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Abstract-English

Non-specific low back pain (NSLBP) is a major public health issue and is a concern
in most if not all contemporary societies. Despite NSLBP being so widespread, our
understanding of its underlying causes, as well as our capacity to provide effective
treatments, remains limited due to the high diversity in the population that does not
respond to generic treatments. Clustering the NSLBP population based on shared
characteristics offers a potential solution for developing personalized interventions.
However, the complexity of NSLBP and the reliance on subjective categorical data in
previous attempts present challenges in achieving reliable and clinically meaningful
clusters.

This work features to goals :
1. First objective : Provide an exploratory work to better understand the influence

and importance of the selected variables in regards to NSLBP and our sample
population, and gather information to prepare subgrouping

2. Second objective : Provide an attempt at clustering our population sample in
order to discriminate valuables subgroups

Data were acquired from 46 subjects who performed six simple movement tasks 
(back extension, back flexion, lateral trunk flexion right, lateral trunk flexion left, 
trunk rotation right, and trunk rotation left) at two different s peeds (maximum 
and preferred). High-density electromyography (HD EMG) data from the lower 
back region were acquired, jointly with motion capture data, using passive reflective 
markers on the subject’s body and clusters of markers on the subject’s spine.

An exploratory analysis was conducted using a deep neural network and factor ana-
lysis. Based on selected variables, various models were trained to classify individuals 
as healthy or having NSLBP in order to assess the importance of different variables. 
The models were trained using different set of data :  full data set, anthropometric 
data set, biomechanical data set, neuromuscular data set, and balance and proprio-
ception data set. The models achieved high accuracy in categorizing individuals as 
healthy or NSLBP. Factor analysis revealed that individuals with NSLBP exhibited 
different movement patterns to healthy individuals, characterized by slower and more 
rigid movements. Anthropometric variables (age, sex, and BMI) were significantly 
correlated with NSLBP components.



Clustering was attempted on our full data set, and reduced data set, using PCA 
or the insights gather in the exploratory analysis part. The data set were either 
movement agnostic or movement specific. R esults s howed v iable c lustering using 
spectral algorithm, with the RBF kernel and the discretize label assignment’s algo-
rithm, expressing a spectrum of low back pain as did similar work before. The data 
set used was the full data set with spine cluster of marker data, after dimension 
reduction using principal component analysis.

In conclusion, different data types, such as body measurements, movement patterns, 
and neuromuscular activity, can provide valuable information for identifying indivi-
duals with NSLBP. To gain a comprehensive understanding of NSLBP, it is crucial 
to investigate the main domains influencing its prognosis as a  cohesive unit rather 
than studying them in isolation. Simplifying the conditions for acquiring dynamic 
data is recommended to reduce data complexity, and using back flexion and trunk 
rotation as effective options should be further explored. The importance and probable 
usefulness of meta data, such as anthropometric data for the biophysical domain, was 
also noted. In the light of those results, we formulated the following new paradigm 
hypothesis : low back pain yields adaptations common to every subject, but due 
to inter-subject differences in the 5  main domains known to have a  major influence 
on low back pain prognosis (biophysical, comorbidities, social, psychological and 
genetic) those adaptations are expressed in very unique way for each subject.

Keywords : Non Specific Low Back Pain, Cluster analysis, Factor Analysis, Deep 
Learning, Motion Capture, High Density Electromyography.



Abstract-French

La lombalgie non spécifique (LNS) est un problème majeur de santé publique vas-
tement répandu dans les sociétés contemporaines. Malgré la prévalence importante
de la LNS, notre compréhension des causes sous-jacentes à la LNS, ainsi que notre
capacité à fournir des traitements adaptés et efficace pour tous les patients, reste
limitée en raison de la grande diversité de la population qu’englobe la LNS et qui ne
répond pas à des traitements génériques. Le regroupement de la population atteinte
de LNS en fonction de caractéristiques communes offre une solution potentielle
pour développer des interventions personnalisées. Cependant, la complexité de la
LNS et la dépendance aux données catégoriques subjectives dans les tentatives de
regroupement précédentes posent des défis pour parvenir à des regroupements fiables
et cliniquement significatifs.

Ce travail à pour visée deux objectifs :
1. Premier objectif : Fournir une étude exploratoire pour mieux comprendre

l’influence et l’importance des variables sélectionnées par rapport à la LNS
et à notre population d’échantillonnage, et recueillir des informations pour
préparer la création de sous-groupes.

2. Deuxième objectif : Tenter de regrouper notre échantillon de population afin
d’identifier des sous-groupes précieux.

Les données ont été acquises sur 46 sujets. Notre protocole se basait sur un jeu de 
mouvement simple effectué à  différentes vitesses : extension du  dos, flexion du dos, 
flexion l atérale d u t ronc ( à d roite e t à  g auche), r otation d u t ronc ( à d roite e t à 
gauche), à vitesse maximum et naturelle. Des données d’électromyographie haute 
densité (EMG HD) de la région lombaire ont été collectées, conjointement à des 
données de capture de mouvement à l’aide de marqueurs réfléchissants passifs sur le 
corps du sujet ainsi que grâce à des groupes de marqueurs sur la colonne vertébrale 
du sujet.

Une analyse exploratoire a été réalisée à l’aide d’un réseau neuronal profond et 
d’une analyse factorielle en se basant sur des variables sélectionnées préalablement 
grâce à une étude la littérature. Différents modèles d’apprentissage profond ont été 
entraînés pour classifier les individus entre sujets sains ou atteints de LNS, afin



d’étudier le pouvoir d’information des différentes v ariables u tilisées. L es m odèles ont 
été entraînés en utilisant différents s ets d e d onnées :  j eu d e d onnées e ntier, variables 
anthropométriques, jeu de données biomécaniques, jeu de données neuromusculaires 
ou jeu de données liées à l’équilibre et la proprioception. Les modèles ont atteint de 
hauts résultats de classification. L’analyse factorielle a révélé que les individus atteints 
de LNS présentaient des schémas de mouvement différents d e c eux d es i ndividus en 
bonne santé, caractérisés par des mouvements plus lents et plus rigides. Les variables 
anthropométriques (âge, sexe et IMC) étaient significativement c orrélées a vec les 
composantes de la LNS.

Des tentatives de regroupement ont été réalisées sur notre ensemble de données 
complet et un ensemble de données réduit en utilisant l’ACP ou les informations 
recueillies dans la partie de l’analyse exploratoire. Les ensembles de données étaient 
soit agnostiques au mouvement, soit spécifiques a u  m ouvement. L es r ésultats ont 
montré un regroupement viable en utilisant un algorithme spectral avec le noyau 
RBF et l’algorithme d’assignation d’étiquettes discretize, comme dans des travaux 
similaires antérieurs. L’ensemble de données utilisé était l’ensemble de données 
complet avec les données de marqueurs de la colonne vertébrale, après réduction de 
dimension à l’aide de l’analyse en composantes principales.

En conclusion, différents t ypes d e d onnées, t els q ue l es m esures c orporelles, l es sché-
mas de mouvement et l’activité neuromusculaire, peuvent fournir des informations 
précieuses pour identifier l es i ndividus a tteints d e L NS. P our o btenir u ne compréhen-
sion globale de la LNS, il est crucial d’étudier les principaux domaines influençant 
son pronostic comme une unité cohérente plutôt que de les étudier isolément. Il est 
recommandé de simplifier l es c onditions d ’acquisition d es d onnées d ynamiques pour 
réduire la complexité des données, et l’utilisation de la flexion du dos et de la rotation 
du tronc comme options efficaces de vrait êt re da vantage ex plorée. L’ importance et 
l’utilité probable des métadonnées, telles que les données anthropométriques pour le 
domaine biophysique, ont également été notées. À la lumière de ces résultats, nous 
avons formulé la nouvelle hypothèse de paradigme suivante : la lombalgie engendre 
des adaptations communes à tous les sujets, mais en raison des différences inter-sujets 
dans les cinq principaux domaines connus pour avoir une influence m a jeure sur 
le pronostic de la lombalgie (biophysique, comorbidités, social, psychologique et 
génétique), ces adaptations s’expriment de manière très unique pour chaque sujet.

Keywords : Lombalgie Non Specifique, P artitionnement d e d onnées, A nalyse fac-
torielle, Apprentissage profond, Capture de mouvement, Electromyographie 
Haute Densité. 
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Introduction

Non-Specific Low Back Pain (NSLBP) is a symptom that is characterized by pain for
more than one day located between the lower rib margins and the buttock creases.
The pain does not have a definite cause and cannot be traced to a specific event
or affliction (Maher, Underwood, and Buchbinder 2017). NSLBP is a significant
public health problem around the world (Hoy et al. 2014). Despite the best efforts
of researchers and public health officials over a number of decades our body of
knowledge about this symptom doesn’t grow as fast as the problem is getting worse
(Hodges, Cholewicki, and Van Dieën 2013). A new approach is therefore needed
to tackle this problem in order to reduce the crippling burden of NSLBP on the
healthcare system, and society in general (Hodges, Cholewicki, and Van Dieën 2013).

A promising area of research for NSLBP is the subtyping of the NSLBP population.
It is believed and likely that once sub-divided in smaller and more homogeneous
sub-population, it will become easier to design specific, and therefore more effective,
treatment approaches, based on each patients’ individual needs (Hodges, Cholewicki,
and Van Dieën 2013; Haskins, Osmotherly, and Rivett 2015b, 2015a). The first
step, is to find a clinically valid framework for clustering the NSLBP population.
Clustering that large population will enable the study of more homogeneous sub-
populations, which would lead to a better comprehension of the symptom and of the
differences between sub-population. Which in turn, would help design adapted and
effective treatments for every sub-population.

But the task is not an easy and straight forward one. So far, the clustering task has
not yield major success, and we therefore think a new approach should be taken.
But before being able to define adapted cluster models, important preliminary work
needs to be done in order to identify which variables are the most relevant and
specific to NSLBP, and at discriminating between the potential subgroups inside this
population.

This is where this work start: by first running an exploratory analysis to improve
our understanding of discriminating variables in relation to the symptom. After this
exploratory work, attempt at clustering our NSLBP population sample at hand will
be made, using the insights from previous works and ours. This foundation work
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will pave the way for subsequent clinical trials and should provide improvement in
our understanding of NSLBP and where to focus future research.

4



Chapter 1

Non Specific Low Back Pain

1.1 Definition
Non-Specific Low Back Pain (NSLBP) is an idiopathic symptom that is characterized
by pain for more than one day located between the lower rib margins and the buttock
creases, as shown in Figure 1.1. It is either acute or chronic (more than 3 months
per year). It might or might not limit the usual activities or change the daily routine
of the person (Dionne et al. 2008).

Figure 1.1: Low back pain area.
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1.2 Clinical representation

NSLBP is a complex symptom which encompass multiple aspects that can be classified
into 5 categories: biophysical, comorbidities, social, psychological and genetic factors
(Hartvigsen et al. 2018). The main characteristic of NSLBP, is its idiopathic nature:
the sources of the pain can not be traced to a specific event or affliction (Maher,
Underwood, and Buchbinder 2017). People subjected to NSLBP often present pain
in one or both legs, and less frequently, also present neurological disorders afflicting
the lower limbs (Hartvigsen et al. 2018). Even if a large majority, 72% of the patients
subject to acute NSLBP, recover in 12 months (Henschke et al. 2008), 33% of them
relapse in the following 12 months (Stanton et al. 2008). If they were subject to a
persistent form of the symptom, less than half of the patients recovered in that 12
months period (Costa et al. 2009). As we do not accurately understand the cause, or
causes, and mechanisms that drive NSLBP, it is not possible to design specific and
adapted treatments for it, treatments that would dramatically increase the chance of
recovery of the afflicted patients (Maher, Underwood, and Buchbinder 2017).

1.3 Epidemiology

NSLBP is a symptom that is extremely prevalent worldwide, with a one-year point
prevalence of 38% (Hoy et al. 2012), as shown in Figure 1.2, and a global point
prevalence of 7.3%. This translates to an estimated 540 million of people affected
at any time in the world (Hartvigsen et al. 2018). Out of all the LBP diagnosed,
between 90% to 99% are deemed nonspecific, meaning that the cause of it is unknown
or cannot be pinpointed (Koes, Van Tulder, and Thomas 2006; Deyo and Weinstein
2001; Henschke et al. 2009b; Enthoven et al. 2016; Downie et al. 2013). A large
majority of the patients, 80%, face moderate to severe pain, and 76% of those patients
see their daily function being moderately, to extremely, affected by the symptom and
the associated pain (Hartvigsen et al. 2018). It has to be said that NSLBP is a long
lasting and, often, recurring symptom: 76% of people complaining about NSLBP, be
it acute or chronic, have already suffered previous episodes (Henschke et al. 2009a).
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Figure 1.2: Median prevalence of low back pain, with IQR, according to sex and
midpoint of age group, reproduced from Hoy and collaborators.

1.4 Impact on society
NSLBP is a significant public health problem all around the world as it is the leading
cause of disability worldwide (Hoy et al. 2014) and costs governments and insurance
providers billions of dollars in treatment and workers compensation costs each year
(Hoy et al. 2014). As of today, NSLBP is the number 1 affliction when it comes to
disabilities with 60.1 million years lived with disability worldwide (YLD) in 2015,
which is an increase of 54% since 1990 (DALYs et al. 2016), as shown in Figure 1.3.
The NSLBP problem is present in developed country and developing one, but exhibit
different issues in each: in developed countries, the impact and burden of NSLBP
is put on the healthcare and social system first. Whereas in developing countries,
the burden is predominantly put on the people impacted by LBP and their support
systems (Hartvigsen et al. 2018). Nonetheless, one common problem, faced by both
type of countries, is the age associated disabilities which are aggravated by NSLBP,
or aggravate the symptom and the associated consequences (Hoy et al. 2014). This
is especially concerning in ageing societies, a common phenomenon in developed
countries.

Reliably estimating the cost of NSLBP on society is a very complex task. The real
cost tends to be underestimated as a lot of expenses are indirect and are not, or
cannot be, taken into account in the estimates (Hartvigsen et al. 2018). But even
without accounting with those underestimations, the cost on society, as a whole, is
high. As an example, in 1996, the cost of NSLBP for the USA was estimated to be
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between US$18.5 billion and US$28.2 billion (Dagenais, Caro, and Haldeman 2008).
To put the impact of NSLBP on society in perspective, NSLBP is responsible for more
early retirement of old workers than the combined effect of heart disease, diabetes,
hypertension, neoplasm, asthma and respiratory diseases all together (Schofield et al.
2008), a fact even more concerning in ageing countries.

Figure 1.3: Global burden of low back pain, in disability-adjusted life-years (DALYs),
by age group, for 1990 and 2015, from Hartvigsen and collaborators.

1.5 The problem of NSLBP
The major problem of NSLBP encompass a very large and variable population, a
fact that make the symptom hard to study, to understand and to treat. As this
large population has, so far, not be subdivided reliably, it is therefore relatively hard
to design treatment and rehabilitation protocol that are effective for all patients.
Currently, NSLBP is an epidemic that is both costly and socially debilitating (Hoy
et al. 2014), and despite the best efforts of researchers and public health officials the
problem is getting worse (Hoy et al. 2014).

A new approach to tackling this problem is required in order to reduce the crippling
burden of NSLBP on the healthcare systems and societies (Hodges, Cholewicki, and
Van Dieën 2013). Previous research efforts into NSLBP rehabilitation have been
hampered by research designs using narrow theoretical frameworks, poor diagnostic
and classification systems, unresponsive or inappropriate outcome measures, and
treatment providers who may lack the necessary tools or training to obtain the
best clinical outcomes (Hodges, Cholewicki, and Van Dieën 2013; Bouter, Tulder,
and Koes 1998; Synnott et al. 2015). One promising area for NSLBP research,
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involves subtyping NSLBP patients, so that the most appropriate treatment can be
provided based on the patients’ individual needs rather than the current "one size fits
all" approach (Hodges, Cholewicki, and Van Dieën 2013; Haskins, Osmotherly, and
Rivett 2015b, 2015a). It is likely that different subgroups of NSLBP patients will
respond best to specific treatment approaches. If we can find a way to determine the
subgroup of a NSLBP patient clinically, in order to allocate him to the rehabilitation
protocols that will be the most beneficial to their particular needs, a major leap in
treating NSLBP and understand the symptom will have been made.

1.6 Characteristics of NSLBP population
Even if the NSLBP population is broad and diverse and present inconsistent differ-
ences between itself, it still showcases consistent changes when compared against
the healthy population. The changes are seen on multiple aspects, whether it be
biomechanical behavior, neuromuscular control, cyclic repetitions pattern etc. . . In
this part, we will take a look at the changes that are seen in a consistent manner in
the NSLBP population.

1.6.1 Balance and proprioception
The balance ability of the NSLBP population is negatively impacted by the symptom.
For example, it has been shown that patients with NSLBP exhibit greater postural
instability than healthy controls. This translates to greater center of pressure (COP)
excursions, and higher mean velocity of the COP. While the decreased postural
stability in NSLBP subjects appears to be associated with the presence of pain, it
seems to be unrelated to its exact location or the duration the patient had pain
for (Ruhe, Fejer, and Walker 2011). Nonetheless, the COP amplitude still seems
to be correlated with the pain location (Della Volpe et al. 2006), while the COP
mean velocity seems to be correlated with the pain intensity (Corbeil, Blouin, and
Teasdale 2004). But the correlation between the pain intensity and the magnitude of
COP excursions alteration, is not always clearly seen. Indeed, some studies managed
to find a correlation between the COP alterations and the pain intensity (Corbeil,
Blouin, and Teasdale 2004), while other did not (Ruhe, Fejer, and Walker 2011).
This discrepancy might be linked to the diversity of the NSLBP population: due to
the different population samples studied, the studies were probably just looking at
different spectrum of NSLBP, as it is very unlikely that those studies recruited the
same subjects.

In addition, it is thought that NSLBP impairs or damages the patients proprioceptive
system (Hodges, Cholewicki, and Van Dieën 2013). For example, when standing on
foam the NSLPB population presented a more irregular COP behavior, presenting
higher frequency of sway. This hypothesis of a damaged, altered, or at least deficient
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proprioceptive system has been tested via trunk re-positioning tasks. The goal of
those tasks was for the subject to accurately position his trunk to a specific position,
and then go back to his original position. Both times aiming for optimal precision.
In those studies, it was shown that LBP subjects performed much less accurately
than their healthy counterpart which seems to go along the hypothesis of a damaged
or altered proprioceptive system (Gombatto et al. 2015; Ruhe, Fejer, and Walker
2011; MacDonald, Moseley, and Hodges 2009). Due to this potential proprioceptive
impairment from NSLBP, it is believed that NSLBP patients have a higher reliance
on visual cue for postural control compared to healthy subjects. A belief that seems
to be confirmed by other studies (Sipko and Kuczyński 2013).

In order to look further into it, studies using vibration were conducted (Goossens et
al. 2018). Indeed, vibration applied to the muscles perturbs the muscle sensorimotor
abilities. During a tracking task where the subject was to follow a path with his trunk,
when no vibrations were applied to the lumbar muscles, NSLBP subjects showcased
27.1% more tracking errors than their healthy counterparts. When vibrations were
applied to the lumbar muscles, the healthy subjects tracking error increased by 10.5%,
while the NSLBP subjects did not show any changes (Willigenburg et al. 2013). As
NSLBP subjects were not affected by the vibrations, this result seems to confirm the
hypothesis of a damaged or altered sensorimotor system in NSLBP subjects.

1.6.2 Trunk movements
As could have been thought from the damaged or altered proprioceptive system
hypothesis, just like the balance and proprioception, NSLBP population presents
altered trunk movements in all plan and altered trunk control in general. It was
shown that NSLBP patients presented more forward trunk inclination during static
postural analysis, compared to healthy subjects, or that NSLBP subjects perform
basic trunk movements, such as forward and backward bending, lateral flexion or
rotation, with diminished amplitude compared to healthy subjects, accompanied with
a diminished average angular speed (Bourigua 2014). But the opposite is also found:
NSLBP subjects having higher amplitude of the lumbar spine movement. Indeed, the
NSLBP population is very broad and diverse, and if it mostly consistently showcases
changes compared to healthy population, those changes are inconsistent across the
NSLBP population (Villafane et al. 2016). Other studies on lateral trunk flexion
have shown that trunk passive elastic energy asymmetry is predicted by a gender and
a muscle factor in NSLBP subjects, whereas only the gender factor had predictive
power in healthy subjects (Gombatto et al. 2013).This could be explained by the
alteration of the non-contractile structures (Goossens et al. 2018;Willigenburg et al.
2013), as motor schemes and control rely on those structures, partly explaining the
source of the trunk control differences between healthy and NSLBP.
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These alterations in NSLBP patients are also found in other movements tasks. For
example, during box lifting, NSLBP subjects presented different motor strategies
compared to their healthy counterparts (Sanderson et al. 2019). Those variations
might stem from the significantly reduced mobility that was expressed by NSLBP
subjects, which called for various strategies to compensate for it. However, the
contribution of the lumbar spine relatively to the contribution of the hip was found to
be similar in both healthy and NSLBP. While the NSLBP subjects had a substantially
altered lumbar spine-hip joint coordination, in particular, in those with a positive
straight leg raise sign (Shum, Crosbie, and Lee 2007).

Another example from the literature is with the sit-to-stand task. During such
task, the NSLBP population performed at slower speed, showed counter-rotation
between thorax and pelvis on the transverse axis, and an overall lack of mobility
around the spine and hips joints compared to the healthy subjects. These differences
were accompanied with alteration of the coordination of the lumbar spine-hips joint.
Nonetheless, it wasn’t possible to isolate a generic compensation strategies for the
NSLBP group (Shum, Crosbie, and Lee 2005).

NSLBP patients are more likely to adopt a strategy of trunk stiffening via coactivation
of agonist and antogonist muscle while reducing their reliance on deep muscles. This
is thought to be done in order to prevent nociceptive input and to maximize perceived
benefits. One of the drawbacks of this stiffening strategy, is that it may work in the
short term, but it might also be detrimental in the long term (J. Dieën, Reeves, and
Kawchuk 2018). It was reported that for a trunk forward bending, NSLBP subjects
presented larger moments affecting their spine at smaller flexion angles and smaller
moments at the end range of the movement when compared with healthy subjects
(Shum, Crosbie, and Lee 2010). This might also explain the higher average moments
in compression forces usually measured on the discs of the spine of NSLBP subjects
(Hasegawa et al. 2018).

The work of Laird and collaborators summarize nicely some of the other biomechanical
differences that can usually be seen in NSLBP compared to healthy peoples. On
average, people with NSLBP display (Laird et al. 2014):

• No difference in lordosis angle (8 studies)
• Reduced lumbar range of motion (ROM) (19 studies)
• No difference in lumbar relative to hip contribution to end-range flexion (4

studies)
• No difference in standing pelvic tilt angle (3 studies)
• Slower movement (8 studies)
• Reduced proprioception (17 studies)
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1.6.3 Variability and adaptability of the movements

A very noticeable difference in NSLBP subjects is the difference in movement
variability and adaptability. Indeed, NSLBP subjects showed on average more
variability in standalone repetitions, a repetition which is isolated from any other
by a pause. This increased variability was, for example, shown in sit to stand tasks
regarding each independent repetitions in NSLBP subjects when compared to healthy
ones (Ippersiel, Robbins, and Preuss 2018). Another display of a lack of adaptability
can be seen in the fact that LBP subjects do not increase their base of support
by widening their stance in preparation to execute a faster movement. Something
healthy subjects do in order to perform optimally (Bourigua 2014). On the other
hand, NSLBP subjects showed on average less variation between repetition during
cyclic movement, such as walking, or while executing multiple repetitions of the same
movement. Again, those results must be put in perspective. Indeed, some studies
have shown that, even if movement speed and range of motion displayed greater
variability for people with LBP during trunk flexion, lateral flexion or rotation, at
the same time, other movement characteristics did not display greater variability, like
the pelvic tilt angle for example (Laird et al. 2014). For example, even if walking is
a cycling activity, a study showed that NSLBP subjects had higher stride to stride
variability compared to healthy ones (Vogt et al. 2001). Nonetheless, in general,
LBP subjects, tend to present a more variable proportional motion of the spine,
that is the sharing of bending across spinal segments, compared to healthy subjects
(Cholewicki et al. 2019). These alterations in variability of repetitions and movement
adaptability seems to indicate again alterations to the proprioceptive systems. These
alterations would translate to a decrease of adaptation capabilities to the conditions
in which the movement is performed, be it the starting conditions or to perturbations
during the actual movement (Asgari et al. 2015). Some of these changes might
stem from neuromuscular control adaptations, as NSLBP subjects tend to show less
within-subject variance in activation pattern of the trunk muscles (J. Dieën, Reeves,
and Kawchuk 2018), maybe due, or the cause, to their trunk stiffening strategies (J.
Dieën, Reeves, and Kawchuk 2018). But during cyclic activities, such as walking, the
opposite seems to be seen with more cycle-to-cycle variability in the Erector Spinae
(ES) activity (Vogt, Pfeifer, and Banzer 2003).

An interesting fact to be aware of is that higher motor variability was observed in
the upper limb or in the trunk in the presence of acute pain, whereas the variability
was lower under chronic pain conditions (Madeleine 2010; J. H. van Dieën, Flor, and
Hodges 2017), which tends to suggest adaptations to chronic NSLBP in the affected
subjects, like a dose-response relation between NSLBP and adaptations.
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1.6.4 Neuromuscular control
Neuromuscular control in NSLBP subjects, mainly regarding the trunk muscles, has
been somewhat overlooked till recently. Today, study of the neuromuscular control
of the spine is thought to be a promising area of investigation as differences are
being seen between healthy and NSLBP population. It is thought that valuable
knowledge could be gained about NSLBP, and yield direct improvements in the
clinical field (Hodges, Cholewicki, and Van Dieën 2013). Indeed, one of the most
important mediators of NSLBP is now thought to be alterations in neuromuscular
control (Hodges, Cholewicki, and Van Dieën 2013). Control of the spine relies on mix
between passive support, from the connectives tissues and other passive structures,
and active support, from the muscles coordinated by the nervous system (Panjabi
2003). In addition, increased knowledge on neuromuscular control could help model
symptomatic trunks and investigate the consequences from NSLBP more freely and
easily via the use of models.

Clear examples of such differences in neuromuscular control between healthy and
NSLBP subjects can be seen during lumbar extension where the centroid of the
muscle activity of the lumbar muscles was systematically more cranial for the NSLBP
participants compared to the healthy subjects (Sanderson et al. 2019). During the
same type of movement, regression analysis showed that the extent of the distribution
of the erector spinae (ES) activity was associated with more endurance: the more the
muscular activity was distributed through the ES, the more endurance the subject
had. NSLBP participants seemed to have used a different motor strategy to perform
an endurance task. A strategy characterized by a greater activation of the more
cranial regions of the ES and a more localized muscular activity of the ES through
the task (Sanderson et al. 2019). In another study, NSLBP subjects showed on
average a higher activity of the paraspinal muscles compared to healthy subjects
(Sanderson et al. 2019). This higher activity of the paraspinal muscle in NSLBP
subjects was correlated with a deficit in muscle endurance compared to healthy
subjects (Villafane et al. 2016). At the same time, hypoactivity of the deep intrinsic
spinal muscles was consistent in LBP population when compared to healthy subjects
(Hodges and Moseley 2003).

Very explicit differences in neuromuscular control between healthy and LBP subjects
can be seen when they are subjected to perturbations, such as a delay in activation
of stabilizers muscles (MacDonald, Moseley, and Hodges 2009) or of the transversus
abdominis during a voluntary perturbation task in NSLBP patients (Hodges and
Richardson 1996). For example, during a balance task against external perturbations,
when the perturbations happened, healthy subjects showcased a shut-off of agonist
muscles, with a reaction time of 53 milliseconds, which occurred before the switch-on
of antagonist muscles, with a reaction time of 70 milliseconds. On the other end,
NSLBP subjects exhibited a pattern of co-contraction, with agonist and antagonist
muscles remaining active through the task, while at the same time having longer
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reaction times activate or deactivate those muscles. Furthermore, their individual
reaction times showed greater variability between repetitions (Radebold et al. 2000).
Similarly, when subjected to sudden load release, NSLBP subjects demonstrated
significantly different muscle activation patterns compared to healthy subjects (Rade-
bold et al. 2000). In another study, when performing upper limb movements, healthy
control subjects showcased early activation of transversus abdominis (TrA) and
obliques internus abdominis (OI) in the majority of the trials, be it for movements
performed at fast or intermediate speeds. In contrast, subjects with NSLBP failed
to recruit TrA or OI when performing the movement at a fast pace, as well as in the
majority of the intermediate speed trials (Hodges and Richardson 1999). It is to be
noted that no differences between the two groups was identified when the movements
were performed at slow speed. This yields the question of long-term consequences of
NSLBP subjects’ adaptations, as here for example, the results let us believe that the
adaptations don’t hold against a demanding task such as compensation for a sudden
and fast load which could predispose the NSLBP patient to greater risk of relapse.

An intriguing fact is that pain intensity, fear of movement and disability from NSLBP
seemed to be all unrelated to the observed changes in coordination. This tends
to suggest that the observed changes in trunk coordination and ES activity were
a direct consequence of NSLBP symptom on the different physiological structures
(Lamoth et al. 2006).

1.6.5 Walking
Walking is a very interesting condition to study for NSLBP as it seems that there
is less inter variability in the adaptations showcased by NSLBP subjects in this
condition (Gombatto et al. 2015). But also as walking is an activity consistently to
people afflicted by this symptom during their rehabilitation.

As we said earlier, NSLBP subjects present higher stride to stride variability, but
also increased fluctuations in dynamic thoracic and pelvic oscillations (Vogt et al.
2001). It has also been shown that NSLBP subjects presented more variability in the
timing of the segments in the frontal plane during a walking cycle. The gait of the
NSLBP participants was characterized by a more rigid and less variable kinematic
coordination in the transverse plane, and a less tight and more variable coordination
in the frontal plane, accompanied by poorly coordinated activity of the lumbar ES
(Lamoth et al. 2006). This seems to agree with the trunk stiffening strategy via
co-contraction of the trunk muscles and associated higher muscle activity and done
while relying less on deep muscles for stabilization, as discussed earlier. Indeed,
the impaired coordination during walking for NSLBP subjects, seems to be the
direct consequence of this more rigid, less flexible pelvis-thorax coordination of the
trunk. At the same time, there was no significant differences in the kinematics of the
rotations component (Lamoth et al. 2002; Gombatto et al. 2015). This happened in
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addition to significant differences in hip joint range of motion, stride time and onsets
of the lumbar spine and hip extensors, which were activated earlier, in the NSLBP
population compared with the healthy one (Vogt, Pfeifer, and Banzer 2003).

In addition, it is to be noted that the change from in phase to anti phase pelvis-
thorax coordination, when increasing walking speed, is diminished in NSLBP subjects
compared to healthy subjects (Lamoth et al. 2006; Gombatto et al. 2015). Another
example of the lack of adaptability from the LBP subjects, an issue already discussed
earlier. Related to this, comfortable walking velocity was significantly lower in the
NSLBP participants and was limited, or provocative of pain, in more than 25% of
the subjects with the symptom. This again, bring us to the question of the long-term
consequence of the patients’ adaptation to NSLBP. Adaptations based on perceived
benefits by the subject, but which objectively do not benefit the patient’s long-term
quality of life (Gombatto et al. 2015).

1.7 Summary
NSLBP is a major concern in today’s world: be it for the nations due to the important
spending in healthcare, for the private sector with the cost on production and loss of
income due to worker being absent or incapacitated, and obviously for the individuals,
due to the impact of the symptom on their life and its quality, their capacity to work
and to provide for oneself and the people dependent on them. To this day, little is
known about the NSLBP symptom and subsequently on the NSLBP population. We
are faced with a very large and diverse population where, most of the time, standard
and generic rehabilitation protocols showcase little to no benefit to the patient. This
brings to the table the need to try to subgroup the NSLBP population into smaller
subset, in order to more easily design better suited rehabilitation protocol, but also
to gain a better understanding of the symptom.
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Chapter 2

Problematic and objectives

2.1 Research gap
NSLBP is a concerning problem, this extremely prevalent symptom (Hoy et al. 2012;
Hartvigsen et al. 2018) costing up to billions in direct and indirect cost to society
(DALYs et al. 2016; Dagenais, Caro, and Haldeman 2008) or in the number of lost
working day and compensation (Hartvigsen et al. 2018). But most importantly it
cost the individuals, by the long lasting (Henschke et al. 2009a) pain and associated
impact on one’s quality of life (Hartvigsen et al. 2018) and the extreme impact on
early retirement rate (Schofield et al. 2008).

A large proportion of the people afflicted by an acute episode of NSLBP recover
within 12 months (Henschke et al. 2008). But 12 months is quite a long period which
is susceptible of affecting one’s life in a dramatic way, especially if the symptom
leads to a decreased working time or capacity, or simply one’s quality of life. And
above that, the symptom showcase a relapse rate of 33% (Stanton et al. 2008), which
means two things:

• The people afflicted by NSLBP recover slowly, if at all.
• Around half of the people afflicted by NSLBP goes into a pervasive chronic

state

Treatments are barely better than placebo for acute episode (Hartvigsen et al.
2018), and with the over reliance on pain killer, especially opioids, make so that
the management of pain can be extremely detrimental for the individual (Massaly,
Morón, and Al-Hasani 2016). Same goes for chronic NSLBP were, to date, no effective
treatments exist (Maher, Underwood, and Buchbinder 2017), not even accounting
for the potential deleterious effect of pain management in long term cases (Massaly,
Morón, and Al-Hasani 2016).
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Despite its high and global prevalence (Hoy et al. 2012; Hartvigsen et al. 2018),
NSLBP is not yet clearly understood. The changes induced by NSLBP, while most
of the time swerving from the norm, are not consistent across the population and
the nature and the magnitude of those changes are unpredictable. But this lack of
knowledge on the symptom does not come from a lack of research or clinical effort,
but from the complexity of the task. As seen earlier, up to more than 90% of the
diagnosed LBP are idiopathic ones (Koes, Van Tulder, and Thomas 2006; Deyo and
Weinstein 2001; Henschke et al. 2009b; Enthoven et al. 2016; Downie et al. 2013),
meaning that no specific cause or causes for those LBP can be defined, making the
NSLBP population is extremely diverse and heterogeneous. As the practitioners and
researchers are faced with a very large, broad and diverse population. which makes
it extremely hard for them to work with patients and study the symptom. It is hard
to generalize findings, understand or simply study the symptom, and even more to
design adequate treatments for the patients (Maher, Underwood, and Buchbinder
2017; Hartvigsen et al. 2018). In order to circumvent this issue, one solution that
is making consensus, is the clustering of the LBP population (Hartvigsen et al.
2018). If working, clustering of the population would divide the complexity of the
problem. Indeed, if the NSLBP population can be divided from a single entity, into
to multiple more homogeneous and definite groups, practitioners and researchers
would be dealing with clusters of patients with less variance and more commonality.
This would render the research and ground work much easier, and hopefully be the
first step to answer the NSLBP question. But as of today, the research community
as yet to find valuables answer to this task (Laird et al. 2014; Maher,Underwood,
and Buchbinder 2017; Hartvigsen et al. 2018).

Some attempt at investigating subgroups and designing personalized treatments
for them have already been tried, but without great success. For example, the
Quebec task force tried to divide the NSLBP population in three arbitrary distinct
groups (O’Sullivan 2005). This was done using a theoretical framework encompassing
multiple aspects of the NSLBP (Hartvigsen et al. 2018). A lot of different types of
classification techniques have been tried along the years (Karayannis, Jull, and Hodges
2012; McCarthy et al. 2004) using conceptual framework, movement examination,
questionnaire, imaging or even electromyography (Marras et al. 1999; Karayannis,
Jull, and Hodges 2012). None of which yielded actual significant improvement in
research or clinic.

Today, most attempts at NSLBP classification rely on the use of categorical data.
Most of the current classification models that work, do so using questionnaire data, or
variables in general, that are categorical at the time of acquisition (Laird et al. 2014;
Koppenaal et al. 2023). The categorization, as well as answering those categorical
variables, are subjective acts. This arbitrary aspect might limit the extrapolation
of the clusters found through those categorical models, into actual useful groups in
a clinical setting, the work of the Quebec Task Force being a good example of this
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(Loisel et al. 2002). Some experiments have tried, to circumvent the difficulties of
designing classification models using strict continuous data, by categorizing those
continuous variables. Some with appreciable results (Laird, Keating, and Kent 2018).
While still better a better solution than having to rely on a subjective assessment
from the subject, still poses the issue of subjectivity: the categorization relies on an
educated guess of the operator, and is therefore tied to his judgment, appreciation and
subjectivity. Being able to design classification models that work on non-arbitrary
data, for example based on continuous data, would ground those classification models
into a solid foundation based on objective data.

As of today, it can be argued that a lot of the classification models are not used
in a clinical setup, or even usable in the field. The clinically usable classification
models have a very variable usage rate: between 7% to 70% (Byrne, Doody, and
Hurley 2006; Poitras et al. 2005; Hamm et al. 2003; Foster et al. 1999; Battié et al.
1994; Jackson 2001; Gracey, McDonough, and Baxter 2002). Some of the reasons
for this lack of use are the unfamiliarity professionals have with those type of tools,
and the perceived usefulness of those classification models, while those classification
models compete with other, more popular and, or, useful tools (Karayannis, Jull,
and Hodges 2012). Therefore, there is a lot of room for improvement in the domain
of subgrouping NSLBP. This is in this context that our work ground itself: where
attempt to clustering the LBP population, in a clinically meaningful way, has yet
to be found, and more exploratory work, in order to help the creation of those
meaningful clustering framework, is needed.

2.2 Project objectives
As we discussed above, little is really known about NSLBP population characteristic
aside that there display differences from the healthy population. Therefore, before
attempting any clustering work, there is a need for an exploratory work, our first
objective in this work, to have a better understanding of how NSLBP affects the
patient population, and to help us outline more clearly the variables that seem to be
of greater importance. Once that exploratory work is done, it should become clearer
how to go on about subgrouping the NSLBP population, our second objective. Our
approach is therefore summarized in those two objectives:

1. First objective: Provide an exploratory work to better understand
the influence and importance of the selected variables in regards
to NSLBP and our sample population, and gather information to
prepare subgrouping

2. Second objective: Provide an attempt at clustering our population
sample in order to discriminate valuables subgroups
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2.3 Research plan
Contrary to previous works, we will focus on the use of continuous variables in
order to try to subgroup our NSLBP population sample. As discussed earlier, there
are numerous domains, like the ones talked about earlier or more generally, the
meta-domains enumerated by Hartvigsen and collaborators (Hartvigsen et al. 2018),
in which the LBP population differ from the healthy population: biophysical factors,
comorbidities, genetic factors, psychological factors, social factors. We will therefore
focus our attention on those domains. In order to assess those aspects for each
participant, we based our protocol on movements tasks and tools that have been
previously tested in other works. We weren’t able to investigate subjects’ walking in
this work, despite the amount of potential information it could yield, due to the lack
of instrumented treadmill at our disposal.

Consequently, we focused our efforts on the movement strategies, the variability intra
and inter-subjects and the neuromuscular domains. Data was acquired using motion
capture and high-density electromyography. According to our objectives, our work
was divided into two parts: exploratory analysis, cluster analysis.

Once our variables were extracted from the acquired signals and pre-processed, we
started with the exploratory analysis. The objective here, is to help us understand
the relation between the continuous variables acquired and NSLBP. Deep neural
networks (DNN) and factor analysis (FA) were used for this. The goal of the DNN
was not the categorization itself, as it is fairly easy and robust to know if somebody
have back pain simply by asking them, but to help us know which variables are
more important when it comes to NSLBP, and to tell us more about the amount of
information in the variables we chose. After this, we used factor analysis to perform
a R-type analysis to get a better understanding of the importance of our selection
of variable, each of them representative of some of the main domains driving the
NSLBP prognosis, in relation to the NSLBP symptom.

Once the exploratory analysis was done, we used classic and well tested clustering
algorithms in order to investigate the presence of subgroups inside our population
sample. Different algorithms were used due to their different behavior so that we
maximized our chance of finding clusters, and at the same time to test the results
from the clustering algorithms against each other. K-means clustering, spectral
clustering and hierarchical agglomerative clustering were used in this step. First
our whole data set was used, with or without dimension reduction via principal
component analysis, as null models. Following that, we used the insights gained
from the exploratory analysis to define movement specific data sets, using for each
movement the variables highly correlated to the symptom, in order to use them to
subgroups our population sample.
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To summarize, our protocol is built up on basics movement tasks performed by the
subject, while we acquire data on the participant biomechanic and neuromuscular
control via the use of motion capture and high-density EMG. We then use different
tools for exploratory analysis in order to gain information on the relation between
acquired variables and the symptom, to then investigate the presence of clusters,
subgroups, in our population sample.

2.4 Summary
NSLBP is a concerning problem. As of today, what is known about the symptom,
and what can be done to treat it is limited. One of the main obstacles in improving
our knowledge and our clinical practice is that the symptom encompasses as large
and diverse population. To work around that problem, one solution that is thought
to yield significant potential is to subgroup the NSLBP population. Subgrouping
the NSLBP population should allow to discriminate more homogeneous groups.
This homogeneity should help better understand the symptom, and consequently
improve our capacity to treat the symptom in the field, by helping design appropriate
rehabilitation protocol for each group. Our approach to the present problematic of
NSLBP can be summarized in two steps: exploratory analysis, and cluster analysis.
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Chapter 3

Method

3.1 Design and location

Our study was approved by the Health and Disability Ethics 158 Committees
on November 6, 2019 (Approval: 19/CEN/187). It was conducted at the Centre
for Chiropractic Research, Auckland, New Zealand, and Auckland University of
Technology, Auckland, New Zealand. A picture of the MOCAP lab from AUT,
used for the data acquisition can be found in Figure 3.1. The study involved 2
groups, Healthy subjects and NSLBP subjects. Participants were not blinded to
group allocation. Outcomes assessors and data analysts remained blinded to group
allocation throughout the data collection and data processing steps.

Figure 3.1: AUT MOCAP laboratory.
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3.2 Population
53 subjects have been recruited in total. The subjects were divided into 2 groups:

• Healthy: 17 subjects
• LBP: 36 subjects

A total of 7 subjects were excluded post-acquisition due to issues during the data
collection:

• Healthy: 3 subjects
• LBP: 4 subjects

This brought the total number of participants kept for data analysis to 46 subjects:

• Healthy: 14 subjects
• LBP: 32 subjects

The subjects were recruited via advertising within the New Zealand College of
Chiropractic community. The participant interested in the study were to contact
the person in charge of the recruitment via e-mail or telephone. They were then
received for a quick interview to assess if they fitted the inclusion criteria of our
study. During the interview, it was made mention that a 20 NZD$ petrol voucher
was offered to the participant at the end of the acquisition session for his time
and effort if he partook in the study. Participants included students, staff, faculty,
and previous patients of the College’s chiropractic center and also family, friends
and acquaintances of the New Zealand College of Chiropractic community. The
experimental protocol was advertised by inviting volunteers to get in contact with
our team in order to participate in a scientific study, whether they have experienced
low back pain and have, or not, received treatment (the NSLBP group) or they have
not experienced back pain (healthy group).

The population inclusion/exclusion criteria were as follow:

• English speaking
• Age between 18 and 50
• In case of LBP, no identifiable cause for it
• Not suffering from a current lower limb disorder/dysfunction
• No recent history of inner ear infection with associated balance or coordination

problems
• No history of cerebral trauma with unresolved sensorimotor symptoms
• No recent history of vestibular disorder
• No previous spinal surgery
• No involvement in specific balance or stablization training in the past 6 months
• Not currently on pain medication

24



• Below 3/10 on the pain scale on the day of the data collection (Hawker et al.
2011)

NSLBP was defined as pain located between the lower rib margins and the buttock
crease (Dionne et al. 2008) and for which the pathoanatomical cause of the pain
was not determined (Maher, Underwood, and Buchbinder 2017). The low back pain
must have been present at least 3 months in the last year to be counted as chronic
(Bernell and Howard 2016).

Our population sample was composed of a total of 46 individuals, 11 of which were
female participants and 35 were male participant. The healthy group was composed of
14 subjects, and the NSLBP group of 32 subjects. More detailed characteristics of the
population can be found in the Table 3.1 below. Distribution of the anthropometric
data, age, height, weight and BMI are found in the figures below, respectively Figure
3.2, Figure 3.3, Figure 3.4 and Figure 3.5.

Population Age (year) Weight (kg) Height (cm) BMI
General 31.2 ± 9.2 74.4 ± 13.8 172.9 ± 8.5 24.9 ± 4.3
Healthy 29.6 ± 9.1 69 ± 12.7 172.5 ± 8 23.1 ± 3
LBP 31.8 ± 9.3 76.7 ± 13.8 173 ± 8.9 25.6 ± 4.6

Table 3.1: Population characteristics.

Figure 3.2: Age distribution by groups.
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Figure 3.3: Height distribution by groups.

Figure 3.4: Weight distribution by groups.
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Figure 3.5: BMI distribution by groups.

3.3 Data acquisition tools

3.3.1 Motion Capture
A motion capture (MOCAP) system, is a system which aim to record the position of
elements in space. There are different types of systems, which can be regrouped into
2 main categories:

• Optical systems
• Non-optical systems

As our project used an optical system, we will not dwell into the non-optical systems,
but the interested reader can turn to the book Understanding motion capture for
computer animation (Menache 2011) for more information on those. The optical
systems can in turn be divided into 2 groups:

• Markerless
• Passive marker
• Active marker

Markerless systems do not rely on markers to track bodies in space, and only require
cameras. Competitive markerless systems are fairly recent, but still suffer from two
mains problems. Firstly, their accuracy. Even if major leaps forward have been made
in the domains, their accuracy is still relatively poor when put against systems using

27



markers. Indeed, the latter showcase a precision that is still two orders of magnitude
better. Secondly, they are tied to a very rigid framework: they are only able to track
bodies that they have been trained to recognize. Their models cannot be adapted to
the needs of the experiment as easily as it can be with optical systems using markers,
and esoteric models cannot be reliably studied with them.

Passive and active marker systems both use markers to track one or multiple bodies
in space. The difference between the two comes from the fact that in the passive
marker system, the infrared light is produced by the camera, which will light up
the volume of capture. The light will bounce back on the passive markers, either
a sphere, demi-sphere or disc of reflective material, as shown in Figure 3.6a. Then
the light reflection will be picked up by the cameras to allow for triangulation of the
marker position. Whereas, in active marker systems, the marker itself generate the
infrared light that will be picked up by the cameras, as shown in Figure 3.6b. It is
to be noted that at least two cameras need to capture the light from a marker, be
it reflection or produced light, to allow for the triangulation of the position of said
marker. The mathematics behind those computation won’t be covered here but can
be found in the work of Parent R. and collaborators (Parent et al. 2009).

(a) Passive marker system dia-
gram.

(b) Active marker system dia-
gram.

Figure 3.6: Motion capture marker types

In order to track a body in space, marker have to be placed at key landmarks of that
body that will best describe its structure and movements. When it comes to human
bodies, numerous models have been used, but some standard have been suggested
by the International Society of Biomechanics (ISB) to facilitate reproducibility of
the studies (Wu et al. 2002, 2005), and therefore we made our setup as compliant as
possible to the ISB standards. Marker position on the subject was chosen to limit as
much as possible skin artifact or soft tissue artefact (STA) (Cappozzo et al. 1995).
The STA is the slight displacement of marker due to the elasticity of the soft tissue
the marker is put on, here the skin, and which is not due to the displacement of the
underlying bone structure of interest.
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Once the position data of the marker acquired, and their trajectory aggregated, the
markers all appears identical to the software. For the trajectories to be usable, they
need to be labeled first. This operation can be automated to a certain extent, but
the results are never complete or 100% accurate and a significant part of labeling
work still needs to be done by a human operator. Once the trajectories are labeled,
they need to be cleaned in order to be used for processing. Cleaning the data mean
filling the gap that might have happened during the recording due to occlusion of the
marker, and correct artifacts and noise issues. Indeed, during recording it usually
happens that, either the camera loses track of some markers due to obstruction of
the line of sight, or simply would misinterpret markers which are close to each other,
associating the trajectory data of one marker with the other marker’s trajectory.
Therefore, before using the trajectory data, they need to be cleaned, either by filtering
or by a human operator. But as of today, correcting those errors and filling those
gaps can only be made manually in most case, and is a time consuming activity.

The motion capture acquisition system used in our study was a Qualisys system
(Qualisys AB, Göteborg, Sweden, version 2021.2, build 6940), of 9 Oqus 500+ series
camera acquiring data at 120Hz, with two Amti force platform, of the S464508
series (Watertown, Massachusset, USA) connected via an analog interface USB-2533
(Measurement Computing Corporation DAQ) using an acquisition rate of 1000Hz.
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3.3.2 High Density Electromyography
The electromyography (EMG) signal that is recorded from the surface of the skin
via the surface EMG, spring from the superimposition of the multiple electrical
potential created by the cellular depolarization of the muscle fiber. The electrical
signal coming from a single muscle fiber is named Single Fiber Action Potential
(SFAP), and the superimposition of the SFAP linked to a same Motor Unit (MU)
is called Motor Unit Action Potential (MUAP) (Farina and Holobar 2016). To be
noted that the superimposition can be constructive or destructive due to the nature
of the SFAP signal, which can be either of positive or negative amplitude. The
Figure 3.7 (Farina and Holobar 2016) show a graphical representation of the surface
EMG signal generation.

Figure 3.7: EMG signal generation (from Farina and Holobar, 2016).

The signal that we get via EMG recording is not the direct representation of the
MUAP signals superimposition. It is the MUAP signals superimposition after it has
been influenced by numerous factors. This also prevent direct interpretation of the
surface EMG signal as a direct representation of the muscle activity or behavior.
Some of the factors of utmost importance in shaping the recorded EMG signal are
(Dimitrov and Dimitrova 1998; Farina, Cescon, and Merletti 2002):

• MUAP signals superimposition
• Muscle anatomy
• Subcutaneous tissues and the related volume conductor effect
• Electrode positioning

To simplify, a surface EMG setup is composed of an EMG amplifier and an electrode
setup. In classic surface EMG setup, this electrode setup can be made of 1, 2, 3
or 4 electrodes, not accounting for any of the reference electrodes. Usually this or
these electrodes are usually used in a monopolar or bipolar mode (Barbero, Merletti,

30



and Rainoldi 2012). Tri or quadripolar mode a usually reserved to more specific
application, for example ECG (Weiss, Weiss, and Silver 2021).

One of the major downsides of these classic setups are the very low spatial resolution:
only one spot is being looked at one time. To circumvent this, high density EMG
(HDEMG) systems have been developed in recent years. Those systems rely on the
same principles as the classic ones, but differ from their electrode setup. Instead of
recording at one points only, they will assess the EMG activity on a relatively large
surface thanks to grid, or grids, of electrodes, which are composed of a number of
electrodes, from a couples of electrodes to many dozens. As stated earlier, a HD
EMG system is composed of one or more electrode grids which are placed on the
skin, over a muscle, and connected to an amplifier, similarly to a classic EMG system.
These HD EMG grids are a matrix of multiple small EMG electrodes separated by
an equal distance from each other and organized in rows and column. HD EMG
gives the researcher a higher definition of the muscle activity, providing spatial
information in addition to time information, thanks to a larger recording area. This
yield much more information than a classic EMG setup, allowing for more complex
data processing on the data recorded, and providing richer information about the
muscles studied, and some information on the system directly related to them.

To record HD EMG signals in our study we used the HD EMG Quattrocento amplifier,
as shown in Figure 3.8b, from the company OT Bioelettronica (Turin, Italia) with
semi-disposable adhesive matrix from the same company, model GR08MM1305, 63
sensor grid electrodes, 5 columns, 13 rows architecture with electrodes diameter of
1mm and inter electrodes distance of 8mm, as shown in Figure 3.8a. AD64 HD
EMG adaptor (OT Bioelettronica, Turin, Italia) were used to connect the patches of
electrodes to the amplifier. All the parameters were manipulated from the interface
of the OT Bioelettronica software. The signals were acquired using the software
OTBiolab+ (version 1.5.7.3, OT Bioelettronica, Turin, Italia). The settings used
were:

• Bandpass filter: 10-500 Hz

• Sampling frequency: 2048 Hz

• Gain: 2000
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(a) GR08MM1305 electrode grid. (b) Quattrocento HD EMG ampli-
fier.

Figure 3.8: HD EMG acquisition setup from OT Bioelettronica, Turin, Italia.
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3.4 Protocol

3.4.1 Subject preparation

As the patient arrived at the experiment location, they went through an explanation
of their rights, the experimental procedures, security and safety rules, as well as
the goal of the study was given orally and were also accompanied by a written
document stating and explaining all of this. The participants would then provide
informed consent if they accepted to participate in the study. Following this, they
were to complete a questionnaire to identify symptoms and dysfunctions. Once the
questionnaire was answered we determined the handedness of the subject by asking
him which hand they used to write.

Figure 3.9: Experimental setup.

Spherical reflective surface markers (7 mm), and clusters of markers, custom made
from Optitrack (NaturalPoint, Inc. DBA Optitrack) 6 mm markers, were placed
on anatomical landmarks according to the international society of biomechanics
recommendation (Wu et al. 2002, 2005) to make up a model of 38 markers on the
body, and 8 clusters of markers placed on the spine as shown in Figure 3.9. The
cluster of markers allowed for the creation of multiple segments of the spine, as
shown in Figure 3.10. The full set divided the spine in 5 segments, Hips-L5, L5-T12,
T12-T6, T6-T3 and T3-C7. These positions for the cluster were chosen as they allow
for a fine representation of spinal kinematics with a minimal number of clusters of
markers (Papi, Bull, and McGregor 2019; Schinkel-Ivy and Drake 2015). It should
be noted that previous studies have shown that this type of cluster of markers is
appropriate for assessing spinal kinematic, despite the presence of skin artifacts (Mörl
and Blickhan 2006; Zemp et al. 2014).
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Figure 3.10: Spine segments created by the clusters. On the left side, the simplified
set of spine segments. On the right side, the full set.

Figure 3.11: Structure of a cluster of marker used during our experiment. A1, A2 and
A3 respectively, the left, middle and right marker. B the aluminium sticks which are
tightened together using tape. C the epoxy and D1 and D2 neodymium magnets. E
the acryclic sheet. F, tape used to stick the D2 magnet on the skin of the participant.
G the skin of the participant.
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The clusters of markers were home made using the following structure: a base made
of a thin acrylic square, to which a neodymium magnet and 3 aluminum sticks were
bound to via the use of epoxy. At the end of the sticks, 6mm diameter passive
reflective markers were attached, as shown in Figure 3.11. The structure made of the
sticks was reinforced with tape. It was made sure that each pair made by combining
markers of the cluster did not end up forming a parallel axis. Magnets were used
for the cluster fixation on the spine of the subject. The magnets were placed on the
respective spinous processes via the use of double-sided tape (Vicon Motion Systems
Ltd, United Kingdom).

For high density electromyography (HD EMG), the area of skin where the electrodes
were to be placed, was prepared by gentle abrasion using abrasive paste (Everi,
Spes Medica, Italy), then the area was cleaned with alcohol wipes, as to follow
recommendations (Merletti and Farina, 2016). To record HD EMG signals, we used
the HD EMG Quattrocento amplifier (OT Bioelettronica, Turin, Italia) alongside semi-
disposable adhesive electrodes matrix from the same company, model GR08MM1305,
5 columns, 13 rows architecture for 63 electrodes with a diameter of 1mm and inter
electrodes distance of 8mm. GR08MM1305 patches of electrode were prepared by
first applying an adhesive foam on top of them, which was filled with conductive and
adhesive paste AC Cream (Spes Medica S.r.l., Genova, Italia). The electrode grids
were placed at either side of the low back, always starting precisely, for the lower
pair, from L5, up to L2 depending on the subject morphology, and for the upper
pair, from L1 to T8, again depending on the subject morphology (Martinez-Valdes
et al. 2019; Falla et al. 2014; Murillo et al. 2019). The grids were placed around
2 cm away from the spine as to cover the back extensors and paraspinal muscles
(Sanderson et al. 2019). Figure 3.9 and Figure 3.13a display the grid of electrodes
placement.

Figure 3.12: Adhesive foam for semidisposable matrix, 8mm i.e.d (13 rows - 5
columns).
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Classic bipolar EMG electrode were applied on the Rectus Abdominis, just below
the navel, on the left and right side, and Abdominal External Obliques, at equal
distance from the last floating rib and the iliac crest, on both sides of the subject.
Those electrodes are here to provide information about the activation onset of these
muscles we aim to study (Radebold et al. 2000; MacDonald, Moseley, and Hodges
2009; Hodges and Richardson 1996). The electrodes used were Ag/Cl electrodes,
placed with a 20 mm inter-electrodes distances and placed parallel to the muscles
fibers of the muscle of interest (Barbero, Merletti, and Rainoldi 2012), as shown
in Figure 3.13b, according to SENIAM recommendations (Stegeman and Hermens
2007).

(a) HD EMG elec-
trodes position.

(b) Classic EMG elec-
trodes position.

Figure 3.13: EMG electrodes placement.

Once the patches of electrodes and the classic electrodes were placed, Pretaping
Adhesive Spray Grip (D3, London, England) was sprayed on the spine area to increase
the adhesive power of the X6.0 D3 tape (D3, London, England) used to secure the
magnets on the spine of the subject. The same X6.0 tape was applied around the
waist of the subject to secure the patches of electrodes to the subject’s body, in
order to minimize the displacements of these during the subject’s movements. The
references electrodes were placed, on the crest of the spine of the scapula. The
subject’s reference for the amplifier was fixed on the ankle of the subject.
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Figure 3.14: Fully prepared subject, back view.
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Figure 3.15: Fully prepared subject, front view.
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3.4.2 Data recordings

Once the subject was prepared, he was set in the center of the acquisition volume of
the MOCAP system. Each foot on a separate force plate. The subject was instructed
to take a natural foot stance. Aside from the fact that each foot had to remain on
its respective force plate, the foot stance was not controlled (Bourigua 2014). Indeed,
foot stance is subject to difference between healthy and NSLBP subjects (Koch and
Hänsel, 2019).

Once the subject was in position, he was given instructions on how to perform each
movements:

• Static postural recording, 90 seconds eyes open and 3 x 90 seconds eyes closed.

• Movement tasks, 10 repetition with eyes closed, at preferred velocity and
maximal velocity

– Back extension

– Back flexion

– Lateral trunk flexion, left and right

– Trunk rotation, left and right

The static postural task consisted of the subject standing upright, straight, relaxed,
and to not move for the duration of the task. Two static postural recordings were
performed first, one eyes closed and one eyes open, then another recording with
eyes closed after the movements at preferred speed had been performed, and a last
recording with eyes closed after the movements at maximal speed were performed.
The movement tasks were performed in a random order, different between preferred
and maximal. All conditions, except for the first static postural recording, were
executed with the eyes closed, in order to maximize difference between the two groups
(Gill and Callaghan 1998; Leitner et al. 2009). Flexion, extension and abduction of
the lower limb joints were monitored during movement tasks. The repetition would
be invalidated if they occurred. The different movements tasks are displayed in
Figure 3.16.
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Figure 3.16: Movements performed during the experiment.

The preferred velocity was defined as:

The speed at which the subject would perform the movement in a day-
to-day life scenario.

And the maximal velocity was defined as:

The maximal speed at which the subject can perform the movement
safely.

For the lateral bending, participants were asked to bend their trunk laterally from an
upright posture to maximal lateral flexion, without engaging the hip joint or bending
their knees.

For the trunk rotation, participants were asked to rotate their trunks from the
starting position, without engaging the hip joint or bending their knees. For the
back extension, the participants were asked to extend their back backward, without
bending their knees.

For the forward bending condition, participants were asked to bend the trunk, without
moving their hip joints or bending their knees. The forward bending condition had
a slightly different execution than the other movement conditions when performed
at preferred speed, in order to study the Flexion Relaxation Response (Solomonow
et al. 2003). To do so, the subject performed the actual trunk flexion movement,
from a standing position to maximum amplitude, in 3 seconds. Once the maximum
amplitude was reached, the subject stayed still in that position, for 3 seconds. The
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subjects would then return to its starting standing position, again in 3 seconds.

Once explanations were given and understood, the protocol itself started. The subject
was asked to perform the movements, 10 consecutive repetitions each, one after the
other, first at preferred speed, then at maximum speed. The repetitions were made
to be as independent as possible by waiting till stabilization of the participant at the
end of each repetition, before engaging in a new repetition. This was controlled by
the MOCAP operator via the force plate readings. The movements were performed
in a randomized order. The randomized order was different for the preferred and
maximum speed movements.

3.5 Protocol rational
We relied on a combination of dynamic movements conditions in our study over
static conditions as the dynamics ones seems to showcase more opportunities to find
differences between the two population, which should be intensified by the fact that
the tasks will be performed eyes closed. Indeed, as discussed in our first chapter,
numerous variables were shown to differ between NSLBP and healthy population.
Our focus will be driven on the domains developed in our first chapter that are
known to present significant and consistent difference between healthy and NSLBP:

• Adaptability of the movement
• Balance and proprioception
• Movement strategies
• Metadata
• Neuromuscular control
• Variability of movement

As the proprioceptive abilities of the NSLBP population seems to be negatively
impacted by the symptom, probably due to damage or alterations in the related
systems (Hodges, Cholewicki, and Van Dieën 2013; Gombatto et al. 2015; Ruhe,
Fejer, and Walker 2011; MacDonald, Moseley, and Hodges 2009) and, or, deficit in
the integration of the proprioceptive information (Brumagne, Lysens, and Spaepen
1999; Gill and Callaghan 1998; Leitner et al. 2009; Pijnenburg et al. 2015). Due to
this deficit, NSLBP subject seems to rely more heavily on visual cue to compensate
for it, as discussed in our first chapter (Sipko and Kuczyński 2013). Previous works
already highlighted bigger differences between healthy and NSLBP subject while
performing tasks with eyes closed for example when performing trunk inclination
(Brumagne et al. 2008), during postural sway (Mientjes and Frank 1999; Nies and
Sinnott 1991) or simply balance performance in general (Radebold et al. 2001). By
having the subjects perform the movement tasks with their eyes closed, we aim to
highlight more easily the differences between potential subgroups groups.
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These proprioception alterations will also be shown indirectly via the inter and
intra-subject variability. The intra-subject variability of this kinematics and dy-
namics variables should provide insight on the impact of LBP (Asgari et al. 2015;
Descarreaux, Blouin, and Teasdale 2005; Ippersiel, Robbins, and Preuss 2018) on the
sensorimotor pathway of the subject. We expected to see an increase in variability
in one-off repetitions (i.e. isolated movement) on NSLBP subjects but a decrease in
the variability of repetitive movement, cyclic movement (i.e. repetition of similar
movement over time, like during walking), which could indicate an inefficient proprio-
ceptive system, as the NSLBP subject would be more affected by the initial condition
of the movement, but show a decrease in adaptation capabilities (Asgari et al. 2015;
Descarreaux, Blouin, and Teasdale 2005; Hamill, Palmer, and Van Emmerik 2012).

As was also developed in our first chapter we expect the NSLBP population to show
differences in kinetics and kinematics (Bourigua 2014), but also at a neuromuscular
level with strategies that differ from the ones used by healthy subjects (Colloca and
Hinrichs 2005; Neblett et al. 2003). It is to be noted, when it comes to neuromuscular
control, that when performing trunk flexion, healthy subjects present a phenomenon
called Flexion Relaxation Response (FRR): when the spine is fully flexed, deactivation
of the lumbar muscle is observed, the extension forces needed for spine stability
being then handled by the passive structures composing the spine (Kim et al. 2013).
NSLBP people shows significantly less deactivation of the lumbar muscles, which
could be an indicator of passive structure change or some protection mechanisms
(Kim et al. 2013; Deyo et al. 1991; Solomonow et al. 2003). A phenomenon that is
not observed most of the time in the NSLBP population, hence the reason for this
movement and its peculiar procedure at normal speed, which goal is to observe this
FRR.

The use of HD EMG will allow us to better understand how low back muscles
are controlled and activated during the different condition performed during our
experiment, conjointly with MOCAP which will give us valuable kinetic and kinematic
information.

3.6 Data pre-processing

3.6.1 Motion capture data
Once acquired, the marker trajectories were pre-processed: first, trajectories were
labeled, then the gaps in them were filled and all the different artifacts, marker
swapping or noise that could be treated were corrected for. Once it was done, the
signals were exported into a .mat file in order to be processed in Matlab (MathWorks,
Natick, MA, USA) later on. The position of the clusters was computed at that
moment.
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To compute the clusters position, it is first necessary to compute the measured cluster
rotation against its reference. The reference being this same cluster, flat on the
leveled ground, with its base aligned to the X and Y axis of the General Coordinate
System (GCS) of the laboratory.

The first step was to create the Local Coordinate System of the cluster (LCS), in
GCS terms, of the measured cluster of markers and its reference. This was done by
executing the following steps:

1. Compute the centroid of the cluster

2. Create the LCS itself: −−−→LCSy = Cright − Cleft (3.1)

−−−−−−→tempmiddle = Cmid − (Cleft +
−−−→LCSy

2 )
−−−−−−→tempLCSx = −−−→LCSy × −−−−−−→tempmiddle
−−−→LCSz = −−−−−−→tempLCSy × −−−−−−→tempLCSx

(3.2)

−−−→LCSx = −−−→LCSz ×
−−−→LCSy (3.3)

with Cleft, Cmid and Cright, respectively the left, middle and right marker
position of the cluster. This was done for the measured cluster and its reference.
× being the cross product of the vectors.

3. Normalization of the vectors LCSx, LCSy and LCSz constituting the LCS.
Knowing the LCS of the measured cluster and the LCS of its reference, the 3D
rotation of the measured cluster against its reference was computed via the
following steps:

4. Create the following matrices both for the measured cluster and its reference,
as follows:

M =

LCSxx LCSyx LCSzx

LCSxy LCSyy LCSzy

LCSxz LCSyz LCSzz


5. Compute the rotation matrix:

R = Mcontrol × Mmeasured
⊺ (3.4)
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The R matrix is then applied to the reference translation offset to rotate it
in order to match the rotation of the measured cluster. The offset being the
translation vector −−−→Offset = Reference − Centroid, from the centroid of the
cluster of marker, to the actual position of the base of the cluster, were the
cluster actually connect to the skin of the subject. Once the offset translation
was rotated, we used it in order to get the actual position of the cluster on the
spine.

6. If needed, compute the rotation angles for each axis, using the following
equations:

R =

R11 R12 R13
R21 R22 R23
R31 R32 R33


Rx = − arcsin R32 (3.5)

Ry = − arctan −R31

R33
(3.6)

Rz = − arctan −R12

R22
(3.7)

3.6.2 Electromyography data
First the portion of interested of the raw HD EMG and classic EMG signals was
extracted using the trigger data broadcasted from Qualysis Track Manager via the
acquisition board, and acquired via a connection to the Quattrocento. The trigger
outputed by the Qualisys acquisition board being subject to noisy oscillation, a
function trigBound() was designed to select the poriton of interest in spite of those
unwanted oscillations. The function filtered out the trigger signal via two bandstop
filter: a first one for the 48-52 Hz band and a second one for the 148-152 Hz. This
noise was most probably due to the power line inference (PLI) of the New Zealand
electrical grid which use an alternative current oscillating at 50 Hz. The second
filter was added to filter this peculiar harmonic of the 50 Hz PLI and to improve
the sharpness of the trigger signal. The bandstop() function from the Signal
Processing toolbox from Matlab was used for the filtering. Following this, the
trigger boundaries were found, and trimmed for accuracy purpose. The details of
this stage can be found in the appendix trigBound().

Following this, the HD EMG and EMG signals were filtered for baseline wander
(BW) noise also called baseline fluctuation, as shown in the example of Figure 3.17
and Figure 3.18. To do so a filter has been implemented, based on the work of A.
Fasano and V. Valeria (Fasano and Villani 2014) to which an automatized function
of our own design was added to, in order to find the optimal lambda for that filter.
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To summarize, the filter uses the quadratic variation as a measure of the variability
of the signal. This measure helps us find the high variability part of the measured
signal: the actual signal, as the BW noise is a low frequency additive noise. Once the
actual signal is estimated this way, we can subtract from it the rest of the measure
signal: the BW noise (Fasano and Villani 2014). More ample details about the
reasoning and mathematics of the filter can be found in the article of A. Fasano and
V. Valeria (Fasano and Villani 2014). The implementation of this filter in Matlab
can be found in appendix BWfilt()

Figure 3.17: Original classic EMG signal before BW filtering.

Figure 3.18: Original classic EMG signal after BW filtering.
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After that, the HD EMG signals were filtered for ECG noise. Indeed, as the
measurements were made on the trunk region, ECG signals were also picked up along
the EMG during acquisition, as shown in Figure 3.19.

Figure 3.19: Signal from an HD EMG electrode showing the ECG artifacts.

To take care of that issue, a filter based on the work of J. Mak, Y. Hu and K. Luk
(Mak, Hu, and Luk 2010) was implemented. The filter as described by Mak et al.,
wasn’t working optimally on our HD EMG data set, maybe due to the low Pulse
to Noise Ratio (PNR) of the signals. To circumvent that issue, a moving average
filter of window 102 samples was added before the actual filter, and a 10% error
in the second step of the ECG component identification algorithm has been added.
This was added based on empirical evidence on our data set, yielding adequate
filtering. Nonetheless, this choice might not be generalizable to other EMG data set
contaminated with ECG.

The filter works by first, running an ICA on the HD EMG signals in order to
extract independent component from the signals. The next step is to go through the
components and automatically detect if they correspond to the ECG artifact or not.
This step is done in two stages: first, Peaks Detection, and second, identification of
the ECG component perse via the characteristics of the detected peaks.

The Peak Detection algorithm works in 5 stages (Mak, Hu, and Luk 2010):

1. Scan the signal for peaks, and determine the maximum peak value smax

2. Define the threshold, Th, as a fraction of the maximum, 0.6smax
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3. Convert the signal into binary format:s1(n) = 1, s(n) ≥ Th

s1(n) = 0, s(n) < Th

4. Calculate the first derivative of s1(n), in order to get the rate of change of the
signal s1(n), using the following equation:
s2(n) = s1(n) − s1(n − 1), n = 2, 3, . . . , N
With N the number of samples

5. Select the samples for which the corresponding sn(n) = 1 which means that
they have a positive rate of change, following the equation:
P = n|s2(n) = 1
P containing the indices of the peaks in s(n)

The identification of ECG source components is done using 3 criteria that must be
met (Mak, Hu, and Luk 2010):

1. Number of peaks:
(200 bpm/60 s) · d ≥ |P| ≥ (40 bpm/60 s) · d)
where |P| indicates the number of elements in the set P, that is the number of
peaks detected, and d represents the length of the component signal in seconds.
The limit of BPM is set to be between 40 and 200 in order to stay within
physiological ranges.

2. Peak intervals:
1.5s ≥ P(n + 1) − P(n) ≥ 0.3s, n = 1, 2, . . . , N
where P(n) represents the time information of the nth peak detected. N is
the number of peaks detected. 1.5s is the averaged peak interval value for
a $40 bpm $ heart rate, and 0.3s is the averaged peak interval value for a
200 bpm heart rate. An error of 10% has been allowed, from empirical evidence,
so that the filter works optimally on our data set.

3. Variance of peak intervals:
[P(n + 2) − P(n + 1)] − [P(n + 1) − P(n)] ≥ R · (1.5s), n = 1, 2, . . . , N
where 1.5s is the upper limit of the peak interval value. A scaling factor R of
0.5 was adopted for this study.

The components that meet those 3 criteria are labeled as ECG components and are
then discarded when reconstructing the signal. Figure 3.20 shows the effect of the
filter when applied on the signal shown in Figure 3.19.
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Figure 3.20: Signal from an HD EMG electrode after the ECG artifacts have been
filtered out via the use of the ECG filter.

Details about the Matlab implementation used can be found in the appendix
ACGartRm().

After the ECG filtering step, the HDEMG signal was filtered for noise artifact
of extreme amplitude that were left after the previous filtering steps. First the
distribution of the signal’s values was acquired. Then the 0.05% of the extreme
values from the upper and lower range of the distribution were replaced by the
median value of the signal. Details on the implementation of this filter can be found
in the appendix distriFilter().

The next step was to filter for PLI, white ground noise (WGN) and movement
artifacts (MA) in order to improve the signal PNR. To do so, we implemented a filter
based on the work of Al Harrach et al. (Al Harrach et al. 2017). This filter is based
on the use of Canonical Correlation Analysis (CCA) (Hassan et al. 2011; Sweeney,
McLoone, and Ward 2012) in order to rank estimated sources of the signal, which
allow to design an adequate thresholding paradigm to select wanted and unwanted
signal sources (Al Harrach et al. 2017). This filter works in 3 stages:
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1. Canonical Correlation Analysis

2. CCA Component Thresholding:
For each component obtained via the CCA, an intensity ratio is computed
using the equation:

rj =
∑N

i=1 |Sj(i)|
N

× P∑P
i=1 |bsj

(i)|
(3.8)

where rj is the intensity ratio of the jth estimated source, Sj(i) the ith sample
of the jth estimated source, bsj

(i) the corresponding noise obtained from the
first 0.5 s period of the Sj(i) which has to be devoid of muscle contraction, in
order for this step work.
Then, we reconstruct the signal with only the component(s) that have an
intensity ratio above 1. The correlation value between the reconstructed signal
and the original signal is then checked. If the correlation is ≥ 0.8, we reiterate
the previous step by increasing the threshold for the intensity ratio value by
0.1. We keep on as long as the correlation value between the reconstructed
signal and the original signal is ≥ 0.8. When the correlation drops below 0.8,
it means we found the threshold. The components that have an intensity ratio
below the found threshold are therefore discarded from the reconstruction of
the filtered signal.

3. Selective CCA:
This step is here in order to prevent contamination of the signal by high PNR
component. We check if the filtered signal has a higher PNR than the original
signal. If not, we discard the filtering. This step is done electrode by electrode.

The Figure 3.21 shows the effect of the CCA filtering on the signal shown in Figure
3.20.

Figure 3.21: Signal from an HD EMG electrode showing the effect of the CCA filter.
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Details about the Matlab implementation used can be found in the appendix
EMGccaFilt().

All the filter’s Matlab implementation can be found on https://github.com/TSS-
22/EMG-preprocessing-tools (Robinault 2021).

3.7 Data processing tools

3.7.1 Principal component analysis
PCA is based on the works of multiple mathematicians from the 19th century (Abdi
and Williams 2010), dating as far back as 1829 with the work of August-Louis Cauchy
(Cauchy 2009), but it was named and developed into its modern form by Harold
Hotelling later during the 1930s (Hotelling 1933). Explaining how PCA works and all
its intricacy is beyond the scope of this work but the goal of PCA can be summarized
as "extract the most important information from the data set" (Abdi and Williams
2010. A goal achieve using the following three steps:

1. Reduce the size of the data set

2. Simplify the data set

3. Help analyze the structure of the variables and observations

There are multiple different methods to compute PCA results. We will explain the
method described by Hotelling in 1933 (Hotelling 1933), due to the simplicity of the
calculus which help visualize and understand the process of PCA. Each component is
a combination of the variables, and the importance of each variable can be estimated
from the factors loading associated to that variable.

Each component is computed from an eigenvalue and an associated eigenvector. The
eigenvalue associated to a component corresponds to the sum of the squares of the
factor loading, and also represent the variance that this component explains.

An eigenvector is a vector that bear weights each associated with one of the variables
used. They represent the importance of each variable in the computation of the
component. The factors of each variable in the component can be obtained by
multiplying this vector by the square root of the associated eigenvalue.

The eigenvalues and vectors are computed via an iterative method, which stops when
the computed −→Vn eigenvectors is deemed to be the same as the −−→Vn−1 eigenvectors,
when this happen, the solution is to said to have converged and the iteration is
stopped.
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To compute the components is done by first computing the eigenvalues and eigenvec-
tors (Paul Kline 2014):

1. Compute the correlation matrix C of the variables, of dimension v × v, where
v is the number of variables used:

C =



Cx1x1 Cx1x2 · · · Cx1xv−1 Cx1xv

Cx2x1 Cx2x2 Cx2xv

... . . . ...
Cxv−1x1 Cxv−1xv−1 Cxv−1xv

Cxvx1 Cxvx2 · · · Cxvxv−1 Cxvxv



2. Compute each vector −→U1 such as:

−→U1(j) =
v∑

i=1
Cij (3.9)

where −→Uj is the sum vector of the jth columns of the correlation matrix C, and
v the number of variables.

3. Normalize −→U1 into −→V1 the following way:

−→V1 =
−→U1√∑v

i=1
−→U12(i)

(3.10)

where −→V1, the normalized corresponding vector −→U1. This is our first eigenvector.

4. To get −→U2, we proceed the following way:

M = C ×
−→V1

−→U2(j) =
v∑

i=1
M(i, j) (3.11)

5. To get −→V2 we normalize −→U2 the following way:

−→V2 =
−→U2√∑v

i=1
−→U22(i)

(3.12)

This is our second eigenvector.

6. We then compare −→V1 and −→V2 for similarity. If they are deemed not similar, we
repeat the step 4 and 5 to get −→V3 from −→V2, compare them, and we stop the
iterative algorithm when −→Vn is deemed similar to −−→Vn−1.

−→Vn is then discarded.
The choice of the similarity criterion is up to the subjective choice of the
researcher, and generally is below 0.00001 decimal accuracy. We can now
compute the components, their eigenvalues and the associated vector loadings.
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We compute the component using the following sequence (Paul Kline 2014):

1. The eigenvalues of the first component is computed as:

E1 =
√√√√ v∑

i=1

−−→Un+1(i) (3.13)

2. The factors loading of the first components are computed as:
−→F1 = −→Vn ×

√
E1 (3.14)

3. We then compute the residual matrix as:

R1 = C −



F 2
11 F11 × F12 · · · F11 × F1v−1 F11 × F1v

F12 × F11 F 2
12 F12 × F1v

... . . . ...
F1v−1 × F11 F 2

1v−1 F1v−1 × F1v

F11 × Fv1 F1v × F12 · · · F1v × F1v−1 F 2
1v

 (3.15)

4. Reiterate the steps 1, 2 and 3 till there is no more component to compute.

The number of components to extract is finite, as at some point, all the variance will
be explained by x amount of component, but usually components that explain too
little of the variance are discarded. The threshold is usually set at 5%.

To get a deeper dive into PCA and its intricacy, we recommend to the reader to take
a look at the very complete article of H. Abdi and L. Williams (Abdi and Williams
2010) and to the tutorial from R. Bro and A. Smilde (Bro and Smilde 2014). The
a very thorough work of C. Nunally (Nunally and Bernstein 1978) or P. Kline (P.
Kline 1992) will satisfy the most curious reader.

3.7.2 Factor Analysis
The factor analysis (FA) is a variant of the PCA. It differs from it in the construction
of the correlation matrix used to compute the components and find the factors loading
on those components. A R-type exploratory analysis was run for each movement
of the protocol to look for an "NSLBP" component and study its factor loadings
(Paul Kline 2014). The technique used in our work for the R-type analysis, was
the Maximum Likelihood , developed by K. Joreskog and collaborator (Jöreskog
1970). The mathematics of this method being fairly complex, we will not detail
them here, but the work of S. Mulaik (Mulaik 2009) is recommended for the curious
reader. This technique was developed by A. Comrey (Comrey 1962) and H. Harman
(Harman 1976). The component rotation algorithm used was the varimax one. It
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was choosen in order to simplify the structure found by the FA, the simpler structure
being thought to be the optimal result (Thurstone 1947; Cattell 2012). We used
the R function fa() from the R package psych to run the FA analysis. The reader
looking for more details on FA is recommended to read the book Easy Guide to
Factor Analysis from P. Kline (Paul Kline 2014).

3.7.3 Deep Neural Network
Deep Neural Network (DNN) is a technique from the family of the Deep Learning
domain, which is itself a subset of Machine Learning (ML) (Deng 2014). The ideas
at the base of DNN where already developed a couples of decades ago (LeCun et
al. 1989; Ivakhnenko et al. 1967; Fukushima, Miyake, and Ito 1983), but were only
"re-discovered" recently (Tappert 2019), and really put to use in the last decade.
It is in large part due to the increase of available data, especially labeled data,
in conjunction with the dramatic increase in computing power, especially with
the advances in matrix processing with the use of graphics processing unit which
dramatically increased the speed and processing capacity for this type of calculus
(Bartlett et al. 2012). Deep Learning, and DNN are a vast, broad and complex
subject, therefore we will only explain the basics of the tools we used here. The
avid reader is referred to the very complete and thorough book of I. Goodfellow and
collaborators (Goodfellow, Bengio, and Courville 2016), which will answer most, if
not all, questions that he might have on the subject.

The DNN domain is very broad, and there exist numerous types of family of DNN,
the main ones being (Goodfellow, Bengio, and Courville 2016):

• Multi-Layer Perceptrons (MLP)

• Convolutional Neural Networks (CNN)

• Recurrent Neural Networks (RNN)

In this project we used a MLP type DNN. Those type of DNN are composed of
multiple layers: at least one input layer and one output layer and in most cases, one
or multiples hidden layers, that interconnect with each other in a linear sequence
(Goodfellow, Bengio, and Courville 2016). The model is associated to a loss function
and an optimizing function that work together to train the model by changing the
weight values linked to the perceptron, also called neurons, that are composing the
layers of the model (Francois Chollet 2021). Each layer is composed of perceptron,
hence the name Multi-Layer Perceptron. In the present work, the training of our
DNN was supervised, meaning that the input we were feeding our DNN were linked
to answers the DNN is supposed to give us back (Bengio, LeCun, et al. 2007).
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Each neurons act as an object that is composed of the following parts, as shown in
Figure 3.22 (Abraham 2005):

• Input(s)

• Weight(s)

• Non-linear activation function

• Output

The weights are first applied to the inputs, then those inputs are fed to the neuron,
which will apply its activation function to the sum of the input. In most case the
activation function is a nonlinear one. This function, applied to the sum of the input
of the neuron, will give the output.

Figure 3.22: Diagram of a neuron.

Each layer is constituted of one or multiple neurons. There exists multiple type of
layers, so we will only detail the one used in this project:

• Dense layer

• Dropout layer

The dense layers connect every neurons of a layer to every other neurons of the next
layer, as shown in Figure 3.23 (Francois Chollet 2021). On the other side, dropout
layers connect layers like a dense layer first, then a set amount of those connections,
in most case randomly, are discarded, as shown in Figure 3.24. The use of dropout
layers helps in preventing model over-fitting (Srivastava et al. 2014).
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Figure 3.23: Diagram of a dense layer behavior.

Figure 3.24: Diagram of a dropout layer behavior.

The DNN is trained accordingly to the process summarized in Figure 3.25 (Francois
Chollet 2021). The model is first created with random weights, then the inputs are
fed to the input layer, which will process those inputs accordingly to the rules that
apply to the neurons it is composed of. Then those neurons output will be fed to
the neurons of the next layer n + 1, according to the connection rule of the layer
n. This will be done until we get to the output layer. The output layer will give a
prediction of the result, which will be interpreted against the excepted result, via
the loss function. This loss function will assess the quality of the prediction and give
a loss score for this prediction (Goodfellow, Bengio, and Courville 2016). The loss
score will then be interpreted by the optimizer, which will update the weights of
the neurons that compose the model via backpropagation, according to the rules
that the optimizer abides to, and the learning rate of the model. The goal of this
optimizer is to optimize the loss function, via a gradient descent (Le et al. 2015).
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Figure 3.25: Neuron diagram.

3.7.3.1 Convolutional Neural Network

Convolutional neural network (CNN) is a special type of DNN. They were inspired by
the visual processes from animal, and more particularly mammals (Fukushima 2007,
1980; Hubel, n.d.; Kosko and Mitaim 2003). They provide an efficient way to process
image and video data (Wei Zhang et al. 1988, 1991; Denker et al. 1988; LeCun et al.
1989; W. Zhang et al. 1994) but also find uses in many different domains, such as
natural language processing (Collobert and Weston 2008), time series (Tsantekidis
et al. 2017) or brain computer interface (Avilov et al. 2020) to only give a couple of
examples.

Two of the main benefits of CNN has over the DNN that we discussed earlier, is an
artificially reduced size and its capacity to extract spatial features from the data, a
great benefit when working on image and video data. Indeed, the number of elements
in the CNN are limited by the different layers that he is made off. The Figure 3.26
shows the classic architecture of a CNN, with the main operations that compose a
CNN:

• Convolution

• Pooling
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Figure 3.26: Typical CNN architecture. Gratefully provided by Aphex34.

The convolutional layers apply a convolution operation on our input data (Cao et
al. 2022). To put it simply the convolution operation will be applied via a kernel
of size n × n on our data, as displayed in Figure 3.27 (Goodfellow, Bengio, and
Courville 2016). This results in a significant decrease of the number of connection
and therefore, of parameters and size of the model. The Figure 3.28 (Goodfellow,
Bengio, and Courville 2016) shows a good example of a convolution operation which
act as a simple and effective edge detection.

In CNN, pooling layers are usually used in conjunction with convolution layers.
They will reduce the size of our input by pooling the neighboring elements, further
reducing the size of the model. The most used pooling layers are the Max Pooling
and Average Pooling, which, respectively, discriminate for the maximum value read
by the kernel, or the average of the value read by the kernel (Goodfellow, Bengio,
and Courville 2016).

Once those operation carried out, following the needed architecture and parameters,
the output of these operations are flattened, and usually feed through a fully connected
layer to a rectified linear unit activation function, ReLu, which will categorize the
input in multiple categories (Goodfellow, Bengio, and Courville 2016). Different
architectures, with different input and output can be used for different purposes, so
we only developed on the architecture that was used in this project.

3.7.4 Clustering techniques
Cluster analysis is part of the more global Pattern Recognition group of techniques,
and use value of resemblance, or dissemblance, between objects in order to separate
them in groups, called clusters (Diday and Simon 1976). After our exploratory
analysis the following techniques were used:

• K-means clustering

• Spectral clustering

• Hierarchical agglomerative clustering
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Figure 3.27: : An example of 2-D convolution without kernel-flipping (from Goodfel-
low, Bengio, and Courville 2016).

Figure 3.28: Example of a kernel subtracting the value of the neighboring pixel to
the left. We can see that this kernel act as an efficient but yet simple, edge detection
tool (from Goodfellow, Bengio, and Courville 2016).
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3.7.4.1 K-means clustering

The K-means method was independently developed by G. Sebestyen (Sebestyen
1962) and J. MacQueen (MacQueen 1967) in the second half of the 20th century.
This method is designed to partition N objects containing values for P variables
in K classes (Steinley 2006). Each partition, also named clusters, have a centroid
which is a point of P dimensions, found by averaging the values of each variable for
the occurrences within the cluster. First, clusters are initialized randomly. Then to
populate them, the algorithm will allocate an object n to a cluster k, such as the
distance between the centroid Ck of the cluster k and the object n is at least as small
as the distance to the centroids of the other cluster kx (Steinley 2006). To put it
simply, the problem that the algorithm solve, is a minimization and optimization of
a distance problem.

One of the drawbacks from the K-means clustering technique is that it will find local
optimum not global one, it is not a robust solution (MacQueen 1967; Hartigan and
Wong 1979). As even moderate data set have up to thousands of local optimum
(Steinley 2003), this problem is very pervasive, but nonetheless, the K-means cluster-
ing algorithm exhibits usually good clustering ability (Dimitriadou, Dolničar, and
Weingessel 2002; Steinley 2003).

First our data were normalized using the sklearn.preprocessing.RobustScaler()
from the Scikit Learn Library (Pedregosa et al. 2011). Using Milligan and Cooper
(Milligan and Cooper 1987) recommendation, would give clustering results that were
poorer than with the RobustScaler(): even if it gave a relatively more uniform
distribution of the data points among the clusters, it gave an inadequate one, and
with a lower Silhouette score than using the RobustScaler(). We used the function
sklearn.cluster.KMeans() (Pedregosa et al. 2011) to compute the clusters. The
use of different parameters than the default ones did not yield better results, so we
stuck to the default parameters for this algorithm.
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The K-means clustering algorithm goes as follow (Steinley 2006):

Let there be, N objects: n1, n2, . . . , nN , each with P variables: p1, p2, . . . , pP that
we want to divide into K classes: C1, C2, . . . , Ck.

1. Be X the data matrix of N row, one for each object, and P columns, one for
each variable, such as:

2. Create initial seeds for each cluster, represented by a vector Sk = (sk
1, sk

2, . . . , sk
P ).

We then allocate objects to the cluster that have the smallest Euclidean distance
to them. This Euclidean distance is computed as follow:

d2(i, k) =
P∑

j=1
(xij − sk

p)2 (3.16)

where d is the Euclidean distance, P the number of variables, also called
dimensions here, sj the seed coordinate for the jth dimension or columns of X,
and i the ith object, or row of the matrix X.

3. Once allocated, the centroid of each cluster is computed as:

centroidCk
= (x̄k

1, x̄k
2, . . . , x̄k

p) (3.17)

with x̄k
p the mean of the values of the p dimension of the object allocated to

the cluster k.

4. Once the centroids have been established. The objects are allocated again to
the cluster that have the centroid to a minimal distance from himself.

5. The step 3 and 4 are reiterated until convergence is reached: no objects are
moved from one cluster to the other.

3.7.4.2 Spectral clustering

Spectral clustering uses a different idea than the distance calculation of the K-means
algorithm, and rely on the use of graph Laplacian matrix to find similarity among
the data (Von Luxburg 2007), and cluster it accordingly. The algorithm creates a
weighted graph of the data points connection, and then divide the graph into clusters
of interconnected components (Jia et al. 2014). One of the main difference of the
spectral clustering algorithms is that it does not make any assumptions on the global
structure of the data, which means that, contrary to K-means algorithm which will
perform well mainly on convex data, the spectral algorithm will be able to provide
robust clustering solution in spaces of complex shapes (Ding et al. 2014; Nascimento
and De Carvalho 2011).

The spectral clustering algorithm used in this project was the normalized
one (Shi and Malik 2000) due to its higher convergence capacity under gen-
eral conditions (Von Luxburg, Belkin, and Bousquet 2008). We used the
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sklearn.cluster.SpectralClustering() (Pedregosa et al. 2011) method which
implement the algorithm detailed below. We used K-means and Discretize (Stella
and Shi 2003), a technique less sensitive to random initialization, algorithms for the
clustering step, and the nearest_neighbors or RBF, radial basis function kernel
(Scholkopf et al. 1997) options to build the affinities.

The general shape of the spectral clustering algorithm can be divided into 3 stages
(Verma and Meila 2003):

• Pre-processing

• Spectral Mapping

• Post-processing and grouping

The algorithm used for spectral clustering goes as follow (Ng, Jordan, and Weiss
2001; Von Luxburg 2007):

1. Be S = {s1, . . . , sn} ∈ R⋖, a set of points that we want to assign to k clusters

2. Form the affinity matrix A ∈ R⋉×⋉ defined by Aij = e
−||si−sj ||2

2σ2 if i ̸= j, and
Aij = 0. σ the parameter control the the speed at which the affinity of Aij

falls off within between the distance si and sj

3. Define D, the diagonal matrix where the (i, i)th element is the sum of A(i, :)

4. Construct the matrix L = D− 1
2 AD− 1

2

5. Find x1, x2, . . . , xk, the k largest eigenvectors of L and form the matrix X =
[x1, x2, . . . , xk] ∈ Rn×k by stacking the eigenvectors in columns. To be noted
that, in the case of repeated eigenvalues, the eigenvectors x1, x2, . . . , xk are
chosen to be orthogonal to each other.

6. Form the matrix Y to normalize each rows of X to have unit length, as
Yij = Xij

(
∑

j
X2

ij)−1/2

7. For i = 1, . . . , n, let Y(i,:) ∈ Rk be the vector corresponding to the ith row of X

8. cluster the points Y(i,:) into clusters using a cluster algorithm that attempt to
minimize distortion, here the K-means algorithm

9. Assign the original point si to cluster j if Y(i,:) was assigned to cluster j

3.7.4.3 Hierarchical agglomerative clustering

Hierarchical clustering is a method that cluster data points either from a bottom-up
approach, the agglomerative one, or a top-down approach, the divisive one. One
thing to note before going further, is that the hierarchical cluster technique is what
is called a greedy algorithm: which means it will make locally optimal choice at each
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stage (Black 2005), and the choices made at any stages are definitive and can’t be
altered subsequently (Yim and Ramdeen 2015). The divisive approach starts with
all the data points as one cluster, and then separated them based on how dissimilar
they are from each other. One of the main downsides of this approach is the heavy
computational load that it infers.

The agglomerative approach used in this work start with all the data points as one
cluster. It then computes a proximity matrix, also called similarity or dissimilarity
matrix, depending on the methodological choices made in the parameters of the
algorithm. This proximity matrix computes the distance in between each cluster,
called linkage. Multiple metrics can be used to assess the distance between clusters.
The following linkage metrics were used in this work:

• Manhattan, also called l1

• Euclidean, also called l2

• Cosine

The Euclidean distance is calculated using the following equation:

k∑
j=1

= (ai − bi)2 (3.18)

With a and b two different data points, compared on the i variable, and k the total
number of variable that compose a data point (Blei and Lafferty 2009).

The l1 distance, also called Manhattan distance, due to its graphical resemblance to
the way you go from one point to another in Manhattan due to its block division, is
computed as the sum of the of the absolute differences of their Cartesian coordinates.
It is defined using the following equation:

d(p, q) =
k∑

i=1
|pi − qi| (3.19)

With p and q the data points, compared on the i variable, and k the total number of
variables that compose a data point (Stigler 1986; Black 2019).

To be noted that Euclidean and Manhattan metrics are all part of the Minkowski
distance function family.

The cosine Distance is equal to CosineDistance = 1 − COsineSimilarity, which is
computed using the following equation:

CosineSimilarity =
∑k

i=1 aibi√∑k
i=1 ai

∑k
i=1 bi

(3.20)

62



With a and b two different data points, compared on the i variable, and k the total
number of variables that compose a data point. To put it simply, it computes the
cosine value linked to the angle between the two data points when taken as vectors.

As the metrics above are made to be used between two points only, we need to choose
a linkage criterion to compute the distance between cluster when clusters are made
of more than one data points each. This criterion will let us know how to interpret
the distance. Again, multiple criteria exist and only the following were used in this
project:

• Single linkage

• Complete linkage

• Average linkage

The Single linkage, also called nearest neighbor linkage, define the distance between
two different clusters as the smallest distance that can be found between an occurrence
in the first cluster compared to an occurrence in the second cluster (Florek et al.
1951; Sneath 1957). One of the main drawbacks of this method, is that it can link
clusters only due to outliers that are close to each other, while the rest of the cluster
is closer to a different cluster, as shown in Figure 3.29. This is called the chaining
effect (Mazzocchi 2008).

Figure 3.29: Distance using single linkage with outliers presence.

On the opposite side, the Complete linkage method, also called furthest neighbor or
maximum method, define the distance between two different clusters as the largest
distance between pairs of occurrences (Sokal 1958). The complete linkage is not
subject to the chaining effect, but is subject itself to outliers, as outliers in the clusters
could prevent an accurate measurement of the closeness of the clusters between each
other, as shown in Figure 3.30.
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Figure 3.30: Distance using Complete linkage with outliers presence.

A middle ground can be found in the average linkage criterion. Also called Un-
weighted Pair-Group Method using Arithmetic Averages (Landau et al. 2011), this
method computes the distance between clusters as the average of the distance of
each occurrence from the first cluster between each occurrences of the second cluster
(Sokal 1958). This alleviate the problems that can be found in Single and Complete
linkage, by trading off robustness with heavier computational load. We used the
sklearn.cluster.AgglomerativeClustering() (Pedregosa et al. 2011) method
that is an implementation of the algorithm seen above. For the parameter affinity
we used:

• euclidean

• manhattan

• cosine

For the parameter linkage we used:

• single

• complete

• average

3.7.4.4 Choosing the optimal number of clusters

The silhouette score was used to assess the optimal number of clusters, and also
the quality of the clustering: quality of the separation of the cluster, and their
tightness. The Silhouette Score method has been developed by P. Rousseuw in 1987
(Rousseeuw 1987). This value assesses a cluster separation from the other cluster
and its tightness. The value ranges from 1, perfectly separated and extremely tight
cluster, to -1, misclassified observations, and 0 meaning that clusters are extremely
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spread and are overlapping with others. To assess the quality of the clustering, we
use the average Silhouettes score of the clusters obtained. The closer to 1, the better.
The highest average silhouette score tell us the optimal number of clusters to use. It
is to be noted that the Silhouettes score is non robust to outliers, something that
will appear clearly in the results described below.

3.8 Variables used
As was discussed earlier, the NSLBP population differ from the healthy population
on different aspects. Different variables were chosen to represent those aspects.

3.8.1 Neuromuscular control
The back is a complex structure, that is composed of a lot of muscle. Surface EMG
doesn’t allow for the isolation of muscle when recording, as EMG is only recording
EMG activity of a surface area. Recording is composed of a large number of data
points, and it can be complex to interpret those data points in a clustering algorithm.
We made the choice to use extract variables that would summarize information from
the signals in order to circumvent this problem. The first variable that we used is
the centroid of the EMG activity. This variable let us know where the EMG activity
is concentrated, either on a specific patch or the group of patches. This variable
has been chosen as it has already been proved to be discriminating among LBP and
healthy populations (Sanderson et al. 2019), and as it yields information about the
neuromuscular strategies of the subject. We suspect that this variable will therefore
express nuances across the NSLBP spectrum, which will yield valuable information
to cluster our NSLBP population sample.

The second variable used is the entropy of the EMG signal. The entropy of a signal
allows us to know if the signal contain a lot of information or not. The entropy
of a signal indicates to us the predictability of the data series of the signal. The
higher the entropy value, the less the data series of the signal is predicable, and the
other way, a low entropy value means a very predicable data series (Rényi 1961).
To simplify the matter, the predictability of the signal can also be thought as the
amount of information in the signal (Galar and Kumar 2017). Information can be
interpreted in the case of EMG, as a representation of the strategy of the command
sent by the brain. Low entropy value means that the muscle activity is much more
localized, less distributed, and more predicable. On the other hand, a high entropy
value would mean that the activity is much more distributed and less predicable
across the recording zone. This variable will summarize information about the
neuromuscular strategies of the participants by giving information about the zone of
muscular activity. Contrary to the centroid of the activity which gives information
about the general distribution of the muscle activity from a global standpoint, the
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entropy gives us information on the relative distribution of the muscle activity from
a structural standpoint.

Due to poor data quality of the classic EMG electrodes placed on the belly of the
subjects, their data weren’t used. The low quality of the signal acquired came from
a sub-optimal placement, relatively high presence of fatty tissue in that area, and
reference electrodes subjected to the weight of the EMG adapter, even after securing
them with tape.

3.8.1.1 Centroid of the EMG activity

The centroid variables used were as follow:

• Centroid of the right low back electrode grid, X and Y position

• Centroid of the right upper back electrode grid, X and Y position

• Centroid of the left low back electrode grid, X and Y position

• Centroid of the left upper back electrode grid, X and Y position

• General centroid, X and Y position

X and Y being axis of focus of the location of the centroid: X sagittal axis and
Y the transverse axis (Corresponding respectively to the axes X and Z displayed
Figure 3.9). The centroids were computed for each repetition, then averaged to give
the centroid value for the movement. This was done for each subject and for each
movement.

To compute the centroid, the first thing, was to compute the Root Mean Square
(RMS) value of each electrode signal, then each electrode was mapped as a matrix in
which its position corresponds to its actual physical position and the grid of electrode
to their physical position on the electrode grid. The weighted barycenter of the
matrix was then computed for each electrode grid, using the RMS values previously
calculated as weight, using the following formula (Farina et al. 2008; Nishikawa et
al. 2017):

barycentre =
N∑

i=1
(

−→y∑N
i=1 yi

) × Ci (3.21)

With N the number of electrodes, −→y the mean vector of the RMS values on the
transverse axis, −→Ci the coordinate value of the electrode, for the transverse axis−→C = [1, 2, . . . , 8]. The computation for the sagittal axis is the same but with the
mean vector −→x of the RMS value on the sagittal axis and −→C = [1, 2, . . . , 5]. To get
the general centroid, the centroid of each electrode grid was offset by the position of
the grid on the back of the person. The [0,0] position corresponding the position
where every grid connect. The general centroid was weighted by the sum of the RMS
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values of each electrodes grid. The processing was inspired by the work of Falla et al
(Falla et al. 2014).

The centroid of EMG activity gives us indication on where the centroid of the contrac-
tion is positioned, meaning where most of muscle activity seems to be distributed. A
valuable information, as showed Sanderson and collaborator in his work (Sanderson
et al. 2019), as NSLBP subjects tend to have a more cranial activation of their low
back muscles, meaning that the muscle activity is distributed more toward the upper
regions in comparison to the healthy population.

3.8.1.2 EMG entropy

The entropy variables used were as follow:

• Entropy of the right low back electrode grid

• Entropy of the right upper back electrode grid

• Entropy of the left low back electrode grid

• Entropy of the left upper back electrode grid

To compute the entropy of each EMG grid, the RMS value of each EMG signal of the
grid was computed. Then the entropy of the grid was computed using the Shannon
entropy equation (Shannon 1948):

entropy =
N∑

i=1
n2

i × log(n2
i ) (3.22)

With N the number of electrodes, ni the RMS value of the ith electrode. The entropy
values were computed for each repetition, then averaged to give the entropy value
for the movement. This was done for each subject and for each movement.

The entropy of a signal indicates to us the predictability of the data series of the
signal. The higher the entropy value, the less the data series of the signal is predicable,
and the other way, a low entropy value means a very predicable data series (Rényi
1961). To simplify the matter, the predictability of the signal can also be thought as
the amount of information in the signal (Galar and Kumar 2017). Information can
be interpreted in the EMG case, as a representation of the quality, the efficiency of
the command sent by the brain to the muscles. The lower the entropy value, the
more the muscle activity will be constrained to a specific region and less distributed
across the recording zone.

Entropy summarizes information about the neuromuscular strategies employed by
the participants, by giving information about the distribution of muscular activity
across the recording area. On the other side, the centroid of muscle activity gives
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us information about the general position of the activity. We can summarize this
difference as the entropy giving us the amount of concentration of the muscle activity,
and the centroid of activity giving us the localization of this activity.

3.8.2 Variability and adaptability of the movements
Earlier, we discussed the fact that NSLBP populations had significant differences
when it came to inter and intra-subject variability compared to the healthy population
(Cholewicki et al. 2019; Asgari et al. 2015; Ippersiel, Robbins, and Preuss 2018).
Therefore, those aspects were integrated in the present work. Inter and intra-subject
variability was assessed as the error against the mean trajectory from the healthy
population. Another measure, the entropy of the movement, has also been added.
This measure let us know about the smoothness of the trajectory: the higher the
entropy value, the more jittery the movement is. This could be interpreted, for high
entropy value, as a movement that ask for a lot of readjustment. And for low entropy
value, a smoother movement. And for extremely low values of entropy, the movement
could even be interpreted as rigid, not adapting to the inevitable little perturbations
that a subject would face.

3.8.2.1 Entropy of the movement

• Entropy of the left shoulder trajectory X, Y and Z axis

• Entropy of the right shoulder trajectory X, Y and Z axis

• Entropy of the hips cluster of marker trajectory X, Y and Z axis

• Entropy of the T6 vertebrae cluster of marker trajectory X, Y and Z axis

• Entropy of the C7 vertebrae cluster of marker trajectory X, Y and Z axis

The X, Y and Z axis correspond to the axis showed in Figure 3.9. The entropy for
each axis of each shoulder marker is computed following the same logic as in EMG
entropy, to the difference that the Sample Entropy (Song, Liò, et al. 2010) was
used, as we are working on physiological time-series signal. The Sample entropy is
computed using the implementation developed by K. Lee (Lee 2022).

3.8.2.2 Variability inter-subject

• Left shoulder trajectory X, Y and Z axis inter-variability

• Right shoulder trajectory X, Y and Z axis inter-variability

The X, Y and Z axis correspond to the axis showed in Figure 3.9. The inter subject
variability, called inter-variability, is the variability of a subject against the other
subjects. First the average trajectory of the healthy subjects was computed in each
axis: X, Y and Z. All trajectories were re-sampled to be represented by vectors of
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100 samples each before comparison. Following this, for each repetition, the RMS
error (RMSE) of the trajectory of the subject against the average Healthy trajectory
was computed. It was then averaged to give one error value, the inter-variability.
This was done for each subject and each movement. The variability inter-subject is
normalized by the height of the subject.

3.8.2.3 Variability intra-subject

• Left shoulder trajectory X, Y and Z axis intra-variability

• Right shoulder trajectory X, Y and Z axis intra-variability

The X, Y and Z axis correspond to the axis showed in Figure 3.9. The intra subject
variability, called intra-variability, is the variability of a subject against himself.
First the average trajectory of the subject was computed in each axis, X, Y and Z.
All trajectories were re-sampled to be represented by vectors of 100 samples each
before comparison. Following this, for each repetition, the RMS error (RMSE) of the
trajectory of the repetition against the average trajectory of the other repetitions of
the subject was computed. The errors values for each repetition were then averaged
to give one error value, the intra-variability, for that movement. This, for each
subject and each movement. The variability intra-subject is normalized by the height
of the subject.

3.8.3 Movement strategies
As discussed earlier, compared to their healthy counterpart, the NSLBP population
seems to present different movement strategies (Sanderson et al. 2019; Shum, Crosbie,
and Lee 2005, 2010; Laird et al. 2014; Bourigua 2014; Villafane et al. 2016; Gombatto
et al. 2013) , and diminished range of motion (Shum, Crosbie, and Lee 2010, 2007),
compared to the healthy population, even if those changes are inconsistent across
the NSLBP population.

Spine mechanics has been shown to be altered in NSLBP population compared to
their healthy counterpart (Villafane et al. 2016). Therefore in order to get our work
to take this aspect into account, we used clusters of markers placed on the back, as
to assess and capture precisely the spine mechanics of the subjects. Unfortunately,
due to the important work needed to pre-process the motion capture data we weren’t
able to use all the participant’s data due to the time constraints imposed by this
work. In order to circumvent this, shoulder marker was used as they are the most
stables and fastest to clean and label markers that are directly linked to the trunk,
and therefore to the spine position and dynamic. When possible, the spine markers
were used, either the full set, or a subset, in order to use as much information as
possible. Details about the markers and clusters of markers setup can be found in
the part System and setup from the part Motion Capture.
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According to what was discussed earlier, and the work of Laird, et al., 2014 (Laird
et al. 2014), in order to investigate the different movements strategies displayed
by the participant, the maximum amplitude and time to maximum amplitude of
the participant was used, as well as the maximum angle and time to maximum, the
latter being used when working on the rotation movement conditions.

3.8.3.1 Maximum amplitude

• Maximum amplitude of the left shoulder trajectory X, Y and Z axis

• Maximum amplitude of the right shoulder trajectory X, Y and Z axis

• Maximum amplitude of the hips cluster of marker trajectory X, Y and Z axis

• Maximum amplitude of the T6 vertebrae cluster of marker trajectory X, Y and
Z axis

• Maximum amplitude of the C7 vertebrae cluster of marker trajectory X, Y and
Z axis

The X, Y and Z axis correspond to the axis showed in Figure 3.9. The maximum
amplitude of each marker and each axis is computed as the maximum absolute
difference reached from the position in the first frame. It is done for each repetition,
then average to give a value for each subject and each movement. The values have
been normalized by height.

3.8.3.2 Time to maximum amplitude

• Time to maximum amplitude of the left shoulder trajectory X, Y and Z axis

• Time to maximum amplitude of the right shoulder trajectory X, Y and Z axis

• Time to maximum amplitude of the hips cluster of marker trajectory X, Y and
Z axis

• Time to maximum amplitude of the T6 vertebrae cluster of marker trajectory
X, Y and Z axis

• Time to maximum amplitude of the C7 vertebrae cluster of marker trajectory
X, Y and Z axis

The X, Y and Z axis correspond to the axis showed in Figure 3.9. The time to
maximum amplitude of each marker and each axis is computed as the time it takes
for the subject to reach the maximum amplitude, defined in Maximum amplitude of
the movement. It is done for each repetition, then averaged to give a value for each
subject and each movement.
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3.8.3.3 Maximum angle and time to maximum angle

• Maximum value and Time to maximum value of the shoulder angle on the Z
rotation axis

• Maximum value and Time to maximum value of the angle between the Hips
and C7 cluster of markers on the X, Y and Z rotation axis

• Maximum value and Time to maximum value of the angle between the T6 and
C7 cluster of markers on the X, Y and Z rotation axis

The Z axis correspond to the axis showed in Figure 3.9. The maximum angle is
computed as the maximum absolute angle reached during movement by the subject.
It is only computed for the rotation around the Z axis as shown in Figure 3.31. The
time to maximum value is the time it takes the subject to reach this maximum angle.
The values have been computed for each repetition, then average to give a value for
each subject and each movement.

Figure 3.31: Description of the shoulder angle in Z during a trunk rotation to the
right.

3.8.4 Balance and proprioception
As seen earlier, the NSLBP population showcase balance (Mok, Brauer, and Hodges
2011; Byl and Sinnott 1991) and proprioception alterations (Gombatto et al. 2015;
Ruhe, Fejer, and Walker 2011; MacDonald, Moseley, and Hodges 2009). To assess this
aspect, we summarized the force plate data in two variables that yield information
on proprioception and balance of the participants.

The proprioception of the participant was assessed via the use of the normalized
statokinesigram area (J. Oliveira 2022), the COP projection of the X and Y axis
(Prieto et al. 1996). The balance was assessed by the ground force reaction ratio.
This ratio tells us about the balance strategy of the subjects and how they distribute
their weight in order to perform the movement conditions.
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3.8.4.1 Area of the normalized statokinesigram

The statokinesigram is the projection on the horizontal plane, of the Center of
Pressure (COP) of the subject on the force plates (Prieto et al. 1996). The COP
is measured via the use of the force plate, which records the ground force reaction
of the subject, and therefore its body sway (Directions 1983). Different variables
can be extracted out of it, that have the potential to yield useful and interesting
information: like the area of the statokinesigram: the ellipse that contain 95% of
its values, as represented in Figure 3.32. We do not use 100% of the values in order
to increase the robustness of the measure against outliers (J. M. de Oliveira 2017).
One of the drawbacks of the statokinesigram is its high inter and intra-variability,
indeed repeated measurement showed high intra-day and intra-subject variability
(Chiari, Rocchi, and Cappello 2002; Samson and Crowe 1996). To circumvent this
issue, normalization of the statokinesigram have been recommended, in order to
improve inter and intra-reliability of the associated variables (Chiari, Rocchi, and
Cappello 2002). We therefore implemented the self-normalization technique of J. M.
de Oliveira (J. M. de Oliveira 2017), using the function that he designed (J. Oliveira
2022). Once the statokinesigram is normalized, the area of the ellipse encompassing
95% of the statokinesigram value is computed. This has been done for each repetition,
those values being averaged to give a value for each subject and each movement.

Figure 3.32: Visual example of a statokinesiogram. In blue the projection of the
COP, and in red the elipse that encompass 95% of its values.
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3.8.4.2 Ground force reaction ratio

The Ground Force Reaction (GRF) ratio has been computed using the following
equation:

GRFratio =
∑N

n=1
leftGRFn

rightGRFn

N
(3.23)

With N being the number of sample, leftGFRn and rightGFRn the value for,
respectively, the left and right GFR at the nth sample.

The GFR ratio was added due to the fact that during data acquisition, it seemed
that two distinct trends could be noted: subjects with relatively equal GFR ratio
and subjects with unequal GFR ratio. We therefore put this variable to the test to
see if there is any relevance to it

3.8.5 Metadata
As we discussed earlier, LBP is a multifactor symptom (Hartvigsen et al. 2018). In
order to reflect this aspect, we used metadata. Age, Body Mass Index (BMI), weight
and Height were used as metadata in the clustering analysis. Being only anthropo-
metric data, they only yield direct or indirect information about the biophysical and
genetic factor.
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Chapter 4

Results

As we discussed earlier, one of the major problems of NSLBP at the time being, is
that practitioner have no way to differentiate people afflicted by NSLBP between
each other. This makes the creation of fine-tuned rehabilitation protocol difficult,
or virtually impossible. This is the motivation for trying to find cluster among the
NSLBP population.

Indeed, finding potential clusters inside the LBP population would help to define
different sub-population, which would allow to analyze their characteristics in order
to better understand them. Which in turn, would lead to more possibilities of
designing personalized treatments for these subgroups, and also to develop clinical
test to categorize them easily and at lower cost in clinical setup.

But the clustering task, especially on continuous variables, is not an easy one and
this is why we start this work by an exploratory analysis, using DNN and FA. This
exploratory work will help us better understand the importance of the relation
of domains, and their variables, with the NSLBP symptom, as well as help us
with our clustering attempt. Following this exploratory work, we will use different
unsupervised clustering algorithms, and the insights gained from the exploratory
work, to attempt to discriminate clusters in our population sample.
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4.1 Exploratory analysis
The following exploratory work was peer reviewed and published as the work of
Robinault and collaborators (Robinault et al., in press, 2023). Nonetheless, we invite
the reader to focus on the present manuscript, as it yields additional details that
will help understand the exploratory work done.

4.1.1 Deep Neural Network
4.1.1.1 Implementation

4.1.1.1.1 Classic DNN

To categorize people as Healthy, and LBP we used a linear supervised DNN, with
the following architecture:

• Dense input layer of 11 neurons, with a sigmoid activation function

• Dense layer of 128 neurons, with a sigmoid activation function

• Dropout layer with a 50% rate of connection

• Dense layer of 36 neurons, with a sigmoid activation function

• Dense layer of 3 neurons, with a sigmoid activation function

• Output layer of 1 neurons

We used the python package keras (François Chollet et al. 2015) to build a
Sequential() DNN with Dense() and Dropout() layers and then train it on the
chosen data sets. The optimizer used here is the adam optimizer (Bock and Weiß
2019), and the loss function is the categorical_crossentropy (Charniak 2021).
The validation data set was set to be 30% of the total data set. The training set was
split using the default value of 75% training data, 25% test data. Batch size was set
to 10. It was also made sure the training, testing and validation sets did not had
any common subject, in order to avoid information leakage into the model.

We started with a model trained on the full data set, without the spine data in order
to maximize the amount of data point at our disposal. This model was created as
a null model to assess our supposed maximum classification accuracy. After that
model, this model was trimmed by domain:

• Anthropometric

• Biomechanics

• Neuromuscular control

• Balance and proprioception
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This was done in order to assess the potential of information of each domain. Some
domains were further divided in order to get a more detailed look into them.

The Table 4.1 details the data used in the different models. For more details about
each variables, we refer the reader to the section Variables used.

Variables Models
Age Full, Anthropometric (Full, Trimmed)
Area of the normalized statokinesigram Full, Balance
BMI Full, Anthropometric (Full, Trimmed)
Centroid of the EMG activity Full, Neuromuscular(Full, Centroid)
EMG entropy Full, Neuromuscular(Full, Entropy)
Entropy of the movement Full, Biomechanical (Full)
Foot barycentre trajectory Full, Biomechanical (Full, Trimmed)
Ground force reaction ratio Full, Balance
High Density EMG CNN
Height Full, Anthropometric (Full)
Maximum amplitude of the movement Full, Biomechanical (Full, Trimmed)
Maximum angle to maximum angle Full, Biomechanical (Full)
Sex Full, Anthropometric (Full, Trimmed)
Time to maximum amplitude Full, Biomechanical (Full, Trimmed)
Time to maximum angle Full, Biomechanical (Full)
Variability inter-subject Full, Biomechanical (Full)
Variability intra-subject Full, Biomechanical (Full)
Weight Full, Anthropometric (Full)

Table 4.1: Variables used in each models.
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4.1.1.1.2 Convolutional Neural Network

The Convolutional Neural Network was fed HD EMG data previously cleaned, and
divided by repetitions. Due to time constraints, only the data from the movement
Back Flexion Preferred Speed were used.

The Convolutional Neural Network architecture is displayed in Table 4.2.

Layer (type) Output Shape Nb of parameters
input_1 (InputLayer) (None, 26, 10, 6000, 1) 0

conv3d (Conv3D) (None, 26, 10, 6000, 8) 1448
conv3d_1 (Conv3D) (None, 26, 10, 6000, 8) 11528

max_pooling3d (MaxPooling3D) (None, 13, 5, 599, 8) 0
batch_normalization (BatchNormalization) (None, 13, 5, 599, 8) 32

conv3d_2 (Conv3D) (None, 13, 5, 599, 16) 23056
conv3d_3 (Conv3D) (None, 13, 5, 599, 16) 46096

max_pooling3d_1 (MaxPooling3D) (None, 6, 2, 58, 16) 0
batch_normalization_1 (BatchNormalization) (None, 6, 2, 58, 16) 64

conv3d_4 (Conv3D) (None, 6, 2, 58, 32) 92192
conv3d_5 (Conv3D) (None, 6, 2, 58, 32) 184352

max_pooling3d_2 (MaxPooling3D) (None, 3, 1, 4, 32) 0
batch_normalization_2 (BatchNormalization) (None, 3, 1, 4, 32) 128

flatten (Flatten) (None, 384) 0
dense (Dense) (None, 64) 24640

dropout (Dropout) (None, 64) 0
dense_1 (Dense) (None, 64) 4160

dropout_1 (Dropout) (None, 64) 0
dense_2 (Dense) (None, 1) 520

Table 4.2: Convolutional neural network architecture.
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4.1.1.2 Results

4.1.1.2.1 Full model
This model was trained on the whole set of variables, except for the spine data as
to maximize the number of data points available. This full model was done to have
some sort of a null model, in order to see if it was already possible to categorize
healthy and NSLBP subjects from our data set.

After 100 epochs, the model reached an accuracy of 99.88% on the test set and
93.30% on the validation set, showing signs of significant, but not dramatic, over
fitting. This model attests that the data acquired contains valuable information
about the NSLBP symptom. Details of the training performance can be seen in
Figure 4.1a and 4.1b.

(a) Loss (b) Accuracy

Figure 4.1: Full model performance. In blue, performance on the test set. In red,
performance on the validation set.
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4.1.1.2.2 Anthropometric model

This model focused on the anthropometric data of the subjects and was trained for
300 epochs with the following variables:

• Age
• BMI
• Height
• Weight
• Sex

This model was trained to show how important the impact of only the anthropometric
variables was on the capacity to classify these people, and therefore, the strength of
their link to NSLBP. Indeed, the model after training, reached a precision score of
92.84% on the test set, and 94.40% on the validation set.

Below is the history of the model training, with the Figure 4.2a showing the loss
score of the model, and the Figure 4.2b showing the accuracy of the model.

(a) Loss (b) Accuracy

Figure 4.2: Anthropometric model performance. In blue, performance on the test
set. In red, performance on the validation set.

A trimmed version of this model, without the weight and the height variables, was
also trained and reached a precision score of 94.40% on the test set, and 98.19% on
the validation set. Below is the history of the model training, with the Figure 4.3a
showing the loss score of the model, and the Figure 4.3b showing the accuracy of the
model.

While training these models, we got a very high accuracy result despite the fact that
we solely fed them with basic anthropometric data. These results were obtained
whilst not displaying any obvious sign of over fitting.
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(a) Loss (b) Accuracy

Figure 4.3: Trimmed anthropometric model performance. In blue, performance on
the test set. In red, performance on the validation set.

Training these models, we got a very high accuracy result while we solely fed them
with basic anthropometric data. It is to be noted that, no data linked to the
movement or giving an indication of the performance of the subject were fed to
the models, attesting of the tremendous information power of those variables and
therefore that domain. And these results were obtained while not displaying any
obvious sign of over fitting.
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4.1.1.2.3 Biomechanical model

This model was built with the biomechanics data, and trained for 400 epochs, using
the following variables:

• Maximum amplitude of the left shoulder trajectory in the X, Y and Z axis
• Time to maximum amplitude of the left shoulder trajectory in the X, Y and Z

axis
• Entropy of the movement of the left shoulder in the X, Y and Z axis
• Variability intra-subject of the movement of the left shoulder in the X, Y and

Z axis
• Variability inter-subject of the movement of the left shoulder in the X, Y and

Z axis
• Position of the barycentre of the feet in the X, Y and Z axis
• Movement performed
• Speed of the movement

After training, we ended up with a precision of 83.05% for the test set and 84.47%
for the validation set after 90 epochs but start over fitting right after. Details of the
loss of the model can be seen in Figure 4.4a.

(a) Loss (b) Accuracy

Figure 4.4: Biomechanical model performance. In blue, performance on the test set.
In red, performance on the validation set.
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The same model was trimmed down, and trained with only very basic information
this time:

• Maximum amplitude of the left shoulder trajectory in the X, Y and Z axis
• Time to maximum amplitude of the left shoulder trajectory in the X, Y and Z

axis
• Position of the barycentre of the feet in the X, Y and Z axis
• Movement performed
• Speed of the movement

After being trained for 398 epochs, the model reaches an accuracy of 88.29% on the
test set and 88.45% on the validation set, before over fitting. Details about model
accuracy and loss can be found, respectively, in Figure 4.5b and 4.5a.

(a) Loss (b) Accuracy

Figure 4.5: Trimmed biomechanical model performance. In blue, performance on
the test set. In red, performance on the validation set.

That same model was trained, anew, this time with the variable normalized by height
of the subject. Indeed, as the shoulder displacement in space is correlated to the
height of the subject, chances are that the height of subject is interfering with the
relative displacement and tempering our results in a negative way. Normalizing by
the height of the subject would allow us to focus on the actual relative movement
of the subject in space, which we think would yield more accurate information and
therefore better results. This time, after 194 epochs, we reached a maximum accuracy
of 87.40% on the test set and 92.96% on the validation set, before the performance
deteriorated before over fitting. Details about the training loss and accuracy can be
found, respectively, in Figure 4.6a and 4.6b.
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(a) Loss (b) Accuracy

Figure 4.6: Trimmed and normalized biomechanical model performance. In blue,
performance on the test set. In red, performance on the validation set.

These results show us that we can gain a lot of information from just people’s motion
information. Indeed, while feeding the model with only limited and basic information
about the movement of the subjects we still ended up with a categorization reaching
very high accuracy score.
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4.1.1.2.4 Neuromuscular model

This model was trained using all the variables related to the neuromuscular aspect
of the subject:

• Centroid of the EMG activity of each of the 4 patches of electrodes
• Global centroid of the EMG activity of the 4 patches of electrodes
• EMG entropy of each of the 4 patches of electrodes
• Movement performed
• Speed of the movement

After being trained for 15 epochs, the model reaches a maximum accuracy of 83.27%
on the test set and 88.07% on the validation set, before performance deteriorate, and
then over fit. Details about model accuracy and loss can be found, respectively, in
Figure 4.7b and 4.7a. Those results are relatively high, so we tried to go deeper by
trimming down the model.

(a) Loss (b) Accuracy

Figure 4.7: Neuromuscular model performance. In blue, performance on the test set.
In red, performance on the validation set.

A model accounting only for the entropy of the 4 patch was trained. This model
reached a maximum accuracy of 76.21% on the test set and 87.30% on the validation
set after 104 epochs, after which performance stays stable for around 80 epochs
before performance degrade and over fit, indeed, clear signs of over fitting start to
appear around 375 epochs. Details about model accuracy and loss can be found,
respectively, in Figure 4.8b and 4.8a. Clear signs of over fitting start to appear
around 375 epochs, as seen in the loss, Figure 4.8a and accuracy, Figure 4.8b training
history.
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(a) Loss (b) Accuracy

Figure 4.8: Entropy neuromuscular model performance. In blue, performance on the
test set. In red, performance on the validation set.

Another model accounting for the centroid of the 4 patches was trained. This model
reached a maximum accuracy of 71.13% on the test set and 82.69% on the validation
set in 285 epochs. Details about model accuracy and loss can be found. The valuable
data seems to be the centroid of the EMG, or at least, less susceptible to the noise
that couldn’t be filtered out of the EMG. The behaviour of the loss seems relatively
unexceptional. The behaviour of the accuracy can let us think of potential local
minima trap, which will ponder our expectation concerning the extrapolation capacity
of the model on other data set. Indeed, the accuracy starts off with a very high value
and stays extremely stable, exhibiting a non-typical "stuck" like behaviour, but tends
to lower quickly after more epochs. Details about model accuracy and loss can be
found, respectively, in Figure 4.9b and 4.9a.

(a) Loss (b) Accuracy

Figure 4.9: Centroid neuromuscular model performance. In blue, performance on
the test set. In red, performance on the validation set.
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Those results show us that we can gain a lot of information just from people’s basic
neuromuscular information. Indeed, while feeding the model solely with limited and
basic information about the neuromuscular control of the subjects, we still ended
up with a categorization reaching a decent accuracy score, even if some over fitting
issues started to show up. As this does not happen on the full neuromuscular data
set, this might indicate that the variables, from the neuromuscular domain, that we
used could be complementary, the variables being affected in synergy to each other
by NSLBP.

Following this, we trained the CNN model using the pre-processed HD EMG data.
The accuracy and loss of the model are found, respectively. The model reached
a maximum accuracy of 100% on the test set in only a couple of epochs but only
reached a low and unstable accuracy score. Details of the accuracy and loss of the
model are found, respectively, in the Figure 4.10b and 4.10a.

A result to put in perspective to the lack of training sample. The fact that the model
could learn to such a high accuracy on the test set is encouraging as it means that
there is something to learn from in the data, but the low validation accuracy results
remind us that we cannot infer if the pattern learned by the model is correlated to
NSLBP or not.

(a) Loss (b) Accuracy

Figure 4.10: HD EMG CNN model performance. In blue, performance on the test
set. In red, performance on the validation set.
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4.1.1.2.5 Balance model

This model used the variable related to the balance and proprioception of the subject:

• Area of the normalized statokinesigram
• GFR ratio
• Movement performed
• Speed of the movement

After being trained for 68 epochs, the model reached a maximum accuracy of 68.90%
on the test set and 74.76% on the validation set, after which the model over fitted and
performance deteriorated significantly. Details about model accuracy and loss can
be found. The model shows the same "stuck" like behaviour on its accuracy metrics
as the centroid model. This added to the over fitting behaviour acknowledged by
the loss value, warning us not to draw strong conclusions from that model’s results,
which might be due to lack of sample and lucky local minima. Details about model
accuracy and loss can be found, respectively, in Figure 4.11b and 4.11a.

(a) Loss (b) Accuracy

Figure 4.11: Balance model performance. In blue, performance on the test set. In
red, performance on the validation set.
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4.1.1.3 Summary

The Table 4.3 summarizes the maximum performance of the DNN trained.

Model
Accuracy (%) Test Validation Epochs

Full model 99.88 93.30 100
Anthropometric 92.84 94.40 300

Trimmed 94.40 98.19 300
Biomechanical 83.05 84.47 90

Trimmed 88.29 88.45 398
Trimmed normalized 87.40 92.96 194

Neuromuscular 83.27 88.07 15
Entropy 76.21 87.30 104
Centroid 85.37 90.00 50
3D Convolutional Neural Network 100.00 73.75 23

Balance 68.90 74.73 68

Table 4.3: DNN maximum performance.

89



90



4.1.2 Factor analysis
4.1.2.1 Implementation

The variables used for the FA were the following:

• Age
• Group

– Healthy
– NSLBP

• Sex
– Male
– Female

• BMI
• Maximum amplitude of the left shoulder trajectory
• Time to maximum amplitude of the left shoulder trajectory
• Entropy of the movement of the left shoulder trajectory
• Variability inter-subject of the left shoulder trajectory
• Variability intra-subject of the left shoulder trajectory
• Entropy of the EMG of the right low back
• Entropy of the EMG of the left low back
• Y position of the total back EMG centroid
• GFR distribution ratio (for readability of the result this variable was sightly

changed, the GFR used for the FA is: GFRF A = |GFR| − 1. This is done
in order to have a balanced ratio on zero and changes are not side oriented,
making results easier to read and to compare)

For the variables related to the left shoulder movement, only one axis was chosen in
order to limit the number of variables used as to meet the factor analysis requirements
for optimal behavior. The axis was chosen in regards to the movement performed,
the axis where the most movement was happening being selected, as to stay as
relevant as possible:

• Y axis for
– Back extension Maximum and Preferred speed
– Trunk rotation Left and Right, Maximum and Preferred speed

• Z axis for
– Back flexion Maximum and Preferred speed
– Lateral flexion Left and Right, Maximum and Preferred speed

If no factor was loading the Group component using the major axis of movement,
secondary axes were used to run the factor analysis to assess if any factor would load
the Group component this time. Indeed, we are making the assumption that the
axis that see the most displacement is the one yielding the most information, but
this might be a wrong assumption in some or all the case. So, if the axis showing the
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largest displacement doesn’t yield significant results, we will resort to the analysis of
the secondary axis to assess for any valuable results.

For the rotation movements, the maximum angle on the Z axis and the time to
maximum angle on the Z axis has been used instead of the maximum amplitude and
time to maximum amplitude of the trajectory.

We used as little variable as could be, while still trying to tackle most of the aspect
of the LBP symptom, in order to match factor analysis requirements. Optimally,
FA are done on samples with a size of at least 100 occurrences, with a ratio of 20:1
subject per variables, but we were not able to meet these requirements, and therefore
had to compromise. Only one axes was selected for every FA done, in order to limit
the number of dimensions fed to the FA. The number of dimensions were limited,
and only a couple of variables for each of the domain was kept. The number of
components was selected via the function nScree() from the R package nFactors.
The number of components being the rounded mean result of the different tests ran
by the nScree() function:

• Eigenvalues

• Parallel Analysis

• Optimal Coordinates

• Acceleration Factor

In our analysis, the following categorical values have been simplified the following
way:

• Group
– Healthy: 0
– NSLBP: 1

• Sex
– Male: 0
– Female: 1

The critical value of the correlation values was assessed using a Student’s t-test
(Soper et al. 1917; Barton 1976). With our sample size of 46, the critical values for
the correlation are as follow:

• p = 0.05 : c = 0.29

• p = 0.01 : c = 0.38

• p = 0.005 : c = 0.41

• p = 0.001 : c = 0.47
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4.1.2.2 Results R-type Analysis

4.1.2.2.1 Back extension Maximum

Components
Factors 3 1 4 2
Group .370
Age .373 .783 .280 -.406
BMI .477 .197 .196
EMG centroid Y pos. -.182 .338
EMG entropy l. low back .116 .376
EMG entropy r. low back -.110 .284
GFR ratio -.175 .466
Max. ROM, Y axis -.145 .563 -.192 .788
Sex -.476
Time to max. ROM, Y axis -.107 .296 .786
Traj. entropy, Y axis .192 -.251 -.645
Traj. inter-var., Y axis .957 -.102
Traj. intra-var., Y axis .584 -.347 -.151 -.287

Table 4.4: Back extension maximum factor analysis results, Y axis.

As shown in Table 4.4, using the Z axis as the axis of interest, the Group factor is
the component 4 that load group at 0.370 (p < 0.05). The associated loadings with
it are:

• Time to maximum amplitude of the left shoulder trajectory: 0.786 (p < 0.001)

• Entropy of the movement of the left shoulder trajectory: -0.645 (p < 0.001)

• Y position of the total back EMG centroid: 0.338 (p < 0.05)

Age is also close to being significant with a loading of 0.280 (p > 0.05). It seems
that NSLBP move at a slower rate than their healthy counterpart, while having a
movement which is less "noisy" movement. The latter could be interpreted either as
a more efficient movement, or a more rigid movement. We will make the choice to
interpret it as a more rigid movement due to the behaviour of the subjects afflicted
by the symptom, which was much more cautious (Asgari et al. 2015;Madeleine
2010;J. H. van Dieën, Flor, and Hodges 2017). An interpretation corroborated by
the longer time to complete the movement. This could also potentially be, in part,
due to a lack of adaptability to the movement conditions. We can see that the EMG
activity is distributed more cranially among NSLBP, just as seen by Sanderson and
collaborator (Sanderson et al. 2019) during other task.
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We can note the presence of large loading of age in the first factor, and significant
loading of age in the other factor, which could indicate that age is of tremendous
impact on the movement itself (Kienbacher et al. 2015;Kienbacher et al. 2016).

4.1.2.2.2 Back extension Preferred

Components
Factors 2 4 5 1 3
Group .292 .112
Age .381 .282 -.351 .223 -.113
BMI .183 .351 .310 .167
EMG centroid Y pos. .244 .963
EMG entropy l. low back -.481 .149
EMG entropy r. low back .138 -.198 .968
GFR ratio -.400
Max. ROM, Y axis -.172 -.411 .246
Sex -.112 .869 .111 .157
Time to max. ROM, Y axis .958 -.252 -.104
Traj. entropy, Y axis -.736 .545 -.180
Traj. inter-var., Y axis .104 .775
Traj. intra-var., Y axis -.194 .840 .270 -.187 -.128

Table 4.5: Back extension preferred factor analysis results, Y axis.

As shown in Table 4.5, using the Z axis as the axis of interest, the Group factor
is the component 2 that load group at 0.292 (p < 0.05). The associated loadings
associated with it are:

• Age: 0.381 (p < 0.01)

• Time to maximum amplitude of the left shoulder trajectory: 0.958 (p < 0.001)

• Entropy of the movement of the left shoulder trajectory: -0.736 (p < 0.001)

• Y position of the total back EMG centroid: 0.338 (p < 0.01)

We can draw the same conclusion than when the movement is performed at maximum
speed, to the difference that age seems have even more correlated to the NSLBP
component.

As the NSLBP factor is not loaded significantly, FA were run on the Y or X axis,
but with no better results. Therefore, they were not dwell upon in this article.
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4.1.2.2.3 Back flexion Maximum

Components
Factors 1 2 3
Group .237
Age .977 .158 .127
BMI .379 .124
EMG centroid Y pos. .399
EMG entropy r. low back .319
EMG entropy l. low back .159 .538
GFR ratio -.366 .131
Max. ROM, X axis -.118 .582
Sex -.355
Time to max. ROM, Z axis .186 .440 .579
Traj. entropy, Z axis -.107 -.741
Traj. inter-var., Z axis .398 -.324
Traj. intra-var., Z axis .375 -.923

Table 4.6: Back flexion maximum factor analysis results, Z axis.

As shown in Table 4.6, using the Z axis the as axis of interest, the component 2 load
Group at a non-significant level: 0.237 (p > 0.05), with the associated significant
loadings:

• Maximum amplitude of the left shoulder trajectory: 0.582 (p < 0.001)

• Time to maximum amplitude of the left shoulder trajectory: 0.440 (p < 0.005)

• Variability inter-subject of the left shoulder trajectory: -0.324 (p < 0.05)

• Variability intra-subject of the left shoulder trajectory: -0.923 (p < 0.001)

These loadings seem to attest of the different movements strategy between Healthy
and NSLBP subjects. While having a greater range of motion, the NSLBP subjects
take longer to get there. Of course, the inter-subject component loading is a direct
expression of the different movement strategy between healthy and NSLBP. At the
same time, significant loading is seen on the intra-subject variability meaning that
NSLBP do not adapt their movement much in regard to new starting conditions
(Asgari et al. 2015). Nonetheless, the loading being non-significant for the Group
component, those results are not to be taken as face value just as the associated
discussion.

Factor analysis were run on the Y and X axis but did not yield any significant loading
on the Group component and have therefore not been added here.
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4.1.2.2.4 Back flexion Preferred

Components
Factors 1 3 2 6 4 5
Group -.108 .986
Age .148 -.731 .211 .251
BMI -.117 .240 .917 .253
EMG centroid Y pos. -.357 .186 .153 .158 .228
EMG entropy l. low back .986 .119
EMG entropy r. low back .224 .348 .201
GFR ratio .203 -.230 .361
Max. ROM, Z axis .975 .151
Sex .390
Time to max. ROM, Z axis .270 -.142 .132
Traj. entropy, Z axis -.228 .389 -.209 .123
Traj. inter-var., Z axis -.117 .108 .458
Traj. intra-var., Z axis -.917 -.175 .349

Table 4.7: Back flexion preferred factor analysis results, Z axis.

As shown in Table 4.7, using the Z axis as axis of interest, the component 2 load
Group at a significant level: 0.986 (p < 0.001). But no other loading are significantly
loading on this component. We find age (0.148; p > 0.05), BMI (0.240; p > 0.05),
time to maximum amplitude (0.270; p > 0.05), the position of the EMG centroid
of activity on the Y axis (0.186; p > 0.05) and the GFR ratio (-0.230; p > 0.05),
all loading at low and on significant level. A new factor analysis was run, this time
using the Y axis as the axis of interest.
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Components
Factors 5 6 1 2 4 3
Group .143 .520 -.110 -.134
Age .776 -.199 -.151
BMI .508 .405 -.166 .116
GFR ratio -.367 -.193
Max. ROM, Y axis -.110 .982 .106
EMG entropy l. low back -.420 -.138 .888
EMG entropy r. low back -.120 .143 .107 .159 .359
Sex -.262 .103 -.207 .568 .149
Time to max. ROM, Y axis .178 -.126 -.178 .238
Traj. entropy, Y axis -.450 .553 .167 .167
Traj. inter-var., Y axis .275 .946 -.106
Traj. intra-var., Y axis .123 .465 .348 .786 -.140
EMG centroid Y pos. .538 -.131

Table 4.8: Back flexion preferred factor analysis results, Y axis.

As shown in Table 4.8, using the Y axis as the axis of interest, the component 6
load Group at a significant level: 0.520 (p < 0.001), with the associated significant
loadings:

• BMI: 0.405 (p < 0.01)

• Entropy of the movement of the left shoulder trajectory: 0.553 (p < 0.001)

• Entropy of the EMG of the left low back: -0.420 (p < 0.005)

• Y position of the total back EMG centroid: 0.538 (p < 0.001)

BMI seems to have a great influence on the component for this movement. A result
which is not extremely surprising, as the NSLBP population tend to be associated
with a higher BMI mean than their healthy counterpart (Koley et al. 2010;Uccar
et al. 2021). Like the back extension movements, entropy of the movement of
the left shoulder trajectory seems to indicate that the movement produced by the
NSLBP people is correlated to a movement that is more rigid, with less fine-tuned
adaptations. The entropy of the EMG of the left low back seems to indicate a muscle
activity that is less localized, noisier. This is associated with a value of the general
centroid position in Y that indicate a higher activation of the upper portion of the
low back, something shown in other work (Sanderson et al. 2019). Surprisingly, the
maximum amplitude variable is not loading on the Group component. A surprising
finding regarding the literature.
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4.1.2.2.5 Lateral flexion Left Maximum

Components
Factors 1 3 4 2
Group .387
Age .157 .915 .257 -.260
BMI .263 .378
EMG centroid Y pos. .169 .126 -.177
EMG entropy l. low back .117 .401
EMG entropy r. low back -.101 .119
GFR ratio -.481 -.249
Max. ROM, X axis .106 .985
Sex .176 -.413
Time to max. ROM, Z axis .504 .654
Traj. entropy, Z axis -.772
Traj. inter-var., Z axis .872 .165 .452
Traj. intra-var., Z axis .299 .452 -.148 -.204

Table 4.9: Lateral flexion left maximum factor analysis results, Z axis.

As shown in Table 4.9, using the Z axis the as axis of interest, the component 2
load Group at a significant level: 0.387 (p < 0.01), with the associated significant
loadings:

• Time to maximum amplitude of the left shoulder trajectory: 0.504 (p < 0.001)

• Variation inter-subject of the left shoulder trajectory: 0.872 (p < 0.001)

• Variation intra-subject of the left shoulder trajectory: 0.299 (p < 0.05)

• GFR distribution ratio: -0.481 (p < 0.001)

These loadings can be interpreted as NSLBP subjects producing movements signifi-
cantly different than their healthy counterpart. In addition, NSLBP subjects seems
to distribute more equally their weight between each foot (Bourigua 2014). This
could be seen as a lack of adaptation to the movement, limiting their performance, in
order to maximize an instantaneous feeling of safety and control, for example by not
working with the momentum of the movement. They also have a higher variation
between repetition’s trajectories, something that seems to go against the findings in
other movements. Nonetheless, this does not go against the literature, which report
a lot of variability intra-subject in the NSLBP population (Cholewicki et al. 2019).
It could be hypothesized that the adaptations to NSLBP does not affects movements
the same way, as the different results per movement in our analysis seems to indicate.
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Again, the time to maximum amplitude seems significantly higher in people with
NSLBP than their healthy counterpart.

4.1.2.2.6 Lateral flexion Left Preferred

Components
Factors 3 1 2
Group .273
Age .856
BMI .447 -.123 .588
EMG centroid Y pos. .198 .453
EMG entropy l. low back .303
EMG entropy r. low back -.237 .109 .904
GFR ratio -.558 -.259
Max. ROM, X axis -.187 .534
Sex -.332 .200
Time to max. ROM, Z axis .465 .780
Traj. entropy, Z axis -.411 -.745 -.170
Traj. inter-var., Z axis .473 .422
Traj. intra-var., Z axis .525 .142

Table 4.10: Lateral flexion left preferred factor analysis results, Z axis.

As shown in Table 4.10, using the Z axis the as axis of interest, the component 3 load
Group at a non-significant level: 0.273 (p > 0.05), with the associated significant
loadings:

• Age: 0.856 (p < 0.001)

• Sex: -0.332 (p < 0.01)

• BMI: 0.447 (p < 0.005)

• Time to maximum amplitude of the left shoulder trajectory: 0.465 (p < 0.005)

• Entropy of the movement of the left shoulder trajectory: -0.411 (p < 0.005)

• Variation inter-subject of the left shoulder trajectory: 0.473 (p < 0.001)

• Variation intra-subject of the left shoulder trajectory: 0.525 (p < 0.001)

• GFR distribution ratio: -0.558 (p < 0.001)

The loading for the variable group is not significant, so no strong conclusions can be
drawn from those results. A new factor analysis was run, but this time using the Y
axis as the axis of interest.
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Components
Factors 3 2 4 1
Group .368 .154
Age .716 .109
BMI .395 .574 .273 .194
EMG centroid Y pos. .111 .418 .176
EMG entropy l. low back .290 -.147
EMG entropy r. low back -.218 .958 -.172
GFR ratio -.622 .166
Max. ROM, Y axis -.734 .205
Sex -.403 .190 .164
Time to max. ROM, Y axis .622 .111 -.299
Traj. entropy, Y axis -.380 .743
Traj. inter-var., Y axis .618 .546
Traj. intra-var., Y axis -.230 .969

Table 4.11: Lateral flexion left preferred factor analysis results, Y axis.

As shown in Table 4.11, using the Y axis the as axis of interest, the component 3
load group at a significant level: 0.368 (p < 0.05), with the associated significant
loadings:

• Age: 0.716 (p < 0.001)

• Sex: -0.403 (p < 0.01)

• BMI: 0.395 (p < 0.01)

• Time to maximum amplitude of the left shoulder trajectory: 0.622 (p < 0.001)

• Entropy of the movement of the left shoulder trajectory: -0.380 (p < 0.01)

• Variation inter-subject of the left shoulder trajectory: 0.618 (p < 0.001)

• GFR distribution ratio: -0.622 (p < 0.001)

We can see that NSLBP tend to perform their movement at a slower path, and more
rigidly. This, while their movements trajectory tend to be different from their healthy
counterpart. To be noted here, that like for the Lateral flexion Left Maximum, a
higher variation between repetitions in NSLBP is to be seen. Again NSLBP people
tend to be correlated with a more balanced distribution of the GFR. One interesting
thing to note is the massive importance of the anthropometric variables on this
movement: age, 0.856 (p < 0.001), sex, -0.332 (p < 0.05), and BMI, 0.447 (p < 0.005).
This let us believe that anthropometric variable has a great impact on this movement,
but also that male subjects or with higher BMI, or older, or a combination of this,
tend to express more dramatically the adaptations from NSLBP compared to others.
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4.1.2.2.7 Lateral flexion Right Maximum

Components
Factors 2 1 4 3
Group .221
Age .200 .483 .326
BMI .354 .410 .199
EMG centroid Y pos. .112 .786 .429
EMG entropy l. low back -.251 .930 .220 -.138
EMG entropy r. low back .200 -.585
GFR ratio -.531 .252
Max. ROM, X axis -.107 .512
Sex -.489
Time to max. ROM, Z axis -.382 .252 .614
Traj. entropy, Z axis -.119 -.170 -.785 -.418
Traj. inter-var., Z axis .922 .154 -.162
Traj. intra-var., Z axis .694 .350

Table 4.12: Lateral flexion right maximum factor analysis results, Z axis.

As shown in Table 4.12, using the Z axis as axis of interest, the component 3 load
Group at a non-significant level: 0.221 (p > 0.05), with the associated significant
loadings:

• Age: 0.326 (p < 0.05)

• Time to maximum amplitude of the left shoulder trajectory: 0.614 (p < 0.001)

• Entropy of the movement of the left shoulder trajectory: -0.418 (p < 0.005)

• Entropy of the EMG of the right low back: -0.585 (p < 0.001)

• Y position of the total back EMG centroid: 0.429 (p < 0.005)

The loading for the variable Group is not significant, so no strong conclusions can be
drawn from those results. A new factor analysis was run, this time using the Y or X
axis as the axis of interest, but no component loaded the Group variable. Strangely,
this problem did not arise when the same movement was performed at the same
speed but to the other side. Nonetheless, we can see that the factors loading on the
non-significant NSLBP component are still similar to results from other movements,
but as the loading on the Group factor is never significant for any of the component
we did not dwell upon those results.
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4.1.2.2.8 Lateral flexion Right Preferred

Components
Factors 2 1 3
Group .111 .154
Age .656 -.143
BMI .200 .169 .284
EMG centroid Y pos. -.450
EMG entropy l. low back .997
EMG entropy r. low back .642 .139
GFR ratio -.126 -.484
Max. ROM, X axis .622 .245
Sex -.599 -.148
Time to max. ROM, Z axis .464 .140 -.404
Traj. entropy, Z axis -.899 -.177
Traj. inter-var., Z axis -.112 .917
Traj. intra-var., Z axis .363 -.104 .508

Table 4.13: Lateral flexion right preferred factor analysis results, Z axis.

As shown in Table 4.13, using the Z axis as axis of interest, no component really
load the Group variable. Component 2, 0.111 (p > 0.05) and 3, 0.154 (p > 0.05), do
but at very low level. Due to the non-significant value of the correlation with the
group variable, no conclusion can be drawn, and therefore, a new factor analysis was
run, this time using the Y axis as the axis of interest.
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Components
Factors 2 1 4 3
Group .161 .281
Age -.220 .786 -.228
BMI .140 .116 .464
EMG centroid Y pos. .196 -.519
EMG entropy l. low back .214 .133 .965
EMG entropy r. low back .136 .398 .573
GFR ratio -.476 -.475 -.148
Max. ROM, Y axis .622 -.247
Sex .149 -.493 -.128
Time to max. ROM, Y axis -.718 .214 .397
Traj. entropy, Y axis .254 -.930 -.253
Traj. inter-var., Y axis .861 -.166 .460 -.119
Traj. intra-var., Y axis .795

Table 4.14: Lateral flexion right preferred factor analysis results, Y axis.

As shown in Table 4.14, using the Y axis the as axis of interest, the component 4 load
Group at a non-significant level: 0.281 (p > 0.05), with the associated significant
loadings:

• Age: 0.786 (p < 0.001)

• Sex: -0.493 (p < 0.001)

• BMI: 0.464 (p < 0.005)

• Time to maximum amplitude of the left shoulder trajectory: 0.397 (p < 0.01)

• Variation inter-subject of the left shoulder trajectory: 0.460 (p < 0.005)

As no component loaded Group at a significant level, a new factor analysis was run,
this time using the X axis as the axis of interest.
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Components
Factors 1 2 4 3
Group .135 .308 -.189
Age .405 -.213 .442
BMI .145 .818
EMG centroid Y pos. -.468 .387
EMG entropy l. low back .133 .987
EMG entropy r. low back .634 .132
GFR ratio -.142 -.357 .321
Max. ROM, X axis .348 -.220 .908
Sex -.188 -.130 -.131
Time to max. ROM, X axis .989
Traj. inter-var., X axis .378 -.214
Traj. entropy, X axis -.840 -.145 -.266 -.208
Traj. intra-var., X axis .558

Table 4.15: Lateral flexion right preferred factor analysis results, X axis.

As shown in Table 4.15, using the X axis the as axis of interest, the component 4
loaded Group at a significant level: 0.308 (p < 0.05), with the associated significant
loadings:

• Age: 0.442 (p < 0.005)

• BMI: 0.818 (p < 0.001)

• Y position of the total back EMG centroid: 0.387 (p < 0.01)

• GFR distribution ratio: -0.357 (p < 0.05)

We can see that mainly, it is the anthropometric variables that load on the NSLBP
component. We again see that NSLBP people tend to be correlated with a more
balanced distribution of the GFR, and that the muscle activity seems to be distributed
more cranially.
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4.1.2.2.9 Trunk rotation Left Maximum

Components
Factors 1 4 2 3 5
Group .531
Age .196 -.346 -.118 .319
Time to max. Angle, Z axis -.332 .879 -.101 .229
Max. Angle, Z axis -.346 -.204 .890 -.177
BMI .249 -.102 .547
EMG centroid Y pos. .262 .149 .181 .159
EMG entropy l. low back .537
EMG entropy r. low back .369 -.209 .192
GFR ratio -.282 .240 -.300
Sex .992
Traj. entropy, Y axis -.710 .101 .191
Traj. inter-var., Y axis .881 -.230 -.197 .356
Traj. intra-var., Y axis .736 .148 -.105 -.123

Table 4.16: Trunk rotation left maximum factor analysis results, Y axis.

As shown in Table 4.16, using the Z axis the as axis of interest, the component 5
load Group at a significant level: 0.531 (p < 0.001), with the associated significant
loadings:

• Age: 0.319 (p < 0.05)

• Maximum angle displacement on the Z axis for the left shoulder: 0.547 (p <
0.001)

• Variation inter-subject of the left shoulder trajectory: 0.356 (p < 0.05)

• GFR distribution ratio: -0.300 (p < 0.05)

Age seems to be a significant factor, which is not surprising at this point. Here a
counter intuitive result comes up: the NSLBP group seems to be associated with
an overall greater maximum angle of rotation than their healthy counterpart. As
excepted, NSLBP subjects are associated with a different movement trajectory than
the healthy subjects. We also see that they tend to distribute their weight more
evenly between foot than the healthy population.
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4.1.2.2.10 Trunk rotation Left Preferred

Components
Factors 1 2 5 3 4
Group .266 -.378
Age -.291 .543
Time to max. Angle, Z axis -.229 -.708 .190 .193
Max. Angle, Z axis -.465 .386 -.150 .222 .747
BMI .259 .715 -.176
EMG centroid Y pos. .421 -.160
EMG entropy l. low back -.214 -.115 .490
EMG entropy r. low back .329 .163 -.265
GFR ratio -.242 .152 .149 .943
Sex .202 .151 -.163 .189 -.352
Traj. entropy, Y axis .993
Traj. inter-var., Y axis .752 .305 -.212 -.182
Traj. intra-var., Y axis .946 .122 -.231 .131 -.121

Table 4.17: Trunk rotation left preferred factor analysis results, Y axis.

As shown in Table 4.17, using the Z axis the as axis of interest, the component 3
load group at a significant level: -0.378 (p < 0.05), with the associated significant
loadings:

• GFR distribution ratio: 0.943 (p < 0.001)

Here the only variable that load on the GFR distribution ratio, stating that healthy
population seems to have an extremely uneven weight distribution between their
feet.

The main peculiarity here, is that we have a second component loading the Group
factor, close to a significant level, toward NSLBP rather than Healthy, like on
component 3. We have therefore a “Healthy" component and a “NSLBP" component
in the same movement analysis, which is quite interesting. For the curious reader,
this NSLBP component load Age at 0.543 (p < 0.001) and a BMI at 0.715 (p <
0.001), which testifying again of the strong relation between the anthropometric
variables and the NSLBP symptom. The trajectory of the movement produced by
NSLBP is significantly different than the ones from the Healthy, with a loading of
0.305 (p < 0.05) of the inter-movement variablity factor. In addition, the centroid of
the EMG activity seems to be more cranial for the NSLBP, with a loading of 0.421
(p < 0.005). Interestingly the “Healhty” component doesn’t load significantly on
anthropometric data, in stark contrast with the NSLBP components found in the
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other movements. Nonetheless, as the loading on the NSLBP componenent, does
not reach significant level, no hard conclusion can be drawn.

4.1.2.2.11 Trunk rotation Right Maximum

Components
Factors 3 2 1
Group .109 -.217 .138
Age .455 -.390
Time to max. Angle, Z axis -.950
Max. Angle, Z axis -.413 .308 .272
BMI .523 -.101 .249
EMG centroid Y pos. .315 -.244 .281
EMG entropy r. low back .519 .196
EMG entropy l. low back .993
GFR ratio -.390 .108
Sex .116 -.120
Traj. entropy, Y axis .680
Traj. inter-var., Y axis .918 .131 .160
Traj. intra-var., Y axis .693 .111 -.120

Table 4.18: Trunk rotation right maximum factor analysis results, Y axis.

As shown in Table 4.18, using the Z axis the as axis of interest, the component 2 load
Group at a non-significant level: -0.217 (p > 0.05), with the associated significant
loadings:

• Age: -0.390 (p < 0.01)

• Maximum angle displacement on the Z axis for the left shoulder: 0.308 (p <
0.05)

• Time to maximum angle displacement on the Z axis for the left shoulder: -0.950
(p < 0.001)

• Entropy of the movement of the left shoulder trajectory: 0.680 (p < 0.001)

• Entropy of the EMG of the right low back: 0.519 (p < 0.001)

Unusually, the component loading the Group factor does so toward the Healthy state.
The healthy population is associated with a bigger amplitude of movement as well
as a much faster movement speed. The higher entropy of the movement trajectory
seems to testify of a movement that present more micro adaptations, which could
be interpreted as a higher live correction of the movement (Asgari et al. 2015).
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The higher EMG entropy associated to the component, seems to indicate a more
diffuse muscular activity of the low back region (Sanderson et al. 2019). Unlike when
performing the movement at maximum speed, the component is associated with
lower average age this time. An interesting thing to point out, is that the component
1 and 3 also load the Group factor toward NSLBP, albeit to a non-significant level.
Nonetheless, as the loading of the Group variable on the components is not significant,
no conclusions can be drawn from those results. A new factor analysis was run, this
time using the Y axis as the axis of interest.

Components
Factors 2 1
Group .321
Age .532 .154
Time to max. Angle, Z axis .746
Max. Angle, Z axis .117 .523
BMI .349 .302
EMG centroid Y pos. .405
EMG entropy l. low back .363
EMG entropy r. low back -.597 .799
GFR ratio -.200
Sex -.194
Traj. entropy, X axis -.594 -.223
Traj. inter-var., X axis
Traj. intra-var., X axis -.424

Table 4.19: Trunk rotation right maximum factor analysis results, X axis.

As shown in Table 4.19, using the Y axis the as axis of interest, the component 1
load Group at a significant level: 0.321 (p < 0.05), with the associated significant
loadings:

• Age: 0.532 (p < 0.001)

• BMI: 0.349 (p < 0.05)

• Time to maximum amplitude of the left shoulder trajectory: 0.746 (p < 0.001)

• Entropy of the movement of the left shoulder trajectory: -0.594 (p < 0.001)

• Variation intra-subject of the left shoulder trajectory: -0.424 (p < 0.005)

• Y position of the total back EMG centroid: 0.405 (p < 0.01)

• Entropy of the EMG of the right low back: -0.597 (p < 0.001)
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From the factor’s loadings, NSLBP subjecst seem to be associated with a slower
movement, as the very high loading of the time to maximum amplitude of the left
shoulder trajectory indicate, a lower entropy of the left shoulder trajectory, which
could be due to a more rigid movement with less micro adjustments from the NSLBP
subject. Interestingly NSLBP seems to be associated here, with a lower entropy
of the EMG signal in this movement, which could indicate a muscular activation
that is more localized than in healthy participant. At the same time, the variability
intra-subject seems to be lower in NSLBP, possibly testifying of a lack of adaptation
capability between repetitions. The NSLBP component is associated with higher
BMI and older age.

4.1.2.2.12 Trunk rotation Right Preferred

Components
Factors 1 3 4 2
Group .387 .190
Age -.557 -.114 .494
Time to max. Angle, Z axis -.829
Max. Angle, Z axis -.137 -.419 -.345 .310
BMI -.145 .188 .587
EMG centroid Y pos. .102 .412 -.135
EMG entropy l. low back -.101 .986
EMG entropy r. low back .171 .227
GFR ratio .226 -.189 -.218 .147
Sex .408 .344 .122
Traj. entropy, Y axis .984 .132
Traj. inter-var., Y axis -.199 .844 .373 -.121
Traj. intra-var., Y axis .804 .101 -.128

Table 4.20: Trunk rotation right preferred factor analysis results, Y axis.

As shown in Table 4.20, using the Y axis the as axis of interest, the component 3
load Group at a significant level: 0.387 (p < 0.01), with the associated significant
loadings:

• Age: 0.494 (p < 0.001)

• Maximum angle displacement on the Z axis for the left shoulder: 0.587 (p <
0.001)

• Time to maximum angle displacement on the Z axis for the left shoulder: -0.345
(p < 0.05)
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• Variation inter-subject of the left shoulder trajectory: 0.373 (p < 0.05)

• Y position of the total back EMG centroid: 0.412 (p < 0.005)

Aside from the age variable loading, we see that NSLBP people tend to showcase
larger amplitude of movement and faster speed of execution. The higher speed of
execution and larger amplitude are a bit counter-intuitive. Maybe this could be
a way to alleviate discomfort by performing the movement faster in order to be
done with it. The larger amplitude being a side effect of the momentum created by
the increased speed, which would be more difficult for NSLBP subjects to control
without compromising on their feeling of spine integrity or pain level. Nontheless,
this is still counter-intuitive looking back to the results from the same movement
performed at maximum speed. In addition, a higher difference of the movement
trajectory compared to their healthy counterpart. Also, the muscle activity is more
cranially distributed.

4.1.2.3 Summary

The Table 4.21 summarize the results from the DNN training for the movements at
preferred and maximum speed.
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Preferred speed
Back ext. .292* .381** .958‡ -.736‡ .338*

Back flex. .520‡ .405** .553‡ .538‡ -.420†

Lat. trunk flex. l. .368* .716‡ .395** -.403** .622‡ -.380** .618‡ -.622‡

Lat. trunk flex. r. .308* .442† .818‡ .387** -.357*

Trunk rot. left -.378* .943‡

Trunk rot. right .387** .494 .587‡ -.345* .373* .412†

Maximum speed
Back ext. .370* .786‡ -.645‡ .338*

Back flex. .237 .582‡ .440† -.923‡ -.324*

Lat. trunk flex. l. .387** .504‡ .299* .872 -.481‡

Lat. trunk flex. r. .221 .326* .614‡ -.418† .429† -.585‡

Trunk rot. left .531‡ .319* .547‡ .356* -.300*

Trunk rot. right .321* .532‡ .349* .746‡ -.594‡ -.424† .405† -.597‡

Table 4.21: Factor analysis results. *: p < 0.05. **: p < 0.01. †: p < 0.005. ‡: p < 0.001.



4.1.3 Exploratory analysis conclusion
Using the DNN, it was shown that the variables chosen yielded a substantial amount
of information about the status of the subject, healthy or NSLBP. The subdivision
into domains showed that information was not constrained to some domains only,
but was distributed across them. It is to be noted that the information power was
equally distributed, aside from the force plate data. In the context of clustering the
NSLBP population, those results align with the consensus of looking at the NSLBP
symptom as a multi factorial problem, and therefore, the clustering solution should
itself rely on data that reliably represents the 5 main domains driving the NSLBP
prognosis (Maher, Underwood, and Buchbinder 2017;Hartvigsen et al. 2018).

It is to be mentioned that, whilst most of the variables yielded relatively high accuracy
results, it was not the case for the Balance model, and the CNN model. Stabilometry
data are known to present significant differences between NSLBP and Healthy
subjects (Ruhe, Fejer, and Walker 2011), but to present accurate and reliable results,
stabilometry data should abide to certain standards, one of such being that data
should be acquired on a sample of 90 seconds at least (Ruhe et al. 2010). A criteria
that is hardly met when a subject is performing a dynamic movement, which spans for
a few seconds only. But on the other side, using static standing recording to cluster
the NSLBP population would overlook some of the neuromuscular and biomechanical
differences that arise during dynamic tasks (Sanderson et al. 2019;Villafane et al.
2016;Laird et al. 2014;Asgari et al. 2015;J. Dieën, Reeves, and Kawchuk 2018).
Looking at the counterperformance of the Balance model, especially in the light of
the relatively high accuracy of the Biomechanical and Neuromuscular models, it
seems that, when trying to cluster the NSLBP population, it is better to focus on
dynamic movements.

Concerning the sub-part performance of the CNN, we suspect that the issue is a
methodological one and not a data driven one. Beyond the problem of limited data
points, studying the HD EMG signals from the subject performance as a "simple"
image using CNN, might overlook some of the temporal relation present in those
signals which cannot be grasped by a pure CNN. That temporal aspect might be
of great importance for classification. Therefore, in order to use HD EMG signals
without any feature extraction, we would recommend turning to solutions that also
take into account the temporal resolution of those signals via the use of more complex
models, such as support vector machine (SVM) for example, (Suthaharan et al.
2016), or a combination of CNN and SVM which could be more adapted for such
complex data (Basly et al. 2020).

In addition, the fact that deep learning techniques are able to yield high performance,
even with limited data, while clustering the population is still a hard and complex
task, seems to be a testament to the complexity or subtleness of the relation between
the variables and NSLBP. Just like the problem we encountered with the CNN,
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those results might be a hint to push toward tools that can detect such complex
relationships, or to find higher level variables that would encompass the NSLBP
domains of interest while reducing the degree of freedom of the clustering problem
in order to make it simpler for classic techniques.

The results from the FA show us that not all variables and domains of variables are
equal in regards to different movements. Depending on the movement performed,
the amount of information related to the NSLBP symptom vary across variables,
and probably across domains of variables too. In the light of those results, we
would recommend focusing on single movement based classification, and keeping
the task/movement simple, as to prevent the complexification of the clustering task.
Indeed, if different simple movements are strongly linked to different variables, it
could be hypothesized that a complex movement, being a mix of simple movements,
would see the number of variables strongly related add up, distributing the significant
information across those variables, thus creating a more complex clustering problem.
In addition to focusing on a single simple movement for acquiring data, the focus
should be put on relevant associated variables. The benefit would be twofold:
simpler study protocols, and if working solutions are found from them, easier clinical
application.

From our results perspective, the trunk flexion could be a strong candidate for the
movement of choice, as it is a well-studied movement (Laird et al. 2014). But also,
this movement has the particularity to display the flexion relaxation phenomenon: the
reduction of paraspinal muscle activity at maximum trunk flexion. A phenomenon
known to present differences between the NSLBP and Healthy population (Gouteron
et al. 2021). Another candidate would be the trunk rotation. Indeed, this movement
had different components loading both on Healthy and NSLBP direction, which
could means that this movement has an increased discriminatory capacity, compared
to other.

Even using restricted data sets, the DNN models showed, most of the time, high
accuracy results despite the complexity of the NSLBP symptom and the variability of
its expression amongst afflicted subjects (Hartvigsen et al. 2018;Maher, Underwood,
and Buchbinder 2017;Laird et al. 2014). In light of this, the case could be made that
the tooling to study NSLBP and its clustering needs to be rethought, to fit the need
to find complex and subtle relationships amongst the data, something that deep
learning tools excel at (Najafabadi et al. 2015;Goodfellow, Bengio, and Courville
2016) and where classic cluster techniques might be facing difficulties, which can be
harder to address (Ronan et al. 2016).
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The exploratory analysis findings can be summarized in the following points:

• Higher level data, or "meta data" linked to the main domains influencing
NSLBP prognosis should receive more attention when attempting to cluster
and no domains should be discarded (a case could be made for the genetic
domain due to the complexity of the task to study it).

• Dynamic conditions used to acquire data in order to study clustering of the
NSLBP population should be kept as simple as possible in order to prevent
the complexification of the clustering task.

• As the importance of relationships with NSLBP for each variables is dependent
on the condition performed, care should be put into which variables are looked
at, for each of the conditions studied. Exploratory work before attempting
clustering of a population should be considered and the associated results
shared along the clustering results.

• Back flexion and trunk rotation seems to be the movements to be privileged as
the dynamic condition of choice for data acquisition.

• Tools that have the capacity to detect and model complex and subtle relation-
ships should be privileged. Great importance should be placed into the choice
of data analysis and tools framework used to process data from NSLBP when
attempting to cluster it.

Concerning this last point, the focus on higher order variables linked to the domain
influencing NSLBP prognosis should not be disregarded, as it could allow the
researchers to study more fundamental and common adaptations from NSLBP and
their expression, and for the clinicians to apply this knowledge straight away into
their practice, to help develop personalized and more effective care protocols, in
accord with the profile of his NSLBP patients, without the need for new or expensive
equipment.
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4.2 Clusters analysis
The following clustering algorithms were used:

• K-means clustering

• Spectral clustering

– Affinity matrix construction technique: Nearest neighbors, Radial basis
function (RBF)

– Assign label strategy: K-means, discretize

• Hierarchical agglomerative clustering

– Distance between instance metric: Euclidean, Manhattan, Cosine

– Linkage criterion: Average, Complete, Single

This cluster analysis is divided in three parts. First we ran the clustering algorithms
on the full data set, with and without using dimension reduction. The goal is to
establish a baseline of the capacities of the unsupervised algorithms used. Following
this, we will cluster our population using the insights gained from our exploratory
analysis. Once this is done, we will analyze the valuable clusters found. Secondly we
ran the clustering algorithms using the full data set, but only using the variables
with significant correlation to NSLBP as shown in our FA results. Again, with and
without dimension reduction being used. The goal is to assess if the results are better
than with our null model using our newly acquired knowledge. Third, we ran the
clustering algorithms on movement specific data set, again using the results from our
exploratory analysis. Again, the goal is to see if our newly acquired knowledge will
help us produce better results. More details about the variables used in the second
and third part is given later on. We used the silhouette score (Rousseeuw 1987) to
assess the potential quality of the clustering solutions. The silhouette score values
are listed in the tables below. Only the combination yielding a silhouette score above
0.7 will be further investigated later. Once this three clustering attempts were done,
we investigated the clustering models that yielded valuables results.

Due to time constraint, not all the spine cluster data could be processed for every
subjects, therefore, we ran two analysis for each algorithms: one without data from
the spine clusters, and one with a reduced set of the spine cluster data, as shown in
Figure 3.10. This was done as to maximize the number of subjects aka data points
used by our algorithms while still using spine cluster data.Here force plate data have
been discarded, as the results from the DNN showed they were of low value when
used in a movement agnostic context.
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One of the problems encounter in this part was the very high number of dimensions of
our data set, which could create what is called the curse of dimensionality (Bellman
1957): with the increase of dimension, the available data become sparse, due to the
extremely fast growth of the spaces’ volume in which the data evolve. To counter this
problem, one of the best and most straight forward solution is to simply get more
data. A solution that can quickly become inadequate. Indeed, recommendations
state that at least 5 training samples by dimension should be acquired (Koutroumbas
and Theodoridis 2008), which can bring the amount of data to acquire to an absurdly
high amount. Another way to tackle this problem is to reduce the data dimensions.
To do so, two things were implemented: Principal Component Analysis (PCA),
and selection of variables. PCA was chosen as a way to objectively reduce the
data set dimension. PCA is sensible to the scaling of the variable (Leznik and
Tofallis 2005). To prevent this problem the data have been re-scaled using the
method sklearn.preprocessing.RobustScaler() from the Scikit Learn Library
(Pedregosa et al. 2011). In order to alleviate the obvious problem of subjectivity in
choosing which variables to keep, we relied on the insights gained from our exploratory
analysis, and this is what we explore in the second and third part of this cluster
analysis. Due to the same concern of lowering data set dimension, anthropometric
data were not included in our analysis as the clustering models yielded the same
results without them. We also only used the left shoulder data, instead of both,
again, as to limit the number of dimension of our data set.

We start the clustering of our population via two null models first: with and without
dimension reductions via PCA.
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4.2.1 Null model
4.2.1.1 No dimension reduction

4.2.1.1.1 No spine data

The silhouette scores for the null model, without spine data or dimension reduction,
for the different clustering techniques, can be found in the table 4.22.

Cluster number
Clustering 2 3 4 5 6 7 8 9
K-means

0.86 0.83 0.76 0.75 0.69 0.62 0.46 0.47
Spectral

nearest neighbors
kmeans 0.65 0.07 -0.03 -0.11 -0.11 -0.12 -0.13 -0.13

discretize 0.54 -0.02 -0.12 -0.16 -0.16 -0.16 -0.14 -0.15
rbf

kmeans -0.57 -0.57 -0.56 -0.55 -0.55 -0.55 -0.55 -0.55
discretize 0.0 -0.51 -0.4 -0.37 -0.52 -0.46 -0.53 -0.55

Agglomerative
euclidean

average 0.87 0.83 0.81 0.75 0.69 0.62 0.59 0.45
single 0.87 0.83 0.81 0.75 0.69 0.62 0.59 0.45

complete 0.87 0.83 0.81 0.75 0.69 0.62 0.46 0.47
manhattan

average 0.87 0.83 0.81 0.61 0.52 0.62 0.48 0.42
single 0.87 0.82 0.81 0.61 0.52 0.62 0.59 0.45

complete 0.87 0.83 0.81 0.72 0.69 0.62 0.45 0.05
cosine

average 0.06 -0.28 -0.15 -0.11 -0.11 -0.09 -0.08 -0.06
single -0.58 -0.58 -0.59 -0.57 -0.42 -0.42 -0.41 -0.39

complete -0.07 -0.32 -0.31 -0.25 -0.13 -0.13 -0.12 -0.11

Table 4.22: Silhouette scores for the null model, without spine data or dimension
reduction.
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4.2.1.1.2 Spine data

The silhouette scores for the null model, with spine data but without dimension
reduction, for the different clustering techniques, can be found in the table 4.23.

Cluster number
Clustering 2 3 4 5 6 7 8 9
K-means

0.67 0.62 0.65 0.46 0.43 0.39 0.29 0.31
Spectral

nearest neighbors
kmeans 0.18 0.31 0.15 0.17 0.12 0.19 0.17 0.19

discretize 0.18 0.25 0.12 0.17 0.12 -0.05 -0.11 -0.17
rbf

kmeans -0.02 -0.03 -0.16 -0.39 -0.33 -0.36 -0.38 -0.4
discretize -0.01 -0.12 -0.17 -0.21 -0.31 -0.29 -0.32 -0.31

Agglomerative
euclidean

average 0.67 0.57 0.65 0.46 0.43 0.39 0.32 0.25
single 0.67 0.57 0.65 0.46 0.38 0.39 0.33 0.25

complete 0.67 0.57 0.65 0.46 0.43 0.39 0.32 0.31
manhattan

average 0.67 0.57 0.65 0.46 0.43 0.22 0.25 0.19
single 0.67 0.57 0.27 0.46 0.39 0.36 0.15 0.16

complete 0.53 0.57 0.65 0.46 0.34 0.35 0.25 0.06
cosine

average 0.01 -0.23 -0.23 -0.34 -0.32 -0.29 -0.23 -0.21
single -0.06 -0.45 -0.42 -0.4 -0.37 -0.34 -0.28 -0.28

complete 0.01 -0.35 -0.33 -0.33 -0.3 -0.27 -0.23 -0.2

Table 4.23: Silhouette scores for the null model, with spine data but without
dimension reduction.
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4.2.1.2 Dimension reduction

4.2.1.2.1 No spine data

The silhouette scores for the null model, without spine data but with dimension
reduction, for the different clustering techniques, can be found in the table 4.24.

Cluster number
Clustering 2 3 4 5 6 7 8 9
K-means

0.94 0.94 0.91 0.86 0.85 0.65 0.62 0.64
Spectral

nearest neighbors
kmeans 0.01 -0.01 0.13 0.37 0.31 0.49 0.33 0.29

discretize 0.01 -0.01 0.16 0.37 0.31 0.18 0.41 0.39
rbf

kmeans 0.94 0.94 0.91 0.86 -0.0 -0.07 -0.18 -0.18
discretize 0.94 0.94 0.94 -0.5 -0.52 -0.55 -0.54 -0.54

Agglomerative
euclidean

average 0.91 0.94 0.91 0.86 0.85 0.81 0.62 0.63
single 0.91 0.94 0.91 0.82 0.85 0.81 0.62 0.52

complete 0.91 0.94 0.91 0.86 0.85 0.63 0.61 0.63
manhattan

average 0.91 0.94 0.91 0.86 0.85 0.81 0.62 0.63
single 0.91 0.94 0.91 0.82 0.85 0.81 0.62 0.52

complete 0.91 0.94 0.91 0.86 0.85 0.63 0.61 0.63
cosine

average 0.86 -0.54 -0.43 -0.54 -0.54 -0.61 -0.62 -0.61
single 0.86 0.82 0.79 0.81 0.8 -0.53 -0.4 -0.51

complete 0.86 -0.54 -0.43 -0.54 -0.54 -0.61 -0.62 -0.61

Table 4.24: Silhouette scores for the null model, without spine data but with
dimension reduction.
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4.2.1.2.2 Spine data

The silhouette score for the null model, using the spine data and dimension reduction,
for the different clustering techniques, can be found in the table 4.25.

Cluster number
Clustering 2 3 4 5 6 7 8 9
K-means

0.72 0.77 0.83 0.69 0.77 0.69 0.45 0.49
Spectral

nearest neighbors
kmeans 0.43 0.33 0.31 0.46 0.23 -0.01 0.12 0.28

discretize 0.05 -0.14 0.31 0.46 0.05 -0.11 -0.03 0.01
rbf

kmeans 0.72 0.74 0.83 0.69 0.77 0.5 0.18 0.19
discretize 0.72 0.77 0.83 0.83 0.83 0.83 -0.28 -0.24

Agglomerative
euclidean

average 0.72 0.74 0.83 0.69 0.61 0.69 0.48 0.46
single 0.72 0.74 0.83 0.69 0.61 0.69 0.48 0.4

complete 0.72 0.74 0.83 0.69 0.77 0.69 0.48 0.46
manhattan

average 0.71 0.74 0.83 0.69 0.61 0.69 0.48 0.46
single 0.71 0.74 0.83 0.69 0.61 0.69 0.48 0.4

complete 0.72 0.74 0.83 0.69 0.77 0.69 0.48 0.46
cosine

average 0.72 0.77 0.67 0.69 0.77 0.51 0.4 0.32
single 0.72 0.77 0.67 0.69 0.77 0.51 0.4 0.32

complete 0.58 0.6 0.67 0.62 0.77 0.51 0.57 0.52

Table 4.25: The silhouette scores for the null model, using the spine data and
dimension reduction.
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4.2.2 Model using exploratory insights
The variables used for each movements comes from the finding from the exploratory
FA done earlier. The factors loadings significantly on the Group component were
selected. We did not discard the use of the force plate data. Indeed, from the DNN
analysis, it seems that they are of no use. But it is to be said, that the DNN were
movement agnostic, and that it may have been why the force plate data didn’t yield
interesting results. As the FA found the force plate data valuable in some cases, we
added them in our clustering model when it came to movement specific tasks. As
the data from the spine cluster were not investigated through the FA, we did not
use them in this specific part, and also with the aim of maximizing the number of
data point available to us as they were not available to every subjects. Again, as the
clustering models yielded the same, or marginally better, results by not using the
anthropometric data, they were not included in our analysis in order to reduce the
number of dimension of the data sets.

Variables used for back extension preferred:

• Time to maximum amplitude of the left shoulder trajectory, Y axis
• Entropy of the movement of the left shoulder trajectory, Y axis
• Y position of the total back EMG centroid
• Entropy of the EMG of the left low back

Variables used for back extension maximum:

• Time to maximum amplitude of the left shoulder trajectory, Y axis
• Entropy of the movement of the left shoulder trajectory, Y axis
• Y position of the total back EMG centroid

Variables used for back flexion preferred:

• Entropy of the movement of the left shoulder trajectory, Z axis
• Y position of the total back EMG centroid

Variables used for back flexion maximum:

• Maximum amplitude of the left shoulder trajectory, Z axis
• Time to maximum amplitude of the left shoulder trajectory, Z axis
• Variability intra-subject of the left shoulder trajectory, Z axis
• Variability inter-subject of the left shoulder trajectory, Z axis

Variables used for lateral flexion left preferred:

• Time to maximum amplitude of the left shoulder trajectory, Z axis
• Entropy of the movement of the left shoulder trajectory, Z axis
• Variability inter-subject of the left shoulder trajectory, Z axis
• GFR distribution ratio
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Variables used for lateral flexion left maximum:

• Time to maximum amplitude of the left shoulder trajectory, Z axis
• Variability intra-subject of the left shoulder trajectory, Z axis
• Variability inter-subject of the left shoulder trajectory, Z axis
• GFR distribution ratio

Variables used for lateral flexion right preferred:

• Y position of the total back EMG centroid
• GFR distribution ratio

Variables used for lateral flexion right maximum:

• Time to maximum amplitude of the left shoulder trajectory, Z axis
• Entropy of the movement of the left shoulder trajectory, Z axis
• Y position of the total back EMG centroid
• Entropy of the EMG of the right low back

Variables used for trunk rotation left preferred:

• GFR distribution ratio

Variables used for trunk rotation left maximum:

• Maximum amplitude of the left shoulder trajectory, Y axis
• Variability inter-subject of the left shoulder trajectory, Y axis
• GFR distribution ratio

Variables used for trunk rotation right preferred:

• Maximum amplitude of the left shoulder trajectory, Y axis
• Time to maximum amplitude of the left shoulder trajectory, Y axis
• Variability inter-subject of the left shoulder trajectory, Y axis
• Y position of the total back EMG centroid

Variables used for trunk rotation right maximum:

• Time to maximum amplitude of the left shoulder trajectory, Y axis
• Entropy of the movement of the left shoulder trajectory, Y axis
• Variability inter-subject of the left shoulder trajectory, Y axis
• Y position of the total back EMG centroid
• Entropy of the EMG of the right low back

As the back extension at maximum speed, the back flexion at preferred and maximum
speed, the lateral flexion left and right at preferred speed, the trunk rotation left at
maximum speed and the trunk rotation right at preferred speed clustering didn’t
yield any valuable results, their results were not displayed in this part, as to not
clutter this chapter more than necessary.
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4.2.2.1 Full model with anthropometric data

4.2.2.1.1 No dimension reduction

The silhouette scores for the full model from exploratory insight, without dimension
reduction, for the different clustering techniques, can be found in the table 4.26.

Cluster number
Clustering 2 3 4 5 6 7 8 9
K-means

0.84 0.79 0.67 0.41 0.12 0.1 0.09 0.07
Spectral

nearest neighbors
kmeans 0.05 -0.08 -0.1 -0.08 -0.02 -0.02 -0.05 -0.02

discretize 0.05 -0.06 -0.15 -0.09 -0.04 -0.17 -0.05 -0.06
rbf

kmeans 0.29 0.29 0.17 0.03 0.03 0.03 0.11 0.03
discretize 0.5 0.06 -0.11 -0.11 -0.09 -0.08 -0.25 -0.14

Agglomerative
euclidean

average 0.84 0.79 0.67 0.47 0.39 0.3 0.26 0.23
single 0.84 0.79 0.67 0.47 0.39 0.3 0.25 0.23

complete 0.84 0.79 0.67 0.41 0.38 0.09 0.08 0.07
manhattan

average 0.76 0.79 0.35 0.36 0.39 0.19 0.2 0.2
single 0.76 0.79 0.67 0.47 0.39 0.3 0.19 0.17

complete 0.84 0.79 0.05 0.05 0.04 0.07 0.05 0.03
cosine

average 0.07 0.06 0.04 0.02 -0.0 0.01 -0.0 -0.01
single -0.38 -0.38 -0.33 -0.33 -0.35 -0.34 -0.3 -0.31

complete 0.12 -0.02 -0.21 -0.12 -0.11 -0.07 -0.05 -0.08

Table 4.26: Silhouette scores for the full model from exploratory insight, without
dimension reduction.
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4.2.2.1.2 Dimension reduction

The silhouette scores for the full model from exploratory insight, with dimension
reduction, for the different clustering techniques, can be found in the table 4.27.

Cluster number
Clustering 2 3 4 5 6 7 8 9
K-means

0.89 0.89 0.82 0.78 0.71 0.5 0.52 0.41
Spectral

nearest neighbors
kmeans 0.17 -0.3 -0.2 -0.08 0.09 0.17 0.17 0.16

discretize 0.16 -0.27 -0.2 -0.08 -0.04 0.01 0.04 0.06
rbf

kmeans 0.89 0.89 0.82 0.8 0.71 0.46 -0.24 -0.19
discretize 0.89 0.89 0.89 0.89 0.89 0.89 -0.54 -0.53

Agglomerative
euclidean

average 0.89 0.89 0.82 0.8 0.71 0.5 0.52 0.51
single 0.89 0.89 0.82 0.8 0.71 0.51 0.44 0.49

complete 0.89 0.89 0.82 0.78 0.71 0.5 0.52 0.41
manhattan

average 0.89 0.89 0.82 0.8 0.71 0.5 0.52 0.51
single 0.89 0.89 0.82 0.8 0.71 0.51 0.44 0.49

complete 0.88 0.89 0.82 0.78 0.71 0.5 0.52 0.32
cosine

average 0.77 0.78 0.44 0.44 0.21 0.24 0.25 0.23
single 0.78 0.78 0.49 0.42 0.43 0.44 0.19 0.16

complete 0.77 0.78 0.2 0.23 0.24 0.23 0.19 0.2

Table 4.27: Silhouette scores for the full model from exploratory insight, with
dimension reduction.
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4.2.2.2 Movement specific models

Only the movements that seemed to showcase potentially valuable cluster models
were inserted in this part, as to nut clutter the chapter. Potentially valuable cluster
models were evaluated via the silhouette score (Rousseeuw 1987) and had to reach at
least a score of 0.7. The movements who failed to reach such a score in every cluster
algorithms were not included below.

4.2.2.2.1 Back extension preferred

The silhouette score for back extension preferred regarding the different clustering
techniques used can be found in the table 4.28.

Cluster number
Clustering 2 3 4 5 6 7 8 9
K-means

0.93 0.87 0.64 0.53 0.25 0.27 0.3 0.23
Spectral

nearest neighbors
kmeans 0.03 -0.14 -0.06 0.16 0.15 0.13 0.12 0.08

discretize 0.03 -0.07 -0.06 0.15 0.14 0.07 0.1 0.06
rbf

kmeans 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
discretize 0.71 0.21 0.61 -0.23 -0.04 -0.01 -0.18 0.16

Agglomerative
euclidean

average 0.93 0.87 0.72 0.53 0.38 0.35 0.32 0.27
single 0.93 0.87 0.72 0.57 0.44 0.34 0.3 0.28

complete 0.93 0.87 0.61 0.53 0.27 0.27 0.27 0.24
manhattan

average 0.93 0.87 0.72 0.53 0.4 0.33 0.31 0.28
single 0.93 0.87 0.72 0.57 0.42 0.31 0.3 0.28

complete 0.93 0.87 0.72 0.53 0.22 0.26 0.26 0.21
cosine

average 0.31 -0.03 0.09 0.12 0.04 0.03 0.02 0.02
single 0.59 -0.31 -0.27 -0.25 -0.22 -0.15 -0.15 -0.13

complete -0.18 -0.03 -0.03 0.1 0.03 0.01 -0.0 0.02

Table 4.28: Silhouette score for back extension preferred.
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It can be noted the strange silhouette scores for the Spectral clustering using the
RBF kernel and assigning label using K-means, where the score for all the number of
cluster is 0.80. It might be due to the inability of the Spectral algorithm to converge,
but will still be investigate for good measure.

4.2.2.2.2 Lateral flexion left maximum

The silhouette score for lateral flexion left maximum regarding the different clustering
techniques used can be found in the table 4.29.

Cluster number
Clustering 2 3 4 5 6 7 8 9
K-means

0.71 0.69 0.2 0.21 0.22 0.22 0.25 0.2
Spectral

nearest neighbors
kmeans 0.18 0.13 0.03 0.01 -0.02 0.07 0.02 0.05

discretize 0.18 0.12 0.05 0.03 -0.03 -0.1 0.02 -0.02
rbf

kmeans 0.4 0.49 0.37 0.31 0.26 0.22 0.22 0.18
discretize 0.36 0.14 0.34 0.17 0.17 0.34 0.16 0.12

Agglomerative
euclidean

average 0.71 0.69 0.5 0.38 0.38 0.34 0.27 0.28
single 0.71 0.69 0.5 0.38 0.37 0.3 0.26 0.19

complete 0.71 0.69 0.26 0.29 0.25 0.27 0.28 0.23
manhattan

average 0.68 0.69 0.42 0.37 0.36 0.32 0.24 0.21
single 0.71 0.69 0.5 0.38 0.37 0.3 0.21 0.15

complete 0.68 0.69 0.42 0.33 0.32 0.25 0.21 0.22
cosine

average 0.21 0.19 -0.02 -0.04 -0.08 -0.04 -0.03 0.01
single -0.32 -0.33 -0.27 -0.26 -0.32 -0.32 -0.28 -0.22

complete 0.21 0.19 0.02 -0.01 -0.01 0.01 -0.02 -0.01

Table 4.29: Silhouette score for lateral flexion left maximum.
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4.2.2.2.3 Lateral flexion right maximum

The silhouette score for lateral flexion right maximum regarding the different cluster-
ing techniques used can be found in the table 4.30.

Cluster number
Clustering 2 3 4 5 6 7 8 9
K-means

0.92 0.79 0.39 0.36 0.27 0.27 0.23 0.23
Spectral

nearest neighbors
kmeans 0.02 -0.1 -0.03 -0.0 0.02 0.04 0.1 0.05

discretize 0.02 -0.09 -0.03 -0.02 0.0 0.04 0.07 0.09
rbf

kmeans 0.71 0.09 0.05 -0.11 -0.18 -0.2 -0.18 -0.15
discretize 0.28 0.28 0.03 0.1 0.2 0.13 0.11 0.2

Agglomerative
euclidean

average 0.92 0.79 0.63 0.35 0.3 0.28 0.27 0.26
single 0.92 0.79 0.63 0.28 0.27 0.24 0.19 0.18

complete 0.92 0.79 0.63 0.36 0.26 0.27 0.26 0.27
manhattan

average 0.92 0.79 0.63 0.36 0.31 0.29 0.28 0.25
single 0.92 0.79 0.63 0.28 0.18 0.24 0.2 0.19

complete 0.92 0.79 0.63 0.36 0.2 0.19 0.2 0.2
cosine

average 0.14 -0.09 -0.16 0.01 0.03 -0.02 -0.01 -0.01
single -0.31 -0.26 -0.26 -0.3 -0.36 -0.28 -0.34 -0.24

complete 0.32 -0.04 -0.11 -0.1 -0.09 -0.01 -0.01 -0.01

Table 4.30: Silhouette score for lateral flexion right maximum.
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4.2.2.2.4 Trunk rotation left preferred

The silhouette score for trunk rotation left preferred regarding the different clustering
techniques used can be found in the table 4.31.

Cluster number
Clustering 2 3 4 5 6 7 8 9
K-means

0.82 0.55 0.58 0.48 0.55 0.57 0.58 0.57
Spectral

nearest neighbors
kmeans 0.52 0.29 0.32 0.3 0.3 0.31 0.36 0.51

discretize 0.52 0.29 0.28 0.25 0.29 0.21 0.31 0.51
rbf

kmeans 0.53 0.55 0.45 0.33 0.56 0.53 0.29 0.29
discretize 0.55 0.55 0.58 0.58 0.58 0.58 0.14 0.06

Agglomerative
euclidean

average 0.82 0.61 0.59 0.55 0.56 0.53 0.57 0.55
single 0.82 0.61 0.42 0.36 0.32 0.2 0.33 0.33

complete 0.82 0.5 0.53 0.48 0.46 0.44 0.58 0.58
manhattan

average 0.82 0.61 0.59 0.55 0.56 0.53 0.57 0.55
single 0.82 0.61 0.42 0.36 0.32 0.2 0.33 0.33

complete 0.82 0.5 0.53 0.48 0.46 0.44 0.58 0.58
cosine

average 0.45 -0.17 -0.21 -0.25 -0.32 -0.56 -0.55 -0.54
single 0.45 -0.17 -0.21 -0.25 -0.24 -0.23 -0.31 -0.31

complete 0.45 -0.17 -0.21 -0.25 -0.32 -0.56 -0.55 -0.54

Table 4.31: Silhouette score for trunk rotation left preferred.
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4.2.2.2.5 Trunk rotation right maximum

The silhouette score for trunk rotation right maximum regarding the different clus-
tering techniques used can be found in the table 4.32.

Cluster number
Clustering 2 3 4 5 6 7 8 9
K-means

0.89 0.75 0.25 0.26 0.25 0.25 0.25 0.23
Spectral

nearest neighbors
kmeans 0.05 0.01 0.03 0.08 0.09 0.17 0.2 0.2

discretize 0.05 0.04 0.06 0.08 0.05 0.01 0.12 0.16
rbf

kmeans 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89
discretize 0.89 0.69 -0.02 -0.08 -0.07 0.38 0.24 0.01

Agglomerative
euclidean

average 0.89 0.75 0.48 0.43 0.4 0.24 0.22 0.15
single 0.89 0.75 0.7 0.45 0.4 0.37 0.19 0.15

complete 0.89 0.75 0.47 0.43 0.2 0.2 0.19 0.21
manhattan

average 0.89 0.75 0.48 0.43 0.4 0.23 0.15 0.13
single 0.89 0.75 0.7 0.45 0.4 0.37 0.2 0.15

complete 0.89 0.75 0.19 0.24 0.21 0.21 0.21 0.18
cosine

average 0.06 0.09 0.07 0.1 -0.05 -0.01 0.01 -0.0
single -0.31 -0.46 -0.42 -0.42 -0.42 -0.38 -0.38 -0.31

complete 0.05 0.11 0.05 0.09 0.04 -0.07 -0.04 -0.04

Table 4.32: Silhouette score for trunk rotation right maximum.

It can be noted the strange silhouette scores for the Spectral clustering using the
RBF kernel and assigning label using K-means, where the score for all the number of
cluster is 0.89. It might be due to the inability of the Spectral algorithm to converge,
but will still be investigate for good measure.
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4.2.3 Analysis of the cluster models of interest
Unfortunately only one combination gave us a valuable cluster model. This happened
using Spectral algorithm with RBF kernel, alongside the discretize algorithm for label
assignment on the full data set with spine data, while using dimension reduction.
No other combination gave valuable results.

The Figure 4.12 give us a more detailed look at the cluster distribution which seem
to showcase an interesting distribution. Nonetheless, even we have to remember that
we are working on a relatively small subset here, which could be biasing our results
towards artificially a valuable, or abnormal, cluster distribution. This could explain
the distribution close to 50% of healthy and LBP into some clusters which can seem
strange. To be noted that in his work from 2018, Laird found subgroups with the
following distribution (Laird, Keating, and Kent 2018):

• Subgroup 1: 26.3% LBP
• Subgroup 2: 71.2% LBP
• Subgroup 3: 82.9% LBP
• Subgroup 4: 100.0% LBP

In Laird and collaborator work, it is to be remembered that there was a substantial
proportion of LBP subjects in each group that incorporated a large proportion of
Healthy subjects. Laird and collaborators managed to run their study on a cohort of
266 participants, which was much larger, and therefore, yielded stronger conclusion.
Our data set is only 10% of the size of the one from this study. Our results can’t be
interpreted with the same confidence than his. But those results don’t seem to be
too far off, which is encouraging.

Figure 4.12: Cluster distribution for Spectral clustering after dimension reduction
via PCA and with Spine data using different methods. In red, NSLBP. In green
healthy.
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4.2.4 Cluster analysis conclusion
Unsupervised clustering algorithms have been used on our data set. In most cases,
the results showed poor clustering capabilities and no valuable cluster models could
be found but on one occasion. One thing to note was that, we were often facing
outliers that would artificially improve the results, or at least the metric used to
assess the quality of the results. The problem of the high number of dimensionality
was dealt using dimension reduction either through PCA, or through educated guess
from our exploratory work. Unfortunately, it wasn’t sufficient, and a more important
data set would be needed to alleviate that issue, but due to time constraints, we
couldn’t afford to collect on more participants.

The dimension reduction proved to be valuable, substantially improving the perfor-
mance of some of the clustering algorithms, namely the spectral analysis algorithms
which managed to discriminate 4 subgroups using the reduced data set with spine
cluster data. The results are close to the one seen in previous work from Laird
and collaborators (Laird, Keating, and Kent 2018), with one cluster that mostly
encompasses NSLBP subjects and another cluster that encompasses a mix of healthy
and NSLBP, presenting NSLBP as a spectrum. This is encouraging in regards to
the size of our data set compared to the one of Laird and collaborators. The results
for less clusters seem to go according to the results from Laird and collaborators.
Due to its better performance, spectral algorithm using the RBF kernel might be
the cluster technique to favor in future work.

An interesting fact to mention, is that discarding anthropometric data didn’t yield
much changes to the clustering result. It could be interpreted by saying that they in
fact yield no valuable information, but our exploratory work proved that it was the
total opposite. The results from the DNN and FA showed us that the anthropometric
data had a tremendous information power and correlation not only to the NSLBP
symptom but also to the biophysical data in general. The other possibility, which
we can hypothesize, is that anthropometric data might be redundant with the other
variables. Indeed, we can see the anthropometric data as the high levels variables of
the biophysical domain (Hartvigsen et al. 2018), and the other variables as lower level
variables. It might be that that anthropometric variables, the high level variables,
drove some adaptations from NSLBP in the biophysical domain. We can hypothesize
that the higher level variables are the ones driving the adaptation of NSLBP, so
that those adaptations express itself into the lower level variables in a certain way.
For this reason, leveraging the use of high level variables as a source of data for
clustering should be investigated. It is to be noted that using high level variables
would probably allow us to integrate a significant amount of information in our data
set, while at the same time limiting the number of variables needed, making the task
of clustering population sample much easier at the same time. Also let us remember
that NSLBP is a multi-factorial symptom (Hartvigsen et al. 2018), and maybe what
we see and hypothesize with the anthropometric domain, is consistent across the
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other main domains influencing LBP prognosis (Hartvigsen et al. 2018).
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Discussion

NSLBP is extremely prevalent in the population (Hoy et al. 2012; Hartvigsen et al.
2018), and is a growing health problem worldwide (Hoy et al. 2014). As of today,
NSLBP is a major and costly issue both materially and socially, for society and
the affected people (Hoy et al. 2014). The major obstacle to solving the NSLBP
equation comes from the symptom main characteristic: its idiopathic nature. The
absence of clues about the underlying causes in addition to the fact that the symptom
encompasses a very large and diverse population make it relatively hard to study the
NSLBP population and the associated consequences, or to design effective treatments
and rehabilitation protocols, for researcher and clinicians alike (Hodges, Cholewicki,
and Van Dieën 2013; Haskins, Osmotherly, and Rivett 2015b, 2015a).

In order to circumvent this problem, one solution that is emerging is to cluster
the NSLBP population into more homogeneous subgroups in order to facilitate the
development of more targeted and patient specific care which should be more effective
than the currently available tools (Hodges, Cholewicki, and Van Dieën 2013; Haskins,
Osmotherly, and Rivett 2015b, 2015a; Hartvigsen et al. 2018). Regrettably, no
reliable and, or, clinically meaningful subgrouping solution of the NSLBP population
has been found so far (Maher, Underwood, and Buchbinder 2017).

Today, most attempts made at subgrouping the NSLBP population rely on the use of
categorical data. One major issue of categorical data, is that their categories are set
through subjective measures, such as the educated guess of an experimenter. This
might limit the extrapolation and usefulness of the cluster models found through
the use of categorical variables as they therefore depend on subjective ruling. Being
able to design classification models based on more objective data would ground the
subgrouping models using them into a more solid foundation. But to define valuable
cluster models using continuous variables there is first, a need to better understand
continuous variables in relation to NSLBP. Exploratory work in different conditions
on NSLBP population is required in order to acquire valuable knowledge and to
facilitate the development of clinically relevant clusters among this population.
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In light of the present problem of NSLBP, our approach for this work lied in the
following objectives:

1. First objective: Provide an exploratory work to better understand the influence
and importance of the selected variables in regards to NSLBP and our sample
population, and gather information to prepare subgrouping

2. Second objective: Provide an attempt at clustering our population sample in
order to discriminate valuables subgroups

To accomplish those objectives, we defined a protocol relying on the patient’s
performance on range of simple movements at different speed as to cover a broad
spectrum of conditions for our exploratory analysis. HD EMG and MOCAP data
were acquired during these tasks in order to capture as much data as possible on
different aspects of the movement through continuous variables, be it biomechanical
or neuromscular. Following this and after pre-processing the acquired data, we dived
into the core of our research work.

We started with an exploratory analysis. Using DNN and FA, we managed to gather
valuable information about the variables of interest and the NSLBP symptom. The
main findings from our exploratory analysis were:

• Higher level data, or "meta data" linked to the main domains influencing
NSLBP prognosis should receive more attention when attempting to cluster
and no domains should be discarded (a case could be made for the genetic
domain due to the complexity of the task to study it).

• Dynamic conditions used to acquire data in order to study clustering of the
NSLBP population should be kept as simple as possible in order to prevent
the complexification of the clustering task.

• As the importance of relationships with NSLBP for each variables is dependent
on the condition performed, care should be put into which variables are looked
at, for each of the conditions studied. Exploratory work before attempting
clustering of a population should be considered and the associated results
shared along the clustering results.

• Back flexion and trunk rotation seems to be the movements to be privileged as
the dynamic condition of choice for data acquisition.

• Tools that have the capacity to detect and model complex and subtle relation-
ships should be privileged. Great importance should be placed into the choice
of data analysis and tools framework used to process data from NSLBP when
attempting to cluster it.

This answered our first objective.
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Once the exploratory work was done, we went on to the clustering attempts. First we
created null clustering models using our whole data set, with and without dimension
reduction, and with and without the spine data. Indeed, due to constraints outside of
our control, it wasn’t possible to get the spine data of all participants ready in time.
We used two solutions for dimension reduction, making sure to avoid subjective ones.
Our first solution for dimension reduction was to use PCA, as this technique rely very
little, to say the least, on human decisions, making it extremely objective. Using PCA
and the whole data set with spine data, we managed to extract a relatively interesting
cluster model using the spectral algorithm, with the RBF kernel and the discretize
label assignment’s algorithm. After this null clustering models, we moved to the next
step in our clustering attempt: using our newly acquired insights from our previous
exploratory analysis. For each movements, we selected variables that were deemed
of high value from our exploratory analysis’ results. We then went on to try to find
valuable cluster models on a this reduced data set using all the movements, with
and without PCA to further narrow down the number of dimension as to maximize
our algorithms clustering capability. Then we tried our clustering algorithms on
each movement specific data set. Unfortunately, no other valuable clustering models
were found, and we weren’t able to provide a definite answer to our second objective.
Nonetheless, we still managed to produce a cluster model close to the one from the
work from Laird and collaborator (Laird, Keating, and Kent 2018), using a data set
4 to 5 times smaller than in their work. Even if our data set was relatively small and
unbalanced compared to theirs, it still provided an encouraging result, and some
valuable insights could still be extracted from this. First, spectral clustering using
the RBF kernel seems to be the clustering solution to prefer. Second, it seems like
anthropometric data can be discarded as they appeared to be redundant even if they
seemed to be of great importance in our exploratory analysis, an ambivalent fact to
which we will come back to a bit later in this discussion. Third, spine cluster data
should be given the highest priority when studying biomechanic of NSLBP subjects.
Even if they require much more pre-processing work and usually the creation of
personalized cluster of maker solution, as the market doesn’t provide a wide variety
of them. Due to the higher demand during pre-processing, a compromise might have
to be found, and the MOCAP model used might need to be simplified to accomodate
for the workload related to spinal clusters of markers.

Our project focused on continuous variables as we think that clustering models using
them will yield results closer to the clinical reality. Learning more about continuous
variables, their relationships to NSLBP and their use in clustering models is of great
value, but it is also more complex, and more data points and population diversity are
required. Thus, care should be taken concerning the extrapolation to our findings to
the full NSLBP population, and be used only as guidance and not hard-set rules to
be followed by the book. The lack of data point was most problematic for the FA
as the number of variables that could be investigated was dramatically limited by
our sample size (Paul Kline 2014). Nonetheless, the FA and DNN results present,
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respectively, strong significance, and strong accuracy. Our clustering attempts wasn’t
as fruitful as expected, but showed us that our intuition was valid, and more work
needs to be put in this direction. As categorical clustering models have not yet proven
effective on the field (Koppenaal et al. 2023; McCarthy et al. 2004; Alrwaily et al.
2016) there is a need to try new solutions. Therefore, the use of continuous variables
should not be discarded when investigating the clustering of NSLBP population for
clinical purposes.

To continue on a tangent regarding our results, a case can be made for the possibility
of a reliable "meta data clustering" for NSLBP population. By meta data, we refer
to high level variables relating to the 5 main domains driving the NSLBP prognosis:
biophysical, comorbidities, social, psychological and genetic. Indeed, regarding meta
data, in the present exploratory work constrained to the biophysical domain via the
anthropometric data, two points can be made:

• Concerning their use in DNN, the models were able to classify with extreme
accuracy between NSLBP and Healthy subjects.

• Concerning their use in the FA, they consistently loaded for each movement,
even though via different variables, on the Group factor.

In the light of such results, a case could be made for the search of a "meta clustering
model", relying on high level data from the main domains of interest in order to
subgroup the NSLBP population. This could provide, for little cost and complexity,
a framework easily usable clinically. Something already attempted, for example by
the Quebec task force (Loisel et al. 2002) but which failed, maybe because some
domains were overlooked, or the data being too categorical. This thoughts are further
backed up by what happened when we attempted clustering our population sample:
anthropometric data appeared redundant. It could have been supposed that those
variables did not carry useful information, but our exploratory results explicitly
showed the tremendous information power of those variables in regards to NSLBP,
just like the earlier works cited in this manuscript.

Therefore, meta data, or higher level variables, should not be discarded as they might
provide us with a framework allowing to "summarize" the complex relationships
between domains linked to NSLBP and ease off the complexity of the task of
subgrouping NSLBP. This could prevent the need for more complex modeling tools or
solutions in general, as long as all the main domains influencing the NSLBP prognosis
are represented (Heitz et al. 2009; Uccar et al. 2021); Rolli et al. 2013), and the
probable dose/response effect of the time under NSLBP on related adaptations is
taken into account (Miki et al. 2021). Indeed, some studies have shown that higher
motor variability was observed in the upper limb or in the trunk in the presence of
acute pain, whereas the variability was lower under chronic pain conditions (Madeleine
2010; J. H. van Dieën, Flor, and Hodges 2017), which tends to suggest adaptations
specific to the chronicity of NSLBP in the affected subjects. It is therefore not
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unbelievable to think that NSLBP carry some sort of a dose/response relation with
its related adaptations and their expression in afflicted subjects. But if there is one,
it might not be a simple and straight forward answer, which might be also under
the influence of meta data, as other work showed that pain intensity and disability
from NSLBP seemed to be all uncorrelated to the observed changes in coordination.
This could suggest that the observed changes in trunk coordination and ES activity,
which seem to be direct consequence of NSLBP would be correlated more strongly to
the duration under the symptom’s affliction, and not as much as the pain intensity
of it (Lamoth et al. 2006).

We would like to end this discussion by sharing with the reader a daring thought.
In addition to being relatively non costly and easy to test, this hypothesis push us
to ask ourselves: Could NSLBP be a generic symptom that is driven to express
itself differently in every individuals due to their unique profile in the main domains?
While still being in accordance with the consensus about what influence the prognosis
of NSLBP, this is a daring question, but which could lead to extremely interesting
perspectives in research, as well as directly in clinic (Maher, Underwood, and
Buchbinder 2017; Hartvigsen et al. 2018). Even if daring, this hypothesis is not
ungrounded: Biological factor are known to be directly linked to NSLBP (Koley et al.
2010), as well as genetic factors (Aroke et al. 2020; Balague et al. 2012; El-Metwally
et al. 2008). In addition, it has been shown that health is significantly impacted by
the socioeconomic status of an individual (Adler et al. 1999; Mc Ewen et al. 2010;
Chan et al. 2018; Cutler et al. 2008). While psychological factors have been shown
to hinder recovery of LBP (Kendall et al. 1999). These are all the main domains
known to impact the NSLBP prognosis.

This hypothesis can be summarized in a simple metaphore: NSLBP drives common
adaptation to every patient afflicted, just like the "genotype" of the symptom. But
due to differences in the subject and its environment, both of which being the
environment in which the NSLBP symptom evolves, those common adaptations
are expressed differently in each and every subjects, just like the "phenotype" of
the symptom. To put it simply, LBP induce changes in a consistent and relatively
similar manner across subjects, but those changes are expressed in an individual
manner in every subjects due the specificity of their biophysical, social, psychological,
comorbidities and genetic state or background, and the time under the influence of
the symptom. These is summarized in the simple scheme from figure 4.13.
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Figure 4.13: Hypothesis diagram.

If factually proven, this hypothesis could provide a useful and simple framework
to answer diversity issue of the NSLBP population. Indeed, it is extremely hard
to recruit population samples that all showcase the same profile on the 5 main
domains and we can rightfully suppose that NSLBP samples studied so far most
likely differed in other domains as the domains are rarely all controlled for. The
heterogeneity of the main factors in the population samples would drive the expression
of the NSLBP in different directions, accordingly to the different subject’s profiles,
explaining the extreme variability of this population and the vastly different reactions
to rehabilitation protocols.
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Conclusion

This study led to interesting results concerning NSLBP and its major problem to
date, its population extreme diversity in profile and responses to treatment, and the
unsolved task of subgrouping that same population. The present work attempted
the exploratory analysis and clustering on a NSLBP population sample through the
framework of continuous variables instead of categorical variables, usually favored.
Its results provided insights on where to go and how to look at NSLBP.

The direct findings from this work can gathered into the following points:

• Higher level data, or "meta data" linked to the main domains influencing
NSLBP prognosis should receive more attention when attempting to cluster
and no domains should be discarded (a case could be made for the genetic
domain due to the complexity of the task to study it).

• Dynamic conditions used to acquire data in order to study clustering of the
NSLBP population should be kept as simple as possible in order to prevent
the complexification of the clustering task.

• As the importance of relationships with NSLBP for each variables is dependent
on the condition performed, care should be put into which variables are looked
at, for each of the conditions studied. Exploratory work before attempting
clustering of a population should be considered and the associated results
shared along the clustering results.

• Back flexion and trunk rotation seems to be the movements to be privileged as
the dynamic condition of choice for data acquisition.

• Tools that have the capacity to detect and model complex and subtle relation-
ships should be privileged. Great importance should be placed into the choice
of data analysis and tools framework used to process data from NSLBP when
attempting to cluster it.

• Spectral clustering algorithm using RBF kernel seems to be the choice to favor
if using classic clustering algorithm.

• Objective dimension reduction is to be used, whether through the use of
unsupervised algorithm, via PCA for example, or through the use of objective
exploratory analysis which would yield objective guideline on the variables to
focus on.
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Beyond these recommendations directly deduced from the findings from our work,
we went further and hypothesized, through the combination of the findings from our
work and the ones from others, the following new NSLBP paradigm Hypothesis:

Non specific low back pain yields common adaptations in every subject,
but due to inter-subject differences in the 5 domains known to have a
major influence on LBP prognosis, these adaptations are expressed in a
very unique way in each subject.

This new paradigm hypothesis if proven true through subsequent works, would allow
for the researchers to study the fundamental and common adaptations from NSLBP
and their expressions; and for the clinicians to apply this new paradigm straight
away into their practice to manage NSLBP patients through personalized and more
effective therapeutic protocols, without the need for new or expensive equipment and
or complex new techniques. This new paradigm would of course not solve instantly
the NSLBP question and associated problems. But rather open a door to finally
understand the symptom itself, instead of trying to put up with its complexity.
Allowing researchers, clinicians and patients to move forward, towards a solution to
non specific low back pain.
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Appendix

Compute the cluster Local Coordinate System:
LCScluster()

1 function [measured_origin, measured_X, measured_Y,
measured_Z,rotMat2systems] = LCScluster(measured_left,
measured_right, measured_mid, control_left, control_right,
control_mid, control_origin)

↪→

↪→

↪→

2 %% This function compute the LCS of the cluster in regards to its
control data↪→

3 % By this we mean the data when the cluster is set to be in a
neutral↪→

4 % position, his Local Coordinate System being equivalent to the
5 % Global Coordinate System.
6 %
7 % Sources:
8 % Wikipedia contributors. (2021, February 8). Rotation matrix. In

Wikipedia, The Free Encyclopedia. Retrieved 22:44, February 8,
2021, from
https://en.wikipedia.org/w/index.php?title=Rotation_matrix&oldid=1005511626

↪→

↪→

↪→

9 %
10 % Contact: lucien.robinault@protonmail.com
11

12 %% 1. COMPUTE THE MEASURED LCS FOR THE CLUSTER
13 % Compute the centroid of the cluster of marker
14 measured_centroid = centrdTri3D(measured_left, measured_right,

measured_mid);↪→

15

16 % Create the cluster LCS
17 % Y axis
18 measured_LCSy = measured_right - measured_left;
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19

20 % X axis
21 measured_midPos = measured_left+(measured_LCSy/2);
22 measured_midVec = measured_mid-measured_midPos;
23 measured_LCSx = cross(measured_LCSy,measured_midVec);
24

25 % Z axes
26 measured_LCSz = cross(measured_LCSy, measured_LCSx);
27

28 % X axes
29 measured_LCSx = cross(measured_LCSz,measured_LCSy);
30

31

32 % Normalizing vectors
33 if numel(measured_LCSx)>3
34 for i = 1:1:length(measured_LCSz)
35 measured_LCSx(:,i) =

measured_LCSx(:,i)/norm(measured_LCSx(:,i));↪→

36 measured_LCSy(:,i) =
measured_LCSy(:,i)/norm(measured_LCSy(:,i));↪→

37 measured_LCSz(:,i) =
measured_LCSz(:,i)/norm(measured_LCSz(:,i));↪→

38 end
39 else
40 measured_LCSx = measured_LCSx/norm(measured_LCSx);
41 measured_LCSy = measured_LCSy/norm(measured_LCSy);
42 measured_LCSz = measured_LCSz/norm(measured_LCSz);
43 end
44

45 %% 2. COMPUTE THE CONTROL LCS FOR THE CLUSTER
46 % Compute the centroid of the cluster of marker
47 control_centroid = centrdTri3D(control_left, control_right,

control_mid);↪→

48

49 % Create the cluster LCS
50 % Y axis
51 control_LCSy = control_right - control_left;
52

53 % X axis
54 control_midPos = control_left+(control_LCSy/2);
55 control_midVec = control_mid-control_midPos;
56 control_LCSx = cross(control_LCSy,control_midVec);
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57

58 % Z axes
59 control_LCSz = cross(control_LCSy, control_LCSx);
60

61 % X axes
62 control_LCSx = cross(control_LCSz,control_LCSy);
63

64

65 % Normalizing vectors
66

67 control_LCSx = control_LCSx/norm(control_LCSx);
68 control_LCSy = control_LCSy/norm(control_LCSy);
69 control_LCSz = control_LCSz/norm(control_LCSz);
70

71 %% 3. COMPUTE THE ROTATION BETWEEN MEASURED_LCS AND CONTROL_LCS
72 % Rotation matrix control
73 rotMatControl = [control_LCSx,control_LCSy,control_LCSz];
74

75 % Rotation matrix measured
76 if numel(measured_LCSx)>3
77 rotMatMeasured(1,1,:) = measured_LCSx(1,:);
78 rotMatMeasured(2,1,:) = measured_LCSx(2,:);
79 rotMatMeasured(3,1,:) = measured_LCSx(3,:);
80

81 rotMatMeasured(1,2,:) = measured_LCSy(1,:);
82 rotMatMeasured(2,2,:) = measured_LCSy(2,:);
83 rotMatMeasured(3,2,:) = measured_LCSy(3,:);
84

85 rotMatMeasured(1,3,:) = measured_LCSz(1,:);
86 rotMatMeasured(2,3,:) = measured_LCSz(2,:);
87 rotMatMeasured(3,3,:) = measured_LCSz(3,:);
88 else
89 rotMatMeasured(1,1) = measured_LCSx(1);
90 rotMatMeasured(2,1) = measured_LCSx(2);
91 rotMatMeasured(3,1) = measured_LCSx(3);
92

93 rotMatMeasured(1,2) = measured_LCSy(1);
94 rotMatMeasured(2,2) = measured_LCSy(2);
95 rotMatMeasured(3,2) = measured_LCSy(3);
96

97 rotMatMeasured(1,3) = measured_LCSz(1);
98 rotMatMeasured(2,3) = measured_LCSz(2);
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99 rotMatMeasured(3,3) = measured_LCSz(3);
100 end
101

102 %% 4. ROTATE THE TRANSLATION VECTOR AND APPLY THE TRANSLATION OF
THIS NEW↪→

103 % FOUND VECTOR TO GET THE ORIGIN OF THE DEFINITIVE CLUSTER'S
LCS↪→

104 control_translation = (control_origin-control_centroid);
105 if numel(measured_LCSx)>3
106 for i = 1:1:length(measured_LCSz)
107 rotMat2systems(:,:,i) =

rotMatControl*rotMatMeasured(:,:,i)';↪→

108 translationRotated(:,i) =
control_translation'*rotMat2systems(:,:,i);↪→

109 end
110 else
111 rotMat2systems(:,:) = rotMatControl*rotMatMeasured(:,:)';
112 translationRotated(:) =

control_translation'*rotMat2systems(:,:);↪→

113 end
114 measured_origin = measured_centroid+translationRotated;
115

116 measured_X = {measured_LCSx, control_LCSx,measured_centroid};
117 measured_Y = {measured_LCSy, control_LCSy,control_centroid};
118 measured_Z = {measured_LCSz, control_LCSz};
119 end
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Find the section of interest boundaries: trigBound()

1 function [start, stop] = trigBound(signal)
2 % Find the trigger boundary of the HD EMG files
3 % Signal acquisition frequency
4 fqAcq = 2048;
5

6 % Offset frames (231)
7 offsetBound = 241; % A margin of has been added to deal with

eventual misshap↪→

8

9 % Values used as limit for the detection
10 limValue = 9;
11

12 % Filter out two major noise band
13 filtSig = bandstop(bandstop(signal, [48 52],fqAcq),[148 152],

fqAcq);↪→

14

15 % Find the limits
16 trigSup = find(filtSig>limValue);
17

18 trigInf = find(filtSig(trigSup(1):end)<limValue);
19 diffInf = diff(trigInf);
20

21 start = trigInf(1)+trigSup(1)-offsetBound;
22 if(sum(diffInf)==length(diffInf))
23 stop = trigInf(end)+offsetBound+1;
24 else
25 stop = trigInf(diffInf>1)+trigSup(1)+offsetBound+1;
26 end
27 end
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Baseline Wander filter: BWfilt()

1 function EMG_proper = BWfilt(sigToFilt, varargin)
2 %% Based on Fasano, A., & Villani, V. (2014). Baseline wander

removal for bioelectrical signals by quadratic variation
reduction. Signal Processing, 99, 48-57.

↪→

↪→

3 % This function filter out baseline wander also called baseline
fluctation↪→

4 % from classic EMG signal
5 % Contact: lucien.robinault@protonmail.com
6

7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
8 % INPUTS
9 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

10 % sigToFilt --> Signals to filter (must be of a shape N*1
11 % setpL --> The step used in the gradient descent function to

find the↪→

12 % optimal lambda. The early test showed good result
with↪→

13 % lambda around the [600:700] mark.
14 % default value = 25;
15 % formulaUsed --> Formula used for the gradient descent (more

details↪→

16 % below)
17 % 1 = sˆx
18 % 2 = tanh(a*sˆb)
19 % 3 = -log10(1+s)
20 % default value = 3;
21 % x --> parameter from the sparsity formula 1
22 % default value = 2;
23 % a --> parameter from the sparsity formula 2
24 % default value = 1;
25 % b --> parameter from the sparsity formula 2
26 % default value = 2;
27

28 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
29 % OUTPUTS
30 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
31 % EMG_proper --> EMG signals filtered
32

33 %% DISCLAIMERS
34 % CALCUL OPTIMIZATION:
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35 % This filter uses a matrix inversion of a matrix of the size
N*N, thus↪→

36 % being extremely costly memory and computationally wise.
Because the↪→

37 % matrix is a tridiagonal, symmetric, positive-definite system
it is↪→

38 % possible to “linearize” the calculus. To do so the equation
(16) have↪→

39 % been developed,and the linear system solver “\” has been used
to “get rid of”↪→

40 % the standard inverse calculation. This is possible due to the
↪→

41 % aforementioned specific properties of the system.
42 % More details and explanation can be found in the books from

Golub on↪→

43 % matrix computation.
44 % Nonetheless, clear optimization process not being detailed in
45 % Fasano et al, 2014, the optimization process implemented here

might not be↪→

46 % the one used by the author of the article
47

48 % GRADIENT DESCENT:
49 % The process to find the optimal lambda for the filter is not

detailed↪→

50 % in Fasano et al., 2014. Therefore, the process implemented
here is of↪→

51 % my own design.
52 % The logic behind it is, we are facing a signal away from the

baseline↪→

53 % it should be on, which is 0. The filter is trying to get the
signal↪→

54 % back on this baseline. As the signal get filtered closer and
closer to↪→

55 % the baseline, the number of 0 value increase.
56 % We therefore can formulate the problem as a sparsity problem.

↪→

57 % The gradient descent work on the following logic:
58 % if sparsity of sFilt(n-1) - sparsity of sFilt(n) < 0 then

stop↪→

59 % we found the optimal lambda.
60 % The formula used have been chosen from Hurley, N., & Rickard,

S. (2009). Comparing measures of sparsity. IEEE Transactions on
Information Theory, 55(10), 4723-4741, and selected for their
behavior that seemed to get close to the optimal lambda found
experimentally.

↪→

↪→

↪→

↪→
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61 % The default formula (3) seems to be the best.
62 % Customization of the parameters of the formula (1) and (2)

have been↪→

63 % made possible but is not recommended.
64 % Multiple formula had been chosen in the first place due to

them being↪→

65 % used on an unoptimized algorithm and therefore were showing
different↪→

66 % computation time. This is not relevant anymore and formula
(1) and (2)↪→

67 % might be deleted if extensive testing show that formula (3)
does the job.↪→

68

69 %% INITIALIZATION
70 % Default value for the parameters
71 defaultStepL = 25;
72 defaultFormulaUsed = 3;
73 expectedFormula = [1, 2 ,3];
74 defaulta = 1;
75 defaultb = 2;
76 defaultx = 2;
77

78 % To prevent the need to to that for the user (I am too lazy to go
back↪→

79 % into the math formula of the filter to correct that directly)
80 sigToFilt = sigToFilt';
81

82 % Function handle for the testing if parameter value is numeric
83 validNumericParameter = @(x) isnumeric(x);
84

85 % Create the input parser (IP) object
86 inParser = inputParser;
87

88 % Requiered input
89 addRequired(inParser,'sigToFilt');
90

91 % Main parameters
92 addParameter(inParser,'stepL',defaultStepL,validNumericParameter);
93 addParameter(inParser,'formulaUsed',defaultFormulaUsed,@(formulaChoice)

(ismember(formulaChoice,expectedFormula)));↪→

94

95 % Formula 1 parameter
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96 addParameter(inParser,'x',defaultx,validNumericParameter);
97

98 % Formula 2 parameters
99 addParameter(inParser,'a',defaulta,validNumericParameter);

100 addParameter(inParser,'b',defaultb,validNumericParameter);
101

102 % Parse the argument into the IP object
103 parse(inParser,sigToFilt,varargin{:});
104

105 lengthSignal = length(inParser.Results.sigToFilt);
106

107

108 switch inParser.Results.formulaUsed
109 %% FORMULA 1
110 case 1
111 % First step of the filter
112 lambda = 0.1;
113 for stepInit = 1:1:3
114 % Creating the compressed matrix I+L*D'D from (16)
115 systemD = spdiags([-lambda*ones(1,lengthSignal);,...
116 [lambda+1, 2*lambda*ones(1,lengthSignal-2)+1, lambda+1];,...
117 -lambda*ones(1,lengthSignal)]',-1:1,lengthSignal,lengthSignal);
118 % Eq (16) developped and optimized from Fasano et al.,

2014↪→

119 % This is the actual filtering process
120 EMG_proper = inParser.Results.sigToFilt-systemD\,...
121 inParser.Results.sigToFilt;
122

123 % Compute the sparsity value of the filtered signal
124 sparsity(stepInit) =

sqrt(sum(EMG_proper.ˆinParser.Results.x));↪→

125

126 % Increase lambda by stepL
127 lambda = lambda + inParser.Results.stepL;
128 end
129

130 % Filtering
131 while (diff([(diff([sparsity(1) sparsity(2)]).*sparsity(1))

(diff([sparsity(2) sparsity(3)]).*sparsity(2))])>0)↪→

132 % Increase lambda by stepL
133 lambda = lambda+inParser.Results.stepL;
134
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135 % Creating the compressed matrix I+L*D'D from (16)
136 systemD = spdiags([-lambda*ones(1,lengthSignal);,...
137 [lambda+1, 2*lambda*ones(1,lengthSignal-2)+1, lambda+1];,...
138 -lambda*ones(1,lengthSignal)]',-1:1,lengthSignal,lengthSignal);
139 % Eq (16) developped and optimized from Fasano et al.,

2014↪→

140 % This is the actual filtering process
141 EMG_proper = inParser.Results.sigToFilt-systemD\,...
142 inParser.Results.sigToFilt;
143

144 % Refresh the sparsity values to n-2, n-1, n
145 sparsity(1) = sparsity(2);
146 sparsity(2) = sparsity(3);
147 sparsity(3) = sqrt(sum(EMG_proper.ˆinParser.Results.x));
148 end
149

150 %% FORMULA 2
151 case 2
152 % First step of the filter
153 lambda = 0.1;
154 for stepInit = 1:1:3
155 % Creating the compressed matrix I+L*D'D from (16)
156 systemD = spdiags([-lambda*ones(1,lengthSignal);,...
157 [lambda+1, 2*lambda*ones(1,lengthSignal-2)+1, lambda+1];,...
158 -lambda*ones(1,lengthSignal)]',-1:1,lengthSignal,lengthSignal);
159 % Eq (16) developped and optimized from Fasano et al.,

2014↪→

160 % This is the actual filtering process
161 EMG_proper = inParser.Results.sigToFilt-systemD\,...
162 inParser.Results.sigToFilt;
163

164 % Compute the sparsity value of the filtered signal
165 sparsity(stepInit) =,...
166

-sum(tanh((inParser.Results.a*EMG_proper).ˆinParser.Results.b));↪→

167

168 % Increase lambda by stepL
169 lambda = lambda + inParser.Results.stepL;
170 end
171 % Filtering
172 while (diff([(diff([sparsity(1) sparsity(2)]).*sparsity(1))

(diff([sparsity(2) sparsity(3)]).*sparsity(2))])>0)↪→
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173 % Increase lambda by stepL
174 lambda = lambda+inParser.Results.stepL;
175

176 % Creating the compressed matrix I+L*D'D from (16)
177 systemD = spdiags([-lambda*ones(1,lengthSignal);,...
178 [lambda+1, 2*lambda*ones(1,lengthSignal-2)+1, lambda+1];,...
179 -lambda*ones(1,lengthSignal)]',-1:1,lengthSignal,lengthSignal);
180 % Eq (16) developped and optimized from Fasano et al.,

2014↪→

181 % This is the actual filtering process
182 EMG_proper = inParser.Results.sigToFilt-systemD\,...
183 inParser.Results.sigToFilt;
184

185 % Refresh the sparsity values to n-2, n-1, n
186 sparsity(1) = sparsity(2);
187 sparsity(2) = sparsity(3);
188 sparsity(3) =,...
189

-sum(tanh((inParser.Results.a*EMG_proper).ˆinParser.Results.b));↪→

190 end
191

192 %% FORMULA 3
193 case 3
194 % First step of the filter
195 lambda = 0.1;
196 for stepInit = 1:1:3
197 % Creating the compressed matrix I+L*D'D from (16)
198 systemD = spdiags([-lambda*ones(1,lengthSignal);,...
199 [lambda+1, 2*lambda*ones(1,lengthSignal-2)+1, lambda+1];,...
200 -lambda*ones(1,lengthSignal)]',-1:1,lengthSignal,lengthSignal);
201 % Eq (16) developped and optimized from Fasano et al.,

2014↪→

202 % This is the actual filtering process
203 EMG_proper = inParser.Results.sigToFilt-systemD\,...
204 inParser.Results.sigToFilt;
205

206 % Compute the sparsity value of the filtered signal
207 sparsity(stepInit) = sum(-log(1+EMG_proper));
208

209 % Increase lambda by stepL
210 lambda = lambda + inParser.Results.stepL;
211 end
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212

213 % Filtering
214 while (diff([(diff([sparsity(1) sparsity(2)]).*sparsity(1))

(diff([sparsity(2) sparsity(3)]).*sparsity(2))])>0)↪→

215 % Increase lambda by stepL
216 lambda = lambda+inParser.Results.stepL;
217

218 % Creating the compressed matrix I+L*D'D from (16)
219 systemD = spdiags([-lambda*ones(1,lengthSignal);,...
220 [lambda+1, 2*lambda*ones(1,lengthSignal-2)+1, lambda+1];,...
221 -lambda*ones(1,lengthSignal)]',-1:1,lengthSignal,lengthSignal);
222 % Eq (16) developped and optimized from Fasano et al.,

2014↪→

223 % This is the actual filtering process
224 EMG_proper = inParser.Results.sigToFilt-systemD\,...
225 inParser.Results.sigToFilt;
226

227 % Refresh the sparsity values to n-2, n-1, n
228 sparsity(1) = sparsity(2);
229 sparsity(2) = sparsity(3);
230 sparsity(3) = sum(-log(1+EMG_proper));
231 end
232 end
233

234 % Same as for sigToFilt
235 EMG_proper = EMG_proper';
236 end
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Electrocardiogram artifacts filter: ACGartRm()

1 function [EMG_proper, ECG_proper] = ECGartRm(sigToFilt, fqAcq)
2 %% Based on Mak, J. N., Hu, Y., & Luk, K. D. (2010). An automated

ECG-artifact removal method for trunk muscle surface EMG
recordings. Medical engineering & physics, 32(8), 840-848.

↪→

↪→

3 % This function filter out ECG componant from High Density EMG
signal↪→

4 % Contact: lucien.robinault@protonmail.com
5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
6 % INPUTS
7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
8 % sigToFilt --> Signals to filter, with COLUMNS = Samples & ROWS =

Sources↪→

9 % fqAcq --> Acquisition frequency of the EMG signals
10

11 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
12 % OUTPUTS
13 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
14 % EMG_proper --> EMG signals filtered, with COLUMNS = Samples &

ROWS = Sources↪→

15 % ECG_Proper --> ECG signals taken out, with COLUMNS = Samples &
ROWS = Sources↪→

16

17 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18 % PART 1: Signal pre-processing and fastICA
19 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20 % fastICA
21 [ICAsig, sepMat, mixMat] = fastica(sigToFilt);
22 [rowIcaSig, colIcaSig] = size(ICAsig);
23 EMGvsECG = zeros(rowIcaSig, 1);
24

25 % Pre processing based on
26 % Myers, L. ., Lowery, M., O’Malley, M., Vaughan, C. ., Heneghan,

C., St Clair Gibson, A., ... Sreenivasan, R. (2003).
Rectification and non-linear pre-processing of EMG signals for
cortico-muscular analysis. Journal of Neuroscience Methods,
124(2), 157–165. doi:10.1016/s0165-0270(03)00004-9

↪→

↪→

↪→

↪→

27 % as seen in Mak et al., 2010
28 for i=1:1:rowIcaSig
29 % Hilbert transform
30 sigToFiltH(i,:) = hilbert(ICAsig(i,:)./max(ICAsig(i,:)));
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31

32 % get the a value of the complex number
33 sigToFiltH(i,:) = abs(sigToFiltH(i,:));
34

35 % Median filter order 50
36 sigToFiltH(i,:) = medfilt1(sigToFiltH(i,:),50);
37

38 % THIS PART HAS BEEN ADDED BY EMPIRICAL EVIDENCE
39 % IN ORDER FOR THE FILTER TO WORK IN THE FIELD
40 % Moving average filter to smooth potential artifact on the ECG

signal↪→

41 % (multiple crests) that can appear in field conditions
42 windowWidth = round(fqAcq*0.05);
43 kernel = ones(windowWidth,1) / windowWidth;
44 sigToFiltH(i,:) = filter(kernel, 1, sigToFiltH(i,:));
45 end
46

47 S1 = sigToFiltH;
48

49 for i = 1:1:rowIcaSig
50 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
51 % PART 2: Peak detection
52 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
53 % Searching for peaks in a source component

signals(n)was↪→

54 % accomplished by a simple peak detection algorithm as follows:
55

56 % 1. Scan the signals(n) which may be expected to contain a
series↪→

57 % of peaks and determine the maximum value Smax.
58 Smax = max(sigToFiltH(i,:));
59

60 % 2.Define a threshold as a fraction of the maximum,Th = 0.6
Smax↪→

61 threshold = 0.6*Smax;
62

63 % 3. Convert the signal into binary format:
64 % if S1(n)>= Th, S(n)=1
65 % if S1(n)< Th, S(n)=0
66 S1(i,sigToFiltH(i,:)>=threshold) = 1;
67 S1(i,sigToFiltH(i,:)<threshold) = 0;
68
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69 % 4. Calculate the rate of change of signal S1(n),
70 % i.e. the first derivativeof S(n), which is approximated as:
71 % s2(n)=s1(n)-s1(n-1),n=2,3, ..., N
72 % where N is the number of samples
73 S2(i,1) = 0;
74 for j = 2:1:colIcaSig
75 S2(i,j) = S1(i,j) - S1(i,j-1);
76 end
77

78 % 5. Select those samples for which the corresponding S2(n)
value is equal↪→

79 % to one, that is, having a positive rate of change:
80 % P={n|s2(n)=1}
81 % The setPdefine as above contains the indices of the peaks

ins(n).↪→

82 P{i} = find(S2(i,:) == 1);
83

84 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
85 % PART 3: Identification of ECG source components
86 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
87 % 1. Number of peaks:
88 % (200 BPM/60 s)·d>=|P|>=(40 BPM/60 s)*d
89 % where |P| indicates the number of elements in the set P,

that is↪→

90 % the number of peaks detected,
91 % and d represents the length of source component signal (in

second).↪→

92 limPeaksLow = (40/60)*(colIcaSig/fqAcq);
93 limPeaksHigh = (200/60)*(colIcaSig/fqAcq);
94

95 % 2. RR interval:
96 % 1.5 s>=P(n+1)-P(n)>=0.3s, n=1,2,...,N
97 % where P(n) represents the time information of thenth

detected peak.↪→

98 % Nis the number of peaks detected. 1.5 s is the averaged RR
interval↪→

99 % value with a heart rate of 40 BPM and 0.3 s is
100 % the averaged RR interval value with a heart rate of 200

BPM.↪→

101 limRRlow = 0.3*fqAcq;
102 limRRhigh = 1.5*fqAcq;
103
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104 % 3. Variance of RR intervals:
105 % [P(n+2)-P(n+1)]-[P(n+1)-P(n)]<=R*(1.5s),n=1,2,..., N
106 % where 1.5 s is the upper limit of the RR interval value.
107 % A scaling factor R of 0.5 was adopted in this study.
108 R = 0.5;
109 limVarRR = 0.5*1.5*fqAcq;
110

111 % Is the ICA signal a ECG component?
112 check1 = false;
113 check2 = false;
114 check3 = false;
115

116 % Check Number of peaks
117 if (length(P{i})<=limPeaksHigh)&&(length(P{i})>=limPeaksLow)
118 check1 = true;
119 end
120

121 % Check RR interval
122 intervalCheck = zeros(length(P{i})-1,1);
123 for j = 1:1:length(P{i})-1
124 test2 = P{i}(j+1)- P{i}(j);
125 if (test2<=limRRhigh)&&(test2>=limRRlow)
126 intervalCheck(j) = 1;
127 end
128 end
129

130 % THE 10% ERROR ALLOWED HAS BEEN ADDED BY EMPIRICAL EVIDENCE
131 % IN ORDER FOR THE FILTER TO WORK IN THE FIELD
132 % It might be optional though
133 if sum(intervalCheck)>=(floor((length(P{i})-1)*0.90))
134 check2 = true;
135 end
136

137 % Check Variance of RR intervals
138 varianceCheck = zeros(length(P{i})-2,1);
139 for j = 1:1:length(P{i})-2
140 test3 = (P{i}(j+2)-P{i}(j+1)) - (P{i}(j+1)-P{i}(1));
141 if test3 <= (R*1.5*fqAcq)
142 varianceCheck(j) = 1;
143 end
144 end
145
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146 if sum(varianceCheck)==(length(P{i})-2)
147 check3 = true;
148 end
149

150 % Check all the conditions
151 % EMGvsECG = 1 --> ECG component
152 % EMGvsECG = 0 --> EMG component
153 if check1 && check2 && check3
154 EMGvsECG(i) = 1;
155 end
156

157 end
158

159 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
160 % PART 4: Reconstruct EMG
161 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
162

163 EMG_proper = sepMat(:,~EMGvsECG)*ICAsig(~EMGvsECG,:);
164

165

166 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
167 % PART 3: Reconstruct ECG
168 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
169

170 ECG_proper =
sepMat(:,logical(EMGvsECG))*ICAsig(logical(EMGvsECG),:);↪→

171

172 end
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Extreme artifacts filter: ACGartRm()

1 function [filtered]=distriFilter(rawSignal, upperLim, lowerLim)
2 % Filter EMG values on the edges of the distribution below lowerLim

and↪→

3 % above upperLim value
4

5 % rawSignal must be in the form rawSignal(X,:)
6

7 % Get the distribution of the values
8 dataHist = histogram(rawSignal);
9

10

11 distribEdges = cumsum(dataHist.BinCounts);
12 prctDistri = distribEdges/distribEdges(end);
13

14 lowerValue = find(prctDistri<lowerLim);
15 upperValue = find(prctDistri>upperLim);
16 lowerValue = dataHist.BinEdges(lowerValue(end)+1);
17 upperValue = dataHist.BinEdges(upperValue(1));
18

19 filtered = rawSignal;
20

21 filtered(filtered<lowerValue) = median(rawSignal);
22 filtered(filtered>upperValue) = median(rawSignal);
23

24 end
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PLI, WGN and MA filtering: EMGccaFilt()

1 function EMG_proper = EMGccaFilt(sigToFilter, fqAcq)
2 %% Based on Al Harrach, M., Boudaoud, S., Hassan, M., Ayachi, F.

S., Gamet, D., Grosset, J. F., & Marin, F. (2017). Denoising of
HD-EMG signals using canonical correlation analysis. Medical &
biological engineering & computing, 55(3), 375-388.

↪→

↪→

↪→

3 % This function remove movement artifact, white noise (WGN) and
power line inference (PLI)↪→

4 % Contact: lucien.robinault@protonmail.com
5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
6 %%%%%%%%%%%%%%%%%%%%%%%%/!\IMPORTANT/!\%%%%%%%%%%%%%%%%%%%%%%%%%%%%
7

8 % The function need the first 0.5 seconds of signals to contain no
muscle↪→

9 % activity.
10 % ECG contamination prevent successful use most of the time, it is

vividly↪→

11 % recommended to filter them out before. A function serving this
purpose is↪→

12 % available in this repository
13 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
14

15 % Power line interference (PLI) from HD EMG signals
16 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17 % INPUTS
18 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
19 % sigToFilter --> Signals to filter, with COLUMNS = Samples & ROWS

= Sources↪→

20 % fqAcq --> Acquisition frequency of the EMG signals
21

22 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
23 % OUTPUTS
24 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
25 % EMG_proper --> EMG signals filtered, with COLUMNS = Samples &

ROWS = Sources↪→

26

27

28 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
29 %% PART I: CANONICAL CORRELATION ANALSYS
30 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
31 [rowSig, colSig] = size(sigToFilter);
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32

33 % Create a lagged signal to improve quality of the CCA result
34 laggedSigToFilter = [sigToFilter(:, end) sigToFilter(:, 1:(end-1))];
35

36 % CCA operation
37 [A, B, r, U, V] = canoncorr(sigToFilter', laggedSigToFilter');
38 [lenU, compU] = size(U);
39

40

41

42 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
43 %% PART II: CCA COMPONENT THRESHOLDING
44 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
45 intensityRatio = zeros(1,compU);
46

47 %% Calculus of the Intensity Ratio (IR)
48 for i = 1:1:compU
49 % Equation (6) from Al Harrach et al., 2016
50 intensityRatio(i) = (sum(abs(U(:,i)))/length(U))*...
51 ((fqAcq*0.5)/sum(abs(U(1:round(fqAcq*0.5),i))));
52

53 end
54

55 % Check which ratio threshold is the best suited, from 1 to 4
56 for threshold = 10:1:40
57 % Check which CCA components are below or equal to the IR
58 compBelowRatio{threshold} = intensityRatio<=threshold/10;
59

60 % Put the CCA components who are <= threshold to zero
61 tempU = U;
62 tempU(:,compBelowRatio{threshold}) = 0;
63 % reconstruction of the EMG signals (temporary) to test the

correlation↪→

64 % of these new signals to the non filtered ones
65 cleanSignalTest = tempU / A;
66

67 % Test the correlation between these filtered signals and the
68 % unfiltered ones.
69 corrSignals{threshold} = corrcoef(cleanSignalTest,sigToFilter');
70 % If correlation is < 0.8 the CCA filtering stop and we take

the last↪→

71 % CCA filtering setup that had a correlation of >= 0.8.
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72 % If we go up to a threshold of 4 we keep the threshold 4
(therefore↪→

73 % the last.
74 if ~(corrSignals{threshold}(1,2)>=0.8)
75 finalThreshold = threshold-1;
76

77 break
78 else
79 finalThreshold = threshold;
80 end
81 end
82

83 % Filtering the HD EMG signals by removing the selected components
84 tempU = U;
85 tempU(:,compBelowRatio{finalThreshold}) = 0;
86 cleanSignal = (tempU / A)';
87

88 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
89 %% PART III: SELECTIVE CCA
90 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
91

92 % Check if filtered signals got better PNR than the non filtered
ones, in↪→

93 % order to prevent noise contamination during reconstruction of the
94 % signals.
95 % This is done channel/electrode by channel/electrode
96 for i = 1:1:rowSig
97 % Calculus of the non filtered channel PNR
98 dirtySNR = 20*log10(((sum(abs(sigToFilter(i,:))))/colSig)*...
99

((0.5*fqAcq)/(sum(abs(sigToFilter(i,1:round(fqAcq*0.5)))))));↪→

100

101 % Calculus of the filtered channel PNR
102 cleanSNR = 20*log10(((sum(abs(cleanSignal(i,:))))/colSig)*...
103

((0.5*fqAcq)/(sum(abs(cleanSignal(i,1:round(fqAcq*0.5)))))));↪→

104

105 % Compare PNR between those two and add the highest one to the
106 % definitive filtered HD EMG matrix (EMG_proper)
107 if dirtySNR>=cleanSNR
108 EMG_proper(i,:) = sigToFilter(i,:);
109
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110 else
111 EMG_proper(i,:) = cleanSignal(i,:);
112 end
113

114 end
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