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Abstract

In the broad field of computer vision, Three-Dimensional (3D) Human shape
and body understanding has always been a hot topic. This thesis focuses on the 3D
human body and its motion, with new objectives and problems arising from the
growing availability of human body data. As articulated objects, human bodies are
naturally complicated, as they evolve in identity and pose. Moreover, the human
body shape space is built by filtering out preserving transformations, namely rigid
motions, and reparametrizations. Under these challenges, our thesis proposes a
2-fold approach for the human body. In the first part of the thesis, we focus on
3D human shape sequence retrieval. We leave the shape space and propose to
compare pose and motion in descriptor spaces. We start by describing the human
pose, using the intuition that a human pose is nearly characterized by its convex
hull. This hypothesis allows us to introduce three transformation-invariant surface
descriptors. Using these invariants reduces the comparison of 3D+time surface
representations to the comparison of polygonal curves. Experimental results are
promising, but slight modifications are needed to work on noisy data. We improve
our motion comparison results in a second time by seeing the human body surfaces
as varifolds in a Hilbert space, with an inner product derived from a positive
definite kernel. The sequences of 3D shapes are represented by matrices derived
from the Gram matrix of the motion, reducing the problem of comparison of two
3D sequences of humans to a comparison of matrices. In the second part of the
thesis, we focus on building a framework for generating human body deformations.
We equip our shape space with a family of elastic Riemannian metrics that not
only are invariant under rigid motions and reparametrizations but also allow us to
quantify variations between human bodies under pose and shape changes. We start
by working on registered shapes and use a low-dimensional approach to compute
the interpolation between human bodies (geodesic path), and statistical tools (eg.
mean of human shape). The main limitation is that human shapes need to be pre-
registered to a template. To tackle this issue, we extend the previous Riemannian
framework to human body scans. We do so by using the varifold metric as a
parameterization regularizer. Moreover, we represent human bodies with a low
dimensional latent space representation, which is equipped with the pullback of
the Riemannian metrics, simplifying the encountered optimization problems. The
registration and interpolation problems are solved jointly, allowing the framework
to operate directly on unregistered shapes. Experimental results show significant
improvements with respect to previous solutions in terms of shape registration,
interpolation, and extrapolation. We demonstrate the utility of the proposed
frameworks in pose and shape retrieval of the human body, motion transfer, and
random generation of body shape and pose.
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Résumé

Parmi les nombreuses thématiques de la vision par ordinateur, l’étude du corps
humain, plus précisément l’analyse de sa forme en trois dimensions, a toujours été
un sujet de grand intérêt pour ses nombreuses applications. La thèse se concentre
sur le corps humain en trois dimensions (3D), ainsi que sur son mouvement, avec
les nouveaux défis scientifiques posés par la disponibilité grandissante de ce type
de données. Les corps humains sont naturellement compliqués en tant que corps
articulés, évoluant à la fois en identité et en changement de pose. De plus, l’espace
de formes des corps humains se construit en filtrant les transformations que sont
les mouvements rigides et les re-paramétrisations.La thèse propose une approche
en deux temps pour la compréhension du corps humain, tout en s’attaquant aux
challenges énoncés. Dans un premier temps, nous nous concentrons sur la recherche
des séquences de corps humains 3D dans une base de données. Nous proposons
de quitter l’espace de formes en comparant les poses et les mouvements dans des
espaces de descripteurs. Nous commençons par la description de la pose du corps
humain, en supposant que la pose du corps humain est caractérisée par son en-
veloppe convexe. Cette hypothèse nous permet de construire trois descripteurs
invariants par transformations géométriques. Nous réduisons la comparaison de
séquences 3D+t à une comparaison de courbes polygonales. Les résultats expéri-
mentaux sont satisfaisants, mais un (léger) travail supplémentaire est nécessaire pour
l’utilisation sur données bruitées. Nous améliorons nos résultats sur le mouvement
dans une seconde approche où l’on représente les surfaces de corps humains par des
varifolds dans un espace de Hilbert, en utilisant un produit scalaire qui découle d’un
noyau défini positif. Les séquences de formes 3D sont représentées par des matrices
dérivées de la matrice de Gram du mouvement, ce qui réduit la comparaison de
séquences de corps humains 3D à une comparaison de matrices. Dans un second
temps, nous nous concentrons sur la construction d’un cadre général pour la généra-
tion des déformations humaines. Nous équipons l’espace de formes d’une famille de
métriques Riemanniennes élastiques qui sont invariants par mouvements rigides et
re-paramétrisations, qui ont de plus aussi l’avantage de distinguer les évolutions en
pose et en identité. Nous nous restreignons d’abord aux corps humains alignés, et
nous proposons une approche de dimension réduite pour l’interpolation (chemin
géodésique) entre corps humains, ainsi que pour des outils statistiques (moyenne
de corps humains). La limitation de cette approche réside dans la nécessité de pré-
aligner les corps humains avec un modèle donné. Pour résoudre ce problème, nous
améliorons l’approche en l’étendant aux scans bruts de corps humains. Pour y parve-
nir, nous utilisons la métrique varifold comme une quantité régularisant l’espace des
paramétrisations. De plus, nous représentons directement les corps humains dans
un espace latent de petite dimension, équipé des images réciproques des familles de
métriques Riemanniennes. Cela permet de simplifier la résolution des problèmes
d’optimisation pour le calcul de géodésiques. L’alignement et l’interpolation de
formes sont résolus conjointement, ce qui permet de travailler directement avec
des formes non alignées. Les résultats expérimentaux démontrent une amélioration
significative par rapport aux solutions existantes pour l’alignement, l’interpolation
et l’extrapolation de formes. Nous démontrons finalement l’utilité de ces approches
pour la recherche de pose et d’identités, le transfert de mouvement et la génération
aléatoire d’identité et de pose de corps humains.
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Notations

Shape space notations

S ≜ A regular surface
T ≜ Human body template
G ≜ Group of preserving transformations of a surface

Diff+(T ) ≜ Group of orientation preserving diffeomorphisms of the template
T ≜ Translation
R ≜ Rotation

SO(3) ≜ Rotation group
S ≜ The surface space or pre-shape space
H ≜ Human shape space
[ f ] ≜ Human shape

f ≜ Template-parameterized surface, representative of [ f ]
f̄ ≜ Template surface mapped to itself

h or k ≜ Tangent vector of the surface space
��

,
��

f ≜ Riemannian metric on Tangent space T f

n, n⃗ or N (p) ≜ Normal of the surface (at point p)
g or gp ≜ First fundamental form of the surface (at point p)

∆ ≜ Laplace-Beltrami operator
µS ≜ Varifold corresponding to the surface S

Discrete mesh notations

M ≜ A surface mesh
vi ≜ Vertex of index i
ti ≜ Triangular face of index i
ni ≜ Normal of ti
ci ≜ Center of ti
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Chapter 1

Introduction

1.1 Thesis objectives

There has been an increasing interest in recent years in analyzing the shape and motion of the
3D human body. Advances in 3D human shape estimation algorithms, 3D scanning technology,
hardware-accelerated 3D graphics, and related tools, are enabling access to large-scale 3D human
body data. This data comes in the form of 3D surface meshes that may not correspond to
coherent discretizations (different surface parameterizations). Moreover, the meshes may differ
up to an irrelevant rigid motion. In this thesis, I propose a new geometrical approach that
profits from the articulated nature of human bodies to study the 3D human body and human
body motion under the enunciated constraints. More precisely, we will develop techniques for:
Geometry of the human body: When working on human bodies and their motions (see
Figure 1.1 for a concrete example), the human pose, or the articulation of the human body in
space, and the human shape, or the human body’s identity are the two main characteristics on
which we focus. We wish our methods to be able to disentangle those characteristics depending
on the underlying application.
3D Human Shape Sequence Retrieval: Given a sample human body motion, we would like
to retrieve similar motions in a fixed dataset. This task is essential in the context of large-scale
databases. Many works exist for 2D images or 3D skeletons, but only a few works address
the problem on 3D human body motion. We propose motion and pose descriptors of human
shapes, that are invariant under reparameterization and rigid motion. Those descriptors also
show robustness to noise in data acquisition.
Human body deformation: We would like to obtain a framework that allows practical use in
a wide range of applications, such as human pose interpolation, human motion extrapolation
and transfer, or new pose generation. Moreover, the framework should be robust to unparame-
terized body scans. We propose a Riemannian approach that takes profit from the availability
of large-scale human motion data, allowing for realistic deformations. The desired applications
are easily defined with available tools of Riemannian geometry.

1.2 Context and motivations

The understanding of the human body shape has captivated many people throughout history.
Indeed, one of the first representations of the human body, the Venus of Willendorf, dates

11
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Figure 1.1 Three human motions: The first and second is executed by the same individual (same shape,
different poses), the third is the second motion executed by a different individual (different shapes, same
poses.

back to 25000 BC. This fascination has endured throughout history, with the famous drawing
of Leonardo Da Vinci, or Bruce Neuman’s recent Contrapposto studies (Gleyze, 2019) on
human body motion. From a more scientific point of view, the corresponding research area
has been active for a few decades. Research and development on creating 3D characters that
can be animated dates back to the 1980s with contributions from the Pixar Studios (Lasseter,
1987), followed rapidly by other research works (Chadwick et al., 1989; Scheepers et al., 1997)
where the authors were decomposing manually body parts, and rigging a skeleton to humanoid
characters in order to animate them automatically. At the same time, 3D action recognition,
using motion capture (a process which captures a set of sparse keypoints’ location during a given
motion) was also already a hot topic in the 1990s’ (Campbell & Bobick, 1995; Gavrila, 1999),
while learning of human characteristics was pioneered by someworks such as eigenfaces (Turk&
Pentland, 1991b) or 3Dmorphable models (Blanz & Vetter, 1999), that decompose human faces
into several principal components for face recognition and deformation. With the emergence
of deep learning, many 2D images related areas have known exciting breakthroughs, allowing
computers to automatically recognize the action of several people given a video or motion
capture data (Cao et al., 2019). However while 2D data is showing its utility for many tasks, a
picture/video of an individual remains the 2D projection of a specific view of its human body
with possibly different lightning, scales, and other parts of the environment present. In the
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same time, skeleton data is far from detailed information about the human body, as it contains
only sparse information. Some human body related tasks thus remain impossible to solve using
this type of data.

On the other hand, 3D human shapes analysis opens up many exciting possibilities in
human understanding. Not only the view-invariant human motion analysis (Weinland et al.,
2006), but studying the morphing of the body during motion, ie. trying to be able to describe
and reproduce how the human body deforms in between two poses (interpolation) or when
given an initial velocity (extrapolation) has a variety of different applications. One could of
course think about the virtual world avatars in an always more connected world. In the same
time, medicals could benefit from it, where physiotherapists would love to be able to detect a
degenerative execution of motion causing pain to patients, Figure 1.2. Close to this domain,
in sports training, a player could progress better if he was able to see the details in the wrong
execution of an essential gesture (in Figure 1.2, an example is shown with the tennis forehand).

Figure 1.2 Different example of applications: Up-left: identifying bad and good postures form (https:
//calvarybible.org/dailyblog/2020/5/workout-wednesdays-may-20-2020). Up-right: Iden-
tifying the convenient Shoulder to racket distance in tennis forehand (Buszard et al., 2020). Down: A
few avatar examples from Meshcapade (https://meshcapade.com/home).

In the meantime, 3D human body data has become more and more available, with new
setups that are less and less constrained for capture (for example, the Kinovis platform has
a total capturable area of 100 m2) and can be used to collect data related to the applications
enounced before. Modern setups similar to those displayed in Figure 1.3 allow for detailed and
scalable 3D human body deformation capture.

This evolution makes 3D human body data increasingly more available (Gkalelis et al.,
2009; Bogo et al., 2014, 2017; Mahmood et al., 2019; Cai et al., 2022) than before. Combined
with the promise of machine learning algorithms, several breakthroughs in this area have

https://calvarybible.org/dailyblog/2020/5/workout-wednesdays-may-20-2020
https://calvarybible.org/dailyblog/2020/5/workout-wednesdays-may-20-2020
https://meshcapade.com/home
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a) Perspective view b) Top view c) Sensors

Figure 1.3 Different type of 4D acquisition systems: 4D Scanner at MPI Tübingen, Kinovis multi-view
4D acquisition room, Shangai artificial laboratory 4D multi-view acquisition system

happened in the last year, with the widely used Skinned Multi-Person Linear (SMPL) body
model (Loper et al., 2015), or recent mesh autoencoders (Bouritsas et al., 2019; Lemeunier et al.,
2022). However, 3D human body data remains of low availability compared to usual 2D images,
because of the high recording cost compared to single-view camera recordings. Combined with
the nature of the human body as a 3D surface, which suffers several geometric challenges (see
next section) that are not (or are less) present in 2D images, the application of deep learning
for 3D data is still inefficient in many tasks. In particular, the neural network will tend to
overlearn characteristics from training data such as surface discretization, while well-defined
shape descriptors are less powerful (and do not include any data-driven information), but often
guarantee theoretical invariances. At the same time, retrieving SMPL body model (or other
body models) information of a shape is a costly procedure that can require manual intervention.
Therefore, we believe that the output of well-known geometric invariants can benefit the
different proposed tasks of the thesis.

As stated above, the growing availability of 3D data is a challenge in itself: before synthesiz-
ing animation, one needs to be able to find easily corresponding motions, possibly without the
need for annotations (second objective). We should in addition expect this process to be the
least sensitive to possible noise during motion acquisitions. After these steps, one needs to be
able to synthesize human motions in the most realistic way and have the possibility of using
mathematical tools for computing shape statistics (third objective). Those two steps are almost
impossible without taking into account the geometry of the human body (first objective).

1.3 Experimental setups: datasets, evaluation metrics

In this thesis, we conduct several experiments on the retrieval and deformation of shapes.
We resume in this section the main datasets in use, along with the most common evaluation
metrics.

1.3.1 Datasets

FAUST dataset
The FAUST dataset (Bogo et al., 2014), originally designed for mesh registrations, consists of
3D scans of 10 subjects in 30 different poses and is divided into training and testing sets. In
the training set the 3D surfaces are registered to the SMPL human body template. We use
those registrations, which are available for 10 different poses, as a dataset for static human pose



1.3 Experimental setups: datasets, evaluation metrics 15

Figure 1.4 Left: A few identities of the FAUST dataset. Right: A few poses of the FAUST dataset.

retrieval and use a subset of the scans to evaluate the quality of deformed shapes in Chapter 7.
Some samples are shown in Figure 1.4.

CVSSP3D datasets
The CVSSP3D datasets (Starck & Hilton, 2007; Gkalelis et al., 2009) are 3D human motion
datasets created for surface animation. It contains two parts: (1) a synthetic dataset, which
contains artificial surfaces animated using known motion capture sequences, and (2) a real
dataset, which contains the reconstruction of 3D human motions from multi-view video
sequences. We summarize them as follows:

• Synthetic dataset. A synthetic model (1290 vertices and 2108 faces) is animated thanks to
real motion skeleton data. Fourteen individuals performed each 28 different motions:
sneak, walk (slow, fast, turn left/right, circle left/right, cool, cowboy, elderly, tired,
macho, march, mickey, sexy, dainty), run (slow, fast, turn right/left, circle left/right),
sprint, vogue, faint, rock n’roll, shoot. It has already been used (Huang et al., 2010) for
static shape evaluation in the context of 3D motion analysis. A motion from this dataset
is presented in Figure 1.5, right. The sampling of the sequences is set to 25Hz.

Figure 1.5 CVSSP3D dataset: walking motion from real data (left), fastwalk from synthetic data (right)
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• Real dataset. This dataset contains 8 models performing 12 different motions: walk,
run, jump, bend, hand wave (interaction between two models), jump in place, sit and
stand up, run and fall, walk and sit, run then jump and walk, handshake (interaction
between two models), pull. The number of vertices for each model vary around 35000.
The sampling of the sequences is set to 25Hz. For the sake of simplicity, we follow
usual practices (Veinidis et al., 2019) and ditch out the two interaction actions in our
experiments.

As the reader can see in Figure 1.5, left, some of the motions in this dataset represent
humans moving in loose-fitting clothes. The sensitivity of the reconstructed surface
to clothes induces presence of noise in the meshes (see Figure 4.6) which makes it a
challenge for 3D human motion retrieval.

D-FAUST dataset
The Dynamic FAUST (D-FAUST) (Bogo et al., 2017) dataset contains high-quality scans, along
with their corresponding registered meshes that will be used as training data. 10 individuals
performed at most 14 different treadmill motions (hips, knees, light hopping stiff, light hopping
loose, jiggle on toes, one leg loose, shake arms, chicken wings, punching, shake shoulders,
shake hips, jumping jacks, one leg jump, running on spot), which means that the individual
only moves along the height axis. For the registered meshes, a human template (6890 vertices)
is registered to human body scans sampled at 60 Hz, and sequence length varies from 150 to
1200 (average 323). Due to the high speed of the recording, D-FAUST scans contain several

Figure 1.6 Knees motion from the D-FAUST dataset. Left: original scans, Right: registration available
in Dyna dataset

singularities in the reconstructed surface, such as holes or even artificial objects (eg. parts of
walls). Some of the registrations failed because of the complexity of D-FAUST pipeline, but a
full set of registrations are available in Dyna dataset (Pons-Moll et al., 2015).

Dyna dataset
The Dyna dataset contains all sequences registered to a human template (6890 vertices). We
use those sequences in motion retrieval, where the meshes are sampled at 60 Hz, and sequence
length varies from 150 to 1200 (average 323).
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1.4 Thesis challenges

The thesis objectives stated in section 1 face several challenges, (1) that come with the use of
3D surfaces, and (2) that are specific to the study of the human body. The ones addressed in
this thesis are summarized below.
Human body representation The human body motion is usually captured with a set of multi-
view cameras and reconstructed from well-established reconstruction algorithms. However,
while those algorithms are very efficient for the reconstruction of 3D surfaces from static scenes,
handling moving 3D human shapes, in terms of pose (speed compared to cameras capture
windows) and shape (dynamic shape motions, or noise induced by clothes) can be tedious.
This can often induce noise in the reconstructed shapes (Figure 1.7). Moreover, the motion is
preserved by rigid motions (translation and rotation) and there is no canonical robust way of
finding those transformations afterward. Designing shape representations that are invariant to
rigid motions and robust to noise will be a tough problem. In the meantime, the representation
must be adapted to the context where it applies. In motion retrieval, computation time
efficiency will be crucial. On the contrary, in human deformation synthesis, the quality of
output shapes will be more important than computation efficiency.

Figure 1.7 Noise in human shape acquisition. It can be of various forms, topological noise (middle),
vertex noise (right bottom) or disconnected components (right top).

Human body parameterization The previous challenge is also linked to surface discretization.
There is no way to ensure that the captured human body will have a canonical mesh, without
requiring intensive registration algorithms which often require manual refinement. This leads
us to a second set of preserving transformations, the surface parameterization. We need to find
a way to represent the human body independently of the surface parameterization in order to
be robust to human body scans.
Human body shape and pose disentanglement In this thesis, we work by separating human
body shape and pose. While those notions are almost disentangled (two different individuals
cannot execute exactly the same set of motions), they are well separated geometrically: the
shape information is mainly contained in the intrinsic properties (local lengths, areas, and
volumes) of the human surface, while the pose information is mostly contained in the extrinsic
properties (joints coordinates in space) of the surface. We want to encode only one or separate
that information (for example, keep only the pose information when comparing shapes for
human motion retrieval, or transfer the pose evolution to a new identity when executing
motion transfer).
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Human body variability Finally, human surfaces are not any kind of surfaces. Some transfor-
mations cannot apply to them: for example, one cannot shrink or shear the hand of a human.
We say that they are articulated surfaces, which means essentially that human shapes are almost
rigid by parts, in other terms that the surface is built over the human skeleton and (mostly)
changes through rotations around joints. This is formulated mathematically as follows: when
one interpolates between two registered human poses, the resulting path is likely to leave the
human body shape space (Figure 1.8). A human shape space candidate must propose a way to
stay in the human body shape space when generating new poses or interpolation two poses.

Figure 1.8 Linear interpolation between two human poses. The arms and the leg shrink during the
interpolation, so the middle shapes are out of the human body shape space.

1.5 Thesis contributions

In this thesis, we bring four main contributions to human shape understanding, described
below :
Invariant descriptor of the human pose - application to human motion : The first work is
dedicated to the description of the human pose of the human body to classify specific poses.
We propose the convexity hypothesis and say that the human pose can be approximated by the
human convex hull, to build a human pose descriptor. This descriptor is then combined with a
time series comparison algorithm (Dynamic Time Warping) to classify human motion.
Invariant descriptor of human motion : We quit the domain of human descriptors to build
now directly human motion descriptors. We see human body surfaces as varifolds, which
gives us a parameterization invariant representation, that can be embedded into an infinite
dimensional Euclidean space using a Reproductive Kernel Hilbert Space (RKHS). We build a
rotation and translation invariant motion descriptor using the inner product over the RKHS
and the Gram matrix trick. The resulting descriptor allows us to compare human motion. The
accuracy results improve compared to the previous contribution.
Riemannian human shape space for human deformation assessment : Starting from this
point, we focus on the last thesis objective. We wish to provide a framework for human
deformation. We define a human shape as an embedding from a human template to the 3D
space and equip this space with a 3-parameter Riemannian metric. The parameters can be set
to differentiate either shape or pose deformation. By incorporating human motion data in
our pipeline, when interpolating two shapes, the resulting geodesic paths are visually realistic
human deformations.
Elastic matching framework for unparameterized human deformation : We extend the
previous chapter to unparameterized human shapes. We do so by using the varifold fidelity
metric as a parameterization regularizer and use a similar but extended 6-parameter Riemannian
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metric to match a human template to human shapes. We again take profit of available human
body data and construct a latent space of human deformations, separated deformation in
shape and pose directions. This allows us to properly parameterize the input human scans.
We then demonstrate the capacities of the framework to several applications: interpolation,
extrapolation, motion transfer, and random pose generation. We wish to emphasize that this
work is made in collaboration with Nicolas Charon, Martin Bauer and its Ph.D. student
Emmanuel Hartmann. Emmanuel and I contributed equally to the outputs of this Chapter.

1.6 Thesis outline

We retain the following organization for the manuscript. Chapter 2 presents related works in
the context of 3D human shape understanding. In chapter 3, we introduce the mathematical
concepts we use in the manuscript. Chapters 4,5,6 and 7 are dedicated to presenting the
methodology behind each of the thesis contributions presented above. Finally, we conclude
this manuscript and discuss what research perspectives it brings.
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2.1 3D human shape descriptors

In order to describe properly one surface, the first approach proposed in the literature consists
of designing discriminative, yet representative feature vectors, called shape descriptors. We will
divide those descriptors into two different approaches: local descriptors mapping each point
to a high dimensional vector (for tasks such as shape matching), and global descriptors that
map the whole surface to a high dimensional feature vector and can be used in classification or
retrieval.

2.1.1 Local descriptors

When describing a 3D surface, one of the first ideas that come across is to look at its geometric
invariants. We know, from the fundamental theorem of surface that knowing the map from a
surface to its normals and local metrics (or local distances) is identical to knowing the surface
up to translation. One can thus think about taking the normal, but this quantity is not rotation
invariant and is not discriminative enough for matching. In a mesh, local distances are often
the length of edges, which is not invariant to parameterization. A good descriptor is then the
derivative of those quantities, the curvature, given as the set of Mean and Gaussian curvatures or
as principal curvatures (Faugeras & Hebert, 1986). However, their computation can be tedious
in the discretized case. To overcome this, the shape index (Koenderink & Van Doorn, 1992)
maps the point to a value between -1 and 1 encoding the local shape of the surface, ensuring
robustness against scale changes.

While the curvature values range expresses faithfully what a shape looks like locally, it
remains hard to describe more of the details that can appear in a human shape: for example,
the middle of a finger has the same shape index as the forearm. To overcome this problem,
point features, which are based on aggregating multiple quantities around each point of the
surface have been an active area. After the pioneering work of Spin Images (Johnson, 1997),
which takes local “histogram” pictures of the image from a chosen frame, multiple works have
followed such as point signatures (Chua & Jarvis, 1997), shape context (Belongie et al., 2000)
or multi-scale curvature approaches (Li & Guskov, 2005).

Another family of approaches uses the Laplace-Beltrami operator on meshes, defined using
the cotangent formula (Crane, 2018), generalizing its continuous counterpart. This operator is
popular because it is able to capture efficiently the intrinsic properties of the surface. Descriptors
are derived as solutions from specific surface equations that involve the Laplace operator. They
are generally solved using the Eigendecomposition of the operator and by decomposing the
solutions in the Eigenvector basis, allowing fast implementations. Among others, the Heat
Kernel Signature (HKS) (Sun et al., 2009; Bronstein & Kokkinos, 2010) derives from the heat
equation and the Wake Kernel Signature (WKS) (Aubry et al., 2011) from the Schrödinger
wave equation. This approach has the advantage to be invariant to remeshing and to some
extent, to isometries, aka transformations that do not change intrinsic distances. It was used
successfully to match objects in shape-matching frameworks (Bronstein et al., 2011) or later to
capture identity information of the human body.

In the context of the human body, a recent study compares the abilities of different isometry
invariant descriptors for human shapes. The Area-Projection Transform (Giachetti & Lovato,
2012), which measures locally how a point is likely to be part of a local cylinder or sphere
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of size R, was the most successful for this task. While those descriptors are successful in
shape matching and can be combined with registration algorithms such as Iterative Closest
Point (Arun et al., 1987) or functional maps (Ovsjanikov et al., 2012) for shape registrations, a
lot of those local descriptors contain intrinsic information. They are likely to fail for describing
mostly extrinsic quantities such as the human pose. More global feature approaches are in
general more efficient.

2.1.2 Global descriptors

While capturing local curvature gives information on the local shape, having information on the
whole normals’ distribution gives information on the local orientation of the shape, and so on
the way it is embedded in space. Extended Gaussian Image (EGI) (Horn, 1984), and its complex
version (CEGI) (Kang & Ikeuchi, 1991) are two spherical signals representing the distribution
of normal directions (spherical points) on the shape. While those descriptors ensure theoretical
guarantees on convex shapes (Gardner, R. J., 2006; Sellaroli, 2017), their expressivity takes a hit
on general objects that are piecewise stack of convex shapes. Vranic (Vranic, 2004) proposed
in his thesis a whole family of descriptors build as spherical signals. This work was extended
in (Papadakis et al., 2008), where the authors propose a spherical histogram descriptor, that
became popular for human body pose and motion description (Veinidis et al., 2017, 2019).
Those approaches can be seen as part of the work in 3D space histograms, which was first
proposed on regular grids (Ankerst et al., 1999; Mian et al., 2006) but suffers from translation
and rotation challenges. The spherical Fourier analysis applied to well-crafted spherical signals
allows easy building of invariants from space histograms on regular spherical bins (Kazhdan
et al., 2003; Tombari et al., 2010). Rather than gathering information on 3D space location,
Shape Distributions (Osada et al., 2002) works on the set of pairwise distances (euclidean or
geodesic (Hamza & Krim, 2003)). The histogram of those distances is a powerful descriptor
that is naturally invariant to rotation and translation, only influenced by a scale factor.

Topological analysis of 3D meshes allows building descriptors on top of skeletal shapes, by
using Reeb graphs to retrieve the skeleton corresponding to a mesh (Tierny et al., 2006, 2007).
It was later successfully applied to the human body, by computing the distance between human
shapes as the distance between curves of the topological skeleton, called Extremal Human
Curves (Slama et al., 2013) and efficient for differentiating changes in pose and motion (Slama
et al., 2014). In the domain of intrinsic descriptors, the Laplace-Beltrami spectrum (Kac,
1966), which is the vector of eigenvalues of the Laplace-Beltrami operator, can be used as a
ShapeDNA (Reuter et al., 2006) for surfaces.

With the arrival of powerful local descriptors, multiple aggregation strategies in order to
build up global descriptors from them have come. Histograms of descriptors are popular, with
numerous tricks to avoid computational cost (Rusu et al., 2009; Stein et al., 1992; Rusu et al.,
2010). Bag-of-words strategies can also be used. The information of local descriptors is gathered
into decomposable key points in the descriptor space (the words). A global descriptor of the
shape is built by “counting” the number of instances of each of those words. Numerous bags
of features were proposed from local descriptors, such as HKS (Bronstein et al., 2011), WKS or
Area Projection Transform (Giachetti & Lovato, 2012). Those approaches were confronted
against each other in the SHREC 2016 challenges (Pickup et al., 2016) for human shape retrieval.
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A lot more descriptors exist in the literature (Biasotti et al., 2016), but it is hard to find a
suitable descriptor for human shapes, because of two reasons. A lot of them are too general and
don’t take care of human shape specificities, and on the other hand, they all have a different kind
of invariance against preserving transformations. They can become approximately invariant to
rotation using Principal Component Analysis (PCA) on vertices, or Continuous-PCA (Vranic,
2004), but doing so is sensitive to noise or significant change in pose. A successful approach
would likely avoid it by building invariant descriptors.

2.2 Animation of 3D Humans

2.2.1 Human shape morphing

Human (or humanoid) shape morphing is a long time problem in computer graphics, as stated
in the introduction. Numerous approaches were proposed to solve it. They propose new spaces
of coordinates for shapes or build deformation energies to be optimized directly on the shape
space.

Interpolating between two human shapes will undeniably induce unnatural deformation of
the human body, thus leaving the human shape space. Mapping the 3D coordinate of human
shapes to a more efficient space can be a way to solve this problem. Some well define coordinates
can indeed live in a well-behaving space, where the interpolation produces plausible human
deformations. This is the case of Linear Rotation invariant coordinates (Lipman et al., 2005),
which build local features from the surface local coordinate frames. Another approach consists
in using the derivatives of those coordinates (Alexa, 2003) from the Laplace Beltrami operator
and aggregating them on each vertex (from the vertex’s neighborhood). The Lie Bodies (Freifeld
& Black, 2012) approach consists in representing triangles as transformations from a canonical
triangle: the shape space is mapped to the Lie group of transformations (rotation, translation,
shear) of each triangle. This approach has been later improved with a more complete set of
transformations and optimized for large deformation computation (Bansal & Tatu, 2018). The
discrete fundamental theorem of surfaces states that lengths and dihedral angles define a mesh
up to rotation and translation (first and second fundamental forms). This space of lengths
and angles is used for defining the space of Discrete shells (Grinspun et al., 2003), Isometry
invariant coordinates (Baek et al., 2015) or Non-Linear Rotation invariant Coordinates (Sassen
et al., 2020) (NRIC). In a similar approach, Von-Tycowicz et al. (Von-Tycowicz et al., 2015)
defined the strain tensor, as a local deviation of the local Riemannian metric of the surface
from the identity tensor. They measure the deformation using the strain tensor’s Eigenvalues.
Coordinate-based deformation can also be used to define part-by-part deformation, bymodifying
specific landmarks of a shape. The latter is generally propagated to the whole body shape by
Laplacian propagation (Sorkine et al., 2004), solving Poisson equation (Xu et al., 2005), or
doing it As-Rigid-As-Possible (Sorkine & Alexa, 2007).

Coordinate spaces are often prone to error in the case of large deformation. Another
possible approach is to define the deformation of shapes as the solution to an optimization
problem. The challenge is thus to define a deformation energy that would be minimal when
the deformation (or the path of deformations) is visually plausible. Those energies can be
defined directly on the shape and be As-Rigid-As-Possible (Alexa et al., 2000) (ARAP), As-
Isometric-As-Possible (Kilian et al., 2007) or take inspiration from physical observation like
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the shell energy (Terzopoulos et al., 1987). This energy, decomposed in membrane and
flexural energies in discrete shells (Grinspun et al., 2003), can be applied to some of the
previously presented coordinate systems, and even be seen as a Riemannian metric on the
NRIC manifold (Sassen et al., 2020). Most of those optimized approaches rely on well-defined
but non-convex energies, i.e. the optimization process is not trivial. In order to overcome this,
multiscale approaches reduce first the dimension of the problem to find a good initialization
for the full problem (Winkler et al., 2010; Chu & Lee, 2009). They thus allow improvement
of the optimization pipeline and the reduction of computation costs (Zhang et al., 2015).
Moreover, data-driven approaches can be proposed to define low dimensional subspaces of
deformation (Baran et al., 2009; Fröhlich & Botsch, 2011; Heeren et al., 2018), and suits well to
the case of human deformation where training data can be easily available.

While those approaches have very useful applications in computer graphics, they suffer
from two drawbacks: the distances they define are not practical in the sense that they do not
differentiate shape and pose changes, in other terms they are not suitable for human shape
analysis, secondly they cannot be used in the unparameterized setting. A registration method is
needed before applying them if one wants to interpolate between two unparameterized surfaces
like human body scans. Some methods, like functional maps (Ovsjanikov et al., 2012) can
introduce significant bias in registration that later influences the statistical analysis, and other
ones require supplemental information such as motion capture markers locations (Loper et al.,
2014).

2.2.2 Human shape spaces

Learning human shape spaces can solve the problem of pose and shape disentanglement, by
specifically defining the space as the sum of well-defined human shape and pose spaces.

In order to model the pose space, most approaches follow the forward skinning ap-
proach (Lewis et al., 2000), which consists to rig a skeleton to each point of the mesh. The
weight attributed between a point and a joint represents how much a point belongs to a joint.
Each joint rotation is applied to a mesh point accordingly to the skinning weights. For the
identity space, most of the works are inspired by the Eigenfaces (Turk & Pentland, 1991a) and
Morphable Models (Blanz & Vetter, 1999) pioneering works on faces. The approach consists
of applying the idea of principal components on human shapes, allowing us to describe the
human shape space and to generate new identities (Allen et al., 2003).

The SCAPE model (Anguelov et al., 2005) proposed a unification of those two approaches
by learning the weights of the skeleton skinning method and following the previous works by
modeling the identity space as a PCA space.

Several improvements have followed over the years based on these seminal works. Hasler et
al. (Hasler et al., 2009) propose a lightweight template mesh (around 1500 vertices) and a
muscledeness function to increase the realism of their human body model. The arrival of wider
datasets allows sanitizing of the preprocessing steps, which were including a lot of manual
intervention, resulting in better registrations (Pishchulin et al., 2017). This resulted in much
more expressive and interpretable models in terms of identities.

Nowadays, the Skinned Multi-Person Linear (SMPL) model (Loper et al., 2015) is the most
popular model among others ones. It is widely used for human body reconstruction from
images, and the release of the AMASS dataset (Mahmood et al., 2019) in the SMPL parameter
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format allowed its application on a high set of real animations (collected using MoCap data) to
numerous human identities. Its derivation by adding hands (Romero et al., 2017), feet (Osman
et al., 2022), face (Pavlakos et al., 2019) and dynamic models (Bogo et al., 2017) allows to
improve the realism of human bodies. Recent iterations of this approach, based on more and
more data availability, allowed results in a more expressive body shape space while having
less demanding resources (Osman et al., 2020, 2022). Recently, the arrival of deep learning
generative models showed promising results towards replacing the PCA human shape space
with more expressive models (Xu et al., 2020).

In recent years, recent approaches propose to rig a skeleton to implicit function (Alldieck
et al., 2021; Deng et al., 2020; Chen et al., 2021) (signed distance field or occupancy networks,
represented by neural networks) representing the surface, or to a neural radiance field (Xu
et al., 2021; Noguchi et al., 2021). It permits a usable representation of the human body while
being independent of any template mesh. Those approaches show promising results, but SMPL
and its derivatives remain the most popular and easy to use because of their compatibility with
computer graphics algorithms.

Those approaches show great expressivity and are easy to use, however, the retrieval of
human body parameters for a given unparameterized scan is nowadays a costly and/or inexact
procedure. Moreover, the use of a predefined skeleton allows us to define easily human body
transformation but forces an arbitrary prior to human bodies. Those models are still prone to
errors when generalizing to any kind of body. The growing availability of human body data
today opens up the possibility to generalize other type of learning approaches to this problem.

2.3 Elastic matching

The field of elastic matching is a set of unparameterized approaches, which means that those
approaches allow comparing and deforming shapes that do not share the same mesh or pa-
rameterization. The idea is to work on the surface space to find the shape space geodesics.
One first defines the transformations (listed in the introduction) that preserve the shapes of
surfaces. Then, the surface space is quotiented by the transformation space, which is done by
solving optimization problems over the transformation space. The resulting shape space can be
equipped with a Riemannian metric which is the “projection” (we will see what it means in de-
tail in Chapter 3) of a transformation invariant Riemannian metric on the surface space (which
means that the value of the metric doesn’t change if we apply a different parameterization to
the surfaces). The advantage of proceeding this way is that working on Riemannian manifolds
allows to decline classical statistical tools for shape analysis: mean, Tangent PCA, ... Multiple
metrics have been used in this kind of approach. The Square Root Normal Field (SRNF)
representation (Jermyn et al., 2012), is one of the preferred approaches because it simplifies
greatly the computations, thanks to the fact that the corresponding distance has a closed form
solution. The approach is very general and can be applied to numerous problems (Laga et al.,
2022; Jermyn et al., 2017; Kurtek et al., 2013) and is compatible with data-driven approaches. In
particular, it was successfully applied to human shapes in (Laga et al., 2017, 2022). The SRNF
metric is part of the family of Dewitt metrics (Ebin, 1970; DeWitt, 1967), which are well
suited for human shape because it can be parameterized to approach an as-isometric-as-possible
setting (Kurtek et al., 2012). The family of metrics was later simplified in (Su et al., 2020b),



2.4 Geometric deep learning for human shapes 27

with closed-form formula of the distance for the full metric. Other metrics were proposed,
like the Sobolev metrics (Bauer et al., 2011; Su et al., 2020a), curvature-weighted metrics et
al. (Bauer et al., 2012), or the Gauge invariant derivation of the Dewitt metrics (Tumpach
et al., 2016). The biggest drawback of those approaches is that they see human shapes as closed
genus-0 surfaces, thus as a map from the sphere to the 3D space, which involves solving the
difficult spherical parameterization problem (Praun & Hoppe, 2003). They then represent
the space of reparameterizations as the reparameterizations of the sphere, which is a rather
easier space to work on than the remeshing space. However, by mapping the surface to the
sphere, one can lose information on high curvature spots of the surface, which results in the
loss of information contained in original scans. Moreover, they cannot generalize to real scans,
which often contain topological noise (that changes the genus of the surface and makes the
parameterization problem unsolvable).

Recent approaches tackle this problem by using Parameterization invariant data fidelity
terms from Geometric measure theory (Bauer et al., 2021a; Hartman et al., 2022). A geodesic
between two shapes A and B is a path that minimizes the Riemannian energy and for which
both endpoints have 0 fidelity distance to A and B respectively. This formulation allows getting
rid of the parameterization problem and to solve implicitly the reparameterization problem
by directly matching endpoints to the surface. The promising results showed on different sets
of unparameterized surfaces (high genus, topological changes, ...) open new possibilities for
human shapes.

2.4 Geometric deep learning for human shapes

The field of geometric deep learning (Bronstein et al., 2017) is a recent area. After the appealing
results of convolutional neural networks (CNN) on images, it attempts to generalize the
principles to geometrical data.

2.4.1 Deep learning for surfaces

Pioneer’s works on deep learning for 3D Vision were a direct application of convolutions on
3D data. They can be applied on multi-view images (Su et al., 2015), or as 3D CNNs (Gadelha
et al., 2017; Brock et al., 2016) on volumetric data (density voxels replace pixels). However,
while those approaches were successful on the task of surface classification, and more recently in
partial shape reconstruction (Saint et al., 2020; Chibane et al., 2020), the need for computation
resources for highly detailed shape makes them impracticable for deformation modeling.

PointNet (Qi et al., 2016) has opened later a new way of applying deep neural networks by
applying a Multi-Layer Perceptron (MLP) to each of the points before a max aggregation of
the features, allowing to describe a point cloud easily. The architecture can be modified easily
for point cloud segmentation and the MLP on 3D points is today an important piece of several
works. PointNet++ (Qi et al., 2017) applies the same idea to several local neighborhoods
before global aggregation. The latter is nowadays still popular for point cloud segmentation
or more. Several incrementations and improvements have been proposed in the community
like KPConv (Thomas et al., 2019), the Point Transformer (Zhao et al., 2021) or the recent
PointNext (Qian et al., 2022).
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Those approaches exploit the localization of surface points but do not take into account
the mesh connectivity or the intrinsic geometry of the surface. Moreover, in order to be
computationally efficient, they often need fixed-size nearest-neighbor sampling for defining
local neighborhoods, thus being sensitive to parameterization.

The field of deep learning on surfaces, or meshes, tries to overcome this problem. A first
idea was to use Graph Neural Networks (GNN), which has been proposed in several forms
to tackle the problem (Boscaini et al., 2015; Masci et al., 2015; Monti et al., 2017; Verma et al.,
2018): they allow to build operators that share similar properties than convolutions. Popular
architecture like autoencoders or U-Net can then be generalized, while keeping the information
of the connectivity structure (Bouritsas et al., 2019; Ranjan et al., 2018a; Zhou et al., 2020b).
However, original GNNs are isotropic, they aggregate surface information independently of
the direction, as opposed to common CNNs. In order to improve the expressivity of those
networks, several anisotropic filters have been proposed for meshes (De Haan et al., 2020;
Mitchel et al., 2021). A few of them present the desired invariances in this thesis (Hanocka
et al., 2019; Mitchel et al., 2021), but however are often computationally intensive and need to
learn on reduced size meshes, thus lacking generalization with high sampling or noisy meshes.
The Laplacian-based diffusion proposes to use the Laplacian to build a sampling invariant
filter and showed interesting results to learn sampling invariants of shapes. However, the
generalization of those recent filters to generative models is an open question. Indeed most
neural architectures for human body generative models use older filters as their backbones,
such as PointNet (Achlioptas et al., 2018) or SpiralNet (Otberdout et al., 2022).

2.4.2 Human body generative models

Generative models have known considerable progress in the deep learning era. GANs (Good-
fellow et al., 2014), VAEs (Kingma & Welling, 2014) and more recently diffusion models (Ho
et al., 2020), are powerful and generalizable generative models for 2D images. Their application
to surfaces, and specifically to human bodies, opens the possibility to replace classical human
shape spaces. Several autoencoders have been proposed in the context of mesh generation
and were applied successfully to this problem. However the interpolation of two human
surfaces is a hard problem and the architecture, or the training must ensure that the generated
deformation is plausible. Multiple autoencoders have been proposed in the literature. The
Neural3DMM (Bouritsas et al., 2019) was one of the first to be able to overcome PCA in human
mesh compression. Nowadays, the spectral autoencoder (Lemeunier et al., 2022) architecture
shows state-of-the-art results for mesh compression in an autoencoder latent space. However, no
disentangling is done between human body shape and pose. Moreover, the spectral autoencoder,
along with other counterparts, is not parameterization invariant.

In order to have parameterization invariance, the most popular approach nowadays is
still to use the PointNet architecture. The GDVAE (Aumentado-Armstrong et al., 2019) and
LIMP (Cosmo et al., 2020) approach superimposes different losses on deformation, separate
in intrinsic and extrinsic quantities, in order to build a plausible latent space. Recent work
demonstrates that incorporating ARAP-related losses in the training of latent deep learning
models, for deformation (Huang et al., 2021), human pose generation (Muralikrishnan et al.,
2022), or disentanglement (Zhou et al., 2020a) encourages a better quality of output shapes.
By combining, a very large dataset (more than 100000 shapes), a PointNet auto-encoder as an
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initialization step, and a learned deformation model, the 3D-CODED approach and similar
iterations were able to get state-of-the-art results on the FAUST human shape registration task.
Finally, Hahner et al. (Hahner & Garcke, 2022) used hexagonal convolution for human pose
auto encoding on semi-regular, which requires remeshing the data in a preprocessing step.

While those methods show great success in representing efficiently human shape spaces,
their drawbacks come from their strong reliance on parameterized human body datasets on
which they can overlearn information about surface parameterization. They moreover fail to
learn efficiently the map from a linear space to a (non-flat) human shape space and thus do not
generalize well when confronted with unseen data.

Representation Tr Sc Rot Param. Training
Shape Distributions I N I ≈ No
Extended Gaussian Images I N N ✓ No
Shape Histograms N N N ✓ No
Heat Kernel Signatures I N I ✓ No
Wave Kernel Signature I I I ✓ No
Area Projection Transform I I I ✓ No
Extremal Human Curve I I I ✓ No
ShapeDNA I N I ✓ No
ARAP I N I ✗ No
Elastic matching I N I ✓ No
SMPL I I I ≈ Yes
GDVAE I N I ≈ Yes
Neural3DMM N N N ✗ Yes
LIMP N N N ≈ Yes
ARAPReg I N N ≈ Yes

Table 2.1 A summary of a number of approaches for describing/deforming human shapes, showing
their characteristic: whether they are (I)nvariant with respect to translation (Tr), scaling (Sc), and
rotation (Rot), or whether they require (N)ormalization; their relative invariance to parameterization:
it can be fully invariant, approximately invariant or discretization dependent; the need of training data.
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As stated in the introduction, one of the challenges in the study of the human body comes
from its representation and its parameterization. Its nature as a surface is easy to describe in
words but is not an easy object to apprehend mathematically. We reintroduce in this section
the most crucial mathematical notions and definitions that will be used in the manuscript. An
interested reader is invited to look at the following books for more details (the list is, of course,
non-exhaustive):

1. Differential Geometry of Curves and Surfaces, Manfredo P. Do Carmo, that introduces
essential notions of geometry to understand surfaces

2. An Introduction to Differentiable Manifolds and Riemannian Geometry, William
M. Boothby, that introduces more general notions about differentiable manifolds and the
most essential tools (for the current manuscript) of Riemannian geometry

3. Plateau’s Problem – An invitation to Varifold geometry, Frederick J. Almgren, Jr., is a
short book that introduces the varifold theory of surfaces

In this Chapter, we start by giving some mathematical definitions of a surface and some of
its characteristics like the normal and curvatures. We then construct the shape space as the
surface space quotiented by preserving transformations. After that, we introduce tools that we
will use to work or leave the shape space: Varifolds, and Riemannian geometry. Finally, I want
to emphasize that this is a computer science manuscript, where the notations and notions are
introduced in order to serve later in the methodology and to help a new reader to understand
properly the different approaches. They are thus simplified and often differ from the more
complete and rigorous definition found in the maths literature.

3.1 Geometry of surfaces

3.1.1 Parameterized surfaces

When we speak about surfaces, we generally speak about a 2 dimensional manifold embedded
inR3. Frankly speaking, this means that if we look closely enough to the surface, we are looking
at a plane. The full mathematical definition is available in (do Carmo, 1976), but we will not
use it in this manuscript. In fact, it would be hard to build a nice shape space from this purely
local definition. Generally, authors prefer to work on parameterized surfaces, i.e, where we
can define a global f that defines the surface.

Definition 3.1.1. A parameterized surface is a smooth embedding from any open set U ∈ R2 to
R3, i.e. f ∈C∞(U ,R3), dx f is injective for all x ∈U , and f is injective.

The image of f by U is called a regular surface, which we denote by S. f is called the
parameterization of S.

The notion of parameterized surfaces can easily be used to define many concepts related
to a surface S. The tangent space stems from the injectivity of the differential. Now for each
p ∈ S, we will denote by xp ∈U the x such that f (x) = p.

Definition 3.1.2. The tangent space of S at p Tp (S) is the image of R2 (the tangent space of U at
xp ), by dxp

f .
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Let xp = (u, v), the coordinates of xp . We denote by fu and fv the partial derivatives of f
in u and v. We can define the normal vector from the parameterization :

Definition 3.1.3. Let p ∈ S . The normal of S at p is the unit vector defined by

n(p) =
fu (xp )× fv (xp )

| fu (xp )× fv (xp )|
.

Now, if around each point, the normal vector is pointing in the same direction, we say that
the surface is oriented. Some surfaces are not oriented, for example, the famous Möbius strip.
Luckily for us, human shapes are and we can define normals globally.

Definition 3.1.4. The application N : S→ S2, that maps any point p of S to its normal vector is
called the Gauss map.

This map has very nice properties – the Extended Gaussian Image presented in related
work is the discretized version of the map – because it encodes information on the shape of
the surface and can be used to extract efficient descriptors from the surface (chapter 4). Two
very important properties are that it is invariant by the choice of parameterization and that
it is equivariant by rotation, i.e, rotating the surface will rotate the Gauss map. However,
the information encoded by the normal is mostly extrinsic, and the intrinsic information is
encoded by the first fundamental form.

Definition 3.1.5. The first fundamental form of S at p is a quadratic form on the tangent space
Tp (S). It is the restriction of the inner product on R3 onto Tp (S), i.e. the Riemannian metric on
S . We generally represent it as a positive definite symmetric 2× 2 matrix g defined by:

g (p) =
�

Ep Fp
Fp Gp

�

,

where
Ep = 〈 fu (xp ), fu (xp )〉
Fp = 〈 fu (xp ), fv (xp )〉
Gp = 〈 fv (xp ), fv (xp )〉

Its determinant dA(p) = | fu (xp )× fv (xp )| is called the area form.

The first fundamental form is essential because it allows for defining quantities on the
surface such as lengths, areas, and angles between points of surfaces. The locally minimizing
paths on the surfaces are called surface geodesics and generalize straight lines on surfaces.
We will see later a nice visualization of the effect of metric changes on surfaces. The first
fundamental thus contains the intrinsic information of the surface and is also invariant to
rotations. Moreover, knowing the normal and the first fundamental form maps of a surface
characterizes the surface up to translation :

Theorem 3.1.6. (Fundamental theorem of surfaces)
Two parameterized surfaces f1 and f2 having the same representation (g , n) differ at most by a
translation (and rotation for g ).
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This theorem implies that we can represent a surface by its induced metric g and the unit
normal field n, for the purpose of analyzing its shape. Comparing the first fundamental forms
and normals will be crucial, especially when one wants to deform one shape into another.

However, note that this theorem cannot be applied straightforwardly to compare surfaces,
since the expression of g is dependent on the chosen parameterization of the surface.

The last surface notion we need is a way of taking double derivatives.

Definition 3.1.7. Let h aC∞ function on S . Let p ∈ S, v ∈ Tp (S) a unit vector on Tp (S). For
any α differentiable path on S such that α(0) = p and d

d t α(t ) = v , the vector d
d t h(α(t )) is the same.

We call this vector the directional derivative of a function h on S , in direction v , denoted dv

This definition allows only for taking the first derivatives. For second derivatives, we need
to restrict the definition to derivatives over a geodesic path.

Definition 3.1.8. Let h aC∞ function on S . Let p ∈ S, v ∈ Tp (S) a unit vector on Tp (S). For

any α geodesic path on S such that α(0) = p and d
d t α(t ) = v , we call the vector d2

d t2
h(α(t )) the

directional derivative of order 2 of a function h on S , in direction v , denoted d 2
v h

This last definition allows us to define the Laplace-Beltrami operator generally used to
derive functions on surfaces. It generalizes the Laplace operator to surfaces, which is in R3,
∆ f = ∂ 2 f

d x2
+ ∂ 2 f

d y2
+ ∂ 2 f

d z2
or the mean of all directional derivative of order 2. Multiple definition

are possible for this operator, we rather chose the following definition, which is detailed
in (Barthelmé, 2013), generalizing the idea of taking the mean of double derivatives :

Definition 3.1.9. Let p ∈ S , h a C∞ function on S . The Laplace-Beltrami operator of S at p is
the mean over all directions, of directional derivatives of order 2 at point p .

∆p h =
1

2π

∫

v∈S1
(d 2

v f )(p)d v,

where we identify S1 to the space of all norm-1 tangent vectors in Tp (S).

Knowing the notion of fundamental forms and normals, we would like now to compare
surfaces between them by embedding them in a surface space. To define a surface space, it
is generally preferred to work with a common model from which to define surfaces. In this
thesis, we choose to see each surface as a map from a human template T . The chosen template
is displayed in Figure 3.1. We can generalize the notions of differentiable maps from a surface
and thus define human surfaces as differentiable maps from a single template. We thus work
with what we call template-parameterized surfaces.

Definition 3.1.10. A template-parameterized surface is a smooth map from a template surface
T to R3 that is an embedding, i.e.

f ∈C∞(T ,R3)n, and f is injective. We denote by f̄ , the template surface, i .e . the identity.

All notions presented above can be generalized to template parameterized surfaces. It is
done by associating some local coordinates (u, v) around on each point of the template. A nice
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Figure 3.1 The chosen template

thing when we have a common model from which surfaces are defined is that one can better
see the effects of changing the intrinsic geometry of a surface, i.e. its fundamental form. In
Figure 3.2, we visualize two surfaces of a different identity, parameterized by the template on
the left. On each shape, we compute the geodesic paths between the right arm and the left of
the belly. We then look at the corresponding paths on the template. Changing identity equals
changing the intrinsic geometry of the surface, thus the paths are different.

Figure 3.2 Two shapes (right) in correspondence with a template (left). We compute on those shapes
the geodesic path between the same points on the template. Mapping back those paths to the template,
we see that they are different. The metric has changed between the two shapes.

Finally, having a common model from which surfaces are defined allows us to define a
surface space.

Definition 3.1.11. The surface space S is the space of all embedings from a template T
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While this space has the nice property to be a differentiable manifold, it does not give
correspondences between two surfaces. This space is often called pre-shape space, because two
parameterized surfaces can still represent the same regular surface S, for example, if there is a
reparameterization between them, Figure 3.3. Thus, we do not want to work directly with the
surface space, but will introduce the transformations that preserve a surface, before giving our
final definition of human body shape space.

Figure 3.3 A template surface, and 2 parameterized surfaces representing the same object. In this case,
the 2 parameterized surfaces differ by a reparameterization.

3.1.2 Actions on surfaces

As stated in the introduction, some transformations are applied during the collection of human
body data. Those transformations do not change the shape itself, but they will change their
numerical representation. We say that they are preserving transformations, and we view them
mathematically as actions on the surface space. We define below the main transformations
encountered.

Definition 3.1.12. Let G be a group and X a set. G is said to act on X (in this thesis, mostly, on
the left) if there is a mapping θ : G×X →X , such that:

1. If e is the identity element of G, then, θ(e , x) = x

2. If g1, g2 ∈G, then θ(g1,θ(g2, x)) = θ(g1 g2, x)

The mapping is called a group action. We also denote the action of G on X by (g , x)→ g .x .

Several group actions act on the surface :

Definition 3.1.13. The groupR+, acts by scaling on the surface space via themapping (β, f )→β f
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Definition 3.1.14. The groupR3, acts by translation on the surface space via the mapping (T , f )→
f +T

Definition 3.1.15. The group SO(3), acts by rotation on the surface space via the mapping
(R, f )→ R f

Definition 3.1.16. The group Diff+(T ) of oriented preserving diffeomorphisms acts by reparame-
terization on the surface space via the mapping (γ , f )→ f ◦ γ−1

Those 4 actions can be treated separately, or together, by composing the actions, obtaining
a product group G. Knowing the action of some group G, we can now define equivalence
relations between two surfaces f1, f2, as S1 ∼ S2 if there exists a g ∈G such that f1 = g . f1.

Definition 3.1.17. For a surface f , the set [ f ] of surface in equivalence with f is called the
equivalence class of f

In particular, when G is the reparameterization group Diff+(T ), the equivalence of f ∈H
is characterized by all surfaces such that f (T ) = S , i.e. the elements in [ f ] = { f ◦γ−1 for γ ∈ Γ }
are all possible registrations of S . We can then define the quotient space of the surface space by
G, which is the space of all equivalence classes of surfaces.

Definition 3.1.18. Let G be the chosen group of preserving transformations of surfaces. The human
body shape spaceH is the space of all human body surfaces quotiented by the action of G. In other
terms, it is the space of equivalence classes.

G is taken to be the product group R+×R3× SO(3)×Diff+(T ), however in some cases,
some actions are quotiented during data acquisition, and we work with only a subset of G.

We have now defined our shape space, which we will use in the manuscript. Depending
on the desired objective, we will need to leave the shape space to build descriptors of human
bodies (chapter 3 and 4), or rather consider it as a Riemannian manifold, by equipping it with
a Riemannian metric in order to see deformation as a path on this manifold (chapter 5 and 6).

3.1.3 Discretized surfaces

The previous definitions are useful to define surfaces as objects and define quantities that will
serve to describe or deform them. However, they are not the exact same objects in a computer.
We present here the discrete counterparts that will serve for numerical implementations of
algorithms.

Definition 3.1.19. A surface mesh M is a piecewise oriented linear surface, represented by a
simplicial complex.

In other terms, a surface mesh is a polyhedral surface for which every face is a triangle.
Moreover, any two adjacent faces share the same orientation.

Formula of normal and area of faces
On each of these faces, we can easily compute the normal of a triangle and its area :
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Let p1, p2, p3, the positively ordered points of a face, e21 = p2− p1, e31 = p3− p1, e32 = p3− p2.
The normal of the face is defined as :

n =
e21× e31

|e21× e31|

The area of the face is A= 1
2 |e21× e31|

Thus, in a mesh, each triangle face’s tangent plane is the triangle plane. Generally, the
normal (or tangent space.) at a vertex (or at an edge) is simply the mean of normal vectors
over adjacent faces. We now wish to compute the first fundamental form of the mesh.

Computation of the first fundamental form

In this manuscript, we use the first fundamental form to compare surfaces in Chapters 6
and 7. The values depend on which parameterization we chose. In chapter 6, we will have
a preferred parameterization for each surface, and define the surface metric on the template
directly. On the opposite, in chapter 7, we work without a preferred parameterization (no
surface correspondence). We will define the surface metric as the metric restricted to the
triangles.

First fundamental form of a surface on the template
We compute the first fundamental form of each triangle. Let ti be a triangle of the template
mesh. Let its vertices be p1, p2, p3 on the template itself. We take local coordinate frames (u, v)
in the plane, such that p1 equals to (0,0), p2 to (u2, 0), p3 to (u3, v3).

Now given a mesh M in correspondence with the template, let t M
i be the triangle that

corresponds to ti , with vertices p1, p2, p3 on M . In order to compute the first fundamental
form, we need to find the affine f that maps the triangle p1, p2, p3 to q1, q2, q3 (see Figure 3.4
for a visual explanation).

Proposition 3.1.20. The derivatives of f are given by:

∂ f (u, v)
∂ u

=
1
l1
(q2− q1)

∂ f (u, v)
∂ v

=
tanθ

l1
(q1− q2)+

1
H
(q3− q1),

where H is the height of the triangle, when the edge p2− p1 is taken as the basis of ti , and θ is the
angle between p2− p1 and p3− p1. We compute the first fundamental form by taking the inner
products of those quantities.

Proof. Given u, v, f has the form:

f (u, v) = λ1(u, v)q1+λ2(u, v)q2+λ3(u, v)q3
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p1 = (0,0) l1
u

v
p3 = (u3, v3)

p2 = (u2, 0)

H

θ

q1

q3

q2

f

Figure 3.4 Ordered triangle with their corresponding local reference frame for the numerical computa-
tion of first fundamental form. Given a human shape (on the right), we search for the first fundamental
form of the pink triangle. The corresponding triangle on the template (left) is the blue triangle for
which we take local coordinates as in the figure. The quantities l1, H ,θ are useful in the computation of
the derivatives.

Where λ1(u, v),λ2(u, v),λ3(u, v) are the barycentric coordinates of a point (u, v) in ti . They
respect the conditions λ1+λ2+λ3 ≤ 1,λi = 0, and in ti , they are such that u and v are equal
to :

�

u = λ1(p1)u +λ2(p2)u +λ3(p3)u = λ2u2+λ3u3

v = λ1(p1)v +λ2(p2)v +λ3(p3)v = λ3v3

In other terms, the λi are defined as the solution of the following equation (see (Lévy, 2008)
for similar calculations):





0 u2 u3
0 0 v3
1 1 1









λ1
λ2
λ3



=





u
v
1





The solution of this equation is given by:

λ1 =
u2v3− v3u + v(u3− u2)

u2v3

λ2 =
v3u − u3v

u2v3

λ3 =
v
v3

The derivatives of f are given by:

∂ f (u, v)
∂ u

=
∂ λ1

∂ u
q1+

∂ λ2

∂ u
q2+

∂ λ3

∂ u
q3

∂ f (u, v)
∂ v

=
∂ λ1

∂ v
q1+

∂ λ2

∂ v
q2+

∂ λ3

∂ v
q3,
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which becomes :
∂ f (u, v)
∂ u

=
1
u2
(q2− q1)

∂ f (u, v)
∂ v

=
u3

v3u2
(q1− q2)+

1
v3
(q3− q1)

The value of u2 is simply the length of the first edge of the triangle ( l1). u3 and v3 are the
projection of first and second edge on the u-axis and v -axis. So v3 is the height H of the triangle
(relative to the first edge as the basis), and u3

v3
is tan(θ), where θ is the angle between the first

edge and second edge (see Figure 3.4 for a better understanding of those quantities).

The value of g comes naturally by taking the inner products of partial derivatives, using
the formula in the definition of the first fundamental form.

First fundamental form from the ambient space
This case gives much simpler computations. In this case, we take for each triangle ti of the
template mesh, the local coordinates (u, v), such that p1 equals to (0,0), p2 to (1,0), p3 to (0,1)
(see Figure 3.5 for a visual explanation).

Proposition 3.1.21. The partial derivatives are given by:

∂ f (u, v)
∂ u

= (p2− q1)

∂ f (u, v)
∂ v

= (p3− q1)

By taking the inner products, we obtain a very simple formula given by (see (Cheeger et al., 1984)
in Appendix 3 for more general computations) :

gi =
�

l 2
12

1
2 (l

2
12+ l 2

13− l 2
23)

1
2 (l

2
12+ l 2

13− l 2
23) l 2

13

�

,

where li j is the length of qi − q j .

Proof. The solution is slightly easier, as the affine f that maps ti to q1, q2, q3 is written as
f (u, v) = uq2+ vq3+(1− u − v)q1. The formula of derivatives is straightforward.

Laplace Beltrami cotangent formula
For an N-vertex mesh M , the cotangent Laplace operator is represented by a N ×N symmetric
matrix L. Let e = (pi , p j ) be an edge of the mesh. We denote by αi j and βi j the angles of
the opposite sides of the two adjacent triangles of e . The cotangent formula of the Laplace
operator applied to a scalar function u on M at vertex i is given by:

(∆u)i =
1

2Ai

∑

j

(cot(αi j )+ cot(βi j ))(ui − u j )

Where the sum is done over all adjacent edges to vertex i .
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p1 = (0,0)
u

v

p3 = (0,1)

p2 = (1,0)

q1

q3

q2
l12

l13

l23f

Figure 3.5 Ordered triangle with their corresponding local reference frame for the numerical computa-
tion of first fundamental form. Given a human shape (on the right), we search for the first fundamental
form of the pink triangle. The corresponding triangle on the template (left) is the blue triangle for which
we take local coordinates as in the figure. The quantities l12, l13, l23 are part of the final formulation.

3.2 Surfaces as geometric measures

We present here the main elements that will later allow us to leave the shape space to practical
spaces for human shape comparison.

The geometric measure theory was raised to solve Plateau’s problem, named after Joseph
Plateau’s experiments on soap films (Plateau, 1873). This problem is out of the scope of this
thesis, we present in this section a simplified notion of varifold that is broad enough for this
manuscript. We will also rapidly introduce their discretizations in the case of triangular meshes.

Definition 3.2.1. Let L be a linear space. The dual space L∗ is the space of linear functionals, ie
functions such that f : L→R such that f is linear.

Definition 3.2.2. Let L be a linear space endowed with a norm ||.||. A linear functional µ over L
is a continuous element of L∗, i.e. a bounded element of L∗: ∃K ,∀x ∈ L,µ(x)≤K ||x||.

Definition 3.2.3. LetX be a topological space. Ameasure on the space of functions (C0(X ,R), ||.||∞)
is a linear functional overC0(X ,R).

Varifolds are specific measures, where the set X is taken as R3×S2.

Definition 3.2.4. A (oriented) varifold µ is a measure over the space of functions on the product
space R3×S2 (coordinates and orientation), (C0(R3×S2,R), ||.||∞).

Every surface S defines a varifold µS , evaluated on φ ∈C0(R3×S2,R) as follows:

µS (φ) =
∫

S
φ(x, n(x))dA(x)

An important feature of this formulation is that it is independent of the parameterization of
the surface. It is the main reason for their use in shape analysis. In the discretized case of a
surface mesh M , each face ti is seen as an area-weighted Dirac varifold aiδ(ci ,ni )

. The varifold
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µM associated to M is simply the sum of these measures: M =
∑m

i=1 aiδ(ci ,ni )
. The application

of µM to a function φ is done by:

µM ( f ) =
n f
∑

i=0

aiφ(ci , ni )

Note that this discretization is only robust to the remeshing (reparameterization) of a surface.
For example, the subdivision of a triangle T into two triangles T1,T2 is such thatµT ̸=µT1

+µT2
(see Figure 3.6 for an illustration of the phenomenon).

c
n

a
c

n

a

T
µT

c1
n

a1

c1

n

a1T1

µT1

c2

n

a2

c2

n

a2
T2 µT2

Figure 3.6 Varifold of triangles in the case of discretized meshes. On the left, triangle T is discretized
into µT = aδ(c ,n), that we represent in the following way: we keep the center and the normal; the area
weight a is represented by a surrounding disk of area proportional to a. On the right, the triangle T1,T2
are discretized into µT1

= a1δ(c1,n1)
and µT2

= a2δ(c2,n2)
. The sum of those two measures is different

from µT .

However, in the case where triangles are sufficiently small, this change will be undistin-
guishable and by some abuse of language, we say that the discretization of varifold is invariant
to remeshing of surfaces.

Another advantage of seeing surfaces as varifolds are that it allows embedding surfaces
in a linear space. The common approach to compare varifolds in the shape analysis litera-
ture (Charon & Trouvé, 2013; Kaltenmark et al., 2017) is to use the theory of Reproducing
Kernel Hilbert Spaces.

3.3 Reproducing Kernel Hilbert Space

The theory of Reproducing Kernel Hilbert Spaces (RKHS) is a very popular tool of modern
machine learning. It is useful because it allows linearizing some hard classification problems.
We define the main elements and theorems that allow the use of this theory in the context of
the varifold theory for surfaces.

Definition 3.3.1. The pair (H , 〈 , 〉) is aHilbert space if

• H is a linear space on R

• The mapping
�〈 , 〉 : H ×H →R

x, y 7→ 〈x, y〉
is an inner product



3.3 Reproducing Kernel Hilbert Space 43

• H is complete relative to the topology that arises from the distance function defined by the
inner product 〈 , 〉

Definition 3.3.2. A semi-positive definite (SPD) kernel K on a set X is a mapping X ×X →R
such that:

• K(x, y) =K(y, x), ∀x, y ∈X ,

• If x1, ..., xn ∈X , λ1, ...,λn ∈R, then
∑n

i=1 K(xi , x j )λiλ j ≥ 0.

Several SPD kernels exist and are popular in the literature, among which :

• The inner product between two elements of Rn .

• Let x, y ∈Rn ,σ ∈R, the kernel defined by k(x, y) = exp(− ||x−y||2

σ2
).

It is also possible to combine kernels :

• Let K1, K2 two SPD kernels, λ,β≥ 0. Then λK1+βK2 is a SPD kernel

• Let K1,K2 two SPD kernels. The product K1K2 is a SPD kernel

Theorem 3.3.3. (Riesz representation theorem) If ξ : H →R is a bounded linear functional, then
there exist w ∈H such that

ξ (x) = 〈x, w〉,∀x ∈H

Definition 3.3.4. The pair (H , 〈 , 〉) is a Reproducing Kernel Hilbert space (RKHS) if

• (H , 〈 , 〉) is space of functions, i.e. there exists a space X such that any f ∈H is such that f is
a function X →R

• For all x ∈X , the linear functional (element of the dual space) on H ξx f 7→ f (x) is bounded

Let x ∈ X , based on the Riesz representation theorem, there exists Kx ∈ H such that ξx
defined as above can be rewritten to ξx ( f ) = 〈 f ,Kx〉. The function:

�

K : X ×X →R
x, y 7→Kx (y) =K(x, y)

is a positive definite kernel. K is called a Reproducing Kernel.

Theorem 3.3.5. (Aronzajn, Moore) Let K : X ×X →R, an SPD kernel, then there exists a Hilbert
space H of functions on X such that K is a Reproducing Kernel on H .

The idea behind using varifolds for surface shapes originally presented in (Charon &
Trouvé, 2013) and (Kaltenmark et al., 2017) is to map the space of surfaces, seen as varifolds,
to a Reproducing Kernel Hilbert space of functions R3×S2→R, thanks to an SPD kernel
on R3×S2. We will use this idea in chapter 5 to construct descriptors of human motion. In
the contrary, in chapter 4, we map the space of human body surfaces to the space of functions
S2→R, which allows building descriptors of human pose.
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3.4 Riemannian geometry of the shape space

We define some elements of Riemannian geometry we will need in the last chapters. We view
the parameterized surface space and the shape space as differentiable manifolds. The idea is
similar to surfaces: if we look closely enough at a differentiable manifold, we will see a flat
space, i.e a linear space L. We recommend the definition given in (Boothby, 2003, Chapter 5).

Some basic differentiable manifolds are:

• The Euclidean space Rn ,

• The sphere S2,

• The rotation group SO(3), which is a differentiable manifold of dimension 3,

• The parameterized surface space.

Tangent spaces are generalizations of the notion of the tangent plane for the surface. For
each C1 path on a manifold, we can compute its derivative, a tangent vector to the manifold.
The tangent space at point p, Tp (M ) is the set of all possible tangent vectors at point p. Tp (M )
is a vector space.

With the notion of tangent space, we can define it similarly as for surfaces, a local inner
product, called the Riemannian metric, that allows for generalizations of lengths, volumes, and
angles.

Definition 3.4.1. A Riemannian metric on a manifold M is a smooth Euclidean inner product
gp on Tp (M ). This means first that for any each p ∈M , gp is a positive definite bilinear mapping
Tp (M )×Tp (M )→R (inner product). Also, for any X and Y two smooth vector fields, the inner
product gp (Xp ,Yp ), often denoted as 〈Xp ,Yp〉p , is a smooth function of p .

A differentiable manifold with a Riemannian metric is called a Riemannian manifold.

The differentiable manifolds presented before are all Riemannian manifolds with the fol-
lowing inner products :

• Rn with the Euclidean inner product,

• The sphere, with the restriction of R3 inner product to the tangent space,

• The tangent space of the rotation group TRSO(3) at point R is given by {RΩ|Ω ∈R3,Ω=
−Ω}, ie the set of skew-symmetric matrices multiplied by R. Those matrices live in R3×3

and can be equipped with the restriction of the matrix-inner product,

• The surface space tangent space is isomorphic to C∞(T ,R). We can endow it with the
following L2 product:

((h, k)) f =
∫

T
〈h(p), k(p)〉dA(p),
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where dA is the area form of f and h, k ∈ T f (S ) =C∞(T ,R). We can also use more
complex Sobolev metrics, such as :

((h, k)) f =
∫

T
〈h(p), k(p)〉+tr(d h(p)(g f (p)

T g f (p))
−1d k(p)T )+〈∆ f h(p),∆ f k(p)〉dA(p)

(3.1)
for h a vector of the tangent space T f , i.e. a vector field on the template T . d h and d h
are the per-coordinate derivatives of h and k on f , expressed in a local coordinate system
(u, v) :

d h =





du hx dv hz
du hy dv hy
du hz dv hz



 , d k =





du kx dv kz
du ky dv ky
du kz dv kz





The second term tr(d h(p)(g f (p)
T g f (p))

−1d k(p)T ) is the trace of a 3×3 matrix induced
by the product of 4 matrices of size 3×2, 2×2, 2×2,2×3. It can be viewed as the inner
product of d h(p) and d k(p), relative to the metric of the surface f . A decomposition
into interpretable terms is given in Chapter 7.

We can also use immersions between manifolds to define new Riemannian metrics

Definition 3.4.2. (Pullback metric) Let F : M → N an immersion between two Riemannian
manifolds M and N and 〈, 〉 a Riemannian metric on N, then the bilinear form on Tp (M ) defined
by

�

Xp ,Yp

�

p
= 〈d F (Xp ), d F (Yp )〉F (p),

where Xp ,Yp ∈ Tp (M ) and d F : Tp (M )→ Tp (N ) is the differential of F . This metric is called the
pullback metric of the Riemannian metric 〈 , 〉 by F

Definition 3.4.3. Let α : [0,1]→M a (C 1) path on the Riemannian manifold M . We define the
energy of the path E(α) and the length of the path L(α) as :

E(α) =
∫ 1

0

�

dα(t )
d t

,
dα(t )

d t

�

d t , L(α) =
∫ 1

0

√

√

√

�

dα(t )
d t

,
dα(t )

d t

�

d t ,

Definition 3.4.4. Let p0, p1 ∈ M two points in a Riemannian manifold M . We define the
Riemannian distance between p0 and p1, d (p0, p1), as the length of the infimum of the length of
all possible paths between p0 and p1.

d (p0, p1) = inf
α∈P p1

p0

L(α), (3.2)

whereP p1
p0

is the set of all paths starting at p0 and ending at p1 : P
p1

p0
= {α|α : [0,1]→M ,α(0) =

p0,α(1) = p1}

Very few Riemannian manifolds have closed-form solutions for a distance formula :

• The space of coordinates, with the natural distance, spanned by the inner product,
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• The sphere, with the distance: d (n1, n2) = arccos(n1, n2),

• The rotation group with the distance: d (R1, R2) = arccos
�

t r (R1RT
2 −1)

2

�

.

We can define the curves that minimize locally the distances.

Definition 3.4.5. A geodesic segment on a Riemannian manifold M is a curve α : [a, b ]→M
for that minimizes the Riemannian distance for any sub-interval of [a, b ]. This means that for any
t1, t2 ∈ [a, b ] :

L(α)[t1,t2]
= d (α(t1),α(t2)) = |t1− t2|

Definition 3.4.6. A curve α : I →M is a geodesic if :

∀t ∈ I , ∃ε > 0 s.t α : [t − ε, t + ε]→M is a geodesic segment.

A geodesic is a minimizer of the Riemannian distance and the Riemannian energy.

There is no closed-form solution for distances on the surface space. Computing the distance
between two surfaces will require searching for the geodesic path at the same time. In practice,
it is numerically more practical to first minimize the energy to obtain the geodesic before
computing distances. This is not necessarily a problem when searching for deformations, but
becomes highly unpractical in the case of pure surface comparison.

We will now introduce a metric on the shape space. The shape space is not really a
differentiable manifold (taking quotient spaces can induce some mild singularities), but most
notions of differentiable manifolds apply to it. In particular, it has a tangent space that we can
equip with a Riemannian metric and thus introduce distances.

The common way to do this is to use submersive metrics.

Definition 3.4.7. Let M and N be two differentiable manifolds. The application Π : M →N =
M/G is a submersion if p is surjective, differentiable, and DxΠ is surjective for any x ∈M

Let M be a differentiable manifold and G be a group that acts on M , in such a way that
the application Π : M → N = M/G defined by Π(x) = [x] is a submersion. For x ∈ M ,
the tangent space Tx M is decomposed in a sum of two vector spaces: KerDxΠ, and its or-
thogonal, the horizontal space (KerDxΠ)

⊥. The map DxΠ is a linear isomorphism (bijective)
between (KerDxΠ)

⊥ and T[x]N . In other words, for each v ∈ TΠ(x)N , there exists a unique
ṽ ∈ (KerDxΠ)

⊥, such that DxΠ(ṽ) = v (also named the horizontal lift of v ). Figure 3.7 depicts
visually the idea on a simple cylinder example.

Now if we have a Riemannian metric on M , we almost have a way to define 〈w, v〉Π(x) by
〈w̃, ṽ〉x . The problem is that the choice may depend on x. Equivalently, the metric on M must
be invariant under the action of G.

In our case, the tangent space of the surface space is also a space of functions, C∞(T ,R3).
The group actions on the surface space are the same in the tangent space. In this case, the
condition for invariance takes the form :

((g .h, g .k))g . f = ((h, k)) f ,∀h, k ∈ T f , g ∈G, f surface
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(KerDxΠ))
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KerDxΠ

ṽ

N =M/G
[x]

Π(x)

Π(g .x)

T[x]N

v =DxΠ(ṽ)

Figure 3.7 Illustration of the idea of submersive metrics. We display a cylinder M, seen as a Riemannian
manifold, and a group action G, which is the group of rotations around the cylinder’s axis. The quotient
N =M/G is a segment. Now, since the projection Π from M to N is a submersion, for v ∈ TΠx N , there
exists a unique ṽ ∈ (KerDxΠ)

⊥ ⊂ Tx M , such that (DxΠ)(ṽ) = v. We w wish to use the Riemannian
metric on M to define one on N , by setting the inner product 〈v, w〉[x] between v, w ∈ T[x]N to be the
inner product 〈ṽ, w̃〉x on Tx M .

The research field that uses this approach to define Riemannian metrics on the shape space
is called Elastic Shape Analysis (ESA).

We now have distances and geodesics on our shape space. However, working directly on
the shape space is unpractical. In practice, to look for geodesics on the shape space, we look for
horizontal geodesics on the surface space. The velocity of these geodesics α∗ are horizontal and
their length on the surface space equals the length of their projections [α∗] on the shape space.

G
M

x1

g .x1

g

x0

N =M/G
[x0] [x1]

αinit

α∗

[α∗]

Figure 3.8 Illustration: searching for geodesics when using submersive metrics. We use the cylinder M
of last example. We wish to find the geodesic [α∗] between [x0] and [x1]. The geodesic αi ni t between
the chosen representatives of x0 and x1 does not project horizontally to N . We thus search for a g
such that the geodesic between x0 and x1 realizes this condition, obtaining the path α∗, whose length is
d ([x0], [x1]).

In other terms, the distance between two shapes can be defined as the infimum of the
length :

d ([ f0], [ f1]) = inf
g∈G

inf
α∈P g . f1

f0

∫ 1

0

q

((∂tα(t ),∂tα(t )))α(t )d t ,
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where the infimum is taken over both paths α and transformation g . We illustrate the idea
in Figure 3.8.

In general, we rather search for the geodesics α by minimizing the energy:

inf
g∈G

inf
α∈P g . f1

f0

E(α) = inf
g∈G

inf
α∈P g . f1

f0

∫ 1

0
((∂tα(t ),∂tα(t )))α(t )d t (3.3)

The distance is then computed directly using the length formula. Finding the solution to this
problem is the core difficulty of ESA, and Chapters 5 and 6 will present some ways to overcome
it.



Chapter 4

Projection-based Classification of Surfaces for 3D
Human Mesh Sequence Retrieval

4.1 Introduction

The problem of 3D shape and 3D shape sequence retrieval is a hard problem because of the
difficulty of surface comparison. Having different discretizations between shapes causes this
difficulty. It is further complicated by the need, in retrieval, to identify surfaces that differ only
by Euclidean transformations and similarities.

The way we define our shape space in the previous Chapter allows in theory, the perfect or
nearly perfect comparison of large classes of shapes. Nevertheless, there are many situations
where we would need or prefer a quicker and rougher tool to distinguish, classify, or retrieve
shapes from a restricted population of surfaces. An example of such a situation is the subject of
this Chapter, our second thesis objective: the classification and retrieval of human poses and
motions.

Furthermore, the articulation of the human body enables it to adopt a great variety of
poses with very small changes to the intrinsic geometry of the surface that models it. In flexing
an arm or a leg we mostly see small intrinsic changes due to the bulging and stretching of
muscles, but the net result in terms of the extrinsic geometry of the body can be substantial.
Small changes in the intrinsic geometry may even lead to apparent changes in the genus of the
human figure through topological noise when, for instance, hands are clasped or feet and legs
are crossed. This points to the unsuitability of intrinsic approaches which are focused on the
metric relations (lengths of curves, angles, and areas) on the surface itself independently of the
embedding into the ambient space.

In the analysis and retrieval of human actions, we must work with sequences of a hundred
human poses, and each pose is represented by a triangulated surface containing thousands or
tens of thousands of vertices. This computational complexity is nevertheless offset by the fact
that human poses are modeled by a rather restricted population of surfaces. Examination of
the databases led us to formulate the hypothesis that a human pose is nearly characterized by
its convex hull. The intuition is that if you enclose someone in a tight, perfectly elastic sheet,
the different poses of this person will still be distinguishable, or mostly so (see Figure 4.1).
In considering human body motion, where there is a sequence of poses, the probability of
recognition of the action from the associated sequence of convex hulls should be even greater,
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or so the intuition goes.

Figure 4.1 Four human poses from the FAUST dataset along with their corresponding convex hulls.

This convexity hypothesis led to the idea of considering two of the most basic notions
in convex geometry, the convex hull, and the surface area measure or Extended Gaussian
Image (EGI), and molding them into three sequences of numerical surface descriptors that are
invariant under Euclidean transformations. We do this by first encoding the information of the
convex hull in the breadth function, which measures the length of the projection of the surface
onto each line passing through the origin, and encoding the information of the EGI in the
weighted area function, which for each direction measures the weighted area of the projection of
the surface onto the plane perpendicular to it (see Section 4.3 for details). These functions only
depend on symmetrizations of the convex hull and EGI (Proposition 4.3.2 and Theorem 4.3.5),
but are supplementary (i.e., two non-convex surfaces with the same symmetrized convex hull
are not likely to have the same symmetrized EGI) and lend themselves nicely to Fourier analysis.
Our three sequences of numerical shape descriptors are obtained as the L2 norms and inner
products of the projections of these functions onto the space of spherical harmonics of order
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k. In geophysics terminology, these are the power spectra and the cross power spectrum of
our two functions (Kaula, 1967; Lowes, 1974) introduced in the context of shape matching
by (Kazhdan et al., 2003).

The main concern of this chapter is the problem of analyzing human motion and our
numerical descriptors conveniently allow us to reformulate it as a problem of comparing
polygonal curves in Rn . In this familiar setting we make use of Dynamic Time Warping
(DTW) to compare the curves obtained from the CVSSP3D real and synthetic datasets (Starck
& Hilton, 2007).

We did not pay close attention to the effect that noisy data could have on our methods and
to the interesting problem of how to make them more robust, but we did test them against the
relatively noisy CVSSP3D real dataset (see Table 4.3) and remarked that a slight modification
to our breadth function to make it more robust yielded good results.

Overall, the contributions of this chapter can be summarized as follows.

• We present a novel set of descriptors invariant under parametrization, Euclidean trans-
formations, and scaling.

• We formulate the problem of comparing sequences of 3D human surfaces as a problem of
comparing curves inRn . Dynamic TimeWarping is proposed for the temporal alignment
of these curves.

• The method shows promising results for 3D pose and 3D motion retrieval tasks in several
datasets. The results are promising and validate our hypothesis that the analysis of human
action can be in good measure reduced to the analysis of sequences of convex hulls of
human poses. The experimental results show that our method can be implemented in a
computationally efficient way due to its simple formulation.

4.2 Related Work in 3D shape sequence retrieval

After the pioneer works in 3D human shape sequence classification made thanks to the popular
Xmas dataset (Weinland et al., 2006), a few works extended a selection of 3D shape descriptors
to human motion retrieval. We refer to Chapter 2, section 1 to a broader view of available
descriptors in literature. The descriptors that were applied to human motion retrieval, were
first Shape Distribution, Spin Image, and Spherical Harmonics in (Huang et al., 2010), but they
are not necessarily adapted to the particular geometry of the human body. Slama et al. (Slama
et al., 2014) then used the Extremal Human Curve (EHC), a set of 10 curves that connect the
extremal points of the 3D human surface. They propose a geometric approach for comparing
those shapes, by exploiting the fact that curves can be parameterized canonically and thus can
be compared naturally. However, the need for the detection of extremal points makes this
approach sensitive to noise and to the low quality of the meshes. In addition, the comparison
between all pairs of curves increases the computational cost. Another interesting approach is
presented by Luo et al. (Luo et al., 2016), where they compute a Spatio-temporal graph of 3D
Human motion. However, this approach also suffers from being time-consuming and needs
the same parameterization along a dataset to perform well. In (Veinidis et al., 2019) six static
shape descriptors are extracted from each mesh of the human sequence and DTW is used as a
similarity measure, before proposing to add other information like centroid position and speed.
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However, some descriptors used in this approach require pose normalization against rotations
for each mesh per frame.

4.3 Projection-based classification of surfaces

4.3.1 The breadth representation

As we mentioned in the introduction, the guiding idea of this chapter is that human poses seem
to be determined to a great extent by their convex hulls (see Figure 4.1). In order to quantify
and test this hypothesis, we consider the support and breadth functions of the triangulated
surfaces that model the human form.

Definition 4.3.1. The support function of a set S ⊂Rn evaluated at the unit vector u ∈ Sn−1 is
the quantity

h(S; u) := sup
x∈S

u · x.

The breadth of the set S ⊂Rn in the direction given by the unit vector u ∈ Sn−1 is the quantity

b (S; u) := h(S; u)+ h(S,−u) = sup
x∈S

u · x − inf
x∈S

u · x .

Geometrically speaking, the breadth of a path-connected set in a direction u is simply the
length of the orthogonal projection of the set onto a line parallel to u. As the following classic
result shows, the support function is a way to encode the convex hull.

Proposition 4.3.2. Two sets S1, S2 ⊂Rn have the same support function if and only if their convex
hulls are equal. Their breadth functions are the same if and only the convex hulls of the sets S1− S1
and S2− S2 are equal.

Proof. The convex hull of a set is the intersection of all half-spaces that contain it. From the
definition of the support function, for each unit vector u, the half-space

H (S; u) := {x ∈Rn : u · x ≤ h(S; u)}

contains S and is minimal in the sense that it is the unique half-space that contains S and is
contained in H (S; u). From this perspective, the support function is just a way to encode the
set of minimal half-spaces, and thus the set of all half-spaces, that contain S . It follows that the
support function of a set characterizes its convex hull.

From the linearity of the functions x 7→ u · x and the definition of support function, we
have that if A and B are two subsets of Rn , and λ1 and λ2 are two positive numbers, then

h(λ1A+λ2B ; u) = λ1h(A; u)+λ2h(B ; u) and h(−A, u) = h(A;−u).

From this we conclude that the breadth function of a set S is also the support function of S− S :

b (S; u) = h(S; u)+ h(S;−u) = h(S − S; u).

Since the convex hull of a set is characterized by its support function, we conclude that the
convex hulls of the sets S1− S1 are the same if and only if the breadth functions of S1 and S2
are equal.
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Unlike the breadth function, the support function is not invariant under translations. This
can be fixed by moving the center of mass to the origin. Generally speaking, there is less loss
of information when working with the support function than with the breadth function, and
this should come up in comparing surfaces that have a central symmetry to those that do not.
However, for comparing human figures this did not seem to be the case and we made the choice
to work with the breadth function to keep within a geometric tomography framework of
studying human shapes through their projections onto lines and planes.

Using that triangles are convex and that the functions x 7→ u · x (u ∈ S2) are linear, the
breadth of a triangulated surface M ⊂R3 can be easily computed from just the knowledge of
its vertex points x1, . . . , xN :

b (M ; u) := max
1≤i≤N

u · xi − min
1≤i≤N

u · xi .

4.3.2 Area representation

Another classical descriptor of convex bodies and surfaces is the surface area measure or, as is
better known in computer vision, the extended Gaussian image (EGI). This is the push-forward
of the two-dimensional Hausdorff measure of the surface onto the unit sphere under the Gauss
map. For a triangulated surface, we can give a more pedestrian equivalent formulation:

Definition 4.3.3. Given an oriented triangulated surface M ⊂R3 formed by a union of triangles
T1 . . . ,Tm , its extended Gaussian image is the measure on the unit sphere

µM :=
m
∑

i=1

area(Ti )δni
,

where ni is the unit vector perpendicular to Ti in the sense defined by the orientation of the surface
and δni

is the delta measure concentrated at ni .

There are a number of ways to extract feature vectors from the EGI of a surface. We can,
for instance, manufacture them from the moments or the Fourier transform of this measure,
but in this work we chose a more intuitive descriptor: the weighted area function.

Definition 4.3.4. Given an oriented triangulated surface M ⊂R3 formed by a union of triangles
T1 . . . ,Tm , its weighted area function is the function on the unit sphere defined by

A (M ; u) :=
m
∑

i=1

|u · ni |area(Ti ),

where ni is a unit vector perpendicular to the triangle Ti .

The quantityA (M ; u) is the weighted area of the projection of M onto the plane orthogonal
to u. By weighted area we mean that if k different portions of a surface project onto the same
piece of plane, the area of this piece is multiplied by k.

Besides being invariant under reparametrizations and translations, the weighted area func-
tion is easy to grasp geometrically and very quickly computed. It’s relation to the EGI of the
surface follows directly from the definitions:

A (M ; u) =
∫

S2
|u · n|dµM .
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This expression immediately implies that surfaces with the same EGI are indistinguishable by
the weighted areas of their projections. Moreover, because the functions x 7→ |u · x| (u ∈ S2)
are even, we only see the even part of the measure µM ,

µe
M =

1
2

m
∑

i=1

area(Ti ) (δni
+δ−ni

).

It follows that if the even parts of the surface area measures of two oriented surfaces are the
same, then their weighted area functions are identical. This is all: by a theorem of Choquet
((Choquet, 1969, p. 53)), finite linear combinations of the functions x 7→ |u · x| (u ∈ S2) are
dense in the space of even continuous functions on the sphere, and hence if the integrals of all
functions of this form with respect to two even measures are the same, the measures must be
the same. We summarize:

Theorem 4.3.5. Two oriented triangulated surfaces M1, M2 ⊂ R3 are indistinguishable by the
weighted areas of their projections if and only if the even parts of their extended Gaussian images
are the same.

In order to use the weighted area function as a descriptor it is important to understand
that if we decompose a surface into a finite or countable number of pieces each of which
has a computable area, translating these pieces or flipping them around the origin, and then
recomposing them again will give a new surface whose projection onto any plane has the
same weighted area as that of the original surface. For instance, if we wish to make use of this
technique to classify poses of a human figure it is useful to keep in mind the following rule
of thumb: if we approximate and decompose the human body as the union of a number of
boxes and then these boxes are moved by pure translation and re-glued into a different pose,
the method will not effectively distinguish the old and the new poses. An important example
is a person standing up with the arms by his/her side and the same person standing up with
the arms straight up over his/her head (see Fig. 4.2).

Figure 4.2 Different poses with the same weighted area function, but with different breadth functions.

Because of this “cut-translate-and-paste" invariance, the weighted area may not seem to be as
good a descriptor as the breadth, and indeed, that is what our results confirm (see Table 4.1), but
it is supplementary information and can be quite discerning in its own right. The weighted area
allows us to distinguish some non-convex surfaces that have the same convex hull or breadth
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function, and although it is possible for two different non-convex surfaces to have the same
convex hull and EGI—and, a fortiori, the same breadth and weighted area functions—without
being translates (see Figure 4.3 for a simple two-dimensional example of these phenomena), that
does not seem to happen to any significant degree in the restricted population of human poses.
Nevertheless, the real advantage of considering simultaneously the breadth and weighted area
functions will become clearer when we tackle the problem of extracting Euclidean invariants
from these functions.

Figure 4.3 The first two forms have the same convex hull and different weighted area functions, while
the last two forms have the same convex hull and EGI.

4.3.3 Euclidean and shape invariants

In many applications it is not enough to be able to distinguish or classify surfaces up to
reparametrizations and translations. Often we need to do so up to Euclidean transformations
or up to similarities. In this section we describe a simple method to extract sequences of
Euclidean and shape invariants from the area and breadth function of a surface.

Notice that if M ⊂R3 is a surface and R is a 3× 3 orthogonal matrix, then

A (RM ; u) =A (M ; R−1u) and b (RM ; u) = b (M , R−1u)

for every unit vector u. In other words, the assignments M 7→A (M ; ·) and M 7→ b (M ; ·) are
O(3)-equivariant maps between the space of surfaces and the space L2(S

2) of square-integrable
functions on the sphere provided with the usual left O(3)-action (R, f ) 7→ f ◦R−1. The classic
theory of spherical harmonics (see Lecture 11 of (Arnold, 2004) for a particularly simple
description) tells us that this space decomposes into the direct sum

L2(S
2) =R⊕V1⊕V2⊕ · · · ,

whereVk is the (2k+1)-dimensional space of spherical harmonics of order k (i.e., the restriction
to the sphere of homogeneous harmonic polynomials of order k in R3). These subspaces are
invariant under the action of the orthogonal group and are mutually orthogonal. It follows
that if f is a square integrable function on the sphere, we can decompose f = f0+ f1+ f2+ ...
with fk ∈Vk , and that the L2 norm of each component fk , defined by

∥ fk∥
2
2 :=

1
4π

∫

S2
fk (u)

2 dΩ,

is invariant under the orthogonal group. Notice that if the function f is an even function, all
the odd terms, f2k+1, k ≥ 0, are zero. This method to extract rotation invariants from spherical
functions is classical (see, for instance, (Weyl, 1946)) and is widely used in geophysics ((Kaula,
1967; Lowes, 1974)), but in the context of computer science it seems to have been introduced
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in (Kazhdan et al., 2003), where the term energy representation of f is used for the sequence
k 7→ ∥ fk∥2.

Applying this idea to the area and breadth functions of a surface M we obtain two sequences
of invariants

αk (M ) := ∥A2k (M ; ·)∥2 and βk (M ) := ∥b2k (M ; ·)∥2.

To this we add the sequence γk (M ) consisting of the inner products ofA2k (M ; ·) and b2k (M ; ·):

〈A2k (M ; ·), b2k (M ; ·)〉2 =
1

4π

∫

S2
A2k (M ; u)b2k (M ; u)dΩ,

which is also a Euclidean invariant of the surface M .
Using the equality

∥ f + g∥22 = ∥ f ∥22+ 2〈 f , g 〉2+ ∥g∥22,

we have that
γk (M ) =

1
2

�

∥A2k (M , ·)+ b2k (M , ·)∥22−α
2
k (M )−β

2
k (M )
�

.

It is not clear what is the geometric meaning of most of these invariants, but by the Cauchy-
Crofton formula α0(M ) is simply one-fourth the area of M , while β0(M ) is (1/2π) times the
integral of the mean curvature of M , provided the surface is convex (see Chapter 14 in (Santaló,
1976)).

In practice we only know the values of the functionsA (M ; ·) and b (M ; ·) on a finite set
of grid nodes. Through the use of FFT and cubature formulas it is possible to numerically
compute the invariants αk (M ),βk (M ), and γk (M ) for 0≤ k ≤ l , where 16(l+1)2 is the number
of nodes in our grid (see (Wieczorek & Meschede, 2018, pp. 2580–2581)). Thus, the l × 3
matrix

El (M ) :=







α0(M ) β0(M ) γ0(M )
...

...
...

αl (M ) βl (M ) γl (M )






,

which will be our basic Euclidean-invariant representation of the surface M , can be effectively
computed from the values of the area and breadth functions of M over a uniform sample of
16(l + 1)2 points on the sphere.

To end this section we briefly discuss how to extend these Euclidean invariants to shape or
similarity invariants, where we allow for dilations as well as rotations and translations. To do
this we note that if λ is a positive real number, then

A (λM ; u) = λ2A (M ; u) and b (λM ; u) = λb (M ; u).

It follows that

αk (λM ) = λ2αk (M ), βk (λM ) = λβk (M ),

γk (λM ) = λ3γk (M ).

We can get rid of the dilation factor in a number of ways. For instance, for each k ≥ 0, the
quantities

α′k (M ) :=
αk (M )

||A (M , ; ·)||2
and β′k (M ) :=

βk (M )
||b (M ; ·)||2
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are shape invariants of M , as is

γ ′k (M ) :=











A2k (M , ·)
∥A (M , ·)∥2

+
b2k (M , ·)
∥b (M , ·)∥2











2

.

As the reader can see, γ ′k (M ) does not resemble γk (M ) as much as the primed versions of αk (M )
and βk (M ) resemble their original versions, but because of the numerical issues we will now
discuss, it will be useful for us to have only non-negative shape invariants.

4.3.4 Numerical considerations

Since the spherical harmonic expansions of the functions A (M ; ·) and b (M ; ·) converge, it
follows from Parseval’s identity that the invariants αk (M ), βk (M ), and γk (M ) tend to zero.
They would even decay exponentially if the functions were smooth (see (Livermore, 2012,
p. 1151) for a quick proof). In fact, neither function is smooth: the first is a finite convex sum
of the non-smooth functions u 7→ |u · ni |, and the second is support function of a polytope,
namely the convex hull of the differences of all pairs of vertices in the triangulated surface.
However, experimentally (and perhaps due to the great number and small size of the triangles
in our triangulated surfaces) the batch of invariants we computed does exhibit exponential
decay. Therefore, the last rows of our basic Euclidean representation

El (M ) :=







α0(M ) β0(M ) γ0(M )
...

...
...

αl (M ) βl (M ) γl (M )






,

will be nearly all zero for even relatively small values of l . We would prefer to deal with
invariants that decay at a slower rate to give some, but not too much, weight to higher
harmonics. To be precise, what worked for us was a t 7→ 1/t decay. To achieve this we change
α′k (M ) for

αs
k (M ) :=
¨

− ln(α′k (M ))
−1 if α′k (M )> 0,

0 if α′k (M ) = 0.

Similarly, we change β′k (M ) for

βs
k (M ) :=
¨

− ln(β′k (M ))
−1 if β′k (M )> 0,

0 if β′k (M ) = 0,

and, lastly, we change γ ′k (M ) for

γ s
k (M ) :=
¨

− ln(γ ′k (M ))
−1 if γ ′k (M )> 0,

0 if γ ′k (M ) = 0.

From now on we will be working with the modified shape invariant

E s
l (M ) :=







αs
0(M ) βs

0(M ) γ s
0 (M )

...
...

...
αs

l (M ) βs
l (M ) γ s

l (M )






.
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4.3.5 Representation of surfaces and surface evolution

The final aim of all the preceding mathematics is to represent surfaces as points and discrete
surface motions as polygonal curves in a suitable feature vector space. We consider two types
of representation, both of which are independent of the parametrization of the surface: a
translation-invariant representation and a shape-invariant representation.

To obtain a translation-invariant representation of a surface M we take a regular sample
of n latitude angles, along with a regular sample of n longitude angles of the sphere. We
combine them to obtain a spherical grid with n2 nodes u1, . . . , un2 and represent M by one of
the following vectors:

1. The breadths feature vector

(b (M ; u1), . . . , b (M ; un2)) ∈Rn2
.

2. The areas feature vector

(A (M ; u1), . . . ,A (M ; un2)) ∈Rn2
.

3. The areas & breadths feature vector which is obtained by joining the previous two:

(A (M ; u1), . . . ,A (M ; un2), b (M ; u1), . . . , b (M ; un2)) .

To obtain a shape-invariant representation of M we take a similar spherical grid of 16n2

nodes and use the values ofA (M ; ·) and b (M ; ·) on these nodes to compute the shape-invariant
matrix E s

n−1. Since we wish to understand how discerning the energies of the breadth and the
weighted area functions are, we shall also consider the first two columns of E s

n−1 separately.
This gives us three shape-invariant feature vectors:

4. The area spectrum:
(αs

0(M ), . . . ,α
s
n−1(M )).

5. The breadth spectrum:
(βs

0(M ), . . . ,β
s
n−1(M )).

6. The shape invariant E s
n−1.

In this chapter we will set n = 8 and hence when dealing with translation-invariant feature
vectors we will be working either inR64 orR128, and when dealing with shape-invariant feature
vectors we will be working either in R8 or R24. In all cases we will be using the standard
Euclidean metric in these spaces to compare surfaces through their associated vectors.

In order to analyze humanmotion, we need to find a representation for a sequence of surfaces
with timestamps, (M0, t0), . . . , (M p , tp ). Using any one of the six feature vectors described above
we associate to this sequence a parametrized polygonal curve in a feature vector space: if f (M )
denotes our feature vector, we construct the polygonal curve whose vertices are x j := f (M j ),
and for which the parametrization in each segment x j x j+1 is given by

t 7−→
t − t j+1

t j − t j+1
x j +

t − t j

t j+1− t j
x j+1
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for t j ≤ t ≤ t j+1 and 0≤ j ≤ p − 1.
By this procedure the problem of comparing two human motions, or any other two discrete

surface motions, is then reduced to that of choosing a suitable feature vector and comparing
the two parametrized polygonal curves associated to the motions.

4.4 Experiments

4.4.1 Evaluation setup

We test the usefulness of the proposed descriptors in two applications: static 3D human pose
and 3D human motion retrieval.
Metric evaluation. We use three evaluation measures. For all measures a high score implies
better results.

1. Nearest neighbor (NN): It equals one if the nearest neighbor is of the same class of the
query, 0 otherwise. This statistic provides an indication of how well a nearest neighbor
classifier would perform.

2. First-tier (FT), Second-tier (ST): the percentage of models in the query’s class C that
appear within the top K matches, K depending on query’s class size. For a class with |C |
members, K = |C | − 1 for the first tier, and K = 2× (|C | − 1) for the second tier.

The score displayed in evaluation tables are the mean scores computed over the dataset.

4.4.2 Datasets

We work in this chapter with the following datasets :

• The FAUST dataset, where we use the 10 training poses for pose retrieval

• The CVSSP3D artificial dataset as a dataset for motion retrieval

• The CVSSP3D real dataset as a dataset for motion retrieval

4.4.3 Static pose retrieval on the FAUST dataset

Each pose of a dataset is considered as a query belonging to some class. We compute the
Euclidean distance between the query pose descriptors and each pose in the dataset (Figure
4.4).

Comparison with state-of-the-art. In order to evaluate our descriptor against available
methods in the literature, we compare to the following approaches:

1. Skinned Multi-Person Linear model (SMPL) pose representation. The SMPL body
model (Loper et al., 2015) is composed of three parts: a template mesh, a pose vector,
and a shape vector. The shape vector represents the (non-rigid) deformation of the
template to the shape of the given human body. The pose information of a skeletal joint
is the relative rotation of the joint of the skeleton compared to its parent joint, and is
stored either as the rotation matrix or as axis-angle representation. We convert each joint



60 Chapter 4 Projection-based Classification of Surfaces for 3D Human Mesh Sequence
Retrieval

Areas/Breadths
extraction

Descriptors spaceQuery Result

Figure 4.4 Overview of our pose retrieval approach: We first compute the descriptors (Areas/Breadths
or Areas & Breadths) of all shapes in the database. Given a query shape, we compute its corresponding
descriptor and collect the closest shapes in the descriptor space.

rotation to quaternion representation as in (Zhou et al., 2020a; Aumentado-Armstrong
et al., 2019) and measure the distance between unit quaternions by d (q , q ′) = 1− |q .q ′|.
The SMPL body pose vector contains the pose information of 52 joints, and the rotation
of the central joint accounts for the global rotation of the shape. The representation is
a point in (R4)51 =R204. Due to the construction of the pose vector, this descriptor is
rotation invariant. However, this method is time consuming compared to ours because
of the needed fitting operation to the mesh.

2. Aumentado-Armstrong et al. (Aumentado-Armstrong et al., 2019) propose Geometrically
Disentangled VAE (GDVAE), a point cloud variational autoencoder which is trained
to disantengle the intrinsic and extrinsic informations of a given shape in the latent
space. The authors propose the intrinsic and extrinsic latent vectors for human shape
representation. We used the FAUST meshes as input of their available trained network,
gathered their extrinsic latent vectors (belonging to R12), and used them for human pose
retrieval. Although the procedure is parametrization invariant by nature (the networks
takes a cloud of points as input), the training uses the mesh Laplacian as ground truth
information, and this means a constant parameterization along the training set. The
network is trained on the SURREAL dataset (Varol et al., 2017) in such a way as to be
rotation invariant.

3. Zhou et al. (Zhou et al., 2020a) propose amesh autoencoder based on theNeural3DMM(Bourit-
sas et al., 2019) graph neural network structure. As in the case of GDVAE, this autoen-
coder disantengles shape and pose in latent space. The network requires that all input
meshes have the same parameterization. We apply the FAUST meshes on their available
network trained on the AMASS dataset, and use the pose latent vector (belonging to
R112) as a descriptor for comparison. Since the input of the network are the coordinates
of the vertices, the approach is not rotation invariant.
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Representation NN FT ST Computation time
GDVAE (Aumentado-Armstrong et al., 2019) 60 38.0 54.2 190ms
Zhou et al. (Zhou et al., 2020a) 82 69.2 83.4 30.7ms
SMPL pose vector 80 84.4 95.2 ≈ 5mi n
Areas 62 50.0 67.2 4.1ms
Breadths 83 63.1 76.6 13.2ms
Areas & Breadths 86 67.9 80.9 17.2ms

Table 4.1 Results for pose retrieval and computation time for feature extraction for FAUST dataset. The
computations were performed with NumPy routines on a Intel(R) Core(TM) i5-7600K 3.8GHz CPU,
with 8GB of RAM available, except for SMPL, for which the given method needed the use of a GPU.

Comparison
(DTW)

Descriptor space
(Shape invariant time series)

Query

Result

Figure 4.5 Overview of our motion retrieval approach. We first compute the time series of descriptors
(areas/breadth spectra or shape invariant) of all motions in the database. Given a query shape, we
compute its corresponding time series and compare it against the time series of the database in the
descriptor space using dynamic time warping. We then collect the closest motions given this similarity

Table 4.1 displays the results obtained for the Areas, Breadths, and Areas & Breaths
descriptors. The results for the Breadths descriptor is of particular interest as it is here where
we see the high correlation between poses and their (symmetrized) convex hull, which validates
our main hypothesis. In fact, Breadth by itself outperforms all previous methods in the NN
criterion. When complemented by areas, the performance improves by 3%. The results also
show that the SMPL pose vector performs much better for the FT and ST metrics. This
result can be explained by the fact that SMPL has been designed specifically for human shapes.
In addition, the SMPL fitting method used here requires a dataset of meshes registered to a
template. The last column of Table 4.1 shows that our approach is faster than all the methods.
It shows also that the computation time of SMPL descriptor is very high.

4.4.4 3D Human Motion retrieval on CVSSP3D artificial dataset

Each mesh sequence of a dataset is considered as a query belonging to some class. We compute
the DTW similarity between the query mesh sequence and each mesh sequence in the dataset
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(Figure 4.5).
Comparison with state-of-the-art. An extensive comparison has been made in (Veinidis

et al., 2019) to evaluate a bench of descriptors for human motion retrieval. The polygonal
curves of those descriptors are filtered with a temporal filtering approach(a mean filter is
applied along a temporal window of size K ). Finally, the dynamic time warping distance is used
for comparing the resulting curves. We compare our invariant descriptors (breadth and area
spectrum, shape invariant) to the euclidean and parameterization invariant features presented
in (Veinidis et al., 2019), which are:

1. Shape Distribution (Osada et al., 2002)(Veinidis et al., 2019) is a 3D descriptor based
on pairwise distances. All pairwise distances of a given shape are computed, and the
resulting descriptor is an histogram of the obtained distances.

2. Spin Images (Johnson, 1997)(Veinidis et al., 2019) is a 3D shape descriptor based on local
features. For each point of a shape, a view from the point (the spin image) is computed,
which takes the form of a 2D histogram. The resulting descriptor is the sum of all spin
images.

3. The pretrained GDVAE on SURREAL is applied directly on the dataset. It does not need
any supplementary work since the network (PointNet) is parameterization invariant.

4. The Neural3DMM autoencoder from (Zhou et al., 2020a) needs to be specifically trained
on the CVSSP3D artificial dataset, since the network is set to specific mesh parameteriza-
tion and alignment. In order to be fair to the other methods that were not trained on the
dataset, we apply a cross identity validation to compute the score. For each individual,
we remove its motions from the training dataset. We then compute the retrieval scores
for the individual motions using the trained pose representation. The training setting is
exactly the same as in (Zhou et al., 2020a).

Representation NN FT ST
Shape Distribution (Osada et al., 2002)(Veinidis et al., 2019) 92.1 88.9 97.2
Spin Images (Johnson, 1997)(Veinidis et al., 2019) 100 87.1 94.1
GDVAE (Aumentado-Armstrong et al., 2019) 100 97.6 98.8
Zhou et al. (Zhou et al., 2020a) 100 99.6 99.6
Area spectrum 81.6 56.6 68.2
Breadth spectrum 100 99.8 100
Shape invariant E s

7 82.1 56.8 68.5

Table 4.2CVSSP3D artificial dataset results formotion retrieval using our shape-invariant representations.
The results of Shape Distributions and Spin Images are reported from (Veinidis et al., 2019).

We report our results on CVSSP3D artificial dataset in Table 4.2. The window sizes for
temporal filtering applied to Shape Distribution and Spin Images are 9 and 8 respectively as
in (Veinidis et al., 2019). Our method did not require temporal filtering. We observe that the
breadth spectrum has the best performance, near 100%, in all criteria.
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4.4.5 3D Human Motion retrieval on CVSSP3D real dataset

The CVSSP3D real dataset differs significantly from the artificial human motion dataset because
of the relatively noisy data (see Figure 4.6) and the various kinds of loose-fitting clothes in
some of the models (see Figure 4.6 and Figure 4.7). This raises the problem of making our

Figure 4.6 Examples of artifacts in the CVSSP3D real dataset.

descriptors more robust. While a thorough study of this question will be left for a future
publication, two conceptually simple and easily implemented modifications to our method can
have a significant impact.

The λ-percentile breadth function.The breadth function is particularly sensitive to outliers:
the maximum or the minimum value of the function x 7→ u · x can change significantly with a
single noisy vertex x. To make this descriptor more robust we make a simple change to the
support function of a finite set:

Definition 4.4.1. Given a finite set S ⊂ Rn and a parameter λ, 0 < λ ≤ 100, we define the
λ-percentile support function of S as the function hλ(S, ·) that assigns to a unit vector u ∈ Sn−1 the
λ-th percentile of the values {u · x : x ∈ S}. The λ-percentile breadth function of S is given by

bλ(M ; u) = hλ(S; u)+ hλ(S;−u).

Defined in terms of the vertices of a triangulation, bλ(M ; ·) is not invariant under re-
triangulations of the surface for λ < 100. It is only approximately so if the mesh is fine enough
and the sizes and shapes of all triangles are comparable. Nevertheless, it is invariant under
translations of M and satisfies the equivariance condition

bλ(RM ; u) = bλ(M ; R−1u).
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Provided we understand the conditions on the meshes of the surfaces we are working with, we
can use bλ(M ; ·) as a substitute of the breadth function in the construction of shape invariants
detailed in Section 4.3.3. We experimented with various values for λ and settled on the classic
third quartile λ = 75. We call the function b75(M ; u) Q-breadth. The analogue of the shape-
invariant E s

8 computed with the Q-breadth function instead of the breadth function will be
called the Q-shape invariant.

Temporal filteringOur second trick consists in slightly changing the way we assign polygonal
curves to sequences of surfaces with timestamps by making use of a special feature of our
invariants. If we are given a sequence of surfaces we can consider their average breadth function
and their average weighted area function, and then proceed with the construction of the feature
vectors. Note that for the breadth spectrum, the area spectrum and the shape invariant this is
not the same as averaging the feature vectors themselves (we tried that too: the results were
not as good). This particularity of our representation allows us the possibility to perform a
simple discrete convolution or temporal filtering on the data: given a sequence of surfaces with
timestamps, (M0, t0), . . . , (M p , tp ) and a number K , 0 < K < p we consider the timestamped
averages of breadth and weighted area functions, which are both represented here by f to avoid
redundancy,

f̄ti
(M ; u) :=

1
2K + 1

∑

−K≤ j≤K

f (Mi+ j ; u), K ≤ i ≤ p −K .

With the sequence of timestamped averaged functions

f̄tK
(M ; u), . . . , f̄tp−K

(M ; u)

we construct our timestamped feature vectors and the corresponding polygonal curve as
described in Section 4.3.5. Note that this temporal filtering approach is slightly different from
the one proposed in (Veinidis et al., 2019) – our approach is using the specific structure of our
descriptors. The results of our experiments and comparisons on the CVSSP3D real dataset
are reported in Table 4.3. Again we report the results of Shape distances and Spin Images
from (Veinidis et al., 2019). We display in this table the used windows size for temporal filtering
of each method. For this relatively noisy dataset, the table clearly shows the advantage of using
the spectrum of the Q-breadth function and the Q-shape invariant.

The results in Table 4.3 show that the Q-shape invariant outperforms all other methods,
including the deep learning method GDVAE whose performance drops significantly in the
presence of noise. This can be explained by the noise-sensitivity of the spectrum of the
Laplace-Beltrami Operator.

A remarkable difference between the results in Table 4.3 and those of Table 4.2 is that the
first tier measure is quite low compared to the NN measure for all features. In order to give an
idea of how the tier are distributed, a first tier query is illustrated in Table 4.7.

4.4.6 Computation times

Our methods were implemented using Numpy routines, with no other optimization. The
computations were performed with NumPy routines on a Intel(R) Core(TM) i5-7600K 3.8GHz
CPU, with 8GB of RAM available.
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Repr. K NN FT ST
Shape Distribution (Osada et al., 2002) 1 77.5 51.6 65.5
Spin Images (Johnson, 1997) 6 66.3 43.2 59.5
GDVAE (Aumentado-Armstrong et al., 2019) 14 38.7 31.6 51.6
Area spectrum 14 67.5 47.0 63.2
Breadth spectrum 15 63.7 39.1 52.5
Q-breadth spectrum 5 80.0 44.8 59.5
Shape invariant E s

7 15 62.5 41.8 57.9
Q-shape invariant 4 82.5 51.3 68.8

Table 4.3 CVSSP3D real dataset results for motion retrieval using our shape-invariant representations
and their Q-versions. The results of Shape Distributions and Spin Images are reported from (Veinidis
et al., 2019). The K value is the best window size for temporal filtering, and the displayed score are the
corresponding best scores.

(Query) Nikos, walk (QSI – 1) Jean, walk (QSI – 2) Jon, walk (QSI – 3)Hansung, walk

(QSI – 3) Chris, walk (QSI – 4) Haidi, walk
(QSI – 5)Hansung, walk
run and jump (Ours – 6) Nikos, run

Figure 4.7 First tier of the query Nikos, walk for Q-shape invariant. The query is in yellow and the
results are sorted by closeness to the query, using our Q-shape invariant descriptor.

In Table 4.1, last column, we present the computation times of each of the method applied
to FAUST. For Zhou et al. (Zhou et al., 2020a) and Aumentado-Armstrong et al. (Aumentado-
Armstrong et al., 2019), we used the implementations provided by the authors. For SMPL,
we used the SMPL fitting pipeline proposed by the authors. In Table 4.4 we present the
computation time of each method for the CVSSP3D datasets. For Zhou et al. (Zhou et al.,
2020a) and Aumentado-Armstrong et al. (Aumentado-Armstrong et al., 2019) (GDVAE) we
used the implementation provided by the authors. For Shape Distribution we use the hybrid
Python-C implementation provided by Nenad Markuš 1. For Spin Images, we used the C++
implementation provided by the PointCloud library 2. We can see that our approach is the
fastest on FAUST and CVSSP3D artificial datasets. We observe that the Q-shape invariant
computation time is a bit slower than Shape Distribution for our approach in the real dataset –
but the performance of our approach improves the NN criteria by 5%.

1https://nenadmarkus.com/p/shape-distributions
2https://pointclouds.org/documentation/classpcl_1_1_spin_image_estimation.html

https://nenadmarkus.com/p/shape-distributions
https://pointclouds.org/documentation/classpcl_1_1_spin_image_estimation.html
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Method Real, 37800 vert. Artif., 1290 vert.
Shape Dist. 79.1s* 61.2s*
Spin Image 3h54* 35.7s*
GDVAE 56.4s 2.08s
Shape invariant E s

7 46s 1.7s
Q-shape invariant 209s /

Table 4.4 Mean computation time of polygonal curves extraction for different methods in the CVSSP3D
datasets, along with the time corresponding to the polygonal curves in R24 using the Shape invariant E s

7 ,
and the Q-shape invariant. We put the number of vertices for each dataset. Methods with an asterisk
means that the implementation is not the official implementation provided by the authors.

4.5 Limitations and future work

4.5.1 Future work for human pose descriptors

Several avenues of future work are worth pursuing. We list some most promising directions
below:

• It is theoretically possible to find a richer set of Euclidean invariants of convex bodies (En-
gel & Laasch, 2020; Kousholt & Schulte, 2021) using less harmonics. This would make
the method more robust to noise.

• The noisy CVSSP3D real dataset has been a challenge for our descriptors. Some re-
search should be spent on statistical analysis as in in (Poonawala et al., 2002) to improve
performance on noisy data.

• As can be seen in Table 4.2, the fusion of several descriptors does not automatically lead
to better results. A finer statistical analysis is needed to exploit the existence of different
descriptors.

4.5.2 Limits of the convexity hypothesis

While our approach allows building easily some invariant descriptors of human shape, the
application to human motion retrieval using Dynamic Time Warping is a little rough. We can
indeed observe in Table 4.5 that the results on the Dyna dataset are outperformed by some
of the learned approaches presented above. This can be explained by two factors: first, the

Representation NN FT ST
GDVAE (Aumentado-Armstrong et al., 2019) 18.7 19.6 32.2
Zhou et al. (Zhou et al., 2020a) 50 40.4 57.0
SMPL pose vector 58.2 45.7 63.2
Areas 37.2 24.5 35.8
Breadths 50.7 36.2 50.5
Areas & Breadths 50.7 37.2 51.7

Table 4.5 Results for motion retrieval of translation invariant methods for Dyna dataset.
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breadth and areas are symmetric functions, they are not necessarily able to distinguish between
the effect of all symmetries that apply to the human pose. Moreover, the convexity hypothesis
may be a bit limited. To verify our statement, we test the hypothesis in depth by trying to
reconstruct the human pose based on the convex hull. As stated above, the convex hull is
characterized by its support function. We test the possibility of reconstructing human poses
from support function measurements using state-of-the-art pose priors.

In order to do this, we use VPoser (Pavlakos et al., 2019) combined with the SMPL model.
VPoser is a variational autoencoder (a deep learning generative model) trained on the AMASS
dataset (Mahmood et al., 2019), which contains more than 11000 human bodymotions, available
as SMPL parameters, and thus is a large dataset of plausible human pose. The network is trained
with pose-specific losses to encourage the encoder to penalize impossible human pose generation.
The authors of VPoser demonstrate that the network is indeed capable of interpolating between
human poses without passing through impossible ones. We search for Vposer-latent codes of
human poses using the support function measurements of a shape by minimizing the following
function:

fM (zposer) =
N
∑

i=0

(h(M ; ui )− h(SMPL(VPoserDecode(zposer);β), ui )
2 (4.1)

where zposer is living in the R32 latent space of VPoser and β is a fixed SMPL identity vector.
We minimize fM using gradient descent and show the resulting reconstructions in Figures 4.8
and 4.9. This approach shows that some poses can be almost identically retrieved. However,
some failed reconstructions led to "far" human poses (see first and last pose of Figure 4.9).

Figure 4.8 Reconstruction of human poses from support function measurements by minimizing
Equation (4.1). We see that the poses are not fully recovered.

These results question the convexity hypothesis and may also explain the results presented in
Table 4.5.
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Figure 4.9 Reconstruction from support function measurements by minimizing Equation (4.1). We
see that for the second and third poses, the corresponding pose is almost identically retrieved. The
optimization failed for the first and last one.

4.6 Conclusion

In this chapter, we defined a novel human descriptor using purely geometric information. Our
approach is based on the intuition that a human pose is nearly characterized by its convex
hull. Based on this hypothesis, we introduced three sequences of numerical surface descriptors
that are invariant under reparametrizations, Euclidean transformations, and similarities. We
demonstrated the use of these descriptors by performing pose retrieval and extending their use
to human motion retrieval. Our experiments on the FAUST and CVSSP3D synthetic and real
datasets demonstrated that our method generally outperforms the state-art-methods for both
3D human pose and motion retrieval including deep learning approaches.

However, we denoted the limits of our approach in the context of noisy shapes. Moreover,
the convexity hypothesis seems to be limited in the context of more complex motions. In the
next Chapter, we will use another approach coming from the varifold theory to build a human
motion descriptor. This will allow us to be robust to noise and to improve our results while
keeping the same levels of invariance.
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5.1 Introduction

The previous Chapter introduced a family of pose descriptors allowing us to compare both
human pose and human motion. However, the comparison of motion was stated as a simple
comparison of polygonal curves. It does not exploit the underlying characteristics of human
motion. In fact, in addition to the non-linearity of the shape space, one expects non-linearity
in temporal evolutions, which is causing the difficulties we encountered. Moreover, the experi-
ments on noisy shapes were laborious, with degraded performance. For example, the recent
use of the 3D harmonics descriptor (Veinidis et al., 2019), combined with temporal filtering
and cautious normalization of human shapes, was efficient on the real dataset (see Table 5.3).
Moreover, as stated in the end of the last Chapter, more complex motions like the ones of the
Dyna dataset are not well handled by our approach.

In this chapter, we propose to use Gram matrices of motion that we further reduce to
Gram-Hankel matrices in order to capture motions’ underlying dynamics. As illustrated in
Figure 5.1, we first embed the human shape spaceH in an infinite dimensional Hilbert space
with inner product 〈 , 〉V corresponding to a positive definite kernel inspired by the varifold
framework. Using this kernel product we are able to compute the Gram matrix relative to a
motion. We then propose to transform each of those matrices, using the Hankel matrices of
the motion, into Gram-Hankel matrix of fixed size r . This matrix allows for representing the
dynamic of human motion.

In summary, the main contributions of this chapter are:

• We represent 3D human surfaces as varifolds. This representation is equivariant to
rotation and invariant to parametrization. This representation allows us to define an
inner product between two 3D surfaces represented by varifolds. It is the first use of the
space of varifolds in human shape analysis. The framework does not assume that the
correspondences between the surfaces are given.

• We represent 4D surfaces by Hankel matrices. This key contribution enables the use of
standard computational tools based on the inner product defined between two varifolds.
The dynamic information of a sequence of 3D human shape is encapsulated in Hankel
matrices and we propose to compare sequences by using the distance between the resulting
Gram-Hankel matrices;

• The experiment results show that the proposed approach improves 3D human motion
retrieval state-of-the-art and it is robust to noise.

5.1.1 Drawbacks of temporal approaches

As shown in the previous Chapter, a general approach adopted when comparing 3D sequences
is the extension of static shape descriptors such as 3D shape distribution, Spin Image or our
Shape invariants to include temporal motion information (Huang et al., 2010; Veinidis et al.,
2019). While these approaches require the extraction of shape descriptors, our approach does
not need a 3D shape feature extraction. It is based on the comparison of surface varifolds
within a sequence. In addition, the comparison of 3D sequences requires an alignment of
the sequences. The Dynamic Time Warping (DTW) algorithm has been used for several
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Human motion
in human shape space

(H, ⟨., .⟩V )
Gram matrix
relative to ⟨., .⟩V

Embedding in Mr(R)
with Gram-Hankel matrix

Figure 5.1 Overview of our method. We embed the human shape spaceH in an infinite dimensional
Hilbert space with an inner product from a positive definite kernel 〈., .〉V inspired by varifold framework.
Using this kernel product we are able to compute the Gram matrix relative to a motion. Each of these
Gram matrices is transformed into Gram-Hankel matrix of size r . The Frobenius distance in Mr (R) is
used to retrieve similar 3D sequences.

computer vision applications (Ben Amor et al., 2016; Kacem et al., 2018) and alignment of
3D human sequences (Veinidis et al., 2019), as shown before. However, DTW does not define
a proper distance (no triangle inequality). In addition, as we have seen, temporal filtering is
often required for the alignment of noisy meshes (Slama et al., 2014). Our approach enables
the comparison of sequences of different temporal duration, does not need any alignment
of sequences, and is robust to noisy data. We model a sequence of 3D mesh as a dynamical
system. The parameters of the dynamical system are embedded in our Hankel matrix-based
representation. Hankel matrices have already been adopted successfully for skeleton action
recognition in (Zhang et al., 2016). As we do not have finite-dimensional features to build such
matrices numerically, we define the novel Gram-Hankel matrix, based on the kernel product
defined from the surface varifold. This matrix is able to model the temporal dynamics of the
3D meshes.

5.2 Varifolds for human shapes

To work with varifolds for human shapes, we follow the work of (Charon & Trouvé, 2013;
Kaltenmark et al., 2017). They designed a fidelitymetric based on the varifold representation and
Reproducing Kernel Hilbert Spaces. This fidelity metric is proposed for 2D artificial contour
retrieval, and used in 3D diffeomorphic registration in the Large deformation diffeomorphic
metric mapping (LDDMM) framework. To our knowledge, the present work is the first use
of such representation for the analysis of human shape. It is also the first use of the space of
varifolds purely for itself, as an efficient way to perform direct computations on shapes.

5.2.1 Choice of reproducing kernel

The comparison of measures themselves is, however, a though problem, where one would need
to define discrepancy from optimal transport or define a large set of well-defined functions
on which to apply the measure. A more natural way is to look in depth at the theory of
Reproducing Kernel Hilbert Spaces (RKHS). The underlying idea is to embed any varifold of
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a surface M with a representant ΦM living in a (infinite dimensional) Hilbert space, which has
a well-defined inner product, allowing to define distances between human shapes;

A varifold µ can be converted into a function Φµ on R3×S2 using a reproducing kernel
that comes from the product of two positive definite kernels: kpos : R3 ×R3 → R, and kor :
S2×S2→R. We just define Φµ(x, v) =

∫

R3×S2 kpos (y, x)ko r (w, v)dµ(y, w). For a triangulated
surface M , we get ΦM (x, v) =

∑m
i=1 ai kpos (ci , x)ko r (ni , v).

One obtains a Hilbert product between any two varifolds µ, ν as follows :

〈µ, ν〉V =
¬

Φµ,Φν
¶

V
=
∫

Φµd ν =
∫

Φνdµ,

so that
〈µ, ν〉V =
∫∫

kpos(x, y)kor(v, w)dµ(x, v)d ν(y, w).

We deduce the explicit expression for that product between two triangulated 3D shapes M
and N :

〈M ,N 〉V = 〈ΦM ,ΦN 〉V =
m
∑

i=1

n
∑

j=1

aM
i aN

j kpos(c
M
i , cN

j )kor(n
M
i , nN

j ) (5.1)

Where m, n is the number of faces of M and N . The continuous version of this product
presented in (Charon & Trouvé, 2013) is parametrization invariant.

A nice property of such a product is that it can be made equivariant to rigid transformation
by carefully choosing the kernels. First, we define how to apply such a deformation on a varifold.
Given a rotation R ∈ SO(3) ofR3 and a vector T ∈R3, the rigid transformationψ : x 7→ Rx+T
yields the push-forward transformation µ 7→ψ#µ through

∫

f dψ#µ=
∫

φ(Rx+T , Rv)dµ on
the space of varifolds. For a triangulated surface M , ψ#M is just ψ(M ), the surface obtained by
applying the rigid motion ψ to the surface M itself. We have the following important result :

Theorem 5.2.1. If we define the positive definite kernels as follows:

kpos(x, y) = ρ(||x − y||), x, y ∈R3,
kor(v, w) = ζ (v.w), v, w ∈ S2,

then for any two varifolds µ, ν , and any rigid motion ψ on R3, we have

〈ψ#µ,ψ#ν〉V = 〈µ, ν〉V .

This result means that given a rigid motion ψ, 〈φ(M ),φ(N )〉V = 〈M ,N 〉V .

The kernel kpos is usually chosen as the Gaussian kernel kpos = e
− ||x−y||2

σ2 , with the scale
parameter σ needed to be tuned for each application.

Kaltenmark et al. (Kaltenmark et al., 2017) proposed several function for the spherical
kernel. In this chapter we retained the following functions:

• currents, with ζ (u) = u

• oriented varifolds, with ζ (u) = e2u/σ2
o

• we finally propose absolute varifolds, with ζ (u) = |u|
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5.2.2 Pertinence of varifolds in the human shapes context

For such kernels, two surface varifolds M ,N with “similar" support (for example, if M is
a reparametrization of N , or if they represent two human shapes with the same pose but
different body types) will have relatively small distance in the space of varifolds, so that
〈M ,N 〉2V ≃ 〈M , M 〉V 〈N ,N 〉V , that is, they are almost co-linear. On the other hand, surface
varifolds with very distant support will be almost orthogonal (〈M ,N 〉V ≃ 0) because of the
Gaussian term in kpos . Obviously, shapes that have some parts that almost overlap while
others are far away will be in-between. Combined with its rotational equivariance, this leads
us to believe that the kernel product can be used to differentiate between poses and motions
independently of body types. However, as we can see in Table 5.1, the distance does not
differentiate well human poses and obtain poor results in pose retrieval.

Distance NN FT ST
Currents 12 12.3 18.7
Absolute Varifolds 11 12.9 19.6
Oriented Varifolds & Breadths 11 12.0 18.9

Table 5.1 Retrieval results of the varifold distance on the FAUST dataset, using the varifold distances
(using σ = 0.1, similar results with other values). The results are poor.

Connections with the previous chapter. We can see a few links in the approach of the previous
Chapter and this one. First, varifolds are measures of functions over R3×S2 and the weighted
area function exploits the EGI of the surface, which can be seen as a measure of functions over
S2. Moreover, using varifolds, we transform them into functions R3 × S2 → R. Moreover,
our extraction of the human pose feature vector was a sampling of a function S2→R. Thus
varifolds contain more information than the previous approach. However, under the convexity
hypothesis, the pose feature vector showed to be more adapted than the varifold distance for
pose description as we see in table 5.1. While the kernel metric of varifold seems inadapted in
this context, we can take advantage of the high dimensional nature of the varifolds RKHS to
define a convenient motion descriptor.

5.3 Comparing 3D Human Sequences

We need a way to compare sequences of 3D shapes M1, ..., MT , with T possibly differing between
sequences. For this, we use the kernel product 〈 , 〉V as a similarity metric. Thanks to the
reproducing property of positive definite kernels (Aronszajn, 1950), it defines a reproducing
kernel Hilbert spaceH (RKHS) which is an (infinite dimensional) Euclidean space endowed
with an inner product corresponding to the kernel product, as described in the previous section.
Any shape M has a corresponding representative ΦM : R3× S2 → R in this space, such that
〈ΦM ,ΦN 〉V = 〈M ,N 〉V (Figure 5.2).

Modeling dynamics of temporal sequences.Thanks to the varifolds representation and the
kernel product 〈., .〉, the temporal sequence M1, ..., Mt corresponding to a motion in the human
shape space can be seen as a temporal sequence ΦM1

, ...,ΦMT
in the RKHS H . Plus, since

the varifold kernel is equivariant to rigid transformations, the product of two shapes within



74 Chapter 5 3D Shape Sequence of Human Comparison and Classification using Current and
Varifolds

Surface M

Varifolds framework

Discrete varifolds
representation of M

Kernel product < ., . >V

Representative
ΦM in RKHS H

Figure 5.2 An overview of varifolds framework. First, a mesh M is transformed into its corresponding
varifold representation. Then, the kernel product defined in Equation (5.1), transforms it into a
representant ΦM living in the Hilbert spaceH of this varifold.

a sequence is invariant to any rigid transformation applied to the full motion. The Gram
matrix Ji j = 〈ΦMi

,ΦM j
〉, which is a rigid transformation invariant matrix, would be a natural

representant of the motion. However, its size varies with the length T of the sequence. Inspired
by Auto-Regressive (AR) models of complexity k defined by ΦMt

=
∑k

i=1αiΦMt−i
, several

representations (Slama et al., 2015; Turaga et al., 2008) have been proposed for dynamical
systems modeling. Hankel matrices (Li et al., 2012) are one of the possible representations.
The Hankel matrix of size r, s corresponding to our time series ΦM1

, ...,ΦMT
is defined as:

Hr,s
t =











ΦM1
ΦM2

ΦM3
... ΦMs

ΦM2
ΦM3

ΦM4
... ΦMs+1

... ... ... ... ...
ΦMr

ΦMr+1
ΦMr+2

... ΦMr+s











(5.2)

The rank of such matrix is usually, under certain conditions, the complexity k of the dynamical
system of the sequence. The comparison of two time series therefore become a comparison
of high dimensional matrices. Such an approach has been applied successfully to skeletal and
video action analysis, with various proposed ways for comparing Hankel matrices (Zhang et al.,
2016; Lo Presti & La Cascia, 2015; Li et al., 2012).

It is not straightforward to use those matrices since our shape representatives live in
infinite dimensional space. A first idea would be to think about the Nystrom reduction
method (Williams & Seeger, 2001) to build an explicit finite dimensional representation for
ΦM , but this would involve intensive computations on the full Gram matrix of the sequence
pairwise inner products. Another possibility is to think about the Gram matrix HHT derived
from the Hankel matrix H (Zhang et al., 2016; Li et al., 2012). We cannot directly derive the
same kind of matrices since our representatives live in an infinite dimensional space. The Gram
matrix of the motion, J , however, preserves the linear relationships of the AR model. We
therefore derive the following matrix:

Definition 5.3.1. The Gram-Hankel matrix of size r , G ∈Mr (R) of the sequence ΦM1
, ...,ΦMT

is
defined as:

Gi j =
T−r
∑

k=1

〈ΦMi+k
,ΦM j+k

〉=
T−r
∑

k=1

〈Mi+k , M j+k〉V (5.3)

We normalizeG relatively to the Frobenius norm, following recommended practices (Zhang
et al., 2016). This matrix is the sum of the diagonal blocks B r

l of size r of the Gram matrix
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of the sequence pairwise inner products. A possible way of interpreting what encodes a
single block B r

l of size r when r ≥ k is to follow the idea of (Kacem et al., 2018) the polar
decomposition of the coordinate matrix of ΦM l

, ...ΦMr+l
. This coordinate matrix exists in the

space s pan(ΦM0
, ...ΦMk

) under to the AR model hypothesis (any ΦM j
is a linear combination

of the first k ΦMi
), and can be factorized into the product Ul Rl , where Ul is an orthonormal

r × k matrix, and Rl an SPD matrix of size k. The matrix Rl is the covariance (multiplied
by r 2) of ΦM l

, ...ΦMr+l
in s pan(ΦM0

, ...ΦMk
), and it encodes in some way its shape in this space.

An illustration of such encoding is given in Figure 5.3. For three motions from CVSSP3D
dataset, we compute the varifold distances Equation (5.1) between all samples of the motion.
We then used Multidimensional Scaling (MDS) (Cox & Cox, 2008) to visualize them in a 2D
space. We display the ellipse associated to the covariance of each motion. We see that the one
associated to jump in place (blue) motion is distinguishable from the ones associated to walk
motions (red and green).

Figure 5.3 MDS illustration of three motions of CVSSP3D dataset, along with ellipse associated to their
covariance.

The Gram matrix block B r
l is written as B r

l = Ul R2
l U T

l and contains such information.
Searching for the complexity k of the AR model would be sensitive to errors, and computing
the associated Rl for comparisons with an SPD metric would be time consuming in our case.
We thus preferred the rather simpler Gram-Hankel matrix, that cancels possible noise in single
blocks when summing them. Finally, using the Frobenius distance d (Gi,Gj) = ||Gi−Gj||F
where Gi and G j are two Gram-Hankel matrices, to compare two motions lead us to rather
good results. The blocks of size r are expressive enough when r ≥ k, and taking their sum
will ensure us to cancel possible noise added to a single block. The degenerate nature of G,
does not allow for efficient use of SPD metrics such as the Log-Euclidean Riemannian Metric
(LERM) on the Gi . With this approach, the comparison of two human motions is formulated
as the comparison of two symmetric positive semi-definite matrices.

Proposition 5.3.2. The Gram-Hankel matrix G associated to a motion M1, ..., MT defined by Equa-
tion (5.3) has the following properties:

1. It is invariant to parameterization (property of the kernel product).

2. It is invariant to rigid transformation applied to a motion.
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Normalizations. As the definition of the kernel shows the method is not invariant to scale,
we normalize the inner products as following:

D

Mi
||Mi ||V

,
M j

||M j ||V

E

V
.

While our method is translation invariant, the use of the Gaussian kernel implies that the
product will be near 0 when the human shapes are at long range. To avoid this, we translate the
surface M with triangles T1, ...,Tm by its centroid cM =

∑m
i=1 ai ci
∑m

i=1 ai
, where ci and ai correspond

to the center and area of triangle Ti . We apply M 7→M − cM before computing the products.

5.4 Experiments

Computing varifold kernel products can often be time consuming, due to the quadratic cost in
memory and time in terms of vertex number for computing 〈M ,N 〉V . However, the recent
library Keops (Charlier et al., 2021), designed specifically for kernel operations proposes efficient
implementations with no memory overflow, reducing time computation by two orders of
magnitudes. We used those implementations with the Pytorch backend on a computer setup
with Intel(R) Xeon(R) Bronze 3204 CPU @ 1.90GHz, and a Nvidia Quadro RTX 4000 8GB
GPU.

5.4.1 Evaluation setup

In order to measure the performance in motion retrieval, we use the classical performance
metrics used in retrieval: Nearest neighbor (NN), First-tier (FT) and Second-tier (ST) criteria
(see previous chapter for definition). For each experiment, we take r values ranging from 1 to
Tmi n where Tmi n is the minimal sequence length in the dataset. We also take 10 σ values for
the Gaussian kernel ranging from 0.001 to 10 in log scale. The score displayed is the best score
among all r and σ values. For oriented varifolds, the σo of the gamma function is fixed to 0.5
as in (Kaltenmark et al., 2017).

5.4.2 Datasets

The datasets chosen are the following :

• The CVSSP3D synthetic dataset in the same configuration as last chapter

• The CVSSP3D real dataset in the same configuration as last chapter

• The 144 motions of Dyna dataset are use for motion retrieval.

5.4.3 Comparison with state-of-the-art.

We proceed to an extensive comparison to state-of-the-art descriptor of human body. The
polygonal curves of those descriptors are combine with dynamic time warping distances,
and filtered with a temporal filtering approach for the real dataset. The descriptors of the
comparison are the following :

1. Spin Images and Shape Distribution are part of the comparison
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2. The 3D harmonics descriptor (Papadakis et al., 2008)(Veinidis et al., 2019) is a descriptor
based on point cloud repartition in space. A 3D shape is first normalized with two
variations of PCA. Then, a spherical histogram with different rays is built. The final
descriptor is decomposed along spherical harmonics of the obtained with a specific
re-weighting for better results. Temporal filtering is proposed in order to deal with the
real dataset.

3. Breadths spectrum Q-breadths and Q-shape invariant from the previous chapters.

4. We re-use the pose latent vector from Geometrically Disentangled Variational AutoEn-
coder (GDVAE) of (Aumentado-Armstrong et al., 2019).

5. We also re-use the posent latent vector of Zhou et al. (Zhou et al., 2020a) Neural3DMM(Bourit-
sas et al., 2019) disentangled network.

6. Cosmo et al. (Cosmo et al., 2020) propose a human pose latent vector in a similar
approach as GDVAE, called Latent Interpolation with Metric Priors (LIMP). They use
the same type of autoencoder as GDVAE but change the disentanglement constraints
with metric prior constraints: a change in extrinsic latent space should only induce
change on extrinsic distances of the meshes, while a change in intrinsic latent space
should only induce change on intrinsic distances of the meshes. They use Euclidean
and geodesic pairwise matrices in their losses to model this constraint, which needs a
constant parameterization in the training set. We use the network pretrained on the
FAUST dataset (Loper et al., 2015). They do not make any specific training for Euclidean
invariance. In order to do motion retrieval, we applied the meshes as input of their
available trained network and gathered their extrinsic latent vectors (belonging to R64),
and used them in the human sequence retrieval pipeline.

7. We also compare to the SMPL registrations available in the Dyna dataset. The SMPL
parameters were augmented with dynamic soft tissue deformation relative to each motion
(called DMPL) and use to transform the original Dyna dataset to the DFAUST dataset,
with better correspondance with the scan. They use for this goal much more information
such as texture information from body videos, and the shape vector is retrieved using
gender information. We prefer comparing on Dyna dataset rather than DFAUST dataset,
allowing us to compare faithfully to the SMPL body pose descriptor. In order to build
the pose vectors, a costly fitting method is used along each sequence (accounting in
minutes for a single shape). The pose vectors for 129 motions of Dyna where the fitting
was successful, we added the SMPL Pose vector retrieved using available code https:
//github.com/vchoutas/smplx/ for the remaining 5 motions.

5.4.4 Motion Retrieval on CVSSP3D artificial dataset

For the artificial dataset, the optimal σ were fixed to 0.17 for current, 0.17 for absolute varifolds,
and 0.02 for oriented varifolds. The optimal r were 97, 92 and 90 for current, absolute and
oriented varifolds respectively. The maximum computation time of Gram-Hankel matrix is
0.89s.

https://github.com/vchoutas/smplx/
https://github.com/vchoutas/smplx/
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Representation Diff+ inv. SO(3) inv. NN FT ST
Shape Dist. ✓ ✓ 92.1 88.9 97.2
Spin Images ✓ ✓ 100 87.1 94.1
3D harmonics ≈ ≈ 100 98.3 99.9
Breadths spectrum ✓ ✓ 100 99.8 100
Shape invariant ✓ ✓ 82.1 56.8 68.5
GDVAE ✓ ✓ 100 97.6 98.8
Zhou et al. ✗ ✗ 100 99.6 99.6
LIMP ✓ ✗ 100 99.98 99.98
Current ✓ ✓ 100 100 100
Absolute varifolds ✓ ✓ 100 100 100
Oriented varifolds ✓ ✓ 100 100 100

Table 5.2 CVSSP3D artificial dataset results for motion retrieval. Results of Shape Distributions, Spin
Images and 3D harmonics are taken from (Veinidis et al., 2019).

We observe the results on the CVSSP3D artificial dataset in Table 5.2. Only our approach
is able to get 100% in all performance metrics. We also observe that only our approach able to
outperform the LIMP learned approach.

5.4.5 3D Human Motion retrieval on CVSSP3D real dataset

For the real dataset, the optimal σ were fixed to 0.06 for current, 0.17 for absolute varifolds
and oriented varifolds. The optimal r were 48,43 and 46 for current, absolute and oriented
varifolds respectively. The maximum computation time of Gram-Hankel matrix is 6m30s (the
meshes of the dataset are much larger). We emphasize that as opposed to any other approaches
for this dataset, we do not apply any kind of adaptation for the noise present in the meshes.
We observe the results on the CVSSP3D real dataset in Table 5.3. Absolute varifolds approach

Representation Diff+ inv. SO(3) inv. NN FT ST
Shape Dist. ✓ ✓ 77.5 51.6 65.5
Spin Images ✓ ✓ 66.3 43.2 59.5
3D harmonics ≈ ≈ 92.5 72.7 86.1
Q-Breadths spectrum ≈ ✓ 80.0 44.8 59.5
Q-shape invariant ≈ ✓ 82.5 51.3 68.8
GDVAE ✓ ✓ 38.7 31.6 51.6
Current ✓ ✓ 92.5 66.0 78.5
Absolute varifolds ✓ ✓ 95.0 66.6 80.7
Oriented varifolds ✓ ✓ 93.8 65.4 78.2

Table 5.3 CVSSP3D artificial dataset results for motion retrieval. Results of Shape Distributions, Spin
Images and 3D harmonics are taken from (Veinidis et al., 2019).

outperforms by 2.5% the 3D descriptor in terms of NN metric, while being less good for FT
and ST. In terms of fully invariant methods, we outperform by 10% the proposed approaches.
The absolute varifolds methods is the best of our approach, but we do not observe significant
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sensitivity between different varifolds. We finally observe that the point cloud descriptors of
GDVAE has the lowest performance.

5.4.6 3D Human Motion Retrieval on Dyna dataset

For the Dyna dataset, the optimal σ were fixed to 0.02 for current 0.06 for absolute varifolds,
and 0.16 for oriented varifolds. The optimal r were 27,31 and 72 for current, absolute and
oriented varifolds respectively. The maximum computation time of Gram-Hankel matrix is
2m30s.

Representation Diff+ inv. SO(3) inv. NN FT ST
Areas ✓ ✗ 37.2 24.5 35.8
Breadths ✓ ✗ 50.7 36.2 50.5
Areas & Breadths ✓ ✗ 50.7 37.2 51.7
GDVAE ✓ ✓ 18.7 19.6 32.2
Zhou et al. ✗ ✗ 50.0 40.4 57.0
LIMP ✓ ✗ 29.1 20.7 33.9
SMPL pose vector ≈ ✓ 58.2 45.7 63.2
Current ✓ ✓ 59.0 34.1 50.4
Absolute varifolds ✓ ✓ 60.4 40.0 55.9
Oriented varifolds ✓ ✓ 60.4 40.8 55.9

Table 5.4 Dyna dataset results for motion retrieval.

As shown in Table 5.4 the oriented and absolute varifolds is the best by 2 % in terms of
NN metric compare to SMPL, and by more than 10 % to other approaches, including the
parameterization dependant approach of (Zhou et al., 2020a). The FT and ST performance are
however less good than SMPL. This can be explained by its human specific design, along with
the costly fitting method, that use additional information (gender, texture videos). Finally, we
observe that point cloud neural networks are not suitable for high set of complex motions.

5.4.7 Qualitative results

Confusion matrices
We display in Figure 5.4 the Nearest Neighbor score confusion matrices for both SMPL

and Oriented Varifolds. We observe that on Dyna, the difficult cases were jiggle on toes, shake

Figure 5.4 Confusion matrix of SMPL (left) and Oriented Varifolds (right) on the Dyna dataset.
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arms, shake hips and jumping jacks, corresponding to l3, l6, l9 and l10 in confusion matrix. Our
approach is able to classify better these motions than SMPL. In addition, SMPL was not able
to retrieve as a Nearest Neighbor, a similar motion to shake arms or shake hips corresponding
to l6 and l9. This Figure shows also that our approach retrieves perfectly the knees motion
corresponding to l1.
Example queries

To augment the qualitative comparisons, we propose two queries on Dyna and CVSSP3D
real datasets. The results on Dyna, displayed in Figure 5.5, show the good quality of our
approach for the chosen query. We observe that Areas & Breadths are gathering too much
symmetric information, and that SMPL retrieves some motion executed by the same individual.
Our approach does not display such problems.

Moreover, the results on CVSSP3D, displayed in Figure 5.6 shows an improvement com-
pared to Q-breadths spectrum, a fact that confirms the results of Table 5.3.

5.5 Discussion

5.5.1 Comparison of SPD metrics for Gram-Hankel matrices

As a matter of fact, the Gram-Hankel matrices are positive semidefinite matrices, and several
metrics have been proposed to compare positive definite matrices. We display in Table 5.5
the results of on of them, the Log Euclidean Riemannian Metric (LERM) compared to the
Frobenius distance.

dLERM (G1,G2) = || log(G1)− log(G2)||F ,

where log(G) = P T log(λ)P , where G = P T λP is the eigen decomposition of the symmetric
matrix G. We observe that on all datasets, the performance is lower than using the Frobenius

Representation Gram-Hankel Artificial dataset Real dataset Dyna dataset
distance NN FT ST NN FT ST NN FT ST

Current Frobenius 100 100 100 92.5 66.0 78.5 59.0 34.1 50.4
LERM 100 100 100 78.8 55.0 76.6 55.2 35.9 51.4

Absolute varifolds Frobenius 100 100 100 95.0 66.6 80.7 60.4 40.0 55.9
LERM 100 100 100 80.0 54.6 73.4 57.5 36.0 50.8

Oriented varifolds Frobenius 100 100 100 93.8 65.4 78.2 60.4 40.8 55.9
LERM 100 100 100 86.3 50.0 66.4 57.5 37.0 51.3

Table 5.5 Motion retrieval results for our approach with Log Euclidean Riemannian Metric (LERM).
The results are displayed for CVSSP3D artificial and real datasets, and Dyna datasets

metric. This results confirm our choice of using Frobenius than LERM metric.

5.5.2 Effect of the parameter choice for oriented varifolds on Dyna dataset.

Effect of the sigma parameter. The performance relative to the σ parameter is displayed on
the right of Figure 5.7 for oriented varifolds on Dyna dataset. We observe first that the choice
of σ has a significant impact on performance for NN and in the same time that the optimal
σ for the NN is not the same as one for FT and ST, for a loss of around 2% in those metrics,
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(Query) 50020, run-
ning on spot

(AB – 1) 50022, run-
ning on spot

(AB – 2) 50025,
shake shoulders

(AB – 3) 50009, run-
ning on spot

(AB – 4) 50020,
punching

(AB – 5) 50027, run-
ning on spot

(AB – 6) 50007,
punching

(AB – 7) 50021,
punching

(AB – 8) 50027,
punching

(AB – 9) 50025,
punching

(a) Query using Areas & Breadths

(Query) 50020, run-
ning on spot

(SMPL – 1) 50022,
running on spot

(SMPL – 2) 50026,
running on spot

(SMPL – 3) 50027,
running on spot

(SMPL – 4) 50009,
running on spot

(SMPL – 5) 50021,
running on spot

(SMPL – 6) 50004,
running on spot

(SMPL – 7) 50020,
shake hips

(SMPL – 8) 50026,
punching

(SMPL – 9) 50020,
punching

(b) Query using SMPL

(Query) 50020, run-
ning on spot

(Ours – 1) 50026,
running on spot

(Ours – 2) 50009,
running on spot

(Ours – 3) 50004,
running on spot

(Ours – 3) 50007,
running on spot

(Ours – 4) 50002,
running on spot

(Ours – 5) 50025,
running on spot

(Ours – 6) 50027,
running on spot

(Ours – 8) 50026,
one leg jump

(Ours – 9) 50022,
running on spot

(c) Query using oriented varifolds.

Figure 5.5 First tier of the query "50020, running on spot" for Areas & Breadths, SMPL (Loper et al.,
2015) and oriented varifolds on the Dyna dataset. The query is in yellow and the results are sorted by
closeness to the query using a given approach.
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(Query) Nikos, walk (QSI – 1) Jean, walk (QSI – 2) Jon, walk (QSI – 3)Hansung, walk

(QSI – 3) Chris, walk (QSI – 4) Haidi, walk
(QSI – 5)Hansung, walk
run and jump (Ours – 6) Nikos, run

(a) Query using Q-shape invariant (QSI)

(Query) Nikos, walk (Ours – 1) Natali, walk (Ours – 2) Jon, walk (Ours – 3) Joe, walk

(Ours – 4) Haidi, walk (Ours – 5) Chris, walk
(Ours – 6) Chris, jump
in place (Ours – 7) Haidi, walk

(b) Query using absolute varifolds

Figure 5.6 First tier of the query "Nikos, Walk" for Q-shape invariant and Absolute Varifolds on the
CVSSP3D real dataset. The query is in yellow and the results are sorted by closeness to the query using
a given approach. The first query is directly taken from the previous chapter.

Figure 5.7 NN, FT, ST metric relatively to the σ parameters (left) and to the r parameter (right) on
Dyna dataset for oriented varifolds.
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which is less significant than the NN gain.
Effect of the choice of r. The performance relative to the r parameter is displayed on the left
of Figure 5.7 for oriented varifolds on Dyna dataset. We observe first that the choice of r has a
significant impact on performance and in the same time that the optimal r for the NN is not
the same as one for FT and ST, for a loss of around 5% in those metrics.

Centroid Inner NN FT ST
✗ ✗ 51.5 34.6 53.4
✗ ✓ 52.2 33.4 50.5
✓ ✗ 59.7 40.7 55.8
✓ ✓ 60.4 40.8 55.9

Table 5.6 Retrieval performance of the normalizations on Dyna dataset, for oriented varifolds. Both are
useful.

Effect of normalizations. We present in Table 5.6 the performances of oriented varifolds
with the 2 normalization techniques presented here. The centroid normalization is essential to
the good performance of our approach. In the mean time, the inner product normalization
always implies significant boost for NNmetric, but can induce a (non-significant) loss in ST and
FT metrics. We provide in, the performance relative to the parameters σ and r , for oriented
varifolds on Dyna dataset. We observe that the choice of those parameters is crucial. We also
display the performances of oriented varifolds with the 2 normalizations techniques, showing
that they both help to obtain the best results.

5.6 Limitations.

In the current setting, we note that our approach presents two main limitations, that open
interesting future directions:

1. To measure distance between matrices, we have used Euclidean distance, which does not
exploit the geometry of the symmetric positive semi-definite matrices manifold. Metrics
on the SPD manifold (different from semi-definite ones) seem to be however unadapted
as stated in the discussion section.

2. There is no theoretical limitation to applying this framework to the comparison of other
3D shape sequences (eg. 3D facial expressions, or 3D cortical surface evolutions) other
than between body shapes. However, in practice, one should redefine the hyperparame-
ters (r,σ) of the Kernel (Theorem 1).

5.7 Conclusion

We presented a novel framework to perform comparison of 3D human shape sequences. We
propose a new representation of 3D human shape, equivariant to rotation and invariant to
parameterization using the varifolds framework. We propose also a new way to represent
human motion by embedding the 3D shape sequences in infinite dimensional space using a
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kernel positive definite product from the varifold framework. We compared our method to the
combination of dynamic time warping and static human pose descriptors. Our experiments on
3 datasets showed that our approach gives competitive or better than state-of-the-art results for
3D human motion retrieval, showing better generalization ability than popular deep learning
approaches.

However, while this chapter and the previous one proposed efficient approaches for 3D
shape sequence retrieval, they are not suited for the problem of human deformations since we
leave the shape space in each of them. We will focus on this problem in the next two chapters.
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6.1 Introduction

This Chapter and the next will focus on Human Body deformation, with the aim to open
possibilities of applications in vision, graphics, virtual reality, product design, and avatar
creation. We remind that human bodies vary significantly across two important properties:
shape (or subject identity) and body pose (articulation of the body in space). These variations
are what make human body shape analysis a challenging problem. In this Chapter, we seek a
framework for human shape analysis that provides:

1. a shape metric to quantify shape and pose differences

2. a full pipeline for generating deformations and shape interpolation;

3. a shape summary, a compact representation of human shapes in terms of the center
(mean of human shapes)

We solve this problem by using a Riemannian approach. The core of our approach is the
mapping of the human body surface to the space of metrics and normals. We equip this space
with a family of Riemannian metrics, called Ebin (or DeWitt) metrics. This family of metrics
is invariant under rigid motions and reparametrizations; hence it induces a metric on the shape
space. Using the alignment of human bodies with a given template, we show that this family
of metrics allows us to distinguish the changes in shape and pose. The proposed framework
has several advantages. First, we define a family of metrics with desired invariance properties
for the comparison of human shape. Second, we present an efficient framework to compute
geodesic paths between human shapes given the chosen metric. Third, this framework provides
some basic tools for statistical shape analysis of human body surfaces. Finally, we demonstrate
the utility of the proposed framework in pose and shape retrieval of the human body.

6.1.1 Drawbacks of elastic shape analysis

We remind that elastic shape analysis (Kurtek et al., 2012; Tumpach et al., 2016) consists of seeing
the shape space defined in chapter 3, as an (almost) infinite-dimensional differentiable manifold.
We can then define and use Riemannian metrics on this manifold, seen as a submetric from
the surface space, to measure the distance between two given shapes as well as to interpolate
between them by computing a geodesic that joins them. However, in classic elastic shape
analysis, the model shape is chosen to be the sphere S2, not a human template, and thus
assumes that the surfaces are given by analytic (spherical) representations. Moreover, solving
the geodesic problem over paths and space of reparameterizations and rotations is a tedious
task, for which the computational costs of this approach are high. The square root normal fields
or SRNF approach ((Jermyn et al., 2012)) allows to solve efficiently those two problems but is
neither injective nor surjective and there exist different shapes having the same SRNF (Bauer
et al., 2022). In addition, as observed by Su et al. (Su et al., 2020b), the resulting distance can be
viewed as an extrinsic distance, losing essential intrinsic information. Moreover, we will see
that the deformations generated by the SRNF metric are poor compared to richer metrics.

In Chapter 3 we define our model shape, from which we define surfaces, as a human
template. In this section, we ditch the need for a spherical parametrization by working on
registered shapes (which, as we will see, is equivalent to working on the shape space) to a
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template mesh. Thus we focus on a framework for the generation of plausible deformations
and statistical analysis and leave the parameterization problem for the next Chapter. To this
aim, we will take advantage of the recent developments of static and dynamic human datasets
such as FAUST and D-FAUST to generate deformations of human shapes.

6.1.2 Main contributions

In this Chapter, we present a comprehensive Riemannian framework for analyzing human
bodies, in the process of dealing with the change in shape and pose. We use the Dewitt family
of Riemannian, which is a subsect of the broader Sobolev family of metrics, and where we can
see surfaces as maps to normals and Riemannian metrics (first fundamental forms). To our best
knowledge, this is the first demonstration of the use of this metric in human body shape analysis.
We will show also for the first time, that this family of metrics takes into account the intrinsic
and extrinsic geometry of human bodies, i.e their shape and pose. Additionally, we present
an efficient framework to compute geodesics between two given human body surfaces under
the chosen metric. We provide some basic tools for statistical shape analysis of human body
surfaces. These tools help us to compute the average human body. To evaluate our approach,
we conduct extensive experiments on the FAUST dataset. The experimental results show that
the proposed family of Riemannian metrics classifies correctly the shapes and the poses. The
experimental results show also that our proposed framework provides better geodesics than
the state-of-the-art Riemannian framework.

6.2 Shape Space as the space of aligned Human Bodies

In chapter 3, we defined our shape space as the quotient space of surfaces by the group G of
preserving transformations, which is in this chapter G =R+×R3× SO(3)× Γ . We treat the
case of Diff+(T ) separately. In this chapter, each human body surface is aligned to a given
template T . This means that for any equivalence class [ f ] ∈H /G a preferred correspondence
with the template is chosen. This alignment is meaningful both geometrically (for instance
the fingertips of the template correspond to the fingertips of the other human bodies, as
illustrated in Figure 6.1), which means that geodesics on this surface subspace are horizontal,
and anatomically, which means that template parameterization (SMPL template) emphasizes
high curvatures points such as the fingertips. We work thus on the set of aligned human bodies,
denoted by S0.

Mathematically the choice of a preferred alignment with the template is called a section
S0 of the fiber bundle Π :H →H /G. A section of Π is a (smooth) map assigning to each
equivalence class [ f0] ∈H /G a representative f0 ∈H in this class, i.e. such that Π( f0) = [ f0].
This notion is illustrated in Figure 6.2. The section we are using, i.e. the correspondence
with the template, is smooth as explained above. An illustration of the section is displayed in
Figure 6.2.

In this Chapter, we pull back the Riemannian metrics that are defined on shape space (see
in section 4) on the preferred section S0 given by the correspondence with the template.
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Figure 6.1 Alignment with the template: The 3 meshes in different poses are displayed with different
colors on extremities. This validates the choice to work on this particular section of the fiber bundle
Π :H →H /G

6.3 Riemannian Analysis of aligned Human Shapes

Since human surfaces are represented as elements of S0, it is easy to define Riemannian metrics
for them. We will explain in this section in depth the choice of the metric and its meaning.

6.3.1 Elastic Riemannian Metric

Consider a parameterized surface f : T → R3, the regular surface S = f (T ), g its first
fundamental form, or Riemannian metric on S, and n the Gauss map. We consider the
following relationship between parameterized surfaces on one hand and the product space of
metrics and normals on the other :

Φ : S0 −→ Met(T )×C∞(T ,S2)
f 7−→ (g , n). (6.1)

Thanks to the fundamental theorem of surfaces, we do not lose any information about the
shape of a surface f if we represent it by the pair (g , n). The induced metric g captures the
intrinsic shape, while the normal n captures the extrinsic geometry of the shape.

6.3.2 The Manifold of Metrics on T and its Geodesic Distance

The space of first fundamental forms, i.e. positive-definite 2× 2 symmetric matrices fields
g on T will be denoted by Met(T ). We will equip this infinite-dimensional space with a
diffeomorphism-invariant Riemannian metric, called the Ebin (or DeWitt) metric (Ebin, 1970;
DeWitt, 1967), and simplified in (Su et al., 2020b). The Riemannian metric on the tangent
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H

G f0
=Π−1([ f0])

S0

H /G

f0

[ f0]

Π

s0

Figure 6.2 Section of the fiber bundle Π : H → H /G: the one-to-one correspondence with the
template mesh allows us to work on the corresponding section S0 as a shape space. The correspondance
initially gives the section for Diff+(T ), but with Procrustes analysis, the section for SO(3) comes
straightforwardly.

space of Met(T ) is defined by:

〈〈gh , gk〉〉g =
∫

T
Tr(g−1 gh 0 g−1 gk 0)+λTr(g

−1 gh ) ∗Tr(g
−1 gk )dAg (6.2)

where gh 0 = gh −
1
2Tr(g

−1 gh )g is called the traceless part of gh , and where µg denotes the
volume form defined by g . The different terms of the metric have nice geometric interpretations.
The first term quantifies how the change in first fundamental form of a local surface patch
induces shearing (in a mesh, deforming a triangle without changing its volume), and the second
term weighted by λ how it induces stretching (scaling a triangle).

The following theorem, from (Su et al., 2020b), presents the geodesic distance between two
g0 and g1 in (the completion of) Met(T ) for any choice of λ.

Theorem 6.3.1. Let g0, g1 ∈Met(T ). The square of the geodesic distance for the family of metrics
is

dλ (g0, g1)
2 =
∫

T dλ,Sym (g0(x), g1(x))
2 d x

where

dλ,Sym (g0(x), g1(x))
2

= 16λ
�

s2
0 (x)− 2s0(x)s1(x)cos(θ(x))+ s2

1 (x)
�

with
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s0(x) =
4
p

det (g0(x)), s1(x) =
4
p

det (g1(x))

θ(x) =min
�

π,
q

λ−1 tr(K2
0 (x))

4

�

K(x) =
�

0 if either g0(x) or g1(x) is degenerate
g0(x) log
�

g0(x)
−1 g1(x)
�

else
K0(x) =K(x)− tr

�

g−1
0 (x)K(x)
�

g0(x)

Theorem 6.3.2. Let a,λ, c , three positive real numbers. We equip the space Met(T )×C∞
�

T ,S2
�

with the following Riemannian metric:

(((δ g ,δn), (δ g ,δn)))g ,n = a
�

∫

T Tr(g−1δ g0 g−1δ g0)+λTr(g−1δ g )2µg

�

+ c
∫

T 〈δn,δn〉d x
(6.3)

Let f1, f2 ∈S0 and Φ ( f1) = (g1, n1) ,Φ ( f2) = (g2, n2). Define a distance function dS0
on S0 by

d a,λ,c
S0
( f1, f2) := d (Φ ( f1) ,Φ ( f2)) (6.4)

where d is the geodesic distance in the space Met(T )×C∞
�

T ,S2
�

. Then the square of the distance
dS0

between f1 and f2, with parameters a,λ, c , is given by

d a,λ,c
H ( f1, f2)

2 = adλ (g1, g2)
2+ c
∫

T
dS2(n1(x), n2(x))

2d x (6.5)

where dλ is given by Theorem 6.3.1 and dS2(n1(x), n2(x)) = arccos 〈n1(x), n2(x)〉 is the geodesic
distance on S2.

We will see in the next chapter the relationship between this family of metrics and the
Sobolev metric defined in Chapter 3. In the next chapter, we will indeed work on unparameter-
ized surfaces and need to stabilize computations (to be robust to noise in scans for example),
therefore we will use an extended family of metrics deriving from the Sobolev metric. The
current metric we work with is however sufficient when we work on aligned human bodies.

6.3.3 Interpolation of shapes as computation of geodesic paths

As mentioned above, an important advantage of our Riemannian approach over many past
papers is its ability to compute not only the distance between two human surfaces but also
the geodesics or the deformations between shapes. The computation of geodesics requires the
minimization of energy. In (Tumpach et al., 2016) the path-straightening method is used to find
critical points of the energy functional. Starting with an arbitrary path, the method consists of
iteratively deforming (or “straightening”) the path in the opposite direction of the gradient,
until the path converges to a geodesic. The problem would then be a problem of optimization
on the set of vertices of the shape. However, this can lead to numerical instabilities. We will
use another, more stable approach (Su et al., 2020a). In this approach, given two shapes f0
and f1, after choosing a time step 1

T ,T ∈N, the path is set to the linear path (initialization) on
which we add a sum of deformations:

f (t0) = f0, f (tT ) = f1
f (ti ) = (1− ti ) f0+ ti f1+

∑

j

βi jD j
(6.6)
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Where D j is an orthogonal basis of ND plausible deformations gathered beforehand. The
computation of the geodesic requires the minimization of the energy functional E(β), defined
by:

E(β) =
∫ 1

0

��

dΦ( f (t ))
d t

,
dΦ( f (t ))

d t

��

Φ( f (t ))
d t (6.7)

with β ∈ R(T−2)∗ND the vector containing all βi j presented in equation 6.6, and ((., .))Φ( f (t ))
being the pullback by Φ of the Riemannian metric 6.3 on Met(T )×C∞

�

T ,S 2
�

.
To find the optimal coefficients α, similar to (Su et al., 2020a), we employ the Broyden

Fletcher Goldfarb Shanno (BFGS) method (Fletcher, 1987), implemented in the SciPy li-
brary (Virtanen et al., 2020) where we calculate the gradient using the automatic differentiation
feature of PyTorch library (Paszke et al., 2019).
Basis Deformations In (Kurtek et al., 2012), (Laga et al., 2017), (Su et al., 2020b), (Tumpach
et al., 2016), spherical parameterization of 3D objects is used and spherical harmonics are
computed to define the set of deformations. We could use the eigenvectors of the Laplace
Beltrami on the template (that generalizes the spherical harmonics to general type of surfaces),
but we would require a large number of basis elements to achieve high accuracy and capture
all the human surface details. In addition, in the case of human shapes, we are using a human
template as a parametrization and there are several publicly available dynamic human shapes
that can be used to build a PCA basis of deformations.

In our case to build such real deformations, we use the publicly available Dynamic FAUST
dataset (Bogo et al., 2017), which contains motions registered to the template T . 10 individuals
(5 males, 5 females) perform 14 different motions, sampled at the rate of 60 frames per second.
Given a set of motions, we collect deformations by gathering differences from the sequences.
Let (m1, ..., mT ) ∈S0 be a motion available in the dataset. We define the small deformations
that we collect from the motions as the family (mnτ+τ −mnτ)n , with τ being a time interval
chosen manually, fixed to 10 frames (≃160 ms). Thus, given a set of training samples, we can
compute its PCA basis. In our experiments, the number of PCA basis elements required is of
the order of 100.

Note that, by construction, adding a deformations of the basis of deformation to an aligned
human shape will not destroy the alignment with the template.

Algorithm 1: Computation of Geodesics
Input: the source and target surfaces f1 and f2, a,λ, c the parameter of the elastic

metric
Output: fgeo: the geodesic connecting f1 and f2
1: Initialize βi j = 0 and f (ti ) by linear path;
2: Define the energy functional E(β) in an automatic differentiation framework
(PyTorch here), that computes the gradient value ∇βE along the functional value;
3: Minimize E with respect to β with a BFGS implementation (SciPy BFGS or
L-BFGS-B), that uses the gradient ∇βE ;

4: Set the geodesic to be: αgeo(ti ) = ti f0+(1− ti ) f1+
∑

j βi jD j ;
5: return the final geodesic αgeo
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6.4 Statistical Analysis of Human Shapes

We are interested in defining a notion of “mean” for a given set of human shape. Let f1, . . . fn be
a set of human shapes. The mean of a set of human shapes is the human shape that is as close
as possible to all of the human shapes in the set of human shapes, under the distance metric
defined by Equation 6.5. This is known as the Karcher mean and is defined as the human shape
that minimizes the sum of squared distances to all of the human shape in the given human
shape. In order to find the Karcher mean one can define the following functional:

V :S0→R,V ( f ) =
n
∑

i=1

d ( fi , f )2 (6.8)

That is differentiable with the distance previously computed. We initialize the Karcher mean
as f1 and set it to be the sum of f1 with a linear combination of deformations:

f̃ = f1+
∑

j

β jDi

The functional to minimize becomes:

W (β) = V ( f1+
∑

i

βiDi )

Algorithm 2: Karcher Mean of Human Shapes
Input: f1, . . . fn a set of human body, a,λ, c the parameter of the elastic metric
Output: f̄ : Karcher mean
1: Initialize β= 0 and f̃ = f1 by the first shape in the set;
2: Define the Karcher mean functionalW a,λ,c (β) in an automatic differentiation
framework (PyTorch here) that computes the gradient value ∇βW along the
functional value;

3: MinimizeW with respect to β with a BFGS implementation (SciPy BFGS or
L-BFGS-B), that uses the gradient ∇βW ;

4: Set the Karcher mean to be: f̄ = f1+
∑

i βiDi ;
5: return Karcher mean

6.5 Experiments

6.5.1 Assessment of the Family of Elastic Metrics

To further assess the pertinence of the family of elastic distances defined in Equation 6.5 in
human shape and pose analysis, wemeasured pairwise distances of themetric on the registrations
present in the FAUST dataset (Bogo et al., 2014). It contains 10 individuals (5 males, 5 females)
in 10 different poses. We present in Figure 6.3 2D visualizations of the dataset using the
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t-Distributed Stochastic Neighbor Embedding (t-SNE) algorithm (van der Maaten & Hinton,
2008).

In Figure 6.3, left, it is clear that the 3D human with similar poses belong to very close
distributions. These results show the assumption that given a = 0,λ = 0, c = 1 (normal
field L2 metric), the metric is preserved under shape change, and could be used in pose and
motion analysis application (Luo et al., 2016; Veinidis et al., 2019) (although, we would need
registrations before applying the metric). The Figure 6.3, right, shows that 3D human with
similar shape belong to very close distribution. These results states the assumption that given
a = 1,λ= 0.0001, c = 0, the metric is preserved under pose change, and could be used in many
shape analysis application approaches (Pickup et al., 2016) and (Lian et al., 2013).

Figure 6.3 2D visualization of the FAUST dataset by our method using t-SNE algorithm based on the
metric from equation 6.5. On the left, the metric parameters are set to a = 0,λ= 0, c = 1. Each color
represents a class of pose and a class representative is also displayed. On the right, the metric parameters
are set to a = 1,λ= 0.0001, c = 0. Each color represents a class of shape and a class representative is also
displayed.

6.5.2 Geodesics and Karcher Mean

We performed a number of experiments using human surfaces of same and different persons
under a variety of pose and shape, and studied the resulting geodesic paths.

Figure 6.4 shows the geodesic path between f1 (shown in far left) and f2 (shown in far
right). Drawn in between are human surfaces denoting equally spaced points along the geodesic
path. In terms of the Riemannian metric chosen, these paths denote the optimal deformations
in going from the first human body to the second and the path lengths quantify the amount of
deformations. For this experiment, we also provide a curve of the energy, available right to the
paths, which shows that the energy decreases smoothly with time.

For the first path, the change in the pose induces small changes in shape. We thus want to
minimize the shape change along the path, which would set the extrinsic parameters c = 0. We
find that a = 1,λ= 1 gives the best visual results.

The second path is a path with change in shape. We thus want to minimize the pose change
along the path, which would set parameters a = λ= 0, and the normal parameter c = 1.

The geodesic computation were made on a computer setup with Intel(R) Xeon(R) Bronze
3204 CPU @ 1.90GHz, and a Nvidia Quadro RTX 4000 8GB GPU. The computation time of
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the different geodesics took less than 5 mins.

(a)

(b)

Figure 6.4 Examples of geodesic path between f1 and far left and f2 far right: (a) with metric parameters
(a=1, λ= 1, c=0), (b) with metric parameters (a=0, λ= 0, c=1). The corresponding energy evolution
during optimization are displayed on the right. Computation time was respectively 3min31s and 10.6s.

Figure 6.5 Karcher means of shapes. Left: Karcher mean (yellow) for five different people relatively
to the distance with metric parameters (a = 0,λ = 0, c = 1). Right: Karcher mean (yellow) for five
different pose relatively to the distance with metric parameters (a = 1,λ= 1, c = 0). In blue, we display
the corresponding linear means.

An example of Karcher mean is shown in Figure 6.5, where five human bodies in the same
pose but with different shapes are averaged.

We also compare the results obtained with our method to the results using linear geodesic
path, SRNF and SMPL descriptors.
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(a) Linear geodesic path

(b) Geodesic computed with SRNF

(c) Geodesic computed in SMPL space

(d)Geodesic computed with our approach, metric parameters are set to a = 1,λ= 1, c = 0. Computation
time was 3min10s.

Figure 6.6 Comparison of our approach with different frameworks. We observe that the linear initial
path is challenging, while the SRNF path induces distortion in the shape. Finally although the SMPL
geodesic is able to keep the shape, we argue that the path of our approach is the most natural path
compared to the one proposed by SMPL: the natural deformations between the source and target shape
would indeed bend more the elbow.
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1. The linear path defined by:

f (t0) = f0, f (tT ) = f1
f (ti ) = (1− ti ) f0+ ti f1

(6.9)

2. The SRNF geodesic path is also visualized. This representation has been used to analyze
human shapes with interesting results (Laga et al., 2017; Su et al., 2020a). The SRNF is
a pointwise representation based on q =

p
An, where A= ∥ fu × fv∥ is the area, and n

the normal field. We compute the geodesic for the SRN F representation with the same
method as presented in this section.
As shown in Figures 6.6(a) and (b), the linear interpolation and SRNF lead to unnatural
deformations for human paths. The deformation between surfaces containsmany artifacts
and degeneracies.

3. SMPL body model (Loper et al., 2015) : After fitting SMPL model to the FAUST dataset,
we can compute the corresponding geodesic, using the resulting shapes of the linear path
in the SMPL parameter space, see Figure 6.6. While the deformation propose by the
SMPL body model is in some way plausible, we first argue that the pose deformation
proposed by SMPL does not bend enough the elbow: this is due to the linear interpolation
of the elbow joint angle. In addition, one can observe that the target and sources shapes
are slightly different than for our shapes: this is due to the fitting step of SMPL: the
resulting shape is the closest shape with plausible SMPL parameters, not exactly the
input shape.

In both examples, our approach provides better results.

6.6 Application to Pose and Shape Retrieval

Here, we demonstrate how the proposed metric can be exploited for 3D human retrieval.
Given a 3D human, we look for the similar 3D human in a database.

6.6.1 Evaluation and comparison

We test the usefulness of the family of metrics (Equation 6.5) in 3D human shape and pose
retrieval. We use Nearest neighbor (NN), First-tier (FT), Second-tier (ST) as evaluations
criteria.
Comparisons: We propose several methods for comparison with our method.

• We gather the extrinsic latent vectors, which lives in R12, along with their intrinsic latent
vectors of GDVAE (Aumentado-Armstrong et al., 2019) trained netwrok. We use them
for human pose retrieval and shape retrieval respectively.

• We gather pose and shape latent vector of (Zhou et al., 2020a) autoencoder, which lives
in R112 for pose and shape retrieval respectively

• The best descriptor results of (Pickup et al., 2016) is presented, won by the Area Projection
Transform (Giachetti & Lovato, 2012), for human shape retrieval
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• We compare to the SRNF distance that showed reliable results for pose retrieval

• we use both shape and pose representation from the SMPL body model for the respective
retrieval tasks.

6.6.2 Experimental results

In this section, we perform evaluations of our method in FAUST dataset. We evaluate on
pose and shape retrieval. The evaluation results in Table 6.1 demonstrate that our method
outperforms the previous state of the art shape retrieval methods in term of NN criteria.
The Table 6.2 shows that the proposed approach provides the best results on pose retrieval
in term of FT and ST criteria. We also find that for shape retrieval, the best parameters are
a = 1,λ << a. The computation times for each pairwise distance were ≃70 ms and ≃80 ms for
pose and shape retrieval respectively.

Repr. NN FT ST
GDVAE intrinsic 27 24.8 46.2
Zhou et al. shape 42 24.8 42.8
SMPL shape vector 98 72.4 86.7
APT 96 86.5 96.2
Metric (1, 0.0001, 0) 100 94.8 97.1

Table 6.1 FAUST dataset results for shape retrieval

Repr. NN FT ST
GDVAE extrinsic 60 38.0 54.2
Zhou et al. pose 82 69.2 83.4
SMPL pose vector 80 84.4 95.2
SRNF 73 77.7 94.4
Metric (0, 0, 1) 85 88.3 97.6

Table 6.2 FAUST dataset results for pose retrieval

6.7 Conclusion

In this Chapter we proposed a novel Riemannian framework which allows not only to compute
a metric between human bodies under pose and shape changes, but also provides a geodesic path
between human bodies, and statistical tools (eg. mean of human shape). We have demonstrated
the utility of the proposed framework in pose and shape retrieval of human body. The main
limitation of our method lies in the requirement of a template. In the next Chapter, we will
extend our approach and propose a way to solve this specific problem.
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7.1 Introduction

In the last Chapter, we proposed a Riemannian framework that allows for several applications
such as shape interpolation and human shape retrieval. This framework is in practice limited
to registered human bodies. However being able to do shape interpolation, and more, like
shape extrapolation, – the task of finding a plausible deformation given a body scan and a
corresponding initial deformation (movement) – and random shape generation – directly on
human body scans opens for a broader range of possibilities. Furthermore, one is interested
in obtaining a natural entanglement of changes in the pose and in the shape of the human
body (Cosmo et al., 2020), which allows the developing of algorithms for operations such as
motion transfer (Basset et al., 2021).

7.1.1 Differences with other common approaches

Our method is different from traditional approaches composed of separated registration and
deformation step because as we explained in Chapter 2, significant bias can be introduced
during the registration step. We thus aim for a unified approach by introducing a new pipeline
that quantifies geometric differences between unregistered human body scans, i.e., that does
not require prior point correspondences or consistent parametrization across the dataset.
Furthermore, we are not only interested in a pure metric comparison of two individuals, but
also in estimating plausible deformation processes from one human body to the other. To that
end, we introduce a transformation model that allows disentangling changes in the pose and
in the shape of the human body so as to obtain realistic ways to interpolate from one scan to
another, extrapolate a given motion or transpose it to a new individual and even to generate
visually plausible random pose and shapes; see Figure 7.1 for a schematic vizualization of our
framework.

Riemmanian deformation of shapes (Srivastava & Klassen, 2016; Jermyn et al., 2017) can
be done in an unparametrized way using elastic metrics such as in the previous Chapter because
they are invariant to the parameterization of surfaces. In the field, it is generally assumed that
the surfaces are given by analytic (spherical) representations. More than the (already hard)
problem stated by the spherical parameterization itself, resumed in the last chapter, in the
context of real data (raw body scans) inducing imaging noise in particular, the parameterization
problem itself becomes a highly non-trivial task, that can introduce significant bias and error
in subsequent statistical analyses.

As we saw in Chapter 5, the varifold representation of surfaces (Charon & Trouvé, 2013;
Kaltenmark et al., 2017), can be used to define discrepancy metrics between shapes that are not
only invariant to parameterization but also robust to scan inconsistencies such as potential noise
or holes. The approach of this chapter follows some of the recent advances (Bauer et al., 2021b;
Hartman et al., 2022) that combine Riemannian elastic metrics with varifolds discrepancy
terms and thereby overcome the aforementioned difficulties. Therefore, our approach does
not require having a consistent mesh structure across the dataset and performs well on human
body scans with different numbers of vertices and even under the presence of topological noise
(e.g. holes in the scans).

Following the success of the basis-driven deformation approach of the previous chapter,
our method is closely related to data-driven human body latent spaces, where one defines
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deformations as linear pathq in the latent space that are decoded with a nonlinear neural
network into human shapes.

In contrast, in our proposed pipeline, we impose an affine map (basis restricted deforma-
tions) from a given low dimensional latent space to a corresponding space of human body
transformations, which is built on the use of some pre-estimated bases to represent infinitesimal
body shape and body pose deformations. However, unlike the aforementioned deep learning
architectures, we do not rely on the standard Euclidean metric in the latent space but instead
on the pullback of a second-order parametrization-invariant Sobolev metric in the space of the
deformation field. Thus, interpolating paths in latent space are no more straight lines, but are
associated with (sub-Riemannian) geodesics in the surface space for this metric. One important
feature of our method is that it requires a relatively small dataset and minimal time to train but
at the expense of solving a non-trivial optimization problem at the encoding stage. Yet, as our
results will show, the specific Riemannian structure imposed on the latent space leads to better
interpretability and generalization properties.

Latent space Shape

Pose

Parameterized human shape space
with Sobolev Riemannian metric

Human body latent code retrieval

Latent path

Affine
decoder

Pullback
metric

Unparameterized human shapes

Applications:

Body scan Parameterization

Human shape interpolation

Motion transfer

Shape Generation

Figure 7.1 Overwiew of our method. We seek to represent unparameterized human bodies, with
different mesh connectivity, and possible noise or topological changes in a disentangled latent space. We
define our latent space as the sum of pose and shape spaces. The paths in the latent space are not linear
but curved, corresponding to geodesics in the parameterized human body space. After retrieving the
latent codes of the human bodies, we can use the space along with its Riemmanian metric to solve several
problems in human body deformation: inter-extrapolation, motion transfer, and shape generation.
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7.2 A latent space model of human shapes

7.2.1 Shape Space of Human Bodies

Working on the space of human shapes: Instead of what was done in the previous chapter, we
do not restrict ourselves to a section of the surface space of registered human shapes but work
on the shape space as defined in chapter 3. We suppose in this chapter that translations and
rotations are filtered out during a preprocessing step, and focus only on the parameterization
group Diff+(T ), i.e our shape space isH =S /Diff+(T ). We equip our shape space with a
Riemannian metric, in a similar process to the previous Chapter. The problem of interpolation
and extrapolation is thus still a problem of geodesic computation.

7.2.2 Elastic Riemannian metric

Following the success of the family of Dewitt metrics in last Chapter, we choose an extension
of this family, the second-order metrics with six parameters proposed in (Hartman et al., 2022).
They derive from the Sobolev metric briefly mentioned in chapter 3:

((h, k)) f =
∫

T
〈h, h〉+ tr(d h(p)(g f (p)

T g f (p))
−1d k(p)T )+ 〈∆ f h,∆ f k〉vol f (7.1)

We use the construction of (Su et al., 2020b) that divides the Sobolev first-order terms into four
orthogonal terms (relative to the metric g−1). Equation (7.1) is decomposed using real-valued
weighting coefficients producing a six-parameter family of metrics given by

((h, k)) f =
∫

T

�

a0〈h, k〉+ a1 g−1
q (d hm , d km)

+ b1 g−1
f (d h+, d k+)+ c1 g−1

f (d h⊥, d k⊥)

+ d1 g−1
q (d h0, d k0)+ a2〈∆ f h,∆ f k〉

�

volq .

(7.2)

Each of these terms has natural geometric interpretations. The second-order termweighted by a2
penalizes tangent vectors that increase the local curvature of the surface. It thus provides enough
regularity to prevent the occurrence of singularities along the solution of the interpolation
and extrapolation problem described above. The zeroth-order term weighted by a0 penalizes
how far the surface is moved weighted by the volume form of the surface. The terms weighted
by a1, b1 and c1 corresponds to the one weighted by a,λ, and c in the previous chapters, and
measure how a mesh triangle shears, stretches, and bends. The term d1 is the term orthogonal
to the last three terms, measuring how much the tangent space frame is rotated (rotation of a
triangle around the normal axis).

Following the experiments of the last Chapter, we choose a1 and b1 to be the largest
coefficients, but this time, we use all coefficients that will serve as regularizers for the output
shapes in order to be robust to variations in scan quality, following (Hartman et al., 2022).

7.2.3 Latent space model

We extend our low-dimensional approach in the previous chapter, into a latent space model.
We consider human bodies as a combination of a certain set of admissible deformations applied
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to a template shape. Therefore in our model, we restrict ourselves to surfaces f that can be
written as linear combinations of a basis of body motion deformations, {hi}mi=1, and a basis of
shape deformations, {ki}ni=1. Thus, all of the shapes we consider are determined by the latent
spaceL ⊂Rn+m of coefficients for the combined basis. This latent space model is thus related
to the space of surfaces by the mapping F :L →S via

F (α j ) = f̄ +
m
∑

i=1

β j
i si +

m+n
∑

i=m+1

α j
i ri−m .

where f̄ is our parameterized template human body shape, si is a basis of body shape defor-
mations, and where ri is a basis of body pose deformations. The basis choice is a crucial
ingredient for the performance of the proposed method. We construct our basis in a similar
way as in the previous chapter, taking profit from the available training data. The details of the
construction are available in Section 7.3.3. We then equip our latent space with the pullback of
the second-order metric from the surface space via F .

7.3 Riemannian analysis of human body scans

7.3.1 Interpolation as a geodesic path computation

Let f0, f1, two unparametrized human body scans in an arbitrary given parameterization. As
said in Chapter 3, the geodesic between two shapes f0 and f1 is the solution to :

inf
γ∈Diff+(T )

inf
α∈P f2◦γ

f1

∫ 1

0
〈∂tα(t ),∂tα(t )〉α(t )d t

Where α is now a path between shapes’ latent codes. Interpolating thus requires minimizing
the geodesic energy over all paths α : [0,1]→ L and diffeomorphisms γ ∈ Diff+(T ) such
that F (α(0)) = f0 and F (α(1)) = f1 ◦ϕ−1. This problem is much more complicated than the
previous chapter. First, one needs to model the action of the diffeomorphism group on the
two endpoints. Moreover, we need to take in account the fact that raw body scans are, in
general, not equipped with a consistent mesh structure, i.e., different scans can have different
resolutions, different mesh structures, or even admit imaging errors and noise such as holes or
missing parts, as seen in Figure 7.1.

To circumvent these difficulties we instead consider a relaxed formulation of the geodesic
problem given by the following energy

Ẽ(α) =
∫ 1

0
Gα(∂tα,∂tα)d t +λρ(F (α)(0), f0)+λρ(F (α)(1), f1), (7.3)

where ρ is a reparametrization blind similarity measure, i.e., ρ satisfies the fundamental
property ρ( f0, f1) = 0 if and only if f0 and f1 represent the same shape, i.e., there exists a
ϕ ∈ Diff+(T ) such that f0 = f1 ◦ ϕ−1. We have thus reduced the geodesic boundary value
problem to an unconstrained minimization problem over all paths α : [0,1]→L .

There are various different possibilities for the similarity term, such as the Hausdorff or
Chamfer distance. We will rely on the kernel metrics on the space of varifolds, which were
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presented in detail in Chapter 4. An important advantage of this framework in this case is the
fact that the resulting fidelity loss function remains differentiable with respect to the positions
of the shapes’ vertices.

We remind that after discretization, the varifold distance does not require the given meshes
to have a consistent mesh structure which allows us to compare human body scans with different
numbers of vertices and even different topologies, e.g. in the case of the presence of holes in
the scans. We denote by σ the spatial support of the metric, and will use the current kernel for
the spherical kernel, which is known to have better behavior on noisy shapes (Kaltenmark
et al., 2017).

Using the varifold metric reduces the infinite-dimensional minimization problem to a
finite-dimensional one. The variables are the latent space coefficients of the path. We again use
a scipy BFGS implementation, following common approaches (Hartman et al., 2022).

In practice finding the geodesic between two shapes is equivalent to finding the correspond-
ing latent codes of the two shapes during the energy minimization. We found it more efficient
to separately retrieve the latent codes using this approach before performing the interpolation
in the latent space. Given a human body scan, one can define the latent code retrieval problem
as shooting a geodesic that starts from the template and ends at a shape that has zero varifold
distance to the scan. We adopt a multiscale approach for the varifold metric, in a similar way
as (Hartman et al., 2022) where sequential minimizations are performed by decreasing σ of
the varifold term and increasing the balancing term λ. To improve efficiency and avoid local
minima, we add an initialization term based on training latent codes: we initialize the latent
code to be the one that has the closest corresponding varifold distance to the input scan.

We describe the algorithm of this procedure in Algorithm 3.

7.3.2 Extrapolation as geodesic shooting

The shape extrapolation problem consists in predicting the future evolution of a surface (human
body) given an initial deformation direction. In our Riemannian framework this reduces to
solving the geodesic equation with given initial condition q(0) = q0 (the initial pose) and
∂t q(0) = h (the direction of deformation). The geodesic equation is the first-order optimality
condition of the energy functional; it is non-linear PDE, that is second order in time t and
fourth order in space. For the exact formula of this equation, which is rather lengthy and not
particularly insightful, we refer the interested reader to the literature, see eg. (Bauer et al., 2011).
To solve such initial value problems in our latent space, we modify methods of discrete geodesic
calculus (Rumpf & Wirth, 2013) for our setting. We approximate the geodesic starting at α0 in
the direction of β with a PL path with N + 1 evenly spaced breakpoints. At the first step, we
set α1 = α0+ 1

Nβ and find α2 such that F (α1) is the geodesic midpoint of F (α0) and F (α2), i.e.,
we solve for α2 such that

α1 = argmin
α̃

�

��

β0,β0��

α0
+
��

β̃, β̃
��

α̃

�

where β0 = α̃− α0 and β̃ = α2 − α̃. Differentiating with respect to α̃ and evaluating the
expression to minimize at α1, and expressing the result component by component (over our
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Algorithm 3: Latent code retrieval of a scan
Input: The target scans f0;
a0,a1, b1c1, d1,a2 the parameter of the Sobolev elastic metric;
(λk ,σk )

p
k=0

the balancing weight and the spatial support of the varifold distance at each
refinement step
Output: fgeo: the geodesic connecting the template shape f̄ to the representative [ f0]

in the template space and the corresponding coefficient path α in the latent
space.

Initialize αi j = 0 and the path as f̄ +
∑m

i=1α
j
i hi +
∑m+n

i=m+1α
j
i ki−m . ;

for k← 0 to p do
Define the energy functional E(α) =

∫ 1
0

��

d F (α)
d t , d F (α)

d t

��

d t +λkΓ (F (α(1)), f0) in an
automatic differentiation framework (PyTorch here), that computes the gradient
value ∇αE along the functional value;
Minimize E with respect to α with a gradient descent algorithm (SciPy BFGS or
L-BFGS-B), outputing optimal αou t coefficients based on initialization α;

Set α= αou t ;
end
Set [ f0] to be the endpoint of the final geodesic;
return α, fgeoand [ f0]

two basis of deformations {ri , si}), we obtain the system of equations

2
��

β0, hi
��

α0
− 2
��

β̃, si

��

α1
+
¦

Dα1

���

β̃, β̃
��

·

�©

i
,

2
��

β0, ki
��

α0
− 2
��

β̃, ri

��

α1
+
¦

Dα1

���

β̃, β̃
��

·

�©

i+m

(7.4)

where the term
�

Dα1

�

((β,β))·
�	

i , is the i-th component of the gradient of the term ((β,β))α̃
relatively to α̃ (where β is constant), evaluated in α1. To see general derivations of the problem
(where there is no basis for deformations), one can look at (Hartman et al., 2022).

We denote the system of equations in (7.4) by Φ(α2;α1,α0) = 0, where we stress again that
α0 and α1 are here fixed and known. We solve this system of equations for α2 using a nonlinear
least squares approach, i.e., by computing α2 as the minimizer of the residual of the system :

α2 = argmin
α̃
∥Φ(α̃;α1,α0)∥22.

We repeat this process N − 1 times, thereby constructing the discrete solution up to time t = 1.

7.3.3 A data-driven basis of deformations

To construct the bases of movements and body type deformations we interpret registered mesh
sequences of motions as paths in shape space whose tangent vectors are implicitly restricted
to the space of valid motions of a human body. The tangent vectors of those sequences are
used as training data, on which we perform principle component analysis to obtain a tractable
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Algorithm 4: Motion extrapolation
Input: The input shape q0, and its latent code α0;
The input velocity h and the number of steps N ;
a0,a1, b1c1, d1,a2 the parameter of the Sobolev elastic metric;
Output: fgeo: the geodesic starting from q0 with initial velocity h, and the

corresponding latent coefficients α0, ...,αN−1
Initialize α1 = α0+αh ;
for k← 2 to N − 1 do

Define the residual function of the PDE system Φ(α;αt−1,αt−2) in an automatic
differentiation framework (PyTorch here), that computes the gradient value ∇αΦ
along the functional value;

Minimize Φ with respect to α with a gradient descent algorithm (SciPy BFGS or
L-BFGS-B), outputing optimal αou t coefficients based on initialization
α= αt−1+ 1

N ∗ (α
t−1−αt−2;

Set αt = αou t ;
end
Set fgeo = [ ft ] to be the shapes corresponding to the final geodesic;
return α and fgeo

yet expressive basis for the valid pose deformations of a human body. We then collect meshes
of the same pose from each identity (generally available in T or A-pose) and compute the
(unrestricted) pairwise geodesics between these meshes with respect to our second-order Sobolev
metric, where we use the Pytorch implementation of (Hartman et al., 2022)1. Note that these
meshes show only moderate deformations and thus there are no difficulties with applying
the unrestricted matching algorithm. We then collect the tangent vectors to these paths and
perform again PCA to define our basis of shape deformations.
Parameter selection: We set experimentally the body pose size to n = 130 elements and the
shape basis size to m = 40 elements. The coefficients for the H 2-metric were chosen in a similar
way as in the previous chapter. Furthermore, we added a small coefficient to the second-order
term to further regularize the deformations. The final six parameters for the H 2-metric are
set to (1,1000,100,1,1,1) During the sequential minimizations where the parameter σ of the
varifold term is decreased from .4 to .025 and the balancing term λ is increased from 102 to 108.

7.4 Results

In this section we demonstrate the accuracy of our framework in five different experiments:
the registration of human body scans, the interpolation and extrapolation of human body
motions, random shape generation and motion transfer.

1https://github.com/emmanuel-hartman/H2_SurfaceMatch

https://github.com/emmanuel-hartman/H2_SurfaceMatch
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7.4.1 Datasets

Training dataset: To construct our basis wewill make use ofDynamic FAUST (D-FAUST) (Bogo
et al., 2017) dataset. We use the registrations as a training set, and a set of 7 long range sequence
of scans, divided in 10 representative mini-sequences, are left for testing.
Test dataset: In addition to these 7 sequences from D-FAUST we tested our algorithm on the
static FAUST dataset (Bogo et al., 2014). We selected the 9 unregistered poses of the training
set that show no rotations, and use them as a testing set.

7.4.2 Evaluation and comparison

Before presenting our results, we first discuss the procedure that we use to evaluate and
compare the different methods. With the first three experiments (registration, interpolation
and extrapolation), we perform a thorough comparison to other state-of-the-art approaches for
human body analysis that rely on latent space learning. To keep the section more focused, we
deliberately restrict to those, and do not consider other methods that can potentially tackle the
same tasks but without a low dimensional latent space (Eisenberger et al., 2021), or that are
specifically designed for other tasks (Muralikrishnan et al., 2022).

Thus we compare our approach to the following:

• Learning Latent Shape Representations with Metric Preservation (LIMP) (Cosmo et al.,
2020) LIMP is a deep learning method modeling shape deformations based a variational
autoencoder with geodesic constraints (in the training loss). The encoder part is a
PointNet architecture, which makes it invariant to parameterization.

• The ARAPReg method (Huang et al., 2021). ARAPReg models deformations by using
what authors call an "auto decoder": deformations are represented by a vector in a latent
space, which is then passed through a graph neural network and reconstructs the human
shape. The network is regularized using the ARAP energy. In their framework, the latent
vectors are recovered in a registered setting using the L2 metric, i.e., a consistent mesh
structure and known-point correspondences are assumed. To make this framework viable
for our application we replace the L2-metric by the varifold distance thereby extending
ARAPReg to unregistered point clouds.

We trained both networks on the D-FAUST dataset and reported training details from the
respective papers.

In order to evaluate the differentmethods wewill measure the distance between the proposed
outputs of different methods and ground truth scans. Note that we only want to evaluate the
quality of reconstruction, and not solve the matching problem. As the outputs will not be in
the same mesh connectivity as the ground truth, we will evaluate them against ground truth
using three different remeshing invariant similarity measures:

• the widely used Hausdorff distance, which between two shapes [ f0] and [ f1], is given by
the formula:

dH ([ f0], [ f1]) =max( sup
x∈[q0]

(d (x, [ f1])), sup
y∈[ f1]

(d ([ f0], y)))
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We use the approximate implementation provided by libigl (Jacobson et al., 2018). While
the Hausdorff distance provides in general a good insight for the quality of a mesh
reconstruction, it can be sensitive to single outliers present in low quality scans.

• As a second measure we consider the Chamfer distance (Fan et al., 2017; Groueix et al.,
2018) which can be computed between two point clouds via:

d ([ f0], [ f1]) =
1

N0

∑

x0∈ f0

d (x0, f1)+
1

N1

∑

x1∈ f1

d (x1, f0).

We use the Pytorch implementation of Thibault Groueix2.

• As a final measure of reconstruction quality we will employ the varifold distance with a
low bandwith (σ = 0.025).

7.4.3 Latent code retrieval of human body scans

Given a human body scan f0 with arbitrary mesh structure, we retrieve the latent code that
corresponds to its shape class [ f0] by performing a relaxed geodesic matching problem between
f and f0 with T time steps. This produces a geodesic path α0, ...,αT from the template to the
shape class of the target mesh, thus the endpoint αT is the latent code corresponding to the
shape class of f0.

Hausdorff Varifold Chamfer
LIMP 0.23 0.073 0.098
ARAPReg 0.11 0.021 0.117
BaRe-ESA 0.08 0.014 0.019

Table 7.1 Shape registration results. The training is performed on D-FAUST, and the registered shapes
comes from FAUST. We evaluate the performance of each method by measuring the distance from the
registered meshes to scans.

We test our procedure on the 90 meshes from the unregistered FAUST dataset (recall
that this dataset was not contained in the training process). We also retrieve latent code
representations of LIMP and ARAPreg and measure the distance from the reconstructed meshes
to the original scans using the evaluation methods outlined in Section 7.4.2. In Figure 7.2 we
present a qualitative comparison of the obtained results. A quantitative comparison of the
performance of the different methods is presented in Table 7.1 where we demonstrate that
BaRe-ESA significantly outperforms the mesh autoencoder methods with respect to all three
evaluation metrics.

7.4.4 Interpolation

The interpolation problem is defined as the task of constructing a deformation between two
different human body poses, that follows a realistic motion pattern. In our Riemannian setup,
as described previously, we need to minimize the discrete energy given in (7.3). We use the start

2https://github.com/ThibaultGROUEIX/ChamferDistancePytorch

https://github.com/ThibaultGROUEIX/ChamferDistancePytorch
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BaRe-ESA

LIMP

ARAPReg

GROUND
TRUTH

Figure 7.2 Registration of five elements of FAUST using three methods trained on D-FAUST. Both
LIMP and ARAPreg fail to generalize to the new data and do not represent the ground truth in certain
examples. BaRe-ESA consistently produces a decent representation in all examples, with a failure case
displayed in the last column.

Hausdorff Chamfer Varifold
LIMP ARAPReg BaRe-ESA LIMP ARAPReg BaRe-ESA LIMP ARAPReg BaRe-ESA

punching 0.13 0.12 0.081 0.029 0.020 0.04 0.060 0.034 0.022
running on spot 0.28 0.14 0.076 0.112 0.080 0.069 0.072 0.052 0.025
running on spot b 0.20 0.13 0.082 0.125 0.101 0.045 0.068 0.040 0.025

shake arms 0.34 0.33 0.078 0.063 0.049 0.076 0.061 0.031 0.025
chicken wings 0.18 0.15 0.093 0.101 0.083 0.04 0.062 0.029 0.016

knees 0.060 0.35 0.051 0.182 0.266 0.036 0.097 0.066 0.016
knees b 0.52 0.054 0.084 0.168 0.107 0.029 0.067 0.019 0.016

jumping jacks 0.12 0.32 0.046 0.074 0.054 0.014 0.070 0.044 0.015
jumping jacks b 0.40 0.11 0.062 0.111 0.086 0.009 0.076 0.030 0.025
one leg jump 0.16 0.062 0.07 0.138 0.109 0.067 0.068 0.025 0.024

mean 0.30 0.19 0.072 0.106 0.097 0.042 0.070 0.039 0.020

Table 7.2 Full interpolation comparison on 10 D-FAUST sequences. The Hausdorff, Chamfer and
varifold distance are computed against ground truth sequences.
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and end point of our 10 test mini-sequences as the input for our interpolation problem. This
allows us to compare the obtained results to the full mini-sequences, seen as a ground truth
motion. In Figure 7.3, we compare the results of our method with the two mesh autoencoder
methods and the ground truth for one mini-sequence. Our method is successful at recovering
the latent codes that represent the endpoints and producing interpolations that remain in the
space of human shapes. We further perform a quantitative comparison of the methods by
measuring the distance to the ground-truth sequences at each break point with respect to the
evaluation metrics given in Section 7.4.2; these results are displayed in Table 7.2. One can
clearly observe that our method again outperforms the other methods both qualitatively and
quantitatively.

BaRe-ESA

LIMP

ARAPreg

GROUND
TRUTH

Source Interpolation Target

Figure 7.3 Interpolation results comparison between our method, LIMP, ARAPReg and the Ground
Truth from D-FAUST. While the path produced by LIMP does not properly register the endpoints and
the path produced by ARAPreg does not stay in the space of human bodies, BaRe-ESA successfully
produces a path of human shapes whose endpoints match the source and target shapes.

7.4.5 Extrapolation

In the following, we consider the shape extrapolation problem, i.e., the task of predicting
the future movement given a body shape and an initial movement (deformation). In our
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Hausdorff Chamfer Varifold
LIMP ARAPReg BaRe-ESA LIMP ARAPReg BaRe-ESA LIMP ARAPReg BaRe-ESA

punching 0.140 0.368 0.102 0.030 0.112 0.085 0.066 0.097 0.025
running on spot 0.287 0.309 0.152 0.11 0.177 0.125 0.071 0.079 0.027
running on spot b 0.264 0.415 0.222 0.138 0.179 0.116 0.071 0.083 0.027

shake arms 0.410 0.832 0.273 0.080 0.283 0.171 0.066 0.083 0.027
chicken wings 0.182 0.395 0.092 0.11 0.189 0.092 0.072 0.081 0.018

knees 1.13 0.282 0.104 0.23 0.205 0.081 0.321 0.072 0.016
knees b 0.489 0.319 0.244 0.17 0.215 0.065 0.066 0.071 0.017

jumping jacks 0.195 0.645 0.091 0.076 0.302 0.072 0.068 0.086 0.027
jumping jacks b 0.492 0.570 0.122 0.12 0.324 0.061 0.10 0.083 0.029
one leg jump 0.175 0.363 0.167 0.143 0.249 0.136 0.069 0.078 0.025

mean 0.391 0.452 0.157 0.118 0.214 0.100 0.103 0.082 0.023

Table 7.3 Full extrapolation comparison on 10 D-FAUST sequences. Again, the Hausdorff, Chamfer
and varifold distance are computed against ground truth sequences.

Riemannian setting, this corresponds to solving the geodesic initial value problem using the
method outlined in Section 7.2.1. From each of the 10 mini-sequences in our testing set,
we recover the latent codes of the first two meshes in the sequence and use the first latent
code and the difference of the codes are taken as input to our method. In Figure 7.4, we
display the results of our extrapolation method, the extrapolations computed using LIMP and
ARAPreg, and the original sequence (see the supplementary material for their corresponding
animations). Our method is successful at producing extrapolations that capture the correct
motion of the mesh without any extraneous motions that stay in space of human bodies. As
with the interpolation comparison, we measure the distance to the ground-truth sequences at
each breakpoint and display the results of the quantitative comparison in Table 7.3. Similar to
the previous experiments, our method significantly outperforms the other methods.

7.4.6 Pose and Shape Disentanglement

By the construction of our basis, the first 130 dimensions of our latent space represent the
body pose and the remaining 40 dimensions represent the body shape. Thus, our latent codes
can be decomposed into coefficients that represent a change in body type and coefficients that
represent a change in body pose. As a result, our framework is able to perform instant motion
transfer: once a motion is represented as a sequence of latent codes we simply replace the shape
coefficients of each element of the sequence with the shape coefficients of the target shape. An
example of this method in action is displayed in Figure 7.5.

7.4.7 Random Shape Generation

Another possible application of our framework is random shape generation. The idea is to
use a data-driven distribution on the human shape tangent space. We first perform latent code
retrieval on a subset of D-FAUST. We then compute, via finite differences, the initial tangent
vector of each of these paths in the latent space, and separate these vectors into their pose and
shape components. Onto each of these collections of tangent vectors, we fit a Gaussian mixture
model, which is popular to generate human shapes (Bogo et al., 2016; Omran et al., 2018). We
used 10 and 6 components for pose and shape respectively, which proved to be sufficient to get
visually satisfying random shapes. The generation process consists in sampling a pose and shape
vector in the tangent space and solving the corresponding geodesic initial value problem from
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BaRe-ESA

LIMP

ARAPreg

GROUND
TRUTH

Input Extrapolation

Figure 7.4 Extrapolation results comparison between our method, LIMP, ARAPReg and the Ground
Truth from D-FAUST. While all three methods capture the primary motion of lifting a leg, the extrapo-
lations produced by LIMP and ARAPreg include extraneous motions of the arms and slight changes in
body type.

the template in the direction of the generated vector. We display a selection of 22 generated
shapes in Figure 7.6.

7.5 Limitations

We point out, that the good results that we obtain in this Chapter and the last one come at
the price of solving optimization problems to estimate interpolated or extrapolated geodesic
paths for our metric. Another potential limitation of the proposed framework is the need for
sufficiently rich training data: in the current implementation, we used the D-FAUST dataset
for the generation of our motion and pose bases. In this dataset, there is, however, only very
limited movement of the fingers/hands present and consequently, our motion basis is not able
to faithfully represent such a movement. In future work, we plan to use additional datasets for
the generation of the bases, which in turn will allow us to get a more complete representation
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Figure 7.5 Motion Transfer: We display the original motion in the top row and the transfer of the
motion to the target shapes in the second and third rows.

Figure 7.6 Random Shapes: 22 random shapes generated using a Gaussian mixture model on the space
of initial velocities.
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of all possible movements. Finally, we mention a simple yet potentially relevant extension of
our model, namely to introduce two distinct Sobolev Riemannian metrics on the shape change
and the pose change deformation fields. This comes with the idea of adapting the metric to the
different nature of those deformations, and thus even better disentangling these quantities.

7.6 Conclusion

In this chapter, we proposed a novel framework for 3D human shape interpolation, extrap-
olation, and generation, that relies on learning deformation bases for body type and body
pose changes combined with the use of a particular Riemannian structure on the latent space.
Importantly, our method does not leave the shape space, does not require surfaces to have
consistent meshes and vertex correspondences, and performs well even in the presence of
imaging noise such as meshes with holes and/or missing parts. We showcased the different
advantages of the proposed framework, in particular over recent deep learning approaches, for
recovering and generating meaningful body shape trajectories.



Chapter 8

Conclusion and perspectives

8.1 Conclusion

In this thesis, we proposed new geometric approaches for human shape understanding, 3D
shape sequence retrieval, and for the deformation of unparameterized human body scans.
Our human shape representations take into account the specific geometry of human shapes
and succeeded in the designated tasks. Firstly, we proposed a pose descriptor based on the
convexity hypothesis that a human pose can be recognized from its convex hull. We then
improved our results with a varifold-based human motion descriptor, which showed to be
more robust to noise, than our first approach. Secondly, we proposed frameworks that not
only were able to produce interpolation, and means of human shapes but also differentiate
pose and shape deformations. The experiments showed that it outperformed deep learning
concurring approaches. Finally, we extended our approach to unparameterized human body
scans using varifold kernel metrics, showing outstanding results in even more applications, such
as extrapolation or motion transfer. To conclude, we demonstrated that in the deep learning era,
geometric approaches still have their place in human shape understanding. We are confident
that our work can serve as a basis for some future approaches and obtain significant advances
in human shape understanding.

8.2 Future works

In future works, we aim to investigate the following points:

8.2.1 Applications of our approaches

Video based 3D human body motion retrieval
Since our method in Chapter 4 shows good results in motion retrieval, we extend it to

2D video. We exploit the recent advancements in 2D-to-3D human body reconstruction. We
reconstruct from the corresponding 3D human motion of a recorded video of me walking
using a state-of-the-art single-view body reconstruction method, ICON (Xiu et al., 2022). We
then search for corresponding motions in the dataset using the method of Chapter 4. Figure 8.1
shows some examples of video and the corresponding 3D reconstructions using ICON.
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Figure 8.1 Video and 3D human body reconstruction of ICON. We use the sequence of 3D shapes as a
query.

(a) Chris, walk (b) Chris, walk and sit (c) Haidi, walk and sit (d) Natali, walk and sit

(e) Joe, walk (f) Jon, walk (g) Hansung, walk (h) Natali, walk

Figure 8.2 First tier of the query for Absolute Varifolds with the query being the reconstructed human
shape motion shown in Figure 8.1. The results are ranked by closeness to the query using a given
approach.
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Figure 8.2 shows that half of the motions in the dataset are correctly retrieved (the wrong
ones still contain a part of walking motions). These preliminary results show the robustness
of the Gram-Hankel matrix of the 3D motion with respect to the noise due to the 3D recon-
struction process. It demonstrates the ability of our method to exploit 3D information from
only 2D video data. This opens the possibility of reducing material costs for the capture of 3D
motion and bringing 3D shape analysis to new fields such as biomechanics and physiology.
Application to other surfaces

We believe it is possible to extend the ideas presented in this manuscript to other surfaces. It
could be other articulated bodies like animals, objects that present non-isometric deformations
like human faces and their expressions, or medical data such as cortical surfaces. Indeed, many
components of our approaches (varifolds, Riemannian energies, ...) are not human-shape
specific. Varifolds were applied successfully to cortical surfaces (Gori et al., 2017) and their
evolution (Bône et al., 2019) in the medical context. On the other side, elastic metrics have
been applied to human faces (Hartman et al., 2022; Laga et al., 2022).

Figure 8.3 Other surfaces. On the left, is a human face. In the middle is a wolf surface. And on the
right, a hippocampus surface.

8.2.2 Geometric deep learning

It is notable that our work is tied to a computational trade-off. If we want a framework that can
be used for human deformation, we need to accept a loss in computational speed. This prevents
us from being able to use frameworks of Chapters 6 and 7 in e.g. motion retrieval. Unlike our
approach, geometric deep-learning auto-encoders do not have a computational trade-off. For
example, the LIMP method (Cosmo et al., 2020) generates interpolation of two shapes in a
single feed-forward pass in the trained neural network. The retrieval of the latent code is also
very fast and can be used for shape comparison. At this time, this comes at a significant cost
in performance. In fact, in a recent work (Pierson et al., 2022), we show that even for simple
problems like the auto encoding of a toy dataset of ellipses, robust networks like PointNet can
overlearn information about the surface parameterization, as illustrated in Figure 8.4.

Moreover, in the future, we will see the arrival of huge datasets of human motion. For
example, the recently announced HuMMan dataset (Cai et al., 2022) (expected to be released in
2023) will containmore than 400k 3Dhuman body sequences executed by 1000 different subjects.
The challenge of parameterization in geometric deep learning will have to be surmounted in
order to profit from this quantity of data.
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Figure 8.4 Task of learning latent spaces of ellipses via autoencoders. Ellipses are proposed as inputs of
networks trained on a dataset with one fixed parameterization (original). Two types of connectivity
preserving remeshings (shifted, unbalanced) are applied and the resulting meshes are given as inputs
to the learned autoencoders, with Neural3DMM (called here SpiralNet) (Bouritsas et al., 2019) and
PointNet (Qi et al., 2016) filters as a backbone. An ellipse with 3 different parameterizations is fed as
input to the trained networks (first line). The reconstruction from the encoding and decoding processes
of the network is displayed in line 2 for SpiralNet, and in last line for PointNet. We see that both
networks fail in the case of an unbalanced remeshing, even PointNet yet its robustness against that kind
of transformation.

Geometric deep learning frameworks could benefit from our approach to fulfill this objec-
tive. A few easy ideas can be declined from our manuscript and be incorporated into geometric
deep learning approaches. First, we could use our human shape and motion descriptors as
inputs of deep human body autoencoders. On the other hand, the Riemannian energies of
paths defined in Chapters 6 and 7 could be used as loss functions to regularize deep learning
latent space, following approaches that use other kinds of energies (Cosmo et al., 2020; Huang
et al., 2021). Another possibility is to follow promising recent work parameterizing shape
manifolds (Sassen et al., 2023) to avoid solving the costly optimization problems encountered
in Chapters 6 and 7.

8.2.3 A finer approach

A final limitation of our approach is that we always take the human shape as a global object,
while we know that the human body is the concatenation of human body parts via its underlying
skeleton and articulations. Moreover, human action is a superposition of multiple motions
that happens at different scales.

This limits us from proposing an analysis of hand human motion from full human body
data for example. This problem can be tackled from different angles. A natural way would be
to design a natural segmentation of the human body from its underlying parts. For example,
the recent SUPR body model (Osman et al., 2022) considers body parts and proposes a human
body model that unifies models for face, hand, foot and body. In a similar way, we could take
profit of available datasets for each of the designated parts (Ranjan et al., 2018b; Boyne et al.,
2022; Romero et al., 2017) to extend our method to body parts.

Another, more abstract way is to adopt multi-scale or multi-resolution viewpoints. Using
multi-resolution approaches is popular in computer graphics (Winkler et al., 2010; Chu & Lee,
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Figure 8.5 The human body is more than a shape, it is rather the unification of multiple body parts.
Image of (Osman et al., 2022).

2009) because it allows to both reduce the computational costs and take account of underlying
geometries of shapes, using progressives downsamples and upsamples of the surface (Figure 8.6).
This method is nowadays popular in geometric deep learning, in particular in mesh auto
encoders (Hanocka et al., 2019; Bouritsas et al., 2019).

Figure 8.6 Progressive downsampling of a human body mesh. During the process, the structure of the
human body is not lost, i.e. at last step, we can still guess the skeleton of the human body.

It seems possible that not only we can reduce the computational costs but also improve our
algorithms by using such multi-scale approaches.

8.2.4 Theoretical guarantees

The geometric tools proposed by our approaches raise theoretical questions. For instance,
in Chapter 4, we showed the valuable applications of the convexity hypothesis, as well as
some of its limits. Determining a set of poses for which the hypothesis holds would open
the possibility of reconstructing the pose from our extracted invariants. Moreover, Chapter 5
showed that the varifolds trajectories in the RKHS, corresponding to human body motions
contain valuable information. It would be interesting to learn more about the properties of
those trajectories, in particular for which sets of shapes we could use this information. Finally,
the metrics presented in Chapter 6 and 7 opened the way to many applications, but there is
still no geodesic completeness theorems for those metrics (interpolating between two surfaces
could leave the surface space) as opposite to the case of curves (Bruveris, 2015). Finding the
conditions for the choice of metric for geodesic completeness could help to understand better
the failure cases of Riemannian approaches.
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