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Titre: Lois de réciprocité explicites pour les modules de Drinfeld formels

Mots Clés: lois de réciprocité, corps locaux, théorie du corps de classe

Résumé: Nous considérons l’accouplement de Kummer dans le cas des modules de Drinfeld
formels ayant une réduction stable d’hauteur un, définis sur des corps locaux à caractéristique
positive, dans le but de trouver des lois de réciprocité explicites dans la veine de celles qui ex-
istent en caractéristique nulle. Dans un premier temps, nous considérons une classe spéciale
de ces modules de Drinfeld et nous nous inspirons de l’approche de Wiles pour démontrer
des formules explicites dans ce cas. Enfin, nous démontrons le cas général en s’inspirant des
travaux de Kolyvagin. Les résultats présentés dans cette thèse viennent compléter les résul-
tats de Anglès et de Longhi-Bars, qui ont démontré des formules explicites dans le cas des
modules de Drinfeld formels issues respectivement des polynomes de Carlitz et des modules
de Drinfeld sign-normalisés de rang un.

Title: Explicit reciprocity laws for formal Drinfeld modules

Keywords: formal Drinfeld modules, explicit reciprocity laws, local fields, class field theory

Abstract: We prove explicit reciprocity laws for formal Drinfeld modules defined over local
fields of positive characteristic and having stable reduction of height one, in the spirit of
those existing in characteristic zero. At first request, we consider a special class of these
formal Drinfeld modules and we prove explicit formulas for the Kummer pairing following an
approach inspired by Wiles. In a later request, we give an explicit description of the pairing
à la Kolyvagin in the general case. The results obtained give a generalization of the results
of Anglès and Longhi-Bars proved for formal Drinfeld modules obtained respectively from
Carlitz polynomials and sign-normalized Drinfeld modules of rank one.
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Introduction

In local class field theory, explicit reciprocity laws consist in studying and finding explicit
formulas for the reciprocity map, also called the norm residue symbol. The way through this
usually goes by the Hilbert symbol, which is defined by the means of the reciprocity map.
In 1858, Kummer considered the p-th Hilbert symbol for pairs of principal units in the fields
Qp(ζp), where p > 2 is a prime number and ζp is a primitive root of unity. From that time
until now, numerous explicit laws were proven in various settings. Artin and Hasse [4] proved
explicit formulas for the pn-th Hilbert symbol for special pairs in cyclotomic extensions of
Qp containing the pn-th roots of unity. Later on, Iwasawa [17] generalized their formulas to
include more pairs of elements. It was then Coleman [10] who gave a complete formula for
this case. In a more general setting, Wiles [34] proved explicit laws for Lubin-Tate extensions
of local fields. Soon after, Kolyvagin [21] extended all these results to formal groups of finite
height. Explicit reciprocity laws were also studied in higher local fields. The formula of
Iwasawa [17] was extended to this case by Kurihara [22] and Zinoviev [35]. In his turn,
Florez [12, 13] generalized the work of Kolyvagin [21] and proved explicit laws in the case
of formal groups and Lubin-Tate formal groups defined over arbitrary higher local field of
mixed characteristic. For detailed history of reciprocity laws, check [25].

In our work, we consider field extensions of local fields of positive characteristic, obtained
by adding torsion points of formal Drinfeld modules having stable reduction of height 1. We
prove explicit reciprocity laws in these fields. Some results for special cases of formal Drinfeld
modules were already proven. Namely, Anglès [3] considered the case of Carlitz modules (see
Example 1.1.1), and Bars and Longhi [6] considered the case of formal Drinfeld modules
deriving from standard sign-normalized rank one Drinfeld modules (see Example 1.1.2). Let
us describe the context of our work.

Let K be a local field, p be its characteristic, and let µ be its normalized discrete valuation.
We denote OK the valuation ring of K and pK its maximal ideal. Let q be the order of the
residue field OK/pK . Then q is a power of p. Fix an algebraic closure Ω of K, and let µ be
the unique extension of µ to Ω. Let (Ω̄, µ̄) be the completion of (Ω, µ). For a field F ⊂ Ω,
we denote by OF its valuation ring and pF its maximal ideal. Let Kur ⊂ Ω be the maximal
unramified extension of K in Ω, and H ⊂ Kur be a finite unramified extension of K.

We consider
ρ : OK −→ OH{{τ}}

a 7→ ρa

a formal Drinfeld module having stable reduction of height one, as defined by Rosen in [29,

7



§1]. Here, τ is the q-Frobenius element satisfying

τx = xqτ, ∀x ∈ Ω. (0.0.1)

This is a special case of formal OK-modules defined by Drinfeld in [11]. We devote Chapter
1 to give the detailed definition and the main properties of formal Drinfeld modules.

Let OΩ̄ be the valuation ring of Ω̄ and pΩ̄ be its maximal ideal. Then pΩ̄ is an OK-module
for the following action of ρ

a ·ρ x = ρa(x) ∀x ∈ pΩ̄. (0.0.2)

For an integer n ≥ 0, let

V n
ρ = {α ∈ Ω̄; ρa(α) = 0 ∀a ∈ pnK} (0.0.3)

be the pnK torsion submodule of Ω̄ for the action (0.0.2). Using the Weierstrass preparation
theorem, we can see that V n

ρ \V n−1
ρ is the set of roots of a separable Eisenstein polynomial in

OH [X] of degree qn−1(q−1), whose constant term is a prime of H. Therefore, for an element
v0 ∈ V n

ρ \V n−1
ρ , the extension H(v0)|H is totally ramified of degree qn−1(q−1). Furthermore,

the kernel of a 7→ ρa(v0) is pnK . Thus it induces an isomorphism of OK-modules

OK/pnK ∼= V n
ρ . (0.0.4)

This implies that any element v0 ∈ V n
ρ \ V n−1

ρ is a generator of V n
ρ as OK-module. This also

implies that the extension Hn
ρ = H(V n

ρ ) is equal to H(v0). Furthermore, the extension Hn
ρ |H

is abelian and the compositum of the union of the extensions Hn
ρ together with Kur is equal

to the maximal abelian extension of K. See §1.3.
Now let m0 ≥ 1 be an integer dividing [H : K], and η ∈ K of valuation µ(η) = m0. Let

W n
ρ = V nm0

ρ = {α ∈ pΩ̄; ρηn(α) = 0} and En
ρ = H(W n

ρ ) = Hnm0
ρ . (0.0.5)

For a finite extension L of En
ρ , we denote by

ΦL : L× → Gal(Lab|L) (0.0.6)

the norm residue map. We can prove (see Lemma 2.2.1) that, for each α ∈ pL, there exists
an element ξ ∈ Lab such that ρηn(ξ) = α. Therefore we can define the map ( , )ρ,L,n :
pL × L× −→ W n

ρ by

(α, β)ρ,L,n = ΦL(β)(ξ)− ξ; ρηn(ξ) = α, (0.0.7)

for α ∈ pL and β ∈ L×. The main objective of this thesis is to prove explicit reciprocity laws
for formal Drinfeld modules having stable reduction of height 1. In other words, we prove
explicit formulas for the map ( , )ρ,L,n.

In Chapter 2, we restrict ourselves to the special case where

L = En
ρ and ρη ≡ τm0 mod pH . (0.0.8)
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We fix once and for all a generator vn of W n
ρ . In these settings, we prove that for all α ∈ pL

such that µ(α) ≥ nm0

q
+ 1

q−1
+ 1

qnm0 (q−1)
, and for all β ∈ L×, we have

(α, β)ρ,L,n =
1

ηn
TL|K(λρ(α)δvn(β)) ·ρ vn, (0.0.9)

where λρ is the logarithm of ρ, and δvn : L× → pL/Dn is a group homomorphism defined as
follows. For β ∈ L×, choose a power series f(X) ∈ OH((X)) \ {0} such that f(vn) = β, and
set

δvn(β) :=
f ′(vn)

β
mod Dn, (0.0.10)

where Dn denotes the different of the extension L|K [1]. This gives an analogue of Theorem
19 of Wiles [34] and an extension of Theorem 3.12 of Anglès [3]. The method we use to
prove this result is inspired by Wiles [34], taking into account the challenges derived from the
fact that the formal Drinfeld modules considered are formal power series, and are no longer
polynomials. A crucial fact to prove this formula is that for all units u of K, and for all
ω ∈ Wρ, we have

ΦK(u)(ω) = ρu−1(ω). (0.0.11)

We can also define a limit form ( , )ρ,L of the pairing ( , )ρ,L,n, where the first coordinate
belongs to the direct limit lim−→ pEn

ρ
, taken with respect to the maps

pEn
ρ
→ pEm

ρ

αn 7→ ρηm−n(αn),

(0.0.12)

and the second coordinate belongs to the projective limit lim←−(E
n
ρ )

×, taken with respect to
the norm maps. An explicit formula, similar to (0.0.9), can be proven for the limit pairing. It
gives a generalization of Theorem 23 of Longhi-Bars [6] proved for formal Drinfeld modules
obtained from sign-normalized rank 1 Drinfeld modules. It also gives an analogue of Theorem
8.16 of Iwasawa [18]. The results of Chapter 2 were subject to a submitted paper [1].

Afterwords, in Chapter 3, we prove explicit formulas in the general settings, under the
only assumption that L|K is separable. We prove that there exists a unique map ψL,vn from
a certain subgroup Ln of L× to a certain OL-submodule of L, satisfying

(α, β)ρ,L,n = TL|K(λρ(α)ψL,vn(β)) ·ρ vn (0.0.13)

for all α ∈ pL and β ∈ Ln. The map ψL,vn is the analogue of the so-called Iwasawa map
introduced Proposition 14 of [17].

We further prove that there exists an OK-derivation D̄L,vn from OL into a certain OL-
submodule of L such that

(α, β)ρ,L,n = TL|K(λρ(α) dlogD̄L,vn(β)) ·ρ vn (0.0.14)

for all β ∈ L× and α ∈ L of valuation µ(α) > nm0

q
+ 1

q−1
+ 1

e(L|K)
, where e(L|K) is the

ramification index of L|K [2]. If we write β = uπkL ∈ L×, where u is a unit of L and πL
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is a prime of L, the logarithmic derivative dlogD̄L,vn associated with the derivation D̄L,vn is
defined by

dlogD̄L,vn(β) =
D̄L,vn(u)

u
+ k

D̄L,vn(πL)

πL
. (0.0.15)

This is the analogue of the main result of Kolyvagin’s paper [21]. An advantage of having
a derivation is that it is determined and explicitly constructible in terms of its value at a
uniformizer πL of L as follows. For x ∈ OL, we can write

D̄L,vn(x) = f ′(πL) D̄L,vn(πL), (0.0.16)

where f is the unique power series in FqL [[X]] such that x = f(πL). Here, FqL denotes the
residue field of L. A comparison of the two formulas (0.0.9) and (0.0.14) in the case L = Em

ρ ,
πL = vm and ρη ≡ τm0 mod pH yields that

D̄Em
ρ ,vn(vm) =

1

ηm
. (0.0.17)

for all m ≥ n. Using (0.0.17) and invariants attached to the representation r : Gal(Ω|H)→
GL1(OK) = UK , which is induced by the action of Gal(Ω|H) on the module lim←−Wρ, we get
the following congruence, of which we do not have a direct proof. For all units u in L such
that µ(1− u) > max{nm0

q
, 1
q−1
}+ 1

q−1
, we have

NL|K(u
−1)− 1 ≡ TL|K((

1− u
u

)(1− g′(vm)

u
vm)) mod p

(n+m)m0

K , (0.0.18)

where NL|K : L → K is the norm map and g(X) is the unique power series in FqL [[X]]
such that g(vm) = u. Reciprocally, the congruence (0.0.18) implies (0.0.17). Hence, proving
(0.0.18) would provide a new proof of (0.0.17), without the use of Chapter 2.

The methods used to obtain (0.0.14) and (0.0.18) were inspired by the work of Kolyvagin
[21]. But Kolyvagin on the other hand had a direct proof of his analogue of (0.0.18). The
ingredient he used is the logarithm, which allows him to swing between the trace and the
norm.
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Chapter 1

Formal Drinfeld modules

The idea of formal modules was first introduced by Drinfeld in his paper [11]. In this
chapter, we consider a special case of these formal modules, the so-called formal Drinfeld
modules which were studied by Rosen in [29]. We will rely on Rosen’s paper to define and
state the main properties of formal Drinfeld modules. In all this chapter, let K be a local
field of positive characteristic p. Let OK be its valuation ring and pK be its maximal ideal.
We denote by q the order of its residue field OK/pK .

1.1 Definitions and first properties
For an OK-algebra B, let B{{τp}} be the twisted power series ring consisting of all power

series
∑

i≥0 biτ
i
p, such that the bi belong to B and τp is the p-Frobenius element satisfying

τpx = xpτp ∀x ∈ B. (1.1.1)

Let γ : OK −→ B be the structure map and D : B{{τp}} −→ B be the ring homomorphism
that assigns to a power series

∑
i≥0 biτ

i
p its constant term b0. Let d be the integer such that

pd = q. A formal Drinfeld OK-module over B is a ring homomorphism

ρ : OK −→ B{{τ sp}}
a 7→ ρa

for a positive integer s ≤ d, satisfying

(i) ∀a ∈ OK , D(ρa) = γ(a),

(ii) ρ(OK) ̸⊂ B,

(iii) ρπ ̸= 0 for one (and hence all) prime π of K.

This definition goes back to Rosen [29], and is a special case of formal OK-modules over
B, introduced in the first place by Drinfeld in [11]. Indeed, a formal OK-module over B is
defined as a pair (F, f), where F is a formal group over B and f is a ring homomorphism from
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OK into End(F ), satisfying D ◦ f = γ. Namely, F is a formal power series in B[[X, Y ]] such
that F (X, Y ) = F (Y,X), F (X, 0) = X, and F (X,F (Y, Z)) = F (F (X, Y ), Z). Moreover, the
image fa of an element a in OK is an endomorphism of F , i.e. it is a formal power series
in B[[X]] such that fa(F (X, Y )) = F (fa(X), fa(Y )). If we take F to be the additive group
Ga(X, Y ) = X + Y , the endomorphisms of F are all of the form

∑
i≥0 biX

pi . Hence, we can
identify End(Ga) with the twisted power series ring B{{τp}}. For more details on the general
case, one may check [11, §1] or [16].

As Rosen stated in [29, p 239], formal Drinfeld modules exist in abundance. The subse-
quent examples show three ways to generate families of formal Drinfeld modules.

Example 1.1.1. Fix a prime π of K and let f(X) =
∑d

i=0 fiX
pi be a polynomial with

coefficients in OK , satisfying

(i) f0 = π and fd = 1.

(ii) f(X) ≡ Xq mod pK .

Such polynomials are called Carlitz polynomials [3, Definition 1.1]. By Lubin-Tate theory
(see for instance [23, Chapter 8]), we can associate to each Carlitz polynomial f , a ring
homomorphism [ ]f : OK → OK [[X]] such that

[a]f (X) = aX mod deg 2 and f ◦ [a]f = [a]f ◦ f

for all a ∈ OK . The maps [ ]f are the so-called Carlitz modules, they are a basic example of
formal Drinfeld modules.

Example 1.1.2. We will construct a formal Drinfeld module out of a standard Drinfeld
module as Rosen explained in §4 of his paper [29]. Let L be a global function field of
characteristic p. Let ∞ be a place of L and A be the Dedekind ring of elements of L regular
outside ∞. Let M be an extension of L and let ρ be a Drinfeld A-module over M , that is a
ring homomorphism from A toM{τ dp } satisfyingD(ρa) = a for all a ∈ A and ρ(A) ̸⊂M . This
definition goes back to Drinfeld [11]. One may also find more details on standard Drinfeld
modules in [15]. We denote by C the integral closure of A in M , and we let I be a maximal
ideal of C. Suppose ρ has stable reduction at I. This means that the coefficients of the ρa are
in the local ring CI for all a ∈ A, and the reduction a 7→ ρ̄a of ρ modulo I is also a Drinfeld
module. Hence, we can extend ρ to AP , where P = A∩ I. Indeed, one can easily see that ρs
are invertible power series in CI{{τ dp }} for all s ∈ A \ P . Therefore, we define the map

ρ : AP → CI{{τ dp }}
a

s
7→ ρaρ

−1
s .

The last step in this construction is the completion. For that, let ĈI be the completion of
C in the I-adic topology, and ÂP be the completion of A in the P -adic topology. Since
CI ⊂ ĈI , we can see ρ as a map from AP to ĈI{{τ dp }}. Finally, we extend ρ by continuity to
ρ̂ : ÂP → ĈI{{τ dp }}. The new map ρ̂ is a formal Drinfeld module, called the completion of ρ
at I.
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Example 1.1.3. Suppose B = OL is the valuation ring of a finite extension L of K. Let
π be a fixed prime of K, then we know that every a ∈ OK can be uniquely written as
a =

∑
i≥0 aiπ

i, where the ai ∈ Fq. Let f be a power series in B{{τ dp }} such that D(f) = π
and f ̸= 0 mod pK . We set ρa =

∑
i≥0 aif

i. Then a 7→ ρa is a well defined formal Drinfeld
module.

In all that follows, the formal Drinfeld modules considered are ring homomorphisms from
OK to B{{τ}}, where

τ := τ dp (1.1.2)
is the q-Frobenius element satisfying τx = xqτ for all x ∈ B. For the rest of this chapter,
we suppose B is an integral domain and we denote by D̂OK

(B) the set of formal Drinfeld
OK-modules defined over B.

Lemma 1.1.4. A formal Drinfeld OK-module ρ over B is injective.

Proof. This is Lemma 1.1 in [29]. Let a ∈ OK \ {0}, then we can write a = uπk, where u is
a unit of K, π is a prime of K and k ∈ N is the valuation of a. Hence, we have ρa = ρuρ

k
π.

Since B is supposed to be an integral domain, then B{{τ}} has no zero divisors. Hence,
it suffices to say that both ρu and ρπ are non zero power series in B{{τ}}. This is clearly
true because ρu is invertible in B{{τ}} and ρπ is non zero by the very definition of a formal
Drinfeld module.

Let f =
∑

i≥0 biτ
i be a power series in B{{τ}}. We set ordτ (f) to be the least integer i

such that bi ̸= 0. Let π be a prime of K, then we define the height of ρ by ht(ρ) = ordτ (ρπ).
Clearly, the height well defined and is independent of the choice of the prime π. Moreover,
if the structure map γ : OK → B is injective, the height of a formal Drinfeld OK-module
defined over B is always zero.

Lemma 1.1.5. Let ρ ∈ D̂OK
(B). Then for all a ∈ OK , we have ordτ (ρa) = ht(ρ)µ(a).

Proof. See [29, Lemma 1.3]. The proof of this lemma is immediate if we write a as a = uπk

as we did in the proof of Lemma 1.1.4.

Definition 1.1.6. Let ρ and ρ′ be two formal Drinfeld OK-modules over B. A homomor-
phism from ρ to ρ′ is a power series g in B{{τ}} such that gρa = ρ′ag for all a ∈ OK . The
power series g is an isomorphism if it is further an invertible power series in B{{τ}}.
Lemma 1.1.7. Let ρ, ρ′ ∈ D̂OK

(B). If there exists a non-trivial homomorphism from ρ to
ρ′, then ht(ρ) = ht(ρ′).

Proof. This is Lemma 1.5 in [29]. It follows immediately from the definitions.

Now, we will restrict ourselves to the case where B is the valuation ring of a finite extension
of K. Thereupon, let L|K be a finite extension of local fields, let OL be its valuation ring
and pL be its maximal ideal. We note that the structure map in this case is the inclusion
map from OK ⊂ OL.

Definition 1.1.8. A formal Drinfeld OK-module ρ defined over OL is said to have stable
reduction if the ring homomorphism ρ̄ : OK −→ OL/pL{{τ}}, obtained by reducing modulo
pL the coefficients of ρa, for a ∈ OK , is also a formal Drinfeld module.
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1.2 The logarithm of a formal Drinfeld module
Let L be a finite extension of K, let let OL be its valuation ring and pL be its maximal

ideal. We also denote by µ the unique extension to L of the valuation ofK. Let ρ ∈ D̂OK
(OL).

We define the action
a ·ρ x = ρa(x) for a ∈ OK and x ∈ pL. (1.2.1)

This is clearly a well defined action, since the power series ρa(x) converges in the complete
ring OL, for all a ∈ OK and x ∈ pL. This action of ρ makes of pL an OK-module. We denote
this OK-module by (pL, ·ρ).

A general construction in the case of formal OK-modules suggests that there exists a
logarithm map from (pL, ·ρ) to L, viewed as an OK-module for the multiplication in L (see
[16, 21.5.7]). In §2 of [29], Rosen gave a detailed presentation of this logarithm map in the
case of formal Drinfeld modules. We follow his steps.

Proposition-Definition 1.2.1. There exists a unique power series λρ in L{{τ}} such that
D(λρ) = 1 and

λρρa = aλρ for all a ∈ OK . (1.2.2)

The power series λρ is called the logarithm of ρ, it converges on pL, and it gives a homomor-
phism of OK-modules from (pL, ·ρ) to L.

Proof. This is [29, Proposition 2.1]. We will construct a power series λρ satisfying D(λρ) = 1
and (1.2.2). In particular, we want λρρπ = πλρ, where π is a prime of K. Let

ρπ = π +
∑
i≥0

biτ
i and λρ = 1 +

∑
i≥0

ciτ
i.

Then, by λρρπ = πλρ, we get
(π − πqn)cn =

∑
i+j=n
j ̸=n

cjb
qj

i . (1.2.3)

These relations uniquely determine the coefficients cn of λρ. Let us now prove that the
constructed power series λρ satisfy (1.2.2). For that, let a ∈ OK . Then, we have λρρaρπ =
πλρρa, which implies, together with λρρπ = πλρ, that

λρρaλ
−1
ρ π = πλρρaλ

−1
ρ . (1.2.4)

In other words, the power series λρρaλ−1
ρ commutes with π. Yet, all the power series in

L{{τ}} are elements of L. Therefore, λρρa = cλ−1
ρ , with c ∈ L. By comparison, we can

clearly see that c = a, and hence, (1.2.2) is proven.
It remains to prove that λρ(x) converges for all x ∈ pL. Using (1.2.3), we can prove by

induction that
µ(ci) ≥ −i. (1.2.5)

Hence, if we take x ∈ pL, we get

µ(cix
qi) = µ(ci) + qiµ(x) ≥ −i+ qiµ(x). (1.2.6)

Thus, µ(cixq
i
) tends to ∞ as i tends to ∞. This concludes the proof.

14



Proposition-Definition 1.2.2. There exists a unique power series eρ in L{{τ}} such that
D(λρ) = 1 and

eρa = ρaeρ for all a ∈ OK . (1.2.7)

The power series eρ is called the exponential of ρ, it converges on the ideal

pL,1 := {x ∈ pL; µ(x) >
1

q − 1
}, (1.2.8)

and it gives a homomorphism of OK-modules from pL,1 to (pL, ·ρ).

Proof. This is [29, Proposition 2.2]. If we set eρ = λ−1
ρ , we can easily see that D(λρ) = 1

and eρa = ρaeρ for all a ∈ OK . The uniqueness can be deduced by reproducing the same
arguments as in the proof of Proposition-Definition 1.2.1. We can further deduce from these
arguments that, if we write eρ = 1 +

∑
i≥1 diτ

i, we get

µ(di) ≥ −(1 + q + · · ·+ qi−1). (1.2.9)

Now, let x ∈ pL,1. Then,

µ(dix
qi) ≥ −q

i − 1

q − 1
+ qiµ(x) = qi

(
µ(x)− 1− q−i

q − 1

)
> 0. (1.2.10)

Thus, µ(dixq
i
) tends to ∞ as i tends to ∞. This shows that eρ(x) converges and eρ(x) ∈

pL.

Proposition 1.2.3. Let r be an integer such that r > e
q−1

, where e is the index of ramification
of L|K. Then λρ and eρ are inverse isomorphisms of OK-modules between (prL, ·ρ) and prL.
Moreover, (prL, ·ρ) is a torsion free OK-module.

Proof. This is [29, Proposition 2.3]. First, we note that prL is indeed an OK-module for the
action of ρ, since ρa(prL) ⊂ prL for all a ∈ OK . Since we already know that λρ is the inverse
of eρ as power series in L{{τ}}, it suffice to show that

µ(λρ(x)) = µ(x) and µ(eρ(x)) = µ(x) (1.2.11)

for all x ∈ prL. We will show this only for λρ, for the proof for eρ is very similar. Let x ∈ prL,
and write

λρ(x) = x+
∑
i≥1

cix
qi . (1.2.12)

By (1.2.5), for all i ≥ 1, we have

µ(cix
qi) = µ(ci) + qiµ(x)

≥ −i+ qiµ(x)

= µ(x)

(
qi − i

µ(x)

)
> µ(x)

(
qi + i(1− q)

)
15



because µ(x) > 1
q−1

. As qi + i(1 − q) ≥ 1, this implies that µ(cixq
i
) > µ(x), and therefore

that µ(λρ(x)) = µ(x).

Remark 1.2.4. A key-point to prove Proposition 1.2.3 is to observe that

µ(λρ(x)) = µ(x) and µ(eρ(x)) = µ(x) (1.2.13)

whenever µ(x) > 1
q−1

. The equalities in (1.2.13) imply that λρ defines an isomorphism from
(pL,1, ·ρ) to pL,1. This fact will be useful for us in the sequel.

Proposition 1.2.5. TheOK-module λρ(pL) is free of rank [L : K] and we have L = Kλρ(pL),
where Kλρ(pL) the set of all elements of the form ab, for an element a ∈ K and an element
b ∈ λρ(pL).

Proof. We note first that λρ(pL) is an OK-module for the multiplication in L. Let x ∈ pL
and e(L|K) be the ramification index of L|K, then µ(x) ≥ 1

e(L|K)
. By (1.2.5), we have

µ(λρ(x)) ≥ min(µ(x),−i+ qiµ(x))

≥ min(
1

e(L|K)
,−i+ qi

e(L|K)
).

Thus, for a sufficiently large integer l, we have λρ(pL) ⊂
1

πl
OL, where π is a prime of K.

Therefore λρ(pL) is free for it is a OK-submodule of the free OK-module
1

πl
OL. Now let us

prove that L = Kλρ(pL). Clearly, we have Kλρ(pL) ⊂ L. Let x ∈ L, then we can write
x = uπjL, where u is a unit of L and πL is a prime of L. Then, for a sufficiently large integer

i, we have uπjLπ
i ∈ pL,1 = λρ(pL,1) ⊂ λρ(pL). Therefore x =

1

πi
uπjLπ

i ∈ Kλρ(pL).

Although λρ has an inverse as a formal power series, and as an OK-module homomorphism
over (prL, ·ρ) for r > e

q−1
, the map λρ is not necessarily injective. In fact, it is easily seen that

a torsion element of (pL, ·ρ) (i.e. an element w ∈ pL such that ρπn(w) = 0 for some integer
n ≥ 0, where π is a prime of K), annihilates λρ, because πnλρ(w) = λρ(ρπn(w)) = 0. The
kernel of λρ is the subject of the following proposition.

Proposition 1.2.6. The kernel of the homomorphism λρ : pL → L is the submodule of
torsion elements

Wρ,L := {w ∈ pL; ∃ n > 0 such that ρπn(w) = 0}, (1.2.14)

where π ∈ K is a uniformizer. Clearly, Wρ,L does not depend on the choice of π.

Proof. See [29, Proposition 2.4]. Let w ∈ Ker(λρ) and let r > e
q−1

. We know by the basic
properties of λρ that λρ(ρπr(w)) = πrλρ(w) = 0. However, ρπr(w) = ρrπ(w) ∈ pr+1

L ⊂ prL,
and λρ is an isomorphism on prL by Proposition 1.2.3. Hence, ρπr(w) = 0, which means that
w ∈ Wρ,L.
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Remark 1.2.7. (i) The torsion module Wρ,L is finite. Indeed, we have seen in Proposition
1.2.3 that for r large enough, (prL, ·ρ) is torsion free. Hence, there exists an injection

Wρ,L ↪→ pL/p
r
L. (1.2.15)

This implies that the cardinal of Wρ,L is less or equal then the cardinal of pL/prL.

(ii) If e < q−1, we can apply Proposition 1.2.3 for r = 1. We get that (pL, ·ρ) is isomorphic
to pL, under the multiplication in L. In particular, (pL, ·ρ) is torsion free.

As we have seen above, the convergence domains of λρ and eρ depend on the extension L,
and not on ρ. This yields the following local uniform boundness theorem.

Theorem 1.2.8. Let L|K be a finite extension of local fields of degree N . Let OL be its
valuation ring and pL be its maximal ideal. Let ρ be a formal Drinfeld OK-module over OL,
then the cardinal of Wρ,L is bounded by q

N
q−1 .

Proof. This is [29, Theorem 2.5]. Let r = ⌊ e(L|K)
q−1
⌋ + 1, where e(L|K) is the ramification

index of L|K and ⌊a⌋ is the integral part of a ∈ R. By Remark 1.2.7, the cardinal of Wρ,L is
less or equal then the cardinal of pL/prL, which is equal to q(r−1)f(L|K), where f(L|K) is the
inertia degree of L|K. But

(r − 1)f(L|K) = ⌊e(L|K)

q − 1
⌋f(L|K) ≤ e(L|K)

q − 1
f(L|K) =

N

q − 1
. (1.2.16)

This concludes the proof.

1.3 Torsion points and abelian towers
At the end of the last section, we saw results on the size of the torsion modules in a finite

extension of K. In this section, we will study the structure of the torsion modules in an
algebraic closure of K, as well as the field extensions obtained by adding torsion elements to
K. As might be expected, these field extensions form abelian towers, and the compositum
of their union with the maximal unramified extension of K is equal to the maximal abelian
extension of K.

Let Ω be an algebraic closure of K, and still denote µ the unique extension of µ to Ω. Let
(Ω̄, µ̄) be the completion of (Ω, µ). If F ⊂ Ω is an extension of K, we denote OF the valuation
ring of F and pF its maximal ideal. Let H ⊂ Ω be a finite unramified extension of K, and
let ρ ∈ D̂OK

(OH). As in (1.2.1), ρ induces an action on pΩ̄, making of it an OK-module:

a ·ρ x = ρa(x) for a ∈ OK and x ∈ pΩ̄. (1.3.1)

Let n ≥ 0 be an integer and let π be a fixed prime of K. We define the pnK-torsion submodule
of (pΩ̄, ·ρ) as

V n
ρ = {x ∈ pΩ̄; ρa(x) = 0 ∀a ∈ pnK}
= {x ∈ pΩ̄; ρπn(x) = 0}.
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The submodule of all torsion elements in (pΩ̄, ·ρ) is then the union of the V n
ρ for all integers

n ≥ 0. We denote this union by Vρ. We obtain an increasing sequence of OK-modules

0 = V 0
ρ ⊂ V 1

ρ ⊂ · · · ⊂ V n
ρ ⊂ · · · ⊂ Vρ. (1.3.2)

In order to study the submodules V n
ρ , we need to know more about the power series ρπn .

For that, we state and prove the Weierstrass preparation Theorem 1.3.3 below. We follow
Rosen’s method [29, §3] for the proof.

Theorem 1.3.1. Let F be a local field and let OF be its maximal ideal. Fix a positive integer
N and let f =

∑
i≥0 biτ

i be a power series in OF{{τ}} such that bi ∈ pF , the maximal ideal
of OF , for i < N , and bN is a unit in F . Let g ∈ OF{{τ}}, then there exists unique elements
Q and R in OF{{τ}} such that g = Qf +R, where R = 0 or degτ (R) < N .

Proof. We give a sketch of the proof. A full proof can be found in [29, Theorem 3.1]. Let πF
be a prime of pF , then we can write f = πP + UτN , where P is a polynomial in OF{τ} of
degree less than N , and U is an invertible power series in OF{{τ}}. Assuming that Q and
R exist, we will determine the shape of Q. Define

t : OF{{τ}} → OF{{τ}}∑
i≥0

aiτ
i 7→

∑
i≥N

aiτ
i−N .

Then, we have t(g) = t(Qf) = t(qπfP ) + qU . Let E be the operator on OF{{τ}} defined by
E(h) = t(hπfP )U

−1, then t(g)U−1 = (Id+E)(q). Hence, we get q =
∑

i≥0(−1)iEi(t(g)U−1.
We must then verify that this series in convergent and that it fulfills the needed properties.
Finally, the uniqueness of Q and R can be deduced from the properties of f .

Definition 1.3.2. Let F be a local field. A polynomial in OF{τ} is said to be distinguished
if it is monic and all its coefficients, except for the leading one, are in pF .

Theorem 1.3.3. (Weierstrass Preparation Theorem) Let F be a local field and N be a
positive integer. Let f =

∑
i≥0 biτ

i ∈ OF{{τ}} be such that bi ∈ pF for i < N , and bN is a
unit in F . Then there exist uniquely determined elements U and Q in OF{{τ}}, such that U
is a unit in OF{{τ}} and Q is a distinguished polynomial in OF{τ} of degree N , satisfying
f = UQ.

Proof. Let g = τN . Applying Theorem 1.3.1, we can write τN = Q1f +R. Reducing modulo
pF and comparing the coefficients, we see that R ∈ pF{τ}. We also see that Q1 is a unit in
OF{{τ}}. Hence, we can write f = UQ, where Q = τN −R and U = Q−1

1 .

The Weierstrass preparation Theorem 1.3.3, applied to ρπn , allows us to determine the
structure of the torsion submodules V n

ρ . This is the subject of [29, Theorem 3.3], where
Rosen proved that, if ρ has stable reduction of height h > 0, then V n

ρ is isomorphic to h
copies of OK/pnK . We will restrict ourselves to the case where h = 1, for this will be enough
for our purposes. As from now, we suppose that ρ has stable reduction of height 1.
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Lemma 1.3.4. There exists two uniquely determined sequences (Un)n≥1 and (Qn)n≥1 in
OH{{τ}}, satisfying

(i) Qn is a distinguished polynomial of degree 1 and Un is invertible.

(ii) ρπ = U1Q1 and Q1U1 = Q2U2.

(iii) Q1U1Un−1 = UnQn for all n > 2.

Furthermore, we have
ρπn = U1UnQnQn−1 · · ·Q1. (1.3.3)

Proof. This is Lemma 2.1 of [28]. To prove this, we apply Theorem 1.3.3 consecutively to ρπ,
then to Q1U1, and finally to Q1U1Un−1 for n > 2. The hypothesis on the height of ρ̄ imply
that the degree of Q1, and hence of all the Qn, is equal to 1. Finally, the decomposition
(1.3.3) of ρπn can be proved by induction.

The properties (ii) and (iii) of Lemma 1.3.4 imply that the polynomials Qn are of the form
Qn = τ + πn, where πn is a prime element of H. Hence, the polynomial

Pn = Qn · · ·Q1 (1.3.4)

is a distinguished polynomial of degree n, and Pn(X) is a separable polynomial of degree qn.
Therefore, since U1 and Un are units in OH{{τ}}, the torsion module V n

ρ is exactly the set
of roots of Pn(X) in Ω.

Proposition 1.3.5. The cardinal of V n
ρ is qn and H(V n

ρ )|H is a finite Galois extension.

Proof. This follows immediately from the above discussion.

Denote P0(τ) = τ 0, and for n ≥ 1, let

hn(X) =
Pn(X)

Pn−1(X)
=
Qn(Pn−1(X))

Pn−1(X)
= (Pn−1(X))q−1 + πn, (1.3.5)

because Qn(X) = Xq + πnX. It is clear that the polynomials hn(X) are Eisenstein polyno-
mials, of degree qn−1(q − 1), satisfying

Pn(X) = hn(X)hn−1(X) · · ·h1(X)X. (1.3.6)

Since we can write Pn(X) =
∏

v∈V n
ρ
(X − v), the polynomials Pn and hn are independent of

the choice of π, and only dependent of ρ, for the set V n
ρ itself depends only on ρ. Hence,

from (1.3.5), we deduce that the primes πn, and thus the polynomials Qn, are independent
of the choice of π and only dependent of ρ (see Corollary 2.2 and Remark 2.3 in [28]).

Proposition 1.3.6. The set V n
ρ \ V n−1

ρ is the set of roots of hn(X). Moreover, if v0 is an
element in this set, the extension H(v0)|H is totally ramified of degree qn−1(q − 1), and
NH(v0)|H(v0) = πn.
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Proof. This is [28, Proposition 2.4]. Let v0 be a root of hn(X). By (1.3.6), v0 is a root of
Pn(X) and hence an element of V n

ρ . Suppose v0 is in V n−1
ρ , hence it is a root of Pn−1(X) and

hence a double root of Pn(X). This contradicts the separability of Pn(X). Since the cardinal
of V n

ρ \ V n−1
ρ is qn−1(q − 1), which is equal to the degree of hn(X), it is then exactly the set

of all roots of hn(X). Furthermore, the degree of the extension H(v0)|H is qn−1(q − 1), the
polynomial hn(X) being Eisenstein. Finally, we have NH(v0)|H(v0) = (−1)deg(hn)hn(0) = πn.
Thus, H(v0) is totally ramified over H, for the norm group N(H(v0)|H) contains the prime
πn of H.

Proposition 1.3.7. (i) Let v0 be an element of V n
ρ \ V n−1

ρ . Then V n
ρ = OK ·ρ v0 and the

map defined by a 7→ ρa(v0), for a ∈ OK , induces an isomorphism of OK-modules

OK/pnK ≃ V n
ρ . (1.3.7)

(ii) We have
piK · V n

ρ = V n−i
ρ for n ≥ i ≥ 0. (1.3.8)

Proof. This is inspired by [18, Lemma 4.8]. If v0 ∈ V n
ρ \ V n−1

ρ , it is clear that the map
a 7→ ρa(v0) is a homomorphism of OK-modules from OK to V n

ρ . By the definition of V n
ρ , we

know that pnK ·ρ v0 = 0 and pn−1
K ·ρ v0 ̸= 0. Hence, the kernel of this homomorphism is an

ideal of OK , containing pnK , but not pn−1
K , hence the kernel is equal to pnK . This implies the

isomorphism (1.3.7), because OK/pnK and V n
ρ are both of the same cardinal qn. Moreover,

we deduce that v0 is a generator of V n
ρ as OK-module. This proves (i). Let us now prove (ii).

Using part (i), we see that ρπi(v0) is a generator of V n−i
ρ asOK-module because ρπi(v0) ∈ V n−i

ρ

and ρπi(v0) ̸∈ V n−i−1
ρ . Thus we can write

piK · V n
ρ = πi ·ρ OK ·ρ v0 = OK ·ρ ρπi(v0) = V n−i

ρ . (1.3.9)

For each a ∈ OK , define the map

εa : V
n
ρ → V n

ρ

β 7→ a ·ρ β = ρa(β).

(1.3.10)

Then εa is an element of End(V n
ρ ), the ring of all endomorphisms of the OK-module V n

ρ .
Denote by Aut(V n

ρ ) the group of all automorphisms of V n
ρ , then Aut(V n

ρ ) is the multiplicative
group of all invertible elements in the ring End(V n

ρ ). Hence, if u is a unit of K, εu belongs
to Aut(V n

ρ ) because εu−1 = ε−1
u .

Proposition 1.3.8. Let UK denote the group of units of K. For all n ≥ 0, we have a ring
isomorphism

OK/pnK → End(V n
ρ ) (1.3.11)

and a group isomorphism
UK/UK,n → Aut(V n

ρ ), (1.3.12)

where UK,n = 1 + pnK .
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Proof. This is inspired by Proposition 4.9 in [18]. The map a 7→ εa defines a surjective ring
homomorphism OK → End(V n

ρ ). Indeed, let ε ∈ End(V n
ρ ) and let v0 ∈ V n

ρ \ V n−1
ρ . Then by

Proposition 1.3.7(i), the OK-module V n
ρ is generated by v0 and ε(v0) = a ·ρ v0 for an a ∈ OK .

Therefore, for all α ∈ V n
ρ = OK ·ρ v0, we have ε(α) = a ·ρ α so that ε = εa. This proves that

the map a 7→ εa is surjective. Since pnK ·ρ V n
ρ = 0 and pn−1

K ·ρ V n
ρ = V 1

ρ ̸= 0 by Proposition
1.3.7(ii), the kernel of this map is exactly pnK . This yields the isomorphism (1.3.11). The
isomorphism (1.3.12) follows immediately because UK/UK,n is the multiplicative group of the
ring OK/pnK and Aut(V n

ρ ) is the multiplicative group of the ring End(V n
ρ ).

Let Hn
ρ = H(V n

ρ ) and Hρ = H(Vρ). The two following propositions give a description of
the Galois groups Gal(Hn

ρ |H) and Gal(Hρ|H).

Proposition 1.3.9. There exists a surjective group homomorphism

Γn : UK → Gal(Hn
ρ |H) (1.3.13)

defined by Γn(u)(α) = ρu(α) for all u ∈ UK and α ∈ V n
ρ . The kernel of this homomorphism

is UK,n.

Proof. See discussion before Proposition 2.5 in [28]. Let σ ∈ Gal(Hn
ρ |H). Since σ is contin-

uous, we have ρa(σ(α)) = σ(ρa(α)) for all a ∈ OK and α ∈ V n
ρ . In particular, for a = πn,

we get ρπn(σ(α)) = σ(ρπn(α)) = 0 for all α ∈ V n
ρ . Thus, σ(α) ∈ V n

ρ and σ induces an
automorphism of V n

ρ . Therefore, we get an injective group homomorphism

Gal(Hn
ρ |H) ↪→ Aut(V n

ρ ). (1.3.14)

However, by the isomorphism (1.3.12) and Proposition 1.3.6, if v0 is an element of V n
ρ \V n−1

ρ ,
we have

#Aut(V n
ρ ) = #UK/UK,n = qn−1(q − 1) = [H(v0) : H] ≤ [Hn

ρ : H] = #Gal(Hn
ρ |H), (1.3.15)

where #S denotes the cardinal of a set S. Hence the map (1.3.14) is actually an isomorphism.
Together with (1.3.12), this implies that Γn : UK → Gal(Hn

ρ |H) is well defined and is of kernel
UK,n.

Corollary 1.3.10. Let 0 ≤ i ≤ n. The isomorphism UK/UK,n ≃ Gal(Hn
ρ |H) induces the

isomorphism
UK,i/UK,n ≃ Gal(Hn

ρ |H i
ρ). (1.3.16)

Proposition 1.3.11. There exists a topological isomorphism

Γ : UK → Gal(Hρ|H). (1.3.17)

which induces the homomorphism Γn : UK → Gal(Hn
ρ |H) of Proposition 1.3.9 for all non

negative integers n.
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Proof. See Proposition 2.5 in [28]. It is clear that the following diagram

UK Gal(Hn+1
ρ |H)

Gal(Hn
ρ |H)

Γn+1

Γn

is commutative, the vertical map being the canonical map. Thus, we have

Γ : UK = lim←−UK/UK,n
∼−→ lim←−Gal(Hn

ρ |H) = Gal(Hρ|H). (1.3.18)

Remark 1.3.12. The isomorphism (1.3.14), together with (1.3.15), shows that the field
Hn
ρ = H(V n

ρ ) is equal to H(v0) for any element v0 in V n
ρ \ V n−1

ρ . Therefore by Proposition
1.3.6, the extension Hn

ρ |H is totally ramified of degree qn−1(q − 1). Moreover, the fact that
NH(v0)|H(v0) is a prime of H implies that v0 is a prime of Hn

ρ .

Lemma 1.3.13. Let v0 ∈ V n
ρ \ V n−1

ρ so that Hn
ρ = H(v0).

(i) The complete set of conjugates of v0 over H is V n
ρ \ V n−1

ρ .

(ii) Let 0 ≤ i ≤ n. The complete set of conjugates of v0 over H i
ρ is v0 + V n−1

ρ .

Proof. This Lemma is analogous to [18, Corollary 5.4]. By Proposition 1.3.9, the set of
conjugates of v0 is the set {u ·ρ v0; u ∈ UK}, which is, by Proposition 1.3.7, is equal to
V n
ρ \ V n−1

ρ . Similarly, by Corollary 1.3.10, the set of conjugates of v0 over H i
ρ is the set

{u ·ρ v0; u ∈ UK,i}, which is, by Proposition 1.3.7, is equal to v0 + V n−1
ρ .

For a finite separable extension F ′|F of local fields, let mF ′|F be the fractional ideal of OF ′

defined by
mF ′|F = {x ∈ F ′; TF ′|F (xOF ′) ⊂ OF} ⊃ OF ′ . (1.3.19)

As usually defined, the different DF ′|F of F ′|F is the inverse ideal of mF ′|F

DF ′|F := m−1
F ′|F . (1.3.20)

We recall that DF ′|F is contained in OF ′ . Moreover, we know that if F ′|F is unramified, then
DF ′|F = OF ′ , and if F ′|F is totally ramified, then DF ′|F = g′(w)OF ′ , where w is a prime
element of F ′ and g(X) is the minimal polynomial of w over F . Furthermore, if F ′′|F is a
finite extension of local fields such that F ⊂ F ′ ⊂ F ′′, we have

DF ′′|F = DF ′′|F ′DF ′|F . (1.3.21)

For more details, the reader may check [18, §2.4].

Lemma 1.3.14. The different of the extension Hn
ρ |K is generated by an element of valuation

n− 1
q−1

.
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Proof. The proof of [6, Lemma 3] is suitable for our case. First, note that we have DHn
ρ |K =

DHn
ρ |HDH|K . Since H|K is an unramified extension, then DH|K = OH . Now, let us compute

DHn
ρ |H . Let v0 ∈ V n

ρ \ V n−1
ρ , then, by Remark 1.3.12, v0 is a prime of Hn

ρ = H(v0). By
Proposition 1.3.6, the minimal polynomial of v0 is the polynomial hn defined in (1.3.5).
Hence, DHn

ρ |H is generated by h′n(v0) because Hn
ρ |H is totally ramified. By the very definition

of hn, we know that
hn(X)Pn−1(X) = Pn(X) (1.3.22)

where Pl = Πv∈V l
ρ
(X − v), for a positive integer l, is the polynomial defined in (1.3.4).

Differentiating (1.3.22) and evaluating at v0 we get h′n(v0)Pn−1(v0) = P ′
n(v0). Since µ(v0) =

1
qn−1(q−1)

< µ(v) for all v ∈ V n−1
ρ , then

µ(Pn−1(v0)) =
∑

v∈V n−1
ρ

(µ(v0)) =
1

q − 1
. (1.3.23)

Moreover, since Pn ∈ OH{τ}, we have P ′
n(v0) = P ′

n(0) and

µ(P ′
n(v0)) = µ(

∏
v∈V n

ρ \{0}

v) =
∑

v∈V n
ρ \{0}

µ(v) =
n∑
i=1

(#V i
ρ \ V i−1

ρ )µ(vi)

= qi−1(q − 1)× 1

qi−1(q − 1)
= n,

where vi is any element of V i
ρ \ V i−1

ρ for i ∈ {1, · · · , n}. This concludes the proof.

Lemma 1.3.15. Let L be a finite separable extension of K and let x ∈ L, then

µ(TL|K(x)) ≥ ⌊µ(x) + µ(DL|K)⌋, (1.3.24)

where ⌊a⌋ is the integral part of a ∈ R. In particular if L = Hn
ρ , we have

µ(THn
ρ |K(x)) ≥ ⌊µ(x) + n− 1

q − 1
⌋. (1.3.25)

Furthermore, for i ≤ n, we have

µ(THn
ρ |Hi

ρ
(x)) > µ(x) + n− i− µ(vi), (1.3.26)

where vi is an element of V i
ρ \ V i−1

ρ .

Proof. See [6, Lemma 4]. Let k = ⌊µ(x)+µ(DL|K)⌋ then xOL ⊂ pkKD−1
L|K . Thus TL|K(xOL) ⊂

pkK . This proves (1.3.24). By Lemma 1.3.14, we can see that the generator of DHn
ρ |Hi

ρ
is of val-

uation n− i. Hence, for k = ⌊µ(x) + n− i
µ(vi)

⌋, we have THn
ρ |Hi

ρ
(xOHn

ρ
) ⊂ THn

ρ |Hi
ρ
(pkHi

ρ
D−1
Hn

ρ |Hi
ρ
) ⊂

pkHi
ρ
. Thus, we have

µ(THn
ρ |Hi

ρ
(x)) ≥ kµ(vi) > µ(x) + n− i− µ(vi). (1.3.27)
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Let Kur ∈ Ω be the maximal unramified extension of K. Denote φ the Frobenius auto-
morphism, then Gal(Kur|K) is generated by φ. We will dedicate the rest of this section to
study the fields Kur(V

n
ρ ) and Kur(Vρ). For that, we need the two following propositions, of

which we omit the proofs. The interested reader may check Lemma 3.11 and Proposition
3.12 of [18].

Proposition 1.3.16. Let F ⊂ Ω be an unramified extension of K, such that F |K is of finite
degree or F = Kur. Let a and b be elements in OF̄ such that µ̄(a) = µ̄(b) = t > 0, and let f1
and f − 2 be elements of OF̄ [[X]] satisfying

f1(X) ≡ aX and f2(X) ≡ bX mod deg 2, (1.3.28)

and
f1(X) ≡ f2(X) ≡ Xqt mod pF̄ . (1.3.29)

If there exists m elements α1, · · · , αm in OF̄ such that αφ
t−1

i = a/b, then there exists a unique
power series θ ∈ OF̄ [[X1, · · · , Xm]] such that

θ(X1, · · · , Xm) ≡ α1X1 + · · ·+ αmXm mod deg 2 and f1 ◦ θ = θφ
t ◦ f2. (1.3.30)

Here, θφt denotes the power series obtained from θ by applying φt to the coefficients.

Proof. This is Proposition 3.1 of [28]. It is a generalization of [18, Proposition 3.12], where
Iwasawa proved the assertion for t = 1. His prove is adaptable to the case t > 1.

The following proposition tells us that the αi of Proposition 1.3.16 exist.

Proposition 1.3.17. Let t be a positive integer. Then, we have the exact sequences

0→ OKt
ur
→ OK̄ur

φt−1−−−→ OK̄ur
→ 0, (1.3.31)

and
1→ UKt

ur
→ UK̄ur

φt−1−−−→ UK̄ur
→ 1, (1.3.32)

where Kt
ur denotes the unique unramified extension of K of degree t in Ω and UF denotes

the group of units of a valued field F .

Proof. See [18, Lemma 3.11].

Let ρ′ be a formal Drinfeld OK-module over OH , having stable reduction of height 1. Let
n be a non negative integer and let P ρ

n and P ρ′
n be the polynomials defined in (1.3.4) attached

to ρ and ρ′ respectively. Then, the constant coefficients a of P ρ
n and b of P ρ′

n are both of
valuation n. Hence, by Proposition 1.3.17, there exists a unit u in K̄ur such that uφn−1 = a/b.
Proposition 1.3.16, applied to f1 = P ρ′

n , f2 = P ρ
n and m = 1, shows that there exists a unique

power series θn in OK̄ur
[[X]] such that

θn(X) ≡ uX mod deg 2 and P ρ′

n ◦ θn = θφ
n

n ◦ P ρ
n . (1.3.33)
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We also have θn(X + Y ) = θn(X) + θn(Y ). Indeed, if we denote M(X, Y ) = θn(X + Y ) and
N(X, Y ) = θn(X) + θn(Y ), we get

M(X, Y ) ≡ N(X, Y ) ≡ X + Y mod deg 2 and P ρ′

n ◦M =Mφn ◦ P ρ
n . (1.3.34)

However, since P ρ
n and P ρ′

n are both additive, we also have P ρ′
n ◦N = Nφn ◦P ρ

n . Therefore, by
the uniqueness property in Proposition 1.3.16, we deduce that M(X, Y ) = N(X, Y ). Hence,
θn induces an isomorphism of Fq-vector spaces

θn : V n
ρ −→ V n

ρ′ . (1.3.35)

Corollary 1.3.18. Let R∞ be the set of formal Drinfeld OK-modules having stable reduction
of height 1 and defined over OK̄ur

. Then K̄ur(V
n
ρ ) does not depend on the choice of ρ in R∞.

Proof. This is Corollary 3.3 in [28]. If ρ and ρ′ are in R∞, then the discussion above shows
that there exists a power series θn in OK̄ur

[[X]] that defines an isomorphism V n
ρ −→ V n

ρ′ .
Hence, we get

V n
ρ′ = θn(V

n
ρ ) ⊂ K̄ur(V

n
ρ ) (1.3.36)

because K̄ur(V
n
ρ ) is complete, being a finite extension of the complete field K̄ur. This im-

plies that K̄ur(V
n
ρ′ ) ⊂ K̄ur(V

n
ρ ). The second inclusion can be obtained identically, so that

K̄ur(V
n
ρ′ ) = K̄ur(V

n
ρ ).

Lemma 1.3.19. Let E|F be a finite extension of local fields such that K ⊂ F ⊂ E ⊂ Ω.
Then EF̄ = Ē. Moreover, we have E ∩ F̄ = F if E|F is separable.

Proof. See [18, Lemma 3.1]. We have the obvious inclusion EF̄ ⊂ Ē. Moreover, the extension
EF̄ |F̄ is finite, then EF̄ is complete for the µ̄-topology. Hence, EF̄ ⊃ E is closed in Ω̄. Thus,
we get EF̄ = Ē. Suppose now that E|F is separable. We may further suppose that E|F is
a Galois extension. Indeed, if E|F is separable, then there exists a field extension E ′ of E
such that F ⊂ E ⊂ E ′ and E ′|F is Galois. Yet, to prove E ∩ F̄ = F , it is sufficient to prove
E ′ ∩ F̄ = F . Hence, we may replace E by E ′. Under this assumption, Ē|F̄ is a finite Galois
extension and

[Ē : F̄ ] = [EF̄ : F̄ ] = [E : E ∩ F̄ ]. (1.3.37)

However, since every automorphism in Gal(E|F ) can be uniquely extended to an automor-
phism in Gal(Ē|F̄ ), we get

[E : F ] ≤ [Ē : F̄ ]. (1.3.38)

The result follows because F ⊂ E ∩ F̄ ⊂ E.

Theorem 1.3.20. For a positive integer m, let Rm be the set of formal Drinfeld OK-modules
over OKm

ur
having stable reduction of height 1, where Km

ur is the unique unramified extension
of K of degree m in Ω. Let R∞ denote the union of all Rm. Then Kur(V

n
ρ ) does not depend

on the choice of ρ in R∞. Moreover, Kur(V
n
ρ )|K is an abelian extension of Galois group

Gal(Kur(V
n
ρ )|K) ≃ Gal(Kur|K)× UK/UK,n. (1.3.39)

25



Proof. This is [28, Theorem 3.4]. Let ρ, ρ′ ∈ R∞ and let E = Kur(V
n
ρ ) and E ′ = Kur(V

n
ρ′ ).

Then, by Lemma 1.3.19, we have Ē = K̄urKur(V
n
ρ ) = K̄ur(V

n
ρ ) and Ē ′ = K̄urKur(V

n
ρ′ ) =

K̄ur(V
n
ρ′ ). Hence, by Corollary 1.3.18, we get Ē = Ē ′. Moreover, we know that EE ′ is a finite

separable extension of E and of E ′. Then, using the second assertion of Lemma 1.3.19, we
can write

E = Ē ∩ EE ′ = Ē ′ ∩ EE ′ = E ′. (1.3.40)

That said, we can suppose that ρ ∈ R1. By Proposition 1.3.9, we conclude that K(V n
ρ )|K

is an abelian extension of Galois group isomorphic to UK/UK,n. Moreover, it is a totally
ramified extension by Remark 1.3.12. This implies that K(V n

ρ ) ∩Kur = K, so that

Gal(Kur(V
n
ρ )|K) ≃ Gal(Kur|K)×Gal(K(V n

ρ )|K)

≃ Gal(Kur|K)× UK/UK,n.

As mentioned in the beginning of this section, the compositum of the union of the abelian
towers K(V n

ρ ) with Kur is equal to Kab, the maximal abelian extension of K in Ω. The proof
of this assertion employs the theory of Lubin-Tate formal groups. In fact, since we proved in
Theorem 1.3.20 that Kur(Vρ) = KurK(Vρ) is independent of the choice of ρ in R∞, we will
choose a particular formal Drinfeld module, constructed by the means of Lubin-Tate formal
groups. Let f(X) = πX +Xq be be the basic Lubin-Tate polynomial. Then by Lubin-Tate
theory (see for instance [18, Chapter IV] or [23, Chapter 8]), for each a ∈ OK , there exists a
unique power series [a]f =

∑
i≥0 aiτ

i ∈ OK{{τ}} such that

[a]f (X) ≡ aX mod deg 2 and f ◦ [a]f = [a]f ◦ f. (1.3.41)

It is easy to see that [π]f = f . Just as we defined the torsion modules for the action of a
formal Drinfeld module in (1.3.1), we can define the torsion modules for the action of f

a ·f x = [a]f (x) for a ∈ OK and x ∈ pΩ̄. (1.3.42)

If we denote Tf the torsion submodule of pΩ̄, then we know that Kur(Tf ) = Kab (see [18,
§6.2]). Now we define the formal Drinfeld module ρf : OK → OK{{τ}} by ρfa =

∑
i≥0 aiτ

i

for every a ∈ OK . Clearly, ρf is an element of R1 and Tf = Vρ. This concludes the proof.
We sum up this discussion by the following theorem (see [28, Theorem 3.5]).

Theorem 1.3.21. For any ρ ∈ R∞, we have

Kur(Vρ) = Kab. (1.3.43)

1.4 The norm operator of Coleman and the Coleman power
series

In his paper [9], Coleman introduced his norm operator to prove a theorem on the in-
terpolation of torsion points of Lubin-Tate formal groups. His work is a generalization of a
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previous work of Coates and Wiles [8], who proved similar results for units in the case of
formal groups of height one attached to elliptic curves with complex multiplication. Yet,
Coleman’s approach was different, as the approach of Coates and Wiles only applies to
Lubin-Tate formal groups defined over Zp. In the case of formal Drinfeld modules, Hassan
Oukhaba [28, §5] proved an analogue of Coleman’s theorem [9, Theorem A]. Before we state
these results, we need some preparations. Let H, Ω, π and ρ be as above.

Lemma 1.4.1. Let f ∈ OH [[X]] such that f(X + w) = f(X) for all w ∈ V 1
ρ . Then there

exists a unique power series g ∈ OH [[X]] such that g ◦ ρπ = f .

Proof. This is [9, Lemma 3]. We will prove by induction on n that there exists elements
ai ∈ OH for 0 ≤ i ≤ n− 1 such that

ρnπfn = f −
n−1∑
i=0

aiρ
i
π, (1.4.1)

where ρiπ = ρπ × · · · × ρπ i times and fn ∈ OH [[X]] . This is obvious for n = 0. Suppose
that (1.4.1) is true for n. Then, since f(X + w) = f(X) and ρnπ(X + w) = ρnπ(X), we have
fn(X + w) = fn(X) for all w ∈ V 1

ρ . An adapted version of the Weierstrass preparation
theorem to power series in OH [[X]] (see for instance [23, Theorem 2.1]) shows that fn−fn(0)
is divisible by ρπ. Hence, there exists fn+1 ∈ OH [[X]] such that fn − fn(0) = ρπfn+1.
Therefore, (1.4.1) is satisfied for n + 1 if we put an = fn(0). Since ρπ belongs to the ideal
(X, π) of OH [[X]], (1.4.1) implies that

f −
∑
i≥0

aiρ
i
π ∈

⋂
n≥0

(X, π)nOH [[X]] = {0}. (1.4.2)

If we put g(X) =
∑

i≥0 aiX
i, we get f = g ◦ ρπ.

Let H((X)) be the field of Laurent power series with coefficients in H, and let H((X))1
denote the subset of H((X)) consisting of all power series in H((X)) convergent on B′ =
pΩ̄ \ {0}. We endow H((X))1 with the compact-open topology with respect to B′. We recall
that the sets

SH(C,U) = {f ∈ H((X)); f(C) ⊂ U}, (1.4.3)

where C ⊂ B′ is a compact and U ⊂ Ω̄ is open, form a sub-basis of this topology. One can
observe that, on any compact of B′, the compact-open topology is the same as the topology
of uniform convergence.

Theorem 1.4.2. There exists a unique continuous map Nρ,π : OH((X)) → OH((X)) satis-
fying

Nρ,π(f) ◦ ρπ(X) =
∏
w∈V 1

ρ

f(X + w) (1.4.4)

for all f ∈ OH((X)).
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Proof. This is [9, Theorem 11]. First, we consider power series f ∈ OH [[X]]. We denote
L(f)(X) =

∏
w∈V 1

ρ
f(X + w). Obviously, we have L(f)(X + w) = L(f)(X) for all w ∈ V 1

ρ .
Hence, by Lemma 1.4.1, there exists a unique g ∈ OH [[X]] such that g ◦ ρπ = L(f). We
set Nρ,π(f) = g. Now take f ∈ OH((X)), then there exists a sufficiently large integer N
such that ρNπ f ∈ OH [[X]]. We set Nρ,π(f)(X) = X−qNNρ,π(ρNπ f). This satisfies the required
conditions. Indeed, we have

X−qNNρ,π(ρNπ f) ◦ ρπ(X) = ρ−qNπ (X)
∏
w∈V 1

ρ

ρNπ (X + w)f(X + w)

= ρ−qNπ (X)
∏
w∈V 1

ρ

ρNπ (X)f(X + w)

=
∏
w∈V 1

ρ

f(X + w).

Finally, the continuity of Nρ,π follows from that of L.

Proposition 1.4.3. The operator Nρ,π satisfies the following properties

(i) The operator N is multiplicative.

(ii) For n ≥ 0 and f ∈ OH((X)), we have

N n
ρ,π(f) ◦ ρπn(X) =

∏
w∈V n

ρ

f(X + w). (1.4.5)

(iii) Let n ≥ 0 and let vn be a generator of V n
ρ as OK-module. Let vn+1 be such that

ρπ(vn+1) = vn. Then,
Nρ,π(f)(vn) = NHn+1

ρ |Hn
ρ
(f(vn+1)). (1.4.6)

Proof. Part (i) follows immediately from the uniqueness. For (ii), we follow [18, Lemma
5.9(i)], proving it by induction. The equality is obviously true for n = 1 by Theorem 1.4.2.
Suppose it holds for n− 1, this means that

N n−1
ρ,π (f) ◦ ρπn−1(X) =

∏
w∈V n−1

ρ

f(X + w) (1.4.7)

Let A be the set of representatives of the quotient group V n
ρ /V

1
ρ . Then,∏

w∈V n
ρ

f(X + w) =
∏
a∈A

∏
w∈V 1

ρ

f(X + a+ w) =
∏
a∈A

Nρ,π(f) ◦ ρπ(X + a). (1.4.8)

However, we know by Proposition 1.3.7 that V n−1
ρ = π ·ρ V n

ρ = π ·ρA. Hence, (1.4.8) becomes∏
w∈V n

ρ

f(X + w) =
∏

v∈V n−1
ρ

Nρ,π(f) (ρπ(X) + v) . (1.4.9)
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By the hypothesis (1.4.7), applied to Nρ,π(f), we get∏
w∈V n

ρ

f(X + w) = N n−1
ρ,π (Nρ,π(f)) ◦ ρπn−1(ρπ(X))

= N n
ρ,π(f) ◦ ρπn(X).

This completes the proof of (ii). As for (iii), which is [9, Corollary 12 (ii)], we note first that
such a vn+1 exists and is a generator of the OK-module V n+1

ρ . We have

Nρ,π(f)(vn) = Nρ,π(f) ◦ ρπ(vn+1) =
∏
w∈V 1

ρ

f(vn+1 + w). (1.4.10)

Yet, by Lemma 1.3.13, the conjugates of vn+1 over Hn
ρ are the elements of the form vn+1 +w

with w ∈ V 1
ρ . The property follows.

Let m0 be a positive integer dividing [H : K] and let η ∈ OK be an element of valuation
µ(η) = m0. Let u be the unit of K such that uη = πm0 . We define the twisted operator Ñ
by

Ñ (f)(X) = Nm0
ρ,π (f) ◦ ρu(X) (1.4.11)

for all f ∈ OH((X)). Then Ñ satisfies

Ñ (f) ◦ ρη(X) =
∏

w∈Vm0
ρ

f(X + w). (1.4.12)

Exactly as in Proposition 1.4.3, Ñ is multiplicative and satisfies

Ñ n(f) ◦ ρηn(X) =
∏

w∈V nm0
ρ

f(X + w) (1.4.13)

for all n ≥ 0. Moreover, if vn and vn+1 are generators of V nm0
ρ and V (n+1)m0

ρ respectively such
that ρη(vn+1) = vn, then

Ñ (f)(vn) = N
H

(n+1)m0
ρ |Hnm0

ρ
(f(vn+1)). (1.4.14)

For the rest of this section, we suppose ρ is such that

ρη ≡ τm0 mod pH . (1.4.15)

Lemma 1.4.4. Let f and g be two power series in OH [[X]] such that f = g ◦ ρη, Then, for
all i ≥ 0, we have

g ≡ 0 mod pim0
H ⇐⇒f ≡ 0 mod pim0

H (1.4.16)
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Proof. We follow [18, Lemma 5.7]. The direct implication is clear. Let us prove the second
implication by induction. For i = 0, (1.4.16) is clearly true. Suppose that it is true for
i− 1 and that f ≡ 0 mod pim0

H . Hence, we also have f ≡ 0 mod p
(i−1)m0

H . This means that
f = ηi−1f1 for some f1 ∈ OH [[X]]. Moreover, by the assumption for i − 1, we have g ≡ 0

mod p
(i−1)m0

H and thus g = ηi−1g1 for some g1 ∈ OH [[X]]. Therefore, we have f1 = g1 ◦ ρη.
Since f ≡ 0 mod pim0

H , then f1 ≡ 0 mod pm0
H . Since ρη ≡ τm0 mod pH , we get

g1(X
qm0 ) ≡ g1 ◦ ρη(X) ≡ f1(X) ≡ 0 mod pm0

H . (1.4.17)

Thus, g1 ≡ 0 mod pm0
H so that g = g1η

i−1 ∈ pim0
H OH [[X]].

Proposition 1.4.5. Let f ∈ OH [[X]]. The operator Ñ fulfills the following.

(i) If we denote by φ̃ = φm0 , where φ is the Frobenius element in Gal(Kur|K), then

Ñ (f) ≡ f φ̃ mod pH . (1.4.18)

(ii) Let i ≥ 1. We have

f ≡ 1 mod pim0
H ⇒ Ñ (f) ≡ 1 mod p

(i+1)m0

H . (1.4.19)

Proof. We follow [18, Lemma 5.8]. For w ∈ V m0
ρ ⊂ pHm0

ρ
, we have X + w ≡ X mod pHm0

ρ
.

Hence, ∏
w∈Vm0

ρ

f(X + w) ≡ f(X)q
m0 ≡ f φ̃(Xqm0 ) mod pHm0

ρ
. (1.4.20)

Moreover, the condition (1.4.15) implies that

Ñ (f) ◦ ρη(X) ≡ Ñ (f)(Xqm0 ) mod pH . (1.4.21)

The property (i) follows. Let us now prove (ii). Suppose f ≡ 1 mod pim0
H and let f1 ∈

OH [[X]] be such that f = 1 + ηif1. Then

Ñ (f) ◦ ρη(X) =
∏

w∈Vm0
ρ

(
1 + ηif1(X + w)

)
≡

(
1 + ηif1(X)

)qm0

mod ηipHm0
ρ

(1.4.22)

because w ∈ V m0
ρ ⊂ pHm0

ρ
. This implies that

Ñ (f) ◦ ρη(X) ≡ 1 mod ηipH . (1.4.23)

Let f2 ∈ OH [[X]] be such that Ñ (f) = 1 + f2. Hence, f2 ◦ ρη ≡ 0 mod ηipH and thus
f2 ◦ ρη ≡ 0 mod p

(i+1)m0

H . Finally, Lemma 1.4.4 shows that f2 ≡ 0 mod p
(i+1)m0

H .
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Lemma 1.4.6. Let OH((X))∗ denote the group of invertible elements in OH [[X]]. Let f be
an element in OH((X))∗. Let i ≥ 1, then

Ñ i(f)

Ñ i−1(f φ̃)
≡ 1 mod piH . (1.4.24)

Proof. Let us first prove the Lemma for i = 1. If f ∈ OH [[X]], we know by Proposition 1.4.5
(i) that Ñ (f) ≡ f φ̃ mod pH . Hence, if f ∈ OH [[X]] ∩ OH((X))∗, it follows that

Ñ (f)

f φ̃
≡ 1 mod f φ̃

−1

πOH [[X]]. (1.4.25)

Yet, it is obvious from (1.4.12) that Ñ (f) and f have the same order with respect to X.
Therefore, for f ∈ OH [[X]] ∩ OH((X))∗, we can write

Ñ (f)

f φ̃
≡ 1 mod pH . (1.4.26)

Now, for any f ∈ OH((X))∗, we know that either f or f−1 is in OH [[X]]. This means that
(1.4.26) is true either for f or for f−1. It follows that it is true for all f ∈ OH((X))∗. Finally,
to prove the Lemma for any i ≥ 1, we apply Proposition 1.4.5 for (1.4.26) iteratively.

Consequently, for f ∈ OH((X))∗ we can define the limit

Ñ∞(f) := lim
i→∞
Ñ i(f φ̃

−i

) ∈ OH((X))∗. (1.4.27)

Then Ñ∞ satisfies

Ñ (Ñ∞(f)) = Ñ∞(f φ̃) and
Ñ∞(f)

f φ̃
≡ 1 mod pH . (1.4.28)

1.4.1 The case ρ ∈ Rm0

In this paragraph, we suppose that ρ has its coefficients in the subfield Km0
ur of H so that

ρη ≡ τm0 mod pKm0
ur
. (1.4.29)

For n ≥ 0, denote En
ρ = Hnm0

ρ and let (vn)n be a sequence such that vn = ρη(vn+1). Then,
for each n ≥ 0, vn is a generator of the OK-module V nm0

ρ and a prime element of En
ρ .

Theorem 1.4.7. Let X∞ be the projective limit lim←−n(E
n
ρ )

× with respect to the norm maps
and let M∞ be the set of all invertible power series f in OH((X))∗ satisfying Ñ (f) = f φ̃.
Then the map

evÑ :M∞ → X∞

f 7→
(
f φ̃

−n

(vn)
)
n

is a topological isomorphism.
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Proof. Let us give a sketch of the proof. For the full proof, see [28, Theorem 5.8]. Let
f ∈M∞. It is easy to see that f φ̃−1 ∈M∞ and consequently,

Ñ
(
f φ̃

−(n+1)
)
= f φ̃

−n

(1.4.30)

for all n > 0. Therefore, by (1.4.14), we deduce that
(
f φ̃

−n
(vn)

)
n

is indeed in X∞. This
shows that the map evÑ is well defined. That evÑ is injective follows from [9, Lemma 2a].
To prove that evÑ is surjective, we first consider (xn)n ∈ lim←−OEn

ρ
. For an integer k, let

g ∈ OH [[X]] such that gφ̃−2k
(v2k) = x2k and let fk = Ñ k(gφ̃

−k
). We then prove that (fk)k is a

Cauchy, hence, a convergent sequence. Its limit f satisfies the seeked properties. Now for any
(xn)n ∈ lim←−n(E

n
ρ )

×, there exists an integer e such that xn ∈ venOEn
ρ

because the extensions
En
ρ |H are totally ramified. Then, the power series f(N∞)e satisfies the seeked properties.

One may see this theorem as a generalization to m0 > 1 of [9, Theorem A]. It is also a
generalization of [6, Theorem 11]. The proof of Hassan Oukhaba [28] is inspired by that of
Bars and Longhi [6]. One may also check the proof of [33, Theorem 13.38].
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Chapter 2

Explicit reciprocity laws in a particular
case

In this chapter, we prove explicit reciprocity laws for a special class of formal Drinfeld
modules having stable reduction of height one (see Theorem 2.3.12). After recalling the
reciprocity map, we inspect the Kummer pairing in the setting of formal Drinfeld modules
defined over local fields of positive characteristic. The method we use is inspired by Wiles
[34].

Let K be a local field of positive characteristic p. Let OK be its valuation ring and pK be
its maximal ideal. We denote by q the order of its residue field OK/pK .

2.1 The reciprocity map
Let L be a local field of positive characteristic p. There exists a continuous homomorphism

ΦL : L× → Gal(Lab|L) called the reciprocity map. We will state without proving the main
properties of ΦL. The interested reader may check [18, §6.1] or [27, Chapter V, §1].

Proposition 2.1.1. The map ΦL satisfies the following

(i) ΦL is injective.

(ii) The image of ΦL is dense in Gal(Lab|L).

(iii) Let a ∈ L× of valuation µL(a) = k, where µL is the normalized valuation of L. The re-
striction of ΦL(a) to Lnr is equal to φkL, where φL is the Frobenius element in Gal(Lnr|L).

(iv) Let M be a finite abelian extension of L, then we have the following exact sequence

1→ NM |L(M
×)→ L× ΦL−→ Gal(M |L)→ 1. (2.1.1)
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(v) Let M be a finite separable extension of L. Then the diagram

M× Gal(Mab|M)

L× Gal(Lab|L)

ΦM

NM|L

ΦL

is commutative, the right hand map being the restriction.

The next proposition relates the norm residue map and the transfer map, which we recall
the definition. Let M |L be a finite separable extension. Let G be the Galois group of Mab|L
and H be the Galois group of Mab|M . Let G′ be the commutator subgroup of G. Let
{σ1, · · · , σd} be the embeddings of M in Ω over L. Then {σ̃1, · · · , σ̃d}, where ˜sigmai is an
extension of σi to Mab, is a complete set of representatives of G/H. Then, we can write

G = ⊔iHσ̃i. (2.1.2)

Therefore, for every automorphism γ ∈ G, and every i ∈ {1, · · · , d}, there exists a unique
automorphism hi(γ) of H and a unique j ∈ {1, · · · , d} such that

σ̃iγ = hi(γ)σ̃j. (2.1.3)

Hence, we define the transfer map by

tM |L : G/G′ → H

γ 7→
d∏
i=1

hi(γ).

Proposition 2.1.2. Let M be a finite extension of L. The following diagram

L× Gal(Lab|L)

M× Gal(Mab|M)

ΦL

tM|L

ΦM

is commutative, the left hand arrow being the inclusion map.

2.2 The Kummer pairing and its main properties
Let Ω be an algebraic closure of K, and still denote µ the unique extension of µ to Ω.

Let (Ω̄, µ̄) be the completion of (Ω, µ). If F ⊂ Ω is an extension of K, we denote OF the
valuation ring of F and pF its maximal ideal. Let H ⊂ Ω be a finite unramified extension of
K, and let ρ ∈ D̂OK

(OH) having stable reduction of height 1. Let m0 be a positive integer
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dividing [H : K] and let η ∈ K be an element of valuation µ(η) = m0. Let n ≥ 0 be an
integer and define

W n
ρ = V nm0

ρ = {x ∈ pΩ; ρηn(x) = 0} and Wρ = Vρ. (2.2.1)

Let vn be a fixed generator of W n
ρ and denote En

ρ = Hnm0
ρ = H(W n

ρ ). Let L be a finite
extension of En

ρ and π be a prime of K.

Lemma 2.2.1. Let α ∈ pL. There exists an element ξ in pΩ such that ρηn(ξ) = α. Moreover,
the extension L(ξ)|L is abelian, of degree ≤ qnm0 , and independent of the choice of ξ satisfying
ρηn(ξ) = α.

Proof. By Lemma 1.3.4, we can write ρπnm0 as

ρπnm0 = U1Unm0Qnm0Qnm0−1 · · ·Q1, (2.2.2)

where Ui are invertible elements of OH{{τ}} and Qi = τ + πi, each πi being a prime of H.
We denote Vn = ρunU1Unm0 , where u is the unit such that η = uπm0 . Since Vn is invertible
in OH{{τ}}, we have

ρηn(X) = α ⇐⇒ Vn(Pnm0(X)) = α

⇐⇒ Pnm0(X) = V −1
n (α)

⇐⇒ Pnm0(X)− V −1
n (α) = 0,

where Pnm0 is the polynomial defined in (1.3.4). However, V −1
n (α) ∈ pL, hence, Pnm0(X) −

V −1
n (α) is a polynomial with coefficients in L. Therefore there exists an element ξ in Ω such

that Pnm0(ξ) − V −1
n (α) = 0. Furthermore, since 0 ≡ Pnm0(ξ) ≡ ξq

nm0 mod pΩ, we have
ξ ∈ pΩ. Moreover, the polynomial Pnm0(X)− V −1

n (α) is of degree qnm0 , and all the elements
of the set ξ +W n

ρ , which we recall is a set of qnm0 elements, are roots of this polynomial.
This is true since W n

ρ is the set of roots of Pnm0(X). Hence, it is separable and L(ξ)|L is a
Galois extension of degree ≤ qnm0 depending only on α. Finally, to prove that it is an abelian
extension, it suffices to notice that the group homomorphism Gal(L(ξ)|L) −→ W n

ρ defined
by σ 7→ σ(ξ)− ξ is injective.

This lemma shows that we can define the map ( , )ρ,L,n : pL × L× −→ W n
ρ such that

(α, β)ρ,L,n = ΦL(β)(ξ)− ξ (2.2.3)

for α ∈ pL and β ∈ L×, where ξ ∈ pΩ is such that ρηn(ξ) = α. This definition is independent
of the choice of ξ. Indeed, the proof of Lemma 2.2.1 shows that all the roots of ρηn(X) = α
are of the form ξ + w, where w ∈ W n

ρ . Hence,

ΦL(β)(ξ + w)− (ξ + w) = ΦL(β)(ξ) + ΦL(β)(w)− ξ − w = ΦL(β)(ξ)− ξ, (2.2.4)

because w ∈ W n
ρ ⊂ L and ΦL(β) fixes L. We omit ρ in the index when there is no risk of

confusion. Exactly as in [34, 21] we have
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Proposition 2.2.2. The map ( , )L,n satisfies the following properties

(i) The map ( , )L,n is bilinear and OK-linear in the first coordinate for the action (1.3.1).

(ii) We have
(α, β)L,n = 0⇐⇒β is a norm from L(ξ), where ρηn(ξ) = α.

(iii) Let M be a finite separable extension of L, let α ∈ pL and β ∈M×. Then (α, β)M,n =
(α,NM |L(β))L,n.

(iv) Let M be a finite separable extension of L of degree d, let α ∈ pM and β ∈ L×. Then
(α, β)M,n = (TM |L(α), β)L,n.

(v) Suppose L ⊃ Em
ρ for m ≥ n. Then

(α, β)L,n = ρηm−n((α, β)L,m) = (ρηm−n(α), β)L,m.

(vi) Let ρ′ be a formal Drinfeld OK-module isomorphic to ρ, i.e there exists a power series
t invertible in OH{{τ}} such that ρ′a = t−1 ◦ ρa ◦ t for all a ∈ OK . Then we have
(α, β)ρ′,L,n = t−1((t(α), β)ρ,L,n).

Proof. (i) Let α1, α2 ∈ pL and a ∈ OK . Let ξ1 and ξ2 be elements of pΩ such that
ρηn(ξ1) = α1 and ρηn(ξ2) = α2. Then ρηn(ξ1+a·ρξ2) = α1+a·ρα2 and the linearity on the
first coordinate follows. Let β1, β2 ∈ L×. Since ΦL(β1β2) = ΦL(β1)ΦL(β2), the linearity
on the second coordinate follows from the fact that the map Gal(L(ξ)|L) −→ W n

ρ

defined by σ 7→ σ(ξ)− ξ is a group homomorphism.

(ii) This equivalence follows from Proposition 2.1.1 (iv).

(iii) This equality follows from Proposition 2.1.1 (v).

(iv) Let ξ be such that ρηn(ξ) = α. Let G be the Galois group of Mab|L and H be the Galois
group of Mab|M . Let {σ1, .., σd} be the embeddings of M in Ω over L. We consider the
quotient group G/H. Then {σ̃1, .., σ̃d}, where σ̃i is an extension of σi to Mab, is a set
of representatives for the left cosets Hσ̃

G = ⊔iHσ̃i.

We extend ΦL(β) to Mab and denote it by Φ̃L(β) ∈ G. Therefore, for each i, there
exists a unique hi ∈ H, and a unique j such that

σ̃iΦ̃L(β) = hiσ̃j. (2.2.5)

By the properties of the transfer map tM |L (see Proposition 2.1.2), we have
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(α, β)M,n = ΦM(β)(ξ)− ξ
= tM |L(ΦL(β))(ξ)− ξ

=
∏
i

hi(ξ)− ξ

=
∑
i

(hi(ξ)− ξ) (2.2.6)

The last equality follows from the fact that hi(ξ) − ξ ∈ W n
ρ ⊂ L. Using the notation

(α, hi)M,n = hi(ξ)− ξ, we can write∑
i

(α, hi)M,n = Φ̃L(β)(
∑
j

(σ̃−1
j (ξ)))−

∑
j

(σ̃−1
j (ξ)). (2.2.7)

Indeed, by (2.2.5) we get

Φ̃L(β)σ̃
−1
j (ξ) = σ̃−1

i hi(ξ)

= σ̃−1
i ((α, hi)M,n + ξ)

= (α, hi)M,n + σ̃−1
i (ξ)

because (α, hi)M,n ∈ W n
ρ ⊂ L. Thus, by (2.2.6) and (2.2.7), we have (α, β)M,n =

(
∑

i σi(α), β)L,n.

(v) If ξ is such that ρηn(ξ) = α, then it also satisfies ρηm(ξ) = ρηm−n(α). Hence the property
follows.

(vi) Let ξ ∈ pΩ be such that ρ′ηn(ξ) = α, hence we have ρηn(t(ξ)) = t(α) and

(t(α), β)ρ,L,n = ΦL(β)(t(ξ))− t(ξ)
= t(ΦL(β)(ξ)− t(ξ))
= t(ΦL(β)(t(ξ))− ξ)
= t((α, β)ρ′,L,n).

Lemma 2.2.3. There exists a constant cL,n, dependant only on L and n, such that for
α ∈ pL, if we set αm = ρηm−n(α) for m ≥ n, we get µ(αm) ≥ mm0 − cL,n. Furthermore, the

map ( , )L,n is continuous, and (α, ·)L,n = 0 for all α ∈ pL such that µ(α) > nm0 +
1

q − 1
.

Proof. We follow [6, Lemma 15]. Let α ∈ pL and set µj :=
1

qj−1(q − 1)
for j ≥ 1 and

µ0 :=∞. Choose ξ a root of ρηn(X) = α of maximal valuation. This is possible because the
equation ρηn(X) = α has a finite set of solutions: ξ +W n

ρ . We have

α = ρηn(ξ) = Vn(Pnm0(ξ)), (2.2.8)
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where Pnm0(X) = Πw∈Wn
ρ
(X − w) is the polynomial defined in (1.3.4) and Vn is defined in

the proof of Lemma 2.2.1. Therefore, we get

µ(α) = µ(Pnm0(ξ)) =
∑
w∈Wn

ρ

µ(ξ − w) (2.2.9)

because ρun(X) ≡ unX mod deg 2. Let w ∈ W n
ρ . If µ(ξ) ̸= µ(w), then µ(ξ − w) =

min{µ(ξ), µ(w)}. If µ(ξ) = µ(w), then

µ(ξ) = min{µ(ξ), µ(w)} ≤ µ(ξ − w) ≤ µ(ξ), (2.2.10)

the last inequality being a consequence of the maximality hypothesis on µ(ξ). Hence we have
µ(ξ − w) = min{µ(ξ), µ(w)} for all w ∈ W n

ρ and

µ(α) =
∑
w∈Wn

ρ

min{µ(ξ), µ(w)}. (2.2.11)

Let j ≥ 0 be such that µj+1 < µ(ξ) ≤ µj. If 0 ≤ j ≤ nm0, the equality (2.2.11) yields

µ(α) =
∑
w∈V j

ρ

µ(ξ) +
∑

w∈Wn
ρ \V j

ρ

µ(w) = qjµ(ξ) + nm0 − j (2.2.12)

so that nm0 − j + 1
q−1

< µ(α) ≤ nm0 − j + 1 + 1
q−1

. Now if j > nm0, by (2.2.11) we get
µ(α) = qnm0µ(ξ) so that

nm0 − j +
1

q − 1
≤ 0 <

1

qj−nm0(q − 1)
< µ(α) ≤ 1

qj−nm0−1(q − 1)
. (2.2.13)

Since ξ is also a root of ρηm(X) = αm for all m ≥ n, we deduce by the same arguments
that µ(αm) ≥ mm0 − j + 1

q−1
. Considering the degree of the extension L(ξ)|K, we see that

j ≤ 2nm0 + logq(e), where e is the ramification index of L|En
ρ . Hence, we get

µ(αm) ≥ mm0 − 2nm0 − logq(e) +
1

q − 1
. (2.2.14)

Finally, if we suppose µ(α) > nm0 +
1

q − 1
, we get j = 0, which implies that µ((α, β)L,n) ≥

µ(ξ) > 1
q−1

for all β ∈ L×. It follows that (α, β)L,n = 0 for all β ∈ L×, because (α, β)L,n
belongs to W n

ρ , and the elements of W n
ρ \ {0} are of valuation less or equal to 1

q−1
. The

fact that the map ( , )L,n is continuous follows immediately since the reciprocity map ΦL is
continuous.

Remark 2.2.4. Let e be the ramification index of L|En
ρ , then the constant cL,n from Lemma

2.2.3 is bounded as follows

−1
q − 1

≤ cL,n ≤ 2nm0 + logq(e)−
1

q − 1
. (2.2.15)
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Proposition 2.2.5. There exists a unique power series r = rn ∈ OH{{τ}} such that∏
ω∈Wn

ρ

(X − ω) = r ◦ ρηn(X). (2.2.16)

Furthermore, the power series r is invertible in OH{{τ}} and satisfies

(x, r(x))L,n = 0, ∀x ∈ pL \ {0}. (2.2.17)

Proof. As in the proof of Lemma 2.2.1, we can write

ρηn(X) = ρun ◦ U1 ◦ Unm0 ◦ Pnm0(X). (2.2.18)

Thus for r = (ρun ◦U1◦Unm0)
−1 we get Pnm0(X) =

∏
ω∈Wn

ρ
(X−ω) = r◦ρηn(X). It remains to

show that (x, r(x))L,n = 0 for all x ∈ pL \ {0}. Take x ∈ pL \ {0} and ξ such that ρηn(ξ) = x.
Then,

r(x) = (r ◦ ρηn)(ξ) =
∏
ω∈Wn

ρ

(ξ − ω) =
∏
i

NL(ξ)|L(ξi) (2.2.19)

where ξi are the pairwise distinct roots of ρηn(X) = x. It follows that (x, r(x))L,n = 0 by
Proposition 2.2.2 (ii).

Lemma 2.2.6. Let r = rn be the power series defined in Proposition 2.2.5. Let ρ′ be defined
by

ρ′a = r ◦ ρa ◦ r−1 (2.2.20)

for all a ∈ OK . Then ρ′ is a formal Drinfeld module having a stable reduction of height 1,
and we have (x, x)ρ′,L,n = 0 for all x ∈ pL \ {0}.

Proof. That ρ′ is a formal Drinfeld module having a stable reduction of height 1 follows
immediately from the fact that ρ itself is supposed to be a formal Drinfeld module having
a stable reduction of height 1. It follows from Proposition 2.2.2 (vi) that (x, x)ρ′,L,n =
r((r−1(x), x)ρ,L,n) = r(0) = 0.

Lemma 2.2.7. If ρ is such that (x, x)ρ,L,n = 0 for all x ∈ pL \ {0}, then we have

(c, 1− b)L,n = (
bc

1− b
, b−1)L,n (2.2.21)

for all b ∈ pL \ {0} and c ∈ pL.

Proof. We follow [6, Lemma 18]. To prove this result we use the property (x, x)L,n = 0 for
x = c(1− b). By bilinearity we get

(c, 1− b)L,n = (cb, c)L,n + (cb, 1− b)L,n (2.2.22)

and by induction
(c, 1− b)L,n =

∑
j≥0

(cbj, cbj−1)L,n. (2.2.23)
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This sum converges since only a finite number of terms is non zero by Lemma 2.2.3. However
we have 0 = (cbj, cbj)L,n = (cbj, cbj−1)L,n + (cbj, b)L,n. Therefore,

(c, 1− b)L,n =
∑
j≥0

(cbj, b−1)L,n = (c
∑
j≥0

bj, b−1)L,n = (
cb

1− b
, b−1)L,n. (2.2.24)

2.2.1 The analytic pairing

In this paragraph, we suppose that L = En
ρ . We will define and state the main properties

of a pairing [ , ]L,n, which we will prove equal to the Kummer pairing ( , )L,n in the next
section.

Lemma 2.2.8. Let Dn denote the different of the extension L|K. For β ∈ L×, choose a
power series f ∈ OH((X)) \ {0} such that f(vn) = β. Then,

f ′(vn)

β
∈ p−1

L . (2.2.25)

Moreover, if we set

δvn(β) :=
f ′(vn)

β
mod Dn, (2.2.26)

then δvn : L× → p−1
L /Dn is a well defined map and is a group homomorphism.

Proof. First, let us prove (2.2.25). Let β ∈ L× and let f(X) ∈ OH((X)) \ {0} such that
f(vn) = β. Then we can write f(X) = Xbf1(X), where b = µ(β)

µ(vn)
and f1(X) is an invertible

power series in OH [[X]]. Hence,

f ′(vn)

β
=
bvb−1
n f1(vn) + vbnf

′
1(vn)

vbnf1(vn)
=
bf1(vn) + vnf

′
1(vn)

vnf1(vn)
∈ p−1

L .

Let g(X) ∈ OH((X)) \ {0} be another power series such that g(vn) = β. We can also write
g(X) = Xbg1(X), where g1(X) ∈ OH [[X]] is an invertible power series. To prove that δvn is
well defined, we need to prove that

f ′(vn)− g′(vn)
β

∈ Dn. (2.2.27)

We have f ′(vn) − g′(vn) = vbn(f
′
1(vn) − g′1(vn)) because f1(vn) = g1(vn). Furthermore, by

Lemma 2.3.3, the power series f1(X) − g1(X) is divisible in OH [[X]] by the minimal poly-
nomial hnm0(X) of vn, which we recall is defined in (1.3.5). This means that there exists
t ∈ OH [[X]] such that f1(X)−g1(X) = hnm0(X)t(X). Thus, f ′

1(vn)−g′1(vn) = h′nm0
(vn)t(vn).

This implies (2.2.27) because Dn = (h′nm0
(vn)) as stated in the course of the proof of Lemma

1.3.14. Therefore, δvn(β) is independent of the choice of f such that f(vn) = β. The fact
that δvn is a group homomorphism is straightforward.
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Lemma 2.2.9. Let m ≥ n and let vm be such that vn = ρηm−n(vm). Then vm is a generator
of Wm

ρ and for all β ∈ L×, we have

δvm(β) ≡ ηm−nδvn(β) mod Dm. (2.2.28)

Proof. Let β ∈ L× and f ∈ OH((X)) \ {0} such that f(vn) = β. Thus g = f ◦ ρηm−n satisfies
g(vm) = β. The result follows immediately.

Lemma 2.2.10. The map [ , ]ρ,L,n given by

[α, β]ρ,L,n :=
1

ηn
TL|K(λρ(α)δvn(β)) ·ρ vn (2.2.29)

is well defined for all α ∈ pL of valuation µ(α) ≥ 2
q−1

, and all β ∈ L×. We drop ρ in the
index when there is no risk of confusion.

Proof. We need to show that 1
ηn

TL|K(λρ(α)b) ∈ OK for every b ∈ p−1
L and that

µ(
1

ηn
TL|K(λρ(α)d)) ≥ nm0

for all d ∈ Dn. By (1.2.13), we know that µ(λρ(α)) = µ(α) . Thus the result follows from
Lemma 1.3.15.

Proposition 2.2.11. The map [ , ]L,n satisfies the following properties

(i) The map [ , ]L,n is bilinear and OK-linear in the first coordinate for the action (1.3.1).

(ii) Let ρ′ be a formal Drinfeld OK-module isomorphic to ρ, i.e there exists a power series
t invertible in OH{{τ}} such that ρ′a = t−1 ◦ ρa ◦ t for all a ∈ OK . Then we have
[α, β]ρ′,L,n = t−1([t(α), β]ρ,L,n).

Proof. The property (i) is clear, so we will only prove (ii). To do so, let v′n = t−1(vn) be a
generator of the OK-module W n

ρ′ . Then, if f ∈ OH((X)) \ {0} is such that f(vn) = β, we
have f ◦ t(v′n) = f(vn) = β so that

δ′v′n(β) =
t′(v′n)f

′(vn)

β
= t′(0)δvn(β),

where δ′v′n is the map defined in Lemma 2.2.8 corresponding to ρ′. Furthermore, we have

λρ′ ◦ t−1 = (t−1)′(0)λρ. The result follows immediately since (t−1)′(0) =
1

t′(0)
.

Lemma 2.2.12. Let α ∈ pL such that µ(α) ≥ nm0

q
+ 1

q−1
+ 1

qnm0 (q−1)
and let β ∈ L×. We

have
[α, β]L,n =

1

ηn
TL|K(αδvn(β)) ·ρ vn.
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Proof. We need to prove that

1

ηn
TL|K(λρ(α)δvn(β)) ·ρ vn =

1

ηn
TL|K(αδvn(β)) ·ρ vn,

i.e. that
µ(TLK

(λρ(α)− α)δvn(β)) ≥ 2nm0.

We have
µ((λρ(α)− α)δvn(β)) ≥ min

i
{qiµ(α)− i} − 1

qnm0−1(q − 1)
.

The hypothesis on α implies that min{qiµ(α)− i} = qµ(α)−1 so that µ(λρ(α)−α)δvn(β)) ≥
nm0 +

1
q−1

. Finally, we conclude using Lemma 1.3.15.

For each m ≥ n, let vm ∈ Wm
ρ be such that vm = ρη(vm+1). In particular, we have

ρηm−n(vm) = vn. Moreover, for each m ≥ n, vm ∈ V mm0
ρ \ V mm0−1

ρ is a generator of Wm
ρ =

V mm0
ρ as an OK-module.

Lemma 2.2.13. Let m ≥ n. Let β ∈ (En
ρ )

× and βm ∈ (Em
ρ )

× be such that Nm,n(βm) = β,
where Nm,n is the norm of the extension Em

ρ |En
ρ . We have

T̃m,n(δvm(βm)) = ηm−nδvn(β), (2.2.30)

where T̃m,n : Em
ρ /Dm → En

ρ /Dn is the map induced by the trace Tm,n of the extension
Em
ρ |En

ρ .

Proof. It is sufficient to prove the Lemma for m = n + 1. Let f ∈ OH((X)) such that
f(vn+1) = βn+1. Then, the twisted norm operator Ñ defined in (1.4.11) satisfies

Ñ (f)(vn) = Nn+1,n(f(vn+1)) = Nn+1,n(βn+1) = β. (2.2.31)

Logarithmically differentiating (1.4.12) with respect to X, we get

(Ñ (f) ◦ ρη(X))′

Ñ (f) ◦ ρη(X)
=

∑
w∈W 1

ρ

(f(X + w))′

f(X + w)
=

∑
w∈W 1

ρ

f ′(X + w)

f(X + w)
. (2.2.32)

However, we have
(Ñ (f) ◦ ρη(X))′

Ñ (f) ◦ ρη(X)
= η

(Ñ (f))′

Ñ (f)
◦ ρη(X). (2.2.33)

Evaluating (2.2.32) and (2.2.33) at vn+1, we get

∑
w∈W 1

ρ

f ′(vn+1 + w)

f(vn+1 + w)
= ηδvn(β). (2.2.34)
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On the other hand, by Lemma 1.3.13, the set vn+1 +W 1
ρ is the complete set of conjugates of

vn+1 over En
ρ , so that

ηδvn(β) =
∑
w∈W 1

ρ

f ′(vn+1 + w)

f(vn+1 + w)
= T̃n+1,n(δvn+1(βn+1)). (2.2.35)

Proposition 2.2.14. Let m ≥ n. Let β ∈ L× = (En
ρ )

× and βm ∈ (Em
ρ )

× be such that
Nm,n(βm) = β. Let α ∈ pL of valuation µ(α) ≥ 2

q−1
and set αm = ρηm−n(α). Then,

[αm, βm]Em
ρ ,m = [α, β]L,n. (2.2.36)

Proof. We have

[αm, βm]Em
ρ ,m =

1

ηm
TEm

ρ |K(λρ(αm)δvm(βm)) ·ρ vm

=
1

ηm
TEm

ρ |K(η
m−nλρ(α)δvm(βm)) ·ρ vm (by (1.2.2))

=
1

ηm
TL|K(η

m−nλρ(α) Tm,n(δvm(βm))) ·ρ vm

=
ηm−n

ηn
TL|K(λρ(α)δvn(β)) ·ρ vm.

by Lemma 2.2.13. Finally, this is equal to
1

ηn
TL|K(λρ(α)δvn(β)) ·ρ vn = [α, β]L,n.

2.3 Explicit reciprocity laws
Keeping the same notations as in the last section, we let L = En

ρ and we suppose ρ is such
that

ρη ≡ τm0 mod pH . (2.3.1)

Lemma 2.3.1. Let f(X) ∈ OΩ̄[[X]] be a power series and let α ∈ pΩ̄ satisfying f(α) = 0.
Then f(X) is divisible by (X − α) in OΩ̄[[X]].

Proof. This is [18, Lemma 3.9]. Let f(X) =
∑

i≥0 aiX
i with ai ∈ OΩ̄ and set

bi =
∑
j≥0

ai+j+1α
j. (2.3.2)

Then we can easily see that g(X) =
∑

i≥0 biX
i ∈ OΩ̄[[X]] satisfies f(X) = (X −α)g(X).

Remark 2.3.2. Let F ⊂ Ω̄ be a complete field containing K and suppose f(X) from Lemma
2.3.1 has its coefficients in OF . If in addition α is algebraic over K, then the construction in
the proof shows that g(X) has its coefficients in OF (α).
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Lemma 2.3.3. Let F ⊂ Ω̄ be a complete field containing K and let α1, · · · , αm be elements
in pΩ such that

h(X) =
m∏
i=1

(X − αi) ∈ OF [X]. (2.3.3)

Let f(X) ∈ OF [[X]] be such that f(αi) = 0 for all 1 ≥ i ≥ m. Then f(X) is divisible by
h(X) in OF [[X]].

Proof. Let F ′ = F (α1, · · · , αm), then F ′|F is a Galois extension. Moreover, by Remark 2.3.2,
there exists g(X) ∈ OF ′ [[X]] such that f(X) = h(X)g(X). Let us prove that g(X) ∈ OF [[X]].
Let σ ∈ Gal(F ′|F ). We have

fσ(X) = hσ(X)gσ(X). (2.3.4)

But fσ(X) = f(X) and hσ(X) = h(X). Therefore, f(X) = h(X)g(X) = h(X)gσ(X) so that
gσ(X) = g(X). This completes the proof.

As in the classical case of Lubin-Tate formal groups, we have

Proposition 2.3.4. For every unit u of K, we have

ΦK(u)(ω) = ρu−1(ω) (2.3.5)

for all ω ∈ Wρ.

Proof. Let f(X) = πX + Xq. As explained at the end of Section 1.3, Lubin-Tate theory
shows that, for each a ∈ OK , there exists a unique power series [a]f ∈ OK [[X]] satisfying

[a]f (X) ≡ aX mod deg 2 and f ◦ [a]f = [a]f ◦ f. (2.3.6)

Clearly, we have f(X) = [π]f (X). Let d ∈ N be such that [H : K] = dm0. Then

ρηd(X) ≡ ηdX, [πdm0 ]f (X) ≡ πdm0X mod deg 2, (2.3.7)

and
ρηd(X) ≡ [πdm0 ]f (X) ≡ Xqdm0 mod pH . (2.3.8)

Therefore, Proposition 1.3.17 and Proposition 1.3.16 imply that there exists a unit u0 in K̄ur

such that uϕ
dm0−1

0 =
ηd

πdm0
, and a unique power series θ ∈ OK̄ur

[[X]] such that

θ(X) ≡ u0X mod deg 2 and ρηd ◦ θ = θφ
dm0 ◦ [πdm0 ]f . (2.3.9)

We deduce that for all m ≥ 1, we have

ρηmd ◦ θ = θϕ
dm0 ◦ [πdmm0 ]f (2.3.10)

and therefore we have an isomorphism of Fq-vector spaces

θ : Tf −→ Wρ. (2.3.11)
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Now let u be a unit of K and consider the automorphism ΦK(u) ∈ Gal(Kab|Kur). By the
properties of the residue map (see for instance [18, Chapter 6]), we have

ΦK(u)(ω
′) = [u−1]f (ω

′) ∀ω′ ∈ Tf . (2.3.12)

However, since ΦK(u)|Hρ
∈ Gal(Hρ|H), then by Proposition 1.3.11, there exists a unit v ∈ K

such that
ΦK(u)(ω) = ρv−1(ω), ∀ω ∈ Wρ. (2.3.13)

Let ω′ ∈ Tf and ω = θ(ω′) ∈ Wρ, then ρv−1 ◦ θ(ω′) = ΦK(u)(θ(ω
′)). However, ΦK(u) is an

automorphism of Kab = Kur(Wρ) over Kur. Hence, we can extend it to an automorphism of
K̄ur(Wρ) over K̄ur so that

ΦK(u)(θ(ω
′)) = θ(ΦK(u)(ω

′))

= θ ◦ [u−1]f (ω
′).

Therefore we have ρv−1 ◦ θ(ω′) = θ ◦ [u−1]f (ω
′) for all ω′ ∈ Tf . Let h = ρv−1 ◦ θ − θ ◦ [u−1]f ,

then we have h(Tmf ) = 0 for all m ∈ N, where Tmf is the set of roots of [πm]f . Thus by Lemma
2.3.3, h(X) is divisible by fm(X) =

∏
ω′∈Tm

f
(X − ω′) in OK̄ur

[[X]] for all m. However, since
f(X) is contained in the ideal (π,X) of OK̄ur

[[X]], we have fm(X) ∈ (π,X)m and hence
h(X) ∈ (π,X)m for all m ∈ N. We conclude that h(X) = 0 and thus

ρv−1 ◦ θ = θ ◦ [u−1]f . (2.3.14)

We deduce by identification that u = v. This concludes the proof.

Lemma 2.3.5. Let α ∈ pL. For m ≥ n, we set αm = ρηm−n(α) and bm = αmv
−1
m . Then,

there exists an integer N(ρ, α) ∈ N such that for all m ≥ N(ρ, α), we have

(α,Nm,n(1 + bm))L,n = 0 (2.3.15)

and
Nm(1 + bm)

−1 ≡ 1− Tm(bm) mod p2mm0
K , (2.3.16)

where Tm and Nm denote respectively the trace and the norm of the extension Em
ρ |K and

Nm,n denotes the norm of the extension Em
ρ |En

ρ .

Proof. We first prove (2.3.15). Let m ≥ n. By Lemma 2.2.3, there exists a constant c
depending only on n such that µ(bm) ≥ mm0 − c (see Remark 2.2.4). Thus 1 + bm tends to
1 as m tends to ∞. Moreover,

Nm,n(1 + bm) =
∏

(1 + σ(bm)) = 1 + y, (2.3.17)

where σ varies among the automorphisms in Gal(Em
ρ |En

ρ ) and µ(y) ≥ µ(bm). Thus, Nm,n(1+
bm) also tends to 1 as m tends to ∞. Furthermore,

(α,Nm,n(1 + bm))L,n = ΦL(Nm,n(1 + bm))(ξ)− ξ, (2.3.18)
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where ρηn(ξ) = α. But ΦL is continuous. Hence, for the neighborhood Gal(Lab|L(ξ)) of
ΦL(1), there exists N1 ∈ N such that if m ≥ N1, then ΦL(Nm,n(1 + bm)) ∈ Gal(Lab|L(ξ)).
Thus, for all m ≥ N1, we have (2.3.15). Now let us prove (2.3.16). Let k ≤ m be an integer.
Let x = Tm,m−k(bm), then it is easy to check that Nm,m−k(1 + bm)

−1 = 1 − x + y, where
µ(y) ≥ 2µ(bm). Therefore, we have

Nm(1 + bm)
−1 = Nm−k(1− x+ y) = 1− Tm−k(x− y) + z, (2.3.19)

µ(z) ≥ µ(x−y). If k and m are such that km0 ≥ c+1 and mm0 ≥ km0+2c+
1

(q − 1)
, then,

by Lemma 1.3.15 we get µ(Tm−k(x − y)) ≥ 2mm0 and µ(z) ≥ µ(x − y) ≥ 2mm0 . Thus,

(2.3.16) follows. Finally, we set N(ρ, α) = max{N1, ⌊k +
2c

m0

+
1

m0(q − 1)
⌋+ 1}.

Remark 2.3.6. Let α ∈ pL and let ρ′ be a formal Drinfeld OK-module isomorphic to ρ, i.e
there exists a power series t invertible in OH{{τ}} such that ρ′a = t−1 ◦ ρa ◦ t for all a ∈ OK .
It is easy to prove that Em

ρ = Em
ρ′ for all m ≥ 0. Moreover, by Proposition 2.2.2 (vi) we have

N(ρ, α) = N(ρ′, t−1(α)).

Lemma 2.3.7. Let α ∈ pL and suppose that there exists m ≥ max{N(ρ, α), q
q−1

(2n+ 1
2m0

)}
such that (x, x)Em

ρ ,m = 0 for all x ∈ pEm
ρ
\ {0}, where N(ρ, α) is defined in Lemma 2.3.5.

Then, there exists a prime πn of L such that

(α, πn)L,n = [α, πn]L,n =
1

ηn
TL|K(λρ(α)δvn(πn)) ·ρ vn. (2.3.20)

Proof. We prove the Lemma following the steps of [6, Proposition 23], which were essentially
used by Wiles [34, Lemma 8]. Let α ∈ pL.
Step 1: For m ≥ n, let αm = ρηm−n(α) and bm = αmv

−1
m . If we suppose (x, x)Em

ρ ,m = 0 for
all x ∈ pEm

ρ
\ {0}, we have

0 = (αm + vm, (1 + bm)vm)Em
ρ ,m = (αm, vm)Em

ρ ,m + (αm, 1 + bm)Em
ρ ,m + (vm, 1 + bm)Em

ρ ,m,

because αm + vm = (1 + bm)vm.
Step 2: For m ≥ N(ρ, α), we have (αm, 1 + bm)Em

ρ ,m = (α,Nm,n(1 + bm))L,n = 0 by Lemma
2.3.5.
Step 3: Let m ≥ N(ρ, α) so that (αm, 1 + bm)Em

ρ ,m = 0 and suppose that (x, x)Em
ρ ,m = 0 for

all x ∈ pEm
ρ
\ {0}. Let πn = Nm,n(vm), then πn is a prime of L because Em

ρ |L is a totally
ramified extension. Let v2m be a generator of W 2m

ρ such that ρηm(v2m) = vm. We have

(α, πn)L,n = v2m − ρNm(1+bm)−1(v2m).

Indeed,

(α, πn)L,n = (αm, vm)Em
ρ ,m = −(vm, 1 + bm)Em

ρ ,m (by Step 1 and 2)

= −(ΦEm
ρ
(1 + bm)(v2m)− v2m)

= −(ΦK(Nm(1 + bm))(v2m)− v2m).
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By Proposition 2.3.4 we have ΦK(Nm(1+bm))(v2m) = ρNm(1+bm)−1(v2m) and hence (α, πn)n =
v2m − ρNm(1+bm)−1(v2m).
Step 4: For m ≥ N(ρ, α), we have Nm(1 + bm)

−1 ≡ 1 − Tm(bm) mod p2mm0
K by Lemma

2.3.5.
Step 5: Choose m ≥ max{N(ρ, α), q

q−1
(2n + 1

2m0
)}, then m is sufficiently large to satisfy

Step 2 and Step 4. If in addition we have (x, x)Em
ρ ,m = 0 for all x ∈ pEm

ρ
\ {0}, then

(α, πn)L,n = [α, πn]L,n, where πn = Nm,n(vm) as in Step 3. Indeed, by the previous steps we
get

(α, πn)L,n = Tm(αmv
−1
m ) ·ρ v2m =

1

ηm
Tm(αmv

−1
m ) ·ρ vm. (2.3.21)

We draw the attention of the reader to the fact that m is sufficiently large so that µ(αm) ≥
mm0

q
+ 1

q−1
+ 1

qmm0 (q−1)
. This is a consequence of Lemma 2.2.3 and remark 2.2.4. This implies

that 1
ηm

Tm(αmv
−1
m ) ∈ OK . Moreover, by Lemma 2.2.12 and Lemma 2.2.13, we get

(α, πn)L,n =
1

ηm
Tm(αmv

−1
m ) ·ρ vm

= [αm, vm]Em
ρ ,m (Lemma 2.2.12)

= [α, πn]L,n. (Proposition 2.2.14)

Remark 2.3.8. If ρη(X) is a polynomial (as in [34, 3, 6]), the condition (x, x)ρ,Em
ρ ,m = 0 is

satisfied for all m ≥ 1, and following the same steps as in the proof of Lemma 2.3.7, one can
prove that

(α, vn)L,n =
1

ηn
TL|K(λρ(α)

1

vn
) ·ρ vn (2.3.22)

for all α ∈ pL.

Lemma 2.3.9. Suppose ρ is such that (x, x)L,n = 0 for all x ∈ pL \ {0}. Let α ∈ pL such
that µ(α) ≥ nm0

q
+ 1

q−1
+ 1

qnm0 (q−1)
and β a unit in L×. Then,

(α, β)L,n = [α, β]L,n =
1

ηn
TL|K(λρ(α)δvn(β)) ·ρ vn. (2.3.23)

Proof. We first notice that a unit β ∈ L is of the form ζu1, where ζ is a (q − 1)th root of
unity and u1 is a principle unit in L. It is obvious that both sides of (2.3.23) are zero for
β = ζ. Hence, it is sufficient to prove the Lemma for the principal units β = 1− ζπLj, where
πL is a prime of L, ζ is any (q − 1)th root of unity, and j is any integer greater than 1. This
goes back to the structure of the principal units as a Zp-module and to the continuity of the
pairings. By Lemma 2.2.7, we have

(α, 1− ζπLj)ρ,L,n = (
ζπL

j

1− ζπLj
α, (ζπL

j)−1)ρ,L,n

= −j( ζπL
j

1− ζπLj
α, πL)ρ,L,n.

(2.3.24)

(2.3.25)
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Let m ≥ max{N(ρ,
ζπL

j

1− ζπLj
α), q

q−1
(2n + 1

2m0
)} and let rm ∈ OH{{τ}} be the invertible

power series defined in Proposition 2.2.5. Let ρ′ be the formal Drinfeld module defined by
ρ′a = rm ◦ ρa ◦ r−1

m for all a ∈ OK . Hence, by Proposition 2.2.2 (vi), we have

(
ζπL

j

1− ζπLj
α, πL)ρ,L,n = r−1

m ((rm(
ζπL

j

1− ζπLj
α), πL)ρ′,L,n). (2.3.26)

Moreover, by Remark 2.3.6, we have N(ρ,
ζπL

j

1− ζπLj
α) = N(ρ′, rm(

ζπL
j

1− ζπLj
α)). Hence, since

ρ′ satisfies (x, x)ρ′,Em
ρ ,m = 0, then by Lemma 2.3.7, there exists a prime πn of L such that

(rm(
ζπn

j

1− ζπnj
α), πn)ρ′,L,n = [rm(

ζπn
j

1− ζπnj
α), πn]ρ′,L,n. (2.3.27)

Hence, if we put πL = πn, we get

(α, 1− ζπnj)ρ,L,n = −jr−1
m ([rm(

ζπn
j

1− ζπnj
α), πn]ρ′,L,n). (2.3.28)

By Proposition 2.2.11 (ii), (2.3.28) is equal to

−j[ ζπn
j

1− ζπnj
α, πn]ρ,L,n =

−j
ηn

TL|K(
ζπn

j

1− ζπnj
× α× δvn(πn)) ·ρ vn

=
1

ηn
TL|K(

−jζπnj

1− ζπnj
× α× t′(vn)

πn
) ·ρ vn,

(2.3.29)

(2.3.30)

where (2.3.29) is deduced from Lemma 2.2.12, and t(X) ∈ OH((X)) satisfies t(vn) = πn.
Since 1− ζ(t(vn))j = 1− ζπnj, we have

δvn(1− ζπnj) =
−jζπnj−1t′(vn)

1− ζπnj
, (2.3.31)

and thus, (2.3.30) is equal to
1

ηn
TL|K(αδvn(1−ζπnj))·ρvn which is equal to

1

ηn
TL|K(λρ(α)δvn(1−

ζπn
j)) ·ρ vn by Lemma 2.2.12. Hence,

(α, 1− ζπnj)ρ,L,n = [α, 1− ζπnj]ρ,L,n. (2.3.32)

Proposition 2.3.10. Let α ∈ pL such that µ(α) ≥ nm0

q
+ 1

q−1
+ 1

qnm0 (q−1)
and β a unit in

L×. Then,

(α, β)L,n = [α, β]L,n =
1

ηn
TL|K(λρ(α)δvn(β)) ·ρ vn. (2.3.33)
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Proof. By Proposition 2.2.5, there exists an invertible power series rn ∈ OH{{τ}} such that∏
ω∈Wn

ρ
(X−ω) = rn◦ρηn(X). Let ρ′ be the formal Drinfeld module defined by ρ′a = rn◦ρa◦r−1

n

for all a ∈ OK . Then, by Lemma 2.2.6 we have (x, x)ρ′,En
ρ ,n = 0. Hence, by Lemma 2.3.9

applied for ρ′, we have

(α, β)ρ,L,n = r−1((r(α), β)ρ′,L,n) = r−1([r(α), β]ρ′,L,n) = [α, β]ρ,L,n. (2.3.34)

Proposition 2.3.10 gives a generalization of Theorem 3.11 of Anglès [3], where he proved
this result for formal Drinfeld modules obtained from Carlitz polynomials (See Example
1.1.1).

Proposition 2.3.11. Let α ∈ pL be such that µ(α) ≥ nm0

q
+ 1

q−1
+ 1

qnm0 (q−1)
and let β be a

prime of L. Then

(α, β)L,n = [α, β]L,n =
1

ηn
TL|K(λρ(α)δvn(β)) ·ρ vn. (2.3.35)

Proof. Let m ≥ max{N(ρ, α), q
q−1

(2n+ 1
2m0

)} and let rm ∈ OH{{τ}} be the invertible power
series defined in Proposition 2.2.5. Let ρ′ be the formal Drinfeld module defined by ρ′a =
rm ◦ ρa ◦ r−1

m for all a ∈ OK . Thus by Lemma 2.2.6, we have (x, x)ρ′,Em
ρ ,m = 0. Hence, by

Lemma 2.3.7, there exists a prime πn of L satisfying (rm(α), πn)ρ′,L,n = [rm(α), πn]ρ′,L,n. Then
we can write β = uπn for a unit u ∈ L. Hence,

(α, β)ρ,L,n = (α, uπn)ρ,L,n = (α, u)ρ,L,n + (α, πn)ρ,L,n. (2.3.36)

By Proposition 2.3.10, we have (α, u)ρ,L,n = [α, u]ρ,L,n. On the other hand, by Proposition
2.2.2 (vi), we have

(α, πn)ρ,L,n = r−1
m ((rm(α), πn)ρ′,L,n) = r−1

m ([rm(α), πn]ρ′,L,n), (2.3.37)

the last equality being deduced from Remark 2.3.6 and Lemma 2.3.7. Hence, by Proposition
2.2.11 (ii), we have

(α, β)ρ,L,n = [α, u]ρ,L,n + [α, πn]ρ,L,n = [α, β]ρ,L,n. (2.3.38)

Combining Proposition 2.3.10 and Proposition 2.3.11, we obtain our main results.

Theorem 2.3.12. Let α ∈ pL such that µ(α) ≥ nm0

q
+ 1

q−1
+ 1

qnm0 (q−1)
and β ∈ L×. We have

(α, β)ρ,L,n = [α, β]ρ,L,n =
1

ηn
TEn

ρ |K(λρ(α)δvn(β)) ·ρ vn. (2.3.39)
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Theorem 2.3.13. Let α ∈ pL and β ∈ Nm,n(E
m
ρ ) for m ≥ q

q−1
(2n+ 1

2m0
). We have

(α, β)ρ,L,n = [α, β]ρ,L,n =
1

ηn
TEn

ρ |K(λρ(α)δvn(β)) ·ρ vn. (2.3.40)

Proof. For m ≥ q
q−1

(2n + 1
2m0

), Lemma 2.2.3 and remark 2.2.4 imply that the element
αm = ρηm−n(α) is of valuation µ(αm) ≥ mm0

q
+ 1

q−1
+ 1

qmm0 (q−1)
. Let β′ ∈ Em

ρ be an element
whose norm to En

ρ is β. Therefore,

(α, β)ρ,L,n = (αm, β
′)ρ,Em

ρ ,m = [αm, β
′]ρ,Em

ρ ,m = [α, β]ρ,L,n

Here, the second equality is a consequence of Theorem 2.3.12 and the last equality is deduced
from Lemma 2.2.13.

Theorem 2.3.13 gives an analogue of Theorem 19 of Wiles proved for the case of Lubin-
Tate formal groups, although the condition on m is slightly lighter in his case (m ≥ 2n+ 1).
It also implies Theorem 3.12 of Anglès in the case of formal Drinfeld modules obtained from
Carlitz polynomials for k,m ≥ q

q−1
(2n+ 1

2m0
).

2.4 The limit Kummer pairing
Several works in the literature, such as Iwasawa’s book [18] or Longhi-Bars’ paper [6],

considered the limit form of the Kummer pairing. To define it, consider the projective limit
lim←−(E

n
ρ )

× with respect to the norm maps

Em
ρ → En

ρ

βm 7→ βn = Nm,n(βm)

for m ≥ n, and the direct limit lim−→ pEn
ρ

with respect to the maps

pEn
ρ
→ pEm

ρ

αn 7→ αm = ρηm−n(αn).

For m ≥ n, we have

(αm, βm)ρ,Em
ρ ,m = ΦEm

ρ
(βm)(ξ)− ξ = ΦEn

ρ
(Nm,n(βm))(ξ)− ξ = (αn, βn)ρ,En

ρ ,n, (2.4.1)

where ξ is a root of ρηn(X) = αn, and thus, a root of ρηm(X) = αm. Hence, we can define a
limit form of ( , )ρ,L,n as follows

(α, β)ρ = (αn, βn)ρ,En
ρ ,n (2.4.2)

for all sufficiently large n, where α = (αn)n ∈ lim−→ pEn
ρ

and β = (βn)n ∈ lim←−(E
n
ρ )

×. We deduce
from Theorem 2.3.13 that, if we suppose ρ is such that

ρη ≡ τm0 mod pH , (2.4.3)
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then for all sufficiently large n, we have

(α, β)ρ =
1

ηn
TL|K(λρ(αn)δvn(βn)) ·ρ vn. (2.4.4)

This gives a generalization of Theorem 23 of Longhi-Bars [6] proved for formal Drinfeld
modules obtained from sign-normalized rank 1 Drinfeld modules.

We also note that in the case m0 = [H : K], there exists a limit form of δvn defined for
β = (βn)n ∈ lim←−(E

n
ρ )

× by

δvn(β) =

(
fφ

−n
)′
(vn)

βn
mod Dn, (2.4.5)

where f is the power series assigned to β be the isomorphism of Theorem 1.4.7.
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Chapter 3

Explicit reciprocity laws in the general
case

After proving explicit laws in a special class of formal Drinfeld modules, we now give an
explicit description of the Kummer pairing à la Kolyvagin [21] in a more general setting (see
Theorem 3.2.10). We keep the same notations as in Chapter 2. Let K be a local field of
positive characteristic p and let q the order of its residue field OK/pK . Let Ω be an algebraic
closure of K, and still denote µ the unique extension of µ to Ω. Let H ⊂ Ω be a finite
unramified extension of K, and let ρ ∈ D̂OK

(OH) having stable reduction of height 1. Let
m0 be a positive integer dividing [H : K] and let η ∈ K be an element of valuation µ(η) = m0.

3.1 The Iwasawa map
In this section, we will study the so-called Iwasawa map, first introduced by Iwasawa in [17,

Proposition 14] in the cyclotomic case. This map was generalized by Wiles [34, Proposition
7] in the case of Lubin-Tate formal groups, and by Kolyvagin [21, Proposition 3.2] in the case
of formal groups of finite height. We fix a positive integer n and a finite separable extension
L of En

ρ . We also fix a generator vn of the OK-module W n
ρ .

Since the extension L|K is supposed to be separable, the bilinear map < , >L: L×L −→ K
defined by < x, y >L= TL|K(xy) is non degenerate. This gives us the classical isomorphism
from L to the space of K-linear forms from L to K. The pairing < , >L also induces the
following OK-linear map

L −→ HomOK
(λρ(pL), K/OK)

y 7→
{
λρ(pL) −→ K/OK
x 7−→ < x, y >L mod OK

(3.1.1)

Lemma 3.1.1. The map (3.1.1) is a surjective homomorphism of OK-modules, with kernel

XL := {y ∈ L; < x, y >L∈ OK ∀x ∈ λρ(pL)}. (3.1.2)
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Proof. It is clear that XL is the kernel of the map (3.1.1). Let us prove that the map is
surjective. To do so, let γ : λρ(pL)→ K/OK be an OK-linear map. The OK-module K/OK
is divisible, hence it is an injective module by [24, Lemma 4.2]. Therefore there exists a
homomorphism of OK-modules γ̃ such that the following diagram

L

λρ(pL) K/OK

γ̃

γ

is commutative, the left hand map being the inclusion map. Let {e1, . . . , ed} be a basis of
L as a K-vector space. Since L = Kλρ(pL) by Lemma 1.2.5, we can choose the ei to be in
λρ(pL). Choose elements ˜̃γ(ei) in K such that γ̃(ei) is the class of ˜̃γ(ei) modulo OK . Define
the K-linear map ˜̃γ : L −→ K by ˜̃γ(

∑
aiei) =

∑
ai ˜̃γ(ei) where ai ∈ K. Thus we obtain the

following commutative diagram

L K

λρ(pL) K/OK

˜̃γ

γ̃

γ

the right hand arrow being the canonical projection and the left hand arrow being the in-
clusion. However, the K-linear form ˜̃γ is induced by some element y ∈ L satisfying ˜̃γ(x) =
TL|K(xy) for all x ∈ λρ(pL). Therefore we have γ(x) ≡ ˜̃γ(x) =< x, y >L mod OK .

Now, we give the construction of the so-called Iwasawa map. As mentioned in (1.3.7), the
map

OK/ηnOK −→ W n
ρ

a 7−→ ρa(vn)

(3.1.3)

is an isomorphism of OK-modules. We denote by ι1 its inverse. We define the OK-linear map

ι : W n
ρ OK/ηnOK K/OK

ρa(vn) a
a

ηn

ι1

Let
Ln = {β ∈ L×; (α, β)L,n = 0 ∀α ∈ WL}, (3.1.4)

where WL = L ∩Wρ ⊂ pL. Any β ∈ Ln defines an OK-linear map

hβ :

{
pL/WL −→ K/OK
α 7−→ ι((α, β)L,n)

(3.1.5)
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where the action of OK on pL/WL is given by (1.3.1). The map β 7→ hβ gives a group
homomorphism from Ln to HomOK

(pL/WL, K/OK). The homomorphism of Lemma 1.2.6
induces the following isomorphism of OK-modules

HomOK
(pL/WL, K/OK) ∼= HomOK

(λρ(pL), K/OK). (3.1.6)

Let β ∈ Ln and let gβ be the image of hβ by the isomorphism (3.1.6). Then gβ is defined by
gβ(λρ(α)) = ι((α, β)L,n). However gβ is an OK-linear map from λρ(pL) to K/OK . Thus, by
Lemma 3.1.1, there exists a unique y ∈ L/XL satisfying gβ(λρ(α)) = TL|K(λρ(α)y) mod OK
for all α ∈ pL. It is easy to see that y ∈ η−nXL/XL. We set

ψL,vn(β) = ηny mod ηnXL. (3.1.7)

Proposition 3.1.2. We have

(α, β)L,n = TL|K(λρ(α)ψL,vn(β)) ·ρ vn (3.1.8)

for all α ∈ pL and β ∈ Ln. Furthermore, the map ψL,vn : Ln −→ XL/η
nXL is a continuous

group homomorphism.

Proof. The equality (3.1.8) and the fact that ψL,vn is a group homomorphism follow immedi-
ately from the construction. Let us prove that ψL,vn is continuous at 1. Since the reciprocity
map ΦL is continuous, there exists M > 0 such that if β ∈ Ln satisfies µ(β) > M , then
ΦL(β) is trivial, and hence (α, β)L,n = 0 for all α ∈ λρ(pL). Therefore, if µ(β) > M , we get
TL|K(λρ(α)ψL,vn(β)) ∈ pnm0 for all α ∈ λρ(pL), which implies that ψL,vn(β) ∈ ηnXL. This
concludes the proof.

Remark 3.1.3. Let v′n be another generator of W n
ρ , then v′n = ρu(vn) for a unit u of K. We

have
ψL,vn = uψL,v′n . (3.1.9)

Proposition 3.1.4. The map ψL,vn satisfies the following properties.

(i) Let M be a finite separable extension of L. Then NM |L(M
n) ⊂ Ln, TM |L(XM) ⊂ XL

and the diagram

Mn XM/η
nXM

Ln XL/η
nXL

ψM,vn

NM|L TM|L

ψL,vn

is commutative.
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(ii) Let M be a finite separable extension of L. Then Ln ⊂Mn, XL ⊂ XM and the following
diagram

Ln XL/η
nXL

Mn XM/η
nXM

ψL,vn

ψM,vn

is commutative.

(iii) Suppose that L ⊃ Em
ρ for m ≥ n and let vm be a generator of Wm

ρ such that
ρηm−n(vm) = vn. Then Lm ⊂ Ln and ψL,vn(β) is the reduction of ψL,vm(β) from
XL/η

mXL to XL/η
nXL.

(iv) Let ρ̃ be isomorphic to ρ, i.e. there exists an invertible formal power series t ∈ OH{{τ}}
such that t ◦ ρa = ρ̃a ◦ t for all a ∈ OK . If we denote by X̃L, L̃n and ψ̃L,t(vn) the objects
defined in (3.1.4), (3.1.2) and (3.1.7) corresponding to ρ̃, then XL = X̃L, Ln = L̃n and

ψL,n = t′(0)ψ̃L,t(vn), where t′ =
dt

dX
.

Proof. We follow [21, Proposition 3.2]. We begin by proving (i). Let α ∈ WL and β ∈ Mn.
By Proposition 2.2.2(iii), we have (α,NM |L(β))L,n = (α, β)M,n = 0 because α ∈ WL ⊂ WM .
Thus NM |L(β) ∈ Ln. Now let us prove that TM |L(XM) = XL. For that, let y ∈ XM and
x ∈ λρ(pL) ⊂ λρ(pM). Then, TM |K(xy) = TL|K(xTM |L(y)) ∈ OK . It remains to prove the
commutativity of the diagram. Let α ∈ pL and β ∈ Mn. Using Proposition 2.2.2(iii) and
Proposition 3.1.2, we have

(α,NM |L(β))L,n = (α, β)M,n = TM |K(λρ(x)ψM,n(β)) ·ρ vn
= TL|K(λρ(x) TM |L(ψM,vn(β))) ·ρ vn.

By the uniqueness in Proposition 3.1.2, the last equality yields that

ψL,vn(NM |L(β)) = TM |L(ψM,vn(β)). (3.1.10)

Part (ii) can be proved in the same way as part (i), only using Proposition 2.2.2(iv) instead
of (iii). Part (iii) follows easily from Proposition 3.1.2 and Proposition 2.2.2 (v). To prove

(iv), we first notice that λρ̃ =
1

(t−1)′(0)
= t′(0) and that t(vn) is a generator of W n

ρ̃ . Hence,

by Proposition 2.2.2 (vi) we get

(α, β)ρ̃,L,n = t((t−1(α), β)ρ,L,n)

= t(TL|K(λρ ◦ t−1(α)ψL,vn(β)) ·ρ vn)
= TL|K(λρ̃(α)(t

−1)′(0)ψL,vn(β)) ·ρ̃ t(vn).

This concludes the proof.
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We recall that by pL,1 we denote the set of elements x ∈ pL of valuation µ(x) > 1
q−1

. We
denote by XL,1 the set of elements y of L such that < x, y >L∈ OK for all x ∈ λρ(pL,1). We
give a more explicit description of the fractional ideal XL,1:

XL,1 = {y ∈ L; TL|K(λρ(α)y) ∈ OK ∀α ∈ pL,1}
= {y ∈ L; TL|K(α

′y) ∈ OK ∀α′ ∈ pL,1}

= {y ∈ L; µ(y) > − 1

q − 1
− µ(DL|K)}.

(3.1.11)

Following the same reasoning as in Proposition 3.1.2, but restricting the left-hand argument
of the pairing ( , )L,n to pL,1, we get

Proposition 3.1.5. There exists a unique continuous group homomorphism ΨL,n : L× −→
XL,1/η

nXL,1 such that
(α, β)L,n = TL|K(λρ(α)ΨL,vn(β)) ·ρ vn (3.1.12)

for all α ∈ pL,1 and β ∈ L×. Moreover, the diagram

Ln XL/η
nXL

XL,1/η
nXL,1

ψL,vn

ΨL,vn

is commutative, the right hand arrow being induced by the inclusion XL ⊂ XL,1.

We note that ΨL,vn satisfies the same properties mentioned in Remark 3.1.3 and Proposi-
tion 3.1.4 for ψL,vn .

3.2 Derivations
In this section, we give a formulation of the Kummer pairing in terms of a derivation

D̄L,vn , which will be defined in Section 3.2.2. An advantage of having a derivation is that it
is determined and explicitly constructible in terms of its value at a uniformizer. We begin
by a brief recall on derivations.

3.2.1 Recall on derivations

In this paragraph, we give a recall on derivations and their main properties that will be
useful for us in the sequel. Let R be a commutative ring with unit, and O be a subring of
R. If W is an R-module, a map D : R → W is said to be an O-derivation of R into W if it
is O-linear and satisfies the Leibniz rule

D(xy) = xD(y) + yD(x) ∀x, y ∈ R. (3.2.1)

In particular, a derivation D : R→ W also fulfills the following:
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(i) D(x+ y) = D(x) +D(y) ∀x, y ∈ R,

(ii) D(a) = 0 ∀a ∈ O.

The set of all such derivations DO(R,W ) is an R-module, where aD is defined by (aD)(x) =
aD(x) for all a, x ∈ R. We will show that there exists a universal derivation, in other words,
an R-module ΩO(R), and a derivation

d : R→ ΩO(R) (3.2.2)

such that for every derivationD : R→ W , there exists a unique homomorphism of R-modules
f : ΩO(R)→ W such that the diagram

R ΩO(R)

W

d

D
∃!f

commutes. Let R be the direct sum of the modules (R)x∈R.Then R is the submodule of∏
x∈RR which consists of families (ax)x∈R having finite support. For each element x ∈ R,

we associate a symbol dx, so that an element (ax)x∈R in R can be written as a finite sum∑
x∈R ax dx. Here, the symbols dx are supposed to be distinct for distinct elements of R.

Consider the submodule of R generated by the set

{d(xy)− y dx− x d y, d(x+ y)− dx− d y, d a; x, y ∈ R, a ∈ O}. (3.2.3)

The quotient of R by this submodule , which we denote by ΩO(R), together with the deriva-
tion d : R→ ΩO(R) that sends x to the class of dx in ΩO(R), form the universal derivation
we are looking for. Indeed, let W be an R-module and D : R → W be a derivation, and
consider the unique homomorphism of R-modules from R to W that maps d a to D(a). This
homomorphism is trivial on the submodule of R generated by the set (3.2.3), thus it factors
through ΩO(R), whence the universal property. We call (ΩO(R), d) the module of differentials
of R over O.

The universal derivation yields an isomorphism of R-modules

DO(R,W ) ≃ HomR(ΩO(R),W ). (3.2.4)

Let M be a local field and N be a finite separable extension of M . We denote by D(N |M)
the different of N |M . In the special case where R = ON and O = OM , we have the following
results.

Proposition 3.2.1. There exists an isomorphism of ON -modules

ΩOM
(ON) ≃ ON/D(N |M). (3.2.5)

Furthermore, if πN is a prime of N , then dπN is a generator of ΩOM
(ON).
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Proof. Suppose first that N |M is unramified, then D(N |M) = ON . Thus, we need to show
that ΩOM

(ON) = 0. Let x ∈ ON such that ON = OM [x], and let P (X) =
∑d

i=0 biX
i be the

irreducible polynomial of x over M . Then P ′(x)ON = D(N |M) = ON . Therefore, P ′(x) is a
unit in N . However, we have

0 = dP (x) = P ′(x) dx. (3.2.6)

Hence, d(x) = 0, and consequently, ΩOM
(ON) = 0.

Now, if N is an arbitrary finite separable extension of M , let Ñ be the inertia field of N |M .
We know that ON = OÑ [πN ], where πN is a prime of N . Thus, d πN generates ΩOM

(ON). Let
P (X) =

∑d
i=0 biX

i be the irreducible polynomial of πN over Ñ , then P ′(πN)ON = D(N |Ñ) =
D(N |M) as Ñ |M is unramified. Hence,

0 = ON dP (πN) = P ′(πN)ON d πN = D(N |M) dπN . (3.2.7)

It remains to prove that D(N |M) is precisely the annihilator of ΩOM
(ON). For that, let

D : ON → N/ON be the map defined by D(πN) = 1
P ′(πN )

and D(r(πN)) = r′(πN)D(πN)

for all r ∈ OÑ [X]. It is obvious that D is a derivation of ON into N/ON over OM , and
its annihilator is precisely D(N |M). Finally, we conclude using the universal property of
d : ON → ΩOM

(ON).

Remark 3.2.2. The proof of Proposition 3.2.1 shows that ΩOM
(ON) does not change when

we replaceM by an unramified extension. Hence, when investigating theON -module ΩOM
(ON),

we may assume that N |M is totally ramified.

Corollary 3.2.3. Let W be an ON -module and πN be a prime of N . Let

S := {x ∈ W, ax = 0 ∀a ∈ D(N |M)} (3.2.8)

be the D(N |M)-torsion submodule of W . Then, the map

DOM
(ON ,W )→ S

D 7→ D(πN)

(3.2.9)

is an isomorphism of ON -modules.

Proof. This corollary follows from the above discussions. Indeed, if D ∈ DOM
(ON ,W ),

then, by Proposition 3.2.1 and the fact that d : ON → ΩOM
(ON) is a universal object, we

have D(M |N)D(πN) = 0. Thus, the map (3.2.9) is well defined, and it is clear that it is
a homomorphism. We will construct its inverse: For w ∈ W such that D(N |M)w = 0,
we associate the derivation Dw ∈ DOM

(ON ,W ) defined by Dw(r(πN)) = r′(πN)w for all
r(X) ∈ OÑ [X], where Ñ is the inertia field of N |M . This concludes the proof.

Remark 3.2.4. With the notations of Corollary 3.2.3, the inverse homomorphism of (3.2.9)
also satisfies

Dw(r(πN)) = r′(πN)w (3.2.10)

for all r ∈ OÑ [[X]]. This follows from the fact that a derivation in DOM
(ON ,W ) is continuous

for the discrete topology on W .
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3.2.2 The derivation D̄L,vn

Let n be a positive integer and L be a finite separable extension En
ρ . Let vn be a fixed gen-

erator of the OK-module W n
ρ . We define the map DL,vn : OL −→ XL,1/η

nXL,1 by DL,vn(0) = 0
and

DL,vn(α) = αΨL,vn(α) (3.2.11)

for α ∈ OL \ {0}, where ΨL,vn is the homomorphism defined in (3.1.5). In this section we
will prove that DL,vn , reduced modulo a convenient submodule of XL,1, is a derivation and it
intervenes in an explicit formula for the Kummer pairing.

It is clear that the map DL,vn satisfies the Leibniz rule

DL,vn(xy) = xDL,vn(y) + yDL,vn(x) ∀x, y ∈ OL. (3.2.12)

This follows from the fact that ΨL,vn is a group homomorphism. Using this rule, we can
prove by induction that

DL,vn(x
m) = mxm−1DL,vn(x) ∀x ∈ OL and ∀m ≥ 1. (3.2.13)

We will now prove that DL,vn is additive.

Lemma 3.2.5. Suppose ρ is such that (x, x)ρ,L,n = 0 for all x ∈ pL \ {0}. Let α ∈ pL \ {0}
and let u be a unit of L such that µ(α(1− u)) > nm0

q
+ 1

q−1
. We have

(αu, u)L,n = TL|K((1− u)DL,vn(α)) ·ρ vn. (3.2.14)

Proof. We have
(αu, u)L,n = (αu,

αu

α
)L,n

= (αu, αu)L,n − (αu, α)L,n

= (α, α)L,n − (αu, α)L,n

= (α− αu, α)L,n
= TL|K(λρ(α− αu)ΨL,vn(α)) ·ρ vn

by Proposition 3.1.5. Let γ = α(1− u), we will show that

TL|K(λρ(γ)ΨL,vn(α)) ·ρ vn = TL|K(γΨL,vn(α)) ·ρ vn. (3.2.15)

By the hypothesis on the valuations, we have µ(γ) > nm0

q
+ 1

q−1
. Hence

µ(λρ(γ)− γ) = µ(
∑
i≥1

ciγ
qi)

≥ min
i≥1
{µ(ci) + qiµ(γ)}

> min
i≥1
{−i+ qi(

nm0

q
+

1

q − 1
)}

≥ nm0 +
1

q − 1
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Therefore, we can write λρ(γ)− γ = ηnδ, where δ is an element of pL,1. Thus, by (3.1.11),

TL|K((λρ(γ)− γ)ΨL,vn(α)) ·ρ vn = 0

because ΨL,vn(α) ∈ XL,1. This concludes the proof.

Proposition 3.2.6. Suppose ρ is such that (x, x)ρ,L,n = 0 for all x ∈ pL \ {0}. Let γ be an
element of OL \ {0} of valuation µ(γ) = max{nm0

q
, 1
q−1
}, that is µ(γ) = nm0

q
if nm0 ≥ 2, and

µ(γ) = 1
q−1

if nm0 = 1. Then

DL,vn(x+ y) ≡ DL,vn(x) + DL,vn(y) mod
ηn

γ
XL,1 (3.2.16)

for all x, y ∈ OL.

Proof. Let us prove first why such a γ exists. Since En
ρ ⊂ L, the ramification index of L|K is

a multiple of the ramification index of En
ρ |K, which is equal to qnm0−1(q − 1). Hence, there

exists elements in L of valuation 1
qnm0−1(q−1)

, whence the existence of γ. Now let us prove
(3.2.16). Let x, y ∈ OL, then, by Lemma 3.2.5, we have

(γ(x+ y)u, u)L,n = TL|K((1− u)DL,vn(γ(x+ y))) ·ρ vn
= TL|K((1− u)((x+ y)DL,vn(γ) + γDL,vn((x+ y))) ·ρ vn (3.2.17)

for all u ∈ 1 + pL,1. However, again by Lemma 3.2.5, we have

(γ(x+ y)u, u)L,n = (γxu, u)L,n + (γyu, u)L,n

= TL|K((1− u)DL,vn(γx)) ·ρ vn + TL|K((1− u)DL,vn(γy)) ·ρ vn
= TL|K((1− u)(DL,vn(γx) + DL,vn(γy))) ·ρ vn
= TL|K((1− u)((x+ y)DL,vn(γ) + γ(DL,vn(x) + DL,vn(y))) ·ρ vn (3.2.18)

for all u ∈ 1 + pL,1. Therefore, (3.2.17) and (3.2.18) being equal, we conclude that

γDL,vn(x+ y) ≡ γ(DL,vn(x) + DL,vn(y)) mod ηnXL,1 (3.2.19)

by the very definition (3.1.11) of XL,1. Hence, we have

DL,vn(x+ y) ≡ DL,vn(x) + DL,vn(y) mod
ηn

γ
XL,1. (3.2.20)

Corollary 3.2.7. Let γ be as in Proposition 3.2.6. Then

DL,vn(x+ y) ≡ DL,vn(x) + DL,vn(y) mod
ηn

γ
XL,1 (3.2.21)

for all x, y ∈ OL.
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Proof. Let r = rn be the series defined in Proposition 2.2.5 and let ρ′ the Drinfeld module
defined by

ρ′a = r ◦ ρa ◦ r−1.

Then r defines an isomorphism of OK-modules r : W n
ρ → W n

ρ′ . Furthermore, if we denote by
Dρ,L,vn (respectively Dρ′,L,r(vn)) the map defined in (3.2.11) associated to ρ (respectively ρ′),
then by Proposition 3.1.4 (iv), we have

Dρ,L,vn = r′(0)Dρ′,L,r(vn) . (3.2.22)

Here, r′(0) is a unit in H because r(X) ∈ OH [[X]] is invertible. Since (x, x)ρ′,L,n = 0 for all
x ∈ pL \ {0} by Lemma 2.2.6, we can apply Proposition 3.2.6 for ρ′ so that

Dρ′,L,r(vn)(x+ y) ≡ Dρ′,L,r(vn)(x) + Dρ′,L,r(vn)(y) mod
ηn

γ
XL,1 (3.2.23)

for all x, y ∈ OL. Thus, using (3.2.22), we conclude that

Dρ,L,vn(x+ y) ≡ Dρ,L,vn(x) + Dρ,L,vn(y) mod
ηn

γ
XL,1 (3.2.24)

for all x, y ∈ OL.

Proposition 3.2.8. Let

X
(n)
L,1 = {y ∈ L; µ(y) ≥ nm0 −max{nm0

q
,

1

q − 1
} − 1

q − 1
− 1

e(L|K)
− µ(D(L|K))} ⊂ XL,1.

(3.2.25)

The reduction of DL,vn modulo X
(n)
L,1, denoted by D̄L,vn : OL −→ XL,1/X

(n)
L,1, is an OK-

derivation.

Proof. Let γ ∈ OL \ {0} be as in Proposition 3.2.6, then

X
(n)
L,1 =

ηn

γ
XL,1. (3.2.26)

Let πL be a prime of L and let w = D̄L,vn(πL) ∈ XL,1/X
(n)
L,1. Since µ(η

n

γ
) = nm0 − µ(γ) ≤

nm0 − 1
q−1
≤ µ(D(L|K)), we have D(L|K)w = 0. Hence, by Corollary 3.2.3, there exists a

derivation D : OL −→ XL,1/
ηn

γ
XL,1 such that D(πL) = w and

D(g(πL)) = g′(πL)w (3.2.27)

for every power series g ∈ OL̃[[X]], where L̃ is the maximal subextension of L unramified
over K. In particular, (3.2.27) is true for all the power series defined over the residue field of
L̃, which is equal to the residue field of L. We will prove that D and D̄L,vn are equal. Indeed,
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let x ∈ OL, and let g(X) =
∑

i≥0 aiX
i be the unique power series defined over the residue

field FqL of L such that g(πL) = x. We have

D̄L,vn(x) = D̄L,vn(g(πL)) =
∑
i≥0

D̄L,vn(aiπ
i
L) (3.2.28)

because D̄L,vn is additive by Proposition 3.2.7, and continuous by Proposition 3.1.5. Let qL
be the cardinal of FqL , then qL is a power of p. Hence, for all i ≥ 0, we have

D̄L,vn(ai) = D̄L,vn(a
qL
i ) = 0

by (3.2.13). Therefore, applying the Leibniz rule (3.2.12) to (3.2.28), we get

D̄L,vn(x) =
∑
i≥0

aiD̄L,vn(π
i
L) =

∑
i≥0

ai × i× πi−1
L × D̄L,vn(πL) (3.2.29)

again by (3.2.13). However, this is equal to g′(πL)D̄L,vn(πL), which is, by (3.2.27), equal to
D(x).

Now, we will define the logarithmic derivative dlogD̄L,vn associated to the derivation D̄L,vn .
For a prime πL of L, let

f : XL,1/X
(n)
L,1 → π−1

L XL,1/π
−1
L X

(n)
L,1 (3.2.30)

be the natural map induced by the inclusion XL,1 ↪→ π−1
L XL,1, and

gπL : XL,1/X
(n)
L,1 → π−1

L XL,1/π
−1
L X

(n)
L,1 (3.2.31)

be the multiplication by π−1
L map. For x = uπkL ∈ L×, where u is a unit in L, we define

dlogD̄L,vn(x) = f(u−1D̄L,vn(u)) + kgπL(D̄L,vn(πL)). (3.2.32)

The map dlogD̄L,vn : L× → π−1
L XL,1/π

−1
L X

(n)
L,1 is a group homomorphism. Furthermore, its

definition does not depend on the choice of the uniformizer πL. Indeed, let π′
L be another

uniformizer of L and let x = uπkL = u′π′
L
k ∈ L×, where u and u′ are units of L. Let u0 be

the unit of L such that π′
L = u0πL. Then,

f(u−1D̄L,vn(u)) + kgπL(D̄L,vn(πL)) = f(u′
−1
u−k0 D̄L,vn(u

′uk0)) + kgπL(D̄L,vn(πL))

= f(u′
−1
D̄L,vn(u

′) + u−k0 D̄L,vn(u
k
0)) + kgπL(D̄L,vn(πL))

= f(u′
−1
D̄L,vn(u

′)) + f(u−k0 D̄L,vn(u
k
0)) + kgπL(D̄L,vn(πL))

= f(u′
−1
D̄L,vn(u

′)) + kf(u−1
0 D̄L,vn(u0)) + kgπL(D̄L,vn(πL)).

(3.2.33)
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On the other hand, we have

gπ′
L
(D̄L,vn(π

′
L)) = gπ′

L
(D̄L,vn(u0πL))

= gπ′
L
(u0D̄L,vn(πL) + πLD̄L,vn(u0))

≡ π′
L
−1
(u0D̄L,vn(πL) + πLD̄L,vn(u0)) mod π−1

L X
(n)
L,1

≡ u−1
0 π−1

L (u0D̄L,vn(πL) + πLD̄L,vn(u0)) mod π−1
L X

(n)
L,1

≡ π−1
L D̄L,vn(πL) + u−1

0 D̄L,vn(u0) mod π−1
L X

(n)
L,1

= f(u−1
0 D̄L,vn(u0)) + gπL(D̄L,vn(πL)). (3.2.34)

Therefore, (3.2.33) and (3.2.34) yield that dlogD̄L,vn does not depend on the choice of πL.

Remark 3.2.9. We call dlogD̄L,vn a logarithmic derivative because we have the equality

dlogD̄L,vn(x) =
D̄L,vn(x)

x
. (3.2.35)

Moreover, since H|K is unramified, then for all power series f ∈ OH((X)) such that f(πL) =
x, (3.2.35) writes

dlogD̄L,vn(x) =
f ′(πL)

x
D̄L,vn(πL). (3.2.36)

This definition of dlogD̄L,vn recalls the logarithmic derivative δvn defined in (2.2.25) in the
special case L = En

ρ .

Theorem 3.2.10. The derivation D̄L,vn : OL −→ XL,1/X
(n)
L,1 satisfies

(α, β)L,n = TL|K(λρ(α) dlogD̄L,vn(β)) ·ρ vn (3.2.37)

for all α such that µ(α) > max{nm0

q
, 1
q−1
}+ 1

q−1
+ 1

e(L|K)
and for all β ∈ L×.

Proof. To prove (3.2.37) is equivalent to prove that

dlogD̄L,vn(β)−ΨL,vn(β) ∈ π−1
L X

(n)
L,1 (3.2.38)

for all β ∈ L×, where dlogD̄L,vn(β) and ΨL,vn(β) are regarded as elements of π−1
L XL,1. Indeed,

let β ∈ L×. Since Proposition 3.1.5 shows that

(α, β)L,n = TL|K(λρ(α)ΨL,vn(β)) ·ρ vn (3.2.39)

for all α ∈ pL,1, then (3.2.37) is equivalent to say that

TL|K(λρ(α) dlogD̄L,vn(β)) ·ρ vn = TL|K(λρ(α)ΨL,vn(β)) ·ρ vn (3.2.40)

for all α in L such that µ(α) > max{nm0

q
, 1
q−1
}+ 1

q−1
+ 1

e(L|K)
. Obviously, (3.2.40) is equivalent

to
TL|K(λρ(α)(dlogD̄L,vn(β)−ΨL,vn(β)) ∈ ηnOK (3.2.41)
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for all α ∈ γπLpL,1, where γ ∈ L is of valuation µ(γ) = max{nm0

q
, 1
q−1
}. However, since

pL,1 = λρ(pL,1) and µ(λρ(α)) = µ(α) whenever α ∈ pL,1 (see (1.2.13)), then (3.2.41) is in turn
equivalent to

TL|K(γπLα(dlogD̄L,vn(β)−ΨL,vn(β)) ∈ ηnOK (3.2.42)

for all α ∈ pL,1. Finally, by the very definition of XL,1, (3.2.42) is equivalent to

dlogD̄L,vn(β)−ΨL,vn(β) ∈ π−1
L

ηn

γ
XL,1 = π−1

L X
(n)
L,1. (3.2.43)

Let us now prove (3.2.43). Let β = uπkL ∈ L×, then dlogD̄L,vn(β) − ΨL,vn(β) is equal to
u−1 D̄L,vn(u) + kπ−1

L D̄L,vn(πL) − ΨL,vn(u) − kΨL,vn(πL) modulo π−1
L X

(n)
L,1. However, by the

very definition of D̄L,vn , we have

D̄L,vn(u) ≡ uΨL,vn(u) mod X
(n)
L,1. (3.2.44)

But as X
(n)
L,1 ⊂ π−1

L X
(n)
L,1, the congruence (3.2.44) implies that

D̄L,vn(u) ≡ uΨL,vn(u) mod π−1
L X

(n)
L,1. (3.2.45)

Thus, we have
u−1 D̄L,vn(u) ≡ ΨL,vn(u) mod π−1

L X
(n)
L,1. (3.2.46)

Moreover, we have
D̄L,vn(πL) ≡ πLΨL,vn(πL) mod X

(n)
L,1, (3.2.47)

and thus,
π−1
L D̄L,vn(πL) ≡ ΨL,vn(πL) mod π−1

L X
(n)
L,1. (3.2.48)

This concludes the proof.

3.3 Values of D̄L,vn in terms of representation theory
In this section, we consider the continuous representation r : Gal(Ω|H)→ GL1(OK) = UK

defined in Proposition 1.3.11. The image r(σ) of an element σ ∈ Gal(Ω|H) is the unique unit
u of K such that σ(α) = ρu(α) for all α ∈ Wρ. This representation is induced by the action
of Gal(Ω|H) on the module lim←−W

n
ρ . We will show that we can obtain explicit formulas in

terms of invariants of this representation.
It is obvious that the kernel of r is Gal(Ω|Hρ). Thus, r induces an embedding Gal(Hρ|H)→

UK . Reducing modulo UK,m = 1 + pmK for m ≥ 0, we get the map rm, which, restricted to
Gal(Hm

ρ |H), defines an isomorphism

rm : Gal(Hm
ρ |H)→ UK/UK,m. (3.3.1)

We note that r and rm are respectively the inverse isomorphisms of Γ and Γm defined in
Proposition 1.3.9 and Proposition 1.3.11. For an algebraic extension F ofH, we also denote by
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r : Gal(Ω|F )→ UK the restriction of r to Gal(Ω|F ), and by rm : Gal(F (V m
ρ )|F )→ UK/UK,m

the restriction to Gal(F (V m
ρ )|F ). As above, we let n be a positive integer and L be a finite

separable extension En
ρ .

Proposition 3.3.1. Let m ≥ n and suppose L ⊃ Em
ρ . There exists a character χL,m,n :

L× → OK/pnm0
K such that

rm0(m+n)(ΦL(β)) = 1 + ηmχL,m,n(β) ∈ UK/UK,(m+n)m0 (3.3.2)

for all β ∈ L×. Furthermore, χL,m,n satisfies the following.

(i) χL,m,n(β) = χEm
ρ ,m,n(NL|Em

ρ
(β)).

(ii) Let v = ρa(vm) ∈ Wm
ρ , where vm is a generator of Wm

ρ such that ρηm−n(vm) = vn. Then

(v, β)L,n = (aχL,m,n(β)) ·ρ vn

for all β ∈ L×. In particular if v = vm, then for every β ∈ L×, we have

(vm, β)L,n = χL,m,n(β) ·ρ vn. (3.3.3)

Proof. Let β ∈ L×. As ΦL(β) fixes L, thus in particular fixes Em
ρ , we have

rm0(m+n)(ΦL(β)) ≡ 1 mod ηm. (3.3.4)

Thus, there exists an element χL,m,n(β) ∈ OK/pnm0
K such that (3.3.2) holds. It is easy to

check that χL,m,n : L× → OK/pnm0
K is a group homomorphism. Moreover, Proposition 2.1.1

(v) imply (i). To prove (ii), let ξ ∈ pΩ be such that ρηn(ξ) = v. Such a ξ exists by Lemma
2.2.1. Since v ∈ Wm

ρ , then ξ ∈ Wm+n
ρ and

(v, β)L,n = ΦL(β)(ξ)− ξ
= rm0(m+n)(ΦL(β)) ·ρ ξ − ξ
= (rm0(m+n)(ΦL(β))− 1) ·ρ ξ
= (ηmχL,m,n(β)) ·ρ ξ
= (ηm−nχL,m,n(β)) ·ρ v
= (ηm−nχL,m,n(β)) ·ρ (a ·ρ vm)
= (aχL,m,n(β)) ·ρ vn.

Lemma 3.3.2. The character χL,m,n : L× → OK/pnm0
K is stable by isomorphism class of ρ.

In other words, if t is an invertible power series in OH{{τ}} such that ρ′a = t−1 ◦ ρa ◦ t for all
a ∈ OK , then the characters defined in Proposition 3.3.1 associated to ρ and ρ′ are equal.
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Proof. Let vm be such that ρηm−n(vm) = vn and let v′i = t−1(vi) for i = m,n. Denote
by χL,m,n (respectively χ′

L,m,n) the character defined in Proposition 3.3.1 associated to ρ
(respectively ρ′). Then by (3.3.3), we have χ′

L,m,n(β) ·ρ′ v′n = (v′m, β)ρ′,L,n which is equal
to t−1((t(v′m), β)ρ,L,n) = t−1((vm, β)ρ,L,n) by Proposition 2.2.2 (vi). Again from (3.3.3), we
conclude that

χ′
L,m,n(β) ·ρ′ v′n = t−1((vm, β)ρ,L,n)

= t−1(χL,m,n(β) ·ρ vn)
= χL,m,n(β) ·ρ′ t−1(vn)

= χL,m,n(β) ·ρ′ v′n.

Proposition 3.3.3. Let m ≥ n and suppose L ⊃ Em
ρ is such that p does not divide the

ramification index of the extension L|Em
ρ . Let u be a unit in L such that µ(1 − u) >

max{nm0

q
, 1
q−1
}+ 1

q−1
. Let f(X) and g(X) be power series in FqL [[X]] such that f(πL) = vm

and g(πL) = u, where πL is a prime of L. Then,

g′(πL)
u

f ′(πL)
vm

∈ pL, (3.3.5)

and

χL,m,n(u) ≡ TL|K((
1− u
u

)(1−
g′(πL)
u

f ′(πL)
vm

) D̄L,vn(vm)) mod pnm0
K . (3.3.6)

Proof. Since p does not divide the ramification index of L|Em
ρ , we have µ(f ′(πL)) = µ(f(πL))−

µ(πL) = µ(vm) − µ(πL). Furthermore, since µ(1 − u) > max{nm0

q
, 1
q−1
} + 1

q−1
, we can write

g(X) = 1 +
∑
aiX

i, where i ≥ 2 and ai ∈ FqL . Hence, µ(g′(πL)) > µ(πL) and therefore, we
have (3.3.5). Now, let us prove (3.3.6). By Lemma 2.2.6 and Lemma 3.3.2, we can suppose
that ρ is such that (x, x)ρ,L,n = 0 for all x ∈ pL. For such a ρ and for u ∈ L× such that
µ(1− u) > max{nm0

q
, 1
q−1
}+ 1

q−1
, we have

(αu, u)L,n = TL|K((1− u)DL,vn(α)) ·ρ vn (3.3.7)

for all α ∈ pL \ {0} by Lemma 3.2.5. We note that the hypothesis on the valuation of 1− u
allows us to replace DL,vn(α) by D̄L,vn(α) in (3.3.7). Let α be such that αu = vm, where vm
is a generator of Wm

ρ such that ρηm−n(vm) = vn. Hence, (3.3.7) together with (3.3.3) give us

χL,m,n(u) ·ρ vn = (vm, u)L,n = TL|K((1− u) D̄L,vn(vmu
−1)) ·ρ vn. (3.3.8)

However, D̄L,vn(
vm
u
) = 1

u2
(u D̄L,vn(vm)− vm D̄L,vn(u)). Moreover, we have

D̄L,vn(u) = g′(πL) D̄L,vn(πL) and D̄L,vn(vm) = f ′(πL) D̄L,vn(πL).

This implies that
f ′(πL) D̄L,vn(u)− f ′(πL)g

′(πL) D̄L,vn(πL) ∈ X
(n)
L,1
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and
g′(πL) D̄L,vn(vm)− f ′(πL)g

′(πL) D̄L,vn(πL) ∈ X
(n)
L,1,

so that
f ′(πL) D̄L,vn(u)− g′(πL) D̄L,vn(vm) ∈ X

(n)
L,1. (3.3.9)

Now, since the calculation in the beginning of this proof shows that vm
f ′(πL)

∈ pL, we can

multiply (3.3.9) by vm
f ′(πL)

in the fractional ideal X(n)
L,1. Therefore, we get

vm D̄L,vn(u) = vm
g′(πL)

f ′(πL)
D̄L,vn(vm) ∈ XL,1/X

(n)
L,1.

Finally, we can write

χL,m,n(u) ≡ TL|K(
1− u
u2

(u D̄L,vn(vm)− vm
g′(πL)

f ′(πL)
D̄L,vn(vm)) mod pnm0

K

≡ TL|K((
1− u
u

)(1−
g′(πL)
u

f ′(πL)
vm

) D̄L,vn(vm)) mod pnm0
K .

Lemma 3.3.4. Let m ≥ n and suppose L ⊃ Em
ρ is such that p does not divide the ramifi-

cation index of the extension L|Em
ρ . Then, D̄L,vn(vm) ∈ XL,1/

ηn

γ
XL,1 is uniquely determined

by (3.3.6).

Proof. Let x and x′ be two elements in XL,1 such that

TL|K((
1− u
u

)(1−
g′(πL)
u

f ′(πL)
vm

)x) ≡ TL|K((
1− u
u

)(1−
g′(πL)
u

f ′(πL)
vm

)x′) mod pnm0
K , (3.3.10)

for all u ∈ UL such that µ(1− u) > max{nm0

q
, 1
q−1
}+ 1

q−1
. This means that

TL|K((
1− u
u

)(1−
g′(πL)
u

f ′(πL)
vm

)(x− x′)) ∈ pnm0
K (3.3.11)

for all units u ∈ L such that µ(1 − u) > max{nm0

q
, 1
q−1
} + 1

q−1
. We need to prove that

x − x′ ∈ X
(n)
L,1. Since we are considering any u such that µ(1 − u) > max{nm0

q
, 1
q−1
} + 1

q−1
,

then we can write 1 − u = γα, where γ ∈ L is of valuation max{nm0

q
, 1
q−1
} and α varies in

pL,1 = λρ(pL,1). Furthermore, the element 1 −
g′(πL)
u

f ′(πL)
vm

is a unit in L. Therefore, x and x′ are

such that
TL|K(γα(x− x′)) ∈ pnm0

K (3.3.12)

for all α ∈ pL,1. This yields that x− x′ ∈ ηn

γ
XL,1 = X

(n)
L,1.
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3.4 A return to the case of Chapter 2
In this section, we place ourselves again in the case where

ρη ≡ τm0 mod pH and L = Em
ρ ⊃ En

ρ (3.4.1)

for an integer m ≥ n. As previously shown in Theorem 3.2.10, we have

(α, vm)L,n = TL|K(λρ(α)
1

vm
D̄L,vn(vm)) ·ρ vn (3.4.2)

for all α ∈ pL such that µ(α) ≥ max{nm0

q
, 1
q−1
}+ 1

q−1
+ 1

qnm0 (q−1)
. On the other hand, we can

prove using Chapter 2, that under the same condition on α, we have

(α, vm)L,n =
1

ηm
TL|K(λρ(α)

1

vm
) ·ρ vn. (3.4.3)

Indeed,

(α, vm)L,n = (ρηm−n(α), vm)L,m (by Proposition 2.2.2 (v))

=
1

ηm
TL|K(λρ(ρηm−n(α))

1

vm
) ·ρ vm (by Theorem 2.3.12)

=
1

ηm
TL|K(η

m−nλρ(α)
1

vm
) ·ρ vm

=
1

ηm
TL|K(λρ(α)

1

vm
) ·ρ vn.

Here, we can apply Theorem 2.3.12 for (ρηm−n(α), vm)L,m because µ(ρηm−n(α)) ≥ max{mm0

q
, 1
q−1
}+

1
q−1

+ 1
qmm0 (q−1)

for all m ≥ n (See Lemma 2.2.3 and Remark 2.2.4).

Proposition 3.4.1. We have

D̄Em
ρ ,vn(vm) =

1

ηm
. (3.4.4)

Proof. This is a direct consequence of the explicit formulas (3.4.2) and (3.4.3).

Corollary 3.4.2. Let u be a unit of L such that µ(1− u) > max{nm0

q
, 1
q−1
}+ 1

q−1
. Then

NL|K(u
−1)− 1 ≡ TL|K((

1− u
u

)(1− g′(vm)

u
vm)) mod p

(n+m)m0

K , (3.4.5)

where g(X) ∈ FqL [[X]] is such that g(vm) = u.

Proof. Since we proved in Lemma 3.3.4 that D̄L,vn(vm) =
1
ηm
∈ XL,1/X

(n)
L,1 is uniquely deter-

mined by (3.3.6), we have

χL,m,n(u) ≡
1

ηm
TL|K((

1− u
u

)(1− g′(vm)

u
vm)) mod pnm0

K (3.4.6)
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for all units u of L such that µ(1−u) > max{nm0

q
, 1
q−1
}+ 1

q−1
. Moreover, we know by (3.3.3)

that
(vm, u)L,n = χL,m,n(u) ·ρ vn = ηmχL,m,n(u) ·ρ vm+n, (3.4.7)

where vm+n ∈ Wm+n
ρ is such that ρηn(vm+n) = vm. On the other hand, by the definition of

( , )L,n, we have

(vm, u)L,n = ΦL(u)(vm+n)− vm+n = ΦK(NL|K(u))(vm+n)− vm+n. (3.4.8)

But ΦK(NL|K(u))(vm+n) = ρNL|K(u)−1(vm+n) by Proposition 2.3.4. Therefore, (vm, u)L,n =

(NL|K(u
−1)− 1) ·ρ vm+n and hence,

NL|K(u
−1)− 1 ≡ ηmχL,m,n(u) mod p

(n+m)m0

K . (3.4.9)

Finally, (3.4.5) follows from (3.4.6) and (3.4.9).

Giving a direct proof of (3.4.5) would provide a new proof of the results of Chapter 2. In
another request, it would be interesting to investigate the cohomological approach inspired
by Kato [19, 20], in order to establish new proofs of the explicit reciprocity laws for formal
Drinfeld modules. This approach was used, along with the theory of (φ,Γ)-modules, by
Benois [7] and others [14, 31] to prove explicit formulas for the Kummer pairing associated
with formal groups over local fields of characteristic zero.
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