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Abstract

It is widely recognized that greenhouse gas emissions are primarily responsible for climate crises.
According to Our World Data, road transport was responsible for 11.9% of these emissions in
2020. Further, 60% of road transport emissions come from traveling by cars, motorcycles, and
buses. Therefore, electrifying the road transport sector is a key solution to effectively reduce
emissions and adopt cleaner energy, leading to the popularity of electric vehicles. Nowadays,
owning an electric car has many benefits, like getting funds and grants from the government and
driving and parking in restricted traffic zones. Moreover, with technological advancements, elec-
tric vehicles are becoming more attractive. They have improved range, wider model availability,
and increased performance. For all these reasons, Electric vehicle sales keep breaking records
year after year. According to the International Energy Agency, the number of electric vehicles
attended 16.5 million in 2021, double the amount in 2019. However, charging an electric vehicle
is time-consuming and requires considerable electric power. The large-scale adoption of electric
vehicles will drastically increase the number of charging demands leading to the saturation of
charging stations, long queues, and poor service quality. Moreover, the extra load created by the
upcoming electric vehicle charging demands will have numerous detrimental electrical grid im-
pacts. It is estimated that an uncontrolled large-scale adoption of electric vehicles in European
countries would increase peak demand by 35% to 51%.

Scheduling the charging load becomes crucial to avoid these negative impacts without im-
posing expensive network reinforcements or upgrading the existing power grid. This thesis
studies the electric vehicle scheduling problem in a single charging station. First, an overall
background on electric vehicle technology and a review of studies on electric vehicle charging
scheduling problems are provided. The latter are classified according to the objective functions,
constraints, assumptions, and solving methods. Then, a variant of the electric vehicle charging
scheduling problem with chargers delivering preemptive constant power rates is stated. Each
charger is installed in a parking space and has one connector where a vehicle can be plugged
in for charging. We are interested in finding the minimum chargers required to park a set of
electric vehicles from their arrival to their departure times. Then, we tackle the problem of
minimizing the power grid capacity needed to satisfy the charging demands of these vehicles.
These two problems are investigated in the case of identical and non-identical chargers. Later,
we fix the number of chargers and the grid capacity and change the objective to find the max-
imum charging demands we can satisfy. Afterward, we tackle the problem with constant and
variable charging rates. For this problem, we maximize the delivered energy to each vehicle. For
all these problems, assigning vehicles to a parking space with a suitable charger is a decision
part of the schedule. For each studied problem, we provide complexity analysis, mathematical
formulations, solving approaches, and extensive computational results to show the performance
of the proposed algorithms on generated instances. Finally, key findings, a general conclusion,
and clues for future research are summarized.
Keywords: Electric vehicles, Charging scheduling, Optimization, Heuristics, Metaheuristics,
Complexity analysis.
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Résumé

Il est incontestable que les émissions de gaz à effet de serre sont les principales responsables du
réchauffement climatique. Selon Our World Data, le transport routier contribuait à 11,9% de
ces émissions en 2020 et 60% de cette contribution proviennent des déplacements en voiture,
moto et bus. Par conséquent, l’électrification du secteur du transport routier devient une solu-
tion clé pour réduire efficacement les émissions et favoriser l’adoption des énergies propres, d’où
la popularité des véhicules électriques. Aujourd’hui, posséder un véhicule électrique présente
de nombreux avantages écologiques et économiques. Plusieurs gouvernements ont mis en place
différentes aides financières afin de favoriser l’acquisition des véhicules électriques. De plus, il
n’existe pas de restrictions de circulation pour les véhicules électriques dans les zones à faibles
émissions, qui d’ailleurs, deviennent de plus en plus nombreuses dans les agglomérations. En
outre, avec les progrès technologiques, les véhicules électriques deviennent de plus en plus at-
trayants. Aujourd’hui, la diversité des modèles de véhicules électriques s’est largement densifiée
laissant à l’acheteur un panel de sélection élargi. Ces modèles ont une meilleure autonomie
et des performances accrues. Pour ces raisons, les ventes de véhicules électriques continuent
de battre des records année après année. Selon l’Agence internationale de l’énergie (IAE), le
nombre de véhicules électriques immatriculés a atteint 16,5 millions en 2021, soit deux fois plus
qu’en 2019. Cependant, la recharge d’un véhicule électrique est chronophage et nécessite une
immense quantité d’énergie électrique. Par conséquent, l’adoption de ces véhicules à grande
échelle augmentera considérablement le nombre de demandes de recharge, ce qui entraînera la
saturation des stations de recharge, de longues files d’attente et une mauvaise qualité de service.
En outre, la charge supplémentaire créée par ces demandes aura de nombreux effets néfastes
sur le réseau électrique. On estime qu’une recharge non pilotée à grande échelle dans les pays
européens augmenterait le pic de consommation électrique de 35 à 51%. Pour éviter tous ces im-
pacts négatifs, la planification et l’ordonnancement de la recharge devient cruciale. D’ailleurs, le
but de cette thèse est de répondre à des problématiques liées à l’ordonnancement de la recharge
de véhicules électriques dans une seule station de recharge. Tout d’abord, un aperçu sur la tech-
nologie des véhicules électriques et une revue des études sur les problèmes d’ordonnancement
de la recharge de ces derniers sont fournis. Ces études sont classées en fonction des différentes
fonctions objectives, des contraintes, des hypothèses et des méthodes de résolution. Ensuite,
nous avons commencé par étudier le problème d’ordonnancement de la recharge des véhicules
électriques avec des bornes fournissant des puissances constantes mais qui peuvent être préemp-
tives. Chaque borne de recharge est installée dans un espace de stationnement et possède un
seul connecteur où un véhicule peut être branché pour être rechargé. Nous nous intéressons
à la recherche du nombre minimum de bornes de recharge nécessaires pour garer un ensemble
de véhicules électriques depuis leurs arrivées jusqu’à leurs départs. Ensuite, nous abordons le
problème de la minimisation de la capacité du réseau électrique nécessaire pour satisfaire les
demandes de recharge de ces véhicules. Ces deux problèmes sont des problèmes tactiques où
l’objectif est de trouver la quantité minimum de ressources (bornes de recharge, puissance, ca-
pacité de réseau) requises pour satisfaire un ensemble de demandes de recharge. Ils sont étudiés
dans le cas où les bornes de recharge installées sont identiques ou non-identiques. Ensuite, nous
passons à la version opérationnelle de ce problème où nous considérons que le nombre de bornes



v

ainsi que la capacité du réseau sont fixés. L’objectif est de trouver le nombre maximum de
demandes de recharge que nous pouvons satisfaire. Par la suite, nous abordons le problème avec
des puissances de recharge qui peuvent être soit constantes soit variables et nous relaxons la con-
trainte sur les arrivées des véhicules, i.e., un véhicule peut être branché à une heure ultérieure à
celle prévue par le conducteur selon la disponibilité des bornes de recharge. Pour ce problème, la
fonction objective est de maximiser l’énergie fournie à chaque véhicule. Pour tous ces problèmes,
la décision concernant l’affectation des véhicules aux bornes appropriées relève aux algorithmes
décisionnels. Pour chaque problème étudié, nous fournissons une analyse de complexité, des for-
mulations mathématiques, des approches de résolution et des résultats détaillés pour démontrer
la performance des algorithmes proposés sur les instances générées. Enfin, nous résumons les
principaux résultats et citons les perspectives ouvertes par ces travaux de recherche.
Mots clés: Véhicules électriques, Ordonnancement de recharge, Optimisation, Heuristique,
Métaheuristique, Analyse de complexité.
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Chapter 1

General Introduction

Contents
1.1 Context and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1 Context and Motivation

In recent years, the considerable development of the transportation sector has made it the main
contributor to energy consumption and greenhouse gas emissions. As an example, transport
accounts for 40% of CO2 emissions in France in 20211, where 82% of passengers travel by car.
In addition to the climate crisis, the surge in international fossil fuel prices and the advancement
in electric vehicle technology accelerated the adoption of electric vehicles as a great alternative
green technology. According to the International Energy Agency [IEA 2022], the number of
electric vehicles attended 16.5 million in 2021, double the amount in 2019. Moreover, electric
vehicle sales keep breaking records year after year. In 2021, almost 10% of vehicle sales were of
electric models, four times the market share compared to 2019.

With this increase in sales, more investment is needed to support and extend charging in-
frastructures, which are critical to ensure the competitiveness of electric vehicles. Nowadays,
electric vehicle owners mostly tend to charge their vehicles at home. However, they state that
public charging is essential, mainly in workplaces. Moreover, the increase in the deployment of
public chargers will facilitate longer trips, reduce range anxiety, and convince more consumers to
purchase an electric vehicle, especially those who cannot access private charging. In 2021, more
than 1.8 million public chargers were installed worldwide, an increase of 37% from the previous
year [IEA 2022].

When electric vehicle adoption increases significantly, new challenges for electrical grid
and charging infrastructure operators rise. On the one hand, the increasing power consump-
tion due to charging will overload the grid and increase power losses and voltage deviation
[Rahman et al. 2022]. On the other hand, charging infrastructure operators must meet the up-
coming demands, maximize customer satisfaction, avoid long queuing, and minimize costs while
respecting the power grid constraints. Therefore, it is crucial for these operators to include
optimization strategies. Recently, there has been growing interest in developing electric vehicle

1https://www.climate-transparency.org/countries/europe/france
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Figure 1.1: Electric vehicles stock, 2010-2021. BEV are battery electric vehicles. PHEV are
plug-in hybrid electric vehicles. Source: IEA 2022 [IEA 2022].
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Figure 1.2: Total stock of electric vehicle chargers. Fast chargers have a charging power above
22 kW. Slow chargers have a charging power below 22 kW. Source: IEA 2022 [IEA 2022].

charging scheduling strategies that focus on economic objectives such as minimizing electricity
costs or enhancing power grid reliability by minimizing power losses and voltage deviations.
However, many studies assume that there is a sufficient number of chargers and focus on power
allocation while neglecting the decision to assign electric vehicles to suitable chargers. Besides,
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they assume an identical output power of chargers. Nevertheless, charging stations usually in-
stall chargers with different output power to satisfy more charging demands and improve service
quality.

In this thesis, we consider optimizing the charging process in a public charging station. The
charging station has a limited number of chargers and a maximum power capacity that the
distribution-level transformer limits. A management system can remotely control chargers’ acti-
vation or deactivation at any time. Each electric vehicle driver can submit a charging reservation
demand before arriving to avoid queues.

1.2 Contributions

The general formulation of an instance of the electric vehicle charging scheduling problem can
be defined as follows. There are a set of electric vehicle charging demands and a set of chargers.
The total power delivered by all chargers must not exceed at any time. Each charging demand is
characterized by its arrival time, departure time, and energy requirement. The required energy
can be expressed directly in kWh or by providing the desired state-of-charge levels and the
battery capacity. At each time, a charger can only charge one vehicle, and a vehicle can only be
charged by one charger. The charging scheduling can either be preemptive or non-preemptive.
Moreover, depending on the charger power rates, we can distinguish between two variants. The
first one is called the constant power model, where chargers can deliver either their maximum
output powers or zero. The second variant is the variable power model, where the charging rate
of each charger varies over time from zero to its maximum output power.

We tackle different variants of the problem as follows. First, we assume that, when a charging
demand is accepted, the vehicle must be plugged into a charger from arrival to departure. During
this period, the required energy must be satisfied. We are first interested in preemptive charging
scheduling with constant charging power rates. In this case, two tactical problems arise: the
problem of finding the minimum number of chargers needed to plug all electric vehicles, and the
problem of finding the minimum grid capacity required to charge all electric vehicles to their
desired energy. We investigate these problems to carefully guide charging station operators to
choose their subscribed maximum power. As the charging demands multiply, they will need
to upgrade their capacity. In fact, power consumption peaks occur and cause high electricity
bills. Generally, equipment such as power cutters and relays are installed at a small cost to
avoid peaks, but they cause the system to shut down, which is not desirable. Consequently, it is
essential to provide an overview of the minimum power limit depending on the installed charger
types and charging demands.

After solving these problems, we move to operational problems. When scheduling all de-
mands is impossible; thus we are interested in maximizing the number of satisfied charging
demands. This problem is investigated in the case of identical and non-identical chargers.

Then, we investigate the problem where an electric vehicle is not necessarily charged to its
desired energy. Moreover, to charge more vehicles, the plugging time of a vehicle can be later
than the desired arrival time. Then, the vehicle will occupy a charger from the assigned plugging
time until its departure time and cannot be plugged out during this period. We study the case
where non-identical chargers are installed. The scheduling objective is to minimize the total
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difference between the desired and the final state-of-charge levels. For this problem, we compare
the constant power model and the variable power model.

For each variant of the problem, we study its complexity. If the problem is polynomial, we
provide a polynomial solvable algorithm. Otherwise, we prove that it belongs to the complexity
class NP by reducing it to another NP-hard problem. We propose different mathematical
formulations. We propose heuristics and metaheuristics to obtain near-optimal solutions for the
NP-hard problems.

Finally, we study the electric vehicle charging scheduling problem in a private charging station
where each vehicle has its own parking space as it is described in [Hernández-Arauzo et al. 2015].
The charging station is fed with a three-phase power supply. There are three lines, each car-
rying an alternating current of the same frequency and voltage amplitude from the source to
the electrical outlets. Each line regroups a number of identical chargers that deliver power at
constant rates. There is a limited number of chargers that can deliver power simultaneously due
to charging station physical constraints. The first constraint defines the total power that can
be drawn from each line to avoid overloading the system. The second constraint maintains the
phase balance between the three lines. In fact, in a three-phase power system, the load should
be distributed evenly between the three lines to minimize power losses and improve system re-
liability. In this problem, no reservation system is considered, and electric vehicles arrive at
random unknown instants during the day with different request energies and departure times.
However, vehicles are not allowed to leave before completing their charging, which may result in
delays compared to requested departure times, called tardiness. Therefore, the objective is to
build a real-time schedule that minimizes the total tardiness subject to the technical constraints
of the charging station. We consider both preemptive and non-preemptive charging schedules.
First, the problem is formulated as a mixed-integer linear programming (MILP) model. Then,
a heuristic based on a priority rule is proposed to solve the online problem. Additionally, we
implement a simple local search to improve the objective function value for preemptive charging.

1.3 Outline of the Thesis

The motivation and context of the thesis are outlined in this introductory chapter. In the next
chapter, situate our study by reviewing the relevant literature and determining the research gap
in the field. The first variant of the electric vehicle charging scheduling problem is presented
and studied in Chapter 3. Chapter 4 is dedicated to the problem of maximizing the number of
satisfied charging demands. Chapter 5 states the problem of maximizing the delivered energy
and compares the constant and the variable power models. Chapter 6 is devoted to the online
charging scheduling problem in an unbalanced three-phase power system. In the last chapter,
we summarize the results of our works and outline the directions for future research.
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2.1 Introduction

This chapter provides the necessary background, terminology, and relevant related works to
better understand the electric vehicle charging scheduling (EVCS) problems addressed in this
thesis. The EVCS is an optimization problem closely related to the job scheduling problem
with additional resources. Therefore, we provide a brief overview of the job scheduling problem
to understand some of the complexity results and algorithms presented in this thesis. Then,
we briefly review electric vehicle technologies, such as charging modes and the different entities
involved. An essential part of this chapter is devoted to classifying and reviewing different works
on electric vehicle charging scheduling problems. Then, we can position our problem and define
the research gap that can be filled.

2.2 Optimization and Job Scheduling

Optimization problems involve finding the best solution that optimizes one or more objective
functions while satisfying constraints. One of the well-studied optimization problems is the
job scheduling problem. It involves allocating resources, such as machines, to perform jobs
(also called activities or tasks) to optimize one or more objective functions. There are many
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different variants of job scheduling problems, depending on the nature of jobs, the resources, the
constraints on the schedule, and the objective function. In scheduling theory, the set of jobs,
usually denoted J , has characteristics that depend on the considered problem. For example,
a job may have a processing time, a release date to design the earliest time at which the job
can be processed, and a due date, which represents the time at which the processing of the job
should be finished. Moreover, scheduling problems usually define a set M of machines with
characteristics that also depend on the definition of the problem. For example, we can find
scheduling on single or identical parallel machines. Additional scheduling constraints can be
defined, such as preemption, precedence constraints, and additional resources. Many objective
functions exist in the literature, for example, minimizing the number of late jobs, minimizing
the makespan, which corresponds to minimizing the time at which the last executed job ends,
and so on.

Authors in [Graham et al. 1979b] introduced the α |β | γ notation to classify scheduling prob-
lems. The α field defines the machine environment. Job characteristics and scheduling con-
straints are specified by the β field, while the field γ defines the objective function. For example,
P | ri |Cmax designs parallel machines scheduling with release dates to minimize the makespan.
Comprehensive book of classic scheduling problems with their most advanced and timely topics
can be found in [Leung 2004].

It is worth mentioning that machines are not necessarily defined in all scheduling problems.
An entire branch of scheduling theory called the Resource-Constrained Project Scheduling Prob-
lem (RCPSP) does not systematically use machines. The RCPSP is a well-known optimization
problem where we are given a set of resources with specific capacities and a set of jobs. Each
job has a duration and resource requirement per time unit. In addition, there are precedence
constraints between these jobs. The principal objective of the problem is to schedule all jobs
without exceeding resources’ capacity so that the total duration of the project is minimized. This
problem is proven to be NP-hard [Blazewicz et al. 1983]. A comprehensive review of variants
and extensions of the RCPSP can be found in [Hartmann & Briskorn 2010]. In recent decades,
the RCPSP has attracted the interest of researchers because it embodies a wide range of schedul-
ing problems, such as job shop and flow shop problems. One interesting special case of RCPSP
is cumulative scheduling, in which a release and due date are added to each job, the precedence
constraints are relaxed, and a single cumulative resource is considered at a time. The cumula-
tive scheduling problem (CuSP) is NP-complete in the strong sense [Baptiste & Le Pape 1997].
Recently, [Nattaf et al. 2015] considered a variant of cumulative scheduling with a cumulative,
continuous, and renewable resource and presented a hybrid branch-and-bound method to solve
it. Energetic reasoning, introduced by [Lopez 1991], is an efficient tool for dealing with the CuSP.
Energetic reasoning is based on determining which jobs must be processed in any feasible sched-
ule between two instants. Later, it was adapted by [Baptiste & Le Pape 1997, Nattaf et al. 2015]
to develop a polynomial satisfiability test for their problems. When the resource consumption
is uniform, and there are no constraints on its capacity, the problem turns into the interval
scheduling problem, which is polynomially solvable.

This thesis focuses on the problem of electric vehicle charging scheduling (EVCS) at charging
stations with a fixed number of chargers (charging points) and available power. This problem
can be viewed as a resource-constraint scheduling problem, in which the jobs to be scheduled
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are the charging demands and the resources are parking places, chargers, and electric energy.

2.3 Electric Vehicle Charging Technology

2.3.1 Electric Vehicles

According to their powertrains, electric vehicles can be classified into two main categories: hybrid
electric vehicles (HEV) and all-electric vehicles (AEV). An HEV combines an internal combus-
tion engine with an electric motor. It cannot be plugged in to charge its battery from external
sources like the power grid. Instead, it is charged by the internal combustion engine or through
an energy recovery mechanism called regenerative braking. This mechanism converts the vehi-
cle’s kinetic energy to electric energy to be stored in the battery. A plug-in hybrid electric vehicle
(PHEV) is one type of HEV with a larger battery pack that can be recharged from the power
grid. Meanwhile, an AEV, also called a pure-electric vehicle, is powered exclusively by electrical
sources. We can classify AEVs into battery electric vehicles (BEV) and fuel cell electric vehicles
(FCEV). A BEV relies on the power provided by the battery, which is recharged by plugging
it into the power grid. An FCEV does not require an external charging system. Generally, it
generates electricity using oxygen from the air and compressed hydrogen. In this study, we use
the term "electric vehicle" to refer to both BEV and PHEV.

2.3.1.1 Electric vehicle battery

The battery is the core component of an electric vehicle, and it plays an essential role in devel-
oping and adopting electric vehicles since the driving range depends on it. The most commonly
used rechargeable batteries are lithium-ion batteries since they have a higher energy density, a
higher efficiency, and a longer cycle life than other types of batteries, like lead-acid batteries
and nickel-metal hydride batteries [Andwari et al. 2017]. Several terms have been defined for
batteries to characterize their performance. We summarize the most frequently used ones as
follows.

– Battery capacity: it corresponds to the amount of electricity stored in the battery and can
be released during the discharge. Usually, it is expressed in watt-hours (wh). A watt-hour
is equivalent to the battery voltage multiplied by the current (in amperes) that can be
drawn from the battery for an hour. The ampere-hours (Ah) measurement is the most
commonly used since voltage is fixed for a battery type due to its internal chemistry.

– Battery state of charge (SOC): it represents the ratio of the remaining battery capacity to
its nominal capacity expressed in percentage.

– Battery depth of Discharge (DOD): it represents the amount of utilized battery capacity
in percentage.

– Battery cycle life: it represents the lifetime of a battery expressed as the number of charge-
discharge cycles the battery can experience before its performance degrades significantly.
The depth of discharge mainly affects the cycle life of lithium-ion batteries. For instance, a
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battery discharged by 80% of its capacity has a much shorter cycle life than one discharged
by only 20%. Battery manufacturers recommend maintaining the SOC between 20% and
80% to prolong battery life [Kostopoulos et al. 2020]. The cycle of life is an essential
parameter for the widespread adoption of electric vehicles. In fact, when it is less than the
vehicle’s lifespan, the battery has to be changed after a few years, resulting in additional
costs.

– Energy density: it refers to the energy stored in a battery per unit volume (wh/m3). Also,
it can be defined as energy per unit mass (wh/kg). Energy density is essential since it
specifies the battery size needed to reach a specific range.

– Battery management systems (BMS): BMS is a set of electronic components and software
algorithms designed to monitor battery state and ensure its safety. The BMS is essential for
collecting information, such as the battery current, voltage, and temperatures. It processes
those information to regulate the charging and discharging of the battery, update the SOC,
ensure its optimum performance, and protect it from damages. In addition, the BMS
ensures communication with the vehicle computer to provide information to the driver.
The BMS may fulfill additional functions as well. [Andwari et al. 2017].

2.3.1.2 charging modes

The development of charging technology is crucial to the success of electric vehicles. Recently,
charging is becoming more convenient and faster. Depending on the energy transfer mode,
battery charging can be classified into three categories: conductive charging, inductive charging,
and battery swapping. Each one of these methods requires different charging infrastructure and
equipment.

– Conductive charging: in conductive charging, also called wired or plug-in charging, a
physical connection is required to transform electrical power from the grid to the electric
vehicle. There are two types of conductive chargers: on-board and off-board chargers.
On-board chargers are built inside the vehicle and are generally used for slow charging.
This topology allows the driver to charge his vehicle wherever an electric power outlet is
available. In contrast, off-board chargers are located outside the vehicle and are mainly
deployed for fast charging in parking lots or highways.

– Inductive charging: also known as wireless charging, it allows power to be transferred
without wires or any physical connection. Generally, charging systems are installed under
the road so vehicles can park or drive on them and efficiently charge simultaneously.
There are three main modes of wireless charging: stationary, quasi-dynamic, and dynamic
inductive charging [Jang 2018]. With stationary inductive charging, electric vehicles are
charged when they are parked. In quasi-dynamic systems, charging can take a short time
in a dynamic environment like bus stops and traffic lights. In dynamic inductive charging,
electric vehicle drivers can charge their batteries while driving on the road, so they do not
have to stop at a charging station. Therefore, wireless charging can be more convenient for
electric vehicle drivers to overcome range anxiety and long waiting times. Some dynamic
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charging systems are already commercialized, such as the On-Line Electric Vehicle (OLEV)
deployed in 2009 at the Korea Advanced Institute of Science and Technology (KAIST).
However, they are still in the early stages of development [Jang 2018].

– Battery swapping: battery swapping stations (BSS) allow electric vehicle drivers to replace
their discharged batteries with fully charged ones. This strategy can effectively reduce the
long charging time since exchanging batteries takes less than five minutes. Moreover,
BSSs can sell the stored energy into electricity markets to maximize profit. However, the
deployment of BSS is still challenging and expensive since it requires the availability of
different battery packs and various standards for battery attachment. In addition to the
increased battery degradation costs and higher infrastructure investment to support the
vehicle-to-grid [Ahmad et al. 2020, Wang & Wang 2020].

2.3.1.3 Charging standards

Several organizations, such as the Society of Automotive Engineers (SAE), the International
Electrotechnical Commission (IEC), and the Institute of Electrical and Electronics Engineers
(IEEE), have developed different international standards for charging systems. These standards
define general requirements for equipment, charging plugs, connectors, and inlets for conduc-
tive charging. It also defines requirements for inductive charging and battery swapping. SAE
standards, like SAE J1772, are widely applied in the United States and Japan, whereas IEC
standards are more widely adopted in Europe. The United States’ manufacturers also use IEEE
standards. China has defined its Guobiao (GB/T) standard, similar to the IEC 62196-2 stan-
dard but with a different design. Table 2.1 shows a summary of the voltage and current levels of
SAE J1772. The IEC 62196 standard has equivalent requirements but a different set of terms.
Instead of levels, the term mode is used [Khan et al. 2018, Das et al. 2020]. The IEC 62196
standard defines four modes: mode 1 for slow charging from a household-type outlet, mode 2
for slow charging from a household-type outlet but with an in-cable protection device, mode 3
for slow or fast charging using a specific electric vehicle outlet with an installed control and
protection function, and mode 4 for DC fast charging with off-board chargers. More discussions
and details about charging standards can be found in [Das et al. 2020].

Table 2.1: Charging levels defined in SAE J1772 Standard for conductive charging
[Chalia et al. 2021].

Power supply Power level Phase (AC) Voltage (V) Current (A) Charging power (kW)
AC level 1 single phase 120 12 or 16 1.44 or 1.92
AC level 2 single phase 208-240 24-80 5.00 - 19.20
DC level 1 200-450 80 36
DC level 2 200-450 200 90
DC level 3 200-600 400 240
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2.3.2 Electricity Power Grid

The electric power grid is the infrastructure that allows the transportation of electrical en-
ergy from production facilities to consumers. It incorporates four main sectors: generation,
transmission, distribution, and consumption. The increase in electric vehicle deployment will
drastically affect those sectors, and thus a reinforcement of the existing grid will be required.
Different studies have been conducted on the impact of electric vehicle integration on the differ-
ent sectors, especially the distribution system. A recent review of those studies can be found in
[Rahman et al. 2022].

The traditional power grid is evolving and will eventually be replaced by Smart Grids that
enable the exchange of information between the utility grid and consumers. Also, Smart Grid
provides advanced real-time management, metering, monitoring, and control through smart
meters, sensors, and embedded appliances [Dileep 2020]. The smart grid concept has been in-
troduced to monitor system stability efficiently, manage electricity load, incorporate distributed
energy, balance energy demand response, and provide real-time electricity consumption mea-
surements. The readers can refer to the survey for comprehensive details and information about
Smart Grid’s characteristics, evolution, and benefits [Dileep 2020]. Many researchers have fo-
cused on electric vehicle charging in the context of Smart Grids since smart grid technologies
introduce additional communication features and enable data collection so that charging can
be shifted to off-peak hours. Moreover, Smart Grids facilitate vehicle-to-grid integration and
promote charging with renewable resources [Ahmadi et al. 2019].

2.3.3 Smart Charging Stakeholders

Many companies are concerned about the future deployment of electric vehicles and the adop-
tion of smart charging. Smart charging strategies may differ from the point of view of these
stakeholders. Therefore, it is essential to identify the different entities to position the reviewed
studies and our work.

– Power grid operators: Power grid operators are the companies that manage the electrical
grid. The main operators related to the electric vehicle charging optimization literature
are Transmission System Operators (TSO), responsible for the high and ultra-high-voltage
grids, and Distribution System Operators (DSO), responsible for lines that carry low and
medium-voltage power from the transmission system to consumers. TSOs experiment and
study the electricity system’s resilience to future mass adoption of electric vehicles and its
ability to sustain real-time demand-supply equilibrium. DSO will also encounter technical
challenges with the future increasing charging demands, especially on transformers in low
voltage grids. Moreover, some DSOs can be the owners of a percentage of charging points
in their region.

– Charging points operators: Charging Point Operators (CPOs) are companies that own
private or public charging stations. CPOs can control charging points to schedule charging
operations. They can maximize their profits and limit the negative impacts on power grids
by optimally scheduling electric vehicle loads. In addition, historical information can be
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collected and used to predict future charging demands and implement robust optimization
algorithms.

– Aggregators: Generally, aggregators are companies that act as intermediaries between elec-
tric power system operators and end consumers. They can play an essential role in future
smart grids in managing charging loads by regrouping a certain number of electric vehi-
cles and participating in electricity markets following the charging regulation requirements
dictated by the DSO. Also, charging station operators act like aggregators.

2.4 Electric Vehicle Charging Scheduling Problem

Nowadays, electric vehicle drivers mostly tend to charge their vehicles directly when they arrive
at home or at the nearest charging station [Azadfar et al. 2015]. The charging begins immedi-
ately when the vehicle is plugged in and continues until the battery is fully charged. This is
called uncontrolled charging. Uncontrolled charging negatively impacts the power grid, charg-
ing infrastructure, and vehicle drivers. Consequently, smart charging approaches in large-scale
electric vehicle deployment are crucial for proper energy utilization, grid stability, and consumer
satisfaction. Different charging control and scheduling strategies were proposed. There are two
types of control strategies: centralized and decentralized. In centralized strategies, charging
decisions are taken by a high-level controller, such as aggregators. Oppositely, decentralized
control strategies allow each EV to define its own charging plan. Both strategies have their
advantages and limitations. Centralized approaches face long computation times and difficulty
in collecting accurate charging information from many electric vehicles due to the uncertainties
in their charging behavior [Kang et al. 2016]. Decentralized control strategies reduce computa-
tional requirements since the computation is distributed to individual agents. Also, they enhance
customers’ convenience and satisfaction.

In this section, we focus only on reviewing EVCS in a centralized manner. Also, this review
does not consider papers dealing with vehicle-to-grid (V2G) technology, where electric vehicles
can discharge energy back to the grid. Only unidirectional power flow models are considered.
Also, papers considering renewable energy sources, such as solar-based energy and energy storage
units, are not included.

In the literature, the formulation of the EVCS problem varies significantly from one study
to another, depending on the characteristics of the charging infrastructure and the operational
model considered. There is neither a generic model nor general benchmarks yet. This is due
to the great variety of aspects to consider in the EVCS formulation, including charging infras-
tructures, electric vehicle drivers’ behaviors, the electricity market, and the politics of charging
services. Each aspect can be regarded in the model as an objective, a constraint, a parameter, or
a decision variable. Hence, we first classify existing studies according to the different objectives
considered. Then, we state the different constraints, assumptions, and considerations that would
allow us to characterize and distinguish the various branches of the literature. Finally, we re-
view the optimization methods used to tackle the EVCS problems. Figure 2.1 shows a summary
of the classification of objectives, constraints, and optimization methods with non-exhaustive
examples.



12 Chapter 2. State-of-art

Electric Vehicle Charging Scheduling Problem
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Figure 2.1: A classification of EVCS problem’s objectives, constraints, and optimization ap-
proaches.

2.4.1 Objectives

A classification of problem objectives is required before classifying optimization methods used to
solve them. We first classify EVCS problems into two classes from the stakeholders’ perspective,
namely, power grid operators and charging station operators. This classification is essential
to distinguish the context of the study since, in the electricity sector, each unit is independent
legally and functionally and has different objectives depending on its responsibility in the system.
For example, the grid operators aim to maintain grid stability and reliability. On the other
hand, the objectives of charging station operators involve maximizing profit and minimizing
the electricity bills paid while respecting the grid constraints. Additionally, EVCS problems
formulated from grid operators’ perspectives will cover large and medium-scale distribution
networks with multiple charging units (home charging, parking lots, commercial buildings). In
contrast, the charging station operators will likely address the scheduling problems in the small
and medium-scale charging infrastructures for which they are responsible. Despite the coupling
between these two types of stockholders, they have been considered separately. Only a few
papers consider both. Currently, it is more convenient for charging station operators to adopt
smart charging strategies. Scheduling electric vehicle charging from grid operators’ perspectives
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will be more widely adopted in the context of the future Smart Grids, where electric vehicle
aggregators manage geographically dispersed electric vehicles.

2.4.1.1 From power grid operators’ perspectives

As mentioned before, the electric power system technically incorporates three operational sec-
tors: generation, transmission, and distribution. Power grid operators are the entities in charge
of managing these sectors. From the perspective of these operators, the increase in electricity
demand raises concerns regarding the stability and reliability of the power grid. Moreover, it will
result in more negative impacts, such as load peaks, significant voltage variance, power losses,
lower energy efficiency, and an increase in voltage deviation. The extension and reinforcement
of the power grid are typical approaches to address this problem. However, such a solution is
not easy to achieve in the short term and requires expensive investments. A more attractive
and economical alternative solution is implementing smart scheduling strategies. As a result,
numerous works were proposed to minimize these issues and consider economic objectives, espe-
cially on distribution grids. Generally, the optimization problem is solved at the DSO level. We
resume the further mentioned works from the power grid operators’ perspectives in Table 2.2.

Table 2.2: Classification of some EVCS problems from the grid operators’ perspectives.

Reference Year Objectives Optimization approaches
[Clement-Nyns et al. 2010] 2010 Minimize power losses, voltage devi-

ations
Quadratic programming, dynamic
programming

[Tan et al. 2013] 2013 Minimize voltage deviation, load
variance, power losses

PSO

[Franco et al. 2014] 2014 Minimize power losses, the conven-
tional loads, energy consumption
and the energy that is not possible
to provide to electric vehciles

a MINLP relaxed to a MILP

[Xu et al. 2014] 2014 Minimize the electricity purchase
costs of all aggregators

Linear programming at DSO level,
heuristics

[Lunci Hua et al. 2014] 2014 Minimizes the charging costs, opti-
mizing power flow increments

Solving MILP models

[Hajforoosh et al. 2015] 2015 Minimize the active and reactive
power loss, generation cost max-
imise delivered charging power

Online hybrid fuzzy discret PSO,
hybrid Fuzzy GA

[Luo et al. 2016] 2016 Minimize load variance, the peak-to-
valley load

Online algorithm

[Kang et al. 2016] 2016 Minimize charging cost, active
power losses, voltage deviation

Improved PSO-GA

[Kang et al. 2017] 2017 Minimize load variation, revenue
losses

Weight aggregation multi-objective
PSO

[Suyono et al. 2019] 2019 Minimize charging cost, power
losses, voltage deviation

Binary PSO, Binary Grey Wolves
Optimization

[Liu & Zhou 2022] 2022 Minimize charging costs, peak-to-
valley load

Heuristic for charging coordination
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Cost minimization. The grid operators are more concerned about reducing the over-
all costs caused by electric vehicle charging, which can include energy generation costs
[Hajforoosh et al. 2015], operational and electricity costs [Xu et al. 2014]. Authors in
[Lunci Hua et al. 2014] minimize the overall daily charging and power loss costs in electrical dis-
tribution systems. In [Kang et al. 2017], the revenue losses are minimized. [Liu & Zhou 2022,
Suyono et al. 2019] minimize the sum of charging cost of all electric vehicle drivers.

Power loss minimization. Power losses occur in distribution and transmission systems
due to the Joule effect in power lines and transformers. Reducing these losses is es-
sential for grid operators to enhance the power grid’s efficiency and lower the opera-
tion cost. The introduction of electric vehicles increases power losses. For example,
[Pieltain Fernandez et al. 2011] showed that power losses could increase by 40% in off-peak
hours when most electric vehicles would be charged. There are two types of power loss: ac-
tive power loss and reactive power loss. Studies can address the problem of minimizing one or
both types as in [Hajforoosh et al. 2015, Franco et al. 2014]. The general formulation to calcu-
late the active power loss used in [Tan et al. 2013, Kang et al. 2016, Clement-Nyns et al. 2010,
Franco et al. 2014, Suyono et al. 2019] is defined as follows.

Ploss =
N∑

i=1

|Ii|2 ×Ri (2.1)

where N is total number of branches in the system, Ii is the magnitude of current flow in branch
i and Ri is the resistance of branch i.

Voltage deviation minimization. Voltage deviation can be defined as the difference between
the nominal voltage and the actual voltage in nodes. The smaller the deviation, the better the
voltage condition of the system. These deviations may occur in distribution systems for different
reasons, especially when the available reactive generation cannot meet the growing demand for
reactive power on the customers’ side. In other words, overloading the power system is the
major contributor to the problem of voltage deviation. A voltage deviation index is defined as
the sum of the squared value of the absolute voltage difference between the nominal voltage and
the actual voltage for all nodes in the system.

Vdev =

N∑

i=1

|Vn − Vi|2 (2.2)

where N is the total network nodes, Vn is the nominal voltage, and Vi is the actual voltage at
node i.

The voltage deviation cannot be below a given threshold. Thresholds are different from one
country to another. According to the American national standard, the voltage deviation limit
is ±5% of the nominal voltage, while it is limited to ±10% of the nominal voltage in Europe.
[Kang et al. 2016, Tan et al. 2013, Suyono et al. 2019] includes the minimization of the voltage
deviation in their objective function.
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Load variance minimization. The load variance is generally defined as the expected value
of the squared deviation from the mean of the load. Minimizing load variance will minimize the
peak-to-valley load of the distribution system and improve power quality.

Ldev =

√√√√ 1

T

T∑

t=1

(P̄ − Pt)2 (2.3)

where T denotes the number of the divided periods, P̄ is the average load of the distribution
system or a specified district, and Pt is the scheduled load at time t.

[Tan et al. 2013] gave the relationship between minimizing the voltage deviation and mini-
mizing the load variance. In [Kang et al. 2017], the electric vehicle load is scheduled to achieve
grid stabilization. The problem is formulated as a multi-objective optimization problem. The
first objective function is to minimize the load fluctuation caused by adding PHEVs to the grid.
In [Luo et al. 2016], it is assumed that the electric vehicles charge directly from the distribution
grid. The study combines the grid and transport system information for joint charging schedul-
ing optimization and path planning. In charging scheduling, two strategies with two objectives
are considered: minimizing the load variance in the distribution system as the fast charging load
is added and the peak-to-valley load in a battery-swapping scenario.

[Luo et al. 2016, Kang et al. 2017, Liu & Zhou 2022] minimize the peak-to-valley load of the
distribution system or a specified district defined as:

F = max(Pt)−min(Pt) (2.4)

where max(Pt) and min(Pt) denote the values of the adjusted peak and valley loads, respec-
tively.

2.4.1.2 From charging service providers perspective

Charging service providers (CSP) are companies that manage one or multiple charging stations
installed in different locations like service stations, shopping centers, academic campuses, high-
way rest areas, or parking lots. The charging points installed can be private or public. Public
charging points can be used by any electric vehicle and offer higher charging rates. These com-
panies usually buy electricity from an energy supplier to meet the charging demands of their
customers. Research works on EVCS problems from the perspective of CSPs focus on reducing
electricity bills, maximizing their profits, and improving service quality while maintaining the
physical constraints of the grid. We summarize the further mentioned works from the CSPs’
perspectives in Table 2.3.

Cost minimization. Optimization problems with the objective of cost minimization are
widely addressed. In EVCS problem formulations, cost minimization mainly involves reducing
the CSP’s electricity bills, considering the dynamic electricity pricing environment (see Sec-
tion 2.4.2.13). Uncontrolled charging can lead to high electricity costs, which poses a signif-
icant obstacle to deploying public charging stations. This is particularly true for fast charg-
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Table 2.3: Classification of some EVCS problems from the charging service providers’ perspec-
tives.

Reference Year Objectives Optimization approaches
[Jin et al. 2013] 2013 Maximizing the aggregator’s rev-

enue, minimize the total charging
cost of customers(as separate opti-
mization problem)

Solving LP for static charging, a
heuristic for the dynamic charging

[Tang et al. 2014] 2014 Minimize cost on electricity bill paid
by the charging station

Online algorithm (OCHARD)

[Zheng & Shroff 2014] 2014 Maximize the total value of served
vehicles, minimize the energy cost

Online algorithm (On-Arrival Allo-
cation with Revocation)

[Jewell et al. 2014] 2014 minimizes the total makespan Solving a MILP, heuristics, simu-
lated annealing

[Zhu et al. 2014] 2014 Minimize the total charging time Heuristic algorithms
[Bučar 2014] 2014 Maximize the total profit MILP, local Ratio Technique,

greedy heuristics, local search
[Ma et al. 2015] 2015 Minimize the charging cost to fully

charge all electric vehciles
Offline: solving a binary LP, on-
line: moving window optimization
scheme

[Kuran et al. 2015] 2015 Maximizing parking lot rev-
enues, maximizing the number of
recharged electric vehciles

Solving a MILP, multi-layer system
to implement day-ahead and real-
time scheduling

[Tang & Zhang 2016] 2016 Minimize the total charging cost Online algorithm, model predictive
control based algorithm, a finite-
horizon dynamic programming for-
mulation

[Rahman et al. 2016] 2016 Maximizing the average SOC Accelerated PSO
[?] 2017 Minimizing the preallocated energy Heuristic using randomized algo-

rithm approach
[Wu et al. 2018] 2018 Minimize the electricity cost Fuzzy PSO algorithm
[Ki et al. 2018] 2018 Maximize total charging amount

and earliness of charging comple-
tion time, minimize charging cost
and time and dispersion of charging
amounts

Solving a MILP, relaxation-based
heuristic.

[García-Álvarez et al. 2018] 2018 Minimize the total tardiness GRASP-like algorithm, memetic al-
gorithm

[Niu et al. 2018] 2018 Maximize the charging service in-
come, minimize customers’ dissatis-
faction, minimize power fluctuation
degree

Hierarchical power control strategy,
GA

[Zheng et al. 2018] 2018 Maximizing the level of satisfactions
for electric vehicles charging

Online algorithm

[Yang 2019] 2019 Maximizing completion rate, and
minimizing electricity bill.

Online algorithm: adaptive price-
responsive early charging control

[Ayyadi et al. 2019] 2019 Minimize electric vehicles charging
cost and the battery degradation
cost

solving LP

[Liu et al. 2020] 2020 Minimize the total charging cost Solving a bilevel programming
model, LP, GA
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ing stations, where electric vehicle charging can account for over 90% of the electricity costs
[Garrett & Nelder 2016].

Authors in [Tang et al. 2014] minimize the total cost of the electricity bill paid by the
charging station. In [Zheng & Shroff 2014], authors maximize the total value of served vehi-
cles while minimizing the energy cost. [Ma et al. 2015] minimize the cost of fully charging all
vehicles. [Tang & Zhang 2016] minimize the total charging cost, formulated as a strictly convex
increasing function of the total load. [Wu et al. 2018] minimize the cost of electricity bought by
the parking lot from the power grid, considering the varying electricity price at different time
slots. Authors in [Ki et al. 2018] worked on the EVCS problem using M-to-N chargers adopted
in actual charging stations in South Korea. Such a charger is designed to connect N electric
vehicles, but only M electric vehicles will be charging simultaneously (M < N). The objective
functions maximize the sum of four weighted terms, including the charging costs with a negative
sign for minimization.

[Yang 2019] consider the charging scheduling problem in a residential parking station. They
achieve cost minimization by incorporating a price preference index for each time interval. This
index is dependent on the electricity price during that interval. The objective function is formu-
lated as a maximization problem, with the index being higher when the electricity price is low
and vice versa. In [Liu et al. 2020], the authors focus on minimizing the charging cost under
Time-Of-Use electricity prices in a charging station with a limited number of chargers.

Total revenue maximization Authors in [Jin et al. 2013] addressed the problem of maxi-
mizing the aggregator’s revenue while imposing an upper bound to limit customers’ charging
costs. The revenue of aggregators comes from the profit obtained by providing the regulation
service to the power grid and the profit generated from the sale of energy to electric vehicles.
Another revenue maximization problem was formulated in [Kuran et al. 2015] for smart parking
lots. The revenue is determined as the result of subtracting the electricity buying price paid to
the grid from the charging selling price for electric vehicles. [Bučar 2014] maximize the total
profit generated from scheduling all charging demands. Further, [Niu et al. 2018] maximize the
benefit of the fast charging station while considering the load fluctuation. When the load fluc-
tuation is too important, the energy losses increases, eventually paid for by the charging station
and electric vehicle drivers.

Customer satisfaction maximization Customer satisfaction represents an important factor
in ensuring the success of a CSP business. Clearly, dissatisfied customers that experienced incon-
venience during charging will not return to the charging station. Furthermore, poor quality ser-
vice is detrimental to the CSP’s reputation. Thus, several papers propose to formulate the EVCS
problem from the customer’s point of view or include customer satisfaction in their objective
function. There are many ways for CSPs to improve their customers’ satisfaction; by focusing on
maximizing the number of fulfilled charging demands [Kuran et al. 2015, Gerding et al. 2019],
maximizing the energy delivered to each electric vehicle [Rahman et al. 2016, Ki et al. 2018,
Yang 2019], by minimizing the costumer’s charging cost [Jin et al. 2013], or minimizing the
charging time [Zhu et al. 2014, Ki et al. 2018, García-Álvarez et al. 2018]. [Zhu et al. 2014] in-
clude the travel time to reach the charging point and the queuing time to the total charging
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time to minimize. While in [García-Álvarez et al. 2018], the total tardiness is minimized, which
occurs when the charging completion time exceeds the predefined departure time. Authors in
[Zheng & Shroff 2014] maximize the total valuation of costumers. Further, authors in [?] quan-
tify customer satisfaction by the percentage of the energy received. An electric vehicle driver
is considered satisfied if this percentage is greater than a certain threshold that depends on
the duration of plugging time. Then, the charging strategy is fulfilled when 95% of electric
vehicle drivers are satisfied. Additionally, [Ki et al. 2018] maximize the charging balance among
electric vehicles. [Zheng et al. 2018] minimize the supplying power while maximizing the level
of satisfactions for electric vehicles charging. [Niu et al. 2018] balance between the costumers’
satisfaction, the charging station incomes and load fluctuation.

2.4.2 Constraints, Assumptions and Considerations

2.4.2.1 Charging infrastructure capacity

Charging infrastructure capacity is a largely used constraint that defines the overall power
limit of the charging infrastructure (electric distribution systems, charging stations, park-
ing lots) expressed in kW. It limits electric vehicles’ charging loads to avoid overloading
other devices and transmission lines. Most of references [Jin et al. 2013, Xu et al. 2014,
Lunci Hua et al. 2014, Zhang & Li 2015, Wu et al. 2018] defined it as the transformer capac-
ity limit since the electrical power is provided by the nearest distribution transformer, as the
distribution feeder subscribed power [Ayyadi et al. 2019], or as the maximum capacity of the
distribution system [Suyono et al. 2019]. Authors in [Hajforoosh et al. 2015, Yao et al. 2017]
limit the electric vehicles load demand. It can also be referred by charging station capac-
ity [Kuran et al. 2015, Rahman et al. 2016, Kang et al. 2016]. Few references [Luo et al. 2016,
García-Álvarez et al. 2018] defined it by the number of charging points that can deliver power
simultaneously. Generally, the charging infrastructure capacity is defined as a time-constant
power profile, especially when the base load (Section 2.4.2.2) is considered. Authors in
[Gerding et al. 2019, Bučar 2014] consider a variable capacity. Authors in [Liu & Zhou 2022]
limit the total charging power to the peak total load of coordinated charging.

2.4.2.2 Base load

In EVCS problems, authors refer to the load of all electricity consumption by appliances other
than electric vehicles as the base load. Generally, it is used in problem formulations from power
grid operators’ perspectives where all daily power loads are considered to conduct the tests on
a simulated electric power distribution grid. The base load information is used to schedule the
charging load during off-peak hours when the base load is low and vice versa so that the total
load is flattened. The base load does not constantly vary with time. Instead, it remains constant
for a specific duration, usually in seconds or minutes, before it varies [Tang et al. 2014]. It can
be estimated from historical data such as in [Jin et al. 2013] or based on day-ahead forecasts
based on historical data [Xu et al. 2014], or known in advance [Ayyadi et al. 2019]. Authors
in [Tang et al. 2014, Ma et al. 2015, Hajforoosh et al. 2015, Tang & Zhang 2016, Yang 2019] as-
sumed that only the current base load is known and it is measured in real time.
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2.4.2.3 Arrival times

Arrival time is the constraint that defines the availability of an electric vehicle for charging. It is
always considered as a hard constraint since the electric vehicle cannot start charging before it
the arrival time. With the scheduling problem notation, arrival time can be seen as the release
date of a job. Most of the papers define the arrival time as the time when the electric vehicle is
plugged in. This is usually the case for the problem from the power grid operators’ perspective,
where they consider the power distribution system that regroups home and parking lot chargers.
From the charging service providers’ perspective, arrival times correspond to plugging times
since it is usually assumed that there are enough charging points or, in a few cases, reserved
parking places for each vehicle [García-Álvarez et al. 2018]. Few papers consider that the arrival
times are different from the plug-in times. An insufficient number of charging points is the
major reason for queueing. Thus, they also focus on minimizing the waiting time in queue
[Zhu et al. 2014], or consider a reservation system. The authors in [Luo et al. 2016] also assume
a limited number of charging points in each station. The arrival time is estimated from the
traveling time to reach the chosen station by an optimal traveling path planning optimization.

Another important consideration is the uncertainty in electric vehicles’ arrival times. Some
papers assume that the electric vehicle arrivals are known in advance [Jewell et al. 2014,
Ayyadi et al. 2019], it can be provided by the electric vehicle owner [Jin et al. 2013],
or predicted using historical data [Sundstrom & Binding 2012, Xu et al. 2014]. In many
scenarios, future arrivals are unknown and depend on the random drivers’ behav-
iors. Consequently, all other information about the future charging demands, such
as the battery capacity, departure times, and requested energy, will also be un-
known [Jin et al. 2013, Tang et al. 2014, Lunci Hua et al. 2014, García-Álvarez et al. 2018,
Zheng & Shroff 2014, Ma et al. 2015, Tang & Zhang 2016, Yao et al. 2017, Zheng et al. 2018,
Ki et al. 2018, Ki et al. 2018, Yang 2019, Gerding et al. 2019].

[Kuran et al. 2015] consider two cases: irregular vehicles whose arrival times are unknown
and regular vehicles whose arrival times can be predicted using their historical behavior and
then corrected in real-time. Additionally, authors in [Wu et al. 2018] consider charging vehi-
cles with or without reservation. [Hajforoosh et al. 2015] do not consider arrival times. In
[Franco et al. 2014], electric vehicle owners select their charging intervals. [Kang et al. 2017] de-
fine a home charging strategy to encourage customers to plug in their vehicles at a fixed period
(e.g., from 21:00 to 6:00). If consumers join this plan, they will receive a discount on their
electricity bill.

2.4.2.4 Departure times

Electric vehicle drivers will provide their departure time or parking duration in most
problem formulations. In analogy to the scheduling problem notation, departure
times can be seen as the due date of a job if it is a soft constraint where tar-
diness may occur [García-Álvarez et al. 2018]. Otherwise, it is a hard constraint,
and it can be seen as the deadline of a job. In this case the electric vehicle will
be unplugged at this time [Zheng & Shroff 2014, Kuran et al. 2015, Zhang & Li 2015,
Tang & Zhang 2016, Yao et al. 2017, Zheng et al. 2018, Ki et al. 2018, Niu et al. 2018,
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Yang 2019, Gerding et al. 2019, Ayyadi et al. 2019, Liu et al. 2020, Liu & Zhou 2022]. In
[Hajforoosh et al. 2016, Rahman et al. 2016, Pflaum et al. 2017, Wu et al. 2018], an electric
vehicle is allowed to leave prior to its initially provided departure time. Further, [Yang 2019]
the driver may provide the departure time when he plugs his vehicle; otherwise, it will be
estimated based on the historical behavior of this vehicle. Authors in [Jewell et al. 2014] assume
a common departure time for all electric vehicles.

2.4.2.5 Charging demands

Many researchers assume that electric vehicle drivers will provide their desired SOC when they
plug their vehicles [Xu et al. 2014, Kumar et al. 2015, Hajforoosh et al. 2016, Jin et al. 2013,
Hajforoosh et al. 2015, Zheng et al. 2018, Ki et al. 2018, Yang 2019, Liu & Zhou 2022]. In
this case, the initial SOC and the battery capacity of the electric vehicle are ei-
ther automatically detected by the charging point once the electric vehicle is con-
nected [Xu et al. 2014, Hajforoosh et al. 2015, Zheng et al. 2018, Niu et al. 2018, Yang 2019]
or also provided by drivers [Tang et al. 2014, Zheng & Shroff 2014, Tang & Zhang 2016,
Wu et al. 2018, Gerding et al. 2019, Liu & Zhou 2022] assume that the electric vehicle own-
ers will directly request the energy demanded expressed in kWh. [Vagropoulos et al. 2015,
Niu et al. 2018] uses the battery State of Energy SOE instead of SOC. The SOE is de-
fined as the ratio of the current stored energy to the rated energy capacity. The
charging demand constraint can either be a hard constraint where the desired energy
must be reached or a soft constraint where the scheduler tries to achieve acceptable en-
ergy by the departure time. In the first case, either the departure times will be a
soft constraint [García-Álvarez et al. 2018], only feasible charging demands will be accepted
[Tang et al. 2014, Zheng & Shroff 2014, Wu et al. 2018, Liu et al. 2020], no predefined de-
parture time [Zhu et al. 2014, Hajforoosh et al. 2015, Suyono et al. 2019], study the feasibil-
ity of the charging to guarantee the satisfaction of each electric vehicle charging demand
[Tang & Zhang 2016]. In the second case, the difference between the desired energy and the pro-
vided energy will be penalized in the objective function [Zhang & Li 2015, Franco et al. 2014,
Zheng & Shroff 2014, Kuran et al. 2015, Zhang & Li 2015, Vagropoulos et al. 2015]. Further,
in [Pflaum et al. 2017], the authors consider that a customer is satisfied if he has obtained
more than a certain percentage of the energy required to fully charge the battery. This
percentage depends on the connection time of the electric vehicle, since a customer who
plugs in his vehicle for only a short time will not expect it to be fully charged. Also, in
[Ki et al. 2018], if the available charging time is limited, then all the plugged electric vehi-
cles cannot be charged to their desired levels. In this case, the charging balance among electric
vehicles must be considered. Other papers consider charging electric vehicles to their rated bat-
tery capacity [Ahmad et al. 2014, Zhu et al. 2014, Zhang & Li 2015, Vagropoulos et al. 2015,
Rahman et al. 2016, Yao et al. 2017, Pflaum et al. 2017, Niu et al. 2018]. Additionally,
[Rahman et al. 2016, Hajforoosh et al. 2016, Ayyadi et al. 2019] restrict the charging demands
by the recommended maximum SOC.
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2.4.2.6 Charging power rates

The power charging rates can be classified into two groups:

– Constant charging power rates: also called fixed power rates, where a charger deliver a
fixed value over time. In this case, we can distinguish between two cases: identical charg-
ers, where all chargers in the station deliver the same output power [Jewell et al. 2014,
Zhu et al. 2014, Lunci Hua et al. 2014, Yao et al. 2017], and non-identical chargers, where
each charger (or vehicle) has a different power rate [Ma et al. 2015, Luo et al. 2016,
Yang 2019, Suyono et al. 2019]. Further, [Bučar 2014] assume identical chargers where
each charger can operate at different constant charging rates. [Liu & Zhou 2022] assume
two constant charging power rates: fast and slow charging power.

– Variable power rates: also called continuous power rates, the charging rate
can vary over time between a minimum value, usually zero, and a maxi-
mum value. In this case, the charging power rate will be a decision vari-
able in the problem formulation. The charging power can be restricted by
the rated power of the charging point [Xu et al. 2014, Vagropoulos et al. 2015,
Kang et al. 2017, Ki et al. 2018, Wu et al. 2018, Niu et al. 2018, Liu et al. 2020],
the charging demand of an electric vehicle [Jin et al. 2013, Niu et al. 2018,
Kuran et al. 2015, Zhang & Li 2015, Ki et al. 2018, Niu et al. 2018], the maximum
allowed charging power of an electric vehicle [Rahman et al. 2016, Tang et al. 2014,
Zheng & Shroff 2014, Kuran et al. 2015, Yao et al. 2017, Ki et al. 2018, Niu et al. 2018,
Gerding et al. 2019, Ayyadi et al. 2019], or the maximum charging infrastructure ca-
pacity [Rahman et al. 2016, Zhang & Li 2015, Kuran et al. 2015, Hajforoosh et al. 2015,
Yang 2019, Gerding et al. 2019, Ayyadi et al. 2019]. In [Tang & Zhang 2016], charging
power rates are not bounded, but since the optimal solution minimizes the total load
variance, the charging capacity is also minimized.

In the first case, the charging power is a parameter in the EVCS problem, and usually, a
binary variable is defined to specify if a vehicle is charging or not. In the second case, charging
power rates are continuous decision variables.

2.4.2.7 Preemption

In EVCS problems, preemption is the mechanism in which interruptions are allowed during
the charging process to increase charging flexibility, avoid congestion and constraint viola-
tion, and reduce charging load. Moreover, even for home charging, electric vehicle drivers
are not inconvenienced by preemptive charging if their demands are fulfilled [Huber et al. 2020].
Even though it is claimed that frequent preemptions may introduce additional deterioration
for batteries, to the best of our knowledge, no general agreement or detailed study is explain-
ing the negative impacts of interrupted charging methods on battery performance and lifes-
pan [Guo et al. 2021]. Generally, preemption is implicitly used when the variable power rates
have a lower bound equal to zero. In some papers, the charging scheduling is non-preemptive,
especially with constant power rates [Zhu et al. 2014, García-Álvarez et al. 2018, Bučar 2014].
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A comparison between non-preemptive and preemptive charging strategies can be found in
[Ranjan et al. 2014, Han et al. 2017, Jahic et al. 2019]

2.4.2.8 Charging efficiency

The battery charging efficiency is the ratio between the effectively stored energy and in-
put energy charging, which lies in [0, 1]. Efficiency values are declared by the manu-
facturers and generally range between 80% and 99% due to energy losses. Therefore,
many studies [Hajforoosh et al. 2015, Vagropoulos et al. 2015, Yang 2019, Rahman et al. 2016,
Yao et al. 2017, Ayyadi et al. 2019, Liu & Zhou 2022] calculate the energy retrieved by the ve-
hicle as the product of charging power rate and a fixed efficiency value.

2.4.2.9 Calculation of charging time

The classic charging strategy is constant current–constant voltage (CCCV)
[Hemavathi & Shinisha 2022]. In this scheme, the battery charging is accomplished in
two stages: Constant Current (CC) mode and Constant Voltage (CV) mode. First, the battery
is charged with CC mode, where a large constant current is used at varying voltages. This
results in rapid charging until a certain voltage threshold is reached. Then, the charging
process is switched to CV mode at constant voltage until the current decreases below the
threshold resulting in slow charging. Other charging techniques exist, such as the pulse charging
method, Constant temperature – constant voltage charging [Hemavathi & Shinisha 2022].
In the CC mode, generally to reach a SOC of 80%, the charging time can be approxi-
mated as linear function. Therefore, most of researchers Assuming linear charging times
[Xu et al. 2014, Jin et al. 2013, Zhu et al. 2014, Ayyadi et al. 2019, Liu & Zhou 2022]. A more
complex final SOC calculation can be found in [Rahman et al. 2016]. In addition, nonlinear
battery charging is considered in [Sundstrom & Binding 2012]. The charging power rate and
battery SOC relationship is described using a curve in [Niu et al. 2018] .

2.4.2.10 Assignment of vehicles to chargers

The assignment of electric vehicles to charging outlets is less considered in the literature. Most
papers consider that an electric vehicle will not enter full parking as in [Tang et al. 2014], or that
there are always available charging points, and thus, electric vehicles do not need to queue or wait
to be charged. Authors in [Bučar 2014] consider the assignment of electric vehicles to chargers as
interval scheduling problem. In addition, [Jewell et al. 2014, Liu et al. 2020] consider scheduling
with limited number of chargers. Few papers consider a reservation system. Others consider
scheduling at different charging stations. In this case, many parameters must be considered,
such as the distance, the remaining battery energy, and chargers’ availability. [Zhu et al. 2014]
assign vehicles to chargers such that the travel time to reach the chargers, the queuing time,
and the charging time are minimized. [Luo et al. 2016] find the shortest routes in a weighted
road network with Dijkstra’s algorithm. In [Mkahl et al. 2017], the authors aim to choose a
convenient charging station such that its battery SOC remains at its highest possible level at
arrival.
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2.4.2.11 Priority

Another aspect that can be considered in the EVCS problems is charging priority.
[Rahman et al. 2016] express charging priority of a charging demand as a weighted term in the
objective function. Authors in [Niu et al. 2018] propose a weighted dynamic priority ranking
method that simultaneously considers the customers’ and charging service providers’ demands.
[Vagropoulos et al. 2015] consider that priority should be given to the less charged vehicles clos-
est to their departure time. Authors in [Yao et al. 2017] calculated the priority of charging for
each electric vehicle at each time slot. Moreover, electric vehicle drivers with more membership
fees have higher priority levels. In [Kumar et al. 2015], three priority criteria were compared:
based on battery SOC, slack time available, and time and energy already allocated for the ve-
hicle. In [Franco et al. 2014], electric vehicle drivers select their charging priority by choosing
one of the pre-established charging intervals. In [Zheng et al. 2018], charging priority depends
on the remaining charging energy, the remaining charging number of time slots, and the charg-
ing power rates. Authors in [Liu & Zhou 2022] calculate urgency factor for each vehicle. Then
urgent charging demand are charged using fast charging while unurgent one is charged in slow
charging mode.

2.4.2.12 Scheduling time horizon

One specific characteristic of scheduling problems is time representation. Usually, an elec-
tric vehicle charging schedule is built over a finite horizon in a discrete-time formulation,
where a time horizon of one day is divided into a fixed number of time slots of equal dura-
tion. The lengths of time slots vary from one study to another. We find a time slot equals
to 5 minutes in [Hajforoosh et al. 2016, Niu et al. 2018], 10 minutes in [Yao et al. 2017], 15
minutes in [Sundstrom & Binding 2012, Yao et al. 2017, Zheng et al. 2018, Ki et al. 2018], 30
minutes in [Kuran et al. 2015, Wu et al. 2018], and one hour in [He et al. 2012, Jin et al. 2013,
Lunci Hua et al. 2014, Franco et al. 2014]. The problem in these models is that an electric ve-
hicle may arrive or leave in the middle of a time slot, affecting the solution’s quality and the
calculation of charging energy and cost. Therefore, the smaller the time slot length, the better
the accuracy of the schedule. However, this generally yields very large problem instances of
intractable size.

Other papers consider event-driven models to reduce computational complexity, as in
[Tang et al. 2014]. Then, the time interval is defined as the period between two consecutive
events. These events can be the arrival of an electric vehicle, its departure, or a change in
the base load. The advantage of using such a formulation is that the exact timing of events
is accounted for within the scheduling horizon, making it more precise. However, when several
events happen in a short period, it results in a more complex model than a time-indexed one.
In addition, it may be more difficult to formulate some EVCS problems as event-based models..

2.4.2.13 Electricity market and prices

Electricity markets differ in their structure and design from one country or region to an-
other. There are two main market elements: the day-ahead market and the real-time mar-
ket [Cramton 2017]. The day-ahead market is based on the forecasted load for the next
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day. Generally, the system operator publishes system conditions, forecasts, and other in-
formation for the next day. Then, customers can sell or buy energy for the next day in a
closed auction. Therefore, electricity prices are fixed on the day before the day of delivery. In
[Zhang & Li 2015, Yao et al. 2017, Yang 2019, Ayyadi et al. 2019], it is assumed that the electric
vehicle charging is conducted in an environment with day-ahead electricity prices. This pricing is
suitable for day-ahead schedules. The real-time market usually runs once every hour to account
for real-time load changes that must be balanced with supply. The prices are time-varying and
will increase as the load increases and vice versa [Ma et al. 2015, Hajforoosh et al. 2015].

We can also find EVCS under Time-of-Use pricing (TOU), as in [Xu et al. 2014,
Kuran et al. 2015, Wu et al. 2018, Kang et al. 2017, Liu & Zhou 2022]. TOU prices are fre-
quently used, where prices are set in advance and are higher during peak periods and lower
during off-peak periods. This encourages consumers to shift discretionary consumption from
peak demand periods to cheaper off-peak periods. TOU prices are determined several months
in advance instead of at each hour. We can also distinguish between the wholesale and
retail electricity markets. The wholesale market refers to the buying and selling of energy be-
tween the power grid and resellers. Resellers are the entities that have the intention to resell
the electricity to end consumers. The purchase and sale of electricity to end consumers are
made in the retail market. A CSP can buy energy from the retailer or wholesale market. If
the CSP is separate from the retailer, the CSP has to aggregate a sufficient number of vehi-
cles to meet the minimum bid volume on the wholesale market [Sundstrom & Binding 2012].
Authors in [Jin et al. 2013, Tang et al. 2014, Vagropoulos et al. 2015] assume that the CSP
buys electricity from the grid at a wholesale price that varies on an hour-to-hour basis.
Also in [Jin et al. 2013, Vagropoulos et al. 2015], it participates in regulation markets, while
[Sundstrom & Binding 2012] assume that the aggregator buy electricity from a retailer. Studies
on electric vehicle aggregators’ participation in the electricity market are mostly done in the
context of V2G. It allows an aggregator to gain an extra profit by selling energy by discharging
into the grid if the real-time price exceeds the expected opportunity cost of recharging later.

2.4.2.14 Other constraints and considerations

There are other considerations and constraints defined in the litterature. For example, authors
in [Hajforoosh et al. 2015, Niu et al. 2018] set a charging voltage limit for each electric vehicle.
Another aspect that is less consider is chargers’ compatibility. In fact, not all vehicles can be
charged from any charging point. It depends on the connector types and the supporting charging
type. For example, many electric vehicles does not support fast charging.

2.4.3 Optimization Methods

This section reviews and classifies the optimization approaches used to solve the EVCS prob-
lem. As mentioned before, the EVCS problem varies from one study to another. Therefore, a
comparison between these methods in terms of efficiency is irrelevant.
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2.4.3.1 Exact methods and mathematical formulations

Several papers formulate the EVCS problem as a mathematical programming model. The general
formulation of a mathematical model can be given as follows.

minimize f(x)

subject to gi(x) ≤ bi i = 1, ..,m

Where x1, x2, . . . , xn are called the decision variables of the problem. Decision variables
may take continuous or discrete values. The function f represents the objective function to be
minimized. Functions gi, i = 1, . . . ,m are the inequality constraints. A vector x∗ ∈ Rn is
called the optimal solution if it has the smallest value of f among all vectors that satisfy the
constraints. Also, an optimization problem can be formulated as a maximization model.

Linear programming. Linear Programming (LP) involves minimizing a linear objective func-
tion subject to linear constraints. Linear models are convex 1 and represent the simplest yet
nontrivial optimization problems. Some powerful methods exist for such problems, such as the
simplex algorithm and interior point methods. If variables x1, . . . , xn are constrained to take
integer values, the problem is called an Integer Linear Program (ILP). Further, integer variables
may be restricted to the values zero and one. In this case, they are called binary variables.
Integer programming problems are often much more challenging to solve than LP with only
continuous variables. A mixed integer linear programming (MILP) problem contains both inte-
ger and continuous variables. MILP models have the potential to be more difficult than their
continuous LP and quadratics programming.

LP models are generally solved using commercial solvers, such as CPLEX, Gurobi, and
MOPS. These solvers can solve many mathematical models effectively. However, depending on
the problem, some problem instances are solvable in an acceptable amount of time, while others
require days or weeks to find optimal solutions. Moreover, a problem can be expressed in many
mathematically equivalent ways. In addition, each solver has its own set of default algorithmic
parameter settings. Choosing from these various model expressions and algorithmic settings can
profoundly influence solution time.

In [Jin et al. 2013], two problems were formulated as LP. One with the objective of maxi-
mizing the aggregator’s revenue and the other to minimize the total electricity cost of electric
vehciles owners. Authors in [Yang 2019], formulate the EVCS problem as a binary integer pro-
gramming problem, which can be solved by proper algorithms such as the branch and cut.
Another LP model was formulated in [Ayyadi et al. 2019] to minimize the charging cost and
battery degradation cost. Authors in [Franco et al. 2014] formulate a mixed-integer nonlinear
programming (MINLP) model to minimize power losses and maximize the total delivered energy.
Then, a linearization is applied for the voltage drop calculation resulting in a MILP model to be
solved using commercially available solvers. Authors in [Jewell et al. 2014] consider the EVCS
problem as a parallel machine scheduling problem with availability constraints. A MILP model
is given with the objective of minimizing the total makespan.

1An optimization problem is convex functions f, g1, ..., gm are convex. Solving a convex optimization problem
is faster, simpler, and less computationally intensive than non-convex optimization
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Nonlinear programming. the objective or constraint functions are not Nonlinear program-
ming (NLP) involves solving a model where some of the constraints or the objective function are
not linear. There are no effective methods for solving the general nonlinear programming prob-
lem. In a non-convex NLP, there may be more than one feasible region, and the best solution
could be at any point in any of them.

One of the simplest forms of NLP is constrained quadratic programming (QP), in
which the objective is a quadratic function and constraints are linear. QP is used in
[Sundstrom & Binding 2012], the charging service provider buys the electricity from a retailer.
The retailer computes the preferred charging curve, a time series of the preferred aggregated
charging power while respecting the energy and power constraints. The objective of the opti-
mization problem is to follow the preferred charging curve computed by the retailer as closely
as possible. Thus the objective function is to minimize the sum of the quadratic differences.

2.4.3.2 Heuristic and meta-heuristic approaches

Many papers formulate the problem as a mathematical model but solve it with heuristics and
metaheuristics. Due to the high complexity of most EVCS problems, solving a mathematical
model is impracticable and time-consuming. Moreover, many EVCS problems are subject to
stochastic events such as uncertain arrival times or electricity prices. As a result, many re-
searchers have proposed heuristics and metaheuristics to find good solutions but not necessarily
optimal ones in a reasonable time. In general, heuristics are problem-specific methods designed
for a specific problem. In scheduling, most heuristics are priority rules. Metaheuristics algo-
rithms are stochastic optimization algorithms that employ iterative processes to move towards
better solutions. Unlike heuristics, they are not problem-specific and can be employed and
adapted for a large optimization problem. There has been tremendous research in developing
metaheuristics during the past two decades. Most of them are inspired by natural processes,
including Simulated Annealing (SA), Genetic Algorithm (GA), Particle Swarm Optimization
(PSO), and Ant Colony Optimization (ACO).

In [Jewell et al. 2014], heuristics based on machine scheduling algorithms are considered. In
addition, a greedy local search and a SA algorithm with a pairwise exchange were proposed.
The PSO algorithm was widely used to solve EVCS problems as we can see in Tables 2.2 and
2.3. PSO is a population-based metaheuristic inspired by the social behavior of organisms, such
as a bee swarm, that moves in a group but benefits from the experience of all other members.
In PSO, a number of searching agents, called particles, are placed in the search space. Each
particle moves in the search place at each iteration based on its current personal and global
best positions and random perturbations. In [Wu et al. 2018], a proportion-based assignment
method is designed to determine the initial population for the PSO algorithm. The PSO algo-
rithm is used in each optimization iteration to obtain better solutions. Then, a fuzzy system is
deployed to determine the three crucial coefficients of PSO algorithms. Later, heuristics were
used to improve the solutions when a particle is updated. [Kang et al. 2017] propose a weight
aggregation (WA) strategy for multi-objective PSO to solve the EVCS problem. The proposed
WA strategy assigns a weight factor to each objective function. Then, their value varies to obtain
all combinations of objective functions so that the different relative importance between them is
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shown. This strategy guides the PSO to update its particles and approach a Pareto front. WA
could only reach the Pareto front in the case of a convex objective function. However, it can help
reduce the computation time of the algorithm by avoiding a long evolution process. Also, new
methods of updating elite particles are proposed to maintain the diversity of the final Pareto
front in the implemented PSO. A binary PSO was used in [Liu & Zhou 2022]. [Niu et al. 2018]
use a GA to solve the multi-objective optimization problem. Further, a heuristic based on a
weighted dynamic priority ranking is proposed for the charging power control process. Au-
thors in [Liu et al. 2020] formulate the problem as a bilevel programming model. Each vehicle’s
assigned charger and available charging duration are determined at the upper level. On the
lower level, a GA is used to determine the charging power of each vehicle at each time slot. In
[García-Álvarez et al. 2018], a memetic algorithm and a solving method inspired by the GRASP
metaheuristic were used to minimize the total tardiness. The proposed metaheuristics are used
for both static and dynamic version of the problem.

2.4.3.3 Online Algorithm

The EVCS problems are subject to uncertainty, such as the unknown electric vehicle arrival
or departure times or changes in the base load, or electricity prices. In these cases, online
scheduling algorithms are used. Online algorithms can only calculate and update the schedule
with the currently available information. Information becomes available continuously with time.
Therefore, decisions are made at each fixed time interval or when an event occurs. Moreover,
online algorithms can involve predictions based on historical data. A standard metric to evaluate
the performance of an online algorithm is the competitive ratio, which compares the performance
of an online with an offline algorithm.

[Jin et al. 2013] solve an LP problem to schedule charging operations each time an elec-
tric vehicle arrives. Once the charging schedule for an electric vehicle is established, it can-
not be changed. Further, the charging schedules are adjusted for the plugged vehicles when
k more vehicles arrive. The smaller the value of k, usually, the better the performance.
[Lunci Hua et al. 2014] propose an online adaptive EVCS framework to Minimize the total
charging cost subject to battery demand and distribution grid constraints. A MILP is for-
mulated to tackle this problem. The distribution grid constraints are taken into account using
power flow optimization. The scheduling problem is solved at each time slot when a new vehicle
arrives. Authors in [Tang et al. 2014] present an online algorithm, called ORCHARD, for the
EVCS problem and prove that it is 2.39-competitive. The algorithm does not involve predictions
about future information and decisions on the charging rates when a vehicle arrives or when the
base load changes. The algorithm is based on the speed scaling problem, a power management
technique that dynamically changes a processor’s speed. Moreover, it does not consider the
uncertainty in departure times, i.e., when an electric vehicle leaves before fulfilling its charging
demand, which is not the case in real-life scenarios. In[Yao et al. 2017], the authors formulate
the optimization problem as binary programming. Then, a convex relaxation method is used to
maximize the number of chosen vehicles for charging at each time. [Zheng et al. 2018] a priority
rule-based heuristic to achieve valley-filling is proposed. A capacity margin and charging priority
indices are defined to construct the online algorithm. The first index is used to select the time
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slot at which the power grid has enough surplus power for electric vehicle charging. The second
index determines the charging priority of a vehicle at each time slot.

[Tang & Zhang 2016] consider minimizing charging cost as a strictly convex function. a
Model Predictive Control (MPC) approach is applied to obtain a near-optimal solution. An
MPC-based approach brings the stochastic problem to a deterministic one by replacing all
uncertain future parameters with their predicted values. The performance gap between the
near-optimal solution of the MPC-based approach and the optimal solution is evaluated using
the Value of the Stochastic Solution, which represents the gap between the solution of the
approximate approach and that of the dynamic programming problem. [Pflaum et al. 2017]
propose a control strategy to determine an allowed day-ahead power consumption profile for
an electric vehicle charging station to maximize customer satisfaction while minimizing power
consumption. A heuristic is implemented in the real-time controller using the power profile
obtained as an upper bound for the charging station’s power consumption. In [Ki et al. 2018], a
weighted-sum approach for solving the multi-objective optimization problem is proposed. The
scheduling problem is solved iteratively whenever a new electric vehicle arrives. The sliding
window scheme is adopted. When a new electric vehicle is connected to the charger, the control
system verifies the charging status of plugged vehicles and the new electric vehicle. Then it
defines a new sliding window for the scheduling as the time between the arrival of the new
vehicle and the latest available charging time of the plugged ones.

Authors in [Wu et al. 2018] solve the problem at the beginning of each timeslot by determin-
ing a charging schedule for the immediate timeslot with the minimum electricity cost. Similarly,
[Niu et al. 2018] calculates the schedule at the beginning of each time slot using a heuristic
based on a priority rule. In [Yang 2019], a self-adaptive price-responsive early charging control
is proposed to improve online scheduling.

Authors in [García-Álvarez et al. 2018] consider solving the dynamic problem as solving a
sequence of instances of the static one. An instance is built at each time interval of a fixed
length. It consists of the vehicles that arrived but have not started charging and those already
charging. New schedules are calculated using the proposed metaheuristics.

2.5 Research positioning

Although the studies mentioned above have examined various aspects of the EVCS problem,
they have mainly assumed that there is a sufficient number of chargers for all vehicles. There-
fore, the scheduler does not decide which charger each vehicle is assigned. Few papers address
the assignment of vehicles to chargers in the charging schedule. Authors in [Liu et al. 2020] con-
sidered a limited number of chargers to minimize the total charging cost under the time-of-use
electricity price. However, the authors did not impose a total power, so the charging power of
each charger is only limited by its maximum power. Moreover, few studies considered constant
power charging rates. In addition, no comparison between considering identical or non-identical
chargers was made.

Our study is most similar to the literature addressing the assignment of vehicles to chargers
in the EVCS problem. However, the charging station operating model, the constraints, and the
optimization objective are different. We outline the contributions of this thesis as follows.
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• We consider a new charging station operating model where the charging station has limited
total power and a limited number of chargers. Each charger is installed in a parking space.

• A reservation system is considered where electric vehicles submit their charging demands
to avoid queuing. The scheduler allocates a suitable charger for each vehicle.

• Different objective functions were considered: minimizing the charging infrastructure ca-
pacity, maximizing the number of satisfied charging demands, maximizing the delivered
energy, and minimizing total tardiness.

• We provide the NP-hard hardness proof for each considered problem in detail.

• We propose heuristics and metaheuristics to jointly assign the electric vehicles to chargers
and schedule the electric vehicle charging.

• Different comparison between various aspects of charging scheduling is given, namely:

– between identical and non-identical constant power rates.

– between the constant and variable charging power rates.

– between the preemptive and non-preemptive schedules.

– between time-indexed and event-based models.

2.6 Conclusion

In this chapter, we studied the state-of-the-art. First, we presented general scheduling problems;
then, we defined different aspects related to electric vehicle technology. Also, we review existing
works and classify them according to different objectives, constraints, and optimization methods
used in the literature. Finally, we stated the research gap and positioned our work.
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3.1 Introduction

In the previous chapter, we highlighted the wide variety of EVCS problems investigated in the
literature. However, most of the existing works assume charging with variable power rates. In
reality, even though the variable charging method is more flexible and promising to be commer-
cialized in the future, only a few variable power chargers are currently available on the market.
Besides, it is expected that constant power chargers will still co-exist with the variable ones since
they are easier to deploy [Sun et al. 2016]. In fact, electric vehicle batteries draw approximately
constant power when it charges from 20% to 80%. On the other hand, charging at constant
power is more efficient since it can reduce the usable energy loss in the charging operation
[Jeon et al. 2021].
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Another important aspect is that very few studies consider the parking spaces and charging
points (chargers) as limited resources in the charging station. Indeed, they assume that the
charging station operators will not manage the parking space or the chargers, which is more
suitable for charging stations without reservation where all chargers are identical. However,
charging stations are more like parking lots with chargers that can deliver different power rates.
Thus, it is necessary to assign each vehicle to a suitable charger to satisfy its demand before
departure.

Motivated by the discussion above, this chapter studies the charging scheduling problem with
a fixed number of chargers delivering power at constant rates. Precisely, we consider a charging
station with a fixed number of parking spaces, and each is equipped with a charger with one
connector on which only one vehicle can be plugged at a given time. The charging station has a
limited grid power capacity to avoid overloading the power grid. Each electric vehicle driver has
to submit a charging demand before arriving at the station to reserve a parking space. Given
the limited number of chargers, the short range of electric vehicles, and the long time required to
charge them, drivers of electric vehicles need to carefully plan their trips to ensure that they will
have opportunities to recharge their batteries. As a result, it is preferable for them to confirm in
advance that the charger they intend to use is available. Moreover, the already deployed Open
Charge Point Protocol includes the reservation functionality of charging stations [OCP 2020].
A centralized management system controls and schedules the charging load to optimally utilize
the parking spaces and the available power to satisfy charging demands without overloading the
power grid.

This chapter mainly focuses on the following question. If the charging operators fix the goal
of satisfying a certain number of charging demands, how many chargers and what is the limited
power needed to achieve this?

Therefore, we address two problems. First, we study the problem of finding the minimum
number of chargers needed to plug all vehicles. Then, we tackle the problem of minimizing the
maximum power limit needed to satisfy all charging demands. We refer to this limit by the
grid capacity. This problem is investigated to carefully guide charging stations to choose their
subscribed maximum power. As the charging demands increase, they will need to upgrade their
capacity. In fact, power consumption peaks occur and cause high electricity bills. Generally,
equipment such as power cutters and relays are installed at a small cost to avoid peaks, but they
cause the system to shut down, which is not desirable. Consequently, it is essential to provide
an overview of the minimum power limit depending on the installed charger types and charging
demands. We investigate both problems in the case of identical and non-identical chargers. For
identical chargers, we prove that the two problems are polynomials in both cases. For grid
capacity minimization, we prove that the problem is polynomial solvable in the case of identical
chargers and NP-hard in the case of non-identical chargers.

The remainder of this chapter is organized as follows. Section 3.2 describes in detail the in-
vestigated problem. Section 3.3 investigates the problem with identical charger, while Section 3.4
deals with non-identical chargers. For each case, the minimum number of chargers needed to
plug all vehicles in the charging station and the minimum grid capacity problems are studied.
Section 3.5 evaluates the performance of proposed methods and finally Section 3.6 concludes the
chapter.
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3.2 Problem Description

The EVCS problem can be stated as follows. We have a set J = {1, . . . , n} of electric vehicle
charging demands to be scheduled on a set M = {1, . . . ,m} of chargers. At each time, a
charger can only charge one vehicle, and a vehicle can only be charged by one charger. Each
charger i delivers a constant power wi (kW). The total power that can be delivered by all
chargers simultaneously must not exceed wG (kW), which will further be denoted as the power
grid capacity. The charging demand of each vehicle j is characterized by an arrival time rj ,
a departure time dj , and a required energy ej (kWh). Each charging demand j has to be
assigned to one of the m chargers, and its energy requirement must be fulfilled before the
departure. Moreover, the vehicle j uninterruptedly occupies the charger, and the parking space,
from its arrival time rj to its departure time dj and cannot be moved or unplugged during this
time. However, the vehicle can charge preemptively, i.e., the charging of each vehicle j can
be interrupted at any time and resumed later in the interval [rj , dj). Even when the vehicle
completes charging before dj , it still occupies the charger until it departs. Unless otherwise
mentioned, we divide the scheduling time horizon H into T time slots of equal length τ . Without
loss of the generality, we suppose that rj and dj are multiple of τ : rj ∈ H and dj ∈ H. We
assume linear charging times, meaning that the charging time pij of vehicle j on a charger i is
equal to ej

wi
when the charging process is approximated with linear function. From now on, we

shall assume, without loss of generality, that pj is the number of time slots needed to satisfy j

rounded to the nearest integer. Thus, pij = round(
ej
wiτ

). The objective of this chapter is to find
a feasible schedule with the minimum grid capacity wG. We consider two cases of the problem: a
charging station with identical chargers, where all chargers deliver the same charging power rate,
and a charging station where chargers deliver different charging power rates are installed. In
the next paragraph, we give an example of the optimal grid capacity values for a small instance
with identical and non-identical chargers.

Example 3.2.1. Consider the charging demands of six vehicles. The arrival and departure
times and the required power for these demands are listed in Table 3.1. We examine two cases.
In the first case, we have a charging station with five chargers: the first charger delivers an
output power of 30 kW, while the second delivers a power of 10 kW. The remaining chargers
deliver 20 kW. In the second case, we consider a charging station with five identical chargers;
each delivers 10 kW. We divided the scheduling horizon into time slots with a length of one
hour. Figure 3.1(a) shows an optimal schedule of the charging demands in the first case, while
Figure 3.1(b) depicts an optimal solution with identical chargers. In both solutions, all charging
demands are scheduled, and their energy requests are satisfied. As we can see, each vehicle vj
occupies a charger from its arrival to its departure time. In the first case, the minimum grid
capacity needed to schedule all charging needs is 30 kW. In the second case, it is equal to 40 kW
since there are four chargers, and each one delivers 10 kW at time slot t = 11.

3.3 Identical Chargers

In this section, we consider an instance of the EVCS with m identical chargers, each delivering
a constant power w (kW). In this case, each vehicle j has an identical charging time on all
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Table 3.1: Instance for Example 3.2.1.

Vehicle Arrival time rj Departure time dj Requested energy ej
v1 8:00 10:00 20 kWh
v2 9:00 12:00 30 kWh
v3 10:00 13:00 20 kWh
v4 10:00 13:00 20 kWh
v5 10:00 13:00 20 kWh
v6 10:00 13:00 20 kWh

chargers, i.e., we have pij = pj . Since we assumed that pj ≤ dj − rj , vehicle j can be assigned
to any charger.

3.3.1 Minimum Number of Chargers

In this chapter, we aim to satisfy all charging demands with a minimum grid capacity. How-
ever, charging a vehicle j requires locating a charger that will be available during a period of
uninterrupted length [rj , dj). We say that a charger is available if no vehicle is plugged into
it or parked in the parking space where it is installed. Without loss of generality, we assume
that there is at least a charger i on which the energy demand of vehicle j can be fulfilled during
the plugging time interval [rj , dj), i.e., ∃i, pij ≤ dj − rj . Otherwise, for a vehicle j for which
this condition is not satisfied, or we have no charger available during the interval [rj , dj), the
vehicle can not be charged, which implies infeasibility. Hence, we first determine the minimum
number of chargers needed to park and plug all vehicles. This problem is equivalent to finding
the minimum number of machines that accommodate all the jobs in the fixed interval scheduling
problem [Kovalyov et al. 2007]. Note that in this section, we only build the parking schedule,
the charging schedule is not considered.

Theorem 3.3.1.1. The minimum number of identical chargers needed to plug n vehicles can be
established in O(n log n) time.

Proof. To prove Theorem 3.3.1.1, we present Algorithm 1 that runs in O(n log n) time to calcu-
late the minimum number of chargers m. Then, we show that m is optimal.

Feasibility and complexity. The resulting schedule of Algorithm 1 is feasible since, for each
charger i, i ∈ {1, . . . ,m}, the plugging intervals of assigned vehicle to i are non-overlapping.
Furthermore, sorting the set of charging demands in line 2 runs in O(n log n) time and lines 3
to 9 can be implemented in O(n). Hence, Algorithm 1 runs in O(n log n) time.
Optimality. Let m be the number of chargers generated by Algorithm 1, and assume that it is
not optimal. Let m∗ be the optimal number of chargers, then, m∗ ≤ m. Since m∗ ≤ m, we have
at least one charging demand j, that was assigned to the charger m and could not be assigned
to one of the m∗ first chargers in the optimal solution. According to Algorithm 1, when vehicle
j is available, all m − 1 chargers are occupied with other charging demands. Then, at least
m − 1 demands conflict with demand i. This leads to m∗ ≥ m. Therefore, we conclude that
m = m∗.
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(b) Schedule on identical chargers
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Figure 3.1: Optimal schedules of charging demands in Table 3.1. (a) depicts the optimal schedule
using chargers with different power rates, and (b) depicts the optimal schedule where all chargers
deliver 10 kW. Rectangles represent the vehicles’ plugging intervals. We highlight charging
intervals in red.

3.3.2 Minimum Grid Capacity

In this section, we assume that m ≥ m, where m is the minimum number of chargers provided
by Algorithm 1. We aim to minimize the grid capacity required to charge all vehicles to their
desired energy.

3.3.2.1 Complexity

Let w∗
G denotes the optimal value of the grid capacity wG. Clearly, in the optimal solution,

w∗
G is a multiple of w and at most m∗ =

w∗
G
w chargers can be activated at the same time.

Therefore, minimizing the value of wG is equivalent to minimizing m̃ = wG
w . To solve this

optimization problem, we consider its decision problem, i.e.s, determining whether a feasible
preemptive schedule exists that satisfies n charging demands by simultaneously activating at
most m̃ chargers. In the following, we show that this problem is polynomial solvable by reduction
to the maximum flow problem [Ahuja et al. 1988].

Let L be the set of L events that correspond to the distinct values of arrival and departure
times, L = {r1, d1, r2, d2, . . . , rn, dn}, sorted in non-decreasing order to obtain the sequence
t1, t2, . . . , tL with L ≤ 2n. These L values divide the time horizon into L − 1 intervals Il =

[tl, tl+1), l = 1, . . . , L−1. The corresponding network N = (V,E) is constructed as follows. The
set of vertices V consists of: (i) a source s, (ii) a vertex vj for each charging demand j ∈ J , (iii) a
vertex Il for each interval [tl, tl+1), l = 1, . . . , L − 1, and (iv) a sink p. The set of arcs E with
restricted capacities consists of: (i) an arc from the source s to each charging demand vertex vj
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Algorithm 1: The calculation of the minimal number of identical chargers
Input : The set of charging demands J
Output: The minimum number of chargers needed to plug all charging demands m

1 m← 0;
2 Sort the set of charging demands J in non-decreasing order of arrival times rj ;
3 for j ∈ J do
4 if there is a charger i, i ∈ {1, . . . ,m}, available at rj then
5 Assign the demand j to charger i;
6 else
7 Assign the demand j to a new charger;
8 m← m+ 1;
9 end

10 end
11 return m

with capacity pj , (ii) an arc from each vertex vj to each interval vertex Il if [tl, tl+1) ⊆ [rj , dj)

with a capacity equals to the length of the interval Il, i.e, tl+1 − tl, and (iii) an arc from each
interval vertex Il to the sink p with capacity m̃(tl+1 − tl) where m̃ = ⌊wG

w ⌋ corresponds to the
number of chargers that can deliver power simultaneously. A feasible schedule of the charging
problem exists if and only if from the source s to the sink p is equal to

∑n
j=1 pj .

Theorem 3.3.2.1. The minimum grid capacity problem with identical chargers can be solved in
O(n2+o(1) logU log n), where U is the maximum capacity of arcs in the corresponding network.

Proof. Given an instance of the decision problem where parking all vehicles is feasible. Since
the total capacity of arcs (s, vj), j ∈ J , is equal to C =

∑n
j=1 pj , then C is an upper bound

on the maximum flow value in the network. Furthermore, if the optimal solution to the maxi-
mum flow problem equals C, then all arcs (s, vj) are saturated, which means that all charging
demands are satisfied. Extensive research on the maximum flow problem has been conducted
over the past decades, leading to the proposal of several algorithms with different complex-
ities. Authors [Chen et al. 2022] provided an algorithm to compute the maximum flow in
O(|E|1+o(1) logU) time where |E| is the number of arcs and U corresponds to the maximum
capacity of arcs. We have U = max(maxj∈J pj ,maxl=1,...,L−1 m̃(tl+1 − tl)). In worst case we
have, |V | = 3n+ 2 and |E| = n2 + 3n. Thus, the complexity of the feasibility charging problem
is O(n2+o(1) logU). The optimal value of m̃ can be found in O(log n) using dichotomy search
with an upper value of m̃ equals to n. Therefore, the minimum grid capacity problem can be
solved in O(n2+o(1) logU log n).

"

Example 3.3.1. Consider the charging demands given in Example 3.2.1 with five identical
chargers with w = 10 kW. Obviously, the maximum possible value of wG is 50 kW, which
corresponds to the case where all chargers are activated at the same time slot. Therefore, the
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Figure 3.2: Flow network of the instance in Table 3.1 with five chargers, each delivers 10 kW,
and a grid capacity equals to wG = 30 kW.

set of possible values of m̃ is {1, 2, 3, 4, 5}. The binary search algorithm determines the value
of m̃ to test, and the feasibility of the charging decision problem with this value is checked by
constructing the equivalent network. The first value tested is the middle value in the set, m̃ = 3.
We construct the flow network considering m̃ = 3 as depicted in Figure 3.2. Since each charger
delivers 10 kW, the charging times are: p1 = 2, p2 = 3, p3 = 2, p4 = 2, p5 = 2, and p6 = 2, which
corresponds to values on the arcs from the source s to vj , j = 1, . . . , 6. we have

∑6
j=1 pj = 13.

From Table 3.1, the set of distinct arrival and departure times is {8, 9, 10, 12, 13}. Thus, we
have four vertices I1, I2, I3, and I4, which correspond to intervals [8, 9), [9, 10), [10, 12), and
[12, 13), respectively. Since the vehicle v1 is available for charging during its plugging interval
[8, 10), we have two arcs: one from v1 to I1 = [8, 9) and another from v1 to I2 = [9, 10). Both
arcs have a capacity of 1, which is the length of each interval. Similarly, we add the remaining
arcs from each demand vertex to each interval vertex. Finally, since we have m = 3, and the
intervals I1, I2, and I4 have equal lengths of 1, each arc from the vertices corresponding to these
intervals to the sink p has a capacity of 3. Since the length of the interval I3 is 2, the capacity
of the arc going from I3 to the sink p is 6. Clearly, the maximum flow is 12, which is not equal
to

∑6
j=1 pj = 13, and thus, charging all six vehicles is infeasible. Therefore, we move to the

next value of m̃, that is m̃ = 4. Similarly, we construct the equivalent network and calculate its
maximum flow, which will equal 13. Consequently, the minimum grid capacity is 40 kW.



38 Chapter 3. Preemptive EVCS problem to minimize grid capacity

3.4 Distinct Types of Chargers

In this section, we consider the general case with m chargers, where each charger i, i ∈ M,
delivers a constant power of wi (kW). Then, chargers are grouped into k types where chargers
of the same type l, l ∈ K = {1, . . . , k} have the same charging power wl (kW), i.e., there are ml

chargers of type l and
∑k

l=1ml = m. Obviously, if charger i is of type l, the charging time of
demand j on that charger is pjl = pij . When we have different types of chargers, it is possible
that a charging demand cannot be satisfied on a specific type when its corresponding charging
time exceeds the plugging interval. However, it can be satisfied on one of the chargers that deliver
higher power. Without loss of generality, we assume that the k types of chargers are indexed
in non-decreasing order of their power, i.e., w1 ≤ w2 ≤ . . . ,≤ wk. Obviously, if a demand j is
feasible on a charger of type l, it is also feasible on chargers of types l + 1, . . . , k. Let lj be the
smallest index of charger type on which the demand j can be satisfied, i.e., pjlj ≤ (dj − rj) and
pj(lj−1) > (dj − rj).

3.4.1 Minimum Number of Chargers

This section deals with the case where there exists at least one charger on which each charging
demand j can be satisfied, and thus, lj ≤ k, j = 1, . . . , n. As in the previous section, we seek
the minimum number of chargers needed to plug all vehicles in J .

Theorem 3.4.1.1. The minimum number of non-identical chargers needed to plug n vehicles
can be established in O(n log n) time.

Proof. To prove Theorem 3.4.1.1, we use the following Algorithm 2 to schedule all charging
demands on a minimum number of chargers. Algorithm 2 has a time complexity of O(n log n).
The optimality proof of the algorithm is similar to the proof of Theorem 3.3.1.1.

Remark 3.4.1. Algorithm 2 provides the minimum number of chargers to plug all vehicles,
but it does not provide the minimum number of chargers to satisfy these demands with the
minimum possible grid capacity. To explain this, let us consider the instance in Example 3.2.1.
All charging demands can be satisfied using a 10 kW charger; thus, Algorithm 2 will return m = 5

by assigning all vehicles to chargers with 10 kW. However, as we can notice in Figure 3.1(1),
the optimal value of wG cannot be obtained with five chargers delivering each 10 kW. In fact,
it depends on how we define the minimum grid capacity and whether we seek the minimum
value of wG with a fixed number of chargers or not. Nevertheless, Algorithm 2 is still helpful
for checking the feasibility of the parking problem. Indeed, if m < m, charging all vehicles is
infeasible. Finally, if w∗

G is the minimum grid capacity required to satisfy all charging demands
by considering the minimum number of chargers m obtained by Algorithm 1, considering a
number of identical chargers greater than m will not reduce the value of w∗

G.
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Algorithm 2: The calculation of the minimum number of non-identical chargers
Input : The set of charging demands J
Output: The minimum number of chargers needed to satisfy all charging demands m

1 m← 0;
2 Sort the set of charging demands J in non-decreasing order of arrival times rj ;
3 for j ∈ J do
4 Let Sj be the set of chargers available at time rj ordered in the non-decreasing order

of their charging power;
5 if Sj = ∅ then
6 Assign the demand j to a new charger of type lj ;
7 m← m+ 1;
8 else
9 Let i be the first charger in Sj such that wi ≥ wlj ;

10 if i exists then
11 Assign the demand j to the charger i;
12 else
13 Replace the last charger in Sj by a charger of type lj and assign the demand

j to that charger;
14 end
15 end
16 end
17 return m

3.4.2 Minimum Grid Capacity

3.4.2.1 Complexity

In the following, we show that minimizing the grid capacity is NP-hard even when there are
only two types of chargers.

Theorem 3.4.2.1. The problem of minimizing the grid capacity with at least two types of charg-
ers is NP-hard.

Proof. We prove the NP-hardness of the EVCS problem by reduction from the Partition
problem, which is known to be NP-hard [Garey & Johnson 1979]. The Partition problem
can be stated as follows. Given a positive integer B and a set A of n positive integers
A = {a1, a2, . . . , an}, where

∑
j∈A aj = 2B. Can A be partitioned into two subsets A1 and

A2 such that
∑

j∈A1
aj =

∑
j∈A2

aj = B ?
Given an arbitrary instance of the Partition problem, we build an instance (I) of the EVCS
problem as follows. Consider a set of two types of chargers where chargers of type 1 can deliver
a power of w1 = 3 and chargers of type 2 can deliver a power of w2 = 2. There are n+2 charging
demands Dj , j = 1, . . . , n + 2. The arrival times rj , the departure times dj , and the energy
requirements ej of those demands (j = 1, . . . , n+ 2) are given in Table 3.2. The charging time
of each demand j, j = 1, . . . , n+ 1, on each charger of type l, l = 1, 2, is given as pjl =

ej
wl

.
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Table 3.2: Charging instance I.

Charging demands Arrival time rj Departure time dj Requested energy ej
Dj , j = 1, . . . , n 0 9B 6aj

Dn+1 0 6B 12B
Dn+2 2B 9B 21B

Now, we show that there is a feasible schedule for I with a grid capacity of wG = 5 if and
only if the Partition problem admits a solution.

First, suppose the given instance of Partition has a solution. Let A1 and A2 be the required
subsets of A where

∑
j∈A1

aj =
∑

j∈A2
aj = B. Then we can build the schedule of charging

demands as follows:

• schedule the charging demands belonging to set A1 on chargers delivering a power of
w1 = 3,

• schedule the charging demands belonging to set A2 on chargers delivering a power of
w2 = 2,

• schedule the charging demand Dn+1 on a charger delivering a power of w2 = 2, and finally,

• schedule the charging demand Dn+2 on a charger delivering a power of w1 = 3.

The charging time of each charging demand j in set A1 is equal to 2aj ,while it is equal to 3aj
for each charging demand j in set A2. Charging demands in set A1 are scheduled sequentially
between 0 and 2B, while charging demands in set A2 are scheduled sequentially between 6B

and 9B. Charging demands Dn+1 and Dn+2 are scheduled in the intervals [0, 6B) and [2B, 9B),
respectively. Figure 3.3 provides an illustration of this schedule. As we can notice, the grid
capacity value at any time does not exceed 5.

Conversely, assume now that there exists a feasible schedule S of all charging demands in I

without exceeding a grid capacity value of wG = 5. Since charging demand Dn+2 requires 21B

of energy in the interval [2B, 9B), it can only be scheduled on a charger with a power w1 = 3.
Thus, the charging time of Dn+2 is equal to 7B, and it starts charging at time t = 2B, and ends
at time t = 9B. Now, suppose that Dn+1 is scheduled on a charger delivering a power of w1 = 3.
Since Dn+1 requests 12B amount of energy, its charging time on this charger is equal to 4B.
Therefore, when scheduling Dn+1 in the interval [0, 6B), its charging overlaps with the charging
of Dn+2. This implies that the grid capacity limit exceeds 5 units of power. Consequently, Dn+1

must be scheduled on a charger with a power w2 = 2 and is charged for 6B starting at time t = 0

and ending at time t = 6B. Observe that by scheduling of Dn+1 and Dn+2 on chargers with
a power of w2 = 2 and w1 = 3 as explained, there are five units of power of the grid capacity
that are already consumed in the interval [2B, 6B). Hence the remaining charging demands Dj ,
j = 1, . . . , n, cannot be charged in the interval [2B, 6B).

Let A1 and A2 be the set of selected demands from the set of remaining demands Dj ,
j = 1, . . . , 2n, to be scheduled on chargers with power w1 = 3 and w2 = 2, respectively. The
total charging time pA1 and pA2 of set A1 and A2 are pA1 =

∑
j∈A1

2aj and pA2 =
∑

j∈A2
3aj ,
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Figure 3.3: Schedule of instance I.

respectively. Since the grid capacity is limited to 5 units of power, and three units of power are
already consumed by Dn+2 in the interval [2B, 9B), demands of a set A1 can only be charged
sequentially in the interval [0, 2B). Thus,

∑

j∈A1

aj ≤ B (3.1)

In addition, with the remaining units of power after scheduling demands Dn+1 and Dn+2, the
total charging time of demands in sets A1 and A2 cannot exceed 5B. Consequently,

∑
j∈A1

2aj+∑
j∈A2

3aj = 4B +
∑

j∈A2
aj ≤ 5B, which implies that

∑
j∈A2

aj ≤ B and

∑

j∈A1

aj ≥ B (3.2)

From inequalities (3.1) and (3.2), we have
∑

j∈A2
aj = B and

∑
j∈A1

aj = B. Therefore, we
form a solution for the Partition problem.

Remark 3.4.2. Observe that in the proof of Theorem 3.4.2.1, we know the charging power
rates of the available types but the number of chargers of each type is not fixed beforehand.
However, even if it was, the problem is still NP-hard.

Remark 3.4.3. When we assign vehicles to chargers, the problem of determining the optimal
charging schedule of these demands with a constant charging power rates so that we do not
exceed a specific grid capacity value remains open.
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3.4.2.2 Mathematical formulation

In contrast to identical chargers, the minimum number of chargers required to satisfy all charging
demands in the case of different types of chargers with the minimum grid capacity cannot be
determined before actually scheduling these demands (as explained in Remark 3.4.1). Therefore,
we provide a mathematical formulation that only assigns each vehicle to a charger type, assuming
that there are enough chargers of each type, i.e., the number of chargers ml of each type l, l ∈ K,
is not fixed. Then, we extend the model to the problem of finding the minimum grid capacity
with a fixed number of chargers of each type.

Consider the set of chargers types K = {1, . . . , k}, k ≥ 2, where each charger of type l,
l ∈ K delivers an output power of wl (kW). Recall that the charging time needed to satisfy
the demand of vehicle j on charger type l is equal to pjl. The objective is minimizing the grid
capacity. First, we restrict our attention to the case where there are enough chargers of each
type. we define a binary decision variable xjt, for each j ∈ J , and t ∈ H, that takes value one
if vehicle j is charging at time slot t. In addition, we introduce the binary variable yjl, for each
j ∈ J , and l ∈ K, to indicate whether or not vehicle j is assigned to a charger of type l. Let wG

be a non-negative continuous variable that represents the grid capacity value to be minimized.
This yields the following MILP model.

min wG (3.3)
T∑

t=1

xjt =
k∑

l=1

yjlpij ∀j ∈ J (3.4)

k∑

l=1

yjl = 1 ∀j ∈ J (3.5)

n∑

j=1

k∑

l=1

wlyjlxjt ≤ wG ∀t ∈ H (3.6)

Constraints (3.4) ensure that each charging demand j is satisfied. Constraints (3.5) imply
that each vehicle j is only assigned to one type of charger l. The calculation of the grid capacity
at any time slot t is represented in constraints (3.6). In addition, to restrict the charging of each
vehicle j, j ∈ J , to its plugging time interval [rj , dj), binary variables xjt are set to zero for all
t ∈ H where t < rj and t ≥ dj .

Observe that constraints (3.6) contain a quadratic term involving products of binary variables
yjl and xjt, which can be linearized by replacing each product yjlxjt by an additional binary
variable zjlt. Then, for all j ∈ J , l ∈ K, and t ∈ H, the binary variable zjlt is set to one if and
only if variables yjt and sij are equal to one. Hence, constraints (3.6) can be expressed with the
following constraints:

zjlt ≥ xjt + yjl − 1 ∀j ∈ J , l ∈ K, t ∈ H (3.7)

zjlt ≤ xjt ∀j ∈ J , l ∈ K, t ∈ H (3.8)

zjlt ≤ yjl ∀j ∈ J , l ∈ K, t ∈ H (3.9)
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k∑

l=1

n∑

j=1

wizjlt ≤ wG ∀t ∈ H (3.10)

Finally, When the number of chargers of each type is limited, i.e., there are only ml available
chargers of each type l, l ∈ K, the following constraints are added to the MILP model.

n∑

j=1

yjl ≤ ml ∀l ∈ K (3.11)

3.4.2.3 Solving methods

The problem of minimizing the grid capacity in the case of identical chargers is polynomial,
as proven in Section 3.3.2.1. Therefore, it can be efficiently solved by either the flow network
method presented in the proof in Section 3.3.2.1. As a result, this section only addresses the
problem of minimizing the grid capacity with different types of chargers, which was shown to
be NP-hard in Section 3.4.2.1. Unless P = NP, there is no polynomial-time algorithm to
solve this problem. Moreover, even for small problem instances (e.g., ten charging demands
and three types of chargers), we find that solving the MILP model given in Section 3.4.2.2 is
time-consuming and thus not practical. So, this section presents the developed heuristic and
metaheuristic algorithms to obtain near-optimal schedules in a reasonable amount of time. Since
it is more suitable to find the minimum grid capacity without fixing the number of chargers of
each type, the presented algorithms only consider the assignment of vehicles to chargers types.

Solution representation. As previously stated, we only consider the assignment each ve-
hicle j to a charger type l. Thus, the assignment solution can be presented with a vector
σ = (σ1, . . . , σn) where σj , j ∈ J , is the charger type selected to charge vehicle j. Then,
we have to decide the charging schedule, i.e., choosing the appropriate time slots to charge
each vehicle j according to σj . The charging schedule, also called the power allocation solu-
tion, is represented with a vector (T1, . . . , Tn) where Tj is a vector with (dj−rj) Boolean values,
Tj = (u1, u2, . . . , urj−dj ). The vehicle j is charging at time slot t if ut−rj+1 = 1 in Tj . Otherwise,
ut−rj+1 = 0.

To simplify notation in the next subsections, we define the vector (wt
G)t∈H that stores the

total power delivered to vehicles at each time slot t.
Consider Example 3.2.1. We group the five chargers into three types of chargers where

chargers of type 1, 2, and 3 deliver 10 kW, 20 kW, and 30 kW, respectively. Then, the solution
representation for the schedule of charging demands on different types of chargers given in
Example 3.2.1 is shown in Figure 3.4.

Heuristic method The proposed heuristic, detailed in Algorithm 3, builds a charging
schedule by considering vehicles in the non-decreasing order of their departure time dj , and
breaks ties first by non-increasing order of their energy request ej , then by non-decreasing order
of their arrival time rj (line 1). First, the heuristic calculates a lower bound lb for the minimal
grid capacity (line 4). Then, for each vehicle j (lines 5-15), it determines to which type of
charger the vehicle is assigned (lines 7-12). Finally, the heuristic selects the time slots on which
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σ1 σ2 σ3 σ4 σ5 σ6

2 3 2 1 2 2

v3 assigned to a
charger of type 2

Assignment solution

T6 0 1 0
T5 0 0 1
T4 0 1 0
T3 1 0 0
T2 1 0 0
T1 1 0

v3 charging at
time slot 10

Power allocation solution

Figure 3.4: Solution representation of the schedule of Figure 3.1(1).

the vehicle is charged according to Algorithm 4. In the following, we provide details on each
step of the heuristic.

Lower bound. A lower bound for the minimum grid capacity can be calculated by con-
sidering the total energy required by all vehicles divided by the total vehicle availability interval
as follow:

lb = max

{⌈ ∑n
j=1 ej

(maxj∈J dj −minj∈J rj)

⌉
;

(
wl, l ∈ K : wl−1 < max

j∈J

⌈
ej

dj − rj

⌉
≤ wl

)}
(3.12)

The first term in the max function of lb corresponds to the value of the minimum grid capacity
when all demands are charged in the interval [minj∈J rj ,maxj∈J dj), while the second term
guarantee that the grid capacity is at least equal to the maximum power rate needed to satisfy
a charging demand during its plugging interval. The time complexity of the lb calculation is
O(n).
To illustrate the calculation of lb, consider the following example. We have four types of chargers,
where chargers of type 1, 2, 3, and 4 deliver 10, 20, 40, and 50 kW, respectively. We have three
charging demands: v1 with r1 = 1, d1 = 4, and, e1 = 90, v2 with r2 = 4, d2 = 8, and, e2 = 20,
and v3 with r3 = 4, d3 = 8, and, e3 = 30. We have

∑n
j=1 ej = 140, maxj∈J dj = 8, and

minj∈J rj = 1. Thus, The first lb term gives 20. We have
⌈

e1
d1−r1

⌉
= 8,

⌈
e2

d2−r2

⌉
= 5, and

⌈
e3

d3−r3

⌉
= 30. Then, the minimum type of chargers needed to satisfy the demand v3 as

expressed in the second term of lb is 40. Hence, lb = 40.

Assignment to a charger type. For each vehicle j, the heuristic begins by seeking
the greatest charging power rate allowed to charge j without exceeding the current grid
capacity (lines 6 and 7). If a charger type delivering this power exists, the vehicle j is
assigned to it (line 9). Otherwise, any selected charging power will increase the current grid
capacity. Thus, the heuristic chooses a charger type with the smallest power that can satisfy
the vehicle’s charging demand (line 11). The time complexity for choosing a charger type is
O(T ) if we consider that the number of time slots T is larger than the number of charger types k.

Power allocation. Once the charging power wσj is selected to charge the vehicle j,
the power allocation heuristic displayed in Algorithm 4 is applied. The power allocation
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heuristic starts charging vehicle j on time slots without exceeding the maximum between
wG and lower bound (lb) in chronological order (lines 2, 10-17), then, on time slots with the
minimum wt

G value (lines 3, 10-17). The time complexity of the power allocation is O(T log T ).

Finally, the overall time complexity of the heuristic is O(nmax(log n, T log T )).

Algorithm 3: Heuristic to minimize the grid capacity with k types of chargers
Input : The set of charging demands J , the set of chargers types K
Output: The minimum required grid capacity wG

1 Sort J by non-decreasing order of departure times dj . Break ties by the non-increasing
order of energy demands ej , then, by the non-decreasing order of arrival times rj ;

2 (wt
G)← (0)t∈H;

3 wG ← 0;

4 lb← max
{⌈ ∑n

j=1 ej
(maxj∈J dj−minj∈J rj)

⌉
;
(
wl, l ∈ K : wl−1 < maxj∈J

⌈
ej

dj−rj

⌉
≤ wl

)}
;

5 for j ∈ J do
6 Let b be the number of time slots in the interval [rj , dj) where wt

G < max(lb, wG);
7 Let wb

G be the maximum value of wt
G where wt

G < max(lb, wG) and t ∈ [rj , dj);
8 if ⌈ ejb ⌉+ wb

G ≤ max(lb, wG) then
9 σj ← the charger type with w = maxl∈K wl and w ≤ ej

b ;
10 else
11 σj ← the charger type with w = minl∈K wl and w ≥ ej

(dj−rj)
;

12 end
13 Schedule the charging of j on a charger that delivers wσj on time slots according to

Algorithm 4 ;
14 Update the values of wG and the vector (wt

G)t∈H ;
15 end
16 return wG

Iterated Local Search (ILS). In this section, we adopt an Iterated Local Search (ILS) to
solve the minimum power grid capacity problem. ILS is a metaheuristic which has been used
to solve various optimization problems. A recent review of ILS and its various extensions and
applications can be found in [Lourenço et al. 2019]. The essence of ILS can be given as follows.
Starting from an initial solution as the current solution S′, the ILS iteratively perturbs S′,
leading to a new solution S. Then, a local search procedure is applied to S. The new solution
S is accepted or rejected at the end of each iteration according to an acceptance criterion.

Now, we detail the implemented ILS presented in Algorithm 5. The proposed ILS method
requires an initial solution S0, and three parameters, namely, the initial perturbation level
(pert0), the maximum perturbation level (pertmax), and the maximum number of consecutive
non-improving iterations (itermax) for each perturbation level. The initial solution S0 is set
as the global best solution S∗ as well as the current solution S′ (line 2). At each iteration, a
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Algorithm 4: Power allocation heuristic
Input : The charging demand j, the selected charging power wσj , the vector (wt

G)t∈H,
the grid capacity wG

Output: The minimum grid capacity wG

1 Let p be the number of time slots required to charge j on a charger of type σj ;
2 H1 ← the set of time slots t where t ∈ [rj , dj) and max(wG, lb) ≥ wj + wt

G sorted in
chronological order;

3 H2 ← the set of time slots t where t ∈ [rj , dj) and t /∈ H1 sorted in non decreasing order
of wt

G;
4 while p > 0 do
5 if H1 ̸= ∅ then
6 Hi ← H1;
7 else
8 Hi ← H2;
9 end

10 Let t be the first time slot in Hi;
11 Set ut−rj+1 to 1 in Tj ;
12 wt

G ← wt
G + wσj ;

13 p← p− 1;
14 Hi ← Hi − {t};
15 if wt

G > wG then
16 wG ← wt

G;
17 end
18 end
19 return wG

new solution S is generated by applying p perturbations to the current solution S′ (lines 5-6).
The number of perturbations p is generated between the 1 and pert (line 4), where pert is the
perturbation level initially set to a relatively small value pert0. The perturbation level defines
how much the perturbation changes the current solution. If it is too small, the ILS may not
be able to escape the current local optimum, while if it is too large, the ILS may behave as
a multi-start local search with randomly generated starting solutions. Therefore, we choose to
randomize the perturbation level and adapt it at each iteration.

After perturbing the current solution, a local search procedure is applied, and the new
solution S is updated (line 8). The objective value of S, denoted as f(S), is then compared to
that of the global best solution S∗. If S is better than S∗ (lines 9-13), the new solution S replaces
both S∗ and S′ and the number of iterations iter and the perturbation level pert are reset to 0 and
pert0, respectively. Otherwise (lines 14-19), a random number u is generated and the solution
S may replace the current solution S′ if the probability piter is less than u. piter decreases in a
geometric way [Ogbu & Smith 1990] and is calculated as follows. piter = p0 × riter−1, where p0
is the initial acceptance probability, r is the reducing factor (0 < r < 1), and iter is the number
of iterations. As a better solution become harder to find, the perturbation level pert increases
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after itermax non-improving iterations (line 23). The increase of pert allows the ILS to explore
the search space away from the current solution. The search, i.e., lines 4-20, is resumed with
the new perturbation level and a current solution set to the best solution found so far (line 24).
The ILS loop is repeated until the maximum perturbation level (pertmax) is met.

Algorithm 5: Iterated local search
Input : The initial solution S0,

ILS parameters: pert0, pertmax, itermax, r
Output: The best solution found S∗

1 iter← 0; pert← pert0; pertmax ← pertmax × pert0;
2 S ← S0; S′ ← S0; S∗ ← S0;
3 while pert < pertmax do
4 p← choose a random number between 1 and pert;
5 for s = 1 to p do
6 S ←Perturbation(S′);
7 end
8 S ← LocalSearch(S);
9 if f(S) < f(S∗) then

10 S′ ← S;
11 S∗ ← S;
12 iter← 0;
13 pert← pert0;
14 else
15 Generate a random number u ∼ U(0, 1);
16 if u < p0 × riter−1 then
17 S′ ← S;
18 iter← iter + 1;
19 end
20 end
21 if iter ≥ itermax then
22 iter← 0;
23 pert← pert + pert0;
24 S′ ← S∗;
25 end
26 end
27 return S∗

In what follows, we detail the four components to consider: the generation of the initial
solution, the perturbation mechanism, and the local search procedure.

Initial solution The initial solution can be generated using one of these methods: (i) the solu-
tion found by the heuristic described in Section 3.4.2.3, (ii) by choosing a type l from K, assigning
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all vehicles to this type, then solving the the problem for identical chargers (Section 3.3.2).
We tried three strategies for the initial solution:

– Initialize with the heuristic solution only.

– Get the solutions generated by solving the problem with one type of charger and the
heuristic, and then select the best one.

– Randomly choose between the heuristic and one-type charger solutions.

We observed that the last strategy was the better one. Initialization with the best solu-
tion between the four solutions did not result in the best results since the ILS would converge
prematurely.

Perturbation mechanism In Algorithm 5, the current solution S′ is perturbed (line 6) by
modifying the assignment vector σ. More precisely, the perturbation consists of selecting a
vehicle j, j ∈ J and changing its charger type σj to a new charger type l, l ∈ K, l ̸= σj if it can
satisfy j, i.e., pjl ≤ dj − rj . Three strategies are proposed to select a vehicle j:

– A random selection: select a random electric vehicle j and assigned it to a randomly
selected type l.

– Increase the charging power: for each vehicle j, we calculate the value aj as the
number of time slots t where ut−rj+1 = 1 in Tj and wt

G ≤ wthreshold
G , where wthreshold

G is
a parameter. Then, a roulette wheel selection [Lipowski & Lipowska 2012] is performed
i.e., a vehicle j with a higher value aj has a higher probability to be chosen. Then, the
selected vehicle j is assigned to a type l with higher charging power, i.e., wl > wσj .

– Decrease the charging power: this selection is the similar to the previous one, except
that it selects time slots t with wt

G > wthreshold
G , and the selected vehicle is assigned to a

charger type delivering a lower charging power.

The perturbation step is followed by Algorithm 4 to determine the instants of charging of
vehicles. Finally, the objective value wG is updated. Based on first experiments, wthreshold

G is
set to 1

2wG.

Local search procedure. As stated in Remark 3.4.3, the problem of finding the optimal grid
capacity of an assignment solution remains open. So, instead of moving to another assignment
solution, we have to explore its corresponding power allocation solutions. Hence, the local
search procedure will try to minimize the grid capacity value without changing the assignment
vector σ of vehicles to chargers. The performance of the ILS algorithm depends on the choice of
the embedded local search. The better the local search, the better the corresponding ILS. Based
on preliminary tests, using a local search algorithm that accepts only improving solutions,
such as Hill Climbing, was less effective. Therefore, we choose the Simulated Annealing (SA)
algorithm as the local search procedure for ILS. The SA algorithm will take the current solution
of the ILS after perturbation as the initial solution. Then, it will iteratively improve this
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solution by improving only its power allocation solution. The assignment solution remains
unchanged. We first present the implemented SA algorithm’s general framework and then
present the neighborhood operators.

General framework of the simulated annealing algorithm. The simulated anneal-
ing (SA) algorithm, initially proposed by [Kirkpatrick et al. 1983], is a stochastic local search
metaheuristic successfully adapted to address several scheduling problems. The detailed
procedure of the implemented SA is presented in Algorithm 6. It starts by taking as input an
initial solution (S0), and five parameters: the maximum number of generated neighbors at each
iteration (MaxGenerated), the acceptation ratio at each iteration (AcceptanceRatio), the final
temperature (Tf ), the maximum global number of generated solutions (MaxTrials), and the
parameter for initializing the value of the temperature (µ). First (line 1), the initial solution
S0 is set as the current solution S and as the global best solution Sbest. The temperature
parameter T is initially set to a value proportional to the objective function value of the
initial solution T = µf(S0). The maximum number of accepted solutions at each iteration
(MaxAccepted) is initially set proportionally to the parameter (MaxGenerated) (line 2). At
each iteration (lines 3-20), SA generates neighborhood solutions of the current solution S until
reaching either the maximum generated neighbors (MaxGenerated) or the maximum number of
accepted solutions (MaxAccepted). For each new solution S′, the global number of generated
solutions (trial) and the number of generated neighbors of S′ (generated) are incremented
(lines 8-9). The objective function value of each solution, denoted as f(S), represents the
number of scheduled demands. The gap between the objective values of the new solution S′

and the current solution S is calculated as ∆f = f(S′) − f(S). The neighborhood solution
S′ is accepted and replaces the current solution based on the Metropolis criteria (lines 11-16);
the new solution S′ replaces the current solution if there is an improvement, i.e., ∆f < 0. If
S′ improves the best solution found so far, it will become the new global best solution Sbest.
Otherwise, a random number u is generated following the uniform distribution U [0, 1] and the
neighborhood solution S′ will become the current solution if U(0, 1) ≤ e−∆f/T where T is the
temperature parameter that controls the probability of accepting worse solutions. For each
accepted solution, the parameter accepted is incremented (line 13). Finally, a cooling scheme
gradually decreases the temperature at each iteration (line 19). We consider the Lundy-Mees
cooling scheme proposed by [Lundy & Mees 1986]. It updates the temperature T at each
iteration l as Tl+1 = Tl

a+bTl
. Connolly in [Connolly 1990] develops a variant of the Lundy-Mees

scheme that set the parameter a to 1 and b as a function of the initial temperature T0, the
final temperature Tf and the size of the neighborhood M as b =

T0−Tf

MT0Tf
. Here, the number of

iterations is not fixed directly. In fact, if we omit the condition on MaxAccepted, the number of
iterations will be equal to maxTrials divided by MaxGenerated. Thus, we set M to this value
(line 1).

After updating the temperature, the number of generated neighbors (generated) and the
number of accepted solutions (accepted) are reset to zero (line 5). The algorithm will stop if
the number of generated solutions (trial) reaches its maximum (MaxTrials), or after generating
(MaxGenerated) solutions that did not result in accepted solutions, i.e., accepted = 0 (line 20).
When the stopping criterion is met, the algorithm terminates and returns the best solution Sbest
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Algorithm 6: Simulated annealing
input : The initial solution S0,

Parameters: MaxGenerated, AcceptanceRatio, MaxTrials, Tf , µ
output: Best solution found Sbest

1 Sbest ← S0; S ← S0; T ← µf(S0); M ← MaxTrials
MaxGenerated ; trial← 0; b← T−Tf

TMTf
;

2 MaxAccepted← AcceptanceRatio×MaxGenerated;
3 repeat
4 accepted← 0; generated← 0;
5 while generated ≤ MaxGenerated and accepted ≤ MaxAccepted do
6 S′ ← Generate (S);
7 ∆f ← f(S′)− f(S);
8 generated← generated + 1;
9 trial← trial +1;

10 Generate a random number u ∼ U(0, 1);
11 if f(S′) < f(S) or u ≤ e−∆f/T then
12 S ← S′;
13 accepted← accepted + 1;
14 if f(S) < f(Sbest) then
15 Sbest ← S

16 end
17 end
18 end
19 T ← T

1+bT ;
20 until trial ≤ maxTrials and accepted > 0;
21 return Sbest

found so far.

Local search neighborhood structure. A neighbor structure in the local search method moves
the charging of a vehicle from peak to off-peak time slots. Let J ′ be the set of charging demands
where dj − rj − pjl > 0, where pjl is the charging time of vehicle j on its assigned charger type
l = σj . First, the local search randomly selects an electric vehicle j ∈ J ′. Let H1 be the set of
time slots where the vehicle j is charging. That is, H1 = {t|t ∈ [rj , dj) and ut−rj+1 = 1}. Let
H2 be the set of time slots where H2 = {t|t ∈ [rj , dj) and ut−rj+1 = 0}. The local search will
move the charging of j from t1 to t2 where wt1

G = max{t∈H1}w
t
G, and wt2

G = min{t∈H2}w
t
G. This

procedure is repeated q times for the same vehicle, where q is randomly selected in {1, . . . , pjl}.
After each move, vectors wt

G and Tj , and the objective function value wG are updated.

Even though that introducing randomness in the choices made by the ILS and the SA was
better for diversification, it was not the case for the choice of time slots. Indeed, we tried random
choice combined with the one explained before. However, this led to worsening results.



3.5. Computational Results 51

3.5 Computational Results

In this section, we give our computational results. We first introduce the instances generated
to evaluate the performance of the proposed methods. Next, we provide all the settings used
for the different algorithms. We focus more on the problem of minimizing the grid capacity
with non-identical chargers in since it is NP − hard then we compare the results with identical
chargers.

3.5.1 Instances Generation

In generated instances, we consider a charging station with three types of chargers where chargers
of type 1 deliver a power of w1 = 11 (kW), chargers of type 2 deliver a power of w2 = 22 kW,
and chargers of type 3 deliver a power of w3 = 43 kW [LaMonaca & Ryan 2022]. We consider
five groups of instances, where the number of charging demands n in groups 1, 2, 3, 4, and 5
is equal to 10, 20, 40, 50, and 100, respectively, and for each group, we generate ten different
random instances as follows.

• The arrival times of vehicles are generated from the uniform distribution in the interval
[0, 0.2n] (in hours). This means that the time horizon length depends on the number of
vehicles n.

• The required energy are generated from the uniform distribution [5.5, 66] (in kWh).

• To generate the departure times of vehicles, we first calculate the charging times p1j for
each vehicle j, j ∈ J , assuming that it is charged with type 1 chargers as p1j =

ej
11 . Then,

the departure time of each vehicle j is calculated as dj = rj + (1 + α)p1j where α is
randomly chosen according to the value p1j as follows:

p1j (hours) α

[0.5, 1) [0.1, 1]

[1, 2) [0.1, 0.9]

[2, 3) [0.1, 0.8]

[3, 4) [0.1, 0.7]

[4, 5) [0.1, 0.6]

[5, 6) [0.1, 0.5]

Table 3.3: Values of α depending on p1j .

We generate another group of instances, denoted group 6, where the number of charging
demands n equals 200. We generate ten different random instances as in previous instances
groups, except for α values, where for half of the vehicles, α is fixed to 0.1, and for the other
half, it is fixed to 0.2.
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3.5.2 Computational and Parameters Settings

The proposed algorithms are implemented in C++ programming language and run on a desktop
computer with an Intel Core i5 operating at 2.90 GHz and 8 GB RAM and running Linux OS
(Ubuntu 20.04 LTS). The MILP models are solved using IBM CPLEX 12.8 with a time limit of
30 minutes for each instance. The length of time slots is set to τ = 0.1 hour (6 minutes). For
each instance, the number of time slots is set to T = maxj∈J dj . Regarding the stochastic nature
of the ILS algorithm and to obtain statistically significant results, 30 independent executions
were done with a time limit of 30 minutes for each instance. Based on preliminary experiments,
Table 3.4 provides the setting of ILS and SA parameters.

Table 3.4: ILS and SA parameters.

Parameter Value

ILS parameters

pert0 3
pertmax 20
itermax 20
r 0.75
p0 0.5

SA parameters

µ 0.1
MaxGenerated 50
MaxTrials 500
AcceptanceRatio 0.5
Tf 0.001

3.5.3 Quality of the Lower Bound

In this section, we evaluate the quality of the lower bound (lb), given in Equation (3.12), com-
pared to the optimal solution. Since it is hard to obtain the optimal solutions for instances
with n greater than 20, we focused on the instances of group 1 where the number of charging
demands n equals 10. We generated 50 instances with n equals 10 as described in Section 3.5.1.
We use CPLEX without time limitation until the optimal solution is obtained and the results
are reported in Table 3.5. For each instance, Table 3.5 reports the value of lower bound provided
by equation (3.12) (column 2), the lower bound calculated by CPLEX (column 3), the value
wG of the optimal solution (column 4) and the percentage gap Glb between the lower bound
(lb) and the optimal solution where Glb = lb−wG

wG
. Detailed results for all instances are given

in Appendix A. From Table 3.5, we observe that, on average, the lower bound of Equation
(3.12) underestimates the optimal solution by about 10% with a standard deviation of 6.6. This
observation allows us to evaluate the quality of solutions obtained by the different methods.

3.5.4 Simulation Results for Different Types of Chargers

In this section, we evaluate the performance of the methods proposed for the problem of min-
imizing the grid capacity value on the six groups of instances generated in Section 3.5.1. The
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Table 3.5: Results for instances of group 1 (n = 10).

lb (Eq. 3.12) lb (CPLEX) wG (CPLEX) Glb

max 52.0 54 54 0.00
min 28.0 33 33 -25.58
median 40.0 43 43 -8.35
avg 40.3 44.9 45.02 -10.50
std. dev. 5.15 4.65 4.70 6.61

considered methods are: solving the MILP model (Section 3.4.2.2) using CPLEX, the heuris-
tic (Section 3.4.2.3), and the ILS presented (Section 19). As mentioned before, we are only
interested in knowing to which type of charger a vehicle is assigned, and we do not consider
the assignment to a specific charger of this type. Hence, constraints (3.11) are not used in the
solved MILP model. Recall that the computational times for CPLEX and ILS are limited to
30 minutes for each instance. Tables 3.6, 3.7, 3.8, 3.9, 3.10 and 3.11 represent the results of
computational experiments when the number of electric vehicles n is 10, 20, 40, 50, 100 and 200,
respectively. The first column displays the instance name. Column 2 reports the best calculated
lower bound between the lower bound described by Equation (3.12) and CPLEX lower bound.
Column 3 presents the best objective value (BS) found by the three methods (CPLEX, ILS and
heuristic). The remaining columns report, for each method M ∈ {CPLEX, Heuristic, ILS},
the following indicators: Glb(M), GBS(M), and the average running time (in seconds); where
Glb(M) represents the percentage gap between the lower bound (lb) and the solution generated
by the method M , i.e., Glb(M) = wG(M)−lb

lb and GBS represents the percentage gap between the
best solution (BS) and the solution generated by M , i.e., GBS(M) = wG(M)−BS

BS . If the method
M can find the best solution then GBS(M) = 0%. Similarly, if the method M finds the optimal
solution, then GLB(M) = 0%. Note that the grid capacity values obtained by ILS (wG(ILS))
used in the calculation of the two indicators are the best value found over the 30 runs.

After 1800 seconds, CPLEX will stop and report the best solution so far unless it finds an
optimal solution earlier. As we can see, the CPLEX computation time is only less than 1800
seconds for instances 1, 4, 6, and 9, which means that CPLEX could only find four optimal
solutions out of 60. Even for small instances with only ten vehicles and three types of chargers,
CPLEX struggled to solve the problem within 30 min.

As excepted, the results found by CPLEX and ILS were better than those found by the
heuristic for all instances. The results found by ILS were better than CPLEX in 35 instances
by 4.64% on average. For these 35 instances, the gap between CPLEX and ILS lies between
0.48% and 11.79%, which is more significant for instances with n ≥ 100. The ILS and CPLEX
find solutions with the same value of wG in 24 instances, mostly for instances with n = 10 and
n = 20. We can observe that in instances with n ≥ 100, CPLEX has found equal wG values for
two instances out of 20. CPLEX outperforms ILS in terms of minimizing wG in one instance
out of 60 (instance 13 in Table 3.7).

The gap between the lower bound and solutions found by CPLEX and ILS increases with the
size of instances. For ILS, it lies between 0.0% and 33% for the first three groups of instances
and between 8% and 38% for the last three groups. Moreover, in groups 2-6 of instances, we
observe that the value of the lower bound (reported in the second column of each table) is
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consistently given by the one calculated using Equation (3.12). As observed in Section 3.5.3,
the lower bound of Equation (3.12) underestimates the optimal solution by at least 10%. We
can therefore estimate the gap between the optimal solution and the solutions given by ILS for
the large instances (groups 4-6) at less than 12%.

The running times of the heuristic and the ILS are relatively short compared to CPLEX;
less than 0.1 ms are needed to solve large instances using the heuristic, and the ILS can find
good solutions for instances with 200 vehicles in 20 seconds on average.

Table 3.6: Results for instances of group 1 (n = 10)

instance LB BS
CPLEX Heuristic ILS
Glb(%) GBS(%) time (s) Glb(%) GBS(%) time (s) Glb(%) GBS(%) time (s)

1 43.00 43 0.00 0.00 63.56 2.33 2.33 4.89E-05 0.00 0.00 4.10
2 46.84 54 15.29 0.00 1801.33 17.42 1.85 5.85E-05 15.29 0.00 4.25
3 46.00 54 17.39 0.00 1800.39 19.57 1.85 6.11E-05 17.39 0.00 3.23
4 43.00 43 0.00 0.00 23.54 27.91 27.91 6.20E-05 0.00 0.00 4.23
5 44.00 54 22.73 0.00 1800.25 25.00 1.85 5.34E-05 22.73 0.00 3.92
6 43.00 43 0.00 0.00 16.69 27.91 27.91 7.05E-05 0.00 0.00 3.62
7 52.67 54 2.53 0.00 1800.06 25.32 22.22 6.67E-05 2.53 0.00 4.41
8 49.15 54 9.88 0.00 1800.30 34.29 22.22 7.07E-05 9.88 0.00 4.46
9 53.99 54 0.01 0.00 480.58 22.23 22.22 6.79E-05 0.01 0.00 3.86
10 50.03 54 7.93 0.00 1800.19 31.92 22.22 9.18E-05 7.93 0.00 4.31

average 47.17 50.7 7.58 0.00 1138.69 23.39 15.26 6.52E-05 7.58 0.00 4.04

Table 3.7: Results for instances of group 2 (n = 20)

instance LB BS
CPLEX Heuristic ILS
Glb(%) GBS(%) time (s) Glb(%) GBS(%) time (s) Glb(%) GBS(%) time (s)

11 66.00 76 15.15 0.00 1800.60 31.82 14.47 9.89E-05 15.15 0.00 4.25
12 71.00 86 21.13 0.00 1800.20 54.93 27.91 1.48E-04 21.13 0.00 4.76
13 80.00 87 8.75 0.00 1800.10 37.50 26.44 1.24E-04 10.00 1.15 4.55
14 72.00 86 19.44 0.00 1800.12 37.50 15.12 1.40E-04 19.44 0.00 4.33
15 66.00 86 30.30 0.00 1800.48 50.00 15.12 1.37E-04 30.30 0.00 4.83
16 73.00 77 17.81 11.69 1800.89 35.62 28.57 8.71E-05 5.48 0.00 4.72
17 60.00 66 10.00 0.00 1864.95 28.33 16.67 9.09E-05 10.00 0.00 5.08
18 76.00 86 13.16 0.00 1800.62 30.26 15.12 1.43E-04 13.16 0.00 4.04
19 86.00 97 12.79 0.00 1800.21 27.91 13.40 1.27E-04 12.79 0.00 4.44
20 77.00 86 11.69 0.00 1800.11 42.86 27.91 1.34E-04 11.69 0.00 4.60

average 72.70 83.3 16.02 1.17 1806.83 37.67 20.07 1.23E-04 14.91 0.11 4.56

In previous tables, we reported the Glb(ILS) and GBS(ILS) based on the best values found
by the ILS. Since ILS achieves all the best values (except one), we calculate the gap between
the grid capacity value obtained by the ILS at each run and the best value obtained over the
30 runs for each instance. We give the five-number summary 1 for the calculated gap values in
Figure 3.5. First, we remark that the lengths of the box plots are relatively short, suggesting
that the calculated gap values are less sped out. Moreover, the gap values lie between 0% and

1The five-number summary provides a concise summary of the distribution of a set of data: the minimum,
the lower quartile, the median, the upper quartile, and the maximum.
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Table 3.8: Results for instances of group 3 (n = 40)

instance LB BS
CPLEX Heuristic ILS
Glb(%) GBS(%) time (s) Glb(%) GBS(%) time (s) Glb(%) GBS(%) time (s)

21 91.00 98 18.68 10.20 1801.58 57.14 32.41 1.62E-04 7.69 0.00 5.44
22 90.00 119 33.33 0.84 1800.26 58.89 19.17 1.83E-04 32.22 0.00 5.89
23 111.00 129 17.12 0.78 1802.51 58.56 35.38 2.02E-04 16.22 0.00 5.47
24 122.00 129 15.57 9.30 1800.16 35.25 17.02 2.11E-04 5.74 0.00 5.18
25 106.00 129 22.64 0.78 1800.14 75.47 43.08 2.23E-04 21.70 0.00 6.09
26 103.00 108 4.85 0.00 1800.13 49.51 42.59 1.91E-04 4.85 0.00 5.08
27 88.00 98 22.73 10.20 1800.13 62.50 32.41 1.72E-04 11.36 0.00 5.25
28 112.00 120 7.14 0.00 1827.46 27.68 19.17 1.90E-04 7.14 0.00 6.03
29 108.00 119 11.11 0.84 1801.16 32.41 19.17 2.61E-04 10.19 0.00 6.07
30 79.00 97 24.05 1.03 1803.36 67.09 34.69 1.69E-04 22.78 0.00 5.03

average 101.00 114.6 17.72 3.40 1803.69 52.45 29.51 1.96E-04 13.99 0.00 5.55

Table 3.9: Results for instances of group 4 (n = 50)

instance LB BS
CPLEX Heuristic ILS
Glb(%) GBS(%) time (s) Glb(%) GBS(%) time (s) Glb(%) GBS(%) time (s)

31 119.00 129 17.65 8.53 1804.06 47.90 25.71 2.16E-04 8.40 0.00 6.53
32 106.00 120 14.15 0.83 1804.15 55.66 36.36 1.97E-04 13.21 0.00 6.32
33 114.00 141 24.56 0.71 1803.56 73.68 39.44 2.71E-04 23.68 0.00 7.22
34 96.00 129 34.38 0.00 1802.17 83.33 36.43 2.13E-04 34.38 0.00 5.95
35 93.00 120 39.78 8.33 1801.29 77.42 37.50 2.38E-04 29.03 0.00 6.32
36 108.00 129 19.44 0.00 1800.25 73.15 44.96 2.43E-04 19.44 0.00 5.74
37 103.00 129 26.21 0.78 1803.81 81.55 43.85 2.58E-04 25.24 0.00 5.28
38 123.00 140 15.45 1.43 1800.22 60.98 39.44 2.71E-04 13.82 0.00 6.44
39 116.00 140 22.41 1.43 1802.87 70.69 39.44 2.67E-04 20.69 0.00 5.73
40 104.00 120 15.38 0.00 1804.12 69.23 46.67 1.77E-04 15.38 0.00 6.27

average 108.20 129.7 22.94 2.20 1802.65 69.36 38.98 2.35E-04 20.33 0.00 6.18

Table 3.10: Results for instances of group 5 (n = 100)

instance LB BS
CPLEX Heuristic ILS
Glb(%) GBS(%) time (s) Glb(%) GBS(%) time (s) Glb(%) GBS(%) time (s)

41 142.00 172 29.58 6.98 1800.54 85.92 43.48 4.74E-04 21.13 0.00 8.47
42 131.00 151 16.03 0.66 1800.48 51.15 30.26 3.74E-04 15.27 0.00 8.51
43 144.00 165 20.83 5.45 1800.59 52.78 26.44 3.68E-04 14.58 0.00 8.23
44 147.00 172 25.17 6.98 1800.59 72.11 37.50 4.02E-04 17.01 0.00 9.10
45 137.00 164 26.28 5.49 1800.57 68.61 33.53 3.97E-04 19.71 0.00 9.57
46 144.00 164 13.89 0.00 1800.51 37.50 20.73 3.61E-04 13.89 0.00 9.09
47 141.00 164 23.40 6.10 1800.51 56.03 26.44 3.75E-04 16.31 0.00 8.43
48 135.00 164 28.89 6.10 1800.53 62.96 26.44 3.60E-04 21.48 0.00 9.00
49 133.00 163 29.32 5.52 1800.55 48.87 15.12 3.73E-04 22.56 0.00 11.44
50 139.00 164 25.90 6.71 1800.51 66.19 32.00 3.76E-04 17.99 0.00 9.52

average 139.30 164.3 23.93 5.00 1800.54 60.21 29.19 3.86E-04 17.99 0.00 9.14

4% for the instances in the first four groups except for outliers values; for example, we have an
outlier gap of 25.58% in group 1 instances. This can be explained by the fact that the wG values
are relatively small in these instances. Indeed, 25.58% corresponds to the difference between 54
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Table 3.11: Results for instances of group 6 (n = 200)

instance LB BS
CPLEX Heuristic ILS
Glb(%) GBS(%) time (s) Glb(%) GBS(%) time (s) Glb(%) GBS(%) time (s)

51 158.00 172 18.35 8.72 1801.73 32.28 21.51 2.37E-04 8.86 0.00 15.11
52 157.00 205 31.85 0.98 1801.53 68.15 28.78 1.94E-04 30.57 0.00 17.20
53 148.00 172 31.76 13.37 1801.84 41.22 21.51 2.36E-04 16.22 0.00 14.53
54 162.00 198 34.57 10.10 1801.47 62.96 33.33 1.92E-04 22.22 0.00 19.87
55 160.00 206 29.38 0.49 1801.78 58.13 22.82 2.56E-04 28.75 0.00 17.26
56 161.00 194 27.95 6.19 1801.45 36.65 13.40 1.98E-04 20.50 0.00 15.28
57 149.00 165 16.78 5.45 1801.51 25.50 13.33 1.93E-04 10.74 0.00 17.45
58 160.00 198 23.75 0.00 1801.49 51.25 22.22 1.93E-04 23.75 0.00 15.90
59 168.00 187 17.86 5.88 1801.54 44.05 29.41 1.96E-04 11.31 0.00 19.01
60 156.00 215 39.74 1.40 1801.49 76.28 27.91 1.95E-04 37.82 0.00 16.00

average 157.90 191.20 27.20 5.26 1801.58 49.65 23.42 2.09E-04 21.07 0.00 16.76

kW and 43 kW. For the last two groups of instances, the gap lies between 0% and 10%. The
median value, presented by an orange line, always lies between 0% and 3%. We can conclude
that the proposed ILS is stable in terms of minimizing the grid capacity value since the difference
between the wG values at each run is small.
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Figure 3.5: Distribution of the gap between the grid capacity value (wG) and the best wG value
reached by the ILS for each instance. The results are grouped by instance group.

Further, in Figure 3.6, we display in the left box plot the five-number summary of the set
of 300 wG values for each group of instances (each group includes 10 instances and 30 runs are
carried for each instance). This figure allows us to visualize the spread of the wG values in
each group of instances to compare the range of wG value in function of the number of charging
demands.

The results tables gave the average running time of ILS over 30 runs. However, it is important



3.5. Computational Results 57

to verify the stability of ILS in terms of execution time. Therefore, the right box plot in Figure 3.6
visualizes the five-number summary of 300 running time values for each group of instances.
First, we notice that the worst execution time did not exceed one minute (outliers in box plot
for instances with n = 200). We can remark that we have more outliers values in each group
of instances. When examining these cases, we notice that the outliers values do not necessarily
correspond to the best objective value. For example, the best wG value for Instance 55 (206
kW) was found in 14.56 seconds, while a value of 208 kW was found in 38.37 seconds. Another
example, for instance 55, the best wG (198 kW) was found once in 45.7 seconds while in 11.20
seconds on average in ten other runs.
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Figure 3.6: Distribution of the grid capacity value (wG) and the computation time.

Figure 3.7 summarizes the results of tables 3.6 - 3.11. In addition to the best wG value
achieved by the ILS (ILS best), we plot the average wG as "ILS (mean)". As we can see, the ILS
mean wG values are slightly higher than the best ones but still less than wG values achieved by
CPLEX for groups 3-6 and almost equal for groups 1 and 2. Considering the best values found
by the ILS over 30 runs, the average grid capacity has increased by 64.5 % from 10 vehicles to
20, by 37.4% from 20 to 40, by 13.2 % from 40 to 50, by 26.7 % from 50 to 100 vehicles, and
finally, by 16.37% from 100 to 200 vehicles.

Figure 3.8 shows five examples of the load profile. We choose one instance of each group to
illustrate the power consumption in kW at each time slot.

To complete this section, for each group of instances, we calculate the percentage of electric
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Figure 3.7: Comparison between the lower bound and the average grid capacity values achieved
by CPLEX, Heuristic and ILS.

vehicles assigned to each type of chargers, using Heuristic, CPLEX and ILS. The result is
reported in Table 3.12. We can see that the heuristic assigns most vehicles (86.43%) to chargers
with power 11 kW while CPLEX and ILS assign most vehicles (64.30 % and 69.30%, respectively)
to chargers with power 43 kW.

Table 3.12: The average percentage of electric vehicles assigned to each type of chargers using
Heuristic, CPLEX and ILS.

n
Heuristic CPLEX ILS
11 kW 22 kW 43 kW 11 kW 22 kW 43 kW 11 kW 22 kW 43 kW

10 83.00% 13.00% 4.00% 10.00% 9.00% 81.00% 12.00% 10.00% 78.00%
20 82.22% 17.22% 0.56% 8.33% 12.22% 79.44% 12.00% 19.68% 68.32%
40 86.75% 12.75% 0.50% 17.00% 25.00% 58.00% 16.50% 8.00% 75.50%
50 87.20% 11.60% 1.20% 11.60% 21.60% 66.80% 11.80% 9.80% 78.40%
100 88.30% 11.60% 0.10% 20.00% 24.00% 56.00% 24.60% 21.50% 53.90%
200 91.15% 8.75% 0.10% 14.60% 40.85% 44.55% 10.60% 27.85% 61.55%

3.5.5 Comparison between Considering One Type of Chargers and Multi-
types of Chargers

In this section, we compare the best grid power value found using different types of chargers (re-
sults in Section 3.5.4) with the grid power value found using identical chargers. We conduct the
simulation on the same instances by first considering a charging station with identical chargers
delivering a power of 11 kW, then when all chargers deliver a power of 22 kW, and finally when
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Figure 3.8: Example of load profiles for different instances.

all chargers deliver a power of 43 kW. This comparison allows the decision-maker to evaluate
the contribution of installing different types of chargers in a station instead of identical ones and
compare the costs of installing chargers according to the service that can be provided.

The results are shown in Table 3.13 which displays the average grid power value found when
using: (i) different types of chargers (column wG (diff. types)), (ii) chargers with power 11kW
(column wG (11 kW)), (iii) chargers with power 22 kW (column wG (22 kW)), (iv) chargers with
power 43kW (column wG (43 kW)); and for each case, column (Nbr ch.) shows the average
minimum number of chargers. We can see that the grid power value using chargers with power
11 kW is always worse than using different chargers for all instances with an average gap of 24.18
kW. The grid power value using chargers with 22 kW is worse than using different chargers over
59 instances out of 60 with an average gap of 10.43 kW. Finally, the grid power value found
using chargers with 43 kW were worse in 41 instances with an average gap of 13.15 kW, and
equal in 19 instances. As we can see, charging vehicles with different types of chargers is more
advantageous. However, this advantage has to be compared with the installation costs of each
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type of chargers.
It should be mentioned that the average running time to compute the minimum grid capacity

for one type of charger was 0.8 ms (less than 0.01 ms for instances with 10 electric vehicles and
less than 3.1 ms for instances with 100 vehicles).

Table 3.13: Comparison between considering one type of chargers and different types of chargers.

n LB
diff. types of chargers One type of charger
wG Nbr ch. wG (11 kW) wG (22 kW) wG (43 kW) Nbr ch.

10 47.17 50.70 9.5 61.60 63.80 73.10 9.30
20 72.70 83.30 17.56 104.50 94.60 94.60 17.22
40 101.00 114.60 23.5 139.70 125.40 129.00 23.5
50 108.20 129.70 26.4 160.60 140.80 141.90 26.4
100 139.30 164.30 34.9 188.10 173.80 172.00 29.6
200 157.90 191.20 32.5 224.40 198.00 202.10 30.5

3.6 Conclusion

This chapter studied the EVCS problem in a charging station with identical and non-identical
chargers. This chapter mainly indicates to charging station operators the complexity of sizing
the charging station: finding the minimum grid capacity and the minimum number of chargers
needed to satisfy a set of charging demands. We proved that the problem of minimizing the
number of chargers required to plug a set of demands is polynomial in both cases. For the
problem of minimizing the power grid, we proved that it is polynomial in the case of identical
chargers. Even under ideal circumstances where vehicles are plugged into a charger for a fixed
duration and considering linear charging times, the problem of finding an optimal grid capacity
value is still NP-hard for different types of chargers. We have developed a heuristic to solve the
non-identical NP-hard problem. An iterated local search (ILS) metaheuristic is further used
to improve the heuristic results. Different scenarios were presented to evaluate the performance
of the proposed algorithms. We have shown that using a MILP solver is not practicable for
solving the minimum grid capacity problem with different types of chargers. The proposed ILS
outperforms CPLEX in terms of minimizing the grid capacity and computational time. The ILS
achieved better solutions in less than 20 seconds on average. Additional experiments revealed
that installing chargers delivering different output power is more advantageous than installing
identical chargers.
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4.1 Introduction

This chapter aims to address the same EVCS problem in the previous one. However, the
objective is different. The grid capacity and the number of chargers in the charging station
are fixed and are considered as constraints in the underlying problem. Most charging station
installations do not manage charging operations, so the number of chargers that can be installed
is limited by the total power delivered by all chargers simultaneously. The main drawback of
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such installation is that the number of chargers limits the number of vehicles parked in the
charging station. Indeed, when a driver plugs his vehicle, the cable is locked to the vehicle’s
charging port, preventing random people from unplugging it. It can only be unlocked by the
vehicle owner or the charging station owner. In this case, the vehicle has to be moved to another
parking space so that other vehicles can charge. Installing more chargers and limiting the
charging station capacity offers more flexibility and allows more vehicles to plug in and charge
without overloading the power grid. We are interested in the following questions:

• Does a feasible schedule exist for all charging demands?

• If no feasible schedule exists, what is the maximum subset of charging demand that can
be satisfied?

The first question is the decision version of the problem and it is related to the results of the
previous chapter. The second question consists of maximizing the number of scheduled vehicles.
In other words, we maximize the number of customers that can be served.

The rest of the chapter is constructed as follows. We present the studied problem and give an
illustrative example in Section 4.2. In Section 4.3, we tackle the problem with identical chargers,
while Section 4.4 investigates the problem with different types of chargers. Computational results
are reported in Section 4.5, and finally, a conclusion is put forward in Section 4.6.

Table 4.1: Summary of notations

Notation Description

J Set of n charging demands, indexed by j

M Set of m chargers, indexed by i

K Set of k types of chargers, indexed by l

H Set of T time-slots, indexed by t

rj Arrival time of vehicle j

dj Departure time of vehicle j

ej Energy request of vehicle j in kWh
pij Charging time of vehicle j on charger i

pjl Charging time of vehicle j on charger type l

wi Charging power output of charger i in kW
wG Grid capacity constraint of the charging station in kW

4.2 Problem Description

We consider the same charging station operating model as in the previous chapter. We use similar
notations, which are listed in Table 4.1. Before arriving, each vehicle submits a charging demand
to reserve a charger. Charging demands can either be accepted or rejected. If the charging
demand j is accepted, it is assigned to one of the m chargers, and its energy requirement must
be fulfilled before the departure. Moreover, the vehicle j uninterruptedly occupies the charger,
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and the parking space, from its arrival time rj to its departure time dj and cannot be moved
or unplugged during this time. Again, the vehicle’s charging operation can be preempted in the
interval [rj , dj). Even when the vehicle completes charging before dj , it still occupies the charger
until it departs.

The objective is to find a feasible schedule with the maximum number of satisfied charging
demands. Again, we consider two variants of the problem: a charging station with identical
chargers, where all chargers has the same charging power rate, and a charging station where
chargers with different charging power rates are installed.

In the following paragraph, we give an example of optimal charging schedules for a small
instance of the described problem.

Example 4.2.1. To illustrate the scheduling objective in this chapter, we consider the charging
demands of six vehicles given in the previous chapter in Example 3.2.1. As a reminder, Table 3.1
gives the arrival and departure times and the requested energy of these demands. We consider
the same two cases. In the first case, we have a charging station with five chargers: the first
charger delivers an output power of 30 kW, while the second deliver a power of 10 kW. The
remaining chargers deliver 20 kW. In the second case, we consider a charging station with five
identical chargers, each delivers 10 kW. The scheduling horizon is divided into time slots, and
each time slot is set to one hour. Compared to Example 3.2.1, the first difference is that the
maximum charging station capacity wG is fixed to 30 kW.

(a) Schedule on chargers with different power rates

8 9 10 11 12 13

Charger 1
(30 kW)

v2v2 v2

Charger 2
(20 kW)

v4v4 v4

Charger 3
(10 kW)

v1v1 v1 v3v3 v3

Charger 4
(20 kW)

v5 v5v5

Charger 5
(10 kW)

v6v6v6

vj is charging. vj is plugged into the charger.

(b) Schedule on identical chargers

8 9 10 11 12 13

Charger 1
(10 kW)

v2

Charger 2
(10 kW)

v1 v4 v4v4

Charger 3
(10 kW)

v5v5 v5

Charger 4
(10 kW)

v6v6 v6v6

Charger 5
(10 kW)

Figure 4.1: Optimal schedules of charging demands of Table 3.1. (a) depicts the optimal schedule
using chargers with different power rates, and (b) depicts the optimal schedule where all chargers
deliver 10 kW. Rectangles represent the vehicles’ plugging intervals. We highlight charging
intervals in red.

Figure 4.1(a) shows an optimal schedule of the charging demands in the first case, while
Figure 4.1(b) depicts an optimal solution with identical chargers. In both solutions, the energy
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requested by each accepted charging demands is satisfied. As we can see, each vehicle vj is
plugged into a charger from its arrival to its departure time. The total power delivered at each
hour is always less than or equal to the fixed limit of 30 kW. As we can see, we can schedule all
charging demands in the first case, whereas we can only schedule five charging demands in the
second case.

4.3 Identical Chargers

In this section, we consider an instance of the electric vehicle charging scheduling problem with
m identical chargers, each delivering a constant power w (kW). This implies that the charging
time pj of each demand j is independent of the choice of the charger, and it represents the
number of time slots needed to satisfy j, i.e., pj =

ej
wτ . From now on, we shall assume without

loss of generality that pj is rounded to the nearest integer and that each charging demand can
be satisfied during its plugging time interval, i.e., pj ≤ dj − rj . We first study the decision
problem, that is, if it is possible to construct an effective algorithm to determine whether or not
a feasible schedule for all charging demands exists. Then, we move to the optimization problem
of finding the maximum size subset of satisfied charging demands.

4.3.1 Charging Scheduling Decision Problem

This section presents a polynomial test for the decision variant of the charging scheduling prob-
lem. The decision problem consists of determining whether a feasible schedule exists for n electric
vehicle charging demands such that: each vehicle is parked and plugged into one of the m charg-
ers from arrival to departure; during the plugging time interval, its requested energy is satisfied;
and the instantaneously total power delivered by all chargers does not exceed wG. Determining
if a feasible schedule exists requires first checking if plugging all vehicles is feasible as explained
in Section 3.3.1. As a reminder, this problem is equivalent to the fixed interval scheduling prob-
lem on identical machine [Bouzina & Emmons 1996]. It can be solved in O(nmax(log(n),m))

time by considering the set of charging demands J in non-decreasing order of arrival times rj ,
and then assigning each charging demand j ∈ J to the first available charger. If no charger is
available, the schedule is infeasible. We can also calculate the minimum number of chargers m

required to plug all vehicles as in Algorithm 1. If m < m, then the problem is infeasible. Now,
consider that all vehicles can be parked at the charging station from its arrival to its departure.
Determining the existence of a preemptive charging schedule that satisfies all charging demands
without exceeding the grid capacity at any time can be determined in O(n3) time by reduction
to the maximum flow problem as presented in Section 3.3.2.1.

4.3.2 Complexity

This section addresses the optimization problem in which we maximize the number of satisfied
charging demands.

Theorem 4.3.2.1. The problem of maximizing the number of satisfied charging demands con-
sidering m identical chargers is NP-hard.
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Proof. First, let us assume that parking all vehicles is feasible, and the charging scheduling with
wG is infeasible. Let m be the maximum number of chargers that can be activated simultane-
ously. We have m = ⌊wG

w ⌋. Clearly, maximizing the number of satisfied charging demands is
equivalent to minimizing the number of rejected charging demands, which is equivalent to the
preemptive scheduling to minimize the number of late jobs on m identical parallel machines with
release and due dates, denoted as P | pmtn; ri |

∑
Ui [Du et al. 1992]. The charging demands

correspond to jobs. The arrival time is equivalent to the release date of the job, the departure
time corresponds to its due date, and the charging time is the processing time of the job. The
number of identical machines is equal to the maximum number of chargers that can be activated
at the same time. A job is said to be late when it completes after its due date; otherwise, it is
on time. The set of on-time jobs corresponds to the set of accepted demands in the problem of
maximizing the number of satisfied charging demands. The set of rejected demands corresponds
to the set of late jobs.

In scheduling problem P | pmtn; ri |
∑

Ui, a well-known property of the optimal schedules
is that, for each machine, the on-time jobs precede all late jobs. To show the correctness of this
property, suppose that a late job precedes an on-time job on a given machine. Moving this late
job to the end of the schedule and shifting forward all the jobs currently succeeding it will not
decrease the quality of the schedule. Hence, if a job is late, it is immaterial where it is scheduled.
Therefore, minimizing the number of late jobs requires partitioning the set of jobs into a subset
with maximum cardinality containing the on-time jobs to be scheduled on m machines and one
subset containing the late jobs. Moreover, the set of on-time jobs are scheduled in their interval
[rj , dj); in which no more than m machines are used to schedule these jobs. Therefore, the
optimal schedule for the P | pmtn; ri |

∑
Ui problem is the optimal schedule for the problem of

maximizing the number of satisfied charging demands described above.
In [Du et al. 1992] authors showed that the problem P | pmtn; ri |

∑
Ui is NP-hard even

with two identical machines. As a result, the problem of maximizing the number of satisfied
demands is NP-hard.

4.3.3 Mathematical Formulations

In the following, we develop integer linear programming (ILP) models of the charging scheduling
problem. A commercial solver will be used to solve these models. Multiple formulations to the
same problem are possible. We propose and compare four mathematical programming models.
The first formulation is based on a time-indexed formulation, while the second is an event-based
one. Then, relaxations are introduced for both models.

Time-indexed model (P1). The first model is a basic discrete-time formulation containing
three types of binary variables. First, binary variables sj specify whether or not the charging
demand of electric vehicle j is accepted. Second, the assignment binary variables xijt that
specifies whether or not the electric vehicle j is plugged into the charger i at time slot t. Finally,
we introduce the charging time binary variables yjt to denote whether or not the electric vehicle
j is charging at time slot t. The time-indexed formulation can be written as follows.
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max
n∑

j=1

sj (4.1)

m∑

i=1

xijt ≤ sj ∀j ∈ J , t ∈ H (4.2)

n∑

j=1

xijt ≤ 1 ∀i ∈M, t ∈ H (4.3)

m∑

i=1

dj∑

t=rj

xijt = sj(dj − rj) ∀j ∈ J (4.4)

xijt +

m∑

l=1,l ̸=i

xlj(t+1) ≤ 1 ∀i ∈M, j ∈ J , t ∈ H (4.5)

dj∑

t=rj

yjt = pjsj ∀j ∈ J (4.6)

n∑

j=1

w × yjt ≤ wG ∀t ∈ H (4.7)

The objective function is given by (4.1) allows maximizing the total number of accepted charging
demands. Constraints (4.2) ensure that when a demand j is accepted, it is assigned to at most
one charger at each time slot t. Constraints (4.3) ensure that each charger i can only charge one
vehicle j at each time slot t. Constraints (4.4) ensure that if a charging demand j is accepted,
it will be plugged uninterruptedly from arrival rj to departure dj . Constraints (4.5) ensure that
if a charging demand j is accepted then it will be plugged to only one charger i during its time
interval [rj , dj). Constraints (4.6) guarantee that the energy requirement of the vehicle j will
be fulfilled if its charging demand is accepted. Constraints (4.7) are the power grid capacity
restrictions, specifying that the total power delivered by all chargers simultaneously does not
exceed wG.

In addition, variables xijt and yjt are set to zero for all j where t /∈ [rj , dj) to prevent vehicles
from plugging or charging before their arrival time or after their departure time.

Event-based model (P2). We aim to reduce the number of constraints to improve perfor-
mance when solving the LP model. That can be achieved by reducing the number of time
slots. Thus, instead of dividing the time horizon into T time slots of equal length, we divide
it into L − 1 intervals as in Section 4.3.1. As previously defined in Section 4.3.1, the set of
L events corresponds to the distinct values of arrival and departure times sorted in increasing
order t1 < t2 < · · · < tL with L ≤ 2n. Thus, we have L − 1 intervals Il = [tl, tl+1). Let
L = {1, . . . , L − 1} be the index set of these intervals. In addition to binary variables sj , we
define the assignment binary variables xijl that specifies whether or not the electric vehicle j is
plugged into the charger i at event l,i.e, during the interval [tl, tl+1). Also, we introduce integer
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variables pjl that specify the charging duration of each vehicle j in the interval [tl, tl+1). We are
led to the following formulation of the problem.

max
n∑

j=1

sj (4.8)

m∑

i=1

xijl ≤ sj ∀j ∈ J , l ∈ L (4.9)

n∑

j=1

xijl ≤ 1 ∀i ∈M, l ∈ L (4.10)

m∑

i=1

dj∑

tl=rj

xijl(tl+1 − tl) = sj(dj − rj) ∀j ∈ J (4.11)

xijl +
m∑

k=1,k ̸=i

xkj(l+1) ≤ 1 ∀i ∈M, j ∈ J , l ∈ L (4.12)

tL∑

tl=t1

pjl = pjsj ∀j ∈ J (4.13)

pjl ≤ tl+1 − tl ∀j ∈ J , l ∈ L (4.14)
n∑

j=1

pjl ≤
wG

w
(tl+1 − tl) ∀l ∈ L (4.15)

Constraints (4.9), (4.10), (4.11), (4.12) and (4.13) are similar to constraints (4.2), (4.3), (4.4),
(4.5) and (4.6), respectively. Constraints (4.14) limit the charging duration of each demand j to
the size of interval [tl, tl+1). Constraints (4.15) impose that, in each interval [tl, tl+1) the total
power delivered by all chargers does not exceed wG. In addition, variables xijl and pjl are set
to zero for all vehicles j, for l where tl < rj and tl ≥ dj .

In the optimal solution given by P2, the values of pjl gives the charging duration of each
accepted charging demand j in each interval [tl, tl+1). However, charging the vehicle j is not
allowed to take place at any time in the interval [tl, tl+1); otherwise, the grid capacity constraint
will not be respected. For example, consider a charging station with m = 3, w = 10 kW, and
wG = 20 kW. Let us assume that in the optimal solution given by P3, we have three vehicles, v1,
v2, and v3; each has to charge during two hours in the interval [1, 4), i.e., pj1 = 2, j = 1, 2, 3. If
we charge both v1 and v2 for two hours starting at the beginning of the interval (i.e., v1 and v2
are charging in the interval [1, 3)), v3 cannot charge without exceeding the power grid capacity.
The optimal solution is to charge v1 in [1, 3), v2 in [3, 4), and v3 in [1, 2) and in [3, 4). Therefore,
for each accepted charging demand j, we can define the charging time slots t from the values
of variables pjl as follows. Let mt be the number of activated charger at t, mt ≤ m̄ = ⌊wG

w ⌋.
For each vehicle j, we schedule pjl time slots in the interval [t,tl+1) starting by the time slot t,
t ∈ [tl, tl+1), with the minimum value mt.
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4.3.3.1 Relaxed LP formulations

The mathematical models P1 and P2 generate several constraints, in particular constraints (4.5)
and (4.12), which may deteriorate the performance of a mathematical solver. In the following,
we propose two new time-indexed and event-based relaxed models. In both models, we omit
assignment variables and relax assignment constraints. In fact, as we deal with identical chargers,
the assignment of a vehicle to a specific charger is immaterial. We only have to ensure that the
number of chargers used at each time does not exceed m. In that way, we consider the m

chargers as a supercharger with a capacity equal to m. Then we propose a method to repair the
solutions of both models in order to make them feasible for the original one.

Relaxed time-indexed model (P3). In this model, we use the same definitions of binary
variables sj and yjt as in the previous model P1. We omit the variables xijt and relax the
constraints (4.2), (4.3), (4.4) and (4.5). However, we ensure that at each time slot t, at most
m vehicles are accepted. For this purpose, we define a parameter ajt for each charging demand
j ∈ J , and time slot t ∈ H, which is set to 1 if t ∈ [rj , dj) and 0 otherwise. This yields the
following relaxed time-indexed formulation.

max
n∑

j=1

sj (4.16)

n∑

j=1

ajtsj ≤ m ∀t ∈ H (4.17)

dj∑

t=rj

yjt = pjsj ∀j ∈ J (4.18)

n∑

j=1

w × yjt ≤ wG ∀t ∈ H (4.19)

Constraints (4.17) guarantee that the number of plugged electric vehicles does not exceed the
number of chargers m. Constraints (4.18) and (4.19) are identical to constraints (4.6) and (4.7),
respectively. Besides, variables yjt are set to zero for each j and each time slot t, t /∈ [rj , dj).

Relaxed event-based model (P4). We apply the same relaxation above to the event-based
model P2. In addition to binary variables sj used in P2, we introduce integer variables pjl that
specify the charging duration of electric vehicle j in the interval [tl, tl+1). As in P3, we define
the parameter ajl for each charging demand j ∈ J and each event l ∈ L where ajl = 1 if
[tl, tl+1) ⊆ [rj , dj), and ajl = 0 otherwise.

max

n∑

j=1

sj (4.20)

n∑

j=1

ajlsj ≤ m ∀l ∈ L (4.21)
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tL∑

tl=t1

pjl = pjsj ∀j ∈ J (4.22)

pjl ≤ tl+1 − tl ∀j ∈ J , l ∈ L (4.23)
n∑

j=1

pjl ≤
wG

w
(tl+1 − tl) ∀l ∈ L (4.24)

Constraints (4.21) ensure that, in each time interval [tl, tl+1), at most m vehicles are ac-
cepted. constraints (4.22), (4.23), and (4.24) are similar to constraints (4.13), (4.14), and (4.15),
respectively. As in previous models, each vehicle j cannot be charged before its arrival or after
its departure. Thus, variables pjl are set to zero for all j ∈ J and all l where [tl, tl+1) ⊈ [rj , dj).

4.3.3.2 Repairing the solution of relaxed models

In the optimal solution obtained by solving relaxed LP models, we do not have the assignment
of vehicles to chargers. Since all chargers are identical, choosing a specific charger to charge a
vehicle is irrelevant. Thus, we only have to guarantee that each accepted charging demand j is
plugged during [rj , dj) and that at most m vehicles are plugged at each time t, which is achieved
by constraints (4.17) and (4.21) in P3 and P4, respectively. Therefore, to repair the optimal
solution, we only have to assign vehicles to chargers while the chosen charging time slots remain
unchanged. The repairing solution procedure is shown in Algorithm 7.

Algorithm 7: Repairing the solution of relaxed models
Input : Optimal solution of relaxed problem P3 (resp. P4)
Output: Optimal solution to charging scheduling problem

1 Let S be the set of accepted demands obtained by solving one of relaxed models P3

(resp. P4), ordered in increasing order of their arrival times rj . ;
2 while S ̸= ∅ do
3 Let j be the first charging demand in the set S;
4 Assign j to the first available charger i ∈M;
5 Delete j from S;

6 Charge each accepted demand according to the value of decision variables yjt (resp. pjl)
of optimal solution of P3 (resp. P4)

Algorithm 7 can be implemented to run in O(nmax(log n, logm)) time. Sorting the charging
demands in ascending order of their release times takes O(n log n) time and the inner loop (line 2-
5) takes O(n logm) time.

Proposition 4.3.3.1. Algorithm 7 provides an optimal solution to the problem of maximizing
the number of scheduled with identical chargers.

Proof. In the following, we assume that P3 is used to solve the relaxed charging scheduling
problem. Let S be the set of accepted charging demands in the optimal solution of P3. Clearly,
the number demands in the set S is an upper bound for the charging scheduling problem. Let
S′ be the subset of S that Algorithm 7 can schedule. We prove that S = S′.
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Let |S′| be the cardinality of the set S′ and |S| be the cardinality of the set S. Assume that
|S′| < |S|. Let j ∈ S be the first charging demand of S that cannot be scheduled by Algorithm 7.
This means that at time rj , all chargers are occupied by a subset S∗ ⊆ S of accepted demands
at time t = rj . Thus at time t = rj , we have

∑
k∈S∗ sk = m <

∑
k∈S∗ sk + sj , which violates

constraints (4.21) of P3. Then at time rj , at least one charger is available to schedule the
demand j. By repeating this argument, we obtain S′ = S. Finally, when all charging demands
of S are assigned to chargers, the values of variables yjt define the charging time slots of accepted
demands. Similarly, we can prove that Algorithm 7 provides the optimal solution when fixing
the optimal solution of P4.

4.3.4 Heuristic Methods

In the previous sections, we showed that the problem of maximizing the number of satisfied
demands with identical chargers is NP-hard, and we provided a relaxed event-based LP model
P4 to solve it. Even though there are significantly fewer variables and constraints in model P4,
a commercial optimizer can still spend too much time solving it, depending on the problem
instances. Therefore, we develop a two-phase heuristic method to obtain near-optimal solutions
within a reasonable computational time. The first phase selects a subset of charging demands
based on one or more criteria, and the second phase uses the model P4 to solve the problem
considering only this subset. We present two methods for the first phase: selecting the vehicles
based on interval scheduling and selecting the vehicles based on energetic reasoning. The pro-
posed methods do not build the charging schedule; thus, we have no guarantee that the total
charging power does not exceed the charging station capacity. Consequently, we use the model
P4 to solve the problem with only the selected charging demands.

4.3.4.1 Selection based on interval scheduling

In in Algorithm 8, we determine a set of charging demands S̄, selected from a set J , to be
assigned to chargers such that the plugging intervals of vehicles assigned to the same charger
do not overlap. As stated before, this problem is similar to the interval scheduling problem on
identical machines [Bouzina & Emmons 1996]. Algorithm 8 starts by sorting the set of charging
demands S in non-decreasing order of their arrival times. Then for each demand j, j ∈ S, it
will be assigned to the first charger i, i ∈M, on which j can be plugged from rj to dj , i.e., the
charger i is available at rj . Let j1, j2, . . . , jm be the last vehicle assigned to chargers 1, 2, . . . ,m.
If all chargers are occupied by other vehicles (i.e. dji > rj ∀i ∈M), we have to choose to either
reject j or one of vehicles j1, j2, . . . , jm according to a criteria R (line 10).

It is possible to implement several criteria R in line (10) to choose the rejected vehicle when
there is no available charger. We consider two criteria to select the rejected demand:

1. Largest Departure Time (LDT): Among the set {j1, j2, . . . , jm} ∪ {j}, select the charging
demand k that has the largest departure time dk. This criterion enables us to determine
the maximum subset of charging demands that can be parked on m chargers which brings
us to the interval scheduling algorithm in [Bouzina & Emmons 1996].
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Algorithm 8: Charging demands selection
Input : The set of charging demands J , the set of chargersM
Output: The set of selected demands S̄

1 S ← J ;
2 Sort S in non-decreasing order of their arrival times rj ;
3 while S ̸= ∅ do
4 Let j be the first demand of S;
5 if there is a charger i, i ∈M that is available at rj then
6 Assign j on the first available charger ;
7 Add j to S̄;
8 else
9 Let ji be the last charging demand assigned to the charger i, i ∈M;

10 Let k be the charging demand in {j1, j2, . . . , jm}∪ {j} that satisfies a criterion R;
11 if k ̸= j then
12 Delete the demand k from S̄;
13 Add j to S̄;
14 end
15 end
16 Delete j from S;
17 end

2. Largest Idle Time (LIT): Among the set {j1, j2, . . . , jm}∪{j}, select the charging demand
k that has the largest idle time dk − rk − pk.

It is easy to see that Algorithm 8 can be implemented to run in O(nmax(log n, logm)) time.
Using criterion LDT will lead to the optimal solution to the interval scheduling problem, i.e.,
the largest set S̄ ⊆ J containing vehicles that can be plugged into m chargers. If charging all
vehicles in S̄ with the grid capacity wG and the charging power rate w is feasible, S̄ is the optimal
solution to our problem. Otherwise, finding the largest subset S̃ ⊆ S̄ that can be scheduled with
wG may not lead to the optimal solution to the problem. To see this, we construct the following
illustrative example.

Example 4.3.1. We consider the charging demands of seven vehicles. Table 4.2 gives the arrival
and departure times and the requested energy of these demands. We have a charging station with
three identical chargers, and each delivers 10 kW. We set the grid capacity to 20 kW. Clearly,
only two chargers can be activated at the same time. The scheduling horizon is divided into time
slots, and each time slot is set to one hour. The assignment solutions obtained with Algorithm 8
with LDT and LIT are shown in Figure 4.2(a) and Figure 4.2(b), respectively. We observe
that applying LDT criterion gives us a subset of six selected vehicles S̄2 = {v1, v2, v3, v5, v6, v7}
while applying LIT criterion gives us a subset of five selected vehicles S̄2 = {v1, v2, v4, v5, v6}.
However, when scheduling the charging of vehicles in subset S̄1 (using P4 for example), we have
to reject at least two vehicles to meet the grid capacity constraint. In contrast, all five charging
demands in subset S̄2 can be scheduled without exceeding wG.
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Table 4.2: Charging demands data for Example 4.3.1

Vehicle Arrival time Departure time Requested energy ej
v1 8:00 10:00 20 kWh
v2 8:00 10:00 20 kWh
v3 9:00 11:00 20 kWh
v4 9:00 12:00 10 kWh
v5 10:00 13:00 20 kWh
v6 11:00 12:00 10 kWh
v7 11:00 13:00 20 kWh

(a) Assignment with condition LDT.

8 9 10 11 12 13

Charger 1
(10 kW)

v1 v7

Charger 2
(10 kW)

v2 v5

Charger 3
(10 kW)

v3 v6

vj is charging. vj is plugged into the charger.

(b) Assignment with condition LIT.

8 9 10 11 12 13

Charger 1
(10 kW)

v1 v7

Charger 2
(10 kW)

v2 v5

Charger 3
(10 kW)

v4

(c) Optimal charging schedule for (a)

8 9 10 11 12 13

Charger 1
(10 kW)

v1 v7

Charger 2
(10 kW)

v2 v5

Charger 3
(10 kW)

(d) Optimal charging schedule for (b)

8 9 10 11 12 13

Charger 1
(10 kW)

v1 v7

Charger 2
(10 kW)

v2 v5

Charger 3
(10 kW)

v4v5v4

Figure 4.2: Example of schedules of the instance in Example 4.3.1. (c) and (d) are the optimal
schedules for the assignment solutions (a) and (b) obtained using Algorithm 8 with condition
LDT and LIT, respectively.
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4.3.4.2 Selection based on energetic reasoning

The previous selection focuses more on the assignment problem and does not take into account
the grid capacity constraint. To cope with that, we propose another selection that considers the
grid capacity. Consider the charging scheduling problem with no constraints on the assignment of
vehicles to chargers. This problem can be formulated, for example, using P3 without constraints
(4.17). Let S ⊆ J be the set of charging demands to be scheduled with wG. The number of
chargers that can be activated at the same time is m = ⌊wG

w ⌋. Let w∗
G(S) be the minimum

grid capacity required to charge all vehicles in the set S. Assume that w∗
G(S) > wG. Let

m∗(S) = ⌊w
∗
G(S)
w ⌋ be the minimum number of chargers that can be activated in the same time

to charge all vehicles in S. The main idea of the proposed Energetic Reasoning (ER) based
selection is as follows. We calculate a lower bound (LB) on m∗(S) using the energetic reasoning
approach investigated by [Baptiste & Le Pape 1997] in the context of cumulative scheduling.
Then, we try to delete charging demands from S until LB(m∗(S)) reaches m.

Calculation of the lower bound on m∗(S). Consider a relaxed problem where, instead of
representing a vehicle’s charging at time slot t by a binary variable yjt, we have integer variable
ỹjt that represents the charging units of vehicle j at time t. Each vehicle j needs to charge for
pj units in the interval [rj , dj) to be fulfilled. Moreover, for each time slot t, a vehicle charging
units in [rj , t) is bounded by (t− rj) and by (dj − t) in the interval [t, dj ]. In addition, the total
charging units at each time slot t must not exceed a given capacity C. The decision variant of
the relaxed problem, as whether there exists a feasible schedule that satisfies these constraints,
can be formulated as follows.

dj∑

t=rj

ỹjt = pj ∀j ∈ J (4.25)

n∑

j=1

ỹjt ≤ C ∀t ∈ H (4.26)

∑

u<t

ỹju ≤ (t− rj) ∀j ∈ J , t ∈ H (4.27)

∑

t≤u

ỹju ≤ (dj − t) ∀j ∈ J , t ∈ H (4.28)

ỹjt = 0 ∀j ∈ J , t /∈ [rj , dj) (4.29)

This problem is known as the partially elastic cumulative scheduling problem (PECuSP)
investigated in [Baptiste & Le Pape 1997]. Now, consider the problem of minimizing the re-
source capacity C in the PECuSP. The optimal value for C, denoted as C∗, is a lower bound
on m∗(J ), the minimum number of chargers needed to be activated at the same time to charger
all charging demands in J . Therefore, the calculation of the lower bound on m∗(J ) is based on
the necessary and sufficient condition of existence for PECuSP, which can be stated as follows.
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Let R be the set of distinct arrival times, and D be the set of distinct departure times. Let
I be the set of intervals Ĩk = [t1, t2), k ∈ K where t1 ∈ R, t2 ∈ D, and t1 < t2. Notice that
K ≤ n2. Let |Ĩk| = t2 − t1 be the length of the interval Ĩk.

For the PECuSP, the mandatory part of energy that the demand j must recover in the
interval Ĩk = [t1, t2) is defined as:

e(j, Ĩk) = max(0, pj −max(0, t1 − rj)−max(0, dj − t2)).

Then, the mandatory part of energy that must be recovered by all demands in the interval
Ĩk = [t1, t2) is:

E(Ĩk) = E(t1, t2) =
∑

j∈J
e(j, t1, t2).

Authors in [Baptiste & Le Pape 1997] proved that there is a feasible schedule for PECuSP
for all demands with a limited resource capacity C if and only if

E(Ĩk) ≤ C|Ĩk| Ĩk ∈ I

Therefore, the minimum resource capacity C∗ is given as:

C∗ = max
Ĩk∈I

⌈
E(Ĩk)

|Ĩk|

⌉

The calculate of C∗, the lower bound on m∗(J ), can be done in O(n2) time using the
algorithm developed in [Baptiste & Le Pape 1997].

ER selection heuristic. We now describe the proposed ER-based selection heuristic. Con-
sider a set of charging demands S ⊆ J . The main idea of the heuristic is to seek the subset S′

containing the minimum number of rejected demands such that the lower bound on m∗(S − S′)

is less than or equal to m. m∗(S − S′) denotes the minimum number of chargers that can be
activated to charge all charging demands that are in S but not in S′. The overall heuristic is
depicted in Algorithm 9. Consider the set of intervals I as defined above. We associate to each
interval Ĩk = [t1, t2], Ĩk ∈ I: (i) the length of the interval |Ĩk| = t2 − t1, (ii) the set P (Ĩk) of
charging demands j ∈ S with e(j, Ĩk) > 0 sorted in non-increasing order of e(j, Ĩk), and (iii) the
mandatory part of energy that must be used by all demands in S in the interval E(Ĩk).

To built the subset S′, we reject charging demands until E(Ĩk)

|Ĩk|
reaches m for all intervals

Ĩk ∈ I (lines 2-13). In order to iteratively reject the minimum number of charging demands,
we start with the interval Ĩk that has the largest value E(Ĩk)

|Ĩk|
that exceeds m, and we reject the

first charging demands j ∈ P (Ĩk) with the largest value of e(j, Ĩk) until E(Ĩk) ≤ m. Before
moving to the next interval, unscheduled demands are removed from all P (Ĩl) and values E(Ĩl)

are updated for all Ĩl ∈ I. Since this method does not guarantee that the set S′ is minimal, we
add an improvement phase by trying to reschedule some of unscheduled demands in S′ (lines 14-
24). We start by sorting the set of rejected charging demands S′ in non-deceasing order of∑K

k=1
e(j,Ĩk)

|Ĩk|
. Then, for each demand j ∈ S′, we remove the charging demand j from the set of

rejected demands S′ if E(Ĩk)+e(j,Ĩk)

|Ĩk|
≤ m ∀Ĩk ∈ I.
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Algorithm 9: Heuristic for selecting the vehicles to charge based on energetic reasoning
input : The set of intervals I, The number of chargers that can be activated

simultaneously m

output: The set of rejected demands S′

1 S′ ← ∅, k ← 1;

2 Let k be the index of interval Ĩk ∈ I with the largest value of E(Ĩk)

|Ĩk|
;

3 repeat
4 while E(Ĩk) > m|Ĩk| do
5 Let j be the first charging demand in P (Ĩk);
6 Add j to the set of rejected demands S′;
7 for each Ĩl ∈ I do
8 Delete j from P (Ĩl) ;
9 E(Ĩl)← E(Ĩl)− e(j, Ĩl);

10 end
11 end

12 Let k be the index of interval Ĩk ∈ I with the largestvalue of E(Ĩk)

|Ĩk|
;

13 until E(Ĩk) > m|Ĩk| ;
14 Sort the set of rejected charging demands S′ in non-decreasing order of their values of

∑K
k=1

e(j,Ĩk)

|Ĩk|
;

15 for j ∈ S′ do
16 if E(Ĩk) + e(j, Ĩk) ≤ m|Ĩk| ∀Ĩk ∈ I then
17 Delete j from S′;
18 Add j to P (Ĩl);
19 for Ĩl ∈ I do
20 Add j to P (Ĩl) ;
21 E(Ĩl)← E(Ĩl) + e(j, Ĩl);
22 end
23 end
24 end
25 return S′

The worst-case complexity of the Algorithm 9 is O(n4). As mentioned, to obtain the final
set of accepted charging demands, we use P4 (or P3) considering only the charging demands in
the set S − S′ instead of the set J .

Example 4.3.2. We consider the set S = {v1, v3, v4, v6} of charging demands with their data
given in Table 4.2. We have a charging station with three identical chargers, and each delivers
10 kW. We set the grid capacity to 10 kW. Clearly, only one charger can be activated at the
same time (m = 1). We set the length of each time slot to one hour. Notice that the optimal
solution is to reject v3 and schedule the set {v1, v4, v6}. Now we select the charging demands to
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reject by following Algorithm 9 step by step. First, we have R = {8, 9, 11} and D = {10, 11, 12}.
Therefore, we have seven intervals in I. The values of E(Ĩk)

|Ĩk|
and e(j, Ĩk) for each interval Ĩk ∈ I

are given in Table 4.3.

Table 4.3: Calculation of the mandatory part of energy that must be
recovered by all demands in S in each the interval Ĩk.

Interval Ĩk t1 t2 Charging demand j e(j, Ĩk)
E(Ĩk)

|Ĩk|
Ĩ1 8 10 (v1) j = 1 2 1.5

(v3) j = 3 1
Ĩ2 8 11 (v1) j = 1 2 1.33

(v3) j = 3 2
Ĩ3 8 12 (v1) j = 1 2 1.5

(v3) j = 3 2
(v4) j = 4 1
(v4) j = 4 1

Ĩ4 9 10 (v1) j = 1 1 2
(v3) j = 3 1

Ĩ5 9 11 (v1) j = 1 1 1.5
(v3) j = 3 2

Ĩ6 9 12 (v1) j = 1 1 1.67
(v3) j = 3 2
(v4) j = 4 1
(v4) j = 4 1

Ĩ7 11 12 (v3) j = 3 1 1

The ER-based heuristic will start with the interval Ĩ4 since it has the largest value E(Ĩk)

|Ĩk|
. In

this interval, we have two vehicles v1 and v3 with equal value e(1, Ĩ4) = e(3, Ĩ4) = 1. Thus, the
heuristic adds one of these demands to the rejected set S′. Since we did not specify how ties are
broken, the heuristic will reject the first demand, which is v1. The demand v1 will be placed in
S′ and deleted from each Ĩk. Therefore, we have the values of E(Ĩk)

|Ĩk|
equal to 0.5, 0.67, 1, 1, 1,

1.33, and 1 for Ĩ1, Ĩ2, Ĩ3, Ĩ4, Ĩ5, Ĩ6, and Ĩ7, respectively. In the next iteration, the interval with
the largest value of E(Ĩk)

|Ĩk|
is Ĩ4, and in this interval, v3 has the largest value e(j, Ĩ4). Thus, the

heuristic removes charging demand v3 and place it in S′. After that, we have E(Ĩk)

|Ĩk|
≤ m, ∀Ĩk. In

the improvement phase (following lines 14-24), the values of
∑K

k=1
e(j,Ĩk)

|Ĩk|
for rejected demands

j = 1 and j = 3 are 4 and 4.33, respectively. Hence, the heuristic reschedules the demand v1
since it can be added without exceeding m = 1. Consequently, the ER selection heuristic returns
S′ = {v3}, which is exactly the set of charging demands to reject to obtain the optimal solution.
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4.4 Distinct Types of Chargers

In this section, we consider the general case where each charger i, i ∈ M, delivers a constant
power of wi (kW). Further, we can group the m chargers into k types where chargers of the
same type l, l ∈ K, have the same charging power wl (kW). There are ml chargers of type l

and we have
∑k

l=1ml = m. The charging time of demand j on a charger type l is given as ej
wlτ

.
Obviously, if charger i is of type l, the charging time of demand j on charger type l denoted as
pjl. In the next sections, we assume without loss of generality that the charging time pij (resp.
pjl) is rounded to the nearest integer. Each charging demand can be fulfilled during its plugging
time interval, i.e., pij ≤ dj − rj (resp. pjl ≤ dj − rj). First, we revisit the decision variant of the
problem. Then, we consider the problem of maximizing the number of the scheduled charging
demands.

4.4.1 Charging Scheduling Decision Problem

Theorem 4.4.1.1. The decision problem of the charging scheduling with at least two types of
chargers is NP-hard.

Proof. The proof is given in the previous chapter in Section 3.4.2.1.

4.4.2 Complexity

Theorem 4.4.2.1. The problem of maximizing the number of the scheduled charging demands
with at least two types of chargers is NP-hard.

Proof. It is clear that the proof follows from the observation that scheduling with identical
chargers is a special case of scheduling with k types of chargers.

4.4.3 Mathematical Formulations

In the following, we develop two linear programming models for the problem of maximizing
the number of scheduled charging demands with different types of chargers. The difference
between the two models concerns the assignment of vehicles. In the first formulation, we consider
assigning each vehicle j to a charger i, while in the second formulation, we consider assigning
each vehicle j to a charger type l.

4.4.3.1 LP formulation based on a vehicle-charger assignment (P5).

For the first model, we define three groups of decision variables. Binary decision variables sij
specify whether or not electric vehicle j is scheduled on charger i. Binary variables xijt decide
whether or not the electric vehicle j is plugged into the charger i at time slot t. Binary variables
yjt determine whether or not vehicle j is charging at time slot t. Then, the mathematical
formulation to maximize the number of scheduled charging demands can be expressed as follows.

max
n∑

j=1

m∑

i=1

sij (4.30)
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m∑

i=1

sij ≤ 1 ∀j ∈ J (4.31)

n∑

j=1

xijt ≤ 1 ∀i ∈M, t ∈ H (4.32)

dj∑

t=rj

xijt = sij(dj − rj) ∀i ∈M, j ∈ J (4.33)

dj∑

t=rj

yjt =
m∑

i=1

pijsij ∀j ∈ J (4.34)

n∑

j=1

m∑

i=1

wi × sij × yjt ≤ wG ∀t ∈ H (4.35)

The objective function is defined in (4.30). Constraints (4.31) ensure that each charging demand
j is assigned to at most one charger. Constraints (4.32) and (4.33) guarantee that when a
charging demand j is accepted to be scheduled on charger i, the vehicle j is plugged into this
charger during the interval [rj , dj). Constraints (4.34) ensure that when the charging demand
of the vehicle j is accepted, its requested energy is fulfilled. The grid capacity constraint is
determined by Constraints (4.35). In addition, for each charging demand j, j ∈ J , variables
xijt and yjt are set to zero for all t ∈ H where t < rj and t ≥ dj .

Notice that constraints (4.35) contain a quadratic term involving only the multiplication of
binary variables (yjt and sij). Even though most state-of-the-art commercial optimizers can
handle such constraints, a linearization approach can be more effective since the problem will
be solved directly using MILP techniques. Given that the product of binary variables is itself
a binary variable, the linarization can be done by introducing additional binary variables zijt
to represent the binary conjunctions (sij × yjt) for all i ∈ M, j ∈ J , t ∈ H. Basically, the
variable zijt is set to 1 if and only if both variables yjt and sij are equal to 1. Hence, we replace
constraints (4.35) with the following constraints:

zijt ≥ yjt + sij − 1 ∀i ∈M, j ∈ J , t ∈ H (4.36)

zijt ≤ yjt ∀i ∈M, j ∈ J , t ∈ H (4.37)

zijt ≤ sij ∀i ∈M, j ∈ J , t ∈ H (4.38)

k∑

i=1

n∑

j=1

wizijt ≤ wG t ∈ H (4.39)

4.4.3.2 LP formulation based on a vehicle-type assignment (P6)

In this formulation, instead of considering the assignment of a vehicle to a specific charger i,
i ∈ M, we consider its assignment to a charger type l, l ∈ K. As a result, we can omit the
variables xijt and reduce the number of variables and constraints. Hence, the performance
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of a commercial solver can be improved in terms of computation time and required memory,
especially when the difference between l and m is significant. Even though it is acceptable for
small instances to have m = l, it is not usually the case for larger instances (for example, with
m = 100).

Thus, for this model, we redefine binary variables sjl to specify whether or not charging
demand j is scheduled on a charger of type l. We use the same definition for binary variables yjt
as in the previous model (P5). Furthermore, we use parameters ajt as defined in Section 4.3.3.1.
Thus, the objective function and the set of constraints can be written as follows.

max
n∑

j=1

k∑

l=1

sjl (4.40)

k∑

l=1

sjl ≤ 1 ∀j ∈ J (4.41)

n∑

j=1

ajtsjl ≤ ml ∀l ∈ K, t ∈ H (4.42)

dj∑

t=rj

yjt =
k∑

l=1

pjlsjl ∀j ∈ J , l ∈ K (4.43)

n∑

j=1

k∑

l=1

wl × sjl × yjt ≤ wG ∀t ∈ H (4.44)

Constraints (4.42) limits the number of plugged vehicles into chargers of type l to ml. Con-
straints (4.43) and (4.44) are equivalent to constraints (4.34) and (4.35), respectively.

Similarly as for constraints (4.35), we can linearize constraints (4.44) by defining binary
variables zljt that are set to 1 if yjt and sjl are equal to 1. Then, Constraints (4.44) are
rewritten using constraints (4.36), (4.37), ((4.38), and (4.39) in which we replace sij by sjl and
zijt by zljt.

4.4.3.3 Repairing the assignment solution of the model P6

An optimal solution to the LP model P6 only gives the type of charger on which a vehicle will
charge. Therefore, a similar repairing procedure to the one used for P3 (Section 4.3.3.2) can
be applied to specify to which charger each vehicle is assigned. Let Sl be the set of vehicles
assigned to type l and let Ml be the indexes of type l chargers, Ml ⊆M. A feasible assignment
can be obtained by sorting the vehicles in Sl in non-decreasing order of their arrival time.
Then, scheduling each vehicle j ∈ Sl on the first available charger i ∈ Ml. this procedure
is repeated for each type of charger l, l ∈ K. This procedure can be implemented to run in
O(nmax(log n, log(maxl∈K ml)) time since the worst case is when all vehicles are assigned to
one type of charger l with ml > ml′ , ∀l′ ∈ K and l ̸= l′. We will omit the proof of the correctness
of the repairing procedure, as it is similar to that of Proposition 4.3.3.1.
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4.4.4 Simulated Annealing with Two-stage Local Search

The NP-hardness result for the charging scheduling problem suggests that finding an optimal
solution will be challenging. Moreover, preliminary tests reveal that an optimizer could not
solve the LP models to optimality within a reasonable time, especially for large-size instances.
In addition, using a commercial LP solver may incur additional expenses for charging station
operators. Hence, we propose a simulated annealing metaheuristic combined with a two-stage
local search.

4.4.4.1 Solution representation

A solution to the charging scheduling problem consists of two parts: the assignment solution
and the power allocation solution. In the assignment solution, electric vehicles are selected to
be plugged into chargers so that there are no overlapping vehicles on the same charger. The
power allocation solution defines the time slots for charging without exceeding the grid capacity.
The choice of the solution representation is motivated by how we will explore the searching
space. In other words, when a neighborhood operator is applied, it should be easy to check
the feasibility and calculate the objective function value of the new solution. The assignment
solution is represented by a vector Π = (π1, . . . , πm) where πi is the sequence of vehicles assigned
to a charger i in non-decreasing order of their arrival times. Hence, checking if a vehicle can be
assigned to a charger i can be done in O(log n) time using binary search. Also, we keep a set of
rejected demands LR.

The power allocation solution is represented with a vector (T1, . . . , Tn) where is (dj − rj)-
dimensional vector that stores Boolean values, Tj = (u1, . . . , udj−rj ) ∈ {0, 1}(dj−rj). If the
vehicle j is charging at time slot t, the t− rj +1 component ut−rj+1 is set to 1. Otherwise, it is
set to 0. For convenience, we define a vector of real numbers (wt

G)t∈H that stores the delivered
power by all chargers at each time slot t.

Notice that, unlike the assignment solution presentation, the power allocation solution rep-
resentation is the same as for the problem of minimizing the grid capacity. Therefore, we can
exploit some algorithms implemented for the previous chapter.

The solution representation for the schedule of charging demands on different types of charg-
ers of Example 4.2.1 is shown in Figure 4.3.

π5 2
π4 4
π3 1 3
π2 5
π1 6

Assignment solution

charging demands v1
and v3 assigned to
charger 3

T6 0 1 0
T5 0 0 1
T4 0 1 0
T3 1 0 0
T2 1 0 0
T1 1 0

v3 charging at
time slot 10

Power allocation solution

Figure 4.3: Solution representation of the schedule on chargers with different power rates
in Figure 4.1(1).
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4.4.4.2 Constructive heuristic method (CHM)

Exploring the neighborhood of a promising solution increases the chance of finding even better
ones. As a result, a metaheuristic algorithm is greatly impacted by the quality of the initial
solution since its neighborhood is more thoroughly explored. Given this, we propose a construc-
tive heuristic method, denoted as CHM, to initialize the solution for the metaheuristic rather
than using randomly generated ones. The heuristic is based on Algorithm 8, modified to include
charging decisions for vehicles according to their energy requirement and the available power.

The proposed heuristic, described in Algorithm 10, builds a charging schedule by considering
vehicles in non-decreasing order of arrival times rj . Ties are broken using the non-decreasing
order of departure times dj . Further ties are be broken using non-decreasing order of energy
requirements ej (line 1). The chargers are considered in non-decreasing order of charging power
rates (line 2). wt

G is initialized to 0 for each time slot t, t ∈ H (line 3). The CHM’s basic idea is
as follows. The CHM try to schedule vehicles in the order they appear in the set J (lines 5-31).
There are two situations where it would be infeasible to schedule a charging demand j: (i) when
no charger is available, and (ii) when the power grid capacity is insufficient to charge this vehicle
on an available charger. In both situations, we have to choose a vehicle to reject. Since vehicles
are ordered in a non-decreasing order of arrival times, the CHM chooses either the vehicle j, or
one of the last scheduled vehicles on the chargers (line 6).

We now describe in detail these decisions. For each vehicle j, if there are available chargers
at rj , the CHM begins by seeking an available charger with the smallest charging power rate j

without exceeding the current grid capacity (lines 9-11). If such a charger exists, it is selected
to charge vehicle j (line 12). Otherwise, the heuristic calculates the value a(j′, rj , dj) that
represents the amount of energy allocated to each scheduled charging demand j′ (j′ ̸= j) in
the interval [rj , dj). The charging demand with the largest value of a(j′, rj , dj) will be rejected
if a(j′, rj , dj) is greater than the requested energy ej (line 17). Otherwise, the vehicle j is
rejected (line 21). When no charger is available at rj (lines 23-30), the charging demand with
the maximum departure time is rejected.

Note that when a charging demand other than j is rejected as in lines 18 and 26, we must
repeat the procedure (lines 6-31) to reschedule j (lines 20 and 28).

The worst case complexity of the heuristic is O(max(nmax(T,m, log n),m logm))

Example 4.4.1. Consider the instance in Example 3.2.1 with chargers of different types and
wG = 30 kW. We set the length of time slots to 30 minutes. Therefore, from 08:00 to 13:00, we
have ten time slots. The schedule built by the heuristic is displayed in Figure 4.4. Following
Algorithm 10, the heuristic will start by scheduling vehicles v1, v2, v3, v4, and v5 in this order.
For vehicle v6, we have charger 1 available but not enough power to charge v6. Thus, the heuristic
must reject either v6 or one of the last scheduled vehicles (i.e., v2, v3, v4, and v5) based on the
values a(j, 10, 13) and e6. Since we have a(2, 10, 13) = 10, a(3, 10, 13) = 20, a(3, 10, 13) = 20,
a(4, 10, 13) = 20, and e6 = 20, the vehicle v6 is rejected. Similarly, vehicle v7 will be rejected.

4.4.4.3 Simulated Annealing

We use a simulated annealing (SA) algorithm similar to Algorithm 6 but with different objective
function f(S) and different neighbor structure. The objective here is to maximize the number
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Algorithm 10: Constructive heuristic method (CHM).
Input : The set of charging demands J , the set of chargersM, the grid capacity wG

Output: The assignment of vehicles to chargers Π, a set of rejected demands LR, the
power allocation vector (T1, . . . , Tn).

1 Sort J in non-decreasing order of rj , break ties by the non-decreasing order of dj , then
by in non-decreasing order of ej ;

2 SortM by non-decreasing order of charging power wi;
3 (wt

G)← (0)t∈H ;
4 πi ← ∅ for all i ∈M;
5 for j ∈ J do
6 Let j1, j2, . . . , jm be the last vehicles scheduled in π1, π2, . . . , πm;
7 if there is an available charger at rj then
8 wa

j be the first available charger inM ;
9 Let b be the number of time slots in [rj , dj) where wt

G + wa
j ≤ wG;

10 Ej ← ej/(b× τ) ;
11 if j can be scheduled on an available charger i with a charging power wi ≥ Ej

without exceeding wG then
12 Add j to πi;
13 Update Tj by charging vehicle j in the first pij time slots t where t ∈ [rj , dj)

and wt
G + wi ≤ wG;

14 else
15 Let a(j′, rj , dj) be the allocated energy to charging demand

j′ ∈ {j1, j2, . . . , jm} in the interval [rj , dj);
16 Let k ∈ {j1, j2, . . . , jm} be the charging demand satisfying

a(k, rj , dj) = maxj′∈{j1,j2,...,jm} a(j
′, rj , dj);

17 if a(k, rj , dj) > ej then
18 Add k to LR;
19 Tk ← (0)t∈[0,dk−rk];
20 Reschedule j;
21 else
22 Add j to LR;

23 else
24 Let k ∈ {j1, j2, . . . , jm} be the charging demand satisfying

dk = maxj′∈{j1,j2,...,jm} dj′ ;
25 if dk > dj then
26 Add k to LR;
27 Tk ← (0)t∈[0,dk−rk];
28 Reschedule j;
29 else
30 Add j to LR;

31 Update wt
G;
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8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0

Charger 1
(30 kW)

Charger 2
(10 kW)

v1 v3v3 v3

Charger 3
(20 kW)

v2v2 v2

Charger 4
(20 kW)

v4v4 v4

Charger 5
(20 kW)

v5 v5v5

Figure 4.4: Charging schedule for charging demands in Example 4.2.1 on different types of
chargers using the CHM. Rectangles represent the vehicles’ plugging intervals. We highlight
charging intervals in red.

of accepted charging demand. In addition, here is that the problem is a maximization problem.
Therefore, we replace line 11 by ∆f > 0 or U(0, 1) ≤ e∆f/T . Also, line 14 is replaced by
f(S) > f(Sbest).

4.4.4.4 Generation of new solution

When implementing a metaheuristic algorithm, one of the most critical decisions is defining
the neighborhood operators used to explore the search space. In other words, how we generate
new solutions highly influences the SA algorithm performance. Most neighborhood operators
used for scheduling problems deal with assigning and sequencing jobs on different machines.
Such neighborhood operators are efficient if calculating the objective function value from the
assignment is simple. Unfortunately, in our case, each assignment solution can have one or more
power allocation solutions. Furthermore, we cannot determine whether scheduling all charging
demands in the assignment solution is feasible since it is an open problem (see Remark 3.4.3). In
order to deal with this issue, a new solution is generated in Algorithm 6 line 6 by modifying the
assignment part of the solution using the neighborhood operators (described Section 4.4.4.5).
Then, a local search procedure (described in Section 4.4.4.6) is applied to get each generated
solution’s power allocation solution and objective function value.

4.4.4.5 Neighbor operators

The SA algorithm randomly chooses one of the following operators to generate a new assignment
solution:

– Change assignment: this operator chooses a charging demand on a charger i1 and moves
it to another charger i2. The chargers and the charging demand are randomly selected. If
a charging demand in charger i2 overlaps with j, the move is discarded.
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– Assign Qassign rejected charging demands: this operator attempts to assign Qassign

charging demands from the rejected list as follows. At each attempt, a charging demand
j is randomly selected to be inserted on a randomly selected charger i. The insertion
is discarded if at least one charging demand in charger i overlaps with j. Qassign is a
parameter to be defined.

– Reject a charging demand: this operator moves a charging demand from a charger to
the rejected list. The charger and the charging demand are randomly selected.

– Reject the first q charging demands: this operator selects a charger randomly, and
then removes the first q charging demands from it and place them in the rejected list.
The number q is selected randomly between 1 and the number of vehicles assigned to the
selected charger. If the charger is empty, the move is discarded.

– Reject the last q charging demands: this operator is similar to the previous one, but
instead of selecting the first q charging demands, the last q charging demands are removed.

– Swap chargers: this operator randomly selects two chargers and moves all charging
demands in the first charger to the second one and vice versa.

Recall that the assignment of vehicles to chargers is represented by πi, i ∈ M, which is a
sequence of non-overlapping plugging intervals sorted based on arrival times. As aforementioned,
when assigning a vehicle j to charger i, we use binary search to check if the plugging interval
[rj , dj) overlaps with other vehicles’ plugging intervals in πi. If not, the binary search returns
the position where to insert the vehicle. However, the insertion has a complexity of O(n) since
the vehicle has to be deleted from either πi or LR and inserted in πi′ . Still, the advantage of this
operation is that we do not have to sort vehicles to determine whether or not the assignment
solution is feasible, which has a time complexity of O(n log n).

When a move is discarded, the SA algorithm randomly selects another operator. After each
successful move, the SA algorithm applies a local search procedure to construct and improve the
power allocation solution.

4.4.4.6 Two-stage local search procedure

Given an assignment solution, the two-stage local search (TsLS) procedure build the power
allocation solution by selecting the maximum subset of scheduled demands from the assignment
solution that can be satisfied without exceeding the grid capacity wG. As mentioned before, the
assignment solution may or may not be feasible, i.e., the grid capacity may not be sufficient to
charge all assigned demands.

Let J ′ be the set of assigned charging demands. Let w̃G be the minimum grid capacity
required to satisfy all charging demands in the set J ′. The basic idea is to obtain a charging
schedule with the minimum value of w̃G. When w̃G > wG, we insert and reject charging demands
until w̃G reaches wG. Note that we can only insert the demands rejected by the TsLS procedure.
Moreover, each demand can only be reinserted in their previously assigned charger, meaning that
we cannot move a charging demand to another charger. Therefore, we keep a list LLS of rejected
demands by the TsLS along with their previous chargers. At the end of the LS procedure,
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charging demands in LLS are added to LR. The implemented TsLS algorithm (Algorithm 11)
starts by building a power allocation solution for charging demands in the assignment solution
S0 using a heuristic described in Algorithm 4 (line 1). The current solution S is set to S0.
At each iteration (lines 3-21), the TsLS procedure generates (MaxGenerated) neighbors of the
current solution S (lines 4-9). For each generated neighbor, it applies a procedure to minimize
w̃G (line 6), which will be explained in more detail later. The best feasible solution S′ in the
neighborhood of S is selected (line 9). A solution is feasible if its grid capacity w̃G is less than or
equal to wG. If the best neighborhood S′ is better than the best solution found so far S∗, it will
replace the current solution S and the best solution S∗. Otherwise, the number of non-improving
iterations iter is incremented (line 19). In this case, the current solution S is set to either the best
solution in the neighborhood S′ or to S∗ as follows. The best solution in the neighborhood S′

may replace the current solution S if a randomly generated number u is less than the probability
piter (lines 15-17). piter decreases in a geometric way [Ogbu & Smith 1990] and is calculated as
piter = pa × riter−1, where pa is the initial acceptance probability, r < 1 is the reducing factor,
and iter is the number of iterations. When the number of non-improving iterations iter exceeds
MaxNonImproving, the search is considered as stagnating on a local optimum. If no feasible
solution is found (line 23), a repair procedure is carried out on the current solution S.

Initial solution for power allocation Let J ′ be the set of vehicles in the assignment solu-
tion. Let wj be the charging power of each vehicle j and pj the charging time of j, j ∈ J ′. The
proposed heuristic, detailed in Algorithm 12, builds the power allocation solution for the set
J ′ by considering the assigned vehicles in non-decreasing order of their departure time dj , and
break ties first by non-increasing order of their energy request ej , then by non-increasing order
of their arrival time rj (line 1). The grid capacity w̃G and power allocation vectors are initialized
to 0 (line 2). As mentioned before, we can exploit the algorithms defined in the previous chapter
to get the power allocation solution. Hence, we charge a vehicle j according to Algorithm 4
(line 4). As a reminder, the power allocation heuristic starts by charging vehicle j at time slots
without exceeding w̃G in chronological order. Then, it charges the vehicle j on time slots with
the minimum wt

G value.

Local neighbor structure In the TsLS procedure, a neighbor N of the current solution S

is generated in Algorithm 11 by one of the following operators:

– Reject-LS this operator is chosen if w̃G(S) > wG. It moves q charging demands from a
charger to the rejected list LLS . The number q is proportional to the number of vehicles
n. Based on preliminary tests, we observe that when q increases, the performance of the
TsLS procedure worsens. Also, the TsLS procedure is more of an intensification phase
in which we try to get as few rejected demands as possible from the assigned one. Thus,
we fix q to

⌈
n
10

⌉
. We implements three methods to select the vehicle to reject. In the

first one, a randomly chosen vehicle is selected. In the second method, we reject the
vehicle that has the greatest contribution to the grid capacity constraint violation. Recall
that the power allocation vector of the vehicle j is Tj = (u1, . . . , ut−rj+1). Then, we
reject the vehicle j ∈ J ′ that has largest value aj where aj =

∑
t∈H1

ut−rj+1 × wj and
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Algorithm 11: Local Search Procedure
Input : The assignment solution S0, MaxNonImproving, MaxGenerated
Output: Best feasible solution found S∗

1 Initialize the power allocation for S0 according to Algorithm 4;
2 iter← 0; S ← S0; S∗ ← empty solution; S′ ← empty solution;
3 while iter < MaxNonImproving do
4 for k = 1 to MaxGenerated do
5 N ← Generate TsLS Neighbor(S);
6 Apply minimizing grid capacity procedure on N ;
7 if w̃G(N) ≤ wG and f(N) > f(S′) then
8 if S∗ is empty then S∗ ← N ;
9 S′ ← N ;

10 if S∗ is note empty then
11 if f(S′) > f(S∗) then
12 S ← S′;
13 S∗ ← S′;
14 iter← 0;
15 else
16 Generate a random number u ∼ U(0, 1);
17 if u < pa × riter−1 then S ← S′ ;
18 else S ← S∗ ;
19 iter ← iter +1;

20 else
21 iter ← iter +1;

22 if S∗ is empty then
23 Apply repairing procedure to S;

24 return S∗

Algorithm 12: Power allocation heuristic
Input : The set of charging demands J ′, the selected charging power wj for each

vehicle j ∈ J ′

Output: The power allocation solution (Tj)j∈J ′ , (wt
G)t∈H, the grid capacity w̃G

1 Sort J ′ by non-decreasing order of dj . Then, in non-increasing order of ej . Then, in
non-increasing order of rj ;

2 (wt
G)← (0)t∈H ; w̃G ← 0; (Tj)← (0)j∈J ′ ;

3 for j ∈ J ′ do
4 Charge the vehicle j according to Algorithm 4;

5 return w̃G, (Tj)j∈J ′ , (wt
G)t∈H
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H1 = {t|t ∈ [rj , dj) and wt
G > wG}. The third method consists of using the roulette wheel

selection [Lipowski & Lipowska 2012] to choose the vehicle to reject based on their values
aj . In other word, a vehicle j with a higher value aj has a higher probability to be chosen.
Note that after rejecting a vehicle j, Tj and wt

G are updated.

– Re-assign-LS this operator is chosen if w̃G(S) ≤ wG. It chooses q vehicles from LLS
to be assigned back to their chargers. q is fixed to

⌈
|LLS |
10

⌉
where |LLS | is size of the

set LLS . We implement two methods to determine which vehicle to re-assign. The first
randomly chooses a vehicle from LLS . The second method re-assigns the vehicle that
is expected to have the smallest impact on overloading the power grid. More precisely,
we choose the vehicle that has the largest value āj where āj is the number of time slots
t ∈ [rj , dj) and wt

G +wj ≤ wG. The power allocation vector Tj for the re-assigned vehicle
j is obtained by applying Algorithm 4.

Minimizing grid capacity procedure (MinwG-LS) We used a heuristic to choose the
time slots for charging the vehicles to satisfy their energy requirements regardless of the grid
capacity limit. The resulting charging schedule is not guaranteed to be optimal, meaning the
obtained w̃G is not necessarily the lowest possible value. For this reason, it is necessary to
establish a method to improve the charging schedule and attempt to minimize w̃G so it remains
within the grid’s capacity limit wG. One way to achieve this is by moving these vehicles’
charging operations to different time slots. If w̃G reaches wG, the generated neighbor is feasible.
This problem is addressed in Chapter 3 in Section 27. For this reason, we use the same SA
in Algorithm 6 with the same objective function f(S) (minimize w̃G) but a slightly different
neighbor structure. A neighbor structure in the minimizing grid capacity local search method
(MinwG-LS) moves q charging operations of a vehicle j from a time slot t1 where ut1−rj+1 = 1

in Tj to another time slot t2 where ut2−rj+1 = 0. The number of moves q is randomly chosen

between 1 and a maximum value
⌈

n
10

⌉
. Let H1 be the set of time slots where the vehicle j is

charging. That is, H1 = {t|t ∈ [rj , dj) and ut−rj+1 = 1 in Tj}. Let H2 be the set of time slots
where H2 = {t|t ∈ [rj , dj) and ut−rj+1 = 0 in Tj}.

Let J ′′ ⊆ J be the set of scheduled charging demands where dj − rj − pj > 0. First, we
randomly select an electric vehicle j ∈ J ′′ , then the charging of the vehicle j is modified by one
of the following methods:

• Peak shifting: this method moves a charging operation from peak to off-peak time slots.
Basically, a charging operation is moved from the first time slot t1 with wt1

G = max{t∈H1}w
t
G

to the first time slot t2 with wt2
G = min{t∈H2}w

t
G.

• Filling: the basic idea is to charge the vehicles assigned to the chargers with lower power
simultaneously to free up time to charge the vehicles assigned to the chargers delivering
higher power. Basically, a charging operation is moved from the first time slot t1 with
wt1
G = min{t∈H1}w

t
G to the first time slot t2 with wt2

G = max{t∈H2}w
t
G and wt2

G +wj ≤ wG.

After each move, ut1−rj+1 is set to 0 and ut2−rj+1 is set to 1. The vector wt
G is updated as

well as the objective value w̃G.
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An illustration of these operators is given in Figure 4.5. In the initial schedule, we have
w1
G = 20, w2

G = 10, and w3
G = 40. Thus, w̃G = 40. Clearly, rescheduling the charging of v1

at time slot t = 2 will not change the value of w̃G = 40. Notice that for v3, minwt
G = w2

G to
maxwt

G = w1
G = 20. If we choose v3 and apply the operator "Filling", it will moves the charging

operation from t = 2 to t = 1. As a results, we will have w1
G = 30, w2

G = 0, and w3
G = 40. When

we choose v1 and we apply the "peak shifting" operator, it will move the charging operation of
v1 from t = 3 to t = 2. Finally, we will have w1

G = 30, w2
G = 30, and w3

G = 10. Therefore,
w̃G = 30.

Initial schedule

1 2 3 4

Charger 1
(30 kW)

v1 v1v1

Charger 2
(20 kW)

v2

Charger 3
(10 kW)

v3 v3v3 v4

After filling

1 2 3 4

v1 v1v1

v2

v3v3 v3 v4

After peak shifting

1 2 3 4

v1v1 v1

v2

v3v3 v3 v4

Figure 4.5: Example of application of "Filling" and "Peak Shifting" operators. Rectangles
represent the vehicles’ plugging intervals. We highlight charging intervals in red.

After moving q charging operations, if w̃G > wG, we apply a procedure similar to the "peak-
shifting" operator as follows. For each time slot t ∈ H where wt

G > wG, for each vehicle j

scheduled on this time slot (ut−rj+1 = 1 in Tj), we try to move the charging operation to
another t′ where ut′−rj+1 = 1 = 0 and wt′

G + wj > wG. This procedure is time-consuming for
large instances. The SA is also susceptible to get stuck in a local optimum. Thus, it is applied
to the generated neighbor in the MinwG-LS procedure with a probability of 25%.

Repair procedure The global SA algorithm relies on the TsLS procedure to provide a feasible
solution to the problem. If the search fails to yield a feasible solution, the TsLS method applies
the following steps to construct one. The TsLS will reject a vehicle chosen using the second
method of the Reject-LS operator. Then, MinwG-LS is applied. This instructions are repeated
until w̃G ≤ wG.

TsLS improvement phase At the end of the TsLS, an improvement phase is performed to
reschedule some rejected charging demands in the best solution found by the TsLS. The first
step involves calculating āj values, as defined in the "Re-assign-LS" operator, for each charging
demand j in LLS . Let j′ denote the charging demand with the maximum value āj − pj . If
āj′−pj′ ≥ 0, we reschedule j′, and then MinwG-LS is applied. This procedure is repeated until
maxj∈LLS āj − pj < 0.
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4.5 Computational Results

In this section, we report and discuss the results of the proposed methods in this chapter. We
start by describing the generated instances and algorithms’ parameters. Then, we perform
a computational comparison for the proposed methods for one type of charger and then for
different types of chargers.

4.5.1 Instances

Again, we consider three types of chargers where chargers of type 1, 2, and 3 deliver an output
power of w1 = 11 (kW), w2 = 22 (kW), and w3 = 43 (kW), respectively. We consider two
types of instances. The type 1 instances regroups the first five groups of instances generated
in Section 3.5.1. In type 2 instances, we generate six groups of new instances. The number of
charging demands n in groups 1 and 4 is equal to 100, it is equal to 200 for groups 2 and 5, and
it is equal to 200 for groups 3 and 6. For each group, we generate 10 different random instances
as in type 1 instances, except for α values. For groups 1, 2, and 3 for half of the vehicles, α is
fixed to 0.1, and for the other half, it is fixed to 0.2. For groups 4, 5, and 6 for 75% of vehicles,
α is fixed to 0.1, and for the other half, it is fixed to 0.2. A summary of those values are shown
in Table 4.4. Type 1 instances represent typical scenarios, whereas type 2 instances represent
more extreme situations to demonstrate the difficulty of solving LP models. In type 2 instances,
each vehicle plugged into type one chargers must spend at least 80% of its parked time charging.

Table 4.4: Values of α depending on charging time p1j for type 2 instances.

instances group instances number n α = 0.1p1j α = 0.2p1j
1 1 to 10 100 50% 50%
2 11 to 20 200 50% 50%
3 21 to 30 400 50% 50%
4 31 to 40 100 75% 25%
5 41 to 50 200 75% 25%
6 51 to 60 400 75% 25%

4.5.2 Settings and Parameters

Again, all algorithms are implemented in C++ programming language and run on a desktop
computer with an Intel Core i5 operating at 2.90 GHz and 8 GB RAM and running Linux
OS (Ubuntu 20.04 LTS). For this chapter, the LP models are solved using IBM CPLEX 12.8
running on an Intel Xeon Silver 4216 CPU operating at 2.10 GHz and 64 GB RAM and running
Linux OS (Ubuntu 20.04 LTS). For precision, we set the length of each time slot to 6 minutes.
Parameter values for the proposed SA with two-stage LS were selected after several preliminary
tests and summarized in Table 4.5.

For instances with n > 100, the MinwG-LS parameters MaxGenerated, MaxTrials, and
AcceptanceRatio are set to half of their values to reduce the computational time. In contrast
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Table 4.5: SA and LS parameters.

Parameter Value

Global SA parameters

µ 0.1
MaxGenerated 100
MaxTrials 50
AcceptanceRatio 0.1
Tf 0.001

TsLS parameters
MaxNonImproving 6
MaxGenerated 5

MinwG-LS (SA) parameters

µ 0.2
MaxGenerated 20
MaxTrials 100
AcceptanceRatio 0.5
Tf 0.001

to instances with n ≤ 100, the SA’s performance in maximizing the objective function was not
highly affected by the changes in those parameters.

4.5.3 Comparison Results for One Charger Type

We evaluate the performance of the method proposed in Section 4.3. All simulations are done
with chargers delivering a power w of 11 kW.

4.5.3.1 Comparison between the LP models P1, P2, P3, and P4

We compare the performance of the four LP models P1, P2, P3, and P4 on type one instances.
The stopping criteria for CPLEX is set to a maximum time of one hour or when the optimal
solution is achieved. The results are shown in Tables 4.6 and 4.7. In Table 4.6, the first columns
displays the instance group. Also, we display the number of vehicles n, the number of chargers
m, and the grid capacity wG for each instance group. Remark that we set wG to 50%

∑m
i=1wi,

which is equal to 0.5mw. Column avg.T depicts the average number of time slots considering
a length of 6 minutes. The number of time slots differs from one instance to another since we
consider that T = maxj∈J dj . Column avg.L gives the average number of events. The values
n, m, and T (or L) gives the instances sizes. In the remaining columns, we report the average
time CPLEX took to solve each model in seconds. It should be noted that this time includes
the construction and repair solutions procedures.

The first noticeable result is that the computation time of P1 and P2 is significantly higher
than P3 and P4, especially for n > 20. The relaxation is more effective in reducing the compu-
tation time than considering event-based. The event-based formulation was more effective for
P1 than for P3 since there are significantly fewer variables and constraints in P3, making it less
sensitive. We observe that CPLEX reached the time limit of one hour for 29 instances when
solving P1 and 14 instances when solving P2. The worst running times to solve P3 and P4 were
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3.79 seconds and 0.26 seconds, respectively.

Table 4.6: The average computation time for instances type 1

instances
group n m wG avg.T avg.L

P1

time(s)
P2

time(s)
P3

time(s)
P4

time(s)
1 10 10 55 84.80 17.10 1.81 0.15 0.03 0.01
2 20 10 55 103.80 32.90 1073.89 110.97 0.15 0.05
3 40 20 110 140.10 58.90 3448.51 1247.15 0.18 0.06
4 50 20 110 166.40 71.60 3519.49 3142.80 0.27 0.06
5 100 30 165 267.70 135.90 3616.35 2278.48 1.39 0.20

avg. 152.56 63.28 2332.01 1355.91 0.40 0.08

More details on the objective function values (i.e. the number of accepted charging demands)
found by the four models are given in Table 4.7. For each model, column avg obj reports the
average objective function value found, column #OPT gives the number of optimal solutions
found in each group, and column avg GOPT provides the average gap between the objective
function value and the optimal solution value in percentage, and it is calculated as follows. Let
sP1 be the objective function value found by CPLEX by solving model P1 within a time limit
of one hour, and let sOPT be the optimal objective value. The gap between sP1 and sOPT is
calculated as GOPT =

sP1
−sOPT

sP1
. Similarly, we calculate the gap between P2, P3, and P4 and

the optimal solution. We observe that P3 and P4 achieved all optimal solutions. P1 and P2

found all optimal solutions for instances in groups 1 and 2, despite exceeding the time limit of
one hour when solving P1 in two instances in group 2. P1 has worse performance when solving
instances with n > 10. In fact, when taking a closer look, for instances where the GOPT < 0

(26 instances), the gap lies between -96% and -75% except for one instance (instance 40 with
GOPT = −2.22%). P2 reaches a gap below 0.00% in 11 instances: for nine instances, it lies
between -58% and -2.2% while it is above -80% in the remaining two. Therefore, we can confirm
that P2 outperforms P1, demonstrating the importance of considering event-based formulation.

Table 4.7: Results for instances type 1

instances
group

P1 P2 P3 P4

avg
obj #OPT GOPT (%)

avg
obj #OPT

avg
GOPT (%)

avg
obj #OPT

avg
GOPT (%)

avg
obj #OPT

avg
GOPT (%)

1 9.40 10 0.00 9.40 10 0.00 9.40 10 0.00 9.40 10 0.00
2 13.00 10 0.00 13.00 10 0.00 13.00 10 0.00 13.00 10 0.00
3 15.60 3 -57.35 35.50 10 -0.32 35.60 10 0.00 35.60 10 0.00
4 14.20 1 -66.89 40.80 4 -3.71 42.40 10 0.00 42.40 10 0.00
5 13.40 0 -86.03 60.50 4 -37.22 96.20 10 0.00 96.20 10 0.00

avg 13.12 4.80 -42.05 31.84 7.60 -8.25 39.32 10 0.00 39.32 10 0.00

4.5.3.2 Performance of P4 on type 2 instances

We showed that P4 efficiently solves the problem with n ≤ 100 and wG = 0.5mw within less
than 0.26 seconds. However, we showed that the problem is NP-hard. Therefore, we want to
investigate the performance of P4 on more challenging instances (instances type 2) with different
values of wG and m. For each instance, we set the execution time limit to 1800 seconds, and we
run P4 for m ∈ {15, 20, 25} and wG ∈ {0.25mw, 0.5mw, 0.75mw}.
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Figure 4.6: The effect of m and wG values on the performance of P4.

We are interested in the average number of scheduled charging demands, i.e., 1
n

∑n
j=1 sj .

Recall that sj = 1 if the vehicle j is scheduled. Otherwise, sj = 0. The average number of
scheduled vehicles (in percentage) and the average running times are given in Figure 4.6.

Overall, we remark that the model’s performance is more impacted by the value of the grid
capacity wG than by the number of chargers m. Increasing the grid capacity value improves
the objective value and the running time of P4. The impact of the number of chargers m on
the average running time is more important with n ≥ 200 and wG set to 25%wm and 50%mw.
When wG is set to 75% of mw, the average running time was 1.95 seconds with a maximum of
41.13. Also, instances with n = 100 are always solved to the optimal within less than one second
for all values of m and wG. For wG ∈ {0.25mw, 0.5mw}, CPLEX found 39 optimal solutions
out of 120 for n = 400 and 106 optimal solutions out of 120 for n = 200. We observed that
instances in group 6 were harder to solve than in group 3. Further, remark that the percentage
of scheduled vehicles in each group is approximately similar considering the same values of wG

and m.

4.5.3.3 Comparison between P4 and the heuristics

Consider the selections proposed in Section 4.3.4. Five methods can be driven by combining
these selections. We can perform an interval scheduling (IS) based selection (LDT or LIT)
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followed by the energy reasoning (ER) based selection to obtain a subset of charging demands.
Then P4 is solved considering only this subset. These two methods are denoted LDT+ER+P4

and LIT+ER+P4. We can also choose only one selection (LDT, LIT, or ER) and then solve
the model P4, which yields three methods: LDT+P4, LIT+P4, and ER+P4. Remark that if we
choose an interval scheduling-based selection, P4 is solved without the assignment constraints
(4.21), and therefore the repairing solution procedure (Algorithm 7) is not applied. Also, P4 is
limited to 30 minutes for each method. We test the performance of these methods on type 2
instances with m = 15 and wG = 83 kW. In Figure 4.7, we plot the average number of scheduled
demands achieved by the five methods and P4 in percentage. In addition, we report the average
gap, expressed as a percentage, between the objective value of each method sM and the best
objective value sbest, calculated as Gbest(M) = sM−sbest

sbest
in percentage. The average execution

times for each method are also displayed.
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Figure 4.7: Comparing the heuristics with the model P4 on type 2 instances.

First, we notice that P4 achieved all the best solutions since its Gbest = 0. The next best
methods for maximizing the objective function are ER+P4 and LDT+P4. Taking a closer look,
the objective function values achieved by ER+P4 were better than LDT+P4 in 20 instances,
equal in 23 instances, and worse in 16 instances. Then, the best method after these two is
LDT+ER+P4. The worse methods are the ones involving the LDT selection. In terms of
running time, we can see that methods without the ER based selection have the worse perfor-
mance, especially for instances with n = 400 where the time limit of 30 minutes is reached in
most instances.

Overall, the ER+P4 method shows the best performance; the average gap is low (averagely
-1.63%), corresponding to an average difference of 2.23 vehicles. Furthermore, the average
running time is 0.13, 1.60, and 28.67 for n = 100, n = 200, and n = 400, respectively. In
conclusion, developing a heuristic that considers the power allocation solution is better than the
one dealing with the assignment solution.

4.5.4 Comparison Results for Distinct Charger Types

This section compares the results of the proposed methods for k types of chargers. Note that
the values chosen for the grid capacity wG and the number of chargers of each type ml, l ∈ K
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are based on the results of the previous chapter. Specifically, those values are set so that it is
impossible to schedule all vehicles in most instances to make the problem more challenging.

4.5.4.1 Impact of linearization on the performance of P5 and P6

To confirm the efficiency of the linearization proposed in Section 4.4.3, we run CPLEX to solve
the LP models P5 and P6 with and without it on group 1 instances of type 1 (n = 10). For
each instance, the grid capacity is limited to 50 kW, and the number of charges of each type ml

is set ot 5. Once again, CPLEX running time is limited to 30 minutes. The results are shown
in Table 4.8. For each model, we report the number of scheduled demands (column obj) and
the execution time in seconds (column time). First, P6 and P5 with linearization achieved all
optimal solutions. However, P5 with linearization reached the time limit in four instances out
of 10. Meanwhile, P5 without linearization scheduled at most half of the optimum number of
vehicles within 30 minutes. Also, P6 without linearization scheduled at most half the number
of vehicles in 8 instances. Even though we only tested ten instances, it is expected that the
larger the instances, the worsen the models’ performance. Therefore, in the rest of the section,
we consider P5 and P6 with linearization.

Table 4.8: Results for type one instances of group 1 (n = 10) with ml = 5, and wG = 50 (kW)

instance
without linearization with linearization
P5 P6 P5 P6

obj time (s) obj time (s) obj time (s) obj time (s)
1 5 1802.57 5 1800.09 10 6.07 10 0.50
2 3 1800.22 3 1800.22 9 1800.66 9 18.74
3 4 1800.24 8 1800.18 9 1800.38 9 27.77
4 4 1800.22 3 1800.20 10 3.98 10 3.17
5 3 1800.21 6 1800.24 9 537.35 9 62.00
6 2 1800.24 4 1800.14 10 18.17 10 3.16
7 3 1800.26 2 1800.10 9 1800.48 9 17.70
8 3 1800.18 3 1800.07 9 742.27 9 21.76
9 1 1800.13 3 1800.13 9 46.03 9 8.29
10 4 1800.45 4 1800.31 9 1800.66 9 35.67

avg. 3.20 1800.47 4.10 1800.17 9.30 855.60 9.30 19.88

4.5.4.2 Comparison between P5, P6 and the SA metaheuristic on type one instances

We test the LP models P5 and P6, the heuristic CHM, and the proposed SA on type one
instances. We set the number of chargers of each type ml and the grid capacity value wG to
different values depending on the instance group. Each instance is run within a limit of 30
minutes. Tables 4.9, 4.10, 4.11, 4.12, and 4.14 compare the results of these methods on instance
groups 1, 2, 3, 4, and 5, respectively. The comparison is based on:

– the objective function value reported in columns obj for P5, P6, and CHM. Due to the
stochastic nature of the SA, it is run 30 times for each instance. The best, mean, and
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worst objective values over these 30 runs are reported in columns best, mean, and worst,
respectively. The column std reports the standard deviation to reflect the variation in the
objective values;

– the computation time in seconds given in columns time. For the SA, the average running
time is reported.

Group 1 instances were optimally solved by P6, P5, and the SA, while the heuristic found one
optimal solution. We remark that the computation time varies significantly for CPLEX when
solving the LP models. For example, P6 took 0.5 seconds to solve instance one while it took
62 seconds to solve instance 5. This variation is more apparent when solving the model P5; for
instance 4, it took 4 seconds while it reached the time limit of 30 minutes in 4 instances. On
the other hand, the running times of the SA and the heuristic tend to be relatively stable.

Table 4.9: Results for instances of group 1 (n = 10) with ml = 5 and wG = 50 kW.

instance
P5 P6 CHM SA
obj time (s) obj time (s) obj time (s) best avg worst std time (s)

1 10 6.07 10 0.50 7 5.45E-05 10 9.90 9 0.31 2.38
2 9 1800.66 9 18.74 7 3.89E-05 9 9.00 9 0.00 5.22
3 9 1800.38 9 27.77 7 2.67E-05 9 9.00 9 0.00 4.94
4 10 3.98 10 3.17 7 8.70E-05 10 9.03 9 0.18 4.76
5 9 537.35 9 62.00 9 1.96E-05 9 9.00 9 0.00 4.95
6 10 18.17 10 3.16 6 4.74E-05 10 9.23 9 0.43 4.52
7 9 1800.48 9 17.70 7 3.17E-05 9 8.27 7 0.52 5.20
8 9 742.27 9 21.76 7 3.50E-05 9 8.33 8 0.48 4.86
9 9 46.03 9 8.29 6 5.14E-05 9 7.67 7 0.55 5.01
10 9 1800.66 9 35.67 7 3.21E-05 9 8.80 7 0.48 5.24

Average 9.30 855.60 9.30 19.88 7.00 4.24E-05 9.30 8.82 8.30 0.30 4.71

For group 2 instances, P6 achieved all best solutions, where 8 of them are optimal. The SA
achieved four of the best solutions, where three of them are optimal. In the remaining instances
(six out of ten), the SA scheduled one less vehicle compared to the solutions found by P6. P5

found one of the best solutions while the heuristic did not find any. The running time of P6 is
always higher than 800 seconds, while the SA tooks 8.87 seconds, at least 100 times less than
CPLEX. We notice that P5 reached the time limit for all instances.

In groups 3 and 4, P6 found all the best solutions, while the SA found nine out of 20. Again,
there is a difference of one vehicle between the SA best solutions and P6 solutions, except for
instance 39, where we have a difference of two. The solutions found by P5 and the heuristic are
worse than P6 by five vehicles on average in group 3 instances. Then, the heuristic finds better
solutions than P5 in group 4 instances. We notice that P6 reached its time limit for all instances
in groups 3 and 4, whereas the SA has an average running time of 20.91 seconds.

To investigate why the SA scheduled fewer vehicles than P6, we replaced the local search
(TsLS) with an LP model. Recall that the local search builds and improves an assignment’s
power allocation solution. The LP model is similar to P3 (Section 4.3.3), in which we omit
constraints (4.17). In constraints (4.19), w is replaced by the charging power of each vehicle
according to the assignment solution. For each instance in groups 2, 3, and 4, the SA combined
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Table 4.10: Results for instances of group 2 (n = 20) with ml = 7 and wG = 50 kW.

instance
P5 P6 CHM SA

obj time (s) obj time (s) obj time (s) best avg worst std time (s)
11 15 1812.11 16 986.11 13 4.50E-05 15 14.97 14 0.18 8.29
12 12 1801.04 13 1755.78 10 1.49E-04 13 12.00 11 0.59 9.56
13 13 1807.87 14 1800.42 10 5.79E-05 13 12.37 11 0.61 8.62
14 13 1810.42 14 1051.17 10 8.86E-05 14 12.83 12 0.46 8.46
15 13 1800.70 14 1046.63 10 7.89E-05 13 12.10 11 0.55 8.86
16 13 1804.40 14 824.74 10 8.07E-05 13 12.60 12 0.50 9.13
17 16 1801.07 16 1800.61 14 4.01E-05 16 14.93 14 0.37 8.75
18 13 1810.07 14 845.37 10 5.97E-05 13 12.33 11 0.55 8.90
19 10 1800.94 13 1036.67 9 2.48E-04 12 11.47 11 0.51 9.03
20 12 1804.69 13 919.92 10 8.33E-05 13 12.33 12 0.48 9.07

Average 13.00 1805.33 14.10 1206.74 10.60 9.32E-05 13.50 12.79 11.90 0.48 8.87

Table 4.11: Results for instances of group 3 (n = 40) with ml = 8 and wG = 75 kW.

instance
P5 P6 CHM SA

obj time (s) obj time (s) obj time (s) best avg worst std time (s)
21 26 1802.38 31 1806.91 27 1.37E-04 31 29.16 28 0.55 15.65
22 26 1802.27 31 1816.23 25 2.19E-04 31 29.23 28 0.68 17.26
23 11 1801.35 28 1807.00 23 2.08E-04 27 25.63 25 0.61 16.71
24 23 1802.33 26 1806.98 19 4.86E-04 25 23.27 22 0.58 15.15
25 25 1801.64 28 1806.13 21 2.17E-04 27 25.07 23 0.78 25.92
26 26 1802.17 30 1811.43 25 1.34E-04 30 28.93 28 0.45 17.90
27 26 1801.81 32 1817.55 26 1.02E-04 32 30.47 30 0.57 18.44
28 24 1801.51 29 1806.98 23 1.66E-04 28 27.27 26 0.52 16.53
29 25 1801.89 28 1812.80 23 1.38E-04 28 27.27 27 0.45 15.51
30 30 1802.85 34 1813.90 30 9.83E-05 33 32.07 31 0.45 16.48

Average 24.20 1802.02 29.70 1810.59 24.20 1.91E-04 29.20 27.84 26.80 0.56 17.56

Table 4.12: Results for instances of group 4 (n = 50) with ml = 9 and wG = 100 kW.

instance
P5 P6 CHM SA

obj time (s) obj time (s) obj time (s) best avg worst std time (s)
31 21 1802.28 43 1807.80 36 1.88E-04 42 40.87 40 0.68 29.37
32 31 1802.03 45 1824.74 37 1.16E-04 45 43.33 43 0.55 22.50
33 16 1801.76 42 1800.62 35 1.06E-04 41 39.90 39 0.71 22.34
34 34 1802.02 45 1821.81 38 1.45E-04 44 43.43 43 0.50 25.09
35 22 1802.04 46 1811.01 41 1.35E-04 46 44.77 44 0.50 31.81
36 24 1801.96 44 1809.33 38 1.69E-04 43 41.83 41 0.53 24.14
37 23 1801.92 44 1808.52 37 1.99E-04 43 41.23 40 0.68 21.38
38 31 1801.90 40 1806.74 34 4.25E-04 40 38.27 37 0.74 22.14
39 33 1801.90 40 1807.43 34 1.53E-04 38 36.77 36 0.63 21.17
40 15 1802.46 46 1811.08 40 1.71E-04 45 44.10 42 0.61 22.72

Average 25.00 1802.03 43.50 1810.91 37.00 1.81E-04 42.70 41.45 40.50 0.61 24.27

with the LP (SA+LP) is run ten times. The best objective value and the average running time
are reported in columns best and time in Table 4.13, respectively. We highlight in blue the cases
where sP6 = sSA+LP > sSA+TsLS , in red the cases where sP6 = sSA+LP = sSA+TsLS , and in
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orange the cases where sP6 > sSA+LP = sSA+TsLS . This can help us identify if the issue is
caused by the assignment solution or by the power allocation solution. As we can notice, in nine
instances, both SA+TsLS and SA+LP failed to find the P6 solutions. The SA+TsLS failed to
find SA+LP solutions in eight instances. Consequently, it is necessary to enhance the global SA
even if we improve power allocation solution exploration.

For group 5 instances with n = 100, the SA best solutions were better than P6 in six
instances, equal in 3, and worse in one instance (instance 41). The average running time of the
SA has increased to 82.83 seconds. P5 has the worst performance where it scheduled 83.81%
less vehicles than P6.

Overall, the standard deviation (std) of the SA solutions is relatively small. It is always less
than one, except for instance 48. It suggests that the objective values found by the SA over
30 runs are similar and less variable. We notice that the difference between the best solution
value and the average increases with the size of instances but always remains below 2.5. The
SA also keeps a small margin between the best and worst solutions (at most, five vehicles are
unscheduled in the worst solutions). Hence it is more stable in terms of solution quality.

Table 4.13: Comparative results of P6, SA+LP, and SA+TsLS on group 2, 3, and 4 instances.

instance
P6 SA+LP SA+TsLS

obj time (s) best time (s) best time (s)
11 16 986.11 16 11.00 15 8.29
12 13 1755.78 13 13.44 13 9.56
13 14 1800.42 14 10.38 13 8.62
14 14 1051.17 14 11.17 14 8.46
15 14 1046.63 13 12.23 13 8.86
16 14 824.74 14 9.83 13 9.13
17 16 1800.61 16 13.41 16 8.75
18 14 845.37 14 10.72 13 8.90
19 13 1036.67 12 556.89 12 9.03
20 13 919.92 13 13.47 13 9.07

avg. 14.1 1206.74 13.9 66.25 13.5 8.87
21 31 1806.91 32 75.88 31 15.65
22 31 1816.23 31 48.65 31 17.26
23 28 1807.00 27 55.02 27 16.71
24 26 1806.98 26 62.05 25 15.15
25 28 1806.13 27 55.44 27 25.92
26 30 1811.43 30 79.87 30 17.90
27 32 1817.55 32 71.06 32 18.44
28 29 1806.98 29 64.78 28 16.53
29 28 1812.80 28 72.37 28 15.51
30 34 1813.90 34 50.45 33 16.48

avg. 29.70 1810.59 29.60 63.56 29.2 17.56
31 43 1807.80 42 54.08 42 29.37
32 45 1824.74 45 63.12 45 22.50
33 42 1800.62 42 46.14 41 22.34
34 45 1821.81 44 50.40 44 25.09
35 46 1811.01 46 54.84 46 31.81
36 44 1809.33 43 72.98 43 24.14
37 44 1808.52 44 62.94 43 21.38
38 40 1806.74 40 64.79 40 22.14
39 40 1807.43 39 67.03 38 21.17
40 46 1811.08 45 40.75 45 22.72

avg. 43.50 1810.91 43 57.71 42.70 24.27
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Table 4.14: Results for instances of group 5 (n = 100) with ml = 10 and wG = 125 kW.

instance
P5 P6 CHM SA

obj time (s) obj time (s) obj time (s) best avg worst std time (s)
41 18 1806.49 79 1801.71 76 6.08E-04 81 78.57 77 0.90 76.69
42 11 1806.12 90 1834.36 81 2.39E-03 89 87.77 87 0.50 71.09
43 13 1805.92 82 1801.22 76 2.32E-04 84 82.33 81 0.76 75.62
44 14 1806.03 83 1801.06 75 3.54E-04 83 81.00 79 0.98 82.14
45 14 1806.01 85 1800.83 75 6.24E-04 86 84.30 83 0.70 104.83
46 13 1805.99 85 1801.46 77 2.65E-04 85 83.27 82 0.69 77.56
47 13 1805.57 83 1801.95 78 2.43E-04 86 84.23 83 0.77 71.34
48 14 1806.07 84 1833.32 73 6.58E-04 85 82.87 81 1.04 89.38
49 12 1806.21 86 1830.84 74 3.89E-04 86 84.27 81 0.94 78.99
50 14 1806.14 83 1801.24 77 3.88E-04 85 82.83 82 0.70 100.69

Average 13.60 1806.06 84.00 1810.80 76.20 6.15E-04 85.00 83.14 81.60 0.80 82.83

Table 4.15: Results for type 2 instances with n = 100, ml = 10, and wG = 125 kW.

instance
P6 CHM SA

obj time (s) obj time (s) best avg worst std time (s)
1 90 1807.48 79 1.49E-04 89 87.33 86 0.84 88.62
2 79 1801.08 73 1.59E-04 80 79.20 78 0.61 93.59
3 85 1816.11 74 1.35E-04 84 82.70 82 0.53 98.25
4 82 1826.77 74 1.43E-04 84 81.57 80 1.01 109.79
5 84 1809.77 76 1.44E-04 85 83.80 82 0.71 92.52
6 91 1833.77 80 1.20E-04 90 89.10 88 0.48 90.50
7 83 1814.54 73 1.40E-04 82 80.63 79 0.67 117.68
8 88 1810.21 80 1.22E-04 88 87.00 85 0.83 105.24
9 85 1819.91 73 1.37E-04 85 83.63 83 0.61 113.75
10 84 1809.07 76 1.40E-04 85 83.63 82 0.67 116.96
31 97 1821.13 88 1.08E-04 95 93.55 93 0.60 65.08
32 87 1811.14 79 1.28E-04 86 84.40 83 0.75 96.75
33 85 1819.42 76 1.34E-04 85 84.15 83 0.49 69.34
34 80 1801.33 72 1.62E-04 81 78.90 77 0.85 76.93
35 80 1808.20 74 1.51E-04 81 80.45 79 0.60 67.80
36 80 1817.84 71 1.62E-04 82 80.55 80 0.60 117.01
37 85 1826.97 75 1.46E-04 85 83.45 83 0.60 85.26
38 83 1806.21 76 1.53E-04 82 81.05 79 0.83 96.55
39 88 1803.81 78 1.33E-04 87 85.70 85 0.57 79.05
40 87 1815.47 77 1.30E-04 86 84.85 84 0.49 82.80

Average 85.15 1814.01 76.2 1.40E-04 85.1 83.78 82.55 0.67 93.17

4.5.4.3 Comparison between P6 and the SA metaheuristic on type two instances

This section compares the SA with P6 on type 2 instances. We did not run P5 since it is expected
to perform poorly when n ≥ 100. For all instances, wG is set to 125 kW and ml is set to 10. For
the SA, 20 runs are performed per instance.

For instances with n = 100, the best solutions found by the SA are better than P6 in 7
instances, equal in 4 instances, and worse in 8 instances. Again, the SA scheduled only one
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vehicle less than P6, except for instance 31, where it scheduled two fewer vehicles. The average
running time of the SA is always less than 2 minutes per instance, while P6 reached 30 minutes
time limit. Although the heuristic tooks 0.14 milliseconds on average, it scheduled 10.5 % fewer
vehicles than the SA.

Table 4.16: Results for type 2 instances with n = 200, ml = 10, and wG = 125 kW.

instance
P6 CHM SA

obj time (s) obj time (s) best avg worst std time (s)
11 155 1802.97 149 2.82E-04 165 162.55 160 1.19 113.71
12 133 1802.85 147 3.29E-04 160 158.25 155 1.16 124.07
13 142 1802.87 152 3.02E-04 168 165.85 164 0.99 118.70
14 143 1802.71 142 3.10E-04 156 154.20 153 0.95 126.31
15 150 1802.80 145 3.06E-04 160 156.80 152 1.61 102.73
16 147 1802.72 145 3.11E-04 160 158.30 156 0.98 124.39
17 164 1803.68 152 2.73E-04 169 167.20 165 1.11 117.31
18 136 1803.09 140 2.91E-04 157 155.45 154 0.89 126.89
19 145 1827.14 137 3.29E-04 154 151.55 150 1.00 115.15
20 138 1802.84 144 3.02E-04 160 158.35 157 0.81 121.97
41 152 1802.61 149 2.93E-04 162 160.50 159 0.83 112.02
42 150 1802.43 145 3.15E-04 161 158.65 157 1.14 114.86
43 153 1826.44 142 3.06E-04 160 158.35 157 0.75 117.58
44 149 1802.78 146 3.19E-04 159 156.95 156 1.00 112.83
45 156 1802.35 152 2.55E-04 168 165.10 163 1.29 111.86
46 158 1803.79 151 2.86E-04 167 164.65 162 1.23 121.39
47 150 1802.39 152 2.97E-04 163 160.50 159 1.00 126.11
48 147 1802.68 142 3.00E-04 160 157.25 154 1.21 119.95
49 140 1803.43 147 2.98E-04 162 160.60 160 0.68 125.29
50 151 1802.73 147 2.88E-04 165 163.25 161 0.91 112.88

Average 147.95 1805.27 146.3 3.00E-04 161.8 159.72 157.7 1.04 118.30

The best solutions found by the SA are better than P6 in all instances with n = 200, with
an average gap of 8.57%. The difference between the SA and P6 in the number of scheduled
charging demands varies from 1 to 22 vehicles. Concerning the average running time of the SA,
it is always less than 130 seconds per instance. It is noticeable that from this point onward, the
problem seems more challenging for CPLEX. Indeed, the average gap between the SA and P6

increased to 27.11% in instances with n = 400 (an average of 78.7 vehicles). As we can notice,
the difference between the SA and P6 in the number of scheduled charging demands varies from
16 to 187 vehicles. Even the heuristic outperforms P6 in 18 instances out of 20. The execution
time of the SA has increased but remained less than 5 minutes per instance. The standard
deviation values are higher in instances with n = 400 with a maximum value of 2.81 and an
average value of 1.56. Also, the difference between the worst and the best solutions found by
the SA increased to 6.05 on average. However, all worst solutions are better than P6 solutions.

4.5.4.4 Additional results

Additional statistics are provided to explore further the solutions found by the three methods.
Figures 4.8 and 4.9 compares the total energy demand of all vehicles with the total scheduled
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Table 4.17: Results for type 2 instances with n = 400, ml = 10, and wG = 125 kW.

instance
P6 CHM SA

obj time (s) obj time (s) best avg worst std time (s)
21 196 1808.51 287 5.60E-04 310 307.95 305 1.36 259.96
22 264 1819.51 295 5.10E-04 319 316.30 314 1.63 265.95
23 291 1810.17 304 5.15E-04 322 319.80 317 1.44 257.01
24 184 1807.83 290 5.51E-04 313 309.25 306 1.77 255.84
25 266 1810.56 285 5.54E-04 308 305.10 302 1.52 274.76
26 264 1817.08 290 5.33E-04 312 308.20 305 1.51 264.96
27 246 1809.12 287 5.86E-04 305 303.00 300 1.41 275.92
28 201 1808.88 289 5.74E-04 313 310.50 307 1.54 250.01
29 256 1809.86 288 5.50E-04 311 309.10 307 1.12 251.44
30 178 1808.89 288 5.73E-04 311 307.70 306 1.53 267.93
51 225 1808.38 291 6.71E-04 318 314.55 312 1.47 262.70
52 279 1808.06 301 6.40E-04 323 319.00 310 2.81 255.16
53 189 1808.49 295 6.40E-04 323 319.85 317 1.66 288.95
54 297 1809.10 287 6.62E-04 317 314.05 310 1.82 276.73
55 166 1807.32 285 6.95E-04 312 308.00 306 1.69 292.16
56 165 1807.88 288 7.08E-04 312 308.70 306 1.38 305.07
57 235 1809.78 283 7.30E-04 306 302.25 300 1.48 299.94
58 296 1808.08 292 6.63E-04 317 314.15 312 1.23 298.44
59 112 1807.82 282 7.47E-04 306 302.25 299 1.68 310.98
60 267 1808.14 291 6.78E-04 314 311.70 310 1.26 290.25

Average 228.85 1809.67 289.9 6.17E-04 313.6 310.57 307.55 1.56 275.21

energy for type 1 and type 2 instances, respectively. In type 1 instances The SA scheduled
90.19%, 54.90%, 59.01%, 77.75%, and 77.15% of the total energy in instance groups 1, 2, 3, 4,
and 5, respectively. In type 2 instances The SA scheduled 76.75%, 70.53%, and 67.64% of the
total energy in instances with n = 100, n = 200, and n = 400, respectively.

To further detail the assignment of vehicles to charger types, we summarize the percentage
of vehicles assigned to each type in Figure 4.10 and Figure 4.11. We recall that there are three
types of chargers: 11 kW, 22 kW, and 43 kW. The plotted percentages represent the number
of vehicles assigned to each type compared to the number of charger demands. The first thing
to notice is that each method assigns vehicles approximately the same way. The percentage of
assigned vehicles to each type slightly varies from one instance to another. This is interesting
because it can help guide the search for future experiments. For example, we know that 30% of
scheduled vehicles should be assigned to 22 kW chargers to obtain good solutions.

In type 1 instances, P6 assigned fewer vehicles to 11 kW chargers (17.56%), and the remain-
ing vehicles were distributed approximately equally between 22 kW chargers (33.43 %) and 43
kW chargers (30.76%). On the other hand, the SA assigned fewer vehicles to 43 kW chargers
(17.98%), and the remaining vehicles were distributed approximately equally between 11 kW
chargers (32.67%) and 22 kW chargers (30.13%). The heuristic prioritized chargers with 11 kW
(45.53%) while assigning 19.79% of vehicles to 22 kW chargers and only 1.42% to 43 kW charg-
ers. This is expected because the heuristic is designed to choose the first available charger with
the lowest power. Since the heuristic had the worst solutions, we can confirm that installing
faster chargers helps maximize the number of served vehicles even with the same limited power.
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Figure 4.8: The average total energy demand of type 1 instances compared to the average total
energy delivered to vehicles in schedules with P6, SA, and CHM.
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Figure 4.9: The average total energy demand of type 2 instances compared to the average total
energy delivered to vehicles in schedules with P6, SA, and CHM.

The assignment in type 2 instances is very similar. P6 assigned 9.81%, 26.99%, and 35.31% to
type 1, 2, and 3 chargers, respectively. The SA scheduled 37.29% of charging demands on 11
kW chargers, 27.87% on 22 kW chargers, and 16.36% on 43 kW chargers. For the heuristic, we
have 47.65% of vehicles assigned to 11 kW while 25.18% set to 22 kW and only 1.12% to 43 kW
chargers.

To close this section, we select one instance from each group and plot the allocated power
at each time slot to compare the three methods (P6, SA, and CHM). We also plot the value of
the grid capacity wG. Obviously, the allocated power never exceeds wG. There is a difference
between wG and the maximum peak power, as may be observed. For example, wG is set to 50 kW
in instance 11, while the peak power is 44 kW, which is expected since we consider constant power
and, therefore, the peak power depends on the maximum power delivered simultaneously. Also,
we observe a the significant variation in P6 load curves, implying more frequent preemptions.
Also, in instance 51, it is mainly caused by the fact that P6 scheduled fewer vehicles.
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Figure 4.10: The average number of vehicles assigned to each type of charger in schedules for
type 1 instances with P6, SA, and CHM.
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Figure 4.11: The average number of vehicles assigned to each type of charger in schedules for
type 2 instances with P6, SA, and CHM.

4.6 Conclusion

In this chapter, we presented the EVCS problem to maximize the number of satisfied charging
demands and proved it is NP-hard. First, we tackled the problem with identical chargers, in
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Figure 4.12: Example of load profiles for five instances obtained by P6, SA, and CHM.

which we provided different LP models and heuristics. We provided a comprehensive comparison
between these methods. The results show that the relaxed event-based model outperforms
the others and can efficiently solve large instances with 400 vehicles in less than 45 seconds.
More challenging instances were generated to demonstrate its limitations. We found that its
performance depends not only on the number of vehicles and chargers but also on the grid
capacity. Furthermore, comparing heuristics demonstrates that it is more efficient to select the
vehicles to schedule based on the power allocation solution rather than the assignment one.

Later, the problem with different chargers is studied, which is more challenging than the
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previous one. We provide two LP formulations. Then, we developed a SA combined with a
two-stage local search. From computational results, it is observed that the proposed SA finds
good solutions in a small amount of time. Besides, the SA outperforms the LP model mainly
in instances with more than 200 vehicles. Additional results confirm that installing different
types of chargers is more beneficial in maximizing the number of charging demands that can be
satisfied.
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5.1 Introduction

In previous chapters, we studied the problem with constant charging power rates. However,
in the literature review in Chapter 2, we pointed out that two charging power rates can be
considered: variable rates and constant rates. This chapter examines and compares two variants
of the EVCS problem. In the first variant, called the constant power model, chargers can deliver
either their maximum output powers or zero. The second variant is the variable power model,
where the charging rate of each charger varies over time from zero to its maximum output power.
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The charging station operating model is basically similar, where the charging station has limited
total power and a limited number of chargers. Electric vehicles submit their charging demands,
and the scheduler allocates a suitable charger for each vehicle. However, in this chapter, the
scheduler can also decide the plugging time of each vehicle, which can be later than the requested
arrival time. To serve more vehicles, the objective of the schedular is to maximize the final state
of charges.

The remainder of this chapter is organized as follows. Section 5.2 describes in detail the
investigated problem. Section 5.3 formulates it as a mixed-integer linear programming (MILP).
We examine the computational complexity of these problems in Section 5.4. Section 5.5 pro-
poses optimization methods to tackle charging scheduling problem. Section 5.6 evaluates the
performance of proposed methods and finally Section 5.7 concludes the chapter.

5.2 Problem Description

We consider a charging station with a set M = {1, . . . ,m} of chargers. A management system
can remotely control chargers’ activation or deactivation at any time. When a charger i, i ∈M
is activated, it delivers a constant power output wi (kW). Otherwise, no power is delivered even
if a vehicle is plugged into this charger. We also consider the variable power model, where the
output power of each charger i can vary over time from 0 to wi. The charging station has
a maximum power supply of wG (kW), which is generally insufficient to sustain simultaneous
activation of all chargers. Specifically, the sum of the delivered output power of all chargers
cannot exceed wG (kW) at any time.

The scheduling time horizon of one day H is divided into T time slots of length τ . Let
J = {1, .., n} be the set of electric vehicles that need charging throughout the time horizon. Each
electric vehicle j, j ∈ J , submits a charging demand by providing the following information: the
desired arrival time to the station rj , the estimated initial state-of-charge at the arrival e0j , the
desired state-of-charge at the departure edj , the battery capacity Bj (kWh), and the departure
time dj . Without loss of the generality, we suppose that rj and dj are the indices of the arrival
and departure times of vehicle j, respectively: rj ∈ H and dj ∈ H. The scheduler collects all
charging demands and determines a day-ahead charging schedule by assigning electric vehicles to
chargers. Due to the limited number of chargers, a vehicle may be required to arrive later than
its intended arrival. Let stj be the plugging time of vehicle j, where stj ≥ rj . An electric vehicle
will occupy a charger from the assigned plug-in time stj until its departure time dj and cannot
be plugged out during this period. The preemption of charging operation is allowed. Ideally,
all vehicles should be charged to their desired state-of-charge levels. However, this may not be
possible, given the limited number of chargers and the limited power capacity of the charging
station. Thus, the scheduling objective is to minimize the total difference between the desired
and the final state-of-charge levels. An illustrative example is given in the following paragraph.

Example 5.2.1. We consider a charging station with three chargers. The first charger delivers
an output power of 20 kW, while the second and the third chargers deliver a power of 10 kW. We
set the maximum grid capacity to 30 kW. We consider the charging of five demands. Table 5.1
gives the arrival and departure times and the requested energy of these demands. The scheduling
horizon is divided into time slots, and each time slot is set to one hour.
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Table 5.1: Illustrative example instance.

Vehicle Arrival time rj Departure time dj Initial SOC e0j Desired SOC edj Battery capacity Bj

v1 8:00 10:00 0.20 0.70 40 kWh
v2 8:00 11:00 0.20 0.70 40 kWh
v3 9:00 11:00 0.25 0.50 80 kWh
v4 9:00 12:00 0.20 0.70 40 kWh
v5 10:00 12:00 0.20 0.70 40 kWh

Figure 5.1(a) shows a feasible schedule of charging demands with a constant power charging,
while Figure 5.1(b) depicts a feasible solution with variable power of chargers. In both solutions,
the amount of energy requested by vehicles is satisfied. As we can see, each vehicle vj is plugged
into a charger to its departure time. The total power delivered at each hour is always less than
or equal to the fixed limit of 30 kW.

(a) Constant power model

8 9 10 11 12 13

Charger 1
(20 kW)

v1 v3 v5

Charger 2
(10 kW)

v4v4 v4v4

Charger 3
(10 kW)

v2v2 v2v2

vj is plugged into the charger. vj is charging with 20 kW. vj is charging with 10 kW.

(b) Variable power model

8 9 10 11 12 13

Charger 1
(20 kW)

v3 v5

Charger 2
(10 kW)

v2v2 v2

Charger 3
(10 kW)

v1 v4

Figure 5.1: Feasible schedules of charging demands of Table 5.1. (a) depicts the schedule using
chargers with constant power, and (b) depicts the schedule with variable power charging. Rect-
angles represent the plug-in times of the vehicles. We highlight charging intervals with 10kW in
red, whereas charging intervals with 20 kW are colored in green.

5.3 MILP Formulations

In this section, we propose three mixed-integer linear programming (MILP) formulations for the
EVCS problem described above. The first one is a time-indexed formulation considering the
constant power variant. The variable power variant is presented using a time-indexed and an
event-based formulation in the second and the third MILPs, respectively.

5.3.1 Time-indexed Constant Power Model

In the case of a constant power model, we use the following decision variables: binary variables
xijt to specify if the electric vehicle j is charged by the charger i during the time slot t and
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continuous variables efj to denote the final state-of-charge of vehicle j at its departure time dj .

min
n∑

j=1

(edj − efj )

m∑

i=1

xijt ≤ 1 ∀j ∈ J , t ∈ H (5.1)

n∑

j=1

xijt ≤ 1 ∀i ∈M, t ∈ H (5.2)

xi′jt′ ≤ 1− xijt ∀i, i′ ∈M, i′ ̸= i, j ∈ J , t, t′ ∈ H, t′ < t (5.3)

e0j ≤ efj ≤ edj ∀j ∈ J (5.4)

efj = e0j +
τ
∑dj

t=rj
wi × xijt

Bj
∀j ∈ J (5.5)

xijt = 0 ∀i ∈M, j ∈ J , t ∈ H, t < rj , t ≥ dj (5.6)

xijt + xij′t′ ≤ 1 ∀i ∈M, j, j′ ∈ J , j′ ̸= j, t ∈ H, t′ ∈ [t, dj ] (5.7)
m∑

i=1

n∑

j=1

wi × xijt ≤ wG ∀t ∈ H (5.8)

The objective function (5.13) minimize the difference between the state-of-charge at the
departure efj and the desired state-of-charge edj . Constraints (5.1) ensure that, at each time slot
t, each vehicle j is assigned to at most one charger. Constraints (5.2) ensure that, at each time
slot t, each charger i charges one vehicle. Constraints (5.3) ensure that each vehicle j is charged
by one charger i, i.e., when a vehicle is assigned to a charger, it cannot be moved to another.
Constraints (5.4) and (5.5) calculate the final state-of-charge of each vehicle j. Constraints (5.6)
ensure that vehicle j can only be charged between its desired arrival time rj and its departure
time dj . Constraints (5.7) ensure that the charger i is allocated to the vehicle j from the time it
begins to charge (it represents its plugging time stj) to its departure time dj . Constraints (5.8)
ensure that, at each time slot, the total output power does not exceed the grid capacity.

5.3.2 Time-indexed Variable Power Model

The following MILP represents the EVCS problem where each charger can deliver a time-varying
output power. In addition to the previously defined decision variables, we introduce continuous
variables pijt to denote the power delivered by the charger i to the vehicle j at time slot t. Then,
Constraints (5.5) and (5.8) are replaced by the following constraints:

efj = e0j +
τ
∑m

i=1

∑dj
t=rj

pijt

Bj
∀j ∈ J (5.9)

m∑

i=1

n∑

j=1

pijt ≤ wG ∀t ∈ H (5.10)



5.3. MILP Formulations 109

We also add the following constraints to guarantee that a charger does not deliver more than
its maximum output power.

wi × xijt ≥ pijt ∀i ∈M, j ∈ J , t ∈ H (5.11)

5.3.3 Event-based Variable Power Model

In contrast to the previous formulation using variables indexed by time, we propose a model in
which variables are indexed by events. Event-based formulations are often used for problems
with large-size scheduling horizons since it involves fewer variables. In the studied problem,
events correspond to vehicle plug-in and departure times. Therefore, we have at most 2n events.
Let V = {1, .., V } be the index set of these events, V ≤ 2n. We define continuous variables
tv, v ∈ V, which represent the time of the event v. Also, we introduce binary variables xijv
to define whether or not tv is the plug-in time of vehicle j into charger i. In addition, binary
variables yijv equal one if tv is the event when an electric vehicle j is unplugged from charger i.
We also define decision variables pvij representing the energy received by vehicle j from charger i
during interval [tv, tv+1). Finally, continuous variables evj represent the state-of-charge of vehicle
j at the end of interval [tv, tv+1). Let Dmax = maxj∈J dj and M a large enough constant.

Using these notations, the variable power model can be formulated as follows.

min

n∑

j=1

(edj − efj ) (5.12)

tv ≤ tv+1 ∀v ∈ V (5.13)

V∑

v=1

m∑

i=1

xijv ≤ 1 ∀j ∈ J (5.14)

xvij × rj ≤ tv ∀i ∈M, j ∈ J , v ∈ V (5.15)

tv ≤ xijvdj + (1− xijv)Dmax ∀i ∈M, j ∈ J , v ∈ V (5.16)

yijv × dj ≤ tv ∀i ∈M, j ∈ J , v ∈ V (5.17)

tv ≤ yijvdj + (1− yijv)Dmax ∀i ∈M, j ∈ J , v ∈ V (5.18)

V∑

v=1

xijv −
V∑

v=1

yijv = 0 ∀i ∈M, j ∈ J (5.19)

d∑

u=v

xiku ≤M(1− (xijv + yijd − 1)) ∀i ∈M, j, k ∈ J , v, d ∈ Vk, k ̸= j, d > v (5.20)
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pijv ≤ wi(tv+1 − tv) ∀i ∈M, j ∈ J , v ∈ V (5.21)

pijv ≤ (edj − e0j )Bj

V∑

u=1

xiju ∀i ∈M, j ∈ J , v ∈ V (5.22)

pijv ≤M(

v∑

u=1

xiju −
v∑

u=1

yiju) ∀i ∈M, j ∈ J , v ∈ V (5.23)

v∑

i=1

n∑

j=1

pijv ≤ wG(tv+1 − tv) ∀i ∈M, j ∈ J , v ∈ V (5.24)

evj ≤
∑n

j=1 pijv

Bj
∀j ∈ J , v ∈ V (5.25)

e0j ≤ efj ≤ edj ∀j ∈ J (5.26)

efj = e0j +
V∑

v=1

evj ∀j ∈ J (5.27)

Constraints (5.14) ensure that each vehicle j is plugged into at most one charger and at
most one event v. Constraints (5.15) ensure that each vehicle j will not be plugged before
the arrival time rj . Constraints (5.16) ensure that each vehiclej will not be plugged after the
departure time dj . Constraints (5.17) (5.18) and ensure that each vehiclej will be unplugged at
the departure time dj . Constraints (5.19) ensure that if the vehiclej is plugged to charger i, it
will be unplugged from the same charger. Constraints (5.20) ensure that the charger i will be
reserved to vehiclej during plug-in time [tv, td) (no other vehicle will be plugged). Constraints
(5.21) ensure that the energy delivered by charger i to vehicle j will not exceed its output energy.
Constraints (5.22) ensure that the energy delivered by charger i to vehicle j will not exceed its
demand. Constraints (5.8) ensure that the vehicle j will not be charging before plug-in time
and after plug-out time. Constraints (5.24) ensure that the power delivered by all chargers
will not exceed the total grid capacity. Constraints (5.25), (5.26) and (5.27) calculate the final
state-of-charge of each vehicle j.

Remark 5.3.1. We did not propose an event based formulation for constant power model since
we consider different charging power rates. As stated in Remark 3.4.3, power allocation problem
with different constant power rates is an open problem. Therefore, in an event interval [tv, tv+1),
we do not have an algorithm to schedule the charging without exceeding the grid capacity.

5.4 Complexity

In this section, we prove that the charging problem is strongly NP-hard for both constant and
variable power models.
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Theorem 5.4.0.1. The EVCS problem to maximize the delivered energy is strongly NP-hard
considering constant and variable charging powers.

Proof. To prove the NP-hardness of the charging problem, we use the reduction from 3-Partition,
which is known to be NP-hard [Garey & Johnson 1979]. The 3-Partition problem is stated as
follows. Given a positive integer B and a set N = {a1, . . . , a3n} of 3n positive integers with
B/4 < aj < B/2 and

∑
j∈N aj = nB, is there a partition of N into n mutually disjoint subsets

N1, . . . , Nn, such that each subset Ni contains 3 elements of N and
∑

j∈Ni
aj = B ?

Given an arbitrary instance of the 3-Partition problem, we build an instance (I) of the
considered EVCS problem, consisting of a set of 3n chargers where each charger can deliver a
constant charging power w = 1, and a capacity of the grid value of n. There are 3n charging
requests Dj , j = 1, . . . , 3n. Arrival time rj and departure time dj of all demands are equal to 0

and B, respectively. The energy requirement ej of demand j is equal to aj , j = 1, . . . , 3n.
In what follows, we show that there exists a feasible schedule of charging demands with the

objective function equal to zero if and only if the 3-Partition admits a solution.
First, assume that the 3-Partition problem has a solution and let N1, . . . , Nn be the required

subsets of N . Each subset Ni is then composed of 3 elements and
∑

j∈Ni
aj = B. Let ai1, ai2 and

ai3 be the elements of a set Ni. Since all chargers deliver a constant power equal to 1, then the
maximum charging time of demand j is equal to aj , j = 1, . . . , 3n. Thus the desired schedule
of charging requests is constructed as follows: for each set Ni we charge ai1 on the charger
3(i−1)+1 in the time interval [0, ai1], then we charge ai2 on the charger 3(i−1)+2 in the time
interval [ai1, ai1+ai2], and finally we charge ai3 in the interval [ai1+ai2, ai1+ai2+ai3]. We note
that the charging schedule respects the capacity of the grid, and each request is satisfied with
the requested amount of energy. Conversely, assume now that there exists a feasible schedule S

of all charging demands in which all vehicles are charged to their requested amount of energy.
Since all chargers deliver a constant power equals to 1, then the charging time of each request j
is equal to aj . Furthermore, as all demands have the same arrival and departure times, then all
chargers are occupied between instants 0 and B. Also, we know that the total power that can be
delivered by all chargers is limited to n, then at each time t, t ∈ [0, B], at most n chargers can
be activated in the same time. Let T be the total charging time spent to charge vehicles when
exactly n chargers are activated at the same time in the interval [0, B], then T ≤ nB. Since
all demands are satisfied and

∑
j∈N aj = nB, then we deduce that at each time t, t ∈ [0, B],

exactly n chargers are activated in the same time. Let i1, . . . , in be the first n demands that
start charging at time t = 0. Since at each time t ∈ [0, B] exactly n chargers are activated, then
at each time t on which one of the demands i1, . . . , in ends another demands starts charging. Let
i′1, . . . , i

′
n be the demands that start charging when demands i1, . . . , in ends, respectively. Again,

at each time t on which one of the demands i′1, . . . , i
′
n ends another demands starts charging.

Let i′′1, . . . , i
′′
n be the demands that start charging when demands i′1, . . . , i

′
n ends, respectively.

Since all demands are charged to their requested amount of energy, then aiu + ai′u + ai′′u ≤ B,
u = 1, . . . , n. We have

∑n
u=1(aiu +ai′u +ai′′u) = nB then aiu +ai′u +ai′′u = B, u = 1, . . . , n. Thus,

the sets Nu = {iu, i′u, i′′u}, u = 1, . . . n are a solution to the 3-Partition problem. Therefore, the
scheduling problem is strongly NP-hard.
In the case of variable charging power, it is sufficient to consider that charger can deliver variable
power with maximum power equal to 1, and the proof remains valid.
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5.5 Solution Methods

5.5.1 Solution Representation and Evaluation

In the constant charging model, a solution to the charging scheduling problem consists of deter-
mining the charging demands assigned to chargers and then choosing the appropriate time slots
for charging. In the variable power model, an additional decision on the charging power at each
time slot must be made. Therefore, we propose a two-step decomposition approach to solve the
charging scheduling problem. The first step deals with assigning charging demands to chargers
and the second step determines the charging schedule of vehicles. A solution is evaluated by
solving the power allocation to determine the objective function.

5.5.1.1 Assignment solution

We represent the assignment of charging demands to chargers as a vector Π = (π1, . . . , πm)

where πi is the sequence of charging demands assigned to a charger i. Once we have a solution
to the assignment problem, we solve the power allocation by determining the amount of power
delivered by each charger to each demand at each time slot. The unassigned demands will be
placed on the list of rejected demands.
To get plug-in times stj from the assignment vector Π, we simply schedule all demands sequen-
tially without idles times while respecting their arrival times. For each demand j in the sequence
πi, we select the earliest possible plug-in time stj = max(rj , dj′) where j′ is the demand sched-
uled before j in πi. In this case, demand j will be plugged from stj to its departure time dj . If
stj > dj , the charging demand j will be rejected and added to the set of rejected demands LR.
The details of generating assignment solutions in the proposed heuristics and metaheuristics are
given further in Sections Sections 5.5.2 and 5.5.3.

5.5.1.2 Power allocation solution

After determining the assignment of demands to the chargers, the next step is to decide the
amount of electric power delivered by each charger at each time slot. We formulate the problem
for both constant and variable power variants as an MILP model.

Complexity of the power allocation problem. Before presenting the power allocation
MILP models, we should present the complexity of the power allocation problem. As mentioned
in Chapter 3, the power allocation considering constant power model with different types of
chargers is an open problem (see Remark 3.4.3). Remark that when the assignment is decided,
the power allocation is exactly the same one as in the previous chapter. However, for the vari-
able power model, the problem is polynomial using the reduction from maximum flow problem
[Ahuja et al. 1988]. The equivalent network N = (V,E), illustrated in Figure 5.2, is constructed
as follows. The set of vertices V consists of: (i) a source s, (ii) a vertex for each time slot t,
t ∈ H (iii) a vertex vj fore each charging demand j ∈ J , and (iv) a sink p. The set of arcs
E with restricted capacities consists of: (i) an arc from the source s to each time slot vertex t

with capacity wG, (ii) an arc from each vertex t to each charging demand vertex vj if t ∈ [rj , dj)

with a capacity equals to wj , where wj is the maximum output power of the charger where j is



5.5. Solution Methods 113

assigned, and (iii) an arc from each vehicle vertex vj to the sink p with capacity Ej = (edj−e0j )Bj .
A feasible charging schedule is determined by solving the flow network.
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Figure 5.2: Flow network for solving the power allocation solution with variable power model.

LP for constant power model. We define two parameters: Boolean parameters aij that
specifies if the demand j is assigned to charger i, and parameters stj to specify the plug-in
time of the demand j. Both parameters are obtained in the assignment phase of demands to
chargers. To get the plug-in time stj , we simply schedule all electric vehicles assigned to the
same charger sequentially without idle times while respecting their arrival times. We define the
binary decision variable yjt that specifies whether or not the electric vehicle j is charging at
time slot t. We define a parameter pjt =

∑n
i=1 aij × wi if stj ≤ t < dj and pjt = 0 otherwise.

Variables yjt are set to zero for all t where t < stj and t > dj .

min
n∑

j=1

(edj − efj )

e0j ≤ efj ≤ edj ∀j ∈ J (5.28)

efj = e0j +

∑dj
t=stj

yjt × pjt × τ

Bj
∀j ∈ J (5.29)

n∑

j=1

yjt × pjt ≤ wG ∀t ∈ H (5.30)

Constraints (5.28) and (5.29) calculate the final state-of-charge of each electric vehicle j.
Constraints (5.30) ensure that at each time slot t, the total output power does not exceed the
charging station limit.
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LP for variable power model. Even though the problem is polynomial by solving its equiv-
alent maximum flow problem, it was more convenient and faster to solve an LP model using
a commercial solver. For the variable power model, event-based decision variables are used
instead of time-indexed variables. Let tl, l ∈ L = {1, . . . , L}, be distinct plug-in times stj
and departure times dj ordered in non decreasing order, where L ≤ 2n. We define parameter
pjl =

∑n
i=1 aij × wi for each l where stj ≤ tl < dj , and pjl = 0, otherwise. We define the

continuous decision variables elj which represents the energy delivered to the electric vehicle j

in the time interval [tl, tl+1).

min
n∑

j=1

(edj − efj )

e0j ≤ efj ≤ edj ∀j ∈ J (5.31)

efj = e0j +

∑L
l=1 e

l
j

Bj
∀j ∈ J (5.32)

0 ≤ elj ≤ pjl(tl+1 − tl) ∀j ∈ J , l ∈ L (5.33)
n∑

j=1

elj ≤ wG(tl+1 − tl) ∀l ∈ L (5.34)

Constraints (5.31) and (5.32) calculate the final state-of-charge of each electric vehicle j. Con-
straints (5.33) ensure that, at each time t, the delivered power by each charger i does not exceed
its maximum rated power wi. Constraints (5.34) ensure that the total output power does not
exceed the charging station limit.

5.5.2 Heuristic Methods

In the following, we define two greedy rules for the assignment of charging demands to chargers.
The power charging schedule of assigned demands is determined by solving the MILP presented
in Section 5.5.1.2.

5.5.2.1 First Come First Served (FCFS) Heuristic.

The First-come-first-served (FCFS) rule is a popular approach to scheduling electric vehicle
charging [Jin et al. 2013, Yao et al. 2017, Yang 2019]. It assigns the vehicle with the earliest
arrival time to the first available chargers. The detail of the heuristic is given in Algorithm 13.

The time complexity of the Heuristic FCFS is O(nm).

5.5.2.2 Interval Graph Coloring based Heuristic (IGCH).

In this heuristic, we use a graph coloring approach to select the set of demands to be assigned
to chargers. Let consider the interval graph G = (V,E) where each vertex v ∈ V represents a
charging demand. There is an edge e ∈ E between two vertices if and only if their associated
intervals overlap, i.e., (j, j′) ∈ E, j′ ̸= j, if [rj , dj ] ∩ [rj′ , dj′ ] ̸= ∅. Assigning a set of demands to
a given charger is equivalent to the k-coloring problem of the graph G. The k-coloring problem
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Algorithm 13: Heuristic FCFS
input : The set of charging demands J , the set of chargersM
output: Assignment of vehicles to chargers Π, list of rejected demands LR

1 Sort the set of charging demands J in non-decreasing order of their arrival times rj ,
breaking ties according to the non-decreasing order of their departure times dj . ;

2 for j ∈ J do
3 if there is a charger i available at time rj then
4 Add j to πi;
5 else
6 Let t be the earliest time when a charger k is available, where t > rj
7 if t < dj then
8 Add j to πk;
9 else

10 Add j to the list of rejected demands;
11 end
12 end
13 end

assigns a color c ∈ {1, .., k} to each vertex of G so that no adjacent vertices have the same color.
The set of vertices colored with the same color corresponds to the set of demands assigned to
the same charger, which is called a color class. Since an interval graph is a chordal graph, a
greedy coloring algorithm provides an optimal coloring on a chordal graph following the perfect
elimination ordering [Gilmore & Hoffman 1964]. A perfect elimination ordering in a graph is
an ordering of the vertices so that each vertex v and the neighbors of v that occur after v in
the order form a clique. We use the lexicographic breadth-first (LexBFS) search proposed by
[Rose et al. 1976] to find the perfect elimination ordering in linear time. Generally, an interval
graph admits more than one optimal coloring solution since we can generate different perfect
elimination ordering. However, enumerating all perfect sequences might be exponential in the
size of the graph in general [Chandran et al. 2003].

In our case, we add randomness to the algorithm to generate different perfect elimination
orders by introducing a random weight w to each vertex. Therefore, when two vertices have the
same label, we choose the vertex with maximum weight w. Algorithm 14 shows the pseudo-code
of randomized LexBFS ordering.

The overall procedure of the IGCH algorithm is depicted in Algorithm 15. After solving
the graph coloring problem (lines 1-3), we obtain the chromatic number k and the set of color
classes C1, . . . , Ck. First, the set of chargers is ordered in decreasing order of their output powers
(line 4). Then, the set of color classes is ordered in decreasing order of their cardinalities (line
5), i.e., it begins with the class color with the highest number of demands and ends with the
class with the smallest number of demands. The demands with the same color class are ordered
in increasing order of their arrival times (line 6). Next, we assign the demands in the first m

color classes to the first m chargers (line 7). Consequently, demands in the color class with the
highest cardinality are assigned to the charger with the highest charging output power. When
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Algorithm 14: Randomized LexBFS
input : Interval graph G = (V,E)

output: A lexicographic ordering σ = (v1, .., vn)

1 for v ∈ V do
2 label (v)← [];
3 w(v)← random();
4 end
5 for i = |V | down to 1 do
6 Choose a vertex v ∈ V with lexicographical maximal label, breaking ties according

to the decreasing order of w(v);
7 σ(i)← v ;
8 for u ∈ Neighborhood(v) do
9 label (u)← label (u).concatenate(i);

10 end
11 end
12 return σ

Algorithm 15: Heuristic IGCH
input : Scenario of n electric vehicles and m chargers
output: Assignment of the electric vehicles to the chargers, list of rejected demands

1 Construct the interval graph G of the scenario;
2 Get a lexicographic ordering σ of G using Algorithm 14;
3 Color the vertices with the smallest color that is not already used by one of its

neighbors in the reverse of the order of σ;
4 Sort chargers in decreasing order of their output power;
5 Sort the color classes in decreasing order of their cardinality;
6 Sort electric vehicles in the same class color in increasing order of their arrival times;
7 Assign the electric vehicles of the k first classes to the k first chargers;
8 if k > m then
9 for each vehicle j in the non assigned classes do

10 Choose the charger i that has the largest sub-interval [t1, t2) ⊆ [rj , dj) where the
charger is free (no vehicle is plugged in) ;

11 Assign the vehicle j to the charger i at the position of [t1, t2);
12 if no sub-interval available then
13 Add j to the list of rejected demands;
14 end
15 end
16 end

the chromatic number k is greater than m, each remaining non assigned demand j in classes
Cm+1, . . . , Ck will be assigned to a charger i as follows. Let [t1, t2) be the largest time period
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between rj and dj where a charger i is available, and let j′ be the demand assigned to this
charger i where dj = t1, then demand j is assigned to the charger i after j′ (lines 10,11). If no
charger is available between [rj , dj), then demand j is rejected (lines 12-14).

Example 5.5.1. We give an illustrative example of the IGCH. Consider a charging station
with three chargers. The first two chargers deliver an output power of 20 kW, while the third
delivers an output power of 10 kW. The maximum grid capacity is set to 30 kW. We consider the
charging of six demands. Data related to these demands are given in Table 5.2 and its interval
graph is giving in Figure 5.3. The chromatic number of this graph is k = 4, which is greater
than the number of chargers m = 3. Thus, we have four color classes Cl, l = 1, . . . 4.

Table 5.2: IGCH illustrative example instance.

Vehicle Arrival time rj Departure time dj Initial SOC e0j Desired SOC edj Battery capacity B

v1 8:00 10:00 0.2 0.7 40 kWh
v2 8:00 11:00 0.2 0.7 40 kWh
v3 8:00 12:00 0.2 0.7 40 kWh
v4 9:00 12:00 0.2 0.7 40 kWh
v5 11:00 14:00 0.2 0.7 40 kWh
v6 11:00 13:00 0.2 0.7 40 kWh

Figures 5.4 and 5.5 show two different assignment solutions according to two different col-
oration. The first possible coloration (Figure 5.4) is C1 = {v1, v5}, C2 = {v3} , C3 = {v4},
and C4 = {v2, v6}. According to lines (4-7) in Algorithm 15, the heuristic starts by assigning
demands in classes C1 and C4 to charger 1 and 2, respectively, then C2 to charger 3. After
that, the heuristic assigns the demand of C3 = {v4} by applying the rule in lines (8-15). More
precisely, following lines (8-15) there are two interval times [10, 11) on charger 1 and [12, 13).
Since the two intervals have the same length, and chargers are already sorted in decreasing order
of their charging outputs, the heuristic assigns v4 to charger 1, and v4 is then plugged after v1.
Also, v4 is plugged to its departure d4 = 13 and thus v6 is plugged at time t = 13 (following the
rule described in Section 5.5.1.1). An interval graph has one optimal value for the chromatic
number k but it does not generally have one optimal coloration. A second possible coloration
of the graph in Figure 5.3 can be C1 = {v1, v6}, C2 = {v2, v5} , C3 = {v4}, and C4 = {v3}. The
assignment of demands following this coloration by the IGCH is depicted in Figure 5.5.

5.5.3 Simulated Annealing with LP models

We use the simulated annealing (SA) algorithm described in Chapter 3 in Algorithm 6. Clearly,
the objective function f(S) and the neighbor structure are different. The new solution is gen-
erated ( Algorithm 6 line 6) by a modifying the assignment of vehicles to chargers as described
in Section 5.5.3.1. The MILP of power allocation, described in Section 5.5.1.2, is solved to get
the objective function value of each generated solution. Also, we consider both the Lundy-Mees
and the original cooling schemes in line 19. In the original SA paper [Kirkpatrick et al. 1983],
authors propose the following decreasing geometric cooling scheme:

Tl+1 = αTl



118 Chapter 5. Preemptive EVCS to maximize the delivered energy

v1

v2

v3

v4

v5

v6

Figure 5.3: Interval Graph corresponding to the example of Table 5.2. The vertices vj , j =

1, . . . , 6 represent the charging demands. There is an edge between two vertices if corresponding
intervals overlap.

(a) Schedule vehicles in the first m

color classes.

8 9 10 11 12 13 14

Charger 1 v1 v5

Charger 2 v2 v6

Charger 3 v3

Not assigned v4

(b) Schedule vehicles in the non assigned
color classes.

8 9 10 11 12 13 14

Charger 1 v1 v4 v5

Charger 2 v2 v6

Charger 3 v3

Figure 5.4: IGCH assignment according to coloration 1.

5.5.3.1 Neighborhood generation

A neighborhood solution of the current solution is obtained through a perturbation of the as-
signment of charging demands to chargers using one of the following moves:

• Swap on the same charger: a neighborhood solution is generated by randomly choosing a
charger and exchanging the position of two charging demands scheduled on this charger.
The positions of charging demands are randomly selected.

• Swap between two different chargers: a neighborhood solution is generated by swapping
two charging demands between two chargers. The chargers and the charging demands are
randomly selected.

• Insert: a neighborhood solution is generated by randomly choosing a charging demand on
a charger and moving it to another position on another charger. The chargers and the
position of a charging demand are randomly selected.

• Shift left: a neighborhood solution is generated by moving a charging demand from a
position o1 to o2 on the same charger where o2 < o1. Positions o1 and o2 are randomly
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(a) Schedule vehicles in the first m

color classes.

8 9 10 11 12 13 14

Charger 1 v1 v6

Charger 2 v2 v5

Charger 3 v4

Not assigned v3

(b) Schedule vehicles in the non assigned
color classes.

8 9 10 11 12 13 14

Charger 1 v1 v3 v6

Charger 2 v2 v5

Charger 3 v4

Figure 5.5: IGCH assignment according to coloration 2.

selected.

• Shift right: a neighborhood solution is generated by moving a charging demand from a
position o1 to a position o2 on the same charger, where o2 > o1. Positions o1 and o2 are
randomly selected.

• Insert from the list of rejected demands: a neighborhood solution is generated by choosing a
charging demand from the rejected list of demands and inserting it on a charger at position
o. The charger and the charging demand in the rejected list are randomly selected.

• Swap from the list of rejected demands: a neighborhood solution is generated by moving
a charging demand from position o1 to the rejected list and replacing it with a rejected
demand at position o2. The charger and the position of charging demands are randomly
selected.

• Reject a demand: a neighborhood solution is generated by moving a charging demand
from position o to the rejected list. The charger and the position of charging demand are
randomly selected.

At each neighbor generation, the move operator is selected randomly from the list of moves.
Then, the power allocation MILP described in Section 5.5.1.2 is solved. Note that none of these
moves can generate an unfeasible solution since we apply the procedure explained in Section
5.5.1.1 to get the plug-in times from the assignment vector. For example, if a demand j is
sequenced after a demand j′ where dj ≤ dj′ , then j will be rejected. Therefore, certain moves
may reject some charging demands instead of changing their assignment, but it will not generate
an infeasible assignment.
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5.6 Computational Results

In this section, we present the results of the experimental study. We start by describing generated
scenarios. Then we perform parameter tuning to choose the best values for SA parameters.
Finally, we compare the results obtained by the proposed optimization methods.
All algorithms are implemented in C++ programming language and run on a personal computer
with CPU Intel Core i5-4570S operating at 2.90 GHz and 8 GB RAM and running Linux OS
(Ubuntu 20.04 LTS). We use CPLEX 12.7 as a solver for the MILP models in our heuristics
and SA. The full MILP models, presented in Section 5.3, were solved by CPLEX running on
an Intel Xeon Silver 4216 CPU operating at 2.10 GHz and 64 GB RAM and running Linux OS
(Ubuntu 20.04 LTS). We could only get results for scenarios with 10 charging demands and 5
chargers. CPLEX could not solve scenarios with more than 10 demands due to out-of-memory
errors, even when we limited the computing time to a few minutes.

5.6.1 Instances Generation

Since this study was done before the preceding chapters, the generation of instances differs from
the one before. The following instances were less challenging for grid capacity minimization.
Therefore, these instances were not used in the previous chapters.

Regarding the charging station, we consider four classes of instances with different number
of chargers m = {5, 10, 20, 40}. In the first class, the output power delivered by the first three
chargers is 3.7 kW, 22 kW, and 43 kW, respectively. The last two chargers deliver 11 kW. For the
remaining classes, we set 30% of chargers to deliver 3.7 kW, 30% to deliver 11 kW, 30% to deliver
22 kW and 10% to deliver 43 kW. This charging rates are chosen from the the standard IEC 61851
[Std 2017] that defines the classification of the different charging modes. The charging station
maximum capacity wG is set to 70% of

∑n
i=1wi. The scheduling time horizon is one day, and

the time slot τ is set to 6 minutes. To test our algorithms, we must model the stochastic electric
vehicle charging demands. Electric vehicle arrivals are randomly occurring and independent
events. Therefore, the arrival time is modeled using a non-homogeneous Poisson Process with
an arrival rate λ(h) that varies at each hour h = {1, ..., 24}. The arrivals are high in the morning
and low in the afternoon. The parking duration prj follows an exponential distribution with a
mean parking duration that also varies over time. There is no correlation between the arrival
time and the parking duration, so the two variables can be generated independently [?]. The
departure time dj of each electric vehicle can be directly obtained with the formula dj = rj+prj .
The initial state-of-charge e0j at the arrival rj is considered uniformly distributed in the range of
[0.2,0.7] of the capacity of the vehicle’s battery. The desired state-of-charge edj of each electric
vehicle j is uniformly chosen from [e0j ,1]. The battery capacities are randomly chosen from the
current real-world electric vehicle battery capacities [EVDB 2020]. We generate 15 instances
for each class. In the first 10 instances of each class, the chromatic number k of the interval
graph corresponding to the electric vehicle charging demand instance is greater than the number
of chargers. In comparison, it is less than or equal to the number of chargers in the last five
instances.

The first class of instances with m = 5 and n = 10 are used, as small-sized instances, to
obtain the optimal objective values by solving the full MILPs and comparing it with the ones
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obtained using the proposed algorithms. These instances are denoted from 1 to 15 with the
prefix "s". As an example, s-3 denotes the third small instance with 10 vehicles. The remaining
instances (classes 2, 3, and 4) are named using only their sequence number from 1 to 45.

All scenario data is public and accessible on the web https://github.com/imyzz/EVCSP_
RA_instances.

5.6.2 Parameter Tuning of SA Algorithm

The tuning of optimization algorithms is essential to obtain good results. We use IRACE
(Iterated Racing for Automatic Algorithm Configuration) package [López-Ibáñez et al. 2016]
that implements a general iterated racing procedure to find optimal parameter settings. From
classes 2 to 4, we select two instances as the training instances for IRACE. Table 5.3 presents
the parameter settings for the SA algorithm tuned by IRACE. The first column reports the
selected parameters for tuning. The second column reports, for each parameter, the range of
values tested. Parameters µ, α, and "final temperature" are numerical, meaning each takes real
values in its corresponding interval. At the same time, "max neighbors", "cooling technique",
and "max accepted" are categorical parameters that take discrete values in their corresponding
set. The third column reports the best parameter settings after tuning, which are further used
in all experiments. Here, a dash "–" means that the best value is unavailable. Indeed, The value
of α only needs to be set if the "Cooling technique" parameter is "Geometric", and since the
best cooling scheme is "LandyMees", IRACE did not report the value of α. Thus, no best value
for α was reported in Table 5.3.

Table 5.3: Parameter settings for SA algorithm tuned by IRACE.

Parameter Value range Best
µ [0.01, 0.9] 0.12
Max neighbors {20, 50, 100} 100
Cooling technique {LandyMees, Geometric} LandyMees
α [0.01,0.9] -
Final temperature [0.001,0.1] 0.001
Acceptance ratio {0.1, 0.2, 0.3, 0.4} 0.1

5.6.3 Evaluation of Algorithms on Small Instances

Here, we use the set of small-size instances to compare the proposed algorithms with the result of
solving the full MILP models using CPLEX. We set the maximum computation time of CPLEX
to 30 minutes. Results are reported in Table 5.4. The first column denotes the instance name.
The second column "k" depicts the chromatic number of each instance’s interval graph. For
CPLEX, column "obj" reports the objective value found by solving the full MILP, column "LB"
gives the lower bound calculated by CPLEX, and column "time" displays the total running time
in seconds. For the FCFS heuristic, the objective function value and the total running time in
seconds are displayed in the columns "obj" and "time", respectively. Due to the stochastic nature

https://github.com/imyzz/EVCSP_RA_instances
https://github.com/imyzz/EVCSP_RA_instances
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Table 5.4: Comparison of results with n = 10 and m = 5.

scenario k CPLEX FCFS IGCH SA
obj LB time(s) obj time(s) mean best std time(s) mean best std time (s)

Model with constant power
s-1 9 0.75 0.00 1807.92 1.86 1.17 0.49 3.96E-03 1.56 6.11E-03 0.12 0.08 0.04 5.57
s-2 8 0.15 0.00 1808.16 0.25 0.17 0.09 5.99E-03 0.42 4.99E-03 0.13 0.08 0.06 5.20
s-3 8 0.17 0.01 1807.16 0.72 0.65 0.07 4.56E-03 0.43 6.00E-03 0.10 0.07 0.02 5.35
s-4 8 0.17 0.01 1806.69 1.67 1.16 0.19 6.15E-03 1.06 5.39E-03 0.21 0.14 0.05 5.23
s-5 9 0.94 0.00 1806.63 1.65 1.10 0.18 3.67E-03 0.87 4.15E-03 0.10 0.06 0.04 5.11
s-6 8 0.13 0.02 1808.59 1.03 0.74 0.15 6.90E-03 0.25 5.27E-03 0.11 0.09 0.01 4.78
s-7 6 0.12 0.00 1812.29 0.39 0.16 0.25 5.46E-03 0.41 6.13E-03 0.11 0.09 0.02 3.60
s-8 9 0.79 0.00 1807.03 1.82 1.57 0.13 4.68E-03 0.68 5.38E-03 0.25 0.16 0.11 5.62
s-9 10 1.46 0.00 1807.60 1.86 1.43 0.16 3.91E-03 1.00 5.81E-03 0.34 0.20 0.07 6.22
s-10 8 0.07 0.02 1811.51 0.34 0.13 0.16 4.94E-03 0.37 4.81E-03 0.08 0.07 0.01 4.88
s-11 4 0.08 0.07 1844.80 0.33 0.24 0.03 5.94E-03 0.32 3.81E-03 0.06 0.05 0.01 3.74
s-12 5 0.09 0.08 1813.99 0.88 0.55 0.13 5.93E-03 0.65 6.30E-03 0.18 0.09 0.12 5.47
s-13 4 0.06 0.05 1812.98 0.33 0.19 0.04 6.19E-03 0.99 5.77E-03 0.12 0.08 0.04 4.25
s-14 5 0.06 0.01 1811.90 0.56 0.16 0.16 4.68E-03 0.44 4.28E-03 0.07 0.06 0.02 4.24
s-15 4 0.15 0.05 1811.17 0.33 0.27 0.08 9.68E-03 1.46 7.46E-03 0.26 0.15 0.10 4.26

Model with variable power
s-1 9 0.00 0.00 114.61 1.58 0.92 0.37 7.40E-04 1.42 8.96E-04 0.00 0.00 0.00 0.44
s-2 8 0.00 0.00 682.86 0.17 0.00 0.20 7.26E-04 0.30 7.67E-04 0.01 0.00 0.03 0.25
s-3 8 0.00 0.00 60.95 0.58 0.48 0.05 8.24E-04 0.35 7.45E-04 0.00 0.00 0.02 0.25
s-4 8 0.00 0.00 76.02 1.48 1.06 0.21 7.41E-04 0.90 6.68E-04 0.01 0.00 0.04 0.48
s-5 9 0.00 0.00 71.31 1.44 0.89 0.26 6.85E-04 0.75 1.78E-03 0.00 0.00 0.00 0.39
s-6 8 0.00 0.00 94.16 0.86 0.47 0.17 6.43E-04 0.12 9.29E-04 0.00 0.00 0.00 0.12
s-7 6 0.00 0.00 75.16 0.10 0.00 0.18 6.77E-04 0.21 7.08E-04 0.00 0.00 0.00 0.14
s-8 9 0.00 0.00 1732.09 1.68 1.48 0.11 6.49E-04 0.54 1.55E-03 0.06 0.00 0.05 1.08
s-9 10 0.08 0.00 1809.56 1.79 1.39 0.14 6.94E-04 0.85 7.87E-04 0.16 0.05 0.09 1.02
s-10 8 0.00 0.00 85.45 0.16 0.00 0.17 7.33E-04 0.24 7.30E-04 0.00 0.00 0.00 0.09
s-11 4 0.00 0.00 43.61 0.13 0.11 0.04 7.23E-04 0.23 7.26E-04 0.00 0.00 0.00 0.25
s-12 5 0.00 0.00 44.68 0.62 0.33 0.10 8.38E-04 0.54 6.96E-04 0.06 0.00 0.08 0.94
s-13 4 0.00 0.00 30.99 0.14 0.14 0.00 7.26E-04 0.87 7.81E-04 0.00 0.00 0.02 0.49
s-14 5 0.00 0.00 28.34 0.39 0.07 0.12 8.58E-04 0.32 6.81E-04 0.00 0.00 0.00 0.17
s-15 4 0.00 0.00 46.37 0.12 0.00 0.11 1.18E-03 1.30 6.94E-04 0.03 0.00 0.06 0.78

of the IGCH and the SA algorithm, 30 independent executions were done for each instance. We
report the average and the best objective function value over the 30 runs in columns "mean"
and "best", respectively. Also, we report the standard deviation of the mean objective function
value in column "std" and the average running time in column "time". The best objective values
are shown in bold.

First, we remark that the SA algorithm achieved all the best objective values for both
constant and variable power models, and the average standard deviation was 0.04, which suggests
that the SA algorithm is stable.

For the constant power model, CPLEX found 6 of the best solutions out of 15, mainly when
k ≤ m. All instances were hard to solve for CPLEX within 30 minutes. The average gap between
the best objective values found by SA, CPLEX, FCFS, and IGCH and the lower bound (LB)
calculated by CPLEX were 0.08, 0.34, 0.66, and 0.57, respectively.

For the variable power model, we notice that the SA algorithm achieved 14 optimal solutions
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out of 15 in less than 1.08 seconds. CPLEX also achieved 14 optimal solutions. However, it took
an average time of 227.61 seconds. One instance, "s-9", was hard to solve with CPLEX within
30 minutes. For the heuristics, IGCH found three optimal solutions out of 15. The average gap
between the best objective values found by FCFS and IGCH and the lower bound (LB) were
0.56 and 0.35, respectively.

For both constant and variable models, IGCH outperforms FCFS. However, the average
objective values found by IGCH were worse than FCFS heuristic. For this reason, we chose
solutions found by the FCFS heuristic as the initial solutions for SA Algorithm. We established
this choice by the initial experiments in which SA Algorithm achieved the best results when
starting from the FCFS heuristic solutions, even when running IGCH several times and selecting
the best solution as the initial solution for SA Algorithm.

Now, we compare the three proposed methods in terms of running time. As expected,
heuristics are faster than the SA algorithm. For the constant power model, FCFS and IGCH
took an average running time of 5.4 and 5.5 milliseconds, whereas the SA algorithm took an
average running time of 4.96 seconds. For the variable power model, the average running time
for FCFS and IGCH were 0.8 and 0.9 milliseconds, respectively, whereas the SA algorithm took
an average running time of 0.5 seconds.

In summary, the SA algorithm outperformed CPLEX in significantly less time. Also, con-
sidering the variable power model rather than the constant power model is more efficient for
satisfying more charging demands and running in less computation time.

5.6.4 Evaluation of Algorithms on Classes 2-4 of Instances

In this section, we focus on the evaluation of algorithms on instances of classes 2-4. Note that
no instances could be solved by CPLEX (both time-indexed and event-based models) due to
out-of-memory errors, even though we used a machine with 64 GB RAM. Using similar column
headings as in Table 5.4, Tables 5.5, 5.6 and 5.7 provide comparison of results obtained with a
number of charger m equals to 10, 20 and 40, respectively. From tables Tables 5.5, 5.6 and 5.7,
we made the following observations:

• In the variable power model, the objective function values obtained were better for all
instances, regardless of the optimization method. Indeed, the average objective values
obtained by the SA algorithm were reduced by 95.62%, 54.34%, and 73.00% for m equal
to 10, 20, and 40, respectively.

• For all instances, the performance of the SA algorithm is significantly better than the
heuristics IGCH and FCFS in both best and mean objective function values. for example,
the SA algorithm improves best the objective function value by 85.37% and by 65.59%
compared to the FCFS heuristic and IGCH, respectively.

• the objective function values obtained by the variable power model is better for all in-
stances, regardless of the optimization method. Indeed, the average objective values ob-
tained by the SA algorithm is reduced by 95.62%, 54.34%, and 73.00% for m equal to 10,
20, and 40, respectively.
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Table 5.5: Comparison of results with m = 10.

scenario n k FCFS IGCH SA
obj time (s) mean best std time (s) mean best std time (s)

Model with constant power
1 20 12 0.52 0.01 0.87 0.31 0.33 0.01 0.18 0.13 0.05 9.18
2 29 18 3.77 0.01 3.41 2.05 0.61 0.02 0.73 0.42 0.19 11.68
3 24 16 2.22 0.01 1.80 1.02 0.35 0.01 0.31 0.22 0.06 10.51
4 25 17 1.64 0.01 1.77 1.02 0.49 0.02 0.35 0.24 0.07 19.58
5 30 16 4.81 0.01 3.07 2.16 0.63 0.02 1.05 0.64 0.26 12.37
6 27 16 2.80 0.01 1.95 1.11 0.58 0.01 0.57 0.36 0.12 9.49
7 29 14 2.10 0.01 1.49 0.72 0.40 0.02 0.53 0.36 0.13 15.84
8 26 16 2.48 0.01 1.51 0.56 0.52 0.01 0.32 0.19 0.09 11.08
9 22 14 2.48 0.01 1.81 0.77 0.38 0.01 0.33 0.24 0.07 9.14
10 22 15 0.73 0.01 0.84 0.33 0.26 0.01 0.22 0.13 0.06 9.32
11 27 9 2.21 0.01 1.66 0.98 0.36 0.01 0.65 0.42 0.12 8.88
12 25 10 1.87 0.01 0.69 0.43 0.21 0.01 0.35 0.25 0.06 7.69
13 20 8 2.03 0.01 0.55 0.39 0.11 0.01 0.29 0.16 0.10 6.44
14 23 9 2.21 0.01 0.96 0.52 0.28 0.01 0.45 0.31 0.13 7.33
15 22 9 1.47 0.01 0.65 0.34 0.27 0.01 0.35 0.27 0.05 6.34

Model with variable power
1 20 12 0.27 0.00 0.52 0.02 0.27 0.00 0.00 0.00 0.00 1.34
2 29 18 3.36 0.00 3.12 1.54 0.72 0.00 0.27 0.01 0.21 1.97
3 24 16 1.96 0.00 1.41 0.57 0.40 0.00 0.04 0.00 0.07 1.65
4 25 17 1.26 0.00 1.45 0.75 0.36 0.00 0.06 0.00 0.06 1.74
5 30 16 4.53 0.00 2.81 1.32 0.52 0.00 0.54 0.05 0.26 1.84
6 27 16 2.46 0.00 1.53 0.71 0.43 0.00 0.23 0.05 0.10 1.89
7 29 14 1.90 0.00 1.15 0.34 0.46 0.00 0.12 0.00 0.11 2.10
8 26 16 2.23 0.00 1.03 0.24 0.45 0.00 0.04 0.00 0.05 1.84
9 22 14 2.13 0.00 1.45 0.52 0.44 0.00 0.04 0.00 0.06 1.45
10 22 15 0.48 0.00 0.54 0.04 0.26 0.00 0.01 0.00 0.02 1.49
11 27 9 1.89 0.00 1.05 0.08 0.42 0.00 0.19 0.08 0.12 2.04
12 25 10 1.64 0.00 0.42 0.08 0.23 0.00 0.06 0.00 0.11 1.72
13 20 8 1.73 0.00 0.24 0.02 0.13 0.00 0.06 0.00 0.09 1.39
14 23 9 2.04 0.00 0.57 0.03 0.25 0.00 0.16 0.00 0.13 1.58
15 22 9 1.14 0.00 0.25 0.00 0.21 0.00 0.03 0.00 0.05 1.50

• For instances in classes 2-4, we observe that IGCH outperforms the FCFS heuristic for
both the mean and the best objective function values. The best objective function values
of the IGCH is 57.63% less than those of the FCFS heuristic.

• In the case of the variable power model, the SA algorithm found 14 optimal solutions with
an objective value equal to 0 while the IGCH found two optimal solutions.

• We perform the Mann-Whitney U test [Mann & Whitney 1947] to compare the results
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Table 5.6: Comparison of results with m = 20.

scenario n k FCFS IGCH SA
obj time (s) mean best std time (s) mean best std time (s)

Model with constant power
16 48 22 6.04 0.02 2.75 1.89 0.49 0.03 1.71 1.12 0.27 13.54
17 50 22 6.22 0.02 3.30 2.16 0.48 0.02 2.24 1.49 0.36 12.32
18 59 30 4.95 0.02 3.72 2.39 0.87 0.03 1.18 0.90 0.20 19.44
19 66 28 7.40 0.02 6.13 4.62 0.76 0.04 2.37 1.75 0.32 22.46
20 51 23 4.73 0.02 2.85 1.86 0.52 0.02 1.63 1.22 0.22 13.04
21 58 33 6.63 0.02 7.55 4.64 1.15 0.03 2.64 1.75 0.67 18.80
22 53 26 3.76 0.02 3.21 1.81 0.60 0.03 1.3 0.72 0.24 18.89
23 68 37 9.24 0.02 8.73 6.60 0.88 0.04 3.65 2.73 0.41 21.40
24 52 27 4.21 0.02 3.39 1.80 0.70 0.04 1.25 0.75 0.29 15.91
25 54 28 5.89 0.02 6.19 4.26 0.90 0.03 2.76 1.91 0.47 19.49
26 40 20 4.11 0.01 1.93 1.37 0.34 0.02 0.78 0.51 0.13 12.43
27 40 18 4.05 0.01 1.86 1.41 0.26 0.02 0.90 0.61 0.15 13.04
28 37 20 3.52 0.01 1.63 0.88 0.33 0.02 0.63 0.45 0.11 20.50
29 33 15 2.88 0.01 0.72 0.50 0.15 0.01 0.38 0.27 0.09 15.17
30 39 18 3.48 0.02 1.85 1.19 0.39 0.02 0.58 0.42 0.11 11.43

Model with variable power
16 48 22 5.39 0.01 2.03 0.94 0.46 0.01 1.08 0.43 0.34 4.86
17 50 22 5.79 0.01 2.59 1.34 0.61 0.01 1.60 1.06 0.31 4.85
18 59 30 4.20 0.01 2.85 0.94 1.02 0.02 0.6 0.17 0.32 5.44
19 66 28 6.74 0.01 5.09 3.68 0.81 0.02 1.50 0.75 0.39 7.08
20 51 23 4.24 0.01 2.06 1.2 0.51 0.01 0.93 0.67 0.21 5.09
21 58 33 6.06 0.01 7.17 5.23 1.15 0.02 1.80 1.02 0.52 5.80
22 53 26 3.18 0.01 2.79 1.72 0.46 0.01 0.59 0.31 0.21 5.85
23 68 37 8.75 0.01 8.18 6.46 0.72 0.02 2.63 1.80 0.58 7.32
24 52 27 3.75 0.01 2.73 1.34 0.72 0.01 0.57 0.30 0.26 5.16
25 54 28 5.44 0.01 5.25 3.24 0.78 0.01 1.99 1.00 0.37 4.79
26 40 20 3.61 0.00 1.20 0.49 0.36 0.01 0.16 0.02 0.10 3.31
27 40 18 3.75 0.00 1.08 0.61 0.28 0.01 0.31 0.05 0.16 3.51
28 37 20 3.22 0.00 0.94 0.39 0.23 0.01 0.10 0.00 0.09 3.42
29 33 15 2.60 0.00 0.20 0.00 0.16 0.01 0.04 0.00 0.08 2.66
30 39 18 3.16 0.00 1.09 0.26 0.36 0.01 0.15 0.00 0.14 3.57

between the IGCH and the SA algorithm in constant and variable power models. The
Mann-Whitney U test is a non-parametric statistical test to determine whether two inde-
pendent samples were drawn from a population with the same distribution. We compare
the p-value to a significance level of 0.05. The p-value found is 0.00001, 0.0002 and 0.00001
for results with m = 10, m = 20, and m = 40, respectively. This suggests a significant
difference between the results of SA and IGCH algorithms.

• The objective function values are better minimized in instances where k is less than or
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Table 5.7: Comparison of results with m = 40.

scenario n k FCFS IGCH SA
obj time (s) mean best std time (s) mean best std time (s)

Model with constant power
31 93 45 6.27 0.04 5.14 3.57 0.95 0.08 1.87 1.38 0.26 38.93
32 99 53 7.27 0.03 7.60 5.91 1.00 0.08 2.57 1.95 0.33 51.29
33 79 41 6.64 0.03 3.07 1.81 0.85 0.06 1.66 1.11 0.21 28.74
34 102 52 9.59 0.03 7.61 5.20 1.06 0.09 2.76 2.09 0.37 28.84
35 93 52 7.77 0.03 8.20 6.77 0.70 0.07 2.34 1.40 0.33 41.19
36 96 50 4.30 0.03 5.86 4.01 0.78 0.07 1.79 1.38 0.21 54.29
37 96 52 9.47 0.03 6.92 4.53 1.43 0.07 2.67 2.18 0.36 30.28
38 112 58 9.82 0.04 9.19 7.24 0.98 0.09 3.30 2.72 0.41 37.45
39 95 43 7.04 0.03 3.94 2.68 0.71 0.06 2.54 1.94 0.29 27.32
40 78 38 6.56 0.03 2.94 2.15 0.37 0.04 1.77 1.35 0.25 27.10
41 85 37 6.40 0.03 3.80 1.95 0.76 0.05 1.82 1.30 0.28 22.99
42 82 39 5.47 0.03 3.32 2.15 0.45 0.05 1.45 1.23 0.16 26.55
43 88 40 6.36 0.03 4.76 3.68 0.58 0.06 2.11 1.58 0.28 27.38
44 91 40 6.13 0.03 3.54 2.24 0.60 0.06 1.76 1.26 0.26 22.73
45 79 39 6.81 0.02 3.49 2.45 0.41 0.05 1.96 1.24 0.34 25.21

Model with variable power
31 93 45 5.32 0.01 3.31 2.13 0.97 0.04 0.78 0.17 0.25 13.39
32 99 53 6.30 0.01 5.85 3.05 1.00 0.05 1.48 0.81 0.38 15.54
33 79 41 5.79 0.01 1.73 0.80 0.67 0.03 0.77 0.46 0.20 10.36
34 102 52 8.16 0.02 6.16 3.83 0.91 0.06 1.38 0.53 0.45 14.82
35 93 52 6.69 0.01 6.82 4.21 1.12 0.05 1.20 0.39 0.38 12.87
36 96 50 3.18 0.01 4.29 2.40 0.80 0.05 0.70 0.29 0.25 14.76
37 96 52 8.31 0.01 5.39 3.24 1.18 0.05 1.49 0.90 0.36 14.05
38 112 58 8.57 0.02 7.40 4.67 1.19 0.07 1.75 1.05 0.34 18.14
39 95 43 5.79 0.02 1.95 0.58 0.72 0.04 1.02 0.26 0.26 14.25
40 78 38 5.61 0.01 1.35 0.59 0.38 0.03 0.64 0.23 0.25 9.63
41 85 37 5.56 0.01 2.37 1.27 0.69 0.03 0.85 0.35 0.32 11.14
42 82 39 4.70 0.01 1.80 0.82 0.43 0.03 0.48 0.19 0.21 10.44
43 88 40 5.33 0.01 3.07 1.86 0.67 0.04 0.92 0.34 0.33 13.26
44 91 40 5.11 0.01 1.99 0.67 0.49 0.04 0.68 0.24 0.29 12.79
45 79 39 5.98 0.01 2.09 1.23 0.48 0.03 0.91 0.30 0.24 9.91

equal to m (the last five instances for each case). This is explained by the fact that there
are enough charges to park all vehicles. Also, the IGCH heuristic performs better in these
instances since it is designed to take advantage of interval graph properties.

• The average running time for FCFS, IGCH, and the SA algorithm are 0.01, 0.02, and
13.18 seconds, respectively. As expected, the average time taken by the SA algorithm is
greater in instances with more charging demands, while it is still less than 0.09 seconds for
the heuristics FCFS and IGCH. This is due to the fact that SA algorithm solves multiple
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MILP with CPLEX at each neighbor generation while one MILP is solved for each IGCH
or FCFS run. It can also be noted that solving the variable power model took less time
than solving the constant power model showing the efficiency of using an event-based
formulation than a time-indexed one.
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Figure 5.6: The convergence curve of the best objective value obtained by the SA algorithm for
scenarios 25, 26, 40, and 41.

5.6.5 Convergence of the SA Algorithm

Another aspect worth to be studied is the convergence of the SA algorithm. To do that, we
choose four instances from classes 3 and 4, namely instances 25, 26, 40, and 41, and plot the
convergence curves of the SA algorithms in Figure 5.6. For each instance, we plot the average
of the best objective function values found at each iteration over 30 runs in both variable and
constant models. We observe that the SA algorithm converges better toward a good quality of
solutions in the variable power model. As we can see, the number of iterations is different for
each instance and run since it is determined by the evolution of the best objective value.

5.6.6 Additional Results

In this chapter, we consider the objective of minimizing the total gap between the requested
and the final state-of-charges, which provides overall customer satisfaction. However, optimiza-
tion algorithms may charge fewer vehicles with more energy rather than more vehicles with less
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energy. A rejected charging demand is still penalized in the objective function since the gap
between its initial and requested state-of-charge is added to the objective function value. How-
ever, when this gap is too small, rejecting a demand in order to charge another one may be more
efficient. Therefore, it is worthwhile to evaluate the quality of solutions using an additional
measure. To assess how each algorithm performs in terms of customer satisfaction, we track
for each instance the percentage of rejected demands and the percentage of satisfied demands.
Mainly, we are interested in the percentage of demands that are satisfied to at least 75%, i.e.,
the demands j ∈ J where efj − e0j ≥ 0.75(edj − e0j ). Since the SA algorithm and the IGCH
are non-deterministic, the presented results are the average values obtained over the 30 runs.
Results of CPLEX are not available for classes 2-4 of instances and are replaced by a dash "-"
in tables.

Table 5.8: Comparison between the average percentages of rejected demands and partially sat-
isfied demands.

Rejected demands Satisfied demands to (75%)
CPLEX FCFS IGCH SA CPLEX FCFS IGCH SA

Model with constant power

Class 1

instances
with k > m 0.00% 1.00% 9.15% 0.60% 86.00% 79.00% 69.73% 96.43%
instances
with k ≤ m 0.00% 0.00% 0.00% 0.13% 100.00% 78.00% 86.53% 93.13%

Class 2

instances
with k > m - 2.72% 6.63% 1.23% - 75.47% 79.53% 96.96%
instances
with k ≤ m - 0.00% 0.00% 0.91% - 76.68% 89.78% 97.30%

class 3

instances
with k > m - 0.50% 7.00% 2.39% - 67.22% 76.67% 89.22%
instances
with k ≤ m - 0.00% 0.00% 0.80% - 68.49% 86.62% 97.47%

class 4

instances
with k > m - 0.00% 5.08% 0.89% - 76.07% 83.24% 93.28%
instances
with k ≤ m - 0.00% 0.00% 0.89% - 78.97% 88.50% 94.42%

Model with variable power

Class 1

instances
with k > m 0.00% 1.00% 8.95% 0.23% 100.00% 83.00% 74.10% 98.63%
instances
with k ≤ m 0.00% 0.00% 0.00% 0.00% 100.00% 82.00% 92.87% 93.87%

Class 2

instances
with k > m - 2.72% 6.21% 0.83% - 77.52% 83.45% 98.30%
instances
with k ≤ m - 0.00% 0.00% 0.89% - 77.59% 92.78% 98.64%

class 3

instances
with k > m - 1.36% 1.55% 0.44% - 39.25% 84.10% 95.53%
instances
with k ≤ m - 0.00% 0.00% 0.73% - 69.49% 91.93% 98.02%

class 4

instances
with k > m - 0.00% 5.07% 0.84% - 77.41% 86.31% 94.77%
instances
with k ≤ m - 0.00% 0.00% 0.88% - 80.41% 91.76% 95.65%

Table 5.8 shows the average percentage of rejected and satisfied demands in solutions found
by the proposed methods. The percentage of satisfied demands is higher for instances with
k ≤ m. In addition, no charging demand was rejected for these instances (except for the SA
algorithm in the constant power model). CPLEX never rejected charging demands and achieved
a percentage of 96.5% of partially satisfied demands. As expected, the FCFS heuristic never
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rejected demands when k ≤ m, since there are enough chargers to park all vehicles, and the
heuristic schedules each vehicle on the first available charger. The IGCH also has a 0% rejection
in instances with k ≤ m since it constructs an interval graph and assigns the vehicle in each
color class to a charger. The IGCH achieves the highest rejection percentage in instances with
k > m (averagely 6.20%). Even though the FCFS rule rejects less than 3% of vehicles, it satisfies
fewer demands compared to other methods. For the SA algorithm, the percentage of satisfied
demands is always above 93% except for class 3 instances with constant power charging mode
and k > m, which dropped to 89%. Moreover, the rejection percentage stays under 2.5%.

Since we assumed that vehicles could be plugged-in after their desired arrival time at the
charging station, it is interesting to show the average gap between the desired arrival times and
the decided plug-in times in solutions found by each method when demands are accepted. Table
5.9 shows results of the experiment. We can notice that CPLEX and the SA algorithm achieved
the highest average gap for instances with n = 10 and k ≤ m. More precisely, 9 minutes gap
for CPLEX and about 7 minutes gap for the SA considering the variable power model. In the
remaining instances, the proposed methods did not exceed 5 minutes delay. As CPLEX and
the SA algorithm achieved the best performance, we can conclude that relaxing the arrival time
constraints can be more advantageous in satisfying more charging demands with an average
delay of a few minutes.

Table 5.9: Comparison of the average gap between the desired arrival times and the actual
plug-in times in hours.

CPLEX FCFS IGCH SA
Model with constant power

Class 1
instances with k > m 0.11 0.07 0.05 0.11
instances with k ≤ m 0.03 0.00 0.00 0.03

Class 2
instances with k > m - 0.02 0.03 0.05
instances with k ≤ m - 0.00 0.00 0.02

Class 3
instances with k > m - 0.00 0.00 0.01
instances with k ≤ m - 0.00 0.00 0.01

Class 4
instances with k > m - 0.00 0.00 0.01
instances with k ≤ m - 0.00 0.00 0.00

Model with variable power

Class 1
instances with k > m 0.15 0.07 0.05 0.12
instances with k ≤ m 0.06 0.00 0.00 0.04

Class 2
instances with k > m - 0.02 0.03 0.06
instances with k ≤ m - 0.00 0.00 0.02

Class 3
instances with k > m - 0.00 0.00 0.01
instances with k ≤ m - 0.00 0.00 0.01

Class 4
instances with k > m - 0.00 0.00 0.01
instances with k ≤ m - 0.00 0.00 0.01

To further detail the assignment of vehicles to chargers, in Fig. 5.7, we summarize the
percentage of vehicles assigned to each type of charge. We recall that there are four types of
chargers: 3.7 kW, 11 kW, 22 kW, and 43 kW. The first observation we can make is that the three
methods assign vehicles to a type of charger nearly the same way in the constant power model
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(a) Constant power model
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Figure 5.7: The average percentage of electric vehicles assigned to each type of charger using
FCFS, IGCH, and SA considering (a) constant power model and (b) variable power model.
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as in the variable power model. We can spot that the SA algorithm prioritizes chargers with 22
kW, where 40% of vehicles are assigned. The IGCH assigned more vehicles to 11 kW chargers.
However, 60% of vehicles are assigned to 3.7 kW and 11 kW chargers by the FCFS heuristic
showing why it performs worse than the other methods. Even though it may seem that the SA
algorithm assigns fewer vehicles to fast chargers with 43 kW, we recall that only 10% of chargers
deliver 43 kW. Furthermore, We observe that the SA algorithm assigns 13.3% of vehicles to the
30% chargers delivering 3.7 kW while it assigns 15.82% of vehicles to the 10% chargers delivering
3.7 kW. However, we cannot conclude that using only one fast type of charger is better. More
tests should be conducted, and one must consider the installation costs, chargers compatibility,
and impact of fast charging on batteries.

5.7 Conclusion

This chapter addressed the electric vehicle charging scheduling problem in a charging station
with different charging types and limited overall power. We have assumed that the data related
to vehicle charging demands, such as arrival time, departure time, and state-of-charge, are
known in advance. This assumption is realistic since many charging service operators require
a reservation in advance to avoid queues. For each vehicle’s charging demand, the scheduler
has to determine the allocation of chargers to vehicles and the charging planning to maximize
customer satisfaction. Arrival times were considered as soft constraints where vehicles could be
plugged later than the desired arrival time.
We considered constant charging rates as well as variable charging rates. We proved that both
problems are NP-hard. Further, we formulate the scheduling problems as a mixed-integer linear
programming (MILP) model. Even for small instances, it was hard to solve the MILP models.
Therefore, we designed a heuristic based on an interval graph coloring algorithm (IGCH) and
a simulated annealing (SA) algorithm combined with linear programming. Different instances
were generated to evaluate the performance of the proposed methods. The results show that
the variable charging model is better for satisfying charging demands. We show that the
SA algorithm performs better in minimizing the objective function in less than a minute.
Additional results on the scheduling solutions quality were conducted. The SA algorithm
scheduling solutions charge at least 93% of charging demands to more than 75% of their desired
energy. On the other hand, the percentage of rejected demands is under 2.5%.
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6.1 Introduction

Electric vehicles can be charged with either single-phase or three-phase chargers. In single-phase
charging, the power flows through a single wire or conductor while it flows through 3 conductors
in three-phase charging. The main difference between single-phase and three-phase charging is
the amount of power that can be delivered to the vehicle. The charging power of three-phase
chargers is higher and used for fast charging. In contrast, single-phase chargers use the standard
230V with a maximum current of 32A. In this case, the electric vehicle can be charged with a
maximum power of 7.4kW. However, single-phase chargers are less expensive and easy to install.
Moreover, not all vehicles are compatible with three-phase charging.

This chapter studies the EVCS problem in a charging station fed with a three-phase power
supply. Electric vehicles are connected to one of the three phases as single-phase loads. In
this installation, the phase imbalance can be aggravated when more vehicles are charging on
one phase, especially since electric vehicles are heavy load and their charging depends on the
random drivers’ behavior. Such imbalance has a negative impact on the power system, causing
waste of network capacity, additional energy losses, and extra costs.

Another challenge in this study is that vehicles arrive at the charging station randomly
during the day with different charging demands and departure times. Each vehicle has its own
parking space. The objective is to build a real-time schedule that minimizes the total tardiness
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subject to the technical constraints of the charging station. We consider preemptive as well as
non-preemptive EV charging. A mixed-integer linear programming (MILP) model is formulated
for the offline problem. We propose heuristics based on the priority rule to solve the online
problem. Further, a local search is implemented to improve the objective value of preemptive
EV charging. Computational results show that the proposed solving approaches outperform
the existing heuristics developed in the literature. Moreover, we show that total tardiness is
significantly reduced when preemption is exploited.

6.2 Problem Description

6.2.1 Charging Station Model

Our study concerns the EVCS problem in a charging station designed to be installed as a large
public parking or a collective garage as described in [Sedano Franco et al. 2013]. This station is
fed with a three-phase current power source. Thus, there are three conductors, each carrying an
alternating current of the same frequency and voltage amplitude from the source to the electrical
outlets. These conductors are called lines, and each line regroups a number of power outlets, or
chargers, into which electric vehicles can be plugged for charging. In other words, each connected
electric vehicle is considered as a single-phase load. However, two constraints limit the number
of chargers delivering power simultaneously. The first constraint is related to the maximum
power that can be drawn from each line so that system overload can be avoided. The second
constraint maintains the load balance between any two lines. In fact, in a three-phase power
system, the load should be distributed equally between the three lines to minimize power losses
and improve the system’s efficiency.
Figure 6.1 illustrates the design of such architecture. Each secondary machine commends the
switching on or off of two power outlets. It also records the arrival time of the electric vehicle
and communicates it to the corresponding primary machine. The primary machines have a user
interface where the electric vehicle drivers enter their departure time and the desired energy
demand. All these data are communicated to the central server, where a scheduler of the
electric vehicle charging demands is implemented.

To simplify the operating model of the charging station, we make the same assumption
as in [Hernández Arauzo et al. 2013, Hernández-Arauzo et al. 2015], where each electric vehicle
driver has a dedicated parking place so he can plug his vehicle into the charger at any time. He
also provides the parking duration and charging demand through the user interface. Therefore,
there is no queue, and the driver does not have to wait before plugging his electric vehicle.
However, the electric vehicle may not start charging immediately. Once it starts charging, it
cannot be unplugged from the charger before satisfying its charging demand. Furthermore, all
chargers are identical and deliver the same power at a constant rate.

6.2.2 Charging Scheduling Problem

Chargers switching on and off can be controlled according to the defined charging schedule. This
schedule is built so that each line’s total charging load does not exceed its capacity. Besides, the
maximum imbalanced load between any two lines must be maintained. Since the completion
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Figure 6.1: Scheme of the considered charging station.

time of each charging operation can exceed the requested departure time, the objective function
will be to minimize the total tardiness.

The charging scheduling horizon H runs from 00:00h to 23:59h and is divided into equal time
slots of length τ , which is set to 6 min in our case. Each electric vehicle has its own parking
space and arrives at the station at random instants. This implies that arrival times, charging
times, and departure times are unknown until they actually arrive. As a result, the schedule
must be built iteratively. In literature, there are two main strategies to handle this uncertainty:
solving the scheduling problem whenever a new electric vehicle is connected or at each time slot.
We adopt the second strategy since the time slot we defined is relatively small, and it prevents
the system from collapsing when a large number of electric vehicles arrive at once.

First, we consider the non-preemptive scheduling as in [Hernández-Arauzo et al. 2015,
Hernández Arauzo et al. 2013], where the charging of an electric vehicle cannot be interrupted
until it completes charging. In other words, once a charger is switched on to deliver power to
the electric vehicle, it cannot be switched off before the completion of the charging. Thus, the
scheduling problem consists of assigning a starting time of charging for each arrived electric
vehicle. Then, we investigate the case where preemption is allowed. In particular, the charging
of an electric vehicle can be interrupted to charge another instead. The amount of energy for a
preempted electric vehicle charging is not lost. When preempted charging is afterward resumed,
it only needs power for its remaining charging time. Such a recharging strategy is highly recom-
mended in smart charging [Kara et al. 2015]. Moreover, the open charge point protocol (OCPP)
currently integrates these operations without human intervention [Vaidya & Mouftah 2018].
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6.3 Mathematical Formulation

We formulate the problem as an integer linear programming (ILP) model. Indices, sets, and
parameters are listed in Table 6.1.

Table 6.1: Summary of notations

Notation Description

Lj Line j, j = 1, 2, 3

N Total number of chargers
N Set of chargers indexed by i

n1 Number of chargers in line L1 indexed 1, . . . n1

n2 Number of chargers in line L2 indexed n1 + 1, . . . , n1 + n2

n3 Number of chargers in line L3 indexed
n1 + n2 + 1, . . . , n1 + n2 + n3 = N

Ñ The maximum of power outlets that can deliver power
simultaneously in any line at any time

∆ Parameter that establishes the balance between any two lines,
∆ ∈ [0, 1]

H Set of T time slots indexed by t

τ Length of time slot t

ri Arrival time of vehicle i

di Departure time of vehicle i

pi Charging time of electric vehicle i

The further decision variables used in this formulation are given as follows:

– Binary variables xi,t to specify if electric vehicle i is charging at the time slot t.

– Integer variables N t
j to denote the number of electric vehicle being charged in line Lj at

time slot t.

– Integer variables Ti to represent the tardiness of electric vehicle i ans it is calculated as
Ti = max(0, Ci − di), where Ci represents the completion time of charging of vehicle i.

Then, the formulation of the EVCS problem as an LP model is as follows.

n1+n2+n3∑

i=1

Ti (6.1)

H∑

t=ri

τxi,t ≥ pi ∀i ∈ N (6.2)

(t+ 1)× τ × xi,t − di ≤ Ti ∀i ∈ N , t ∈ H (6.3)
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τpi(xi,t − xi,t−1) ≤
t+pi/τ∑

l=t

τxi,l ∀i ∈ N , t ∈ H (6.4)

N t
1 =

n1∑

i=1

xi,t ∀t ∈ H (6.5)

N t
2 =

n1+n2∑

i=n1+1

xi,t ∀t ∈ H (6.6)

N t
3 =

n1+n2+n3∑

i=n1+n2+1

xi,t ∀t ∈ H (6.7)

N t
j ≤ Ñ ∀t ∈ H, j ∈ {1, 2, 3} (6.8)

N t
j −N t

k ≤ ∆Ñ ∀t ∈ H, k, j ∈ {1, 2, 3} j ̸= k (6.9)

−N t
j +N t

k ≤ ∆Ñ ∀t ∈ H, j ̸= k, k, j ∈ {1, 2, 3} (6.10)

The objective function (6.1) minimizes the total tardiness. Constraints (6.2) ensure that
electric vehicle i charges to its desired charging time pi. Constraints (6.3) calculate the tardi-
ness of charging electric vehicle i. Constraints (6.4) ensure the non-preemption of charging in
case of non-preemptive scheduling. Constraints (6.5), (6.6) and (6.7) calculate the number of
electric vehicle that are charging at the same time at time slot t in lines 1, 2 and 3 respectively.
Constraints (6.8) define to the maximum power that can be drawn from each line. Ñ restricts
the number of electric vehicles that can be charged simultaneously in each line. Since each outlet
delivers power at the same constant rate, the power delivered by each line can be expressed by
the number of active outlets. Constraints (6.9) and (6.10) establish the maximum imbalance
between any two lines, such as the difference between the numbers of electric vehicles in any two
lines does not exceed ∆Ñ with ∆ ∈ [0, 1].

6.3.1 Online Optimization Algorithms

Although the LP model has been developed, finding the optimal schedule with an exact method
cannot be done in polynomial time. In the simple case where we have only one line, the problem
is equivalent to scheduling jobs on parallel machine P |ri|

∑
i Ti following the α|β|γ notation

[Graham et al. 1979a] which is NP-hard. Furthermore, the EVCS problem, as defined in this
chapter, is a dynamic and real-time optimization problem that requires an online fast optimiza-
tion method. Hence, we propose a heuristic to solve the non-preemptive charging scheduling
problem. The heuristic is based on the PRTT (Priority Rule for Total Tardiness criterion)
dispatching rule used in [Chu & Portmann 1992]. The same dispatching rule is used for the pre-
emptive problem, and then we try to improve its results by applying a local search procedure.
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6.3.1.1 Non-preemptive Scheduling Algorithm

Heuristics based on priority dispatching rules have been widely used in the literature to find near-
optimal solutions for NP-hard scheduling problems since they are simple methods and require
less computation time than sophisticated meta-heuristics. This makes them adequate for real-
time and dynamic problems. We adopt the PRTT rule proposed in [Chu & Portmann 1992]
to the electric vehicle scheduling problem presented in the previous section. The PRTT of a
charging operation i at time t is defined as:

prttti = max(t, ri) + max(di,max(t, ri) + pi) (6.11)

Recall that the schedule is built at each time slot considering only the arrived electric vehicles,
(i.e., ri ≤ t ), with no knowledge of upcoming vehicles. As results, the term max(ri, t) will always
equal t. Then, the PRTT value of electric vehicle i is calculated as follows:

prttti = max(di, t+ pi) (6.12)

The charging operations are afterward scheduled at each step in ascending order of their
PRTT values. Once an electric vehicle starts charging, no interruption is allowed until com-
pletion. Thus, the objective is to assign a starting time sti for each electric vehicle without
breaking the constraints (6.8), (6.9) and (6.10). The pseudo-code of the non-preemptive charg-
ing scheduling is shown in Algorithm 16. At each time slot, for each line, the PRTT of ready
and not assigned electric vehicles are calculated using the equation (6.12), and they are ordered
in increasing order. Then, we calculate N ′, the number of electric vehicles that can be added
to the schedule at time t in line j without breaking the constraints (6.8), (6.9) and (6.10). The
value of N ′ can be obtained by:

N ′ = min( min
k=1,...,L,k ̸=j

(∆Ñ −N t
j +N t

k), Ñ −N t
j ) (6.13)

The starting times of the first N ′ electric vehicles that will not break the constraints (6.8),
(6.9) and (6.10) in the next time slots are set to t. We improve the assignments of electric
vehicles at the end of each time slot in case an assignment of a vehicle breaks a previous
imbalance constraint. This happens when the assignment of an electric vehicle i in line j to
a starting time t verifies that the assignment of another electric vehicle i′ in line k will not break
the imbalance constraints (6.9) and (6.10) at time t.

min{|N t
k + 1−N t

j | −∆Ñ ; k ∈ {1, 2, 3}, k ̸= j} ≤ 0 (6.14)

In this case, we redo the scheduling for the current time slot t (lines 2-21) to assign this vehicle
and eventually others. An illustration of such situation is given in Example 6.3.1.

Example 6.3.1. Consider the charging demands of six vehicles. Table 6.2 gives the arrival,
departure, and charging times for these demands. We set Ñ = 4 and ∆ = 0.5, which means
that the difference between any two lines should not exceed two vehicles. We start by scheduling
vehicles line by line. Figure 6.2(a) shows the schedule of the charging demands at time t = 8. As
we can see the vehicle v3 cannot be scheduled when scheduling v1 and v2 since due to imbalance
constraints (6.9) and (6.10). After that, we schedule v4 and v5 in line 2. Also, v6 is scheduled
on line 3; therefore, the imbalance constraints that prevent v3 from being scheduled are broken.
Hence, we redo its assignment as in Figure 6.2(b).
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Algorithm 16: PRTT based pseudo-algorithm for non preemptive charging scheduling
input : ri, pi, di for each vehicle i, ∆, Ñ
output: Total tardiness

∑
Ti

1 for each time slot t do
2 for each line Lj , j = 1, . . . , 3 do
3 Get the set I ′ of ready electric vehicles in the line j ( vehicles that have arrived

during the interval [0, t] and not assigned);
4 if I ′ is not empty then
5 for each arrived vehicle do
6 Calculate its PRTT then we added to the set Iprtt;
7 end
8 Sort the set Iprtt in increasing order of PRTT values ;
9 Calculate N ′ the number of electric vehicles that can be added to the

schedule at time t in line j without breaking the constraints (6.8), (6.9), and
(6.10);

10 for each vehicle i in the first N ′ vehicles in Iprtt do
11 if |N t′

j + 1−N t′
k | ≤ ∆N for t′ from t to t+ pi, k = 1, 2, 3k ̸= j then

12 Set the starting time of the electric vehicle to t;
13 Update N t′

j for the next time slots t′ starting from t to t+ pi ;
14 Calculate the tardiness of the assigned vehicle Ti = max(0, t+ pi−di) ;
15 if the assignment breaks a previous balance constraint then
16 redo the time slot t;
17 end
18 end
19 end
20 end
21 end
22 end
23 return

∑N
i=1 Ti

Table 6.2: Instance for Example 6.3.1.

Vehicle Line Arrival time rj Departure time dj Charging time pj
v1 L1 8:00 10:00 2 hours
v2 L1 8:00 10:00 2 hours
v3 L1 9:00 12:00 3 hours
v4 L2 8:00 10:00 2 hours
v5 L2 8:00 10:00 2 hours
v6 L3 9:00 13:00 4 hours
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(a) Scheduling line 1 and 2. (b) Scheduling after scheduling line 3.

Figure 6.2: Example of improving the assignment in case of breaking a previous imbalance
constraint.

6.3.2 Preemptive Scheduling Algorithms

Allowing preemption in scheduling problems is a commonly used relaxation to make the problem
easier to solve, especially in our case where the schedule is built iteratively. In particular, the
decision to start charging a vehicle at a given time is unchangeable, even if another electric
vehicle with higher priority to charge arrives. In our case, a high-priority electric vehicle has
the smallest PRTT value at a given time. Furthermore, preemptive charging is allowed with the
new generation of chargers that use the OCPP protocol [OCP 2020].

6.3.2.1 Heuristic

Unlike the non-preemptive scheduling heuristic proposed, we schedule the charging of the arrived
electric vehicle at the current time slot only. No charging schedule is built for the next time
slots. We calculate the PRTT of already and unfinished charging operations at the beginning
of each time slot. Then, we schedule the charging operations with smaller PRTT values that
verify the constraints (6.8), (6.9) and (6.10) for this time slot only.

We modify the PRTT function to take into account only the remaining charging time of an
electric vehicle instead of the whole charging time. The pseudo-code of the preemptive charging
scheduling is given in Algorithm 17.
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Algorithm 17: PRTT based pseudo-algorithm for preemptive online charging schedul-
ing

input : ri, pi, di for each vehicle, ∆, N
output: Total tardiness

∑
Ti

1 Let p′i be the remaining charging time for each electric vehicle;
2 p′i ← pi for each vehicle;
3 for each time slot t do
4 for each line j = 1, . . . , 3 do
5 Get the set I ′ of ready electric vehicles in the line j (vehicles that have arrived

during the interval [0, t] and did not complete charging);
6 end
7 if I ′ is not empty then
8 for each arrived vehicle do
9 Calculate its PRTT then we added to the set Iprtt;

10 end
11 Sort the set Iprtt in increasing order;
12 Calculate N ′ the number of electric vehicle that can be added to the schedule in

line j at time t without breaking the constraints (6.8), (6.9) and (6.10);
13 for the first N ′ electric vehicle in Iprtt do
14 N t

j ← N t
j + 1 ;

15 p′i ← p′i − 1 ;
16 if p′i = 0 then
17 Calculate the tardiness of the assigned job Ti = max(0, t− di) ;
18 end
19 if the assignment breaks a previous balance constraint then
20 redo the time slot t;
21 end
22 end
23 end
24 end
25 return

∑
Ti

6.3.2.2 Local Search

In the previous section, a heuristic based on the PRTT dispatching rule is used to obtain the
preemptive charging scheduling. To explore solutions with better tardiness, we propose a local
search algorithm described in Algorithm 18.

At each time slot t, a partial schedule is built using the PRTT based heuristic. At this
time, we schedule the arrived electric vehicle in the time horizon H allowing preemption. Then,
a hill-climbing strategy is used to improve the partial schedule. Although this procedure can
improve the current partial schedule at the considered time t, it does not necessarily improve the
whole final schedule. Given the real-time setting, we can only change the scheduling of electric
vehicles in the next time slots. Changes cannot be made for previous time slots t′ such t′ < t.
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The fundamental part of any local search method is the neighborhood structure. A neighbor
is generated by moving a charging operation from one time slot to another. We consider moves
that only can improve the current partial schedule. Since the problem is constrained, we must
maintain the schedule’s feasibility each time we need to move a charging operation.

For the description of the neighbor generation moves, we call a time slot t a "source" if we
can remove a charging operation from it without breaking the balance constraints (6.9) and
(6.10). A time slot t is called a "target "if adding a charging operation at t does not exceed its
capacity Ñ and does not break constraints (6.9) and (6.10).

– Shift right: a neighbor in shift right is generated by moving a random a charging operation
of an electric vehicle i in a selected line j from a random source time slot t1 to a random
target time t2, t2 > t1. Since we consider only moves that can improve a partial schedule,
t2 should not be greater than its departure time t2 ≤ di. We guide the search by first
shifting the charging operations that have a high PRTT, so other charging operations with
lower PRTT can replace it.

– Shift left: a neighbor in shift left is generated by moving a charging operation of an
electric vehicle i in a selected line j from a random source time slot t1 to a random target
time t2 < t1 such that t2 ≥ ri. A variant of shift left is implemented considering the tardy
electric vehicle (Tj > 0). Thus, we shift left the charging operation at its completion time
slot.

– Shift right on three lines: a neighbor in shift right on the three lines is generated
by moving three random charging operations i1, i2, i3 from each line j = 1, 2, 3 from a
random time slot t1 to a random time t2 with t2 > t1 and N t2

j + 1 ≤ N . By moving a
charging operation per line, we make sure that the balance constraints (6.9) and (6.10) are
maintained.

Shift left on three lines: a neighbor in shift left on 3 lines is generated by moving three
random charging operations i1, i2, i3 of each line j = 1, 2, 3 at a random time slot t1 to a
random time t2 with t2 < t1, N t2

j + 1 ≤ N and t2 ≤ min(ri1 , ri2 , ri3).

A local search algorithm starts by initializing an empty solution. A solution S is a feasible
partial schedule that describes the set of charging operations scheduled in any line at each
time slot t, t ∈ H. Then, at each time slot t, and for each line j, a partial solution S is
built by scheduling the charging operation of arrived vehicles preemptively according to their
PRTT values in the time slots t′ such t′ ≥ t. A shift right move is considered when we have a
charging operation of an electric vehicle i that has a lower PRTT value than an already scheduled
charging operation at the time slot t′. After scheduling the charging operations in each line, we
start exploring the neighborhood of the solution S. A neighbor solution S′ is generated using
one of the moves described below. S′ will replace S if the total tardiness of S′ is less or equal to
the total tardiness of S (f(S)). Since we are in a real-time setting, the stopping criterion will
be either a given limited time that does not exceed τ the length of a time slot or that we cannot
generate new solutions using one of the moves.
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Algorithm 18: Hill-Climbing Pseudo-Algorithm for preemptive online charging
scheduling

input : ri, pi, di for each vehicle, ∆, N
output: Total tardiness

∑
Ti

1 Initialize the solution S;
2 for each time slot t do
3 for each line j = 1, . . . , L do
4 Get the set I ′ of ready electric vehicles in the line j (vehicles that have arrived

during the interval [0, t] and did not complete charging);
5 end
6 if I ′ is not empty then
7 for each ready vehicle do
8 Calculate its PRTT then we added to the set Iprtt;
9 end

10 Sort the set Iprtt in increasing order ;
11 for each electric vehicle i in Iprtt do
12 t′ ← t;
13 p′i ← pi;
14 while t′ ≤ T and p′i > 0 do
15 if a vehicle can be added to the schedule at time t′ in line j without

breaking the constraints (6.8), (6.9), and (6.10) then
16 Add the electric vehicle i to the list St

j ;
17 Decrements p′i;
18 else
19 Shift right a job i′ with prtt(i′) > prtt(i);
20 end
21 t′ ← t′ + 1;
22 end
23 end
24 end
25 while not stagnation or time limit not reached do
26 S′ ← generate a neighbor of S ;
27 if f(S′) = f(S) then
28 stagnation ← True;
29 else
30 S ← S′ ;
31 end
32 end
33 end
34 return

∑
Ti
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6.4 Computational Results

Table 6.3: Comparison of results of the first scenario.

Ñ ∆ EV PRTT PRTT pmtn HC pmtn
Type 1 Instances
20 0.2 8386.30 10.53% -35.07% -39.69%
20 0.4 4120.40 -3.53% -26.46% -31.53%
20 0.6 3670.60 -3.59% -27.09% -31.65%
20 0.8 3590.90 -3.79% -27.01% -31.42%
30 0.2 1959.30 6.57% -56.56% -60.92%
30 0.4 421.20 -2.52% -68.02% -82.03%
30 0.6 347.90 8.30% -67.63% -84.94%
30 0.8 347.60 8.24% -67.61% -84.95%
40 0.2 735.00 -3.01% -68.03% -69.77%
40 0.4 14.00 0.71% -85.71% -85.71%
40 0.6 3.40 15.00% -100.00% -100.00%
40 0.8 3.40 15.00% -100.00% -100.00%
Type 2 Instances
20 0.2 128185.00 0.84% -6.17% -5.82%
20 0.4 46319.30 -0.46% -5.64% -5.08%
20 0.6 22966.80 -0.22% -6.06% -5.91%
20 0.8 14573.10 0.79% -6.30% -7.28%
30 0.2 72860.80 -0.31% -6.07% -5.53%
30 0.4 21479.90 -0.34% -6.66% -6.46%
30 0.6 8088.90 0.94% -8.57% -9.52%
30 0.8 4486.30 0.72% -14.10% -16.93%
40 0.2 46135.40 -0.48% -5.85% -5.27%
40 0.4 10869.30 1.20% -7.11% -7.99%
40 0.6 3599.10 2.15% -14.45% -18.11%
40 0.8 1635.50 3.86% -26.54% -42.75%

In this section, we evaluate the performance of the proposed methods. We consider the
benchmarks proposed in [Hernández Arauzo et al. 2013]. There are a total number of 180 power
outlets in the charging station, in which 60 chargers are connected to each line. The arrival,
charging demands, and departure times are generated following normal distributions with dif-
ferent means and deviations that model the electric vehicle charging patterns. Three different
scenarios are considered, where 60 instances are generated for each scenario. In each instance,
180 electric vehicles arrive at the station on a time horizon of 24 hours. There are two types
of instances according to how the electric vehicles are distributed between the three lines. In
the first type instances, the electric vehicles are distributed uniformly: 60 electric vehicles arrive
at each line throughout the day. In the second type instances, 60%, 30%, and 10% of electric
vehicles arrive at the first, second, and third lines, respectively. This makes the imbalance con-
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straints harder to solve. The instances of the first scenario are generated to represent a normal
weekday. The instances of the second scenario are obtained by increasing the arrival rate of
electric vehicles in a short period of time with different charging and departure times. This
makes the charging demands exceed the charging station capacity for these periods. In the third
scenario, the instances are generated as in the second scenario but with tighter departure times,
making it the most challenging scenario to solve.

Note that the algorithms are implemented in Python 3.7 and run on an Intel Core i5-7440HQ
(4 CPUs) operating at 2.8 GHz and 8 GB RAM.

Table 6.4: Comparison of results of the second scenario.

Ñ ∆ EV PRTT PRTT pmtn HC pmtn
Type 1 Instances
20 0.2 16886.00 5.30% -19.21% -20.27%
20 0.4 14131.20 -0.68% -17.41% -18.29%
20 0.6 13648.30 -0.52% -17.35% -18.06%
20 0.8 13547.90 -0.48% -17.34% -18.07%
30 0.2 6394.70 -0.71% -31.71% -42.00%
30 0.4 4824.30 0.75% -33.92% -49.33%
30 0.6 4668.60 0.41% -34.51% -51.19%
30 0.8 4672.60 0.45% -34.57% -51.28%
40 0.2 1951.40 2.48% -50.95% -61.59%
40 0.4 1212.70 7.72% -59.98% -86.77%
40 0.6 1210.70 7.17% -60.52% -89.48%
40 0.8 1210.60 7.18% -60.52% -89.51%
Type 2 Instances
20 0.2 143883.00 1.57% -4.60% -6.10%
20 0.4 62246.20 -0.38% -4.42% -3.62%
20 0.6 39869.40 -0.45% -5.31% -4.12%
20 0.8 30887.20 -0.57% -6.90% -5.23%
30 0.2 86392.00 0.45% -4.79% -4.25%
30 0.4 34475.40 -0.50% -5.87% -4.97%
30 0.6 19355.70 -0.35% -8.92% -8.05%
30 0.8 14375.10 -0.18% -12.22% -11.89%
40 0.2 59775.00 0.15% -4.90% -4.15%
40 0.4 22254.00 -0.25% -7.80% -6.96%
40 0.6 10991.30 -0.30% -12.17% -12.22%
40 0.8 7260.50 0.28% -18.22% -19.13%
40 0.4 1212.70 7.72% -59.98% -86.77%
40 0.6 1210.70 7.17% -60.52% -89.48%
40 0.8 1210.60 7.18% -60.52% -89.51%

Table 6.3 , Table 6.4 and Table 6.5 shows the comparison of results obtained for scenarios
1, 2 and 3 respectively with those obtained in [Hernández-Arauzo et al. 2015] by the heuristic
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"EV". We refer to the proposed heuristic for non-preemptive charging scheduling by "PRTT",
by "PRTT pmtn" for preemptive one, and by "HC pmtn" for the hill-climbing preemptive
scheduling. We have 30 instances for each group (Scenario, type). For charging station param-
eters, Ñ varies between 20, 30 and 40 and ∆ varies between 0.2, 0.4, 0.6 and 0.8. The tardiness
is calculated for each instance and then summed up for each group. Then, the decrease ( or
increase) in the total tardiness of the proposed methods compared to the total tardiness in
[Hernández-Arauzo et al. 2015] is calculated and reported in percentage. The percentage will
be negative if there is a decrease in total tardiness, i.e., the solutions are better and positive
otherwise.

Table 6.5: Comparison of results of the third scenario.

Ñ ∆ EV PRTT PRTT pmtn HC pmtn
Type 1 Instances
20 0.2 20704.7 7.20% -10.36% -8.54%
20 0.4 18001.7 -0.68% -8.57% -4.87%
20 0.6 17528.2 -0.61% -8.58% -4.08%
20 0.8 17463.3 -0.57% -8.75% -3.97%
30 0.2 9051.1 -0.30% -15.33% -15.81%
30 0.4 7347.3 -0.76% -12.13% -11.82%
30 0.6 7150.4 -0.17% -11.90% -11.01%
30 0.8 7144.5 -0.17% -11.87% -11.01%
40 0.2 3478.1 0.61% -23.76% -31.48%
40 0.4 2373.1 -0.63% -14.74% -29.56%
40 0.6 2276.7 0.39% -12.36% -28.51%
40 0.8 2276.7 0.39% -12.36% -28.51%
Type 1 Instances
20 0.2 138064.00 1.82% -5.97% -7.80%
20 0.4 62988.80 -1.27% -4.56% -3.75%
20 0.6 42528.30 -0.59% -4.69% -2.76%
20 0.8 33998.20 -0.44% -5.33% -2.21%
30 0.2 83169.50 0.93% -5.78% -5.29%
30 0.4 34799.70 -0.17% -5.32% -4.01%
30 0.6 21321.10 -0.66% -5.70% -3.71%
30 0.8 16972.00 -0.73% -6.80% -4.06%
40 0.2 58306.30 0.09% -5.62% -4.95%
40 0.4 22988.70 -0.60% -5.93% -4.28%
40 0.6 12220.30 -0.47% -6.24% -4.91%
40 0.8 9127.30 -0.59% -8.05% -6.29%

For the first scenario, the PRTT outperforms the heuristic EV in 10 groups out of 24 groups,
whereas it outperforms the heuristic EV in 12 groups out of 24 in the second scenario and 18
groups out of 24 in the third scenario. This shows that our heuristic has better objective values
when scheduling electric vehicles that arrive simultaneously with tighter departure times.
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For all scenarios, the PRTT pmtn and the HC pmtn consistently outperform the heuristic
EV since scheduling the preemption will allow an electric vehicle with high priorities with tighter
departure times and shorter charging times to charge instead. Thus, Relaxing the preemption
constraints is not redundant, and it will have a great advantage in minimizing total tardiness.
Comparing the results between the two types of instances, we notice that the decrease in total
tardiness in type 1 instances is more significant than in type 2 instances. For PRTT pmtn, The
total tardiness was averagely lower by 36.61% in type 1 instances, while it was averagely lower
by 7.76% in type 2 instances. For HC pmtn, The total tardiness was averagely lower by 44.70%
in type 1 instances, while it was averagely lower by 7.83% in type 2 instances.

About the comparison between the PRTT pmtn and the HC pmtn, the tardiness of HC pmtn
is better in 39 groups and worse in 33. We notice that the local search is better in type one
instances, especially in the first and second scenarios, and slightly worse in the third. This is
because charging operations in the third scenario have tighter departure times, so it is harder to
find moves that improve the whole schedule’s total tardiness. However, the overall tardiness was
reduced by 26.26% using HC pmtn on average, whereas it was reduced by 22.2% using PRTT
pmtn.

6.5 Conclusion

In this chapter, we proposed heuristics and a local search procedure to solve the online charg-
ing scheduling problem while maintaining the balance in the three phases system. We first
formulate the offline problem as LP model. To solve the problem in a real-time setting, we pro-
posed a new heuristic based on PRTT dispatching rule. Computational results show that our
heuristic outperforms other heuristics in most instances. Moreover, the computation time is rel-
atively negligible, which is suitable for real-time scheduling. Also, the effectiveness of preemptive
scheduling in reducing total tardiness is shown through the computational results.





Chapter 7

General conclusion and perspectives

In order to decarbonize road transport and promote the utilization of green energy, research on
electric vehicle technologies has gained considerable attention. Over the years, the market for
electric vehicles has been expanding remarkably. Nonetheless, more smart charging infrastruc-
tures are required to meet the increase in electricity demands in the next decade. Implementing
smart charging strategies to schedule the electric load is critical to avoid negative impacts on
the power grid. Hence, this thesis addressed the electric vehicle charging scheduling problem.

In the state-of-the-art, we briefly revisited the classic job scheduling problem. Then, we gave
a brief overview of electric vehicle technologies. Also, we pointed out the large variety in the
formulation of the electric vehicle charging scheduling problem depending on charging models,
objectives, considerations, and constraints.

Then, we addressed the electric vehicle charging problem in a charging station with limited
grid capacity and a limited number of chargers delivering power at constant rates. All vehicles
must submit a charging demand reservation. Initially, we studied the problem of charging all
vehicles with the minimum grid capacity in the case of identical and non-identical chargers.
We proved that the problem is polynomial solvable in the first case, while it was NP-hard in
the second one. Mathematical formulation and solving methods were provided and compared.
Simulation results suggest that installing chargers with different charging power rates is more
suitable. When the grid capacity is not sufficient to meet all charging demands, we aim to
maximize the number of accepted ones. This problem is proved to be NP-hard for both identical
and non-identical chargers. Different mathematical formulations, heuristics, and metaheuristics
were proposed to tackle it.

Next, the charging problem with variable power rates is studied and compared to the one with
constant power rates. The charging station operating model was slightly different. A relaxation
on arrival time was considered, where vehicles can be plugged later than the desired arrival.
The objective was to maximize the state of charge at departure. We proved that the problem
was NP-hard for both constant and variable power models. We proposed a mixed-integer linear
programming models, heuristics, and metaheuristics to solve it. Simulation results revealed that
solving the linear programming models with a commercial solver was almost impossible, even for
small instances. Moreover, using variable charging power rates was more efficient than constant
ones in delivering more energy with the same grid capacity.

All the mentioned charging problems were preemptive. We compared preemptive and non-
preemptive charging scheduling in an online setting in an unbalanced three-power system previ-
ously stated in the literature. We provided fast heuristics and a simple local search. We showed
how preemption is more efficient in optimizing the schedule even with simple methods.

Table 7.1 summarizes objectives, constraints, complexity results, and solving methods for all
electric vehicle charging scheduling problems addressed in this thesis.
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Table 7.1: Summary of EVCS problem addressed in this thesis.

Chapter 3 Chapter 4 Chapter 5 Chapter 6
Chargers identical non-identical identical non-identical non-identical identical
Assignment
to chargers Yes No
Preemption Yes Yes No
Departure times Hard constraints Soft constraints
Charging rates Constant Constant Variable Constant
Arrival times Hard constraints Soft constraints Hard constraints
Energy demands Hard constraints Soft constraints Hard constraints

Objective
Minimize the
grid capacity

Maximize the number
of accepted demands

Maximize the
delivered energy

Minimize the
total tardiness

Complexity
class P NP
Solving Max Flow Heuristics ILP, ILP, SA+TsLS, SA+MILP Online heuristics Online heuristics
Methods MILP, ILS+SA heuristics heuristics heuristics and LS

Before ending this dissertation, we state the following perspectives:

– The presented work could be taken as a starting point for developing a more complex
optimization model by including more constraints related to electric vehicle technology,
such as nonlinear charging times, charging efficiency, and charger compatibility. This will
provide more precise models that reflect the various requirements of electric vehicles.

– The proposed system can be extended to handle charging demands with or without reser-
vation. In addition, it is interesting to handle cases where the vehicle makes a reservation
but never shows up and also where the vehicle might leave later or earlier than planned.
In this case, online scheduling algorithms can be developed and compared to the results
of the offline ones proposed in this thesis.

– In this thesis, we assumed preemptive charging. Even though it is more flexible and
beneficial for handling constraints and optimizing the objective function, as we observed
in Chapter 6, frequent preemptions may introduce extra deterioration for the batteries.
In particular, manufacturers of electric vehicles recommend that a charging phase last at
least 15 minutes to avoid undesirable chemical reactions in lithium-ion batteries. In our
model, the problem can be avoided by just setting the time slot to 15 minutes, but still,
we lose accuracy. Therefore, more research should be done to tackle this problem.

– The model could be extended to consider a network of charging stations. In this case,
choosing a charging station will depend on the distance, the energy required to reach the
station, the availability of chargers, and the remaining energy.

– Considering other optimization methods, namely population-based metaheuristics, could
be interesting. Metaheuristics based on a single solution were more convenient for finding
good solutions in a reasonable amount of time, especially since evaluating solutions after
perturbation was complex and time-consuming. In this case, using parallelisms and multi-
threaded algorithms could be helpful.

– Another idea would consist of considering multi-objective by adding the minimization
of the charging electricity bills the charging station pays or maximizing its profit. In
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particular, under Time-of-Use pricing, charging vehicles when electricity costs are low
should be privileged.

– When the assignment of vehicles to chargers is known, the class complexity of the power
allocation problem with different constant power rates is not yet determined.

– For the problem with an unbalanced power system, it would be more interesting to con-
sider chargers with different power rates. Since single-phase charging is slow charging, we
can only consider chargers up to 7.4 kW. Moreover, the imbalance constraint cannot be
expressed only with the number of vehicles. More complex measures such as VUF (Voltage
Unbalance Factor) can be used. In this case, the voltage of each phase (line) should be
measured.

– It could be relevant to model the charging station on a simulator and implement the
optimization algorithms to validate an conduct more realistic tests.
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Results For Lower Bound on wG

Table A.1: Results for instances of group 1 (n = 10)

Instances n lb (eq. (3.12) lb(Cplex) wG (Cplex) Glb

1 10.00 35.00 43.00 43.00 -18.60
2 10.00 43.00 43.00 43.00 0.00
3 10.00 36.00 43.00 43.00 -16.28
4 10.00 46.00 52.67 54.00 -14.81
5 10.00 42.00 53.99 54.00 -22.22
6 10.00 40.00 43.00 43.00 -6.98
7 10.00 42.00 43.00 43.00 -2.33
8 10.00 52.00 53.99 54.00 -3.70
9 10.00 50.00 53.84 54.00 -7.41
10 10.00 42.00 43.00 43.00 -2.33
11 10.00 41.00 43.00 43.00 -4.65
12 10.00 35.00 43.00 43.00 -18.60
13 10.00 39.00 43.00 43.00 -9.30
14 10.00 35.00 43.00 43.00 -18.60
15 10.00 42.00 43.95 44.00 -4.55
16 10.00 38.00 43.00 43.00 -11.63
17 10.00 36.00 43.00 43.00 -16.28
18 10.00 28.00 33.00 33.00 -15.15
19 10.00 42.00 43.00 43.00 -2.33
20 10.00 32.00 43.00 43.00 -25.58
21 10.00 50.00 54.00 54.00 -7.41
22 10.00 43.00 43.00 43.00 0.00
23 10.00 36.00 43.00 43.00 -16.28
24 10.00 36.00 43.00 43.00 -16.28
25 10.00 41.00 43.00 43.00 -4.65
26 10.00 41.00 43.00 43.00 -4.65
27 10.00 44.00 54.00 54.00 -18.52
28 10.00 32.00 43.00 43.00 -25.58
29 10.00 41.00 43.00 43.00 -4.65
30 10.00 40.00 43.00 43.00 -6.98
31 10.00 50.00 53.99 54.00 -7.41
32 10.00 41.00 43.00 43.00 -4.65
33 10.00 50.00 54.00 54.00 -7.41
34 10.00 47.00 53.99 54.00 -12.96
35 10.00 35.00 43.00 43.00 -18.60
36 10.00 38.00 43.00 43.00 -11.63
37 10.00 36.00 43.00 43.00 -16.28
38 10.00 40.00 43.00 43.00 -6.98
39 10.00 38.00 43.00 43.00 -11.63
40 10.00 41.00 43.00 43.00 -4.65
41 10.00 39.00 43.00 43.00 -9.30
42 10.00 34.00 43.00 43.00 -20.93
43 10.00 41.00 43.00 43.00 -4.65
44 10.00 51.00 54.00 54.00 -5.56
45 10.00 36.00 43.00 43.00 -16.28
46 10.00 40.00 43.00 43.00 -6.98
47 10.00 41.00 43.00 43.00 -4.65
48 10.00 39.00 43.00 43.00 -9.30
49 10.00 40.00 43.00 43.00 -6.98
50 10.00 38.00 43.00 43.00 -11.63
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Résumé étendu en français

B.1 Introduction Générale

B.1.1 Contexte et motivation

Le transport est le secteur qui émet le plus de gaz à effet de serre. En 2021, les transports
représentent 40% des émissions de CO2 en France, où 82% de ces émissions proviennent du
transport routier 1. Ainsi, l’adoption des véhicules électriques comme technologie alternative
aux véhicules thermiques apparaît comme une des solutions majeures non seulement face à la
crise climatique, mais aussi aux problèmes de hausse des prix des énergies fossiles. Selon l’Agence
internationale de l’énergie (IEA) [IEA 2022], le nombre de véhicules électriques a atteint 16,5
millions en 2021, soit deux fois plus qu’en 2019. Les ventes de véhicules électriques continuent
de battre des records année après année. En 2021, près de 10% des ventes de véhicules étaient
des modèles électriques, soit une part de marché quatre fois supérieure à celle de 2019.
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Figure B.1: Nombre de véhicules électriques dans le monde, 2010-2021. Les BEV représente
les véhicules électriques purs qui embarquent une batterie rechargeable. Les PHEV sont les
véhicules électriques hybrides rechargeables. Source: IEA 2022 [IEA 2022].

1https://www.climate-transparency.org/countries/europe/france
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Avec les ventes des véhicules électrique en hausse, il est nécessaire d’investir davantage pour
déployer vigoureusement des infrastructures de recharge, qui sont essentielles pour garantir la
compétitivité des véhicules électriques. De nos jours, la plupart des propriétaires de véhicules
électriques rechargent leur véhicule à la maison. Toutefois, ils considèrent que la recharge
publique est indispensable, notamment sur les lieux de travail. De plus, l’augmentation du
déploiement des bornes de recharge publiques facilitera les trajets plus longs, réduira l’anxiété
liée à l’autonomie et convaincra davantage de consommateurs d’acheter un véhicule électrique, en
particulier ceux qui n’ont pas accès à une recharge privée. En 2021, plus de 1,8 million de bornes
de recharge publiques ont été installées dans le monde, ce qui représente une augmentation de
37% par rapport à l’année précédente [IEA 2022].
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Figure B.2: Le nombre total de bornes de recharge installées. Les bornes de recharge rapide ont
une puissance de charge supérieure à 22 kW. Les bornes de recharge lente ont une puissance de
charge inférieure à 22 kW. Source: IEA 2022 [IEA 2022].

L’adoption à grande échelle des véhicules électriques présente de nouveaux défis pour les
gestionnaires du réseau électrique et les opérateurs des stations de recharge. D’une part, la
consommation importante d’énergie liée aux demandes de recharge impactera négativement le
réseau éclectique et augmentera les pics de consommation. D’autre part, les opérateurs des in-
frastructures de recharge doivent répondre aux demandes à venir, maximiser la satisfaction des
clients, éviter les longues files d’attente et minimiser les coûts, tout en respectant les contraintes
liées au réseau électrique. En d’autres termes, ces opérateurs doivent minimiser la consommation
d’énergie en satisfaisant de multiples demandes de recharge. Il est donc crucial pour ces opéra-
teurs d’inclure des stratégies d’optimisation. Récemment, plusieurs études sur le développement
de stratégies de planification de la recharge des véhicules électriques ont émergé. On peut ainsi
classifier ces études en deux principales catégories. La première regroupe les études menées du
point de vue des opérateurs du réseau électrique, dont l’objectif est d’améliorer et d’assurer la



B.1. Introduction Générale 159

fiabilité du réseau électrique. Dans la seconde catégorie d’études, on trouve celles menées du
point de vue des opérateurs de stations de recharge, qui se concentrent plutôt sur des objectifs
économiques tels que la minimisation des coûts d’électricité et la maximisation de la satisfaction
des clients.

Dans le cadre de cette thèse, nous abordons exclusivement la planification de la recharge des
véhicules électriques du point de vue des opérateurs des stations de recharge. Plus précisément,
nous considérons une station de recharge disposant d’un nombre limité de bornes de recharge,
pouvant être identiques (c’est-à-dire pouvant délivrer la même puissance) ou non identiques.
Cette station dispose également d’une puissance maximale allouée à l’ensemble des bornes pour
éviter la surcharge du réseau électrique. Les demandes de recharge des véhicules électriques
sont caractérisées par leur heure d’arrivée, leur heure de départ et leur demande en énergie.
L’objectif est de planifier la recharge de ces véhicules en respectant les différentes contraintes,
qu’elles soient liées aux demandes (temps d’arrivée, temps de départ, quantité d’énergie, etc.) ou
aux ressources de la station de recharge (nombre de bornes, disponibilité des bornes, puissances
des bornes, puissance maximale, etc.).

Les travaux présentés dans la littérature proposent des stratégies efficaces pour optimiser
la planification de la recharge des véhicules électriques. Cependant, les décisions relatives à
l’affectation des véhicules aux bornes de recharge appropriées semblent être négligées. De plus,
ces travaux supposent que les bornes de recharge ont une puissance de sortie maximale iden-
tique, mais qui peut être variable dans le temps. Néanmoins, les stations de recharge installent
généralement des bornes de recharge avec des puissances différentes pour satisfaire davantage
de demandes de recharge et améliorer la qualité de service. De plus, les stations de recharge
proposent des différents services selon leurs modes opérationnels. On peut trouver des stations
publiques sans ou avec réservations, disposant de bornes identiques ou non, ayant une puis-
sance constante ou variable, etc. La variation du mode de fonctionnement affecte le problème
d’optimisation et sa complexité. Il est donc nécessaire d’étudier le problème en considérant les
différentes configurations.

B.1.2 Contributions

La formulation générale d’une instance du problème de planification de la charge des véhicules
électriques peut être définie comme suit. Considérons un ensemble de demandes de recharge
de véhicules électriques et un ensemble de bornes de recharge. La puissance totale délivrée
par toutes les bornes de recharge ne doit pas dépasser un certain seuil à tout moment, que
nous appelons la capacité du réseau. Chaque demande de recharge est caractérisée par son
heure d’arrivée, son heure de départ et ses besoins en énergie. La quantité d’énergie demandée
peut être exprimée directement en kWh ou en précisant l’état de charge (State-of-Charge -
SOC) souhaité ainsi la capacité de la batterie. À chaque instant, une borne de recharge ne
peut charger qu’un seul véhicule et un véhicule ne peut être chargé que par une seule borne
de recharge. La recharge des véhicules peut être soit préemptive, où la recharge d’un véhicule
peut être arrêter à tout moment et reprise plus tard, soit non préemptive ou l’interruption de
la recharge d’un véhicule est interdite. De plus, en fonction des taux de puissance des bornes
de recharge, il est possible de distinguer deux cas. Le premier, que nous noterons "la recharge à
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puissance constante", est caractérisé par des bornes de recharge qui délivrent soit leur puissance
maximale, soit zéro. La seconde cas, "la recharge à puissance variable", permet quant à elle
au taux de charge de chaque borne de recharge de varier dans le temps, de zéro à sa puissance
maximale.

Nous commençons par nous intéresser à la recharge à puissance constante et préemptive.
Nous considérons une station de recharge équipée d’un système de réservation. Un client souhai-
tant recharger son véhicule doit faire une demande de réservation en précisant l’heure d’arrivée,
l’heure de départ ainsi que la quantité d’énergie requise. Dans un premier temps, nous supposons
que lorsqu’une demande de recharge est acceptée, le véhicule doit être connecté à une borne de
recharge du début à la fin de la période de recharge, et sa demande d’énergie doit être satisfaite.
Le système de gestion de la station de recharge collecte toutes les demandes et doit les planifier
en fonction des ressources disponibles de la station (nombre de bornes, puissances disponibles
et la capacité du réseau). Ainsi, deux questions se posent :

1. Quel est le nombre minimum de bornes de recharge nécessaires pour brancher tous les
véhicules électriques de leurs arrivées à leurs départ?

2. Quelle est la capacité minimale de réseau requise pour charger tous les véhicules électriques
jusqu’à leur niveau d’énergie souhaité ?

Après avoir résolu ces problèmes, nous abordons les problèmes opérationnels. Lorsque la
planification de toutes les demandes est impossible, nous cherchons à maximiser le nombre
de demandes de recharge satisfaites. Ces problèmes sont étudiés pour les bornes de recharge
identiques et non identiques.

Ensuite, nous étudions une autre variante du problème avec un mode opérationnel différent.
Pour charger plus de véhicules, l’énergie demandée n’est pas nécessairement satisfaite dès le
départ, mais est maximisée. De plus, la contrainte qui impose de brancher le véhicule dès son
arrivée est relaxée. Le système choisira l’heure à laquelle le véhicule sera branché, qui peut être
postérieure à l’heure d’arrivée souhaitée, et le véhicule occupera la borne de recharge jusqu’à son
heure de départ. Dans ce cas, l’objectif de la planification consiste à réduire autant que possible
la différence entre les états de charge (SOC) souhaités et les états de charge réels au moment du
départ. De plus, nous comparons les deux modèles de recharge, à savoir la recharge à puissance
constante et celle à puissance variable.

B.1.3 Contenu de la thèse

La motivation et le contexte de la thèse sont présentés dans le chapitre introductif, Chapitre
1. Dans le deuxième chapitre (Chapitre 2), nous présentons un état de l’art essentiel sur les
problèmes de planification de la recharge des véhicules électriques. Avant cela, nous résumons les
concepts d’ordonnancement et de planification en général, ainsi que la technologie des véhicules
électriques, afin d’établir les bases nécessaires à la compréhension des problématiques abordées
dans le cadre de cette thèse.

La première variante du problème de planification de la recharge des véhicules électriques est
présenté et étudié dans le Chapitre 3. Le Chapitre 4 est consacré au problème de maximisation du
nombre de demandes de recharge satisfaites. Le Chapitre 5 aborde le problème de maximisation
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de l’énergie fournie et compare les modèles de puissance constante et de puissance variable. Le
Chapitre 6 est consacré au problème de planification de la recharge en ligne dans un système de
puissance triphasé déséquilibré. Enfin, dans le dernier chapitre, nous résumons les résultats de
notre travail et décrivons les perspectives pour les prochaines études.

B.2 État de l’art

Cette section fournit le contexte, la terminologie et les travaux pertinents nécessaires pour une
meilleure compréhension des problèmes de planification de la recharge des véhicules électriques
(EVCS) abordés dans cette thèse. L’EVCS est un problème d’optimisation étroitement lié au
problème d’ordonnancement de tâches sous contraintes de ressources. Par conséquent, nous
présentons un bref aperçu de ce dernier pour comprendre certaines preuves de complexité et al-
gorithmes présentés dans cette thèse. Ensuite, nous passons brièvement en revue les technologies
des véhicules électriques, telles que les modes de recharge et les différentes entités impliquées.
Une partie essentielle de cette section est consacrée à la classification et à la revue de différents
travaux sur les problèmes de planification de la recharge des véhicules électriques. Ainsi, nous
pouvons identifier notre problème et déterminer les domaines de recherche qui nécessitent d’être
explorés pour combler les lacunes.

B.2.1 Optimisation et problèmes d’ordonnancement de tâches

Un problème d’optimisation consiste à trouver la meilleure solution parmi un ensemble de
solutions possibles, qui optimise une ou plusieurs fonctions objectives tout en respectant
des contraintes. Les problèmes d’ordonnancement, qui forment une classe de ces problèmes
d’optimisation, impliquent l’organisation de tâches (également appelées activités) avec des con-
traintes de temps et de ressources, afin d’optimiser une ou plusieurs fonctions objectives. Il
existe de nombreuses variantes de problèmes d’ordonnancement, selon la nature des tâches, des
ressources, des contraintes et de la fonction objectif. Dans la théorie de l’ordonnancement, les
tâches présentent des caractéristiques qui varient selon le problème considéré. Une tâche peut
être définie par sa date de début, sa date de fin et sa durée d’exécution. Selon la nature du prob-
lème, certaines activités doivent être exécutées sans interruption, ce qui est appelé une activité
non préemptive. Néanmoins, si les activités peuvent être interrompues et exécutées en plusieurs
parties, on parle alors d’une activité préemptive. Les activités peuvent nécessiter une ou plusieurs
ressources durant leur exécution, et il est nécessaire de modéliser l’allocation de chaque ressource
à chaque activité. Les ressources utilisées par les activités peuvent être de nature diverse, telles
que des ressources renouvelables (qui peuvent être réutilisées dès qu’elles sont libérées) ou des
ressources consommables (dont la consommation globale est limitée dans le temps). Parmi les
ressources renouvelables, on trouve les machines. Dans ce cas, on parle de problèmes d’atelier.
On parle de problème à une machine lorsque toutes les tâches doivent être exécutées sur une seule
machine. Toutefois, si plusieurs machines sont disponibles pour l’exécution des tâches, on parle
de problèmes à machines parallèles. Des contraintes supplémentaires peuvent être définies en
matière d’ordonnancement, telles que les contraintes de précédence, les contraintes de disponibil-
ité et d’échéance, les contraintes de partage de ressources, etc. De nombreux objectifs différents
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sont également proposés dans la littérature, tels que la minimisation du nombre de tâches en
retard, la minimisation du makespan qui correspond à la durée totale de l’exécution de toutes
les tâches, la maximisation de la capacité de production, etc.

Les auteurs de [Graham et al. 1979b] ont introduit la notation α |β | γ pour classer les prob-
lèmes d’ordonnancement. Le champ α définit l’environnement de la machine. Les caractéris-
tiques de la tâche et les contraintes d’ordonnancement sont spécifiées par le champ β, tandis que
le champ γ définit la fonction objectif. Par exemple, P | ri |Cmax concerne l’ordonnancement
sur machines parallèles avec des tâches ayant des dates de début pour minimiser le makespan.
Un livre complet sur les problèmes d’ordonnancement classiques avec plus de détails peut être
trouvé dans [Leung 2004].

Il convient de mentionner que l’utilisation des machines pour l’exécution des tâches n’est
pas nécessairement considérée pour tous les problèmes d’ordonnancement. Une branche entière
de la théorie de l’ordonnancement appelée problème d’ordonnancement de projet à contraintes
de ressources (RCPSP) n’utilise pas systématiquement des machines. Le RCPSP peut être
défini comme suit. On dispose d’un ensemble de tâches à ordonnancer et d’un ensemble de
ressources renouvelables ayant des capacités qui définissent leurs quantités disponibles tout au
long du projet. Chaque tâche a une durée et une quantité de ressources à consommer par
unité de temps. De plus, il existe des contraintes de précédence entre ces tâches. L’objectif
principal du problème est de planifier toutes les tâches sans dépasser la capacité des ressources
afin que la durée totale du projet soit minimisée. Ce problème est prouvé être NP-difficile
[Blazewicz et al. 1983]. Un état de l’art des variantes et des extensions du problème RCPSP
peut être trouvé dans [Hartmann & Briskorn 2010]. Au cours des dernières décennies, le RCPSP
a suscité l’intérêt des chercheurs car il englobe une large classe de problèmes d’ordonnancement,
tels que les problèmes de job shop et de flow shop. Un cas spécial intéressant du RCPSP est
l’ordonnancement cumulatif, dans lequel une date de début et une date d’échéance sont ajoutées
pour chaque tâche, les contraintes de précédence sont relâchées et une seule ressource cumulée
est considérée à la fois. Le problème d’ordonnancement cumulatif (CuSP) est NP-complet
[Baptiste & Le Pape 1997]. Récemment, les auteurs de [Nattaf et al. 2015] ont considéré une
variante de l’ordonnancement cumulatif avec une ressource cumulée, continue et renouvelable,
et ont présenté une méthode hybride de branch-and-bound pour le résoudre.

Le raisonnement énergétique, introduit par [Lopez 1991], est un outil efficace pour traiter
le CuSP. Le raisonnement énergétique repose sur la comparaison entre l’énergie que doit con-
sommer un ensemble de tâches entre deux instants et les ressources disponibles. Plus tard, il a
été adapté par [Baptiste & Le Pape 1997, Nattaf et al. 2015] pour développer un test de satisfi-
abilité polynomiale pour leurs problèmes. Lorsque la consommation des ressources est uniforme
et qu’il n’y a aucune contrainte sur leur capacité, le problème se transforme en un problème
d’ordonnancement par intervalle, qui peut être résolu en temps polynomial.

Cette thèse se concentre sur le problème de l’ordonnancement de la recharge des véhicules
électriques (EVCS) dans des stations de recharge avec un nombre fixe de bornes de recharge
(points de recharge) et une puissance disponible. Ce problème peut être considéré comme un
problème d’ordonnancement avec contraintes de ressources, dans lequel les travaux à ordon-
nancer sont les demandes de recharge et les ressources sont les places de stationnement, les
bornes de recharge et l’énergie électrique disponible.
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B.2.2 Problèmes d’ordonnancement de la recharge des véhicules électriques

Les véhicules électriques peuvent être classés en deux catégories principales: les véhicules élec-
triques hybrides (HEV) et les véhicules entièrement électriques (AEV). Un HEV combine un
moteur à combustion interne avec un moteur électrique. Il ne peut pas être branché pour
recharger sa batterie à partir de sources externes telles que le réseau électrique. Il est rechargé
par le moteur à combustion interne ou grâce à un mécanisme de récupération d’énergie appelé
freinage régénératif. Ce mécanisme convertit l’énergie cinétique du véhicule en énergie électrique
qui est stockée dans la batterie. Un véhicule électrique hybride rechargeable (PHEV) est un type
de HEV avec une batterie plus grande qui peut être rechargée depuis le réseau électrique.

D’autre part, un AEV, également appelé véhicule électrique pur, est alimenté exclusivement
par des sources électriques. Nous pouvons classer les AEV en véhicules électriques à batterie
(BEV) et en véhicules électriques à pile à combustible (FCEV). Un BEV dépend de l’énergie
fournie par la batterie, qui est rechargée en la branchant sur le réseau électrique. Un FCEV ne
nécessite pas de système de charge externe. Généralement, il génère de l’électricité en utilisant
l’oxygène de l’air et de l’hydrogène comprimé.

Dans cette thèse, nous utilisons le terme "véhicule électrique" pour désigner à la fois les BEV
et les PHEV.

De nos jours, les conducteurs de véhicules électriques ont principalement tendance à charger
leurs véhicules directement lorsqu’ils arrivent chez eux [Azadfar et al. 2015] ou à la station de
recharge la plus proche [Azadfar et al. 2015]. La recharge commence immédiatement lorsque le
véhicule est branché et se poursuit jusqu’à ce que la batterie soit complètement chargée. On ap-
pelle cela une recharge non contrôlée. La recharge non contrôlée a un impact négatif sur le réseau
électrique, l’infrastructure de recharge et les conducteurs de véhicules. Par conséquent, des ap-
proches de recharge intelligente dans le déploiement à grande échelle de véhicules électriques
sont cruciales pour une utilisation appropriée de l’énergie, la stabilité du réseau et la satisfaction
des consommateurs. Différentes stratégies de contrôle et de planification de la recharge ont été
proposées. Il existe deux types de stratégies de contrôle : centralisées et décentralisées. Dans les
stratégies centralisées, les décisions de recharge sont prises par un contrôleur de haut niveau, tel
que des agrégateurs. À l’opposé, les stratégies de contrôle décentralisées permettent à chaque
véhicule électrique de définir son propre plan de recharge. Les deux stratégies ont leurs avantages
et leurs limites. Les approches centralisées nécessitent des temps de calcul longs et rencontrent
des difficultés pour collecter des informations de recharge précises auprès de nombreux véhicules
électriques en raison des incertitudes liées à leur comportement [Kang et al. 2016]. Les stratégies
de contrôle décentralisées réduisent les exigences de calcul car le calcul est réparti entre les agents
individuels. De plus, elles améliorent la commodité et la satisfaction des clients. Cependant, les
stratégies décentralisées peuvent entraîner une utilisation inefficace des ressources disponibles
et des conflits de charge. De plus, ils peuvent rencontrer des limitations en termes d’évolutivité
lorsque le nombre de véhicules électriques augmente. La coordination et la gestion des plans de
recharge individuels deviennent plus complexes à mesure que le système s’agrandit, ce qui peut
affecter la scalabilité du système de recharge.

Dans cette section, nous nous concentrons uniquement sur les problèmes liés à la planification
de la recharge des véhicules électriques de manière centralisée. De plus, nous n’incluons pas les
articles traitant de la technologie de véhicule-réseau (V2G), où les véhicules électriques peuvent
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restituer de l’énergie au réseau. Seuls les modèles de flux d’énergie unidirectionnels sont pris
en compte. De plus, nous n’incluons pas les articles traitant des sources d’énergie renouvelable,
telles que l’énergie solaire et les unités de stockage d’énergie.

Dans la littérature, la formulation du problème de planification de la recharge des véhicules
électriques (EVCS) varie considérablement d’une étude à l’autre, en fonction des caractéristiques
de l’infrastructure de recharge et du modèle opérationnel considéré. Il n’existe pas encore de
modèle générique ni de références générales. Cela est dû à la grande variété d’aspects à pren-
dre en compte dans la formulation de l’EVCS, notamment les infrastructures de recharge, les
comportements des conducteurs de véhicules électriques, le marché de l’électricité et les poli-
tiques des services de recharge. Chaque aspect peut être considéré dans le modèle en tant
qu’objectif, contrainte, paramètre ou variable de décision. Ainsi, nous classifions d’abord les
études existantes en fonction des différents objectifs considérés. Ensuite, nous exposons les dif-
férentes contraintes, hypothèses et considérations qui nous permettraient de caractériser et de
distinguer les différentes branches de la littérature. Enfin, nous passons en revue les méthodes
d’optimisation utilisées pour aborder les problèmes de l’EVCS. La figure B.3 présente un résumé
de la classification des objectifs, contraintes et méthodes d’optimisation avec des exemples non
exhaustifs.

Problème de planification de la recharge des véhicules électriques

Objectifs d’optimisation

Du point de vue des opérateurs
du réseau électrique

Minimisation des pertes de
puissance

Minimisation des écarts de
tension

Minimisation de la variation
de charge

Minimisation des coûts
opérationnels

Du point de vue des fournisseurs
de services de recharge

Minimisation du coût de
l’électricité

Maximisation des revenus

Maximisation de la satisfaction
des clients

Contraintes hypothèses et
considérations

Liées aux véhicules électriques

Heures d’arrivée

Heures de départ

Capacité de la batterie

Énergie demandée

Limite de tension de charge

Liées aux infrastructures
de recharge

Capacité de l’infrastructure
de recharge

Taux de recharge

Charge de base

Prix de l’électricité

Préemption

Méthodes d’optimisation

Méthodes exactes

Programmation linéaire

Programmation dynamique

Heuristiques et métaheuristiques

Optimisation par essaim
de particules

Algorithmes génétiques

Algorithmes en ligne

Figure B.3: Une classification des objectifs, contraintes et approches d’optimisation du problème
de planification de la recharge des véhicules électriques (EVCS).
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Une classification des objectifs du problème est nécessaire avant de classer les méthodes
d’optimisation utilisées pour les résoudre. Nous classifions d’abord les problèmes de planification
de la recharge des véhicules électriques (EVCS) en deux catégories selon la perspective des parties
prenantes, à savoir les opérateurs de réseau électrique et les opérateurs de stations de recharge.
Cette classification est essentielle pour distinguer le contexte de l’étude, car dans le secteur de
l’électricité, chaque entité est indépendante légalement et fonctionnellement et a des objectifs
différents en fonction de sa responsabilité dans le système. Par exemple, les opérateurs de
réseau visent à maintenir la stabilité et la fiabilité du réseau. En revanche, les objectifs des
opérateurs de stations de recharge consistent à maximiser les profits et à minimiser les factures
d’électricité tout en respectant les contraintes du réseau. De plus, les problèmes de planification
de la recharge formulés du point de vue des opérateurs de réseau couvriront des réseaux de
distribution à grande et moyenne échelle avec plusieurs unités de recharge (recharge à domicile,
parkings, bâtiments commerciaux).

En revanche, les opérateurs de stations de recharge aborderont probablement les problèmes
de planification dans les infrastructures de recharge de petite et moyenne taille pour lesquelles
ils sont responsables. Malgré le couplage entre ces deux types d’acteurs, ils ont été considérés
séparément. Seuls quelques articles les prennent en compte tous les deux. Actuellement, il est
plus pratique pour les opérateurs de stations de recharge d’adopter des stratégies de recharge
intelligentes. La planification de la recharge des véhicules électriques du point de vue des opéra-
teurs de réseau sera plus largement adoptée dans le contexte des futurs réseaux intelligents, où les
agrégateurs de véhicules électriques gèrent des véhicules électriques répartis géographiquement.

Dans ce qui suit, nous nous concentrons sur les problèmes formulés du point de vue des
opérateurs de stations de recharge, car les problèmes traités dans cette thèse relèvent de cette
catégorie.

Minimisation des coûts. Les problèmes d’optimisation visant à minimiser les coûts sont
les plus abordés dans la littérature. Cet objectif implique principalement la réduction des fac-
tures d’électricité payées par les opérateurs de stations de recharge, en tenant compte des offres
d’électricité à tarification dynamique (voir la section 2.4.2.13). Une recharge non contrôlée en-
traînera des coûts d’électricité élevés, ce qui constitue un obstacle important au déploiement des
stations de recharge publiques. Surtout pour les stations de recharge rapide où la recharge des
véhicules électriques peut représenter plus de 90% des coûts d’électricité [Garrett & Nelder 2016].

Les auteurs de [Tang et al. 2014] minimisent le montant de la facture d’électricité payée
par la station de recharge. Dans [Zheng & Shroff 2014], les auteurs maximisent le nombre to-
tale des véhicules servis tout en minimisant le coût de l’énergie. [Ma et al. 2015] optimisent le
coût de recharge en assurant une recharge complète pour tous les véhicules. Dans l’article de
[Tang & Zhang 2016], les auteurs formulent le coût total de recharge comme une fonction stricte-
ment convexe et croissante. Dans leur étude publiée dans [Wu et al. 2018], les auteurs cherchent
à réduire le coût de l’électricité achetée par un parking auprès du réseau électrique. Ils prennent
en considération la variation des prix de l’électricité à différents intervalles de temps. ans leur
publication [Ki et al. 2018], les auteurs se sont penchés sur le problème des systèmes de charge
pour véhicules électriques (EVCS) en utilisant des chargeurs de type M-to-N qui sont réellement
utilisés dans les stations de recharge en Corée du Sud. Ces chargeurs sont conçus pour permettre
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la connexion de N véhicules électriques, mais seuls M véhicules électriques peuvent se recharger
simultanément (M < N). La fonction objectif a pour but de maximiser la somme de quatre
termes pondérés, incluant les coûts de recharge avec un signe négatif pour leur minimisation.

Dans leur étude mentionnée dans [Yang 2019], les auteurs considèrent sur la planification de
la recharge dans un parking résidentiel. Ils parviennent à minimiser les coûts en intégrant un
indice de préférence de prix pour chaque intervalle de temps, qui dépend du prix de l’électricité
à chaque intervalle. La fonction objectif est formulée sous forme de maximisation, donc l’indice
est plus élevé lorsque le prix de l’électricité est bas, et vice versa. Les auteurs de l’article
[Liu et al. 2020] se concentrent sur la minimisation des coûts de recharge en fonction des tarifs
d’électricité en vigueur dans une station de recharge qui dispose d’un nombre limité de chargeurs.

Maximisation des revenus Cet objectif est étroitement lié à l’objectif précédent. En effet,
pour maximiser les revenus d’une station de recharge, il est essentiel de trouver un équilibre entre
les coûts d’approvisionnement en électricité et les prix de vente de la recharge. En minimisant les
coûts de l’électricité, la station peut augmenter sa marge bénéficiaire en réduisant les dépenses
liées à l’achat d’électricité auprès du réseau.

Les auteurs de l’article [Jin et al. 2013] maximisent des revenus d’un agrégateur, tout en
établissant une limite supérieure pour contrôler les coûts de recharge des clients. Les agrégateurs
tirent leurs revenus à la fois du bénéfice généré par la fourniture de services de régulation au
réseau électrique et des bénéfices résultant de la vente d’énergie aux véhicules électriques. Dans
le contexte des parkings intelligents, l’article [Kuran et al. 2015] aborde un problème similaire
de maximisation des revenus. Les revenus sont déterminés en soustrayant le coût d’achat de
l’électricité du prix de vente de la recharge des véhicules électriques. L’article [Bučar 2014] se
concentre sur la maximisation du profit total en planifiant toutes les demandes de recharge.
On trouve aussi l’article [Niu et al. 2018] qui cherche à maximiser le bénéfice d’une station de
recharge rapide tout en tenant compte des fluctuations de charge. Lorsque ces fluctuations
sont importantes, cela entraîne une augmentation des pertes d’énergie, qui finissent par être
supportées par la station de recharge et les conducteurs de véhicules électriques.

Maximisation de la satisfaction des clients La satisfaction des clients représente un fac-
teur important pour garantir le succès d’une entreprise gérant les stations de recharge. De
toute évidence, les clients mécontents qui ont connu des désagréments lors de la recharge
ne reviendront pas à la station de recharge. De plus, un service de mauvaise qualité nuit
à la réputation du CSP. Ainsi, plusieurs articles proposent de formuler le problème EVCS
du point de vue du client ou d’inclure la satisfaction des clients dans leur fonction objec-
tif. Il existe de nombreuses façons pour les opérateurs de stations de recharge d’améliorer
la satisfaction de leurs clients : en se concentrant sur la maximisation du nombre de de-
mandes de recharge satisfaites [Kuran et al. 2015, Gerding et al. 2019], en maximisant l’énergie
fournie à chaque véhicule électrique [Rahman et al. 2016, Ki et al. 2018, Yang 2019], en min-
imisant les coûts de recharge des clients [Jin et al. 2013], ou en minimisant le temps de recharge
[Zhu et al. 2014, Ki et al. 2018, García-Álvarez et al. 2018].

L’article [Zhu et al. 2014] considère l’inclusion du temps de déplacement jusqu’au point
de recharge et du temps d’attente dans le temps total de recharge à minimiser. En paral-
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lèle, l’article [García-Álvarez et al. 2018] se concentre sur la minimisation du retard total, qui
survient lorsque l’heure de fin de recharge dépasse l’heure de départ prédéfinie. Dans l’article
[Zheng & Shroff 2014], les auteurs se focalisent sur la maximisation de la valorisation totale
des clients. De plus, dans l’article [?], la satisfaction des clients est quantifiée en termes de
pourcentage d’énergie reçue. La satisfaction d’un conducteur de véhicule électrique est atteinte
lorsque ce pourcentage dépasse un seuil spécifique, dépendant de la durée du temps de branche-
ment. La stratégie de recharge est considérée comme satisfaisante lorsque 95% des conducteurs
de véhicules électriques sont satisfaits. Également, dans l’article [Ki et al. 2018], l’accent est
mis sur la maximisation de l’équilibre de charge entre les véhicules électriques. Les auteurs de
l’article [Zheng et al. 2018] cherchent à minimiser la puissance fournie tout en maximisant le
niveau de satisfaction pour la recharge des véhicules électriques. Enfin, l’article [Niu et al. 2018]
vise à équilibrer la satisfaction des clients, les revenus de la station de recharge et la fluctuation
de la charge.

B.2.3 Le positionnement de la recherche

Bien que les études précédemment mentionnées aient abordé divers aspects du problème de
planification de la recharge des véhicules électriques, elles ont principalement supposé l’existence
d’un nombre suffisant de bornes de recharge pour tous les véhicules. Par conséquent, l’accent
était mis sur l’ordonnancement des recharges sans prendre en compte l’attribution spécifique de
chaque véhicule à une borne de recharge. Peu d’articles ont réellement exploré la question de
l’affectation des véhicules aux bornes de recharge dans le cadre de l’élaboration d’un calendrier
de recharge. Dans l’étude menée par les auteurs [Liu et al. 2020], un nombre limité de bornes
de recharge a été pris en considération afin de minimiser le coût total de la recharge en fonction
du tarif d’électricité selon les heures d’utilisation. Toutefois, cette approche n’imposait pas
de restriction sur la puissance totale allouée, ce qui signifie que la puissance de recharge de
chaque borne était uniquement limitée par sa capacité maximale. De plus, peu d’études ont
examiné la recharge à puissance constante, et aucune comparaison n’a été faite pour déterminer
les avantages de l’utilisation de bornes de recharge identiques ou non identiques.

Notre étude est proche de la littérature portant sur la planification de la recharge avec
l’attribution des véhicules aux bornes de recharge. Toutefois, nous nous distinguons par notre
modèle opérationnel des stations de recharge, nos contraintes et nos objectifs d’optimisation.
Les contributions de cette thèse peuvent être exposées de la manière suivante :

• Nous proposons un nouveau modèle opérationnel pour les stations de recharge qui prend
en compte le nombre limité de chargeurs disponibles, chacun étant installé dans une place
de parking. De plus, nous considérons une contrainte de puissance totale limitée pour la
station de recharge. En fixant une limite de puissance totale pour la station, on s’assure de
ne pas dépasser la capacité du réseau et d’éviter les pics de consommation et les surcharges
qui pourraient entraîner des problèmes de stabilité du réseau, des coupures d’électricité et
des coûts supplémentaires.

• Nous introduisons un système de réservation, permettant aux véhicules électriques de
soumettre leurs demandes de recharge afin d’éviter les files d’attente. L’ordonnanceur
attribue ensuite un chargeur adapté à chaque véhicule.
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• Différentes fonctions objectifs sont prises en compte, incluant la minimisation de la capacité
requise pour l’infrastructure de recharge, la maximisation du nombre de demandes de
recharge satisfaites, la maximisation de l’énergie délivrée et la minimisation des retards.

• Nous fournissons une preuve détaillée de la difficulté NP-complète pour chacun des prob-
lèmes envisagés.

• Nous proposons des heuristiques et des métaheuristiques visant à optimiser à la fois
l’affectation des véhicules aux chargeurs et l’ordonnancement de la recharge des véhicules
électriques.

• Nous effectuons des comparaisons approfondies entre différents aspects de la planification
de la recharge, notamment :

– Entre des taux de charge constants identiques et non identiques.

– Entre des taux de charge constants et variables.

– Entre des ordonnancements préemptifs et non préemptifs.

– Entre des modèles indexés sur le temps et des modèles basés sur les événements.

En résumé, notre étude apporte des contributions significatives en matière d’attribution
des véhicules aux chargeurs dans le contexte des stations de recharge pour véhicules élec-
triques, en proposant un nouveau modèle opérationnel, des contraintes spécifiques, des objectifs
d’optimisation variés, ainsi que des preuves de difficulté et des approches heuristiques novatrices.

B.3 Problème de planification préemptive de la recharge des
véhicules électriques pour minimiser la capacité du réseau

Nous avons souligné la diversité des problèmes de planification de la recharge des véhicules
électriques (EVCS) étudiés dans la littérature. Cependant, la plupart des travaux existants
supposent une recharge avec des taux de puissance variables. Malgré le potentiel commercial
prometteur de cette méthode de recharge, seuls quelques chargeurs à puissance variable sont
actuellement disponibles sur le marché. En outre, il est prévu que les chargeurs à puissance
constante continueront de coexister avec ceux à puissance variable, en raison de leur facilité
de déploiement [Sun et al. 2016]. Cette coexistence est motivée par le fait que les batteries des
véhicules électriques consomment une puissance relativement constante lorsqu’elles se rechargent
dans la plage de 20% à 80%. Par ailleurs, la recharge à puissance constante est considérée
comme plus efficace, car elle réduit les pertes d’énergie utilisable lors de l’opération de recharge
[Jeon et al. 2021].

Un autre aspect crucial est que très peu d’études prennent en compte les places de parking
et les points de recharge (chargeurs) en tant que ressources limitées à gérer dans les stations
de recharge. En effet, ces études supposent généralement que les opérateurs de stations de
recharge ne géreront ni les places de parking ni les chargeurs et que le conducteur choisira son
emplacement à son arrivée, ce qui convient davantage aux stations de recharge sans réservation
où tous les chargeurs sont identiques. Cependant, les stations de recharge ressemblent davantage
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à des parkings équipés de chargeurs capables de délivrer des taux de puissance différents. Par
conséquent, il est essentiel d’attribuer à chaque véhicule un chargeur approprié pour répondre à
sa demande avant le départ.

Basé sur la discussion précédente, le problème présenté dans cette section ( et dans le Chapitre
3) se concentre sur l’étude du problème de planification de la recharge en considérant un nombre
fixe de chargeurs délivrant une puissance constante. Plus spécifiquement, la station de recharge
comprenne un nombre déterminé de places de parking, chacune étant équipée d’un chargeur
avec un seul connecteur permettant le branchement d’un véhicule à la fois. Elle dispose d’une
capacité d’alimentation électrique limitée afin d’éviter toute surcharge du réseau. Avant de se
rendre à la station, chaque conducteur de véhicule électrique doit soumettre une demande de
recharge pour réserver une place de parking.

En raison du nombre limité de chargeurs, de l’autonomie restreinte des véhicules électriques et
des longs temps de recharge, les conducteurs doivent soigneusement planifier leurs déplacements
pour s’assurer d’avoir l’occasion de recharger leurs batteries. Il est donc préférable pour eux de
vérifier à l’avance la disponibilité du chargeur qu’ils ont l’intention d’utiliser. De plus, le protocole
de point de charge ouvert (Open Charge Point Protocol) déjà déployé intègre la fonctionnalité
de réservation des stations de recharge [OCP 2020]. Un système de gestion centralisé contrôle et
planifie la charge afin d’optimiser l’utilisation des places de parking et de la puissance disponible
pour répondre aux demandes de recharge sans surcharger le réseau électrique.

Nous nous focalisons principalement sur la question suivante : si les opérateurs de stations de
recharge fixent comme objectif de satisfaire un certain nombre défini de demandes de recharge,
combien de chargeurs sont nécessaires et quelle est la puissance limitée nécessaire pour atteindre
cet objectif ?

Nous abordons donc deux problèmes. Tout d’abord, nous étudions le problème de déterminer
le nombre minimum de chargeurs requis pour brancher tous les véhicules. Ensuite, nous nous
attaquons au problème de minimisation de la limite de puissance maximale nécessaire pour
satisfaire toutes les demandes de recharge. Nous désignons cette limite par la capacité du réseau.
Cette problématique est étudiée dans le but d’orienter de manière précise les stations de recharge
dans le choix de leur puissance maximale souscrite. La limitation de la puissance totale peut
également avoir un impact financier. En réduisant la puissance totale allouée, on peut réduire les
coûts d’investissement dans l’infrastructure électrique nécessaire à la station de recharge. Au fur
et à mesure de l’augmentation des demandes de recharge, il est impératif d’adapter leur capacité
en conséquence. En effet, les pics de consommation d’énergie entraînent des factures d’électricité
élevées. Généralement, des équipements tels que des dispositifs de coupure de puissance et des
relais sont installés à faible coût pour éviter ces pics, mais ils entraînent l’arrêt du système,
ce qui est indésirable. Par conséquent, il est essentiel de fournir un aperçu de la limite de
puissance minimale en fonction des types de chargeurs installés et des demandes de recharge.
Nous examinons ces deux problèmes dans le cas de chargeurs identiques et non identiques. Pour
les chargeurs identiques, nous démontrons que les deux problèmes sont polynomiaux dans les
deux cas. En ce qui concerne la minimisation de la capacité du réseau, nous prouvons que le
problème est polynomiale dans le cas de chargeurs identiques et NP-difficile dans le cas de
chargeurs non identiques.

Nous avons développé une heuristique pour résoudre le problème NP-difficile avec des
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chargeurs non identiques. Ensuite, nous avons utilisé une métaheuristique de recherche locale
itérée (ILS) pour améliorer les résultats de cette heuristique. Nous avons présenté différents
scénarios afin d’évaluer les performances des algorithmes, proposés. Nous avons démontré que
l’utilisation d’un solveur MILP, notamment CPLEX, n’est pas pratique pour résoudre le prob-
lème avec des chargeurs de différents types. L’ILS que nous avons proposée dépasse les perfor-
mances de CPLEX en termes de minimisation de la capacité du réseau et de temps de calcul.
En moyenne, l’ILS a obtenu de meilleures solutions en moins de 20 secondes. Des expériences
supplémentaires ont révélé que l’installation de chargeurs fournissant une puissance de sortie
différente est plus avantageuse que l’installation de chargeurs identiques.

Ainsi, Le chapitre 3 qui traite ces problèmes est organisée comme suit. La section 3.2 décrit
en détail le problème étudié. La section 3.3 examine le problème avec des chargeurs identiques,
tandis que la section 3.4 traite des chargeurs non identiques. Pour chaque cas, nous étudions le
nombre minimum de chargeurs requis pour brancher tous les véhicules dans la station de recharge
ainsi que les problèmes de capacité minimale du réseau. La section 3.5 évalue les performances
des méthodes proposées, et enfin, la section 3.6 conclut le chapitre.

B.4 Problème de planification préemptive de la recharge des
véhicules électriques pour maximiser le nombre de demandes
satisfaites

Ce problème, présenté dans le chapitre 4, est similaire à celui décrit précédemment. Cependant,
la fonction objectif est différente. La capacité du réseau et le nombre de chargeurs dans la station
de recharge sont fixés et sont considérés comme des contraintes dans ce problème. La plupart
de stations de recharge limite le nombre de chargeurs installés en fonction de la puissance totale
souscrite. Dans ce cas, tout les chargeurs peuvent délivrer jusqu’à leurs puissances maximales en
même temps. Un inconvénient majeur de cette configuration est que le nombre de chargeurs lim-
ite le nombre de véhicules pouvant stationner dans la station de recharge. Lorsqu’un conducteur
branche son véhicule, le câble est verrouillé au port de recharge du véhicule, empêchant ainsi
toute personne non autorisée de le débrancher. Seul le propriétaire du véhicule ou le propriétaire
de la station de recharge peut le déverrouiller. Dans ce cas, le véhicule doit être déplacé vers
un autre emplacement de stationnement afin de permettre à d’autres véhicules de se charger.
L’ajout de plus de chargeurs et la limitation de la capacité de la station de recharge offrent une
plus grande flexibilité et permettent à un plus grand nombre de véhicules de se brancher et de
se charger sans surcharger le réseau électrique. Nous nous intéressons aux questions suivantes :

• Existe-t-il un ordonnancement faisable pour toutes les demandes de recharge ?

• Si aucun ordonnancement faisable n’existe, quel est le sous-ensemble maximal de demandes
de recharge pouvant être satisfaites ?

La première question est la version décisionnelle du problème et elle est liée aux résultats du
chapitre précédent (chapitre 4). La deuxième question vise à maximiser le nombre de véhicules
chargés. En d’autres termes, nous cherchons à maximiser le nombre de clients pouvant être servis.
Nous avons démontré que ce problème est NP-difficile. Nous avons abordé en premier lieu le cas
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des chargeurs identiques, pour lequel nous avons proposé différents modèles de programmation
linéaire ainsi que des heuristiques. Une comparaison détaillée entre ces méthodes a été réalisée.
Les résultats mettent en évidence que le modèle événementiel relaxé surpasse les autres approches
et peut résoudre efficacement des instances de grande taille comportant 400 véhicules en moins
de 45 secondes. Des instances plus complexes ont été générées afin de démontrer les limites
du modèle. Nous avons constaté que ses performances dépendent non seulement du nombre de
véhicules et de chargeurs, mais également de la capacité du réseau. En outre, la comparaison
des heuristiques révèle que la sélection des véhicules à planifier en se basant sur la solution
d’allocation de puissance s’avère plus efficiente que celle basée sur la solution d’affectation. Par la
suite, nous nous penchons sur le problème avec des chargeurs différents, qui s’avère plus complexe
que le précédent. Nous proposons deux formulations de programmation linéaire pour aborder
ce cas. Ensuite, nous développons une méthode de recuit simulé (SA) combinée à une recherche
locale à deux étapes. Les résultats révèlent que le SA proposé parvient à trouver de bonnes
solutions en un laps de temps court. De plus, le SA surpasse le modèle linéaire, principalement
dans les instances comprenant plus de 200 véhicules. Des résultats supplémentaires confirment
que l’installation de différents types de chargeurs est plus bénéfique pour maximiser le nombre
de demandes de recharge qui peuvent être satisfaites.

Ainsi, le chapitre 4 est structuré comme suit. Nous présentons le problème étudié et donnons
un exemple illustratif dans la section 4.2. Dans la section 4.3, nous abordons le problème avec
des chargeurs identiques, tandis que la section 4.4 examine le problème avec différents types de
chargeurs. Les résultats de simulation sont présentés dans la section 4.5, et enfin, une conclusion
est proposée dans la section 4.6.

B.5 Problème de planification préemptive de la recharge des
véhicules électriques pour maximiser l’énergie délivrée

Dans les chapitres 3 et 4, nous avons étudié le problème de planification de la recharge des
véhicules électriques avec des taux de puissance de recharge constants. Cependant, dans la revue
de littérature présentée au chapitre 2, nous avons mis en évidence la possibilité de considérer
deux types de taux de puissance : les taux variables et les taux constants. Ce chapitre se penche
sur l’examen et la comparaison de deux variantes du problème de planification de la recharge.
Dans la première variante, appelée modèle de puissance constante, les chargeurs ont la capacité
de délivrer soit leur puissance maximale, soit aucune puissance du tout. La seconde variante
est le modèle de puissance variable, où le taux de charge de chaque chargeur peut varier dans le
temps, allant de zéro à sa puissance maximale.

Le modèle de fonctionnement de la station de recharge reste essentiellement le même, avec une
puissance totale limitée et un nombre restreint de chargeurs. Les véhicules électriques soumettent
leurs demandes de recharge, et c’est à l’ordonnanceur d’attribuer un chargeur approprié à chaque
véhicule. Toutefois, l’ordonnanceur dispose également de la possibilité de décider de l’heure de
branchement de chaque véhicule, qui peut être postérieure à l’heure d’arrivée demandée. Dans
le but de servir un maximum de véhicules, l’objectif de l’ordonnanceur est de maximiser l’état
final des charges.
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Nous avons prouvé que ce problème est NP-difficile. De plus, nous avons formulé le prob-
lème d’ordonnancement sous la forme d’un modèle de programmation linéaire en nombres entiers
(MILP). Même pour de petites instances, il était difficile de résoudre les modèles MILP. Par
conséquent, nous avons conçu une heuristique basée sur un algorithme de coloration de graphe
d’intervalles et un algorithme de recuit simulé (SA) combiné à la programmation linéaire. Dif-
férentes instances ont été générées pour évaluer les performances des méthodes proposées. Les
résultats montrent que le modèle de puissance variable est plus efficace pour satisfaire les de-
mandes de recharge. Nous démontrons que l’algorithme SA obtient de meilleurs résultats en
minimisant la fonction objectif en moins d’une minute. Des résultats supplémentaires sur la
qualité des solutions d’ordonnancement ont été présentés. Les solutions d’ordonnancement de
l’algorithme SA chargent au moins 93% des demandes de recharge à plus de 75% de leur énergie
souhaitée. D’autre part, le pourcentage de demandes rejetées est inférieur à 2,5%.

Ainsi, le chapitre 5 traitant ce problème est organisée comme suit. La section 5.2 décrit
en détail le problème étudié. La section 5.3 le formule comme un problème de programmation
linéaire mixte en nombres entiers (MILP). Nous examinons la complexité dans la section 5.4.
La section 5.5 propose des méthodes d’optimisation. La section 5.6 évalue les performances des
méthodes proposées, et enfin la section 5.7 conclut le chapitre.

B.6 Conclusion et perspectives

La transition vers des transports routiers décarbonés et l’encouragement à l’utilisation des
énergies vertes ont suscité un vif intérêt pour la recherche sur les technologies des véhicules
électriques. Au fil des années, le marché des véhicules électriques a connu une expansion re-
marquable, ce qui a entraîné une demande croissante en infrastructures de recharge. Dans la
prochaine décennie, il sera nécessaire de mettre en place davantage d’infrastructures de recharge
intelligentes pour répondre à cette demande croissante en électricité.

L’un des défis clés liés à l’augmentation du nombre de véhicules électriques réside dans
la gestion efficace de la charge électrique. Il est essentiel d’adopter des stratégies de recharge
intelligente afin d’optimiser l’utilisation de l’énergie électrique tout en évitant les impacts négatifs
sur le réseau électrique. La planification de la recharge des véhicules électriques joue un rôle
crucial dans ce domaine.

La présente thèse s’est donc penchée sur le problème de planification de la recharge des
véhicules électriques. L’objectif était de développer des méthodes et des stratégies permettant
de gérer de manière optimale la demande de recharge tout en prenant en compte les contraintes
techniques et les capacités du réseau électrique. En examinant les différents aspects de ce prob-
lème complexe, des solutions ont été proposées pour optimiser l’utilisation des infrastructures
de recharge et minimiser les coûts énergétiques.

Les résultats de cette thèse ont contribué à mieux comprendre les défis et les opportunités
liés à la recharge des véhicules électriques. Les approches développées ont montré leur efficacité
dans la gestion de la demande de recharge, ce qui permet de minimiser les pics de consommation
et d’améliorer l’efficacité énergétique globale. Ces avancées sont essentielles pour promouvoir
l’adoption des véhicules électriques et garantir une transition réussie vers une mobilité plus
durable.
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Dans l’état de l’art, nous avons brièvement revisité le problème classique d’ordonnancement
des tâches. Ensuite, nous avons donné un aperçu des technologies des véhicules électriques,
soulignant la grande variété dans la formulation du problème de planification de la recharge des
véhicules électriques en fonction des modèles de recharge, des objectifs, des considérations et des
contraintes.

Ensuite, nous nous sommes intéressés au problème de recharge des véhicules électriques dans
une station de recharge avec une capacité de réseau limitée et un nombre limité de chargeurs
délivrant de l’énergie à des taux constants. Tous les véhicules doivent soumettre une demande
de réservation de recharge. Dans un premier temps, nous avons étudié le problème de la recharge
de tous les véhicules avec une capacité minimale du réseau, dans le cas de chargeurs identiques
et non identiques. Nous avons prouvé que le problème est polynomiale dans le premier cas,
tandis qu’il est NP-difficile dans le second. Des formulations mathématiques et des méthodes
de résolution ont été proposées et comparées. Les résultats des simulations suggèrent qu’il est
préférable d’installer des chargeurs avec des taux de recharge différents. Lorsque la capacité
du réseau n’est pas suffisante pour satisfaire toutes les demandes de recharge, notre objectif
est de maximiser le nombre de demandes acceptées. Ce problème s’est avéré être NP-difficile,
que les chargeurs soient identiques ou non identiques. Différentes formulations mathématiques,
heuristiques et métaheuristiques ont été proposées pour le résoudre.

Ensuite, nous avons étudié le problème de la recharge avec des taux de puissance variables et
l’avons comparé à celui avec des taux de puissance constants. Le modèle de la station de recharge
était légèrement différent. Nous avons pris en compte une relaxation sur l’heure d’arrivée, où
les véhicules peuvent être branchés plus tard que l’heure d’arrivée souhaitée. L’objectif était
de maximiser l’état de charge au moment du départ. Nous avons prouvé que le problème
était NP-difficile, que les puissances de recharge soient constants ou variables. Nous avons
proposé des modèles de programmation linéaire en nombres entiers, des heuristiques et des
métaheuristiques pour le résoudre. Les résultats des simulations ont révélé que résoudre les
modèles de programmation linéaire avec un solveur commercial était presque impossible, même
pour de petites instances. De plus, l’utilisation de taux de recharge variables était plus efficace
que des taux constants pour fournir plus d’énergie avec la même capacité du réseau.

Tous les problèmes de recharge mentionnés étaient de nature préemptive. Nous avons com-
paré la planification de la recharge préemptive et non préemptive dans un contexte en ligne,
dans un système triphasé déséquilibré précédemment décrit dans la littérature. Nous avons
proposé des heuristiques rapides et une recherche locale simple. Nous avons montré comment
la préemption était plus efficace pour optimiser l’ordonnancement, même avec des méthodes
simples.

Le tableau B.1 résume les objectifs, les contraintes, les résultats de complexité et les méthodes
de résolution pour tous les problèmes de planification de la recharge des véhicules électriques
abordés dans cette thèse.

Avant de conclure cette dissertation, nous présentons les perspectives suivantes :

– Le travail présenté peut servir de point de départ pour développer un modèle d’optimisation
plus complexe en incluant davantage de contraintes liées à la technologie des véhicules élec-
triques, telles que les temps de charge non linéaires, l’efficacité de charge et la compatibilité
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Table B.1: Résumé des problèmes de planification de la recharge des véhicules électriques abordés
dans cette thèse.

Chapitre 3 Chapitre 4 Chapitre 5 Chapitre 6
Chargeurs identiques non identiques identiques non identiques non identiques identiques
Affectation
aux chargeurs Oui Non
Préemption Oui Oui Non
Temps de départ Contraintes strictes Contraintes souples
Taux de charge Constant Constant Variable Constant
Temps d’arrivée Contraintes strictes Contraintes souples Contraintes strictes
Demandes
d’énergie Contraintes strictes Contraintes souples Contraintes strictes

Objectif
Minimiser la
capacité du réseau

Maximiser le nombre
de demandes acceptées

Maximiser
l’énergie fournie

Minimiser
le retard total

Classe de
complexité P NP
Résolution Max Flow Heuristiques MILP, MILP, SA+TsLS, SA+MILP Heuristiques en ligne Heuristiques en ligne
Méthodes MILP, ILS+SA heuristiques heuristiques heuristiques et LS

des chargeurs. Cela permettra d’obtenir des modèles plus précis qui reflètent les différentes
exigences des véhicules électriques.

– Le système proposé peut être étendu pour gérer des demandes de charge avec ou sans
réservation. De plus, il est intéressant de traiter les cas où le véhicule fait une réservation
mais ne se présente jamais, ainsi que les cas où le véhicule peut partir plus tard ou plus tôt
que prévu. Dans ce cas, des algorithmes de planification en ligne peuvent être développés
et comparés aux résultats des algorithmes hors ligne proposés dans cette thèse.

– Dans cette thèse, nous avons supposé une recharge préemptive. Bien qu’elle soit plus flex-
ible et bénéfique pour gérer les contraintes et optimiser la fonction objective, comme nous
l’avons observé au chapitre 6, des préemptions fréquentes peuvent entraîner une détério-
ration supplémentaire des batteries. En particulier, les fabricants de véhicules électriques
recommandent qu’une phase de charge dure au moins 15 minutes pour éviter des réactions
chimiques indésirables dans les batteries lithium-ion. Dans notre modèle, le problème peut
être évité en définissant simplement la plage horaire à 15 minutes, mais nous perdons tout
de même en précision. Par conséquent, des recherches supplémentaires doivent être menées
pour résoudre ce problème.

– Le modèle pourrait être étendu pour prendre en compte un réseau de stations de recharge.
Dans ce cas, le choix d’une station de recharge dépendra de la distance, de l’énergie néces-
saire pour atteindre la station, de la disponibilité des chargeurs et de l’énergie restante.

– Il serait intéressant de considérer d’autres méthodes d’optimisation, notamment des méta-
heuristiques basées sur une population. Les métaheuristiques basées sur une seule solution
étaient plus pratiques pour trouver de bonnes solutions dans un délai raisonnable, no-
tamment étant donné que l’évaluation des solutions après perturbation était complexe
et chronophage. Dans ce cas, l’utilisation de parallélisme et d’algorithmes multithread
pourrait être utile.

– Une autre idée consisterait à considérer des objectifs multiples en ajoutant la minimisation
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des factures d’électricité de charge que la station de recharge paie ou en maximisant son
profit. En particulier, avec une tarification selon les heures creuses, il conviendrait de
privilégier la charge des véhicules lorsque les coûts de l’électricité sont bas.

– Lorsque l’affectation des véhicules aux chargeurs est connue, c’est-à-dire que nous savons
quel véhicule est connecté à quel chargeur, une question intéressante se pose : quelle est
la complexité de classe du problème d’allocation de puissance lorsque les chargeurs ont
des taux de puissance différents ? Des études futures pourraient apporter des éclaircisse-
ments sur cette question et contribuer à une meilleure compréhension de ce problème
d’optimisation.

– Pour le problème avec un système électrique déséquilibré, il serait plus intéressant de con-
sidérer des chargeurs avec des taux de puissance différents. Comme la charge monophasée
est une charge lente, nous ne pouvons considérer que des chargeurs jusqu’à 7,4 kW. De
plus, la contrainte de déséquilibre ne peut pas être exprimée uniquement par le nombre
de véhicules. Des mesures plus complexes telles que le facteur de déséquilibre de tension
(VUF - Voltage Unbalance Factor) peuvent être utilisées. Dans ce cas, la tension de chaque
phase (ligne) doit être mesurée.

– Il pourrait être pertinent de modéliser la station de recharge sur un simulateur et de
mettre en œuvre les algorithmes d’optimisation pour valider et réaliser des tests plus
réalistes. Enfin, la mise en œuvre pratique de ces méthodes dans les stations de recharge
réelles et leur intégration dans les systèmes de gestion existants nécessitent une étude
plus approfondie et une collaboration entre les acteurs de l’industrie, les chercheurs et les
décideurs.

En conclusion, cette thèse a jeté les bases pour une meilleure compréhension et une optimi-
sation de la recharge des véhicules électriques. Elle ouvre la voie à de nouvelles recherches et à
des développements futurs visant à promouvoir l’adoption des véhicules électriques et à favoriser
la transition vers une mobilité plus durable.
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