that T is a complete contraction if for all n = 1, | T, Le(a, (v))—>Lr(a(v)) < 1.
If 7% : LP(N) — LY (M) denotes the adjoint of T and if T is a complete contraction,
then T* is a complete contraction. This follows from the fact that for any n > 1,
(T*),, = (T,,)*. In the same way, T is called a complete isometry if for all n > 1, T,, is
an isometry. We further say that 71" is completely positive if for all n > 1, T}, is positive.

The previous definitions also work in the framework of weighted von Neumann alge-
bras.
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1.3 Dilation types

In the framework of tracial von Neumann algebras, the appropriate notion of dilation is
the following.

Definition 1.3.1. Let (N, 7) be a tracial von Neumann algebra and let 1 < p < co. We
say that an operator T : LP(N,7) — LP(N,T) admits an isometric p-dilation if there
exist a tracial von Neumann algebra (Ny,7"), two contractions J : LP(N, 1) — LP(Ny,7'),
Q : LP(Ny,7') — LP(N,7) and an invertible isometry U : LP(Ny,7') — LP(Ny,7'), such
that for all k = 0, TF = QU*J.

(N, ) S ey, )

J 1 L@
P(N,7) 2 Lr(N,7)

1.3.1 Absolute dilations

Definition 1.3.2. Let (N, 7y) be a tracial von Neumann algebra. We say that an op-
erator T: N — N is absolutely dilatable, or admits an absolute dilation, if there exist
another tracial von Neumann algebra (N1, 7Ty, ), a w*-continuous trace preserving unital
x-homomorphism J: N — Ny and a trace preserving =-automomorphism U: Ny — N
such that

T = JFU*J, k> 0. (1.3.1)

Here Jy: LY(N,7y) — L*(Ny,7n,) stands for the isometric extension of J and J§: Ny —
N is defined using (1.2.1).

If N has a separable predual, we say that T: N — N admits a separable absolute
dilation if the above property holds with some Ny with a separable predual.

(N1, 7v,) 2> (N, 7n,)
J 1 | Jp
k
(N,7v) — (N,7y)

Remark 1.3.3. Here are a few comments about the above definition.

(1) Let J: N — Nj be a trace preserving s-homomorphism. Then for all z € N and
ally e N n L'(N, 7y), we have

,y) = 1n(zy) = v (S (2y)) = v (S (2) () = (T (@), Ti(y))-

This implies that J;'J = Iy, the identity operator on N. Hence the relation (1.3.1) for
k = 0 is automatic. Thus (1.3.1) is significant for £ > 1 only. See Remark 3.4.4 for more
about this.

(2) If J: N — Nj is a w*-continuous trace preserving unital *-homomorphism, then
N can be regarded (through J) as a von Neumann subalgebra of N; whose trace 7y is
the restriction of 7y,. In this respect, J{: N; — N is the natural conditional expectation
onto N (see e.g. [62, Proposition V.2.36]). In particular, J; is positive, trace preserving
and unital. In the sequel, we call it the conditional expectation associated with J.

(3)IfT: N — N is absolutely dilatable, then T is necessarily positive, trace preserving
and unital. This follows from the factorization 7' = J;UJ and the previous paragraph.
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(4) Assume that (N, 7y) is normalized. According to |28, Theorem 4.4, an operator
T: N — N is factorisable with respect to 7y, in the sense of [3], if and only if it is
absolutely dilatable and the tracial von Neumann algebra (Ny, 7y,) in Definition 1.3.2
can be chosen normalized. Thus, absolute dilatability should be regarded as a non-
normalized version of factorisability.

(5) A von Neumann algebra N has a separable predual if and only if there exists a
separable Hilbert space H such that N ¢ B(H) as a von Neumann subalgebra.

By Remark (2) 1.3.3, we may rewrite Definition 1.3.2, as follows.

Definition 1.3.4. We say that an operator T : (N,7) — (N, T) is absolutely dilatable
if there exist a tracial von Neumann algebra (N1,7’), a w*-continuous trace preserving

unital =-homomorphism J : (N,7) — (Ny,7') and a trace preserving =-automorphism
U: (Ny, ") — (Ny,7") such that

TF = EU*J, k>0, (1.3.2)
where E : Ny — N is the the conditional expectation associated with J.

Proposition 1.3.5. LetT: N — N be an absolutely dilatable operator and let 1 < p < o0.
Then the restriction of T to N n LP(N) extends to a positive contraction T,,: LP(N,Tn) —
LP(N,1y) and the latter admits an isometric p-dilation.

Proof. Let (Ni,7y,), J and U as in Definition 1.3.2. Then T, = J3U,J, is a positive
contraction which coincides with 7" on N n LP(N). Furthermore, we have Tf = J;U;“Jp
for all & > 0. Since J, and U, are isometries, we obtain that 7, admits an isometric
p-dilation. O

1.3.2 Complete dilations
Now we define the completely p-dilatable property.

Definition 1.3.6. Let (N, 7) be a tracial von Neumann algebra and let 1 < p < co. We
say that an operator T : LP(N,T) — LP(N,T) is completely p-dilatable if there exist a tra-
cial von Neumann algebra (Ny,7'), two complete contractions J : LP(N, 1) — LP(Ny,7’)
and Q : LP(Ny,7') — LP(N,T), and an invertible complete isometry U : LP(Ny,7') —
LP(Ny,7'), such that for all k =0, TF = QU*J.

If T: N — Njis a completely positive, trace preserving contraction and if we apply
Lemma 1.2.3 to T, : M,(N) — M,(N;) for all n > 1, then we obtain the following
analogue of Lemma 1.2.3 for completely positive maps.

Lemma 1.3.7. Let (N, ), (Ny,7’) be two tracial von Neumann algebras and let T : N —
Ny be a completely positive trace preserving contraction. Then for all 1 < p < oo, there
exists a necessarily unique complete contraction T), : LP(N, 1) — LP(Ny,7') such that for
allze Nn LP(N,7), T(z) = T,(x).

If further T' is a one-to-one x-homomorphism, then T, is a complete isometry.

Assume that J : (N,7) — (Ny,7') is a unital one-to-one trace preserving and w*-
continuous *-homomorphism. Let J; : L'(N,7) — L'(Ny,7’) be induced by J, according
to Lemma 1.3.7.
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If T satisfies Definition 1.3.2, then applying Lemma 1.3.7 we obtain that forall 1 < p <
w0, J (resp. E) induces a complete contraction LP(N,7) — LP(Ny,7") (resp. LP(Ny,7') —
LP(N,7)) and that U induces an invertible complete isometry LP(Ny,7") — LP(Ny,7').
Moreover (1.3.2) holds true on LP-spaces. We therefore obtain the following strengthening
of Proposition 1.3.5.

Proposition 1.3.8. If T : (N,7) — (N, ) is absolutely dilatable, then for every 1 < p <
w0, T induces a contraction T, : LP(N,7) — LP(N, 1) and T, is completely p-dilatable.

1.3.3 Absolute dilations on weighted von Neumann algebras
On weighted von Neumann algebras, the appropriate notion of dilation is the following.

Definition 1.3.9. Let (M, ) be a weighted von Neumann algebra and let 1 < p < 0.
We say that an operator T : LP(M,p) — LP(M,p) admits an isometric p-dilation if
there exist a weighted von Neumann algebra (M, ¢'), two contractions J : LP(M, ) —
LP(My,¢"), Q : LP(My,¢') — LP(M,p) and an invertible isometry U : LP(My,¢') —
LP(My, "), such that for all k >0, TF = QU*J.

Remark 1.3.10. We have two notions of isometric p-dilation but the framework is
different. In the tracial case, both definitions are possible but we will keep the definition
of Section 1.3.1.

For this subsection, (M, ) and (M, ¢') are both weighted von Neumann algebra.
We combine Remark 5.6 and Theorem 5.1 of [27] to obtain the following Theorem.

Theorem 1.3.11. Let T : (M,p) — (My,¢') be a weight-preserving completely posi-
1 1 X
tive operator then, for all 1 < p < +oo, the map T, : DFxDg" — DT (x)DZ from

1 1 1 1
Djp./\/lny,p into D;f’/\/li\le;? extends into an operator from LP(M, ) into LP(Mi, ")
(denote again T,) such that |T,| < |T|ar—n, -

We give also a generalised version of [27, Proposition 5.4|. This generalization was
communicated to me by Q. Xu.

Lemma 1.3.12. Let T : (M, p) — (M, ¢') be a weight-preserving positive operator and
T1 be as in the previous theorem.

1. The map Ty : (My,¢") — (M, @) is positive.
2. If T' us unital, then T} is weight preserving.
As in the tracial case, we have the following result.

Lemma 1.3.13. Let m be a weight preserving, =-isomorphism from M onto My ; then for
any 1 < p <+, the map m, : LP(M, p) — LP(My,¢') is isometric surjective.

Proof. For any x € ./\/lg, we have;

1 1 1 1
77~ )p(DEaD¥) = 7,(D¥ 7~} (a) DF)

_ 2p —1 2p

=DJrn (x)D]
1 1

_ D% D%

= Myl
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11 11
Likewise, we have (771),m,(Dg" £ D2’ ) = Dg’xDS?. By density and continuity, we obtain
(7= Y),mp = Id = mp(n 1), and so (m,)"! = (7~ 1),. Since 7, and (7~'), are contractive,
this implies that m, is an isometry. ]

Definition 1.3.14. Let J : (M,p) — (My,¢') be a w*-continuous, unital and weight
preserving x-homomorphism. We say that E is a conditional expectation associated with

J, if
1. E: My — M 1is a contraction;
2. EoJ =1dy;
3. poE =
We generalize part 2 of Remark 1.3.3.

Lemma 1.3.15. Assume that J : (M,p) — (Mi,¢') is a w*-continuous, unital and
weight preserving =-homomorphism and verifies for any s € R

0¥ oJ=Joa?. (1.3.3)

Then there exists an unique conditional expectation associated with J which is equal to
Jy.
Proof. By |63, Theorem 1X.4.2|, we have the existence and the uniqueness. It remains

to prove that J is a conditional expectation associated with J.
We will prove the following three properties,

1. J{ is a contraction;
2. forall x e M, Ji(J(x)) = z;
3. polJf=¢.

J is a contraction. By Theorem 1.3.11, J{ is a contraction too. Now we will prove 2. Let
x € ./\/li/[ and y € M. J is a weight preserving *-homomorphism, thus J(z) € Mf;/,h. By
Lemma 1.2.11, we have also J(y) € M. In the following everything is well-defined and

we have
<J* DQyD> <J J1<DéyDé)>
— tr, (J(z)DjJ@)Dj) .

By 2 of Lemma 1.2.10, the latter is equal to

Again, by 2 of Lemma 1.2.10, we obtain
<J1 DQyD2> — tr, (xpgyDg) - <g;,D3yDg>.

By density of DEMZ?DE in L'(M), w*-density of ML in M and w*-continuity of J
and J;, we deduce for all z € M, Jf(J(z)) = x. Last point comes from 2 of Lemma
1.3.12. 0
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Definition 1.3.16. We say that an operator T : (M, p) — (M, @) is absolutely dilatable if
there exist a weighted von Neumann algebra (M, '), a w*-continuous weight preserving
unital x-homomorphism J : (M, @) — (My,¢') such that 0¥ o J = J o c% and a weight
preserving x-isomorphism U : (M, ¢') — (M, ¢') such that

T = JFU*J, k>0, (1.3.4)
Remark 1.3.17. 1. By Lemma 1.3.12, J; is a positive weight preserving operator.

2. If T is absolutely dilatable, then 7' is weight preserving. Indeed with the above
notation, (1.3.4) with k£ = 1 yields T' = J;UJ and J; is weight preserving.

3. If ¢ is tracial and T absolutely dilatable (with weight), we can obtain a tracial von
Neumann algebra for (M, ). Indeed we can replace (M, ') by (M¥',¢') which
is a tracial von Neumann algebra. Since 0¥ oJ = Joo¥ = J, we deduce that
J(M) = M¥. Then we have J; from M¥ onto M. We apply Theorem 1.2.8 as
U and U™!, thus U(M¥) = M¥. We obtain a trace preserving #isomorphism
U = U M¢ — M¥ . The relation (1.3.1) sill holds.

Proposition 1.3.18. If T : (M,¢) — (M, ) is absolutely dilatable, then for every
1 < p < o, T induces a contraction T, : LP(M,p) — LP(M,p) and T, admits an
1sometric p-dilation.

Proof. Let p € [1;+0o0[, the maps T, U, J; and J are positive and weight preserving.
According to Theorem 1.3.11, there exist T, : LP(M) — LP(M), U, : L*(My) — L*(M,),
(J5)p + LP(My) — LP(M) and J, : LP(M) — LP(M;). In addition, [(J5),| < 1 and
|.J,| < 1. By Lemma 1.3.13, U, is a surjective isometry. It remains to prove that for any
ke N:

TF = (J5),Ur J, (1.3.5)

Let x € ./\/li\f, we have:
(U, (DD) _ (), U (D J(m)D;f)

= (J9), <D;€ U*J(z)DZ )

1 1
= D' (JH)U*J (2) Dy’
1 1
= (D;”T’“(x)D;p)
11
=T, (D;p:z;D;P>
1 1
By density of D M} D" in LP(M), (1.3.5) follows. O

1.4 Schur multipliers

We will present Schur multipliers. There are really simple in the finite case and discrete
case. However the measurable Schur multipliers are more involved. We will describe
discrete Schur multipliers after the measurable Schur multipliers because some properties
are needed for the discrete case.
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1.4.1 Finite Schur multipliers

We denote by M, the space of n x n matrices with complex coefficients. Let M =
(mij)1<ij<n be an element of M,. We denote by Ty : M, — M, the Schur multiplier
associated with M, defined by

Tar([bijli<igj<n) = [Mijbijli<ij<n, [bij)1<ij<n € M.

We recall some links between T, and M. In the next theorem, the first point is in
[49, Theorem 3.7| and the second one is clear.

Theorem 1.4.1. Let M = (mij)lgingn € Mn; then

1. Ty s positive if and only if Ty 1s completely positive if and only if M is positive
semi-definite.

2. Ty is unital if and only if all diagonal entries of M are equal to 1.

1.4.2 Measurable Schur multipliers

This subsection is devoted to preliminaries on measurable Schur multipliers and charac-
terizations of some of their possible properties (positivity, unitality, etc.).

Let ¥ be a o-finite measure space with respect to a measure simply denoted by dt
and let X be a Banach space. For any 1 < p < +oo, we let LP(X, X) denote the
classical Bochner space of strongly measurable functions f : ¥ — X (defined up to
almost everywhere zero functions) such that the norm function ¢ — | f(¢)| belongs to
LP(¥), equipped with | f|, = [t — || f(t)||ze(x)- (see [17, p. 49-50] for more explanations).
We will use the fact that if p is finite, then LP(X) ® X is a dense subspace of LP(3, X).
Furthermore if Y = H is a Hilbert space, then the natural embedding of L?(3) ® H into
L3(%; H) extends to a unitary identification

L3S H) ~ [*() @ H, (1.4.1)

where (>29 stands for the Hilbertian tensor product.

Throughout we let L (X) denote the subset of real-valued functions in L?(X).

We denote by X®Y the projective tensor product of any two Banach spaces X and
Y (see [57]). We recall the isometric isomorphisms

LYZY)~ L'(E)®Y  and  (LY(X)QY)* ~ B(LY(X),Y*), (1.4.2)

see [57, example 2.19] and discussion p. 24 in the same book.
We recall that S?(L?(X)) is the space of all Hilbert-Schmidt operators on L*(3). We
also recall that for any f e L*(X?), we may define a bounded operator

Sp i I2(S2) — LAY, S(h) =Lf(-,t)h(t)dt, (1.4.3)

and that Sy is a Hilbert-Schmidt operator, that is, Sy € S*(L*(X)). Further the mapping
f — S yields a unitary identification

LA(X%) ~ S*(LA(Y)), (1.4.4)
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see e.g. [55, Theorem VI. 23].
For any z,y € L*(X), we consider z ® y as an element of L*(X?) by writing (z ®
y)(s,t) = z(s)y(t) for (s,t) € X2 Then using (1.4.3), we have

Seay(h) = Jy(t)h(t)dt T, he L*(%).

¥

Very often we will identify z ® y and S,g,. Thus L*(X) ® L*(X) is regarded as the space
of finite rank operators on L?(X). This extends to an isometric isomorphism

LA(D)QL(X) ~ SYLA(Y)), (1.4.5)

where S'(L?(X)) denotes the Banach space of trace class operators on L?*(X).
Another useful result on the projective tensor product is the isometry L' (3)®QL(3y) ~
Ll(El X 22)
For any p € L*(¥?), we denote by M, : S*(L*(X)) — S?*(L*(X)) the operator defined
by
M,(Sy) = Sy, feL*(%%). (1.4.6)

We say that M, (or simply ¢) is a (measurable) Schur multiplier on B(L*(X)) (or a
bounded Schur multiplier), if there exists C' > 0 such that

Mo ()| B2y < ClSIrey, S e S*HLAD)). (1.4.7)
It is plain that
HML,OHB(SQ(LQ(E))) = HQOHLOO(ZQ). (148)
In the sequel, we set @(s,t) = ¢(t,s) for (s,t) € X2

Lemma 1.4.2. Let p € L*(X?), the following assertions are equivalent:

~

. ¢ 18 a Schur multiplier on B(L*(X));

2. M, extends to a w*-continuous operator MY : B(L*(¥)) — B(L*(%));
3. M, restricts to a bounded operator M} : S'(L*(X)) — S*(L*(¥));
4

. M, extends to a bounded operator M : K(L*(¥)) — K(L*(X)), where K(L*(X))
denotes the Banach space of compact operators on L*(X);

5. @ verifies (3).
In this case, M} = (Mg)*, (ML)* = MZ* and | M| = ML = |M2] = M)

@ ®

Proof. The flip mapping > xr ® yr, — >, yr @ x) extends to an isometric automorphism
p: L2(X)®LA(X) — L2(X)®L*(X). Using this notation and (1.4.5), it is easy to check
that

My(Ss) = p(Mp(Sup))),  feLX(2)® L* (D),

provided that property 3 holds true. We easily deduce that 5 < 3.

32



1.4. SCHUR MULTIPLIERS

Let tr denote the usual trace on B(L*(X)). We remark that ST = S?, for any f €

L*(X?). Hence the equality ||S;|? = | f|* reads tr( Sf =(ff.
By polarization, we obtain that for all f,h € LQ(EQ)

tr(SS,) = L2 f(s,t)g(t,s)dtds. (1.4.9)

Consequently,
tr (SyrSh) = f (s, t)f(s,t)h(t, s)dsdt = tr (S;Szn), f,he L*(X%).  (1.4.10)
N2

This yields 4 = 5 = 2.

By definition, M,(S*(L*(X))) < S*(L*(X)) < K(L*(X)), hence 1 = 4 follows from
the definition. This concludes the proof of the equivalence of the five properties. The
rest of the statement follows from the above arguments. m

Schur multipliers as defined in this section go back at least to Haagerup [26] and
Spronk [59].

The following description of bounded Schur multipliers has a rather long history. In
the discrete case, Theorem 1.4.3 was stated by Paulsen in [49, Corolary 8.8| and by Pisier
in [50, Theorem 5.1], who refers himself to some earlier work of Grothendieck. For the
general case of this statement, we refer to Haagerup [26] and Spronk [59, Section 3.2].

In the next statement, (-, - )y stands for the inner product on some Hilbert space
H.

Theorem 1.4.3. Let ¢ € L®(X?) and let C = 0. The function ¢ is a bounded Schur
multiplier and |[M}: B(L*(X)) — B(L*(X))| < C if and only if there exist a Hilbert
space H and two functions o, 8 € L*(X; H) such that || w||B]e < C and

o(s,t) ={a(s), B(t)y ae-(st)eX? (1.4.11)

In the rest of this subsection, we assume that ¢ € L®(X?) is a Schur multiplier on
B(L*(X)). The argument in the proof of Lemma 1.4.2 shows that the Hilbertian adjoint
of M, : S*(L*(X)) — S*(L*(X)) is equal to My We can therefore characterize the
self-adjointness of a Schur multiplier as follows (see |7, proposition 4.2]).

Proposition 1.4.4. The operator M, : S*(L*(X)) — S*(L*(X)) is self-adjoint if and
only if ¢ is real-valued.

As a complement to Theorem 1.4.3, we mention the following classical result on Schur
multipliers. We refer to Subsection 1.2.3 for the notion of complete positively.

Theorem 1.4.5. The following are equivalent:
1. M, 1is positive;
2. M, is completely positive;
3. there exist a Hilbert space H and a function o € L* (X, H) such that

@(s,t) = {a(s),a(t))y a.e onX x 3. (1.4.12)
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This theorem can be proved in two steps. The first one consists in proving it in
the finite dimensional case. This is done e.g. in [49, theorem 3.7]. The second step
consists in approximating from the finite dimensional case. In [43, Theorem 1.7], the
authors prove Theorem 1.4.3 using the finite dimensional case. Their argument shows
as well that Theorem 1.4.5 can be deduced from the finite dimensional case. Our work
in Subsection 2.2 will provide a direct proof of Theorem 1.4.5 (see the proof of Lemma
2.2.3, in particular (2.2.2)).

The following result is apparently new.
Theorem 1.4.6. Let H and o, 5 € L*(3, H) such that (1.4.11) holds true. Then
M7 is unital <= {a(t),B(t))y =1 a.e. on .
Proof. By linearity and density, we have:
MZI(I)=1 < Vf heL*%), (MII),f®hy={,fQh)
Hence by Lemma 1.4.2,
MZP(I) =1 <= ¥fhe L*(2), (I, Mz(f®h)) = f@h

— Vf,he LX), tr (ML(f®h)) ff

We can suppose that H separable (and also that dim(H) is infinite), thanks to Pettis’s
measurability theorem (see [17, Theorem 2 p.42]). Thus there exists a Hilbertian basis
(€n)n=1 of H. We denote, for all n, a,(s) = {a(s), en)y and B,(t) = {e,, 5(t)) for a.e.
se X and t € ¥. We have

{als), Bty = > an(8)Ba(t) ae. on T x X,

Let f,h e L*(X), we will prove that:

o0 a0
D lanhl3 < oo and ) [Bafl3 < 0. (1.4.13)
n=1

n=1

First,

o0 o0 o0
me%ijmwmmww=f2mwwmws
n=1 n=1 % ) n=1

=LM@%WW%<MQW<w

Similarly, we have > |3,f[3 < c. By the Cauchy-Schwarz inequality, we deduce

> [ lawtln@ls. o]0l < . (1.4.14)
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e ¢]
Moreover using (1.4.13) again, and (1.4.5), we may consider Y, 3, f ® a,h in S*(L*(X2))

n=1
and we have

tr (i an@anh> =
n=1

tr (Bnf ® anh)

s

n=1

|
10gs
MS N

() () B (t) f ()t

m’ﬁ T

an (t)h(t)Bn(t) f(t)dt, by (1.4.14),

(), B())u f()h(t)dt

Let us now show that
5 toh) Z Bnf ® ah
Let vy, v € L3(X). According to (1.4.13), we have

2 fz? |, (E)R(t)v1(t) Bn(8) f(8)va(s)|dtds < +oo. (1.4.15)

Then we have (using the usual duality pairing (-, - ) between L?*(X) and itself)
<M%<f ® h)Ul, U2> = <S¢(f®h)vl, ’UQ>

_ j; o, 5) F()h(E)or (D)vs(s)dtds

:J lalt), B(s)mf(s)h(t)v(t)va(s)dtds

:J A
_ ZLz (1) Ba(5)F (5)h(t)on (£)va (5)dtds, by (1.4.15),

2 (8)h(t)v1(t)va(s)dtds

_ Z<anh,u1><ﬂnf, v2)

n=1
{(groens)o)
n=1

This proves the announced identity. We deduce that
tr(M(Sje)) = | FORO) (alt), 50 dr
Finally,
M is unital < ¥, he IA(S J () B(E)), dt L ()h(t)dt
— {(a(t),B(t))y =1 a.e. on 2.
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1.4.3 Discrete Schur multipliers

Let I be an index set and let M denote the space of I x [ matrices with complex entries.
We let (e;)ier denote the canonical basis of £2(I). For any v € B(¢*(I)), for all (i, j) € I*
we let v;; := (y(e;), €;). Then we regard B(¢(*(I)) = M;. Given any M = (my;);jer €
M, the Schur multiplier on B(¢*(I)) associated with M is the unbounded operator T,
whose domain D(Tyy) is the space of all A = (a;;); jer in B(¢*(I)) such that Ty (A) :=
(myjai;)ijer belongs to B(¢*(I)). If D(Ty) = B(¢*(1)), then Ty : B(¢*(I)) — B((*(I)) is
a bounded Schur multiplier on B(¢?(I)). By Lemma, Ty restricts to a bounded operator
Ta 2 S} — St. Then it is still true for any 1 < p < +c0 and we let Ty, : S7 — S7.

For the rest of this subsection, we assume that T}, associated with M € My is a
bounded Schur multiplier on B(¢?(I)). We recall classical properties. By Lemma 1.4.2,
Ty is w*-continuous. Then T); is positive (resp. completely positive) if and only if for
all finite set F' < I, (Ty) g2y : BI(F)) — B((*(F)) is positive (resp. completely
positive). Thus the following is a direct consequence of Theorem 1.4.1.

Theorem 1.4.7.

1. Ty is positive if and only if Ty is completely positive if and only if for all finite
set F' < I, the matriz (my;); jer S positive semi-definite.

2. Ty is unital if and only if for allie I, my; = 1.

1.5 Fourier multipliers on VN (G)

This section provides some background on the group von Neumann algebra of a locally
compact group and on Fourier multipliers.

1.5.1 General case (weighted von Neumann algebras)

Let G be a locally compact group and let A be its modular function. Let A\: G —
B(L*(G)) be the left regular representation of G, that is, [A(s)f](t) = f(s~'t) for any
feL*G)and s,t € G. Welet VN(G) = A(G)" = B(L*(G)) be the group von Neumann
algebra of G. We denote by

wg : VN(G); — [0; +0]

the Plancherel weight on VN(G) (see [63, Definition VII.3.2]) and we denote by o¢ the
modular automorphism group of wg.

We denote by A : LY(G) — VN(G) ¢ B(L*(G)) the mapping defined by A(f) =
§¢ f(5)A(s)ds. (The use of the same notation A for these two maps should not create any
confusion.) The above integral is defined in the strong sense. Indeed, for any f; € L'(G)

and f, € L*(G), [A(f1)](f2) = f1 * fo, where
(fi= f2)(t) = L f1(8) f2(s7t)ds, ted.

We recall that for any fi, fo € L*(G), the above formula defines a function f; = fy € Co(G).
For any f e LY(G), we define f* € L'(G) by

[At) = A f(tY), teq.
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Lemma 1.5.1. Let f,he L'(G) n L*(G). We have:
1. A(f), Mh) e NS,
2. AFAR) = A(F* = h);

3. Mf*AR) e MUY and

cmwwww:Lﬂwmm—UHM@,

where e denotes the unit of G.
Proof. See [60, 18.17 (5)] . O

It is plain that the s-subalgebra A\(L'(G)) is w*-dense in VN (G). Let K(G) < Cy(G)
be the #-subalgebra of all continuous functions from G into C with compact support.
Then A(K(G)) is w*-dense in VN(G). (See [22, 3.12] or [21]). In addition, A(IC(G)) is a
subset of M}:év @,

We say that a w*-continuous operator T : VN(G) — VN(G) is a Fourier multiplier,
if there exists a bounded continuous function v : G — C such that for all s € G,
T(A(s)) = u(s)A(s). In this case, u is necessarily unique, we write 7' = T, and w is called
the symbol of T,,. In addition, we have

T.Af) = Muf),  feL'(G).
We say that an operator 7' : VN (G) — VN(G) is self-adjoint if
we(T(2)y") = we(aT(y)*),  zye M.

We recall that a function v : G — C is called positive definite if, for all n > 1, for all
t1,...,t, € G and for all zq, ..., z, € C, we have

n
D ulty )z = 0.
ij=1
As in Section 1.4.2 on measurable Schur Multipliers, we relate the properties of a Fourier

multiplier T, to its symbol wu.

Theorem 1.5.2. Let u : G — C be the symbol of a Fourier multiplier T, : VN(G) —
VN(G).

1. T, is completely positive if and only if u is positive definite;
2. the map T, is unital if and only if u(e) = 1;
3. the map T, is self-adjoint if and only if u is real valued.

The first point is [16, Proposition 4.2]. The other two ones are just computing. We
recall that unlike for Schur Multiplier, there exist positive Fourier multipliers which are
not completely positive, see [16, Corollary 4.8|. Similarly, a bounded Fourier multiplier
is not necessarily completely bounded [9].
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1.5.2 Unimodular case

If we add the unimodular hypothesis, things are easier. Since A = 1, we have for any

feLYQ), f*= jvr where } e L'(G) is defined by

The most important property is that the Plancherel weight is a trace. We do not need
the weight theory in this case. The space MZC];V @) Will be replaced by L'(V N(G)). Then
Lemma 1.5.1 becomes the following.

Lemma 1.5.3. Let f,he L'(G) n L*(G). We have:
1 N(f)*AM(h) = A(f* = h);
2. M(f)*A(h) e LN(VN(Q)) and

we\(f)"A(h)) = L F(s)h(s)ds = (f* « h)(e),

where e denotes the unit of G.
Likewise, an operator T': VN(G) — V. N(G) is self-adjoint if
wa(T(2)y*) = we(@T(y)*), =,y VN(G)n L'(VN(G)).

1.6 Antisymmetric Fock spaces and Fermions

We give some background on Fock spaces and Fermions. We refer to [10] and [11] for
more details and information. Let H be a real Hilbert space and we let H¢ denote its
complexification. For any integer n > 1, we let A, (Hc) denote the n-fold antisymmetric
space over Hc, equipped with the inner product defined by

<h1 VANMIREVAN hn; k?l VANRIRIREVAN kn>—1 = det [<hz, kj>Hc] s hi7 kj € H@.

We also set Ag(Hc) = C. The antisymmetric Fock space over H is the Hilbertian direct
sum

Fo1(H) = @ Au(He).

n=0

We let 2 be a fixed unit element of Ag(Hc).

For all e € H, we recall the creation operator l(e) : F_1(H) — F_1(H) satisfying
l(e) = e and l(e)(hy A -+ A hy) =€eAhy A---Ahy, for all hy,... h, € Hc. These
operators satisfy the following relation:

L) Ue) + 1)) ={fepuldr )y, e feH. (1.6.1)
Let w(e) : F_1(H) — F_1(H) be the self-adjoint operator
w(e) =l(e) +l(e).
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It follows from (1.6.1) that
w(e)® = le|HIdr_, ), ee H. (1.6.2)

By definition,
I' 1(H)c B(F_1(H))

is the von Neumann algebra generated by {w(e); e € H}. This is a finite von Neumann
algebra equipped with a trace 7 defined by 7(z) = (@Q,)r () for all x € I'_;(H).
Clearly we have

T(wle)w(f) =<e, fru, e fel. (1.6.3)

The space I'_1(H) is called the Fermion algebra over H.
Let H and K be two real Hilbert spaces and let T': H — K be a contraction with
complexification T : He — K. There exists a necessarily unique linear contraction

F_l(T) : F_l(H> I F_l(K)

such that F_1(T)Q = Q and F_(T)(hy A -+ A hy) = Te(hy) A -+ A Te(hy,) for all
hi,...,h, € He. Next, there exists a necessarily unique normal, unital, completely
positive and trace preserving map

Ffl(T) : Ffl(H) — Ffl(K>
such that for every x € I'_y(H), we have:
(Fa(T)(2))Qk = Fa(T)(292).

If further T': H — K is a isometry (resp. an onto isometry), then I'_;(7’) is a one-to-one
+~homomorphism (resp. a one-to-one *-isomomorphism).
In particular we have

[T_1(T)](w(e)) = w(T(e)), ee H. (1.6.4)

In the next lemma, we consider an integer k& > 1 and we let Py(2k) be the set of
2-partitions of the set {1,2,...,2k}. Then for any v € Py(2k), we let ¢(v) denote the
number of crossings of v. We refer to [20] for details. According to Corollary 2.1 in the
latter paper, we have the following lemma, in which (2) is a straightforward consequence

of (1).
Lemma 1.6.1. Let (f;)?*, be a family of H.
(1) We have

T(w(f1) - w(fw)) = Z (1)) 1_[ {fis Fin

vePo(2k) (3,9)ev
(2) If for all 1 < i < j < 2k such that j # 2k — i+ 1, we have {f;, fj)u = 0, then

T(w(fr) - w(for)) = {fry fowpm - oo fovn
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Chapter 2

Dilation properties of unital self-adjoint
positive measurable Schur multipliers

All definitions of Schur multipliers and dilation properties are in Subsection 1.4.2 respec-
tively in Subsection 1.3.1. The main result of this chapter is the following.

Theorem (A). Let ¥ be a o-finite measure space. Let p € L*(X?) and assume that M,
is a self-adjoint, unital, positive Schur multiplier on B(L*(X)). Then M, is absolutely
dilatable.

We will also give an multi-variable version.

Theorem (C). Let ¢, ..., p, € L*(X?) and assume each M,, is a self-adjoint, unital,
positive Schur multiplier on B(L*(X)). Then there exist a tracial von Neumann algebra
(M, 7), a commuting n-tuple (Uy, ..., U,) of trace preserving -automorphisms on M and
a w*-continuous trace preserving one-to-one x-homomorphism J : B(L*(X)) — M such
that

k1 kn __ k1 kn
Mb L ME— RUR e

for all k; € N, 1 < @ < n, where E : M — B(L*(X)) is the conditional expectation
associated with J.

2.1 Preliminaries and L?-spaces

Let N be a von Neumann algebra. We recall that the product is separately w*-continuous
on N. More precisely, for any y € N and n € N, the map z — (yz,n) from N into C is
continuous. We let ny € N, such that (yz,n) = {(z,ny) for all z € N. Likewise, the map
z +— {zy,n) from N to C is continuous and we let yn € N, such that {zy,n) = (z,yn) for
all ze N.

We now turn to a dual variant of the Bochner spaces LP(3, N). Bochner spaces are
already introduced in Subsection 1.4.2. We mostly follow [29], to which we refer for more
references and details. We say that a function f : ¥ — N is w*-measurable if, for all
n € N, the function t — (f(t),n) is measurable. Fix some 1 < ¢ < c0. We recall that
every order bounded subset of L% (X) has a supremum in L{(X), denoted by L? — sup.
We define

LL(3E,N) = { f: X — N w*-measurable ;{f,n) € L1(X) ¥n € N, }
o and {|(f,n)] : [|n|| < 1} is order bounded in L (X)
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We define, for all f e £2(X, N), the semi-norm

IFlles = |27 = sup{IFm] = nll < Do)

The kernel of this semi-norm is
={feLlLi(E,N): Yne N {f,n)=0ae.}.
We set L1(X, N) = LL(X, N)/N,. This is a Banach space for the resulting norm, which
we simply denote by |.||,. We note that LI(3, N) < Li(3, N) isometrically.
1 1
Let 1 < p < oo such that — + — = 1. For any h € LP(X, N,) and f € L4(3, N), the
p q
function ¢t — {f(t), h(t)) belongs to L'(R) and satisfies

f KF (), et < [l .. (2.1.1)

This allows to define

B — J<f (E)dt,  he IP(S,N.), fe LS(S, N). (2.12)

1 1

Theorem 2.1.1. Let 1 < p <o and 1 < q < w0 such that — 4+ — = 1. Then the duality
p q

pairing (2.1.2) extends to an isometric isomorphism

LP(S, N,)* ~ Li(S, N).

This theorem is due to Bukhvalov, see [12, Theorem 4.1], [13, Theorem 0.1]. We recall
that L9(X) ® N is w*-dense in LI(X, N).
We have isometric identifications

Q B(LY(%), N), (2.1.3)

)N Q1 N
where L*(X)®N denotes the von Neumann tensor product of L*(X) and N. The identifi-
cation (i) follows from (1.4.2) and Theorem 2.1.1. More explicitly, for any F' € L* (3, N),

the associated operator T € B(L'(X), N) provided by (i) is given by

VYhe L'(X), Vne N, (T(h),n) = L<F(t),n>h(t)dt. (2.1.4)

The identification (ii) is proved in [58]. It is a combination of [58, Definition 1.22.10] and
[58, Proposition 1.22.12].

Concerning L*(3)®N, we mention that if V is equipped with a n.s.f. trace T, then we
equip L*(X)®N with the unique n.s.f. trace 7 = {-®7 such that 7(h®z) = 7( Sz
for all he L*(X), and x € N,. Then for all 1 < p < w0,

[P(L®(2)®N, 7) ~ LP(, LP(N, 7)). (2.1.5)

Indeed let
& = span{xg : E measurable, |E| < o0}. (2.1.6)

Then EQ(N nL'(N)) is both dense in LP(L*®N, 7) and in LP(X, LP(N)), and the norms
of LP(L®®N,7) and LP(X, LP(N)) coincide on this subspace.
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Lemma 2.1.2. Let V : Ny — Ny be a w*-continuous operator, where Ny and Ny are two
von Neumann algebras. Then the map V, : L¥ (X, Ny) — L¥(3, Ny) given for all F' €
LP (X, Ny) by Vo(F) =V o F is well-defined and w*-continuous. Moreover, |V,|| = |V

Proof. The operator V' has a pre-adjoint Vi : Ny, — Ny,. It is plain that Idp, (5 ® Vi ex-
tends to a bounded map Idp, (sy®V; : L' (2, Noy) — L'(2, Ni), with norm | Idp: 5 ®V4|| =
|Vill. Then using Theorem 2.1.1, Vi, coincides with (IdLl(g)®V*)*. O

The product of two N-valued measurable functions is measurable. However the prod-
uct of two N-valued w*-measurable functions is not necessarily w*-measurable. We need
the following to circumvent this difficulty.

Lemma 2.1.3. Let Ty € B(LY(X); N) and Ty € B(LY(X); N). Then there exists a unique
P e B(L'(X?),N) such that

P(hl ® hg) = Tl(hl)TQ(h2)7 hl, h2 € LI(E)

Proof. We define Q : (hy, hy) — T1(hy)To(hs) from L'Y(X) x L'Y(X) into N. This is a
bounded bilinear map, with ||Q| < |71]||7z/. Hence there exists a bounded linear map
P LNZ)®LY(E) — N such that for all hy, he € LX), P(h ® ho) = Ti(h1)Ta(hs).
Using L'(Z)®L' () ~ L'(X?), this yields the result. O

Let @1, 02 € LP(3, N). Let Ty, Ty € B(L'(X); N) be the representatives of ¢, and
9, respectively, through the identification (2.1.3), (i). We let

1 X g € LP(X%, N) (2.1.7)

be the representative of the operator P € B(L'(X?), N) given by Lemma 2.1.3. Thus for
all hy, hy € L}(X) and n € N,

(T1(h1)Ts(ha),m) = J22<g01 X o(s,t), nhi(s)he(t)dtds. (2.1.8)

Remark 2.1.4. When ¢, € L*(X, N), the product ¢; x ¢, is simply given by
01 Xpa(s,1) = p1(s)pa(t), since o1,y are both measurable (see Section 3.1 for more
details on this case).

Lemma 2.1.5. There exists a unique w*-continuous contraction T : L2(¥%, N) — B(L*(2))®N
such that for all 0 € L*(X2%) and for allye N, T(0®y) = Sy ®y.

Proof. Recall that L2(32 N) = LQ(E2 +)*, by Theorem 2.1.1. Let |||.|| denote the norm
on S*(L*(2)) ® N, induced by (B(L ( ))®N).. Recall £ < L*(X) defined by (2.1.6).
Then under the identification (1.4.5), L*(X) ® L*(X) ® N, is dense in (B(L*(2))®N ).,
hence £ ® € ® N, is dense in (B(L*(X))®N ).
Let L: EQER® N, — L?(3?, N,) be the linear mapping such that for all u,v € £ and
N € Ny,
[Liu®v®n)](s,t) = u(s)v(t)n, (5,t) € X2

M

Let ® € E® £ ® N,. It can be written as ® = > xpg, ® Xr; ® nijy where M > 1 is
ij=1

an integer, Fy, ... F) are pairwise disjoint elements such that 0 < |E;| < oo for all i,
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Fy, ... Fy are pairwise disjoint elements such that 0 < |F};| < oo for all j, and n;; € N,.
We define, for all i,j = 1,..., M, z; = ]Ei\%|Fj]%mj € N,.. By classical duality, there
exists a family (m;;)1<;j<m © N such that

M 2 M M
<Z Zij|2> = > (ajmig) and > Imyl? <1

ij=1 ij=1 ij=1
Thanks to the disjointness of the £; and of the F};, we have

| (@)1 Z22 v ZH%H | EillF5] = ZH%H2 (2.1.9)

We now define

M
U= ®

|E’1 % |1® s e LAD)®LAY)®@ N < B(LA(X))®N.
i,j=1 2

We have
(@,0) = > Cigimigy = Y 2> = |L(®) | r2s2 v,
iy i

by (2.1.9). Hence
|L(®)|2z2,n50) < [ ¥lIBzesyen 2
We will prove below that
IV Bemyen < 1. (2.1.10)
Taking this for granted, we obtain that L extends to a contraction (still denoted by)

L: (B(L*(%))®N), — L*(2* N.,).

Its adjoint I' = L* is a w*-continuous contraction from L2(%?, N) into B(L?*(X))®N and
it is easy to check that T'(0 ® y) = Sp ®y for all # € L*(3?) and y € N. This proves the
existence result. The uniqueness comes from the w*-continuity of I' and the w*-density
of I2(Z2)® N.

It therefore remains to check (2.1.10). Let K be a Hilbert space such that N < B(K)
as a von Neumann algebra. Then

B(L*(X))®N < B(L*(X))®B(K) ~ B(L*(%, K)).
Let &, ¢ € L*(%, K). Then

i,7=1 1,]= 1

< 1
OO = 3 e J,., cmotec. clopasas.
Hence by Cauchy-Schwarz,
.01 < 3 oo Il (| e@lar) (] 16co1as)
< (.Z ||m¢j\2>2<2 o (j jeoiar)" (] 1ctenias)’)

(f ) % (

lela ) (S (] retommas)’)
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By Cauchy-Schwarz again we have

|E|<J |’5”'6”)2<Li||£<t>2dzf md

foralli,j =1,..., M. We derive

@0l < ([ e dt) (JL1cts Hst),

which proves (2.1.10). O

‘ -

(], tenar)” < | rcteypas

2o

2.2 Proof of Theorem (A)

The goal of the section is to prove Theorem (A), stated at the beginning of this chapter.

Throughout we let 3 be a o-finite measure space, and we let ¢ € L*(X?) such that
M, is a self-adjoint, unital, positive Schur multiplier on B(L*(X)). We define a bilinear,
symmetric map V : Li(2) x LE(3) — R by

VUL = [ els ONOF()dtds, (1) € L) x LE(E),

We claim that V is positive. To prove it, fix some f € Ly (X) n L(X). For all E < ¥
such that |E| < o0, we have xgp ® xg = 0. Hence by the positivity of M, we have

({My(xe®xe)](f), f)=0

Equivalently,

fE ; o(s,t)f(t)f(s)dtds = 0.

Passing to the supremum over E, we deduce

|, et nr@sias > o

Since L () n LA(X) is dense in L (X)), this proves the claim.

Let Ky < L§(X) be the kernel of the seminorm V(f, f )% Equipped with the resulting
norm, the quotient L (X)/Ky is a real pre-Hilbert space. We let H denote its completion.
This is a real Hilbert space. Let N denote the tracial von Neumann algebra (I'_; (H); 7)
(see Section 1.6).

In the sequel, wherever h € LL(3), we let h € H denote its class. We let T : L}(Z) —
N be the unique linear map such that for all h € Lg (2),

T(h) = w(h).
We let F e L®(3, N) and dy € L*(3Z)®N be associated with T € B(L'(X), N) through

the identifications B(L'(X), N) ~ L®(X, N) and B(L'(X), N) ~ L*(X)®N provided by
(2.1.3).
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Lemma 2.2.1. We have |T| <1, |[F| <1 and ||do| <1

Proof. We recall that M, is positive and unital. By the Russo-Dye Theorem, this implies

that | M| = 1. Tt follows from Lemma 1.4.2 that |M]|| = 1. Hence by interpolation, we

have | M, : S*(L*(X)) — S*(L*(X))| < 1. Consequently, ||¢[. < 1 thanks to (1.4.8).
For all f e LL(X), we have

|1 :f (s, 1) f (1) (s)dtds < el 1T < [ £15-
2
So we have, thanks to (1.6.2),

(A =1l < £ 1 (2.2.1)

n
Consider h = >, a;Xg,, where Fy, ... E, are pairwise disjoint elements of finite measure
i=1

and ay,...,a, € C. Then we have |[h|; = D] |a;||F;|. On the other hand,

= ZaiT (XE) = Zaiw (XEZ)

Hence

IT(R) ]y <D < aillxe b = Y leall Bl = [h1,

by (2.2.1). This shows that ||T] < 1, and hence |F| < 1 and |dp| < 1. O

The following lemma provides a link between F' and .
Lemma 2.2.2. For almost every (s,t) € X2, 7(F x F(s,t)) = o(s, ).

Proof. We use the equation (2.1.8) with n = 7. We obtain for all f,h e LL(2),

L? 7(F x F(s,t))f(s)h(t)dtds = 7(T(f)T(h))

by (1.6.3). The expected equality follows at once. O
Lemma 2.2.3. We have di = dy and d3 = 1.

Proof. We let 7 = {-®r denote the usual trace on L*(X)®N. For any f € Li(X) and
ne N, ~ LY(N), we have

g, f®mn) = 7(dg(f ®n)) = 7(do(f @1%))
(T () = T(w(f)n*)
(w(f)n) = 7(T(f)n) = {do, f ® ).

By linearity and density, this implies that dj = do.
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By assumption, (X, i) is o-finite. Thus there exists a positive function v € L'(3) such
that |v[|; = 1. Changing du into vdu, we may therefore assume that p is a probability
measure. Since 7 is normalized, the trace 7 is normalized as well.

Let j : N — L*(N) be the natural embedding and let Ty = jo T : L}(X) — L*(N).
Since L?(N) is a Hilbert space, it has the Radon-Nikodym property (see [17, corollary
IV.1.4]). Hence there exists v € L*(X, L?(N)) such that for all h e L!(2):

Ty(h) = f Bty ().

For any f,h € L(X), we have

LQ ol(s,1) f(s)h(t)dtds = T(w(fw(h)), by (1.6.3),

= 7(w (f)w(h)*).
= (Gw(f)): (w(h))Dr2v
= (Ta(f), To(h))r2(ny

~( f o (s)ds. [ (W)dt>m>

- | b fn(bids.
This implies that for almost every (s,t) € 32,

v(8), () r2ny = (s, ). (2.2.2)

We obtained a factorization of ¢ as in Theorem 1.4.3, with o = 8 = ~. Now we can use
Theorem 1.4.6 and we obtain that for almost every t € ¥,

(@), (@) L2y =1

Since the measure on Y is normalized, this yields

L (1) 2t = 1

Since L*(X)®N is normalized we have, using (2.1.5), a contractive inclusion
L®(2)@N < L2(S, LA(N)).
By construction, v € L*(3, L?(N)) corresponds to dy. Thus we have proved that
T(dydy) = 1.

Since 7 is normalized, this shows that 7(1—djdy) = 0. However by Lemma 2.2.1, |dy|| <
hence 1 — didy > 0. Since 7 is faithful, we deduce that 1 — didy = 0, that is, d2 = 1. O

Remark 2.2.4. The identity (2.2.2) provides a new proof of Theorem 1.4.5.

47



CHAPTER 2. DILATION PROPERTIES OF UNITAL SELF-ADJOINT POSITIVE
MEASURABLE SCHUR MULTIPLIERS

We are now ready to introduce the maps U, J providing the absolute dilation of M,,.
We let N* denote the infinite von Neumann tensor product ®z/N and we let 7 denote
the normal faithful finite trace on N (see [64]). We set

F* = Q@Iy®F®ly e LY(,N7),

where F is in 0 position. We denote by T € B(L'(X), N®) the element associated
with F'* through the identification between L (2, N*) and B(L'(X), N®). We also let
d e L*(X)®N® be associated with F* through the identification between L (X, N*)
and L*(X)QN*. We know from above that

ld|o < 1, d* = d and d® = 1.

In the sequel, we regard L*(X) as a von Neumann subalgebra of B(L?(X)) by identifying
any ¢ € L*(X) with the multiplication operator, h + ¢h for h € L*(2). Thus we have

L2(2,N*) ~ L*()®N* < B(L*(Z))@N™.

We will see d as an element of B(L*(2))@N®.
We recall that tr denotes the trace on B(L*(X)), we let M = B(L*(X))®N* and we
let Tpq = tr ®7* be the natural semifinite normal faithful trace on M. We define

J: B(IA(2)) — B(L}(E))BN®,  J(z) = 2 ® Ly«.

This is a w*-continuous trace preserving one-to-one *-homomorphism. We let E : M —
B(L*(X2)) denote the conditional expectation associated with J.

We introduce the right shift S : N — N%. This is a normal, trace preserving
x-automorphism such that for all (x,,)nez < N,

S(RrRT1 Q1@ )= QT 1QT)RT1 @+ .

We define
U: B(L*(X))®N* — B(L*(X))®N*

by
Uly) =d(Id®S)(y))d,  ye B(L*(X))®N.

Since d is a self-adoint symmetry, U is a normal, trace preserving s-automorphism.
We apply Lemma 2.1.5 with N* and we let

I:L2(X% N*) — B(L*(X))@N*
be the resulting w*-continuous contraction.

Lemma 2.2.5. The mapping R : L2(X? N®) — L2(3, N®) defined by R(F) = So F is

w*- continuous. In addition, we have

(Id® S)L = IR. (2.2.3)

Proof. We apply Lemma 2.1.2 with V' = & to prove the first point. For all § € L?(Y),
and y € N*, we have

(Id@S)FI®y) = 5% ®S(y) =TI S(y)) = T(ROE®Y)).

We deduce the equality (Id ® S)I' = TR on L2(X% N®), by linearity, w*-continuity of
the maps and w*-density of L?(X?) ® N® in L2(X% N®). O
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k times

—
For any k € N we set N¥ = N®---®N. Then we let L;, : N¥ — N® be the unique
w*-continuous *-homomorphism such that:

Li(z1® - ®z) = QIn®211 Q- @2, @1y -+, 21,2k €N,

where z; is at position j for all 1 < j < k. For the rest of the chapter, we identify N*
with its image Lj(NF).

Lemma 2.2.6.
1. Let fe L®(X,N), ke N, and let A: L®(3, N¥) — L®(X, N®) be defined by

Alg) = 1IyQ1Iy® f ® g ® 1y

I I
1 k+1

Then A is w*-continuous.
2. Let W e L®(X, N®) and let B : L*(X, N*) — L®(X2, N®) be defined by
B(®) =& x .
Then B is w*-continuous.

Proof. In the definition of A, the 1y play no role. So we may consider A : L*(%, N¥) —
L* (X, N®N¥) such that A(h) = f ® h, instead of the map given in the statement. To
prove that A is w*-continuous, it suffices to show that for any bounded net (h;) which
converges to h in the w*-topology of L¥(X, N¥) and for any V € (L (%, NQN¥)), =
LY(3, (N®NF),), we have

(A(hy), VY — (A(h), V). (2.2.4)

We know that L*(X)® N, ® NF is dense in L'(3, (N®N¥)), (see the beginning of Section
1.4.2). Let (h;) = L®(X, N*) be a bounded net which w*-converges to h. Then for all
ve LY(X) and u e NF, we have:

Chiyv @ py — (hyv @ ) (2.2.5)

We note that for all n € Ny, ue NF and [ e L}(2):

CAh), @0 @ 1y — f L)), (), oy,

Using (2.2.5) with v(t) = I(t){f(t),n), we derive
(A(hi), 1@ N @ ) — (A(h), L@ ® ).

By linearity and density, and by the boundedness of (h;), we obtain (2.2.4).
Now we prove the w*- continuity of B. We let

B: B(LY(X),N®) - B(L'(%?),N®)
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be the operator corresponding to B if we use the identifications B(L*(X); N*) = L® (X%, N®)
and B(L'(X?); N®) = L®(X2,N®). We will prove that B is w*-continuous. Let S €
B(L'(X); N®) be corresponding to ¥. Then for all T € B(L'(X), N®) and for all
f,he LY(Y), we have

B(T)(f®h) = T(f)S(h)

We know that L!'(X) ® L'(X) ® N is dense in L'(X?% NP) = B(L'(X?); N®),. For all
f,he L'(X) and n € NP, we have

(B(T),f ®@h@ny =T(f)S(h),ny = T(f), S(hymy = (T, f ® S(h)n. (2.2.6)

Let (T;) € B(L'(X); N®) be a bounded net which converges to T'e€ B(L*(X); N®) in the
w*-topology. We have:

(T, f@S(h)ny — (T, f @ S(h)n)
We therefore obtain, thanks to (2.2.6), that
(B(T;), f@h@mn) — (B(T), f@h@n).

By linearity, by density and by the boundedness of (7;), we obtain that for all V €
LY (%, NP):

(B(T),V) — (B(I),V).
This shows the w*-continuity of B, and hence that of B. O]
Remark 2.2.7. Let ¥ € L®(X, N®), 0 € L?(X?) and y € N®. We deduce from the

previous lemma the w*-continuity of the map ® — 6(® x ¥)y from LP(X, N®) into
L2(X2, N*).

The following lemma explains how to swap d and I'.

Lemma 2.2.8. For all § € L*(3?) and for ally = -+ Q@y_1 @1y ®y; - -- € N, we have:

Al ®y)d =T ((s, )= 0(s, ) QA @F x F(s,t) @y ® - - -]) (2.2.7)
Proof. Recall £ given by (2.1.6). Instead of d, we first consider approximations by fnite
sums
$=dXe® - @ILy®MRIN®--- €EQN”
and

=D ® - ®ly@m;@Iy® - €EQN”.
J
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We have:

L@ y)o = ¢(Se @ y)¢’
= ZXEi-SG-XEg. ®~-®y_1®mim}®:y1®---

ihj

= 20 ((5:0) = X (0. DXy (O]~ @ yor @ @11 ©---])

=T ((s,t) — 6(s,8)|-- @y @ (Y xm (s)mi ) (L xy (m)) @y @ - ])
I'((s,t) = 0(s,1)(s)¢' (t)y) -

Here ¢ and ¢’ are measurable, hence we have ¢(s)¢/(t) = ¢ x ¢/(s,t), by Remark 2.1.4.
Hence the preceding equality gives:

OL(0®@y)d' =T ((s,1) = 0(s,1)¢p x ¢'(s,t)y)

In this identity, the maps ¢ and ¢’ are regarded as elements of B(L?(X))®@N® on the left
hand-side, and as elements of L*(X, N®) on the right hand-side. Using the facts that
E® NP is w*-dense in LL (3, N®), that I' is w*- continuous, as well as Lemma 2.2.6 and
Remark 2.2.7, we deduce that

SL(O@y)d =T ((s,t) = 0(s,1)(9x F*)(s, 1)y)

and then

Ar@®y)d =T ((s,t) 05, £)(F* x FOO)(s,t)y> .
The last thing to observe is that FPxF® = - - @ In@ FxF® 1y ® --- . The latter is
true by the uniqueness of the construction. O]

Remark 2.2.9. The reader not familiar with the approximation techniques used to
establish Lemma 2.2.10 should first look at the finite-dimensional case to gain intuition
on this proof. We provide this finite-dimensional proof for convenience. Thus, we now
assume that ¥ = {1,...,n} for some integer n > 1, so that L*(X) = (X, L*(Z) = (2,
B(L*(X)) = M,,. Then F € ("(N) is written as F' = (Fy,..., F},), where each Fj, € N is
a unitary, and ¢ = [©(7, j)]1<ij<n 1S given by Lemma 2.2.2 by

Write u = (uq, ..., u,) € ¢2 and similarly for v, a,b. Then in the space B(L?*(X))@N*
M, (N®), we have u @ v ® 1o, = [w;v;- 15]. Hence S(u®@v®@ 1) = (u® v ® 1), hence

UJ(Sugw) =U(u®@v® 1y) = du®v® 1y)d.
By Lemma 2.2.8, we obtain

du®v® ly)d = [Uivj(---l@)E*Fj@lm)],
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where the Fj* I} are in position 0. Next,
SUu®v®1ly)) = [uv(-- 1Q1Q FFF®1---)],
where the F* I} are in position 1 and
U2(U®U®1oo) — [uivj('"1®E*Fj®pi*Fj®1“')]a
where the F*F; appear in positions 0 and 1. By induction, we find that for all £ > 0,
U(u®v®ly) = [u;(- - 1@ F@FF @ @FF;@1-],

where the F*F; appear in positions 0, 1,... %k — 1, which is the requested identity (2.2.8)
in this context.

Lemma 2.2.10. For all f,h € L*(X), and for all integer k = 0, we have:

UkJ(Sf®h)zf((s,t)Hf(s)h(t)[...®1N® FXF(s,t) ® - ® FxF(s,t) ®1N®...])'

1 1
0 (k—1)
(2.2.8)

Proof. We prove this lemma by induction. The result is true for k = 0 since

J(Sten) = Sien ®@ - @ IN® -+
“T((f®h) @ 1y»)
= T((s,t) = fOROL - @ Ly @---]).

We now suppose that the result holds true for some k& > 0. By the w*-density of L*(3X?)®
N into L®(¥2%, N), we may write

(s,8) = f(h()[ - QINQFXxF(5,t)® - Q FxF(s,1) Iy ® -]
:hzm Z 9;',@...®1N®m?’j®...@mZ;1®1N®...7

7 finite

where 07 € L*(X?) and mj; € N for all 7, j,1. We have:

UM (J(Spen)) = UU* T (Sren))
=U([((s,t) = f(s)R@)] - ®INQ@ FXF(s5,1) @ @ FxF(s,t) @ In®---])

U(F <11il%n > 0;@-~®1N®m?’j®---®mﬁ;1®1N®~'>>

7 finite

fiuzm Z UI@® ®lyen!,®@ - @mi'ely® )).

j finite
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By w*-continuity of I' and U,

w*

= lim D d((1d@S)(TMH® - @1ly@m),;®--@mi;' ®ly®---)))d
7 finite

=lim » dTEOS( @v@m);® - @m;' @ly®)))d.
7 finite

By Lemma 2.2.8, the latter is equal to

Hm YD ((s,t) = 0i(s, t)[ - @ 1Iy® FxF(s,t) @m), @@ m;" ®ly®--])
b

1 !
0 k

By Lemma 2.2.6, (1), and the w*-continuity of I', this is equal to

F((S,t)l—)[-"® F>~<F(8,t) ®<lilmzjﬁnite(9;(s,t)m2j@...®m§’;1>® 1n ])

1 T
0 k+1

We let v € L2(3, N®) be defined by

V(s,t) = Q@ FxF(s,1) ® <li§n Z Qj(s,t)m?7j®~-®mfgl) RIy---.
j finite
Then we have obtained that
UM (J(Spen)) = T(v)

Recall the mapping R : L*(X? N*) — L*(3?, N®) from Lemma 2.2.5. Then we have

V=[] Q@FxF® (hyl > 9§m?,j®-~®m§;1> ®1y---].

7 finite
=[® FxF ®ly---]lim Y] 9;[@ Ix @mgj@...@ mfj—l ®- -]
v j finite
1 I 1
0 0 k
=[® FxF ®ly- - Jlim(R( Y Q;[@ m?}j R ® mi?";,l ®--])
v 7 finite
1 1 1
0 0 (k—1)
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By the w*- continuity of R,

=[ - ®FxF®1ly---]|R (11?1 Z 9;[...®m?7j®...®mﬁj1®...])

7 finite

=[® FxF Ry |(fOM[ - ® 1n RIFXF® ---® FxF ® -]

T 1 1
0 0 k
= f®h[--®Iy® FxF ®--® FxF ®ly®---]).
! 1
0 k
We obtain the result for k£ + 1. This proves the lemma. O]

We now conclude the proof of Theorem (A) by proving
(MO)* =EU*J,  k>0. (2.2.9)

By linearity, density and duality, it suffices to prove that for all f,h € L?(X) and for
all u,v e L*(2), we have

(BU*J(Spen), u®@v) = (ME(Sten), u®@uv) . (2.2.10)
Let v : (B(L*(X))®N®), — L*(X? N) such that 7* = T'. We write
(BU*J(Sgn), u®vy = {U*J(Spen), Ji(u®@v)).
By lemma 2.2.10, the latter is equal to

=L ((s,1) = f(HAD[ - @ FxF(s,1) @ - @ FxF(s5,1) @Iy @+ ]), J(u®w))

= (s, t) FORE[ - @FxF(s, )@ @ FxF(s,t) @ In®--- ], 7(1(u®v)))
= {(s,t) = f()h@)[ - Q@ FxF(s,t) ® - @ FxF(s,t) @ Iy ® - |, 7(u @ v ® Ing))
={(s,t) = f()h@)[ - Q@ FxF(s,t) ® -+ - @ FxF(s,t) @ Iy ® - - - |, (s, ) > u(s)v(t) 1) )
J {f($)R(E)] - @ FxF(s,) Q@+ @ FXF(s,t) @ Iy @+ |, u(s)v(t) 1) ) dsdt.
Consequently,
(EU* J(Spen),u® v = ; F() R u(s)0(E)F % F(s, 1), 1y, dsdt
= J;2 f(s)h(t)u(s)v(t)T(FXF(s,t))*dsdt
_ ; F($)h(u(s)o(t)o(s, ) dsdt, by Lemma 2.2.2

<M£(Sf®h), U U>

This shows (2.2.10) and concludes the proof.
By Proposition 1.3.5, we have the following explicit consequence of Theorem (A).

Theorem 2.2.11. Let ¥ be a o-finite measure space. Let M, is a self-adjoint, unital,
positive Schur multiplier on B(L*(X)). Then for all 1 < p < o, the map (M,), :
SP(LA(X)) — SP(L*(X)) is dilatable.
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2.3. MULTI-VARIABLE VERSION

2.3 Multi-variable Version

The purpose of this section is to prove Theorem (C); then we will state a consequence
(Theorem 2.3.2).

Theorem (C). Let ¢, ..., p, € L*(X?) and assume each M,, is a self-adjoint, unital,
positive Schur multiplier on B(L*(X)). Then there exist a tracial von Neumann algebra
(M, 7), a commuting n-tuple (Uy, ..., U,) of trace preserving -automorphisms on M and
a w*-continuous trace preserving one-to-one x-homomorphism J : B(L*(X)) — M such
that

k kn _ k kn
Mcpi"'Mcpn_EUll'“Un J

for all k; € Nog, 1 < i < n, where E : M — B(L*(X)) is the conditional expectation
associated with J.

The approach is similar to the one in [54], where the discrete case was considered.
Since many arguments are similar to the ones in Section 2.2 we will not write all the
details.

To make the presentation simpler, we only consider the case n = 2. The arguments for
the general case are similar. So we consider ¢, @ € L*(X?) and we assume that M, , M,
are self-adjoint unital positive Schur multipliers on B(L*(X)). We let Hj, respectively
Hs, denote the real Hilbert space associated to ¢, respectively @9, as at the beginning of
Section 2.2. Then we consider the tracial von Neumann algebras (Ny,71) := (I'_1(Hy), 71)
and (No, 73) := (['_1(Hy), 72), and we define

(N, T) = (N1®N2, 7'1®7'2).

Next we let Ty € B(L'(X), Ny) and T, € B(L'(X), N»), be the unique linear maps such
that

Ti(h) = wi(h) and Ty(h) = we(h),  he LL(Z).

For i = 1,2, we let F; € L®(%, N;) be associated to T;. In addition we define T and T
in B(L'(X),N) by

T®(h) =Ty(h) ®1y, and TP(h) =1y, ® Tr(h), he L'(%).

As in Section 2.2, we consider the infinite tensor product N®, and we now let 77° and
T in B(L'(X), N®) be the natural extensions of T® and T%°, respectively. Finally
we let F° and F3° in L¥ (X, N*) be corresponding to 77 and T3°, respectively, in the
identification B(L!(3), N®) ~ L® (X, N®). Likewise we let d; and dy in L®(X)@N® be
corresponding to 77° and T3°, respectively. It follows from Section 2.2 that d;,d, are
self-adjoint symmetries. Moreover d; and ds commute, by construction.

We consider the shifts &7, S, on N such that

81(®(x0®y0)®(x1®y1)®):®(x_1®y0)®<xo®y1)®
and

S+ @ (20@Y0) ® (1@ Y1) ® -+ ) i= - @ (20 QY1) ® (11 @ Yo) ® - -
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We set M := B(L*(X))®N® and we let J: B(L*(X)) — M be defined by J(r) = 2®
1y». This is a trace preserving one-to-one *-homomorphism. We let E : M — B(L?(%))
denote the conditional expectation associated with J.

For i = 1,2, we define a trace preserving *-automorphism U; : M — M by

Ui(y) = di((1d ® Si(y))d;.

Let us now prove that U; and U, commute. We already have didy = dsd,. We remark
that d; € B(L*(X))®N{°®1 and dy € B(L*(X))®1®Ns°. On the other hand, We can see
Id® S, (respectively Id®Ss) as being the same as [d @ S®Id (respectively 1d® IdRS).
Further we have Id ® S1(d2) = ds and Id ® Sz(dy) = d;. Hence for any = € M, we have
UyUs(z) = di(Id ® S (do(1d ® Sa(x))ds)d,
=di(Id®81(d2)1d® S1(1d® Sa(x))Id ® Sy (ds)dy
= d1dsld ® S1(1d ® Sa(x))dad,y
= dod1 1d ® S2(1d ® S1(x))dyds
| same computation

= UQUl(ZE)

This proves the commutation property.
We now apply Lemma 2.1.5 and we let

[:L2(X% N*) — B(L*(Z))QN*
be the resulting w*-continuous contraction. Applying the argument in the proof of
Lemma 2.2.8, we have:

Lemma 2.3.1.

1. For all@e L2($2) and for ally = - @y @ (Iy, ®42) Qup - -- € N,
ALO®y)d =T ((5,0) = 0. O] ® -1 @ (F X Fi(s.1) ©3) @11 ® )

2. Forall§e L*(X) and for ally = - @y_1 @ (Y @ 1n,) ®yp - -- € N
BLO@y)dy =T ((5,6) = 05,0+ @Y1 @ (15 @ Fo X Fa(s. 1)) @11 @ ---])

This is all that we need. Indeed, using this lemma and computations similar to the
ones in the last part of Section 2.2, we obtain that for all integers k,l > 0 and for all
f,he L*(X), we have

EUTU3J (Sren) = Mg, My, (Sren)-
The full statement of Theorem (C) follows at once.
We finally mention that applying Lemma 1.2.3, we obtain the following consequence.

Theorem 2.3.2. Let ¢y, ..., p, € L(X?) and assume each M, is a self-adjoint, unital,
positive Schur multiplier on B(L*(X)). Then, for all 1 < p < o0, there exist a tracial von
Neumann algebra (M, 1), a commuting n-tuple (Uy,...,U,) of surjective isometries on
LP(M), and two contractions J : SP(L*(X)) — LP(M) and Q : LP(M) — SP(L*(X)) such
that for all ki, ..., k, in Ny,

ME M = QUE - URT on SP(LA(S)).
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Chapter 3

A characterization of absolutely
dilatable measurable Schur multipliers

In the sequel, we say that (3, ) is separable when the Hilbert space L*(X) is separable.
In this chapter, we will prove the following theorem. After that, we will look at the
non-separable case.

Theorem 3.0.1. Assume that (3, 1) is separable and let o € L*(X?). The following
assertions are equivalent.

(i) The function ¢ is a bounded Schur multiplier and M,: B(L*(X)) — B(L*(X))
admits a separable absolute dilation.

(ii) There exist a normalized tracial von Neumann algebra (N, Ty) with a separable
predual and a unitary ® € LY (X; N) such that

e(s,t) = v (0(s)*0(t)), for a.e. (s,t) € ¥2. (3.0.1)

3.1 L7-spaces and normal tensor products

Let (X, 1) be a o-finite measure space. For any 1 < p < o0, we simply let LP(X) denote
the associated LP-space LP(3, ). In integration formulas, du(t) will be abbreviated to
dt.

Let X be a separable Banach space. We say that a function 0: ¥ — X* is w*-
measurable if for all € X, the scalar function ¢ — (d(t),z) is measurable on ¥. The
latter function is denoted by (0, x) for simplicity. If 9: ¥ — X* is w*-measurable, then
the norm function ¢ — |[0(¢)| is measurable on X. Indeed if (x,),>1 is a dense sequence
in the unit ball of X, then [[o(-)| = sup,, [0, z,,)|. We let L*(3; X*) denote the space of
all w*-measurable functions 0: ¥ — X*, defined up to almost everywhere zero functions,
such that |[o(-)| is essentially bounded (in this case, we simply say that 9 is essentially
bounded). This is a Banach space for the norm

9] = HHD<)||HLOC(2)
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Let F e L'(X; X) and let 9 € L?(X; X*). Using the fact that L'(X) ® X is dense in
LY(Z; X), it is easy to see that the function ¢ — (0(t), F'(t)) is integrable and that

@, F) = L<b(t),F(t)>dt (3.1.1)

satisfies [0, F)| < || F[1[|9]lsc. Consequently, (3.1.1) defines a duality pairing between
LY(%; X) and LP(3; X*). Tt turns out that (3.1.1) extends to an isometric isomorphism

L2(S; X*) ~ LL(3; X)) . (3.1.2)

This result is known as the Dunford-Pettis theorem [18, Theorem 2.1.6]. See [15, Theorem
11] for a simple proof.
It is clear that

LP(%; X*) < LP(2; X7)
According to [17, Theorem IV.1.1], this inclusion is an equality if and only if X* has the

so-called Radon-Nikodym property. We will use the fact that Hilbert spaces have this
property [17, Corollary IV.14]. Thus, for any separable Hilbert space H, we have

LP(S;H) = LO(5; H). (3.1.3)

Note that more generally, all reflexive Banach spaces have the Radon-Nikodym property.
See [17, Section VIL.7| for more information.

Let Z < X* be any w*-closed subspace. Then Z has a natural predual, equal to the
quotient space X /Z,, and the latter is separable. This allows to define L¥(¥; Z). It is
clear that

LE(S:Z) © LE(S: XY)

isometrically. Furthermore, L'(3; Z,) < L'(X; X) isometrically and under the identifi-
cation (3.1.2), we have
L2 Z) = LM% Z0)*. (3.1.4)

In the separating case, the above construction and the construction in Section 2.1 of
L,(X, X*) give the same space. It follows from this lemma.

Lemma 3.1.1. Let X be a separable Banach space. For any w*-measurable function
0:X — X* We have,

[t = To)lle = [ 2 — sup{|®@,2)] : w € X, || < 1} s,

Proof. We let ¢ = [t — [3(t)||co- We let (2,,)n>1 be a dense sequence in the unit ball of
X. Then

[t = PO = [sup|®, 2a)lloc < L = sup{|®,2)] : v € X, 2] < 1}] sy

Now we will prove that

|ILZ — sup{[(0,2)| : z € X, |z < <ec

Bl
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3.1. L¥-SPACES AND NORMAL TENSOR PRODUCTS

Let x € X, such that |z| < 1 and let f € L*(X). There exists a sub-sequence (x/,),>; of
(Zn)n>1, such that 2/, — x. We have for all n € N,

Lf<t><o<t>,x;>dt

< | fl. (3.1.5)

Using (2.1.1), we obtain,

L f(t)@(t),x}dt‘ < lLf(t)<o(t),x;>dt‘. (3.1.6)

By 3.1.6 and 3.1.5, we have

[ @@, arar| < s

Consequently,
[<0(8), )l < €

Finally, we obtain the other inequality. So the equality between [t — [o(¢)][lsc and
|IL* — sup{[{0,2)| : w € X, ] < 1}HL°°(E) holds. O

Given any von Neumann algebras Ny, No, we let Ny®N5 denote their normal tensor
product. We will assume that the reader is familiar with the normal tensor product and
its basic properties, for which we refer either to [62, Section IV.5| (where it is called the
W*-tensor product) or to [40, Section 11.2], see also [58, Section 1.22|. We recall a few
facts that can be found in the latter references.

First assume that Ny ¢ B(H;) and Ny € B(H,) as von Neumann subalgebras, for
some Hilbert spaces Hq, Hy. Then

— — 2
N1®N2 e B(H1>®B(H2) ~ B(H1 ® HQ)

2
More precisely, if we regard N1 ® Ny ¢ B(H; ® H,) in the usual way, then Ny®N5 is the

w*-closure of Ny ® N in B(H, & Ha).

Second, consider 7, € Ny, and 1y € Nay,. Let Iy, (resp. In,) denote the identity
operator on Nj (resp. N;). Then the tensor map 71 ® Iy,: Ny ® No — Ny uniquely
extends to a w*-continuous operator 7;®1y,: Ny®Ny — N,. Likewise, the tensor map
In, ® 1o uniquely extends to a w*-continuous operator Iy, ®ny: N1®Ny — Nj. Further
m ® n uniquely extends to a w*-continuous functional on Ny®N,. We still denote this
extension by n; ® 1. It is plain that

Mm@z =m o (In,®n2) = n2 0 (MIn,).
Third, the above definition of 7y ® 72 € (N1®N3), yields a natural embedding
N1, ® Noy = (N1®Na)s. (3.1.7)

Remark 3.1.2. The operators 71&®Iy, and Iy, ®ny considered above are usually called
the slice maps associated with 7, and 7, respectively.
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Assume Ny < B(H;) and Ny < B(H;) as above and let w € B(H;)®B(Hs). Then
w € N1y®N, if and only if

(IB(H1)®772) (w) S N1 and (771@]3([{2))(10) € NQ,

for all ny € B(Hy). and all ny € B(Hs),. This is the so-called slice map property of
von Neumann algebras, see [66]. In this chapter, we will use this property only when
Ny = B(Hs), in which case the proof is simple (see e.g. [19, Theorem 2.4] and its proof).

We conclude this section with a natural connection between L-spaces and normal
tensor products.

Lemma 3.1.3. Let N be a von Neumann algebra with a separable predual.

(1) For any ¢,0 € L¥(X;N), the functions t — ¢(t)0(t) and t — 0(t)* are w*-
measurable. Furthermore, LY (¥X; N) is a von Neumann algebra for the pointwise
product and the pointwise involution.

(2) The natural embedding of L*(X) ® N into LX(3; N) extends to a von Neumann
algebra identification

L¥(3;N) ~ L*(X)®N. (3.1.8)
Proof. This follows from [58, Theorem 1.22.13] and its proof. O
In the sequel, we write
0o~D

if 0 e LP¥(3;N) and D € L*(X)®N are corresponding to each other under the identifi-
cation (3.1.8).

Remark 3.1.4. It is plain that for any 0 € LX(3; N) and D € L*(X)®N, we have d ~ D
if and only if

L F@(), ydt = [f ®](D)
for all fe L'(X) and all n € N,.

Lemma 3.1.5. Assume that N has a separable predual, let @ € L¥(3; N) and let D €
L*(X)®N such thatd ~ D. Then for all x € N, we have

20~ (1®zx)D,
where x0 € LY (X; N) is defined by (x9)(t) = 20(t), and 1 = 10(x).
Proof. This readily follows from Lemma 3.1.3, using the constant function ¢(¢) = z. O

As a complement to Lemma 3.1.3, we note that the natural embedding of L*(3) ®
L*(X) into L®(X?) extends to a von Neumann algebra identification

L*(¥?) ~ L*(2)QL7 (D). (3.1.9)

Indeed, the embedding of L'(X)®L(X) into L'(3?) extends to an isometric identification
LY(Z; LY(X)) ~ L'(X?), by Fubini’s theorem. Hence (3.1.9) follows from [58, 1.22.10-
1.22.12].
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Remark 3.1.6. We finally recall the following classical fact, for which we refer to [62,
Proposition V.2.14]. Let (N, 7y) be any tracial von Neumann algebra. Let I be an index
set and let (e;)ic; denote the standard Hilbertian basis of ¢2. Then tr ® 7x uniquely
extends to a normal semi-finite faithful trace

@y (BIBN). — [0, ],

which can be described as follows. Any z € B({?)®N may be naturally regarded as an
infinite matrix [Zij](i’j)ep with entries z;; € N. If z is positive, then each z;; is positive
and we have

tr®TN Z TN zn

el

3.2 Notation and Remark

Given any u,v € L*(X), we regard u ® v as an element of L?(X?) using the convention
(u®w)(s,t) = u(t)v(s), for (s,t) € 2. We warn the reader, it is not the same convention
as the subsection 1.4.2. In the sequel, the operator S,g, will be abusively denoted by
u®v. In other words, we use the notation u® v to also denote the element of B(L?(X))

defined by
[u®v](h) = (Lu(t)h(t) dt)v, he LA(D).

Recall that we let tr denote the usual trace on B(L*(X)). Let ¢ € L*(3?). Applying
(1.4.9), we obtain that for all u,v,a,be L*(X), we have

tr([M‘p(u@)v)][a@b]) - J (s, Hu(t)v(s)al(s)b(t) dtds. (3.2.1)

22

In the sequel, we keep the notation
My: BLA(S)) — B(IA(T)

to denote M;O of theorem 1.4.2.

Recall that (3, i) is called separable if L*(X) is separable. For any 1 < p < oo, this
is equivalent to the separability of LP(X).

Remark 3.2.1. Assume that (X, u) is separable, let ¢ € L*(X?) and assume that ¢
satisfies the assertion (ii) of Theorem 3.0.1. Since (N, 7y) is normalized, we have a
contractive embedding £: N — L*(N,7y). Let a := ko0 € L¥(%; L*(N,7xn)). Then
|aflo < 1. According to (3.1.3), « actually belongs to L®(3; L*(N, 7y)). Moreover for
almost every (s,t) € X2, we have

N (0(8)*D<t>) = <Oé(t) ’ a(8)>L2(N,TN) '

Hence ¢ satisfies (1.4.12), by (3.0.1). Thus, (3.0.1) should be regarded as a strengthening
of the factorization (1.4.12). In this respect, Theorem 3.0.1 says that this strengthened
factorization property characterizes Schur multipliers with a separable absolute dilation.

61



CHAPTER 3. A CHARACTERIZATION OF ABSOLUTELY DILATABLE MEASURABLE
SCHUR MULTIPLIERS

3.3 Preparatory results

Throughout we fix a o-finite measure space (3, ). For any 6 € L*(X), let Ry € B(L?(X))
be the pointwise multiplication operator defined by Ry(h) = 0h for all h € L*(X). Since
0 — Ry is a w*-continuous 1-1 *-homomorphism, we may identify L*(3) with {Ry : 6 €
L*(X)}. Using this identification, we will henceforth regard L*(X) as a von Neumann
subalgebra of B(L*(X)), and simply write

L*(X) c B(LA(%)). (3.3.1)

We recall that L®(X) is equal to its commutant. That is, an operator T € B(L*(X)) is
of the form Ry, for some 6y € L*(X) if and only if TRy = RyT for all § € L*(X), that is,
T(0h) = 0T (h) for all @ € L*(X) and all h € L*(2).

For any measurable set F < X, we let yg denote the indicator function of £. Note
that xg belongs to L*(X) if E has finite measure.

Lemma 3.3.1. Let T € B(L*(X)). Then T belongs to L*(X) (in the above sense) if and
only if T(xg) = xgT(xg) for all measurable E — ¥ with finite measure.

Proof. The ‘only if” part is obvious. To prove the ‘if part’, let &7 be the collection of all
measurable sets E < X with finite measure and let

&= Span{XE . Ee;zf}.

We assume that T'(xg) = xgT (xg) for all E € o/. This readily implies that T'(xg) =
xe'T(xg) for all B, E' € o with £ c F'.

Let E, F € &/. Since xgpxr = Xe~r and E n F' < E, it follows from above that we
have xgT(xexr) = T(xeXxr). Let E€ be the complement of E. Since xpeXr = Xpenr,
we have T'(xgexr) = XgenrT (XEeXF), hence xgT(xgexr) = 0. Writing a decomposition
T(xr) =T(xexr) + T(xEg:xF), we deduce that

T(xexr) = xeT(xr). (3.3.2)

By linearity, the identity (3.3.2) implies that T'(0h) = 0T'(h) for all §,h € £. Since
€ is dense in L?*(X), we deduce that T(6h) = 0T (h) for all h € L*(X) and all § € &.
Further £ is w*-dense in L*(X). If (6,), is a net of £ converging to some 6 € L*(X)
in the w*-topology, then for all h € L*(X), ,h — 0h weakly in L*(X). We deduce
that T(0,h) — T(6h) and 6,T(h) — 0T (h) weakly in L*(X). Consequently, we have
T(0h) = 0T (h) for all h € L*(X) and all § € L*(X). According to the discussion after
(3.3.1), T is therefore a multiplication operator, that is, an element of L*(X). ]

In the sequel we write L¥(X)®L;°(X) instead of L*(X)®L*(X) to indicate that the
variable in the first factor is denoted by s € ¥ and the variable in the second factor is
denoted by t € ¥. In accordance with this convention, we re-write (3.1.9) as

L*(¥?) ~ L2 (D)QLF (D). (3.3.3)
Let N be a von Neumann algebra and let

7 = L(X?)®N = L*(2)QLF(X)RN.
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We let 1; (resp. 15) denote the constant function 1 in L?(¥) (resp. LX(X)). Consider D
and C' in L*(X)®N. We let
1,®D, €7 (3.3.4)

be obtained from D by identifying L*(X)®N with 1, ®L°(X)®N < Z in the natural
way. Likewise, we let
1t ® Cs € Z (335)

be obtained from C' by identifying L*(X)QN with L¥(X)® 1, ®N < Z.

Lemma 3.3.2. Assume that N has a separable predual. Let C,D as above and let
c,0 € LP(3; N) such that ¢ ~ C and d ~ D. Then the function ¢xd: X* — N defined by

(ex0)(s,t) = c(s)0(t), (s,t) € X2, (3.3.6)
is w*-measurable, hence belongs to L* (%%, N). Moreover we have
cx0 ~ (1, ® Cy) (1, ® Dy). (3.3.7)

Proof. Let n € N,. For any 0 € N, let nd € N, be defined by {(a,nd) = {(da,n) for all
a € N. This is well-defined since the product on N is separately w*-continuous. Similarly,
dn € N, is defined by {a, on) = {ad, n).

Writing (§,0(t)n) = {0(t),nd) for any § € N, we see that the function ¢ — 0(t)n is
weakly measurable from ¥ to N,. Hence it is measurable, by the separability assumption
and [17, Theorem II. 1.2]. The function ¢ — 0(¢)n is therefore an almost everywhere
limit of a sequence (wy)n>1 of L?(X) ® N,. Since ¢ is w*-measurable, the function
(s,t) — {e(s), wy,(t)) is measurable for any n > 1. We deduce that (s,t) — {¢(s),d(t)n) =
{¢(5)0(t),n) is measurable. This shows that ¢x? is w*-measurable. It is clear that ¢x?
is essentially bounded. Thus, we obtain that ¢xd € L®(X?; N).

Set A = (1; ® Cs) (15, ® Dy) in this proof. We introduce

m = J f(s)e(s)ds € N,
)
this integral being defined in the w*-topology. Consider the slice map
f = [®lipsgn: Z — L*(Z)BN.
For any w,v € L*(X) and any a,b e N, we have (u®1®a)(1®v®b) = (4 ® v ® ab) in

Z, hence

f((u@l@a)(l@)v@b)) = <qu>v®ab= <1® <Lf(s)u(s)ads>>(v®b).

By linearity, this implies that if C' and D belong to the algebraic tensor product L*(¥)®
N, we have N
7(A) = 1@m)D. (3.3.8)

If (C,), is a net of L*(X)®N converging to C' in the w*-topology of L*(X)®N and if
¢, € LY(X;N) are such that ¢, ~ C,, then {; f(s)c,(s)ds converges to m in the w*-
topology of N. Since the product on von Neumann algebras is separately w*-continuous
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and f is w*-continuous, we deduce that the identity (3.3.8) actually holds in the general
case. Consequently,

[f®@g@nl(A) =[g@nl((1®m)D).
Since d ~ D, Lemma 3.1.5 and the ‘only if’ part of Remark 3.1.4 ensure that

[9@n(1@m)D) = | glt)md(t).nyt.

%

Writing
(ma(t),n) = (m,o(t)n) = L f(s)e(s),0(t)n) ds = L f(s)(e(s)o(t), n) ds,

and using the measurability of (¢x?,7), we deduce that

F@®9@u(8) = | o) f(s)els)o(t)mydscr
22
Applying the ‘if” part of Remark 3.1.4, we deduce (3.3.7). ]

2
Let Hy, Hy be two Hilbert spaces and let H; @ H, denote their Hilbertian direct sum.
Let B(H;, Hy) denote the Banach space of all bounded operators from H; into Hy. Any

2
W e B(H; @ H,) can be naturally written as a 2 x 2 matrix

Wi Wi
W =
(W21 W22>

with W;; € B(H;, H;) for all (i, j) € {1,2}*. Thus, we may regard
2

as a closed subspace. Note that B(Hp, Hs) is actually a w*-closed subspace of B(H; CJQB
Hj), hence a dual space. If Hy, Hy are separable, then the predual of B(Hi, Hy) is
separable as well.

For any von Neumann algebra Ny, we let Ng®B(H1, Hy) denote the w*-closure of the

2
algebraic tensor product No ® B(H, Hy) into Ng®B(H; @ Hs). For any

D€N0®B(H1,H2) and CGN@@B(HQ,Hl),

2
the product of D and C in the von Neumann algebra Ny®B(H; @ H») yields

CD e N0®B(H1>

2
Let K be another Hilbert space and let H = H; @ H;. We note that the identification
2 _
B(K ® H) ~ B(K)®B(H) reduces to a w*-homeomorphic and isometric identification

2 2 —
B(K ® Hy, K ® Hy) ~ B(K)@B(H,, H,). (3.3.10)
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Part (2) of Lemma 3.1.3 extends to the case when N is replaced by B(H;, Hz). More
precisely, if Hy, Hy are separable, then the natural embedding of L*(X)® B(H;, Hs) into
L¥(X; B(Hy, Hs)) extends to a w*-homeomorphic and isometric identification

LP(S: B(Hy, Hs)) ~ L*(S)@B(Hy, Hy). (3.3.11)

2
To prove it, apply Lemma 3.1.3 with N = B(H; @ Hs) and use the embedding (3.3.9).
For any D € L*(X)®B(H;, Hy), we may associate, similarly to what is done before
Lemma 3.3.2,
1, ® Dy e LY (X)®LS (X)@B(Hi, Hs)
by identifying L*(X)®B(H;, Hy) with 1, QL (X)®B(H;, Hs).
Similarly, for any C' € L*(X)®B(H,, H1), we may associate
L ®Cs e LY (X)®L (X)@B(Hy, Hy).
by identifying L*(X)®B(Ha, Hy) with LL(X)®1,QB(Ha, Hy).
Lemma 3.3.3. Let D,C as above and recall from (3.8.1) that they may be regarded

as elements of B(L*(X))®B(Hy, Hs) and B(L*(X))®B(H,, Hy), respectively. Let Ny
B(Hy) be a von Neumann subalgebra. The following assertions are equivalent.

(i) For allu,v e L*(2), C(u®v® Ig,)D belongs to B(L*(X))®N;.
(11) The product (1; ® C5)(1s ® D) belongs to L (X)RL; (X)RN;.

Proof. Let u,v,a,b € L*(3). Consider a ® b as an element of S'(L*(X)) and let (a ®
b)®I be the associated slice map B(L*(X))®B(H,) — B(H;). Likewise, regard av ®
bu as an element of L!(X) ® L}(X) and let (av ® bu)®I be the associated slice map
LY (X)QLP(X)®B(Hy) — B(H;). We claim that

[(a®b)RI](C(u®v® Ii,)D) = [(av @ bu)BI]((1, ® Cs) (1, @ Dy)). (3.3.12)

To prove this, assume first that D € L*(X) ® B(H;, Hy) and C € L*(X) ® B(Hz, Hy).
Thus,
DZZf]®,TJ and C’IEJ.QZ®Sz
j i

for some finite families (f;); in L*(X), (1}); in B(Hy, Hs), (¢;); in L*(X) and (5;); in
B(H,, Hy).

Recall from (3.3.1) that each f; (resp. g;) is identified with the pointwise multiplica-
tion by f; (resp. g;). Then an elementary calculation yields ¢g;(u ® v) f; = (uf;) ® (vg;)
in B(L*(X)). Consequently,

Clu®v®Iy,)D = (uf)) ® (vg;) ® ST}

1,J
Hence, the left handside of (3.3.12) is

[(a®@BBI](C(u®v @ I1,)D) = 3 tr((a@b)[(uf;) @ (vg:)]) S:T,

- ;(L CL’UQi) (L bufj) SiTj.
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To compute the right handside of (3.3.12), write
(1, ®C)(1,®Dy) = <Zgi® 1 ®Si> <Z 1® f; ®Tj) = Z%@fj ® SiT;.
i j ij
This implies

(a0 @)1 (1,8 C.)(1. @ D) = (| aval) (| vuty) s,

and (3.3.12) follows. Now since the product on von Neumann algebras is separately
w*-continuous, the above special case implies that (3.3.12) holds true in the general case.

We now prove the equivalence. Assume (i) and let h, k € L'(X). There exist u,v,a,b €
L?(X) such that h = av and k = bu. Since C(u®@v®Iy,)D belongs to B(L*(X))®Ny, it fol-
lows from (3.3.12) that [(h®k)®I]((1:@C;)(1,®D;)) belongs to Ny. Since L'(X),®L; (X)
is dense in (L¥(X)RL(X))s, we deduce that (1; ® C5)(1s ® D) € LP(X)RLP(X)R®N;
by applying the slice map property (see Remark 3.1.2).

Conversely, assume (ii) and fix u, v € L*(X). Since (1,QC;)(1,®D;) € LL (X)L (X)®Ny,
it follows from (3.3.12) that [(a ® b)®I]|(C(u® v ® Iy,)D) belongs to N; for all a,b €
L*(¥). Since L*(3) ® L*(X) is dense in B(L*(X)),, we deduce that C(u @ v ® Ip,)D €
B(L*(X))®N; by applying again the slice map property. O

3.4 Proof of Theorem 3.0.1

3.4.1 Proof of “(i) = (i1)"

We let p € L®(X?) and we assume that o satisfies the assertion (i) of Theorem 3.0.1.
Applying (1.3.1) with & = 1, we obtain a tracial von Neumann algebra (M, 75) with a
separable predual, a trace preserving unital w*-continuous *-homomorphism J: B(L*(2)) —

M and a trace preserving =-automorphism U: M — M such that

M, = JUJ. (3.4.1)

We fix a Hilbertian basis (¢;)ic; of L*(X) and we define E;; = ¢; ® ¢; € B(L*(X)) for all
(¢,7) € I*. Since J is a unital w*-continuous »-homomorphism, {J(E;;) : (i,j) € I*} is a
system of matrix units of M (in the sense of |62, Definition IV.1.7]). Fix ko € I and set
q = J(Ekk,)- This is a projection of M. According to [62, Proposition IV.1.8] and its
proof,

Mij -= J(Ekoi)m‘](Ejko)

belongs to gMgq for all m € M and all (i, j) € I?, and the mapping
p: M — B(L’()®(gMq),  p(m)= >, Ei;®@my,
(3,5)€I?

is a =-isomorphism. (Here the summation is taken in the w*-topology of M.) The re-
striction of Ty to ¢Mgq is semi-finite, let us call it 7;. Equip B(L*(X))®(¢gMgq) with
tr®m, see Remark 3.1.6. Then p is trace preserving. To check this, observe that
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J(Eiky)J (Eryi) = J(Ey;) for all i € I and that Y., J(Ei;) = 1. Hence for any me M,
each m;; belongs to (¢Mgq), and we have

(tr®m1) (p(m)) = Z Tpt (J(Brgi)mJ (Eigy ))
= 7m(J(Ei)m)

el

= (BB m) = Taalm).

It is plain that p(J(Eij)) = E,;;®q for all (i, 7) € I*. Since J is w*-continuous, this implies
that po J(2) = 2®gq, for all z € B(L*(X)). Since both J and p are trace preserving, this
implies that 71(q) = 1.

With Ny = gMy, it follows from above that changing J into p o J and changing U
into po U o p~!, we may assume that

M = B(L*(%))®Ny,
for some normalized tracial von Neumann algebra (N, 1), and
J(z) =2® 1y, ze B(L*(%)). (3.4.2)

Moreover N7 has a separable predual.

We fix a Hilbert space H; such that Ny < B(H;) as a von Neumann subalgebra.
We may assume that H; is separable, see Remark 1.3.3, (5). By (1.4.1), we have
B(L*(X))®B(H,) ~ B(L*(Z; Hy)). Hence M < B(L*(XZ; Hy)) as a von Neumann subal-
gebra. We use again [62, Proposition IV.1.8] and its proof as follows. We note that since
U is a unital w*-continuous *-homomorphism, {U(E;; ® 1n,) : (i,7) € I*} is a system of
matrix units of M. Then we set

90 = U(Ekoro ® 1n,), Hz = QO(LQ(EQ Hl)) and  No = goMqp,

and we equip the latter von Neumann algebra with the restriction of the trace of M.
We let 75 denote this trace on N,. Then arguing as above, we find a trace preserving
#-isomorphism
7: B(L*(X))®N; — B(L*(X))®N; (3.4.3)

such that 1o U(2®1y,) = 2®@1y, for all z € B(L*(X)). We deduce that 7, is normalized.
Moreover, Ny ¢ B(Hs) as a von Neumann subalgebra, and H is separable.

Regard B(L?*(X))®N; < B(L*(X; Hy)) as above and B(L*(X))®N, = B(L*(3; Hy))
similarly. Then the argument in the proof of |62, Proposition IV.1.8| actually shows the
existence of a unitary operator

D: L*(2; H)) — L*(; Hy)

such that
m(R) = DRD*, Re B(L2(2))®N1. (3.4.4)

This implies that

Uz®1y) = D*(:®1x,)D,  2€ B(LA(Y)). (3.4.5)
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We shall now use properties of Schur multipliers. Note that 1y, = Iy, € L'(Ny, )
and recall the embedding S*(L*(X))® L' (N1, 71) © M, from (3.1.7). The relation (3.4.1)
and the identity (3.4.2) imply that for all u,v,a,b e L*(X), we have

<U(u®v®IHI),a®b®IH1>M7M* = tr<[M¢(u®v)] [a@b]). (3.4.6)

Note the right handside can be expressed by (3.2.1).
According to (3.3.10), we regard D as an element of B(L*(X))®B(H;, H).

Lemma 3.4.1. Under the representation (3.5.1), we have
D e L®(S)®B(Hy, Hy).

Proof. Let E, F < ¥ be measurable sets of finite measure. Consider

Vir = (Xr ® Xr @ Im,)D(xr ® xr @ I,) € B(L*(X))®B(Hy, Hy).
Since (xr ® xr ® Iy,) is a self-adjoint projection, we have

VerVer = (Xe®Xe ® Iu)D*(Xr @ Xr ® I1,) D(XE ® XE ® In,).
We regard this product as an element of B(L*(X))®B(H;). According to (3.4.5),

D*(xr @ xr ® In,)D = U(xr ® Xr ® In,)

belongs to B(LQ(E))®N1 Hence Vi Vg p actually belongs to B(L?*(X))®N;. Moreover
using (3.4.6) and (3.2.1), we have

(tl"@Tl) (VE,FVE,F)

FOXF® In), XE®XE®]H1>MM

tr@T )<[ (Xr @ XF®In)|[xe®xE ®[H1]>
(x
([

(xXr® XF)] [XE ® XE])

(t
v
t
J (s,t)xr(t)xr(s)xe(s)xr(t)dtds.

Consequently, (tr®) (VE Ve, F) 0 if £ and F' are disjoint. Hence Vg p = 0 if E and
F' are disjoint.

For any n € B(Hy, Hy)y, set D, = (Ip®n)(D) € B(L*(X)). For all z € B(L*(X))
and w € B(Hy, Hs), we have

(Ip2y ®n) [(XF RXrF®Im)(zQ@w)(xe® XxE® IH1>]
= (In») @ )| (xr ® xr)2(xE ® X&) @ W]
= n(w)(xr ® xr)z(xXr ® Xr)
= (xr®xr)|[Uprzy @) (z@w)]|(xE® XE)-

Approximating D by elements of the algebraic tensor product B(L*(X))® B(H,, Hs), we
deduce that

(Ipw2®n)(Ve,r) = (xr ® Xr)Dy(xE ® XE)-
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Hence
(Xr®xr)Dy(xE®xE) =0

if £ and F' are disjoint. Since

(xXF ® xFr)Dy(xE® XE) = JD XE XF) XE ® XF,

L Dy(xe)xr =0

if £ and F' are disjoint. We deduce that D, (xg) has support in £/ whenever £ c ¥ is a
measurable set of finite measure. Applying Lemma 3.3.1, we obtain that D,, € L*(X) for
all n € B(Hy, Hy)s. The result therefore follows from the slice map property (see Remark
3.1.2). O

this implies that

Lemma 3.4.2. The product (1; ® D¥)(15 ® D;) belongs to LL (X)RQLF (X)RN.

Proof. For all u,v € L*(X), we have D*(u®v®Ig,)D = 7 (u®v®Ig,), by (3.4.4), and
the latter belongs to B(L?(X))®N;. The result therefore follows from Lemma 3.3.3. [

Lemma 3.4.3. In the space L*(3?), we have
¢ = [Iree2®n] (1 ® D})(1,® Dy)). (3.4.7)

Proof. Let ¢ € L*(X?) be equal to the right handside of (3.4.7). Let a,b,u,v € L*(X).
By (3.2.1), (3.4.6), (3.4.5) and (3.3.12), we have

f (s, ultyu(s)a()b(t) dids = (U(w@v @ Ii,),a ®b® In,)
. — (D" u®v®1y)D,a®b® 1y,
=7 ([a RUII|(D*(u®@v® 1N2)D))
= 7 ([av @ BT (1,® D) (1. ® Dy)))

= [aw@bu® Tl] (1, @ D¥)(1,® Dy))
_ f o(s)b(t)u(t) dtds.
Consequently,
| ets.ne)gte)dnds = | Bl tr7((0 s
for all f,g e L'(X). The result follows. O

We can now prove the assertion (ii) of Theorem 3.0.1. Recall that H; and H, are
separable. Let 0 € LX(X; B(H;, Hy)) be associated with D in the identification (3.3.11).
By Lemmas 3.3.2 and 3.4.2, we have 0*x0 ~ (1; ® D*)(1, ® D;) and

%0 e L2(D; V). (3.4.8)
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Further for any f, g e L'(2), it follows from (3.4.7) and Remark 3.1.4 that

LQ f(8)g(t)p(s,t)dtds = [f ®g@7]((1: ® D})(1, ® Dy))
— y f(s)g()1(0(s)*d(t)) dids.

This implies that

o(s,t) = 71 (0(s)*0(1)), for a.e. (s,t) € X2 (3.4.9)

Recall that as an operator from L?*(X; Hy) to L*(X; Hy), D is a unitary. Hence we
both have D*D = 1p0(x) ® Iy, and DD* = 11»(x) ® Ig,. By Lemma 3.1.3, this implies
that 9(s)*d(s) = 1g, and 9(s)d(s)* = Iy, for almost every s € 3. Changing the values
of 0 on a null subset of ¥, we can henceforth assume that for all s € ¥, 9(s): H; — H,
is a unitary.

Consider the pre-annihilator Ny, < B(H;).. It follows from (3.4.8) that for all
f,g€ LX) and for all n € Ny, we have

Jm f(s)g(t)<0(s)*(t), n) dtds = 0.

Since (X, 1) is separable, L'(X) is separable. Also, B(H,), is separable, hence Ny, is
separable. Let (gi)r=1 and (1,).>1 be dense sequences of L'(3) and Ny, respectively.
It follows from above that for all n,m > 1, {, gx(t){d(s)*d(t), n,,) dt = 0 for almost every
s € Y. Consequently, there exists sy € X such that

L g (1)D(50)0(8), 7yt = 0 (3.4.10)

for all n,m > 1.

Define d: ¥ — B(H;) by 3(t) = 9(s0)*0(t). Clearly d is w*-measurable and essentially
bounded. Since d(sq) is a unitary, we have d(¢)*d(t) = (t)*d(t) = Iy, for almost every
t € ¥. Hence as an element of L*(X, B(Hy)), 0 is a unitary. According to (3.4.10), d
belongs to the annihilator of

Span{gy @, : k,n =1} = L'(3; B(Hy)x).

Since {gr ® B, : k,n > 1} is dense in L'(3; Ny;), this implies that 0 belongs to
LY(3; Nip )t By (3.1.4), this means that 0 € L2(%, Ny).
Finally, using again the fact that d(sp) is a unitary, we deduce from (3.4.9) that

¢(s,t) = 71 (0(s)*0(t)) for almost every (s,t) € £2. Hence the assertion (ii) of Theorem
3.0.1 is satisfied, with N = N; and 0 instead of d.

3.4.2 Proof of “(i1) = (1)"

Assume that ¢ € L®(3?) satisfies the assertion (ii) of Theorem 3.0.1, for some normalized

tracial von Neumann algebra (NN, 7y) with a separable predual and some unitary d €
L¥(Z;N).
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Since 7y : N — C is a faithful state, we may define

N* =®N,

N

the infinite tensor product of (N, 7y) over the index set Z, as considered in |64, Definition
XIV.1.6]. The associated state 7, := ®z7n on N is a normal faithful tracial state.
Thus, (N®, ) is a normalized tracial von Neumann algebra. We let

M = B(L*(X))®N”,

equipped with its natural trace (see Remark 3.1.6). The von Neumann algebra N* has
a separable predual, hence M has a separable predual.

Let 1, denote the unit of N and let J: B(L*(X)) — M be the w*-continuous trace
preserving unital *-homomorphism defined by

J(2) = 2® 1, ze B(L*(%)).

We are now going to construct a trace preserving =-automorphism U: M — M such
that T' = M, satisfies (1.3.1).
Let 1 denote the unit of N. For any integer m > 1 and for any finite family ()7~

in N, set o
) = IRl ,® QT ®1®... T, 011,
where each xj, is in position k. Let o: N* — N® be the #-automorphism such that
0(@2)%) = (?:pk_l
for all finite families (xy)g in N. It is plain that o is trace preserving. We set
S = Ipr2m)®c: M — M.
Consider N, = Q=1 N and N_ = ®i<_1 IV, so that we can write
N* = N.QN®N,.
This allows us to write
M = N_®(B(L*(X))®N)®Ns. (3.4.11)

Let D € L*(X)®N such that @ ~ D and recall that L*(X)®N < B(L*(X))®N, by
(3.3.1). Thus we may define

v: B(L*(£))®@N — B(L*(X))®N,  ~(y) = D*yD.

Since D is a unitary, 7 is a trace preserving =-automorphism. Owing to the decomposition
(3.4.11), we can define
= IN_®PY®IN+: M I M

Now we set

U=T0o0S8.

By construction, U: M — M is a trace preserving =-automorphism.

71



CHAPTER 3. A CHARACTERIZATION OF ABSOLUTELY DILATABLE MEASURABLE
SCHUR MULTIPLIERS

Let u,v,a,b € L?(X). On the one hand, by a simple induction argument, it follows
from (3.2.1) that for all k£ > 0, we have

tr ([M:;(u Qv)]|[a® b]) = J o(s, ) u(t)v(s)a(s)b(t) dtds.
2

On the other hand, using (3.0.1), it follows from the arguments in the proof of Lemma
2.2.10 and in the proof of Theorem (A) of Chapter 2 coming right after it, that for all
k = 0, we have

UMu@v®1y),a @b 1o s, = J o(s, ) u(t)v(s)a(s)b(t) dtds. (3.4.12)

N2

According to the definition of J, these identities imply that
JFUPJ(u®v),a @by = (M (u®v),a®b).

Since the linear span of all u ® v as above is w*-dense in B(L*(X)), the linear span of
all a®b as above is dense in S'(L?(X)) and J,U and M, are w*-continuous, this implies
that T' = M, satisfies (1.3.1).

3.4.3 Two remarks

Remark 3.4.4. In the proof of the implication “(i) = (i¢)” in Theorem 3.0.1, we use
the identity (1.3.1) only with & = 1. Consequently, the assertions (i) and (ii) in Theorem
3.0.1 are also equivalent to:

(i) There ezist a tracial von Neumann algebra (M, Tr) with a separable predual, a
w*-continuous trace preserving unital *-homomorphim J: B(L*(X)) — M and a
trace preserving x-automomorphim U: M — M such that M, = J{UJ.

Remark 3.4.5. Let ¢ € L®(3?). Tt follows from the proof of Theorem (A) of Chap-
ter 2 that if (3, ) is separable, then any positive unital self-adjoint M,: B(L*(X)) —
B(L*(X)) admits a separable absolute dilation.

3.5 The non separable case

We recall some issues of the non separable case, see Section 2.1 for more details. Let
(3, ) be a o-finite measure space. If X is a non separable Banach space, it is still
possible to define a space LX(X; X*) of classes of w*-measurable functions ¥ — X* in
such a way that L'(X; X)* ~ L®(%; X*) isometrically, see [12, 13]. However these spaces
are delicate to define and to use, because if 0: ¥ — X* is a w*-measurable function, then
the norm function ¢ — |[0(¢)|| may not be measurable. Further given a von Neumann
algebra N and w*-measurable functions ¢,d: ¥ — N, the function ¢xd: ¥? — N defined
by (3.3.6) is likely to be non measurable. For these reasons, it seems to be out of reach
to extend Theorem 3.0.1 verbatim to the non separable case.

In this general setting, we will content ourselves with a version of Theorem 3.0.1
stated in the language of von Neumann tensor products. In the next statement, we use
some notations introduced in Section 3.3, see in particular (3.3.4) and (3.3.5). The most
important implication here is “(i) = (ii);", which extends the implication “(i) = (ii)" of
Theorem 3.0.1 to the non separable case.
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Theorem 3.5.1. Let ¢ € L*(X?%) and let e € L*(X) with |ells = 1. The following
assertions are equivalent.

(i) The function ¢ is a bounded Schur multiplier and M,: B(L*(X)) — B(L*(X)) is
absolutely dilatable.

(ii) There ezist a normalized tracial von Neumann algebra (N,Ty) acting on some
Hilbert space H, and a unitary D € L*(X)®B(H) such that:

(i) The product (1; ® D¥)(1; ® Dy) belongs to LY (X)QLP(X)QN and under the
identification (3.3.3), we have

¢ = [Ipo2@mn] (L ® D) (1, ® Dy)). (3.5.1)
(ii); The trace of D*(e® e ® 1) D in B(L*(X))®N is equal to 1.

Proof. (i) = (ii): Assume (i) and apply the construction devised in Subsection 3.4.1.
Note that until Lemma 3.4.3, this construction does not use separability. Recall from
Lemma 3.4.1 that we are working with a unitary D € L*(X)®B(H;, Hy). Let K be

2 2
a (large enough) Hilbert space such that H; ® K is isomorphic to Hy ® K and let
2 2
W:H ® K — Hy ® K be a unitary. We define

~

— _ 2

2 2 ~
where D ® I is regarded as an element of L*(X)®B(H; ® K, Hy ® K). Clearly D is a
unitary. We will now check that the assertion (ii) of Theorem 3.5.1 is satisfied with the

2
Hilbert space H = H; ® K, the von Neumann algebra

the tracial state 7y on N defined by 7y (x ® k) = 71(x) for all x € N; and the unitary
Din place of D.

First we have (1,@D*)(1,QD,) = (1, D*)(1,Q D) @1, because WW* = Iy, ® I
Hence by Lemma 3.4.2, the product (1, ® D*)(1, ® D;) belongs to L2 (S)RL(X)QN.
Moreover we have

[ 52y @mn] (1 ® Zj:)<1s ® 57&)) = [T (s2)@7n, | ((1: ® D) (1, ® Dy)).

Applying Lemma 3.4.3, we deduce that the assertion (ii); is satisfied.
Next we note, using again WW* = Iy, ® Ik, that

D*(e®e®Iy)D = D*(e®e®@Iy,)D®Ix =1 He®e@1y,) @ Ik,

where 7 comes from (3.4.3). Since 7 is trace preserving, the trace of 5*(6@ e® IH)f) in
B(L*(X))®N is equal to the trace of e® e® 1y, in B(L?(X))®N,. The latter is equal to
1 (recall that 75 is normalized). Hence the assertion (ii)s is satisfied.

(1) = (7): Assume (ii) and consider the x-automorphism

m: B(L*(X))®B(H) — B(L*(X))®B(H), n(y) = DyD*.
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Let B = m(B(L*(X))®N). This a von Neumann subalgebra of B(L*(X))®B(H). W
equip it with the trace 7p = (tr®7y) o 771, so that the restriction B(L*(X))®N — B of
7 is trace preserving by nature.

For any u,v € L*(X), D*(u ® v ® Ig)D belongs to B(L?(X))®N, by the assumption
(ii); and Lemma 3.3.3. (Note that this is the reason why it makes sense to consider
D*(e®e® Iy)D as an element of B(L*(X))®N in (ii);.) Since D is a unitary, we have
UV Iy =71(D*(u®v®Iy)D), hence u®v® Iy belongs to B. Since the linear span
of all the u ® v as above is w*-dense in B(L*(X)), we deduce that

BLA(2)® Iy = B « B(LX(X))®B(H).

Let {E;; : (i,7) € I*} be a system of matrix units in B(L*(X)). Then it follows from
above that {E;; ® Iy : (i,j) € I*} is a system of matrix units in B. Using again |62,
Proposition IV.1.8] and its proof, we obtain the existence of a von Neumann subalgebra
N < B(H) such that B = B(L*(Z))®N. According to the assumption (ii); and the

definition of 75, we have
T(e®e®1y) = (r@7y) (D*(e®e® Iy)D) = 1.

This implies that 7x: m — 7p(e®e®m) is a well-defined tracial state on N'. A classical
uniqueness argument shows that 73 = tr®.
We can now adapt the proof given in Subsection 3.4.2, as follows. We set

/\/_=k® N and N, = ® N.
<1

k=1

More precisely, N_ is the infinite tensor product of (N, 7xr) over the index set {—1,—2,...}
whereas N, is the infinite tensor product of (N, 7y) over the index set {1,2,...}. Then
we define

M = B(L*(%))BN-BNON®N;,

that we equip with its natural trace. We define J: B(L*(X)) - M by J(z) = 2 ® 1,
where 1 is the unit of N_-QNRNXN,. We set

— N.®(B(L*(£)®N)®NSN,  and M, = N -GNB(B(L*(X))®N)SN.,

and we let kK1: M — My and ky: M — M, be the canonical *-automorphisms. We let
o_: N_ — N_®QN be the s-isomorphism such that

a_< ® xk> = (k<®1xk_1> Kx_q,

k<—1

for all finite families (z3)r<_1 in N. Likewise, we let o,: NQN, — N, be the =
isomorphism such that

0.0 (g,2)) = g

for all finite families (zy)g=o in N. These two =-isomorphisms are trace preserving.
It follows from the construction of A that we may define a *-isomorphism

v B(L(Z)@N — B(LX(Z))®N,  (y) = D*yD.

This is the inverse of the restriction of 7 to B(L?(X))®N, hence it is trace preserving.
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Finally, we define U: M — M by
U =ky' o (0_®®04) o K.

Then U is a trace preserving s-automorphism. Next arguing again as in Chapter 2, we
obtain that (3.4.12) holds true for all u,v,a,b e L*(X). As in Subsection 3.4.2, we deduce
that T' = M, satisfies (1.3.1). O

We now focus on the discrete case, that is X = N* = {1,2,...}. An element of L*(X%?)
is just a bounded family m = {m;;}; ;=1 of complex numbers. Then m is a bounded Schur
multiplier if and only if there exists a constant C' > 0 such that for all n > 1 and all
[aij]léi,an € My,

[mijaislyy, < Cllaisll,y, -
Moreover for any von Neumann algebra N, we may identify L*(X)QN with (*(N),
the space of all bounded sequences with entries in N. Likewise, L*(3X)®L*(X)QN ~
s (N). If D = (di)g=1 € £(N), then D is a unitary if and only if dj, is a unitary for
all £ > 1. Moreover, the product (1; ® D;})(1; ® D;) coincides with the doubly indexed
sequence (d¥d;); j>1.

Corollary 3.5.2. For any bounded family m = {m;;}; j>1 of complex numbers, the fol-
lowing assertions are equivalent.

(i) The family m is a bounded Schur multiplier and Ty,: B(¢*) — B((?) is absolutely
dilatable.

(ii) There exist a normalized tracial von Neumann algebra (N,Ty) and a sequence
(di)k=1 of unitaries of N such that

mijoN(d;-"dj), Z,jZl

(iii) The family m is a bounded Schur multiplier and Ty: B((*) — B({*) admits a
separable absolute dilation.

(iv) There exist a normalized tracial von Neumann algebra (N,Ty) with a separable
predual and a sequence (dy)y=1 of unitaries of N such that

mijoN(d;"dj), Z,jZl

Proof. The implication “(iv) = (iii)" follows from Theorem 3.0.1 and “(iii) = (i)" is obvi-
ous. So we only need to prove (i) = (ii) = (iv).

Assume (i) and apply Theorem 3.5.1 to m. We find a normalized tracial von Neumann
algebra (N, 7y) acting on some H and a sequence (dy)g>1 of unitaries of B(H) such that
dfd; € N and my; = 7y (did;) for all 4, j > 1. Set dj, = didy, k > 1. The dj, are unitaries
of N and dj*d} = d}d; for all i, j > 1. Hence m;; = 7y (dj*dy), for all i, j > 1. This proves
(ii).

Assume (ii) and let N < N be the von Neumann subalgebra generated by (d)x>1-
Then N admits a sequence (ay),>1 such that V := Span{a,, : n > 1} is w*-dense in N.
Let 75 be the restriction of 7 to N and recall that we have a contractive embedding
N c Ll(ﬁ,rﬁ). If b e N is such that Ti(apb) = 0 for all n > 1, then as an element
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of LI(N,TN), b belongs to V. Hence b = 0. In turn, this shows that V' is dense in

Ll(]v ,Tx)- Thus, N has a separable predual. Consequently, (iv) holds true, with N in
place of N. n

Remark 3.5.3. In the finite dimensional case, we find similarly that the Schur multiplier
operator Ty,: M, — M, associated with a family m = {m;;}1<; <, admits a separable
absolute dilation if and only if it admits an absolute dilation, if and only if there exist
a normalized tracial von Neumann algebra (N, 7y) and unitaries ds,...,d, in N such
that m;; = 7y (d;‘dj) for all 1 < 7,7 < n. The latter equivalence result is implicit in [28].
Indeed it follows from Proposition 2.8 and Theorem 4.4 in this reference.

Taking this equivalence into account, |28, Example 3.2] exhibits a positive unital
Schur multiplier M, — M, which is not absolutely dilatable.

We also mention that there are plenty of absolutely dilatable Schur multiplier oper-
ators T,: M, — M, such that m is not real valued. For example, it follows from above
that for any complex number w with |w| = 1, the operator Ty,: My — My associated with

m= [; Cf] is absolutely dilatable.
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Chapter 4

Characterisation of discrete unital
positive Schur multipliers with a
completely isometric dilation

All backgrounds are introduced in Section Tools or during the chapter. The two main
theorems of this chapter are 4.1.9 for the finite dimensional case and Theorem 4.2.1 for
the discrete case. We also give a characterisation for the multivariable case.

4.1 Finite Schur multipliers

In the following, we denote by M,, the space of n x n matrices with complex coefficients.
Let tr,, be the usual trace on M,,. Unless otherwise stated we will consider M,, as equipped
with the normalized trace 7, := %trn.

Remark 4.1.1. The two traces 7, and tr, are needed in the following. We warn the
reader to be careful. It can be confusing.

We recall the following definition from [62, Definition 4.1.7].

Definition 4.1.2. Let I be an index set. A family {w;; : 1,7 € I} of elements in a von
Neumann algebra N is called a set of matrixz units if

1. Foralli,jel, wi; =wj;
2. For alli,j, k,lel, wjwy = dwi;
3. Dy Wi = 1 in the strong topology.

We give an alternative version of [62, Theorem 4.1.8|. In the sequel we let e;;, 1 <
i,7 < n, denote the standard matrix units of M,,.

Theorem 4.1.3. Let (N, 7) be a tracial von Neumann algebra. Suppose that {w;; : 1 <
i,7 < n} is a set of matriz units in N. Let e = wy; and let Ny = eNe be equipped
with the restriction 71 of T to Ny. Then the following mapping is a trace preserving
*-1s0morphism.:

p:N— (M, tr,) ® (N1,71), x +— Z eij @ wy;Tw; .

1<i,j<n
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Proof. See [46, Lemma 2.2| and its proof. O
We refer to [28, lemma 2.1] for the following lemma.

Lemma 4.1.4. Let P be a von Neumann algebra, let n = 1 be an integer and let {f;; :
1<i,7<n}and{g;: 1<1,7<n} betwo sets of matriz units in P. Then there exists
an unitary uw € P such that:

ufijut = gij, 1<i,7<n.
We recall a classical duality result and we give a proof for the sake of completeness.

Lemma 4.1.5. Let 1 < p,q < +o0 such that % + % =1, and let (N, T) be a tracial von
Neumann algebra. For all x € LP(N)\{0}, there exists a unique y € LY(N) such that
lylg =1 and 7(zy) = ||z|,. (This element is called the norming functional of x.)

Assume that |z, = 1 and write the polar decomposition of x as v = u|z|. Then the
norming functional y of x satisfies

y = |z[P"'w* and |y| = ulz|P (4.1.1)
Moreover, its polar decomposition is y = u*|y|.

Proof. The first part of the statement means that LP(N) is smooth. This well-known
fact follows e.g. from [53, Corollary 5.2].

For the second part, assume that |z|l, = 1 and set y = |z|P"'u*. Then we have
y* = ulz|P~" and yz = |z[P. This implies that 7(yz) = |z} = 1 and |ly|? = 7(|z|") = 1.
Hence y is the norming functional of z.

We will now prove that |y| = u|z|P~'u* and y = u*|y|. We have,

*

(u|lz|P~ u*)? = ulz P utu|z)P et = u|x|2(p_1)u* = y*y.
So we obtain |y| = u|z[P"lu*. We deduce that
u'lyl = wtalep et = ot = .

For the polar decomposition, it remains to show that Im(|y|)t < keru*. We have
Im(jy))* = ker(Jy|) = ker(y). Let h be an element of Im(|y|)t, then |z[P~*u*(h) =
y(h) = 0, and so u*(h) € ker(|z|P~!) = ker(|x|). Moreover u*(h) € Im(u*) < ker(|z|)*.
Consequently, u*(h) = 0, and hence h belongs to ker(u*). O

The next definition is from [28, Definition 1.3].

Definition 4.1.6. Let (N, 1) be a tracial von Neumann algebra and assume that T is nor-
malised. We say that T : (N, 7) — (N, ) is factorisable if there exist another tracial nor-
malised von Neumann algebra (N',7") and two unital trace-preserving x-homomorphisms

J.J:(N,7) = (N, 7) such that T = J¥J.

By Theorem 1.4.1, a Schur multiplier T}, is positive and unital if and only if M is a
positive semi-definite complex matrix having all diagonal entries equal to 1.

The following two theorems are |28, Proposition 2.8| and [28, Theorem 4.4], respec-
tively.

78



4.1. FINITE SCHUR MULTIPLIERS

Theorem 4.1.7. Let M = (m;)1<ij<n be a positive semi-definite complex matriz having
all diagonal entries equal to 1. Then the Schur multiplier Ty; associated with M is
factorisable if and only if there exist a tracial normalised von Neumann algebra (N, T)
and an n-tuple (vy,...,v,) of unitaries of N such that for all 1 <i,5 < n:

mi; = T(vjv;).

Theorem 4.1.8. Let (N, 7) be a normalized tracial von Neumann algebra. Then T :
N — N s factorisable if and only if T is absolutely dilatable.

The main result of this section is the equivalence 1 < 5 of the next theorem. The
other equivalences in this theorem are already known.

Theorem 4.1.9. Let M = (m;;)1<ij<n be a positive semi-definite complex matriz having
all diagonal entries equal to 1. The following assertions are equivalent:

1. there exists 1 < p # 2 < +00 such that Ty, : SE — SP is completely p-dilatable;
2. forall1 < p < 400, Ty : SE— SP is completely p-dilatable;

3. Ty is absolutely dilatable;

4. Ty is factorisable;

5. there exist a tracial normalised von Neumann algebra (N, Tn) and an n-tuple (vy, ..., v,)
of unitaries of N such that for all 1 <i,j < mn:

m;; = 7(vjv;).

Proof. Using Theorem 4.1.8 and Theorem 4.1.7, we obtain the equivalences 3 < 4 < 5.
The implications 3 = 2 = 1 follow from Proposition 1.3.8. It therefore remains to prove
that 1 implies 5.

Let 1 < p # 2 < 400 and suppose that Ty, : S? — SP is completely p-dilatable. Let
1 < g < o such that é + % = 1. There exist a tracial von Neumann algebra (N, 7y ), two
complete contractions J : S? — LP(N) and @ : LP(N) — SP and an invertible complete
isometry U : LP(N) — LP(N) such that for all £ € N:

Ty, = QU"J. (4.1.2)

Weset V. =UJ: S — LP(N) and J := Q* : S — LI(N). Applying (4.1.2) with
k = 1, we obtain that
Ty = (J)*V. (4.1.3)

Next applying (4.1.2) with k& = 0, we obtain that J = Id. Since Q,J are complete
contractions, this implies that .J is a complete isometry. Likewise, J*Q* = Id, hence Q*
is a complete isometry. Consequently V and .J' are both complete isometries.

Firstly, we will show that we can suppose that J’ and V are positive. Since p # 2,
Yeadon’s Theorem describing LP-isometries applies to J’ and V. More precisely, by |38,
Proposition 3.2|, there exist partial isometries Wy, Wy € N, positive operators By, By

79



CHAPTER 4. CHARACTERISATION OF DISCRETE UNITAL POSITIVE SCHUR
MULTIPLIERS WITH A COMPLETELY ISOMETRIC DILATION

affiliated with N and *-homomorphisms J; : M,, — N and J, : M, — N such that for
all z e M,,, and i = 1, 2,

B; commute with J;(z),

T(x) = v (B i(7)) = 75 (B3 2()),

V(z) = W1BJi(z) and J'(z) = WaByJa(z),

WEW; = s(B;) = Ji(1).
Note that since the domain space of V has a finite trace, we actually have that B; = |V (1)|
belongs to LP(N) and the polar decomposition of V(1) is Wi B;. Likewise By = |J/(1)|

belongs to LI(N) and the polar decomposition of J'(1) is W Bs.
It follows from (4.1.3) that for all x € S? and y € SZ, we have

T (Tn (2)y) = 75 (V(2) ' (y))- (4.1.4)

By Theorem 1.4.1, the operator T), is unital. Hence if we take x = y = 1 in the last
formula, we obtain
1 =7,(1) = (W1 By, W Bs).
In addition, we have |[W1 B, = [|[V(1)|, = 1 and |[WaBsl, = |J'(1)|, = 1. According
to Lemma 4.1.5, we deduce that WyBy = B 'W#* and B, = W, BY 'W. Moreover by

the uniqueness of the polar decomposition of J'(1), which is both W>B, and W7 Bs, we

obtain that W, = Wj. We define V' : S? — LP(N) and J' : S — L9(N) by setting
V(z):= ByJi(z) and  J'(y):= BV W Jy(y) W

for all x € S% and y € SI. Note that we both have \N/(.)~= WV () and V(.) = WiV ().

This implies that |V (2)[, < [V (2)|, and [V ()], < [V ()], for all z € SZ. Then we

have |V (z)|l, = [V (2)|, for all z € SE. Hence V is an isometry. We may show as well

that V' is a complete isometry. Since J; and B; commute, the operator V is positive.

Let us prove that .J/ is also a positive complete isometry. We first note that By~ Land
Wi Jo(y)W; commute for all y € M,,. Indeed, given any y € M,,, we have

Bf_lwaQ(y)Wl = W232J2(y)W1 = W2J2(y)32W1 = W2J2(y)W2*WzB2W1
= Wado(y) W5 By WiWy = Wads(y) Wi By = Wi da(y) W By,
which proves the commutation property. Since BY ~!and Jo(y) are positive, if y is positive,
the latter implies that J’ is positive.

We now prove that Wi Jo(.)W; is multiplicative. Let z,y € M,. Since W} = Wy, we
have

Wka2(37?/)W1 = WFJ2(5U)J2(ZJ)W1 = Wka2<x)W;W2J2(y)W1 = W1*J2($)W1W1*J2(y)wla

which proves the result. Consequently, Wi Jo(.)W; : M,, — N is a *-homomorphism.
In addition we have, for all y € M,

Ta(y) = v (B3 J2(y))
(W (B W) JQ(y))

™ ((
v (WalBY D)W ()
v ((BY YW Jo(y)Wh) -
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We also have
Wl*Jg(l)Wl = Wl*WQ*szl = WI*W1W1>X<W1 = S(Bl)S(Bl) = S(Bl).

By the characterisation of positive complete isometries (see [38, Theorem 3.1] and [38,
Proposition 3.2|), we deduce that the operator J’ is an positive complete isometry.
We now check that T, = J*V. Let x,y € M,,

(S V (@)y) = ™5 (V(2)J'(y) = (BiJi(2) By Wi Ja(y) W)
= v (W1 B1J1(2)W2BaJa(y)) = Ta(V(2)J (y))
= Tn(TM(fwy)’

by (4.1.4).

It follows from above that we may now suppose that J' and V are positive. Once
again we use the Yeadon decomposition for the complete isometries of J' and V. In
the positive case, we can remove the partial isometry in the Yeadon decomposition. We
therefore obtain that there exist two positive operators By € LP(N) and By € LI(N) as
well as two *-homomorphisms .J; : M,, — N and J, : M,, — N such that for all x € M,
and 7 =1, 2,

B; commutes with J;(z), ( )
To(x) = T (B N(7)) = (B3 J2(2), (4.1.6)
V(z) = B1Ji(x) and J'(x) = By Jo(x), (4.1.7)
s(Bi) = Ji(1). (4.1.8)

Argunig as above, we obtain that 1 = 7y (B Bz) from which we deduce that
B, = B' .

We set B := B = Bi, this is an element of L'(N). Thanks to (4.1.5), B commutes
with Ji(x) and Jy(z) for all x € M,,.
Consider the projection v := J;(1). Then we have

v:=Ji(1) = s(By) = s(B) = s(By) = Jo(1).

We define M := vNv, and we equip this von Neumann algebra with the trace Tos = 7y,
The *-homomorphisms Ji, .J are valued in M. Henceforth we consider .J; : M, — M
and Jo : M,, — M, they are now unital x-homomorphisms. We set

fij = Ji(ei;) and  gi; = Ji(ei;), 1<i,j<n.

Then {f;; : 1 <i,7 <n}and {g; : 1 <i,j < n} are two sets of matrix units. By
Lemma 4.1.4, there exists a unitary u; € M such that

uyfipul = gij,  1<i,j<n. (4.1.9)
We set w; := g;1 = Joes) for all 1 < i < n. We set N = wiMw; and we equip it with

TN 1= Ty~ We define

p: M — (M, tr,) ® (N, 7n), ©— Z eij ® w; rw.

i,j=1
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According to Theorem 4.1.3, p is a trace preserving *-isomorphism. By Lemma 1.3.7
we extend p to an isometry from LP(M) into LP(M, @ N') = SE ® LP(N), that we still
denote by p.

We note that for all x € M,

p(Ja(7)) = 2@ 1y

Indeed, for all » = 37", aujei; € M, we have;

p(Ja(z)) = >, aijp(Ja(eis))

.
[y

aijp(gij)

~.
[y

n
*
Qi Z e ® Wy, gi;wy
k=1

~.
—_

M=

Qi erl & 91k9i; 91

1

.
[y

k.l

I
S0 51k S0 S S

Qi€ & g11
3,j=1

= 1N-
Since p is an unital *-homomorphism, u := p(u1) € M,, ® N is also a unitary. Thanks to
property (4.1.9), we have p(Jy(z)) = p(ufJo(x)uy), for all z € M,,. So we obtain that for
all z e M,

p(Ni(2)) = v (z ® Ly)u.
Let us use the commutation of B with Jy. For all x € M,,, we have
p(B)(z @ 1y) = p(BJz(x)) = p(J2(2)B) = (x @ Ly)p(B).

This implies that p(B) = 1 ® by, for some by € LP(N). Since 737(B) = 1 and p is trace

preserving, we have
1
A (b11) = —.
A (b11) -

Let z € M, ® N such that p(B)%zp(B)% = 0. Since p is a bijective homomorphism,
we have B2p~!(z)B2 = 0. By Lemma 1.2.1, we obtain that p~'(z) = 0. Finally, we have
z = 0. We summarize this by writing that for all z € M,, @ N,

{p(B)2zp(B)? =0} = = =0. (4.1.10)

We write u = 33", eij ® uij, with u;; € N. Let x € SP and y € S7. Owing to the
commutation of B and J(x), we have:

(Bado(y), Bidi(x)) = Tn(BY ™" Jo(y) Bii(2)) = v (BJ2(y) Ji ().
By (4.1.4), this implies that

To(yTh () = 77 (BJo(y) J1(2)). (4.1.11)
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We take y = epr and x = ey with 1 < k # [ < n. We deduce from above that
0= mllTn(ekkell) = Tn(ekkTM<€ll)) = TN(BJ2(€kk)J1(€u))
Since BJsy(epr)J1(en) € M and Jo(ep,)? = Jo(exs), this implies

0 = 7 (BJa(exr)J1(en))
(BJa(exr) Ja(exr) J1(en))
= Tm(J2(err) B2 (erk) J1(eu))
= TM(B 2<€kk)J1(€ll)J2(€kk))
= TN ((BJ2(ern) J1(en) J2(exk)))

)
= Tar,en (0(B)p(J2(exx)) p(Ji(eu)) p(J2(ext))).

< <

Replacing p(J2(exk)) by exe ® 1y, p(Ji(en)) by u*(en ® 1y )u and u* by 337, €5 @ ujj,
respectively, we deduce that

0 = Taren (P (ext ® 1y) Z eji @ uj;)(en @ 1y )u(exr ® 1N)>

= e (p(B)(emesien ® ufy)u(er, ® 1y))
ig=1

= Tan,en (p(B) (e @ ufi)ulewm ® 1y)) .

Next, replacing u by Z? i1 €ij ® u;;, we deduce that

0= Taren (P (er ® upy,) Z eij ® uij)(err ® 1N)>

= ) T (p(B)(enesjens @ ufiyui;))
ij=1

= Tar,en (P(B)(exr @ ujiujy))

= TN (P(B)(ere @ ujy,) (enr @ ug))

~ (o8} s ® ) ess @ u)o ()}

1

Since p(B)z (e, @ u,)(exr ® u)p(B)? is p051t1ve and the trace Ty, gn is faithful, we
deduce that p(B)z (e @up,) (ere @uy)p(B)2 = 0 for all k # . According to (4.1.10), this
implies that (exr @ ujy.)(exr @ wir) = 0, hence g @ uy, = 0. Finally forall 1 <k #1<n
we have uy, = 0. Therefore, the element u has the form Z?:l ey @ uy;. We set u; 1= uy;,
for 1 < ¢ < n. Then each u; is a unitary.

We will use the commutation property of B and J;. For all z € M,,, we have

p(B)u*(x @ 1y)u = p(BJi(z)) = p(/1(2)B) = u*(z & 1x)up(B).
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Consider any 1 < k,l < n. We have

p(B)u*(en @ 1y)u = p(B) (i €ii & Uf) (e ® 1) (i €jj ® Uj)

i=1 j=1
n

= Y, p(Beiene;; @ ufu; = p(B)ew ® ujuy

1,j=1

*
= e @ bryuguy.

In the same way,
u (@ In)up(B) = e @ upuby.
We therefore deduce from above that

uZulbn = bnu}:ul, 1< k?,l < n.

Thus for all 1 < k,l < n, we have w;bi1uf = ugbiuf. Hence uibijuj = wibyuf for all
1<k<n
We will now relate m;;, b1y and uy. For any 1 < k,l < n, we have
My = Myn Ty (ewer) = nTo(ewTh(ern))-
By (4.1.11), this implies
mu = nTn(BJa(ew) Ji(en)) = ntm(BJa(ew) i (ew))

= nTMn@/\f(p(B) (J2(€Ik>> (Jl(ekl>))
= n7u,en (P(B) (e @ Ly )u* (e ® 1y )u)

= NTM, QN (P (e ® 1y) (Z(eu@)uf)) e @ 1n) <Z ej; @ u; >>

i=1 o
= nTaen (P(B)(en ® 1y)(en @ uju))

= ”TM”®N(P(B)(61¢ ® uiuy))

= nTaen(en ® biuguy))

= n7n(briuguy)).

We set b = nuibjut and v; = wul, for all 1 < i < n. By construction, b € L'(N)
and b is positive. Moreover 7p(b) = 1. Furthermore, vy, ..., v, are unitaries. For any
1 < i < n, we have

viby; = nugulu b uiuul = nugul ubyul uiul = nugbyuy = b.
Thus, b commutes with all the v;. In addition, we obtain that for all y € NV,
1 1
brybz =0 = nuibf uiynu b ul = 0 = bypuiyurbyy = 0 = ujyuy = 0=y =0,
by (4.1.10). Finally for any 1 < k,l < n, we have,

i (bugv) = nry (ur by ufuuiwul) = nra(briupuy) = my.
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Let us summarize the situation. We have obtained a tracial von Neumann algebra
(N, 1), a positive b € L'(N) with 7/(b) = 1, and unitaries vy, ...,v, € N such that

V1<i,j<n, bv =uvb, my =7(bvjv;) and VyeN, b%ybéz():yzo.

Let N be the von Neumann algebra generated by vi,...,v, and let 75 : N — C be
defined by

T (z) = 7'(bx).

Then 7y is a normal state. Since b commutes with all the v;, it commutes with all the
elements of N. Hence for all x,y € N, we have

Ty(zy) = 7 (bzy) = 7' (xby) = 7' (byx) = T (y2).
That is, 7 is a trace. Let z € N, such that Ty(x) = 0. Then we have,
0=71y5(z) =1(bz) = 7 (b2xb?).

Since 7’ is faithful, we obtain that b2ab? = 0. By the above property of b, we deduce
that + = 0. Hence 7y is faithful. Thus (N, 7y) is a tracial normalized von Neumann
algebra. In addition (vy,...,v,) are unitaries of N and verify for all 1 <i,j < n,

mij = 7(bviv;) = 75 (07 ;).
This shows property 5 in Theorem 4.1.9. ]

Remark 4.1.10. Consider Ty, : S2 — S?P as in Theorem 4.1.9 and for any 1 < p < o0, let
us say that Ty, is completely positively p-dilatable if there exist a tracial von Neumann
algebra (N, ), two completely positive and completely contrative maps J : S? — LP(N)
and @ : LP(N) — S and an invertible completely positive isometry U : LP(N) — LP(N)
such that T4, = QU*J for all k > 0. Then the five conditions of Theorem 4.1.9 are also
equivalent to:

1. there exists 1 < p < oo such that T), is completely positively p-dilatable.

Note that the case p = 2 is admissible in this assertion.

To prove this, it suffices to observe that if T), is completely positively p-dilatable
for some 1 < p < oo, then (4.1.3) holds true for some completely positive isometries
V:SP — LP(N) and J': S2 — LI(N) (here, % + % = 1). Furthemore, V and J’ admit
a Yeadon type factorization as in (4.1.5)-(4.1.6)-(4.1.7)-(4.1.8), see [45, Remark 5.2 and
Theorem 4.2]. Therefore, the proof of Theorem 4.1.9 shows as well that 1" = 5. Moreover
the proof of Proppsition 1.3.8 shows that 5 = 1'.

According to [34], there exists a completely positive contraction u : S? — SP which
is not completely p-dilatable. The proofs of this result given in [34] do not provide any
information on n. However we note that [28, Example 3.2] provides a unital completely
positive Schur multiplier Ty, : My — M, which is not factorisable. Applying Theorem
4.1.9, we deduce that for all 1 < p # 2 < +00, Ty, : ST — S7 is not completely p-dilatable.
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4.2 Discrete Schur multipliers

Let I be an index set and let M; denote the space of the I x [ matrices with complex
entries. We assume that T, associated with M € M is a bounded Schur multiplier on
B(I*(1)).

We will generalize Theorem 4.1.9 to the present setting of discrete Schur multipliers.
In the following, we simply say Ty is completely p-dilatable if Ty, : S¥ — S¥ is completely
p-dilatable.

Theorem 4.2.1. Let Ty be a unital positive Schur multiplier. The following assertions
are equivalent:

1. there exists 1 < p # 2 < +00 such that Ty; s completely p-dilatable;
2. for all 1 < p < 400, Ty is completely p-dilatable;
3. Ty 1s absolutely dilatable;

4. there exist a tracial normalised von Neumann algebra (N, T) and a family (v;)ie; of
unitaries of N such that for alli,j € I:

mi; = T(vjv;).

Proof. The implications 3 = 2 = 1 are clear. The implication 4 = 3 is proved implicitly
in [4, Proof of Theorem 4.2|. It remains to show 1 = 4.

Let 1 < p # 2 < 400 and suppose that Ty, : S¥ — S¥ is a completely p-dilatable.
There exist a tracial von Neumann algebra (M, 7p), two complete contractions J : S7 —
LP(M) and @ : LP(M) — ST, as well as an inverible complete isometry U on LP(M),
such that for all & > 0, T%F = QU*J. Let 1 < g < o such that %4— % = 1 and set
J' = Q*: ST — LY(M). By the equality T% = QU*J for k = 0, we see (as in the proof
of Theorem 4.1.9) that J and J’ are two complete isometries.

For any finite subset F' < I, we let Ty, p : ST — ST denote the restriction of Ty, that
is, T r((@ij)ijer) = (Mijai;)ijer. We consider Jp = Jjgr, and Jp = J{sg' It is clear that
on S%., we have TA’“LF = (Jp)*U*Jp for all k > 0. Hence Ty is completely p-dilatable.

In the finite dimensional case, we have Theorem 4.1.9 at our disposal. We use it and
we obtain that there exist a von Neumann algebra Mg equipped with a normal faithful
normalized trace Ty, and unitaries (d; r);er of Mp such that for all 4, j € F,

Mi; = TMp (szdj,F)-

We recall the following ultraproduct construction, see [51, Section 11.5] for details.
Let F be a non trivial ultrafilter on the index set {F' < I finite}. Let B be the C*-algebra
defined by

B:{.’E:(ﬂf}?)e H MF]Fsup xF|MF<+oo}.

Fcl finite <1 finite

Let fr € B* be the tracial state defined for all = (xr) € B by

f]:(l’) = llg:nTMF($F)
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Let Hx be the Hilbert space associated with the tracial state fz in the GNS construction.

Let L : B — B(Hz) be the »-homomorphism induced by left multiplication. Consider
the ideal Zr of B defined by

Ir:={x e B |fr(z*x) = 0}.

Since fr is a trace, we have Zr = ker(L). Let B/Zz denote the resulting quotient
C*-algebra and let ¢ : B — B/Zr be the quotient map. Then we have a one-to-one
*-homomorphism Lx : B/Zr — B(Hr) and a faithful normalized trace 77 : B/Zr — C
such that

Lrogq=L and 7roq= fr.

A remarkable result is that
M]: = L]:(B/I]:) c B(H]:)

is a von Neumann algebra and pr := 77 0 L}l : Mz — C is normal. Thus, (Mg, pF) is a
tracial normalised von Neumann algebra.

For all i € I, we define dz = Lf(Q((di7F)FC[ ﬁnite)) = L((d@p)pcl ﬁnite)- The dl are
well-defined because all d; p are unitaries, hence |d; p| = 1. Since L is unital, d; is a
unitary for all ¢ € /. It remains to prove the formula m;; = pz(d;d;). Given any i,j € I,
we have

did; = Ly (¢ ((df pdjr)r)) ,

hence

pr(did;) = 77 (q (& pdjr)F))
= fr ((d} pdjr)r)
= lim 7a, (4} pd; r)

= mij.
]

The equivalence 3 < 4 in Theorem 4.2.1 provides a new proof of Equivalence (i) < (i7)
of Corollary 3.5.2.

Remark 4.2.2. Following [56, page 4367|, consider the normal faithful state on B({?)
with density equal to the diagonal operator D = >’ \;e;®e;, where (e;);>1 is the canonical

i>1
basis of 2, \; > 0 for all i > 1 and >, \; = 1.
i>1
We say that Ty, is (D, D)-factorisable if T, is factorisable in the sense of [28, Defini-
tion 1.3]. According to [28, Theorem 4.4], the equivalent conditions of Theorem 4.2.1 in

the case I = N are also equivalent to “T), is (D, D)-factorisable".

Remark 4.2.3. As in Remark 4.1.10, we can observe that the equivalent conditions of
Theorem 4.2.1 are also equivalent to:

17 there exists 1 < p < oo such that T), is completely positively p-dilatable.
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CHAPTER 4. CHARACTERISATION OF DISCRETE UNITAL POSITIVE SCHUR
MULTIPLIERS WITH A COMPLETELY ISOMETRIC DILATION

4.3 Multivariable case

In this last section, we introduce the notion of simultaneous absolute dilation for a com-
muting finite family of operators and consider the special case of Schur multipliers. Note
that all bounded Schur multipliers are commuting.

Definition 4.3.1.

(a) Let (N,T) be a tracial von Neumann algebra. We say that a commuting family
(Ty,...,T,) of operators T, : (N, 7) — (N, 1) is simultaneously absolutely dilatable if
there exist a tracial von Neumann algebra (N, 7'), a commuting n-tuple (Uy, ..., U,)
of trace preserving x-automorphisms on N' and a unital one-to-one trace preserving
and w*-continuous x-homomorphism J : N — N such that

Tf ... Th = RUM ... Uk g

forallk; > 0,1 <1 <n, where E: N — N is the conditional expectation associated

with J.

(b) Let 1 < p < +o and let (N,7) be a tracial von Neumann algebra. We say that
a commuting family (T4, ...,T,) of operators T; : LP(N) — LP(N) is simultane-
ously completely p-dilatable, if there exist a tracial von Neumann algebra (N, 1),
a commuting n-tuple (Uy,...,U,) of invertible complete isometries on LP(N') and
two complete contractions J : LP(N) — LP(N) and Q : L*(N') — LP(N) such that

TF Tk = QU ...UM on LP(N)
forallk; =>0,1 <1 <n.

As in the case of one operator (see Proposition 1.3.8), we see that a simultaneously
absolutely dilatable family is simultaneously completely p-dilatable.

Theorem 4.3.2. Let I be an index set and for any 1 <1 < n, let M' = (méj)i,je[ e M
such that Ty, : B(I*(I)) — B(I*(I)) is a unital positive bounded Schur multiplier. The
following assertions are equivalent:

1. the family (Typ)j-, is simultaneously absolutely dilatable;
2. each Tyn is absolutely dilatable.

Proof. Implication 1 = 2 is clear. Conversely, we suppose that each T, is absolutely
dilatable and we use Theorem 4.2.1. Thus for all 1 < [ < n, there exist a tracial von
Neumann algebra (N, 7%), unitaries of N (u}) such that for all i,j € I:

R (COR™)

We denote the infinite von Neumann tensor product ®zN by N* and we let 7%
denote the normal faithful finite trace on N* (see [64]). We denote the unit of N by
Loo.

We let (N, 7x) = (N'® - ®N™", 7'® - --®7") and N' = B(I*(I))®N*. We consider
the standard n.s.f trace 7y := tr;®75% on N. We set for all j € I, the map e;; : (*(]) —
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4.3. MULTIVARIABLE CASE

[*(I) such that for all z = (z;)ic; € 1*(1), ej;(x) = (...,0,2;,0,...) where z; is in the j
position.
We let for all 1 < < n,

u =Y. 6@ Iy@IN® Iy @ @lyt @U@ Lyt @+ @ 1yn @ly -+
0

where the summation is taken in w*-topology of N.
The element u' is unitary because all u} are unitaries. We introduce the right shift
S : N® — N®. This is a normal, trace preserving x-automorphism such that for all

(In)neZ - N7
S ®r11Q12Q )= QT 1®TRT1® .
we let the following mappings:

J:B(*(I) >N z—1®1y
U N =Ny (W) ((1d®S)(y))u'.

We remark that E = id ® 757 is the normal faithful canonical conditional expectation
associated with J and it preserves the trace. In addition .J is a *-homomorphism which
is trace preserving and the U; are x-isomorphisms which are trace preserving. All U; are
commuting to each other. With the same computation in |54, Proof of Theorem 1.9], we
obtain T]]\}ll = -T]’\}’; = ]EUf1 - Ukn J for all ke Ng, 1 <1< n. n
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Chapter 5

Absolute dilations of Fourier
multipliers

In this chapter, we will prove that any self-adjoint, positive, unital Fourier multipliers
admits an absolute dilation. We will treat the unimodular and the non-unimodular cases
separately.

5.1 Unimodular case

The aim of this section is to prove the following theorem. All background on VN (G)
was introduced in Section 1.5. We will use the notation introduced in there.

Theorem (B). Let T, : VN(G) — VN(G) be a self-adjoint, unital, completely positive
Fourier multiplier. Then T, is absolutely dilatable.

We adapt the construction of [4] to our general setting. We assume that T, :
VN(G) — VN(G) is a completely positive, self-adjoint unital Fourier multiplier as-
sociated with a bounded continuous function u : G — C. Let O : (4(G) x (5(G) — R be
the bilinear symmetric map defined by

©: (f,h)— > ult™'s)f(t)h(s).

GxG
This is well-defined, because u is bounded, and © is positive by Theorem 1.5.2, (1).

Let Ko © (L(G) be the kernel of the seminorm O(f, f)z and let H, be the completion
of 14(G)/Ke for the norm induced by O(f, £)2. We denote by H the real Hilbert space
H, (>2§ (3(Z), to which we associate the tracial von Neumann algebra (I'_;(H),7) (See
Section 1.6 for all details). Furthermore we let H := Fj(H) and we recall that by
construction, I'_1(H) < B(H).

In the sequel, we let f € H, denote the class of any f € (}(G).

Lemma 5.1.1. For any t € G, the map 0, : f — s+ f(t"'s) is an isometry from H,

onto H,.
Proof. This follows from the following equality. For all f, h € ¢;(G), we have:

DTu(s ) f(ts)h(ts') = Y u(s''s) f(s)h(s).

GxG GxG
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]

For all t € GG, the map 0, ® I d@ﬂ% (z) extends to an onto isometry on H. We denote this

2 2
application by 0; @ Idy z). We obtain for all ¢ € G, the map I' _1(6; ® Idgz(z) is a trace
preserving =-automorphism.

We define a homomorphism

2
a:G— Aut(T'-1(H)), a(t) =T_1(0: ® Idpz)).

For any t € G we let §; € (L(G) be defined by d6;(t) = 1 and &(s) = 0 if s + ¢.
According to (1.6.4), we have

at) (w0, ®2)) =w(ds®2), t,seG, zeli(Z). (5.1.1)

We consider below continuity of « in the sense of [63, Definition X.1.1] and [63,
Proposition X.1.2].

Lemma 5.1.2. The map o : G — Aut(I'_1(H)) is point-w*-continuous, i.e for all m €
I'_1(H) and for alln e T'_1(H)«, the map t — {a(t)(m),n)r_, 0.0 ,(1)s 5 continuous.

Proof. Firstly we prove the continuity of the map
t = () (@(Fo, @ 1) - w(Bs, @ ), w0y @ 1) -+ (Bu, © k),

for arbitrary si,...,8n,01,...,0, € G and hy, ..., hy, ki, ... k, € 2.
For all t € G we have, by (5.1.1) and Lemma 1.6.1,

(a(t) (@ (00, ® 1) - (0, @ Pn)), (00, @ 1) -+ (B, ® k)
= (a(t)(W(0s, ®@ 1))+ (t) (W (s, ® hn)), (G0, ® k1) -+ (8, & k)
= (W(b1s, ®T1)) -+ (W (01, @ Pn)), Wb, @ Ky ) -+ (B, ® Fin))
= 7(W(0ts; @ 1) -+ w(Bts, ® hn)w (b, @ k1) -+ w(by, @ kKy))
= > D [k 0 a s Lz,

veP2(2n) i,JEV

ts; i i<n h; if i<n

Whereti:{vin if i>n andli:{kin if i>n"

We have (4., (5;,j>Hu = u((ts;)"'v;), and u is continuous. Hence we obtain the ex-
pected continuity.

Next we note that by the density of span{w(.)w(.) - --w(.)} in L*(T'_1(#H)), this implies
continuity of the map t — {(a(t)a,b) for all a,b € L*(T_1(H)). Finally let m € T'_;(H)
and let n e T_1(H)s = L' (T _1(H)). We may write = ab, with a,b € L*(I'_y(H)). Then

la(t)m,n) = {a(t)m,ab) = {a(t)ma,b).

The continuity of ¢t — {«a(t)m,n) follows. O

92
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We recall some background about the crossed product I'_;(#H) x, G associated with
«. Define, for all m e I'_1(H),

To(m) : €€ LG, H) — o) (m)(€)(.) e L*(G, H).

Then 7, is a 1-1 =homomorphism from I'_;(H) into B(L*(G, H)). We note in pass-
ing that for every m € T'_j(H) the map s — «(s™')(m) is a element of the space
L¥(G, B(H)). By definition,

I_1(H) @0 G = VN{{ma(m); me T_1(H)}, {a®ly : x € VN(G)}} < B(L*(G, H)).
We define
J: VN(G) —_— F_l(H) X a G, J(l’) = JI@IH (512)
This w*-continuous one-to-one *-homomorphism is the one to be used in Theorem (B).

The following is a classical fact.

Lemma 5.1.3. For anyx €' _{(H) and t € G,

JA))ma(x) = ma(a(t)(@))J(A(2))-
This following will be applied a few times in this chapter.

Theorem 5.1.4. Let ¢ and v two n.s.f. traces on a von Neumann algebra M. Assume
that there exists a w*-dense x-subalgebra B of M such that B < L*(M, ) and for all
ye Db,

V(') = ey y).

Then p = 1.
Proof. 1t is a special case of the Pedersen-Takesaki theorem, see [60, §6.2]. n

We let 7 denote the dual weight of 7 on M = T'_;(H) %, G, for which we refer to
[63, p. 61, p. 248-249]. The action « considered in the present chapter is trace preserving
hence the n.s.f. weight ), is actually a trace. Indeed it follows from in [63, Theorem
X.1.17] that the modular group of 75 acts trivially on 7(M) and on J(VN(G)).

We now recall a construction which is a slight variant of the one given in [63, Sec-
tion X|. Let IC(G,T'_1(H)) be the vector space of all compactly supported o-strongly*-
continuous I'_j(#H)-valued functions on G. For all F,F' € K(G,T_1(H)), we define
F+«F e K(G,T_1(H)) and F* e K(G,T_1(H)) by

F«F'(t) = JG F(s™a ' (s)(F' (st))ds and F*(t) = a(t)(F(t™1)*).

Then for any F € K(G,I'_1(H)), we define T € I'_1(H) »x, G by

Vi€ (T_1(H) 0 @), (T = jg<wa<F<t>>J<A<t>>,n>dt.

We let B < I'_1(H) x4 G denote the set of all Tg, for F'e K(G,I'-1(H)).
Following [63, Lemma X.1.8| or [60, 19.8], we have the following two results.
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Lemma 5.1.5. For all F, Fy, Fy € K(G,T_{(H)),
(Tp)" = Tpe and Ty Ty, = TF, .p,
Lemma 5.1.6.
1. The set B is a =-subalgebra and it is w*- dense in I'_1(H) %, G;
2. For all F e K(G,T'_1(H)), we have T . = 0.

3. Let e be the unit of G. If F € KK(G,I'_1(H)) is such that T = 0, then:
(1) = 7(F(e)).
We now prove a property necessary to apply Definition 1.3.4.
Lemma 5.1.7. The map J defined by (5.1.2) is trace preserving, that is,
v oJ = wga.

Proof. Firstly we remark that for all f € K(G), Tf, ;g = J(A(f* = f)). Using Lemma
1.5.3, it follows that

T (JA)A))) = T (TS # 1)) = Tar (T pgn))-
According to Lemma 5.1.6, we have
™ (Thieusen) = T(f* + f®1(e)) = T(1) 7 = fe) = wa(A(f)*A(S)).

Consequently,

The result follows by applying Theorem 5.1.4 to wg and the n.s.f. trace 73, o J. O]

We now establish a link between the trace 75y on M =T'_{(#H) x, G, the Plancherel
trace wg and the trace 7 on I'_y (H).

Proposition 5.1.8. For any x € T'_{(H) and m € VN(G) n LYV N(Q)), ma(x)J(m)
belongs to M ~ L*(M) and we have

T (ma(x)J () = we(m)7(x).
We first establish the above result in a special case.

Lemma 5.1.9. Let x € I'_1(H) and f € K(G). We have:

i (Mo (2%2) JAF)AS))) = 7(z"w)wa(A(f)*A(S))-
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5.1. UNIMODULAR CASE

Proof. We have by the tracial property of 7,;:

T (Ta (@) JA)AS))) = T (a (@) Ta () T (A(F)) T (A(F))7)
= 7u( (@) J(A(f))(ma(2) J(A(])))" )

J

Y

= 0.

We observe that Tfg, = mo(2)J(A(f)) and (f @) = (f@x)* = f* f*()zal)(x*). Then
we have, using Lemmas 1.5.3, 5.1.5 and 5.1.6,

Ta(Ta(2*2) JA(SIA))) = Tar(Tge (Tiga)™)
= ™7 (T iga)«(f@u)t)

|
9

= Tu( f*f*()m()(x*))
T( f*(e) ® za(e)(z™))

= [ = f*(e)T(zz”)

= ( (HAS))T(z*2).

We obtain the result by changing f into f*. O]

Proof of Proposition 5.1.8. For any m € VN(G) n LY(VN(G)), J(m) e M ~n L'(M), by
Lemma 5.1.7. Hence 7, (x)J(m) belongs to M n L'(M) for any x € T'_;(H).

We fix x € I'_;(H) and we may assume that z # 0. We define a n.s.f. trace ¢, on
VN(G) by

*

To(T*x)

®,(m) =1 (

The faithful property comes from the faithful property of 7); and the computation in
the beginning of Proof of Lemma 5.1.9. By Lemma 5.1.9, &, coincides with wg on
IMN)*A(f) : f € K(G)}. Applying Theorem 5.1.4, we deduce that &, = wg. Thus we
have

J(m)) ., meVN(G),.

T(z*x)

v (mo(z*z)J(m)) = T(z*2)we(m), rel'_1(H), me VN(G),.
By polarization, the result follows at once. [

As in Section 2.2 on Schur multipliers, J induces J; : LY(VN(GQ)) — LY(T_1(H) %, G)
and we denote by E = J} : I' 1 (H) x,G — V N(G) the conditional expectation associated
with J.

Lemma 5.1.10. For any x € I'_1(H) and t € G, we have:

E(ma () (A1) = 7(2)A®).
Proof. Let n€ VN(G) n L*(VN(G)). Using Proposition 5.1.8, we have:

E(ma(z)J(AD)), mvn@), v = (Ta(@)J(AE)), J1(0))apr (a)
= (Mo (2)AO)®1 5, N®L 1) pr, 1 ()
T (o (2) (A(1) @1 1))
i (ma () (A(E)n))
= wa(A(t)n)7(z).
Since VN(G) n LY(VN(G)) is dense in L'(VN(QG)), this yields the result. O

E
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Let p € B(l2) be the shift operator, p((an)n) = ((@n41)s). This is a unitary hence

2
P :=T_1(Id®p) is a normal completely positive, trace preserving automorphism. Further
we have

2
Jw(e) = w(Id@p(x),  weT (M), (5.1.3)
by (1.6.4). It follows that for any t € G, we have:
aft)p’ = pla(t).

Theorem 5.1.11. There ezists a (necessarily unique) automorphism p: I'_1(H) x, G —
' 1(H) xq G such that:

1. p 1s trace preserving;
2. forallz e T _1(H), p(ro(z)) = ma(p'(z));
3. forallte G, p(J(A(t))) = J(A(1)).

Proof. We apply [61, Theorem 4.4.4 p. 149|. It provides all the expected properties
except the fact that p is trace preserving. Let us check this.
Let FF e K(G,T'_1(#)). We observe that for all t € G:

o (Pt F(t)) = o ( | w(s)(F(s)*m1<s><F<ts>>ds)
- [ O FEE I ) Fs)ds

The map p’ is a automorphism and « and p’ commute, hence we have:

p(FF=P(t) = (oo F) = (o' o F)(1)
We have for all n € (T'_1(H) x4 G)4:

P((T)TE),m) = J [ (plra(FF = FYO)FID), mat
<7ra(p’(Fﬂ « (1)) J(A(2)), nydt

<7Ta((p' o F)fx (p' o F)(1)J(A(1)), ) dt
<(T,?0F) poF?n>

Computing the trace, we have:

[
(;

I
L;

Hence p((TE)*Tg) = (T5.p) TS

™ (P((TF)"T7)) = ((TP"‘OF)*TEOF)
(0 ) (p"o F)(e))
7(p/(F* = F(e)))
F(Ft s

(F )( )
wu (T5)*Tr).

Using the w*-density of B and Theorem 5.1.4, we obtain the equality 7y 0 p = 73y, [
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In the sequel we let (g;)xez denote the standard basis of I3.

Lemma 5.1.12. Let d = 7, (w(d. @ o)) € T_1(H) %o G, where e is the unit of G. Then,
d* =d and d* = 1.

Proof. 1t is clear that d* = d. Next observe that since T, is unital, we have u(e) = 1
hence

60 ® olla = 00, = u(e)® = 1.

Consequently, d*> = 1 by (1.6.2). O

We define

U:T1(H) g G—T_1(H) x, G, U(x) = d*p(zx)d.

It follows from above that this is trace preserving automorphism.
Lemma 5.1.13. For all k € Ny, for all t € G, we have:

UM(J(A(1)) =

Ta(W(0e ® €0)w(de @ €1) -+ - wW(de @ E-1)w (0t @ 1) - - (0 @ €1)w (b @ £0)) S (A(F))-

Proof. We prove the lemma by induction. The case k = 0 is easy. Let k € Ny and assume
that the result true for k. We remark that for all t € G and x € I'_1(H):

U(ma(@) J (A1) = a(@(de ® 20))a(p(2)) J(A(E))Ta (w((de ® £0))).
Hence for any t € G we have:
UM (A1)
= U(ma(w(de ® c0)w(0. ®¢1) - w(de ® exr)w(d @ e4mr) -+ w (b ® €1)w (b @ 0)) T(A(2))
= Ta(W(0e ® £0))Ta (P (W (0 ® £0) - - - (6 @ £0)))J (A1) (w (0 ® £0))-
By (5.1.3), this is equal to
Ta(w(0e ® £0)w(de ® 1) - w(de @ ep)w (0 @ ex) - - w(: © 1)) (A1) (w(8e @ £0)).
By lemma 5.1.3, the latter is equal to
Ta(w(0e ® £0)w(de ® 1) - - w(de @ ep)w (0 ®ex) - - w(d; ® 1)))ma(w(d ® £0)) T (A(1))
= Ta(w(de @ 0)w(de @€1) -+ w(de @ e)w(0r @ k) - - - w(0r @ €1)w(dr ® £0))J (A(D)).
This proves the lemma. O
We conclude the proof of Theorem (B) by showing:
RU*J =T k=0
It suffices to prove that for all t € G, EU*J(A(t)) = T*(A(t)). To check this, fix t € G

and k € Ny and for all i € [|1;2k]], consider f; = { (;565 €i-1 ﬁ . j fi <<k2k; .
t &K E2k—; St s
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Then {f;, for—i+1)-1 = wu(t) and for all 1 < i < j < 2k such that j # 2k —i + 1,

We have according to Lemma 5.1.13 :
EURJ(A(t)) = E(ma(w(de ® g0)w(de ® £1) - - w(0y ® 1)w(d; @ £0)) J(A(1))).
Using Lemma 5.1.10, this is equal to

T(w(d, ® £0)w(d, ® 1) -+ w(be ® 41w (0 @ 1) - - - w(d ® £1)w(dy @ £0))A(2)
= 7(w(f1) - w(far))A®) = (frs oy i Frr)uA(R).

We derive, using lemma 1.6.1, that
EU"J(A(1) = u(t)*A(t) = T; (A(#)),

which concludes the proof.
By Proposition 1.3.5, we have the following explicit consequence of Theorem (B).

Theorem 5.1.14. Let G be a unimodular locally compact group. Let T : VN(G) —
VN(G) is a self-adjoint, unital, completely positive Fourier multiplier. Then for all
1 <p< oo, the map T, : LP(VN(G)) — LP(VN(Q)) is dilatable.

5.2 Non-unimodular case (weighted von Neumann al-
gebras)

In this section, we will prove, the following theorem.

Theorem (B’). Let G be a locally compact group, let T,, : VN(G) — VN(G) be a self-
adjoint, unital, completely positive Fourier multiplier. Then T, is absolutely dilatable.

We follow the proof of theorem (B). The construction does not use unimodular hy-
pothesis until Theorem 5.1.3. In general case, Lemma 5.1.4 becomes the following.

Theorem 5.2.1. Let ¢ and v two n.s.f. weights on a von Neumann algebra M. Assume
that there exists a w*-dense =-subalgebra B of M such that B ¢ M, o¥-invariant and
forallye B, se R,

o
(YY) = ¢(y'y) and P oof =y
Then ¢ = 1.
Proof. See §6.2 in [60]. O
We denote the dual weight of 7 on M =T"_1(H) . G by 7T, (cf [63, pages 248-249

and page 61|) and we denote the modular automorphism group of the dual weight 7,
by oM. The construction of T is the same in general setting. The difference is the
definition of F¥. It becomes for all F'e K(G,T_1(H)).

FPe K(G,T_{(H)) and F*(t) = Apa(t)(F(tH*) te G.

The two lemmas 5.1.5 and 5.1.6 still hold true with the above definition.
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Lemma 5.2.2. The map J : VN(G) — T'_1(H) defined by J(x)

= x®Iy is weight
preserving and for any s € R,

oMoJ=Joolc
We have for all x € I'_;(H) and for all s € R, 07 (7, (x)) = 74 (x). Hence

To(z) e{x el 1(H) X0 G; 0 () =2, V se€ R} the centralizer of 75,.
Remark 5.2.3.

1. By Theorem 1.2.7, for all z € T'_;(#H), we have for all z € MM

M zma(x) e MM
To(x)z € MM and 7y (7o (2)2) = Tar (270 (2)).

™

2. By Lemma 1.2.11, for any m € MVN(G , J(m) belongs to € MY . Then mo(x)J(m)
belongs to M for any v € '_1(H).

The following is an analogue of Proposition 5.1.8.
Proposition 5.2.4. For any x € I'_1(H) and m € ./\/lxév(a), we have
v (T () (M) = wa(m)T(x).
We prove the following result before the proof of the above proposition.
Lemma 5.2.5. Let x € I'_1(H) and f € K(G). We have:

Ty (T (¥ 2) J(AF)*A(S)) = T(z"2)we (A(f)*A(S)).
Proof. By Remark 5.2.3 we have,

We recall that Tgy, = ma(2)J(A(f)) and (f @ z) « (f @ )* = [« f*()za(.)(z*). Then
we obtain, using Lemmas 1.5.1, 5.1.5 and 5.1.6,

v (Mo (272) JMNAS)) = 70 (T (Thge)™)

\]

M( (f@z)(fRa)! )

£

(TFe (yza() @)
( fr(e)zale)(x™))
= ( )7 (r2™)

= ( (HAS)*)T (@ x).

|
)

The result follows by changing f into f*.
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Proof of Proposition 5.2.4. We fix x € I'_;(H) and we may assume that z # 0. We define
a normal weight ®, on VN(G) by

To(z*2)

d,(m) = Tur ( J(m)> , meMIN9.

T(x*x)

The map &, is well defined by Remark 5.2.3. By faithfulness of 7, and the computation
in the beginning of Proof of Lemma 5.2.5, the weight &, is faithful. By Lemma 5.2.5, &,

coincides with wg on {A(f)*A(f) : f € K(G)}. We observe that A(K(G)) < MUNO
VN(G)

o-invariant and w*-dense in VN(G). Then &, is semi-finite. Let m € My, ", we have
for all s € R,
@, (0 (m)) = 7as (222 g6 )
s M T(z*x) s
To(T¥T)
= ™ (]
o (22 o)) )
_ ™ WQ(I*I> J
o (o2 (e
To(x*z
= J
o (G )
= ®,(m)
Applying Theorem 5.2.1, we deduce that ®, = wg. Then we obtain
v (mo(x*2)J(m)) = (2" 2)we(m), xel 1(H), me MXCJ;V(G).
By polarization, the result follows. n

We see VN(G) as a subset of I'_1(H) %, G and we have ¢]¥(VN(G)) < VN(G)
according to lemma 5.2.2.

Proposition 5.2.6. Foranyxel'_1(H), m e MY and F e K(G,T_1(H)), we have:
1. Jf(mo(x)J(m)) = 7(x)m;
2. JHTE) = §, 7(F(s)A(s)ds = A(7 0 F);

Proof. Let n € M7 and let m € MZC{.VG By Lemma 1.2.11 and Remark 5.2.3, we
obtain J(n) € M* and 7o (z)J(m) e MM . We have

™ ™

(R (®al@) I (), DignDi ) = (maa)J(m). Ji (DdenDic) )

— <7ra(x)J(m)aD72M 77 DTQM>

= tr,,, (wa(@J(m)DéM J(n)DéM) .
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By 2 of Lemma 1.2.10, we have

(Tt (Ra(a)J(m)). DignDig ) = (mal@) T m)a™ (J(m) )

2

)

= (wa(x)J(maf

ol Q

By Proposition 5.2.4, the latter is equal to,

“3(n)) = T(@)trug (mDEGnDEG)

T(r)wg (mo :
= (T(z)m, D¢3G77D G>

We used again 2 of Lemma 1.2.10 with wg. By density of Déc./\/lffg DéG in LY(VN(G),we)
and duality, we obtain the first point.
For the second one, we remark that for any x € T'_1(H) and f € K(G) we have
A(f) e MVN(G By the first point, we deduce that

I (Tige) = Ji' (ma(2) JA(S)) = T(2)A(f) = LT((f@)fl?)(S))A(S)dS-

By linearity we have the previous equality for any finite combination:

Jy (Tgﬁilﬁ@xi) = Jr (i T}%:@xi) = L*T (i(ﬁ ®xz)(s)> A(s)ds

Finally by w*- density of C®I'_ (7—[) K(G,T'_1(#H)) and w*-continuity J;* and 7, we
obtain the equality J;(Tg) = §, 7(F(s))A(s)ds = A(7 o F).
0

2

We let p/ := I'_1(Id ® p) the same normal completely positive, trace preserving
automorphism than in the previous section. Then p also verifies (5.1.3) and commutes
with a.

Theorem 5.2.7. There exists a (necessarily unique) automorphism p: I'_1(H) x G —
' 1(H) x G such that:

1. p is weight preserving;
2. for allz e T_1(H), p(ma(x)) = ma(p'());
3. forallte G, p(J(A(t))) = J(A(1)).

Proof. Theorem 4.4.4 p.149 in [61] gives all the properties except the fact that p is weight
preserving. We will apply Theorem 5.2.1. We just have to prove that ¢7*(B) < B and
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T o pool™ = 1y op. The rest is done in the proof of Theorem 5.1.11. For any
FeK(G,T_1(H)), by |63, Theorem X.1.17], we have

o7 13) = o7 ([ malFODIN)as)

r

_ GU;M(WQ(F(S)))aZM(J(A(S)))dS

- ma(F(s)) AN (J(A(s)))ds

- J;’ Ta(ALF(5))(J(A(s)))ds
= TRup

Hence o7 (B) < B.
In addition,

Tapo (T5) = vap(Thir)
= TM(TpofoAftF)
= T (TRityror))
= oM (T,?foF))
= (T5.r))
= up(TF))
By density, we have 7y;pol™ = T)/p. Using the w*-density of B and Theorem 5.2.1, we
obtain the equality 7); 0 p = 7). O
During the proof, we show that ¢¥p = pol™. We define U : I'_1(H) x G —
['_1(H) x G as in Section 5.1. U have all the expected properties. We give an ;nalogue
of Lemrrféa 5.1.13.

Lemma 5.2.8. For all k € Ny, for all f € K(G), we have:

US(J(A(f))) =

J To(w(8e ® £0)w(de @e1) ... w(0e @ ep1)w(0s ® 1) - .. w(ds @ e1)w(ds @ €0)) f(5) ® 1)J(A(s))ds.
G

(e}

W(3e®20)w(Be®e1)...w(8eQep_1)w (8 Rep_1)...w(6 Re1)w(8.®c0)) F(.)®1

It remains to show that:
(J1)*U*J =Tk, k= 0.

The proof is quietly the same as at the end of Section 5.1.

5.3 Multi-variable Version

This section is devoted to multi-variable version of Theorem (B).
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Theorem (D). Let G be a unimodular locally compact group and let T,,,...,T,, be
self-adjoint, unital, completely positive Fourier multipliers on V.N(G). Then there ex-
ist a tracial von Neumann algebra (M, T), a commuting n-tuple (Uy,...,U,) of trace
preserving #-automorphisms on M and a w*-continuous trace preserving one-to-one x-

homomorphism J : VN(G) — M such that
Tfll . -Tf: = (J)*UP- Uk g

for all k; € No, 1 < i < n, where (J;)* : M — B(L*(X)) is the conditional expectation
associated with J.

Proof. As in the case of Theorem (C) (from the Chapter 2) we only treat the case n = 2.
So we consider two self-adjoint, unital, completely positive Fourier multipliers 7}, , 7T,
on VN(G). As we did at the beginning of Section 5.1, we create real Hilbert spaces H,,,

2 2
H.,, Hi = H,, @ (3(Z), Hy = H,, ® (4(Z), as well as the tracial von Neumann algebras
(T_1(H1),71) and (T'_1(Hz), 72). Futher we consider the resulting tracial von Neumann

algebra
F_l(H1)®F_1(H2) [ B(H)

Next for any t € G, we consider, for i = 1,2, the onto isometry 6 on H,, given by

Y
0i(f) : s> f(t7's),

and the trace preserving =-automorphism

.2
F_I(HZQ ® ]deé(z)) . P_l(HZ) — F_l(/Hz)
Then we define
a:G— Aut(T_1(H1)®_1(H2))
by

2 _ 2
a(t) =T 1(0; @ ldp 7))@ 1(0; ® Idp(z), ted.

This is a homomorphism, and this homomorphism is point-w*-continuous (in the sense
of lemma 5.1.2), by an argument similar to the one used in Section 5.1. This gives rise

to the crossed product
M = F_l(H1)®F_1(H2) X G.

As in Section 5.1, we see that the dual weight on this crossed product is a trace. We let
To : 1 (H1)®T_1(Hy) — M and J:VN(G)— M

be the canonical embeddings. The latter is a w*-continuous trace preserving one-to-
one shomomorphism. We let E : M — B(L*(X)) denote the conditional expectation
associated with J.

Let p be the shift operator on /2, as in Section 5.1. Then we may define completely
positive, unital, trace preserving x-automorphisms :

pyi=T_(Idy, ®p)®Id  and  phy:= 1d®T_1(Idp,, ® p).
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CHAPTER 5. ABSOLUTE DILATIONS OF FOURIER MULTIPLIERS

It is plain that they commute. In addition, for all ¢ € G and i = 1,2, we have «a(t)p] =
pia(t). Now thanks to [61, Theorem 4.4.4 p. 149|, we may obtain p; and ps as in Theorem
5.1.11. Then we have, for all x € H; and y € Ho,

2

P(wi(@) ®y) = wiId®p(x) @y and  p(wi(z) ®y) = 2 ®ws(Id® ply)).
We now introduce the two self-adjoint symmetries
di = T (w1 (6. @ e)) @1) and dy = Ta(1 @ wa (b, @ €)).
Then for all t € GG, we have
at) (w6, ®€)®1) =wi(6;Qe) @1 and a(t)(1Q@uws(d, ®€r)) = 1 @ wa(d; @ €p).
Finally we define the trace preserving -automorphisms Uy, Uy on T'_1(H)®T _1(Ha) x o G
by
U : x — df pi(x)d;.

We claim that U; and Uy commute.
To check this, we first remark that:

didy = 7o (w1 (0 ® €0) @ 1) 70 (1 @ w2 (de @ €))
= 7o (w1 (0. ® €0) ® 1) (1 ® wa(d, ® €9)))
= ma((1 ®w2(5e & 60))(w1(5e ®e) 1))
= dad;.
Second, for all z € I'_1(H;1)®'_1(Hz), we have

prP2(ma(w)) = Ta(P195(7)) = Ta(phph () = P2pr(al(2)),

and for all £ € GG, we have

p1p2(J (A1) = J(A(t)) = p2pr(J(A(D))).
We deduce that p; and gy commuting. For all x € I'_; (H;)®I'_1(Hz) X, G, we obtain:
Ui(Uz(z)) = Uir(dapa(z)ds)
= d1,51(d2,52($)d2)d1
= dip1(d2)p1(p2(x)) pr(d2)ds
= di 1 (Ta (1 ® wa (9 ® €)
= d17a (P} (1@ wa(de ® o)
=diTa(1® w2(56 ® €0))p2
= d1d2ﬁ2(/31(1’))d2d1
= dzdlﬁz(ﬁl(ﬂﬁ))dldQ
: same computation

= Us(Ui (7))

With this commutation property in hands, the proof of Theorem (D) is obtained by
arguments similar to the ones in Section 5.1. O]

)p2(pr (@)1 (Ta(1 @ wa(de ® €0)))
Np2(pr(z))ma(p (1.®w2(5e®€0))) 1
(P1(2)) 70 (1 @ w2 (de ® €))dy

P1
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As the end of Section 5.1, we mention that applying Lemma 1.2.3, we obtain the
following consequence of Theorem (D).

Theorem 5.3.1. Let G be a unimodular locally compact group and let Ty, ..., T,, be self-
adjoint, unital, completely positive Fourier multipliers on VN(G). Then for all 1 < p <
o0, there exist a tracial von Neumann algebra (M, T), a commuting n-tuple (Uy, ..., U,)
of surjective isometries on LP(M), and two contractions J : LP(VN(G)) — LP(M) and
Q: LP(M) — LP(VN(QG)) such that for all ky, ..., k, € Ny,

Ty Ty = QU ---UprJ  on LP(VN(G)).
With the same arguments, we can obtain Theorem (D) in the non-unimodular case.

Theorem (D’). Let G be a locally compact group and let T,,,...,T,, be self-adjoint,
unital, completely positive Fourier multipliers on V.N(G). Then there exist a weighted
von Neumann algebra (M, 1), a commuting n-tuple (Uy,...,U,) of weight preserving =-
automorphisms on M and a w*-continuous weight preserving one-to-one x-homomorphism

J :VN(G) — M such that
Tyl Tar = (W)U - Upnd

for all k; € Ng, 1 < i < n, where (J1)* : M — B(L*(X)) is the conditional expectation
associated with J.
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Résumé : Soit N une algebre de von Neumann équipée d’une trace normale semi-finie fidéle
(n.s.f) et soit T: N — N une contraction, on dit que 7" est absolument dilatable s’il existe
une autre algebre de von Neumann équipée d’une trace n.s.f, un =-homomorphisme w*-continu
préservant la trace et unitaire J: N — N et un *-automorphisme préservant la trace U: N — N
tel que pour tout k € N, 7% = EU*J ou E: N' — N est I’espérance conditionnelle associée a J.
Soit (X, u) un espace mesuré o-fini, nous prouvons que tout multiplicateur de Schur unitaire,
positif, auto-adjoint et borné sur B(L?*(X)) est absolument dilatable. De méme, nous obtenons
que tout multiplicateur de Fourier sur V N (G), unitaire, complétement positif, auto-adjoint est
aussi absolument dilatable, ou G est un groupe localement compact. De plus, nous établissons
une version multi-variable de ces résultats. Ensuite, nous caractérisons les fonctions p € L% (3?)
induisant un multiplicateur de Schur borné M,: B(L*(X)) — B(L?*(X)) qui est absolument
dilatable. Nous montrons aussi une nouvelle caractérisation pour les multiplicateurs de Schur
SP — SP positifs et unitaires qui admettent une dilatation en une isométrie compléte inversible
sur un espace LP non-commutatif avec 1 < p # 2 < +00. Ensuite, nous traitons le cas de la
dimension infinie.
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Abstract : Let N be a von Neumann algebra equipped with a normal semi-finite faithful trace
(nsf trace in short) and let 7: N — N be a contraction. We say that 7" is absolutely dilatable
if there exist another von Neumann algebra N equipped with a nsf trace, a w*-continuous
trace preserving unital *-homomorphim J: N — A and a trace preserving *-automomorphim
U: N — N such that T = EU*J for all integer k > 0, where E: N' — N is the condi-
tional expectation associated with J. Given a o-finite measure space (3, i), we prove that any
self-adjoint, unital, positive measurable bounded Schur multiplier on B(L*(X)) is absolutely
dilatable. We obtain a similar result for self-adjoint, unital, completely positive Fourier multi-
plier on VN(G), when G is a locally compact group. Furthermore, we establish multi-variable
versions of these results. In addition we characterize bounded Schur multipliers ¢ € L*(%?)
such that the Schur multiplication operator M,: B(L*(X)) — B(L*(X)) is absolutely dilatable.
Moreover we prove new characterizations of unital positive Schur multipliers S? — S? which can
be dilated into an invertible complete isometry acting on a non-commutative LP-space where
1 < p <+ 2 < o and S? be the Schatten von Neumann class over n x n matrices. Then we
investigate the infinite dimensional case.
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