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Résumé :

Les travaux de cette thése portent sur I’étude asymptotique de certaines fonctionnelles de
processus de Markov. Plus précisément, on s’intéresse a deux types de problémes : (%) établir
des limites d’échelles et (ii) étudier asymptotiquement des probabilités de persistance, encore
appelées probabilités de survie. Ce travail est divisé en cing parties.

Dans un premier temps, nous établissons un théoréme central limite a-stable pour des fonc-
tionnelles additives de diffusions unidimensionnelles. Le cas des fluctuations gaussiennes est un
probleme classique et de nombreux résultats existent a ce sujet. Mais de maniere surprenante,
tres peu de résultats concernent les limites d’échelles a-stable, pour a € (0,2). Ces travaux
généralisent les méthodes et résultats de Fournier-Tardif [FT21] qui traitent d'un cas spécifique.

Dans un second travail en commun avec Quentin Berger et Camille Tardif, nous nous in-
téressons au probleme de persistance pour des fonctionnelles additives de processus de Markov,
i.e. nous caractérisons asymptotiquement la probabilité que cette fonctionnelle reste en dessous
d’un certain niveau jusqu’au temps t. Divers résultats y sont établis. Lorsque le processus de
Markov sous-jacent est récurrent positif, nous donnons une condition nécessaire et suffisante pour
que la probabilité de persistance soit a variations régulieres. Lorsque le processus est récurrent
nul, il nous faut des hypotheses supplémentaires pour établir le comportement asymptotique.
Ces hypotheses étant un peu abstraites, nous les simplifions ensuite pour une sous-classe de
processus appelés diffusions généralisées. Ceci nous amene dans une derniere partie a établir
I’asymptotique de la queue de probabilité du temps de retour en zéro de la fonctionnelle, ce qui
nous permet de construire la fonctionnelle additive conditionnée & rester négative.

Dans un troisieme temps, nous étudions la limite d’échelle d’un modele cinétique de Fokker-
Planck avec conditions de bord diffusives. Plus précisément, on considére une particule qui vit
dans Ry dont la vitesse est une diffusion récurrente positive ayant une mesure invariante a queues
lourdes lorsque la particule est strictement positive. Quand la particule touche la frontiere xz = 0,
elle en ressort instantanément avec une vitesse strictement positive tirée aléatoirement selon une
mesure de probabilité sur (0,00). Lorsque la particule n’est pas réfléchie, il a été montré par
Fournier-Tardif [FT21] que dans un certain régime, la limite d’échelle de la particule est un
processus a-stable symétrique. Nous montrons que pour la particule réfléchie, la limite d’échelle
est un processus a-stable réfléchi sur son infimum.

Dans un quatrieme travail en commun avec Quentin Berger, nous revisitons le théoréme de
Sparre Andersen pour des variables aléatoires échangeables et invariantes par signe. Nous util-
isons ensuite ce résultat pour obtenir des bornes sur des probabilités de persistance de certaines
chaines de Markov intégrées.

Enfin, dans une derniére partie, nous revisitons les résultats du Chapitre 1 concernant les
limites d’échelles de fonctionnelles additives en utilisant les outils introduits dans les Chapitres
2 et 3. Nous obtenons des resultats de tension et nous identifions partiellement les lois limites.
Nous étudions aussi les limites d’échelles lorsque la diffusion sous-jacente est récurrente nulle.



Abstract:

This work is devoted to the asymptotic study of some functionals of Markov processes. More
precisely, we are interested in two types of problems: (i) the establishment of scaling limits and
(i) the asymptotic study of persistence probabilities, also known as survival probabilities. This
work is divided into five parts.

In a first part, we establish an a-stable central limit theorem for additive functionals of
one-dimensional diffusions. The case of Gaussian fluctuations is a classical problem, and many
results exist on the subject. But surprisingly few results concern the case of a-stable fluctuations,
for a € (0,2). This work generalizes methods and results from Fournier-Tardif [FT21], which
deal with a specific case.

In a second joint work with Quentin Berger and Camille Tardif, we address the problem of
persistence for additive functionals of Markov processes, i.e. we asymptotically characterize the
probability for this functional to remain below a certain level up until time ¢. Various results are
established. When the underlying Markov process is positive recurrent, we give a necessary and
sufficient condition for the probability of persistence to be regularly varying. When the process
is null recurrent, we need additional assumptions to establish the asymptotic behavior. As these
assumptions are somewhat abstract, we then simplify them for a subclass of processes called
generalized diffusions. This finally leads us to establish the asymptotics of the probability tail
of the first return time to zero of the functional, enabling us to construct the additive functional
conditioned to stay negative.

In a third part, we study the scaling limit of a kinetic Fokker-Planck model with diffusive
boundary conditions. More precisely, we consider a particle living in Ry, whose velocity is a
positive recurrent diffusion with heavy-tailed invariant distribution when the particle lives in
(0,00). When it hits the boundary x = 0, the particle restarts with a strictly positive random
velocity, according to some probability measure on (0,00). When the particle is not reflected,
it was shown by Fournier-Tardif that in a certain regime, the scaling limit of the particle is a
symmetric a-stable process. We show that when the particle is reflected diffusively, the scaling
limit is a stable process reflected on its infimum.

In a fourth joint work with Quentin Berger, we revisit the famous result of Sparre Andersen
for exchangeable and sign-invariant random variables. We then apply this result to obtain
bounds on the perstistence probabilities of certain integrated Markov chains.

Finally, in a last part, we revisit the results of Chapter 2 concerning scaling limits of additive
functionals using the tools introduced in Chapters 3 and 4. We obtain tightness results and we
partly identify the limiting laws. We also deal with the case when the underlying diffusion is
null recurrent.
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Chapitre

Introduction

Les travaux de cette theése portent sur ’étude asymptotique de certaines fonctionnelles de pro-
cessus de Markov. Plus précisément, on s’intéresse a deux types de problemes : (i) établir
des limites d’échelles et (ii) étudier asymptotiquement des probabilités de persistance, encore
appelées probabilités de survie. Dans ce chapitre, nous introduisons et discutons les différents
thémes étudiés dans cette theése. Dans un premier temps, nous rappelons le théoréme central
limite classique, ainsi que sa généralisation & des variables aléatoires de variance infinie. Dans
un second temps, nous discutons de principes d’invariance et de leurs liens avec les différentes
topologies de Skorokhod, ainsi que du probléme de persistance. Le fil conducteur sera 1’étude de
la marche aléatoire unidimensionnelle a travers ces différents themes. Ensuite, nous discutons
de modeles cinétiques, de leur limite d’échelle et des résultats existants. Enfin, nous résumons
les travaux réalisés dans cette these.

1.1 Autour du théoréme central limite

1.1.1 Quelques heuristiques

On retrace ici succinctement ’histoire du théoréme central limite (que ’on notera parfois TCL),
et on discute d’'une généralisation de ce dernier a des variables aléatoires qui ont une variance
infinie. Une partie de cette thése a pour but d’établir des généralisations similaires a ce résultat,
que l'on appelle théoréme central limite a-stable (ou TCL a-stable).

Ce sont les travaux de Jacques Bernoulli qui sont a l’origine du TCL. C’est en effet le premier
a avoir établi une loi des grands nombres, qu’il publie en 1713 [Ber13]. Considérons une suite
de variables aléatoires (X, )nen indépendantes et identiquement distribuées (i.i.d.), définie sur
un espace de probabilité (2, F,P), et a valeurs dans R. La loi forte des grands nombres nous
assure que, si E[|X1|] < oo, la convergence suivante a lieu presque stirement (p.s.) :

1 n
(LFGN) — Z X, — E[X;], lorsque n — oc. (1.1)
n
k=1

Par la suite, une question naturelle se pose quant a 1’étude des fluctuations : comment se
comporte la moyenne empirique autour de sa “vraie” valeur 7 Peut-on quantifier cet écart 7
C’est De Moivre [DM33] en 1733 qui est le premier & faire apparaitre la loi normale comme
la loi limite d’une somme de variables de Bernoulli recentrées. Toutefois ce sont Laplace et
Gauss qui ont ensuite majoritairement contribué a la quantification des erreurs ; et Laplace
publie finalement en 1812 [Lap20] le théoréme de Laplace que 'on appelle maintenant théoréme
central limite.



Chapitre 1. Introduction

Théoréme 1.1 (Théoréme central limite). Sozt (Xn)nen une suite de variables aléatoires i.i.d.
a valeurs dans R telle que E[X1] = 0 et 0 := E[X?] < co. Alors on a la convergence en loi

sutvante :
1

oV &

ot G est une variable gaussienne centrée et réduite.

Z X N G, lorsque n — oo,

Ainsi, ce théoreme nous indique que la forme des fluctuations est universelle et ne dépend pas
réellement de la loi, mais seulement de la variance. Essayons de comprendre un peu ce résultat.
Tout d’abord, on sait par (1.1) que, sous les hypothéses du théoréme, %Sn = % > h—q1 X} converge
p.s. vers 0 et il est assez facile de voir qu’il faut effectivement multiplier par y/n pour obtenir
le bon ordre. En effet, un rapide calcul montre que E[(S,,//n)?] = 02 est constant. Supposons
maintenant que Sy, //n converge en loi vers une variable G, et faisons la manipulation suivante

1
Vo EX’“Z%X’“ = Vo

wor (1.2)

o S, = Zk =nt1 X}. Puisque les variables aléatoires (X,,)nen sont ii.d., S, est indépendante
de S, et a la méme loi. Il s’ensuit donc par convergence que la variable G doit satisfaire 1’égalité
en loi suivante :

V2GEG+G (1.3)

ol G est copie independante de G. On dit que la loi de G est stable (pour 'addition) et il s’avere
que la loi normale est 1'unique loi qui satisfait (1.3).

On peut ensuite se demander ce qu’il se passe si on suppose que X7 a un moment d’ordre 2
infini, i.e. que E[X?] = co. Peut-on toujours dire quelque chose des fluctuations ? La réponse
a cette question est précisément fournie par le TCL a-stable. Nous constaterons en effet que la
notion de stabilité joue encore un role important ici. Avant d’introduire les objets nécessaires
pour étudier ce probleme, nous donnons quelques heuristiques simples. On commence par essayer
de comprendre le coefficient de renormalisation que nous devons choisir. Lorsque E[X?] est fini,
il est clair qu’il faut multiplier S,,/n par y/n. On pose

o = sup{f > 0, tel que E[|X;|?] < co}.

On a donc « < 2 et on va supposer pour simplifier que o € (0, 1) et que les variables aléatoires X,
sont a valeurs dans R;. On va essayer de comprendre pourquoi, ici, la bonne renormalisation est
a peu pres Sn/nl/"‘. Soit 6 € (0, «), on va dans un premier temps montrer que Sn/n1/9 converge
vers 0 en probabilité lorsque n — co. Pour cela, on peut calculer sa transformée de Laplace :

—an-1/0s, —An~0x, "
E [e " } =E {e " o,

ou A > 0, et donc on a

n—oo

oo
logE [e_’\"il/e‘g"} ~ nE [e_/\”fl/e)ﬁ - 1] = —)\n/ e MP(X) > n'/u)du. (1.4)
0

Soit 8 € (0, ) tel que E[|X1]|”] < co. On a par I'inégalité de Markov que P(X; > n'/%) est
plus petite que n=¢/%u="E[|X,|?']. 1l vient alors que

n/ e MP(X) > n'/u)du < nlf@l/Q]EHXl\gl]/ e My du,
0 0
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Puisque §' < 1, l'intégrale a droite est bien convergente, et puisque 6 > 6, les quantités ci-
dessus convergent vers 0 quand n — oo. On a donc montré que la transformée de Laplace de
Sn/ n'/? converge vers 1, ce qui implique que S, / n'/? converge vers 0 en probabilité. On peut
aussi montrer que pour 6 > a, S,/ nt/? converge vers +oo en probabilité. On note par ailleurs
que pour # > 1, ceci est une conséquence directe de la loi forte des grands nombres. Ainsi, le
coefficient de normalisation doit étre de ordre de n'/®.

Supposons maintenant que S,/ n'/® converge en loi vers une variable aléatoire S,. Alors, de

maniére analogue & (1.2), on obtient que la variable S, doit satisfaire 1’égalite en loi suivante :
215, £ .5, + S,

ot S, est une copie indépendante de S,. La loi limite est donc encore une fois stable. Observons
aussi que si on remplace n!/® par nl/@ log(n), la loi limite satisfait la méme relation car pour
tout A > 0, log(Az)/log(z) — 1 lorsque z — oo. Nous allons maintenant énoncer le TCL
a-stable, mais il nous faut auparavant introduire quelques objets.

1.1.2 Stabilité et variation réguliére

On définit ici d’abord plus rigoureusement la notion de stabité pour une loi de probabilité sur
R. Dans tout ce qui suit, on exclura automatiquement les lois triviales concentrées en un point
(du type p = 0, pour z € R).

Définition 1.1. Soit ;1 une mesure de probabilité sur (R,B(R)) et soit (Xn)nen une suite de
variables aléatoires distribuées selon . On dit que u est stable si pour tout n € N, il existe des
constantes ¢, € (0,00) et v, € R telles que

L
Sn = cn X1+ Y-
On dit que p est strictement stable si pour tout n € N, on peut choisir v, = 0.

Cette définition peut sembler a priori trés large, mais on peut montrer le resultat suivant,
qu’on peut retrouver dans le livre de Feller [Fel91, Chapitre VI, Section 1, Théorémes 1 et 2.

Théoréme 1.2. Soit i une loi de probabilité stable. Alors

(i) 1l existe a € (0,2] tel que pour tout n € N, la constante ¢, soit égale d n'/*.
(ii) Soit X une variable aléatoire de loi p. Si o # 1, il existe b € R tel que la loi de X + b soit
strictement stable.

(iii) Si o =2, p est une loi normale.

On pourra donc dire d’une loi qu’elle est “a-stable” pour spécifier son indice « associé. On
dira qu'une variable aléatoire X est a-stable (ou strictement a-stable), si sa loi est a-stable
(ou strictement a-stable). Lorsque a0 # 1, seules les lois strictement stable sont intéressantes,
puisque une loi stable n’est autre qu'une loi strictement stable translatée. Le cas a = 1 est
le seul cas ou l'on a des loi stables, qui sont non strictement stables, et non-triviales. C’est
Paul Lévy [LévH4] qui a initié la théorie des variables aléatoires stables, et a identifié la fonction
caractéristique de toutes les lois strictement stables. Le cas o = 1 fut traité plus tard avec
Khintchine. On a le résultat suivant que I’on peut trouver dans le livre de Sato [Sat13, Theorem
14.15 page 86 et Definition 14.16 page 87].
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Théoréme 1.3. Soit a € (0,2)\ {1} et soit X une variable aléatoire strictement c-stable. Alors
il existe v >0 et 8 € [—1,1] tels que pour tout £ € R,

E [exp(i€X)] = exp (—1/]§|O‘ (1 — i tan (o;r) sgn(f))) .

Si X est une variable aléatoire 1-stable, alors il existe v >0, 5 € [—1,1] et T € R tels que

E [exp(i£X)] = exp (—V]f\ <1 + iﬁ%sgn({) log ]{]) + it7§> )

On souligne aussi que la seule loi strictement 1-stable est la loi de Cauchy, correspondant au
cas ou B = 7 = 0. Le parameétre § est un parametre d’asymétrie et si 5 = 0 alors la loi est
symétrique.

Pour pouvoir énoncer le TCL a-stable, il nous faut aussi parler de variations réguliéres et
des théoremes taubériens de Karamata.

Définition 1.2. Soit ¢ : (0,00) — (0,00) une fonction mesurable et soit p € R. On dit que ¢
est a variations réguliéres d’indice p si pour tout A > 0, on a

. A(Az)
A () AP

On notera £ € R, et si p =0, on dira que £ est a variations lentes.

On voit immédiatement que si L € R, pour p # 0, alors la fonction £ : (0,00) — (0,00)
définie par ¢(z) = L(x)/x” est a variations lentes et donc toute fonction a variations réguliéres
n’est autre qu’une fonction a variations lentes multipliée par une fonction puissance. Voici
quelques exemples simples de fonctions a variations lentes : toute puissance du logarithme, les
logarithmes itérés, toute fonction ayant une limite finie a l'infini. La théorie des fonctions a
variations régulieres est intimement liée au TCL a-stable. Nous énongons le résultat suivant
qui relie le comportement asymtotique d’une fonction a variation réguliére monotone a celui de
sa tranformée de Laplace. Il combine & la fois le théoreme taubérien et le théoreme de densité
monotone, qu’on peut trouver dans le livre de Bingham, Goldie et Teugels [BGT87, Theorem
1.7.1 page 37 et Theorem 1.7.2 page 39].

Théoreme 1.4. Soit u : Ry — Ry une fonction monotone. On note Lu sa transformée de
Laplace, i.e. la fonction définie par Lu(N) = [;° e y(x)dx pour tout X > 0. Soit p > —1,
I’ la fonction Gamma usuelle et £ une fonction lente. Alors les deux assertions suivantes sont
équivalentes.

(i) u(x) ~ (p+ 1)aPl(x) lorsque x — co.
(i) ALu(N) ~T(p+2)A"PL(1/)) lorsque A — 0.

1.1.3 Le TCL a-stable

On définit ici la notion de domaine d’attraction pour une loi de probabilité.

Définition 1.3. Soient p et oo deux mesures de probabilités sur (R, B(R)), (Xp)nen une suite
de variables aléatoires i.i.d. de loi p et Xo une variable aléatoire de 107 pioo. On dit que p est
dans le domaine d’attraction de poo s’il existe des suites (an)nen €t (bp)nen @ valeurs dans R
telles que

1 c

—(Sp —bp) — Xo.

n

On dira que ps possede un domaine d’attraction s’il existe p dans le domaine d’attraction de
Hoo -

4



1.1. Autour du théoréme central limite

Il est évident par définition, et par le Théoreme 1.2, que toute loi a-stable posséde un domaine
d’attraction. En effet, il suffit de remarquer que us est dans son propre domaine d’attraction
(avec une égalité en loi, a, = nt/® et b, = vn). La réciproque est aussi vraie, bien qu’elle
soit moins évidente, et on se réfere a Feller [Fel91, Chapitre XVII, Section 5]. Ainsi, une loi
posséde un domaine d’attraction si et seulement si elle est stable, et on peut enfin énoncer le
TCL a-stable, qui caractérise le domaine d’attraction d’une loi stable.

Théoréme 1.5 (TCL a-stable). Soit u une mesure de probabilité sur (R, B(R)) et soit X une
variable aléatoire de loi p. On définit la fonction V' sur [0,00) par V(z) = E[X?1g y|<z].

(i) w est dans le domaine d’attraction d’une loi normale si et seulement si V € Ryg.

(ii) w est dans le domaine d’attraction d’une loi a-stable, pour o € (0,2), si et seulement si
x — P(|X| > z) est a variations réguliéres d’indice —cv et s’il existe p,q € [0,1] tels que
p+q=1c¢et

P(X > x) N P(X < —x) .
P(X|>z) 2ol P(X[> ) a0 !

Nous allons donner une partie de la preuve de ce résultat dans un cas particulier. On se
placera dans le cas ou p est supportée par Ry et a € (0,1). Ce cas est un peu plus simple car
on peut utiliser les transformées de Laplace, et appliquer directement les théoremes Taubériens.
Nous montrerons que si z — P(X > x) est a variations régulieres d’indice —q, alors il existe une
suite (an)nen telle que S, /a, converge en loi vers une loi stable. Dans ce cas la variable a-stable
asymptotique, que I'on note S, est nécessairement & valeurs positives et on peut montrer qu’il
existe ¢ > 0 tel que E[exp(—AS,)] = exp(—cA®) pour tout A > 0.

Preuve. On suppose donc que u(z) = P(X > z) est a variations régulieres d’indice —«. Il existe
donc une fonction a variations lentes ¢ telle que u(z) ~ x~*¢(z) lorsque z — co. Comme u est
une fonction monotone, et que o < 1, on peut appliquer le Théoréme 1.4 qui nous dit que

r'e—a) .,

ALu(N) ~ ——=AY(1/X)  lorsque A — 0,
-«

ou Lu(A) est la transformée de Laplace de u. Considérons maintenant une suite (ap)nen telle
que lim,, o, a,, = 0o. Par un calcul similaire & (1.4), on voit que

n—oo

logE [e—wlsn} ~ —nia;t / e 2 P X) > w)du = —n(ha; ) Lu(har ). (1.5)
0

Ainsi, on a
I'(2-a)nl(ay)

n—00 1—«o a%

A%

log E [e*’\“;ls’l}

On voit alors que si on prend (an)pen telle que lim, o na, *¢(1/a,) = 1, la transformée de
Laplace de S,,/a,, converge vers exp(—cA®) ou ¢ =T'(2 — a)/(1 — «), ce qui implique bien que
Sp/an est dans le domaine d’attraction d’une loi stable. Il est possible de choisir de tels a,,, en
posant par exemple a,, = inf{zx > 0, nx=¢(z) < 1}. O

A vrai dire, la fonction 1/u € R, est croissante et posséde une inverse généralisée que 1'on
note g(z) = inf{y > 0, 1/u(y) > z}. On voit donc que a(n) = g(n) et on peut montrer
(voir [BGT87, Chapitre 1, Théoreme 1.5.12]) que g € Ry, et donc il existe une fonction lente
L telle que a,, = n'/*L(n).

On va a présent faire quelques remarques sur ce théoreme. Tout d’abord, bien qu’elle ne
soit pas spécifiée, la suite (an)neny doit étre choisie d’'une maniére particuliere (a constante

5
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multiplicative pres). Si V' € Ry, alors p est dans le domaine d’attraction une loi normale et
(an)nen doit étre telle que

lim na, 2V (a,) = 1.

n—oo

Si ;1 a un moment d’ordre 2, alors V (z) converge vers o2 lorsque x — oo et alors a,, ~ oy/n. On
retrouve bien le TCL classique. Dans tous les cas, (a,)nen €st une suite a variations régulieres
d’indice 1/2, dans le sens ot il existe une fonction lente L telle que a(n) = n'/2L(n).

Plagons-nous maintenant sous les hypotheses de l'item (77), i.e. il existe a € (0,2) et £ € Ry
tels que P(|X| > z) ~ x7%(z) ; et il existe p,q € [0,1] tels que p+ g =1 et
—a —o
P(X > x) b l(x), P(X < —x) LT l(x).
Alors dans ce cas (ap)nen doit étre telle que lim, o na, “l(a,) = 1, et alors c’est une suite
a variations régulieres d’indice 1/a. Concernant les constantes de recentrage (by,)nen, on peut
montrer la chose suivante, voir par exemple [Fel91, Chapitre XVII, Section 5, Théoréme 3].

(i) Si € (0,1), alors on peut toujours choisir b, = 0 pour tout n € N. La loi limite est alors
strictement stable.

(ii) Si v € (1,2], alors on peut toujours choisir b, = nE[X;] pour tout n € N.
(iii) Si a =1, alors on peut prendre b, = nE[X11{x,|<4,}] pour tout n € N.

On note aussi que si u est dans le domaine d’attraction d’une loi a-stable, pour « € (0, 2), alors
p possede des moments d’ordre € pour tout 6 < « (c’est une conséquence immédiate du fait que
les queues de probabilités sont & variations régulieres d’indice —«). En particulier, si a € (1,2),
on a E[|X1]] < occ.

1.2 Principe d’invariance et topologies de Skorokhod

Le TCL nous donne des informations sur la marche aléatoire au temps n, a savoir que S, ~ /nG,
ou G est une variable gaussienne. Mais il ne nous donne pas d’informations sur I'entiereté de la
trajectoire de la marche jusqu’au temps n, et il serait effectivement intéressant de savoir a quoi
ressemble une marche typique, en temps long. Pour cela, il faut regarder la trajectoire d’une
marche aléatoire comme une variable aléatoire a valeurs dans un espace de fonctions.
On dénote par C' = C([0,1],R) I'espace des fonctions continues sur U'intervalle [0, 1] & valeurs
dans R. On munit cet espace de la distance uniforme dy, i.e. pour tout z,y € C,
du(z,y) = sup |z(t) —y(t)-
t€[0,1]
On munit aussi cet espace de la tribu borélienne associée (i.e. la tribu engendrée par les ouverts),
que I'on note C. Soient (in)nen €t fioo des mesures de probabilité sur 'espace (C,C). On rappelle
que la suite (pp)nen converge faiblement vers pioo si pour toute fonction continue bornée f de
C dans R, on a limy,_se0 ftn(f) = pioo(f) o p(f) = o fdu. Une suite de variables aléatoires a
valeurs dans C' converge en loi si leurs lois convergent faiblement. Pour étudier la trajectoire,
transformons-la en une fonction continue. Par exemple, on peut interpoler linéairement les
points, et définir
Sp =Sy + (= )X 441,

ot t > 0, et |t] est la partie entiere de t. Dans le cas ott E[X?] < oo, il faut renormaliser la
marche, en temps et en espace, de la maniere suivante :
gn — Snt.
t \/ﬁ
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Ainsi, S" = (Stn)te[o,l} est une variable aléaoire a valeurs dans C. Supposons & présent que S™
converge en loi dans (C,dy) vers une variable S°°. Ceci implique en particulier que pour tout
t € [0,1], S7 converge en loi vers Sg° dans R. On déduit facilement du théoréme central limite
classique que pour tout ¢ € [0, 1], S§° est une variable gaussienne de variance o>t.

Considérons maintenant 0 < s < ¢, on voit de maniére informelle que S — S™ ~ 87 _ ot S™
est une copie indépendante de S™. On en déduit donc que SP° — S° est indépendante de S°,
et est égale en loi a §7°,. Il vient donc que S° est un mouvement brownien.

Théoréme 1.6 (Théoréme de Donsker, 1951). Si E[X1] = 0 et E[X?] < oo, alors S™ converge
en loi dans (C,dy) vers un mouvement brownien.

Si on cherche maintenant & comprendre comment se comporte la marche lorsque la loi p de
son pas est dans le domaine d’attraction d’une loi a-stable p,, il nous faut introduire une autre
topologie. En effet, 'objet limite dans ’espace des fonctions correspondant a la loi a-stable
est 'unique processus (Z§'):>0 qui a des accroissements indépendants et stationnaires (c’est un
processus de Lévy), tel que Z{* a pour loi p,. Ce dernier n’est pas continu mais cadlag (continu
a droite, limite & gauche). Il nous faut donc une topologie sur ’espace des fonctions cadlag.

On note D = D([0,1],R) I'espace des fonctions cadlag sur [0, 1] & valeurs dans R. Cet espace
est muni d’une distance, qui remonte aux travaux de Skorokhod [Sko56]. On note A I’ensemble
des bijections strictement croissantes de [0, 1] dans lui-méme. La topologie J; de Skorokhod est
engendrée par la distance dy, définie pour tout =,y € D par

dJ1(xvy) = [dU(‘T’yo)‘)\/dU()‘ve)]a

inf
AEA
ou e désigne la fonction identité sur [0, 1]. On note alors D la tribu borélienne associée. L’idée
de Skorokhod est de dire que deux fonctions sont proches, si elles sont uniformément proches a
une petite perturbation temporelle pres (via la bijection \). C’est aussi Skorokhod [Sko57] qui
démontre un principe d’invariance de Donsker pour les marches dans le domaine d’attraction
d’une loi stable.

Tout d’abord, on souligne que 'espace des fonctions continues C est un espace fermé dans
D munie de la topologie J; : si une suite de fonctions continues converge pour la distance dj,,
alors la limite est forcément continue. Ce fait nous indique donc que pour espérer avoir une
convergence en loi d'une marche dans le domaine d’attraction d’une loi stable, I’objet considéré
doit étre cadlag et non continu ; et ainsi, on ne peut interpoler linéairement la marche comme on
I'a fait précédemment. On consideére alors simplement Sy = S|;| qui forme alors une trajectoire
cadlag et non-continue. Soit g une mesure de probabilité dans le domaine d’attraction d’une
loi a-stable avec o € (0,2), et (an)nen et (bn)nen les coefficients associés au Théoreme 1.5. La
marche dont le pas a pour loi u, renormalisée, est alors définie par

n 1

n

On a alors le résultat suivant.

Théoreme 1.7. Soit u une mesure de probabilité dans le domaine d’attraction une loi a-stable
feo- Alors S™ converge en loi dans (D, dy,) vers le processus a-stable associé a la loi pug.

Les objets que nous étudierons dans cette theése sont intrinsequement continus, et donc la
topologie J1 n’est pas adaptée dans les cas ou ils convergeraient en loi vers des processus a-stable.
Il nous faut donc une topologie plus faible qui permette aux fonctions continues de converger
vers des fonctions discontinues.
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La topologie que nous cherchons se trouve encore dans les travaux originels de Skorokhod
[Sko56] (dans lesquels il introduit quatre topologies sur ’espace des fonctions cadlag). Une fagon
de comparer deux fontions est de comparer leurs graphes. On définit le graphe complété d’une
fonction x € D par I’ensemble

[(z)={(t,2) € [0,1] xR, z € [x(t—),z(t)]} .

Une facon naturelle de mesurer I'écart entre deux graphes serait d’utiliser la distance de Haus-
dorff, mais la topologie engendrée par cette distance s’avere étre trop faible pour nos besoins.
On note tout de méme que cette distance engendre la topologie My de Skorokhod, voir [Sko56]
et le livre de Whitt [Whi02, Chapitre 12].

On peut aussi voir I'(z) comme une courbe continue sur ’espace [0, 1] x R et alors on peut
quantifier la distance entre deux graphes comme on le fait sur les espaces de courbes, avec les
représentations paramétriques. Cette distance engendre la topologie M; de Skorokhod. Une
paramétrisation de I'(x) est une fonction continue (u,r) de [0,1] dans I'(x), surjective et dont
chaque coordonnée est croissante. On note II(z) 'ensemble des représentations paramétriques
de I'(x). La distance M est définie pour z1,z2 € D par

dm, (21, 22) = inf  (du(ui,u2) Adu(ry,re)).
(wi,ri)€Il(z;)

Cette distance a su trouver de nombreuses applications en probabilités et on se réfere au livre
de Whitt [Whi02]. Cette topologie n’est pas trop “faible”, dans le sens ou un grand nombre
de fonctions “intéressantes” continues pour la topologie J1, le reste pour la topologie My, voir
encore [Whi02, Chapitre 13]. Bien que nous n’ayons pas trouvé de références, il semblerait que
si on considere une loi dans le domaine d’attraction d’une loi a-stable, pour « € (0,2), alors la
marche interpolée linéairement converge en loi vers un processus a-stable, dans I’espace D muni
de la topologie M.

1.3 Probléemes de persistance

L’estimation des probabilités de persistance, encore appelées probabilités de survie, a été longue-
ment étudiée et une littérature importante existe sur ce sujet. Il s’agit d’estimer, au moins d’une
maniére asymptotique, la probabilité qu’'un processus stochastique reste sous un certain niveau
jusque au temps t. Soit T = R+ ou N, et soit (X¢)ier un processus stochastique a valeurs dans
R et partant de 0. Pour z € (0,00), on introduit

T,=inf{t €T, X; > x}.

On cherche donc a estimer P(7T, > t) lorsque ¢ — co. L’exemple le plus simple que 'on puisse
donner concerne encore la marche aléatoire, et la question la plus naturelle que ’on peut se
poser est de calculer la probabilité qu’une marche reste positive jusqu’a un temps n. Le résultat
suivant, dii & Sparre-Andersen [SA54], traite du cas de la marche aléatoire symétrique non-
atomique.

Théoréeme 1.8. Soit 1 une mesure de probabilité sur R symétrique et non-atomique. La marche
aléatoire (Sy)nen dont le pas a pour loi p vérifie

1 /2
P(Sk >0 pourtoutlﬁkﬁn)—( n)

4n \ n
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Cette quantité est aussi égale & P(S; > 0 pour tout 1 < k < n) puisque p est non-atomique.
Ce résultat est frappant car cette quantité ne dépend pas de la loi u, mais seulement de la
symétrie. On verra en effet par la suite que la symétrie joue un role important pour ce genre
de probleme. Par la formule de Stirling, on peut estimer asymptotiquement cette quantité et
on voit facilement qu’elle est équivalente & en~/2. Ce résultat est bien connu et le livre de
Feller [Fel91, Chapitre XII] en offre une preuve classique. Nous allons en donner une preuve
simple, que 'on peut trouver dans Dembo-Ding-Gao [DDG13, Proposition 1.3].

Preuve. Notons pour tout n > 1, pp(n) = P(Sk > 0 for all 1 < k < n). Nous allons montrer
par récurrence que cette quantité ne dépend pas de pu. Pour n = 1, on a évidemment p;(p) =
p1 =P(X; > 0) = 1/2 par hypothese.

Supposons maintenant que pour n > 1 et pour tout k € {1,...,n}, px(u) = px ne dépend
pas de p. On introduit W = min{k € {1,--- ,n+ 1}, S = maxi<;<n+1 5}, et on constate que
pour tout i € {0,...,n+ 1}, on a

{W:i}:{Xi >0,X;+ X1 >0,..., X+ 4+ Xy >0}
N{Xi1 <0, Xip1 + Xi32 <0,.., Xip1 + -+ Xpy1 <0}
Par indépendance, symétrie, et puisque p est non-atomique, on voit alors que pour tout ¢ €

{1,...,n},ona P(W =1) = pipnt1—i. On voit aussi que P(W =0) =P(W =n+1) = ppt1(p).
De plus on a

n+1 n
L= P(W =i) = 2pny1(p) + Y PiPnt1i,
i=0 i=1

et on conclut donc que pp11(1) = pry1 ne dépend pas de p.

On détermine maintenant la valeur de p,, et on pose pg = 1 par convention. L’analyse
précédente montre que la suite (pp)nen satisfait la relation 1 = Y7, pgpn—r pour tout n > 0.
Ainsi la fonction génératrice de (py,)nen satisfait ’égalité suivante

k=0

1—=x =

pour z € (—1,1). Cette fonction génératrice est donc égale a (1 —2)~'/2, et on déduit donc que
1 (2n
Prn =77 (3)- 0

Il est ensuite intéressant de généraliser ces résultats pour des marches aléatoires générales.
Par exemple, on pourrait s’attendre a ce que le comportement asymptotique de p, soit aussi
le méme pour des marches asymptotiquement symétrique, i.e. lorsque P(S,, > 0) — 1/2. Pour
étudier le probléme général, il faut développer d’autres outils, tels que la factorisation de Wiener—
Hopf, que nous n’aborderons pas ici, mais que ’on peut trouver dans les livres de Feller [Fel91,
Chapitre XII] et de Doney [Don07]. On a le résultat suivant.

Théoréme 1.9. Soit p € (0,1), les deuz assertions suivantes sont équivalentes.
(i) limy oo 2 570 P(S), > 0) = p.
(it) Pour tout x > 0, lapplication n — P(T, > n) appartient a R_,.

De plus, si (i) ou (ii) est vraie pour p € (0,1), alors il existe une fonction lente £ et des réels
c, > 0, tels que, pour tout x > 0,

P(T; > n) ~ cpl(n)n~? lorsque n — oo,
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La condition (%) est connue sous le nom de condition de Spitzer. Elle est équivalente a la condition
(i’) lim,, o0 P(S,, > 0) = p, qui est en apparence plus forte, voir [BD97]. Ainsi, si (S )nen est
centrée et dans le bassin d’attraction d’une loi normale, on peut appliquer le théoréme précédent
avec p = 1/2.

Les problemes de persistance ne se limitent pas a la marche aléatoire et ont été étudiés pour
de nombreux processus. On se réfere a 'article de survol [AS15], et aussi a I'introduction du
Chapitre 3 de cette these pour plus d’exemples et de références.

1.4 Limite d’échelle d’équations cinétiques

Dans cette these, on cherchera aussi a décrire les fluctuations asymptotiques des solutions de
certaines équations cinétiques. Ces équations décrivent I’évolution temporelle de la densité
de particules présentes dans un certain systeme dynamique. Elles donnent une description
mésoscopique du systeme, entre la vision microscopique donnée par le systeme Hamiltonien
décrivant les interactions entre chaque particule, et la vision macroscopique donnée par des
équations hydrodynamiques (telles que les équations de Navier-Stokes ou d’Euler).

L’objet d’étude est donc une densité f(¢,z,v) de particules évoluant dans un domaine D de
R? ot d > 1. On supposera que cette derniére est absolument continue par rapport & la mesure
de Lebesgue sur Ry x D x R%. L’équation étudiée est

Ouf(t,z,v) +v-Vyuf(t,z,v) =L f(t,z,v), (t,CL‘,’U)ERj_XDXRd. (1.6)

Le membre de gauche ici décrit le transport libre de la particule (& travers sa vitesse), tandis
que le terme de droite décrit 'interaction de la particule avec un environnement. L’opérateur
Z* ici n’agit que sur la variable de vitesse v. Cette équation est bien entendu complétée d’une
condition initiale fy telle que pour tout (z,v) € D x RY f(0,z,v) = fo(z,v).

Le modele phare de la théorie cinétique est I’équation de Boltzmann, ou l'opérateur Z*
correspondant est 'opérateur collisionel de Boltzmann qui décrit comment les particules colli-
sionnent. Lorsque 'on veut décrire le comportement de particules dans un plasma, 1’équation
de Landau est plus appropriée. Elle peut étre vue comme une approximation de 1’équation de
Boltzmann lorsqu’on ne considéere que les collisions rasantes. Il existe de nombreux modéles ciné-
tiques et on se réfere a Villani [Vil02] ou I’article de survol plus récent de Mouhot-Villani [MV15]
pour plus de détails. Supposons pour simplifier un instant que D = R?. Dans cette introduction,
on discutera principalement de deux modeles :

(i) L’équation cinétique de Fokker-Planck. Ce modele décrit 1’évolution de particules dont
la vitesse diffuse tout en étant soumise a une dérive. Elles sont particulierement utiles
en astrophysiques, voir Chandresekhar [Cha43], et aussi en théorie des semi-conducteurs.
L’opérateur .£* correspondant est de la forme

1 .
Z79(0) = 5g(0) — div[F.g](v),
oit g € C*(R%,R,), et F € C'(RY,RY) correspond & la force qui s’exerce sur les partic-
ules. D’un point de vue probabiliste, la partie diffusive correspond & des chocs aléatoires

modélisés par un mouvement Brownien (By);>0. On obtient alors ’équation différentielle
stochastique suivante :

t t
X =z + / Vids, Vi=1wg+ / F(Vs)ds + By. (1.7)
0 0

10
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(i)

Notons f(t,dx,dv) la loi de (Xy, V;), i.e. f(t,dx,dv) = P(X; € dz,V; € dv). Si on suppose
que la mesure f(t,dz,dv)dt admet une densité réguliere par rapport a dzdvdt, il est alors
facile de voir en appliquant la formule d’It6, en passant & ’espérance, et en effectuant des
intégrations par parties, que cette densité est solution de (1.6). On note que 'opérateur £*
est 'adjoint du générateur infinitésimal du processus de Markov (V;):>0. Nous étudierons
dans cette these (1.6) a travers le process (X¢, V;)i>0 pour une certaine classe de forces F.

L’équation de scattering. Ce modele décrit la dispersion de particules dans un nuage
aléatoire d’obstacles. Elle peut étre vue comme une équation de Boltzmann linéaire, ou les
vitesses des particules qui collisionnent avec la particule que I'on regarde sont supposées a
I’équilibre. Cette hypotheése est cohérente d’un point de vue physique lorsque I’on considere
par exemple un gaz raréfié. Cette équation est particulierement utilisée en théorie du
transfert radiatif [PomO05], en théorie des réacteurs nucléaires [WW58] et en théorie des
semi-conducteurs [MRS12]. L’opérateur .£* associé est ici donné par

2g(0) = [ blo,w) [gw)v(v) - go)v(w)] du,
ou v est la densité de probabilité correspondant a 1’équilibre de ’environnement, et b(v, w)
est un noyau de collision. Derriere cet opérateur se cache aussi un processus de Markov
qui décrit la vitesse d’une particule. Ce processus (V;):>0 est un processus de saut dont la
dynamique est la suivante : sachant que V; = v, la vitesse saute a taux [pa b(v, w)v(w)dw
et la nouvelle vitesse est choisie selon b(v, w)v(w)dw. Lorsque b(v,w) ne dépend pas de
v (par exemple b = 1), le taux est constant et la vitesse est renouvelée a chaque fois ; on
a alors V; = &N, ot (&,)nen est une suite de variables aléatoires i.i.d. de loi p et (N¢)e>o0
est un processus de Poisson indépendant. Dans cette these, nous n’étudierons pas cette
équation mais nous comparerons souvent nos résultats a des résultats similaires obtenus
sur cette équation.

L’objectif ici est d’étudier les fluctuations asymptotiques des solutions de ces équations ciné-
tiques. Au regard de ce qui a été expliqué dans la premiére partie de cette introduction, on
distinguera principalement deux types de phénomenes :

(i)

Fluctuations gaussiennes. C’est le cas correspondant au théoréeme centrale limite classique,
ou le processus de position correctement remis & échelle converge en loi vers un mouvement
Brownien. Plus précisément, si (X;);>¢ désigne le processus position sous-jacent & (1.6),
on a

(51/2Xt/5) 14, (Wi)i>0, lorsque € — 0,

>0
ou la notation f.d. indique la convergence au sens des distributions fini-dimensionnelles
et (Wi)i>0 est un mouvement Brownien. Si on note h(t,z) = [ cpa f(t,2,v)dv la densité
de Xy, alors he(t,z) = e V/2h(t/e, e~/ %x) représente la densité de 51/2Xt/5 et he converge
faiblement vers la densité de W; qui est la solution fondamentale de I’équation de la chaleur

8t10(t7x) - Ap(tvx) = 0.
On parle alors de limite de diffusion.

Fluctuations a-stables. C’est le cas correspondant au TCL a-stable. On s’attend alors a
avoir pour un certain « € (0, 2)

(51/°‘Xt/5)t20 1 (Z)i>0, lorsque € — 0,

11
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oll (Z§)4>0 est un processus a-stable. Ainsi si on note he(t,z) = e~ /*h(t/e,e71/x) 1a
densité de /X, /e cette derniere converge faiblement vers la densité Z;* qui est la solution
fondamentale de ’équation de la chaleur fractionnaire

Oup(t,x) + (=2)*p(t,z) = 0,

ol (—A)*/2 est le Laplacien fractionnaire d’indice /2, qui se trouve étre le générateur
infinitésimal du processus a-stable. On parlera alors de limite de diffusion fractionnaire
ou limite de diffusion anormale.

Résultats sur I’équation cinétique de Fokker-Planck : nos travaux ne porterons que sur
le cas d = 1 et on cherchera & établir des limites d’échelles pour le processus de position (X¢)¢>0
défini par (1.7). Supposons pour simplifier que la force F est impaire. Alors le processus (V;)i>0
est récurrent et possede une mesure invariante p qui est forcément paire. Le théoreme ergodique
pour les processus de Markov récurrents nous indique donc que p.s.

1 1/t
ZXt = %/ Vsds — / vp(dv) =0 lorsque t — oo.
0 R

On peut interpréter ce résultat comme une loi forte des grands nombres, et il est ensuite naturelle
de s’intéresser aux fluctuations de (X;):>0. Sila force F est assez “rentrante”, dans le sens ou
elle ramene le processus de vitesse rapidement dans un compact, on s’attend a obtenir des
fluctuations gaussiennes. Ce cas a été largement étudié et il existe des théoremes généraux dans
ce cadre, voir par exemple Jacod-Shyriaev [JS03, Chapitre VIII], Pardoux-Veretennikov [PV01],
ou encore l'article de survol récent de Cattiaux-Chafai-Guillin [CCG12].

Il existe une classe de forces intéressantes pour ce genre de problemes. Supposons que la
force est telle que F(v) =~ —sgn(v)|v|” lorsque v — +o00. On peut montrer que pour v < —1, le
processus vitesse est récurrent nul (la mesure invariante n’est pas de masse finie) et que pour
v > —1, la mesure invariante est sous-exponentielle et le processus est recurrent positif. Lorsque
v = —1, la mesure invariante est & queues lourdes, i.e. il existe § > 0 tel que p(v) ~ |v|~? lorsque
v est grand. Cette classe de force est critique, et on peut s’attendre a observer des phénomenes
résultant du TCL a-stable (car la mesure invariante est a queues lourdes).

Les premiers a s’étre intéressés a cette classe critique sont Nasreddine-Puel [NP15], Cattiaux-
Nasreddine-Puel [CNP19] et Lebeau-Puel [LP19]. IIs étudient 1’équation cinétique de Fokker-
Planck en toute dimension (d > 1) pour la force

I5] v

F(v) = BN (1.8)

et B > d. La densité de la mesure invariante correspondante est p(v) = (1 + ||v[|?)~%/2 et
donc la condition 8 > d assure que cette derniére est de masse finie. Le premier article de
Nasreddine-Puel [NP15] traite le cas 5 > 4 + d et il est montré par des techniques analytiques
que les fluctuations sont gaussiennes et qu’il y a une limite de diffusion. L’article [CNP19] traite
le cas B =4+ d et il y a encore des fluctuations gaussiennes mais avec un taux de convergence
“anormal”. Plus précisément, il est montré que (|e/ loge|'/2 X, Je)t>0 cOnverge vers un mouvement
Brownien au sens des distributions fini-dimensionnelles. Ce cas correspond au TCL classique
critique, ou la variance tronquée V(x) (voir théoreme 1.5) est une fonction lente qui diverge.
Enfin, 'article de Lebeau-Puel [LP19] traite de la dimension d = 1 et du cas 8 € (1,5)\{2, 3,4},
et il y est montré (encore de maniére analytique) qu’il y a une limite de diffusion fractionnaire,
pour a = (4 1)/3.

12



1.4. Limite d’échelle d’équations cinétiques

Figure 1.1: Représentation graphique de trajectoires (X;);>0 pour un méme mouvement Brownien sous-jacent
et différentes valeurs de 5. Les deux premiéres simulations concernent les valeurs g = 1.5 et 5 = 3 tandis que les
deux derniéres correspondent aux valeurs 8 = 4.5 et 8 = 6. Quand 8 = 6, la trajectoire semble bien brownienne.
Plus B diminue, plus des sauts apparaissent nettement.

Du c6té probabiliste, l'article de Fournier-Tardif [FT21] traite ce probléeme pour une classe

de forces légerement plus générale du type F(v) = —g%/((s)), ol O est une fonction paire C*

telle que ©(v) ~ |v|~! lorsque v — +o0o. Tous les cas y sont traités, méme le cas 8 € (0,1]
(dans ce cas la mesure invariante n’est plus de masse finie), dont nous discuterons plus tard. Les
méthodes probabilistes introduites dans [FT21] sont a l'origine du Chapitre 2 de cette these, ou
nous les généralisons pour établir des TCL pour des fonctionnelles additives de diffusions uni-
dimensionnelles. Dans [FT20], Fournier-Tardif montrent les résultats analogues pour le modele
multi-dimensionnel. Enfin, on peut résumer les résultats de [FT21, LP19, NP15, CNP19] en
dimension 1 par le théoréme suivant.

Théoréme 1.10. Soit (Xt)i>0 la solution de (1.7) avec la force F donnée par (1.8). Soit (W¢)i>0
un mouvement Brownien et (Z{)i>o des processus a-stable symétriques. 1l existe des constantes
(08)p>1 explicites telles que :

(i) Si p>5, ona
.d.
(61/2Xt/5)t20 1 (6sWi)i>0, lorsque € — 0.

(ii) Si =05, on a

(le/log 5|1/2Xt/5) M (0gWi)i>0, lorsque € — 0.

>0
(iii) Si B € (1,5), on a pour a = (8 +1)/3,

(51/0‘Xt/6)t20 14, (082 )t>0, lorsque e — 0.

On peut observer cette transition de phase sur la Figure 1.1, ou l'on trace différentes tra-
jectoires de (X¢);>0 pour un méme mouvement Brownien sous-jacent et différentes valeurs de
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B. On souligne aussi que ’étude de ce modele est motivée par des phénoménes issus de la
physique. En effet, des expériences ont montré que lorsque des atomes sont refroidis par un
laser, ils diffusent de maniere fractionnaire. Ces phénomenes ont été observés dans les articles
de Castin, Dalibard et Cohen-Tannoudji [CDCT], Sagi, Brook, Almog et Davidson [SBAD12],
et Marksteiner, Ellinger et Zoller [MEZ96]. Une étude théorique, réalisée par Barkai, Aghion
and Kessler [BAK14]), modélise précisément le mouvement des atomes refroidis par (1.7) et
F donnée par (1.8). Cette étude démontre avec un certain degré de rigueur les phénomenes
observés.

Citons aussi 'article de Bouin-Mouhot [BM20] qui recouvre tous ces résultats pour 5 > d
et qui traite aussi d’autres équations cinétiques (dont 1’équation de scattering). Les méthodes
sont encore analytiques mais sont différentes de celles introduites dans [LP19,NP15, CNP19] et
semblent unifier d’une certaine fagon les différents modeles considérés. Enfin, on citera aussi les
articles tres récents de Dechicha-Puel [DP23a, DP23b] qui introduisent une nouvelle méthode
analytique pour établir ces résultats. L’article [DP23b] traite de la dimension d > 2 et de la
force F(v) = —gw tandis que [DP23a] traite de la dimension 1 et de la méme classe de
force que dans Fournier-Tardif, avec une fonction © qui n’est pas forcément symétrique. Dans
le chapitre 2, nous étendrons ces résultats a des forces asymmeétriques.

Résultats sur 1’équation de scattering : si la mesure invariante p du systeme décroit
rapidement pour les grandes valeurs de v, on s’attend a obtenir des fluctuations gaussiennes
et des limites de diffusion dans ce cadre ont été établies par exemple par Wigner [Wig61] et
Bensoussan-Lions-Papanicolaou [BLP79]. Pour observer une limite de diffusion fractionnaire, il
faut que la mesure invariante soit a queues lourdes, et les premiers a établir de tels résultats sont
Mellet-Mischler-Mouhot [MMM11], Ben Abdallah-Mellet-Puel [BAMP11b] et Mellet [Mell0].
Ces trois articles traitent plus ou moins du méme probléme mais avec des méthodes analytiques
différentes. Il y a aussi les résultats de Ben Abdallah-Mellet-Puel [BAMP11a] qui traitent du
cas ou la fréquence de collision est dégénérée.

Du c6té probabiliste, 'article de Jara-Komorowski-Olla [JKOO09] traite d’une équation de
Boltzmann linéaire pour des phonons. Ils établissent d’abord un théoréme central limite a-
stable pour des fonctionnelles additives de certaines chaines de Markov, puis appliquent leurs
résultats a ’équation de scattering.

Conditions de bord pour des équations cinétiques : lorsque le domaine D n’est pas R?, il
faut aussi compléter (1.6) d’une condition au bord. On notera 0D la frontiere de D. Pour tout
x € dD, on note n, le vecteur unitaire normal rentrant & 0D en z. On peut considérer différents
types de conditions au bord.

(i) Conditions de bord spéculaires. C’est la réflection élastique de type billard. Lorsque la
particule touche le bord avec une vitesse v, elle repart du méme point avec une vitesse
obtenue par réflection miroir par rapport a la normale, comme on ’apprend en optique.
La nouvelle vitesse est précisément égale a v — 2(v - ny)n, et la condition de bord s’écrit
donc

ft,z,v) = f(t,z,0 =2 ng)ng), t>0,2€dD,v-ny, > 0.

Physiquement, cette condition traduit le fait que I'on considére le bord comme un mur
élastique.

(ii) Conditions de bord diffusives. Ces conditions traduisent le phénomene suivant : le bord est
un mur qui est a 1’équilibre thermodynamique et la particule considéré est typiquement
plus petite que les particules qui constituent le mur. Ainsi lorsque la particule touche
le mur, elle péneétre ce dernier et en ressort (presque) instantanément avec une vitesse a
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I’équilibre du mur. Autrement dit, lorsqu’elle touche le bord au point = € 9D, elle repart
avec une vitesse aléatoire distribuée selon une loi M (z,v)dv. La condition de bord s’écrit
de la maniere suivante :

(v-ng)f(t,z,v) = —M(:I:,v)/ (w-ng)f(t,z,w)dw, t>0,xz€ ID,v-ny > 0.
{w-n,<0}

Le noyau M doit étre un noyau de probabilité.

(iii) Conditions de bord de Mazwell. C’est Maxwell [Max79] lui-méme qui a introduit les
conditions de bord précédentes et il lui semblait qu’une combinaison convexe de ces deux
conditions serait plus réaliste physiquement. La condition de bord de Maxwell s’écrit donc

(v-ng)f(t,z,v) = — a(z)M(x, v)/ (w - ng) f(t, z,w)dw

{wng<0}
+ (1 —a(z)(v-ng)f(t,z,v—2(v-ng)ng) t>0,2€0D,v-n; >0,

ou « est une fonction de OD dans [0,1]. Ainsi, lorsque la particule touche le bord au
point x € JD, elle est refléchie de maniére diffusive avec probabilité a(z) et de maniere
spéculaire avec probabilité 1 — a(x).

(iv) 1l existe bien entendu d’autres conditions de bord que nous n’aborderons pas ici.

Concernant I’équation de scattering avec conditions de bord, on dénombre plusieurs travaux
qui établissent des limites de diffusions fractionnaires. Tout d’abord il y a les travaux de Cesbron-
Mellet-Puel [CMP20, CMP21] pour des conditions au bord diffusives. Dans leur premier article
[CMP20], ils se placent dans le demi-plan, en toute dimension, et établissent une limite d’échelle
a-stable. A vrai dire, leur résultat n’est pas tout a fait complet car ils ont des problémes d’unicité
concernant 'EDP limite. Ils obtiennent donc une convergence & sous-suite pres. Ils reglent ce
probléme d’unicité dans [CMP21] ou ils travaillent en dimension 1 et dans un intervalle borné.
L’article de Cesbron [Ces20] traite aussi du demi-plan avec des conditions au bord de Maxwell
et il se heurte aussi a des problémes d’unicité.

Un phénomene intéressant ressort lorsqu’on considére des limites de diffusion fractionnaires
pour des équations cinétiques dans des domaines : la condition de bord limite dépend de la
condition de bord considérée. Ceci dénote par rapport au cas diffusif usuel, ot I'on s’attend
a obtenir I’équation de la chaleur avec conditions au bord de Neumann dans tous les cas. Le
processus associé a cette équation est le mouvement Brownien réfléchi dans le domaine et il y
a quelque part unicité dans la facon de réfléchir un mouvement Brownien, contrairement aux
processus a-stables.

Du cété probabiliste, l'article de Komorowski-Olla-Ryzhik [KOR20] étudie 1’équation de
Boltzmann linéaire pour des phonons avec des conditions de bord spéculaires / transmissives
/ absorbantes en dimension 1. Lorsque le phonon atteint la barriére située en x = 0, il peut
étre transmis (il traverse la barriere), réfléchi de maniére spéculaire, ou absorbé. A la lim-
ite, on trouve un processus stable dont les trajectoires sont transmises, réfléchies ou absorbées.
L’article de Bogdan-Komorowski-Marino [BKM22] traite du méme probléme, avec une proba-
bilité d’absorption qui tend vers 0.

Concernant 1’équation cinétique de Fokker-Planck avec conditions de bord, il n’y a, a notre
connaissance, pas de travaux sur ce sujet. Dans le Chapitre 4, nous établisserons un premier
résultat.
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1.5 Résumé des travaux de thése

1.5.1 Théoremes limites a-stable pour des fonctionnelles additives de diffu-
sions unidimensionnelles

Dans cette sous-section, nous résumons les travaux présentés dans le Chapitre 2, qui sont aussi
contenus dans larticle [Bét21]. Dans ces travaux, on considére une diffusion unidimensionnelle
(X¢)i>0 solution de I’équation différentielle stochastique

X, = /Ot b(X,)ds + /Ot o(X4)dBs, (1.9)

ot (Bt)i>0 est un mouvement Brownien. On suppose que les coefficients b et o sont tels que
I'EDS est bien posée et que le processus (X¢);>0 est un processus récurrent positif. Ce dernier
posséde donc une mesure de probabilité invariante u et le théoreme ergodique pour les processus
de Markov récurrents nous indique que pour tout f € L'(x), on a p.s.

1/01& [(Xs)ds — u(f) = /Rfdu lorsque ¢t — 0.

Comme expliqué précédemment, on peut interpréter cette convergence comme une loi forte des
grands nombres, et on cherche ensuite naturellement a établir les fluctuations de

1 t
2 [ree) = uehids

t

lorsque t — oo. Le cas des fluctuations gaussiennes est un probléeme qui a été tres largement
étudié, mais de maniere suprenante, celui des fluctuations a-stable était encore ouvert. Sup-
posons que u(f) =0 et notons (; = f(f f(Xs)ds. Dans ce chapitre, nous donnons des conditions
explicites sur la fonction f et les coefficients b et o pour obtenir des limites d’échelles de ((;)¢>o0-
Pour pouvoir énoncer le résultat principal, il nous faut introduire encore quelques objets. Tout
d’abord, on définit la fonction d’échelle

s(x) = /OI exp < -2 /OU b(u)0_2(u)du) dv

qui est supposée étre une bijection croissante de R dans R. On introduit aussi les fonctions
suivantes, ot 5~ est l'inverse de s :

b= (o5 ) x (cos)) et ¢=(fos 1)/
On fait 'hypothese suivante sur les fonctions f, b et o.

Hypotheése 1.1. La fonction f : R — R est localement bornée et mesurable. De plus, il existe
a > 0, des constantes f_, f+ € R telles que | f4|+ |f—| > 0 et une fonction lente £ € Ry tels que

|22 VU (|z))p(x) — fo  lorsque 2 — +oo.

Si f € LY(p), on impose u(f) = 0. Finalement, si o > 2, on supposera f continue.

fOO dv

2 . A . . 2’ BN
z 72 f(v)) dz qui peut étre infinie. Le théoréme

On introduit finalement la quantité p = [7°(

principal de ce chapitre est le suivant.

Théoréme 1.11. On suppose que I’Hypothése 1.1 est vérifie. Soient (Xi)i>0 une solution de
(1.9), (Wi)¢>0 un mouvement Brownien et (Z{)i>0 un processus a-stable tel que Elexp(i§Zy)] =
exp(—t[€]%24(€)) ot & € R et z,(§) est un complexe explicite. Alors il existe des constantes
(0a)a>0 explicites telle que
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1.5. Résumé des travaux de these

(i) Sia>2 oua=2etp< oo, alors on a

d.
(51/2<t/5)t20 14, (0aWi);so  lorsque e — 0.

(i) Sia=2 et p=oc0, on définit p. = 11/€(f°° v )24z et on a

T 3/24(v)

14, (0'2Wt)t20 lorsque € — 0.

(Ie/pel"2¢ye )

>0
(iii) Sia € (0,2)\ {1}, on a

« .d. a
(51/ g(l/E)Ct/a>t>0 fﬁ (0aZ; )tzo lorsque € — 0.

(iv) Sia =1 et siil existe X\ > 0 tel que |s|* € L (y), alors il existe une famille deterministe
de réels (& )eo telle que

(/)G ~ et)

1 (aaZtl) lorsque ¢ — 0.

>0 >0

Pour ne pas rentrer dans trop de détails, nous ne donnons pas ici les constantes z, () et o4
mais ces dernieres sont explicites et s’expriment avec les fonctions f, b, o et les constantes f, f_.
On souligne que les processus stables résultant ici ne sont pas nécessairement symétriques.

Lorsque av > 2, le processus limite est un mouvement Brownien et on utilise les techniques
classiques de martingales pour établir ce genre de résultats, voir par exemple [JS03, Chapitre
VIII, Theorem 3.65]. On établit aussi dans ce chapitre un théoréme général pour obtenir des
fluctuations gaussiennes. Le cas a = 2 et p = oo correspond au TCL classique critique et ce
dernier ne semble pas avoir été traité de maniere générale dans la littérature.

Lorsque a € (0,2), le taux de convergence est a variations régulieres d’indices 1/a et (Z§)1>0
est un processus stable non-nécessairement symétrique, dont on connait explicitement la trans-
formée de Fourier. On note que lorsque a = 1, le processus limite n’est pas strictement stable,
sauf dans le cas symétrique. Les méthodes utilisées pour établir ce résultat sont adaptées de
larticle de Fournier-Tardif [FT21] qui traite le cas f = id et ¢ = 1, b = F, comme expliqué
précédemment.

La preuve dans le cas a € (0,2) repose sur la représentation de Feller des diffusions unidi-
mensionnelles. Cette représentation nous dit qu'il existe un mouvement Brownien (W;):>o tel
que si on considere

t
A = / Y 2(W)ds et p; =inf{s >0, As > t},
0

on a p.s. pour tout t > 0, X; = sfl(Wpt). Ainsi avec un changement de variable, on peut
réexprimer (;. L’Hypothése 1.1 nous assure alors que la quantité [[* ¢(Ws)ds ressemble & peu
pres & Zf = [J'sgng, (Wo)|Ws|Y/22ds olt (73)¢>0 est inverse du temps local en 0 de (W;)¢>o
et sgny, ; (z) = f+1l{zs0) + f-liz<0y- Dans le cas symétrique ot f- = —f,, ce processus
est bien connu pour étre un processus a-stable symétrique, voir It6-McKean [IM74, page 226],
Jeulin-Yor [JY81] et Biane-Yor [BY87].

Nous avons retrouvé a posteriori plusieurs traces de ces méthodes dans la littérature. Tout
d’abord dans l'article de Bertoin-Werner [BW94], ou ils redémontrent le théoréme de Spitzer
concernant les enroulements du mouvement Brownien plan avec cette méthode. On les retrouve
aussi dans les articles de Yamada [Yam86], Hu-Shi-Yor [HSY99], Kasahara-Watanabe [KW06]
et Fitzsimmons-Yano [FY08b].
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1.5.2 Problémes de persistance pour des fonctionnelles additive de processus
de Markov

Nous résumons ici le contenu du Chapitre 3, lui méme issu de l'article [BBT23] écrit en col-
laboration avec Quentin Berger et Camille Tardif. Dans ce chapitre, on traite du probleme de
persistance pour le processus non-Markovien

t
G = /0 F(Xy)ds,

ot (X¢)e>0 est un processus de Markov fort cadlag & valeurs dans R et f est une fonction
borélienne. Dans ce qui suit P représente la loi de (X;)¢>0 partant de 0. On cherche & caractériser
le comportement asymptotique de P(7T, > t), ou T, = inf{t > 0, {; > z} et z > 0. Ces travaux
généralisent des résultat de Sinai [Sin92], Isozaki-Kotani [IK00] et Profeta [Pro21] ou le processus
(X¢)e>0 est un processus de Bessel biaisé (& valeurs dans R) et f est une fonction homogene du
type f(z) = (1{z>0y — cliz<o})|z|” avec ¢,y > 0. Nous établissons des résultats similaires pour
une large classe de processus de Markov et une large classe de fonction f. Concernant (X¢):>o,
nous faisons I’hypothése suivante importante.

Hypothése 1.2. Le processus (Xi)i>o n'est p.s. pas de signe constant. De plus, il ne peut pas
changer de signe sans toucher 0, et 0 est un point régulier et récurrent pour (X¢)e>o.

Le fait que 0 soit régulier pour (X¢);>0 nous permet d’utiliser la théorie des excursions, qui
est un outil important dans ce chapitre. Cette hypothese est vérifiée par une tres large classe
de processus, telles que les diffusions régulieres (processus de Markov fort continus) et ce qu’on
appelle les diffusions généralisées. Elle n’est pas vérifiée pour la classe importante de processus
qu’est la classe des processus de Lévy (sauf pour le mouvement Brownien et la différence de
deux processus de Poisson indépendants). Concernant la fonction f, nous faisons I’hypotheése
suivante.

Hypothése 1.3. La fonction f est mesurable et localement bornée, sauf éventuellement autour
de 0. De plus f préserve le signe de x dans le sens ot x f(x) > 0. On suppose aussi que f(0) = 0.

Sous ces hypotheses, nous obtenons plusieurs résultats.

Reésultats principaux I. Le premier résultat traite du cas ou 0 est un point récurrent positif.
Sous cette hypothese, on obtient une condition nécessaire et suffisante pour que t — P(T, > t)
soit a variations régulieres d’indice —p ou p € (0,1). Cette condition est I’analogue de la
condition de Spitzer.

Théoréme 1.12. Supposons que 0 soit un point récurrent positif et considérons p € (0,1). Alors
il y a équivalence entre les deux assertions suivantes.

(i) limyso0 + f P(¢s > 0)ds = p.
(i) Pour tout z > 0, lapplication t — P(T, > t) est a variations réguliéres d’indice —p.

De plus, si (i) ot (ii) est vraie pour p € (0,1), alors il existe une fonction lente £ et une fonction
croissante V : Ry — Ry (relativement explicite) telles que pour tout z > 0

P(T, > t) ~V(2)l(t)t™ " lorsque t — oc.
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1.5. Résumé des travaux de these

Lorsque 0 est un point récurrent nul, il nous faut étre un peu plus précis et introduire d’autres
objets. On note (73)¢>0 l'inverse généralisée du temps local en 0 de (X¢)i>0. C’est un subordi-
nateur (un processus de Lévy croissant). On introduit aussi le processus

Zy = Cn = Z K f(XU)dU’

s<t VTs—

qui se trouve étre aussi un processus de Lévy. On note aussi g; = sup{s < t, X5 = 0} le dernier
0 avant ¢ de (Xy)y>0 ainsi que I; = f;t f(Xs)ds.

Hypothése 1.4. Il eziste 5 € (0,1) et a € (0,2], et des fonctions a(-) et b(-) d variations
réguliéres en 0 d’indices respectifs 1/a et 1/ tels qu’on ait la convergence en loi suivante (pour
la topologie de Skorokhod) :

(b(R)Ti/ny alh) Zyn )0 N (Tto, Zto)tzo lorsque h — 0,

ou (10, Z)i>0 est un processus de Lévy. De plus, on suppose que a(b=1(q))I. converge en loi
lorsque ¢ — 0, otu e est une variable exponentielle de paramétre ¢ > 0 indépendante de (X¢)i>0,
et b= est Uinverse asymptotique de b.

Sous cette hypothése, on obtient le résultat suivant.

Théoréme 1.13. On suppose que I’Hypothése 1.4 est vérifiée et que p = P(Z? > 0) € (0,1).
Alors il existe une fonction lente £ et une fonction croissante V : Ry — R semi-explicite telles
que pour tout z > 0

P(T, > t) ~ V(2)l(t)t P lorsque t — occ.

ou B est donné par I’Hypothese 1.4.

Résultats principaux II. On note que I'Hypothése 1.4 porte sur les processus auxiliaires
(T¢, Zt)e>0 et Ip, et pas directement sur (X¢)i>0 et f. Elle peut donc a priori étre difficile a
vérifier en pratique.

Dans une deuxieéme partie, on s’attelle donc a simplifier cette hypothése pour une certaine
sous-classe de processus. Plus précisément, on suppose que (X¢);>0 est une diffusion généralisée,
i.e. un mouvement Brownien changé de temps et d’espace. Ces processus sont paramétrés par
une fonction d’échelle s et une mesure de vitesse m (qui est en toute généralité une mesure de
Radon sur R), et on donne des conditions explicites sur s, m et f pour que I'Hypotheése 1.4 soit
vérifiée. Ces conditions sont intimement reliées aux conditions que I'on donne sur f, b et o dans
le Chapitre 2.

Résultats principaux III. Dans un troisiéme temps, on s’intéresse au temps de retour en 0 de
G=z+ f(f f(Xs)ds partant d’une condition initiale Xy = . On se restreint ici aux diffusions
régulieres a valeurs dans un intervale J qui contient 0 et on considere le processus ((t, X¢)e>0
en temps que processus de Markov fort. Pour (z,z) € R x J, on note P, . laloide (Ct, Xt)e>0
partant de (z,z). Nous établissons deux types de résultats.

(i) Dans un premier temps, nous identifions une fonction h : R x J — R} telle que, sous les
hypotheses des Théoremes 1.12 et 1.13, on a pour tout (z,z) € R x J\ {(0,0)},

P .)(To > t) ~ h(z,z)0(t)t=PP  lorsque t — co

ou ¢ est une fonction lente (qui ne dépend pas de (z,z)) et B € (0,1] et p € (0,1) sont des
parameétres donnés par les hypotheses.
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(ii) Dans un second temps, nous montrons que la fonction h est harmonique pour le processus
tué (Geatys Xeaty)t>0. Ceci nous permet de construire, via une transformée de Doob, la
fonctionnelle additive conditionée & rester négative partant de (z,x) € R x J \ {(0,0)}.

Perspectives de travail et problémes ouverts. Nous discutons maintenant de quelques
perspectives de travaux futurs et de quelques problémes ouverts. Tout d’abord, on souligne que
les outils introduits dans ce chapitre permettent d’étudier de maniere précise les fonctionnelles
additives. Comme expliqué précédemment, ils permettent in fine de définir la fonctionnelle
additive conditionnée a rester positive (ou négative), mais quelques questions sont ouvertes.

(i) Il serait naturel de vouloir définir la fonctionnelle additive conditionnée & rester positive,
partant de (0,0). Cela pourrait ensuite permettre de développer une théorie des excursions
pour les fonctionnelles additives.

(ii) On voudrait aussi établir des limites d’échelles pour les fonctionnelles additives condition-
nées a rester positives. Par exemple, si la limite d’échelle de la fonctionnelle additive est un
processus a-stable, a € (0,2], la limite d’échelle de la fonctionnelle additive conditionnée
a rester positive devrait étre le processus a-stable conditionné & rester positif.

Ensuite, on souhaiterait étudier le probléme de persistance pour des processus de Markov de
sauts, qui ne satisfont pas ’'Hyptohese 1.2. Par exemple, il serait naturel de regarder 'intégral
d’un processus de Lévy. Dans ce sens, l'article de Profeta-Simon [PS15] établit ’exposant de
persistance de l'intégrale d’un processus a-stable. Ce dernier est égal a p/[1 + a(1l — p)] ou p
est le parametre de symétrie du processus a-stable. Il semblerait que les techniques développées
dans ce chapitre ne puissent permettre, en 1’état, de retrouver le résultat de Profeta-Simon. On
pourrait naturellement conjecturer que pour les processus de Lévy et marches aléatoires dans
le domaine d’attraction d’un processus a-stable, I’exposant de persistance de leur intégrale est
aussi égal & p/[1 + a(1 — p)] ou p est le parametre de symétrie du processus limite.

1.5.3 Limite de diffusion fractionnaire pour une équation de Fokker-Planck
cinétique avec conditions de bord diffusives

Nous résumons ici le contenu du chapitre 4, issu de 'article [Bét22]. Nous reprenons I’équation
cinétique de Fokker-Planck étudiée par Fournier-Tardif [FT21] en dimension 1 et nous consid-
érons ici le domaine D = R, avec conditions de bord diffusives. Lorsque la position de la
particule évolue dans (0,00), sa vitesse est soumise & une force F et des chocs aléatoires mod-
élisés par un mouvement Brownien. Lorsque la particule touche le bord x = 0, elle redémarre
avec une vitesse aléatoire strictement positive.

Plus précisément, nous considérons une mesure de probabilité p sur (0,00), une suite de
variables aléatoires i.i.d. (My)nen de loi g, et un mouvement Brownien (Bi):>¢ indépendant
des variables (Mpy)nen. L’objet d’étude ici est le processus (X, V;)i>0 solution de I’équation
différentielle stochastique

t
X, = / Vids,
0

t
‘/;e = —+ / F(V;)ds + Bt + Z (MTZ - Vrn_) 1{Tn§t}7
0 neN

7 =inf{t >0, X; =0} et 7,41 =inf{t>mr,, X; =0},

ou vy > 0. Concernant la force F, nous travaillons sous les mémes hypotheses que [FT21], a
89" (v)
20

savoir qu'il existe une fonction © : R — (0,00) qui est C!, paire et telle que F(v) =
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1.5. Résumé des travaux de these

% A NI VAR )

Figure 1.2: Représentation graphique de trajectoires (X;);>0 pour un méme mouvement Brownien sous-jacent,
1= 01 et différentes valeurs de 8. Les deux premiéres simulations concernent les valeurs 8 = 1.5 et § = 2.5 tandis
que les deux derniéres correspondent aux valeurs 8 = 3.5 et 8 = 4.5.

ou B € (1,5). On suppose de plus que la force est bornée et lipschitzienne. On étudie dans ce
chapitre la limite d’échelle de (X¢):>0 et on rappelle d’abord que pour § € (1,5), Fournier et
Tardif ont montré que le processus libre (X, V4)¢>0 solution de (1.7) est tel que
1/aX I, VAL 1
(e t/g)tzo == (Z)i>0, lorsque € — 0,

oua = (f+1)/3 et (Z*)t>0 est un processus stable symétrique dont la fonction caractéristique est
donnée par E[e?Z¢] = exp(—ost|¢|*) pour une certaine constante o explicite. Nous établissons
le théoréme suivant.

Théoréeme 1.14. On suppose qu’il existe n > 0 tel que la mesure p admet un moment d’ordre
(B+1)/2+n. Soit (Z)1>0 le processus a-stable symétrique tel que E[e®?] = exp(—ost|¢|*) et
soit (R{)i>0 le processus réfléchi sur son infimum défini par R = Z* —infcjo g Z5. On a

(61/aXt/€) 14 (RY)i>0, lorsque e — 0.

>0
De plus, si on suppose qu’il existe n > 0 tel u admet un moment d’ordre (8 + 1)(8+2)/6 +n,
alors il y a convergence en loi dans [’espace des fonctions cadlag muni de la topologie M;.

Comme expliqué précédemment, la topologie usuelle de Skorokhod n’est pas adaptée ici car
le processus (X;):>0 est continu. Essayons d’expliquer informellement pourquoi on obtient un
processus stable réfléchi sur son infimum a la limite. Tout d’abord, lorsque X; > 0, la dynamique
du processus est régie par (1.7). Par conséquent, le théoréme 1.10 nous indique que le processus
limite doit se comporter comme un processus a-stable tant que ce dernier est strictement positif.
Il suffit donc de comprendre comment le processus limite interagit avec la frontiere. Lorsque X,
atteint le bord, il le fait avec une grande vitesse, ce qui correspond a un saut a la limite. Puis
il est réfléchi, ralenti car sa nouvelle vitesse est distribuée selon p et redémarre en oubliant son
passé. Cette heuristique nous indique que le processus limite doit présenter le comportement
suivant : lorsqu’il tente de sauter en dessous de la frontiere, son saut est “coupé” et il redémarre
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de 0. Le processus stable réfléchi sur son infimum posseéde exactement ce comportement : tant
que Z;* > inf,cpo Zg', R se comporte comme un processus a-stable translaté. Lorsque Z3"
saute en dessous de son infimum, ce dernier est immédiatement “mis-a-jour” et Rf* vaut donc 0.

Faisons a présent quelques remarques. Tout d’abord, le processus (R{);>0 est toujours un
processus de Markov. On souhaite ensuite souligner le fait que le processus limite dépend du
mécanisme de réflection initial. Considérons par exemple le méme modele cinétique avec des
conditions de bord spéculaires : lorsque la particule touche 0, elle est réfléchie avec une vitesse
égale a 'opposée de la vitesse entrante. Il est alors facile de voir que la solution de ’équation
correspondante est (| X, sgn(X¢)Vi)i>0 o (X¢, Vi)i>0 est solution de I'équation (1.7). Par le
Théoréme 1.10, le processus limite correspondant est (|Zf|)¢>0 et ce dernier a un comportement
différent : lorsque il essaie de sauter en dessous de 0, le nouveau point de départ est obtenu par
réflection miroir.

Avec quelques ajustements, nous pourrions étendre ce résultat au cas diffusif 5 > 5. Le
processus limite est alors un mouvement Brownien réfléchi sur son infimum, mais dans ce cas, il
est bien connu que (|By])¢>0 est égal en loi a (B; — inf (g 4 Bs)i>0-

Dans ce chapitre, nous étudierons aussi le processus réfléchi sur une barriére inélastique.
Informellement, on fait repartir le processus avec une vitesse nulle lorsqu’il touche la frontiere,
ce qui correspondrait au cas y = d§p dans le précédent modele. Bien entendu, il n’est pas tres clair
s’il est possible de définir un tel processus. Ce dernier serait solution de ’équation différentielle
stochastique suivante :

t
X&ZZJ/ W@ds,
0

t
Vi = o +/ F(Vo)ds+ By — Y Ve lix o},
0

0<s<t

On s’appuiera sur des travaux de Bertoin [Ber07,Ber08] qui traite du cas F = 0 pour construire
une solution a cette équation. Nous montrerons ensuite que (X;);>0 a la méme limite d’échelle
que (X¢)t>0. On souligne que nous nous inspirerons fortement de la construction de Bertoin
dans la preuve du théoréme principal.

Enfin, on souligne le fait que la preuve du résultat principal emprunte des résultats du
Chapitre 3. En effet, il semble naturel dans ce genre de probleme de vouloir estimer asympto-
tiquement la probabilité P(7 > t) quand ¢ — oo, ou on rappelle que 7 = inf{¢t > 0, X; = 0}.
A vrai dire, les résultats issus du chapitre 3 ont en partie été motivés par ce probléme.

Description informelle du résultat du point de vue des EDP. On introduit la mesure
f(dt,dz,dv) sur Ry x Ry x R définie par f(dt,dz,dv) = P(X; € dz,V; € dv)dt. Alors cette
mesure est une solution faible de I’équation de Fokker-Planck cinétique avec conditions de bord
diffusives suivante :

O f(t,z,v) + vo, f(t,x,v) = L*f(t,x,v), (t,x,v) € (0,00)% x R
vf(t,0,v) = —,u(v)/( wf(t,0,w)dw, (t,v) € (0,00)?
—00,0

f(0,dz,dv) = §(g ) (dz, dv)

ou on suppose ici pour simplifier que p(dv) = p(v)dv, et on rappelle que Popérateur £* est tel
que

Lt 3,0) = %6Zf(t,:c,v) O F() (2, )].
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On introduit maintenant g(d¢,dzr) = [ cg f(dt,dz,dv) = P(X; € dz)dt. Supposons pour
simplifier que cette mesure admet une densité par rapport a dtdz que l'on note g(¢,x). On
note aussi p(dt,dz) = P(R{ € dz)dt qui admet une densité p(t,z) par rapport a dtdz, voir
Chaumont-Malecki [CMe20, Théoreme 3|. Alors le théoréme principal de ce chapitre implique
que g.(t,z) = e~ Yg(t/e,e~'/*x) converge faiblement vers p(t,z) lorsque ¢ tend vers 0.
Concernant le probléme limite, nous obtenons le résultat suivant : p est une solution faible

de 'EDP
dip(t,x) = Ap(t,z)  pour (t,z) € (0,00)?,

o0
/ p(t,x)dz =1 pour t € (0,00),
0

p(()? ) = 507
oil 'opérateur A est défini pour tout fonction ¢ € C2((0,00)), et pour tout = > 0, par

30(1:—2)1 >z —@(x)—{—z@x(p(ml z|[<z
Ap(z) :/R ) BBk =g

Cet opérateur est intimement relié au générateur infinitésimal de (R{'):>0, que 'on note L.
Plus précisément, on peut montrer que pour toute fonction ¢ € C%(R,) et pour tout = > 0,
on a L%(z) = Ap(x) + ¢(0)z~%/a. Dans le cas de p, il s’aveére que pour tout ¢t > 0, on a
p(t,x) — oo lorsque = — 0 et donc L%p(t,x) n’a pas de sens ici.

L’équation limite de Cesbron-Mellet-Puel. Nous discutons aussi brievement les résultats
de Cesbron-Mellet-Puel [CMP20, CMP21] concernant I’équation de scattering avec conditions
de bord diffusives. Nous nous placerons en dimension 1 sur Ry ici bien que leurs résultats
sont établis dans le demi-plan en toute dimension dans [CMP20] et dans 'intervalle [0, 1] dans
[CMP21]. L’équation cinétique étudiée est la suivante :

Ocf(t,z,v) + 00, f(t,x,v) = L7 f(t,x,v), (t,z,v) € (0,00)? x R
vf(t,0,v) = —UV(’U)/ wf(t,0,w)dw, (t,v) € (0,00)?

(70070)
ou la densité v correspond & la densité d’équilibre du systeme et ou on rappelle que 'opérateur
de scattering est tel que

L f(t,z,v) = /Rb(v,w) [f(t,z,w)v(v) — f(t,z,v)v(w)] dw.

La densité d’équilibre v est supposée étre a queue lourde et on voit que la vitesse avec laquelle
est redémarrée une particule lorsqu’elle touche le bord a donc pour loi vv(v)dv. Ils établissent
une limite de diffusion fractionnaire pour g(t,z) = [ cg f(t, 2, v)dv. La vitesse avec laquelle est
redémarrée une particule lorsqu’elle touche le bord a donc pour loi vv(v)dw. Ils établissent une
limite de diffusion fractionnaire pour g(t,z) = [,cg f(t,z,v)dv et o > 1. Correctement remise
a échelle, cette fonction converge faiblement vers une fonction p(t, x), qui est solution faible du

probleme au bord suivant :

Op(t,x) — LY(t, x) =0, (t,x) € (0,00)* x R
D%p(t,0) =0, t € (0,00)

ou L% correspond a 'opérateur introduit précédemment, et D est défini pour tout ¢ de classe
C™ et a support compact dans Ry par

D(x) = cq /0 & (y)ly — =\~ dy,
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pour une certaine constante c,. Cette équation peut étre vue comme une équation de la chaleur
fractionnaire avec condition de Neumann, ou la dérivée usuelle est ici remplacée par une dérivée
fractionnaire.

Nous pensons que la solution p(¢, z) a cette équation décrit la densité d’un processus a-stable
réfléchi dans R, qui est différent du processus stable réfléchi sur son infimum du Théoreme 1.14.
Plus précisément, ce processus peut étre construit a partir de ses excursions en dehors de 0, que
nous décrivons maintenant.

On introduit £, l'espace des fonctions cadlag € de Ry dans Ry telles que il existe £(g) > 0
tel que pour tout ¢ > /(g), e = 0. Cet espace est muni de la topologie usuelle de Skorokhod et
de la tribu Borelienne associée. On introduit, pour « € (0,2) et § € (0,1), une mesure n, g sur
cet espace définie pour tout f : &4 — R, continue bornée par

& E:v 0 ZO;\ >
fa.0(f) :/0 [f(( ;\1+te TO)t>0)]dx’

ou (Z{)i>0 est un processus a-stable symétrique, Ty = inf{t > 0, Z{* < 0} et P, est la loi
de (x + Zf)t>0. Cette mesure est o-finie et caractérise informellement la loi d’une excursion.
Ainsi, une exursion démarre en z suivant la “loi” z~'~%dz et évolue ensuite comme un processus
a-stable libre jusqu’a l'instant ou ce dernier saute dans les négatifs et elle est alors “absorbée”
par 0.

Concernant 'EDP limite de Cesbron-Mellet-Puel, nous pensons que le processus de Markov
sous-jacent est le processus associé & la mesure d’excursions nq o—1 (on rappelle que dans leur
cas, a € (1,2)). On peut d’ailleurs montrer que toute fonction g dans le domaine du générateur
infinitésimal de ce processus de Markov, ¢ satisfait forcément D%g(0) = 0, voir It6 [It615,
Théoréme 2.5.5].

Criticalité. Ceci nous amene a discuter de ce qui se passe pour le processus (X;);>0 étudié
dans le Théoréme 1.14 lorsque la mesure p est critique, i.e. lorsque p((v,00)) ~ v~ (B+D/2 Dang
ce cas, la condition de moment requise n’est plus satisfaite. Nous pensons dans ce cas obtenir
une limite d’échelle similaire a celle obtenue dans [CMP20, CMP21]. Plus précisément, nous
pensons que le processus limite correspond au processus associé a la mesure d’excursion n, /2.
Ici, les vitesses de la particule lorsque elle ressort de la frontiére ne sont plus négligeables, ce qui
A la limite, donne naissance & un saut de “loi” z72~%/2dz & chaque fois que la particule touche
le bord.

Travaux futurs. Les résultats de ce chapitre forment une base solide pour étudier un modele un
peu plus complet, ou ’on considere des conditions de bord de Maxwell, toujours en dimension 1.
Dans un second temps, on souhaiterait regarder le modele réfléchi dans un domaine D convexe,
en toute dimension d > 2. On s’appuiera bien entendu sur I'article de Founier-Tardif [FT20] dans
lequel ils établissent la limite d’échelle du processus “libre” (non-réfléchi) en toute dimension.
Lorsque D est le demi-plan, il semblerait qu’il n’y ait pas trop de difficultés car on pourrait a
peu pres se ramener a la dimension 1. Si on considére un domaine convexe en toute généralité,
il est possible que ce probléme soit difficile, notamment si il faut estimer la queue de probabilité
du temps de sortie du domaine, chose que nous avons di faire en dimension 1.

1.5.4 Une application du théoreme de Sparre Andersen pour des variables
aléatoires échangeables et invariantes par signe

Nous résumons ici le contenu du Chapitre 5, lui-méme issu de larticle [BB23] écrit en collab-
oration avec Quentin Berger. Nous revisitons le théoreme de Sparre Andersen (voir Théoreme
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1.8) pour des variables aléatoires échangeables et invariantes par signe. Nous utilisons ensuite
ce résultat pour obtenir des bornes sur des probabilités de persistance de certaines chaines de
Markov intégrées.

On fixe n > 1 et on considére un vecteur aléatoire (§1,...,&,) a valeurs dans R™. On dit que
la loi P de (&1,...,&,) est :

(E) échangeable si pour toute permutation o € &,, le vecteur aléatoire (&,(1),---,&smn)) a la
méme loi que (&1,...,&,).

(S) invariant par signe si pour tout € = (g1,...,e,) € {—1,1}", (€1&1,...,n&n) a la méme loi
que (&1,...,8&n).

Dans une premiere partie, nous étendons le Théoréeme 1.8 pour des lois P qui satisfont (E)-
(S). Sparre-Andersen avait déja observé ce fait, mais sa démonstration est un peu lacunaire,
voir [SA54, Théoréme 4]. Plus précisément, nous montrons le théoréme suivant, ou g(n) est

défini par g(n) = 4 (°").

Théoréme 1.15. On suppose que la loi P satisfait (E)-(S). Alors on a
P(Si >0 pour tout 1 <k <n) < g(n) <P(Sp >0 pour tout 1 <k <n).
De plus, si P n’a pas d’atomes, alors les trois quantités ci-dessus sont égales.

Pour démontrer ce théoréme, on reprend la preuve exposée dans la Section 1.3, et on utilise
les hypotheses (E)-(S) au lieu d’utiliser I'indépendance. On donne aussi des contre-exemples de
lois qui ne satisfont pas (E)-(S) pour lesquelles le précédent théoreme est faux.

Dans un second temps, on considére une chaine de Markov (X, ),en de naissance et de
mort telle que Xy = 0 p.s., i.e. une chaine & valeurs dans Z telle que pour tout n € N, on a
| Xn+1 — Xn| <1 p.s. Ses probabilités de transitions sont données par

pe =px,x+1), ¢=px,x—-1), ro =p(x,x)=1-p; —q, pourz > 1.

On suppose de plus que la chaine est symétrique au sens ou (—X,)nen & la méme loi que
(Xn)nen, ce qui implique que p(z,y) = p(—z, —y) pour tout z,y € Z. Concernant z = 0, on se
donne py = p(0,1) € (0, %], qo = p(0,—1) = pg et 79 = p(0,0) = 1 — 2py. On se donne ensuite
une fonction f : Z — R qui préserve le signe, i.e. telle que f(x) > 0 pour z > 0 et f(x) < 0 pour
x < 0 (avec naturellement f(0) = 0). On définit enfin la chaine f-intégrée (¢,)nn par (o = 0 et
pour tout n > 1,

n
G =Y f(Xp).
k=1
On cherche alors a estimer la probabilité que ((x)ken reste positive jusqu’a un temps n donné.

On cherche aussi & estimer cette probabilité lorsque 'on impose X,, = 0. Nous obtenons le

théoréme suivant ot on rappelle que la fonction g est définie par g(n) = 4%(27?)

Théoréme 1.16. On suppose que (X, )nen est une chaine de naissance et de mort symétrique
et récurrente, et que la fonction f est impaire et vérifie xf(x) > 0. Alors on a pour tout n > 1,

po(1 —po)E[g(L, —1)] <P({k > 0 pour tout 1 < k <n) < E[g(Ly,)]

ot L, = Y14 1¢x,—0y est le temps local de la chaine en 0 jusqu’au temps n. Concernant le
pont, on a pour tout n > 1,

PoE[g(Ln — 1)1ix,—0y] <P (G > 0 pour tout 1 <k <n, X, =0) <E[g(Ln)lix, =0}
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Dans un troisieme temps, on se donne des hypothéses pour pouvoir estimer (L, )nen et obtenir
des bornes plus explicites. Si la chaine est recurrente positive, alors L,, ~ cn lorsque n — oo et
on montre que
E[g(L “ Elg(L 2
[9(Ly)] ~ Tn et E[g(Ln)l{x,=0] ~ 5 lorsauen = oo,

pour des constantes ci1,co > 0. Lorsque la chaine est récurrente nulle, il faut imposer des
hypothéses plus précises. On note 79 = 0, et on définit 7,41 = inf{n > 7, + 1, X,, = 0} de
maniére récursive. La suite (7,)nen forme un processus de renouvellement (par la propriété
de Markov). On supposera que cette suite est dans le domaine d’attraction d’une loi a-stable
complétement asymétrique, avec o € (0,1), ce qui nous permettra d’estimer plus précisément
les quantités ci-dessus.

Lorsque (X, )nen est une marche aléatoire simple et symétrique, la probabilité que la marche
intégrée reste positive jusqu’a Pinstant n est de 'ordre de n=1/4 et on retrouve le résultat bien
connu établi par Sinai [Sin92]. Malheureusement, nos techniques ne nous permettent pas de don-
ner des asymptotiques précises aux probabilités de persistance. Il est probable qu’en adaptant
les méthodes utilisées dans le chapitre 3 au cas discret, on puisse établir ces asymptotiques.

1.5.5 Limites d’échelles pour des fonctionnelles additives

Dans un chapitre final, nous revisitons les résultats du Chapitre 2, en utilisant les méthodes et
outils introduits dans les Chapitres 3 et 4. Nous étudions les limites d’échelles de fonctionnelles
additives ¢; = [5 f(Xs)ds olt (X;)i>0 est une diffusion généralisée. Nous montrons que, sous
certaines hypotheses, la fonctionnelle additive correctement remise a échelle est tendue dans
I’espace des fonctions cadlag muni de la topologie M;. Nous identifions aussi pour tout ¢ > 0,
la loi de tout processus limite (qui est un point d’accumulation) au temps ¢, ce qui ne suffit
pas pour déterminer entierement la loi du processus. Nous étudions aussi le cas ou le processus
(Xt)t>0 est récurrent nul.
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Chapter

Stable limit theorems for additive functionals
of one-dimensional diffusion processes

Abstract

This chapter contains the results of [Bét21] which is accepted for publication at Ann.
Inst. H. Poincaré. Probab. Stat. We consider a positive recurrent one-dimensional diffusion
process with continuous coefficients and we establish stable central limit theorems for a
certain type of additive functionals of this diffusion. In other words we find some explicit
conditions on the additive functional so that its fluctuations behave like some a-stable process
in large time for a € (0, 2].

2.1 Introduction and main result

Consider a one-dimensional diffusion process with continuous coefficients b and o, i.e. a contin-
uous adapted process (X;)¢>o satisfying the SDE

X, :/Ot b(Xs)ds~|—/Ota(Xs)st, (2.1)

where (B¢)i>0 is a Brownian motion. Without loss of generality, we assume Xy = 0, even if it
means changing b and o. If o does not vanish, then weak existence and uniqueness in law hold
for (2.1), see Kallenberg [Kal02, Chapter 23 Theorem 23.1].

Assumption 2.1. The functions b,o : R — R are continuous and for all x € R, o(z) > 0.
Moreover b and o are such that the process (X¢)e>0 s positive recurrent in the sense of Harris.

We recall that a strong Markov process (2, F, (Ft)t>0, (Xt)t>0, (Pz)zer) valued in (R, B(R)) is
said to be recurrent in the sense of Harris if it has a o-finite invariant measure p such that for

all A € B(R)

1(A) >0 implies limsupla(X;) =1, P, — almost surely for all x € R.

t—o00

The process is then said to be positive recurrent if y(R) < oo and null recurrent otherwise. We
introduce the scale function s of (X;);>¢ defined by

s(x) = /0:0 exp <_2/0v b(u)a_Q(u)du) dv, (2.2)
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which is a C?, strictly increasing function solving %s” 0% + s'b= 0. We also introduce the speed

measure density

m(z) = o~ 2(z) exp (2 /0 ‘ b(v)a—2(v>dv) — [02(2)s ()] (2.3)

Remark 2.1. Assume b and o are continuous and o does not vanish. Then we have the equiv-
alence between the two following propositions, see for instance Revuz-Yor [RY99, Chapter VII].

1. (Xi)e>0 is positive recurrent in the sense of Harris.
2. limy_y100 5(x) = 00 and k™! == [ m(z)dz < co.

Moreover, in this case, the measure p(dz) = km(x)dx is the unique invariant probability measure
for the process (X¢)t>0.

The ergodic theorem for Harris recurrent processes, see Azema-Duflo-Revuz [ADRG9] or
Revuz-Yor [RY99, Chapter X], tells us that for f € L!(u), a.s.

L[ s ), (24)
0

t t—o00

where p(f) = Jg fdp. The convergence in (2.4) can be seen as a strong law of large numbers for
the additive functional [j f(Xs)ds of the process (X;)i>0. Then it is very natural to study its
fluctuations, i.e. to describe the asymptotic behavior of 1 J3(f(Xs) — pu(f))ds. In this paper, we
give simple conditions on f for these asymptotic fluctuations to be a-stable for some « € (0, 2].
The conditions on f are entirely prescribed by the coefficients b and o.

We recall that £ : [0, 00) — (0, 00) is said to be slowly varying if for every A > 0, £(Az)/l(z) —
1 as x goes to infinity. The use of such functions is justified by the fact that domains of attraction
of stable laws involve slowly varying functions.

Assumption 2.2. The function f : R — R is locally bounded and Borel. Moreover, there exists
a>0, (fr,f-) € R? and a continuous slowly varying function € : [0,00) +— (0,00) such that

[o(2)s' ()] 2 Js() >~ *Uls(@) ) f (@) —> fe,

r—+oo

and |fo| +|f-| > 0. If f € LY(u), we impose u(f) = 0. Finally, if & > 2, we impose f to be
continuous.

This assumption appears naturally in the computations. We refer to Section 2.4 for a col-
lection of concrete applications and examples. In the critical stable regime o = 1, we will add a
mild assumption which ensures that the set L!(x) is big enough.

Assumption 2.3. There exists A > 0 such that |s|* € L' (p).

fOO dv

2
- m) dz which can be infinite, and we define

Under Assumption 2.2, we set p = [;° (
the diffusive constant as follows:

e Ifa>2o0ra=2and p<oo, 02 =4k [R5 (x) ([.° F)[o2(v)s (v)] " dv)” da.
o If a=2and p=o0, 03 =4s(f? + f?).

a— a \2
e Tac(0,2), 08 = 2200 (&) (110 + 1719,
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We also introduce, for £ € R, the complex numbers

o 25(8)=1— 2'Sgn(h)"ﬁ';ils?fl(g_)'f_|a tan (%) sgn(€) if o € (0,2) \ {1}.

L fatf 2 el log | | +log | f— /-
o 21(8) = L+ i Zsen(©) [log (qupffimy ) + 2 + log(2) + PEblf |, where 5

is the Euler constant.

Finally, for a family of processes ((Y;°)t>0)e>0 valued in R, we say that (Y7)i>0 14 (Y) >0
if for all n > 1 and all 0 < t; < --- < ty, the vector (Y;°)1<i<n converges in law to (Yt?)lgign in
R™. We are now ready to state our main theorem, which concerns positive recurrent diffusions.
Theorem 2.1. Suppose Assumptions 2.1 and 2.2. Let (X¢)i>0 be a solution of (2.1), (Wi)i>0 a

Brownian motion and (St(a))tzo an a-stable process such that E[exp(igSt(a))} = exp(—t[¢]|“za(£)).

(i) If a > 2, ora=2 and p < o0,

12 [1F f.d,
5 f(Xs)ds = (0aWi)=0 as e — 0.
0 >0 N

2
(ii) If « =2 and p = oo, we set p. = 11/5 (foolﬁgiz(vﬁ dz and we have

T

t/e
<]5/p5|1/2 / f(Xs)ds> LA W)y ase 0.
; >

t>0

(iii) If o € (0,2) \ {1},

t/e

1a 1. (a)
(5 e | f(Xs)ds> 2% (0a8] )tZO as € — 0.

t>0

(iv) If « = 1 and Assumption 2.8 holds, there exists a deterministic family (& )eso of real
numbers such that

t/e
<e£(1 /o) [ f(X)ds — §€t> 2% (o15Y) as & — 0.
0 >0
t>0
Moreover &, o k(f++f-)(1/e)(e, where (. = — 10/05 % if f € LY () and ¢ = 11/8 x?é)
otherwise.

For the reader more familiar with infinitesimal generators than with characteristic functions,
let us mention the following remark.

Remark 2.2. When « € (0,2), the process (aaSt(a))tzo of Theorem 2.1 is a Lévy process with
Lévy measure
v(dz) = (C+$7170‘1{x>o} + C—\$|717a1{x<o}) dz,

where

cy = Ao [1{f+>0}|f+’a + 1{f,>0}|f—\a} , - = Ao [1{f+<0}|f+|a + 1{f,<0}|f—|a]
oa— o 2
and Ao = K257 (O‘—)) . Its infinitesimal generator £\ is such that for all ¢ € C>*(R),

asin(an/2) \I'(«
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v L) = i oy [0z + 2) — D@(dz) T € (0,1),
o L) = fyy oy 6z +2) — 0(x) — 2/ @I(dz) F € (1,2),
o ifa=1, LY(x)=ad/(z)+ Jryoy[@(z + 2) — ¢(2) — 21y, <1y ¢ (2)]v(dz), where

log |f4[f+ +log|f-|f- m
P A

v is the Fuler constant and A = fl sin(z _xda; 4+ foo Sm ) dor.

—(fy + f-) |2y +10g(2) + rlog(x) +

One can refer to Bertoin [Ber96, page 24] to understand how to go from the Lévy-Khintchine
triplet to the generator and to Sato [Sat13, Chapter 3.14] to go from the Lévy-Khintchine triplet
to the characteristic function.

Observe that in the Lévy regime o € (0,2), we have a convergence in finite dimensional
distribution of a continuous process towards a discontinuous process (stable processes possess
many jumps). Hence we cannot hope to obtain convergence in law as a process, for example for
the usual Skorokhod distance. Observe also that if f_ = 0, the stable process has only positive
jumps. Thus the limiting process is completely asymmetric although the process (f(X¢))t>0
may visit the whole space infinitely often.

When f € L'(u) and pu(f) # 0, we can use Theorem 2.1 with the function f — u(f) provided
it satisfies Assumption 2.2.

When « > 2, the stable process obtained in the limit is a Brownian motion, which is the only
2-stable process. A standard strategy to show central limit theorems for the additive functional
fg f(Xs)ds is to solve the Poisson equation Lg = f, where L is the infinitesimal generator
of (X¢)¢>0 with domain Dz. One can refer to Jacod-Shiryaev [JS03, Chapter VIII], Pardoux-
Veretennikov [PV01] or Cattiaux, Chafai and Guillin [CCG12]. Assume that f is a continuous
function in L!(x) and define the function

r) =2 /O "o (o) / T ) (w)s' ()] dude. (2.5)

Then g is a C? function solving the Poisson equation 2bg’ + 02¢” = —2f. Hence, applying the
It6 formula with g, we express the additive functional as a martingale plus some remainder,
and hope to obtain the result using a central limit theorem for martingales. This will be the
strategy used when « > 2, and we will actually prove the following more general result. Note
that, for g to be well defined, it suffices that f € L!(p) since p(dr) = k[o?(u)s’(v)]~'dz, whence

S F@)le®(w)s' ()]~ du = £ (L p,e0))-

Theorem 2.2. Suppose Assumption 2.1 and let (Xt)i>o be the solution of (2.1). Let also f be
a continuous function in L' (u) such that pu(f) = 0 and g be defined by (2.5). If g'o € L?(p),

then ;
t/e
(51/2/0 f(Xs)ds> 14 (YWt)i>0 as e — 0,
>0

where (Wy)i>o is a Brownian motion and v* = [g[g'o)*du. Moreover, if g is bounded, the finite
dimensional convergence can be replaced by a convergence in law of continuous processes, with
the topology of uniform convergence on compact time intervals.

Note that in the Lévy regime, we do not require f to be regular whereas we need f to be
continuous in the diffusive regime, so we can apply the It6 formula with g.
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References

The central limit theorem for Markov processes has a long history which goes back to Langevin
[Lan08]. Roughly, he studied a one-dimensional particle, the velocity of which is subject to
random shocks and a restoring force F'(v) = —wv, and showed that the position of the particle
behaves like a Brownian motion, when ¢ tends to infinity.

Probabilistic techniques to obtain such results can be found in Jacod-Shiryaev [JS03, Chapter
VIII]: if there exists a solution to the Poisson equation having few properties, then we have a
central limit theorem. This strategy is applied in Pardoux-Veretennikov [PV01] for very general
multidimensional diffusion processes. However, [PV01] does not completely include the diffusive
regime of Theorem 2.1: we have a little less assumptions but our result only holds in dimension
one. It seems that the critical diffusive regime o = 2 was not much studied. Finally, one can
refer to Cattiaux, Chafai and Guillin [CCG12] for a detailed state of the art of the techniques
used to show such theorems.

Regarding the Lévy regime, we could not find many results for Markov processes and this
does not seem to be well developed. Through the prism of ergodic theory, Gouézel [Gou04]
proved stable limit theorems for a certain class of maps. Applied to a positive recurrent Markov
chain (X,)n>0 with countable state space, its results tells us that if the function f is such that,
up to a slowly varying function,

T—r—00

Ti—1 Ti—1
P; (Z f(Xk) > x) v cilz|™® and Py (Z f(Xk) < :L‘) ~  c_|x|T9, (2.6)
k=0 k=0

where 7; = inf{k > 0, X}, = i}, then we have

1 n—1

— 3" f(x) L s,
=0

where S¢ is a stable random variable. This is more or less obvious in this case since we have
a sum of i.i.d blocks in the domain of attraction of stable laws and we can thus apply classical
stable central limit theorems.

Similar results with more tangible assumptions were proved by Jara, Komorowski and Olla
[JKOO09] for Markov chains with general state space. They assume the function f is such
that, roughly, p({|f| > =}) ~ |z|~%, where p is the invariant measure of the chain and a
spectral gap condition, the latter one being more or less equivalent to return times having
exponential moments. Since the return times are small, it is reasonable to think that we have
P70 f(Xk) > 2) =~ u({f > x}), at least if we consider a countable state space. They
actually give two proofs, one using a martingale approximation and a second one with a renewal
method involving a coupling argument.

Mellet, Mischler and Mouhot [MMM11] showed that for a linearized Boltzmann equation
with heavy-tailed invariant distribution, the rescaled distribution of the position converges to
the solution of the fractional heat equation, i.e. the position process behaves like a stable process.
Their work is closely related to [JKO09] although their proof is entirely analytic.

The method proposed in this article is rather powerful and gives a simple condition on the
additive functional for stable limit theorems to occur. The assumption made on the function f
does not seem to be a time-continuous equivalent of (2.6) and we do not assume anything on
the return times, nor on u({|f| > z}). We will see in Section 2.4 that, indeed, the index « is
not always prescribed by u({|f| > z}).

31



Chapter 2. Stable limit theorems for additive functionals of diffusion processes

The strategy is the following: we classically express the process (X¢):>0 as a Brownian
motion (W;)i>o changed in time and in space. Then we write [J f(Xs)ds = [ ¢(W;)ds for
a certain function ¢, which roughly looks like fj* |W4|'/*=2ds (up to asymmetry and principal
values issues) in large time, where (73)¢>0 is the generalized inverse of the local time at 0 of
(Wi)¢>0. This process is known to be a stable process, see It6-McKean [IM74, page 226], Jeulin
and Yor [JY81] and Biane and Yor [BY87]. The computations are thus tractable and the method
is very robust.

This method was proposed by Fournier and Tardif [FT21], studying a kinetic model and the
purpose of this paper is to extend this method to general one-dimensional diffusions and to more
general additive functionals. The model they were studying was the following:

t
ds, Xt:/ Vids, (2.7)
0

where (B;)i>0 is a Brownian motion and 8 > 1. The processes (V;)i>0 and (X¢)i>0 are re-
spectively the velocity and the position of a one-dimensional particle subject to the restor-
ing force F(v) = —g# and random shocks. Lebeau and Puel [LP19] showed that, when
B € (1,5)\{2,3,4}, the rescaled distribution of the position X; converges to the solution of the
fractional heat equation. Their work is analytical and relies on a deep spectral analysis leading
to an impressive result. The diffusive regime (8 > 5) and critical diffusive regime (8 = 5) are
treated by Nasreddine-Puel [NP15] and Cattiaux-Nasreddine-Puel [CNP19]. We stress that all

these papers are P.D.E papers.

To summarize, if the restoring force field is strong enough (8 > 5), the rescaled position
process resembles a Brownian motion and we say that there is a normal diffusion limit. On
the other hand, when the force is weak (5 € (1,5)), the position resembles a stable process and
there is an anomalous diffusion limit (or fractional diffusion limit).

Actually, physicists discovered that atoms diffuse anomalously when they are cooled by a
laser. See for instance Castin, Dalibard and Cohen-Tannoudji [CDCT], Sagi, Brook, Almog and
Davidson [SBADI12] and Marksteiner, Ellinger and Zoller [MEZ96]. A theoretical study (see
Barkai, Aghion and Kessler [BAK14]) modeling the motion of atoms precisely by (2.7) proved
with quite a high level of rigor the observed phenomenons.

In the Lévy regime, the index « is not prescribed by the function f = id and the invariant
measure u. Indeed observe that we have o = (8 + 1)/3 whereas one can check, see Section 2.4,
that

1—
p({1f] > a}) = Ja| 7.
In this situation, the return times are large and the dynamics are more complex.

Then, using probabilistic techniques, Fournier and Tardif [FT21] treated all cases of (2.7)
for a larger class of symmetric forces. Naturally, we recover their result and enlarge it to
asymmetrical forces, see Section 2.4. In a companion paper [FT20], they also prove the result
in any dimension and the proof is much more involved.

We also found a paper of Bertoin and Werner [BW94] where they use similar techniques
to redemonstrate Spitzer’s theorem. It has been pointed out to us that Yamada [Yam86] had
obtained limit theorems for additive functionals of Brownian motion, which is to be closely
related to Lemma 2.8.
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Plan of the paper

In Section 2.2, we recall some facts about slowly varying functions, local times and generalize
some results on stable processes found in [IM74], [JY81] and [BY87]. Section 2.3 is dedicated
to the proof of Theorem 2.1 and Theorem 2.2. Finally, we apply our result to several models in
Section 2.4, illustrating some remarks made in the previous section.

Notations

Throughout the paper, we will use the function sgn, ,(#) = aly,~0} +blg,<o} where (a,b) € R%.
The function sgn will denote the usual sign function, i.e. sgn(z) = sgn; _;(x).

2.2 Preliminaries

2.2.1 Slowly varying functions

In this section, we define slowly varying functions and give the properties of these functions that
will be useful to us. One can refer to Bingham, Goldie and Teugels [BGT87] for more details.

Definition 2.1. A measurable function ¢ : [0,00) +— (0,00) is said to be slowly varying if for
every A >0, {(A\x)/l(x) — 1 as x — 0.

Famous examples of slowly varying functions are powers of logarithm, iterated logarithms or
functions having a strictly positive limit at infinity. It holds that for any 6 > 0, 2%¢(z) — oo
and 27%(z) — 0, as z — oo. We will need the following lemma.

Lemma 2.1. Let £ be a continuous slowly varying function.
(i) For each 0 < a <b, we have supy¢(qp [€(A2)/l(z) — 1 =1

(ii) (Potter’s bound). For any 6 > 0 and C > 1, there exists xog > 0, such that for all z,y > xo,

W .y
a <c (13 vIEN)-

(iii) The functions L : x — [{ U?{; and M =z — [{([° u3/%1z(u))2dv are slowly varying, as

well as N =z — [° =5 d“ szoovgl;)<oo

Proof. Items (i) and (ii). See [BGT87, pages 6 and 25].

Item (iii). Let us start with the function L. For A > 0, we have

AT dy Az dy A du
L(Az) = /1 vl(v) = L(z) 4—/m vl(v) = L(z) +/1 ul(zu)

where we used the substitution v = zu in the last equality. By (i), sup,ep i [¢(z)/€(uz)—1] — 0
as x — 00, so that ff\ M‘%;‘u
{(x)L(x) —> oo at infinity. Let A > 1 and consider z > A: we have

B ¢ dv L du L Y(z)du
) Liw) = E(:):)/l vl(v) te) /1/30 ul(zu) 2 /1/,4 ul(zu) o0 log(4),

log(\)/4(x) as x tends to infinity and it remains to show that
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by Point (i) again. Now let A to oo and the result follows. Regarding the function N, we assume

e Ud(”) < oo and we write, for A\ > 0,

A dy A du
N(Az) = N(x) _[c v?(v) = N(2) - /1 uﬁc(ia:u)

and, as previously, we only need to show that ¢(x)N(z) — oo. We write

> do o {(x)du Af(x)du
()N (@) (ﬂlg)/m vl(v) /1 ul(xu) _/1 ul(zu)
for any A > 1. But once again, f1 M(m) — log(A) and the result holds letting A to infinity.
Finally we show the result for M. We have, for A > 0,

o) <2060+ [ ([ ) 90 =200+ ([ )

. 2 log(X :
A little study shows that fl’\ (fyoo %) fl (foo 23/276()) dy = 4;?9&)). It remains to

show that ¢?(x)M(x) — oco. Let A > 1 and = > A, we have

e = [ ([T A0 Y az [ ([T A5 4y s

and the result follows by letting A to oo. O

2.2.2 Brownian local times

Local times have been widely studied in Revuz-Yor [RY99] to which we refer for much more
details. Let (W;)i>0 be a Brownian motion. We introduce the local time of (W;)i>0 at € R,
which is the process (L} ):>0 defined by

t
=Wy — x| — |z| — / sgn(W, — z)dWs.
0

The process (Lf):>0 is continuous and non-decreasing and the random non-negative measure
dL? on [0,00) is a.s. carried by the set {¢ > 0,W; = z}, which is a.s. Lebesgue-null. We will
heavily use the occupation times formula, see [RY99, Chapter 6 Corollary 1.6 page 224], which
tells that a.s., for every ¢ > 0 and for all Borel function ¢ : R — Ry,

[ etwads = [ wtorian

We will also use the fact that the map z — LY is a.s. Holder of order 6, for 6 € (0,1/2),
uniformly on compact time intervals, see [RY99, Corollary 1.8 page 226], i.e. that

sup |z 70 |LF - Lg‘ < oo a.s. (2.8)
(t,z)€[0,T]xR
We now introduce 7, = inf{u > 0,LY > t}, the right-continuous generalized inverse of

(LY)>0. Some properties of (7¢);>0 will be needed. For all t > 0, P(1;_ < 7¢) = 0, which means
that (7;);>0 has no deterministic jump time and a.s., for all ¢ > 0, LY = ¢ since (L{);>0 is
continuous. We will also use that a.s., for all t > 0, W,, = 0 and that a.s., 79 = 0.

Finally, the processes (7, W;)i>0 and (L% ) enjoy the following scaling property: for

alle >0

z€R,t>0

d , _ _ d ([ _
(Tt,Wt)tzo = (c 27’ct,C IWc%)tzo and (Lit)xeRJZO = (C lLfcct (2.9)

>IGR¢20
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2.2.3 Stable processes

There is a huge litterature on stable processes and we will mainly refer to Sato [Sat13]. In
this section we generalize some results on stable processes found in It6-McKean [IM74, page
226], Jeulin-Yor [JY81] and Biane-Yor [BY87], where they worked in a symmetric or completely
asymmetric framework. These kind of results were initiated by Lévy himself [L39], where he
first proved that (7¢):>0 is a 1/2-stable subordinator. Let us first recall a classic result on stable
processes, see Sato [Sat13, Theorem 14.15 page 86 and Definition 14.16 page 87].

Theorem 2.3. Let a € (0,2) \ {1} and let (Xt)t>0 be an a-strictly stable process, i.e. a Lévy

process enjoying the scaling property (Xi)e>o 4 (c_l/aXct)tzo for all ¢ > 0. Then there exist
v >0 and B € [-1,1] such that for all { € R

E [exp(i§ X¢)] = exp <—yt£|a (1 —iftan <O;7T> sgn(£)>> .

If (Xt)i>0 is a 1-stable process, i.e. a Lévy process such that for all ¢ > 0, there exists k. € R

with (X¢)t>0 4 (71Xt + ket)i>0, then there exist v > 0, 8 € [~1,1] and T € R such that for all
EeR

B lexp(i€.1)) = exp (—vtle] (1+ 86 Zsen(€) log ] ) + tre ).

In any case, if (X¢)e>0 has only positive jumps, i.e. if its Lévy measure is carried by (0,00),
then g = 1.

We now consider a Brownian motion (W;):>o, its local time (L?)¢>o at 0, and the generalized
inverse (7¢);>0 of its local time. Our goal is to build all possible stable processes in terms of this
Brownian motion and its inverse local time. This is important in order to adapt the method
of Fournier-Tardif [FT21] who only treated the symmetric case. Let us recall the notation
sgn, p(7) = alyzsoy + bliz<0). We have the following result.

Lemma 2.2. Let a € (0,1), (a,b) € R? and define K; = fgsgnmb(Ws)]WSP/"‘dds. Then
(St)t>0 = (K7, )i>0 is strictly a-stable and for all £ € R and all t > 0, we have

E [exp (i€S;)] = exp <—ca,a7bt|g\a (1 — iBa.ap tan (O‘;) sgn(g)» ,

- 2
_ 2% 2p a® a a __ sgn(a)|a|®+sgn(b)|b|*
where cqqp = asin(an/2) (p(a)) (Ja|* +[b]%) and Baap = [a]o o] .

When a € (0,1), stable processes have finite variations and no drift part meaning they are
pure jump processes and should be seen this way: S; = Y e [ sgna,b(Wu)|Wu|1/“_2du.
The jumping times are the ones of (7¢);>0 and the size of a jump is equal to the integral of the
function sgna’b($)|:z:]1/ @=2 over the corresponding excursion of the Brownian motion.

While (K)¢>0 is well-defined when a € (0,1) since fOT |W,|Y/*=2ds < oo a.s., this is not the
case when « € [1,2) and we have to work a little more.

Lemma 2.3. Let a € (1,2), (a,b) € R? and define Ky = [ sgnmb(x)\ac]l/o‘*Q(Lf — LY)dz. Then
(St)t>0 = (K7, )i>0 is strictly a-stable and for all £ € R and all t > 0, we have

E [exp (i£S)] = exp (—ca,mbtlﬁ\a (1 — ifqa,q,p tan (?) sgn(f))) ,

_ 2
_ 2027 a® « « __ sgn(a)|al*+sgn(b)|b|*
where Ca,a,b = asin(or/2) (F(a)) (‘CL| + ’b‘ ) and Ba,a,b = ]+ [b]™ .
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Chapter 2. Stable limit theorems for additive functionals of diffusion processes

The case o« = 1 is a little more tedious.

Lemma 2.4. Let (a,b) € R and define the process Ky = [ sgn, ,(2)|x| 1 (Lf — L1{,<1y)da.
Then (St)i>0 = (Kr, )i>0 is 1-stable. For all £ € R and allt > 0, we have

E [exp (i€S;)] = exp <—ca,bt!§| (1 + iﬁa,bilog(ff\)sgn(§)> + itTa,bf) :

where cqp = 5 (lal + o), fop = Gy Tap = —(a+) |2 +log(2) +
FEuler constant

1 1 .
W} and v is the

To handle the proof, we need first to make the following general remark.

Remark 2.3. Let ¢ : R — R be a measurable function such that for all'T > 0, fOT lp(Ws)|ds < oo
a.s. The process Z; = [ ¢(Wy)ds is a Lévy process with respect to the filtration (Fr,)i>o.
Indeed, for all0 < s <t, Zy — Zs = [[ ¢(Wy)du = [ ¢(Wyyr,)du = T p(Wy)du, where
(Wu)uzo = (Wysr,)u>0 i a Brownian motion independent of F, thanks to the strong Markov
property and since Wo = W, = 0 a.s., and where (T,)u>0 5 the generalized inverse of its local

time. Hence the increments of (Z¢)i>0 are independent and stationary.

Proof of Lemma 2.2. Let us first show that (St),s is strictly a-stable. It is a Lévy process by
Remark 2.3. For all ¢ > 0, we have from (2.9)

C_2Tct
Sy = /0 Sgna,b(c_lwc2s)|C_1Wczs‘1/a_2d8
-2

c %71t
= C2—1/a/0 Sgna,b(WCQS)‘W025|1/a_2d5

Tct
— ¢/ / sgna’b(Wu)|Wu|1/o‘_2du,
0

which equals ¢~ /S,,. Hence (St)y> is strictly a-stable. We now focus on showing the explicit
form of its characteristic function and introduce first the processes

Ct:/o '1{W5>0}|WS|1/Q—2ds, Dt:/0 1{W5<0}]W5]1/a_2ds

and Ht == Ct - Dt. We have St == CLCt + th It is clear that (Ct)tZOa (Dt)tZO and (Ht)tZO are
also strictly stable processes because e.g. (Ct)>0 is nothing but (St)¢>0 when a =1 and b = 0.
It is also known from Biane-Yor [BY87] that for all £ € R, for all ¢ > 0 that

2a71

. . ™ a® \?
E fexp(i€H)] = exp (~teal”) with e = T, (F a)) . (2.10)

Using the occupation times formula, we can write

[e'¢) 0
C, = / 2[Y*2LZdy and D = / @[Vo2L2 dx.
0 —0o0
But it is well known, see [JY81, page 215], that for a fixed ¢, the processes (L7, ),>0 and (L%, )z<o
are independent and thus C; and D; are independent. It is also clear that they have the same
law. Since (C})i>0 has only positive jumps, Theorem 2.3 tells us that its characteristic function
can be written

B [exp(i€Ce)) = exp (~cltlel® (1= itan (57 ) sn(©))).
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for some ¢/, > 0. Now since E [exp(i§H)] = E [exp(i€Cy)| E [exp(—i£Dy)] = exp (—2c,t[€|Y) it is
clear from (2.10) that ¢, = ¢, /2. Now having in mind that S; = aC; + bD;, and Cy and D; are
i.i.d variables, we easily complete the proof. O

Proof of Lemma 2.3. To show that (S;):>0 is a Lévy process, we first introduce, for n > 0,

t
K} :/0 Sgna,b(WS)|Ws|1/°‘_21{|W5\2n}d8— (/RSgna,b(fﬁ)’$|1/a_21{|x|>n}dx> L?

= [ senap @l sy (17 - L)da,

where we used the occupation times formula. We show that (K,');>¢ converges a.s., uniformly
on compact time intervals to (K¢)¢>0. For n > 0, we have

sup |K{ — K| < / ‘sgnavb(x)\x|1/a_21{|x|277} — sgnmb(a:)]a:\l/o‘_Q‘ X sup
te[0,T7] R te[0,T]

Lf - L) da

< sup x|
(t,x)€[0,T| xR

Ly — L?D /Rl{\x|<n}\$|e+1/°‘72dx7

where we have fixed 0 € (0,1/2) such that 1/a — 24 6 > —1, which is possible since a < 2. We
conclude using that sup(; zyepo,r)xr || 70 |LE — LY| < o0 a.s., see (2.8).

From Remark 2.3, and since a.s. for all t > 0, L? = ¢, we know that (S{);>0 = (K7 )>0 is a
Lévy process for all n > 0. Hence (S;);>0 is a Lévy process: for all ¢ > 0, a.s., S; = lim, g 5’;7
so that for all t1,...,t, > 0, a.s., (Sy,...,S,) = limyo(S7, ..., S ) and thus (S¢);>0 is the
limit of (S})¢>0 in the finite dimensional distribution sense, which is sufficient to conclude. We

now show that it has the appropriate scaling property. By (2.9), we have, for any ¢ > 0,

St = [ sengp(@)lal o225, — da

i/sgnavb(w)|x]1/a*2(c*1ch —t)dx
R

Tect

Tct

= e [ sgng(@)lal 722, — et

which equals ¢=1/*S,,.

As in the previous proof, we consider the processes

S 0
Cy = / jaV/o2(L8, —t)dw, Dy = / |20 — t)da
0 —00

and H; = Cy — D;. For a fixed t > 0, C; and D; are independent and identically distributed
random variables and it is clear that they only have positive jumps and thus their characteristic
function is equal to exp (—c,t|¢|* (1 —itan (%) sgn(¢))) for some ¢, > 0 by Theorem 2.3. But
once again we know from Biane-Yor [BY87] that the characteristic function of H; is equal to
exp (—tca|€|¥) so once again it comes that ¢/, = ¢,/2 and we can conlude as in the previous
proof. O

Proof of Lemma 2.4. As previously, we can show that (S¢);>0 is a Lévy process by approxima-
tion. Then it is enough to show that the characteristic function of Sy has the stated form. To
this end, we approach (S):>0 by the a-stable processes from Lemma 2.3, when o € (1,2). We
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denote by (K§')¢>0 and (Sf*)i>0 the processes from Lemma 2.3. We first show that for all 7' > 0,
a.s.,

sup |K} + / sgna7b(aj)\x|1/a_2dx LY — K| — 0. (2.11)
te[0,7] |z|>1 all
Since [j;>1 sgnayb(:x)|:r:|1/a_2d33 = % and 1/a —2 < —1 for a € (1,2), we can write
a+b)a _ -
g+ O e [ s (e ) (55 - 1)
- |z]<1

+/ sgnab(:r) (\:L‘]l/o‘_g — \x]_l) Lidx.
|z|>1

Let us introduce M; = sup e |Ws|. Then a.s., for any x > My, Lf = 0. Set ¢ = |a| V |b], for
any T > 0, a.s.,

b
sup |Ko 4 @b

LY — K,
t€[0,T) a—1

LffL?’dx

<c [ (Vo= Jal ) sup

z[<1 t€[0,71]

+cl / z|7t — |z|Yo2) [2dz.
ey o G R P

Let us call R%ia the first term on the right-hand-side of the above inequality and R%’a the second.
Then we have for any T' > 0, a.s.,

R;’a <c < sup || 71/3

Lj - L?\) [ (12272 = Jal ) Jaf 2.
(t,x)€[0,T]x[—1,1] lz|<1

By (2.8) again, the quantity sup )ejo.71x[-1,1] 2| 7V/3|LF — LY| is a.s. finite. For any = # 0,
the integrand in the above quantity converges to 0 as « decreases to 1. We can use dominated
convergence since for any o € [1,4/3), for any x € [—1,1]\ {0}, we have (|z|'/*=2 —|z|~1)|z|'/3 <
(Ja| =5/ —|z|~1)|z|"/3, which is integrable on (—1,0) and (0,1). We conclude that R;’a converges
to 0 almost surely as « | 1. Regarding R%’a, we have a.s., for any T' > 0, a.s.

RO <cpgey s 131x [ (e o) da
! thir= }(tw)E[O,T]XR ! 1§x§MT< )

< el sup |L¥| x / 2|~ dz.

Again, we conclude by dominated convergence that R%a converges to 0 almost surely as o | 1.
All in all, we showed that (2.11) holds.

As a consequence, for all t > 0 and all £ € R,

(a+b)a

i E fexp (i€57)] e a1 = B [exp (i€65:)]

But we know from Lemma 2.3 that

. (at+b)a b
E [exp (i€5%)] a1t = exp <—ca,a7btlf\a + i€ (cma’bﬁa,a’b\{]a_l tan (O;T> + (aa—i__ia)) ;
a—2nq o 2 a a T :
where cq 458000 = m (W) (sgn(a)|a|® + sgn(b)|b|“) ojl 5(a +b). The function

hap() = caabBa,ap defined for a > 0 is C' in a neighborhood of 1 and a careful computa-
tion shows that

log\a|a+log\bb]

T
o) = 2 (a4 ) [1+10g(2)+27+ -
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where v is the Euler constant, which appears from the fact that IV(1) = —v. Hence we have
CaabPaab < 5(a+0)+hy, (1)(a —1)+o(a—1). Now using that [¢]*~! o 1+ (a—1)log ||+
[e% e

o(aw — 1) and tan (%) o y + o(1), it comes that

7r(a 1

caatfaadl€ ™ tan () + LE0Y () = 20, 0) — (o + D) log el +01),

and thus we have
e qa] i . 2 ,
B [exp (i€57)] €51 5 exp (—captlé] (1-+ iBs log((€]sen(©) ) + itrusé ).

where ¢, 5 = g(|a| + [b]), Bap = |a\+\b\ and 7, = —(a+0b) [2'7 + log(2) + M] O

a+

2.2.4 Inverting time-changes

We remind some classical convergence results enabling to treat the convergence of the generalized
inverses of time changes.

Lemma 2.5. For all n > 1, let (a})i>0 from [0,400) to itself be a continuous, increasing
and bijective function for all n > 1 and consider its inverse (1})i>0. Assume (af)i>0 simply
converges, as n — 00, to a non-decreasing function (at)¢>0 such that lim;_, | o a; = co. Consider
re = inf{u > 0,a, > t} its right-continuous generalized inverse and J = {t > 0,1, < ri}. For
all t € [0,4+00) \ J, we have limy, 400 7" = 74.

This lemma is classical and we took the above statement in Fournier-Tardif [FT21, Lemma 8§].
Actually, the proof of this lemma is not different from that of the pointwise convergence of
inverse distribution functions, used to show Skorokhod’s representation theorem, see for instance
Billinglsey [Bil95, Chapter 5, Theorem 25.6].

2.3 Main proofs

From now on, we will always suppose at least that Assumptions 2.1 and 2.2 holds. In Subsection
2.3.1, we characterize the integrability of f and ¢g’c. In Subsection 2.3.2, we represent the
process (X;/.)i>0 with a time-changed Brownian motion (Wfta)tzo which enables us to state

that ft/E f(Xs)ds is equal in law to H.s = o (ba( s)ds

In Subsection 2.3.3, we first check that A7, inverse of 77, converges to the local time at 0
of (Wi)¢>0 so that 77 converges towards 73. We also slightly prepare the proof of the diffusive
and critical diffusive regime. Then, as e'/*¢(1/¢)¢.(z) — sgny, r (z)]z|"/*2, we show that He
converges to K, a.s. for fixed a fixed ¢, which is enough to conclude. We will work a little bit
more in the critical Lévy regime.

In Subsection 2.3.4, we adopt the martingale strategy writing fg/ ° f(X,)ds as a local mar-
tingale plus some remainder and we use classical central limit theorems for local martingales to
conclude.

2.3.1 Integrability of f and ¢'o

In this subsection, we characterize with the index « the integrability of f and ¢’c with respect
to the measure p. We first introduce the functions ¢ : R — (0,00) and ¢ : R — R defined by

Y= (5’05_1) X (005_1) and ¢ = (fos 1) /y% (2.12)
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Assumption 2.2 precisely tells us that ¢ is a regular varying with index 1/a — 2. Indeed, since
s is an increasing bijection by Assumption 2.1 and Remark 2.1, we have

2>~V )p(x) —  fa. (2.13)

r—+o0

We make the following proposition and let us insist on the fact that from now on, we work under
Assumptions 2.1 and 2.2.

oo dzx

Proposition 2.1. f € L'(n) is equivalent to o > 1 or =1 and [ - iy < o0

Proof. If @ > 1, then 2 —1/a > 1. Since / is a slowly varying function, we can find § > 0 with
2 —1/a— 6 > 1 such that |z|°4(|z|) — oo as |z| — oo. Thus we have by (2.13) that

6(z)] = of(|al"t1/2)

r—+oo

and the function ¢ is integrable with respect to the Lebesgue measure on R. But using the
substitution x = s(v), we have

|¢) )|dx = 2| W)l dv— |f|d,u<oo (2.14)
R 0°(v)s'(v)

Ifa=1and [{° ?(’;) < 00, then (2.13) tells us that |z|¢(|z])¢(x) — fi, and thus ¢ is integrable

with respect to the Lebesgue measure on R which tells us by (2.14) that f is integrable with
respect to the Lebesgue measure.

We can make a similar reasoning to show that & < 1 or @« = 1 and [;* xd(gfv y = o0 implies

that f ¢ L!(n). O

We now focus on the function ¢ defined by (2.5) when o > 2 and recall that

o@) =2 [ 50 [ fwlews' @] dud = 267" [ (10

By Assumption 2.2, Proposition 2.1 and since a > 2, we have pu(f) = 0 and thus p(f1¢,00)) =
—1(f1(—oo,v)) SO that

g(x) = —2 /0 " e(v) [ voo F)[o2(w)s' (u)]~ dude. (2.15)

1

We now express the function g o s71, using the substitutions v = s71(y) and u = 5 1(2):

D=2 [T el @) )y =2 [ [T o)y 216

Using (2.15), we also get
g(s™ = —2/ / z)dzdy. (2.17)

We are now ready to state the proposition characterizing the integrability of ¢’c with respect to
73

2
Proposition 2.2. Ifa > 2, ora =2 and p= [{° (f;o 1}3/372(”)) dr < oo, then g'o € L2(p).
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Proof. From (2.16) and (2.17), we get that
(gos 1Y (z) =2 /;O (v)dv = —2 /_; S(v)dv. (2.18)

Assume o > 2, then 2 — 1/a > 3/2. From Assumption 2.2 and since ¢ is a slowly varying
function, we can find § > 0 such that 2 —1/a — 3§ > 3/2 and
6(2)] = oflaH?),

r—+0o0o

and thus

(gos ) @)P = _o(l«20H/1),

Since 2(6+1/a—1) < —1, (gos™ 1) € L2(dx). Now using the fact that (gos!) = [s'0os7 1|71 x
g o571 and the substitution = = s(v), we have

@R, [ P
[yl

2
whence the result. Now assume o =2 and p = [{° ( e 1)3/%7;(@)) dz < co. Assumption 2.2 tells

us that ¢(z) o fim. Integrating and using (2.18), we get

1
dv = */ lg'o*dp,
K JR

(gos™)(@) ~ 2f: /°°3/d£()

T—00

Hence the fact that p < oo tells us precisely that (g os 1) € L?(Ry,dz). Using a similar
computation involving (2.18), we find that (gos—!)’ € L2(R_, dz). We conclude that ¢'c € L?(p)
as when a > 2. ]

2.3.2 Scale function and speed measure

In this subsection, we classically represent the solution (X;):>0 to (2.1) as a function of a time-
changed Brownian motion. Roughly, the process (s(X¢))¢>0 is a continuous local martingale and
the Dubins-Schwarz theorem tells us (s(X¢)):>0 is a time-changed Brownian motion. The next

lemma enables us to represent X;,. and fg/ ° f(Xs)ds through the functions v, ¢, defined by
(2.12), and s, generalizing to our context the identity found in Fournier-Tardif [FT21, Lemma
6.

Lemma 2.6. Let € > 0 and a. > 0. We consider a Brownian motion (W;)i>o and we define

t
AS = ea2? /0 b2 (W, /az) ds

and its inverse (7§ )i>0, which is a.s. a continuous and strictly increasing bijection from [0, +00)
in itself. Let us set

t
X;i=s5"! (W.rte/ag) and Ff = H7e where Hj = %_2/0 ¢ (Ws/az)ds.

For (X¢)t>0 the unique solution to (2.1), we have

t/e d
0 f(Xs)dstt/s = (FtEaXf)tZO‘

t>0
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Chapter 2. Stable limit theorems for additive functionals of diffusion processes

We introduce the unusual degree of freedom a. that will allow us to make converge the
time-change A; without normalization.

Proof. We recall that the function ¢ and ¢ are defined by ¢ = (§' 0s7!) x (0057 !) and ¢ =
(fos™1)/12. Let us consider the function ¢, (w) = e~/2a.¢(w/a.), so that A5 = fg P2(Wy)ds.
We set Y;® = Wre which classicaly solves, see [Kal02, page 452],

t
vi = [ oo () aBs
0

where (B§);>0 is a Brownian motion. Next, we consider the function o.(y) = s *(y/a.). We
can apply Itd’s formula to X§ = ¢.(Y) since 57! is C? and we get

t 1t
X; = /0 LY e (Y9) dBS + 5 /0 PL(YE)WZ (Y5) ds.

The functions are such that:

, 1 Qe Qe o(s 1(y/a. 0(Pe
L0 = i igy/g ) _als 5532/ ) _ <fl/<2y>>
and,
w2y =L 857 (y/as))  aZgP(y/as)  2b(s(y/ac))  2b(ve(y))
e (Y):(y) = a2 [5/(s 1 (y/a-))? X - = - = 6 .

Indeed remember that s satisfies 5”02 + ¢'b = 0. Finally we have

t t
X:—e! / b(XE)ds + e 1/2 / o(X2)dBE
0 0

Now taking equation (2.1), we write

t/e t/e t t ~
X,/ :/ b(Xs)ds+/ o(Xs)dB; :5—1/ b(Xs/a)st—l/?/ o(X,e)dBE,
0 0 0 0

where (B0 = (51/2Bt/€)t20 is a Brownian motion. Thus, Ve > 0, the processes (X /. )i>0 and
(X7 )t>0 are solutions of the same SDE, for which we have uniqueness in law, driven by different

Brownian motion, (Ef)tzo and (Bj)¢>0. Thus they are equal in law : (X;/.)i>0 4 (X§)i>0. As
(f/s f(Xg)ds=¢"! fg f(X,/e)ds, we have

t/e t
< f(Xs)dstt/a> i <5_1/ f(X:)dS,Xf) :
0 >0 0 20

Using the substitution u = 75 < s = A%, we have ds = ¥ 2(W,)du, and

L[ foe W)y o
iy = [ 6Waja)au = F

which ends the proof. ]

¢ ¢
-1 5 _ -1 o . —
€ /0 f(X)ds =« /0 fope (Wre)ds =¢

We end this section with the following proposition that we will use several times later on.

42



2.3. Main proofs

Proposition 2.3. Let ¢ > 0 and a. > 0 such that a. — 0 when ¢ — 0. Let also (Wy)i>0 be
a Brownian motion and (LY)¢>o its local time at 0. For every ¢ € LY(u), we have a.s., for all
T>0,

tpos I (Ws/ac)
0 ¢2(Ws/aa)

sup
te[0,T

Ka,

ds — u(p) Ly =3

-1
Proof. Denote Yy = ra_! g %‘ﬁlgs)ds. Using the occupation times formula, we get

€ — 4oL pos (z/ac) , =k P()s' (V) acs(v aes(v v
Y;‘, - 3 R ¢2(a:/a5) Ltd wg( ( ) Lt /90 Lt d )

where we used the substitution x = a.s(v). We recall that u(dz) = k[o?(z)s'(z)]'dx and that

Y= (s o5 !) x (0 0os™!). Hence we have

sup |Y¢ — ple LO‘</!¢> )| sup
te[0,T] t€[0,7]

L= — L] p(dv).

But for all v € R, sup,cp \Lfgﬁ(v) — LY = 0 a.s. (see [RY99] Corollary 1.8, page 226),
’ e—
=5(v)

convergence since ¢ € L!(1) by assumption. O

and supye(o,7) |Ly -1 < 2sup( z)efo,rjxr L < 00 a.s.. We can conclude by dominated

2.3.3 The Lévy regime

In this section, which generalizes [FT21, Lemma 9], we first show two lemmas, that will enable
us to conclude. The first lemma says that if in Lemma 2.6 we choose carefully a., the time
change A7 converges to the local time of the Brownian motion at 0. It also recovers a weak
version of the ergodic theorem and prepares some useful results for the diffusive case.

Lemma 2.7. Let (W;)i>0 be a Brownian motion and (LY);>¢ its local time at 0. For alle > 0, we
consider the processes (Af)i>0, (77)t>0 and (X7 )i>o0 from Lemma 2.6 with the choice a. = ¢/k.

(i) We have a.s., for all T >0,
sup |45 — L% — 0.
tE[O,T} ‘ t t’ e—0
(ii) For allt >0, a.s., ¥ T the generalized inverse of (LY)i>o.
e— =

(iii) Suppose Assumption 2.3. For any slowly varying function v, we have a.s., for all T >0,

sup y(1/¢) ‘AE LO‘ —>0
t€[0,7)

2
(iv) Ifa =2 and p = [{° (f;x’ %) dz = oo, we have a.s., for allT > 0,

t
sup ’Tt a%L?‘ — 0 where Ty = 52]5p5|_1/ x(Ws/az)ds
t€[0,7] &0 0

2
where x = [(g o5 1)]? with g defined by (2.5) and p. = 1/5 (f;o Uggz(v)> dz.

(v) For all € L*(p), for all t > 0, we have a.s.
t
3
| ex9ds = o
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Chapter 2. Stable limit theorems for additive functionals of diffusion processes

Proof. Ttem (i). The first point is just the application of Proposition 2.3 with ¢ = 1.

Item (ii). The second point follows immediately from the first and Lemma 2.5, since for all
t > 0, as recalled in Subsection 2.2.2, P(1,— < 1) = 0.

Item (iii). Using the same scheme as in the proof of Proposition 2.3, we have

Lfy/”
sup 7(1/2) | A; L9 = sup |m(1/2) |

t€[0,7) t€[0,7]

/fy (1/e) sup

t€[0,T)

ES(U)/K . L?‘ ,U,(d’l})

Now we use (2.8) with some 6 € (0,3 A A), where A refers to the constant of Assumption 2.3,
so that |s|* € L'(u). We thus have (1/¢) SUPye(o, 7] |L;* (v)/~ — LY < Cls(v)|?y(1/¢£)?, for some

es(v)/k

random C. Since v is slowly varying, we conclude that v(1/¢) sup,cpo 7 [Ly — LY — 0 as

e — 0, for each fixed v. Moreover

sup 7y(1/e) sup
£€(0,1) te[0,T]

L~ < sup A(1/2)e” ) fs(w)”
e€(0,1)

and we can conclude by dominated convergence since |s|® € L'(p).

Item (iv). Step 0 : We first estimate asymptotically the function x. Let us recall from (2.18)

that . .
(gos (@) =2 [ oo)dv==2 [ o)dv

Let us define the function h on (0, c0):

o= ([ )

By (2.13), we have |z|>/2((|z])p(x) = f+ and thus

</jww) /¢’ Jdv o3,
</|:U3/25 ) / B(v dngOOf,

All in all, recalling that x = [(g o 57 !)']?, we have [h(|z|)] Lx(z) - 4f% from which

and

" =)z v AR / h(v (2.19)

—T

We used that p = [ h(v)dv = co by assumption. Moreover there exists A > 0 such that for all
x, we have x(z) < Ah(|z|). Now we write for § > 0 fixed, Tf = D° + E7 where

t t
Df’(S:/O /<52]5/)6\*1x(mW8/€)1{|WS‘>5}ds and Ef’éz/o /<;2|ap5|71x(mWS/E)1{|WS|§5}ds.
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Step 1 : We show that sup,co 7y | Dy’ | — 0 as € — 0. We have x(kW;/e) < Ah(k|Ws|/e). Now
notice that in this case, we have a.s.,

2
o0 du
Liw,>eph(5[Wl /) = 1w, |58} (/,W e u3/2g(u)>

=1 3 (/OO dv )2
— WS W\ 0320k W v /e)

T (a —
= AW s \ L 32e(s|Wilu/e))

We know from Lemma 2.1-(i) (with a = § and b = sup,cp 77 |Ws|) that the following uniform
convergence holds a.s.

L(v]e)

sup 1 — 1
ey Wl ‘z (k[Ws|v/e)

— 0.
e—0

Hence there exists a random M > 0 such that for any s € [0,7] and € € (0,1), |W| > 6 implies
that 1/4(k|Wslv/e) < M/€(v/e). Consequently,

e AM? 0 dv 2
S LX) £ st Loy AR(eW2) < 5 ([ )

We know from Potter’s bound (Lemma 2.1-(ii)) that there exists o > 1 such that for all

Y = o ¢ 1/4 x11/4
2 <ol v )

Hence, if € € (0,1/x¢), we have

(/00 dv )2 < 4 /°° lo|Y4 v [v] =/ 4dw ?
1 v32(vfe)) — 2(1)e) \ v3/2

All in all, there exists a random constant that we name M again, such that

5 MT
sup |D{’| < ————.
Sap P S,

It holds that ¢2(1/¢)p. — oo, see the end of the proof of Lemma 2.1-(iii) and use that p. =
M(1/e), and thus for each § > 0, supcjo 7 ]Df’é\ — 0ase— 0.

Step 2 : We concentrate on Ej 9 Using the occupation times formula, we have

Ef’(g _ / K X(I{l’/g 10 +/ k2x(ka/e)(LE — LY)dx _ 7’575[/? —l—Rf’é,
-6 |5P£ |epe |

the last equality standing for a definition. We have, using a substitution and (2.19),

k[l (/24 £2)

Kb /e
2 2y _ 2
Pe J—ks/e e—0 Pe /1 hle)dz e—0 IMfy+ 1) =03,

where we used that p. = ||
by Lemma 2.1-(iii).

h(z)dz and that the function M (z) = [ h(v)dv is slowly varying

45



Chapter 2. Stable limit theorems for additive functionals of diffusion processes

Step 3 : We conclude. Recalling that Ty = re,ng + Rf’(S + Df"s, we proved that a.s., for all
T >0andall § >0,

limsup sup ’Tf —Ung‘ < limsup sup ’R§’6|-

e—0  te[0,T] e—=0  t€[0,T]

But
€,0 T 0
sup |R| <1y sup |LE— LY,

tG[O,T] (tvx)e[O»T} X [_676}

which implies
limsup sup ’Tf - O’%L?‘ <o} sup Ly — LY.
e=0 tE[O,T] (t,I)E[O,T}X[—é,(S]

Now, we let § to 0 which completes the proof.

Item (v). Using the definition of X7, and making the substitution u = 75 < s = A%, we have

t ¢ 9 T pos HW,/ae) o T pos 1 (Ws/ae)
/0 o(X5)ds = ea, /0 W Jad) ds = kag /0 W Jas) ds.

Let T' = sup,¢(o,1y 7¢ which is a.s. finite from the second point. We have

u -1 w.
/-iaa_l/ pos (Ws/a.)
0

AT p(p) LY

t
[ etxds = (o) < sup
0 u€(0,T]

+ u(p)

L% — .

The first term on the right hand side goes to 0 by Proposition 2.3 and the second goes to 0 since
¥ — 7 by Point 2, LY =t a.s., and (L?);>0 is continuous. O

Let us state two immediate consequences of the previous lemma.

Remark 2.4. Point (5) of the preceding Lemma recovers a weak version of the ergodic theorem
for the process (X¢)i>0. Although it is straightforward since the process is Harris recurrent, this
provides a self-contained proof of this weak version, which we only need. For all o € L*(u) and

allt >0, sfg/s e(Xs)ds 4 fot ©(X5)ds, hence for allt >0

t/e P
e ), P(Xs)ds — p(p)t.

Remark 2.5. Point (4) prepares the critical diffusive regime. Using arguments similar to those
in the proof of point (5), we easily see that if « = 2 and p = oo, then for every t > 0, a.s.,

T = o3t. Now one can also see that as |g/p.| fg/a[g’(Xs)a(Xs)]zds 4 T7 . we have
£—

t/e
focl [/ (X)o (X s < o,

The next result is the last preliminary before proving the main result in the Lévy case.

Lemma 2.8. Let (W;);>0 be a Brownian motion, and (LY);>o its local time in 0. Let also
(Kt)e>0 be the process defined in section 2.2.3, with (a,b) = (fy, f—). For alle > 0, we consider
the process (Hy )i>o0 from Lemma 2.6 with the choice a. = ¢/k.
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(i) If a # 1, then a.s., for all T > 0,

sup lsl/o‘ﬁ(l/e)Hf - ﬁl/aKt’ — 0.
te[0,T)] =0

(ii) If o =1, there exists (& )e>0 such that, a.s., for all T > 0,

sup |el(1/e)Hf — &.L{ — kK| — 0,
te[0,7) e—0

where§e < —n(fo+f-J1/E) [ sty i S € L) and & ~ n(Fotf-)001/e) J11° it

otherwise.

Proof. Technical estimates. We first show some technical estimates that we will use in this
proof.

(i) For all = € R*, it holds (and this is the case for all « € (0,2)) that
2l /0201 /) (k) — k! %sgn, o (z)|x|/ 22 (2.20)
e— ’
Indeed we have by (2.13), since ¢ is slowly varying and since (a,b) = (f4, f-),

Yz > 0, K2€l/a_2€(1/€)gb (/{:L‘/g) :; Hl/aal,l/a—Q’
155

Vo <0, KEVU(1/e) (afe) — kMDY,
&€

(7i) For all 6 > 0, there exist A > 0 and g9 > 0 (and this is the case for all o € (0,2)) such
that for all z € R and all € € (0, ¢¢),

21 /e)6 (0/2) < Al + 1) (2] +]2l70) (2:21)

Indeed, we start using (2.13) again and that ¢ and ¢ are locally bounded: there exists A > 0
such that for all z € R, £(|z])|p(z)] < A(|z|*/*2 +1). Hence we have

/24126 (k)| < Allal 22 4 1) L)

the value of A being allowed to change. We know from Potter’s bound (Lemma 2.1-(ii)) that
there exists xg such that for all z,y > xg,

i =2 (5 vED)

eYO20(1/e) | (k/e) | Lufnizeney < Al2Y 2+ 1)(|J2)° V [2| 7).

Thus, for £ € (0,1/x9) we have

The function £ is strictly positive and bounded from below on every compact set and thus there
exists £p > 0 such that for all z € [0, z¢], £(x) > ¢y. Now if k|zx| < exg, we have {(k|z|/e) > £
and 1 < (k|z|/exg) ™. Hence

gl/a_Qﬂ(l/E)W(lﬁx/E) ‘1{n\x|<axo} < A(‘:L'|1/a—2 4 1)’1“—5 sup 565(1/6).
€€(0,1)
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Chapter 2. Stable limit theorems for additive functionals of diffusion processes

We proved (2.21).
Item (i) when a € (0,1). Let us remind that K, = [J sgna7b(WS)|Ws|1/a_2ds. We have
el/op(1/e)Hi = w2V *"20(1/e) [§ ¢ (kW /2) ds and

T
sup |e/20(1/e) Hf — kK| < / \m2el/a*2z(1/5)¢(nws/5)—ml/asgna,b(wsnwsﬂ/a*?‘ds
te€[0,T) 0

which tends to 0 a.s. by dominated convergence. Indeed, since {¢ € [0,7],W; = 0} is a.s.
Lebesgue-null, we have by (2.20) that a.s., for a.e. s € [0, T,

K221 /) (kW J2) — RV sging (W) W[ 1/22) = 0
Next we can dominate £/%~2((1/e)|¢(kW,/e)| using (2.21) by
AWV + D(IW] + Wil ™)

which is a.s. integrable on [0,7] if 6 > 0 is small enough so that 1/ae —2 — ¢ > —1.

Item (i) when a € (1,2). We notice that u(f) = k [ ¢(2)dz, which equals 0 by Assumption
2.2. Indeed,
_ fs~'(2)) _ fv) _ )
o0 = | ot - e e

We can now use the occupation times formula to write
Vg1 /o) HE = w2eM*20(1/e) / & (KW, /) ds
/ eVo20(1/e)¢ (ka /) L da
= [ W21 /)6 (ko /2) (L7 — L)da,

since [p ¢(z)dz = 0 as noted above. Thus, recalling that K; = [ sgnavb(x)\xll/ad(Lf — LY)dx
in this case, we have

sup ‘El/aﬁ(l/a)HIf - /ﬁl/O‘Kt‘
te€[0,T]

/‘ eo20(1/e)p(ka/e) —nl/asgnavb(x)\xll/a”‘ sup
te[0,7)

L~ L] da.

We conclude by dominated convergence. First, by (2.20), the integrand converges to 0 for each
x € R*.

We next use (2.21) to dominate R.(z) = |k2e/*20(1/e)p(rz /<) supyeqo 1 | L — LY| by

A(jel 72 + 1)(|2f° + 2| 7)| sup
te[0,7

L7 = LY < M(le[Y*=2 4 1) (|2’ + |2|7%)| min(1, [2]°),

for some random constant M > 0 and 6 € (0,1/2) fixed. We used (2.8) and the fact that
SUD (¢ )€[0,7] xR |L¥ — LY| < oo a.s. This bound is integrable on R if we choose § > 0 and
6 € (0,1/2) such that 1/a —2+d < —1 and 1/aa— 2+ 60 — § > —1. This is possible because
-3/2<1l/a—2<—1.
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Item (ii): Convergence. Setting & = k2~ 14(1/e) [* 1 ¢ (kx/e) dz and using the occupation
times formula, we have

el(1/e)Hf — €LY = / k21 /e)p (kx/e) L¥dx + k21 /e)¢ (ka/e) (LF — LY)dx

|z|>1 lz|<1

Then, remembering that K; = [p sgn, ,(x)|z| (Lf — LY1g;1<1y)dz, we write

sup ‘st —& L) — /@Kt’

te[0,7
< [ |/t sz) — msgngp@lal | sup 17 - Lf] da
|lz|<1 ' t€[0,7)
+ ) oy [T 01z /2) = rsgng(a)lal | Lida,
z|>1

Again, we conclude by dominated convergence. By (2.20), the integrand in both terms converges
to 0 for each x € R*.

We first use (2.21) to dominate R.(x) = |k%c~14(1/e)¢ p(kx/e)| supsepo ) |L¥ — LY, for all
[ <1, by
M (|27 + ) (J2° + |2 7%)] x [,
for some random constant M > 0 and 6 € (0,1/2) fixed. We used (2.8) and the fact that

SUP (¢ 2)e[0,T] xR |LF — Lg] < oo a.s. This bound is integrable on [—1, 1] if we choose 6 > 0 and
6 € (0,1/2) such that —1 + 6 — § > —1, which is possible: § =1/4, 6 = 1/8.

Now we dominate the quantity P-(z) = |e~14(1/e)¢(kz/e)|L% for all |x| > 1. The second
integral is actually supported by the compact set {|z| € [1, S|} where ST = sup,¢(o 11 |Ws] since
L% =0 as soon as || > Sy. Using (2.21) with 6 = 1/2,

Po(z) < A(l2| ™" + 1) (|2 + o] 7*) LF,

which is a.s. bounded and thus integrable on {|z| € [1, S7]}.

Item (ii): Asymptotics of &. First remember from Proposition 2.1 that f € L(u) if and
only if [ - dx j < 00

zl

Case 1: Let us first suppose [; mdg;) = oo and show that &, ~ k(fy+ fo)l(1/e) fl/e mdé).
€
For € € (0, k)

K/e
&zwwaﬁmwmm

"/ ) . (2.23)
— k(1) / (x)de + rl(1/e) /_ la)da +rU(1/e) /1 B(2)dz

—K/e

The middle term is o(¢(1/¢) [; 1/¢ m?(z)) and will not contribute. Assume e.g. fi # 0, then
d(x) ~ fi/[zl(x)] and it comes that

T—00
K/e k/e Ao /e dg
K/l d(w)dz <0 w+ /1 xl(x) o w+ /1 zl(x)’

where we used the fact that L(z) = [ v?(”) is a slowly varying function by Lemma 2.1-(iii).
If f_ # 0, then s [~} /e o(x)de ~ Kf- fl/a xdx as previously. If next f_ = 0, we have
E—>

])

o(x) = o(|zf(|z])| 1), then x [~ wje® (x)dz = o( 11/5 x?(‘”)) because [, Id("’;) = 00.
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Now, if fy = 0, then necessarily f_ # 0 and we can proceed as previously.

Case 2: [/° Md—”” < oo. We must show &, ~, —k(fr 4+ fo)e(1/e) fo/oe gx . In this case,
E—
f € LY(p) and we impose u(f) = 0 so that [ ¢(x)dz = 0 by (2.22) and thus

—kK/e 00

o(z)dx — 56(1/5)/ o(z)dx.

K/e

&= —nt1fe) [

—00

Let us treat the case fy # 0 and f_ = 0, the other cases being treated similarly. Since f # 0, we
can integrate the equivalence ¢(z) ~ fi/[z((x)] and get that Joye d(z)da o s I d(x
€T

/e xf

where we used that N(z) = [*° -42_ is slowly varying by Lemma 2.1. Next [~ ) ¢(x)dx

z  zl(x) T——00

O(J5 285 since 6(x) = of|at(|a])| ). 0

We are now ready to give the proof of Theorem 2.1-(iii)-(iv).

Proof of Theorem 2.1-(iii)-(iv). Consider a Brownian motion (W;)¢>0, its local time (LY);>o at
0 and 7 = inf{u > 0, LY > ¢}. Consider also the process (K;);>o defined in Subsection 2.2.3 for

(a,0) = (f+, f-)-
For each ¢ > 0, consider the processes (Af);>, (77)+> and (Hf)¢> from Lemma 2.6 with the
choice a. = ¢/k. We know from this Lemma that

t/e
([ o) ). (2.29)

And we know from Lemma 2.7-(ii) that 77 — 7 a.s. for each ¢ fixed. Thus T" = sup.¢ (g 1) 7 is
a.s. finite.

Ttem (iii). We aim at showing that ('/*¢(1/¢) [, t/e f(Xs)ds)e=o0 I (aaSt(a))tzo. By (2.24) it
is enough to show that a.s.,

_ |1/ e 1o
Aue) = [eMe1 /o) HE: — 1 KTt‘mO,

for each fixed ¢ > 0. Indeed, this would imply that a.s., for any t1,...,t, > 0, the vector
(Ag (€),...,A, () converges to 0 which implies the convergence in finite dimensional distri-
bution. Moreover, setting St( ) = o 'kY*K,,, Lemmas 2.2 and 2.3 tell us that (S( ))t>0 is a
stable process such that

a7

E[exp(ié‘Sga))] = exp ( Caapt|oq nl/afla (1 — 1fq,q,p tan ( 5 ) sgn(&))) = exp(—t[¢]|“za(£)),

where 24(£)) = 1 — ifa,q,5 tan (%) sgn(§) as in the statement.

We have

Ai(e) < sup ]51/%(1/5)H§ - nl/aKs‘ + ke ’KT§ ~ K|
s€[0,T7

The first term goes to 0 from Lemma 2.8-(i) and the second by continuity of (K¢)i>o.

Item (iv). We want to show that with (£.).>¢ defined in Lemma 2.8-2,

t/e

<5£(1/5) [ x )ds—55t> %(Ulst(”)m.
t>0 -
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Once again, by (2.24), it is enough to show that

Aule) = [et(1/e) HE — &t — kKr| — 0,

for each fixed ¢t > 0. Indeed, setting St(l) = o7 'k K,,, Lemma 2.4 tells us that (St(l))tzo is a
stable process such that

Blexp(iS{)] = exp (~cuptlor w1+ iBus log(o7 wl€ sen(€) ) + itruo7x¢

= exp <—t|€\ (1 + iﬁmb% log(af1m|§])sgn(§) - iTaJ,al_l/ﬁ sgn({)))
= exp(—t[¢|z1(E)),

where 21(£) = 14842 log(oy 'k[€|)sgn(€) — iTapoq *rsgn(€) as in the statement.
We write
+& A LOE

< sup ]em/e)m seLt K|+ sup &
t€[0,7] te[0,T]

T

Ai(e) < ‘58 (1/e)H fa — kK

K — K,

As Lt‘JrK;‘K ~ K|

The first term goes to 0 from Lemma 2.8-(ii) and the last one by continuity of (Kt)¢>0. Now
remember that & = kl(1/e) ffff/g d(xz)dx = y(1/e) where y(z) = wl(z) [ $(v)dv. Using the
notations of Lemma 2.1 and the asymptotic estimate of &, see Lemma 2.8-(ii), we have

Y(@) v —k(fs+ f)Ux)N(kz) i f e L),

Tr—r00
and

&)~ w(fy + f)l@)Lkz) i f ¢ L (n).

T—r 00

In any case, v is equivalent to the product of of two slowly varying functions, and thus, is a
slowly varying function. Hence, Lemma 2.7-(iii) tells us that the second term goes to 0. O

2.3.4 The diffusive regime and critical diffusive regime

This case is standard and we use the strategy explained in the introduction. It consists in solving
the Poisson equation L£g = f, see Jacod-Shiryaev [JS03, Chapter VIII section 3f]. We recall the
function g defined by

2) =2 ["50) [ Fwlo*(ws (@) dudv,

which is a C? function solving 2bg’ + 02¢g” = —2f. Also since (X;);>0 is a regular positive
recurrent diffusion by Assumption 2.1, we classically deduce that X; tends in law to u as t goes
to infinity, see Kallenberg [Kal02, Theorem 23.15]. We first show Theorem 2.2.

Proof of Theorem 2.2. Using It6 formula with the function g, we have

/ F(X,)ds = / §(X,)o(X,)dB, — g(Xy).

Thus £!/2 fot/a f(Xs)ds = ME — Y where M; = £'/? f(f/s g (Xs)o(Xs)dBs is a local martingale
and Yy = 51/2g(Xt/€). Since g is continuous, g(X;/.) converges in law as ¢ — 0 and thus

o1



Chapter 2. Stable limit theorems for additive functionals of diffusion processes

Y? converges to 0 in probability, for each fixed t. Moreover if g is bounded, we have a.s.
Supqefo,] Yy = 0.

We now show that (M;):>o converges in in law as a continuous process to (yWy)i>o. It is
enough (see Jacod-Shiryaev [JS03, Theorem VII-3.11 page 473]) to show that for each ¢ > 0,

(M*®), 5 Yt ase — 0. But (M¢); =¢ 0t/€ [¢'(Xs)o(Xs)]?ds and the result follows from Remark
2.4 since ¢'o € L?(u) by assumption.

All in all we have proved that (/2 fé/ ° f(Xs)ds)i>0 converges in finite dimensional distri-
butions to (YW})i>0 and as a continuous process if g is bounded. O

Proof of Theorem 2.1-(i)-(ii). The first point is covered by Theorem 2.2 since g'c € L?(u) by
Proposition 2.2. The diffusive constant 02 = [;[¢'c]?du is indeed the one specified in the intro-
duction. Remember that ¢'(z) = 2¢'(x) [2° f(v)[0?(v)s'(v)]"1dv and p(dz) = klo?(z)s' (x)] " tda
so that in the end

o2 = dx /R o/(2) ( / - f(v)[a2(v)5’(v)]_1dv)2d:n.

In the case @« = 2 and p = oo, we can use exactly the same proof: we write again that
le/p| Y2 (5 £(X,)ds = ME — Y, where MF = |/ p|"/? [/ ¢/(X,)o(X,)dB, is a local martin-
gale and Y7 = |e/p:|"/%g(X, /). First Yy© tends to 0 in probability for each ¢ fixed, as previously,
and since |e/p:| — 0. Finally it only remains to show that for each ¢t > 0,

£ t/e ! 2 P 2
(M) = le/pe] [ g/ (X)o(X)ds 5 o
which is the case by Remark 2.5. O

Remark 2.6. We stress that it is plausible we can show the limit theorem in the Lévy regime, at
least when fy = —f_, using the martingale strategy, i.e. writing fg f(Xs)ds = My — g(X;) where
(My)>0 is a local martingale with bracket [}[g'(Xs)o(Xs)]?ds. Using similar arguments as in
Lemma 2.8, we can show that, correctly rescaled, this bracket behaves like a stable subordinator.
Hence M; might behave like a Brownian motion subordinate by a stable subordinator, which is
known to be a stable process.

2.4 Applications

Here we give some examples of application. Each time, we try to explain intuitively why the
resulting limiting stable process is not a Brownian motion. It can be either because (a) f is
large near infinity even if the diffusion (2.1) has small return times to 0 (as studied by Jara-
Komorowski-Olla [JKOO09] in the case of Markov chains), or (b) the diffusion (2.1) has large
return times to 0, meaning that its invariant distribution has a rather slow decay; (c) or for
both reasons.

In case (a), and as we will see only in case (a), one easily determines the index « of the limiting
stable process from the behavior of pu({f > z}) as * — £o0; namely, u({f > z}) ~ |z|~%, up to
a constant or a slowly varying function.

Diffusions with fast decay invariant measure : Consider the following stochastic differen-

tial equation

641 [t
Xt:—%/ sgn(Xs)|X,|0ds + By, (2.25)
0
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where # > 0 and (By);>0 is a Brownian motion. This model includes the Ornstein-Uhlenbeck
process (6 = 1). Following equations (2.2) and (2.3), the invariant measure and the scale function
are given by

p(dz) = ke " da, s(z) :/ ell™ .
0

One can check that s(x) e sgn(z)el™”" /[(6 + 1)|z|%]. Hence, as soon as f is a continuous

function such that there exists a > 0 and (f., f_) € R? satisfying

(1/a=2)0 ,—|z|°t" /o
’.’13| e f(x) I—EEO f:|:7

and |f4+|+|f=| > 0, we can apply Theorem 2.1 with ¢ = 1, provided fot/s f(Xs)ds is replaced by
(f/ “[f(Xs) — u(f)]ds when a > 1. We can also generalize using slowly varying functions.

Roughly, the return times of (X;);>0 have exponential moments, because its invariant distri-
bution has an exponential decay. To get an a-stable process at the limit with some « € (0, 2),
the function f really has to be large near infinity. Namely, we need that there exists a slowly
varying function L and c4,c_ > 0 such that

L@)|e*u({f > 2}) —3 er and L@)al*a({f <)) — co. (2.26)

A toy kinetic model : Here we slightly generalize the results of [NP15], [CNP19], [LP19]

and [FT21]. Consider a one-dimensional particle with position X; € R and velocity V; € R

B8O (v)
2 O(v)

O : R~ (0,+00) of class C'. The Newton equations describing the motion of the particle are

subject to random shocks and a force field F(v) = for some 5 > 1 and a function

t t
Vi = By + / F(Vy)ds, X, = / Vids, (2.27)
0 0

where (Bt)t>0 is a Brownian motion modeling the random shocks. The invariant measure and
the scale function are given by

u(dz) = k[O@)]Pdz,  s(z) = / [©(v)] P dv.
0
We make the following assumption on the function © :

Assumption 2.4. There exists (c—,cy) € R3 such that |z|0(z) — ¢t as © — +oo and
cy +c_>0. If e =0 (respectively c— = 0), we moreover impose there exists A > 0 such that
forallz > A, ©'(x) <0 (respectively for all x < —A, ©'(x) > 0).

Obviously, lim,_, 1 $(x) = +00 and since 5 > 1, u(R) < co. Now take f = id, we want to find
a > 0 such that Assumption 2.2 holds. Let us show that, with o = (8 + 1)/3, we have

5@ Js@) PV s (B DY, (2.28)

§@)[Pls@)P o —s (1M (2.20)

Observe that we have the following estimations

|x\5|5/(x)\_1 — cfi and |CC|6+1’5(33)|_1 — (,8+1)ci. (2.30)

r—=+o00 r—+oo
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Chapter 2. Stable limit theorems for additive functionals of diffusion processes

Hence if ¢4 > 0 and ¢_ > 0, the result is immediate. We consider e.g. the case ¢y = 0. First
we notice that s”(z) = —30’(z)[0(x)]7#~! and thus Assumption 2.4 tells us that there exists
A > 0, such that ' is increasing on [4, c0). Hence for all z > A, we have

0<s(x) <s(A) +5(z)(z—A) <s(A)+5¢(v)r,
and thus for all x > A, since 2 — 1/a > 0 (because 8 > 1),

|8/ ()| 2ls(@) [PV < 8 ()| s(A) + 8 ()2 0w |8 ()| P
But since a = (84 1)/3, we have 3 — 1/a = 3/« and thus |&'(z)|~ Y|z [>~ V> = |2P[s/ (x)] 71|/
which goes to 0 by (2.30).

We can apply Theorem 2.1: with a = (+1)/3, m = p(id), ¢ =1, f1 = (B + 1)1/6‘_20?;/&
and f_ = —(f+ 1)V/o2,
(i) 16> 5, (/2(Xye —mt/2)) L5 (0aWi)yng -

t>0
. .d.
(i) 1t 8 =5, (|e/loge[*(Xyye —mt/e)) % (02W1) 0

(i) If 8 € (2,5), (El/a(Xt/a - mt/ﬁ))t>0 £ (Uo‘st(a))po'

(iv) 16 8 =2, (=(Xye - fgt/s))tzo 14 ("ast(a)>tzo'

(v) If 8 € (1,2), (51/O‘Xt/6)t20 14, (Uast(a))tzo'

Remark that a ranges from 2/3 to infinity. The additional assumption that © is eventually
monotonic when c; = 0 (or c_ = 0) is not optimal, the true assumption is (2.28) and (2.29).

We stress that this model is the starting point of this paper as it was explained in the
references section. Considering the symmetric function ©(v) = (1 + v?)~1/2 and reasoning on
the law of (X, V), which is the solution of the associated kinetic Fokker-Planck equation, a
series of P.D.E papers (Nasreddine-Puel [NP15] : g > 5, Cattiaux-Nasreddine-Puel [CNP19] :
B =5 and Lebeau-Puel [LP19] : 5 € (1,5) \ {2,3,4}) answered these questions, finding some
symmetric stable processes at the limit. Then, using probabilistic techniques, Fournier and
Tardif [FT21] treated all the cases (even when 3 € (0,1]), still in a symmetric context. We thus
recover their results and extend them to asymmetrical forces.

When € (0, 1), the process (V)0 is null recurrent and Fournier and Tardif [FT21] show the
rescaled process (51/ 2y, /e )t>0 converges in finite dimensional distribution to a symmetrized Bessel

process and (£%/2X, /e)t>0 to an integrated symmetrised Bessel process (their proof actually holds
for 5 € (—1,1)). Although we can extend their result to asymmetrical forces, this phenomenon
seems specific to this equation and we were not able to extend it to general diffusions.

Remark that for this model, the return times do not have exponential moments, because
the invariant distribution has a slow decay. The exponent « is not prescribed by the invariant
measure. Indeed we have

2 (> @) w5 =1) and el (S <)) o wl /(8- 1)
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and a = (8 + 1)/3, while one might expect @« =  — 1. Observe that if g € (1,2), we have
(B+1)/3>p—1andif 8 > 2, we have (6+ 1)/3 < 8 — 1. The dynamics are a little bit more
complicated and one must take into account the fact that the return times can be long.

SDE without drift : Consider the following SDE
t
Xi= [ (11X dB,, (2.31)
0

with 8 > 1. We have s(z) = x (indeed (X;);>0 is a martingale) and p(dz) = s(1 + |z|)Pda.
Set for instance f(z) = x/(1+ |z|)!™7 with v > 8 —2, then u(f) = 0 and one can see that, with
a=1/(y+2-p5)>0, ft =1and f- = —1, we have

2>~V f(@) — e

r—+oo

Hence we can apply Theorem 2.1 with £ = 1.

() I B =2 <5y < B—3/2, then (12 [/ f(X,)ds) LY ERANS

[ 2
o € .d.
(i) £y = 5 —3/2, then (|/logel'/2 f§/° f(X)ds) _ L% (02Wi)ysg-
(iii) If 8~ 3/2 <y < B—1, then (e!/ [7/° f(Xs)ds)tZO 14 ("ast(a))tzo

(iv) If v = g — 1, then (5 (f/s f(XS)ds) I (JaSt(a))t>0.

(v) If v > B —1, then (5 Jo f(XS)dS)tZO — (Uo‘st )tzo'

Now if v < 8 — 2, one can see that the function g, solution of the Poisson equation, is such that

T—00 T—>—00

Ql(x):/xoof(v)UQ(v)dv ~ 277%1 and g’(a:):/_;f(v)g2(v)dv ~ |z

Hence ¢’ € L?(dx) since 2(y — 8+ 1) < —1 and thus ¢'o € L?(u) (since pu(dz) = o~2(z)dz). We
can apply Theorem 2.2 which tells us that the diffusive regime holds for v < 5 — 2.

Once again, the return times are slow and the index « is not entirely determined by the
invariant measure. Indeed we have for v > 0

p({f >z} ~ Clz|A7 and u({f <z} ch|$|(1—6)/w

T—00 r—s—

for some constant C'.

Assume 5 = 5/4 and let f be a function going to 0 at +oo such that u(f) # 0. If a = 4/3,
we have

2> (f @) = ulf)) —p —nlf),

T—F00

and thus we can apply Theorem 2.1-(iii) which tells us that

t/e
(53/4/0 [f(Xs) — M(f)]d3> L (04/3515(4/3))7520‘

t>0

95






Chapter

Persistence problems for additive functionals
of one-dimensional Markov processes

Abstract

This chapter contains the results of [BBT23] which has been written with Quentin Berger
and Camille Tardif and is submitted for publication. We consider additive functionals (; =
fot f(Xs)ds of a cadlag Markov process (X;);>0 on R. Under some general conditions on
the process (X¢);>0 and on the function f, we show that the persistence probabilities verify
P(¢s < 2 for all s <t) ~ V(2)s(t)t~% as t — oo, for some (explicit) V(-), some slowly varying
function ¢(-) and some 6 € (0,1). This extends results in the literature, which mostly focused
on the case of a self-similar process (X;);>¢ (such as Brownian motion or skew-Bessel process)
with a homogeneous functional f (namely a pure power, possibly asymmetric). In a nutshell,
we are able to deal with processes which are only asymptotically self-similar and functionals
which are only asymptotically homogeneous. Our results rely on an excursion decomposition
of (Xy)1>0, together with a Wiener—Hopf decomposition of an auxiliary (bivariate) Lévy
process, with a probabilistic point of view. This provides an interpretation for the asymptotic
behavior of the persistence probabilities, and in particular for the exponent 6, which we write
as @ = pf, with § the scaling exponent of the local time of (X¢);>0 at level 0 and p the
(asymptotic) positivity parameter of the auxiliary Lévy process.

3.1 Introduction

The study of persistence (or survival) probabilities for stochastic processes is a widely investi-
gated problem and an extensive literature exists on this matter. It consists in estimating the
probability for a given stochastic process to remain below some level (or more generally below
some barrier), at least in some asymptotic regime. For instance, for a general random walk
(Sn)n>0 or a Lévy process (Z;):>0 in R, fluctuation’s theory and the Wiener—Hopf factorization
gives the following characterization, see e.g. [Don07]|. Letting 7%, for z > 0, denote the first
hitting of (Sp)n>0 (resp. of (Zi)i>0) above level z, then ¢ — P(T, > t) is regularly varying
with index —p, p € (0,1), if and only if lim,, % Yr—1P(Sk > 0) = p (resp. if and only if
limy o0 7 [y P(Zs > 0)ds = p). The latter condition is known as Spitzer’s condition.

3.1.1 Persistence problems for additive functionals

In this paper, we consider a one-dimensional cadlag strong Markov process (X¢):>0 with values
in R, and we assume that 0 is recurrent for (X;);>9. We denote by P, the law of the process
starting from Xy = x; we also write P = Py for simplicity. For a measurable function f : R — R,
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Chapter 3. Persistence problems for additive functionals of one-dimensional Markov processes

we consider the following additive functional of (X¢)¢>o:

a= | F(X)ds. (3.1)

We are now interested in the asymptotic behavior of the persistence (or survival) probabilities
for the (non-Markovian) process ((;):>0, i.e. probabilities that the process ¢ avoids a barrier
during a long period of time.

For z > 0, we denote by T, = inf{t > 0, ; > z} the first hitting time of ((¢)¢>0 at the level z.
We aim at describing the asymptotic behavior of the probability P, (7, > t). More precisely we
show that, under some natural conditions on f and (X;);>¢ (presented below in Section 3.2.2),
there exist a persistence exponent 6 € (0, 1), a slowly varying function ¢(-) and a constant V(z)
such that

P(T, > t) ~ V(2)s(t)t™? ast— 00. (3.2)

3.1.2 Overview of the literature and main contribution

The study of persistence probabilities for additive functionals of random walks or Lévy processes
processes has a long history; we refer to the survey [AS15] for a thourough review. Let us here
present some quick (and updated) overview of the literature and outline what are the main
novelties of our paper.

The discrete case: integrated random walks. A question that has attracted a lot of
attention since the seminal work of Sinai [Sin92] is that of persistence probabilities for the
integrated random walk. Let (U;);>1 be i.i.d. random variables and let X,, := >>1*; U;. Then
setting ¢, = > j—1 Xk, Sinai [Sin92] proved that if (X,,),>0 is the simple random walk (i.e. U;
is uniform in {—1,1}), then

P(¢,>0forall 0 < k <n)=<n"'/4,

where u,, =< v, means that there are two constants ¢, ¢ > 0 such that v, < u, < cvy,.

In the case where E[X;] = 0 and E[X?] < +o00, this result has then been extended to include
the case of more general random walks. Vysotsky [Vys10] gave the same =< n~ Y4 asymptotic for
double-sided exponential and double-sided geometric walks (not necessarily symmetric). Dembo,
Ding and Gao [DDG13] gave a general proof for the < n~1/* asymptotic. Finally, Denisov and
Wachtel [DW15] proved the precise asymptotic behavior, i.e. there is some constant ¢g such that

P(Ck20fora110§k§n)~c(m*1/4 as n — 00.

The case where E[X;] = 0 and (X};);>; is in the domain of attraction of an a-stable random
variable with o € (1, 2) is still mostly open. An example of a one-sided random variable X; with
pure power tail is given in [DDG13], for which one has P(¢;, > 0 for all 0 < k < n) < n~? with
0= 0‘2—;1 Let us also mention [Vys14], which gives the sharp asymptotic ~ con™? in the case
of a one-sided random variables (more precisely, right-exponential or skip free), with the same
exponent 6.

Let us stress that in the discrete case, the main focus in the literature has been so far on
intergrated random walks rather than some more general additive functionals of a more general
Markov process. Nevertheless, let us mention a series of article by I. Grama and R. Lauvergnat
and E. Le Page [GLLP18,GLLP20] where the authors study additive functional of discrete-time
Markov chain under a spectral-gap assumption. They show that the probability of persistence
behave like n~1/2 as the simple random walk and they continue the analysis further by proving
local limit theorem for the additive functional conditioned to be positive.
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3.1. Introduction

We do not pursue further in this article the case of an additive functional ¢, = > 1_; f(X,)
of a discrete-time Markov chain (X,,)n>0, but we mention [BB23] which uses a generalization of
Sparre Andersen’s formula to treat general cases where X is symmetric (and skip free) and f is
also symmetric; we also refer to Section 3.2.5 where continuous-time Bessel random walks are
considered. We believe that the methods of the present paper are general and could be adapted
to treat some more general (i.e. non-symmetric) cases.

Integrated Brownian motion and a-stable Lévy processes. Analogously to the discrete
case, the question that first attracted a lot of attention was that of persistence probabilities
for the integrated Brownian motion. Consider (Xt);>0 a standard Brownian motion and let
(= fg Xsds and T, := inf{t,(; > z}. It is then proven in [Gol71,IW94] that one also has

P(T, > t) ~ coz"/0t1/4 as — +o0,

22/3

34/31(2/3 . -
W(F(/S/L)' Let us also stress that there exists an explicit

formula for the density of (7%, Br, ), given by Lachal [Lac91].

The case where (X¢):>0 is a strictly a-stable Lévy process has been treated more recently.
First, Simon [Sim07] proved that if o € (1,2) and (X3)¢>0 is spectrally positive, then, as t — oo
we have P(T, > t) = t~0+°() with § = 2=l (Note that this is the same exponent as in the
case of random walks mentioned above.) In the case a € (0,2] and if (X;);>0 has a positivity

parameter g := P(X; > 0), Profeta and Simon [PS15] proved that, as ¢t — oo,

with an explicit constant ¢y =

P(T, > t) = ¢~ 0+o()) ith g=— 29
(T, > t) wi a2

These results do not include the case of general Lévy processes (X¢):>0. A natural conjecture,
which is still open, is that the above asymptotic behavior for the persistence probabilities re-
mains valid if (X¢)s>0 is in the domain of attraction of an a-stable Lévy process with positivity
parameter p.

Let us also mention the work [AD13] which deals with fractionally integrated Lévy processes
G = J§ K(t — s)X,ds for some function K : [0,00) — [0,00) that includes the specific example
K(s) = %sﬁ_l (corresponding to [S-integration if 5 is an integer). They show that if (X)s>0
admits exponential moments, then the persistence exponent 63 is the same as if (X;)s>0 were a
Brownian motion; additionally the persistence exponent g is non-increasing in £3.

Homogeneous additive functional of (skew-)Bessel processes. In the above, we only
accounted for the literature concerning integrated processes, i.e. additive functionals (; with the
identity function f(x) = x. The case of a more general function f has also been considered,
starting with the work of Isozaki [Is096].

First, in the case where (X;):>0 is a Brownian motion, Isozaki considered the function f is
homogeneous (and symmetric), given by f(x) = sign(z)|z|” for some v > 0 and proved that
P(T, > t) < t~'/* as t — +oo. This work was inspired by the one of Sinai [Sin92] and exploits
the underlying idea that the fluctuations of ; are related to the one of Z; := (;, where 7 is the
inverse local time time at 0 of the Brownian motion. Observing that Z; is a Lévy process for
which fluctuation theory is well known, Kotani managed to solve the persistence problem for
(¢ by establishing a Wiener-Hopf factorization for the bi-dimensional Lévy process (7¢, Z¢)i>0-
Later, Isozaki and Kotani [IK0O] considered the case where f is homogeneous but possibly
asymmetric, i.e. f(z) = |[7|7(c+1{z>0} — ¢~ 1{z<0y) for some ¢y, c. > 0and v > —1: they prove
the precise asymptotic estimate P(7, > t) ~ C.t=P/? as t — +00, where p is some asymmetry
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parameter that depends (explicitly) on v and the ratio ¢y /c—. Note that the tools used in [IK0O]
are somewhat analytical and do not rely on the Wiener—Hopf factorization established by Isozaki
in the previous article [Is096].

Let us also mention the work of McGill [McGO08] who considers the case of a Brownian
motion, and a generalized function f taking f(z)dr = 1g,>0ymy(dz) — Lzcoym—(dx), with m
and m_ being Radon measures respectively on R, and R_. The question raised in [McGO08] is
to give the asymptotic behavior of P(T, > t) as z | 0, when ¢ is fixed, which is slightly different
from our persistence problem. Using excursion theory of the Brownian motion, McGill proves,
under some technical conditions on my, that P(7, > t) ~ CyV(z) as z — 0 where V is the
renewal function of the ladder height process associated to (Z;)i>0 (see (3.6) for a definition),
generalizing results in [IKO00].

More recently, Profeta [Pro21] treated the case where (X;);>0 is a skew-Bessel process with
dimension § € [1,2) and skewness parameter n € (—1, 1), i.e. roughly speaking a Bessel process
of dimension § € [1,2) which has some asymmetry  when it touches 0 (see Example 3.2 for a
proper definition). Profeta also considers the case of a homogeneous but possibly asymmetric
function f, namely f(z) = [#|7(c+1{z50y — ¢-1{z<0y) for some ci,c > 0 but his work is
restricted to the case v > 0. He proves that P(T, > t) ~ C.t=% as t — oo, with some explicit
expression for the constant C, and the exponent 0 (see section 3.2.5 below). Actually, [Pro21]
goes further and provides some explicit expression for the law of different quantities related to
this problem.

Let us also mention the work of Simon [Sim07], which deals with the additive functional of a
strictly a-stable Lévy process (X¢)i>0 with o € (1,2] and a (symmetric) homogeneous functional
f(z) = sign(z)|z|” for some v > —§(1 + ). Letting 6 = %=1, the first result of [Sim07] is that
one always have P(T, > t) < Ct™"; the second result is that if (X;);>0 is spectrally positive,
then P(T}, > t) = ¢t~ 0+o(1),

Our main contribution. Before we briefly describe our contribution, let us make a few
comments on the above-mentioned results.

First of all, all the results on persistence probabilities for additive functionals of processes
are limited to: (i) self-similar Markov processes, i.e. Brownian motion, (skew-)Bessel processes
and strictly stable Lévy processes; (ii) functions f that are homogeneous, i.e. also enjoy some
scaling property. These two points are important in the proofs, since it immediately entails some
scaling property for the additive functional ((¢)¢>0; which is then easily seen to be self-similar.

Second, the method of proof of Isozaki [Is096] relies on an excursion decomposition of the
process (X )¢>0, together with a Wiener-Hopf decomposition for the auxiliary process (7, Z¢)>0.
Further works, in particular [IK00, McGO08], did not completely rely on this decomposition to
obtain the sharp asymptotic behavior (and in particular the constant C,), but rather on a more
analytical approach. For instance, Profeta’s approach in [Pro21] uses exact calculations to derive
the densities of various quantities of interest; the exact formulas available when dealing with
Bessel processes then becomes crucial.

Let us keep the following example in mind (from [Pro21]), that we will use as a common
thread:

Example 3.1.
(i) (Xt)t>0 is a skew-Bessel process of dimension 6 € (0,2) and skewness parameter n € (—1,1).
(ii) f is homogeneous f(x) = |2[7(ct+1iz50y — c-1fz<oy) for some vy € R and cy,c— > 0.

With that said, here are the main contribution of our paper

o We treat the case of a general Markov process (X¢):>0 (with some minimal assumption);
in particular, we only need asymptotic properties on (X¢):>0. Note that we also treat the
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case where (X;);>0 positive recurrent (e.g. an Ornstein-Uhlenbeck process), which seems
to have been left outside of the literature so far.

o We treat the case of a general function f; in particular, we only need asymptotic properties
on f. In the case of Example 3.1, we also extend the range of parameters where (3.2) holds,
compared to [IK00,Pro21], see Section 3.2.5.

Another contribution of our paper is that it somehow unifies all the above results, by using a
probabilistic approach. We push the excursion decomposition employed in [Is096, IK00] (our
main assumption on (X¢):>0 ensures that it possess an excursion decomposition) and we prove
on a slightly more general Wiener-Hopf factorization for the bivariate process (7¢, Z¢)i>0. In
particular, this provides a probabilistic interpretation of the exponent 6 in (3.2), which we
decompose into two parts: § = [p, with (i) 5 € (0,1] which descibes the scaling exponent of
the local time of (X¢)s>0 at level 0 (we have § =1 — /2 in Example 3.1); (ii) p € (0,1) which
is an asymmetry parameter, namely the asymptotic positivity parameter of (Z;):>o (explicit in
Example 3.1, see (3.10)). Our approach also provides a natural interpretation of the constant
V(z) in (3.2).

3.2 Main results

3.2.1 Main assumptions and notation of the article

Throughout this paper, we will consider a strong Markov process (Q,F,(Ft)t>0,(Xt)t>0,(Pz)zer)
with cadlag paths and valued in E C R. We assume that the filtration is right-continuous and
complete and that the process is conservative, i.e. it has an infinite lifetime P,-a.s. for every
z € R. We also assume that 0 € E and we define ((;);>0 as in (3.1), with a function f that
verifies the following assumption.

Assumption 3.1. The function f is measurable and locally bounded, except possibly around 0.
It is such that a.s. |(| < 0o for any t > 0. Moreover f preserves the sign of x, in the sense that
f(x) >0 ifx >0 and f(z) <0 ifz <0. Finally, we assume that f(0) = 0.

As far as the Markov process (X;)¢>0 is concerned, we assume that 0 is regular for itself,
that is Po(np = 0) = 1, where ny = inf{t > 0, X; = 0}. We also assume that 0 is recurrent for
(X¢)t>0. We make the following important assumption on (X;);>o (the most restricting one).

Assumption 3.2. Under Py, the process (X¢)i>0 is a.s. not of constant sign. Additionally, it
cannot change sign without touching 0.

These assumptions allow us to introduce the local time (L;);>0 of the process (X)i>0 at
level 0. Its right-continuous inverse (7¢);>0 is a subordinator and we denote by & its Laplace
exponent:

t®(q) = —logE[e 9]  for any ¢ > 0. (3.3)

We then introduce the process (Z;)i>0 = ((r,)e>0 which we will refer to as the Lévy process
associated to the additive functional ((;);>0. Indeed, (Z)¢>0 is a pure jump Lévy process with
finite variations and should be understood this way:

Zyi=Cr = /Tt FX)ds =3 [ (X du. (3.4)
0 s<tTs—

We also introduce g, the last zero before t, and I;, the contribution of the last (unfinished)
excursion:

t
gri=sup{s <t, Xy =0} and L;i=(—(, = [ f(X,)dr. (3.5)
gt
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To state our theorems, we need to introduce the renewal function V(-) of the usual ladder height
process (Hi)¢>0 associated with (Z;)¢>0, see Section 3.4.3 for a proper definition of (H¢)¢>o:

V(z) = /0 TP(H, < 2)dt,  zeR,. (3.6)

3.2.2 Main results I: persistence probabilities

There are two main assumptions under which we are able to obtain the exact asymptotic behavior
for the persistence probability. The first one corresponds to the case where 0 is positive recurrent
for (X¢)¢>0, in which case the last part of the integral, i.e. the term I; (see (3.5)), becomes
irrelevant. The second one is a bit more involved since the last term I; plays a role; the
assumption is discussed in more detail in Section 3.2.3 below.

Assumption 3.3. The point 0 is positive recurrent for (Xi)i>0.

Under this hypothesis, we have a necessary and sufficient condition so that (3.2) holds. This
condition is the analog of Spitzer’s condition for Lévy processes or random walks.

Theorem 3.1. Suppose that Assumption 3.3 holds and let p € (0,1). The two following asser-
tions are equivalent:

(i) limysoo T [T P(¢s > 0)ds = p
(i) For any z > 0, the map t — P(T, > t) is regularly varying at oo with index —p.

Moreover, if (i) or (ii) holds for some p € (0,1), then there exists a slowly varying function (-)
such that for any z > 0
P(T, > t) ~V(2)s(t)t " ast— oc.

For instance, Theorem 3.1 applies to an Ornstein-Uhlenbeck process (X¢)>0, see Section 3.2.5
below. Let us stress that the slowly varying function ¢(-) and the so-called renewal function V(-)
can be described explicitly in some cases, see Section 3.2.5. In particular, if the process (Z;)i>0
is symmetric, for instance if (X;);>o is symmetric and f is odd, then p = 3 and the slowly
varying function ¢(-) is constant (the expression in (3.32) is equal to 1).

Remark 3.1. It is shown below (see Theorem 3.4) that for any p € (0,1), condition (i) above
is equivalent to %fot P(Zs > 0)ds — p as t — oo. Therefore, it is also equivalent to the stronger
condition P(Zy > 0) — p as t — o0, see for instance [BD97]. It is not clear whether or not these
conditions are equivalent to P((; > 0) — p as t — oco. Condition (i) of Theorem 3.1 is satisfied
if, for instance, there is some central limit theorem for ((;)i>0; we refer to [Bét21, Thm 5 and
7] for such instances, in the case of one-dimensional diffusions.

We now turn to the case where 0 is null recurrent: our assumption is the following.

Assumption 3.4. The point 0 is null recurrent for (X¢)i>0. Moreover, there exist o € (0,2],
g € (0,1), some functions a(-) and b(-) that are regularly varying around 0 with respective
indices 1/a and 1/6 such that the following convergence in distribution holds (for the Skorokhod

topology):
(Tth, Zf)

where (10, Z9)i>0 is a Lévy process. We additionally assume that a(b=1(q))I. converges in dis-
tribution as ¢ — 0, where e = e(q) is an independent exponential random variable of parameter
q >0 and b~! is an asymptotic inverse of b.

= (bt)mynamZun) D (7. Zto)tzo as h — 0,

t>0 >0
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Let us stress that Assumption 3.4 is about the auxiliary process (74, Z;);>0 (and not directly
about the process (X;);>o and the function f), which may be difficult to verify. We present
below in Section 3.2.3 some conditions on (X;);>o and f for Assumption 3.4 to hold; these
conditions are easier to verify in practice.

Remark 3.2. The limiting process (10, Z?)i>0 necessarily satisfies the following scaling property:

d , _ _
(Tto, Zto)tzo =(c 1/’873,0 1/ath)t20 forany c>0.

Also, the fact that (b(h)Tp)e>0 converges in distribution to a B-stable subordinator (1f)eo is
actually equivalent to the fact that the Laplace exponent ®(q) of (1¢)1>0 is regularly varying with
exponent € (0,1) as q | 0. In that case, b(-) is an asymptotic inverse of ®(-) (up to a constant
factor), see Section 3.6.

Theorem 3.2. Suppose that Assumption 3.4 holds and that (Z));>o has positivity parameter
p=P(Z) >0) € (0,1). Then there exists a slowly varying function s(-) such that, for any z > 0,

P(T, > t) ~ V(2)s(t)t PP ast — oo,
where B € (0,1) is given by Assumption 3.4.

Let us observe that Example 3.1, where (X¢);>0 is a skew-Bessel process and f is homo-
geneous, verify our Assumption 3.4. Indeed, if v > —d, the bivariate Lévy process (7¢, Z¢)t>0
directly enjoys a ((,a)-scaling property (and similarly for [;) with § = 1 — §/2 and a =
(2—19)/(2+7) € (0,1), so it trivially satisfies Assumption 3.4. Thus, Theorem 3.2 applies and
the parameter p is also explicit; we refer to Section 3.2.5 for further details. The advantage of
our result is that we are able to treat a general class of Markov processes (X¢):>o (for instance
that are “asymptotically skew-Bessel processes”) and of function f (that are “asymptotically”
homogeneous).

3.2.3 Main results II: application to one-dimensional generalized diffusions

In this section we apply our result to a large class of one-dimensional Markov processes. We
recall the It6-McKean [IMJ63,IMJ96] construction of generalized one-dimensional diffusions,
based on a Brownian motion changed of scale and time. Our main goal is to provide conditions
on the function f, the scale function s and speed measure m that ensure that Assumption 3.4
holds.

Let m : R — R be a non-decreasing right-continuous function sucht that m(0) = 0, and
s : R — R a continuous increasing function. We assume that s(R) = R, s(0) = 0 and abusively,
we also denote by m the Radon measure associated to m, that is m((a,b]) = m(b) — m(a) for
all @ < b. We introduce m® the image of m by s, i.e. the Stieltjes measure associated to the
non-decreasing function mos~!, where s~! is the inverse function of 5. Then, we define A} the
continuous additive functional of a Brownian motion (By);>o given by

AW — / Limé(dz),
R

where (LY )i>0.cr denotes the usual family of local times of the Brownian motion, assumed to
be continuous in the variables x and t. We let p; the right-continuous inverse of A?‘s, and we set

Xt = 571(Bpt)'

Then it holds that (X;):>¢ is a strong Markov process valued in supp(m), where supp(m) is the
support of the measure m. We refer to Section 3.7 for more details. We will therefore assume
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that 0 € supp(m) and in this framework, 0 is a recurrent point for (X;);>0. When supp(m) is
some interval J, (X¢)¢>0 is a one-dimensional diffusion living in J and its generator is formally
given by

o dd

~ dmds’
Example 3.2. A skew-Bessel process of dimension 6 € (0,2) and skewness parameter n €
(—=1,1), is the linear diffusion on R whose scale function s and speed measure m are defined as

1 —sgn(x)

M ..12—6 1 5—1
T and wm(dz) = Lrpzov|z|® "da.
5 5l (dz) s Ed

s(x) = sgn(x) 1 —sgn(z)n

Informally, this process can be constructed by concatenating independent excursions of the usual
Bessel process, flipped to the negative half-line with probability (1 —n)/2.

Example 3.3. When m*® is a sum of Dirac masses, then (X¢)i>0 is a birth and death process,
see [Sto63]. For instance, if s =id and m =Y, 0p, then (Xi)i>0 is a continuous-time simple
random walk on 7Z.

For a function f as in Assumption 3.1, we also set dm/ := f o s 'dm®. Note that m/ is a
signed measure (recall that f preserves the sign). We suppose in addition that fos~! is locally
integrable with respect to m® so that m/ is also a Radon measure. We will also denote by m/
the associated function, i.e. m/(z) = [ f o s~ !(u)m*(du), which is non-decreasing on R} and
non-increasing on R_.

We now give practical conditions on the scale function s, the speed measure m and the
function f so that Assumption 3.4 holds. We will consider three different assumptions.

Assumption 3.5. There exist 5 € (0,1), a slowing variation function As at +oo, and two
non-negative constants m_, my with m_ +my > 0, such that

{mﬁ(x) ~ Ay (2)z!/ P71 as x — +00,

m® () ~ —m_Ag(|z])]z] /P as r — —o0.

Assumption 3.6. The function s is C', and there exist a constant m/(c0) € (0,00) such that
limg 400 mf () = mf (c0) and the function m/(c0) — mf belongs to L?(dx).

Assumption 3.7. There exist o € (0,2), a slowing variation function Ay at 400, and two
non-negative constants f_, f+ with f— + f+ > 0, such that according to the value of a;, we have

(i) If a € (0,1), then

{mf(x) ~ f+Af($)$1/a_1 as v — 400, (37)

m/ () ~ f_Af(\x|)\x|1/a*1 as x — —0Q.

(it) If a =1, then the following limit exists limy o W(mf(l/h) —mf(=1/h)) = c and

lim Af(iuh)(mf (2/h) —w! (1/h)) = f1 log z, vz > 0, .
}lg%m(mf(m/h) —m/(=1/h)) = f_log|z|, Yz < 0.

Note that if the limit c exists, this implies that fi = f_; we will assume for simplicity that

f+=r-=1
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(i4i) If o € (1,2), then there is a constant m/ (00) € (0, 00) such that lim, 1 m/ (z) = m/(c0)
and

{mf(oo) —wf(z) ~ f+Af(x)a:1/a71 as r — 400, (3.9)

m/ (c0) — m/ (z) ~ f_Af(]m\)\a:\l/a_l as x — —0Q.

Note that if Assumption 3.6 holds, then Assumption 3.7 can not hold and conversely. The main
results of this section are the following.

Proposition 3.1 (Gaussian case). Suppose that Assumptions 3.5 and 3.6 hold. Then, Assump-
tion 3.4 is verified with B € (0,1), a = 2, and the following choice for a(-), b(+):

a(h)y =hY2,  b(h) = hYP/A(1/h).
As a consequence, Theorem 3.2 holds under Assumptions 3.5 and 3.6, with p = P(Z? > 0) = 1/2.

Proposition 3.2 (a-stable case, a € (0,2)). Suppose that Assumptions 3.5 and 3.7 hold. Then,
Assumption 3.4 is verified with a € (0,2), p € (0,1) and the following choice for a(-), b(-):

a(h) = WM /Ap(1/R),  b(h) = h'/P[Ag(1/R).

As a consequence, Theorem 3.2 holds under Assumptions 3.5 and 3.7, with the following asym-
metry parameter p = P(ZY > 0),

fE-re .
Ly P 1,
p= E + 1 arctan (1) where 9 = { J¥H/2 an(a/2) fa#
2 7 c ifa=1.

3.2.4 Main results I1I: starting with a non-zero velocity

In this section, we are interested in the hitting time of zero of the additive functional z + (,
with some initial velocity Xo = x. A motivation to consider such a question is to construct
the additive functional conditioned to stay negative; of course, the only reason we deal with a
condition to remain negative (and not positive) is because we have treated above the asymptotics
of P(T, > t) for z > 0.

To avoid the introduction of lengthy notation, we only give an outline of our results, sum-
marizing the content of Section 3.8: the precise statement of the results are presented there. We
restrict ourselves to the case where (X;);>¢ is a regular diffusion process, valued in some open
interval J containing 0. We consider the process ((;, X¢)i>0 as a strong Markov process. For a
pair (z,7) € R x J, we denote by P, ,) the law of (¢;, X;)i>0 when started at (z,), i.e. the
law of (2 + [y f(Xs)ds, X;)>0 under P,. Note that the previous sections were dealing with the
probability P(T, > t) = P(_ ¢)(To > t) for 2 > 0. Roughly, we derive two kind of results:

(i) We identify some finite function h : R x J — R4 such that, under Assumption 3.3 or 3.4,
we have for any (z,z) € R x J\ {(0,0)},

P, . (To > t) ~ h(z,7)s(t) t7P% ast — oo,
for some slowly varying function ¢ (which does not depend on (z,z)) and some parameters
g € (0,1, p € (0,1) (given by the assumption). We refer to Theorem 3.6 for the precise

statement.
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(ii) Secondly, we show that the function & is harmonic for the killed process ((iary s Xeaty, )0,
see Corollary 3.3. This classicaly enables us to construct the additive functional conditionned
to stay negative, through Doob’s h-transform, see Proposition 3.12. This result generalizes the
previous work [GJW99] on the integrated Brownian motion conditioned to be positive and have
the same flavor of some results from Grama-Lauvergnat-Le Page [GLLP18] in a discrete setting.
It is also related to Profeta’s article [Prol5] where he investigated other penalizations for the
integral of a Brownian motion.

3.2.5 A series of examples

In this section, we provide several examples of application to our main theorems. We start with
examples where Assumptions 3.3 or 3.4 are easy to verify; we then turn to examples where the
reformulation in terms of Assumptions 3.5, 3.6 or 3.7 are useful.

Ornstein-Uhlenbeck. Let (X¢);>0 be an Ornstein-Uhlenbeck process and f be some odd
function. Then 0 is positive recurrent for (X;);>o and since the Ornstein-Uhlenbeck process
started at 0 is symmetric (in the sense that the law of (—X;)¢>0 equals the law of (X;);>0) it is
clear that P(¢; > 0) = 1/2 for any ¢ > 0. Therefore Theorem 3.1 holds with p = 1/2 and the
slowly varying function ¢ is constant (the term (3.32) is equal to 1 since Z; is symmetric).

Skew-Bessel and homogeneous functional, back to Example 3.1. Let (X;):>0 be a
skew-Bessel process of dimension § € (0,2) and skewness parameter n € (—1,1), as defined in
Example 3.2 by its scale function s and speed measure m. This process can be constructed by the
following informal procedure: concatenate independent excursions of the (usual) Bessel process,
flipped to the negative half-line with probability (1 — n)/2. Let c4,c_ be positive constants
and consider the function f defined as f(x) = (c+1{m>0} - c,l{z<0}> |z|7, with v > —d. The
persistence probability of ((;)¢>¢ is studied in Profeta [Pro21] (for ¢ € [1,2) and v > 0).

The condition y > —4¢ is here to ensure that |(;| < oo a.s. for all £ > 0. One can verify in this
case that (7¢):>0 is a B-stable subordinator where § = 1—4§/2. By the self-similarity of the skew-
Bessel process, it holds that the law of (7, X¢)¢>0 is equal to the law of (¢ V/Bry, C_1/2BXcl/ﬁt)tZ()
for any ¢ > 0. This entails that the law of (7, Z;)>0 is equal to the law of (C_l/ﬂTct, c_l/o‘th)tZO
for any ¢ > 0, where a = (2 —6)/(y+2) € (0,1). It also entails that for any ¢ > 0, the law of
t=P/], is equal to the law of I;. These facts imply that Assumption 3.4 holds with a(h) = hi/e
and b(h) = h'/# (with an equality rather than a convergence in distribution); one can also verify
Assumptions 3.5 and 3.7 directly with the expressions of the scale function s and speed measure
m (which are pure powers, so the scaling properties are clear).

Therefore, Theorem 3.2 holds with § = 1—¢/2 and p = P(Z; > 0). The positivity parameter p
can be computed, see for instance Zolotarev [Zol86, §2.6]: we have

L+n—(1—n)(5)”
. 1 n arctan (v tan(ma/2)) where 9 — ( )(ct) . (3.10)
2 ma Tyt (- ()

The computation of 9 can be done as in [Bét21, Lem. 11]. Finally, since (Z;)i>0 is a stable
process, the renewal function V is such that V(z) = by 2% for some constant by > 0. It is also
clear that, by self-similarity, the slowing varying function ¢ is constant. Hence, we fully recover
and extend the results of Profeta [Pro21] to § € (0,1) and v € (=4, 0].
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Kinetic Fokker-Planck. Let (X;);>¢ be a solution of the following stochastic differential
equation

ot X
Xe=x0— = ds+ B
t= 2o 2/01+X528+ t
where (B¢):>0 is a Brownian motion, 4 > —1 and xp € R. The scaling limit of the process
()0 = ([ Xsds)i>0, i-e. with the choice f = id, is studied in [FT21,LP19,NP15, CNP19).
The corresponding scale function and speed measure are given by

5(3:):/ (14 0%)*2dv  and m(;p):/ (1 4 v%)~*2do,
0 0

see for instance [FT21]. Then one can check that:

(i) If 0 € (—1,1), Assumption 3.5 is satisfied with 8 = 2(u+1) € (0,1) and Assumption 3.7
is satisfied with o = %(,u +1) € (0, %) Since m, s and f are odd functions, Theorem 3.2
holds with g = %(,u +1), p= % and a constant slowly varying function ¢(-).

(ii) When p > 1, 0 is positive recurrent for (X;);>0 and since z + x/(1 + z?) is odd, the
process ((t, Xt)i>0 is symetric (when Xo = 0) so that P(¢; > 0) = 1/2 for any ¢t > 0.
Therefore Theorem 3.1 holds with p = 1/2 and a constant slowly varying function ¢(-).

Note that our results would also be able to deal with ({;);>0 = (J§ f(Xs)ds)i>o for more general
functions f.

Non-homogeneous functionals of Bessel processes. The previous examples are limited
to the case where a € (0,1) in Assumption 3.4 (or Assumption 3.7). Let us give here an example
where one has « € [1,2]; we consider a simplified example for pedagogical purposes.

Consider a symmetric Bessel process (X;);>0 of dimension ¢ € (0,2), i.e. a diffusion with
scale function s(z) = Si%(;)m?*‘s and speed measure m(dzx) = 1{I¢0}]aﬁ\5*1dx. Then, one can
check that Assumption 3.5 holds with 8 =1 — /2. Now, let f be some odd function such that:
fol f(u/ @0y /B=1du < 400, for instance if f is bounded, to ensure that f o s~ ! is locally
integrable with respect to m® (so that ¢; < +oo for all t > 0); f(z) ~ sign(x)|z|” as x — oo, for
some v € R. Then, we can check that

(i) if v > —(1 4 ¢) then Assumption 3.7 holds with a = (2 — §)(yv 4+ 2) € (0,2) and f = f_
(by symmetry);

(ii) if v < —(1 4 6), then Assumption 3.6 holds.

In all cases, we have the asymptotic behavior P(T, > t) ~ coV(2)t 7/, since p = 1 and ¢(-) is
constant, by symmetry. Note that our Assumption 3.6 does not deal with the case v = —(1+9),
but the result should still hold in that case (one would need to deal with non-normal domain of

attraction to the normal law, which would require further technicalities).

Continuous-time birth and death chains (and Bessel-like walks). Let (X;),>0 be a
birth and death process on Z with transition probabilities given by

]P(XnJrl =14+ 1|Xn+1 = ’L) =Dp; € (0, 1) and P(Xn+1 =1q— 1’Xn+1 = Z) =q=1-—gq,

for i € Z. We then define X; := X Ny, with (N¢)¢>0 an independent Poisson process of unit
intensity. Then (X¢):>, is a continuous-time birth and death chain, and can be described as a
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generalized diffusion associated to a scale function s and a speed measure m as follows; we refer
to Stone [Sto63] for more details. Let us define Ay = 1 and

i 0
A=TT %, wi>1 and A= [ 2 vi<-1.
kzlpk’ k=i+1 9k

The scale function s : R — R is increasing piecewise linear and such that (i) = z; for i € Z,
with (z;);ez defined iteratively by zo = 0 and A; = z;41 — x;, Vi € Z. The speed measure m is

defined as 1 )
m:.= Z <2Al + 2A171)(51

i€EZ

In a companion paper [BB23|, the first two authors use an elementary approach to obtain
two-sided bounds for the persistence of integrated symmetric (discrete-time) birth and death
process with an odd function f; they apply their results to symmetric Bessel-like random walk
(see [Alell] for a recent account). Let us now observe that we can apply our machinery to
continuous-time Bessel-like random walks and obtain sharps asymptotics for the persistence
probabilities P(¢s < 0 for all s < ).

We define a symmetric Bessel-like random walk as a birth and death process with transition
probabilities

1

1 + & . .
pirzi(l—um ’), fori>1, pi=q-fori<-—1, Po=q=7-

Here, 1 is a real parameter and ¢; is such that lim; ., &; = 0. Then, we have that the process
is recurrent if x> 1 and null-recurrent if © € (—1,1); the case p =1 depends on (&;);>0.

(i) In the case p > 1, by Theorem 3.1 we directly obtain the asymptotics
P(T, > t) ~ coV(z)t~1/? ast — oo (3.11)

(We have p = % and ¢(-) constant thanks to the symmetry.)

(ii) In the case u € (—1,1), we use the following asymptotics: there exists a constant Cp and
a slowly varying function L(i) = exp(— Y %_; k) such that A; ~ Coi*L(i) as i — +oo (and
symmetrically for i — —o0). From this asymptotics we obtain that s(i) = z; = Zﬁ;% Ay ~
ClHil™ML(i) as i — +o0o and also that m(z) ~ CJ z'™#L(z)~! as  — oco. One can therefore
show that Assumption 3.5 is satisfied with 8 = (1 +pu) € (0,1) (and m4 = m_). If we consider
the function f(x) = z, Assumption 3.7 is satisfied with o = %(1 +p) and p = 3 (by symmetry).
Finally, Theorem 3.2 states that

P(T, > t) ~ V(2)s(t)t" /A agt — o0, (3.12)

with ¢ some slowing variation function (depending on (&;)i>0).

Let us stress that this matches the results from [BB23] in the discrete case and additionnally
gives the sharp asymptotics of the persistence probabilities; obviously one could consider a
function f(z) = sign(x)|z|” with v € R without affecting the conclusion (the exponent a of
Assumption 3.4 does not affect the persistence exponent # in the symmetric case).

3.3 Ideas of the proof and further comments

3.3.1 Ideas of the proof: path decomposition of trajectories

Recall from (3.5) that I; = (; — (g,, we introduce

=G amd A= (G G (3.13)
0,t
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i} -

Figure 3.1: Graphical representation of the trajectory of a realization of ({s)o<s<: and of its decomposition.
The above is a simulation in the setting of Bessel-like random walk (see Section 3.2.5): (X¢):>0 is a (symmetric)
Bessel-like random walk with g = 0.4, i.e. 8 = 0.7, and with the function f(z) = sign(z). The dots represent the
returns to 0 of (Xs)o<s<¢. In this particular realization, we have I; > 0 and A; < 0.

We refer to Figure 4.1 for an illustration of (;, &, &g, , It and A;. Then, to study the probability
P(T, > t) =P(& < z), the main idea is to decompose it into two parts: for any z > 0, we have

P(& < 2) =P(&g <2, A <0) +P(&y, + Ay < 2,0 <Ay < 2). (3.14)

(The second term will turn out to be negligible.) As a first consequence of (3.14), we see that
P&y, < 2,A: <0) < P(&, < 2) <P(&, < 2z, At < z), from which one easily gets that

P(&g, < 2) <P(& < 2) <P(&, < 2).

with ¢, = P(I; < 0) € (0,1). We will show that we actually have some constant ¢; € (0, 1] such
that
P& < 2) ~ a1P(&y, < 2) ast — 00. (3.15)

We will then control the probability P(§;, < z) by using the fact that &, = supj Zs (see
Remark 3.3 below).

A standard trick to gain independence. To handle the quantities in (3.14), we will use the
following trick: letting e = e(q) be an exponential random time e with parameter ¢ independent
of (X¢)i>0, we will look at the quantity P({. < z) instead of looking directly at P(§ < z).
This corresponds to taking the Laplace transform of P(§; < z) and we loose no information by
doing this: indeed, a combination of the Tauberian theom and the monotone density theorem
(see [BGT87, Thms. 1.7.1 and 1.7.2]) tells us that having an asymptotic of P({, < z) as ¢ — 0
is equivalent to having an asymptotic of P(§ < z) as t — oc.

The first advantage of this trick is that it allows us to factorize functionals of trajectories
before time g. and functionals of trajectories between times g. and e. The precise statement is
presented in Proposition 3.3, which is inspired by [SVY07]. This enables us to operate a first
reduction, treating I, separately from 4., (4. More precisely, using Proposition 3.3 below, by
independence, the first term in (3.14) (with ¢ replaced by an exponential random variable e) can
be rewritten as

P(&g. <y, Ae <0) =P(&, <y, le <&, — o) = E[Fr.(&. — Cge)1{£g€<y}] )
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where F7, is the c.d.f. of I..

Wiener—Hopf factorization. A second key tool is a Wiener—Hopf factorization for the bivariate
Lévy Process (¢, Z¢)t>0, that among other things allows us to obtain the joint distribution
of &, and &, — (4., see Corollary 3.1 below. In particular, it shows that £, and &, — (4 are
independent, so (3.16) can further be decomposed as

P(&g. <y, Ae <0) =E[F1,(§g. — (o) [P (&g <y) = P(Ac <0)P(&, <y)- (3.16)

From this, we will be able to prove that P({ < y) ~ c1P(§,, < t) as ¢ | 0, i.e. (3.15), where the
constant ¢ is ¢; = limgoP(le < &, — (4.) € (0,1]. Moreover, the Wiener-Hopf factorization
will also help us obtain the asymptotic behavior of P(§,, < y) as ¢ | 0.

Conclusion. With this picture in mind, we split our results into two categories, that correspond
to Assumptions 3.3 and 3.4:

(i) If X is positive recurrent. Then, lim; %gt =1 and I; will typically be much smaller
than &;, — (g, as t = 00, so limg o P(le < &g, — (g.) = 1: we will have ¢; = 1 in (3.15), that is
P& < y) ~ P(&. < y) as g L 0. Loosely speaking, the part of the trajectory between time g;
and t will have no impact on the behavior of the persistence probability. Then, the behavior of
P(&,. < y) is studied thanks to the Wiener-Hopf factorization, with the assumption that (Z;);>0
satisfies the so-called Spitzer’s condition.

(ii) If X is null recurrent then there are two cases, depending on whether o« = 2 or a € (0, 2)
in Assumption 3.4 (or corresponding to Assumptions 3.6 and 3.7). First, if (Z;)i>¢ is in the
(normal) domain of attraction of a normal law, then also in that case I; will typically be much
smaller than £, — (4, as t — oo and we again have limg o P(l, < &, — (;.) =1, that is ¢p =1
in (3.15). Second, if (Z;)t>0 is in the domain of attraction of some a-stable law, a € (0,2),
then under Assumption 3.4 we have that limg oP(lo < & — () =PI < W) =:¢1 € (0,1),
where I, W are independent random variables, the respective limits in law of a(b~!(g))I. and
a(b=1(q))(&;. — ¢5.)- Then, the behavior of P(¢,, < y) is again studied thanks to the Wiener—
Hopf factorization, with the assumption that (7;);>0 is in the domain of attraction of a stable
subordinator.

3.3.2 Comparison with the literature

We now discuss the novelty of our results and techniques and compare them with the existing
litterature.

Let us first start with the work of Isozaki [Iso96], which treats the case of integrated powers
of the Brownian motion. Isozaki first uses the following Wiener-Hopf factorization of (7, Z;)¢>0.
If e = e(q) denotes an independent exponential random variable and S¢ = supy 4 Zs, then the
product of the Laplace transforms of (7, S.) and (7., Z, — Se) can be expressed in terms of the
characteristic function of (74, Z)¢>0. The rest of Isozaki’s method is somehow more analytic
and involves inversion of Fourier transforms. Also, he exploits deeply the self-similarity of the
Brownian motion. Of course, our work has been inspired by [Is096], but regarding the Wiener—
Hopf factorization, we go one step further. If we set G; = sup{s < t,Z; = S;}, then we
are able to show that the law of (G, 7q,,Se) and (e — Ge, Te — 7., Ze — Se) are independent,
infinitely divisible and can be expressed with the law of (7, Z;);>0. This enables us to the study
the quantities of interest in the spirit of fluctuation’s theory for Lévy processes. We refer to
Subsection 3.4.3 and Appendix 3.A for more details.

Let us now discuss the work of McGill [McGO8], which seems to be the closest to our work.
McGill considers general additive functionals of the Brownian, i.e. (¢ = [p L¥m(dz) where
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(Lf)t>0,z¢er is the family of local times of the Brownian motion and m(dz) = 1,>0ym+ (dx) —
1{z<oym—(dz) is a signed measure. With the above notation, he caracterizes the behavior of
P(& < z) as z — 0, for a fixed ¢ > 0; whereas we study P(§. < z) when ¢ — 0, for a fixed z.
Let us quickly explain the content of [McGO8|. First, if we fix ¢ > 0 and set v(z) = P(& < 2),
he establishes the following identity:

v(z) = /Z V(dy) V(d)k(z —y — z), (3.17)
0 R_

where V denotes the dual renewal function, V(dz) and V(dz) the Stieltjes measures associated
with the non-decreasing function V and V and the function k depends on v and on ¢g. This
identity is derived using martingale techniques and tools from the excursion theory of (Z;)i>0
below its supremum. With this key identity at hand, McGill proves under some technical
conditions his main result: v(z) ~ C(¢q)V(z) as z — 0, where C(gq) is some unknown constant.
We emphasize that we can (more or less) recover (3.17) and his main results from our work.
Our interpretation of (3.17) is the following: the random variable &, can be decomposed as

fe:fge—FAe\/O,

where &, and A, := I, — (§. — (y.) are independent, see (3.13). Our bivariate Wiener-Hopf
factorization yields the following result (see Section 3.4.4): P(&, € dz) = C(q)V4(dz), where
the constant C(q) is known and V), is a non-decreasing function, which is close to V in the sense
that for any fixed z > 0, V,(z) increases to V(z) as ¢ — 0. Then, we claim that we are able to
show that v(z) ~ C(q)V,(2) as z — 0. To match the result of Mcgill, it remains to show that
Vy(2) ~ V(z) as z — 0 and we believe this should hold, at least if V is regularly varying at O:
we can show that their Laplace transforms are equivalent at infinity.

We insist on the fact that all of the above approach more or less relies on the fact that the
integrated process is a Brownian motion, whereas we are able to consider a very large class of
Markov process and of functions f, leading to a wide range of possible behaviors.

3.3.3 Related problems and open questions

Let us now give an overview of questions that we have chosen not to develop in the present
paper, that either fall in the scope of our method or represent important challenges.

Further examples in our framework. Let us give a couple of additional examples that
we are able to treat with our method (but that we have chosen not to develop), since they are
defined via their excursions (and satisfy Assumption 3.2).

Jumping-in diffusions. A jumping-in diffusion in R is a strong Markov process (X;);>o which has
continuous paths up until its first hitting time of 0. When the process touches 0, it immediately
jumps back into R\ {0} and starts afresh. These processes are somehow again a generalization
of diffusion processes and are typically constructed via excursion theory; we refer to the book of
It6 [It615] for more details. Such processes obviously satisfy Assumption 3.2 and we can apply
our results.

Stable processes reflected on their infimum. The following example is not related to a diffusion
process and shows that our method are not only concerned with generalized diffusions. Let
(S§)t>0 be an a-stable process with some a € (0,2) such that (|S§|)+>0 is not a subordinator.
We consider (R{)i>0 = (S§* — inf[g 4 S¢)i>0 the process reflected on its infimum. It is a positive
strong Markov process and 0 is a regular and recurrent point for (RY);>o. Informally, we
construct the strong Markov process (Xt )¢>0 by concatenating independent excursions of (R{)>0
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flipped to the negative half-line with probability 1/2. Then it also clear that (X;):>o satisfies
Assumption 3.2. It is also clear that this process is self-similar with index «, and as for (skew-
)Bessel processes (see Section 3.2.5), it entails that Assumption 3.4 is satisfied if we consider
f to be homogeneous, for instance f(x) = sgn(z)|z|” for some v € R (with some restriction to
ensure that (; < 400 a.s., e.g. v > 0).

Asymptotics uniform in ¢,z. A natural question that we have chosen not to investigate
further is the case when the barrier z is “far away”. In other words, we are interested in knowing
for which regimes of ¢, z the asymptotics (3.2) remains valid. We would like to find some function
o(+) with ¢(t) — oo as t — oo so that the following statement holds:

P(T, > t) ~ V(2)s(t)t=?  uniformly for ¢, z > 0 with p(t)/z — co. (3.18)

In particular, this would allow to consider both the case when z is fixed and ¢t — oo and the
case when ¢ fixed and z | 0.

We have not pursued this issue further to avoid lengthening further the paper, but we believe
that our method should work to obtain such a result. Indeed, thanks to (3.15), we are reduced to
estimating P(§,, < z) in terms of ¢, z, which is standard in fluctuation theory for Lévy processes,
see [Kypl4]. Since we have identified that the correct scaling for £, (and &, — (,.) is a(b=1(q))
under Assumption 3.4, it is natural to expect that (3.18) holds with o(t) = a(b=1(t)).

In view of our proof, the main (and only?) step where an improvement is needed is in a
control of the convergence V,(z) T V(z) as ¢ | 0, where V, is defined in (3.28), see Corollary 3.2.

Additive functional conditioned on being negative. In Section 3.8, we construct the
additive functional ((;, X;) (under P, ;) with (2,z) # 0) conditioned to remain negative, see
Proposition 3.12. But there are several questions that we have left open.

Starting from (0,0). First of all, a natural question would be to construct the additive functional
conditioned to stay negative, but with starting point (0,0), that is starting from 0 with a zero
speed. One should take the limit (z,2) — 0 inside Proposition 3.12, but this brings several
technical difficulties and requires further work.

Scaling limit of the conditioned process. Another natural question is that of obtaining the long-
term behavior of the additive functional (conditioned to be negative or not) and in particular
scaling limits. Our approach should yield all necessary tools to obtain such results, and let us
give an outline of what one could expect:

(i) If (X¢)e>0 is positive recurrent, i.e. under Assumption 3.3, then one should have that
the conditioned process converges to either a Brownian motion or an a-stable Lévy process
conditioned to be negative (depending on whether the process (Z:):>o is in the domain of
attraction of an a-stable law with a = 2 or a € (0, 2)).

(ii) If (X¢)e>0 is null-recurrent and Assumption 3.4 holds, then one should have that the
conditioned process converges to the following non-Markovian processes:

e If a =2, a time-changed Brownian motion conditioned to stay negative, namely (Zgo)t>0,
0)t>

where Z° is a Brownian motion conditioned to stay negative and LY is the inverse of the
S-stable subordinator 7°; note that necessarily 7° and Z° are independent.

o If @ € (0,2), a “squeleton” given by a time-changed «a-stable Lévy process conditioned to
stay negative, namely Zgg as above (with here Z° an a-stable Lévy process), then “filled”
with the integrals of excursions conditioned to bridge the squeleton (i.e. excursions of
lengths 70 — 72 with the integral foz(ss)Vds conditioned to be equal to Zp — Z?_).
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Figure 3.2: Graphical representation of the trajectory of a realization of (s)o<s<¢ conditioned to be positive.
These are simulations in the setting of Bessel-like random walks: (X¢);>0 is a (symmetric) Bessel-like random
walk and f(z) = sign(z)|z|” for some v € R; the dots represent the returns to 0 of (Xs)o<s<¢. The first two
simulations are when (X;):>o is positive recurrent and (Z;);>¢ converges either to a Brownian motion (first) or an
a-stable Lévy process (second). The last two simulations are when (X¢);>0 is null recurrent and Assumption 3.4
holds either with @ = 2 (third, corresponding to Assumption 3.6) or with a € (0,2) (fourth, corresponding to
Assumption 3.7).

We refer to Figure 3.2 for illustrative simluations. Let us also mention that one might also
be interested in some local limit theorems for the conditioned process, in the spirit of [Car05]
for random walk and [GLLP18] for additive functional of Markov chain under a spectral gap
assumption.

Additive functionals of Markov processes with jumps. Finally we stress that our main
assumption on the process (X¢)i>0, 4.e. Assumption 3.2, is not satisfied for a large class of
processes, including Lévy processes with jumps (except for the difference of two independent
Poisson processes). When Assumption 3.2 is not satisfied, it is not clear how to attack the prob-
lem and the only result so far in this direction seems to focus only on (symmetric) homogeneous
functionals of strictly a-stable Lévy processes, see [Sim07]. Generalizing this result, for instance
to aymptotically a-stable processes, remains an important open problem.

3.3.4 Overview of the rest of the paper

The rest of the paper is organized as follows.

e In Section 3.4, we develop several key tools that are crucial in our proof. We decompose
the paths of the process (X;);>p around the last excursion and we establish a Wiener-Hopf
factorization for the bi-dimensional Lévy process (7, Z;)i>0, using the excursions of Z; below
its supremum, in the spirit of Greenwood-Pitman [GP80]. With these tools at hand we are able
to compute the Laplace transform of (&,,,&, — (4.) which is the key identity of our paper, see
Corollary 3.1, and seems to be new to the best of our knowledge.

o Using the tools of Section 3.4, we are able to show our persistence result in two different
settings. In Section 3.5 we prove Theorem 3.1 under the assumption that 0 is positive recurrent;
in Section 3.6 we prove Theorem 3.2 under Assumption 3.4 (corresponding to the case where 0
is null recurrent).

¢ In Section 3.7 we consider the case of generalized diffusions and we give tangible conditions
which ensure that Assumption 3.4 holds.

« Finally in section 3.8 we treat the case where (X3, (¢):>0 does not start at (0,0). To handle
the proof we assume that (X;);>0 has continuous paths.

e We also collect some technical results in Appendix: in Appendix 3.A we prove our Wiener—
Hopf factorization are related results (based on well-established techniques), in Appendix 3.B we
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present results on convergences of Lévy processes and of their Laplace exponents that serve in
Section 3.7, in Appendix 3.C we give technical results on generalized one-dimensional diffusions
that are used in Section 3.8.

3.4 Path decomposition and Wiener—Hopf factorization

3.4.1 Preliminaries on excursion theory

Recall we assumed that 0 is regular for itself, that is P(n9 = 0) = 1 where 7y := inf{t > 0, X; = 0}
(and P = Py), and that 0 is a recurrent point. In this setting, we have a theory of excursions
of (X¢)i>0 away from 0, see for instance Bertoin [Ber96, Chapter IV] or Getoor [Get79, Section
7]. Setting S = inf{t > 0, X; # 0}, then Blumenthal 0-1 law gives that either P(S =0) =1 or
P(S = 0) = 0: in the first case, 0 is called an instantaneous point; in the second case, 0 is called
a holding point.

The process (X;):>0 possesses a local time (L;);>0 at the level 0, in the sense that there is a
non-decreasing and continuous additive functional whose support is the closure of the zero set
of (X¢)e>0. Then there exists some m > 0 such that a.s. for any ¢t > 0

t
mLt:/ 1{Xs=0}d3'
0

The right-continuous inverse (7;):>0 of the local time is a (cadlag) subordinator and we will
denote by ® its Laplace exponent, see (3.3). The subordinator (7;);>¢ has the following repre-
sentation: for any ¢ > 0

7 = mt + ZATS, with A1y := 75 — 7o_ .

s<t
Let us also recall that there are two cases:

o If 0 is an instantaneous point, then the Lévy measure of (73):>0 has infinite mass.

o If 0 is a holding point, then the Lévy measure of (73)¢>¢ has finite mass and m > 0. In other
words, (7¢)¢>0 is a drifted compound Poisson process.

We denote by D the usual space of cadlag functions from R4 to R, and for € € D, let us

introduce the length of ¢
l(e) = inf{t > 0, &, = 0},

and we will often write for simplicity ¢ instead of £(¢).

Then the set of excursions € is the set of functions € € D such that: (i) 0 < £(e) < oo; (ii)
e = 0 for every t > ((e); (iii) e # 0 for every 0 < ¢t < £(g). This space is endowed with the
usual Skorokhod’s topology and the associated Borel o-algebra.

We now introduce the excursion processes of (X;)¢>0, denoted by (e:)s>0, which take values
in & = EU{Y}, where T is an isolated cemetery point. The excursion process is given by

_J (Xn_+s)sepo,an) i AT >0,
€t —
T otherwise, .

A famous result, essentially due to Ito [It672], states that (e;)s>0 is a Poisson point process and
we denote by n its characteristic measure, which is defined for any measurable set I' by

1
n() = JE[Ner]  where  Nyp = > Ir(es).
s<t

Here again, let us distinguish two cases:
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e If 0 is an instantaneous point, then n has infinite mass
e If 0 is a holding point, then n has finite mass and is proportional to the law of e; under P.

For a non-negative measurable function F' : & — R, we also write n(F') = [¢ F(e)n(de).
Let us stress that, from the exponential formula for Poisson point processes, we can express the
Laplace exponent ® of (7¢)¢>0 in terms of m and n:

®(q) = mq +n(l — e ). (3.19)

Recall the definition (3.4) of the Lévy process (Z;)t>0, and recall Assumption 3.1 on the
function f. Let us stress that if 0 is an instantaneous point, then the Lévy measure v has
infinite mass, whereas if 0 is a holding point, then (Z;);>0 is a compound Poisson process.

Recalling the last expression in (3.4), the Lévy measure v of (Z;):>0 can be expressed through
the excursion measure n. For ¢ € £, we define

§(e) = /0 gf(f:‘s)ds. (3.20)

Then the exponential formula for Poisson point processes ensures that v(dz) = n(§ € dz). Then,
Assumption 3.2 that the process (X;)¢>0 cannot change sign without touching 0 (and is not of
constant sign) can be reformulated as follows:

Assumption 2°’. The measure n is supported by the set of excursions of constant sign. Moreover,
n is neither supported by the set of positive excursions, nor by the set of negative excursions.

This assumption, combined with Assumption 3.1 on the function f, leads to the following
remark, which is crucial in our study.

Remark 3.3. Under Assumptions 3.1 and 2°, (|Z¢|)¢>0 is not a subordinator. Moreover we have
almost surely supy ,,1 (s = supyyy Zs, for every t > 0. Indeed, for every s > 0, (Xt)e=0 is of
constant sign on the time-interval [Ts—,Ts] and consequently t — (; is monotone on every such
interval. As a consequence, the supremum is necessarily reached at the extremities, i.e. we have

Supue[TS,;rS] C’LL = CTsf \/ C’T‘s .

3.4.2 Decomposing paths around the last excursion

We now show a path decomposition at an exponential random time. Recall the definition (3.5)
of g = sup{s < t,X, = 0}, the last return to 0 of X before time t. The following result,
inspired by Salminem, Vallois and Yor [SVY07, Thm 9] allows us to decouple the path of X at
an exponential random time into two independent parts, before and after the last return to 0. An
important application of this independence has already been presented in (3.16). Additionally,
Proposition 3.3 provides useful formulas for computing functionals of the path before and after
the last zero, respectively.

To make the statement more precise, let us introduce some notation: for t > 0 we let Dy
denote the space of cadlag funtions from [0,¢) to R, and for ¢ > 0 we let D, denote the space of
cadlag funtions from [0, ¢] to R.

Proposition 3.3. Let e = e(q) be an exponential random variable of parameter q, independent
of (X¢)t>0. Then the processes (Xy)o<u<g, and (Xgeﬂ)ogvge_gi are independent. Moreover, for
all non negative functionals Fy : Upso Dr — Ry and Fy : Uy>o Dr — Ry, we have

E[F (Xuosuca)] = 0(0) [ B I ((Xudosucn)e ] de (321)
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and

E [F2((Xgot+v)o<v<e—g. )] = % (sz(ﬁ) + ﬂ( /01Z eq“F2((€v)0§v§u)du)) : (3.22)

where 0 denotes the null function of Dy.

Let us stress that the strict inequality in considering (X, )o<u<g. is crucial in the proof.
Proof. Let F} and F5, be as in the statement. We have

E[F1((Xu)o<u<ge ) F2((Xgetv)o<v<e—g. )]

—Eq [ e R(Xaosuco) Fal (X oot )]

We decompose the above integral in two parts, according to whether X; = 0 or not. If g and
d denotes the left and right endpoints of an excursion, then the excursion straddling time t is
the only excursion such that g <t < d. Indexing the excursions by their left endpoint g, i.e. by
G ={mn—;Ar, > 0,t € Ry}, the previous display is then equal to

E[q/o e_thl((Xu)0§u<t>F2(6)1{Xt:0}dt:|

Eq [ e S R(Xocucy) Po Xy dosost—) gercapdt]
9€g

Regarding the first term, it is equal to

mF0)E| [~ e R(Xosuc)dle] = mPa©) [ B [Fu(Xosucr)e ™ dt.

For the second term, it is equal to

4
E[ZFl((Xu)ogmg)e_qg/o qe_th2((Xg+v)0SvSt)dt]a
g€eg

where we simply used that (7¢):>0 is the right-continuous inverse of L.
Using the compensation formula for Poisson point processes, we end up with

E{/OOO Fl((Xu)ogKTt)e*‘mn( /OZ €7un2((€v)0§U§u)du) dt}

= /000 E [Fl((Xu)0§u<7—t)equt] dt x n( /OZ €7un2((Ev)()§v§u)dU> .

To summarize, we have showed that E[F1((Xu)o<u<g. ) F2((Xg.4v)o<v<e—g. )] is equal to

/OOOE [F1(Xu)o<ucr, )e™ 9] dt x Q<mF2(6) + “(/OZ e_q"F2((€u)o<v<u)dU)>7

and the result follows since we have ®(q) = (f;° E[e"9]dt) ! = mq + n(1 — e~%). O
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3.4.3 Wiener—Hopf factorization

In this section, we derive a Wiener-Hopf factorization for the bivariate Lévy process (7¢, Z¢)i>0-
This factorization is similar to the one in Isozaki [Is096] although the factorization therein is
somehow incomplete and our method is a bit different: we follow the approach of Greenwood and
Pitman [GP80] which can also be found in Bertoin [Ber96, Chapter VI]. We will only display
in this section the results needed as it is not the main purpose of the paper: the proofs are
postponed to Appendix 3.A. In fact, our results hold for any bivariate Lévy process (7¢, Z¢)i>0
for which (7¢)¢>0 is a subordinator.

We define S; = sup|g 4 Z; the running supremum of Z;. Then the reflected process (Rt)t>0 =
(St — Zt)t>0 is a strong Markov process (see [Ber96, Proposition VI.1]) and possesses a local time
(LE)>0 at 0 and we denote by (0y)>0 its right-continuous inverse, called the ladder time process.
Next we define 0; := 7,, and H; := S,, the ladder heights processes. Then (oy, 0, Hi)i>0 =
(0t, Toys Soy )t>0 1s a trivariate subordinator possibly killed at some exponential random time,
according to wether or not 0 is recurrent for (R¢)t>o (see Lemma 3.8 in Appendix 3.A). We
denote by x its Laplace exponent: for any non-negative «, (3, :

K@, f,7) = —logE [e’“"l’ﬁgl’wllg@g}} : (3.23)

If 0 is transient for (R;)¢>0, then £(0,0,0) > 0 and LZ has an exponential distribution of
parameter (0,0,0) whereas if 0 is recurrent, then %(0,0,0) = 0 and LE = oo a.s. In any case,
using the convention e~ = 0, we have for any «, 5,7 > 0 such that a + 5+ v > 0,

E [efacrz*ﬁet*”YHt] = exp (—k(a, B,Y)t). (3.24)

Let us also set Gy = sup{s < t,Zs = S5} be the last time before ¢t where (Z;);>0 attains its
supremum, or equivalently the last return to 0 before ¢ of (R¢)¢>0.

We now state a Wiener-Hopf factorization for the process (74, Z:)i>0, which will allow us
below to obtain (among other things), the joint Laplace transform of &, and & — (4, see
Corollary 3.1 below. Let us stress that we need to separate two cases, according to whether 0 is
regular or irregular for the reflected process (R¢)¢>0.

Theorem 3.3 (Wiener—Hopf factorization). Let e = e(q) be an exponential random variable
of parameter q, independent of (T¢, Zt)e>0-
(A) If 0 is irreqular for the reflected process (Ry)i>0, then we have the following:

(i) The triplets (Ge,7q,,Se) and (e — Ge, Te — TG,y Ze — Se) are independent.
(ii) The law of (Ge,Tq.,Se) is infinitely divisible and its Lévy measure is
et
py(dt, dr, dz) = TP(Tt edr,Zy € dz)dt, fort>0,r>0,x>0.
(iii) The law of (e — Ge, Te — TG, Ze — Se) s infinitely divisible and its Levy measure is
—qt

p—(dt, dr,dz) = eT}P’(Tt edr,Zy e dx)dt,, fort>0,r>0,z<0.

(B) If 0 is regular for the reflected process, then the same statements hold with T, replaced by
TG.— and 7. — 1q, replaced by 7. — TG, —.

Let us give a corollary, which is key in our analysis, that expresses the Laplace transform of
(Se, Se—Ze, Te); let us stress that a more general formula is available, see (3.54) in Appendix 3.A.
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Chapter 3. Persistence problems for additive functionals of one-dimensional Markov processes

Proposition 3.4. Let e = e(q) be an exponential random variable of parameter q, independent
of (1, Zt)t>0. There exists a constant ¢ > 0 such that

e—ot— Br—vyzx
k(a, B,7) = cexp (/ /[ . 1> P(r €dr, Z; € dx)dt).
0,00) -

Also, for any positive o, 8,7, we have

=

B oS80S e] k(¢,0,0) %(¢,0,0) (3.25)

E(Q?’Yﬂ )’%((L/—y: B) ’

where we have defined

e—at— Br+vyx
k(a, B,7) = exp (/ / " 1peyP(re €dr, Z; € da:)dt).
0,00)

Remark 3.4. We can also introduce the same objects as above for the dual process (Zt) >0
(—Zt)e>0- If we set (St)t>0 = (sup[o 9 Zt)t>0, then the dual reflected process (Rt)t>0 = (S —

Zt)t>0 also posesses a local time at 0 denoted by (LR)t>0, with right-continuous inverse (G¢)¢>0.
Finally, we set (4, Ht, Ht)t>0 = (o1, 7 T3, So‘,g)t>07 which is again a trivariate subordinator possibly
killed at some exponential random time with Laplace exponent that we denote R, i.e. such that

{1<Li}
Appendiz 3.A that if (Zt)i>0 is not a compound Poisson process, there exists a constant ¢ > 0
such that kK = Ck.

K(a, B,7) = —logE [e_o“’l_ﬁel_“yHll =~ | for any non-negative o, 3,v. Then, we prove in

3.4.4 Consequences of the Wiener—Hopf factorization

From Proposition 3.4, using also Proposition 3.3, we can compute the Laplace transform of
(€ge» &g —Cg.) in terms of £ and K, where e = e(q) is an exponential random variable of parameter
q > 0 independent of the rest.

Corollary 3.1. Let e = e(q) be an exponential random variable of parameter q, independent
of (Xt)t>0. Then for every A\, u > 0, we have

g —1(Ege— 0,4,0) (0, 4,0)
E |e=2oe —1(€ge—Coe) | — A ) 3.96
[e } £(0,4,A) K(0, ¢, ) (320)
As a consequence, . and &g, — (g, are independent, the law of &, , §g. — (g, and (g4, are infinitely
divisible.

Proof. Since ((¢)¢>0 and (& );>0 are continuous, we have (5, = (4, — and &, = &, — and we can
apply Proposition 3.3-(3.21):

B [e—xsge—msge—cge)} — a(q) / “r [e—/\&t—u(&t—cn)—qﬁ} q
0

oo
= (I)(q)/ E [e—ASt—M(St—Zt)—th] dt.
0
In the last equality, we have used Remark 3.3 which tells us that &, = Sy a.s. We now introduce
some additional Laplace variable ¢ > 0 so that the above integral becomes a quantity evaluated

at an exponential random variable € of parameter ¢. We write:

E e—)\fge—ﬂ(fge—cge)} = lim o(q) /OO E [e—ASt—N(St—Zt)—th_gt} dt
q—0 0
(0] _ R
= bm @E |:e ASZ_M(S: Z-ev) qTe:|
q—0 (g

)
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3.4. Path decomposition and Wiener—-Hopf factorization

where € = €(q) is an independent exponential random variable of parameter §. Therefore,
using (3.25), we obtain

]E |:e—)\£ge_/~"(§ge_cge):| — hm Q/(vq) (q’O 0) (q’o 0) (327)
-0 4 k(@ q,N)R(qq,p)

Using Frullani’s formula [;* #du = In(b), we can write

00 o=t _ —P(q)t 1 00 o=t _ .—qt
®(q) = exp ( / < - dt) ; ~ =exp ( - / S dt) ;
0 t q 0 t

so that writing e~®@* = E[e~%7], we obtain

([ o) (80 (4]

where we have set

d + +00 —qt _ o—aqr
<@> ‘= exp </ / !1%%)}]?(7} edr, 7, € dx)dt),
q 0,400) X -

d(q +o0 at _ g—ar
<~> = exp </ / —— 1 P(redr, Z; € dx)dt).
q 0,+00) X%

Then, by Proposition 3.4, we observe that for all ¢ > 0,

d + +00 —t _ o—qr
<(~q)> k(q,0,0) = cexp (/ / il{xm}ﬂ”(n edr, Z; € da:)dt)
q 0 [0,400) xR t =

#(0,q,0),
and
+o0o —qr
(@qu)) k(q,0,0) = exp (/ /0+ —¢ 1{$<0}P(7’t edr,Z; € dx)dt)
= k(0,¢,0).

Finally equation (3.27) gives that

E{ —Xge —11(€ge —Cyg )} _ (0 q,O) R(Ov% 0) _ ’{(07(170) R(Ov% 0)
e e e e 1 — — — ,
=0 k(q,¢,\) K(q,q, 1) K(0,q,A) K(0,q, )

which is the desired result.
Finally, we show that the law of §,, and &, —(,. are infinitely divisible. Let us start with &g, .
By Proposition 3.4 and the expression of k(a, 3,7), we have for any A > 0,

E [ ] = exp / / 1179 (67 — 1)1 (,0)P(ry € dr, Z; € da)dt
0 [0,400) xR N

—exp ( /( IRCs Da(de) ).

where we have set

pu(dz) = 1{x>0}/ , tLe™P(r; € dr, Z; € dx)dt.
[0,00)
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Chapter 3. Persistence problems for additive functionals of one-dimensional Markov processes

It only remains to show that [, )1 A zp(dz) < oo. We have

/ 1A zp(de) = / t'E [eﬂm(l A Zt)]'{Zt>0}:| :
(0,00) 0

It can be shown, see for instance Lemma 3.11, that there exists a constant C' > 0 such that for
any t > 0, E[1 A |Z;|]] < C/t which is enough to check that J10,00) 1 A zpp(dz) < oco. This shows
that &, is infinitely divisible. The same proof carries on for £, — (4. Since these variables are
independent, it comes that (5, = &, + ({4, — &g.) is also infinitely divisible. O

From this result, we can deduce a formula for P(§, < z) with z > 0 by inverting Laplace
transforms. For ¢ > 0, define the function V, on Ry as

Vq(z) =E [/() eiqatl{Htgz}dt , (3.28)

where we recall that (6;, Hy);>0 are the ladder heights, defined in Section 3.4.3. Recalling from
(3.6) that for any z > 0, V(z) = [°P(H; < z)dt, we observe that V,(z) increases to V(z) as
q— 0.

Corollary 3.2. For any z > 0, P(§,, < z) = k(0,q,0)V,(z).
Proof. By Corollary 3.1, we have for any ¢ > 0 and any A > 0

o _ 0,¢,0)
N Ao b = E [o26 | = £(0,4,0).
/0 ¢ P(Ey, < 2)dz = E [ #(0,q, )

By the definition of V,, we also have

0o b * 1
Y AR TOLERS: { | eqatwt] at= [Te0Var =
0 q( ) 0 0 (0,4, \)

and the results holds by injectivity of the Laplace transform. ]

We finally end this section with the following proposition, which allows us to decompose
P(& < z), our quantity of interest.

Proposition 3.5. The random variables &, , §g. — (. and I, are mutually independent. More-

over, we have for any z > 0,

e

P(& < 2) = P&, < 2)P(Ae <0) +P(&, + A < 2,Ac € (0,2)), (3.29)

where Ap = 1o + (g, — &g = Ce — &g. -

Proof. By Proposition 3.3 and since £, = £, — and (4, = (4. —, we get that I is independent of
(€905 &g — Cg.)- Then by Corollary 3.1, &, and {;, — (4. are independent. This implies that the
three random variables are mutually independent.

Now observe that thanks to Assumptions 3.1 and 3.2, s — (s is monotone on the interval
[gt,t] for every t > 0. This implies that supscpy, 4Cs = (g V ¢ which in turn implies that
& = &g, V (¢ We get the identity

& = &g 1a,<0p + (§g T D) LA, >0p = &g + max(Ag, 0). (3.30)

This allows to derive the desired identity. O
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3.5. The positive recurrent case: proof of Theorem 3.1

3.5 The positive recurrent case: proof of Theorem 3.1

In this section, we focus on the case n(¢) < oo, which corresponds to the positive recurrent
case, 7.e. Assumption 3.3. In this case, we have that 7w = t as t — oo and thus we should
expect & to behave as S;, as we shall see. We recall that the Laplace exponent @ is expressed
as ®(q) = mq + n(1 — e~%). Therefore, if n(¢) < oo, we have ®(q) ~ (m + n(¢))qg as ¢ — 0
which shows that E[7;] = m 4+ n(¢) = m; < co. Then by the strong law of large numbers for
subordinators, it holds that a.s.

t—o00

1
lim STt =mi. (3.31)

Our main goal is to prove Theorem 3.2 under Assumption 3.3. We procede in three steps: we
deal with the contribution of the unfinished excursion (this will show that I, can be neglected);
we study the behavior of £(0,¢,0) as g | 0; we conclude the proof by combining the above with
Corollary 3.2 and Proposition (3.5).

3.5.1 Estimate of the last excursion

Let us first estimate I, as ¢ | 0. It turns out that in the positive recurrent case, it converges in
law.

Lemma 3.1. Ifn({) < oo, then I, converges in law as ¢ — 0 to some random variable Iy which
is a.s. finite and such that P(Iy < 0) > 0.

Proof. Let F: R — R, be a bounded continuous function. Using Proposition 3.3, we have

E[F(I,)] = cI)E]q)<mF(O) —|—n(/oee_th(/otf(s,)dr)dt)).

Again, ®(q) ~ myq as ¢ — 0, and we get by the dominated convergence theorem that

m n( [ L e, )dr
sipy — ML BRI,

which shows the result. Since 0 is recurrent for (X;);>0, for n-almost every excursions ¢, ¢ has
a finite lifetime ¢, which shows that [y is a.s. finite. By Assumption 2’, n charges the set of
negative excursions so that we necessarily have P(Iy < 0) > 0. O

3.5.2 Asymptotic behavior of the Laplace exponent

Let us now study the asymptotic behavior of x(0,¢,0) as ¢ | 0. Since by Corollary 3.2 we
have that P(§,, < z) = k(0,q,0)V,(2) with V4(2) T V(2) as ¢ | 0, the behavior of x(0,q,0)
characterizes the behavior of P(¢,, < z).

Theorem 3.4. Assume that n(f) < oo and let e be an exponential variable with parameter q,
independent of (X¢)t>0. Then the following assertions are equivalent for any p € (0,1):

(i) limy_o0 T [{ P(Zs > 0)ds = p;
(i) limy o0 T [ P(Cs > 0)ds = p;
(iii) The function q — (0, q,0) is reqularly varying as q | 0, with index p.
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Proof. Step 1: We show that (i) is equivalent to (7ii). By Proposition 3.4, we have for any g > 0,

et — e_th)l Z:20
],

o0 E e 1) (17,50 —P)}
10gc—|—,0/ dt+/ n dt

~ E|(
log (0, q,0) = logc+/
0

—e 1)1 —p)
t = }dt,

ooﬂ«:[(
= logc+ plog ®(q) +/
0

where we used Frullani’s identity in the third equality. Let us define the function ¢ for ¢ > 0 as

- (/Ooo E [(e—t —e ) (11,0 — P)} dt) . (3.32)

t

Since ®(q) ~ mjq as ¢ — 0, it is clear that ¢ — k(0,q,0) is regularly varying as ¢ — 0 with
index p if and only if ¢ is slowly varying at 0. We have for A > 0 and ¢ > 0

) {(efqn _ ef)‘q”)u{ztzo} _ p)}
; de

log s(A) ~ log(a) = [

(3.33)
/. o B [(e71m — e M) (17, 50) — p
B 0

. )}dt:I—l—II,

where we have set

0 e—mlt _ e—m1>\t
L= [T (P2 2 0) - p)
1

II .=

S—

]E |:(e*q7't/q _ e*mlt + efml)\t _ eiAth/q)(]_{Zt/qzo} — p):| dt.

We first show that the term II always converges to 0 under the assumption n(f) < oo.
Let us set F(t,q) = Fi(t,q) + F»(t,q) where Fi(t,q) = E[(e™7/a — e_mlt)(l{Zt/qzo} — p)] and
Fy(t,q) = E[(e_ml/\t—e_)‘qTf/q)(l{Zt/qZO}—p)]. By (3.31), we have that for any t > 0, g7/, — myt
a.s. as ¢ — 0. Therefore by the dominated convergence theorem, we have for any ¢t > 0,
F(t,q) = 0 as ¢ — 0, and it only remains to dominate F(t,q) to get that II = [§° 1F(¢,q)dt
goes to zero as q J 0. We only show that we can dominate F}; the same domination can be done
on Fy. We write

1/2
IFy(t,)| < 2B [Jeoma — 1] < 98 [jemmsa — emm2]

< 2 (7 2P0 _ go-(mi P/t e—zmlt)m _

We set by = sup,e(p,1) ®(¢)/q and b— = infc(o,1) ®(¢)/q which are two finite and strictly positive
real numbers. Then it is clear that for any ¢ € (0, %), for any ¢ > 0,

\)

%|F1 (t,q)] < = (e — g~ (mitbi)t | o=2mity1/2

~+

The term on the right-hand side is integrable: indeed, for ¢ € [0, 1] it is bounded by a constant
times t~1/2, whereas for t > 1 it is bounded by 2(e~ 2~ + e=2™11)1/2_ We can conclude by the
dominated convergence theorem that IT = [ %F (t,q)dt goes to zero as q | 0.
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3.5. The positive recurrent case: proof of Theorem 3.1

At this point, we know that (74i) holds if and only if for any A > 0, the term I goes to 0 as ¢ | 0.
We now use well-known results about Lévy processes. The usual Laplace exponent of the ladder
time process of (Z;)¢>0 is ¢ — (g, 0,0) and it is well-known, see for instance [Ber96, Prop. VI.18
and its proof] that (i) holds if and only if ¢ — k(q,0,0) is regularly varying at 0 with index p.
Recalling Proposition 3.4, we have for any ¢ > 0,

—t_ gat

00 t
log x(q,0,0) zlogc+/ eip(Zt > 0)dt
0

t

o) e—t _e—qt
= logc+plogq+/ — (P(Z; > 0) — p)dt.
0

We therefore obtain that (i) holds if and only if, for any A > 0

[e'S) e—q)\t
log k(Ag, 0,0) — log k(q,0,0) — plog A = / _—
0

—C— (B(Z > 0) ~ p)dt — 0

as g J 0. But this is clearly equivalent to having the term I going to 0 as g J 0, for any A > 0.
This concludes the proof that (i) holds if and only if (iii) holds.

Step 2: Next, we show that (i) holds if and only if we have (4i’) limy_oo + fot P(¢g, > 0)ds = p.
Let e = e(q) be an independent exponential random variable of parameter ¢ > 0 and ¢’ = e(m;q)
be an independent exponential random variable of parameter m;q > 0. We have

P(¢,, >0) = ¢ / eUP(¢,, > 0)dt and P(Ze > 0) = mig / ¢ MIEP(Z, > 0)dt.
0 0

Then by the Tauberian theorem, see [BGT87, Thm. 1.7.1], we have that lim, o P(Zs > 0) = p

if and only if (3) holds, and limgyo P(¢;, > 0) = p if and only if lim;_s T J3P(Ly, > 0)ds = p.

Therefore, to conclude, it only remains to show that limg_,o [P({4, > 0) — P(Z. > 0)| = 0.
Applying Proposition 3.3-(3.21) with the functional F} = 1¢, >0}, we get

oo

PG, 2 0) = B(a) [

0

Then we obtain that |P({;, > 0) —P(Ze > 0)| is bounded by

E {e_‘m 1{Zt20}:| dt.

/0 E [(‘I’(Q)e_qﬁ - mlqe_mlqt)l{ztzo}} dt‘
<|®(q) - Df11q|/0 E [e_‘ml{ztzo}} dt + ml/o E qu_q” - qe_qt|1{ztzo}} dt
1

o
<|®(q) —miq| —— +m1/ E ||e”9t/a — e~ ™1t|] dt.
() = mual il ]
By assumption, we have lim, ,o ®(¢)/q = my, so the first term goes to 0. By the law of large
numbers (3.31) and dominated convergence, we have that for any ¢t > 0, E[je”7t/a — e~ ™1|]

converges to 0 as ¢ | 0. We conclude again by dominated convergence that the second term goes
to 0, since E[je"7/a — e ™if|] < Ele™9M/a] 4 e ™1t = ~tP(0)/q 4 emmit L o7b-t 4 gl

Step 3: Finally, we show that (ii) is equivalent to (4’) lim;_o0 T J3P(¢g, > 0)ds = p. Again, by
the Tauberian theorem, (i) holds if and only if lim, o P(¢c > 0) = p and (ii’) holds if and only if
limg—0 P((y. > 0) = p (with e = e(¢) an independent exponential random variable of parameter
q > 0). Therefore it is enough to show that lim, .o |P((;, > 0) — P(¢c > 0)| = 0 in the case
n(¢) < oco. To prove this, we write

P(Cge = 0) =P(Ce = 0) = P(Cg, = 0,¢e < 0) = P(¢g, <0, = 0).
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We will only show that limg_qP((g, > 0,{c < 0) = 0 as the proof for the other term is similar.
By Lemma 3.1 above, the term I, = (. — (4, converges in law as ¢ — 0 to some real random
variable Iy. We let A > 0 and we decompose the probability as

P(Cge Z 0’ Ce < O) = ]P)(Cge Z 07(95 + Ie < 07‘[5 < _A) + P(Cge 2 07Cge + Ie < 05-[6 2 _A))
which yields the following inequality:
P(Cge > 0,¢ < 0) <P(I. < —A) +P(¢y, € [0, 4]).

By Proposition 3.3, we have

o [—gr Q@) [, —ar
P(¢g, € [0, 4]) = ‘I’(Q)/O E [e ? tl{zte[o,A]}] dt = y/o E [e ! t/"l{zt/qe[o,A}}} dt.
For every A > 0, we have lim;_,o, P(Z; € [0, A]) = 0, see e.g. Sato [Sat13, Ch. 9 Lem. 48.3].
Since limg—,0 ®(¢)/q = m1 and Ele™ /117, cp0,a)y] < E[e”7/e] = e t®@/a < -t it follows
from the dominated convergence theorem that limg_,o P((g4 € [0, A)) = 0. We deduce that

limsupP(¢y, > 0,¢ < 0) <limsupP(l, < —A) <P(Iy < A).

q—0 q—0

Since [y is a.s. finite, the result follows by letting A — oo. O

3.5.3 Conclusion of the proof of Theorem 3.1 under Assumption 3.3

We are finally able to prove our main theorem in the positive recurrent case.

Proof. We assume that n(¢) < oo, and will first show that, by setting ¢y = liminf, o P(A. < 0),
we have ¢y € (0,1] and for any z > 0,

coV(z) < liminf Pl < 2) < lim sup Plee <2)

< V(z). 3.34
I 0,q,0) = L g0 = V) (3:34)

Then we will see that if ¢ — P(& < z) is regularly varying at 0 with index p € (0,1), or if
t=1 f(f P({s > 0)ds — p as t — oo, then necessarily ¢y = 1. Using (3.29), we deduce the following
inequalies

P(&y. < 2)P(Ac <0) <P(&e < 2) < P(&, < 2).

By Corollary 3.2, we have P(¢,, < z) = (0, ¢q,0)Vy(2) for any z > 0, and since Vy(z) — V(z),
(3.34) holds if we can show that P(A. < 0) converges to some positive constant as ¢ — 0.

Remember that I, and (, — {,, are independent, that A, = I. + (4, — &, and that by
Lemma 3.1, I, converges in law as ¢ — 0. We will show that, either (,, — £,  converges to —oo
as ¢ — 0 in probability, or (;, — &, converges in law to some (finite) random variable as ¢ — 0.
By Proposition 3.3, we have for any u > 0,

E [ew(égef(ge)} = ®(q) /OO

E [e*th*M(St*Zt)} dt = (I)(Q) /Oo E [e*th/q*l‘(St/q*Zt/q)} dt.
0 0

q

Recall that ®(¢q)/q — m; as ¢ — 0 and that q7;/, — mit as ¢ — 0. Duality entails that for every
t>0,S; — Z; is equal in law to S; where S; = SUPeo,] Zs and Z; = —Z;, see [Ber96, Ch. VI
Prop. 3]. Since (St)¢>0 is increasing, Sy — S as t — co. By the 0-1 law, P(lim inf; ,o Z; = 00)
is equal to 0 or 1, two cases are to be considered:
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e If liminf; .o Z; = oo a.s., then So = 00 a.s. and thus, Sy — Z; converges in probability
to 0o as t — co. Since E[e™9/a~HSa=Z/a)] < E[e™97t/a] = e '®@/4, we can apply the
dominated convergence theorem which shows that £, — (4
as ¢ — 0. It comes that P(A, <0) - 1 as g — 0.

converges in probability to oo

e

e If liminf; .o, Z; < oo a.s., then goo < oo a.s. and thus S; — Z; converges in law to §Oo
as t — oo. By Slutsky’s lemma, for any t > 0, (q7y/q, St/q — Z4/q) converges in law to
(myt, §Oo) and we can again apply the dominated convergence theorem, which shows that
&g. — Cg. converges in law to some non-negative finite random variable that we name §p — (o.
Then we have P(A, < 0) — P({o — & + Ip < 0) where (s — & and Ij are indepedent. By
Lemma 3.1, P(Ip < 0) > 0 which shows that P({y — &y + Ip < 0) > 0.

We showed that in any case (3.34) holds. Let us now assume first that ¢~ f§ P({s > 0)ds — p
as t — oo for some p € (0,1). Then by Theorem 3.4, it also holds that ¢t~ [; P(Z, > 0)ds — p
as t — oo, which implies that liminf, ., Z; = o0 a.s., see for instance [Ber96, Theorem VI.12],
and therefore the constant ¢y in (3.34) is equal to 1. We then have P(¢. < z) ~ k(0,¢,0)V(2)
which shows by Theorem 3.4 that ¢ — P({. < z) is regularly varying with index p.

Let us now assume that g — P(§. < z) is regularly varying at 0 with index p € (0,1). Then

by (3.34), for any § > 0, ¢**9/k(0,¢,0) — 0 as ¢ — 0. Now remember from Proposition 3.4 that

o E —t A QqTt 1
’1(07(]70) = cexp (/ [(e ¢ - ) {tho}]dt>
0

—t _ o—amt
#(0,¢,0) = exp (/Oo Elle” —e )I{Zt<0}]dt).
0 t
We see by Frullani’s identity that (0, ¢, 0)%(0,q,0) = ¢®(q) and since ®(q) ~ miq as ¢ — 0
it comes that x(0,q,0) — 0 as ¢ — 0. Recall that by Corollary 3.1, for any p > 0, we have
E[e~#(&se=Coe)] = £(0, ¢,0)/R(0, q, 1), and since &(0,q, ) — &(0,0,p) > 0 as ¢ — 0, we see that
E[e~#(&e~Cse)] — 0 as ¢ — 0 which shows that, in this case §g. — Cg. converges in probability to
oo. From the previous analysis, we see that we are necessarily in the case liminf; o, Z; = 00
a.s. and therefore the constant ¢ from (3.34) is equal to 1 so that P({. < z) ~ k(0,¢,0)V(z) as
q — 0. This shows that g — (0, ¢,0) is also regularly varying at 0 with index p and thus, by
Theorem 3.4, ¢~ [{ P((s > 0)ds — p as t — 0. O

and

3.6 The null recurrent case: proof of Theorem 3.2

In this section, we assume that O is null recurrent, i.e. that n(¢) = oo and suppose that
Assumption 3.4 holds: in a nutshell,

(b(h)Tt ma(h)Z, /h) s (Tto, Z?)tzo as h — 0,

>0
with (70, Z)i>0 a bivariate Lévy process, (77):;>0 being a 3-stable subordinator and (Z9);>¢ an
a-stable process. Assumption 3.4 also entails that a(b='(h)) I; /n converges in law as ¢ — 0 to
some (possibly degenerate) random variable I.

Remark 3.5. Let us stress that since (b(h)mp)i>0 converges in law to (70)i>0 as h — 0, the
Laplace exponent ®(q) of (1¢)e>0 is reqularly varying at 0 with index 3. More precisely, ®(-) is
an asymptotic inverse (up to a constant) of b(-) near 0. Indeed, (b(q)1;/4) converges in law to a
B-stable subordinator, and therefore

®(b(q)) ﬂ

—% logE [e_b(q)”/q} = .

—% log E {e_Tto} .
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This also implies, see [BGT87, Thm. 1.5.12], that q/b(®(q)) converges to some some positive

constant b as ¢ — 0. For simplicity and without loss of generality, we assume in the following

that b = 1 Since (0(®(q))Tt/0(q) A(P(Q)) Ztjao () )10 converges in law to (10, Z))i>0 as ¢ — 0, it
comes that

(a7e/(q), A(®(D) Zija(g))ez0 — (7, Z)iz0 as ¢ = 0. (3.35)

Below, we use some convergence results for Lévy processes, whose proofs are collected in

Appendix 3.B.

3.6.1 Laplace exponent and convergence of scaled ¢, — (,

e

We start with the following result.

Proposition 3.6. Suppose that Assumption 3.4 holds. Then the function q¢ — £(0,q,0) is
regularly varying as q — 0 with index Bp with p :=P(ZY > 0).

Proof. Recalling Proposition 3.4, we start by writing that

dt.

00 o= t/®(q) _ ot o0 E[(e—t _ e_‘m/“’(f‘))1{a(c1>(q))zt/q,<q)zo}}

logc + / e — 2
0 t 0 t

Using the convergence (3.35) and Proposition 3.14 in Appendix 3.B, the last term converges as

q — 0. Then, with p = P(Z > 0), the second term becomes, by Frullani’s identity

0 o=t _ effb(q)t
plog ®(q) + /0 e (P(Z 2 0) - p)d.

As we argued in the proof of Theorem 3.4, the function

o0 e—t _ e—q)(q)t
q = exp / f(P(Zt > 0) — p)dt
0

is slowly varying as ¢ — 0. Since ® is regularly varying with index f, it comes that ¢ — (0, ¢,0)
is regularly varying with index Bp, which establishes the results. O

Proposition 3.7. Suppose that Assumption 3.4 holds and let e be an exponential variable with
parameter ¢ > 0, independent of (Xy)i>0. Then a(®(q))(&g. — (g.) converges in law as ¢ — 0:
more precisely, we have that for any A > 0

=0
i “2a(@(@) & ~¢e)] — F(0,1,0)
;%E[e ! ! } RO(O,].,)\) ’

where K is defined, analogously to k, as

0o et — g—at—pfri+z
7, B,7) = exp </ / 1{x<0}]P)(TtO cdr, 7 € dx)dt).
0 J[0,00)xR t

Proof. By Corollary 3.1, we have that the Laplace transform of a(®(q))(&g. — (g.) is

E {e—m(@(q))(ﬁge—cge)} = %(0 K(O)z q(’fg)( )
K 7Qa a q
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Now, by the definition of & (in Proposition 3.4), we have

oo E [(G*QTHr)\a(‘I’(‘I))Zt — equt)l{Zt<0}}

log (0,.4,0) ~ log &(0, ¢, Aa(®())) = | t at.
0
Making the change of variables ¢t = u/®(q) and splitting the integral in two parts, we get that

the above quantity is equal to

o 1 t
mlit  o—qr
/0 g E[(e ¢ W(q))l{zz/@(q)@}}dt

o
_ /0 t—lE [(e—t _ e—th/<1>(q)+>\a(<1’(f1))Zt/q>(q))]_{Zt/q)<q)<0}} dt.
By (3.35) and Proposition 3.14, log (0, ¢,0) — log k(0, ¢, Aa(®(g))) is a difference of two con-
verging terms. More precisely, Proposition 3.14 entails that it converges to log%(0,1,0) —
log ©°(0, 1, \), which completes the proof. O

3.6.2 Conclusion of the proof of Theorem 3.2 under Assumption 3.4

Finally, we are able to prove our main theorem in the null recurrent case.

Proof. We start by recalling that, from (3.29), for any z > 0 we have
P& < 2) =P(&. < 2)P(Ac <0) +P(&, + Ac < 2,Ac € (0,2)).

We also remind that by Proposition 3.5, the random variable I., §, and &, — (4. are mutually
independent. Since A, = I, + (4, — &g, it is independent from £, and we get that

P(&g, < 2)P(Ac <0) <P(&e < 2) < P(&, < 2)P(Ae < 2).

By Corollary 3.2, we have P(§,, < 2) = £(0,¢,0)V,(2) and since (0, g, 0) is regularly varying
at 0 with index Bp and V,(z) increases to V(z), it only remains to control P(A. < 0) and
P(A. < z). By Assumption 3.4, and recalling that ®(-) is an asymptotic inverse of b(-), we have
that a(®(h))1, 5, converges in law as h — 0 to some random variable I. This easily implies that
a(®(q))l. converges in law as ¢ | 0 and thanks to Proposition 3.7 so does a(®(q))((y. — &g.)-
Since I. and (y, — &, are independent, it gives that a(®(q))A. converges in law as ¢ — 0 to
some random variable, that we denote A,,. Finally, we end up with

lIimP(A, <0) =limP(A, < 2) =P(Ax <0),
ql0 ql0

which completes the proof. O

3.6.3 The case of Gaussian fluctuations

In this section, we treat the special case where Assumption 3.4 is satisfied with a = 2, i.e.
when the limiting process (Z):>0 is a Brownian motion. This case is somehow simpler since
(7))i>0 and (Z7)¢>0 are then necessarily independent (this can be seen directly from the Lévy-
Khintchine formula), and the convergence of (b(h)7/p)i>0 and (a(h)Z;/;)i>0 alone implies the
convergence of the bi-dimensional process, see Lemma 3.12. We are going to prove that in that
case, we can somehow weaken Assumption 3.4 (relaxing the assumption on the convergence of
the last part a(b~'(h)) I 5).
Recall that for a generic excursion ¢, we denote § = §(¢) = foé f(es)ds, see (3.20).
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Assumption 3.8. There exists some 3 € (0,1) such that ® is reqularly varying at 0 with index
B, and n(F) = 0, n(F?) < oo.

We then have the following result.

Theorem 3.5. Suppose that Assumption 3.8 holds. Then there exists a slowly varying function
¢ such that for any z > 0,

P(T, > t) = V(2)s(t)t P2 ast — oo,
where 5 is given by Assumption 3.8.

Proof. We simply check that Assumption 3.8 implies that Assumption 3.4 is satisfied. Let us
denote by v(dz) = n(F € dz) the Lévy measure of (Z;);>0. Then Assumption 3.8 entails that
Jr\{03 2?v(dz) < oo, which implies that (hl/QZt/h)tZO converges in law towards a Brownian
motion (Z9)¢>0 as h — 0 (this can be easily checked via the characteristic function).

Moreover, if b is an asymptotic inverse of ® at 0, we have that (b(h)7;/;)i>0 converges in
law to a (-stable subordinator (77);>0 as h — 0. By Lemma 3.12, this shows that the bivariate
process (b(h)7/p, hl/QZt/h)tzg converges in law to (70, Z)i>0 as h — 0.

Finally, we show that <I>(q)1/2le converges to 0 in L? as ¢ — 0. By Proposition 3.3-(3.22),
setting §u(e) = [y f(ey)dv for any u < £(g), we have

EFM@@}:qéﬂfaﬁmﬁddﬁuﬂk)géﬁ@ﬂﬂ—eﬂmnﬂky

Indeed Assumptions 3.1 and 2’ entail that the map u — §,(¢) is monotonic on [0,¢(¢)] and
thus §.()? < F(e)?. Since n(F?) < 400, we can use dominated convergence to deduce that
limg—0 E[®(q)I%] = 0. We can then apply Theorem 3.2 with p = P(Z) > 0) = 1/2. O

3.7 Application to generalized diffusions

In this section we apply our result to a large class of one-dimensional Markov processes called
generalized diffusions. These processes are defined as a time and space changed Brownian
motion. Originally, it was noted by It6 and McKean [IMJ63,IMJ96] that regular diffusions,
i.e. regular strong Markov processes with continuous paths can be represented as a time and
space changed Brownian motion through a scale function s and a speed measure m. In the
mean time, Stone [Sto63] also observed that continuous-in-time birth and death processes could
be represented this way. As we shall see, this construction leads to a general class of Markov
processes. Our main goal is to provide conditions on the function f, the scale function s and
speed measure m that ensure that Assumption 3.4 holds. Let us now recall the notation of
Section 3.2.3.

Let m : R — R be a non-decreasing right-continuous function such that m(0) = 0, and
s : R — R a continuous increasing function such that s(0) = 0 and s(R) = R. We assume
moreover that m is not constant and will also denote by m the Radon measure associated to m,
that is m((a,b]) = m(b) — m(a) for all @ < b. Recall that m® is the image of m by s, i.e. the
Stieltjes measure associated to the non-decreasing function m o s~'. We consider a Brownian
motion (By):>0 on some filtered probability space (2, F, (Ft)i>0,P) with (L§)i>02er the usual
family of its local times and we introduce

Af:/ﬁﬁ@ﬁ
R
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The process (A™ );> is a non-decreasing continuous additive functional of the Brownian motion
(Bt)t>0. For every x € R we have L% = oo a.s., and since the support of the measure m* is
not empty we see by Fatou’s lemma that Ag‘j = oo a.s. Now we introduce (p;);>0 the right-
continuous inverse of (AM);>0 and we set

Xt = 571(Bpt)'

As the change of time through a continuous non-decreasing additive functional of a strong
Markov process preserves the strong Markovianity, see Sharpe [Sha88, Ch. VIII Thm. 65.9],
and since s is bijective, it holds that (X;):>0 is a strong Markov process with respect to the
filtration (F,,)i>0. Let us denote by supp(m®) the support of the measure m®. It is rather
classical, see again Sharpe [Sha88, Ch. VIII Thm. 65.9] or Revuz-Yor [RY99, Ch. X Prop.
2.17], that (X;)¢>0 is valued in s~ !(supp(m?)) = supp(m). From now on, we will always assume
that 0 € supp(m®) so that, since s(0) = 0, (X¢)s>0 spends time in 0. Since 0 is recurrent for
the Brownian motion, it is also recurrent for (X;):>o9. We have the following proposition, which
shows that the process (X¢):>o satisfies the hypothesis of this article and that its local time at
the level 0 can be expressed with the local time of the Brownian motion. The proof is postponed
to Appendix 3.C.1.

Proposition 3.8. The following assertions hold.

(i) The family (Lf;gx))tzovmeﬂg defines a family of local times of (X¢)i>0 in the sense that a.s.,
for any non-negative Borel functions h, for any t > 0, the following occupation times
formula holds:

t s = ) L2 m(dz).
| hexds = [ h@) L mda)

(i) The point 0 is regular for (X¢)e>o.

(iii) The process (Lgt)tZO is a proper local time for (X¢)i>0 at the level 0 in the sense that it is
a continuous additive functional whose support almost surely coincides with the closure of
the zero set of (X¢)t>o0.

(iv) Let (1¢)i>0 be the right-continuous inverse of (Lgt)tzo and (7P)i>0 be the right continuous
inverse of (LY)i>0, then we have

= /R L7pme(dr) = AT,

Moreover, it also holds that for any t >0, p,, = 7.

In this framework, the Lévy process Z; = [;* f(X)ds can be expressed, thanks to items (%)
and (iv) of Proposition 3.8, as

Zt:/Lmef(dJT),
R t

where we have set mf(dz) := f o s7'(2)m*(dz). Note that m/ is a signed measure (recall that
by Assumption 3.1, the function f preserves the sign). We suppose in addition that f o s~ ! is
locally integrable with respect to m® so that m/ is also a Radon measure. We will also denote
by m/ the associated function, i.e. m/(z) = [ f 05~ (u)m®(du), which is non-decreasing on R
and non-increasing on R_. Then it holds that (Z;);>0 is a Lévy process with finite variations,
with zero drift (since f(0) = 0). The aim of this section is to show Propositions 3.1 and 3.2
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3.7.1 Excursions of (X;):>o using those of (B;);>o

Let us first describe the excursions away from 0 of (X;);>0 in terms of the excursions of the
Brownian motion. Let us denote by D the usual space of cadlad functions from R, to R, and
for € € D, let us introduce

L(e) = inf{t > 0, &, = 0}.

Then the set of excursions £ is the set of functions e € D such that 0 < ¢(¢) < oo, for every
t > l(e), et = 0, and for every 0 < t < l(g), ¢ # 0. This space is endowed with the usual
Skorokhod’s topology and the associated Borel o-algebra.

We now introduce the excursion processes of (By)i>o and (X;)i>0, denoted by (ef);>¢ and
(e)¢>0, which take values in £ U {Y}, where T is an isolated cemetery point, and are given by

B { (BTtB_—I—s)sE[O,ATtB] if ATtB >0

B — X (X’th-‘rs)se[O,An} if Ay >0
t T otherwise

d = .
and. ¢ T otherwise

A famous result, essentially due to It [[t672], states that (e);>0 and (ef* );>o are Poisson point
processes and we will respectively denote by n® and n their characteristic measure, which are

defined by

nB(T) = %E (NE] and on(D) = %E NS (3.36)

for any measurable set I', where

Nf}r = Z 1p(e§) and Nt)} = Z 1p(e§).

s<t s<t

Our first aim is to describe the measure n in terms of n?; we will see n as a push-forward of
n®? by some application 7' () To this end, we first introduce the subset C of £ of functions which
are continuous. It is clear that every function in C has constant sign, and that n?(£\ C) = 0.
We have the following lemma.

Lemma 3.2. Under w2, almost every path posseses a family of local times (L¥)t>0,zer, in the
sense that for any Borel function g and every t > 0, we have

/Otg(as)ds = /Rg(x)Lfdx.

The family (L )i>0zcr is jointly continuous and for any v € (0,1/2) the map x — Lf is Holder
of order v uniformly on compact time intervals.

Proof. Consider some ¢ > 0 such that A7 > 0 and set for any z € R and any s € [0, A7f],
L? = Lfgﬂ — Lfg. Then (Li)se[o,AftB],xeR is the family of local time of e?. Indeed, for any

Borel function g and s € [0, A7], we have,

/OS glef (w)du = /0 9(B.p 2 )du = [ gla)(Lip ,, — Lip)da.

Since the Brownian local times are jointly continuous and almost surely Holder of order v (for
any v € (0,1/2)) in the variable z uniformly on compact time intervals, so is (L{)¢>0,zcr. Hence
we showed, almost surely, for any ¢ such ATtB > 0, etB has the property stated in the lemma: by
(3.36), this shows that outside of a negligeable set for n, every path has the stated property. [
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We denote by C; and C_ the subsets of C of positive and negative (continuous) excursions.
We introduce the first point of increase and decrease of m® around 0, i.e. the real numbers
defined by

zy = inf{z >0, m*(z) >m*(0)} and z_ =sup{z <0, m*(z) <m*(0—)}.

(Note that for standard diffusions we have z; = x_0, but one may have x_ < 0 < x4, for
instance for birth and death chains, see Section 3.2.5.) Under Assumption 2’ they are finite, i.e.
m® eventually increases and decreases. For a path € € C, we let M(e) = sup{|e¢|,t > 0} and we
introduce the measurable set

Coio = (CrN{M(e) > ) U(C-N{M(e) > [z-[}).

For ¢ € Cy, »_, we define the time-change

(AD)o<t<t = ( / Lim )Ogtg. (3.37)

Observe that A7 > 0 if ¢ € C,, ,_ (whereas A7 = 0if ¢ € C\ Cp, ,_). We denote by
(pi)o<t<a, the right-continuous inverse of (A7)o<;<¢ and finally define the measurable application
T:Cy, » — & such that,

T(e)i =5 '(ep5) if t<Aj and T(e)y=0 if t> Aj.

A key tool in this section is the following result, which expresses the measure n as the pushforward
measure of n? by T.

Proposition 3.9. For any measurable set T', we have n(I') = n®(T~1(T)).

Let us note that, since T-!(I') C C,, ,_, the measure n is a finite measure if and only if z4 > 0
and z_ < 0, since in this case n?(C,, , ) < cc.

Proof. We first emphasize that thanks to Proposition 3.8-(iv), we have a.s., for any t > 0,

A’rt B — \’THB = /(LfB — LfB )ms(dl') .
t— R t t—
Thus, it should be clear that
A >0 if and only if ATtB >0 and etB €Cyrz.

Let us now consider some ¢t > 0 such that Ar, > 0, i.e. some ¢t > 0 such that ATtB > 0 and
e € Cy, . Weset for z € Rand s € [0,A7f], LY = L? — L%y, the local time of ef.
t—

Then we introduce the time change (A%) se0,a77); defined by

B+S

- / Lime(de) = A% |~ 7.

If (p%)sejo,ar] denotes the right-continuous inverse of (A%) sef0,arp); then for every s € [0, A7y,
we get the following identity.

t . s B
py = inf{u > 0, ATEJFU > T+ 8} = pry_ts — Ti

Therefore, we conclude that, if ¢ is such that A7r > 0, then we have

eg( = (5_1(Bp-rt,+s))se[0,ATt} - ( (B’TB +ps))SE[O,ATt} = T(etB)'

Therefore, for any measurable set I', we have for any ¢ > 0, a.s. Nt)} = NtBTfl(r)v which,
by (3.36), shows the result. O

91



Chapter 3. Persistence problems for additive functionals of one-dimensional Markov processes

We are now able to express some quantities of interest of (74, Z;);>¢ using the Brownian

excursion measure. We first define for any ¢ € C, ,_

No<t<e = (/ Lim )0<t<£ : (3.38)

Lemma 3.3. The following assertions hold.

(i) For any A >0 and any p € R,

—logE [e*/\ﬁﬂ"‘zl} =nB (1 — exp (—)\AZ + iuAg)) :

(ii) Let e = e(q) be an independent exponential random variable of parameter ¢ > 0. Then for
any p € R,

4
iple q :
E {e wl } =30 (m—i—nB(/O exp(—qA; —|—mA{)dA§>) ,

where we recall that m is the drift coefficient of (7¢)i>0, see Section 3.4.1.

Proof. Let us start with the first item. By the exponential formula for Poisson point processes,
it is straightforward that for any A > 0 and any p € R,

(A, ) = —logE {e_’\“H“Zl] = n(l — exp ( — M +ip /(f f(as)ds>) .

Applying Proposition 3.9, we get that

Y\, p) =nP <1{eecﬁ+,¢} (1 - exp < A + Z“/ ut )))

For any ¢ € C,, ,_, we have fOAZ f(s7 (eps))ds = f(f f(s7(ey))dAS = A{. Remark that if
e¢ Cy, o, then Aj = A{ = 0 so that

(A, p) =nP (1 — exp (—)\AZ + z'uA{)) .

We now show the second item. By Proposition 3.3, we have for any u € R,

E [ewle} — (I)E]q)<m+u</oeexp < —qt+ i,u/ot f(&)ds)dt)) =: %(nﬁL G(p,q)).

Then, by Proposition 3.9 again, we get

A5 t
G(p,q) = (1{eecz+,z_}/0 “exp ( —qt+ iu/o f(sl(ffpg))d«S)dt)-

Performing the change of variables ¢ = A7 and using the occupation time formula for the
Brownian excursion, we get

¢
G(p,q) = n” (1{5607%1.} /0 exp(—qAj + iuA{)dAj).

If e ¢ Cyp o, then A7 = 0 for any ¢ € [0,/] and we can remove liec,, . } from the above
expression, which gives the desired statement. ]
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3.7.2 Additive functionals for strings with regular variation

Assumptions 3.5 and 3.7 state that m® and m/ are regularly varying and we will show that it
implies that (7%, Z;)i>0 belongs to the domain of attraction of a bivariate stable process. To
prove that, we remark that the jumps of the rescaled process (7}, Z[);>o (with h | 0) are also

additive functionals of the Brownian motion (B;):>0 but involving rescaled measures mj and mi.

We need technical tools to go from the convergence of (mj, mi) to the convergence of the law of

those additive functionals. The goal of this section is to provide those technical tools which are
mainly inspired by a work by Fitzsimmons and Yano [FY08a] and are based on classical result
from regular variation theory [BGT87]. All the proofs of the following results are postponed to
Appendix 3.C.2.

Let us now give some convergence results for sequences for additive functionals of Brownian
excursions, in the spirit of [FY08a, Thm. 2.9]; we will apply them to m® and m/ (more precisely
to their restrictions to Ry and R_). We consider a string, i.e. a non-decreasing right-continuous
function m on Ry such that m(0) = 0, with regular variation in the sense that there are some
a € (0,2), and some smooth, locally bounded slowly varying function A : Ry — (0, 00), such
that, according to the values of «, we have

o If o < 1, then m(z) ~ A(z)z'/* ! as z — oo.

o If a =1, then for any =z > 0, (m(z/h) —m(1/h))/A(1/h) — logz as h — 0.

o If a € (1,2), then lim, oo m(z) = m(c0) < oo and m(oo) — m(x) ~ A(z)z/* 1 as z — oo.
For such a string m, we define the family of rescaled strings my, h > 0 as follows:

o If a < 1, then my,(z) = > ‘m(z/h)/A(1/h).

o If a =1, then my(z) = (m(z/h) —m(1/h))/A(1/h).

o If a € (1,2), then my(z) = K/ (m(z/h) — m(cc))/A(1/h).

Note that in all cases, we have my(dz) = %m(d(x/h)) Moreover, it is easily checked that

o If a € (0,1), then for any = > 0, my,(z) — z/* 1 as h — 0.
o If a =1, then for any z > 0, my(z) — logz as h — 0.
o If a € (1,2), then for any z > 0, my(z) — —z/* L as h — 0.

The following lemma shows that the regular variations of m implies the convergence for additive
functionals with respect to the rescaled strings my, (as h — 0). This will reveal to be a key result
in the proof of Proposition 3.2 and is close from results in [F'Y08a].

Lemma 3.4. Let m be such a string with regular variation and g : [0,00) — R some compactly
supported continuous function such that g(0) = 0 and which is v-Holder at O for any v < 1/2.
Then

lim g(z)mp(dx) = ¢y g(z)xt/*2dg,
hl0 Jr, R,

where co, = |1/a— 1| if a #1 and co, = 1 for a = 1.
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Chapter 3. Persistence problems for additive functionals of one-dimensional Markov processes

Remark 3.6. Thanks to Lemma 3.2, the previous lemma applies to the family of local times of
the Brownian excursion, i.e. x — L¥. Fort € [0,£], we have nf—a.e,

lim Lim,(dz) = cq L¥ 2V 24y,
1o Jr, t h( ) R, t

Note also that since t — fR+ Limy,(dx) is non-decreasing and since the limiting function t

fR+ Lz *2dx is continuous, the convergence holds in uniform norm on compact set.

We will use the following technical lemma to go from the convergence of additive functionals
for an excursion to the convergence in measure (it is a truncation and domination lemma).

Lemma 3.5. Define As:= {¢ € C,sup,cjo les| < 0} then for0 <5 <1 :
(i) If a € (0,1) then limsup n¥ Kfﬂh Lfmh(dm))lAé] < 2621, which goes to 0 as 6 | 0.
hl0

(i7) If o € [1,2) then

2
limnf{ sup ( Lfmh(dac)) IAS} =0.

410 he(0,1) N JRy
(iii) If o € (1,2) then

B T
ny| sup Limy(dx 1Ac} < +00.
2], (f miman)iag

(iv) If « =1 then

1
nf{ sup (/ L%”mh(dx)) IAE} < +00.
he(0,1) ~J/0

Although these results are stated for functionals of positive Brownian excursions, they obvi-

ously hold for functionals of negative excursions as the measure n?

is invariant by the application
e — —e. In the following, we apply these results to the strings m® and m/. Indeed, since we
assumed that m*(0) = 0 and m7(0) = 0, we can first apply the results to m* and m/ restricted
to Ry, denoted m? and mf_. Then we can also apply them to m® and m’ defined on R_ as

m® =m® —m*(0—), m{ =m/ — mf(0—) on (—o00,0) and m* (0) = 0, m’ (0) = 0.

3.7.3 Proof of Proposition 3.2

We finally prove here Proposition 3.2. We let the reader recall Assumptions 3.5 and 3.7, which
are assumed throughout this proof (they tell that m%. and mi are strings with regular variation).
Let us also introduce the following notation: for a,b, z € R, we set sgn, ,(z) = aly;~0) +b1z<0y-
The function sgn will denote the usual sign function, d.e. sgn(x) = sgn; _;(z). Then, for ¢ € C,
let us denote:

¢ ¢
A?(g) = Cﬁ/o Sgnm+7m_ (€S)|€S‘1/5_2d8’ A?(E) = CQ/; Sgnf+,—f_ (58)|€s|1/a_2d8,

lds
0 es”

We proceed in two steps: first, we prove that the rescaled Lévy process (Tth, Z[’)tzo converges
as h | 0; then we prove the convergence of the other term a(b~'(q))I. as ¢ | 0.

where ¢, is as in Lemma 3.4. In the case a = 1, f1 = f_ =150 A}(e) =
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3.7. Application to generalized diffusions

Step 1: Convergence of (7', Z'). Let us set b(h) = h'/#/As(1/h) and a(h) = hY/*/A;(1/h).
We show that (7', Z")i=0 = (b(h)7y/n,a(h)Zyp)e=0 converges in distribution to (7, Z)i>o,
where (70, Z);>0 is a Lévy process, without drift (except in the case a = 1 where the drift is
some constant ¢) and without Brownian component, whose Lévy measure 7%(dr,dz) is defined

as
70(dr,dz) = n® (A?(s) edr,Aj(e) € dz) .

To this end, we will show that the following convergence holds for every A > 0 and p € R:

lim E [e*WWZ?] =E [e*”t“““z? ] . (3.39)
hl0
Let us set for any A\,h > 0, and any p € R, (A, p) = —logIE[e_’\TIhH"Zlh]. Then we get by

Lemma 3.3-(7) that

(A ) = %nB (1 — exp (—)\b(h)/RLfmﬁ(dx) + Z'Ma(h)/RLfmf(de) )

We will now use the scaling property of the Brownian excursion measure: for every h > 0, we
have ng = hnpgo\; ', where \, : £ — & is defined by A\ (e) = (R &2 )i>0. Now if (L) wer i,
denotes the family of local times of ¢, then (h_lL?ﬁ)xeR,te[O,E /n2) is the family of local times of
An(€). Then we get

Y\, p) =nP (1—exp< )\/Lgmh (dz) —|—w/Lth dm)))

where the measures mj and mh are defined as follows:
o For every x € R, m§(x) = h'/#~'m*(x/h) /As(1/h) (recall B € (0,1)).
e According to the values of «, we have:
(i) If a € (0,1), for every = € R, m/ (z) = h¥/*mf (x/h)/A;(1/h)
(ii) If a =1, for every = > 0, mi(m) = (m/(x/h) —m/(1/h))/As(1/h) and for every x < 0,
mj (z) = (wf (2/h) —mf (~1/h))/As(1/h).
(iii) If @ € (1,2), then for every = € R, m{(m) = hl/o=(mf (z/h) — mf(c0))/As(1/R).

Before going further, we introduce the following notation, analogous to (3.37)-(3.38)
ASh (e / Lms (d Al (e / Lém] (d (3.40)

so that ¥y (\, p) = nP (go(A;’h,Ag’ )) with p(z,y) = 1 — e Az+iny,
Then, thanks to Assumptions 3.5 and 3.7 we can apply Lemma 3.4: we have for n®-almost
every excursion € € C,

5,h B8 f.h o
liiﬁ)lA (e) = A4/ (e) and léﬁ)lA (e) = A%(e). (3.41)

It remains to prove that we can exchange the limits inside v, (A, 1). Recall that we set, for
§>0,A; = {e €C,M(|e]) < 6} and that n®(A§) < +oo.

Case a € (0,1). We need to prove that limp o ¥n (A, ) = Yo(A, p) := nB[Lp(Af,A?)], where 1
is the characteristic exponent of the limit process (77, Z?);>0. We have

(A 1) = YA )] < 0P [|p(A5", AP = o(A7, A8) [ 1ag| + 0P [lp(A7", AT 14, ]
P le(A7, A7) |14, ]

95



Chapter 3. Persistence problems for additive functionals of one-dimensional Markov processes

Since ¢ is bounded and n®(As) < +o0o, by (3.41) and the dominated convergence theorem, it
comes
timsup n? [|o(A5", AF") — p(A7, A7)[1a¢] = 0.
h—0

Since there is some C) , > 0 such that |¢(z,y)| < C) u(x+y|) for all z > 0,y € R, from item (%)
of Lemma 3.5 (decomposing for positive and negative excursions), we get that

lim sup n” [\@(AZ’h, Ag’h)|1A5} —0 as  0]0.
h—0
By Fatou’s lemma, we also get that n? U(p(Af, A2)|1a,] converges to 0 as 6 | 0. We now quickly
explain the value of the constant p = P(Z? > 0) in Proposition 3.2. One can easily see that a
representation of the limiting a-stable process (Zp);>¢ is

o
Z? = /0 sgnf+7_f7(Bs)]Bs\1/a_2ds

where we recall that (B;);>0 is a Brownian motion and (75);>¢ is its inverse local time at 0.
The characteristic function of (Z))>0 is computed in [Bét21, Lemma 11] and we can deduce the
value of p using a formula due to Zolotarev [Zol86, §2.6].

Case o € (1,2). Recall that there exists a positive constant mf(c0) < co such that mf(z) —
m/(c0) as @ — 4oo. It follows that m/(1) = 0 and by Lemma 3.6 below (whose proof is
postponed to Appendix 3.C.1), we have that n( foz f(g5)ds) = 0, which in turn implies n” (A{) =
0. Obviously, we also have nB(A{ ’h) = 0 for any h > 0.

Lemma 3.6. Let g be a positive Borel function such that mi(g) < 00 and |m’ ()| < co. Then

we have m/ (g) = n( [5((g05) x f)(es)ds).

Let us introduce @(z,y) = 1 — e 2+ — iy (y) where x(y) = y on [~1,1] and is continuous
with compact support and odd. Thus

en(h ) =0 [(AF", AL | + iun® [x(Al")].

Since ¢ is bounded and since there exists a constant Cy , > 0 such that |¢(z,y)| < Cy 4 (2 +y?)
for any x > 0, y € R, we obtain by points (7)-(ii) of Lemma 3.5 and decomposing as previously
on As and A§ that

: B - ﬁ,h fvh — B = ﬂ e

limn [@(Ae Ay )} =n [so(Az , A )} -
It remains to check that nB[X(Ag’h)] converges as h | 0. Recall that nB(AZ’h) = 0, so that

nB[X(Af’h)] = —nB[Ag’h - X(Ag’h)]. Note that there exists C' > 0 such that |z — y(x)| < Ca?,
by item (7i) of Lemma 3.5, it comes that

lim sup ‘nB {(Ag’h - X(Ag’h))lAé} —0 as d ] 0.

RJ0

Moreover, for any § > 0, by item (%ii) of Lemma 3.5 and since |z — x(z)| < C|z|, we get by the
dominated convergence theorem that for any § > 0,

. 7h ,h a o
timn” [(AF" —x(Af")1ag] = n”[ (A4 — x(49))1a5].

We conclude that that

limn? [~ x(Af")] = P [47 — x(47)].
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so that n? [X(AéC h)] converges to nB[x(A%)] as h | 0. Again, let us quickly explain the value of
p. In the case a € (1,2), the limiting process has the following representation

0 __ 1/a—2
70 — /ngnfwf_(xw [02(LEy — t)da

where we recall that (L})¢>0,zcr denotes the family of local times of (By);>0. Again, the charac-
teristic function of (Z);>o is computed in [Bét21, Lemma 12] which is sufficient to deduce the
value of p.

Case o = 1. Using the same notation as in the previous case and with the same rea-
soning, we also have that nB[@(AZ’h,Ag’h)] converges to nB[gé(Ag,Al‘?‘)] when h goes to 0.

It remains to prove that the extra assumption limy o W(mf(l/h) —mf(=1/h)) = ¢ im-

plies that n? [X(Ag’h)] converges. Note that the limit is not n” [x(A%)] which is infinite when
o = 1. Writing that m/ (1/h) —m/ (=1/h) = [5 1{16(,1/h’1/h}}mf(dm) and using Lemma 3.6 with
9(w) = Lyge(—1/n,1/n)}> We get

mf(1/h) —m/(=1/h) =n (/Oe((g °5) X f)(es)d8> :

Then, using Proposition 3.9 and the occupation time formula for the Brownian excursion, we

easily get that .
iy /0 =l (<1/m) = ki

where A};’h = |z Lfl{xe(_l,l]}mi(dx). Note that as in (3.41), thanks to Lemma 3.4 (and
Assumption 3.7) we have for n®-almost every excursion ¢ € C

lim ADM = A% = ¢ / L7 segn x)rt/*2dx .
o ‘ a (—11) ¢ S8 f+,f,( )

(Recall fi = f_ in the case & = 1). Remark that we have ﬁg’h = A{’h for every ¢ € Aj: we can
then decompose

7h‘ A 7]7/ ,h
0P (A7) = 0P [ (A]") 4] + 0P (A7) 1ag]
~fh ~f.h ~th ~f.h h
=0 (x(A]") = A7")1a,] + 0P (A" — nPLA] " 1ag] + 0P (X (AT 1ag)-
The second term converges (to c¢) by assumption. It remains to check that the other three
terms converge. Regarding the first term, using item (%) in Lemma 3.5, and the fact that

|x(7) — x| < Cz? for some constant C' > 0, we get that nB[suphe(Ovl)(X(ﬁg’h) —ﬁg’h)lAl] < 400.
By the dominated convergence theorem, it comes that

tim | (0(A7") = A7" )14, ] = n®[ (x(47) - 47)14,].

We obtain the convergence of the third term applying point (iv) in Lemma 3.5 (and dominated
convergence). As a conclusion, we have

lim 0P [(A7")] = 07| (x(47) = A7 )14, ] — 0P [AFLag] + 07 [u(AF)1ag] + e

Now we point out that, since x is odd and f; = f_, the first three terms in the above limit are
null by symmetry. Hence the limiting process (Z7);>¢ is a Cauchy process drifted by ¢ (whence
the value of p from the statement).
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Step 2: Convergence of a(b~'(q))l.. Let us stress that since b(h)T:/1, converges in distribu-
tion, b is an asymptotic inverse of ® (see Remark 3.5); in particular, ® is regularly varying at 0
with index 8 € (0,1).

By Lemma 3.3-(%i), we have that for any p € R,

E [ele ™ @nt:] @gq)(mw( /O Cexp (— g A2 +ia(b" (q))uAl >dA§)) = g G )

where we recall that m is the drift coefficient of (7)¢>0 and A7, Al are defined in (3.37) and (3.38)
respectively. Since ® is regularly varying with index 8 € (0,1) we have limg o m/®(q) = 0.

Therefore, it remains to show that ¢G(u,q)/®(q) converges as ¢ | 0, or equivalently that
qG(1t,q) /b~ (q) converges. Using the scaling property of the Brownian excursion measure, i.e.
ng =hngo )\,:1, with h = b~1(q), we get

¢
q B Sq | ;o Afq 5,9
G = —A7T 4 iuA dA 3.42
b—l(q) (,q) =n (/0 eXP( t LAY ) t ): ( )

where, similarly as in (3.37)-(3.38), we have set

and the measures mj, and m{ are the measures defined in Step 1, see above (3.37). By Lemma 3.4
(and Assumptions 3.5 and 3.7), we have that for nP-almost every excursion ¢ € C, for any
t € [0,4], limgyo AP? = A7 and lim,yo AP = A
Let us show that for n®-almost every excursion,
¢ ¢
lim [ exp (—A77 4 ipA]?) dATT = / exp (—A7 +ipA7) dAy. (3.43)
a0 Jo 0

First, the finite measures dA%? on ([0, £], B([0, £])) converge weakly to the finite measure dA® as
g — 0. Since t — exp(—cAf + i Af') is continuous and bounded, we deduce that

l 74
lim [ exp (~A] +ipA7) dA3T = / exp (~A7 +inA7) dA].
a0 Jo 0

Next, we bound

[ (xp (5 4 inaf) — exp (- A7 + inag) )asie

< A1 Sl[lpe] exp ( — A9 + z'uA{’q) — exp ( - AtB + i,uAf‘) ‘
telo,
By Remark 3.6, the convergence of A3 and A is uniform on [0, /], i.c. supeqo,q |47 — AP+

|Af — A%| vanishes as ¢ | 0. Since (z,y) — exp(—x + iy) is Lipschitz, it is clear the above
quantities converges to 0 as ¢ | 0, which proves (3.43).
Finally, we bound the integrand in (3.42) to apply dominated convergence. We have

l l
‘ / exp (— AP+ ip Al AT < / exp (— A;7)dAy!
0 0

=1-—exp(— A7) <1AA".

(3.44)
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3.7. Application to generalized diffusions

We conclude as before, by introducing some arbitrary small § > 0 and by splitting the inte-
gral (3.42) into two parts, on the sets A5 and A§. Using the bound (3.44), we obtain thanks to
item (7) in Lemma 3.5 (recall 8 € (0,1)) that

lim sup n?

q—0

éexp — A i AP AAT )14, | — 0 as 610.
(U

Moreover, the bound (3.44) dominates uniformly in ¢ the integrand and we conclude using the
dominated convergence theorem (recall that n? is finite on A§) that

[ [ (= 437+ inal)ani ) ia] = w8 [( [ oxp (- A7+ inap)an)ia)|

From this, we get that

l 4
lim n® {/ exp ( — AP+ z',uAf:’q>dAf’q] =n¥ / exp ( — AP 4 i,uA?)dAt’B], (3.45)
ql0 0 0
which completes the proof of Step 2. 0

3.7.4 Proof of Proposition 3.1

In this section, we prove Proposition 3.1. We let the reader recall Assumptions 3.5 and 3.6
(which corresponds to the case o = 2). Our goal is to show that Assumption 3.8 holds, i.e. that
® is regularly varying at 0 with index 8 € (0, 1), that n(F) = 0 and that n(g?) < co. First, as
in the proof of Proposition 3.2, we can show that, by setting b(h) = h*/#?/A4(1/h), the rescaled
process (b(h)7/5,)i>0 converges as h — 0 toward a (-stable subordinator. This entails that ® is
an asymptotic inverse of b (see Remark 3.5) and in particular that it is regularly varying with
index £.

Next, we apply Lemma 3.6 with g = 1. This tells us that m/(1) = n(fogf(es)ds) = n(J).
Since m/ (1) = lim, 00 (m/ (2) — m/(—2)) = 0, it comes that n(F) = 0. It remains to show that
n(F?) < co. Recalling that the Lévy measure of (Z;);>0 is n(F € dz), this is equivalent to having
E[Z}] < oo for any t > 0, see for instance Sato [Sat13, Thm. 25.3]. We will show that the
condition m/ € L2(dz) implies the latter one (it is actually equivalent). To do so, let us first
define the function g : R — R as

o) = [ ") [ rom@ue,

Making two changes of variables, it holds that

x o0
g(s™\(x)) = / h(v)dv, where h(v) = / f o5 (wm?(du) = mf (00) — m (1),
0 v
Since m/ in non-decreasing on R and non-increasing on R_, gos™! is a difference of two convex
function and we can apply the It6-Tanaka formula, see [RY99, Ch. VI Thm. 1.5], which tells us

that
1

g(5—1<Bt)) = /Ot h(Bs)dBs — 5 /Rf(s—l(x))LfmS(dx).

Substituting p; in the preceding equation, and using the occupation time formula from item (%)
of Proposition 3.8, we see that (with a change of variable y = s~ 1(z))

g(X,) = /Opt h(B,)dB, — ;/Otf(Xs)ds.
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We now substitute 74 in the preceding equation, and using that X, = 0 so g(X;) = 0 and

pr, = T (see Proposition 3.8-(iv)), we get that

7, = /Oﬁ F(X)ds = Q/TtB h(B,)dB

Let us set for any fixed ¢t > 0, (M!)y>0 = (quTt h(Bs)dBs),>0 which is a (centered) local
martingale. Its quadratic variation is such that, for any u > 0,

E| [/Lwt }_/R (25 [h de—t/h

where in the last equality, we used that by Ray-Knight’s theorem, E[LfB] =t for any z €
t

R. Since h € L*(dz), (M})u>0 is a martingale bounded in L?(P), i.e. sup,qE[(M{)?] < oc.
Therefore, it converges in L?(IP), which entails that

E[(/OQB h(BS)dBS>2] :E[/O%B h(BS)2ds] = t/Rh(x)2dx.

We have shown that for any ¢ > 0, E[Z?] = 4t [ h(z)?dx < +o0, which completes the proof. [

3.8 Hitting time of zero

Let us assume for simplicity that the process (X¢)¢>0 is a regular diffusion valued in an open
interval J = (a,b) with a € [—00,0) and b € (0, 400] and let us consider the process ((¢, Xt)t>0
as a strong Markov process. For a pair (z,z) € R x J, we will denote by P, ) the law of
(Ct, Xt)e>0 when started at (z,z), i.e. the law of (z + f(f f(Xs)ds, X¢)e>0 under P, with P, the
law of (X;)¢>0 started at .

The aim of this section is to describe the asymptotic behavior of P, ,y(Tp > t) as t —
oo when (z,2) # (0,0). Let us stress that in the previous section we were considering the
probability P(T, > t) = P(_, ¢ (To > t) for z > 0. We will naturally place ourselves under
Assumption 3.3 or 3.4. As a rather classical application, we will identify a harmonic function
for the killed process: through Doob’s h-transform, this enables us to construct the additive
functional conditioned to stay negative.

3.8.1 Preliminaries

First, we recall that a regular diffusion is a continuous strong Markov process such that, if
set n, = inf{t > 0, X; = x}, then for any (z,y) € J?, Py(n, < o0) > 0. It is well-know
that regular diffusions are space and time changed Brownian motion. First, there exists a
continuous and increasing function s : J — R such that (s(X;)):>0 is a local martingale, see
Kallenberg [Kal02, Ch. 23, Thm. 23.7]. We assume that s is such that s(J) = R and we denote
by s~ its inverse, defined on R and valued in J. Let (W;);>0 be a Brownian on some probability
space and denote by (Lf )0 zcr its family of local times. Then there exists an increasing function
m® : R — R such that, 1f we set

Ay = / Lim®(dz) and p; =inf{s >0, A5 > t},
R

then for any = € J, the probability measure P, coincides with the law of (s~ 1(W,,))i>0 with
(Wi)e>0 started at s(x). We refer to Kallenberg [Kal02, Ch. 23, Thm. 23.9] for details. We will
first show the following lemma. Let us also define

Ji :==JN(0,+00), and J =JN(—00,0).
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Lemma 3.7. Recall that we denote by §(e) = f(f f(es)ds for some excursion ¢ € € of (Xt)t>0,
see (3.20) and let us set M = M (e) = supy>q |es|. The two following assertions hold.

(i) For any x € J}, we have

n(M>z,F<0)=

and n(M >z,§>0)=

1
2[s(z)] 2[s(z)|
(ii) For any x € J}, respectively any x € J*, the law of (X, +t)ie[0,d,, —g,,] Under P is exactly
n(-| M >z, §>0), respectively n(- | M >z, F <0).

Proof. Remember first that, since excursions have constant sign, §(¢) > 0 if and only if ¢
is a positive excursion. By Proposition 3.9 and since A; is increasing it comes that for any
z € Ji, we have n(M > z,§ > 0) = nf(M > s(x)), respectively n(M > z,F < 0) = nz(M >
s(z)), where n} is the Brownian excursion measure restricted to the set of positive excursions,
respectively nj is restricted to the set of negative excursions. The first result follows immediately
since nf;(M > z) = ngz(M > z) = 5 for any = > 0.

Regarding the second point, for € J§ let us denote U = {e € £, M(e) > z, F(e) > 0}.
Recall that (e;);>0 denote the excursion process and set T;,+ = inf{t > 0,e; € U }. Clearly,
we have €1, = (Xgpp+1)t€[0,dy, —gn,) @0 since n(U,F) < oo by the first point, the result follows
from [RY99, Ch. XII Lem. 1.13] which tells us that for any measurable set I', we have

n(F N U;'_) = P(GT

vt

x

e Dn(U;).
The same proof holds for x € J*. O

Let us consider the set of starting points H := [(—o00,0) x J] U [{0} x J*]. Note that for
starting points (z,x) € H we have P, ,)(Tp > 0) = 1 and the process (¢, )¢>0 is negative under
P(. ). Recall that V denotes the renewal function: for any = > 0, V(z) = [;°P(H; < z)dt,
see (3.6). Finally, we set 9 = inf{¢t > 0, X; = 0} the first hitting time of zero of (X¢);>0, and
we consider the positive function h : H — Ry U {oo} defined for every (z,z) € H by

Wz 2) = By V(=)L <0y - (3.46)
Proposition 3.10. For any (z,x) € H we have h(z,x) < co.

This result is not obvious at first sight. However since ;,, is a piece of an integrated excursion,
its law is directly linked with the Lévy measure of (Z;);>0, and so is the function V. As we shall
see, this link is given by the équations amicales of Vigon [Vig02a, Vig02b].

Proof. Let (z,x) € H and remember that

70
h(z,x) =E, [V( —z —/0 f(Xs)dS)l{erfo”O f(Xs)ds<0}|

First case: z < 0 and x > 0. If x = 0, then ny = 0 a.s. and h(z,2) = V(—2). If x > 0, then
Jo® f(Xs)ds > 0 a.s. and since V is non-decreasing, h(z,z) < V(—z) < +o0.

Second case: z <0 and z < 0. Then [ f(Xs)ds < 0 a.s. By the strong Markov property, and
since (X¢)>0 is continuous, the law of [ f(X,)ds under P, is equal to the law of f:z”m f(Xs)ds

under Py. But since f%”r f(Xs)ds > f;i"z f(Xs)ds and since the law of fgci% f(Xs)ds under Py is
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equal to the law of F(¢) under n(- | M > z, § < 0) by Lemma 3.7-(ii), we obtain the following
bound:

n (V(—z - 3)1{M>x}1{%<0})
n(M >z, §<0) .

Since n(M > z, § < 0) > 0, it remains to show that n(V(—z — F)L{ar>a23 1iz<0y) < oo. We split
this quantity in two parts:

h(z,z) <

n(V(=2 = 5l psn lg<y) =1 (V=2 = )1 rsay Lize-10) )
1 (V(=2 = ) arsay Liza—1y ) -

The first term on the right-hand-side is smaller than V(—z + 1)n(M > x) < oo, since V is non-
decreasing. Regarding the second term, we first recall that V is subadditive, see for instance
[Ber96, Ch. III], i.e. V(z +y) < V(x) + V(y) for any =,y > 0: hence, we can write

n(V(=2 = §)1psn Lgamyy) < V(=2 +1/20(M > ) + 1 (V(=1/2 = 5.1y ) -

We finally show that n(V(—1/2 — §)1z<_13) < oo. Recall now that the Lévy measure v of
(Zt)e>0 is v(du) = n(F € du), so that

(V12 en) = [ V2wl

—o0,—1)
—/R/R+ Tue—y1gy<—1/2-up V(dy)r(du),

where V(dy) stands for the Stieltjes measure associated to the non-increasing function V. We
then have the following bound

(V2= Stgen) < [ [ Tpsusoym @V = (2 V) (-0, -1/2),

where v % ) is the convolution of the measures v and V. The équations amicales of Vigon, see
for instance [Vig02b, Vig02a), state that the measure v %V coincides on (—o0,0) with the Lévy
measure of the dual ladder height process (—H¢)¢>0. Therefore (v*V)((—o0, —1/2]) < 0o, which
completes the proof. O
3.8.2 Hitting probabilities

We now show the following technical result, which describes the asymptotic behavior of the
Laplace transform P, ,y(To > t). Recall that e = e(q) is an independent exponential random
variable of parameter q.

Proposition 3.11. Suppose that Assumption 3.8 or 3.4 holds. Then there exists a constant
co > 0 such that for any (z,x) € H, we have

P, .)(To > e) ~ coh(z,7)k(0,q,0) as q{0.
Moreover, there ezists a constant K > 0 such that for any (z,x) € H, for any q € (0, 1),
P(z,:v)(TO > 6) < KH(O,(],O)(‘B(%)‘ + h(Z,.TJ))

This proposition, combined with the Tauberian theorem, the monotone density theorem,
Theorem 3.4 and Proposition 3.6 leads to the following theorem.
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Theorem 3.6. Suppose that Assumption 3.3 or 3.4 holds. Then there exists a slowly varying
function < such that for any (z,z) € H,

Py (To > t) ~ h(z,2)s(t)t™" ast— oo,

where 0 = p € (0,1) if Assumption 3.3 holds, with p given by Theorem 3.4 (or Theorem 3.1),
or § = Bp if Assumption 3.4 holds, with p = P(Z > 0) as given by Proposition 3.6 (or
Theorem 3.2).

Proof of Proposition 3.11. Step 1. We first focus on the quantity P, (ny > €) where x € J. We
will first show that there exists a constant C' > 0 such that for any ¢ € (0,1) and any = € J,

Py (no > €) < Ck(0,q,0)|s(z)]. (3.47)

Let x € J} and remember that 1, = inf{t > 0, X; = x}; recall also that by the strong Markov
property the law of ny under PP, is equal to the law of d,, — 7, under Py. Therefore we get

o0
Px(no > 6) S Po(dnz - gnz > 6) = Q/O e_thO(dnz - gnz > t)dt

By Lemma 3.7- (i), the law of d,, — g5, under Py is the law of £ under n(- | M > z,§ > 0) and
by Lemma 3.7-(7) we have n(M > z,§ > 0) = 1/(2|s(z)|). Hence we obtain

P, (10 > €) < 2Js(z)|n(1 — e %). (3.48)

This bound also holds for x € J*, again by Lemma 3.7, and also for = 0 since P,(n > e) = 0.
Remember now that n(1 —e~9) = ®(q) — mgq, see (3.19), and that under Assumption 3.3 or 3.4,
® is regularly varying at 0 with index 5 € (0, 1] (with 8 = 1 under Assumption 3.3 and 3 € (0,1)
under Assumption 3.4). By Theorem 3.4 and Proposition 3.6, g — (0, ¢,0) is regularly varying
at 0 with some index 0 € (0, 3). It is therefore clear that lim, o n(1 —e~%)/x(0,¢,0) = 0, which
shows that (3.47) holds and that for any x € J,

P, (no > e)

0 0. 3.49
(0, q,0) 0 (3.49)

This completes the first step of the proof.
Step 2. We now focus on the quantity P ,)(To — no > e) for (z,z) € H. We first remark that
P, »-almost surely, Ty > np if and only if ¢;,, < 0. First, if z < 0, then P, ;)-almost surely,
(Ct)t>0 is decreasing on [0, 70] so that P ,)(Cpy < 0) = P, 4)(To > mo) = 1. Next, if # > 0, then
P, »)-almost surely, (G¢):>o is non-increasing on [0,70] and thus, we see that if ;, > 0, then
To < no whereas if ¢, < 0, then Ty > np.

We define the processes ((i, X¢)i>0 = (Cino — Cno» Xigmo )e>0 and & = SUPge(o, Gs- By the
strong Markov property again, (, Xt)tzo and (y, are independent under P, ,). Moreover the
law of ((, X¢)i>0 under P(. . is equal to the of (¢, X¢)i>0 under Py = P. We see that
P, »)-almost surely, Top —no > e if and only if { < —(y, and (,, < 0. By independence, we get

P(z,x)(TO —No > e) = /(_ 0 P(‘Se < _U)P(Z,ac)(Cﬂo S du) (350)

Let us first show that for any ¢ € (0,1), for any (z,2) € H, we have
P 2)(To —no > e) < h(z,7)k(0,q,0). (3.51)
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Recall from (3.30) that & = &, + max(A,0) and that £, and A, are independent. Since
moreover P(§,, < —u) = £(0,q,0)V,(—u) < £(0,q,0)V(—u) we get the following bound:

P& < —u) <P(&,, < —u)P(Ae < —u) < K(0,q,0)V(—u),

which, combined with (3.50) and the definition (3.46) of h(z,x), leads to (3.51).
Let us now show that there exists a constant ¢g > 0 such that for any (z,z) € H,

P(z,x) (TO — Mo > 6) ~ COh(Z> :L‘) H(Oa q, 0) as ¢ 0. (352)

The proofs of Theorems 3.1 and 3.2 show that P({, < —u) ~ coV(—u)k(0,q,0) as g | 0, where
co = limg,0P(Ae < 0), see Sections 3.5.3 and 3.6.2. Since P({c < —u) < k(0,¢,0)V(—u), it is
clear that we can apply the dominated convergence theorem in (3.50), using Proposition 3.10:
we deduce that (3.52) holds. This completes the second step.

Step 3. Conclusion. First, by (3.52), we have that for any (z,x) € H,

. PeyTo—mo>e) . Pry(To>e)
— > < R St
coh(z,x) = hrqn %rlf +(0.2.0) hzn 1(r)1f #(0.2,0)

For the other bound, let § € (0,1) and write

P(Z@)(T[) > e) = P(z’x) (T() > e,T() — 1o > (1 — 5)6) + P(z,z) (T() > 6,T0 — 1o < 56)
<SPray(To—n0 > (1 —0)e) +Py(no > de).
Thanks to (3.49), the second term divided by (0, ¢q,0) vanishes as ¢ — 0, using also that de
is an exponential random variable of parameter ¢/0 and that (0, ¢, 0) is regularly varying at 0

with exponent 6. For the first term, using that (1 — d)e is an exponential random variable of
parameter ¢/(1 — §), we get from (3.52) and the regular variation of (0, ¢, 0) that

P, o (To —no > de) ~ co(1 — 5)_9h(z,:):)f<c(0, q,0) as g 0.
We have therefore obtained that

. P(z,z) (TO > 6)
limsup ——————~

< co(1 =687 n(z, 1),
q—0 K(O,Q,O) N O( ) ( )

which concludes the proof of the first part of the proposition by letting ¢ | 0.

For the second part of the proposition, take § = 1/2 above. Then, it comes from (3.47)
that there exists a constant C' > 0 such that for any ¢ € (0,1) and any (z,x) € H, we have
P.(no > e/2) < Cls(z)|k(0,¢,0). Also, by (3.51), we see that for ¢ € (0,1) and any (z,z) € H,
we have

0,2q,0
Pleny(To — o > €/2) < h(z,2)5(0,20,0) < h(z, 2)w(0,4,0) x_sup “e20.
q€(0,1) #(0,¢,0)

This concludes the proof. ]

3.8.3 Process conditioned to stay negative

Using Proposition 3.11, we are able to show that the function h defined in (3.46) is harmonic.
As a consequence, we are able to define the additive functional conditioned to stay negative.

104



3.8. Hitting time of zero

Corollary 3.3. Suppose that Assumption 3.3 or 3.4 holds and assume that E,[|s(X)|] < oo for
any x € J and t > 0. Then the function h is harmonic for the killed process ((inmy, Xint, )05
i.e. for any (z,z) € H and any t > 0, we have

E(:) (G X)L imyon | = h(z,2).

We emphasize that the assumption E,[|s(X;)|] < oo for any z € J and any ¢t > 0 is satisfied
by a large class of processes (as for example Brownian motion or Ornstein-Uhlenbeck processes).
However it is possible to find a recurrent process for which it is not satisfied. This assumption
is technical: we believe that it is an artifact of the proof and that might be possible to obtain
the result without it.

Proof. Step 1. We first show that for any (z,z) € H, we have
E(z,;v) [h(Ctth)l{To>t}] < h(Z,SL’) < 00. (353)
Let t > 0 and note that as long as Ty > t, ((;, X¢) € H. Then, using Proposition 3.11, we have

P (To > e)
~ P (To
E(.2) {h(CuXt)l{Tpt}] = E(2) [hi,&%lf ctont((),q,())

P(Ct,Xt) (T() > 6)
CO’%(Oa q, 0)

1 {To >t}]

9

q—0 Cglﬁj(o,q, 0)

q—

P (Th>e+t
< lim 'éle(wj) [ 1{T0>t}] = lim inf — (T >e+t)

where we have applied Fatou’s lemma and then the Markov property. Since P, ;) (Th > e+t) <
P, .)(To > e), we obtain (3.53) from Proposition 3.11.

Step 2. We now use the dominated convergence theorem. Indeed, by Proposition 3.11 we have

P x)(To > ¢)
E(.. [h(gt,Xt)l{Tm}} =E(.. [;13% cto,.;zo,q, 0)

1{To>t}] :

Additionally, there exists a constant K > 0 such that for any ¢t > 0 and any ¢ € (0,1),

P(Ct,Xt) (To > e)
CO’Q(Ov q, O)

By assumption E.[s(X;)] < oo and by the first step, B 2)[h (¢, Xi)1{7>n] < 00 so that we
have by dominated convergence the strong Markov property

P(z,a:) (To > e+ t)

E(z,l’) [h(gta Xt)]'{T()>t}:| = 3% COH(O, q, 0) = h(Z, CB) )

Lirysey < K (Is(Xt)| + (G, Xe)) Lizpsay-

provided that we can show that P, ,)(To > e+1t) ~ P, ,y(To > e) ~ coh(z,2)r(0,¢,0) as q | 0,
for any t > 0 and (z,z) € H.
To obtain such an estimate, note that for any (z,z) € H and any ¢ > 0 we have

P(Z@)(To >e+ t) = q/ e_qu(z7x) (TO > s+ t)ds = E(z,x) [(1 — e_q(TO_t))l{To>t}} .
0
Since P, ;) (To > e) = E(; 4)[1 — e~970] we get that
P o(To > e)=P ) (To > e +t)=E(, {(1 - e_qTO)l{Togt}} +E(. 1) [e_qTO (e? — 1)1{T0>t}}
<2(1—e) < 2¢t,

where we have simply bounded 1 — e T < 1 — e in the first expectation and e 1T < ot
in the second one. At this point, using Proposition 3.11 together with the fact that (0, ¢,0) is
regularly varying with index 6 < 1 as ¢ | 0, we get that P, ,y(To > e +t) ~ coh(2,2)x(0, ¢, 0),
as required. This completes the proof. ]
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Let (F)t>0 be the filtration generated by (X;);>0. For (z,z) € H, we introduce a new
probability measure Q, ;) in the following way: for every ¢ > 0, for every A € Fy,

1

WE(Z@) {h(CtaXt)lAm{Tomf}} :

Q(Z,x) (A) =

Corollary 3.3 ensures that this measure is indeed a probability measure. In fact, it corresponds to
the law of (¢, X¢)¢>0 where ((;)>0 is conditioned to remain negative. Using similar arguments as
in the previous proof, we could easily show the following result, which justifies the terminology.

Proposition 3.12. Suppose that Assumption 3.3 or 3.4 holds and assume that E,[|s(X;)|] < oo
forany x € J and t > 0. For any (z,x) € H, for anyt > 0 and any A € F;, we have

Q(z,a:) (A) = ;I_%P(z,m) (A | To > 8) .
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Appendices to Chapter 3

3.A Wiener—Hopf factorization

In this section, we derive the Wiener-Hopf factorization from Subsection 3.4.3, 7.e. Theorem 3.3.
We consider, in all generality, a bivariate Lévy process (7¢, Z¢)i>0 with respect to some filtration
(Ft)t>0, where (7¢)¢>0 is a subordinator. This section is very close to [Ber96, Ch. VI] and follows
the same approach. However, our result requires some new arguments and we chose to establish
properly Theorem 3.3.

3.A.1 Preliminaries

Let us recall briefly the notation introduced in Section 3.4.3. Let Sy = supjg Z; the running
supremum of Z; and consider the reflected process (Rt)i>0 = (St — Zt)t>0, which is a strong
Markov process (see [Ber96, Prop. VI.1]) and posesses a local time (Lf);>o at 0. We denote by
(04)t>0 its right-continuous inverse, and we define (ov, 0, Ht)i>0 := (0t, To,, S0y )t>0-

Lemma 3.8. The two following assertions hold.
(1) If 0 is recurrent for the reflected process, then (ot, 8¢, Ht)i>0 is a trivariate subordinator.

(i) If 0 is transient for the reflected process, then there exists some q > 0 such that LE has
an exponential distribution with parameter q. Moreover, the process (o, 0y, Ht)0§t<LoRo is
a trivariate subordinator killed at rate q.

Proof. The proof is essentially the same as in Kyprianou [Kyp14, Ch. VI Thm 6.9] and we will
show the two items at once. Let ¢ > 0, we first place ourselves on the event {t < LE} = {0y < 0o}
so that oy is a finite stopping time.

The strong Markov property tells us that the process (7s, Zs)sZO = (Toyts — Toyy Lopts —
Zy,)s>0 1s a Lévy process independent of F,,. Then it is clear that the corresponding local time
(Ls)s>0 is such that for any s > 0, L, = LE |, —t so that its right-continuous inverse (G)s>0 is
0s = 0t4+s — 0. Moreover, since S,, = Zy,, it comes that for any s > 0

Sy = sup Z, = sup (Zortu — Zoy) = Soy+s — Soy-
u€l0,s] u€(0,s]

This shows that, on the event {t < LZ}, the shifted process

(&Su 057 HS)SZO = (557 %587 SES)SZO = (Ut+s — O¢, 9t+s - 0t7 Ht+s - Ht)sZO
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is independent of F,, and has the same law as (0,05, Hs)s>0. Finally, we see that for any
s,t > 0 and any «, 3,7 > 0,

- {e_aat_ﬂet_wt Lircrn)E {e_a;s—ﬂes T zal” "”
- |:e—a0't_,89t_'YHt 1{t<L§o}] E |:e—a0's_693_7Hs 1{5<L§o}] ]

We classicaly deduce from this, and the right-continuity of (o, 8¢, H¢)s>0, that for any ¢ > 0 and
any a, f3,v > 0, we have

E [eiaatiﬁetithl{t<L§o}} = e A,

where
k(a, B,7) = —logE {e—aol—ﬂel—lel{KL&}} > 0.

We also see that for any t > 0, P(LE > t) = e #(0.00)t 5o that LE is exponentially distributed
with parameter %(0,0,0) > 0 (if £(0,0,0) = 0, then LE = oc a.s.). It is a well-known fact that 0
is recurrent for the reflected process if and only if L% = oo a.s., which completes the proof. [

o0

Using the convention e™*° = 0, we have for any ¢ > 0 and any «, 3,7 > 0 such that
a+B8+v>0,

E {efaotfﬂetf'yHt} — e*/‘@(aﬁﬁ)t’

From now on, we will assume for simplicity that 0 is recurrent for the reflected process
but the proof carries through if it is not the case, with minor adaptations. Recall now that
we have defined G; = sup{s < t,Z; = S5} the last return to 0 before ¢ of (R;);>0. Let us
state the following lemma, of which we omit the proof since it is no different from the proof
of [Ber96, Ch. VI Lem. 6].

Lemma 3.9. Let e = e(q) be an exponential random variable of parameter q, independent of
(Tt7 Zt)tzo-

(i) If O is drregular for the reflected process (Ri)i>0, then the processes (7i, Zt)icjo,c.] and
(TGt = TGes Zt+G. — ZG. )te[0,e—G.) are independent.

(i) If O is regular for the reflected process (Ri)i>o0, then the processes (¢, Zt)icp,c.) and
(TGt = TGe—» Zt4G. — ZGo—)te[0,e—G.) are independent.

Recalling Remark 3.4, we also introduce the same objects for the dual process (Zt)t>0 =
(—Zt)t>0. If we set (St)t>0 = (sup[o 1 Zt)t>0, then the dual reflected process (Rt)t>0 = (St

~

Zt)t>0 also posesses a local time at 0 denoted by (L R)tzo, with inverse (6¢)i>0. Lemma 3.8
also holds and so the process (o, Gt, Ht)t>0 = (0¢, T 5,5 Sat)tZO is a trivariate subordinator with
Laplace exponent that we denote by &.

3.A.2 Laplace transform of (G, g, S)

An crucial step in the proof of Theorem 3.3 is the following result, where we recall that & is the
Laplace exponent of (oy, 6¢, Ht)t>0, defined in (3.23).
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Proposition 3.13. Let e = e(q) be an exponential random variable of parameter q, independent
of (Tt;Zt>t20-
(A) If 0 is irregular for the reflected process (Ri)e>o0, then

r(q,0,0)
Kla+q,B,7)

E [e_aGe_BTGE_’YSe} _

(B) If 0 is regular for the reflected process, then the same result holds with 7, replaced by ¢, — .

We split the proof into two parts: we first treat the case where 0 is irregular for the reflected
process and then we treat the case where 0 is regular (which is more involved and needs some
preliminary estimates).

Remark 3.7. We mention the following classification, see for instance Bertoin [Ber97]: if
(Z¢)e>0 has infinite variations, then 0 is reqular for (R¢)t>o0. If it has finite variation, then denote
by d its drift coefficient. If d > 0 then 0 is regular for (R¢)i>0 whereas if d < 0, it is irreqular. In
the remaining case d = 0, let us set Z;5 = Ys<t AZslinz >0y and Zy = =3 AZslinz, <0y
so that Zy = Z;* — Z; . Then 0 is irregular for (Ry);>o if and only if limy o Z; /Z; =0 a.s.

Case (A): assume 0 is irregular for the reflected process

Proof of Proposition 3.13 in case (A). We assume here that 0 is irregular for the reflected pro-
cess. Therefore, the zero set of (R;)¢>0 is discrete (without accumulation points) and we can
define for any n > 0, 15,41 = inf{t > T,,, Ry = 0} with Tp = 0. Then the sequence (T},)n>0
is an increasing random walk. Moreover, for any n > 0 and any t € [T),,T,+1), Gt = T,, and
Sy = St,.

Note that the the ladder time process (o¢)¢>0 is a compound Poisson process and its Lévy
measure is proportional to the law of Tp, where T3 = inf{¢t > 0, R; = 0}. This forces the
trivariate subordinator (oy, 6, H¢)i>0 to be a trivariate compound Poisson process with Lévy
measure proportional to the law of (71, 71, Sy ). For any non-negative «, 3,7, we have

E [e_aGe_/BTGE —'ySe} —-F |:q /OO e_qt—aG’t—ﬁTGt —’YStdt
0

-y E[e—(aw)Tn—BTTn S, /

n>0 0

Tn+1 _Tn
qe_qtdt} .

By the strong Markov property, (i1, — 71, Re47, )tefo,1,,1—7,) i independent of Fr, and is
equal in law to (7¢, R¢)efo,ry)- Therefore, we get

E [efaGe*,BTGe 7VSe:| - E [1 _ e*qTq Z E {e*(OerQ)Tn*ﬁTTn *’YSTn} .
n>0

By the strong Markov property, the sequence (T),, 71, , ST, )n>0 is a random walk and thus, we
get

—qT
Ell-c™]  sg,00)

E {1 _ e—(CH'Q)Tl —pBrry _75T1] K,(Oé +q, 67 ’7) ’

E e_aGe_ﬁTGe_VSe} —

where we recall that « is the Laplace exponent of (¢, 0¢, Ht)t>0. O
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Case (B): assume 0 is regular for the reflected process. Before proving Proposition
3.13 in the regular case, we first recall and show a few resuts when 0 is regular.

Lemma 3.10. If 0 is regular for the reflected process (Rt)i>0, then a.s. we have Se = Sq,— =
Za,—. Moreover, if (Zi)i>0 is not a compound Poisson process and 0 is also reqular for the dual
reflected process (Ri)t>0, we have Zg,— = Zg, and 7¢,— = 1¢, -

Proof. Tt is proved properly in [Ber96, Ch. VI Thm. 5-(i)] that if 0 is regular, then S, = S, =
Za,—, so we refer the reader to it. It is also proved there that (Z;);>0 cannot make a positive
jump at time G, i.e. that Zg,_ > Zg,.

We now turn to the second part of the lemma: we assume now that (Z;):>0 is not a compound
Poisson process. Let us define the process (Zt)tzo = (Z(e—t)— — Ze)te[o,¢]> Which, by duality, is
equal in law to (—Z;)sc[0,¢- Since (Z;)¢>0 is not a compound Poisson process, [Ber96, Proposition
4 Chapter VI] implies that the supremum is reached at a unique time. This ensures that, in
the obvious notations, we have G, = ¢ — G, and Se = Se — Z.. Now if 0 is regular for the dual
reflected process, we have Z(Nie— > ZGe’ ie. Zg, > Zg,— which shows that Zg,_ = Zg,.

Finally, we show that if G. is a point of continuity of (Z;);>0, then it is also a point of
continuity of (7¢);>0. We denote by II the Lévy measure of (74, Z¢):>0, and m > 0 the drift
coefficient of (7¢);>0. Now remark that the Lévy measure II; of (7):>0 can be decomposed into
two parts:

Il (dr) = / RH(dr, dz) = /zeR* II(dr,dz) + /z:() II(dr,dz) .

In other words, we can decompose the subordinator (7¢)i>0 as

7+ = mt + ZATS]-{\AZSDO} + ZATS]-HAZS\:O} =mt+ Tt* + Tto,
s<t s<t

which is then a sum of a drift and two independent indenpendent subordinator (since they do
not jump at the same time). We see first that if ¢ is a jumping time of (7))s>0, then it is also
a jumping time of (Zs)s>0 so that any point of continuity of (Zs)s>¢ is a point of continuity
of (7¥)s>0. Next, we see that (70)¢>0 and (Z;)¢>0 are independent since they do not jump at
the same time and since G, is a functional of (Z;)¢>0, it is also independent from (77);>0 and
therefore it can not be a point of discontinuity of (70)¢>0. This completes the proof. O]

When 0 is regular for (R;):>0, the ladder time process (0¢):>0 is a strictly increasing subor-
dinator. For the local time (L{);>o of the reflected process at the level 0, we have that there
exists some mp > 0 such that a.s., for any ¢t > 0,

t
mRLf’:/O 1(p,—0yds and Ut:mRt—i—ZAUS.

s<t

Then, it is well-known that the excursion process (ef);>o defined by

R {(R0t+S)SE[O,AJt] if Aoy >0,
R

T otherwise,
is a Poisson point process valued in the excursion space & (with the notation introduced in
Section 3.4.1). We will denote by np its characteristic measure. Finally, since (0¢)¢>0 is strictly

increasing if 0 is regular, we have almost surely for every t > 0, 6;— = 7, y_ and H;— = S(5,_)_.
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3.A. Wiener—Hopf factorization

Proof of Proposition 3.13 in case (B). The idea of the proof is similar to that in case (A), al-
though it is a little bit more tedious. Using that S. = Sg.—, and summing over all excursions
of (Rt)¢>0, indexed by their left end-point g and their right end-point d (using the same decom-
position and similar notation as in the proof of Proposition 3.3), we have for any non-negative

o, B,y
oo
E[e—aGe—ﬁTGr—WSe} -F [/ qe—qt—aGt—ﬂTGt—VStht}
0

E / q ( q) t /YSt7 { t } Z ( ) B ° ( € ( )> .
QGQR

Since for every ¢ > 0, almost surely ¢ is not a discontinuity of (73)¢>0 and (S¢)¢>0, the first term
on the right-hand-side is equal to

E |:/oo qe—(a-i-q)t—,@n_—'ySz_1{Rt20}dt] = qmpgE /OO e_(o"Lq)t_fB”_VStde]
0

0
& _ —B0,— qmpg
— mR/ E |e—(at@)ot=B0:—~vHt | 4 — ’
1 0 [ ] K?(Oé +q, 67 7)

where we have also used that (oy);>0 is the right-continuous inverse of (LF)i>o for the second
identity. For the second term, we use the Master formula for Poisson point processes which tells
us that

E{ Z e~ (ata)g—PTg— =75, (1- e—q(d—g))] =np(l— e—qf)E [/oo e~ (atd)ot——BTo, — =750, _— 44
9€GR 0

Then, using that almost surely for every ¢ > 0, 60— = 7,5, )_ and H;— = 5 and that for

O't,)—7
every t > 0, almost surely, ¢ is not a discontinuity of (o, 6, H¢)¢>0, this is equal to
y Y y7 y ) b ~Us q

ng(1— e /OO

0

nR(l — e_qe)

zfiioni oo o,
R q? 77

Since (g, 0,0) is the Laplace exponent of (0¢)¢>0, it follows from the exponential formula for
Poisson point processes that #(q,0,0) = gmg +ng(1 —e~%), which gives the desired result. [J

3.A.3 Proof of Theorem 3.3 and Proposition 3.4

We are finally ready to give the proof of Theorem 3.3. Afterwards, we deduce Proposition 3.4
from it.

Proof of Theorem 8.3. The independence of the two triplets follows from Lemma 3.9 and that
Se = Zg,— in the regular case and S. = Z, in the irregular case (recall Lemma 3.10). We now
turn to proving items (7i)-(iii): we first deal with the case where (Z;);>0 is not a compound
Poisson process, and then we treat the case of a compound Poisson process by approximation.
The main idea is to prove that the law of (G., 7., Se) and (e — Ge, e — TG, , Se — Z.) (resp. of
(Ge,76,—, Se) and (e — Ge, Te — Tg,—, Se — Z,) in the irregular case) are infinitely divisible; we
then deduce their Lévy measure.

Step 1: We show that the law of (G, 7q., Se), resp. of (Ge, TG, —, Se), is infinitely divisible if 0 is
irregular, resp. regular, for the reflected process (R;):>0. We only prove it in the irregular case
as the proofs are identical.
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Chapter 3. Persistence problems for additive functionals of one-dimensional Markov processes

For any positive q, «, 8,7, the Lévy-Khintchine formula tells us that

k(a+4q,B8,7) — £(g,0,0) = / L= e~ U=Pr=1®) e ~at 1 (dt, dr, dz),
[0,00)}

where II is the Lévy measure of (oy, 6, Ht)r>0. By Proposition 3.13, we have

 £(g,0,0) + (k(a +gq,8,7) — k(g,0,0))’
and we therefore see that the law of (G., 7, , Se) is equal to the law of a pure jump Lévy process
with Lévy measure e 9‘I1(d¢t, dr, dzx), evaluated at an independent exponential time of parameter
k(q,0,0). Therefore, it is infinitely divisible and it has no drift part and no Brownian part, so
it is characterized by its Lévy measure.

E [e-0@e~Br0.=5. k(g,0,0)

Step 2: We assume that (Z;);>0 is not a compound Poisson process, and we show that the
law of (e — Ge,Te — T,y Se — Z¢), resp. of (e — Ge, Te — TG.—,Se — Ze), is infinitely divisible
if 0 is irregular, resp. regular for the reflected process (Rt)t>0. Note that the corresponding
distributions are again characterized by their Lévy measure.

Let us define the process (77, Zt)t>0 = (Te = T(e=t)=» Z(e—t)— — Ze)te[0,¢], Which, by duality, is
equal in law to (7¢, —Z)sefo,¢- Since (Zt)t>0 is not a compound Poisson process its supremum is
reached at a unique time so we have G =e— G, and S =S, — Z., with the obvious notation.

Moreover, we have ?5 =T, — T7g,— and 7~'~ =Te — TG, -

If 0 is irregular for (Rt)t>07 then it is necessarlly regular for (Rt)t>0, see Remark 3.7 and we

can apply Step 1 with (Ge, G- . Se ). If 0 is regular for (R;)¢>0 and irregular for (Rt)t>0, then

we can apply Step 1 with (Ge, Ta. ,S ). Finally, if 0 is regular for both sides, then 7, = 7¢, —
by Lemma 3.10 and we can again apply the first step.

Step 3: We are now able to conclude the proof of items (4i) and (%7) when (Z;);>0 is not a
compound Poisson process. Again, we only show it in the irregular case. It is well-known that
(e, Te, Z,) is infinitely divisible, see [Ber96, Ch. VI Lem. 7], and that its Lévy measure is given
by

p(dt,dr,dz) =t te " "P(ry € dr, Z; € dz)dt.

Let us denote the Lévy measures of (G.,7¢,,Se) and (e — Ge, Te — 7, , Ze — Se) by py and p—
and recall that by Steps 1 and 2 that they characterize their distributions. Now, observe that
(67 Te, Ze) = (G67TG57 Se) + (6 - G€7 Te — TG, Ze - Se) s

with the triplets being independent. It follows that p = py + p—. Since (Z)i>0 is not a
coumpound Poisson process, we have P(Z; = 0) = 0 for every t > 0, and since p4 is supported
n [0, 400)? and p_ on [0, +00)? x (—o0,0], we get

g (dt, dr,dz) = t e MP(r; € dr, Z; € dx)dt, (t>0,7>0,z>0)
p—(dt,dr,dz) = t e 1P(ry € dr, Z; € dx)dt, (t>0,7>0,z<0),

which finishes this step.

Step 4: We now extend the proof of items (77) and (ii7) when (Z;)¢>0 is a compound Poisson
process. Note that in this case, 0 is regular for both sides. We proceed by approximation and
consider (Z5)i>0 = (Z¢ +¢et)>0 which is a Lévy process but not a compound Poisson process. It
is easy to see that 0 is regular for (Rf):>0 but is irregular for (]?if )t>0, with the obvious notation.

Let us now show that a.s. Gg — Ge, S¢ — Se and 7gs— — 7g,— as € — 0. This is obvious
on the event {G. = e}, since we have G¢ = G, and S% = S, + ce. Now, on the event {G. < e},
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3.B. Convergence of Lévy processes

since (Z;)¢>0 is a compound Poisson process, we have Z; < Zg,_ = S, for any ¢t € [G.,e]. Let
De = supyeg, e Zt < Se and set g9 = (Se — De)/e: we see that for any ¢ € [Ge,e] and any
S (O’ 60)7

Zi = Zy+et < Se < Zg, .

Therefore, for any ¢ € (0,¢p), we have G5 = G., which implies again that a.s. G5 — Ge, S — S,
and 7gs— — 17g,— as € — 0.
Finally, as € — 0, the measures

1y P(re €dr, Zp €dz) and 1, 0)P(7 € dr, Z € da)
respectively converge to
1> P(e €dr, Zy € dz) and 1y, qyP(r € dr, Z; € dx).
Then the result follows by approximation. ]

Proof of Proposition 3.4. Paraphrasing Corollary VI.10 p 165 in [Ber96]: for o/ > 1, the formula

00 et — efa’tfﬁrf’yx
H(O/a 67’7) = CEXp </ / l{xZO}P(Tt edr, 7, € dm)dt)
0 J[0,00)xR t
follows from Theorem 3.3 and Proposition 3.13 applied with ¢ = 1 (and o = a+¢q). The identity
is extended by analyticity.
Recall also the definition

00 et — efatfﬁr+'yx
R, B,7) = exp ( / / 1(peo)P(7 € dr, Z; € dm)dt).
0 J[0,00)xR t

Then, if 0 is irregular for (R;):>0, we have for any positive «, 3,7, @, B, ~, we have

]E e*aGe*BTGe 7,},567&(676“2)7,5(7'677@6)7:)/\(26*56) — K/(q7 O, O) R/(q; 0’ 02 . (354)
ff(a +q, ﬁv V) E/(a +4q, Bﬁ)

If 0 is regular for (Rt)¢>0, then the same identity holds with 7, replaced by 7¢.— and 7. — 7¢
replaced by 7. — 7, —. This formula yields (3.25).

Moreover, the duality entails that, if (Z;):>0 is not a compound Poisson process, there exists
a constant ¢ > 0 such that &(«, 5,7v) = ¢k(a, 5,7). O

e

3.B Convergence of Lévy processes

In this section, we give some results on converging sequences of Lévy processes.

3.B.1 Convergence of processes and convergence of Laplace exponents

We consider a family of Lévy processes { (7", Z]');>0,h > 0} with (7);>0 a subordinator (for
every h > 0), which converges in law for the Skorokhod topology as h — 0, to some Lévy process
(72, ZD) >0, with (7)>0 also a subordinator and (Z7)¢>0 not a compound Poisson process. Note
that, according to Jacod-Shiryaev [JS03, Thm. 2.9 p 396], (7], Z}')i>0 converges in law for the
Skorokhod topology if and only if (7f!, Z}) converges in law to (7, 2Y) as h — 0. For non-
negative a, 3, such that a + 8+ v > 0, we introduce the quantities

[e's) e—t _ e—at—Br—'ya: b b
(bh(aa 677) = / / 1{x>O}P(Tt S d7", Zt S dl’)dt
0 J[0,00)xR t =
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Chapter 3. Persistence problems for additive functionals of one-dimensional Markov processes

and

_ oo et — e—at—ﬂ’r-l—"/;v N N
én(ao, B,7) :/0 /[0 . ; 1o} P(7y" € dr, Z;' € dx)dt.

We will denote by ¢o(a, 3,7) and ¢o(a, 3,7) the corresponding quantities for (70, Z9);>0. As
we should expect, we have the following result.

Proposition 3.14. Let (7/', Z");>0 and (79, Z))i>0 be as above. Then we have for any non-
negative o, 3,7 such that o+ 8 > 0,

}Lz%th(avﬁar}/) = ¢0(a7677) and }Lz%qgh(aaﬁaly) = QEO(OQB/Y) :

Proof. We will only show the convergence of ¢y, as the proof for ¢y, is similar. We only stress
that since P(ZY = 0) = 0, by dominated convergence we have

. _ ot Brh gt _ B0 —m 70
B E (e — e TN ) [ = B (o7 = eI g

Now since oo 1
_ —at—Brh_~zh
on(a, B,7) = /0 ;E [(e R )1{Zth20}] dt,

it only remains to dominate the integrand. We first dominate for ¢ € (0,1). We have
Bl —em I g ]| ST -7 B (- e
<1—e ' +E[(Br) +1|20) A1)
Then by Lemma 3.11 below (applied to the sequence of bivariate Lévy process (Tth, Zth) valued

in R?), there exists a constant Cz, > 0 such that for any h € (0,1) and for any ¢ € (0,1),
E[(Br] +~|Z]) A 1] < Cp,\/t. Thus we get for any h € (0,1) and any ¢ € (0,1),

CB,“/
\/i I

41 ‘E [(eft _ eiatiBTthi’YZf)l{ZfEO}H <1+
which is integrable on (0, 1). Next, we dominate on [1,00). We have
‘E (7 = e PN ) ‘ e TP

If & > 0, then we can dominate by e~! + e~ which, divided by ¢, is integrable on [1,00). If
a =0, then 8 > 0 and we have

)IE {(eft B efatfﬁrf*vzf)l{zfzo}” <ot 4o N

where ®;, is the Laplace exponent of (7/);>0. Since the latter converges in law to (7¢);>0, We
get that limy_,o ®,(8) = ®0(B) > 0 as h — 0 where ® is the Laplace exponent of (7)>¢.
Therefore, there exists a constant ¢g > 0 such that for any h € (0,1), ®4(5) > cg. Finally, we
see that for any h € (0,1), for any ¢ > 1, we have

’E {(e_t - e_at_BTZL_”’Z’ZL)l{Z{LZO}} ’ Se e,
which, divided by ¢, is integrable on [1,00). This completes the proof. O

Proposition 3.15. Let (7', Z}')1>0 and (19, Z?):>0 be as above and assume that 0 is recurrent for
the reflected limiting process (RY)i>o Then we also have for any v > 0, ¢,(0,0,7) — ¢0(0,0,7)
as h — 0.
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3.B. Convergence of Lévy processes

Here, we cannot use the dominated convergence theorem as it is not clear how to dominate
E[e*VZth 1 Zthzo}]. We will instead use an argument of tightness combined with the continuity of
the Laplace transform.

Proof. For every h > 0, let (of,0F H');>0 be the trivariate subordinator associated with
(1}, ZM)¢>0, as in Appendix 3.A. Since the local time of the reflected process (R}')¢q is de-
fined up to a constant, we can normalize it so that for any non-negative «, 3,7, we have

’{h(a> Ba 7) = eXp(th(av ﬁa ’7))7

where &y, is the Laplace exponent of (o}, 0", H}');>¢. In other words, we can choose the constant
cp, in Proposition 3.4 to be equal to 1. Similarly, we consider (JQ,GQ,H?)QO the trivariate
subordinator associated with (7, Z{);>0, whose Laplace exponent kg is such that for any non-
negative «, 3,7, we have ko(«, 8,7) = exp(¢o(, 3,7)). Then by Proposition 3.14, kp(«a, 8,7)
converges to ko(a, ,7) for any non-negative a, 8,7 such that o+ > 0. In particular, we have
for any v > 0,

lim E [e—v(a?-ﬁ-ﬂf)} — Jim e "h (07 — o=K0(1.07) _ | {e—v(a?-FH?)}
h—0 h—0

)

which implies that o + H} converges in law to ¢ + HY as h — 0. Since 0 is recurrent for
(RY)¢>0, the random variables 0 and HY are a.s. finite. This implies that the family of random
variables (o' + H{')pe(0,1) is tight in Ry, which in turn implies that the family ((of, H"))he(0,1)
is tight in R%. Let ( (o7, H"))1en be a subsequence which converges in law towards some finite

random variables (¢, H). Using Proposition 3.14 again, we see that for any a > 0 and any vy > 0,
we have

B [oo71H] = [t 7).

Since H and HY are finite, the above equality also holds for & = 0 and v > 0 by the monotone
convergence theorem, which shows that the law of (7, H) is uniquely determined and therefore
(of, H}) converges in law as h — 0 to (of, HY). Hence H} converges in law to HY, which
completes the proof, since this implies that (0,0, ) converges to k¢(0,0,~) for any v > 0. O

3.B.2 Technical lemmas

Lemma 3.11. Let (Z]")i>0, n > 1 be a sequence of Lévy processes on R? which converges in
law to a Lévy process (Zt)i>0. Then there exists a constant C' > 0 such that for any n > 1, for
any t > 0, we have

E[|Z7 A1) < CVA.

Proof. We classically decompose the sequence of Levy processes as a sum of a Brownian motion,
a compound Poisson process, a pure jump martingale and a drift: Z;* = ¢, Bl + C[' + M[* + but,
where b, € R%, ¢, is a d x d matrix. Let us denote by 1, the Levy measure of X", then the
Levy measure of C" is 1{‘x|21}vn(dx) and M™ has Levy measure 1{‘x|<1}1/n(dm). For any n > 1,
for any t > 0, we have

E[|Z7[ A1) < 4 (ElenBy?] + B[ M) + E[CP P A1)+ (b2 A 1)
By the maximum inequality for compensated sums, we have

B[] < E[S[SIE‘M:H = t/{r|<1}\{0} ol (da).
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We introduce the truncation function y : R — R? which is a bounded continuous function such
that x(z) = z if || < 1. Setting ¢, := cicn + [ x(2) @ x(z)vy(dx), which is a d X d symmetric
nonnegative matrix, we get by the above inequalities E[|c, Bl*|?] + E[|M[*|?] < Tr(c,)t.

Let us now introduce the smooth function ¢ : R — R* such that o(z) = |z|? if |2| < 1 and
p(x) =21if |z > 2and 1 < ¢(z) < 2if |z| € [1,2]. By It6 formula, we have

BCPE A1) < Blp(C) = [ [ Ble(CE +a) = o COn(dn) <21 [ (o)

By Theorem 2.9 p 396 in [JS03], since (Z}')¢>0 converges in law to (Z;)i>0:
b, = b, ¢, — ¢ and /g(x)yn(dx) — /g(x)y(dx),

for all continuous bounded function ¢ : R? — R such that g is equal to 0 in a neighborhood of
0. Thus, setting C1 = sup,, Tr(¢,), Cy = 2sup,, f‘x|>1 vn(dz), C3 = (sup,, |bp|?)V/2, Oy = C5 Vv 1
and C' = 4(Cy 4+ Cy + C4), which are finite quantities, we get for any n > 1, for any ¢ > 0,

E[|Z"> A 1] < Ct.

Indeed, we have (t?|b,|?) A1 < (#2C2) A1 < Cyt. The result follows from Cauchy-Schwartz
inequality. O

Lemma 3.12. Let (7{*, Z{*)i>0 be a sequence of Lévy processes taking values in Ry x R. Suppose
that the sequence of subordinators (7{")t>0 converges in law to (7¢)i>0 and (Z}")i>0 converges to
a Brownian motion (Zi)i>o0. Then (11, Z}')t>0 converges in law to (1¢, Zt)t>0 where (7¢)¢>0 and
(Z4)¢>0 are independent.

Proof. Denote by m,(dr,dz) the Lévy measure of (77", Z}");>0 and define by x(r,z) = (1 A
r,—1V (z A1l)) a truncation function on Ry x R. It is continuous, bounded and equals (7, z) on
a neighborhood of 0 in Ry x R. Then for all a > 0, 5 € R,

E[e—om‘t"-i-iﬂztn] = exp (twn(a, /8))

where

Ul B) = —aby + i, = 4 [ eI 1 (i) x(r, ) madr da).
+

We denoted by (bn,bn) € Ry x R the drift coefficient (which depends on the choice of the
truncation function) and o2 the Brownian coefficient of (Z7*);>9. Then making o = 0 and 3 =0

in the expression we deduce that the characteristics of (7{");>0 and (Z;')¢>o are respectively
(bn, vn) and (by, 02, 1), where v, and p,, are defined as

U (dr) ::/an(dr,dx), pin (d) ::/]R 7 (dr, dz).

+

By Theorem VII.2.9 p 396 [JS03], the convergence in law of (7);>0 and (Z{')i>0 implies that
bns bny Jg 1 AT?vy(dr) and o2 4+ [ 1 A 2%p,(dx) converges and that for all g : Ry — R and
g : R — R continuous bounded which are 0 around 0

/RJrg(r)yn(dr) — g(r)v(dr), and 9(x)pup(dz) — 0.

n—-+00 Ry Ry n—-+00
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Here we denote by v(dr) the Lévy measure of the limit process (7¢)¢>0. It follows that for all
6 >0, Jg Ljg>sn(dx) goes to 0 and which implies that

n—-+00

/ Ljz>5 mn(dr,dz) — 0. (3.55)
R+XR -

By Theorem VII.2.9 p 396 [JS03] again, the convergence of (7, Z}*)¢>o will follow if we can show
that (7)

/ (LAP)(=1V (2 A 1)) 7o (dr, d)
Ry xR

converges as n — 0o, and that (4) for all continuous function g : R4 xR — R which is constant
outside a compact set and is 0 around 0, [ ¢(r, z)m,(dr,dz) converges.

Regarding item (7), we set f(r,z):= (1A7r)(—=1V (xA1l)) and fix § > 0. By (3.55), and since
f is bounded, f|x|>5 | f(r,x)|m,(dr, dz) vanishes as n — oo. It follows that

< lim sup |f(r,x)|mn(dr, dz) < 5hmsup/1 AT Vg (dr).

n—oo J|z|<d n—00

lim sup
n—oo

/ f(r,z)my,(dr, dx)
RyxR

Now, remark that b, — [p 1 A rvy,(dr) is the drift coefficient of the subordinator (7/*)¢>o and
therefore, it must be positive. Since b,, converges, it follows that

0 < lim sup/ 1 Arvp(dr) <limsup b, < oco.
n—oo n—oo
Making ¢ to 0 shows that [, g f(r, )7y (dr,dz) converges to 0.
For item (%), we consider a function g : Ry x R — Ry which is constant outside a compact
set and is 0 around 0, say on K := {r <1, |z| < 1}. It is uniformly continuous and for all € > 0
there is some 1 > ¢ > 0 such that |z| < § implies |g(r, z) — g(r,0)| < e. Using (3.55) again, and
using that [p, g(r, 0)vn(dr) = [g, (g 9(r,0)un(dr, dz)

timsup| [ gl a)ma(drda) = [ g0 00nar)| < Hmswp [ lg(rw) = g(r,0)ra(dr, do)
n—>00 Ry xR R4 n—oo J|z|<d
= lim sup lg(r, ) — g(r, 0)|mn (dr, dz) < elimsup v, (R4 \ [0, 1]).
n—oo JEK°n{|z|<d} n—00

Since lim sup,, o ¥n(R+ \ [0,1]) < 400 and since [, g(r, 0)vy(dr) converges to [ g(r,0)v(dr),
we conclude that

[otromdrd) — [ g0,

To summarize we get that (77, Z}');>0 converges in law and the limiting characteristic Laplace-
Fourier exponent is

P(a, B) = —ab+ifb— 02252 + A (e =14+ alAr)v(dr),

where b := lim,, b, b= lim,, En and 02 := lim,, 02 + [ 1 A 22u,(dz). This is the characteristic
exponent of (74, Z¢)¢>0 where 7, and Z; are independent. O
3.C Technical results on generalized one-dimensional diffusions

In this appendix, we prove some technical results from Section 3.7. We do not recall here the
notation here, so we refer the reader to the introduction of Section 3.7.

117



Chapter 3. Persistence problems for additive functionals of one-dimensional Markov processes

3.C.1 Local times and the occupation time formula

The goal of this section is to prove Proposition 3.8 and Lemma 3.6. We do not recall the
statements and refer the reader to Section 3.7.

Proof of Proposition 3.8. Item (i). Let t > 0 and h be a Borel function. Using a change of

variables, we have
t
/h( ds_/h 1(B,. ds_/ h(s~1(By))dA™.
0

By Corollary 2.13 in [RY99, Ch. X], it holds that for any u > 0,
/ h(s~\(By))dA™ — / h(s~(2)) Lime (dx),

and the first item follows by substituting p; in the preceding equation and performing a the
change of variables y = s~ 1(z).

Item (it). Let us now show that 0 is regular for (X¢):>0. More precisely, we will show that the
time ¢ = 0 is an accumulation point of Zx = {t > 0,X; = 0} = {t > 0,B,, = 0}. First we
remark that for every (F;):>o-stopping time 7" such that By = 0, we have A“T‘ie — A?g > 0 for
every € > 0. Indeed, the family (L7, — LF)s>0,zcr is the family of local times of the Brownian
motion (Brit)e>o0. Therefore, L?F e — L% > 0 for every € > 0 and by the continuity of the
Brownian local times in the space variable, L7, — L} > 0 in a neighbourhood of 0. Finally,
since 0 € supp(m?®), we get

Foo =AY = [ (Lhy— Lpm(dr) > 0

for every € > 0. Hence, for such a stopping time T, we have Pams = inf{s >0, A™ > A%} =T
Let us define for any ¢t > 0, dy = inf{s > t, Bs = 0} the first zero of (By),>0 after time ¢,
which is an (F;)¢>0-stopping time. Consider a decreasing sequence (t,)nen which converges to
0 as n — oo. Then for any n € N, dy, is a stopping time such that By, = 0 and therefore
p ape = dy, . Let us set (up)pnen = (A:i“; Jnen, then it is clear that it is a non-increasing sequence

of points in Zx. Since d;, — 0 as n — oo and since (A?s)tzg is continuous, it comes that w, — 0
as n — oo which shows that 0 is an accumulation point of Zy.

Item (iii). We show item (7i) and start by showing that (Lgt)tzo is continuous. Let ¥ be
the complement of the open set U,so]72 , 77| where (77)i>0 is the right-continuous inverse of
(LY)t>0. The set ¥, a.s. coincides with the set Zg = {t > 0, B; = 0}. Let ¥4 be the complement
of Ug>glps—, ps|- It is shown in [RY99, Ch. X Proposition 2.17] that ¥4 a.s. coincides with the
set T'y = {t > 0, B; € supp(m*)} and with the support of the measure dA™ . Since 0 € supp(m*),
it comes that I';, C I'4 a.s. and therefore, we have

Ulps—pslc U2, 70l

s>0 s>0

Since Us>o] 78 7B[ also coincides with the flat sections of (L?);>o we get that for any ¢ > 0 such
that ps— < p¢, then Lgt, = Lgt which shows that (L ,)i>0 is continuous. The fact that (L)>0
remains an additive functional after time-change is rather classical. It follows from the fact that
(pt)i>o is itself the inverse of a continuous additive functional, and (LY);>¢ is a strong additive

functional. We refer to Revuz-Yor [RY99, Ch. X, Propositions 1.2 and 1.3] for more details.
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3.C. Technical results on generalized one-dimensional diffusions

Let us show that the support of the measure dLgt = p(dt) is included in the closure of Zy.
We introduce the measure v(dt) which is the pushforward measure of p by (pt)i>0. It is the

Stieltjes measure associated to the non-decreasing process (Lg .)i>0. Let ¢ > 0 be fixed, then
AW -
t

if AT > A for every e > 0, we have LSAn = LY. On the other hand, if ¢ is such that there

exists € > 0 such that A = AT _, then AT is a jumping time of (Ps)szo and since (L2)s>0 is
constant on [p,_, py] for every u such that Ap, > 0, we get LY = L0 . In the end, we see that
t

v is the Stieltjes measure associated to (Lg) and, applying the change of variables, we get

t Pt
1 dLO:/ 1 ds:/ 1 yds</ 1 p.201dL0 = 0.
/O ropdlp, = | (B, #0y(ds) o) T (ds) = | Lm0y

This shows that the support of the measure p is included in the closure of Zx.

We now show the converse and we will assume that 0 is an instantaneous point for (X¢)¢>o,
as the proof is easier when 0 is a holding point. In this case, the closure of Z, is a perfect set with
empty interior. For any ¢ > 0, we denote by di* = inf{s > ¢, X; = 0} the first zero of ( Xs)s>0
after t. Then for any ¢ > 0, B, pux = = 0 and since pgx is an (Ft)-stopping time, Lp x+e > Lgdg(

0

for every € > 0. Since (A" );>0 is continuous, (p;)¢>o is increasing and therefore Lp > L
= = aX te Pax

for any € > 0. This shows that almost surely, for any ¢t € Q. , d;¥ belongs to the support of .
Consider now some ¢ in the closure of Z, and some ¢ > 0. Then since Zx has empty interior,
there exists 7 € QN [t —¢,t) such that r ¢ Zy and dX < t. Hence ¢ is a limit of points belonging
to the support of p, which is a closed set, and therefore ¢ belongs to this set.

Item (iv). We now consider (7¢);>0p the right-continuous inverse of (Lgt)tzo- Let us show
that for any t > 0, 7 = A;“;. The continuous non-decreasing process (A™ );>q is also the
y >

right-continuous inverse of (p;);>0 so that we have for any ¢ > 0,
A':t; = inf{s > 0, ps > 77} = inf{s > 0, Lgs >t =1

For any t > 0, 77 is a stopping time such that BTtB = 0 and thus, by the argument from the
second step, we have p yms = pr, = 2. U
B

T

Proof of Lemma 3.6. We introduce the Lévy process Z7 = [*((g o s) X f)(Xs)ds. It is clear
that, by assumption and by the occupation time formula from item (%) of Proposition 3.8, this
process is well defined. Let us denote by v4(dz) = n( fog((g 05) % f)(gs)ds € dz) the Lévy measure
of (Z4)¢>0. On one hand, we have

E[Z] :t/Rzyg(dz) — (/(f((gos) x f)(as)ds>.
On the other hand, it holds by items (i) and (iv) of Proposition 3.8 that
{ / Lz, g(a)m da:)} - /R E[L* 5] g(x)m! (dx).
By Ray-Knight’s theorem, see [RY99, Chp. XI, Thm. 2.3], for any fixed ¢ > 0, the processes
(L“*’ )o>0 and (L¥p)z<o are two independent squared Bessel processes of dimensions 0 starting

at t and therefore E[Lx | =t for any = € R, which completes the proof. O
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Chapter 3. Persistence problems for additive functionals of one-dimensional Markov processes

3.C.2 Convergence of strings under the Brownian excursion measure

The goal of this section is to prove the technical Lemmas 3.4 and 3.5 about strings with regular
variation. Again, we do not recall the notation nor the statements of the results; we refer the
reader to Section 3.7.2. In particular m is a string of regular variation with regular variation of
index « € (0,2) and my, denote its rescaled version.

Let us start with a technical lemma in the case a € [1,2), which is an almost direct application
of Potter’s bound [BGT87, Thm. 1.5.6].

Lemma 3.13. Let m be a string with reqular variation of index « € [1,2). Then for any n > 0,
there exists a constant C' > 0, such that for any x > 0 and any h € (0, 1),

Imp(z)| < Czl/otny gt/a—1+n, (3.56)

Proof of Lemma 3.13. When « = 1, this is a direct application of [BGT87, Thm. 3.8.6]. When
a € (1,2), we have that there is a constant C, such that

m(oco) —m(y) < CaA(y)yl/"“_1 for any y > 0,

using also that 1/a — 1 < 0 so the upper bound diverges as x | 0. It then simply remains

to show that ﬁg?llg < Cz7" Vv 2" for any « > 0, which is exactly the content of Potter’s

bound [BGT87, Thm. 1.5.6]. O

Proof of Lemma 3.4. When « € (0,1) there is nothing to prove since z'/*~1 = ¢, I yY o 2dy is
the cumulant to the Radon measure 2'/%~2dz on Ry and z + g(z) is continuous with compact
support. When « € [1,2), then for any § € (0,1), then we have
oo [e.e]

lim Limy(dx) = ca/ Liz'/* 24z,

640 Js 1
Again, this is a direct consequence of the fact that the measure my, restricted to (9, 00) converges
weakly to the measure x'/*~2dz restricted to (d,00), and that z — L¥ is continuous with
compact support.

Now consider some v € (0,1/2) such that 1/a — 1 4+ v > 0, which is possible since a < 2.

Since x +— g(z) is Holder of order ~, and ¢g(0) = 0, there exists a constant D > 0 such for any
x € (0,0), g(xr) < Dx?. Therefore we have

8
Ca/ g(l')xl/a72dl, < D/(Sl/aflJrﬁ/’
0

for some constant D’ > 0. Now pick some 7 € (0,1/a — 1+ 7), so by (3.56) there exists C' > 0
such that [my,(z)| < Cz'/*=1=7 for any z € (0,8]. Therefore we have

4 § é
/ g(z)mp(dz) < D / 2Ymy,(de) < 87 mp(8)] + / 27y ()| dz < € 51/,
0 0 0

for some constant C' > 0, the second inequality being obtained by integration by parts. There-
fore, we have just proved that for all 6 € (0, 1), we have

llm Sup / g(l‘)mh(dx) _ Ca/ g(x)xl/a—de S D/(s]./()é—l-‘r’y + C(sl/a—]_-i,—»y_n
h—0 Ry R,
Letting § | 0 proves the result. O
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3.C. Technical results on generalized one-dimensional diffusions

Proof of Lemma 3.5. Before we start with the proof of teh four items, let us recall William’s
decomposition of the excursion measure, see [RY99, Chp. XII, Thm. 4.5]. Take (U;);>o and
(ﬁt)tzo two independent 3-dimensional Bessel processes starting from 0, defined on some prob-
ability space. For any ¢ > 0, let T, and T. be their respective first hitting of ¢. We define the

process (Qf)¢>0 by

U, ifo<t<T,
sz C_Ut—TC ifT. <t<T.+T.
0 it > T

Then, the law of a positive excursion conditioned to M(g) = ¢ is equal to the law of (Qf):>o,
and for any measurable set I', we have

Then, denoting by LY (X) the local time in x at time ¢ of a process (Xs)s>0, we have

Ly 4 (QY) = L, (U) + LE (U) < L5, (U) + LL(U) = Ry. (3.58)

Recalling the variant of the second Ray-Knight’s theorem, see [Yor92, RK2.a)], (L5 (U))z>0
and (L% (U))z>0 are two independant 2-dimensional squared Bessel process started at 0 and so
(Ry)u>0 is a square Bessel process of dimension 4 started at 0.

Item (i). Consider the first point and take o € (0,1), then combining (3.57) and (3.58) we have

nf [( e Lfmh(dx))lA(S} = / [/ T Ty(Qy)mh(du)] 2dy

<3 /0 E[ /0 Rumh(du)] vy 2dy, .

Since E[R,| = 4u, this is bounded by

2/ [/ u mp( du] 2dy—2/ /+00dymh du) —2/06mh(du):2mh(5).

The first point of the Lemma follows since }Lir%mh(é) =1 and a € (0,1).
%

Item (ii). Take o € [1,2) and consider ¢ = 2 so that

nf[ sup ( - L?mh(dx))QlAa} < ;/OéE[ sup (/Oy Rumh(du))?y—?dy.

he(0,1] he(0,1]

Fix 1 > 0 (how small depends on «). Since (Ry)y>0 is a sum of independent square of Brownian
process, by Kolmogorov’s regularity criterion (see [RY99, Thm. 2.1]), we have that R, < Cpu!™"
for all u € [0, 1], where C,, > 0 is a square integrable positive random variable. So for § € (0, 1],

2 y 2
nf{ sup ( Lfmh(dx)> IAJ] < E[Cg]/ sup (/ 1_"mh(du)) y~2dy. (3.59)
he(0,1] 0 he(0,1]

Moreover, since [J u!™" my(du) = y* "y, (y) — (1 — n) J§ v "mp(u)du, we have

(/Oy ZLl*"t'nh(dzL))2 < 4(y2’2”mh(y)2 + (/Oy u*"\mh(u)]du)Q).
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Chapter 3. Persistence problems for additive functionals of one-dimensional Markov processes

Take 0 < 27 < 1/ — 1/2 (which is possible since « < 2), by Lemma 3.13 we get that |my(u)| <
cyul/ 1= yniformly in k € (0,1) and u € (0, 1], for some constant c,. Since 1/a—1—2n > —1
there is a constant ¢, > 0 such that

Yy 2
sup ((["um(du))” < @, vy € 0,1
he(0,1] 0

Hence for 7 > 0 small enough, the left-hand side of (3.59) is bounded by a constant (that
depends on 7) times §2/a==1=4 which goes to 0 as § | 0.

Item (iii). We proceed in the same vein. Similarly as above, we have

+00
nf[ sup ([ Lim ) 1Ac} y / { sup / Rymy, du))} 24y .
he(0,1) N Jo he(0,1)

Fix 7 > 0. By time-inversion, (Ry)u>0 = (u?Ry/y)u>0 has the same law at (Ry)u>0, hence
Kolmogorov’s regularity theorem applied both to (éu)ugl and (R,)u<1 gives that

R, <y (ul_" Vv u1+”), Yu >0,

with C), some integrable random variable. Thus we have,

400 +o0o Y
sup (/ L%mh(dx))lAc} 1IE[C’ ]/ sup (/ ul \/u””mh(du))yﬂdy
he(0,1] /o 2 5§ he(01]

B
n

Then we write for all y > ¢,

Y yAl yV1
/ wr =V u Ty, (du) = / u My, (du) +/ ut My, (du).
0 0 1

If 1 is small enough so that 2n < 1 — 1/« and 2n < 1/«, which is possible since o € (1,2), it
follows from Lemma 3.13 that |my,(y)| < CyY/*~1=1vyl/a=141 Then, recalling that my,(0) = 0,
we see that

yAl
[t i) < (A ) I A1) < Cu AT < C
0

Similarly we have
yV1
/1 u My, (du) < (y vV D) (my(y V1) —mp (1) < Cly v 1)V,

In the end, we have for any y > & the bound [¥ u!=7 Vv u!™my,(du) < C + C(y Vv 1)/**+27 which
is integrable with respect to the measure y~2dy on [§, 00) since 2—1/a —2n > 1. This concludes
the proof item (7).

Item (iv). This point is similar. We write similarly as above

1Ny
3 / sup Rumh(du)}yddy
he 0,1)

< fIE[C ]/5 sup </0y/\1 ul_”mh(du)>y_2dy,

he(0,1]

sup /Lemh 1Ac}
he(01

which is finite as in the case of the previous item. O
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Chapter

Fractional diffusion limit for a kinetic
Fokker-Planck equation with diffusive
boundary conditions in the half-line

Abstract

This chapter contains the results of [Bét22] which is submitted for publication. We
consider a particle with position (X;):>¢ living in R, whose velocity (V;):>0 is a positive
recurrent diffusion with heavy-tailed invariant distribution when the particle lives in (0, 00).
When it hits the boundary = = 0, the particle restarts with a random strictly positive veloc-
ity. We show that the properly rescaled position process converges weakly to a stable process
reflected on its infimum. From a P.D.E. point of view, the time-marginals of (X, V;);>¢ solve
a kinetic Fokker-Planck equation on (0,00) x Ry x R with diffusive boundary conditions.
Properly rescaled, the space-marginal converges to the solution of some fractional heat equa-
tion on (0,00) x Ry.

4.1 Introduction

In the last two decades, many mathematical works showed how to derive anomalous diffusion
limit results, also called fractional diffusion limits, from different kinetic equations with heavy-
tailed equilibria. In short, these types of results state that the properly rescaled density of the
position of a particle subject to some kinetic equation, is asymptotically non-gaussian. A case
of particular interest is when the scaling limit of the position of the particle is a stable process,
of which the time-marginals satisfies the fractional heat equation.

Mellet, Mischler and Mouhot [MMM11] showed a fractional diffusion limit result for a lin-
earized Boltzmann equation with heavy-tailed invariant distribution using Fourier transform
arguments, a result which was improved by Mellet [Mell0] using a moments method. The
proofs rely entirely on analytic tools. A similar result was shown in Jara, Komorowski and
Olla [JKOO09], although it is derived from an a-stable central limit theorem for additive func-
tional of Markov chains, i.e. from a probabilistic result.

Anomalous diffusion limits also occur for kinetic equations with degenerate collision fre-
quency, see Ben Abdallah, Mellet and Puel [BAMP11a), and in transport of particles in plasma,
see Cesbron, Mellet and Trivisa [CMT12]. In [BM20], Bouin and Mouhot propose a unified
approach to derive fractional diffusion limits from several linear collisional kinetic equations.
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Chapter 4. Fractional diffusion limit for a kinetic Fokker-Planck equation

In [LP19], Lebeau and Puel showed a fractional diffusion limit result for a one-dimensional
Fokker-Planck equation with heavy-tailed equilibria. From a probabilistic point of view, the
corresponding toy model is a one-dimensional particle whose velocity is subject to a restoring
force F and random shocks modeled by a Brownian motion (B;)¢>0, which leads to the following
stochastic differential equation:

t t
Vi =vg + / F(Vs)ds + By, Xi=x0+ / Vids, (4.1)
0 0

where (z0,v9) € R?, (V;)i>0 and (X;)¢>0 are the velocity and position processes of the particle.
The force at stake is F(v) = —5 3%, where 8 € (1,5)\ {2, 3,4} leading to an invariant measure
which behaves as (1 + |v|)™? as |v] — oco. Their result states that in this case, the properly
rescaled position process resembles a stable process in large time. When 8 > 5, Nasreddine and
Puel [NP15] established that (¢'/2X, Je)t>0 resembles a Brownian motion as € — 0, corresponding
to a classical diffusion limit type theorem. Then Cattiaux, Nasreddine and Puel [CNP19] later
showed that in the critical case 8 = 5, the same result holds up to a logarithmic correction term.

This phenomenon was actually observed by physicists who discovered experimentally that
atoms cooled by a laser diffuse anomalously, see for instance Castin, Dalibard and Cohen-
Tannoudji [CDCT], Sagi, Brook, Almog and Davidson [SBADI12] and Marksteiner, Ellinger
and Zoller [MEZ96]. A theoretical study (see Barkai, Aghion and Kessler [BAK14]|) modeling
the motion of atoms precisely by (4.1) proved with quite a high level of rigor the observed
phenomenons.

Then, using probabilistic techniques, Fournier and Tardif [FT21] treated all cases of (4.1) (i.e.
B > 0) for a slightly larger class of symmetric forces. When 8 > 5, the limiting distribution is
Gaussian whereas when § € (1,5), they show that the following convergence in finite dimensional
distributions holds, for any initial condition vy € R:

« ., o
(X, /E)QO I (0020)ng  asE—0, (4.2)

where (Zf")i>0 is a symmetric a-stable process with o« = (5 + 1)/3, and o, is some positive
diffusive constant. Naturally, they recover the result of [NP15, CNP19, LP19] and even go
beyond, treating the case § € (0,1) which was new. In this regime, the velocity is null recurrent,
and the rescaled process was shown to converge to a symmetric Bessel process of dimension
0 € (0,2). Then the position process naturally converges to an integrated symmetric Bessel
process, which is no longer Markov. Their proof heavily relies on Feller’s representation of
diffusion processes through their scale functions and speed measures, enabling them to treat all
cases at once, even the critical cases § = 1,2,5. This method was generalized in [Bét21] and
(4.2) was shown to be a special case of an a-stable central limit theorem for additive functional
of one-dimensional Markov processes. In a companion paper, Fournier and Tardif [FT20] also
showed that these results hold in any dimension and the proofs are much more involved than in
dimension 1.

As it is very natural in kinetic theory to consider gas particles interacting with a surface
in thermodynamical equilibrium, corresponding to the case of diffusive boundary conditions,
we propose in this article to study a version of the process (X¢);>o living in Ry and reflected
diffusively through its velocity when the particles hits 0. In other words, we consider the case
of a particle governed by (4.1), which interacts with a wall located at = 0. When the particle
hits the boundary, it reemerges from the wall with a random velocity distributed according to
some probability measure.
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4.1. Introduction

The aim of this paper is to study the scaling limit of such a particle. More precisely,
we will show that in the Lévy regime (8 € (1,5)), the rescaled position process converges in
law to a stable process reflected on its infimum. This result should be related to the recent
articles of Cesbron, Mellet and Puel [CMP20, CMP21] and Cesbron [Ces20], which extend the
results obtained in [BAMP11a, MMM11,Mel10]. They deal with the kinetic scattering equation
describing particles living in the half-space or in bounded domains, with specular and / or
diffusive boundary conditions. They obtain as a scaling limit a fractional heat equation with
some boundary conditions depending on the original boundary conditions. This differs from the
normal diffusive case where one would always obtain the classical heat equation with Neumann
boundary conditions. Here, the kinetic equation at stake is different, but we obtain a similar
limiting equation as in [CMP20, CMP21, Ces20] with however some different behaviour at the
boundary. We refer to the the PDE section below for more details. In [CMP20, Ces20], the
limiting PDE is clearly identified, but they have a uniqueness issue due to the weakness of their
solutions. This problem was solved in dimension 1 in [CMP21]. We emphasize that we have no
such issue and that the limiting process is quite explicit. We also point out that their result
only holds for a € (1,2).

We should also mention the works of Komorowski, Olla, Ryzhik [KOR20] and Bogdan,
Komorowski, Marino [BKM22], which are, to our knowledge, the only probabilistic results of
fractional diffusion limits with boundary interactions. They both study a scattering equation
(linear Boltzmann), as in [CMP20, CMP21, Ces20], but with a mixed reflective / transmissive
/ absorbing boundary conditions. We refer to the comments section below, where these papers
are further discussed.

Let us now introduce more fomally the model studied. We will denote by N = {1,2,3,---}
the set of positive integers. Let vy > 0, (Bt)i>0 be a Brownian motion and (M,)nen be a
sequence of i.i.d. random variables whose law p is supported in (0, 00). Everything is assumed
to be independent. The object at stake in this article is the strong Markov process (X¢, Vi)i>0
valued in F = ((0,00) x R) U ({0} x (0,00)) and defined by the following stochastic differential
equation

t
Xt ::L‘O—{_/ ‘/st,
0

t
V, =g +/ F(Vy)ds + By + > (My — Vi, 2) 10 <y (4.3)
0 neN

7 =inf{t >0, X;, =0} and 7,41 =inf{t > 7,, X; =0},

where F fulfills Assumption 4.1 below and (x¢,v9) € E. This equation is well-posed and we
refer to Subsection 4.2.1 for more details. It describes the motion of a particle evolving in [0, 0o)
and being reflected when it hits 0. More precisely, the velocity (V;)¢>o and position (X¢)¢>0
processes are governed by (4.1) when X; > 0, and the particle is reflected through the velocity
when it hits the boundary, i.e. when X; = 0. Note that ¢ — V; is a.s. cadlag and that the
jumps only occur when the particle hits the boundary, i.e. when ¢ = 7, for some n € N. In this
case, the value of the velocity after the jump is

v;

n

= Vrnf + A‘/;n = Mn

As for every n € N, M,, > 0 a.s., the particle reaches (0,00) instantaneously after hitting the
boundary and thus spend a strictly positive amount of time in (0, c0). Hence the zeros of (X¢)¢>0
are countable and the successive hitting times (7,)nen are well defined. Finally, we point out
that since a solution (X, V;)i>0 of (4.1) reaches {0} x R with a necessarily non-positive velocity,
the process (X¢—, Vi—)i>0 is valued in ((0,00) x R) U ({0} x (—o00,0]).
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Chapter 4. Fractional diffusion limit for a kinetic Fokker-Planck equation

Let us mention some related works, dealing with Langevin-type models reflected in the half-
space with diffusive-reflective boundary conditions. In [Jac12,Jac13], Jacob studies the classical
Langevin process, namely the process (B, fg Bsds)i>0, reflected at a partially elastic boundary.
In [JP19], Jabir and Profeta study a stable Langevin process with diffusive-reflective boundary
conditions. Roughly, their work treats the well-posedness of the equations and wether or not,
the obtained process is conservative, observing some phase transitions. The question of the
existence of a scaling limit does not make sense since the processes are intrinsically self-similar
(at least in the purely reflective case).

In the rest of the article, the process (X, V;)i>0 will always be defined by (4.1), and will be
refered to as the "free process“. On the other hand, (X, V;):>0 will always refer to the process
defined by (4.3) and will be called the "reflected process“ or "reflected process with diffusive
boundary conditions®. Let us now be a little more precise on the assumptions we will suppose.
Regarding the force field F, we assume the following.

Assumption 4.1. The Lipschitz and bounded force F : R — R is such that F = g%/ where
B e (1,5) and © : R — (0,00) is a C* even function satisfying lim, 4+ |v|©O(v) = 1.

This assumption is a little bit stronger than the one in [FT21], and thus (4.2) holds for the free
process. The typical force we have in mind is F(v) = —%# studied in [LP19,NP15, CNP19],
corresponding to the function ©(v) = (1 4+ v?)~1/2. The value of the diffusive constant o, from
(4.2) is given by

31720420471

- I'2(o) sin(TrZ;ﬂ?)’ where  cp = (/R Gﬁ(v)dv)_l 44

Ou

Regarding the probability measure p governing the reflection, we will have two different assump-
tions.

Assumption 4.2.
(i) There exists n > 0 such that p has a moment of order (f+1)/2 +n.

(i) There exists n > 0 such that u has a moment of order (8 + 1)(8 +2)/6 +n.

Since 8 > 1, Assumption 4.2-(ii) is obviously stronger than Assumption 4.2-(7). These
assumptions are satisfied by many probability measures of interest such as the Gaussian density,
every sub-exponential distributions, and many heavy-tailed distributions.

During the whole paper, Assumption 4.1 is always in force and Assumption 4.2 will be
mentioned when necessary.

For a family of processes ((Y;)i>0)e>0, we say that (Y)i>o0 1 (Y)i>0 as € — 0 if for all
n > 1, for all t1,...,t, > 0, the vector (Y{)i<i<n converges in law to (¥;))1<i<, in R™. Most
of the convergence results obtained are actually stronger than convergence in finite dimensional
distributions, i.e. we obtain convergence in law of processes in the space of cadlag functions.
As the usual Skorokhod topology is not suited for convergence of continuous processes to a
discontinuous process, we will instead use a weaker topology, namely the M;-topology, and we

refer to Section 4.2.2 for more details. The following theorem is the main result of this paper.

Theorem 4.1. Grant Assumptions 4.1 and 4.2-(i), and let (X, Vi)i>0 be a solution of (4.3)
starting at (0,vg) with vog > 0. Let (Z{)i>0 be a symmetric stable process with o = (8 +1)/3
and such that E[e®%V] = exp(—to,|€|*) where o4 is defined in (4.4). Let (RY)i>0 be the stable
process reflected on its infimum, i.e. Ri' = Z* —inf,c04) Z5'. Then we have

o d o
(" Xi/e)t>0 Y (Rf)e>0 as e — 0.
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Moreover, if we grant Assumption 4.2-(ii), this convergence in law holds in the space of cadlig
functions endowed with the M-topology.

It is likely that this theorem could be extended for any initial condition (xg,v9) € E with
some small adjustments but for the sake of simplicity we will only consider the case zg = 0 and
vo > 0.

Let us try to explain informally why the limiting process should be the stable process reflected
on its infimum. Remember that when X; > 0, the process is governed by (4.1), and therefore,
we should expect the limit process to behave like a stable process in (0,00). Only the behavior
at the boundary is to be identified. When X; reaches the boundary with a very high speed,
corresponding to a jump in the limit, it is suddenly reflected and slowed down, as the new velocity
is distributed according to p; and the process somehow restarts afresh. As a consequence, we
should expect the following behavior for the limiting process: when it tries to jump across the
boundary, the jump is "cut“ and the process restarts from 0. This is exactly the behavior of
(R{")e>0: when Rf* > 0, it behaves as Zf* and when Z{* jumps below its past infimum, the latter
one is immediately "updated®, corresponding to Rf* trying to cross the boundary and being set
to 0.

We emphasize that (RY);>o is a Markov process, see [Ber96, Chapter 6, Proposition 1]. Let
us now point out an interesting phenomena: the limiting process really depends on the way we
reflect the inital process. For instance, let us consider (4.3) with a specular boundary condition,
i.e. when the process hits the boundary, it is reflected with the same incoming velocity, which
is flipped. Then it is easy to see that, since the force field is symmetric, (|X¢|,sgn(X¢)Vi)i>o0
is a solution of the corresponding reflected equation, where (X, V;)i>0 is a solution of (4.1).
Then by (4.2), the limiting process is (|Z§*|)t>0 whose behavior at the boundary is different
from (R{);>0: when it tries to cross the boundary, the process is moved back in R4 by a mirror
reflection. Note that (|Zf|);>0 is a Markov process only in the symmetric case, so it is not clear
what happens in the disymmetric case.

Unlike the Brownian motion, there is no unique way to reflect a stable process. Indeed, by a

famous result of Paul Lévy, it is well known that (|By|)i>0 4 (Bt —infse(o,g Bs)t>0- This is to be
related with the fact that unlike the Laplacian, the fractional Laplacian is a non-local operator.
We believe that, with a little bit of work, we could extend Theorem 4.1 to the diffusive regime,
i.e. when 8 > 5, and the rescaled process would converge to a reflected Brownian motion.

On our way to establish Theorem 4.1, we will encouter a singular equation which describes
the motion of a particle reflected at a completely inelastic boundary, which is very close to the
equation studied by Bertoin in [Ber08]. We will study a solution of the following stochastic
differential equation.

t
Xt == / VSdS,
’ (4.5)

t
Vt = g =+ / F(Vs)ds + Bt — Z stl{xs:()},
0 0<s<t

where vy > 0. Let a > 0 and consider a solution (X, V;%);>0 of (4.3) starting at (0,vg) for the
particular choice y = d,. Then, informally, (X7, V;%):>0 should tend to (X, Vi)i>0 as we let
a — 0. Since for every a > 0, the rescaled process (61/°‘Xta/5)t20 converges in law to (R{):>0,
it should be expected that (X;);>0 has the same scaling limit. We will see that it is indeed the
case, see Theorem 4.6 below. While it is clear that we can construct a solution to (4.3), it is
non-trivial that (4.5) posesses a solution and let us quickly explain why.
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Chapter 4. Fractional diffusion limit for a kinetic Fokker-Planck equation

Consider a solution (X, V;);>0 of (4.1) starting at (0,0), then one can easily see that 0 is an
accumulation point of the instants at which X; = 0. Now if we consider a solution (X, V¢)¢>0
of (4.5), its energy is fully absorbed when the particle hits the boundary i.e. when X; = 0, the
value of the velocity is V; = V;_ — V;_ = 0. Hence it is not clear at all whether the particle will
ever reemerge in (0, 00) or will remain stuck at 0. As we will see, it turns out that (4.5) admits
a conservative solution, which never gets stuck at 0.

In [Ber07,Ber08], Bertoin studies equation (4.5) in the special case F = 0 and he establishes
the existence and uniqueness (in some sense). We will not be interested in studying the unique-
ness of (4.5) in our case but we will use the construction developped in [Ber07] and [Ber08].

Comments and comparison with the litterature

At this point, we should discuss the works of Komorowski, Olla, Ryzhik [KOR20] and Bogdan,
Komorowski, Marino [BKM22]. In [KOR20], they study a scattering equation with a reflective
/ transmissive / absorbing boundary conditions. When the particle hits the boundary = = 0, it
is either reflected (by flipping the incoming velocity), either unchanged (transmitted), or killed.
Their model is such that the rescaled particle always satisfies X§ = = for some x > 0, and they
find the following limiting process. Consider a symmetric a-stable process (Z'):>o started at
z with a € (1,2), as well as its successive crossing times (o, )nen at the level 0. Consider also
i.i.d. random variables (&, )nen such that P(§; = 1) = py, P(& = —1) = p— and P(&; = 0) = po,
with py,p_,po > 0 such that py +p_ + po = 1. The reflected stable process (R{);>0 is then
defined as follows: R} = Zf* on [0,01), and for any n € N and any ¢ € [0y, 0p41),

Ry = (kli[lgk)zta-

In other words, each time (Z;*);>0 crosses the boundary, the trajectory of (R{):>0 is transmitted
with probability pi, reflected with probability p_ or absorbed with probability pg. As it is
well-known, a symmetric stable process with index o > 1 eventually touches 0, but crosses
the boundary infinitely many times before doing so, see for instance [Ber96, Chapter VIII,
Proposition 8]. Therefore 0o, = lim,_,oo 0y, is a.s. finite but since pg > 0, the reflected process
is a.s. absorbed before oo and (R{):>¢ is naturally set to 0 after 0.

In [BKM22], they study the very same model, but the probability p§ for the kinetic process
to be absorbed when it hits the boundary vanishes as ¢ — 0 and behaves as 1/|loge|. The
limiting process obtained is the same as above with pg = 0 for t < 04, and the process is
absorbed at 0 at t = 0.

Observe that in both cases, the limiting process is killed before (or precisely when) hitting
the boundary. In the present paper, we thus have a substantial additional difficulty which is
to characterize the limiting process when starting from 0. Indeed, a symmetric stable process
started from 0 touches 0 infinitely many times immediately after (when o > 1), so that the
behavior of the limiting process started from 0 is not trivially defined. We cannot avoid this
difficulty as the kinetic process is restarted with some small velocity.

We emphasize that these kinds of results are very recent and were mostly treated from an
analytic point of view, see [CMP20,CMP21,Ces20]. With the papers [KOR20,BKM22], our work
seems to be the only probabilistic study of fractional diffusion limit with boundary conditions.
Our proof borrows different tools from stochastic analysis such as excursion theory, Wiener-Hopf
factorization and a bit of enlargment of filtrations.

Regarding Assumption 4.2-(7), we believe that it is near optimality. As we will see, it appears
naturally in the proofs at several places. Moreover, we believe the limiting process should differ
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at criticality, i.e. when v — pu((v,00)) is regularly varying with index —(8 + 1)/2 as v — oo.
Roughly, the restarting velocities are no longer negligeable and, the limiting process directly
enters the domain after hitting 0 by a jump with "law” z=%dz. Observe that this is the reason
why they [CMP20,CMP21] have to assume « > 1. We think that, at criticality, we might obtain
the same limiting distribution as in [CMP20, CMP21].

Assumption 4.2- (i) is technical and we believe the convergence in the M;j-topology should
also hold under Assumption 4.2-(%).

The present results might be extended, through the same line of proof, to integrated powers
of the velocity, i.e. to X; = [5sgn(Vs)|Vs|'ds and some y > 0. At least, we already know
from [Bét21, Theorem 5] that a a-stable central limit theorems holds for the free process.

Finally, it would be interesting to study what happens in higher dimensions (using the
results of [FT20]), as well as a more complete model, with both diffusive and specular boundary
conditions: when the particle hits the boundary, it is reflected diffusively with probability p €
(0,1) and specularly with probability 1 — p

Informal PDE description of the result

Let us expose our result with a kinetic theory point of view, making a bridge with the P.D.E.
papers [NP15,CNP19,LP19, CMP20,CMP21,Ces20]. Let us denote by f; the law of the process
(X, Vi)e>0 solution to (4.3) starting at (0, vp) with vg > 0, i.e. fiy(dz,dv) =P(X; € dz, V; € dv)
which is a probability measure on Ry x R. Then, see Proposition 4.8 and Remark 4.1, (fi)t>0
is a weak solution of the kinetic Fokker-Planck equation with diffusive boundary conditions

Oufy + v0ufs — %ag f—OFf]  for (t,0) € (0,002 x R
vf(0,v) = —u(v)/( ) w f(0, w)dw for (t,v) € (0,00)?
Jo = 9(0,00)

where we assume for simplicity that p(dv) = p(v)dv

We now set p(dz) = P(RY € dz) where (R{):>0 is the limiting process defined in Theorem
3.2. Then, see Proposition 4.9 and Remark 4.2, (p;);>0 is a weak solution of

Oy pi ()

Ua/ pi(z — 2)1{m>z} pe(x )—l—z@mpt(flf)l{\zkx}dz for (¢t,z) € (0 00)2

’2’1—1—04

/ pe(x)dz =1 for t € (0, 00),
_50

We believe that the above equation might be well-posed, just as for the heat equation d;p;(x) =
Ozzpt(z) on (0,00)? where the Neumann boundary condition 9,p;(0) = 0 can classicaly be
replaced by the constraint [;° p¢(z)dz = 1. The following statement immediately follows from
Theorem 3.2

Corollary 4.1. Grant Assumptions 4.1 and 4.2-(i). Let g(dz) = [, g fe(dz,dv) = P(X; € dx)

1/a

and set with an abuse of notation ¢i(r) = €~ gt/a(s_l/o‘m), that is g5 is the pushforward

measure of g;/. by the map x el/ag It holds that for each t > 0, g; converges weakly (in the
sense of measures) to py as € — 0.
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Chapter 4. Fractional diffusion limit for a kinetic Fokker-Planck equation

It is classical, see e.g. Bertoin [Ber96, Chapter VI, Proposition 3|, that for any fixed ¢ > 0,
R has the same law as sup,cjo4 Z¢'- Hence, the results of Doney-Savov [DS10, Theorem 1] tell
us that p; has a continuous density p;(x) satisfying the following asymptotics:

pi(z) ~ Atz 7% asz — oo, and  p(x) ~ BtTY220270 as w0,

for some constants A, B > 0 and for all ¢ > 0.

Regarding the limiting fractional diffusion equation, we stress that it is not the same as
the one from [CMP20, CMP21, Ces20]. Both corresponding Markov processes possess the same
infinitesimal generator, with however a different domain: they both behave like a stable process
when strictly positive but are not reflected in the same manner when hitting 0. We do not
find the same limiting P.D.E. inside the domain: they have an additional term expressing that
particles can jump from the boundary to the interior of the domain, whereas in our case the
process (Rf'):>0 leaves 0 continuously. More precisely, their limiting P.D.E. can be written as

pel(x = 2)5) — pelw) + 200pe(2) Lju) s
upr() :/R t + 72‘1+a t {zl<e} 4,

1 z x
Bz 4+ pi(0)=,

. / pt(x - 2)1{x>z} - pt(l’) + Zaxpt(a:)
e ERG

together with some boundary condition ensuring the mass conservation.

Plan of the paper and sketch of the proof

Once the limiting process is identified, it is very natural to try to establish the scaling limit of
(Xt — infycp0,) Xs)t>0, where (Xi)i>0 is defined by (4.1). It should be clear that we need more
than the convergence in finite dimensional distributions, and we need at least the convergence
of past supremum and infimum. This is why we will use the convergence in the Mi-topology.

In Section 4.2, we first explain why (4.3) is well-posed. Then we recall and define rigorously
the notion of convergence in the M;i-topology. This section ends with Theorem 4.4, which
states that the convergence (4.2) actually holds in the space of cadlag functions endowed with
the M;j-topology, strengthening the result of [F'T21]. The proof is postponed to Section 4.5.

In Section 4.3, we study the particle reflected at a completely inelastic boundary, i.e. the
solution of (4.5). We will see that (X —infsc(o g Xs)i>0 plays a central role in the construction of
a solution to (4.5). This construction is essentially the same as in [Ber07,Ber08]. Then we prove,
see Theorem 4.6, that (X; — infcpp4) Xs)i>0 and (X;);>0 have the same scaling limit, which is
(R¢")¢>0. The proof relies on Theorem 4.4, the continuous mapping theorem and Skorokhod’s
representation theorem.

In Section 4.4, we finally establish the scaling limit of (X)¢>0. The proof consists in using the
scaling limit of (X; — inf e (o, Xs)e>0 and to compare this process with (X¢):>0. More precisely,
we will show two comparison results. First we will see that X; > X; — infyepgy) Xs. Then,
inspired by the work of Bertoin [Ber07, Ber08] and its construction of a solution to (4.5), we
will show how we can construct a solution to (4.3) from the free process (X¢, V4)i>0. From this
construction, we will remark that, up to a time-change (A});>0, we have Xy < Xy—infepo g Xs.
Then the proof is almost complete if we can show that A) ~ ¢t as ¢ — oo and we will see that
it is indeed the case. Subsections 4.4.3 and 4.4.6 are dedicated to the proof of this result. We
believe that these are the most technical parts of the paper. We stress that Assumption 4.2 is
only used in Subsection 4.4.6.
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4.2 Preliminaries

4.2.1 Well-posedness

In this subsection, we explain quickly why (4.3) possesses a unique solution. To do so, we will
regard (4.1) as an ordinary differential equation with a continuous random source. The force F
being Lipschitz continuous, for any (zg,vo) € R2, for every w € Q, there exists a unique global
solution (X¢(w), Vi(w))e>0 to

Vi(w) = vo + /OtF(VS(w))ds +Biw), Xi(w) =0+ /OtVS(w)ds. (4.6)

One can easily construct a solution to (4.3) by "gluing® together solutions of (4.1) until
their first hitting times of {0} x R. First consider the solution (X}, V;!);>0 of (4.1) starting at
(z0,v0) € E, define 71 = inf{t > 0, X} = 0} and set (X¢, Vi)icjo,r) = (X{, Vi )iejo,r)- Then
consider the solution (X2, V;?);>o of (4.1) starting at (0, M) with By replaced by Byyr, — Br,,
define 7 — 7 = inf{t > 0, X7 = 0} and set (X¢, Vi)ieiry,m) = (X7, Vi2)iclo,m—r)- Iterating
this operation indefinitely, we obtain a process (X¢, V;).ejo,r.) defined on [0, 7,) where 7o, =
lim;, 00 T, Which solves (4.3) on [0, Too).

Consider now two solutions (X, V;'),cjor1) and (X7, Vi?)epo,r2) of (4.3) with the same
initial condition, together with their respective sequence of hitting times (7,}),en and (72)nen.
For every w € Q, (X} (w), V;'(w))i>0 and (X7 (w), V;2(w))i>0 are two solutions of (4.6) on the
time interval [0, 7 (w) A 72(w)). Hence they are equal on this interval and i (w) = 7¢(w), and
we can extend this reasoning to deduce that 71 = 72 = 7 and that (X}, V;l)te[oﬁw) and
(X2, V?)ie[0,n.) are equal. Therefore, uniqueness holds for (4.3) for each w € . Note that so

far, we did not need the use of filtrations.

For a solution (X, V;)i>0 of (4.3), we set (F¢)e>o for the usual completion of the filtration
generated by the process. Then (X, V;)i>0 is a strong Markov process in the filtration (F)i>o.
Since (75, )nen is the sequence of successive hitting times of (X4, V;)i>0 in {0} xR, it is a sequence
of (Fi)e>o0-stopping times and we deduce from the strong Markov property that the sequence
(Tnt1 — Tn)nen is i.i.d. and therefore 7, — oo as n — oo almost surely. In other words, any
solution of (4.3) is global.

Finally, we stress that uniqueness in law holds for (4.3) as pathwise uniqueness for S.D.E.
implies uniqueness in law. To summarize, (4.3) is well-posed, i.e. there exists a unique and
global solution to (4.3) for any initial condition (xg,vo) € E.

4.2.2 M;-topology and the scaling limit of the free process

The main result of [FT21], see (4.2), is a convergence in the finite dimensional distributions sense
and we cannot hope to obtain a convergence in law as a process in the usual Skorokhod distance,
namely the J;-topology. This is due to the fact that the space of continuous functions is closed
in the space of cadlag functions endowed with the Ji-topology. But the process may converge
in a weaker topology and we will show that the process actually converges in the M;-topology,
first introduced in the seminal work of Skorokhod [Sko56]. In this subsection, we recall the
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Chapter 4. Fractional diffusion limit for a kinetic Fokker-Planck equation

definition and a few properties of this topology. All of the results stated here may be found in
Skorokhod [Sko56] or in the book of Whitt [Whi02, Chapter 12].

For any T' > 0, we denote by Dr = D([0,T],R) the usual sets of cadlag functions on [0, T
valued in R. For a function x € Dr, we define the completed graph I'r;, of x as follows:

Tre = {(t,2) € [0,T] xR, z € [z(t—), z(t)]} .

The M;i-topology on Dp is metrizable through parametric representations of the complete
graphs. A parametric representation of x is a continuous non-decreasing function (u, ) mapping
[0,1] onto I'r,. Let us denote by Il7, the set of parametric representations of . Then the
M;-distance on Dy is defined for x1,x9 € Dy as

dvyr(en,e2) = inf o (ffur —ug[ V[|re —ra]),
(wiyri) € o,
where || -] is the uniform distance. The metric space (Dr, dm, ) is separable and topologically
complete.

Let us now denote by D = D(Ry,R) the set of cadlag functions on Ry. We introduce for
any t > 0, the usual restriction map ¢ from D to D;. Then the M;-distance on D is defined for
x,y €D as

daay (@9) = [ 7 (@naalrel@), 7o) A D

Again, the metric space (D, dn, ) is separable and topologically complete. We now briefly recall
some characterization of converging sequences in (D, dn, ). To this end, we first introduce for
x € D and 6,T > 0, the following oscillation function

w(z,T,d) = sup sup d(z(t2), [z(t1), z(t3)]),
tE[O,T] ts— <t1<to<t3<tsy

where ts— =0V (t —9), ts+ =T A (t+ ) and d(x(t2), [x(t1),x(t3)]) is the distance of z(t2) to
the segment [z(t1),z(t3)], i.e.

_J o if x(te) € [x(t1), z(t3)],
d(z(t2), [x(t1), z(t3)]) = { 2(t2) — 2(t1)| A |z(ta) — z(ts)] otherivise. ! ’

We finally introduce, for « € D, the set Disc(z) = {t > 0, Az(t) # 0} of the discontinuities of x.
We have the following characterization, which can be found in Whitt [Whi02, Theorem 12.5.1
and Theorem 12.9.3].

Theorem 4.2. Let (z,)nen be a sequence in D and let x in D. Then the following assertions
are equivalent.

(i) dn, (2, x) — 0 as n — oo.
(ii) xn(t) converges to z(t) in a dense subset of Ry containing 0, and for every T' ¢ Disc(z),

lim lim sup w(zp, T, 6) = 0.

0—=0 n—oo
In any case, we will write T, —> x if x,, converges to x in (D,dnm,)-

We are now ready to characterize convergence in law for sequences of random variables valued
in (D,dnm, ). We have the following result, see for instance [Sko56, Theorem 3.2.1 and Theorem
3.2.2].
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Theorem 4.3. Let (X,)nen be a sequence of random wvariables valued in D and let X be a
random variable valued in D such that for any t > 0, P(AX(t) # 0) = 0. Then the following
assertions are equivalent.

(i) (Xn)nen converges in law to X as n — oo in D endowed with the M;-topology.

(i) The finite dimensional distributions of X,, converge to those of X in some dense subset of
R4 containing 0, and for any T > 0 and any n > 0 we have

lim lim sup P(w (X, T,0) > n) = 0.

0—0 n—oo

The following theorem shows that the convergence proved in [FT21] can be enhanced, in a
stronger convergence.

Theorem 4.4. Grant Assumption 4.1 and let (X, Vi)i>0 be a solution of (4.1) starting at
(0,v9) with vg € R. Let (Z{)t>0 be a symmetric stable process with o = (8 +1)/3 and such that
E[e®%4] = exp(—toa|€|?), where o4 is defined by (4.4). Then we have

<6I/O‘Xt/6>

in law for the My -topology.

>0 — (Zf‘)tzo ase— 0

The proof is postponed to Section 4.5.

4.3 The particle reflected at an inelastic boundary and its scal-
ing limit

In this section, we construct a weak solution of (4.5) following Bertoin [Ber07,Ber08]. Although
the author uses a Brownian motion instead of the process (V;);>0, some of the trajectorial
properties shown in [Ber07, Ber08] still hold in our case.

Consider a weak solution (X, V3)¢>0 of (4.1) on a filtered probability space (2, F, (F¢)t>0, P)
supporting some Brownian motion (By):>0, starting at (0, vp) where vg > 0. We introduce
Xt = Xt — inf Xs. (47)
s€[0,t]
Before introducing the solution of (4.5), we will first study a little bit the process (X})¢>0. It
is a continuous process, which has the same motion as X; as long as X; > inf,cjg Xs. When
X, reaches its past infimum, it is necessarily with a non-positive velocity. When this happens
with a strictly negative velocity, say at time tg, the infimum process decreases until the velocity
hits zero, i.e. on the interval [to,ds,] where dy, = inf{s > ¢y, Vs = 0}. On this time interval,
Xt = inf,cjo4 Xs and thus & = 0. It is interesting and useful to study

Iy ={t >0, X; =0}.
As explained in [Ber07, page 2025], the following random set appears naturally in the study of
Ty
H={t>0,V, <0, y=0and Je >0, Vs € [t —e,t),Xs > 0}.
Each element of H is the first time at which X; reaches its infimum, after an “excursion” above
its infimum. Each point of H is necessarily isolated and thus H is countable. We are now able

to state the following lemma, which is identical to [Ber07, Lemma 2], and which characterizes
the set Zy.

133



Chapter 4. Fractional diffusion limit for a kinetic Fokker-Planck equation

Lemma 4.1. The decomposition of the interior of Zy as a union of disjoint intervals is given
by

iX == U ]57 d5[7
sEH

where ds = inf{u > s, V,, = 0}. Moreover, the boundary 0Zy = Zx \IX has zero Lebesque
measure.

Proof. The idea is to use the result from [Ber07] and the Girsanov theorem. Indeed, the same
result is proved in [Ber07] when F = 0 and vy = 0.

Step 1: We first show that the results holds when vy = 0. We first define the following local
martingales

Ly =— /Ot F(Vs)dBs and &(L); =exp (Lt — ;<L>t)

For any T > 0, E[e%<L>T] < e TIF?lee < 00, by Assumption 4.1, and therefore, by the Novikov
criterion and the Girsanov theorem, the measure Qp = £(L)p - P is a probability measure on
(Q, Fr) and the process

t
V= / F(V,)ds + B; = B — (B, L);
0

is an (F¢)¢efo,r)-Brownian motion starting at 0 under Q7. We deduce from Lemma 2 in [Ber(07]
that Qp-a.s.,

Iy N[0,T) = (U ]s,d5[> N[0, 7]

seH

and 0Zx N[0, T| has zero Lebesgue measure. Since this holds for every T > 0, and since Qp ~ P,
this establishes our result for the initial condition (0, 0).

Step 2: We show the results when vy > 0. Let us define 7 = inf{t > 0, X; = 0}. Since vy > 0,
it is clear that 7 > 0 a.s. and that 7 € H and

TN [0,dy] = {0} U [r,d,].

Now the process (X¢, Vi)i>0 = (Xi1d, — Xd., Vira, )i>0 is a solution of (4.1) starting at (0,0).
Moreover, since Xy, = infyc(g 4,] Xs, we clearly have on the event {d, < t},

inf X,=X,; + inf X,
s€[0,t] s€[0,t—d~]

which yields

Ty ={0}U[r,d,]JUZ, where T= {t >d;, X;_q. = inf Xs} =Ty N][dy,c0).

By the first step,

whence the result. O

We are now ready to complete the construction of the solution of (4.5). We introduce the
following time-change, as well as its right-continuous inverse

t
At:/ 1{x,>0yds and T;=inf{s >0,As >t}.
0
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4.3. The particle reflected at an inelastic boundary and its scaling limit

We claim that by using the same arguments as in [Ber07, page 2024-2025], or by using the
Girsanov theorem as in the proof of Lemma 4.1, it holds that

t t
Xt = / ‘/S]-{XS>O}dS = / V;dAS (48)
0 0

Therefore, by the change of variables theorem for Stieltjes integrals, we get
T; t
Xy = Xp, :/ VidAg :/ Vsds, where V;:=Vrp,. (4.9)
0 0

We finally set G; = Fr, and state the main theorem of this section.

Theorem 4.5. There ezists a (Gt)i>0-Brownian motion such that (X¢, Vi)i>o is a solution of
(4.5) on (2, F, (Gt)t>0,P).

Proof. We have already seen that X; = fg Vsds. Concerning the velocity, we paraphrase the
proof of Proposition 1 in [Ber08] and start by decomposing the process (V;);>¢ as follows

Tt Tt
Vi = v + / l{sto}dVS + / 1{X3>0}st =:vg + Cy + Dy.
0 0

Let us first deal with D;. Using (4.1), we get

Tt Tt
D, :[) 1{Xs>0}F(V9)dS+/O 1{X5>0}dBS'

The last term is a (G¢)i>o-local martingale whose quadratic variation at time ¢ equals Ap, =t
by the very definition of (7}):>¢ and thus, it is a Brownian motion that we will denote (B:)¢>o.
Regarding the second term, we use again the change of variables for Stieltjes integrals, to deduce
that [ 1ix,»0)F(Vi)ds = [t F(V)dA, = [i F(V,)ds. We have proved that Dy = fj F(V,)ds+
B;. We now deal with C;. First we note that the semimartingale

t t t
/Ol{seazx}dVSZ/o 1{seazX}F(Vs)dS+/0 1{scoz,1dBs

is a.s. null. Indeed since dZy has zero Lebesgue measure by Lemma 4.1, the first term is
obviously equal to zero. By the same argument, the second term is a local martingale whose
quadratic variation is equal to zero, and therefore it is null. Then we can write as in [Ber(7]

Tt Tt
Ct:/o 1{seIX}st:/0 YetydVe= >, (Va,-Vo=- > Vu

ueEH,ulT}: uEH,ulT}:

In the third equality, we used Lemma 4.1 and the fact that, by definition, T; ¢ Zy and in the
fourth that Vg, = 0 for every u € H. To every point u € H corresponds a unique jumping time
s of (T})¢>0 at which A} hits the boundary, i.e. u =Ts_ and X7, = X7, = 0. Indeed, the flat
sections of (A¢)¢>0 are precisely fx, and therefore, for every u € #H, we have A, = Ay, and thus

if we set s = A, then Tx_ = v and T = d,,. Hence we have
Ct = - Z VTsfl{XTSZO} = — Z VS—]-{XSZO}7
0<s<t 0<s<t
which completes the proof. O

We are now ready to study the scaling limits of (X}):>0 and (X¢)>0.
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Theorem 4.6. Let (X})i>0 and (X¢)i>0 be defined as in (4.7) and (4.9). Let also (Z)i>0 be a
symmetric stable process with o = (8 + 1)/3 and such that E[e’*%¢] = exp(—to,|&|*) where o
is defined by (4.4). Let Ry = Zf —inf,co Z5. Then we have

(gl/aXt/E)tZO — (RY);>o and (81/°‘Xt/5) — (RY)>9 ase—0

t>0
i law for the M1-topology.

Proof. The convergence of (81/ *X; /E)tZO is straightforward by the continuous mapping theorem
and Theorem 4.4. Indeed the reflection map from D into itself, which maps a function x to the
function y, defined for every ¢ > 0 by y(t) = x(t) — 0 A inf,c[p 4 2(s), is continuous with respect
to the M;-topology, see Whitt [Whi02, Chapter 13, Theorem 13.5.1].

We now study (X:)i>0 = (X1, )e>0. By Skorokhod’s representation theorem, there exist a
family of processes (Xf);>0 indexed by € > 0, and a reflected symmetric stable process (R{):>0,
both defined on the probability space ([0, 1], B([0,1]), A), where A denotes the Lebesgue measure

on [0, 1], such that for every € > 0, (Xf)i>0 4 (X;/e)e>0 and such that,
A —a.s., dMl((él/aXtE)tzo, (Rta)tzo) H—[)) 0.

Let us denote by J be the set of discontinuities of (R{);>o. Then, by [Whi02, Chapter 12,
Lemma 12.5.1], we get that

A—as., foreveryt¢.J, &Y/*XF — RY.
e—0

We introduce the time-change process A7 = fg 1i1/a Xss>0}ds for every € > 0 and every t > 0.
Then we get by the Fatou lemma that A—a.s., for every ¢t > 0,

t
[3 0 Lo 30y < i inf A7 < limsup 47 < 1
Since J is countable, we have A—a.s., for a.e. s € [0,1], 1{gaso) < liminfe o Lo/ xes0)- Since
the zero set of the reflected stable process is a.s. Lebesgue-null, we conclude that A—a.s., for
every t >0, A7 = tase—0.

Let us denote by (77 );>0 the right-continuous inverse of (A7);>0. As an immediate con-
sequence, we have A\—a.s., for every ¢t > 0, Ty — t as ¢ — 0. Since the M;j-topology on the
space of non-increasing functions reduces to pointwise convergence on a dense subset including 0,
see [Whi02, Corollary 12.5.1], we have (T¥);>0 — (id¢)t>0 as € — 0 in law in the M;-topology,
where id; = t is the identity process.

By a simple substitution, we see that (eA4;/.)i>0 4 (Af)e>0, from which we deduce that

(T} /e )0 4 (T¥ )t>0 and that (eT}/.)i>0 — (id¢)i>0 as € — 0 in law in the Mj-topology.
Hence, by a generalization of Slutsky theorem, see for instance [Bil99, Section 3, Theorem 3.9],
we get that (El/o‘Xt/E, €Ty /e )e=0 converges in law to (R$,id;)i>0 in D x D = D(Ry,R?) endowed
with the M1-topology.

We are now able to conclude. Let us denote by D; the set of cadlag and non-decreasing
functions from R to Ry, and Cyy the set of continuous and strictly increasing functions from R
to R4. Then the composition map, from D x Dy to D, which maps (z,y) to z oy, is continuous
on D x Cy, see [Whi02, Chapter 13, Theorem 13.2.3]. Hence (el/aXt/E)tzo = (51/O‘XTt/E)tZO
converges to (R{);>0 by the continuous mapping theorem. O
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4.4. The reflected process with diffusive boundary condition

4.4 The reflected process with diffusive boundary condition

In this section, we finally study the process (X, V4)¢>0, solution of (4.3), and its scaling limit.
To establish our result, we will rely on the convergence of (X;);>o from Theorem 4.6. First,
we will show that X; > &} = X; — inf ¢ g Xs where (X¢)e>0 and (X;)s>0 are the solutions to
(4.3) and (4.1) with the same Brownian motion. Then, inspired by the work of Bertoin [Ber07],
we will give another construction of (X, V;)¢>0 and we will prove that, up to a time-change,
X; < AX;. Finally, we will conclude since the time-change at stake is asymptotically equivalent
to t. We believe that the proof of the limit of the time-change is the most technical part of the
paper and this will the subject of Subsections 4.4.3 and 4.4.6.

4.4.1 A comparison result

Let (2, F,P) be some probability space supporting a Brownian motion (B;)¢>0 and a sequence of
i.i.d p-distributed random variables (M, ),cn, independent of each other. Consider the solution
(X, Vi)i>0 of (4.3), starting at (0,v9) where vg > 0, as well as its sequence of hitting times
(Tn)nen. We also consider on the same probability space the solution (X, V;)i>0 of (4.1) starting
at (0,v9), with the same driving Brownian motion (Bi)¢>0. Let also (X;):>0 be defined as in
(4.7), i.e. X = Xy —inf,cppy Xs. We have the following proposition.

Proposition 4.1. Almost surely, for any t > 0, X; > A;.

Proof. Step 1: We first prove that a.s. for any ¢ > 0, V; < V; and to do so, we use the
classical comparison theorem for O.D.E’s. We prove recursively that for any n € N, a.s. for
any t € [0,7,), V; < V4. This is true for n = 1, since the processes are both solutions of the
same well-posed O.D.E. on [0, 71), with the same starting point. Hence they are equal on this
interval.

Now let us assume that for some n € N, a.s. for any ¢t € [0,7,), Vs < V. Then a.s.
Vi, = V- < Vi, _ < 0. We also see that (V;)i>0 and (V;)¢>0 are two solutions of the same
O.D.E. on the interval [1,, T, +1). Indeed, a.s. for any t € [1,,, Th+1), we have

t t
V,=M,+ | F(Vi))ds+B;,—B,, and V,=V,, + | F(V,)ds+ B, — B, .

Since M,, > 0 with probability one, we have a.s. M,, > V., and thus, by the comparison theorem,
we deduce that a.s., for any ¢t € [, Tny1), Vi < V4. This achieves the first step.

Step 2: We conclude. Almost surely, for any 0 < s < ¢, we have
t t
Xi-X,= [ Vids < [ Vids = X - X, < X
S S

the last inequality holding since X5 > 0 a.s. This implies that a.s., inf,cpp Xs > Xy — Xy, ie.
X; > A, for any t > 0. O

4.4.2 A second construction

In this subsection, we give another construction of (X, V;)¢>0, which is inspired by the con-
struction given by Bertoin [Ber07] of the reflected Langevin process at an inelastic boundary.

Let (92, F,P) be a probability space supporting a Brownian motion (By);>¢ and a sequence of
ii.d p-distributed random variables (M, )nen, independent from the Brownian motion. We set
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(Ft)e>0 to be the filtration generated by (By):>o after the usual completions, and we introduce
the filtration (G¢)i>o defined for every ¢ > 0 as

G = Fi Vo ({(Mn)nen}) -

It is clear that (B;)¢>0 remains a Brownian motion in the filtration (G;):>0. Next, we consider
the strong solution (X, V)0 of (4.1) starting at (0, vg), which remains a strong Markov process
in this filtration. We set o9 = 0, then we set 7 = inf{t > 0, X; = 0} and we define recursively
the sequence of random times

op =inf{t > 7, Vi =M,} and 7,41 =inf{t>o,, X;=X,,},
where n € N. We have the following lemma.

Lemma 4.2. The random times (0n)nen and (Tn)nen are (Gi)i>o-stopping times which are
almost surely finite. Moreover, the sequence (Tp, — Op—1,0n — Opn—1)n>2 forms a sequence of
identically distributed random variables and the subsequences (Tap — 02n—1, 02n — Top—1)n>1 and
(T2on+1 — O2n, O2nt1 — O2n)n>1 form sequences of i.i.d. random variables.

Proof. The process (V;)i>0 being a recurrent diffusion, see for instance [FT21], we have almost
surely, lim inf; o Vi = —o0 and lim sup;_,,, Vi = co. Moreover, by Theorem 4.4, we also have
liminf, oo Xy = —o0 and limsup,_,., X+ = oo a.s. Hence, the random times previously defined
are almost surely finite. Moreover, it is clear by a simple induction that the random times
(0n)nen and (7,)nen are (Gi)i>o-stopping times. Indeed, if o, is a (G¢)i>o-stopping time for
some n > 0, then 7,41 = inf {t > 0,, Xy = X,,, } is obviously a (G;)¢>o-stopping time and since
Ont1 is the first hitting of zero after 7,41 of the (G;)i>o-adapted process (V; — My41)>0, it is
also a stopping time for (G¢)¢>o.

Then, for any n > 2, applying the strong Markov property of (X, V;)i>0 at time op,—1, we
see that for any n > 2, (1, — op—1,0, — 0n—1) has the same law as (7o — 01,02 — 01). The
fact that the subsequences form sequences of i.i.d. random variables follows again from the
strong Markov property and the fact that for any n > 2, (7, — 0y,—1,0,, — 0pn—1) only depends
on (Bt - BU’n—l)tE[O'n—l,Un} and (Mnfl’ Mn) O

We are finally ready to start the construction of the reflected process. We define the (G;)>0-
adapted processes

%t = Z (Xt — Xgnil) 1{0n—1§t<7'n} and ’Ilt = 1{3€t>0}V}. (410)
neN

We refer to Figure 4.1 for a visual representation. For every n € N, the process (X;);>0 has the
same trajectory as (Xi)¢>0 on [op—1, 7y shifted by X, , and is null on [7,,0,]. Now by the
very definition of ¢,, and 7,, X; is above X, on [0,—1, Ty, and it should be clear that a.s.,
for every t > 0, X; > 0 and that

n—1

Iy ={t>0, % =0} ={0y U | |JI[mm,0n] |- (4.11)
neN

As in (4.9), we also have

t
X, = / .ds (4.12)
0

Indeed, this can be easily checked using that for every s > 0, 11x >0y = > nen o, <s<r,) and
that X7, = X,, ,. As in the previous subsection, we can compare X; to X; = X; —inf g X.
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_ZXt
- :}Ct

Figure 4.1: Graphical representation of a realization of (X:):>0 and (X¢)¢>o0-

Proposition 4.2. Almost surely, for anyt > 0, X, < A}.

Proof. The result follows almost immediately from the definition of (¥;);>0. Indeed, almost
surely, for any n € N and any ¢ > 0,

XUTL—11{0n71§t<Tn} > sér[bft] Xs X 1{0n71§t<7'n}7

and therefore we have almost surely, for any ¢ > 0,

X = Z (Xt - XUn—l) 1{an—1§t<7n} < & x Z 1{0n—1§t<7n} < &,
neN neN

which achieves the proof. O

We are now ready to complete the construction of the solution of (4.3), as we did in Section
4.3. We introduce the (G;);>o-adapted time-change A} = fg 1(x,>01ds as well as its right-
continuous inverse T/, and we define the processes

T/ t
Xt:th,:/O tV;dA;:/O Vids where V;=Vyy.

We finally define the filtration (F¢)i>0 = (th')t20~ We have the following theorem.

Theorem 4.7. There exists an (Ft)i>0-Brownian motion such that the process (X, Vi)i>0 is a
solution of (4.3) on (0, F, (Fi)i>0,P).

Proof. The proof is very similar to the proof of Theorem 4.5. We start by decomposing the
process (V;)¢>0 as follows

T/ T/
Vi=w +/ t 1ix,—0ydVs + ' 1z, 501dVs =1 vo + Ct + Ds.
0 0

As in the proof of Theorem 4.5, we easily see, using (4.1), the definition of (7});>o and the
change of variables theorem for Stieltjes integrals, that

t
Dt :/ F(‘/ts)dS‘i‘Bt,
0
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where (By)i>0 = (fOT‘/ 1yx,>0ydBs)i>0 is an (F¢)i>0-Brownian motion. We now deal with C; and

we write )

Tt
Ct = /0 1{8€Ix}d‘/:9 = Z (Va'n - VTn) - Z (Mn - VTn)

neN,7, <T} nEN,7, <T/

In the second inequality, we used (4.11) and that, by definition, T} ¢ Zx. Let us now define for
alln € N, 7, = > p_1 (7% — 0k—1). Then by definition of A}, we have for all n € N, A7 = 7,,
which leads to 7, = T} _. Indeed the flat section of (A})s>0 consists in Upen[7n, 0] and thus
the jumping times of (7});>o are precisely the times 7,,. Then we get

Cr=> (My— Vo, )l <.
neN

Finally it is clear that 71 = inf{¢t > 0, X; = 0} and that 7,41 = inf{t > 7,, X; = 0}. O

4.4.3 Convergence of the time-change

The goal of this subsection is to see that the time change (A});>0 is asymptotically equivalent
to t, i.e. the size of o, — 7, is small compared to the size of 7,, — 0,,_1. Recall we are concerned
with process (X;)i>0 defined in (4.10) and A} = [/ 14x,>0yds. The main result of this subsection
is the following result.

Proposition 4.3. Under Assumption 4.2-(i), we have t~' A} Ll ast - .

We recall from from Lemma 4.2 that (7, — op—1,0n — 0n—1)n>2 is a sequence of identically
distributed random variables and each element is equal in law to the random variable (7,0)
defined as follows: let (€2, F, (F¢)i>0,P) be a filtered probability space supporting an (F¢)¢>o-
Brownian motion (Bj)¢>¢ and two independent p-distributed random variables V) and M, also
independent of the Brownian motion. Consider the process (X¢, V;)i>0 solution of (4.1) starting
at (0,Vp). Then 7 and o are defined as

T=inf{t >0, X; =0} and o =inf{t>7, V; = M}.

For t > 0, we define Ny = sup{n > 0, oy, < t}, for which oy, <t < on,+1. Then the time-change
(A})i>0 satisfies, see (4.10),

N
Ay = (k= op—1) + N1 AL — O, (4.13)
k=1
Roughly, the reason why Proposition 4.3 is true is that ¢ — 7 is actually small compared to 7.
More precisely, we will show that 7 and ¢ have exactly the same probability tail.

First, since (X¢):>0 resembles a symmetric stable process as ¢ is large, we should expect
P(7 > t) to behave like the probability for a symmetric stable process started at n > 0, to stay
positive up to time ¢, which is well-known to behave like ¢ %/2 as t — oc.

Then, since (V;)¢>0 is positive recurrent, we should expect P(c — 7 > t) to have a lighter tail
than 7. Indeed, X; reaches 0 at time 7 with some random negative velocity V,, and o — 7 is
the amount of time it takes for (V;);>0 to reach M, which should not be too big, thanks to the
positive recurrence of the velocity and the assumption on u.

However, we did not manage to employ this strategy, as the law of V, is unknown and it is
not clear at all how to get an exact asymptotic of P(7 > t) by approaching (X¢):>o by its scaling
limit. We will rather use tools introduced in Berger, Béthencourt and Tardif [BBT23].

We state the following crucial lemma which describes the tails of 7 and o. Its proof is rather
technical and a bit independent of the rest, so it is postponed to Subsection 4.4.6.
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Lemma 4.3. Grant Assumptions 4.2-(i). Then there exists a constant C' > 0 such that
P(r >t)~P(o>1t) ~Ct "% ast— oco.
With these results at hand, we are able to prove Proposition 4.3.

Proof of Proposition 4.3. We seek to show that (1 — ¢t~1A}) converges to 0 in probability as
t — oo. From (4.13), we have

Ny
t— A; = (kal - Tk) + (t - TNt+1)1{TNt+1§t} ton,

k=1
Ny N

= (O—kfl - Tk) + (t - TNt+1)1{TNt+1§t} + Z(Jk B Jk*l)
k=1 k=1
N

= (ok — 7%) + (t — TNt+1)1{TNt+1St}'
k=1

Since by definition, on,+1 > t, we have the following bound:

A/ th+1 Nt+1
ogl—fggzwk—m) -t Z Ok — Th)-
k=1

Obviously, the first term on the right-hand side almost surely vanishes as ¢ — co. We now use
Lemma 4.3 to study the asymptotic behavior of ZNtH(ak — 7k) as t — oo. We divide the rest
of the proof in two steps.
Step 1: We first show that
lim limsup P(N; > At'/?) = 0. (4.14)
A—00 00
To show this, we introduce N; = min{n > 1, Y7, (0, — o9x—1) < t}. Since for any n > 1,
we have o9, > > 7'_1(02r — 02k—1), it should be clear that for any ¢ > 0, N; < N;/2. Next, by
Lemma 4.2, (02, — 02n—1)nen is a sequence of i.i.d. random variables whose common law is that
of 0. Thanks to Lemma 4.3, we can apply the classical a-stable central limit theorem, and it is
clear that .
1 L
nQZUQk_UZk 1)—>Sl/2 as n — oo,
k=1
where S¥/2 is a positive 1/2-stable random variable, see [Fel71, Chapter XII.6 Theorem 2]. Then
it is immediate that N;/ #1/2 converges in law to some random variable N,. Finally, we get that
lim sup P(N; > At'/?) < limsup P(N; > 2AtY/2) = P(No, > 2A).

t—o00 t—o00

Letting A — oo shows that (4.14) holds.

Step 2: We show that ¢! ZNt+1( o — T) converges to 0 as t — oo in probability. First, for any
n > 1, we can write

n
Z O’k—Tk Z (Uk—Tk)—i- Z (O’k—Tk), (4.15)
k=1 k<n, k even k<n, k odd

which is then by Lemma 4.2 the sum of two sums of i.i.d. random variables distributed as o — 7.
Moreover, by Lemma 4.3 and Lemma 4.12 in Appendix 4.A with X =7 and Y = o — 7, the tail
of 0 — 7 is lighter than the tail of o:

lim t'/2P(c — 7 > t) = 0.

t—00
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This entails, see Proposition 4.7 with @ = 1/2, that the two terms in the right-hand-side of
(4.15) divided by n?, converges to 0 as n — oo in probability. At this point, we conclude that

1 n
o > (o) — k) 250 asn— o (4.16)
k=2

Finally, for any n > 0 and any A > 0, we have

Ne+1 LAt!/2]
P(t_l Z (o — 1) > 77) < IP’(t_l Z (o — k) > 77) +P(N; + 1> At'/?).
k=1 k=1
Making ¢t — oo using (4.16), then A — oo using (4.14), we complete the step. O

4.4.4 Scaling limit of (X;):>¢

In this subsection, we show that under Assumption 4.2-(7i), the scaling limit of (X¢):>0 is the
stable process reflected on its infimum. The following proposition will help us showing the second
part of Theorem 4.1.

Proposition 4.4. Grant Assumptions 4.1 and 4.2-(ii), and let (%X¢,By)i>0 be defined by (4.10)
with vg > 0. Then we have, in law for the M;-topology,

(€% )iz0 — (B);5g  ase — 0,
where Ry = Z* — infycio Z$ and (Z7)i>0 is the stable process from Theorem 4.1.

Proof. We consider, for vy > 0, the processes (X, V;)i>0 and (X4, U)>0 defined in Sections 4.3
and 4.4, starting at (0,v9) and both constructed from the process (X¢, V;)i>0 solution of (4.1)
also starting at (0,vp). We recall that almost surely, for all ¢ > 0,

t t
X, = /0 Vilgroopds and X, = /0 Vil x50y,
see (4.8), (4.10) and (4.12). We show that, under Assumption 4.2-(4i), we have for any 7' > 0,

A7, = sup 61/0‘()(,5/5 — X)) 0 ase— 0,
te[0,T]

which will prove the result thanks to Theorem 4.6 and [Bil99, Section 3, Theorem 3.1]. Since
a.s. for any t > 0, we have X; > X; by Proposition 4.2, we can write

t t N¢+1
0< X X = /0 Vslix >oyn{x,=0pds < /o OV Vi) lx,—opds < Y My(ox — pr),
k=1

where for any k > 1, pp = inf{t > 7, V; = 0} < 0, and Ny = sup{n > 0, o, < t}, as in the
previous subsection. Indeed, for any ¢t > 0, we have

Ni+1

Zx N[0, = | [m0nl,
k=1

and for any k > 1, the velocity V; is non-positive on [7%, px] and is smaller than My, on [py, o).
The sequence (M, (0, — pn))nen is a sequence of i.i.d random variables and we claim that there
exists & € (0,1 — a/2) such that E[(M;(cy — p1))*/?>T] < 0o, see Lemma 4.4- (ii) below. This
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implies by the Markov inequality that t*/2P(M; (o1 — p1) > t) — 0 as t — co. Therefore, by
Proposition 4.7, we have

1 n

mZMk(Uk—Pk) =50 as n — oo. (4.17)

k=1

But since we have
NT/5+1
Are < gl/e Z My (ok — pr),
k=1
it comes that for any n > 0 and any A > 0,
LA€71/2J
P(Are > 1) < P<51/a > Mok — pr) > 77) +P(Npje +12> Ae™Y?),
k=1

Letting ¢ — 0 using (4.17), and letting A — oo using (4.14), we conclude that P(Ar. >n) — 0
as € — 0. O

4.4.5 Proof of the main result

Proof of Theorem 4.1. Step 1: We start by showing the convergence in the finite dimensional
sense. Let (X¢, V;)i>0 and (X¢, Vi)i>0 be solutions of (4.3) and (4.1) starting at (0,vp). Let also
(X;)i>0 be defined as in (4.7). Let n > 1, ¢1,...,t, > 0 and x1,..., 2, > 0. By Proposition 4.1,
we have

P (gl/ath/s > T, agl/ath/s > ZEn) > P (51/aXt1/5 > T, .. agl/ath/a > -Tn) ;
from which we deduce, by Theorem 4.6, that

lirari%lf]P’<5l/o‘th/a > xl,...,gl/ath/g > xn) >P (R >x1,...,RY >x,).

Let us now consider the process (X;,U;)i>0 starting at (0,vp), recall (4.10), built from
the process (Xi, Vi)i>0, as well as the time change (A4});>0 = (Jy 1{x,>01ds)e>0 and its right-
continuous inverse (7});>0. Then by Theorem 4.7, the process (X, Vi)i>0 = (%Tt/, VTg)tzo is a
solution of (4.3). By Proposition 4.3, we have

(5Tt’1/5, .. ,5Tt’n/€) LN (t1,...,tn) ase—0. (4.18)

Let 6 > 0 such that for every k € {1,--- ,n}, § < tx. We introduce the events

n n

A = ﬂ {51/04th/5ka}, B. 5= ﬂ {’5 t/k/e_tk‘gd};

k=1 k=1

and
n n
CE,(S = m sup 61/06%5/8 Z $k} and D{.:,é' — ﬂ sup 51/QX5/5 2 xk}

k=1  SE[tr—0,tx+0] k=1 = SE[ts—0,t+0]

By (4.18), it is clear that P(BS;) — 0 as ¢ — 0. We easily see that A. N B.5 C Cc4, and
C.s C D, s by Proposition 4.2. Therefore P(A. N B, 5) < P(C.s5) < P(D.s). As a consequence,
we have P(A:) < P(D.s) + P(BS5), whence

limsup P(A;) < limsup P(D. 5).

e—0 e—0
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We claim that the following convergence holds

n

lim P(D. 5) = P(D5) where Ds=[) sup R%> :):k} (4.19)
=0 k=1 SE[te—0,ti-+d]
Since a.s., t1,...,t, are not jumping times of (R{');>0, P(Ds) — P(R > x1,...,Rf > x,) as

9 — 0. Hence (4.19) would imply

limsup P (El/o‘th/e > xT,... ,sl/octh/E > ﬂjn) <P (Rtal > X1, ... ,Rf‘n > ZL’n) ,
e—0

which would achieve the first step. We now show that (4.19) holds.

By Theorem 4.6 and Skorokhod’s representation theorem, there exist a family of processes
(Xf)i>0 indexed by € > 0, and a reflected symmetric stable process (Rf');>0, both defined on
the probability space ([0, 1], B([0,1]), A), where A denotes the Lebesgue measure on [0, 1], such

that for every € > 0, (Xf)>0 < (X /)10 and such that,
A—as., dv, (€Y )0, (R)iz0) — 0.
e—0

We now use the fact the Ma-topology, originally introduced by Skorokhod in his seminal paper
[Skob56], is weaker than the M;-topology. The convergence in D endowed with My can be
characterized, see [Sko56, page 267], as follows: a sequence (z,),en converges to = in D endowed
with the My if and only if

inf z,(u) — inf x(u) and sup z,(u) — sup z(u
u€ls,t] ( )n—>oo u€[s,t] ( ) u€|s,t] ( )n—>oo u€[s,t] ()

for any 0 < s < t points of continuity of x. Therefore, since A—a.s., for any k € {1,...,n}, tx —9
and tj + ¢ are points of continuity of (R{'):>0, we deduce that A—a.s., for any k € {1,...,n},
the following convergence holds

sup 51/0‘2686 — sup R®

<, ase—0,
—0
SE[tr—0,tk+3] € SE[tr—0,tk+3]

which implies (4.19).

Step 2: We now grant Assumption 4.2-(7) and we seek to show that, under this assump-
tion, (al/aXt/E)tZO is tight for the M;j-topology. Here we use the representation (X, V;)i>0 =
(X177, D77 )i>0, see Step 1. Our goal is to show that the conditions of Theorem 4.3-(ii) are
satisfied. By the first step, it suffices to show that for any n > 0, for any 7" > 0,

lim lim sup P (w(sl/O‘Xt/g,T, 9) > 77) =0, (4.20)

=0 -0

By Proposition 4.4, the process (sl/o‘%t/g)tzo is tight and by Proposition 4.3 and Dini’s theorem,
we have the following convergence in probability:

sup ‘5Tt'/5 — t’ F, 0, ase—0.
t€[0,7]

Let "> 0 and ¢ € (0, 1), we will first place ourselves on the event A% 5 = {sup,co 1| |€Tt’/<E -t <
d}. On this event, Tt’/6 € ((t—=10)/e,(t +9)/e) for any t € [0,T]. Let t € [0,7] and recall
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4.4. The reflected process with diffusive boundary condition

that t5- = 0V (t —0) and ts = T A (t +9). We set tos— = 0V (t — 20) and (abusively)
tas+ = (T'+ 1) A (t +20). Then on the event A7 ;, we have

sSup d(%T/ ) [% X ]) < Sup d(%tg/é‘? [%h/aa %t3/8])7

to/e Ttl/e tg/e -
ts_ <t1<to<t3<tsy 3 tos— <t1<ta<t3<tost
from which we deduce that

w(e*%gy T, 0) <w(e/*%ye, T+1,0)

on the event A% ;. As a consequence, we have for any 7,0 > 0 and for any 7> 0
P (w(gl/aXt/g,T, 0) > 77) <P (w(sl/a%t/g,T+ 1,0) > 77) +P ( sup )esTt//€ — t‘ > 6) )
te[0,T)

Therefore, since (51/°‘%t/g)t20 is tight, we have for any n > 0, for any 7" > 0

lim lim sup P (w(el/o‘Xt/a,T> §) > 77) =0,

=0 =0

which completes the proof. O

4.4.6 Some persistence problems

The aim of this subsection is to prove Lemma 4.3. We recall that the random variable (7, 0) are
defined as follows: let (2, F, (F¢)t>0,P) be a filtered probability space supporting an (F3)¢>0-
Brownian motion (Bi):>0 and two independent p-distributed random variables Vp and M, also
independent of the Brownian motion. Consider the process (X¢, V4)¢>0 solution of (4.1) starting
at (0,Vp). During the whole subsection, o = (8 + 1)/3. Then 7 and o are defined as

7=inf{t >0, Xy =0} and o=inf{t>71, V; =M}
We first introduce the random times
To=inf{t >0, V, =0} and p=inf{t >, V; =0}.

It should be clear that a.s., Tp < 7 < p < 07, see Figure 4.2. Indeed since V; is strictly positive on
(0,Tp), so is Xy and Ty < 7. Moreover, since V; is non-positive, M > 0 and (V})>0 is continuous,
p < 0. Lemma 4.3 heavily relies on the two following lemmas.

Lemma 4.4.

(i) Under Assumption 4.2-(i), we can find some § € (0,1/2) such that E[Tol/2+5] < o0 and
E[(c — p)Y/?%%] < 00. As a consequence, we have

lim tY/2P(Ty > t) = lim tY2P(c — p>t) = 0.

t—o0
(ii) Under Assumption 4.2-(ii), there exists & € (0,1/a—2) such that E[(M (oc—p))*/?1%] < cc.
Lemma 4.5. Grant Assumptions 4.2-(i). Then there exists a constant C > 0 such that
P(r—To>t) ~P(p—Tp >t) ~Ct /% ast— .
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Xy

Figure 4.2: Graphical representation of the random times Ty, 7, p and o.

Proof of Lemma 4.3. Using Lemma 4.12 in Appendix 4.A with X = 7 — Ty and Y = Ty and
Lemmas 4.4-(7) and 4.5, it comes

P(r>t) ~Ct™ /% ast — .
By Lemma 4.12 again with X = p— Ty and Y = o — p + Tp, we get
P(o > t) ~ Ct™Y2 ast— oo,
which completes the proof. O

We now seek to show Lemma 4.4. To do so, we will use Feller’s representation of regular
diffusions i.e. we represent the velocity process through its scale function s and its speed measure
m: )

s(v) = / 0 P(u)du and m(v) = ©°(v).
0

Remember from Assumption 4.1 that © : R — (0,00) is a C! even function such that F = g%/
and satisfying lim,_,+o [v|©(v) = 1. The function s is an increasing bijection from R to R and
we denote by s~ ! its inverse. We also define the function ) = s’ o s7'. Now consider another
Brownian motion (W;)¢>o on (Q, F, (F¢)e>0,P) (or an enlargment of the space) and for v € R,
we set

t
Wy =s(v)+ W, Aj = / [W(WY)]2ds as well as  p! =inf{s >0, AY > t}.
0

Then the process defined by V! = 5_1(W;§) and X = [3 V2ds is a solution of (4.1) starting
at (v,0). This result is standard and we refer to Kallenberg [Kal02, Chapter 23, Theorem 23.1
and its proof] for more details. As a consequence, using the substitution u = p?, we can write
that almost surely, for any ¢ > 0,

U

i t
X;’:/O 5_1(W;j§)ds:/0p ¢ (W?2)ds, (4.21)

where for any v € R, ¢(v) = 5~ (v)/1?(v). We set, for any v € R, T¢ = inf{t > 0, V,* = 0}, the
first hitting time of (V}"):>0 at the level 0. We also note that since s(v) — o0 as v — +oo and
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Jg m(v)dv < oo because 3 > 1, the process (V");>0 is a positive recurrent diffusion. Note that
Assumption 4.1 yields the following asymptotics:

m(v) ~ v P s(v) ~ (B+ 1) gv) ~ (B + 1)%0% as v — 00. (4.22)

Finally, we stress that by the strong Markov property, since Vj is p-distributed, for any non
negative functional G of continuous functions, we have

E[G((Wrso)l = [ EGI7)z0)) u(dv). (1.23)

Proof of Lemma 4.4. Step 1: We first deal with Ty. Let 6 € (0,1/2), then by (4.23) and the
Hoélder inequality, we have

e[1/*] = [E[@)" ] uav) < [T BTV a(aw)

We will show that the quantity on the right-hand-side is finite if § is small enough and to do
so, we need to understand the behavior of E[T{j] as v tends to infinity. We use Kac’s moment
formula (see for instance Locherbach [Locl3, Corollary 3.5]) which, applied to our case, tells us
that

E [TY] :5(1))/ du+/ w)du < s(v /m du+/ du.  (4.24)

By (4.22), we deduce that [y s(u)m(u)du ~ (2(8+1)) 1v? as v — oco. Since s(v) ~ (B+1)" 1o !
and S+1 > 2, the dominant term on the right-hand- 81de in (4.24) is the first one and we deduce
that there exists some positive constant K such that for any v > 0, E [T¥] < K(1+v°+1). Hence
we have

E {Tol/Q-‘r&} S/ E[Té;]l/Q-i-é,u(d,U) < K1/2+6/ (1+U’8+1)1/2+5,U,(d’l)),
0 0

which is finite by Assumption 4.2-(7) if § = n/(8 + 1).

Step 2: Note that the random time o — p only depends on the speed process. More precisely,
since p is a stopping time and V), = 0, the process (Vi1,)¢>0 is a solution of dY; = F(Y;)dt +dB;
starting at 0, and thus, o — p is equal in law to T3, = inf{t > 0, V? = M}. Since M is
independent of (V;):>0, we can write, as in the first step, that

E {(0 _ p)1/2+5} _ /OOOIE {(Tg)l/zw] J(dv) < /OOOE [TS]1/2+5 (o),

where T = inf{t > 0, V? = v}. We use again Kac’s moment formula, see [Loc13, Corollary

3.5]:
v) /R m(u)du — s(v) / " () du — /0 " s(uym(u)du < s(v) /R m(u)du,  (4.25)

and we can conclude as in the previous step that E [T?] < K (1 +v%*1), whence E[(c — p)'/>9]
is finite with the same value of .

Step 8: We deal with the second item and we grant Assumption 4.2- (). Let ¢’ € (0,1 — a/2).
Since M is independent of (V;):>0 and p is the law of M, we get

E [(M(O‘ _ p))a/2+5’} _ /OOO va/2+6’E {<T3>a/2+6'} u(d’U) < /OOO va/2+6’E [Tl?] a2+ Iu(dv),
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Then, since E [T0] < K(1 + v#*1) as in Step 2,

E {(M(U _ p))a/2+5’} < Ka/2+5’/0 Ua/2+6’(1 +vﬂ+1)a/2+6’u(dv)

which is finite by Assumption 4.2-(ii) if 6’ = n/(8 + 2), recall that a = (8 + 1)/3. O
We now seek to show Lemma 4.5, and we will need to estimate the moments of Xr,.
Lemma 4.6. Grant Assumption 4.2-(i), then we have E [X%O/ﬂ < 0.

Proof. For any v > 0, we set 63 = inf{t > 0, W}’ = 0}. Since s(v) > 0 if and only if v > 0, and
VY = 571(Wp”g) with (p})i>0 the inverse of (Ay):>0, it should be clear that P(T§ = Agg) =1
Hence, following (4.21), we have for any v > 0, almost surely

v 98 v
XTg: 0 ¢ (W7)ds.

Step 1: We first introduce the non-negative random variable

g'U
Zv,a = / O(st)l/a72d8‘
0

By the scaling of the Brownian motion, the law of (W, 0 <t < 6{) is the same as the law

of (5(U)Wf/7[51((vl))}2, 0<t< [5(1))]29(5)71(1)), and as a consequence,

the law of Z, , is the same as the law of [5(1})]1/0‘Z5_1(1)’a.

In fact, the law of Z,-1(1), is explicit and it holds that Z;-1(;), has the same law as a?/T,
where T, is a random variable whose law is the Gamma distribution of parameter («, 1), see for
instance Letemplier-Simon [LS19, page 93]. In particular, we have P(Z;-1(1) o > ) ~ cz™® as

x — oo for some ¢ > 0. Therefore, it holds that IE[ZO‘/Q(D o) < 0o

1

Step 2: We conclude. Since o = (8 +1)/3, we have 1/a —2 = (1 —28)/(8 + 1) and by (4.22),
there exists a constant ¢ > 0 such that ¢(v) ~ cv'/*2 as v — co. Remark that 1/a—2 < 0 as
f > 1, and therefore there exists a constant C' > 0 such that for any v > 0, ¢(v) < Cot/o=2,
As a consequence, we have for any v > 0, almost surely 0 < X%éj < CZ, . Putting the pieces
together, by (4.23) and the previous step, we can write

E[x3/%) = /fE[(X%;)O‘/Q}u(dv) <co | VE[(Zo0)?] u(dv)

whence -
a/2 o a/2
E[x7/%] < corB[z2E ) ) /0 Is(0)]Y2p1(dv).
We can conclude since there exists a constant & > 0 such that for any v > 0, 5(v) < K (14v)5+1,
see the proof of Lemma 4.4, and [5°(1 + v)3+Y/21(dv) < co by Assumption 4.2-(i). O

We now introduce the process (Vt,Xt)tzo = (Vixny, Xe+m, — X1y, )e>0 which is a solution of
(4.1) starting at (0,0) and is independent of X7,. We emphasize that, since the restoring force
F is odd by assumption, the processes (V;);>0 and (X;);>0 are symmetric. We also stress that
the stopping times 7 — Ty = inf{t > 0, X; = — X7, } and p — Tp = inf{t > 7 — Ty, V; = 0} only
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depend on (ﬁltzo, (Xt)tzo and Xr,. Let us introduce the supremum and infimum of (Xt)tzoi
&= SUP,e(o,4] Xs and Ay = inf,c(gq Xs. Let us also define for ¢ > 0

gi = sup{s < t,V, =0} and dy = inf{s > t,V, = 0}.
Then we have the following inclusions of events:
{Adt > _XTO} C {7’ — Ty > t} C {,O—Tg > t} C {Agt > —XTO}.

The first two inclusions are straightforward since {r — To > t} = {Ay > —Xrp,}, d¢ > ¢ and
7 < p. Remember that p — Ty is the first zero of V; after 7 — Ty and thus it should be clear
that {Ag, < —Xrp,} = {7 —Tp < gt} C {p—To < g}, which establishes the third inclusion since

g+ < t. Since (X¢)¢>0 is symmetric, we then have
Py, < X1,) SP(r—To>t) <P(p—To>t) <P(&, < Xrpp). (4.26)

We will show the following lemma which, combined with (4.26), immediately implies Lemma
4.5.

Lemma 4.7. Grant Assumptions 4.2-(i). Then there exists a constant C' > 0 such that

P (&, < Xn) , ~ P(éa, < Xp) ,~ CtV2
To prove this result, we will heavily use some results developped in [BBT23], which rely on works
about Itd’s excursion theory and the links with Lévy processes, in particular by Bertoin [Ber96]
and Vallois, Salminen and Yor [SVY07]. The proof is rather long and we will segment it (again)
into smaller pieces, see Lemmas 4.10 and 4.11 below.

We use the following standard trick: let e = e(q) be an exponential random variable of
parameter ¢ > 0, independent of everything else, then we will look at the quantities P(§,, < X))
and P(§q, < X7,) instead of looking at P(§,, < X7,) and P(§y, < X7,). We have nothing
to loose doing this since a combination of the Tauberian theorem and the monotone density
theorem (see Theorem 4.8 below) tells us that having an asymptotic of P(§,, < X7,) (respectively
P(&4, < X7y)) as t — oo is equivalent to having an asymptotic of P(§, < Xr,) (respectively
P(&q, < X1,)) as ¢ — 0, and we will first study P(&,, < x) and P(§q, < z) for a fixed z > 0.

The first reason we do this is that it brings independence between the quantities we are
interested in. The second reason is that by doing this, we actually have explicit formulas for
some quantities of interest, for instance for P({,, < ) and, as we will see, there is a strong link
with some Lévy process associated to (X, ‘_/t)tzo and fluctuation’s theory for Lévy processes,
see for instance [Ber96, Chapter VIJ.

The velocity process (Vt)tzo possesses a local time at 0 and we will denote by (7;)¢>0 its right-
continuous inverse. The latter is a subordinator and we will denote by & its Laplace exponent,
i.e. E[e=®] = exp(—t®(q)). The process (V;)¢>0 being positive recurrent, we have E [y1] < oo,
see [Ber99, Chapter 2, page 22|, and we choose to normalize the local time so that E[y1] = 1,
whence ®(q) ~ g as ¢ — 0. The strong law of large number for subordinators entails that a.s.,
t1y, — 1 as t — oo. We will first prove the following which tells us that we only need to study

P&, < ).

Lemma 4.8. There exists a function f: (0,00) — [0, 1] such that f(q¢) — 1 as ¢ — 0 and such
that for any q,x > 0,

P(&g. < 2)f(q) <P(&a. <) <P(§g. < ). (4.27)
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Proof. Let us define for any ¢ > 0 the processes

dy _ _ _ _ _
I, = Vids = X4, — Xy, and Ay =1; + Xg, — &g = Xa, — &g,

gt

Then we can express g, in terms of {;, and A;: remarking that (X¢)t> is monotonic on every
excursion of (V;)>0, we get that supye(g, 4,) Xs = Xg, V Xa,. Therefore, if Ay <0, then Xy, < &g,
and £, = &;,. On the other hand, if A; > 0, then {;, = th = &g, + Ay, All in all, we have

Ear = € lin,<oy + (§g + Ar)1ia, 501 (4.28)

We can fatorize functionals of the trajectories of (‘_/t)tzo before time g. and functionals of
the trajectories between g. and d.. More precisely, it is shown in [SVY07, Theorem 9] that
the processes (Vi )o<u<g, and (Viyig, )o<u<d.—g. are independent. Therefore, I, is independent
of (5., Xy, — &;.). Moreover, it is shown in [BBT23, Corollary 4.6] that &, and X, — &, are
i.i.d., see also Lemma 4.9 below. Hence the random variables I., £, and X, — &, are mutually
independent and thus &, is independent of A, = I, + X,, — &,.. We set f(q) = P(A. < 0) and

we deduce from (4.28) that (4.27) holds for any x > 0.

Let us now show that f(¢) — 1 as ¢ — 0 and let us denote by n the excursion measure
of (T_/t)tzo away from zero. Let £ the set of excursions, i.e. the set of continuous functions
e = (&t)t>0 such that ¢ = 0 and such that there exists ¢(¢) > 0 for which e, # 0 for every
s € (0,4(¢)) and €5 = 0 for every s > {(g). Then by Theorem 9 in [SVYO07], we have for any
measurable bounded function G : R — R,

1 £(e)
E[G(1. :—/G/ esds ) (1 — e~ %E)n(de).
G = 55 () esds) Jn(de)
But ®(q) ~ g as ¢ — 0 and [ {(e)n(de) =1 < oo since E[y;] =1 (by a direct application of the
Master formula in the context of excursion theory), we get by dominated convergence that

q—0

£(e)
E[G(.)] — gG( /0 cods)(e)n(de),

and thus I, converges in law as ¢ — 0.

Remember that §;, — Xg, is equal in law to £y, . Moreover §;, — oo in probability as ¢ — 0
because g tends in probability to infinity as ¢ — 0 and because § = sup,¢(g, Xs tends to

infinity in probability (Theorem 4.4 clearly implies that ¢t~1/*¢; converges in law as t — c0).
Since I, converges in law and &, — Xge converges in probability to co as ¢ — 0, we have that
A, = I, — (&, — X,.) converges to —oo in probability, so that P(A, < 0) = f(q) converges to 1
as ¢ — 0. ]

To handle the quantity P({,, < z), we will rely on a Wiener-Hopf factorization of the
bivariate Lévy process (v¢, Z¢)i>0 = (’yt,X%)tZO, which is developped in [BBT23, Appendix
Al]. Let us denote by (St)i>0 the supremum process of (Zi)i>o, i.e. St = supycpy Zs and
let (Rt)i>0 = (St — Zi)t>0 be the reflected process, which is a strong Markov process that
also possesses a local time at 0, see [Ber96, Chapter VI] and we denote by (o4);>0 its right-
continuous inverse. The process (o, 0¢, Ht)t>0 = (0t, Vo So, )t>0 1S a trivariate subordinator,
see [BBT23, Lemma A.1 in Appendix A]. Its Laplace exponent is denoted by k, i.e. for any
a, 8,6 >0,

E {e‘a”t_ﬁet_‘mt} = exp (—tk(a, 5,9)) .
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Finally we introduce the renewal function V defined on [0, c0) by
(e}
V(z) = / P(H, < z)dt,
0

which is non-decreasing and right-continuous. We state the following lemma, which is borrowed
from [BBT23, Proposition 4.4 and Corollary 4.6], which we will use several times.

Lemma 4.9. There exists a constant k > 0 such that for every o, 5,5 > 0, we have the following
Fristedt formula

S eft _ efatfﬁrf&p
k0, ,6) = koxp ( I 1(20)B(yi € dr, Z, € dm)dt) -
0 J[0,00)xR t =

Recall that e = e(q) is an exponential random wvariable of parameter ¢ > 0 independent of
everything else. Then for every \,u > 0, we have

E [ (6 —X0)] = £(0,4,0) #(0,4,0)
k0,4, A) k(0,q, )

In particular, &, and &, — X4, are independent and have the same law.

Note that, when applying [BBT23, Corollary 4.6], we used the fact that (Z;):>0 is symmetric so
that if (Zt)tzo = (—Z¢)t>0 is the dual process, then the corresponding Laplace exponent k = k.
Let us finally introduce two last tools that are key to the proof of our result and that we will
use several times. Let us first remind Frullani’s identity which holds for every b € (0, 1), see for
instance [Ber96, page 73]:

< ,— _ ,—bx
logb = / € 7% da (4.29)
0

T

Let us also remind the following classical theorem, which can be obtained by a careful
application of the classical Karamata’s Tauberian theorem and the monotone density theorem,
see for instance [BGT87, Theorem 1.7.1 page 37 and Theorem 1.7.2 page 39].

Theorem 4.8. Let u : Ry — Ry be a monotone function. Let us denote by Lu its Laplace
transform i.e. for any A >0, Lu(X) = [ e u(z)dz. Let p > —1 and T be the usual Gamma
function, then the two following assertions are equivalent.

(i) u(z) ~ (p+ 1)af as x — co.
(1) MCuw(A) ~T(p+2)A"" as X — 0.
We have the following lemma.

Lemma 4.10. Recall that e = e(q) is an exponential random variable of parameter ¢ > 0
independent of everything else. There exists k > 0 such that for any x > 0, we have

- o l/2
P&y, < x) o P(&q, < ) o kg <V (x). (4.30)
Moreover, there exists a constant M > 0 such that for any x > 0, for any q € (0,1),
P(¢q, < o) < P(&, < x) < Mg"/?V(). (4.31)
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Proof. By Lemma 4.9, for any ¢ > 0, we have

k(0,4,0)

AT e hep dz = |e o | = .
/0 c (g < w)da {e } £(0,q,\)

We introduce for any ¢ > 0 the function V, defined on [0, c0) by

Vq(fE) =E |:/0 e_qatl{HtSm}dt] y

which is such that

x o x 1
)\/ e MY (x)dx = E [/ eqet)‘tht] = / e 0N qp —
0 q( ) 0 0 ’i(ov q, >‘)

Hence, by injectivity of the Laplace transform, we get P(§,, < z) = k(0,¢,0)V,;(x) for any
x,q > 0. For any z > 0, V,(z) increases to V(z) as ¢ — 0. Hence, by Lemma 4.8, to show (4.30)
and (4.31), it is enough to show that x(0,¢,0) ~ kq'/? as ¢ — 0 for some k > 0.

By the Fristedt formula from Lemma 4.9 and by symmetry of (V;);>0, and thus of (Z;)i>0
(observe (Z;)¢>0 and (—Z;)i>0 share the same (v;);>0), we also have

0 —t _ _—qr
k(0,q,0) = kexp </ / il{x@ﬂp’(% edr, Z; € dx)dt) .
0 J[0,00)xR t -

Then we can write
—t _ efqr

; P(vy € dr, Z; € dz)dt

log[1(0, ¢,0)]? =210gk+/ / i
0 Jio,00)xR

e’} 0 e—t — e qr
—2logk + / / £ Py e dr)at
0 0

0o ,—t _ ,—P(g)t
=2logk + / L
0 t

=2log k + log ®(q)
by Frullani’s formula (4.29). Therefore (0, q,0) = k(®(q))"/? ~ kq'/? as ¢ — 0. O

We need to show one last result, after which we will able to prove Lemma 4.7, which will
close this subsection.

Lemma 4.11. There exists a constant v, > 0 such that V(z) ~ vaz®? as x — co.

Proof. Let us first remark that we have for any A > 0,

00 o] oo 1
)\/ e—/\xv 2dy = E [/ e_Atht] = / e_m(o’o’k)dt = T AN
; (z)dy ; 0 #(0,0, )

Then, by Theorem 4.8, since V is non-decreasing and «/2 > —1, it is enough to show that there
exists a constant ¢, > 0 such that £(0,0,\) ~ caA*? as A — 0.

To do so, we use the convergence in law of the rescaled Lévy process (51/ “Zy/e)t>0 to the
symmetric stable process (Z{)i>0, see Proposition 4.6 below. Moreover, since t~ !y, — 1 as
t — 00, we get

(Ve €Y Zy )0 — (8. 28>0 ase — 0, (4.32)
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in law for the usual J; Skorokhod topology. Indeed, since (¢, Z¢)¢>0 is Lévy, only the convergence
in law of (t~1;,t71/%Z;) to (1, Z§) as t — oo is required, see Jacod-Shiryaev [JS03, Chapter
VII, Corollary 3.6], and the convergence follows from Slutsky’s lemma.

Let us set, for every a, 5, A > 0,

9 et — e—at—ﬁr—)\
k% (a, B, A) = kexp (/ / 1>y P(eyy): € dr,.»sl/ozZt/E € dx)dt) ,
0 J[0,00)xR t =

where k > 0 is the constant from Lemma 4.9. We have
€ o -1 —t —el/az
log k°(0,0,\) =logk +/ t—E [(e —e t/s)l{zt/5>0}] dt

0 >

o -1 —t —el/az
:logk’+/ t'E [(6 — e t)]-{Zt>O}} dt
0 >
o0
+ / e — e )P(Z; > 0)dt
0

1
=log (0,0, )\el/a) ~3 loge.

In the third equality, we used Frullani’s identity and the fact that P(Z; > 0) = 1/2. Therefore, we
have k2(0,0,\) = e~ '/2k(0,0, \e'/®). Then it is shown in [BBT23, Proposition B.2 in Appendix
B] that the convergence (4.32) entails that for any «, 5, A > 0,

. o) o' e—t _ e—(a—l—ﬁ)t—)\x N B
K (a, B, \) = kexp /0 /0 ; P(Z} € dz)dt | =: k(a, 5, N).

Now for § > 0, choosing A = 1 and € = §%, we see that x(0,0,d) = §%/2k%7(0,0, 1), which is
equivalent to 5a/2/?a(0, 0,1), as desired. O

Proof of Lemma 4.7. Let e = e(q) be an independent exponential random variable of parameter
g > 0. Since t — P(§,, < X73,) and t — P(§q, < X71,) are non-decreasing, since —1/2 > —1, and
since

P&y, < X1,) = q/o e_qt]P)(fgt < Xp,)dt and P(&, < Xp,) = q/o e_th(fdt < Xp,)dt,

by Theorem 4.8, the result is equivalent to P(§,, < X7,) ~ P(§a, < X1,) ~ Cq'/? as ¢ — 0 for
some C' > 0. Since (X;):>0 is independent of X7, we have

Pt < Xr) = [ Bléa. <)P(Xr, € da),

By (4.30), we know that for any = > 0, ¢~ '/2P(¢,, < 2) — kV(z) as ¢ — 0, and by (4.31), we
have ¢~ '/2P(¢y, < x) < MV(z). Finally, by Lemmas 4.6 and 4.11, E[V(X7,)] < oo and thus we
can apply the dominated convergence theorem, which tells us that

lim g~ /*P(&, < X1,) = FE[V(X7,)].
q—0

The same proof holds for P(§,. < Xr). O

153



Chapter 4. Fractional diffusion limit for a kinetic Fokker-Planck equation

4.5 M;-convergence of the free process

In this section, we give the proof of Theorem 4.4. Let (X3, V)0 be the solution to (4.1) starting
at (0,v9) where vg € R. Let (Z*)i>0 be the symmetric stable process with o = (54 1)/3 as
in the statement. As the convergence in the finite dimensional distribution sense was already
proved in [FT21], we only need to show the tightness for the M;-topology. By Theorem 4.3, we
need that for any 7' > 0, for any n > 0,

lim lim sup ]P’(w(el/o‘Xt/a,T, J)>n) =0, (4.33)
=0  £=0
The idea of the proof is as follows: we first show that the convergence holds for (X, V;)i>0
starting at (0,0). To do so, we will show that some Lévy process (Z;):>0 associated to (X¢)¢>0
converges in the Jj-topology to a symmetric stable process (which is immediately implied by
the finite dimensional distribution convergence). Therefore, (Z;);>0 converges also in the M;-
topology and (4.33) is then satisfied by (Z;)¢>0, which will imply that (4.33) is also satisfied by
(X¢)t>0. We will then extend the convergence to processes starting at (0, v).

4.5.1 Some preliminary results

Before jumping in to the proof, we we recall some results that were used / proved in [FT21]. The
first result can be found in Jeulin-Yor [JY81] and Biane-Yor [BY87], and represents symmetric
stable processes using one Brownian motion.

Theorem 4.9 (Biane-Yor). Let (W;)i>0 be a Brownian motion and (1¢)¢>0 the inverse of its
local time at 0. Let o € (0,2) and consider, for n > 0, the process

t
K :/0 sgn (W) [Wel 721y, 5y ds.

Then the process (K|')i>o converges a.s. toward a process (Ki)i>o as n — 0, uniformly on
compact time intervals. Moreover the process (S5 )i>0 = (K, )t>0 is a symmetric stable process

and for all t > 0 and all £ € R, E[exp(iSy")] = exp(—kqt|£]%), where ko = Wm

We now summarize the intermediate results that can be found in [FT21, Lemmas 6 and 9],
enabling the authors to prove their main result, which is stated in (4.2). We mention that the
main tool used in the proofs is the theory of scale function and speed measure.

Theorem 4.10 (Fournier-Tardif). Let (X, Vi)i>0 be a solution of (4.1), with 8 € (1,5) and
starting at (0,0). There ezists a Brownian motion (Wy)i>o such that for any € > 0, there exist
a continuous process (Hj)i>0 and a continuous, increasing and bijective time-change (Af)i>o0
with inverse (pf)i>0, adapted to the filtration generated by (Wi)i>0, and having the following
properties:

. d
(i) For any e >0, (X¢/e)e=0 = (Hp: )e=0-

(ii) For every t > 0, a.s., pi 5 T where (1¢)1>0 is the inverse of the local time at 0 of
e— =

(Wi)e>0-

11i) Almost surely, for every t > 0, sup el/eHe — 0K,
[0,7] ¢

= 0, where o = (8 + 1)/3, where
e—
0= (8+ 1)1/0‘*26}3/0‘ and where (Ki)t>o is the process from Theorem 4.9.

Recall that cg is given in (4.4). We now slightly improve their result, showing the convergence
of past infimum and supremum.
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4.5. Mi-convergence of the free process

Proposition 4.5. Grant Assumption 4.1 and let (X¢, Vi)i>0 be a solution of (4.1) with 5 € (1,5)
and starting at (0,0). Let (Z{)i>0 be a symmetric stable process with o = (8 + 1)/3 and such
that E[e®%'] = exp(—toa|€|?). Then we have for every 0 < s < t,

inf el/® Xuje — 4y inf Z¥ and  sup gl/ Xu/5—> sup Zy ase— 0.
u€ls,t] u€ls,t] u€ls,t] u€ls,t]

Proof. By item (i) of Theorem 4.10, it is enough to show that for any 0 < s < ¢, a.s., we have

inf eY/*H:. — inf 0K, and sup 51/QH; — sup 0K,
u€ls,t] P 530 ueled) u€ls,t] 60 ye[s ]

We will only show the result for the infimum as the proof for the supremum is identical.

Step 1 : We first show that a.s., for any s < t, inf,¢c[s4 K, = inf ¢, 7] Ku, which is not
straightforward since ¢t — 7; is discontinuous. We will first treat the case a € (0,1). Observe
that in this case, [j [W;s|'/*~2ds < oo since 1/a — 2 > —1 and thus we have

K., :/ sgn(Wy)|W| /o= 2dS*X: sgn )| W2 2ds,

r<t”Tr—

which has finite variations and no drift part. For every u > 0, (W;)>0 is of constant sign on the
time-interval [r,_, 7,] and consequently ¢ — K, is monotone on every such interval. Hence, the
infimum is necessarily reached at the extremities i.e. inf,.¢c[.,_ -1 K; = min{K,, , K, }.

If a € [1,2), we approximate (K;)¢>0 by the processes (K}');>0, from Theorem 4.9. Similarly,
we have for every ¢t > 0, Kl = >, [[* sgn(Wu)]Wull/a_21{|wu|>n}du, and thus, by the
previous reasoning, we have inf,¢c[s ) K7 = inf,c[;, -] K;. We can write

inf K, — inf K, <|inf K, — inf K] inf K;!— inf K,
u€ls,t] UE[Ts,TE] u€ls,t] u€|s,t] uE[Té,Tt] UE[Ts, Tt
< sup |KJ — Ko |+ sup |K] - K,
u€ls,t] u€[Ts,7t]
<2 sup |K]—K,l.
w€([0,7¢]

By Theorem 4.9, (K}');>0 converges a.s. to (K;);>0 uniformly on compact time intervals, and
thus the last term Vamshes asn — 0.

Step 2 : For every € > 0, t — pj and t — H; are almost surely continuous. Therefore, a.s. for

every s < t, infyc[sq 51/O‘H§Z = infue[pg’pf] 51/‘“H5. Hence we can write, by Step 1,

inf El/O‘HE — inf 0K,
u€ls,t] Pu u€ls,t]

<

inf eY*HE — inf 0K,|+
u€lps,pf) u€|ps,pf]

inf 60K,— inf 60K,

ue[p,svpt] ’U‘G[TS,TJ

< sup ‘El/O‘HE — QKU‘ +
u€[0,7)

inf 0K,— inf 60K,

)
UE[ps,pt] UG[T‘57Tt}

where T' = sup¢(g,1) p; is a.s. finite by item (4i) of Theorem 4.10. Almost surely, the first term
on the right-hand-side goes to 0 thanks to Theorem 4.10-(%i). By item (%), we have for any
0 < s < t, almost surely, p; — 75 and p; — 7 as € — 0. Since (K)¢>0 is continuous, the second
term vanishes as € — 0, which completes the proof. ]
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Chapter 4. Fractional diffusion limit for a kinetic Fokker-Planck equation

4.5.2 Convergence of the associated Lévy process

In this subsection, we consider a solution (X, V;)i>o of (4.1) starting at (0,0). The velocity
process possesses a local time at 0 that we will denote by (L¢)i>0 and we will also denote by
(7¢)e>0 its right-continuous inverse. The latter is a subordinator. The process (V;)¢>0 is positive
recurrent which implies that E[y;] < oo and we choose to normalize the local time so that
E[y;] = 1. The strong law of large number for subordinators entails that a.s. t~!y — 1 as
t — oo. This also implies the same result for (L;);>0, and by Dini theorem, we get that a.s., for
any t > 0,

— 0 (4.34)

su ‘EL — s
Y s/e e—0

s€[0,¢]
Next we define (Z;)¢>0 = (X, )+>0 which is a pure jump Levy process with finite variations and
should be seen the following way:

Yt Vs
Zy = / Vids =) / Vadu.
0 s<t’Vs™

We establish an a-stable central limit theorem for the Levy process (Z;):>0, which seems more
or less clear in the light of (4.2) and the strong law of large number for (y:)¢>o.

Proposition 4.6. Let (Z{)i>0 be the stable process of Proposition 4.5. Then we have
(81/aZt/5)t20 — (Z?)tz() ase —0
in law in the J1-topology

Proof. As (Zi)i>0 is a Lévy process, it is enough to show that t~Y2Z, converges in law to A
see for instance Jacod-Shiryaev [JS03, Chapter VII, Corollary 3.6]. Let z € R and § > 0. On
the one hand, we have

P(t71% > 2) <P (7% > 2, |y —t] < 0t) + P (ln —t] > t),
and on the other hand, we have
(1Y% > 2) 2 Py — ) <60) ~ B (1792, < 2, [y — 1] < t).

It follows from the strong law of large number that P(|y; — t| > dt) converges to 0 as t — oo.
Now on the event {|y — t| < ot}, we have v € [(1 — )¢, (1 + 0)t], and thus, reminding that
Zy = X,,, we have

P (t‘l/"‘Zt >z, =t < 6t) <P sup  tVOXy >z,
SE[1—6,140]

and

P (t—l/aZt <z m—t < 5t) <P ( inf t_l/aXst < Z> .
SE[1-6,149]

The two quantities on the right-hand-side of the above equations converge by Proposition 4.5 to
P(supyepi—s,149) Zs = z) and P(inf,cp 5145 Z5 < 2) as ¢ tends to infinity. Putting the pieces
together, we have
limsup P (t_l/aZt > z) <P sup  Z¢>z|.
t—00 SE[1-8,1+0]

and

liminf P (t_l/o‘Zt > z) >P < inf Z%> z) ,
t—o0 s€[1-6,144)

Since almost surely, 1 is not a jumping time of (Z;*);>0, it should be clear that by letting § — 0,
we can conclude that limy . P(t~ Y22, > 2) = P(Z§ > 2). O
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4.5. Mi-convergence of the free process

4.5.3 Proof of Theorem 4.4

Proof of Theorem 4.4. Step 1: As explained above, we start by showing that Theorem 4.4
holds for a solution (X, V;)i>o starting at (0,0). We need to show that (4.33) holds. Let
(Zi)e=0 = (X4, )e>0 as in the previous subsection, where (7¢)¢>0 is the inverse of the local time
(Lt)¢>0 at 0 of (V;)¢>0. Since the M;j-topology is weaker than the J;-topology, by Proposition
4.6 and Theorem 4.3, we get, for any T > 0, for any n > 0,

lim lim sup P(w(el/azt/g,T, §) >mn) =0.

=0 -0

Now we show that for any 7' > 0, for any n > 0 and any § € (0, 1),

P (w(gl/aXt/E,T, 9) > 77) <P (w(gl/aZt/E,T +1,24) > n) +P (t S[l(l]pT] leLyje —t| > 5) (4.35)
€0,

This will achieve the first step by (4.34). We first introduce for ¢ > 0,
g+ = sup{s <t,V, =0} and dy = inf{s > t,V, = 0}.

Note that g; and d; can be expressed in terms of the local time and its inverse, i.e. g = yr,—
and d; = ~vr,. We also introduce the random function v(¢) such that v(¢) = 1 if the excursion
straddling the time ¢ is positive and v(t) = —1 if it is negative, i.e. v(t) = 1{y,50) — L{vi<0}-

Let 7> 0 and 0 € (0,1), we first place ourselves on the event At s = {sup;c(o 1 €L/ — | <
0}. Let t € [0,T] and t5_ < t1 <ty < t3 < tsy, where ts_ =0V (t — ) and ts.. = T A (t +9).
We also introduce to5— = 0V (t —29) and tos4+ = (T'+1) A (t+25). We emphasize that, since we
are on the event Arg, dy/. = YL, < V(t+6))e for every ¢ € [0,T]. We first bound the distance
d(sl/O‘XtZ/g, [51/O‘Xt1/€,el/°‘Xt3/€]) = sl/ad(Xt2/5, (X4, /6> X1, /¢]). Without loss of generality, we
will assume that X;, . < Xy, /..

o First case: Xy, /. < Xy,/e < Xi,/.. Then we have

d(th/av [th/m th/a]) =0< sSup d(Zt2/£> [Zt1/£> Zt3/a])'

tos_ <t1<to<t3<tasy

e Second case: Xy, . < X, /e < Xy, /.. In this case, d(Xy, o, [X¢, o5 Xty e)) = Xy e — Xy /e Let
us note that, since (X3)¢>0 is monotonic on every excursion of (V4):>0, t1/¢ and t3/e can not
belong to the same excursion, i.e. dy, /. < g4,/.. We define, for 7 € {1,2,3} and € > 0, the
positive real numbers u; . defined as follows

Louge = gpy e i v(t2/e) = 1, uge = diy e if v(t2/e) = —1 and uge = ta/e if v(tz/e) = 0.
Since (X¢):>0 is monotonic on every excursion of (V;)i>0, we have X, o > Xy, ..

2. For i € {1,3}, uje = dy, e if v(ti/e) = 1, uie = g4,/c if v(ti/e) = =1 and u; = t; /e if
v(ti/e) = —0. We have X, . < X, _.

Therefore, we have X,,, < Xy, and Xy, < Xy, so that necessarily, u1 . < uge < uge.
Now we stress that, if » > 0 is such that V. = 0 (i.e. such that v(r) = 0), then since the zero
set of (V;)¢>0 has no isolated points, either r = d, or r = g,. In any case, we always have for
every i € {1,2,3}, u; = YLy, OF Uie = VL, ).~ Let # > 0 and remember that on the event
A5, we have Ly, /. € ((t; —0)/e, (t;+0)/¢) for every i € {1,2,3}. Using the fact that (v;)i>0
is increasing and that (X;)¢>0 is continuous, we can always find s1 < s2 < s3 € [tas—, tas+]
such that

0 0
th/a SX’Vsl/E—i_i +§’

XtQ/E Z Xry 2

and X,/ < Xy

s9/c - 57 s3/e
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which leads to
d(th/aa [th/aath/a]) < (Zs1/a - ZSQ/E) N (Zs;g/a - ZSQ/&) +6 = d(Zsz/aa [Zs1/aa ZS3/8]) +6.
Since this holds for every 6 > 0, we deduce the following bound

d(XtQ/E’[Xt1/€7Xt3/€]) S sup d(ZtQ/E’[Ztl/E’Ztg/E])‘

tos_ <t1<ta<t3<tosy

o Third case: Xy /. < Xy,/. < Xy,/.. We can adapt the previous case to deduce that

d(Xt2/87 [th/avth/E]) S sup d(Zt2/€7 [Zt1/87 Ztg/E])'

tos_ <t1<ta<t3<tas4

To summarize, we proved that, on the event Ar s, the following bound holds
w(e* X, T,0) < w(e*Zye, T +1,20).
This implies (4.35). We proved Theorem 4.4 in the case vy = 0.

Step 2: We consider the solution (X, V;)i>0 of (4.1) starting at (0,vg) where vg € R. We show
that there exists a constant C' > 0 such that for any 7" > 0,

E[ sup [Vj|] <C(14 1), (4.36)
t€[0,T]

To this aim, we start by studying sup,cp 7 |V;|#*! and we introduce, recall Assumption 4.1, the
even function ¢ defined as

((v) =2 /0 "o (u) /0 " 0 (w)dwdu,

which solves the Poisson equation ¢'F + £¢” = 1. Then by the Ito formula, we have

0V} = £(wo) + £ + /Dt ¢(V,)dB,.

Moreover, remember that |v|©(v) — 1 as v — £oo and that 5 > 1. As a consequence, there
exist positive constants ¢, > 0 such that

((v) ~c|v/Ptt and £ (v) ~ dsgn(v)|v]’?  as v — 0.
Therefore, there exist positive constants M, M’ > 0 such that for all v € R,
[P+t < M(144(v)) and [¢'(v)]* < M'(1 +v?P). (4.37)

Using (4.37) and Doob’s inequality, we get

E| sup [Vi|**!] <M
te(0,7)

1+ ﬁ(vo) + T+ 4E[(/OT[£/(‘/S)]2(18)1/2}‘|

< M [1+0(vo) + T+ A(M'T)/2| + AM(M'T)*E| sup [Vil?].  (4.38)
te[0,T
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4.5. Mi-convergence of the free process

Finally, using Young’s inequality with p = 8+ 1 and ¢ = (5 + 1)/, we find some C > 0 such
that
}(BH)/B

AM(M'T)?E[ sup [Vil?] <2 4 18 sup (137
te[0,7) t€[0,7]

1
<CTE D2 4 2K sup [V,
te[0,T

which, inserted in (4.38), implies that there exists a constant K > 0 such that

B[ sup 1] < K4 7O
te[0,7

We deduce (4.36) by Holder’s inequality again.

Step 3: We finally show the result for any solution (X¢, V;):>0 starting at (0, vg), where vy € R,
and we extend the technique used in [FT21, page 21]. If we set Ty = inf{¢ > 0,V; = 0}, then
the process

(Xt, Vi)izo = (Xewry — X1y, Vi )i>0

is a solution of (4.1) starting at (0,0). Therefore, by the first step, the process (61/0‘)_(,5/5)1520
converges to (Zf')¢>o in the space D endowed with the M;-topology. Then, by a version of the
Slutsky lemma, see for instance [Bil99, Section 3, Theorem 3.1], it is enough to show that for
any T > 0,

250 ase—o0. (4.39)

sup '/ ’Xt/a — Xt/a
te[0,T]

Indeed, the M;-topology is weaker than the topology induced by the uniform convergence on
compact time-intervals. We distinguish two cases. First,

_ 2To
Limozi/ey | Xije = Xoje| < Ymozesey [Xoje| T Lmozt/ey | Xejern, — Xmp| < /0 |Vslds = D
Second,
_ t/€+TO
Linp<tsey | Xise — Xije| < 1 X1l + Ympetsey | Xejermy — Xije| < D1+ Lizy<tse) /t/e Vs|ds.
Hence, if we set D7, = 17 <1/e) jf//;jLTO |Vs|ds, we get

<e'/*Dy 4+ sup sl/anva.

sup e/ ‘Xt/e =X te[0,T]

te[0,7

The first term converges almost surely to 0 as ¢ — 0. Regarding the second one, we have

E| sup &tl/aDtQﬁS
te[0,T

FTO} < €1/aTOE[ Sll% 1{T0<t/g} sup ’Vs‘ .FTO}

t€[0,T] s€[t/e,t/e+Tp)

< esl/‘)‘Tol{To<T/E}IE Le[zgg/ﬁ] ’VS@

<O TyC(1+ (2T)'2e71/?)
by Step 2. This last quantity almost surely goes to 0 as a € (0,2). This implies the convergence
in probability of supco 7| et/ *D7. to 0, so that (4.39) holds. O
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Appendices to Chapter 4

4.A Some useful results

Lemma 4.12. Let X and Y be two positive random variables and let C > 0. Assume that we
have P(X > t) ~ Ct=Y2 ast — oo. Then the following assertions are equivalent.

(i) lim;_yo0 t/2P(Y > t) = 0.
(i) P(X +Y >t) ~Ct™ /2 as t — occ.
Proof. Let us first show that (7) implies (7). Let 6 € (0,1) and write
PX+Y>t)=PX+Y >t X>5)+P(X+Y >t X <)
<P(X > d0t) +P(Y > (1 —9)1t).
We deduce that

C =liminf t'Y?P(X > t) <liminf t'/?P(X + Y > t) < limsupt'/*P(X +Y > t) < C61/2,
t—o00 t—o00

t—o00
Letting § — 1 completes the first step.
We now show that (i) implies (7). We first remark that

(Y >3t} c J{X+Y >+ Dt}n{X < nt}.
neN

Indeed, if Y > 3t, we set n + 2 = L%J > 3, and get % < Xi'y —3<mnand % >n+ 1.
Now let N € N, then we have (Ups>n{X +Y > (n+ 1)t} N{X <nt}) C{X+Y > (N +2)t}

and therefore

IP’(Y>3t)gIP’(X+Y>(N+2)t)+§:]P’(X+Y>(n+1)t, X < nt).

n=1

For any n > 1, we have

PX+Y>n+1)t, X <nt)=P(X+Y >n+1)t) —P(X+Y > (n+1)t, X >nt)
<PX+Y >(n+1)t)—P(X > (n+ 1)),

and thus limy_yoo t'/?P(X +Y > (n+ 1)t, X < nt) = 0, from which we deduce that for any
N e N,
limsup t'/2P(Y > 3t) < C(N +2)"V/2,

t—o00

Letting N — oo completes the proof. ]
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Chapter 4. Fractional diffusion limit for a kinetic Fokker-Planck equation

Proposition 4.7. Let (X,)nen be i.i.d positive random variables and let o € (0,1) such that
limy oo t*P(X1 > t) = 0. If S, = Y11 Xk, then n~YS, converges to 0 in probability as
n — o0o.

Proof. We will show that the Laplace transform of n=1/%S,, converges to 1 as n — co. We have
for any A > 0,
E {ef,m—l/ﬂsn} —-F [efAn—l/axl}"

and thus

n—oo T opl/a-1

/ e_’\“/nl/aIP’(Xl > u)du.
0

Then we use that for u > n'/® P(X; > u) < P(X; > n'/®) and we get

by [e'S) o A nl/o
— / e /M OP(X) > w)du < —— / P(X; > u)du + e *nP(X; > n/?).
nl/a—1 0 nl/a—1 0

The second term on the right-hand-side converges to 0 by assumption. Regarding the first term,
. . . 1/a
since P(X; > u) = o(u™®) as u — oo and since lim, o [}’ u~*d = oo, we have [’ P(X; >

u)du = o(flnl/a u~%du) = o(n'/*"1) as n — oo, which completes the proof. O

4.B On the PDE result

In this subsection, we formalize the P.D.E. result briefly exposed in the introduction. We

first explain how the law of (X, V;)¢>0 is linked with a kinetic Fokker-Planck equation with

diffusive boundary conditions. For every ¢ € CZ(R), we define Lo = F¢' + %(p”. Then L is

the infinitesimal generator of the (free) speed process (V;):>0. We also denote by L£* its adjoint
1 n

operator which is such that L*p = 5¢" — [Fy]'.

Proposition 4.8. Let (X¢, Vi)i>0 be a solution to (4.3) starting at (xo,v9) € ((0,00) x R) U
({0} x (0,00)). Let us denote by f(dt,dz,dv) = P(X; € dz, V; € dv)dt which is a measure on
R2 x R. There exist two measures v— € M(Ry x R_) and vy € M(R%) such that for every
v € C(R% x R), we have

(0, g, vo) + [Orp + vOyp + L] f(ds, dz, dv)
R% xR
+/ ©(s,0,v)v4(ds, dv) —/ ¢(s,0,v)r_(ds,dv) = 0. (4.40)
R? Ry xR_

Moreover the measures v_ and vy satisfy vy (dt,dv) = p(dv) [, cp v—(dt, dw).

Proof. Let ¢ € Cg"(Ri x R), then by Itd’s formula, and passing to the expectation, we get for
every T > 0 that

T
E [QO(T’ XTa VT)] = 90(05 Zo, UO) + /0 E [(ath + Uax‘P + ‘CSO)(Sa Xsa VS)] ds

+ 3 E [(0(7, 0, My) = (7,0, Vi, )<y -
neN

The local martingale part fOT Ovip(s, X5, V5)dBs is indeed a true martingale since 0, ¢ is bounded.
Let us now define the measures v_ € M(R; x R_) and v € M(R%) by

v_(dt,dv) = > P(r, €dt,V,,_ €dv) and vy (dt,dv) = P(r, € dt, M, € dv).
neN neN
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4.B. On the PDE result

Notice that for any T' > 0, we have v_([0, T]| x R-) = v ([0, T] x Ry.) = E[3_,,en 17, <73], Which
is finite since (7,41 — Tn)n>1 is an i.i.d. sequence of positive random variables. This also justifies
the above exchange between E and ). Therefore we have for any T" > 0

E [(p(TJ XT7 VT)] = SO(Ov X0, UO) + ~/R2 R [8t()0 + Ua:v‘P + EQO] 1{S§T}f(ds7 dx? d'l))
+>(

+ [, els0. 0 peryra(ds,do) = [ o(5,0,0) Ly (ds,do).
R2 = Ry xR_ =

Choosing T' large enough so that the support of ¢ is included in [0, 7] x Ry x R, we get the
desired identity.

The relation between the two measures comes from the fact that for every n € N, 7, and
M, are independent and that M, is p-distributed. Indeed it is clear that, since (My,)nen is i.i.d.
and also independent from the driving Brownian moton, M,, is independent from (X¢, Vi)o<t<r,
for every n € N. Hence we have

v (dt, dv) = p(dv) 3 P(m, € dt) = p(dv) / v (dt, dw),
neN wER_

which achieves the proof. O

Remark 4.1. Assume for simplicity that p(dv) = p(v)dv. The preceding proposition shows that
f is a weak solution of

Of +vof =L"f for (t,z,v) € (0,00)* x R
vf(t,0,v) = —,u(v)/( )wf(t,O,w)dw for (t,v) € (0,00)?
f(0,-) = 6(0,1)0)

Informally, it automatically holds that vy (ds,dv) = vf(s,0,v)1{,s0ydsdv and v—(ds,dv) =
—vf(s,0,v)1,<0pdsdv.

For similar notions of weak solutions associated to closely related equations, we refer to
Jabir-Profeta [JP19, Theorem 4.2.1] and Bernou-Fournier [BF22, Definition 4].

Proof. We assume that f(d¢,dz,dv) = f(t,x,v)dzdvdt with f smooth enough. Let ¢ be a
function belonging to C'2° (R%r x R). We perform some integrations by parts. We have

[, fop=—eOwow)~ [ ot ad [ jre=[ erry
R3 xR R xR R% xR R3 xR
Regarding the integration by part in x, we have

0 :—/
/]Rivaf 4 R2

ix

©v0y f —/ / vp(s,0,v)f(s,0,v)dvds.
R R; JR
Inserting the previous identities in (4.40), it comes that
L, 0 rvonf—cflot [ ] op(s.0.0)f(s,0.0)dvds
R2 xR Ry JR

= [, #s.0.0p(ds.dv) = [ p(s,0.0)p-(ds, do).
R2 Ry xR_
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Chapter 4. Fractional diffusion limit for a kinetic Fokker-Planck equation

Since this holds for every ¢ € C°(R4 x (0,00) x R), we first conclude that 0, f + v0,f = L* f
for (t,z,v) € (0,00)? x R. Then in a second time, we see that

vf(s,0,v)dsdv = vi(ds,dv) — v_(ds, dv),

ie. vy(ds,dv) = vf(s,0,v)1gs0pdsdv and v_(ds,dv) = —vf(s,0,v)1,<pydsdv. Then, since
v4(ds,dv) = p(dv) [,ep_ v-(ds,dw), we conclude that v f(2,0,v) = —u(v) [_s o) wf (¢, 0, w)dw
for (¢,v) € (0,00)2. O

We finally study the limiting fractional diffusion equation. We have the following result.

Proposition 4.9. Let (RY)i>0 = (2§ —inf,cpo4 28 )i>0 where (Z{*)1>0 is the stable process from
Theorem 4.1. Let us denote by pi(dz) = P(RY € da:) The following assertions hold.

(i) If « € (0,1), then for every p € C°(Ry), we have

/gp )pe(dx) = —I-// LYp(z)ps(dz)ds,

o _0a [Pz +2)1) =), oo [®¢(Yy—z)
Fren) = EIETRE T S P L

where

(it) If a € [1,2), then for every ¢ € C°(Ry) such that ¢'(0) = 0, we have

/cp )pi(dz) = —i—// LY (x)ps(dz)ds,

where

o(x+ 2)+ o(z ) aa /
LY P V. = P V. d
A T

where P.V. stands for principal values.

Proof. We will denote by v(dz) = %+|z|~* 'dz the Lévy measure of the symmetric stable process
(Z8)t>0 and we set I = infsE[O,t] zZg.

Item (i): Let us denote by II(dt,dz) the random Poisson measure on Ry x R with intensity
dt ® v(dz), associated with (Z{*);>¢. Since a € (0,1), (Zf*)¢>0 has finite variations and we have
ASES fg Jg #11(ds,dz). The process (R{):>0 is also a pure jump Markov process and we check
that ARy = (R + AZp)y — Ry . If first AZY} > —RY = —Z{ + I, then Z{ > I so that
I = I and ARy = AZY. If next AZy < —R{, then Z* < If* so that If¥ = Z{* and thus
Ry = 0ie. AR} = —R? . Therefore, we have R = [ [o[(RS_ +2); — R_|TI(ds,dz). By Itd’s
formula, we get that for any ¢ € C°(Ry),

Blo(R)) = o0+ [ [ ELp(RE +2)1) — o(R)] (o),
which exactly means [, ¢(2)pi(dz) = ¢(0) + I Jr, L%(z)ps(dz)ds, where the operator £ is

defined as L% (z) = % [ple((x + 2)+) — ¢(2)]|z| 1 7*dz. It only remains to prove the second
identity for £%. We assume that x > 0, the proof for z = 0 being similar. We have

2 oy = AU =) o [ plote) —ple) [ el D) i),

Oq Q + 71 | |1+a |z’1+a
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4.B. On the PDE result

Then, performing carefully two integration by parts, we see that

Delet) )y f0 ) oy L pleta):
_x | 2|1+ |Z|1+a
and
o p(x+ 2) o o(x+2)z
’z’1+o¢ ‘1+a

Putting the pieces together, we get

2 pog(a) = 1/": Plotz)z, 1 /0"" AWy —2),

Oq a ’Z|1+a « ’y_x|1+a

Item (i1): When « € [1,2), the second expression of L% is obtained as in the previous case. We
need to remove the small jumps and work with the pure jump Lévy process (Z;" ’5)t20 with Lévy
measure v5(dz) = 1y,55v(dz). Since v is symmetric, Zf’d — Z¥ in law as 6 — 0 for every
t > 0. This implies, see [JS03, Chapter VII, Corollary 3.6], that (Zta"s)tzo converges in law to
(Z)i>0 in the space of cadlag functions endowed with the J;-topology as § — 0. But since the
reflection map is continuous with respect to this topology, see [Whi02, Chapter 13, Theorem
13.5.1], the continuous mapping theorem implies that (R®*);so = (Z° — infseo. Z2°)e=0
converges weakly to (R®);>0 as § — 0. In particular, if we set pf(dz) = P(Rf"é € dz), then the
probability measure pf corIverges weakly to p; as § — 0.

But since (R} ’6)t20 has finite variations, we can use the very same argument as in the first
step to see that for every function ¢ € C°(R.), we have

/(p z)pd (da) +// Lp(x)pd(dz)ds,
Ry

where £%9 is such that for every z > 0

8 _ Oa Pz +2)4) —pl(x) |
L ap(a:)—2/||>6 dz.

‘Z|1+a

First, it is clear that [p ¢ (z)p} 8(dx) converges to Jr, p(@)pi(dz) as 6 — 0. We will now conclude
by showing that, if <p’( ) =0,
t t
/ / L%p(z)pd(dx)ds — / LY (x)ps(dr)ds as d — 0. (4.41)
0 JRry 0 JRry

Step 1: To do so, we show in Step 2 that there exists a positive constant C,, such that
1£% — LY ¢||oo < Cpb®™. (4.42)

This shows that LYy is a continuous and bounded function. Moreover, since

t t
[ ere@ptands— [ [ oyl dads]
0 JR, 0 JR,

< [ 1£7ete) - 2 utapldn)as

t t
[ ere@piands - [ [ eoe@)pudads
0 JRr, 0 Jr,
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Chapter 4. Fractional diffusion limit for a kinetic Fokker-Planck equation

it is clear that (4.42) implies (4.41). Indeed the first term clearly goes to 0 as § — 0 and
the second term converges since for every s € [0,t], [, LY (2)pl(dz) — Jr, L(x)ps(dz) as
L% is a continuous and bounded function and we can thus apply the dominated convergence
theorem.

Step 2: We show that (4.42) holds. Let us first explicit a bit more L%p(z). Let us remark that
since ¢/(0) = 0, there is no need for principal values for L¥(0) = [7°(¢(2) — ¢(0))]z| 1 ~*dz.
If z > 0, we have for any ¢ < z, [ z|z|717%dz + [T 2]z|717® = 0 and thus we can write

_ / P2 +2)4) — o) — 20 (@) jzj<ay | (4.43)

|Z’1+oc

For the very same reason, the same identity holds for £L*%¢(z) and therefore, for any z > 0

P((2 +2)4) — (@) — 20 (@) joj<ay
2|1+

£op(a) — L*0p(a) = |

|z]<é
_(p(O) — (10(1')( —a _ §ma

= - T (552}
5 T+ 2)—o(x) — 20 ()10
+/ o( ) — o )1+ 90(){|\<}dz'
dAz) ’Z‘ «

Since ¢ € C°(Ry) and ¢'(0) = 0, it is clear that if we set D, = ||¢”||oc We have for any z > 0
and any z > —x, |p(z + 2) — p(x) — 2¢/(x)| < Dy2?/2. Since ¢'(0) = 0, we also have for any
x>0, |¢'(z)] < Dylz|, from which we get that |¢(z + z) — p(z)| < Dylz||z| + Dpz?. In any
case, we see that for any x > 0 and any z > —x

< 2D,z%

[p(z+ 2) = (@) = 26 (@)1 (11

It comes that

/ p(z+2) —p(x) — 20 ( )1{|z\<x} dzl < 4D, 4Dy 20
(5A) |z |1 e T2«
We also get
(,0(0) B QO(.I) -« —a D 2—a D 2—«
‘f(x -9 )‘1{5>:p} < ffc Lg55ay < 7% :

All in all, we showed that for any = > 0, |[£L%(z) — LY ¢(z)| < C,62~*. When z = 0, we have

—¢(0)4

D‘P 2—« 2a
|Z|1+oc Zl = 0 <C(5

T 2—-«

£2(0) — £2%0(0)| =

This shows that (4.42) holds. O

Remark 4.2. The above proposition shows that p is a weak solution of

o T — 2)lgpan — pe(®) + 20006 (1) L1510
Opi(z) = 02 /pt( L) C‘/‘EJL Pl o< P for (t,z) € (0,00)?,
/ pe(x)dr =1 for t € (0,00),
o(-) = do-

The term 20.pt(7)1{|;|<z) 15 useless when a € (0,1).
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Proof. As usual, we do as if p; was sufficiently regular so that all the computations below hold
true. By the way, it might actually be the case, see for instance Chaumont-Malecki [CMe20],
but this is not our purpose. Consider a function ¢ € C2°((0,00)). Then, by Proposition 4.9, we
have that

(i/]lh o(x)pe(x)de = /R+ pi(z) L% (z)dz = %[It(go) — Ji(p)],
where, recalling (4.43),

00 T+ 2) — () — 20 (2)1qHcp
Ii(p) :/]R Pt(CU)SO( ) @jZ?Ha(p( AER Vdzda
+J—z

and, since ¢(0) =0,

p(x)pe(x)

R, ar®

Ji(p) =

We first focus on I;(¢). Exchanging integrals, we get
o
= [ [ @t 2) - o@) - 2 (@)1 <adadz,
R (—2)vO0
We next write, for any z € R,

@ ) = () = 2 (@l
—/ pr(z —2)p )d:c—/ o pt(fc)w(fc)dfv—Z/i)voﬂt(x)d(x)l{z|<x}dx-

Regarding the third term, we have [_) pt(2)¢ "(2)1{z)<aydz = I\ZT pe(z)¢’ (x)dz, so that,
performing an integration by part, we have

z/( o pe(2)@" (2) 11 <oy dx = zpe(|2])p(|2]) — z/ : (1) Dppr ()12 <2y d.

—2z)V0

All in all, it holds that

1 z)1 _ 89@ 1z T

+ /R Wﬂt 12))¢(|2])d=
The last term is equal to zero since the integrand is an odd function. Finally, we write

o) = [ et [ Lika:

Recombinig all the terms, we get that

| m@etew)ds = [ o) Ap(e)ds
Ry R

+

where Ap; is defined for every = > 0 as

oo [ Pt(T — 2)ligszy — pr(T) + 200pt(2) 1|21 <2}
Api(x) = a/ EER dz.

Therefore, we conclude that for any ¢ € C2°((0,00)), we have
| e@lpe) - Ap@ldz =0,
n

which is enough to deduce that for any ¢t > 0 and any = > 0, Oyp¢(x) = Api(z). O
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Chapter

An application of Sparre Andersen’s
fluctuation theorem for exchangeable and
sign-invariant random variables

Abstract

This chapter contains the results of [BB23] which has been written with Quentin Berger
and is submitted for publication. We revisit the celebrated Sparre Andersen’s fluctuation
result on persistence (or survival) probabilities P(S, > 0 V0 < k < n) for symmetric
random walks (S,),>0. We give a short proof of this result when considering sums of
random variables that are only assumed ezchangeable and sign-invariant. We then apply
this result to the study of persistence probabilities of (symmetric) additive functionals of
Markov chains, which can be seen as a natural generalization of integrated random walks.

5.1 Introduction

We discuss in this paper several results on persistence problems for symmetric random walks,
in particular the well known (but nonetheless striking) fluctuation theorem due to Sparre An-
dersen [SA54]. To introduce the result, let &1, ..., &, be real random variables and let us denote
So =0, and S = Zle & for 1 < k < n. Then, one is interested in estimating the persistence
probabilities

P(Sp, >0 foralll1<k<n) or P(Spy>0forall<k<n).

Sparre Andersen’s result [SA54| states that if the (&)i1<i<p are ii.d., symmetric and have no
atom, then these probabilities do not depend on the law of .

Theorem A. If the (§)i<i<n are i.i.d. and if the distribution of & is symmetric and has no
atom, then we have

P(S, >0 foralll1<k<n)=gn)=P(Sp>0 foralll <k <n),

2n-1!1" 1 (2n - 1
9(n) = (2n)!! - 4”<n> - H (1_ﬂ)'

k=1

where

In fact, [SA54] proves a number of results for exchangeable random variables, but the in-
dependence plays an important role in obtaining fluctuation’s results, such as arcsine laws or
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Chapter 5. Sparre Andersen’s fluctuations and applications

persistence probabilities. Chapter XII in Feller’s book [Fel71] provides a streamlined approach
to Sparre Andersen’s result, using a duality argument together with a (purely combinatorial)
cyclic lemma, see [Fel71, XIL.6]: these two ingredients only require the law of (X1,...,X,) to
be exchangeable. Independence is required in the last step of the proof, in order to obtain
that the (weak) ladder epochs defined iteratively by Tp = 0 and Ty = min{n > Tj;_1,S, >
maxo<j<n{S;}} form a renewal sequence. The following is then deduced, see [Fel71, XIL.7,
Thm. 1]:

Theorem B. If the (§)i>1 are i.i.d., then for any s € [0,1) we have
(o] Sn
1-E[s"] = -y =P(S,>0)).
[s1] = exp ( ;1” (Sn > 0))

Theorem B can be seen as a particular case of a Wiener—Hopf factorization, also known as
Spitzer—Baxter formula, which gives the joint Laplace transform/characteristic function of the
first ladder epoch and ladder height, see [Fel71, XII.9]. Note that if the law of X; is symmetric
and has no atom, one has P(S,, > 0) = % for all n, so the generating function of 77 is given by
E[s\]=1— 1 —s.

Let us mention that another proof of Theorem A is presented in [DDG13, Prop. 1.3]: the
proof is remarkably simple and elegant and relies on a decomposition with respect to the first
time that (Sk)r>0 hits its minimum min;<;<,{S;}, using the independence of the (&;)i<i<n.
The goal of our paper is to present a version of Theorem A valid for exchangeable and sign-
invariant random variables (&;)1<i<n, going beyond the independent and symmetric setting.
Sparre Andersen was already aware of this result, see [SA54, Thm. 4] (its proof is however a
bit laconic), but we give here a short and self-contained proof (with no combinatorial lemma),
taking inspiration from [DDG13]. We then present some application to persistence probabilities
for symmetric additive functionals of birth-death chains, giving in particular a simple proof of
Sinai’s result [Sin92] on the integrated simple random walk.

5.2 The case of exchangeable and sign-invariant random vari-
ables

Below, we consider examples in which there is no independence: one is however still able to
obtain the same conclusion as in Theorem A, using some weaker but natural assumption. Let
us introduce some terminology: the law P of (£5,...,&,) is said to be:

(E) exchangeable if for any permutation o € &, ({5(1), - - - ;&s(n)) has the same distribution as

(517 s 7571)7

(S) sign-invariant if for any € = (e1,...,&,) € {—1,1}", (€1&1,...,€n&,) has the same distribu-
tion as (&1,...,&n).

One can think about these two assumptions as an invariance of P under the action of the groups:
of permutations &,, for condition (E); of sign changes {—1,1}" for condition (S).

The following result is actually already mentioned in [SA54, Thm. 4]: the present paper is
meant as a way to put more emphasis on this result; we then provide some applications.

Theorem 5.1. Assume that (&1,...,&,) satisfies conditions (E)-(S). Then, recalling that we
have defined g(n) = £ (*"), we have

T 4n\n

P(Sp >0 foralll<k<n)<g(n) <P(Sp >0 foralll <k <n).
Notably, if P has no atom, P(Si >0 for all1 <k <n)=g(n) =P(S; >0 for all 1 <k <n).
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Remark 5.1. Let us note that one may also obtain a lower bound on P(Sy >0 for all1 < k <
n) by imposing that S; > 0,52 —S1 > 0,...,S, —S1 > 0: since conditionally on X, the random
vector (Xo, ..., X,) is still exchangeable and sign-invariant, we get from Theorem 5.1

P(Sy >0 foralll <k<n)>P(X; >0)g(n—-1), (5.1)

so we have both an upper and a lower bound on P(Sy, > 0 for all 1 <k <n) in terms of g(-). Let

—L__< <L > .g. + . (3.1)].
us also stress that we have i = g(n) < NG foralln > 1, see e.g. [BDG' 23, Eq. (3.1)]

As far as P(Sy > 0 for all 1 < k < n) is concerned, Theorem 5.1 provides a lower bound, but
there is no general upper bound: [BDG™T 23, Conj. 6] conjectures that this probability is mazimal
when (Sk)r>o0 is the simple symmetric random walk, i.e. that P(Sk > 0 for alll < k < n) <

9([n/2]).
One can easily see that both conditions (E)-(S) are necessary to obtain the statement of Theo-
rem 5.1, see for instance Section 5.4.2 below.

Remark 5.2 (About sign-invariance). The sign-invariance of (&1,...,&,) can be seen as a
strong form of symmetry for the law of (&1,...,&,). Let us mention the article [Ber65] which
derives some properties of sign-invariant sequences: in particular, [Ber65, Lem. 1.2] tells that
sign-invariant (&1, ...,&,) are independent conditionally on (|&1], ..., |&n|). In other words, any
exchangeable and sign-invariant law can be obtained by taking a random vector (Z1,...,Zy) (that
can be constrained to have 0 < Z; < --- < Z,) and by shuffling and changing the signs of its
coordinates randomly, that is setting & = €iZo(i) for 1 <i < n, where the (¢;)1<i<n are i.i.d.
signs (i.e. such that P(e; = £1) = 1) and o is a random uniform permutation of {1,...,n} (i.e.
such that P(oc =v) = & for allv € &,).

Remark 5.3 (Finite vs. infinite sequences). The law of an infinite sequence (&;)i>1 of random
variables is called exchangeable, resp. sign-invariant, if for any n > 1 the law of (&1,...,&,) is
exchangeable, resp. sign-invariant. By de Finetti’s theorem, one knows that the law of & = (& )i>1
is exchangeable if and only if it is conditionally i.i.d.: in other words, there exists a random
probability distribution p such that P(§ € - | p) = p®>, where p®>* denotes the law of an
infinite sequence of i.i.d. random variables with law p. In [Ber62, Thm. 1], it is shown that an
exchangeable sequence (&)i>1 is sign-invariant if and only if p is almost surely symmetric. From
this, it is easy to derive Theorem 5.1 for an exchangeable and sign-invariant sequence (&;)i>1,
simply by working conditionally on the realization of p. Hence, the truly remarkable fact about
Theorem 5.1 is that it holds for a finite exchangeable and sign-invariant (&1,...,&,).

5.3 Persistence probabilities of f-integrated birth-death chains

Let us consider (X, )n>0 & birth and death Markov chain, starting from Xy = 0: it is a Markov
chain on Z such that | X, — X,,—1| < 1, with transition probabilities

pm:p(x,ijl), Qm:p(x7x_1)’ Tz :p(l’,l‘) =1—-py—¢q, forxz>1.

We assume that (X,,)n>0 is symmetric, in the sense that (—Xp,),>0 has the same distribution as
(Xn)n>0; in other words, the transition probabilities verify p(z,y) = p(—z, —y) for any z,y € Z.
For z = 0, we also set py = p(0,1) € (0, %], qo = p(0,—1) = pp and 19 = p(0,0) =1 — 2py.

Let f : Z — R be any anti-symmetric function which preserves the sign of x, i.e. such that
f(z) > 0 for z > 0 and f(x) < 0 for x < 0 (and naturally f(0) = 0). Then we define the

f-integrated Markov chain, or additive functional, as follows: (5 = 0 and, for n > 1,
o= f(X3). (5.2)
=1
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We are now interested in the persistence (or survival) probabilities
P((,>0forall1<k<n) or P((>0forall<k<n).

A classical, well-studied example is when (X,,)n>0 is the simple symmetric random walk and f
is the identity: then ((,)n>0 is the integrated random walk and the persistence probabilities are
known to be of order n~1/%, see [Sin92].

As another motivation, let us point out that the persistence problem for integrated random
walk bridges appeared in the context of a polymer pinning model [CD09] (see also [AS15]) and
more recently in the study of graphic sequences in [BDG'23], 4.e. on the number G(n) of integer
sequences n — 1 >dy > -+ > d, > 0 that are the degree sequence of a graph. We are therefore
also interested in the behavior of

Py >0forall1<k<n,X,=0) or P((>0foralll<k<n,X,=0).
(Let us assume that (X,,)n>0 is aperiodic for the simplicity of exposition.)

Theorem 5.2. Let (X,,)n>0 be a symmetric recurrent birth-death chain and let f be an odd
function such that xf(x) > 0; recall that py := P(X1 > 0). Then, recalling that g(n) := 4%(2:)
and setting by convention g(n) = 0 for n <0, we have for alln > 1

po(1—po)E[g(Ly, —1)] <P (¢ >0 for alll <k <n) < E[g(Ly)]

where Ly, := Y14 1(x,—0} s the local time of the chain at O up to time n. Regarding the bridge,
we have for every n > 1

PoE[g(Ln — )1ix,—0y] S P (G >0 forall1 <k <n, X, =0) <Eg(Ln)1{x,=0}]-

Let us mention that our approach is based on an excursion decomposition of the process (Xp,)n>0.
Our results would still be valid for Markov chains that “cannot jump above 07, i.e. such that
P(X,<0|X,-1=2)=P(X,, =0]| X,,—1 = z) for any z € N. We have chosen to stick with
the birth-death setting since it is the most natural example of such chains (and already contains
a wide class of behaviors).

Since we have the asymptotic behavior g(m) ~ (mm)~1/? as m — oo (we actually have
explicit bounds (7(m + 1/2))~Y2 < g(m) < (zm)~Y2 for m > 1, see Remark 5.1), we can give
sufficient conditions, often verified in practice, to obtain the asymptotic behavior of E[g(Ly,)],
E[g(Ln)1{x,—0y] as n — oco. (The same asymptotics hold with g(L, — 1) in place of g(Ly).)

Proposition 5.1. Assume that (X,)n>0 s aperiodic and let T := inf{n > 1, X,, = 0}.
(1) If (Xy)n>0 is positive recurrent, then we have, as n — oo

E[r] and 1

N Elg(Ln)1{x,=0}] ~ B

(it) If P(11 > n) ~ L(n)n™ for some o € [0,1] and some slowly varying function ((-), then
we have, as n — 00

E[g(Ln)] ~ (5.3)

n/u(n) 1 fa=1,
with by == n®/l(n) cq:=0(1 —a)?E[(2,)*?] ifac(0,1),

1/6(n) NG ifa=0),

E[Q(Ln)] ~

VTbn
(5.4)
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5.3. Persistence probabilities of f-integrated birth-death chains

where p(n) := E[r111; <y and with Z, a one-sided a-stable random variable of Laplace trans-
form e . Moreover, if o € (2/3,1), we have the asymptotic

Elg(L0)1(x,—0)) ~ cyn? 'en) V2, with ¢, =al(1—a)’E[(Z))"*]. (55

In order to have the same asymptotic (5.5) for o € (0,2/3], a sufficient condition is that there
exists a constant C > 0 such that P(ty = n) < CLn)n~H) for alln > 1.

Example 5.1. We give below a class of example where Proposition 5.1 can be applied, but let
us comment on the case of the simple symmetric random walk (Xp)n>0. In that case, Proposi-
tion 5.1 is verified (up to periodicity issues). We then get that the persistence probabilities for
the integrated random walk verify

(1+ 0(1))%607171/4 <P(¢G >0 forall 1 <k <2n) < (1+o0(1))con /4, (5.6)

with ¢y an explicit constant. This recovers a result by Sinai [Sin92] (in the case f(x) = x). For
the integrated simple random walk bridge, we also have that

(1+o(1)en™/* <P(¢ >0 for all 1 < k < 2n, X, = 0) < (1+o0(1))ern /4, (5.7)
recovering a result by Vysotsky [Vys14].

Remark 5.4. In the case o € (0,1) the condition P(11 > n) ~ £(n)n~% is exactly equivalent
to 11 being in the domain of attraction of an a-stable law. Our sufficient condition o > 2/3
to get (5.5) may seem mysterious at first, but it is reminiscent of the Garsia—Lamperti [GL62]
condition o > 1/2 to obtain a Strong Renewal Theorem (SRT), i.e. the sharp asymptotic behavior
of P(X,, = 0) = P(n € 7). In the case « < 2/3, our condition on the local tail P(my =
n) is reminiscent of Doney’s condition in [Don97, Eq. (1.9)] to obtain a SRT, Let us also
mention [CD19] where a necessary and sufficient condition for a SRT is found: with some
effort, it should translate in a necessary and sufficient condition for (5.5) to hold. Note that for
technical simplicity we only deal with the case o € (0,1) in (5.5), but an analogous result should
hold in the cases a« =1 and o = 0.

Remark 5.5. We stress here that the asymptotic bounds that we obtain combining Theorem 5.2
and Proposition 5.1 do not depend on the (anti-symmetric) function f in the definition (5.2) of
Cn- In particular, the bounds (5.6) and (5.7) obtained in the case of the simple random walk (and
for Bessel-like random walks, see (5.9)-(5.10) below) are valid for any odd function function f.

A class of examples: Bessel-like random walks

Let us give more precise result in the case of symmetric Bessel-like random walk, see [Alell,
HJR53,Lam62]. This is a class of birth-death chains that includes the simple symmetric random
walk. They have the following transition probabilities: for x > 1

per=peat )= 2 (1-255) a1 =1-p,, (58)
where § € R and ¢, is such that lim, ,» e, = 0; we take p(—z,—z — 1) = p(z,z + 1) and
p(0,1) = p(0,-1) = %, for symmetry reasons. We also assume uniform ellipticity, .e. there is
some 7 > 0 such that p, € [n,1 —n] for all x € Z. The parameter § is called the drift parameter
and we have the following behavior: the walk (X,)n>0 is transient if § < —1, recurrent if
6 > —1, positive recurrent if § > 1; in the cases 6 = —1 and § = 1, the behavior depends on the
function e,.
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More precisely, letting Ay = [[5—; %, the random walk (X;,),>1 is recurrent if and only if
Yo2 1 Az = +00. Moreover, with the notation (5.8), there is a constant Ky > 0 such that

X 1 _ T
Ay = H Dk Ky x‘SL(;U)—l as r — oo, where L(x) := exp ( Z ﬂ“) )
=1 Pk =k

Note that L is a slowly varying function. Then, in [Alell, Thm. 2.1], the sharp tail of the
distribution of 77 is derived: Let 6 > —1 and set o := 1%5, then as n — oo

21—a

if 6 >—1(a>0), P(r >n) ~ T (@) n~“L(y/n),

if6=-1(a=0), P(r1 >n)~ 2 v(n)~! where v(n) := Z —_.
0 r<n,x even xL(\/E)

Also, if § = —1, (Xy,)n>0 is recurrent if and only if lim,_,. v(n) = oo.
For o > 0, [Alell, Thm. 2.1] also gives that

P(ri=n)~ % n_(Ha)L(\/ﬁ) as n — 00, N even.

One can then simply apply Proposition 5.1 (up to periodicity issues) with ¢(n) = ¢L(y/n) or
¢(n) = ¢/v(n) to obtain that, in the null-recurrent case:

(1+0(1)) tea(bn) 2 <P(G > 0 for all 1 < k < 2n) < (14 0(1)) ca(bn) 2, (5.9)
with b, given in (5.4). Also, for a € (0,1),

dn2 L) TY2 < P(G > 0 for all 1 < k < 2n, Xy, = 0) < "n2'L(v/n)~"Y2.  (5.10)

Further comments and comparison with the literature

Let us stress that there are several directions in which one could extend our results. First, one
could consider more general underlying random walks or Markov chains, for instance random
walks with non-necessarily symmetric increments or Markov chains that can “jump over 0”.
One could also consider more general functions f, not necessarily symmetric. Another room for
improvement is to obtain sharp asymptotics for the persistence probabilities, i.e. for instance
finding the correct constant ¢, such that P({; >0 forall 1 <k <n)~ eabn ' in (5.9).

A big part of the literature has considered the case of integrated random walks, that is con-
sidering the Markov chain X,, = Y"}'_; & with (§)x>0 i.i.d. random variables and ¢, = Y i—; X;
(i.e. taking f(z) = x), starting with the work of Sinai [Sin92]. Under the condition that the &’s
are centered with a finite second moment, the persistence probability P((x > 0 for all 1 < k < n)
has been proven to be of order n /4 in [DDG13], and the sharp asymptotic ~ ¢;n~ /4 in [DW15].
The case where &, does not have a finite second moment remains mostly open, except in some
specific (one-sided) cases, see e.g. [DDG13, Vys14]. The persistence probabilities of integrated
random walk bridges has been studied for instance in [AS15, BDG123,CD09, Vys14]: the order
n~3/*is found in [Vys14, Prop. 1] for centered random walks with finite variance and the asymp-
totic ~ cn~3/4 is given in [BDG 123, Prop. 1.2] in the case of the simple random walk. Our result
can be seen as an extension to persistence problems for additive functionals of Markov chains
(Xn)n>0; with the major restriction of symmetry and of the fact that the underlying Markov
chain cannot jump above 0 (but with the advantage of having an elementary proof).

Another line of works considered persistence problems for additive functionals of continuous-
time Markov processes (X¢)¢>0. Let us mention [Gol71] that considered the case of an integrated
Brownian motion, and [IK00, Pro21] who considered the f-integral of a Brownian motion or a
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skew-Bessel process respectively, for the (possibly asymmetric) functional f(x) = [2[7(c4+ 11550y —
c-1y,<0) for some v > —1. More recently, in [BBT23], we have pushed further the existing
techniques (based on a Wiener—Hopf decomposition of a bi-variate Lévy process associated
to the problem): we obtained the sharp asymptotics for persistence probabilities for a wide
class of Markov processes (including one-dimensional generalized diffusions, see [IMJ96]) and of
functions f. In particular, [BBT23, Example 6] shows that the result applies to continuous-time
birth-death processes, giving the existence of the constant ¢, mentioned above. The present
article can be seen as a elementary approach to obtaining a sub-optimal result.

5.4 Exchangeable and symmetric sequences: proof of Theo-
rem 5.1

Let us introduce some notation. For n € N and for a fixed z = (z1,...,2,) € R", we define
an exchangeable and symmetric vector £ = (&1,. .., &,) with law denoted P®) by permuting the
coordinates of (x1,...,zy) by a random uniform permutation and by changing the signs of the
coordinates uniformly at random. More precisely, let (&;)1<i<p be i.i.d. random variables with
law P(e1 = 1) = P(g; = —1) = } and let o be a random permutation of {1,...,n} with uniform
distribution P(oc = v) = % for all v € &,,, independent of (£;)1<i<n: We then define

(451,...,§n) = (61$U(1),...,€n$g(n)). (511)

Note that we can restrict to the case where z; € Ry for all 1 <1¢ < n.
We then construct the random walk S, = Zi-“:l & for any 0 < k < n, and we are interested
in the persitence probabilities

pn() = P (Sp >0 forall1<k<n) and pyx):= P(I)(Sk >0 forall1 <k <n).

We set by convention these probabilities equal to 1 for n = 0. The following proposition is the
essence of Theorem 5.1.

Proposition 5.2. If x = (z1,...,xy) is such that

Swi# Y x; foralll,J C{l,...,n} withI#J (H)

il jeJ

Pn(x) = g(n) == 5 (>"); in particular it

(by convention Y ;e x; = 0), then we have that py, v

(z) =
does not depend on x. In general, we have p,(x) < g(n) < ().

Theorem 5.1 follows directly from Proposition 5.2, noting that the law P of (&1,...,&,),
conditionally on |¢| = (|€1],...,|&n]), is PUED. Let us also mention that a combinatorial proof
of Proposition 5.2 is given in Sect10ns 2.3-2.4 of [Bur07] (see also [BDG23, Lem. 3.7]), in the
spirit of that of [SA54]; our proof is quite simpler and does not use any combinatorial lemma.

5.4.1 Proof of Proposition 5.2

Our proof is greatly inspired by that of [DDG13, Prop. 1.3]. We start with the first statement:
we are going to prove by recurrence on n that for any z = (x1,...,x,) that verifies the assump-
tion (H), the quantities pn(x) = pp(x) do not depend on z. The statement is trivial for n = 1
since we have P®) (¢, > 0) = P@ (g > 0) = % if x # 0, so we directly proceed to the induction
step.
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Let us fix n > 2 and some x = (z1,...,z,) that verifies assumption (H). We now apply
a path decomposition used in [DDG13]. Let W = min{k, Sy = maxi<ij<p, S;}: then, for any
¢ e{0,...,n}, we have

{WZE}:{§Z>O7§f+€Z—1>07"‘7§Z+"'+§1>0}
N {1 <0,841 + &2 <0, &1+ +& <0}

Now, we have no independence at hand, but we can further decompose over permutations of
(x1,...,2zy,) with a fixed image I = o({1,...,¢}): we get

POW=n= Y ¥ )
IC{1,...n}|I|1=€ vi:{1,..0 I vo:{l+1,...,n}—Ic
1 . J .
mp(gsg_ixw_i) >0forall0<j<f—1, ;53+ix,,2@+i) <Oforalll<j<n-— e) :

where v : A <» B means that v is a bijection from A to B. By independence and symmetry of
the (¢i)1<i<n, then recombining the sums over the permutations and using the exchangeability,
we get that P (W = ¢) is equal to

2(n —10)!
L‘)P(“)(Sk >0 forall 1 <k <)P@)(S, >0 forall 1 <k <n-—1F),
Ic{l,npl=t "
where we have defined z; = (x;);es for any J C {1,...,n}. Since both z; and zje verify the

assumption (H), we can apply the induction hypothesis: we have that pg(xs), pp—¢(2c) does not
depend on zy,zre, for 1 < ¢ < n — 1. Hence, denoting py := pg(x1), Pp—t := Pn—re(xre), we end
up with P@(W = ¢) = pyp,_y, for any £ € {1,...,n —1}.

Since we have P@(W = n) = P@(&, > 0,6, + &nr > 0,...,6 > 0) = pu(x) by ex-
changeability and P (W = 0) = P@)(S, < 0forall1 < k < n) = p,(z) by symmetry, we
get,

n n—1
1= ZP(I)(W = () = pu(z) + szpnfe + pu(z) .
/=0 =1

Using that 37;cr@; # 3 2j forall I, J C {1,...,n} with I # J, we obtain that p,(z) = pn(z):
the above identity shows that p,(z) = p,(z) =: p, does not depend on z.

We can now determine the value of p,, as done in [DDG13]. From the above, (p,)n>0 satisfies
the recursive relation 1 = > ) ppn—¢ for every n > 0 (recall that po = 1). Constructing the
generating function, we get that for any |z| < 1,

n=0 £=0

—1/2

Therefore, the generating function of (py)n>0 is equal to (1 — x) , from which one deduces

that p,, = i(%) — =DM o all n > 0.

4 \n 2n!!
For the general bounds, for any fixed z, for any § > 0 fixed, one can choose y = y(z, ) such
that x + y verifies the assumption (H) and Y i |y;| < J (take e.g. a typical realization of i.i.d.
random variables uniform in [0, /n]). Then, we clearly have that

P@ (S >dforall 1 <k <n),

e >
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Since x + y verifies assumption (H), we get that the probability on the left-hand side does not

depend on z,y (and is equal to (2"27_1!%)”), SO
P (SkZ(iforalllgkgn)STgP (Sp > —dforalll <k <n).
n!!
Since § is arbitrary, letting § | 0 concludes the proof. O

5.4.2 On the necessity of conditions (E)-(S)

We stress that in the construction (5.11) of the exchangeable and symmetric vector (§1,...,&,),
the two assumptions are essential:

(a) The signs (;)1<i<n need to be independent. As a counter-example, take (£;)1<i<y, uniform
on{we {—-1,1}",>"  w; € {2—n,n—2}}, so that & is still symmetric. Let z = (z1,...,2,) €
RY with xy > 290 > -+ > @y (this is no restriction by definition of £). Then to have Sy > 0
for all 1 < k < n, we need to have ¢; = +1 (which happens with probability 1/2n) and then,
since all other signs are ¢; = —1, we need to place x1 in the first position (which happens with
probability 1/n): we get

1 : n
po(z) =P@ (S, >0 forall 1 <k <n) = {%2 ifzy > i @i,
0 ifog <Y low.
Therefore we obtain that p,(z) depends on x.

(b) The signs (gi)1<i<n need to be independent from the permutation o. As a counter-
example, take n = 3 and x = (21,22, 23) € (Ry)? with 21 > 29 > x3 > 0: then the probability
P®)(S; > 0,5, > 0,853 > 0) is equal to (one needs to have e; = +1)

Pler=ea=e3=1)+Pler=e2=1,e3 = —1,2,(3) < To(1) + To(2))
+P(e1=e3=1,e0= -1, 252 < To(1)) T+ Ple1 = 1,2 =3 = =1, 2,(0) + To(3) < To(1)) -
Now, if the joint distribution of (¢,0) is such that ¢ = (g;)1<;<3 is uniform on {—1,1}3 and

Po(3) =3|e1 =e2=+41,e5=—-1) =1, P(0(2) =3 | &1 =e3 = +1l,e3 = —1) = 1 and
P(o(l)=1|e; = +1,e9 =3 = —1) = 1, since x1 > x93 > x3 > 0, we get that
1 1
P@ (S > 0,9 > 0,5 >0) = 1 + gl{m”ﬁ%},

which depends on x. It simply remains to see that the above conditions on the joint distribution
of (¢,0) can be satisfied, which can be checked by hand.

5.5 Integrated birth and death chains

5.5.1 Persistence for integrated birth-death chains: Proof of Theorem 5.2

Let us define iteratively 79 = 0 and, for k > 1, 7, = min{n > 73,1, X,, = 0}. Then, for & > 1,
we define the random variable .
k
Z'ZTk_l-i-].

i.e. the contribution of the k-th excursion of (X,,),>0 to the f-integrated Markov chain. Note
that by the Markov property, the (£x)r>1 are i.i.d. We can therefore write ¢, := Y i f(X;) as

Ly,
Cn:Z§k+Wn, Wn: Z f(Xz)

k=1 i=Tr,+1
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where we recall that L, = 37" 1x,—q} is the local time at 0. Since there is no change of
sign during an excursion (recall that (X, ),>0 is a birth-death chain), we have that ({,)n>0 is
monotonous on each interval (731, 7]. We therefore get the following bounds.

Removing the positivity condition on the last segment (77, ,n], we get
l
P(Cy >0 forall 1<k <n) <P<Z & >0forall 1< (<L), (5.12)

On the other hand, imposing that the excursion straddling over n is non-negative (with proba-
bility 1 — pg) so that W,, > 0, and using that the sign of W,, is independent from the past by
symmetry, we get

0
P(Ce>0forall 1 <k <n)>(1—po) (Zk>0f0ra111§€§Ln,Ln21). (5.13)

The difficulty now to study P(>4_; & > 0 for all 1 < ¢ < L,) is that the number of terms is
random and that & and L,, are not independent. However, for any 0 < m < j < n, conditionally
on {L, =m, 7, = j}, the random variables (§;)1<i<m, though not independent, are easily seen
to be exchangeable and sign-invariant (thanks to the Markov property and the fact that the
chain (X,)n>0 is symmetric). We can therefore apply Theorem 5.1 and Remark 5.1 to obtain
that

14
pog(m—l)SP(Z&>Of0rallO§€§m’Ln:m,Tm:j) <g(m).
k=1

We therefore get that, conditioning on L, 7r,,,
¢
pog(Ln —1) < P(ka >0forall0<¢< L, ‘ Ln,an) < g(Ly),
k=1

which gives the desired bounds thanks to (5.12)-(5.13), by taking the expectation.
As far as bridges are concerned, we have the identity

¢
P(¢>0forall 1 <k<mn, X, =0)= (Z§k>0foralll<€<Ln,Xn—0> (5.14)
k=1
so similarly as above we end up with the following conditional expectation
‘
pog(Ln —1)1ix, -0 < P( Zﬁk >0forall0</¢<L,,X,=0 ‘ Ln,TLn) < g(Ln)lix,—o0y

k=1

which gives the desired bound, again by taking the expectation. O
Remark 5.6. We also have, with the same line of proof and using Theorem 5.1

P >0 foralll <k <n)
P >0 foralll <k<n,X,=0)

(1 —po)E[g(Ln)],

>
> (1 =po)E[g(Ln) 1{x,—0}] -
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5.5.2 Proof of Proposition 5.1

First of all, let us notice that since (m(m 4 1/2))~1/2 < g(m) < (xm)~1/2 for all m > 1, we only
have to obtain the asymptotics of

E[(Ln)ilml{LnZl}] and E[(Ln)flml{Xn:O}l{anl}] . (5.15)

The same asymptotics with (L,)~'/2 replaced with (L, + 1/2)~'/2 follow analogously.

Step 1. Convergence of b;'L,. Let us show that under the assumptions of Proposition 5.1,
we have that (b, 'L, )n,>0 converges in distribution to a random variable X'. This is obvious
in the positive recurrent case with b, = n, thanks to the ergodic theorem, with X = E[r]~!.
In the null-recurrent case, we use the fact that P(b,'L, < t) = P(74,] > n) to deduce the
convergence in law of (b,'Ly)n>0 from that of (74)k>1. Let (an)n>1 be a sequence such that
P(ry > a,) ~n~!' as n — oo. Then we consider the three cases @ = 1, a € (0,1) and a = 0
separately.

Case a = 1. We then have that a; (7, — nu(ay)) converges in distribution to a 1 stable law,
see [Fel71, IX.8] (see Eq. (8.15) for the centering): in particular, nMT(Zn) converges in probability
to 1 (recall that p(n) := E[111(; <], which is slowly varying). Setting by, such that bypu(ap, ) ~
n, then we have that thl’” converges to t in probability, so b, 'L, converges in probability to 1.
Then, we simply have to notice that if b, is given by the above relation then we p(ap, ) ~ u(n),

see e.g. [Berl9b, Lem. 4.3], so b, ~ n/u(n) as defined in (5.4).
Case o € (0,1). We then have that irn converges in distribution to ko 24, with Kk, = I'(1—a)

1/
and Z, a one-sided a-stable random variable Z with Laplace transform e~*" | see [Fel71, XIII.6].
Then setting by, := n®/l(n) as in (5.4), we get that ap, ~ n as n — oo; indeed, P(1; > n) ~
b, ~ P(m1 > ap,) by definition of a,. Using that a,, is regularly varying with exponent 1/a, we
get that agy, ~ tl/aabn ~ tY%n: we therefore get that lim, e P(rw, > n) = P(kaZa > =1y,
This shows that b, 'L, converges in distribution to (ko Zq)~?.

Case a = 0. We then have that nf(r,) converges in distribution to an Exp(1) variable, see
[Dar52, Thm. 8]. Let b, = 1/4(n) as in (5.4) and assume (without loss of generality) that ¢ is
strictly decreasing. Then, for any ¢ > 0,

P(b, 'L, <t) =P(rp, >n) =Pt l(ty,) < thyl(n)) —— 1 —e ",

n— oo
which shows that b, 1L, converges in distribution to an Exp(1) variable.

Step 2a. Convergence of the expectation E[(Ln)*l/zl{anl}]. We have that
1
E[(Ln,) 1,51 = / P((L,)" Y2 > t, L, > 1)dt
= 0

oo

= b;1/2/ P(b,t <0,y < w)3umdu. (5.16)
bn

Since by Step 1 we have that P(b,,! < b1 L,, < u) converges to P(X < u) as n — oo, we simply

need some uniform bound on P (b, 'L, < u) in order to be able to apply dominated convergence;

note that we only need a bound for u < 1, otherwise we simply bound the probability by 1.

(i) Positive recurrent case. In that case b, = n, so we easily get that uniformly in n > 1

P(b;an <u) =P(1yn >n) < n_lE[Tun] =uE[n],

~3/2

by Markov’s inequality. Since u X u is integrable on (0, 1], we can apply dominated conver-

gence to get that

lim P(b,' <b,'L, < u)%u73/2du = / P(x < u)%u73/2du = E[x~ 2] = E[n]"/2,
0

n—oo bfl
n
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where we have used that X = E[r;]~! in the positive recurrent case. Combined with (5.16), this
gives the desired asymptotics.

(ii) Null-recurrent case. In the null-recurrent case, we use that
P(b, 'L, < u) = P(1p, >n) < Cub, P(1y >n),

for some constant C' > 0. The last bound is standard and falls in the “big-jump” phenomenon
(note that the event 7y, > m is an upper large deviation). If o = 1, this is given by [Nag79,
Thm. 1.2]; note also that in this case lim,_c b,P(71 > n) = 0, thanks to [BGT87, Prop. 1.5.9.a.].
If « € (0,1), this is contained in [Nag79, Thm. 1.1]; note that by definition of b, we have that
b,P(11 > n) remains bounded in this case. In the case o = 0, this is due to [NVO08] (see
also [AB16]); and b,P(m1 > n) also remains bounded in this case, by definition of b,. This
shows that in all cases we have P(b,;'L, < u) < Cu, so as above we can apply dominated
convergence to get that

lim [ P(b,' <b,'L, <u)iu?du= / P(X <u)iu??du=E[x1/?],
0

n—oo Jp—1
n

with X =1lifa=1, X = (k. Z) “ifa € (0,1) and X ~ Exp(1) if &« = 0. Combined with (5.16),
this gives the desired asymptotics.

Step 2b. Convergence of the expectation E[(Ln)_l/gl{xnzo}1{Ln21}]. In the positive recurrent
case, for any ¢ > 0, let us set A.,, = {n"'L, € (1 —¢,1+¢)E[r1]~'}. With the same argument
as above, we have that

lim VRE[(Ln) "1 (x, 0y 1{r,2171a: ] = 0.

Indeed, we first observe that, as in (5.16), we have

VIE[(Ly) V1, oL, ] = /I/nP(n_1 <n 'Ly, <u, AS,)3udu.

Since for every ¢ > 0, P(AZ,) vanishes as n — oo, the above limit holds using the same
dominated convergence argument as in the previous step. Therefore, we only need to consider
the remaining term E[(Ln)_1/21{xn=0}1As,n]3 by definition of A, ,,, we have that

(146) V*P(Xn =0, Ape) < VRE[(Ln) PLix,—gylag, ] < (1 — &) /*P(X, = 0).

Now, we have lim,,_,o, P(X,, = 0) = 1/E[r1] by the convergence to the stationary distribution,
and we also have lim, o P(X,, = 0, A ) = 1/E[71] since lim,, o P(X;,, = 0, AZ ) = 0. This
concludes the proof of (5.3).

For the null-recurrent case, we focus on the case a € (0,1). We write
o0 o0

E[(L) Y1y, oyl qpon] = S K V2P(L, =k, X, = 0) = S k" ?P(r = n).  (5.17)
k=1 k=1

Our proof is quite standard and follows the line of [Don97, §3] (with some adaptation). We fix
€ > 0 and we decompose the sum into three parts:

e b,
P = Z EV2P(rp=n), Pyi= Z EV2P(r, =n), Psi= Z EV2P(r, = n).
1<k<ebn k=¢eby, k>e~1by,
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The main contribution comes from the term P». Gnedenko’s local limit theorem [GK54| gives
that 0y := sup,¢yz |akP TR = ) — ga( )] goes to 0 as k — 0o, where g, is the density of the
limiting a-stable distribution ko 2,. We therefore have that

n oot 1
o ()] < Fn X I

ak jr— ak

k=eby,
with &m = SUPg>ep, Ok going to 0 as n — oo. Since k*1/2/ak is regularly varying, we have that
k:_l/Q/ak < Cgbﬁlﬂ/abn uniformly in k € [eby,, e~ 1b,], so using also that a;, ~ n, we get

e tbn .—1/2

Pp— )

k=¢b,

ga(n)’<(5€n€ by x CLb 1% /n = o(bY/?/n).

ag ag

We now focus on the remaining sum. Since ay is regularly varying with exponent 1/« we get
that ar, = (1 + o(1))(k/bn)"/%ay, as n — oo with the o(1) uniform in k € [eb,, e 'b,] (it may
depend on ). Using also that ap, ~ n we get that - = (1+ o(1))(k/b,) "'/ thanks to the
uniform continuity of g, on [e,e71], we get that

e o, E—1/2

()=o) S () () ),

k ebp, n

k=eb,,

Therefore, a Riemann sum approximation for the last identity yields that

-1

€
nli_)néonbgl/QPg :/ f%*éga(tfl/a)dt.
g

One can also control P53 thanks to the local limit theorem: there is a constant C' such that
P(1, =n) < C/ay for all k > 1, so that using the same Riemann sum approximation as above,

E—1/2 /2 o 1/2
p<c Y <ot [Titg oo Al
n Je-1 @ n

k>e—1b,

where we have used that 1+ + 1 > 1 in the last identity (since o € (0,1)). This shows that
lim sup,, nbﬁl/QPg goes to 0 as € | 0.
It remains to deal with P;: we need to show that, as for Ps,

lim lim sup nb;, /2P, = 0. (5.18)

el0 n—oo

With this at hand, letting n — oo then ¢ | 0, we would then get that

lim nb, 1/2 Z k™ 1/ZP( =n)= /0 t_%_éga(t_l/a)dt = aE[(maZa)fam] ,

n—r00
k=1

the last identity following from a simple change of variable. Since b, = n®/{(n), we have
shown (5.5).

Now, it only remains to prove (5.18), and this is where the condition o > 2/3 will appear.
We need to use local large deviations to bound P(7, = n). First, a general bound is given
n [Berl9a, Thm. 2.3] (see also [CD19, Thm. 6.1]): wthere is a constant C' > 0 such that
P(rp,=n) < %kﬁ(n)n_o‘ for all n > k. This gives that, for o > 2/3,

1/2 3/2
Pi= Y kY?P(rp=n)<Cn %(n )Z we < CO'b,t x (cba)*2

1<k<ebn =1 % Qeby,
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The fact that o > 2/3 is crucial in the last inequality, where we have used that k1/2 /ag is
Veg, ~ e/, we get that
Py < C"s2an~1b/? for all n. This shows that lim SUP,,_ 0o Nb, 12 P < C"e3~x, so that (5.18)
holds (again, using that 3 — 1 > 0 for a > 2/3).

In the case where o € (0,2/3], one needs an extra assumption to obtain a better local large
deviations estimate. From [Don97, Thm. 2] (or [Ber19a, Thm. 2.4]), the condition P(7; =n) <
Cn~U+2)0(n) ensures that there is a constant C’ > 0 such that P(7, = n) < C'kf(n)n~ (7).
Hence, in this case, one ends up with

regularly varying with exponent % — é > —1. Now, since agp, ~ €

ebn
Pi= Y kVP(r,=n) < OnmUT0n) Y EY2 < Ot x (eby ) = OB T b2
1<k<ebn k=1

This shows that limsup,,_,., nb, 2Py < C"e%/? so that (5.18) holds. This concludes the proof
of (5.5).
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Chapter

A miscellany

Abstract

In this chapter, we study the scaling limits of additive functionals of generalized diffusion
processes. We show that the correctly rescaled functional is tight in the space of cadlag
functions endowed with the Mj-topology and we identify the law at time ¢ of any limiting
process, which yields a weak result since we do not entirely determine the limiting law. We
also deal with the case where the Markov process is null recurrent. The proof heavily relies
on the tools introduced in Chapters 3 and 4. Most part of the work is actually done in
Chapter 3.

6.1 Introduction and main results

This final chapter is a miscellany of the first three chapters in this thesis. The main goal here
is to recover some results on the scaling limiting of additive functionals, using techniques and
results borrowed from Chapters 3 and 4. More precisely we will study scaling limits of additive
functionals of generalized diffusion processes and we will show tightness in the space of cadlag
functions endowed with the Mi-topology and will partly identify the limiting law.

We will consider, as in Section 3.7 of Chapter 3 a generalized diffusion on R. Let m : R — R
be a non-decreasing right-continuous function such that m(0) = 0, and s : R — R a continuous
increasing function such that s(0) = 0 and s(R) = R. We assume moreover that m is not
constant and will also denote by m the Radon measure associated to m : m((a, b]) = m(b) —m(a)
for all @ < b. We introduce mg the image of m by s, i.e. the Stieltjes measure associated to
the non-decreasing function m o s~!, where s~! is the inverse function of s. Consider on some
filtered probability space (2, F, (Ft)t>0, P) a Browian motion (B;)i>0, we introduce

Ay = [ Lima(do)

where (L )>0,zcr denotes the usual family of local times of the Brownian motion, assumed to be
continuous in the variables 2 and ¢. The process (A}*);>0 is a non-decreasing continuous additive
functional of the Brownian motion (B:)i>0. Now we introduce (pt)¢>0 the right-continuous
inverse of (A}*);>0, and set

Xt = 5_1(Bpt)'

As the change of time through a continuous non-decreasing additive functional of a strong
Markov process preserves the strong Markovianity, see Sharpe [Sha88, Ch. VIII Thm. 65.9],
and since s is bijective, it holds that (X;);>¢ is a strong Markov process (with respect to the
filtration (F),)¢>0). Let us denote by Sy, the support of the measure ms. It is rather classical,
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see again Sharpe [Sha88, Ch. VIII Thm. 65.9] or Revuz-Yor [RY99, Ch. X Prop. 2.17], that
(X¢)t>0 is valued in 571(Sy, ). From now on, we will always assume that 0 € Sy, so that, since
5(0) = 0, X; spends time in 0. Since 0 is recurrent for the Brownian motion, it is also recurrent
for (X¢)e>0. In this chapter, we will always assume that the process (X¢)i>o starts from 0 and
will denote by P the law of (X;):>0 starting from this point. We will study the scaling limit of
the following (non-Markovian) process

¢
6= [ r(xas,
where f: R — R is a Borel function satisfying the following assumption.

Assumption 6.1. The function f is measurable and locally integrable with respect to m. It is
such that a.s. for any t > 0, |(| < co. Moreover f preserves the sign of x, in the sense that
f(x)>0ifx >0 and f(x) <0 if x < 0. Finally, we assume that f(0) = 0.

This assumption will always be in force in this chapter. It ensures that the following auxiliary
function m; : R — R defined as

my(@) = [ " s (u))me(du)

is well defined. Since f is non-negative on R} and non-positive on R_, the function my is non-
decreasing on Ry and non-increasing on R_. We will sometimes also denote by my the signed
and Radon measure associated to the function my. In order to study the scaling limit of ({;):>o,
we need a set of assumptions on m; and my. Let us start with m,.

Assumption 6.2. The function mg is bounded.

This assumption is equivalent to the fact that (X;):>0 is positive recurrent. In the null
reccurrent case (i.e. when mg is not bounded), we need to specify its asymptotic behavior.

Assumption 6.3. There ezist § € (0,1), a slowing variation function As at +oo, and two
non-negative constants m—, my with m_ +my > 0, such that
mg(z) ~ myAg(z)z/P1 as z — +oo,
mg(z) ~ —m_Ag(|z]) |z as z — —oc.
Regarding the function my, we will consider the following two assumptions.

Assumption 6.4. The function s is a C' function, there exists a constant ms(co) € (0, 00)
such that lim, 10 my(z) = mg(o0) and the function my(co) —my belongs to L?(dx).

Assumption 6.5. There exist o € (0,2), a slowing variation function Ay at 400, and two
non-negative constants f_, f+ with f_ + f+ > 0, such that according to the value of a, we have

(i) If a € (0,1), then

{mf(a:) ~ f+Af(x):U1/°‘_1 as v — 400, 6.1)

mp(@) ~ fAp(a)le /o as @ - —oc.

(i7) If o = 1, then the following limit exists limy W(mf(l/h) —mys(—1/h)) =c and

lim Ajc(il/m(mf@/h) —my(1/h) = f+ log, w0
]{%W(mf(w/h)—mf(—l/h)):f_log\x], Vo < 0.

Note that if the limit c exists, this implies that fi = f_; we will assume for simplicity that

f+=r-=1
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(1it) If o € (1,2), then there is a constant ms(co) € (0,00) such that limg, 40 my(x) = my(00)
and
{mf(oo) —myg(x) ~ f+Af(x)a:1/a_1 as T — 400, (6.3)

my(00) — my(x) ~ fAp(z)[a] /7 asz oo,

Note that if Assumption 6.4 holds, then Assumption 6.5 can not hold and conversely.

6.1.1 The limiting processes

We first introduce the limiting processes that will appear in the main result. Remember from
Chapter 3 that the process (X;);>0 posesses a local time at 0 and we will denote by (7¢):>0
its right continuous inverse, which is a subordinator. We also consider the space of continuous
excursions C endowed with the usual topology, and will denote by n® the Brownian excursion
measure. Let m_, my, f_ and f4 be some non-negative constants (given by Assumptions 6.3 and
6.5), 5 € (0,1), a € (0,2) and let € € C. We introduce the following functionals of excursions:

4 4
Y@ = 5 [ st (@)l s, AFE) = ca [ seng g (@)Y s (64)

where sgn, ,(z) = aly,~o) +bl{z<0) and ¢ = [1/m — 1] if m € (0,2) \ {1} and ¢;, = 1 if m = 1.
For nB-almost every excursions, these functionals are finite. Then, we define the two-dimensional
Lévy measure 7, g as

Tap(dr,dz) = n® (4] (e) € dr, A7 (e) € dz). (6.5)

as well as its marginal wg(dr) = nB(Af(e) € dr) and m,(dz) = nP (A% (e) € dz). We also define
the following constants 02 = 4 [p[m(c0) — ms(z)]*dx and my = E[r;] which may be infinite.

The positive recurent case. In this regime, we work under Assumption 6.2 and in this case
the constant m; = E[r] is finite.

o For o € (0,2) \ {1}, we define the process (S§)¢>0 = (Z?/ml)tzo where (Z7):>0 is a stable
process with Lévy measure 7.

o For a =1, we define (S})i>0 = (Ztl/ml)tZOv where (Z}):>0 is a drifted Cauchy process with
Lévy measure m (and fi = f_ = 1), and drift ¢, where c is the constant from Assumption
6.5- (ii).

o Finally, if ¢ < oo, we define (S?)i>0 = (0Wi/m, )t=0 where (W;);>0 is a Brownian motion.

The null recurent case. In this regime, we work under Assumption 6.3. We set the parameter
0 =2—-20 € (0,2) and define the skew-Bessel process (R;)¢>o of parameter (J, m4, m_) as the
diffusion with scale function and speed measure defined as

’x|276

sR($) = Sgn(ﬂf) and mR(dﬁ) = 5sgn (-’B)|x‘671dx

m4,m—

Note that we have mf(x) = SENy, , m_ (z)]x|?/ (-0 = SEM, , m_ (z)|x|/P=1. Let (VW )zer>0 be

the family of local times of (R;)i>0 and let (7{%);>0 be the right-continuous inverse of (v);>0,

which is exactly a (-stable subordinator with Lévy measure m3. We also define r4 = fi/m4
and k = 2(f — a)/«a.

o For o € (0,1), we define the process (Uf)i>0 as
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o For a =1, we define (U} );>0 as

dc
Uf = == [ sg(a)|a|“7 (yf —27)da + e,
cg Jr
where c is the constant from Assumption 6.5- (7).
o For a € (1,2), we define (U?)>0 as

dcqy,

_ +6—1
Uf‘—a ngnfwf_( 2)|z|" 7 (o = p)da.

o Finally, if 0 < oo, we define (U?)i>0 = (cW,0)i>0 where (W)i>o is a Brownian motion
independent of (R¢)¢>o0.

For a € [1,2), the process (U?);>0 is indeed well defined since for every ¢ > 0, a.s. the map
x — ¢ is 6-Hoélder for any 6 < 3. We have the following proposition.

Proposition 6.1. If a € (0,2)\ {1}, then (1, USs)t>0 is a Lévy process with Lévy measure o,z
t
(without drift part and Browian component). If oo = 1, then (TtR, UTlR)tzo is a a Lévy process
t

with Lévy measure m g, drift part (0,¢) and no Brownian component.

We omit the proof of this result as it is an easy consequence of Feller’s representation of
(R¢)i>0 and excursion theory, see also Proposition 3.9. Roughly, we already saw that mfi(z) =

sgn (z)]2|'/#~! and one can check that the associated auxiliary function m, (where g(x) =
1/a—1

m4,m—

i—gsgn (z)|z[*) is such that my(z) = sgn; ¢ (2)[z]

T4, T—

6.1.2 The main result

Under the different combinations of assumptions, we will establish the scaling limit of ({;)s>0.
More precisely, we will show that there exists ¢(¢) which vanishes as ¢ — 0, and which is such
that the process (¢(e)¢; Je)t>0 converges in law as € — 0 in the space of cadlag functions endowed
with the M;-topology (introduced in Chapter 4). According, to the assumptions in force, we
will use the following notations, where we recall that 3 and As (respectively o and Ay) are given
by Assumption 6.3 (respectively Assumption 6.5).

o Under Assumptions 6.2 and 6.4, we set b(¢) = ¢ and a(e) =

o Under Assumptions 6.2 and 6.5, we set b(¢) = ¢ and a(e) = 51/°‘/Af(1/5)

« Under Assumptions 6.3 and 6.4, we set b(e) = €'/ /A4(1/¢) and a(e) =

o Under Assumptions 6.3 and 6.5, we set b(e) = e'/#/A4(1/¢) and a(e) = 51/a/Af(1/8)
(

We denote by b~! an asymptotic inverse at 0 of b and we set c(e) = a(b~1(¢)). Our main result
is the following.

Theorem 6.1. Suppose that Assumption 6.1 holds and that one of the above combination of
assumption holds. Then the family of processes ((c(€)G/e)t>0)ee(0,1) 5 tight in the space of cadldg
functions endowed with the Mj-topology. Moreover, for any sequence (€,)nen which decreases
to zero and which is such that (c(en)G/e, )i>0 converges in law to some limiting process (¢£°)i>0
we have:

(i) If Assumptions 6.2 and 6.4 are in force, then for any t >0, ¢ is equal in law to S?.
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(ii) If Assumptions 6.2 and 6.5 are in force, then for any t > 0, (f° is equal in law to S§'.
(iii) If Assumptions 6.3 and 6.4 are in force, then for anyt >0, (& is equal in law to UZ.
(iv) If Assumptions 6.3 and 6.5 are in force, then for any t >0, (° is equal in law to U.

We now make some important remarks on the main theorem. First, this theorem is obviously
incomplete, but we stress that with a little bit of work, we could show the convergence in the
finite dimensional distribution sense using for instance the techniques of Chapter 2 ; but we
wanted to keep this chapter short. The idea here is to recover results from the tools introduced
in Chapters 3 and 4. We stress that when (X;);>¢ is a diffusion process, as in Chapter 2, this
result completes the result of Chapter 2 since we have show therein the convergence of the
finite-dimensional marginals.

Let us assume for a moment that the theorem is complete, i.e. we have convergence in
law in the space of cadlag functions endowed with the M;i-topology. It is well-known that if a
sequence of continuous functions converges to a continuous function in the M-topology, it also
converges in the uniform topology (on compact-time intervals at least), see for instance the book
of Whitt [Whi02, Chapter 3, Section 3.3]. In other words, the convergence in law in item (3),
(#ii) and (iv) of Theorem 6.1 would also hold in the space of continuous functions endowed with
the uniform topology on compact-time intervals, since the limiting processes are continuous.

We also stress that in item (4i) of Theorem 6.1, we might also be able to the remove from
Assumption 6.1 the hypothesis

(S) The function f preserves the sign, i.e. we always have xf(x) > 0 and f(0) = 0.
by the less restricting assumption

(AS) There exists A > 0 such that for every x > A, f(z) > 0 and for every z < —A, we have
flx) <o0.

Indeed, suppose that the function f satisfies (AS) and that Assumptions 6.2 and 6.5 are in
force. Then we can always find a function f which preserves the sign and satisfies Assumption
6.1 and such that for every |z| > A, f(z) = f(z). Letting { = fg F(X,)ds, we can apply the
main theorem which tells us that (¢(e)¢, /e)t>0 converges to a stable process as ¢ — 0 in the space
of cadlag functions endowed with the Mj-topology, where ¢(¢) is specified above. Then we can
study the remainder ¢, — Et = fg [f— f] (Xs)ds using the usual martingale technique: one can find
a solution h to the Poisson equation Lh = f — fwhich is compactly supported, see for instance
the expression of the solution in Chapter 2. We deduce that ('/2(¢, Je — G /e))t>0 converges in
law as ¢ — 0 towards a Brownian motion in the space of continuous functions endowed with the
uniform topology on compact-time intervals. From this, we easily deduce that for every T > 0
and every n > 0,

P(sup ()G — Gyel =m) — 0 ase—0,
s€[0,T]
since we recall that in this case, c(e) is regularly varying of index 1/a as ¢ — 0 for some
a € (0,2). This is enough to finally conclude that (c(¢)(;/)i>0 converges to a stable process as
€ — 0 in the space of cadlag functions endowed with the M;j-topology.

Let us make some comments on the null recurrent case, i.e. on items (4%i) and (iv) of

Theorem 6.1. First, in this case, the limiting processes are not Markovian, which is a rather

classical fact in the null recurrent regime. Regarding item (7ii), the result is more or less known,
see for instance the book of Hopfner and Locherbach [HLO3, Theorem 3.1 and Example 3.10].
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Regarding item (iv), it was shown in Fournier-Tardif [FT21], that in some specific situation,
some rescaled kinetic process converges to the integral of a symmetrized Bessel process which
is recovered here by item (7v) for some o < 1 and k = 1. The limiting process seems new here
when o > 1.

6.2 Preliminaries

6.2.1 M;-topology

In this subsection, we recall the definition and a few properties of the M;-topology. For any
T > 0, we denote by Dr = D([0,T],R) the usual sets of cadlag functions on [0, 7] valued in R.
For a function x € Dy, we define the completed graph I'r, of x as follows:

Tre = {(t,2) € [0,T] xR, z € [x(t—), x(t)]} .

The M;j-topology on Dy is metrizable through parametric representations of the complete
graphs. A parametric representation of x is a continuous non-decreasing function (u, r) mapping
[0,1] onto I'r,. Let us denote by Il7, the set of parametric representations of . Then the
M;-distance on Dy is defined for x1,x9 € Dy as

dvyr(en,z2) = inf o (fJur —ugl[ V[|re —ra])
(ui,ri) € o,
where || -|| is the uniform distance. The metric space (Dr, dm, ) is separable and topologically
complete.

Let us now denote by D = D(R4,R) the set of cadlag functions on Ry. We introduce for
any t > 0, the usual restriction map 7 from D to D;. Then the M;-distance on D is defined for
x,y €D as

dnay(@.9) = [ ¢ (analre(@) mlw) A1) .

Again, the metric space (D, dnr, ) is separable and topologically complete. We now briefly recall
some characterization of converging sequences in (D, dnr, ). To this end, we first introduce for
x € D and 6, T > 0, the following oscillation function
w(IE,T, 5) = Ssup sSup d(x(t2)7 [.’L’(tl),iﬁ(tg)]),
te[0,T] ts— <t1<ta<t3<isy
where t5— =0V (t —0), ts+ = T A (t + 0) and d(x(t2), [z(t1), z(t3)]) is the distance of z(t2) to
the segment [z(t1), z(t3)], i.e.

(o if 2(t1) € [x(t2), z(t3)],
d(x(t2), [z(t1), z(t3)]) = { lz(ta) — z(t1)| A |z(t2) — 2(t3)] otherivise. 2 ’

The following theorem characterizes tightness in the Mi-topology for sequences of random
variables valued in D. This result can be found in Whitt [Whi02, Chapter 12, Theorem 12.12.13].

Theorem 6.2. Let (X,,)nen be a sequence of random variables valued in D. This sequence is
tight in (D,dm,) if and only if the following two conditions hold:

(i) There exists an increasing sequence (T,)pen such that T, — oo as p — oo and for any
p €N and any n > 0,
lim lim sup P(w(X,,,T},d) > n) = 0.

0—0 n—oo
(ii) For any T >0,
lim limsupIP’( sup | X, (t)] > A) =0.

A—o0 n—oo te[0,T)
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6.2.2 Reminders from Chapter 3

In this section, we recall some results that were obtained in Chapter 3. First, the point 0 is
regular for itself and is a recurrent point and in this setting, we have a theory of excursions of
(Xt)t>0 away from 0. The process posesses a local time (L:);>0 at 0 and we denote by (7¢)¢>0
its right continuous inverse, which is a subordinator. Its Laplace exponent is denoted by .

Recall that D denote the usual space of cadlag functions from Ry to R, and for € € D, let

us introduce the length of

l(e) = inf{t > 0, &, = 0},
and we will often write for simplicity ¢ instead of £(¢). Then the set of excursions £ is the set of
functions € € D such that: (i) 0 < £(e) < oo; (ii) &, = 0 for every t > {(¢g); (iii) &; # O for every
0 <t < £(g). This space is endowed with the usual Skorokhod’s topology and the associated
Borel o-algebra. We will denote by n the excursion measure of (X;);>0 away from 0, which is a
o-finite measure on &, see Chapter 3 for the precise definition.

Let us introduce some notations: for ¢ > 0 we let D; denote the space of cadlag funtions
from [0,¢] to R, and for t > 0 we let D; denote the space of cadlag funtions from [0,¢) to R. For
t > 0, we also denote by g; = sup{s < ¢, X; = 0} the last zero of (X, ),>0 before t. We recall
the following proposition which holds for any generalized diffusion (X3)>o.

Proposition 6.2. Let e = e(q) be an exponential random variable of parameter q, independent
of (Xt)t>0. Then the processes (Xu)o<u<g. and (Xg.+v)o<v<e—g. are independent. Moreover, for
all non negative functionals Fy : Uy~oDr — Ry and Fy : U0 Dt — Ry, we have

E [F1((Xu)o<u<g.)] = ®(q) /OOOE [F1((Xu)o<u<r, Je 1] dt (6.6)

and

E [Fo((Xg.4v)o<v<e—g.)] = (sz(G) + n(/Oee_q“F2((€v)0§v§u)du)> : (6.7)

_4
®(q)
where 0 denotes the null function of Do.

We will also consider the Lévy process (Z;)¢>o defined as
Tt
Zy = /0 f(Xs)dS = (py-

We also recall that n® denotes the Brownian excursion measure, which only charges the subset
of continuous excursions denoted by C. Also recall the definition of the Lévy measures 7, g, 7q
and mg from (6.5) and the constants 02 = 4 [[mf(c0) — ms(x)]2dz and my = E[r;] which may
be infinite. The following theorem was shown in Chapter 3.

Theorem 6.3. Suppose that Assumption 6.1 holds. Then the following assertions hold.

(1) Suppose that Assumptions 6.2 and 6.4 hold and let (W;);>0 be a Browian motion. Then o
and mi are finite and we have

(hTt/h, h1/2Zt/h>t>o — (mit,oWi);5g  ash—0
in law for the Ji-topology.

(ii) Suppose that Assumptions 6.2 and 6.5 hold and let (Z')¢>0 be a stable process with Lévy
measure . Then my is finite and if we set a(h) = h'/*/A¢(1/h), we have

(hTt/h7a(h)Zt/h)t>O — (mt, 2" )5 ash—0

in law for the Jy-topology.
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(7ii) Suppose that Assumptions 6.3 and 6.4 hold and let (W;)i>o be a Browian motion and (Ttﬁ)
a B-stable subordinator with Lévy measure mg, independent from the Brownian motion.
Then o is finite and if we set b(h) = hY#/As(1/h), we have

(b(h)Tt/;“ h1/2Zt/h)t20 — (Tf, O'Wt>t20 ash —0

in law for the J1-topology.

(iv) Suppose that Assumptions 6.3 and 6.5 hold. If a € (0,2) \ {1}, we let (Ttﬁ,Zf‘)tZO be a
Lévy process with Lévy measure mq g (and no drit and no Brownian part). If o = 1, we

let (Ttﬁ, Z)i=0 be a Lévy process with Lévy measure w1 5 and drift (0,c). Then, if we set
b(h) = h'/B/As(1/h) and a(h) = h'/*/A;(1/h), we have

(b(h)Tt/h»a(h)Zt/h>t20 — (7‘,55, Zf‘>t20 ash —0

in law for the J1-topology.

Remark 6.1. Only items (iii) and (iv) were properly proved in Chapter 3. We justify here why
items (i) and (ii) also hold.

o First, one can check that in the proof of Proposition 3.1 from Chapter 3, only Assumption 6.4
is used to show that (h1/2Zt/h) converges in law to a Brownian motion. Actually, the proof
is quite simple, we only need to show that (Z;)i>0 has a moment of order 2 (and that it is
centered). It is shown therein that, if Assumption 6.4 holds, then E[Z2] = to? for any t > 0.
This also justifies the value of o.

e Second, one can carefully read the proof of Proposition 3.2 from Chapter 3 and see that, if
Assumption 6.5 holds, then (a(h)Z;p,)i>0 converges in law to (S§)i>0, where a(h) and (Sf)i>0
are as in the above theorem.

o Third, if Assumption 6.2 holds, then 0 is a positive recurrent point for (Xi)t>0 which implies
that m; = E[m1] < oo. By the strong law of large numbers, this also implies that (h7yp)i>0
converges in law to (mit)t>o as h — 0. Then we can recover items (i) and (i) from Slutsky’s
lemma and the two above points.

6.3 Tightness

In this section, we will show that the family of processes ((c(€)(;/e)t>0)ec(0,1) is tight in the
space of cadlag functions endowed with the M-topology. We will always assume that one of the
following combination of assumptions hold: Assumptions 6.2 and 6.4 / Assumptions 6.2 and 6.5
/ Assumptions 6.3 and 6.4 / Assumptions 6.3 and 6.5. Recall the definitions of a(e), b(¢) and
c(e) from Subsection 6.1.2. Then by Theorem 6.3, the process (c(¢) Z;/p-1(z))t>0 converges in law
as € — 0 in the space of cadlag function endowed with the J;-topology. Since the M;-topology
is weaker than the Ji-topology, it also converges in law in (D, dp, ) and therefore the family of
processes ((c(€)Z;/p-1(c))t>0)ee(0,1) 18 tight in both topology.

By Theorem 6.3 again, the process (b(¢)7;/c)>0 converges in law as ¢ — 0 (in the Ji-
topology). Then, if we denote by (L¢):>0 the local time of (X;):>0 at the level 0, which is the
right-continuous inverse of (7;);>0, it is rather classical that the rescaled process (b (€)Ly/c)i>0
also converges in law as € — 0 in the uniform topology to a limiting process which is continuous.
Indeed, under Assumption 6.2, (b(e)7;/.)¢>0 converges in law to (mit);>o and (b'(e)Ly/c)i>0
will then converges to (t/mi)i>0. Under Assumption 6.3, (b(€)7/c)i>0 converges in law to a
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B-stable subordinator (Tf )0 and (b=t (e)L, Je)t>0 will then converges to the right-continuous
inverse of (’Ttﬁ )t>0, which is continuous (it is the local time of a Bessel process). In any case, the
family ((b=1(e)L, Je)t>0)z(0,1) is tight under the uniform topology and therefore, it holds that
for any 7' > 0 and any 6 > 0, we have

lim lim sup P sup b~ 1(e)

Ls e Lt €
=0 ¢-0 (s,te[O,T}, |s—t|<d / /

> 9> = 0. (6.8)

With these facts in mind, we will show the following theorem.

Theorem 6.4. The family of processes ((¢(€)C/e)t>0)=(0,1) 8 tight in the space of cadlag func-
tions endowed with the Mj-topology.

The proof is very similar to the proof given in Chapter 4. We recall that for ¢ > 0, ¢g; and
d; respectively denotes the last zero before t and the first zero after ¢ of (X¢);>0. It holds that
gt = 71,— and d; = 7,. Moreover, if ¢ > 0 is such that X; = 0, then either t = g; or t = d;.
Indeed, if 0 is regular and holding for (X¢):>0, then this is straightforward, whereas if 0 is regular
and instantaneous, then the closure of the zero set of (X;):>0 has no isolated points. We finally
introduce the random function v : Ry — {—1,0,1} defined as v(t) = 11x,50} — 1{x,<0}-

Proof. Step 1: We first show that for any T" > 0, for any n > 0, we have

lim lim sup P (w((e(£)Gye)i20, T, 0) > 1) =0, (6.9)
=0  £=0
where we recall that w(z,T,d) has been defined in Subsection 6.2.1 for a function x € D and
T,6 >0 as
w(z,T,0) = sup sup d(z(t2), [x(t1), z(t3)]),
tE[O,T] ts— <t1<ta<t3<ts4

where ts— =0V (t —9), ts4 =T A (t+ ) and d(x(t2), [x(t1),xz(t3)]) is the distance of z(t2) to
the segment [z(t1),z(t3)]. For any T, > 0 and any 6, A > 0, we introduce the event

< 9} N {b‘l(e)LT/a < M}.

We will first assume that we are on the event A% s for some 7,6, M > 0 and € € (0,1) fixed (we
omit the dependence in the variables 6§ and M). Let t € [0,7] and ts_ < t1 < to < t3 < t54,
where t5_ and ¢ are defined as above. We will bound the distance d(C, /e, [(;, /) G4 /¢]) in order
to show that

A%,d = { sup b_l(e) Ls/e - Lt/s

s,t€[0,T7], |s—t|<o

W((e()Gye)iz0. T, 6) Lz | < w((e(e)Zpp1(e)z0, M, )L, (6.10)

Without loss of generality, we may assume that (;, /. < (/e

o First case: Gy, /e < (py/e < (Gpy/e- Then we have
d(ctg/sa Ktl/sa Ctg/E]) =0< w((c<€)Zt/b71(€))t207 M, 6)

¢ Second case: Ctg/s < Ctl/s S Ctg/é" In this case, d(Ctg/sv [<t1/67Ct3/€]) = Ctl/E - Ctg/E‘ Let us
note that, since ((¢)¢>0 is monotonic on every excursion of (Xt)¢>o, t1/¢ and t3/e can not

belong to the same excursion, i.e. dy, /. < g4,/.. We define, for 7 € {1,2,3} and € > 0, the
positive real numbers u; . defined as follows

1. u275 = gt2/€ if V(t2/€) = 1, u2,€ = dtg/e if I/(tQ/E) = —1 and u27€ = t2/€ if V(tQ/E) = 0.
Since ((¢)¢>0 is monotonic on every excursion of (X)¢>0, we have (y, /e > Cu, .-
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2. For i € {1,3}, Uj e = dti/a if I/(ti/€) = 1, Uj e = gti/a if I/(ti/€) = —1 and Uje = ti/E if
v(ti/e) = —0. We have ;. < (.-

Therefore, we have Cu,. < Cu;. and Cu,, < Cus. SO that necessarily, u1 . < uge < uge.
Observe that in any case, we have for every ¢ € {1,2,3}, u;. = TLy, e OF Uie = TL, /.~ Let
v > 0 and remember that on the event A%, we have |Ly, /. — Ly, /e| < 0/b=1(e) for every i,j €
{1,2,3} and Ly, ;. < M/b~(e) for every i € {1,2,3}. Using the fact that (7;);>0 is increasing
and that (¢;)s>0 is continuous, we can always find s € [0, M] and sp— < 51 < 52 < s3 < Sg1
where sy =0 A (s —0) and sg = M V (s + 0), such that

<t2/6 > CT

v v v
wible) 97 Ctl/g < <T51/b_1(£) + 5 and Ctg/s < C‘rs3/b_1(5) + —

27
which leads to
d(Cryer [Ctr /e G se)) <(Zsy jp1(e) = Zsajp-1(e)) N (L jo-1(e) = Zsgsp-1(c)) TV
= d(Zsyp-1(e)s [Zs1 jp-1(e) Zss o1 (e)]) + V-

As a consequence, we have

d(Cy /e Gty /e Gty e]) < sup sup A(Zyy jp-1(e)s [Z1, o1 () Zty Jo1())) + V-

tE[O,M] tg_ <t1<to<tz<tgy

Since this holds for every v > 0, we conclude that, on the event A5T7 5> it holds that
d(Cryfer [Ctr e Gt e]) < w((e(€) Zypp-1(2))ez0, M, 0)

o Third case: (/e < (/e < (py/0- We can adapt the previous case to deduce that on the event
A% 5, the above inequality also holds.

This shows that (6.10) holds. Next, we introduce the events

Bro={ s v
’ s,t€[0,T), |s—t|<b

Lge—Lye| >0¢ and Ci= b &)Ly >M
/ / T /

so that (A% ;)¢ = Bf ;U Cf. Then, by (6.10), we have

P (w((€e(e)e)iz0, T, 8) > ) < P (w((e(e) Zejp-1(e)))iz0, M, 0) > ) + P(B5) + P(CF).

Remember now that the process (b1 (¢)Ly /- )10 converges in law as ¢ — 0 and denote by (Lt)i>0
the limiting process. By (6.10) and the Portmanteau theorem, we get

lim sup lim sup P (w((C(E)Ct/s)tZO; T,6) > 77) <limsup P (w((c(e)Zt/bq(E)))tZO, M,0) > 17)
0—0 e—0 e—0

+P(Ly > M).

Since the family of processes ((c(€)Z;/p-1(c)))t>0) is tight in D endowed with the Mj-topology,
and since Ly is a.s. finite, we can let # — 0 and M — oo to deduce that (6.9) holds.

Step 2: We now show that for any 7' > 0, we have

lim limsupIP’( sup |e(e)Ge| > A) = 0. (6.11)
A—=00  £0 te[0,T]
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Since the process ((¢)i>0 is monotonic on every excursion of (X;);>o, il holds that for any
t > 0, we have supyc(o ] [Cs| = supsecpo|Zs|- Consider some A, M,T > 0, and remember that
dr = 11, > T. We have the following bound:

B( sup [e(e)¢yel > A) <P sup |e(e)Zi] > A)
te[0,T] t€[0,Ly/.]

-1
< P(tes[gg/[] lc(€) Zyyp-1(0)| = A) +P (b (e)Lrje > M) .

Using that (c(€)Z;/p-1(c))t>0 and (b=1(e)Ly¢/e)i=0 converge in law as ¢ — 0, and using the same
notations as in the previous step, we get that

1imsuplimsupIP< sup |e(e)Cy/el = A) <P(Ly > M).
A—o0 e—0 te[0,7T)

Letting M — oo completes the proof. ]

6.4 Proof of Theorem 6.1

Before starting the proof, let us recall some notations and facts from Chapter 3. First remember
that ® denotes the Laplace exponent of (73);>0, i.e. for any ¢ > 0, E[e”7] = e 1@ Also
recall the definition of I, = §; — (y, = f;t f(Xs)ds. Let e = e(q) be an independent exponential
random variable of parameter ¢ > 0. In Chapter 3, we showed that

o There exists a constant 7 > 0 such that ®(q) ~ rb=1(q) as ¢ — 0.

e Under Assumption 6.2, I, converges in law as ¢ — 0 to some non-degenerate random
variable, see Lemma 3.1.

e Under Assumption 6.4, <I>(q)1/216 converges to 0 in probability as ¢ — 0, see the proof of
Theorem 3.5.

o Under Assumptions 6.3 and 6.5, ¢(q)I. converges in law as ¢ — 0, see the proof of Propo-
sition 3.2.

We can now move on to the proof.

Proof of Theorem 6.1. By Theorem 6.4, the family of processes ((c(€)(/c)i>0)ce(0,1) I8 tight in
the space of cadlag functions endowed with the Mj-topology. Let (¢,)nen be a decreasing
sequence which converges to 0 as n — oo such that the sequence of processes (c(en)Gy /e, )t>0
converges in law in the space D endowed with the M;-topology towards a limiting process
((2°)t>0. We will show that for any ¢t > 0, the law of (° is equal to the limiting law anounced
in Theorem 6.1.

First we consider for n € N and A > 0, an exponential random variable e,, of parameter &,,,
independent of (X;):>0. Then for any £ € R, we have

oo o0
E{eigc(a")ge"} = )\/ e ME [eigc(an)(t/fn}dt — )\/ e ME [ei&fo}dt as n — oo.
0 0
By Proposition 6.2, (4, ~and I, are independent and for any £ € R, we also have
E[eifc(fn)cen} =K {eifc(sn)fen} X E[eiﬁc(an)cgen}

=E[ei€eEnlan] x B(2ey,) / E[otenmebitelen) Ze] gy, (6.12)
0
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We will now split the proof according to the four cases of Theorem 6.1.

Case (i): we work under Assumptions 6.2 and 6.4. Then in this case, we recall that b(¢) = ¢ and
a(e) = €'/2. By Theorem 6.3, the process (hTe/n, hl/ZZt/h) converges in law to (mjt,ocWs)i>o
as h — 0 in the space of cadlag functions endowed with the Ji-topology, where (W:):>o is
a Brownian motion. Moreover, since in this case I, converges in law as n — oo and since
c(en) — 0 as n — o0, it comes that ¢(e, )1, converges to 0 in probability as n — co. By a small
change of variables in (6.12), we see that

E[eigc(an)g;n] _ E[eigc(an)fen] o P(Aen) / OoE|:e—>\€n’rt/en-ch(En)Zt/En e,
€n 0

Then, since ®(g) ~ myq as ¢ — 0, we get that ®(\e,,)/e,, — Amy as n — oco. Moreover the
constant k := inf ¢ 1) ®(g)/q is strictly positive and therefore for any ¢ > 0

’E [e—)\sn’rt/g" +i§c(sn)Zt/€n}

< E{e‘AE"Tt/En} — o 1®0en)/en < AR,

Consequently, we can use the dominated convergence theorem to deduce that

E{el.gc(%)ce”} Cmy /0 ° o Amity [eigawt]dt =\ /0 - o NE [eiéZf]dt7

where we recall that (Z2)i>0 = (0W;/m, )i>0. Finally, we see that for any A > 0,
[ oo - [~ eNElear
0 0

By injectivity of the Laplace transform, we get that for any ¢t > 0, E[e/%] = IE[e’th2 ], which
shows the result.

Case (ii): we work under Assumptions 6.2 and 6.5. In this case, b(e) = ¢, a(e) = e¥/*/A(1/¢)
and the process (hy/p,,a(h)Z; ;) converges in law to (mit, Sf')i>0 as h — 0. We can apply the
same line of proof as in the previous case.

Case (iii): we work under Assumptions 6.3 and 6.4. In this case, b(c) = £/7/A4(1/¢) and

a(e) = el/?

(7‘,55 )t>0 is a (B-stable subordinator with Lévy measure 73 independent of the Brownian motion

(Wi)t>0. Therefore, we have

. By Theorem 6.3, (b(h)7y/1,,a(h)Z;/1)i>0 converges in law to (Ttﬂ,aWt)tZO where

®(b(q))

toge [e-torn] = P

— ®7(1) asq— 0,

where ®F is the Laplace exponent of (Ttﬂ )t>0. Since b~! is an asymptotic inverse of b, we get
that ®(q) ~ ®%(1)b=1(q) as ¢ — 0. Since c(q) = (b~'(¢))/? and since ®(e,,)"/%I,, converges to
0 in probability, we see that c(ey,)I, also converges to 0 in probability. Let us now make the
change of variables t = u/b~!(g,) in (6.12), we get that

E{eigc(an)@n} _ E{ez‘gc(an)len} " ;I’_(l)én)) /OOO]E{Q_AE"Tt/b1(En)+i€C(€")Zt/b1(sn)}dt.

Since ® is regularly varying at 0 with index 3, it is clear that ®(\e,)/b~ (e,) — ®F(1)N°. As
in the previous cases, we can dominate the integrand in the above integral to deduce that

E[eigc(gn)gen] — (1N /oo E[ef)‘TfHéUWt]dt as n — oo.
0
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Since (Ttﬁ )e>0 and (Wy)i>0 are independent, the above limit is equal to

B(1)\P
8 /\ﬁ+£2 2)t (I) (1)
1A / U= SHNTr (6.13)

Now we consider the process (77)¢>0 defined as the right-continuous inverse of (Tf Je>0. As it
was anounced in Subsection 6.1.1, this process can be seen as the local time at the level 0 of
a skew Bessel process (Ry);>o of parameter (0, my, m_) where § =2 — 23 € (0,2). The Bessel
process is taken to be independent from the Brownian motion (W:)i>0. We will show that
the limiting quantity that we found is exactly equal to the Laplace transform of the function
t E[exp(i§aW7?)], which will end the proof for this case. By independence, we get that

A / ’\tE exp zfaWo) dt— A / AtE{ %o %}dt [ *52"273@)}

where e(\) is an independent exponential random variable of parameter A > 0. To compute this
quantity, we can apply Proposition 6.2 with the Markov process (R;);>o and the functional 7.
Since the zero set of (Rt)>o is almost surely Lebesgue-null and since for any ¢ > 0, 7 = 'ng

t

where gf* = sup{s < t, R; = 0}, we have

E[e*&gzvgm} — o9(\) /oo

E[exp ( —arf - g%%%)}dt.

0 Tt

But since ®?(\) = ®7(1)\? and almost surely for any ¢t > 0, 72,3 = t, an easy computation
t

shows that the above quantity is equal to the quantity from (6.13) and we deduce that for any

t >0 and any ¢ € R, E[¢%¢7] = E[e6U7].

Case (iv): we work under Assumptions 6.3 and 6.5. In this case, b(e) = £'/#/A4(1/¢) and
a(e) = e/ /A;(1/e) and the following convergence in law holds in the space of cadlag functions
endowed with the J;-topology:

() alm)Zipn) oy — (70 27) oy a5 =0,

where (Ttﬁ , Z{)i>0 is a Lévy process with Lévy measure 7, g and a drift equal to (0, c) in the case
a = 1. Moreover, it was shown in Chapter 3, see (3.45) and Step 2 in the proof of Proposition
3.2, that we have

. A ¢ G\ 6
i&c(en)ley, B _ B | ¢ AQ BY _. )
E[e } — @B()\)n (/0 exp( AA; +Z§At>dAt> = 30N as n — o9,

where ®° denotes the Laplace exponent of (Tf )t>0 and for any € € C and any t € [0, /],

t t
A7 = c5 [ sgn o (e)les s and A7 =y [ sny, (@)l M

As in the previous case, we see that
: R R
E{e’gc(a")gen} — G(z\,f)/ E[e ¢ t }dt as n — oo0.
0

We now consider the process (Uf*)¢>0 defined in Subsection 6.1.1. We recall that if we consider
a skew-Bessel process (Ry);>o of parameter (d,my,m_) where § = 2 — 25 € (0,2), as well as
its family of local times (vf)i>0.ecr and the constants 4 = fi/my and k = 2(8 — o)/, the
process (Uf*)>o is defined as
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Chapter 6. A miscellany

o If & €(0,1), then for any ¢t > 0, U = %Z I sgn,., _, (Rs)|Rs|"ds.

o If a =1, then for any t > 0, U} = ‘SCC—; Jr sen(@)|z|F 71 (vE — 49)dx + ¢y, where ¢ is the
constant from Assumption 6.5- (7).

o If & € (1,2), then for any ¢ > 0, U> = 5%* Jrseny, g (z) |z |1 (yF — 49)da.

c

We also consider an exponential random variable e(\) of parameter A independent of the process
(Rt)t>0. We will show that E[elEUEW] is equal to G(X, €) [5° E[e‘”tli”fzta]dt. As in the previous
case, gi* denotes the last zero of (Rs)s>0 before time ¢ > 0. We first note that for any ¢ > 0,

Uf* — Ugr is a functional of (Rs)sefqr - More precisely, we always have for any ¢ > 0,
Uy = Ugn = s Jor sghy, —r_ (Rs)|Rs|"ds. (6.14)
9t

This is straightforward when o € (0,1). When o > 1, we use the fact that 1) = ’ng so that we
t
have

dcq K+6—1
Uy — U;:R = g ngnf+,—f_ (z)]x| (v — 7;5)d55

C
== | seny o (@)lel"(F — Yyr)m'(dz),

where we recall that the Radon measure m? is the speed measure of (R)s>0, which is defined by
mf(dz) = 0S8N, , 1 (z)|z|°~'dz. Then (6.14) is a consequence of the occupation time formula,
see for instance Proposition 3.8. Since (UZ)s>o is continuous, we can apply Proposition 6.2 to
see that
. « _ . a _ 7ra . o
E{exp <2£Ue()\)>} = E[exp (zf(Ue(/\) UQQM))}E[exp (szggk))}.

By Proposition 6.2, we also have
o0 —Arf4igUue

E[e ! it } dt,

e()

E|exp (iU )| = #7()) /D

where (7%);>0 is the right-continuous inverse of (7{);>0, which is a subordinator; and ®¥ is its
Laplace exponent. By Proposition 6.1, the process (7%, U )t>0 is equal in law to (Ttﬁ, Z{ )0 SO
t

that the above quantity is equal to ®#()) [5° ]E[e_)‘TtB +i&Z7|dt. Finally, by (6.14) and Proposition
6.2 again, we have

E{ ( (U, - U° ))}_LR C i) g
exp (2§ (Ugy) ot )| = <I>R(/\)n A e ul,

where nf! is the excursion measure of (R;);>0 and the functional §,(¢) is defined for any excursion

e€e & and any u < /£ as
Ca

u

Fule) = & / sgn,., . (cs)]es|ds.
cg Jo ’

Finally, one can check that by using the representation of the measure n'* in terms of the

Brownian excursion measure n” (see Proposition 3.9 and Lemma 3.3) and making some changes

of variables, we have exactly

¢ , ¢
nft (/ e/\““w“(s)du) = nB(/ exp ( — )\Af + iﬁA?)dAtﬂ).
0 0

R
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6.4. Proof of Theorem 6.1

Finally, we conclude that
E[exp (iero‘(,\)ﬂ =G\ ¢€) /0 OOE[e—W —ng’ﬂdt,

which ends the proof. O
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