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Résumé: Nous considérons ’accouplement de Kummer dans le cas des modules de Drinfeld
formels ayant une réduction stable d’hauteur un, définis sur des corps locaux a caractéristique
positive, dans le but de trouver des lois de réciprocité explicites dans la veine de celles qui ex-
istent en caractéristique nulle. Dans un premier temps, nous considérons une classe spéciale
de ces modules de Drinfeld et nous nous inspirons de ’approche de Wiles pour démontrer
des formules explicites dans ce cas. Enfin, nous démontrons le cas général en s’inspirant des
travaux de Kolyvagin. Les résultats présentés dans cette thése viennent compléter les résul-
tats de Anglés et de Longhi-Bars, qui ont démontré des formules explicites dans le cas des
modules de Drinfeld formels issues respectivement des polynomes de Carlitz et des modules
de Drinfeld sign-normalisés de rang un.
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Abstract: We prove explicit reciprocity laws for formal Drinfeld modules defined over local
fields of positive characteristic and having stable reduction of height one, in the spirit of
those existing in characteristic zero. At first request, we consider a special class of these
formal Drinfeld modules and we prove explicit formulas for the Kummer pairing following an
approach inspired by Wiles. In a later request, we give an explicit description of the pairing
a la Kolyvagin in the general case. The results obtained give a generalization of the results
of Anglés and Longhi-Bars proved for formal Drinfeld modules obtained respectively from
Carlitz polynomials and sign-normalized Drinfeld modules of rank one.
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Introduction

In local class field theory, explicit reciprocity laws consist in studying and finding explicit
formulas for the reciprocity map, also called the norm residue symbol. The way through this
usually goes by the Hilbert symbol, which is defined by the means of the reciprocity map.
In 1858, Kummer considered the p-th Hilbert symbol for pairs of principal units in the fields
Q,(¢), where p > 2 is a prime number and ¢, is a primitive root of unity. From that time
until now, numerous explicit laws were proven in various settings. Artin and Hasse || proved
explicit formulas for the p"-th Hilbert symbol for special pairs in cyclotomic extensions of
Q, containing the p"-th roots of unity. Later on, Iwasawa |17]| generalized their formulas to
include more pairs of elements. It was then Coleman [10] who gave a complete formula for
this case. In a more general setting, Wiles [31] proved explicit laws for Lubin-Tate extensions
of local fields. Soon after, Kolyvagin [21] extended all these results to formal groups of finite
height. Explicit reciprocity laws were also studied in higher local fields. The formula of
Iwasawa [17] was extended to this case by Kurihara [22] and Zinoviev [35]. In his turn,
Florez [12, 13] generalized the work of Kolyvagin [21] and proved explicit laws in the case
of formal groups and Lubin-Tate formal groups defined over arbitrary higher local field of
mixed characteristic. For detailed history of reciprocity laws, check [25].

In our work, we consider field extensions of local fields of positive characteristic, obtained
by adding torsion points of formal Drinfeld modules having stable reduction of height 1. We
prove explicit reciprocity laws in these fields. Some results for special cases of formal Drinfeld
modules were already proven. Namely, Anglés [3] considered the case of Carlitz modules (see
Example 1.1.1), and Bars and Longhi [6] considered the case of formal Drinfeld modules
deriving from standard sign-normalized rank one Drinfeld modules (see Example 1.1.2). Let
us describe the context of our work.

Let K be alocal field, p be its characteristic, and let x be its normalized discrete valuation.
We denote Ok the valuation ring of K and py its maximal ideal. Let ¢ be the order of the
residue field Ok /pr. Then ¢ is a power of p. Fix an algebraic closure €2 of K, and let y be
the unique extension of p to Q. Let (Q, /i) be the completion of (2, ). For a field F C €,
we denote by Op its valuation ring and pp its maximal ideal. Let K,, C 2 be the maximal
unramified extension of K in €2, and H C K, be a finite unramified extension of K.

We consider
p: O — Ox{{7}}
a > pPqg

a formal Drinfeld module having stable reduction of height one, as defined by Rosen in |29,



§1]. Here, 7 is the g-Frobenius element satisfying

T =i, V€. (0.0.1)

This is a special case of formal Og-modules defined by Drinfeld in [I1]. We devote Chapter
1 to give the detailed definition and the main properties of formal Drinfeld modules.

Let Og be the valuation ring of 2 and pq be its maximal ideal. Then pq is an Og-module
for the following action of p

a-,x=p.(z) Vo€ pg. (0.0.2)

For an integer n > 0, let
Vy={a€Q; pufa) =0 VYa € pf} (0.0.3)

be the p% torsion submodule of  for the action (0.0.2). Using the Weierstrass preparation
theorem, we can see that V' \ Vp"’1 is the set of roots of a separable Eisenstein polynomial in
Ox[X] of degree ¢"~*(q— 1), whose constant term is a prime of H. Therefore, for an element
v € V;)\ V71, the extension H(vg)|H is totally ramified of degree ¢"~'(¢—1). Furthermore,
the kernel of a — p,(vp) is p. Thus it induces an isomorphism of Ox-modules

Ok /Pl = VI (0.0.4)

This implies that any element vy € V! \ Vp"_1 is a generator of V" as Ox-module. This also
implies that the extension H}) = H(V}") is equal to H(vp). Furthermore, the extension H}|H
is abelian and the compositum of the union of the extensions H' together with K, is equal
to the maximal abelian extension of K. See §1.3.

Now let mg > 1 be an integer dividing [H : K|, and n € K of valuation u(n) = my. Let

W7 = V™ — {a € poi p(a) =0} and B} = HOV)) = HZ™. (005

For a finite extension L of E7, we denote by

dp: L — Gal(L™|L) (0.0.6)

the norm residue map. We can prove (see Lemma 2.2.1) that, for each a € py, there exists
an element ¢ € L™ such that p,»(§) = a. Therefore we can define the map (, ),rn
pr X L — W} by

(@, B)prm = Pr(B)(E) =& pp(8) = (0.0.7)

for « € py and § € L*. The main objective of this thesis is to prove explicit reciprocity laws
for formal Drinfeld modules having stable reduction of height 1. In other words, we prove
explicit formulas for the map (, ), rn.

In Chapter 2, we restrict ourselves to the special case where

L=E; and p,=7" mod py. (0.0.8)
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We fix once and for all a generator v, of W7. In these settings, we prove that for all o € p,,

such that p(a) > et qu1 + W(q_l), and for all 5 € L*, we have

(@, B)pLm = n—lnTLK(Ap(Oé)%(ﬁ)) " Uns (0.0.9)

where ), is the logarithm of p, and 6,, : L* — p1/D, is a group homomorphism defined as
follows. For 8 € L*, choose a power series f(X) € Oy ((X)) \ {0} such that f(v,) = /3, and

a f(wn)
Unp,
5..(8) = )

where D,, denotes the different of the extension L|K [I]. This gives an analogue of Theorem
19 of Wiles [31] and an extension of Theorem 3.12 of Anglés [3]. The method we use to
prove this result is inspired by Wiles [34], taking into account the challenges derived from the
fact that the formal Drinfeld modules considered are formal power series, and are no longer
polynomials. A crucial fact to prove this formula is that for all units u of K, and for all
w € W,, we have

mod D, (0.0.10)

D (u)(w) = pu-1(w). (0.0.11)

We can also define a limit form ( , ), of the pairing (, ), 1., where the first coordinate
belongs to the direct limit ligp gy, taken with respect to the maps

]JE;L — pE;” (()012)

Qi = pym—n (),

and the second coordinate belongs to the projective limit @(Eg)x, taken with respect to
the norm maps. An explicit formula, similar to (0.0.9), can be proven for the limit pairing. It
gives a generalization of Theorem 23 of Longhi-Bars [6] proved for formal Drinfeld modules
obtained from sign-normalized rank 1 Drinfeld modules. It also gives an analogue of Theorem
8.16 of Iwasawa [18]. The results of Chapter 2 were subject to a submitted paper [1].

Afterwords, in Chapter 3, we prove explicit formulas in the general settings, under the
only assumption that L|K is separable. We prove that there exists a unique map 1y, ,, from
a certain subgroup L™ of L* to a certain Op-submodule of L, satisfying

(@, B)pn = Tri(Ap(@)VL,0,(8)) p vn (0.0.13)

for all « € py, and 8 € L". The map vr,, is the analogue of the so-called Iwasawa map
introduced Proposition 14 of [17].

We further prove that there exists an OQg-derivation D L, from Op into a certain Op-
submodule of L such that

(a, B)pemn = Trix (Ap() dlogDLmn (B8)) -pvn (0.0.14)
for all § € L* and a € L of valuation p(a) > * + q%l + m, where e(L|K) is the
ramification index of L|K [2]. If we write § = urk € L*, where u is a unit of L and 7y,

9



is a prime of L, the logarithmic derivative dlogD L, associated with the derivation Dy, is
defined by

_ Dy, Dy,
dlogD, , (8) = == () Dron(me) (0.0.15)
yYn u ﬂ-L
This is the analogue of the main result of Kolyvagin’s paper [21]. An advantage of having

a derivation is that it is determined and explicitly constructible in terms of its value at a
uniformizer 7, of L as follows. For z € Op, we can write

DLmn (ZL‘) = f/(ﬂ'L) DL,vn (7TL), (0016)

where f is the unique power series in F,, [[X]] such that x = f(r). Here, F;, denotes the
residue field of L. A comparison of the two formulas (0.0.9) and (0.0.14) in the case L = E",
L = Uy, and p, = 7™ mod py yields that

_ 1

DE'mﬂJn (Um) = —. (()017)

P nm

for all m > n. Using (0.0.17) and invariants attached to the representation r : Gal(Q2|H) —
GL1(Ok) = Uk, which is induced by the action of Gal(Q2|H) on the module Hm W, we get
the following congruence, of which we do not have a direct proof. For all units u in L such
that u(1 —u) > max{*72, q_%} + q_%, we have

/
Nope(u™) 1= T (1 = 20 ) o gl (0.0.18)
where Npjx : L — K is the norm map and ¢(X) is the unique power series in I, [[X]]
such that g(v,,) = u. Reciprocally, the congruence (0.0.18) implies (0.0.17). Hence, proving
(0.0.18) would provide a new proof of (0.0.17), without the use of Chapter 2.

The methods used to obtain (0.0.14) and (0.0.18) were inspired by the work of Kolyvagin
[21]. But Kolyvagin on the other hand had a direct proof of his analogue of (0.0.18). The
ingredient he used is the logarithm, which allows him to swing between the trace and the
norm.

10



Chapter 1

Formal Drinfeld modules

The idea of formal modules was first introduced by Drinfeld in his paper [11]. In this
chapter, we consider a special case of these formal modules, the so-called formal Drinfeld
modules which were studied by Rosen in [29]. We will rely on Rosen’s paper to define and
state the main properties of formal Drinfeld modules. In all this chapter, let K be a local
field of positive characteristic p. Let Ok be its valuation ring and py be its maximal ideal.
We denote by ¢ the order of its residue field Ok /p-.

1.1 Definitions and first properties

For an O-algebra B, let B{{7,}} be the twisted power series ring consisting of all power
series Zizo bﬂ'}i, such that the b; belong to B and 7, is the p-Frobenius element satisfying

v = a1, Vo € B. (1.1.1)

Let v : Ox — B be the structure map and D : B{{7,}} — B be the ring homomorphism
that assigns to a power series ), bﬂ'; its constant term by. Let d be the integer such that
p? = q. A formal Drinfeld Ox-module over B is a ring homomorphism

p: O — B{{T]f}}
a+— pPa

for a positive integer s < d, satisfying
(i) Va € Ok, D(pa) = 7(a),
(ii) p(Ox) Z B,
(iii) pr # 0 for one (and hence all) prime 7 of K.

This definition goes back to Rosen [29], and is a special case of formal Ox-modules over
B, introduced in the first place by Drinfeld in |1 1]. Indeed, a formal Ox-module over B is
defined as a pair (F), f), where F'is a formal group over B and f is a ring homomorphism from

11



Ok into End(F), satisfying D o f = 7. Namely, F' is a formal power series in B[[X, Y]] such
that F(X,Y) = F(Y,X), F(X,0) =X, and F(X,F(Y,Z)) = F(F(X,Y),Z). Moreover, the
image f, of an element a in Ok is an endomorphism of F', i.e. it is a formal power series
in B[[X]] such that f,(F(X,Y)) = F(fa(X), fa(Y)). If we take F' to be the additive group
G.(X,Y) = X +Y, the endomorphisms of F' are all of the form Y _,., b;X?". Hence, we can
identify End(G,) with the twisted power series ring B{{7,}}. For more details on the general
case, one may check |11, §1] or [10].

As Rosen stated in [29, p 239|, formal Drinfeld modules exist in abundance. The subse-
quent examples show three ways to generate families of formal Drinfeld modules.

Example 1.1.1. Fix a prime 7 of K and let f(X) = Z?:o f;X?" be a polynomial with
coefficients in Oy, satisfying

(i) fo=mand f;=1.
(i) f(X)= X7 mod pg.

Such polynomials are called Carlitz polynomials |3, Definition 1.1]. By Lubin-Tate theory
(see for instance |23, Chapter 8|), we can associate to each Carlitz polynomial f, a ring
homomorphism [ | : O — Ok[[X]] such that

[a]f(X) =aX mod deg2 and folaly=][a]fof

for all @ € Ok. The maps [ |; are the so-called Carlitz modules, they are a basic example of
formal Drinfeld modules.

Example 1.1.2. We will construct a formal Drinfeld module out of a standard Drinfeld
module as Rosen explained in §4 of his paper [29]. Let L be a global function field of
characteristic p. Let oo be a place of L and A be the Dedekind ring of elements of L regular
outside oco. Let M be an extension of L and let p be a Drinfeld A-module over M, that is a
ring homomorphism from A to M{7¢} satisfying D(p,) = afor alla € Aand p(A) ¢ M. This
definition goes back to Drinfeld [11]. One may also find more details on standard Drinfeld
modules in [15]. We denote by C' the integral closure of A in M, and we let I be a maximal
ideal of C. Suppose p has stable reduction at /. This means that the coefficients of the p, are
in the local ring C} for all @ € A, and the reduction a — p, of p modulo I is also a Drinfeld
module. Hence, we can extend p to Ap, where P = AN I. Indeed, one can easily see that p;
are invertible power series in C;{{7J}} for all s € A\ P. Therefore, we define the map

p:Ap — C[{{Tg}}

a -1
g = PaPs -

The last step in this construction is the completion. For that, let Cr be the completion of
C' in the I-adic topology, and Ap be the completion of A in the P-adic topology. Since
C; C Cy, we can see p as a map from Ap to C’[{{Tg}}. Finally, we extend p by continuity to
p:Ap— C’I{{Tg}}. The new map p is a formal Drinfeld module, called the completion of p
at I.

12



Example 1.1.3. Suppose B = Oy, is the valuation ring of a finite extension L of K. Let
7 be a fixed prime of K, then we know that every a € Ok can be uniquely written as
a =Y 5o, where the a; € F,. Let f be a power series in B{{7}} such that D(f) ==
and f # 0 mod px. We set p, = Y ;50 a:f*. Then a — p, is a well defined formal Drinfeld
module.

In all that follows, the formal Drinfeld modules considered are ring homomorphisms from
Ok to B{{7}}, where

T = T;l (1.1.2)

is the g-Frobenius element satistying 7o = 297 for all z € B. For the rest of this chapter,
we suppose B is an integral domain and we denote by De, (B) the set of formal Drinfeld
Or-modules defined over B.

Lemma 1.1.4. A formal Drinfeld Og-module p over B is injective.

Proof. This is Lemma 1.1 in [29]. Let a € Ok \ {0}, then we can write a = ur*, where u is
a unit of K, 7 is a prime of K and k € N is the valuation of a. Hence, we have p, = p,p~.
Since B is supposed to be an integral domain, then B{{7}} has no zero divisors. Hence,
it suffices to say that both p, and p, are non zero power series in B{{7}}. This is clearly

true because p, is invertible in B{{7}} and p, is non zero by the very definition of a formal
Drinfeld module. O

Let f =Y .,.,bim" be a power series in B{{r}}. We set ord.(f) to be the least integer
such that b; # 0. Let 7 be a prime of K, then we define the height of p by ht(p) = ord, (p,).
Clearly, the height well defined and is independent of the choice of the prime 7. Moreover,
if the structure map v : Ox — B is injective, the height of a formal Drinfeld Ox-module
defined over B is always zero.

Lemma 1.1.5. Let p € Do, (B). Then for all a € O, we have ord,(p,) = ht(p)p(a).

Proof. See |29, Lemma 1.3]. The proof of this lemma is immediate if we write a as a = urn®

as we did in the proof of Lemma 1.1.4. O

Definition 1.1.6. Let p and p’ be two formal Drinfeld Og-modules over B. A homomor-
phism from p to p’ is a power series g in B{{7}} such that gp, = pl,g for all a € Ok. The
power series ¢ is an isomorphism if it is further an invertible power series in B{{7}}.

Lemma 1.1.7. Let p,p' € ﬁ@K (B). If there exists a non-trivial homomorphism from p to
p', then ht(p) = ht(p’).

Proof. This is Lemma 1.5 in [29]. Tt follows immediately from the definitions. O

Now, we will restrict ourselves to the case where B is the valuation ring of a finite extension
of K. Thereupon, let L|K be a finite extension of local fields, let Oy, be its valuation ring
and p; be its maximal ideal. We note that the structure map in this case is the inclusion
map from Ok C Oy.

Definition 1.1.8. A formal Drinfeld Og-module p defined over Oy is said to have stable
reduction if the ring homomorphism p: Ox — Or/p{{7}}, obtained by reducing modulo
pr the coefficients of p,, for a € Ok, is also a formal Drinfeld module.

13



1.2 The logarithm of a formal Drinfeld module

Let L be a finite extension of K, let let O be its valuation ring and p; be its maximal
ideal. We also denote by p the unique extension to L of the valuation of K. Let p € ﬁ@K (Op).
We define the action

a-,x=py(r) fora e Og and z € py. (1.2.1)

This is clearly a well defined action, since the power series p,(x) converges in the complete
ring Oy, for all a € Ok and = € py. This action of p makes of p;, an Og-module. We denote
this Ox-module by (py,-,).

A general construction in the case of formal Og-modules suggests that there exists a
logarithm map from (pz,-,) to L, viewed as an Og-module for the multiplication in L (see
[16, 21.5.7]). In §2 of [29], Rosen gave a detailed presentation of this logarithm map in the
case of formal Drinfeld modules. We follow his steps.

Proposition-Definition 1.2.1. There exists a unique power series A\, in L{{7}} such that
D(X,) =1 and

Appa = aX, forall a € O. (1.2.2)

The power series A, is called the logarithm of p, it converges on p;, and it gives a homomor-
phism of Og-modules from (py,,-,) to L.

Proof. This is [29, Proposition 2.1]. We will construct a power series A, satisfying D(),) =1
and (1.2.2). In particular, we want \,p, = w),, where 7 is a prime of K. Let

pwzw—l—ZbiTi and /\p:1+ZCiTi.

i>0 i>0
Then, by A\,pr = mA,, we get
(1 —71)e, = Z c;b? . (1.2.3)

1+j=n

j#n
These relations uniquely determine the coefficients ¢, of \,. Let us now prove that the
constructed power series A, satisfy (1.2.2). For that, let a € Ok. Then, we have \,p,p, =

TApPa, Which implies, together with A\,pr = 7, that

)\ppa)\;lﬂ = 7T)\p,0a)\p_1. (1.2.4)

In other words, the power series /\ppa)\;1 commutes with 7. Yet, all the power series in
L{{r}} are elements of L. Therefore, A,p, = cA,', with ¢ € L. By comparison, we can
clearly see that ¢ = a, and hence, (1.2.2) is proven.

It remains to prove that \,(x) converges for all € p;. Using (1.2.3), we can prove by

induction that

p(ci) > —. (1.2.5)

Hence, if we take = € pr,, we get
pleia”) = p(e) + d'ulx) > =i+ ¢ plo). (1.2.6)
Thus, pu(c;z?) tends to oo as i tends to oo. This concludes the proof. O]
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Proposition-Definition 1.2.2. There exists a unique power series ¢, in L{{7}} such that
D(X,) =1 and

¢e,a = pee, forall a € Ok. (1.2.7)

The power series ¢, is called the exponential of p, it converges on the ideal

1
pri={z €pr; plx)> F}a (1.2.8)

and it gives a homomorphism of Og-modules from py 1 to (pz,-)).

Proof. This is [29, Proposition 2.2|. If we set ¢, = /\;1, we can easily see that D(\,) =1
and e,a = pqe, for all a € Og. The uniqueness can be deduced by reproducing the same
arguments as in the proof of Proposition-Definition 1.2.1. We can further deduce from these
arguments that, if we write e, =14 Y., d;7’, we get

H(dz) > —(1+q+---+qi_1). (1.2.9)
Now, let « € pr. ;. Then,

7

p(diat) > 2

i ¢'p(x) =4 <u(x) _L- q_i) > 0. (1.2.10)

q—1
Thus, p(dz®) tends to oo as i tends to oo. This shows that e,(z) converges and e,(z) €
br. O

Proposition 1.2.3. Let r be an integer such that r» > q_il, where e is the index of ramification
of L|K. Then A, and ¢, are inverse isomorphisms of Ox-modules between (p},-,) and p}.
Moreover, (p7,-,) is a torsion free Ox-module.

Proof. This is |29, Proposition 2.3]. First, we note that p’; is indeed an Ox-module for the
action of p, since p,(p}7) C p}, for all a € Ok. Since we already know that A, is the inverse
of ¢, as power series in L{{7}}, it suffice to show that

p(Ap(x)) = p(x) and  p(e(z)) = p(x) (1.2.11)

for all x € p7. We will show this only for A,, for the proof for ¢, is very similar. Let x € p7,
and write

M) =2+ caf. (1.2.12)

i>1
By (1.2.5), for all i > 1, we have




because pu(zr) > q_%. As ¢' +i(1 — ¢) > 1, this implies that p(c;z9) > p(x), and therefore
that (A, (7)) = p(x). O

Remark 1.2.4. A key-point to prove Proposition 1.2.3 is to observe that

p(A,(z)) = p(x) and ple,(x)) = p(z) (1.2.13)

whenever pu(z) > qul. The equalities in (1.2.13) imply that A, defines an isomorphism from
(Pr1,:p) to pr1. This fact will be useful for us in the sequel.

Proposition 1.2.5. The Ox-module \,(p;,) is free of rank [L : K] and we have L = K\,(py),
where K\,(p) the set of all elements of the form ab, for an element a € K and an element
be /\p(pL)

Proof. We note first that A,(py) is an Og-module for the multiplication in L. Let x € pp
and e(L|K) be the ramification index of L|K, then pu(z) > By (1.2.5), we have

(L\K)
pO()) > min(a(e), —i + ¢'u(x))
) 1 . ¢
=Ry T )

1
Thus, for a sufficiently large integer I, we have \,(p;) C —lOL, where 7 is a prime of K.

1
Therefore A,(py) is free for it is a Ok-submodule of the free Ox-module —(’)L Now let us

prove that L = K\,(p). Clearly, we have K\,(pr) C L. Let v € L, then we can write
x = umy, where u is a unit of L and 7, is a prime of L. Then, for a sufficiently large integer

o 1,
i, we have um}m" € pr1 = A\, (pr1) C A,(pr). Therefore z = FUW%/TFZ e KX\, (pr). O

Although A, has an inverse as a formal power series, and as an Og-module homomorphism
over (p7,-,) for > 5 , the map A, is not necessarily injective. In fact, it is easily seen that

a torsion element of (pL, -») (i-e. an element w € py, such that p(w) = 0 for some integer
n > 0, where 7 is a prime of K'), annihilates ),, because 7"\,(w) = A,(pz(w)) = 0. The
kernel of A, is the subject of the following proposition.

Proposition 1.2.6. The kernel of the homomorphism A, : p; — L is the submodule of
torsion elements

W, :={w € pr; In>0such that pm(w) =0}, (1.2.14)

where 7 € K is a uniformizer. Clearly, W, 1, does not depend on the choice of 7.

Proof. See [29, Proposition 2.4]. Let w € Ker(},) and let r > . We know by the basic

properties of A\, that \,(p.(w)) = 7"A\,(w) = 0. However, p.(w) = p-(w) € p;™ C p7,
and A, is an isomorphism on p; by Proposition 1.2.3. Hence, p.-(w) = 0, which means that
w € W/,,L. L]
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Remark 1.2.7. (i) The torsion module W, j, is finite. Indeed, we have seen in Proposition
1.2.3 that for r large enough, (p7,-,) is torsion free. Hence, there exists an injection

WL < pr/pL- (1.2.15)
This implies that the cardinal of W, ;, is less or equal then the cardinal of p;/p7}.

(i) If e < ¢—1, we can apply Proposition 1.2.3 for r = 1. We get that (py, -,) is isomorphic
to pyr, under the multiplication in L. In particular, (py,-,) is torsion free.

As we have seen above, the convergence domains of A\, and e, depend on the extension L,
and not on p. This yields the following local uniform boundness theorem.

Theorem 1.2.8. Let L|K be a finite extension of local fields of degree N. Let Op, be its
valuation ring and p; be its maximal ideal. Let p be a formal Drinfeld Ox-module over Oy,

then the cardinal of W, 1, is bounded by q%.

Proof. This is |29, Theorem 2.5|. Let r = L%j + 1, where e(L|K) is the ramification
index of L|K and |a] is the integral part of a € R. By Remark 1.2.7, the cardinal of W, , is
less or equal then the cardinal of py/p%, which is equal to ¢ "V/EE)  where f(L|K) is the
inertia degree of L|K. But

e(L|K)

(r = D) = |5 ALLK)

-1

FIR) = (1.2.16)

JHLIE) < .

This concludes the proof. O

1.3 Torsion points and abelian towers

At the end of the last section, we saw results on the size of the torsion modules in a finite
extension of K. In this section, we will study the structure of the torsion modules in an
algebraic closure of K, as well as the field extensions obtained by adding torsion elements to
K. As might be expected, these field extensions form abelian towers, and the compositum
of their union with the maximal unramified extension of K is equal to the maximal abelian
extension of K.

Let €2 be an algebraic closure of K, and still denote p the unique extension of p to 2. Let
(Q, 1) be the completion of (2, u). If F C Q is an extension of K, we denote O the valuation
ring of F' and pp its maximal ideal. Let H C €2 be a finite unramified extension of K, and
let p € Do, (Og). As in (1.2.1), p induces an action on pg, making of it an Ox-module:

a-,x=pg(r) fora e O and x € pg. (1.3.1)

Let n > 0 be an integer and let 7 be a fixed prime of K. We define the p}-torsion submodule
of (pas -p) as
V' ={z €pa; pa(x) =0 Va € pi}

— {2 € pa; pee(x) = O},
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The submodule of all torsion elements in (pg, ) is then the union of the V* for all integers
n > 0. We denote this union by V,. We obtain an increasing sequence of Og-modules

0o=V)cvyc.---cvyic---cV, (1.3.2)

In order to study the submodules V', we need to know more about the power series pyn.
For that, we state and prove the Weierstrass preparation Theorem 1.3.3 below. We follow
Rosen’s method [29, §3] for the proof.

Theorem 1.3.1. Let F' be a local field and let O be its maximal ideal. Fix a positive integer
N and let f =3, ,b;7" be a power series in Op{{7}} such that b; € pp, the maximal ideal
of O, for i < N, and by is a unit in F. Let g € Op{{7}}, then there exists unique elements
Q and R in Op{{7}} such that ¢ = Qf + R, where R =0 or deg,(R) < N.

Proof. We give a sketch of the proof. A full proof can be found in [29, Theorem 3.1|. Let 7p
be a prime of pp, then we can write f = 7P + U7, where P is a polynomial in Op{7} of
degree less than N, and U is an invertible power series in Op{{7}}. Assuming that @) and
R exist, we will determine the shape of ). Define

t: Op{{r}} = Or{{r}}
Zaﬁi — Zaﬂi_N.

>0 i>N

Then, we have t(g) = t(Qf) = t(qnsP) +qU. Let E be the operator on Op{{7}} defined by
E(h) = t(hmyP)U™!, then t(g)U ! = (Id+FE)(q). Hence, we get ¢ = > ,~,(—=1)'E*(t(g)U "
We must then verify that this series in convergent and that it fulfills the needed properties.
Finally, the uniqueness of ) and R can be deduced from the properties of f. O

Definition 1.3.2. Let F' be a local field. A polynomial in Op{7} is said to be distinguished
if it is monic and all its coefficients, except for the leading one, are in pp.

Theorem 1.3.3. (Weierstrass Preparation Theorem) Let F' be a local field and N be a
positive integer. Let f =Y., bi7" € Op{{7}} be such that b; € pp for i < N, and by is a
unit in F. Then there exist uniquely determined elements U and @ in Op{{7}}, such that U
is a unit in Op{{7}} and @ is a distinguished polynomial in Op{7} of degree N, satisfying
f=UqQ.

Proof. Let g = 7. Applying Theorem 1.3.1, we can write 7% = Q; f + R. Reducing modulo
pr and comparing the coefficients, we see that R € pp{7}. We also see that @; is a unit in
Or{{7}}. Hence, we can write f = UQ, where Q = 7" — Rand U = Q. O

The Weierstrass preparation Theorem 1.3.3, applied to pn~, allows us to determine the
structure of the torsion submodules V. This is the subject of [29, Theorem 3.3|, where
Rosen proved that, if p has stable reduction of height & > 0, then V" is isomorphic to h
copies of Ok /pl. We will restrict ourselves to the case where h = 1, for this will be enough
for our purposes. As from now, we suppose that p has stable reduction of height 1.
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Lemma 1.3.4. There exists two uniquely determined sequences (U, )n,>1 and (@Q),>1 in
Op{{r}}, satisfying

(i) @, is a distinguished polynomial of degree 1 and U, is invertible.
(ii) pr = U1Q1 and Q,U; = Q2Us.
(111) QlUlUn—l = UnQn for all n > 2.

Furthermore, we have
Prn = UlUnQnQn—l e Ql- (133)

Proof. This is Lemma 2.1 of [28]. To prove this, we apply Theorem 1.3.3 consecutively to p,,
then to Q,U;, and finally to Q,U,U,,_; for n > 2. The hypothesis on the height of p imply
that the degree of ()1, and hence of all the @), is equal to 1. Finally, the decomposition
(1.3.3) of pyn can be proved by induction. O

The properties (ii) and (iii) of Lemma 1.3.4 imply that the polynomials @,, are of the form
@Qn = T + m,, where 7, is a prime element of H. Hence, the polynomial

is a distinguished polynomial of degree n, and P, (X) is a separable polynomial of degree ¢".

Therefore, since U; and U, are units in Og{{7}}, the torsion module V is exactly the set
of roots of P,(X) in Q.

Proposition 1.3.5. The cardinal of V* is ¢" and H(V")|H is a finite Galois extension.
Proof. This follows immediately from the above discussion. O

Denote Py(7) = 7°, and for n > 1, let

Pu(X) _ Qu(Pusi(X))
Pnfl(X) Pn71<X)

ha(X) = = (P (X)) 4 7y, (1.3.5)

because Q,(X) = X?+ 7, X. It is clear that the polynomials h,(X) are Eisenstein polyno-
mials, of degree ¢"~*(q — 1), satisfying

Pu(X) = hp(X) iy (X) - hy (X)X (1.3.6)

Since we can write P,(X) = [],cyn (X — v), the polynomials P, and h,, are independent of
the choice of 7, and only dependepnt of p, for the set V* itself depends only on p. Hence,
from (1.3.5), we deduce that the primes m,, and thus the polynomials @, are independent
of the choice of m and only dependent of p (see Corollary 2.2 and Remark 2.3 in [28]).

Proposition 1.3.6. The set V* \ V! is the set of roots of h,(X). Moreover, if vy is an
element in this set, the extension H(uvg)|H is totally ramified of degree ¢" '(q — 1), and

NH(vo)|H(UO) = Tn.
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Proof. This is |28, Proposition 2.4|. Let vy be a root of h,(X). By (1.3.6), vy is a root of
P,(X) and hence an element of V;*. Suppose v is in V;*~!, hence it is a root of P,_1(X) and
hence a double root of P,(X). This contradicts the separability of P, (X). Since the cardinal
of VI'\ Vp"_1 is ¢""1(q — 1), which is equal to the degree of h,(X), it is then exactly the set
of all roots of h,(X). Furthermore, the degree of the extension H(vg)|H is ¢"'(q — 1), the
polynomial h,(X) being Eisenstein. Finally, we have Ny (vo) = (—1)%e")p, (0) = m,.
Thus, H(vg) is totally ramified over H, for the norm group N(H (vy)|H) contains the prime
7, of H. O

Proposition 1.3.7. (i) Let vy be an element of V* \ V. Then V' = Ok -, vy and the
map defined by a +— p,(vg), for a € Ok, induces an isomorphism of Og-modules

(ii) We have

pr -V =Vt for n>i>0. (1.3.8)
Proof. This is inspired by [18, Lemma 4.8]. If vy € V* \ V7!, it is clear that the map
a — pa(vg) is @ homomorphism of Ok-modules from Ok to Vp". By the definition of Vp”, we
know that p% -, vo = 0 and pit » o 7# 0. Hence, the kernel of this homomorphism is an
ideal of O, containing p7, but not p; !, hence the kernel is equal to p%. This implies the
isomorphism (1.3.7), because Ok /pf and V' are both of the same cardinal ¢". Moreover,
we deduce that vy is a generator of V" as Og-module. This proves (i). Let us now prove (ii).
Using part (i), we see that pri(vo) is a generator of V'~ as Og-module because pri(vo) € V'™
and pri(vo) € V771 Thus we can write

pZK . ‘/;)n = 7Ti p OK p Vo = OK p pwi(l)()) = ‘/pn—i‘ (139)
[l

For each a € O, define the map

Eq ' Vpn — Vpn (1.3.10)
ﬁ = a 'pﬁ = pa(ﬁ)'

Then ¢, is an element of End(V}'), the ring of all endomorphisms of the Ox-module V.
Denote by Aut(V}") the group of all automorphisms of V', then Aut(V*) is the multiplicative
group of all invertible elements in the ring End(V}"). Hence, if u is a unit of K, &, belongs
to Aut(V}") because g,1 = ¢,

Proposition 1.3.8. Let Ux denote the group of units of K. For all n > 0, we have a ring
isomorphism

Ok /vy — End(Vp”) (1.3.11)
and a group isomorphism

Z/[K/Z/{Km — Aut(Vp"), (1312)
where Uk, = 1 + pk.
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Proof. This is inspired by Proposition 4.9 in [18]. The map a — ¢, defines a surjective ring
homomorphism Ok — End(V}"). Indeed, let € € End(V}') and let vy € V;* \ V"' Then by
Proposition 1.3.7(i), the Ox-module V" is generated by vy and e(vp) = a-,vo for an a € O.
Therefore, for all & € V' = Ok -, vy, we have e(a) = a -, o so that € = ,. This proves that
the map a +— &, is surjective. Since pf -, V' = 0 and Pt V= Vpl # 0 by Proposition
1.3.7(ii), the kernel of this map is exactly p%. This yields the isomorphism (1.3.11). The
isomorphism (1.3.12) follows immediately because Uy /U ,, is the multiplicative group of the
ring Ok /pf and Aut(V)') is the multiplicative group of the ring End(V}). ]

Let H} = H(V}) and H, = H(V,). The two following propositions give a description of
the Galois groups Gal(H}|H) and Gal(H,|H).

Proposition 1.3.9. There exists a surjective group homomorphism
L, :Ux — Gal(HﬁH) (1.3.13)

defined by I',(u)(a) = pu(a) for all u € Uk and o € V. The kernel of this homomorphism
is Z/{Km.

Proof. See discussion before Proposition 2.5 in [25]. Let o € Gal(H}|H). Since o is contin-
uous, we have p,(o(a)) = o(ps()) for all @ € O and a € V. In particular, for a = 7",
we get prm(o(a)) = o(pem(a)) = 0 for all a € V. Thus, o(a) € V' and o induces an
automorphism of V'. Therefore, we get an injective group homomorphism

Cal(H"|H) = Aut(V). (1.3.14)

However, by the isomorphism (1.3.12) and Proposition 1.3.6, if vy is an element of V*\ V'~
we have

#Aut(V)') = #Uk [Ukn = ¢" (q—1) = [H(vo) : H] < [H} : H| = # Gal(H}'|H), (1.3.15)

where #S denotes the cardinal of a set S. Hence the map (1.3.14) is actually an isomorphism.
Together with (1.3.12), this implies that I',, : Uy — Gal(H}|H) is well defined and is of kernel
Uk .- ]

Corollary 1.3.10. Let 0 < 4 < n. The isomorphism Uy Uk, ~ Gal(H}|H) induces the
isomorphism

Urci/Urn ~ Gal(H'|H). (1.3.16)
Proposition 1.3.11. There exists a topological isomorphism
I': Uk — Gal(H,|H). (1.3.17)

which induces the homomorphism I', : Ux — Gal(H}|H) of Proposition 1.3.9 for all non
negative integers n.
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Proof. See Proposition 2.5 in [28]. It is clear that the following diagram
Uy 5 Gal(H? | H)
ey
Gal(H}|H)
is commutative, the vertical map being the canonical map. Thus, we have
I Ui = imUx /Uy, — lim Gal(Hy|H) = Gal(H,|H). (1.3.18)
O

Remark 1.3.12. The isomorphism (1.3.14), together with (1.3.15), shows that the field
H? = H(V}') is equal to H(vg) for any element vy in V* \ V'~'. Therefore by Proposition
1.3.6, the extension HJ'|H is totally ramified of degree q¢" (g — 1). Moreover, the fact that
N (wp) s (v0) is a prime of H implies that v is a prime of H}.

Lemma 1.3.13. Let v € V" \ V! so that H} = H (uo).
(i) The complete set of conjugates of vy over H is V" \ V=,
(ii) Let 0 <i < n. The complete set of conjugates of vy over H;; is vy + Vp”*1.

Proof. This Lemma is analogous to [18, Corollary 5.4]. By Proposition 1.3.9, the set of
conjugates of vy is the set {w -, vo; u € Uk}, which is, by Proposition 1.3.7, is equal to
Vi V'p"*l. Similarly, by Corollary 1.3.10, the set of conjugates of vy over H; is the set
{u-,vo; u € Ug;}, which is, by Proposition 1.3.7, is equal to vg + V;*~'. O

For a finite separable extension F’|F of local fields, let mp/ | be the fractional ideal of Op
defined by
Mpp = {CC € F/; TF/‘F(J)OF/) C OF} D Op. (1.3.19)

As usually defined, the different Dy of F |F' is the inverse ideal of mpp

Dprjp i= Wy . (1.3.20)

We recall that Dp/p is contained in Op/. Moreover, we know that if F”|F' is unramified, then
Dpip = Op/, and if F'|F is totally ramified, then Dp/p = ¢'(w)Opr, where w is a prime
element of F” and ¢g(X) is the minimal polynomial of w over F. Furthermore, if F”|F is a
finite extension of local fields such that F' C F' C F”, we have

For more details, the reader may check |18, §2.4].

Lemma 1.3.14. The different of the extension H;L|K is generated by an element of valuation
1
n———.
q—1
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Proof. The proof of |6, Lemma 3| is suitable for our case. First, note that we have Dy =
DH;L‘HDHW. Since H|K is an unramified extension, then Dyx = Oy. Now, let us compute
Dpnii- Let vg € VI \ Vp”’l, then, by Remark 1.3.12, vy is a prime of H} = H(vy). By
Proposition 1.3.6, the minimal polynomial of vy is the polynomial h, defined in (1.3.5).
Hence, Dyry i is generated by hy,(vg) because H'|H is totally ramified. By the very definition
of h,, we know that

hn(X)P,—1(X) = P,(X) (1.3.22)

where P = Il,ey (X — v), for a positive integer [, is the polynomial defined in (1.3.4).
Differentiating (1.3.22) and evaluating at vy we get h (vo) P,—1(vo) = P/ (vo). Since pu(vg) =
q”+(q—1) < /JJ(U) for all v € Vpn_l, then

(Po-1(v0)) = Z ((vo)) = —. (1.3.23)

q—1
UGV,;"'71

Moreover, since P, € Og{7}, we have P/ (vy) = P,(0) and

pPrwo)) =p( T o)= D nwlo)=D #V\V; p(w)

vev\ {0} veVy\{0} i=1
i—1
=¢ (¢q—1) X ——= =n,
¢ Hg—1)
where v; is any element of V' \ V'~ for i € {1,---,n}. This concludes the proof. O

Lemma 1.3.15. Let L be a finite separable extension of K and let z € L, then

w(Trx(2) = (@) + w(Drix) ], (1.3.24)
where |a] is the integral part of a € R. In particular if L = H, we have
H(Tagie(o) = Lta) = — . (1.3.25)
Furthermore, for i < n, we have
(T en i () > p(@) +n— i — p(v;), (1.3.26)
where v; is an element of V/\ V7.

Proof. See |6, Lemma 4]. Let k = [p(x)+u(Drix)| then 20, C p’}(DZﬁK. Thus Tk (2Op) C
ph-. This proves (1.3.24). By Lemma 1.3.14, we can see that the generator of Dy 1s of val-

uation n—i. Hence, for k = L%J, we have T s (2Oms) C Tnja (pIIZIiD;{}ﬂHi) C
JARYS prp PP P p1Hp
p%.. Thus, we have
w(Trnims (2)) = kp(vi) > p() +n—i— p(v). (1.3.27)

O
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Let K, € Q be the maximal unramified extension of K. Denote ¢ the Frobenius auto-
morphism, then Gal(K,,.|K) is generated by ¢. We will dedicate the rest of this section to
study the fields K, (V') and K.,,(V,). For that, we need the two following propositions, of
which we omit the proofs. The interested reader may check Lemma 3.11 and Proposition
3.12 of [18].

Proposition 1.3.16. Let F' C Q be an unramified extension of K, such that F|K is of finite
degree or F' = K,,. Let a and b be elements in O such that fi(a) = i(b) =t > 0, and let f;
and f — 2 be elements of Oz[[X]] satistying

filX)=aX and fo(X)=0b0X  mod deg 2, (1.3.28)
and
fi(X) = fo(X)=X? mod pp. (1.3.29)
If there exists m elements a, - - - , a,y, in Of such that aftil = a/b, then there exists a unique
power series 0 € Op[[ Xy, -+, Xn]] such that

0(X1,-, Xp) =Xy + 4 amX,, mod deg 2 and fiof =0 0f,  (1.3.30)

Here, 69" denotes the power series obtained from 6 by applying ¢' to the coefficients.

Proof. This is Proposition 3.1 of [28]. It is a generalization of |18, Proposition 3.12|, where
Iwasawa proved the assertion for t = 1. His prove is adaptable to the case t > 1. O

The following proposition tells us that the «; of Proposition 1.3.16 exist.

Proposition 1.3.17. Let ¢t be a positive integer. Then, we have the exact sequences

0 Oxy, — Ok, £ O, =0, (1.3.31)
and
1= Uy, = Ug,, T Uz, — 1, (1.3.32)

where K!_ denotes the unique unramified extension of K of degree t in © and U denotes
the group of units of a valued field F'.

Proof. See |18, Lemma 3.11]. O

Let p/ be a formal Drinfeld Og-module over Oy, having stable reduction of height 1. Let
n be a non negative integer and let P? and le" be the polynomials defined in (1.3.4) attached
to p and p’ respectively. Then, the constant coefficients a of P? and b of P?" are both of
valuation n. Hence, by Proposition 1.3.17, there exists a unit u in K, such that u#"~! = a/b.
Proposition 1.3.16, applied to f; = P?', f, = P? and m = 1, shows that there exists a unique
power series 0, in Og, [[X]] such that

0,(X)=uX mod deg 2 and PF o6, =6 o P’ (1.3.33)
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We also have 0,(X +Y) = 60,,(X) + 6,(Y). Indeed, if we denote M(X,Y) =6,(X +Y) and
N(X,Y)=6,(X)+0,(Y), we get

MX,Y)=NX,Y)=X+Y mod deg 2 and P” oM = M¥*" o P?. (1.3.34)

However, since P? and P? are both additive, we also have P? o N = N¥" o P?. Therefore, by
the uniqueness property in Proposition 1.3.16, we deduce that M (X,Y) = N(X,Y). Hence,
6, induces an isomorphism of F-vector spaces

0,V — VL. (1.3.35)

Corollary 1.3.18. Let R™ be the set of formal Drinfeld Ox-modules having stable reduction
of height 1 and defined over O, . Then K., (V}') does not depend on the choice of p in R*.

Proof. This is Corollary 3.3 in [28]. If p and p’ are in R*, then the discussion above shows
that there exists a power series 0, in Og, [[X]] that defines an isomorphism V' — V7.
Hence, we get

because KUI(VP”) is complete, being a finite extension of the complete field K,,. This im-
plies that K,,(V}) C K. (V,;'). The second inclusion can be obtained identically, so that
K (V) = Kur (V). m
Lemma 1.3.19. Let E[F be a finite extension of local fields such that K C F' C £ C (.
Then FF = E. Moreover, we have EN F' = F' if E|F is separable.

Proof. See |13, Lemma 3.1|. We have the obvious inclusion EF C E. Moreover, the extension
EF|F is finite, then EF is complete for the ji-topology. Hence, EF D E is closed in 2. Thus,
we get EF = E. Suppose now that E|F is separable. We may further suppose that E|F is
a Galois extension. Indeed, if E|F is separable, then there exists a field extension E’ of £
such that F C E C E' and E'|F is Galois. Yet, to prove EN F = F, it is sufficient to prove
E'NF = F. Hence, we may replace E by E’. Under this assumption, E|F is a finite Galois
extension and

[E:F|=[EF:F)=[E:ENF). (1.3.37)
However, since every automorphism in Gal(E|F) can be uniquely extended to an automor-
phism in Gal(E|F), we get

[E:F|<|[E:F]. (1.3.38)
The result follows because F ¢ ENF C E. O

Theorem 1.3.20. For a positive integer m, let R™ be the set of formal Drinfeld Ox-modules
over Ogm having stable reduction of height 1, where K7} is the unique unramified extension
of K of degree m in (). Let R* denote the union of all R™. Then K,,(V}') does not depend
on the choice of p in R*®. Moreover, K,,(V,")|K is an abelian extension of Galois group

Gal(K, (VI K) & Gal(K, | K) X Usc [Us . (1.3.39)
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Proof. This is [28, Theorem 3.4]. Let p, p' € R™ and let £ = K,,.(V') and E' = K,,.(V}}).
Then, by Lemma 1.3.19, we have £} = K, K,.(V)') = K,,(V})') and E' = KWKM(V[)’}) =
Kur(V}}). Hence, by Corollary 1.3.18, we get I = E’. Moreover, we know that EE’ is a finite
separable extension of E' and of E’. Then, using the second assertion of Lemma 1.3.19, we

can write
E=ENFEE =FENEE =F'. (1.3.40)

That said, we can suppose that p € R!. By Proposition 1.3.9, we conclude that K(VIK
is an abelian extension of Galois group isomorphic to Uk /U ,,. Moreover, it is a totally
ramified extension by Remark 1.3.12. This implies that K (V') N Ky, = K, so that

Cal(K,, (V!)|K) = Gal(K,,|K) x Gal(K(V!")|K)
~ Gal(Kou|K) x U Uscn.
O

As mentioned in the beginning of this section, the compositum of the union of the abelian
towers K (V') with K, is equal to K, the maximal abelian extension of K in Q. The proof
of this assertion employs the theory of Lubin-Tate formal groups. In fact, since we proved in
Theorem 1.3.20 that K,,.(V,) = K, K(V,) is independent of the choice of p in R*, we will
choose a particular formal Drinfeld module, constructed by the means of Lubin-Tate formal
groups. Let f(X) = 7X + X7 be be the basic Lubin-Tate polynomial. Then by Lubin-Tate
theory (see for instance |18, Chapter IV] or |23, Chapter 8]), for each a € Ok, there exists a
unique power series [a]; = > .o a;7" € Oxg{{7}} such that

[a]f(X) =aX mod deg2 and fola];=[a]fo f. (1.3.41)

It is easy to see that [7]; = f. Just as we defined the torsion modules for the action of a
formal Drinfeld module in (1.3.1), we can define the torsion modules for the action of f

a-fx=lalf(x) fora € Ox and z € pg. (1.3.42)

If we denote T the torsion submodule of pg, then we know that K,,.(7f) = K (see |18,
§6.2]). Now we define the formal Drinfeld module p/ : Ox — Ox{{7}} by p} = Y5 @’

for every a € Ok. Clearly, p’ is an element of R' and T} = V,. This concludes the proof.
We sum up this discussion by the following theorem (see [28, Theorem 3.5]).

Theorem 1.3.21. For any p € R*, we have

K. (V,) = K®. (1.3.43)

1.4 The norm operator of Coleman and the Coleman power
series

In his paper [9], Coleman introduced his norm operator to prove a theorem on the in-
terpolation of torsion points of Lubin-Tate formal groups. His work is a generalization of a
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previous work of Coates and Wiles ||, who proved similar results for units in the case of
formal groups of height one attached to elliptic curves with complex multiplication. Yet,
Coleman’s approach was different, as the approach of Coates and Wiles only applies to
Lubin-Tate formal groups defined over Z,. In the case of formal Drinfeld modules, Hassan
Oukhaba [28, §5] proved an analogue of Coleman’s theorem |9, Theorem A|. Before we state
these results, we need some preparations. Let H, €2, m and p be as above.

Lemma 1.4.1. Let f € Og[[X]] such that f(X +w) = f(X) for all w € V. Then there
exists a unique power series g € Oy[[X]] such that go p, = f.

Proof. This is |9, Lemma 3|. We will prove by induction on n that there exists elements
a; € Og for 0 <17 <n —1 such that

n—1
Prfn=1=_ apk, (1.4.1)
1=0

where pl. = pr X --+ X pr i times and f, € Og[[X]] . This is obvious for n = 0. Suppose
that (1.4.1) is true for n. Then, since f(X +w) = f(X) and p2(X + w) = p(X), we have
f(X +w) = fu(X) for all w € Vpl. An adapted version of the Weierstrass preparation
theorem to power series in Og[[X]] (see for instance |23, Theorem 2.1]) shows that f,, — f,,(0)
is divisible by p,. Hence, there exists f,11 € Oy[[X]] such that f, — f.(0) = prfai1.
Therefore, (1.4.1) is satisfied for n + 1 if we put a,, = f,(0). Since p, belongs to the ideal
(X, ) of Ogl[X]], (1.4.1) implies that

f =Y aip, € [()(X,m)"Oul[X]] = {0}. (1.4.2)

i>0 n>0
If we put g(X) = > ;5 a; X", we get f = gopy. O

Let H((X)) be the field of Laurent power series with coefficients in H, and let H((X));
denote the subset of H((X)) consisting of all power series in H((X)) convergent on B’ =
pa \ {0}. We endow H((X)); with the compact-open topology with respect to B’. We recall
that the sets

Su(C,U) ={f € H((X)); f(C)cCU}, (1.4.3)
where C' C B’ is a compact and U C 2 is open, form a sub-basis of this topology. One can
observe that, on any compact of B’, the compact-open topology is the same as the topology
of uniform convergence.

Theorem 1.4.2. There exists a unique continuous map N, : Oy ((X)) — O ((X)) satis-
fying
Nox(F)ope(X) = T F(X +w) (1.4.4)

weV}

for all f € Ou((X)).

27



Proof. This is |9, Theorem 11]. First, we consider power series f € Oy[[X]]. We denote
LX) = [Luevy f(X +w). Obviously, we have L(f)(X +w) = L(f)(X) for all w € V).
Hence, by Lemma 1.4.1, there exists a unique g € Og[[X]] such that g o p, = L(f). We
set ./\/'M(f) = g. Now take f € Oy((X)), then there exists a sufficiently large integer N

such that pY f € Og[[X]]. We set N, - (f)(X) = XN, . (pY f). This satisfies the required
conditions. Indeed, we have

XTNN, (Y ) 0 pe(X) = pr™M(X) [] PN (X +w) f(X + w)

weV}

PN (X)) [T PY X F(X 4 w)

weV,}

=[] r&x +w).

wev)
Finally, the continuity of NV, . follows from that of L. O
Proposition 1.4.3. The operator NV, . satisfies the following properties
(i) The operator N is multiplicative.
(ii) For n > 0 and f € Og((X)), we have

N () o pan(X) = T] F(X +w). (1.4.5)

wevy

(iii) Let n > 0 and let v, be a generator of V;," as Og-module. Let v,,; be such that
Pr(Upy1) = v,. Then,

Noa(F)(wn) = Nppr g (f (Un11)) (1.4.6)

Proof. Part (i) follows immediately from the uniqueness. For (ii), we follow [1&, Lemma
5.9(1)|, proving it by induction. The equality is obviously true for n = 1 by Theorem 1.4.2.
Suppose it holds for n — 1, this means that

Ny () opei(X) = ] F(X+w) (1.4.7)

wEVpn_1

Let A be the set of representatives of the quotient group V' / Vpl. Then,

[T rx+w) =] I] f(X +a+w)=[[Noaf) o pe(X +a). (1.4.8)

weV a€A weV} acA

However, we know by Proposition 1.3.7 that V;]”_l =,V =m,A Hence, (1.4.8) becomes

[T rx+w)= ] Nowlf) (pa(X) +0). (1.4.9)

weV eV 1
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By the hypothesis (1.4.7), applied to N, -(f), we get

[I 71X +w) = Ny N () © o1 (pr(X)

wevy
= Ny (f) 0 pan(X).

This completes the proof of (ii). As for (iii), which is [9, Corollary 12 (ii)], we note first that
such a v, exists and is a generator of the Ox-module V;,"H. We have

Now(F)(0n) = Ny ) 0 pr(vnn) = [] F0nsr +w). (1.4.10)

weV}

Yet, by Lemma 1.3.13, the conjugates of v, over H) are the elements of the form v, 1 +w
with w € V!. The property follows. O

Let mg be a positive integer dividing [H : K] and let n € Ok be an element of valuation
w(n) = mg. Let u be the unit of K such that un = 7. We define the twisted operator N’
by

N(HX) =Ny (f) o pu(X) (1.4.11)
for all f € Oy((X)). Then N satisfies
N(fyop(X)= [] FX+w). (1.4.12)
weV,"0

Exactly as in Proposition 1.4.3, N is multiplicative and satisfies

N (fopp(X)= [ F(X+w) (1.4.13)

nmg

weV,

for all n > 0. Moreover, if v, and v,,11 are generators of V'™ and Vp(nH)m0 respectively such
that p,(vn11) = vy, then

N(f) (W) = N oerimoy ynmo (f (Vns1))- (1.4.14)
p |H
For the rest of this section, we suppose p is such that

py =7™ mod py. (1.4.15)

Lemma 1.4.4. Let f and g be two power series in Oy[[X]] such that f = g o p,, Then, for
all © > 0, we have

g=0 mod p<=f=0 mod p}° (1.4.16)
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Proof. We follow |18, Lemma 5.7]. The direct implication is clear. Let us prove the second
implication by induction. For ¢ = 0, (1.4.16) is clearly true. Suppose that it is true for

i —1 and that f =0 mod p’mo Hence, we also have f = 0 mod p%ﬁl)mo. This means that
f=n" 1f1 for some f; € OH[[ ]]. Moreover, by the assumption for i — 1, we have ¢ = 0

mO

mod pé and thus g = "¢y for some g; € Oy[[X]]. Therefore, we have f1 = g1 o p,.
Since f =0 mod p%', then f; =0 mod p7°. Since p, = 7™ mod py, we get

(XY =grop,(X) = f1(X)=0 mod p}e. (1.4.17)
Thus, g1 = 0 mod p° so that g = g1~ € pi7°Ox[[X]]. O
Proposition 1.4.5. Let f € Oy[[X]]. The operator N fulfills the following.

(i) If we denote by @ = ¢, where ¢ is the Frobenius element in Gal(K,,.|K), then
N(f)=f? mod py. (1.4.18)
(ii) Let ¢ > 1. We have

f=1 mod pi™ = N(f)=1 mod piitme, (1.4.19)

Proof. We follow [1%, Lemma 5.8]. For w € V" C pymo, we have X +w = X mod pymo.
Hence,

[T f(X+w) = fX)7 = (X)) mod pymo. (1.4.20)

wEVPm0

Moreover, the condition (1.4.15) implies that

N () 0 pylX) = K(H(XT™) mod py. (1.4.21)

The property (i) follows. Let us now prove (ii). Suppose f = 1 mod p% and let f, €
Ox[[X]] be such that f =1+ n'f;. Then

N(fopX)= T[] Q+nfX +w)=1+7AX)"" mod ypgme  (1.4.22)

mQ

weV,

because w € V" C pymo. This implies that

N(f)op,(X)=1 mod n'py. (1.4.23)

Let f, € Og[[X]] be such that N(f) = 1+ fo. Hence, f, 0 p, = 0 mod n'py and thus
f20p, =0 mod pg ™m0 Finally, Lemma 1.4.4 shows that f, =0 mod p(ZJrl o, O
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Lemma 1.4.6. Let Oy ((X))* denote the group of invertible elements in Oy[[X]]. Let f be
an element in Oy ((X))*. Let ¢ > 1, then

N ) od o
NFl(f@)_l od pi;. (1.4.24)

Proof. Let us first prove the Lemma for i = 1. If f € Og[[X]], we know by Proposition 1.4.5
(i) that N'(f) = f mod py. Hence, if f € Oy[[X]] N Oy ((X))*, it follows that

N(f)
I

Yet, it is obvious from (1.4.12) that N(f) and f have the same order with respect to X.
Therefore, for f € Oy[[X]] N Ox((X))*, we can write

=1 mod f? 7Ox[[X]]. (1.4.25)

N(/)
fe
Now, for any f € Og((X))*, we know that either f or f~! is in Og[[X]]. This means that

(1.4.26) is true either for f or for f~1. It follows that it is true for all f € Oy ((X))*. Finally,
to prove the Lemma for any ¢ > 1, we apply Proposition 1.4.5 for (1.4.26) iteratively. H

=1 mod py. (1.4.26)

Consequently, for f € Oy ((X))* we can define the limit

No(f) = lim N( 7 e op((X)). (1.4.27)
Then N satisfies
NN(f) = N=(f?) and % — 1 mod py. (1.4.28)

1.4.1 The case p € R™
In this paragraph, we suppose that p has its coefficients in the subfield K]° of H so that

py =77 mod ppmo. (1.4.29)

For n > 0, denote £} = H}™ and let (v,), be a sequence such that v,, = p,(vn41). Then,
for each n > 0, v, is a generator of the Ox-module V"™ and a prime element of E7.

Theorem 1.4.7. Let X, be the projective limit ILmn(E;})X with respect to the norm maps

and let M, be the set of all invertible power series f in O ((X))* satisfying N'(f) = f%.

Then the map
evy t My — X
o (577 w)

is a topological isomorphism.
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Proof. Let us give a sketch of the proof. For the full proof, see |28, Theorem 5.8|. Let
f € Mw. Tt is easy to see that f? € My and consequently,

N ( f“f’*("“’) = (1.4.30)

for all n > 0. Therefore, by (1.4.14), we deduce that (f“‘sfn(vn)) is indeed in X.,. This

shows that the map ev  is well defined. That ev y is injective follows from |9, Lemma 2a].
To prove that evy; is surjective, we first consider (z,), € @nOEg. For an integer k, let
g € Og[[X]] such that g? > (vg,) = 2op, and let fi, = N*(g# "). We then prove that (f)x is a
Cauchy, hence, a convergent sequence. Its limit f satisfies the seeked properties. Now for any
(Tn)n € lim (E")X there exists an integer e such that x,, € v;Op, because the extensions
E”]H are totally ramified. Then, the power series f(N°°)¢ satisfies the seeked properties. [

One may see this theorem as a generalization to mg > 1 of [9, Theorem A]. It is also a
generalization of |6, Theorem 11]. The proof of Hassan Oukhaba [28] is inspired by that of
Bars and Longhi [6]. One may also check the proof of [33, Theorem 13.38].
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Chapter 2

Explicit reciprocity laws in a particular
case

In this chapter, we prove explicit reciprocity laws for a special class of formal Drinfeld
modules having stable reduction of height one (see Theorem 2.3.12). After recalling the
reciprocity map, we inspect the Kummer pairing in the setting of formal Drinfeld modules
defined over local fields of positive characteristic. The method we use is inspired by Wiles

[34]-

Let K be a local field of positive characteristic p. Let Ok be its valuation ring and px be
its maximal ideal. We denote by ¢ the order of its residue field O /pg-.

2.1 The reciprocity map

Let L be a local field of positive characteristic p. There exists a continuous homomorphism
;. L* — Gal(L®|L) called the reciprocity map. We will state without proving the main
properties of ®;. The interested reader may check |18, §6.1| or [27, Chapter V, §1].

Proposition 2.1.1. The map ®;, satisfies the following
(i) @y, is injective.
(ii) The image of @, is dense in Gal(L®|L).

(iii) Let a € L™ of valuation ur(a) = k, where p, is the normalized valuation of L. The re-
striction of @ (a) to Ly, is equal to ¢¥  where ¢y, is the Frobenius element in Gal(L,,|L).

(iv) Let M be a finite abelian extension of L, then we have the following exact sequence

1 — Ny (M*) = L* 25 Gal(M|L) — 1. (2.1.1)
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(v) Let M be a finite separable extension of L. Then the diagram

M>* M Gal(Meab|M)

wl

L* —2 s Gal(L¥|L)
is commutative, the right hand map being the restriction.

The next proposition relates the norm residue map and the transfer map, which we recall
the definition. Let M|L be a finite separable extension. Let G be the Galois group of M|L
and H be the Galois group of M®|M. Let G’ be the commutator subgroup of G. Let
{o1,---,04} be the embeddings of M in Q over L. Then {6, , 54}, where sigma; is an
extension of o; to M, is a complete set of representatives of G/H. Then, we can write

Therefore, for every automorphism v € G, and every ¢ € {1,--- ,d}, there exists a unique
automorphism h;(y) of H and a unique j € {1,--- ,d} such that

Gy = hi(7)a;. (2.1.3)
Hence, we define the transfer map by
tM|L : G/G/ — H
d
V= H hi(7)-
i=1
Proposition 2.1.2. Let M be a finite extension of L. The following diagram

L* —2t 5 Gal(L®|L)

L

M* —2My Gal(Mab| M)

is commutative, the left hand arrow being the inclusion map.

2.2 The Kummer pairing and its main properties

Let €2 be an algebraic closure of K, and still denote p the unique extension of u to €.
Let (Q, /i) be the completion of (2, u). If F C Q is an extension of K, we denote Op the
valuation ring of F' and pp its maximal ideal. Let H C () be a finite unramified extension of
K, and let p € boK(OH) having stable reduction of height 1. Let m( be a positive integer
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dividing [H : K] and let n € K be an element of valuation p(n) = mg. Let n > 0 be an
integer and define

Wi =V ={x € pa; ppn(r) =0} and W, =1V, (2.2.1)

Let v, be a fixed generator of W' and denote £ = H}™® = H(W}'). Let L be a finite
extension of £ and 7 be a prime of K.

Lemma 2.2.1. Let a € p;,. There exists an element £ in pg such that p,» () = o Moreover,
the extension L(&)|L is abelian, of degree < ¢™°, and independent of the choice of £ satisfying

p(§) = a.

Proof. By Lemma 1.3.4, we can write p;nmo as

Prnmo Ul Unmg@nmg@nmo 1° Ql, (222)

where U; are invertible elements of Oy {{7}} and Q; = 7 + m;, each 7; being a prime of H.
We denote V,, = punU1Upm,, Where u is the unit such that n = un™0. Since V,, is invertible
in Og{{7}}, we have

Py (X) = o = Vo (P (X)
= Fumy (X) =
> P (X) =

=

)
o () =

where P,,,, is the polynomial defined in (1.3.4). However, V."!(a) € pr, hence, P, (X) —
V~1(a) is a polynomial with coefficients in L. Therefore there exists an element £ in € such
that P, (€) — V."'(a) = 0. Furthermore, since 0 = P, (&) = €77 mod pg, we have
€ € po. Moreover, the polynomial P,,,,(X) — V, () is of degree ¢"™, and all the elements

sv

of the set £ + W], which we recall is a set of ¢"™ elements, are roots of this polynomial.
This is true since W' is the set of roots of P, (X). Hence, it is separable and L(§)[L is a
Galois extension of degree < ¢ depending only on «. Finally, to prove that it is an abelian
extension, it suffices to notice that the group homomorphism Gal(L(§)|L) — W' defined
by o — o(&) — £ is injective. O

This lemma shows that we can define the map (, ), 1, :pr X L* — W such that

(@, B)p,pn = PL(B)(E) — & (2.2.3)

for a € p;, and B € L*, where { € pg is such that p,n(§) = . This definition is independent
of the choice of . Indeed, the proof of Lemma 2.2.1 shows that all the roots of p,»(X) = «
are of the form ¢ + w, where w € W . Hence,

L(B)(§ +w) — (§+w) = PL(B)(E) + Pr(B)(w) — & —w = Pr(B)(E) — &, (2.2.4)

because w € W} C L and ®(j) fixes L. We omit p in the index when there is no risk of
confusion. Exactly as in [34, 21| we have
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Proposition 2.2.2. The map (, )1, satisfies the following properties

(i) The map (, )L, is bilinear and Og-linear in the first coordinate for the action (1.3.1).

(ii) We have
(e, B)1n = 0<=f is a norm from L(§), where p,»(§) = a.

(iii) Let M be a finite separable extension of L, let o € py, and § € M*. Then (o, B)ppn =
(@, Nar(6)) Lin-

(iv) Let M be a finite separable extension of L of degree d, let a € py; and § € L*. Then
(@, B = (Tain(@), B) L

(v) Suppose L D E7* for m > n. Then
(O{, B)L,n - p'ﬂmfn((oh ﬂ)L,m) = (pnm*" (a)aﬁ)L,Tm

(vi) Let p' be a formal Drinfeld Ox-module isomorphic to p, i.e there exists a power series
t invertible in Oy {{7}} such that p/, = t™1 o p, ot for all @ € Og. Then we have

(Oé, ﬁ)p’,L,n = til((t(a)v ﬁ)p,L,n)'

Proof. (i) Let ay,a9 € pr and a € Ok. Let & and & be elements of pg such that
pn(&1) = oq and pyn(§2) = az. Then pyn (§1+a-,€2) = aq+a-, and the linearity on the
first coordinate follows. Let f;, B2 € L*. Since @ (5102) = ®1(51)PL(S2), the linearity
on the second coordinate follows from the fact that the map Gal(L({)|L) — W}
defined by o +— o(£) — £ is a group homomorphism.

(ii) This equivalence follows from Proposition 2.1.1 (iv).
(iii) This equality follows from Proposition 2.1.1 (v).

(iv) Let & be such that p,(£) = a. Let G be the Galois group of M®|L and H be the Galois
group of M®|M. Let {0y, ..,04} be the embeddings of M in 2 over L. We consider the
quotient group G/H. Then {di, .., 54}, where G; is an extension of o; to M is a set
of representatives for the left cosets Ho

We extend ®;(8) to M and denote it by ®,(8) € G. Therefore, for each i, there
exists a unique h; € H, and a unique j such that

5.0 (8) = hid;. (2.2.5)

By the properties of the transfer map ¢y, (see Proposition 2.1.2), we have
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(057B)M,n == (I)M<ﬂ)< ) _5
= tan(®L(B))(§) — ¢

— Hm(f) —¢
= Z(m(&) —¢) (2.2.6)

The last equality follows from the fact that h;(§) —&§ € W' C L. Using the notation
(v, hi) o = hi(€) — &, we can write

S (@shidaa = Bu(8)(3 (@5 €)= 33 (©)) (227)

Indeed, by (2.2.5) we get

= ;' ((a, hi) s+ €)
= (Oé, hz)M,n + 6-1_1<§>

because (, hi)yn € W) C L. Thus, by (2.2.6) and (2.2.7), we have (o, B)nn =
(22 0i(@), B)rm.

(v) If € is such that p,n(€) = «, then it also satisfies p,m (§) = p,ym-n(a). Hence the property

follows.
(vi) Let £ € pq be such that p;.(§) = a, hence we have p,«(¢(§)) = t(a) and
(t(@), B)prn = CrL(B)(t(S)) — t(E)
= H(®L(B)(E) — (&)
= H(®L(B) (&) =€)

= t((a, 8)p.Ln)-
[l

Lemma 2.2.3. There exists a constant cr,,, dependant only on L and n, such that for
a € pr, if we set a,, = pym-n(a) for m > n, we get p(a.,) > mmgy — cr,. Furthermore, the

1
map (, )z is continuous, and (a, )1, = 0 for all & € py, such that u(a) > nmg + 1
q J—

Proof. We follow [0, Lemma 15|. Let a € py and set u; := for j > 1 and

¢~ (g —1)
o := 00. Choose & a root of p,»(X) = a of maximal valuation. This is possible because the
equation p,«(X) = a has a finite set of solutions: § + W}'. We have

Q= Pyn (5) = Vn(ano (5))a (2-2-8)



where P, (X) = Myews (X — w) is the polynomial defined in (1.3.4) and V}, is defined in
the proof of Lemma 2.2.1. Therefore, we get

@) = (P (€) = D 1l — w) (2.2.9)
because p,n(X) = u"X mod deg 2. Let w € Wp. If u(§) # p(w), then pu(§ —w) =
minp(€), u(w) . 16 p(€) = p(w), then

p(§) = min{p (&), p(w)} < p(§ — w) < p(f), (2.2.10)

the last inequality being a consequence of the maximality hypothesis on p(¢). Hence we have
p(€ —w) = min{p(§), p(w)} for all w € W and

ple) = Y min{u(), p(w)}. (2.2.11)

weWwp

Let j > 0 be such that pj1 < p(€) < pj. If 0 < j < nmyg, the equality (2.2.11) yields

pla)= 3 w&+ 3 plw) = gu(€) + nmo — j (22.12)

weVj weWp\VJ

so that nmg — 7 + q_% < pula) <mmog—j7+1+ q_%. Now if j > nmy, by (2.2.11) we get
pu(@) = ¢"™0pu(§) so that

1 1
nme—j+ —— <0< ————— < pla) < ——— .
q_l q] nmo(q_l) q] nmo 1(q_1)
Since £ is also a root of p,m(X) = a,, for all m > n, we deduce by the same arguments
that u(a,) > mmo — j + q_%. Considering the degree of the extension L(§)|K, we see that
j < 2nmg + log,(e), where e is the ramification index of L|E}. Hence, we get

(2.2.13)

1
p(am) > mmg — 2nmg — log,(e) + — (2.2.14)
q —

1
Finally, if we suppose p(a) > nmg + v get j = 0, which implies that p((«, 5)r,n) >
q —_—

u(€) > qi_l for all § € L*. It follows that («, ), = 0 for all B € L*, because (o, 8)Ln

belongs to W, and the elements of W} \ {0} are of valuation less or equal to q%l. The
fact that the map (, )z, is continuous follows immediately since the reciprocity map @, is

continuous. ]

Remark 2.2.4. Let e be the ramification index of L|E7, then the constant c,,, from Lemma
2.2.3 is bounded as follows

—— < cppn < 2nmg + log,(e) — T (2.2.15)
q R
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Proposition 2.2.5. There exists a unique power series r = 1, € Og{{7}} such that

[T (X —w) =ropu(X). (2.2.16)

weWwp

Furthermore, the power series 7 is invertible in Oy {{7}} and satisfies

(z,7(x))pn =0, Vxep,\{0}. (2.2.17)

Proof. As in the proof of Lemma 2.2.1, we can write

Py (X)) = pun 0 Uy © Upyny © P (X). (2.2.18)

Thus for r = (pun 0 Uy 0Uppm, )~ we get P (X) = HwEWp" (X —w) =rop,m(X). It remains to
show that (z,r(z))., =0 for all x € p;, \ {0}. Take z € py \ {0} and ¢ such that p,(§) = z.
Then,

r@)=(ropp)© = ] (€ —w) = [ Nuen(&) (2.2.19)

weWp i
where ¢; are the pairwise distinct roots of p,»(X) = z. It follows that (z,7(x))r, = 0 by
Proposition 2.2.2 (ii). O
Lemma 2.2.6. Let r = r,, be the power series defined in Proposition 2.2.5. Let p’ be defined
by
ph=rop,or! (2.2.20)

for all @ € Ok. Then p' is a formal Drinfeld module having a stable reduction of height 1,
and we have (z,x), 1, =0 for all x € py \ {0}.

Proof. That p’ is a formal Drinfeld module having a stable reduction of height 1 follows
immediately from the fact that p itself is supposed to be a formal Drinfeld module having
a stable reduction of height 1. It follows from Proposition 2.2.2 (vi) that (x,2), 1, =
(7 @), 2)pn) = 7(0) = 0. 0

Lemma 2.2.7. If p is such that (z,2),1, =0 for all z € p;, \ {0}, then we have

be
1—5

(6,1 =0)pm = (—b"")in (2.2.21)

for all b € p;, \ {0} and c € p;.

Proof. We follow [0, Lemma 18]. To prove this result we use the property (z,z)r, = 0 for
x = ¢(1 —b). By bilinearity we get

(¢,1=0)p, = (cb,c)pn+ (cb,1 —b)p, (2.2.22)
and by induction
(e, 1 =Db)pm =Y (b, /") (2.2.23)
320
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This sum converges since only a finite number of terms is non zero by Lemma 2.2.3. However
we have 0 = (¢, e, = (b7, ') + (b, b) .. Therefore,

. . b
(e, 1 =)= (b0 )= (c) Vb )pn= (1‘3_ X b L. (2.2.24)

>0 >0

[]

2.2.1 The analytic pairing

In this paragraph, we suppose that L = E. We will define and state the main properties
of a pairing [, |z,, which we will prove equal to the Kummer pairing ( , )z, in the next
section.

Lemma 2.2.8. Let D,, denote the different of the extension L|K. For f € L*, choose a
power series f € Og((X)) \ {0} such that f(v,) = 5. Then,

f'(vn)

5 € pr (2.2.25)

Moreover, if we set

5, (8) = L0

mod D, (2.2.26)

then 4, : L™ — pzl /D, is a well defined map and is a group homomorphism.

Proof. First, let us prove (2.2.25). Let § € L™ and let f(X) € Og((X)) \ {0} such that
f(vn) = B. Then we can write f(X) = X°f,(X), where b = “PL and f,(X) is an invertible

w(vn)

power series in Oy[[X]]. Hence,
f'(vn) _ bup " fi(vn) + ) f1 (va) _ bfi(vn) + v fi(vn)
B szl(vn) Un.fl(vn)

Let g(X) € Og((X)) \ {0} be another power series such that g(v,) = 8. We can also write
g(X) = X°g1(X), where ¢;(X) € Og|[X]] is an invertible power series. To prove that §,, is
well defined, we need to prove that

f'(vn) = g'(vn)

-1
cp, -

€ D,. (2.2.27)

We have f'(v,) — ¢'(va) = v2(f1(vn) — g1 (vn)) because fi(v,) = gi(v,). Furthermore, by
Lemma 2.3.3, the power series f1(X) — ¢1(X) is divisible in Og|[[X]] by the minimal poly-
nomial ., (X) of v,, which we recall is defined in (1.3.5). This means that there exists
t € Ogl[X]] such that f1(X)—g1(X) = hpme (X)t(X). Thus, f](v,)—9i(va) = AL, (v,)t(v,).

nmo

This implies (2.2.27) because D,, = (hy,,,, (vn)) as stated in the course of the proof of Lemma
1.3.14. Therefore, 0,, (/) is independent of the choice of f such that f(v,) = 5. The fact
that ¢, is a group homomorphism is straightforward. O
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Lemma 2.2.9. Let m > n and let v,,, be such that v,, = pym-n(vy,). Then v, is a generator
of W, and for all § € L*, we have

Ov,, (B) =176y, (B)  mod Dy, (2.2.28)

Proof. Let € L* and f € Ou((X))\ {0} such that f(v,) = 8. Thus g = f o p,m-n satisfies
g(vy,) = B. The result follows immediately. ]

Lemma 2.2.10. The map [, |, 1 given by

[, Blp,pn = nin Trix (Ap(@)60,.(B)) “p Vn (2.2.29)

is well defined for all a € py, of valuation p(a) > qTQI’ and all 8 € L*. We drop p in the
index when there is no risk of confusion.

Proof. We need to show that nL” Trx (A (@)b) € Ok for every b € p;* and that

1
(e Ty (a)d) 2 g
for all d € D,,. By (1.2.13), we know that p(A,(c)) = p(e) . Thus the result follows from
Lemma 1.3.15. [l

Proposition 2.2.11. The map [, |, satisfies the following properties

(i) The map [, |L, is bilinear and Og-linear in the first coordinate for the action (1.3.1).

(ii) Let p’ be a formal Drinfeld Og-module isomorphic to p, i.e there exists a power series
t invertible in Og{{7}} such that p/ = t™t o p, ot for all a € Ok. Then we have

[, ﬁ]p’,L,n =t ([t(), B]p,L,n)-

Proof. The property (i) is clear, so we will only prove (ii). To do so, let v/, = t~!(v,) be a
generator of the Ox-module W7. Then, if f € Og((X)) \ {0} is such that f(v,) = 3, we
have fot(v),) = f(v,) = B so that

t'(vl) f (vy,
0, (8) = L oy, 5),
where (51’)% is the map defined in Lemma 2.2.8 corresponding to p/. Furthermore, we have
1
Ay ot = (t71)(0)A,. The result follows immediately since (¢71)'(0) = 70 O

Lemma 2.2.12. Let o € py, such that u(a) > 220 4 L4 and let 5 € L*. We

1
q q—1 gm0 (g—1)
have

[Oé, B]L,n = nin TL|K(a5vn (/8)) p Un-
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Proof. We need to prove that

1 1
s Trir(Ap(@)dy, (B)) p vn = o Trix(ady, (B)) *p Vn,
i.e. that
(Tr(ANp(@) — )by, (B)) = 2nmy.
We have 1
p((Ap(@) = a)dy, () = min{g'u(e) — 1} — g = 1)

The hypothesis on « implies that min{q‘u(a) —i} = qu(a) — 1 so that u(A,(a) — a)d,, (8)) >
nmo + = 7. Finally, we conclude using Lemma 1.3.15. O

For each m > n, let v,, € W;” be such that v,, = p,(vn41). In particular, we have
pnm—n(Um) = v,. Moreover, for each m > n, v,, € memo \ memo_l is a generator of W;” =
memo as an Og-module.

Lemma 2.2.13. Let m > n. Let 8 € (E})* and 3, € (E}')* be such that N, .(8n) = 3,
where N, ,, is the norm of the extension EﬂEg. We have

Tonn (00, (Bm)) = 1™ "00,(8), (2.2.30)

where Tm,n D By /Dy — E} /D,, is the map induced by the trace T,,, of the extension
E™|E".
p 1 =p

Proof. Tt is sufficient to prove the Lemma for m = n + 1. Let f € Oy((X)) such that
f(vns1) = Bus1. Then, the twisted norm operator A defined in (1.4.11) satisfies

N()@n) = Npit n(F(0n11)) = N1 (Basr) = 5. (2.2.31)

Logarithmically differentiating (1.4.12) with respect to X, we get

W(PomX)) _ g~ JX+w)y -y f’ | (2.2.32)

N(f) o py(X) e f(X+w wewy 7
However, we have
W () op(X)) _ (N
Nyomx) A S (2:2:35)
Evaluating (2.2.32) and (2.2.33) at v,,1, we get
25 Lo t0) _ s () (2:2:34)

w€W1 Un-i—l + w
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On the other hand, by Lemma 1.3.13, the set v, 11 + VVp1 is the complete set of conjugates of
Upt1 OVer E;}, so that

Z f ns1 + 0) :TnH,n((svnH(ﬁnH))- (2.2.35)

weW} Un+1 T ’UJ

]

Proposition 2.2.14. Let m > n. Let g € LX = (E})* and B, € (E]')* be such that
Ninn(Bn) = B. Let a € p, of valuation p(a) > = and set ay, = pym—n(a ) Then,

[Oém, ﬁm]E;”,m = [Oé, B]L,n- (2236)

Proof. We have

[arm Bm]EZ,",m = nim TE;”\K()‘p(O‘m)dvm (ﬂm)) p Um

= Tl A0 (Br)) ot by (122)
N ﬁim Trr (™" Ap(@) Ton (60, (Bim))) *p U

_nm" o v

= 77” TL|K<>\p( )5vn(5)) p rm:

1
by Lemma 2.2.13. Finally, this is equal to — Tk (Ay()0u,(B)) -p v = [, B]Ln- O
7777/

2.3 Explicit reciprocity laws

Keeping the same notations as in the last section, we let L = £’ and we suppose p is such
that
py =7M mod py. (2.3.1)

Lemma 2.3.1. Let f(X) € Og|[X]] be a power series and let « € pg satisfying f(a) = 0.
Then f(X) is divisible by (X — «) in Og|[[X]].

Proof. This is [18, Lemma 3.9]. Let f(X) =3, ,a;X" with a; € Og and set
bi = Z CLH_j_HOéj. (232)
Jj=0
Then we can easily see that g(X) = Y7, biX* € Og[[X]] satisfies f(X) = (X —a)g(X). O

Remark 2.3.2. Let F' C Q be a complete field containing K and suppose f(X) from Lemma
2.3.1 has its coefficients in Op. If in addition « is algebraic over K, then the construction in
the proof shows that ¢(X) has its coefficients in Opq)

43



Lemma 2.3.3. Let F C Q be a complete field containing K and let oy, - - - , o, be elements
in po such that

h(X) =][(X - @) € Or[X]. (2.3.3)
Let f(X) € Op[[X]] be such that f(o;) = 0 for all 1 > ¢ > m. Then f(X) is divisible by
h(X) in Op[[X]].

Proof. Let F' = F(a,- -+ , ), then F'|F is a Galois extension. Moreover, by Remark 2.3.2,
there exists g(X) € Op[[X]] such that f(X) = h(X)g(X). Let us prove that g(X) € Or[[X]].
Let 0 € Gal(F'|F'). We have

F7(X) = W (X)g" (X). (2.3.4)
But f7(X) = f(X) and h?(X) = h(X). Therefore, f(X) = h(X)g(X) = h(X)g?(X) so that
g°(X) = g(X). This completes the proof. O

As in the classical case of Lubin-Tate formal groups, we have

Proposition 2.3.4. For every unit u of K, we have

D1 (1)) = pur () (2.3.5)
for all w € W,
Proof. Let f(X) = 7X + X9. As explained at the end of Section 1.3, Lubin-Tate theory
shows that, for each a € Ok, there exists a unique power series [a]; € Ok[[X]] satisfying
la];(X)=aX mod deg 2 and foa]; =[a]so f. (2.3.6)

Clearly, we have f(X) = [r]¢(X). Let d € N be such that [H : K] = dmy. Then

ppa(X) = n'X, [1](X) =7 X mod deg 2, (2.3.7)

and
prt(X) = [7%™];(X) = X9 mod py. (2.3.8)

Therefore, Proposition 1.3.17 and Proposition 1.3.16 imply that there exists a unit ug in K,
d
d'mo_l - 77

deo )

such that uf and a unique power series § € O, [[X]] such that

0(X) =uX mod deg 2 and pao0f = 97" o [rmo] ;. (2.3.9)
We deduce that for all m > 1, we have

Piymd © 6 = 64" o [rémmo] ; (2.3.10)

and therefore we have an isomorphism of F,-vector spaces
0: Ty — W, (2.3.11)
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Now let u be a unit of K and consider the automorphism ®x(u) € Gal(K®|K,,). By the
properties of the residue map (see for instance |18, Chapter 6]), we have

Pre(u)(w') = [u (W) V' € Ty. (2.3.12)

However, since ®x (u)
such that

€ Gal(H,|H), then by Proposition 1.3.11, there exists a unit v € K

|1,

Dy (u)(w) = pp-1(w), Yw e W,. (2.3.13)

Let w' € Ty and w = 0(w') € W, then p,-1 0 (') = Pk (u)(f(w’)). However, g (u) is an
automorphism of K% = K., (W,) over K,,. Hence, we can extend it to an automorphism of
K..(W,) over K,, so that

O (u)(0(w)) = O(Px(u)(w))

=0ou ).

Therefore we have p,-1 0 0(w') = 0o [u™t];(w') for all W’ € Ty. Let h = p,-1060 — 0o [u™!]y,
then we have h(T7") = 0 for all m € N, where T}" is the set of roots of [7™];. Thus by Lemma
2.3.3, h(X) is divisible by f™(X) = Hw/eT;n(X — ') in Og, [[X]] for all m. However, since
f(X) is contained in the ideal (7, X) of Og, [[X]], we have f™(X) € (7, X)™ and hence
h(X) € (m, X)™ for all m € N. We conclude that h(X) = 0 and thus

p’l)_l O 9 —= 9 (@] [u_l]f, (2314)
We deduce by identification that « = v. This concludes the proof. ]

Lemma 2.3.5. Let o € py. For m > n, we set ay, = pym—n () and by, = a,0,,'. Then,
there exists an integer N(p, a) € N such that for all m > N(p, «), we have

(o, N (14 01n)) . = 0 (2.3.15)

and
Np(1+0b,) ' =1 —T,,(by,) mod p2™, (2.3.16)

where T,, and N,, denote respectively the trace and the norm of the extension E;”|K and
N, denotes the norm of the extension E;”|E;L.

Proof. We first prove (2.3.15). Let m > n. By Lemma 2.2.3, there exists a constant ¢
depending only on n such that u(b,,) > mmg — ¢ (see Remark 2.2.4). Thus 1 + b, tends to
1 as m tends to oco. Moreover,

Non(L+b) = [J Q1+ 0(bn) =1+, (2.3.17)

where o varies among the automorphisms in Gal(E}'|E7) and ju(y) > (). Thus, Ny, (1 +
b,,) also tends to 1 as m tends to co. Furthermore,

(@, Ny (L +0))in = Pr(Npn (14 0))(§) — &, (2.3.18)
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where p,n(§) = a. But @ is continuous. Hence, for the neighborhood Gal(L®|L(€)) of
®1(1), there exists N; € N such that if m > Ny, then ®1(N,, (1 + b,)) € Gal(L®|L(¢)).
Thus, for all m > Ny, we have (2.3.15). Now let us prove (2.3.16). Let & < m be an integer.
Let © = Tym_k(by), then it is easy to check that Ny, (1 + b,)"' = 1 — x + y, where
w(y) > 2u(by,). Therefore, we have

Np(1+bp) ' =Npx(l—2+9y) =1 —Thr(z—y) + 2, (2.3.19)

1

w(z) > p(z—y). If k and m are such that kmg > ¢+ 1 and mmg > kmg+2c+ T-1 then,

q—
by Lemma 1.3.15 we get u(T,—x(z —y)) > 2mmy and u(z) > p(x —y) > 2mmg . Thus,

c

2.3.16) follows. Finally, we set N(p,«) = max{Ny, |k + — + ——— | + 1}. H
(23.16) (p.) = max{a, b+ 22— 1)
Remark 2.3.6. Let a € py, and let p’ be a formal Drinfeld Og-module isomorphic to p, i.e
there exists a power series ¢ invertible in Oy {{7}} such that p/, =t top, ot for all a € O.
It is easy to prove that EJ" = E7} for all m > 0. Moreover, by Proposition 2.2.2 (vi) we have
N(p,a) = N(p',t7}(a)).

Lemma 2.3.7. Let a € p;, and suppose that there exists m > max{N(p, o), L5 (2n + )}

2mg
such that (z,7)gp, = 0 for all € ppn \ {0}, where N(p, ) is defined in Lemma 2.3.5.
Then, there exists a prime 7, of L such that
1
(0, T0) L = [0, T L = p T i (Ap()0, (T3)) <p Un. (2.3.20)

Proof. We prove the Lemma following the steps of |6, Proposition 23], which were essentially
used by Wiles |34, Lemma 8|. Let a € py,.

Step 1: For m > n, let ay, = pym-n(a) and by, = apv,,'. If we suppose (z,2)gmn m = 0 for
all z € ppm \ {0}, we have

0= (am + Um, (]- + bm)vm)E;",m = (am7 Um)Eg@,m + (amy 1+ bm)Egl,m + (Uma 1+ bm)E;”,m7

because oy, + Uy = (1 + by ) Uy

Step 2: For m > N(p,a), we have (ay,, 1 + bm)E;n’m = (o, Npn(1 + b)), = 0 by Lemma
2.3.5.

Step 3: Let m > N(p, ) so that (o, 1 + by)pmm = 0 and suppose that (2, z)pm,m = 0 for
all z € pgp \ {0} Let m, = Ny, (), then 7, is a prime of L because E}'|L is a totally
ramified extension. Let vy, be a generator of ng such that p,m(vay,) = vy, We have

(0, )L = Vam — PNy (14bm) 1 (V2m) -
Indeed,

(a’ﬂ—n>L,n = (am7vm>E;”,m = _<Um7 1+ bm)E;”,m (by Step 1 and 2)
- _<(I)Eg“(1 + bm)('UZm) - UQm)
= _<(I)K(Nm(1 + bm))(UQm) - U2m)-

46



By Proposition 2.3.4 we have ® g (N, (14bm)) (V2m) = PN, (1460) -1 (V2m) and hence (o, 7, ), =
U2m = PNy (1+bpm) L (vam)-

Step 4: For m > N(p,a), we have N,,(1 4+ b,,)"! = 1 — T,,,(b,,) mod p7"™ by Lemma
2.3.5.

Step 5: Choose m > max{N(p,a), 5(2n + ﬁ)}, then m is sufficiently large to satisfy
Step 2 and Step 4. If in addition we have (z,2)gm, = 0 for all z € pgn \ {0}, then
(0, )L = @, Tp)Ln, Where m, = Ny, (v,) as in Stfep 3. Indeed, by the previous steps we
get

(o, Tp)pn = T (mv,t) o Vo = — Tp(mu,t) ‘o U (2.3.21)
nm

We draw the attention of the reader to the fact that m is sufficiently large so that pu(a,) >
e q+1 + m. This is a consequence of Lemma 2.2.3 and remark 2.2.4. This implies
that nlm Ton(a,vt) € Ok. Moreover, by Lemma 2.2.12 and Lemma 2.2.13, we get

1
(a0, Tn)ppm = — Tm(amv;ll) p Um
/r]m
= [am, Um]E;;L,m (Lemma 2.2.12)
= [a, Tn] L0 (Proposition 2.2.14)
[l
Remark 2.3.8. If p,(X) is a polynomial (as in [34, 3, 0]), the condition (z, ), gmn = 0 is

satisfied for all m > 1, and following the same steps as in the proof of Lemma 2.3.7, one can

prove that

1 1
(o, vp)pn = o TL|K(>\p(a)U—) “» Up, (2.3.22)

n

for all o € py.

Lemma 2.3.9. Suppose p is such that (z,z)r, = 0 for all x € p; \ {0}. Let a € py such

that p(a) > =5 + qul + W(q—l) and £ a unit in L*. Then,

(0 D)t = [0 L = = T (Ay(0), (8)) o (23.23)
Proof. We first notice that a unit 3 € L is of the form Cu;, where ¢ is a (¢ — 1)™ root of
unity and w; is a principle unit in L. It is obvious that both sides of (2.3.23) are zero for
3 = (. Hence, it is sufficient to prove the Lemma for the principal units 8 = 1 — (7;/, where
71, is a prime of L, ¢ is any (¢ — 1) root of unity, and j is any integer greater than 1. This
goes back to the structure of the principal units as a Z,-module and to the continuity of the
pairings. By Lemma 2.2.7, we have

J (i’ =1
(1= Cml)prn = (77— e Cm) Yprm (2.3.24)
. C?TLj
= I et (2.3.25)
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CWLj . '
1_—Wa), qqu(2n + ﬁ)} and let r,, € Og{{7}} be the invertible

power series defined in Proposition 2.2.5. Let p’ be the formal Drinfeld module defined by
Pl =1Tmop,or,t forall a € Ok. Hence, by Proposition 2.2.2 (vi), we have

Let m > max{N(p,

C7TLj -1 CWLj
1——<7TLja’7TL)p7L’n = Tm ((Tm(l——C’/TLja),ﬂ-L)pl’L’n)' (2326)
J J
Moreover, by Remark 2.3.6, we have N(p, La) = N(p, rm(La)). Hence, since
1-— C?TL] 1-— Cﬂ'LJ
P satisfies (z, ZL‘)p/7Egm7m = 0, then by Lemma 2.3.7, there exists a prime 7, of L such that
(mn? _ (mn?
(rm(l_—wa), ﬂ-n)p’,L,n = [Tm<]_——<ﬂ'nja)’ Wn]p’,L,n- (2327)
Hence, if we put 7, = m,, we get
j R | Cﬂ-n]
(Oé, 1-— Cﬂ'n )p7L,n = —J"m ([’l“m(l_—cﬂ_njo{), Wn]p’,L,n)- (2328)
By Proposition 2.2.11 (ii), (2.3.28) is equal to
. gﬂ—nj . _.j Cﬂ-nj
_j[l——é'ﬂ'nja’ﬂ-n]p’[/’n = 7’]_” TL‘K(]_——(T(”] X o X 51)”(77-71)) p Un (2329)
| — t'(va)
=—T ——— X ax 5 Uns 2.3.30
" L|K<1_Cﬂ_n] a m ) p ( )

where (2.3.29) is deduced from Lemma 2.2.12, and ¢(X) € Oy ((X)) satisfies t(v,) = m,.
Since 1 — ((t(v,))! =1 — (m,?, we have
I S A )

S, (1 — () = g (2.3.31)

1 . 1
and thus, (2.3.30) is equal to — T'px (b, (1—(7,7))- v, Which is equal to — T'rjx (A, ()6, (1—
, n" U
¢mp?)) -p vy by Lemma 2.2.12. Hence,

(o, 1 = Cm?)prm = [, 1 — ¢ pone (2.3.32)

O

Proposition 2.3.10. Let o € py such that p(a) > "qﬂ + qul + W(q_l) and ( a unit in
L*. Then,

(00 B)in = [0 Bln = ninTL,K(Ap(a)avn (8)) - vn. (2.3.33)
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Proof. By Proposition 2.2.5, there exists an invertible power series 7, € Oy {{7}} such that
Hwewp" (X —w) = rpopym(X). Let p’ be the formal Drinfeld module defined by pl, = r,opgor,*
for all @ € Og. Then, by Lemma 2.2.6 we have (2,)y gs, = 0. Hence, by Lemma 2.3.9
applied for p/, we have

(@, B)pzn =171 ((r(@), B) ) = 17 ([r(@), Blp.n) = [0t Blp.Lon. (2.3.34)
0
Proposition 2.3.10 gives a generalization of Theorem 3.11 of Anglés [3], where he proved

this result for formal Drinfeld modules obtained from Carlitz polynomials (See Example
1.1.1).

Proposition 2.3.11. Let a € p;, be such that p(a) > et q%l + q;qq) and let 3 be a
prime of L. Then

(,B)pm = o, Blon = ninTMK()\p(a)&,n (B)) ) vn. (2.3.35)

Proof. Let m > max{N(p, o), 55 (2n+ ﬁ)} and let r,, € Oyg{{7}} be the invertible power

series defined in Proposition 2.2.5. Let p’ be the formal Drinfeld module defined by p) =

T © pg 072t for all @ € Ok. Thus by Lemma 2.2.6, we have (x,x)ng;n,m = 0. Hence, by

Lemma 2.3.7, there exists a prime 7, of L satisfying (7,,,(«), Tn) y n = [Fm(Q), ]y 1.n. Then

we can write § = um, for a unit u € L. Hence,

(a, 8)prm = (0, umy)prn = (0, W) pLn + (O T0) p Lo (2.3.36)

By Proposition 2.3.10, we have (a,u), ., = [®, u], 1. On the other hand, by Proposition
2.2.2 (vi), we have

(0, Tn)p, 0 = Tal((rm(a), Tn) ot L) = T;@l([rm<a)a Tl o Ln)s (2.3.37)

the last equality being deduced from Remark 2.3.6 and Lemma 2.3.7. Hence, by Proposition
2.2.11 (ii), we have

(057 ﬁ)p,L,n — [aa u]p,L,n + [057 71—n]p,L,n - [Oé, B]p,L,n‘ (2338)

O

Combining Proposition 2.3.10 and Proposition 2.3.11, we obtain our main results.

Theorem 2.3.12. Let o € py, such that p(a) > 70 + q%l + ;1) and $ € L*. We have

q"mo (g—

(a’ ﬁ)p,L,n = [av 6],0711771 = ninTEgK()‘p(a)évn (B)) p Un. (2339>
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Theorem 2.3.13. Let a € py and 3 € Ny, o (E]) for m > 45 (2n + ﬁ) We have

1
(@, B)prm = [ Blprn = n_nTE,?\K()‘p(O‘)évn (8)) 5 Vn- (2.3.40)
Proof. For m > q%l(Qn -+ 2—;0), Lemma 2.2.3 and remark 2.2.4 imply that the element
Q= pym-n(a) is of valuation p(av,) > #7 + q%l + m. Let 8" € £} be an element

whose norm to E} is 3. Therefore,

(O-/a B)p,L,n = (ama /B,)p,E;",m = [ama /Bl]p,E;n,m - [Oé, 5]p,L,n

Here, the second equality is a consequence of Theorem 2.3.12 and the last equality is deduced
from Lemma 2.2.13. O

Theorem 2.3.13 gives an analogue of Theorem 19 of Wiles proved for the case of Lubin-
Tate formal groups, although the condition on m is slightly lighter in his case (m > 2n + 1).
It also implies Theorem 3.12 of Anglés in the case of formal Drinfeld modules obtained from
Carlitz polynomials for k,m > —43(2n + ﬁ)

2.4 The limit Kummer pairing

Several works in the literature, such as Iwasawa’s book [18] or Longhi-Bars’ paper [0],
considered the limit form of the Kummer pairing. To define it, consider the projective limit
1'&n(E;L)X with respect to the norm maps

E;” — E;‘
for m > n, and the direct limit ligp gr with respect to the maps

Per — PER

For m > n, we have

(Oém, Bm)p,E’;”,m == (I)E;” (ﬁm)(g) - 5 = (I)E;L (Nm,n<ﬁm))<€> - 5 = (Oén, Bn)p,El’;,na (241)

where ¢ is a root of p,»(X) = a,, and thus, a root of p,m(X) = «,,. Hence, we can define a
limit form of (, ), . as follows

(Oé, ﬁ)p = (C‘én, 5n)p,E}},n (242)

for all sufficiently large n, where a = (), € limppy and 5 = (8,), € Im(E7)*. We deduce
from Theorem 2.3.13 that, if we suppose p is such that

py =7" mod pg, (2.4.3)
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then for all sufficiently large n, we have

(0, 8), = ninTuKup(an)a%(ﬁn)) . (2.4.4)

This gives a generalization of Theorem 23 of Longhi-Bars [(] proved for formal Drinfeld
modules obtained from sign-normalized rank 1 Drinfeld modules.
We also note that in the case my = [H : K], there exists a limit form of ¢,, defined for

B = (Bn)n € lim(E})* by

(f¢7n> , (vn)
B

where f is the power series assigned to § be the isomorphism of Theorem 1.4.7.

5, (8) = mod D, (2.4.5)
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Chapter 3

Explicit reciprocity laws in the general
case

After proving explicit laws in a special class of formal Drinfeld modules, we now give an
explicit description of the Kummer pairing @ la Kolyvagin [21] in a more general setting (see
Theorem 3.2.10). We keep the same notations as in Chapter 2. Let K be a local field of
positive characteristic p and let ¢ the order of its residue field Ok /p. Let Q be an algebraic
closure of K, and still denote p the unique extension of p to 2. Let H C 2 be a finite
unramified extension of K, and let p € Do, (Op) having stable reduction of height 1. Let
mg be a positive integer dividing [H : K] and let € K be an element of valuation p(n) = my.

3.1 The Iwasawa map

In this section, we will study the so-called Iwasawa map, first introduced by Iwasawa in |17,
Proposition 14| in the cyclotomic case. This map was generalized by Wiles [34, Proposition
7] in the case of Lubin-Tate formal groups, and by Kolyvagin |21, Proposition 3.2| in the case
of formal groups of finite height. We fix a positive integer n and a finite separable extension
L of E}. We also fix a generator v, of the O-module W.

Since the extension L|K is supposed to be separable, the bilinear map <, >;: LxL — K
defined by < x,y >1= Tpk(2y) is non degenerate. This gives us the classical isomorphism
from L to the space of K-linear forms from L to K. The pairing < , > also induces the
following Og-linear map

L — Home, (A\,(pr), K/Ok) (3.1.1)
s Ap(br) — K/Ok
y T — <z,y>; mod Ok

Lemma 3.1.1. The map (3.1.1) is a surjective homomorphism of O-modules, with kernel

X; = {y € L; <xT,y>rc O Vz € /\p(pL)} (312)
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Proof. 1t is clear that X is the kernel of the map (3.1.1). Let us prove that the map is
surjective. To do so, let v : A,(p;) = K/Ok be an Og-linear map. The Ox-module K/Ok
is divisible, hence it is an injective module by [24, Lemma 4.2]. Therefore there exists a
homomorphism of Ox-modules ¥ such that the following diagram

1

Ap(br) — K/Ok

is commutative, the left hand map being the inclusion map. Let {e1,...,eq} be a basis of
L as a K-vector space. Since L = K\,(pz) by Lemma 1.2.5, we can choose the e; to be in
Ao(pr). Choose elements y(e;) in K such that (e;) is the class of (e;) modulo Ok. Define
the K-linear map 7 : L — K by ¥(>_ ase;) = > aiy(e;) where a; € K. Thus we obtain the
following commutative diagram

=2

L —— K

T\l

PL —> K/OK

the right hand arrow being the canonical projection and the left hand arrow being the in-
clusion. However, the K-linear form 7 is induced by some element y € L satisfying 7(z) =
Trx(zy) for all z € A\ (pr). Therefore we have v(z) = y(z) =< z,y >; mod Ok. O

Now, we give the construction of the so-called Iwasawa map. As mentioned in (1.3.7), the
map

a — pa(vn)

is an isomorphism of Og-modules. We denote by ¢; its inverse. We define the Og-linear map

L W;? L> OK/nnOK E— K/OK

a
PaUn) ¥ > 5
(vn) T
Let
L"={Be L (,B)rn="0Va €W}, (3.1.4)

where Wy, = LNW, C pr. Any B € L™ defines an Og-linear map

hy - { /Wi — KO (3.1.5)

o — (o, B)Ln)
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where the action of Ok on p; /Wy, is given by (1.3.1). The map S +— hg gives a group
homomorphism from L™ to Home, (pr/Wr, K/Ok). The homomorphism of Lemma 1.2.6
induces the following isomorphism of Ox-modules

HOHI@K (PL/WL, K/OK) = HOHl@K ()\p(pL>7 K/OK) (316)

Let 8 € L™ and let gg be the image of hz by the isomorphism (3.1.6). Then gz is defined by
gs(M\p(a)) = t((ov, B),n). However gg is an Og-linear map from A,(pr) to K/Ok. Thus, by
Lemma 3.1.1, there exists a unique y € L/X, satisfying gs(\,(a)) = Tk (A, (a)y) mod Ok
for all o« € py. It is easy to see that y € n7"X /X ;. We set

UL, (8) =n"y mod n"Xy. (3.1.7)

Proposition 3.1.2. We have

(OZ; /B)L,n = TL|K(/\p(Oé)¢L,vn (5)) p Un (3~1-8)

for all @ € py, and g € L™. Furthermore, the map ¢ ,, : L" — X /n"X. is a continuous
group homomorphism.

Proof. The equality (3.1.8) and the fact that ¢ ,, is a group homomorphism follow immedi-
ately from the construction. Let us prove that ¢, is continuous at 1. Since the reciprocity
map ¢, is continuous, there exists M > 0 such that if g € L™ satisfies u(5) > M, then
() is trivial, and hence (a, 5)1,, = 0 for all @ € X\ (py). Therefore, if () > M, we get
Trix(Ap(a)r,, (8)) € p™ for all a € A\, (pr), which implies that ¢ ,,(3) € "Xr. This
concludes the proof. O

Remark 3.1.3. Let v;, be another generator of W', then v;, = p,(v,) for a unit u of K. We
have

VL, = UL (3.1.9)

Proposition 3.1.4. The map ¢ ,, satisfies the following properties.

(i) Let M be a finite separable extension of L. Then Ny, (M") C L, Tr(Xm) C Xg
and the diagram

M VM, om xM/nan

NM|Ll lT]vI\L

Ln —>¢Lmn %L/n"%L

1s commutative.
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(ii) Let M be a finite separable extension of L. Then L™ C M™, X C X, and the following
diagram

[N e

| !

Mn VM on %M/T]n%M
1S commutative.

(iii) Suppose that L D> EJ* for m > n and let v, be a generator of W such that
pym-n(Up) = v,. Then L™ C L™ and vp,,(B) is the reduction of 1, (8) from
%L/Tlm%L to %L/UH%L.

(iv) Let p be isomorphic to p, i.e. there exists an invertible formal power series t € Og{{7}}
such that top, = p, ot for all a € O. If we denote by %L, L™ and th (vn) the obJects
defined in (3.1.4), (3.1.2) and (3.1.7) corresponding to p, then X, = X, L" = L™ and

Yin = t,(O)IEL,t(fun); where ¢t/ = X
Proof. We follow |21, Proposition 3.2]. We begin by proving (i). Let o € W, and 8 € M".
By Proposition 2.2.2(iii), we have (a, Nyn(8))n = (@, B) v = 0 because o € Wi, C Wy
Thus Nyy(8) € L". Now let us prove that Ty n(Xy) = Xr. For that, let y € X) and
€ N\(pr) C Ap(par). Then, Tayx(2y) = Trx(zTae(y)) € Ok. It remains to prove the
commutativity of the diagram. Let o € p; and f € M™. Using Proposition 2.2.2(iii) and
Proposition 3.1.2, we have

(0, Nar1£.(B8)) pin = (@, B)arn = Tarie (A (2) Va1 (B)) p Un
= Trix(Ao(2) Tarr (Yar,0,(8))) “p Vi

By the uniqueness in Proposition 3.1.2, the last equality yields that

Vi, (Nann(8) = Tanr(¥ar, (8))- (3.1.10)

Part (ii) can be proved in the same way as part (i), only using Proposition 2.2.2(iv) instead
of (iii). Part (iii) follows easily from Proposition 3.1.2 and Proposition 2.2.2 (v). To prove

1
(iv), we first notice that \; = 0] = t'(0) and that t(v,) is a generator of W. Hence,
by Proposition 2.2.2 (vi) we get
(@, B)prm = t((t"(a), B)p.L.n)

=t(Trx(Ap0 t_l(a)%,vn (B)) +p vn)
= Trr(Mp(@) () (0)¢r.0, (8)) -5 t(vn).

This concludes the proof. O
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We recall that by pr; we denote the set of elements = € p;, of valuation p(z) > % We
denote by X ; the set of elements y of L such that < z,y >,€ Ok for all z € A\, (p1). We
give a more explicit description of the fractional ideal X ;:

%L,l = {y € L; TL‘K(Ap(a)y) € OK Ya € ]JLJ}
= {y € L; TL‘K(o/y) € O Yo' e ]JLJ} (3.1.11)
1
={yeL; uly > R #(Drix )}

Following the same reasoning as in Proposition 3.1.2, but restricting the left-hand argument
of the pairing (, )z, to pr1, we get

Proposition 3.1.5. There exists a unique continuous group homomorphism ¥, : L™ —
X 1/n"Xp, such that

(@ B)rm = Tk (Ap(@) V1w, (B)) - n (3.1.12)
for all & € pr 1 and B € L*. Moreover, the diagram

I:DL vn

— X /"X,

o

xL,l/n f{L,l

is commutative, the right hand arrow being induced by the inclusion X, C X, ;.

We note that Uy, satisfies the same properties mentioned in Remark 3.1.3 and Proposi-
tion 3.1.4 for ¥, ,,-

3.2 Derivations

In this section, we give a formulation of the Kummer pairing in terms of a derivation
Dy, which will be defined in Section 3.2.2. An advantage of having a derivation is that it
is determined and explicitly constructible in terms of its value at a uniformizer. We begin
by a brief recall on derivations.

3.2.1 Recall on derivations

In this paragraph, we give a recall on derivations and their main properties that will be
useful for us in the sequel. Let R be a commutative ring with unit, and O be a subring of
R. If W is an R-module, a map D : R — W is said to be an O-derivation of R into W if it
is O-linear and satisfies the Leibniz rule

D(zy) = 2D(y) + yD(x) Vz,y € R. (3.2.1)

In particular, a derivation D : R — W also fulfills the following:
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(i) D(x +vy) = D(z)+ D(y) Vx,y € R,
(ii) D(a) =0 Va € O.

The set of all such derivations Do(R, W) is an R-module, where aD is defined by (aD)(z) =
aD(z) for all a,z € R. We will show that there exists a universal derivation, in other words,
an R-module Qo (R), and a derivation

d: R — Qo(R) (3.2.2)

such that for every derivation D : R — W, there exists a unique homomorphism of R-modules
f:Qo(R) — W such that the diagram

R % Qo(R)
D iEl!f
14

commutes. Let R be the direct sum of the modules (R),cg.Then R is the submodule of
[I,cr R which consists of families (a,).cr having finite support. For each element z € R,
we associate a symbol dz, so that an element (a;),cg in R can be written as a finite sum
> ver @z dx. Here, the symbols dz are supposed to be distinct for distinct elements of R.
Consider the submodule of R generated by the set

{d(zy) —ydz —2zdy, d(z+y)—dr—dy, da; z,y € R, a€ O}. (3.2.3)

The quotient of R by this submodule , which we denote by Qo(R), together with the deriva-
tion d : R — Qo (R) that sends z to the class of dz in Qp(R), form the universal derivation
we are looking for. Indeed, let W be an R-module and D : R — W be a derivation, and
consider the unique homomorphism of R-modules from R to W that maps da to D(a). This
homomorphism is trivial on the submodule of R generated by the set (3.2.3), thus it factors
through Qo(R), whence the universal property. We call (Q20(R), d) the module of differentials
of R over O.

The universal derivation yields an isomorphism of R-modules

Let M be a local field and N be a finite separable extension of M. We denote by D(N|M)
the different of N|M. In the special case where R = Oy and O = Oy, we have the following
results.

Proposition 3.2.1. There exists an isomorphism of Oy-modules
Qo,,(0On) ~ ON/D(N|M). (3.2.5)
Furthermore, if 7y is a prime of N, then dry is a generator of Qp,,(On).
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Proof. Suppose first that N|M is unramified, then D(N|M) = Ox. Thus, we need to show
that Qp,,(On) = 0. Let 2 € Oy such that Oy = Oy[z], and let P(X) = Zj:o b; X" be the
irreducible polynomial of = over M. Then P'(z)Ox = D(N|M) = Oy. Therefore, P'(z) is a
unit in N. However, we have

0=dP(z)=P'(z)duz. (3.2.6)
Hence, d(x) = 0, and consequently, Qp,,(Ox) = 0.

Now, if N is an arbitrary finite separable extension of M, let N be the inertia field of N | M.
We know that Oy = Oy[mn], where 7y is a prime of N. Thus, d 7y generates Qp,,(On). Let
P(X) = ZLQ b; X* be the irreducible polynomial of 7y over N, then P'(7x)Oy = D(N|N) =
D(N|M) as N|M is unramified. Hence,

O:ONdP(WN):P,(’/TN)ONd’/TN:D(N|M)d’/TN. (327)

It remains to prove that D(N|M) is precisely the annihilator of Qp,,(Oy). For that, let
D : Oy — N/Oy be the map defined by D(ry) = % and D(r(ry)) = 7'(7n)D(7n)
for all » € Ogx[X]. It is obvious that D is a derivation of Oy into N/Oy over Oy, and
its annihilator is precisely D(N|M). Finally, we conclude using the universal property of

dZON—)QOM(ON). L]

Remark 3.2.2. The proof of Proposition 3.2.1 shows that Qp,,(Ox) does not change when
we replace M by an unramified extension. Hence, when investigating the On-module Qp,, (On),
we may assume that N|M is totally ramified.

Corollary 3.2.3. Let W be an On-module and 7y be a prime of N. Let

S:={zeW, ar=0 Yaec D(N|M)} (3.2.8)
be the D(N|M)-torsion submodule of W. Then, the map

Do,,(On, W) — S (3.2.9)
D D(?TN>

is an isomorphism of Oy-modules.

Proof. This corollary follows from the above discussions. Indeed, if D € Dg,,(On, W),
then, by Proposition 3.2.1 and the fact that d : Oy — Qp,,(Ox) is a universal object, we
have D(M|N)D(wy) = 0. Thus, the map (3.2.9) is well defined, and it is clear that it is
a homomorphism. We will construct its inverse: For w € W such that D(N|M)w = 0,
we associate the derivation D,, € Dop,,(On, W) defined by D, (r(7y)) = r'(7n)w for all
r(X) € Ox[X], where N is the inertia field of N|M. This concludes the proof. O

Remark 3.2.4. With the notations of Corollary 3.2.3, the inverse homomorphism of (3.2.9)
also satisfies
Dy (r(nn)) = r'(7n)w (3.2.10)

for all r € O [[X]]. This follows from the fact that a derivation in De,,(Ox, W) is continuous
for the discrete topology on W.
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3.2.2 The derivation DLM

Let n be a positive integer and L be a finite separable extension E. Let v, be a fixed gen-
erator of the Og-module W. We define the map Dr,, : O — Xp1/n"%p1byDr,,(0)=0
and

DLWH(&) = O./\IJL,Un(OJ) (3211)

for « € Op \ {0}, where ¥, is the homomorphism defined in (3.1.5). In this section we
will prove that Dy, , reduced modulo a convenient submodule of Xy ;, is a derivation and it
intervenes in an explicit formula for the Kummer pairing.

It is clear that the map Dy ,, satisfies the Leibniz rule

Dy, (xy) =2Dp,, (y) + yDra, () Vo,y € Of. (3.2.12)

This follows from the fact that ¥, is a group homomorphism. Using this rule, we can
prove by induction that

Dpy, (™) = ma™ ! Dpy,(z) Yx € Op and Vm > 1. (3.2.13)
We will now prove that Dy ,, is additive.

Lemma 3.2.5. Suppose p is such that (z,2),1, =0 for all z € p; \ {0}. Let o € p,, \ {0}
and let u be a unit of L such that p(a(l —u)) > *7 + q%l. We have

(au,u)p, = Trg((1 —u)Dry, (@) - vn. (3.2.14)
Proof. We have
(aua u)L,n = (o, %)L,n
o

au,ou) ., — (au, @)L,

—~

= \&, a)L,n - (au, a)L,n
a—au, )L,
(Aol —au)¥p,, (@) -, v,

), we will show that

—~

—

<

by Proposition 3.1.5. Let v = a(1 —

Trix(Ao(N YL (@) o vn = Trix (YW Lw, (@) p va. (3.2.15)
By the hypothesis on the valuations, we have u(y) > ™7 + q_%. Hence
p(7) =) = p(>_en™)
i>1
> min{p(c;) + ¢'p(7)}

. nMmyg 1

I VL. S O
min{—i+¢(= =+ =)}
> nmg + ——

qg—1
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Therefore, we can write A\,(y) —~ = 1"d, where ¢ is an element of p;, . Thus, by (3.1.11),
TL\K(()‘p(V) — NV, (a)) U, =0
because Uy ,, (o) € X1 ;. This concludes the proof. O

Proposition 3.2.6. Suppose p is such that (z,z),1, =0 for all x € p;, \ {0}. Let v be an
element of Oy, \ {0} of valuation p(y) = max{22e -} that is u(y) = 22 if nmg > 2, and

q 'q-1 g
p(y) = q_% if nmo = 1. Then
Dpy,(x+y) =Dy, (x) +Dr,,(y) mod %%L,l (3.2.16)
for all z,y € Op.

Proof. Let us prove first why such a v exists. Since E} C L, the ramification index of L|K is
a multiple of the ramification index of E7|K, which is equal to ¢"™~"(q — 1). Hence, there
exists elements in L of valuation qnm0+(q_1), whence the existence of v. Now let us prove

(3.2.16). Let z,y € Op, then, by Lemma 3.2.5, we have
(v +y)u,w)rn =Trx((1 =) Drw,(v(z +9))) p vn
= Tyx((1 = uw)((z +y) DLy, (7) +7Drw, ((x +9))) - vn (3.2.17)
for all w € 1 + pr 1. However, again by Lemma 3.2.5, we have
(7(33 + y)ua u)L,n = (Vl.u? U)L,n + (’yyu, u)L,n
=Ty ((1 =) Dry, (v2)) p vn + Trix (1 = w) Drw, (79)) - vn

= Trx (1 = uw)(Drw, (v2) + Drw, (79))) o Un
= Trx((1 —w)((z +y) D, (7) + ¥(Drw, (2) + D, (1)) v (3.2.18)

for all w € 1 +py, ;. Therefore, (3.2.17) and (3.2.18) being equal, we conclude that

YD, (* +y) =v(Drw,(x) +Dry,(y)) mod n"Xp, (3.2.19)

by the very definition (3.1.11) of X ;. Hence, we have

n

Dy, (z+y) =Dy, () + Dpy (y) mod %xm. (3.2.20)

Corollary 3.2.7. Let v be as in Proposition 3.2.6. Then

n

Dy (z+y) =Dy, (2) + Dro, (y) mod %xm (3.2.21)
for all z,y € Oy.
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Proof. Let r = r, be the series defined in Proposition 2.2.5 and let p’ the Drinfeld module
defined by

p;:'ropaorfl.

Then r defines an isomorphism of Ox-modules r : W — W[. Furthermore, if we denote by
D, 1, (respectively D, 1)) the map defined in (3.2.11) associated to p (respectively p'),
then by Proposition 3.1.4 (iv), we have

Dy, =7'(0) Dy Lo, - (3.2.22)

Here, r'(0) is a unit in H because r(X) € Og[[X]] is invertible. Since (r, ), 1, = 0 for all
x € pr \ {0} by Lemma 2.2.6, we can apply Proposition 3.2.6 for p’ so that

n

Dp/,L’r(Un)(QZ + y) = Dp/7L7T(Un)(£C) + Dp’,L,r(vn)(y) mod %%L,l (3.2.23)

for all x,y € Op. Thus, using (3.2.22), we conclude that

Dy 1o (T +4) = Dyp (@) + Dyro, () mod %xm (3.2.24)
for all z,y € Oy. m
Proposition 3.2.8. Let

1 1 1
X = {y e L; ply) > nmo — max{ 2 - -
ri=1{y € L; ply) = nmo — max{ q ’q_l} g—1 e(LK)

—w(D(LIK))} C XL

(3.2.25)

The reduction of Dy, modulo %(Ln}, denoted by Dr,, : O, — %L,l/%(ﬁia is an Og-
derivation.

Proof. Let v € O, \ {0} be as in Proposition 3.2.6, then

X7 = X (3.2.26)

Let 77, be a prime of L and let w = Dy, (7)) € %Ll/%(ﬂ Since u(%) =nmy — p(y) <

nmo — q%l < u(D(L|K)), we have D(L|K)w = 0. Hence, by Corollary 3.2.3, there exists a
derivation D : O — %L,l/%%hl such that D(7;) = w and

D(g(mz)) = ¢'(mr)w (3.2.27)

for every power series g € O;[[X]], where L is the maximal subextension of L unramified
over K. In particular, (3.2.27) is true for all the power series defined over the residue field of
L, which is equal to the residue field of L. We will prove that D and Dy, are equal. Indeed,
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let x € Op, and let g(X) = Zizo a; X be the unique power series defined over the residue
field F,, of L such that g(m) = . We have

Dy, (z) = Dpy, ( = Dy, (aim)) (3.2.28)

>0

because Dy ,,, is additive by Proposition 3.2.7, and continuous by Proposition 3.1.5. Let qr,
be the cardinal of F,, , then ¢, is a power of p. Hence, for all « > 0, we have

DL,vn (az) DL vn( ) - 0

by (3.2.13). Therefore, applying the Leibniz rule (3.2.12) to (3.2.28), we get

qrL»

Dpw, (#) = Y aiDpa, (7)) =Y a;xixay " x Dpy, () (3.2.29)

i>0 i>0

again by (3.2.13). However, this is equal to ¢/(7;)Dz., (), which is, by (3.2.27), equal to
D(x). O

Now, we will define the logarithmic derivative dlogD L., associated to the derivation Dy, -
For a prime 7, of L, let

froXp /20 = X apx (3.2.30)

be the natural map induced by the inclusion X, ; — ngfm, and

S SRYE 3 RIS e YL i 3 4 (3.2.31)

be the multiplication by 7r£1 map. For = un® € L*, where u is a unit in L, we define

dlogD;,, (¢) = f(u "Dy, (1)) + kge, (Dr, (72)). (3.2.32)

The map dlogD Lo, - L — WZIXLJ / ngif([ﬁ is a group homomorphism. Furthermore, its

definition does not depend on the choice of the uniformizer 7. Indeed, let 7} be another

uniformizer of L and let z = unk = /7" € L*, where u and «/ are units of L. Let ug be

the unit of L such that 7} = ugmy. Then,

F(u™ D, () + kg, (Drw, (7)) = f(u' " ug*Dpu, (W) + kgr, (D, (71))

"D, () + ug* D, () + kge, (Drw, (7))
WD, (W) + fug* D, (06)) + kg, (Dru, (71))
W'Dy, () + kf (g D, (t0)) + kg, (Drw, (7).

N

(3.2.33)
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On the other hand, we have

gn'L(DL,vn (7)) = gw'L(DL,vn(UOWL))
= g, (W0DL, (71) + 7LDy, (U0))

= W’Lfl(u()DL,vn (mp) + WLDL’,J” (up)) mod WLI%Lni

= uy'm;  (uoDpw, (71) + 7D, (ug))  mod 751:{(;1

=7;'Dp., (71) + ug'Dpy, (1) mod w;lae(;}
= f(ug 'Dr,(u0)) + gr, (D, (71)). (3.2.34)
Therefore, (3.2.33) and (3.2.34) yield that dlogD,,, ~does not depend on the choice of 7.

Remark 3.2.9. We call dlogD L, @ logarithmic derivative because we have the equality

dlogD,, ,, () = DLT(@ (3.2.35)
Moreover, since H|K is unramified, then for all power series f € Oy ((X)) such that f(7) =
x, (3.2.35) writes
f'(mL)
x
This definition of dlogD, , recalls the logarithmic derivative §,, defined in (2.2.25) in the
special case L = E7. 7

dlogD, ,, (z) = Dy, (7). (3.2.36)

Theorem 3.2.10. The derivation DL,vn 0 — %Ll/%(Lni satisfies

(@, B)Lm = TLIK()‘/)(O‘) legDL Un (B)) o vn (3.2.37)

for all @ such that p(a) > max{22ze L1 + gt and for all g € L*.

q g1 (L\K)

Proof. To prove (3.2.37) is equivalent to prove that

dlogD,,,, (8) = W1, (8) € 7' X} (3.2.38)

for all 3 € L*, where dlogD Lo, (B) and W, (B) are regarded as elements of 7' Xp1. Indeed,
let B € L*. Since Proposition 3.1.5 shows that

(OZ, 5)L,n = TL\K()\p<O‘)\IjL,vn (ﬁ)) p Un (3239)

for all & € py1, then (3.2.37) is equivalent to say that

Tysc(A(@) diogDy , (8)) - v = TuiscAp(@) W1, (8)) 5 v (3:2.40)
for all a in L such that p(a) > max{*2, - 1}—1— +aam L| 755+ Obviously, (3.2.40) is equivalent
to

Tise () (dlogD . (8) — Wi (5)) € 1"Ox (3:2.41)
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for all @ € ympr1, where v € L is of valuation pu(y) = max{%,qfll}. However, since
pr1 = A(pr1) and p(A, (o)) = p(a) whenever o € prq (see (1.2.13)), then (3.2.41) is in turn
equivalent to

Trx(yrra(dlogDy, (8) — ¥r.,(8)) € n"Ok (3.2.42)
for all o € pr1. Finally, by the very definition of X, 1, (3.2.42) is equivalent to

dlogD;, (8) — Uy, (8) € wgl%aem — axl). (3.2.43)

Let us now prove (3.2.43). Let 8 = umk € L*, then dlogDLmn(ﬂ) — W, (B) is equal to
u ™' Dy, (u) + kn ' Dy, (1) — Vi, (u) — kY, (77) modulo w;lx([ji. However, by the
very definition of Dy ,,,, we have

D, (u) = u¥y,, (u) mod XY, (3.2.44)

But as %(L"i C 721%%, the congruence (3.2.44) implies that

Dy, (u) = ulp,, (u) mod 77 X", (3.2.45)
Thus, we have
u ' Dy, (u) =¥y, (1) mod ﬂglf(gg. (3.2.46)
Moreover, we have
Drv, (1) = 7 Wp,, (1) mod X, (3.2.47)
and thus,
77 Dy, (m) = Uy, (1) mod 77 X", (3.2.48)
This concludes the proof. n

3.3 Values of Dy, in terms of representation theory

In this section, we consider the continuous representation r : Gal(Q|H) — GL;(Ok) = Uk
defined in Proposition 1.3.11. The image r(o) of an element o € Gal(Q2|H) is the unique unit
u of K such that o(a) = p,() for all @ € W,. This representation is induced by the action
of Gal(Q2|H) on the module m W7, We will show that we can obtain explicit formulas in
terms of invariants of this representation.

It is obvious that the kernel of r is Gal(Q2|H,). Thus, r induces an embedding Gal(H,|H) —
Uk. Reducing modulo Uk ,,, = 1 + p for m > 0, we get the map r,,, which, restricted to
Gal(H]'|H), defines an isomorphism

v, Gal(H)'|H) — Us [Uge .- (3.3.1)

We note that r and r,, are respectively the inverse isomorphisms of I" and I',, defined in
Proposition 1.3.9 and Proposition 1.3.11. For an algebraic extension F' of H, we also denote by
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r: Gal(Q|F) — Uk the restriction of r to Gal(Q|F), and by r,, : Gal(F(V,")|F) — Uk [Uk m
the restriction to Gal(F(V,")|F). As above, we let n be a positive integer and L be a finite
separable extension EJ.

Proposition 3.3.1. Let m > n and suppose L D E7". There exists a character xr mn :
L* — Ok /p"™ such that

rmo(m+n) ((I)L(ﬁ)) =1 + nmXL,m,n(ﬁ) € MK/Z/{K,(ern)mO (332)
for all 8 € L*. Furthermore, xp, ., satisfies the following.

(1> XL,m,n(B) = XE;,”,m,n(NME;”(ﬁ))-

(ii) Let v = pu(vm) € W, where vy, is a generator of W such that pym-n(vy,) = v,. Then
(U75)L,n = (aXL,m,n(ﬁ» p Un
for all 5 € L*. In particular if v = v,,, then for every 5 € L*, we have
(Umaﬁ)L,n = XL,m,n(ﬁ) ‘p Un. (333)

Proof. Let 8 € L*. As ®(8) fixes L, thus in particular fixes E7", we have

rmo(m-{-n)(q)L(ﬁ)) =1 mod Um (334)

Thus, there exists an element Xz .,.(8) € Ok/pi™ such that (3.3.2) holds. It is easy to
check that xpmn 1 L — Ok /pi™° is a group homomorphism. Moreover, Proposition 2.1.1
(v) imply (i). To prove (ii), let & € pg be such that p,»(§) = v. Such a & exists by Lemma
2.2.1. Since v € W, then £ € W™ and

('Uvﬁ)L,n - (I)L(ﬁ)(g) _f

Cimg(mtn) (PL(B)) & — €
(rmo(m+n)(q)L(6>) - 1) 'pf
= (nmXL,m,n<ﬁ)) 'Pg
=" " XLma(B)) v
— " X
(@xLm,

]

nmo

Lemma 3.3.2. The character xpm, : L* — O /pji is stable by isomorphism class of p.
In other words, if ¢ is an invertible power series in O {{7}} such that p/, = t~'op, ot for all
a € Ok, then the characters defined in Proposition 3.3.1 associated to p and p’ are equal.
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Proof. Let v, be such that pym-n(v,) = v, and let v, = ¢t~ *(v;) for i = m,n. Denote
by Xrmn (respectively X,Lmn) the character defined in Proposition 3.3.1 associated to p
(respectively p'). Then by (3.3.3), we have X} ,,.(8) - v;, = (v, 8),L,n Which is equal

to tH((t(v)), B)prn) =t ((vm, B)p.1n) by Proposition 2.2.2 (vi). Again from (3.3.3), we

conclude that / / B
XL,m,n(ﬁ) o Uy =1 ((Um, 5)p,L,n)
=t (XLmn(B) - Vn)
= XL (B) -t (vn)
= XLmn(B) p V-
O

Proposition 3.3.3. Let m > n and suppose L D EJ" is such that p does not divide the
ramification index of the extension L|E}". Let u be a unit in L such that pu(l —u) >
max{*7, — 4} + =3~ Let f(X) and g(X) be power series in Fy, [[X]] such that f(7,) = vy,
and g(7p) = u, Where 7y, is a prime of L. Then,

g'(mr)
—f/(?TL) € pr, (3.3.5)
and
1—u g'(m)
XL,m,n(u) = TL|K<( u )(1 - f/(zer) ) DL,vn (Um)) mod pnm(). (336)

Proof. Since p does not divide the ramification index of L|E7", we have p(f (7TL)) =p(f(mp))—

p(rr) = p(vy) — p(rr). Furthermore, since p(1 — u) > max{”mo, = L1+ q—l, we can write

g(X) =1+ a; X", where i > 2 and a; € F,,. Hence, u(¢'(7 )) > p(my) and therefore, we

have (3.3.5). Now, let us prove (3.3.6). By Lemma 2.2.6 and Lemma 3.3.2, we can suppose

that p is such that (z, :L‘)an = 0 for all z € py. For such a p and for u € L™ such that
p(l —wu) > max{™0, 27} + L5, we have

(aw,u)ppn = Trx((1 —u)Dpy, () -pvn (3.3.7)

for all @ € pz, \ {0} by Lemma 3.2.5. We note that the hypothesis on the valuation of 1 — u
allows us to replace Dy, (a) by D, () in (3.3.7). Let a be such that au = v,,, where v,,
is a generator of W™ such that p,m-n(vn,) = v,. Hence, (3.3.7) together with (3.3.3) give us

XLmn (W) p U = (U, ) = T (1 —u) Dy, (Vpu™t)) “p Up. (3.3.8)

However, Dy, (2) = 5 (uDp ., (Um) — Um Dy, (u)). Moreover, we have

DL,vn (U) = QI(WL) DL,vn (7TL) and DLmn(Um) = f/(WL) DLmn(WL)-

This implies that ) )
/(1) Dru, () — f'(m1)g' (7)) Dp, (7)) € X0
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and
9'(7L) D, (Um) = f'(7)g' (7)) Dpw, (1) € %(Ln%,
so that . i
f/(ﬂ-L) DL,vn (u) - g/(ﬂ—L) DL,vn (Um) S x(L'nﬁ (339)

Now, since the calculation in the beginning of this proof shows that % € pr, we can

multiply (3.3.9) by ff(’;?L) in the fractional ideal %(L"i Therefore, we get
U DLM (u) = v g/,(ﬂL) DLwn(vm) € val/:{(Ln%'
f(me) ’
Finally, we can write
_ I—u = g/(/]TL) N nmg
Xzman(w) = Trix( " (uDpu, (m) — U i) Dz, (vn)) mod pi
1—u glme)

]

Lemma 3.3.4. Let m > n and suppose L D E7" is such that p does not divide the ramifi-
cation index of the extension L|E}". Then, Dr ., (Vm) € X11/ %%L,l is uniquely determined

by (3.3.6).

Proof. Let x and 2’ be two elements in X ; such that

1—u g'(r1) 1—u g'(rr) / .
TL|K<<T)(1 - m)‘%) = TL|K<( u )(1 - f’(?TL) )33) mod Pr % (3'3'10)

for all u € Uy, such that p(1 — u) > max{*7®, q%l} + q—%' This means that

1—u g'(7r) ,
(1= )@ — ') € i (33.10)

Um

Trir((

for all units v € L such that p(l —u) > max{™", 3} + 5. We need to prove that

q—1°
r—1 € %(L”i Since we are considering any u such that p(1 — u) > max{™, qfll} + q%l,
then we can write 1 — u = ya, where v € L is of valuation max{ %, qfll} and « varies in
g'(rz)

pr1 = A,(pr1). Furthermore, the element 1 — #m is a unit in L. Therefore, z and 2’ are
such that o

Trx(ya(z — ') € p™ (3.3.12)
for all @ € pr;. This yields that z — 2’ € %"%LJ = %(Ln% O
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3.4 A return to the case of Chapter 2

In this section, we place ourselves again in the case where
pp=7"" mod py and L=FE"DE}] (3.4.1)

for an integer m > n. As previously shown in Theorem 3.2.10, we have

(0 V)1 = TLK<Ap<a>Ui Diu, (Um) - n (3.4.2)

m

for all & € py such that pu(a) > max "7;0, = 1} +oat W(q—l)‘ On the other hand, we can

prove using Chapter 2, that under the same Condltlon on «, we have

1 1

(0, V)L = n_mTL‘K()\pm)v_) ‘o Un. (3.4.3)
Indeed,
(@, Um) L = (Pym—n (), Um)Lm (by Proposition 2.2.2 (v))
1 1
= —Tr(Ap(pym—n(a)—) p Um (by Theorem 2.3.12)
n" Um
1 oy () L
1 1
= n_mTLlK(/\p(a)a) p Un-
Here, we can apply Theorem 2.3.12 for (pym-n(at), vm ) r,m because p(pym-n(a)) > max{=®, qT11}+
q%l + W(ql for all m > n (See Lemma 2.2.3 and Remark 2.2.4).

Proposition 3.4.1. We have
_ 1
Dgm 4, (Um) = —. (3.4.4)
P nm

Proof. This is a direct consequence of the explicit formulas (3.4.2) and (3.4.3). O]

Corollary 3.4.2. Let u be a unit of L such that p(1 —u) > max{*7*, = 41 + =7- Then

Nope (™) 1= T (1 = 200 ) o gl (3.4.5)

where g(X) € F,, [[X]] is such that g(v,,) = u.

Proof. Since we proved in Lemma 3.3.4 that Dy, (v,) = == € X1, 1/.'{ 1.1 is uniquely deter-
mined by (3.3.6), we have
1 1—u (U, o
XL,m,n(u) = n_m TL|K(( " )(1 _ g (u )Um)) mod p 0 (346)
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for all units u of L such that u(1 —u) > max{*?2, q%l} + q%l. Moreover, we know by (3.3.3)
that
(Vi U)pp = XL,m,n(u) pUn = nmXL,m,n(U) p Umtn,s (3.4.7)

where v, 1, € WI;”J“" is such that pyn(Vpmin) = Up. On the other hand, by the definition of
(', )rn, we have

(Vs W10 = BL(0) (V) = Vit = Prc(Npysc (W) (Vn) = Ve (348)

But ®x(Nzjx(u))(Vmen) = pNL|K(u)*1(Um+n) by Proposition 2.3.4. Therefore, (v, u)r, =
(Npg(u™) = 1), Upmyn and hence,

Npg(w™) = 1=0"xrmn(u) mod p;?er)mO. (3.4.9)
Finally, (3.4.5) follows from (3.4.6) and (3.4.9). O

Giving a direct proof of (3.4.5) would provide a new proof of the results of Chapter 2. In
another request, it would be interesting to investigate the cohomological approach inspired

by Kato [19, 20], in order to establish new proofs of the explicit reciprocity laws for formal
Drinfeld modules. This approach was used, along with the theory of (¢, I')-modules, by
Benois [7] and others [14, 31] to prove explicit formulas for the Kummer pairing associated

with formal groups over local fields of characteristic zero.
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