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Und über Flächen, über Seen
Der Kranich nach der Heimat strebt.

Goethe, on jet-powered flight



6



Contents
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Résumé / Abstract

Résumé

Dû aux efforts apportés a la réduction des émissions de NOx dans des chambres de combus-
tion aéronautiques il y a une tendance récente vers des systèmes à combustion pauvre. Cela
résulte dans l’apparition de nouveaux types d’injecteur qui sont caractétisés par une complexité
géométrique accrue et par des nouvelles stratégies pour l’injection du carburant liquide, comme
des systèmes multi-point. Les deux éléments créent des exigences supplémentaires pour des
outils de simulation numériques.

La simulation à grandes échelles (SGE ou LES en anglais) est aujourd’hui considerée come la
méthode la plus prometteuse pour capturer les phénomènes d’écoulement complexes qui appa-
raissent dans une telle application. Dans le présent travail, deux sujets principaux sont abordés:
Le premier est le trâıtement de la paroi ce qui nécessite une modélisation qui reste délicate en
SGE, en particulier dans des géométries complexes. Une nouvelle méthode d’implementation
pour des lois de paroi est proposée. Une étude dans une géométrie réaliste démontre que la nou-
velle formulation donne de meilleurs résultats comparé à l’implémentation classique. Ensuite, la
capacité d’une approche SGE typique (utilisant des lois de paroi) de prédire la perte de charge
dans une géométrie représentative est analysée et des sources d’érreur sont identifiés.

Le deuxième sujet est la simulation du carburant liquide dans une chambre de combustion. Avec
des méthodes Euleriennes et Lagrangiennes, deux approches sont disponibles pour cette tâche.
La méthode Eulerienne considère un spray de gouttelettes comme un milieu continu pour lequel
on peut écrire des équations de transport. Dans la formulation Lagrangienne, des gouttes indi-
viduelles sont suivies ce qui mène a des équations simples. D’autre part, sur le plan numérique,
le grand nombre de gouttes à traiter peut s’avérer délicat. La comparaison des deux méthodes
sous conditions identiques (solveur gazeux, modèles physiques) est un aspect central du présent
travail. Les phénomènes les plus importants dans ce contexte sont l’évaporation ainsi que le
problème d’injection d’un jet liquide dans un écoulement gazeux transverse ce qui correspond à
une version simplifiée d’un système multi-point.

Le cas d’application final est la configuration d’un seul injecteur aéronautique, monté dans un
banc d’essai expérimental. Ceci permet d’appliquer de manière simulatanée tous les
dévéloppements préliminaires de ce travail. L’écoulement considéré est non-réactif mais a part
cela il correspond au régime ralenti d’un moteur d’avion. Dû aux conditions préchauffées, le
spray issu du système d’injection multi-point s’évapore dans la chambre. Cet écoulement est
simulé utilisant les approches Euleriennes et Lagrangiennes et les résultats sont comparés aux
données expérimentales.

Mots clés: LES, turbulence, modèle de paroi, loi de paroi, écoulement diphasique, spray, Euler-
Euler, Euler-Lagrange, injection, évaporation, moteur d’avion, chambre de combustion
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Abstract

Due to efforts to reduce NOx emissions of aeronautical combustors, there is a recent trend
towards lean combustion technologies. This results in novel injector designs, which are charac-
terized by increased geometrical complexity and new injection strategies for the liquid fuel, such
as multipoint systems. Both elements create additional challenges for numerical simulation tools.

Large-Eddy simulation (LES) is regarded as the most promising method to capture complex
flow phenomena in such an application. In the present work, two main areas of interest are
considered: The first is wall modeling, which remains a challenging field in LES, in particular
for complex geometries. A new implementation method for wall functions that uses a no-slip
condition at the wall is proposed. It is shown that in a realistic burner geometry the new
formulation yields improved results compared to a classical implementation. Furthermore, the
capability of a typical LES with wall models to predict the pressure drop in a representative
geometry is assessed and sources of error are identified.

The second topic is the simulation of liquid fuel in a combustor. With Eulerian and Lagrangian
methods, two different approaches are available for this task. The Eulerian approach considers
a droplet spray as a continuum for which transport equations can be formulated. In the La-
grangian formulation, individual droplets are tracked, which leads to a simple formulation but
can be challenging in terms of numerics due to the large number of particles to be treated. The
comparison of these methods under identical conditions (gaseous flow solver, physical models) is
a central aspect of the present work. The most important phenomena that are studied in view
of the final application are evaporation and the problem of transverse liquid jets in a gaseous
crossflow as a simplified representation of a multipoint system.

The final application case is the configuration of a single aeronautical injector mounted in an
experimental test bench. It allows to simultaneously apply all preliminary developments. The
flow considered is non-reactive but otherwise corresponds to a partial load regime in an aero-
engine. Due to the pre-heated conditions, the spray issued by the multi-point injection undergoes
evaporation. This flow is simulated using Eulerian and Lagrangian methods and the results are
compared to experimental data.

Keywords: LES, turbulence, wall model, wall function, two-phase flow, spray, Euler-Euler,
Euler-Lagrange, injection, evaporation, aero-engine, combustor
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List of symbols

Roman characters

Symbol Description Unit

c Propagation velocity [m/s]
cd Discharge coefficient [−]
C Constant of the logarithmic law [−]
Cc Constant of the law of the wake [−]
Cab Liquid column breakup coefficient [−]
Cblend Constant of a blending function [−]
CD Average drag coefficient in the liquid column region [−]
Cs Smagorinsky constant [−]
CsF

Filtered Smagorinsky constant [−]
Cw WALE model constant [−]
Cs,l Smagorinsky constant for the dispersed phase [−]
CV,l Yoshizawa constant for the dispersed phase [−]
Cv Heat capacity at constant volume [J/(kgK)]
Cp Heat capacity at constant pressure [J/(kgK)]
d0 Orifice diameter [m]
dcol Liquid column diameter [m]
dp Diameter of a Lagrangian particle [m]
D32 Sauter mean diameter (SMD) of a droplet size distribution [m]
D10 Mean diameter of a droplet size distribution [m]
Dk Diffusion coefficient of species k [−]
Dinj Diameter of the jet injection orifice [m]
E Gaseous total energy per unit mass [J/kg]
Fd,i Volumetric force vector of particle drag [N/m3]
Fp,i Drag force vector of a Lagrangian particle [N ]
hs Sensible enthalpy [J/kg]
Jj,k Diffusive flux vector of species k [kg/(m2s)]
Jj,k Turbulent diffusive flux vector of species k [kg/(m2s)]
k Von Kármán constant [−]
lm Mixing length [m]
lcol Liquid column length [m]
Lv Latent heat of evaporation [J/kg]
mp Mass of a Lagrangian particle [kg]
ṁp Rate of change of droplet mass [kg/s]
ṁp Mass flux of gaseous fuel from a droplet [kg/s]
ṁ Mass flux [kg/s]
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Symbol Description Unit

ns Number of perforations [−]
nbin Number of diameter classes (or bins) [−]
P Pressure [N/m2]
P Probability density function [−]
q Momentum flux ratio [−]
qi Heat flux vector [J/(m2s)]
qt
i Turbulent heat flux vector [J/(m2s)]

Q Q-criterion [1/s2]
Qij vorticity tensor [1/s]
qt
Θ,i Subgrid flux of uncorrelated energy in the dispersed phase [J/(m2s)]

qt
h,i Subgrid flux of sensible enthalpy in the dispersed phase [J/(m2s)]

r Mixture gas constant [J/(kgK)]
R Universal gas constant (mass) [J/(kgK)]
sl Vector of source terms in the Euler-Euler framework
S Cross-section surface [m2]
SE Energy source term [J/(m3s)]
Sij Boussinesq tensor (rate of strain tensor) [m/s2]
Sk Species source term [kg/(m3s)]

Sl−g
M,i Vector of momentum source terms [N/m3]

t Time [s]
T Gaseous temperature [K]
Tp Temperature of a Lagrangian particle [K]
Twb Wet bulb temperature [K]
ui Gaseous velocity vector [m/s]
ul Eulerian liquid phase velocity [m/s]
up,i Velocity vector of a Lagrangian particle [m/s]
Vi Species diffusion velocity vector [m/s]
Vj Control volume of a node j in the cell-vertex framework [m3]
w Interpolation function in the Euler-Lagr. approach [−]
W Molecular weight [kg/mol]
WΘ Uncorrelated energy variation due to drag [J/(m3s)]
xi Spatial coordinate (vector) [m]
x Spatial coordinate [m]
xp,i Position vector of a Lagrangian particle [m]
xb, yb, zb Coordinates of the point of liquid column breakup [m]
Xk Molar fracion of species k [−]
y Spatial coordinate [m]
Yk Mass fraction of species k [−]
z Spatial coordinate [m]
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Greek characters

Symbol Description Unit

α Term in the Barenblatt law [−]
αl Liquid volume fraction [−]
β Term in the Barenblatt law [−]
γ Adiabatic exponent [−]
Γl Rate of change per unit volume of the liquid phase mass [kg/(sm3)]
Γ Rate of mass change per unit vol. in the gas phase by evap. [kg/(sm3)]
Γu,i Momentum exchange through mass exchange [kg/(s2m2)]
ΓΘ Uncorrelated energy variation due to mass transfer [J/(m3s)]
δc Channel half-width [m]
δ Constant of the Colin sensor for artificial viscosity [−]
δij Kronecker symbol [−]
δR̆l,ij Uncorrelated velocity tensor [m2/s2]

δΘ̆l Uncorrelated Energy [m2/s2]
∆ Characteristic length scale of a grid cell [m]
∆p Pressure drop [N/m2]
ǫ1 Constant of the Colin sensor for artificial viscosity [−]
ǫ2 Constant of the Colin sensor for artificial viscosity [−]
ǫ3 Constant of the Colin sensor for artificial viscosity [−]
ζe Artificial viscosity sensor [−]
Θ Distribution function in the Euler-Lagrange approach [−]
κl,t Yoshizawa turbulent viscosity of the dispersed phase [m2/s]
λ Heat conduction coefficient [J/(mKs)]
µ Molecular viscosity [Ns/m2]
µt Turbulent viscosity [Ns/m2]
µsgs Subgrid-scale viscosity [Ns/m2]
ν Kinematic viscosity [m2/s]
νt Turbulent kinematic viscosity [m2/s]
νl,t Smagorinsky turbulent viscosity of the dispersed phase [m2/s]
Ξ Term of the Colin sensor for artificial viscosity [−]
Πg Sensible enth. rate of ch. per unit vol. in the gas phase by evap. [J/(m3s)]
Πl Sensible enth. rate of ch. per unit vol. in the liq. phase by evap. [J/(m3s)]
ρ Gaseous density [kg/m3]
ρk Density of the gaseous species k [kg/m3]
ρl Liquid phase density [kg/m3]
τij Stress tensor [N/m2]
τ t
ij Turbulent tress tensor [N/m2]

τp Particle relaxation timescale [s]
τ ′p Stokes drag particle relaxation timescale [s]

τL Characteristic timescale of a gaseous flow [s]
τab Liquid column breakup timescale [s]
τ t

l,ij Subgrid stress tensor of the dispersed phase [N/m2]
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Symbol Description Unit

Φc
g Sensible enth. rate of change in the gas due to conduction [J/s]

Φev
g Sensible enth. rate of change in the gas due to evaporation [J/s]

Φev
l Sensible enth. rate of change in the liq. due to evaporation [J/s]

Φc
l Sensible enth. rate of change in the liq. due to conduction [J/s]

Φl Liquid volume flux [m3/(sm2)]
Ψ Spray function
ω̇k Chemical source term of species k [kg/(m3s)]

Special characters

Symbol Description Unit

C Collisional term in the Euler-Euler framework
Dj,e Residual distribution matrix
Fl Flux tensor in the Euler-Euler framework
~F Flux tensor of the conservative variables
~FC Convective part of the flux tensor of the conservative variables
~FV Viscous part of the flux tensor of the conservative variables
Hf Gaseous flow realization
R Universal gas constant (molar) [J/(molK)]
S Vector of source terms
~Sf Normal vector of an element face
~Sk Normal vector of an element vertex
~Sj,e Normal vector of an element e associated with a node j
~Sff

j,e Normal vector of a boundary face

T Uncorrelated flux operator in the Euler-Euler framework

UΘ Term describing effects of δR̆l,ij on δΘ̆l

U Vector of conservative flow variables

Dimensionless numbers

Symbol Description

BM Spalding number for mass transfer
BT Spalding number for heat transfer
Le Lewis number
Nu Nusselt number
Pr Prandtl number
Prt Turbulent Prandtl number
Rep Particle Reynolds number
Retau Friction Reynolds number
Reb Bulk Reynolds number
Sc Schmidt number
Sh Sherwood number
St Stokes number
We Weber number
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Indices and superscripts

Symbol Description

+ Superscript of quantities written in wall units
BL Index of quantities in the liquid column boundary layer
e Element (or grid cell) in the cell-vertex framework
g Index of a gaseous phase quantity
inj Index of quantities located at the jet injection point
j Index of a grid node
k Index of an element vertex
l Index of a liquid phase quantity
w Index of a variable located at the wall
we Index of quantities associated with a near-wall element
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General introduction
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1.1 Propulsion technology for aeronautical applications

1.1.1 Historical development

Aeronautical propulsion has relied heavily on combustion technology from its very beginnings,
with battery, fuel-cell, solar or even nuclear-powered electric propulsion limited to small-scale
unmanned or proof-of-concept research applications (see figure 1.1 for illustrative examples).

The vast majority of combustion-based propulsion systems uses liquid hydrocarbons, mostly
kerosene as a fuel, which is mainly due to three aspects: The first is high specific energy content,
which is an important factor because relationship between the necessary propulsive force and
system weight is quadratic for all heavier-than-air aeronautical applications. The second is
(volumetric) energy density, because high storage volumes quickly translates into a drag penalty.
The third is security, where the risk of accidental ignition (during handling, storage or in the
aftermath of crashes) must be minimized. It is primarily for the latter two requirements that
gaseous fuels (such as hydrogen, even when stored in liquefied form) have not seen extensive use
in commercial flight. Figure 1.2 shows an overview of the specific versus the volumetric energy
content of different storage/conversion technologies.

In roughly the first half of the timeline of powered flight, internal combustion engines based on
the Otto cycle (less widespread also the Diesel cycle) in conjunction with airscrews dominated
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Figure 1.1: Examples for non-combustion based aeronautical concepts. Left: Icaré solar aircraft (photo
Universität Stuttgart). Center: Boeing phantom works fuel cell demonstrator (Photo: Boeing). Right:
Convair NB-36H nuclear testbed (Photo: Wikipedia).

Figure 1.2: Specific energy versus energy density of different storage/conversion technologies.

propulsion technology. It was mainly the inherent limitation of those systems in terms of flight
speed (due to blade tip losses when they become sonic) that spurred research of alternative
technologies for military applications. This research, led mainly by Sir Frank Whittle and Dr.
von Ohain resulted in the first applications of the jet engine during the second world war. This
type of engine is based on a continuous thermodynamical cycle, where a rotating compressor
is mechanically linked to a turbine. The thermodynamical potential created in the combustion
chamber is used in part in the turbine to power the compressor, the surplus (after losses) is
subsequently converted into a high momentum jet using a nozzle. A simplified version of this
process is given by the Joule cycle (also known as the Brayton cycle), that is shematized in
figure 1.3.

This technology quickly saw commercial use because the increased speeds were an important
argument, especially for transcontinental travel in the USA but also for intercontinental travel
worldwide. While military development focused mainly on technical feasibility and the increase
of thrust to weight ratio, it was mainly the civil use that created the need to increase engine
performance on mainly three other sectors. The first is specific fuel consumption, the second is
engine noise and the third emission reduction. The demand for more efficient engines with low-
ered environmental impact gave rise to a series of new technologies. Specific fuel consumption
and noise are significantly reduced by changing the overall layout of the system. Here, the in-
troduction of high bypass turbofan engines and double/triple spool concepts (more recently also
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Figure 1.3: Schematic of a simplified jet engine (left) and the associated thermodynamic cycle (right).
QF is the heat generated by combustion, WC the work applied to the combustor and WT the work generated
in the turbine. The remaining work, noted WP is available for propulsion after acceleration in a nozzle.
The Joule (or Brayton-) cycle displayed here neglects all losses that occur during compresion, expansion
and combustion.
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Figure 1.4: Comparison of one of the earliest operational jet engines (Jumo 004) with a current genera-
tion, high-bypass, twin-spool design (IAE V2500). In this layout, the high pressure (HP) compressor and
turbine are connected by one shaft, while the low pressure (LP) compressor, the fan and the LP turbine
are mounted on another one. This way, each group of components turns at its optimal rotation speed.

the geared fan) can be mentioned as key innovations. As an illustration, figure 1.4 compares the
configuration of an early example and a current generation engine. Furthermore, the efficiency
of thermodynamic cycle itself can be optimized by increasing the overall pressure ratio of the
engine, which is helped by improved compressor designs and turbine blade cooling technologies.

The field of emission reduction is influenced by two tendencies. The emission of CO2 is closely
linked to overall fuel consumption and therefore influenced by the beforementioned means to
increase engine efficiency. Other emissions like NOx, CO, unburned hydrocarbons or particle
emissions like soot are primarily influenced by combustor design.

1.2 Lean combustion

Lean combustion is a key technology in modern aero-engines. The initial push towards lean
combustion technologies has been initiated in the 1980s, as a controversy arose in the US about
the negative impact of the then to be developed supersonic aircraft programme (HSCT) on
the ozone layer [33] [39]. This resulted in political pressure on engine manufacturers to reduce
pollutant emission, with a focus on NOx. Today, more and more stringent emission reduction
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Figure 1.5: Mass of NOX emitted divided by engine thrust versus the overall engine pressure ratio
(OPR). Comparison of in-service combustor concepts and currend research and development programs.
Included are ICAO regulation levels (Caep). DAC stands for Double Annular combustor, while SAC
denotes Single Annular combustor designs. TAPS and ANTLE are research combustors that both use fuel
staging inside the injector. Source ICAO database and CAEP6 results. Diagram: public documentation
of the TLC project.

goals for commercial aviation in general lead to increased efforts, in particular in the EU to
develop lean combustion technologies and all associated measurement and simulation tools. In
this context, the EU research projects LOPOCOTEP and TLC can be mentioned, with the
latter forming the larger framework for the present study.
The design challenges for lean combustion systems are numerous, only the most important
mechanisms shall be explained in the following, along the lines of the flow diagram in figure
1.6. The main conflict of design objectives arises from high safety requirements. Here, lean and
completely premixed combustion (without locally rich burning zones) increases the risk of flame
blowoff at partial load regimes and also the risk of instabilities from interaction of acoustics and
flame dynamics [23]. Furthermore, premixing creates a risk of flame flashback into the premixing
system, which can lead to the failure of the concerned parts of the combustor. The cited safety
concerns are generally less and less easily addressed with increasing overall pressure ratio.
Other tradeoffs have to be made concerning the premixing that often relies on the generation
of high turbulence intensities and therefore can increase the pressure drop of a combustor,
reducing the overall efficiency of the engine. An effect created by increased overall pressure (and
temperature) ratios is the increased need for air to dilute the combustion products, which is
counter-productive in decreasing the equivalence ratio in the primary zone.

1.2.1 Injector design philosophies

There is a number of injector design philosophies that are aimed at lean combustion. There are
different terminologies, which often depend on the manufacturer, but in principle they can be
grouped in the following subtypes [39].
The most extreme one is the so-called Lean Premixed Pre-evaporated approach (LPP). It is
mostly aimed at small engines with low overall pressure ratio, where instabilities and flashback
risk are relatively well-controlled. It is, however being studied for higher pressure ratio applica-
tions, as it represents the ideal solution in terms of NOx reduction [16]. An example for a LPP
module is pictured in figure 1.7, which also shows LES results of evaporated fuel to visualize the
premixing process.
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Figure 1.6: Tradeoffs in combustor design when reducing emissions and increasing efficiency.

Figure 1.7: Example for a LPP (for Lean, Premixed, Pre-evaporated) injector of a helicopter engine.
The fuel is injected into a central, high speed airstream for quick atomization and mixes with a swirled,
outer flow inside the injector tube. The mass fraction of evaporated fuel (right) shows the premixing
process. Sources: schematic from public documentation of the TLC project (left), simulation result by
Felix Jaegle, CERFACS (right).
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Figure 1.8: Example for a double annular combuster (DAC). Cross-section through the ring of a CFM
56 5B combustion chamber. Source: public documentation of the TLC project.

A less problematic version of this injection concept is the so-called LP (for Lean Premixed, some-
times also referred to as PERM (for Partially Evaporation & Rapid Mixing) approach, which
relies on pre-mixing primary air with the liquid fuel, wheras evaporation remains incomplete at
the entry into the chamber. This method mitigates certain problems related to flashback and
instabilities.
The third class is often referred to as LDI for Lean Direct Injection, which uses sophisticated fuel
injection methods that allow a very homogeneous spray distribution through direct injection,
which is often achieved by multipoint systems.

All injection strategies for lean combustion mentioned above are characterized by a narrow oper-
ating range. In particular, lean burning zones are prone to becoming unstable or being blown off
for reduced power settings. In contrast, conventional burners with a rich primary zone remain
stable even in reduced power regimes. To overcome this problem, staged combustion systems
have been introduced, which allow to safely decrease power output by additionally changing
the fuel flow ratio between stages or by deactivating the burner partially. This so-called fuel
staging can be achieved in different ways. The first is to separate the entire annular combustor
into two rings (DAC concept for Double Annular Combustor), which is shown in figure 1.8 at
the example of the CFM 56 5B combustor. This technology allows to significantly reduce NOX

emissions compared to SAC designs (see figure 1.5). The downsides to this concept are increased
emissions of unburned hydrocarbons and CO, added weight and complexity as well as difficult
cooling and related lifetime issues.

For these reasons, an alternative fuel staging method allowing for a single annular combus-
tor (SAC) design is being pursued by numerous engine manufacturers, notably General Electric,
Rolls Royce and SNECMA. The concept consists in dividing each individual injector in two sepa-
rate stages. Figure 1.9 shows two examples for this approach, one is the TAPS (for Twin Annular
Premixing Swirler) by GE, which will see commercial application in the latest generation GEnx
engine. The other one is the SNECMA multipoint injector, which is studied experimentally in
the TLC project and represents the main application case of the present work. Although the
manufacturer does not use this terminology, it can be considered an example for the LDI design
philosophy. It is composed of a pilot stage in the center with a hollow-cone type atomizer, while
the annular main stage, which is arranged around the pilot injector, uses a multi-point injection
system. This injector will be described in more detail in chapter 9.



1.3. SIMULATION TOOLS FOR RESEARCH AND COMBUSTOR DESIGN 33

Figure 1.9: Examples for fuel staging inside the injector. Left: SNECMA multi-point injector. Right
GE TAPS concept for the GEnx engine (source Dodds [37]).

1.3 Simulation tools for research and combustor design

Numerical simulation has become an important tool for combustion research but increasingly
also for combustor design. It is widely used in industry for dimensioning of combustor designs.
Here, well-proven RANS methods are widely used. Advances in computing resources but also
in simulation methods allow sophisticated LES simulations to reach truly industrial-scale, as
demonstrated by the work of Boileau for the ignition of an entire helicopter chamber [20].

1.3.1 Turbulence and unsteady phenomena

The simulation of the gaseous flow in a combustor is a challenging task, because it conditions
and interacts with all parts of the physics involved.

• Turbulence: the flow inside a combustor is always strongly turbulent by design as it
promotes atomization, mixing (of spray and evaporated fuel) and burning at high energy
densities. As all turbulent scales cannot be resolved in most realistic flows, turbulence
models are of great importance.

• Wall interaction is very important as combustion chambers are confined flows by their very
nature. The challenges associated differ, for instance, from airfoil design, where a very
detailed understanding of phenomena like boundary layer separation and re-attachment is
needed. In combustion chambers, the difficulty lies more in the complexity of the geometry
and the unsteady flow. The prediction of pressure drop is associated to wall-interaction
and necessitates great attention. As turbulent boundary layers cannot be resolved in the
majority of applications, modeling of these zones is an important aspect in numerical
simulations.

• Swirled flows are systematically encountered in combustion chambers as they allow to
create central recirculation zones with free stagnation points, which allows to stabilize a
flame without a mechanical flameholder (a device that is still found in afterburners, with
very limited lifetime). This is achieved either by provoking vortex breakdown or forced
by the shape of the swirler exit (the boundary between the two method being not clearly
defined).

• Acoustics are an important link in the feedback loop that creates combustion instabilities.
Together with unsteady flow phenomena, acoustics influence the unsteady heat release rate
of the flame, which in turn acts as an acoustic source. The three mechanisms combined
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can lead to the excitation of instabilities. Acoustics, but also unsteady flow in general
necessitate special boundary conditions that take reflective or non-reflective behaviour at
walls or inlets/outlets respectively.

The three major simulation strategies for the gaseous phase are the direct numerical simulation
(DNS), large eddy simulation (LES) and the solution of the Reynolds averaged Navier Stokes
equations (RANS). Only DNS and LES are adapted to properly simulate unsteady phenomena,
which is a major advantage over RANS in view of the unsteady nature of a great number of flows.
Furthermore, transient cases like ignition cannot be tackled with RANS. On the other hand,
RANS facilitates the modeling of steady turbulent boundary layers and is thus well-adapted for
instance for the predicton of pressure drop.
DNS due to its high computational cost is currently limited to academic cases, where it greatly
contributes to the understanding and related modeling efforts of many different types of flows.
LES is the method of choice if unsteady phenomena are to be considered in cases of industrial
scale. Additionally, it yields results superior to RANS simulations, even for statistically steady
flows, due to the lower modeling content related to turbulence. The main challenge associated
with this method is the treatment of boundary layers due to the high cost of resolving these
zones. Substantial efforts are therefore undertaken to develop wall-modeling approaches that
are adapted to LES or to create hybrid RANS/LES approaches.

1.3.2 Liquid phase modelization

Phenomena related to the presence of liquid fuel play an important role in combustion applica-
tions. The following list outlines the most important ones and names the associated challenges
for numerical simulation or modeling approaches.

• Heat and mass exchange between phases are important for combustion as evaporation of
fuel influences many aspects of flame structure and dynamics. A wide range of models
with varying degree of detail is available.

• Droplet dynamics determine the distribution and mixing processes of a spray. Modeling
approaches for spherical droplets are widely available.

• Breakup mechanisms, in applications where their role is determinant (e.g. at injection).
One distinguishes between primary and secondary breakup. Primary breakup is the disin-
tegration of large, coherent liquid phase structures such as jets or sheets. They are mainly
governed by the gas-liquid interface (influenced by surface tension, densities and viscosities)
and its interaction with flow and turbulence on either side. Secondary breakup mecha-
nisms apply to approximately spherical liquid structures or droplets. For this particular
case of breakup in a spray, models can be formulated based on statistical considerations.

• Droplet-wall interaction is often encountered in combustion applications. It is a very
complex process with many different outcomes such as film forming, re-bound, splashing
etc. Modeling approaches have therefore often very limited domains of validity.

• Droplet-droplet interaction occurs in dense spray regions and is equally complex. De-
pending on impact energy, angle, offset and size ratio of collision partners, a multitude of
liquid structures like ligaments, satellite drops, rings, fingers etc is observed. Modeling is
therefore a complex task.

Three major classes of methods for the simulation a two-phase flow can be distinguished. The
first is the direct simulation of the gas-liquid interface using level-set [147], volume of fluid
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(VOF) [54], ghost fluid methods [42] or a method coupling all three approaches [91]. This
method allows in particular to simulate primary breakup processes. In terms of computational
cost, it is, however, out of reach for industrial-scale applications.
The second, very polular approach is limited to the representation of a dispersed phase, i.e. a
set of droplets, which are tracked individually. This representation of a spray is combined with
a classical Eulerian approach for the gaseous phase, which includes the exchange of coupling
terms in both directions. Due to the Lagrangian point of view that is taken in the modeling of
individual droplets, this method is referred to as the Eulerian-Lagrangian approach.
The third method assumes that the dispersed phase can be viewed as a continuum, for which
transport equations can be formulated and solved numerically similarly to the ones of the gaseous
phase. As the Eulerian point of view is taken for both phases, it is known as the Eulerian-Eulerian
approach.

1.3.3 Combustion

The simulation of turbulent flames is naturally an essential discipline for the simulation of
combustion chambers. It interacts very closely with turbulence, the liquid phase and acoustics,
but also wall-interaction can be cited as a phenomenon that must be taken into account.

• Chemistry of kerosene flames involves typically hundreds of species and reactions. In order
to make the numerical simulation of realistic cases feasible, this very complex system has
to be simplified and broken down to the most important mechanisms.

• As typical LES meshes cannot resolve a flame front, additional methodologies are needed.
This can be achieved by artificially thickening the flame front [115] or by tracking a surface
that corresponds to the flame (G-equation [107] [108]) to name two examples. Furthermore,
models for the wrinkling due to subgid-scale turbulence are necessary.

• In two-phase flow, there is a complex interaction between the flame front and droplets.
This includes the burning of individual droplets, group combustion or external sheath
combustion of a spray (see figure 1.10). Here, it is the combination of the description for
the liquid phase and the way the flame is represented numerically that makes it possible
or impossible to take into account certain phenomena. For instance, a thickened flame will
not reproduce combustion of individual droplets, even if the Lagrangian approach would
allow it in principle. Inversely, a Euler-Euler formulation for the spray cannot simulate
individual droplet burning, even if the flame front was entirely resolved. More information
on spray combustion regimes can be found in the work of Reveillon [123].

1.3.4 Parallel computing

Large-scale applications in computational fluid mechanics are generally very demanding in terms
of computational resources. Today, this need is more and more adressed by parallel machines,
which means that numerical solvers have to be conceived with parallelization in mind. The
AVBP code in its baseline version (the gaseous, reactive solver) has proven to perform very well
on massively parallel architectures [143] [144].
The development of extensions for the simulation of two-phase flows has been focused on the
aspect of parallel implementaion from the beginning, which is also one of the reasons the Euler-
Euler formulation has been favoured for early development. The reason for this lies in the
structure of the spray solver that is identical to the gaseous one and therefore adds no addi-
tional complexity in terms of parallelization. Consequently, the Euler-Euler solver has proven
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Figure 1.10: Schematic of different spray combustion regimes, from Reveillon and Vervisch [123].

to be capable of tackling very large problems [20].
Some difficulties in the development of a Eulerian-Lagrangian solver lie in the parallel imple-
mentaion. Here, two basic approaches exist that shall be outlined briefly:

The first is to keep the Lagrangian solver separate from the gaseous one and run both parts on
dedicated processors. This method is the easiest to implement but it quickly reaches its limits
for large numbers of particles. In this case, the coupling terms between gaseous and liquid phase
that have to be channeled through the network between processors become the limiting factor
of the approach.

The second method is to run the Lagrangian particles and the gaseous solver simltaneously on
each processor. Ideally, the mesh is divided between processors in such a way that particles that
are spatially inside the partition associated to a given processor are also numerically treated
by the same processor. This is quite challenging to implement for several reasons: at the
initialization of a computation, the partitioning of the mesh has to take into account the spatial
distribution of Lagrangian particles as an additional constraint. Furthermore, as the particle
field can evolve over time, this partitioning ideally is of a dynamical type that adapts to changes
in particle distribution. In its present form, the AVBP Lagrangian code runs the gas phase and
the particles simultaneously but does not yet have neither a multi-constrain load balancing nor
a dynamical procedure. Detailed information on numerical aspects of the Lagrangian version
aof AVBP can be found in the work of Garćıa [49].

1.4 Scope of the present work

The first objective of this thesis is to provide a contribution to the understanding of spray simu-
lations in a typical future generation aeronautical combustor and to identify determining factors
for the quality of such a simulation. The injector to be considered is distinguished by two main
characteristics that have not been encountered very frequently in LES simulations in the past.
The first is the high degree of geometrical complexity, which translates to an increased focus on
wall-modeling. Furthermore, as there are multiple flow paths through the injector, the subject
of pressure drop prediction gains in importance compared to past simulations, because mass flux
imbalances between different flow paths (here: injector stages) significantly reduce the accuracy
of the result.
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The second characteristic is the multi-point injection system that has made its appearance in
LES simulations only recently. The present study aims at the development of procedures and
models to include such an injection in a LES.

The second main objective is to compare different numerical approaches to simulate the liq-
uid phase on cases of increasing complexity up to the simulation of evaporating spray in the
industrial-scale TLC configuration. CERFACS is in the unique position to have developed a
code that is at the same time capable of performing industrial-scale LES, while combining the
gaseous solver with both, an Euler-Euler and an Euler-Lagrange version of a solver for the liquid
phase. This allows for the first time to perform direct comparisons between both approaches on
large LES cases in an iso-code, iso-mesh and iso-model environment. All parts of this work that
are related to two-phase flows are conceived with this direct comparison in mind.

1.5 Organization of this thesis

In the first part of this manuscript, the governing equations for the gaseous and the liquid phase
are detailed. The description of the Eulerian and the Lagrangian formulations is followed by a
part dedicated to all closure models that are common to both approaches. A particular focus is
put on the evaporation model, as the implementation and validation into the Lagrangian code
has been an important part in the early stages of the present work. It is followed by a description
of the numerical methods involved in the different methods.
The second part is dedicated to preliminary studies and developments that are necessary steps to
prepare the final, applicative simulations. This part includes the development of an alternative
implementation of wall functions in a cell-vertex numerical solver, which adresses a certain
number of issues that have been identified during early stages of this work. The assessment of
the wall-modeling approach also includes the analysis of the error on pressure drop in complex
geometries. This part also describes methods of practical interest for management of this error
in cases it cannot be avoided.
Development concerning two-phase flows is dedicated to the multipoint injection system. Here,
the case of a plain, liquid jet in a gaseous crossflow has been identified as an ideal test case
for this type of injection. Simple models for the liquid jet region are laid out in detail and the
particular aspects of implementation into Eulerian and Lagrangian simulations are detailed.
The subject of the final part is the application of all previously described developments on the
final application, the so-called TLC configuration that consists in the SNECMA multi-point
injector (see section 1.2.1) mounted in a pressurized test bench. First, the purely gaseous flow
is considered. The discussion of the results includes a comparison to experimental data. In a
second step, the results of non-reactive two-phase flow inside the TLC configuration are discussed
for Eulerian and Lagrangian results with a comparison to the experiment.
Although spray combustion (being a subject of its own) is not inside the scope of this thesis,
one-dimensional flame simulations that serve mainly as validation cases for rapid evaporation
processes are included as appendices.
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Chapter 2

Governing equations for the gaseous
phase
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2.1 Introduction

This chapter presents the equations for the gas phase that are implemented in the numerical
solver AVBP used throughout the present work. The equations shown here are limited to those
actually used in the scope of this thesis and therefore not an exhaustive description of AVBP.
For more detail, the reader is referred to the official handbook of the AVBP code on which this
chapter is based.

2.2 The governing equations

Throughout this part, the index notation (Einstein’s rule of summation) is adopted for the
description of the governing equations. Note however that index k is reserved to refer to the kth

41
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species and will not follow the summation rule unless specifically mentioned or implied by the∑
sign.

The set of conservation equations describing the evolution of a compressible flow with chemical
reactions of thermodynamically active scalars reads,

∂ρ ui

∂t
+

∂

∂xj
(ρ ui uj) = −

∂

∂xj
[P δij − τij ] + Sl−g

M,i, (2.1)

∂ρ E

∂t
+

∂

∂xj
(ρ E uj) = −

∂

∂xj
[ui (P δij − τij) + qj ] + SE , (2.2)

∂ρk

∂t
+

∂

∂xj
(ρk uj) = −

∂

∂xj
[Jj,k] + Sk. (2.3)

In equations 2.1 to 2.3, which respectively correspond to the conservation laws for momentum,
total energy and species, the following symbols (ρ, ui, E, ρk) denote the density, the velocity
vector, the total energy per unit mass and the density of the chemical species k: ρk = ρYk for
k = 1 to N (where N is the total number of species). Furthermore, P denotes the pressure,
τij the stress tensor, qi the heat flux vector and Jj,k the vector of the diffusive flux of species

k. There are several source terms: Sl−g
M,i is the vector of momentum source terms and accounts

for the coupling from the dispersed phase to the gas. The source term in the total energy
equation (eq. 2.2) can be decomposed into a chemical source term and heat transfer due to

droplet evaporation: SE = ω̇T + Sl−g
E . The source term in the species transport equations

(eq. 2.3) contains contributions from chemical production or consumption of species, ω̇k, as well

as the evaporated droplet mass transfer Sl−g
F , that is applied to the equation of the evaporating

(or fuel-) species F : Sk = ω̇k + Sl−g
F . The term Sl−g

F is zero for all other species k 6= F .

It is common to distinguish between inviscid and a viscous terms. They are respectively noted
for the three conservation equations:

Inviscid terms:




ρ ui uj + P δij

(ρE + P δij) uj

ρk uj


 (2.4)

where the pressure P is given by the equation of state for a perfect gas (eq. 2.6).

Viscous terms:

The components of the viscous flux tensor take the form:




−τij

−(ui τij) + qj

Jj,k


 (2.5)

Jk is the diffusive flux of species k and is presented in section 2.2.2 (eq. 2.16). The stress tensor
τij is explicited in section 2.2.3 (eq. 2.17). Finally, section 2.2.4 details the heat flux vector qj

(eq. 2.20).



2.2. THE GOVERNING EQUATIONS 43

2.2.1 The equation of state

The equation of state for an ideal gas mixture writes:

P = ρ r T (2.6)

where r is the gas constant of the mixture dependant on time and space: r = R
W where W is

the mean molecular weight of the mixture:

1

W
=

N∑

k=1

Yk

Wk
(2.7)

The gas constant r and the heat capacities of the gas mixture depend on the local gas composition
as:

r =
R

W
=

N∑

k=1

Yk

Wk
R =

N∑

k=1

Yk rk (2.8)

Cp =

N∑

k=1

Yk Cp,k (2.9)

Cv =
N∑

k=1

Yk Cv,k (2.10)

whereR = 8.3143 J/mol.K is the universal gas constant. The adiabatic exponent for the mixture
is given by γ = Cp/Cv. Thus, the gas constant, the heat capacities and the adiabatic exponent
are no longer constant. They depend on the local gas composition as expressed by the local
mass fractions Yk(x, t):

r = r(x, t), Cp = Cp(x, t), Cv = Cv(x, t), and γ = γ(x, t) (2.11)

2.2.2 Conservation of Mass: Species diffusion flux

In multi-species flows the total mass conservation implies that:

N∑

k=1

Yk V k
i = 0 (2.12)

where V k
i are the components in directions (i=1,2,3) of the diffusion velocity of species k. They

are often expressed as a function of the species gradients using the Hirschfelder Curtis approxi-
mation:

Xk V k
i = −Dk

∂Xk

∂xi
, (2.13)

where Xk is the molar fraction of species k : Xk = YkW/Wk. In terms of mass fraction, the
approximation 2.13 may be expressed as:

Yk V k
i = −Dk

Wk

W

∂Xk

∂xi
, (2.14)
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Summing equation 2.14 over all k’s shows that the approximation 2.14 does not necessarily
comply with equation 2.12 that expresses mass conservation. In order to achieve this, a correction
diffusion velocity ~V c is added to the convection velocity to ensure global mass conservation (see
[115]) as:

V c
i =

N∑

k=1

Dk
Wk

W

∂Xk

∂xi
, (2.15)

and computing the diffusive species flux for each species k as:

Ji,k = −ρ

(
Dk

Wk

W

∂Xk

∂xi
− YkV

c
i

)
, (2.16)

Here, Dk are the diffusion coefficients for each species k in the mixture (see section 2.2.5). Using
equation. 2.16 to determine the diffusive species flux implicitly verifies equation 2.12.

2.2.3 Viscous stress tensor

The stress tensor τij is given by:

τij = 2µ

(
Sij −

1

3
δijSll

)
(2.17)

where Sij is the rate of strain tensor

Sij =
1

2

(
∂uj

∂xi
+

∂ui

∂xj

)
(2.18)

Equation 2.17 may also be written:

τxx =
2µ
3 (2

∂u
∂x − ∂v

∂y − ∂w
∂z ), τxy = µ(∂u

∂y +
∂v
∂x)

τyy =
2µ
3 (2

∂v
∂y − ∂u

∂x − ∂w
∂z ), τxz = µ(∂u

∂z +
∂w
∂x )

τzz =
2µ
3 (2

∂z
∂w − ∂u

∂x − ∂v
∂y ), τyz = µ(∂v

∂z +
∂w
∂y )

(2.19)

where µ is the shear viscosity (see section 2.2.5).

2.2.4 Heat flux vector

For multi-species flows, an additional heat flux term appears in the diffusive heat flux. This
term is due to heat transport by species diffusion. The total heat flux vector then takes the
form:

qi = −λ
∂T

∂xi︸ ︷︷ ︸
Heat conduction

−ρ

N∑

k=1

(
Dk

Wk

W

∂Xk

∂xi
− YkV

c
i

)
hs,k

︸ ︷︷ ︸
Heat flux through species diffusion

= −λ
∂T

∂xi
+

N∑

k=1

Ji,khs,k (2.20)

where λ is the heat conduction coefficient of the mixture (see section 2.2.5) and hs,k the sensible
enthalpy of the species k.
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2.2.5 Transport coefficients

In CFD codes for multi-species flows the molecular viscosity µ is often assumed to be independent
of the gas composition and close to that of air so that the classical Sutherland law can be used.
The same assumption for a multi-species gas yields:

µ = c1
T 3/2

T + c2

Tref + c2

T
3/2
ref

(2.21)

where c1 and c2 must be determined so as to fit the real viscosity of the mixture. For air at Tref

= 273 K, c1 = 1.71e-5 kg/m.s and c2 = 110.4 K (see [155]). A second law is available, called
Power law:

µ = c1

(
T

Tref

)b

(2.22)

with b typically ranging between 0.5 and 1.0. For example b = 0.76 for air.

The heat conduction coefficient of the gas mixture can then be computed by introducing the
molecular Prandtl number of the mixture as:

λ =
µCp

Pr
(2.23)

with Pr supposed constant in time and space.

The computation of the species diffusion coefficients Dk is a specific issue. These coefficients
should be expressed as a function of the binary coefficients Dij obtained from kinetic theory
(Hirschfelder et al. [64]). The mixture diffusion coefficient for species k, Dk, is computed as
(Bird et al. [15]):

Dk =
1− Yk∑N

j 6=k Xj/Djk

(2.24)

The Dij are complex functions of collision integrals and thermodynamic variables. For a sim-
ulation involving complex chemistry, using equation 2.24 makes sense. If a simplified chemical
scheme is used, modeling diffusivity in a precise way is not needed so that this approach is much
less attractive. Therefore, a simplified approximation is used in Avbp for Dk. The Schmidt
numbers Sc,k of the species are supposed to be constant so that the binary diffusion coefficient
for each species is computed as:

Dk =
µ

ρ Sc,k
(2.25)
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2.3 The LES Concept

Large Eddy Simulation (LES) [128, 116] is nowadays recognized as an intermediate approach
in comparison to the more classical Reynolds Averaged Navier-Stokes (RANS) methodologies.
Although conceptually very different these two approaches aim at providing new systems of
governing equations to mimic the characteristics of turbulent flows.

The derivation of the new governing equations is obtained by introducing operators to be applied
to the set of compressible Navier-Stokes equations. Unclosed terms arise from these manipu-
lations and models need to be supplied for the problem to be solved. The major differences
between RANS and LES come from the operator employed in the derivation. In RANS the
operation consists of a temporal or ensemble average over a set of realizations of the studied
flow [116, 26]. The unclosed terms are representative of the physics taking place over the entire
range of frequencies present in the ensemble of realizations under consideration. In LES, the
operator is a spatially localized time independent filter of given size, △, to be applied to a single
realization of the studied flow. Resulting from this spatial filtering is a separation between the
large (greater than the filter size) and small (smaller than the filter size) scales. The unclosed
terms in LES represent the physics associated with the small structures (with high frequencies)
present in the flow. Figure 2.1 illustrates the conceptual differences between (a) RANS and (b)
LES when applied to a homogeneous isotropic turbulent field.

(a) (b)

Figure 2.1: Conceptual representation of (a) RANS and (b) LES applied to a homogeneous isotropic
turbulent field.

Due to the filtering approach, LES allows a dynamic representation of the large scale motions
whose contributions are critical in complex geometries. The LES predictions of complex turbu-
lent flows are therefore closer to the physics since large scale phenomena such as large vortex
shedding and acoustic waves are embedded in the set of governing equations [115].

For the reasons presented above, LES has a clear potential in predicting turbulent flows en-
countered in industrial applications. Such possibilities are however restricted by the hypothesis
introduced while constructing LES models.

This chapter describes the equation solved for LES of non-reacting multi-species flows in Avbp.
Section 2.5 presents the models used for turbulent viscosity.
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2.4 The Governing Equations for LES

The filtered quantity f is resolved in the numerical simulation whereas f ′ = f − f is the subgrid
scale part (the unresolved motion of the flow). For variable density ρ, a mass-weighted Favre
filtering is introduced such as:

ρf̃ = ρf (2.26)

The conservation equations for large eddy simulation are obtained by filtering the instantaneous
equations 2.1, 2.2 and 2.3:

∂ρ ũi

∂t
+

∂

∂xj
(ρ ũi ũj) = −

∂

∂xj
[P δij − τij − τij

t] + S
l−g
M,i (2.27)

∂ρ Ẽ

∂t
+

∂

∂xj
(ρ Ẽ ũj) = −

∂

∂xj
[ui (P δij − τij) + qj + qj

t] + SE (2.28)

∂ρ Ỹk

∂t
+

∂

∂xj
(ρ Ỹk ũj) = −

∂

∂xj
[Jj,k + Jj,k

t
] + Sk (2.29)

In equations 2.27, 2.28 and 2.29, there are now three types of terms to be distinguished: the
inviscid terms, the viscous terms and the subgrid scale terms.

Inviscid terms:

These terms are equivalent to the unfiltered equations except that they now contain filtered
quantities:




ρũi ũj + P δij

ρẼũj + P ujδij

ρkũj


 (2.30)

Viscous terms:

The viscous terms take the form:




−τij

−(ui τij) + qj

Jj,k


 (2.31)

Filtering the balance equations leads to unclosed quantities, which need to be modeled, as
presented in sections 2.4.1 and 2.4.2.

Subgrid scale turbulent terms:

The subgrid scale terms are:


−τij

t

qj
t

Jj,k
t


 (2.32)
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2.4.1 The filtered viscous terms

The filtered diffusion terms are (see T. Poinsot and D. Veynante, Chapter 4 [115]): the laminar
filtered stress tensor τij , which is given by the following relations:

τij = 2µ(Sij − 1
3δijSll),

≈ 2µ(S̃ij − 1
3δijS̃ll),

(2.33)

and

S̃ij =
1

2
(
∂ũj

∂xi
+

∂ũi

∂xj
), (2.34)

Equation 2.33 may also be written:

τxx ≈ 2µ
3 (2

∂eu
∂x − ∂ev

∂y − ∂ ew
∂z ), τxy ≈ µ(∂eu

∂y +
∂ev
∂x)

τyy ≈ 2µ
3 (2

∂ev
∂y − ∂eu

∂x − ∂ ew
∂z ), τxz ≈ µ(∂eu

∂z +
∂ ew
∂x )

τzz ≈ 2µ
3 (2

∂ ew
∂z − ∂eu

∂x − ∂ev
∂y ), τyz ≈ µ(∂ev

∂z +
∂ ew
∂y )

(2.35)

The filtered diffusive species flux vector for non-reactive flows is:

Ji,k = −ρ
(
Dk

Wk

W
∂Xk

∂xi
− YkVi

c
)

≈ −ρ
(
Dk

Wk

W
∂ eXk

∂xi
− ỸkṼi

c
)

,
(2.36)

where higher order correlations between the different variables of the expression are assumed
negligible.

The filtered heat flux is :
qi = −λ ∂T

∂xi
+
∑N

k=1 Ji,khs,k

≈ −λ ∂ eT
∂xi

+
∑N

k=1 Ji,k h̃s,k

(2.37)

These forms assume that the spatial variations of molecular diffusion fluxes are negligible and
can be modelled through simple gradient assumptions.

2.4.2 Subgrid-scale turbulent terms for LES

As highlighted above, filtering the transport equations yields a closure problem evidenced by
the so called “subgrid-scale” (sgs) turbulent fluxes (see eq. 2.4). For the system to be solved
numerically, closures need to be supplied.

The Reynolds tensor is :
τij

t = −ρ (ũiuj − ũiũj) (2.38)

τij
t is modeled as:

τij
t = 2 ρ νt

(
S̃ij −

1

3
δijS̃ll

)
, (2.39)

This relation is known as the Boussinesq approximation. It relates the subgrid stresses to
a quantity that takes the form of a viscosity and is therefore called subgrid-scale turbulent
viscosity, νt. Models for this term are explained in section 2.5.

The subgrid scale diffusive species flux vector is:

Ji,k
t
= ρ

(
ũiYk − ũiỸk

)
, (2.40)



2.5. MODELS FOR THE SUBGRID STRESS TENSOR 49

Ji,k
t
is modeled as:

Ji,k
t
= −ρ

(
Dk

t Wk

W

∂X̃k

∂xi
− ỸkṼi

c,t

)
, (2.41)

with
Dt

k =
νt

St
c,k

(2.42)

The turbulent Schmidt number St
c,k = 0.6 is the same for all species. Note also that having one

turbulent Schmidt number for all the species does not imply, Ṽ c,t = 0 because of the Wk/W
term in equation 2.41.

The subgrid scale heat flux vector is:

qi
t = ρ(ũiE − ũiẼ), (2.43)

where E is the total energy. In the source code, the modelisation for q̃t is written :

qi
t = −λt

∂T̃

∂xi
+

N∑

k=1

Ji,k
t
h̃s,k, (2.44)

with

λt =
µtCp

P t
r

. (2.45)

The turbulent Prandtl number is fixed at P t
r = 0.6.

The correction diffusion velocities are then obtained from:

Ṽ c
i + Ṽ c,t

i =
N∑

k=1

(
µ

ρSc,k
+

µt

ρSt
c,k

)
Wk

W

∂X̃k

∂xi
, (2.46)

and where Eqs. 2.25 and 2.42 are used.

2.5 Models for the subgrid stress tensor

Models for the subgrid-scale turbulent viscosity νt are an essential part of a LES. The sgs
turbulence models are derived on the theoretical ground that the LES filter is spatially and
temporally invariant. Variations in the filter size due to non-uniform meshes are not directly
accounted for in the LES models. Change of cell topology is only accounted for through the use

of the local cell volume, that is △ = V
1/3
cell .

2.5.1 Smagorinsky model

In the Smagorinsky model, the sgs viscosity νt is obtained from

νt = (CS△)2
√
2 S̃ij S̃ij (2.47)

where △ denotes the characteristic filter width (cube-root of the cell volume), CS is the model
constant set to 0.18 but can vary between 0.1 and 0.18 depending on the flow configuration.
The Smagorinsky model [140] was developed in the 1960s and heavily tested for multiple flow
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configurations. This closure is characterized by its globally correct prediction of kinetic energy
dissipation in homogeneous isotropic turbulence. However, it predicts non-zero turbulent viscos-
ity levels in flow regions of pure shear, which makes it unsuitable for many wall-bounded flows
[104]. This also means that its behaviour is too dissipative in transitioning flows [128].

2.5.2 WALE model

In the WALE model, the expression for νt takes the form

νt = (Cw△)2
(sd

ijs
d
ij)

3/2

(S̃ijS̃ij)5/2+(sd
ijs

d
ij)

5/4
(2.48)

with

sd
ij =

1

2
(g̃2

ij + g̃2
ji)−

1

3
g̃2
kk δij (2.49)

△ denotes again the characteristic filter width (cube-root of the cell volume), Cw = 0.4929 is
the model constant and g̃ij denotes the resolved velocity gradient. The WALE model [104] was
developed for wall bounded flows and allows to obtain correct scaling laws near the wall.

2.5.3 Filtered Smagorinsky model

νt = (CSF
△)2

√
2HP (S̃ij)HP (S̃ij) (2.50)

with△ being the filter with, CSF
= 0.37 is the model constant and HP (S̃ij) denotes the resolved

strain rate tensor obtained from a high-pass filtered velocity field. This model was developed
in order to allow a better representation of local phenomena typical of complex turbulent flows
[38]. With the Filtered Smagorinsky model, near-wall flows and transition are better predicted
than with the standard formulation.

2.5.4 Dynamic Smagorinsky model

νt = (CSD
△)2

√
2 S̃ij S̃ij (2.51)

where △ denotes the filter characteristic length (cube-root of the cell volume). The difference
compared to the expression obtained for the conventional Smagorinsky model 2.47 comes from
the evaluation of the closure coefficient CSD

. In the Dynamic Smagorinsky approach proposed
by Germano et al. [50], that coefficient is obtained within the simulation and is no more a user
defined variable. The expression from which CSD

is obtained stems from the Germano inequality
and follows Lilly’s procedure [87]:

C2
SD

=
1

2

MijMij

LijLij
(2.52)

In the previous expression, the following tensors are defined by,

Mij = ∆̂2
√
2 < S̃ij > < S̃ij > < S̃ij > Lij =< ũi >< ũj > − < ũiũj >, (2.53)

and introduce the notion of ”test” filter of characteristic length ∆̂ equal to the cubic root of the
volume defined by all the cells surrounding the cell of interest. Note that clipping and smoothing
ensures none negative values for CSD

.
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3.1 Introduction

In contrast to newtonian fluid flow descriptions that are mainly based on continuum mechanics
with an eulerian point of view, spray dynamics may be described with different theoretical
approaches. In the Lagrangian approach (denoted EL), the dispersed phase is considered as a
set of discrete particles on which point mechanics apply. In the Eulerian approach (denoted EE),
the spray is viewed as a continuum (similar to the Navier-Stokes equations being the continuum
description of many molecules) with local mean properties that correspond to the considered set
of particles.

Both approaches are implemented in different modules of the AVBP solver that can be coupled
with the gaseous part described in chapter 2. As the physical models that appear in EE and EL
are identical, their detailed description is centralized in chapter 4.

Assumptions

(i) The particles are spherical non-deformable droplets, and thus not subject to breakup mech-
anisms.

(ii) The density ratio between the liquid and the gas allows to limit the interacting forces to
drag.

51



52 CHAPTER 3. GOVERNING EQUATIONS FOR THE DISPERSED, LIQUID PHASE

(iii) The temperature (and thus the sensible enthalpy) is uniform inside the droplets, which
corresponds to the assumtion of infinite liquid phase conductivity.

(iv) The dispersed phase is diluted (the liquid volume fraction αl < 0.01) and the gaseous
volume fraction is 1− αl ≡ 1.

(v) Droplet-droplet interactions (such as collisions) are negligible.

3.2 The Eulerian-Lagrangian approach

In the Lagrangian approach, each droplet is considered individually. This results in a compact
set of equations. A purely kinematic relation can be stated for the position xp,i and the velocity
up,i of a given particle:

dxp,i

dt
= up,i (3.1)

The second relation is the conservation of momentum given by Newton’s second law:

dup,i

dt
=

Fd,i

mp
(3.2)

where Fd,i is the vector of the force exerted on the particle. An expression for Fd,i is detailed
in section 4.2. Note that the direct effect of subgrid-scale fluctuations on the particle motion
is neglected. This effect becomes significant when the droplet Stokes number based on the
Kolmogorov time scale τη approaches unity [41, 96]. However, Apte et al. [6] showed that it
is small for swirling flows with subgrid scale energy contents much smaller than those of the
resolved scales. The relation governing the evolution of droplet mass is given by:

d mp

dt
= −πdp Sh [ρDF ] ln (1 +BM ) (3.3)

where dp is the droplet diameter, Sh the Sherwood number and BM the Spalding number for
mass transfer. Details on the derivation of this expression are given in section 4.3.1. The
evolution of the temperature of a particle is:

d Tp

d t
=

1

mp Cp,l
Φc

l (3.4)

where Φc
l is the conductive heat transfer inside the droplet and Cp,l the liquid phase heat capac-

ity at constant pressure.

3.2.1 Coupling between phases

The right-hand side terms of equations 3.2 to 3.4 depend on variables of the gas phase. To effect
this direct coupling, gaseous quantities have to be interpolated from the Eulerian grid to the
perticle position. The value of an arbitrary gaseous variable fg@p at the particle p is obtained
from

fg@p =
∑

j∈Ke

w(xp,i, xj,i)fg,j (3.5)
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In the grid cell e considered, the value is summed over all nodes j located at the vertices Ke of
the cell. Each contribution is weightd by w(xp,i, xj,i) that is given by an interpolation function.
Note that the values transferred to the particles in a LES are always the resolved (or filtered)
ones. More information on the interpolation schemes can be found in section 5.9.2 where nu-
merical aspects of the Lagrangian solver are described.

Additional coupling terms appear at the transfer from the liquid to the gas phase, the so-called
two-way coupling (or inverse coupling). In the Lagrangian solver, a generic two-way coupling
term, noted Sp, generated at a particle k that is located inside the grid cell e is transferred
to the Eulerian grid in the following way: the contribution received by a given grid node j is
obtained by the summation of all weighted contributions from all particles inside Dj , the set of
cells having a vertex coinciding with j (see figure 3.1 for a schematic):

Sj =
1

Vj

∑

k∈Dj

Θ
(k)
j,e S(k)

p (3.6)

e
!

j
!

Sp"j,e!

p(k)!

Dj

Figure 3.1: Distribution of the source terms generated by a Lagrangian particle k to the Eulerian grid.

As the source terms in the gaseous equations are quantities measured per unit volume, the sum

is divided by Vj , the nodal control volume or the median dual cell. The weights Θ
(k)
j,e are given

by a distribution function that is detailed in section 5.9.3. Details on the actual source terms
can be found in chapter 4, where models for the transfer terms between phases are presented.

3.3 The mesoscopic Eulerian-Eulerain approach

In the Euler-Euler approach, the description of the history of each particle is replaced by the
description of their mean properties, regarding the spray as a continuous fluid. The averaging
procedure – volumic or statistical – leads in principle to two different formulations that differ by
their respective assumptions, the definition of the mean properties and the models used to close
the transport equations. However the resulting sets of equations are very similar. In AVBP the
statistical average is used as described below.

Statistical average

The Euler-Euler equations are obtained from the statistical average applied to the flow descrip-
tion issued from the kinetic theory of gases [25, 74, 102]. The main steps are summarized here
as follows:
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1. a number density function is defined, conditioned by one realisation of the carrying flow

2. a transport equation is written to describe the evolution of this function

3. a local statistical average operator is defined from this function

4. the product of the transport equation by any spray function Ψ (droplet number, density,
temperature), and the statistical averaging lead to the general Enskog equation

5. replacing Ψ with appropriate quantities, a system of conservation equations is established
for the mean spray dynamics, named mesoscopic

6. models are developed to close the terms linked to the uncorrelated motion and the exchange
terms between the two phases that appear in the equations

Note that this procedure does not include any averaging due to LES filtering, which is presented
in section 3.3.2.

Due to the description of the spray in mesoscopic quantities, additional assumptions are neces-
sary:

(vi) The low impact of the diluted liquid phase on the carrying phase allows to condition the
statistics on one realisation only of the carrying phase.

(vii) The spray is locally monodisperse.

(viii) Droplets have locally the same temperature (mono-temperature spray).

Definitions

Mass Statistical Average

Similarly to the Favre average introduced for compressible gaseous flows with density variation,
it is useful to define a mass-weighted average for the particles:

Ψ̆ = 〈Ψ〉l =
1

ρlᾰl

∫
mpΨ(up, Tp, mp) fp

(
up, Tp, mp

∣∣Hf

)
dup dTp dmp (3.7)

Here, fp(up, Tp, mp

∣∣Hf ) is a probability function of the particle density, conditioned on a flow
realization Hf . ρl is the liquid density and ᾰl is the volume fraction of the dispersed phase
defined by:

ρlᾰl =

∫
µpfp

(
up, Tp, mp

∣∣Hf

)
dup dTp dmp (3.8)

Mesoscopic and uncorrelated motions

Replacing Ψ with the particle velocity up gives the local instantaneous mean velocity of the
liquid spray, conditioned on the gaseous flow realisation Hf :

ŭl (x, t|Hf ) = 〈up〉l (3.9)

where ŭl is a mean eulerian velocity called mesoscopic velocity. Each individual particle located
at x at time t has its own velocity up that is the summation of the mesoscopic velocity and a
residual velocity u′′p called uncorrelated velocity :

up = ŭl + u′′p with
〈
u′′p

〉
l
= 0 (3.10)



3.3. THE MESOSCOPIC EULERIAN-EULERAIN APPROACH 55

ŭl

up

u
′′

p

mesoscopic 

velocity!

uncorrelated 

velocity!

particle 

velocity!

Set of particles in a given 

control volume:!

Figure 3.2: Decomposition of the lagrangian particle velocity up into a mesoscopic part ŭl and an
uncorrelated part u′′p

This velocity decomposition allows to see the spray as a set of particles with the same mesoscopic
motion while each particle has its own motion at the uncorrelated velocity (cf. Fig. 3.2).

The modelling of the uncorrelated motion introduces a number of quantities such as the uncor-
related velocity tensor δR̆l:

δR̆l,ij (x, t|Hf ) =
〈
u′′p,iu

′′
p,j

〉
l

(3.11)

and the uncorrelated energy δθ̆l:

δθ̆l =
1

2

〈
u′′p,iu

′′
p,i

〉
l

(3.12)

δθ̆l corresponds to the half-trace of the uncorrelated velocity tensor and obeys a transport equa-
tion. It is analogous to a “temperature” of the dispersed phase.
The deviatoric part of the uncorrelated velocity tensor δR̆

∗
l is:

δR̆
∗
l,ij = δR̆l,ij −

2

3
δθ̆lδij (3.13)

The Enskog equation

Multiplying the Boltzmann equation with any particle function Ψ and integrating in the phase
space (

∫
· dup dTp dmp), one obtains the general form of the Enskog equation:

∂

∂t
ρlᾰl 〈Ψ〉l +

∂

∂xi
ρlᾰl 〈up,iΨ〉l = C (mpΨ)

+ ρlᾰl

〈
dup,j

dt

∂Ψ

∂up,j

〉

l

+ ρlᾰl

〈
dTp

dt

∂Ψ

∂Tp

〉

l

+ ρlᾰl

〈
dmp

dt

(
∂Ψ

∂mp
+

Ψ

mp

)〉

l

(3.14)

where C (mpΨ) is the variation of ρlᾰlΨ̆ due to interactions between particles. Noting that
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〈up,iΨ〉l = 〈up,i〉l 〈Ψ〉l +
〈
u′′p,iΨ

〉

l
, Eq. 3.14 may be rewritten as:

∂

∂t
ρlᾰlΨ̆ +

∂

∂xi
ρlᾰlŭl,iΨ̆ = T (Ψ) +C (mpΨ)

+ ρlᾰl

〈
dup,j

dt

∂Ψ

∂up,j

〉

l

+ ρlᾰl

〈
dTp

dt

∂Ψ

∂Tp

〉

l

+ ρlᾰl

〈
dmp

dt

(
∂Ψ

∂mp
+

Ψ

mp

)〉

l

(3.15)

where T (Ψ) is the uncorrelated flux operator defined as:

T (Ψ) = − ∂

∂xi
ρlᾰl

〈
u′′p,iΨ

〉
l

(3.16)

When Ψ also varies in time and space (the uncorrelated energy for example, see Eq. 3.21), the
following terms appear in the right hand side term of Eq. 3.14 and 3.15:

ρlᾰl

〈
∂

∂t
Ψ

〉

l

+ ρlᾰl

〈
up,i

∂

∂xj
Ψ

〉

l

(3.17)

Conservation equations

Number density Taking Ψ = 1
mp
, one obtains:

∂

∂t
n̆l +

∂

∂xi
n̆lŭl,i = T

(
m−1

p

)
+C (1) (3.18)

Note that in the case of a monodisperse spray, all particles have locally the same mass (mp = const)

so that: T
(
m−1

p

)
= − ∂

∂xi
ρlᾰl

〈
u′′p,i

mp

〉

l
= 0. The collisional term C (1) is set to 0 in AVBP.

Volume fraction

Taking Ψ = 1, one obtains:

∂

∂t
ρlᾰl +

∂

∂xi
ρlᾰlŭl,i = T (1) +C (mp) + Γl (3.19)

where T (1) = 0 et Γl = −Γ = ρlᾰl

〈
1

mp

dmp

dt

〉

l
is the rate of change of mass through phase

exchange (evaporation). The collisional term C (mp) is set to 0 in AVBP.

Momentum

Taking Ψ = up, one obtains:

∂

∂t
ρlᾰlŭl,i +

∂

∂xj
ρlᾰlŭl,iŭl,j = T

(
u′′p,i

)
+C (mpup) + Fd,i + Γu,i (3.20)

T
(
u′′p,i

)
represents the transport of momentum by the uncorrelated motion. C (mpup) is the

exchange of momentum among particles (collisions, breakup, coalescence, etc.) and is set to 0

in AVBP. Fd,i = ρlᾰl

〈
Fp,i

mp

〉

l
is the exchange of momentum with the gaseous phase via the drag

force Fp exerted on each particle. Γu,i = ρlᾰl

〈
up,i

mp

dmp

dt

〉

l
is the exchange of momentum with

the gaseous phase through mass exchange. In the case of a monodisperse spray where particles
have locally the same temperature (mono-temperature spray), one has: Γu,i = Γlŭl,i.
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Uncorrelated energy

Taking Ψ = 1
2 (up,i − ŭl,i) (up,i − ŭl,i) =

1
2u′′p,iu

′′
p,i and adding the terms of Eq. 3.17 to the Enskog

equation (Eq. 3.15), one obtains:

∂

∂t
ρlᾰlδθ̆l +

∂

∂xi
ρlᾰlŭl,iδθ̆l = T

(
1

2
u′′p,iu

′′
p,i

)
+C

(
1

2
mpu

′′
p,iu

′′
p,i

)
+Wθ + Γθ +Uθ (3.21)

T
(

1
2u′′p,iu

′′
p,i

)
represents the transport of uncorrelated energy by the uncorrelated motion. C (mpup)

is the exchange of uncorrelated energy between particles. Wθ = ρlᾰl

〈
u′′p,i

Fp,i

mp

〉

l
is the uncorre-

lated energy variation due to drag. Γθ = ρlᾰl

〈
1
2

u′′p,iu
′′

p,i

mp

dmp

dt

〉

l
is the uncorrelated energy variation

due the mass transfer between the phases. For a monodisperse and mono-temperature spray,

one has: Γθ = Γlδθ̆l. Finally, Uθ = −ρlᾰlδR̆l,ij
∂ŭl,i

∂xj
comes from additional terms (Eq. 3.17) and

includes the effects of the uncorrelated tensor δR̆l on the uncorrelated energy.

Sensible enthalpy

Taking Ψ = hs,p, one obtains:

∂

∂t
ρlᾰlh̆s,l +

∂

∂xj
ρlᾰlŭl,j h̆s,l = T

(
h′′p

)
+C (mphs,p) + Πl (3.22)

T
(
h′′p

)
represents the transport of sensible enthalpy by the uncorrelated motion. C (mpup) is

the exchange of sensible enthalpy between particles, assumed to be 0 in the present work. Πl is
the sensible enthalpy rate of change per unit volume due to evaporation.

Summary of conservation equations

The conservation equations for the dispersed phase are:

∂

∂t
n̆l +

∂

∂xj
n̆lŭl,j = 0 (3.23)

∂

∂t
ρlᾰl +

∂

∂xj
ρlᾰlŭl,j = Sg−l

α (3.24)

∂

∂t
ρlᾰlŭl,i +

∂

∂xj
ρlᾰlŭl,iŭl,j = T

(
u′′p,i

)
+ Sg−l

Ml,i (3.25)

∂

∂t
ρlᾰlδθ̆l +

∂

∂xi
ρlᾰlŭl,iδθ̆l = T

(
1

2
u′′p,iu

′′
p,i

)
+Uθ + Sg−l

R (3.26)

∂

∂t
ρlᾰlh̆s,l +

∂

∂xi
ρlᾰlŭl,ih̆s,l = Sg−l

El (3.27)

Temporal Mesocopic Uncorrelated Source

evolution movement movement terms

Equations. 3.23–3.27 may be rewritten in a more compact form:

∂wl

∂t
+∇ · Fl = sl (3.28)
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where wl = ( n̆l, ρlᾰl, ρlᾰlŭl, ρlᾰlv̆l, ρlᾰlw̆l, ρlᾰlδθ̆l, ρlᾰlh̆s,l )
T is the vector of conservative

mesoscopic variables of the liquid phase with ŭl, v̆l et w̆l the three components of the liquid
mesoscopic velocity: ŭl = (ŭl, v̆l, w̆l)

T . Fl is the flux tensor of the liquid phase composed of
convection by mesoscopic motion FM

l and uncorrelated motion FU
l :

Fl = FM
l (wl) + FU

l

(
u′′p

)
(3.29)

The tensors FM
l et FU

l are respectively written:

FM
l =

(
fM
l ,gM

l ,hM
l

)T
(3.30)

FU
l =

(
fU
l ,gU

l ,hU
l

)T
(3.31)

The three components fM
l , gM

l et hM
l are defined as:

fM
l =





n̆lŭl

ρlᾰlŭl

ρlᾰlŭ
2
l

ρlᾰlŭlv̆l

ρlᾰlŭlw̆l

ρlᾰlŭlδθ̆l

ρlᾰlŭlh̆s,l





, gM
l =





n̆lv̆l

ρlᾰlv̆l

ρlᾰlŭlv̆l

ρlᾰlv̆
2
l

ρlᾰlv̆lw̆l

ρlᾰlv̆lδθ̆l

ρlᾰlv̆lh̆s,l





, hM
l =





n̆lw̆l

ρlᾰlw̆l

ρlᾰlŭlw̆l

ρlᾰlv̆lw̆l

ρlᾰlw̆
2
l

ρlᾰlw̆lδθ̆l

ρlᾰlw̆lh̆s,l





(3.32)

The three components of the flux tensor associated to uncorrelated motion fU
l , g

U
l et hU

l are:

fU
l =





0
0

ρlᾰlδR̆l,xx

ρlᾰlδR̆l,xy

ρlᾰlδR̆l,xz

ρlᾰlδS̆l,iix

0





, gU
l =





0
0

ρlᾰlδR̆l,xy

ρlᾰlδR̆l,yy

ρlᾰlδR̆l,yz

ρlᾰlδS̆l,iiy

0





, hU
l =





0
0

ρlᾰlδR̆l,xz

ρlᾰlδR̆l,yz

ρlᾰlδR̆l,zz

ρlᾰlδS̆l,iiz

0





(3.33)

where sl is the source vector including the exchanges with the gas sg-l and the uncorrelated
motion contributions sθ:

sl = sg-l + sθ (3.34)

The sg-l term contains mass, momentum and energy transfer:

sg-l =





0
Sα

Sg−l
Ml,1

Sg−l
Ml,2

Sg−l
Ml,3

Sg−l
R

Sg−l
El





=





0
−Γ

−Γŭl + Fd,x

−Γv̆l + Fd,y

−Γw̆l + Fd,z

−Γδθ̆l +Wθ

Πl





(3.35)

while sθ only contains the additional term that appears when deriving the uncorrelated energy
equation:

sθ = (0, 0, 0, 0, 0,Uθ, 0)
T (3.36)
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The vectors FU
l , sg-l and sθ require modelling, described in section 3.3.1. The corresponding

source terms in the gaseous phase are:

sl-g =





Sl−g
M,1

Sl−g
M,2

Sl−g
M,3

Sl−g
E

Sl−g
F




=





Γŭl − Fd,x

Γv̆l − Fd,y

Γw̆l − Fd,z

Πg + Γ1
2 ŭ2

l,i − ŭl,iFd,i

Γδk,F




(3.37)

Γ1
2 ŭ2

l,i and −ŭl,iFd,i correspond respectively to evaporation and drag effects on the gaseous total
energy. Πg corresponds to the internal sensible energy transfer by evaporation processes (see
section 4).

Note that conservation of momentum imposes that Sl−g
M,i = Sg−l

Ml,i and conservation of species

mass that Sα = Sl−g
F . Additional terms appear for the energy phase exchange term Sl−g

E as
the equations are written in terms of total energy on the gaseous side and in terms of sensible
enthalpy for the liquid phase.

3.3.1 Two-phase eulerian closure models

The set of equations 3.23 to 3.27 contains unclosed terms. Those terms that are common to EL
and EE are described in detail in chapter 4.

Random uncorrelated motion

An additional closure model that appears in the EE framework only is needed for the random
uncorrelated movement (RUM). Development and evaluation of such models is still ongoing
[125] [129] [150] and not in the scope of this work - the terms related to the RUM are therefore
left unclosed. This has no consequence on the time-averaged results (apart from additional
diffusion that would be caused by the RUM), as shown by Riber [124] in her thesis. The RUM
can, however, contain a non-negligible fraction of the fluctuations. RMS levels of EE results
can therefore be expected to be lower than their experimental or Lagrangian counterparts.
Février et al. [45] as well as Vance et al. [149] studied homogeneous isotropic turbulence and
a periodic channel flow respectively and proposed a correlation that relates the fluctuations of
the mesoscopic velocities ŭ′ and the uncorrelated contribution to the fluctuations, δul:

〈δul,iδul,i〉 = 〈ŭ′l,iŭ′l,i〉
〈ŭ′l,iŭ′l,i〉〈u′iu′i〉
〈u′iŭ′l,i〉2

− 〈ŭ′l,iŭ′l,i〉 (3.38)

This expression contains the correlation between gaseous and liquid velocity fluctuations, 〈u′iŭ′l,i〉,
which can be included into the time-averaged solutions of an EE simulation. An approximation
made in this context is to consider the gaseous velocity equal to the filtered velocity available
in a LES, thus ui = ui.
Even without the use of a dedicated model for the impact of RUM on the mesoscopic liquid-
phase velocity field, this contribution can be added a posteriori to the fluctuation field. This
method has been applied successfully by Riber [124] and also by Simsont in a his EE study of
the TLC configuration with hollow-cone injection [138].

In the previous section, the mesoscopic equations were presented. They must now be spatially
filtered to obtain the LES equations.
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3.3.2 LES equations for the dispersed phase

LES Filtering

The LES filtering is identical to the filtering procedure used for the gaseous phase equations.
The Favre average for the dispersed phase is similar to the Favre average of the gaseous phase
and is obtained by using the mesoscopic volume fraction ᾰl instead of the gaseous density ρ:

αlf̂l = ᾰlf̆l (3.39)

where αl is the filtered volume fraction of the liquid. If the spray is monodisperse at the filter
size, the liquid Favre average may be equivalently defined with the number density as:

n̆lf̆l =
6ᾰl

πd̆3
f̆l =

6

πd̆3
αlf̂l = nlf̂l (3.40)

where nl is the filtered number density and d̆ is the mesoscopic diameter for which it is supposed

that d̆ = d̆, or: d̆′ = 0.

The filtering of the conservation equations of the dispersed phase derived in the previous section
gives the LES equations. Modelling of the sub-grid terms is decribed in section 3.3.3.

∂wl

∂t
+∇ · Fl = sl (3.41)

where wl = (nl, ρlαl, ρlαlûl, ρlαlv̂l, ρlαlŵl, ρlαlĥl )
T is the vector of the filtered mesoscopic

conservative variables of the liquid phase with ûl, v̂l and ŵl the three velocity components:

ûl = (ûl, v̂l, ŵl)
T . Fl is the filtered flux tensor defined by Fl =

(
f l,gl,hl

)T
and sl the filtered

source term. The fluxes f l, gl, hl are split in three contributions:

f l = f
M
l + f

t
l

gl = gM
l + gt

l (3.42)

hl = h
M
l + h

t
l

with:

The resolved mesoscopic contribution: f
M
l ,gM

l ,h
M
l

The sub-grid contribution: f
t
l ,g

t
l ,h

t
l

Resolved mesoscopic fluxes

The three components of the resolved mesoscopic flux tensor are defined as:

f
M
l =





nlûl

ρlαlûl

ρlαlû
2
l

ρlαlûlv̂l

ρlαlûlŵl

ρlαlûlδ̂θl

ρlαlûlĥl





, gM
l =





nlv̂l

ρlαlv̂l

ρlαlûlv̂l

ρlαlv̂
2
l

ρlαlv̂lŵl

ρlαlv̂lδ̂θl

ρlαlv̂lĥl





, h
M
l =





nlŵl

ρlαlŵl

ρlαlûlŵl

ρlαlv̂lŵ
ρlαlŵ

2
l

ρlαlŵlδ̂θl

ρlαlŵlĥl





(3.43)
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Sub-grid fluxes

The three components of the sub-grid flux tensor are written as:

f
t
l =





0
0

−τ t
l,xx

−τ t
l,xy

−τ t
l,xz

qt
θ,x

qt
h,x





, gt
l =





0
0

−τ t
l,xy

−τ t
l,yy

−τ t
l,yz

qt
θ,y

qt
h,y





, h
t
l =





0
0

−τ t
l,xz

−τ t
l,yz

−τ t
l,zz

qt
θ,z

qt
h,z





(3.44)

τ t
l is the sub-grid stress tensor of the dispersed phase defined by:

τ t
l,ij = −ρlαl

(
ûl,iul,j − ûl,iûl,j

)
(3.45)

qt
θ is the sub-grid flux of uncorrelated energy:

qt
θ,i = ρlαl

(
ûl,iδθ − ûl,iδ̂θl

)
(3.46)

qt
h is the sub-grid flux of sensible enthalpy:

qt
h,i = ρlαl

(
ûl,ihs,l − ûl,iĥl

)
(3.47)

In the present implementation, the sub-grid effects on the resolved liquid enthalpy are supposed
negligeable: qt

h = 0. The modelling of the terms τ t
l and qt

θ is described in section 3.3.3.

All source terms sl are approximated by their unfiltered form, i.e. subgrid-scale terms that
would appear in a proper, filtered formulation are neglected. The terms are detailed in chapter
4. Details on this simplification can be found in the thesis of Boileau [18].

3.3.3 Sub-grid scale models for the dispersed phase

Sub-grid scale mesoscopic velocity tensor

By analogy with the LES modeling of gaseous flows, Riber et al. [125] propose a viscous-type
model for the sub-grid scale mesoscopic velocity tensor τ t

l . The deviatoric part is evaluated
with the compressible Smagorinsky model [140] whereas the diagonal part is calculated with the
Yoshizawa model [157]:

τ t
l,ij = −ρlαl

(
ûl,iul,j − ûl,iûl,j

)
(3.48)

model: τ t
l,ij = 2ρlαlνl,t

(
Ŝl,ij −

1

3
Ŝl,kkδij

)
+ 2ρlαlκl,tŜl,ijδij (3.49)

with: Ŝl,ij =
1

2

(
∂ûl,i

∂xj
+

∂ûl,j

∂xi

)
− 1

3

∂ûl,k

∂xk
δij (3.50)

Smagorinsky model: νl,t = (CS,l∆)
2
√
2 Ŝl,ij Ŝl,ij (3.51)

Yoshizawa model: κl,t = 2 (CV,l∆)
2 Ŝl,ij (3.52)

The model constants are fixed from a priori tests [101]: CS,l = 0.14 et CV,l = 0.11.
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3.4 Definition of characteristic diameters in a spray

To analyze droplet sprays, statistics on droplet diameters are used to define global, characteristic
diameters. The most common ones are the mean diameter D10 and the Sauter mean diameter
(SMD or D32). The indices of a characteristic diameter Dmn correspond to the exponents in an
expression for a spray composed of N droplets:

Dmn =

∑N
i=1 dm

i∑N
i=1 dn

i

(3.53)

where di is the diameter of a given droplet i. Alternatively, for a sample divided into k diameter
classes with Ni particles present in the class i, the definition of Dmn becomes:

Dmn =

∑k
i=1 Nid

m
i∑k

i=1 Nidn
i

(3.54)

The mean diameter takes the form:

D10 =

N∑

i=1

di (3.55)

The Sauter mean diameter is obtained from

D32 =

∑N
i=1 d3

i∑N
i=1 d2

i

(3.56)

and describes the diameter that has the same volume to surface ratio as the entire spray, which
is of interest for evaporating cases.
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4.1 Introduction

This chapter’s purpose is to give a detailed overview of the physics behind the source terms
related to the exchange between the gas and the liquid phase that appear in chapters 2 and 3.
These terms are modeled in exactly the same way for both, the EL and EE formulation. For
the sake of clarity, all gaseous variables are noted without associated filtering or interpolation
operators. In the EL framework, a given gaseous flow variable, noted fg in this chapter, corre-
sponds in practice to fg@p, which is the filtered quantity fg, interpolated from the grid nodes
j of the cell e in which the particle is situated to the position xp,i of the particle (see section
5.9.2) for details on interpolation.

4.2 Drag

The drag force exerted by the gas with the velocity u on an isolated spherical particle of mass
mp and velocity up is obtained by a simplification of the Basset-Boussinesq-Oseen equation [29]:

Fp,i

mp
=

1

τp
(ui − up,i) (4.1)

63
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where τp is the relaxation time of the particle expressed as:

τp =
τ ′p

1 + 0.15Re 0.687
p

with τ ′p =
ρld

2

18µ
(4.2)

where Rep is the Reynolds number of the particle:

Rep =
|ui − up,i| dp

ν
(4.3)

Equation 4.2 includes an empirical correlation proposed by Schiller and Naumann [132] to take
into account Reynolds number effects. For low particle Reynolds numbers, equation 4.2 yields
τp = τ ′p. As τ ′p is in fact the drag coefficient proposed by Stokes [145], this correction degenerates
into the original Stokes law. The influence of the Schiller-Naumann correction is shown in figure
4.1, where the initial acceleration of a typical particle in a combustion chamber (dp = 30µm,
ρg = 7.18 kg/m3, ρl = 782 kg/m3) is considered. For a relative velocity between particle and
surrounding gas of 10m/s, the acceleration according to the Schiller-Naumann law is five times
the one obtained with the uncorrected Stokes drag.
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Figure 4.1: Left: initial acceleration of a droplet over the slip velocity. Right: ratio between the initial
acceleration of a droplet obtained with the Schiller-Naumann correction and the uncorrected Stokes drag
over the particle Reynolds number Rep.

The effects of drag on the dispersed phase dynamics depend on the Stokes number comparing
the characteristic time of the drag term τp to the flow characteristic time:

St =
τp

τL
(4.4)

where τL = L/|u| with L being a characteristic length scale of the gaseous flow. The Stokes
number is an indicator of the response of the particle to the variations of the flow velocity. For
St ≪ 1, the particle behaves like a tracer of the gaseous flow. For St ≫ 1, the particle has
an inertial trajectory and is insensitive to the gaseous flow perturbations. Finally, for Stokes
numbers of order unity, the effects of preferential concentration are maximum [152, 44, 43].
In the EE approach, this last regime is associated to an increased importance of the random
uncorrelated motion.

4.2.1 Two-way coupling terms for drag

Two-way coupling terms model the drag forces exerted by the droplet onto the surrounding gas.
Starting from the same model for drag (equation 4.1), the calculation of the source term applied
at a node of the Eulerian grid of the gaseous phase differs between EL and EE.
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Euler-Lagrange

For the EL approach, the drag force F
(k)
p,i is obtained for each droplet (k) individually. To

assemble the source term Fd,i to be applied on the gaseous equations, a weighted distribution

operation is performed. The weight Θ
(k)
j,e that is applied to the contribution of the particle (k),

located inside the grid cell (or element) e to the target node j are defined in equation 5.28. The
source term Fd,i at a given grid node j is obtained by summing all weighted contributions of
particles (k) located inside Dj (the ensemble of all elements Ke that have a vertex coinciding
with j).

Fd,i =
1

Vj

∑

k∈Dj

Θ
(k)
j,e F

(k)
p,i =

1

Vj

∑

k∈Dj

Θ
(k)
j,e

(
mp

τp

)(k) (
ui − u

(k)
p,i

)
(4.5)

Here, Vj is the nodal control volume or the median dual cell (see section 5.2 for a definition).

Euler-Euler

In the case of EE, the source term Fd,i that is passed to the liquid phase equations (appearing
in eqs. 3.35 and 3.37) corresponds to the statistical mean of all droplets inside a given control
volume.

Fd,i = ρlᾰl

〈
Fp,i

mp

〉

l

=
ρlᾰl

τp
(ui − ŭl,i) (4.6)

The second egality is valid for a monodisperse spray. In practice, as values for the liquid and
the gaseous phase are obtained on the same grid and for the same nodal control volumes, no
further transformation of the source term is needed.

4.3 Evaporation model

The evaporation model used in AVBP is an equilibrium law based on the Spalding mass-transfer
model.

The following assumptions are made:

• A spherical and isolated droplet is considered, effects of interaction between droplets are
neglected.

• The thermal conductivity in the liquid phase is infinite which results in a homogeneous
temperature over the droplet volume.

• The droplet is assumed to be at equilibrium with the surrounding gas phase (but not at
constant diameter and temperature with time).

The derivations of the evaporation model and the notation follow the outlines given by Kuo [79],
Sirignano [139] and Boileau [19].

The gaseous field around a given droplet is considered non-convective, i.e. the only non-zero
velocity component at any given location points in radial direction. The gas flow is also assumed
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Figure 4.2: Variations of the temperature T and the fuel mass fraction YF over the radial distance from
a spherical single droplet with constant temperature Tζ

to be quasi steady, which means that equations are independent of time. Furthermore, the
position of the liquid surface is considered constant. This reflects the fact that ρl >> ρg resulting
in a velocity of the receding liquid surface that is small compared to the evaporated fuel moving
away from the surface. The problem is formulated in spherical coordinates (illustrated in figure
4.2) for radii between the droplet surface (index ζ) and the far-field (index ∞). The following
set of equations of the gaseous flow field for r > rζ is obtained:

Mass conservation: ρur2 = const =
(
ρur2

)
ζ
=

ṁF

4π
(4.7)

Fuel species conservation: ρur2 dYF

dr
=

d

dr

(
r2 [ρDF ]

dYF

dr

)
(4.8)

Energy equation: ρur2 dCP T

dr
=

d

dr

(
λ

CP
r2 dCP T

dr

)
(4.9)

The expression [ρ DF ] in equation 4.8 contains the diffusion coefficient of the species representing
the fuel, DF , and the density of the mixture in the gas phase, ρ. It can be expressed as a function
of the gas viscosity µ and the Schmidt number of the gaseous fuel ScF .

[ρDF ] =
µ

ScF
(4.10)

The variable λ appearing in equation 4.53 is the thermal conductivity in the gas phase.

λ =
µCP

Pr
(4.11)

Here, CP is the average heat capacity at constant pressure of the gaseous mixture.

It is important to note that there are several definitions regarding the mass exchange between
liquid and gaseous phase. In the equation of mass conservation (4.7), an expression for the
gaseous fuel mass flux ṁF through a spherical surface at the radius r appears. Its sign is
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determined by the formulation in spherical coordinates, i.e. a mass flux away from the droplet
centre is positive. It is defined as:

ṁF = (4πρur2)ζ (4.12)

This definition is only valid in the framework of equations 4.7 to 4.9, that is, for a steady state.
On the other hand, one can define the temporal evolution of the global mass mp of the droplet
considered, which appears in a Lagrangian framework. It is defined in such form that ṁp is
negative when the droplet loses mass:

ṁp =
dmp

dt
(4.13)

Combining the notion of a time-dependent system (in this case the droplet mass) with steady
state equations is not admissible in the strict sense. It is, however possible to assume a quasi-
steady problem, with the condition of sufficiently small rates of change in all the problem’s
variables. In practice, this implies restrictions on the timestep. Under this assumption, the
mass flux ṁF can be directly related to the Lagrangian evolution of particle mass ṁp:

ṁF = 4πρur2 = const = (4πρur2)ζ = −ṁp (4.14)

The derivation or the evaporation model is divided into two steps. The first one treats a model
for the temporal evolution of a single droplet’s mass. In a second step, two models for the
droplet temperature are presented using different degrees of simplification.

4.3.1 Mass transfer

The model for the mass transfer between a single, isolated droplet and the surrounding gas is
derived using the equation of species conservation (4.8). Two boundary conditions intervene,
one at the droplet surface (ζ), the other at the far-field (∞).

Equation 4.8 can be integrated to give:

ρur2 YF = r2 [ρDF ]
dYF

dr
+ c1 (4.15)

The constant c1 is determined by observing that ρur2 YF − r2 [ρDF ]
dYF

dr is the fuel flux. Since
only the fuel is moving, this flux is the total flux ρur2 so that c1 = ρur2 = ṁF /4π. The equation
for YF becomes

ρur2 (YF − 1) = r2 [ρDF ]
dYF

dr
(4.16)

Assuming that [ρDF ] is constant allows to integrate (4.16) between r and ∞:

ṁF

4πr [ρDF ]
= ln

(
YF,∞ − 1

YF − 1

)
(4.17)

Applying the boundary conditions at r = rζ leads to
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ṁF = 4πrζ [ρDF ] ln (BM + 1) where BM =
YF,ζ − YF,∞

1− YF,ζ
(4.18)

This condition imposes ṁF and the speed at which the evaporated fuel leaves the droplet surface,
uζ :

rζρζuζ =
ṁF

4πrζ
= [ρDF ] ln (1 +BM ) (4.19)

Considering the evolution of the global droplet massmp over time, the sign changes (see definition
in equation 4.14):

ṁp = −πdp Sh [ρDF ] ln (1 +BM ) (4.20)

where dp is the particle diameter. The Sherwood number Sh can be obtained in different ways.
For the case of a droplet in a quiescent atmosphere, as derived above, one obtains:

Sh = 2 (4.21)

This value is not exact in the general case where droplets may have a non-zero velocity relative
to the surrounding gas. This can be taken into account by correlations like the one proposed by
Ranz and Marshall [121], which is based on the particle Reynolds number Rep and the Schmidt
number of the fuel species ScF .

Sh = 2 + 0.55Re1/2
p Sc

1/3
F (4.22)

The Spalding number BM uses the fuel mass fractions at the surface and the far-field, YF,ζ and
YF,∞. While YF,∞ is interpolated from the surrounding grid nodes, an expression for YF,ζ must
be obtained by stating that the flow at the droplet surface is saturated. Using the molar fraction
of the fuel vapour at the surface, XF,ζ , the molar weight of the fuel, WF , and WnF,ζ , the molar
weight of the mixture of all species other than the fuel, calculated at the surface, one has:

YF,ζ =
XF,ζWF

XF,ζWF + (1−XF,ζ)WnF,ζ

(4.23)

Assuming that this mixture does not change between the droplet surface (ζ) and the far-field
(∞), WnF,ζ only depends on known variables of the far-field namely YF,∞ and W , the molar
weight of the mixture of all species in the gas-phase.

WnF,ζ = WnF,∞ =
1− YF,∞

1− YF,∞
W
WF

W (4.24)

The fuel molar fraction, XF,ζ can be written using the partial pressure of the fuel species, PF,ζ :

XF,ζ =
PF.ζ

P
(4.25)

where PF,ζ is calculated by the Clausius-Clapeyron law
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PF,ζ = Pcc exp

(
WF Lv(Tref )

R

(
1

Tcc
− 1

Tζ

))
(4.26)

where Tcc and pcc correspond to an arbitrary reference point on the saturation curve, R is the
universal gas constant and Lv(Tref ) the latent heat at Tref . The latent heat Lv at a given
temperature T is defined as:

Lv(T ) = hs,F (T )− hs,p(T ) (4.27)

4.3.2 Two-way coupling terms for mass transfer

Euler-Lagrange

While ṁp = −ṁF (equation 4.18) describes the temporal evolution of a single droplet’s mass,
Γg is the mass transfer per unit volume and represents the source term that is passed to the
gaseous solver. The distribution sheme for this source term is described in section 4.2.1. The

expression for the weights Θ
(k)
j,e are given in equation 5.28.

Γ = − 1

Vj

∑

k∈Dj

Θ
(k)
j,e

(
d mp

d t

)(k)

=
1

Vj

∑

k∈Dj

Θ
(k)
j,e ṁ

(k)
F (4.28)

Euler-Euler

In the EE framework, there are two source terms, Γ that is applied on the gaseous equations,
and Γl that is applied on the liquid phase equations and, per definition, has the negative value
of its gaseous counterpart.

Γ = −ρlᾰl

〈
1

mp

d mp

d t

〉

l

= −Γl (4.29)

= ρlᾰl ṁF

4.3.3 Heat transfer

The previous section described the evaluation of the fuel mass flux from a droplet. It must be
combined with a model for the heat exchange between a droplet and its surroundings. This
subject is presented in two steps. In the first, the different contributions to the enthalpy balance
are defined and analytical relations are derived in a general way. Next, it is explained how these
contributions can be combined to form models for droplet heat transfer, each taking a different
degree of physical detail into account.

Enthalpy conservation at the gas/liquid interface

The derivation of a law for the temporal evolution of a droplet’s temperature involves the
enthalpy conservation equation (4.9) with boundary conditions at the far-field (∞) and the
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Figure 4.3: Contributions to the enthalpy balance at the liquid-gaseous interface

droplet surface (ζ). Furthermore, for the enthalpy fluxes at the interface, a conservation law at
the liquid/gas interface can be stated. Figure 4.3 gives an overview of the four contributions:

Φev
l +Φc

l +Φev
g +Φc

g = 0 (4.30)

On the gaseous side, there is a convective part, denoted Φev
g , which represents the sensible

enthalpy of the fuel species hs,F that is transported by the Stefan flux ṁF , i.e. the evaporated
mass moving away from the surface at the velocity uζ . Φ

ev
g is defined as follows:

Φev
g = ṁF hs,F (Tζ) (4.31)

The other contribution on the gaseous side is the conductive heat transfer Φc
g which is propor-

tional to the temperature gradient at the surface.

Φc
g =

(
−4πr2λ

dT

dr

)

ζ

(4.32)

Similarly, there also is a convective and a conductive contribution on the liquid side. Mass
conservation at the interface (equation 4.7, resp. equation 4.14) states that the mass flux in the
liquid and gas phase is the same, namely ṁF = −ṁp. On the liquid side however, this mass
flux is transporting the sensible enthalpy of the liquid hs,p(Tζ). The liquid convective flux Φ

ev
l

is thus defined as:

Φev
l = −ṁF hs,p(Tζ) (4.33)

The liquid conductive flux Φc
l depends on the temperature gradient at the surface inside the

droplet:
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Φc
l =

(
4πr2λl

dTl

dr

)

ζ

(4.34)

However, as the droplet temperature is assumed constant in space, this expression can not be
evaluated directly. Evaporation models that are presented in the following either neglect Φc

l or
subsitiute it when necessary. Equation 4.30 can now be rewritten in a more detailed form:

−ṁF hs,p(Tζ)︸ ︷︷ ︸
liquid conv. flux

+ Φc
l︸︷︷︸

liquid cond. flux

+ ṁF hs,F (Tζ)︸ ︷︷ ︸
gaseous conv. flux

+

(
−4πr2λ

dT

dr

)

ζ︸ ︷︷ ︸
gaseous cond. flux

= 0 (4.35)

Using the definition of the latent heat Lv (equation 4.27) yields the following form:

ṁF Lv(Tζ) + Φc
l +Φc

g = 0 (4.36)

where Lv(Tζ) is the heat of evaporation hs,f (Tζ) − hs,p(Tζ) at the temperature Tζ . Note that,
while Lv is a constant in the Clausius-Clapeyron law, (equation 4.26), it changes with Tζ in the
context of equation 4.36. Lv(Tl,ref ) is provided by literature at the reference temperature Tl,ref

for the liquid phase enthalpy hs,p. To compute Lv(Tζ), the definition of Lv(T ) (eq. 4.27) must
be recast as:

Lv(Tζ) = hs,F (Tζ)− hs,p(Tζ)− hs,corr (4.37)

where hs,corr is a correction enthalpy that, if necessary, accounts for different reference tem-
peratures for the gaseous and the liquid enthalpy. In AVBP, the reference temperature for the
gaseous enthalpy hs,F is defined as T0 = 0K whereas the liquid reference temperature Tl,ref

may vary from species to species. The correction ehtalpy hs,corr is determined by evaluating the
gaseous enthalpy hs,F at the reference temperature of the liquid phase:

Lv(Tl,ref ) = hs,F (Tl,ref )− hs,p(Tl,ref )︸ ︷︷ ︸
0

−hs,corr (4.38)

As Lv(Tref ) and hs,p(Tl,ref ) = 0 are known, and hs,F (Tl,ref ) is evaluated using the thermody-
namic tables of AVBP, hs,corr can be obtained from:

hs,corr = hs,F (Tl,ref )− Lv(Tl,ref ) (4.39)

A typical curve of Lv(Tζ) vs Tζ is shown in figure 4.4 for n-heptane.

The remaining term in equation 4.36 to be evaluated is the gaseous conductive enthalpy flux
Φc

g. Differences between early models in literature mainly concern how this term is derived.
In any case, the derivations presented in the following are only valid in the case of a quiescent
atmosphere (i.e. up − ug = 0), which makes corrections necessary if cases with a slip velocity
are considered.
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Figure 4.4: Example of n-heptane. Left: evolutions of the gaseous fuel sensible enthalpy hs,F and the
liquid phase sensible enthalpy hs,p over the droplet surface temperature Tζ . Right: evolution of the fuel
species latent heat Lv over Tζ

The d2-law

The simplest form of an evaporation law was originally introduced by Spalding [142] and Godsave
[51] in 1953 and is commonly known as Spalding law or d2-law. It considers only effects on the
gaseous side of the droplet surface while neglecting all effects on the liquid side. Consequently,
the unknown term for the liquid conductive heat transfer Φc

l that contributes to the energy
balance (4.36) is neglected. Equation 4.36 then reduces to

ṁF Lv(Tζ) = −Φc
g (4.40)

It will be shown in the following that this egality corresponds to a state in which the droplet
attained a state equilibrium that is characterized by the so-called equilibrium- or “wet bulb
temperature”, Twb. This temperature is a function of the gaseous conditions near the droplet.
Its value has no influence on the droplet itself but in certain implementations it may be needed
to obtain two-way coupling terms. Combining equations 4.40 and 4.64 yields:

BT =
(T∞ − Tζ)CP

Lv(Tζ)
(4.41)

This simplified form of the temperature Spalding number BT , combined with the mass transfer
number BM (4.19) and the Clausius-Clapeyron relation (4.26) also allows to iteratively obtain
the wet bulb temperature for given ambient conditions.

The infinite conductivity model

This model is the most commonly used for spray simulations. It meets the concerns raised by
studies like Law [83] or Hubbart et al. [68] that transient droplet heating cannot be neglected
in combustion applications. As it assumes a uniform droplet temperature, which corresponds
to the hypotetical case of infinitely fast liquid phase heat transfer, it is often referred to as the
infinite conductivity model (Aggarwal et al. [4]).

We recall that the derivations of droplet mass transfer are based on the assumption of quasi-
steadyness, i.e. a rate of change of global droplet quantities that is sufficiently low to consider
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the system as stationary at a given instant in time. The same reasoning shall now be applied
for the droplet heat transfer. In this case, the enthalpy fluxes are evaluated for a steady state
while the droplet temperature is allowed to vary over time. Again, quasi-steadyness translates
to a the condition of a timestep sufficiently short to keep variation of global quantities negligibly
small.

If one considers the temporal evolution of the global enthalpy mp hs,p(Tp) of a given droplet
(index p), only the heat fluxes on the liquid side contribute to the equation.

d

dt
(mp hs,p(Tp)) = Φev

l +Φc
l (4.42)

Splitting up the temporal derivative on the left hand side and substituting Φev
l according to

equation 4.33 gives:

d mp

dt
hs,p(Tp) +

d (hs,p(Tp))

dt
mp = −ṁF hs,p(Tζ) + Φc

l (4.43)

The droplet temperature is constant over r, so Tζ equals Tp. Furthermore, under the assump-
tion of quasi-steadyness, the gaseous fuel mass flux ṁF can be substituted by the evolution of
the droplet mass ṁp (using equation 4.14) which results in the terms describing the enthalpy
transport by the Stefan flux on both sides of equation 4.43 becoming identical:

d mp

dt
hs,p(Tp) = ṁp hs,p(Tζ) (4.44)

Moreover, the variation of the liquid sensible enthalpy, d (hs,p(Tp)), can be expressed as:

d (hs,p(Tp)) = Cp,l dTp (4.45)

Injecting equations 4.45 and 4.44 into equation 4.43 finally yields a law for the Lagrangian
temporal derivative of the droplet temperature:

d Tp

d t
=

1

mp Cp,l
Φc

l (4.46)

Using equations 4.36 and 4.14, Φc
l can be substituted and one obtains:

d Tp

d t
=

1

mp Cp,l

(
−Φc

g + ṁpLv(Tζ)
)

(4.47)

Note that the evolution of the droplet temperature given by equation 4.46 depends on the liquid
conductive heat exchange Φc

l which, in most cases, only plays a role during the droplet heatup
phase at the onset of evaporation. At later phases in the evaporaton process, the terms −Φc

g and
ṁpLv(Tζ) will balance each other so that Φ

c
l becomes negligible. This corresponds to the steady

state considered by the d2-law with equation 4.40 being satisfied. With d Tp / d t → 0 for Φc
l → 0,

the droplet temperature tends towards the wet bulb condition of a constant temperature Twb.

In equation 4.47, the remaining unknown is Φc
g for which analytical expressions using two dif-

ferent approaches as derived in the following sections (equations 4.54 and 4.67).
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Heat transfer of a solid sphere (No Stefan flux)

This approach is based on the assumption that the Stefan flux ṁF = 4πρur2 which appears on
the left hand side of the enthalpy conservation in the gas phase (equation 4.9), can be neglected.
This corresponds to the behaviour of a solid, spherical particle. Note that this simplification is
limited to equation 4.9 and that the Stefan flux ṁF is still taken into account for mass transfer
and the enthalpy balance at the interface (equation 4.30). The thermal conductivity in the gas,
λ = µCP /Pr, is considered constant over the radial distance r. Equation 4.9 then takes the
form:

0 =
d

dr

(
λr2 dT

dr

)
(4.48)

Integrating the expression gives

λr2 dT

dr
= c1 (4.49)

with an integration constant c1 that can be determined by applying the boundary conditions at
the surface ζ.

c1 = λr2
ζ

[
dT

dr

]

ζ

(4.50)

After separating the variables r and T and another integration, one obtains

T = −1
r

(
r2
ζ

[
dT

dr

]

ζ

)
+ c2 (4.51)

where the value of the constant c2 follows from the application of the boundary conditions at
the far-field ∞.

[
dT

dr

]

ζ

=
1

rζ
(T∞ − Tζ) (4.52)

This is an explicit expression for the temperature gradient at the droplet surface which allows
to write Φc

g in the following way:

Φc
g = −4πr2

ζλ

[
dT

dr

]

ζ

= 2πdpλ (Tζ − T∞) (4.53)

The factor 2 appearing in this equation corresponds to the Nusselt number Nu which is constant
under the assumption of a quiescent atmosphere. When droplets encounter a relative velocity
with respect to the gas phase, the Nusselt number Nu, just as the Sherwood number Sh in
the case of the mass transfer, has to be corrected. This is done using the Ranz-Marshall [121]
correlation based on the particle Reynolds number Rep and the Prandtl number Pr. Equation
4.53 then reads:

Φc
g = π dp Nu λ (Tζ − T∞) (4.54)
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with

Nu = 2 + 0.55Re1/2
p Pr1/3 (4.55)

Heat transfer of an evaporating droplet (Stefan flux non zero)

An alternative way to derive Φc
g is based on equation 4.9 without simplification, i.e. without

neglecting enthalpy transported by the Stefan flux ṁF = 4πr2ρu. The thermal conductivity λ
is again assumed to be constant over the radial distance r. Mass conservation (equation 4.7)
allows to replace r2ρu on the left hand side by r2

ζρζuζ = ṁF /4π, where ṁF is the Stefan flux
at the droplet surface.

ṁF CP
dT

dr
= 4π

d

dr

(
λr2 dT

dr

)
(4.56)

Integration of this equation yields:

ṁF CP T = 4πr2λ
dT

dr
+ c1 (4.57)

where c1 is a constant determined by applying the boundary condition at the surface ζ.

ṁF CP Tζ = 4πr2
ζλ

[
dT

dr

]

ζ

+ c1 (4.58)

The term 4πr2
ζλ
[

dT
dr

]
ζ
can directly be replaced using equation 4.32 and taking into account that

the thermal conductivity λ has been assumed to be constant.

4πr2
ζλ

[
dT

dr

]

ζ

= −Φc
g (4.59)

Injecting this expression in the integrated conservation law (4.57) via c1, one obtains:

ṁF

(
CP T − CP Tζ −

Φc
g

ṁF

)
= 4πr2λ

dT

dr
(4.60)

The separation of the variables r and T and a second integration gives

− 1

r
=

4πλ

ṁF CP
ln

(
T − Tζ −

Φc
g

ṁF CP

)
+ c2 (4.61)

Applying the far-field boundary condition ∞ allows to determine c2. One finally obtains:

1

r
=

4πλ

ṁF CP
ln


T∞ − Tζ −

Φc
g

ṁF CP

T − Tζ −
Φc

g

ṁF CP


 (4.62)

This is a relation between the gaseous temperature as a function of the radial distance and the
conductive enthalpy flux at the liquid side. It does not directly contain the desired information
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on Φc
g. However, if evaluated at the surface, it provides an expression for the mass flux ṁF that

is different from equation 4.20

ṁF =
4πλrζ

CP
ln (BT + 1) (4.63)

In this case, ṁF depends on the Spalding number for the temperature, BT :

BT =
(T∞ − Tζ) ṁF CP

−Φc
g

(4.64)

The fact of having two expressions for the mass flux can be exploited by equating them to have
a relation between BM and BT

BT = (1 +BM )
Sh

Nu LeF − 1 (4.65)

with the Lewis number of the fuel species LeF = ScF /Pr = µ/[ρDF ] · λ/(µCP ).

A rearrangement of equation 4.64 yields:

Φc
g =

ṁF CP

BT
(Tζ − T∞) (4.66)

By replacing the mass flux ṁF using equation 4.63, one obtains Φc
g as a function of the known

temperatures Tζ and T∞ as well as of BT . This equation is still implicit in Φc
g. In practice

however, BM is already available from the calculation of the mass evolution which allows to
calculate BT using equation 4.65.

Φc
g = λ4πrζ (Tζ − T∞)

ln(BT + 1)

BT
= λπdpNu (Tζ − T∞)

ln(BT + 1)

BT
(4.67)

Note that in the limit of BT → 0, the term ln(BT + 1)/BT tends to 1. In that case, equations
4.67 and 4.54 are equivalent which shows that the result obtained under the assumption of a
negligible Stefan flux can also be found as a particular solution of the more general result given
by equation 4.67.

Advanced evaporation models

The model used in the scope of this work is of the infinite conductivity type, taking into account
the Stefan flux for heat transfer (equations 4.67 and 4.47). Note that there are more advanced
models available in literature. An example is the one proposed by Abramzon and Sirignano [2],
which takes into account the finite thickness of the fuel mass fraction and thermal boundary
layers, resulting in modified expressions for the Nusselt and Sherwood numbers. It necessitates
an iterative part, which increases numerical cost, in particular of the Lagrangian approach.
Other examples with increasing complexity are non-equilibrium formulations like the Langmuir-
Knudsen model (Bellan and Summerfield [12]), or finite conductivity models that take spatially
non-uniform droplet temperatures or even convective effects into account (Sazhin et al. [131]).
An overview and evaluation of the cited examples can be found in the work of Sazhin et al. [131]
as well as Miller et al. [97].
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The “1/3-rule”

In equations 4.10 and 4.11, µ and CP depend on properties of the gas surrounding the droplet.
In the preceding paragraphs, these values have been assumed to be constant over the radial
distance from the droplet. However, by simply passing the nodal values from the gas solver to
the particle, these constant quantities are taken equal to their values in the far-field, a rather
arbitrary choice to which the simulation may be sensitive. Better results can be obtained with
an interpolation between ζ and ∞ weighted with a factor a = 1/3 (Hubbard et al. [68], Miller
et al. [97]). This interpolation should be performed on the temperature and the mass fractions
from which µ and CP are calculated.

TR = Tζ + a(T∞ − Tζ) (4.68)

Yk,R = Yk,ζ + a(Yk,∞ − Yk,ζ) (4.69)

The corrected values for the viscosity, µR and the heat capacity at constant pressure of the
mixture, CP,R can be obtained by:

µR = µ(TR) (4.70)

CP,R =
∑

k

CP,k(TR)Yk,R (4.71)

In a Lagrangian framework, this correction can have a very high impact on computational
cost because it involves the interpolation and the transfer to the particles of all species mass
fractions YK , resulting in a major increase of memory requirements and operations during the
interpolation. A compromise is the application of the 1/3-rule at nodal level and the passing
of the corrected values of µ and CP to the particles. This, however, does not allow to take
individual droplet surface temperatures Tζ of all droplets present in a given control volume into
account. Instead, the mean droplet temperature in the considered node’s control volume, T ζ ,
is used to calculate the alternative reference Temperature TR′ . This temperature is a good
approximation in the case of a relatively homogeneous spray, where all droplets have a similar
history of the evaporation process and thus relatively low temperature differences.

TR′ = T ζ + a(T∞ − T ζ) (4.72)

In the case of the viscosity, the corrected quantity µR′ is passed to the particles instead of µ,
thus being neutral in terms of memory and adding one evaluation of the viscosity law per node.

µR′ = µ(TR′) (4.73)

In the case of CP , the necessary values to be passed to the particles reduce to two parameters,
CP,1 and CP,2 from which the corrected heat capacity CP,R′ can be calculated:

CP,R′ = CP,1 +
2

3
YF,ζCP,2 (4.74)

The expressions to obtain CP,1 and CP,2 are:
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CP,1 =
∑

k 6=F

[
CP,k(TR′)

Yk,∞∑
k 6=F Yk,∞

(
1− 1

3
YF,∞

)]
+
1

3
CP,F (TR′)YF,∞ (4.75)

CP,2 = CP,F (TR′)−
∑

k 6=F

[
CP,k(TR′)

Yk,∞∑
k 6=F Yk,∞

]
(4.76)

4.3.4 Coupling terms for heat transfer

While the fluxes Φc
g, Φ

ev
g , Φ

c
l and Φ

ev
l are relevant for the temporal evolutions of a single droplet’s

enthalpies, Πg and Πl denote the enthalpy transfers (gas/liquid) per unit volume. Πg represents
the source term that is passed to the energy equation of the gaseous solver (see equation 2.2).

Euler-Lagrange

In the EL framework, the distribution procedure is analogous to section 4.2.1.

Πg =
1

Vj

∑

k∈Dj

Θ
(k)
j,e

(
Φc

g +Φev
g

)(k)
(4.77)

Πg =
1

Vj

∑

k∈Dj

Θ
(k)
j,e

(
λπdp Nu (Tp − T )

ln(BT + 1)

BT
− ṁphs,F (Tp)

)(k)

The term for covective heat exchange Φev
g is given in equation 4.31, whereas the term for con-

ductive heat exchange Φc
g can be obtained from equation 4.40 for the d2-law and equations 4.54

and 4.67 for the formulation with and without Stefan flux respectively. Throughout the present
work, only the latter formulation is applied as detailed in the second line of equation 4.77. The

expression for the weights Θ
(k)
j,e of this distribution scheme can be found in equation 5.28.

Euler-Euler

In the case of EE, the source terms are defined as the statistical average over a single droplet’s
heat transfer contributions. The source term for the gaseous equations, Πg, appears in equations
2.2 and 3.37. The term appearing on the liquid side can be found in equations 3.22 and 3.37.

Πg = ρlᾰl

〈
1

mp

(
Φc

g +Φev
g

)〉

l

(4.78)

= λπn̆ld̆ Nu
(
T̆l − T

) ln(BT + 1)

BT
+ Γhs,F (T̆l)

Πl = ρlᾰl

〈
1

mp
(Φc

l +Φev
l )

〉

l

(4.79)

= −Πg − ρlᾰl

〈
1

mp
(ṁp hs,corr)

〉

l

= −Πg + Γl hs,corr
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4.3.5 Treatment of droplet boiling

A particularity of the method described above is saturation, i.e. the case where the fuel mass
fraction at the droplet surface, YF,ζ , nears a value of one. In this case, the mass transfer number
BM approaches a singularity.

The equations for mass- and heat transfer are coupled via the Clausius-Clapeyron law (eq. 4.26),
which gives the partial pressure of the fuel and eventually determines the fuel mass fraction as
a function of the droplet’s surface temperature. The Clausius-Clapeyron law as well as the laws
for mass- and heat transfer have been derived as equilibrium laws. Consequently, the relation
between the droplet equilibrium surface temperature and the partial pressure of the fuel at the
surface will follow the Clausius-Clapeyron saturation curve. In other words, at equilibrium and
for a given droplet surface temperature, the mass fraction of the fuel is fixed (and will never be
greater than one).

For rapidly varying droplet temperatures, e.g. in proximity of a flame, this is not necessarily
true. In some cases, a droplet which enters a hot zone may even attain a temperature for
which Clausius-Clapeyron gives a partial pressure of PF,ζ > P which leads to YF,ζ > 1. In the
numerical implementation, this case is treated in the following way:

A surface fuel mass fraction of YF,ζ = 1 would correspond to the boiling of the droplet, a state
that is characterized by a constant surface temperature. Consequently, when exceeding YF,ζ = 1
during a given timestep, it has to be assumed that the droplet has begun to boil and thus, Tp

is kept constant:

d Tp

d t
= 0 (4.80)

The Spalding law for the mass transfer is no longer valid, however, ṁp can now be evaluated
directly using equation 4.47 which takes the form

d mp

d t
=

Φc
g

hs,F (Tζ)− hs,p(Tζ)− hs,corr
(4.81)

From equation 4.46, it follows that Φc
l = 0 in saturated conditions. The source term for the

Eulerian liquid phase equations, Πl, reduces to

Πl = ρlᾰl

〈
1

mp
Φev

l

〉

l

(4.82)

For the gaseous source term Πg, equations 4.77 and 4.78 remain valid.

4.3.6 Vanishing droplets in EL

If a droplet would evaporate more than its initial mass during the current timestep (mp+ṁp∆t <
0), the disappearance of the droplet has to be taken into account. This is done by replacing the
mass decrement during the timestep considered ∆m = ṁp∆t with the remaining particle mass
∆m = mp. To ensure mass- and energy conservation, the evaporation source terms that are
passed to the gas solver (Γg, Πg) are re-calculated using ṁp = mp/∆t instead of the value for
ṁp that has been obtained by the evaporation model. The droplet in question is subsequently
removed from the calculation.
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This procedure still allows droplet radii of arbitrary values and can lead to droplets with a mass
that is very close to zero which causes problems in equation 4.47 where mp is in the denominator.
This 1/mp term reflects the fact that droplets with very little mass heat up rapidly when the
surrounding gas temperature changes and the resulting conductive heatup is not immediately
equilibrated by the cooling effect of a higher evaporation rate. The result can be huge variations
of the temperature if (a) the slope of the temperature evolution is calculated correctly but the
timestep (assumed constant in this version of the code) is too long, or if (b) numerical errors in
the balance between Φc

g and ṁp Lv grow to unacceptable levels due to the denominator term.

A very simple approximation is used to limit these variations of Tp for very small droplets. It
consists in defining a limit particle mass mp,limit and in replacing the hyperbolic behaviour of
the term 1/mp by its tangent in this point for all particle masses mp < mp,limit (see figure 4.5
for a schematic illustration).

mp

1/mp

mp,limit

Figure 4.5: Sketch of the approximation of the term 1/mp with its tangent for small droplets with masses
of mp < mp,limit

Equation 4.46 is then replaced with

d Tp

d t
=

1

mp,limit

(
2− mp

mp,limit

)
1

Cp,l
Φc

l for mp < mp,limit (4.83)

This has no direct physical justification, however, it can be assumed that droplets nearing the
end of evaporation have reached the equilibrium state at the ”wet bulb temperature”. By
artificially limiting the denominator term to finite values in an expression with a vanishing
numerator, the present approximation gradually takes the temperature evolution to a state of
”forced equilibrium” when the particle mass tends to zero.
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4.4 Summary of the liquid phase governing equations

This summary provides an overview of the governing equations for the liquid phase in the La-
grangian and Eulerian formulation. The terms related to the evaporation model have been
retained in the form with the most physical detail that is implemented in the AVBP solver and
used throughout the present work.

Euler-Lagrange

dxp,i

dt
= up,i

dup,i

dt
=

1

τp
(ui − up,i)

d mp

dt
= −πdp Sh [ρDF ] ln (1 +BM )

d Tp

d t
=

1

mp Cp,l

(
dmp

dt
Lv(Tp)− λπdp Nu (Tp − T )

ln(BT + 1)

BT

)

Euler-Euler

∂

∂t
n̆l +

∂

∂xj
n̆lŭl,j = 0

∂

∂t
ρlᾰl +

∂

∂xj
ρlᾰlŭl,j = − Γ

∂

∂t
ρlᾰlŭl,i +

∂

∂xj
ρlᾰlŭl,iŭl,j = − Γŭl,i +

ρlᾰl

τp
(ui − ŭl,i)

∂

∂t
ρlᾰlh̆s,l +

∂

∂xi
ρlᾰlŭl,ih̆s,l = − Γ

(
hs,F (T̆l) + hs,corr

)
− λπn̆ld̆ Nu

(
T̆l − T

) ln(BT + 1)

BT
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Chapter 5

The numerical approach
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5.1 Introduction

In this chapter, the numerical methods used in the AVBP solver are described. Aspects relevant
for the developments carried out for the present work are discussed in more detail. Elements
like numerical schemes that are applied but not modified are briefly described. For more detail,
the reader is referred to the cited literature.

83
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5.2 The cell-vertex approach

The cell-vertex approach is one of the common discretization methods for finite volume schemes,
the very popular alternative being the cell-centered formulation [63, 148]. While in the latter
case, flow variables are stored at the center of the cells, they are stored at the grid nodes in the
former.
The key difference is the computation of fluxes through cell boundaries. For cell-centered
schemes, the flux through a cell boundary is based on the interpolation of variables situated
to either side of the cell edge, i.e. from the centers of two neighbouring cells. In a cell-vertex
scheme, the flux is obtained from the values at the vertices, i.e. at either end of the cell edge.
Here, vertices are to be understood as points that coincide with the grid nodes but are associated
to a grid cell. This means that one grid node can coincide with several vertices, one for each
grid cell the node is connected to. The formalism described in the following corresponds to the
one used in the AVBP solver and is described in detail by Lamarque [80].

Written in flux variables, the Navier-Stokes equations take the very compact form

∂U

∂t
+ ~▽ · ~F = S (5.1)

where U is the vector of the conservative flow variables, ~F the flux tensor of U and S the vector
of source terms. The flux tensor can be decomposed in a convective part ~FC and a viscous part
~FV :

~F = ~FC(U) + ~FV (U, ~▽U) (5.2)

The first important aspect of the cell-vertex method is the definition of metrics, in particular of
the normal vectors. Here, ~Sf denotes the normal vector of a given element face (or edge in 2D),
defined as pointing towards the exterior. Its length is weighted by the area of the element face
(resp. edge length). The normal vector ~Sk at the vertex k of an element (pointing inward) is
obtained by

~Sk =
∑

f∋k

− d

nf
v

~Sf (5.3)

where d is the number of spatial dimensions and nf
v the number of vertices of face f . Figure 5.1

illustrates the process of calculating ~Sk1 , the normal at the vertex k = k1 for a triangular and
a quadrilateral element. It has to be noted that this method differs for domain boundaries as
explained for diffusive fluxes at the end of this section.

Based on this element description, equation 5.1 can be written in a semi-discretized form at
node j:

dUj

dt
= −~▽ · ~FC

∣∣
j
− ~▽ · ~FV

∣∣
j
+ S

∣∣
j

(5.4)

To obtain the divergence of the convective fluxes ~▽ · ~FC
∣∣
j
the element residual Re is calculated

summing flux values located at all vertices k of the element e (the ensemble of these vertices
being Ke):

Re = −
1

dVe

∑

k∈Ke

~FC
k · ~Sk (5.5)

Here, Ve is the element volume which is defined as (d being the number of spatial dimensions):
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Figure 5.1: Schematic of the face- (f) and vertex- (k) normals of a triangular and a quadrilateral
element.

Ve = −
1

d2

∑

k∈Ke

~xk · ~Sk (5.6)

The nodal value of the flux divergence is then obtained by summing the weighted residuals Ve Re

of all cells having a vertex coinciding with the node j (the ensemble of these cells being noted
Dj):

~▽ · ~FC
∣∣
j
=

1

dVj

∑

e∈Dj

Dj,eVe Re (5.7)

This summation, called scatter -operation, is schematized in figure 5.2. The nodal volume Vj =∑
e∈Dj

Ve/ne
v is called dual cell as it acts as a control volume during the residual scatter. Here,

ne
v is the number of vertices of an element e. The residual distribution matrix Dj,e is a central
part of the numerical schemes that is built upon the cell-vertex formalism. The convection
schemes used in this study are briefly described in sections 5.3 and 5.4.

5.3 The convection schemes for the gaseous phase

AVBP includes several numerical schemes, both for the gas phase and the dispersed phase in the
EE formulation. A detailed overview can be found in the thesis of Lamarque [80]. The following
section is limited to the schemes that are used in the scope of the present work.
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Figure 5.2: Schematic of the cell-vertex formalism. The dotted line delimits an element e (primary
cell), the dashed line the control volume of the node j (dual cell), arrows symbolize the scatter operation
of an element residual to the surrounding nodes (equation 5.7).

5.3.1 The Lax-Wendroff scheme

This scheme is the adaptation of the classical Lax-Wendroff scheme [84] to the cell-vertex for-
mulation. It uses an explicit time integration with a single Runge-Kutta step. Its accuracy in
both space and time is of second order, which is a unique property for a scheme with a stencil
this compact. Although it is a centerd scheme in space, it is quite robust due to a diffusive term
that stablizes it very effectively. Furthermore, it is characterized by low computational cost.

5.3.2 The TTGC scheme

TTGC is a version of the two-step Taylor-Galerkin (TTG) schemes available in AVBP. This
family of schemes is based on the finding that finite-volume methods in a cell-vertex framework
can be interpreted as a finite-element approach, allowing the development of Taylor-Galerkin
type schemes. TTGC as the the most commonly used version, is of third order in time and space.
Furthermore, it is characterized by very good properties regarding dissipation and dispersion,
making it well-suited for LES applications. On the other hand, it is less robust than the LW
scheme and approximately twice as costly.

It has to be pointed out that both, Lax Wendroff and TTGC are centered schemes that neces-
sitate artificial viscosity for stabilization. Information on the methods for its application can be
found in section 5.7 and in the thesis of Lamarque [80].

5.4 The convection schemes for the dispersed phase

The requirements on a scheme for the dispersed phase differ from those for the gaseous phase.
An analogy allows to interpret the Eulerian formulation of a spray as a highly compressible gas.
Therefore, very strong gradients can be expected to appear in turbulent flow. Furthermore,
the mesoscopic formulation used in the scope of this work does not allow the crossing of spray
structures with different directions, such as crossing jets or certain turbulent structures. This
leads to the appearance of so-called δ-shocks (sharp peaks of particle density at the location
of impact) that threaten the stability of the numerical scheme. Finally, there are problems
like the injection of particle-laden jets that naturally lead to very sharp gradients at the spray
boundary, the most extreme case being a jet-in-a-crossflow configuration (see chapter 8). In
essence, a scheme for the liquid phase has to be more robust than one conceived for a (subsonic)
gaseous flow. Usually, more robust schemes are characterized by increased numerical diffusion,
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which is of course an issue for the liquid phase, too. However, as there is no equivalent to a
turbulent energy cascade in a spray (the movement in turbulent flow being mainly conditioned
by the coupling with the gaseous phase), diffusion by the scheme has different implications as
for the gaseous phase where correct turbulent energy dissipation is a very important aspect for
numerical schemes for LES.

The numerical schemes described for the gaseous phase (Lax-Wendroff, TTGC) are also available
for the Eulerian solver of the liquid phase. For the cited examples, due to the method of
implementation, the same scheme is used for both phases. An exception is the PSI scheme that
is applied exclusively on the liquid phase and shall be described in the following.

5.4.1 The PSI scheme

The PSI (for Positive Streamwise Invariant) scheme [146] is highlighted here, because it is
extensively used in all EE applications of the present work. It is a representative of the so-called
fluctuation splitting methods [35]. As such, it is a multi-dimensional upwinding method, which
renders it very robust but also more dissipative than a comparable centered scheme.

In its current form, it is of first order in time and of second order in space for steady state
problems. However, It loses its spatial accuracy for unsteady problems [1]. Having been imple-
mented in AVBP only recently by Lamarque [80] and Roux [126], it is still subject to extensive
validation and testing, fo example by Sanjosé [129], Linkes [90] and Kraushaar.

Crossing of jets

A first example that illustrates the differences between centered schemes and the PSI scheme is
the crossing of jets in a 2D configuration. This example is taken from the thesis of Roux [126],
which, alongside the work of Lamarque [80], Sanjose [129] as well as Linkes [90] is recommended
as an additional source of information on numerical schemes for the Eulerian liquid phase.

This test case contains two of the cited difficulties, namely the injection of a particle-laden jet
with sharp spray boundaries as well as the formation of δ-shocks at the location where the jets
meet. The result, shown in figure 5.3, reveals a typical behaviour of both schemes: the TTGC
scheme necessitates a high amount of artificial viscosity in order to support the strong gradients
at the jet boundary. As the resulting diffusion is isotropic, both jets are smeared out almost
completely after entering the domain. In the case of PSI, the jets remain perfectly intact as the
numerical diffusion created by the upwinding scheme is limited to the streamwise direction. At
the location where the jets meet, the result obtained with the PSI scheme reveals the formation
of a zone with high particle density, which remains well-controled in terms of numerical stability.

The influence of artificial viscosity on accuracy

The case of two crossing jets has highlighted the negative effect that high levels of artificial
viscosity have on the TTGC scheme. It therefore becomes clear, that the performance of nu-
merical schemes needs to be compared in a realistic numerical approach, i.e. with the amounts
of artificial viscosity that is typically needed to keep a simulation stable. Such a comparison
is provided in the work of Linkes [90] who considered the convection of a gaussian as well as
a top-hat perturbation on the liquid volume fraction αl using TTGC, Lax-Wendroff and PSI
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TTGC - max(αl) = 5×10
−3

PSI - max(αl) = 4.5×10
−2

Figure 5.3: Liquid volume fraction fields for the 2D case of two crossing jets. Figure from Roux [126]

along other schemes that shall not be considered here. The case of a gaussian peak convection
does not involve artificial viscosity (figure 5.4, left).
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Figure 5.4: 1D convection for different numerical schemes. Left: gaussian perturbation, right: top-hat
perturbation. —– Initial solution, · · · PSI, - - - LW, ∆ RK3, –◦– TTGC, –×– TTG4A, –+– GRK.
Diagrams from Linkes [90]

After one turnover time, both centered schemes retain the magnitude of the perturbation and
show little (Lax-Wendroff) to no diffusion (TTGC). The Lax-Wendroff scheme additionally
reveals a certain amount of dispersion. The PSI result is considerably diffused with less than
half of the peak magnitude being retained. The left diagram in figure 5.5 shows the order of
TTGC and PSI resulting from a grid convergence study. While TTGC is of third order, the
precision of the PSI scheme is clearly inferior (less than first order).
However, in the case of a top-hat perturbation in conjunction with an amount of artificial
viscosity that is typical for realistic applications (figures 5.4 and 5.5, right), the results of the
centered schemes approach the behaviour of PSI for the diffusion of the perturbation after one
turnover. Most interestingly, TTGC in conjunction with a realistic amount of artificial viscosity
loses its precision to a point where it drops to a less than first-order accuracy comparable to the
PSI scheme.

Three-dimensional example

A final example (taken from the thesis of Roux [126]) illustrates the differences between TTGC
and PSI in a lab-scale combustor (figure 5.6). Three fields of droplet number density are com-
pared: The first (from left to right) shows the field obtained with the TTGC scheme, the second
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Figure 5.5: Grid convergence for TTGC and PSI. Left: gaussian perturbation, right: top-hat perturba-
tion. –◦– PSI, –×– TTGC, · · · First order, –·– Second order. Diagrams from Linkes [90]

the PSI result and the third a view of the experiment, illuminated with a laser sheet in the
same plane. An accumulation of droplets in zones of weak vorticity can be observed on all three
visualizations. The comparison between TTGC and PSI shows that the centered scheme has a
tendency to diffuse the sharp gradients of droplet density. This tendency is observed to a lesser
degree for the PSI scheme.

Figure 5.6: Instantaneous fields of droplet number density. Non-reactive spray in an academical com-
bustor. Left: TTGC, middle: PSI, right: experimental result (laser tomography). All images from Roux
[126]

It has to be noted that the performance of the TTGC scheme depends strongly on the way
artificial viscosity is applied. Significant advances on homogeneous isotropic turbulence cases
have been achieved by Sanjosé [129] as well as Vié and Martinez [150] by introducing new sensors
for artificial viscosity and by applying models for the random uncorrelated motion, which appear
as diffusive terms in the equations and thus stabilize the scheme based on a physical argument.
For injection problems, however, these improvements cannot match the inherent robustness of
an upwinding scheme

Due to the cited qualities, in particular at the injection of droplet-laden sprays that take an
important place in the present work (see chapter 8), the PSI scheme will be employed exclusively
despite its drawbacks in terms of accuracy.
In the AVBP code, the PSI scheme has been developed for the application on the dispersed phase
only. In calculations using this scheme, the gaseous equations are solved using the Lax-Wendroff
scheme. Although it is possible in principle, the combination with other schemes for the gaseous
phase is not available at the present date.
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5.5 The diffusion scheme

The diffusive fluxes are calculated using the so-called 2∆ operator, which stands for its compact
stencil. For the divergence of the viscous terms ~▽· ~FV , the method applied differs from the one
used for the convective fluxes (equation 5.7). In a first step, the gradient of the conservative

variables
(

~▽U
)

e
is calculated on the element e. Using this gradient and the nodal value Uj

allows to calculate the viscous flux tensor from element- and nodal values:

~FV
j,e = ~FV

(
(U)j ,

(
~▽U

)

e

)
(5.8)

~Sj,e

j

e

Figure 5.7: Sketch illustrating the 2∆ operator as well as the normal vector ~Sj,e used for the diffusion
scheme.

The divergence is then obtained by summing all contributions in the dual cell associated to the
node j:

~▽ · ~FV
∣∣
j
=

1

dVj

∑

e∈Dj

~FV
j,e · ~Sj,e (5.9)

5.6 Calculation of the timestep

In AVBP, the discretized equations are advanced in time in an explicit scheme. Therefore, the
global timestep is determined by a CFL (Courant-Friedrichs-Lewy) condition

∆tmax < CFL
∆xmin

(|~V |+ c)max

(5.10)

that limits the time step as a function of the spatial discretization ∆x. In practice, this introduces
an important constraint because excessively small grid cells, even if they occur only very locally
and in small numbers can considerably increase the computational cost of the entire computation.

5.6.1 Liquid phase timestep

In its present implementation, the timestep is based on gaseous variables only, with liquid phase
effects like evaporation or drag not being taken into account. This is deemed acceptable as AVBP
is a fully compressible and explicite code, thus resolving acoustic timescales. It is assumed that
these timescales are large compared to the droplet relaxation timescale or evaporation timescale
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for almost the entire droplet lifetime. A common criterion related to accuracy of evaporation
processes is that during an iteration, no more than 10 % of the current droplet mass should be
evaporated.

∆mp

mp
< 0.1mp (5.11)

It is widely used for RANS methods with large timesteps to determine the necessary sub-
iterations for the liquid phase. Similar criteria exist for heat transfer and drag.
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Figure 5.8: Diameter evolution (left) and the ratio of evaporated mass per iteration ∆mp and the current
droplet mass mp over the number of iterations. Results of a 0D evaporation case.

Figure 5.8 shows the evolution of the diameter in a 0D evaporation testcase along with a visu-
alization of the timestep criterion in equation 5.6.1 for a typical timestep. It is clear that this
criterion can never be satisfied until evaporation is complete as it inevitably takes the value of
−1 in the very last timestep. However, it remains inside the limit until droplets have reached
very small diameters. At such diameters, in the EE formulation, evaporation will have been
stopped in order to avoid nonzero values, while for EL a special procedure is applied for droplets
of vanishing size (see section 4.3.6).

5.7 Artificial viscosity models for the gaseous phase

5.7.1 Introduction

To avoid the small-scale oscillations (also known as “wiggles”) in the vicinity of steep variations
and to smooth very strong gradients, it is common practice to add a so-called artificial viscosity
(AV) term to the discrete equations. Such a method avoids accumulation of energy in these
non-physical modes without altering the quality of the solution.
These AV models are based on a combination of a “shock capturing” term (called 2nd order AV)
which smoothes under-resolved gradients and a “background dissipation” term (called 4th order
AV) which dissipates the wiggles. They are characterized by the “linear preserving” property
which leaves unmodified a linear solution on any type of element.
The introduction of AV is done in two steps. First, a sensor detects if AV is necessary, as a
function of the flow characteristics. In LES, the sensor must be active only in spatially limited
zones to avoid interacting with the subgrid stresses. Then, a certain amount of 2nd and 4th order
AV is applied, depending on the sensor value and on user-defined parameters.
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5.7.2 The sensors

A sensor ζe is a scaled parameter that is defined for every cell e of the domain that takes values
from zero to one. ζe = 0 means that the solution is well resolved and that no AV should be
applied while ζe = 1 signifies that the solution has strong local variations and that AV must
be applied. This sensor is obtained by comparing different evaluations (on different stencils) of
the gradient of a given scalar (pressure, total energy, mass fractions, . . . ). If these gradients
are identical, then the solution is locally linear and the sensor is zero. On the contrary, if these
two estimations are different, local non-linearities are present, and the sensor is activated. The
key point is to find a suitable sensor-function that is non-zero only at places where stability
problems occur.
Two sensors are available inAvbp: the so-called ‘Jameson-sensor’ (ζJ

e ) [72] and the ‘Colin-sensor’
(ζC

e ) [31] which is an upgrade of the previous one.

The Jameson sensor

For every cell e, the Jameson cell-sensor ζJ
e is the maximum over all cell vertices of the Jameson

vertex-sensor ζJ
k :

ζJ
e = max

k∈e
ζJ
k (5.12)

Denoting S the scalar quantity the sensor is based on (usually S is the pressure), the Jameson
vertex-sensor is:

ζJ
k =

|∆k
1 −∆k

2|
|∆k

1|+ |∆k
2|+ |Sk|

(5.13)

Where the ∆k
1 and ∆

k
2 functions are defined as:

∆k
1 = Se − Sk ∆k

2 = (~∇S)k.(~xe − ~xk) (5.14)

where a k subscript denotes cell-vertex values while e is the subscript for cell-averaged values.
(~∇S)k is the gradient of S at the node coinciding with the vertex k.
∆k

1 measures the variation of S inside the cell e (using only quantities defined on this cell). ∆k
2

is an estimation of the same variation but on a wider stencil (using all the neighbouring cell of
the node coinciding with k).

It is important to note that this sensor is smooth: it is roughly proportional to the amplitude
of the deviation from linearity.

The Colin sensor

As said above, the Jameson sensor is smooth and was initially derived for steady-state compu-
tations. For most unsteady turbulent computations it is however necessary to have a sharper
sensor, which is very small when the flow is sufficiently resolved, and which is nearly maximum
when a certain level of non-linearities occurs.
This is the aim of the so-called Colin-sensor, whose properties can be summarized as follows:

• ζC
e is very small when both ∆k

1 and ∆
k
2 are small compared to Se. This corresponds to low

amplitude numerical errors (when ∆k
1 and ∆k

2 have opposite signs) or smooth gradients
that are well resolved by the scheme (when ∆k

1 and ∆
k
2 have the same sign).

• ζC
e is small when ∆k

1 and ∆
k
2 have the same sign and the same order of magnitude, even

if they are quite large. This corresponds to stiff gradients well resolved by the scheme.
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• ζC
e is big when ∆k

1 and ∆
k
2 have opposite signs and one of the two term is large compared

to the other. This corresponds to a high-amplitude numerical oscillation.

• ζC
e is big when either ∆k

1 or ∆
k
2 is of the same order of magnitude as Se. This corresponds

to a non-physical situation that originates from a numerical problem.

The exact definition of the Colin-sensor is:

ζC
e =

1

2

(
1 + tanh

(
Ξ− Ξ0

δ

))
− 1

2

(
1 + tanh

(−Ξ0

δ

))
(5.15)

with:

Ξ = max
k∈e

(
0,

∆k

|∆k|+ ǫ1Sk
ζJ
k

)
(5.16)

∆k = |∆k
1 −∆k

2| − ǫk max
(
|∆k

1|, |∆k
2|
)

(5.17)

ǫk = ǫ2

(
1− ǫ3

max
(
|∆k

1|, |∆k
2|
)

|∆k
1|+ |∆k

2|+ Sk

)
(5.18)

The numerical values used in Avbp are:

Ξ0 = 2.10−2 δ = 1.10−2 ǫ1 = 1.10−2 ǫ2 = 0.95 ǫ3 = 0.5 (5.19)

5.7.3 The operators

There are two AV operators in Avbp: a 2nd order operator and a 4th order operator. All
AV models in Avbp are a blend of these two operators. These operators have the following
properties:

• 2nd order operator: it acts like a “classical” viscosity. It smoothes gradients, and introduces
artificial dissipation. It is thus associated to a sensor which determines where it must be
applied. Doing this, the numerical scheme keeps its order of convergence in the zones
where the sensor is inactive, while ensuring stability and robustness in the critical regions.
Historically, it was used to control shocks, but it can actually smooth any physical gradient.

• 4th order operator: it is a less common operator. It acts as a bi-Laplacian and is mainly
used to control spurious high-frequency wiggles.

Both operator contributions are first computed on each cell vertex, and are then scattered back
to nodes (there is no divergence here, as it is done directly during the scattering operation).

5.7.4 The sensors for the Eulerian dispersed phase

For the gas phase, the sensors are based on the pressure, as it is assumed that this variable is
most sensitive to any perturbation of the flow. In the EE formulation for the dispersed phase,
there is no direct equivalent to the pressure. Furthermore, considering only one variable to
detect the wiggles and the strong gradients in the spray is not sufficient. Therefore, sensors
are calculated from a choice of variable fields of the dispersed phase and the maximum value is
retained.
For the dispersed liquid phase two types of sensors are used:
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• A sensor based on extrema ζextr: this sensor checks whether the liquid variables, especially
liquid volume fraction, droplets number density and droplet diameters, stay in the physical
domain.

• A sensor based on gradients ζtpf : this sensor tries to target numerical instabilities.

Each sensor is evaluated at the cell, e, and the maximum value of both sensors is applied. For
both sensors, different models are available in AVBP. The basic formulations used for the gradient
based sensors in the present work are the Jameson-Riber-sensor and an adapted Colin-sensor.

5.8 Boundary conditions

Boundary conditions are an important ingredient of a LES because the concept is unsteady by
nature and, in the case of AVBP includes also acoustic waves. This means that boundary condi-
tions need to satisfy certain criteria of non-reflectivity. A direct imposition of boundary values
onto the conserved variables leads to a total reflection of acoustic perturbations and additionally
to numerical artifacts. For this reason, the concept of characteristic boundary conditions has
been introduced by Poinsot an Lele [114], [115] (NSCBC approach). This method is an extension
of the characteristic decomposition of the Euler equations on viscous flows and allows to define
waves that can directly be acted upon by the boundary condition.

There are several ways to impose boundary conditions in the discretized equations. Consider the
a simplified form with a single-step time advancement, where Un

j is the vector of conservative
variables on the node j at the timestep n. The hard way to impose Dirichlet boundary conditions
is to replace the flow variables predicted by the scheme for the timestep n + 1 by the imposed
value at the nodes located on the domain boundary ∂Ω:

Un+1
j = Un

j −
∆t

Vj

(
dUn

j

)
scheme

∀j ∈ {Ω \ ∂Ω} (5.20)

Un+1
j =

(
Un+1

j

)

BC
∀j ∈ {∂Ω} (5.21)

For Neumann boundary conditions, the correction is applied after the calculation of the fluxes.
The boundary condition is used to determine a corrected nodal residual dUn

j that replaces the
residual predicted by the scheme before advancing the equations in time to obtain a new vector
of flow variables Un

j :

Un+1
j = Un

j −
∆t

Vj

(
dUn

j

)
scheme

∀j ∈ {Ω \ ∂Ω} (5.22)

Un+1
j = Un

j −
∆t

Vj

(
dUn

j

)
BC

∀j ∈ {∂Ω} (5.23)

This method is used for the non-characteristic application of Neumann boundary conditions (for
example the wall shear stress predicted by a wall model), but also for the characteristic boundary
conditions (Neumann and Dirichlet type) that also modify the residual at the boundary nodes.
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5.9 Numerical aspects of the Euler-Lagrange solver

Numerical methods of the Lagrangian approach turn around two main aspects, the time-
integration method and the methods to couple the set of Lagrangian particles with the Eulerian
representation of the gas phase with a fixed computatinal grid.

5.9.1 Time integration

The time integration method used in the scope of the present work is a first-order forward Euler
method of the form

f (n+1) = f (n) +

(
df

dt

)(n)

∆t (5.24)

where n is a given timestep and f an arbitrary variable that is transported by a Lagrangian
particle. If the numerical scheme of the gaseous phase has several time-integration steps, the
Lagrangian solver updates the particles and the source terms only at the initial iteration and
remains inactive for the subsequent subiterations. A second-order time integration method has
been developed by Senoner in his thesis [135].

5.9.2 Interpolation methods

The gaseous values needed for calculations at the particles are interpolated from the Eulerian
grid to the particle position xp,i. The expression for an arbitrary quantity f is recalled (see also
section 3.2.1):

fg@p =
∑

j∈Ke

w(xp,i, xj,i)fg,j (5.25)

The term w(xp,i, xj,i) stands for a generic interpolation function. Note that the values transferred
to the particles in a LES are always the resolved (or filtered) ones. Three different interpolation
methods are available:

• A first-order interpolation using a Taylor series for the values of the flow field

• A linear least-squares method

• A method based on Lagrange polynomials

A detailed description of these interpolation methods can be found in the thesis of Garćıa [49].

5.9.3 Two-way coupling terms

For two-way coupling terms, quantities obtained for a set of particles are passed to the eulerian
grid of the gas phase (see section 3.2.1). The distribution scheme for a generic source term,
noted Sp, generated at a particle k that is located inside the grid cell e is recalled:



96 CHAPTER 5. THE NUMERICAL APPROACH

Sj =
1

Vj

∑

k∈Dj

Θ
(k)
j,e S(k)

p (5.26)

Here, the contribution of this source term that is received by a given grid node j is obtained by
the summation of all weighted contributions from all particles inside Dj , the set of cells having
a vertex coinciding with j (see figure 3.1 for a schematic).

As the source terms in the gaseous equations are quantities measured per unit volume, the sum

is divided by Vj , the nodal control volume or the median dual cell. The weights Θ
(k)
j,e that are

applied to the contribution of the particle (k) can be obtained from the ration of the inverse
distances to the target node j and the sum of all inverse distances to the nodes of the cell Ke

in which the particle is located:

Θ
(k)
j,e =

1

|x
(k)
p,i−xj,i|∑

n∈Ke

1

|x
(k)
p,i−xn,i|

(5.27)

Another form to express these weights avoids a singularity when particle and node coincide:

Θ
(k)
j,e =

Πn6=j |x(k)
p,i − xn,i|

∑
r∈Ke

Πm6=r|x(k)
p,i − xm,i|

(5.28)

This is the method that is actually implemented in the Lagrangian solver of AVBP. The original
description of the methods described here can be found in the thesis of Garćıa [49].

5.10 Wall interaction of Lagrangian particles

In a Lagrangian approach, there are no boundary conditions in the classical sense. What cor-
responds best to an inlet condition is the placement of particles at prescribed positions, as it is
described for an injection case in chapter 8. Outlet conditions are not needed, because particles
that propagate into regions outside the Eulerian grid are simply not found by the search algo-
rithm and disappear from the calculation. The only veritable boundary condition is needed for
solid walls, which can pose a quite complex problem to solve, depending on the physical detail
one wishes to include. The physics involved in droplet-wall interaction comprise phenomena like
rebound, splashing and film formation just to name a few (see [47] for more detail). In the scope
of the present work, only the case of an elastic rebound is considered, which can be justified
under certain circumstances for hot surfaces as they are routinely encountered in combustion
chambers. Mainly, however, this method serves the purpose of ensuring mass-conservation.

The actual procedure consists in flagging a closed layer of all grid cells adjacent to the walls,
while establishing the connectivity between a given cell and the underlying boundary normal
(see figure 5.9 for a schematic). If a particle enters this layer, which can be assumes to be very
thin compared to the dimensions of the computational domain, the wall-normal component of
its velocity is reversed, which results in a behaviour very close to an elastic rebound on the wall.
Alternatively, the wall-normal velocity can be set to zero, which results in a completely inelastic
impact after which the particle will continue to move in wall-parallel direction.
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Figure 5.9: Schematic of the wall treatment for Lagrangian particles.
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Chapter 6

Wall modeling
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6.1 Introduction

A correct treatment of walls in Large Eddy Simulations (LES) of industrial-scale complex ge-
ometries remains a challenging task. Despite growing computing resources, mainly in the form
of massively parallel machines, the resolution of boundary layer flows remains out of reach for
routinely application [110] [111], making wall modeling a crucial ingredient of practical LES [98].

Wall-functions avoid to resolve the turbulent eddies that are proportional in size to the wall-
normal distance (as opposed to wall-resolved LES), as well as the strongest gradients in the
viscous sublayer (which is still necessary when resolving RANS equations near the wall, as it is
done in DES approaches). The gain in terms of grid resolution is considerable [111], while very
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satisfying precision can be obtained even for complex flows [98].

Since the pioneering work by Deardorff [34] and Schumann [133], published studies on wall-
functions are mainly concerned with extending the underlying wall-model to take into account
more physical detail, such as heat fluxes (Grötzbach [53]), streamwise pressure gradients (Hoff-
mann and Benocci [65]) or chemical reactions (Cabrit [22]) just to name a few. On the other
hand, relatively few sources treat the actual implementation of wall-functions into a flow-solver.
In this chapter, several ways to couple wall-functions with a numerical scheme will be explained
and it will be demonstrated that these differences can signficantly affect the results of a LES.
In particular, this is the case in configurations with a flow over a sudden expansion (or simply a
step) and more generally in complex geometries. The study is limited to cell-vertex-type solvers
at the example of the AVBP code. In the first part, the wall-modeling approach is laid out, fol-
lowed by a description of the cell-vertex formalism, the methods of implemetating wall-functions
therein and the related problems that can occur. In the following section, the different methods
are evaluated and compared on several testcases ranging from a turbulent channel flow to a
premixing swirler for aero-engines. Finally, different sources of error involved in a wall function
approach shall be discussed.

As wall modeling in itself is not the main interest of the present work, the following section will
be used to present a most basic model derived from classical boundary layer theory to lay the
groundwork for the following discussion of different implementation methods. It should be noted
that these implementation strategies can in principle be combined with other, more sophisticated
wall law formulations. Furthermore, although turbulent heat transfer is an important part in a
wall-modeling approach, it shall be excluded in this study, which will be focused on momentum
conservation.

6.1.1 The turbulent boundary layer

The fully developed turbulent boundary layer flow over an infinite flat plate is considered. This
implies that, in a Reynolds-averaged form, the problem is steady (∂/∂t = 0) and one-dimensional
(∂/∂x = 0, ∂/∂z = 0) with the wall-distance y being the only relevant spacial direction and
the streamwise velocity u the sole non-zero mean velocity component. Here, Reynolds-averaged
variables are denoted with the bar-operator ( ) and the index w identifies quantities at the wall.
The density ρ as well as the heat capacity at constant pressure CP are considered constant in
this context. An additional assumption is the absence of chemical reactions. The momentum
equation of the time-averaged flow then reduces to:

∂ p

∂x
=

∂ τxy

∂y
− ∂

∂y
ρ u′v′︸ ︷︷ ︸

τt

(6.1)

Where τxy = µ ∂u/∂y is the remaining non-zero term of the viscous stress tensor and τt the only
non-zero term of the Reynolds-tensor which is related to the velocity gradient via a turbulent
velocity, µt, according to the Boussinesq assumption:

τt = −µt
∂ u

∂y
(6.2)

The case of a flat plate is characterized by the absence of a longitudinal pressure gradient
∂ p/∂x = 0. The momentum equation written in terms of µ and µt then takes the following
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form:

∂

∂y

(
∂ u

∂y
(µ+ µt)

)
= 0 (6.3)

This equation states that the total level of friction, τtot = τxy − τ t is constant throughout the
boundary layer. It implies that the total friction must be equal to the wall-friction, which
corresponds to the viscous wall shear stress τw = µ ∂u/∂y|w, since the turbulent vanishes at
the wall due to the absence of any fluctuations. Integration of equation 6.3 and making use of
τtot = τwall yields:

∂ u

∂y
(µ+ µt) = τw (6.4)

For the following steps, it is convenient to introduce wall units, based on the friction velocity
uτ =

√
τw/ρw and defined as:

y+ =
ρwuτy

µw
u+ =

u

uτ
µ+ =

µ

µw
µ+

t =
µt

µw
(6.5)

It can be noted that y+ is in fact a Reynolds number that is valid at the wall distance y. For
channel- or pipe flows, it is very common to define the friction Reynolds number as

Reτ =
ρwuτδc

µw
(6.6)

with δc being the channel half-width.

Equation 6.4 written in wall units takes the form:

d u+

dy+
(µ+ + µ+

t ) = 1 (6.7)

In order to obtain an analytical expression for the turbulent boundary layer, it is necessary to
find a closure for µt and to integrate the differential equation. To simplify the problem, the
classical approach consists in tackling two subparts separately. Considering the structure of
a turbulent boundary layers, three zones can be distinguished (see figure 6.1): the part very
close to the boundary layer (typically y+ < 5 to 6) is characterised by laminar viscosity being
the predominant mechanism for generating friction. This region where µ >> µt is called the
viscous sublayer. Away from the wall, for values of y+ superior to 30, the momentum exchange
in y direction generated by turbulence is the main contribution to the local shear stress and
separated in scale from viscous stress so that µt >> µ. This region is called the inertial layer.
The inertial- and the viscous sublayer are connected by the buffer layer where µt and µ are of
the same order.

The viscous sublayer

We consider first the viscous sublayer. In the case of equation 6.7, the basic assumptions for
this case translate to µ+ >> µ+

t . The momentum equation reduces to:
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Figure 6.1: Experimental velocity profiles of a turbulent channel flow [153], theoretical velocity profiles
of a turbulent boundary layer (linear and logarithmic law)

d u+

dy+
µ+ = 1 (6.8)

For further simplification, the viscous sublayer is assumed to be quasi-isothermal, which allows
to write: µ+ = µ/µw ≈ 1. One obtains a simple law for the velocity:

u+ = y+ (6.9)

The inertial layer

In wall units, the inertial layer is characterized by: µ+
t >> µ+. The momentum equation reduces

to:

d u+

dy+
µ+

t = 1 (6.10)

To provide a closure for the turbulent viscosity, the Prandtl mixing length model [117] is intro-
duced:

µt = ρ l2m

∣∣∣∣
d u

dy

∣∣∣∣ (6.11)

It depends on the mixing length lm = k y, where k is the universal Von Kármán constant [151].
In wall units, the model translates to:

µ+
t = ρ+ (k y+)2

du+

dy+
(6.12)
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A further simplification is to consider the boundary layer as incompressible, and thus ρ+ =
ρ/ρw ≈ 1.

µ+
t = (k y+)2

du+

dy+
(6.13)

This expression for µ+ is injected into equation 6.10 and the result is integrated, giving

u+ =
1

k
ln(y+) + C (6.14)

which is the classic logarithmic boundary layer velocity profile. The constant C can be obtained
experimentally and is case-dependent. As two typical examples, C takes a value of 5.5 for a
channel flow and 5.2 for an external boudary layer.

The central core

For the flow over a flat plate, logarithmic laws are theoretically valid for any given wall distance
above the buffer layer, which corresponds to the case of Re→∞. For finite Reynolds numbers,
typically when considering flows in channels or pipes, the domain of validity is limited to a win-
dow of approximately y+ > 30 and y << δc (the upper limit depends on the Reynolds number).
The effect can be observed in the experimental velocity profiles in figure 6.1 where a deviation
from the logarithmic law is noticeable for values of y+ superior to approximately 600. In the
numerical application, this implies that the level of y+ at which logarithmic laws are evaluated
has to be inside this domain of validity.

Analytical laws for finite Reynolds numbers exist and can be grouped into two main types, one
based on logarithmic laws, the other having the form of a power law. There is controversy about
the theoretical justification of either type [21]. Generally, power-law profiles tend to better re-
produce the upper boundary layer while logarithmic laws are more accurate in the lower regions.

The type based on logarithmic laws, has a form similar to the classical logarithmic law (6.14) but
includes a characteristic length scale, most commonly the boundary layer thickness δ which can
also correspond to the half-width of a channel or a pipe. A well-known example is the so-called
law of the wake proposed by Coles [30]:

u− ucl

uτ
=
1

k
ln

(y

δ

)
+ Cc (6.15)

Where ucl is the velocity outside the boundary layer (for example on the centerline of a channel)
and Cc is a case-dependent constant that is obtained experimentally. A very common example
for the second, power law type is the Barenblatt law [10]. It includes the parameters α and β
which depend on a Reynolds number that is based on the bulk velocity and the pipe diameter
or channel width Re = ρubulk2δc/µ.

u+ = β(y+)α β =
1√
3
ln(Re) +

5

2
α =

3

2 ln(Re)
(6.16)

This law is not predictive for the velocity profile as it depends on the bulk velocity via the
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Reynolds number. However, Barenblatt has shown that the law 6.16 presents an implicite link
between Re and Reτ :

Reτ =
1

2

(
e

3
2α α (1 + α) (2 + α)√

3 + 5α

) 1
1+α

(6.17)
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Figure 6.2: Experimental and theoretical mean velocity profiles of a turbulent channel flow (Wei, Will-
marth [153], Barenblatt law [10] at Reτ = 1655); theoretical profiles of a turbulent boundary layer.

As Reτ can be determined independently in many cases, this law is a good candidate to serve as
an analytical reference solution. Figure 6.2 shows the dimensionless velocity profiles of a channel
flow with Reτ = 1655 and compares the Barenblatt solution to an experiment of Wei and Will-
marth [153]. The linear and logarithmic laws are also included for comparison. The Barenblatt
law tends to follow the measurement data quite well at the center of the channel where the
logarithmic law visibly drops to lower values outside its domain of validity. The main weakness
of the Barenblatt law is its overestimation of the velocity in the buffer layer (8 < y+ < 30) and
below. However, when considering more global quantities such as the mass flux, this weakness
is of relatively low influence.

6.2 Wall-function implementation methods

6.2.1 The cell-vertex approach for wall-boundaries

The cell-vertex approach has an important implication on the way wall models are implemented.
This is due to the fact that the flow variables are located at the grid nodes, and therefore also at
locations coinciding with the domain boundary. The cell-vertex approach is described in chapter
5. Here, the explanation begins with recalling the diffusion scheme that is of interest for the
type of wall-model considered.

For the divergence of the viscous terms ~▽ · ~FV , the method applied differs from the one used
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for the convective fluxes. First, the gradient of the conservative variables
(

~▽U
)

e
is calculated

for the element e. Using this gradient and the nodal value Uj allows to calculate the viscous
flux tensor from element and node values:

~FV
j,e =

~FV
(
(U)j ,

(
~▽U

)
e

)
(6.18)

The divergence is then obtained by summing all contributions in the dual cell associated to the
node j:

~▽ · ~FV
∣∣
j
=

1

dVj

∑

e∈Dj

~FV
j,e · ~Sj,e (6.19)

The normal vectors ~Sj,e used in this operation are located at the center of a given element e and
associated to the node j. Figure 6.3 schematizes the location and direction of these normals. It
can be shown that they are equal to the vertex normals ~Sk, where the vertex k coincides with
the node j considered.

~Sff

we

we

e

we

~Sjw,e

~Sjw,we
~Sj,e

j

jw

Figure 6.3: Sketch of the normals ~Sj,e used for the diffusion scheme and the face-based normals ~Sff
we

appearing at the application of Neumann boundary conditions on elements with boundary faces, noted we.

Applying Neumann boundary conditions in a finite volume framework corresponds to imposing
fluxes through the domain boundary. To do this efficiently, the diffusive flux divergence operation
in equation 6.18 is modified for nodes located on wall boundaries, noted jw (see figure 6.3): the
prediction of the diffusion scheme is corrected by adding fluxes given by the boundary condition,
~FBC

jw,we.

~▽ · ~FV
∣∣
jw
=

1

dVjw

∑

e∈Djw

~FV
jw,e · ~Sjw,e

︸ ︷︷ ︸
Diffusion scheme prediction

(6.20)

+
∑

we∈Djw

~FBC
jw,we · ~Sff

we

︸ ︷︷ ︸
Boundary correction

Instead of ~Sj,e, the correction term uses face-based normal vectors, noted ~Sff
we. They are defined

as the normals of an element face located on the boundary, as shown in figure 6.3 for the
boundary elements (denoted by we).
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6.2.2 The use of wall functions in LES solvers

In sections 6.1.1 and 6.2.1, the wall model and the numerical framework have been described.
The missing ingredient for the implementation of wall laws is how numerics and wall model are
combined in a LES context. For the sake of clarity, the following paragraphs are limited to a
one-dimensional view (in wall-normal direction), analogous to turbulent boundary layer theory.
The shear balance in the element adjacent to the wall (noted ‘we’) takes the form:

τxy

∣∣
we

=
d û

dy

∣∣∣∣
we

(µ |we + µsgs|we) =
û2 − û1

∆y
(µ |we + µsgs|we) (6.21)

where u1 and u2 are the velocities at directly on the wall and on the first grid point respec-
tively, ‘ ˆ ’ is the LES filter operator, ∆y is the wall-distance of the first point and µsgs the
subgrid-scale viscosity. In cases of low near-wall grid resolution, this equation cannot yield cor-
rect results: the subgrid-scale viscosity is given by a LES model that is designed to account for
stresses in the unresolved scales of turbulence. Near the wall, however, typical models will fail
to predict the wall shear stress correctly, as they are not based on physical arguments related
to under-resolved, wall-bounded flows. Instead, their behaviour is known to be often unphysical
in under-resolved boundary-layers or generally in zones of pure shear [104], for instance in the
case of the Smagorinsky model [140].

The central idea of wall functions consists in locally using boundary layer theory (of the type
layed out in section 6.1.1) in lieu of the diffusion scheme to restore the correct balance in equation
6.21. In the element adjacent to the wall, the predicted shear stress τxy|we is corrected by a
value obtained from a wall model, τmodel

w .

τxy

∣∣
we

= τmodel
w (6.22)

In the present study, τmodel
w is obtained from the logarithmic law (equation 6.14). Although this

law is very common for wall function approaches, other relations exist, for example in the form
of a power law, as applied in the very popular method by Werner and Wengle [154]. Written in
flow variables, it reveals its practical property of relating the wall shear stress to any point in
the velocity profile located inside the inertial layer:

û =
1

k

√
τw

ρwe
ln

(
ρwy

√
τw/ρwe

µ|we

)
+ C (6.23)

In practice, this equation can be numerically resolved to provide the wall shear stress as a
function of the velocity û2 at the first off-wall point with the wall distance ∆y (assuming ρwe

and µwe to be constant):

τw = f(∆y, û2) (6.24)

Note that this approach involves Reynolds-averaged variables (noted with the bar operator ‘ − ’ )
as filtered variables of the LES. In a wall function approach, it is generally assumed that the
near-wall control volume contains a sufficient number of turbulent structures for a Reynolds
averaged view to be justified, even in an instantaneous flow field [111]. RANS quantities in the
first cell can therefore be combined with instantaneous variables of the LES.

The following sections describe in detail different options of applying equation 6.23 to the nu-
merical scheme as a wall boundary condition.
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6.2.3 Implementation with slip velocity at the wall

The first, classical method to implement wall functions starts from the idea that corrections
should be limited to the nodes on the domain boundary. This can be considered an advantage
on unstructured triangle- or tetraedra meshes, where element type and topology are of little
influence. In view of the cell-vertex formalism, this means that the predictions of the diffusion
scheme have to be modified when summing the contributions of the viscous fluxes at the dual cell
associated to each boundary node (eq. 6.19). This procedure, illustrated in figure 6.4, consists
in having the scheme calculate the wall-normal momentum flux τxy and subsequently replacing
the contributions headed to the wall nodes by the value corrected with the wall function τwe. In
an arbitrary 3D geometry, this correction is applied selectively on the wall-normal component of
the momentum flux, the direction of shear being aligned with the wall-parallel velocity vector.
Finally, the wall-normal velocity is set to zero (u1,⊥ = 0) as a Dirichlet-type boundary condition
(classical Dirichlet or the NSCBC (for Navier Stokes Characteristic Boundary Conditions) [114]
equivalent). As nothing is imposed for the wall-parallel velocity, a non-negligible slip-velocity
appears on the wall as the scheme advances in time. This velocity has no physical meaning: it
should be regarded as a free parameter in the computation as its value depends predominantly
on the level of subgrid-scale viscosity in the wall element. This becomes clear when rearranging
equation 6.21 at the wall-element with τw obtained from the wall function.

d û

dy

∣∣∣∣
we

=
τw(û2, y2)

µ |we + µsgs|we
(6.25)

Assuming that the velocity at the first node above the wall behaves ideally and thus coincides
with the log-law for a given τw and the molecular viscosity µ is constant, this equation yields a
gradient that will establish between y1 and y2, which depends only on µsgs (see figure 6.5 for an
illlustration). This relation reveals that the method is well-suited for the use in conjunction with
the Smagorinsky model, which provides for (unphysically) high levels of subgrid-scale viscosity
near the wall, leading to a moderate gradient. In contrast, when used with turbulence models
that yield near-zero subgrid-scale velocity at the wall (e.g. WALE [104]), this gradient will be
very steep and can lead to reversed slip-velocities, causing spurious oscillations.
For the Smagorinsky model, one can further estimate the magnitude of the slip-velocity obtained
on the wall by writing it in a time-averaged (〈〉-operator), one-dimensional form (assuming a
linear discretization of the velocity profile):

〈µsgs|we〉 = 〈ρwe〉 (Cs∆)
2 (〈û2〉 − 〈û1〉)

y2
(6.26)

Here, Cs is the Smagorinsky constant and ∆ a length scale for the cell size. The slip-velocity
can be estimated as:

〈û1〉 = 〈û2〉 − y2
〈τw〉

〈µ |we〉+ 〈µsgs|we〉
(6.27)

Combining equations 6.26 and 6.27 finally allows to obtain the average slip velocity 〈û1〉 ex-
plicitely:

〈û1〉 = 〈û2〉 −
y2

2 〈ρwe〉(Cs∆)2

(
−〈µ|we〉+

√
〈µ |we〉2 + 4〈ρwe〉2(Cs∆)2〈τw〉

)
(6.28)
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τw τw

τxy τxy

we

Figure 6.4: Application of the wall functions in the slip-wall formulation. Schematic of the scatter
operation of the momentum flux contributions. Black arrows correspond to contributions calculated by
the diffusion scheme, grey arrows to contributions corrected by the wall function.
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Figure 6.5: Overview of the most important variables appearing in the formulation with a slip velocity.

6.2.4 Corner problem

The procedure, described in section 6.2.3 leads to a difficulty at corner points. Unlike the
Neumann boundary conditions that are applied on the boundary face (see equation 6.20), the
Dirichlet conditions of zero wall-normal velocity are applied directly on the conservative variables
at the nodes. At the node coinciding with the corner, the definition of the wall-normal vectors
is ambiguous (see figure 6.6). Following the standard procedure of calculating the nodal wall

normal ~Sb
j as the average of the surrounding boundary-face normals

~Sff
e , the resulting normal

at the corner point ~Sb
j,c (and consequently also the velocity vector) would take an unphysical

angle of ≈ 45 degrees. Therefore, at the corner point only, the normal is either chosen equal to
the one of the upstream boundary face or set to zero (removing all constraints on the direction
of the velocity). Both methods lead to a nodal velocity vector that is aligned with the upstream
wall. As a result, however, mass conservation will no longer be respected because of a flux
through the boundary face situated at the downstream wall, as illustrated in figure 6.7.1. To
correct that, a (face-based) Neumann boundary condition of zero mass flux can be applied
instead of the Dirichlet condition of zero normal velocity. This ensures mass conservation but
the correction of the face downstream of the corner effectively reduces the slip-velocity at the
corner, leading to perturbations of the flow-field in this area. As the wall-element in a mesh
adapted for wall functions is of a relatively large size in order to reach into the inertial layer, these
perturbations can take magnitudes that lead to unphysical flow fields or numerical instabilities
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(see section 6.3.2).

~uc ~uc ~uc

~Sff

we

Standardmetric

~Sb
j ~Sb

j,c

~Sb
j

~Sb
j

~Sb
j

~Sb
j

~Sb
j,c = ~Sff

we
~Sb

j,c = ~0

~Sb
j,c

Figure 6.6: Schematic illustration of different definitions of the nodal normal vector ~Sj,c at the corner
node. Generic configuration of a flow over a corner.

Note that these difficulties are limited to the cell-vertex approach, as illustrated in figure 6.7:
for a cell-centered formulation (figure 6.7.3), the wall-normal vector ambiguities and problems of
mass-conservation do not appear due to the location of the velocity vectors at the cell-center. In
a cell-vertex formalism, these problems can easily be overcome if a no-slip condition is imposed
at the wall nodes as shown in figure 6.7.2. The following sections are therefore dedicated to
wall functions with a no-slip condition at the wall.

1.  Cell-vertex  

 slip wall law!

2.  Cell-vertex 

 no-slip wall law!

3.  Cell-centered!

Mass flux through wall!

y1!

y2!

Figure 6.7: Schematic of mass fluxes in vicinity of a corner (’→’ symbolizes a momentum vector), com-
paring a cell-vertex scheme with/without slip velocity to the cell-centered approach. Generic configuration
of a flow over a corner.

6.2.5 Implementation without slip velocity at the wall

The need for an alternative implementation method of wall functions in cell-vertex solvers arises
from the problems listed in section 6.2.4. The idea is consequently to impose a no-slip condition
on the wall nodes, which, however, prohibits the application of the wall shear stress at the same
location. This is because, in a given timestep, the corrected contributions of the diffusion scheme
τwe exclusively affect the nodes they are directed to. Neighbouring nodes are only influenced
indirectly in subsequent timesteps. A Dirichlet-condition, imposed after the computation of the
diffusive terms will therefore cancel out any effect of the numerical scheme on these nodes. The
logical alternative is to apply the wall function away from the wall, at the upper nodes of the
first cell, as shown in figure 6.8. This choice is in fact consistent with the underlying boundary
layer theory, as equation 6.3 clearly shows that the shear is constant throughout the first wall
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cell (equal to τw). The fact that the gradient inside the wall element (figure 6.9) is unphysically
high has no consequence in this case, because the diffusion scheme is completely inactive in this
cell, its predictions being entirely replaced by the wall function and the no-slip condition.

u
1
 = 0! u

1
 = 0!

τw τw

we

Figure 6.8: Application of the wall functions in the no-slip formulation. Schematic of the scatter
operation of the momentum flux contributions. Grey arrows symbolize the contributions corrected by the
wall function.
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Figure 6.9: Overview of the most important variables appearing in the no-slip formulation.

An overview of the key differences between both implementation methods can be obtained from
figure 6.1, where a simplified sequence of events during a numerical timestep is shown.

6.2.6 Limitations of the no-slip approach

The no-slip formulation avoids all difficulties related to domains with corners. However, it has a
certain limitation with respect to the type of elements that are supported at the wall. The slip-
wall formulation can be deployed on any type of mesh, as it is a surface-based approach limited
to the boundary of the domain. The no-slip approach, as it acts inside the fluid volume, cannot
sensibly be implemented for arbitrary element types. A typical example is a pure tetraedra
mesh, which will have a layer of elements near the wall that can have a triangle, an edge or a
single node coinciding with the boundary, leading to different kinds of ‘upside-down’ tetraedra.
The algorithms needed to search those vertices of wall elements that are away from the wall
(where the wall-function would be applied) and to establish the connectivity with the respective
boundary normal are complex and costly. Figure 6.10 shows this type of element topology where
applying the correction at the vertices neighbouring the node number 3 would give rise to the
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said difficulty. Furthermore, the irregular wall-distances (like the one noted ∆y23 in figure 6.10)
have lead to oscillatory behaviour in the tests that were conducted.

n2 n4

1
2

3

4

y !y23

Figure 6.10: Example for the application of no-slip wall functions on pure tetrahedra grids.

The no-slip approach is therefore limited to all sorts of prismatic elements (typically prisms and
hexaedra) that ensure uniform wall-distance and straightforward access (in terms of connectiv-
ity) to the ‘upper’ element vertices. A 2D example of such a prismatic layer in an otherwise
unstructured mesh is shown in figure 6.11. The capability of treating hybrid meshes is therefore
a prerequisite for the use of no-slip wall functions in complex geometries.

n1 n2

1 2 3

y

Figure 6.11: Example for the application of no-slip wall functions on hybrid hexaedra/tetrahedra grids.

6.3 Applications and Results

In the following, both implementation methods are applied to three different cases with increas-
ing complexity. Each application, together with a discussion of the results is presented in an
individual section.
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No-slip wall law Slip wall law

Initial field of conservative variables U

Calculation of the flux tensor ~F

Neumann boundary conditions

τw at y2 (1st off-wall node) τw at y1 (wall)

Advancement in time: ∂U/∂t+ ~▽ · ~F = S

New field of conservative variables U

Correction of conservative variables U
Dirichlet boundary conditions

u1 = 0 u1,⊥ = 0

Final field of conservative variables U

Table 6.1: Comparative overview of the no-slip and slip wall function implementations. Simplified
sequence of events during one computational time step.

6.3.1 Turbulent channel flow

A Large Eddy Simulation of a periodic channel flow serves as a first test case for the validation
of both wall-function implementations. The configuration consists of a doubly periodic box (in
x- and z direction) with walls on the top and bottom surfaces (in y-direction). Six different cases
are considered (a summary is given intable 6.2), distinguished by different Reynolds number,
based on bulk properties (subscript ‘b’), defined as:

Reb =
ρbDh ub

µb
(6.29)

Where Dh = 4δ is the hydraulic diameter. The mesh in all cases is of uniform, cartesian type
with grid resolutions adapted to the respective Reb.

Certain additional results are obtained in a comparable configuration at Reτ = 1500 with a
near-wall grid spacing of y+ = 100. An exemplary flow field, obtained under those conditions
using a second-order Lax-Wendroff scheme and a wall law in no-slip formulation is shown in
figure 6.12. It combines a field of velocity magnitude inside the flow with a visualization of the
wall friction levels on the wall surface.

Detailed statistics are presented in figures 6.13 and 6.14 for a single, typical case (# 4) at
Reb = 200 000, which corresponds to a friction Reynolds number of Reτ ≈ 2524. Figure 6.13
shows profiles of dimensionless longitudinal velocity u+. There is a good agreement between
the logarithmic law, DNS data of Hoyas and Jiménez [66] and both LES simulation results near
the first grid point, showing that the most direct effect that wall functions have on the flow
is correctly reproduced. In the region of the first few grid points towards the center of the
channel, profiles from both wall functions start to deviate from the logarithmic law, an effect
that is slightly stronger in the no-slip formulation. This is most probably due to under-resolved



6.3. APPLICATIONS AND RESULTS 115

Figure 6.12: Turbulent channel, field of velocity magnitude v [m/s] (side surfaces) and wall friction
τw [N/m2] (top surface). LES using no-slip wall functions and a second order Lax-Wendroff scheme.

# Reb Reτ y+ grid nodes 2 δ [m]

1 20 000 ≈ 322 ≈ 30 29 x 21 x 29 1.5 10−3

2 40 000 ≈ 594 ≈ 50 33 x 25 x 33 3.0 10−3

3 80 000 ≈ 1100 ≈ 100 25 x 23 x 25 6.0 10−3

4 200 000 ≈ 2524 ≈ 100 33 x 51 x 33 1.5 10−2

5 400 000 ≈ 4798 ≈ 150 33 x 61 x 33 3.0 10−2

6 2 000 0000 ≈ 20816 ≈ 1000 41 x 41 x 41 1.5 10−1

Table 6.2: Summary of the turbulent periodic channel cases.

and thus unphysical turbulent mechanisms near the wall, which are a result of the inherent lack
of grid resolution that is described, for instance, by Nicoud et al. [103] (in the context of a
wall function approach) and studied in a more general context by Piomelli et al. [112]. In this
intermediate layer, the subgrid-scale viscosity is given by a LES model and therefore takes values
that are lower than a turbulence model in a RANS approach would predict, leaving a share of
the stress balance to be accounted for by resolved Reynolds stresses. On the other hand, the grid
resolution in these zones is determined by the wall function approach and therefore too coarse
to resolve turbulent structures at scales small enough for a LES to result in correct Reynolds
stresses. A study of the resolution requirements in LES of shear flows can be found in the work
of Baggett et al. [9]. A more detailed discussion of the limits a wall function approach faces in
terms of accuracy is presented in section 6.4.

Differences between both formulations can be observed on the velocity fluctuation profiles shown
in figure 6.14 where the peak of the no-slip wall functions is displaced by approximately one
point away from the wall with respect to the one of the slip-wall function. This indicates that
for the slip-formulation the under-resolved near-wall vortical structures can be accomodated by
the wall nodes thanks to the presence of a slip velocity, whereas in the case of the no-slip results,
these structures are shifted away from the wall (see figure 6.26 and section 6.4.1 for a more
detailed analysis), which seems to slightly increase their negative effect.
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Figure 6.13: Turbulent channel, dimensionless velocity profiles. Comparison between the analytical
profile, DNS data [66] and LES results, obtained with a second-order Lax-Wendroff scheme, using wall
functions in slip- and no-slip formulation. Case of Reb = 200000.
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Figure 6.14: Turbulent channel, dimensionless velocity fluctuation profiles. Comparison between the
analytical profile, DNS data [66] and LES results, obtained with a second-order Lax-Wendroff scheme,
using wall functions in slip- and no-slip formulation. Case of Reb = 200000.

An overview of the global performance of both wall functions over a wide range of Reynolds
numbers is shown in figure 6.15. Here, the mean friction coefficient Cf of the channel flow is
compared to the classical correlations of Kármán and Nikuradse [75] as well as Petukhov [109].
The general trend observed is that for low Reynolds numbers, the slip-formulation yields superior
results but deteriorates slightly for increasing Reb. Inversely, the no-slip formulation shows the
largest errors for low Reynolds numbers with increasingly good agreement for growing Reb,
eventually surpassing the accuracy of the slip-formulation. This observation can be explained
by the diminishing influence of the near-wall effects relative to the channel height that work to
the disadvantage of the no-slip formulation.

6.3.2 Flow over a sudden expansion

The flow over a sudden expansion is well-suited as a test case for the corner problem. It consists
of a circular upstream tube of diameter D from which the flow enters a larger tube of diameter
2D (see figure 6.16). This corresponds to the experiment of Dellenback et al. [36] from which
experimental data is available. The mesh is composed entirely of hexaedral elements with 10
cells across the diameter of the upstream tube, which results in a first off-wall grid point situated
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Figure 6.15: Wall friction coefficient cf as a function of the Reynolds number Reb based on the bulk
velocity in the channel. Comparison of slip- and no-slip results with correlations of Karman and Nikuradse
[75] as well ase Petukhov [109].

at approximately 160 wall units. The mean velocity profile from experimental data is imposed at
the inlet. The resulting flow has a Reynolds number of 30 000 and transitions naturally to a tur-
bulent state after the step. The degree of physical detail in this simulation is clearly insufficient
for an accurate representation of the flow phenomenon at hand, but in this case, this is not the
intent. Instead, this geometry, in conjunction with the very coarse grid resolution, is typical of
certain geometrical details in very large LES cases, which often include small-scale jets that are
emitted by tubes or conduits into a larger reservoir. Examples are dilution holes in combustion
chambers or the narrow passage around the valves of an internal combustion engine, which are
often meshed quite coarsely. It is typically in this kind of configuration that the corner problem
leads to undesired modifications of the flow field or to numerical artefacts.

Qualitative differences between the wall-law formulation can be observed on the iso-contours of
mean axial velocity shown in figure 6.17. The flow field remains totally unaffected (figure 6.17,
top) for slip wall functions in their non-conservative form, i.e. without correction of wall-normal
mass flux (see section 6.2.4, figure 6.7). Note that the absence of this correction leads to an
unphysical mass flux through the wall downstream of the step that amounts to approx. 15 %
of the global mass flux. On the other hand, a clear distortion at the height of the step can
be observed when the mass-flux correction is applied. This correction reduces the slip velocity
at the corner points and leads to an unphysical acceleration of the flow in the center (figure
6.17, center). Furthermore, this very localized modification of the flow field causes numerical
point-to point oscillations. The said distortion is not observed for wall functions in the no-slip
formulation (figure 6.17, bottom).

A more quantitative view of the problem is presented in figure 6.18, which shows the normalized,
mean axial velocity on the centerline in direct vicinity of the step (x = −0.5D to x = D)
compared to experimental data [36]. As the flow is virtually incompressible, one would expect
the centerline velocity to remain constant in this area, which is confirmed by the experiment.
The simulation results of the slip wall function, however, show a clearly unphysical acceleration.
The result using no-slip wall functions is a clear improvement as the centerline velocity remains
globally constant despite a slightly oscillatory behavior at the coordinate of the step.
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Figure 6.16: Flow over a sudden expansion: Mesh and geometry overview.
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Figure 6.17: Flow over a sudden expansion: iso-contours of the mean axial velocity, normalized by
the centerline velocity in the upstream tube. Top left: slip wall function without correction (not mass-
conservative). Top right: slip wall function with correction. Bottom right: no-slip wall function

6.3.3 Injector for aero-engines (TLC configuration)

The last application is the full TLC configuration as described in chapter 9. It is an example for
one of the more complex geometries encountered in LES, as it is characterized by three swirler
stages, each composed of a series of narrow channels separated by the guide vanes. Here, it is
operated in a purely aerodynamic regime (described in more detail in chapter 10) in order to
assess the capability of the novel wall-model implementation. The chamber is pressurized at
4.3 bar, the air fed into the plenum is pre-heated to 473 K, which corresponds roughly to the
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Figure 6.18: Flow over a sudden expansion: Ratio of centerline velocities uCL and the centerline velocity
at x = −0.5D, u1, for slip- and no-slip wall functions compared to experimental data (Dellenback et al.
[36]). The diagram shows time-averaged results.

operating conditions of an engine at partial load. The airflow from the plenum to the chamber
is split between the three-staged swirler and a cooling film placed near the circumference of the
chamber upstream wall.
Owing to the complexity of the computational domain, the grid is composed of tetraedral ele-
ments in its volume and of one single layer of prismatic elements at the boundary where wall
functions are applied (see section 6.2.6 for details on the necessity of this method). This ap-
proach is applicable in arbitrary geometries as it simply consists in extruding the triangular
tesselation of the domain boundary towards the inside. However, the more prismatic layers one
chooses to apply or the thicker the layers are, the more the prisms tend to be distorted on sharp
edges or corners. A view of the mesh and a detail of the prismatic layer is shown in figure 6.19.
The thickness of the prism layer is varied locally and carefully adapted to be as close as possible
to 100 wall units. The resulting mesh comprises approximately 8.5 million cells and 1.6 million
nodes. The simulations were performed using the second-order accurate Lax-Wendroff scheme.
In the two simulations compared below, the only difference is the wall treatment. Everything
else remains the same (mesh, algorithms, timestep).

Figure 6.19: Detail of the single prismatic layer in the hybrid, unstructured mesh.

Quantitative results are presented in the form of mean velocity profiles (figure 10.16) and RMS
velocity profiles (figure 10.17). In both figures, the axial and tangential components obtained
with both wall function formulations are compared to experimental data provided by ONERA
Fauga-Mauzac. The profiles are extracted over three transverse lines positionned at 10, 15 and
30 mm downstream of the swirler exit (see figure 6.20). The agreement of the no-slip results in
axial direction with experimental data is excellent, both the position and the magnitude of the
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Figure 6.20: Instantaneous velocity magnitude contours on a central cross-section through the domain.
Upper half: result obtained using no-slip wall functions. Lower half: result obtained using slip wall-
function. White lines: positions of the extraction of velocity profiles.

peaks corresponding to the central flow and the cooling films are accurately reproduced. This
is observed on all three measurement positions. The results of the slip wall functions are less
satisfying because the peaks of the main flow are shifted slightly towards the center, indicating
that the opening angle of the cone-shaped flow is too small. Purely qualitatively, this discrepancy
in opening angle can also be observed on the instantaneous velocity field, shown in figure 6.20.
As a consequence, the peak magnitudes increase, a behavior that is observed consistently at
all three positions. In the tangential direction, the same observations can be made: very good
agreement for the no-slip formulation and an over-estimation of tangential velocity peaks due
to a under-estimated opening of the main flow.
Differences are less pronounced for the axial velocity fluctuations shown in figure 10.17. Here,
the magnitude of the strongest fluctuations in the turbulent shear layer between the main flow
and the central recirculation zone is well captured in both simulations. Differences are observed
on the third measurement line at 30 mm, where the offset of the peaks from the slip wall function
results becomes most noticeable. In tangential direction, fluctuations are slightly over-estimated
on the first measurement line (10 mm) in both simulations. Downstream, the agreement is better
for the no-slip results, while the slip wall functions again show over-estimated peaks displaced
towards the inside.
The quality of both LES (without considering the differences resulting from wall modeling)

is very satisfying as shown by the results obtained using the no-slip wall function approach.
With all other simulation parameters (mesh, numerical scheme, turbulence model etc.) being
identical, the discrepancies observed relative to the slip wall function formulation show that the
implementation of the wall model alone can lead to significantly different results in a realistic
application. Here, the reason for the differences is not attributed to the corner problem described
in sections 6.2.4 and 6.3.2 but to the tendency of the slip velocity (which forces the near-wall
momentum in wall-parallel direction) to keep the flow closely attached to curved geometrical
features. In this case, the main flow concentrates along the shape of the inner lip of the injector
cone, which results in a more confined shape of the overall flow.
Note that the favourable behaviour of the no-slip formulation should not be confounded with the
capability to predict boundary layer detachment, which remains out of reach for a wall-model
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Figure 6.21: Mean velocity profiles. Axial component (upper diagram) and tangential component (lower
diagram). Comparison of no-slip wall-functions (—), slip wall-functions (- - -) and experimental data
(◦ ◦ ◦)

that neglects the streamwise pressure gradient. However, even with a suitable underlying wall-
model, the slip-wall formulation still cannot be expected to predict detachment correctly. This
is because the near-wall momentum is transported to a non-negligible extent by the slip velocity,
which is necessarily aligned with the wall and in its magnitude depends mainly on the level of
subgrid scale viscolity µsgs, as highlighted by equations 6.27 and 6.28. This means that the
onset of the detachment (a vanishing slip-velocity) would be piloted by the LES subgrid-scale
turbulence model – a clearly non-physical mechanism.
Another important aspect is the numerical robustness of either approach. An instructive way
of looking at this issue is to observe the temporal evolution of pressure and slip velocity at a
set of probes located on the wall of a narrow channel. The arrangement of the three probes
considered is shown in figure 6.23. The evolution of the slip velocity x-component, presented in
figure 6.24 reveals its very unstable behavior. While it is observed in the turbulent channel flow
that the slip-velocity accommodates to the natural near-wall fluctuations to a certain extent
(see fig. 6.14), it becomes clear that in the case of a less resolved and less regular mesh, the
slip-velocity reveals a non-physical strong oscillatory tendency up to the point of briefly taking
counterstreamwise orientations. The resulting pressure fluctuations are five times stronger than
in the case of the no-slip formulation, as shown in figure 6.25. Obviously, this would become an
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Figure 6.22: Velocity fluctuation profiles. Axial component (upper diagram) and tangential component
(lower diagram). Comparison of no-slip wall-functions (—), slip wall-functions (- - -) and experimental
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Figure 6.23: Location of the pressure probes. View of the two innermost swirler stages.

issue if the LES was used for aeroacoustics simulations, where wall functions in slip-formulation
create a non-physical noise. Furthermore, the advantages of the no-slip formulation in terms
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of a problem-free (i.e. more robust at locations that are prone to destabilizing the numerics)
application by the end-user and the gained rapidity in setting up a simulation should not be
under-estimated.

140

120

100

80

60

40

20

0

u
 [

m
/s

]

1.2x10
-3

1.00.80.60.40.20.0

 t [s]

 slip wall-function
 1  2  3

 no-slip wall-function
 all probes

Figure 6.24: x-component of the velocity recorded at the three probes over a period of 1.2 milliseconds.
Comparison of results from slip- and no-slip wall-functions.
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Figure 6.25: Pressure signal recorded at the three probes over a period of 1.2 milliseconds. Comparison
of results from slip- and no-slip wall-functions.

6.4 Analysis of limits of wall function approaches

Wall-function based approaches to model a turbulent boundary layer in a Large Eddy Simulation
generally suffer from several sources of inaccuracy. Most often, the wall-model itself is not the
cause of these errors, provided it is applied in coherence with the assumptions used to derive
it (i.e. steady, attached turbulent boundary layers). Instead, errors are generated by several
mechanisms related to the interaction of the wall model with the rest of the flow. Some - partly
significant - differences in complex geometries due to different implementation methods have
already been pointed out in the preceding sections. In the following, this aspect will be analyzed
in more detail. Furthermore, the influence of the near-wall grid resolution and the subgrid-scale
viscosity will be discussed.

6.4.1 Implementation method

Apart from the differences observed in realistic configurations related to the corner problem or
the tendency to stay attached excessively to curved surfaces, there are also very basic mechanisms
at work, which can be observed in the turbulent channel flow. In particular, this is the stronger
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deviation of the velocity profile from the logarithmic law for the no-slip formulation compared
to the profile of the slip wall formulation (see figure 6.13). The explanation for this is not
very intuitive because the derivation of the wall-function itself shows that the prediction of the
(constant) total shear inside the logarithmic layer must be equivalent in both cases. The reason
for the discrepancy should therefore be sought in the LES region near the wall. The argument
is as follows: in a turbulent boundary layer, the wall-normal momentum exchange is to a great
extent effected by small-scale longitudinal vorticial structures, called streaks. In a LES with a
wall model, these structures are not resolved. Instead, a similar mechanism at larger scale (the
smallest scale the grid allows to resolve) is observed and contributes to wall-normal momentum
transport in a very similar way. A corresponding phenomenon (sometimes named super-streaks)
has been described by Piomelli et al. [112] as well as Baggett et al. [8] in studies about zonal
RANS-LES approaches. These authors show that the resolved turbulence cycle is artificial and
physically incorrect. Although there is no proof that the structures at hand in a wall function
approach constitute the same phenomenon, it is safe to assume that they are equally artificial
because of their scale. In section 6.4.3, this aspect will be further discussed - here, it shall simply
be assumed that the mechanism exists. Figure 6.26 schematically shows a cross-section through
such a near-wall vortex. In the case of the slip wall function, this vortex can be accomodated
by the first few near-wall cells, starting directly on the wall, thanks to the presence of the slip
velocity. For the no-slip formulation, a comparable vortex is generated but due to the no-
slip condition at the wall nodes, it is shifted away from the wall by approximately one cell
height. Evidence for this can be found in figure 6.14, where the velocity fluctuation profiles have
practically the same shape, with the no-slip result being shifted by one point towards the center
of the channel. In this case, the result is an increase of total stress at comparable wall-distances
which eventually leads to the steeper velocity profile in the near-wall region.

It should be noted that, although the behaviour of the slip wall function leads to better results,
the slip velocity that is the helping mechanism behind the improvement is not physically justified.
As will be seen in the following, it can, under certain conditions, behave in an unfavourable way,
reversing the positive influence observed in this example. Additionally, the near-wall vortices
that generate the differences are an artificial turbulent cycle, so none of the shifted positions is
necessarily more correct than the other.

Shifted near-wall vortex!

Flow direction: x!

x!
y!

z!

Slip-wall formulation! No-slip formulation!

Figure 6.26: Sketch explaining the shifted near-wall vorticial structures between slip- and no-slip imple-
mentation.
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6.4.2 Grid dependency

It is generally difficult to coherently integrate wall models into a standard LES. The reasons for
this are two-fold: on the one hand, classical wall models are derived from time- or ensemble-
averaged equations for a turbulent boundary layer. This presents a conceptual incoherence with
the LES approach that is based on a spatial filtering argument. It can, however, be argued [111]
that if the first near-wall grid cell is large enough, it contains a sufficient number of turbulent
structures (with typically faster turnover times than the outer flow) to justify the application
of a wall model based on the ensemble-average of these structures in an unsteady LES. This
in turn leads to the second problem, which is related to grid resolution requirements for LES.
Baggett et al. [9] derive a criterion for the resolution requirement in regions of strong shear in a
LES using the dynamic Smagorinsky model, which can be summarized by a filter width that has
to be less than 1/10 of the turbulent integral lengthscale that is proportional to the wall-normal
distance Lǫ ∝ y. As Nicoud et al. [103] point out, this leads to a conflict of objectives in the
mesh region directly above the first off-wall grid point. Here, the LES side would optimally
require very small, relatively isotropic grid cells that diminish in size towards the wall, whereas
the wall model demands relatively large grid cells that reach into the logarithmic layer (typically
∆y+ ≈ 100 and ideally ∆x+ ≈ 1500 streamwise and ∆z+ ≈ 700 in spanwise direction [111] for
the statistical argument to hold). A typical mesh is a compromise between both requirements,
i.e. near-wall cells of ∆y+ ≈ 100 but more isotropic in x- and z-direction and maintaining this
spacing above the wall. The result is an intermediate zone between wall-law region and the outer
flow where the mesh is too coarse for a LES with a standard subgrid-scale turbulence model to
work properly. It has to be noted that in a RANS approach, this conflict does not necessarily
exist as these turbulence models adapt with wall-distance and resolution requirements do not
depend on the turbulent length-scales. Furthermore, there is no requirement for cell isotropy,
which facilitates wall-normal grid size adaptation.

Statistics of calculations that compare different grid resolutions are shown in figures 6.27 to 6.29.
The bulk Reynolds number of both cases is identical at Reb = 80 000, whereas the grid spacing is
varied between y+ ≈ 100 with 25 x 23 x 25 points (case # 3 n table 6.2) and y+ ≈ 50 with 41 x
45 x 41 points. In both cases, the no-slip formulation for the wall functions has been used. It can
be observed that the magnitude of the mismatch between the results and the log-law is nearly
identical in both cases. The zone of over-estimated near-wall velocity gradients is limited to the
first three grid points on both meshes. Consequently, the deviation occurs closer to the wall for
the finer mesh. The evolutions of velocity fluctuations (figure 6.28) and the total shear stress
(figure 6.29) are qualitatively very similar in both cases but the near-wall behaviour is spread
over a larger region on the coarse grid. Distinctive features like the near-wall increase of velocity
fluctuations and the position of the maximimum appear to be governed by the number of grid
points rather than the actual wall distance. This gives a strong indication that the deficiencies
considered here are in fact due to the inevitable lack of grid resolution at the interface between
wall-law and LES region that is independent of absolute grid spacing.

6.4.3 The influence of the subgrid-scale viscosity model

This systematic lack of grid resolution for the intermediate layer between the wall model and the
outer flow leads to a challenging environment for the subgrid-scale turbulence model. As already
pointed out, the resolution requirements stated by Baggett et al [9] are valid for an isotropic
turbulence model, in this example the dynamic Smagorinsky approach. More sophisticated
models that are better suited in regions of strong anisotropy should provide better results.
The WALE model [104] has proven to be well adapted to shear layers and could therefore be
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Figure 6.27: Turbulent channel, dimensionless velocity profiles. Comparison between the analytical
profile, DNS data [66] and LES results, obtained on different grids with a second-order Lax-Wendroff
scheme, using wall functions in the no-slip formulation. Case of Reb = 80 000.

3.0

2.5

2.0

1.5

1.0

0.5

0.0

u
rm

s+
, 

v
rm

s+

1.00.80.60.40.20.0
y/δ

 urms+  vrms+ Hoyas, Jimenez

 urms+  vrms+ Mesh y+ = 50

 urms+  vrms+ Mesh y+ = 100

Figure 6.28: Turbulent channel, dimensionless velocity fluctuation profiles. Comparison between the
analytical profile, DNS data [66] and LES results, obtained on different grids with a second-order Lax-
Wendroff scheme, using wall functions in the no-slip formulation. Case of Reb = 80 000.
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considered a good candidate for improving the quality of results for the turbulent channel flow.
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Figure 6.31: Turbulent channel, SGS viscosity ratio profiles (left) and shear stress balance (right).
Comparison between the analytical profile, DNS data [66] and LES results, obtained with different SGS
turbulence models, using wall functions in the slip-formulation. Simulation at Reτ = 1500.

What is observed instead on the results shown in figures 6.30 and 6.31 is a clear deterioration of
the results. Streamwise velocity fluctuations take rather extreme values which lead to spurious
variations of the resolved shear stresses in the near-wall region. As a result, the velocity profile
deviates from the logarithmic law leading to under-estimated velocities throughout the channel.
An explanation can be drawn from the expression for the slip velocity (equation 6.27), where
µsgs is found in the denominator. As the WALE model correctly predicts near-zero subgrid-scale
viscosity in proximity of the wall, velocity gradients necessary to maintain the shear level imposed
by the wall-function become very high. The resulting slip velocity at the wall decreases and can
in some cases even take negative values. Generally, the equilibrium between the wall-model
and the slip-velocity is very ill-conditioned and natural fluctuations in the flow are therefore
amplified at the wall nodes. The Smagorinsky model produces (unphysically) elevated subgrid-
scale viscosity levels near the wall, which leads to moderate velocity gradients and thus relatively
stable slip velocities. Additionally, velocity fluctuations are also damped for roughly another
three grid points leading to moderate levels of resolved shear. The resulting shear balance only
slightly over-estimates total shear near the wall and is free of spurious oscillations.

This comparison demonstrates that surprisingly, a better turbulence model (WALE) can lead
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to worse results when used in conjunction with a wall fuction approach because of an apparent
incompatibility, in particular with the slip-wall formulation.
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Figure 6.32: Zonal application of subgrid-scale viscosity using a blending approach.

In view of these findings, a temptative study to make the wall-law approach and the WALE
model more compatible shall be presented in the following. The starting point is to admit
that, for the various reasons cited above, an unaltered LES approach cannot be expected to
work properly in an intermediate layer. Moreover, it has been demonstrated that increasing the
quality of the near-wall approach from a LES point of view even has an adverse effect. Therefore,
it could be expected that applying the paradigms of the wall model rather than those of the
LES to this zone should be preferable. In practice, this means that the subgrid-scale turbulence
model of choice should be the mixing length model on which the wall function is actually based.
This idea can already be found in the work of Schumann from 1975 [133], who saw the necessity
to rely on the mixing length model in the near-wall regions of strong anisotropy. In practice,
zones for the validity of each model as well as a transition region of the two have to be defined
(see the schematic in figure 6.32). The transition between RANS turbulence models in the near-
wall region and LES in the outer flow is also the main idea behind the different incarnations of
Detached Eddy Simulation (DES) first proposed by Spalart [141], although this method relies
on a no-slip condition without an additional wall-model to predict the wall shear stress. If one
assumes a logarithmic velocity profile, the resulting turbulent viscosity evolves linearly over the
wall distance y:

µt,ML =
√

ρwτwκy (6.30)

Cabrit et al. [22] show that in a channel flow, the mixing length assumption stays valid up
to 0.2δ, which makes it applicable in this context. Furthermore, it is independent of the local
grid resolution, which removes one of the major weaknesses of typical LES models. The SGS
viscosity is then obtained from the following expression

µsgs,blend = Cblendµt,ML + (1− Cblend)µsgs,WALE (6.31)

where Cblend = f(y) is a blending function that varies between 1 in the near-wall region and
0 in the outer flow where the WALE model is applied in an uncorrected form. Naturally,
the main difficulty is to find a suitable transition between both models, whose evolutions do
not naturally intercept (see figure 6.32). Baggett [8] et al use blending functions obtained a
priori from an uncorrected LES calculation and a target velocity profile to transition between
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RANS and LES regions in the zonal approach they consider. In the present study, the blending
functions are obtained in a simpler way, based on a dimensional argument. As the mixing
length viscosity increases linearly with y, the blending functions vary like 1/y2. Assuming that
the WALE viscosity stays approximately constant over y, the resulting SGS viscosity should
blend smoothly with a behaviour ∝ 1/y into the uncorrected WALE viscosity.
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Figure 6.33: Blending functions for three different fractions of the channel half-width δ.

The fraction of δ to which the blending region extends is not easy to determine, although it can
be stated that it should adapt to the Reynolds number of the flow. In the testcases presented
here, three fixed fractions of δ are are compared, 0.25, 0.5 and 0.75. The corresponding blending
functions for these values are shown in figure 6.33.

The results of calculations using the no-slip formulation and the described blending method are
presented in figures 6.34 and 6.35. Judging purely by the velocity profiles, a clear improvement
is observed for growing influence of the mixing length model. The initially large deviation from
the logarithmic profile observed is effectively reduced by the blending technique. The fluctuation
profiles reveal that the unphysically high RMS values near the wall that are observed for the
results of the WALE model are damped by the increased SGS viscosity levels near the wall.
Towards the outer flow, the fluctuation curves are approaching each other and finally merge at
a common level.
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Figure 6.34: Dimensionless velocity profiles (left) and fluctuation profiles (right) for different blending
functions. Simulation at Reτ = 1500.

The results for the viscosity ratio shown in figure 6.35 illustrate the effect of the blending
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approach. The cases with the best results in terms of the resulting velocity profile and avoidance
of excessive near-wall fluctuation levels (0.5δ and 0.75δ) are those where the blending zone begins
before the SGS viscosity levels of the WALE model start to drop off towards the wall. The
stress balances, presented in the right half of figure 6.35, reveal the over-estimated near-wall
total stress for low influence of the mixing length model. For larger blending zones, the total
stress approaches the theoretical linear evolution. In the process of increasing the blending zone,
the influence of the subgrid stresses naturally extends further into the channel and the areas of
significant resolved stresses recede towards the center.
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Figure 6.35: Subgrid scale viscosity levels (left) and stress balance (right) for different blending functions.
Simulation at Reτ = 1500.

The key to the improved results is the suppression of resolved stresses in regions where the
resolved scales are mainly under the influence of all sources of inaccuracy described in the pre-
ceding sections. In particular, this is the under-resolved grid in the intermediate layer, which
leads to unphysical near-wall vortical structures that are also influenced by the implementation
method that affects the wall-distance at which these structures will appear.
In fact, when analyzing the flow fields from simulations with large blending zones, it becomes
clear that the near-wall region has been deprived of a considerable fraction of its turbulent
structures. The near-wall vortices do not disappear completely but they are more sparse and
less volatile. It is somewhat surprising that the reduction of this unphysical feature has a very
positive effect, regardless of the fact that the evolution of SGS viscosity in the intermediate layer
is more or less arbitrary and governed mainly by the shape of the blending functions. These
findings also provide an explanation on why the standard Smagorinsky model leads to relatively
convincing results although its prediction of near-wall SGS turbulence levels is obviously poor.
Here, the simple fact of substantially increasing SGS viscosity helps keeping the influence of the
resolved stresses low. In other words, it seems generally to be the case that ill-resolved near-wall
LES does more harm to the quality of the wall-modeling approach than errors on subgrid-scale
viscosity due to (i) an ad-hoc blending concept or (ii) the exploitation of the more or less acci-
dentally favorable behaviour of the Smagorinsky model.

Another mechanism that could play a role in this context and should therefore be mentioned
here is described by Piomelli et al. [113]. These authors report improved results from LES in a
periodic channel flow, when the wall functions take into account a shift in streamwise direction
between the wall-friction and the point in the log-layer from which it is obtained. This is
deemed necessary because of a characteristic angle of near-wall turbulent structures that results
in a slight time-delay between velocity peaks in the log-layer and the resulting increased shear
stress at the wall, as found experimentally by Rajagopalan et al. [119]. In view of the blending
approach, which ultimately leads to strongly decreased near-wall fluctuations, it is clear that
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errors related to neglecting this effect in the present study, would be effectively reduced.

As a concluding remark, it should be stressed that the suppression of near-wall vortical structures
still is not a convincing solution in general. The more the quasi-steady RANS approach extends
into the intermediate layer through blending, the more it will negatively affect the quality of the
unsteady flow away from the wall. In all cases where nascent turbulence from near-wall regions
interacts strongly with the outer flow, this approach is certainly not advisable. It will, as it
bears a certain resemblance to a DES or zonal type of approach, face very similar drawbacks,
which are well-covered by literature. For instance, several publications therefore consider the
generation of turbulent structures at the interface of zonal methods (ex. [76], [112]) showing
the importance of the turbulent boundary layer as a source of turbulence. Interestingly, these
authors cite the destruction of the super-streaks through stochastic forcing as one of the main
reasons for their methods being successful.
Therefore, the blending approach described here should be considered as a demonstration that
adds to the understanding of the inherent problems of a wall-function approach, and it is not
pursued in the realistic application cases like the TLC configuration considered in this thesis.

6.5 Conclusion

Two different implementation methods of wall functions in cell-vertex type solvers have been laid
out. The classical method imposes the shear-stress from the wall model directly at the boundary,
which results in a slip-velocity at the wall itself. The artificial nature of this slip-velocity and
its negative consequences on certain configurations encountered in real-world LES applications
has been highlighted. To avoid these difficulties, a formulation with a no-slip condition at the
wall is proposed. The wall shear-stress is applied at the first off-wall node, which leads to the
necessity of using hexaedral or prismatic meshes in near-wall regions.
Both formulations are compared in three different test cases. The first is the turbulent, periodic
channel flow, which allows to verify the capability of both approaches to reproduce the quan-
tities given by theory and DNS data. The second is the flow over a sudden expansion, which
reveals the problems created by the slip wall functions at corner points and shows that the
no-slip formulation is not affected. The third case is an injector for aero-engines that is typical
of complex geometries in realistic applications.
It is shown that the proposed no-slip formulation has superior qualities in reproducing the exper-
imental velocity profiles, which is explained by the increased tendency of the slip wall functions
to force the flow into wall-parallel direction along curved surfaces, resulting in a slightly altered
flow topology. Furthermore, the tendency to oscillatory behaviour of the slip-velocity in certain
cases and its impact on numerical robustness is highlighted.
It can be stated that in realistic applications, the way a wall-model is implemented in a given
code and the way it interacts with the numerical methods used (in particular: scheme and SGS
turbulence model) can influence the results as much as the wall-model itself. While the present
work uses a very basic model, the performance of the proposed no-slip formulation in conjunc-
tion with more sophisticated models should be further investigated.
Additionally, an analysis of the limits of a wall function approach in terms of accuracy has
been conducted. The central element that negatively affects the correct prediction of velocity
profiles in a channel flow is the grid resolution in an intermediate layer between the wall and
the central core. This lack of resolution is systematic as the wall function ideally requires large
grid cells while the LES needs a continuous grid refinement towards the wall. As a result, the
under-resolved turbulence near the wall behaves in an unphysical way if typical LES subgrid-
scale turbulence models are used.
A simple method to adapt the near-wall behaviour of the turbulence model using blending
functions has been investigated with positive results.
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6.6 Summary of the elements applied on the TLC configuration

In this chapter, a certain number of different formulations for the wall model has been presented.
Here, the wall modeling approach used for the TLC configuration (chapters 9, 10 and 11) shall
be summarized.

• In view of the results shown in section 6.3.3, the no-slip formulation is retained. The mesh
is adapted accordingly by the introduction of a single layer of prismatic elements at the
walls.

• The height of the prismatic layer is carefully chosen to be of the order of 100 wall units.
This necessitates the adaptation of individual zones, with further adjustments and re-
meshing conducted after verification of the result from initial simulations.

• The Smagorinsky model is retained because of its good behaviour at interacting with the
wall function approach. TheWALE model would be preferable, in particular for the numer-
ous free shear layers present in the TLC configuration. However, the problems occuring
when used in conjunction with the wall model (see section 6.4.3) and the experimental
development state of the blending approach lead to this conservative choice.
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7.1 Pressure drop in complex geometries

A crucial ingredient for many applications of LES on internal flows is to have a correct pre-
diction of pressure drop, in particular in complex geometries. Examples for this are internal
combustion engines, where pressure losses in the admission duct and around the valves play an
important role in overall efficiency, or premixing swirlers of aeronautical engines where pressure
losses directly affect engine efficiency. LES, in comparison with RANS, may be less accurate
with respect to pressure-drop prediction because wall treatment in LES is not as developed and
tuned as in RANS. In this section, the actual error of a typical LES is quantified, and broken
down into different contributors. The study is focused on effects of complex geometrical fea-
tures and aimed at the aeronautical premixing swirler that is also discussed in chapters 6 and 10.

Two typical scenarii can be distinguished in which pressure drop has to be correctly predicted or
at least where one should be able to quantify the error. The first, and generally less critical one
is a configuration with only one connection between an upstream position (e.g. a plenum) and
a downstream one (e.g. a combustion chamber). An example is an injector with only a single
swirler stage. In this case, assuming that the correct mass flow rate is imposed but the swirler’s
discharge coefficient is incorrect, velocities might locally be unphysical inside the swirler chan-
nels and the plenum pressure will differ from measurement. Yet, the velocity field and pressure
level in the chamber will largely remain unaffected by this error. If the pressure drop of the
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swirler, which is needed to determine the overall performance of the combustion system, can
be quantified separately (e.g. experimentally), a LES will still correctly provide insight into the
dynamics of the combustion chamber.
However, if there are multiple connections between plenum and chamber, as for example several
swirler stages and/or secondary channels for cooling air, dilution holes etc., incorrect discharge
coefficients will likely result in altered mass flow rate distribution between different channels.
This imbalance of mass fluxes may affect the flow field at the swirler exit and therefore make a
LES inaccurate in terms of the flow topology even if the prediction of pressure drop is not of
interest in the case considered.
In theory, correctly predicting the discharge coefficient for a LES of a flow through one or mul-
tiple channels of complex geometry is a question of sufficient grid resolution and a turbulence
model that is adapted for flows with strong shear phenomena, in particular near walls [104]. In
practice, a resolved boundary layer is out of reach for this type of application, and a modeling
strategy that aims at the reduction of resolution requirements is needed. Typically, the method
of choice is the use of approximate wall-boundary conditions (or wall-functions), which correctly
predict overall friction levels in a turbulent channel flow but lead to a more substantial error
when applied to complex geometries.
An additional difficulty arises from the use of an explicit code, where the global time-step is
linked to the minimum cell size via the CFL condition, which is a strong incentive not to intro-
duce very small grid cells. Although the use of wall-functions remedies much of this constraint,
some configurations include local, small-scale parts of their geometry that are in themselves
smaller than the smallest allowable grid cell. Furthermore, there is often a very large number
of these details (typically perforations), which means that meshing them is prohibitive, even if
size and number of grid cells would be tolerable for a single element.

In this chapter, these two issues are considered separately. First, the predictive capability of a
wall-function approach in a representative geometry will be assessed to quantify the error on
pressure drop typically involved and to identify its main contributors. Second, different ways
of modeling small-scale geometrical features are discussed. A method, involving a so-called
surrogate geometry, is presented in detail and applied to the TLC configuration, a geometry
with multiple flow passages. Finally, the challenges involved in simultaneously applying differ-
ent modeling approaches on a realistic case are described and the necessity of a strategy for a
conscious handling of the errors on pressure drop involved is highlighted.

7.1.1 Pressure drop definitions

The notion of pressure drop is a classical concept in hydraulics, where it is used as a term in
the 1D Bernoulli -equation. The discharge coefficient cd characterizes an element in a hydraulic
circuit that leads to a pressure drop ∆p on a streamtube with the velocity u.

∆p = cd
ρ u2

2
(7.1)

Mass conservation (ṁ = ρuS) allows then to relate a certain mass flux ṁ through a hydraulic
element with the cross-section S to a resulting pressure drop:

∆p =
cd

2ρ

(
ṁ

S

)2

(7.2)

In a system of n parallel fluid streams, leading to a mass flux ṁglob, the pressure drop between
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a common, upstream reservoir and a common downstream point in the flow can be obtained by
the following expression:

∆p =
ṁ2

2ρ

1
(∑n

i

Si√
cd,i

)2 (7.3)

In this system, the ratio of the mass flux of a given channel i ∈ 1...k and the global mass flux is
given by

ṁk

ṁglob
=

Sk√
cd,k

1
∑n

i

Si√
cd,i

(7.4)

Errors on cd can lead to different outcomes, depending on the condition if ∆p or ṁ is fixed in
the problem. In the first case, a too high discharge coefficient cd,k will lead to an underestimated
mass flux ṁk, in the latter the pressure drop will be over-estimated. A relation between those
two cases is:

ṁerr

ṁ
=

√
∆p

∆perr
(7.5)

where values denoted err are the ones obtained with the wrongly predicted discharge coefficient
cd,err.

7.2 Sources of error on pressure drop

7.2.1 Convergence study of a single passage of a swirler

This test case has been chosen to be representative of the flow through the main swirler of the
TLC configuration (see chapter 9) but at the same time be small enough to perform a grid
convergence study. It corresponds to a single swirler channel of the main injector stage, through
which about 90 % of the airflow passes. The channel is isolated from the swirler geometry
and combined with a small plenum and downstream settling chamber (see figure 7.1 for an
illustration). This case comprises all three geometrical features that are generally related to
pressure drop [70]: An inflow, a short stretch of duct (with variations of cross-section) and an
outflow. All three elements are of relatively complex shape, with skew angles and sharp edges
where massive flow separation can be expected.

At the plenum inlet, a mass flux is imposed that is determined as a fraction of the flow passing
through the main swirler stage. The constant pressure imposed at the outlet corresponds to the
chamber pressure of the experiment. The convergence study comprises four calculations. The
first three use wall functions in the no-slip formulation at all wall boundaries in conjunction with
the Smagorinsky model (which corresponds to the approach used in the full TLC configuration,
see section 6.6). Therefore, all meshes are of hybrid type, composed of a single layer of prisms
at the wall and tetraedral elements everywhere else in the domain. The baseline mesh (case
1), which defines the reference near-wall grid spacing 1.0∆, corresponds the mesh used in the
full TLC configuration. The two finer meshes differ from the baseline case in the cell size in
the near-wall prism layer that is scaled to 0.5∆ (case 2) and 0.2∆ (case 3). The parameters for
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Inlet (mass flux imposed)!

Outlet (chamber pressure)!

Figure 7.1: Computational domain of the single swirler channel testcase, compared to the full swirler
and its positioning therein.

the rest of the mesh remain unchanged, however, as the stretching ratio of the tetraedral cells
is kept constant at 1.7, the mesh inside the channel refines accordingly. Figure 7.2 shows the
channel region of the resulting meshes, an overview of the cases considered is shown in table 7.1.

# Grid spacing y+ Number of cells Turb. model Wall model

1 1.0∆ ≈ 100 ≈ 410 000 Smagorinsky Wall functions (no-slip)
2 0.5∆ ≈ 55 ≈ 606 000 Smagorinsky Wall functions (no-slip)
3 0.2∆ ≈ 30 ≈ 1.6 million Smagorinsky Wall functions (no-slip)
4 wall resolved ≈ 2 ≈ 9.1 million WALE none

Table 7.1: Summary of the cases for the single swirler passage.

The fourth case is a wall-resolved LES using the WALE turbulence model and serves as a
reference that can be expected to deliver sufficiently accurate results. To limit the number of
grid cells and to increase the quality of the resolved boundary layer flow field, this mesh has
10 prismatic layers with an initial thickness of approximately 2 wall units (on average) and
an isotropic grid spacing of around 6 wall units in wall-parallel directions. The wall-normal
stretching ratio is 1.15. This near-wall grid topology and the chosen grid spacing correspond to
those of Nicoud and Ducros [104] who obtained good results for a wall-resolved turbulent pipe
flow with a similar numerical approach. Details of this mesh are shown in figure 7.3.

Figure 7.4 shows iso-contours of the first off-wall grid point wall distance in wall units, as
determined by the wall functions. For the baseline grid, shown on the left-hand side, a certain
variation of y+ over the swirler channel’s surface is observed, but the overall levels are of the
order of 100. This corresponds to a typical choice for a mesh destined for the use of wall-
functions, as the first grid point can be expected to be in the logarithmic region even if rather
large fluctuations occur. This grid-spacing has been carefully chosen while meshing the TLC
configuration. On the other hand, the case of 0.2∆, shown on the right-hand side of figure 7.4,
reveals an y+ of about 30, which is clearly on the lower end of the range of wall-distances for
which the wall-function approach is still fully valid. It can therefore be considered to constitute a
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Figure 7.2: Meshes of the single swirler channel testcase, grid convergence study using wall-funtions.
From left to right: Baseline mesh (equivalent to full swirler mesh) defined as 1.0∆ (case 1, table 7.1),
refined mesh at 0.5∆ (case 2), refined mesh at 0.2∆ (case 3)

Figure 7.3: Mesh of the single swirler channel testcase, reference case with a wall-resolved LES approach
(case 4, table 7.1).

certain limit of what a wall-function based LES can provide in terms of pressure drop prediction.

Q-criterion iso-surfaces for the baseline case and the 0.2∆ grid are compared in figure 7.5. The
fine grid shows a distinctive pattern of coherent structures formed by the detached boundary
layer and subsequent vortex rollup. This mechanism is limited to the edges with the relatively
sharp angles that are created by the inclination of the channel. This results in a quite inhomoge-
neous flow field, that is characterized by large detached zones and strong, longitudinal vortices
on the one side and the lack of comparatively strong turbulent effects on the other. On the
coarsest grid, almost nothing of this is observed, apart from a single, short structure that bears
a certain similarity to the strong activity observed along the same edge on the fine grid.

The way in which this turbulent vortex pattern interacts with the boundary layer and thus
ultimately with the friction levels is illustrated in figure 7.6, which shows a result from the
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Figure 7.4: Iso-contours of the instantaneous value of near-wall grid spacing in wall units (y+). Left:
coarsest grid ∆/∆Baseline = 1 (case 1, table 7.1). Right: finest grid ∆/∆Baseline = 1/5 (case 3, table
7.1).

Figure 7.5: Visualization of turbulent flow features of the single swirler channel. Left: coarsest grid
∆/∆Baseline = 1 ; Q-criterion iso-surface at 3.9 108 (case 1, table 7.1). Right: finest grid ∆/∆Baseline =
1/5 ; Q-criterion iso-surface at 5.5 109 (case 3, table 7.1).

wall-resolved simulation. Here, the velocity field on a plane in direct proximity of the wall is
considered. The high-velocity zone due to vortex-rollup along the edge at the entry into the
channel can clearly be distinguished. To either end of this edge, low velocity zones, which cor-
respond to simple separation bubbles are observed. In the first two-thirds, the boundary-layer
is fairly chaotic as a result of these elements interacting. Only in a very limited zone on the
downstream end to the left-hand side of the viewer, a homogeneous boundary layer with the
typical streaks that roughly resembles an undisturbed channel flow is present.
As a purely qualitative observation, this shows that wall-friction in a complex geometry may
depend to a certain extent on phenomena like the vortex rollup or large detached zones as ob-
served in this case. It is clear, that these phenomena are very insufficiently resolved on the
coarsest mesh, which can be expected to be a non-negligible source of error on pressure drop.

The quantitative part of the study relies on measuring the pressure drop for each case of table
7.1. This is done from an averaged solution, to exclude possible oscillations of the background
pressure in time from the results. The probes are placed in relatively calm zones in the plenum
and the chamber. The relative pressure drop is defined as

∆pr =
∆p

p
=

pt,u − pt,d

pt,u
(7.6)
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Figure 7.6: Wall-resolved simulation (case 4, table 7.1): velocity field in direct proximity of the wall as
an illustrative example for the flow topology.

where pt is the total pressure pt = p + ρ/2 v2 and the indices u and d stand for ‘upstream’
and ‘downstream’ respectively. For the chosen measurement locations, both pressures can be
assumed to be equal pt ≈ p.

The wall-resolved case is assumed to have zero error, the error of the remaining cases is calculated
relatively to this reference point. The result is shown in figure 7.7. Values of pressure drop
obtained are summarized in the left half, ranging from 2.04 % for the wall-resolved case to
2.73 % on the baseline grid. There is virtually no difference observed between the finest wall-
modeled simulation and the wall-resolved one. While there is no certainty that the prediction by
the wall-resolved simulation is accurate, this result reveals, that provided a sufficient resolution,
a wall-model based approach is capable to deliver very good results in terms of pressure drop
prediction, even in complex geometries. Furthermore, this finding reinforces the assumption
that the resolution of the dominant vorticial structures in the channel is of importance, most
probably more so than the additional details contributed by the resolution of the wall boundary
layer.
The relative error based on the wall-resolved results is shown on the right-hand side of figure
7.7, amounting to up to 33 % for the baseline grid. This is also the error to be expected in the
swirler of the complete TLC configuration, as all swirler channels are meshed with parameters
identical to case 1 of table 7.1 in terms of y+ values of the first off-wall grid point or the number
of grid cells placed across the channel width.

7.2.2 Analytical study of the error due to near-wall discretization

While the previous section revealed the global error on pressure drop and identified complex
flow patterns as one possible contributor to this error, another proportion of it can be related
directly to the wall model. Both wall function approaches considered here (slip and no-slip, see
chapter 6) result in velocity profiles that correspond as closely as possible to the logarithmic
law in the inertial layer. However, even if the velocity profile is assumed to be exact at all
grid nodes, a discretization error on the resulting mass flux is introduced. Due to the different
velocities at the wall node, this discretization error depends on the implementation method
of the wall function. Figure 7.8 shows a schematic of the mass fluxes in each node’s control
volume, revealing the difference between slip- and no-slip formulation. In certain cases, these
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Figure 7.8: Schematic of the differences in global mass flux between no-slip (left) and slip wall functions
(right). Analytical velocity profile (- - -), discretized velocity profile (—).

differences can have a quite marked influence, as for example in a coarsely meshed conduit flow,
as illustrated by figure 7.9. Setting the velocity at the wall nodes to zero results in a loss of
mass-bearing cross-section. The slip-wall formulation the other hand, seems to alleviate this
problem, but it remains unclear if the resulting near-wall mass flux is closer to reality as the slip
velocity u1 is an artificial concept, governed mainly by the SGS viscosity model.

This prompts the necessity to investigate the problem in quantitative terms. The first part of
this analysis is limited to the mass flux inside the first grid cell as the most general case. In a
second step, these findings are applied on the case of a single swirler passage.

Estimation of the mass flux in the first near-wall cell

In this part, only the discretization error in the first grid cell adjacent to the wall is considered.
There is an additional error in the following grid cells, but as the gradients in this region are
less steep it can be expected to be small. Furthermore, this error does not depend directly on
the wall function implementation.

In the first cell, it is assumed that the wall functions behave in an exact manner, i.e. velocities
at the first grid point (y = y2) are identical to the ones obtained by the logarithmic profile
(equation 6.14). At first, the analytical reference solution is needed. A simple way to obtain
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Figure 7.9: Schematic of the differences in global mass flux between no-slip and slip wall functions in
an example grid representing a channel cross-section

it is to integrate the linear and logarithmic law (equations 6.9 and 6.14). Neglecting the buffer
layer, the point of intersection between both curves, yint marks the upper bound of the linear
law’s integration, which is located at y+

int = 11.33. in the following, the density is assumed to
be constant. The integration of the linear law then yields:

ṁc1,lin

∆z
= ρw

∫ yint

y1

u(y) dy =
µw

2

(
y+

int

)2
(7.7)

The logarithmic profile is then integrated between yint and y2, yielding:

ṁc1,log

∆z
= ρw

∫ y2

yint

u(y) dy =
µw

κ

(
y+
2 ln(y+

2 ) + (C − 1)y+
2 − y+

int ln(y+
int)− (C − 1)y+

int

)
(7.8)

Finally, the analytical mas flux in the first cell, ṁc1,a, is obtained as a sum of both contributions.

ṁc1,a

∆z
= ρw

∫ y2

y1

u(y) dy =
ṁc1,lin

∆z
+

ṁc1,log

∆z
(7.9)

In addition to the analytical profile, the discretized solution for the mass flux using bot wall
law formulations is needed. For a no-slip wall law, writing the mass flux per unit length in the
first grid cell next to the wall is relatively simple because it only depends on the known value
of u(y2). The contribution of the wall-node is zero per definition.

ṁc1,wlns

∆z
= ρwu(y2)

∆y

2
=

µw

2k
y+
2 ln(y+

2 ) + C (7.10)

In the case of the slip wall law, obtaining an expression for the mass flux is less straightforward
because it contains the slip-velocity at the wall, u1:

ṁc1,wls

∆z
= ρw

(
u(y2)

∆y

2
+ u(y1)

∆y

2

)
(7.11)
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For the Smagorinsky model, an average value of the slip velocity u1 can be written explicitely
(see section 6.2.3 for more detail):

u1 = u2 −
y2

2 ρw(Cs∆)2

(
−µw +

√
µ2

w + 4ρ2
w(Cs∆)2uτ

)
(7.12)

Having expressions for the mass fluxes of both wall-functions ṁc1,wls and ṁc1,wlns as well as
an analytical reference ṁc1,a at hand, it is now possible to quantify the discretization error on
mass flux in the first cell near a wall and show the influence of grid spacing. This is done for an
exemplary channel flow that approximately corresponds to the narrowest section of the single
swirler channel testcase (see figure 7.11 for an illustration). Here, the wall-distance of the first
point, y+

2 , is varied between 20 and 200 wall units.
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Figure 7.10: Comparison of the relative error (with respect to the analytical solution) of mass fluxes
inside the first cell per z-unit length for different cell sizes.

The results are presented in figure 7.10 and generally show an over-estimation of the mass flux
by the slip wall function and an under-estimation by the no-slip formulation. The resulting
curves reveal that for y+ of about 50 and smaller, the relative error of both formulations is of
the same order but with opposed signs. For growing cell sizes, both relative errors tend to a
constant value. In the case of the slip wall law, the relative error diminishes and stabilizes at
less than 10 %. The no-slip wall law shows a relative error that continues to grow, exceeding
40 % for y+ above 200, which can be expected as the first grid point then begins to reach into
the central core, where the velocity profile is relatively flat. The upper limit for the error of the
no-slip formulation is of course 50 %, which occurs if the first grid point is placed in the center
of a channel or at infinite wall-distance on a flat plate.

Application on the single swirler passage

As a second part of the analysis of mass flux errors, the global mass flux of the simplified sin-
gle swirler channel is considered. The analytical solution for the global mass flux through the
cross-section of the computational domain is derived using the Barenblatt-law (equations 6.16
and 6.17) for an estimated Reτ ≈ 750 in this testcase. In the region outside of the first cell, it
is assumed that the Barenblatt profile is exact for both wall-law formulations. The mass flux
inside the first cell is obtained using the derivations presented in the first part of this section,
based on the logarithmic law.
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Figure 7.11: Illustration of the channel flow used for the analytical estimation of wall-model related
errors, based on the geometry and conditions of the single swirler channel testcase.

The results are shown in figure 7.12. On the left side, the global mass fluxes of the analytical
solution is compared to the values obtained with the wall-functions in both formulations. The
slight variations of the analytical mass flux over y+

2 are due to the discrepancies between the
logarithmic law and the Barenblatt law for low values of y+, which can be observed in figure 6.2.
The resulting mass fluxes of the different wall-law formulations both depart gradually from the
analytical solution with the slip wall laws increasingly over-estimating global mass flux and the
no-slip formulation under-estimating it. The right part of figure 7.12 shows the error in terms of
global mass flux relative to the analytical solution. Contrarily to the local relative error inside
the first cell, the global, relative error does not tend towards a steady level but grows linearly
with increasing cell size. However, there is a difference in magnitude between the slip wall-law
formulation of which the error stays below 0.4% and the no-slip formulation which reaches an
error slightly over 4% for an y+

2 of 200.
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Figure 7.12: Left: comparison of the global mass fluxes through a cross-section of the turbulent channel
for different cell sizes (variation of y+

2
between 20 and 200). Right: comparison of the relative error (with

respect to the analytical solution) of the global mass fluxes hrough a cross-section of the turbulent channel
for different cell sizes.

Finally, these findings can be translated (using equation 7.5) into an estimation of the relative
error on pressure drop for the single channel test case, which allows to measure the fraction of
the global error that can be attributed to the wall-function. The results are shown in 7.13, where
the wall-distance of the first point is translated into the multiples of the baseline grid of the
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single channel simulations. The maximum error on ∆p is observed for the no-slip formulation
and takes a value of 2.3 % on the baseline grid. This error reduces to less than half a percent
in the case of the finest grid. For the slip-formulation, the relative error stays below 0.5 % and
nears zero for the finest grid resolution. This leads to the conclusion that, compared to the
global error on pressure drop that is of the order of 35 % on the baseline grid, the influence of
the wall-model is very limited.
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Figure 7.13: Application of the wall function in a formulation with non-zero velocity at the wall nodes.

7.3 A method for very small scale geometric details (PPSG)

The method described in this section is called PPSG (for Poly Perforation Surrogate Geometry)
and has been developed for the treatment of multiple perforations that can be found in many
combustors for cooling or dilution. These poly-perforations (as opposed to the more common
term “multi-perforation”) should be understood as an arbitrary series of holes or filigrane chan-
nels connecting two regions between which a pressure difference exists. The previous sections
have shown that a high grid resolution is needed for an accurate prediction of pressure drop (or
flow rate). Therefore, in a typical LES, resolving these geometric details might lead to unde-
sirable effects like the generation of locally very small grid cells that limit the global time step
excessively or to the intolerable growth of the number of grid points and the degree of complexity
due to the large number of such features.

Figure 7.14 shows a generic configuration on the left hand side. A popular strategy to model
a poly-perforation is to replace it with a coupled pair of wall boundary conditions, which allow
a mass flux to pass from one side to the other, governed by an assumed global discharge co-
efficient CD. This method is very well suited to the particular case of multi-perforated plates
(e.g. cooling liners in combustion chambers) that are characterized by a very large number of
perforations, which are arranged in a homogeneous pattern. This case is well-covered by lit-
erature, a review has been published by Hay and Lampard [58]. The different effects that are
studied include the inclination of the holes or cross-flow effects [52]. A detailed study of the
flow using direct simulation can be found in the work of Mendez et al. [92, 94]. Models for this
type of configuration often consist of wall boundary conditions with an additional mass flux per
surface unit that is determined from the pressure differential using empirical correlations for the
discharge coefficient [93, 24].

Quite often, one might be confronted with configurations where the assumption of homogeneous
properties over a surface comprising a large number of perforations no longer holds, as illustrated
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Figure 7.14: Different strategies for poly-perforations in a LES.

on the example of the TLC configuration, shown in figure 7.15 as well as in the left part of figure
7.16. Here, the cooling films consist in a series of perforations of which a fraction is slightly
inclined relative to the chamber walls (series 1). These holes are aligned with the exit slot of
the cooling films and form a focused sheet of high-velocity airflow. Another part (series 2) is
a relatively small number of perpendicular holes (of a different diameter than those of the first
series) in the dividing wall between the plenum and a flat cavity that collects air flow and guides
it towards the exit slot of the cooling films. This diverse and non-homogeneous arrangement of
holes, a typical example for what is called poly-perforation in the scope of this study, is treated
with a different approach.

The main idea of the PPSG method, illustrated on the right-hand side of figure 7.14, is to group
several holes together and to choose their diameter in such a way that the discharge coefficient
through the multi-perforation remains globally the same. In the present case, as shown in the
right half of figure 7.16, this allows to take into account the directionality of the outer perfora-
tions. The downside of this method is that the replacing diameter must be chosen even before
the mesh is generated. Later adjustments are only possible with a considerable effort. In the
following, strategies that allow to determine this diameter will be laid out and discussed.

The choice of the replacing diameter is influenced by several aspects. A first estimation for the
diameter d0,s, substituting ns holes of the original diameter d0 is the equivalent surface.

d0,s =
√

nsd0 (7.13)

This is only a rough estimate because the discharge coefficient varies with the Reynolds number
[70] which is effectively changed by this approach. A more sophisticated approach, which takes
this effect into account is to choose a diameter that matches the discharge coefficient, based on
empirical correlations. Starting from the expression for the pressure drop ∆p resulting from a
mass flux ṁ passing through a circular hole of the diameter d0 with a density ρ that is assumed
to be constant:
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Figure 7.15: Illustration of the different perforation series (1 & 2) in the cooling films of the TLC
configuration.

Figure 7.16: Surrogate geometry for a series of perforations that form a cooling film in the TLC
configuration. Left: original geometry, right: surrogate geometry.

∆p =
cd(Re)

2ρ

(
ṁ

π/4 d2
0

)2

(7.14)

one can equate the values for pressure drop of the original geometry, ∆p and the surrogate
geometry ∆ps.
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cd(Re)

cd,s(Re)
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ns d2

0,s

d2
s

)2

(7.15)

As the discharge coefficients depend on the Reynolds number, which in turn is determined by
the diameter and indirectly by the mass flux, the resulting expression is implicit and can be
solved numerically.

(
d0,s

ns ds

)4

=
cd(ṁ, d0)

cd,s(ṁ/ns, d0,s)
(7.16)

An example for the discharge coefficient of a single perforation with the length l and an orifice
cross-section S0 = π/4d2

0, preceded by a larger duct of the cross-section Su is given by Idel’cik
[70]:

cd =
1

2
+

(
1− S0

Su

)2

+ λ
l

DH
(7.17)

where DH = 4S0/πd0 is the hydraulic diameter of the perforation and λ the friction factor of a
smooth conduit.

In practice, the numerical application poses an additional problem as the grid resolution of the
geometrical features considered can be expected to be relatively poor. This means that the
error introduced by the insufficient grid resolution or the wall-modeling approach in this area
will vary between the original- and the surrogate geometry and can be great compared to the
Reynolds number dependency that the PPSG method aims to take into account.

An alternative strategy to be proposed here is to start out by admitting that with a reasonable
grid resolution, the effective discharge coefficient of the surrogate geometry embedded into a
given numerical framework cannot sensibly be determined a priori. On the other hand, as
the surrogate geometry already is an artificial construct with the goal to reduce the necessary
number and size of grid points in this area, one can as well turn the underlying argument
around: in this case, the starting point is a given grid resolution and the surrogate geometry is
then determined in such a way that the discharge coefficient of the new geometry plus the given
mesh and numerical approach takes the desired value. Of course, this makes some preliminary
calculations necessary, which will be described in the following section.

7.3.1 The numerical test case of a single perforation

Figure 7.17 shows the configuration. It is a short stretch of duct with a square cross-section (20
mm side-length), interrupted by a sudden contraction. The narrowest part has a circular section
with the diameter d0 and the length l0. At the upstream entry of the duct, a mass flux with a
constant profile is imposed whereas a constant pressure is prescribed at the outflow. There is
no wall-modeling, a simple no-slip condition is imposed on all solid surfaces.

The baseline geometry has a diameter d0 that corresponds to the equivalent surface of the
grouped perforations. The subsequent geometries have diameters d0,s of growing ratios of d0,s/d0.
The mesh is composed of tetraedral elements with identical grid resolutions in the upstream and
downstream sections. In the region near the perforation, the characteristic cell size at mesh
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Figure 7.17: Computational domain of the single perforation test case.

generation is chosen at d0,s/5 in order to obtain an equal number of grid cells across the orifice
for all cases considered.

Simulations are run separately for the two different types of perforations present in the TLC
configuration (see 7.15). In each case, a set of geometries and meshes is generated, starting
from the baseline case d0,s/d0 = 1 and subsequently increasing this ratio in steps of 0.2 until
the desired pressure drop is reached. The results are shown in figure 7.18. It is notable that
in this case, characterized by a very coarse mesh, the baseline simulation, which corresponds to
the equivalent surface approach, produces a pressure drop of more than five times the targeted
value, showing effectively the practical limitations of this method. The surrogate diameter is
determined by interpolating the target value of ∆p in the data from the simulations. The target
is obtained by a standard empirical correlation from Idel’cik [70] (equation 7.17). The resulting
diameters d0,s are incorporated into the surrogate geometry of the TLC configuration, as shown
in the right half of figure 7.16.
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Figure 7.18: Pressure drop over a single circular contraction as a function of the ratio of the contraction
diameter d0,s to the diameter of equivalent surface d0. Left: perforation series 1, right: perforation series
2. The correlation for ∆p is given in equation 7.17.

7.4 Application of the PPSG method to the TLC configuration

The PPSG method for poly-perforated cooling films yields a large scale representation of the
filigrane perforations with very little impact on overall mesh- and minimum cell-size and a very
low error on the predicted pressure drop. Ironically, these very good characteristics become
problematic when used in the complete TLC configuration: while for the cooling films, the issue
of over-predicted pressure losses has been circumvented very effectively, it still persists for the
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swirler itself, which is subjected to errors that reach up to 40 % as was evidenced in section
7.2.1. As shown in equation 7.4, this leads to a change in the distribution of fluxes between
the swirler and the cooling films. In the example of the TLC configuration, the effect is quite
pronounced and well visible on the mean velocity profiles. The consequence is that, in a configu-
ration with multiple flow paths, it is not enough to produce the best possible quality in pressure
drop prediction for each individual flow path. Instead, the amount of error in all parallel flow
paths has to be at least of the same order to avoid mass flux imbalances. In practice, this means
that if errors in some of the parallel paths cannot be avoided, the quality of other, less critical
elements may have to be deliberately deteriorated (for example by reducing the grid resolution)
to restore the proper flux balance.

From the experience gained in the present work, a strategy for management of error on pressure
loss prediction can be proposed. A schematic overview of the elements is shown in figure 7.19.
The starting point is to produce a surrogate geometry or use a multi-perforation (film cooling)
model for those regions that cannot be meshed due to their small-scale geometrical features. In
the ideal case, these approaches will yield a very low error on pressure drop, because both are
fine-tuned to match empirical correlations, which can be expected to be sufficiently precise.
For the larger-scale geometrical features, the wall modeling approach described in chapter 6 is
used. In this context, it is crucial to have at least a rough estimate of the error this method
generates. This can be done at the example of the present study using a representative geomet-
rical element that can be simulated with resolved boundary layers. An alternative could be to
consider a generic geometry like a channel with a sudden contraction for which experimental
data or empirical correlations exist.

As a next step, the surrogate geometry or multi-perforation model needs to be tuned to reach
approximately the same error as encountered in the other flow parts. In the case of a multi-
erforation model, the discharge coefficient on which it is based can simply be adapted. For
the PPSG method, the case is slightly more difficult, as modifications of the geometry and
re-meshing can be time-consuming. Other parameters that allow a controlled increase of the
discharge coefficient of the surrogate geometry are the local grid resolution or the artificial in-
crease of wall friction levels.

7.5 Conclusion

To conclude this chapter, the global error of the entire TLC configuration are compared to ref-
erence data. The results, summarized in table 7.2, are based on a simulation using a no-slip
wall-law formulation inside the swirler and an error-corrected surrogate geometry in the cooling
films. The global pressure drop in the LES reaches a value of 5.86 %, which is 29 % higher than
a prediction provided by SNECMA (using an engineering code) and 53 % higher than in the
experiment. This level of error is consistent with the estimation provided by the single swirler
channel simulations. It has to be noted that LES results are obtained with an artificially in-
creased discharge coefficient for the cooling films to ensure a correct mass flux blance. Without
this increase, the pressure drop would naturally be closer to experimental data.
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Figure 7.19: Schematic of the procedure to maintain the correct mass flux balance between poly-
perforations with the surrogate-geometry approach and a swirler with a wall-function approach.
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The main findings of this study can thus be summarized as follows:

• Industrial-scale LES with wall-modeling approaches and grid resolutions that are typical
for today’s state-of-the art computations may not be predictive in terms of pressure loss in
complex geometrical regions. The use of wall-models, however, is not the main contributor
to the error. With a sufficient grid resolution (near-wall and away from the wall), a pressure
drop prediction comparable to the one of a wall-resolved LES can be achieved.

• Although errors of up to 50 % seem to indicate a ploblem of accuracy, the quality of such
simulation regarding aspects other than pressure drop is in general not compromised by
this imperfection.

• Quantifying and managing the error on pressure drop such a simulation is still crucial, in
particular in confiurations with multiple, parallel flow paths.

Pressure drop

LES SNECMA Experimental data

5.86 % 4.53 % 3.82 %

Table 7.2: Pressure drop in the TLC configuration - comparison of the LES result with a dedicated
engineering code (SNECMA) and experimental data
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Injection for multipoint systems
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8.1 Introduction

Injection in the TLC configuration relies on two separate systems, the hollow-cone injector of
the pilot stage and the multipoint system for the main stage. The hollow-cone injection can be
considered the standard type for aeronautical combustors [85]. Modeling the spray formed by
the pilot injection is discussed in the thesis of Sanjose [129] in the framework of EE simulations.
A phenomenological model has been derived and tested on the MERCATO configuration [136].
Early work on hollow cone injection also covers the injector present in the TLC configuration,
but mounted in a different type of combustion chamber and without multipoint injection, as
presented in the thesis of Lavedrine [81]. Results for the TLC configuration in the present form,
again considering primarily the hollow-cone injector have been obtained in the diploma thesis
of Simsont [138].
In view of the solid base of results on the hollow cone injection, the present work concentrates
entirely on the multipoint injection system. This method of injecting a series of small liquid fuel

153
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jets into a transverse airflow is common in different kinds of air-breathing aeronautical propulsion
systems. Typical examples are ramjet and scramjet engines [27] where they allow to perform
injection without introducing solid obstacles into the airflow. Moreover, liquid jet atomization
at high subsonic or supersonic airspeeds is very effective. Today, multipoint injection systems
are becoming more widespread in aero-engines for subsonic transport aircraft. The reason for
this lies in the trend towards staged premixing swirlers that allow to optimize the combustion
process for a wide range of operating conditions. Staging an injector usually leads to designs
that feature several swirlers of which at least the outermost one has an annular form, enclosing
a central part. A straightforward way to promote quick mixing and a homogeneous fuel vapour
distribution in these outer parts of the injector is to use a series of small fuel jets, i.e. a multipoint
injection.

For the design of a multipoint injection system, the main parameters of interest are:

• Jet penetration, as it determines with which parts of the flow the resulting spray will
interact (bulk airflow, boundary layer, wall-impact etc.).

• Atomization, because it determines the evaporation timescale and droplet dynamics. The
resulting droplet size distribution (locally and spatially) depends strongly on the cross-
flow properties and indirectly on jet penetration, as different penetration lengths let the
droplets encounter different crossflow properties.

• Mixing behaviour, as turbulent dispersion of the spray conditions the mixing of the evap-
orated fuel. It depends mainly on crossflow (turbulent) properties and droplet size and
therefore indirectly on jet penetration.

The configuration of a liquid jet in a gaseous crossflow (LJCF) is a proper testcase for numerical
and experimental studies of multipoint injection systems. Representing one single injection
point, it allows to analyze all important physical mechanisms in detail while reducing geometrical
complexity and computational cost (see figure 8.1). The present work is based on the extensive
experimental study by Becker et al. [11] at pressure conditions typical for aeronautical engines.

Gaseous inlet 

Liquid inlet 

Outlet 

z 

x 

Figure 8.1: Test case of a liquid jet in a gaseous crossflow.

8.1.1 Atomization of liquid jets in a crossflow

Experimental studies on the liquid jet in a crossflow [156, 27, 11, 3, 48] identify two main
phenomena to characterize the primary breakup mechanisms of the liquid jet after injection. The
first is column breakup, which occurs when surface waves on the liquid column are amplified
and lead to its disintegration into ligaments and the subsequent formation of a spray. The
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Figure 8.2: Schematic of the column and surface breakup regimes. Shadowgraphs by Freitag and
Hassa [46].

second is called surface breakup and means the stripping of small droplets through shear from
either side of the liquid column. Figure 8.2 shows a schematic illustration of these breakup
mechanisms, as well as two exemplary shadowgraphs. While column breakup can be the only
mechanism present, as shown on the left-hand side shadowgraph, surface breakup occurs in
addition to column breakup under certain circumstances. Wu et al [156] proposed a classification
of the conditions under which one of the two mechanisms is predominant, depending on the
aerodynamic Weber number based on the diameter of the liquid column and the gaseous velocity
of the crossflow, Weae = ρgDinju

2
g/σ, where σ is the surface tension, and the momentum

flux ratio q = ρlw
2
l,inj/(ρgu

2
g), where ug is the bulk velocity of the crossflow and wl,inj the

injection velocity of the liquid jet. This classification is shown in the form of a diagram in figure
8.3. Two main zones are distinguished: for low Weae numbers and low q, column breakup is
predominant, while for high Weae and q, surface breakup appears as an additional mechanism.
The dividing line between both regimes as proposed by Wu et al. [156] is a linear function. In
the present study, the aerodynamic Weber number is kept constant at values typical for gas-
turbine combustors, while the momentum flux ratio is varied to obtain cases which correspond to
different breakup regimes, as highlighted by three grey dots that mark the cases of q = {2, 6, 18}.

Numerical studies of this problem may rely on several approaches (see figure 8.4). As primary
and secondary breakup mechanisms play an important role, a direct simulation using an interface
tracking method [61], [60] would capture most of the physics involved (fig. 8.4a). However, such
methods are out of reach for realistic applications because of the high computational cost. Two
examples of simplifying approaches are Apte et al. [5] who use a Lagrangian method, neglect
the liquid column but take secondary breakup into account (fig. 8.4b), as well as Rachner et
al. [118] who use a Lagrangian method combined with simple laws for drag and surface/column
breakup derived from empirical correlations (fig. 8.4d). Elements such as the drag law and
the surface breakup model used in the present study are similar to the method proposed by
Rachner et al. [118] for a Reynolds averaged Navier-Stokes (RANS) framework. A method
that combines an empirical model for the liquid column with a model for secondary breakup is
currently investigated by Senoner [135] (fig. 8.4c).
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Figure 8.3: Diagram of liquid jet breakup regimes from Wu et al. [156].
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Figure 8.4: Schematic of modeling approaches for the liquid jet in crossflow case.

8.2 Injection methods

Near the liquid injection point, the classical assumtions in EE or EL do not hold. These methods
become valid only after the resulting spray reaches a fully developed state in the far-field.
Therefore, in the injection zone, additional models are needed as described below.

8.2.1 Modeling of the injection near-field

The modeling approach for the near-field includes the presence of a liquid column, the droplet
stripping from its surface and the reconstruction of the droplet diameter field generated by
atomization.
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Liquid column trajectory and breakup

The far-field penetration length of the LJCF is influenced by several mechanisms. The first one
is the existence of a liquid column at the injection point. The trajectory of this column differs
strongly from the ones of spherical droplets. The second mechanism is the downstream disin-
tegraton of the liquid column because it leads to a significant change in drag coefficient, which
strongly influences the spray trajectory. For the liquid column as well as for the region of fully
developed spray, simple laws for drag can be formulated. In an intermediate zone, where very
transient structures such as column fragments and later on large droplets undergoing secondary
breakup dominate, drag is changing rapidly and difficult to model. In the present work, this
transition zone is assumed to be very compact and of negligible influence on the far-field (see
figure 8.5 for a schematic).

In practice, the model for the liquid column region consists in locally modifying the law of par-
ticle drag to obtain a good representation of the liquid column trajectory. This requires (a) an
estimation of the location of the column disintegration and (b) a new law for drag that is applied
to all particles between injection and the predicted column breakup point.

Point (a) is handled using experimental results: Fuller et al [48] studied a liquid jet in a crossflow
experimentally and introduced a breakup timescale, τab, which has been found to apply to a
large variety of breakup processes by Hsiang and Faeth [67]:

τab = Cab
Dinj

u∞ − ul

√
ρl

ρg
(8.1)

Applied to the breakup of the liquid column, Fuller et al. [48] showed that in the aerodynamic
breakup regime (which generally applies in gas-turbine conditions), the breakup coefficient Cab is
relatively constant at a value of Cab = 2.58. The breakup point (xb, yb, zb) can then be estimated
from:

xb − xinj

Dinj
=

CD C2
ab

π
yb = yinj (8.2)

zb − zinj

Dinj
= Cab

wl,inj

u∞

√
ρl

ρg
(8.3)

These relations provide the zone, relative to the injection (xinj , yinj , zinj), in which a modified
law for particle drag is applied (point b). Such a law is provided in the work of Fuller et al.
[48] and in a similar form by Wu et al. [156]. It contains several simplifications because the
liquid column undergoes substantial deformation from its initial cylindrical shape and a change
in angle of attack as its trajectory is deflected, leading to a constantly evolving drag coefficient.
The cited authors circumvent this complexity by introducing an average drag coefficient CD and
by neglecting drag normal to the freestream velocity. By further assuming that (wg−wl)

2/(ug−
ul)

2 << 1 (this ratio attains a maximum value of 0.163 for q = 18 in the present study), the
axial momentum equation with an average drag coefficient takes the form (see Fuller et al. [48]
for the derivation):

dul

dt
=

2CD

Dinj π

ρg

ρl
(ug − ul)

2 (8.4)
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Drag in wall-normal and transverse direction as well as the gravitational force, which is small
compared to aerodynamic forces, are neglected.

dvl

dt
=

dwl

dt
= 0 (8.5)

The average column drag coefficient is obtained by Fuller et al. [48] through an experimental
study: CD = 4.39. It remains valid over a wide range of conditions, up to momentum flux ratios
of over 100.

Liquid column surface breakup

As described in the introduction (section 8.1), the developed spray is not only produced by sec-
ondary breakup of the products of the disintegrating liquid column but also by surface breakup,
i.e. the lateral stripping of the liquid boundary layer from the column surface. A basic model
simulating droplets produced by this mechanism needs to predict at least two quantities: the
mass flow rate per unit length of liquid column and a characteristic diameter. The mass flow
rate can be obtained by adapting a model developed for the stripping of a liquid boundary layer
from a spherical droplet by Ranger and Nicholls [120] to the case of a liquid column. These
authors approximate the fully developed boundary layer velocity profiles with the expressions:

uBL,l

ug
= A exp

(
−yBL√
al(x)

)
(8.6)

uBL,g

ug
= 1− (1−A) exp

−yBL√
ag(x)

(8.7)

where uBL,g and uBL,l are the velocities of the gaseous and the liquid phase in the curvilinear
reference frame of the boundary layer and A is the dimensionless velocity at the interface.
Formulating the integral momentum equations and equating the shear stresses at the interface

− µl
∂ul,BL

∂yBL

∣∣∣∣
yBL=0

= µg
∂ug,BL

∂yBL

∣∣∣∣
yBL=0

(8.8)

allows to obtain al and A on either side of the column, at the position located at an angle of 90
degrees relative to the freestream velocity.

al =

√(
8

3

µl

ρl

)/
Au∞ A =

(
ρg

ρl

µg

µl

) 1
3

(8.9)

The flux of liquid mass d ml,SB/dt stripped from a liquid column segment of the length lcol with
a constant diameter Dinj and which is assumed to be oriented perpendicularly to the airstream
is then

d ml,SB

dt
= 2lcolρl

∫ ∞

0
ul,BL dy (8.10)

=
3

2
lcol ρl

√
π Dinj A al u∞ (8.11)
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The second important quantity to model, a characteristic diameter of droplets formed by surface
breakup, can be determined following the work of Chou et al. [28] who did an experimental
study on surface breakup of spherical droplets. The same physical arguments (based mainly on
the liquid boundary layer at the droplet surface) should be applicable to a cylindrical element
of the liquid column.
Two regimes are distinguished: the transient shear breakup regime and the quasi-steady shear
breakup regime. The quasi-steady regime is characterized by a fully developed liquid boundary
layer which has therefore a thickness proportional to the column diameter dcol ∼ δ. The liquid
boundary layer of the column starts to develop at the injection and is convected upwards with
the column. It shall be assumed that the zone of a developing boundary layer is short compared
to the length of the entire column. If further the amount of liquid removed from the column is
assumed to be small compared to the overall liquid volume, it can be assumed that dcol ≈ Dinj =
const. Chou et al. [28] show that the stripped droplets have a diameter that is proportional to
the boundary layer thickness. As the boundary layer thickness is proportional to the original
drop diameter (or the liquid column diameter in the present case), Chou et al. [28] obtain a
relation between the parent structure (drop / column) diameter and the child drop diameter:

SMDSB = 0.09Dinj (8.12)

Secondary breakup after liquid column disintegration

Once the disintegration of the liquid column is complete and spherical droplets are formed,
the spray enters a regime of secondary breakup. Models for this regime exist in a Lagrangian
framework [106, 122, 5, 7] and can provide a realistic global particle diameter distribution of
the fully developed spray. However, since the main focus of this work is to compare EL and
EE approaches and breakup models are much less developed in EE codes, secondary breakup
is neglected here and a fully developed particle size distribution is assumed. Becker et al. [11]
provide a local diameter distribution obtained at the point of maximum liquid mass flux (i.e. at
the core of the fully developed spray plume) for the case q = 6. The global diameter distribution
of the simulations is based on an analytical log-normal distribution fitted to this data (figure
8.6). Becker et al. [11] further show that characteristic diameters of the spray depend mainly
on the dynamic pressure of the freestream and only very weakly on the momentum flux ratio q.
All three cases, q = {2, 6, 18} are therefore based on the same diameter distribution of the form:

P (d, d, σ) =
1

dσ
√
2π

e−
(ln(d)−d)2

2σ2 (8.13)

where d is a given droplet diameter, d the mean diameter and σ the standard deviation.

8.2.2 Implementation of the model for Euler-Lagrange

In the Euler-Lagrange formalism, the application of the liquid column model presented in section
8.2.1 is straightforward. The column breakup point is determined using equations 8.2 and 8.3.
Droplets with variable diameter (according to the distribution shown in figure 8.6) are injected
at the jet orifice. If a droplet has not yet traveled beyond the breakup point, drag is obtained
from equation 8.4, regardless of its actual diameter. Thus, all droplets follow the trajectory
of the liquid columnm. Once they have cleared the breakup point, they instantly regain their
original properties in terms of drag and act as a fully developed spray. Figure 8.5 shows an
illustration of this procedure.
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Figure 8.5: Left: classification of different regions of the liquid jet atomization. Right: schematic of the
column model, which neglects the intermediate zone of non-spherical structures and secondary breakup.
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Figure 8.6: Diameter distribution of the fully developed spray. Experimental data from [11], measured
at the point of maximum liquid volume flux in the case of q = 6. Analytical fit using a log-normal
distribution, applied in all simulations.

The model for surface breakup calculates the liquid mass flux that is removed from the liquid
column and the characteristic diameter from equations 8.11 and 8.12. Among the particles gen-
erated randomly per timestep ∆t at the jet orifice, a number that corresponds to (d ml,SB/d t)∆t
and that falls within 10% into the diameter range of SMDSB is flagged as candidates for surface
breakup. The flagged particles are released at a random location (with a uniform probability
distribution) along the liquid column length.

A summary of the main steps performed by the liquid column model in its Lagrangian imple-
mentation is given in table 8.1.

8.2.3 Implementation of the model for Euler-Euler

Tackling a LJCF with a Eulerian method leads to three difficulties. The first is a liquid volume
fraction of order unity (plain jet) in the near-field, which puts considerable strain on the numer-
ical scheme. The second is the very small diameter of the injection orifice, which leads to very
small grid cells if at least 5 to 10 cells are to be placed across the diameter (see figure 8.7, left).
The third is the Eulerian approach in its present form being locally monodisperse.
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Euler-Lagrange

1 Calculate point of column breakup (xb, yb, zb), eqs. 8.2, 8.3.
2 Define liquid column region between (xinj , yinj , zinj) and (xb, yb, zb).
3 Inject particles at (xinj , yinj , zinj) with a diameter distribution (fig. 8.6).
4 At injection, flag particles for surface breakup (eqs. 8.11, 8.12).
5 Inside the column region, apply modified law for particle drag (eqs. 8.4, 8.5).
6 Along the column trajectory, randomly release flagged surface breakup particles.
7 After clearing the column region, continue with unmodified EL calculation.

Table 8.1: Summary of the EL implementation of the liquid column model

A new method proposed here solves these problems by artificially enlarging the injection diame-
ter (Broadened Injection Method, called BIM). In the present case, the diameter of the injection
patch, Dinj is increased by a factor 5 (figure 8.7, right), which leads to cells of roughly the
boundary layer grid spacing. In this injection patch, liquid phase velocities are fixed to their
values in the initial injector so that the liquid volume fraction in the injector section reduces to
a value of 1/25.
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Figure 8.7: Surface grid in proximity of the jet injection patch. Left: original diameter, right: augmented
diameter for Eulerian simulations.

The spatial diameter distribution found in the far-field is an important feature of the LJCF that
cannot be reproduced by a globally monodisperse simulation. Alternatively, as the EE method
allows for spatially varying diameters, a variable diameter profile can be imposed as a boundary
condition on the injection patch, especially if this patch has been broadened (figure 8.7). The idea
behind this technique is the following: droplets injected from a single point, perpendicularly into
an airstream will be sorted naturally by their diameter due to their different ballistic properties.
Trajectories of the largest diameters will penetrate farthest into the crossflow, the smallest ones
will be deflected very rapidly and generally, trajectories do not cross. Therefore, the polydisperse
character of the spray can be mimicked by injecting droplets with the largest diameters at the
upstream end of the injection patch and the smallest at the downstream limit: suppose that the
diameter histogram (figure 8.6) is composed of nbin diameter classes. The normalized probability
for the diameter class i ∈ {1 ... nbin} shall be noted Pi. In a spatial diameter distribution, the
circular surface of the inlet patch is discretized with a set of nbin rectangular subdomains of
the size 2∆xk ∆yk (figure 8.8). The injection procedure consists in imposing a monodisperse
spray with a constant speed ul,inj = f(q), a constant liquid volume fraction αl,inj = 1/25 and
with the local droplet diameter dk corresponding to a given diameter class into each subdomain
k ∈ {1 ... nbin}, sorted from largest to smallest droplets from upstream to downstream. The
remaining Eulerian variable to impose on the subdomain k is the droplet number density per
unit volume nl,k, which is linked to the diameter and the liquid volume fraction by:
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nl,k =
αl,inj

π/6 d3
k

(8.14)
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Figure 8.8: Streamwise disctetization of the injection patch into nbin subdomains.

To match the targeted diameter histogram, the ratio of the number of droplets injected per time
unit on the subdomain k and the global number of droplets injected must correspond to the
normalized probability of the diameter class Pi, i = k:

nl,kul,inj ∆xk 2∆yk∑nbin

n=1 nl,nul,inj ∆xn 2 ∆yn

!
= Pi , i = k (8.15)

The goal is therefore to find a distribution of streamwise and transverse intervals ∆x, ∆y that
can satisfy this ratio for a given diameter histogram. As the injection patch is of circular shape,
a relation between ∆x and ∆y can be stated:

∆yk =

√(
1

2
Dinj

)2

−
(

xk −
∆xk

2

)2

(8.16)

where xk is the current x-coordinate relative to the center of the injection patch at ~x = (0, 0, 0).

xk = −
1

2
Dinj +

k∑

i=1

∆xi (8.17)

Simplification and rearrangement of equation 8.15 yields an expression for the streamwise inter-
val k.

∆xk =
Pk

nl,k∆yk

nbin∑

n=1

nl,n∆xn∆yn (8.18)

The condition
∑k

i=1∆xi
!
= Dinj allows to obtain

∆xk =
Pk

nl,k∆yk

Dinj∑nbin

n=1
Pn

nl,n∆yn

(8.19)
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Equations 8.19 and 8.16 can be solved iteratively. Here, a good initial solution is to assume
equidistant streamwise intervals ∆xk = const = Dinj/nbin. The number and size of the bins
is based on experimental data (31 size classes of 2.47 µm width). The resulting streamwise
injection diameter distribution is shown in figure 8.9. To apply this distribution as an injection
boundary condition, it must be interpolated on the grid points.

A summary of the main steps performed by the liquid column model in its Eulerian implemen-
tation is given in table 8.2.
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Figure 8.9: Spatial diameter distribution over the streamwise diameter Dinj of the jet injection patch.

Euler-Euler

1 Calculate point of column breakup (xb, yb, zb), eqs. 8.2, 8.3.
2 Define liquid column region between (xinj , yinj , zinj) and (xb, yb, zb).
3 Define boundary condition with variable diameter profile (fig. 8.9).
4 Inside the column region, apply modified law for particle drag (eqs. 8.4, 8.5).
5 Outside the column region, perform unmodified EE calculation.

Table 8.2: Summary of the EE implementation of the liquid column model

8.3 The experimental setup

A drawing and a photography of the experimental setup used by Becker et al. [11] are shown
in figures 8.10 and 8.11. It consists of a test section of rectangular cross-section and flat lateral
surfaces of which three are equipped with quartz windows to allow optical access. The air enters
the test section from a pressurized reservoir and exits through a throttle with a sonic throat. The
transverse liquid jet injection is located on the centerline of the lower surface. Measurements
relevant for the present work are shadowgraphs obtained with standard photographic equipment
and PDA measurements of the liquid volume flux and diameter data at a position downstream
of the injection.

8.3.1 Computational domain

The computational domain represents a short stretch of the measurement duct from the exper-
iment of Becker et al. [11]. Its dimensions are shown in figure 8.12. The injection nozzle for
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Figure 8.10: Photography of the test bench at DLR Cologne.

Figure 8.11: Photography of the test bench at DLR Cologne.

the liquid jet is situated on the centerline of the lower wall, defined here as the origin of the
coordinate system with x being the streamwise coordinate and z the wall-normal coordinate
pointing in the direction of the jet. The boundary in negative x-direction from the injection is
the inlet, the opposite surface the outlet and all lateral surfaces are modeled as walls.

8.4 Gaseous flow field

In all cases considered here, the gaseous flow parameters are identical. The air flow is char-
acterized by a bulk velocity of 100 m/s, a pressure of 6 bar and an air temperature of 290K.
Due to the relatively long upstream duct in the test bench, it is assumed that the flow inside
the computational domain is turbulent and fully developed. Therefore, turbulence injection is
performed at the inlet. The fluctuation field is generated using the methods of Klein et al. [77]
as well as Kraichnan [78]. These synthetic turbulent fluctuations are imposed at the inlet using
the boundary condition of Guézennec and Poinsot [55] to minimize the injected noise. The
necessary input data (profiles of mean- and rms values of all velocity components as well as the
correlations < uv >, < uw > and < vw >) is not available from measurement. Therefore, a
preliminary simulation of a periodic stretch of duct of identical cross-section and mesh properties
is performed. This has the additional advantage that the statistics obtained from this case are
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Figure 8.12: Computiational domain.

already filtered fields, using the same LES filter width. The global Reynolds number of the flow,
based on the channel width is Reg = 1 · 106. Wall boundaries are modeled using wall functions
in the slip-wall formulation (see chapter 6).

8.5 Euler-Euler numerical scheme

For the Euler-Euler simulation, the choice of the numerical scheme has proven to be a crucial
ingredient for the success of simulations of the jet-in-crossflow case. Out of the schemes available
in the AVBP code, three are considered here for comparison: the second-order accurate (space
and time) Lax-Wendroff scheme, the third-order accurate (space and time) TTGC scheme as
well as the PSI (for Positive Streamwise Invariant) scheme [146] (see section 5.4.1), which is
of first order in space and time [1]. It has been implemented in AVBP and applied in the
PhD thesis of Lamarque [80] as well as Roux [126], yielding good results in a number of test
cases, including particle-laden homogeneous isotropic turbulence, even compared to the third-
order TTGC scheme. Being a multi-dimensional upwinding scheme (in contrast to the centerd
LW and TTGC schemes), PSI is characterized by a high robustness, which makes it very well-
suited for injection problems, as demonstrated by Roux [126]. Due to strong gradients of liquid
volume fraction and liquid phase velocity at the spray boundary, the case of a liquid jet in a
crossflow relies heavily on this robustness. A scheme comparison is performed on a simplified
jet-in-crossflow case at q = 18, without any model for the liquid column and using a constant
droplet diameter. All simulations start with the same, very high level of artificial viscosity.
It is successively reduced to the least amont allowed by the calculation to run reliably. Final
coefficients for the Colin sensor (see section 5.7.2) are summed up in table 8.3, most notably
revealing a factor 30 between PSI and both centered schemes. The corresponding results are
shown in figures 8.13 to 8.16. Figure 8.13 shows a comparison of liquid volume flux isocontours
to visualize the spray boundaries. It is clear that in the LW and TTGC calculations the jet is
quickly and considerably diffused, causing it to dissolve into a broad spray cloud attached to the
wall instead of showing a well-delimited plume detached from the wall, as it is observed for the
PSI scheme. The evolution of mean liquid volume flux over the wall-distance z, shown in figure
8.14, further emphasizes this behaviour of the jet. The additional curve of PSI results using the
liquid column fits experimental data. It is included to underline the fact that results obtained
with the PSI scheme are indeed physically sound.
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Figure 8.13: Euler-Euler results for different numerical schemes, case of q=18: Instantaneous axial
gaseous velocity field on the plane y = 0, overlaid with iso-contours of liquid volume flux Φl. Cases from
top to bottom: Lax-Wendroff, TTGC, PSI.
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Figure 8.14: Comparison of the spatial distribution of liquid volume flux Φl at a downstream location of
x = 80mm, over the wall-normal distance z. Comparison of experimental data [11] (◦◦◦) and Euler-Euler
results using different numerical schemes.

In figures 8.15 and 8.16, the mechanisms involved are revealed in more detail. Figure 8.15 shows
a liquid phase velocity vector field overlaid with liquid volume flux iso-contours. In figure 8.16,
the same iso-contours are combined with the sensor for artificial viscosity. Note that the presence
of an activated sensor only means that artificial viscosity is applied at this location, but it does
not allow to conclude about the actual amount applied (indicated in table 8.3). It can clearly
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be seen in these visualizations that the main differences are located at the upstream face of the
jet, where liquid and gaseous velocities meet perpendicularly. For both centered schemes, this
zone is thickened by the diffusive effect of artificial viscosity, as can be seen in figures 8.15a/b
and 8.16a/b, resulting in a smooth transition between jet and crossflow vector orientations. The
thickened transition zone affects the entire jet, leading to its complete disintegration. When the
PSI scheme is used, the zone, where velocity vectors change direction by almost 90 degrees is
very thin in comparison, occupying only about two grid cells. As a result, the bulk flow inside
the jet region is not affected and remains intact.

While this conclusion can not be generalized, it is clear that in this particular case, the high
robustness of an upwinding scheme outweighs the higher spatial order of the centered schemes,
when the latter have to be combined with artificial viscosity. Artificial viscosity leads to an
isotropic diffusion of the spray that is very destructive in view of the end result. The PSI
scheme needs very little artificial viscosity and is therefore spared from these effects. It is,
however, no less dissipative but due to the intrinsic directionality of numerical diffusion, it
performs particularly very well in all jet-like applications.
As a consequence, only the PSI scheme is retained for all Euler-Euler simulations presented in
this work (including the full TLC configuration of chapter 11).

(a) (b) (c)

Figure 8.15: Liquid velocity vector field on the plane y = 0, overlaid with iso-contours of liquid volume
flux Φl. Cases from left to right: (a) Lax-Wendroff, (b) TTGC, (c) PSI.

(a) (b) (c)

Figure 8.16: Field of the artificial viscosity sensor to visualize the zones where artificial viscosity is
applied, overlaid with iso-contours of liquid volume flux Φl. Cases from left to right: (a) Lax-Wendroff,
(b) TTGC, (c) PSI.

8.6 Test cases

Apart from the test cases used to assess different numerical schemes, Twelve different cases are
considered, comprising six cases for each liquid phase simulation approach, of which a series
of three uses the liquid column model while in the other series, the spray is injected ‘as is’,
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Artificial viscosity coefficients

LW TTGC PSI

2nd order coeff. 0.3 0.3 0.015

4th order coeff. 0.01 0.01 0.001

Table 8.3: Necessary second- and fourth-order artificial viscosity coefficients for the Colin sensor [32].

without model for the liquid column. Each of the remaining subseries of three considers the dif-
ferent momentum fluxes at q = {2, 6, 18}. A summary is given in tables 8.4 to 11.6 (section 8.10).

The meshes are of unstructured type, comprising approximately 320 000 nodes (1.5 million grid
cells) for the Lagrangian cases and 360 000 nodes (1.8 million grid cells) in the Eulerian cases
with an additional refinement in the injection region. Sections through the meshes on the mid-
plane of the domain (y = 0) are shown in figures 8.18 and 8.17 for EL and EE respectively.
Both meshes are refined towards the boundary layer with the first point situated at roughly 500
wall units. For the Reynolds number at hand, this near-wall resolution corresponds to the near-
wall grid cell still well inside the logarithmic layer, which is consistent with the wall-function
approach used here [71]. Averages are obtained over at least three convective times, which are
based on the distance between the injection point and the outlet.

Figure 8.17: Cross-section (midplane) of the mesh used for the Euler-Euler simulations.

Figure 8.18: Cross-section (midplane) of the mesh used for the Euler-Lagrange simulations.

8.7 Results

Results are presented in two parts: the first focuses on qualitative observations of instantaneous
properties of the flow field and spray behaviour (section 8.7.1). The second is dedicated to a
comparison of LES averaged quantities with experimental data (section 8.7.2).
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8.7.1 Flow and spray topology

Figures 8.19 and 8.20 show the velocity field and spray topology on the mid-plane of the domain.
In the EL case, particles inside a 1mm slab in front of the mid-plane are visualized by a black
dot. In the EE case, the location of the spray plume is visualized by iso-contours of the liquid
volume flux.
In terms of jet trajectory and penetration height of the developed spray plume, there is a good

Figure 8.19: Euler-Lagrange results for cases 1, 2 and 3: instantaneous axial gaseous velocity field on
the plane y = 0, overlaid with the positions of Lagrangian droplets in a neighbourhood of 1mm to this
plane. Cases from top to bottom: q = 2, q = 6, q = 18. The black vertical line marks the distance of
80mm from the injection point.

agreement between EL and EE. The effect of momentum flux ratio is predicted correctly: the
spray is attached to the wall at a certain distance downstream of the injection for q = 2 (top
image in figure 8.19) and is clearly detached for q = 18 (bottom image in figure 8.19). In the
Lagrangian droplet field, for higher momentum flux ratios, the relatively sparse spray issued
by the surface breakup model can be distinguished from the denser regions of the main jet.
Interaction with turbulence is quite pronounced in the EL results, where droplets are entrained
by the resolved turbulent structures of the LES. Spray fluctuations in the EE results are less
developed. This may in part be related to the numerical scheme’s low temporal and spatial
order. A major portion of the lacking fluctuation levels are, however, a natural consequence of
the mesoscopic approach, which does not contain fluctuations due to the random uncorrelated
motion. This part has been shown to be non-negligible, for instance by Riber [124], but also in
the present work, as shown in section 11.3.3.

Another important insight on the spray distribution can be gained by considering transverse
cross-sections of the spray plume at a downstream distance of 80mm. The spray is visualized
by iso-contours of the liquid volume flux. In the EL case, shown in figure 8.21, these iso-contours
are obtained by averaging over a short time interval to obtain smooth curves. For EE simu-
lations, instantaneous fields are considered, as shown in figure 8.22. For the case q = 6, a
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Figure 8.20: Euler-Euler results for cases 7, 8 and 9: instantaneous axial gaseous velocity field on the
plane y = 0, overlaid with iso-contours of liquid volume flux Φl. Cases from top to bottom: q = 2, q = 6,
q = 18. The black vertical line marks the distance of 80mm from the injection point.

similar plot is available from the publication of Becker et al. [11], which is shown for qualitative
comparison. EE and EL results are reasonably similar and for the case q = 6, they match the
experimental data. As the most notable difference, EL isocontours of the liquid volume flux are
vertically elongated while their EE counterparts have a round shape. This can be attributed
to the influence of the ballistic sorting mechanism that vertically separates droplet trajectories
of different size classes in EL. EE results appear to be more realistic in this respect. Note the
presence of droplet-wall interaction in the lower peripheral regions of the spray plume, observed
for the cases q = 2 and q = 6, which is consistent with experimental results.
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Figure 8.21: Euler-Lagrange results for cases 1, 2 and 3: Iso-contours of the liquid volume flux
Φl [m

3/(s m2)] on the plane x = 80mm. Cases from left to right: q = 2, q = 6, q = 18. Bottom
row: liquid volume flux [cm3/(s cm2)] diagram from experimental data (case: q = 6) by Becker et al. [11]
for qualitative comparison.
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Figure 8.22: Euler-Euler results for cases 7, 8 and 9. Iso-contours of the liquid volume flux
Φl [m

3/(s m2)] on the plane x = 80mm. Cases from left to right: q = 2, q = 6, q = 18. Bottom
row: liquid volume flux [cm3/(s cm2)] diagram from experimental data (case: q = 6) by Becker et al. [11]
for qualitative comparison.



8.7. RESULTS 173

8.7.2 Comparison of averaged results

This section compares LES and measurement data at a downstream location of 80mm (the same
position as the cross-sections previously discussed). Data is obtained at different wall distances
and then averaged in transverse (y-) direction as illustrated in figure 8.23. Two quantities are
considered: the liquid volume flux Φl and the Sauter mean diameter. For the latter, the values
to be averaged along y are additionally weighted by the local liquid volume flux in order to
remove the influence of regions with very few droplets. These procedures are equivalent to the
post-processing of Becker et al. [11].

80 mm!

z!

y!

Figure 8.23: Sketch of the different z-locations used for averaging operations (in y-direction) at a
downstream position or x = 80mm.

First, EE and EL are compared using the liquid column model for both formulations. The max-
ima of the average fluxes, shown in figure 8.24, agree well with the experiment for all momentum
flux ratios in the EE case. In the EL results, the flux maxima are shifted slightly upwards in
comparison to both EE and the experiment. As the law for particle drag in the column region
is identical in the two cases, the discrepancy is likely to originate from the zone directly after
the column breakup point where particle drag is not correctly predicted (see section 8.2.1). The
difference between EE and EL is due to the use of the BIM model for Eulerian simulations: in
EL, more air is entrained in the dense spray region after column breakup leading to lowered
particle drag, which is not the case for the artificially diluted spray in the EE simulations.
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Figure 8.24: Liquid volume flux Φl at a downstream location of x = 80mm, over the wall-normal
distance z. Comparison of experimental data [11] (◦◦◦), Euler-Lagrange simulation results obtained with
the column model (cases 1, 2 and 3) (—) and Euler-Euler results with the column model (cases 7, 8 and
9) (- - -).

The spatial distribution of the Sauter mean diameter is shown in figure 8.25. In the EL results,
the SMD at the z-coordinate of the maximum liquid volume flux is correct in all cases. Above
and below this wall-distance, discrepancies range from minor for q = 18 to pronounced for q = 2.
In all cases, the evolution of SMD over z is steeper than in the experiment, which shows that
the extent to which ballistic separation of trajectories (which still occurs after the point of liq-
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uid column breakup) is governing the diameter distribution is over-estimated. An additional
aspect is revealed by the experimental curve for the case of q = 2. Here, the SMD increases
towards the wall, which is explained by Becker et al. [11] with the influence of the boundary
layer: when products of the column breakup encounter the reduced gaseous velocities of the
boundary layer instead of the freestream, the resulting far-field SMD is larger. Clearly, this
effect is not captured by the modeling approach used on this work. The EE diameter profiles
agree with experimental data between the wall and the point of maximum liquid volume flux.
Above this point, the diameter profile falls off. This is a consequence of the Eulerian approach,
where regions without droplets are characterized by a near-zero value for droplet diameter. In
the LJCF, the largest diameters are found near the upper spray boundary, which should lead to
a sharp transition towards the neighbouring near-zero values. The actual transition is smoothed
out, which is enhanced by turbulent mixing. This effect is limited to the outer regions of the
spray and does not affect the quality in the regions of high volume flux.
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Figure 8.25: Sauter mean diameter profiles at a downstream location of x = 80mm, over the wall-
normal distance z. Comparison of experimental data [11] (◦ ◦ ◦), Euler-Lagrange simulation results
obtained with the column model (cases 1, 2 and 3) (—) and Euler-Euler results with the column model
(cases 7, 8 and 9) (- - -).

To assess the improvement contributed by the liquid column model, EL and EE results are
considered separately, each time comparing results obtained with and without the model. In
the case of EL, presented in figure 8.26, the wall distance of the maximum liquid volume flux
is either slightly over-estimated (with the column model), or slightly under-estimated without
it. In the EE results, the wall-normal distance of the liquid volume flux maximum is well pre-
dicted with the column model and strongly under-estimated without model. When comparing
the slight influence of the model for EL (figure 8.26) with the significant effect observed for EE
(figure 8.28), it becomes clear that the numerical approach influences the result. This supports
the previous conclusion that the EL method creates a strong air entrainment in dense regions
resulting in reduced particle drag, an effect which does not affect the artificially diluted EE
injection (BIM method).

Considering the SMD distribution in the EL results (figure 8.27), the column model induces
slight but significant changes: it reduces the gradient of the SMD distribution, indicating that
the ballistic sorting effect is reduced, which brings the results nearer to the behavior observed
in the experiment. In particular for q = 18, this results in a better prediction of SMD in the
area of maximum liquid volume flux.
In the EE results (figure 8.29), there is a vertical shift of the otherwise identical SMD profiles
by the amount the penetration height changes with the introduction of the column model.

For both EE and EL, at momentum flux ratios of q = 2 (or lower), the liquid column model no
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Figure 8.26: Liquid volume flux Φl at a downstream location of x = 80mm, over the wall-normal
distance z. Comparison of experimental data [11] (◦◦◦), Euler-Lagrange simulation results obtained with
the column model (cases 1, 2 and 3) (—) and without the column model (cases 4, 5 and 6) (- - -).

20

15

10

5

z 
[m

m
]

6040200

SMD [µm]

20

15

10

5

z 
[m

m
]

6040200

SMD [µm]

20

15

10

5

z 
[m

m
]

6040200

SMD [µm]

Figure 8.27: Sauter mean diameter profiles at a downstream location of x = 80mm, over the wall-
normal distance z. Comparison of experimental data [11] (◦ ◦ ◦), Euler-Lagrange simulation results
obtained with the column model (cases 1, 2 and 3) (—) and without the column model (cases 4, 5 and 6)
(- - -).

longer results in significant changes (figures 8.26, 8.27, 8.28 and 8.29): this is due to the dimin-
ishing length of the liquid column for low values of q. Inversely, the model has an increasingly
positive effect for high momentum flux ratios (q = 6 and higher), where the liquid column is an
important part of the physics.
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Figure 8.28: Liquid volume flux Φl at a downstream location of x = 80mm, over the wall-normal
distance z. Comparison of experimental data [11] (◦ ◦ ◦), Euler-Euler simulation results obtained with
the column model (cases 7, 8 and 9) (—) and without the column model (cases 10, 11 and 12) (- - -).
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Figure 8.29: Sauter mean diameter profiles at a downstream location of x = 80mm, over the wall-
normal distance z. Comparison of experimental data [11] (◦ ◦ ◦), Euler-Euler simulation results obtained
with the column model (cases 7, 8 and 9) (—) and without the column model (cases 10, 11 and 12) (- - -).

8.8 Computational cost

The cost in terms of CPU time associated with EE and EL is an important part of the com-
parison between both methods. For the EL simulations, it is case dependent as the number of
particles in the simulation differs between approx. 300 000 for q = 2 and 800 000 for q=18. The
associated cost amounts to 2 200 s and 2 800 s respectively per convective time. In the EE simu-
lations, CPU time is case independent but with 10 000 s per convective time, it is higher than in
all EL cases. This is partly due to the increased grid resolution in the area of the spray plume
that is not necessary for EL (see section 8.6). All CPU times were obtained on 32 processors of
a IBM JS-21 cluster.
Note that performance on massively parallel architectures becomes important for large, industrial-
scale simulations. Parallelization of EE is straightforward, since it relies on the same solver
structure as the gaseous phase. The EL approach additionally needs to take into account (dy-
namic) particle load balancing to ensure the parallel efficiency of the computation [49] so that
the present conclusion may not hold on thousands of processors.

8.9 Conclusion

Large-eddy simulations of a liquid jet in a gaseous crossflow have been carried out and com-
pared to experimental data. Euler-Lagrange and Euler-Euler methods have been employed for
the liquid phase. These formulations may not handle dense spray regions in the near-field of
the injection and a model based on empirical correlations is needed to predict the liquid column
trajectory and breakup point.
For the implementation of this model, different techniques are necessary for Eulerian and La-
grangian approaches. In the Eulerian framework, numerical difficulties are identified. A method
based on the artificial broadening of the injection region (BIM) that effectively solves these prob-
lems is proposed. It furthermore allows to reconstruct variable diameter fields in the far-field
by applying a spatial diameter evolution at the injection.
The evaluation of the results includes the comparison between Eulerian and Lagrangian sim-
ulations and the influence of the column model in either case. Good agreement in terms of
penetration height and diameter evolution is obtained for Lagrangian and Eulerian simulations
with the column model.
The positive influence of the column model increases with the momentum flux ratios (i.e. in-
creasing jet velocities). It leads to a better prediction of penetration height and, in particular
for Lagrangian simulations, to a better agreement of the spatial diameter distribution with ex-
perimental data.
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In terms of computational cost, the case considered here reveals a clear advantage for the La-
grangian methods.
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8.10 Tables

Inlet

BC type: Turbulence injection
Temperature 290 K
Velocity Profiles from precursor simulation (Bulk velocity ub = 100m/s)

Outlet

BC type: Non-reflective pressure outlet condition
Pressure 6 bar

Walls

BC type: Adiabatic wall laws, slip-wall formulation

Table 8.4: Boundary conditions for the gaseous phase

Numerical scheme (gas phase) Lax Wendroff
Scheme spatial precision 2nd order
Scheme temporal precision 2nd order

Numerical scheme (liquid phase) PSI
Scheme spatial precision 2nd order
Scheme temporal precision 1st order

Liquid phase coupling terms two-way-coupling
evaporation
no model for the random uncorr. motion

SGS model (gas) standard Smagorinsky
SGS model (liquid) Yoshizawa + Smagorinsky [100]

Artificial viscosity (gas) Colin sensor [32]
2nd order coefficient 0.1
4th order coefficient 0.08

Artificial viscosity (liquid) Colin sensor [32]
2nd order coefficient 0.05
4th order coefficient 0.005

Table 8.5: Numerical parameters used in the Euler-Euler simulations

Numerical scheme (gas phase) Lax Wendroff
Scheme spatial precision 2nd order
Scheme temporal precision 2nd order

Liquid phase coupling two-way-coupling
evaporation

Interpolation method Taylor

Phys. particles per parcel 1

SGS model (gas) standard Smagorinsky

Artificial viscosity (gas) Colin sensor [32]
2nd order coefficient 0.1
4th order coefficient 0.08

Table 8.6: Numerical parameters used in the Euler-Lagrange simulations



8.10. TABLES 179

Lagrangian injection parameters

Case # 1 2 3 4 5 6

q 2 6 18 2 6 18
Mass flux [g/s] 1.7 2.95 5.11 1.7 2.95 5.11
Injection velocity [m/s] 13.46 23.31 40.38 13.46 23.3 40.38
Droplet temp. [K] 275
Liquid phase density [kg/m3] 795
particle size distrib. log-normal, fitted to exp. data (fig 8.6)
Mean droplet diam. 27.31 10−6 m
Standard deviation 8.35 10−6 m
Minimum diameter 12.35 10−6 m
Maximum diameter 71.63 10−6 m
Injection type Disk
Disk diameter 0.45 mm (original orifice diameter)
Column model yes no

Table 8.7: Injection conditions of the Euler-Lagrange cases

Eulerian injection parameters

Case # 7 8 9 10 11 12

q 2 6 18 2 6 18
Mass flux [g/s] 1.7 2.95 5.11 1.7 2.95 5.11
Injection velocity [m/s] 13.46 23.31 40.38 13.46 23.3 40.38
Droplet inj. temp. [K] 275
Liquid phase density [kg/m3] 795
Size distrib. Spatial distrib. (fig 8.9), derived from exp. data
Inlet condition Dirichlet-type boundary cond. on the injection patch
Liquid vol. fraction at inlet 0.04
Disk diameter 2.25 mm (5 times the original orifice diameter)
Column model yes no

Table 8.8: Injection conditions of the Euler-Euler cases
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Description of the TLC configuration
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9.1 Introduction

The final application of this thesis is an aeronautical premixing swirler with multipoint injection.
This device is a prototype manufactured by SNECMA moteurs, and has been subject to several
experimental and numerical studies in the TLC (for “Towards Lean Combustion”) project of
the 6th framework programme of the European Union. The configuration is therefore referred
to as “TLC configuration” throughout this manuscript.

9.2 The SNECMA staged premixing swirler

9.2.1 Geometry

An isolated, cut-away view of the premixing swirler is shown in figure 9.1. It represents one of
around 20 injectors that are typically mounted on the upstream wall of an annular combustion
chamber of an aero-engine. It is a staged design with the objective to divide fuel injection and
premixing in two separatly controllable zones, in order to allow the optimization of the system
for different operating points (see chapter 1 for a detailed explanation). The device is thus
composed of two stages, that can be identified by two conical “bowls”, where the central, pilot
bowl is nested inside the main stage bowl.

183
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Pilot stage bowl!

Main stage bowl!

Fuel 

admission!

Pilot injector!

24 multipoint 

injectors!

Figure 9.1: Staged premixing swirler, cut-away view.

The air traverses the configuration from the plenum through a series of swirlers, an arrangement
of channels, divided by guide vanes, that are inclined relative to the main axis and impose
a swirling motion to the flow. Figure 9.2 presents a transparent view, highlighting the three
swirler stages. Two are of radial type and lead into the pilot bowl. While the innermost swirler
discharges into the pilot bowl at its upstream end, the flow from the second one enters the bowl
trough a circular slot in the side wall just before the pilot flow exits into the chamber. The third
swirler can be considered to be of radial type, although it is slightly inclined, leading the flow
into the main stage bowl with a non-zero axial velocity component. All three swirler stages are
counter-rotating relative to each one’s neighbour, which promotes turbulent mixing in the areas
where the flows meet.

Main stage!

swirler channels!

Counter-rotating 

pilot stage !

swirler channels!

Figure 9.2: Staged premixing swirler, transparent view with highlighted swirler channels.

The bulk of the airflow (approx. 90 %) passes through the main swirler stage. The remaining
10 % is divided between the innermost pilot swirler (3 %) and the outer pilot swirler (7%).
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9.2.2 Injection of liquid fuel

Liquid fuel is fed into the injector via two separate circuits, which are well visible in figure
9.1. One is connected to the pilot injector, which creates a hollow-cone spray. The pilot fuel
atomizer is of the so-called piezo type, featuring a ring of very small orifices on a cone-shaped
injector head. The second circuit leads to the multi-point injection system of the main stage,
a series of 24 holes located on the inner wall of the main stage, each placed just downstream
of a swirler channel’s exit. At each point, liquid fuel is injected perpendicularly to the surface
through orifices of 0.5mm in diameter.

The partition of fuel mass fluxes between the pilot stage an the swirler stage can be used as
a tool to optimize local equivalence ratio values for different phases of flight. Throughout the
present work, the pilot stage will be completely deactivated in order to study the phenomena
related to multipoint injection in an isolated way. This, of course, is not a realistic operation
condition and only used in the framework of an academical study.

9.3 The ONERA non-reacting test bench

For measurement purposes, the inector described in the preceding section was mounted on var-
ious test benches. These include a completely open setup (with the inejctor directly exiting
into the atmosphere) that has been studied experimentally at ONERA DMAE in Toulouse
and numerically by Lavedrine [81]. A configuration adapted to reactive experiments has been
studied experimentally at ONERA DMPH in Palaiseau [105]. Numerical simulations have been
performed by Lavedrine [81] in non-reacting conditions and by Bertier [14] in reacting conditions.

Figure 9.3: Photography of the installation at the ONERA Fauga-Mauzac center.

In the present work, a third configuration is considered. It was mounted at the ONERA center
at Fauga-Mauzac and allows a detailed study of the non-reacting, two-phase flow [82]. The
test bench, pictured in figure 9.3 allows to pressurize and pre-heat the chamber, which is of a
simple rectangular shape with a square cross-section, where large observation windows provide
optical access for measurements. Air enters through an admission duct that expands into a
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Plenum!

Chamber!

Staged premixing swirler!

Outlet nozzle!

Figure 9.4: TLC configuration ONERA Fauga-Mauzac

plenum. The injector is mounted on the dividing wall between this plenum and the chamber.
Additionally, this divider is perforated to feed air into cooling films exiting into the chamber at
about half the distance between the injector outer diameter and the lateral chamber walls (see
figure 9.5). It has to be noted that this film serves no real purpose in the present configuration.
It is a remnant of the reacting test bench, where these films are located in direct proximity of
the lateral walls and serve as a cooling layer to protect the optical access windows. The chamber
exit is formed by a nozzle that reaches supersonic flow at the throat, leading to an acoustically
non-reflecting outflow.

Figure 9.5: TLC configuration ONERA Fauga-Mauzac - view from the plenum

9.3.1 Measurement methods

The test bench was equipped for different measurement techniques briefly described in the
following. The goal of these measurements was to obtain data on:

• The gaseous phase velocity, using a LDA technique
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• The droplet velocity and diameter, using a PDA technique

• The local droplet size distribution, using laser diffraction spectroscopy

• The spatial distribution liquid volume flux, using a patternator technique

The LDA (for Laser Doppler Anemometry) measurement method uses a pair of coherent laser
beams that are crossed at the location where velocity data is measured. At this location, the
beams form interference fringes, which illuminate particles that cross the pattern periodically.
The frequency of this light signal can be detected and translated into a velocity. This value
corresponds to the velocity component perpendicular to the fringes and the measurement has
to be repeated to obtain other velocity components. The gaseous flow is seeded with particles
of a very low Stokes number in order to minimize errors due to droplet inertia and to exclude
two-way coupling effects.

The PDA (for Phase Doppler Anemometry) is an extension of the LDA technique, first proposed
by Durst et al. [40], that uses two detectors for the light scattered by the particles, arranged
at different locations in space. The resulting phase shift between both doppler signals can be
translated into a diameter information of the recorded particle.

The laser diffraction spectroscopy uses a laser beam to illuminate the spray. For a single
droplet, in close forward direction, diffraction patterns are observed that can be related to the
size of a spherical particle using Mie theory [95]. For a polydisperse spray, a complex light
intensity distribution is recorded, which can be translated into a droplet size distribution using
methods described by Hirleman [62]. The advantage of this technique is that the distribution is
obtained instantaneously, from the post-processing of a single image.

The patternator technique is based on the very simple principle of placing an array of recip-
ients in the direction of spray movement. The spatial distribution of liquid volume flux can be
reconstructed by the amount of liquid that is present in each of the recipients.

For additional information, the reader is referred to the TLC report [82] and for theoretical
background to the book of Frohn and Roth [47].

9.4 The numerical setup

9.4.1 Modifications of the original geometry

Modifications are made relative to the original geometry in order to make it suitable for com-
putations. These modifications comprise:

• The air exits the chamber through a supersonic nozzle. In order to render the supersonic
boundary condition more stable, the narrowest section is followed by a short, gently di-
verging tube to reliably establish Ma > 1 at the actual domain exit. This has no influence
on the computed flow as perturbations do not travel upstream towards the sonic throat.

• The cooling films connected to the plenum through slots in the upstream wall of the
chamber are modeled with a surrogate geometry, as explained in detail in chapter 7.

• A cooling film located along the circular outer rim of the injector (called “collar perfora-
tion”) is entirely replaced by an equivalent inlet condition. The corresponding mass flux
is substracted from the flux perscribed at the plenum.
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• All very small scale features are removed from CAD data. This applies for example to
very fine gaps, chamfers, etc. that would lead the grid generation algorithm to create
diminutive cells.

9.4.2 The computational grid

The computational grid is a cornerstone of the numerical approach and has proven to be a
critical contributor to the quality of the results in the present study. Elements describing the
importance of particular features of the grid can be found throughout this manuscript. Here,
its most important characteristics are summarized and reference the corresponding chapter.

Figure 9.6: Staged premixing swirler, transparent view with highlighted swirler channels.

Figure 9.6 shows an overview of the mesh. It is of unstructured, hybrid type, composed of
tetraedral, prismatic and pyramidal elements. The (triangular) prisms form a single, closed
layer in all regions where wall functions are used to model the turbulent boundary layer. This
layer is necessary for the application of wall functions in the no-slip formulation (see section
6.2.6 for details) but is is also advantageous in terms of the overall number of cells, because the
near-wall grid refinement can easily be controlled by adapting the prism aspect ratio without
leading to an excessive number of near-wall tetraedra. A single layer is chosen because it allows
consistent meshing in complex geometries including sharp edges, when multiple layers tend to
be more heavily deformed. Figure 9.7 shows a detail of such a prismatic region on the separator
between pilot and main stage. Pyramidal elements are used to connect the edge of a prismatic
boundary area with an adjacent tetraeral zone.

The grid has several refined zones inside and downstream the injector. The swirler channels are
optimized for the use of wall-functions, with a target for near wall prismatic layer thickness of
y+ ≈ 100 (see chapter 6 as well as section 10.3.3). Furthermore, the relative grid resolution
in the volume of the swirler channels is kept constant between the swirler stages in order to
avoid mass flux imbalances (see chapter 7 for details). The second important area of high grid
resolution is located in the pilot and main bowl, stretching outwards in areas where the main
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Figure 9.7: Staged premixing swirler, transparent view with highlighted swirler channels.

Mesh type unstructured, hybrid
Cell types tetraedrae (domain volume)

prisms (domain boundary, regions intended for wall-functions)
pyramids (link between prisms and pure tetra regions)

Number of grid nodes 1 619 357
Number of grid cells 8 540 311
Number of boundary nodes 186 367

Table 9.1: Mesh parameters

shear layers between the counter-rotating swirler stages or between the high-velocity regions and
recirculation zones are located. These refinements were adapted successively to accomodate the
shear layers over separated boundary layer zones (see chapter 10). Finally, the grid is refined
in proximity of the cooling films. Here, the meshing parameters are determined at the creation
of the surrogate geometry used in this area to avoid very small-scale geometrical features (see
section 7.3 for details of this method).

Grid refinement is significantly relaxed downstream of the high-shear regions at the injector exit
as well as inside the plenum. Although resolution inside these zones is insufficient for a proper
LES, this coarsening is needed to render the simulation feasible. The penomena resolved in
these zones are therefore limited to very large scale motion (like the central recirculation zone)
or acoustics effects in the case of the plenum.

The only refinement related to the two-phase simulations is a local refinement around the multi-
point injection. Due to the artificially enlarged injection zone (see sections 8.2.3 and 11.2.1), the
resulting cell sizes are close to the surrounding near-wall resolution. The primary spray regions
are already sufficiently refined due to the needs of the gaseous phase. The same mesh is used
for all calculations presented in this study, both gaseous and two-phase, regardless of the liquid
phase approach (EL or EE). Global parameters of this common mesh are summarized in table
9.1.
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10.1 Introduction

This chapter presents the purely gaseous flow in the TLC configuration. The computations
carried out in this context serve two main purposes. The first is to establish a correct repre-
sentation of the gaseous flow field used for subsequent two-phase flow simulations. The second
goal is to apply and validate the developments regarding wall-modeling (chapter 6) and pressure
drop prediction (chapter 7).

The operating conditions of the experiment at ONERA Fauga-Mauzac [82] mimic a partial
load regime of an aero-engine: The chamber is pressurized at 4.37 bar and the air entering the
configuration is pre-heated to 473K. The same operating conditions are used for the two-phase
flow described in chapter 11.

10.2 Computational setup

All simulations presented here use the same computational grid, presented in figures 9.6 and
9.7. This grid discretizes the computational domain that has undergone a number of adaptations
compared to the real geometry, described in section 9.4.1.

The boundary conditions applied to the gaseous flow are summarized in table 10.1. Inlet and
outlet conditions are of characteristic (NSCBC [114]) type. The wall boundary conditions vary

191
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Boundary conditions

Plenum inlet Characteristic inlet condition
Collar perforations Characteristic inlet condition
Outlet Supersonic outlet condition
Plenum walls Isothermal no-slip condition
Surrogate geometry of cooling films isothermal no-slip condition
Exit nozzle walls Isothermal slip walls
Swirler and chamber walls Isothermal wall functions (no-slip formulation)
Detached regions of the main swirler stage adiabatic no-slip walls (see fig. 10.1)

Table 10.1: Boundary conditions of the gaseous flow

Plenum inlet

Mass flux 0,365 kg/s
Temperature 473 K

Collar perforation

Mass flux 0,012 kg/s
Temperature 473 K

Walls

Wall temperature 473 K

Table 10.2: Boundary values, gaseous flow

depending on the zone considered. In regions with attached, turbulent boundary layers, isother-
mal wall-functions in the no-slip formulation (see chapter 6) are used. No-slip conditions are
applied in detached regions of the flow (see figure 10.1) because basic assumptions of the wall-
modeling approach do not hold there. No-slip conditions are also used for the surrogate geometry
of the cooling films. Finally, slip-wall conditions are applied at the nozzle as they reduce the
strain (near-wall gradients) on the numerical scheme. Corresponding boundary values are given
in table 10.2.

No-slip conditions 

in detached regions!

Figure 10.1: Schematic of the zones in detached regions where no-slip conditions are applied instead of
wall functions.

The calculation is run with both the Lax-Wendroff and the TTGC scheme. All run parameters,
in particular artificial viscosity coefficients, are identical in both cases. The most important
numerical parameters are listed in table 10.3.
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Numerical scheme Lax Wendroff (case 1) TTGC (case 2)
Scheme spatial precision 2nd order 3nd order
Scheme temporal precision 2nd order 3nd order

SGS model standard Smagorinsky

Artificial viscosity Colin sensor [32]
2nd order coefficient 0.1
4th order coefficient 0.023

Table 10.3: Numerical parameters used in the gaseous simulations

10.3 Results

The discussion of the gaseous flow is divided in three parts: first, instantaneous results are
used to describe important flow features, which is extended to averaged properties in the second
section. The objective of the third part is a quantitative evaluation of the results by comparison
to experimental data. It also includes indicators for the quality of the simulation approach.
Note that the flow topology is discussed entirely at the example of Lax-Wendroff results (case 1).
TTGC results (case 2) are included in the third, quantitative section.

10.3.1 Instantaneous flow topology

The key flow features are schematized in figure 10.2, which shows field of axial velocity on the
mid-plane, including annotations: inside the injector main bowl, the flow quickly detaches from
the outer walls but remains closely attached to the inner ones (the separator between main-
and pilot stage). This boundary layer detachment is an important detail of this particular sim-
ulation. A LES with basic wall functions cannot be expected to predict detachment and it is
therefore crucial to understand the flow phenomena at hand to carefully adapt the wall treat-
ment accordingly.

Typical for swirled flows, the topology inside the chamber is characterized by a large, central
toroidal recirculation zone (CTRZ) [134], [36]. The bulk of the high velocity zones enclosing this
recirculation zone is created by the main swirler stage through which 90 % of the total mass
flux passes. This flow is strongly swirled and follows approximately the envelope of a cone after
entering the chamber. This conical shape is partly due to the curved walls guiding the flow into
this direction, and partly due to the swirling movement itself.

The detached flow on the outer swirler walls creates zones of strong shear at the border of
the separation bubble, which require fine meshing (insufficient resolution leads to premature
re-attachment). As all of the three swirler stages are counter-rotating with respect to the neigh-
bouring ones (which can be observed on the field of tangential velocity in figure 10.3), shear
layers also develop downstream of the separators between stages. These shear layers can be
visualized through vorticity, shown in figure 10.5. The magnitude of the vorticity (fig. 10.5 left)
highlights the said high-shear zones but also a zone of strong vortical activity inside the pilot
bowl. The y-component (normal to the mid-plane considered, fig. 10.5 right) allows to identify
the sign of the vorticity component (‘direction’ of shear) in the different shear layers.

The particular design of the TLC configuration, and specifically the introduction of an inter-
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Central recirculation zone!

Shear layers (zones of high 

resolution requirement)!

Detached boundary layer!

Central PVC! Central Central 

De

Figure 10.2: Instantaneous axial velocity field on the mid-plane with annotations to highlight key features
of the flow field

Figure 10.3: Instantaneous tangential velocity field on the mid-plane

mediate, counter-rotating swirler between the main and pilot stages aims at promoting quick
mixing inside the swirler. Here, mixing relies on the generation of turbulent structures, which
can be visualized by iso-surfaces of the q-criterion [69, 57], shown in figure 10.6. It is defined as:

Q =
1

2
(SijSij −QijQij) > 0 (10.1)

where Sij is the rate of strain tensor (equation 2.18) and Qij is the vorticity tensor

Qij =
1

2

(
∂uj

∂xi
− ∂ui

∂xj

)
(10.2)



10.3. RESULTS 195

Figure 10.4: Instantaneous radial velocity field on the mid-plane

Figure 10.5: Absolute value (left) of vorticity on the mid-plane y = 0, as well as the vorticity component
perpendicular to this plane (right).

Due to the complexity of the flow field, the q-criterion is presented separately for the pilot-
and main stages. All structures outside of the zone considered are blanked for clarity. The
predominant coherent structures are created as longitudinal vortices from the trailing edge of
each swirler guide vane. In the pilot swirler, these structures are convected through the nar-
rowest section and are sustained for a short distance along the CTRZ before losing intensity. In
the main swirler stage, the same edge-vortex type of structures is observed. These longitudinal
structures (relative to the local direction of flow) remain visible until the onset of boundary
layer separation where they are quickly overwhelmed by transverse structures, created by vortex
rollup in the shear layer above the separation bubble.
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Zone 

considered!
Zone 

considered!

Figure 10.6: Iso surfaces of the q-criterion. Left: iso-surface at 1.2 109 in the main swirler stage (A
cylindrical part that encloses the pilot stage as well as all structures behind the mid-plane have been
blanked, see schematic below). Right: iso-surface at 3.5 109 in the pilot stage. All structures outside of a
central cylindrical region have been blanked.

This interaction of longitudinal structures with the separation region can also be observed on
the axial velocity fields on several transverse cross-sections through the injector, shown in figure
10.8. As presented in figure 10.7, four planes x = const. are extracted at different positions:
the first one is located at the exit of the main stage swirler, while the last one is located in
the chamber near the upstream wall. On the first plane, the wakes of the main swirler vanes
can be distinguished. These wakes with their lower axial velocities form the onset of boundary
layer separation (marked by negative axial velocities) that grows on the second and third plane,
while the flow between the wakes remains attached longer. On the third plane, the boundary
layer is almost completely separated and shows strong deformation created by the rollup of the
longitudinal vortices. After entering into the chamber (fourth plane), the cone-shaped flow from
the main swirler has already undergone strong radial deformation. As an additional observa-
tion, cooling films are clearly visible in the chamber (plane 4), which illustrates the actual flow
generated by the ‘surrogate geometry’ (see chapter 7). Furthermore, it is interesting to note the
central recirculation zone, which stretches without interruption through the narrowest section
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into the pilot bowl.

1 ! !2 ! !3 ! !4!

Figure 10.7: Location of the eight transverse cross-sections shown in figure 10.8.

Another typical vorticial structure is the so-called ‘precessing vortex core’ (PVC) that is char-
acteristic for swirling flows in combustion chambers [127] [134] but also for vortex breakdown
in general [56] [86]. In the TLC configuration, a central vortex can be observed, but it is not a
PVC in the classical sense. A pressure iso-surface allows to visualize a strong central vortex in
this region, which can be considered the onset of a PVC. Figure 10.9 shows a sequence of such
iso-surfaces. It appears that this vortex is at least performing a fluctuating lateral movement
that could be interpreted as a precessing behaviour. However, in the narrowest section of the
pilot bowl, this vortex is overwhelmed by random turbulence that has been found to be quite
intense in this area (see figures 10.6 right and 10.14). Inside the actual chamber, no evidence
for a consistnent vortex could be found.

10.3.2 Time-averaged results

This section discusses averaged quantities of the flow field. Figure 10.10 shows pseudo-streamlines,
created from the averaged velocity field on the mid-plane of the injector. Some flow features
appear more clearly than in instantaneous views. In addition to the CTRZ, two recirculation
zones can be seen in the upstream corners of the chamber. Inside the pilot bowl, also shown in
an enlarged view in the lower part of figure 10.10, a pattern of two counter-rotating, toroidal
recirculation zones encloses the cone on which the pilot injector is mounted. Despite the ad-
vanced state of convergence, the averaged flow field shows some asymmetry, like for instance the
centerline of the CTRZ or the flow pattern in the upstream corners. This can be attributed to
the flow meeting obstacles in the plenum before entering the swirler but also the interaction of
the swirled primary flow with a chamber of a square cross-section.

Averaged flow-fields of axial, tangential and radial velocity components are presented in figures
10.11, 10.12 and 10.13 respectively. Compared to the instantaneous flow fields, they show ad-
ditional features: one is the elongated extension of the CTRZ that reaches up to the tip of the
pilot injector cone. This feature (also mentioned in section 10.3.1) can be distinguished on the
field of mean axial velocity (figure 10.11).
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(1) (2)

(3) (4)

-60!-43!-27!-10! 7! 23! 40! 57! 73! 90!107!123!140!

Figure 10.8: Field of axial velocity shown on four transverse cross-sections overlaid with an iso-line of
u = 0 to mark recirculation regions. The positions of the planes are shown in figure 10.7.

Another detail is the asymmetry between the shapes of the upper and lower separation bubbles
inside the main injector bowl (best visible in figure 10.13). This is a visual effect that is due
to the flow field being presented on straight cross-sections through a swirling flow, which means
that the primary flow is crossing the plane at approximately a 45 degree angle. The periodic
velocity maxima and minima near the wall correspond to the wakes of the swirler vanes crossing
the mid-plane (see also figure 10.8).

A last point to be noted is a numerical artifact that appears on the averaged fields as point-
to-point oscillations near the lateral walls of the chamber. These wiggles are a result of the
link between tetraedral and prismatic elements in conjunction with the Lax-Wendroff scheme;
they are not observed on results obtained with the TTGC scheme. They are well-controlled in
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Figure 10.9: Series of instantaneous pressure iso-surfaces to visualize the precessing vortex core (PVC)
inside the pilot injector bowl. The ∆t between two images in the sequence is approx. 1.43 ms

Figure 10.10: Pseudo-streamlines of the averaged velocity field. Top: global view of the injector region.
Bottom: detail of the pilot bowl.)

regions of attached flow, such as the entire swirler except on the outer walls of the main stage.

The turbulent fluctuating energy is shown in figure 10.14. As can be expected from the instan-
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Figure 10.11: Mean axial velocity field

Figure 10.12: Mean tangential velocity field

taneous flow fields, there are three major zones of strong fluctuations: the shear layer over the
separated boundary layer, the shear layer between the high-speed zones exiting the main swirler
and the counter-rotating flow from the pilot stage and finally the narrowest section in the pilot
bowl. The latter region is also the zone with the highest fluctuating energy levels in the entire
configuration. This can be attributed to the acceleration (and thus stretching) of the turbulence
formed inside the pilot bowl, while it passes the narrowed part. As the pilot injector is placed
upstream of this region, a very efficient mixing can be expected here. Very low fluctuation levels
are observed in the region of the multipoint injection. Therefore, significant turbulent mixing
of the spray and evaporated fuel can only be expected after the spray has entered the chamber.
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Figure 10.13: Mean radial velocity field

Figure 10.14: Turbulent fluctuating energy k [m2/s2]

10.3.3 Comparison with experimental data / LES quality

The accuracy of the results is evaluated by comparing them to experimental data. In this case,
measurements of mean and fluctuation velocity profiles in the purely gaseous flow are avail-
able. These profiles are situated at three positions at 10, 15 and 30mm downstream of the
swirler exit (see figure 10.15). Additionally, another set of simulation results obtained with the
third order accurate TTGC scheme (as opposed to the 2nd order Lax-Wendroff scheme used for



202 CHAPTER 10. GASEOUS FLOW RESULTS OF THE TLC CONFIGURATION

the baseline case) is considered. The results are presented in figure 10.16 for the averaged ax-
ial and tangental profiles as well as in figure 10.17 for the axial and tangental fluctuation profiles.

Figure 10.15: TLC configuration - overview of the measurement lines at 10mm, 15mm and 30mm.

Agreement with experimental data is overall very good for both numerical schemes. The mag-
nitude of the main velocity peaks, axial and tangential, is reproduced with high accuracy on all
measurement planes. The positioning of the velocity peaks deviates slightly from the experiment,
but the discrepancies are small and localized (there is no systematic over- or under-estimation
of the opening of the flow cone). This is most probably due to slight fluctuations in the angle of
the main high-speed flow zones (visible also in figure 10.8), which have relatively large timescales
that may not be statistically converged on these profiles.
The secondary peaks that are created by the cooling films are well reproduced in location, while
there is a sligt dropoff in magnitude compared to the experiment. This is evidence for the ef-
fectiveness of the surrogate geometry approach employed for these films.
Finally, judging from time-averaged results, there is no difference between the LW and TTGC
results that would point to an advantage of either scheme.

The fluctuation profiles, shown in figure 10.17, also reveal good agreement with experimental
results. The slight discrepancies in the lateral positioning of the main peaks are in coherence
with the ones observed on the time-averaged profiles. In this case, however, the main peak’s
magnitude is slightly over-estimated for axial and tangential fluctuation components, at least on
the first two measurement planes. As the prediction of the mean velocity profiles is correct, this
hints at slight lack of grid resolution in the high-shear regions. The only consistently observed
difference between the performance of the numerical schemes is found on the most downstream
profile. Here, outside the zone of the main fluctuation peak, the RMS levels of the LW scheme
drop slightly below the experimental profiles, while agreement for the TTGC scheme remains
very satisfying. While the level of the main fluctuation peak is constantly sustained by energy
from the main flow regions that both schemes predict very well, the more sideward zones are
filled with decaying turbulence that is more rapidly dissipated by the LW scheme.

The instantaneous flow field has been extensively discussed in section 10.3.1, however, the anal-
ysis presented there is based on LW results only. In order to give the reader an impression of
the qualitative differences a higher order scheme effects in the results, a comparison of instanta-
neous axial velocity is given in figure 10.18. While the overall topology of the flow field remains
very similar, which is to be expected in view of the quantitative comparison discussed before,
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Figure 10.16: Mean velocity profiles. Axial component (upper diagram) and tangential component (lower
diagram). Comparison of LES results obtained with the LW scheme (—), the TTGC scheme (- - -), and
experimental data (◦ ◦ ◦)

the smaller scale of resolved turbulent structures shows the effect of the higher order scheme
(TTGC).

The previous findings already suggest that the grid resolution of the LES is sufficient. Another
indication of LES quality is given by the ratio of subgrid-scale to laminar viscosity, shown in
figure 10.19 for both LW and TTGC simulations. Zones of very high SGS viscosity, marked as
black regions due to the saturated greyscale palette are visible. These zones are mainly located
well inside the chamber where the grid is coarsened (necessary to limit the high number of grid
points). Note that although this is acceptable in the present case, reactive simulations will make
further refinement necessary because of the flame that can be expected to extend into this zone.
Other regions with elevated viscosity ratios can be found in locations with high shear. This is
a consequence of the standard Smagorinsky model, which is known to over-estimate SGS vis-
cosity in zones of pure shear. The choice of using the Smagorinsky model instead of the WALE
model [104] (which is better adapted to zones of shear) lies in the unfavourable behaviour in
combination with wall-functions that is described in chapter 6. To limit the negative impact of
the Smagorinsky models in free shear layers, the grid resolution is increased in all critical zones
in order to keep the viscosity ratio below a value of 50.
In zones where turbulence is more or less isotropic like in the separation bubbles or the pilot
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Figure 10.17: Velocity fluctuation profiles. Axial component (upper diagram) and tangential component
(lower diagram). Comparison of LES results obtained with the LW scheme (—), the TTGC scheme
(- - -), and experimental data (◦ ◦ ◦)

bowl, the viscosity ratio is higher for TTGC simulations. This is consistent with previous work,
for instance by Lamarque [80] or Selle [134], who argue that this is a sign of the lower numerical
dissipation of the TTGC scheme. In fact, a scheme with low numerical dissipation will preserve
more energy in the resolved scales that has to be dissipated by the turbulence model.

It has been seen that the interaction of the flow with walls plays an important role in this
configuration. Furthermore, certain criteria for ideal operating conditions for the wall-function
approach adopted in this study have been determined in chapters 6 and 7. To see if these criteria
are actually met in the full-scale application case, figure 10.20 presents a cut-away view of the
narrowest parts of the swirler channels, shaded by the local y+-value at which the first grid
point is placed that should be in the logarithmic layer. Apart from visible wake regions behind
the guide vanes, the values of y+ are of the order of 100 for the outer channels, which can be
considered ideal with respect to the wall model. In the inner channels, the level is generally
lower, of the order of 50, which is well within a proper working range of wall-laws. In chapter
7, it was found that even higher near-wall grid resolution in narrow channel-like geometries
should be sought when the prediction of pressure drop is to be improved. In the present case,
the necessity of limiting the number of grid points motivated the choice to stay within a more
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Figure 10.18: Instantaneous axial velocity fields obtained with LW (left) and TTGC (right).
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Figure 10.19: Instantaneous viscosity ratio field, overlaid with three iso-contours between 0 and 50 for
LW (left) and TTGC (right).

conservative range of grid spacing inside the swirler.
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Figure 10.20: Distance in wall units of the first off-wall grid point (y+) for the instantaneous flow field.

Conclusion

Results for the purely gaseous flow show an overall good performance of the LES approach. The
second-order accurate Lax-Wendroff scheme performed equally well as the third-order TTGC
scheme on the grid employed here, which is an important fact concerning the global strategy of
this work (the use of the PSI scheme for the Eulerian two-phase flow simulations, which can at
present only be applied in conjunction with the Lax-Wendroff scheme for the gas).
In addition, the equally good performance of both schemes highlights that a LES may rely on
other factors than the accuracy of the scheme.

In the present case, the links between the determining factors for the success of the global ap-
proach are quite complex: the importance of wall-bounded flows and the associated Reynolds
numbers led to the choice of wall-functions to model the turbulent boundary layers. Wall-models
are not well-adapted to predict boundary layer separation, which is, however, an important fea-
ture of the flow considered, making the selective application of pure no-slip boundaries necessary
in carefully chosen areas. Furthermore, the interaction of the wall-model with the WALE model
has proven to be problematic, which led to the choice of the standard Smagorinsky SGS tur-
bulence model. The latter made the refinement of the grid necessary in order to improve the
performance in shear layers, where the Smagorinsky model is known to over-predict subgrid
shear. This refinement is applied in particular focus regions of separated boundary layers and
the main shear layer between the swirler stages. As a result, this combination of circumstances
leads to a mesh fine enough for the LW scheme to deliver results that are on par with the TTGC
scheme in terms of first and second order statistics in comparison to measurement.
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11.1 Introduction

The purely gaseous simulation of chapter 10 is now extended to a two-phase flow. This includes
the findings of chapter 8 with respect to spray injection but also regarding the choice of the
numerical scheme.
The central aspect of this chapter is a direct comparison between the mesoscopic Euler-Euler
and the Euler-Lagrange approaches. This comparison is as direct as possible, using an identical
solver for the gaseous phase, an identical grid, identical models for the liquid phase and identical
boundary conditions. A similar comparative study (involving an industrial-scale application) is
the work of Senoner et al. [137] where an aeronautical injector with a hollow cone type fuel
spray is characterized at atmospherical conditions. The aeronautical injector considered here
is a step forward in geometrical complexity and towards realistic (i.e. pressurized) operating
conditions.
Two-phase flow simulations for the same swirler geometry have been performed by Lavedrine
[81] and Simsont [138], both using a EE method and by Bertier [14] using a Lagrangian ap-
proach including secondary breakup. Examples for simulations in similarly complex geometries
are found in the work of Apte et al. [7] and Moin et al. [99] who used an EL approach including
a secondary breakup model at atmospheric as well as pressurized and reactive conditions. The

207
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inclusion of a multipoint injection, however is limited to the work of Bertier [14].

In the present study three simulation cases are considered. The first is an Eulerian simulation and
thus locally monodisperse. The capability to handle polydispersion is a central advantage of the
EL approach over the mesoscopic EE formulation. On the other hand, a comparison in identical
conditions necessitates equivalent boundary conditions, i.e. the injection of a monodisperse
spray. Therefore, the EL simulations are performed in two versions, the first with a monodisperse
injection as a benchmark case to be compared to EE and the second using a polydisperse injecton
to independently assess the contributions of polydispersion.
The operating point is based on available measurement data [82], which include several cases
differentiated by the value of liquid mass flux. The case with 10 g/s is retained because its
dataset is most complete, with measurements being available at two downstream positions. On
the gaseous side, operating conditions are identical to the ones of the gaseous flow (chapter 10),
i.e. a camber pressure of 4.37 bar and air entering the plenum pre-heated to 473K. Under these
conditions, one can expect to observe droplet evaporation inside the chamber.

11.2 Computational setup

Simulation parameters of the underlying gaseous flow are identical to the ones used in the
Lax-Wendroff case of chapter 10, to which the reader is referred for detailed information.

The momentum flux ratio of a single injection hole takes a value of q = 0.2, which is below
the cases considered in the study of the liquid jet in a crossflow (chapter 8). Among the find-
ings of this chapter is the negligible influence of the liquid column region for value of q < 2.
The modified law for drag presented in chapter 8 is therefore not applied in the present case.
Another important aspect is the choice of the droplet diameter at injection. For the sake of
comparability, the EE and the monodisperse EL simulation share a single injection diameter.
From available experimental data, such an injection diameter cannot be deduced in a direct
way. In preliminary studies by Simsont [138] and Jiménez [73], good results have been obtained
with an injection diameter of 30µm, which is retained in the present work. In comparison with
experimental data, this diameter lies between the Sauter mean diameter and mean diameter on
the first measurement position, where diameters are still close to their injection value.

For the polydiperse case, in addition to a characteristic diameter, a droplet size distribution
that results from primary and secondary breakup near the injection is needed. The estimation
of such a distribution is to based on measurement data by Becker et al [11], who considered a
range of Weber numbers for the jet-in-crossflow experiment that include conditions encountered
in the TLC configuration. These authors note that the characteristic diameters of the spray
only weakly depends on the momentum flux ratio q but mainly on the cross-flow momentum
ρu2

Bulk. Evidence for this can be found in figure 11.1. Another finding is that the maximum and
minimum diameters evolve similarly to the SMD, with the diameter variance remaining more
or less constant. Based on these obervations, the SMD for the TLC configuration is determined
from the correlation proposed by Becker et al. [11]:

SMD = 429 (ρu2
Bulk)

−0.24 (11.1)

The crossflow velocity in the TLC configuration in direct proximity to the injection point is
estimated at 100m/s from the gaseous flow in chapter 10. The diameter variance is kept at the
value 8.351µm obtained by fitting a log-normal distribution to experimental data for the case of
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Figure 11.1: Dependence of characteristic droplet diameters on the crossflow momentum and the mo-
mentum flux ratio q. Diagram from Becker and Hassa [11].

q = 6 (see chapter 8 for details). The resulting log-normal distribution is shown in figure 11.2.
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Figure 11.2: Log-normal distribution of the Lagrangian polydisperse case.

The simulation parameters that are common to all cases considered here are presented in table
11.2 (section 11.6). The liquid fuel used for all simulations is a surrogate for kerosene. Its most
important properties are listed in table 11.3 (section 11.6).

11.2.1 Euler-Euler computational setup

Simulation parameters specific to the EE approach are summarized in table 11.4 in section 11.6
at the end of this chapter. Based on the assessment of the performance of different numerical
schemes in the liquid jet in crossflow testcase (chapter 8), the scheme used for the case presented
here is PSI, which functions in conjunction with the Lax-Wendroff scheme for the gas phase.

The Eulerian injection parameters are shown in table 11.6 (section 11.6). Similar to the strategy
adopted in the liquid jet in crossflow case, the liquid phase inlet condition is applied in an area
of five times the diameter of the original injection orifice. This way, the liquid volume fraction
at injection is lowered from αl = 1 (the plain jet) to αl = 0.04, which effectively prevents most
stability problems for the numerical scheme.
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11.2.2 Euler-Lagrange computational setup

Euler-Lagrange simulation parameters are shown in table 11.5 at the end of this chapter (section
11.6). Due to the very large number of droplets present in the simulation, the so-called parcel
approach is employed for the Lagrangian cases. Here, 10 physical particles are grouped into a
so numerical particle or parcel. The resulting particle number is still of the order of one million
and the resulting spray is still rather homogeneous in most areas, with sufficiently high numbers
of particles per cell in critical areas to prevent negative effects related to this grouping.
Detailed summaries of injection parameters for the monodisperse case (table 11.7) as well as the
polydisperse case (table 11.8) can be found in section 11.6.

11.3 Results

The presentation of the results is divided into three parts. First, a phenomenological discussion
of the two-phase flow is based on instantaneous results. This part is followed by a quantitative
analysis focused on the comparison to experimental data. Finally, properties of the spray that
are related to evaporation are considered in more detail.
Alongside the discussion of the observed two-phase flow phenomena, the comparison of the
different methods is an important aspect. Here, EE results are juxtaposed with EL results with
monodisperse droplet injection because they differ only in terms of the simulation approach
but not in terms of boundary conditions. A second comparison is between monodisperse and
polydisperse EL results in order to study the effects attributed to polydispersion.

11.3.1 Instantaneous two-phase flow topology

A global view of the polydisperse Lagrangian simulation is presented in figure 11.3. The result is
an instantaneous image, showing all numerical particles (or parcels) at an instant in time where
the spray is well-established. Near the multipoint injection, the spray plumes from the 24 injec-
tion orifices can be distinguished. After entering the chamber, these droplet streaks are quickly
broken up in a diffuse spray that follows large scale turbulent motion. Clearly, the cone-shaped
main droplet stream is impacting majoritarily onto the lateral walls. At this location, a certain
stagnation of droplets can be observed. Part of this deposition is convected downstream, with
a more and more sparse portion of the spray extending to the chamber exit. Another part goes
in the reverse direction and is entrained into the lateral corner recirculation zones. As will be
seen in the following, many droplets enter the CTRZ and remount into the swirler bowl.

These findings are confirmed by plots of particle trajectories, shown in figure 11.4 (left) for the
polydisperse EL case. On the right side of figure 11.4, pseudo-streamlines of an instantaneous
liquid phase velocity field are shown. Note that pseudo-streamlines have no direct physical
meaning for an unsteady flow and are not equivalent to the (true) particle traces in EL. For
clarity, only one trajectory is selected per injection point. Most trajectories rebound on lateral
walls but others align with the airflow before contact is made. EL trajectories with a very steep
impact angle tend to be entrained into the lateral recirculation zones, which is not observed on
the Eulerian pseudo-streamlines.
An interesting detail is the tendency of the spray plumes generated by two or more adjacent
injectors to merge after a certain distance. This effect can be observed very clearly in the EL
results but also on the iso-surface of liquid volume flux (figure 11.5) that allows to visualize the
spray boundaries in the EE results. This feature is not understood in full detail but it appears
to be related to longitudinal vortices created by the swirler channels (see chapter 10), where



11.3. RESULTS 211

Figure 11.3: Isometric view of the particle field in the chamber, polydisperse case. Displayed particles
are numerical particles (parcels) of 10 physical particles each, represented by spheres that have been scaled
for better visibility in printed form. Instantaneous value of physical particles in this view: approx. 11.2
million.

several spray streaks are entrained by the same vortical structure.

Another way of presenting Lagrangian results, which also allows to better compare them to
Eulerian results shown in longitudinal sections, is to isolate a slice of particles that corresponds
to a neighbourhood of 5mm to either side of the cross-section. The first comparison of this type
is shown in figure 11.6. Here, the focus is on the general distribution of the spray, visualized
by iso-contours of the liquid volume flux to highlight spray boundaries in the EE case. For
EL, each numerical particle is represented by a black dot. The two images show a comparable
spray topology – the same opening angle, a wall-impact at roughly the same location and the
bifurcation of parts of the spray heading upstream, while the majority of it separates again from
the wall downstream of the impact region. Inside the swirler, there is little or no interaction
between droplets and walls. Instead, following a short stretch or movement parallel to the wall
after injection, the droplet stream detaches, which is presumably driven by centrifugal forces as
the gaseous flow remains attached.
In general, EE results appear to be more diffuse with the spray almost reaching the opposite
wall inside the swirler, whereas for EL, the spray plume remains relatively compact. Of course,
it is not clear if either result is more physical than the other because EE is subject to additional
diffusion from the scheme and artificial viscosity, while EL suffers from the lack of subgrid-scale
turbulent diffusion, which is enhanced by the use of the parcel method. Differences between
poly- and monodisperse results, as they can be observed in figure 11.8, mainly concern a more
even and more random distribution of droplets for the polydisperse case. This occurs naturally
as polydisperse trajectories are more rapidly separated due to varying Stokes numbers right after
injection. In the monodisperse case, streaks and groups of droplets are less diffuse and, while
heavily deformed by large-scale turbulence, most are still clearly delimited even while remount-
ing in the recirculation zone.

The liquid phase velocity field is presented in figure 11.7. For EE (left), it shows the mesoscopic
spray velocity overlaid with an iso-contour of the small-diameter limit at which evaporation
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Figure 11.4: Left: polydisperse EL case, particle trajectories (selection of one single particle per injector.
Right: EE case, pseudo-streamlines of an instantaneous liquid phase velocity field.

Figure 11.5: Close up views of the multipoint injection. Left: isometric view of the (numerical) particle
field in the chamber, polydisperse case. Right: EE results, iso-surface of the liquid volume flux to visualize
the spray boundary.

is frozen. Outside this line, the velocity field has no physical meaning. For EL (right), the
mesoscopic axial velocity field is reconstructed by averaging over all particles present in a given
control volume and distributing the values to the grid nodes (see equation 3.6). Both EE
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Euler-Euler Polydisperse Euler-Lagrange

Figure 11.6: Comparison of EE results with polydisperse EL results. Left: iso-contours of liquid volume
flux Φl[m

3/(s m2)] on the plane y = 0. Right: numerical particles in a 5 mm neighbourhood of the plane
y = 0.

and EL fields show a flow topology and velocity levels similar to the gaseous phase. Local
zones of negative axial velocity evidence droplets moving upstream into the central and lateral
recirculation zones.

Euler-Euler Monodisperse Euler-Lagrange

Figure 11.7: Comparison of EE results with monodisperse EL results. Left: field of instantaneous liquid
phase axial velocity ul [m/s] on the plane y = 0. Right: field of instantaneous liquid phase axial velocity
up [m/s] on the plane y = 0. Mesoscopic velocity reconstructed from Lagrangian particles, up = 0 in
zones without droplets.
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11.3.2 Evaporation phenomena

Droplet diameter evolution

Comparisons of the spatial distribution of droplet diameters are shown in figures 11.8 and 11.9 for
EL results. As it is difficult to visualize droplet properties from Lagrangian results on a printed
medium, it has been chosen to show parcels, enlarged to four pixels and shaded with a greyscale
value representing their diameter. While this method is visually appealing and instructive,
retreiving quantitative information on diameter from the greyscale values is difficult. Therefore,
the reader is referred to figures 11.10 and 11.12 for a more precise analysis of the diameter
evolution.

Polydisperse Euler-Lagrange Monodisperse Euler-Lagrange

Figure 11.8: Comparison of polydisperse and monodisperse EL results. Left and right: particles in a
5 mm neighbourhood of the plane y = 0, shaded with the particle diameter dp [m].

In both juxtapositions, the trends are very similar with diameters remaining quite close to the
injection value until droplets reach a zone where they stagnate or move at reduced speed. This is
due to the evaporation timescale that, despite the pre-heating, is larger than the time a droplet
usually stays in the main, high velocity flow region. In the polydisperse EL case, high diameter
particles can be found relatively far downstream, which is a consequence of the largest droplets
generated at the injection having a prolonged evaporation timescale and higher inertia, which
keeps them from being caught in a recirculation zone. Inversely, droplets at the lower end of the
distribution can be expected to disappear very rapidly and to be entrained into recirculation
regions very quickly.
In both the monodisperse EL case and the EE results, droplets quite homogeneously reach
diameters lower than 10µm after having entered the lateral or central recirculation regions. In
the EE case, evaporation processes are stopped at a diameter of 5µm, a treshold that is marked
by a white iso-line. All regions of the spray having this diameter are passively convected, thus
having no physical meaning.

A different perspective on droplet diameter evolution is to follow the trajectories shown in figure
11.4. Figure 11.10 shows square dimensionless droplet diameters over time, comparing results
from the polydisperse and monodisperse simulations. This representation allows to identify
approximately linear regions, which signify that the diameter evolution follows the d2-law (where
the square of the diameter evolution is linar in time) that results from the evaporation model
for the particular case of a constant equilibrium droplet temperature (or wet bulb temperature,
see section 4.3.3). Initially, the diameter evolutions do not follow the d2-law because of a rapidly
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Euler-Euler Monodisperse Euler-Lagrange

Figure 11.9: Comparison of EE results with monodisperse EL results. Left: droplet diameter field
dl [m] on the plane y = 0, overlaid with the iso-contour marking the clipping diameter. Right: numerical
particles in a 5 mm neighbourhood of the plane y = 0, shaded with the droplet diameter dp [m].

changing droplet temperature. Two observations can be made: the influence of transient droplet
heating is quite significant in both cases as it is in effect during least 20 % of a droplet’s lifetime.
Furthermore, the spread between temperature evolutions is visibly larger in the polydisperse
case.
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Figure 11.10: Temporal evolution of the square, dimensionless droplet diameter, d2

p/d2

p,0, along 24
representative trajectories (see figure 11.4). Left: polydisperse EL case, right: monodisperse EL case.

To compare with Eulerian the spatial evolution of the diameter is considered. Figure 11.11
shows a single pseudo-streamline of the liquid phase velocity, which is used to approximate the
trajectory a hypothetical particle could follow. Along this pseudo-trajectory, Eulerian droplet
diameters and liquid phase temperatures are probed at equidistant sample locations. The result,
along with data from the 24 monodisperse EL trajectories, is traced over the x-coordinate (i.e.
the chamber main axis), as shown in figure 11.12. The EE curve is similar to the trajectories
from EL data. Note that this comparison is not unambiguous, as a steep curve can result
from a steep trajectory or rapid evaporation. There is, however a certain envelope of possible
diameter evolutions to which the Eulerian pseudo-trajectory should be compared. This envelope
is respected by the Eulerian results.
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Figure 11.11: Placement of the pseudo-streamline along which the EE diameter and liquid temperature
field is probed to obtain data approximately comparable to the evolution along a Lagrangian particle
trajectory.
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Figure 11.12: Continuous lines (—): evolution of the dimensionless droplet diameter, dp/dp,0, over
the axial distance x, traced for 24 representative trajectories (see figure 11.4), monodisperse EL case.
Symbols (◦ ◦ ◦): EE results along the pseudo-streamline shown in figure 11.11.

Droplet temperature evolution

Droplet heat transfer is a key element in the evaporation process. As the liquid phase is injected
at 300K and the airflow is preheated to 473K, the onset of evaporation will be marked by a
substantial heating of the spray, until it reaches an equilibrium. This can be observed on all three
visualizations of the spray temperature (figures 11.13 and 11.14). Here, an initial zone of steadily
increasing temperature, from the injection points onwards and stretching approximately up to
the point of wall impact is followed by large regions of nearly constant temperature throughout
the volume of the chamber. This observation can be made in both, EL and EE results.

To allow a more quantitative view on the liquid phase temperature, its evolution is again dis-
played for 24 Lagrangian trajectories (figure 11.15). First, the temporal evolution of the poly-
disperse and the monodisperse case are compared. In both diagrams, an initial rise of droplet
temperature is followed by the settling at a common level around 410K, which is the equilibrium
or wet bulb temperature. It can be estimated by a 0D-calculation using the same evaporation
model as used in the full simulation (based on chapter 4). This calculation returns the wet bulb
temperature for a droplet in a non-evolving gaseuos environment. Here, the gaseous input values
have been estimated by evaluating the flow fields to a temperature of T = 460K and a fuel mass
fraction of YF = 0.01. The resulting equilibrium temperature takes a value of Twb = 412K.
This result can be compared to the results shown in figures 11.15 and 11.16. There is no single
equilibrium temperature but rather a range of approximately 5K in width, due to differences
in ambient conditions encountered by each individual droplet, but within this variation, there
is a good match with the estimated value. This is also true for the Euler-Euler results, which
are included in figure 11.16. Considering the wet bulb temperature is a good single measure
for evaluating evaporation processes because it is not obtained explicitly but by two disparate
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Polydisperse Euler-Lagrange Monodisperse Euler-Lagrange

Figure 11.13: Comparison of polydisperse and monodisperse EL results. Left and right: particles in a
5 mm neighbourhood of the plane y = 0, shaded with the droplet Temperature Tp [K].

Euler-Euler Monodisperse Euler-Lagrange

Figure 11.14: Comparison of EE results with monodisperse EL results. Left: droplet temperature field
Tl [K] on the plane y = 0, overlaid with the iso-contour marking the clipping diameter. Values outside
this contour are not physically valid. Right: numerical particles in a 5 mm neighbourhood fo the plane
y = 0, shaded with the droplet Temperature Tp [K].

parts of the model (heat and mass transfer) that reach an equilibrium. Obtaining very coherent
results using three different methods gives a certain level of confidence in the results, at least
with respect to the proper working of the same model in different frameworks.

The temperature evolution during the transition between injection and the equilibrium state
varies between the different trajectories in the EL simulatons (figure 11.15). Variations in the
monodisperse case are relatively weak and mainly due to droplets being exposed to fluctuating
ambient gas temperatures along their path. In the polydisperse case, variations are stronger
because additionally, the characteristic timescales for heat transfer differ with droplet diameter.
In order to include the Eulerian results into the comparison, information along the pseudo-
trajectory shown in figure 11.11 is traced over the axial distance x and compared to data from
the monodisperse Lagrangian trajectories. Again it has to be highlighted that this presentation
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can be ambiguous as a curve in this diagram is determined simultaneously by the shape of the
trajectory and the temperature change over time. Consequently, the main finding to be deduced
from the results shown in figure 11.16 is that equilibrium temperatures coincide. During droplet
heatup, temperature evolutions of Lagrangian and Eulerian results are very similar, with the
Eulerian curve remaining well inside the envelope created by Lagrangian data except for a brief
overshoot around x = 0.1m, which corresponds to the region of wall impact. The increase in
temperature is related to the use of isothermal walls: as the Eulerian spray does not elastically
rebound like the Lagrangian particles, it stays near the walls over a longer distance (see figure
11.4) where it encounters gaseous conditions close to the wall temperature.
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Figure 11.15: Temporal evolution of the droplet temperature, Tp, along 24 representative trajectories
(see figure 11.4). Left: polydisperse EL case, right: monodisperse EL case.
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Figure 11.16: Continuous lines (—): evolution of the droplet temperature, Tp, over the axial distance
x, traced for 24 representative trajectories (see figure 11.4), polydisperse EL case, right: monodisperse
EL case. Symbols (◦ ◦ ◦): EE results along the pseudo-streamline shown in figure 11.11.

An alternative way to study evaporation processes is based on histograms, obtained from a series
of sample locations that are visualized in figure 11.17. Particle data is recorded inside cubes of
5mm edge length, situated at an axial distance of 15mm from the injector exit (which corre-
sponds to the downstream measurement line as shown in section 11.3.3) at three different radial
locations. In order to accelerate the obtention of exploitable droplet numbers, a symmetrical
pattern with respect to the y and z axis is chosen. This method allows to analyze three regions:
the innermost, located at 10mm radial distance, is representative for long-lasting droplets that
have typically followed at least half a cycle of the central recirculation zone. The middle loca-
tion, at 30mm radial distance, captures the primary spray issued by the injector. The third
and outermost location at 50mm sees droplets stagnating near the wall or returning from the
lateral recirculation regions.

Histogram data is shown for the Lagrangian results only, comparing the monodisperse (figure
11.18) with the polydisperse case (figure 11.19). Droplets injected with a constant diameter of
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Figure 11.17: Placement of the sampling locations for histogram data in the y-z plane.

30µm in the former case retain both their diameter and the monodisperse character of the spray
at the 30mm sample location. Droplet temperatures have alerady broadened their distribution,
which is consistent with the findings from trajectory data (figure 11.15). A small histogram
peak located at the wet bulb temperature shows that a small number of droplets with medium
lifetime (which are heated but not yet significantly evaporated) are crossing this area. As their
diameter still is close to the initial vaue, it can be suspected that these droplets return directly
from rebounding off the wall and/or a short time of residence in the lateral recirculation zone.
Another indication for this is the presence of large diameter droplets at the outer (50mm)
location that have either partially or entirely heated to the equilibrium temperature and seem
to belong to the same medium-lifetime class. This kind of droplet is not observed at the inner
(10mm) location, where only completely heated droplets in various states of evaporation (but
all significantly lower than the initial diameter) are found. This type of droplet is also observed
at the outer location, which in both cases hints at large residence times in either recirculation
zone.
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Figure 11.18: Diameter and Temperature histograms of the monodisperse EL simulation. Samples taken
in a series of cubes at 15mm downstream location and 10mm (left), 30mm (middle) and 50mm (right)
lateral distance from the centerline. (see figure 11.17 for the exact arrangement).

For the polydisperse case (figure 11.19), the size distribution in the primary spray that is cap-
tured at the 30mm location is clearly apparent. It is accompanied by a broad distribution
of droplet temperatures, which is due to the different heating timescales of varying diameter
droplets. As in the monodisperse case, a small peak indicating droplets at equilibrium shows
the presence of medium-lifetime particles returning (or crossing) the primary spray region. In
a similar way, the outer sampling location presents a combination of large and small diameter
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droplets, majoritarily but not exclusively at the equilibrium temperature, which is most prob-
ably a combination of medium and long lifetime droplets. In the inner region, the findings
are identical with the monodisperse case with only long-lifetime droplets at diameters ranging
between ≈ 5µm and ≈ 25µm being present in this area.
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Figure 11.19: Diameter and Temperature histograms of the polydisperse EL simulation. Samples taken
in a series of cubes at 15mm downstream location and 10mm (left), 30mm (middle) and 50mm (right)
lateral distance from the centerline. (see figure 11.17 for the exact arrangement).

Interaction with the gaseous phase

Evaporation processes in the TLC configuration are characterized by strong inverse coupling
effects. The first is mass transfer, which alters the composition of chemical species present in
the chamber. Figures 11.20 and 11.22 show comparisons of fields of the source term of mass
exchange, Γ, as it is received by the gas phase. Differences between the polydisperse and the
monodisperse EL results are relatively small. The more random and more diffused droplet field
of the polydisperse case leads to a smoother distribution of source terms. In the monodisperse
case, local source term maxima are notably sharper. In the present application, these strong,
localized source terms are not critical. However, in reactive simulations where evaporation source
terms can be significantly stronger near a flame front, the numerical scheme for the gas phase
may be destabilized.

In the case of EE (figure 11.22 left), the source terms generated by the liquid phase are com-
paratively smooth, in particular inside the injector, where the Lagrangian results clearly allow
to distinguish between droplet streaks from individual injectors (in this plane, they are visible
as dots because the streaks are swirled and cross the plane at an angle), whereas the EE field
(figure 11.22 right) shows a nearly continuous distribution. The main features, i.e. strong and
local source terms inside the injector, diffused and weak mass transfer where droplets begin to
turn while entering the CTRZ and again stronger zones where droplets stagnate near the wall,
agree quite well between both formulations.

The field of fuel vapour produced by evaporation is shown in figures 11.21 and 11.23. At the
positions where source terms are strong, i.e. right after the injection, the resulting levels of fuel
vapour are comparatively low and barely visible in this visualization. This is because these zones
are overshadowed by the high vapour mass fraction that is found in the bulk of the chamber’s
volume, which is produced by steady accumulation in the central and lateral recirculation zones.
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Polydisperse Euler-Lagrange Monodisperse Euler-Lagrange

Figure 11.20: Comparison of polydisperse and monodisperse EL results. Left and right: field of the
source term for mass transfer Γ [kg/(m3 s)] on the plane y = 0.

Polydisperse Euler-Lagrange Monodisperse Euler-Lagrange

Figure 11.21: Comparison of polydisperse and monodisperse EL results. Left and right: field of the fuel
species mass fraction YF [−] on the plane y = 0.

As the fuel vapour is not consumed in any way, this accumulation can be expected to continue
until a state of equilibrium is reached. As this mechanism is very slow, EE and EL fuel mass
fractions that have been initialized from solutions with a different state of convergence cannot
be compared at this point.

The second coupling term involved in evaporation is heat transfer. A presentation can be found
in figures 11.24 and 11.26. The observations on the general shape of the regions where strong
source terms appear are essentially the same: strong, very sharply delimited source terms in
the EL case with slightly more diffusion for the polydisperse results. On the other hand, the
broadly distributed, smooth source terms originating from the spray in the EE formulation. The
strongest source terms are encountered directly after the injection point, where the droplets are
heated and inversely cool the gas phase, as can be seen in figures 11.25 and 11.27 on the fields of
gaseous temperature that show a significant temperature drop in these zones. Unlike the mass
transfer terms that show high intensity regions in proximity of the wall impact region, heat
transfer values decrease constantly and do not show these near wall maxima. This is due to the
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Euler-Euler Monodisperse Euler-Lagrange

Figure 11.22: Comparison of EE results with monodisperse EL results. Left and right: field of the
source term for mass transfer Γ [kg/(m3 s)] on the plane y = 0.

Euler-Euler Monodisperse Euler-Lagrange

Figure 11.23: Comparison of EE results with monodisperse EL results. Left and right: field of the fuel
species mass fraction YF [−] on the plane y = 0.

fact that the droplets quickly reach a state of equilibrium. Although they still evaporate rapidly
and transfer enthalpy to the gaseous phase in the form of the latent heat of the evaporated mass,
droplets no longer undergo the strong, purely conductive heat exchange that dominates during
the initial heating phase.
Considering the resulting gaseous temperature fields (figures 11.25 and 11.27), it is quite notable
that despite the visible differences in the distribution of the source terms between EL and EE,
the shape and dimensions of cooled-down zones in the gaseous flow are very similar in all cases.
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Polydisperse Euler-Lagrange Monodisperse Euler-Lagrange

Figure 11.24: Comparison of polydisperse and monodisperse EL results. Left and right: field of the
source term for mass transfer Πg [J/(m3 s)] on the plane y = 0.

Polydisperse Euler-Lagrange Monodisperse Euler-Lagrange

Figure 11.25: Comparison of polydisperse and monodisperse EL results. Left and right: gaseous phase
temperature field T [K] on the plane y = 0.
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Euler-Euler Monodisperse Euler-Lagrange

Figure 11.26: Comparison of EE results with monodisperse EL results.Left and right: field of the source
term for mass transfer Πg [J/(m3 s)] on the plane y = 0.

Euler-Euler Monodisperse Euler-Lagrange

Figure 11.27: Comparison of EE results with monodisperse EL results. Left and right: gaseous phase
temperature field T [K] on the plane y = 0.
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11.3.3 Time-averaged results, comparison with experimental data

After having discussed simulation results from a phenomenological point of view, the following
section is dedicated to the verification by comparison to experimental data. The quantities
considered are extracted along lines at distances of 10mm and 15mm from the swirler exit, as
shown in figure 11.28. They include mean and fluctuating values for axial and tangential droplet
velocities, the number density and liquid volume flux as well as representative diameters, among
which the average diameter D10 and the Sauter mean diameter (SMD) D32 have been chosen.

In the EE simulations, average quantities are obtained using a classical on-the-fly averaging
procedure. Average quantities of the EL calculations are obtained indirectly, using particle
properties projected on the Eulerian grid with the same distribution formula as for the source
terms (see section 5.9.3). The resulting pseudo-eulerian instantaneous fields are processed with
the same on-the fly averaging as the Eulerian methods. Regions without particles are attributed
zero values, meaning that they are not counted into the average.

Figure 11.28: TLC configuration - overview of the measurement lines at 10mm, 15mm and 30mm.

The profiles of time-averaged, axial droplet velocity, shown in figure 11.29, present generally
good agreement between simulation and experiment. While the shape of the profiles is very
well reproduced by all simulations (including the small, secondary peak created by the cooling
films), there is a slight over-estimation of axial velocity in all three simulation results, which is
found to be relatively constant over the entire width of the chamber. The profiles of both EL
calculations coincide almost perfectly, revealing a negligible influence of polydispersion in this
comparison.

A similar statement can be made in view of the mean, tangential droplet velocity profiles of
figure 11.30. There is a very good agreement between all simulation results with mono- and
polydisperse EL profiles being almost identical. The main peaks show a certain over-estimation
of maximum tangential velocity and there is an additional reversal of tangential velocity com-
ponents, located near the cooling films, that is not found in the experiment. This feature is only
observed on one side of the chamber, which could hint at either a flow assymmetry that is not
present in the experiment or a lack of convergence, which may over-represent the influence of
large-scale motions in these regions.

Prior to the discussion of the droplet velocity fluctuation, the Stokes number (equation 4.4) of
a typical particle is estimated. The droplet relaxation timescale τp is obtained from equation
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Figure 11.29: TLC configuration - axial liquid phas velocity profiles. Comparison of (inherently
monodisperse) EE-results (—), monodisperse EL-results (- - -), polydisperse EL-results (····) and ex-
perimental data (◦ ◦ ◦).
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Figure 11.30: TLC configuration - tangential liquid phas velocity profiles. Comparison of (inherently
monodisperse) EE-results (—), monodisperse EL-results (- - -), polydisperse EL-results (····) and experi-
mental data (◦ ◦ ◦).

4.2. The characteristic timescale of the gaseous flow, τL = L/u can be estimated from the width
of the shear layer between the main flow region and the CTRZ (L ≈ 10mm) and the velocity
fluctuations encountered in this area (u = uRMS ≈ 30m/s, see figures 10.16 and 10.17). For a
droplet of dp = 30µm, one obtains a Stokes number of St = 4.5. The particles can therefore be
expected to have a certain inertial behaviour relative to the gas.
For the EE results, an element of post-processing has to be explained: as the governing equations
of the EE approach resolve a field of mesoscopic quantities, the contribution of the Random,
uncorrelated motion is neglected. While this does not affect the time-averaged results, it in-
fluences the fluctuating quantities: RMS levels of EE results can be expected to be lower than
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their experimental or Lagrangian counterparts if the random uncorrelated velocity fluctuations
are not taken into account. A correlation proposed by Vance et al. [149] allows to add this
contribution a posteriori to the fluctuation field (see section 3.3.1 for more detail). This method
has been applied successfully by Riber [124] and also by Simsont in a his EE study of the TLC
configuration with hollow-cone injection [138].

The results are shown in figures 11.31 and 11.32, while the influence of the Vance correction is
presented in figures 11.33 and 11.34. Axial fluctuation profiles agree quite well with experimental
data, but there are a few significant differences. Simulation results from all three methods have
a secondary peak at about 35mm radial distance, which is found neither in the experimental
results, nor in the gaseous flow (figure 10.17). Judging from the gaseous flow topology, these
peaks coincide with the shear layer created over the separated boundary layer on the outer
swirler walls and stretching into the chamber. As the high velocity zones and therefore the
associated shear layers are subjected to a slow, radial flapping motion (see also chapter 10), it
could be argued that these peaks would be smoothed out on averages taken over longer periods.
As the averages of the gaseous results are indeed taken over a longer physical time than those
of the two-phase simulations, this appears to be a viable argument to be further investigated.
Other than this additional peak, fluctuation levels tend to be slightly over-predicted in some
locations but in view of the state of convergence, they are overall quite consistent.

-60

-40

-20

0

20

40

60

 y
 [

m
m

]

403020100
 ul,RMS,ax  [m/s]

-60

-40

-20

0

20

40

60

 y
 [

m
m

]

403020100
 ul,RMS,ax  [m/s]

 10 mm  15 mm

Figure 11.31: TLC configuration - axial liquid phas velocity fluctuation profiles. Comparison of (in-
herently monodisperse) EE-results including the Vance correction (—), monodisperse EL-results (- - -),
polydisperse EL-results (····) and experimental data (◦ ◦ ◦).

An additional remark can again be made on the very close fit of the Lagrangian results com-
pared to each other, which shows that even for second-order statistics on velocity, the effect
of polydispersion is negligible in this type of flow. This statement applies also on the profiles
of tangential velocity fluctuations. Agreement between EL and EE results can be found to be
good in zones of dense spray and high velocity (i.e. the main, primary droplet stream) and less
accurate in less dense regions, near the wall or in the center of the chamber. This is due to
the low rate of droplets to be sampled in EL, but also to the slower fluid motion, leading to
insufficient convergence, which is especially critical for the use of the Vance correlation.

The influence of the correction on EE fluctuating quantities can be observed in figures 11.33
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Figure 11.32: TLC configuration - tangential liquid phas velocity fluctuation profiles. Comparison of
(inherently monodisperse) EE-results including the vance correction (—), monodisperse EL-results (- -
-), polydisperse EL-results (····) and experimental data (◦ ◦ ◦).

and 11.34, which show corrected and uncorrected profiles alongside with experimental data and
monodisperse EL results. It is clear that uncorrected fluctuations drop below the levels predicted
by all other sources. Especially near the primary peak, i.e. zones of relatively well-converged
statistics, the uncorrected values are under-estimated nearly by half and coincide well with the
experiment and Lagrangian results after applying the correlation.
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Figure 11.33: TLC configuration - axial liquid phas velocity fluctuation profiles. Comparison of (in-
herently monodisperse) EE-results including the Vance correction (—), EE-results without the Vance
correction (– ·– ·–), monodisperse EL-results (- - -) and experimental data (◦ ◦ ◦).

Additional experimental data is available for characteristic diameters recorded and averaged
in the form of profiles at the same locations as velocity data presented before. As the most
frequently used diameters, profiles of the mean diameter D10 as well as the Sauter mean diameter
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Figure 11.34: TLC configuration - tangential liquid phas velocity fluctuation profiles. Comparison of
(inherently monodisperse) EE-results including the Vance correction (—), EE-results without the Vance
correction (– ·– ·–), monodisperse EL-results (- - -) and experimental data (◦ ◦ ◦).

(SMD) D32 are shown in figures 11.35 and 11.36 respectively.
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Figure 11.35: TLC configuration - profiles of the Sauter mean diameter. Comparison of (inherently
monodisperse) EE-results (—), monodisperse EL-results (- - -), polydisperse EL-results (····) and experi-
mental data (◦ ◦ ◦).

Simulation results show a number of clear discrepancies when compared to the experiment.
Generally, SMD levels from all simulations are under-estimated, while the mean diameter is
over-predicted. This is a sign that the shape and/or the variance of the assumed droplet distri-
bution at injection does not match the one of the experiment. In the monodisperse case, this is
trivial as D10 = D32. In the polydisperse case, these diameters are not identical but do not differ
as clearly as observed in the experiment. One reason for this could lie in the low momentum
flux ratio q at injection, which causes the spray to be formed very near the wall. As breakup
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therefore takes place in the boundary layer, its mechanisms may differ from the ones observed
in the Jet-in-crossflow testcase (chapter 8). Consequently, the correlation on which the droplet
size distribution in the polydisperse case has been based (equation 11.1) could be inaccurate.
Furthermore, the resulting droplet size distribution could be wider or differ in its shape from the
log-normal distribution assumed here, causing the increased difference between D10 and SMD.
Apart from this systematic discrepancy, several other points can be noted. Between the monodis-
perse cases (EE and EL), there is very good agreement in the area of the primary spray, roughly
around 30mm radial distance. In the outer and inner zones, the EE diameter curve drops to
values near the clipping diameter of 5µm. In the Lagrangian simulation, both characteristic
diameters are significantly higher in these regions but strong oscillations show that the number
of sampled particles is very low. This is consistent with histogram data in these areas (figure
11.18), which shows a large distribution of diameters in this area that also includes relatively big
droplets. The differences between EE and monodisperse EL results outside the primary spray
can thus clearly be attributed to polydisperse effects that appear over time in the EL formulation
(despite being monodisperse at injection), whereas EE remains locally monodisperse.
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Figure 11.36: TLC configuration - profiles of the mean diameter (D10). Comparison of (inherently
monodisperse) EE-results (—), monodisperse EL-results (- - -), polydisperse EL-results (····) and experi-
mental data (◦ ◦ ◦).

A comparison between monodisperse and polydisperse EL results mainly reveals differences in
the primary spray region. Here, the SMD tends to increase linearly from the center towards a
peak in in the primary spray. In the polydisperse case, this linear region extends further out-
wards with the maximum diameter increasing in magnitude. This behaviour can be attributed
to inertial effects in the swirling flow, which force the biggest droplets farther outwards. This
tendency is coherent with experimental data, where the slope and the magnitude of the diam-
eter peak is even more pronounced. Additionally, this linear increase is not observed for the
mean diameter from the experiment, which means that around 48mm radial distance, there is
a very large discrepancy between SMD and D10. The local diameter distribution can therefore
be expected to be very broad in this region, an effect that is not reproduced to the same extent,
even by the polydisperse simulation.

The liquid volume flux, shown in figure 11.37 is an interesting quantity to consider because it
provides information on the path the bulk of the liquid mass is following, but also on mass
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conservation (assuming ρl is constant, which is the case in the present work). The comparison
between simulation data and the experiment reveals major discrepancies. Both the magnitude
and the location of the peaks differ by at least a factor 5 between the experiment and simulation
results, while the latter agree very well between each other. Reasons for this discrepancy have
been investigated in detail on the simulation side. Two scenarios are regarded as possible causes:
the first is a problem of mass conservation in the simulations or the post-processing, the second
is an inaccuracy of the liquid volume flux measurements using the patternator technique (see
section 9.3.1). A problem of mass conservation is very improbable because the two simulation
strategies differ strongly in principle and by their numerical implementation. Furthermore, they
are verified by mass balance tools. Independent programming errors in both EL and EE going
undetected and leading to the same results are highly unlikely. Furthermore, simulation results
are consistent within themselves. Values of the liquid volume fraction, the droplet velocity and
the mean diameter can, in particular for the monodisperse cases, be probed locally and com-
pared to the flux data from the postprocessing, leading to consistent results.
Experimental data show certain elements of inconsistency. Attempts to reconstruct the liquid
volume flux locally using measurement data on the droplet number density (figure 11.38), the
mean diameter and liquid phase velocity did not yield the volume fluxes of the direct measure-
ment. A comparison of experimental data obtained for different liquid mass fluxes at injection
raises additional questions as the liquid volume flux for the case of 20 g/s is significantly lower
than the one obtained for 10 g/s.
There is a high degree of confidence in the simulation results, but ultimately, as the cause cannot
be further isolated the issue remains unclosed. The results are nevertheless presented here as a
matter of completeness and for the comparison between simulation results.
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Figure 11.37: TLC configuration - profiles of liquid volume flux. Comparison of (inherently monodis-
perse) EE-results (—), monodisperse EL-results (- - -), polydisperse EL-results (····) and experimental
data (◦ ◦ ◦).

The final quantity to be considered is the droplet number density nl (figure 11.38), which has
already been commented in the preceding paragraph. An additional property that should be
mentioned here is the non-zero number density encountered in all low-density regions of the
EE simulation. This is a direct result of the clipping that is applied in EE for regions that are
essentially devoid of droplets. As the diameter is simultaneously very low in these areas, the
actual liquid volume fraction takes a value of the order of αl ≈ 3 ·10−7, which can be considered
a negligible value.
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Figure 11.38: TLC configuration - profiles of the particle number density. Comparison of (inherently
monodisperse) EE-results (—), monodisperse EL-results (- - -), polydisperse EL-results (····) and experi-
mental data (◦ ◦ ◦).

11.4 Computational cost

The computational cost associated with EE and EL methods is an important part of the global
comparison. Table 11.1 lists the key figures of the three simulation cases. The key finding is
a significantly higher cost of the EE simulation, where there is almost a factor 2 relative to
the polydisperse EL case. Interestingly, the number of particles in the monodisperse EL case is
slightly higher compared to its polydisperse counterpart, which leads to a slight advantage of
the latter.

CPU times

EE EL monodisp. EL polydisp.
Number of numerical particles - 1282155 1115579
Averaging time [s] 16.1 · 10−3 43.6 · 10−3 41.5 · 10−3

Av. time / residence time [−] 0.412 1.12 1.06
CPU hours / res. time [−] 473 255 247

64 processors on a SGI Altix ICE 8200 EX (Jade, CINES)

Table 11.1: Summary of the CPU times of two-phase-flow simulations of the TLC configuration

The apparent superiority of the EL approach in terms of CPU cost must, however, be relativized.
One aspect is the use of the parcel approach for EL, which considerably accelerates the method
for high particle numbers. The second is the longer time that is needed to achieve a given degree
of statistical convergence, especially for RMS values. The comparison of averaging time over
the residence time in the chamber between EL and EE shows roughly a factor 2 in favour of
the EE method although the term “degree of convergence” is somewhat arbitrary. Here, not
using the parcel approach would actually accelerate the convergence of Lagrangian statistics. It
depends on the computer resources and the scaling characteristics of the code if this alternative
is advisable or not.
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11.5 Conclusion

Three different two-phase flow simulations have been performed in an effort to compare the
Euler-Euler method to a Lagrangian approach, including two Lagrangian cases to assess the
influence of polydispersion on the results. The focus of the result’s discussion was on droplet
dynamics and evaporation effects. Phenomenological observations are backed up by the quan-
titative comparison to experimental data, which shows globally good agreement and leads to a
good level of confidence in the results of all three simulation cases.
In terms of droplet dynamics, all results show a good level of accuracy, even in the case of the
Eulerian results, where doubts remained concerning the capability of a first-order scheme to
reproduce correct fluctuation levels. The use of an a-posteriori reconstruction of the random
uncorrelated fluctuations that are neglected in the mesoscopic Eulerian formulation could be
demonstrated to correctly raise fluctuation levels to the values seen in the experiment and the
Lagrangian simulations. Additionally, the influence of polydispersion was observed to have very
little influence on the first and second order statistics of droplet velocities.

In terms of prediction of characteristic diameters in the spray, even the polydisperse simulation
fails to predict the correct levels, although general tendencies are quite well-reproduced. Here,
the simulations mainly suffer from the lack of knowledge about the diameter distribution of the
spray created by the multipoint injection. The empirical correlation used in this context shows
limited accuracy at the comparison with the experiment. The development of models that are
able to predict atomization processes for injection cases is therefore regarded a key priority in
future efforts to ameliorate the results.

Droplet diameter and temperature evolution have been analyzed globally, along particles trajec-
tories and in the form of histograms. A good agreement between simulation results was observed,
particularly on the wet bulb temperature that takes very comparable levels by droplets in all
simulation results as they reach equilibrum. The effect of a polydisperse injection influences
mainly the primary spray regions. Inside the recirculation zones, polydispersion naturally devel-
ops for the Lagrangian simulation with monodisperse injection, too. In these areas, differences
between EL and EE are generally quite pronounced, which is also due to the clipping method
being in effect at those location, freezing the further evolution of the spray.

Coupling with the gaseous phase reveals differences between EL and EE in terms of the distri-
bution of source terms. Owing to the nature of the EE approach, the source term field is much
smoother and more widely distributed compared to the very local and sharply delimited source
terms found in the EL results. However, polydispersion revealed a tendency to slightly smooth
these zones due a quicker diffusion of compact droplet streams, which can help reducing the risk
of destabilizing of the gaseous phase numerical scheme.

As a general conclusion of this chapter, it can be stated that both EE and EL can provide
very satisfying results in terms of droplet dynamics. In this field, polydispersion did not bring
notable improvement for the results. Evaporation is also globally well captured by both methods.
Here, the EL method and polydispersion in particular locally leads to additional physical detail
that could prove to be significant in the presence of a flame. For this type of non-reacting
application, EE proves to be a very capable method, that only falls behind the EL formulation
in very limited aspects. On the other hand, the overall potential of the Lagrange formulation in
future applications involving more complex physics should not be under-estimated.
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11.6 Tables

Plenum inlet

Mass flux 0,365 kg/s
Temperature 473 K

Collar perforation

Mass flux 0,012 kg/s
Temperature 473 K

Walls

Wall temperature 473 K

Multipoint injection

liquid mass flux 10 g/s
liquid phase temperature 300 K

Table 11.2: Boundary values, liquid and gaseous phase

Liquid phase properties Kerosene surrogate

Boiling temperature Teb = 489.0K
Density ρl = 782.03 kg/m3

Heat capacity Cp,l = 3.0077 × 103 J/kg/K
Evaporation heat Lev = 323.19× 103J/kg

Table 11.3: Physical properties of the kerosene surrogate, at boiling point and standard pressure.
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Numerical scheme (gas phase) Lax Wendroff
Scheme spatial precision 2nd order
Scheme temporal precision 2nd order

Numerical scheme (liquid phase) PSI
Scheme spatial precision 2nd order
Scheme temporal precision 1st order

Liquid phase coupling terms two-way-coupling
evaporation
no model for the RUM

SGS model (gas) standard Smagorinsky
SGS model (liquid) Yoshizawa + Smagorinsky [100]

Artificial viscosity (gas) Colin sensor [32]
2nd order coefficient 0.1
4th order coefficient 0.023

Artificial viscosity (liquide) Colin sensor [32]
2nd order coefficient 0.05
4th order coefficient 0.005

Table 11.4: Numerical parameters used in the Euler-Euler simulations

Numerical scheme (gas phase) Lax Wendroff
Scheme spatial precision 2nd order
Scheme temporal precision 2nd order

Liquid phase coupling two-way-coupling
evaporation

Interpolation method Taylor

Phys. particles per parcel 10

SGS model (gas) standard Smagorinsky

Artificial viscosity (gas) Colin sensor [32]
2nd order coefficient 0.1
4th order coefficient 0.023

Table 11.5: Numerical parameters used in the Euler-Lagrange simulations
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Eulerian injection parameters

Number of injectors 24
Prescribed mass flux per injector 0.4167 10−3 kg/s
Injection velocity 2.714 m/s
Droplet temperature 300 K
Droplet diameter monodisperse at 30.0 10−6 m
Injection type Disk
Disk diameter 2.5 mm (enlarged orifice diam.)
Column model none

Table 11.6: Injection conditions of the Euler-Euler case

Monodisperse Lagrangian injection parameters

Number of injectors 24
Prescribed mass flux per injector 0.4167 10−3 kg/s
Injection velocity 2.714 m/s
Droplet temperature 300 K
Droplet diameter monodisperse at 30.0 10−6 m
Injection type Disk
Disk diameter 0.5 mm (original orifice diam.)
Column model none

Table 11.7: Injection conditions of the monodisperse Euler-Lagrange case

Polydisperse Lagrangian injection parameters

Number of injectors 24
Prescribed mass flux per injector 0.4167 10−3 kg/s
Injection velocity 2.714 m/s
Droplet temperature 300 K
Droplet diameter polydisperse
particle size distribution log-normal
Mean droplet diameter 41.31 10−6 m
Standard deviation 8.3515 10−6 m
Minimum diameter 10.0 10−6 m
Maximum diameter 80.0 10−6 m
Injection type Disk
Disk diameter 0.5 mm (original orifice diam.)
Column model none

Table 11.8: Injection conditions of the polydisperse Euler-Lagrange case
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écoulements réactifs diphasiques. PhD thesis, INP Toulouse, 2004.

[75] W.M. Kays, M.E. Crawford, and B. Weigand. Convective heat and mass transfer. McGraw-
Hill Science/Engineering/Math, 2004.

[76] A. Keating and U. Piomelli. A dynamic stochastic forcing method as a wall-layer model
for large-eddy simulation. J. Turb., 7(1):1–24, 2006.

[77] M. Klein, A. Sadiki, and J. Janicka. Investigation of the influence of the Reynolds number
on a plane jet using direct numerical simulation. Int. J. Heat Fluid Fl., 24(6):785–794,
2003.

[78] R.H. Kraichnan. Diffusion by a random velocity field. Phys. Fluids, 13:22, 1970.

[79] K.K. Kuo. Principles of Combustion. John Wiley, New York, 1986.
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Toulouse, France-Mécanique des fluides, 2005.

[103] F. Nicoud, J. Baggett, P. Moin, and W. Cabot. Les wall-modeling based on optimal control
theory. Phys. Fluids, 13(10):1629–1632, 2001.

[104] F. Nicoud and F. Ducros. Subgrid-scale stress modelling based on the square of the velocity
gradient. Flow Turb. and Combustion, 62(3):183–200, 1999.

[105] M. Orain, F. Grisch, E. Jourdanneau, B. Rossow, C. Guin, and B. Trétout. Simultaneous
measurements of equivalence ratio and flame structure in multipoint injectors using PLIF.
C. R. Mecanique, 337(6-7):373–384, 2009.



BIBLIOGRAPHY 243

[106] PJ ORourke and AA Amsden. The TAB method for numerical calculation of spray droplet
breakup. In International fuels and lubricants meeting and exposition, volume 2, 1987.

[107] N. Peters. The turbulent burning velocity for large-scale and small-scale turbulence.
J. Fluid Mech., 384:107 – 132, 1999.

[108] N. Peters. Turbulent combustion. Cambridge University Press, 2000.

[109] BS Petukhov. Heat transfer and friction in turbulent pipe flow with variable physical
properties. Adv. Heat Transfer, 6:503–564, 1970.

[110] U. Piomelli. Wall-Layer Models for Large-Eddy Simulations. Progr. Aerospace Sci., 44:437–
446, 2008.

[111] U. Piomelli and E. Balaras. Wall-layer models for large-eddy simulations. Ann. Rev. Fluid
Mech., 34(1):349–374, 2002.

[112] U. Piomelli, E. Balaras, H. Pasinato, K.D. Squires, and P.R. Spalart. The inner–outer
layer interface in large-eddy simulations with wall-layer models. Int. J. Heat Fluid Fl.,
24(4):538–550, 2003.

[113] U. Piomelli, J. Ferziger, P. Moin, and J. Kim. New approximate boundary conditions for
large eddy simulations of wall-bounded flows. Phys. Fluids A, 1(6):1061–1068, June 1989.

[114] T. Poinsot and S.K. Lele. Boundary Conditions for Direct Simulation of Compressible
Viscous Flows. J. Comput. Phys., 101:104–129, 1992.

[115] T. Poinsot and D. Veynante. Theoretical and numerical combustion. R.T. Edwards, 2nd
edition., 2005.

[116] S.B. Pope. Turbulent Flows. Cambridge Unversity Press, 2000.

[117] L. Prandtl. Bericht über untersuchungen zur ausgebildeten turbulenz. Zeitschrift für
angewandte Mathematik und Mechanik, 5:136 – 139, 1925.

[118] M. Rachner, J. Becker, C. Hassa, and T. Doerr. Modelling of the atomization of a plain
liquid fuel jet in crossflow at gas turbine conditions. Aerospace Science and Technology,
6:495–506, 2002.

[119] S. Rajagopalan and RA Antonia. Some properties of the large structure in a fully developed
turbulent duct flow. Phys. Fluids, 22:614, 1979.

[120] A. A. Ranger and J. A. Nicholls. Aerodynamic Shattering of Liquid Drops. AIAA Journal,
7(2):285–290, February 1969.

[121] W.E. Ranz and W.R. Marshall. Evaporation from drops. Chem. Eng. Prog., 48(4):173,
1952.

[122] R.D. Reitz. Modeling atomization processes in high-pressure vaporizing sprays. Atom.
Spray Technol., 3:309–337, 1987.
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Mécanique, Energétique, Génie civil, Procédés, 2010.
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Appendix A

Validation of the evaporation model

A.1 Introduction

A validation of the evaporation model described in the preceding sections has been performed
to ensure the proper integration into the numerical framework. Here, a validation against
experiments is not the intent as models of this type are evaluated in literature [97] [131]. Instead,
an analytical solution for simple testcases is considered and taken as a reference. Among the
different options for Φc

g, only the most detailed one, which includes the effect of the Stefan flux
is retained.

A.1.1 One-dimensional evaporation of a monodisperse droplet stream

A one-dimensional problem is considered. A uniform, laminar flow of heated air is superposed
with a homogeneous n-heptane droplet spray that starts to evaporate right at the location
where it is introduced into the domain. This testcase allows to analyze heat- and mass transfer
in a convective environment, which means that gaseous and liquid properties vary spatially
and effects of the numerical methods for liquid an gaseous phase and of the coupling between
them are not negligible. Yet, the configuration is simple enough to have an analytical solution
to which simulation results can be compared (depending on the case under certain additional
assumptions). Simulations are presented and compared for both, the EE and the EL approach.
Figure A.1 shows the generic configuration of this testcase. The mesh consists of a single,
uniform stretch of quadrilateral cells with the inlet located on the left and the outlet located on
the right hand side.

Top and bottom boundaries form a pair of periodic boundary conditions. Droplets are intro-
duced into the domain at the same velocity as the gas. The exact injection procedure is different
between the EE and EL case, but both methods will lead to an equivalent spray where evapo-
ration takes place.
In the EL framework, droplets are injected well downstream of the gaseous injection to avoid
interference between source terms and the inlet condition. The y-position of the injection point
is placed on the centre line which guarantees a symmetric distribution (relative to the x-axis)
of all source terms, thus resulting in a purely one-dimensional behaviour of the solution.
Because the mesh dimensions in y and z directions are unity, cell volumes are relatively high. If a
homogeneous spray with a certain droplet number density nl is to be produced, very high droplet
numbers would have to be injected. To avoid this unnecessary computational cost, droplets are
grouped in parcels (or numerical particles) in a way that results in approximately 30 parcels per
cell. The spray then can still be considered homogeneous in x as fluctuations of coupling source
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Droplet injection
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Figure A.1: 1D-configuration used for the evaluation of evaporation models in Euler-Lagrange formu-
lation (droplet and mesh cell dimensions and numbers not to scale)

terms that are due to varying number of particles per cell are negligible.
In the EE framework, the mesh begins at x = 0 with both, gaseous and liquid injection conditions
situated at the left-hand side boundary. Evaporation starts right at the inlet.

A.1.2 Simulation parameters

The simulation parameters, such as boundary conditions and Lagrangian injection parameters,
are summarized in table A.2. The liquid phase species is n-heptane, for which liquid phase
properties are listed in figure A.1.

Liquid phase properties n-heptane

Boiling temperature Teb = 371.52K
Density ρl = 688.0 kg/m3

Heat capacity Cp,l = 2.558 × 103 J/kg/K
Evaporation heat Lev = 316.35× 103J/kg

Table A.1: Physical properties of n-heptane, at boiling point and standard pressure.

A.1.3 The analytical solution

The analytical solution is derived in detail in [130], presented in slightly different form in [18]
and will briefly be described in the following. The assumptions are:

• the flow is laminar, stationnary and one-dimensional,

• the thermal conductivity in the liquid phase is infinite,

• the particles are tracers (St = 0), i.e. the liquid and gaseous phases have the same velocity
in the whole domain (ul = ug = u),
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Inlet conditions

Gas velocity ug = 2.2m/s
Gas temperature Tg = 380K
Gaseous ethanol mass fraction YF = 3.85× 10−7

Oxygen mass fraction YO = 2.33× 10−1

Carbon dioxide mass fraction YCO2 = 0
Water mass fraction YH2O = 0
Nitrogen mass fraction YN2 = 7.670× 10−1

Outlet conditions

Pressure Pg = 1.01325× 105 Pa

Liquid phase parameters

Particle velocity ul = 2.2m/s
Mass flux ṁ = 1.515 · 10−3 kg/s
Droplets diameter dl = 30µm
Liquid temperature Tl = 324.285K

Table A.2: Calculation parameters for the 1D evaporation

• the pressure is constant,

• the product [ρDF ], the Spalding number B = BM = BT , the gas thermal conductivity λg

and heat capacity Cpg are constant.

• the temperature of the liquid phase is constant and equal to the equilibrium temperature
(Tl = Twb).

We suppose also that the mass loading is low and thus αg ∼ 1. Under these assumptions, the
equations to be solved are

d

dx
(ρgu) = Γ (A.1)

d

dx
(ρguYk)− [ρDF ]

d2

dx2
(Y k) = δkFΓ (A.2)

d

dx
(ρguCpgTg)− λg

d2

dx2
(Tg) = hl(Tl)Γg (A.3)

The mixture density is defined as:

ρm = ρ = αgρg + αlρl (A.4)

The mixture mass conservation equation allows to write:

ρu = F = cste = ρinuin (A.5)

Introducing the variable Z =
ρg

ρ , equations A.1, A.2 and A.3 become:

Z
dZ

dx
= A 1

Tg
(1− Zin)

2/3(1− Z)1/3 (A.6)
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d

dx
(ZYF )−

[ρDF ]

F

d2YF

dx2
=

dZ

dx
(A.7)

d

dx
(ZTg)−

λg

CpgF

d2Tg

dx2
=

CplTwb

Cpg

dZ

dx
(A.8)

with A =
3Sh[ρλ]ζ ln(1 +B)pW

2ρlRr2
inF

(A.9)

The variable change β = 1−Z
1−Zin

leads to the following equations:

− dβ

dx
+ (1− Zin)β

dβ

dx
=
A
Tg

β1/3 (A.10)

dYF

dx
− (1− Zin)

d

dx
(βYF )−

[ρDF ]

F

d2YF

dx2
= −(1− Zin)

dβ

dx
(A.11)

dTg

dx
− (1− Zin)

d

dx
(βTg)−

λg

CpgF

d2Tg

dx2
=

CplTwb

Cpg
− (1− Zin)

dβ

dx
(A.12)

The following boundary conditions are used:






β(x = 0) = 1 ; β(x = xev) = 0

YF (x = 0) = YF,in ; d
dx(YF )(x = xev) = 0

Tg(x = 0) = Tg,in ; d
dx(Tg(x = xev) = 0

The fact that the spray is very dilute allows to consider that Zin is close to 1. One can then
write Zin = 1− ǫ with ǫ << 1. Equation A.10 is developped to the 0th order in ǫ.

dβ0

dx
+
A

Tg,0
β

1/3
0 +O(ǫ) = 0 (A.13)

An integration between x = 0 and x gives:

β0(x) =

(
1− 2A

3Tg,in
x

)3/2

(A.14)

and in terms of Z:

Z(x) = 1− (1− Zin)

(
1− 2A

3Tg,in
x

)3/2

(A.15)

Equations A.11 and A.12 are developed to the first order in ǫ.

[
dYF,0

dx
− [ρDF ]

F

d2YF,0

dx2

]
+ ǫ

[
dYF,1

dx
− d(β0YF,0)

dx
− [ρDF ]

F

d2YF,1

dx2
+

dβ0

dx

]
+O

(
ǫ2
)
= 0 (A.16)

[
dTg,0

dx
− λ

CpgF

d2Tg,0

dx2

]
+ ǫ

[
dTg,1

dx
− d(β0Tg,0)

dx
− λ

CpgF

d2Tg,1

dx2
+

CplTwb

Cpg

dβ0

dx

]
+O

(
ǫ2
)
= 0

(A.17)
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Equations A.16 and A.17 are resolved at the 0th order, then at the first order. The solution is
then composed of both contributions:

YF (x) = YF,0 + ǫ YF,1 = YF,0 + (1− Zin)YF,1 (A.18)

Tg(x) = Tg,0 + ǫ Tg,1 = Tg,0 + (1− Zin)Tg,1 (A.19)

The integrations which are necessary to solve equations A.18 and A.19 are performed numerically
in a program that runs independently of the AVBP code.

A.1.4 Results

The comparison of Euler-Lagrange results to results of Euler-Euler simulations necessitates the
calculation of the variables that are not explicitly present in a Lagrangian approach. These are,
for example, the liquid volume fraction αl and the droplet number density nl. These quantities
are calculated inside AVBP before writing out a solution and distributed to the grid nodes
with the same scheme as for the source terms. The same procedure is applied to variables
such as the droplet diameter in order to facilitate post-processing. The Lagangian results are
therefore averaged quantities inside a grid cell. It is important to note that all variables are
assigned the default value of zero in cells where no Lagrangian droplets are present. This makes
a certain physical sense for instance in the case of the droplet diameter or the source terms Γg

and Πg. In the case of the droplet temperature, however, the drop to zero Kelvin downstream
of the evaporation zone has no physical significance and is not taken into account for averaging
procedures.

The solutions represent a classical evaporation case: The gas temperature decreases because
of the heat transfer between the two phases. As a result, and because the composition of the
mixture is modified, the gas density is increasing. This causes the gas (and liquid-) velocity to
decrease as a result of momentum conservation.

On the liquid side, the droplet number density is increasing because velocity decreases, reducing
the distance between droplets. At the same time, the liquid volume fraction decreases as a result
of a diminishing diameter of each droplet.

Figures A.2 and A.3 show the comparison between EE, EL as well as the analytical solution.
As a general statement, the computed solution fits very well to the analytical one, except for
the liquid temperature which increases at first, then reaches a maximum and converges towards
a final value that is close to the constant temperature of the analytical solution. This means
that the fragile equilibrium between conductive heat exchange and heat loss due to evaporation
that determines the droplet temperature is not exactly balanced at the onset of the evaporation
process. The difference is due to the assumption of zero conductive heat transfer (Φc

l = 0) in
the liquid phase of the analytical solution in section A.1.3 which is not the case in AVBP.

The comparison to the Euler-Euler simulations reveals overall very well corresponding results.
As a consequence, all the differences between Euler-Lagrange and the analytical solution are
also found in the Euler-Euler case and are explained by the same mechanisms.
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Figure A.2: Results of case A (E-L: Euler-Lagrange, E-E: Euler-Euler).

The diagrams of the mass exchange rate, Γg, and the heat exchange rate, Πg, show both sig-
nificant wiggles, especially in the early stages of evaporation. This is an effect related to the
relatively low number of particles inside each cell. As the injection has to satisfy both a mass
flux and a fixed droplet diameter, the time intervals between two subsequent droplet injections
may not be constant over time. In a given timestep, several droplets are injected; the amount of
liquid mass per timestep can in general not be divided into droplets of constant diameter with-
out a remainder. Therefore, the last droplet is postponed to the next timestep which creates a
”gap” in a supposedly equidistant stream of droplets. The result is a series of droplet ”trains”
instead of a perfectly equidistant lineup. As a result, evaporation source-terms are subject to
certain variations between cells.
This effect is relatively pronounced as particles are grouped into parcels. It has to be pointed out
that it is possible to totally smooth out the fluctuations by choosing a sufficiently low number
of droplets per parcel (increasing the number of droplets per cell). Note that the variations are
not conveyed to the gas variables which show very smooth curves except for some very minor
oscillations of the pressure.
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Figure A.3: Results of case A (E-L: Euler-Lagrange, E-E: Euler-Euler).
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Appendix B

One-dimensional spray flames

B.1 Introduction

This appendix presents results of one-dimensional spray flames. They correspond to different
degrees of complexity in the coupling between droplet dynamics and chemical reactions. A
schematic of both flames is shown in figure B.1.

The first is a so-called homogeneous flame (or “anchored” spray flame [13]). It consists in a spray
that is introduced in a gaseous flow at the same speed and immediately undergoes evaporation.
This zone is followed by the reaction zone after a short distance. Here, evaporation and reaction
mechanisms are only weakly coupled, the case can also be regarded on a gaseous flame with
boundary conditions on the side of the fresh gases imposed by evaporation.

The second is a saturated spray flame as it is studied by Ben-Dakhlia [13] and Boileau [19].
Here, the upstream boundary conditions correspond to a saturated spray, i.e. with a mass
fraction of evaporated fuel suficiently high to halt evaporation, creating a non-evolving gas-
spray mixture. Evaporation is only re-activated when the droplets enter the flame front due to
increasing temperature. The additional gaseous fuel is consumed by the reaction at the same

Anchored spray flame!

Saturated spray flame!

Evaporation zone!

Evaporation zone!

Reaction zone!

Reaction zone!

Figure B.1: Schematic of the anchored and the saturated 1D spray flames.

time it is created by evaporation, creating a very strong coupling between both processes. In
addition to the physical complexity, the saturated flame is also the more challenging case from
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the numerical point of view. As evaporation is more confined to a narrow zone and consequently
creates stronger source terms, this flame is at the same time a testcase for the stability of the
numerical approach.

B.2 Anchored spray flame

B.2.1 Chemistry

The chemistry used for this flame is a single-step reduced scheme for ethanol that has been
obtained by Boileau [17] to fit the experimental data of [59]. It can be written as (Eq.B.2).

C2H5OH + 3 (O2 + 3.76N2) −→ 2CO2 + 3H2O + 11.28N2 (B.1)

The species reaction rates can be linked to the fuel reaction rate.

ω̇F = 2WF

(
ρYF

WF

)nF
(

ρYO2

WO2

)nO2

A T β exp

(−Ea

R T

)
(B.2)

The parameters of the chemistry kinetic scheme are summarized in table B.1.

nF nO2
β A (cgs) Ea (cal/mol)

1.30 0.55 0.0 2.17× 1012 20 000

Table B.1: Fitted coefficients of the reduced Ethanol/Air combustion scheme

B.2.2 Spray properties

The physical properties for liquid ethanol are gathered in table B.2.

Liquid phase properties Ethanol

Boiling temperature Teb = 351.45K
Density ρl = 783 kg/m3

Heat capacity Cp,l = 2.434 × 103 J/kg/K
Evaporation heat Lev = 841.12× 103J/kg

Table B.2: Physical properties of liquid ethanol, at boiling point and standard pressure.

B.2.3 Analytical solution

A laminar homogenous premixed flame in dilute spray is a particular but frequently encountered
combustion regime where the liquid phase is completely evaporated before the flame zone. This
mono-dimensional configuration is an interesting test case as the physical processes of evapora-
tion and combustion are totally uncoupled, as schematized on figure B.1. For such a problem,
an analytical solution has been derived in [88],[89], by solving successively two problems and
connecting the common limit condition at the end of evaporation. A short description of the an-
alytical solution can be found in [18]. The resolution of both problems as well as their connection
is performed numerically in a code that is independant from AVBP.
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B.2.4 Simulation parameters

The boundary and/or injection conditions used in the simulations are gathered in table B.3.
The EE simulation is initialized from the analytical solution, which is formulated in Eulerian
variables. It can, however, no be translated directly in a Lagrangian droplet field. Therefore,
the EL simulation is started as a pure evaporation case, with the flame being subsequently ini-
tialized by imposing a species composition that corresponds to the reaction products as well as
the adiabatic flame temperature downstream of the intended flame coordinate.

Inlet conditions

Gas velocity ug = 0.469m/s
Gas temperature Tg = 480K
Gaseous ethanol mass fraction YF = 1.231× 10−3

Oxygen mass fraction YO = 2.327× 10−1

Carbon dioxide mass fraction YCO2 = 0
Water mass fraction YH2O = 0
Nitrogen mass fraction YN2 = 7.660× 10−1

Outlet conditions

Pressure Pg = 1.01325× 105 Pa

Liquid phase parameters

Particle velocity ul = 0.469m/s
Mass flux ṁ = 53.8 · 10−3 kg/s
Droplets diameter dl = 30µm
Liquid temperature Tl = 310K
Global equivalence ratio Φt = 0.7

Table B.3: Calculation parameters for the anchored spray flame

B.2.5 Results

As a general observation on the simulation results presented in this section, a notable shift
in the position of the flame front of all different cases can be noted. This discrepancy is due
to the different ways of initializing the simulations, which leads to a brief movement of the
flamefront before reaching a steady state (characterized by virtually identical flamespeeds in
both simulation cases). As the spray injection is anchored at the same position in all three
cases, the results are presented as they are without a-posteriori alignments. All results are
physically equivalent as evaporation- and reaction zones are completely uncoupled.

Figures B.2 and B.3 show the evolution of gaseous variables. The position of the flame can be
distinguished on the gaseous temperature that sees a sharp rise to approximately 1900K. The
final temperatures of the simulation results agree very well but are slightly higher in comparison
to the analytical solution. This can be linked to a small discrepancy in fuel mass fraction
between simulation results and the analytical solution after complete evaporation (figure B.6).
The gaseous flow is accelerated when crossing the flame front, which is due to mass-conservation
in the expanding one-dimensional flow. It can be noted that in the EE results, a liquid phase
velocity is still present in areas downstream of the point of completed evaporation, while the
Lagrangian velocity is no longer defined. Eulerian quantities in these zones are artificial as they
transport near-zero volume fractions and should not be considered from a physical standpoint.
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Figure B.2: Gaseous phas pressure and temperature from Euler-Lagrange- (EL) and Euler-Euler- (EE)
results as well as the analytical solution.
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Figure B.3: Evaporation fluxes towards the gaseous phase from Euler-Lagrange- (EL) and Euler-Euler-
(EE) results as well as the analytical solution.

The pressure field is assumed constant in the analytical solution, but the pressure through a
stationary premixed flame undergoes a drop which depends on flame speed and temperature
drop.

∆P = pb − pf = ρf sL
2

(
1− Tb

Tf

)
(B.3)

The physical gas properties leads to a theoretical pressure drop of ∆P = −0.60Pa, which
corresponds to the pressure drop observed in the simulation results. EL and EE reveal the
same magnitude but are slightly shifted relative to each other, which is related to the slightly
incomplete convergence process towards a steady solution. There is a pronounced peak at the
position of the flame, which is a numerical artifact of the scheme for the gasepus phase. This
peak is clearly less pronounced in the Lagrangian solution.
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Figure B.4: Evaporation fluxes towards the gaseous phase from Euler-Lagrange- (EL) and Euler-Euler-
(EE) results as well as the analytical solution.

Figure B.4 shows the evolution of the droplet diameter and temperature. Between the locations
of complete evaporation in the analytical solution and the numerical results, a slight difference
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of about 2.5mm can be observed. This is typically due to effects of heat transfer which are
neglected in the analytical solution but not in the simulation. This tends to lower the evap-
oration rate as evidenced by the evolution of mass transfer, shown in figure B.5. Differences
between Euler-Lagrange and Euler-Euler are relatively in comparison. This indicates that the
descrepancies between simulation results and the analytical solution are mainly due to the ap-
proximations made in the analytical solution and not to the numerical approach.
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Figure B.5: Evaporation fluxes towards the gaseous phase from Euler-Lagrange- (EL) and Euler-Euler-
(EE) results as well as the analytical solution.

The temperature evolution shows an initial droplet heating phase, leading to a temperature
increase of approximately 4K, followed by a decrease to a value near the initial temperature.
This is evidence that the approximation of a constant temperature in the analytical solution is
not very well satisfied. The resulting differences can also be observed on the heat transfer curve
in figure B.5. Agreement between EL and EE is relatively accurate, the most marked difference
is observed on the droplet temperature and amounts to about 1K. The evolution of heat and
mass transfer curves of the Lagrangian case show a certain oscillatory behaviour, which is due
to an uneven distribution of particles over the grid, as described in more detail in appendix A.

Figure B.6 shows the evolution of mass fractions. It presents the classical structure of changes
in composition between fresh and burned gases. The difference to a gaseous flame is the fuel
mass fraction that is equal to zero at the inlet and rises to its maximum level in the evaporation
region.
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Figure B.6: Species mass fraction evolutions from Euler-Lagrange- (EL) and Euler-Euler- (EE) results
as well as the analytical solution.
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B.3 Saturated spray flame

The saturated case is based on the work of Boileau [19], who studied this flame using the
EE approach, including a detailed analysis of the flame structure. Here, this testcase is re-
created in a Lagrangian representation and compared to the EE results. There is no analytical
solution available. It this context, it serves as an advanced verification of the equivalence of
both approaches as well as a test for the numerical scheme of the gas phase confronted with
strong, local source terms generated by the Lagrangian solver.

B.3.1 Chemistry

The chemistry used for this flame is a single-step reduced scheme for JP10. It can be written
as (Eq.B.5).

JP10 + 14O2 −→ 10CO2 + 8H2O (B.4)

The species reaction rates can be linked to the fuel reaction rate.

ω̇F = 2WF

(
ρYF

WF

)nF
(

ρYO2

WO2

)nO2

A T β exp

(−Ea

R T

)
(B.5)

The parameters of the chemistry kinetic scheme are summarized in table B.1.

nF nO2
β A (cgs) Ea (cal/mol)

1.154 0.738 0.0 6.454× 1013 29 188.8

Table B.4: Fitted coefficients of the reduced Ethanol/Air combustion scheme

B.3.2 Spray properties

The physical properties for liquid ethanol are gathered in table B.5.

Liquid phase properties JP10

Boiling temperature Teb = 461.23K
Density ρl = 796 kg/m3

Heat capacity Cp,l = 2.1 × 103 J/kg/K
Evaporation heat Lev = 305.0× 103J/kg

Table B.5: Physical properties of liquid ethanol, at boiling point and standard pressure.

B.3.3 Simulation parameters

The boundary and/or injection conditions used in the simulation are summarized in table B.6.
These vaules are obtained by a separate 0D evaporation calculation at the global equivalence
ratio of Φt = 0.25 that is run until the saturated state is reached. The inlet conditions of the 1D
flame are obtained from the 0D results and translated into boundary conditions suitable for EE
and EL. The flame is initialized by imposing the species composition corresponding to reaction
products as well as the adiabatic flame temperature downstream of the intended flame position.
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Inlet conditions

Gas velocity ug = 0.34m/s
Gas temperature Tg = 272.1K
Gaseous ethanol mass fraction YF = 2.175× 10−3

Oxygen mass fraction YO = 2.325× 10−1

Carbon dioxide mass fraction YCO2 = 0
Water mass fraction YH2O = 0
Nitrogen mass fraction YN2 = 7.653× 10−1

Outlet conditions

Pressure Pg = 1.17665× 105 Pa

Liquid phase parameters

Particle velocity ul = 0.34m/s
Mass flux ṁ = 0.035 kg/s
Droplets diameter dl = 24.86µm
Liquid temperature Tl = 272.1K
Global equivalence ratio Φt = 0.25

Table B.6: Calculation parameters for the saturated spray flame

B.3.4 Results

To make results presented for the saturated flame more readable, all curves have been shifted
by the relative distance of the maximum reaction rates in EE and EL results. Unlike the
anchored flame, which is fixed (or anchored...) at the coordinate of spray injection, upstream
and downstream conditions of the saturated flame are constant along the spatial coordinate.
This practical property allows to exactly superpose the combined evaporation/reaction region.

Gaseous quantities from the simulation results are shown in figures B.7 and B.8. There is
excellent agreement between EE and EL simulations for the gaseous temperature and velocity.
Differences can be observed on the pressure, where the EE results reveal a certain degree of
spurious oscillations in the regions of strong evaporation terms that are observed to a much
lesser extent in the EL formulation. There is a slight shift of the entire pressure level, which is
due to the slow convergence of this variable, which is not complete in the shown result.
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Figure B.7: Gaseous phase pressure and temperature from Euler-Lagrange- (EL) and Euler-Euler- (EE)
results.

As it has to be noted generally for the EE approach, quantities after the end of evaporation, like
the liquid phase velocity shown in figure B.8 is not physical in these zones. Agreement between
EE and EL in the regions of accelerating and evaporating droplets upstream of this point is very
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good.
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Figure B.8: Gaseous and liquid phase velocities from Euler-Lagrange- (EL) and Euler-Euler- (EE)
results.

The rapid evaporation process as droplets enter the reaction zone and consequently meet in-
creasing temperature levels is visualized in figure B.9, which shows the dimensionless square of
the diameter. After a short initial phase, the bulk of the droplet evolution is essentially linear,
which corresponds to evaporation following the d2-law at constant temperature. As the evolu-
tion of dimensionless droplet temperature shows, there is indeed a repid heatup phase followed
by a zone of constant temperature, which corresponds in this case to the boiling temperature.
In the evaporation model, droplet boiling is detected and results in a changed procedure in
the program flow (see section 4.3.5. The discrepancies between EE and EL are due to slight
differences in implementation between both methods.
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Figure B.9: Dimensionless square of the droplet diameter and dimensionless droplet temperature from
Euler-Lagrange- (EL) and Euler-Euler- (EE) results.

Effects of droplet boiling are also observed on the evaporation source terms that are passed
to the gaseous solver. Notably, the heat transfer term Πg changes its sign near the onset of
boiling. The reason for this can be found in the droplet enthalpy balance (equation 4.30). As
the constant temperature means that Φc

l = 0, the source term Πg = Φc
g + Φev

g takes the form
Πg = Φev

l = −ṁF hs,p(Tζ). This means that heat transfer during droplet boiling is reduced to
the transport of liquid phase enthalpy contained in the evaporated mass.

The evolution of species mass fractions is shown in figure B.11. The most notable change relative
to a gaseous flame or the anchored spray flame is the evolution of the fuel mass fraction. The
constant level of non-zero mass fraction upstream of the flame is followed by a brief increase
inside the flame front that is followed by a drop to YF = 0 downstream of the flame. This shows
how the evaporation zone blends with the reaction zone, where the gaseous fuel mass fraction
is reduced by chemistry while being simultaneously produced by the liquid phase source terms.
A detailed breakdown of the terms contributing to this process can be found in the thesis of
Boileau [19].
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Figure B.10: Evaporation fluxes towards the gaseous phase from Euler-Lagrange- (EL) and Euler-Euler-
(EE) results.

B.4 Conclusion of the one-dimensional test cases

Three one-dimensional tests have been conducted with the primary goal of validating the La-
grangian implementation of the evaporation model. Another objective has been the demon-
stration of reactive cases involving Lagrangian, evaporating droplets as these applications are
considered the most critical in terms of stability issues of the numerical scheme. Comparisons
are made between the well-proven EE approach and the more recently developed EL approach.
Where possible, an analytical solution has been included into the comparisons to raise the degree
of confidence in the results.

The main finding is a successful Lagrangian implementation, with the additional insight that
both formulations, despite their different nature, yield results that agree with very little error.
This is an important piece of information if larger-scale comparisons are to be undertaken, as it
is the case in the present work.
In terms of stability, the Lagrangian simulations perform very soundly, in cases even reducing
the level of pressure oscillations relative to the EE results. As a general note, experience shows
that this increased robustness of EL with respect to EE simulations is also encountered on three-
dimensional cases and can lead to a much more straightforward setup and initialization of such
simulations.
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Figure B.11: Species mass fraction evolutions for Euler-Lagrange- (E-L), Euler-Euler- (E-E) and ana-
lytical solution.
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