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Professeur, Télécom Paris Directeur de thèse
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Résumé substantiel

De nos jours, les véhicules autonomes et les villes intelligentes visent à mod-
erniser notre vie urbaine en créant un système interconnecté où l’information
est échangée entre humains, infrastructures et véhicules. Pour cela, l’intégration
de la communication V2X (Vehicle-to-Everything) dans les véhicules con-
nectés est nécessaire pour permettre le partage d’informations, pour ren-
forcer la perception des véhicules et améliore la sécurité routière. Cependant,
une dépendance à la communication V2X expose le système à des attaques
de sécurité, compromettant le bon fonctionnement du système. De plus,
les véhicules autonomes doivent faire face à des défis liés aux défaillances
des capteurs et à des menaces, telles que des attaques de manipulation
de capteurs. La recherche dans ce domaine donc s’efforce de relever ces
défis en concevant des méthodes de détection d’anomalies en temps réel des
données pour garantir la sécurité des véhicules autonomes et des usagers de
la route. Des études, telles que celle menée par Rens W. van der Heijden et
d’autres, ont élaboré une classification des anomalies et des comportements
anormaux, ainsi qu’une catégorisation des méthodes classiques de détection
d’anomalies avec des contre-mesures. Cependant, ces définitions sont sou-
vent génériques et ne prennent pas en compte les détails des composants du
véhicule affectés, ce qui pourrait aider à la détection. Plusieurs recherches
ont montré qu’il est possible de détecter divers comportements anormaux en
utilisant des méthodes conventionnelles, telles que des contremesures internes
dans les véhicules et des modèles d’apprentissage automatique appliqués aux
données capturées. Toutefois, ces travaux n’intègrent pas toujours le con-
texte en temps réel des capteurs, des communications et des composants
internes, ni n’évaluent la détection de nouveaux comportements anormaux.
Par conséquent, cette recherche vise à concevoir une architecture multicouche
pour la détection en temps réel des comportements anormaux dans le système
C-ITS (Communications for Intelligent Transportation Systems) en utilisant
l’apprentissage automatique, pour sécuriser les communications des véhicules
connectés et autonomes, tout en prenant en compte l’émergence de nouveaux
comportements anormaux. Cette approche comprend une définition des com-
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portements anormaux, des prétraitements de données relatives au véhicule,
un modèle basé sur l’apprentissage par renforcement pour la détection et la
réaction en temps réel aux comportements anormaux. Une simulation est
également utilisée pour tester cette architecture et ces modèles, en inclu-
ant des données V2X et des données de capteurs, et permet l’injection et la
détection d’attaques en temps réel.

Les comportements anormaux

Nous proposons une nouvelle définition du comportement anormal basée sur
une analyse complète des travaux existants et une classification des solutions
de pointe pour la détection de ce comportement, en se concentrant sur les al-
gorithmes d’apprentissage automatique. Dans le contexte de C-ITS, le choix
entre des méthodes d’apprentissage supervisé, non supervisé ou par renforce-
ment est essentiel pour détecter les comportements anormaux. Chacune de
ces méthodes résout différents problèmes. Une classification des méthodes
de détection, qu’elles soient supervisées, non supervisées ou par renforce-
ment, est proposée pour aider le lecteur à choisir l’algorithme approprié pour
la tâche en cours et donner un aperçu général des méthodes utilisées pour
la détection de comportements anormaux ainsi qu’une sélection des outils
disponibles pour appliquer ces méthodes.

Architecture CAV-MBDA

Notre architecture CAV-MBDA, conçue pour la détection de comportements
malveillants dans les systèmes (C-ITS) a pour but de sécuriser ces systèmes
du point de vue des véhicules, mettant en avant la nécessité de surveiller
les données entrantes pour détecter d’éventuelles anomalies et garantir leurs
bons fonctionnements. L’architecture comprend trois modules interconnectés
: le prétraitement, la détection et la décision. Le prétraitement est respons-
able du nettoyage des données, de la création de nouvelles caractéristiques,
du formatage des données d’entrée et de leur classification. Le module de
détection est au cœur de l’architecture et traite tous les types de données, ap-
pliquant des méthodes de détection à différents niveaux et couches, telles que
le niveau des caractéristiques, le niveau des données sources, le niveau con-
textuel et le niveau système. Le module de décision final prend les résultats
de la détection et de la classification pour actionner le véhicule à réagir aux
comportements malveillants détectés, et de générer des rapports des com-
portements malveillants. Cette architecture est conçue pour être générique,
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capable de traiter divers types de données en entrée et de fournir des réponses
flexibles en fonction des comportements malveillants détectés.

Modèle d’apprentissage par renforcement

L’environnement du véhicule connecté autonome dans le système C-ITS est
un environnement dynamique et interactif qui est partiellement observable,
similaire aux caractéristiques des processus décisionnels markoviens (MDP)
associés à l’apprentissage par renforcement (RL). Pour résoudre ce problème
de détection de comportements malveillants dans un environnement pareil,
nous proposons donc un modèle RL basé sur l’architecture Q-learning. Ce
modèle est conçu pour permettre à un véhicule de détecter et de réagir aux
comportements malveillants d’autres véhicules dans le système C-ITS.

Caractéristiques du modèle d’apprentissage par renforce-
ment

Le modèle est conçu comme suite : État et données : L’état est défini à l’aide
d’une fonction d’approximation qui prend en compte les observations reçues
par le véhicule. Ces observations sont basées sur les messages de commu-
nication V2X (Vehicle-to-Everything) et servent de données pour former le
modèle d’apprentissage par renforcement (RL).

Actions et récompenses : L’agent, représenté par un véhicule dans la sim-
ulation, peut prendre des actions telles que : accepter un message ou ajouter
un véhicule à une liste noire s’il est suspecté de comportement anormal. Les
récompenses sont basées sur la perte de temps et les pénalités associées à ces
actions.

Architecture d’apprentissage par renforcement : Le modèle RL utilise une
architecture de deep q-learning associée à une fonction de mise à jour pour
représenter l’état actuel du véhicule. L’agent apprend à la fois à choisir la
meilleure action et à construire la meilleure représentation d’état en utilisant
les données de reçues.

Limitations du monde réel : l’efficacité des données, le temps de forma-
tion, les exigences en temps réel et l’équilibre entre l’exploration et l’exploitation
doivent être pris en compte pour garantir l’efficacité et la sécurité dans des
environnements de conduite autonomes réels.
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Simulation

Dans le but de créer un environnement réaliste intégrant différents types de
données et comportements inopportuns pour la détection et le développement
d’algorithmes d’apprentissage automatique. Nous avons fusionné et synchro-
nisé les simulateurs CARLA, SUMO et ARTERY, élaboré un module de
”simulation de perception coopérative” combinant ces simulateurs pour per-
mettre une synchronisation réaliste des véhicules et l’acquisition de données
sensorielles en 3D. En intégrant également Artery pour les données V2X.
Nous avons mis en place des modules de détection et d’injection d’attaque
pour créer un système complet. Cette simulation nous a permis d’évaluer
notre système de détection en temps réel.

Résultats et conclusion

Nous avons proposé dans ce travail une architecture multicouche pour détecter
les comportements anormaux et sécuriser les communications, les capteurs
et les composants internes des véhicules. L’architecture est polyvalente, per-
mettant l’utilisation de divers algorithmes, y compris des approches basées
sur des règles, l’apprentissage automatique et l’apprentissage en profondeur,
à différents niveaux de communication. De plus, l’architecture intègre un
nouveau modèle neuronal basé sur l’apprentissage par renforcement pour
détecter les comportements incorrects, surpassant les algorithmes actuels de
pointe dans les simulations. Nous mettons l’accent sur l’importance de définir
et de comprendre les comportements incorrects pour couvrir les menaces de
sécurité et les défaillances. Nous avons développé un environnement de sim-
ulation pour générer des données V2X et de capteurs, ainsi que pour évaluer
différentes méthodes de détection. Les contributions comprennent aussi le
développement d’une stratégie de validation croisée spatiale et temporelle
pour la détection des comportements incorrects, un résumé détaillé sur la
détection des comportements incorrects dans les CAV.
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Abstract

In recent years, the vehicular field has undergone significant advance-
ments with the development of autonomous vehicles and smart cities. These
advancements have brought about a modernization of human life, where ev-
erything is interconnected - from individuals through smartphones to infras-
tructure, cars, and motorcycles. In such a system, information is exchanged
and processed and used to ensure the proper functioning of all entities. How-
ever, the increased reliance on V2X communication also makes it a target
for security attacks, which could lead to the dissemination of false or manip-
ulated information from malicious sources. This could pose a threat to the
proper functioning of the system and can potentially result in accidents. To
address this problem, it is crucial to validate and verify the communication
to ensure its accuracy and prevent malicious attacks. We aim to formulate
misbehavior and misbehavior detection for connected and autonomous ve-
hicles of level 4/5 automation. In our thesis, we propose a multi-layered
architecture for the detection of abnormal behaviors with automatic learning
to secure the connected and autonomous vehicles’ communications, sensors,
and internal components. The architecture allows us to propose a novel
reinforcement learning based neural architecture for the detection of misbe-
haviors where we showed in a simulated environment, through evaluation,
that the model is capable of detecting novel misbehaviors and performs bet-
ter than current state-of-the-art algorithms. Furthermore, we tackle data
leakage in V2X data and propose a cross-validation method to avoid said
leakage in machine learning applications. We also developed a simulation
for vehicular environments capable of injecting and detecting misbehaviors
for the evaluation of our thesis results. The ideas developed in this research
have resulted in several publications and have the potential to significantly
enhance the security and reliability of vehicular systems.



Chapter 1

Introduction

In this chapter, we introduce the thesis’s context and the investigated domain
and give a general overview of the problem and our contributions to this
domain.

1.1 Context and problematic

Nowadays, the vehicular field including autonomous vehicles and smart cities
is being developed to modernize human life in a city where everything is
connected; humans through a smartphone, infrastructure, cars, and motor-
cycles. In such a system, information is exchanged, processed, and used for
the proper functioning of any entity in the system (Figure 1.1). Moreover,
the integration of vehicular communication (V2X) into the perception sys-
tems of connected vehicles is a major development in the vehicular industry
aimed at modernizing our lives. The goal of this communication exchange is
to enhance road safety and improve the functioning of the system by provid-
ing additional information to the perception systems. For example, a vehicle
can communicate information about road objects unseen by other vehicles to
enhance their perception. However, the increased reliance on V2X commu-
nication also makes it a target for security attacks, which could lead to the
dissemination of false or manipulated information from malicious sources.
This could pose a threat to the proper functioning of the system and poten-
tially result in accidents. To address this, it is crucial to validate and verify
the communication to ensure its accuracy and prevent malicious attacks. In
addition to security threats, autonomous driving also faces challenges re-
lated to perception failures. For instance, components of the vehicle may
become faulty, leading to an inability to detect the road environment. The
road environment itself may also pose a threat, such as solar lights blinding
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Figure 1.1: Connected and autonomous vehicle’s context [1]

the vehicle’s camera. For example, Duke University researchers successfully
manipulated industry-standard autonomous vehicle sensors, causing them to
misinterpret the proximity of nearby objects, making them appear either
closer or farther than they actually are [10]. The attack method involves
directing a laser beam toward a car’s LIDAR sensor to introduce false infor-
mation into the vehicle’s perception system.

In recent years, manufacturers have been integrating an increasing num-
ber of advanced driving assistance systems into their vehicles. These systems
often control critical functions of the car, thereby significantly influencing
user safety which opens up novel access points [11], consequently exposing
the vehicles to potential remote attacks [12, 13]. These attacks have the po-
tential to compromise both the vehicle’s structural integrity and the privacy
of its occupants. Such malicious actions can be executed across three levels:
exploiting physical access to the vehicle, proximity to the vehicle, or remote
access via the internet. For instance, The study [14] shows that self-driving
cars are vulnerable to adversarial evasion attacks at testing time, which can
result in misclassification of images and significant degradation to the met-
rics used. The authors call for further research into the safety implications
of these attacks in the self-driving car application domain. These challenges
are currently being addressed to ensure the safe operation of autonomous
vehicles and safety of the road users.
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1.2 Motivation and Contributions

Cybersecurity risks motivate research in this field in order to secure and en-
sure the proper functioning of this system. In particular, Rens W. van der
Heijden et al have made a study of this field and have analyzed the existing
work. They developed a classification of the anomaly, the abnormal behav-
ior, and a categorization of the classic methods of anomaly detection using
countermeasures. This allowed them to formally redefine the basic elements
in communications between entities in the system such as entity, attack,
anomaly, and countermeasure. Moreover, It also allowed them to classify
state-of-the-art works in relation to these elements. On the other hand, the
definition developed to contain the attack and the anomaly is quite generic
and does not include details on the vehicle components affected for example,
while such information might help in detection. However, the classification
and categories do not allow the identification of machine learning methods
that have better detection accuracy [9]. Joseph et al [15] developed and eval-
uated anomaly detection models and compared the results obtained between
machine learning models and rule-based methods. They worked on commu-
nication between vehicles exclusively. This allowed them to show that their
solution is portable to other communications on the C-ITS system. More-
over, they showed that models based on supervised learning obtain a better
detection percentage of an order of 10% for any anomaly. Jagielski et al [16]
highlight the importance of addressing security concerns in connected cars
and proposed the use of a combination of machine learning and anomaly
detection techniques to identify abnormal behavior.

In summary, all of these studies show that it is possible to detect several
types of abnormal behaviors using conventional methods such as internal
countermeasures in-vehicle sensors (camera, radar, etc.) and ECUs. And also
by using machine learning models on captured data (images, messages. . . ). It
is also possible to categorize abnormal behavior and learn the origin, causes,
and consequences of these anomalies. However, the state-of-the-art works do
not take into account, simultaneously, the information of the context, result-
ing from the various sensors, communications, and internal components in
real time, and are not evaluated for the detection of new abnormal behaviors
that can emerge in the future.

Thus, in our work, we aim to design a multi-layered architecture for the
detection of abnormal behaviors of entities in the C-ITS system in real time
with automatic learning to secure the connected and autonomous vehicles’
communications, sensors, and internal components while taking into account
the emergence of new abnormal behaviors in the evaluation of architecture.
Firstly, we give a definition of misbehavior in C-ITS alongside its model and
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classify misbehavior detection techniques in the C-ITS context [17]. Com-
pared to the literature, these definitions cover attacks and failures of con-
nected and autonomous vehicles (CAV) systems and help classify misbehav-
iors when detected [17]. Secondly, we define a preprocessing phase to prepare
data, indeed, data in the C-ITS context use different dissemination processes
such as broadcast and multi-hop and needs to be designed accordingly to
ensure proper use of such knowledge especially in dealing with security is-
sues [18]. Moreover, we model the C-ITS system as stream graphs and use it
to prove that, without adequate preprocessing when using machine learning,
it’s easier to cause data leakage that invalidates the results of such techniques.
Thirdly, we define an architecture composed of several detection layers de-
pending on the C-ITS communication stack. Communicated messages at
different layers hold different semantics, for example, about the physical ra-
dio signal, geographical positions, or network performance metrics, and thus
can be secured independently or collectively. Each layer inhibits multiple
levels of detection, from single features to multiple synchronized sources as
opposed to securing only a single component or a message. This is motivated
by the fact that single misbehavior can affect multiple levels and components
and might not be easy to detect using single observations. Fourthly, we define
an ML model to process data and detect security issues from one or many
sources. The model used is reinforcement learning (RL) based on the deep
Q-learning algorithm and allows for online detection and reaction to mis-
behaviors. Moreover, using our stream graphs C-ITS model, we formalize
our reinforcement learning model using partially observed Markov decision
processes (POMDP). The dynamicity and interactiveness of the vehicular
environment give insights into choosing the detection method, and the fact
that a misbehavior changes and improves over time suggests that the detec-
tion method should be capable of automatically doing the same. Finally, to
build and test our architecture and models, we build a simulation environ-
ment [19] capable of feeding the architecture with V2X data and sensor data
as opposed to only one of them, and also allowing for injecting and detecting
attacks in a real-time manner.

1.3 Organization

The remainder of this document is organized as follows (overview in fig-
ure1.2).

In chapter 2, we present an overview of different technologies involved
when tackling the problem of misbehavior detection for autonomous vehi-
cles, survey classical and modern misbehavior detection mechanisms used
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Figure 1.2: Overview of the thesis

in the literature, and present a set of tools that can be used to simulate
and achieve realistic misbehavior detection for CAVs. Then, we discuss the
limitations of the current literature on misbehavior classification, propose a
detailed and general definition of misbehavior in CAVs covering faults and
attacks and a hierarchical misbehavior classification to describe misbehaviors
and constitutes a basis for the classification of research done in developing
misbehavior detection mechanisms.

In chapter 4, we define our multi-layered architecture (CAV-MBDA) for
the detection of such misbehaviors locally within the vehicle that takes into
account all previously discussed kinds of data, and the different communi-
cation layers, and we define the whole pipeline from sensing knowledge to
detecting the misbehavior.

In chapter 5, we categorize data and formalize interactions in a C-ITS
system from a graph-oriented point of view, We formalize the misbehavior
detection problem using partially observable markov decision processes and
we propose a deep Q-learning based model architecture for the detection of
misbehaviors.

In chapter 6, we develop our solution (SiMBD) to simulate V2X inter-
actions and inject misbehaviors into them. We analyze a state-of-the-art
dataset for misbehavior detection, identify data leakage in some applications
of the ML to such data and propose a specific preprocessing as a solution
to the problem. We benchmark supervised machine learning applications on
VeReMi. And finally, we implement our MBD architecture including our RL
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model in the simulation and present and analyze the results.
We conclude in chapter 7 and present a set of future works and open

issues.
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Chapter 2

State-of-the-art

In this chapter, we present an overview of different technologies involved
when tackling the problem of misbehavior detection for connected and au-
tonomous vehicles. Firstly, we describe connected and autonomous vehicles
as independent entities and then as entities in the C-ITS system. Then we
present state-of-the-art of cybersecurity issues related to CAVs. We survey
classical and modern misbehavior detection mechanisms used in the litera-
ture and go in-depth with ML-based ones. Finally, we present a set of tools
that can be used to simulate and achieve realistic misbehavior detection for
CAVs.

2.1 Connected and autonomous vehicles

A CAV consists of several systems and components required to offer the
requested functionalities defined in the ISO26262 standard [20]. Mainly, it
is composed of Electronic Controller Units (ECU), sensors, and actuators
connected through several field buses.

Figure 2.1 shows a state-of-the-art physical architecture of a CAV ex-
ample, where several exteroceptive sensors (e.g., camera, LiDAR, RADAR)
perceive the vehicle’s environment. A set of actuators perform mechanical
functionalities such as steering and accelerating. Together, these components
offer functionalities to achieve full automation of the vehicle. There are six
levels of automation, ranging from level 0, where the human driver has full
control of the vehicle’s functionalities, to level 5, where the vehicle is fully
autonomous [21]. Levels 1 and 2 consider simple driver assistance and par-
tial automation of some functionalities like steering and accelerating, but
the vehicle cannot under any condition drive alone. Level 3 is conditional
automation, where the vehicle can monitor the driving environment and ac-
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Figure 2.1: Physical architectures of a self-driving car [2]

complish simple driving tasks. The vehicle will fall back and give control to
the human driver when the automation fails, which is called disengagement.
Level 4 describes high automation where the vehicle can enter a safe state
with no risk for the passenger or the vehicle itself without disengaging [21].

The CAV includes communication technologies such as ITS-G5/IEEE802.11p,
C-V2X, and 5G. The CAV exchanges messages with other entities as part of
the C-ITS. With the available information from all sensors and communica-
tions, an AI technology is anticipated to play a crucial role in controlling the
dynamics and movements of vehicles, aiming to create the safest and most
efficient driving experience possible.

In the next section, we describe the interactions that the CAV may have
with the other entities of a global intelligent transportation system.

2.2 Cooperative Intelligent Transport Sys-

tems

Over the past decades, several technological discoveries have been introduced
to intelligent transportation systems(ITS) and entities (ITS-station), and
their applications are quite broad and varied. Advanced Driver Assistance
Systems (ADAS), Adaptive Cruise Control (ACC), and Airbag that immedi-
ately inflate prior to the collision are some of the technologies that have been
implemented in ITS [22]. While these technologies are placed within the ITS-
station, Cooperative ITS (C-ITS) focuses on communications between those
ITS-stations [23]. The European Telecommunications Standards Institute
(ETSI) defines Cooperative ITS as ”an ITS in which the vehicles commu-
nicate with each other and/or with the infrastructure. C-ITS can greatly
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increase the quality and reliability of information available about the vehi-
cles, their location, and the road environment. It improves existing services
and will lead to new ones for the road users, which, in turn, will bring ma-
jor social and economic benefits and lead to greater transport efficiency and
increased safety” [24].

Figure 2.2: C-ITS System [3], Different communication modes.

2.2.1 Stations in C-ITS

Along with the CAVs, other stations, such as infrastructure stations and vul-
nerable road users (VRU), are connected through the C-ITS system. These
stations are classified into four types [25], namely :

• Central ITS-S: An ITS-station that can provide centralized appli-
cations such as traffic and road operating. In particular, a cloud or
a server (Fig 2.2) can be a central ITS-station providing services or
contents.
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• Road side ITS-S: Also called RSU, is an ITS-station that can pro-
vide TS applications from the roadside independently or cooperatively
with other ITS-stations. Its functions include sending current traf-
fic light information, sending warning messages, and evaluating traffic
flow/speed/waiting times [26].

• Vehicle ITS-S: An ITS-station that provides ITS applications to vehi-
cle drivers and passengers. It can access diverse in-vehicle data to pro-
vide such services and might communicate that knowledge with other
ITS-stations (Fig 2.2).

• Personal ITS-S: An ITS-station that provides ITS applications to
personal and nomadic devices (such as smart objects, and drones,
Fig 2.2).

These stations exchange different standardized messages that may include
kinematics information and knowledge about the station’s surroundings, such
as collisions, intersections, and road status, which are defined in the next
section.

2.2.2 Standard communication in C-ITS

Communications in C-ITS include Vehicle to Vehicle (V2V), Infrastructure to
Infrastructure (I2I), Vehicle to Infrastructure (V2I, I2V), Vehicle to Pedes-
trian (V2P, P2V), Vehicle to Cloud (V2C, C2V), Vehicle to Server (V2S,
S2V), Vehicle to Device (V2D, D2V), Infrastructure to Pedestrian (I2P, P2I),
Infrastructure to Device (I2D, D2I) (Fig 2.2). We refer to these different types
of communications as Vehicles to everything (V2X).

Communications in C-ITS follow certain protocols (Fig 2.3). The com-
munication stack defined by ETSI [27] is composed of several layers. An
access layer defines the supported wireless access technology and utilizes the
ITS-G5 of the IEEE 802.11 standard.

A network and transport layer supports the dissemination of messages
from the source to the destination according to desired protocols (GeoNet-
working and Basic Transport Protocol (BTP)).

The facility layer enables application functionality and describes the V2X
messages and their structure, of which two messages stand out. The Cooper-
ative awareness message (CAM) shares critical vehicle state information for
safety and traffic efficiency applications to enhance receiving vehicles’ per-
ception of the road. The decentralized environmental notification message
(DENM) disseminates event safety information in the geographical region
around the vehicle or the RSU. There also exist other messages such as
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Figure 2.3: Protocols stack standards for C-ITS in Europe [4]

Intersection Collision Avoidance (ICA) messages, Emergency Vehicle Alert
(EVA) messages, Position, Speed, and Time (PST) messages, Map Data
messages, Signal Phase and Timing (SPaT) messages, Cooperative Percep-
tion message (CPM), Electric Vehicle Supply Equipment (EVSE) message,
Weather and Road Surface Information (WRSI) message which are used for
various applications such as positioning, navigation, localization, advanced
driver assistance systems, autonomous driving, cooperative perception, elec-
tric vehicle charging, and weather and road surface information.

The application layer defines the desired C-ITS applications. A security
layer ensures the security of all layers. For each layer, different types of infor-
mation can be retrieved and used for security, and thus security mechanisms
might vary depending on the layer.

To ensure privacy, each ITS-Station has several personal anonymous iden-
tifiers called pseudonyms used temporarily to identify the vehicle in its com-
munications. Each station must acquire pseudonym certificates to sign the
messages by contacting the public key infrastructure (PKI) [28]. With the
apparent complexity of this whole system, we can already imagine the wide
range of possible security and safety issues that can arise.

We consider in this thesis CAVs with automation levels 4 and
5, with automated driving that uses V2X as one of its data sources
for building its perception. We also mainly consider V2X messages
CAM and DENM. We consider that the vehicle incorporates a se-
curity gateway in its physical architecture that monitors all sources
of data.

In the following, we provide an overview of the CAV security regarding
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the security attack surfaces and possible system failures.

2.3 Cybersecurity and misbehavior detec-

tion

To achieve autonomous driving, a CAV is equipped with a set of sensors, ac-
tuators, and electronic control units (ECU). A local network connects these
components inside the vehicle, allowing them to cooperate and complete the
required functionalities to drive the vehicle. The presence of such compo-
nents is mandatory i.e., the vehicle cannot move if it does not have the
appropriate perception of its surroundings, such information is gathered us-
ing sensors e.g., cameras, Lidar, radars, and ultrasonic sensors, and cannot
perform any action if not equipped with the required actuators and ECUs.
Granting such power to these systems opens the vehicle to potentially dan-
gerous consequences. Indeed, a faulty component, if not detected, can cause
the whole system to fail and endangers the vehicle and its passengers. It
is also possible for a malicious user to inflict severe damage on the vehicle
and its passengers by controlling/tempering these components, to prevent
this kind of event, several countermeasures must be implemented inside the
vehicle (at the appropriate component) ensuring both security and safety.
To create these measures, we must first identify the attack and fault vectors
endangering the vehicle. A second major threat is a piece of misleading in-
formation. The CAV communicates periodically while on the road, diffusing
information such as the position, speed, and state of the emergency brake
system in the C-ITS network, other vehicles use this information to perceive
their surroundings. A vehicle might diffuse wrong and misleading messages,
for example, to occupy a parking slot by sending a fixed position or to slow
other vehicles by communicating lower speed than the actual one observed
on the road. This kind of event can be a consequence of wrong measurements
from one of the vehicle components or an attack targeting inter-vehicle com-
munications, in either case, different countermeasures should be made to
ensure that the participants of the C-ITS network are behaving as expected.
We present in the next section several efforts that have been made to define
threats, faults, attacks, and their realizations.

2.3.1 Attacks, Faults, and Misbehavior

We recall in this section standard security-related definitions that apply to
the context of C-ITS. What are attacks? faults and failures? threats?.
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Definition 2.1 (attack). Any kind of malicious activity that attempts to
collect, disrupt, deny, degrade, or destroy information system resources or
the information itself. [29]

Definition 2.2 (Fault and failure). Fault is an abnormal condition that can
cause an element or an item to fail [20]. Failure refers to the consequence of
a fault.

Definition 2.3 (Threat). Threat is an event or condition that has the poten-
tial for causing asset loss and the undesirable consequences or impact from
such loss [30]. Attacks and faults can be thought of as the materialization of
a threat.

An autonomous vehicle’s function can be compromised due to internal
and external circumstances affecting the functioning of a component or a
service, whether due to malicious actions or unexpected failures. Several re-
searchers already investigated a large set of possible attacks on connected and
autonomous vehicles [31–42]. The authors show that these attacks affect the
vehicle communication layers and the content of each message. To categorize
these attacks, we use the extended STRIDELC [43] threat model based on
the simpler STRIDE model [44]. STRIDELC defines eight different threats,
namely, Spoofing, Tampering, Repudiation, Information Disclosure (ID), De-
nial of Service (DoS), Elevation of privilege (EoP), Linkability, and Confu-
sion, that are appropriate for CAVs. STRIDELC is convenient for CAVs.
Indeed, the additional categories defined in STRIDELC, namely, linkability
and confusion, are important CAV-specific threats. Linkability refers to the
ability to link pseudonyms to identify and track the owner of the CAV that
breaches the privacy insurance for which pseudonyms are specifically created
in this system. The other is “confusion” which refers to transmitting incor-
rect information in an authentic message without breaching integrity (e.g.,
the attacker uses his CAV to send authentic messages with false information
while respecting the data structure).

Table 2.1 shows different attacks from the literature and their associated
threats. This listing shows the diverse ways that can be used to endanger the
CAV and motivates the urgent need for security over each layer of communi-
cation. A different attack vector is related to physical attacks on the different
sensors, e.g., physically altering a component, and blinding the camera with
light beams. For instance, the authors in [32] explained how to perform
contact-less mechanisms to attack ultrasonic sensors, radars, and cameras
using dedicated hardware. Outdoor tests on the Tesla Model S automobile
caused the blindness and malfunction of the vehicle, which could eventually
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Attack Threat

Jamming DoS
Flooding DoS
Malware DoS, Spoofing
Spamming DoS
Denial of service DoS
Wormhole DoS
Masquerading Tampering, ID, Spoofing, Repudiation,

EoP
Data Replay DoS, Spoofing, Confusion
Data alteration DoS, Repudiation, EoP, Confusion
Data tampering DoS, Repudiation, EoP, Confusion
Map database poisoning Tampering Confusion
Eavesdropping ID, Linkability
Data interception ID, Spoofing
Man in the middle ID, Spoofing
Hijacking ID, Spoofing, EoP
Tracking ID, Linkability
Gray hole DoS
sinkhole DoS
Black hole DoS
Sybil Spoofing Confusion
Impersonation ID, Spoofing, Repudiation, EoP, Confu-

sion
GPS spoofing Spoofing, Confusion
Tunneling DoS, Tampering, Spoofing
Timing DoS, Confusion
Traffic analysis ID, Linkability
ID disclosure ID, Spoofing, Linkability
Key/Certificate replica-
tion

ID, Spoofing, EoP, Linkability

Illusion Tampering, Spoofing, Confusion
Loss of traceability Tampering, ID, Repudiation

Table 2.1: C-ITS attacks and Threats (STRIDELC)

result in a crash of the vehicle [32]. In the same way, the STRIDELC model
can be used to categorize these attacks.

Table 2.2 shows possible physical attacks and their corresponding threat
category.
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Attack Threat reference

Signal relaying DoS, Tampering, Confusion [45], [32]
Signal spoofing Spoofing, Confusion [31], [45], [32]
Sensor blinding DoS [31], [45], [32]
MisCalibration Tampering , DoS [31]
Ground truth falsifica-
tion

DoS, Tampering [31], [46]

Acoustic Quieting DoS [32]

Table 2.2: Physical attacks and Threats (STRIDELC)

There also have been efforts to characterize attacks. The taxonomy pre-
sented in [47] gives a detailed description of the attack with the motivation
of archiving it and building a database of the different events to facilitate
threat and risk analysis. The taxonomy gives details about the tools used for
the attack, the manufacturer of the CAV, the attack path, and an evaluation
of the attack and its probability. This knowledge is acquired through post-
analysis of historical attacks or simulation of predefined attacks, for which
they provide the reference of the original work describing the attack.

In [42], the proposed attack taxonomy relies on the attacker, attack vec-
tor, target, motivation, and potential consequences, which are the main el-
ements defining an attack. This taxonomy allowed the authors to discuss
various methods for attacking and defending connected and autonomous ve-
hicles, which should provide a better understanding of how targeted defenses
should be developed for targeted attacks. The attack vector characterizes
the attack, i.e., whether it requires physical access or not and if it is invasive.
The target is the component of the vehicle undergoing the attack. Attackers,
motivations, and potential consequences are self-explained. [48] propose an
improvement over this taxonomy [42] by adding the communication stream
as a possible target for an attack and adapting it to unmanned aerial vehicles.

The authors in [49] present a taxonomy of attacks on autonomous sys-
tems. It covers communication attacks, physical attacks, and software at-
tacks and gives hierarchical paths to multiple known attacks on autonomous
systems.

As mentioned earlier, component failure is one of the roots of CAVs fail-
ures. The authors in [8] studied disengagement reports of level 3 autonomous
vehicles already deployed in the real world. Examining the data allowed them
to identify the causes of disengagement. Consequently, they proposed several
tags for the faults observed and built an ontology of failure categories on top
of the tags.
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Fault Tag Fault
Category

Description

Environment ML/Design Sudden change in external factors (e.g., con-
struction zones, emergency vehicles, acci-
dents)

Computer
System

System Computer-system-related problem (e.g., pro-
cessor overload)

Recognition
System

ML/Design Failure to recognize outside environment cor-
rectly

Planner ML/Design Planner failed to anticipate the other driver’s
behavior

Sensor System Sensor failed to localize in time
Network System Data rate too high to be handled by the net-

work
Design bug ML/Design av was not designed to handle an unforeseen

situation
Software System Software-related problems such as hang or

crash
AV Con-
troller

System, “System” when av controller does not respond
to commands

AV Con-
troller

ML/Design “ML/Design” when av controller makes wrong
decisions/predictions

Hang/Crash System Watchdog timer error
* ML: Machine learning

Table 2.3: Faults in an autonomous vehicle (AV) [8]

Table 2.3 highlights two main categories of failures. The first category,
ML(machine learning)/Design failures, considers errors in the intelligent sys-
tem ranging from perception to decision. The second category, called Sys-
tem failure, covers errors and faults in the vehicle’s components and soft-
ware/network. Among the tags, the “Environment” tag cover failures caused
by adverse weather conditions or road conditions. Finally, the “Sensor” tag
includes failures in different components of the system. This tag provides a
high-level categorization of the vehicle’s faults. To understand the causes of
failures, we refer the reader to [35], where the authors describe the failure of
some vehicle’s components, such as over-voltage and short-circuit resulting in
the Lidar failing, or foreign particles and rough vibration causing the failure
of the camera, and also the probability of failure for each component.

Attempts at characterizing faults have been done in [35, 38]. Authors
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in [35] studied the failure probability of CAV related to its components and
the infrastructure, in the process, they build a hierarchical dependency from
CAV failure to the failure of any element or functionality. For the fail-
ure related to the components, they identified five main parts: hardware,
software, mechanical, communication, and interaction platform. Four main
subjects are identified for the failure related to infrastructure: other road
users, weather, construction zones, and road conditions. In [38], the authors
simplified this model and introduced the failure of traffic signals and road
signs in infrastructure-related failure.

These faults, attacks, and failures are the basis to define misbehavior for
CAV. We recall state-of-the-art definitions of misbehavior.

Definition 2.4 (Misbehavior [50]). Misbehaving ITS-stations are any ITS-
stations that transmit erroneous data that they should not transmit when the
hard and software are behaving as expected [50].

Definition 2.5 (Misbehavior [51]). Misbehavior is active and passive actions
performed by communication endpoints that are not behaving according to
predefined rules [51].

A different definition that takes into account the unintentional kind of
misbehavior is:

Definition 2.6 (Misbehavior [52]). Misbehaving ITS-stations may send false
information intentionally or due to unintentional faults in their operations.
Misbehavior is a term used in ad hoc networks for any deviation from the
expected behavior. In VANET, deviating from the normal operation can take
many forms such as sending false information, concealing some information,
tampering with messages content such as identity, alert type, event location,
node position, and time, creating fake messages, or forcing another node
to send a false message are considered misbehaviors in data and need to be
detected each time a message received [52]

Among other definitions, we find that these are the ones that cover the
misbehavior scope for CAV. However, they show some shortcomings that will
be discussed in the next section.

2.3.2 Contribution: Defining misbehavior

We recall definitions (2.4, 2.5, and 2.6) from the literature. These definitions
cover most parts of the misbehaving scope separately. For instance, in defini-
tion 2.4 [50], they only consider the transmission of erroneous data when the
system is working correctly, which we refer to as active intention misbehavior
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(IMB). But, it does not cover other possibilities such as passive IMB that
does not need to transmit any data. The second definition 2.5 covers both
active and passive IMB [51], but both definitions do not consider uninten-
tional misbehavior (UMB). The third definition 2.6 [52], covers both types
of misbehavior but only considers faults in the operations of the CAV. In
contrast, we can find unintentional faults caused by external factors. Aiming
to cover several misbehavior types that are absent in previous definitions, we
propose a new definition that groups previous generic ones covers IMB and
UMB, and is adaptable to newly discovered attacks and failures.

We define a misbehavior with respect to an entity in C-ITS as follows:

Definition 2.7 (Misbehavior). A misbehaving entity manipulates and trans-
mits data improperly or inappropriately, resulting in unexpected behavior.
Such behavior could be either IMB or UMB.

• IMB is purposely behaving in unexpected ways, aiming to provoke harm-
ful situations or gain unapproved benefits. It can be active (e.g., jam-
ming/vandalism) or passive (e.g., eavesdropping).

• UMB is a result of faults and failures of a system or careless human-
based behavior.

The word “misbehavior” includes both attacks and faults from the pre-
vious chapter as IMB and UMB. Our definition first considers the object of
the misbehavior, that is, an entity in the C-ITS system, such as CAVs, road-
side units, or other VRUs that can have misbehaving conduct, for example,
manipulating data flow intentionally (e.g., physically by altering speed limit
signs or numerically using malware), or unintentionally acting on erroneously
sensed data.

2.3.2.1 Intentional misbehavior

IMB actions can be either physical or non-physical. The physical ones require
the attacker to interact with the entities and their components from the
inside, such as manipulating the hardware of an ECU, a sensor, an actuator,
an OBD (On-Board Diagnostics) port, or the physical link connecting them
(e.g., altering the emergency brake system mechanically).

Physical actions can be performed outside by acting on surface compo-
nents such as entity parts (camera, antenna) or the entity’s environment such
as infrastructures (roads and lights). On the other hand, non-physical actions
require access to the entity or the network through an interface such as USB
ports from the inside of the entity or the outside using Wireless connectivity
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• Label: alphabetical name describing the misbehavior.
• ID : Numerical unique id.
• Action: Passive, Active.
• Type :

– Physical: physically attack an ITS-S in the net-
work.

– Non-physical: attack on electronic objects in the
ITS-S.

• Origin :

– Inside: requires physical access to the ITS-S.

– Outside: can be performed without access to the
ITS-S.

• Interface : component of contact.

– Hardware: a component hardware part.

– Ports/Software: component software units.

– Context ITS: weather, roads, RSU, infrastructure.

– Surface component: external sensors such as cam-
era, LiDar, and radar.

– Wireless communication: connectivity.

• Target: ECU, Sensor, Actuator, Bus cables, Infras-
tructure, C-ITS layers.

• Threat : Spoofing, Tampering, Repudiation, ID, DoS,
EoP, Linkability, Confusion [43].

• Targeted property: Authenticity, Integrity, Non-
Repudiation, Confidentiality, Availability, Authoriza-
tion, Unlinkability, Trustworthy [43].

• Motivation: Thrill, Political gain, Financial gain,
Damage. [53].

• Potential consequence (Impact).
• Attacker model.

Table 2.4: Intentional misbehavior model
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(WiFi, 4G/5G, etc.), both exposing the communication stack (C-ITS stack,
CAN) and the software part of the entity’s components (i.e., ECU, Sensors,
Actuators). Based on our definition of IMB, we’ve derived an IMB model,
presented in Table 2.4. This mode characterizes IMB by defining a set of
features that give a snapshot of what kind of misbehavior it is and what are
its causes and consequences when identified.

• Label: Alphabetical.
• ID : Numerical unique id.
• Type : Human based, non human based.
• Context:

– Design: failure due to inaccurate design of the ITS-
S.

– Environment: failure due to environmental condi-
tions (bad weather).

– Element/Item: failure due to fault in an internal
item.

– Driver.

– Other road users.

– Safe Faults.

• Interface: Hardware, Software, Infrastructure, human,
weather.

• Root: Lens, ECU, weather, cables, road signs, sensors,
actuators ...

• Fault class: single point, multi-point, latent, residual,
unclassified [20].

• Affected property: Authenticity, Integrity, Non-
Repudiation, Confidentiality, Availability, Authoriza-
tion, Unlinkability, Trustworthy. [43]

• Impact.

Table 2.5: Unintentional misbehavior model
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2.3.2.2 Unintentional misbehavior

UMB can result from an item fault caused by a misconfiguration (i.e., wrong
interconnections of components) or a component fault. The component fault
can arise from faults in different parts. In the case of hardware, there are
multiple fault types defined in [20], namely, residual faults, single-point faults,
dual-point faults, multi-point faults, and latent faults. For software, faults
are often due to bugs as well as calibration and perception errors. Another
fault source is different transmission errors. Similarly, design errors can arise
at the conception stages of both software and hardware.

Several scenarios of design faults are discussed in the EU Agency for Cy-
bersecurity (ENISA) and Joint Research Centre (JRC) report [54] on the cy-
bersecurity of artificial intelligence embedded in CAVs. Other possible types
of UMB can arise from the external environment, that is, any aspect outside
the ITS-S, for example, weather conditions (e.g., fog, natural disasters) or in-
frastructure faults such as Road Side Units (RSUs) and road infrastructures.
Moreover, some are human-triggered, whether it be the driver, a passenger,
or other vehicles and VRUs. Based on our definition, we’ve derived a UMB
model, presented in Table 2.5. Similarly, this model gives a snapshot of the
occurring UMB. We propose a global misbehavior model in Table 2.6 with
respect to both the IMB and UMB models.

• ID : Numerical unique id.
• Type : Intentional, Unintentional.
• Model : Features describing the misbehavior (IMB & UMB
models).

• Attacker Model [31]

Table 2.6: Misbehavior model

Along with its misbehavior model, the definition characterizes misbe-
havior with a detailed description including, for example, the root of the
misbehavior, its impact, and the attacker model. We claim that it includes
most of the misbehaving examples found in the literature on CAV and fairly
defines misbehavior in this context.

Various countermeasures have been researched and developed to reliably
detect these safety and security issues. In the next section, we provide
an overview of vehicular security and detection methods incorporating such
countermeasures in the literature.
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2.3.3 Vehicle security

All faults and attacks can arise from within the vehicle or the wide range
of connectivity implemented in the vehicle. For this reason, we separate
security measures implemented in the vehicle into two categories: in-vehicle
and inter-vehicle security.

2.3.3.1 In-vehicle Security

In-vehicle security refers to security measures implemented locally within the
CAV components. Several safety mechanisms might be implemented locally
within the CAV components to maintain the intended functionality of that
component, as per requirement in the ISO26262 Automotive Safety Integrity
Level (ASIL) [20]. These requirements depend on the functionality, the pro-
vided service, and the risk level caused by the malfunctioning component.
The countermeasures are implemented at the component level, specifically
tailored for some known failures and malicious activities, and effectively se-
cure such threats and report malfunctions. For example, we can cite error
detection and correction codes (EDC/ECC), built-in self-test (BIST), and
end-to-end safety protocols (i.e., a combination of CRC, timestamp, and
frame counter) [55]. The International Standard Organization (ISO) devel-
ops several vehicle-related standards. The beforementioned ISO 26262 [20]
defines the functional safety of electrical and electronic devices for the auto-
motive industry. The ISO/SAE 21434 [56] specifies cybersecurity standards
for road vehicles. It provides vocabulary, objectives, requirements, and guide-
lines related to cybersecurity engineering and establishes minimum criteria
to prevent cyberattacks on vehicles. Similarly, the US National Institute
of Standards and Technology (NIST) Cybersecurity Framework (CSF) [57]
helps to describe a system to manage cyber security risk and could be applied
to design a system for connected and autonomous vehicle cybersecurity. For
example, the US Department of Transportation (USDOT) sponsored the cre-
ation of a CSF Profile for Connected Vehicle Environments(CVE) [58]. It is
an application of the NIST CSF based on existing standards, guidelines, and
practices for organizations to better manage and reduce cybersecurity risk.
It was designed to help foster risk and cybersecurity management communi-
cations. The profile is only a starting point and is extendable/adjustable to
cover different scopes or objectives.

Nevertheless, the probability that the CAV fails due to one or multiple
components without notice of safety mechanisms (that itself might be com-
promised due to tampering with the component) is still present and usually
requires network and data level countermeasures to detect it, such as plausi-
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bility checks, trust evaluation, and anomaly detection mechanisms.

2.3.3.2 Inter-vehicle Security

Inter-vehicle communications are also an essential part of the functioning of
the CAV. Maintaining fluid communication, and ensuring the privacy and
correctness of the messages are some of the required goals. State-of-the-art
mechanisms such as time stamping, variable MAC, and IP address [36, 41]
are examples of active countermeasures for multiple threats on the vehicu-
lar ad hoc network (VANET). However, they are not developed to discover
new engineered attacks that consider the network dynamics and the CAV
dependence on perceiving the surrounding environment. They also do not
consider attacks from non-vehicle-connected objects such as pedestrians and
infrastructures. Forging C-ITS messages can affect the performance of the
network and all its entities. Indeed, transmitting the wrong speed and posi-
tion may result in slow traffic or causes emergency brakes, which may result
in collisions. Researchers are investigating different kinds of solutions to ver-
ify the validity of the received information by checking its consistency over
time and its agreement with the behavior of the transmitting ITS-station
(ITSS) [9, 59, 60]. Globally, standards developing organizations (SDO) are
defining the functional requirements for misbehavior detection. Currently,
the main standardization effort is driven by the ETSI which published a re-
port TR 103 460 [61] and is working on a technical standard TS 103 759 [62].
This report provides a list of misbehavior attacks and detectors for several
V2X messages, such as safety and awareness messages. Based on this report,
this technical standard specifies the design and technical requirements of a
misbehavior reporting service on field ITS-stations. In this thesis, we fo-
cus mainly on inter-vehicular security, particularly, securing V2X
communication using misbehavior detection techniques.

In the next couple of sections, we provide an overview of different detec-
tion mechanisms.

2.3.4 Classical misbehavior detection

As endorsed in the previous section, misbehavior in the CAV context presents
a high risk for the vehicle and its passengers. Thus, it needs special handling,
first by detecting it and then by applying the favorable reaction to ensure
the efficiency and security of the CAV.

This section surveys the detection part by first listing the different ma-
chine learning and rule-based methods classifications from the literature.
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Figure 2.4: Literature misbehavior detection schemes [5]

Figure 2.4 shows the classical categorization of misbehavior detection
schemes that are heavily used and improved in the literature [5, 50, 63–66].
In [50], the authors divide misbehavior detection into two main categories:
node-centric and data-centric.

Node-centric ’mechanisms that are primarily concerned with the partici-
pants of the network. For example, they can verify the forwarding behavior
of an ITS-station by analyzing packet frequencies, correctly formatted mes-
sages, and so on to decide on its trustworthiness’ [50]. Two subcategories
emerge from node-centric, namely, behavioral mechanisms exploiting pat-
terns in the behavior of specific ITS-stations at the protocol level in an au-
tonomous manner. Moreover, trust-based mechanisms exploit the fact that
most ITS-stations in the network are honest and that infrastructures are
available to remove malicious ITS-stations.

Data-centric mechanisms (introduced in [63]) are focused on the interac-
tion between participants, verifying their trustworthiness based on the cor-
rectness of previous messages using the message content to determine its va-
lidity independently of who transmitted the message (i.e., no personal data
about the sender vehicle is required). In addition, two subcategories emerged
from this, namely, consistency-based detection and plausibility-based detec-
tion. Consistency-based detection uses the relations between packets, typi-
cally from multiple participants, to determine the trustworthiness of newly
received data. Plausibility-based detection uses a specific underlying data
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model to verify if the transmitted information is consistent with this model.
For example, the plausibility of movement can be verified from two subse-
quent beacon messages by examining the distance traveled between them and
comparing it to the speed in these messages. This definition is also found in
other works such as [5, 64–66].

In [5], the authors extend the previous definition to consider local versus
cooperative schemes of misbehavior detection. For cooperative detection, the
ITS-stations also exchange ratings and other knowledge with nearby ITS-
stations. This additional information is then used to establish a level of trust
for each received message and/or vehicle.

Such misbehavior detection classification is mainly defined for communication-
based misbehavior and does not cover physical attacks and faults on elements
or broadcast data. It also does not cover misbehavior detection based on ma-
chine learning. Other works consider machine learning algorithms and pro-
vide a classification, such as [67–71]. In the next section, we survey machine
learning based misbehavior detection methods used in the literature.

2.4 Machine learning based misbehavior de-

tection

Classification of machine learning based methods for misbehavior detection in
the context of C-ITS and IDS into several subcategories has been researched
in the vehicular community to better understand and apply such methods
for vehicular safety and security.

In contrast with the survey [50], where classical methods such as node-
centric and data-centric methods are classified, the following focus on ML
methods. In [67], the proposed IDS taxonomy considers audits based on
knowledge, behavior, or a hybrid type of data using statistical, machine learn-
ing, or rule-based techniques. This taxonomy offers a high-level abstraction
of the required components for making an IDS.

In [68], the goal is to provide a high-level classification of machine learn-
ing algorithms into supervised, unsupervised, semi-supervised, and reinforce-
ment learning, and their subcategories without referring to actual methods
for IDS.

In [69], the authors provide a similar framework to the one proposed
in [67] and give additional details on machine learning algorithms used in IDS.
Under anomaly-based IDS, the authors categorize the methods as statistical,
knowledge, and machine learning based and give a listing of methods in each
of the categories. Additionally, [70, 71] propose taxonomies of unsupervised
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anomaly detection.
In [71], the authors categorize the techniques furthermore into distance-

based, ensemble-based, statistical-based, domain-based, and reconstruction-
based, and refer to famous methods in each category.

Table 2.7: Machine learning based Attacks Detection for a CAV

Year Ref Train. ML algorithm Threat
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im
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et
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am
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2007 [72] ✓ ✕ K-means ✕ ✓

2010 [73] ✓ ✕ ANN ✓ ✕

2011 [74] ✓ ✕ RF, NB, IBK, J-48 A-Boost ✓ ✓

2013 [75] ✓ ✕ Fuzzy STS ✓ ✓

2014 [76] ✓ ✕ SVM ✓ ✕

2015

[77] ✓ ✕ OCSVM, K-means ✓ ✕

[78] ✓ ✕ SVM ✓ ✓

[79] ✓ ✕ ANN ,FFNN,\SVM ✓ ✕

2016
[80] ✓ ✕ K-NN ✓ ✕

[81] ✓ ✕ SVM ✓ ✕

2017

[82] ✕ 6 SVM ✓ ✕

[83] ✕ 3 ANN ✕ ✓

[84] ✓ ✕ SVM ✕ ✓

[85] ✓ ✕ LDA,\QDA ✓ ✕

[86] ✕ ✕ SVM-MFM ✕ ✓

2018

[59] ✕ 5 MLP,\RF,\A-Boost ✕ ✓

[60] ✕ 2 K-NN,\SVM ✕ ✓

[87] ✓ ✕ Fuzzy C-means ✓ ✕

[88] ✓ ✕ ANN ✓ ✕

[89] ✕ 1 Pearson correlation analysis ✕ ✓

Continued on next page
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Table 2.7: Machine learning based Attacks Detection for a CAV
(Continued)

Year Ref Train. ML algorithm Threat

[90] ✓ ✕ MLP,\LSTM ✓ ✕

[91] ✕ ✕ BNN ✕ ✓

[92] ✓ ✕ SVM,\ANN ✓ ✕

2019 [15] ✓ ✕ MLP, XGB, SVM\C, LSTM ✕ ✓

2019

[93] ✕ 4 K-NN, SVM ✕ ✓

[94] ✕ 4 LR, K-NN, DT, Bag, RF ✕ ✓

[95] ✕ 4 LR,SVM ✕ ✓

[96] ✓ ✕ DAE, SVM ✕ ✓

[97] ✕ 1 CC, DBKM, FC, KM, FF ✕ ✓

[98] ✓ ✕ 2*CNN+LSTM ✓ ✕

[99] ✓ ✕ K-NN,\RF ✓ ✕

2020 [100] ✓ ✕ RF, XGB, LGBM, NN, LSTM ✕ ✓

2021

[101] ✕ 4 K-NN, RF ✕ ✓

[102] ✕ 4 CNN, LSTM, SVM ✕ ✓

[103] ✕ ✕ GCN ✕ ✓

[104] ✕ ✕ Graph Attention Network ✕ ✓

2022
[105] ✕ 4 boosting, DT ✕ ✓

[106] ✓ ✕ fuzzy inference system ✕ ✓

Some of these methods have been efficiently used for misbehavior detec-
tion in C-ITS. we carry out a survey on machine learning techniques used
for misbehavior detection in the CAVs context, divided into two parts: in-
tentional and unintentional MBD. For each category, we provide the major
ML works for MBD.

2.4.1 Intentional Misbehavior detection

In Table 2.7, we review the main ML methods used for MBD. We grouped
each work per year of publication and authors. Then, we highlight the ML
model, the methodology to train and test their ML model, and the type of
threat detected by the classifier.
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In [72], the authors used entropy to represent the ”abnormal” and ”nor-
mal” behaviors of ITS-Ss, and k-means clustering to identify outliers which
are the assumed attackers. This work supposes a majority of honest ITS-
Ss. Thus, the suspected ITS-S eviction relies on the deviation between the
attacking ITS-S and the majority of honest ITS-Ss. The scheme uses the
position of each observed station to compute the entropy.

In the same context, in [73], the authors proposed a centralized IDS
based on RSU for VANET. The network of connected buses, named BUSNet,
individually eavesdrops and collects the data packets and routing control
messages exchanged in VANET. BUSNet forwards the information to RSU
to process and detect anomalies using a neural network.

To differentiate between legitimate and malicious ITS-Ss in VANET, the
authors in [107] design a framework based on ML approaches. In particular,
the study classifies multiple misbehaviors based on features. These features
are speed deviation, distance, received signal strength (RSS), and the number
of packets generated, delivered, dropped, and colluded. The authors mea-
sured the accuracy of two classifier types. The first one is a binary classifier
whereas the second one is a multi-class classifier. Also, this study extracted
the features of packets by performing experiments in the NCTUns-5.0 simu-
lator [108] with various simulation scenarios and calculated by nearby ITS-
Ss. Also, the authors used Waikato Environment for Knowledge Analysis
(WEKA) [109] to classify misbehavior with several classifiers: Random For-
est (RF), J-48, NB, Ada Boost1, and IBK. Experimental results show that
RF and J-48 classifiers perform better compared to other classifiers. The RF
and J-48 classifier gives better classification due to the boosting and bagging
properties. Then, their extension used a majority voting scheme to improve
the accuracy of their classifier [74]. The voting scheme is a plurality vote and
decides based on the label which received the most votes among all voting
classifiers. The proposed system shows a better result than any model used
by itself.

In [75], the authors used a fuzzy time-series clustering for Sybil attack
detection. Their scheme leverages the dispersion of vehicles by clustering
their locations. Sybil ITS-Ss are those closely located and move together for
a long period.

In [76,78], the authors proposed an intrusion detection framework, named
AECFV, which monitors ITS-S mobility and frequent changes in a network
topology. At its core, there is a clustering algorithm, where cluster-heads
are selected based on the trust level of each vehicle and a boundary distance.
Trust levels are evaluated based on majority voting and a reputation protocol
and are broadcast periodically. The proposed framework uses two detection
systems and a single decision system. The first system runs locally at each
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cluster member and monitors the neighboring vehicles and the cluster-head.
The second system runs globally at the cluster-head level and evaluates the
trustworthiness of its members. The global decision system runs at the RSU
level, computes, and classifies each vehicle based on the level of trust. To-
gether, these systems constitute a network IDS as they make a decision based
on the behaviors of ITS-Ss within their radio range. The two IDSs use rules
and SVM to classify vehicle behavior.

In the context of a cloud-based mobile distributed IDS for VANET, the
authors in [77] propose a framework that detects DoS attack leveraging OC-
SVM with RBF kernel and score the anomalies using recursive K-means
clustering.

Another study in [110] proposes a context-aware security framework for
VANETs based on the SVM algorithm. The objective is to automatically dif-
ferentiate malicious ITS-Ss from abnormal ITS-Ss due to contextual reasons
such as movement speed, temperature, and transmission range. The pro-
posed framework has three functional modules, starting with behavior data
collection, then context sensing and processing, and finally MBD. The results
demonstrate that the proposed framework achieves excellent accuracy, recall
values, and an acceptable value of communication overhead.

In [79], the authors provide an IDS for VANETs based on Artificial Neural
Networks (ANNs) to detect black hole attacks. The classifier uses spatial,
temporal, and networking features as inputs for the training and testing
phase. The proposed IDS exhibit a high error rate despite having a high
accuracy score and a low false-positive alarm rate. Their first extension
includes a method, named Proportional Overlapping Scores (POS), which
reduces the number of extracted features. In black hole detection, the POS
method ranked networking features above state features. Also, the exten-
sion uses the fuzzy set method, which improves the separation between la-
bel types. Moreover, the classier is a feed-forward neural network (FFNN).
Overall, the classifier performances improved. However, the IDS requires
more memory and computation resources than the previous work. In a sec-
ond extension [111, 112], the IDS focuses on detecting the new type of DoS
attacks known as the grey hole and rushing attacks. This extension used
two classifiers (FFNN and SVM). Overall, FFNN has the best detection rate
for grey holes and SVM has the best detection rate for rushing attacks. In
a third extension [80], the authors include a new feature based on a hashed
ICMetric number. Mathematical functions generate the “ICMetric” number
based on sensors readings (magnetometer [80], gyroscope [113], and infrared
sensors [114]). The hash function outputs a hash from the ICMetric number.
The classifier is K-NN. Overall, the scheme shows a higher accuracy rate of
detection with a low false alarm rate than their previous proposal [79]. In
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their last extension, the authors evaluated and compared the performance
of the Linear and Quadratic Discriminant Analysis (LDA and QDA) to de-
tect DoS attacks [85]. The framework uses only V2X data without feature
selection. Overall, the LDA classifier outperforms the QDA in both detec-
tion accuracy and computation time. In comparison with the previous work,
their scheme outperforms previous proposals in terms of error and false alarm
rates [115].

In [81], the authors propose a mechanism based on SVM to detect misbe-
having ITS-S. Moreover, in [82], they propose a collaborative security attack
detection mechanism in a software-defined vehicular cloud architecture. Each
vehicle analyzes the received information and periodically transmits the re-
sults to the controller to train the SVM. After this, each vehicle classifies
ITS-Ss.

An interesting study in [83] leverages the use of a model based on ANN us-
ing feedforward and backpropagation. The mechanism uses historical data to
classify normal or malicious data, and the classifier uses the NGSIM dataset.

To detect Sybil attacks, the authors in [84,116] use driving patterns and
an ML model (Knn and SVM). In the work of [86], the authors propose the
use of SVM with Modified Fading Memory (MFM) to classify legitimate and
malicious ITS-Ss to reduce the computational overhead for the ML algorithm
by only considering eligible ITS-Ss in the range of the VANET communica-
tion.

Another method was proposed in [60]. The authors use an ML-based
mechanism to detect malicious V2X messages. The scheme uses the VeRemi
dataset, and the classifiers are K-NN and SVM. In another work, they used
an additional feature which is RSSI [93]. The authors in [94] used a similar
approach by using the same dataset; however, they tested their classifier
through the simulator VEINS.

In another study, [88], the authors combined several ideas for VANET IDS
into a single multi-layered framework, which they show to be effective against
a variety of different attacks. In all cases, detection compares audit features
against thresholds. These include packet delivery rates (PDR) and Received
Signal Strength Information (RSSI) for selective forwarding (gray hole) and
blackhole attacks; duplicate packet rate and packet forwarding rate for DoS;
RSSI and PDR for wormhole attacks; and the z-score of RSSI for Sybil
attacks. Their evaluation, which is based on NS-3 simulation, has shown that
this framework can achieve greater accuracy and lower overhead in terms of
IDS-specific network traffic. The reduction of IDS traffic overhead is the
result of adopting a game-theoretic approach in modeling the interaction
between the IDS and the malicious vehicle as a two-player non-cooperative
game and using the Nash Equilibrium to inform the choice of the monitoring
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strategy.
In [89], the authors use Pearson Correlation to detect location forging

attacks. The proposed solution works in real-time and requires at least four
to seven seconds of history to be fully efficient. Experiments used the real
datasets from Wyoming Connected Vehicle Pilot Deployment. [117].

The work [91] provides a Bayesian deep learning approach to detect
VANET anomalies. However, the authors did not evaluate their contribu-
tion. In [92], the authors propose an ML-based IDS to detect intruders in
VANET automatically. They implemented their approach using ANNs and
SVMs.

In [15], the authors evaluate a local MBD [15]. This evaluation accounts
for new features (e.g., Kalman Filter), different attack behaviors, and new
attacks (e.g., DoS). In addition, the authors compare the performances be-
tween rule and ML-based methods. Overall, the evaluation shows ML algo-
rithms detect better misbehaviors than rule-based methods. However, ML
algorithms perform slower than threshold-based ones. This evaluation has
been done with servers and a local machine instead of an ECU and hardware
optimized for ML. Thus, the computation speed may not be relevant.

The authors in [118] studied how deep learning approaches can solve
the safety problems regarding pedestrians. A Vehicle-Pedestrian Detection
algorithm based on CNN is proposed. The results show that the method
can recognize and identify safe interactions between connected autonomous
vehicles and pedestrians with an accuracy of 81.98%.

In [100], the authors evaluate a global misbehavior detector based on ML
models. Compared to a similar work [15], the evaluation includes additional
models such as RF, Neural Networks, and Light GBM. The evaluation out-
come implies that LSTM is the best classifier tested. In [96], the authors use
unsupervised ML to detect VANET anomalies, where the classifier is a DAE.
The goal is to identify the abnormal position in the V2X message based
on the vehicle location and the RSSI. In [97], the authors use the WCVP
dataset, and their classifier analyzes only Basic Safety Message (BSM) fields.
Moreover, the authors created their attacks by modifying the dataset. The
work in [99] leverages the use of supervised learning models (K-NN and RF).
Features include the variation of relative speed (VRS); a radar measures the
relative speed between the jammer and the receiver.

In [101], the authors propose machine learning mechanisms to detect po-
sition falsification attacks. They compared K-NN and Random forests using
F1-score and accuracy. They finally combined both methods to achieve bet-
ter performance. The resulting IDS achieved an accuracy of around 85% on
average on different traffic densities.

In [119], the authors propose a method to detect misbehavior based on
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changes in the positions’ time series using anomaly scores. The method
achieved an average of 0.5 f-measure on different attacks. The authors in [102]
presented a deep learning-based method for misbehavior detection. They
used both CNN and LSTM to reconstruct location information and an SVM
to classify compromised vehicles. The results show that the proposed method
detects 95.37% of compromised vehicles in the VeReMi dataset.

The authors in [105] propose a novel interpretable framework for detect-
ing falsified data (BoostGuard). The framework uses a boosting decision
tree ensemble to detect and classify attack types. The demonstrated results
showed that BoostGuard outperformed all other methods and achieved an
f-measure of 0.994 on the VeReMi dataset.

In [103], the authors propose novel credibility-enhanced Temporal GCN-
based Sybil attack detection. GCNs are analogous to CNNs and perform
similar operations where the model learns from neighboring nodes instead
of pixels. The authors’ TGCN-based classifier considers CAVs as the graph
nodes and uses CAVs information to make real-time classifications of Sybil at-
tacks. Simulation results show that their proposal effectively defends against
different Sybil vehicles with low error rates.

In [104], a Graph Attention Network-based framework for malware de-
tection in C-ITS is proposed. Graph Attention Network is similar to GCNs
with the difference that connections to neighboring nodes are also weighted
to give priority to some nodes over others depending on the quality of their
information for the given task. Results show that the proposed attention
network achieves an f-measure of 0.95 and over-performs GCN.

In [106], the authors propose a fuzzy-based context-aware approach for
the detection of misbehaving vehicles. The approach consists of 4 phases.
Acquisition of context through sensors by the vehicles followed by sharing the
context with other vehicles in the communication range. Then the evaluation
of the context in terms of the uncertainty of the observations and finally
classification of misbehaving vehicles based on how they deviate from the
context reference. The proposed model achieved 89.84% f-measure in optimal
communication and then down to 79.63 % in worst communication scenarios
(message loss).

2.4.2 Unintentional Misbehavior detection

In [120], the authors proposed an automatic engine for fault diagnosis using
wavelet analysis. The fault features extracted by a discrete wavelet transform
are used as the input for ANNs.

In [121], the authors propose a sensor fault detection system for the auto-
motive pedestrian. This fault detection system relies on SVM models trained
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and tested on the KITTI dataset. In the same context, the authors in [122]
propose an automotive fault detection and diagnosis system. The fault de-
tection system is an OC-SVM. The diagnosis system is a Kalman filter (KF)
that computes the residuals between the predicted value and measured value,
checks the normality of the residual’s distribution, and validates whether the
trajectory deviates in a checking period.

In [123], the authors use a combination of CNN, KF, and κ2 to detect
and identify automotive sensor anomalies. Similarly, in [124], the authors
combine an adaptive extended KF, enhanced using a car-following motion
model, and an OC-SVM to detect automotive sensor anomalies.

In [125], a DBN is used to predict a vehicle’s malicious behavior. The
result is then used to classify each vehicle as malicious, normal, or abnormal.
Results show that their model overperforms all state-of-the-art methods and
achieves a false alarm detection rate of 0.98.

The detection of UMB using ML has been poorly explored. Indeed, we
find significantly less research done for this purpose. Acquiring data that
includes UMB is quite cumbersome. There are very limited data sets that
offer such an opportunity, which leads to constraints in the research on this
subject.

2.4.3 Discussion

Throughout our study, we find that an ever-increasing number of research
papers focus on ML for MBD and yield better performance than previously
used rule-based methods such as plausibility checks and trust evaluation.
The interest in using ML-based algorithms for intentional MBD keeps grow-
ing as the development of CAVs is ongoing. These algorithms understand
and model IMB directly from the data. Using both the data and expertise
as opposed to only using human expertise has greatly improved the per-
formance in detecting misbehavior. Still, using ML algorithms has not yet
been thoroughly covered, as the scope of developed algorithms is still quite
wide, and further exploration is still possible. These methods are adaptable
to the various data flows generated in the context of CAVs and can model
high-dimensional data. However, there is a noticeable lack in the use of RL
algorithms. Another interesting point is that most of the surveyed works do
not conduct a temporal evaluation in their experiments, which is critical in
this context.

In our work, we focus on using reinforcement learning for the
detection of misbehavior in a way that exploits its learning from
interactions, dynamicity, and multi-agent easiness as it strongly
correlates with the CAV environment.
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In the next section, we briefly introduce reinforcement learning and present
its application in C-ITS.

2.5 Reinforcement learning

Reinforcement learning as defined in [6] is learning what to do (how to map
situations to actions) to maximize a numerical reward signal. The learner is
not told which actions to take, but instead, must discover which actions yield
the most reward by trying them. The problem of RL is usually formalized
as a Markov decision process (MDP). Research on the RL topic is conducted
in several domains. For instance, its applications to connected autonomous
vehicles (CAVs) are investigated in [126] and extend to subjects such as
autonomous driving, resources optimization, and security [127–133].

Figure 2.5: The agent–environment interaction in a Markov decision process
[6]

The decision maker in RL is called the agent. The agent interacts with the
environment by performing actions At at the current state St and receiving
rewards Rt+1. In practice, the state is some representation of the environment
that the agent observed. After each interaction, the environment along with
the agent moves further to a new state St+1. The goal of the agent is to
maximize the received rewards over time by performing the best actions in
each state. This is formulated as finding a policy π(s, a) —mapping from
states to actions— that maximizes the received rewards.

2.5.1 Markov decision process

MDPs are a class of stochastic sequential decision processes under the Markov
property, that is, future states of the process only depend on the current state
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(and the current action). At each point in time, the decision maker, observes
the state of the system, chooses an action, receives an immediate reward,
and transits to the next state [134]. An MDP can be formulated as 4-tuple
(S,A, Pa, Ra), where: :

• S is the set of states.

• A is the set of actions.

• Pa is the transition conditional probability distribution over all stats
and actions (system dynamics).

• Ra is the immediate reward due to a as the system transits.

A reinforcement learning agent attached to such MDP will try to find the
best policy π∗ to maximize the return Gt:

Gt =
∑

t

γtrt

where rt is the immediate reward received at time t and γ ∈ [0, 1) is a discount
factor used to prioritize immediate reward over future rewards.

To express the quality of states and actions, reinforcement learning algo-
rithms generally involve estimating functions of states Vπ(s) = Eπ[Gt|St = s]
(or of state–action pairs Qπ(s, a) = Eπ[Gt|St = s, At = a]) that estimate how
good it is for the agent to be in a given state (or how good it is to perform a
given action in a given state) under policy π [6]. RL tries to find the policy
π∗ that maximizes the value function :

π∗ = argmax
π

Vπ(s)

In the next section, we present related works that apply RL to misbehav-
ior detection problems in C-ITS and related contexts.

2.5.2 Related works

Huang et al., [135] proposed a policy-based reinforcement learning for anomaly
detection in time series. The state derived from the time series is composed of
m previous actions of the agent and the m previous observations of the time
series and is regarded as an infinite state space. The RL agent is required to
perform the binary detection by outputting 0 or 1 where 0 represents normal
behavior and 1 for an anomaly. The authors then define the reward signal by
following the confusion matrix. The agent receives a positive scaled reward
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when it correctly detects normal and anomalous behaviors (True positive
and true negative). Otherwise, the agent receives a negative reward. The
model was tested on 7 datasets and compared to a benchmark of algorithms
including statistical methods, recurrent neural networks, and value-based
reinforcement learning. The performance is measured using F-score. The
model outperformed all benchmark algorithms on 4 of the 7 datasets and
obtained a better overall score.

The model from [135] was afterward used in [136] where the authors ef-
fectively detect misbehaviors from the VeReMi dataset using RL-based mis-
behavior detection achieving 100% f-score on position-related misbehaviors
and precision of 0.7692 and recall of 0.8571 for speed-related misbehaviors.

Xu et al., [137] proposed a sequential anomaly detection based on temporal-
difference learning (TD-learning). The method can be used for network or
host-based detection systems. The state is defined as the previous m ob-
servations from the sequential data. Observation is either a system call in
host-based detection systems or a connection feature vector in network-based.
The agent is required to raise an alarm in case of an anomalous sequence. A
reward value of 1 is given whenever the agent correctly detects an anoma-
lous sequence, otherwise, no reward is given. The system was evaluated on
anomaly detection for host computers using system call data. The proposed
anomaly detection method can achieve better detection accuracies than other
approaches including SVMs, and HMMs

Pang et al., [138] proposed a novel deep reinforcement learning approach
able to explore rare and novel anomalies beyond the ones present in the
dataset itself. The authors define their method for any state s ∈ Rd where
the agent takes the action of labeling each state as anomalous or normal. The
reward signal is composed of 2 parts. The first part quantifies the reward
for detection. Accordingly, the agent receives a +1 reward if it correctly
detects an anomalous state. It receives a +0 reward when it correctly de-
tects a normal state. Otherwise, a -1 reward is given. The second part of
the reward quantifies the abnormality of the state using an unsupervised
model. For instance, the authors use iForest. Thus, the agent receives a
real-valued reward ∈ [0, 1] describing the abnormality of the state. The au-
thors then evaluate the model on 48 real-world datasets where some classes
of anomalous data are only present in the testing phase and never seen by
the agent in the training phase. The model is compared with five state-of-
the-art semi/unsupervised anomaly detectors. Overall, the proposed model
outperforms the state-of-the-art detectors.

Zha et al., [127] proposed an anomaly detection algorithm using a meta-
policy with reinforcement learning. Given any data set the authors first
map the raw features to a new feature space by extracting a predefined
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set of meta-features. These features are composed of “detector features”,
“anomaly features” and “normality features”. This allowed the others to
define a reinforcement learning anomaly detection algorithm that can be
used on any dataset. The state is defined as the extracted features of the
current observation. The agent is then required to take the action of selecting
the observation for analysis or not. The agent receives a reward of +1 if the
selected observation is anomalous, a reward of -0.1 if the selected observation
is normal, and a 0 reward if the agent does not select the observation. The
authors evaluated their proposal on 24 datasets and compared it with a set of
baseline methods including semi-supervised and unsupervised learning. The
proposed anomaly detection method outperformed all baselines on average
over all data sets.

Feng et al., [128] proposed an anti-jamming countermeasure for V2V com-
munications. They use reinforcement learning for power control and chan-
nel selection. The channel selection is formulated as a multi-armed bandit
(MAB) problem. The state defined in this problem includes metrics on pre-
viously selected channels and evaluated risks. The upper confidence bound
algorithm is used to solve the problem and achieves better performance than
random and static policies.

Rasheed et al., [129] proposed a deep reinforcement learning algorithm
for the detection of attacks on autonomous vehicle sensors and communica-
tions. The RL agent tries to keep an optimal safe distance from the vehicle
in front of it by estimating the optimal velocity. The state is composed of
the m previously received distance measurements from all sensors and com-
munications ( camera, LIDAR, V2X). The agent then estimates the optimal
velocity. The reward is perceived as a variation from the optimal safe dis-
tance. The problem is solved using DQ-Learning in a generative adversarial
network environment. Note we only consider the RL used for defending and
that another RL is used to generate the attacks. The model is compared to
a Kalman filter method and a state-of-the-art deep reinforcement learning
method. The model achieves the lowest deviation from an optimal safe dis-
tance under different attacks. Similarly [130] solve the same problem using
DQ-learning and LSTM.

As part of their security system, Ferdowsi et al., [131] used the MAB
method to detect data injection attacks on the sensors of the vehicle. The
MAB interacts with the vehicle dynamics to detect which sensor is being at-
tacked at each time step. The authors define regret as the difference between
the reward of the best possible arm at each step, and the generated reward of
the arm that is played by the algorithm. Here, playing an arm is represented
by the selection of a subset of the vehicle’s sensors. The proposed detection
approach obtained a substantially better performance compared to a Kalman
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filter.
In [132], the authors defined an MDP framework over vehicular communi-

cations and considered an RL-based misbehavior detector at the RSU nodes
following the MDP. The state is composed of previous actions and current
messages, the actions set is 0 for genuine messages and 1 for false data, and
the reward is weighted over actual labels. They used a value-based Q-learning
method that takes the vehicular time-series data and outputs actions to take
at each time t. They used the VeReMi dataset to train their model to detect
variant DOS attacks. The results show that the model efficiently detects dos
attacks with a 99.5% f-score.

In [133], the authors used RL to correct errors in vehicular messages.
They used Q-learning to model the vehicles’ behaviors. Firstly, a discretiza-
tion of the vehicle attributes (distance, speed, acceleration. angle) has been
made to allow for a finite number of states (72 states). The action space
consists of two actions (0 for the genuine message, and 1 for the erroneous
message). The reward is modeled by the difference between previous and
current messages, and also the difference between messages before and after
correction. They simulated the scenarios using the SUMO simulator. The
results show that their approach can detect error V2X data up to 80%.

In our work, we first formulate the V2X context using stream
graphs which allows us to motivate and understand the use of RL
methods in such context. We focus on modeling our misbehavior
detection problem using deep Q-learning as our proposed solution.

Surveyed research uses either real or simulated datasets. However, these
datasets are usually kept private, which limits further studies using the same
datasets.

In the next section, we present a set of tools and datasets that are freely
available and useful in different subjects in the context of CAVs.

2.6 Simulators and datasets

The evaluation and validation of an MBD method usually require experimen-
tation on a real or simulated scenario. In this section, we survey the main
open-source simulators and datasets that can be used to test and validate
MBD methods.

2.6.1 Classification

The MBD community uses several simulators of CAVs. We list the main ones
in Table 2.9 where we classify these simulators through different criteria:
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Ref State Agent and
actions

Reward Method

[135] Past ac-
tions and
observa-
tions

0 : nor-
mal obser-
vation. 1
: anoma-
lous obser-
vation

A if true positive. -B if false
positive. -C if false negative.
D if true negative. A,B,C,D
are positive numbers

Policy-
based
RL using
LSTM
network.
(PTAD)

[137] Past obser-
vations

Raise an
alarm. Do
not raise
an alarm.

1 if an anomaly is detected. 0
otherwise.

TD-
learning

[138] S ∈ Rd Label as
normal
Label as
anomalous

R1 = 1 if anomaly is detected.
0 if normal is detected -1 oth-
erwiseR2 = abnormality score
∈ [0, 1] Reward = R1 +R2

Deep Q
learning
and iForest

[127] S ∈ Rd (
a set of d
predefined
meta-
features)

Select ob-
servation.
Do not
select ob-
servation.

+1 if selected observation is
anomalous. -0.1 if selected ob-
servations is norm. 0 if no ob-
servation is selected

Proximal
Policy Op-
timization
(PPO)

[129] S ∈ Rm×d

history of
measure-
ments.

the optimal
velocity V

δ = Variation from optimal
distance

Deep Q-
learning
& LSTM-
GAN

[131] / Select a
subset of
sensors

Difference between the reward
of the best possible arm and
the reward of the played arm

MAB

[133] discretized
vehicle
attributes
(distance,
speed, ac-
celeration.
angle)

0 for
genuine
message,
and 1 for
erroneous
message

the difference between mes-
sages before and after correc-
tion

Q-learning

[132] previous
actions and
current
messages

0 for gen-
uine and
1 for false
data

A if true positive. -B if false
positive. -C if false negative.
D if true negative. A,B,C,D
are positive numbers

value-
based
Q-learning

Table 2.8: Overview of RL application to anomaly detection
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• V2X data: whether the simulator (or an extension of it) provides data
corresponding to the C-ITS communication stack (e.g., CAM mes-
sages).

• Sensor data: whether the simulator (or an extension of it) provides
data corresponding to the flow of information perceived through the
different sensors in the vehicle (e.g., images from the camera).

• Adversary module: whether the simulator (or an extension of it) pro-
vides the option to inject some type of attack (e.g., DoS, tampering)
in the simulation.

• Security module: whether the simulator provides some security mech-
anisms (e.g., packet verification).

Simulator V2X data Sensor data Adversary module Security
VEINS ✓ ✕ ✓ ✕

iTetris ✓ ✕ ✕ ✕

CARLA ✕ ✓ ✕ ✕

Matlab ✓ ✓ ✕ ✓

Ventos ✓ ✕ ✓ ✕

Artery ✓ ✕ ✕ ✕

Vanetza ✓ ✕ ✕ ✓

Table 2.9: Open-source simulators classification

As illustrated in Table 2.9, the simulators provide different kinds of outputs
and thus can be used for diverse use cases. We give a brief presentation of
each simulator in the next section.

2.6.2 Simulators

2.6.2.1 VEINS

Vehicles in network simulation is an open-source simulation framework [139].
The V2X communication module integrates several standardized V2X pro-
tocol stacks and the network simulator OMNeT++ [140]. VEINS integrates
a traffic simulator named Simulation of Urban MObility (SUMO) [141]. Un-
fortunately, VEINS does not have an ADAS module and therefore, cannot
simulate sensor measurements. However, VEINS provides a security module
with an exhaustive library of security mechanisms related to MBD [142] or
privacy preservation [143].
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2.6.2.2 iTETRIS

An Integrated Wireless and Traffic Platform for Real-Time Road Traffic Man-
agement Solutions (iTETRIS [144]) is an open-source simulation framework.
The V2X communication module uses NS-3 [145] as its network simulator
and is compliant with the protocols stack defined by the ETSI standard. The
Traffic mobility module uses SUMO as its traffic simulator. Unfortunately,
iTETRIS does not provide an ADAS module or a security module.

2.6.2.3 CARLA

Car Learning to Act (CARLA [146]) is an open-source simulator for au-
tonomous driving research. The simulator does not include a V2X commu-
nication module. However, some extensions managed to implement a V2X
module for CARLA [147]. Also, CARLA integrates its traffic simulator for
both vehicles and pedestrians. Moreover, CARLA integrates an ADAS mod-
ule, which includes several sensor models and tools to conceive perception,
planning, and control systems. However, CARLA does not include any se-
curity modules.

2.6.2.4 Matlab

Matrix laboratory (Matlab [148]) is a multi-paradigm numerical computing
environment and proprietary programming language. Recently, Matlab has
provided libraries to simulate, conceive, and evaluate systems related to an
ADAS context. Matlab does not include a V2X module. However, some
extensions propose an open-source V2X module. The traffic module uses
basic traffic modeling based on the object trajectory. With that said, Matlab
does provide driving scenarios or tools to set the object trajectory.

2.6.2.5 VENTOS

Vehicular Network Open Simulator (VENTOS [149]) is a V2X simulation
framework based on IEEE V2X standards. VENTOS integrates SUMO and
OMNeT++. However, VENTOS does not include sensor models and there-
fore, does not support Cooperative ADAS applications. Thus, the VENTOS
scope is limited to the connected vehicle.

2.6.2.6 Artery

Artery is a V2X simulation framework based on ETSI ITS-G5 protocols
(Unlike VEINS ) [150]. Just as VEINS, Artery integrates SUMO and OM-
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NeT++.

2.6.2.7 Vanetza

An open-source implementation of the ETSI ITS-G5 stack. Vanetza [151]
provides several classes to generate messages such as CAM and DENM and
PKI certification. Vanetza is a communication-driven simulator, as it does
not implement any vehicular sensors. Besides PKI certification, the simulator
does not provide other security/adversary modules.

Several domain applications can benefit from this set of simulators such
as traffic modeling, VANET applications, network evaluation, and testbeds
for cybersecurity.

2.6.3 Datasets

Similarly, several datasets are used by the MBD community. In the following,
we list the main datasets found.

1. Next Generation Simulation (NGSIM) [152] has recorded vehicle move-
ments on various US roadways.

2. Safety Pilot Model Deployment (SPMD) [153] dataset has more than
5.6 TB of recorded BSMs.

3. The Wyoming Connected Vehicle Pilot (WCVP) [117] dataset has V2X
data collected on US road I-80.

4. VeReMi [9] has several simulated misbehavior types (extended in [155]
with new misbehavior types).

5. Dimensions dataset [59] contains dimensions of several thousands of
vehicles and injected implausible dimensions. The resulting dataset
can be used for MBD.

6. Bristol dataset [154] contains CAM exchanged between two On-Board
Units and four RSUs.

Then, in Table 2.10, we classified each dataset based on several character-
istics: covered safety message fields, the presence of failure causes, physical
signal data, metadata, and the CAV context.

In this section, we briefly presented different simulators and datasets that
can be used to evaluate an MBD technique. We compared these materials
using criteria that can help choose the necessary material for a given task.
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Data Features Description
Dataset

N
G
S
IM

[152]

S
P
M
D

[153]

S
P
M
D

[117]

V
eR

eM
i
[9]

D
im

en
sion

s
[59]

B
ristol

[154]

Standard Elements

DSRCmsgID Identifier for message type ✕ ✓ ✓ ✓ ✕ ✓

SecMark Timestamp ✓ ✓ ✓ ✓ ✕ ✓

MsgCount Message Number for a sequence ✕ ✓ ✓ ✓ ✕ ✓

TemporaryID Network ID ✕ ✓ ✕ ✕ ✕ ✓

Latitude Position along latitude axis ✕ ✓ ✓ ✓ ✕ ✓

Longitude Position along longitude axis ✕ ✓ ✓ ✓ ✕ ✓

Elevation Elevation to the sea level ✕ ✓ ✓ ✓ ✕ ✕

Speed Object speed ✓ ✓ ✓ ✓ ✕ ✓

Heading Angle between object & North ✕ ✓ ✓ ✕ ✕ ✓

Yaw Rate Heading per second ✕ ✓ ✕ ✕ ✕ ✕

Lat. Accel Acceleration along latitude axis ✕ ✓ ✕ ✕ ✕ ✕

Long. Accel Acceleration along longitude
axis

✕ ✓ ✕ ✕ ✕ ✕

Vet. Accel Acceleration along vertical axis ✕ ✓ ✕ ✕ ✕ ✕

Positional Ac-
curacy

Accuracy at one standard devi-
ation

✕ ✓ ✕ ✕ ✕ ✕

Brake System
Status

Status of the Brake System ✕ ✓ ✓ ✕ ✕ ✕

Vehicle Length Vehicle Length ✓ ✕ ✕ ✕ ✓ ✕

Vehicle Width Vehicle Width ✓ ✕ ✕ ✕ ✓ ✕

Physical Signal Data

RSSI Received Signal Strength Ind. ✕ ✕ ✕ ✓ ✕ ✓

Metadata

Sender ID Emitter Identifier ✕ ✓ ✓ ✓ ✕ ✓

Gentime Time of message creation ✕ ✓ ✓ ✓ ✕ ✓

Receiver Data

Receiver ID Receiver Identifier ✕ ✓ ✕ ✓ ✕ ✓

Receiver Posi-
tion

Position along the X-Y-Z axis ✕ ✕ ✕ ✓ ✕ ✓

Cause of Perception Failures

Attacks Presence of attacks ✕ ✕ ✕ ✓ ✓ ✕

CAV Type

#Type Diversity of CAV types ✕ ✕ ✕ ✕ ✓ ✕

Table 2.10: Datasets for CAV with available features
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For example, for the detection of anomalous 3D objects in the perceived
images, one would use CARLA or MATLAB instead of the others since it
provides sensor data, as illustrated in Table 2.9.

2.7 Conclusion

In this chapter, we presented the context of CAV and C-ITS. We intro-
duced the main aspects, including, ITS-stations, communications between
these stations, and also vehicle components. We provided an overview of
state-of-art definitions and classifications of misbehaviors in the context of
connected and autonomous vehicles. Moreover, we presented classical and
current machine learning algorithms for misbehavior detection in the context
of CAV. Finally, We also surveyed tools and data sets that are freely available
for use in MBD. We found limitations to the current misbehavior definition
and model and also to the current misbehavior detection classification in the
context of CAVs, and thus, in this chapter, our first contributions are a new
misbehavior definition and a new model covering both current attacks and
faults. Furthermore, we propose classifications of both misbehavior and mis-
behavior detection methods in chapter3 extending the proposed definition
and model in this chapter.

In the next few chapters, we will discuss and analyze the current state
of the art and propose improvements in several topics. Specifically, as we
observed the lack of a concise framework for the detection of misbehavior in
C-ITS, we propose in chapter 4 a misbehavior detection architecture tailored
for the V2X communications stack as it takes advantage of the communica-
tion layers’ structure to define several modules aiming to detect, classify, and
report misbehaviors. To implement our architecture, we noticed the unavail-
ability of simulation frameworks that provide C-ITS data such as V2X, cam-
era feed, and map knowledge in one environment. Thus, relying on the tools
described in this chapter, we present in chapter 6 our simulation framework
that provides such data and allows for attack injection, detection, and visual
interpretation. In our work, we mainly focus on applying machine learning to
detect misbehavior, and we noticed that the classical use of machine learning
in the current literature usually leads to data leakage. We propose in chap-
ter 6 our solution in the form of a spatiotemporal cross-validation approach
to avoid such a problem. We further investigate reinforcement learning in
chapter 5 as we develop its theoretical and applicable framework with respect
to the C-ITS context. We show that it shares some fundamental character-
istics of the vehicular environment and propose our own RL model for the
detection of misbehavior.

45



Chapter 3

Characterizing misbehavior and
its detection in C-ITS

In this chapter, we extend to our contribution from chapter2 where we pro-
posed a definition and a model for misbehavior in C-ITS. We provide here
classifications of both misbehavior and misbehavior detection methods.

3.1 Classifying misbehavior

We overviewed in chapter 2 the technologies involved in CAV and C-ITS and
their security issues and solutions. We observed the continuous evolution of
possible misbehavior in the context of CAV and also research and industrial
effort done to provide efficient misbehavior detection mechanisms. But, these
researches usually target specific security attacks and failures in the system.
And thus, with respect to the current literature on misbehavior and its clas-
sification, we find it difficult to classify such research works due to limited
coverage of present faults and attacks in Tables 2.1, 2.2, and 2.3. In particu-
lar, they explicitly show security and safety issues that should be considered
when developing misbehavior detection mechanisms and architectures.

We sense the need for structuring these practical examples of attacks and
failures into a concise model from which we can derive detection mechanisms
for a class of faults and attacks rather than for specific examples of attacks or
faults. We believe this will help us understand the causes and effects of these
issues and facilitate the development of new security mechanisms. We discuss
the limitations of the current literature on misbehavior classification when
applied to attacks and failures presented in chapter2. We propose a hierarchi-
cal misbehavior classification to describe simple (resp., complex) misbehavior
affecting an Item (resp., multiple items) of a CAV that is easily extensible
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Paper [47] [42] [48] [49] [35] [38] Ours

A
tt
a
ck Component details ✓ ✓ ✓ ✓ ✕ ✕ ✓

Threat classification ✓ ✓ ✓ ✕ ✕ ✕ ✓

Context attacks ✓ ✕ ✕ ✕ ✕ ✕ ✓

F
a
u
lt Component details ✕ ✕ ✕ ✕ ✓ ✓ ✓

Threat classification ✕ ✕ ✕ ✕ ✕ ✕ ✓

Context Fault ✕ ✕ ✕ ✕ ✓ ✕ ✓

Table 3.1: Literature: misbehavior classifications analysis

to newly defined components and constitutes a basis for the classification of
research done in developing misbehavior detection mechanisms [17].

The surveyed misbehavior classifications from chapter 2 [35,38,42,47–49]
do not generalize to all existing misbehavior types. In Table 3.1, we compare
these taxonomies based on several criteria:

• Faults/Attacks: the taxonomy accounts for both.

• Component description: the taxonomy describes the targeted and fail-
ing components.

• Threat classification: the taxonomy categorizes the threat raised by
the misbehavior.

• Context: the taxonomy considers failures or attacks in the vehicle’s
surroundings that may cause the CAV to fail.

We thus propose a new misbehavior model and a new classification that
better expresses the roots and threats of misbehavior and covers both mali-
cious actions and internal faults of a component in the CAV.

Based on our misbehavior definition 2.7 from the last section, we devel-
oped a misbehavior classification with mainly two parts: intentional (Figure
3.1) and unintentional (Figure 3.2).

3.1.1 Intentional misbehavior

Our classification covers simple misbehavior affecting one vehicle’s item and
complex misbehavior that may affect multiple items at the same time. The
classification is extendable to consider other vehicle items that might be
added in future generations of CAV. The IMB raises several threats that we
characterize using the STRIDELC threat model. Figure 3.1 shows a hier-
archical tree, characterizing any given (unit) intentional misbehavior by one
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path from the tree root to a leaf. A set of such paths may describe complex
misbehavior. It also shows how we divide it into two categories: physical
(where a physical component has been intentionally tampered with) and
non-physical categories, and for each, we select subcategories according to
C-ITS standards and vehicular architectures. We put the whole classification
under a security threat model (STRIDELC). If we take a Sybil Attack as an
example, we can draw a path for it in the tree (i.e., intentional, non-physical,
outside, wireless connectivity, facilities, spoofing, and confusion). Based on
this tree and its set of paths, we define a new CAV classification for IMB.
In the case of newly discovered misbehavior, the classification is easily ex-
tendable to support it by adding leaves or intermediate ITS-Ss under the
corresponding category on the current tree.
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Figure 3.1: Intentional misbehavior classification.
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3.1.2 Unintentional misbehavior

The same issues from the last section arise for UMB, in addition to faults
in the CAV components, we consider extravehicular factors such as weather,
road conditions, and signs. We similarly draw a hierarchical tree to iden-
tify misbehavior that is not the outcome of a malicious attack. In the same
manner, as the one for IMB, we can represent the misbehavior where a plan-
ner fails to anticipate the other driver’s behavior (Unintentional, Nonhuman,
Element/item, Software fault, Perception). Figure 3.2 shows haw we divide
it into three categories: Item fault for errors occurring because of an item,
Design Fault and External Environment Fault categories and derive subcat-
egories according to C-ITS standards.
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Figure 3.2: Unintentional misbehavior classification.

3.1.3 Discussion

Compared with the taxonomy proposed in [47], our misbehavior model de-
scribes the misbehavior with the information available in real-time and is
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most useful for anomaly detection and ML algorithms while keeping as much
relevant information as possible. It’s worth noting that knowledge of tools
used for the attack or information about manufacturers of the car is either
not available at the time of the event or not relevant for detection. Also, our
model covers the UMB resulting from faults in the system.

In [42], the taxonomy covers the stages of an attack and the connected
elements (attacker, target, motive, consequence). However, this taxonomy
lacks a hierarchical dependency between the target and the attack vector,
which can clarify the limits of some attacks. Also, the taxonomy does not
cover physical attacks (e.g., vandalism) and indirect attacks on infrastruc-
tures. As in [47], the taxonomy does not cover faults and UMB due to the
vehicle’s context. The improvements on [42] proposed in [48] do not solve
these limits, as they are made to include attacks on data streams only. [49]
gives a listing of possible attacks on autonomous systems, but does not spec-
ify the component targeted by the attack or CAV context-specific threats
and also does not cover components’ faults.

The taxonomy proposed in [35], simplified in [38], covers the primary
sources of failure. Nevertheless, it lacks details on which parts of the CAV
fail to perform and their hierarchical order. For instance, we would put me-
chanical failure under hardware. Moreover, the construction zone seems too
specific to be at the same level as weather and road conditions. For details,
we prefer to use the ISO 26262 standard definition of hardware faults and
failures. Also, this taxonomy only covers CAV’s failures and omits malicious
attacks.

Our proposed misbehavior model, definition, and classification consider
the previously mentioned limits in the literature on misbehavior taxonomies
and give a better representation of misbehavior in CAV. It can be used in real-
time MBD since the features composing the model can be easily acquired in
real-time. This helps in describing the misbehavior that occurs on the CAV
and enables us to determine the severity of the misbehavior and the flow
of actions needed to maintain the safety and security of the CAV and its
passengers. For example, a warning message informing of a failure of the
emergency braking system due to some internal error may help the driver
take decisive action.

Our model and classification can also be used for offline MBD and access
revocation. Indeed, some misbehaviors might not be fully described in a
real-time scenario and must be analyzed offline to facilitate their detection
in the future. The knowledge stored by our model can be used in the form
of a global misbehavior report sent periodically to a Misbehavior Authority
that can analyze and act on this knowledge.

We’ve defined in this section the misbehavior, its model, and classification
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in the context of CAVs. Ideally, when misbehavior occurs, it should be
detected, labeled, and characterized. MBD mechanisms should provide such
characterization whenever they identify misbehavior. Our model acts as
output features for MBD mechanisms and, in particular, the ML-based ones
can rely on these features to characterize their results. In the next section,
we present ML-based algorithms, characterize them, and give insight into
their use for MBD.

3.2 Characterizing misbehavior detection in

C-ITS

As stated in the previous section, misbehavior in the CAV context presents a
high risk for the vehicle and its passengers. Thus, it needs special handling,
first by detecting it and then by applying the favorable reaction to ensure
the efficiency and security of the CAV.

In the following, we analyze recent advances in MBD using ML in the
context of CAVs and propose a taxonomy that covers all the research. In
contrast with the survey [50], where classical methods such as node-centric
and data-centric methods are classified, we focus on ML methods.

As thorough as they are, the different taxonomies in the literature are not
adapted for our purpose. We focus on three main aspects: the classification
depth, the methods covered, and the adaptation to the context of CAVs. In
contrast, the authors in [68] gave a high-level classification of ML techniques
without an explicit focus on MBD and CAVs context, and thus their clas-
sification does not give sufficient details about the underlying algorithms in
each category. Moreover, in [67], the taxonomy only mentions global cate-
gories, and no examples of actual techniques are given. In [69], a large listing
of techniques is given, but lacks hierarchical structuring and does not help
us select and understand the underlying techniques. In [70, 71], only unsu-
pervised techniques are covered, and the authors discuss advances in neural
network-based methods applied to aviation. Inspired by the surveyed tax-
onomies, we propose our new taxonomy of ML-based MBD techniques that
provides a wider scope and covers previously mentioned works and anomaly
detection for CAVs.

3.2.1 Proposed taxonomy of ML based MBD techniques

In this section, we present a new classification of ML-based algorithms. In
particular, our goals here are as follows:
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• to highlight the most fundamental choices in ML algorithms for MBD
in the context of CAVs.

• to offer insight into which algorithm to use.

• to provide an overview of modern MBD techniques.

Throughout this section, anomaly detection, novelty detection, outlier de-
tection, and MBD are equivalent notations. Our goal is to provide insight
into choosing ML algorithms, we first formulate the different characteristics
of the data used in our context.

In the context of CAV, the data extracted can be of several types and
inhibits several characteristics.

• Single hop: data transmitted only once from one ITS-S to another.

• Multi-hop: data transmitted through several ITS-Ss.

• Broadcast : same data transmitted to multiple ITS-Ss.

• High frequency : data frequently transmitted by ITS-Ss.

• Multi-frequency : data transmitted by multiple sources with different
frequencies at each source.

• Spatiotemporal : data constrained to time and space.

• Multi pseudo-id : use different identifiers to send data.

• Numerical : valued numerical data.

• Categorical : a dataset containing values/observations that can be sorted
according to category.

• Univariate : this consists of single (scalar) observations recorded se-
quentially over equal time increments [156].

• Multivariate : multiple observations recorded sequentially over equal
time increments [157].

• Discrete: a dataset containing values/observations that are distinct
and separate.

• Continuous : a dataset containing values/observations that take on any
value within a finite or infinite interval.
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For example, the flow of images extracted from the vehicle’s camera contains
numerical data constrained to temporal dependencies. These images contain
multiple variable pixels and, as such, are considered multivariate time series.
The same data could also include object classification, that is to say, a cate-
gorical variable. Another example would be the CAM transmitted between
the vehicles. A CAM contains mainly numerical data that evolve over time
and space that generates the CAM spatiotemporal time series data. These
characteristics of the data are crucial for identifying which method fits best
for the corresponding data. We constructed in Table 3.2 a set of character-
istics of the data used in the literature to help to provide insight on how
to use the ML classification proposed in this paper. As can be seen in the
last column, we classified each surveyed method with respect to the proposed
classification in Figure 3.3.
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Data Type Data characteristics Malicious actions

and errors

Algorithm, paper, and category

Messaging
data: Vehicle
data, Envi-
ronment data
(e.g., CAM)

Single hop,
Multi hop,
Broadcast,
High frequency,
Multi-frequency,
Spatiotemporal,
Multi pseudo-id,
Numerical,
Categorical,
Multivariate

Tampered content,
Erroneous content,
DoS,
Abnormal frequencies,
Abnormal behaviors,
Delay,
Authentication

Supervised:
• Neighbor : K-NN [60,93,94,99,116]
• TreeEnsemble : DT [94], RF [59, 94, 99, 100], A-Boost [59], XGB [15,

100],LGBM [100], Bag [94]
• Neural networks : ANN [83,88,100], MLP [15,59,97,158], LSTM [15,98,100],

CNN [98]
• Statistical : SVM [15,60,82,84,93,95], LR [94,95]
Unsupervised:
• Clustering : K-means [72,77], Fuzzy STS [75], Fuzzy C-means [97]
• Domain : OC-SVM [77]

Network data:
extracted mea-
sures from
monitoring the
communication
(e.g., delivery
rate)

Multivariate time se-
ries,
Univariate time series,
Discrete,
Continuous,
Computed,
Aggregated.

DoS,
transmission error,
Packet loss

Supervised:
• Neighbor : K-NN [74,107]
• TreeEnsemble : DT [74,107], RF [74,107], A-Boost [74, 107]
• Neural Networks : ANN [73,79,83,88,92], MLP [115]
• Statistical : SVM [76,81,82,92,96,110], NB [74,107]
Unsupervised:
• Clustering : K-means [77], Fuzzy C-means [87]
• Projection/Reconstruction : Deep-Autoencoders (DAE) [96]

Physical data:
received signal
strength (RSS)

Continuous,
Time series,
Physical interference,
Raw,
Aggregated

fake position,
phantom objects

Supervised:
• Neighbor : K-NN [74,93,107]
• TreeEnsemble : DT [74,107], RF [74,107], A-Boost [74, 107]
• Statistical : SVM [76,93,95,96], NB [74,107], LR [95]
Unsupervised:
• Projection/Reconstruction : DAE [96]

Plausibility
checks data:
discrete con-
straint satisfac-
tion

Discrete,
Time series,
Raw,
Aggregated

Erroneous if computed
on genuinely faked
data

Supervised:
• Neighbor : K-NN [60,74,93,94,107]
• TreeEnsemble : DT [74,94,107], RF [74,94,107], A-Boost [74,107], Bag [94]
• Neural Networks : ANN [83]
• Statistical : SVM [60,93,95], NB [74,107], LR [94,95]

Fuzzy plausi-
bility checks
data: con-
straint satisfac-
tion

Continuous,
Time series.

Erroneous if computed
on genuinely faked
data.

Supervised:
• TreeEnsemble : XGB [15,100], RF [100], LGBM [100]
• Neural Networks : MLP [15,100,158], LSTM [15,100]
• Statistical : SVM [15]

Table 3.2: Data characteristics
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Figure 3.3: Proposed taxonomy of Misbehavior detection using ML

Our classification divides MBD into three main categories: unsupervised/semi-
supervised, supervised learning, and RL (see figure 3.3). In the next few
sections, for each category, we elaborate on four points. We first give a brief
presentation of the category, followed by a comparison of the algorithms
found in the category. We then provide references where such methods were
used and offer insights into their use in the context of CAVs.

3.2.1.1 Unsupervised/semi-supervised learning

In this category, we derive several subcategories based on the nature of the
methods, namely, neighborhood, clustering, time series regression, domain,
projection, ensemble, and statistical.
(i) Neighborhood-based category

This category covers methods defining a distance measure of a point to
its local neighbors for each point in the data. We put in this category
the method Local Outlier Factor (LOF) [159] and its variants (Connec-
tivity based outlier factor [160] and Local Outlier Probability [161]).
Seemingly, neighbor-based approaches work better when the data ex-
hibit underlying spatial dependencies (positional data) such as CAM.
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We notice from the works [162–164] that these methods can detect
implausible positions that differ largely from the spatial distribution
of genuine data. We recommend using such methods when validat-
ing positional knowledge and whenever possible anomalies are distant
from normal data. Other neighbor-based approaches exist; we refer the
readers to algorithms such as INFLO [165], and LOCI [166].

(ii) Cluster-based category
This category covers methods that identify clusters of points in the
data and are robust to outliers.
Similar to neighbor-based methods, cluster-based methods are applied
to structural data where genuine points form a cluster. The main dif-
ference is that these methods identify clusters in the data, whereas
the neighbor-based methods compute a score of abnormality for each
point, which makes it easier to extract the genuine behavior. We rec-
ommend using cluster-based methods when it is assumed that there
are no clusters of anomalies and that the normal data form identifiable
clusters. Cluster-based methods were used to detect anomalies in the
communication messages and in network data. Authors [167] applied
DBSCAN to detect anomalies in network data from vehicle communica-
tions. DBSCAN was also successfully applied to vehicle communication
for anomaly detection in positional data in [168].

(iii) Time series regression-based category
These category models the general observed phenomena in a forecasting
fashion and then compare the newly obtained data to the forecasted
one. If the difference is higher than a certain threshold, the data point
at that timestamp is considered an anomaly.
Time-series regression-based methods fit better for sequential data that
inherit a time dependency between subsequent observations, such as the
evolution of speed over time. We recommend using these methods when
such assumptions are observable. In the context of CAV, time-series
regression-based methods were used to detect anomalies and incidents
in traffic-related data extracted from V2V communications [169] and
for modeling the vehicle’s mobility pattern [168]. It was also used for
detecting attack injection in the CAN network [170].

(iv) Domain based category
This category includes the One-Class Support Vector Machine (OC-
SVM [171]). OC-SVM is an unsupervised algorithm that models gen-
uine data. In a way, OC-SVM aims to separate inliers from outliers by
creating boundaries over genuine data points, thus defining the domi-
nant class’s domain. It is also seen as a function that is positive inside
the domain and negative outside. Points that are outside of the domain
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are labeled as anomalies. In the context of CAV, OC-SVM is used to
detect DoS attacks leading to sensor anomalies [122,124].
We recommend using OC-SVM on numerical data where genuine points
are found in higher-density areas on the feature space because this
method finds boundaries over such areas, which construct the domain
of genuine data.

(v) Projection/ reconstruction based category
In this category, the methods do not explicitly label data as anomalies.
Instead, they represent the data in a way that renders the detection
of anomalies easier. Particularly, deep belief networks (DBN) which is
a novel deep learning based architecture composed of multiple hidden
layers greedily (layer by layer) trained to reconstruct the input, have
achieved good results in misbehavior detection. The features learned in
the hidden layers allow for easier separation of different attacks. Projec-
tion methods were used for location anomaly detection [96, 172], Sybil
attack detection [173], and on vehicle communications and anomalous
objects detection [122,174,175].
Since these methods project the data in a different space, we recom-
mend using these methods when it is constraining to work on the orig-
inal data feature, whether due to high dimensionality or the difficulty
of detecting anomalous data in the original space.

(vi) Ensemble-based category
This category combines multiple ML algorithms to solve the problem
as an ensemble.
These methods were applied to detect anomalies in automotive sensors
[122], in a CAN [176], in V2X communications [177], and in driving
behavior [178]. Its use depends on the methods used to create the
ensemble.

(vii) Statistical category
This category covers density estimation, histogram-based, and sta-
tistical features. We also include Robust Kernel Density Estimation
(RKDE [179]).
These methods were used to identify the location of unwanted objects
on the road, based on V2V messages in [180], and which were used for
monitoring road traffic and vehicle behavior [181]. Similarly to cluster-
based methods, this should be used when it is assumed that there is
significant density for the genuine data.
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3.2.1.2 Supervised learning

Under supervised ML, we also derive subcategories, namely, neighbor, treeensemble,
neural networks, and statistical methods.

(i) Neighbor based category
The supervised version of neighbor-based methods relies on the labels
provided in the training set to identify new points. The new point is
given a label depending on the most used label in its neighborhood
in the training set. Authors in [93, 94] used K-NN to detect message
falsification. In [99], it was used to detect jamming in the vehicle net-
work. It was also used for intrusion detection [80] and Sybil attack
detection [116]. K-NN can be applied easily to most data types.
For MBD, it is best to use neighbor-based methods when the misbe-
haviors have similar characteristics (e.g., attacks) since these methods
rely on the closest data to decide. Note that neighbor-based methods
tend to misclassify these data points when the misbehavior acts as noise
(multiple data points spread in the feature space).

(ii) Tree/ensemble-based category
This category is based on building a decision tree that maps input
features to the target based on a set of splitting rules applied to the
values of each feature. These methods were used effectively for the
classification and detection of multiple misbehaviors in V2X commu-
nications [15, 59, 100]. They fit a set of small models to the underline
data. Each model can specialize in detecting one class of misbehavior.
This helps to achieve better performance, as noticed in the mentioned
works. We recommend using such methods for separating misbehavior
classes among themselves.

(iii) Neural-network based category
Neural networks are connected units that receive, process, and for-
ward signals (real numbers) from other units. The ’process’ compo-
nent is a weighted mean of all received signals, where weights repre-
sent the strength of the signal. These computations can relate input
features to desired target features and are thought of as a function
of the input. Since this function is neither specified nor understood,
neural networks are black boxes. This category includes the Multi-
Layer Perceptron (MLP), Long short-term memory (LSTM), and also
novel graph convolutional networks (GCN), and graph attention net-
works. In the context of CAV, neural networks were used extensively
to detect misbehavior anomalies in V2X communications and sensor
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data [15, 79, 83, 88, 90, 92, 98, 100, 123]. Neural networks offer excellent
performance but require large sets of data and intensive computations.
In such a setup, we recommend using these methods when data is avail-
able at a low cost and when real-time requirements can be met.

(iv) Statistical category
We find in this category SVMs, Logistic regression (LR), and Naive
Bayes (NB) algorithms. Statistical methods consist of the baseline
methods and are thus extensively used for misbehavior detection in
the context of CAV [15,60, 82,84–86,92,93, 95,96].
These methods are easily computed and explainable, which helps un-
derstand the data and the misbehavior. Using such methods imply that
a certain set of assumptions on the data are met (e.g., i.i.d variables,
Bayes assumption). We recommend using statistical methods such as
SVM when these assumptions can be made.

3.2.1.3 Reinforcement learning

RL algorithms aim to learn the best action to take given the current state
of an agent in a given environment. The algorithm finds the most rewarding
action at a given state. These algorithms are classified into two subcategories,
namely, model-free and model-based RL.

(i) Model-based RL category
These algorithms require a model of the environment (i.e., the transi-
tions and rewards between all possible states). Such a model is usually
unavailable to the agent, and the agent must learn the model in this
case.
Since model-based RL requires a model environment, it is not easy to
apply such methods in CAVs where the environment is complex and
includes anything that interacts with the vehicle.

(ii) Model-free RL category
These algorithms do not require a model of the environment. They
optimize a policy, i.e., the action to take a state or an approximator Q-
function for the optimal action-value function through trial and error.
The difficulty of applying such methods is in the method’s capability
to understand the current context and the presence of a reward for
each action it performs, and thus applicable to any data.

59



3.2.2 Discussion

In C-ITS, we can find multiple kinds of misbehavior that constrain some
methods more than others. Also, the data available at every moment for the
MBD may vary depending on the context. For that, choosing a supervised,
unsupervised, or reinforcement learning method is critical. We highlight some
of the main criteria for such a choice. Firstly, the problem solved differs from
one class of methods to others; RL solves a goal-oriented problem based on
a reward metric without looking for structures in the data as in the case
of unsupervised learning. Supervised learning solves sub-problems based on
the available labels. Secondly, since supervised learning is based on labels,
these labels must be available and that constrains the method to detect only
misbehavior classes already known. Unsupervised learning doesn’t require
such labels and only finds structural dependencies in the data. Though, it
requires some post-classification to understand and/or classify the structures
of misbehavior. Similarly, RL methods don’t require a label but need an
appropriate reward metric from the environment and also post-classification
to understand the misbehaviors. Finally, to apply RL, an interactive envi-
ronment is required to train the method. The real environment is a high
risk in this context, as for several steps the RL method will be exploring the
C-ITS environment. Thus, it’s usually done through simulation first.

Our classification covers supervised, unsupervised, and RL methods that
can be applied to MBD and puts them into different subcategories. This
classification aims to help the reader search for an appropriate algorithm for
the task at hand and give a general overview of the methods used for MBD.

With the same mindset of providing insights and tools for applying ma-
chine learning to MBD, we observed a need for data in this context. In
chapter 2 we presented a set of tools and datasets found in the literature
that can be utilized to apply machine learning, we presented some advan-
tages and disadvantages of such tools. One common disadvantage of those
is the lack of a concise simulation or data set that provides synchronized
multi-sources of data (camera, LiDAR, V2X communications, weather, . . .
etc.). In particular when it comes to applying reinforcement learning where
interaction is needed.

Now that we understand misbehavior in C-ITS and know how to classify
and describe it, we move on to detecting misbehavior. In the next chapter,
we present our architecture CAV-MBDA for misbehavior detection for CAVs.
We use the classification of detection methods proposed in this chapter to
define our detection module and the classification and model of misbehavior
for our decision module. Finally, we show an example pipeline of detection
using CAV-MBDA.
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Chapter 4

CAV-MBDA: a multi-layered
architecture for misbehavior
detection in C-ITS

We discussed in the previous chapters how important it is to secure the C-
ITS system from the vehicle’s point of view. We stressed the importance of
monitoring this data for any anomalies to guarantee the safe operation of the
C-ITS system. We described our definition and model of misbehavior that
will help us build our detection architecture. In this chapter, we describe our
solution CAV-MBDA; a multi-layered architecture for the detection of such
misbehaviors locally within the vehicle that takes into account all previously
discussed kinds of data, and the different communication layers. We define
the whole pipeline from sensing knowledge to detecting misbehavior.

4.1 Overview

We want to design an architecture for the vehicle that, from the informa-
tion sensed and received in the environment, is capable of processing and
preparing resourceful data, detecting misbehaviors in the data at different
levels, and acting on that detection by issuing decisions, reactions, and re-
ports. From this idea, we build the first overview of our architecture that
includes three connected modules: preprocessing, detection, and decision.
Each module will then be expressed through a set of functions, levels, and
layers.

Recalling the physical architecture from chapter 2, we want our architec-
ture to be able to monitor and secure all flows of data in the vehicle, that
might come from components such as actuators, and sensors. Thus, we place

61



Figure 4.1: Physical architecture of a self-driving car with our CAV-MBDA
as part of the central security gateway [2]

our architecture modules around the main computing unit as shown in Fig-
ure 4.1. The architecture will then process all/required incoming feeds to
detect misbehaviors in the system.

Figure 4.2: CAV-MBDA as part of C-Roads project architecture [7]

It is also possible to distribute the architecture modules over the vehicle
as we will show after defining the architecture modules. We assume that the
architecture CAV-MBDA is placed as shown in Figure 4.1 as a module of
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a central security gateway. Similarly, we show in Figure 4.2 how our CAV-
MBDA would be implemented as part of the whole C-ITS system. CAV-
MBDA would be able to communicate with PKI and road operator platforms
to communicate and exchange detection reports.

Figure 4.3: CAV-MBDA architecture overview

Figure 4.3 shows different levels of one layer of the detection module:
feature level, source data level, contextual level, and system level, which we
will discuss in detail in the next couple of sections. In Figure 4.3, we place
our CAV-MBDA architecture as part of the security gateway modules. . The
data after the acquisition is preprocessed (purple box), then is subject to the
detection of misbehaviors (green box) and finally, a decision is made, and a
reaction is taken to finalize the process (red box).

In comparison to similar works in [182, 183], our architecture considers
the physical architecture of the vehicle as its starting point, then builds on
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the standard ETSI stack to define its modules. It is key to point out that
by doing so, CAV-MBDA provides simultaneous interoperability with AU-
TOSAR and in accordance with the ETSI communication stack. In contrast
to [182], we consider CAV components data as inputs from the physical ar-
chitecture of the vehicle rather than considering the whole vehicle as the sole
provider. This allows us to enrich our knowledge of the vehicle state i.e.,
multiple data sources, and also to point out the affected and misbehaving
components inside the vehicle. Compared to [183] framework, we consider
that misbehaviors can affect multiple data flows (e.g., network metrics, mes-
sage semantics, sensors noise ), and thus, misbehaviors should be detected
at different layers. As pointed out, we build our architecture based on the
different ETSI stack layers. This allows us to tailor detection mechanisms
for each layer separately, resulting in better detection performances.

In the next few sections, we define and explain each step of our architec-
ture.

4.2 Defining the architecture

We define here each of the modules of the CAV-MBDA architecture. But
first, we categorize the data into 5 types as follows :

• Communication data: data containing exchanged knowledge between
ITS-Stations (e.g., CAM, DENM, CPM).

• Network data: network metrics computed during the communication
of the vehicle (e.g., packet loss, transmission rate).

• Sensor data: data received from the vehicle’s sensors (e.g., camera,
LiDAR).

• Contextual data: knowledge about the environment (e.g., maps, the
speed limit on current roads, infrastructures)

• System data: Data exchanged between different levels of C-ITS (e.g.,
certificates, revocation list)

4.2.1 Data Preprocessing Module

The data processing module is the entry point of the security gateway (Figure
4.4). This module receives multiple inputs (sensed information) such as V2X
messages, Camera and LiDAR feeds, and contextual information such as
weather, maps, and infrastructures. And it consists of multiple functions :

64



• Data Cleaning: These inputs are cleaned by removing wrongly struc-
tured data, imputing/removing missing data, and synchronizing differ-
ent input entries.

• Feature engineering: A set of new features are computed on the raw
data to help in the process of misbehavior detection.

• Input formatting: The set of features is then put into the correct format
to be processed by the misbehavior detection methods at the detection
module.

• Input data classification: The features are then tagged depending on
their usability at different layers and levels of misbehavior detection.

Once the preprocessing module function ends, tagged data is used in the
detection module.

4.2.2 Detection module: specifying architecture layers

The detection module is the main part of the CAV-MBDA architecture.
And thus all types of data are processed at this module. It is responsible
for checking all data for misbehaviors and anomalies. We rely on the C-ITS
communication stack from figure 2.3 to define the layers of the architecture.
By definition, each layer has different kinds of data and can be processed
independently to achieve specific misbehavior detection. For example, at the
access layer, the message signature can be checked and compared to black lists
to decide whether to accept the message. At the networking and transport
layer, data such as transmission rates can be computed and compared to
predefined ones to decide whether the sender is behaving normally. At the
facilities layer, standardized messages can be checked for misbehaviors. And
finally, at the application layer, C-ITS services data such as MAP and SPAT
can be validated using feeds from camera and LIDAR segmentation. These
layers all include local detection and classification processes.

For each layer, four levels of detection are defined. Since misbehaviors
come in different forms that can either directly affect a feature in the data,
for example, a blank set of pixels in a camera image. We call this detection at
the feature level. Other misbehaviors affect also the coherency of two or more
features for the same data source, for example, a fake speed in a V2X CAM
message affects the coherency between speed and distance traveled between
two subsequent messages. Depending on the fake value of the speed, the
distance would have to be bigger if the fake speed is higher than the actual
speed or lower in the other case. We call this detection at the source level.
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Figure 4.5: Detection module: overview
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An increment on that is when the fake data affect the coherency with the
context, for example, and out-of-road fake position. We call that detection
at the contextual level. And finally, when requiring metadata of the C-ITS
system, such as black lists of previously detected misbehaving entities. we
call that detection at the system level.

Figure 4.6: Local detection module: detection levels

At each level, a set of detection methods can be deployed. We describe
these levels in Figure 4.6 :

• Feature level: this level consists of a set of threshold-based rules applied
to each input feature to check its plausibility.
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• Source data level: In this level, both deterministic and machine learning
based algorithms can be used to generate a local misbehavior detection
model. This model can be trained/adapted on the fly using timed
feedback from the environment. The model can also be updated by a
remote source (typically a misbehavior detection authority).

• Contextual level: This level is conceptually similar to the source data
level. The difference resides in the model, as the contextual level has a
dedicated input type and is required to detect contextual misbehavior.

• System level: this level is also conceptually similar to previous ones,
with the difference that the misbehavior it needs to detect is at the
system level.

Whereas some levels are conceptually similar, we find that separating these
levels allows for specialized misbehavior detection mechanisms with respect
to possible misbehavior. As solutions require various resources to detect cer-
tain types of misbehavior, this also helps in optimizing the detection process
starting from a basic solution (i.e., feature level) up to a complex solution
(i.e., system level) when required. Note that it is not mandatory to imple-
ment all levels. Depending on the requirements and constraints of the task,
one can just implement the source data level.

After the local detection, the results of the implemented levels are used for
a classification process. The process uses the detection along with raw data
features to classify the misbehavior. The classification consists of a machine
learning model that merges all the results from different levels and layers and
provides classes for the detected misbehavior. Similarly, This model can be
remotely updated in case of new emerging misbehavior for which there was no
classification before. After classifying the misbehavior comes the detection.

4.2.3 Decision module

The final step in the process of misbehavior detection is to take proper re-
actions to the detected misbehavior and to create a descriptive misbehavior
report (Figure 4.7). The classification results are processed in this step and
the misbehavior model from table 2.6 defined in chapter 2 is used to describe
the misbehavior. A local reaction is then performed, and a misbehavior
report is built using the misbehavior model. The detection model is also
included in the report as required by the misbehavior authority.
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Figure 4.7: Decision module

4.3 Describing pipeline of detection using the

architecture

With respect to our work, we implement the CAV-MBDA architecture as
part of the autonomous vehicle inside our simulation framework. We define
one vehicle to be the detector vehicle, which will monitor input data from the
simulation and apply a detection method to react to misbehavior on-the-fly.
We defined the architecture to be very generic with respect to data inputs
and outputs. Though, Practically, we only partially implement and develop
inside the architecture. For our use cases, the detection pipeline is as follows.

• Data is collected from V2X communications, mainly, and from other
simulator statistics.

• Data is then processed using a specific preprocessing defined in section
6.3.2 and new features are created to enrich the data.
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• Processed data is then fed as input to machine learning models at the
source data level and at the feature level.

• The detection model then outputs the results of the detection.

• In some cases, a classification model is used to classify specific attacks
from the detection result.

• Since we implement an RL model as our detection model, the detection
output is also matched with the action’s output into the simulation to
control the vehicle and affect the environment, as we will describe in
chapter 5.

Figure 4.8: CAV-MBDA architecture example

Figure 4.8 show a practical example of how the architecture can be used
to detect a false position from two sources of data. First, the scenario is
observed, a photo is collected through the camera and a CAM message is
received. The data is then processed and classified into comms and sensors
data types. The detection module receives this data through its facility layer
and uses the contextual level model to detect misbehavior. The contextual
level is able to use both comms and sensor data together and finds a mis-
match between the two sources and thus it alerts the decision module of
this detection. The decision module then issues a report with required proof
to the authorities for further investigation of the sender’s behavior and also
blacklists the sender locally.
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Figure 4.4: Data processing module

In the next few chapters, we will
partially build the remaining steps of
the architecture. First, we’ll intro-
duce our detection module based on
RL in chapter 5 that will be imple-
mented in the architecture. Then,
we’ll define specific preprocessing for
vehicular data and extract valuable
knowledge from it in chapter 6. We
describe in chapter 6 how we simu-
late data for our task of misbehav-
ior detection. This simulation feeds
the architecture we described in this
chapter.
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Chapter 5

Reinforcement learning based
misbehavior detection

In the preceding chapter, we introduced the CAV-MBDA architecture for
vehicles. In this chapter, we shift our focus to its use for the vehicle. We
examine the current state-of-the-art reinforcement learning for misbehavior
detection in C-ITS and acknowledge its limitations. We utilize partially
observable Markov decision processes to formalize the detection problem.
Moreover, we introduce a novel Q-learning-based model architecture that
can effectively detect misbehavior for CAVs.

5.1 C-ITS as a stream graph

5.1.1 Notation

Recall that we categorized the data in C-ITS into 5 types: Communication
data, Network data, Sensor data, Contextual data, and System data. At ev-
ery moment, the vehicle has access to such data, and we denote the collection
of all this knowledge about the vehicle as the state st,v of the vehicle v at
time t. The state can be written as st,v = {cv(t)|c ∈ C} where C is the set
of vehicle components outputting data in the vehicle using a function cv(t).
In the next section, we formalize how this state is used to feed the C-ITS
system with data, particularly in the form of standardized messages.

5.1.1.1 Vehicles, States, Messages

In C-ITS, a set of vehicles V interact dynamically with each other. These
interactions take the form of a message m (let M be the set of all possible
messages with d′ = dim(M)), where a vehicle v ∈ V at a time t ∈ T
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sends a projection of its state st,v using a predefined set of features (e.g.,
speed, position, gas level, camera-captured photos). The state st,v contains
all information available to the vehicle at the time t, including data from
sensors, cameras, and other accessible vehicle components. let Sv = T × V
be the set of all possible states for vehicles with d = dim(Sv) and d′ < d.

p : Sv → M (5.1)

The projection p represents in practice any standardized message in V2X
(CAM, for example).

5.1.1.2 Communication

Communication between vehicles is constrained to signal strength, and com-
munication range depending on the environment and component of the vehi-
cle. Let be two vehicles u, v ∈ V . The distance between u and v at time t is
denoted by d : T×V ×V → R and quantifies the spacial and contextual (e.g.,
weather, infrastructures) distance between the two vehicles with respect to
radio signal strength. A message m sent from u to v at time t is denoted as
mt,u,v ∈ T ×V ×V ×M only if the distance d(t, u, v) < CR where CR is the
communication range. With possible delay [184], we can write :

mt,u,v = p(st−1,u) with δt : t − 1 → t denoting all possible delays (trans-
mission delay based on distance and environment).

Let dmax < CR be the maximum distance for which messages are not
delayed, meaning :

mt,u,v =

{

p(st,u) iff d(t, u, v) ≤ dmax

p(st−1,u) otherwise
(5.2)

Note that this abstract distance and delay can be represented using the
model of radio communication and delay from [184] with probabilities of
communication success as a function of the real distance.

5.1.1.3 V2X graph

Using the previous notations, We can represent the V2X communications as
a stream graph [185], G(T, V, S, E) where:

• T is the set of time instances

• V is the set of vehicles

• Sv is the set of all vehicles stats at all times Sv = T × V
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• E is the set of active links at each time t when two vehicles u, v are
able to communicate (i.e., d(t, u, v) < CR) E = T × V × V

Note that V is considered as the set of vehicles for simplicity. The formulation
is also valid considering any communicating C-ITS station rather than just
vehicles.

We also denote W the matrix containing all exchanges of messages fol-
lowing a projection p as :

W = T × V × V ×M where M = p(Sv) and thus mt,u,v ∈ W

5.1.2 Cooperative awareness message (CAM) as a pro-
jection of vehicle state

Cooperative Awareness Messages (CAMs) are messages exchanged in the ITS
network between ITS-Ss to create and maintain awareness of each other and
to support the cooperative performance of vehicles using the road network. A
CAM contains the status and attributes information of the originating ITS-S.
CAMs may be sent by the originating ITS-S to all ITS-Ss within the direct
communication range. [27]

In a formal way, we consider CAMs to be projections on Sv and we denote
using equation 5.1 pcam the projection function associated with it. and so :

mcam
t,u,v = pcam(st′,u) is the CAM message sent from vehicle u to vehicle v

Specific behavior

Since CAM is a broadcast message that can also be delayed, we have a set
of possible behaviors and constraints.

• The same message is broadcasted to all vehicles in the communication
range of the vehicle u at the time t′: mcam

t′,u,v = pcam(st′,u) for all v ∈
V | d(t′, u, v) < CR.

• With a delay, the message can be received at some other vehicle at a
later time. mcam

t,u,v = pcam(st′,u)| d(t
′, u, v) > dmax, t

′ < t.

In the remainder of this document, we refer to mcam simply as m.

5.2 Defining examples of misbehaviors in C-

ITS

The complexity of the C-ITS system with the autonomous vehicle and all the
information available at every moment allows for different kinds of misbehav-
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iors as seen in section 2.3.1. In this section, we give insight into misbehavior
as a function of the state of the vehicle and provide some examples that can
be easily simulated.

The state of the vehicle, or precisely, the projection of the state st,v that
is shared with other vehicles, needs to be faithful to the actual state of the
vehicle. So what happens when a vehicle decides to deceive others?

We first define an attack function fa as follows :

fa : Sv → M ′ (5.3)

The function fa is very similar to our projection p from equation 5.1. the
only difference is that M ′ is not faithful to Sv in this case. And by, faithful,
we mean that M ′ contains information that contradicts the states Sv. In
this case, the receiving vehicle might build a false perception of its context.
Note that, the same effect can happen in the case of a faulty component
outputting faulty data, c′v(t) in which case the state st,v is poisoned or faulty.

CAM falsification

For the sake of clarity, let’s define pcam as follows :

pcam : sv → (t, x, y, vx, vy, ax, ay) (5.4)

where t is time and x, y are positional coordinates, vx, vy, ax, ay are velocity
and acceleration along axis x and y respectively.

• A positional falsification attack might define a function fpa as :

fpa : (x
′, y′, pcam(sv)) → (t, x+ x′, y + y′, vx, vy, ax, ay) (5.5)

where x′, y′ can change the transmitted position to any value. for ex-
ample, misbehavior from VeReMi dataset [9] can be expressed in this
manner:

– Constant attack as fpa(−x+ 5560,−x+ 5820, pcam(sv))

– Constant offset as fpa(250,−150, pcam(sv))

– Random as fpa(U(0, 6300),U(0, 6300), pcam(sv))

– Random offset as fpa(x+U(−300, 300), y+U(−300, 300), pcam(sv))

– Eventual stop as fpa(−x + xev,−y + yev, pcam(sv)) where xev =
x, yev = y while the stop probability is not reached, then xev =
xs, yev = ys where xs, ys are the saved positions at the eventual
stop time.
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Where U is the uniform distribution.

• Equivalently, A speed falsification attack might define a function fpa
as:

fsa : (v
′

x, v
′

y, pcam(sv)) → (t, x, y, vx + v′x, vy + v′y, ax, ay) (5.6)

One can define various logics of attacks as fa functions and in chapter6,
we simulate C-ITS genuine and misbehaving data using the fa functions.

In the following section, we will demonstrate how reinforcement learning
shares specific characteristics of the environment and we formalize a misbe-
havior detection agent using RL.

5.3 RL Formulation

As defined in section 2.5, reinforcement learning is the problem faced by an
agent that must learn behavior through trial-and-error interactions with a dy-
namic environment [186]. The environment can be partially observable. In
fact, partial observability is “in some sense” included in the function approx-
imation framework for RL. Nevertheless, a more explicit treatment of partial
observability might be needed [6].

In particular, we want to highlight the main characteristics of the vehicu-
lar environment and its underlying system and actors and demonstrate how
reinforcement learning shares similar characteristics. To this end, we find
that :

• Vehicular environment is dynamic and multi-agent. We can feel that
by observing and thinking of how many components, actuators, and
agents are in the system and how every one of those has its own goals
and processes. Signal light phases policies aim to make sure of fluid
traffic, drivers want to reduce travel time, and pedestrians want to be
safe at all times. All these independently evolving agents are part of
the vehicular environment and make it highly dynamic.

• The vehicular environment is interactive. In order to live in the same
environment, the various agents have to interact and communicate and
abide by several rules. Pedestrians can ask for a red signal to allow
them to pass, vehicles use their lights to show they want to turn, and
in a C-ITS system, vehicles communicate important information to
ensure safety. These interactions affect agents in different ways, which
introduce more dynamics in the environment.
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• The vehicular environment is partially observable from the agent’s
point of view. No agent is capable of knowing all other agents and
how they interact and affect the environment. A vehicle has no knowl-
edge that a different vehicle down the same road had just made a crucial
action, resulting in an accident that will affect the road and all vehi-
cles on it. Though, the whole system, with all agents collectively, is
assumed to give full observation of the environment.

With respect to these characteristics of RL and the vehicular environment,
we believe that RL can solve various problems in the C-ITS system, including
autonomous driving, signal phase planning, and misbehavior detection.

5.3.1 RL for Autonomous vehicles’ misbehavior detec-
tion

In the context of reinforcement learning, we consider the vehicles to be agents,
their actions such as labeling a message as misbehavior and blacklisting other
vehicles are the set of actions. The set of messages including the recently re-
ceived message forms the state, and we formulate a reward function based on
how well the agent detects misbehavior and drives through the environment.

We associate a Markov decision process to the vehicle context from chap-
ter 2 as follows:

• The state S represents the stats of all vehicles at time t. S = {st,v|v ∈
V }

• A is the set of actions. {a0: Remove vehicle v from S, a1: vehicle
dynamics}

• Pa is the transition conditional probability distribution over all stats
and actions (system dynamics assuming deterministic policies for all
vehicles).

• Ra is the immediate reward due to a as the system transits. r = local
time loss.

We assume this MDP exists in the vehicular context, all agents of the
context collectively define the next step for this MDP without necessitating
historical knowledge. Though, considering one vehicle RL agent, the state S
cannot be fully observable. Related works such as [129, 132, 135, 137] work
around this MDP as follows.
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5.3.1.1 The state representation

In [127, 133, 138], the state is represented using only one projection of a
vehicle (e.x., one received message) as raw features or measures computed
on that feature. This type of agent is called a “reactive agent” in RL [187]
which does not rely on any historical memory. Using such an agent in this
context limits the solution. In fact, the partial observability nature of the
context and the non-markovian characteristic of building the state with one
observation in this sense makes finding an optimal policy using a reactive
agent intractable [188]. Due to this limit, the authors tried to include the
history of building the state.

In [129, 132, 135, 137] the state is represented by a projection of some
vehicles’ states as a fixed set of previous observations and/or measurements
and actions. This agent is labeled as a “Finite history windows” agent.
The use of a window of previous observations to build the state helps in
making the state “more markovian” and thus makes searching for an optimal
policy easier in a sense. The problem with using a finite history is that we
forget important past observations that might be relevant for the current
choice of action [187]. For example, in the vehicular context, it is possible
to receive knowledge about road hazards much sooner than when the road
hazard actually affects the agent. And if the history used is not big enough,
critical information is lost. A second problem is that using bigger windows
is computationally inefficient and cannot realistically be implemented [6].

One solution to use the historical observations intelligently is using re-
current neural networks such as Elman networks to construct a convenient
state for the task at hand. The network will, starting from the first obser-
vation, construct a representation of a state using subsequent observations
that include relevant information about the history that should be beneficial
to the task at hand [187–190]. Thus, to improve on the limits shown in the
literature for V2X misbehavior detection, we propose in section 5.4 an RL
architecture that uses such a network to achieve misbehavior detection in
C-ITS.

5.3.1.2 The actions

The actions used in [127,132,135,137,138] is whether to label an observation
as misbehavior or not (binary classification). Others use task-specific actions,
such as outputting the optimal velocity for control of the safest distance from
the vehicle ahead [129], selecting a subset of sensors for measurements to
avoid faulty ones [131].

Using binary labeling as the only action results in a weak feedback signal
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from the environment (assuming no further actions are based on the label).
This makes it difficult to construct a functional reward signal and requires
strong assumptions. Specifically, these actions have little impact on the next
observation, so we need to use actions that have a stronger effect on the
environment in order to compute an efficient reward signal. In addition to
the RL method proposed in Section 5.4, we propose to use more impactful
actions in the simulation to generate better feedback.

5.3.1.3 The reward measurement

The main reward function used in the literature for RL misbehavior detection
in C-ITS is a function of “supervised labels” [127,132,135,137,138]. The main
issue with such a reward is that it is assumed that this feedback is available
right after taking an action, which can be difficult to have. One can think
of a misbehavior authority in C-ITS that would be able to provide such
feedback, but it would also take several time instances until that feedback is
received, and the vehicle will continue to take actions in the system which
might be slow. One way to have instant feedback is to compute a difference
between theoretically optimal and practical measurements, such as in [129]
where the difference between optimal and actual distances is used to compute
the reward. Similarly, [133] use the difference between corrected and actual
messages to construct feedback. In the same sense, locally within the vehicle
observable context, we construct feedback based on observations and optimal
behavior in the current situation and use it to learn in our RL model in section
5.4.

5.3.2 Partially observable Markov decision process

As seen in the last section, the environment is highly dynamic, interactive,
and partially observable. These characteristics make the Markov decision
process defined in section 5.3.1 only partially observable and thus, we asso-
ciate a partially observable MDP (POMDP) to our problem by augmenting
the previous MDP as follows.

Given that every vehicle receives messages (projections of vehicle states)
from neighboring vehicles, we can formulate these observations as :

• Ω is the set of all observations and is equals to Pcam(Sv) with v ∈ V

• O is the conditional observation probabilities.

A vehicle only observes camera projections of its surrounding vehicles
at a given moment. Which makes up the observable (data and knowledge
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available for the vehicle) for CAM messages at time t for vehicle v a set:
Pcam(Sv′)|v

′ ∈ V; , ; d(t, v, v′) ≤ CR. As previously mentioned, the abstract
distance function can be represented by the physical model of radio commu-
nication and delay from [184], and the same model can be used to represent
the conditional observation probabilities O.

In the next section, we present the proposed architecture for RL misbe-
havior detection that we associate with this POMDP.

5.4 RL for misbehavior detection

Following our reasoning from the last section, we define our RL model and
framework as follows.

5.4.1 Data

Using the simulation from chapter 6, we design our RL model locally within
one vehicle of the simulation and with respect to the data available. Since
we mainly want to detect misbehavior in V2X data, our state representation
is heavily constructed using V2X CAM data. Other traffic data is also used
to create feedback to train the RL model.

5.4.2 State

Our state is constructed using a function approximation Φθ, incrementally
built from the history of inputs. Given an Observation Oi and a state Si :

Si =

{

Oi iff i = 0 (Initial state)
Φθ(Oi, Si−1) i > 0

(5.7)

where θ are the trainable parameters for the update function Φ. Oi is
constructed using the observable CAM message received from any vehicle v
as Oi = Pcam(Sv) at step i. In practice, we represent the update function Φθ

using a neural network, precisely an Elman network is shown in figure 5.1.

The update function Φ constructs the current state incrementally from
the previous state and current observation, with the main objective that the
constructed state contains information from the history that is most relevant
to the task. For that, the function is trained together with the RL model for
misbehavior detection.

80



Figure 5.1: The update function Φθ

5.4.3 Actions and reward

The agent, which is the vehicle in our simulation, is allowed mainly to black-
list vehicles that our model conceives as misbehaving. The blacklisted vehi-
cles will not be allowed to interact with other vehicles and no V2X messages
from them are accepted.

• a0: accept the message and perform driving actions with that percep-
tion.

– outcome: time loss if the sender vehicle is misbehaving.

• a1: blacklist the vehicle ID of the sender.

– outcome: lower perception and penalty if the sender is not misbe-
having.

The timeloss outcome in seconds is computed as the difference between
the actual and expected speed at each step. This value is implemented in
the sumo simulator as :

timeloss = α(1− v/vmax), (5.8)
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where v is the vehicle speed, vmax is based on the vehicle max speed and the
road speed limit, and α is a simulation time to real time factor.

The reward is then formulated as :

r = timeloss+ β, (5.9)

where β is the penalty for trying to blacklist a non-misbehaving vehicle.

The reward r characterizes the deviation from optimal behavior locally
around the vehicle. The agent tries to maximize this reward using the set of
actions allowed for it with the goal of ensuring optimal behavior. The way
misbehaviors are defined is that they are assumed to affect negatively the
vehicles causing this deviation from optimal behavior. And in that sense,
the agent with its set of actions becomes robust against such misbehavior
and should be capable of actively detecting and nullifying them, as we’ll
show in the next chapter. One apparent limit is that the agent acts in a
selfish manner. The reward r is built around the behavior of only the agent
itself, and maximizing the reward for the agent doesn’t usually mean that
all other vehicles are benefiting from it. In fact, theoretically, if misbehavior
has a positive effect on the agent, then the agent won’t act against it.

5.4.4 Deep Q-learning architecture

Figure 5.2: The RL architecture: q-learning with update function Φθ
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Using the update function Φ defined in the previous section, we define
the architecture of our RL model by plugin the function Φ into an RL q-
learning framework as shown in Figure 5.2. We use the output of the update
function as input to a deep q-learning model and also as input to the next
step update function to incrementally create the state. Note that we don’t
have a specific loss for the update function, and that’s because we want the
agent to learn the best state representation for its tasks. The state is passed
through the deep q-learning network and the latter outputs the chosen action
(i.e., q-values for each possible action). At the same time, using the same
network, we make the agent learn some auxiliary tasks such as average road
speed in a supervised manner. That helps the agent to better represent the
context and learn from it. The errors on these tasks and in choosing the
best action are then backpropagated, first, through the q-learning network
to learn the q-function, and then through the update function to learn how
to construct the state. In summary, the feedback from the environment is
used to learn both a q-learning model and a state representation to enable
the best performances.

5.4.5 Real-world limitations

RL solutions are very promising for detecting misbehaviors in CAVs, nev-
ertheless, when considering real-world scenarios, several limitations are en-
countered.

• Data Efficiency and Sample Complexity: RL solutions often re-
quire a significant amount of data, which might be challenging to ac-
quire in real-world scenarios due to safety constraints and component
costs.

• Training Time and Resources: Training RL models can be com-
putationally intensive and time-consuming creating deployment and
continuous learning challenges.

• Real-Time Requirements: RL solutions must make decisions in
real-time to ensure timely responses in CAVs; however, the compu-
tational demands might hinder their ability to meet strict real-time
constraints

• Trade-off Between Exploration and Exploitation: Balancing ex-
ploration with the exploitation of learned knowledge is crucial to build-
ing an efficient RL solution. However, exploration in a safety-critical
environment i.e., the vehicular environment is difficult and costly.

83



When building an RL solution, we must consider such limitations to en-
sure the efficiency of the model and environmental safety.

5.5 Discussion and Conclusion

RL is the current art of learning from interactions [6], and observing the
C-ITS system as we did in this chapter gives insight that RL should be a
go-to formulation for most C-ITS challenges. Hence, the increasing number
of research applying RL for C-ITS. Though, one must create an environment
that fits RL requirements and assumptions. And currently, in the real world,
and especially for security, it is not possible to learn an RL model directly
from real interaction because of the lack of deployment, and the real risk
of human and physical damage. And that’s mainly the fruit of fairly new
technology. Thus, the need for other tools such as datasets and simulators.
And we explained that using a dataset hinders the learning of an RL model
because of little to no feedback from interactions with a dataset because it is
static knowledge. Though, given an artificially powerful reward, the model
can learn as we saw in different research works [127, 132, 135, 137, 138], but,
this learning is closer to a supervised model than to an RL model due to the
fact of using the labels solely as rewards and the static nature of a dataset.
Throughout our work, we also applied RL to a static dataset, but the best
model we got was only slightly worse than a supervised random forest model
(Chapter 6). And that’s simply because there were very few interactions to
learn from and none to change and affect the environment. And so, using
simulation was very critical to learning an appropriate RL model. Thus,
we made the simulation from chapter 6, and within, we implemented the
proposed RL model in this chapter. Our proposal actually learns from in-
teractions, since every action has an immediate impact on the next state of
the environment, as opposed to using a static dataset. The model also learns
from feedback based on the current state of the environment rather than
just a predefined label. With that, our formulation and environment for the
model fit the learning from interaction art that is RL.

In this chapter, we highlighted the limits of state-of-the-art RL solutions
for misbehavior detection. We proposed our own formalism and solution
based on q-learning. In the next few chapters, we implement and evaluate
our proposal of an MBD architecture, including the proposed RL model in
this chapter, and compare it with other models.
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Chapter 6

Implemention, Evaluation and
analysis

In the previous few chapters, we described our misbehavior detection archi-
tecture and defined our RL detection model. In this chapter, we simulate
data through the synchronization of simulators and inject misbehavior. We
implement the MBD architecture from chapter 4. We first recall how V2X
data in C-ITS is disseminated. Then we analyze a state-of-the-art dataset
for misbehavior detection, VeReMi. We identify data leakage in some ap-
plications of the ML to such data and propose a specific preprocessing as a
solution to the problem. We benchmark supervised machine learning applica-
tions on VeReMi. And finally, we implement our RL model in the simulation
and present and analyze the results.

6.1 SiMBD: A simulator for misbehavior de-

tection in C-ITS

Now that we have defined the state st,v, the available data types, and some
misbehaviors using the set of functions fa, we recall the available simulators
that use and provide such data. Note that, different simulators from section
2.6.2 do not offer all types of data. For example, CARLA offers sensor data
and contextual data. SUMO offers network data (with OMNET++) and
contextual data. ARTERY (with VANETZA) offers communication data.
The remaining simulators all offer some type of data, but not all.

As we aim to offer a framework where different types of data and misbe-
haviors are all available simultaneously for detection tasks and for building
machine learning algorithms in a realistic environment, we had to find a way
to realize that. And thus, we looked at the advantages of the three simulators
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CARLA, SUMO, and ARTERY, and we tried to combine and synchronize
them to provide all types of data simultaneously [19].

We built the cooperative perception simulation module that synchronizes
Artery [150], CARLA [146], and SUMO [141]. The co-simulation (CARLA
and SUMO) allows the synchronization of all vehicles, offering realistic traffic
simulations with 3D objects for sensor data. This allows for the definition of
specific traffic scenarios with different feeds from cameras, radar, LiDARs,
and also context-related information on the map, infrastructures, and the
weather. We use this existent co-simulation and increment it with Artery
simulation for V2X data following the standards. Finally, we defined attack
and detection modules, which led us to the implementation in Figure 6.1.
We describe these modules in the following sections.

Figure 6.1: SiMBD: Simulator’s architecture with main contributions
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6.1.1 V2X data collection module

This module collects and parses Cooperative Awareness Messages (CAMs).
Whenever a vehicle in the simulation generates a CAM message in ARTERY,
this CAM is transmitted through a socket (a client-server low latency two-
way communication) to the CARLA’s client, which processes it for autonomous
driving and misbehavior detection-related use cases. Other V2X messages
can be recovered in the CARLA client in the same manner. At each step of
the simulation, every vehicle has access to a representation of its context in
terms of V2X messages, RGB/LiDAR images, weather, and infrastructures.
The data is then logged into a structured dataset that can be used for vehic-
ular tasks such as autonomous driving, supervised misbehavior detections,
and data analysis.

6.1.2 V2X attack injection module

This module creates attacks targeting CAM messages. The module materi-
alizes, in real simulation time, attacks as 3D objects based on their corre-
sponding malicious CAMs allowing us to observe the attacks’ impact on road
users. Examples of attacks from section 5.2 have been implemented. The
module also implements a simple attack that creates a new CAM for a ghost
vehicle ahead of the attacker’s vehicle. Different attacks can be implemented
by inheriting from the generic attack model. The generic model only requires
that a perform attack function be implemented with whatever attack logic
is needed. The impact of the attack will then be observable in data where it
is possible, it could be physical using ghost vehicles, or behavioral, showing
reactions of other vehicles and changes in traffic statistics.

6.1.3 V2X detection module

This module implements and runs V2X detectors. At each step of the sim-
ulation, the module looks at the available data at that step and performs a
detection. The module returns a set of data points that it believes are false or
causing misbehavior. Implementing a detection method only requires creat-
ing a check function with the wanted logic. For demonstration, our simulator
runs a simple speed check [50]. One can also think of using multiple detec-
tion algorithms and implementing a voting mechanism or a Dempster–Shafer
theory belief fusion operators to take decisions on the detection. We also
implement our contribution of a reinforcement learning model described in
chapter 5.
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(a) V2X communication exchanges (b) Detection

(c) Ghost vehicle (d) Attacker vehicle

Figure 6.2: Plotting module visualization examples.

6.1.4 V2X plotting module

This module provides visualization for V2X communications, attacks, and
detectors. We show in Figure 6.2 their representations. In particular, com-
munications between vehicles are shown using a red artificial link mapping
receiver and sender vehicles (Figure 6.2a). The attacker vehicles are plotted
with a red box around them (Figure 6.2d), and a purple box shows the ma-
terialization of their attack if possible (Figure 6.2c). When detected a blue
box is plotted on top of the purple box to show that the attack is successfully
detected (Figure 6.2b). The plotting module also serves as a debugging tool
to further understand what are the methods detecting, and how misbehaviors
impact the whole C-ITS system.

6.2 Dataset analysis: V2X broadcast

Communicating vehicles in C-ITS exchange data in different manners. One
propriety of exchanging CAM messages is that the same message is sent to
all neighboring vehicles. We recall from section 5.1.2 that we defined the
messages sent from the vehicle u at the time t′ as mcam

t,u,v = pcam(st′,u), t
′ ≤ t
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for each neighboring vehicle v. These messages are collected at each vehicle
and augmented with the vehicle information in the dataset VeReMi.

6.2.1 VEREMI dataset

In order to create the training dataset for the machine learning model, the
broadcast data is collected from different vehicles. Figure 6.3 depicts an
example where each vehicle broadcasts CAM messages to the surrounding
vehicles, then receives, processes, and logs these CAM messages in local data
storage. Afterward, at the global level, servers will be able to store and
process local logs received from vehicles. In particular, Figure 6.3 shows a

Figure 6.3: Broadcast scenario

scenario where a vehicle v0 broadcasts a message m0 = pcam(sv0) to its neigh-
bors (v1, v2, v3). These vehicles receive this message and store it. Afterward,
the messages are collected in global storage which contains 3 different copies
of the original message at different timestamps related to the reception times.

Note that VeReMi also stores additional information on receiving vehicles
for each received message. Let D be the VeReMi dataset. Elements of x ∈ D

are defined as a couple of projections of receiving and sending vehicles’ states.
For two communicating vehicles u, v and a cam message sent from u to v and
received at time t, mcam

t,u,v = pcam(st′,u), t
′ ≤ t, the corresponding element in

D is xt,u,v = (pcam(st′,u), pV eReMi(st,v)) where pV eReMi is the additional data
VeReMi add to received CAM messages from receiving vehicle state (e.x.,

89



receiver position and speed). The additional information helps in extracting
useful features for misbehavior detection.

6.2.2 Practical VeReMi and simulation parameters

Parameter Value
Mobility SUMO LuST (DUA static)

Simulation start (3,5,7)h
Simulation duration 100s
Attacker probability (0.1, 0.2, 0.3)
Simulation Area 2300,5400-6300,6300

Signal interference model Two-Ray Interference
Obstacle Shadowing Simple

Fading Jakes
Shadowing Log-Normal

MAC implementation 802.11p
Thermal Noise -110dbm
Transmit Power 20 mW

Bit rate 6 Mbps
Sensitivity -89dBm

Antenna Model Monopole on roof
Beaconing Rate 1Hz

Table 6.1: Veins simulation parameters for VeReMi [9]

We use the last version of VeReMi simulated dataset [93] which presents
the same characteristics as a real dataset. This dataset has proven reliable
and is used by several researchers [59,60,94,95,142]. This dataset is generated
based on 225 simulations with five different attacks presented in the next
section. Simulation parameters are summarized in table 6.1. Each simulation
uses three different attacker densities. Each parameter set is repeated 5
times with different random seeds. Each simulation was made in the area of
Luxembourg and lasts for 100 seconds, with a communication bit rate of 6
Mbps. Our work uses the sub-dataset with the following parameters: attack
probability of 0.3, simulations start at 7am which corresponds to the highest
density.

6.2.3 Features

As expected, VeReMi contains both features from CAM messages and the
state of the receiving vehicle. Actually, only a fraction of CAM features
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Features Description Symbol

Type identifier for message type ID
Reception Time time BSM was received by the receiver Rt
Receiver ID Id of the receiving vehicle RID
Receiver X position receiving vehicle x coordinate RXP
Receiver Y position receiving vehicle y coordinate RYP
Receiver Z position receiving vehicle z coordinate RZP
Transmission Time time BSM was emitted by the emitter Tt
Transmitter ID Id of the transmitting vehicle TID
BSM ID Id of the message MID
Transmitter X position transmitting vehicle x coordinate TXP
Transmitter Y position transmitting vehicle y coordinate TZP
Transmitter Z position transmitting vehicle z coordinate TZP
Transmitter X velocity transmitting vehicle x velocity TXV
Transmitter Y velocity transmitting vehicle y velocity TYV
Transmitter Z velocity transmitting vehicle z velocity TZV
RSSI received Signal Strength Indicator RSSI
Label ID (0=Normal Behavior) L

Table 6.2: VeReMi dataset for connected and automated vehicles

are available in the VeReMi dataset. In table 6.2, the available features are
presented.

We derive a statistical analysis of these features in the next few sections.

6.2.4 Attacks

The VeReMi dataset includes five types of attacks. Each attack has a label
and a set of generation parameters. These attacks tamper with the location
of the transmitting vehicle in different ways. First, an attacker can transmit
a fixed location (Constant). Second, an attacker could transmit a fixed offset
of its real location (Constant Offset). An attacker sends a uniformly random
position (Random). An attacker sends a random location in an area around
the vehicle (Random offset). Lastly, an attacker behaves normally and then
transmits the same location repeatedly (Eventual Stop).
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Label ID Description Parameters
1: Constant Fixed location x = 5560, y = 5820
2: Constant Offset Fixed offset location ∆x = 250, ∆y = -150
4: Random Random location uniformly random in

playground
8: Random Offset Randomly offset location ∆x, ∆y are uniformly

random from [-300,300]
16: Eventual Stop Attacker behaves nor-

mally for some time and
then attacks by transmit-
ting the same position re-
peatedly

Stop probability in-
creases by 0.025 each
position update

Table 6.3: Attack Definition

6.2.5 Descriptive statistical analysis

We compute several statistics and analyze each feature of our dataset1. Ta-
ble 6.4 summarizes the features’ statistics.

mean std min Q1 Median Q3 max

R
ec
ei
ve
r Time 21798,3 105,2 21600,0 21704,3 21817,4 21885,8 21959,9

X position 4294,37 1018,19 2325,41 3597,82 3673,08 5023,85 6324,99
Y position 5510,63 258,74 5180,04 5255,00 5470,59 5738,24 6079,99

T
ra
n
sm

it
er

Time 21798,3 105,2 21600 21704,3 21817,4 21885,8 21959,9
X position 5020,44 3288,29 0,41 3602,46 3858,48 5560 27278,9
Y position 5939,26 2325,82 7,79 5254,50 5538,36 5819,28 22998,1
X velocity 0,04 8,63 -40,38 -3,95 0 3,83 41,12
Y velocity 1,51 20,67 -44,25 -4,36 0 11,93 48,90

RSSI 2,5E-07 2,9E-06 1,2E-09 3,3E-09 8,4E-09 3,1E-08 2,3E-03

Table 6.4: Summary statistics

From Table 6.4, we observe that the standard deviation of the receiver
and the transmitter position distributions differ largely (10 times bigger in
Y position). However, both features are emitted from vehicles interacting in
the same context, i.e, vehicles are located in the same geographic area and
hence they should have similar coordinates. Thus, we assume the presence
of some anomalies in either or both position features.

1Details about the dataset can be found here: https://anonymous.4open.science/

r/5de28865-7f74-4360-b3fa-daa68c97bd83/
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We plot the histogram of some features in Figure 6.4 to study their dis-
tributions. Our observations are as follows:

• The distributions of the receiver X and Y positions compared to the
transmitter ones are very different. This confirms our initial intuition.
We can see that transmitter X and Y position values are spread in a
wider set of values [0, 28000] while most of these values are in the same
interval as the receivers ones [2000, 7000] (Figure 6.4). We can assume
that only a portion of values is anomalous.

• We observe that the transmitter X and Y velocity distributions are
symmetric w.r.t 0 for both sets of values, which we assume correctly
since most roads have two ways. We also observe a high number of null
velocities, which might be the result of the traffic lights or stop signs.

Figure 6.4: VeReMi’s features distribution analysis

Now that we established that there are anomalies in the transmitted
positions, we plot transmitter and receiver position values against each other
for each attack and for genuine data. In Figure 6.5, we show a density plot
of these values and we make the following observations:

• As expected, plotting position values for genuine data form a linear
scatter plot following the diagonal line y = x. Note that the width of
this line reflects the transmission range of the vehicles.

• For the attack “constant offset”, the figure shows a translated version
of the genuine one that is caused by the constant change applied by
the attacker.
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(a) Genuine (b) Constant offset

(c) Random offset (d) Constant

(e) Random (f) Eventual stop

Figure 6.5: Comparison of X position of receiver and transmitter values

• For the attack “random offset”, we observe an almost identical plot
as we did for genuine data. The difference lies in the left and right
extremities of the observed data. We identify in these extremities a
sparse structure formed along the maximum transmission range. This
is due to the fact that some attacker vehicles positioned at the edge
of the transmission area of a benign can transmit a position that is
outside that area.
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• For the attacks “constant”, “random” and “eventual stop”, the differ-
ence in the data is clearly shown. Only a small portion of the trans-
mitter values intersects with those of the receiver.

These computed statistics do not capture the broadcast aspect of the
data. Hence, we compute the number of copies of each unique message,
i.e. the same message being received by multiple receivers. In the following
sections, we refer to the original CAM message as the unique message. Fig-
ure 6.6 shows a histogram of the number of copies created from each unique
message and the density estimation per number of copies in the data. We
observe that the area under the curve for messages with a number of copies
higher than 10 dominates the density estimation, meaning that most of the
dataset contains redundant messages (more than 50%). Such characteristics
of the data must be handled when modeling a machine-learning solution.

Figure 6.6: Number of CAM copies for each unique message

From the aforementioned analysis, we conclude that the transmitted po-
sition values include outliers in an anomalous way compared to receivers’
positions and are proof of tampering. The data allowed us to assume that
the transmitted time is coherent. Thus, we use the positions to compute the
transmitter speed rather than relying on the transmitted velocities. Com-
paring the values gives an interesting metric to use for detection.

Moreover, the dataset needs preprocessing such as removing constant and
id features detected in the analysis because these features do not correlate
with the target task and only induce additional computation costs. A last
point is that Figure 6.6 presents a high redundancy of data that needs to be
processed accordingly (see Section 6.3.2). In the next section, we create new
features to improve misbehavior detection.
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6.2.6 Feature Engineering

Based on our statistical analysis, we rely on the following plausibility checks
output as dataset features. Note that (TX,Y , Tt,X,Y ,Tt,v) represents the posi-
tion vector, the position at time t and the speed at time t for the transmitter
vehicle (receiver vehicle respectively).

Acceptance Range Threshold (ART)

This check verifies if the distance between the CAM emitter and receiver is
above the maximum theoretical communication range.

ART (M) =







1 if d(TX,Y , RX,Y ) > ∆r

0 otherwise







(6.1)

where d(x, y) is the Euclidean distance and ∆r denotes the theoretical value
of the communication range.

Sudden Appearance Warning (SAW)

This check verifies if a vehicle suddenly appeared within a certain range. In
normal traffic conditions, it can be assumed that new vehicles first appear
at the boundary of the communication range. Thus, if a vehicle appears at
a distance below the communication range without prior message emission
then the SAW value equals to 1.

SAW (M0) =















1 if d(TX,Y , RX,Y ) < ρ
∩M0 is the first message

0 otherwise















(6.2)

where ρ is the threshold value for the first appearance.

Simple Speed Check (SSC)

This check verifies if the difference between the transmitter speed and the
estimated speed from the position and time differences ∆t between two con-
secutive messages is less than a threshold value ∆v.

SSC(Mt) =







1 if
d(Tt,X,Y ,Tt−1,X,Y )

∆t
− Tt,v > ∆v

0 otherwise







(6.3)
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where ∆v is the threshold for the speed difference. Mt is the message at the
time t.

We notice that all the extracted features are related to position, speed,
and displacement. Indeed, based on our statistical analysis, the position
represents the main anomalous feature. In the next section, we discuss how
to apply ML to this dataset and propose specific preprocessing to ensure its
good application.

6.3 Applying machine learning on VeReMi

To apply ML to VeReMi, or specifically supervised ML to the dataset D,
we need first to split the data into training and validation sets. Note that
the dataset D is equivalent to the matrix W defined in section 5.1.1.3 as we
can consider it an output of the VANET temporal graph defined in the same
section. We’ll use W to refer to the collected data to express that the results
that will be shown here are valid for any CAM dataset.

Let be an index set I = {(t0, u0, v0)...} onW wheremt0,u0,v0 = W [t0, u0, v0].
We define two subsets on I, namely, train, validation such us :

• train ∩ validation = ∅

• train ∪ validation = I

In ML, we use the train set to learn a model for our given task, then we
use the validation set to evaluate the model and validate the performance
and tune the model. And finally, an unseen test set is used to test the
final model and analyze its performance. The way these sets are constructed
is, from some applications, critical for obtaining valid models. We show in
the next section how randomly choosing these sets induces data leakage and
invalidates the model for the CAM dataset.

6.3.1 Random splitting and data leakage

Let’s suppose that the two subsets train and validation are constructed
randomly from the set I. In this case, it’s possible to have (ti, uj, vk) ∈ train
and (ti′ , uj, vk′) ∈ validation and ti′ < ti. And due to the broadcast nature
of the data and the fact that it is possible to have delayed messages, it is
possible to have :

W [ti, uj, vk] = W [ti′ , uj, vk′ ] = pcam(sti′ ,uj
)

This means that the same data (i.e., pcam(sti′ ,uj
)) is present both in the

train set (i.e., W [ti, uj, vk]) and in the validation set (i.e., W [ti′ , uj, vk′ ]).
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Hence, we have a form of data leakage between train and validation sets
using random splitting. We learn and evaluate the model on the same data,
which makes the performance of the validated model look better and hides
overfitting.

6.3.2 Specific C-ITS preprocessing

The reason that random splitting train and validation sets cause data leak-
age is two folds. broadcast related; as duplicated messages are received by
different vehicles. Temporal, as the messages sent from any vehicle, can be
considered a time series, and breaking this temporal constraint makes the
wrong assumption that past and future messages are independent. Note
that, in the case of the matrix W or the data set VeReMi, we look at the
receiving end of the vehicle, and thus we only receive parts of other vehicles’
time series depending on the spatial constraints of receiving messages. Fur-
thermore, we look at all receiving ends of all vehicles, which makes the data
a mixture of redundant parts of vehicles’ time series (see figure 6.6).

We can see that in practice, using the VeReMi dataset, Figure 6.7 shows
the issues that arise from using a classical random split (hold-out) on the
full dataset with a 10% validation proportion. Results show that copies of
a unique message are present multiple times in both validation and train
sets (refer to black and white dots in Figure 6.7) where each colored column
represents a unique message and a black dot means that a copy of the message
is present in the train set (a white dot for the validation set). Note that the
expected result should have only white (resp. black) colored dots for each
unique message. This means that the observations are repeated in both sets,
which leads to a biased performance.

This brings up two questions, why don’t we just remove redundant data?
and if we don’t remove it, how to avoid data leakage? Actually, the redun-
dant part of the data is only related to sender vehicles, so only the pcam(st′,u)
part of the data. And thus the additional data added by VeReMi for example
pV eReMi(st,v) is unique. Meaning that for all copies of a message pcam(st′,u)
received by multiple vehicles, the pV eReMi(st,v) part of the data is differ-
ent. This additional unique information actually has a huge impact on the
performances of the MBD models, as we’ll show in the next few sections.
Particularly, it is actually used to extract features as defined in section 6.2.6.
In summary, what we want to say is, looking at the same piece of information
from different perspectives gives valuable information about it that cannot be
achieved from just one perspective. So, the answer is no, we cannot remove
redundant data.

So, how can we split data to apply ML methods and avoid data leakage
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Figure 6.7: Sample of messages with a random split..

in this case? We already said that in the vehicles’ time series, breaking
the temporal constraint makes the wrong assumption that past and future
messages are independent. So that’s one part of the answer that we should
extend to the mixture of our partially redundant time series. The second
part would be to ensure that the spatial constraints also are not broken by
the split. It turns out it’s not possible always have both. We describe in the
next section, our algorithm for splitting the data and avoiding data leakage.

6.3.2.1 Spatio-temporal cross-validation

To avoid data leakage from random splits, we include temporal and spatial
constraints on building both train and validation sets [18].

• Temporal constraint : ∀(ti, uj, vk) ∈ train, ∀(ti′ , uj′ , vk′) ∈ validation, ti <
ti′ . let τ ∈ T such as ti ≤ τ < ti′ be the chosen temporal split moment
that verifies our temporal constraint.

• Spatial constraint: we apply a correction to the validation indexes as
follows :

– ∀(ti′ , uj′ , vk′) ∈ validation if ti′ = τ + 1 and d(τ, uj′ , vk′) > dmax

and d(ti′ , uj′ , vk′) > dmax then we move (ti′ , uj′ , vk′) to train set.
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– Note that this correction invalidates our temporal constraint on
some elements.

Constructing the train and validation sets in this way ensures that the
previously discovered data leakage issue with random splitting is no longer
present. Indeed :

• ∀(ti, uj, vk) ∈ train, W [ti, uj, vk] = pcam(st,uj
) : t <= τ

• ∀(ti′ , uj′ , vk′) ∈ validation, W [ti′ , uj′ , vk′ ] = pcam(st′,uj′
) : t′ > τ

• thus, there cannot be any t ∈ T, uj ∈ V, (ti, uj, vk) ∈ train, (ti′ , uj, vk′) ∈
validation such that W [ti, uj, vk] = W [ti′ , uj, vk′ ] = pcam(st,uj

)

So we are able to avoid data leakage by ensuring spatial constraints are
always intact and slightly breaking the temporal constraint for our mixture
of the partially redundant time series (note that the temporal constraint of
vehicles’ time series is actually preserved at the vehicle level).

In practice, the temporal split helps to reduce the data leakage, yet, it
does not solve the problem entirely, i.e., a portion of messages still ends up
in both train and validation sets because of possible delays.

To visualize this our solution, let us consider a message M sent from a
vehicle to other 20 vehicles within the range of 500 meters. All messages M0

till M19 have different receiving times due to the surrounding context and
the recording time (spatial constraints). Tearly, Tlate represent respectively
the earliest and latest recorded messages. Any time split Tsplit between Tearly

and Tlate puts copies of the message M in both train and validation sets,
violating the assumption of unseen data.

Figure 6.8 presents a scenario where this issue is observable. The x-
axis represents the time, the y-axis represents the vehicle’s position and the
distance between messages is the one defined in section 5.1.1.2. The scenario
consists of four different messages represented by black dots, from which
two copies are created each time (blue boxes). To perform a temporal split,
we must choose a discrete time to split the data. If T1 is chosen for the
temporal split, then the broadcast copies of the message M1 have reception
times earlier and later than T1 as shown in Figure 6.8, which means that the
temporal split on T1 would put the message M1 in both train and validation
sets, which leads to data leakage.

The proposed solution outputs a fairly simple algorithm 1 that keeps the
assumption of an unseen validation/test set valid.

The algorithm first sorts the data w.r.t time to ensure the temporal flow
of the data (Algorithm 1, line 2). The algorithm then splits the data with
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Figure 6.8: Spatial and temporal data split

Algorithm 1 Proposed split approach

Require: M{msgid, time, senderid, ...}, train prop
1: procedure
2: sort(M, time)
3: Tsplit = M.time[train prop ∗ sizeof(M)]
4: Tset = M [M.time ≤ Tsplit]
5: Vset = M [M.time > Tsplit]
6: intersectid = intersect(Tset.msgid, Vset.msgid)
7: intersect = Vset.pop(Vset.msgid ∈ intersectid)
8: Tset.add(intersect)
9: return Tset, Vset

10: end procedure

respect to a given time split (Algorithm 1, lines 3-5). Then, we check for
spatial dependencies between the train and validation sets (Algorithm 1,
line 6) by computing the possible intersections between copies of the same
message in the train and validation sets. The Algorithm then ensures the
respect of these spatial dependencies (Algorithm 1, lines 7-8) and outputs
the resulting train and validation sets.
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6.4 Benchmarking supervised machine learn-

ing

To prove the benefit of the proposed data splitting, we run multiple ML
methods on the VeReMi dataset while varying the data split approaches.
We present and analyze the results of each method with each setup. For
both split methods, we fit our models with the same standard Scikit-learn
parameters from [191]. We tested the following ML methods that are com-
monly used in the vehicular community, AdaBoost, Decision Tree, Naive
Bayes (NB), Nearest Neighbors, Neural Net, and Random Forest (RF)2.

To evaluate both data splits, we first split the data into train and test
sets, considering the temporal and broadcast aspects of the data. Then, the
train set is split into training and validation sets using both random and our
splitting approach separately for performance comparison. Also, we evalu-
ate the MBD performance with and without using the previously extracted
features (section 6.2.6). Overall, we consider 5 attacks, 6 ML methods, 2
splitting methods, and 2 sets (validation and test) with (or without) engi-
neered features.

6.4.1 Metrics

In MBD, there are fewer bogus than normal messages, resulting in an imbal-
anced class problem. Therefore, we use the harmonic mean of precision and
recall, named F1 − score.

F1 − score = 2.
precision . recall

precision+ recall
(6.4)

Thus, a high F1−score value means that the model classifies both the positive
(attack) and negative (benign) classes successfully.

6.4.2 Results and discussion

Results show that a random splitting approach gives biased performances,
i.e., the model does not generalize the learned behavior during the learning
phase and gets a significantly lower (10%) performance during the testing
phase. To observe this, we plot the best performances obtained among all
methods for each attack in the learning phase in Figure 6.9a. This shows
the obtained F1 − score at the learning phase (validation) and testing phase

2The sources and dataset for our work are provided here https://github.com/

mohammedLamine/Spatial-and-temporal-cross-validation-strategy-for-misbehavior-detection-in-
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(a) Results of a random splitting (b) Results of our splitting approach

Figure 6.9: Splitting methods’ comparison on models’ generalization

(test). We notice that the learning phase’s performance fits perfectly for each
attack, with a minimum of 0.99 F1 − score. We expect the model to have a
similarly good performance in the testing phase.

However, the model tested on unseen data, i.e., the test set obtained
worse performance in the testing phase than what was expected (F1 − score
drops to 0.88 in case of eventual stop attack which makes a performance 10%
worse). This questions the high performance observed in the learning phase
and can be explained by the data leakage caused by the random splitting.
Therefore, our proposed splitting fixes this problem, and our learned model
generalizes better. Thus, the model should perform in the testing phase as
well as in the learning phase.

(a) Results of a random split (b) Results of our approach

Figure 6.10: Features influence on models performance

Compared to the random splitting (Figure 6.9b), the performance in the
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learning phase for our splitting is not a perfect fit for the data (F − 1score
varies between 0.9 and 1 depending on the attack). Compared to the per-
formance on the testing phase, we notice that both performances are similar
(3% lower performance in the worst case).

The result confirms that random splitting is not a good approach when
modeling broadcast data as it induces data leakage in the learning phase. Our
approach fits better in the broadcast scenario and mitigates data leakage by
ensuring respect of spatial and temporal dependencies of the broadcast.

Furthermore, to assess the impact of the extracted features on the models,
we plot the performance of each model with and without the extracted fea-
tures. Figure 6.10 shows the obtained F1−score for all attacks and splitting
methods. Figure 6.10 shows improved results for each attack in the testing
phase. We notice an improvement between 0.07 and 0.1 in the case of an
eventual stop attack.

Thus, the extracted features (ART, SAW, SSC) improved the detection
of attacks, especially the ones that were more difficult to detect.

Figure 6.11: F1 − score using different splitting and ML methods

In Figure 6.11, we plot the performance of each method, where the
F1 − score is computed on the test set for each data splitting approach.
As seen, the performance using a random splitting is slightly better than
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the performance obtained using our approach for some pairs of methods and
attacks, particularly for NB and RF methods and the Random attack. For
RF, the difference in F1 − measure is very small (less than 0.02), meaning
that the two approaches are relatively equivalent. The same observation can
be made on the random attack with the NB method.

On the other hand, the performance using our approach is better using
neural networks with random offset attacks; in fact, we can see an 0.1 increase
in performance for this setup (0.954 for our approach and 0.845 for a random
splitting). We observe that the NB method has the worst performance in
most cases (for each attack). The methods RF and AdaBoost have the best
overall performance, with RF performing slightly better (about 0.01 increase
in F1 − score). This suggests that boosting-based methods perform better
in the task of MBD, because those methods fit many small classifiers that
can model the specificity of each attack.

Figure 6.12: Evolution of f1 − score values for the validation and test sets
subject to the number of leaked messages

Figure 6.12 shows the performance obtained by the decision tree algo-
rithm for several data splits. For each split, we purposely leak a certain
number of messages between validation and train sets to emphasize the ef-
fects of data leakage on performance. We observe that the validation score
gets better as we increase the number of leaked messages (from a 0.88 score
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to nearly 1.0). The test score on the other hand stays the same (roughly be-
tween 0.86 and 0.88). The observed gap in the score at the highest number of
leaks leads to an overestimation of the model and an incoherent performance
in the real world.

Overall, random splitting datasets of a broadcast time series overestimate
the learning performance and lower the performance on the test set. However,
the use of engineered features improves the performance.

6.5 Analysing RL on VEREMI

To apply reinforcement learning on the dataset VeReMi, we must first create
an artificial simulation environment for the RL agent where the dataset feeds
the data of this simulation. To do so, we wrote a simple algorithm that works
as follows. We apply algorithm 2 for all different vehicles in the VeReMi

Algorithm 2 Simulating from a dataset

Require: M{msgid, time, senderid, ...}, agentid
1: procedure
2: scenariodata = M [recieverid == agentid]
3: sort(scenariodata, time)
4: yield scenariodata
5: end procedure

dataset. The RL model implemented in vehicles will receive sequences of
messages from neighboring vehicles and will learn to detect false messages
from genuine ones. For that, a reward signal is defined based on labels
[127,132,135,137,138] as follows.

Reward

• The agent receives a positive reward +4 if a false message is correctly
detected.

• The agent receives a negative reward −3 if a false message is wrongly
detected.

• The agent receives a positive reward +1 if a true message is correctly
detected.

• The agent receives a negative reward −2 if a true message is correctly
detected.
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Of course, as discussed in section2.5, defining the reward function in this
manner strongly assumes that a misbehavior authority is capable of providing
such data in real time. The reward defined in this section will train our RL
model in the next section. In the next section, we define the hyper-parameters
used to build our RL model and how we train the model with respect to the
literature.

6.5.1 Defining and training the model

We used our architecture from chapter 5 to create the RL model to be trained
on VeReMi. And thus, a set of hyper-parameters must be tuned to find an
appropriate model. We summarize the set of hyperparameters in table 6.5.
We first describe here how an RL model and in particular a deep q-learning
model is trained.

Parameter Domain and description chosen
value

num deep-Q layers Number of layers of the q-learning ∈ N 20 000 000
num update layers Number of layers of the update function ∈ N 20 000 000
num iterations Number of training iteration ∈ N 20 000 000
initial collect steps data collection steps before training ∈ N 1000
iteration collect
steps

data collection steps during training∈ N 32

replay buffer
length

maximum number of collected training data
∈ N

20 000

batch size number of data points used for each training
step ∈ N

256

num batch per iter number of batch runs every step ∈ N 1 (unused)
learning rate leaning factor ∈ R

+ 5 ∗ 10−6

decay learning rate whether to decay the learning rate during
training

true

epsilon probability of choosing a random action [0,1] 0.1
target update pe-
riod

number of steps for target update ∈ N 5

target update tau ratio of target update[0,1] 0.95
gamma reward discount factor [0,1] 0.97
loss loss function Huber loss

Table 6.5: RL model hyperparameters

It is acknowledged that training a deep q-learning model often leads to
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instability [192, 193]. To achieve stability, a replay memory (or experience
replay) is used to store the trajectory of the MDP (state, action, reward, next
state). Then, a mini-batch of data points is sampled from the memory. The
main reason for using such memory is to avoid the temporal dependency of
successive observations used to train the model [193]. We implement a replay
memory to train our RL model. The memory is first initialized with a set
of observations and then updated at every step with new observations. In
addition to the replay memory, a duplicate network (called target network)
is used to obtain an unbiased estimator of the error used to train the model
(the target model is used to compute future action values, while the original
network is used to compute the action-value for the current state and actions.
We synchronize the target network with the originally trained network every
few steps [193]. In our implementation, we partially synchronize the two
networks. We use TensorFlow agents [194] for all our implementations. The
values used for all hyperparameters regarding training can be looked up in
table 6.5.

6.5.2 Model returns analysis

Using the hyperparameters from the previous section, we train several model
architectures with the aim of maximizing the returns. The reward of each
step of an episode is summed and normalized to episode length, and we
visualize the evolution of this metric during training.

Figure 6.13: Average returns per episode over training period
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Figure 6.13 show the average reward per episode during the training.
In the beginning, the amount of return obtained by the model is low (less
than -0.5 per action) then slowly inches up to a better average value (1.5
per action) as the model learns the dynamics of the environments until the
model is stable. Similarly, the loss obtained throughout the training of the
model is shown in Figure 6.14.

Figure 6.14: Loss per step over training period

We observe the loss going lower as the model is learning. The loss keeps
fluctuating near the reached sub-optimal value (i.e., 1.7) due to the nature
of training an RL model as both the compared q-values change are obtained
through the two networks (original and target networks from the last section).
The final network is then kept and tested on a separate dataset and the results
are shown in the next section.

6.5.3 Model results

Genuine Malicious
Genuine 56525 947
Malicious 4757 24679

Table 6.6: Confusion matrix: RL model
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We generate using the same algorithm 2 a set of scenarios to test the
trained RL model from the last section. The model actions are interpreted
as labels for each received message in the scenario. We construct a confusion
matrix using the generated actions and the ground truth labels in table 6.6.
The model was able to correctly predict 24679 attacks out of 29436 attacks
in the test scenarios, successfully achieving 96% precision and 84% recall
scores. An f1-score of 90% with respect to the malicious label and an overall
precision of 93% (table 6.7). The overall results show that the RL model is
quite capable of detecting Malicious messages from the VeReMi dataset.

Precision Recall F1-score Accuracy Support
Genuine 92% 98% 95%

93%
57472

Malicious 96% 84% 90% 29436

Table 6.7: Results: RL model

For comparison, we train multiple supervised learning models on the
VeReMi dataset and compare the obtained performances. Firstly, we train
the strongest supervised model on this task, which is random forests. The
random forests model confusion matrix is shown in table6.8. The model is
able to correctly detect 24893 attacks (+214 compared to the RL model) and
also achieves high scores on precision and recall, 97% and 85% respectively,
and an overall accuracy of 94% (table 6.9). Overall, the random forests model
achieves a marginally better performance of around 1% in our metrics than
the RL model.

Genuine Malicious
Genuine 56670 802
Malicious 4543 24893

Table 6.8: Confusion matrix: Random forests model

Precision Recall F1-score Accuracy Support
Genuine 93% 99% 95%

94%
57472

Malicious 97% 85% 90% 29436

Table 6.9: Results: Random forests model

Secondly, we train other supervised learning models, namely, decision
trees (DT), support vector classification (SVC), nearest neighbors (KNN),
AdaBoost, multi-layered perceptron (MLP), and naive Bayes. The summary
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Malicious Precision Recall F1-score Accuracy
RL 96% 84% 90% 93%
RF 97% 85% 90% 94%
DT 87% 85% 86% 91%
SVC 100% 47% 64% 82%
KNN 85% 56% 67% 82%
AdaBoost 95% 72% 82% 89%
MLP 97% 74% 84% 90%
Naive Bayes 100% 45% 62% 81%

Table 6.10: Summary of precision, recall, f1-score and accuracy measures of
trained models on VeReMi for malicious messages prediction

of the results obtained by all models is shown in table 6.10. As pointed out,
random forests obtained the best performance in terms of accuracy 94% and
f1-score 90%. Decision trees, which are a similar model to random forests,
obtain a slightly worse performance, achieving 86% f1-score as the second-
highest score of supervised models. Other models struggle to detect the
malicious messages, with ranging recall from 45% to 74%, meaning that at
least one out of 4 attacks is not detected.

Unsurprisingly, the sophisticated random forests model performs best on
the VeReMi dataset and should be the go-to model in this case. Though, one
would wonder how it would perform on a novel attack outside this restricted
environment, restricted to simulated episodes from a fixed dataset with fixed
misbehaviors. What happens when the trained model is confronted with
unseen misbehaviors?. Is the knowledge learned from the dataset enough to
achieve good performance? In the next section, we confront the model in such
a situation using the simulator. We show that there’s a drop in performance
in both RL and RF models. And we exploit the learning from interactions
feature of the RL model to perform better than the RF model in simulation.

6.6 Analysing RL model

We showed in the previous section that the RL model proposed in chapter 5
was able to overperform most supervised models, except for random forests,
which performed slightly better on the dataset VeReMi. In this section, we
continue the analysis of the proposed RL model on a simulated environment,
and we show how exploiting the online learning of the RL model allows us
to achieve better performance than random forests.
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6.6.1 Simulation setup

We use our simulation to simulate the C-ITS environment for our RL agent.
To recreate similar episodes to the ones simulated from VeReMi in the previ-
ous section, we implemented some of VeReMi attacks in our simulation, and
then we add an additional attack for testing. The main simulation parame-
ters are as follows :

• Number of vehicles: 100+ vehicles

• Number of attackers: 10% of vehicles

• Number of agents: 1 agent

• Agent: randomly chosen at the start of the episode

• Episode time: 15 minutes or 3000 agent steps

The chosen parameters for our simulation increase the randomness of
actual episodes. We only allow one vehicle to detect misbehaviors in the
simulation with respect to the MBD architecture built in chapter4, though,
one can allow for multiple agents at the same time if the aim is to implement a
multi-agent system or a distributed learning mechanism. The agent is chosen
randomly in each episode. 10% of the vehicles are selected randomly at the
start of the episode with different attack implementations. The episode ends
if either the episode or the agent acts 3000 times in the simulation, i.e., 5
minutes of presence if dissemination of CAM messages is optimal at 10Hz
frequency. Overall, different runs of the simulation yield different episodes.

6.6.2 Training

We reimplemented the RL architecture from figure5.2 inside our simulation
and feed as input exchange messages between vehicles and additional metrics
on the messages, such as distance between the vehicles and, as per the model
conception, the latent state representation. As mentioned before, only one
vehicle is implementing the model in the same episode. The agent will then
go through the simulation and take action for each received message. The
actions include labeling the received message and blacklisting the sending
vehicle in the simulation so that all messages from that vehicle are ignored.
The agent is then rewarded and penalized accordingly. Following are the
reasoning and outputs of our penalization and rewarding of the agent.

• The aim is to optimize the trip for the agent by reducing its time loss
as it drives through the simulation. Unsurprisingly, we use the time
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loss metric as part of the optimization goal of our agent. We assume
that, mainly, misbehaviors and attacks increase time loss and thus can
indicate the presence of misbehavior in the exchanges. Though, this
can raise an unwanted selfish-like behavior of our agent. Using the
time loss of the agent alone might orient to learning a policy that
might undermine the global network if it allows the agent to reduce
its time loss. For example, an attack that affects vehicles around the
agent causing them to slow or change lines might open up a line for
the agent and allow it to speed up and reduce its time loss. As it is,
the agent will be encouraged to allow such attacks to happen. To avoid
such a policy, we introduce a tradeoff between the agent time loss and
the local neighborhood time loss. The agent will then be able to pursue
its goal of detecting misbehaviors in the C-its system.

• Additionally, for labeling, we use misclassification in the computation
of the final reward signal and penalize the actions of the agent when
blacklisting other vehicles. Note that the actions of the agent have
immediate consequences in the episode. For example, black listing an
attacking vehicle that, as part of its attack, creates a ghost vehicle (only
exists in the messages with no physical presence) helps unblock and
improve the affected vehicles’ behaviors. These actions also increase the
randomness of the created episodes and help the agent in the learning
process.

• Furthermore, the model is trained first in a simulation where only
VeReMi attacks are present. The idea here is to be able to compare
the RL model to supervised models on known attacks and then novel
unseen attacks that could emerge in the future.

We adjust the parameters for training our model as shown in table6.11.
Note that most of the parameters are the same except for a bigger replay
buffer, collection steps per iteration, and batch size. As we are able to
generate quite different episodes and by extension different training examples,
we had to increase the buffer to hold more of these examples and to generate
more per step. The model is then able to see lots of variable examples at each
step which helps in learning the general behavior of its context as it is fed
with better knowledge and also leads to better detection performance. We
show in figure6.15 the loss for training the RL model. Similarly to training
on the data set, the loss starts decreasing from 24 as the model learns the
context of simulation and starts achieving better detection performance and
finally fluctuates around 1 as the training ends. In the next section, we
present the results obtained by the model.
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Parameter Domain and description chosen
value

num deep-Q layers Number of layers of the q-learning ∈ N 2
num update layers Number of layers of the update function ∈ N 2
num iterations Number of training iteration ∈ N 20 000 000
initial collect steps data collection steps before training ∈ N 2
iteration collect
steps

data collection steps during training∈ N 256

replay buffer
length

maximum number of collected training data
∈ N

100 000

batch size number of data points used for each training
step ∈ N

128

num batch per iter number of batch runs every step ∈ N 100 (un-
used)

learning rate leaning factor ∈ R
+ 5 ∗ 10−6

decay learning rate whether to decay the learning rate during
training

true

epsilon probability of choosing a random action [0,1] 0.1
target update pe-
riod

number of steps for target update ∈ N 5

target update tau ratio of target update[0,1] 0.95
gamma reward discount factor [0,1] 0.97
loss loss function Huber loss

Table 6.11: RL model hyperparameters for simulation

6.6.3 Model testing

After training the model the first time on VeReMi attacks in the simulation,
another attack creates ghost vehicles ahead of the attacker vehicle to slow
down the traffic introduced to the simulation. These ghost vehicles reproduce
the attacker states (speed, breaking state, heading, ...) except for the position
which makes the attack quite similar to VeReMi attacks on positions. The
RL model is then allowed to adapt and adjust to it by online learning inside
the simulation. Table6.12 shows the resulting confusion matrix. The RL
model was able to detect 21617 attacks and failed to detect the remaining
9408. At the same time, it was able to correctly classify 57379 of genuine
data and only misclassify 1596 of them. Given that the attack is fairly new
to the model and the genuine data is the same as for training, it was already
predicted that the models will perform much better on genuine data. In
summary, as presented in table6.13, the model was able to achieve 80% f1-

114



Figure 6.15: Loss per step over training period in simulation

score on malicious data detecting 70% of them which represents a fairly good
performance on unseen attacks. We believe as the agent keeps running inside
the simulation, these metrics can improve.

Genuine Malicious
Genuine 57379 1596
Malicious 9408 21617

Table 6.12: Confusion matrix: RL model on simulation

Precision Recall F1-score Accuracy Support
Genuine 86% 97% 91%

88%
58975

Malicious 93% 70% 80% 31025

Table 6.13: Results: RL model on simulation

To compare our RL model to random forests, we logged all data examples
while training the RL model and created a dataset out of them. The data
is then used to train the random forests model, and we show in table6.14
the confusion matrix corresponding to it. The random forests model was
able to detect 18975 attacks and failed to detect 12050 of them. Similar
to our RL model, the random forests greatly performed on genuine data,
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correctly classifying 58626 examples and misclassifying only 349 of them.
Table6.15 show the resulting metrics based on the results of random forests.
The model was able to achieve 75% f1-score and only detected 61% of the
attacks. Compared to our RL model, random forests dropped 9% in detecting
the new attack.

Genuine Malicious
Genuine 58626 349
Malicious 12050 18975

Table 6.14: Confusion matrix: Random forests model on simulation

Precision Recall F1-score Accuracy Support
Genuine 83% 99% 90%

86
58975

Malicious 98% 61% 75% 31025

Table 6.15: Results : Random forests model
on simulation

Unsurprisingly, our RL model performed better than supervised models in
the simulation compared to a dataset, as we showed in the previous section.
Exploiting the online learning of the RL framework was key to achieving such
a result. Furthermore, learning a rich representation of the context of the
vehicle, updated and adapted to the changes in this context, and aiming to
improve the detection of misbehaviors gave the RL model an upper hand on
performance compared to learning a distribution of dataset examples of an
attack. And it shows that detecting misbehaviors in a dynamic interactive
context is better done using a similarly dynamic and interactive solution.
Finally, we believe the current performance of our RL model is good but can
be improved by further investigating distributed learning and cooperative
detection that might be harder to achieve and regulate.

With regard to the explainability of such a solution, it is difficult in this
case to understand the rationale behind misbehavior detection decisions, the
model does not output any helpful data about how the decision was made.
Some works tackled the problem of explainability in cybersecurity [195,196].
Some suggest using explainable methods such as decision trees where the
output is a set of understandable rules at the cost of some performance
decay when affordable. Others try different explanations, in particular in our
case, we are interested in the use of SHAP (SHapley Additive exPlanations)
[197] to try and generate explanations of the RL model. In future work, we
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want to tackle both explaining the model parameters and the latent state
representation that our model outputs.

In this chapter, we implemented the MBD architecture, we analyzed the
state-of-the-art dataset for misbehavior detection, VeReMi. We showed how
specific preprocessing in our MBD architecture solves the problem of data
leakage in some supervised ML applications. We analyzed supervised ma-
chine learning and reinforcement applications on VeReMi. And finally, we
implemented our RL model in the simulation and showed how using our ar-
chitecture, we are able to achieve better performances than state-of-the-art
algorithms specifically in detecting novel emerging attacks.

In the next chapter, we conclude and give some future research perspec-
tives.
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Chapter 7

Conclusion and perspectives

7.1 Conclusion

In this thesis, we have been interested in securing connected and autonomous
vehicles. CAVs and V2X are currently being researched, developed, and de-
ployed all over the globe exploiting the significant potential to increase traffic
safety, optimize traffic flow, and reduce traffic congestion and emissions. In-
creasing knowledge and semantics about the environment is the key idea to
what CAVs V2X brings to the future of intelligent transportation systems.
Nevertheless, it gives raise to security threats that have not been an issue
before, including mainly, semantic-based attacks and failures. To face such
threats, it is required to enhance the system with intelligent security. In our
thesis, we propose a multi-layered architecture for the detection of abnormal
behaviors with automatic learning to secure the connected and autonomous
vehicles’ communications, sensors, and internal components.

Our architecture is generic, in the sense that it allows several algorithms
such as rule-based, machine learning, and deep learning to be used at different
communication levels. And thus, can be made very simple using the simplest
algorithms such as rule-based. And also can be very complex using multiple
different algorithms at all levels. We provided a definition of misbehavior to
cover the literature on cyber security threats, attacks, and failures and we
built a corresponding misbehavior model to classify and understand these
misbehavior covering security as well as failures/faults. Then, we built a
simulation environment capable of generating V2X and sensor data and also
injecting and detecting misbehaviors in real time which can be used to eval-
uate different detection methods. Moreover, we showed and developed a spe-
cific preprocessing that must be used when processing V2X broadcast data,
and we evaluated several algorithms such as decision trees, random forests,
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and multilayered perceptron that resulted in data leakage when only classic
preprocessing was done. Furthermore, the architecture allows us to propose
a novel reinforcement learning based neural architecture for the detection of
misbehaviors that yield better results compared to current state-of-the-art
algorithms.

More specifically, we considered the detection of semantic misbehaviors
and novelties that can emerge without prior observations. We laid out a
mathematical framework using partially observable Markov decision pro-
cesses, on which we derive our RL model. We designed an update function
that allows the vehicle to monitor and learn its environment and store criti-
cal knowledge. Furthermore, we designed the RL model to detect misbehav-
iors using our update function, and we showed in a simulated environment,
through evaluation, that the model is capable of detecting novel misbehaviors
and performs better than current state-of-the-art algorithms.

To conclude, we will share some possible future directions of research
based on the work carried out in this thesis.

7.2 Perspectives

We share in this section some short and long-term perspectives of our work.

7.2.1 Short-term

7.2.1.1 Misbehavior classification and Explainability

We mainly focused in our thesis on detecting misbehavior, and to do that we
worked on preprocessing the data in the vehicular context. Though, it would
be interesting to classify these detections and understand how, why, and
where did the misbehavior happen. We introduced a model for misbehavior
which we wanted to learn while detecting the misbehavior. We believe that
learning such a model can help explain misbehavior and give insight into
how to better detect them. Another angle at this is to try and explain
the machine learning model learned to detect misbehavior. In particular, it
would be interesting to look inside the latent state representation learned by
the model and understand what knowledge was kept over several iterations
to help detect misbehavior.

7.2.1.2 Evaluation and improvement of the RL model

The RL model we defined was able to correctly predict a set of attacks in
our simulation and achieved better performances on detecting novel unseen
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misbehaviors. One can ask how it would perform over a wider range of at-
tacks and even unintentional failures in the system. We want to implement
such attacks to test the model and improve upon the current performance.
Additionally, one may seek to expand the POMDP framework, and in par-
ticular the state representative for one vehicle with cooperative knowledge.
The partially observed state would then increase from being just what our
agent observes, to what all neighboring vehicles are observing. The cooper-
ative perception message can be the stepping stone for such future work. In
order to improve on our empirical results, one may resort to more advanced
architectures such as LSTMs for the definition of both the update function
network and the q-learning network.

7.2.1.3 CPM integration

In our work, we heavily used CAM messages for injecting and detecting
attacks. The CPM message introduces another level of complexity to both
the detection and injection of attacks and would be interesting to see how
our architecture in its current partial implementation performs using this
kind of data. The CPM will also increase the knowledge about the vehicle’s
context in our latent space representation which we would want to evaluate
its benefit.

7.2.1.4 Simulation environment

The simulation used in this thesis is limited in terms of the variety of attacks,
possible actions, and reactions of the vehicular network. It might be benefi-
cial to introduce such powerful additions to the simulation and helps learn a
better model, and face a stronger threat, which would make the simulation a
good environment for collaboration on misbehavior detection. It would allow
the research community to focus on improving their misbehavior mechanisms
instead of collecting data or improving their misbehavior simulators.

7.2.2 Long-term

7.2.2.1 Full implementation of the architecture

Our architecture is generic, and it was not possible to implement each and
every module, level, and layer of it during this thesis. We want to incremen-
tally implement these modules to hopefully achieve a most robust misbehav-
ior detection for CAV. The implementation of this architecture would need
an adequate environment where standard C-ITS data is available as well as
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components data. The modules can then be built independently to detect,
classify and report misbehaviors.

7.2.2.2 Real use case integration

The proposed methods and architecture in this thesis were only tested and
applied to simulated data and environments. We want to test our solutions
on real use cases. Abiding with the real world and real-time constraints is as
challenging as it is necessary. We want to see how our solutions perform in
such cases so that we improve and adapt them to create impactful results.

7.2.2.3 Standardized evaluation

Overall in this work and the current literature on misbehavior detection for
connected and autonomous vehicles, we evaluate our solutions mainly from
detection rate metrics. Defining and possibly standardizing specific metrics
for the evaluation of such solutions with respect to goals and objectives for
CAVS will be very rewarding to the vehicular community. It would also help
for comparison and benchmarking purposes and will push research further.

7.3 Open Issues

Throughout this work, we surveyed existing papers on MBD. We focused on
ML and existing simulators and datasets in order to assess state-of-the-art
and investigate novel development tracks. We can assert that an important
research activity in MBD has been done. However, as CAVs are rapidly
evolving, certain limitations and open problems arise and require further
exploration.

7.3.1 Evaluation, validation, and reproducibility

The surveyed set of papers uses different datasets with different evaluation
methods, making comparing the different works difficult. Their results are
usually not reproducible due to the use of private datasets, private prepossess-
ing, or confidential hyper-parameters. A first attempt to solve this problem is
available in [9]. However, a common evaluation framework is mandatory for
evaluating recent findings in the domain. It is also noticeable that some pro-
posed methods lack formal validation while others are hardly interpretable.
These black-box methods usually perform well, but do not offer insight into
how the problem is being solved.
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7.3.2 Security

A major issue to consider is the security of ML algorithms [54, 198, 199].In
particular, these algorithms might be fooled by adversarial attacks perturbing
the inputs and misleading the MBD. Attacks against ML algorithms can
occur at the training (e.g., model poisoning attack) [200] and test stages
(evasion attack) [201].

Moreover, new advanced services such as cooperative perception must
consider MBD at the design phase.

7.3.3 Misbehavior Dataset and preprocessing

A major open issue is the lack of complete state-of-the-art datasets for
MBD. Currently, simulated datasets do not include all physical behaviors
of a ground truth dataset. For instance, these physical behaviors may in-
clude GNSS dead reckoning or V2X signal obfuscation. As a result, the
obfuscation of the V2X signal may be interpreted as a discrete jamming at-
tack. Therefore, a major contribution to the community would be to propose
an open dataset that considers the three mentioned issues while being ap-
proved by the misbehavior community. Overall, this dataset would allow the
research community to focus on improving their misbehavior mechanisms
instead of collecting data or improving their misbehavior simulators. On
the other hand, preprocessing these data should be done considering all the
characteristics of the data. Indeed, broadcasting V2X data from the vehicle
generates duplicated messages that might cause data leakage when applying
ML methods [18].

7.3.4 Simulation Platform

Currently, the evaluation of algorithms for CAVs is costly, incomplete, un-
optimized, or proprietary. Thus, it is difficult to correctly evaluate MBD
solutions without an open-source environment dedicated to modeling and
testing. Moreover, this platform may help to provide realistic datasets. Sev-
eral contributions are paving the way in this direction. However, they do not
address one of the following aspects: cryptography operations, sensor pro-
cessing, or data fusions. In absence of one of these elements, it is difficult to
demonstrate that MBD fulfills the safety requirements (e.g., detection time)
associated with autonomous driving. Indeed, poor performances from the
MBD module may occur.
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7.3.5 Standardization

Globally, standards developing organizations (SDO) are defining the func-
tional requirements for MBD. Currently, the main standardization effort is
driven by the ETSI which published a report TR 103 460 and is working on
a technical standard TS 103 759. We highlight potential open points that
could be addressed in the forthcoming standards.

First, a baseline set of standards should define both MBD mechanisms
and a misbehavior reporting service. For each MBD mechanism, specific data
types and sources may be used, and if these are to be reported, the standard
must specify all requirements on the sources and how they are combined
to identify misbehaviors. For instance, in some instances, the data from a
safety message (e.g., BSM) may be sufficient to detect an attack. In other
instances, the system might use the list of detected objects around the vehicle,
using vehicle-based sensors in order to verify if the safety message is correct.
Secondly, it is conceivable that vehicles may include the opinion of other
surrounding vehicles in their MBD system. This should only be done if the
mechanisms for communicating are thoroughly specified and standardized. If
this opinion is not trustworthy, the MBD system may be negatively affected
by a majority of dishonest opinions.

Overall, ongoing standardization efforts are setting the core requirements
for implementing MBD. We are confident that each issue listed above will be
addressed in due course.
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Contributions

• [19]A simulator for cooperative and automated driving security, M.
L. Bouchouia, J.-P.Monteuuis, H. Labiod, O. Jelassi, W. B. Jaballah,
J. Petit “Workshop on Automotive and Autonomous Vehicle Security
(AutoSec), ndss-symposium (2022).”

• [18]Spatial and temporal cross validation strategy for misbehavior de-
tection in C-ITS ML Bouchouia, JP Monteuuis,O Jelassi,H Labiod,WB
Jaballah, J Petit “RCIS the Fifteenth International Conference on Re-
search Challenges in Information Science 11 - 14 May, 2021”

• [17] A Survey on Misbehavior Detection for Connected and Autonomous
Vehicles ML Bouchouia,H Labiod, O Jelassi,JP Monteuuis,WB Jabal-
lah, J Petit , Z Zhang

• Reinforcement Learning Framework and Application for V2X Misbe-
havior Detection (ongoing)
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gamani, and P. Pérez, “Deep reinforcement learning for autonomous
driving: A survey,” IEEE Transactions on Intelligent Transportation
Systems, 2021.

[127] D. Zha, K.-H. Lai, M. Wan, and X. Hu, “Meta-aad: Active
anomaly detection with deep reinforcement learning,” arXiv preprint
arXiv:2009.07415, 2020.

[128] S. Feng and S. Haykin, “Anti-jamming v2v communication in an in-
tegrated uav-cav network with hybrid attackers,” in ICC 2019-2019
IEEE International Conference on Communications (ICC), pp. 1–6,
IEEE, 2019.

[129] I. Rasheed, F. Hu, and L. Zhang, “Deep reinforcement learning ap-
proach for autonomous vehicle systems for maintaining security and
safety using lstm-gan,” Vehicular Communications, p. 100266, 2020.

[130] A. Ferdowsi, U. Challita, W. Saad, and N. B. Mandayam, “Robust
deep reinforcement learning for security and safety in autonomous ve-
hicle systems,” in 2018 21st International Conference on Intelligent
Transportation Systems (ITSC), pp. 307–312, IEEE, 2018.

[131] A. Ferdowsi, S. Ali, W. Saad, and N. B. Mandayam, “Cyber-physical
security and safety of autonomous connected vehicles: Optimal control
meets multi-armed bandit learning,” IEEE Transactions on Commu-
nications, vol. 67, no. 10, pp. 7228–7244, 2019.

[132] R. Sedar, C. Kalalas, J. Alonso-Zarate, and F. Vázquez-Gallego,
“Multi-domain denial-of-service attacks in internet-of-vehicles: Vul-
nerability insights and detection performance,” in 2022 IEEE Inter-
national Conference on Network Softwarization (NetSoft), 2022.

[133] L. Zhao, H. Chai, Y. Han, K. Yu, and S. Mumtaz, “A collaborative
v2x data correction method for road safety,” IEEE Transactions on
Reliability, 2022.

[134] M. L. Puterman, “Markov decision processes,” Handbooks in operations
research and management science, vol. 2, pp. 331–434, 1990.

138



[135] C. Huang, Y. Wu, Y. Zuo, K. Pei, and G. Min, “Towards experienced
anomaly detector through reinforcement learning,” in Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 32, 2018.

[136] R. Sedar, C. Kalalas, F. Vázquez-Gallego, and J. Alonso-Zarate, “Re-
inforcement learning-based misbehaviour detection in v2x scenarios,”
in 2021 IEEE International Mediterranean Conference on Communi-
cations and Networking (MeditCom), pp. 109–111, IEEE, 2021.

[137] X. Xu, “Sequential anomaly detection based on temporal-difference
learning: Principles, models and case studies,” Applied Soft Computing,
vol. 10, no. 3, pp. 859–867, 2010.

[138] G. Pang, A. v. d. Hengel, C. Shen, and L. Cao, “Deep rein-
forcement learning for unknown anomaly detection,” arXiv preprint
arXiv:2009.06847, 2020.

[139] C. Sommer, R. German, and F. Dressler, “Bidirectionally Coupled Net-
work and Road Traffic Simulation for Improved IVC Analysis,” IEEE
Transactions on Mobile Computing (TMC), vol. 10, pp. 3–15, January
2011.

[140] A. Varga, “Omnet++,” in Modeling and tools for network simulation,
pp. 35–59, Springer, 2010.

[141] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Flötteröd,
R. Hilbrich, L. Lücken, J. Rummel, P. Wagner, and E. Wießner, “Mi-
croscopic traffic simulation using sumo,” in The 21st IEEE Interna-
tional Conference on Intelligent Transportation Systems, IEEE, 2018.

[142] J. Kamel, M. R. Ansari, J. Petit, A. Kaiser, I. B. Jemaa, and P. Urien,
“Simulation framework for misbehavior detection in vehicular net-
works,” IEEE Transactions on Vehicular Technology, 2020.

[143] K. Emara, “Poster: Prext: Privacy extension for veins vanet simula-
tor,” in 2016 IEEE Vehicular Networking Conference (VNC), pp. 1–2,
IEEE, 2016.

[144] M. Rondinone, J. Maneros, D. Krajzewicz, R. Bauza, P. Cataldi,
F. Hrizi, J. Gozalvez, V. Kumar, M. Röckl, L. Lin, et al., “itetris:
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Résumé : De nos jours, le domaine des véhicules,

y compris les véhicules autonomes et les villes in-

telligentes, est en train de se développer pour mo-

derniser la vie humaine dans une ville où tout est

connecté : les humains grâce à un smartphone, les

infrastructures, les voitures et les motos. Dans un tel

système, les informations sont échangées, traitées

et utilisées pour le bon fonctionnement de toute en-

tité dans le système. Cependant, la dépendance ac-

crue à la communication véhiculaire en fait également

une cible d’attaques de sécurité, ce qui pourrait en-

traı̂ner la diffusion d’informations fausses ou ma-

nipulées provenant de sources malveillantes. Cela

pourrait constituer une menace pour le bon fonction-

nement du système et pourrait potentiellement en-

traı̂ner des accidents. Pour résoudre ce problème, il

est crucial de valider et de vérifier la communica-

tion pour garantir son exactitude et prévenir les at-

taques malveillantes. Nous avons pour objectif de

formuler la détection de comportements anormaux

pour les véhicules connectés et autonomes de niveau

4/5 d’automatisation. Dans notre thèse, nous propo-

sons une architecture multicouche pour la détection

de comportements anormaux avec un apprentissage

automatique pour sécuriser la communication, les

capteurs et les composants internes des véhicules

connectés et autonomes. Cette architecture nous per-

met de proposer un nouveau modèle de réseau de

neurones basé sur l’apprentissage par renforcement

pour la détection de comportements anormaux. Nous

avons montré dans un environnement simulé, à tra-

vers une évaluation, que notre modèle est capable

de détecter des comportements anormaux nouveaux

et fonctionne mieux que les algorithmes de l’état de

l’art. De plus, nous abordons la fuite de données dans

les communications véhiculaires et proposons une

méthode de validation croisée pour éviter cette fuite

dans les applications d’apprentissage automatique.

Lors de l’évaluation des résultats de notre thèse,

nous avons développé une simulation pour les en-

vironnements de véhicules, capable d’injecter et de

détecter des comportements anormaux. Enfin, les

idées développées dans cette thèse ont donné lieu

à plusieurs publications.

Title : Multi layered Misbehavior Detection for a connected and autonomous vehicle

Keywords : Connected and autonomous vehicles, machine learning, misbehavior detection, reinforcement

learning, cybersecurity, anomaly detection.

Abstract : In recent years, the vehicular field has un-

dergone significant advancements with the develop-

ment of autonomous vehicles and smart cities. These

advancements have brought about a modernization

of human life, where everything is interconnected -

from individuals through smartphones to infrastruc-

ture, cars, and motorcycles. In such a system, infor-

mation is exchanged and processed, and used to en-

sure the proper functioning of all entities. However,

the increased reliance on V2X communication also

makes it a target for security attacks, which could lead

to the dissemination of false or manipulated informa-

tion from malicious sources. This could pose a threat

to the proper functioning of the system and can po-

tentially result in accidents. To address this problem,

it is crucial to validate and verify the communication

to ensure its accuracy and prevent malicious attacks.

We aim to formulate misbehavior and misbehavior de-

tection for connected and autonomous vehicles of le-

vel 4/5 automation. In our thesis, we propose a multi-

layered architecture for the detection of abnormal be-

haviors with automatic learning to secure the connec-

ted and autonomous vehicles’ communications, sen-

sors, and internal components. The architecture al-

lows us to propose a novel reinforcement learning ba-

sed neural architecture for the detection of misbeha-

viors where we showed in a simulated environment,

through evaluation, that the model is capable of de-

tecting novel misbehaviors and performs better than

current state-of-the-art algorithms. Furthermore, we

tackle data leakage in V2X data and propose a cross-

validation method to avoid said leakage in machine

learning applications. We also developed a simulation

for vehicular environments capable of injecting and

detecting misbehaviors for the evaluation of our the-

sis results. The ideas developed in this research have

resulted in several publications and have the potential

to significantly enhance the security and reliability of

vehicular systems.
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