
HAL Id: tel-04286945
https://theses.hal.science/tel-04286945

Submitted on 15 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Advancements in generative models : enhancing
interpretability and control of complex data through

disentanglement and conditional generation
Kaifeng Zou

To cite this version:
Kaifeng Zou. Advancements in generative models : enhancing interpretability and control of complex
data through disentanglement and conditional generation. Other [cs.OH]. Université de Strasbourg,
2023. English. �NNT : 2023STRAD030�. �tel-04286945�

https://theses.hal.science/tel-04286945
https://hal.archives-ouvertes.fr


 
UNIVERSITÉ DE STRASBOURG 

   
 
 

ÉCOLE DOCTORALE MATHEMATIQUES, SCIENCES DE L’INFORMATION ET DE 
L’INGENIEUR – ED269 

[ICube laboratory] 

 

THÈSE  présentée par : 

[ Kaifeng ZOU ] 
 

soutenue le : 28/09/2023 
 

 

 

pour obtenir le grade de : Docteur de l’université de Strasbourg 

Discipline/ Spécialité : SIAR (Signal, Image, Automatique, Robotique) 

 

Advancements in Generative Models: 
Enhancing Interpretability and Control 

of Complex Data through 
Disentanglement and Conditional 

Generation  
 

 
 

 
THÈSE dirigée par : 

Sylvain Faisan Maître de conférences, Université de Strasbourg, France 
Fabrice Heitz Professeur des Universités, Université de Strasbourg,  France 
Sébastien Valette Chargé de recherches, CNRS, INSA-Lyon, France 
 

 

RAPPORTEURS : 
Marco Lorenzi Chargé de recherches, Inria, Université Côte d'Azur, France 
Su Ruan Professeur des Universités, Université de Rouen Normandie, 
France 

 
AUTRES MEMBRES DU JURY : 

Pierre Charbonnier   Directeur de recherches, Cerema Strasbourg, France 





Résumé en français

Cette thèse a été rédigée en anglais. Voici un résumé détaillé de la thèse en français.

Contexte

L’intelligence artificielle (IA) est devenue un thème récurrent dans les films de science-

fiction contemporains, comme on peut le voir avec des personnages tels que Joi dans

Blade Runner 2049 et Jarvis dans Iron Man. Ces représentations dépeignent souvent

des systèmes d’IA dotés de capacités comparables à celles des humains.

Aujourd’hui, l’apprentissage profond permet aux systèmes d’IA d’accomplir des

tâches (générer du texte, des images...) qui étaient autrefois réservées aux humains. La

clé de cette technologie réside dans l’IA générative. Ces modèles capturent la distribu-

tion sous-jacente des données x ∼ pD(x) et utilisent ces connaissances pour générer de

nouveaux échantillons x̂ ∼ pθ(x), où θ représente les paramètres du modèle.

Les modèles génératifs, tels que les auto-encodeurs variationnels, les réseaux antag-

onistes génératifs, les réseaux de flot génératifs et les modèles de diffusion, ont montré

un potentiel significatif dans divers domaines, notamment la génération d’images, la

synthèse de la parole et le traitement du langage naturel.

Les modèles génératifs ont connu de nombreux progrès ces dernières années. Ces

avancées ont été motivées par plusieurs facteurs, notamment la disponibilité de nom-

breux ensembles de données publics volumineux, les progrès dans les architectures neu-

ronales profondes, ainsi que le développement de nouveaux modèles génératifs. Il s’agit

toujours d’un domaine de recherche actif, avec de nouveaux modèles et techniques en

développement pour améliorer leurs performances et élargir leurs applications.

Les modèles génératifs peuvent être utilisés dans une grande variété d’applications,

notamment la génération de données, la complétion de données (inpainting), la super-

résolution, le transfert de style, la détection d’anomalies, l’adaptation de domaine, ainsi

que l’apprentissage de représentations démêlées.

Les modèles génératifs ont le potentiel de révolutionner des industries telles que le

divertissement, l’art, le design et la finance. Des produits récents d’IA tels que Chat-

GPT, Midjourney et Stable Diffusion ont démontré une efficacité et une diversité dans

la génération de données. Cela marque une avancée significative dans le domaine de

l’intelligence artificielle.
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Dans cette thèse, notre principal objectif se concentre sur l’apprentissage de représentations

démêlées et la génération conditionnelle.

Liste des contributions

Cette section vise à mettre en évidence les contributions apportées lors de ma thèse de

doctorat. Les principales contributions de cette thèse sont les suivantes :

• Contributions bibliographiques

– Nous présentons les modèles génératifs, y compris les auto-encodeurs vari-

ationnels (VAE), les réseaux antagonistes génératifs (GAN) et les modèles

de diffusion.

– Nous effectuons une revue approfondie de l’application de ces trois modèles

génératifs dans l’apprentissage de représentations démêlées. De plus, nous

regardons comment il est possible de générer conditionnellement des données

avec ces modèles.

• Contributions méthodologiques

– Nous proposons un auto-encodeur variationnel démêlé pour déterminer le

sexe d’un individu à partir d’un maillage des os de sa hanche. Le modèle

proposé permet, par construction, d’apporter une interprétation des résultats.

– Nous introduisons deux nouvelles méthodes d’apprentissage de représentations

démêlées qui encodent les facteurs de haut-niveau ainsi que leurs caractéristiques

dans l’espace latent.

• Contributions applicatives

– Nous démontrons le potentiel de l’apprentissage de représentations démêlées

pour l’interprétation des images médicales.

– La représentation démêlée proposée permet un contrôle précis des étiquettes

et de leurs caractéristiques dans les images générées.

– Nous vérifions l’adéquation des modèles de diffusion dans la génération de

données séquentielles, telles que des séquences temporelles d’expressions

faciales. De plus, en conditionnant le processus inverse du modèle de dif-

fusion, il devient possible de gérer diverses tâches de génération condition-

nelle.
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Contenu du mémoire

Le mémoire est constitué de sept chapitres : une introduction, un état de l’art, quatre

chapitres qui sont pour chacun d’entre eux en rapport avec un article, et une conclusion.

Le premier chapitre est un chapitre introductif qui présente rapidement le contexte

de la thèse, à savoir les modèles génératifs. Les modèles génératifs sont des modèles

d’apprentissage automatique qui permettent d’apprendre, dans un premier temps, la dis-

tribution d’un ensemble de données et, dans un second temps, de générer de nouveaux

échantillons suivant la distribution apprise. Ces modèles suscitent un grand intérêt

car ils ont obtenu des résultats très prometteurs dans de nombreuses disciplines : ils

peuvent aujourd’hui produire des données hautement réalistes et diversifiées, ce qui

est utile pour de nombreuses applications. On peut s’attendre à ce que ces modèles

révolutionnent un large éventail de secteurs comme le divertissement, l’art, et la fi-

nance... Des produits récents, tels que ChatGPT, Midjourney et DALL-E illustrent très

bien le potentiel de ces modèles. Les modèles génératifs représentent également un

domaine de recherche très actif : de nouveaux modèles et de nouvelles techniques sont

développés pour améliorer leurs performances et étendre leur champ d’application.

Le second chapitre présente un état de l’art des modèles génératifs, en mettant

principalement l’accent sur les auto-encodeurs variationnels (VAEs), les réseaux an-

tagonistes génératifs (GANs) et les modèles de diffusion, ainsi que leurs applications,

notamment pour l’apprentissage de représentations démêlées et la génération condition-

nelle.

Dans une première section, nous présentons une revue approfondie des modèles

génératifs, en mettant particulièrement l’accent sur trois types de modèles génératifs :

les VAEs, les GANs et les modèles de diffusion.

L’un des modèles génératifs les plus populaires est l’auto-encodeur variationnel

(VAE) : il apprend une représentation de faible dimensionnalité des données d’entrée

en les encodant dans un espace latent puis en les décodant de nouveau dans l’espace

original. Le VAE se distingue des auto-encodeurs traditionnels par le fait qu’il apprend

la distribution des données d’entrée. Pour cela, il se base sur les statistiques bayésiennes

et en particulier les approches variationnelles. Cela lui permet notamment de générer de

nouveaux échantillons à partir de la distribution apprise. Alors que les VAEs ont montré

un grand succès dans la génération de nouveaux échantillons sur des petits ensembles

de données simples, leurs performances sont limitées lorsqu’ils sont appliqués à des

ensembles de données plus complexes, tels que des images naturelles. Dans de tels cas,

les images générées sont souvent floues et manquent d’informations haute fréquence,

ce qui constitue une critique courante des VAEs. Nous présentons alors différentes
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stratégies qui ont été proposées de manière à améliorer ces performances. Nous finis-

sons cette partie en décrivant les applications principales des VAEs.

Les modèles de diffusion ont connu une attention considérable ces dernières années.

Comme les VAEs, Il s’agit également d’un modèle à espace latent mais les variables la-

tentes correspondent à des versions bruitées des données d’origine : le processus de

diffusion produit les versions bruitées (jusqu’à obtenir du bruit blanc) alors que le pro-

cessus inverse les débruite. On peut noter qu’uniquement le processus inverse con-

tient des paramètres à apprendre. Les modèles de diffusion sont particulièrement utiles

pour générer des images de haute qualité et ont montré des performances supérieures à

d’autres modèles génératifs pour une variété de tâches, telles que la génération d’images,

la synthèse audio, la modélisation du texte et la génération de nuages de points. Malgré

la qualité impressionnante des données générées, il y a tout de même deux limitations

importantes : le temps d’échantillonnage est lent et il manque, en comparaison avec les

VAEs, une fonctionnalité d’encodage des données (ce qui peut être problématique pour

certaines applications). Nous décrivons rapidement dans cette partie comment le temps

d’échantillonnage peut être accéléré.

Les GANs se composent de deux composants principaux : un réseau générateur et

un réseau discriminateur. L’objectif du discriminateur est de distinguer correctement

entre les échantillons réels et synthétiques, tandis que l’objectif du générateur est de

produire des échantillons synthétiques indiscernables des échantillons réels. Les GANs

peuvent générer efficacement des données synthétiques hautement réalistes, mais ils

peuvent être difficiles à entraı̂ner. Nous présentons différentes stratégies pour obtenir

un apprentissage stable et efficace. Les progrès réalisés peuvent être attribués à deux

facteurs clés : l’amélioration de la fonction de perte et de l’architecture des modèles.

Chaque modèle génératif a ses propres avantages et inconvénients. Par exemple,

les VAEs bénéficient d’un encodage des données, mais ils ont tendance à perdre les

informations haute fréquence des données. En revanche, les GANs ont la capacité de

produire des images de haute qualité, mais ils sont difficiles à entraı̂ner. Les modèles

de diffusion, bien qu’ils soient capables de générer des images de haute qualité, im-

pliquent un processus de génération complexe et souffrent d’un échantillonnage lent.

Par conséquent, chaque méthode a ses propres scénarios d’application appropriés. Par

exemple, les modèles de diffusion sont préférés lorsque la qualité de l’image prime sur

le temps de génération. Les GAN sont bien adaptés aux applications en temps réel,

tandis que les VAE se révèlent précieux pour traiter des données bruités. Dans le même

temps, de nombreux chercheurs tentent de combiner ces modèles pour compenser leurs

limitations individuelles. Nous présentons dans une dernière sous-section les différents

modèles ainsi obtenus.

Après avoir introduit les trois principaux modèles génératifs, nous explorons, dans
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une seconde section, l’une de leurs applications : l’apprentissage de représentations

démêlées.

Démêler les facteurs de variation des données est un défi important dans les do-

maines de l’apprentissage automatique et de la vision par ordinateur. Une représentation

démêlée consiste à encoder séparément des caractéristiques observables des données,

de sorte que ces éléments possèdent une signification sémantique interprétable. Par

exemple, lorsque qu’une caractéristique des données, telle que la couleur d’un visage,

change, uniquement l’élément correspondant à cette caractéristique devrait changer. Ce

processus vise à séparer les facteurs de variation des données, ce qui permet de les anal-

yser et de les examiner de manière indépendante. Atteindre une représentation démêlée

est un objectif important car cela peut améliorer l’interprétabilité, la contrôlabilité, la

généralisabilité et la robustesse du modèle. Nous étudions dans cette section com-

ment les VAEs, les GANs et les modèles de diffusion peuvent permettre d’obtenir des

représentations démêlées (dans le cas supervisé ou non-supervisé).

La dernière section du chapitre 2 est finalement consacrée à la génération condition-

nelle. Dans la section précédente, nous avons vu que les représentations démêlées peu-

vent être utilisées pour le contrôle des caractéristiques et la génération conditionnelle.

Cependant, la génération conditionnelle peut également être réalisée sans faire appel à

de telles représentations. De plus, à la place d’utiliser directement des étiquettes pour

conditionner la génération, certaines approches utilisent des images ou du texte pour

contrôler le processus de génération. Une approche consiste à utiliser d’autres images

pour contrôler la génération d’images, ce qui permet des tâches telles que l’adaptation

de domaines. D’autres approches impliquent l’utilisation de texte pour contrôler les car-

actéristiques d’une image. A l’inverse, il existe des méthodes qui utilisent des images

pour contrôler la génération de texte. Dans cette section, nous explorons ces différents

types de génération conditionnelle.

Les chapitres suivants sont dédiés à la présentation du travail de thèse.

Le troisième chapitre est constitué de l’article suivant :

Kaifeng Zou, Sylvain Faisan, Boyang Yu, Sébastien Valette, Hyewon Seo. ”4D Facial

Expression Diffusion Model”. Soumis à ACM Transactions on Multimedia Computing,

Communications, and Applications.

Dans cet article, nous avons proposé un modèle qui permet de générer des séquences

d’expressions faciales tridimensionnelles conditionnellement à différents signaux. Le

modèle génératif est basé sur un modèle de diffusion. De manière à capturer efficace-

ment les caractéristiques temporelles des séquences, nous avons proposé d’utiliser un

transformer bi-directionel pour former l’épine dorsale (backbone) du modèle de dif-
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fusion. Bien que le modèle soit entraı̂né de manière inconditionnelle, son processus

inverse peut être conditionné dans un second temps. Cela nous permet de développer

différentes tâches incluant diverses générations conditionnelles (conditionnement par

une étiquette, par du texte, par des séquences partielles ou simplement par une géométrie).

Les expériences ont été menées sur deux ensembles de données : CoMA et BU4DFE.

Les performances de l’approche ont été évaluées de la manière suivante : nous avons

comparé notre méthode à ACTOR, Action2Motion et Motion3DGAN pour la génération

conditionnellement à une étiquette. Pour la génération conditionnellement à un texte,

nous avons comparé notre méthode à MotionCLIP. Le modèle proposé montre des

très bons résultats et peut produire des maillages faciaux plausibles de divers types

d’expressions sur différents sujets.

Le chapitre 4 est composé de l’article suivant :

Kaifeng Zou, Sylvain Faisan, Fabrice Heitz, Marie Epain, Pierre Croisille, Laurent Fan-

ton, and Sébastien Valette. Disentangled representations: towards the interpretation of

sex determination from the hip bone. The Visual Computer journal 2023.

Les méthodes de classification basées sur les réseaux de neurones sont souvent cri-

tiquées pour leur manque d’interprétabilité et d’explicabilité. En mettant en évidence

les régions de l’image d’entrée qui contribuent le plus à la décision, les cartes de sail-

lance sont devenues une méthode populaire pour rendre les réseaux de neurones in-

terprétables. En imagerie médicale, elles ne semblent pas trop adaptées aux problèmes

de classification pour lesquels les caractéristiques qui permettent de distinguer les classes

sont spatialement corrélées. A noter que nos expériences ont été réalisées dans le cadre

de la détermination automatique du sexe à partir des os de la hanche.

Nous proposons dans cet article un nouveau paradigme. Au lieu de chercher à com-

prendre ce que le réseau de neurones a appris ou comment la prédiction est réalisée,

nous cherchons à révéler les différences entre les classes. Pour cela, l’échantillon

analysé est transformé en le même échantillon mais appartenant à une autre classe.

Ceci ouvre ainsi la voie à une interprétation plus facile des différences entre les classes.

Par exemple, si le maillage d’entrée est celui d’un homme, sa reconstruction en tant

qu’homme devrait être similaire au maillage original. En revanche, la reconstruction

en tant que femme devrait présenter des différences interprétables dans des régions

spécifiques. De plus, en comparant les deux reconstructions avec le maillage orig-

inal pour plusieurs sujets, l’utilisateur peut obtenir un aperçu des différences mor-

phologiques entre les os du bassin masculin et féminin.

Dans cette optique, nous avons proposé un auto-encodeur variationel démêlé (DVAE),

qui permet de modéliser les maillages du bassin, et qui démêle le facteur d’intérêt (le

sexe) des autres variables latentes. Cette représentation fournit non seulement la classe
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d’un nouvel échantillon, mais peut également générer une reconstruction pour chaque

classe. Les résultats obtenus sont cohérents avec les connaissances des experts. De

plus, l’approche proposée permet de confirmer ou de doûter du choix du classifieur, ou

éventuellement de le remettre en question. Enfin, notre étude démontre que l’utilisation

de ces deux reconstructions pour entraı̂ner un classificateur binaire permet d’améliorer

le taux de bonne classification.

Le chapitre 4 est constitué de l’article :

Kaifeng Zou, Sylvain Faisan, Fabrice Heitz, Sébastien Valette. ”Joint disentanglement

of labels and their features with VAE.” 2022 IEEE International Conference on Image

Processing (ICIP). IEEE, 2022.

Le chapitre 5 est constitué de l’article :

Kaifeng Zou, Sylvain Faisan, Fabrice Heitz, Sébastien Valette. ”Disentangling high-

level factors and their features with Conditional Vector Quantized VAEs.” Pattern Recog-

nition Letters, 2023.

Le chapitre 5 contient également, dans sa dernière section, une analyse de sensibilité

et une comparaison avec une méthode basée-GAN. A noter que cette section n’a pas été

publiée.

Les chapitres 5 et 6 traitent de la même problématique, à savoir, le démêlage des

étiquettes et de leurs caractéristiques par une approche basée VAE. La plupart des ap-

proches semi-supervisées qui cherchent à obtenir des représentations démêlées à l’aide

d’auto-encodeurs variationnels divisent la représentation latente en deux composantes :

la partie non interprétable et la partie démêlée qui modélise explicitement les facteurs

d’intérêt. Chaque facteur d’intérêt est donc associé à une variable latente du même

type. Par exemple, si l’étiquette d’intérêt se réfère aux lunettes (1 lorsque le sujet porte

des lunettes, 0 sinon), il y aura une variable catégorielle dans l’espace latent qui code la

présence ou l’absence de lunettes. Cependant, cette variable ne permet pas de modéliser

les caractéristiques des lunettes (par exemple, forme/taille/couleur des lunettes), qui

peuvent être soit perdues, soit au mieux entremêlées dans les autres variables latentes.

Pour résoudre ce problème, il est nécessaire de modéliser conjointement les facteurs de

haut niveau et leurs caractéristiques. Nous avons proposé deux approches basées sur

des auto-encodeurs variationnels qui modélisent explicitement à la fois les facteurs de

haut niveau et leurs caractéristiques associées.

Dans la première approche appelée JDVAE (Joint disentanglement of labels and

their features with VAE, chapitre 5), nous avons proposé une nouvelle structure de

dépendance conditionnelle où les étiquettes et leurs caractéristiques appartiennent à

l’espace latent. Dans ce modèle, les lois a priori conditionnelles des caractéristiques
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(étant données les étiquettes) doivent être correctement choisies pour assurer les pro-

priétés de démêlement souhaitées. De plus, la fonction de perte est composée de

deux divergences de Kullback-Leibler, qui doivent être pondérées différemment, afin

d’obtenir des résultats satisfaisants. Cela rend l’approche difficile à utiliser.

Pour surmonter les limitations de l’approche précédente, nous avons proposé un

nouveau modèle appelé CVQVAE (Conditional Vector Quantized VAE, chapitre 6).

Les caractéristiques associées aux facteurs de haut niveau ne sont plus considérées

comme des variables aléatoires sur lesquelles il est nécessaire d’intégrer. Au lieu de

cela, chaque caractéristique est calculée (de manière déterministe) à partir des données

d’entrée à l’aide d’un réseau de neurones dont les paramètres peuvent être estimés con-

jointement avec ceux du décodeur et de l’encodeur. Ces caractéristiques (ainsi que les

étiquettes et les variables latentes) sont ensuite utilisées par le décodeur pour reconstru-

ire les données. Cette approche s’inspire du VAE conditionnel (CVAE), à la différence

que la variable conditionnelle est connue pour le CVAE et qu’elle est calculée pour le

CVQVAE. Nous obtenons ainsi un modèle simplifié (sans loi a priori conditionnelle

pour les caractéristiques, et une seule divergence de Kullback-Leibler dans la fonction

de perte). De plus, pour améliorer la qualité des images générées et en particulier pour

générer des images moins floues, la loi a priori gaussienne sur la représentation latente

a été remplacée par une distribution catégorielle. Le modèle résultant est plus difficile à

optimiser, mais nous contournons ce problème avec une procédure d’apprentissage en

deux étapes.

Les deux méthodes sont validées sur le jeu de données CelebA et comparées avec

des méthodes basées VAE. Les résultats obtenus avec JDVAE montrent l’intérêt de

modéliser explicitement à la fois les étiquettes et leurs caractéristiques. De plus, ils

montrent également l’avantage d’utiliser AdaIN et des tokens apprenables pour con-

struire le décodeur : le premier permet d’améliorer la qualité des images générées tan-

dis que le second favorise les propriétés de démêlement du modèle. Enfin, l’approche

CVQVAE surpasse toutes les approches testées, tant en termes de démêlement que de

qualité des images générées. De plus, nous montrons l’efficacité de notre modèle sur

le jeu de données CheXpert : la pathologie peut être visualisée en comparant la recon-

struction avec et sans la pathologie.

Finalement, dans le dernier chapitre, nous fournissons un bref résumé des princi-

pales contributions de la thèse, en mettant l’accent sur leur importance à la fois du point

de vue applicatif et méthodologique. De plus, nous explorons les orientations poten-

tielles pour des recherches futures dans le domaine des modèles génératifs, en nous

concentrant spécifiquement sur les représentations démêlées et la génération condition-

nelle.
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CHAPTER 1

Introduction

1.1 Generative models

1.1.1 What are generative models?

Artificial intelligence has become a recurring theme in contemporary science fiction

movies, as seen in characters like Joi in ”Blade Runner 2049” and Jarvis in ”Iron Man.”

These portrayals often depict AI systems with abilities comparable to those of humans.

In recent years, with advancements in deep learning, researchers have been increas-

ingly focused on creating digital humans using neural networks. Microsoft’s Xiaoice is

a notable example of this. Xiaoice utilizes automatic story analysis to select appropriate

tones and characters, effectively completing the entire process of audio creation.

Deep learning has enabled AI systems to simulate human-like qualities and perform

tasks that were once exclusive to humans. Key to this technology is generative AI,

which involves analyzing vast amounts of data, learning patterns, and generating text,

speech, and other media that even surpass human capabilities.

Generative models have emerged as prominent techniques in deep unsupervised

learning over the past decade. This is largely due to their ability to effectively analyze

and comprehend unlabeled data. These models capture the underlying data distribution

x ∼ pD(x) and use that knowledge to generate similar data points x̂ ∼ pθ(x), where θ

represents the learnable parameters.

In contrast to early approaches that relied on energy functions for generating high-

dimensional data, which often faced challenges in terms of generation efficiency and

quality, recent years have witnessed significant advancements in generative models.

These advancements have been driven by several factors, including the availability of

numerous large public datasets and the advancements in deep neural architectures and

different generative models.

Generative models, such as Variational Autoencoder (VAE) [124, 122], Generative

Adversarial Network (GAN) [69], Energy-based Model (EBM) [130, 120], normalizing

flow [49, 201], diffusion models [89, 231], have shown significant promise in various

fields, including image generation, speech synthesis, and natural language processing,
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and continue to be an active area of research, with new models and techniques being

developed to improve their performance and broaden their applications.

These generative models have the potential to revolutionize industries such as en-

tertainment, art, design, and finance. Recent AI products like ChatGPT, Midjourney,

and Stable Diffusion have demonstrated the efficiency and diversity of data generation

that surpasses human capabilities. This marks a significant advancement in the field of

artificial intelligence.

As the field of deep learning continues to evolve and mature, generative models are

poised to play an increasingly important role in shaping the future of AI. With ongoing

research and development, we can expect to see new and innovative generative models

emerge, enabling even more sophisticated and advanced applications of this powerful

technology.

1.1.2 What can generative models do?

Generative models can be used in a wide variety of applications, including but not lim-

ited to data generation, data completion and inpainting, super-resolution, style transfer,

anomaly detection, disentangled representation learning, domain adaptation.

Data Generation One of the primary functions of generative models is to generate

new data samples that resemble a given dataset. These models learn the underlying

distribution of the training data and can generate realistic samples that resemble to the

training data. This capability has wide-ranging applications, including generating syn-

thetic images, videos, and audio for artistic purposes, data augmentation in machine

learning, and simulating data for training and testing purposes.

Data Completion and Inpainting Generative models can also be used for data

completion and inpainting tasks. Given an incomplete or partially missing input, these

models can generate plausible and coherent predictions to fill in the missing informa-

tion. This has applications in image and video inpainting, where damaged or missing

regions can be reconstructed using the learned generative model. In Chapter 3, we addi-

tionally explore a related application involving facial animation completion. Similarly,

in the case of the hip bone, we employ a VAE to handle the completion and classification

of missing data, which is presented in Chapter 4.

Super-resolution Generative models can enhance the resolution and quality of low-

resolution images. By learning the underlying patterns and structures of high-resolution

images, these models can generate sharper and more detailed versions of low-resolution

inputs. Super-resolution techniques find applications in image and video enhancement,

and surveillance systems.

Domain Adaptation Generative models can adapt models trained on one domain
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to perform well on a different but related domain. By learning the underlying shared

distribution between domains, these models can generate synthetic samples that bridge

the gap between the source and target domains. Domain adaptation techniques are

valuable in scenarios where labeled data in the target domain is limited or unavailable.

Anomaly Detection Generative models can be employed for anomaly detection

tasks. By learning the distribution of a given dataset, these models can identify data

points that are significantly far from the learned distribution. This can be applied in

various domains, including fraud detection, cybersecurity, and medical diagnostics.

Disentangled Representation Learning Generative models can learn disentangled

representations, where underlying factors of variation are separated and controlled in-

dependently. This allows for manipulating specific attributes or characteristics of gen-

erated samples while keeping other factors constant. Disentangled representations find

applications in image editing, attribute transfer, and data analysis, enabling more fine-

grained control over generated outputs.

In chapter 4, we propose the use of disentangled representations as a means to pro-

vide a comprehensive interpretation of sex determination from hip bone. We also extend

the existing disentangled representation learning method and propose two novel meth-

ods, as discussed in Chapter 5 and Chapter 6.

Conditional Generation Generative models can be conditioned on additional in-

formation or constraints to generate samples that meet specific criteria. For example,

images can be generated by leveraging text descriptions or class labels as conditioning

factor. This enables controlled and targeted generation in various domains, including

image synthesis, text-to-image, and image-to-image translation. In Chapter 3, we intro-

duce a method for the conditional generation of facial expression.

In this thesis, our primary focus lies on disentangled representation learning and

conditional generation. We explore these specific fields, exploring their concepts, method-

ologies, and applications. The Chapter 2 will dig deeper into these topics, offering more

comprehensive insights and detailed analyses associated to disentangled representation

learning and conditional generation.

1.2 List of contributions

This section aims to highlight the contributions made during my PhD, emphasizing the

originality and significance of the work. The following are the key contributions of this

thesis:

• Bibliographical
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– We provide a detailed explanation of generative models, including Varia-

tional Autoencoders (VAE), Generative Adversarial Networks (GAN), and

diffusion models.

– We conduct an in-depth review of the application of these three generative

models in disentangled representation learning and conditional generation.

• Methodological

– We propose a disentangled variational autoencoder for data-driven sex de-

termination and interpretation.

– We introduce two novel methods for disentangled representation learning

that encode high-level factors and their features into the latent representa-

tion.

• Applicative

– We demonstrate the potential of disentangled representation learning for the

interpretation of medical images.

– The proposed disetangled representation allows accurate control of labels

and their features in generated images.

– We verify the suitability of diffusion models in generating sequential data,

such as facial expressions. Moreover, by conditioning the reverse process

of the diffusion model, it becomes capable of handling diverse conditional

generation tasks.

1.3 Thesis Structure

In order to provide a clear framework for the research study, the thesis is organized into

the following chapters:

• Chapter 2 This chapter presents a detailed explanation of VAE, GAN, and diffu-

sion model, along with an in-depth review of the state-of-the-art in disentangled

representation learning and conditional generation using these generative models.

• Chapter 3 The focus of this chapter is on the use of the diffusion model for

facial animation generation. The feasibility of employing the diffusion model

for generating sequential data is validated, and a versatile framework is used:

we train an unconditional model and subsequently condition the reverse process

with various conditions to enable generation. This approach allows us to create

versatile models, as we only need to train the diffusion model once and can then
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condition it in a plug-and-play manner. The chapter 3 is mainly composed of this

article:

Kaifeng Zou, Sylvain Faisan, Boyang Yu, Sébastien Valette, Hyewon Seo. 4D

Facial Expression Diffusion Model

• Chapter 4 This chapter introduces a supervised disentangled representation learn-

ing method for sex determination and interpretation. Initially, a disentangled

Variational Autoencoder (VAE) is trained to generate hip bones for both sexes.

The latent space of the VAE disentangles the identity information (z) and the sex

information (y). By providing the hip bone of an individual as input, the disentan-

gled VAE can be used to generate the hip bone of the same individual but for both

sexes. A comparison is then conducted between the two generated hip bones to

elucidate the distinctions in sex determination, specifically for individuals lacking

medical expertise or knowledge.

The Chapter 4 is mainly composed of the following article:

Kaifeng Zou, Sylvain Faisan, Fabrice Heitz, Marie Epain, Pierre Croisille, Lau-

rent Fanton, and Sébastien Valette. Disentangled representations: towards the

interpretation of sex determination from the hip bone. The Visual Computer jour-

nal 2023.

• Chapter 5, 6 When aiming for a supervised disentangled representation, a single

label (high-level factor) can encompass a wide range of attributes and character-

istics. For instance, when generating a human face with glasses, a smile, or a

beard (labels), there are numerous possibilities for the specific types of glasses,

smiles, and beards that can be incorporated. Extracting these specific features and

representing them in disentangled forms becomes crucial.

Chapter 5 and 6 in the thesis both aim to achieve a shared objective, which is to

model the characteristics associated with specific labels.

In Chapter 5, an innovative extension of the existing work of VAE [122] is pre-

sented. This approach provides a novel method to model the features associated to

the high-level factor by introducing a variable into the latent space. On the other

hand, Chapter 6 propose a method that enhances both the generation quality and

accuracy.

Notably, Chapter 5 is mainly composed of the article:

K. Zou, S. Faisan, F. Heitz, , and S. Valette. Joint disentanglement of labels and

their features with VAE. In IEEE International Conference on Image Processing

(ICIP), 2022.

Chapter 6 is mainly composed of the article:
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K. Zou, S. Faisan, F. Heitz, and S. Valette. Disentangling high-level factors and

their features with conditional vector quantized vaes. Pattern Recognition Letters,

2023.

Note that Chapter 6 also contains the supplementary material that has not been

published.

• Chapter 7 The final chapter concludes this thesis, followed by a discussion of

the findings and potential future research directions.
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CHAPTER 2

From Constraints to Creation: Disentangled Representations and
Conditional Generation in State-of-the-Art Generative Models

2.1 Background

2.1.1 Variational Autoencoder

One of the most popular generative models is VAE [124], which learns a low-dimensional

representation of the input data by encoding it into a latent space and then decoding it

back to the original space. The VAE is different from traditional autoencoders in that

it incorporates a probabilistic interpretation of the latent space, which allows for the

generation of new data points by sampling from the learned distribution.

The fundamental concept of VAEs is to learn a probabilistic mapping between the

observed data space x, and a latent space represented by z. The distribution of the

latent space is associated with the corresponding data sample x. In this framework, the

generative model learns a joint distribution, which can be expressed as follows:

pθ(x, z) = pθ(x | z)p(z), (2.1)

where θ stands for learnable parameters. The latent variable z serves as the latent rep-

resentation of the real data x and is endowed with a probabilistic interpretation, often

assumed to follow a normal distribution (p(z) ∼ N (0, I)). pθ(x|z) is often modeled as

a Gaussian distribution, whose mean is given by a neural network with parameters θ.

We have:

pθ(x|z) = N (x; fθ(z), vI)

= N (x; x̂, vI),
(2.2)

where the parameter v represents the variance, which is typically set as a hyperparam-

eter with a value greater than zero. On the other hand, x̂ is the mean of the distribution

pθ(x|z) which also refers to the reconstructed value of x.

However, computing the posterior distribution pθ(z|x) directly is often computa-

tionally intractable. VAEs address this issue by employing the concept of variational
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inference, which involves training a parametric inference model qϕ(z|x) to approximate

the true posterior pθ(z|x). qϕ(z|x) is defined as a Gaussian distribution whose mean and

variance is estimated by a neural network with parameter ϕ, it writes:

qϕ(z|x) ∼ N (z;µϕ(x),Σϕ(x)). (2.3)

Note that the distribution of qϕ(z|x) can be calculated with the same inference model

for all values of x. The approach of sharing the variational parameters across all data

points is known as amortized variational inference [67].

For any inference model, the likelihood log pθ(x) is written as:

log pθ(x) = Ez∼qϕ(z|x) [log pθ(x)]

= Ez∼qϕ(z|x)
[
log

[
pθ(x, z)

pθ(z | x)

]]
= Ez∼qϕ(z|x)

[
log

[
pθ(x, z)

qϕ(z | x)
qϕ(z | x)
pθ(z | x)

]]
= Ez∼qϕ(z|x)

[
log

[
pθ(x, z)

qϕ(z | x)

]]
︸ ︷︷ ︸

=Lθ,ϕ(x)(ELBO)

+Ez∼qϕ(z|x)
[
log

[
qϕ(z | x)
pθ(z | x)

]]
︸ ︷︷ ︸

=DKL(qϕ(z|x)|pθ(z|x))

,

(2.4)

where the Kullback-Leibler (KL) divergence quantifies the difference between two dis-

tributions. Since the KL divergence is always non-negative, the first term of Eq. 2.4

is known as the Evidence Lower BOund (ELBO). As shown in Eq.2.4, the maximizing

ELBO involves maximizing the marginal likelihood, pθ(x), and minimizing the KL di-

vergence between the estimated posterior, qθ(z|x), and the true posterior pθ(z|x). By

writing pθ(x, z) = p(z)pθ(x|z), the ELBO term becomes:

Lθ,ϕ(x) = Ez∼qϕ(z|x)[log pθ(x|z)]−DKL(qϕ(z|x)||p(z)). (2.5)

It is worth noting that the parameters θ and ϕ can be optimized together. The

first term, Ez∼qϕ(z|x)[log pθ(x|z)], is estimated using a Monte Carlo method, specifi-

cally the Stochastic Gradient Variational Bayes (SGVB) algorithm, which incorporates

the reparametrization trick. The second term can be computed analytically since both

qϕ(z|x) and p(z) follow the Gaussian distribution.

Another perspective to comprehend VAEs is by considering two joint distributions.

The first joint distribution, denoted as pθ(x, z), captures the relationship between the

generated data x and the latent variable z, as shown in Equation (2.1). Similarly, the

second joint distribution, denoted as qϕ(x, z), accounts for the approximation of the
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latent variable and the observed data x, and can be expressed as:

qϕ(x, z) = qϕ(z | x)qD(x), (2.6)

where qD(x) represents the empirical (data) distribution which is a mixture distribution:

qD(x) =
1

N

N∑
i=1

q
(i)
D (x), (2.7)

where N is the size of the dataset and each component q(i)D (x) represents a distribution

that can be described as a Dirac delta function centered at the value x(i) for continuous

data (x(i) is the i-th sample of dataset), or a discrete distribution where all the probability

is concentrated at the value x(i) for discrete data.

Maximizing ELBO is equivalent to minimizing the KL divergence between qϕ(x, z)

and pθ(x, z). This equivalence is demonstrated in Appendix A.

DKL(qϕ(x, z)∥pθ(x, z)) = EqD(x)

[
Eqϕ(z|x)[− log pθ(x | z)] +DKL(qϕ(z | x)∥p(z))

]
+ C

= −Lθ,ϕ(x) + C.
(2.8)

Fig. 2.1 Image generation results with VAE on CelebA dataset [150]

Limitation and improvements While VAEs have shown great success in generating

new samples on small datasets, their performance tends to suffer when applied to more
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complex datasets, such as natural images. In such cases, several examples showcasing

the results of a standard VAE are presented in Figure 2.1. We can observe that the

generated images are often blurry and lack some high-frequency information, which is

a common criticism of VAEs.

There is an inherent trade-off between compression and reconstruction accuracy,

as discussed in [7]. Remarkably, the two terms in the loss function presented in Eq.

(2.5) exhibit a fundamental contradiction. Specifically, when the first term of Eq. (2.5)

(Ez∼q(z|x)[log pθ(x | z)]) is too large, it results in a latent space that lacks diversity.

Conversely, if the second term (DKL(qϕ(z | x)||p(z))) is too small, the latent space be-

comes excessively random, resulting in inaccurate reconstructions. Therefore, finding

a balance between these two losses is crucial for generating high-quality outputs in a

VAE.

A common approach is to alter the variance of pθ(x|z). In the standard VAE, pθ(x|z)
is typically assumed to follow a Gaussian distribution with a fixed variance denoted as

v (as shown in Eq. 2.2), which becomes a hyperparameter. Various methods have been

proposed to estimate the variance [208]. These include obtaining it from the output of a

neural network, calculating it for each mini-batch, or treating it as a learnable parameter.

An equivalent approach is to reformulate the ELBO (Eq. 2.5) as a combination

of the reconstruction loss and a weighted KL divergence loss (v is fixed). To control

the significance of the KL divergence loss, a parameter β is typically introduced, as

discussed in [86].

Another way to improve the performance of VAEs is to a use different regularisation

in the latent space to improve the quality of generated samples, such as the wasserstein

distance [239] or vector quantization [246, 199]. Note that Vector Quantized Variational

Autoencoder (VQVAE) is a variant of the traditional VAE that replaces the continuous

Gaussian distribution of the latent variables with a discrete distribution. The encoder

maps the input data to a sequence of discrete latent codes, which are then quantized to

a codebook of learned discrete embeddings. The decoder then maps the discrete codes

back to the original input space, producing a reconstructed output. The quantization

step enforces a form of discretization in the latent space, which encourages the model

to capture the underlying structure and dependencies of the data.

It is worth noting that Hierarchical VAEs are another improvement of VAEs which

use a hierarchical framework for capturing the underlying data distribution. This archi-

tecture consists of multiple levels, with each level of the encoder and decoder modeling

a specific level of abstraction of the data. Ladder VAE [227] utilizes lateral connections

between intermediate latent variables across layers to achieve a hierarchical architec-

ture. NVAE [244] achieves very high-quality and high-resoluition image generation by

a deep hierarchical VAE that uses depthwise separable convolutions for the generative
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model and regular convolutions for the encoder model. The architecture and results are

shown in Fig.2.2

Fig. 2.2 On the left side, we can see the hierarchical architecture of NVAE, where h and
r denote the trainable parameters and residual block, respectively. On the right side, we
showcase the results of NVAE on the CelebA dataset. Drawn from [244]

Applications VAEs have been used in a wide range of applications in machine learning

and computer vision. One of the most common applications of VAEs is in the field of

data generation. By learning the underlying distribution of a dataset, VAEs can generate

new data samples that are similar to the original data. This has been demonstrated in

various domains such as generating realistic faces [270], text [23], speech [38], and

human motion [182]. The ability to generate new data with similar characteristics as

the original data has led to the development of creative applications such as image

synthesis and art generation.

In addition to data generation, VAEs can also be used for image reconstruction tasks

due to their encoding ability such as image denoising [102], image inpainting [180], and

image super-resolution [151].

Another application of VAEs is anomaly detection, where the model is trained on

normal data and then detects anomalies as inputs that do not fit the learned distribution.

This has been applied in various fields such as fraud detection [238], medical diagnosis

[79], and cybersecurity [234]. By detecting outliers in data, VAEs can help identify

potentially problematic situations.

Finally, VAEs have found applications in various other scenarios, such as dimen-

sionality reduction [71] and reinforcement learning [166]. The ability of VAEs to learn

a compressed representation of high-dimensional data makes them useful for reduc-

ing the complexity of datasets. Additionally, their use in reinforcement learning tasks

involves using the encoded latent space representation to make decisions about the en-

vironment.
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Overall, VAEs have proven to be a powerful tool in a variety of applications, demon-

strating their versatility and usefulness in the field of machine learning. With ongoing

research and development, it is likely that the applications of VAEs will continue to

expand, further establishing their importance in the field.

2.1.2 Diffusion Models

Regarding diffusion models, commonly cited techniques include energy-based models

[87], score matching [101], and Langevin dynamics. In brief, this approach involves

training energy-based models utilizing methods like score matching and subsequently

using Langevin equations for sampling from these models [229, 65, 266, 224]. Theoret-

ically, this method is a well-established solution that holds the potential for generating

and sampling any continuous object, such as images and speech. However, practi-

cally speaking, energy function training proves to be a challenging task, especially with

high-dimensional data like high-resolution images. Achieving complete energy func-

tion training is difficult. Moreover, there is a high level of uncertainty when using

Langevin equations for sampling from the energy model, often leading to noisy results.

For a significant period, the conventional path of diffusion models involved ex-

perimenting solely with low-resolution images. However, the recent upsurge in diffu-

sion models’ popularity is primarily due to the Denoise Diffusion Probabilistic Model

(DDPM) proposed in 2020 [89]. Notably, the mathematical framework behind DDPM

was introduced earlier in 2015 [224]. Nevertheless, it was only with the DDPM that

high-resolution image generation became possible. While DDPM also adopts the name

diffusion model, it is fundamentally different from traditional models that rely on Langevin

equation sampling, except for a few similarities in their sampling process. In my opin-

ion, it is even more closely related to VAE. In any case, DDPM marks a new beginning

and a new chapter in this field.

From VAE to DDPM In the traditional VAE (as discussed in Sec. 2.1.1), the encoding

and generating processes are one-step processes, which can be represented as:

Encoding : z = f(x),Generating : x = g(z). (2.9)

The VAE framework revolves around three distributions: the encoding distribution

qϕ(z|x), the generating distribution pθ(x|z), and the prior distribution p(z). One of the

key advantages of VAE is its ability to generate data while also having the capability to

encode input data x into a latent representation z.

Despite its relatively straightforward structure and the existence of a mapping rela-

tionship between x and z, VAE’s expressive power is limited due to its inherent chal-

lenge in accurately modeling probability distributions. One common criticism of VAE
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is its tendency to produce blurry generated results, as illustrated in Figure 2.1.

DDPM is a similar approach that significantly enhances the quality of generation

(see Fig.2.3). It achieves this by dividing the encoding and generating processes into T

distinct steps. It can be modeled as follows.

Encoding : z = x0 → x1 → x2 → x3 → · · · → xT−1 → xT ,

Generating : x = xT → xT−1 → · · · → x3 → x2 → x1 → x0,
(2.10)

where x0 represents the true data. The encoding process involves gradually introduc-

ing noise to the data. We apply a gradual perturbation to the original data x0 until

we obtain xT from a Gaussian distribution N (0, I). The generation process involves

removing noise from xT and gradually recovering x0 through a series of T iterations.

Each encoding process is represented by q(xt|xt−1), while each generation process is

represented by p(xt−1|xt).
In this framework, each state transition, namely p(xt|xt−1) and q(xt−1|xt), models

a minor change in the process, which can be approximated by a Gaussian distribution.

The joint distribution corresponding to these transitions is expressed as follows:

q (x0, · · · , xT ) = q (xT | xT−1) · · · q (x1 | x0) q̃ (x0) , (2.11)

p (x0, · · · , xT ) = p (x0 | x1) · · · p (xT−1 | xT ) p (xT ) , (2.12)

where q̃ (x0) is the data distribution. In DDPM, both the diffusion process and the re-

verse process are represented as a Markov chain. Equation 2.11 describes the diffusion

process which is determined by the predefined noise schedule parameters, namely α

and β. The state transition of the diffusion process can be defined as:

q(xt|xt−1) = N (xt;
√
αtxt−1, βtI). (2.13)

This equation specifies that the distribution of xt given xt−1 follows a Gaussian

distribution. The mean of this distribution is obtained by scaling the previous input

xt−1 with the scalar
√
αt, and the covariance is βtI , where I is the identity matrix. As

in VAE, we also use the reparametrization trick to represent each variable. Thus we

have:

xt =
√
αtxt−1 +

√
βtεt, (2.14)

where εt ∼ N (0, I)

Another important feature is that we are able to directly calculate xt from x0 which
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Fig. 2.3 Image generation results with DDPM on CelebA dataset. Image taken from
[177].

allows us to train DDPM at any time step t. To simplify the calculation of xt, we need

to set αt + βt = 1 for each time step t. This allows us to express q (xt | x0) in a more

convenient form (demonstration is shown in Appendix B):

q(xt|x0) = N (xt;
√
ᾱtx0, β̄tI)

xt =
√
ᾱtx0 +

√
β̄tεt

(2.15)

where εt ∼ N (0, I), ᾱt =
∏t

s=1 αs and β̄t = 1 − ᾱt. The second equation of Eq.2.15

is the reparameterization of xt.

Therefore, in the context of DDPM, the mean and variance for each step xt are pre-

determined. Unlike traditional VAEs that learn the mean and variance through neural

networks, DDPM focuses solely on the generative process by discarding the encoding

process. Note that only the reverse process contains trainable parameters θ so that p will
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be denoted pθ. For the generation process (reverse process), the mean of each denoising

step pθ(xt−1|xt) is learned by a neural network µθ, and is defined as:

pθ(xt−1|xt) = N (xt−1;µθ(xt), σ
2
t I), (2.16)

where θ represents learnable parameters and σt is predetermined. The setting of σ is

discussed in Appendix B.

The whole process can be described by a directed graphical model shown in Fig.2.4

Fig. 2.4 The directed graphical model of DDPM. Image is taken from [89]

In order to train the diffusion model, the optimization objective for DDPM is to

minimize the Kullback-Leibler (KL) divergence between the two joint distributions: pθ
and q. This is similar to the optimization objective for VAE. The optimization objective

for DDPM is:

DKL(q||pθ) =
∫

q (xT | xT−1) · · · q (x1 | x0) q̃ (x0)

log
q (xT | xT−1) · · · q (x1 | x0) q̃ (x0)

pθ (x0 | x1) · · · pθ (xT−1 | xT ) pθ (xT )
dx0dx1 · · · dxT .

(2.17)

Since q does not contain any trainable parameters, the objective Eq. (2.17) can be

written as follows:

−
∫

q (xT | xT−1) · · · q̃ (x0) log(pθ (x0 | x1) · · · pθ (xT ))dx0 · · · dxT

=−
∫

q (xT | xT−1) · · · q̃ (x0)

[
log p (xT ) +

T∑
t=1

log pθ (xt−1 | xt)

]
dx0 · · · dxT .

(2.18)

Since xT ∼ N (0, I), the contribution of the term of log p(xT ) can be regarded as

constant, and we can focus on the optimization of the remaining terms in the objective

function. However, computing every step of the reverse process from scratch during

training is computationally expensive. Therefore, the most efficient way to train a dif-

fusion model is to optimize each term of the objective separately.

If we consider the utilization of a neural network ϵθ to estimate the noise associ-

ated with each step of the diffusion model, we can derive the straightforward objective
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presented in DDPM [89] as follows:

Eε∼N (0,I),x0∼q̃(x0)

[∥∥∥∥ε− ϵθ

(√
ᾱtx0 +

√
β̄tε, t

)∥∥∥∥2
]

(2.19)

Considering the specification of the noise approximator, we can derive the equation

for xt−1 given xt in the reverse process as follows:

µθ(xt) =
1

√
αt

(xt −
βt√
1− αt

ϵθ(xt, t)). (2.20)

Note that the integration of Equation 2.18 can be computed for each time step t as

outlined in Appendix C.

Limitations and improvements Despite the impressive quality of images generated by

the diffusion model (see Fig. 2.4), its slow sampling time and the lack of encoding func-

tionality have limited its practical application. To address these limitations, researchers

have proposed several approaches to enhance its performance. One such approach is

DDIM [228], which accelerates the sampling process by reducing the number of re-

quired sampling steps. DDIM also allows for deterministic reverse processing, which

means that we can determine the initial noise of the desired images, enabling various

image editing possibilities, such as modifying image conditions [84]. However, DDIM

inversion can result in instability and distorted reconstructions. To address this issue,

[250] suggests a novel approach inspired by coupling layers in normalizing flow models

[48], which provides mathematically exact inversion.

In addition, there are several tricks for training the diffusion model that can improve

its performance, such as learning the variances of the reverse diffusion process, using a

cosine noise schedule, adding extra loss terms to optimize the variational lower-bound.

[170].

Applications Diffusion models have a wide range of applications across various fields,

including computer vision, natural language processing, and audio signal processing,

and continue to set new state-of-the-art (SOTA) records.

In the field of computer vision, diffusion models have demonstrated impressive ca-

pabilities for super-resolution [135, 212, 90], image inpainting [154], image translation

[210, 188], and semantic segmentation [17, 24, 70]. But diffusion models are not lim-

ited to 2D image data alone. They are also capable of handling 3D data for point cloud

generation and completion [293, 156, 157], as well as time series data for human mo-

tion generation [237, 286], face expression generation [303], time series forecasting and

imputation [6], and video generation [81, 92, 273, 88].

In the field of natural language processing (NLP), diffusion models have also shown
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great promise in the field of NLP, with numerous applications and use cases [13, 139,

31, 68, 47]. Additionally, diffusion models have proven to be particularly useful in the

area of multi-modal learning, with one of the most popular applications being text-to-

image synthesis [205, 14, 193, 169, 72, 245]. Among them, Stable Diffusion [205]

has become the most widely used text-to-image model in both industry and people’s

daily life. Moreover, diffusion models have also been applied to other multi-modal

tasks, such as text-to-video [222, 190], text-to-audio [186, 271, 233], and text-to-3D

generation [267, 142, 185], all of which have achieved remarkable success. Further-

more, diffusion models have exhibited their versatility and broad applicability beyond

the domains previously mentioned, including but not limited to molecular graph mod-

eling [109, 94], medical image reconstruction [230], and robust learning [171]. The

success and effectiveness of diffusion models across such a wide range of applications

highlights their flexibility and wide-ranging utility in various problem domains.

2.1.3 Generative Adversarial Network

Generative Adversarial Networks, or GANs for short proposed by [69], are a type of

neural network used for generative modeling. They consist of two main components:

a generator network G and a discriminator network D. The generator network takes

as input a random noise vector z and produces a synthetic sample x′ = G(z) that is

intended to resemble real data samples x drawn from a training set.

The discriminator network, on the other hand, takes as input a sample x (either real

or synthetic) and outputs a scalar value D(x) ∈ [0, 1] representing the probability that

x is a real sample. The goal of the discriminator is to correctly distinguish between real

and synthetic samples, while the goal of the generator is to generate synthetic samples

that are indistinguishable from real samples. The architecture of GAN is shown in Fig.

2.5.

The training process for GANs involves alternating between updating the generator

and discriminator networks. Specifically, given a batch of training data x1, . . . , xm and a

batch of noise vectors z1, . . . , zm, the generator is updated by minimizing the following

objective:

min
G

1

m

m∑
i=1

log (1−D (G (zi))) . (2.21)

Intuitively, this objective encourages the generator to produce synthetic samples that

the discriminator is likely to mistake for real samples. Meanwhile, the discriminator is

updated by maximizing the following objective:

max
D

1

m

m∑
i=1

[log (D (xi)) + log (1−D (G (zi)))] . (2.22)
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This objective encourages the discriminator to correctly distinguish between real and

synthetic samples. Together, these two objectives create a ”game” between the gener-

ator and discriminator, where the generator tries to produce samples that can fool the

discriminator, and the discriminator tries to correctly classify samples as real or syn-

thetic. Thus, the whole objective can be rewrite as follows.

min
G

max
D

V (D,G) = Ex∼pdata (x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))]. (2.23)

True
 or 
False

Fig. 2.5 The architecture of GAN. The generator G and the discriminator D are opti-
mized alternatively.

Limitation and improvements GANs can efficiently generate highly realistic synthetic

data, but they can be difficult to train due to the potential for the generator and discrim-

inator to become stuck in a ”stalemate”. One major challenge is the optimization of the

traditional GAN objective function, which involves minimizing the Jensen-Shannon di-

vergence between the real and synthetic data distributions (see next paragraph), leading

to instability. Additionally, the discriminator can become ineffective if the probability

values it produces become too extreme, causing vanishing gradients and saturation.

Assuming the existence of an optimal discriminator D∗(x), which can accurately

distinguish between data samples x drawn from the true distribution pr(x) and those

generated from the distribution pg(x), we can derive the optimal discriminator by setting

the derivative of the discriminator loss function Eq. (2.22) to zero. It writes:

D∗(x) =
pr(x)

pr(x) + pg(x)
. (2.24)

By substituting this optimal discriminator into the generator loss function, refer-

enced as Eq. (2.21), we can get:

Ex∼pr log
pr(x)

1
2
[pr(x) + pg(x)]

+ Ex∼pg log
pg(x)

1
2
[pr(x) + pg(x)]

− 2 log 2. (2.25)
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It is equivalent to minimizing the Jensen-Shannon divergence:

DJS (pr, pg) = DKL (pr∥pm) +DKL (pg∥pm) , (2.26)

where pm = (pr + pg)/2. This aligns with the objective of generating synthetic data

that is as close as possible to the real data distribution. However, the Jensen-Shannon

estimate tends to remain constant or increase instead of decreasing. This occurs when

the discriminator performs too well, and the gap between the pr and pg distributions is

too large, resulting in the Jensen-Shannon distance approaching its maximum value of

log 2. As a consequence, the Jensen-Shannon distance saturates, the discriminator loss

becomes zero, and the generated samples become meaningful in some instances, while

in others, they collapse into meaningless images.

Due to the reasons mentioned above, achieving stable and effective training of

GANs has been a hot topic in the research community. DCGAN [192] proposed archi-

tectural improvements to enhance the stability of GAN training. These improvements

include using Average pooling and stride operations for downsampling in the network

and ConvTranspose2D layers with stride for upsampling. The generator and discrimi-

nator are designed with specific architectures to optimize their performance. The gener-

ator utilizes the Tanh activation function for its output, while the discriminator employs

LeakyReLU activation functions for each layer. Furthermore, fully connected hidden

layers are removed to facilitate deeper architectures.

[213] introduced the concept of feature matching as a training approach for the

generator. The idea is to minimize the distance between the features extracted by the

discriminator from both the generated images and the real images. By aligning the

features, the generator can learn to generate samples that resemble the real data distri-

bution. Additionally, the paper proposes a technique called one-sided label smoothing

as an alternative to the traditional binary labels used in GANs. Instead of assigning bi-

nary values (0 or 1) to real and fake samples, one-sided label smoothing assigns a lower

value (e.g., 0.9) to the real samples. This modification helps prevent the discriminator

from becoming overly confident, leading to more stable GAN training. Furthermore, the

paper discusses several other techniques to address different challenges in GAN train-

ing. These techniques include virtual batch normalization, historical averaging, and

minibatch discrimination. Virtual batch normalization aims to reduce internal covariate

shift by normalizing the generator’s intermediate layers using statistics from a reference

batch. Historical averaging involves maintaining a running average of the generator’s

parameters to stabilize training and improve sample quality. Minibatch discrimination

is a method to encourage diversity in generated samples by introducing additional in-

formation about the entire minibatch during the discriminator’s computation. These
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techniques collectively contribute to improving GAN training by addressing issues re-

lated to internal covariate shift, discriminator robustness, sample diversity, and overall

stability.

In addition to the aforementioned techniques, a variant of GANs called the Wasser-

stein Generative Adversarial Network (WGAN) was introduced by [9]. Instead of using

the Jensen-Shannon divergence, WGANs use the Wasserstein distance (also known as

the earth mover’s distance) to measure the distance between the real and synthetic data

distributions.

W (pr, pg) = inf
γ∈Π(pr,pg)

E(x,y)∼γ[∥x− y∥], (2.27)

where Π(pr, pg) denotes the set of all joint distributions γ(x, y) whose marginals are

respectively pr and pg. The Wasserstein distance has several advantages over the Jensen-

Shannon divergence, including being smoother and more stable to optimize. Addition-

ally, WGANs use a modified discriminator that produces a scalar output rather than a

probability value, making it less prone to vanishing gradients. Additionally, the concept

of WGAN was expanded upon by WGAN Gradient Penalty (WGAN-GP) [75], which

introduced a gradient penalty (GP) term in the discriminator to enforce the 1-Lipschitz

constraint.

Moreover, Boundary Equilibrium GAN (BEGAN) [19] uses an equilibrium between

the generator and discriminator to control the trade-off between image quality and di-

versity. The model aims to find a ”boundary” where the generator produces images

that are both high-quality and diverse. To achieve this, BEGAN introduces a new loss

function based on the Wasserstein distance between the real and generated images, and

adds a new parameter called the ”equilibrium factor” that controls the balance between

the generator and discriminator. The equilibrium factor is updated during training to

ensure that the generator produces images that are diverse and of high quality.

In addition to improving its objective, GAN has also undergone numerous structural

enhancements. Progressively-Growing GAN (PGGAN) (proposed by [113]) adopts a

multi-scale GAN architecture in which both the generator (G) and discriminator (D)

begin training with low-resolution images (e.g. 4x4) and gradually increase in depth

by adding new layers during the training process. This leads to the generation of high-

resolution images (e.g. 1024x1024) with sharp details.

StyleGAN [115] expands upon PGGAN and introduces novel architecture which

leads to an automatically learned, unsupervised separation of high-level attributes and

stochastic variation in the generated images. One of the key innovations of StyleGAN is

the incorporation of a mapping network that transforms the input latent code into an in-

termediate latent code. This intermediate latent code allows for more fine-grained con-

trol over the generated images by disentangling different aspects of the image synthesis
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process. Furthermore, StyleGAN incorporates an affine transformation that operates on

the intermediate latent code. This transformation produces styles that influence the lay-

ers of the synthesis network using a technique called Adaptive Instance Normalization

(AdaIN) [99]. AdaIN scales the normalized input with style spatial statistics, providing

fine-grained control over specific image features. The unique architecture of StyleGAN

has made it a widely recognized and influential approach in the field of generative ad-

versarial networks. The architecture is shown in Fig.2.6.

Fig. 2.6 Architecture of Style-
GAN. Grawn from [115]

The progress in GAN models can be attributed

to two key factors: the improvement of GAN

losses such as WGAN and WGAN-GP, and the en-

hancement of model architectures like PGGAN and

StyleGAN. These advancements have allowed re-

searchers and practitioners to explore the frontiers

of generative modeling by generating data samples

that are more realistic and diverse than ever before.

As a result, GANs have gained immense popular-

ity and have found extensive applications due to

their remarkable adaptability to various neural net-

work structures. The following section will highlight

some of the applications of GANs.

Applications GANs are incredibly powerful gener-

ative models capable of producing realistic samples

that closely resemble the data they were trained on. This unique capability has led to

their adoption across a wide range of fields within computer vision (CV) and artifi-

cial intelligence (AI). In particular, GANs have found numerous applications in various

domains, including image, audio, and video. Thanks to their extensive development

history and widespread adoption, GANs have become a go-to tool for many different

applications. In table 2.1., we highlight some of the most popular GAN applications

across different domains.

2.1.4 Bridging the Gap: Exploring the Relationship between VAE, GAN, and DDPM

Each model has its own advantages and disadvantages. VAE has nice encoding capa-

bilities; however, it tends to lose high-frequency information of images. On the other

hand, GANs have the ability to produce high-quality images, but they are challenging

to train and often prone to mode collapse, which is when the generator only produces

a limited number of outputs instead of the variety that is desired. Diffusion models,
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Table 2.1 Summary of some the applications utilizing GANs.

Primary Secondary Papers

Computer
Vision

Image
Generation

[192],[16] [113], [115], [25], [263], [116], [114],
[282]

Image
translation

[105], [296], [277], [121], [252], [36], [100], [37]

Image
in-painting

[50], [145]

Facial
landmark
detection

[52], [275]

Image
super-
resolution

[27], [299], [131], [257], [73]

Facial
attribute
manipula-
tion

[265], [264], [204], [276],[96]

Text to
image

[200], [283], [268],[284], [298], [290], [235], [64]

Medical
image

[80], [163], [78], [243], [214] , [269]

Video
2D video [249], [242],[43], [39], [174]
3D video [175]

Audio

Language
and Speech
synthesis

[143], [95] [218]

Music
generation

[162], [281], [74], [97], [137]

while capable of generating high-quality images, involve a complex generation process

and suffer from slow sampling. Therefore, each method has its own suitable application

scenarios. For instance, diffusion models are preferred when prioritizing image quality

over generation time. GANs are well-suited for real-time applications, whereas VAEs

prove valuable in handling high-frequency noise within images. Simultaneously, many

researchers are attempting to integrate these models to compensate for their individual

limitations.

One promising approach that has gained significant attention is the combination of

VAEs and GANs, known as VAE-GAN [129]. VAEs can struggle to capture the intricate

details and textures of the input data, leading to blurry or low-resolution outputs. An

improved method for image generation that addresses this issue is the use of adversarial

training [160, 98, 129] which incorporates an adversarial loss term that encourages the

generated images to match the distribution of the input data more closely. This hybrid

model combines the encoding capabilities of VAEs and the image generation prowess
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of GANs to overcome their individual limitations.

In VAE-GAN, the VAE component plays a crucial role in encoding input data into

a latent space representation. This encoding process enables efficient compression and

noise reduction, effectively capturing the essential features of the input. On the other

hand, the GAN component focuses on generating high-quality images from the learned

latent space representation. By leveraging the adversarial training framework, the GAN

component learns to generate images that resemble the training data distribution, re-

sulting in a realistic generation. The architecture of VAE-GAN typically involves the

incorporation of a VAE encoder, a VAE decoder, and a GAN discriminator, as shown in

Fig.2.7. The encoder compresses the input data into a lower-dimensional latent space

representation, while the decoder produces the reconstruction from this latent space.

The discriminator, in turn, distinguishes between real and generated images, provid-

ing feedback to both the encoder and the decoder to improve the quality of generated

samples.

Fig. 2.7 The architectures of VAE, GAN, and VAE-GAN. Drawn from [16]

The integration of VAEs and GANs in VAE-GAN and its variants opens up numer-

ous possibilities in the field of image synthesis. By leveraging the encoding capabilities

of VAEs and the image generation abilities of GANs, researchers aim to produce high-

quality, diverse, and controlled image generation models. Ongoing research continues

to refine and optimize these architectures, loss functions, and training procedures to un-

lock the full potential of VAE-GAN and its applications in various domains.

As the field of diffusion models continues to advance, researchers are exploring the

integration of diffusion models with other generative models to enhance their capabili-

ties. One such integration is exemplified by DiffuseVAE [176]. DiffuseVAE combines

the variational autoencoder (VAE) model with the diffusion model, conditioning the

diffusion model with the reconstruction output from VAE. By incorporating the encod-

ing capability of the VAE with the diffusion model, DiffuseVAE enables the generation

process to be controlled and improves the overall quality of generated samples.

Another integration is demonstrated in Diffusion-GAN [260]. In this approach, a

discriminator is incorporated into the diffusion process to distinguish between real and

fake noisy images at each diffusion step. By utilizing the discriminator, Diffusion-
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Fig. 2.8 The architectures of diffuseVAE. Image is taken from [176].

GAN enhances the realism of the generated images and produces more realistic results

compared to traditional diffusion models.

These integrations of diffusion models with other generative models showcase the

potential to combine different techniques and frameworks to achieve improved genera-

tion quality, controllability, and realism in the generated samples.

2.2 Disentanglement Representation

When generating faces, a common problem arises - what kind of face should the model

produce? Should it have white skin, a small nose, or any other specific feature? To

address this challenge, a disentangled representation [18] can be employed, which in-

volves separating the different facial features, such as eye color, nose shape, and lip size.

By disentangling these features, new images can be generated by combining different

combinations of these features.

Disentangling the factors of variation within data is a critical challenge in the fields

of machine learning and computer vision. Typically, complex data is represented using

a feature space. Disentangled representation involves encoding each observable fea-

ture of the data separately within this feature space, so that each element of the space

carries an interpretable semantic meaning. Specifically, when a feature of the data,

such as the color of a face, changes, the corresponding element in the feature space

should also change. This process aims to separate the underlying factors of variation

within a dataset or system, allowing them to be analyzed and examined independently.

Achieving disentangled representation is an important goal because it can enhance in-

terpretability, controllability, generalizability, and robustness of the model.

2.2.1 Traditional Statistical Approaches

In order to achieve Disentangled Representation Learning (DRL) without relying on

deep learning techniques, there are several traditional methods that have been proven

effective. One of the most representative algorithms in this regard is Principal Com-

ponent Analysis (PCA). PCA is widely recognized for its ability to disentangle latent

factors and has been successfully utilized in various applications.
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Principle Component Analysis (PCA) Principle Component Analysis (PCA) [262]

is a widely used dimensionality reduction technique in machine learning that involves

projecting high-dimensional data onto a lower-dimensional subspace while retaining

as much of the original variance as possible. PCA applies a linear transformation to

identify the underlying structure or patterns in the data by projecting it onto a new set

of orthogonal axes known as principal components. The first principal component is

selected to capture the direction of maximum variance in the data, while subsequent

components capture the remaining variance in orthogonal directions. While PCA and

disentangled representation learning have distinct objectives and methodologies, they

share a common goal of identifying and isolating important features or factors of vari-

ation in the data. In particular, the principal components identified by PCA can be

interpreted as the most important factors of variation in the data, and hence, can be

viewed as a form of disentangled representation.

However since it is a linear technique, this can limit its effectiveness in capturing

complex features that may exist within the data. Finally, PCA can be sensitive to out-

liers, as the presence of outliers can significantly affect the results of the analysis.

Human Face Modeling The concept of disentangled representation is also employed in

the parametric modeling of 3D faces. In this context, disentanglement is accomplished

by applying PCA on different groups of the dataset. BFM (Basel Face Model)[179] is

such a model whose input consists of the shape, expression and texture parameters. To

learn the shape variation, PCA is performed on a large dataset of diverse subject. The

expression component of the BFM was obtained using a similar approach, but using

a dataset of faces with a range of expressions. These components capture the defor-

mation of the face caused by expression and shape changes, allowing the generation

of realistic 3D models of faces with various expressions and shapes. Additionally, the

texture model of BFM is constructed by performing PCA on a set of facial texture maps.

Human Body Modeling Similar idea is also applied on human body. The Skinned

Multi-Person Linear (SMPL) model is a widely used method for modeling human body

shape and pose. It is a statistical body model based on optimization method that can

represent a wide variety of body shapes and poses using a low-dimensional parameter-

ization. The SMPL model has been used in computer graphics, computer vision, and

machine learning applications such as virtual try-on, motion capture, and pose estima-

tion. The model provides a compact and expressive representation of the human body,

which can be used for a variety of tasks.

To achieve this disentangled representation, the SMPL model uses a multilinear
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model to represent the 3D human body. The pose variation is first learned by using

multi-pose dataset. Then a joint regressor is used to alter the joint position of different

subjects. Finally, the shape variation is learned by using different subjects but with the

same pose. The whole process is illustrated in Fig.2.9.

Fig. 2.9 Process of SMPL model. Image is taken from [153]. (a) The template mesh,
denoted as T , is shown with color-coded weights and white joints. (b)Shape-driven
deformation is applied to the template mesh. The shape deformation, represented by
BS(β⃗), modifies the template mesh based on the shape parameter β⃗. Additionally, the
joints, denoted as J(β⃗), are repositioned accordingly. (c) In addition to shape defor-
mation, pose-dependent shape deformation is introduced. This deformation, denoted as
BP (θ⃗), takes into account the influence of pose on the shape of the model. It further
modifies the template mesh based on the pose parameters θ⃗. (d) Vertex deformation is
performed using dual quaternion skinning, resulting in the final pose of the model.

2.2.2 VAE-based Methods

Generative models, such as VAEs, have demonstrated remarkable potential in unsuper-

vised disentangled representation learning. These models can effectively capture and

separate underlying factors of variation in the data without explicit supervision. VAEs

learn a low-dimensional latent representation of the data that can be used for generation

and manipulation tasks. One of the most widely-used methods that learns the disentan-

gled representation is β-VAE [86]. The objective function writes:

Ez∼q(z|x)[− log p(x | z)] + βDKL(q(z | x)∥p(z)). (2.28)

When β = 1, β-VAE has the same formulation as the original VAE objective func-

tion. Increasing the value of β will encourage the disentanglement in the latent space.

Intuitively, it will increase the independence among the factors of the latent space and

carry less information of reconstruction. [28] propose to explain β-VAE using the

information bottleneck method. The stratety is to gradually increase the information

capacity of the latent channel and the objective function is written as follows:
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Ez∼q(z|x)[− log p(x | z)] + γ|DKL(q(z | x)∥p(z))− C|, (2.29)

where γ and C are hyperparameters. In order to ensure a high-quality reconstruction

and effective disentanglement, the value of C will gradually increase from 0 to a sig-

nificant value. This gradual increment encourages the latent space to contain ample

information that is necessary for achieving excellent reconstruction quality while also

ensuring a strong disentanglement capability.

FactorVAE [118] further augments Eq.2.28 by adding a Total Correlation (TC) term

−γDKL(q(z)∥q̄(z)), where q̄(z) =
∏

j q(zj) where z(j) stands for j-th component of z.

This term measures the dimension-wise dependence in the latent space. [30] propose to

decompose DKL (q (z | x) ∥p(z)) into three parts: (i) index-code mutual information,

(ii) total correlation, (iii) dimension-wise KL divergence. It writes:

DKL (q(z | x)∥p(z)) =DKL (q(z, x)∥q(z)p(x))︸ ︷︷ ︸
(i) Index-code Mutual Information

+DKL

(
q(z)∥

∏
j

q (zj)

)
︸ ︷︷ ︸

(ii) Total Correlation

+
∑
j

DKL (q (zj) ∥p (zj))︸ ︷︷ ︸
(iii) Dimension-wise K L Divergence

.

(2.30)

where index-code mutual information, as introduced in [28], will encourage compact

and disentangled representation, then total correlation forces the model to find statisti-

cally independent factors in the data distribution, finally dimension-wise KL Divergence

prevents the latent space to be far away from the prior. [30] validate the significance

of the Total Correlation (TC) term in the decomposition of disentangled representation

learning. They demonstrate that by penalizing this term, it is possible to effectively

learn disentangled representations. Inspired by the β-VAE framework, where a hyper-

parameter is introduced to adjust the importance of each term in the decomposition,

they propose a variant called β-TCVAE. The results are shown in Fig.2.10.

The aforementioned VAE-based methods are unsupervised. It is interesting to note

that we can learn the disentangled representation using VAE in a (semi)supervised man-

ner. [122] propose to use semi-supervised training to learn a representation that contains

the label y. Then the inference model becomes: qϕ(y, z | x) = qϕ(z | x, y)qϕ(y | x). If

the label is known , the ELBO becomes:
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Fig. 2.10 Latent traversal of β-TCVAE on CelebA dataset. Face width is only mani-
fested in one direction of a latent variable, so it only shows a one-sided traversal. Drawn
from [30]

log pθ(x, y) ≥ Eqϕ(z|x,y) [log pθ(x | y, z)−DKL(qϕ(z|x, y)||p(z)) + log pθ(y)] .

(2.31)

The objective for supervised training is denoted as −L(x, y).
When the label is missing, it is treated as a latent variable, and posterior inference is

performed on it. The resulting bound for handling data points with an unobserved label

y is as follows:

log pθ(x) ≥ Eqϕ(y,z|x) [log pθ(x | y, z)−DKL(qϕ(z|x, y)||p(z)) + log pθ(y)]

=
∑
y

qϕ(y | x)(−L(x, y)) +H (qϕ(y | x)) . (2.32)

The objective for unsupervised training is denoted as −U(x) Finally, the ELBO on

the whole dataset becomes:

J =
∑

(x,y)∼p̃l

L(x, y) +
∑
x∼p̃u

U(x). (2.33)

where p̃l and p̃u represent the distribution of labeled data and unlabeled data respec-

tively.

Furthermore, [219] propose a framework that facilitates the learning of disentan-

gled representations of data within the domain of VAEs. This framework leverages

partially-specified graphical model structures and employs semi-supervised learning

schemes. To achieve this, they introduce hybrid generative models that combine struc-

tured graphical models and unstructured random variables within the same latent space.

The structured component y is intended to represent the label, while the remaining in-

formation is encoded into unstructured random variables z. For instance, in the MNIST

database, the handwriting style is encoded in z, while the numerical digit is encoded in
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y. The results on the MNIST database is presented in Fig.2.11.

Fig. 2.11 Illustrations of results from supervised disentangled representation learning.
The images in the leftmost column serve as reference styles, assumed to be encoded in
z. The remaining images are generated using the style z and numerical labels y ranging
from 1 to 9. Image is taken from [219].

Fig. 2.12 CCVAE
graphical model.
Drawn from [111]

However, recognizing that a single label y may not fully

capture the features associated with it, [111] propose a differ-

ent approach called CCVAE (characteristic capturing VAE ).

Instead of directly incorporating the label value into the latent

space, the goal is to learn a representation of the label y that

can effectively affect the associated features. The graphical

model depicting this concept is illustrated in Figure 2.12. To

establish the relationship between the latent variable zic and

the label yi, where i represents the i-th label, two distribu-

tions are introduced: qφ(y
i | zic) and pψ(z

i
c | yi). Here, zic

represents a subset of the latent variable z, which is calcu-

lated from the input data x using an inference model qϕ(z|x).
The reconstruction process is performed using a generative

model pθ(x | z). By connecting the label yi and the latent space subset zic, it becomes

possible to modify the features associated with the label yi by manipulating zic. This ap-

proach allows for the alteration of specific characteristics related to the label, enabling

more nuanced control over the generated output.

In our research [300], we also focus on learning a representation of y that enables us

to manipulate its characteristics with fine-grained control. We extend this work by in-

corporating a discrete latent space and employing a two-step learning procedure as pro-

posed by [302]. This approach enhances our ability to accurately manipulate features

and generate high-quality image reconstructions. For more comprehensive information

on these two studies, please refer to Chapter 5 and Chapter 6.
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2.2.3 GAN-based model

The GAN framework offers an alternative generative model for learning unsupervised

disentangled representations. Similar to VAEs, additional terms can be incorporated

into the loss function or a prior can be introduced. A seminal work in this area that

utilizes GAN to learn disentangled representations is InfoGAN [32].

The input is composed of two elements: (i) an unstructured noise vector represented

as z, and (ii) a discrete latent code c that is sampled from a mixture of one-hot vari-

ables, it is specifically designed to capture independent features or variations present

in the data distribution. To enable c to disentangle specific factors in the data, Info-

GAN introduces a variational regularizer in the form of mutual information, denoted as

I(c,G(z, c)), weighted by a hyperparameter λ. Consequently, the objective of InfoGAN

can be reformulated as follows:

min
G

max
D

VI(D,G) = V ′(D,G)− λI(c;G(z, c)), (2.34)

where V ′(D,G) is the original objective of GAN (Eq. 2.23). However, since the pos-

terior p(c|x) is intractable, I(c;G(z, c)) is difficult to optimize. InfoGAN chooses to

derive a lower bound of it by approximating p(c|x) with a auxiliary distribution q(c|x):

I(c;G(z, c)) = H(c)−H(c | G(z, c))

= Ex∼G(z,c)

[
Ec′∼p(c|x) [log p (c′ | x)]

]
+H(c)

= Ex∼G(z,c)[DKL(p(· | x)∥q(· | x))︸ ︷︷ ︸
≥0

+Ec′∼p(c|x) [log q (c′ | x)]] +H(c)

≥ Ex∼G(z,c)

[
Ec′∼p(c|x) [log q (c′ | x)]

]
+H(c),

(2.35)

where H(.) represents the entropy of random variable. The approximated posterior

q can have learnable parameters so that it can be implemented as a neural network

which often shares the parameters with the discriminator. The overview of InfoGAN is

presented in Fig. 2.13.

ClusterGAN [164] extends the work of InfoGAN and introduces several key en-

hancements. As in infoGAN, the latent space consists of two components: a discrete

variable c sampled from a mixture of one-hot variables and a continuous variable z sam-

pled from a normal distribution. However, unlike in infoGAN where only the discrete

variable c is projected back, the generated data is, in this approach, accurately mapped

back to the entire latent space using an inverse network. The model is trained jointly

with a cluster-specific loss, which encourages the generated samples to align with the

desired clusters.

Information Bottleneck GAN(IB-GAN, [107]) further improved the InfoGAN by

30



True
 or 
False

share weight 

Fig. 2.13 The architecture of infoGAN.

introducing a intermediate stochastic layer eψ which can be considered as an encoder

and project the latent space z to another representation r. Next, a weak prior m(r) is

established for the variable r, which follows a Gaussian distribution. The encoder is

trained to minimize the KL divergence between the output r and the Gaussian prior.

This process actually is one of the application of information bottleneck. Similarly to

infoGAN, in addition to the discriminator, an inverse neural network is employed to

project the generated output ẑ back into the latent space z. This projection aims to

maximize the mutual information between z and ẑ . The architecture is presented in

Fig.2.14.

Fig. 2.14 The architecture of IB-GAN. Drawn from IB-GAN [107]

InfoGAN-CR [144] is a variant of InfoGAN that introduces a contrastive regular-

izer (CR) term to achieve disentanglement in a self-supervised manner. The underlying

assumption behind this approach is that traversing the latent space should result in dis-

tinct changes in the generated images. The method proceeds as follows: First, several
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images are generated using the model. Then, one of the latent dimensions is fixed while

the remaining dimensions are randomly sampled. Subsequently, a classifier is trained to

determine which specific latent variable was fixed during the generation process. This

classifier acts as a contrastive regularizer, encouraging the model to disentangle the la-

tent variables. By incorporating the contrastive regularizer, InfoGAN-CR enhances the

disentanglement capability of the generative model. It encourages the model to learn

representations in which each dimension of the latent space corresponds to a distinct

and interpretable factor in the generated images.

In addition to unsupervised methods, there are numerous works that introduce su-

pervision in disentangled representation learning. Similar to the VAE approach, the

latent space is divided into two parts: the supervised part encodes the information rele-

vant to the supervision task, while the second part encodes the remaining information.

[240] proposed DRGAN, a variant of the adversarial autoencoder that focuses on su-

pervised learning. This method takes an image as input, extracting identity information

from the latent space. It combines this identity information with positional information

about facial features to generate desired images. Subsequently, the discriminator takes

both the ground truth image and the generated image as inputs to assess and determine

the pose and identification aspects. This model enables us to generate images based on

specific settings in the latent space, such as pose and identity features. The architecture

is shown in Fig.2.15

Fig. 2.15 DRGAN ar-
chitecture. Drawn from
[240]

ELEGANT [265] and DNAGAN [264] that are adversar-

ial autoencoders were specifically designed to encode human

face attributes into its latent space. To achieve this, the model

requires a pair of labeled images that have opposite attributes

(such as with or without eyeglasses) as input. It then swaps

latent units that are intended to represent the features asso-

ciated with the given attributes. This process generates four

different images: two reconstructions of the input image and

two generated images of the input with the opposite attribute.

The reconstructed images are used to compute the reconstruc-

tion loss, while the generated images, along with their labels,

are fed into the discriminator to ensure that the latent units

align well with the corresponding attributes. The architecure

of this idea is shown in Fig.2.16.
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Fig. 2.16 The ELEGANT architecture. The pair of images consists of two represen-
tations, ZA and ZB, where each image corresponds to the opposite label of the same
feature (e.g., one image represents smiling, while the other represents not smiling). The
latent unit swapping aims to achieve attribute swapping aligned with the target label.
Drawn from [265]

2.2.4 Diffusion Model Based Methods

As the diffusion model becomes increasingly popular, people are also beginning to ex-

plore its potential for disentangled representation learning. In a traditional autoencoder,

the latent space is often a fixed-size vector that can be thought of as a compressed rep-

resentation of the data. However, in a diffusion model, there is no simple way to extract

meaningful data representations from the latent representation.

In traditional disentangled representation, the image is reconstructed using the de-

coder while its features are controlled by the representation. However, achieving it in

diffusion models is challenging. Instead of directly controlling the reconstruction, a

recent work by [274] proposed a novel approach. They manipulate the gradient field

during the sampling process of a pre-trained diffusion model to achieve disentangle-

ment. The encoder takes an original image x0 as input and generates a series of latent

vectors, denoted as zc = z1, z2, ..., zc, where c is the number of underlying factors, each

representing one of the attributes in the image space. The decoder takes one of the latent

representations, as well as the latent representation of image at each step xt (from the

UNet of the pre-trained diffusion model) as input, and outputs the gradient field of the

corresponding attribute. With the help of the gradient, one can sample the image under

the corresponding condition. To conclude, the disentangled representation in this ap-
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proach is used to obtain the gradient field to guide the reverse process. The architecture

is shown in Fig. 2.17

Fig. 2.17 Illustration of DisDiff. Drawn from [274]

2.2.5 Evaluation Metrics

Evaluating the quality and effectiveness of disentangled representations is an important

aspect in the field of machine learning. Several evaluation metrics have been proposed

to assess the disentanglement of learned representations.

For unsupervised disentangled reoresentation learning, one commonly used metric

is the Mutual Information Gap (MIG) [30], which measures the degree to which each

learned factor of variation is captured by a single latent dimension. A higher MIG score

indicates a better disentanglement of factors. The joint distribution of a latent variable zj
and a ground truth factor vk can be defined as q (zj, vk) =

∑N
n=1 p (vk) p (n | vk) q (zj | n),

where p (n | vk) is the generative process for factor vk. Assuming that the underlying

factor p(vk) is known during the sampling process p (n | vk), the mutual information

can be written as:

In (zj; vk) = Eq(zj ,vk)

log ∑
n∈Xvk

q (zj | n) p (n | vk)

+H (zj) , (2.36)

where Xvk is the support of p (n | vk).
Then the MIG is defined as:

1

K

K∑
k=1

1

H (vk)

(
In
(
zj(k) ; vk

)
− max

j ̸=j(k)
In (zj; vk)

)
, (2.37)
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where H (vk) = Ep(vk) [− log p (vk)], j(k) = argmaxj In (zj; vk)1. K is the number of

known factors.

In supervised disentangled representation learning, the classification error is a com-

monly used metric [219, 265]. By leveraging a pretrained classifier, one can evaluate

the generated results by comparing them to the target label. This involves assessing

whether the generated samples are correctly classified into their respective categories.

The classification error provides a quantitative measure of the accuracy of the gener-

ated samples in terms of their assigned labels. Likewise, [111] introduces the concept

of calculating the log-probability output from a classifier to verify if the feature is ac-

curately captured by the latent space. The authors perform attribute swapping experi-

ments, such as transferring eyeglasses from one image to another, and then compare the

log-probability between the original image and the generated image. The underlying

principle is that an ideal attribute swapping operation should not result in a significant

alteration of the probability output from the classifier. By examining the log-probability

values, one can assess the extent to which the latent space successfully represents and

preserves the important features relevant to the classifier’s decision-making process.

To evaluate the image generation quality, a widely used evaluation metric is called

Fréchet Inception Distance (FID) [85]. The FID metric measures the similarity between

the generated images and real images based on the feature representations learned by

an Inception network. It uses a two-step process to calculate the distance: first step,

a pretrained neural network (usually inceptionNetv3 [232]) is used to extract feature

representations from both the real and generated images. The FID computes the Fréchet

distance between the multivariate Gaussian distributions of the real and generated image

features:

FID = ∥µr − µg∥2 + Tr

(
Σr + Σg − 2 (ΣrΣg)

1/2
)
, (2.38)

where N (µr,Σr) and N (µg,Σg) are multivariate Gaussian distributions of the real and

generated image features respectively.

2.3 Conditional Generation

In the earlier section, we explored how disentangled representations can be employed

for feature control and conditional generation. However, conditional generation can

also be achieved without relying on disentanglement. Instead of using labels directly,

various approaches leverage different modalities such as images or text to control the

generation process. One approach involves using images to control image generation,

enabling tasks like image translation. Another approach involves using text to control

image features, facilitating text-to-image generation. Additionally, there are methods
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that utilize images to control text generation, which is commonly known as image cap-

tioning. In this section, we will delve into these diverse types of conditional generation

and highlight some of the cutting-edge works in these areas.

2.3.1 Condition on the label

Data labels are one of the simplest and most widely used forms of conditional informa-

tion in machine learning. By providing a label for each data point, we can train models

to learn the underlying patterns and relationships in the data, and make predictions or

generate new examples based on these learned patterns.

In Sec.2.2, we have already discussed the approach of incorporating labels for super-

vised disentangled representation learning (DRL) which also enables generation from a

label variable. A key characteristic of DRL is that the remaining information, excluding

the label, is encoded into a latent space denoted as z, which is concatenated with the

label variable y. Together, they constitute a complete latent space that is fed into the

decoder for generation. Conditional generation does not impose any requirements on

the form of the conditions or whether the remaining information is entangled. It simply

refers to the process of generating data based on given conditions, without specifying

how the conditions or remaining information are encoded or represented. Based on this,

the supervised DRL can also be seen as a specific form of conditional generation.

As depicted in Figure 2.18, the neural network requires a mechanism to incorporate

the conditional information. The architecture of the neural network can be adapted to

accommodate different forms of label conditions. One straightforward approach is to

concatenate the label y with the intermediate output of the model. In the work on con-

ditional human motion generation [182], learnable tokens are employed. These tokens,

with the same size as the latent representation, are added as offsets to the latent space.

This incorporation of tokens enables conditional generation by encoding specific labels.

On the other hand, in the work on image translation [265], the label value is directly

used to generate an array with the same shape as the input image. Subsequently, this

array is concatenated with the image along the depth channel, allowing for conditional

discriminator based on the given label. Plug-and-Play Generative Networks (PPGN)

[167] utilizes a pretrained classifier and an optimization method to align the generated

data with the classifier’s output based on the given label.

One approach for conditional generation based on label variable is conditional GAN

(CGAN) proposed by [161], which introduces a conditional adversarial learning frame-

work. In this framework, the generator takes both a random latent vector z and a dis-

crete label vector y (one-hot encoding) as input. Furthermore, the discriminator network

takes both the generated image and the label y as input, ensuring that the generated im-

age corresponds to the given label. By jointly training the generator and discriminator,
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the model learns to generate images that are not only coherent and realistic but also

aligned with the specified label. The loss is presented as follows:

min
G

max
D

V (D,G) = Ex∼pdata (x)[logD(x, y)] + Ez∼pz(z)[log(1−D(G(z, y)))]. (2.39)

Once the model is trained, modifying the label vector y will prompt the generator to

generate images that are associated with the updated label. This capability enables the

generation of corresponding images for different labels, showcasing the disentangled

representation learned by the model.

Fig. 2.18 The architectures of CVAE, CGAN, PPGN, CVAE-GAN. Drawn from [16]

Conditional VAE (CVAE) [225] extends the concept of Variational Autoencoder

(VAE) by introducing stochastic neural networks for structured output prediction. They

propose a conditional deep generative model with Gaussian latent variables. Notably,

subsequent methods utilize the cVAE approach, employing labels to condition both the

encoder and decoder as shown in Fig.2.18 (CVAE) [182, 34]. In this scenario, the

approach closely resembles the method presented in [122] for the supervised case.

Additionally, techniques like Plug-and-Play Generative Networks (PPGN) [167],

shown in Fig.2.18 (PPGN), aim to generate realistic images that align with specific

conditions by leveraging auxiliary models and an optimization method. The key idea

behind PPGN is to combine the power of generative autoencoders with pretrained con-

ditional models such as classifiers or image caption models. The framework takes ad-

vantage of the pretrained models’ knowledge about specific conditions or attributes and

optimizes the generated images to align with those conditions.

Furthermore, researchers have investigated the incorporation of conditioning in the

VAE-GAN architecture for generating images based on specific attributes or classes.
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One such approach is the Conditional VAE-GAN (CVAE-GAN) proposed by [16]. The

CVAE-GAN builds upon the VAE-GAN framework by incorporating an adversarial

loss to enhance the quality of generated images. In addition to the discriminator, the

CVAE-GAN utilizes a classifier to assess the consistency of the generated output with

the given label, enabling more accurate generation. The architecture of CVAE-GAN is

depicted in Figure 2.18.

A diffusion model can also be trained in a conditional manner. To incorporate la-

bel information for noise estimation, a frequently employed method involves training a

label embedding and combining it with the time step embedding. This combined infor-

mation is then fed into the noise approximator, which is responsible for generating the

conditional noise samples [139].

[91] introduced a classifier-free guidance approach for the reverse process of the

diffusion model to improve the conditional diffusion model. It proposes to jointly train

a conditional and an unconditional diffusion model. During training, a null label ∅ is

introduced and replaces the actual label y with a fixed probability, enabling uncondi-

tional training. During the sampling process, the authors combine the scores from both

the conditional and unconditional distributions to obtain the final noise estimation. This

combination can be calculated using the following equation:

ε̂θ (xt | y) = (1 + s) · ϵθ (xt | y)− s · ϵθ (xt | ∅) , (2.40)

where ε̂θ (xt | y) represents the final noise estimation for xt conditioned on label y. The

term ϵθ (xt | y) denotes the estimation of conditional noise, while ϵθ (xt | ∅) represents

the estimation of unconditional noise. Additionally, the scale factor s serves a similar

purpose as in the classifier-guided method.

One approach commonly used in diffusion models for conditioning generation in-

volves classifier-guided sampling [231, 46]. The diffusion model can be trained uncon-

ditionally. Once the diffusion model is established, the reverse process can be guided

by a classifier. Specifically, we can train a classifier, denoted as p(y|xt, t), on the noisy

image xt at time step t. The predicted mean µθ(xt) is then perturbed by the gradient of

the classifier, resulting in the final predicted µ̂θ (xt | y) conditioned on y. This can be

calculated using the following equation:

µ̂θ (xt | y) = µθ (xt) + s · σ2
t∇xt log pϕ (y | xt) , (2.41)

where s represents a scaling factor and σ denotes the diffusion model’s noise level.

The term ∇xt log pϕ (y | xt) represents the gradient of the classifier with respect to xt,

which is used to perturb the predicted mean µθ(xt). According to the findings in [46],

increasing the value of s comes at the cost of reduced diversity, but it can also lead to
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improved image quality.

2.3.2 Image-to-image translation

There are various forms of conditioning beyond the conventional label based on hu-

man annotations. One such approach is to use images as input conditions to enhance or

modify their appearance, a process commonly known as image translation. Image-to-

image translation refers to the process of transferring an image from a source domain

to a target domain while preserving the image content. Image-to-image translation has

a wide range of applications, including style transfer, image synthesis, segmentation,

restoration, and pose estimation. In this section, we will introduce popular applications

of image translation and their state-of-the-art methods, such as style transfer, image in-

painting, and edge-map to image. These applications enable the generation of unique

and previously unseen images with distinct visual characteristics.

Fig. 2.19 Style transfer examples taken from [110].

Style transfer Style transfer is a technique that can be used to transform the style of an

image, by applying the style of one image to the content of another image. It is achieved

by separating the content and style of an image and then combining them in a new way.

The concept of style transfer was initially proposed by [66]. They presented a deep

convolutional neural network based approach to separate the content and style of an

image, and transfer the style of one image onto the content of another image. To extract

the style and content features, they utilized a pre-trained VGG model [221]. The style

representation was computed by calculating the Gram matrix Gl ∈ RCl×Cl from the

features of each convolutional layer, where Cl is the channel dimension of layer l. Then

it can be written as follows.

Gl
ij =

∑
k

F l
ikF

l
jk, (2.42)

where, F l
ik represents output of the activation of the i-th filter at position k in layer l.

The content was represented by the feature maps output from the fourth convolutional

39



layer. The optimization process was then performed on a noise-initialized image by

minimizing the difference between the features of the style image and the generated

image, while preserving the content of the content image.

Traditional style transfer algorithms mainly rely on optimization methods that com-

pare the features of the generated image and the source image, which require a large

number of iteration steps. Based on the work of [66], [110] proposes a perceptual loss

to train an autoencoder which enables a real time style transfer. As in [66], the per-

ceptual loss also includes two main components: the content loss, which calculates the

feature distance between the content image and the generated image at the third layer of

a pre-trained VGG network, and the style loss, which measures the similarity between

the gram matrix of the feature outputs from each layer and that of the style image. Con-

sequently, during training, the loss function is similar to the optimization objective of

[66]. Some examples of results are shown in Fig.2.19

Another popular method for enabling style transfer is the Adaptive Instance Nor-

malization (AdaIN) proposed by [99]. This method uses data normalization in neural

networks to connect the content feature and the style feature by transferring the feature

statistics. The content feature space fc is first normalized, then scaled by the variance

σ(fs) and shifted with the mean µ(fs) of the style feature fs. It can be written as fol-

lows.

AdaIN(fc, fs) = σ(fs)

(
fc − µ(fc)

σ(fc)

)
+ µ(fs). (2.43)

In order to achieve a real-time style transfer, they designed an autoencoder that com-

putes the feature space for both the style image and content image. An AdaIN layer is

then used to transfer the statistical properties of the style feature to the content feature.

The desired image is obtained by passing the result through a decoder. Similar to the

approach in [66], both the style loss and the content loss are utilized to optimize the

neural network.

Similarly, [140] use the first few layers of pre-trained VGG as the encoder and train

the corresponding decoder. They found that the whitening transformation can remove

the style related information and preserve the structure of content. Thus the latent rep-

resentation can be manipulated through a combination of whitening and coloring trans-

formations (WCT).

GAN-based method Although style transfer is an interesting technique that can gener-

ate many incredible images, its application scenarios are quite limited as it relies mainly

on neural networks’ ability to extract and compare image features. Next, we will in-

troduce several GAN-based method to achieve two domains translation, which can not
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only achieve style transfer but also have much broader application scenarios, such as

segmentation, edge-to-image, sketch-to-image, etc.

[105] proposes pix2pix to leverage the conditional GAN to solve the supervised

image-to-image problem. The training process consists of two parts. (i) The generator

receives the condition as input and generates images that aim to deceive the discrimina-

tor into classifying them as real. In addition to fooling the discriminator, the generator’s

loss function incorporates the L1 distance to minimize the dissimilarity between the

generated images and the ground truth images in the target domain. (ii) The discrimina-

tor takes both the condition and images as input and is trained to differentiate between

real images and those generated by the generator. Its objective is to accurately classify

the authenticity of the input images based on the given condition. The condition can be

replaced by any other auxiliary information such as a sketch, a semantic segmentation

map, or a black-and-white image. This work has been extended to many works, such as

[251, 5, 255], etc.

While Pix2Pix is a highly effective framework for image-to-image translation, it

relies on annotated images for training, which can be expensive to obtain. CycleGAN

[296] is also a popular framework for image translation, which does not require paired

data during training. It consists of two mapping functions, GX→Y and GY→X , that al-

low domain conversion between X and Y . Two discriminators, DX and DY , are used

to differentiate between the generated images and real images in each domain. In addi-

tion to the GAN loss, a cycle consistency loss is also employed to ensure consistency

in image content. The concept behind this loss is that if an image x from domain X is

transferred to domain Y and then back to the original domain, the final image should be

similar to the original input: x ≈ GY→X(GX→Y (x)). The results are shown in Fig.2.20.

There have been many variations of this idea developed, such as [297, 8].

Fig. 2.20 Image-to-image translation results of cycleGAN [296].

GAN inversion An alternative and widely used approach for image translation is to

convert a given image x into noise in the latent space z of a GAN. Once the image

is transformed into noise, it can be manipulated to generate the desired output image.
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This technique was initially introduced by [295], where they proposed to find the initial

noise z in the GAN’s latent space by solving the following equation:

z∗ = argmin
z

ℓ(G(z), x). (2.44)

This process is referred to as inversion and was named as such in the work of [41].

There are two categories of methods used to solve Eq.2.44: learning-based methods

[51, 54, 294] and optimization-based methods [295, 1, 204]. In a similar fashion to

early-stage style transfer techniques, optimization-based approaches involve the itera-

tive optimization of input noise to generate high-quality reconstructed images. These

methods tend to produce superior reconstruction results, but they come with a high

computational cost due to the iterative nature of the optimization process. On the other

hand, learning-based methods provide a computationally efficient alternative, but they

typically yield lower-quality reconstructions compared to optimization-based methods.

The early work by [181] focused on inverting conditional GANs (icGAN) through

the training of two encoders: one for the latent space z and another for the condition y.

This approach enabled the extraction of the latent space z from an image, allowing for

feature manipulation by modifying the label y. The architecture of icGAN is shown in

Fig.2.21.

Fig. 2.21 Architecture of icGAN. Drawn from [181].

The popularity of StyleGAN [115], as mentioned in Section 2.1.3, has played a sig-

nificant role in driving the development of numerous GAN inversion methods specifi-

cally designed for editing human faces. Among these methods, [204] propose a frame-

work called pixel2style2pixel (pSp) for image-to-image translation. The pSp frame-

work employs an encoder that learns the W+ space of StyleGAN. This space comprises

18 feature layers spanning from deep to shallow layers within the StyleGAN genera-

tor. The encoder can accept any form of condition as input, and its output, combined
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with random noise, facilitates a wide range of image translation tasks by manipulating

the W+ space of a given image. For instance, the encoder takes a segmentation map

as input and produces a representation in the W+ space. Subsequently, a pretrained

StyleGAN model can accept a mixture of this representation and a randomly sampled

latent vector as input, generating an image that corresponds to the given segmentation

map.The architecture of the pSp framework is illustrated in Figure 2.22, and the corre-

sponding results are presented in Figure 2.23.

Fig. 2.22 The architecture of pSp. Drawn from [204]

Fig. 2.23 The image-to-image translation results for human face based on StyleGAN.
Images are taken from [204]

Building upon the pretrained pSp encoder, [276] employ a learned neural network
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to edit the W+ space, thereby achieving face image manipulation. This manipulation

includes adding glasses, altering age, and more. Similarly, [96] propose a styleGAN en-

coder based on the transformer architecture [248] to learn the W+ space. Images can be

edited using a latent model, also based on the transformer, to transform the W+ space

according to desired modifications. [178] explore the utilization of text to manipulate

images in conjunction with CLIP [191], a neural network-based model for evaluating

the connection between texts and images. They employ a neural network to optimize or

estimate the latent space, with the objective of generating an image that minimizes the

CLIP loss. This approach enables text-guided image synthesis, where the desired image

output is driven by textual input, resulting in visually coherent and contextually relevant

image manipulations. Building upon previous research endeavors that aimed to approx-

imate the latent space and reconstruct given images, [4] introduce a novel approach.

They utilize a hypernetwork that takes both the given image and its reconstruction as

input, allowing the estimation of parameter offsets for the pretrained StyleGAN. This

technique enhances the ability to manipulate and generate images within the StyleGAN

framework.

2.3.3 Text-to-image generation

As individuals read text, their minds often generate corresponding mental images based

on the textual descriptions. With the advancements in deep learning, neural networks

are now capable of emulating this process. By inputting a text prompt, a neural network

can generate an image that is visually coherent with the given text. This remarkable

capability enables the network to bridge the gap between textual information and visual

representation, opening up new possibilities in image synthesis and understanding.

Text-to-image generation in its early stages primarily relied on the application of

Generative Adversarial Networks (GANs). [200] introduced the concept of conditional

GANs, where a text input serves as a condition for an image generator to produce a cor-

responding image. This approach allows for the synthesis of images based on specific

textual descriptions. In a similar vein, attGAN [268] proposed a multi-stage generator

for text-to-image synthesis. Their approach involves introducing text information at

each stage of the generation process, progressively generating images from low resolu-

tion to high resolution. Additionally, each generated image is passed through a condi-

tional discriminator, which aids in providing feedback and guidance for the generator.

[133] adopt the architecture of attGAN, design a channel-wise attention module and a

word-level discriminator to enhance the controllability of the generation.

With the notable success of VQVAE and its extension VQGAN [58], the represen-

tive methods start becoming more and more popular. Just like text tokenizers in natural
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language processing (NLP), there is a trend in the image generation domain towards de-

veloping a series of models, including VQGAN, that aim to become image tokenizers.

In NLP, tokenizers split text into semantic units such as words or subwords for further

processing and analysis. Similarly, the goal of image tokenizers is to transform images

into processable representations.

Based on this idea, DALL-E [195] utilizes a large-scale dataset to train a represen-

tative model. Initially, DALL-E employs a discrete Variational Autoencoder (dVAE)

to compress the input image, treating it as image tokens. Subsequently, a transformer

architecture is employed to transform text tokens into image tokens. The final image is

reconstructed using the decoder of the dVAE, resulting in a generated image that aligns

with the given textual input.

DALL-E2 [194] incorporates the CLIP text encoder as a crucial element, utilizing

it to extract the underlying representation of the input text. By leveraging the CLIP

text encoder, DALL-E2 aims to establish a link between the domains of text and im-

ages, with the goal of learning image representations from textual representations. This

process is accomplished through the utilization of either a diffusion model or an au-

toregressive model. Ultimately, an image decoder is employed to generate the intended

image that corresponds to the provided text description.

Fig. 2.24 Text-to-image results from Stable Diffusion. Drawn from [205]

Similarly, Stable diffusion [205] employs a VQGAN [58] to compress the input im-

age. Subsequently, a diffusion model is trained to generate images, conditioned with

textual information. In contrast to previous methods that establish connections between

text tokens and image features, Stable diffusion integrates text guidance into each block

of the noise approximator ϵθ through a cross-attention layer from the transformer archi-

tecture. The architecture is shown in Fig.2.25.

The combination of a powerful autoencoder and diffusion models (DM) have re-

cently gained significant attention as the new state-of-the-art approach for text-to-image

generation. The prevailing method involves compressing the image into a discrete latent

space with an autoencoder, followed by training a diffusion model to learn the genera-
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Fig. 2.25 The overview of Stable Diffusion. Drawn from [205]

tion of such a conditioned latent space. Similar to GAN, the availability of numerous

powerful pretrained models opens up a plethora of possibilities for image editing with-

out requiring training from scratch [117, 285, 63]. These methods have demonstrated

significant potential in enhancing various aspects of image editing and have paved the

way for further advancements in the field.
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CHAPTER 3

4D Facial Expression Diffusion Model

Given the increasing popularity of the diffusion model, conditional generation has gained

significant attention due to its impressive results. In this chapter, our objective is to

harness the concept of the diffusion model and utilize a flexible reverse process to

accomplish diverse conditional generation tasks in the realm of 4D facial expression

generation.

Generating realistic facial expressions is a challenging task, mainly due to limited

datasets and computational resources. There are several possibilities to conduct expres-

sion generation. (i) The regression method. Previous works ([216, 187]) have predom-

inantly utilized recurrent neural networks (RNNs) to predict the displacements of the

whole mesh. Nevertheless, performing conditional generation directly with Recurrent

Neural Networks (RNNs) poses challenges. As a result, these approaches primarily

concentrate on unconditional generation, where no specific conditions are imposed.

Moreover, the generated outputs lack randomness, resulting in a one-to-one mapping

between each input and its corresponding output. (ii) VAEs can indeed be utilized for

facial animation generation and offer a convenient framework for conditional genera-

tion (cVAE). However, as mentioned in Section 2.1.1, VAEs face challenges in captur-

ing high-frequency information, which is crucial in the context of facial animation. (iii)

cGAN is also another possibility for facial animation generation. [175] utilize cGAN

to generate landmarks displacement for facial animation. However, their approach pri-

marily concentrated on pure conditional generation using labels. Additionally, their

method heavily relied on complex geometry transformations and training with GANs,

which introduced challenges in the training process and required intricate pre- and post-

processing steps.

The primary goal of our study is to introduce a method suitable for diverse applica-

tion scenarios in 4D facial expression generation. We recognize that diffusion models

possess the capability to generate high-quality data and offer a flexible reverse process

that can be guided by various condition sampling techniques. Therefore, we have cho-

sen to employ diffusion models for facial animation generation.

Our work specifically focuses on various conditioning factors, including labels, text,
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partial sequences, and even facial geometry. By incorporating these different conditions

into the reverse process of diffusion model, we aim to enable more versatile and control-

lable facial expression generation. This allows us to tackle a wide range of applications

and explore the potential of diffusion models in the domain of facial expression syn-

thesis. By leveraging the flexible nature of diffusion models and incorporating diverse

conditioning factors, we aim to overcome the limitations of previous approaches and

provide a more robust and adaptable solution for 4D facial expression generation.

You can find hereater an article titled ”4D facial diffusion model,” which has been

submitted to the ACM Transactions on Multimedia Computing Communications and

Applications. The authors of the article are Kaifeng Zou, Sylvain Faisan, Boyang Yu,

Sébastien Valette, and Hyewon Seo.

3.1 Abstract

Facial expression generation is one of the most challenging and long-sought aspects

of character animation, with many interesting applications. The challenging task, tra-

ditionally having relied heavily on digital craftspersons, remains yet to be explored.

In this paper, we introduce a generative framework for generating 3D facial expres-

sion sequences (i.e. 4D faces) that can be conditioned on different inputs to animate

an arbitrary 3D face mesh. It is composed of two tasks: (1) Learning the generative

model that is trained over a set of 3D landmark sequences, and (2) Generating 3D

mesh sequences of an input facial mesh driven by the generated landmark sequences.

The generative model is based on a Denoising Diffusion Probabilistic Model (DDPM),

which has achieved remarkable success in generative tasks of other domains. While it

can be trained unconditionally, its reverse process can still be conditioned by various

condition signals. This allows us to efficiently develop several downstream tasks involv-

ing various conditional generation, by using expression labels, text, partial sequences,

or simply a facial geometry. To obtain the full mesh deformation, we then develop a

landmark-guided encoder-decoder to apply the geometrical deformation embedded in

landmarks on a given facial mesh. Experiments show that our model has learned to

generate realistic, quality expressions solely from the dataset of relatively small size,

improving over the state-of-the-art methods. Videos and qualitative comparisons with

other methods can be found at https://github.com/ZOUKaifeng/4DFM.

3.2 Introduction

3D facial expression synthesis is a fundamental, long-sought problem in face animation

and recognition, with many applications. Due to the inherent subtlety and sophistication

of facial expressions, as well as our sensitivity to them, the task is extremely complex.
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It has traditionally relied on time- and skill-intensive design work by trained artists.

The prevailing shape and motion capture technology has changed this paradigm, allow-

ing the algorithmic reconstruction of 3D face shapes and motions of real people. At the

same time, its remarkable achievements in the last decades have boosted data-driven ap-

proaches to face modeling, which have been succeeded by recent deep learning-based

methods. A common strategy is to regress the 3D facial expression of a subject from a

2D video in a frame-by-frame manner[241, 60, 42, 77]. However, such reconstructive

approach is limited to reproduce facial expressions that have been observed, and re-

quires deformation transfer or animation retargeting to reuse the captured animation of a

face to a target face. Generative models such as Generative adversarial nets (GANs)[69]

and Variational autoencoders (VAEs)[124] can be deployed to the problem of synthe-

sizing realistic yet controllable facial animation that are not limited to a specific ob-

servation. However, with a few exceptions[258, 216], most existing works focus on the

body motion generation, with various condition signals including text, expression label,

or music [182, 236, 136, 134, 76]. This is mainly due to the compact, readily available

skeleton-based representation of the body[153], the relatively large set of action vocab-

ulary, and the availability of rich 3D body motion datasets [159, 189, 184, 134, 103].

Unfortunately it is not yet the case with the 3D facial expression.

In this paper, we address the challenging problem of 3D dynamic facial expres-

sion generation, one that has not yet received a lot of attention. Most available 3D

facial expression datasets [288, 196, 33, 40, 59] come in the form of dense triangular

meshes containing thousands of vertices. It is computationally expensive to train a gen-

erative model directly using all the vertices. Therefore, similarly to most successful

models for 3D facial animation generation, we use a set of predefined 3D face land-

marks to represent the dynamics of facial motion. Typically, landmarks are located on

facial features that are highly mobile during animation, such as the face outline, eyes,

nose, and mouth. The specific aim of the 3D facial animation generation is to learn

a model that can generate facial expressions that are realistic, appearance-preserving,

rich in diversity, with various ways to condition it such as categorical expression la-

bels. Prior works that have attempted to model the temporal dimension of the face

animation [174, 175, 216, 256] mostly leverage auto-regressive approaches, such as

Long short-term memory (LSTM) [93] and Gated recurrent units (GRUs) [35]. Here,

we propose to use a Denoising Diffusion Probabilistic Model (DDPM) [224, 231, 89],

a generative approach that has achieved remarkable success in several domains, such

as image generation[205, 194, 211], audio synthesis[127], language modeling[139] and

point cloud generation[156]. A DDPM has the nice property of being trainable uncondi-

tionally whereas the reverse process can still be conditioned using, a classifier-guidance

[46], for instance. This allows us to define the following paradigm: a DDPM is learned
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unconditionally and several downstream tasks associated with several conditional gen-

erations are developed from the same learned model, such as expression control (with

label or text), expression filling (with partial sequence(s)), or geometry-adaptive gen-

eration (with facial geometry). This makes the proposed approach highly flexible and

efficient, benefiting from the generative power of diffusion models while circumventing

their limitations of being resource-hungry and difficult to control.

We note that, concurrent to this work, several works have also adopted diffusion

models for human motion generation [237, 286, 119]. However, to the best of our

knowledge, we are the first to adapt diffusion models to 3D face expression generation.

More importantly, although approaches developed in [237, 286, 119] enable different

forms of conditioning, they require the diffusion model to be retrained for each way of

conditioning.

While the task of 3D facial animation generation has been reduced to the estimation

of a temporal sequence of 3D face landmark sets, it is then necessary, in a second task,

to compute a sequence of animated meshes. We use an encoder-decoder model similar

to [175], which retargets the expression of a 3D face landmark set to the neutral 3D face

mesh by computing its per-vertex displacement, in a frame-by-frame manner. Unlike

[175], however, we take into account the different morphological shapes of the neutral

mesh to adapt the estimation of per-vertex displacements. Results thus obtained validate

the effectiveness of the proposed approach.

In summary, our key contributions are as follows: (1) We successfully use a DDPM

to propose an original solution to the conditional generation of 3D facial animation. To

the best of our knowledge, it is the first to adopt a diffusion-based generative framework

in 4D face modeling. (2) We train a DDPM unconditionally and develop several down-

stream tasks by conditioning the reverse process. In addition to improving the efficiency

of training, this paradigm makes the approach highly versatile and easily applicable to

other downstream tasks. (3) In various evaluations, the landmark sequence generation

and landmark-guided mesh deformation outperform SOTA methods.

3.3 Related work

Deep generative models[122, 124, 69, 202, 224] have proven effective at high-quality

image synthesis, such as content-preserving image rendering with different styles, and

the generation of images depicting learned objects. For 2D images, these models have

also shown to be beneficial to facial expression transfer and expression editing tasks.

However, the majority of existing solutions address the problem of static expression

synthesis. Here we review some recent advances achieved in dynamic facial expression

generation, i.e. modeling and predicting the temporal evolution of poses elicited by

facial expressions.
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2D facial expression video generation. There is substantial literature addressing the

problem of 2D facial expression video generation[22, 242, 259, 258, 174]. MoCoGAN

[242] decomposes the video into content and motion: An image-based generator creates

the content and GRUs generate the motion. G3AN [258] presents a GAN-based gen-

erative model, which also disentangles the appearance and motion of facial video and

generates videos by using a spatio-temporal fusion architecture. [256] generates image

sequences by using landmark sequences as guidance. Such a landmark-based approach

has been also adopted in [174] where a GAN is trained over dynamic facial expressions

by deploying manifold-valued representations.

Dynamic 3D facial expression synthesis. To our knowledge, dynamic 3D facial ex-

pression synthesis has not been fully explored. [187] synthesizes realistic high res-

olution facial expressions by using a deep mesh encoder-decoder like architecture to

estimate the displacements which are then added to a neutral face frame. [216] deploys

LSTMs to estimate the facial landmark changes, which are then used to guide the de-

formation of a neutral mesh via a Radial Basis Function network. However, both works

focus on the displacement estimation for a given expression and do not consider con-

ditional generations. The closest work to ours is Motion3DGAN [175] which extends

the aforementioned MotionGAN [174] to model the dynamics of 3D landmarks. The

learned distribution of 3D expression dynamics by a WGAN over the hypersphere space

is sampled with a condition to generate landmark sequences, which are then fed into a

mesh decoder to deform a neutral 3D face mesh frame-by-frame. Our work has several

advantages over their work. First, benefiting from the power of diffusion models, we

model the input distribution without requiring any extra preprocessing, and can learn

from sequences of different lengths. Second, our framework offers a highly versatile

and efficient alternative, as we train a DDPM unconditionally and different conditional

generations can be performed solely during the reverse process in a plug-and-play man-

ner. Finally, our landmark driven mesh deformation takes into account the identity

shape of the input facial mesh and adapt the per-vertex displacements to it, generating

a personalized deformation for any given input face.

Given the scarcity of existing work on 3D facial animation generation, we compare

our work with some generator models originally dedicated to human motion synthesis,

including Action2motion [76] and ACTOR [182].

3.4 Method

At the core of our approach is a DDPM-based model to generate a 3D landmark se-

quence x = {L1, . . . , LF} where a frame Lf ∈ RN×3 (for f =1 to F ) represents the
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3D coordinates of N landmarks. Note that the 3D arrangement of a landmark set Lf
implicitly encodes the geometric information specific to the facial anatomy of an indi-

vidual, and can be viewed as a mixture of the facial identity shape at a neutral pose L

and the pose-induced shape change, i.e. Lf = ∆Lf + L. The method is composed of

two tasks: First, a DDPM is trained unconditionally (Sec.3.4.1), whereas conditional

generations are obtained by conditioning the reverse process. Different forms of condi-

tioning can be performed, leading to several downstream tasks (Sec.3.4.2). Then, our

landmark-guided encoder-decoder (Sec.3.4.3) estimates ∆Mf at each frame (for f =1

to F ), using a target neutral face mesh M and ∆Lf as input. The desired animation

mesh sequence {M1, . . . ,MF} is obtained by adding the estimated displacement ∆Mf

to M at each corresponding frame, i.e. Mf = M+∆Mf . The overview of the proposed

method is illustrated in Fig.5.1.

Note that directly training from and generating full meshes may be beneficial but

raises technical issues since the model becomes computationally and memory intensive.

An alternative is to utilize diffusion models directly in the latent space of autoencoders

[205], or a pre-constructed parameter space of 3D face. Our work can be viewed as

akin to the latter approach, except that we use a heuristically defined feature space, i.e.,

the landmark space, instead of a learned latent space. This choice has been validated

by the quality of the reconstruction obtained by the landmark-guided encoder-decoder

(Tab. 3.5).

3.4.1 Denoising Diffusion Probabilistic Models

DDPMs are latent variable models where the latent variables xt (for t =1 to T) have the

same dimension as the original data x0 ∼ q(x0). In our work, x0 is a landmark-based

facial animation data: x0 = {L1, . . . , LF}. Note that it is contrary to most prior works

which generate only the displacements ∆Lf [174, 175, 216]. Training our model to

generate Lf directly allows it to learn to produce quality expressions that are consistent

with the inherent facial morphology.

The joint distribution pθ(x0:T ) from which we derive the likelihood

pθ(x0) =
∫
pθ(x0:T )dx1:T is called the reverse process whereas the approximate poste-

rior q(x1:T |x0) is called the forward process or diffusion process. The diffusion process

produces gradually noisier samples (x1, x2, . . . xT ) by adding Gaussian noise to the ini-

tial data x0 according to a variance schedule β1, ..., βT [89]:

q(x1:T |x0) =
T∏
t=1

q(xt|xt−1) (3.1)

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI). (3.2)
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Fig. 3.1 Overview of the proposed approach. Generally, the diffusion process is used
to train the noise approximator while the reverse process is used to sample x0 from
the distribution q. But some tasks developed in Sec. 3.4.2 require both processes for
sampling. The bidirectional transformer takes as input the sum of the outputs of three
embedding layers: the temporal embedding layer (TE) that takes as input t, the posi-
tional encoding layer (PE) that takes as input an integer sequence from 1 to F , and
the feature embedding layer (FE) that takes xt. The landmark-guided encoder-decoder
retargets the expression of Lf onto the input mesh M to estimate Mf at each frame.

We can derive from Eq. 3.2 the following property [89] which allows us to train the

diffusion model efficiently at an arbitrary time step t:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I), (3.3)

where ᾱt =
∏t

s=1 αs and αt = 1− βt.

xT follows a near-isotropic Gaussian distribution provided that a well-behaved sched-

ule is defined and that T is sufficiently large. DDPM [89] uses this property to sam-

ple the target distribution q (x0 ∼ q(x0)). This is achieved by reversing the diffusion

process: It begins by sampling xT from N (0, I). Next, the reverse process generates

progressively less-noisy samples xT−1, xT−2, . . . , x1 until x0 ∼ q(x0) is obtained, by

repeatedly sampling xt−1 from pθ(xt−1|xt) by using Eq. 3.5. This reverse process is

formally defined as a Markov chain with learned Gaussian transitions whose mean and

variance are estimated by a neural network of parameter θ:

pθ(x0:T ) = p(xT )
T∏
t=1

pθ(xt−1|xt) (3.4)

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)), (3.5)

where p(xT ) = N (xT ; 0, I). As in [89], we set Σθ(xt, t) to σ2
t I . This is a reasonable
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choice for generating quality samples, provided that T is chosen to be sufficiently large

[170]. Note that estimating Σθ(xt, t) allows sampling with many fewer steps [170].

Several possibilities can be considered to parameterize µθ(xt, t) in Eq. 3.5. [89]

shows that approximating the noise ϵ that appears in the following equation:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, (3.6)

is a suitable choice, especially when combined with a simple loss function (See Eq.

3.8). Note that Eq. 3.6 is a different way of writing Eq. 3.3 (ϵ ∼ N (0, I)). Finally, the

term µθ(xt, t) can be computed from the approximation of ϵ, denoted as ϵθ(xt, t):

µθ(xt, t) =
1

√
αt

(
xt −

βt√
1− ᾱt

ϵθ (xt, t)

)
. (3.7)

Diffusion models can be trained by optimizing the usual variational bound on neg-

ative log-likelihood, but we adopt here the simplified objective function proposed in

[89]:

Et,x0,ϵ[||ϵ− ϵθ(xt, t)||2], (3.8)

where the term xt is computed from Eq. 3.6.

Many previous works [89, 170, 205, 46], especially those for modeling 2D images,

have utilized a UNet-like structure[206] to model the mean µθ(x, t) or the noise ϵθ(x, t).

Here we employ a bidirectional transformer (BiT) [45] to efficiently capture the tempo-

ral characteristics of xt.

3.4.2 Downstream tasks

The DDPM is learned unconditionally and several downstream tasks are developed

from the same learned model, such as expression control (with label or text), expression

filling (with partial sequence), or geometry-adaptive generation (with facial geometry).

The pseudo code for each task can be found in Sec. 3.9.4.

Conditioning on expression label (label control). The task is to perform a conditional

generation according to the expression label y. Conditioning the reverse process of an

unconditional DDPM is achieved by using the classifier-guidance [231, 46, 139]. First,

we train a classifier that predicts the label y given a latent variable xt (and t). Here the

classification is conducted with a BiT [45] by adopting the usual approach of adding

an extra learnable classification token [45]. Note that the BiT presented here should

be distinguished from the other BiT in the diffusion model and is used to condition its
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reverse process. It is achieved by sampling xt according to the distribution:

pθ,ϕ(xt|xt+1, y) ∝ pθ(xt|xt+1)pϕ(y|xt), (3.9)

where ϕ represents the parameters of the classifier. Sampling of Eq. 3.9 can be achieved

approximately [224] by sampling from a Gaussian distribution similar to the uncondi-

tional transition operator pθ(xt|xt+1), but with its mean shifted by a quantity propor-

tional to Σθ(xt, t)∇xtpϕ(y|xt).
Instead of sampling Eq. 3.9, we used an alternative way, as proposed in [139]: xt

is computed so as to maximize the log of Eq. 3.9. A hyperparameter λ is used to

adjust the trade-off between fluency (pθ(xt|xt+1)) and control (pϕ(y|xt)), leading to a

stochastic decoding method that balances maximizing and sampling pθ,ϕ(xt|xt+1, y).

As in [139], optimization is achieved by running 3 steps of the Adagrad [53] update for

each diffusion step (Alg. 1 of Sec. 3.9.4).

Conditioning on text (text control). We also use in this task a BiT guidance, but

instead of estimating a label from xt and t, the BiT outputs a vector of dimension 512

(the softmax layer is removed). As in [236], the BiT is trained so as to increase the

cosine similarity between its output and the textual features extracted with CLIP [191]

from the text associated with x0.

Conditioning the reverse process according to the text c is then achieved (Alg. 2 of

Sec. 3.9.4) by adapting the procedure presented for the label control: xt is computed so

that it maximizes:

λ · log(pθ(xt|xt+1)) + cos(BiT(xt, t),CLIP(c)). (3.10)

Conditioning on partial sequence (expression filling). Similarly to inpainting whose

purpose is to predict missing pixels of an image using a mask region as a condition, this

task aims to predict missing frames of a temporal sequence by leveraging known frames

as a condition. The sequence x0 is composed of F frames, which are either known or

unknown. Let SK and SU denote respectively the set of indices associated with known

and unknown frames, and let x|S denote the subsequence containing only the frames of

x whose indices belong to S.

Since x0|SK
is known, note that xt|SK

can be drawn according to Eq. 3.3. Indeed,

each component of xt can be drawn independently since q(xt|x0) is an isotropic normal

distribution. Sampling from the reverse process conditioned on a partial sequence can

also be achieved as follows: XT is first determined: xT |SU
is drawn from N (0, I) and

xT |SK
according to Eq. 3.3. Then, computing xt from xt+1 is achieved in two steps:

First, a temporal sequence x̂t is simply drawn from pθ(.|xt+1) (it is the way to compute

xt in the usual case). xt|SU
is set to x̂t|SU

, while for known frames, xt|SK
is directly
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drawn according to Eq. 3.3 (Alg. 3 in Sec. 3.9.4). Despite its simplicity, this strategy

gives satisfactory results as we will demonstrate through qualitative validation in later

sections of this paper, provided that the partial sequence is of sufficient length.

Geometry-adaptive generation. Given the facial geometry of a specific subject, a

generation can be performed as a special case of expression filling: SK is set to {1} or

to {F} (F is the sequence length) and the unique known frame associated with x0|SK

is set to the neutral face L of the subject. The remaining sequence is considered as

unknown, for which the model performs an expression filling.

However, we observed that the generated frames may not always smoothly connect

to the given frame, a problem that did not arise when the partial sequence remained long

enough. In the context of image inpainting, [155] also shows that the simple sampling

strategy used for the expression filling task may introduce disharmony. A more sophis-

ticated approach has been proposed so as to harmonize the conditional data xt|SK
with

the generated one xt|SU
[155]. In order to achieve better convergence properties of the

algorithm while maintaining its simplicity, we derive the sequence with five iterations,

each with a slight modification: For the first iteration, xT |SU
is drawn, as previously,

from N (0, I). For the following iterations, xT |SU
, as xT |SK

, is drawn according to

Eq. 3.3 where x0 is the result obtained from the previous iteration. By doing so, we

expect xT |SU
and xT |SK

to be harmonized progressively, thus leading to the improved

harmonization of xt|SU
and xt|SK

along the iterations.

Note that this process can also be easily guided by a classifier (as in the label control)

so as to generate a desired facial expression starting from a given facial anatomy (See

Alg. 4 in Sec. 3.9.4). In this case, the method used for the expression filling must

be modified as follows: In the expression filling task, a sequence x̂t was drawn from

pθ(.|xt+1). In order to guide the reverse process, the sequence x̂t can now be estimated

so as to maximize λ · log pθ(xt|xt+1)+log pϕ(y|xt, t), similarly to the label control case.

3.4.3 Landmark-guided mesh deformation

To obtain the full mesh sequence {M1, . . . ,MF} from {L1, . . . , LF}, one could use ex-

isting fitting methods such as FLAME [138] or DL-3DMM [61] so as to preserve both

the facial anatomy and the expression encoded in the landmark frames. However, the

meshes generated through the linear blending models tend to lack intricate details of

facial geometry, resulting in dull, lifeless shapes. Thus, in our work, we retarget the

expression encoded in Lf to the facial geometry given as a (realistic) input mesh M , as

in [175]. The mesh M is assumed to be at its neutral pose with a predefined topology

[138]. Each mesh frame Mf should retain the facial identity shape M , combined with

the expression-driven shape change encoded in ∆Lf = Lf − L (∆Lf represents the

landmark displacement at f -th frame). This is achieved by our encoder-decoder net-
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work that takes both M and ∆Lf as input and predicts ∆Mf at each frame, which is

respectively added to M to obtain the final mesh sequence: Mf = M + ∆Mf . This

is similar to the Sparse2Dense mesh decoder proposed in [175], except that only ∆Lf

(and not M ) is used to predict ∆Mf in their work. In our approach, on the other hand,

we take into account the different morphological shapes of the neutral mesh M to adapt

the estimation of per-vertex displacements ∆Mf .

In order to benefit from the consistent and quality expressions adapted to the facial

morphology by the DDPM, one can extract a landmark set LM from a mesh M , perform

the geometry-adaptive task on it to generate a sequence involving LM , and retarget it to

M by the landmark-guided mesh deformation.

Encoder and decoder. Inspired by the Sparse2Dense mesh decoder of [175], we de-

velop an encoder-decoder architecture based on spiral operation layers. The encoder

contains a backbone consisting of five spiral operation layers [20] that extracts the fea-

tures of M . In addition, we propose to incorporate a cross-attention mechanism [248]

to account for the possible influence of the characteristics of M on the impact of ∆Lf

on each vertex of M : It enables us to find the relevant features of the mesh M that

can help predict a latent representation (of ∆Mf ) according to ∆Lf . More specifically,

the query is derived from a linear embedding of ∆Lf (computed by a fully-connected

layer FC) and the key, value pairs from the output of the backbone (i.e. features of M )

denoted as F . The output of the attention layer writes:

softmax

(
FC(∆Lf ) · F T

√
d

)
F, (3.11)

where d is the dimension of F . Then a linear layer maps the vector of Eq. 3.11 to the

identity-aware representation zid, which is further shifted by the landmark displacement

∆Lf to obtain the final latent representation: z = λθ · zid + ∆Lf , where the weight

parameter λθ is a learnable parameter.

The decoder consists of a linear layer and five spiral operation layers. It takes the

latent representation z as input and outputs the per-vertex displacement ∆Mf . Mf is

then set to M +∆Mf . The model is learned using the loss function proposed in [175].

3.5 Experimental setting

As proposed in [89], we set a linear noise schedule starting from β1 = 1e − 4 to

βT = 0.02, and σ2
t is set to βt. T is set to 2000. We train the model on 200K iterations

with a learning rate of 1e−4 and a batch size of 256. The hyperparameter λ that is used

to guide the sampling of the reverse process is set to 0.01 as in [139].

CoMA dataset [197] is a commonly used 4D facial expression dataset in face mod-

eling tasks [21, 108], consisting of over a hundred 3D facial animation sequences cap-
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tured from 12 subjects, each performing 12 facial actions (“high smile”, “mouth up”,

etc.). Each data is composed of a triangular mesh of 5023 vertices undergoing some

deformation elicited by an expression.

BU-4DFE dataset [288] contains a total of 606 sequences of 83 landmarks ex-

tracted from a sequence of 3D facial scans. Six basic emotional expressions (“anger”,

“disgust”, “fear”, “happy”, “sad”, and “surprise”) of 101 subjects have been recorded.

Different sequences have been used depending on the specific task at hand. Unless

otherwise specified, solely the sequences from the CoMA dataset have been utilized.

3.6 Results involving various conditional generations

Here we describe the results we obtained on the various conditional generations. Through-

out this section, a classifier that predicts the expression from a sequence independently

of its type (see Section 3.5) is called a classifier of type I (order-Insensitive), whereas a

classifier of type S (order-Sensitive) predicts both the expression class and the expres-

sion type (either N2E or E2N).

For evaluation purposes, an independent classifier (which we denote as IC) is trained

to predict the label from a sequence x0. We use one LSTM layer followed by a linear

layer, as in [175]. The model’s ability to generate a desired expression is assessed by the

classification accuracy of the IC tested on the generated expressions. Additionally, the

quality of the generated sequence is assessed by using the Frechet Inception Distance

(FID) score [85], that compares the distribution of fake data with that of real data. It is

computed from the output of the linear layer of the IC.

3.6.1 Label control

The proposed approach is compared with several SOTA methods which perform con-

ditional sequence generation: Action2Motion [76], Motion3DGAN [175] and ACTOR

[182]. The BiT-based classifier used to guide the reverse process, as well as the IC are

of type I. Quantitative results as measured by the classification accuracy and the FID

score are summarized in Table 3.1, which confirms that the proposed approach outper-

forms all SOTA methods. Fig. 3.2 shows some illustrative results: Our model generates

various realistic and quality expressions adapted to various facial geometries. Videos

presented in the project website (https://github.com/ZOUKaifeng/4DFM)

demonstrate the generated expressions, as well as qualitative comparisons among these

methods: Sequences generated by our approach are more expressive. The diversity of

the generated sequences in terms of both expression and facial anatomy is also illus-

trated in Sec. 3.9.3.
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Table 3.1 Performance of different methods for generating desired expressions has been
evaluated by measuring the classification accuracy and the FID score. We report as
ground truth the FID and the accuracy computed on the test dataset, assuming that an
ideal method could have generated it.

CoMA BU-4DFE

Model Acc FID Acc FID
Ground truth 83.78% 2.77 99.51% 6.02
A2M 52.36% 29.44 80.83% 19.64
MoGAN 80.76% 7.72 99.26% 13.29
ACTOR 81.40% 7.11 99.13% 14.56
Ours 84.97% 6.79 99.89% 12.37

Fig. 3.2 Animated mesh sequences guided by the label “mouth side” (top), “mouth
extreme” (middle), and “cheeks in” (bottom). The meshes are obtained by retargeting
the expression of the generated x0 on different neutral faces.

3.6.2 Text control

To demonstrate this task, we have increased the vocabulary of our dataset by merging

CoMA and BU-4DFE. In the first experiment, the raw text label is used to condition the

animation (we call it raw text task) and the IC used for the evaluation is of type I. In

the second experiment, the description of a sequence is enriched to be a short sentence

such as “from the neutral face to the raw text label”, or “from the raw text label to the

neutral face” (we call it enriched text task) and the IC used for the evaluation is of type

S.

We compare our results with those of MotionClip [236]. Quantitative results are

shown in Table 3.2. Classification accuracies obtained with the proposed method are
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slightly higher than those of MotionClip, with FID scores significantly lower. Se-

quences created by MotionClip are actually realistic but the FID scores are high, due to

the lack of diversity in the generated sequences.

Fig. 3.3 shows illustrative examples obtained with the proposed approach. Note that

our model is able to create animated meshes that combine different types of expressions

by compositing a text combining different types of expressions. For the complete se-

quences as well as the qualitative comparisons, readers may refer to the project website.

Table 3.2 Quantitative evaluation of the text control task. Classification accuracy and
FID are computed for the raw text task (rtt, left) and for the enriched text task (ent,
right).

Acc (rtt) FID Acc (ent) FID
Ground truth 86.02% 3.67 74.40% 4.56
MotionClip 80.67% 42.19 58.33% 38.83
Ours 82.01% 9.46 64.38% 11.34

Fig. 3.3 Text-driven generation results obtained by the enriched text task (“from neu-
tral face to bareteeth” (top)), and by the raw text task (“angry mouth down” (middle),
“disgust high smile” (bottom)). The input texts used for the raw text task are the com-
binations of two terms used for training. For instance, “disgust high smile” is a new
description that hasn’t been seen before, which combines “disgust” and “high smile”.

3.6.3 Expression filling

Given a partial sequence of an expression, the model can fill up the missing frames.

Three experiments have been conducted: In the filling from the beginning (FFB) or the

filling from the end (FFE) cases, the length l of the partial sequence is drawn uniformly
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in [10, 30]. In the filling from the middle (FFM) case, l frames have been given at the

beginning and at the end of the sequence, respectively. l is uniformly sampled in [5, 15].

The proposed approach for expression sequence filling is compared with a mean

imputation strategy. To evaluate the result, an IC (of type I) is trained, so as to check

if the filled data has the same expression class as the original one. Results are shown

in Table 3.3. The expression label of the partial sequence is well-captured and reflected

in the filled part, leading to an improved classification accuracy especially for the FFM

case, where the classification accuracy is comparable to that obtained for the ground

truth (Table 3.1). Classification accuracies obtained in the FFE and FFB cases are

lower due to the content of the sequences. As an example, when the partial sequence

is associated with the beginning of a sequence of type N2E, it may be composed, at

worst, of neutral faces only, or at best of less expressive faces. This is worsened by the

fact that sometimes certain expressions appear only at the end of the sequences. This is

contrary to the FFM case, where the partial sequence contains both the neutral and the

most expressive poses.

Finally, there is a significant improvement of FID score after filling with the pro-

posed approach. Furthermore, our videos presented on the project website illustrate that

the generated sequences are smoothly connected to the given partial sequence.

Table 3.3 Quantitative evaluation of the expression filling task for three different loca-
tions of the missing part. Accuracy and FID are computed on the sequences obtained
by the mean imputation strategy, and by our diffusion model. Note that accuracy is
83.78% and FID is 2.77 for the ground truth in all cases (FFE, FFM, FFB).

Mean Imputation Ours

Acc FID Acc FID
FFE 60.15% 25.67 67.18% 5.51
FFM 56.25% 17.68 85.93% 5.06
FFB 53.90% 27.32 70.31% 5.22

3.6.4 Geometry-adaptive generation

We have conducted the geometry-adaptive generation task by using classifier guidance

so as to generate a desired facial expression from a given facial anatomy (Alg. 4 of

Sec. 3.9.4). The BiT used for guidance and the IC used for evaluation are both of type

S. SK is set to {1} if the chosen label is associated with N2E sequences, and to {F}
otherwise.

Quantitative results are shown in Table 3.4. The classification accuracy is close to

the ground truth, and the visual inspection of the video sequences on the project website

shows no gap between the generated frames and the enforced one.
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Table 3.4 Quantitative evaluation of the geometry-adaptive generation task.

Acc FID
Ground truth 71.01% 5.57
Geometry-adaptive 70.43% 9.26

While Sec. 3.9.3 illustrates the diversity of generated expressions when the model is

conditioned on the expression label, we study here the same type of diversity but when

the facial geometry of a specific subject is enforced in the conditioning process. To

this end, a landmark set LM has been extracted from a given mesh M . The geometry-

adaptive generation task is performed so as to generate a sequence containing LM , and

exhibiting an expression corresponding to a given label y. Then, the generated sequence

is retargeted to M with the landmark-guided mesh deformation.

Fig. 3.4 illustrates the variety of expressions we thus obtained by using a same facial

anatomy LM and a same label y (either “eyebrow” or “high smile”), which confirms that

the proposed approach is able to generate expression sequences with sufficient level of

diversity, even if a same facial anatomy is used for conditioning.

Fig. 3.4 Diversity of expressions generated with the label “eyebrow” (left), and “high
smile” (right) in the geometry-adaptive generation task. All illustrated sequences are
of type N2E. Note that eyebrows can be either lowered (the second and third rows)
or raised (the first row). Although the poses of maximal expression intensity look all
similar in the three sequences of “high smile”, their temporal properties are significantly
different.

3.7 Results related to landmark-guided mesh deformation

3.7.1 Comparison with other methods

To the best of our knowledge, only [175] and our work estimate Mf from M and ∆Lf .

Note that both approaches use spiral convolution. For the comparative experiments,

we also adapt two autoencoders: CoMA [197], which uses Chebyshev convolution

and a mesh pooling, and the autoencoder proposed in [29] (the encoder and decoder
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consisting of three layers of linear, nonlinear, and linear activation units, respectively).

Both decoders, which originally take the latent representation of the input mesh as input,

have been modified so as to consume the concatenation of the latent representation with

∆Lf .

We conducted two series of experiments: Either 3 expressions (expression split) or

3 subjects (identity split) have been excluded from the training set, and the performance

of the model is evaluated on the excluded data. The mean per-vertex Euclidean error

between the generated meshes and their ground truth has been measured to assess the

performance. Quantitative results are shown in Table 3.5. While the three methods

based on spiral convolution generally yield effective results, our approach outperforms

the others, thus confirming the advantage of the cross-attention layer, in particular.

Table 3.5 Per-vertex reconstruction error (mm).

Method Expression split Identity split
Linear [29] 0.67± 0.76 0.73± 0.77
CoMA[197] 0.58± 0.63 0.63± 0.67
S2D [175] 0.52± 0.59 0.55± 0.62
Ours(w/o attention) 0.54± 0.59 0.57± 0.64
Ours 0.45± 0.51 0.50± 0.58

We propose to complement our quantitative analysis by a qualitative comparison of

the different methods. As the ”Expression split” and ”Identity split” experiments yield

very similar results, we focus solely on the ”Identity split” experiment in the following.

Fig. 3.5 depicts the ground truth mesh (a) as well as the meshes generated with sev-

eral approaches (b-e). Each vertex of a generated mesh is assigned a color representing

the Euclidean distance to its counterpart on the ground truth mesh. As expected, the

errors appear mainly on the regions that have been deformed to attain the expression. In

Fig. 3.5, retargeting an expression close to the neutral pose (first row) leads to tiny er-

rors, whereas retargeting an expression “mouth extreme” leads to errors that are mostly

located near the mouth. Our approach achieves the best performance in this qualitative

error measure, confirming the quantitative results described above.

3.7.2 Expression retargeting

Our landmark-guided encoder-decoder can retarget the landmark expression sequences

to different facial meshes. In Fig. 3.6, a landmark sequence generated from our model

is used to guide the deformation of three different facial meshes. We can observe that

different subjects make the same semantic facial expression in response to the same

chosen landmark sequence. As expected, the resulting mesh deformations are well

adapted to each facial geometry, which confirms that our model offers the flexibility

of combining any desired facial meshes independently from the landmark sequence
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Fig. 3.5 Qualitative comparison of our method (b) with S2D (c), CoMA (d), and Linear
(e) in the landmark-guided deformation of a given mesh. The ground truth meshes are
given in the first column (a). The expression of the first row is close to the neutral face
and that of the second row is taken from a sequence labeled as “mouth extreme”.

Fig. 3.6 Expression retargeting results by our landmark-guided encoder-decoder. A
same expression sequence (generated by using “mouth side” label) has been applied to
three different facial meshes.

generation. More results can be found on our project website, where we illustrate the

retargeting results of the landmark sequence taken from a full sequence of the CoMA

dataset onto several facial meshes.

3.8 Conclusion

We have presented a generator model to synthesize 3D dynamic facial expressions. The

dynamics of facial expressions is first learned unconditionally, from which a series of

downstream tasks are developed to synthesize an expression sequence conditioned on

various condition signals. Also proposed is a robust face deformation scheme guided

by the landmark set, which contributes to a higher reconstruction validity. Experimen-

tal results show that the proposed method can produce plausible face meshes of diverse

types of expressions on different subjects. In addition, it outperforms SOTA models

both qualitatively and quantitatively. As has been demonstrated, our expression gener-

ation framework is versatile and can be used in many application scenarios including,
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but not limited to, label-guided generation, text-driven generation, geometry-adaptive

generation, or expression filling.

3.9 Annexes

3.9.1 Advantage of using a bidirectional Transformer

In order to efficiently capture the temporal features of xt, we use a bidirectional Trans-

former (BiT) as the noise approximator as well as the classifier used for the guidance.

We compare the performance of the bidirectional Transformer to other popular neural

networks such as Transformer [248] and U-Net [206], the most frequently used model

for 2D images.

We use a 1D U-Net that takes as input a tensor of size channels=40 and

num features=68× 3, where 40 is the sequence length, and 68 the number of 3D land-

marks. These models are evaluated in the context of the label control task on the CoMA

dataset, as detailed in Sec. 3.6.1. Results are given in Tab. 3.6.

Table 3.6 Quantitative evaluation of the label control task. The noise approximator and
the classifier used for the guidance are modeled either with a U-Net, a Transformer, or
a BiT.

Model Accuracy FID
U-Net 50.04% 21.36
Transformer 80.29% 7.57
BiT 84.97% 6.79

As expected, U-Net is not adapted to temporal sequence modeling. We observe that

the best results are obtained by using a BiT.

3.9.2 Training with sequences of any length and generation of sequences of arbitrary
length

Since our noise approximator is a bidirectional transformer, it can take sequences of

any length as input —It can be trained using sequences of any length, and we can

sample from the resulting model so as to obtain sequences of desired lengths (The

length of x0 will be that of xT ). In the same way, as a bidirectional transformer is used

also to guide the reverse process, it can guide the reverse process with any length for

xt. Consequently, tasks related to label control, text control, and geometry-adaptive

generation can generate sequences of any desired length. Furthermore, the sequences

that have to be filled with the expression filling task can be of any length.

For the sake of simplicity, we describe here only the label control task. The noise

approximator and the classifier used for the guidance are either trained using sequences
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of a fixed length (F = 40) or variable lengths (F is uniformly distributed in the interval

[35, 45]).

The performance of both models is evaluated when outputting sequences of length

in [35, 45]. The performance is evaluated as in Sec. 3.6.1, except that the independent

classifier is trained with sequences of variable length (F is uniformly distributed in

[35, 45]). Results are shown in Fig.3.7.
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Fig. 3.7 Quantitative evaluation of the label control task for models trained with se-
quences of a fixed length (F = 40) or variable lengths. Performance is evaluated on
generated sequences of different lengths using, as in Sec. 3.6.1, the classification accu-
racy (left) and the FID score (right).

When generating sequences of different lengths is required, training with variable

lengths helps the model to perform better. Moreover, the results obtained with the

model trained with sequences of variable length are satisfactory: the achieved accuracy

is similar to that of the ground truth. Moreover, the FID obtained for a length frame of

40 is similar to that calculated with the model dedicated to output sequences of length

40.

3.9.3 Diversity of the generated sequences when conditioning on expression label

We study in this section the diversity of the generated sequences both in terms of facial

anatomy (L) and in terms of expression (∆Lf ) in the label control task. As a reminder,

the 3D arrangement of a landmark frame Lf can be regarded as the combination of the

facial anatomy (at a neutral pose L) and the expression-driven shape change applied to

it, i.e. Lf = ∆Lf + L.

Since the proposed landmark-guided mesh deformation retargets the expression

∆Lf = Lf − L onto a new face anatomy given as a mesh M , it is used hereafter

to illustrate the diversity of the generated expressions but it is not adapted to analyze

the facial anatomy of the generated L. To show the diversity of facial anatomy gener-
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ated by our model, we use the FLAME model[138] to compute the facial mesh from

the landmark set of neutral pose1.

Fig. 3.8 presents three illustrative neutral faces L that we generated by conditioning

the reverse process on the same expression label “mouth open”. Both landmark set and

the FLAME-fitted mesh are shown, for each face. (The neutral face L associated with

a generated sequence x0 is set to either L1 or LF , depending on the sequence type.)

Additionally, the diversity in the generated expression is illustrated in Fig. 3.9. The

apparent distinction among these results demonstrate that the proposed approach is able

to generate sequences of rich diversity, both in terms of facial anatomy and expression

(This is due to the input noise xT that is sampled from N (0, I)).

Fig. 3.8 Diversity of facial anatomy in the generated expressions. We use FLAME
model to compute facial meshes from the landmark sets, for the visualization purpose.

Fig. 3.9 Diversity of expressions generated with the label “mouth side” (left), and
“mouth open” (right) in the label control task. Note that generated sequences can be
either of type E2N or N2E.

1We can note that the meshes generated from FLAME lack certain details of the facial geometry,
resulting in dull, lifeless shapes. Furthermore, FLAME takes about 470s to fit one sequence, while the
proposed landmark-guided mesh deformation needs only about 1.30s.
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3.9.4 Pseudo code for each downstream task

Algorithm 1 Label control

Input: Label y.

Output: Sequence x0 (corresponding to label y).

1: xT ∼ N(0, I)

2: for t = T, ..., 1 do
3: ▷ Estimation of pθ(.|xt)
4: Compute ϵθ (xt, t)

5: Compute µθ(xt, t): µθ(xt, t) = 1√
αt

(
xt − βt√

1−ᾱt
ϵθ (xt, t)

)
6: ▷ Sampling from pθ(.|xt)
7: z ∼ N(0, I) if t > 1, 0 otherwise

8: Set x̂t−1 to µθ(xt, t) + σtz

9: ▷ Optimization: optimization procedure is initialized with x̂t−1

10: xt−1 = argmax
x

[λlog(pθ(x|xt)) + log(pϕ(y|x, t− 1))]

return x0

Algorithm 2 Text control

Input: Text c.

Output: Sequence x0 (corresponding to text c).

1: xT ∼ N(0, I)

2: for t = T, ..., 1 do
3: ▷ Estimation of pθ(.|xt)
4: Compute ϵθ (xt, t)

5: Compute µθ(xt, t): µθ(xt, t) = 1√
αt

(
xt − βt√

1−ᾱt
ϵθ (xt, t)

)
6: ▷ Sampling from pθ(.|xt)
7: z ∼ N(0, I) if t > 1, 0 otherwise

8: Set x̂t−1 to µθ(xt, t) + σtz

9: ▷ Optimization: optimization procedure is initialized with x̂t−1

10: xt−1 = argmax
x

[λlog(pθ(x|xt)) + cos(BiT (x, t− 1), CLIP (c))]

return x0
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Algorithm 3 Sequence filling

Input: Partial sequence x0|SK

Output: Completed sequence x0

1: xT |SU
∼ N(0, I)

2: xT |SK
=

√
ᾱTx0|Sk

+
√
1− ᾱT ϵ, ϵ ∼ N(0, I)

3: for t = T, ..., 1 do
4: ▷ Estimation of pθ(.|xt)
5: Compute ϵθ (xt, t)

6: Compute µθ(xt, t): µθ(xt, t) = 1√
αt

(
xt − βt√

1−ᾱt
ϵθ (xt, t)

)
7: ▷ Sampling from pθ(.|xt)
8: z ∼ N(0, I) if t > 1, 0 otherwise

9: Set x̂t−1 to µθ(xt, t) + σtz

10: ▷ Computation of xt−1

11: xt−1|SU
= x̂t−1|SU

12: if t > 1 then ▷ if t = 1, x0|SK
is already properly set.

13: xt−1|SK
=

√
ᾱt−1x0|Sk

+
√
1− ᾱt−1ϵ, ϵ ∼ N(0, I)

return x0
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Algorithm 4 Geometry-adaptive generation with label control

Input: Label y and partial sequence x0|SK
. SK is either {1} or {F} and the

unique frame associated with x0|SK
is a neutral one.

Output: Completed sequence x0 (corresponding to label y)

1: for i = 1 to 5 do
2: if i == 1 then
3: xT |SU

∼ N(0, I)

4: xT |SK
=

√
ᾱTx0|Sk

+
√
1− ᾱT ϵ, ϵ ∼ N(0, I)

5: else
6: xT =

√
ᾱTx0 +

√
1− ᾱT ϵ, ϵ ∼ N(0, I)

7: for t = T, ..., 1 do
8: ▷ Estimation of pθ(.|xt)
9: Compute ϵθ (xt, t)

10: Compute µθ(xt, t): µθ(xt, t) = 1√
αt

(
xt − βt√

1−ᾱt
ϵθ (xt, t)

)
11: ▷ Sampling from pθ(.|xt)
12: z ∼ N(0, I) if t > 1, 0 otherwise

13: Set x̂t−1 to µθ(xt, t) + σtz

14: ▷ Optimization: optimization procedure is initialized with x̂t−1

15: x̂t−1 = argmax
x

[λlog(pθ(x|xt)) + log(pϕ(y|x, t− 1))]

16: ▷ Computation of xt−1

17: xt−1|SU
= x̂t−1|SU

18: if t > 1 then ▷ if t = 1, x0|SK
is already properly set.

19: xt−1|SK
=

√
ᾱt−1x0|Sk

+
√
1− ᾱt−1ϵ, ϵ ∼ N(0, I)

return x0
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CHAPTER 4

Disentangled Representations: Towards Interpretation of Sex
Determination from Hip Bone

In this chapter, we delve into the domain of supervised disentangled representation

learning, focusing specifically on the task of sex determination from hipbone images

represented as meshes. This chapter aims to achieve two goals. Firstly, it focuses

on disentangling the sex-related information from other identity-related information

within the latent representation. Secondly, it aims to develop a data-driven algorithm

that surpasses traditional manual landmark positioning methods [55, 165, 26, 172] in

automatically sex deternimation from hipbones.

Moreover, we recognize the need for interpretation in the classification results, par-

ticularly for individuals without specialized medical knowledge. To address this chal-

lenge, we propose a novel approach that diverges from conventional techniques such as

Saliency maps [220], which are ill-suited for mesh classification. Instead, our method

involves reconstructing the original mesh and transforming it to represent the opposite

sex. By comparing these two reconstructions and highlighting the disparities, we can

effectively showcase the regions of interest in the classification decision process, aiding

in interpretation.

When it comes to data generation, as discussed in Chapter 2, there are multiple op-

tions to consider. Firstly, in the case of reconstructing the hip bone for a specific subject,

it is essential to have encoding capabilities that can capture the identity information.

Therefore, diffusion models may not be suitable for this particular task. Although it is

possible to use an inverted DDIM to obtain the initial noise from a given image, there

may be distortions present in the results [84].

As an alternative, we explore the use of GANs to generate the hip bone. Registering

medical images is a challenging process, and GANs provide accurate reconstruction. As

a result, GANs may also preserve errors from the registration process (high-frequency

information), which can negatively impact the experimental results. This is particularly

problematic when interpreting the region of interest for different labels.

Finally, we decide to apply VAE on this task. The generation process of VAE nat-

urally removes high-frequency error from the registration process, while retaining the
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essential and crucial information. Furthermore, the inherent nature of a VAE can also be

leveraged for out-of-distribution detection, as it can effectively identify samples that do

not conform to the learned distribution. Therefore, prior to conducting the experiment,

we also utilize the VAE to eliminate samples that exhibit significant errors. Addition-

ally, VAE provides us with a disentangled representation, which is highly beneficial for

our analysis. This disentanglement allows us to explore the effects of specific factors

of interest by generating new data with modified labels associated with those factors.

Furthermore, supervised learning of VAE approaches inherently involve the use of a

classifier [122], which aligns well with the requirements of our task.

Through our comprehensive methodology and analyses, we contribute to the field of

disentangled representation learning for sex determination from hip bone images. Our

approach not only improves classification accuracy but also provides interpretability,

shedding light on the reason behind decision-making.

Following this, you will find an article titled ”Disentangled representations: towards

the interpretation of sex determination from the hip bone” that has been accepted by The

Visual Computer journal. The authors of the article are Kaifeng Zou, Sylvain Faisan,

Fabrice Heitz, Marie Epain, Pierre Croisille, Laurent Fanton, and Sébastien Valette.

4.1 Abstract

Neural network-based classification methods are often criticized for their lack of in-

terpretability and explainability. By highlighting the regions of the input image that

contribute the most to the decision, saliency maps have become a popular method to

make neural networks interpretable. In medical imaging, they are particularly well-

suited for explaining neural networks in the context of abnormality localization. Nev-

ertheless, they seem less suitable for classification problems in which the features that

allow distinguishing classes are spatially correlated and scattered. We propose here a

novel paradigm based on Disentangled Variational Auto-Encoders. Instead of seeking

to understand what the neural network has learned or how prediction is done, we seek

to reveal class differences. This is achieved by transforming the sample from a given

class into the “same” sample but belonging to another class, thus paving the way to eas-

ier interpretation of class differences. Our experiments in the context of automatic sex

determination from hip bones show that the obtained results are consistent with expert

knowledge. Moreover, the proposed approach enables us to confirm or question the

choice of the classifier, or eventually to doubt it.
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4.2 Introduction

In forensic medicine and anthropology, sex determination is generally carried out by

manually assessing hip bone features [126]. Automatic classification algorithms are

mainly guided by the knowledge of anthropologists, taking into account distances or

angles measured from a few anatomical landmarks [55, 165, 26, 172]. Currently there

exists a crucial need for practitioners in forensic science to understand classification

results and such approaches have the advantage of providing easily interpretable re-

sults. But they are specifically tailored for hip bones, and are not well suited to sex

determination from other bones or bone fragments, which may be necessary in forensic

science.

We propose here an (automatic) deep learning-based classification approach that is

completely data-driven, is free of expert knowledge, and is suited to sex determina-

tion from other bones or bone fragments. Regardless of these advantages, the proposed

method will not be used by practitioners if they cannot interpret the classification re-

sults. However, meeting the need for understanding and explainability is far from easy

with deep learning classification methods.

Neural networks-based classification methods are often criticized for their lack of

interpretability and explainability. Even if there is not a clear consensus on the defi-

nition of interpretability and explainability, most methods dealing with interpretability

and explainability aim to understand what the neural network has learned or how pre-

diction is done. One common method to interpret the predictions of neural networks

is to compute saliency maps (SMs) [220]. However, in the context of this application,

the information extracted with SMs was difficult to interpret (examples of SMs are pre-

sented in Fig. 4.7).

To overcome this limitation, we consider here a different paradigm, based on dis-

entangled generative representations. The main novelty of this paper is to show that

disentanglement may bring a better understanding of classification results, highlighting

the differences between the possible classes.

Disentangled representations allow us to reveal the effects of the factors of interest

through the generation of new data obtained by changing the labels related to these

factors [270]. As an example, [146] samples the latent space so as to provide insights

from brain structure representations. Another model proposed in [291] can simulate

brain images at different ages, providing an alternative way of interpreting the aging

pattern.

We introduce a disentangled Variational Auto-Encoder (DVAE) to obtain a hip bone

mesh representation, in which the sex label is disentangled from the other latent vari-

ables. In addition to providing the class of a given sample to analyze, a DVAE can

also provide a reconstruction for each class, which provides supplementary informa-
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tion to the user. As an example, if the input mesh is a male one, its reconstruction as

a man should be similar to the input mesh and its reconstruction as a woman, on the

other hand, should display interpretable differences in sex-specific regions. Moreover,

by comparing the two reconstructions with the original mesh for several subjects, the

user can get an insight into the morphological differences between male and female hip

bones.

Although SMs and the proposed approaches provide understanding and explainabil-

ity, they do not act at the same level. The SMs facilitate understanding of the decision

process (related to a classification method): the purpose is to understand what the neural

network has learned or how prediction is performed. An SM therefore reveals informa-

tion about the classifier itself and not about the classification task. On the contrary, the

proposed approach makes it possible to highlight the differences between the classes

and thus provides information on the classification problem to be solved.

Finally, in addition to showing that disentanglement can bring a better understanding

of classification results, we also show in this paper that feeding a binary classifier with

the reconstructions provided by DVAE allows to obtain a classification method that is

robust to missing data and therefore well-suited to bone fragments, which is a major

advantage (compared to other existing methods) for applications in forensic medicine

and anthropology.

Note that the classification approach as such is not the main contribution of this arti-

cle. Indeed, sex determination from the hip bone may not be considered as challenging

in terms of the classification task: the hip bone exhibits significant sexual dimorphism

(note that the classification accuracy is very high (Tab. 4.2)). There are indeed strong

anatomical differences between the male and female hip bones, such as the subpubic

angle and the shapes of the obturator foramen, of the greater sciatic notch, of the pelvic

inlet and of the symphysis.

The main contribution is the proposition that disentanglement can contribute to a

better understanding of classification results. In particular, the proposed method allows

the users to form their own opinions. As an example, we will see in Sec. 4.7 that the

reconstructions provided by the proposed approach can sometimes allow us to confirm

the choice made by the classifier, or it can also allow us to doubt its choice or even

question it.

The remainder of this paper is organized as follows: after the presentation of the re-

lated works (Sec. 4.3), we briefly explain in Sec. 4.4 how hip bone meshes are obtained

from CT scans. Sec. 4.5 presents the DVAE. Sec. 4.6 describes the experiments and

the results and Sec. 4.7 proposes a discussion. Since the two reconstructions provided

by DVAE enable the users to form their own opinions, Sec. 4.8 shows that the two

reconstructions may also be useful to improve the accuracy of an independent classifier.
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This section also addresses the case of missing data. In Sec. 4.9, we illustrate SMs for

the proposed networks for comparison. Finally, Sec. 4.10 concludes the paper.

4.3 Related works

Interpretability and explainability of deep neural networks may be achieved in two

ways.

The first paradigm, known as activation maximization or feature visualization via

optimization, consists of producing intuitive visualizations that reveal the meaning of

hidden layers. This is mainly achieved by finding a representative input that can maxi-

mize the activation of a layer [57, 168].

The second paradigm, known as attribution methods, looks for the network inputs

with the highest impact on the network response. In the case of image models, this leads

to the estimation of SM, which highlights the regions of the input image that contribute

the most to the decision. Many attribution techniques are based on backpropagation. An

SM is, for instance, computed in [220] by computing the derivative of the output with

respect to the image. Several methods such as SmoothGrad [223] have been proposed to

reduce the noise that is present in the gradient. Methods such as CAM [292] and Grad-

CAM [215] combine gradients, network weights and/or activations at a specific layer.

Other attribution techniques analyze how a perturbation in the input affects the output

[62]. Finally, attribution techniques can also be achieved via local model approximation

[203].

In medical imaging, SMs are becoming a popular approach that provides inter-

pretability, especially when it comes to localization of abnormalities. Different sanity

checks [12], such as intra-architecture repeatability, inter-architecture reproductibility,

sensitivity to weight randomization [2] and localization accuracy can be used to assess

the relevance of SMs. These criteria helped to justify the use of SMs in some studies

such as in [12], but have also led to questions about the relevance of SMs [56, 280].

This indicates that SMs are not suited to all situations.

In our experiments, the information extracted with SMs was difficult to interpret

(examples of SMs are presented in Fig. 4.7). Our hypothesis is that SMs are not eas-

ily interpretable on medical imaging classification problems in which the underlying

features used by the neural network are spatially correlated, scattered and non-trivial.

Generative models are proposed here as a way of better understanding classification

results. These models play a crucial role in many applications and in many common

tasks of data science [289, 279, 141, 15, 173, 261, 254, 183]. Moreover, there is a key

challenge to learn disentangled (generative) representations where some variables of

interest (such as acquisition parameters, age, sex or pathology in medical applications)

would be independently and explicitly encoded [18]. These representations can either
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be obtained with Variational Auto-Encoders (VAEs) [124] or with generative adversar-

ial networks (GANs) [69].

Probabilistic generative models, such as VAEs [124], define a joint probability dis-

tribution over the data and over latent random variables. Very few assumptions are

generally made about the latent variables of deep generative models, leading to entan-

gled representations.

Disentanglement can be achieved with VAEs in the unsupervised case [30, 146], in

the (semi)-supervised case [219, 122, 291], and in the weakly-supervised case [207]. In

the supervised or semi-supervised case, the factors of interest are explicitly labelled in

all or in a part of the training set. In the weakly-supervised case, only implicit informa-

tion about factors of interest is provided during learning.

The semi-supervised case is of primary importance because better disentangled

models can be obtained under supervision [152]. In this case, the latent representa-

tion is generally divided into two parts: the non-interpretable part and the disentan-

gled part corresponding to variables that explicitly model the factors of interest. In

this context, several patterns of conditional dependency structures have been proposed

[158, 219, 122].

In addition to VAE approaches, there is a substantial literature on image-to-image

translation between unpaired image data using GAN [253, 147, 112, 278]. First, some

methods try to map an image from one domain (e.g. smiling) to another one (e.g. neutral

face). Among these methods, the best known is CycleGAN [296]. This approach is

able to preserve key attributes of two different domains and allows to transform an

image from one domain to another. Note that StarGAN [36] can perform image-to-

image translations for multiple domains. Similar methods, inspired by dual learning,

can also be used [217, 296, 277] to map the domains. Other GAN based approaches use

architectures that are more similar to the VAEs [128, 181]. As an example, conditional

GAN [181] allows to disentangle the high level factors from the intrinsic features of the

face using two different encoders that compute the latent representation and the attribute

information from the image.

4.4 From CT scans to meshes

In this section we assume that we have one 3D CT scan Ik for each individual k. Com-

puting a mesh of the hip bone from a CT image (Fig. 4.1) is carried out in six steps:

• (i) The scans are registered to a common space using the groupwise registration

algorithm FROG [3], that provides a transformation field tk (for each k) that

relates the common space to the Ik’s image space.

• (ii) Each scan Ik is warped according to tk (so as to obtain Ik in the common
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Fig. 4.1 From CT scans to hip bone meshes

space), and a template T is obtained by averaging the warped images.

• (iii) The coxal bone is segmented and meshed in T , thus providing a mesh M .

The mesh is composed of about 5000 vertices (we denote by P the 3-D points

associated with the mesh M ).

• (iv) The points P are back-transformed in the native space of each scan Ik using

the inverse transform t−1
k , providing for each scan Ik a matrix Xk of size Np × 3

(Np is the number of points). Each row of Xk is the 3-D coordinate of one point.

Note that the points are ordered since the i-th row of each matrix is associated

with the same “anatomical” point.

• (v) A shape description invariant to position, size and orientation denoted Pk is

obtained using a Procrustes alignment of Xk onto P (for each Xk, we estimate a

similarity transformation, namely the combination of a rigid transformation with

an isotropic scaling transform). A shape description invariant to position and

orientation is required since all subjects do not have the same position during

acquisition. However, a description invariant to size is more debatable.

• (vi) Since the point sets Pk and P are ordered, the mesh Mk is straightforwardly

derived from M and Pk.
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Fig. 4.2 DVAE for sex determination. There are four main steps. 1. The distribution
qϕ(y|x) (Eq. 4.5) is computed using the neural network q0 (Eq. 4.6) that outputs the
vector Py whose i-th element is equal to qϕ(y = i|x) (i = 1 or 2). Then, y is set to
the most likely label for testing, and is assumed to be known for training. 2. The
parameters µ and log σ2 (both are vectors of size L) of the distribution qϕ(z|x, y) (Eq.
4.4) are estimated using the neural networks q1 and q2 (Eq. 4.7). The networks q1
and q2 share all their layers except the last one. Moreover, q0 shares with q1 (and q2)
the four first convolution blocks of the encoder. Note also that y is injected into the
networks q1 and q2 through a concatenation layer located before the two dense layers.
Since one-hot encoding is used to model y, y is of dimension 2. This explains why
the concatenation layer takes as input a vector of dimension 512 and outputs a vector
of size 514. 3. For learning, z is sampled from the distribution qϕ(z|x, y) using the
reparameterization trick (Eq. 4.8). For testing, z is set to µ. The latent representation of
the input data is composed of y and z and is of dimension L+ 2. 4. The reconstruction
can be performed from the latent representation using the decoder (Eq. 4.9). Note that
the two latent representations (z, y = ”man”), (z, y = ”woman”) correspond to the
“same” individual but of opposite sex. Consequently, by setting y to the man (resp.
woman) label in the latent representation, we can reconstruct the original data as a man
(resp. woman). This will enable us to transform a sample from a given class into the
“same” sample but of another class (see Sec. 4.5.3).

4.5 Disentangled Variational Auto-Encoders for classification and recon-
struction

4.5.1 Conditional dependency structure

The proposed model is part of the family of partially-specified models because an ex-

plicit latent variable is defined (the sex of the subject) whereas the semantics of the other

latent variables is undefined. Several conditional dependency structures can be defined.

As an example, [291] explicitly conditions the latent variables z on age c, such that the

conditional distribution p(z|c) captures an age-specific prior on latent representations.

We propose here to use a conditional dependency structure, as presented in [219, 122],
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which is suited to our problem.

We denote by x a sample (a mesh), by y its class (male or female), and by z ∈ RL

the other latent variables. Note that the latent representation of x is the pair (y, z). We

use the following factorization for the generative process:

pθ(x, y, z) = pθ(x|y, z)p(y)p(z), (4.1)

where a weak prior is defined over z and y : p(z) = N (z|0, I) and p(y) = 1
2
. pθ(x|y, z)

is modelled as a Gaussian distribution whose mean is given by a neural network f with

parameter θ that takes as input y and z. We have:

pθ(x|y, z; θ) = N (x | f(y, z; θ), vI) ,
= N (x | x̂, vI) ,

(4.2)

where v > 0 is a hyperparameter and x̂ is the reconstruction computed from y and z.

As usual in variational inference, the posterior pθ(y, z|x) is approximated by qϕ(y, z|x).
In order to disentangle the label y from the other latent variables z, we use the following

factorization:

qϕ(y, z|x) = qϕ(y|x)qϕ(z|x, y). (4.3)

The distribution qϕ(z|x, y) shows that the estimation of z requires the data x, but

also the label y. To understand why this is relevant, let us consider a toy example

where z is supposed to represent the size of the subject. If the sex label y is well

disentangled from z, z ought to be an intrinsic measure of a subject’s size. This means

that its estimation needs to regress out the influence of the label y: indeed, a woman

who is 160 centimeters tall can be considered as average height while a man of the same

height can be considered as short, so that the value of z associated with this woman has

to be larger than the one related to this man (even if they have both the same height).

Consequently, in order to obtain a disentangled representation, it seems appropriate that

z depends both on x and y.

The distribution qϕ(z|x, y) in Eq. 4.3 is defined as a Gaussian distribution whose

mean (resp. covariance matrix) is given by a neural network q1 (resp. q2) with parameter

ϕ1 (resp. ϕ2) that both take as input x and y:

qϕ(z|x, y) = N (z;µ, σ2), (4.4)

where µ and log σ2 are vectors of size L (see Eq. 4.7 for details). Finally, the distribution

qϕ(y|x) that also appears in Eq. 4.3 is simply defined as:

qϕ(y|x) = Discrete(y|q0(x;ϕ0)), (4.5)
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where q0 is a neural network with parameter ϕ0 that takes x as input. The output of

this network is a positive vector Py (Eq. 4.6) of size 2 summing to 1: the probability

qϕ(y = i|x) is the i-th element of q0(x;ϕ0) (i = 1 or 2).

The proposed approach can be summarized as follows:

• If y is known, the neural network q0 is not required. Otherwise, it acts like a

classifier such that the distribution qϕ(y|x) (Eq. 4.5) is computed as follows:

Py = q0(x;ϕ0), (4.6)

and y is set to the most likely label.

• The latent variable z is computed from x and y. Firstly, µ and log σ2 that appear

in Eq. 4.4 are computed such as:

µ = q1(x, y;ϕ1), log σ
2 = q2(x, y;ϕ2). (4.7)

Then, the latent variable z is set to µ for testing new data whereas Eq. 4.8:

z = µ+ σ ⊙ ϵ, where ϵ ∼ N (0, I), (4.8)

represents the reparameterization trick that is used for learning (please see the

next section). Note that the latent representation of x contains both the variables

y and z.

• The reconstruction x̂ can be obtained from y and z as follows:

x̂ = f(z, y; θ). (4.9)

The neural networks q0 (Eq. 4.6), q1 and q2 (Eq. 4.7) represent the encoder and f

is the decoder (Eq. 4.9).

The proposed architecture is depicted in Fig. 4.2. Networks q0, q1, q2 and f (Fig.

4.2) are defined using a combination of the convolutions, max-pooling (downsampling)

and upsampling operators presented in [198]. Note that mesh convolution is performed

in the spectral domain with a kernel parametrized as a Chebyshev polynomial of order

K (K is set to 6).

4.5.2 Parameter optimization

As usual for learning a VAE, the parameters of the DVAE are set to maximize the

Evidence Lower BOund (ELBO) [124]. We can show that the term qϕ(y|x) does not

contribute to the loss function because all labels y are known during training. Thus,
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maximizing the ELBO does not allow the estimation of ϕ0 (Eq. 4.6). Consequently,

following [219, 122], we add a classification loss α log qϕ(y|x) to the ELBO term. The

criterion writes:

Ez∼qϕ(z|x,y)

[
log

pθ (x, y, z)

qϕ(z | x, y)

]
+ α log qϕ(y|x). (4.10)

Based on the conditional dependency structure of the model, Eq. 4.10 can be sim-

plified as:
Ez∼qϕ(z|x,y) [log(p(z))− log(qϕ(z|x, y))] +

Ez∼qϕ(z|x,y) [log(pθ(x|y, z))] +

log(p(y)) + α log qϕ(y|x).
(4.11)

The first term may be expressed as a Kullback–Leibler divergence

(−KL((qϕ(z|x, y)||p(z))) which can be computed analytically since the encoder model

and prior are Gaussian. The second term is approximated by a Monte Carlo estimate:

we use the SGVB estimator and the reparameterization trick [124] (Eq. 4.8). The third

term corresponds to the prior of the label y, that has been set to 1/2. Finally, the last

term is computed by the neural network q0.

The loss function contains two hyperparameters: α that weights the contribution of

the classification loss, and the variance v (Eq. 4.2), which is used to compute the second

term of Eq. 4.11. As in the VAE case, the variance v weights the contribution of the

mean squared error reconstruction and special care is needed to set v. In the following,

the two hyperparameters v and α are estimated using cross-validation strategies (note

that the influence of the parameter α is limited and could simply be set to 1).

4.5.3 DVAE for classification and reconstruction

The proposed generative model can be used for classification but it also offers the op-

portunity to transform a sample from a given class to the “same” sample but belonging

to another class, by modifying the value of the categorical variables y in the latent rep-

resentation. The reconstruction of a male mesh (resp. female) as a female mesh (resp.

male) is carried out according to the following “sex change” procedure:

• Step 1: The latent variable z is computed from the input data x and its true label

y using Eq. 4.7 (z is set to µ). The latent representation corresponds to variables

z and y.

• Step 2: We change the value of y in the latent representation, so that we obtain

the latent representation of the “same” individual but of the opposite sex.

• Step 3: The reconstruction can be performed with Eq. 4.9 (using the modified

latent representation).
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In order to test the consistency of the results, we also developed a sex preservation

procedure. This is the same procedure as the sex change procedure except that the value

of y is not modified in the latent representation (Step 2 is not performed).

Note that the computation of the latent variable z requires knowledge of the sex of

the mesh under analysis since the true label y is required to compute µ (Eq. 4.7). For

testing, since the sex of the mesh under analysis is not known, we have to replace the

true label by its most likely estimate computed with q0.

However, for the reconstruction step (Eq. 4.9), note that we can choose to recon-

struct a subject either as a man or as a woman by setting y in the latent representation

appropriately.

4.6 Experiments

Our database consists of 752 CT scans from the University Hospital of Saint-Etienne,

France, of which 470 subjects are men and 282 subjects are women. The men are on

average 65.8 years old with a standard deviation of 14.2 years and the women are on

average 65.6 years old with a standard deviation of 14.6 years.

For each scan, a hip bone mesh is extracted as explained in Sec. 4.4. Each point

coordinate is normalized so as to have zero-mean and unit-variance. The means and

standard deviations are computed using the training dataset (see Section 4.6.1.2).

In addition to training a DVAE, we also train a vanilla VAE whose architecture is

the same as that represented in Fig. 4.2 except that the label y and the computation of

Py (Eq. 4.6) are removed. The usual criterion [124] is used for training the VAE.

We also learn a classifier (denoted C) whose architecture is derived from the one in

Fig. 4.2 by keeping only the layers that are useful for the computation of Py (Eq. 4.6).

C and q0 have the same architecture but q0 is only a subpart of the DVAE (q0 shares

some layers with q1 and q2) whereas C is an independent classifier. The binary cross

entropy loss is used for training C.

Finally, we use PyTorch for implementation.

4.6.1 Evaluation protocol

4.6.1.1 Hyperparameter setting

In the VAE case, the variance v is estimated automatically during the training process

with the method proposed in [209]: v is computed for each batch as the MSE loss.

Regarding the DVAE, several methods have been tested without success to estimate

v automatically. This is why the parameter v as well as the parameter α (Eq. 4.11) are

set using cross-validation strategies.
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It has been observed that the size of the latent space has limited influence on clas-

sification accuracy and on the disentanglement properties for a large range of values of

L (for L = 1 to 64). However, using too small values of L leads to an increase in the

reconstruction error. L has been set to 16 in all experiments. For a fair comparison, the

size of the latent space of the VAE has been set to L+2=18.

Optimization of the parameters was done using the Adam optimization algorithm

with a batch size of 16. During training, all models are trained for 600 epochs. We keep

the same learning rate of 0.0006 for the first 200 epochs and then decay the learning

rate to 0.0003 for the next 200 epochs. For the last 200 epochs, we set the learning rate

to 0.0001. Training time for DVAE is about 7.2 sec per epoch with a 2080 Ti graphics

card. The DVAE needs about 0.2 seconds to generate both male and female hip bones

during testing.

4.6.1.2 Nested-cross validation strategy

In order to estimate the ability of the models to handle unseen data and to set the hyper-

parameters α and v for the DVAE, we follow the nested cross-validation strategy.

First, an (outer) stratified 5-fold cross-validation strategy is used to assess the per-

formance of the models. At each iteration, all folds except one are used as training data

(it will be denoted TR) and the remaining one is used as testing data (TE). The three

models (DVAE, C, and VAE) are trained from TR and their performances are evaluated

on TE. Note that a score can be computed for each fold. We can then derive an average

score and its standard deviation.

However, the DVAE learning process requires the hyperparameters α and v to be

defined. An inner K-fold cross-validation could be applied at each iteration of the outer

cross-validation. However, this would require training a very large number of models.

To make the problem tractable, we instead randomly divide the training set TR into

a validation set denoted V and a training set T (20% and 80 %). Afterwards, several

models are trained from T based on different values for the hyperparameters: a grid

search is performed for α and v (α and
√
v take resp. their value in {0.5, 1, 2, 3, 4, 5}

and in {0.7, 1, 1.3, 1.6, 1.9}). Once all models have been trained, the set V is used to

select the model that provides the highest disentanglement, that is, the one that leads

to the highest success rate for the sex change procedure (see sec. 4.6.1.3). Then, a

final model is trained from TR based on the hyperparameters that have led to obtain the

selected model (note that TE is used neither to estimate the parameters of the model nor

to estimate the hyperparameters).
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Table 4.1 Results (mean and standard deviation) obtained with the DVAE approach.
CA, OSRSR, SSRSR, and RE stand resp. for classification accuracy, opposite sex
reconstruction success rate, same sex reconstruction success rate, and reconstruction
error.

CA OSRSR SSRSR RE
99.59± 0.34% 99.10± 0.92% 100% 1.647mm± 0.098mm

Table 4.2 Comparison with previous works on sex determination. Note that previous
works rely on manual estimation (such as lengths, angles or landmark positions) while
our approach is fully automatic.

Method individuals variables accuracy
CADOES [55] 256 40 (manual) 97 %
DSP [165, 26] 2040 17 (manual) > 99 %
Nikita et al. [172] 132 3 (manual) 97 %
Ours 752 5000 (autom.) > 99 %

4.6.1.3 Evaluation metrics

In the (semi)-supervised case, evaluating disentanglement is often achieved by visualis-

ing the reconstructions while modifying the value of a latent variable of interest. In our

specific case, this can be easily achieved since the latent variable of interest y is binary

(a hip bone is either associated with a man or a woman). Consequently, the model is

tested on its ability to perform conditional generation according to the sex label (Sec.

4.6.2.1 proposes quantitative results while Sec. 4.6.2.2 presents some visual examples).

The model is also tested for its ability to classify hip bones and to reconstruct the origi-

nal data.

For each fold, we compute four different metrics to evaluate the performance of the

model:

• The classification accuracy (CA) obtained with q0 (DVAE) or with classifier C.

• The opposite sex reconstruction success rate (OSRSR): we reconstruct a male

(resp. female) as a female (resp. male) mesh using the sex change procedure

(Sec. 4.5.3). This procedure is considered as successful if the transformed mesh

is classified as female (resp. male) using C. This rate should be high if the sex

label y has been been properly disentangled from z.

• The same sex reconstruction success rate (SSRSR): we reconstruct a male (resp.

female) as a male (resp. female) mesh using the sex preservation procedure (Sec.

4.5.3). This procedure is deemed as successful if the transformed mesh is classi-

fied by classifier C as male (resp. female).

• The reconstruction error (RE) in millimeters. The reconstruction obtained with
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the sex preservation procedure is compared with the initial mesh in the native

space of the image Ik (see Sec. 4.4). The mean of the euclidean distances be-

tween each associated point is computed leading to a score for a given subject.

This score is then averaged over all subjects in the fold. Note that obtaining the

reconstruction in the space of Ik requires the inversion of the normalization step

applied to each point coordinate (second paragraph of Sec. 4.6) as well as the

similarity transformation (point (v) in Section 4.4).

Note that all metrics except CA are computed using different reconstructions of the

mesh under analysis. In order to distinguish between classification errors and recon-

struction/disentanglement errors, the true label is used to compute the latent represen-

tation.

4.6.2 Experimental performance analysis

4.6.2.1 Quantitative results

The results obtained with the DVAE approach are shown in Tab. 5.1. Regarding the

classification accuracy, the DVAE classifier achieves a very high prediction accuracy

(99.59 ± 0.34%). This corresponds to a total of 3 misclassifications out of 752 (one

misclassification in 3 folds and zero in 2 folds). The independent classifier C achieves

similar results since only three subjects are misclassified (these are not the same sub-

jects).

As a comparison, Tab. 4.2 gives sex prediction accuracy for recent works that are

based on the manual positioning of a few landmarks. We cannot claim that the proposed

method provides better results since all the methods should be compared on the same

database (which unfortunately is not available). However, the proposed method yields

state-of-the-art classification results while being free of any manual positioning of land-

marks. Moreover, the method is data-driven and not guided by expert knowledge. It is

also suited to sex determination from other bones and, as shown in Sec. 4.8.2, from

bone fragments.

In terms of reconstruction error, the DVAE performs similarly to a vanilla VAE,

which obtains a mean reconstruction error of 1.728 mm, even if the selected values

of v at each fold (DVAE) are always larger than those estimated (for each batch) with

the method of [209] (VAE). The selected values of v in the DVAE case are relatively

large because it has been observed that small values of v lead to poor disentanglement

properties. However, an increase in v did not increase reconstruction error.

One could remark that the comparison of the reconstruction errors may be unfair

since the true sex label is employed to perform the reconstruction in the DVAE case.

However, the same result is obtained when using the estimated label: there are only 3
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misclassified cases and using the true label or the false one leads to reconstructions that

are mostly similar, except in some specific regions.

Finally, excellent results are obtained for the opposite sex reconstruction success

rate, and for the same sex reconstruction success rate. The reconstruction as a female

(resp. male) mesh of a male (resp. female) mesh is well-classified by C in more than

99% of the cases (OSRSR). Moreover, the reconstruction as a male (resp. female)

mesh of a male (resp. female) mesh is always well-classified by C in our experiments

(SSRSR). Note that the accuracy of the classifier C reaches only 97.17 ± 1.05% when

classifying data reconstructed with the vanilla VAE (instead of 100% in the DVAE case).

As noted previously, the comparison with the VAE approach may be unfair since

the true label is used for reconstruction in the DVAE case. However, we can use a sex

preservation procedure that does not rely on the true label (the label can be estimated by

q0). In this case, when classifying the reconstructions obtained by DVAE, the classifier

C reaches an accuracy of 99.59 ± 0.34%, which is exactly the accuracy of q0 (see Tab.

5.1). Indeed, classifying with C the reconstruction obtained with the DVAE provides

exactly the same results than classifying the original mesh with q0. This clearly shows

the consistency of the method. As an example, if a male mesh is considered as a female

one by q0, the DVAE will reconstruct this male mesh as a female one so that the classifier

C will be also wrong.

4.6.2.2 Qualitative results

In order to evaluate more precisely the disentanglement properties of the model, each

original mesh Mk is compared with its reconstructed (same sex) mesh or with its recon-

structed opposite sex mesh. Furthermore, the two reconstructions are also compared

together. Note that the two reconstructed meshes are those computed in the previous

section (the true label y is used to compute z).

We start by analyzing average results. As in Sec. 4.6.1.3 (please see the definition

of RE), the reconstructions (associated with Mk) are computed in the native space of Ik.

To compare two (out of the three) meshes, we associate at each vertex v of the template

mesh M a real value representing the distance between the two vertices v of the meshes

under analysis. These distances are averaged across the different subjects of the testing

set. Each vertex of the template mesh therefore receives a color representing the (local)

average distance.

These local average distances are represented in Fig. 4.3 (left) when the original

meshes are compared with the same sex reconstructed meshes. This comparison shows

that the iliac crest is not well reconstructed. This is mainly due to large registration

errors that can be observed for some subjects in this region. This makes the problem

more difficult because the variability of the data is increased.
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Fig. 4.3 Local average distances. From left to right: original meshes vs reconstructed
meshes (lower distance is better), original meshes vs reconstructed opposite sex meshes,
reconstructed meshes vs reconstructed opposite sex meshes. Distances are in mm. See
text for details.

Fig. 4.4 Example of changing a male hip bone (blue) to a female hip bone (red). Left:
angle comparison: the subpubic angle is larger for the female bone than for the male
bone. Right: the male obturator foramen (left) exhibits an oval shape, while the female
obturator foramen (right) exhibits a triangular shape.

As illustrated in Fig. 4.3 (middle) that represents the local average differences be-

tween the original meshes and the opposite sex meshes, the opposite sex reconstruction

changes the geometry as expected. Moreover, the differences that can be observed are

consistent with expert knowledge. As an example, the subpubic angle is known to be

larger for women, leading to the difference observed in the pubic arch.

The two reconstructed meshes can be compared (Fig. 4.3 (right)) in order to gain a

deeper understanding of the results. This is particularly true for the iliac crest, which

is not well reconstructed in both cases. In the case of complete disentanglement of the

sex label, we expect this area to be reconstructed similarly for both reconstructions.

This is because the iliac crest is known to show little sexual dimorphism compared to

other areas of the hip bone. Even if Fig. 4.3 (right) still exhibits differences in the

iliac crest between the two reconstructions, they remain low compared to the original

reconstruction errors (Fig. 4.3 (left)).

Finally, these results reinforce the idea that the sex variable has been properly dis-

entangled.

We can explore further by analyzing individual results. The analysis of the dif-

ferences between two meshes was carried out using “cine mode” (rapidly switching
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(a) (b) (c) (d)

Fig. 4.5 Examples of DVAE results. Original mesh (grey) vs mesh reconstructed as a
female one (red). Original mesh (grey) vs mesh reconstructed as a male one (blue). The
original mesh of (b) is a female one while those of (a,c,d) are male meshes.

between them) because the eye is sensitive to movement. For the sake of simplicity, the

two meshes are here directly superimposed to compare them (see Fig. 4.4 and 4.5).

When opposite sex reconstruction is successful, the comparison of the opposite sex

mesh with the original mesh (or the reconstructed one) reveals the significant anatomical

differences between the male and female hip bones, such as the subpubic angle (Fig.

4.4, left) as well as the shape of the obturator foramen (Fig. 4.4, right), of the greater

sciatic notch, of the pelvic inlet and of the symphysis. Note that it may sometimes

happen that the two meshes do not exhibit all the expected differences, but most of

them are generally easily observable.

When opposite sex reconstruction is not successful, the modification is globally

consistent, as some significant anatomical differences can be observed, but some of

them are sometimes hard to see, or event not present.

4.7 Discussion: In what sense does the method provide understanding?

Predicting sex from a hip mesh is not an easy task for a non-expert and the classifi-

cation results can be difficult to understand. In the proposed approach, in addition to

providing the class of the mesh, its reconstructions as a man and as a woman are also

provided. When the original mesh is that of a man (resp. woman), its reconstruction as
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a man (resp. woman) is very similar to the original mesh. Conversely, the comparison

between the original mesh and its reconstruction with opposite sex exhibits differences

in some specific areas (while others remain unchanged). The comparison of these re-

constructions with the original mesh enables a non-expert to understand the choice of

the classifier, or at the very least to make their own choice.

Fig.4.5(a) gives an illustrative example of the results provided by DVAE. The re-

construction of the mesh as a man is very similar to the original mesh. On the contrary,

the reconstruction as a woman exhibits a wider subpic angle and a wider pelvic inlet.

Consequently, a non-expert can easily classify the mesh as a male (without using the

result of the classifier), or at least, understand why this mesh can be considered as a

male one.

It is then legitimate to ask what happens if the label is not correctly estimated by q0:

will the proposed method justify a misclassification or will it detect the mistake? This

part should not be considered as a failure case analysis. The purpose of the proposed

method is to provide relevant and easily interpretable information so that the users can

form their own opinions. Consequently, if the classifier is wrong but the information

given by DVAE enables the user to question its decision, this can certainly be considered

a positive result.

Both DVAE and C misclassified 3 subjects, we analyze them in detail here. The dif-

ferent reconstructions relative to the misclassified meshes are shown in Fig. 4.5(b,c,d)

(note that y is provided by q0 for the computation of z so as not to bias the results). The

6 misclassified cases can be split into three groups.

The first group is composed of 3 misclassified subjects (one for C and two for

DVAE). Fig. 4.5(c) is an illustrative example of this group. It is a man that has been mis-

classified by C. The reconstruction as a man is very similar to the original mesh in the

sex-specific regions, whereas the reconstruction as a woman exhibits some differences

in these regions. Consequently, the original mesh seems to be a male mesh and the user

may question the choice of the classifier. Moreover, the iliac crest is particularly poorly

reconstructed in these 3 subjects. The shape of this region may be responsible for the

misclassification.

The second group is composed of 2 misclassified subjects (one for C and DVAE).

Fig.4.5(b) is an illustrative example of this group. It represents a woman that has been

misclassified by DVAE. When looking at the subpic angles, it seems to be consistent:

the reconstruction as a woman is very similar to the original mesh in this area. However,

the reconstruction of the pelvic inlet suggests that this is a male mesh (the reconstruction

as a man is very similar to the original mesh in this area). Thus, this mesh has both male

and female characteristics. This may explain why this subject is difficult to classify. In

this case, the two reconstructions enable the user to doubt the result obtained by the
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classifier.

The last group is composed of one misclassified subject: this is a man (Fig. 4.5(d))

that has been misclassified by DVAE. When it is reconstructed as a woman, the subpubic

angle is slightly increased and the pelvic inlet is made wider, as expected. When it

is reconstructed as a man, we expect the reconstruction to be similar to the original

mesh but the subpubic angle is slightly decreased. Consequently, the subpubic angle of

this man seems to be larger than it should be. This may explain why this subject has

been misclassified. However, a user could easily question the results obtained by the

classifier, because it seems that the mesh exhibits more male characteristics than female

ones.

Finally, the comparison of the two reconstructions with the original mesh is a simple

way to understand the choice that was made by the classifier, or to doubt its choice (for

the second group) or to question it (for the first and last groups).

4.8 Reconstruction-based classification: application to missing data

4.8.1 Reconstruction-based classification

As written in Sec. 4.7, the comparison of the two reconstructed meshes provided by the

DVAE approach with the original mesh enables a non-expert to form an informed opin-

ion. In the same way, one can wonder if the performance of an independent classifier

can be improved by feeding the two reconstructed meshes obtained with DVAE to the

classifier.

To this end, the following paradigm has been used: after having trained the DVAE,

we train an independent classifier denoted Crecon whose input data are composed of two

meshes: the first one is the original mesh from which we subtract its reconstruction as a

man (provided by DVAE, z is computed using the label estimated by q0) and the second

one is the original mesh from which we subtract its reconstruction as a woman. The

classifier Crecon is identical to C except the first layer that takes an input of size 4998x6

(we have points in R6 because we model two meshes). In the following, we denote this

method DVAE+Crecon.

DVAE+Crecon achieves an accuracy of 100% for each fold, even with meshes having

both female and male characteristics (Sec. 4.7). One possible reason for these results

is that the work of Crecon is much simpler than the one of C. As an example, let us

consider the case of a male mesh. Its reconstruction as a man is very similar to the

original mesh so that the first three components of the mesh (we have points in R6)

are close to zero. On the contrary, the reconstruction as a woman exhibits differences in

some sex-specific regions so that the last three components of the mesh are close to zero

except in the sex-specific regions. Consequently, for a male mesh, all components are
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expected to be close to zero except the last three components that lie in the sex-specific

regions. For a female mesh, all components are expected to be close to zero except the

three first components that lie in the sex-specific regions. By highlighting the regions

that allow to distinguish male from female hip bone, the input of Crecon is much easier

to analyze than the original mesh.

4.8.2 Application to missing data

Since all the classifiers C, Crecon and DVAE have already achieved high accuracies, we

propose here to make the problem more difficult by introducing missing data: vertices

are deleted either on the left-hand, right-hand, lower, upper, front or rear side. The

percentage of missing data is expressed in terms of the percentage of the mesh size (in

the dimension where the data is removed). As an example, when deleting data on the

lower side, the percentage of missing data is expressed in terms of the percentage of the

height of the mesh. A very simple imputation strategy is used: missing values are set to

the value 0 (which is the mean at each vertex).

Data augmentation is required during training to achieve acceptable results: with

a probability of 0.6, the mesh is not modified. Otherwise, it is augmented as follows.

The side where the vertices are set to 0 is chosen with a uniform distribution, and the

percentage of missing data is selected with a uniform distribution in 0− 40%.

Four different methods are used for classification:

1 The classifier C.

2 DVAE: note that the second term of the loss function (Eq. 4.11) uses the original

mesh (and not the augmented one) since we want the reconstruction to be similar

to the original mesh.

3 DVAE+ Crecon. DVAE is first trained as in the second point. Then, during the

learning of Crecon, the two reconstructions of an augmented mesh are computed

using the DVAE (z is computed using the label estimated by q0) and the input of

Crecon corresponds to the augmented mesh from which we subtract its reconstruc-

tions. This means that Crecon is somehow fed indirectly with augmented meshes

during the learning.

4 the last method denoted VAE+C consists in classifying the reconstruction pro-

vided by the VAE with C. The VAE is trained in a similar way as the DVAE.

Since the VAE provides a reconstruction without any missing data, the classifier

C is trained with non-augmented meshes.

Classification accuracy is shown in Fig. 4.6 for a large range of missing data.
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Fig. 4.6 Classification accuracy obtained with different methods in the presence of miss-
ing data. The x-axis corresponds to the percentage of missing data (×100).

As previously, we can note that DVAE and C provide similar results. Even if 70%

of the data is missing, C and DVAE can still achieve an accuracy of 90%.

We can also note that the two methods that use reconstructions (VAE+C and

DVAE+Crecon) are quite robust to missing data but DVAE+Crecon performs always bet-

ter than other classification methods. This clearly highlights the benefit of feeding the

classifier indirectly with the two reconstructed meshes provided by DVAE.

Finally, the fact that the proposed method is able to achieve very good results in

cases where there is a high proportion of missing data seems to indicate that it is able to

take into account most of the differences that exist between female and male hip bones.

4.9 Comparison with saliency maps

To compare our approach for the interpretation of mesh classification with a standard

method, we have computed SMs for the classifiers C and Crecon (without missing data)

with the method in [220]. For a given input mesh, the importance wic at each vertex vi

is computed as follows:

wic = |∂p(y = 0|x)
∂xic

| = |∂p(y = 1|x)
∂xic

|, (4.12)

where xic (c =1, 2 or 3) represents either the x, y or z coordinate.

Eq. 4.12 can be computed through back-propagation. For each vertex, the 3 com-
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puted importances (one for each coordinate c) are aggregated using the max function:

the SM at vertex i is computed as maxc(wic). Instead of considering the derivative of

p(y|x), it is also possible to use the unnormalised score (the softmax layer is not con-

sidered for the computation of the derivative). In this case, Eq. 4.12 no longer holds

and a SM is obtained for each class. Regardless of the methods used or the aggregation

function used, the results were always very similar. Fig. 4.7 represents the mean of the

SMs (across the subjects), computed with Eq. 4.12 and the max aggregation function.

It is difficult to understand how classifier C makes its decision (Fig. 4.7, left), as the

most relevant vertices for the classification are distributed over the entire hip bone (we

could expect them to lie specifically in regions that are known to differ between men

and women, but this is not the case).

The individual SMs were also extremely different from one another, whereas one

would expect that they would all highlight sex-specific regions. Finally, the results were

neither intra-architecture repeatable nor inter-architecture repeatable. We suggest that

SM may not be suitable for classification problems in which the features that allow dis-

tinguishing classes are spatially correlated and scattered. Under these conditions, two

classifiers can achieve high accuracy results without having the same decision bound-

aries, hence their respective SMs will be different.

To illustrate this hypothesis, let us take a simplified problem in which the hip bone

is modeled with four variables. To simulate the fact that the hip bone is symmetrical,

suppose that x1 is close to −x2 and that x3 is close to −x4. The variables x3 and

x4 represent sex-specific regions (x3 ≥ 0 for female hip bones and x3 ≤ 0 for male

hip bones). Then, let us consider the two following neural networks whose boundary

equations are x3 − x4 = 0 and x31x1<0 − x41x1≥0 + x1 + x2 = 0 (note that x1 + x2 is

likely to be close to 0 for hip bones), where 1 is the indicator function. The two neural

networks are expected to achieve high accuracy. However, only the SM of the first one

is able to highlight the regions of interest x3 and x4. The SM of the last one is expected

to highlight either x3 or x4 according to the value of x1 as well as two regions that are

not sex-specific (x1 and x2).

Fig. 4.7 Mean SMs for C (left) and Crecon (center and right). The SMs for Crecon are
either averaged across the female hip bones (center) or the male ones (right).

For Crecon, the map is more consistent with our expectations (Fig. 4.7, center and
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right) except that a strong asymmetry is observed depending on whether the processed

hip bone is a female one or a male one. That is why, the SMs are either averaged across

the female hip bones (Fig. 4.7, center) or the male ones (Fig. 4.7, right). Moreover,

contrary to the local average distances (Fig. 4.3), the mean SMs highlight the pubic

left tubercle, whose shape is known to vary slightly according to the sex (this is clearly

visible for the mean SM associated with women, a little less for that associated with

men). It seems that the classifier focuses here on a subtle difference between female

and male hip bones. Since the input of Crecon is partly fed with the output of the DVAE,

it can be estimated that this small difference has been captured by DVAE.

Note also that similar mean SMs can be obtained when measuring intra-architecture

repeatability and inter-architecture reproductibility. In all cases, the mean SMs associ-

ated with men and women highlight a different side of the hip bone and this asymmetry

can be more or less pronounced. Moreover, the side of the regions of interest may be

permuted: the mean SM of male hip bones highlights the regions that are on the right

side (Fig. 4.7, right) but it can be the left side for other tests.

We can conclude that the SMs obtained with Crecon are more satisfactory than those

obtained with C. Our interpretation is that the input of Crecon is much simpler to analyze

since the sex-specific regions have been highlighted by DVAE: all components that lie

in regions that are not sex-specific are close to 0.

As a final point, it is noteworthy that the proposed method differs significantly from

SMs.

First, as written in Sec. 4.2, they do not act at the same level. The SM facilitates

understanding of the decision process related to a classification method whereas the

proposed approach highlights the differences between the classes and thus provides

information on the classification problem to be solved.

Then, an intrinsic limitation of SMs is that they do not provide any semantic mean-

ing on the highlighted regions. In our application, the SMs can at best detect sex-

specific regions, i.e. regions that allow to distinguish between male and female hip

bones. In contrast, thanks to the conditional generation according to the sex, the pro-

posed method not only provides a sex-specific region detection but also offers the user

the opportunity to observe the difference in shape of regions: as an example, we clearly

observe with the proposed method that the subpic angle is larger for women (Fig.4.4).

Such an approach leads to a better understanding of the class differences.

Moreover, the proposed method provides the users with relevant information so that

they can form their own opinions. As an example, we have seen in Sec. 4.7 that the

comparison of the two reconstructions enables us to show that some meshes exhibit

both male and female characteristics.

Finally, contrary to SMs which is a generic tool, the proposed approach is only
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suitable if the label to estimate is a variable corresponding to a source of variability (age,

sex, outcomes of genomic-biological-cognitive tests, diagnosis, multicenter variability),

which are common situations in medical imaging. As an example, it makes sense in the

proposed application to reconstruct a male hip bone as a female one (or a diseased organ

into a healthy one) because the latent space can be divided into two independent parts:

the non-interpretable part represents the intrinsic (independent of sex) properties of the

hip bone and the disentangled part represents the sex label.

4.10 Conclusion

This paper has presented a novel paradigm for the interpretation of classification by

neural networks, based on Disentangled VAE representations. The approach provides

reconstructions or data generation for each class, which paves the way for a better un-

derstanding of class differences. The approach has been illustrated through the interpre-

tation of sex determination from meshed hip bones. It compares favorably with existing

methods such as SMs.

The proposed paradigm is comprehensive and suited to the disentanglement and

classification of other factors of general interest in medical imaging, such as age, pathol-

ogy or acquisition parameters. Moreover, there are some cases where some features can

be associated with high-level factors. As an example, features related to the disease la-

bel may be its severity, and more generally characteristics that model how the disease

has transformed the disease-free sample. Note that studies [111, 300] have shown the

benefit of modeling both the high-level factors and their related features to disentangle

the high-level factors.

Future directions of this work include the modeling of these features and the com-

parison of the proposed approach with generative adversarial networks that also can

achieve disentanglement in a supervised setting. Moreover, learning the significant

differences between the classes (at the population level) during training is another per-

spective that would help to determine if the differences observed for a particular sample

under classification are related to opposite sex reconstruction or if they stem from other

reasons such as registration inaccuracy. This may further help the analysis of the results.
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CHAPTER 5

Joint disentanglement of labels and their features with VAE

In Chapter 4, we discuss the classification and generation capabilities of the DVAE

(Disentangled Variational Autoencoder). However, relying solely on a single value to

represent a label may not fully capture its associated characteristics. While this may not

be immediately apparent in the task presented in Chapter 4, it becomes more evident

with attributes such as eyeglasses. If we simply encode the label value (1/0) into the

latent space, we lose control over the generation process, as we cannot determine the

specific type of glasses that will be generated.

To learn the representation of features associated with labels, our goal is to learn a

disentangled representation which consists of two parts: the identity information and the

label feature representation. To validate the effectiveness of the disentangled represen-

tation learning, we conduct the feature swapping task, such as transferring eyeglasses

from one image to another. Previous approaches learn the disentangled representation

and perform this task in different ways.

As discussed in Sec. 2.2, CCVAE [111] is suitable for this task. It builds upon

the VAE framework and incorporates an extra autoencoder specifically for the labels,

learning a representation of the label and connecting it with the latent representation of

the data. However, it often exhibits suboptimal generation quality and unsatisfactory

generation accuracy.

Another option is to use GANs for this task. As presented in Sec. 4.7, ELEGANT

[265] swaps the attributes associated with the labels by manipulating the latent encod-

ings as shown in Fig.2.16. However, GAN training can be unstable and may result in

artifacts in the generated images.

In this chapter, we propose an alternative factorization approach within the VAE

framework that incorporates the label feature u. Our latent space is composed of three

components: the identity information z, the label variable y, and the feature associ-

ated with the label u. This formulation allows us to manipulate the high-level factors

of the images by modifying the latent space. You can find hereafter an article titled

”Joint Disentanglement of Labels and Their Features with VAE,” which was accepted

for publication at the 2022 IEEE International Conference on Image Processing (ICIP).
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The authors of the article are Kaifeng Zou, Sylvain Faisan, Fabrice Heitz, and Sebastien

Valette.

To improve both the generation quality and accuracy, we further extend this ap-

proach by utilizing VQVAE (Vector Quantized Variational Autoencoder) to learn a

discrete latent space. Additionally, we introduce a two-step learning procedure to en-

sure stability during training. Through experimental results, we demonstrate that these

strategies contribute to achieving excellent generation quality and robust disentangle-

ment of the desired features. This approach is presented in Chapter 6, which primarily

includes an article titled ”Disentangling high-level factors and their features with Con-

ditional Vector Quantized VAEs.” This article has been accepted by Pattern Recogni-

tion Letters and authored by Kaifeng Zou, Sylvain Faisan, Fabrice Heitz, and Sébastien

Valette. Additionally, we also provide the supplementary material in this chapter which

contains a sensitivity analysis and a comparison with ELEGANT [265], which has not

been published previously.

5.1 Abstract

Most of previous semi-supervised methods that seek to obtain disentangled represen-

tations using variational autoencoders divide the latent representation into two compo-

nents: the non-interpretable part and the disentangled part that explicitly models the

factors of interest. With such models, features associated with high-level factors are not

explicitly modeled, and they can either be lost, or at best entangled in the other latent

variables, thus leading to bad disentanglement properties. To address this problem, we

propose a novel conditional dependency structure where both the labels and their fea-

tures belong to the latent space. We show using the CelebA dataset that the proposed

model can learn meaningful representations, and we provide quantitative and qualitative

comparisons with other approaches that show the effectiveness of the proposed method.

5.2 Introduction

It is a key challenge to learn disentangled representations where variables of interest

are independently and explicitly encoded [18]. These representations allow to manip-

ulate data by modifying high level factors (e.g. removing or adding glasses to a per-

son’s face). Probabilistic generative models, such as Variational Autoencoders (VAE)

[124] are popular to learn such representations in the unsupervised [30, 86, 118], (semi-

)supervised [219, 122], and in the weakly-supervised [207] cases. We focus hereafter on

the semi-supervised case because supervision yields better disentangled models [152].

Most previous works [158, 219, 122] divide the latent representation into two com-

ponents: the non-interpretable part and the disentangled part corresponding to variables
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that explicitly model the factors of interest. Each factor of interest is therefore asso-

ciated to a latent variable of the same type. As an example, if the label of interest

refers to the glasses (1 when the subject is wearing glasses, 0 otherwise), there will

be a categorical variable in the latent space that encodes the presence or absence of

glasses. However, this variable does not allow to model the features of the glasses (e.g.

shape/size/color of the glasses), that can be either lost, or at best entangled in the other

latent variables.

To our knowledge, only [111] proposed to address this problem. In [111], a feature

is associated with each high level factor. Moreover, the latent space no longer contains

the labels but their features (the label is used to condition its associated feature). We

propose here a novel conditional dependency structure that allows to model both the

labels and their features. Contrary to [111], the latent space contains in the proposed

model both the labels and their features. Finally, we use an original architecture to build

the decoder of the VAE. We show that AdaIN [99] improves the quality of the recon-

structed images and that the use of learnable tokens [44, 125] improves disentanglement

properties of the model.

Finally, note that generative adversarial networks can also be used to obtain disen-

tangled representations: the methods proposed in [265] and [264] also allow to manip-

ulate the features related to high level factors. This is achieved by swapping attributes

between pairs of images. However, these methods are only able to accomplish a small

number of the tasks that can be performed with VAE-based methods. As [265] and

[264], the proposed method can also swap the high level factors and the related features

of two images. However, (i) it allows also to generate new images by sampling from

the model (without any other input or with high level factors only), (ii) it allows also

to modify the high level factors and the associated features for a single image (by sam-

pling), (iii) it provides finally a classifier that estimates the high level factors. Note also

that the methods of [265] and [264] are fully supervised whereas the proposed method

handles arbitrary supervision rates.

5.3 Disentanglement of labels and their features from other latent vari-
ables

5.3.1 Conditional dependency structure

For the sake of simplicity, we consider here that a unique label (high level factor) is

provided for an image. The extension to several labels is straightforward. For the

illustration, we consider the binary case where the label is 1 (e.g. if the subject is

wearing glasses), or 0 otherwise.

Let x be an image, y its label, u the features related to label y, and z the other latent
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variables that are supposed to carry no information on y and u. The latent space is

formally composed of y, z and u. The generative process is inspired by the previous

work of [122], except that no feature u is defined in [122]. It writes:

pθ(x, y, z, u) = pθ(x|y, z, u)p(u|y)p(y)p(z), (5.1)

where θ stands for the parameters of the decoder. A weak prior is defined over z and

y: z follows a zero-centered multivariate normal distribution with unit variance (p(z) =

N (z; 0, I)) and y follows a uniform discrete distribution. pθ(x|y, z, u) is modelled as a

Gaussian distribution whose mean is computed by a neural network (the decoder dθ of

parameter θ) that takes as input y, z and u. We have:

pθ(x|y, z, u) = N (x; dθ(y, z, u), vI), (5.2)

where v is a hyperparameter. Finally, a special care is needed to model p(u|y). In our

application, the feature vector u encodes the shape/size/color of the glasses. So as to

favor disentanglement properties of the model, the two prior distributions (one for each

possible value of y) differ from each other. Two different approaches denoted as PA1

and PA2 (proposed approach 1 and 2) are considered:

• Case y = 1 (glasses). For both approaches, p(u|y = 1) is a zero-centered multi-

variate normal distribution with unit variance.

• Case y = 0 (no glasses). For PA1, p(u|y = 0) is a multidimensional Dirac

delta function, enforcing the components of u to be zero. For PA2, it is a zero-

centered multivariate normal distribution with a variance equal to the identity

matrix multiplied by 0.1, favoring the components of u to be close to 0.

PA1 seems to be a better choice since images with no glasses should all have the

same value of u. We use PA2 to show that the proposed modeling may work with a less

informative prior.

The posterior pθ(y, z, u|x) is approximated by qϕ(y, z, u|x) which can be factorized

as:

qϕ(y, z, u|x) = qϕ(y|x)qϕ(z|x, y)qϕ(u|x, y), (5.3)

where ϕ stands for parameters of the encoder. In Eq. 5.3, we assume that z and u are

independent conditionally to x and y. The distribution qϕ(y|x) is a discrete distribution

whose probabilities are provided by the softmax layer (See Fig. 5.1). The distribution

qϕ(z|x, y) is defined as a Gaussian distribution whose mean (resp. covariance matrix) is

given by the encoder. For PA1 (case y=1 only) and for PA2, the distribution qϕ(u|x, y)
is defined in the same way as qϕ(z|x, y). For PA1 (case y=0), qϕ(u|x, y = 0) is modeled
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Fig. 5.1 Model architecture. FC stands for fully connected layer. For testing, if y is not
known, y is set to the most likely label (based on the output of the softmax layer that
represents qϕ(y|x)). z and u are set to µz and µu. For training (Section 5.3.2), if y is
not known, y is sampled from qϕ(y|x) using a Gumbel-softmax relaxation. z and u are
sampled from qϕ(z|x, y) and qϕ(u|x, y).

as a multidimensional dirac delta function. Indeed, in this case, the prior distribution

p(u|y = 0) tells us that u is the null vector.

The proposed architecture is depicted in Fig. 5.1. We use AdaIN [99] as a normal-

ization method: it enables the information carried by z to be transferred to each layer

of the decoder. AdaIN injects the latent variable z to each layer of the decoder through

a fully connected layer that is not shown in Fig. 5.1. Moreover, we use one set of

learnable tokens [44, 125] per class. The set is then selected according to the value of

y. Each set is composed of five tokens (one scalar and four images that are associated

each one to a residual block of the decoder). The first one (the scalar) is concatenated to

u and z to feed the first fully connected layer of the decoder. Then, for each token (an

image), we concatenate the token and the input of its associated residual block along

the channel dimension. It allows the information provided by y to be transferred to each

input of the residual block.

Finally, for PA1, u is multiplied by y. It enables to constrain u to be a null vector if

y is 0, and not to modify its value otherwise (y = 1).

5.3.2 Parameter optimization

If y is known, the optimization of log p(x, y) can be achieved by maximizing the ELBO

(Evidence Lower BOund), that writes: Ez,u∼qϕ(z,u|x,y)log(pθ(x, y, u, z)/qϕ(z, u|x, y)).
As in [122], we add a classification loss α log qϕ(y|x) to the ELBO term. By using Eq.
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6.1 and 5.3, we obtain the following criterion (it is divided by the number of pixels N ):

βEz∼qϕ(z|x,y) [log(p(z))− log(qϕ(z|x, y))] +

βEu∼qϕ(u|x,y) [log(p(u|y))− log(qϕ(u|x, y))] +
1
N
Ez,u∼qϕ(z,u|x,y) [log(pθ(x|y, z, u))] +

β log(p(y)) + α log qϕ(y|x)

(5.4)

The two first terms are a Kullback–Leibler divergence which can be computed an-

alytically since the distributions are Gaussian except for the second term in the case of

PA1 with y=0. In this case, it vanishes to 0 since both distributions are equal. Then,

the third term is approximated by a Monte Carlo estimate: we use the SGVB esti-

mator and the reparameterization trick [124] (with the notation of Fig. 5.1, we have:

(z, u) = (µz, µu) + (σz, σu) ⊙ ϵ, where ϵ ∼ N (0, I)). The fourth term corresponds to

the prior of the label y, that has been set to 1/2. Without loss of generality, the variance

v (Eq. 6.3) is set to 1 to compute the third term of Eq. 6.6 and the other terms of the

ELBO are weigthed by a factor β. Consequently, two hyperparameters have to be set:

α and β.

If y is not known (semi-supervised case), it has to be treated as a latent variable.

Marginalization can be performed [122]. We sample y, as in [219], from the discrete

distribution qϕ(y|x) using a Gumbel-softmax relaxation.

5.4 Experiment

We experiment on the CelebA dataset [150], with an image size of 128x128. The glasses

label has been selected because it leaves little room for subjectivity. The hyperparam-

eters of the methods have been set by using a cross-validation strategy on the training

set. Concerning the criterion (Eq. 6.6), α has been set to 1 (it has little influence on the

results) and β to 1e− 4. Since the second term of the ELBO (for y=1) leads to degrade

the results, its weight (for y=1) has been divided by 100 (for both PA1 and PA2). We

use the Adam optimizer [123] with a learning rate equal to 1e − 4 and a batch size of

32. The sizes of z and u are set to 100 and 16 respectively. The supervision rate has

been set to 0.2.

We compare our method with CCVAE [111] and with the model M2 of [122]. Two

different architectures are used for CCVAE. We first use the implementation of the

authors. Since it is adapted to the processing of images of size 64x64, the sizes of the

input/output layers have been modified accordingly. This method is denoted as CCVAE.

For the second method denoted as CCVAE2, we adapt the architecture of our model to

the conditional dependency structure of CCVAE. As an example, y is no longer part of

the latent space in CCVAE so that it is no more used for estimating the reconstruction.
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Table 5.1 Quantitatives results in terms of (i) success rates for removing and adding
glasses (SR(-) and SR(+)), (ii) LPIPS between the original images and the recon-
structed ones, and (iii) balanced classification accuracy (BCA).

Model SR(-) SR(+) LPIPS BCA
CCVAE 99.38% 19.37% 0.4414 95.45%

CCVAE2 95.52% 47.68% 0.2549 94.26%
M2 80.34% 33.03% 0.2564 96.13%
PA1 96.31% 59.85% 0.2484 96.55%
PA2 94.98% 64.25% 0.2416 97.09%

In the same way, we adapt the architecture of the proposed model to the conditional

dependency structure of M2. It leads to the removal of u from the modeling. For all

models, the size of the latent space that models the attributes of the face has been set to

100.

As mentioned in the introduction section, the VAE-based methods allow to accom-

plish several tasks. For the sake of simplicity, we will only consider three different

tasks for comparison purposes: the classification task, the reconstruction task, and the

exchange of high level factors and of the related features (if they exist) between two

images. The latter task enables us to clearly observe the disentanglement capability of

the model. Indeed, it enables to check that the model disentangles not only the label but

also the features (of the glasses) from the face attributes z. To evaluate the quality of

the reconstructed images, we use Learned Perceptual Image Patch Similarity (LPIPS)

[287] that computes perceptual difference between two images. The disentangled abil-

ity of the model is evaluated by computing the success rate of swapping. To this end,

we select random pairs of images composed of one image with glasses (Ig) and one

image without (Iw). Their values of y and u are then exchanged. We consider that the

glasses are correctly removed from Ig (resp. added to Iw) if the reconstruction (after the

attribute swapping) is classified as y = 0 (resp. y = 1) with an independent classifier

based on ResNet 50. We denote by SR(-) (resp. SR(+)) the success rates for removing

(resp. adding) glasses. Results obtained with the different approaches are shown in

Tab. 5.1. Since SR(+) is not a perfect evaluation criterion for measuring disentangle-

ment properties of the models (it does not check that the glasses added to Iw are those

of Ig), Fig. 5.2 presents swapping results for 6 pairs of images in the case of PA1 (PA2

provides similar results), M2 and CCVAE2.

First, all methods obtain good classification accuracy (BCA) despite a supervision

rate equal to 0.2.

Regarding the quality of the generated images (LPIPS), all methods, except CCVAE

achieve very similar results. This is mainly due to the fact that the decoders of all the

methods (except CCVAE) are very similar. Moreover, we observed that the removal

of AdaIN leads to a substantial increase of LPIPS (without modifying significantly the
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Fig. 5.2 Attribute swapping for 5 pairs of images using PA1, CCVAE2 and M2. For
each line, the second, third and fourth image should be Iw with the glasses of Ig. The
three rightmost images should be Ig, but without the glasses.

other evaluation criteria). As an example, the removal of AdaIN for PA1 brings the

LPIPS criterion from 0.2484 to 0.3059. This clearly highlights the benefit of AdaIN: it

allows to improve the reconstruction of the images by transferring to each layer of the

decoder information carried by z.

With respect to the success rates of swapping (SR(-) and SR(+)), results obtained

with M2 are not very satisfactory, thus illustrating the importance to model the features

related to the label. Since the glasses (for M2) are actually well-reconstructed without

any label/feature swapping, their features may be entangled in the other variables z of

the latent space. This makes the addition of glasses difficult because modifying y is not

enough: other variables of the latent space have to be modified to define some proper

features of the glasses to be added. Conversely, it appears that the removal of the glasses

is simpler (SR(-)>SR(+)) insofar as modifying the label y is enough.

For CCVAE, results obtained for SR(+) and SR(-) do not inform us about the disen-

tanglement properties of the model because the generated images are actually so blurred

that it is most of the time difficult to observe the glasses.

Results obtained with CCVAE2 are better than those obtained with M2 in terms of

SR(+) and SR(-), illustrating the interest of modeling the features related to a label.

However, we observe Fig. 5.2 that the features of glasses cannot be transferred to other

images. This means that two images with the same values of u do not exhibit the

same glasses. Since the modification of u still leads to the modify the features of the

glasses, the features of the glasses are partially entangled in the other latent variables
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Fig. 5.3 Multiple attribute swapping with our method. We add to the 3 images of the
first column the beard associated with the image which is located on the same line on
the rightmost and the glasses associated with the images of the first line.

with CCVAE2.

Finally, the proposed approaches (PA1 and PA2) achieve a success rate for adding

glasses that is superior to those obtained with other models as well as a very high suc-

cess rate for removing glasses. Moreover, we can observe (Fig. 6.8) that the proposed

model (PA1) correctly extracts the features of the glasses from the image Ig and is able

to reconstruct them reasonably well on another image, which shows that the label as

well as the features of the glasses have been properly disentangled from the attributes

of the faces. Similar results are obtained for PA2. Note that the results presented in

Fig. 5.2 cannot be considered as representative: SR(+) is about 60 % for PA1 but PA1

obtains good results for all pairs of images of Fig 5.2. The proposed methods achieve

actually very good results (the glasses added to Iw match those of Ig and the glasses

are correctly removed from Ig) for many pairs of images. However, such results are ex-

tremely rare with CCVAE2 and M2. These results show the relevance of the proposed

conditional dependency structure, and in particular the benefit of y being in the latent

space. We have also noted that the tokens favor the disentanglement properties of the

model by allowing the information provided by y to be transferred to each input of the

residual block of the decoder. As an example, for PA1, the removal of the tokens (y

is then just used as an input of the fully connected layer of the decoder) brings SR(+)

down from 59.85% to 47.23% (SR(-) is not modified significantly).

Finally, the proposed method can easily be extended to the case of several high

level factors. In the case of two factors, (y1, u1) and (y2, u2) can be considered as inde-
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pendent for the generative process. Then, for the variational approximation, we write

qϕ(y1, y2, z, u1, u2|x) as qϕ(y1|x)qϕ(y2|x)qϕ(z|x, y1, y2)qϕ(u1|x, y1)qϕ(u2|x, y2). Results

obtained with the glass and the beard labels are shown in Fig. 6.8. They illustrate that

the proposed model allows to manipulate the attributes of beard and glasses separately.

5.5 Conclusion

The proposed approach compares favorably to other VAE-based approaches, thus show-

ing the interest of modeling both the labels and their features in the latent space. More-

over, our experiments illustrate the benefit of using AdaIn and learnable tokens to build

the decoder: the first one allows to improve the quality of the generated images while

the second one favors disentanglement properties of the model. To further improve the

quality of the generated images, a perspective of this work could be to replace the Gaus-

sian prior on z by a categorical distribution [246]. Better reconstruction may also favor

a better disentanglement.
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CHAPTER 6

Disentangling high-level factors and their features with Conditional
Vector Quantized VAEs

6.1 Abstract

Two recent works have shown the benefit of modeling both high-level factors and

their related features to learn disentangled representations with variational autoencoders

(VAE). We propose here a novel VAE-based approach that follows this principle. In-

spired by conditional VAE, the features are no longer treated as random variables over

which integration must be performed. Instead, they are deterministically computed

from the input data using a neural network whose parameters can be estimated jointly

with those of the decoder and of the encoder. Moreover, the quality of the generated

images has been improved by using discrete latent variables and a two-step learning

procedure, which makes it possible to increase the size of the latent space without al-

tering the disentanglement properties of the model. Results obtained on two different

datasets validate the proposed approach that achieves better performance than the two

aforementioned works in terms of disentanglement, while providing higher quality im-

ages.

6.2 Introduction

There is a key challenge to learn disentangled representations where high-level factors

would be independently and explicitly encoded [18]. Disentangled representations al-

low to manipulate data by modifying high level factors, thus paving the way to easier

interpretation of the influence of these factors [301]. It has also been shown that these

representations may be more sample-efficient, less sensitive to nuisance variables, and

better in terms of generalization [247]. They are thus used in many applications such

as face attribute manipulation [83], action generation [182] and image-to-image trans-

lation [132].

There is a substantial literature on disentangled representation learning [148]. Since

better disentangled models can be obtained under supervision [152], we are only inter-

ested in the (semi)-supervised case, and specifically in Variational Autoencoder meth-
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ods (VAE). VAEs [124] are versatile models of choice to learn such representations in

the semi-supervised case [219, 122]. To achieve disentanglement with a VAE, the latent

representation is generally divided into two parts [158, 219, 122]: the non-interpretable

part and the disentangled part corresponding to variables that explicitly model the fac-

tors of interest. But these variables only represent the labels associated with the fac-

tors of interest and not the features that can be related to these factors. Consequently,

these features are either lost, or entangled in the other latent variables. The works of

[111, 300] clearly show that modeling both labels and their associated features improves

the model’s disentanglement properties. In [111], a feature is associated with each high

level factor. The latent space is composed of two different sets of random variables:

the first one is composed of features associated with the labels, and the second one

models information not directly associated with any of the labels. This implies that the

latent space no longer contains the labels, but each label is used to condition its asso-

ciated feature (in the latent space). Subsequently, this method will be denoted CCVAE

(characteristic capturing VAE).

In [300], we proposed a novel conditional dependency structure where both the la-

bels and their features belong to the latent space. In this model, the conditional priors

of the features given the label have to be set properly to ensure the desired disentan-

glement properties. Moreover, the loss function is composed of two Kullback-Leibler

divergences (KLD), that have to be weighted differently, so as to achieve satisfactory

results. This makes the approach [300] difficult to use. This second method will be

denoted JDVAE (Joint disentanglement of labels and their features with VAE) in the

following.

In this article, we propose, as in [111, 300], a VAE-based approach that models ex-

plicitly both the high-level factors and their associated features. The proposed model

will be denoted CVQVAE (Conditional Vector Quantized VAE), and can be considered

as an extension of the work of [300]. To overcome the limitations of [300], the features

are no longer considered as random variables over which integration has to be per-

formed. Instead, each feature is here (deterministically) computed from the input data

using a neural network whose parameters can be estimated jointly with those of the de-

coder and of the encoder. These features (as well as the labels and the latent variables)

are then used by the decoder to reconstruct the data. This approach is inspired by con-

ditional VAE (CVAE) [226, 270, 34], except that the conditioning variable is known for

CVAE, and computed in CVQVAE. We thus obtain a simplified model (free of condi-

tional priors for the features, and a single KLD loss). Moreover, to improve the quality

of the generated images and in particular to generate less blurry images, the Gaussian

prior on the latent representation has been replaced by a categorical distribution [246].

The resulting model is more difficult to optimize, but we circumvent this problem with
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an efficient two-step learning procedure. The proposed model outperforms the two ap-

proaches mentioned above on two different datasets.

6.3 Conditional Vector Quantized Variational AutoEncoder

6.3.1 Architecture of the model

Without loss of generality, we consider for the presentation of the model that there is

one binary high-level factor (label y). Note that the extension to several high-level

factors is straightforward. The architecture of CVQVAE is illustrated in Fig. 6.1. The

underlying latent representation of the image x is composed of the label y, along with

the (other) latent variables z. Finally, c denotes the (continuous) features related to

y. As an example, for face images, the “glasses” label y is equal to 1 if the subject

is wearing glasses, 0 otherwise. c represents the (continuous) features of the glasses

(shape/size/color) and z models the intrinsic properties of the face.

Computation of the distance 
between ze and each vector 
of the embedding space.

E𝟇
D𝜽

C𝟇

q𝟇(z|x,y)

c

yq𝟇(y|x)

tokens

tokenssoftmax

Combining c and y.

z zq

Replacement of the indices of 
z with the associated vectors 
of the embedding space.

x

p𝜽(x|y,z,c)

embedding space

ze

Fig. 6.1 Architecture of CVQVAE. Eϕ consists of 5 residual blocks. Cϕ consists of 5
residual blocks followed by one single fully connected layer. Dθ is composed of one
fully connected layer followed by 5 residual blocks.

As shown in Fig. 6.1, the proposed model is composed of an encoder (Eϕ and Cϕ),

a decoder (Dθ), an embedding space and tokens (ϕ and θ refer to the parameters of

the encoder and of the decoder). It relies on the estimation of distributions qϕ(y|x),
qϕ(z|x, y) and pθ(x|y, z, c). Sec. 6.3.2 explains the reasoning behind this choice and

how the distributions are defined. Finally, all the parameters of the model are jointly

estimated (Sec. 6.3.3).

The encoder: It is composed of two neural networks Eϕ and Cϕ: Cϕ takes as input

x and outputs the features c and the label distribution qϕ(y|x). Then, y is set to the

most likely label for testing. When training (semi-supervised case), it is set to its true
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value (if y is known), or sampled from qϕ(y|x). Finally, Eϕ takes as input x and y

(as tokens) and outputs ze which is used in conjunction with the embedding space to

compute qϕ(z|x, y). z is either sampled from this distribution during training (See Sec.

6.3.3) or set to the most likely value during testing.

The embedding space: As in [246], an embedding space, composed of K vectors

of RD, is used to model the categorical distribution qϕ(z|x, y) (see Sec. 6.3.2). More-

over, the indices of z are replaced with the vectors of the embedding space (of the same

indices) to obtain zq.

The decoder: The decoder Dθ outputs the distribution pθ(x|y, z, c). Under the

Gaussian assumption of Eq. 6.3, this is achieved by outputting the mean of this distri-

bution. As shown in Fig. 6.1, Dθ is not directly fed with z, y and c. A new variable

zq is computed from z (previous paragraph), tokens are used for representing y (next

paragraph) and c and y are combined deterministically to feed Dθ (last paragraph).

The tokens: The label y is not directly fed into Eϕ and Dθ. As in [300, 182], the

label information y is encoded through the use of learnable parameters. They are used

here to transfer the y label information to each input of the convolution blocks of Eϕ

and Dθ. As in [300, 182], these parameters are called tokens. We have two sets of

learnable tokens for Eϕ that each consist of five images (each image is associated with

a residual block of the encoder). The set is selected according to the value of y. For each

convolutional residual block, we concatenate the token and the input of the block along

the channel dimension. The same strategy is used for the tokens of Dθ. Additionally to

the five images, the two sets related to Dθ have another token that is a scalar one: it is

concatenated to zq (zq is flattened).

Finally, c is not directly fed into the decoder Dθ. Dθ takes as input a feature vec-

tor generated by combining y and c deterministically. To enhance model flexibility, the

components of this vector only encode information related to one label (y = 0 or y = 1):

components encoding a property for y = 0 are zero if y = 1 or vice versa. This pro-

cedure is also adapted to the meaning of the high-level factor. As an example, the two

high-level factors, “smile” and “glasses”, differ from the fact that the features associated

with the “smile” label have a meaning whether the person smiles (y=1) or not (y=0),

whereas the features associated with the “glasses” label encode the shape/size/color of

the glasses, thus having only a meaning in the case y = 1 (for y = 0, there is nothing

more to encode than the fact that y = 0). Considering the “glasses” label, c is multiplied

by y. It enables us to constrain the resulting vector to be a null vector if y is 0, and to

be equal to c otherwise (y = 1). For the “smile” label, each label (y = 0 and y = 1) has

its own features. Consequently, the components of c are divided into two equal parts.

The first and the second parts represent respectively features for y = 0 (neutral face)

and for y = 1 (smiling face). The components of the first part and of the second part
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are multiplied by 1 − y and y, respectively, so that the first part’s components are zero

if y = 1 and the second part’s components are zero if y = 0. In the following, Nc

refers to the number of components of each part of c: for instance, c is of size Nc for

the “glasses” label and of size 2Nc for the “smile” label.

6.3.2 Conditional dependency structure

The generative process of CVQVAE is inspired by the work of [122], except that no

feature c is defined in [122], and by the CVAE approach [226, 270, 34]. It writes:

pθ(x, y, z|c) = pθ(x|y, z, c)p(y)p(z), (6.1)

where θ represents the parameters of the decoder. Following the idea of CVAE, our

purpose should be to approximate the posterior pθ(z, y|x, c). However, contrary to [226,

270, 34], the value of c is actually not given, but is computed from x with Cϕ. Since c is

deterministically obtained from x, we have: pθ(z, y|x, c) = pθ(z, y|x). Consequently,

we approximate the posterior pθ(z, y|x) by qϕ(z, y|x) where ϕ represents the parameters

of the encoder. It writes:

qϕ(z, y|x) = qϕ(z|x, y)qϕ(y|x). (6.2)

The distributions in Eq. 6.1 and 6.2 are modeled as follows: y follows a uniform

discrete distribution. In accordance with [124], pθ(x|y, z, c) is modelled as a Gaussian

distribution: its mean is computed by a neural network (the decoder Dθ of parameter θ)

that takes as input y, z and c. We have:

pθ(x|y, z, c) = N (x;Dθ(y, z, c), vI), (6.3)

where v is a hyperparameter. As in [122], qϕ(y|x) is a discrete distribution whose

probabilities are provided by a softmax layer. Instead of using the traditional Gaussian

assumption, we follow the idea of [246] to model the prior on z and the distribution

qϕ(z|x, y) so as to improve the quality of the generated images.

In [246], z is a map (of size Nz × Nz) and each component of z is a categorical

variable that represents the index of a vector of a shared embedding space (this space

is composed of K vectors of RD). Each component of z is independent and identically

distributed and follows a uniform discrete distribution. Moreover, qϕ(zi,j = k|x) (there

is no variable y in [246]) is set to 1 for k = argmink ||Eϕi,j(x)−ek||, 0 otherwise, where

Eϕ(x) is the continuous output of the encoder (and Eϕi,j(x) its value at coordinate

(i, j)), and where ek is the k-th vector of the shared embedding space. Here, we propose

to set the posterior qϕ(zi,j = k|x, y) as a function of ||Eϕi,j(x, y) − ek||. The smaller
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||Eϕi,j(x, y) − ek||, the larger the probability qϕ(zi,j = k|x, y) should be. It is defined

as:

qϕ(zi,j = k|x, y) = e−||Eϕi,j
(x,y)−ek||∑K

k=1 e
−||Eϕi,j

(x,y)−ek||
. (6.4)

Sec. 6.3.3 explains the relevance of this modeling based on the loss function to be

optimized.

6.3.3 Parameter optimization

If y is known, the optimization of log pθ(x, y|c) can be achieved by maximizing the

Evidence Lower BOund (ELBO). Under the reasonable assumption that z and c are

conditionally independent given x and y, it writes:

log pθ(x, y|c) ≥ Ez∼qϕ(z|x,y)log(pθ(x, y, z|c)/qϕ(z|x, y)). (6.5)

Note that Eq.6.5 (and Eq. 6.1) are defined for arbitrary values of c. In the proposed

approach, since c is set as a function of x, optimization of the ELBO also allows us to

estimate c from x and y. By using Eq. 6.1, the ELBO term writes (we drop the constant

term log p(y)):

Ez∼qϕ(z|x,y) log(pθ(x|y, z, c))−KL(qϕ(z|x, y)||p(z)), (6.6)

where KL is the Kullback–Leibler divergence. The first term is approximated by a

Monte Carlo estimate: we propose to use the Straight-Through Gumbel-Softmax esti-

mator [106] to sample from qϕ(z|x, y). Moreover, without loss of generality, the term

log(pθ(x|y, z, c)) in Eq. 6.6 can be replaced by the mean squared error between x and

Dθ(y, z, c) provided that the second term of Eq. 6.6 is weighted by a factor β.

The second term can be computed analytically since both distributions qϕ(z|x, y)
and p(z) are discrete. This term acts as a regularization term that constrains the latent

space to have good properties: close samples in the latent space should have similar

reconstructions. In [246], this term cannot play its role because the choice of the dis-

tribution qϕ(zi,j = k|x) leads to a constant KL divergence. Hence we propose a distri-

bution qϕ(zi,j = k|x) that allows to obtain such a regularization. Under our hypothesis,

the term −KL(qϕ(z|x, y)||p(z)) can be obtained by summing over (i, j) the entropy of

qϕ(zi,j|x, y) (up to a constant).

If y is unknown (semi-supervised case), y is sampled from qϕ(y|x) as in [219] using

a Gumbel-softmax relaxation and the same loss function is used.

Finally, in both cases, three additional terms are added to the loss function. As in

[122], we add a classification loss α log qϕ(y|x) to the ELBO term (α is set to 1) because

the term qϕ(y|x) does not contribute to the loss function if y is known. Moreover, since
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a Gumbel-softmax relaxation is used to sample z, the gradients are simply copied from

zq to ze, similarly to straight-through gradient estimation in [246]. Consequently, the

parameters of the embedding space do not receive gradients from the loss and we use the

additional term presented in [246] to learn the embedding space. Finally, a commitment

loss presented in [246] is also used (its weight is set to 0.25 as in [246]).

6.3.4 Architecture and training variations

To obtain a more detailed evaluation of our contributions, we suggest a range of alterna-

tives, labeled A through F, with our current CVQVAE method denoted as E. Approaches

A through D employ standard initialization strategies and the relevant loss function to

train the models’ parameters, while for approaches E and F, a two-step learning proce-

dure is implemented.

Approaches A and B are based on the proposed CVQVAE except that no feature is

associated with y (i.e. c is removed from the model). The resulting models have also

the same conditional dependency structure as the model M2 in [122]. The distribution

qϕ(z|x, y) is modeled as proposed in [246] for approach A and as proposed in Sec. 6.3.2

(Eq. 6.4) for approach B.

Approach C corresponds to the proposed CVQVAE with standard training. Ap-

proach D is based on the CVQVAE with two differences: instead of using a discrete

latent representation for z, z follows a zero-centered multivariate normal distribution

with unit variance (p(z) = N (z; 0, I)) and the distribution qϕ(z|x, y) is defined as a

Gaussian distribution whose parameters are given by the encoder [124]. Moreover, as

in [300], we use AdaIN [99] as a normalization method. AdaIN injects the latent vari-

able z to each layer of the decoder through a fully connected layer. Using AdaIN causes

the decoder to attach greater importance to z. The model associated with approach D is

denoted as CGVAE (conditional Gaussian VAE).

Approach E is similar to approach C, relying on the proposed CVQVAE method.

Approach F employs a model named CGVAE2, which is similar to CGVAE but without

the use of AdaIN. Both approaches use a two-step learning procedure. The rationale

behind two-step learning is that the optimization problem would be easier to solve if c

was known: to this end, we start to train a simplified model (approach D with a small

latent space) that also has the Cϕ network (that enables us to compute y and c) as well as

the tokens. Then, for the estimation of the parameters of CVQVAE (approach E) or of

CGVAE2 (approach F), the parameters of the Cϕ network and the tokens are initialized

with those obtained by approach D. Note that these parameters are frozen during the

first iterations of the optimization procedure.
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6.4 Experiments

Implementation details: We experiment on the CelebA [149] and CheXpert [104]

datasets each containing more than 200000 images (80% is used for training) of size

1282. The first dataset is composed of labeled face images, on which we conduct quan-

titative experiments (for the “glasses” and “smile” labels), as well as qualitative ex-

periments (for the “beard” and “makeup” labels). The second dataset is composed of

labeled X-ray chest images on which three experiments are conducted.

Hyperparameters (Nz, Nc, K, D, β) have been tuned using a cross-validation strat-

egy in the experiment relative to the “glasses” label with CVQVAE. Other experiments

use the same tuned hyperparameters: Nc has been set to 16 and β to 1e-4 (see text under

Eq. 6.6). When modeling z as a categorical variable, the size of the latent space z has

been set to Sz = Nz × Nz with Nz = 8, and the embedding space is composed of

K = 512 vectors of dimension D = 16. For CGVAE2 (approach F), Sz has been set to

1024 which is equal to the number of components of zq for CVQVAE (1024=8×8×16).

This allows for a fair comparison between CVQVAE and CGVAE2. For CGVAE (ap-

proach D), we set Sz to a small value (100) to obtain a simplified model with better

convergence properties. Note that approach D is mainly useful to initialize CVQVAE

and CGVAE2.

The models have been trained independently for each experiment. We used the

Adam optimizer with a learning rate equal to 10−4, a batch size of 32 and a supervision

rate set to 0.2. The experiments were conducted using PyTorch 1.9 and CUDA 10.2,

leveraging a Nvidia 1080Ti graphics card.

Evaluation metrics: We consider two different tasks: the classification task, and

the exchange of high level factors and their related features between two images (so as

to measure the disentangled properties of the model). The classification task is assessed

using the Balanced Classification Accuracy (BCA).

The disentangled ability of the model is evaluated by computing the success rate

of swapping the attributes. In order to distinguish between classification errors and

disentanglement errors, the true labels are used to perform this task: we select random

pairs of images composed of one image of both classes denoted xy=1 and xy=0. Their

values of c and y are then exchanged to create two fake images. They are generated by

feeding the decoder with z0, c1, y = 1 (for the first one), and with z1, c0, y = 0 (for

the second one), where z0, c0, and z1, c1 denote the latent variables and the features

computed from xy=0, and xy=1, respectively. As an example, for the “glasses” label, the

first fake image should exhibit the face of xy=0 with the glasses of xy=1 and the second

fake image should show the face of xy=1 without glasses. We consider that the swap

(“from 0 to 1” or “from 1 to 0”) is successful when the associated generated image is

well-classified by an independent classifier based on ResNet 50 [82]. We denote by
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Table 6.1 Results for the “glasses” label in terms of (i) success rates of swapping SR(-)
and SR(+), (ii) CFD, and (ii) FID that compares the distribution of fake images with
the one of real images. The models are described in the text.

Model SR(-) SR(+) CFD FID

A 91.07% 72.26% 0.200 20.38
B:A+KLD 93.46% 77.46% 0.142 20.03
C:B+c 99.61% 76.91% 0.112 20.78
D:CGVAE 99.99% 62.96% 0.114 21.27
E:CVQVAE 100% 79.13% 0.093 20.05
F:CGVAE2 99.85% 72.83% 0.097 20.51

xy = 0 EDC xy = 1

Fig. 6.2 Attribute swapping (“glasses label”) using the C, D and E (our) approach. The
second, third and fourth images should be xy=0 with the glasses of xy=1.

SR(+) (resp. SR(-)) the success rates for going from “0 to 1” (resp. “1 to 0”).

Note that SR(+) and SR(-) are not perfect evaluation criteria for measuring disen-

tanglement properties of the models. As an example, for the “glasses” label, SR(+)

does not check that the glasses added to xy=0 are those of xy=1. Consequently, some

swapping results will be presented to check whether the features are well-transferred

or not. Moreover, in order to obtain a quantitative criterion, we propose to compute

the Classification Feature Distance (CFD) as the L2 norm between two outputs of the

last layer of the independent classifier. These two outputs are obtained by feeding the

classifier once with the original image xy=1 (xy=0, resp.) and once with the fake image

that has the same values of c and y as the original image: the fake image is generated

by the decoder with z0, c1, y = 1 (z1, c0, y = 0, resp.). As a reminder, z0, c0, and z1, c1
denote the latent variables and the features computed from xy=0, and xy=1. The CFD

is based on the assumption that an ideal attribute swap should not change the features

extracted by the classifier. We also compute one Fréchet Inception Distance [85] (FID),

that compares the distribution of fake images with the one of real images.

6.4.1 Comparison of approaches A to F

Results obtained with approaches A to F are provided in Tab 6.4 for the “glasses” label.

A and B perform well, but they cannot transfer the features of the glasses to another

image since glasses are not explicitly modeled. Moreover, the regularization over the

latent space, induced by the proposed modeling of qϕ(z|x, y) (Eq. 6.4), improves the
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Table 6.2 Results for the “glasses” and the “smile” labels in terms of CFD, success rates
of swapping SR(-) and SR(+), FID, and in terms of BCA.

glasses smile

Model CFD SR(-) SR(+) FID BCA CFD SR(-) SR(+) FID BCA

CCVAE 0.145 95.52% 47.89% 21.10 96.26% 0.052 96.97% 74.75% 16.14 90.80%
JDVAE 0.098 94.98% 64.25% 21.66 97.09% 0.059 81.80% 79.34% 16.36 90.52%
M2 0.274 80.34% 33.02% 22.27 96.13% 0.069 44.07% 50.72% 16.75 90.48%
CVQVAE 0.093 100% 79.13% 20.05 96.67% 0.049 89.25% 90.25% 14.54 90.09%

Table 6.3 Results for three different pathologies in terms of CFD, success rates of swap-
ping (SR = (SR(-)+SR(+))/2), FID, and in terms of BCA.

cardiomegaly atelectasis consolidation

Model CFD SR FID BCA CFD SR FID BCA CFD SR FID BCA

CCVAE 0.298 57.51% 8.01 80.33% 0.137 49.38% 7.67 71.92% 0.215 62.16% 7.04 80.67%
JDVAE 0.261 60.27% 7.82 79.44% 0.138 50.92% 7.62 71.11% 0.250 62.23% 7.07 80.07%
M2 0.347 47.36% 8.99 79.58% 0.233 41.99% 7.99 70.99% 0.446 36.93% 8.43 80.58%
CVQVAE 0.169 69.97% 7.13 79.92% 0.134 64.55% 6.87 72.86% 0.117 72.36% 6.91 80.46%

disentanglement properties of the model: SR(+) and SR(-) obtained with B are larger

than those obtained with A. Thanks to the modeling of c, approach C obtains better

results in terms of SR(-) and CFD. However, visual inspection of the results show that

c not only carries information about the glasses but also about the face, as illustrated in

Fig. 6.10 (C): the glasses are well transferred from xy=1 to xy=0 but some features of the

faces are also transferred. The use of AdaIN in approach D results in a slightly deterio-

ration of the model’s disentanglement properties (SR(+) decreases), and the modeling

of z (the latent space is only 100) leads to a reduction of image quality. However, the

modification of c does not change the face anymore (see Fig. 6.10 (D)), thus showing

that c is free of any information about the face.

Results obtained with Approach E (CVQVAE) enable to obtain the best results in

terms of quantitative criteria (Tab. 6.4). Moreover, visual inspection of the results (Fig.

6.10(E)) shows that the properties of the glasses are relatively well transferred, while

preserving the main features of the face. Finally, as in [300, 111], these results clearly

illustrate the interest of modeling the features related to the high-level factors. Indeed,

as shown by the values of SR(+) and SR(-), CVQVAE yields better disentanglement

representations than methods A and B for which the properties of the glasses are not

modelled. Note also that AdaIN is not used in the CVQVAE approach. AdaIN was

shown in [300] to improve the reconstruction of the images. However, it is no longer

worth using AdaIN when the size of the latent space is increased. Furthermore, the use
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xy = 0 M2 CCVAE JDVAE CVQVAE xy = 1 M2 CCVAE JDVAE CVQVAE

(a)

xy = 0 M2 CCVAE JDVAE CVQVAE xy = 1 M2 CCVAE JDVAE CVQVAE

(b)

Fig. 6.3 Attribute swapping (“glasses” label (a) and “smile” label (b)) with M2, CC-
VAE, JDVAE and CVQVAE. For each row, the second, third, fourth and fifth images
should be xy=0 with the glasses (a) or smile (b) of xy=1. The four rightmost images
should be xy=1, but without glasses (a) or with the neutral attitude of xy=0 (b).

of AdaIN slightly weakens the disentanglement properties of the model.

Finally, while CGVAE2 yields very satisfactory results, CVQVAE provides better

results than CGVAE2, both in terms of disentanglement and image quality. Moreover,

increasing β for CGVAE2 produces disentanglement properties similar to CVQVAE,

but at the expense of image quality (they are blurry, data not shown). These results

illustrate the relevance of using a discrete latent representation.

6.4.2 Comparison with state-of-the-arts methods

The proposed approach is compared with two VAE-based approaches that also model

the features related to the high-level factors: CCVAE [111] and JDVAE [300] and with

the model M2 of [122] with a Gaussian prior for z (the features are not modelled).

Finally, for all methods, the architectures of the encoder and of the decoder are similar

to those of JDVAE[300]. For these approaches, the size of the latent space Sz has been
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set to 100: larger latent space results in a model that is more difficult to optimize and

leads to a reduction in the performance model.

Results obtained with the “glasses” and with the “smile” labels are provided in Tab.

6.2 and in Fig. 6.3. First, all methods obtain good classification accuracy (BCA) despite

a supervision rate equal to 0.2. Note that the accuracy of Resnet 50 is 98.69% and

93.07% for the “glasses” and the “smile” labels, respectively. With respect to the quality

of the fake images (FID), CVQVAE provides images of better quality, thus justifying

the use of a larger latent space. Regarding the success rates of swapping (SR(-) and

SR(+)), results obtained with M2 are less satisfactory than those obtained with the other

methods, showing once again the interest of modeling both the high-level factors and

their features. An analysis of the results obtained by CCVAE, JDVAE, and CVQVAE

for SR(+) and SR(-) requires to consider the labels separately. For the “glasses” label,

results obtained with CCVAE are relatively satisfactory but the features of glasses are

not well-transferred (CFD values in Tab. 6.2 and results in Fig. 6.3). Results are

more satisfactory with JDVAE [300]. However, CVQVAE obtains the best success rates

for adding and removing glasses. Additionally, our method correctly extracts most of

the features of the glasses from the image xy=1 and reconstructs them reasonably well

on xy=0 (Fig. 6.3), which shows that the label and features of the glasses have been

properly disentangled from the attributes of the faces.

For the “smile” label, visual inspection of the reconstructed images (without at-

tribute swapping, data not shown) shows that JDVAE and CCVAE have difficulties in

extracting the features related to the smile. As an example, for a neutral face with open

mouth, its reconstruction shows a closed mouth. Similarly, for a smiling face with wide

open mouth, the mouths of the reconstructed images are less open. On the opposite,

CVQVAE provides better reconstructions. Our hypothesis is that the problem is made

easier with CVQVAE because the components of c that represent the neutral face are

not the same than those representing the smiling face. Regarding the success rates

of swapping (SR(-) and SR(+)), results obtained with CCVAE look satisfactory, espe-

cially for SR(-) but this number is biased. SR(-) is actually greater than the accuracy of

ResNet 50 (when classifying neutral face). This shows that it is easier for the classifier

to classify neutral fake images than real neutral images. This is due to the fact that the

neutral images obtained with CCVAE are actually too neutral. Indeed, we can observe

that the features related to the smile are not properly transferred to other images (see

Fig. 6.3). As we saw previously, this is not only a feature transfer problem, but also a

feature extraction problem. Results are actually slightly improved with JDVAE [300],

but the best results are undoubtedly obtained with CVQVAE.

Fig. 6.4 shows results obtained with other labels, which further illustrate the versa-

tility of the model.
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Fig. 6.4 Attribute swapping for ”beard” (left) and ”makeup” labels (right). Presentation
is similar to Fig. 6.3 except only results of CVQVAE are shown.

In addition, we show the effectiveness of our model on the CheXpert dataset (Tab.

6.3). Three different experiments have been conducted. In these experiments, y =

1 is associated to a pathology (“cardiomegaly”, “atelectasis” or “consolidation”) and

y = 0 is related to the “non finding” label (no pathology). Quantitative results show

once again that CVQVAE outperforms the other methods. Since no feature has been

related to the label y = 0 (it was also the case for the “glasses” label), it is possible to

reconstruct an image with a pathology as an image without pathologies. The difference

between its reconstruction and its reconstruction as a “free of pathology” image reveals

the influence of the pathology (in green on Fig. 6.5).

consolidation cardiomegaly atelectasis

Fig. 6.5 Results obtained with three different pathologies on the CheXpert dataset. For
each pathology, the original image (with the name of the pathology at its top) is on the
left, and the regions in green (at the right of the original image) represent regions that
differ the most between the reconstruction and the “pathology-free” reconstruction.

6.4.3 Exploration in the feature space c

We have also carried out several experiments on the information encoded by the variable

c. In Fig. 6.6, fake images are generated by feeding the decoder with z1, y1 and c =

c1+α(c2− c1) (α ∈ [0, 1]), where zi, yi, and ci denote the variables related to image xi
(i=1 or 2) with y1=y2. As an example, for the “glasses” label, if y1 = 1, the generated

glasses should be similar to those of x1 (if α is close to 0), of x2 (if α is close to 1), or in-

between (for other values of α). Moreover, in all cases, the generated face should be the

one of x1. Results shown in Fig. 6.6 are consistent with our expectations: interpolation
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in the feature space c results in a smooth transition between smiles (top), neutral faces

(middle), or types of glasses (bottom).

𝑥1 𝑥2𝛼 = 0 𝛼 = 0.2 𝛼 = 0.4 𝛼 = 0.6 𝛼 = 0.8 𝛼 = 1

Fig. 6.6 Interpolation in the feature space with different values of α using x1 and x2

(see text for details). Each column corresponds to the generated results for α given at
its top, with the exception of the left and right columns that correspond to x1 and x2.
The bottom row is related to the “glasses” label (with y1 = 1) while the two other rows
correspond to the “smile” label (y1 = 1 for the top row and y1 = 0 for the middle one).

In Fig. 6.7, the influence of the magnitude of c is shown: images are generated by

feeding the decoder with z, y and λc (λ ∈ [0, 2]), where z, y, and c are computed from

x. Results are shown for the “smile” label for y = 1 (Fig. 6.7, top) and for the “glasses”

label for y = 1 (Fig. 6.7, bottom).

𝑥 𝜆 = 0 𝜆 = 1/3 𝜆 = 2/3 𝜆 = 1 𝜆 = 4/3 𝜆 = 5/3 𝜆 = 2

Fig. 6.7 Increasing or decreasing the magnitude of c from x with different values of λ
(see text for details). Each column corresponds to the generated results for λ given at its
top, with the exception of the left column that corresponds to x. The top row is related
to the “smile” label (with y = 1) while the bottom row corresponds to the “glasses”
label (with y = 1).

Increasing or decreasing the magnitude of c leads to amplifying or reducing the

related features in the generated images. For example, with λ = 2, the frames of glasses

become very dark and wide, and the way of smiling is also exaggerated (the mouth is

notably more open). Moreover, even if y = 1, a null value for c (λ = 0) prevents glasses

from being generated.
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Fig. 6.8 Multiple attributes transfer with CVQVAE. There are 8 different examples, 2
per row, so that there are 4 on the left and 4 on the right. For each example, glasses and
smile from xy1=1,y2=1 are transfered to xy1=0,y2=0, and the resulting image is located
between xy1=0,y2=0 and xy1=1,y2=1.

6.4.4 Multiple attribute disentanglement

Our approach can easily be extended to the multiple attribute case. Two high-level

factors are considered hereafter: y1 and y2 denote the labels, and c1 and c2 denote

the related features. Equations of Sec. 6.3 remain valid by setting y to (y1, y2), and

c to (c1, c2). We use the following assumption: p(y) = p(y1)p(y2) and qϕ(y|x) =

qϕ(y1|x).qϕ(y2|x). The architecture of the model can easily be extended to the two

high-level factor cases. This has been achieved by modifying the last layer of the Cϕ

network. Results obtained are shown in Fig.6.8 where the purpose is to transfer the

glasses and the smile of xy1=1,y2=1 to xy1=0,y2=0.

6.5 Conclusion

Our CVQVAE approach clearly outperforms the state-of-the-art approaches, both in

terms of disentanglement and in terms of generated image quality. Future works could

adapt CVQVAE to the architecture of a hierarchical VQ-VAE (such as the one pro-

posed in VQ-VAE2 [199]) and GAN (such as VQGAN[58]) so as to further improve

the quality of generated images.
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6.6 Supplementary Material

6.6.1 Sensibility analysis

As a reminder, the size of the latent variable z has been set in the article to Nz × Nz

(with Nz = 16), and the embedding space is composed of K=512 vectors of dimension

D=16. Finally, Nc has been set to 16. Tab. 6.4 illustrates the influence of the hyper-

parameters Nz (first block), Nc (second block), K (third block ) and D (last block) for

the “glasses” label.

A small value of Nz (Nz = 4) reduces the quality of the generated images (FID

increases) and hinders disentanglement properties (SR(+) decreases). Moreover, a high

value of Nz increases the quality of the generated images (FID decreases) but also de-

teriorates the disentanglement properties of the model (SR(+) and SR(-) decrease). By

increasing Nz (the capacity of z is increased), we run the risk that z encodes informa-

tion that c should encode. Conversely, by reducing the size of z, we run the risk that z

does not make it possible to encode all the useful information and that the model uses c

to encode information that z should encode. We can thus intuit why Nz should neither

be too small nor too large to obtain good disentanglement properties. Note that the in-

fluence of the size of the latent space (Sz) in the CGVAE2 approach (Tab. 6.5) is similar

to the one observed for CVQVAE.

Finally, the influence of K, NC and D is relatively weak as soon as they are chosen

large enough.

Tab. 6.6 and 6.7 study the influence of β (see text after Eq. 6 in the article) for the

CVQVAE (Tab. 6.6) and the CGVAE2 (Tab. 6.7) approaches. As a reminder, β weights

the Kullback-Leibler divergence term. For the CVQVAE approach, it is interesting to

note that the influence of β is relatively low, with respect to the quality of the generated

images (please see FID column of Tab. 6.6 and Fig. 6.9). However, it is well-known

that β may influence the disentanglement properties of the model. Our observation are

consistent with the conclusion stated in β-VAE[86]: “when β is too low or too high,

the model learns an entangled latent representation due to either too much or too little

capacity in the latent z bottleneck.” (increasing β may limit the capacity of z). Note

that our values of β are very small according to the values of β mentioned in β-VAE:

this is due to the fact that log(pθ(x|y, z, c)) in Eq. 6 has been replaced (without loss of

generality) by the mean squared error between x and Dθ(y, z, c). This is now what is

generally done in most of the implementations of VAE.

Contrary to the CVQVAE case, β has a large influence on the quality of the gen-

erated images with CGVAE2: a too large value of β leads to images of low quality

(please see the FID column of Tab. 6.7 and Fig. 6.10). However, in both cases, we can

observe that β must not be too small nor too large in order to achieve good disentangle-
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ment properties: for CGVAE2, best results are obtained with β = 1e-2. It is therefore

necessary to balance the quality of the generated images (FID) and the disentanglement

properties of the model (SR(-), SR(+)). β = 1e − 4 seems to be a good choice. As

shown in Fig. 6.10, results obtained with β = 1e − 2 or with β = 1e − 3 are blurred

(the capacity of z is too small). Moreover, faces generated with β = 1e − 2 or with

β = 1e − 3 are not as similar to the original face of xy=0 as the face generated with

β = 1e− 4. Best results are clearly obtained for β = 1e− 4.

Increasing β for CGVAE2 may produce disentanglement properties similar to CVQ-

VAE, but at the expense of image quality. These results illustrate the relevance of using

a discrete latent representation.

Table 6.4 Influence of the hyperparameters Nz, Nc, K, and D (for the “glasses” label) in
the CVQVAE approach. For each block, the red color indicates the varying parameter,
while results displayed in bold are those obtained with the parameter setting of the
article.

Nz Nc K D SR(-) SR(+) CFD FID

4× 4 16 512 16 100% 65.11% 0.099 21.33
8× 8 16 512 16 100% 79.13% 0.093 20.05
16× 16 16 512 16 95.97% 69.96% 0.105 19.54
8× 8 8 512 16 99.92% 71.36% 0.097 20.14
8× 8 16 512 16 100% 79.13% 0.093 20.05
8× 8 32 512 16 100% 79.35% 0.096 20.10
8× 8 16 64 16 100% 67.97% 0.119 21.91
8× 8 16 128 16 100% 72.01% 0.108 21.23
8× 8 16 256 16 100% 77.84% 0.098 20.18
8× 8 16 512 16 100% 79.13% 0.093 20.05
8× 8 16 1024 16 99.92% 78.65% 0.098 20.23
8× 8 16 512 2 96.68% 73.41% 0.117 21.34
8× 8 16 512 4 98.05% 76.17% 0.103 20.99
8× 8 16 512 8 99.85% 78.23% 0.099 20.44
8× 8 16 512 16 100% 79.13% 0.093 20.05
8× 8 16 512 32 100% 78.43% 0.099 20.04

6.6.2 Comparison with ELEGANT [265]

As shown in Fig.2.16, ELEGANT[265] is a GAN-based method that also allows to

swap the face attributes of two images. Tab. 6.8 provides quantitative results that can

be obtained with ELEGANT and CVQVAE for the “glasses” label and the “smile” one

while Fig. 6.11 presents some swapping results. Since ELEGANT is fully supervised,

the supervision rate has been set to 1 for CVQVAE in these experiment.

As evidenced by the very low value of LPIPS, ELEGANT yields reconstructed im-
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Table 6.5 Influence of the size of the latent space (Sz) for the “glasses” label in the
CGVAE2 approach. Results displayed in bold are those obtained with the parameter
setting of the article.

Sz SR(-) SR(+) CFD FID

64 100% 62.74% 0.104 22.09
128 100% 66.19% 0.112 21.34
512 99.61% 70.36% 0.098 20.80
1024 99.85% 72.83% 0.097 20.51
2048 99.92% 64.42% 0.098 20.47

Table 6.6 Influence of β (for the “glasses” label) in the CVQVAE approach. Results
displayed in bold are those obtained with the parameter setting of the article.

β SR(-) SR(+) CFD FID

1e− 6 99.85% 69.03% 0.101 20.00
1e− 5 99.92% 72.07% 0.098 20.24
1e− 4 100% 79.13% 0.093 20.05
1e− 3 100% 77.34% 0.095 20.17

Table 6.7 Influence of β (for the “glasses” label) in the CGVAE2 approach. Results
displayed in bold are those obtained with the parameter setting of the article. In order
to observe the drop in performance for SR(+), we use larger β values than in CVQVAE.

β SR(-) SR(+) CFD FID

1e− 6 44.96% 11.27% 0.137 20.29
1e− 5 86.04% 64.43% 0.105 20.26
1e− 4 99.85% 72.83% 0.097 20.51
1e− 3 100% 77.13% 0.101 22.34
1e− 2 100% 78.97% 0.104 23.25
1e− 1 100% 77.18% 0.074 57.72

Table 6.8 Results obtained with the “glasses” label (two first rows) and the “smile” one
(two last rows). The criteria are the same than those used in Tab. 6.4

Model SR(-) SR(+) LPIPS FID

ELEGANT (glasses) 99.16% 95.66% 0.011 18.78
CVQVAE (glasses) 100% 80.26% 0.192 19.63
ELEGANT (smiling) 90.23% 91.25% 0.007 18.79
CVQVAE (smiling) 90.01% 90.33% 0.185 14.56
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xy = 0 = 1e 3 = 1e 4 = 1e 5 = 1e 6 xy = 1

Fig. 6.9 Attribute swapping (“glasses label”) using CVQVAE with different values of
β. The second, third, fourth, and fifth images should be xy=0 with the glasses of xy=1.
The value of β is given at the top of each result.

xy = 0 = 1e2 = 1e4 = 1e6 xy = 1

Fig. 6.10 Attribute swapping (“glasses label”) using CGVAE2 with different values of
β. The second, third, fourth, fifth, and sixth images should be xy=0 with the glasses of
xy=1. The value of β is given at the top of each result. As a reminder, the generated
images are obtained by feeding the decoder with z0 (latent representation of xy=0), c1
(features of xy=1), and y = 1. For β = 1e − 1, the capacity of z is so limited that c is
actually used to model both the face and the glasses (the fake image is similar to xy=1

even if z0 is used for reconstruction). On the opposite, the capacity of z is too high for
β = 1e− 6.

ages whose quality is superior to the proposed method: the reconstructed images are

actually very similar to the original images. These good results may be explained by

the fact that ELEGANT only learns the residual images. Moreover, it is based on a

U-Net[206] structure whose skip connections enable to bring information about the

original image to the decoder. This means that the original image is used at each step

of the reconstruction: it is first used by the decoder to compute the residual image, and,

then, the reconstruction is obtained by summing the residual image and the original im-

age. On the opposite, our decoder takes only as input the latent variables, the label and

its associated features.

The FID criterion that compares here the distribution of fake images (reconstructed

images after attribute swapping) with the one of real images shows that the quality of

the fake images is much less satisfactory for ELEGANT than the one of reconstructed

images. Indeed, CVQVAE obtains a better FID than ELEGANT for the “smile” label.

In the case of ELEGANT, we have observed that exchanging the features of two images

often leads to reconstructions that are corrupted by artifacts, as illustrated in Fig. 6.11.

We can note that making a face neutral or adding glasses often leads to images that

are corrupted by strong artifacts. On the opposite, making a face smiling or removing

glasses seems to be less prone to artifacts.
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xy = 0 CVQVAE ELEGANT xy = 1 CVQVAE ELEGANT

Fig. 6.11 Attribute swapping (“glasses” label for the three first rows and “smile label”
for the three last rows) using CVQVAE and ELEGANT. For each row, the second and
third images should be the face of xy=0 with the glasses or the smile of xy=1. The two
rightmost images should be the face of xy=1 without glasses or with the neutral attitude
of xy=0.

With respect to the success rates of swapping (SR(-) and SR(+)), ELEGANT and

CVQVAE provide similar results, except for SR(+) in the case of the “glasses” label

where ELEGANT outperforms the proposed method. However, the features are not

very-well transferred from one image to another image in the case of ELEGANT. We

can observe in Fig. 6.11 that CVQVAE transfers better the glasses of xy=0 to xy=1, or

the smile of xy=1 to xy=0 or the neutral attitude of xy=0 to xy=1. This suggests that

CVQVAE achieves a better disentanglement of the label and its features from the other

variables.

To conclude, ELEGANT yields better reconstructions but is prone to artifacts (af-

ter attribute swapping). CVQVAE yields smoother images but its disentangling ability

allows a better transfer of features between two images. There are other fundamental

differences between these two methods. By learning the distribution of the faces, CVQ-

VAE does not reconstruct rare or unseen features such as the watermark in the first row

of Fig. 6.11. Such a property is of great interest in medical imaging where pathological
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regions can be defined as those who are not well reconstructed. On the opposite, ELE-

GANT seems to be able to reconstruct these features. This is mainly because it learns

the residual and it is based on a U-Net structure. Finally, CVQVAE can accomplish

more tasks than ELEGANT. It provides a classifier. Moreover, it should be possible

to generate new images by sampling directly from CVQVAE. After the training stage,

this requires to learn three distributions: one for y, one for c given y = 0, and one for

c given y = 1. Moreover, instead of sampling z from the uniform distribution in the

VQVAE approach, note that [246] fits an autoregressive distribution (PixelCNN) over

the values of z. Finally, note that ELEGANT is fully supervised whereas CVQVAE

handles arbitrary supervision rates.
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CHAPTER 7

Conclusions and Future work

In this concluding chapter, we provide a summary of the key findings and contributions

of this research study, emphasizing their significance in both practical applications and

methodological advancements. Additionally, we explore potential directions for future

exploration within the field of generative models, specifically focusing on disentangled

representation and conditional generation.

7.1 Summary and discussion

In this thesis, the main contributions can be summarised into two parts: the disentangled

representation learning and conditional generation.

In Chapter 2, we extensively explored the utilization of generative models for dis-

entangled representation learning and conditional generation. They can be applied in

various application scenarios. And as the use of one of these models alone may be

limited by its applicability to the scenario, more and more people are choosing to com-

bine them. This combination of generative models has expanded the boundaries of

their applications, as demonstrated by the discussions in Section 2.1.4. For instance,

we delved into the concept of VAE-GAN [129] and diffuseVAE [176], highlighting

how they harness the encoding capabilities of VAEs to enhance pure generative models

such as GANs and diffusion models. Furthermore, Stable Diffusion [205], which has

exhibited remarkable success in the domain of text-to-image generation, has been inte-

grated with these three models. Initially, the VQGAN [58], comprising a combination

of VQVAE [246] and GAN [69], was employed to achieve efficient compression capa-

bilities. Subsequently, a diffusion model [89] was trained to generate the latent space

conditioned on text inputs, effectively reducing computational resources. These novel

combinations and applications of generative models exemplify the extent to which their

potential is limited only by our imagination.

Chapter 3 presents a work related to the diffusion model, which represents one

of the latest and most popular generative models in the field. The aim is to reveal the

power and versatility of this model, particularly in the context of sequential data, despite
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its primarily recognized application in 2D image generation. Through comprehensive

validation, we establish that the diffusion model can be readily applied to sequential

data, specifically for facial animation generation. This finding highlights its poten-

tial for broader applications on time series data. Moreover, we use a plug-and-play

framework that capitalizes on the remarkable flexibility of the reverse process in the

diffusion model. This framework entails training an unconditional diffusion model and

subsequently conditioning the reverse process with various types of conditions. This

leveraging of the diffusion model’s reverse process enables us to incorporate different

kinds of conditions including text, label, partial sequence, etc., enhancing the model’s

adaptability and expanding its range of applications.

Chapter 4 delves into the potential application of disentangled representation learn-

ing in the context of medical imaging. Specifically, we explore its applicability to med-

ical images, focusing on the example of hip bones. Through a detailed analysis of the

generated samples corresponding to each possible sex label of the hip bone, we high-

light the distinct regions that differentiate between males and females. This approach

allows for a targeted examination of the specific regions of interest associated with each

label, shedding light on the possible anatomical differences that exist. To achieve this,

we leverage the concept of (semi-)supervised VAE [122] that devises a methodology

to separate the representation of sex information from identity information within the

latent space. The architecture is shown in Fig.4.2. By modifying the label in the la-

tent representation while preserving the identity information, it becomes possible to

reconstruct the hip bone images of both sexes for the same individual.

We have also discussed in Chapter 4 that the selection of the appropriate model

should be based on the specific application. In this task, we have chosen to utilize a VAE

due to potential registration errors coming from the process of converting CT images

into 3D meshes. The inherent capabilities of a VAE, such as its ability to remove high-

frequency information and capture essential distributions, make it a suitable choice for

generating the desired outputs.

The paradigm established in this chapter holds significant potential for broader ap-

plication in the medical field, particularly when seeking to identify and highlight regions

of interest related to specific diseases. By applying a similar approach to other diseases,

it becomes possible to extract and visualize the distinctive regions associated with each

condition. This offers valuable insights and can aid in both diagnosis and research by

directing attention to the relevant areas that may exhibit significant variations or abnor-

malities.

However, the method presented in Chapter 4 only incorporates the label variable
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into the latent representation. The label variable cannot fully capture the putative char-

acteristics associated with the label. This limitation may not be apparent when dealing

with the application presented in Chapter 4. However, in image domains, characteristics

associated to the high-level factor, such as the type of glasses or the pathology of a dis-

ease can vary significantly. In Chapter 5, we propose a novel approach to address this

issue by including the representation of high-level factors and the associated character-

istics into the latent space. We introduce a new variable, denoted as u, which represents

the features associated with these high-level factors within the VAE framework. We

validate the effectiveness of our model by swapping the u values of different images

and examining whether their corresponding features are successfully exchanged.

We enhance the work presented in Chapter 5 by introducing a discrete latent space

and a two-step learning procedure in Chapter 6. This improvement leads to a significant

enhancement in the quality and accuracy of the generated outputs, surpassing previous

approaches such as CCVAE [111] and ELEGANT [265]. In Chapter 2, we present the

method of CCVAE (illustrated in Fig.2.12), which can learn label-related representa-

tions but suffers from low quality and accuracy, restricting its practical applications.

Similarly, ELEGANT (depicted in Fig.2.16) focuses solely on feature swapping, rely-

ing on a U-net architecture and adversarial training to enhance image generation qual-

ity. However, our experiments on ELEGANT reveal persistent artifacts in the generated

images, consistent with observations from the original paper. In contrast, our method

excels in accurately swapping features, even for rare characteristics, as demonstrated by

the example of the first row in Fig.6.3 (a). Furthermore, we conduct further validation

of the potential application of this method to medical imaging, as depicted in Fig.6.5.

With the same idea as discussed in Chapter 4, we reconstruct a patient image as that of

a normal person. By comparing the differences between the original and reconstructed

images, we effectively highlight the pathology associated with the disease.

In conclusion, this thesis presents several generative models that contribute to dis-

entangled representation learning and conditional generation. The proposed models

offer promising solutions for various applications, including the field of medical imag-

ing, specifically for interpretation and educational purposes. Through our experiments,

we also explore the application of the state-of-the-art generative model, the diffusion

model, and use a plug-and-play method for conditional generation. Overall, this re-

search demonstrates the value and potential impact of generative models in advancing

disentangled representation learning and enabling conditional generation for a wide

range of applications, including the medical imaging domain.
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7.2 Limitation and Future work

While our proposed generative models have shown promising results in disentangled

representation learning and conditional generation, there are still some limitations that

need to be addressed. In this section, we discuss these limitations and suggest potential

avenues for future research and improvement.

Generation quality improvements For a long period, disentangled representation

learning has primarily been applied to toy datasets. It always faces challenges when

generating high-dimensional data and capturing high-frequency information. In our

research presented in Chapter 5 and Chapter 6, we observed that these methods suffer

from a loss of high-frequency information, which limit their application scenarios.

One potential future direction involves improving generation quality is to combine

VAE with other generative models, such as GAN [129] or diffusion models [176]. This

approach harnesses the encoding capability of VAE to learn disentangled representa-

tions, while integrating GAN or diffusion models to enhance the quality of generated

outputs. By leveraging the strengths of each model, we can potentially achieve superior

results in generation tasks.

Furthermore, the adoption of hierarchical generation has shown tremendous promise

in elevating the quality of generated outputs, as demonstrated in [1, 113, 199]. By incor-

porating multiple levels of abstraction and progressively refining the generated samples,

hierarchical generation can capture finer details and exhibit a more coherent and visu-

ally pleasing outcome. Consequently, this approach holds promise as a future avenue

for advancing the quality of generation.

Finally, the requirement to achieve real disentangled representation may impose ex-

cessive constraints, resulting in the generation of low-quality images. Some researchers

seek to explore the learning of latent transformations to achieve high-quality informa-

tion generation [276, 96, 194], as opposed to relying on a shared latent space where

high-level factors are controlled by specific latent dimensions. However, it is important

to note that this approach typically requires a high-quality pretrained model to establish

a robust latent space that can be effectively manipulated.

Learning the influence between different variables in disentangled representa-
tion

In the context of medical images, several factors including age, sex, and duration

of illness play a significant role in influencing the observed pathology. While the dis-

entanglement assumes independence of each latent factor, there are instances where

these factors can interact with each other. For instance, in the case of Alzheimer’s dis-
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ease (AD), the severity of pathology tends to increase as an individual gets older. This

implies a causal relationship between age and the pathology of AD.

To explore this, we can employ a Directed Acyclic Graph (DAG) to learn the re-

lationships among the latent variables [272]. Once the relationships among these at-

tributes are established, modifying one attribute will inevitably influence the others.

Possible application of diffusion model in medical image
Despite the considerable attention diffusion models have received in the field of

image processing, their full potential has yet to be explored for medical images.

In Chapter 3, we have demonstrated the practicality of the diffusion model for ad-

dressing missing data. Specifically, it successfully predicts the remaining sequence

based on partial input, making it a promising approach for handling missing data. Previ-

ous researches on medical image inpainting have primarily relied on GAN-based meth-

ods [11, 10], the emergence of the diffusion model has opened up new possibilities in

this field. Recent work has applied the diffusion model to image inpainting tasks [154],

but its potential for medical image inpainting remains largely unexplored.

Moreover, the versatility of the diffusion model extends beyond handling missing

data in medical images. It can also be effectively employed in various other tasks,

such as data augmentation and segmentation. In the context of data augmentation, the

diffusion model can generate diverse synthetic data instances that can enrich the train-

ing dataset and improve the robustness of machine learning models. Additionally, in

the domain of image segmentation, the diffusion model can be utilized to refine and

enhance the accuracy of segmentation algorithms by generating high-quality segmen-

tation masks. Thus, the diffusion model exhibits great potential in a wide range of

applications
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Appendix A

Why maximinzing the ELBO is equivalent to minimizing
DKL(qϕ(x, z)||pθ(x, z))

To ensure that the approximated latent distribution aligns with the prior defined on

the latent space and that the generated data resembles the observed data, the objective

function of the VAE can be formulated by considering the KL divergence between these

two joint distributions:

DKL(qϕ(x, z)∥pθ(x, z)) =
∫∫

qϕ(x, z) log
qθ(x, z)

pθ(x, z)
dzdx

=

∫
qD(x)

[∫
qϕ(z | x) log qD(x)qϕ(z | x)

pθ(x, z)
dz

]
dx

= Ex∼qD(x)

[∫
qϕ(z | x) log qD(x)qϕ(z | x)

pθ(x, z)
dz

] , (A.1)

where qD is defined in Eq.2.7. The objective is to minimize the KL divergence

between the two distributions, aiming to make them as similar as possible. It is im-

portant to note that both qϕ(x, z) and pθ(x, z) have parameters (θ and ϕ) that can be

learned. By optimizing these parameters, the distributions are trained to minimize the

KL divergence and achieve a high degree of similarity.

We can easily observe that log qD(x)qϕ(z|x)
pθ(x,z)

= log qD(x) + log
qϕ(z|x)
pθ(x,z)

, and we have:

Ex∼qD(x)

[∫
qϕ(z | x) log qD(x)dz

]
= Ex∼qD(x)

[
log qD(x)

∫
qϕ(z | x)dz

]
= Ex∼qD(x)[log qD(x)] = C

(A.2)

C stands for a constant, so this term can be ignored. Then Eq. (A.1) can be simpli-

fied as:
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L = Ex∼qD(x)

[∫
qϕ(z | x) log qϕ(z | x)

pθ(x | z)p(z)
dz

]
= Ex∼qD(x)

[
−
∫

qϕ(z | x) log pθ(x | z)dz +
∫

qϕ(z | x) log qϕ(z | x)
p(z)

dz

]
= Ex∼qD(x)

[
Ez∼qϕ(z|x)[− log pθ(x | z)] +DKL(qϕ(z | x)∥p(z))

]
(A.3)

Hence, we arrive at the ultimate objective of the VAE. This is essentially the negative

of the ELBO. The distinction between Equation (A.3) and Equation (2.5) lies in the

optimization direction: we aim to maximize the ELBO, whereas in this case, we seek

to minimize the KL divergence.
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Appendix B

Hyperparameter Setting for DDPM

Based on Eq. 2.14, we can write p(xt|xt−1) with reparameterization trick we have:

xt =
√
αtxt−1 +

√
βtϵt

=
√
αt

(√
αt−1xt−2 +

√
βt−1ϵt−1

)
+
√
βtϵt

= · · ·

= (
√
αt · · ·

√
α1)x0 + (

√
αt · · ·

√
α2)
√
β1ϵ1 + · · ·+

√
αt
√
βt−1ϵt−1 +

√
βtϵt︸ ︷︷ ︸

the sum of multiple Gaussian noise

(B.1)

The mean of the sum of multiple Gaussian noise is 0, the variances is (αt · · ·α2) β1+

(αt · · ·α3) β2 + · · · + αtβt−1 + βt. With αt + βt = 1 (for all t),the sum of coeffi-

cients in each term of Eq. (B.1) becomes 1 (the variance then can be expressed as

1−√
αt · · ·

√
α1):

(αt · · ·α1) + (αt · · ·α2) β1 + (αt · · ·α3) β2 + · · ·+ αtβt−1 + βt = 1 (B.2)

As a result, we can rewrite xt as:

xt = (
√
αt · · ·

√
α1)︸ ︷︷ ︸

note as
√
ᾱt

x0 +

√
1− (

√
αt · · ·α1)

2︸ ︷︷ ︸
note as

√
β̄t

ϵt, ϵt ∼ N (0, I) (B.3)

We can observe that setting αt+βt = 1 greatly facilitates the computation of xt and

also reduces the number of hyperparameters by half.

We now need to determine the value of αt. Our goal is to minimize the KL diver-

gence between two joint distributions given in Eq. (2.17). Ideally, we would like p and

q to be equal, which would mean that their marginal distributions are also equal:

p(xT ) =

∫
q (xT | xT−1) · · · q (x1 | x0) q̃ (x0) dx0dx1 · · · dxT−1

=

∫
q (xT | x0) q̃ (x0) dx0

(B.4)
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It’s important to note that q̃ (x0) is the distribution of the real data and can be any

arbitrary distribution. Therefore, in order for the above equation to remain true, we can

only set q(xT |x0) = p(xT ), which is independent of x0 and follows a standard normal

distribution (p(xT ) ∼ N (0, I)). Since we need to satisfy q(xT |x0) ∼ N (0, I), we must

select the appropriate value for αt to ensure that ᾱT is approximately zero. In the case

of DDPM, this is done by setting αt =
√
1− 0.02t

T
.

Regarding σt, different optimal values may correspond to different data distribu-

tions q̃ (x0). To illustrate this point, let’s consider two simple examples. First, suppose

that the training set only contains one sample x̂, which means that q̃ (x0) is the Dirac

distribution δ(x− x̂). In this case, the optimal value for σ2
t can be calculated as β̄t−1

β̄t
βt.

Second, suppose that the data distribution q̃ (x0) follows the standard normal distribu-

tion. In this scenario, the optimal value for σ2
t simplifies to just βt. [89] claims that both

of these settings for σ yield similar results. In Chapter 3, we set σ2
t equal to βt
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Appendix C

The objective of diffusion model

We can rewrite the objective function at arbitrary step t in Eq. 2.18 as:

−
∫

q (xT | xT−1) · · · q (x1 | x0) q̃ (x0) log pθ (xt−1 | xt) dx0dx1 · · · dxT

=−
∫

q (xt | xt−1) q (xt−1 | x0) q̃ (x0) log pθ (xt−1 | xt) dx0dxt−1dxt.

(C.1)

For q (xt | xt−1), we have:

xt =
√
αtxt−1 +

√
βtεt. (C.2)

For q (xt−1 | x0), we have

xt−1 =
√
ᾱt−1x0 +

√
β̄t−1εt−1. (C.3)

The contribution of the term log pθ (xt−1 | xt) is as follows:

1

2σ2
t

||xt−1 − µθ(xt)||. (C.4)

Based on the expression q (xt | xt−1), we have xt−1 = 1√
αt
(xt − βtϵt, then we can

naturally set:

µθ(xt) =
1

√
αt

(xt −
βt√
1− αt

ϵ′θ(xt, t)). (C.5)

With all the aforementioned equations, the objective can be written as:

βt
αtσ2

t

Eεt−1,εt∼N (0,I),x0∼q̃(x0)

[∥∥∥∥εt − ϵ′θ

(√̄
αtx0 +

√
αtβ̄t−1εt−1 +

√
βtεt, t

)∥∥∥∥2
]
(C.6)

As the number of random variables to be sampled increases, it becomes more chal-

lenging to accurately estimate the loss function, which can be equivalently stated as the

increasing volatility (variance) of the loss function estimates at each sampling instance.
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We can observe that
√

αtβ̄t−1ε̄t−1 +
√
βtεt is equivalent to

√
β̄tε | ε ∼ N (0, I). Simi-

larly, we can state that
√

βt−1ε̄t−1 −
√

αtβ̄t−1εt is equivalent to
√
β̄tω | ω ∼ N (0, I).

εt =

(√
βtε−

√
αtβ̄t−1ω

)√
β̄t

βt + αtβ̄t−1

=

√
βtε−

√
αtβ̄t−1ω√
β̄t

(C.7)

Then we can write Eq. C.6 by replacing the variable εt and εt−1 with ε and ω. It

writes:

βt
αtσ2

t

Eω,ε∼N (0,I)

∥∥∥∥∥
√
βtε−

√
αtβ̄t−1ω√
β̄t

− ϵ′θ

(√
ᾱtx0 +

√
β̄tε, t

)∥∥∥∥∥
2


=
β2
t

β̄tαtσ2
t

Eε∼N (0,I),x0∼q̃(x0)

∥∥∥∥∥∥ε−
√

β̄t
βt
ϵ′θ

(√
ᾱtx0 +

√
β̄tε, t

)∥∥∥∥∥∥
2+ C

(C.8)

This is the final objective of diffusion models. To simplified it, as discussed in

Chapter 2, we can set xt−1 as follows:

µθ(xt) =
1

√
αt

(xt −
βt√
1− αt

ϵθ(xt, t)). (C.9)

By removing the coefficient before Eq. C.8 and the constant C, we can derive a

simplified loss function:

Eε∼N (0,I),x0∼q̃(x0)

[∥∥∥∥ε− ϵθ

(√
ᾱtx0 +

√
β̄tε, t

)∥∥∥∥2
]

(C.10)
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Résumé 

Les modèles génératifs sont une classe de modèles d'apprentissage automatique qui visent à 
apprendre la distribution sous-jacente d'un ensemble de données donné et à générer de nouveaux 
points de données qui ressemblent aux données originales. Ces modèles ont suscité beaucoup 
d'attention ces dernières années en raison de leur capacité à produire des échantillons de données 
réalistes et diversifiés. Les modèles génératifs, tels que les VAE (Variational Autoencoders), les GANs 
(Generative Adversarial Networks), les EBMs (Energy-Based Models), les modèles de diffusion, ont 
montré un grand potentiel dans de nombreux domaines, notamment la génération d'images, la 
synthèse de la parole et le traitement du langage naturel, et continuent d'être un domaine actif de 
recherche, avec de nouveaux modèles et techniques en développement pour améliorer leurs 
performances et élargir leurs applications. Une des applications les plus importantes des modèles 
génératifs est la représentation désentrelacée, qui fait référence à un type d'apprentissage des 
caractéristiques dans lequel les facteurs sous-jacents ou les attributs des données sont appris et 
représentés de manière indépendante. Dans notre recherche, nous utilisons des représentations 
désentrelacées pour relever le défi de la détermination du sexe et fournir des informations sur les 
résultats de classification. Cela est réalisé en générant des os de hanche pour le même individu des 
deux sexes, puis en effectuant une comparaison pour identifier les distinctions liées au sexe. De plus, 
nous visons à acquérir des connaissances sur le facteur de haut niveau et ses attributs en apprenant 
la représentation associée, ce qui nous permet de contrôler efficacement les caractéristiques liées à 
l'étiquette. Pour ce faire, nous introduisons deux cadres VAE innovants visant à apprendre la 
représentation associée à l'étiquette et à améliorer simultanément la qualité de la génération VAE. De 
plus, notre recherche contribue également à la génération conditionnelle. Nous appliquons un modèle 
de diffusion aux données séquentielles, montrant sa capacité à générer des expressions faciales 3D, 
impliquant des données en série temporelle. Ce processus inversé offre une flexibilité remarquable, 
permettant divers types de conditionnement et de génération grâce à une seule procédure de 
formation. 

 

 

 

 

 



 

 

 

 

Résumé en anglais 

Generative models are a class of machine learning models that aim to learn the underlying distribution 
of a given dataset and generate new data points that resemble the original data. These models have 
gained significant attention in recent years due to their ability to produce realistic and diverse samples 
of data. Generative models, such as VAEs ( Variational Autoencoders) , GANs (Generative Adversarial 
Networks), EBMs (Energy-Based Models), diffusion models, have shown significant promise in many 
fields, including image generation, speech synthesis, and natural language processing, and continue 
to be an active area of research, with new models and techniques being developed to improve their 
performance and broaden their applications. One of the most important application of generative model 
is disentangled representation, which refers to a type of feature learning in which the underlying factors 
or attributes of data are learned and represented independently.  In our research, we utilize 
disentangled representations to tackle the challenge of sex determination and provide insights into the 
classification results. This is achieved by generating hip bones for the same individual from both sexes 
and subsequently conducting a comparison to identify sex-related distinctions. Additionally, we aim to 
acquire knowledge about the high-level factor and its attributes by learning the associated 
representation, allowing us to effectively control label-related characteristics. To achieve this, we 
introduce two innovative VAE frameworks aimed at learning the label-associated representation and 
enhancing VAE's generation quality simultaneously. Additionally, our research also makes a 
contribution to conditional generation. We apply a diffusion model to sequential data, showcasing its 
ability to generate 3D facial expressions, which involve time series data. This reverse process provides 
remarkable flexibility, enabling various types of conditioning and generation through a single training 
procedure. 
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