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Abstract
Animated characters are a crucial component of compelling and lively virtual worlds.
Their motion is influenced by complex behaviors, and the production of expressive
character animation heavily relies upon animators’ skills, training and knowledge.
Ever since computers have been used in this creative process, researchers have strived
to develop intuitive, interactive and precise tools and interfaces to facilitate animators’
work. In the last decade, deep learning methods have raised a lot of interest in the
computer animation community, capitalizing on the increasing availability of real-life
captured motion data to train generative models able to synthesize new movement.
While the studied application allow for the generation of new realistic animation, the
process unfortunately leaves little room for animators’ control. This thesis therefore
proposes to use neural networks to learn the subtle complexities carried by motion
data and to use the extracted information in the design of user-centric animation tools
which fit in the existing animation production workflow. We propose two approaches
allowing a user to edit a character’s pose at a given time frame, first by directly
manipulating its skeleton, and second through higher-level pose parameters.
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Introduction

1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Thesis contributions & organization . . . . . . . . . . . . . . . . . . . 3

1.1 Context

Animated virtual characters are present everywhere in video media such as films,
animated movies or video games. They can often be found in the spotlight, telling
stories or embodying players, but also in the background, populating vivid worlds
where they strengthen the spectators’ immersion. The way these characters move,
act around their world and interact with each other is an important point of focus
for their creators, and producing high quality, expressive and diverse animation is a
crucial aspect of the production process.

Humans have been interested in depicting moving scenes for as long as they have been
drawing. Early animation thus has centuries of history, starting with side-by-side wall
paintings, to puppets and shadow play, and up to the photorealistic digital humans
of today. The modern understanding of the discipline arose recently, following the
democratization of the cinematic industry during the late 19th century. The beginning
of the 20th century saw the development of the traditional animation technique in
which animation artists draw characters by hand, image per image. This period also
marks the first public success of animated production, first through short-format
cartoons, quickly followed by feature-length films. Nearing the end of the century,
computers made their way in the animation creative process. In their first appearances
digital tools were used to reduce the burden of repetitive work and improve production
times, but still operated on flat 2D images. The focus however quickly shifted to the
3D world, driven by the fast growth of computing power and progress in computer
graphics. Nowadays, the most common approach to animation production is entirely
computer-based, and is the result of virtual cameras filming virtual scenes in which 3D
models act, even in cases where the final image aims for a 2D look. With the rise of 3D
video games, the growing scope of animation feature films, and the looming prospect
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Chapter 1. Introduction 2

of high-quality immersive experiences in virtual reality, animation is in ever-increasing
demand.

The human eye perceives a lot of information through motion: it is a complex behavior
through which characters convey intent, emotions and personality. A same gesture
can be performed differently depending on the unique identity of the performer, and
a character can achieve the same action in a variety of ways. Creating high-quality
motion that accurately depicts a character’s actions and convey its personality and
internal state is a difficult task, and animators undergo long and meticulous training
to master their craft. The role of computer animation researchers is then to imagine
and develop new tools and interfaces to help artists transform their imagination into
tangible art, and bring their characters to life.

1.2 Motivation

In this thesis, we are interested in proposing a new set of such tools. We are also
interested in the information present in existing motion data, and in ways it can
be extracted then exploited in the design of the tools. Our approach thus falls in
the "data-oriented" category of animation research, which has been a topic for the
community since its very beginning.

During the last decade, neural networks and more specifically deep learning methods
have seen an explosion in popularity as the computational power and amount of data
they require have become accessible to larger audiences. They have proven to excel
at learning to model complex data distributions from database of existing samples,
and at approximating complicated functions. Their usage have quickly grown out of
their original image classification root: they are now studied in application to all sorts
of data types [Qin+20; Del+21], and towards various goals, up to synthesizing new
unseen data from the modelled distribution. The animation field has not been spared,
and, starting from 2015, a larger and larger amount of research has been dedicated to
applying neural networks to motion data. However, as shown in the following literature
review, the vast majority of existing work in this direction has focused on animation
synthesis, i.e. the task of generating new motion, occasionally guiding the generation
through a high level control signal such as an expected locomotion trajectory or a
past context of existing motion. While these methods produce impressive results for
on-the-fly synthesis, they are limited when it comes to artistic control. Animators
creating new motion need precise control over their tools’ output, so that they can
author an animation that precisely fit their expectation for it. With existing methods,
if the generated motion is not satisfying, the only solution is to retrain the whole
models with a different dataset.

This observation motivates the objective of this thesis: exploiting the modelling power
of deep learning methods to extract meaningful information from animation data, and
using it to power tools which facilitate the artists’ job while leaving them in control of
the final output. We therefore propose methods that apply the insight learned from
data to more fine-grained operations and fit in the existing animation pipeline. To
achieve our goal, the proposed tools focus on being unintrusive, controllable, easy to
use, and fast enough to allow interactive use.
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Chapter 1. Introduction 3

1.3 Thesis contributions & organization

The work presented in this thesis revolves around the idea of leveraging existing data
in the design of atomic operations in the animation workflow. We select and focus on
the task of skeleton manipulation, during which the user edits a character’s pose at a
specific time stamp. This choice is made considering that it is an essential step in the
process that, in its usual format, heavily relies on the animator’s understanding of
complex skeleton constraints. We present a new pipeline in which said constraints are
learned and handled by a few neural networks, while the users can focus on editing a
character’s pose through simple and efficient manipulators.

Our contributions constitute the building blocks of this pipeline, which are presented
throughout this thesis.

The first chapter gives an overview of the literature in computer animation, presenting
the fundamental concepts, the efforts that lead to the current workflows used to
produce animation, and the most recent experiments aiming to reduce the burden of
animators, including animation data modelling with, among other methods, neural
networks. Through this presentation it also illustrates the shortcomings of existing
methods that our work attempts to resolve.

The second chapter presents the general idea of this thesis, which is to use neural
networks to learn an alternative (latent) representation space for animation frame
data, then edit latent pose representation, leaving the handling of complex skeleton
constraints to the learned mapping functions. We present the dataset used to train
our neural networks and discuss two approaches to building the latent space.

A first application of the space is then presented in the fourth chapter. We focus on
the task of pose editing through the manipulation of some of its joints, similarly to a
virtual puppet. Two methods are presented and discussed.

Chapter five investigates the animation style metaphor and its applications in the
thesis’ paradigm. We present a pose editing method in which the pose is modified
following some high-level but objective pose parameters, using a learned editing
function.

Finally, the fourth chapter concludes this thesis by summarizing our findings, discussing
them and suggesting further improvements.
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2.1 Introduction

Ever since the early days of computers, animators and researchers have looked for
how they could be used to improve the animation process, which results in a large
body of literature. The goal of this thesis being to explore how neural networks can
be used to provide smart animation tools, it is a direct continuation of this past effort.
This chapter gives an overview of the previous work our research builds upon.

Nowadays two dominant methods to produce animation coexist. Key-framed animation
is the direct successor of traditional pen-and-paper animation: animators manipulate
a character, setting its poses at selected time frames. The motion is created by playing
these key-frames in sequence, interpolating between them if necessary. Motion Capture
(MoCap) techniques instead focus on recording real-life actors moving, then applying
the captured motion to virtual characters. The work presented in this thesis makes
use of both methods: while we aim to develop tools that fit in the key-frame animation
pipeline, we take advantage of the naturalness and relative accessibility of MoCap
data to train neural networks. While our work depends on the existence of faithful
motion data, the capture process itself is a broad topic, and is kept out of this report
for shortness sake1. Similarly, the animation of character faces, expressions and speech
motion are specific and widely studied subjects[SS18; HP22], out of the scope of this
review. We instead focus on the different steps used to produce key-frame animation,
to explain the context and the limitations we aim to alleviate.

The first section 2.2 gives an overview of what "animation data" entails, and how it is
applied to animate character models. Then in 2.3 we discuss the different existing
methods used to design an animation through the manipulation of key frames. Section
2.4 we present the efforts towards reusing existing animation data, leading to recent
work dedicated to modelling it through deep learning methods. Finally, in section
2.6, we describe the different proposed approaches to edit an animation through the
metaphor of its "style".

1For overviews of the state of the art in MoCap technologies one can refer to Zhu et al. [ZL16] or
Desmarais et al. [Des+21] on real-time-capture and markerless approaches, respectively.
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2.2 Skeletal animation

In computer graphics, virtual characters are represented by three-dimensional polygon
meshes on which texture images and physically-based materials are applied. Their
motion is driven by an underlying hierarchical structure of joints (or bones) which
collectively form the skeleton (Fig. 2.1). When the skeleton moves, it drives the
deformation of the mesh by applying its bones’ transformations to the vertices, in a
process called skinning [CHP89]. The influence of a given bone on a given vertex is
specified by a weight factor that artists can tweak to achieve the desired deformation
behavior. The modeling of the character and the skinning process are out of the scope
of this thesis, as we are only interested in the skeleton and its motion.

Figure 2.1: A textured 3D mesh with its underlying animation
skeleton (in pink).

Animation data consists of a time series of skeleton configurations (key poses) at
specific time stamps (key frames). A pose is usually defined by the transformation
(translation, orientation, and scale) of each bone in the skeleton. At runtime, the
computer interpolates between these poses to display a smooth animation (Fig. 2.2)
[BW71]. Within that framework the role of an animator is then to design the key
frames to produce the character’s motion.

Figure 2.2: Interpolating between key frames creates a new pose for
each frame, creating the illusion of a smooth animation.

This skeleton representation has multiple advantages: It is mainly a memory-efficient
representation for animation data, as it stores only per-frame bones transformation
and fixed vertices bone weights, instead of per-frame per-vertex transformations for
mesh animation. Additionally, its simplicity makes it an effective interactive interface
for animators, which can manipulate it much like a puppet to achieve desired poses
[BW76].
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2.3 Key-frame editing

The common key-frame animation synthesis pipeline can be split in two phases: posing
and interpolation control. During the first, animators manipulate the skeleton to
define key poses at specified key frames. In the second, they control the various
processes used to fill the gaps between key-frames.

2.3.1 Pose manipulation

Virtual characters’ skeletons can be highly complex: they are composed of many
joints, each of which can have specific restrictions, such as orientation limitations.
They must also respect many constraints specific to the character they represent.
For instance, the distance between each pair of joint must remain constant; or can
conditionally allow for a limited amount of stretch, and the limbs must never overlap
when accounting for the morphology of the character. Manually parameterizing each
joint of a skeleton to respect these constraints is next to impossible, even more so
when multiple poses are aligned and must also respect temporal coherence.

A substantial part of the literature is then dedicated to describing methods which
facilitate the manipulation of the skeleton. These tools are in direct contact with
animators, so their focus is on ease-of-use as well as real-time interactivity. We
review the different approaches to this kind of interfaces, starting with forward and
inverse kinematics methods, to sketching interfaces, data-driven methods, and finally
interfaces in three dimensions.

Forward and inverse kinematics

Figure 2.3: Forward Kinematics: A modification to the orientation of
the joint P0 at the starting position (1) is propagated down the chain,
modifying the positions of both P1 and P2 in the resulting position (2).

The most straightforward skeleton manipulation tool is Forward Kinematics (FK):
the parameterization of one joint in the chain is the result of combining those of all
the joints up the chain. This way the modification of a joint’s position or orientation
is echoed down the chain to the end effector (see Fig. 2.3). Using this method, an
animator can change a joint’s orientation to edit the pose, ensuring the constant length
of each bone.

The opposite technique, Inverse Kinematics (IK), finds a suitable parameterization
of the chain given a target parameterization of the end-effector. This can be used
as an effective interface for skeleton manipulation where animators can drag a joint
over a desired position or orientation while pinning some others in place (pin-and-drag
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Figure 2.4: Inverse Kinematics: Given a target position for the end
effector P2 the IK method must find a proper parameterization of both

P0 and P1. Multiple solutions exist.

interface [YN03]). The IK problem is an ill-posed one, as a given target configuration
may have one, multiple, or no solution. A recent review of IK techniques in computer
graphics [Ari+18] proposes to split the existing solutions in four families (Analytic,
Numerical, Data-driven2, and Hybrid) depending on their characteristics, analyzing
their strong and weak points. The following section presents a restricted summary of
their review focusing on the methods that are best suited for real-time IK applied to
character skeletons.

Analytical solutions attempt to find a formulation of the problem which yields an
exact solution given a target configuration [RR93; Kal08]. They have the advantage
of being reliable and of having global solutions, but they can be computationally
costly. Finding an analytical solution is also be next to impossible for complex,
strongly-constrained systems, such as a character’s skeleton. They therefore don’t see
much use in pose edition, but are good candidates for robotics.

Numerical solutions formulate a cost function for the problem and iteratively
minimize it. They can be divided in three categories: Netwon, Heuristic, Jacobian.
Newton solutions use the quasi-Newton method to approximate the objective function
[NW99], but much like analytic solutions, they are too complex and computationally
costly for the use-case at hand. Jacobian methods use the Jacobian of the system
(a matrix of the partial derivatives of each joint’s configuration with respect to their
angles), as a linear approximation to the problem [Bus09]. The use of an approximation
allows for lighter computations and faster inference, which made Jacobian solutions
popular during the 1980s and 1990s. In the recent years they have however fallen
out of favor due to the demanding environment of real-time interactive software.
Heuristic methods do not try to generalize the IK problem and instead rely on simple
operations that they can repeat iteratively to reach an acceptable solution. This
process allows them to be extremely computationally efficient, at the cost of having
no consideration for the naturalness of the produced pose. This drawback can be
attenuated by extending the methods to respect more constraints, which is fortunately
easy to do in most of them. Their speed make them the currently preferred solution
in animation software, so we next describe in deeper details two of the most popular
heuristic IK algorithms: Cyclic Coordinate Descent (CCD) and Forward and Backward
Reaching Inverse Kinematics (FABRIK).

2Data-driven IK solutions are closely related to full-body posing techniques, so both have been
grouped and are discussed in their own section (2.3.1) below.
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The CCD algorithm [LY84; WC91] operates iteratively to minimize the distance and
rotation error between the end effector and the target. At each step, the end-effector
is rotated to align with the target. Then, each joint down to the root is rotated to
minimize the error. The process is repeated until the end-effector reaches the target.
The success of CCD can be attributed to its simplicity: it is easy to implement and
has low computational cost. The algorithm has also received multiple improvements,
allowing it to handle different kind of constraints [Wel93] or multi-chains problems
[Shi+01; KM05; KMA05].

FABRIK [AL11] is an iterative solver that gradually modifies the positions of the
chain’s joints to minimize the distance between the target and the end effector,
operating in two stages (forward and backward). In the forward stage, the end-effector
is placed on the target. The other joints are updated one by one down to the root, and
placed on the line between their current position and their child’s new one, respecting
the distance between them. In the backward stage, the same process is followed, only
the other way around: the root is placed back on its original positions, and the joints
up the chain are "pulled back" one by one to it. The two phases are repeated until
the end effector is close enough to the target. The advantages of FABRIK are its
simplicity and flexibility: the algorithm has been proven to always converge when the
target is placed within reach [ACL16], and has been extended to handle many kinds
of constraints [MC13; ACL16; TY17].

Hybrid solutions usually divide the IK task in sub-problems, and solve each of
them with a specific method. For example, some approaches reduce the search space
of a numerical solution by using a preliminary analytical step [LS99]. Others use
data-driven methods for the same purpose: Agrawal et al. [Av16] learn a prior which
is used to warm-start FABRIK, yielding more natural looking human poses.

Forward and inverse kinematics are at the core of most modern animation software
and lead to precise results, but can be tedious to use from an artist’s perspective.
Other techniques and interfaces have then been studied to alleviate this problem.

Sketching interfaces

(a) Stick-figures [Dav+06] (b) Line of action [GCR13] (c) Generalized [Hah+15]

Figure 2.5: Sketch-based posing interfaces

In traditional pen-and-paper animation, it is common for animators to start posing
by sketching a simplified version of the character to quickly get an idea of what their
mental picture of the pose will look like. The draft is then progressively refined
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until reaching a satisfying character pose and acceptable level of details. Computer
animators use the same coarse-to-fine workflow [Las01], but the common posing tools
are not as efficient as a quick sketch.

A body of work has then taken interest in translating this workflow to computer
animation (some of the literature’s methods are illustrated in Fig. 2.5). The main
difficulty in adapting the sketch abstraction is the reconstruction of a full 3D model
from a flat 2D drawing: the additional depth dimension cannot be precisely inferred,
which is a source of ambiguity.

Early work along this idea required users to draw stick figures, which are commonly
used as rough depictions of characters, and have the advantage of corresponding to the
widely used skeleton model. The stick-figures could either be sketched from scratch
or over an existing doodle, and either on paper [TBv04; CON05] or directly on the
computer [Fek+95]. They are then used to generate a 3D pose.

Figure 2.6: The concept of Line of Action ©Animation, P. Blair, 1948
[Bla48].

More recently, some investigated a simpler abstraction inspired by the workflow of
traditional cartoonists [LB84; Bla48], the Line of Action (LoA). The LoA is a single
smooth stroke over the character’s body which indicates the general aesthetic shape of
the pose, as illustrated by Fig. 2.6. It has been shown to be an intuitive interface to
produce expressive poses, manipulating either the skeleton [GCR13] (illustrated in Fig.
2.5 (B)) or the character mesh directly [Özt+13]. The method has been generalized
to allow the user to provide his own curves [Hah+15].

Data-driven Inverse Kinematic

A more recent group of methods leverage existing real-world animation data to generate
poses which correspond to some provided user constraints. The general idea is to
match the constraints by producing a new feasible parameterization extracted from a
database, or to synthesize a new one similar to the database. We present data-driven
IK methods here as a majority of them is interested in generating a full character
pose based on the target parameterization of a few of the skeleton’s joints, which is in
turn applied to character posing.

The initial approach from Rose et al. [RSC01] uses radial basis functions to interpolate
between multiple poses whose joints most closely match the provided targets. Grochow
et al. [Gro+04] propose to model the probability distribution of the database using
Gaussian Process Latent Variable Models. The new pose is generated at run time
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by optimizing a function which represents the likelihood of a given pose to satisfy
the constraints. The method was later improved to take into account the physical
properties of motion [LHP05].

Another family of methods suggest searching large pose databases for the closest
match. The main limitation is the complexity of the search: in a naïve interpretation
it grows linearly with the size of the database. To reduce this complexity, the proposed
methods suggest reducing the dimensionality of the data through PCA [CH05; RB09],
or speeding up the searching with the help of kd-tree clustering [Krü+10; WTR11] or
maximum a-priori (MAP) estimations [WC11]. Other learning methods have been
applied to character posing, including hierarchical clustering [OH06], sparse dictionary
learning[Lai+12] and multi-variate Gaussian distribution models [Hua+17].

3D posing interfaces

While all the previously described methods allow easier manipulation of character
poses, they collectively face a final limitation: their goal is to handle a 3D object, the
skeleton, through a 2D interface, the mouse and keyboard. Such indirect manipulations
are notoriously hard to master and require the animators to be trained with a specific
software interface. To mitigate this limitation, a group of methods focuses on direct
manipulation interfaces. A first group of such work focuses on building tangible pose
editing devices, in the form of actuated puppets [Kne+95; Yos+11; Jac+14], allowing
animators to pose a physical representation of the character (see Fig. 2.7). Another
one is interested in Virtual Reality interfaces [LCM20], which offer opportunities to
solve the problem by embodying the user in a full 3D world. Interfaces have been
explored where the user manipulates the skeleton in 3D through IK handles [Sum+11]
or by tracking its hands and interpreting their motion as strokes similar to the Line
of Action [GRC19].

Figure 2.7: A physical pose editing interface through an actuated
puppet. From Yoshizaki et al. [Yos+11].

2.3.2 In-betweening

Once key poses have been set, the software is tasked to generate intermediate poses
(generally called in-betweens) between them to produce motion. To achieve this,
the straightforward approach that comes to mind is to linearly interpolate between
key-frames. Linear interpolations however suffer from limitations [KB84], as illustrated
in Fig. 2.8:

• linear interpolation of orientation values provoke lengths distortions;

• sudden changes in the direction of motion might produce non-smooth animation;
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• irregular time-placement of key-frames can lead to discontinuity in speed;

(a) Discontinuity in direction (b) Discontinuity in speed (c) Distortions in length when
rotating

Figure 2.8: Linear interpolations limitations for animation, Kochanek
1984 [KB84]

A common solution to the first problem is to represent joint rotations by quaternions,
and to interpolate using the spherical linear interpolation function (Slerp) [Sho85]. The
second one was solved by smoothing the edges using cubic interpolation splines (using
Catmull-Rom splines [KBB82] or B-splines [SB85]), and the third by allowing the user
to parameterize them through control points [BH89; KB84]. Taken all together these
solutions amount to a set of parametric curves (often called animation curves) that
the animator can manipulate to control the interpolation process (Fig. 2.9).

This formulation of the animation curve is currently prevalent in production setups.
The resulting motion’s naturalness is however still dependent on the user’s skill and
carefulness, and so some more work has been dedicated to improving the process.

Figure 2.9: Animation curve in Blender. The curve represents the
value over time for a single component, parameterized by 3 keyframes
(black dots) and the interpolation splines at each of them. The control

point of a spline is shown in orange.

A group of work propose to optimize the animation curves to satisfy all sorts of
constraints. They have been applied to ensure that the motion remains physically
plausible [SN88; LC95], and particular focus has been put on detecting and avoiding
self collisions [Bad+94; Neb99].
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More recently, another group focused on refining the curve editing process itself,
making use of user-in-the-loop optimizations to gradually modify the curves with
regard to the user input [KG18; CÖS19].

Data-oriented solutions have also attempted to improve the process, learning real-world
constraints from motion capture data. The general idea is to generate the in-between
frames while using this knowledge to ensure that the generated poses are all realistic.
The first approaches used statistical modelling combined with optimization [CH07] or
Gaussian processes [Gro+04]. Recently, recurrent neural networks (RNN) have been
trained to produce in-betweening for a single specific character [Zv18; HP18]. Such
methods are described further in the deep learning section below.

2.4 Reusing motion data

Producing animation through the interpolated key frames workflow as described in the
previous section is a complicated process, and creating high quality motion remains
a time-consuming task even for experimented artists. MoCap can allow arguably
faster production, but the capture is not a light process. Actors, technicians and
animators must be coordinated, and most production studios do not have the necessary
technology on-site, so careful planning is mandatory. A missing or unfit animation
clip arising in the middle of production involves re-shooting it and thus important
time costs.

This complexity in the acquisition of motion data has led to an interest in ways to
re-use existing animation and a fair amount of research has been devoted to the
question.

2.4.1 Motion signal processing

The first group of work that proposed a solution to alter and reuse existing motion
took inspiration from existing signal and image processing literature [BW95]. In
these approach the motion of each animation parameter (such as a joint’s rotation)
is considered as a sampled signal, which can be filtered and decomposed in multiple
resolution scales. The applications shown in the original include tweaking an animation
by editing the values of individual bands, changing the timing of a clip (time-warping
[WP95]) or using the signals as interpolation targets to blend multiple clips. Following
work have shown applications in adaptation to random terrain or morphing the
character’s skeleton size [LS99; LS01], or altering the style characteristics of the
original motion, by applying random noise to different resolution scales [Per95], or
by applying a style transformation computed as the difference between a "neutral"
motion clip and another "stylized" one [ABC96].

2.4.2 Motion blending

The goal of motion blending is to interpolate between two (or more) distinct animation
clips to generate a seamless transition between them. While the blending operation
can be used on its own to create new motion, it can also be used to alleviate the
amount of original animation needed in a production. For example, if the short
transitions between the longer clips of a character’s animation set are automatically
generated, animators can focus on refining the details of the most characteristic parts
of its movement.
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The very first approaches to blending used linear interpolations to satisfy user-provided
constraints, such as IK targets, either directly in the animation parameter domain
[GRG96; WH97], or in the spectral domain through Fourier decomposition [UAT95]
or the aforementioned multi-resolution technique [BW95]. The main restrictions of
these early approaches lies in the linear interpolation operator which cannot represent
the subtlety of human motion and thus limits blending to similar input clips.

To alleviate this limitation, one family of techniques proposes to use Radial Basis
Functions (RBF) to interpolate between motion clips. The seminal work of Rose et
al. [RCB98] presents a new parameterization of motion as a composition of verbs
(categories of motion) and adverbs (hand-labelled motion styles). Using RBFs to
interpolate between verbs enables the system to generate variations of smooth transi-
tions. Later improvements demonstrated constrained blending [RSC01] and improved
performances by reducing data dimensionality [LT02; PSS02].

One limitation of these blending technique is their inability to respect constraints if
a satisfying result is not present among their input motion. One other family thus
propose to reverse the usual paradigm and generate the blending weights through a
parametric constraint space [MK05; HK10]. In these inverse methods, the difficulty
becomes finding an appropriate motion clip to blend to among a potentially large
motion database. Another group of work then proposes to facilitate finding blending
candidates by clustering similar clips together using k-Nearest neighbors [KG03]. The
method has then received improvements in the form of pseudo-examples used to
improve the motion space coverage [KG04].

A more in-depth analysis of some motion blending techniques, including numerical
evaluations and comparisons, can be found in the review by Feng et al. [Fen+12].

2.4.3 Motion graphs

One of the objectives of data-driven animation synthesis is to organize a database
of existing motion clips in a way which allow playing them back to back, on a same
character, without breaking the animation. This type of organization is also important
in interactive media such as video games: virtual avatars must be able to move
and act across the world while responding to user input, which means seamlessly
transitioning from the current animation to the one corresponding to the latest player
input. The problem grows exponentially with the number of available actions available
to the player, as each new task could be combined with the existing ones. To tackle
this complexity, a group of work has studied the idea of building animation graphs,
in which each edge represents an animation clip, and each node represent a pose,
which represents a transition point between two (or more) clips. In this configuration,
traversing the graph produces a single smooth animation in which each clip is played
with no noticeable transition.

In their first appearances, motion graphs were fixed and structured by hand. Research
focused on demonstrating their use, describing methods to search the graph to find
paths satisfying user constraints, such as joints positions or a target root motion signal
[MBC01; AF02; Lee+02].

In order to facilitate the preparation work required by motion graphs, various authors
investigated ways to automatically build an animation graph from a motion database
[KGP02; SH07; Zha+09; RZS10; Gle+08]. The automatically built graphs can be
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Figure 2.10: A (simple) animation graph in Godot Engine. Each
node represents an animation clip, each edge a possible transition.

used in the same way as the manual ones, i.e. searched and traversed to satisfy user
provided constraints.

The searching costs of a motion graph can grow exponentially along with the number of
edges. Another group of work thus focuses on improving the process, using specialized
path-search algorithms [SH07] or pre-computing cost functions [LL04; SMM05].

The "quality" of motion graphs have also been studied, with methods to evaluate the
capabilities of a graph in a given scenario [RP07] or to enhance their connectivity
[ZS09].

Some others propose alternative graph definitions where the graphs are denser and
more structured. Shin and Oh [SO06] introduce "fat graphs" in which clips between
which blending is possible are grouped together. In [HG07], both node and edges
contain multiple animation clips. A walk through these fat graphs can produce even
more motion by blending between available animation clip at each step. Having
multiple options also allows for finer constraining, at the cost of search efficiency
[MC12].

Motion graphs only allow transitions between clips when reaching nodes, which is
limiting in applications where interactivity is paramount. Because they only use
pre-existing animation data, coupling them with techniques which perturb the original
clips (physics simulation, layered animation...) is difficult, as it would require straying
away from pre-determined transitions. To alleviate these limitations, some work has
proposed interactive controllers, learning to navigate the graph through reinforcement
learning [TLP07; MP07].

Motion graphs are now widespread in the games industry. The graphs are however
still hand-built, and used as state-machines to drive animation from character state
(Fig. 2.10). Automatic construction approaches have indeed proven difficult to control,
which could cause unacceptable latency in the response to player input. The graph
construction itself has then become a time-consuming task for animators, which has
led the research community to exploring other avenues for animation synthesis.

2.4.4 Motion fields and motion matching

Interactive applications require quick reaction to user input and external perturbations,
for which motion graphs come lacking. Another family of approaches has then emerged:
instead of modelling the single most suitable motion from any possible character state,
as done with graphs, motion fields [Lee+10] suggest modelling a set of suitable motions.
The field itself is composed of vectors containing the extracted instantaneous pose
and velocities from each motion clip. At each frame, the most suitable motion clip
according to the user input is selected interactively and blended into. The control
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of the flow is based either on Markov Decision Processes (MDP) or reinforcement
learning. As a result the current state is always a blend of multiple animations, staying
in the general vicinity of them while immediately reacting to user input.

More recently, another method called Motion Matching has emerged from the video
game industry. First presented by a team from Ubisoft [BC15; Cla16; Zad16] as a
greedy simplification of motion fields, the method keeps the same main idea: at every
frame, search for the best suited transition over an entire motion capture database.
Motion Matching drops the complex task of constructing the field, as well as the control
methods. Instead, the whole database is kept in memory, and the best matching
clip at each time step is selected through nearest-neighbor search. The simplicity
and controllability of motion matching has quickly drawn attention from many game
studios [Har18; Zin19; Büt19] which extended the method to suit their need.

The main limitation of Motion Matching is the memory footprint of the animation
database, which scales linearly with the amount of data. The academic field has
started to take interest in the method and provided attempts to handle this problem.
For instance Holden et al. [Hol+20] replace different parts of the process with neural
networks, removing the need to store animation data in-memory.

2.4.5 Statistical modeling

One last family of approaches proposes to construct statistical models of animation
data. A proper model can be helpful in analyzing and describing the subtle complexity
of motion data, but most importantly in our case, it can be used to generate new
motion with respect to its underlying distribution. Borrowing various modeling
techniques from other fields and leveraging the increasing amount of available material,
the models presented by researchers have grown more and more precise and powerful.

Principal Components Analysis (PCA)

The first statistical models of motion extend existing mathematical models of 3D
objects deformations to incorporate motion. They rely on Principal Components
Analysis (PCA) to transform animation data in uncorrelated variables and select the
most representative ones, resulting in a more compact and general representation. For
example, Alexa et al. [AM00] apply PCA on single animation clips directly, in order
to learn a new representation decoupled from the geometry. Such representations
of motion data have also been used to speed up the search process in a motion
database [FF05]. A popular use of PCA has been to use it to reduce key frame data
dimensionality, then to model the probability of frame-to-frame transitions (temporal
dynamics) with variations of Markov Models [Bow00; BH00; MH00; GJH01].

The reduced subspace representation of motion data obtained through PCA can also
be useful in order to reduce the size of the search space of optimization methods. This
property has been leveraged to optimize motion to respect various constraints such
as physical rules [SHP04], key frames and trajectories [CH07], or sketching interfaces
[MCC09].

Gaussian Processes

Gaussian processes and their derivatives have also been used to model the distribution
of motion data. Thanks to their probabilistic nature they can be used to generate any
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data points instead of being strictly limited to inter or extrapolations. The seminal
work of Grochow et al. [Gro+04] used Gaussian Process Latent Variable Models
(GPLVM) to model the pose space and demonstrated their purpose with an interactive
pose editing interface. Further work employed recurrent variants of Gaussian Processes
to predict future frames [WFH08], automatically respect physical constraints [YL10;
WMC11] or build character controllers [Lev+12]. Gaussian methods have produced
impressive results, but have not seen much adoption outside the academic field. This
can be attributed to their inherently high memory cost, since they need access to the
full motion database in memory in order to be used.

2.5 Deep Learning

From 2015 and on, encouraged by their success in related fields, deep learning methods
appeared in the animation community. They proved to be effective at learning
complicated patterns from raw, real-life data, with the additional advantage of not
requiring the training data to still be available after training. On top of that, their
inference process usually consists in a set of straight-forward deterministic operations
that can be executed fast enough for real-time applications. Thanks to their general
popularity across research fields and these interesting properties, deep learning-based
methods quickly grew to represent a large portion of new work in computer animation
research (see Fig. 2.11). A succession of reviews have been published [WCW14; AP19;
Mou+22] in attempts to keep up with this fast growth.

Figure 2.11: Histogram of the volume of peer-reviewed publications
in human skeletal animation using Deep Learning (DL) or Deep Re-
inforcement Learning (DRL) over the past decade. From Mourot et

al. [Mou+22]

Deep learning methods have been applied to a broad array of animation tasks, and
many network architectures have been studied; the combinations and intertwining of
both making classifying existing work difficult. In this thesis we choose to separate
both part and give an overview of the applications in a first section, only surveying
the architectures in a second one.

2.5.1 Applications of neural networks in animation

Motion synthesis The first applications of deep learning in animation followed
the general idea of previous work with statistical models: model the distribution of
motion data, and generate new motion sequences as varied as possible, whilst ensuring
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the naturalness of produced motion and in some case respecting some user-provided
constraints. In the second half of the 2000s, Taylor et al. [THR06; TH09] pioneered
the use of neural networks with this task, studying variations of Restricted Boltzmann
Machines (RBMs) to predict the next pose in a motion clip. Over the years, the task
remained one of the most studied, but has been derived in a series of flavors.

On one end of the spectrum, deterministic generation applications’ goal is to extrapo-
late an existing motion to closely predict its near future [Fra+15]. The difficulty then
lies in the accurate reconstruction of a truncated motion sequence.

On the other, generative synthesis refers to the task of producing realistic motion
sequences from a random seed [Hol+15]. Here, the objective is not reconstruction but
rather the diversity and realism of the produced animation.

Between the two exist a myriad of similar tasks, whose objective vary between
reconstruction accuracy and variety. But they most notably differ in how the synthesis
of new animation is constrained. The most common one is to enforce the match with a
past context to synthesize various follow-ups to an existing clip [Fra+15]. The context
can however also be a future one, or past and future context can be enforced at the
same time [Ber+15; Zv18; Har+20] (in which cases the task becomes similar to motion
in-betweening, discussed earlier). Constraints are also used to provide some control
to a user, or to restrict the possibility space of the generation, in which cases the
synthesis in constrained by a user-provided trajectory signal [Hab+17], action types
[Gho+17; Gho+20], or the character’s environment [Cao+20].

Figure 2.12: Motion synthesis constrained on a user-provided trajec-
tory signal, from Holden et al. [Hol+15].

Motion control The next task attempts to use deep learning to create character
controllers which react interactively to user input, as well as the character’s virtual
environment. Two categories of solutions to this problem respectively train joint-
actuated, physically simulated agents [Pen+17; Pen+18] and musculoskeletal models
of the human body [Gvv13; Nak+18], to act in a physically simulated world. As these
techniques are not directly related to the topic of this thesis, we focus on the last
category, which aims to generate the animation data used to drive a skeleton.

This family of approaches has been pioneered by Holden et al. [HKS17]. In their work
the user is able to provide a phase function describing the alternating footsteps of the
character, and at each frame the network can provide the next based on the current
pose, the current phase, and the desired direction vector, providing an impressive
character locomotion controller (see Fig. 2.13). This approach was later improved,
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notably by using multiple expert networks focusing on different phases, orchestrated
by a gating network [Zha+18; Sta+19; Sta+20].

While most of the early approaches to deep-learning-based motion control focused
entirely on locomotion, more recent work have started taking interest in other tasks
such as dribbling with a basket ball [LLL18; Sta+21].

Figure 2.13: Character control using neural networks, from Holden
et al. [HKS17]. At each frame the network generate the next one based

on the user’s input on a gamepad controller.

Motion editing The final part of the deep learning literature for character animation
focus on editing, rather than generating, motion. The first of such applications were
a byproduct of techniques developed for other tasks. Many early neural methods
leveraged learned "motion manifolds" to which real animation data is mapped to and
from. Because the decoding operation is trained to produce realistic motion, projecting
corrupted or noisy data to the manifold and back to motion space can reproduce and
clean up the missing information [HSK16; Büt+17; Wan+21]. Some work has also
been dedicated to refining this property, by modifying the training loss to penalize
bone-length error [Li+19] or by optimizing the latent space [LAT21].

Some work has also investigated how deep neural networks could help in retargeting
animation, so that a motion sequence created for a character could be adapted to
another one with a different morphology (see Fig. 2.14) [Vil+18; Kim+20; Lim19;
Abe+20].

A last part of the literature is interested in using deep neural networks to extract and
transfer the style of a given animation to another. Style being of the focuses of this
thesis, these methods are described along with their non-neural equivalents in a later
section (2.6.3).
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Figure 2.14: Neural networks have been used to retarget existing
animation to a different skeleton. From Aberman et al. [Abe+20].

2.5.2 Network architectures

With their immense popularity, deep learning methods have been extensively studied
during the past decade, inevitably spawning a broad array of models and architectures.
The animation community has not been spared, and many of those have been applied
to motion data, one of its underlying difficulty being its spatio-temporal aspect: the
temporal coherency of a sequence of frame is important, but so is the relations between
each joints’ parameters and the kinematic structure of the skeleton.

Recurrent Neural Networks One of the first architectures applied to animation
data is RNNs, in which the encoding of a pose is fed back to the network when
encoding the subsequent ones, to model the temporal dynamics of motion sequences.
The seminal work from Fragkiadaki et al. [Fra+15] uses an encoder-decoder to construct
a latent representation of poses, then a RNN to model the dynamics between them.
This general architecture was later extended to include structural information on the
skeleton [Jai+16; AKH19; GC19], and improved by changing the pose representation
from joint angles in Euler representation to joint velocities [MBR17] or quaternions
representation [Pav+20].

The main limit of RNNs appear when attempting to generate longer motion sequences
is pose collapse, which translates in the network progressively generating the same
pose over and over. To reduce the problem, following approaches suggest feeding the
training network with either noisy poses [Fra+15; XLM19; KGB19] its own predictions
[Li+18; Gop+19].

Convolutional Neural Networks Around the same time, the network used pro-
posed by Holden et al. [Hol+15; HSK16] proposed a derivative of CNNs on fixed-width
sequences of motion, using 1-dimensional convolutions on individual pose features to
model their temporal dynamics.

Graph Convolutional Networks Later, some others leveraged the hierarchical
structure of the skeleton through (GCN). In these approaches the skeleton is represented
as a graph rather than a kinematic tree, and the weights of its adjacency matrix are
learned by the network [Büt+17; Mao+19; CSY20; MLS20; Li+20].

Variational Autoencoders Generative models focus on modelling the underlying
distribution of a dataset, in order to be able to draw new samples from it and generate
unseen data. Among this family, VAEs were the first to be applied to animation data
[Hab+17; Yan+18; Du+19; Ali+20]. Much like autoencoders, VAEs learn to non-
linearly map data samples to and from a latent representation. They are in addition
trained to constrain the latent samples to be part of a pre-defined distribution, which
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provides them their generative power: drawing samples from the known distribution
only yields valid motion, similar to but not exactly part of the distribution of the
training data.

Adversarial approaches Next, a series of work took interest generating diverse
motion using another family of generative models: GANs [BKL18; LA18; Wan+20]. In
this case, a generator model is trained to produce a new motion sample from a random
input. In parallel, a discriminator network is trained, whose task is to distinguish real
motion sequences and generated ones. During training, the generator’s goal is to fool
the discriminator into classifying its generated sequences as real ones, and the quality
and variety of the generation improves.

The general idea of using a discriminator to increase the variety of the generated
samples has been applied to all kind of other architectures, often to alleviate the lack
of encoding capacity of vanilla GANs [KGB19; WCX21; HGM19]. Ensuring that
neither the generator nor the discriminator outperform the other during training is
however a delicate task, which prevented more general adoption of the idea.

Attention and Transformers Another class of approaches make use of attention
mechanisms in their networks’ architecture to allow them to learn to focus on smaller
but more important patterns in the skeleton data [MLS20; ZPK20]. This method has
also recently been generalized for sequences using the popular Transformer architecture
[Cai+20; Aks+21].

Miscellaneous Nowadays, new architecture keep emerging in other fields, yielding
ever more impressive results. They inevitably also raise interest in the animation
community, and very recent work is interested in modelling motion data using newer
architectures such as normalizing flows [HAB20], Neural Radiance Fields (NeRF)
[He+22], or Diffusion Models [Zha+22].

2.6 Motion style

Humans are very sensitive to the way each other act, and we are able to perceive a lot
of information on the internal state of an individual simply from observing the way
he or she moves [BS07]. Conversely, we are also able to tell right away if a virtual
character’s motion is not "right", although explaining why it is not so might not be
that easy [MMK12].

The methods described in the previous sections facilitate and speed up the creation
of character animation. However, producing motion that can convey to spectators
the same kind of information about the character’s personality, intents or emotional
state as a real person’s movement remains a daunting task. Crafting such animation
require precise knowledge in physiology and anatomy on the animator’s side, so tools
to help them in the process have been studied. In this section, we are interested on
methods that rely on the metaphor of motion style as a creative interface.

Nuances in the ways characters (and especially humans) move, and their relations
with how we perceive them has been studied extensively, but no consensus was found
on a way to categorize them. Thus, we first summarize the different definitions of
"style" used in the computer animation community at large. We then expand on the
various systems that have been proposed to analyze and quantify motion and its style,
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and finally review the actual style-based motion synthesis and editing found in the
literature.

2.6.1 Definition(s)

The notion of motion style, while commonly used throughout the literature, does not
always have the same definition [BS79; Gal92]. A recent review by Ribet et al. [RWV21]
acknowledges this observation and goes over the literature, proposing a taxonomy of
the definitions they find. They separate them into three larger categories: style as a
component of motion, style as a variation of motion, and style as individual-related
features.

In the first definition, style is considered as a secondary motion which can be applied
on top of a primary one [MC90; EA16]. Among this group, some also consider the
existence of a "neutral animation" over which any style could be layered [ABC96;
Cre+20].

In the second, style is considered as a variation around a general motion theme,
although the concept of variation itself is also vaguely defined. Some consider related
actions to be different styles in the same theme (i.e. walking, running, strutting are all
style variations of the same theme, which could be "locomotion") [BH00; CL06]. Some
generalize the variations to differences in speed or frequency [Ma+10]. Finally, some
others see variations in styles as interpersonal differences, encoding an individual’s
specific way of moving [Urt+04; WFH07; TMD12].

The last definition, which is perhaps the most common one, is to define styles
as discrete semantic features pertaining to an individual’s characteristics [Bar+13;
Hol+17; AYB17; Cre+17; KL19]. The review further separates the considered features
in several categories:

• Emotions ("happy", "sad", "angry", etc.)3;

• Biological features (age, gender);

• Physical states ("weak", "strong", "injured");

• Personality features ("cool", "confident", "stressed")

• Behaviors ("catwalk", "childlike", "zombie")

2.6.2 Analysis and quantification

Creating systems to accurately describe, document and quantify human motion has
long been a topic of interest, with early work appearing in the fields of anthropology
[Bir55], psychology [EF69; McN92] and linguistics [Ken80]. Motion notation systems
are also interesting to the computer animation community as they can provide
meaningful abstractions for the notion of motion style. In the following section,
we review the most commonly used ones in the literature.

Laban Movement Analysis (LMA)

The LMA system, developed by dance theorist R. Laban [LU71], is widely used by
dancers, choreographs and actors, but also computer scientists and roboticists. It

3Defining and classifying emotions is also a complex topic [KK81].
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Figure 2.15: Graphical representation of the 2D arousal-valence scale.
Positions of affective terms are placed indicatively.

corresponds to a framework in which motion is described in four separate categories,
each category depending on the others. A complete description of LMA is the subject
of complete books, in this thesis we merely present a short overview [Gro95]. The
categories are as follows:

Body. Relates to structural and physical characteristics of the body. It describes the
body parts that are moving, which are in contact, or which are influenced by others. It
also describes if and when the body parts are moving simultaneously or sequentially.

Effort. Pertains to the dynamic changes in the expression of movement. It is further
separated in four qualitative elements: space (direct or indirect), weight (light or
strong), time (quick or sustained), and flow (free or bound). The combination of these
elements creates "states" which can be used to describe the instant of change, the
rhythmic variations of motion.

Shape. Represents the overall shape by taken the body (such as curvatures and
symmetries) and the changes of this shape over time

Space. Describes spatial patterns and trajectories, as well as how the body occupies
its surrounding space

To better describe the analyzed motion, a notation system, dubbed Labanotation, has
been developed along LMA [Gue05].

The Arousal-Valence scale

The Arousal-valence scale (sometimes Russell’s Circumplex Model (RCM) [Ari+17])
is another model used to represent emotions, attributed to A. Russel [Rus80]. In this
model emotions are placed on a 2-dimensional plane where the axis represent arousal
and valence. Low arousal is associated with boredom, high arousal with excitement,
while valence goes from sadness to happiness. Emotions can then be placed in a fuzzy
manner on the plane as shown in Fig. 2.15.

Motion descriptors

A segment of the research in computer vision and computer animation has also
been dedicated to quantitatively measuring motion, in order to analyze, recognize
or compare motion. Early work in this direction operate on video captures and take
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Figure 2.16: Illustration of the style transfer task. A random motion
clip in the "neutral" style (top) is transformed to the "proud" style

(bottom) [Xia+15].

inspiration from LMA to design quantitative features related to the shape and space
qualities [CMV04]. Other approaches rely on emotion models from the psychological
field [Pel09; Glo+11], or define descriptors specific to dance motion [Ala+12].

Some authors then leveraged the growing availability of motion capture data by
designing geometric features describing the relationship between skeleton joints over
time [MRC05], or LMA-related features [HTY05; Kap+13], although no consensus
has been found.

In a recent work, Larboulette and Gibet propose to solve this issue by reviewing the
available computable descriptors and aggregating them, providing a useful toolbox of
formalized formulas [LG15].

2.6.3 Generating stylized motion

The many factors that make an animation belong or not belong to a style are difficult
to explain, and even more difficult to reproduce during the creation process. Being
able to easily generate stylized animation, and to modify the style of an existing one,
would then be an interesting tool to provide to animators. It would allow users to
easily experiment with different styles or to generate a wide array of variations from
an existing sequence.

In this section we give an overview of the different tools following this idea proposed
by the research community. The methods are separated in three categories: style
transfer, style-based synthesis and style-based editing.

Style transfer

The first applications of the notion of "style" in computer animation was style transfer,
i.e. the task of modifying an existing motion clip to match the style of another one,
without modifying its content. This is similar to motion blending (see 2.4.2), although
an added difficulty comes from the new explicit separation of aesthetic characteristics
and functional role of a specific motion, which is inspired from contemporary work in
related fields [TF96; TF00].

Amaya et al. [ABC96] present the first approach to the task by computing a style
translation as the difference between a neutral and a stylized animation. Extending
this idea, some others learned to transfer the style using statistical models such as
Linear Time Invariant models [HPP05] or Independent Component Analysis [SCF06].
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In a similar approach some others operate in the spectral domain to extract dynamic
characteristic of stylized motion [UAT95; YM16].

Neural networks have also been used to learn to transfer style. Early solutions train
specialized networks per style, using RBF neural networks [EA14] or mixtures of
autoregressive models [Xia+15] to describe the difference between an input and an
output style, that can later be used for style transfer. Inspired by successful style
transfer methods for images [GEB16], Holden et al. transfer the style from one motion
to another by optimizing the latent representation of the output motion clip to match
the Gram matrix of the input one’s [HSK16]. They later achieve the same result faster
by replacing the optimization process by another neural network [Hol+17]. A final
group uses supervised setups to learn style characteristics for a semantic label, which
can then be used to apply the related style to another motion sequence [Wan+18;
Smi+19].

Synthesis

"Stylistic synthesis", in the context of computer animation, refer to the generation of
new motion based on a style information, which could be given through examples, or
higher level label values.

A first group of work extend existing interpolation approaches to match a user-provided
style constraint. In their seminal work, Rose et al. [RCB98] use such a method by
parameterizing the interpolated motion in verb (content) and adverb (style) classes.
Grochow et al. [Gro+04] train per-style GPLVMs to solve the IK problem while
generating style-constrained poses. By interpolating the probability distributions of
the models they are also able to mix-and-match styles to produce new ones.

Another group employ statistical modeling to produce new motion, but replace or
augment the generation prior with a style variable. In this setting, both supervised
and unsupervised approach have been employed. Unsupervised approaches take an
example stylized motion and extrapolate the available data to produce new sequences
in the same style. To achieve this, Brand et al. [BH00] first describe a learned state
machine using Hidden Markov Models, in which motion sequences are organized by
shared style characteristics. During synthesis, a style variable vector input can be used
to vary the style of the generated motion. This approach was then declined a number of
variations, using GPLVMs [WFH07], PCA [Urt+04], or CRBMs [TH09]. More recently,
VAEs have used for their ability to model the probabilistic nature of human motion
and to generate large variation of motion in the same style [Du+19] The supervised
approach instead generate motion from a higher-level style label which is learned
from previously labeled dataset. Torresani et al. [THB06] learn a multidimensional
style space using hand-labeled Laban notations, then a mapping from this space to
animation parameters. In the same spirit Min et al. [MLC10] use multilinear analysis
to model in two dimensions, "identity" and "style" after PCA reduction, allowing them
to synthesize new parameterized motion. Generative probabilistic neural networks
such as invertible flows have also been used [Wen+21] and demonstrated their ability
to model the style of a given input and generate variations on its theme.

Finally, taking the style metaphor from a biomechanical simulation point of view, Liu
et al. [LHP05] have tackled problem by defining style in terms of muscle preferences and
musculoskeletal parameters, which are constrained during the simulation to generate
stylized motion.
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Editing

The last group of work gathers methods that provide animators with tools to ma-
nipulate motion through style parameters. The idea, first formulated by Bishko in
1992 [Bis92], revolves around the observation that the previously described notation
systems (Laban’s in this context) are parametric, and so are computer animations, and
so a mapping between them could be found. As she puts it: "It is possible to create
animation software based on these parameters. This would create a metaphor of the
dancer’s movement processes, allowing animators a closer relationship to the physical
feeling of movement while maintaining the kinematic process that is the animator’s
craft".

The initial implementation of this idea by Chi et al. [Chi+00] thus hand-craft mappings
from Laban Effort and Shape parameters to animation parameters, and show that users
can manipulate them to edit animation. This approach has then been extended, first
with a natural language interface [ZCB00], then by replacing the arbitrary mappings
with learned ones [EA10]. Durupinar et al. [Dur+16] for example label a motion
dataset with Laban notations as well as OCEAN personality traits through a user
study, then learn the mappings from OCEAN to Laban, then to Laban to motion
parameters. This way, users can edit animation through empirical "personality" knobs4.
In the same spirit, Aristidou et al. [ACC15; Ari+17] learn a bidirectional mapping
from Laban features to the Arousal-Valence scale, then describe an editing framework
in which a user can modify a motion clip by manipulating the emotions on the scale.

2.7 Conclusion

Creating high-quality, appealing motion is a complex task. Animating a character
according to one’s vision, while depicting the desired action and conveying the right
emotion requires an advanced knowledge of anatomy and physics rules. The literature
depicts a wide variety of approaches to create and edit motion data, ranging from pre-
cise, user-controlled skeleton manipulation, to automatic generation by extrapolating
a database.

Learning-based approaches have received their fair share of interest, and deep learning
methods in particular have shown impressive potential at modelling animation data.
However, as shown by this review of the literature, they have until now been applied
to high-level tasks, and their output is difficult to control from a user point of view.
This is the limitation that this thesis focuses upon: our goal is to leverage the powerful
modelling capacities of neural network in the context of expressive and controllable
animation tools.

4OCEAN is a taxonomy that has been studied in psychology to define the personality of individuals
through five semantic categories [Gol90]. OCEAN scores can be derived from the words used to
describe a person. The model’s relevance and methodological bases have however been criticized
[Blo95].
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3.1 Introduction

As highlighted in our review of the literature, neural networks have recently proven
capable of modeling the complexity of motion data, and of synthesizing convincing new
animation by generalizing from a database of examples. They have been successfully
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used to predict missing frames in motion clips, to generate locomotion animation
from a high level control input, or to retarget an animation to a new skeleton. These
methods produce impressive results, however they share the common drawback of
being difficult to control. Animation is a precise craft, and animators expect to be
able to tweak the output of their tools to fit their artistic intent. And in these existing
applications, said output is pretty much out of their hands: if the generated motion
does not meet their expectations, the only solution is to record some more motion
capture data, add it to the dataset, re-train the models and cross fingers in hope that
the desired behavior will appear.

Leveraging the subtle information learned by the networks to provide animators with
smarter tools while leaving them in control therefore appears like an interesting venue
for research. This observation motivates the work presented in this thesis, which
proposes to explore the application space for such neural networks-powered animation
editing tools. Among the different building blocks of the key-frame animation pipeline,
we focus on pose editing.

A large part of the difficulty in posing a character comes from the required under-
standing of its motion range, possibilities and limitations, which are difficult to grasp
and replicate. This information is however inherently contained in motion capture
data. We therefore propose a group of methods for data-driven pose editing with the
goal of shifting more of the task of assessing realism from the artist to the computer,
and to provide easier access to non-experts.

The general idea of this thesis is to rely on neural networks to automatically learn
the constraints from MoCap data. In this chapter, we first give a general overview
of the system (3.2), which creates a latent space on which poses can be mapped for
edition, while the handling of subtle constraints is handled by the mapping functions.
In section 3.3 we present the pose dataset used to train our neural networks, and
discuss our choices in data representation. Finally, section 3.4 describe two different
approaches in the construction of the latent pose editing space, and the network
architectures used in both cases.

3.2 System overview

Figure 3.1: High-level overview of the latent space editing system.
The functions E and D map real poses sampled from X to the latent
space Z. The function Mt operates on latent sample to edit poses with

regard to a user-provided target value T .

A character pose in animation data represents the parameterization of the character’s
underlying skeleton at a given frame. Formally, the set of possible poses X for a given
skeleton is a subset of the space of skeleton parameterizations S = RJ×P , with J the
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number of joints making up the skeleton and P the number of values parameterizing a
single joint (i.e. position, rotation, scale, etc. The choice of P is discussed in the next
section). Any skeleton configuration in S does not correspond to a visually correct or
even plausible pose. Those are only produced by parameterizations that respect a set
of constraints. Some of said constraints are straightforward, such as coherent bone
lengths and limits on joints orientations, but some others are not, for example the
sense of equilibrium expressed by a pose, the intent and emotions it gives off. These
constraints are what makes pose editing difficult: in order to manipulate a pose while
remaining in the realm of possible poses, one must specify and respect them.

Much like some other approaches from the data-driven family, we attempt to circumvent
the problem by learning the implicit constraints directly from ground-truth data. A
high-level illustration of our system can be seen in Fig. 3.1. We construct an alternative
pose editing space, Z = Rd (d is a hyperparameter designing the dimension of a pose’s
latent representation). Two transformation functions are also defined to map samples
from one space to the other: the Encoder E : X → Z and Decoder D : X → Z. We
also introduce Mt : Z → Z, a manipulator function which modify a pose to satisfy a
given user-provided target t, and operates on latent samples. For the remaining of
this thesis the three functions are modeled as neural networks whose parameters will
be trained to fit our need.

Within this system, the implicit skeleton constraints may be enforced in one of two
ways. In the first, the latent space is shaped in a specific way, so that E maps any
latent sample to a possible pose. In the second, its shape is not enforced at all. Instead,
M learns to navigate Z to only generate samples that will map to possible poses.

This chapter discusses the matter of designing E and D, and thus constructing the
latent space, to accommodate both those ways. The specific design of M is explored
in further chapters.

3.3 The pose dataset

In order to train the different networks, we build a large dataset of poses, obtained
by aggregating multiple existing motion capture databases. This section describes
these sources, the pre-processing step used to uniformize all their animation clips,
then discuss the format in which the poses are fed to the networks.

3.3.1 Pose representation for neural networks

The choice of data representation plays an important role in the success of neural
networks methods, and different representations can hide or reveal important factors
of variation in the data [BCV13]. Animation data can be represented in many ways
and the question of which is best suited to train neural network is a standing issue for
the research community. One part of the differences lies within the pose representation
(parameterized by J and P in our notation), which we aim to model, and so for
which we need to make a choice. We first give an overview of the options used in the
literature, discussing the strong and weak points of each. We then discuss the reasons
behind our pick and describe the input format used in the work that follows.
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Literature

Pose data is most commonly represented as a hierarchy of joints angles, where each
joint is parameterized by its orientation relative to its parent. Being the representation
of choice in the traditional animation pipeline, it might seem a natural pick for neural
networks tools, as it would make their integration in existing workflows straightforward.
It is however not the case, mostly due to individual rotations raising issues when it
comes to modeling, and multiple representations of rotations themselves have been
studied.

The first problem is a well-known one: all rotation representations parameterized by 3
components (such as Euler or axis-angle) are subject to a singularity called the gimbal
lock, "loosing" a degree of freedom if two of their rotation planes align. To avoid it,
early work used exponential maps representations where the singularities only happen
with larger angles [THR06]. This approach was fit for the modelling of smaller angles,
and was used to produce motion by generating pose offsets, but it is no longer a viable
strategy for longer-horizon modelling. In order to avoid the problem, unit quaternions
have been used in place [PGA18].

It has however been pointed out that quaternions, and all the previously used rotations
representations, are subject to a second problem: they are non-continuous, in the
sense that two parameterizations can amount to the same angle (i.e. 0 is equivalent
to 2π) [Gra98; SDN09]. This is a specifically an issue when it comes to neural
network modelling, as the discontinuities generate erroneous comparisons between
close values. A recent study has highlighted this shortcoming, and proposed to avoid
it by introducing new 5 and 6 dimensions representations [Zho+19], but its usage is
not yet standard in the field.

The hierarchical aspect of angular representations is also limiting, as multiple angular
errors in the kinematic chain accumulate up to large positional errors down the chains
(Fig. 3.2). This problem has been tackled by computing the positional errors after
finding the joints position through an expensive (in terms of computation during
training) forward kinematics pass, or by weighting the loss terms of the joints to give
a greater penalty to errors close to the root of the chain [Gho+20].

Figure 3.2: Illustration of the accumulation of errors with hierarchical
angular representations: small angle errors in the kinematic chain can
quickly accumulate to larger positional errors, especially noticeable in
the end effectors (left). Positional representations (left) are much less

sensitive to the problem. Figure from Mourot et al. [Mou+22].

The alternative option is to represent the pose using each joint’s position, usually
relative to the skeleton’s root bone. Compared to angular representations, positions do
not suffer from error accumulation, and the Cartesian coordinate system is continuous
and free from singularities. However, positional representations do not ensure constant
bone lengths the way angular ones do.
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Since it is possible to convert from one parameterization to the other, and since both
offer different flaws, none is strictly superior to the other. Rotations are closer to
the format used in actual animation systems, while positions have historically been
chosen for modelling, as the bone length difference can be alleviated at a low cost
through post-processing. Some work has also been dedicated to hybrid or redundant
representations [Abe+20; LLL18; Hol+20] and tend to indicate that these would be
beneficial, but no definitive formulation has been agreed upon.

Input format for our neural networks

Considering these differences and limitations, and the fact that this thesis’ goal is
to explore new use cases for neural networks in animation rather than to improve
their modeling power, we stick to positional representations, which allows us to build
upon previous modelling work more easily. To accommodate for inevitable bone
length errors, we suggest a simple work-around to the problem, see 3.3.3. However and
fortunately, since our approach considers neural networks as generic tools for animation,
it can easily be adapted to accommodate newer architectures and representations once
they have stabilized and reached their full potential.

Our input skeleton, visible in Fig. 3.3, is composed of 21 joints. The pose tensor
x representing its parameterization which is fed to the networks is obtained by
concatenating the position of each joint in pose space, i.e. related to the pelvis’ one.
In other words, our choice of pose representations uses J = 21, P = 3, and X = R63.

Figure 3.3: Illustration of the skeleton used as input. The kinematic
chains are shown in different colors. The pose tensor p is obtained by

concatenating the positions of each joint.

3.3.2 Source animation datasets

The success of data-oriented animation techniques is heavily reliant on the availability
of large amounts of high-quality motion data. Fortunately, with the improvements
brought to motion capture technology making it more and more accessible, such data
is no longer as scarce as it used to be, and animation researchers can count on a
large choice of motion datasets freely available online [Uni03; Ion+14; FP14; Vol+14;
Mah+19; Har+20].

We build the pose dataset by processing a subset of these. While a larger dataset
would undoubtably increase the performance of our models [Sun+17], the goal of
this thesis is not to pursue a state-of-the-art value, but rather to explore different
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application spaces for deep learning models. With this in mind, we restrain ourselves
to a large-enough dataset of 1,5 million poses which we find sufficient to support our
arguments, with the added benefits of lowering the training times of our models. Our
source databases are: the CMU MoCap Database [Uni03], Emilya [FP14], and the
clips from the Edinburgh University [HSK16].

The Carnegie Mellon University Graphics Lab Motion Capture Database
(CMU) [Uni03] is perhaps the most commonly used motion dataset available. It
contains 2605 motion recordings, acted by 144 subjects, over a large variety of actions,
from simple locomotion samples to sports and multi-subjects interactions, which
amount to roughly 10 hours of footage.

The Emilya database [FP14] is interested in how emotions are expressed in daily
actions. It contains recorded motion clips during which 11 actors and actresses were
asked to perform 7 "every day" actions while acting 8 emotions, for a total of about 25
hours of motion capture data. The affective states where induced by reading different
scenarios to the performers.

The Edinburgh Locomotion dataset [HSK16] is focused on longer, uninterrupted
locomotion clips, and was designed specifically for deep learning applications. Actors
were asked to move around randomly on the capture set at different speed in order to
record more variations of natural motion. It contains less data than the other two
(about 2 hours worth of motion capture), but contains more random and continuous
motion.

3.3.3 Preprocessing

The different source database present differences in the data they contain, and in order
to create the dataset which we can then use to train neural networks, we pre-process
them to bring them to a common standard. This procedure is inspired from the format
conversion presented by Holden et al. [HSK16], although we adapt some of its step to
fit our needs.

Each animation clip is retargeted to a standard target skeleton following the scheme
proposed by Holden et al. [Hol+15]. First, the joint orientations of the source skeleton
are copied to the target one for each matching joints. Then, the source skeleton is
scaled to match the target’s bone lengths. Finally, the joints of the target skeleton are
moved to match the new position of the source’s one with a full-body IK pass [YN03].

We then extract singular poses from the clips. For each frame, the global translation
is removed, and each joint’s position is calculated relative to the pelvis (root) joint.
We find the forward direction of each pose by computing the cross product of the
vertical axis with the average of vectors formed by the left-right shoulders and hips
axis, then rotate them so that they all face the same direction. We also sub-sample
each clip to 30 frames per second, to avoid filling the dataset with highly similar poses
and speed up training times. The parameterizations of each joint are then normalized
by subtracting the mean and dividing by the standard deviation of their value over
the dataset, as is commonly done to prepare data before feeding it to neural networks,
then concatenated to form the final input tensors.

It is also worth noting that although the dataset is composed of individual poses, it is
not yet randomized, and neighboring poses from the same original clip are kept close
together. This feature is leveraged later in this thesis when we require similar poses
in terms of feasible motion from one to the other. For the same reason, very short

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0028/these.pdf 
© [L. Victor], [2023], INSA Lyon, tous droits réservés



Chapter 3. A latent space for pose editing 33

clips (below one seconds) are excluded, as are noisy ones and those with little motion.
After this cleaning step, the final pose dataset is composed of about 1,5 million poses.

3.3.4 Post-processing

It is a common observation with neural networks working with joints position that
the generated positions can be jittery, and the resulting poses can suffer from slight
variations in bone lengths. Our models are no exception, and while the variation is
not visually detectable most of the time, they can accumulate to be quite noticeable
when a pose generated by the networks is fed back to them. We propose an optional
post-processing step which can be applied to generated poses to ensure constant
bone lengths. We use the backward step from the FABRIK IK solver [AL11], which
iteratively pulls back each joint of the skeleton’s kinematic chains with a very light
computation cost. In our implementation using the kinematic chains illustrated in
Fig. 3.3, this post-processing step takes only 1.5 milliseconds.

The algorithm for one of the skeleton’s kinematic chain is outlined in 1. The joints
are denoted pn, with p0 the root and pn the end-effector. di represents the original
length of the bone between pi and pi+1, initialized once with the reference skeleton.

Algorithm 1 The FABRIK backward pass [AL11]
for i = 1, . . . , n− 1 do
ri ← |pi+1 − pi| {Find the new bone length between pi and pi+1}
λi ← di/ri
pi+1 ← (1− λi)pi + λipi+1 {"Pull" pi+1 back to honor bone length}

end for

3.4 Architectures

We study two approaches for the design of the latent pose space. In the first the latent
space is constructed without constraints by a baseline autoencoder, which serves the
role of the E and D functions. In the second, we instead force certain properties onto
the latent space, by using a scaffolding of autoencoder and GANs. For both cases,
we describe the neural networks architectures and the training parameters used in
further experiments.

3.4.1 Baseline autoencoder

The idea of building a latent space for complex data is not new, and so for a baseline
experiment, upon which we can base further improvements later on, we turn to a staple
in the literature: autoencoders. Autoencoders are made up of two neural networks
tasked to learn an efficient encoding of some complex data. As illustrated in Fig. 3.4,
the encoder E learns to map real data points to a learned, usually more compact,
latent space; and the decoder D learns to map them back to the original data space.
As this architecture closely matches our previously described system, autoencoders
are a natural choice. In their original flavor, they also have the advantage of being
conceptually simple and easy to train, which are interesting properties with regard
to our goal of designing accessible tools. On another hand however, the latent space
they produce is unknown and might not be suited for some applications. For example,
it might not be convex and therefore interpolations within it would not be decoded
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Figure 3.4: Overview of the autoencoder architecture. The encoder
learns to map real samples to the latent space, and the decoder to map
latent ones to the pose space. Both networks are trained to minimize

the reconstruction error.

in plausible poses. For the same reason, they lack the generative power some other
architectures have.

In our implementation, illustrated in Fig. 3.5 the encoder network is composed of two
fully connected layers with 200 neurons and Rectified Linear Unit (ReLU) [NH10]
activations, followed by an output layer with no activation. The output layer’s size is
based on the number of dimensions d in which the latent representations are encoded.
We empirically find that d = 64 yields a good balance of representation accuracy and
inference speed. The decoder is the exact reversed replica and uses the same set of
weights.

Figure 3.5: Architecture details of the encoder and decoder models.

The encoder and decoder’s parameters, respectively θ and ϕ, are found by minimizing
the squared error between poses sampled from the dataset x and their reconstructed
equivalent, as shown in Eq. 3.1. Note that with our networks having a low number of
units, we found no benefits to adding a sparcity penalty term to limit the number of
neurons active at the same time.

min
θ,ϕ
Lae(θ, ϕ) = E

x∼pdata

[∥∥x−D(
E(x)

)∥∥2
2

]
(3.1)

The autoencoder is trained for 20 epochs with batches of 256 poses, using the Adam
optimizer [KB15] with a learning rate of 0.0001.
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3.4.2 Autoencoding Generative Adversarial Network (AEGAN)

Overview

In our second experiment, we turn to more complex architectures in order to get rid
of some limitations our baseline latent space presented. More specifically, we seek
to ensure that the built latent space is convex, so that any modification made to a
latent pose maps back to another plausible one. Such a property would come with
additional advantages in an editing setup, such as coherent interpolation and being
able to generate plausible poses by drawing random samples from the known latent
distribution.

Unfortunately, none of the major approaches to generative modelling using neural
networks fit our specifications: autoencoders’ latent spaces are unconstrained and
GANs [Goo+14],only learn to generate new data similar to the training one, lacking
the possibility to encode existing samples, which is required in an editing setup. VAEs
[KW14] would be good candidates, however, they are known to struggle to generate
highly precise samples [ZSE17].

We thus turn to a hybrid approach, similar to the one proposed by Lazarou [Laz20] to
create a latent space of images in which they illustrate good interpolation properties.
Their architecture, a scaffolding of autoencoders and GANs, is dubbed Autoencoding
Generative Adversarial Network (AEGAN). We adapt their work to operate on pose
data rather than images. The method uses four separate networks, illustrated in
Fig. 3.6: an encoder E, a generator G, a pose discriminator DP and a latent vector
discriminator DL. The encoder and decoder are trained to map from pose to latent
space and back, and use feedback from the discriminators to shape the desired latent
space.

Figure 3.6: High level overview of the AEGAN architecture. E and G
function as a traditional autoencoder, but take an additional feedback

from both discriminators to enforce latent space convexity.

Networks architectures

The skeleton is a hierarchical structure made of several kinematic chains, and each
joint’s parameterization has an impact on other joints down the chain. In this
more complex approach, we also attempt to explicitly model this spacial structure
by incorporating the Structured Prediction Layers (SPL) proposed by Aksan et
al. [AKH19] in place of fully-connected layers. SPL splits dense connections in
multiple smaller layers, connected themselves following the kinematic chains of the
skeleton, as illustrated in Fig. 3.7.
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Figure 3.7: Overview of the Structured Prediction Layer from Aksan
et al. [AKH19]. The embeddings of parent joints are added to the input

of the embedding layer of a joint.

The encoder network is composed of a single SPL layer of 252 neurons (12 neuron
per joint embedding) and ReLU activations, followed by a fully connected layer with
32 neurons and a hyperbolic tangent (tanh) function. Instead of its usual role of
inducing nonlinearity in the network, the output tanh function restricts the latent
vectors’ values to [−1, 1], so that the bounds within which a random one can be drawn
and decoded in a generative fashion is known. The decoder is the opposite with a
fully-connected layer with 252 neurons, ReLU activations, and an SPL layer with 63
outputs units.

The pose discriminator is the same as the encoder except for the last activation which
is a Sigmoid function. The latent discriminator is a multilayer perceptron with 4 fully
connected layers of 256 neurons with ReLU activations. The last activation is once
again a Sigmoid function, which is used to clamp the discriminators’ outputs to [0, 1]
so that it can be interpreted as a "real or generated" label.

Loss functions

The pose discriminator DP outputs a single scalar representing the probability for
a given pose to be "real" over being generated. During training, its weights ψ are
optimized to correctly classify raw samples from the pose dataset as well as ones
generated from randomly drawn latent vectors. This is achieved by maximizing the
loss function shown in Eq. 3.2.

max
ψ
LDP (ψ) = E

x∼pdata

[
log

(
DP (x)

)]
+ E
z∼pz

[
log

(
1−DP

(
G(z)

))]
(3.2)

In the same manner, DL discriminates between random latent samples and encoded
poses. Its parameters γ are found by maximizing Eq. 3.3.

max
γ
LDL(γ) = E

x∼pdata

[
log

(
1−DL

(
E(x)

))]
+ E
z∼pz

[
log

(
DL(z)

)]
(3.3)

The convexity of the latent space is dictated by the interaction between the discrim-
inators and the autoencoder. As G tries to fool DP , it is encouraged to turn any
point from the latent space in a valid pose. At the same time the latent discriminator
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encourages the encoder to encode poses into latent vectors indistinguishable from
random ones, and so to use the latent space to its full extent. We therefore build
a convex latent space in which the real poses are evenly spread. E and G are thus
trained conjointly to achieved two objectives: to reconstruct a pose with fidelity and to
fool the discriminators. These objectives are translated in a three-terms loss function:
Eq. 3.4.

min
θ,ϕ
Lae(θ, ϕ) = Lrecon(θ, ϕ) + Ladv(θ, ϕ) (3.4)

The first term is the reconstruction loss: Eq. 3.5.

min
θ,ϕ
Lrecon(θ, ϕ) = E

x∼pdata

[∥∥x−G(
E(x)

)∥∥2
2

]
+ E
z∼pz

[∥∥z − E(
G(z)

)∥∥2
2

]
(3.5)

It is built similarly to the simple autoencoder’s one, which minimizes the reconstruction
error of an encoded-then-decoded pose. However, the network must also ensure that
a randomly drawn latent vector can be decoded then re-encoded to an identical one
which is enforced by its second term. Note that in this form, the loss is similar to the
cycle consistency loss used in CycleGAN architectures [Zhu+17], with the difference
that the consistency is enforced between the known pose domain and a latent one,
rather than two known image domains.

The second term is the adversarial loss (Eq. 3.6), whose terms represent the objectives
with regard to the discriminators: (1) and (2) fool the pose discriminator into classifying
generated and encoded-decoded poses as real ones; and (3) and (4) fool the latent
discriminator into classifying encoded poses and generated-encoded poses as random
latent sample.

min
θ,ϕ
Ladv(θ, ϕ) = E

z∼pz

[
logDP

(
G(z)

)]
(1)

+ E
x∼pdata

[
logDP

(
G

(
E(x)

))]
(3)

+ E
x∼pdata

[
logDL

(
E(x)

)]
(2)

+ E
z∼pz

[
logDL

(
E

(
G(z)

))]
(4)

(3.6)

Training parameters

The networks are trained for 200 epochs with a batch size of 256 poses. We use the
Adam optimizer [KB15] with a learning rate of 0.001 for the pose discriminator and
0.0002 for the encoder, decoder and latent discriminator. In order to regularize the
performance of each networks during the training process, the encoder-decoder and
latent discriminator are trained with respectively two and three times as many samples
as the pose discriminator.
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3.5 Comparisons

The presented architectures share the common goal of constructing a latent pose space
but differ in their approach to the problem. This section discusses the stronger and
weaker aspect of both.

The first difference lies in the desired shape and properties of the latent space. To
observe this difference in structure, we conduct an experiment in which we encode
5000 real poses from the dataset and visualize them on a 2D plane using t-Distributed
Stochastic Neighbor Embedding (t-SNE [HR02; MH08]). To evaluate the convexity
of the spaces, the same amount of random latent points are drawn from a uniform
distribution with the same bounds as each space. In order to give a comparison point,
the real pose samples are also visualized, along with random equivalents. The results
are shown in Fig. 3.8.

Figure 3.8: Visual comparison of pose spaces (original pose space,
baseline autoencoder’s latent space, and AEGAN’s latent space). Real
poses (darker) and randomly drawn data points (lighter) are embedded

in 2D using t-SNE [HR02; MH08].

The experiment in the pose space illustrates the difference between the skeleton
parameterization space S and its constrained subspace of believable poses X . Random
points are drawn from S and therefore do not necessarily satisfy the constraints that
make them par of X . As a result, in the visualization, they are clearly separated from
encoded poses, which are part of X .

In the autoencoder’s space, the same separation is visible, although less clear. This is
expected, since the model does not enforce any structure on its latent space. We can
however observe that sequences of poses, forming animation clips, are still clustered
together.

Finally, in AEGAN’s space, the separation is blurred. While some existing poses are
still encoded on the edges of the space, random and encoded poses are for the most
part undifferentiated.

While considering the structural properties of the latent space only, AEGAN has a
clear advantage, and it could seem like a straightforward choice for any application.
However, this structures comes at a cost: the presence of multiple discriminators make
training AEGAN significantly more complicated than training a baseline autoencoder.
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It is necessary to balance the performance of the generator as well as those of the
discriminators, so that none of them become too efficient at "beating" the other.
Regularizing the training is a known difficulty of adversarial-based approaches, and
one that has prevented their general adoption. For the same reason, the training times
for AEGAN that for the autoencoder (About 4 hours for AEGAN against 15 minutes
for the AE, during our experiment on the same hardware).

3.6 Conclusion

This chapter gives an overview of the general method explored in this thesis. Neural
networks are used to train a latent pose space, which can then be used for pose editing.
By learning functions that map existing pose samples to and from the space, the
networks learn the subtleties of the constraints that a skeleton configuration must
respect in order to be able to be considered an actual character pose. Two architectures
are described, with different expectations regarding the latent space properties: a
simple autoencoder, AE and a more complex one, AEGAN, which incorporate two
discriminators to enforce the constructed latent space’s structure.

Both approaches are capable of reaching their goal. They however display different
advantages and drawbacks: AEGAN’s latent space is smooth and convex, which means
that it can be used to interpolate between samples without the risk of considering
an improper pose. In contrast, AE’s latent space does not have such safeguards, and
exploring it requires caution. Obtaining these interesting properties come at the cost
of a more complex and lengthy training phase. As a result, selecting one or the other
in further applications mostly depends on the benefits of a more structured latent
space in the considered use-case. In cases where such benefits are not obvious, then
the simplicity of the AE might be a better solution.
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4.1 Introduction

Once the latent space has been constructed in one of the two ways depicted in the
previous chapter, we turn to exploring its capabilities. The first considered application
is full-body Inverse Kinematics solvers.

Full-body IK is an extension of the original IK problem in which a character’s skeleton
in its entirety is considered, instead of a single kinematic chain. The goal is thus
to find a parameterization of the skeleton where one or more joints are closest to
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user-provided target positions or orientations, while respecting the pose constraints.
Generic IK solvers focus on enforcing the bone lengths and (in some cases) joint
orientation limits. Pose constraints are more subtle in nature, and enforcing them
is the most difficult part of the task: in a real-world scenario, the constraints are
hand-crafted by the animators for each new character.

This is where the latent framework proves useful: since we made sure that the decoding
function produces poses similar to the training dataset, solving the problem in the
latent space ensures that the skeleton constraints are respected, without having to
explicitly enforce them.

This chapter discusses two methods leveraging the latent space for full-body Inverse
Kinematics. The first makes uses of the constrained, convex latent space to solve
user-provided constraints through optimization. The second trains a neural network
to navigate the unconstrained latent space for the same purpose.

4.2 Optimization in the latent space

4.2.1 Method

In our first approach, we propose an optimization-based solution in a known latent
space to solve the IK problem. The general idea, illustrated in Fig. 4.1, is to gradually
modify the latent vector representing the original pose to satisfy the user-provided
target. Since the latent representation lies on a convex latent space (built with the
AEGAN architecture), any and all solutions considered during the optimization process
maps back to a valid pose.

Figure 4.1: Optimizing in the convex latent space guaranties that
any pose considered during the process will be coherent.

The full IK solver is outlined by Alg. 2. The initial configuration consists of a starting
pose x and the user-provided positions for n joints targets ti..n. The pose is projected
onto the latent space, then modified by an optimizer O until the effectors xi..n are
close enough (in terms of euclidean distance) to their respective target t0..n, as shown
in the objective function Eq. 4.1.

Lik(x, t) =
n∑
i=0

√
(xi − ji)2 (4.1)
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Algorithm 2 Latent space optimization
z ← E(x) % Encode
i← 0
while λ ≥ ϵ and i ≤ max_iter do
i← i+ 1
z ← O(z) % Optimize
x′ ← D(z) % Decode
λ← Lik(x′, t)

end while
return x′

To ensure constant maximum time, the process can be stopped when a maximum
number of iteration (max_iter) is reached. In this setting, our contribution is more
largely the construction of a smooth latent space, in which many existing optimization
methods can be used. In the later experiments O uses stochastic gradient descent
(SGD), but could easily be swapped for another.

4.2.2 Results

Figure 4.2: Examples of pose edition using latent optimization and
FABRIK [AL11]. Targets are shown in red.

In order to evaluate the results of our method we integrate our solver in an example
posing software and compare its outcome with a comparable, non-neural method:
FABRIK [AL11]. We pick FABRIK for the traits that make it a popular IK solver:
its simplicity and fast convergence times. We implement a full-body human skeleton
solver as described in [ACL16] but stay as close as possible to our method setup
process by not manually implementing any joint orient constraints. Figure 4.2 shows a
comparison of the poses obtained by latent optimization and FABRIK with the same
targets set.

FABRIK working on kinematics chains with no prior on the human skeleton, it may
end up with unrealistic poses, whereas our optimization process exploring the latent
space results in poses satisfying the constraints without breaking the implicit skeleton
rules. Just like with the other IK methods, the distance between limbs is constant but
additionally self-occlusion is avoided, and the poses appear natural. In (1) and (2) the
skeleton leans on one side in order to reach a target above its shoulder, giving way to
its arm. The legs also move slightly to appear in balance. In (3), our method makes
the skeleton twists it upper body to face the two targets on its side. (4) illustrates the
limits of FABRIK without specifying many constraints: when trying to reach targets
on opposite sides, the shoulders move forward unnaturally. With our methods, the
torso structure is implicitly learned, and the algorithm finds a more suitable solution.
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While the final output of the latent optimization-based IK solver are good, it does not
completely fill our expectations. The main limiting factor is the execution time: even
when operating on a smooth space, the optimization is an iterative process which is
not guaranteed to find a satisfying solution within a bound time. In practice and
using our baseline implementations, solving a single pose takes up to half a second,
which is not enough to allow a user to interactively manipulate the skeleton.

4.3 Learning full-body inverse kinematics solvers

4.3.1 Method

Figure 4.3: High level overview of the generation setup. The target
joint’s positions (red) are matched as closely as possible, while the
other joints (green) should be as close as possible to the starting pose.
The loss is computed as the difference between the generated pose and

the target pose.

In our second approach, we propose to train another neural network to solve the
IK problem in the latent space, replacing the optimization process. Since neural
networks are capable of efficiently modeling complex data distributions, enforcing the
smoothness of the latent space is not as beneficial as with the optimization-based
approach. This second method therefore uses the latent space built by a simple
autoencoder. This choice is additionally motivated by our goal for usability, as the
training of an autoencoder is way simpler than that of AEGAN.

The high-level idea of the method is illustrated in Fig. 4.3: the autoencoder builds a
latent pose space, and the solver model operates on this space to solve the full-body
IK problem. In this section we first present the architecture and training of the solver
network, then describe a methodology using multiple instances of the solver model at
once to work with a varying amount of targets.

4.3.2 Pose solver network

An instance of the solver model ST (along with its parameters set βT ) is specialized
to solve the IK problem for a set of specific targets T = {t0, . . . , tn}. It is trained
to generate a new pose from an input pose and the desired targets locations. As
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it operates on the latent space built by the autoencoder, it more precisely accepts
and outputs a latent pose vector, i.e. with x′

T the concatenated target positions,
ẑ = ST (z ⊕ x′

T ). While most solvers will only be concerned with a single joint, some
situations might benefit from having multiple targets linked together (for example, if
attempting to move both hands in contact of an object).

The network is composed of three fully connected layers with 126 neurons and ReLU
activations, and an output layer whose dimensions match the latent space’s.

During training, we randomly sample an input pose x from the dataset and feed it to
the network. We also sample a second pose x′ to use as a target. Since the network
will be used in an interactive fashion by the user, with at least one operation per
frame, it is expected that the differences between the original positions of the effectors
and their target to be relatively small. To reflect this, the target x′ is sampled from
the same source clip as x, among one of its 20 frames of the input. This association
thus serves two purposes: first, ensuring that the target pose is reachable from the
starting one, and second, restricting the difference between any two poses seen during
training from being too wide.

The network’s weights βT are optimized to minimize the loss function in Eq.4.2
designed to represent its high level objective: reaching the targets with the associated
joints while retaining a realistic pose. We guide the network toward this objective
by using a slightly modified mean squared error function, separating each pose x in
two sets of joints: xT the joints associated to the targets, and xr the others. We
introduce a constant k to give more relative importance to the target term of the
function, so that the non-targets joints of x′ are only used to nudge the final result
toward a plausible pose. In our experiments k is set to 0.01. The idea behind this
trick is that the target pose sampled from the dataset is not an absolute truth to be
reached at all cost, but should rather be considered as a guide, the main goal being
reaching the targets.

x̂ = D
(
S

(
E(x)⊕ x′

T

))
min
βT

LsT (βT ) = E
(x;x′)∼pdata

[
∥x̂T − x′

T ∥22 + k · ∥x̂r − x′
r∥22

] (4.2)

In our experiments, an instance of the solver model is trained for 5 epochs with the
Adam optimizer [KB15] using a learning rate of 0.0001 and a batch size of 256.

4.3.3 Solving other targets configurations

The solvers as presented here are designed to edit a pose while respecting only a few
targets at once (one to two in our examples). In a real-world scenario however, a user
might want to manipulate a character through different effectors. In cases where the
effectors are used one after the other, it is possible to keep the weights set of different
solvers at hand, and to switch to the corresponding one when required. Scenarios in
which multiple effector targets change position during the same frame are rare in an
interactive format, but can be envisaged in cases where the targets are moved in one
step, and resolved in another. Multiple solvers might also be required to "pin down" a
joint while moving another. In these cases, another strategy is necessary.

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0028/these.pdf 
© [L. Victor], [2023], INSA Lyon, tous droits réservés



Chapter 4. Full-body Inverse Kinematics in the latent space 45

We propose to handle these cases by running multiple solver instances in sequence,
each one using the output of its predecessor as input, i.e. for three different solvers
ST1, ST2, ST3, each specialized for a target group Ti, the resulting modified latent pose
is given by ẑ = (ST3 ◦ ST2 ◦ ST1)(z). Since the embeddings functions are separate
from the solvers, this also represents an efficiency gain, as the encoding and decoding
only needs to be run once per frame.

4.3.4 Results

Figure 4.4: Starting from a pose and targets for two joints, an IK
solver like FABRIK (middle) generates less realistic poses than our

neural solver (bottom).
Fig. 4.4 showcases an example of how our method can be used to edit a pose by
moving the targets around. In this case, a single solver with the targets set to both
skeleton’s hands is used. We once again compare against FABRIK in the same setup
as the previous section.

Our solver yields poses satisfying the constraints without breaking the implicit skeleton
rules: the distance between limbs is constant, self-occlusion is avoided, and the poses
appear natural. The side-by-side comparisons with FABRIK’s results highlight the
limits of working on kinematics chains with no prior on the human skeleton.

Example (1) illustrates how the targets are used as guides rather than fixed, unbreak-
able rules. While FABRIK extends the full body, our solver generates a new pose
where the torso is slightly twisted towards the right-hand target while the legs are
spread to mimic maintaining balance. Even though our method is aimed toward
beginner animators, experienced ones could also find it useful. It could for example be
used as a fast prototyping tool to flesh out the pose, while switching to more accurate
and manipulation-heavy tools to focus on the details later on.
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Some additional results of the neural IK solver, used in an interactive context, can be
seen in the accompanying video of one of our papers: https://www.youtube.com/
watch?v=h8nzECEtw3c.

Combined solvers

Figure 4.5 demonstrates an example with the multi-solver setup described in 4.3.3. In
this example three solvers are used at once: one for the two hands, one for the two
ankles and one for the head. Compared to the FABRIK result, our method yields a
plausible pose: the skeleton is bent down to meet the head target, but the general
orientation of the pose is kept intact. The limbs also retain some sort of curvature
rather than fully extending unnaturally. Here again some targets are not strictly
reached, as the pose generated by earlier solvers in the chain are modified by the
others further down, but the guidance provided by the targets is respected. This setup
also incurs slightly slower runtimes (see Table 4.1) but is still faster than FABRIK.

Figure 4.5: Sample results solving multiple targets with a sequence
of neural solvers (Shands, Sfeet, and Shead). Targets are shown in red.

Run times

At run-time, the complexity of the solver is fixed and regardless of the targets’
positions, a single pass through the networks, which can be seen as just a few matrix
multiplications, is enough to produce a result pose. This property coupled with the
relatively small size of the networks allow for a fast solving process, as highlighted in
table 4.1.

Method Memory footprint (kB) Runtime (ms)**
FABRIK (2) - 6.56
Ours (2) 442 1.47 (3.03*)
FABRIK (5) - 6.74
Ours (5) 826 3.36 (4.58*)

*With post-processing
**Average over 1000 random iterations

Table 4.1: Comparative numeric results of the neural and FABRIK
solvers with two and five end-effectors (using the combined solver

method). All experiments are run on a single CPU thread.

Compared to other data-driven pose methods, the computing-heavy part of our process
is done once at training time. Even so, the training itself is kept short thanks to the
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modest size of the networks: around an hour for the auto-encoder and 15 minutes for
the solvers, on a single GPU.

Memory footprint

An advantage of neural networks is the low memory footprint they hold. While
other data-driven pose design methods require a reference to the pose database (or a
compressed version of it) to be kept in memory, neural networks only require their
trained weights. These can be quite heavy as well in the case of large models, but
as ours are quite small, so are their weights. As a comparison point, the Gaussian
Processes-based method NAT-IK [WTR11] discloses a 30 MB memory footprint while
our full-body solver only takes up 826 kB (including the weights for the autoencoder
and each solver).

Comparison with other pose edition approaches

Huang et al. [Hua+17] proposed a general comparison chart for full-body IK methods,
ranking common approaches by speed and subjective quality. Adding our solution
to the chart (Fig. 4.6) highlights the useful spot it fills by striking a good balance
between speed and accuracy. To the best of our knowledge, this work presents the first
method leveraging neural networks for pose edition. It stands apart from previous
learning-based approaches as the first one to combine real-time edition speed with
fully learned skeleton constraints. In comparison, NAT-IK [Hua+17] uses soft learned
constraints but still requires explicit, manual ones to be set. Style IK [WTR11] does
not, but the poses are not generated in real time.

Figure 4.6: General comparison of various full-body IK methods in
terms of speed and quality. Style IK [WTR11], NAT-IK [Hua+17],

JDLS [BK05], CCD [WC91] FABRIK [AL11]

4.4 Conclusion

This chapter presented two different approaches sharing a common goal: to leverage
the latent pose space in the context of a full-body IK solver. In the first, latent poses
representation are optimized, taking advantage of the enforced properties of AEGAN’s
latent space to restrict the search space. In the second, another neural networks learns
to navigate the unrestricted latent space built by an autoencoder.

Both methods show similarly satisfactory results, and enable the user to easily manip-
ulate a character skeleton. Learning from a large dataset of ground truth poses allows
us to avoid manually specifying the complex constraints of the human skeleton, and
to only generate plausible poses.

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0028/these.pdf 
© [L. Victor], [2023], INSA Lyon, tous droits réservés



Chapter 4. Full-body Inverse Kinematics in the latent space 48

The methods however differ in efficiency. The optimization-based solution suffers from
unbound solve times, and as a result is not suited for interactive editing. The other
runs in real time thanks to the efficient inference of neural networks, at the cost of an
additional training step.

The work presented in this paper was published in two conference communications:

• Léon Victor, Alexandre Meyer. "Character Pose Design in Latent Space For
Animation Edition". Journées Françaises de l’Informatique Graphique 2020, Nov
2020, Nancy, France. hal.archives-ouvertes.fr/hal-03338910

• Léon Victor, Alexandre Meyer, Saïda Bouakaz. "Learning-based pose edition
for efficient and interactive design". Computer Animation and Virtual Worlds.
2021; 32:e2013. doi: 10.1002/cav.2013

Following the communication of our results, multiple similar approaches have been
published (see Voletis et al. [Vol+22] and Bensadoun et al. [Ben+22] for example),
supporting our intuition that using neural networks to power user-centric creative
interfaces is an interesting venue for further research.
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5.1 Introduction

Approaching animation creation under the style metaphor is an interesting idea, with
the potential to facilitate the production or modification of animations through the use
of higher-level parameters than raw skeleton parameterization. However and as our
review of the literature highlights, most of the previous efforts dedicated to this kind
of interface focus on applying the style of an animation to another. In cases where
style parameters are exposed to the user, the characteristics linked to the available
style categories are extracted from hand-labeled data, which takes control away from
the user who might have a different expectation for a given style.
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This chapter presents a method which allow users to edit a character pose using "style"
constraints, by leveraging the latent pose space presented in an earlier chapter. We
first discuss the limits of the commonly used approaches to motion style editing, then
describe the objective pose parameters we use in place of the usual high-level style
labels, and a method to learn to enforce them. Finally, we propose a method to
propagate style changes made to a pose to neighboring frames to facilitate the editing
of whole animation clips.

5.2 Limits of existing style editing techniques

If the definition of style as a separation from an animation’s content is commonly
accepted in the computer animation literature, the limits of what the term itself
entails are not clearly defined themselves. Some associate an animation’s style to
emotions experienced by the character, such as "joy", "anger" or "sadness" [FP14].
Some link it to existing motion analysis systems, such as Laban’s [LU71; Dur+16], or
to psychological concepts such as the arousal/valence scale [EF67; Ran+19]. Some
others use arbitrary categories, such as "gorilla", "childish", "zombie", or "neutral"
[Xia+15].

(1)

(2)

(3)

Figure 5.1: Examples of walk animations in exaggerated styles from
existing motion databases [Hol+15; Xia+15]. (1) "zombie"; (2) "old
man"; (3) "childish". Distinguishing each style with no context is not

straight-forward.

This categorization might however be too subjective to be considered as an expressive
parameter to provide to users. Indeed, various factors can introduce bias in style
categories, leading editing tools based on them to fail to meet the user’s expectation.

A first source of bias lies in how the data used to calibrate the style categories is
recorded. It is usually not captured in the wild, but rather played by actors [Xia+15].
The sequences are thus often overplayed, exaggerated representations of the actor and
director’s visions of the categories (see Fig. 5.1). In the most grounded acquisition
procedures, emotions states are elicited in the subjects by exposing them to pre-
determined scenario, designed to provoke a specific reaction [FP14]. Eliciting emotions
is however not a fail-proof process: A subject’s personality and individual experience
might influence their reaction when being exposed to a prepared material. Even in
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these settings where precautions are taken, the bias is not totally avoided [MWE14;
HHN10].

A second source of bias appears when considering differences of expectation regarding
a style’s characteristics between a future user and the authors of style categories. It is
most evident for "fantasy" styles representing a shared cultural reference. For example,
the "zombie" style from Xia et al.’s database (Fig. 5.1) depicts a slow, disjointed walk.
It is evidently a common depiction of the zombie figure in popular culture, however, it
is not the only one: users editing animation using this style category might be surprised
if they expected a fast and sleek zombie. The problem also appears when considering
categories representing a social trait or behavior ("proud", "strutting", "childish"),
built from stereotypical representations which are not universally shared. Notably,
the universality of emotions is still actively discussed in other fields, with evidence
pointing to the fact that the way we perceive and express emotions is influenced by our
cultural specificities [EA02; Bar+19]. In the computer animation field, early research
on motion style acknowledged this limitation [ABC96], but following work lost sight of
the nuance and often consider categories pertaining to emotional status as universal.
We should remain vigilant when designing tools based on these potentially biased
assessments.

One other drawback of existing style editing approaches is that it is not possible to
create a new style from the ground up, as the style must be identified and present in
an existing clip. In the best ones, the style can be extracted from a single existing
stylized clip and applied to others, but it nevertheless needs to exist in the first place.
In a real-world scenario this might not always possible, as animators might want to
design a new style on the fly, and to choose themselves the aspects of the motion that
define its characteristics.

5.3 Pose style parameters

5.3.1 Definition

Even with the limits of style-based approaches in mind, being able to edit an animation
sequence by manipulating higher-level parameters is a desirable goal. We thus propose
an alternative solution which focuses on leaving the task of defining the characteristics
of a style to the user. The general idea is to introduce higher-level pose parameters
that can be directly computed from the pose data. Since these are objective, we do
not make assumptions on the expectations of users with regard to a style. Instead,
they are able to combine multiple of these parameters to fit their own view of a style.

For the sake of an example, imagine an artist editing an animation sequence of a
character walking, expressing "cold rage". In his mind, the character should be taking
short, fast steps, his arms tense, stretched toward the floor. With previous style
edition methods, they might be able to hit an "angry" button, or maybe use a slider
to determine how angry the result should be. Unfortunately, it might be that the
system was calibrated with another definition of angry in mind: the character now
walks faster, the arms bent and swinging, with the fists close to the torso. Using the
pose parameters would allow the user to circumvent this problem. By combining a
few ones such as the angle formed by the elbows, the distance between the feet, or
between the hands and the floor, and editing the animation through them, we can
avoid relying on assumed style characteristics.
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5.3.2 Experimental parameters
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left_kneeright_knee

pelvis

legs_spread

Figure 5.2: Visual depiction of the three pose parameters used in
this paper’s examples.

In order to demonstrate the application of our system, the following experiments
use three sample metrics applicable to a human skeleton: spine_flexion, shoulders_-
openness and legs_spread. All three are illustrated in Fig. 5.2. In a real-world scenario,
users could introduce other parameters as they see fit, as long as they can provide a
function to calculate them from pose data.

All three represent the angle formed at the intersection of two vectors u⃗ and v⃗ obtained
from the pose. Further equations use the θ(u⃗, v⃗) function in Eq. 5.1 to compute the
angle at their intersection.

θ(u⃗, v⃗) = arccos u⃗ · v⃗
∥u⃗∥ · ∥v⃗∥

(5.1)

The spine_flexion (SF ) parameter represents the angle between the world "up" vector
y⃗ and the skeleton’s spine axis. It is computed as shown in Eq. 5.2. It could be used
to bend the character forward when in a hurry, or backward when relaxed.

SF (x) = θ(xneck − xpelvis, y⃗) (5.2)

Next the metric shoulders_openness (SO, see Eq. 5.3) describes how open the
character’s torso/shoulders area is. Example usages might be to raise the character
shoulders to denote anxiety or shyness, and to open up to denote a more relaxed or
proud behavior.

SO(x) = θ(xspine1 − xrshoulder, xlshoulder − xspine1) (5.3)

Finally, legs_spread (LS, see Eq. 5.4) denotes how close the character’s knees are to
each other. Possible usages include restricting walking strides, or tweaking whether
the character appears in balance.

LS(x) = θ(xpelvis − xrknee, xlknee − xpelvis) (5.4)
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5.4 Editing a pose through style parameters

With pose style parameters defined and some example ones laid out, we can turn to
actually using them to edit a pose. The idea is similar to the Inverse Kinematics
solver discussed in the previous chapter: train a neural network to generate a new
latent pose from a starting one z and a target value p for P a specific pose parameter :
ẑ = MP (z ⊕ p). An instance of the network is specialized for a single pose parameter,
and it operates in the latent pose space to implicitly handle skeletal constraints.

To reflect this objective during training, we sample two poses from the same original
animation sequence with an offset of n frames. Sampling from a neighboring frame
prevents the target pose from being too different from the starting one. This ensures
that the network learns to edit a pose rather than to "dream up" an unrelated one
matching the target pose parameter. In our experiments, n is sampled randomly for
each iteration in n ∈ [−10, 10]. As we target an interactive edition context, aiming for
smaller changes in metric is reasonable. Gathered together, the parameter network’s
weight set βP are found by minimizing Eq. 5.5.

min
βP

LMP
(βP ) = E

(x;x′)∼xdata

[∥∥∥∥x′ −D
(
M

(
E(x)⊕ P (x′)

))∥∥∥∥2

2

]
(5.5)

Keeping with the idea of smaller networks we opt for a two-layers perceptron with
126 hidden units per layer and ReLU activation. The input layer’s number of units
is equal to the size of the auto-encoder’s latent dimension plus one (to account for
the parameter value). The output is the same size as the latent dimension. We
empirically find that this architecture suits our needs, larger/deeper networks yielding
no perceptible value.

Training parameters. Each pose parameter network is trained using the Adam
optimizer [KB15] with a learning rate of 0.0001, and batches of 1024 pose pairs until
convergence, which takes around 15 minutes on an NVIDIA Quadro T1000.

5.5 Extending to edit animation clips

The editing pipeline presented in this thesis up until this point only operates on a
single pose at once. In a real-world scenario however animators typically edit a specific
key frame, but expect their changes to be gradually applied to the neighboring ones.
To meet these expectations we propose a method to edit an entire animation sequence
through a single set of targets, composed of the user’s choice of pose parameters
and/or IK targets.

The proposed approach (Fig. 5.3) resembles the traditional animation curve paradigm,
using a user-provided weight curve W to control how much each key pose will be
impacted by a modification.

To edit an animation A, the user selects a key frame An and provides their desired
target value for each parameter: P0..i as well as a weight curve W . For each frame At
in the sequence, a latent representation zt is encoded. Each of them is then processed
by the pose metric module, resulting in an intermediary latent pose zt. The final
modified latent pose ẑt is obtained by blending zt and zt using the frame’s weight
factor W (t) (Eq. 5.6).
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Figure 5.3: Visual overview of the proposed method to echo modifi-
cations made to a key pose An. The pose is encoded then sequentially
modified by the pose parameter networks MP0..i to accommodate the
parameter targets p0..i provided by the user. The resulting latent tensor
is then blended with the original one by a per-frame factor W (n), then
finally decoded. By repeating this operation for each neighboring pose
according to the weight curve, the full clip is modified with regard to

the provided targets.

zt = E(At)

zt = MP (zt)

ẑt =
(
1−W (t)

)
· zt +W (t) · zt

Ât = D(ẑt)

(5.6)

In our experiments W is a hat function starting at 0 at the clip’s extremities and
linearly increasing upon reaching 1 at the selected frame. This weight function is
however an external parameter: experiments with a sinusoidal yield comparable
results, and the curve could be edited by animators to fit their expectations, much like
existing animation curves. We also note that each one of the clip’s poses is processed
independently of the others. The edition can thus happen in parallel, maintaining
real time interactivity.

5.6 Results

5.6.1 Pose edition

In Fig. 5.4, a single pose is modified by a user by providing gradually increasing
target spine_flexion parameter values. The results respect the desired changes as
shown by the measured values below each pose. The resulting poses also illustrate the
interesting properties of the latent pose space. At every iteration, the skeleton’s arms
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delta input
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Network
input/output

0.130.07 0.22 0.31 0.42

Figure 5.4: Incremental modification of a single pose by providing
a target spine_flexion input. On each step, the user’s input is a 0.1

increase over the computed parameter value.

are slightly raised, and its knees bent, to compensate the loss of balance induced by
the flexion of the spine.

5.6.2 Using multiple modules

sf
so

2.6 2.8 2.92.72.8 2.9
1.9 1.6 1.5

(1) (2)

Figure 5.5: Sample results of the pipeline using multiple modules. In
(1), shoulders_openness (so) and spine_flexion (sf) are used simultane-
ously. In (2) the IK solver from the previous chapter is used along the

spine_flexion parameter manipulator.

Fig. 5.5 presents some results obtained by running multiple modules in sequence. The
first example shows the result of modifying the spine_flexion and shoulders_openness
metrics at the same time. Both modifications can be seen on the skeleton: its spine is
straightened, and its shoulders lowered. The rest of the pose is also slightly edited to
accommodate for those change: the hands are lowered, and knees bent a little further.

The second one shows the result of using the spine_flexion parameter module along
with the IK solver for the two hands presented in the previous chapter. The method
allows us to find a compromise between each provided constraint. Here, the skeleton’s
back is straightened, but the hands are lowered to make up for the difference, still
reaching for the targets.
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Figure 5.6: Editing an animation clip according to the user input.
The output is produced by the pipeline given a selected frame An, a
target value for the legs_spread metric, and a weight curve. At the
selected frame, the character’s legs are closer to each other. The rest of
the clip is less impacted, and the overall walking motion is preserved.

5.6.3 Animation edition

Fig. 5.6 showcases the result of an animation being edited using the animation pipeline.
The user selects a frame An, provides a target leg_spread parameter value and an
interpolation factor curve, a hat function peaking at one at An and reaching down to
0 on both sides at An−3 and An+3. The remaining frames use a factor of zero.

Each frame pose is processed separately by the network, and the result is given by
interpolating the latent representations of the input and output poses, using the
frame-specific factor.

As a result, the output animation Â is modified, with the impact being most important
on the selected frame and gradually lowering on each side. At frame n the output
pose is modified the most, and the reduced legs angle is very visible. At frames n− 2
and n+ 2 this impact is barely visible, while further frames are not modified at all.

Interpolating between original and modified latent poses allow the whole sequence to
keep its temporal coherence even though the pipeline processes one frame at a time,
with no knowledge of the past and future frame context. We also take advantage of
the properties of latent spaces: any latent interpolation result is mapped back to the
real pose space, thus avoiding artifacts such as skeleton interpenetration.

5.7 Conclusion

The different approaches to animation style editing in the literature often rely on
style categories, which suffer from under-considered biases and as such, might be too
subjective to be used as-is in editing tools. Expert animators often want to tweak
animation clips in a fine and precise manner to fit their vision of a character’s motion.
We believe that editing tools should seek to support them with controllable tools.
In this chapter an alternative approach was described, making use of objective pose
parameters computed on a single pose. This approach leaves the control to users,
who can define parameters set which fit their own perception of styles. The proposed
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method once again leverages the latent pose space used throughout the thesis to
automatically enforce implicit and subtle constraints. We also describe a pipeline in
which multiple neural networks act as real-time pose manipulators.

The main shortcoming of this approach is that it is limited to a single standardized
humanoid skeleton, with which the networks are trained. This is a common problem
with data-driven methods: in order to adapt to a new skeleton, the network would
need to be retrained. This could be difficult if access to existing animation data for
the new skeleton is limited, but recent progress in animation retargeting [Abe+20]
could help by allowing more accessible data augmentation. The modularity of the
parameters helps here as well, as different skeleton will require a new set of parameters.
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6.1 Contributions summary

Virtual characters play important roles in most computer-generated media, and
synthesizing then editing motion data to animate them is a crucial task in production
processes. The work presented in this thesis follows a wide array of research efforts
which aim to make computer animation always more detailed and expressive, all the
while managing the complexity of the creative pipelines.

In recent years, deep learning methods have started making waves in the field, lever-
aging the impressive data modelling capabilities of neural networks and the growing
availability of Motion Capture data to produce new, unseen motion. Applications
considered by previous work have however remained quite high-level, generating full
motion clips in one go and leaving little room for artistic control. This thesis therefore
proposes to explore this blind spot, by applying neural networks to a more restricted
task, pose editing, and embedding the resulting models in interactive editing tools
that leave control to the artists.

Our method relies on the construction of a latent pose space, on which existing poses
can be projected then edited. A large part of the problems encountered while editing
a character pose can be attributed to the subtle constraints a character’s skeleton’s
parameterization must respect in order to be considered as a plausible pose. With
this in mind, the space is structured to ensure any of its sample represent a valid pose.
This condition is handled by neural networks trained to map existing poses to and
from the latent space.

In chapter 3, we describe the construction of this space, by detailing two different
approaches. The first relies on a simple autoencoder, and results in a space of
unspecified shape. To the contrary, in the second, an adversarial method is employed
to shape the resulting space and enforce its convexity, providing it with smooth
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interpolation properties. Both spaces form the base upon which the pose editing
methods described later build.

Chapter 4 is dedicated to our first pose editing problem: full-body Inverse Kinematics.
In a first section we propose an optimization-based solution, taking advantage of the
smooth nature of the latent space to speed up the process by only considering valid
latent poses. This approach yields appealing results, however, its convergence time
is not bound, and as such it is not ideally suited for interactive applications. In a
second section we develop another solution to the same problem, this time training
another neural network to explore an unconstrained latent space. Once trained, the
method runs in real-time and yields high-quality results, allowing it to be used as an
interactive tool to manipulate a character’s skeleton as a puppet.

Finally, in chapter 5, we study the existing methods that propose to edit character
poses by manipulating their style, and argue that the concept, as currently applied
in computer animation, might build upon biased point of views. We argue for an
alternative approach which allow users to compose their own definition of a style
by combining objective pose parameters. We propose a system in which the pose
parameters are edited in the latent space.

Overall, the work presented in this thesis makes a case for user-centered applications
of neural networks in animation. Deep learning approach have already proven to
capable of modelling large amounts of data, and generating impressive and complete
character motion. However, we believe that their learning power and fast inference
speeds make them good candidates to be used in real-time interaction with a user.
We hope this document can inspire future work in this direction, and that future
animators can rely on data-powered tools to put their idea in motion.

The work presented in this thesis has also been published as part of several papers:

• Léon Victor, Alexandre Meyer. "Character Pose Design in Latent Space For
Animation Edition". Journées Françaises de l’Informatique Graphique 2020, Nov
2020, Nancy, France. hal.archives-ouvertes.fr/hal-03338910

• Léon Victor, Alexandre Meyer, Saïda Bouakaz. "Learning-based pose edition
for efficient and interactive design". Computer Animation and Virtual Worlds.
2021; 32:e2013. doi: 10.1002/cav.2013

• Léon Victor, Alexandre Meyer, Saïda Bouakaz. "Pose Metrics: a New Paradigm
for Character Motion Edition". Preprint. https://arxiv.org/abs/2301.06514

6.2 Limitations & perspectives

This thesis’ contributions are a first step towards user-controllable, data-driven ani-
mation editing tools, focusing on pose editing. The application is however still new
and multiple problems still stand out.

Mainly, in this thesis, the pose editing task is considered as a stand-alone process.
However, in real scenarios, single poses are always part of a sequence, and form an
animation clip. A lot of information, related to velocity, pace, or motion amplitude for
example, is lost when separating pose data from its context. We propose an approach
to account for the dynamic nature of motion in 5, but the training is still done on
pose data alone. Providing neural network models with more of this context might be
beneficial, even for tasks related to pose edition. This is especially the case for our
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style parameters based method, as many of the existing motion descriptors from the
literature are not applicable to single poses. An interesting perspective will then be to
adapt the neural networks models so that they can extract information from motion
sequences, and apply them in contexts similar to ours.

In the same vein, the networks used in this thesis are deliberately kept simple. As
shown in the literature review, model architectures specifically dedicated to animation
data are currently a heavily studied topic, so applying these modern approaches to
our tasks could significantly improve the quality of the results.

Next, our approach is limited to a standardized skeleton. In actual production, each
character often has its own, and existing data might not even be available. Future
work should focus on alleviating this limit by reusing trained networks on different
skeleton topologies. Improvement in motion retargeting might also help to adapt
existing motion data to a new skeleton.

This thesis’ contributions are still in an early shape, and have not yet been confronted
to actual animators. An interesting perspective is thus to lead user-studies to gather
feedback on the usability and efficiency of the methods. End-users consideration would
help identify more limitations as well as more venue for improvements.

Data-oriented animation is already widely used in the industry, thanks to the increased
availability of MoCap technologies. Deep learning methods however, while receiving a
lot of attention from the research community, have yet to break in production setups.
Leveraging their power in the context of user-centric tools, in which the software
facilitates the animators work while leaving them in control, might be the key to a
widespread usage. We hope our work inspires more research towards similar goals,
empowering animators in their creative process and helping to populate ever more
extraordinary virtual worlds.
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Acronyms

AE Autoencoder network.

AEGAN Autoencoding Generative Adversarial Network.

CCD Cyclic Coordinate Descent.

CMU The Carnegie Mellon University Graphics Lab Motion Capture Database.

CNN Convolutional Neural Networks.

CRBM Conditioned Restricted Boltzmann Machine.

DoF Degree of Freedom.

ERD Encoder-Recurrent-Decoder.

FABRIK Forward and Backward Reaching Inverse Kinematics.

FK Forward Kinematics.

GAN Generative Adversarial Network.

GCN Graph Convolutional Network.

GPLVM Gaussian Process Latent Variable Model.

ICA Independent Component Analysis.

IK Inverse Kinematics.

LMA Laban Movement Analysis (LMA).

LoA Line of Action.

LTI Linear Time Invariant.

MoCap Motion Capture.

MSE Mean Squared Error.

NeRF Neural Radiance Field.

NN Neural Network.

PCA Principal Components Analysis.

RBF Radial Basis Function.

RBM Restricted Boltzmann Machine.

ReLU Rectified Linear Unit.
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RNN Recurrent Neural Network.

SPL Structured Prediction Layer.

t-SNE t-Distributed Stochastic Neighbor Embedding.

VAE Variational Autoencoder network.
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flexion parameter manipulator. . . . . . . . . . . . . . . . . . . . . . . 55

5.6 Editing an animation clip according to the user input. The output is
produced by the pipeline given a selected frame An, a target value for
the legs_spread metric, and a weight curve. At the selected frame, the
character’s legs are closer to each other. The rest of the clip is less
impacted, and the overall walking motion is preserved. . . . . . . . . . 56
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