
HAL Id: tel-04287565
https://theses.hal.science/tel-04287565v1

Submitted on 15 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Little about Action, Knowledge, Belief and a Lot
about Modal Logic

Tiago de Lima

To cite this version:
Tiago de Lima. A Little about Action, Knowledge, Belief and a Lot about Modal Logic. Artificial
Intelligence [cs.AI]. Université d’Artois, 2019. �tel-04287565�

https://theses.hal.science/tel-04287565v1
https://hal.archives-ouvertes.fr

A LITTLE ABOUT
ACTION, KNOWLEDGE, BELIEF

AND A LOT ABOUT
MODAL LOGIC

Tiago de Lima

Centre de Recherche en Informatique de Lens
UFR de Sciences Jean Perrin
Rue Jean Souvraz SP 18

62307 Lens Cedex
France

phone: +33 3 21 79 17 23
email: gestion@cril.univ-artois.fr

homepage: http://www.cril.univ-artois.fr/

gestion@cril.univ-artois.fr
http://www.cril.univ-artois.fr/

A LITTLE ABOUT ACTION, KNOWLEDGE, BELIEF
AND A LOT ABOUT MODAL LOGIC

Tiago de Lima

Submitted in partial fulfilment
of the requirements for the

“HABILITATION À DIRIGER DES RECHERCHES”

Examining committee:
Referees:
Anthony Hunter Full professor at University College London, UK
Odile Papini Full professor at Aix-Marseille University, France
Umberto Straccia Senior researcher at CNR, Italy

Members:
Salem Benferhat Full professor at Artois University, France
Philippe Besnard Senior researcher at CNRS, France
Sébastien Konieczny Senior researcher at CNRS, France

ARTOIS UNIVERSITY
December 5, 2019

Acknowledgements

This is fruit of almost eleven years of research work. I would like to list here the names
of all people that contributed to this achievement. However, I am afraid I will not be
able to remember everyone. Therefore, if you fell that your name is missing from the list
below, please, accept my apologies and also my sincere acknowledgements right now.

First of all, I would like to thank Salem Benferhat for the advice and friendship.
Thanks to the referees Anthony Hunter, Odile Papini and Umberto Straccia, as well as
the members of the examining committee Philippe Besnard, and Sébastien Konieczny.

Thanks to all co-authors of papers during this period Philippe Balbiani, Thomas
Caridroit, Frank Dignum, Hans van Ditmarsch, Andreas Herzig, Sébastien Konieczny,
Jean-Marie Lagniez, Sébastien Magnier, Pierre Marquis, Valentin Montmirail, Daniel Le
Berre, Emiliano Lorini, Lambèr Royakkers, and Nicolas Troquard without whom this
work would never have existed.

Special thanks to Lorena Beghetto Marli de Lima, Antonio de Lima, and Mousse.
Thanks to the Artois University, the Centre de Recherche en Informatique de Lens

and the Eindhoven University of Technology where all the work has been done.
And finally, thank you, the reader, for reading this thesis.

Tiago de Lima
Lille, October 2019

v

Contents

1 Introduction 1

2 Formal Preliminaries 5
2.1 Classical Propositional Logic . 5

2.1.1 Syntax . 6
2.1.2 Semantics . 6
2.1.3 An Axiom System for CPL . 8
2.1.4 Automated Reasoning in CPL . 12

2.2 Belief Revision Theory . 18
2.2.1 Expansion . 19
2.2.2 Contraction . 20
2.2.3 Revision . 21

2.3 Conclusion . 22

3 Modal Logic 23
3.1 introduction . 23
3.2 Syntax . 25
3.3 Semantics . 26
3.4 Axiom Systems of Modal Logic . 28

3.4.1 Other Modal Logics . 30
3.5 Expressiveness . 30
3.6 Computational Complexity . 35
3.7 Some Applications of Modal Logic . 41

3.7.1 Epistemic Logic . 41
3.7.2 Dynamic Epistemic Logic . 44
3.7.3 More applications . 47

vii

Contents

3.8 Conclusion . 47

4 A Modal Logic of Responsibility 49
4.1 Motivation . 49
4.2 The Formal Framework . 53

4.2.1 Models . 53
4.2.2 Syntax and Semantics of CEDL . 55
4.2.3 Group Knowledge . 60
4.2.4 Ability and Knowing How Ability 61
4.2.5 Obligations . 65

4.3 Responsibility . 66
4.3.1 Forward-looking Responsibility . 66
4.3.2 Backward-looking Responsibility 69
4.3.3 The Relation Between Forward-Looking and Backward-Looking

Responsibilities . 71
4.4 The Problem of Many Hands . 72

4.4.1 How to avoid the PMH . 72
4.4.2 Organisational structures . 73
4.4.3 Organisational actions . 73
4.4.4 Indirect responsibility . 74
4.4.5 Example . 75

4.5 Related Work . 77
4.6 Conclusion . 79

5 A Logic of Agent Abilities and Knowledge 81
5.1 Motivation . 82
5.2 The Logic . 83

5.2.1 Conflicting Actions . 83
5.2.2 Syntax of ATDEL . 85
5.2.3 Semantics of ATDEL . 86

5.3 Examples . 88
5.4 Expressiveness . 91

5.4.1 ATDEL vs. PAL and PALA . 91
5.4.2 ATDEL vs. APAL . 91
5.4.3 ATDEL vs. GAL . 93
5.4.4 ATDEL vs. CAL . 94
5.4.5 Summary . 95

5.5 The Next-fragment of ATDEL . 95
5.5.1 Axiom System . 95
5.5.2 Decision Procedures . 99

5.6 Full ATDEL . 101
5.6.1 Axiom System . 101
5.6.2 Decision Procedures . 101

5.7 Related Work and Discussion . 103
5.8 Conclusion . 103

viii

Contents

6 Belief Change in Multi-agent Settings 105
6.1 Multi-agent Belief Sets . 106
6.2 Private Expansion . 107

6.2.1 Private Expansion Postulates . 107
6.2.2 A Private Expansion Operator . 108
6.2.3 A General Expansion Operator . 111

6.3 Private Revision . 113
6.3.1 Private Revision Postulates . 113
6.3.2 A Family Of Private Revision Operators 114

6.4 Related Work . 117
6.5 Conclusion . 118

7 Methods for Automated Reasoning in Modal Logic 121
7.1 Introduction . 122
7.2 The KT5-SAT problem . 123

7.2.1 From KT5-SAT to SAT . 123
7.2.2 A New Upper-Bound for the Translation 124
7.2.3 Structural Caching . 126
7.2.4 Experiments . 128

7.3 The K-SAT problem . 128
7.3.1 CEGAR Preliminaries . 130
7.3.2 Recursive Explore and Check Abstraction Refinement 131
7.3.3 An Implementation of RECAR for Modal Logic 133
7.3.4 Experiments . 136

7.4 Conclusion . 137

8 Conclusion 139

A List of Publications by T. de Lima 143

References 147

Alphabetical Index 159

Résumé 163

Abstract 165

ix

Chapter 1

Introduction

As the reader may have already guessed, this work is all about modal logics for actions,
knowledge and belief, but also some additional concepts, such as responsibility and
ability. Indeed, this is the kind of research I decided to do since my Ph.D., more
than a decade ago. This topic is part of a broader subarea of artificial intelligence
called knowledge representation and reasoning. The study described here intersects some
subareas of philosophy and also multi-agent systems, game theory and computational
complexity.

This work synthesises research results obtained after my Ph.D., from 2008 onward.
Starting on Chapter 4, the structure of the document is organised in order to reflect
some of the main topics I worked on during this period. I chose the subjects that are
more representative of my work.

But, before that, Chapter 2 presents, as its title suggests, some formal preliminar-
ies. The idea is to establish the mathematical notation that will be used in the entire
document, as well as to recall basic definitions, theorems and facts that will be referred
to in the subsequent chapters. This exposition is divided into two parts. Section 2.1
presents classical propositional logic (hereafter CPL), its syntax, semantics, axiom sys-
tems and reasoning methods. Section 2.2 contains a very brief introduction to belief
revision theory. The AGM postulates and a couple of fundamental theorems are pre-
sented in order to pave the way for Chapter 6, that will refer to that material. After
that, Chapter 3 presents modal logics. We will see modal logic syntax, semantics, axiom
systems, expressiveness, reasoning methods and also some applications.

Chapter 4 presents a formalism aiming at modeling responsibility in multi-agents
environments. I started working on this subject during my two years post-doc at the
Eindhoven University of Technology, in The Netherlands. There, I wrote some papers
on logic and responsibility with Lambèr Royakkers from Eindhoven and Frank Dignum
from the Utrecht University. The most recent work I published on that topic was done
some years latter, after I moved to France.

The formalism is called coalition epistemic dynamic logic (CEDL). It is a modal

1

Chapter 1. Introduction

logic that contains epistemic and dynamic operators. Other operators are defined as
abbreviations, such as obligations, ability and knowing ability. For instance, an agent has
the ability to achieve ϕ if there is an action that the agent can execute and its execution
leads to ϕ. But, knowing ability means that the agent, in addition, knows what action
it is. A sound and complete axiom system is also provided. On the conceptual side,
CEDL has been designed to reason about responsibility, which is a concept defined in
terms of causality, knowledge and obligation. We will see formal definitions of different
kinds of individual and collective responsibility and, consequently, some logical relations
between these different concepts.

Chapter 5 presents a formalism aiming at modeling agents abilities and knowledge
trough time. That work was carried out at the Lens Computer Science Research Labora-
tory (abbreviated CRIL), in France. I joined the CRIL mid 2009 to occupy a position of
Lecturer (maître de conférences). The position was offered along with a very interesting
five years CNRS Chair (chaire CNRS).

The logic we see in Chapter 5 is called alternating-time temporal dynamic epistemic
logic (ATDEL). ATDEL also has dynamic and knowledge operators and, in addition,
temporal operators. The dynamic operators of ATDEL are designed in “dynamic epis-
temic logic style”. Here, we only define public actions, such as public announcements
and also factual change actions that are perceived by all agents in the environment.
In that respect, ATDEL is less expressive than the former CEDL. However, ATDEL
semantics permits much shorter system specifications. In addition, apart from a sound
and complete axiom system, algorithms for model checking and satisfiability checking
in an interesting fragment of the logic are proposed. We will also see a comparison of
the expressiveness of ATDEL with several different logics from the literature.

Chapter 6 presents some research on multi-agent belief change. This work has
been carried out in collaboration with CRIL colleagues Thomas Caridroit, Sébastien
Konieczny and Pierre Marquis. Thomas was my first Ph.D. student. I co-supervised
him together with Sébastien and Pierre from 2013 until 2016. Working with Thomas,
Sébastien and Pierre on this subject, which has a substantial intersection with, but is
slightly different from, what I have been done before, was rewarding. It also permitted
the opening of new perspectives for my research.

CEDL and ATDEL were designed with knowledge operators. One may think that
these logics could work well with belief, and the change would just be a small technical
trick. But this is not the case. I can tell, I tried it. When belief operators naively replace
knowledge in the formalisms mentioned above, the resultant logic just does not work as
it should.

When an agent faces a new piece of information that contradicts previous beliefs,
a revision must be done. This can be a quite complicated process. “Correct” ways
of revising beliefs have been proposed in the field of belief revision theory. Chapter 6
presents an adaptation of these techniques to multi-agents scenarios. AGM belief ex-
pansion and revision postulates are generalised to such scenarios and concrete operators
for multi-agent expansion and revision are proposed.

Chapter 7 presents some research on automated reasoning for modal logics. This
time, the study was performed in collaboration with my CRIL colleagues Jean-Marie
Lagniez, Daniel Le Berre and Valentin Montmirail. Valentin was my second Ph.D.

2

student. I co-supervised him with Jean-Marie and Daniel. Once again, the experience
was rewarding, and even more perspectives have been opened. I consider this topic
particularly important for my personal objectives. The possibility to develop practical
applications from what was, up to some years ago, exclusively theoretical research seems
promising.

On that chapter, we will see methods for satisfiability checking in modal logics K and
KT5 (also known as S5). The method for KT5 amounts to an efficient translation from
that logic to classical propositional logic that is handed over to a performant SAT solver.
Practical experiments show that this technique outperformed all alternative methods.
The reasoning method for modal logic K also uses a translation to CPL. But, since
the translated formula can be exponentially larger than the original one, a more clever
algorithm was designed in order to work with “parts” of that translation.

Finally, Chapter 8 concludes the thesis. It discusses some results and points out new
possible directions of research.

This document does not contain all the research I have being doing since 2008. For
instance, still in Eindhoven, I published a couple of papers on acceptance logic and inten-
tions and plan dynamics with Andreas Herzig and Emiliano Lorini both from Toulouse.
After moving to France, some new papers on dynamic epistemic logics, co-authored with
Philippe Balbiani, Hans van Ditmarsch and Andreas Herzig have been published as well.
There is also a fine paper on dialogical logic written with Sébastien Magnier, at the time,
a Ph.D. student supervised by Shahid Rahman from Lille. Appendix A contains a list
of all my publications on the period.

The great majority of proofs of theorems and alike are omitted from the this text.
Only some “easy” proofs and sketches are present, and only when they help understand-
ing the results. This decision was motivated by the fact that long or difficult proofs may
disrupt the reading process, take away the focus or, worse, annoy the reader. In each
case, the reader will be pointed to the articles where these proofs can be found.

3

Chapter 2

Formal Preliminaries

2.1 Classical Propositional Logic
In the very beginning of his class notes, Fitting (2010) says that:

“Classical propositional logic is the simplest and most nicely behaved of any
logic (whatever that means).”

Since I do not know what that means, I prefer to motivate the study of classical propo-
sitional logic (CPL) (also called sentential logic, statement logic, propositional calculus,
etc.) by the fact that it is one of the most fundamental logical formalisms we have. It
is included in modal logics and thus also in first-order logic and higher-order logic.

CPL studies propositions, which are sentences to which one can assign truth values,
i.e., they can be true or false. For example, the following two sentences are propositions:

John teaches at the university(2.1)
John is an academic.(2.2)

In addition to propositions, CPL also has connectives, such as → (material implication)
and ∧ (conjunction), that can be used to form new propositions. For instance, the
sentence:

(2.3) If John teaches at the university then John is an academic.

is also a proposition. This proposition is true if and only if, if (2.1) is true then (2.2) is
also true. If we are able to show that both (2.1) and (2.3) are true, CPL permits us to
conclude that (2.2) is true as well.

On the next subsections, we see the syntax and semantics of CPL, which permit
us to construct propositions and to give them meaning. After that, we see different
proof methods for CPL, which is what permits us to study the relationships among
propositions and to draw conclusions from them.

5

Chapter 2. Formal Preliminaries

2.1.1 Syntax

The symbols used in the language of CPL are constants, propositional variables (also
called propositional letters) and connectives. We assume the constant ⊥ and a non-
empty countable (possibly infinite) set of propositional variables P. Elements of P are
noted p0, p1, p2, etc.. The primitive connectives used here are →, ∧ and ∨. The first
one is called ‘material implication’ (or ‘if-then’, if you prefer), the other two are called,
respectively, ‘conjunction’ and ’disjunction’. Some other (non-primitive) connectives are
also used. They are defined as abbreviations. Formally, we have the following.

Definition 2.1 (CPL Formula). Let P be a non-empty countable (possibly infinite) set
of propositional variables. The language of classical propositional logic, also called the
set of classical propositional logic formulas, is noted LCPL and is defined by the following
grammar in Bakus-Nahur form:

ϕ ::= ⊥ | p | (ϕ→ ϕ) | (ϕ ∧ ϕ) | (ϕ ∨ ϕ)

where p is any element of P.
Throughout this document, we also use the constant > and connectives ¬ and ↔.

They are defined as abbreviations, namely: > def= ¬⊥, ¬ϕ def= (ϕ → ⊥) and (ϕ ↔ ψ) def=
((ϕ→ ψ) ∧ (ϕ→ ψ)). We sometimes omit outer parentheses when convenient.

A formula of the form (ϕ→ ψ) is read ‘if ϕ then ψ’ (or, ‘ϕ implies ψ’), a formula of
the form (ϕ ∧ ψ) is read ‘ϕ and ψ’ and a formula of the form (ϕ ∨ ψ) is read ‘ϕ or ψ’.

The idea is to identify atomic propositions with propositional variables. As we have
done in the example, we can identify (2.1) above with variable p0 and (2.2) with p1.
Then, proposition (2.3) is written in CPL as p0 → p1.

2.1.2 Semantics

The meaning of CPL formulas is given by the semantics of the logic, which uses Boolean
valuations.

Definition 2.2 (Boolean Valuation). A Boolean valuation is a function V : P→ {0, 1},
which assigns a truth value to each propositional variable in P.

The truth values 0 and 1 mean, respectively, ‘false’ and ‘true’. Let p ∈ P, V (p) = 0
means that the proposition represented by p is false, and it is true when V (p) = 1.
The valuation function can be used to give the truth values to all formulas in LCPL.
There are several different ways to do that. Here, we find it more convenient to use a
satisfaction relation.

Definition 2.3 (Satisfaction Relation). The satisfaction relation � between Boolean

6

2.1. Classical Propositional Logic

valuations and formulas in LCPL is recursively defined as follows:

V 2 ⊥
V � p iff V (p) = 1
V � (ϕ→ ψ) iff if V � ϕ then V � ψ

V � ϕ ∧ ψ iff V � ϕ and V � ψ

V � ϕ ∨ ψ iff V � ϕ or V � ψ

Example 2.1. Let the formula p0 → p1 be given, and let V be a Boolean valuation
where V (p0) = 1 and V (p1) = 0. We have:

V � p0 → ¬p1 iff if V � p0 then V � p1

iff if V (p0) = 1 then V (p1) = 1

Thus, the formula p0 → p1 is true under this Boolean valuation.

When V � ϕ, we say that the Boolean valuation V satisfies the formula ϕ. Boolean
valuations are also called CPL models. When a model satisfies a formula ϕ, it is also
called a model of ϕ. This leads to the next definition.

Definition 2.4 (Satisfiability, Validity). A CPL formula ϕ is satisfiable if and only if
there is a Boolean valuation V that satisfies ϕ. A CPL formula ϕ is valid if and only if
all Boolean valuations V satisfy ϕ.

We use � ϕ to denote that ϕ is valid.

A valid CPL formula is also called a tautology. This notion can be generalised, as
follows.

Definition 2.5 (Semantic Consequence). Let Γ be a set of CPL formulas. A CPL
formula ϕ is a semantic consequence of Γ if and only if every Boolean valuation that
satisfies every member of Γ also satisfies ϕ.

We use Γ � ϕ to denote that ϕ is a semantic consequence of Γ.

Note that, if a formula ¬ϕ is not valid, then there is a valuation V such that V 2 ¬ϕ.
This means that V � ϕ. Therefore, ϕ is satisfiable if and only if 2 ¬ϕ. Also note that
� ϕ if and only if ∅ � ϕ.

For instance, the formula p0 → p1 in Example 2.1 is satisfiable, but not valid. To
see it, assume another Boolean valuation V ′ where V ′(p0) = 1 and V ′(p1) = 0. The
reader may verify that V ′ 2 p0 → p1. As an example of valid formula, one can verify
that p0 → p0 is satisfied by all Boolean valuations.

Semantic consequence also permits us to define equivalence and equisatisfiability be-
tween formulas.

Definition 2.6 (Equivalence). Two CPL formulas ϕ and ψ are equivalent, noted ϕ ≡ ψ,
if and only if, ϕ � ψ and ψ � ϕ.

7

Chapter 2. Formal Preliminaries

Definition 2.7 (Equisatisfiability). Two CPL formulas ϕ and ψ are equisatisfiable,
noted ϕ sat≡ ψ, if and only if there is a function f between Boolean valuations such that,
for all V we have:

V � ϕ iff f(V) � ψ

Corollary 2.1. ϕ ≡ ψ implies ϕ sat≡ ψ.

It is easy to see that the converse of Corollary 2.1 is not true. For example, p0
sat≡ p1,

whereas p0 6≡ p1. Equivalence means that the very same models that satisfy one formula
also satisfy the other, whereas equisatisfiability means that, whenever we can find a
model for one formula, we can also find a model for the other one.

2.1.3 An Axiom System for CPL
In this thesis, we are often interested in deciding whether a formula is valid in a logic.
Depending on the logic, there may be several automatic methods to perform this task.
One of the most traditional is the one known as Hilbert-style system. Most of the time,
this method is not very efficient, but it is relevant for this work, specially on chapters 4, 5
and 6. Therefore, we give it some attention here. Efficient methods for deciding whether
CPL formulas are valid are discussed on Section 2.1.4. Efficient methods for deciding
validity of modal logic formulas are proposed on Chapter 7.

Hilbert-style systems are also called axiom systems. Such a system consists of a set
of axiom schemas A and a set of inference rules R. An axiom schema is a “schematic”
formula, in the sense that it stipulates that any formula of a certain format is an axiom.
For example, assume that the formula below is an axiom schema:

ϕ→ (ψ → ϕ)

We have that p0 → (p1 → p0) is an axiom, as well as ¬p0 → ((p1 → p0) → ¬p0). The
former is so by setting ϕ = p0 and ψ = p1, whereas for the latter, we set ϕ = ¬p0
and ψ = p1 → p0. The axioms used in a derivation (see Definition 2.8) are also called
instances of the axiom schema considered.

Inference rules have two components: a set of formulas that triggers the rule and a
set of formulas that are produced by the rule, and these sets of formulas are also schemas.
For example, assume the inference rule below:

From ϕ and ϕ→ ψ infer ψ

We have that, if the formulas p0 and p0 → p1 are already present in a derivation, then
we can add the formula p1 to the derivation.

A formula is considered valid in the given axiom system if one can find a proof for it
using the axioms and inference rules available. So first, let us make precise what proof
means.

Definition 2.8 (Derivation, Proof). Let an axiom system be formed by a set of axiom
schemas A and a set of inference rules R. Let H be a (possibly infinite) set of formulas,
called hypotheses. A derivation from H is a finite sequence of formulas ϕ1, . . . , ϕn such
that each formula in the sequence is either:

8

2.1. Classical Propositional Logic

• a member of H,

• an axiom from A, or

• obtained by the application of an inference rule from R to formulas that appear
previously in the sequence.

The last formula of the sequence, ϕn, is the derived formula.
If the set H is empty, the derivation is called proof, and the last formula in the

sequence is the formula that has been proved.
We use H ` ϕ to denote that ϕ is derived from H and we simply use ` ϕ to denote

that ϕ is derived from ∅.

Example 2.2. Let us see how a derivation looks like. Recall that the formula p0 → p0
is valid. Below, we see how it can be proved in the axiom system of Table 2.1.

p0 → ((p1 → p0)→ p0) instance of (→ 1)1.
(p0 → ((p1 → p0)→ p0))→

((p0 → (p1 → p0))→ (p0 → p0))
instance of (→ 2)2.

(p0 → (p1 → p0))→ (p0 → p0) from 1 and 2 with (RMP)3.
p0 → (p1 → p0) instance of (→ 1)4.
p0 → p0 from 3 and 4 with (RMP)5.

Line 1 is an instance of axiom schema (→ 1), where ϕ = p0 and ψ = p1 → p0. Line 2 is
an instance of axiom schema (→ 2), where, ϕ = p0 and ψ = p1 → p0 and χ = p0. Line
3 is obtained from the application of inference rule (RMP) to lines 1 and 2. Line 4 is
another instance of axiom schema (→ 1), where ϕ = p0 and ψ = p1. Finally, line 5 is
obtained from lines 3 and 4 by the application of inference rule (RMP).

Derivations are also fundamental to understand the concept of deductive closure,
which is important, for instance, in belief revision theory, that we study in Chapter 6.

Definition 2.9 (Deductive Closure). Let Γ be a set of formulas. The deductive closure
of Γ is the set Cn(Γ) = {ϕ | Γ ` ϕ}, i.e., the set of all formulas that can be derived when
taking all formulas in Γ as hypotheses.

Some interesting properties follow immediately from the definitions above. First, it
is easy to see that, whenever a formula can be derived from a set Γ, it can also be derived
from a set Γ′, where Γ ⊆ Γ′. We thus have the following property.

Lemma 2.2 (Monotonicity). If Γ ` ϕ and Γ ⊆ Γ′ then Γ′ ` ϕ.

For the next property, assume an infinite set Γ such that Γ ` ϕ. Since derivations
must be finite, it follows that there is only a finite set of formulas from Γ that are used
on the proof of ϕ.

Lemma 2.3 (Compactness). If Γ ` ϕ then there is a finite set Γ′ ⊆ Γ such that Γ′ ` ϕ.

9

Chapter 2. Formal Preliminaries

ϕ→ (ψ → ϕ) (implication 1)(→ 1)
(ϕ→ (ψ → χ))→ ((ϕ→ ψ)→ (ϕ→ χ)) (implication 2)(→ 2)
⊥ → ϕ (falsehood)(⊥)
(ϕ ∧ ψ)→ ϕ (conjunction 1)(∧1)
(ϕ ∧ ψ)→ ψ (conjunction 2)(∧2)
ϕ→ (ψ → (ϕ ∧ ψ)) (conjunction 3)(∧3)
ϕ→ (ϕ ∨ ψ) (disjunction 1)(∨1)
ψ → (ϕ ∨ ψ) (disjunction 2)(∨2)
(ϕ→ ⊥)→ ((ψ → ⊥)→ ((ϕ ∨ ψ)→ ⊥)) (disjunction 3)(∨3)
((ϕ→ ⊥)→ ⊥)→ ϕ (double negation)(¬¬)
From ϕ and ϕ→ ψ infer ψ (modus ponens)(RMP)

Table 2.1 – Axiom system of classical propositional logic

The completeness proofs in this section, as well as in Section 3 and chapters 4 and
5 use the concepts of consistent and maximal consistent sets. We therefore pay some
attention to it here.

Definition 2.10 (Consistency). A set of formulas Γ is inconsistent if and only if Γ ` ⊥,
and it is consistent if and only if it is not inconsistent, i.e., Γ 6` ⊥.

Definition 2.11 (Maximal Consistent Set). A set of formulas Γ is maximal consistent
if and only if (1) it is consistent and (2) if Γ ⊆ Γ′ then Γ = Γ′.

Now, assume that a maximal consistent set Γ such that Γ ` ϕ. It is interesting to see
that ϕ must be in Γ. For, if ϕ 6∈ Γ were the case, then, because Γ is maximal consistent,
we would have that Γ∪ {ϕ} ` ⊥. But, since Γ ` ϕ, it is not difficult to see that one can
produce a finite proof for ⊥ using the elements of Γ. However, the latter contradicts the
fact that Γ is consistent. Therefore, we have the following property.

Lemma 2.4. Let Γ be a maximal consistent set. If Γ ` ϕ then ϕ ∈ Γ.

Now, the proof of the famous theorem below uses lemmas 2.2 and 2.3 above, but we
spare the reader from the details.

Theorem 2.5 (Lindenbaum’s Theorem). Let Γ be any consistent set. We have that
Γ ⊆ Γ∗, for some maximal consistent set Γ∗.

It can be shown that the axiom system in Table 2.1 is sound and complete for CPL.

Theorem 2.6 (Soundness and Completeness). Let the axiom system on Table 2.1 be
given. We have that � ϕ if and only if ` ϕ.

10

2.1. Classical Propositional Logic

Soundness, i.e., the implication from the left to the right, is very simple. In fact, it
is enough to show that every principle in Table 2.1 is valid. For the axioms, it amounts
to show that they are all tautologies. For the inference rule (RMP), it amounts to show
that, whenever ϕ and ϕ → ψ are tautologies, so is ψ. As the reader may easily verify,
this is indeed the case. All this means that every formula in a proof is valid. Therefore,
every proved formula is valid.

Proof of completeness, i.e., the implication from the right to the left, is much more
involving. First, we show the folowing theorem.

Theorem 2.7 (Deduction Theorem). Let Γ ⊆ LCPL and ϕ,ψ ∈ LCPL. If Γ ∪ {ϕ} ` ψ
then Γ ` ϕ→ ψ. (In particular, if ϕ ` ψ then ` ϕ→ ψ.)

Second, we show the following lemma.

Lemma 2.8. Γ is a maximal consistent set of formulas if and only if, for all ϕ ∈ LCPL,
we have:

1. ϕ ∈ Γ iff (ϕ→ ⊥) 6∈ Γ.

2. (ϕ→ ψ) ∈ Γ iff, if ϕ ∈ Γ then ψ ∈ Γ.

3. (ϕ ∧ ψ) ∈ Γ iff ϕ ∈ Γ and ψ ∈ Γ.

4. (ϕ ∨ ψ) ∈ Γ iff ϕ ∈ Γ or ψ ∈ Γ.

The proof of Lemma 2.8 uses Lemma 2.4 and theorems 2.5 and 2.7. As for an easy
example, Axioms (∧1) and (∧2) guarantee that if ϕ ∧ ψ ∈ Γ, we have both ϕ ∈ Γ and
ψ ∈ Γ.

After all that, we can finally show completeness by showing the countrapositive of
the claim, i.e., if a formula ϕ does not have a proof then it is not valid. In fact, it is
possible to prove an even stronger result, called strong completeness, which means the
following.

Theorem 2.9. ϕ � ψ if and only if ϕ ` ψ.

We finish this section with two remarks. First, as a side effect of the deduction
theorem above, we have the following property.

Corollary 2.10. ϕ ≡ ψ if and only if � ϕ↔ ψ.

Second, the choice of primitive connectives made here is guided by the technique used
to prove completeness of the axiom system. In any case, whenever the set of primitive
connectives is adequate, i.e., it permits to define all truth-functional operations, a sound
and complete axiom system can be found.

For example, we could have chose to define CPL with negation (¬) and material
implication (→) as primitive connectives and use abbreviations for ⊥, >, ∧, ∨ and ↔.
In this case, it is shown in, e.g., (Mendelson 2015) that, the axiom system formed by
(→ 1), (→ 2), (RMP) and the axiom schema:

(¬ϕ→ ¬ψ)→ ((¬ϕ→ ψ)→ ϕ) (negation)(¬2)

11

Chapter 2. Formal Preliminaries

is sound and complete for CPL. We choose the technique above, which uses maximal
consistent sets and the Lindenbaum’s Theorem, because this is the technique commonly
used to show completeness of axiom systems in modal logics. We will therefore build
axiom systems for modal logics from that.

Deductive closures and maximal consistent sets are also usefull in some other con-
texts. For example, knowledge bases inconsistency mesures (De Bona et al. 2018; Hunter
and Konieczny 2010; Mu et al. 2011) are havily based on this notion.

2.1.4 Automated Reasoning in CPL

Let a formula ϕ ∈ LCPL be given, the problem of deciding whether ϕ is satisfiable
in a logic is called satisfiability checking problem. In the case of CPL, Cook (1971)
proved that any recognition problem that can be solved in polynomial time by a non-
deterministic Turing machine can be reduced to the CPL satisfiability checking problem.
In other words, CPL satisfiability checking is a NP-Hard problem. Since there are
several algorithms that decide satisfiability of CPL formulas in polynomial time in a
non-deterministic Turing machine, we have that CPL satisfiability checking problem
is in NP. Altogether, this means that CPL satisfiability checking is a NP-Complete
problem.

Note that, an algorithm deciding satisfiability of CPL formulas can easily be turned
into an algorithm deciding validity of CPL formulas and vice-versa. Indeed, because
ϕ is satisfiable if and only if ¬ϕ is not valid, we immediately have that CPL validity
checking is a co-NP-complete problem.

As said before, axiom systems are not efficient automatic methods for reasoning in
CPL. This is why, in this subsection, we show two methods for CPL satisfiability checking
that are more efficient in practice. The tableau method and the CDCL algorithm.

The Tableau Method

One of the simplest algorithms deciding satisfiability (thus, also validity) of CPL for-
mulas is the tableau method. (For a thorough exposition of the subject the reader may
consult (D’Agostino et al. 1999).) The idea of this algorithm is to decompose the for-
mula given as input in sub-formulas until it reaches its atoms (constants or variables)
and then build-up a Boolean valuation for them.

But, before presenting the method, we need to deal with a tiny language problem.
In fact, it turns out that it is easier to design a tableau method for CPL when negation
(¬), conjunction (∧) and disjunction (∨) are taken as the primitive connectives of the
language, and the other ones are defined as abbreviations. Note that this can be done
without affecting the expressiveness of the logic. In the following, we assume that LCPL
is defined in this way.

The tableau method explores the sub-formulas of the formula ϕ that is given it as
input. So, before presenting the method, we need to make precise what sub-formula
means.

12

2.1. Classical Propositional Logic

Definition 2.12 (Set of Sub-Formulas). Let ϕ ∈ LCPL, sub(ϕ) denotes the set of sub-
formulas of ϕ, which is defined recursively, as follows:

sub(⊥) = {⊥}
sub(p) = {p}
sub(¬ϕ) = {¬ϕ} ∪ sub(ϕ)
sub(ϕ ◦ ψ) = {ϕ ◦ ψ} ∪ sub(ϕ) ∪ sub(ψ) where ◦ ∈ {→,∧,∨}

It is important for the complexity proof of the method to see that the number of
elements of the set sub(ϕ) is proportional to the length of the formula ϕ. The latter is
defined as follows.

Definition 2.13 (Length). The length of a formula ϕ ∈ LCPL is the natural number
len(ϕ) defined recursively, as follows:

len(⊥) = 1
len(p) = 1
len(¬ϕ) = 1 + len(ϕ)
len(ϕ ◦ ψ) = 1 + len(ϕ) + len(ψ) where ◦ ∈ {→,∧,∨}

It is easy to see that the number of elements of sub(ϕ) equals len(ϕ).
We can finally present the definition of a tableau for a CPL formula.

Definition 2.14 (Tableau). Let ϕ be a CPL formula. A tableau for ϕ is a non-empty
set T ⊆ sub(ϕ) such that ϕ ∈ T and T satisfies the following conditions:

1. ⊥ 6∈ T .

2. ϕ ∈ T if and only if ¬ϕ 6∈ T .

3. if ¬¬ψ ∈ T then ψ ∈ T .

4. if ψ1 ∧ ψ2 ∈ T then ψ1 ∈ T and ψ2 ∈ T .

5. if ψ1 ∨ ψ2 ∈ T then ψ1 ∈ T or ψ2 ∈ T .

Lemma 2.11. Let ϕ ∈ LCPL. There is a tableau for ϕ if and only if ϕ is satisfiable.

To prove the implication from the right to the left of Lemma 2.11, we assume a
satisfiable formula ϕ and show that there is an algorithm (Algorithm 2.1) that constructs
a tableau T for it. To prove the implication from the left to the right, we assume a
tableau T for ϕ. From T , we construct a Boolean valuation and, using an induction on
the structure of ϕ, we conclude that this Boolean valuation satisfies ϕ.

The procedure described in Algorithm 2.1 tries to construct a tableau for the input
formula ϕ. It starts with the singleton T = {ϕ} and decomposes ϕ by adding its sub-
formulas to T , aiming at satisfying all conditions in Definition 2.14. For example, if
(ψ1 ∧ ψ2) ∈ T , then it adds both ψ1 and ψ2 to T . (The implemented procedure also
removes (ψ1 ∧ ψ2) from T to avoid performing this step again.) When the procedure

13

Chapter 2. Formal Preliminaries

input: The set T = {ϕ}
output: true if ϕ is satisfiable, false otherwise

1 function tableau(T)
2 if ⊥ ∈ T or {ψ,¬ψ} ⊆ T then
3 return false
4 if ¬¬ψ ∈ T then
5 return tableau(T \ {¬¬ψ} ∪ {ψ})
6 if (ψ1 ∧ ψ2) ∈ T then
7 return tableau(T \ {ψ1 ∧ ψ2} ∪ {ψ1, ψ2})
8 if (ψ1 ∨ ψ2) ∈ T then
9 return tableau(T \ {ψ1 ∨ ψ2} ∪ {ψ1}) or tableau(T \ {ψ1 ∨ ψ2} ∪ {ψ2})

10 return true

Algorithm 2.1: Tableau method for classical propositional logic

faces a choice, it branches. For example, if (ψ1 ∨ ψ2) ∈ T , then it creates two different
tableaux T ′ and T ′′. It adds all elements of T plus ψ1 to the first tableau T ′, and adds
all elements of T plus ψ2 to the second tableau T ′′. (Again, it removes (ψ1 ∨ ψ2) from
T to avoid repeating this step.) Eventually, the procedure reaches a state where either
it violates one of the conditions in Definition 2.14, or the input formula ϕ has been
completely decomposed. In the first case, it returns false, meaning that no Boolean
valuation satisfying the formulas in the corresponding tableau T can be found. In the
second case, it returns true, meaning that a Boolean valuation satisfying all formulas
in T is possible.

For the branches where the procedure returns true, one can construct a Boolean
valuation that satisfies ϕ, as follows. For all variables p that occur in ϕ, V (p) = 1 if p
is in the branch, otherwise V (p) = 0. By using Lemma 2.11, one can show that such a
valuation satisfies the input formula ϕ.

An example of the execution of Algorithm 2.1 is depicted in Figure 2.1. The recursive
calls of function tableau() form the tree displayed in the figure. In the root of the tree,
the tableau T only contains the input formula. In its child, it contains both conjuncts. In
the subsequent step, the procedure creates two tableaux T ′ and T ′′, each one containing
one of the disjuncts of the formula ¬p0 ∨ p1. Tableau T ′ contains two contradictory
formulas, this is why this branch is stopped and closed, meaning that this branch can be
discarded. The branch with tableau T ′′ also stops, but it does not contain contradictions.
Therefore, one can create a Boolean valuation V that satisfies the input formula ϕ, as
described before. Since both p0 and p1 are in T ′′, we have V (p0) = 1 and V (p1) = 1.

Termination of the procedure is guaranteed by the finiteness of sub(ϕ). It is also not
hard to show that the depth of the tree is bound by the size of sub(ϕ). Altogether, this
means that we can show that the maximal number of steps executed by the procedure
is bounded by a polynomial function on len(ϕ), when executed in a non-deterministic
Turing machine. Therefore, the tableau method is optimal, with respect to complexity

14

2.1. Classical Propositional Logic

T = {p0 ∧ (¬p0 ∨ p1)}

T = {p0, (¬p0 ∨ p1})

T ′ = {p0,¬p0}

(closed)

T ′′ = {p0, p1}

Figure 2.1 – Execution of the tableau method for p0 ∧ (¬p0 ∨ p1)

class of the problem.

The CDCL Algorithm

The tableau method presented on the previous section is optimal, but it is not the most
performant method. The most efficient software deciding satisfiability of CPL formulas
available today are based on an algorithm called conflict driven clause learning (CDCL)
(Bayardo and Schrang 1997; Marques-Silva and Sakallah 1996, 1999). This algorithm
uses several different techniques to speed up the process of finding a model for a formula.
It is an evolution of the DPLL algorithm (Davis et al. 1962; Davis and Putnam 1960),
where the main differences from the latter are (1) its conflict analysis, which prevents the
algorithm from taking a decision that has shown to be a bad one on previous iterations;
and (2) its capacity to perform non-chronological backtracks.

CDCL takes as input CPL formulas in a special format called conjunctive normal
form. Thus, we need to define it first.

Definition 2.15 (Literals, Clauses, Negation and Conjunctive Normal Forms). A literal
is a propositional variable or a negation of a propositional variable.

A clause is a disjunction of literals.
A CPL formula ϕ is in negation normal form (NNF) if and only if the negations in

ϕ appear only immediately in front of propositional variables.
A CPL formula is in conjunctive normal form (CNF) if and only if it is a conjunction

of clauses.

Any formula ϕ ∈ LCPL can be translated into an equivalent formula in CNF. For
example, the following formulas are not in CNF:

¬(p0 ∧ p1) ¬(p0 ∨ p1) ¬¬p0 ¬(p0 ∧ (¬p1 ∨ p2))

whereas the following ones are their equivalent in CNF:

¬p0 ∨ ¬p1 ¬p0 ∧ ¬p1 p0 (¬p0 ∨ p1) ∧ (¬p0 ∨ ¬p2)

15

Chapter 2. Formal Preliminaries

Any formula ϕ ∈ LCPL can be translated into an equivalent formula in NNF in linear
time and space (Baaz et al. 2001). However, in general, the translation of a CPL formula
into an equivalent one in CNF generates an exponentially larger formula. However, if
we allow the introduction of new propositional variables, it is possible to generate an
equisatisfiable formula in CNF such that its length is bound by a polynomial function
on the length of the original formula. Moreover, the algorithm producing such formula
runs in polynomial time (Tseitin 1983). Therefore, it is safe to assume an algorithm that
take formulas in CNF as input.

CDCL uses unit propagation. This is a technique that simplifies CNF formulas by
using the following two properties of CPL.

Theorem 2.12 (Resolution (Robinson 1965)). Let ϕ,ψ, χ ∈ LCPL. We have {(ϕ ∨
ψ), (¬ϕ ∨ χ)} � (ψ ∨ χ)

Theorem 2.13. Let ϕ,ψ ∈ LCPL. {ϕ, (ϕ ∨ ψ)} � ϕ.

Theorem 2.12 means that, if (ψ ∨ χ) is not satisfiable then (ϕ ∨ ψ) ∧ (¬ϕ ∨ χ) is
also not satisfiable. Therefore, in order to decide satisfiability for the latter, it is enough
to decide satisfiability for the former. Note that it is better to use the former formula,
because it is smaller. Theorem 2.13 is analogous.

When the input formula ϕ has a unit clause (i.e., a clause with only one literal) this
means that this literal must be assigned to true in the Boolean valuation that satisfies
the entire formula. In other words, if the literal is a variable p then V (p) must be 1,
and if the literal is a negation of a variable p then V (p) must be 0. Therefore, there is
no decision to be taken with respect to this literal. Once this is done, we can propagate
this information across the formula, hence the unit propagation.

Example 2.3. To see unit propagation in practice, consider the following CPL formula
in CNF:

(p0 ∨ p1) ∧ (¬p0 ∨ p2) ∧ (¬p2 ∨ p3) ∧ p0

We will propagate the unit clause p0. We have:

(p0 ∨ p1) ∧ (¬p0 ∨ p2) ∧ (¬p2 ∨ p3) ∧ p01.
(¬p0 ∨ p2) ∧ (¬p2 ∨ p3) ∧ p02.
p2 ∧ (¬p2 ∨ p3) ∧ p03.

Line 2 is obtained from Line 1 by removing the first conjunct (Theorem 2.13). Line 3 is
obtained from Line 2 by removing the first conjunct again (Theorem 2.12). Note that
we now have a new unit clause p2, which can be propagated. Thus, unit propagation
continues. We have:

p2 ∧ p3 ∧ p04.

which is obtained from Line 3 by removing the second conjunct (Theorem 2.12). Now,
all clauses are unit, but there is no non-unit clauses to propagate. Unit propagation
stops. Note that it is much easer to find a model for the formula on Line 4, than for the
one on Line 1.

16

2.1. Classical Propositional Logic

The second important technique used by CDCL is the conflict analysis. Once unit
propagation stops, if there are still non-unit clauses, it is time to take decisions, i.e.,
we must arbitrarily assign a truth value to some variable and then check whether the
Boolean valuation we are building still satisfies all the clauses. Sometimes, we take a
decision and we find out that the Boolean valuation does not satisfy some clause. This
is called conflict. Once a conflict is detected, CDCL does two things. First, it adds a
new clause to the formula, which will prevent this conflict from happen again, this is
called clause learning. Second, it tries to find the decision that most likely lead to the
conflict and restart from there, i.e., it backtracks. The explanation of clause learning
and backtrack techniques is involving. We do not explain them in detail here. For a
through exposition, the reader can consult (Marques-Silva et al. 2009). In the sequel we
only explain roughly how clause learning works.

During its execution, CDCL builds a graph that contains the decisions taken and
their consequences. When a conflict is detected, one can build, from this graph, a clause
that contains information to prevent the same chain of decisions to be taken again. For
example, consider the formula:

(¬p4 ∨ ¬p5) ∧ (p21 ∨ ¬p4 ∨ ¬p6) ∧ (p5 ∨ p6)

There are no unit clauses to propagate. So, CDCL must take some decisions. Suppose
it makes the assignments V (p21) = 0 and V (p4) = 1. Once it is done, the formula can
be simplified. We now have:

¬p5 ∧ ¬p6 ∧ (p5 ∨ p6)
We now can apply unit propagation to ¬p5. We have:

p6 ∧ ¬p6

which is a conflict. This means that the same decisions should not be taken again. In
this example, CDCL will learn the clause p21 ∨ ¬p4, which is somewhat the contrary
of what we have done in the beginning. This is added to the input formula and the
algorithm backtracks. A different decision will be taken and maybe this time a model
will be found.

We can now present the outline of CDCL in Algorithm 2.2. It starts by performing
unit propagation. After that, CDCL chooses a variable, assigns a truth value to it and
performs unit propagation again. If a conflict is detected, it is analysed, then clauses
are learned, and then CDCL decides to which level it will perform the backtrack. The
process repeats until a Boolean valuation satisfying the formula is found, in which case
it returns ‘true’. Otherwise, it returns ‘false’.

We note that current implementations of CDCL bring together a number of addi-
tional improvements. Among them, we can mention:

• use of lazy data structures for the representation of formulas;

• periodically restarting backtrack search;

• deletion policies for learnt clauses (to avoid overflow the memory);

• etc.

17

Chapter 2. Formal Preliminaries

input: A CPL formula ϕ in CNNF and a Boolean valuation V
output: true if ϕ is satisfiable, false otherwise

1 function cdcl(ϕ, V)
2 if unit_propagation(ϕ, V) = conflict then
3 return false
4 dl := 0
5 while not all_vars_assigned(ϕ, V) do
6 (p, v) := pick_branching_variable(ϕ, V)
7 dl := dl + 1
8 V := V ∪ {(p, v)}
9 if unit_propagation(ϕ, V) = conflict then

10 β := conflict_analysis(ϕ, V)
11 if β < 0 then
12 return false
13 else
14 backtrack(ϕ, V , β)
15 dl := β

16 return true

Algorithm 2.2: The CDCL algorithm

2.2 Belief Revision Theory
In Chapter 6, we propose a framework for modeling belief change in multi-agent sce-
narios. Therefore, we make a very brief introduction to belief revision here. For more
information, the reader my consult, e.g., (Gärdenfors 2008).

A simple way to represent agents beliefs is to use a set containing the sentences
believed by the agent. This set is commonly called a belief set. The sentences in the
belief set must be written in some language. We normally chose a formal language,
because the meanings of such sentences as well as the relations among them can be
defined more precisely. If we chose LCPL, a belief set is defined as follows.

Definition 2.16 (Belief Set). A belief set is a deductively closed set of formulas in CPL.

Let K be a consistent belief set. For any sentence ϕ ∈ LCPL, three different epistemic
attitudes concerning ϕ can be expressed:

Accepted: ϕ ∈ K.

Rejected: ¬ϕ ∈ K.

Indetermined: ϕ 6∈ K and ¬ϕ 6∈ K.

When an agent changes her epistemic attitude concerning ϕ, this means that the
agent goes from one of these attitudes to another. Therefore, there are in total six

18

2.2. Belief Revision Theory

Accepted Indetermined Rejected

contraction expansion

revision

contractionexpansion

revision

Figure 2.2 – Types of belief change

different ways of changing epistemic attitudes. These changes are grouped into three
different types (see also Figure 2.2):

Expansion: ϕ goes from indetermined to either accepted or rejected.

Contraction: ϕ goes from accepted or rejected to indetermined.

Revision: ϕ goes either from accepted to rejected or it goes from rejected to accepted.

2.2.1 Expansion

The first type of attitude change is expansion. This can be seen as the event of the agent
“learning” a new information that she was not aware of. For instance, suppose that ϕ
is indetermined for the agent. An expansion by ϕ makes the agent accept that ϕ (and
thus reject ¬ϕ). An expansion by ¬ϕ makes the agent reject ϕ (and thus accept ¬ϕ).

Note that the expansion of K by ϕ is not as simple as K ∪ {ϕ}. This is because
the latter must also be a belief set, which means that it must be deductively closed. In
other words, once ϕ is added to the belief set, all formulas that can be derived with
this new addition must also be added to the resulting belief set. In the particular case
where ϕ contradicts some formula already present in K, the contradiction ⊥ is added
to the resulting belief set. In this case, the resulting belief set should be trivial, i.e.,
(K + ϕ) = LCPL.

For example, suppose that (p0 → p1) ∈ K. If we expand K by p0, then p0 is added to
K as well as p1. If it were the case that ¬p1 ∈ K, then we have, as a result, K = LCPL.

Alchourrón, Gärdenfors and Makinson (Alchourrón et al. 1985; Gärdenfors 2008)
proposed postulates for the expansion, contraction and revision of belief sets. These
postulates logically encode the constraints expected on the behaviour of such operators.

19

Chapter 2. Formal Preliminaries

The postulates for expansion are the following. Let K be a belief set and ϕ ∈ LCPL.

K + ϕ is a belief set (closure)(K + 1)
ϕ ∈ K + ϕ (success)(K + 2)
K ⊆ K + ϕ (inclusion)(K + 3)
If ϕ ∈ K then K + ϕ = K (vacuity)(K + 4)
If K ⊆ K ′ then K + ϕ ⊆ K ′ + ϕ (monotony)(K + 5)
K + ϕ is the smallest belief set satisfying (K + 1)–(K + 5) (minimality)(K + 6)

Postulate (K + 1) stipulates that the resulting of expanding a belief set is also a belief
set. Postulate (K + 2) stipulates that ϕ will be accepted after expanding the belief set
by ϕ. Postulate (K + 3) stipulates that nothing is lost with the addition of ϕ to the
belief set. Postulate (K + 4) stipulates that K does not change if ϕ is already in K. For
postulate (K + 5), assume that K ′ contains more beliefs than K. In this case, there is
no reason for the expansion of K by ϕ to contain more beliefs than the expansion of
K ′ by the same formula ϕ. Postulate (K + 6) stipulates that, as its name suggests, the
change caused in K by the expansion of ϕ is minimal.

It turns out that there is only one expansion operator + satisfying these postulates.
As stated by the result below.

Theorem 2.14 (Representation Theorem). The expansion function + satisfies (K + 1)–
(K + 6) if and only if K + ϕ = Cn(K ∪ {ϕ}).

Theorem 2.14 is an important result. Not only the expansion operator + exists, but
it is unique. In addition, it seems to be a very intuitive operation of simply adding a
new formula to the belief set and then close it deductively.

2.2.2 Contraction

The second type of change is contraction. This can be seen as the event of the agent
“forgetting” a piece of information. For example, suppose that the agent accepts ϕ (and
thus rejects ¬ϕ). A contraction by ϕ makes both ϕ and ¬ϕ become for the agent inde-
termined, i.e., the agent is not sure of the truth value of ϕ anymore. Now, suppose the
opposite, that the agent rejects ϕ (and thus she accepts ¬ϕ). In this case, a contraction
by ¬ϕ makes ¬ϕ become indetermined for the agent.

Analogously as to expansion, the contraction of K by ϕ is not as simple as K \ {ϕ}.
All formulas that “need” ϕ to be derived must also be removed from the resulting belief
set. In addition, all formulas from which one can derive ϕ must also be removed. In
the particular case where � ϕ, its subtraction subtracts all formulas from the resulting
belief set. In this case, the resulting belief set is (K − ϕ) = ∅.

For example, suppose that {p0, p1, (p0 → p1)} ⊆ K. If we contract K by p1, then p1
is removed from K which means that either p0 or p0 → p1 must also be removed. Note
that, as usual in contraction, in this case we have a choice.

20

2.2. Belief Revision Theory

The postulates for contraction are the following.

K − ϕ is a belief set (closure)(K− 1)
K − ϕ ⊆ K (inclusion)(K− 2)
If ϕ 6∈ K then K − ϕ = K (vacuity)(K− 3)
If 0 ϕ then ϕ 6∈ K − ϕ (success)(K− 4)
If ϕ ∈ K then K ⊆ (K − ϕ) + ϕ (recovery)(K− 5)
If ` ϕ↔ ψ then K − ϕ = K − ψ (extensionality)(K− 6)
K − ϕ ∩K − ψ ⊆ K − (ϕ ∧ ψ) (intersection)(K− 7)
If ϕ 6∈ K − (ϕ ∧ ψ) then K − (ϕ ∧ ψ) ⊆ K − ϕ (conjunction)(K− 8)

As for expansion, the first postulate stipulates that the result of a contraction is
a belief set. Postulate (K− 2) stipulates that no new information should be added
to K by a contraction. Postulate (K− 3) stipulates that K should not be changed if
ϕ does not belong to it. Postulate (K− 4) stipulates that ϕ does not belong to the
contraction by ϕ, unless it is valid. Postulate (K− 5) stipulates that all beliefs in K are
recovered if first contracting and then expanding again by the same formula. Postulate
(K− 6) stipulates that a contraction by an equivalent formula should give the same
result. Postulates (K− 7) and (K− 8) deal with the contraction by a conjunction ϕ∧ψ.
Without entering in too much detail, they stipulate that a choice between ϕ and ψ must
be made, and what must be taken into account when making this choice.

2.2.3 Revision
The third type of change is revision. This can be seen as the event of the agent “changing
her mind” about a piece of information. Suppose that the agent accepts ϕ and rejects
¬ϕ. A revision by ¬ϕ makes the agent accept ¬ϕ and reject ϕ. Analogously, if the agent
accepts ¬ϕ and rejects ϕ, a revision by ϕ makes the agent accept ϕ and reject ¬ϕ.

Again, if we revise a belief set K by ϕ, it is not as simple as just add ϕ to the belief
set. All formulas that are implied by ϕ must be added and also, all formulas that are
implied by ¬ϕ must be removed.

The postulates for revision are the following.

K ∗ ϕ is a belief set (closure)(K ∗ 1)
ϕ ∈ K ∗ ϕ (success)(K ∗ 2)
K ∗ ϕ ⊆ K + ϕ (inclusion)(K ∗ 3)
If ϕ ∈ K then K + ϕ ⊆ K ∗ ϕ (vacuity)(K ∗ 4)
⊥ ∈ K ∗ ϕ if and only if ` ¬ϕ (coherence)(K ∗ 5)
If ` ϕ↔ ψ then K ∗ ϕ = K ∗ ψ (extensionality)(K ∗ 6)
K ∗ (ϕ ∧ ψ) ⊆ (K ∗ ϕ) + ψ (conjunctive inclusion)(K ∗ 7)
If ¬ψ 6∈ K ∗ ϕ then (K ∗ ϕ) + ψ ⊆ K ∗ (ϕ ∧ ψ) (conjunctive vacuity)(K ∗ 8)

21

Chapter 2. Formal Preliminaries

Postulates (K ∗ 1) and (K ∗ 2) play the same role as for expansion and contraction.
Postualtes (K ∗ 3) and (K ∗ 4) together stipulate that, when ¬ϕ 6∈ K, the revision by
ϕ is just an expansion. Postualte (K ∗ 5) stipulates that a revision by ϕ trivialises
only when ϕ is an inconsistent formula. Postulate (K ∗ 6) stipulates that the revision
operator should perform the same operation for equivalent formulas. Postulates (K ∗ 7)
and (K ∗ 8) stipulate the behaviour of the revision operator with conjunctions.

The following definition and theorem confirm the intuition behind revision mentioned
before and depicted in Figure 2.2, namely, that revision is a contraction followed by an
expansion.
Definition 2.17 (Levi Identity (Levi 1977)). K ∗ ϕ = (K − ¬ϕ) + ϕ

Theorem 2.15. If the contraction function − satisfies (K− 1)–(K− 4) and (K− 6)
and the expansion + satisfy (K + 1)–(K + 6), then the revision function ∗ obtained from
Definition 2.17 satisfy (K ∗ 1)–(K ∗ 6).
Theorem 2.16. Suppose that the assumptions of Theorem 2.15 are fulfilled. Then we
have:

1. If (K− 7) is satisfied then the revision function ∗ satisfies (K ∗ 7).

2. If (K− 8) is satisfied then the revision function ∗ satisfies (K ∗ 8).
Another important important result is given in the sequel.

Definition 2.18 (Harper Identity (Harper 1976)). K − ϕ = K ∩K ∗ ¬ϕ
Theorem 2.17. If the revision function ∗ satisfies (K ∗ 1)–(K ∗ 6) then the contraction
function obtained from Definition 2.18 satisfies (K− 1)–(K− 6).
Theorem 2.18. Suppose that the revision function satisfies (K ∗ 1)–(K ∗ 6), then:

1. If (K ∗ 7) is satisfied then the revision function ∗ satisfies (K− 7).

2. If (K ∗ 8) is satisfied then the revision function ∗ satisfies (K− 8).
Levi identy above shows that belief revision can be defined using contraction and

expansion. This means that, when faced with a piece of information ϕ that contradicts
her beliefs, the agent can contract by ¬ϕ and then expand by ϕ to integrate it.

Harper identity above shows us that a contraction by ϕ is an intersection with the
revision by ¬ϕ.

2.3 Conclusion
In the first part of this chapter we saw a brief introduction to classical propositional logic.
We saw its syntax and semantics, but also some basic definitions such as derivations,
deductive closure, maximal consistent sets and an axiom system. In the second part,
we saw the very basics of belief revision theory, the classical AGM postulates, Levi
and Harper identities. This material will be useful on Chapter 6, when expansion and
revision are be extended to multi-agent settings.

In the next chapter, we will see a brief introduction to modal logic, which will in
turn be referred to in all subsequent chapters.

22

Chapter 3

Modal Logic

The logics used in this thesis are all modal logics. This is a family of logics that use modal
operators to express a variety of notions, such as knowledge, belief, preference, obligation,
action and time. In this work, we see several modal logics, such as epistemic logics,
deontic logic, propositional dynamic logic, alternating-time temporal logic as well as some
new ones. All of them follow the same principle: they extend classical propositional logic
by some modal operators, which are used to express those different notions.

Because of this extensive use of modal logics, this chapter is dedicated to an intro-
duction to modal logic. This introduction is, of course, not meant to be complete. The
interested reader may find more on theses subjects by consulting very good textbooks,
such as (Blackburn et al. 2007, 2001; Chellas 1980; Hugues and Cresswell 1996)

3.1 introduction
Modal logic (ML) extends classical propositional logic, in the sense that it is used to
represent and reason about modal propositions. For example, the sentence below is a
modal proposition:

it is possible that John teaches at the university.

In modal logic notation, this is represented by ♦p0. As before, p0 represents the propo-
sition ‘John teaches at the university’, but here, in addition, we have ♦ representing ‘it
is possible’. The symbol ♦ is used to qualify the truth value of the sentence. This is why
it is called a modality, or a modal operator. The above modal proposition is true if and
only if there is a situation (or, it is possible to imagine a situation) where p0 is true.
Note that its truth value does not depend on the actual truth value of the proposition p0.
This is why modal logic is considered to be more expressive than classical propositional
logic. Indeed, the meaning of operator ♦ cannot be expressed by any composition of

23

Chapter 3. Modal Logic

CPL connectives.1
CPL operators are also allowed in modal logic. For example, the formula:

♦p0 ∧ ♦¬p1

is a well formed modal proposition meaning ‘it is possible that John works at the uni-
versity and it possible that John is an academic’. Another interesting example is the
well formed modal proposition:

(3.1) ¬♦¬p0

which means ‘it is not possible that John does not teach at the university’. Following
the intuitive meaning given before, this modal proposition is true if and only if there is
no situation where p0 is false. In other words, it is true if and only if p0 is true in all
(conceivable) situations. Hence, we conclude that it is equivalent to the sentence:

it is necessary that John teaches at the university.

The modality ‘it is necessary’ is also present in modal logic. It is expressed by the
symbol �. Indeed, in modal logic, the modal proposition:

(3.2) �p0

is equivalent to (3.1).
In the sequel, we present the formal definition of modal logic. We present only the

group of modal logics called normal modal logics. These are modal logics based on the
axiom system K (which is explained latter on this chapter). The other, non-normal,
modal logics are also interesting, but we do not need to study them to understand the
work presented in this thesis.

In order to be general, we present the definition of multi-modal logic. This is modal
logic with several different modal operators. Each modal operator represents a different
modality.

Maybe, the simplest way to understand this is to consider different agents (persons,
robots, computers, etc.) having different “points of view”. For example, for the first
agent, which we call m0, John teaches at the univerisity, whereas for the second agent,
which we call m1, John may not teach at the university. We have:

[m0]p0 ∧ 〈m1〉¬p0

Here, [m0] is a modal operator representing ‘it is necessity for m0’, and 〈m1〉 is a modal
operator representing ‘it is possible for m1’. Then, this modal proposition means ‘it is
necessary for m0 (the first agent) that John teaches at the university and it is possible
for m1 (the second agent) that John teaches at the university’.

1In fact, we must be careful about what ‘more expressive’ really means. We will see in Chapter 7 that
it is possible to translate formulas in ML into formulas in CPL. The translation requires the addition of
new propositions in the formula. Moreover, the translated formula in CPL is, in general, exponentially
larger than the original ML formula. In this case, this unavoidable “exponential blowing up” is another
way to justify the claim that modal logic is “more expressive” than classical propositional logic.

24

3.2. Syntax

3.2 Syntax
Definition 3.1 (Vocabulary). A vocabulary is a pair 〈P,M〉, where P is a countable
(possibly infinite) set of propositional variables, and M is a finite set of modal contexts.

Definition 3.2 (Formula). Let a vocabulary 〈P,M〉 be given. The language of modal
logic, also called the set of modal logic formulas is noted LML and is defined by the
following grammar in Bakus-Nahur form:

ϕ ::= ⊥ | p | (ϕ→ ϕ) | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | ([m]ϕ) | (〈m〉ϕ)

where p is any variable from P, and m is any modal context from M.
We define the same abbreviations as for LCPL (Definition 2.1). In addition, we

sometimes use [m]n to abbreviate a sequence of n operators [m] (i.e., [m]0ϕ def= ϕ and
[m]n+1ϕ

def= [m][m]nϕ, where n ≥ 0), and analogously for 〈m〉.
As for CPL, we sometimes omit outer parentheses for convenience.

When we use a language that has only one modal operator, we sometimes prefer to
write modal formulas using � and ♦, because they are more readable than their multi-
modal counterparts [m] and 〈m〉. Thus, whenever formulas of the form �ϕ and ♦ϕ are
used, they mean, respectively, [m0]ϕ and 〈m0〉ϕ, and the set of modal contexts of the
corresponding language is M = {m0}.

The formula [m]ϕ is read ‘box m ϕ’, and the formula 〈m〉ϕ is read ‘diamond m ϕ’.
Their interpretations vary according to the application. One of the most classical appli-
cations of modal logic is the one seen in the beginning of this chapter. It is used to model
sentences of the form ‘it is necessary that ϕ’ and ‘it is possible that ϕ’. The operator
[m] is then called the necessity operator and 〈m〉 is called the possibility operator.

We use the same definitions of literals, clauses and CNF for modal logic formulas
(Definition 2.15). But note that, in general, formulas in LML containing modal operators
cannot be efficiently translated to formulas in CNF.2

The length of modal formulas is defined in the same way as for CPL formulas (Defi-
nition 2.13) plus:3

len([m]ϕ) = len(〈m〉ϕ) = 1 + len(m) + len(ϕ)

The set of sub-formulas and negations of sub-formulas in ML is defined in the same
way as for CPL (Definition 2.12) plus:

sub(◦ϕ) = {◦ϕ} ∪ sub(ϕ) where ◦ ∈ {[m], 〈m〉}

2In fact, Hugues and Cresswell (1996) define the modal conjunctive normal form (MCNF). However,
this normal form is not a canonical form, in the sense that every formula can be translated to it, for all
modal logics. Therefore, we do not use it here.

3Note that len(m) may be greater than 1 when m is, as in Chapter 5, something more complex than
a simple modal context.

25

Chapter 3. Modal Logic

Definition 3.3 (Modal Degree). Let ϕ ∈ LML, md(ϕ) denotes the modal degree of ϕ,
which is defined recursively, as follows:

md(>) = md(p) = 0
md(¬ϕ) = md(ϕ)
md(ϕ ∧ ψ) = md(ϕ ∨ ψ) = max(md(ϕ),md(ψ))
md([m]ϕ) = md(〈m〉ϕ) = 1 + md(ϕ)

3.3 Semantics
The semantics of normal modal logics is often defined using Kripke models (named after
Kripke (1959), who originally proposed it). They are formally defined as follows.

Definition 3.4 (Kripke model). Let a vocabulary 〈P,M〉 be given. A Kripke model is
a triplet 〈W,R, I〉, where:

• W is a non-empty set of possible worlds (sometimes called states, or situations);

• R : M→ ℘(W ×W) associates an accessibility relation R(m) to each m ∈M;

• I : P→ ℘(W) associates an interpretation I(p) to each p ∈ P.

The set of all Kripke models is noted K.
The size of a Kripke model M = 〈W,R, I〉, which is the number of possible worlds

in W , is noted |M |.

For some applications, it is more convenient to define valuations instead of interpre-
tations. Kripke models defined in such way are triplets of the form 〈W,R, V 〉, where W
and R are as in Definition 3.4 and we have:

• V : W → (P→ {0, 1}) associates a Boolean valuation to each w ∈W .

Note that both definitions are equivalent. One can go from one to the other by letting:

V (w)(p) =
{

1, if w ∈ I(p)
0, otherwise

To simplify notation, we sometimes use Rm instead of R(m) and, analogously, Ip
instead of I(p) and Vw instead of V (w). We also sometimes use Rm(w) to denote the
set {w′ | (w,w′) ∈ R(m)}.

Definition 3.5 (Pointed Kripke Model). A pointed Kripke model is a pair 〈〈W,R, I〉, w〉,
where 〈W,R, I〉 is a Kripke model and w is a distinguished possible world fromW called
actual world or root of the model.

26

3.3. Semantics

P = {p0, p1}
M = {m0}
W = {w0, w1, w2}

Rm0 = {(w0, w1), (w0, w2), (w1, w1)}
Vw0 = ∅
Vw1 = {p0}
Vw2 = {p1}

p0p1

w0

p0p1

w1

p0p1

w2

Figure 3.1 – A Kripke model 〈M,w0〉

For convenience, sometimes we just drop one ‘〈〉’, and use 〈W,R, V,w〉 to denote a
pointed Kripke model. Also for convenience, we often use 〈M,w〉, where M = 〈W,R, I〉,
to denote a pointed Kripke model.

Pointed Kripke models can be seen as a particular kind of graph. An example of a
pointed Kripke model is given in Figure 3.1. We often use such pictures to show Kripke
models in this thesis.

Definition 3.6 (Satisfaction Relation). The satisfaction relation � between formulas in
LML and pointed Kripke models is recursively defined as follows:

〈M,w〉 � >
〈M,w〉 � p iff w ∈ Ip
〈M,w〉 � ¬ϕ iff 〈M,w〉 2 ϕ
〈M,w〉 � ϕ ∧ ψ iff 〈M,w〉 � ϕ and 〈M,w〉 � ψ
〈M,w〉 � ϕ ∨ ψ iff 〈M,w〉 � ϕ or 〈M,w〉 � ψ, or both
〈M,w〉 � [m]ϕ iff for all w′ ∈ Rm(w) we have 〈M,w′〉 � ϕ
〈M,w〉 � 〈m〉ϕ iff there is w′ ∈ Rm(w) such that 〈M,w′〉 � ϕ

For example, let M be the Kripke model in Figure 3.1, we have:

〈M,w〉 2 p0 〈M,w〉 � ¬p1

〈M,w〉 � 〈m0〉p0 〈M,w〉 2 [m0]p0

〈M,w〉 2 〈m0〉(p0 ∧ p1) 〈M,w〉 � [m0](p0 ∨ p1)
〈M,w〉 � 〈m0〉[m0]p0 〈M,w〉 2 [m0]〈m0〉p0

Let ϕ ∈ LML. We sometimes need to refer to the extension of ϕ in the Kripke model
M = 〈W,R, I〉. This is the set JϕKM = {w | 〈M,w〉 � ϕ}.

Definition 3.7 (Validity). A formula ϕ ∈ LML is valid in a Kripke model M = 〈W,R, I〉
(noted M � ϕ) if and only if, for all possible worlds w ∈ W , we have 〈M,w〉 � ϕ. A
formula ϕ ∈ LML is valid (noted � ϕ) if and only if, for all Kripke models M ∈ K, we
have M � ϕ.

27

Chapter 3. Modal Logic

All axioms schemas in Table 2.1(CPL)
♦ϕ↔ ¬�¬ϕ (definition of ♦)(Df♦)
�(ϕ→ ψ)→ (�ϕ→ �ψ) (distributivity)(K)
From ϕ and ϕ→ ψ infer ψ (modus ponens)(RMP)
From ψ infer �ψ (necessitation)(RN)

Table 3.1 – Axiom system of modal logic K

Definition 3.8 (Satisfiability). A formula ϕ ∈ LML is satisfiable if and only if 2 ¬ϕ.

Corollary 3.1. A formula ϕ is satisfiable if and only if there is a Kripke model M ∈ K
and a possible world w ∈W such that 〈M,w〉 � ϕ.

When a pointed model 〈M,w〉 satisfies a formula ϕ ∈ LML, we sometimes say that
the pointed model is a model of ϕ.

Definition 3.9 (Semantic Consequence). Let two formulas ϕ,ψ ∈ LML be given. We
say that ψ is a consequence of ϕ, noted ϕ � ψ, if and only if, for all 〈M,w〉 such that
〈M,w〉 � ϕ we have 〈M,w〉 � ψ.

3.4 Axiom Systems of Modal Logic

There are several different modal logics. The simplest and one of the most common
modal logic in the literature is called K. Its language is LML, where the vocabulary
contains only one modal context. Its axiom system is the one in Table 3.1.

The presence of principles (CPL) and (RMP) in the axiom system of K means that
it is a conservative extension of CPL. In other words, the axiom system of K proves
all CPL tautologies, including the additional tautologies that can be written using the
operators � and ♦. For example, �p∨¬�p is valid in K as well as p∨¬p in CPL. The
principle (Df♦) stipulates the duality between operators � and ♦. It defines operator
♦ in terms of operator �. This is the formal counterpart of the equivalence between
formulas (3.1) and (3.2) seen before. This is also why, sometimes, the operator ♦ is
defined as an abbreviation in modal logic (similarly to what we could have done with
the connective ∨). Principle (K) is a kind of deductive closure for �. It stipulates
that, if ϕ necessarily implies ψ, then necessarily ϕ implies necessarily ψ. Principle (RN)
stipulates that all valid formulas is necessarily true. This is intuitive, since necessarily
true means true in all possible worlds.

28

3.4. Axiom Systems of Modal Logic

As an example, let us see a derivation in the axiom system of K.

(ϕ1 ∧ · · · ∧ ϕn)→ ψ (hypothesis)1.
ϕ1 → (· · · → (ϕn → ψ)) (from 1 with CPL, RMP)2.
�(ϕ1 → (· · · → (ϕn → ψ))) (from 2 with RN)3.
�ϕ1 → �(· · · → (ϕn → ψ)) (from 3 with K, CPL and RMP)4.
...
�ϕ1 → (· · · → (�ϕn → �ψ)) (from n+ 3 with K, CPL and RMP)n+ 4.
(�ϕ1 ∧ · · · ∧�ϕn)→ �ψ (from n+ 4 with K, CPL and RMP)n+ 5.

The latter derivation shows that the rule (RK) below is is a valid infernece rule in K.

From (ϕ1 ∧ · · · ∧ ϕn)→ ψ
infer (�ϕ1 ∧ · · · ∧�ϕn)→ �ψ

(general modal consequence)(RK)

Indeed, there is an alternative axiom system for K consisting of axioms (CPL), (Df♦),
and the inference rules (RMP) (RK).

The reader may verify that (CPL) and axiom schemas (Df♦) and (K) are valid in
logic K. In fact, Kripke models satisfy precisely the valid formulas in K or, in other
words, the set of validities is determined by the class of models K, as shown below.

Theorem 3.2 (Soundness and Completeness of K). ` ϕ if and only if � ϕ.

The implication from the left to the right is rather easy. It is proved by showing that
all models in K satisfy all principles of K. In other words, we show that each axiom is
valid in K and, for each inference rule, if its antecedent is valid in K so is its consequent.

The other direction is proved in four steps:

1. We define the canonical model M c = 〈W c, Rc, Ic〉 such that:

• W c is the set of all maximally consistent sets in K;

• For all w,w′ ∈W, (w,w′) ∈ Rcm if and only if {ϕ | [m]ϕ ∈ w} ⊆ w′; and

• Icp = {w | p ∈ w}

2. We prove Lemma 1: The canonical model M c is a Kripke model.

3. We prove the Truth Lemma: M c � ϕ if and only if ϕ ∈ K.

4. We have: if � ϕ then M c � ϕ, by Lemma 1. Then ϕ ∈ K, by the Truth Lemma.

We also note that modal logic K is strongly complete. This means the following.

Theorem 3.3. ϕ � ψ if and only if ϕ ` ψ.

29

Chapter 3. Modal Logic

3.4.1 Other Modal Logics
Different modal logics can be defined using the axiom system of K plus one or more
axiom schemas. The most common axiom schemas found in literature are the following:

�ϕ→ ♦ϕ(D)
�ϕ→ ϕ(T)
ϕ→ �♦ϕ(B)
�ϕ→ ��ϕ(4)
♦ϕ→ �♦ϕ(5)

For example, the modal logic KT is the modal logic containing all principles of K
plus the axiom schema T; the modal logic KD5 is K plus axiom schemas D and 5; the
modal logic KD45 is K plus axiom schemas D, 4 and 5; etc.. More formally, we have
the following.

Definition 3.10 (Axiom System of Logic KX). Let X ⊆ {D,T,B, 4, 5}. The axiom
system of modal logic KX consists of axiom schemas (CPL), (Df♦), (K) plus the ones
in X, and the inference rules (RMP) and (RN).

It is interesting to note that, for instance, the set of validities of KT contains the
validities of K. This is so because all formulas that can be derived using the axiom
system of K can also be derived using the axiom system of KT. The same holds for all
modal logics KX. It is even more interesting to note that some axiom schemas imply
others. For example, axiom schema T implies axiom schema D. This means that KT
contains KD. As another example, we have that axiom schemas K T and 5 together
imply all the other ones, namely, B, D and 4. In fact, all combinations of these schemas
give rise to 15 different axiom systems. Figure 3.2 presents the inclusions between them.
Proofs for all these results can be found, for instance, in (Chellas 1980).

Soundness and completeness for these logics are proved as for Theorem 3.2, but the
set of Kripke models is different for each one of them. We delay this until Section 3.5,
when we see the list of properties that correspond to the axiom schemas considered here.

3.5 Expressiveness
It turns out that modal logic is a fragment of first-order logic (FOL). Below, we see how
to compute an equisatisfiable FOL formula from a ML formula.

Definition 3.11 (Standard Translation). Assume:

• a denumerable set of variables {x, y, . . .},

• an unary predicate p for each propositional variable p ∈ P, and

• a binary predicate Rm for each modality in M.

30

3.5. Expressiveness

K

KD

KB

K4

K5

KT

KDB

KD4

KD5

K45

KTB

KB4

KT4

KD45

KT5

Figure 3.2 – Modal logic axiom systems inclusions. A path from L1 to L2 means that
all validities in L1 are also in L2.

31

Chapter 3. Modal Logic

str(⊥, x) = ⊥
str(p, x) = p(x)
str(¬ϕ, x) = ¬ str(ϕ, x)
str(ϕ→ ψ, x) = str(ϕ, x)→ str(ψ, x)
str(ϕ ∧ ψ, x) = str(ϕ, x) ∧ str(ψ, x)
str(ϕ ∨ ψ, x) = str(ϕ, x) ∧ str(ψ, x)
str([m]ϕ, x) = ∀y(Rm(x, y)→ str(ϕ, y))
str(〈m〉ϕ, x) = ∃y(Rm(x, y) ∧ str(ϕ, y)) (for a fresh y)

Theorem 3.4. For any formula ϕ, any Kripke model M , and any world w in M , we
have that 〈M,w〉 � ϕ if and only if M �FOL str(ϕ, x)[x← w].4

Example 3.1. Just to be sure that we understood the principle, let us see a small
example of translation:

str(p0 ∧ [m0]p0) = str(p0 ∧ [m0]p0, x)
= str(p0, x) ∧ str([m0]p0, x)
= p0(x) ∧ ∀y(Rm0(x, y)→ str(p0, y))
= p0(x) ∧ ∀y(Rm0(x, y)→ p0(y))

This result is important for us. We will see, on Chapter 7, that we can speed up
reasoning on modal logic by adapting this translation to a translation to CPL, and then
giving the resulting formula to a SAT solver.

This result is also very important for the field of modal logics itself. This is how
modal logics have “inherited for free” various properties of FOL, such as compactness
and semi-decidability. But some FOL properties are not the same in ML. One of the
most important is called invariance.

Theorem 3.5. If f is an isomorphism between first-order logic models M and M ′ then
for each first-order formula ϕ(x1, . . . , xk), and each matching tuple of objects 〈o1, . . . , ok〉
in M we have that:

M � ϕ[o1, . . . ok] if and only if M ′ � ϕ[f(o1), . . . f(ok)]

The converse is also true for finite models.

In other words, two FOL models satisfy the same set of formulas if and only if they
are isomorphic. It is a curious fact that this does not transfer to modal logic. To see it,
first consider the definition of isomorphic Kripke models.

Definition 3.12 (Isomorphism). Let M = 〈W,R, V 〉 and M ′ = 〈W ′, R′, V ′〉 be two
Kripke models. An isomorphism between M and M ′ is a bijection f : W → W ′ such
that:

4Proofs or proof sketches of theorems 3.4, 3.5, 3.6, 3.7, 3.8 can be found in (Blackburn et al. 2007).

32

3.5. Expressiveness

M :
w0

p0
M ′ :

w′0

p0

w′1

p0

Figure 3.3 – Equivalent, but not isomorphic, Kripke models

• (w, v) ∈ R iff (f(w), f(v)) ∈ R;

• w ∈ V (p) iff f(w) ∈ V ′(p).

Theorem 3.6. Let f be an isomorphism between two Kripke models M and M ′. For
all formulas ϕ ∈ LML and all worlds w ∈ W , we have that 〈M,w〉 � ϕ if and only if
〈M ′, f(w)〉 � ϕ.

However, the converse of Theorem 3.6 is not true. We can see that by analysing the
two models in Figure 3.3. It is not possible to find a modal logic formula that is true
in one of them and false in the other one. Nonetheless, they are clearly not isomorphic.

Therefore, modal logics do not distinguish all non-isomorphic models. This means
that they are strictly less expressive than FOL. In fact, modal logic invariance comes in
a different flavor than in FOL. Actually, ML cannot distinguish bisimilar models. Let
us see the formal definition.

Definition 3.13 (Bisimulation). Let M = 〈W,R, V 〉 and M ′ = 〈W ′, R′, V ′〉 be two
Kripke models. A bisimulation between M and M ′ is a binary relation B ⊆ W ×W ′
such that for all (w0, w

′
0) ∈ B we have:

Atomic harmony: 〈M,w0〉 � p if and only if 〈M ′, w′0〉 � p;

Zig: if (w0, w1) ∈ Rm then there exists w′1 ∈W ′ such that (w1, w
′
1) ∈ B and (w′0, w′1) ∈

R′m;

Zag: if (w′0, w′1) ∈ R′m then there exists w1 ∈W such that (w1, w
′
1) ∈ B and (w0, w1) ∈

Rm.

Definition 3.14 (Bisimilarity). Two pointed Kripke models are bisimilar, which is
noted 〈M,w〉 - 〈M ′, w′〉, if and only if there is a bisimulation B between M and M ′

such that (w,w′) ∈ B.

The two Kripke models in Figure 3.3 are examples of bisimilar Kripke models that
are not isomorphic. The reader may verify that the relation B = {(w0, w

′
0), (w0, w

′
1)} is

a bisimulation between M and M ′.

Theorem 3.7. If two pointed Kripke models 〈M,w〉 and 〈M ′, w′〉 are bisimlar then
〈M,w〉 and 〈M ′, w′〉 satisfy the same formulas in LML.

Theorem 3.8. If M and M ′ are finite Kripke models and 〈M,w〉 and 〈M ′, w′〉 satisfy
the same set of formulas then they are bisimilar.

33

Chapter 3. Modal Logic

Bisimulation is therefore a key concept in modal logics. We use it a couple of times
in this thesis, whenever we need to show that two Kripke models are equivalent. This
happens, for instance, in Chapter 6 where we need to show that two different ways of
revising an epistemic model result in the same (up to bisimulation) model.

Bisimulation also plays an important role on the comprehension of another key con-
cept in modal logics called correspondence theory (van Benthem 1984). Recall that we
saw the definition of several different logics in Section 3.4.1. Each one of those logics
“corresponds” to a particular class of Kripke models. This result is captured by the next
theorem.

Theorem 3.9 (First-order Definability (Lemmon and Scott 1977)). Let the logic L be
defined by (CPL), (Df♦), (K), (RMP), (RN) and a set A of axiom schemas of the form:

(Gi,j,k,`) 〈m〉i[m]jϕ→ [m]k〈m〉`ϕ (i, j, k, ` ≥ 0)

L is determined by the class of Kripke models satisfying a condition:

(Ci,j,k,`) ∀x∀y∀z((Rim(x, y) ∧Rkm(x, z))→ ∃v(Rjm(y, v) ∧R`m(z, v)))

for each axiom schema in A.

Corollary 3.10.

1. Axiom schema (D) = G0,1,0,1 = [m]ϕ→ 〈m〉ϕ corresponds to seriality, i.e.:5

∀x∀y∀z((R0
m(x, y)∧R0

m(x, z))→ ∃v(R1
m(y, v)∧R1

m(z, v))) ≡ ∀y∃v(Rm(y, v))

2. Axiom schema (T) = G0,1,0,0 = [m]ϕ→ ϕ corresponds to reflexivity, i.e.:

∀x∀y∀z((R0
m(x, y) ∧R0

m(x, z))→ ∃v(R1
m(y, v) ∧R0

m(z, v))) ≡ ∀x(Rm(x, x))

3. Axiom schema (B) = G0,0,1,1 = ϕ→ [m]〈m〉ϕ corresponds to symmetry, i.e.:

∀x∀y∀z((R0
m(x, y) ∧R1

m(x, z))→ ∃v(R0
m(y, v) ∧R1

m(z, v))) ≡
∀x∀z(Rm(x, z)→ (Rm(z, x)))

4. Axiom schema (4) = G0,1,2,0 = [m]ϕ→ [m][m]ϕ corresponds to transitivity, i.e.:

∀x∀y∀z((R0
m(x, y) ∧R2

m(x, z))→ ∃v(R1
m(y, v) ∧R0

m(z, v))) ≡
∀x∀z(R2

m(x, z)→ Rm(x, z))

5. Axiom schema (5) = G1,0,1,1 = 〈m〉ϕ→ [m]〈m〉ϕ corresponds to Euclideanity:

∀x∀y∀z((R1
m(x, y) ∧R1

m(x, z))→ ∃v(R0
m(y, v) ∧R1

m(z, v))) ≡
∀x∀y∀z((Rm(x, y) ∧Rm(x, z))→ Rm(z, y))

5Note that R0
m(x, y) means x = y.

34

3.6. Computational Complexity

Schema First-Order Property
(K) [m](ϕ→ ψ)→ ([m]ϕ→ [m]ψ) None

(T) [m]ϕ→ ϕ Reflexivity

(B) ϕ→ [m]〈m〉ϕ Symmetry

(D) [m]ϕ→ 〈m〉ϕ Seriality

(4) [m]ϕ→ [m][m]ϕ Transitivity

(5) 〈m〉ϕ→ [m]〈m〉ϕ Euclideanity

Table 3.2 – Axiom schemas and their corresponding structural properties

We summarise all results from Corollary 3.10 in Table 3.2.
Lemmon and Scott’s result has been generalised further by Sahlqvist (1975).

Definition 3.15 (Salhqvist Formula). A Sahlqvist formula is a formula of the form

〈m〉n(ϕ→ ψ)

where n ≥ 0 and ϕ and ψ satisfy the following conditions:

1. no operators occur in ϕ except 〈m〉, [m], ∨, ∧ and ¬;

2. operator ¬ occurs only immediately before a variable in ϕ;

3. no occurrence of [m], ∨ or ∧ lies within the scope of any 〈m〉 in ϕ;

4. no operators occur in ϕ except 〈m〉, [m], ∨ and ∧ (¬ is not permitted).

Theorem 3.11 (Sahlqvist Theorem (Sahlqvist 1975)). There is an effective method for
computing first-order equivalents for Sahlqvist formulas.

3.6 Computational Complexity
It is a known fact that model checking in normal modal logics can be computed in
O(n), where n is the length of the formula given as input. The algorithm performing
such a task (Algorithm 3.1) is the most obvious implementation of Definition 3.6. Note,
however, that this assumes an explicit representation of the Kripke model given as input.
If a more clever representation of the Kripke model is used, the complexity of model
checking may be higher. But this task is never more complex than satisfiability checking,
which has been proved to be PSACE-Complete for most modal logics and NP-Complete
in the case of KT5.

PSPACE-Hardness for satisfiability checking in K, KT and KT4, as well as NP-
Completeness for KT5 has been proved in a famous paper by Ladner (1977). In another

35

Chapter 3. Modal Logic

input: A pointed Kripke model 〈M,w〉 and a formula ϕ ∈ LML
output: true if 〈M,w〉 � ϕ, false otherwise

1 function mlmc(〈M,w〉, ϕ)
2 if ϕ = > then
3 return true
4 if ϕ ∈ P then
5 if w ∈ I(ϕ) then
6 return true
7 else
8 return false

9 if ϕ = ψ0 ∧ ψ1 then
10 return mlmc(〈M,w〉, ψ0) and mlmc(〈M,w〉, ψ1)
11 if ϕ = ψ0 ∨ ψ1 then
12 return mlmc(〈M,w〉, ψ0) or mlmc(〈M,w〉, ψ1)
13 if ϕ = [m]ψ then
14 forall w′ ∈ Rm0(w) do
15 if not mlmc(〈M,w〉, ψ) then
16 return false

17 return true
18 if ϕ = 〈m〉ψ then
19 forall w′ ∈ Rm0(w) do
20 if mlmc(〈M,w〉, ψ) then
21 return true

22 return false

Algorithm 3.1: Modal Logic Model Checking

36

3.6. Computational Complexity

famous paper, Halpern and Moses (1992) extended those results for the multi-modal
versions of those logics plus KD45 and also studied the addition of distributed and com-
mon knowledge operators. NP-Completeness of satisfiability checking has been proved
for all mono-modal logics with axiom (5) by Halpern and Rêgo (2007a,b). Here, we see
a brief summary of the results that are interesting for us in this thesis.

The proof sketch of the next theorem gives us a fairly easy way to show that all
modal logics we have seen in this chapter are decidable. The technique used is called
filtration. It mainly shows that there is a finite model for every satisfiable formula, and
also presents the maximum size of such a model. We also use this technique to prove
decidability of the logics presented in chapters 4 and 5.

Theorem 3.12. If ϕ is satisfiable, then there is a Kripke model containing at most
2| sub(ϕ)| possible worlds satisfying it, where sub(ϕ) is the set of sub-formulas of ϕ.

Proof Sketch. Let M = 〈W,R, I〉 be a Kripke model satisfying ϕ. First, we build equiv-
alence classes of possible worlds. Two possible worlds w and w′ are in the same class
(noted w ≡ w′) if and only if:

for all ψ ∈ sub(ϕ) we have that 〈M,w〉 � ψ iff 〈M,w′〉 � ψ

Now, let the equivalence class of a possible world w be [w] = {w′ | w ≡ w′}. The
filtration of M by the formula ϕ is a Kripke model Mf = 〈W f , Rf , If 〉, where:

• W f = {[w] | w ∈W}

• Rf ([w0], [w1]) iff there exists w′0 ∈ [w], and w′1 ∈ [w1] such that R(w′0, w′1)

• If (p) = {[w] | 〈M,w〉 � p}

Note that there cannot be more than 2| sub(ϕ)| worlds in Mf , because this is the number
of ways possible worlds can disagree, with respect to ϕ.

The next thing we must do is to show that, for all ψ ∈ sub(ϕ), 〈M,w〉 � ψ iff
〈Mf , [w]〉 � ψ. This is be done by an easy induction on the structure of ψ.

In the induction base, we have ψ = p for some p ∈ P. 〈M,w〉 � p iff [w] ∈ If (p) (by
the definition of If) iff 〈Mf , [w]〉 � p.

There are five cases on the induction step, one for each Boolean connective and modal
operator in the language. The cases for the Boolean connectives are straightforward.
For the modal operator �, let ψ = �χ. 〈M,w〉 � �χ iff, for all w′ ∈ R(w), we
have 〈M,w′〉 � χ. The latter is true iff, for all w′′ ∈ [w′], we have 〈M,w′′〉 � χ
(by the definition of [w′]). We also have that ([w], [w′]) ∈ Rf (by the definition of Rf).
Therefore, we have that the former is true iff, for all [w′] ∈ R([w]) we have 〈Mf , [w′]〉 � χ,
iff 〈Mf , [w]〉 � �χ. The induction step for the modal operator ♦ is analogous.

From Theorem 3.12, we obtain the so-called finite model property for the modal logics
we have seen here. This, together with some properties of their axiom system, gives us
decidability of satisfiability checking.

Theorem 3.13. Satisfibility checking in all modal logics of Figure 3.2 are decidable.

37

Chapter 3. Modal Logic

n = 1 n > 1
Kn KTn KT4n PSPACE-Complete PSPACE-Complete
K ∗ 5n NP-Complete PSPACE-Complete

Table 3.3 – Computational complexites of satisfiability checking

Proof Sketch. By Definition 2.8 and Theorem 3.2, there is a finite derivation for each
valid formula. Also, the set of axiom schemas and inference rules is finite. This means
that the set of derivations is enumerable. Therefore, if ¬ϕ ∈ LML is valid (i.e., if it is
not satisfiable), one can find its derivation in such enumeration. On the other hand,
by Theorem 3.12, there is a finite model satisfying every satisfiable formula. Because
the set of such models is also enumerable, if ϕ is satisfiable, one can find the model
satisfying ϕ in such enumeration. Therefore, there is an algorithm that decides whether
ϕ is satisfiable, which is as follows: It generates the next derivation and verify if it proves
that ¬ϕ is valid. If so, it returns false. If not, it generates the next Kripke model and
verify if it satisfies ϕ. If so, it return true. If not, it loops. Eventually, the algorithm
stops either with a proof that ¬ϕ is valid or with a Kripke model for ϕ.

The procedure described in the proof sketch of Theorem 3.13 is far from optimal.
Optmial procedures for deciding satisfiability of modal formulas can be found, for in-
stance, in (Goré 1999). The methods proposed therein are tableau methods. Their
optimality rely in the following results.

Lemma 3.14. Let M = 〈W,R, I〉 be a Kripke model, where w ∈W . Let n ∈ N and let
M |w,n be the Kripke model 〈W |w,n, R|w,n, I|w,n〉 obtained from M such that:

• W |w,n = {w} ∪ {w′ | R≤n(w,w′)}

• R|w,n = R ∩W |w,n

• I|w,n = I ∩W |w,n

Then, for all ϕ ∈ LML, if md(ϕ) ≤ n then, 〈M,w〉 � ϕ if and only if 〈M |w,n, w〉 � ϕ.

The tableau methods for modal logics expoits Lemma 3.14 and also the fact that
| sub(ϕ)| ≤ len(ϕ). They explore the Kripke model for ϕ branch by branch, without
having to put it entirely on the memory. The result is a method that is exponential in
time but polynomial is space.

Theorem 3.15. Every formula ϕ in L is satisfiable in a model based on a finite tree of
depth at most md(ϕ).

Corollary 3.16. Satisfiability checking in K is in PSPACE.

The result above, with some clever adjustments, can be extended to all modal logics
we have seen. We summarize computational complexity in Table 3.3.

In Section 7.2, we use a tableau to show the adequacy of a new method for satisfi-
ability checking in KT5. We therefore take a look on tableau methods for modal logic

38

3.6. Computational Complexity

here. First, we need to define a tableau for a modal logic formula. The definition below
defines tableau for the modal logic K. It is an extension of the tableau for a CPL formula
that we saw in Definition 2.14.

Definition 3.16 (ML Tableau). Let ϕ ∈ LML. A tableau for ϕ is a set T of pairs of
the form (σ, ϕ). The first element of the pair is called label. It is a (possibly empty)
sequence of natural numbers and modalities from M. The second element of the pair is
a formula ψ ∈ sub(ϕ). In addition, we have that (0, ϕ) ∈ T and, for all sequences σ, T
satisfies the following conditions:

1. (σ,¬>) 6∈ T .

2. (σ, ψ) ∈ T if and only if (σ¬ψ) 6∈ T .

3. if (σ,¬¬ψ) ∈ T then (σ, ψ) ∈ T .

4. if (σ, ψ1 ∧ ψ2) ∈ T then (σ, ψ1) ∈ T and (σ, ψ2) ∈ T .

5. if (σ, ψ1 ∨ ψ2) ∈ T then (σ, ψ1) ∈ T or (σ, ψ2) ∈ T .

6. if (σ, [m]ψ) ∈ T then, for all (σmi, χ) ∈ T , we have (σmi, ψ) ∈ T .

7. if (σ, 〈m〉ψ) ∈ T then (σmi, ψ) ∈ T , for some i ∈ N.

The tableau method is presented in Algorithm 3.2. As for CPL, it starts with the
singleton T = {(0, ϕ)} and decomposes ϕ by adding its sub-formulas to T , aiming at
satisfying all conditions in Definition 3.16. Here though, it also handles a set of labels σ,
which represent the possible worlds in the model being constructed for ϕ. For example,
if the pair (σ, 〈m〉ϕ) is in T , then the method choses a fresh (not yet present in T)
natural number i and adds (σmi, ϕ) to T . This means that, whenever 〈m〉ϕ is true in
the possible world σ then there exists a possible world σmi where ψ is true. A dual
condition handles the operator [m]. The initial sequence 0 represents the actual world
in the model.

As for the CPL tableau method, for the branches where Algorithm 3.2 returns true,
one can construt a Kripke model M , where:

• W = {i | (σi, χ) ∈ T}, for some χ.

• Rm = {(i, j) | (σimj, χ) ∈ T}, for some χ.

• V (p) = {i | (σi, p) ∈ T}

An easy induction on the structure of ϕ shows that 〈M, 0〉 � ϕ.
An exemple of the execution of Algorthm 3.2 in a modal logic K with only one

modality is shown in Figure 3.4. The closed left branch is discarded, but a model 〈M, 0〉
satisfaying ϕ can be build from the right branch of the tree. We have M = 〈W,R, V 〉,
where: W = {0, 1}, Rm0 = {(0, 1)}, Vp = {1} and Vq = {1}.

Additional conditions must be added to Definition 3.16 for the other modal logics in
Figure 3.2. For instance, modal logic KT4 has the following conditions added:

39

Chapter 3. Modal Logic

input: The set T = {ϕ}
output: true if ϕ is satisfiable, false otherwise

1 function mltableau(T)
2 if (σ,⊥) ∈ T or {(σ, ϕ), (σ,¬ϕ)} ⊆ T then
3 return false
4 if (σ,¬¬ψ) ∈ T then
5 return mltableau(T \ {(σ,¬¬ψ)} ∪ {(σ, ψ)})
6 if (σ, ψ1 ∧ ψ2) ∈ T then
7 return mltableau(T \ {(σ, ψ1 ∧ ψ2)} ∪ {(σ, ψ1), (σ, ψ2)})
8 if (σ, ψ1 ∨ ψ2) ∈ T then
9 return mltableau(T \ {(σ, ψ1 ∨ ψ2)} ∪ {(σ, ψ1)}) or

mltableau(T \ {(σ, ψ1 ∨ ψ2)} ∪ {(σ, ψ2)})
10 if {(σ, [m]ψ), (σmi, χ)} ∈ T and (σmi, ψ) 6∈ T then
11 return mltableau(T ∪ {(σmi, ψ)})
12 if (σ, 〈m〉ψ) ∈ T then
13 return mltableau(T \ {(σ, 〈m〉ψ)} ∪ {(σmi, ψ)})

Algorithm 3.2: Tableau Method for Modal Logic

T = {(0,�p ∧ (¬�p ∨ ♦q))}

T = {(0,�p), (0,¬�p ∨ ♦q)}

T ′ = {(0,�p), (0,¬�p)}

(closed)

T ′′ = {(0,�p), (0,♦q)}

T ′′ = {(0,�p), (0,♦q), (0m1, q)}

T ′′ = {(0,�p), (0m1, q), (0m1, p)}

Figure 3.4 – Execution of the tableau method for �p ∧ (¬�p ∨ ♦q)

40

3.7. Some Applications of Modal Logic

• If (σ, [m]ϕ) ∈ T then (σ, ϕ) ∈ T

• If (σ, [m]ϕ) ∈ T then (σ, [m][m]ϕ) ∈ T

The first condition corresponds to the addition of axiom schema (T) to the logic, whereas
the second condition corresponds to axiom schema (4). The corresponding tableau
method must also handle these two additional conditions.6 The reader can consult
(Goré 1999) for more details. For the logic KT5, the method can actually be simplified.
We will see that latter, on Section 7.2.

3.7 Some Applications of Modal Logic
3.7.1 Epistemic Logic
In the next three chapters of this thesis, we will build formalisms to model, among other
things, agents knowledge and beliefs. This will be done using ideas from epistemic logics.
Therefore, it seems sensible to see a small introduction of these modal logics here. This
introduction is very brief. The interested reader may consult, e.g., (van Ditmarsch et al.
2015; Fagin et al. 1995; Meyer and van der Hoek 1995) for more details.

The birth of epistemic logics (EL) is usually attributed to Hintikka (1962). These
formalisms use possible worlds semantics to model knowledge and belief. Using the very
same words of Halpern and Moses (1992): “the essential idea behind possible worlds
semantics is that an agent’s state of knowledge [or belief] corresponds to the extent to
which he can determine what world he is in”. Let a possible world be given, we associate,
to each agent, a set of possible worlds that the gent considers it possible that she is in.

As we can see, this idea can be easily captured in modal logic, as follows. Let the
vocabulary of epistemic logic be 〈P,A〉, where:

• P = {p0, p1, . . .} is a non-empty set of propositional variables; and

• A = {1, 2, . . . , |A|} is a finite set of modalities representing the agents in the
environment.

The environment itself is represented by an epistemic model of knowledge, which is a
Kripke model M = 〈W,R, I〉, where W and I are as in Definition 3.4 and:

• R : A→ (W ×W) is a function that associates a reflexive and Euclidean indistin-
guishability relation to each agent i ∈ A;

We have that, if the agent i is in the possible world w, all elements in Ri(w) are indis-
tinguishable from w for i.

The language of the epistemic logic of knowledge is LML, where the modal box oper-
ators are noted Ki, instead of [m], just to recall that they mean knowledge.7 Formulas

6In fact, in this specific case, an inclusion test must also be added to guarantee the termination of
the method.

7This is just a notational variation turns out to be useful when we start mixing different kinds of
modal operators. For instance, in the next section, when we see a formula of the form [a]Kiϕ, we
immediately know that the second modal operator is the one of epistemic logic of knowledge. The
diamond operator is not used often in this logic but, when it is, usually it is noted K̂.

41

Chapter 3. Modal Logic

of the form Kiϕ are read ‘agent i knows that ϕ’. We sometimes use LEL to refer to the
language of epistemic logic.

The constraints imposed on each Ri imply that the axiom system of epistemic logic
of knowledge is the one in Table 3.1 plus the following two (recall Table 3.2):

Kiϕ→ ϕ (knowledge)(T)
¬Kiϕ→ Ki¬Kiϕ (negative introspection)(5)

In other words, epistemic logic of knowledge is KT5n (which is also commonly known
as S5n).

The semantics above is explicitly chosen to validate these axiom schemas. Axiom
schema (T) stipulates that, if an agent knows that ϕ, then ϕ is true. This means that one
cannot know something that is false, which is commonly considered to be the difference
between knowledge and belief. Axiom schema (5) stipulates that, if an agent does not
know that ϕ, then the agent knows that she does not know that ϕ.

It is also interesting to recall that the axiom system above validates the following
(see Figure 3.2):

¬Ki⊥ (consistency)(D)
Kiϕ→ KiKiϕ (positive introspection)(4)

Axiom schema (D) stipulates that an agent does not know inconsistent facts. Axiom
schema (4) stipulates that, if an agent knows that ϕ, then the agent knows that she
knows that ϕ.

Example 3.2 (The Light Bulb). As an example, let us imagine a closed room with a
light bulb that is on. The state of the light is represented by the propositional variable
light, which is true if and only if the light is on. Alice (agent 1) is inside the room and
thus can see that the light is on. Betty (agent 2) is outside the room and thus cannot see
the state of the light. Both agents know the location of each other. This environment
can be represented by the epistemic model in Figure 3.5.

Alice can see the state of the light, which means that she can distinguish between w0
and w1. This is why worlds w0 and w1 are separated in the indistinguishability relation
of Alice R1. Betty, on the other hand, does not see the light bulb. This is why both
worlds w0 and w1 are related in her indistinguishability relation R2. Also note that it
is indeed an epistemic model of knowledge, since both relations in R are equivalence
relations.

In the actual world, the light is on. We have that 〈M,w0〉 � light. In addition, Alice
knows that the light is on. We have that 〈M,w0〉 � K1light. Betty, does not know it,
i.e., 〈M,w0〉 � ¬K2light. In fact, Betty does not know the state of the light. She does
not know whether it is on or off, i.e., 〈M,w0〉 � ¬K2light ∧ ¬K2¬light.

Both agents know the location of each other. Therefore, Alice must know that
Betty does not know the state of the light. Indeed, we have 〈M,w0〉 � K1(¬K2light ∧
¬K2¬light). We also have that Betty knows the location of Alice and thus knows that
Alice knows the state of the light. Indeed, we also have 〈M,w0〉 � K2(K1light∨K1¬light).
Finally, note that Betty does not know that Alice knows that the light is on, i.e.,
〈M,w0〉 � ¬K2K1light, nor that the light is off, i.e., 〈M,w0〉 � ¬K2K1¬light.

42

3.7. Some Applications of Modal Logic

light

w0

light

w1

2

1, 2 1, 2

Figure 3.5 – An epistemic model of knowledge

We see in Example 3.2 that KT5n correctly models agents knowledge. In addition,
we saw that it can be used to model agents knowledge about other agents knowledge
too. Let us see how to do the same with beliefs.

An epistemic model of belief is a Kripke model M = 〈W,R, I〉, where W and I are
as in Definition 3.4 and:

• R : A → (W ×W) is a function that associates a serial, transitive and Euclidean
indistinguishability relation to each agent i ∈ A;

As before, we have that, if the agent i is in the possible world w, then all elements in
Ri(w) are indistinguishable from w for i.

The language of the epistemic logic of belief is LML, where the modal box operators
are noted Bi, instead of [m], just to recall that they mean belief. Formulas of the form
Biϕ are read ‘agent i believes that ϕ’.

The constraints imposed on each Ri imply that axiom system of epistemic logic of
belief is the one in Table 3.1 plus the following (again, recall Table 3.2):

¬Bi⊥ (consistency)(D)
Biϕ→ BiBiϕ (positive introspection)(4)
¬Biϕ→ Bi¬Biϕ (negative introspection)(5)

In other words, the epistemic logic of belief is KD45n.
As for knowledge, the semantics of belief is chosen to validate these axiom schemas.

Axiom schema (D) stipulates that an agent does not belief in inconsistent facts. Axiom
schema (4) stipulates that, if an agent believes ϕ, then she believes that she believes ϕ.
And finally, axiom schema (5) stipulates that, if an agent does not believe ϕ, then she
believes that she does not believe ϕ.

Example 3.3 (The Light Bulb Revisited). Let us imagine again the environment of
Example 3.2. But, now Alice leaves the room without telling Betty. The state of the
light inside the room may have changed, so Alice does not know if it is on or off anymore.
Betty still thinks that Alice is inside the room. This can be modeled with the epistemic
model in Figure 3.6.

Alice does not know the state of the light. This is why she cannot distinguish between
w0 and w1. The situation for Betty is different. In the actual world w0, she thinks that
Alice is in the room. Therefore, in w0 Betty thinks that she is either in w2 or in w3,
where Alice can distinguish between the states where the light is on and off. Note that
the model satisfies all the required constraints for each indistinguishability relation Ri.

43

Chapter 3. Modal Logic

lightw0 light w1

lightw2 light w3

1

1 1

2 2 2 2

2

1, 2 1, 2

Figure 3.6 – An epistemic model of belief

In the actual world the light is still on, thus we have that 〈M,w0〉 � light. Alice
cannot be sure of the state of the light anymore. Thus Alice does not believe it, i.e.,
〈M,w0〉 � ¬B1light. In fact, Alice now has two possibilities, either the light is on or off,
i.e., 〈M,w0〉 � B1(light ∨ ¬light). Betty still believes that Alice is sure about the state
of the light. That is, 〈M,w0〉 � B2(B1light ∨B1¬light). Alice did not tell Betty that she
left the room. Thus Alice believes that Betty still believes that she is sure of the state
of the light, i.e., 〈M,w0〉 � B1B2(B1light ∨ B1¬light).

A complete exposition of epistemic knowledge usually also presents operators mod-
eling group knowledge, distributed knowledge and common knowledge. To keep this
introduction brief, we do not present them here (but we do introduce a group knowledge
operator in Chapter 4). Many extensions of epistemic logic exist. Operators modelling
agents abilities, actions and time are among them. For a survey of such extensions, the
reader may consult (van Ditmarsch et al. 2015).

3.7.2 Dynamic Epistemic Logic
One of the extensions of epistemic logic is dynamic epistemic logic (DEL), originally
proposed by Baltag and Moss (2004) and Baltag et al. (1998). We will meet this logic
on chapters 5 and 6. This is why we make a very brief introduction here. For more
information, please consult (van Ditmarsch, van der Hoek, et al. 2007).

Dynamic epistemic logic extends EL with operators aiming at modelling the dynamics
of knowledge. It adds to EL operators of the form [e]ϕ, where e is a possible event. A
formula of the form [e]ϕ is read ‘after every possible occurrence of e it is the case that
ϕ’.

DEL defines a structure called event model containing all possible events which may
modify the knowledge of the agents.8

8In fact, the original DEL uses a finite set of event models. But all the event models can be grouped
together in a single event model, as we do here. Both definitions are equivalent. The addition of
post-conditions is originally from (van Ditmarsch et al. 2005).

44

3.7. Some Applications of Modal Logic

Definition 3.17 (Event Model). Let a vocabulary 〈P,A〉 be given. An event model is
a structure N = 〈E,P, pre,post〉, where:

• E is a set of possible events;

• P : A → (E × E) is a function that associates an indistinguishability relation to
each agent i ∈ A.

• pre : E → LEL is a function that associates a pre-condition ϕ ∈ LEL to each event
e ∈ E.

• post : E → (P → LEL) is a function that associates a partial post-condition
function post(e) to each event e ∈ E.

Therefore, an event model is a special kind of epistemic model. it has possible
events instead of possible worlds, indistinguishability relations between events, instead of
between worlds and it has pre- and post-conditions for events instead of interpretations.

An example of event model is depicted in Figure 3.7a. In that picture, agent 1 can
distinguish between e0 and e1, while agent 2 cannot. This means that, if e0 is the actual
event occurring, then agent 1 is able to know that it is occurring, whereas agent 2 cannot
make that distinction. Each event in the picture contains a pair (pre,post) representing
its pre- and post-condition, respectively. For instance, the pre-condition of e0 is light
while its post-condition is ∅, meaning that this event occurs only if light is true and that
it does produce any factual change.

The occurrence of an event e in a pointed epistemic model 〈M,w〉, changes the
pointed epistemic model. The result is a new pointed epistemic model, which is obtained
from the product between the epistemic model and the event model, defined as follows.

Definition 3.18 (Model Product). The product between an epistemic model M =
〈W,R, I〉 and an event model N = 〈E,P, pre,post〉 is a new epistemic model M.N =
〈WN , RN , IN 〉, where:

• WN = {w.e |M,w � pre(e)}

• RNi = {(w.e, w′.e′) | (w,w′) ∈ Ri and (e, e′) ∈ Pi}

• INp =
{
{w.e | 〈M,w〉 � post(e)(p)}, if post(e)(p) is defined
Ip, otherwise

Intuitively, the product between M and N is a Kripke model M.N where each of its
possible worlds w.e is a combination of a possible world w of M and a possible event e
of N , provided that the pre-condition of e is true at w. The indistinguishability relation
of the resulting model is calculated using the relations in M and N . The interpretations
in the resulting model are calculated using the post-conditions post in N .

Definition 3.19 (Update). Let an event model N = 〈E,P, pre,post〉 be given. The
update of a pointed epistemic model 〈M,w〉 by an event e ∈ E is is the new pointed
epistemic model 〈M.N,w.e〉.

45

Chapter 3. Modal Logic

(light, ∅)

e0

(¬light, ∅)

e1

2

1, 2 1, 2

(a) Event model

light

w0

light

w1

1, 2

1, 2 1, 2

(b) Initial model

light

w0.e0

light

w1.e1

1, 2 1, 2

2

(c) Updated model

Figure 3.7 – Model product

Example 3.4 (Prelude to The Light Bulb). Let us get back to Example 3.2 but, this
time, before Alice enters the room. We have that both Alice and Betty are ignorant
about the state of the light in the room, and they know each other locations. This can
be modeled by the epistemic model in Figure 3.7b.

Now, suppose that Alice enters the room. Alice observes the state of the light, Betty
knows that Alice observes the state of the light, but she does not know if Alice observes
that the light is on or off. This is modeled by the event model in Figure 3.7a.

It is important to grasp the idea that the pre-condition of an event can also be
seen as the observation made by the agents when this is the actual event occurring.
Indeed, agents cannot observe that ϕ is true, if ϕ is actually false. This is why it is a
pre-condition.

In the model in Figure 3.7a, we have that the pre-condition of e0 is light, meaning
that, when this event occurs, the agents observe that the light is on on the room. The
pre-condition of e1 is ¬light, meaning that, when this event occurs, the agents observe
that the light is off in the room. Therefore, we have that Betty does not observe the
state of the light, but she does observe that Alice observes it.

The resulting model is depicted in Figure 3.7c. Note that it is bisimilar to the model
in Figure 3.5.

Event models and updates are a powerful tool. The number of different events that
can be modeled is huge (it is infinite, actually). For instance, we will see in Chapter 6
that we use this to model belief expansion and belief revision.

There are some limitations nonetheless. Note that the indistinguishability relations
Pi in the event model of Example 3.4 are all equivalence relations. This is necessary. If
relations Pi are not equivalence relations, the result of the product may not be a KT5n
model. There are similar restrictions must be made when working with KD45n models.

46

3.8. Conclusion

w0

p0 p0, p1
. . .

m0 m0 m0 m0

Figure 3.8 – A temporal model

3.7.3 More applications
In fact, modal logics have a huge number of applications. We could keep listing them
for a long time. In this section, we just briefly mention two more.

The model in Figure 3.8 represents a temporal model, as in the modal logic called
linear temporal logic (LTL). In this logic, possible worlds are seen as instants in time.
Assume that we define R(t) as the transitive closure of R(m0). We have that the
modal operator 〈t〉 means ‘eventually’ and the operator [t] means ‘always’. For example,
〈M,w0〉 � 〈t〉(p0 ∧ p1), meaning that (p0 ∧ p1) is ‘eventually’ true in the future, and
〈M,w0〉 2 [t]p0 means that p0 is not ‘always’ true in the future.

w0

p0
p1

a

a

b

b

Figure 3.9 – A dynamic model

Another application that interests us in this thesis is the one exemplified in Figure 3.9.
This is a model of propositional dynamic logic (PDL). In this formalism, possible worlds
are states and the relations are state transitions. For example, 〈M,w0〉 � p0 ∧ [a][b]p1
means that, the initial state w0 satisfies p0 and the execution of the sequence of actions
a; b invariably leads to a state satisfying p1.

3.8 Conclusion
In this chapter, we saw a brief introduction to modal logic. We saw the basics, its
syntax, semantics, axiom systems and a tableau method. Some applications have also
been presented.

From the next chapter on, we will put all the introductory material seen up till now
at work. The next two chapters present modal logics of action and knowledge. Then, we
will see modal logics for belief and belief revision. After that, we will see new methods
for modal logic satisfiability checking.

47

Chapter 4

A Modal Logic of Responsibility

This chapter presents a formalism aiming at modeling individual and collective respon-
sibility, and also the problem of many hands. This is a problem that arises whenever an
organisation is responsible for some undesirable outcome, but none of its members can
be held responsible for that outcome. The formalism proposed here is a logic that brings
together notions of enacted actions, agents abilities, group knowledge and organisational
structures. A sound and complete axiom system for the formalism is provided, as well
as formal definitions for individual and collective responsibility, and for the problem of
the many hands.

This is a synthesis of a series of publications on the subject (de Lima et al. 2010a;
de Lima and Royakkers 2015; de Lima et al. 2010b). The first section below presents
and discusses the problem of many hands, which is the motivation of the work. The
formal logic, its syntax, semantics and axiom system are presented on Section 4.2. After
that, Section 4.3 uses that formalism to present formal definitions for individual and
collective responsibility. These definitions are in turn used to formalise the problem of
many hands in Section 4.4. Section 4.5 discusses related work and Section 4.6 concludes
the chapter.

4.1 Motivation
The term problem of many hands (hereafter PMH) has been coined by Thompson (1980)
and is meant to designate a situation where:

“a group of individuals can reasonably be held responsible for an undesirable
outcome, while no member of the group can reasonably be held responsible
for the outcome.”

It is not evident whether such a situation may actually occur. Indeed, one may
tend to ascribe responsibility to a group only if at least some member of the group is

49

Chapter 4. A Modal Logic of Responsibility

#votes a1 a2 a3
3 no yes yes
3 yes no yes
3 yes yes no

Decision: yes yes yes

Table 4.1 – Agents votes on each action of Example 4.1

responsible. However, we argue that the PMH can occur in practice by giving here three
examples.

Example 4.1. The first example is inspired by the doctrinal paradox (Kornhauser and
Sager 1986; Petit 2001). We suppose that a group of 9 agents have to decide whether the
actions a1, a2 and a3 will be performed. They decide it using a simple majority election
for each of the actions. Every agent knows that an undesirable outcome ϕ is brought
about if all the three actions are performed. The way the agents vote on this issue is
depicted on Table 4.1. Note that no agent agrees that all the three actions should be
performed. We therefore assume that no agent intends to obtain ϕ. However, the final
result is such that all the three actions are performed which means that the undesirable
outcome ϕ is obtained. Also note that, for each agent taken individually, if this agent
changes its vote, it does not change the final result.

We conclude that, when assuming that the vote is secret and that there is no previous
arrangement between the agents, no agent is, individually, responsible for ϕ, whereas
the group is responsible for that. Hence, a PMH.

Example 4.2. In the second example, we assume an environment with 4 agents where
each one has the ability to execute a different action: agent 1 is the only one that can
execute action a1; agent 2 is the only one that can execute action a2; and so on. The
execution of action ai by agent i brings a desirable outcome for this agent. But every
agent knows that the execution of three different actions ai brings about an undesirable
outcome ϕ.

Here, the agents do not vote on the actions, they simply decide, individually, whether
to perform the action or not. If we assume that the agents are rational, the decision
taken by each of them depends on the reward of the outcomes involved. For each agent,
if the reward of the outcome of its own action outweighs the utility of ϕ, then the agent
decides to perform its own action. If so is the case for all agents, we have that the
undesirable outcome ϕ is brought about. Table 4.2 depicts agents decisions in this latter
case. Again, note that if one agent, taken individually, changes its decision, it is not
enough to change the result.

Since no agent, individually, bought about ϕ, we cannot ascribe to one agent the
responsibility for ϕ. However, the group acted in a way that brought about ϕ. Hence,
again, a PMH.

Example 4.3. The third example is inspired by the prisoners dilemma (Kuhn 2019).
In this version, we assume an environment with two agents. Each one has the ability to
execute the two actions a1 and a2. Both agents know that if they do not execute the

50

4.1. Motivation

agent a1 a2 a3 a4
1 yes – – –
2 – yes – –
3 – – yes –
4 – – – yes

Table 4.2 – Agents decisions on Example 4.2

a1 a2
a1 OK undesirable
a2 undesirable OK

Table 4.3 – Possible outcomes on Example 4.3

same action, an undesirable outcome ϕ is brought about. This situation is depicted in
Table 4.3. The agents cannot communicate.

Each agent has no way to know what the other agent decides to do. Then, if the
undesirable outcome is obtained, each agent, individually, cannot be hold responsible
for it. But the group act in a way such that ϕ is obtained. Hence, yet again, a PMH.

In these three examples, one may argue that each agent shares the responsibility for
ϕ. This would mean that the agents are not completely responsible for the undesirable
outcome, but they are responsible for it to some degree. For instance, in the first
example, the agent not willing to share responsibility for ϕ should simply vote ‘no’ in
all columns.

The way we see things, there is a problem with this argument. A rational agent
has no reason to think that the other agents would vote in a different way. Remember
that the assumption made here is that the agents cannot talk to each other. The agent
cannot foresee that the other agents will vote differently and thus cannot foresee that
the undesirable outcome will be brought about. We believe that an agent cannot be held
responsible for what cannot be foreseen. In the second and third examples, something
similar happens. Each agent does not know the reward of the actions for the other
agents. So, again, the agent cannot foresee the outcome and cannot be held responsible.

According to Bovens (1998), the PMH can happen and when it does, it raises a
problem when people are harmed, because:

it “frustrates the need for compensation and retribution on the part of the
victims”,

and also:

“the fact that no one can be meaningfully called to account after the event
also means. . . that no one need feel responsible beforehand”.

But we overlooked an important thing in the above discussion. We did not precise
what we mean by the term ‘responsibility’. For example, when we say that someone is

51

Chapter 4. A Modal Logic of Responsibility

responsible for an outcome ϕ, it may mean that one is ‘accountable’ for ϕ or that one is
‘blamed’ for ϕ, or even, that one has the ‘obligation to see to it that’ ϕ. van de Poel et al.
(2015) define several different meanings for the term ‘responsibility’ using other, more
basic, concepts, such as moral agency, causality, wrong-doing, freedom and knowledge:

• Descriptive meanings:

– Responsibility-as-cause:
“The earth quake is responsible for the death of 100 people.”

– Responsibility-as-task:
“The train driver is responsible for driving the train.”

– Responsibility-as-authority:
“The project manager is responsible for the project.”

– Responsibility-as-capacity:
(The ability to act in a responsible way.)

• Normative forward-looking meanings:

– Responsibility-as-virtue:
“She is a responsible person.”

– Responsibility-as-obligation:
“The bus driver is responsible for the safety of the passengers.”

• Normative backward-looking meanings:

– Responsibility-as-accountability:
(The obligation to account for one’s actions and theirs outcomes.)

– Responsibility-as-blameworthiness:
“The driver is responsible for the car accident.”

– Responsibility-as-liability:
“He is liable to pay damages.”

In this work, we are interested on some normative meanings of responsibility, namelly,
obligation, accountability and blameworthiness. For instance, an individual i is account-
able for ϕ if i is capable of acting as a moral agent, behaves in a way that is not morally
acceptable (i.e., does something wrong) and this behavior causes ϕ. In addition, i is
blamed for ϕ if i is accountable for ϕ, knows (or could know) that ϕ would be the case,
and acts freely, i.e., i can chose to behave differently, and this different behavior avoids
ϕ. Finally, i has the obligation to see to it that ϕ if i has the obligation that ϕ and i
must in fact make ϕ occur, i.e., i has the obligation to cause ϕ.

These different meanings of responsibility are also classified in two categories. Ac-
countability and blameworthiness are ‘backward-looking responsibilities’, i.e., respon-
sibilities regarding the past, while ‘obligation to see to it that’ is a ‘forward-looking
responsibility’, i.e., a responsibility regarding the future. Van de Poel et al. also argues
that these three notions are related. Roughly, if an individual i has the obligation to
see to it that ϕ but does not obtain ϕ, then i is accountable for ¬ϕ and, if i does not
provide a satisfactory account for ¬ϕ, then i is blamed.

52

4.2. The Formal Framework

4.2 The Formal Framework
In this section we present a logic that will be the basis of our formalization of individual
and collective responsibility. This logic is a variation of the coalition epistemic dynamic
logic (CEDL) presented in (de Lima et al. 2010b), which, by its turn, is an extension of
the well-known propositional dynamic logic (PDL) (Harel 1984; Harel et al. 2000). PDL
is a classical propositional logic augmented with modal operators ‘[a]’. A formula of the
form [a]ϕ means ‘after every possible occurrence of event a, the consequence ϕ is true’.
Thus, it permits expression of what consequences are caused by the occurrence of some
given event a, where such events can be actions executed by one agent, actions executed
by several agents, exogenous events or even programs. But since PDL does not have
agents in its language, it does not enable expression of what consequences are caused by
which agents of the scenario. To be able to express agent causality, CEDL extends it by
actions that are ‘enacted’ by agents, in a similar way as done, e.g., by Royakkers (1998)
and Wieringa and Meyer (1993) and also more recently by Herzig and Lorini (2010a,b).
In CEDL, one can write formulas of the form [(i, a)]ϕ, meaning ‘after every possible
occurrence of event (i, a), the consequence ϕ is true’, where the event (i, a) is the action
a executed by agent i. Moreover, to be able to express agent knowledge, CEDL has
modal operators Ki, in a similar way as done, e.g., by Grossi et al. (2007) and Herzig
et al. (2000). In CEDL, one can also write formulas of the form Kiϕ, meaning ‘agent i
knows that ϕ’.

The resultant formalism is a logic presenting some of the properties of PDL and epis-
temic logic (Fagin et al. 1995). In addition, because the actions of CEDL are enacted by
agents, it is possible to define operators expressing agent abilities and agent obligations.
It turns out that these operators are similar to the ones in coalition logic (Pauly 2001,
2002), alternating-time temporal logic (Alur et al. 2002) and alternating-time temporal
epistemic logic (van der Hoek and Wooldridge 2003). The obligation operators are sim-
ilar to the ones in dynamic deontic logic (d’Altan et al. 1996; Meyer 1988; Meyer and
Wieringa 1993). Therefore, CEDL constitutes a vary expressive framework where one
can express actions, knowledge, abilities and obligations, all at once.

4.2.1 Models
A model is defined for a given vocabulary, which, in this case, consists of a triple of
disjoint sets 〈P,A,T〉, where:

• P is a countable (possibly infinite) set of propositional variables denoting proposi-
tional facts;

• A is a finite set of labels denoting agents; and

• T is a finite set of labels denoting the actions available for the agents.

We use ∆ to denote the set of all joint actions available for the agents in A, which
is defined as the set of all total functions δ with signature A→ T. In other words, ∆ =
{δ1, δ2, . . .}, where each δn is a set of pairs of the form {(i1, a1), (i2, a2), . . . , (i|A|, a|A|)}
(one pair for each agent in A) and where im ∈ A and am ∈ T.

53

Chapter 4. A Modal Logic of Responsibility

w0 w1

w2

i

δ δ

δ

Figure 4.1 – Graphic representation of CEDL models: dots represent possible worlds,
arrows represent transitions and rectangles represent accessibility rela-
tions equivalence classes. Possible worlds outside rectangles are alone in
their class.

CEDL models are a specific kind of Kripke models, where nodes represent possible
worlds and relations between worlds represent either accessibility relations or transitions.
A graphical representation of such models is displayed in Figure 4.1.

The formal definition is as follows. Let the vocabulary 〈P,A,T〉 be given, a CEDL
model is a quadruple 〈W,R, T, I〉, where:

• W is a non-empty set of possible worlds;

• R is a function with signature A → (W ×W), defining, for each agent i ∈ A, an
equivalence relation between possible worlds, which represents the knowledge of
agent i;

• T is a function with signature ∆→ (W ×W), defining, for each joint action δ ∈ ∆,
a relation between possible worlds, which represents the transition associated to
the joint action δ; and

• I is a function with signature P→ 2W , defining, for each p ∈ P, the interpretation
of the propositional variable p in the model.

To simplify notation, we sometimes write Ri instead of R(i), and also use Ri(w) to
denote the set of worlds that i considers possible at w. Analogously, we sometimes write
Tδ instead of T (δ), and also use Tδ(w) to denote the set of possible outcomes of the
occurrence of δ at w.

Some assumptions are implicit in the definition of CEDL models. For instance, every
relation Ri is an equivalence relation, i.e., they are all reflexive, transitive and euclidean.
These are standard assumptions when modeling the knowledge of agents. As we have
seen in Chapter 2, these assumptions correspond to axioms T, 4 and 5. Therefore, we
have the following properties in CEDL:

• Truth: if agent i knows that ϕ is true, then ϕ is true;

• Positive introspection: if agent i knows that ϕ is true, then i knows that i knows
that ϕ is true; and

54

4.2. The Formal Framework

• Negative introspection: if agent i does not know that ϕ is true, then i knows that
i does not know that ϕ is true.

Even with a small vocabulary, structures respecting the definition above can model
many different scenarios. Some of them are interesting, but some may be considered
strange, if not useless. For instance, the definition above does not forbid structures
where, for some possible world w ∈ W and for all δ ∈ ∆, we have Tδ(w) = ∅. This
is considered a strange structure because we cannot conceive a scenario that could be
modeled in such a way. We consider here that an action is every behavior that takes
time. This means that even “doing nothing” is an action. In fact, this is a special kind of
action that does not change the state of affairs, but that has an outcome and therefore
has a non-empty transition leading to a possible world: one which satisfies the same
propositional variables as before the execution of the action. We then conclude that
there is always some action available for the agents in every possible world. Therefore,
we impose it to CEDL models. This is done by imposing the following constraint:

for all w ∈W there is δ ∈ ∆ such that Tδ(w) 6= ∅(C1)

Constraint C1 is called ‘activity’. It stipulates that, at all possible worlds of the
model, there is at least one non-empty transition which is labeled by some joint action in
∆. In other words, at any moment, there is at least one executable action for each agent,
which prevents those strange structures mentioned earlier from being CEDL models.

There is yet another constraint imposed to CEDL models:

for all w ∈W, all i ∈ A and all δ ∈ ∆, we have (Tδ ◦Ri)(w) ⊆ (Ri ◦ Tδ)(w)(C2)

This constraint corresponds to ‘no-forgetting’ in (Herzig et al. 2000) and ‘perfect recall’
in (Fagin et al. 1995). It defines an interaction between accessibility relations and
transitions. With this constraint, the knowledge of an agent either increases or stays the
same, after the execution of any action. This means that agents never loose information,
i.e., once an agent knows something, this agent will never forget it. This is obviously
very restrictive but, at the same time, useful. For instance, it avoids to consider models
where agents may keep losing information for whatever reason. Such possibility would
make much more difficult (if not impossible) to derive some interesting properties of our
formalism. We also note that, because eachR(i) is an equivalence relation, Constraint C2
implies that action occurrences are perceived by all agents. The latter implies that the
agents perceive the passage of time.

For example, the structure in Figure 4.1 respects both C1 and C2. The first is
respected because, for all possible worlds w, there is at least one transition from w to
some possible world. The second is respected because the equivalence classes of the
accessibility relation Ri do not increase their size when we follow a transition from one
possible world to another.

4.2.2 Syntax and Semantics of CEDL
Let the vocabulary 〈P,A,T〉 be given, the language of CEDL, LCEDL, is defined by the
BNF:

ϕ ::= > | p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | [δ|G]ϕ

55

Chapter 4. A Modal Logic of Responsibility

where p ∈ P, i ∈ A, G ⊆ A and δ ∈ ∆. The construction δ|G is δ, but with its domain
restricted to G, i.e., let δ be the joint action {(i1, a1), . . . , (i|A|, a|A|)}, then δ|G is the
partial joint action formed by the set of pairs {(in, an) | (in, an) ∈ δ and in ∈ G}.

In what follows, the common abbreviations for the operators ∧, → and ↔ are also
used, the symbol ⊥ (contradiction) abbreviates ¬>, and, to simplify notation, we some-
times write [i1:a1, . . . , in:an]ϕ instead of [{(i1, a1), . . . , (in, an)}]ϕ.

The fragment without operator [] is, in fact, multi-modal KT5, where each modality
m ∈ M is identified with an agent i ∈ A. The modal operator Ki is used instead of [m]
to stress its “knowledge” meaning.

The intended meaning of formulas of the form Kiϕ is, as usual: ‘agent i knows that ϕ’.
The intended meaning of a partial joint action of the form {(i1, a1), . . . , (in, an)} is: ‘the
agents in {i1, . . . , in} execute their corresponding actions in {a1, . . . , an} simultaneously
(and we do not consider what the other agents do at the same time)’. And the intended
meaning of formulas of the form [δ|G]ϕ is: ‘after every possible occurrence of δG, ϕ is
true’.

To match their intended meanings, formulas from language LCEDL are interpreted
using ‘pointed CEDL models’. The latter are pairs of the form (M,w), where M =
〈W,R, T, I〉 is a CEDL model and w ∈W . Then, the semantic interpretation of Boolean
operators is the usual one. For formulas of the form Kiϕ we use the accessibility relation
labeled with i: Kiϕ is true at the world w if and only if ϕ is true at all possible worlds
w′ accessible from w via the accessibility relation labeled with i, i.e., it is true if and
only if ϕ is true at all worlds that the agent i considers possible at w. The interpretation
of operators [δ|G] is more complex. A formula of the form [δ|G]ϕ is true at the world
w if and only if ϕ is true at all possible worlds w′ that are attained from w via some
transition in T which is labeled with δ|G ∪ δ′|A\G. In other words, to verify whether
[δ|G]ϕ is true at some possible world w, we must verify whether ϕ is true at all worlds
w′ belonging to Tδ′(w) for all δ′ ∈ ∆, provided that the restriction of δ′ to G is equal to
the restriction of δ to G, i.e., provided that δ′|G = δ|G. That is, we must verify whether
is true at all transitions from no matter what the agents outside the group do.

Formally, the satisfaction relation �, between pointed CEDL models and formulas
from LCEDL, is recursively defined as follows:

〈M,w〉 � >
〈M,w〉 � p iff w ∈ I(p)
〈M,w〉 � ¬ϕ iff 〈M,w〉 2 ϕ
〈M,w〉 � ϕ ∧ ψ iff 〈M,w〉 � ϕ and 〈M,w〉 � ψ
〈M,w〉 � Kiϕ iff for all w′ ∈ Ri(w) we have 〈M,w〉′ � ϕ
〈M,w〉 � [δ|G]ϕ iff for all δ′ ∈ ∆ and all w′ ∈ Tδ|G∪δ′|A\G

(w) we have 〈M,w〉′ � ϕ

We note that δ|G ∪ δ′|A\G is a set of pairs belonging to ∆. Thus, Tδ|G∪δ′|A\G
is defined

for all w ∈W .
As usual, a formula ϕ is valid (notation: � ϕ) if and only if every pointed CEDL

model 〈M,w〉 satisfies ϕ.

56

4.2. The Formal Framework

w0 w1

w2 w3

betty

δ0

δ1

δ2 δ3

δ0

δ3 δ2

δ0, δ2
δ1, δ3

δ0, δ2

I(light) = {w1, w3}
δ0 = alice:none, betty:none
δ1 = alice:none, betty:tog
δ2 = alice:tell, betty:none
δ3 = alice:tell, betty:tog

Figure 4.2 – A CEDL model for the Light Bulb and Light Switch scenario. (The
rectangles represent Betty’s knowledge. To simplify the picture, Alice’s
knowledge is not represented. She has complete knowledge of the scenario,
i.e., Ralice(w) = {w} for all w ∈W .)

Example 4.4 (Light Bulb and Light Switch). To better explain the definitions given
so far, we now use a scenario that we call ‘light bulb and light switch’. This scenario
is inhabited by two agents: Alice (agent alice) and Betty (agent betty). They live in a
strange house: its interior is illuminated by a light bulb, but the corresponding switch is
located outside the house. In this scenario, Alice is inside the house and Betty is outside
it, close to the switch. Thus, Alice can see whether the light bulb is on (noted light)
or off (noted ¬light) and tell (or rater shout) it to Betty (action tell), but she cannot
toggle the switch. Betty, on the other hand, can toggle the switch (action tog) but she
cannot see whether the light is on or off. If she toggles the switch with the light on, it
will turn off, and if she toggles it with the light off, it will turn on. Let the vocabulary
be 〈P,A,T〉, where P = {light}, A = {alice, betty} and T = {none, tell, tog}. A CEDL
model for this scenario can be given by the structure in Figure 4.2.

We assume that the light bulb is off, i.e., the actual world is w0. We then use the
definition of � to verify truth of some formulas in the pointed CEDL model 〈M,w0〉:

• 〈M,w0〉 � ¬light.
In words, the light is off. This is true because w0 6∈ I(light), i.e., light is not in the
label of w0.

• 〈M,w0〉 � Kalice¬light.
In words, Alice knows that the light is off. This is true because M,w � ¬light for
all w ∈ Ralice(w0). (Recall that Ralice(w0) = {w0}.)

• 〈M,w0〉 � ¬Kbettylight ∧ ¬Kbetty¬light.
In words, Betty does not know that the light is on and she also does not know
that the light is off. This is true because, first, there is a possible world that Betty
considers possible (namely w0) where the light is off and there is a possible world
that Betty considers possible (namely w1) where the light is on.

57

Chapter 4. A Modal Logic of Responsibility

• 〈M,w0〉 � [alice:none, betty:tog]light.
In words, after the parallel execution of Alice doing noting and Betty toggling
the switch, the light is on. This is true because, first, δ1 = alice:none, betty:tog.
Second, A = {alice, betty}, thus, for all δ′ ∈ ∆, we have δ′|A\{alice,betty} = δ′|∅ = ∅;
Then, δ1|{alice,betty} ∪ δ′ = δ1, which means that Tδ1|{alice,betty}∪δ′|A\{alice,betty}(w0) =
Tδ1(w0) = {w1}, for all δ′ ∈ ∆, and finally, M,w1 � light.

• 〈M,w0〉 � [alice:tell, betty:tog]light.
In words, after the parallel execution of Alice telling whether the light is on or off
and Betty toggling the switch, the light is on. Similarly as before, we have that
δ3 = alice:tell, betty:tog and Tδ3|{alice,betty}∪δ′|A\{alice,betty}(w0) = Tδ3(w0) = {w3}, for
all δ′ ∈ ∆, and also M,w3 � light.

• 〈M,w0〉 � [betty:tog]light.
In words, after Betty toggling the switch, the light is on. (Note that here we
consider only the action executed by Betty.) This is true if and only if, for every
action that Alice can execute at the same time as Betty, after its parallel execution
with Betty’s action tog, the light is on. We have just verified, in the two preceding
items, that if Alice does nothing this is indeed the case, as well as if Alice tells
Betty whether the light bulb is on or off. But these are the only two options Alice
has. Therefore, the sentence ‘after Betty toggling the switch, the light is on’ is
true. More formally, note that δ1|{betty} = betty:tog and also δ3|{betty} = betty:tog.
Then, we just have to verify that 〈M,w0〉 � [δ1]light and also 〈M,w0〉 � [δ3]light.
But, this is what has been done in the two preceding items.

• 〈M,w0〉 � ¬[betty:tog]⊥.
In words, it is not the case that, after Betty toggling the switch, we have a con-
tradiction. Since the formula ⊥ is false in any possible world (by definition), then
the latter sentence is equivalent to: ‘it is not the case that the execution of Betty
toggling the switch is not possible’. To show that it is true, we have to verify that
〈M,w0〉 � ¬[δ1]⊥ or 〈M,w0〉 � ¬[δ3]⊥. Both are the case, because M,w � ¬⊥ for
all w ∈W (by definition).

• 〈M,w0〉 � ¬[alice:tell]Kbetty¬light.
In words, it is not the case that after Alice telling whether the light bulb is
on or off to Betty, she knows that the light is off. This is the case because,
if Betty toggles the switch at the same time, the light will be on. If it is on,
then it is not possible for Betty to know that this is off. (Note that it uses the
assumption that agents cannot know false statements.) Indeed, we have that
〈M,w0〉 2 [alice:tell, betty:tog]Kbetty¬light. To show it, we first note that δ3 =
alice:tell, betty:tog. Moreover, Tδ3(w0) = {w3}. And also, M,w3 � ¬Kbetty¬light.
The latter is the case because Rbetty(w3) = {w3} and w3 ∈ I(light).

Many other interesting (and more complex) formulas can be verified in this model.
For instance, we leave it to the reader to verify that the following is true: 〈M,w0〉 �
[alice:tell, betty:none]Kbetty[betty:tog](Kalicelight ∧ Kbettylight). In words, it means that
after the parallel execution of Alice telling whether the light bulb is on or off to Betty

58

4.2. The Formal Framework

All instances of CPL tautologies(TAU)
(Kiϕ ∧Ki(ϕ→ ψ))→ Kiψ (deductive closure for knowledge)(K)
Kiϕ→ ϕ (truth)(T)
Kiϕ→ KiKiϕ (positive introspection)(4)
¬Kiϕ→ Ki¬Kiϕ (negative introspection)(5)
([δ|G]ϕ ∧ [δ|G](ϕ→ ψ))→ [δ|G]ψ (deductive closure for action)(KA) ∨
δ∈∆

¬[δ|G]⊥ (activity)(A)

∧
δ′∈∆

[δ|G ∪ δ′|A\G]ϕ)→ [δ|G]ϕ (deriving action)(DA)

([δ|G]ϕ ∧ [δ′|H]ψ)→ [δ|G ∪ δ′|H](ϕ ∧ ψ)
(if G ∩H = ∅) (superadditivity)(S)

Ki[δ|G]ϕ→ [δ|G]Kiϕ (perfect recall)(PR)
From ϕ and ϕ→ ψ infer ψ (modus ponens)(RMP)
From ϕ infer Kiϕ (knowledge necessitation)(RNK)
From ϕ infer [δ|G]ϕ (action necessitation)(RNA)

Table 4.4 – Axiom system of CEDL

and Betty doing nothing, Betty knows that after Betty toggling the switch, the two
agents know that the light is on. In other words, it means that if Betty waits for the
announcement of Alice, then she knows how to reach the state where the two agents
know that the light is on.

We now turn our attention to some important CEDL validities, displayed in Table 4.4.

Theorem 4.1. The principles in Table 4.4 are sound and complete with respect to the
class of CEDL models.

The proof of Theorem 4.4 is done by providing an equivalent alternative semantics
for CEDL and then using correspondence theory (Blackburn et al. 2001; Sahlqvist 1975)
with this alternative semantics.

First, for every CEDL model M = 〈W,R, T, I〉 we build an alternative model M∗ =
〈W,R, T ∗, I〉. That is, M∗ is the same structure as M , but with a different transition
function T ∗, which is defined as follows:

• T ∗ is a function from the set of all partial joint actions to W ×W , where 〈w,w′〉 ∈
T ∗(δ|G) if and only if there is δ′ ∈ ∆ such that 〈w,w′〉 ∈ T (δ|G ∪ δ′|A\G).

Alternative pointed models are tuples of the form 〈M∗, w〉, whereM∗ is as defined above
and w ∈ W . The alternative satisfaction relation, �∗, is the same as � for Boolean

59

Chapter 4. A Modal Logic of Responsibility

operators and for operators Ki plus:

M∗, w �∗ [δ|G] iff for all w′ ∈ T ∗δ|G(w) we have M∗, w �∗ ϕ

Validity is defined as usual.
Second, let ϕ ∈ LCEDL, we show by an induction on the structure of ϕ that 〈M,w〉 �

ϕ if and only if 〈M∗, w〉 �∗ ϕ.
Third, we show that alternative models satisfy the following constraints:⋃

δ∈∆

T ∗δ|G(w) 6= ∅(C1’)

(T ∗δ|G ◦Ri)(w) ⊆ (Ri ◦ T ∗δ|G)(w)(C2’)

T ∗δ|G(w) ⊆
⋃
δ′∈∆

T ∗δ|G∪δ′|A\G
(w)(C3)

T ∗δ|G∪H
⊆ T ∗δ|G(w) ∩ T ∗δ|H (w)(C4)

The first two are enforced by constraints (C1) and (C2) on CEDL models, respectively.
The other two are enforced by the construction of T ∗.

Fourth, it is easy to see that all axioms in Table 4.4 are Sahlqvist’s formulas (Black-
burn et al. 2001; Sahlqvist 1975). Then, by using the substitution algorithm, we obtain
that Axioms (T), (4) and (5) correspond to reflexivity, transitivity and euclidicity of
relations Ri, respectively, and Axioms (A), (DA), (S) and (PR) correspond to Con-
straints C1’, C3, C4 and C2’, respectively. Therefore, it follows from the Correspon-
dence Theorem (Blackburn et al. 2001; Sahlqvist 1975) that the principles in Table 4.4
are sound and complete with respect to the class of alternative models. Since this se-
mantics is equivalent to the semantics given earlier, then it is also sound and complete
with respect to the class of CEDL models.

The axiom system in Table 4.4 reveals one additional assumption that is implicit in
CEDL models. This assumption corresponds to Axiom (S), which is called ‘superaddi-
tivity’. It stipulates that if group G obtains outcome ϕ by acting as determined by the
partial joint action δ and H obtains outcome ψ by acting as determined by the partial
joint action δ′, then the group of agents G ∪ H obtains outcome ϕ ∧ ψ by acting as
determined by the union of their partial joint actions. In particular, this implies that
the bigger the group, the more it can achieve. This seems to be an intuitive property.

4.2.3 Group Knowledge
Because we aim at formalising collective responsibility, we have to provide a formalisation
of ‘group knowledge’. Unfortunately, there is no consensus in the literature of what group
knowledge means (see, e.g., the discussion in (Goldman and Blanchard 2018)). Here, we
choose to use the notion of ‘distributed knowledge’, found, e.g., in (Fagin et al. 1995).
In the language, we replace operators Ki by the more general KG, which semantics is
formally defined as follows. Let G 6= ∅:

M,w � KGϕ iff M,w′ � ϕ for all w′ ∈
⋂
i∈G

R(i)(w)

60

4.2. The Formal Framework

Distributed knowledge approximately describes the knowledge of someone who has com-
plete knowledge of what each member of the community knows.

Proposition 4.2. The following schemata are valid in CEDL with distributed knowl-
edge:

(KGϕ ∧KG(ϕ→ ψ))→ KGψ (deductive closure for knowledge)(K′)
KGϕ→ ϕ (truth)(T′)
KGϕ→ KGKGϕ (positive introspection)(4′)
¬KGϕ→ KG¬KGϕ (negative introspection)(5′)
(KG1ϕ1 ∧KG2ϕ2)→ KG1∪G2(ϕ1 ∧ ϕ2)
(if G ∩H = ∅)

(knowledge superadditivity)(KS)

KG[δ|A]ϕ→ [δ|A]KGϕ (perfect recall)(PR′)

Axioms (K′) to (5′) are, again, shown using correspondence theory. Axiom (PR′) is
valid because (C2) is preserved for groups G, by the definition of KG. And (KS) is valid
because

⋂
i∈G1∪G2

R(i) ⊆
⋂
i∈G1

R(i).
Note that using axioms (KS) and (K′), one can derive both: KG1ϕ→ KG1∪G2ϕ and

(KG1ϕ1 ∧KG2(ϕ1 → ϕ2))→ KG1∪G2ϕ2. However, whether these principles constitute a
complete axiom system for CEDL with distributed knowledge, is left as an open question.

4.2.4 Ability and Knowing How Ability
Our aim in this section is to define operators to express agent ability. The first operator
we define here expresses that ‘by executing δ|G, the group of agentsG ensures an outcome
satisfying ϕ in the next step’. That is, formulas of the form Eδ|Gϕ should mean that
G can execute δ|G (or, simply, δ|G is executable) and that it necessarily leads to an
outcome satisfying ϕ. It therefore amounts to the following abbreviation:

Eδ|Gϕ
def= ¬[δ|G]⊥ ∧ [δ|G]ϕ

Sometimes, we will need to express that some group of agents ensure an outcome ϕ by
executing a sequence of actions δ1|G; . . . ; δ2|G. This amounts to a similar abbreviation,
which generalizes the previous one:

Eδ1|G;...;δn|Gϕ
def= ¬[δ1|G] . . . [δn|G]⊥ ∧ [δ1|G] . . . [δn|G]ϕ

The second operator defined here expresses that ‘the group of agents G is able to
ensure that ϕ is true in the next step’. That is, formulas of the form 〈〈G〉〉ϕ should mean
that G has an available action such that G can execute and which ensures an outcome
satisfying ϕ. Thus, the latter is given by:

〈〈G〉〉ϕ def=
∨
δ∈∆

Eδ|Gϕ

We note that this is a well-formed formula, because ∆ is finite, since T is finite.

61

Chapter 4. A Modal Logic of Responsibility

Example 4.5 (Light Bulb and Light Switch (revisited)). To exemplify operators 〈〈G〉〉,
we reuse the scenario of Example 4.4 and the model in Figure 4.2.

• 〈M,w0〉 � 〈〈{betty}〉〉light.
In words, Betty is able to ensure that the light is on in the next step. This is
true because there is an action available for Betty such that she can execute and
which ensures an outcome satisfying ϕ. This action is tog. Let us see how it works
formally. The claim is true if and only if 〈M,w0〉 �

∨
δ∈∆ Eδ|G light, which is true

if 〈M,w0〉 � Ebetty:toglight, The latter is true if and only if 〈M,w0〉 � ¬[betty:tog]⊥
and 〈M,w0〉 � [betty:tog]light. Both are indeed the case, as we have already seen
in Example 4.4.

• 〈M,w0〉 � ¬〈〈{alice}〉〉Kbetty¬light.
In words, it is not the case that Alice is able to ensure that Betty knows that the
light is off in one step. This is the case because there is no action available for Alice
that ensures that Betty knows that the light is on on the next step. For instance,
Betty can always toggle the switch, which leads to the situation where the light is
off. Formally, the two options available for Alice do not lead, necessary, to a situa-
tion where the light is off. That is, we have that 〈M,w0〉 � ¬[alice:tell]Kbetty¬light,
as seen before, and also 〈M,w0〉 � ¬[alice:none]Kbetty¬light.

• 〈M,w0〉 � 〈〈{alice}〉〉〈〈{betty}〉〉Kbettylight. In words, Alice is able to ensure that
after one step Betty is able to ensure after one more more step that she knows
that the light is on. In the first step, the action available for Alice that leads to
that result is tell. The reader can verify that, if Alice executes tell an Betty does
noting, then after that she knows that the light is off, and then she only has to
toggle the switch to ensure that the light is on after one more step. On the other
hand, if Alice executes tell and Betty toggles the switch, then after that she knows
that the light is on, and then she only has to do nothing to ensure that the light
is on after one more step. So, in any case, Betty will have an action that leads to
a state where she knows that the light is on.

• 〈M,w0〉 � 〈〈{alice, betty}〉〉light ∧ 〈〈{alice, betty}〉〉¬light.
In words, the two agents together are able to ensure that the light is on and they
are able to ensure that the light is off. This is true because the agents may chose
to execute, e.g., alice:none, betty:tog to ensure that the light is on after one step
And also, they can chose to execute, e.g., alice:none, betty:none to ensure that the
light is off after one step. This shows that in this scenario, the agents are able to
control the state of propositional variable light.

• 〈M,w0〉 � ¬〈〈∅〉〉light ∧ ¬〈〈∅〉〉¬light.
We note that this is a well-formed formula, because ∅ ⊆ A. Thus, we can follow
the definition of 〈〈∅〉〉, to verify that, for instance, the first conjunct ¬〈〈∅〉〉light is
true at w0. To do so, it is enough to verify that for all δ ∈ ∆, the formula [δ|∅]light
is false at w0. The latter is the case if and only if for all δ ∈ ∆ there is δ′ ∈ ∆ such
that the formula [δ|∅ ∪ δ′{alice,betty}]light is false at w0. And the latter is indeed

62

4.2. The Formal Framework

the case for, e.g., δ′ = alice:none, betty:none. To verify that the second conjunct
is also true at w0, we do the same reasoning but using δ′ = alice:none, betty:tog.

At this point, the reader may be wondering what interpretation should be given to
〈〈∅〉〉. Formulas of the form 〈〈∅〉〉ϕ mean ‘after the execution of any joint action, ϕ is
true’, which is equivalent to ‘ϕ is true in the next step, in spite of what the agents do’
or even, ‘it is necessary the case that ϕ true in the next step’. This interpretation of
〈〈∅〉〉 is similar as given to its homonym in Coalition Logic (CL) and Alternating-time
Temporal Logic (ATL) (Alur et al. 2002). In fact, for all G ⊆ A, the interpretation
given to 〈〈G〉〉 is similar to that in CL and ATL, but with some technical differences. Our
〈〈G〉〉 is the fusion of ATL operators 〈〈G〉〉 and X (where the latter means “next”). That
is, our formulas of the form 〈〈G〉〉ϕ correspond to ATL formulas of the form 〈〈G〉〉Xϕ. It
turns out that our operator 〈〈G〉〉 validates some of the axioms and inference rule of ATL
operators 〈〈G〉〉X (as found, e.g., in (Goranko and van Drimmelen 2006)).

Proposition 4.3. The following schemas and rule of inference are valid in CEDL:

1. ¬〈〈G〉〉⊥

2. 〈〈G〉〉>

3. (〈〈G〉〉ϕ ∧ 〈〈H〉〉ψ)→ 〈〈G ∪H〉〉(ϕ ∧ ψ) (if G ∩H = ∅)

4. From ϕ→ ψ infer 〈〈G〉〉ϕ→ 〈〈G〉〉ψ

It is easy to see why Proposition 4.3 holds:

1. Suppose that 〈M,w〉 � 〈〈G〉〉⊥, for some arbitrary pointed model 〈M,w〉. Then,
there is a δ such that 〈M,w〉 � ¬[δ|G]⊥ ∧ [δ|G]⊥, which is a contradiction.

2. From Axiom (A), � ∃δ∈∆¬[δ|G]⊥ for all G ⊆ A. Since also � [δ|G]> for all δ ∈ ∆
and all G ⊆ A, we have � ∃δ∈∆(¬[δ|G]⊥ ∧ [δ|G]>).

3. First, note that 〈〈G〉〉ϕ∧〈〈H〉〉ψ is equivalent to the formula: ∃δ∈∆(¬[δ|G]⊥∧[δ|G]ϕ)∧
∃δ′∈∆(¬[δ′|H]⊥ ∧ [δ′|H]ψ). Also note that (a) � ¬[δ|G ∪ δ′|H]⊥ (by Axiom (A)),
and also (b) � ([δ|G]ϕ ∧ [δ′|H]ψ) → [δ|G ∪ δ′|H](ϕ ∧ ψ) (by Axiom (S)). Putting
(a) and (b) together we have � 〈〈G〉〉ϕ ∧ 〈〈H〉〉ϕ→ 〈〈G ∪H〉〉(ϕ ∧ ψ).

4. From Axiom (A), (a) � ∃δ∈∆¬[δ|G]⊥ for all G. And from � ϕ → ψ we infer
� [δ|G](ϕ→ ψ) (by Rule (RNA)), and then (b) � [δ|G]ϕ→ [δ|G]ψ (by Axiom (KA)
and Rule (RMP)). Then, (a) and (b) together imply � 〈〈G〉〉ϕ→ 〈〈G〉〉ψ.

We remark that the formula 〈〈A〉〉ϕ→ ¬〈〈∅〉〉¬ϕ is valid. Indeed, we can derive it quite
easily using Axioms (S) and (A). This formula means that if the whole set of agents is
able to ensure that ϕ is true after one step, then it is not the case that ϕ is necessarily
false after one step. However, the converse is not the case. That is, ¬〈〈∅〉〉¬ϕ → 〈〈A〉〉ϕ
is not valid in CEDL. In words, just because ϕ is not necessarily false after one step, it
does not mean that the whole set of agents are able to ensure it. It happens because
we do not assume ‘joint determinism’ in CEDL, i.e., a joint action may have more than

63

Chapter 4. A Modal Logic of Responsibility

one possible outcome. It contrasts with ATL, where the formula ¬〈〈∅〉〉X¬ϕ → 〈〈A〉〉Xϕ
is valid. This is not the case here though.1

Theorem 4.3 shows that operators 〈〈G〉〉 are similar to their CL and ATL homonyms.
This means that these operator presents well-known, and desired, properties of an oper-
ator supposed to model ability of agents. It is very important for our framework, since
we will base our subsequent definitions in the intuition behind the concept of ability.

Nonetheless, this operator has a “problem”. It has been argued several times (Ågotnes
and van Ditmarsch 2008; Broersen et al. 2007; Jamroga and Ågotnes 2007; Jamroga and
van der Hoek 2004) that, when a logic of this kind is also able to express that agents’
knowledge is incomplete, the operator just defined is not completely adequate. The same
issue rises in our logic, and can be explained using the Light Bulb and Light Switch
scenario again (Examples 4.4 and 4.5): let us recall that Betty is able to ensure that the
light is on after one step. That is, 〈〈{betty}〉〉light is true at w0. In fact, this formula is
true at w1 too. The latter means that she knows it, i.e., 〈M,w0〉 � Kbetty〈〈{betty}〉〉light.
Then, it may seem counterintuitive that Betty does not know that the action tog ensures
light in w0, i.e., 〈M,w0〉 � ¬KbettyEbetty:toglight. However, the reader may verify that
it is indeed the case. This means that although Betty knows that she is able to ensure
that the light is on after one step, she does not know what she must do to ensure it! In
game theory (Osborne and Rubinstein 1994) we say that an agent has a ‘non-uniform
strategy’ for a given goal whenever:

for every state that the agent cannot distinguish from the current state, there
is a strategy whose execution leads to the goal;

and we say that an agent has a ‘uniform strategy’ for a given goal whenever:

there is a strategy such that for every state that the agent cannot distinguish
from the current one, its execution leads to the goal.

In our example above, Betty has a ‘non-uniform strategy’ for the outcome where the light
is on. The formula Kbetty〈〈betty〉〉light expresses it. However, sometimes we would like to
write a formula expressing that an agent has (or does not have) a uniform strategy for
a given goal. In the language of coalition logic and ATL, the latter is not possible. But
this is possible in CEDL. The formula

∨
δ∈∆ KiEδ|i light (which is false at w0) expresses

that Betty has a uniform strategy to obtain the goal light. In other words, it expresses
that Betty knows how to ensure that the light is on after one step. Here, we call this a
‘knowing how ability’. To be able to express it more succinctly, we define operators HG,
as follows:

HGϕ
def=

∨
δ∈∆

KGEδ|Gϕ

The knowing how operator has some of the properties of the ability operator. For
instance, we have the following.

Proposition 4.4. The following scheme and rule of inference are valid in CEDL:
1This constitutes a difference from the logic proposed in (de Lima et al. 2010b). There, joint

determinism is taken as an assumption.

64

4.2. The Formal Framework

1. ¬HG⊥

2. (HG1ϕ1 ∧HG2ϕ2)→ HG1∪G2(ϕ1 ∧ ϕ2) (if G ∩H = ∅)

3. From ϕ→ ψ infer HGϕ→ HGψ

But not all properties are the same. For instance, 〈〈G〉〉> is valid, while HG> is not.
Validity of the former means that there is always some action available for G that is
executable, because of Axiom A. The latter is not valid because agent G does not always
know which action it is.

4.2.5 Obligations
In this section, we define an operator expressing agents obligations, as in deontic logic
(Meyer and Wieringa 1993). We do so by adapting the simple, yet effective, idea of
d’Altan et al. (1996) to our framework. The latter developed further the ideas of Meyer
(1988), introducing both static and dynamic obligations in PDL.

From now on, we assume that the set of propositional variables of our language is
P ∪ Vio, where Vio = {vioG | G ∈ 2A \ ∅}. That is, for each agent, we introduce
a new atomic formula vioG, that has the special meaning: ‘the group of agents G is
in violation’. In addition, we require that our models now be quadruples of the form
〈W,R, T, I〉, where W , R and T are defined as before but the domain of I is extended
to the new set of propositional variables, i.e., I : (P ∪Vio)→ 2W .

In (d’Altan et al. 1996), formulas of the form OGϕ mean ‘it is obligatory for G that
ϕ is true’. The idea is that vioG flags the states of the model that consists of a violation
state for G. In other words, vioG simply means ‘G is in violation’. Thus, we define one
obligation operator for each group of agents G ∈ 2A \ ∅ with the following abbreviation:

OGϕ
def= ¬ϕ→ vioG

Obligations satisfy some interesting properties.

Proposition 4.5.

1. � OG>

2. � OG(ϕ ∧ ψ)↔ (OGϕ ∧OGψ)

3. If � ϕ then � OGϕ

We note that agents do not necessarily know their obligations, i.e., OGϕ does not
imply KGOGϕ. Also, our approach permits models where violations are unavoidable.
For instance, we have that vioG → OG⊥ is valid, which also means that we do not
impose Axiom D (i.e., ¬OG⊥), which is present in some deontic systems. In our view
it just means that dilemmas are possible (cf. van Fraassen (1973)). As in the classical
Sartre’s example, one can have the obligation to stay at home to look after an elderly
mother and, at the same time, to have obligation to join the resistance movement to
fight the Nazis.

65

Chapter 4. A Modal Logic of Responsibility

Now, still following d’Altan et al. (1996) and Meyer (1988), we can also define dy-
namic obligations in our framework, by using the dynamic operator available in our
language, i.e., the operator []. We therefore define:

FG(δ|G) def= [δ|G]vioG

FG(δ1|G; . . . ; δn|G) def= FG(δ|G) ∨ [δ1|G]FG(δ2|G; . . . ; δn|G)

A formula of the form FG(δ|G) literally means that, ‘G will necessarily be in a
violation state after every possible occurrence of δ|G.’ It should be read as ‘action δ|G
is forbidden for G’. Permitted actions are also defined by an abbreviation:

PG(δ1|G; . . . ; δn|G) def= ¬FG(δ1|G; . . . ; δn|G)

That is, action δ|G is permitted for G if and only if δ|G is not forbidden for G.
Our operator O has an important difference compared to the one defined by Meyer

(1988). Meyer’s obligation is abbreviated by a master modality �,2 while ours is not.
Therefore, our obligations are “immediate” ones, instead of Meyer’s “global” ones. That
is, OGϕ means that ϕ is obligatory only now. We think that this kind of obligation
makes sense, too. It may even make more sense than Meyer’s obligations, since in real
life, some rules and norms may expire, or even be subject of change.

4.3 Responsibility
With all the necessary ingredients in hands, we are now able to develop our formal the-
ory of responsibility. We start with forward-looking responsibility, in Subsection 4.3.1,
and then we deal with the two different kinds of backward-looking responsibilities, in
Subsection 4.3.2. Subsection 4.3.3 establishes the relation between these two kinds of
responsibility.

4.3.1 Forward-looking Responsibility
In this section, we formalize one kind of forward-looking responsibility, namely, the
‘obligation to see to it that’. The aim here is to augment our logic with operators R,
where formulas of the form RnGϕ are to be read as ‘it is obligatory for G that G sees
to it that ϕ is true after n steps’. But, before showing its definition, let us recall part
of the informal discussion drawn in van de Poel et al. 2015, Chapter 1, where Goodin’s
ideas are used to define this meaning of responsibility. The argument advanced is the
following quote from Goodin 1995, p. 83:

The standard form of responsibility is that A see to it that X. It is not
enough that X occurs. A must have “seen to it” that X occurs. “Seeing
to it that X” requires, minimally: that A satisfy himself that there is some

2In the present context a master modality � would be an operator satisfying: (i) �ϕ → [δ|G]ϕ, for
all δ|G; (ii) �ϕ → ϕ; and (iii) �ϕ → ��ϕ.

66

4.3. Responsibility

w0 w1

w2 w3

betty

δ0

δ1

δ2 δ3

δ0

δ3 δ2

δ0, δ2
δ1, δ3

δ0, δ2
I(light) = {w1, w3}
I(vioalice) = {w0, w1, w2}
I(viobetty) = {w0, w1, w2}
δ0 = alice:none, betty:none
δ1 = alice:none, betty:tog
δ2 = alice:tell, betty:none
δ3 = alice:tell, betty:tog

Figure 4.3 – A CEDL model for the Light Bulb and Light Switch scenario where w0
and w2 are violation states. (As before, the rectangles represent Betty’s
knowledge. To simplify the picture, Alice’s knowledge is not represented.
She has complete knowledge of the scenario, i.e., Ralice(w) = {w} for all
w ∈W .)

process (mechanism or activity) at work whereby X will brought about; that
A check from time to time to make sure that process is still at work, and
is performing as expected; and that A take steps as necessary to alter or
replace process that no longer seem likely to bring about X.

This is a complex definition. It is unlikely that we would be able to capture all its
details in our framework. Nonetheless, we approximate it by the following inductive
definition:

R0
Gϕ

def= OGϕ(4.1)

Rn+1
G ϕ

def= OGHn+1
G ϕ ∧ 〈〈∅〉〉RnGϕ (for n > 0)(4.2)

where Hn
G stands for a sequence of n operators HG, i.e., H0

Gϕ
def= ϕ and Hn

Gϕ
def=

HGHn−1
G ϕ.

The formula R0
Gϕ is equivalent to OGϕ. That is, R0

Gϕ is true at some world w if and
only if, it is necessary the case that, ¬ϕ implies a violation for G. But formulas RnGϕ,
for n > 1, are more than mere obligations that ϕ. They also capture the “supervisory
nature” of this kind of responsibility. For it is also necessary the case that, after n − 1
steps, ¬HGϕ implies a violation for G. This means that, to avoid a violation, group G
must find a way to be in the position to know how to ensure ϕ after one step. And
analogously for n− 2, and so on until n = 1.

Example 4.6 (Light Bulb and Light Switch with Violations). Let us now see our
operator R in action using a variation of Example 4.4. The only difference in this
variation is that worlds w0, w1 and w2 are violation states for Alice and also for Betty.
Such scenario is depicted in Figure 4.3.

67

Chapter 4. A Modal Logic of Responsibility

• 〈M,w0〉 � R1
alicelight and also 〈M,w0〉 � R1

bettylight
In words, it is obligatory for Alice to see to it that the light is on after one step,
and the same for Betty. We verify only Alice’s case, since Betty’s one is analogous.
It is the case if and only if (1) 〈M,w0〉 � OaliceHalicelight and (2) 〈M,w0〉 �
〈〈∅〉〉R0

alicelight. We have (1) because 〈M,w0〉 � vioalice. And we have (2) because,
for every w′ in the model, we have M,w′ � ¬light → vioalice.

• 〈M,w0〉 � R2
alicelight

In words, it is obligatory for Alice to see to it that the light is on after two steps.
To show it, we have to show that (1) 〈M,w0〉 � OaliceHaliceHalicelight and (2)
〈M,w0〉 � 〈〈∅〉〉R1

alicelight. To show (1) we have to show that ¬HaliceHalicelight →
vioalice is true at w0. The reader can verify that this is indeed the case. To show
(2) we have to show that for all w ∈W we have M,w � R1

alicelight. It can be done
in the same way as for w0, which is done in the previous item.

We also note that that 〈M,w0〉 � R2
bettylight, and invite the reader to do the exercise of

showing it.

It may worth to explain why we do not use the classical notion of ‘seeing to it that’
(henceforth stit) proposed in (Belnap et al. 2001). Belnap et al.’s stit can be defined in
our framework as follows. The sentence ‘by executing δ|{i}, i sees to it that ϕ after one
step’ is expressed by the formula ¬[δ|{i}]⊥ ∧ [δ|{i}]ϕ ∧ ¬〈〈∅〉〉ϕ. Note that it amounts to
ours Eδ|{i}ϕ plus the conjunct ¬〈〈∅〉〉ϕ. This conjunct is there because, for Belnap et al.,
it is not enough that ϕ is true after one step. It must be the agent i that influences
the course of things to ensure that ϕ is true after one step. It can be argued that our
operator E does not capture this latter meaning. For example, the formula Eδ|G> is
valid in CEDL, i.e., it is true at every world of every model. However, Belnap et al.’s
stit is incompatible with the meaning of responsibility we are trying to formalize here.
We show it using an informal example. Suppose that a teacher has the obligation to see
to it that, after his class, the door of the classroom will be closed. Also suppose that
the door of the classroom is connected to an automatic system that closes it exactly
after his class finishes. Some minutes before finishing his class, the teacher has some
options: (a) finish the class on time and then let the door be closed automatically by
the system; (b) finish the class a bit earlier and then close the door himself; and (c)
disable the automatic system an then close the door himself. It seems to us that in
Belnap et al.’s terms, only (b) and (c) fulfill the teacher’s obligation, while we think that
all the three options fulfill the teacher’s obligation. On the other hand, recall that, as
explained earlier, the obligation to see to it that ϕ does not require that ϕ is achieved by
an action of the teacher. But it requires some supervision. Therefore, in our example,
the obligation to see to it that the door will be closed implies that the agent supervises
the process by himself. That is, if the teacher chooses (a), then the teacher must be sure
that the system is working properly or at least verify if the system closed the door after
the class.

68

4.3. Responsibility

4.3.2 Backward-looking Responsibility
In this section, we formalize two kinds of individual backward-looking responsibility,
‘accountability’ and ‘blameworthiness’. The aim here is to augment the logic with two
operators, A and B. Formulas of the form Aδ|iϕ is to be read as ‘after executing δ, agent
i is accountable for ϕ’ and formulas of the form Bδ|iϕ is to be read as ‘after executing
δ, agent i is blamed for ϕ’.

Accountability

Let us start by recalling the definition of ‘accountability’ given in van de Poel et al.
2015, Chapter 1:

. . . an agent A is accountable for X if A has the capacity to act responsibly
(has moral agency), is somehow causally connected to the outcome X (by
an action or omission) and there is a reasonable suspicion that agent A did
somehow something wrong.

The first condition for holding an agent accountable, ‘moral agency’, is a tacit as-
sumption in our framework. In fact, our logical framework also assumes that all agents
are rational and that they are perfect reasoners. This, for instance, means that agents
can foresee all the logical consequences of the facts they know. Again, these assumptions
may be seen as very restrictive ones, but, in a logical framework like ours, the relaxation
of such assumptions would make it much more difficult (if not impossible) to derive some
interesting properties.

The other two conditions for holding an agent accountable are causality and wrong-
doing. We just make it precise that these two conditions must be related to each other,
in the sense that the “something wrong” did by the agent must be what is “somehow
causally connected to the outcome” for which the agent is accountable. So, first, we
consider that agent i is causally connected to a given consequence ϕ whenever i ensures
that ϕ is true and the action that ensures ϕ is wrong. And we consider that an action is
wrong whenever it does not ensure a non-violation state. For the latter, it either means
that a violation state is achieved by the execution of the action or, if the violation state
is not achieved, it means that the agent did not take enough care in order to avoid it,
what we also consider as a “wrong-doing”. Putting everything together we have the
following definition for accountability (which is already generalised to groups of agents):

Aδ1|G;...;δn|Gϕ
def= Eδ1|G;...;δn|Gϕ ∧ ¬Eδ1|G;...;δn|G¬vioG

The latter definition stipulates that, after executing the sequence of actions δ1; . . . ; δ2,
group G is accountable for ϕ if and only if, by executing this sequence, G ensures that
ϕ is true and also, by executing this sequence, G does not ensure a non-violation state.
Example 4.7 (Light Bulb and Light Switch with Violations (revisited)). To exemplify
operator A, we reuse the scenario of Example 4.6 and the model in Figure 4.3.
• 〈M,w0〉 � ¬Aδ0|alice¬light.

In words, it is not the case that, after executing action none, Alice is account-
able for the fact that the light is off. It is true if and only if ¬Eδ0|alice¬light ∨

69

Chapter 4. A Modal Logic of Responsibility

Eδ0|alice¬vioalice. And it is true because the first disjunct is true. To see it, note
that 〈M,w0〉 � ¬[δ0|alice]¬light.

• 〈M,w0〉 � Aδ0|betty¬light.
In words, Betty is accountable for the fact that, after executing action none, the
light is off. It is true if and only if Eδ0|betty¬light ∧ ¬Eδ0|betty¬viobetty. Note that
both conjuncts are true in the model of Figure 4.3.

• 〈M,w0〉 � ¬Aδ0|alice;δ0|alice¬light.
In words, it is not the case that, after executing action none twice, Alice is ac-
countable for the fact that the light is off. To show it, we use the same reasoning
as for the first item again, but now twice.

We may say that, in this example, operator A works as expected. Note that Alice,
who does not control the light switch cannot be held accountable for the fact that the
light is off. On the other hand, Betty, who does control the light switch, can be held
accountable for the fact that the light is off. But, we will see in the next section that
she cannot always be blamed for that, because she does not know the state of the light
in the beginning.

Blameworthiness

The definition given in van de Poel et al. 2015, Chapter 1 for this meaning of responsi-
bility is the following: agent i is blamed for consequence ϕ whenever i is accountable for
ϕ and is not capable to give an account for it. Two accounts (excuses) are considered
acceptable. The first one is ignorance: the agent i is excused (and thus is not blamed)
for ϕ if i can show that it does not know that its behavior causes ϕ, or it does not know
that its behavior is wrong. The second is compulsion: the agent i is excused for ϕ if i
can show that no behavior that does not cause ϕ or that is not wrong is possible. For
simplicity, we give the definition of blame in two steps (note the generalisation to groups
of agents):

Cδ|Gϕ
def= KGEδ|Gϕ ∧ ¬〈〈∅〉〉ϕ

Cδ1|G;...;δn|Gϕ
def= KGEδ1|GCδ2|G;...δn|Gϕ ∧ ¬〈〈∅〉〉Cδ2|G;...;δn|Gϕ (for n > 1)

Bδ1|G;...;δn|Gϕ
def= Cδ1|G;...;δn|Gϕ ∧ ¬Cδ1|G;...;δn|G¬vioG

The definition of operator B is similar to that of A, but with operator C in the place
of ensure. The latter operator means more than just ensure. It could be seen as ‘knowing
causality’. That is, formula of the form Cδ|Gϕ mean ‘by executing δ, group G knowingly
causes ϕ’. The difference with ensuring ϕ is that the latter formula also means that the
agent knows that the action ensures ϕ and, in addition, the conjunct ¬〈〈∅〉〉ϕ means that
an option not necessarily leading to ϕ was possible. Therefore, the definition of formula
Bδ|Gϕ stipulates that, not only the group is accountable for ϕ, but the group cannot
provide acceptable excuses for it, which, by the defition given initially, means that the
group is blamed for ϕ.

70

4.3. Responsibility

Example 4.8 (Light Bulb and Light Switch with Violations (re-revisited)). To exem-
plify operator B, we reuse the scenario of Example 4.6 and the model in Figure 4.3.

• 〈M,w0〉 � ¬Bδ0|alice¬light.
In words, it is not the case that, after executing action none, Alice is blamed for
the fact that the light is off. It is true if and only if 〈M,w0〉 � ¬Cδ0|alice¬light ∨
Cδ0|alice¬vioalice. And it is true because the first disjunct is true. To see it, note
that 〈M,w0〉 � ¬KaliceEδ0|alice¬light, because 〈M,w0〉 � ¬Kalice[δ0|alice]¬light.

• 〈M,w0〉 � ¬Bδ0|betty¬light.
In words, it is not the case that, after executing the action none, Betty is blamed
for the fact that the light is off. It is true if and only if 〈M,w0〉 � ¬Cδ0|betty¬light ∨
Cδ0|betty viobetty. And it is true because the first disjunct is true. The reasoning is
the same as for the item above. Note that 〈M,w0〉 � ¬KbettyEδ0|betty¬light, because
〈M,w0〉 � ¬Kbetty[δ0|betty]¬light.
Recall from Example 4.7 that 〈M,w0〉 � Aδ0|betty¬light, i.e., after executing action
none, Betty is accountable for the fact that the light is off. But, we now saw that,
since she did not know the state of the light, she cannot be blamed for it.

• 〈M,w0〉 � ¬Bδ0|alice;δ0|alice¬light.
In words, it is not the case that, after executing action none twice, Alice is blamed
for the fact that the light is off. To show it, we use the same reasoning as for the
first item again, but now twice.

• 〈M,w0〉 � [δ2|alice]Bδ0|betty¬light.
In words, after the execution of action tell by Alice and then the execution of
action none, Betty is blamed for the fact that the light is off. It is true if and only
if 〈M,w2〉 � Bδ0|betty¬light. And it is true if and only if 〈M,w2〉 � Cδ0|betty¬light ∧
¬Cδ0|betty¬viobetty. Note that the latter is true, because, in w2 Betty knows the
status of the light switch, which means that she knows that executing none will
lead to a violation. In addition, in w2 Betty also knows that there is another
option that avoids the violation, namely, the execution of tog.
In other words, once Alice tells Betty the status of the light, Betty has all she needs
to avoid the violation. If she decides to execute none she is not only accountable
for the fact that the light is off, but she knew that it would happen and she also
knew how to avoid it. Therefore, she is blamed for it.

4.3.3 The Relation Between Forward-Looking and Backward-
Looking Responsibilities

Given the definitions for operators R, A and B of the latter subsections, the relation
between the two kinds of responsibility now seems almost evident. Indeed, it is easy to
check that the following proposition is true.

Proposition 4.6. The following axiom schemata are valid in CEDL:

1. (RnGϕ ∧ Eδ1|G;...;δn|G¬ϕ)→ Aδ1|G;...;δn|G¬ϕ

71

Chapter 4. A Modal Logic of Responsibility

2. (RnGϕ ∧ Cδ1|G;...;δn|G¬ϕ)→ Bδ1|G;...;δn|G¬ϕ

Proposition 4.6.1 says that: if it is obligatory for G to see to it that ϕ, and the
sequence of actions δ1; . . . ; δn ensures ¬ϕ, then G is accountable for ¬ϕ; and Proposi-
tion 4.6.2 says that: if it is obligatory for G to see to it that ϕ, and the sequence of
actions δ1; . . . ; δn knowingly causes ¬ϕ, then G is blamed for ¬ϕ.

4.4 The Problem of Many Hands

4.4.1 How to avoid the PMH
As said before, the problem of many hands arises in an organisation when the organisa-
tion is backward-looking responsible for some undesirable outcome but no organisation
member can be held backward-looking responsible for this outcome. Let G be the set of
members of a given organisation, it is formally given by:

PMHδG
ϕ

def= BδG
(ϕ) ∧

∧
i∈A
¬Bδi

(ϕ)

A formula of the form PMHδG
ϕ means that ‘by performing δG, the problem of many

hands arises in group G with respect to the outcome ϕ’. If we follow the definitions of
operator B, we find out that we can paraphrase it as ‘by performing δG, group G is
backward-looking responsible for ϕ, but no agent i in G is backward-looking responsible
for ϕ by performing δi’. Analysing the definitions of operator B a bit further we realise
that the PMH may arise from three different sources: either (1) no forward-looking
responsibility is ascribed to the individuals, or (2) the individuals that are forward-
looking responsible for ϕ do not have the ability to bring it about (without the other
individuals of the group), or (3) the individuals that are forward-looking responsible
for ϕ do not have the necessary knowledge to bring about ϕ (without considering the
knowledge of the other individuals of the group).

To address source 1, once a group is forward-looking responsible for outcome ϕ, we
need to ascribe responsibility to at least one individual in that group. We call this
individual the leader of the group. Formally we have:

Rn
Gϕ→ Rn

i ϕ (if i is the leader of G)(A10)

and where the leader i is a distinguished agent in the model (this is defined formally in
the next section).

Now, to address source 2, we have to be sure that the forward-looking responsibility
can be “delegated” (directly or indirectly) to the individuals that have the ability to
fulfill it. This will mean that the leader should have the power to ascribe forward-
looking responsibilities to other individuals of the group.

Similarly, to address source 3, we have to be sure that individuals can share infor-
mation. In other words, that knowledge can be transmitted among individuals of the
group.

72

4.4. The Problem of Many Hands

Therefore, a group that wants to avoid the PMH should organise itself in such a way
that delegation actions and information actions are possible. In management theory,
some ideas of how organisations can be built are given. Here, we use the ideas of Grossi
et al. (2007), and define organisations as a kind of structure.

4.4.2 Organisational structures
An organisational structure is a quadruple 〈G,P, IR, i〉 where:

• G is a group of agents in A, representing the members of the organisation;

• P is a subset of G2, representing a power relation among the members of the
organisation;

• IR is a subset of G2, representing an information flux relation among the members
of the organisation;

• i is an agent in G, representing the leader of the group,

and that satisfies the following semantic constraints:

j ∈ P+(i) (for all j ∈ G)(SC6)
P ⊆ IR(SC7)

where P+ is the transitive closure of P .
SC6 implies that every individual in the organisation can eventually be ascribed

forward-looking responsibility for some outcome. SC7 guarantees that if an individual
may be ascribed forward-looking responsibility for some outcome, this individual can
also be informed about it.

Let O be an organisational structure, the models of our logic are now tuples of
the form 〈O,W,R, T, I〉. And its language is extended by the set of atomic formulas
{Power(i, j) | i, j ∈ G} ∪ {Coord(i, j) | i, j ∈ G}. The satisfaction relation is the same
as before plus:

M,w � Power(i, j) iff (i, j) ∈ P
M,w � Coord(i, j) iff (i, j) ∈ I

Note that from SC7 we immediately obtain:

(A11) Power(i, j)→ Coord(i, j)

4.4.3 Organisational actions
Once organisational structures are in place, we can define the organisational actions
mentioned above. The first kind of such actions consists of information actions. That
is, we add the set of actions {info(G,ϕ) : G ⊆ A and ϕ ∈ L} to the set T of atomic

73

Chapter 4. A Modal Logic of Responsibility

actions of the language. For example, action {(i, info(G,ϕ))} means ‘agent i informs all
members of G that ϕ’. We require that such actions satisfy the following two properties:

¬[(i, info(G,ϕ))]¬> → Kiϕ(A12)
Coord(i, j)→ [(i, info(G,ϕ))]Kjϕ (for each j ∈ G)(A13)

A12 restricts the circumstances in which action info(G,ϕ) is executable. We impose
that agents can inform only what they know will be true after the communication act.
It follows that agents cannot lie. A13 stipulates that informing actions are successful
communication actions when the agents involved are appropriately related by a coordi-
nation link. This also means that the agents trust information that comes through the
coordination link.

The second kind of organisational action consists of delegation actions That is, we
add the set of actions:

{deleg((G1, n1, ϕ1), . . . , (Gm, nm, ϕm)) |
G1, . . . , Gm ⊆ A, n1, . . . , nm ∈ N and ϕ1, . . . , ϕm ∈ L}

to the set T of atomic actions of the language. In fact, this is a multiple-delegation
action. The action {(i,deleg((G1, n1, ϕ1), . . . , (Gm, nm, ϕm)))} means ‘agent i ascribes
forward-looking responsibility that ϕk after nk steps to Gk, for each 1 < k < m’. We
require that such actions satisfy:

Power(i, j)→ [(i,deleg((G1, n1, ϕ1), . . . , (Gm, nm, ϕm)))]KjRn
kϕk(A14)

(for each j ∈ G and each 1 < k < m)

A14 stipulates that, when agent i delegates ϕ to G, it creates a forward-looking
responsibility that ϕ for every agent in G, but only if agent i has the power to do so.
Note that, in this definition of delegation, the actor of the delegation action keeps the
responsibility. In addition, the agents in G also know their new responsibility. This is
why power links must also be coordination links. (Recall SC7.)

4.4.4 Indirect responsibility

Note that the definition of forward-looking responsibility does not take indirect agency
into account. It defines forward-looking responsibility as the case where the group must
guarantee the outcome by itself. This is not well adapted for an organisation setting,
where delegation actions and information actions are available. Therefore, here we
redefine forward-looking responsibility below. For the sake of readability it is given in
two parts. In the first part we can see that the only difference from the definition of
forward-looking resposibility is the presence of operator IR. The latter operator means
‘indirect responsibility’.

74

4.4. The Problem of Many Hands

Definition 4.1. (Again, we show only the first three, the others are analogous.)

R0
G(ϕ) def= OG(ϕ ∨ IR0

G(ϕ))

R1
G(ϕ) def= OG(HGϕ ∨ IR1

G(ϕ)) ∧ 〈〈∅〉〉R0
G(ϕ)

R2
G(ϕ) def= OG(HG(HGϕ ∨ IR1

G′(ϕ)) ∨ IR2
G(ϕ)) ∧ 〈〈∅〉〉R1

G(ϕ)

where IRn
G is defined as:

IR0
G(ϕ) def= ∃G′1KG(Power(G,G′1) ∧ R0

G′1
ϕ1) ∧ · · · ∧

∃G′mKG(Power(G,G′m) ∧ R0
G′m

ϕm) ∧
KG((ϕ1 ∧ · · · ∧ ϕm)→ ϕ)

IR1
G(ϕ) def= ∃G′1KG(Power(G,G′1) ∧HG′1

ϕ ∧ R1
G′1
ϕ1) ∧ · · · ∧

∃G′mKG(Power(G,G′m) ∧HG′m
ϕ ∧ R1

G′m
ϕm) ∧

KG((ϕ1 ∧ · · · ∧ ϕm)→ ϕ)

IR2
G(ϕ) def= ∃G′1KG(Power(G,G′1) ∧HG′1

(HG′1
ϕ1 ∨ IR1

G′1
(ϕm)) ∧

R2
G′1

(ϕ1)) ∧ · · · ∧

∃G′mKG(Power(G,G′m) ∧HG′m
(HG′m

ϕm ∨ IR1
G′m

(ϕm)) ∧
R2
G′m

(ϕm)) ∧
KG((ϕ1 ∧ · · · ∧ ϕm)→ ϕ)

where Power(G,G′) def= ∃i∈G∀j∈G′Power(i, j).

Informally, group G is forward-looking responsible for ϕ after n steps if and only if
it is obligatory for G that it is able to bring about ϕ after n steps or that it is indirect
forward-looking responsible for ϕ after n steps. The definition of indirect responsibility
is the most complex part. Yet, it is intuitive. We consider that a group G is indirect
responsible for ϕ if and only if there are groups G′1, . . . , G′m under G’s power that are
able to bring about ϕ1, . . . , ϕm, or they are indirect responsible for ϕ1, . . . , ϕm, and such
that ϕ1, . . . , ϕm → ϕ.

4.4.5 Example
Consider an organisation with two bank accounts, 1 and 2. Alice (agent alice) is the
member of the organisation who manages the accounts. Betty (agent betty) is the mem-
ber who normally pays the bills for the organisation. And Carol (agent c) is the director
of their department, but she has no access to the accounts.

Let 〈M,w0〉 be a pointed CEDL model, where M is depicted in Figure 4.4. It
describes a situation where Betty will pay a bill after three steps using account 1. Alice
knows that, but she does not know which account Betty will use. Alice also knows that
none of the accounts has enough money to pay the bill, but she does know that both

75

Chapter 4. A Modal Logic of Responsibility

w0

w1 . . .

δ7 δ6

w2 w3 w4

δ5 δ6

w5 w6 w7 w8 w9 w10

δ1 δ2 δ1 δ2 δ3 δ4

Figure 4.4 – The CEDL model M = 〈O,W,R, T, I〉 for the example in Section 4.4.5:
the rectangle represents R(alice). The joint actions and the interpretation
function I are detailed in Table 4.5. The organisation O = 〈G,P, IR, c〉,
where G = {alice, betty, c}, P = {(c, alice), (c, betty)}, and IR = P ∪
{(betty, alice)}.

accounts together do. Group G = {alice, betty, c} is ascribed the responsibility to have
the bill paid and the balances non-negative after three steps, i.e., 〈M,w0〉 � R3

G(bal(n) ≥
0).

Note that 〈M,w2〉 � Cδ2|G¬(bal(n) ≥ 0). That is, at w2, if Alice places the money on
account 2, Betty pays the bill from account 1 and Carol just waits, the groupG knowingly
causes a negative balance. This is true because 〈M,w2〉 � ¬KGEδ2|G¬(bal(n) ≥ 0),
and also 〈M,w2〉 � ¬Cδ2|G¬vioG i.e., it is not the case that G knows that δ2 avoids a
violation state. Therefore, 〈M,w2〉 � Bδ2|G¬(bal(n) ≥ 0). A similar reasoning will show
that 〈M,w0〉 � Bδ7|G;δ5|G;δ2|G¬(bal(n) ≥ 0).

Now, suppose for a moment that P = ∅, so that action deleg does not produce its
normal effect of ascribing forward-looking responsibilities to Alice and Betty. That
is, under this assumption I(vioalice) = I(viobetty) = ∅. Then, we have 〈M,w2〉 �
¬Bδ2|alice (bal(n) ≥ 0), because there is no violation for Alice in the model. Therefore,
〈M,w0〉 � ¬Bδ7

| alice;δ5|alice;δ2|alice (bal(n) ≥ 0). Similarly, there is no violation for Betty
either, so 〈M,w0〉 � ¬Bδ7|betty ;δ5|betty ;δ2|betty (bal(n) ≥ 0). Because of Axiom A10, the viola-
tions for Carol are present in the model. However, we have 〈M,w2〉 � ¬Bδ2|c(bal(n) ≥ 0).
The reason for this is that at w2 Carol cannot ensure a non-violation state no matter
which action she decides to execute. Therefore, 〈M,w0〉 � ¬Bδ7|c;δ5|c;δ2|c(bal(n) ≥ 0).
This means that neither Alice, Betty or Carol can be held backward-looking responsible
for a violation state. Thus 〈M,w0〉 � PMHδ7|G;δ5|G;δ2|G(¬bal(n) ≥ 0), i.e., by performing
such actions, the PMH arises in group G with respect to outcome ¬bal(n) ≥ 0.

Now, let us come back to the original configuration of P . In this case, after the exe-
cution of δ7, Alice is forward-looking responsible for bal(n) ≥ 0. Then, if δ2 is executed
at w2, Alice is held backward-looking responsible, i.e., 〈M,w2〉 � Bδ2

alice
(¬bal(n) ≥ 0).

That is, the PMH does not arise in the presence of the organisational structure proposed
and the organisational actions info and deleg.

Now, let us see the importance of using the new Definition 4.1 (instead of the defini-
tion in page 67) in the formalisation of this example. If we were using the old definition,

76

4.5. Related Work

alice betty c
δ1 tr(2, 1) pay(1) wait
δ2 tr(1, 2) pay(1) wait
δ3 tr(2, 1) pay(2) wait
δ4 tr(1, 2) pay(2) wait
δ5 wait info wait
δ6 wait wait wait
δ7 wait wait deleg

vioG vioalice viobetty vioc bal(n) ≥ 0
w0 •
w1 •
w2 •
w3 • •
w4 •
w5 •
w6 • • • •
w7 •
w8 • • • •
w9 • • • •
w10 •

Table 4.5 – On the left, the joint actions for the model M in Figure 4.4. On the
right, the interpretation function I for the modelM in Figure 4.4. (Action
info abbreviates info(alice, [betty : pay(2)]¬>) and action deleg abbreviates
deleg((alice, 2,bal(n) ≥ 0), (betty, 1,Halicebal(n) ≥ 0), (betty, 2,paid)).
The bullets show where the atoms are true.)

the PMH could not be avoided, because it does not take delegation and indirect agency
into account. The leader of the group, Carol, has no action in her repertoire to ensure
a non-violation state herself. It does not matter what she does, she will never be held
backward-looking responsible. But with the new definition she can be held responsible,
because δ6 does not ensure a non-violation state for Carol, while there is an action that
does, namely, δ7, because 〈M,w0〉 � KcEδ7

c
(IR2
{alice,betty}(bal(n) ≥ 0).

Finally, it is also interesting to notice that the information action executed by Betty
on w1 is important to make Alice aware of which account she will use to pay the bill.
We invite the reader to do the exercise of considering I = ∅. In this case, action info
will not produce its effect and therefore, the PMH arises.3

4.5 Related Work
Our formalization of forward-looking and backward-looking responsibility is based on
other, more basic, “ingredients”. Here, we use agents’ actions, abilities, obligations
and knowledge. Earlier works on the formalization of responsibility often do not deal
with all of these ingredients. For instance, Santos and Carmo (1996) deal only with
obligations and agents abilities. As we do here, they propose that responsibility should
be paraphrased by ‘obligation to ensure’. Their formalization is done by using a logic
wherein one can write formulas of the form OEiϕ, which stand for ‘it is obligatory
that i ensures ϕ’. The most interesting feature of this approach is the validity of the
scheme EiEjϕ→ Eiϕ. It expresses that ‘if agent i ensures that agent j ensures ϕ then

3Note however, that under such assumption the model M must be changed. For instance, if action
info does not produce any effect, worlds w2 and w3 should be bisimilar.

77

Chapter 4. A Modal Logic of Responsibility

i ensures ϕ’. This is a useful feature for modelling indirect agency that is not present
in our framework. However, Santos and Carmo’s logic is not appropriate to address our
problem for two reasons: it does not permit to express agents’ incomplete knowledge
about the situation and also does not have actions in its object language. The fact that
Alice has incomplete knowledge is crucial in the example presented in Section 4.1, as
well as the actions, since the problem is precisely that she needs to decide which action
to execute.

With the logic for agent organisation (LAO) Dignum and Dignum (2007) Dignum
and Dignum propose to formalise responsibility in terms of agents abilities. It seems to
be a better alternative than Santos and Carmo’s approach, because the former avoids
considering that the agent is backward-looking responsible for a failure in the case the
agent is not able to avoid this failure. However, as in Santos and Carmo’s approach,
LAO does not have actions in its object language, which means that, again, we cannot
address our example using this logic either.

The formalism proposed by Grossi et al. Grossi et al. (2007) is based on a combination
of dynamic and epistemic logics. Therefore, it has actions in the object language and
also permits to express incomplete knowledge scenarios. However, this logic does not
permit to express agents’ abilities. As mentioned above, abilities are important in the
definition of responsibility, and it is also important in the definition of obligations. We
are not aware of other attempts to formalise the PMH in organisations.

A formalism that seems very close to CEDL is dynamic logic of agency (DLA) of
Herzig and Lorini (2010a,b). CEDL and DLA appeared almost at the same time. How-
ever, their semantics, as well as their axiom systems are different. Moreover, formulas
in DLA do not have the same meaning as in CEDL. For instance, a DLA formula of the
form 〈i : a〉ϕ means that ‘agent i performs action a and ϕ is true afterwards’. This is
why DLA has, for instance, axiom schema (Single): 〈a : a〉> → [i : b]⊥, meaning that
an agent can execute only one action at a time. In fact, we have in DLA that the future
is already determined: there is an actual history. This makes CEDL and DLA quite
different formalisms. DLA is designed to reason about a system whose execution has
already been determined, whereas CEDL is designed to reason about a system where
agents are still to decide which possible execution will be undertaken.

Other approaches to responsibility, that are not based on logic, also exist. For
instance, the casual models approach (Alechina et al. 2017; Chockler and Halpern 2004;
Halpern 2015), describes the world in terms of variables and their values. Some variables
may have a causal influence on others. This influence is modelled by a set of modifiable
structural equations. Two different notions are defined: the degree of responsibility,
which is a number in the interval [0, 1] that essentially measures the minimal number
of variables and changes that participate on the cause of some event; and the degree
of blame, which is also a number in the interval [0, 1] that, roughly speaking, measures
the probability that those changes happen. Though it is very technical, the approach
is flexible and able to model examples such as the ones we saw in this chapter. The
responses to questions such as ‘is the agent responsible for the outcome?’ or ‘is the agent
blamed for the outcome?’ are simply numbers on the given interval. The interpretation
of those numbers are left to the user.

78

4.6. Conclusion

4.6 Conclusion
In this chapter, we saw a logic that extends PDL by epistemic formulas of the form Kiϕ,
expressing that agent i knows that ϕ (similar to Grossi et al. (2007) and Herzig et al.
(2000)), and also by enacted actions, i.e., formulas of the form [δ|G]ϕ, expressing that ϕ
holds after the execution of δ by group G (similar to Herzig and Lorini (2010a,b), Roy-
akkers (1998), and Wieringa and Meyer (1993)). It turns out that, in CEDL, formulas of
the form 〈〈G〉〉ϕ, expressing that G has the ability to ensure ϕ, can be defined as simple
abbreviations. Therefore, it is possible to express operators with the same properties as
the ones found in other logics of agency, such as coalition logic Pauly (2001, 2002) and
ATL Alur et al. (2002), but using a simpler semantics. In addition, CEDL also enables
us to give a solution to the problem of uniform strategies.

With this tool in hands, we propose a formalization of one notion of forward-looking
responsibility, two notions of backward-looking responsibility, and also the relation be-
tween them. All together enables us to model the problem of many hands in organ-
isations, and to show how organised groups of agents are more likely to avoid such
problem.

We did not address decidability, complexity and expressiveness of CEDL. In partic-
ular, a deep comparison analysis between this logic and other logics of agency, such as
coalition logic, ATEL, STIT Belnap et al. (2001), etc., has not been addressed here.
Moreover, there is a possible extension of this logic that may be promising. The first
one is the addition of temporal operators. When reasoning about responsibilities, one
may want to express statements such as ‘Betty must turn on the light before 7 p.m.’.
This statement means that Betty may fulfill her task by turning on the light before the
specified deadline. Such statement cannot be expressed in our language.

In the next chapter, we design a new logic that, as well as CEDL, can express enacted
actions, agents abilities and knowledge. That new logic is different from CEDL but, on
that framework, we will be able to address all the questions on the last paragraph, as
well as one additional problem of CEDL. This additional problem has to do with the
formalization of scenarios, such as the example on Section 4.4.5. There, we took a model
that corresponds to the description of the problem and check that some formulas have
their intuitive meanings. But, in reality, this kind of problem should be modeled using
a set of formulas describing the initial situation and the behaviour of each action of
the scenario. This kind of formalisation can be very long and error prone in CEDL.
The reader is invited to check (de Lima et al. 2010b, Section 4), where the complete
description of an example similar to the one on Section 4.4.5 is given. This problem has
to do with the so-called frame axioms (Reiter 1991). We will see on the next chapter,
that an elegant solution can be provided when the semantics of the logic is designed
using the ideas of dynamic epistemic logic (van Ditmarsch, van der Hoek, et al. 2007).

79

Chapter 5

A Logic of Agent Abilities and
Knowledge

As exposed on Section 4.6, several open questions remain for CEDL. In addition, there
are a couple of ways in which CEDL could be improved. Because the aim of that
logic includes reasoning about actions and knowledge, it seems possible to approach
those matters from a dynamic epistemic logic perspective. The main advantage of this
perspective is that, as shown in (van Ditmarsch, Herzig, et al. 2007), we do not need to
bother with the frame problem. This permits relatively shorter scenario descriptions,
thus solving one of the main issues of CEDL.

In this chapter, we design a new logic that improves CEDL. We call this new for-
malism alternating-time temporal dynamic epistemic logic (ATDEL). It is indeed a long
name for a logic. This is motivated by the fact that ATDEL incorporates features from
alternating-time temporal logic (ATL) (Alur et al. 2002) and dynamic epistemic logic
(DEL) (van Ditmarsch, van der Hoek, et al. 2007). It then allows for reasoning about
agents abilities and time, and also actions and knowledge, something that is not possible
in CEDL and is not very common in other formalisms.

This exposition is based on the results published in (de Lima 2011, 2014). In the
next section, we present some additional motivation for the design of a logic such as
ATDEL. Section 5.2 presents the syntax and semantics of this new formalism. After
that, Section 5.3 presents examples showing how our logic can be used to model multi-
agent systems. In Section 5.4, the expressive power of ATDEL is compared to that of
several other logics in the literature. In particular, it is shown that ATDEL subsumes
group announcement logic (Ågotnes et al. 2010; Ågotnes and van Ditmarsch 2008),
arbitrary announcement logic (Balbiani et al. 2008) and coalition announcement logic
(Ågotnes et al. 2010; Ågotnes and van Ditmarsch 2008). The subsequent two sections
present axiom systems and decision procedures for automated reasoning in ATDEL.
We discuss computational complexity of model checking and decidability issues for the
satisfiability checking problem. Section 5.7 discuss some related work and Section 5.8

81

Chapter 5. A Logic of Agent Abilities and Knowledge

concludes the chapter.

5.1 Motivation
Several formalisms aiming at modeling multi-agent systems have been proposed. The
most known examples are perhaps sees-to-it-that logic (STIT) (Belnap et al. 2001;
Broersen 2011), coalition logic (CL) (Pauly 2002) and alternating-time temporal logic
(ATL) (Alur et al. 2002; van der Hoek and Wooldridge 2003). These formalisms allow
reasoning about the abilities of the agents, i.e., about what states the agents are able
to achieve. In ATL, for example, one can write the formula 〈〈G〉〉ϕ, which means ‘the
group of agents G is able to enforce an outcome satisfying ϕ’. However, these logics
do not enable reasoning about how the group G is able to enforce such outcomes. In
other words, these logics do not enable reasoning about the actions the agents actually
perform in order to enforce the outcome satisfying ϕ.

In the literature, we can find formalisms allowing reasoning about what outcomes
agents are able to achieve and about how the agents achieve such outcomes. But fre-
quently, they do not allow reasoning about individual actions of the agents. In other
words, the actions are either exogenous or always executed jointly by all the agents of
the scenario. For example, in public announcement logic (PAL) (Plaza 1989), one can
write the formula 〈ψ〉Kiϕ, which means ‘agent i knows that ϕ after the announcement of
ψ’. But the announcement of ϕ is not “enacted” by any agent of the scenario. It is either
interpreted as executed by all the agents together, or as an exogenous event. To this
category, also belongs logic ES (Lakemeyer and Levesque 2005) as well as some logics
of the DEL family (i.e., the dynamic epistemic logic family), such as the BMS frame-
work (Baltag and Moss 2004), the already mentioned public announcement logic (PAL)
(Plaza 1989), and public announcement logic with assignment (PALA) (van Ditmarsch
et al. 2005).

Formalisms allowing reasoning about agents abilities and individual actions also exist.
But their focus is on actions with epistemic effects only. To this category, belong group
announcement logic (GAL) and coalition announcement logic (CAL) (Ågotnes et al.
2010; Ågotnes and van Ditmarsch 2008). Both are extensions of multi-agent epistemic
logic (EL) with “enacted” public announcement operators and with group announcement
operators. In GAL, one can write, e.g., the formula 〈Kiψ〉Kjϕ, which means ‘agent j
knows that ϕ after the announcement of ψ by agent i’. In addition, the formula 〈G〉ϕ
means ‘there is an announcement by group G after which ϕ, where the other agents
remain silent’. The group announcement operator in CAL is different. There, the formula
〈〈G〉〉ϕ means ‘there is an announcement by group G after which ϕ is true, in spite of
what the other agents announce’. In both formalisms though, the only kind of action
present is public announcement. Such actions are a specific kind of communication
actions capable of modifying the epistemic state of the agents.

Here, a new formalism called alternating-time temporal dynamic epistemic logic (AT-
DEL) is proposed. This logic is somewhat similar to CAL. As well as in CAL, in ATDEL,
formula 〈〈G〉〉Xϕ is true if and only if there is an action by group G after which ϕ is
true, in spite of what the other agents do, which can also be read as ‘the group G is

82

5.2. The Logic

able to enforce that ϕ is true in the next step’. Note that all actions in CAL are public.
This remains so in ATDEL. But the latter brings some improvements. First, ATDEL
permits parallel actions by the same agent, i.e., in this logic, agents can also execute
more than one action at the same time. Second, it contains actions with factual effects.
These are actions that change the actual state of the world (and not only the epistemic
state of the agents). Third, it contains temporal operators. In ATDEL, the formula
〈〈G〉〉Aϕ means ‘the group G is able to enforce that ϕ will always be true’ and formula
〈〈G〉〉(ψUϕ) means ‘the group G is able to enforce that ψ is true until ϕ becomes true’.
Fourth, the description of actions in ATDEL is concise. We argue that this permits
reasonable sized multi-agent systems specifications. Fifth, a complete axiom system and
decidability results for model checking and satisfiability checking are provided (those
were missing for CAL). For instance, satisfiability checking is shown to be decidable
when the set of available actions is finite.

5.2 The Logic
In this section, alternating-time temporal dynamic epistemic logic (ATDEL) is defined.
It extends multi-agent epistemic logic (EL) with dynamic, coalition and temporal oper-
ators. In the preliminary part, EL and also the actions of ATDEL are presented. Its
syntax and semantics are presented in the sequel.

5.2.1 Conflicting Actions
ATDEL extends EL, among other things, with dynamic operators taking actions as
arguments. Inspired by other work on reasoning about actions (Demolombe et al. 2003;
van Ditmarsch, Herzig, et al. 2007), it is assumed that every action consists of the pair
formed by its executability pre-condition and the set of its post-conditions. Such way of
defining actions is an alternative way to implement the successor state axioms (which
are proposed, e.g., in (Lakemeyer and Levesque 2005; Reiter 1991)). It enables us to
represent the actions in a simple way, which then permits system specifications with
reasonable size.

An action is a pair a = 〈ϕ, σ〉, where ϕ ∈ LEL is a formula describing its executability
pre-condition. This formula is sometimes also noted pre(a); and σ is a partial function
with finite domain from P to LEL. Each formula σ(p), sometimes also noted post(a)(p),
is the truth value that p will assume after the execution of a.

Example 5.1 (Two Buttons). Consider a scenario with a light bulb that can be turned
on and off using two different buttons. If button a is pressed, the light will turn on; and
if button b is pressed, the light will turn off. Now, let the proposition light represent the
state of the light bulb: it is true if and only if the light bulb is on. The definition of
actions a and b are:

a = (ϕ, {(light 7→ >)})
b = (ψ, {(light 7→ ⊥)})

83

Chapter 5. A Logic of Agent Abilities and Knowledge

That is, pre(a) = ϕ means that the action of pressing button a is executable if and only
if ϕ is true, whereas post(a)(p) = > means that the light should turn on if the action is
executed. And analogously for b. We do not bother with the contents of ϕ and ψ. They
could, for instance, describe the state where the mechanism linking the corresponding
button to the light bulb is working properly.

The formalism is constructed in such a way that, if action a is executed, the truth
value of p is set to true if post(a)(p) is true, and it is set to false if it is false. However,
because we intend to use such definitions in multi-agent scenarios, we may now wonder:
what should be the truth value of p if, in Example 5.1, one agent presses button a
and another agent presses the button b, both at the same time? Note that the two
mechanisms may very well be working properly, i.e., ϕ and ψ may be true at the same
time.

Therefore, we must decide how to aggregate the results of several actions performed
in parallel. We may take the following option. Let a1, . . . , an denote the execution of a1
to an in parallel, we may define:

(5.1) post(a1, . . . , an)(p) def=
n∧
i=1

post(ai)(p) ∨ (p ∧
n∨
i=1

post(ai)(p))

With this definition, the truth value of p after the execution of a1, . . . , an is:

• true if every post(ai)(p) is true,

• false if every post(ai)(p) is false, and

• maintained if some post(ai)(p) are true and some post(aj)(p) are false.

Indeed, returning to our example of the light bulb, we have that, in the situation
where both buttons are pressed at the same time, the light bulb will not change its state,
because post(a, b)(p) is equivalent to p.

The solution taken above implements what is called ‘shared control’ in (Gerbrandy
2006). That is, the truth value of p is calculated taken all agents’ actions into account.
But, other solutions are equally possible. For instance, one could implement what
Gerbrandy calls ‘positive control’. That is, the truth value of p is set to true if at
least one agent decides to do so. Or even ‘negative control’, i.e., p is set to false if at
least one agent decides to do so.

Now, we may ask a similar question about the executability pre-condition of actions
taken in parallel. But this matter seems much less controversial. We thus take the
following standard approach:

(5.2) pre(a1, . . . , an) =
n∧
i=1

pre(ai)

This means that the execution of a1 to an in parallel is possible if and only if all individual
actions are executable.

In what follows, we assume that these approaches for post and pre are taken. How-
ever, most of the results of this article also hold for other approaches, in particular, the

84

5.2. The Logic

already mentioned positive and negative control. In the case of post-conditions post,
the most important feature that any alternative solution should present to benefit from
the results in this article is that they can be written as a formula in LEL.

5.2.2 Syntax of ATDEL
The vocabulary of ATDEL contains the vocabulary of EL (i.e., a countable set P of
propositional variables and a finite set A of labels denoting agents) and also a countable
set E of events, which is the set of all possible combinations of executions of actions
available for the agents in A. Thus, to be able to define E, we first define what are the
actions available for the agents.

Definition 5.1 (ATDEL Actions). An action is a pair a = (ϕ, σ) where ϕ ∈ LEL and
σ is a function from a finite subset of P to LEL. We assume, for each i ∈ A, a countable
set Ti of such actions, which is the set of actions available for agent i. It is also assumed
that every set Ti contains the action skip = (>, ∅), which represents the ‘no-operation’
action, i.e., an action that is always executable and with no post-condition.

As said before, the first element of the pair a = (ϕ, σ) is the executability pre-
condition of a, which is also noted pre(a). The second element of the pair is the set of
post-conditions of a, which is also noted post(a).

Definition 5.2 (ATDEL Events). For each i ∈ A and each a ∈ Ti, the pair (i, a),
denotes the event of agent i executing action a. The set E of all possible events is the
set of all subsets of the set {(i, a) : i ∈ A and a ∈ Ti}.

Note that this definition allows events where the same agent executes more than one
action at the same time. Also note that eA = e and e∅ = ∅ are also valid events of E.
Moreover, let G ⊆ A be a group of agents, and let e ∈ E be a possible event, we use
eG to denote the G’s part of e, i.e., eG = {(i, a) : (i, a) ∈ e and i ∈ G}. And finally, we
sometimes use skipG to denote the event {(i, skip) : i ∈ G} ∈ E.

Definition 5.3 (ATDEL Language). The language LATDEL of ATDEL is the set of
formulas ϕ defined by the following BNF:

ϕ ::= > | p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | [eG]ϕ | 〈〈G〉〉Xϕ | 〈〈G〉〉Aϕ | 〈〈G〉〉(ϕUϕ)

where p ranges over P, i ranges over A, G ranges over 2A, and e ranges over E.
The fragment of L without operators 〈〈 〉〉U and 〈〈 〉〉A is called the ‘next-fragment of

ATDEL and is noted LX.

In what follows, the common abbreviations for ∨, →, ↔ and ⊥ are used. We also
use the abbreviations for the duals of [] and 〈〈 〉〉X. They are defined by 〈eG〉ϕ

def=
¬[eG]¬ϕ and [[G]]Xϕ def= ¬〈〈G〉〉X¬ϕ, respectively. In addition, we sometimes use 〈〈G〉〉Xn,
for n ≥ 0, wich stands for a sequence of n operators 〈〈G〉〉X, i.e., 〈〈G〉〉X0ϕ

def= ϕ and
〈〈G〉〉Xn+1ϕ

def= 〈〈G〉〉X〈〈G〉〉Xnϕ.

85

Chapter 5. A Logic of Agent Abilities and Knowledge

The intended meaning of eG = {(i1, a1), . . . , (in, an)} is ‘all the agents in {i1, . . . , in}
execute their corresponding actions in {a1, . . . , an} simultaneously’. As well as in other
strategic logics, it is assumed that actions are executed synchronously and that the oc-
currence of each event eA corresponds to a “time step”. But also note that the same
agent may appear more than once in {i1, . . . , in}. This means that each agent may exe-
cute more than one action at the same time. For example, it enables modeling scenarios
where the same agent can press two different buttons, send two different messages, etc.,
simultaneously.

The intended meaning of formula [eG]ϕ is ‘after every possible occurrence of eG, ϕ
is true’. The intended meaning of formula 〈〈G〉〉Xϕ is ‘group G is able to enforce that ϕ
is true in the next step’. Thus, the intended meaning of its dual [[G]]Xϕ is ‘it is not the
case that group G is able to enforce that ¬ϕ is true in the next step’, or, equivalently,
‘group G is not able to avoid that ϕ is true in the next step’. Moreover, the intended
meaning of formulas of the form 〈〈G〉〉Aϕ is ‘group G is able to enforce that ϕ will always
be true’, while formulas of the form 〈〈G〉〉(ψUϕ) is intended to mean ‘group G is able to
enforce that ψ is true until ϕ becomes true’.

We present some admissible inference rules for ATDEL in Section 5.5.1. Some of
these rules are formulated using ‘necessity forms’. These are defined as the set of forms
η defined by the following BNF:

η ::=] | ϕ→ η | Kiη | [eG]η

where] is a special symbol (that appears only once in a necessity form), ϕ ranges over
LATDEL, i ranges over A, G ranges over 2A and e ranges over E.

If η is a necessity form, then η(ϕ) is obtained from η by substituting ϕ for] in η. For
example,] is a necessity form (the most basic one). Thus, so is Ki] and also p → Ki],
as well as [eA](p→ Ki]). Therefore [eA](p→ Ki])(p∧ q) amounts to [eA](p→ Ki(p∧ q)).

The role of such forms in the axiom system of ATDEL is explained in Section 5.5.1.

5.2.3 Semantics of ATDEL
Formulas in LATDEL are interpreted using epistemic models (i.e., Kripke models respect-
ing axioms (T) and (5)). The dynamic operators of ATDEL are interpreted using ‘model
updates’. The update of M by event e modifies M in two ways: the possible worlds not
satisfying its occurrence pre-condition are removed and the truth value of propositional
variables are changed according to its post-conditions. Formally, it is defined as follows.

Definition 5.4 (ATDEL Update). The update of the epistemic model M = 〈W,R, V 〉
by the event e ∈ E is the new model M |e = 〈W |e,R|e, V |e〉 where:

W |e = {w |M,w � pre(e)}
R|e(i) = R(i) ∩ (W |e×W |e)
V |e(p) = {w | 〈M,w〉 � post(e)(p)} ∩W |e

and where pre(e) aggregates the pre-conditions of all actions in e, as defined Section 5.2.1,
and post(e)(p) aggregates the post-conditions of the individual actions in e, also as
defined in Section 5.2.1.

86

5.2. The Logic

In the sequel, the satisfaction relation of ATDEL is defined.
Definition 5.5 (ATDEL Satisfaction Relation). The satisfaction relation � between
pointed epistemic models 〈M,w〉 and formulas in LATDEL is defined as usual for formulas
in LEL plus:

〈M,w〉 � [eG]ϕ iff for all e′ ∈ E,
if 〈M,w〉 � pre(eG ∪ e′G) then 〈M |(eG ∪ e′G), w〉 � ϕ

〈M,w〉 � 〈〈G〉〉Xϕ iff there is e ∈ E
such that 〈M,w〉 � ¬[eG]⊥ and 〈M,w〉 � [eG]ϕ

〈M,w〉 � 〈〈G〉〉Aϕ iff for all n ∈ N, if n ≥ 0 then 〈M,w〉 � 〈〈G〉〉Xnϕ

〈M,w〉 � 〈〈G〉〉(ψUϕ) iff there is n ∈ N s.t. n ≥ 0 and 〈M,w〉 � 〈〈G〉〉Xnϕ and
for all m ∈ N, if 0 ≤ m < n then 〈M,w〉 � 〈〈G〉〉Xm(¬ϕ ∧ ψ)

Sometimes, to avoid confusion, we also note this satisfaction relation �ATDEL.
The interpretation of the operator [] embeds a quantification over events. A formula

of the form [eG]ϕ is true if and only if the occurrence of G’s part of e leads, necessarily,
to an outcome satisfying ϕ. In other words, it is true if and only if the occurrence of eG
with any possible “completion” of it e′

G
leads to an outcome satisfying ϕ.

Remark 5.1. Thus, following the definition given above, we have:

〈M,w〉 � [eA]ϕ iff for all e′ ∈ E,
if 〈M,w〉 � pre(eA ∪ e′∅) then 〈M |(eA ∪ e′∅), w〉 � ϕ

iff if 〈M,w〉 � pre(eA) then 〈M |eA, w〉 � ϕ

because e′∅ = ∅ for all e′ ∈ E.
Remark 5.2. And we also have:

〈M,w〉 � [e∅]ϕ iff for all e′ ∈ E,
if 〈M,w〉 � pre(e∅ ∪ e′A) then 〈M |(e∅ ∪ e′A), w〉 � ϕ

iff for all e′ ∈ E, if 〈M,w〉 � pre(e′A) then 〈M |e′A, w〉 � ϕ

again, because e∅ = ∅ for all e ∈ E.
Remark 5.3. Let us also explain what happens if the executability pre-condition of an
action is false. Assume an event e = {(i1, a1), . . . , (in, an)}, where 〈M,w〉 2 pre(ak), for
some ak, 1 ≤ k ≤ n. Using (5.2), we have 〈M,w〉 2 pre(e). Using the definitions just
given, we have: 〈M,w〉 � [e]⊥. The latter formula reads ‘after every possible execution
of e, ⊥ is true’. This is as it is supposed to be, since we have just assumed that there is
no possible execution of e.

The interpretation of the operator 〈〈 〉〉X is based on the interpretation of []. It
stipulates that the formula 〈〈G〉〉Xϕ is true if and only if there is an event e ∈ E such
that G’s part of e can occur and such that its occurrence, necessarily, leads to an outcome
satisfying ϕ.1

1Note that this definition is slightly different from that of (de Lima 2011). The definition there
stipulates that such formula is true if and only if there is an event e ∈ E such that G’s part of e
necessarily leads to an outcome satisfying ϕ, but its occurrence does not need to be possible. This leads
to slightly different axioms for the operator 〈〈 〉〉X.

87

Chapter 5. A Logic of Agent Abilities and Knowledge

As usual, a formula ϕ ∈ LATDEL is valid in ATDEL, noted � ϕ, if and only if every
pointed epistemic model 〈M,w〉 satisfies ϕ. A formula ϕ ∈ LATDEL is satisfiable in
ATDEL, if and only if there is a pointed epistemic model 〈M,w〉 that satisfies ϕ, i.e.,
6� ¬ϕ.

5.3 Examples
We show in this section two examples of scenarios which can be modeled using ATDEL.

Example 5.2 (Light bulb and light switch). ATDEL can be used to reason about
collaborative agency. To see it, we consider again the scenario of Example 4.4. To
formalize this in ATDEL, let the set of agents be A = {alice, betty} and the actions
available for them be:

Talice = {skip, tellon, telloff }
Tbetty = {skip, tog}
where:

tog = (>, {(light 7→ ¬light)})
tellon = (Kalicelight, ∅)
telloff = (Kbetty¬light, ∅)

Action tog is available only for Betty while actions tellon and telloff are available only
for Alice. Note that the latter two actions work as the public announcements that the
light bulb is on and off, respectively. We do not have, as in Chapter 4, the action tell
here. This is so because this logic does not contain non-deterministic actions. Note that
tell can be seen as the non-deterministic choice between tellon and telloff .

The set of possible events E is formed by all combinations of these actions. For the
considerations below, we will use only the following ones:

e = {(alice, tellon), (betty, skip)}
e′ = {(alice, telloff), (betty, skip)}
f = {(alice, skip), (betty, tog)}
f ′ = {(alice, skip), (betty, skip)}

A model for this example is depicted in Figure 5.1. In the actual world w0, the light
is off (¬light), Alice knows it, but Betty does not. After the occurrence of e′, the model
is updated: the world where pre(e′) is false is removed. In the resulting model, both
Alice and Betty know that the light is off. Then, after the occurrence of f , the truth
value of light is changed. In the resulting model, both Alice and Betty know that the
light is now on.

It is easy to check that every pointed model 〈M,w〉 satisfies:

¬light → [e′{alice,betty}][f{alice,betty}](Kalicelight ∧Kbettylight)

88

5.3. Examples

w0

w1

betty
e′

w0

f

w0

Figure 5.1 – Example of model for the light bulb and light switch scenario

which means that ‘if the light is off, then both agents will know that the light will be on
after Alice telling that it is off and Betty toggling the switch’. Therefore, we have that
every pointed model also satisfies:

¬light → 〈〈{alice, betty}〉〉X〈〈{alice, betty}〉〉X(Kalicelight ∧Kbettylight)

which means that ‘if the light is off, then after two steps Alice and Betty are able to
enforce an outcome where both of them know that the light is on’. Analogously, it is
easy to check that every pointed model also satisfies:

light → [e{alice,betty}][f ′{alice,betty}](Kalicelight ∧Kbettylight)

which implies that we also have:

light → 〈〈{alice, betty}〉〉X〈〈{alice, betty}〉〉X(Kalicelight ∧Kbettylight)

All together, this implies that every pointed model satisfies:

〈〈{alice, betty}〉〉X〈〈{alice, betty}〉〉X(Kalicelight ∧Kbettylight)

And finally, it implies that every pointed model satisfies

〈〈{alice, betty}〉〉(>U(Kalicelight ∧Kbettylight))

which in words means that whatever the initial situation is, Alice and Betty are able to
enforce that, eventually, both know that the light is on.

It is perhaps worthwhile to stress that the descriptions in terms of functions pre and
post above are all that is needed to formalize the actions of this scenario. This is one
of the advantages of using such functions to describe actions. In other formalisms, a
relatively large number of formulas would be needed to achieve the same. This is, for
instance, the case for the formalism presented on Chapter 4. Also note that, if one wants
to add more actions to the scenario, including actions with different epistemic effects or
even actions that change the truth value of other additional propositional variables, the
description of tellon, telloff and tog do not need to be changed.

Example 5.3 (Tic-tac-toe). To illustrate that ATDEL can also be used to model com-
petitive agency, such as in game-like scenarios, we consider a formalization of the game

89

Chapter 5. A Logic of Agent Abilities and Knowledge

tic-tac-toe. We use capital letters to name each cell in the board from the left to the
right and from the top to the bottom (i.e., A names the leftmost top cell, B names the
middle top cell, . . . , and I names the rightmost bottom cell). Then, we assume some
propositional variables describing the situation of the game, e.g., pCA means ‘there is a
cross in cell A’, and two propositional variables expressing which player has the right
to play: qC means ‘it is Cross’ turn to play’ and qO means ‘it is Nought’s turn to play’.
Finally, we assume some actions describing the possible plays, e.g., aOB means ‘plays
a nought in cell B’. These actions can be defined as follows. For all x ∈ {C,O} and
y ∈ {A, . . . , I}:

pre(axy) = qx ∧ ¬pCy ∧ ¬pOy
post(axy) = {(pxy 7→ >), (qx 7→ >), (qx 7→ ⊥)}

where x means ‘the opposite player’, i.e., C = O and O = C. For instance, it follows
from these definitions that player x can play x in cell y if and only if it is x’s turn and
there is no cross nor nought in the cell y. The actions aCy are only available for player
C, while actions aOy are only available for player O. Finally, let some possible events
be:

e{C,O} = {(C, aCI), (O, skip)}
e′{C,O} = {(C, aCD), (O, skip)}
f{C,O} = {(C, skip), (O, aOI)}

Now, let us suppose an already started match which looks like the following picture,
where it is Cross’ turn to play:

X O
X O

O

Assume a pointed model 〈M,w〉 satisfying this situation, i.e., assume:

〈M,w〉 � qC ∧ pCA ∧ ¬pCB ∧ ¬pCC∧
¬pCD ∧ pCE ∧ ¬pCF∧
¬pCG ∧ ¬pCH ∧ ¬pCI∧
¬pOA ∧ ¬pOB ∧ pOC∧
¬pOD ∧ ¬pOE ∧ pOF∧
pOG ∧ ¬pOH ∧ ¬pOI

It is easy to check that 〈M,w〉 also satisfies [e{C}]pCI , which means that pXI becomes
true after such action and, therefore, player C wins. Note that such formula implies
〈〈{C}〉〉XpCI , which means that player C can win in one step. But we also have that
this model satisfies [e′{C}][f{O}]pOI , which means that after some other play by player
C, player O can win. Note that this implies 〈〈C〉〉X〈〈O〉〉XpOI , which means that X can
put O in a position where O can win the game.

90

5.4. Expressiveness

5.4 Expressiveness
In this section, we compare the expressive power of ATDEL to that of several different
members of the DEL family. This is done by presenting different versions of ATDEL that
are at least as expressive as the various members of the DEL family. We consider five
different logics in that family: public announcement logic (PAL), public announcement
logic with assignment (PALA), group announcement logic (GAL), coalition announce-
ment logic (CAL), and arbitrary announcement logic (APAL). First though, we need to
define expressiveness, which is in turn defined in terms of model distinguishablility.

Definition 5.6 (Model Distinguishability). Logic L distinguishes two pointed epistemic
models 〈M,w〉 and 〈M ′, w′〉, noted 〈M,w〉 6≡L (M ′, w′), if and only if there is a formula
ϕ in the language of L such that 〈M,w〉 �L ϕ and 〈M ′, w′〉 6�L ϕ.

Definition 5.7 (Expressiveness). Let L1 and L2 be two logics interpreted over the class
of pointed epistemic models. Then, L2 is at least as expressive as L1, noted L1 ≤ L2,
if and only if L2 distinguishes at least the same models that L1 distinguishes, i.e.,
L1 ≤ L2, if and only if, for all pairs of pointed epistemic models 〈M,w〉 and 〈M ′, w′〉
if 〈M,w〉 6≡L1 〈M ′, w′〉 then 〈M,w〉 6≡L2 〈M ′, w′〉. We also use L1 = L2 to express that
both L1 ≤ L2 and L2 ≤ L1 are true.

5.4.1 ATDEL vs. PAL and PALA
Clearly, ATDEL is at least as expressive as EL. Moreover, PALA is a conservative
extension of PAL, thus, PAL ≤ PALA. In addition, it is a known fact that every
formula in LPALA (thus also in PAL) has an equivalent formula in LEL (Kooi 2007,
Theorem 15). Therefore, we immediately have the following result.

Proposition 5.4. PAL = PALA = EL ≤ ATDEL

5.4.2 ATDEL vs. APAL
The language LAPAL of APAL contains LEL plus formulas of the form [ψ]ϕ, which are
read ‘after the public announcement of ψ, ϕ is true’; and also formulas of the form �ϕ,
which are read ‘after every public announcement, ϕ is true’. Their interpretation is given
by:

M,w �APAL [ψ]ϕ iff M,w �APAL ψ implies M |ψ,w �APAL ϕ

M,w �APAL �ϕ iff for all ψ ∈ LEL,M,w �APAL [ψ]ϕ

where M |ψ = 〈W |ψ,R|ψ, V |ψ〉 is the update of M by the public announcement of ψ,
defined as follows.

W |ψ = {w |M,w �APAL ψ}
R|ψ(i) = R(i) ∩ (W |ψ ×W |ψ)
V |ψ(p) = {w |M,w �APAL p} ∩W |ψ

91

Chapter 5. A Logic of Agent Abilities and Knowledge

Note that formulas of the form [�ψ]ϕ are permitted in APAL. In the sequel, however,
we do not deal with such formulas. That is, we consider a fragment of LAPAL where
public announcements are formulas in LEL. In other words, let P be a countable set of
propositional variables and let A be a finite set of labels denoting agents, the language
LAPALR considered here is the set of formulas ϕ defined by the following BNF:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | [ψ]ϕ | �ϕ
ψ ::= p | ¬ψ | ψ ∧ ψ | Kiψ

where p ranges over P and i ranges over A.
We call the corresponding logic APALR. This is not an uninteresting fragment. Note

that formulas of the form [ψ]ϕ, where ψ itself contains public announcements, can be
reduced to equivalent formulas in LEL (cf. (Kooi 2007)). In addition, the semantic
interpretation of formulas of the form �ψ uses a quantification over LEL in order to
avoid a circular definition (cf. (Balbiani et al. 2008)). Therefore, even though formulas
of the form [�ψ]ϕ are allowed in the full language of APAL, the public announcement
in it (i.e., formula �ψ) does not count as a possible announcement for the interpretation
of �ϕ. Here, we avoid to deal with such announcements just because the action pre-
conditions and post-conditions in ATEL are restricted to formulas in LEL. We leave as
an open question weather such announcements can be expressed in ATDEL.

Now, let us compare the expressiveness of APALR to that of ATDEL1, which is the
version of ATDEL that respects the following condition.

(i) For all i ∈ A, Ti = {(ϕ, ∅) | ϕ ∈ LEL}.

The key idea is to make ATDEL1 respect two restrictions of APALR, namely, (1)
public announcements are the only kind of action allowed (which is already the case in
APAL) and (2) only formulas in LEL can be announced.

The translation mltr from LAPALR to the language of ATDEL1 is defined as follows:

mltr(ϕ) def= ϕ (if ϕ ∈ LEL)

mltr([ϕ1]ϕ2) def= [{(i, (ϕ1, ∅))} ∪ skipA] mltr(ϕ2)

mltr(�ϕ) def= [∅] mltr(ϕ)

where the agent i in the second clause is arbitrarily chosen among A.
The intuition behind the second clause is that public announcements ϕ1 are trans-

lated to actions (ϕ1, ∅), enacted by one of the agents, while all the other agents remain
silent.

We obtain the following expressiveness result.2

Proposition 5.5. APALR ≤ ATDEL1.

2For readability, several proofs are omitted in this chapter. They can be found in (de Lima 2014).

92

5.4. Expressiveness

5.4.3 ATDEL vs. GAL
The language LGAL of GAL contains LEL plus formulas of the form [ψ]ϕ, which are both
read and interpreted as in APAL; and also formulas of the form 〈G〉ϕ, which are read
‘there is an announcement by group G after which ϕ, where the other agents remain
silent’. The satisfaction relation �GAL is the usual one plus:

M,w �GAL 〈G〉ϕ iff there exists a set {ψi | i ∈ G} ⊆ LEL s.t.

M,w �GAL
∧
i∈G

Kiψ and M |
∧
i∈G

Kiψi, w �GAL ϕ

where M |ψ is defined as in APAL.
Note that formulas of the form [〈G〉ψ]ϕ are permitted in GAL. For analogous reasons

to the ones in Section 5.4.2, we consider a fragment of LGAL where public announcements
are formulas in LEL. In other words, let P be a countable set of propositional variables
and let A be a finite set of labels denoting agents, the language LGALR considered here
is the set of formulas ϕ defined by the following BNF:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | [ψ]ϕ | 〈G〉ϕ
ψ ::= p | ¬ψ | ψ ∧ ψ | Kiψ

where p ranges over P, i ranges over A and G ranges over 2A.
We call the corresponding logic GALR. Let us compare its expressiveness to that of

ATDEL2, which is the version of ATDEL with the finite set A ∪ {s} of labels denoting
agents and which respects following condition.

(i) The set of available actions for s is Ts = {(ϕ, ∅) | ϕ ∈ LEL} and, for each agent
i ∈ A, the set of available actions for i is Ti = {(Kiϕ, ∅) | Kiϕ ∈ LEL}.

The key idea is to have a ‘special agent’ s that is the only one acting whenever a
public announcement is made. In addition, the condition above also makes ATDEL2
respect three restrictions of GALR (which are already the case in GAL), namely, (1)
public announcements are the only kind of action allowed, (2) each agent in A can only
announce what is known and (3) only formulas in LEL can be announced by the agents
in A.

The translation function mltr from LGALR to the language of ATDEL2 is defined as
follows.

mltr(ϕ) def= ϕ (if ϕ ∈ LEL)

mltr([ϕ1]ϕ2) def= [{(s, (mltr(ϕ1), ∅))} ∪ skipA] mltr(ϕ2)

mltr(〈G〉ϕ) def= 〈skip
G∪{s}〉mltr(ϕ)

The intuition behind the second clause is that public announcements ϕ1 are trans-
lated to actions (ϕ1, ∅) enacted by the agent s, while all the other agents remain silent.
We must have a special agent s here because the agents in A are not allowed to an-
nounce what they do not know. To be able to express, for instance, the formula [p]ϕ

93

Chapter 5. A Logic of Agent Abilities and Knowledge

in ATDEL2, we need to add an agent capable to announce p, which is not necessarily
known.

We obtain the following result.

Proposition 5.6. GALR ≤ ATDEL2.

5.4.4 ATDEL vs. CAL
The language LCAL of CAL contains LEL plus formulas of the form [ψ]ϕ, which are
both read and interpreted as in APAL; and also formulas of the form 〈〈G〉〉ϕ, which read
‘there is an announcement by group G after which ϕ, in spite of what the other agents
announce’. Its interpretation is given by:

M,w �CAL 〈〈G〉〉ϕ iff for every i ∈ G there exists ψi ∈ LEL

s.t. for every ψj ∈ LEL for each j ∈ G,

M,w �CAL
∧
i∈G

Kiψi ∧ [
∧
k∈A

Kkψk]ϕ

Again, note that formulas of the form [〈〈G〉〉ψ]ϕ are permitted in CAL. For analogous
reasons to the ones in Section 5.4.2, we consider a fragment of LCAL where public
announcements are conjunctions of formulas in LEL which are known by some agent. In
other words, let P be a countable set of propositional variables and let A be a finite set
of labels denoting agents, the language LCALR considered here is the set of formulas ϕ
defined by the following BNF:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | [ψ]ϕ | 〈〈G〉〉ϕ
ψ ::= Kiχ | ψ ∧ ψ
χ ::= p | ¬ψ | ψ ∧ ψ | Kiψ

where p ranges over P, i ranges over A and G ranges over 2A.
We call the corresponding logic CALR. Let us compare its expressiveness to that of

ATDEL3, which is the version of ATDEL that respects the following condition.

(iii) for each agent i ∈ A, the set of available actions for i is Ti = {(Kiϕ, ∅) | Kiϕ ∈
LEL}.

The key idea is to make ATDEL3 respect three restrictions of CALR (which are
already the case in CAL), namely, (1) public announcements are the only kind of action
allowed, (2) each agent in A can only announce what is known and (3) only formulas in
LEL can be announced by the agents in A.

The translation function mltr from LCALR to the language of ATDEL2 is defined as
follows:

mltr(ϕ) def= ϕ (if ϕ ∈ LEL)

mltr([ϕ1]ϕ2) def= [mltr′(ϕ1) ∪ skipA]ϕ2

mltr(〈〈G〉〉ϕ) def= 〈〈G〉〉X mltr(ϕ)

94

5.5. The Next-fragment of ATDEL

PAL

PALA
EL

CL

ATL

APALR

GALR

CALR

ATDEL1

ATDEL2

ATDEL3

Figure 5.2 – Expressiveness relations

where mltr′ is defined by:

mltr′(Kiχ) def= {(i, (χ, ∅))}

mltr′(ψ1 ∧ ψ2) def= mltr′(ψ1) ∪mltr′(ψ2)

The intuition behind the second clause of mltr is that public announcements ϕ1,
which are always of the form

∧
k≤n Kikψk, are translated to

⋃
k≤n{(ik, (ψk, ∅))}.

We obtain the following result.

Proposition 5.7. CALR ≤ ATDEL3.

5.4.5 Summary
The diagram in Figure 5.2 summarizes currently known expressiveness relations between
some logics: a double arrow from logic L1 to logic L2 represents L1 ≤ L2, a single arrow
represents L1 ≤ L2 but not L1 = L2, dashed arrows represent previously established
results and black arrows represent new results. Some transitive and reflexive arrows are
omitted.

5.5 The Next-fragment of ATDEL
The next-fragment of ATDEL has some interesting properties which are worth to be
examined separately. We do so in this section.

5.5.1 Axiom System
Table 5.1 displays the axiom system of the next-fragment of ATDEL. Principles (CPL),
(KT5n), (RMP) and (RNK) are the standard ones for epistemic logic. Principles (AA),
(AN), (AC), (AK) and (RNA) are similar to the reduction axioms and rule of inference
of public announcement logic (van Ditmarsch, van der Hoek, et al. 2007; Plaza 1989)
and public announcement logic with assignment (van Ditmarsch et al. 2005). These
principles follow directly from the semantics of ATDEL. Principle (AD) captures the

95

Chapter 5. A Logic of Agent Abilities and Knowledge

All axiom schemas of CPL(CPL)
All axiom schemas of KT5n(KT5n)
[eA]p↔ (pre(eA)→ post(eA)(p)) (action and atoms)(AA)
[eA]¬ϕ↔ (pre(eA)→ ¬[eA]ϕ) (action and negation)(AN)
[eA](ϕ ∧ ψ)↔ ([eA]ϕ ∧ [eA]ψ) (action and conjunction)(AC)
[eA]Kiϕ↔ (pre(eA)→ Ki[eA]ϕ) (action and knowledge)(AK)
[eA](ϕ→ ψ)→ ([eA]ϕ→ [eA]ψ) (action distribution)(AD)
([eG]ϕ ∧ [fH]ψ)→ [eG ∪ fH](ϕ ∧ ψ)
if G ∩H = ∅

(action superadditivity)(AS)

(〈eG〉> ∧ [eG]ϕ)→ 〈〈G〉〉Xϕ (action and group)(AG)
From ϕ and ϕ→ ψ infer ψ (modus ponens)(RMP)
From ϕ infer Kiϕ (knowledge necessitation)(RNK)
From ϕ infer [eA]ϕ (action necessitation)(RNA)
From η([eG ∪ fH]ϕ) for all f ∈ E infer η([eG]ϕ) (deriving action)(RDA)
From η([eG]⊥ ∨ 〈eG〉ϕ) for all e ∈ E
infer η([[G]]Xϕ)

(deriving group)(RDG)

Table 5.1 – ATDEL Next-fragment Axiom System

96

5.5. The Next-fragment of ATDEL

very natural intuition that, if ϕ→ ψ is true after every possible occurrence of eA then,
if ϕ is true after eA then so is ψ.

Principle (AS) is sometimes called ‘superadditivity’. It captures the intuition that, if
a group G enforces ϕ by executing the actions in e, and group H enforces ψ by executing
the actions in f , then, by working together, the two groups enforce outcomes satisfying
both ϕ and ψ.

Principle (RDA) captures the intuition that, if a group G enforces ϕ by executing
the actions in e, in spite of what other agents do, in particular, in spite of what H
does, then G enforces ϕ by executing the actions in e. The principles (AG) and (RDG)
capture the intuition that, if group G enforces ϕ by executing action e, then G is able to
enforce ϕ. Principles (RDA) and (RDG) use necessity forms. They have been inspired
by rule Rω(�) of APAL (cf. (Balbiani et al. 2008)). We need such rules to “encode” the
quantification over actions embedded in the semantics the operator []. These inference
rules work (so to say) as the counter-positives of Proposition 5.9.3 (which is shown using
(AS) on page 98) and Axiom (AG), respectively. Also note that, unlike other logics in the
DEL family, this axiom system does not permit a reduction to EL. Such reduction cannot
be achieved, because ATDEL is at least as expressive as APALR (cf. Proposition 5.5),
which has been shown to be strictly more expressive than EL in (Balbiani et al. 2008).

Theorem 5.8 (Soundness). All principles in Table 5.1 are valid in ATDEL.

As usual, a formula ϕ ∈ LATDEL is a theorem of ATDEL, noted ` ϕ, if and only if ϕ
is an instantiation of some axiom from the axiom system of ATDEL, or it is generated
by the application of some inference rule from the axiom system of ATDEL to theorems
of ATDEL.

In the sequel, some interesting properties of ATDEL are derived. Some of them
are used to prove completeness of the axiom system. Moreover, this exercise helps to
illustrate how to correctly use the non-standard inference rules (RDA) and (RDG).

Proposition 5.9.

1. if ` ϕ↔ ψ then ` Kiϕ↔ Kiψ (substitution of proved equivalences under Ki)

2. If ` ϕ then ` [eG]ϕ (necessitation for [eG])

3. ` [eG]ϕ→ [eG ∪ fH]ϕ (if G ∩H = ∅) (outcome monotonicity)

4. ` [eG](ϕ ∧ ψ)↔ ([eG]ϕ ∧ [eG]ψ) (action and conjunction for [eG])

5. ` Ki[eG]ϕ→ [eG]Kiϕ (perfect recall)

6. ` [eG](ϕ→ ψ)→ ([eG]ϕ→ [eG]ψ) (action distribution for [eG])

7. If ` ϕ→ ψ then ` [eG]ϕ→ [eG]ψ (monotonicity of [eG])

8. If ` ϕ↔ ψ then ` [eG]ϕ↔ [eG]ψ (substitution of proved equivalences under [eG])

Proof. We derive each property using the axiom system of ATDEL. Here we show only
some of them.

97

Chapter 5. A Logic of Agent Abilities and Knowledge

2. 1. ` ϕ (hypothesis)
2. for all f ∈ E, ` [eG ∪ fG]ϕ (from 1 with (RNA))
3. ` [eG]ϕ (from 2 with (RDA), because] is a necessity form)

3. Assume G ∩H = ∅.
1. ` [fH]> (from Prop. 5.9.2)
2. ` ([eG]ϕ ∧ [fH]>)→ [eG ∪ fH](ϕ ∧ >) (AS)
3. ` [eG]ϕ→ [eG ∪ fH]ϕ (from 1 and 2)

4. First, we derive the implication from the right to the left:
1. for all f ∈ E, ` ([eG]ϕ ∧ [eG]ψ)→ ([eG ∪ fG]ϕ ∧ [eG ∪ fG]ψ) (from Prop. 5.9.3)
2. for all f ∈ E, ` ([eG]ϕ ∧ [eG]ψ)→ [eG ∪ fG](ϕ ∧ ψ) (from 1 and (AC))
3. ` ([eG]ϕ ∧ [eG]ψ)→ [eG](ϕ ∧ ψ) (from 2 with (RDA), because
([eG]ϕ ∧ [eG]ψ)→] is a necessity form)

Now, we derive the implication from the left to the right:
1. for all f ∈ E, ` [eG](ϕ ∧ ψ)→ [eG ∪ fG](ϕ ∧ ψ) (Prop. 5.9.3)
2. for all f ∈ E, ` [eG ∪ fG](ϕ ∧ ψ)→ ([eG ∪ fG]ϕ ∧ [eG ∪ fG]ψ) (from (AC))
3. for all f ∈ E, ` [eG ∪ fG](ϕ ∧ ψ)→ [eG ∪ fG]ϕ (from 2)
4. for all f ∈ E, ` [eG](ϕ ∧ ψ)→ [eG ∪ fG]ϕ (from 1 and 3)
5. ` [eG](ϕ ∧ ψ)→ [eG]ϕ (from 4 with (RDA), because [eG](ϕ ∧ ψ)→] is a
necessity form)

Analogously, we obtain ` [eG](ϕ ∧ ψ) → [eG]ψ. From this and 5, we obtain:
` [eG](ϕ ∧ ψ)→ ([eG]ϕ ∧ [eG]ψ).

Propositions 5.9.2 and 5.9.6 together show that operators [eG] are normal modal
operators. Proposition 5.9.5 corresponds to what is called ‘perfect recall’ in (Fagin et
al. 1995). It is shown using superadditivity (AS), necessitation for knowledge (RNK),
Axiom (K) for knowledge and Axiom knowledge and actions (AK). It captures the
intuition that the knowledge of the agents either increases or remains the same after
the occurrence of an event. This means that agents never loose information, i.e., once
an agent knows something, this agent will never forget it. Together with the fact that
each R(i) is an equivalence relation, Proposition 5.9.5 implies that action occurrences
are perceived by all agents, which implies that the agents also perceive the passage of
time.

Proposition 5.10.

1. ` 〈〈G〉〉X> (group activity)

2. ` ¬〈〈G〉〉X⊥ (group non-blocking)

3. ` ¬〈〈∅〉〉X¬ϕ→ 〈〈A〉〉Xϕ (joint determinism)

4. ` (〈〈G〉〉Xϕ ∧ 〈〈H〉〉Xψ)→ 〈〈G ∪H〉〉X(ϕ ∧ ψ) (if G ∩H = ∅) (group
superadditivity)

5. If ` ϕ→ ψ then ` 〈〈G〉〉Xϕ→ 〈〈G〉〉Xψ (monotonicity of 〈〈G〉〉X)

98

5.5. The Next-fragment of ATDEL

6. If ` ϕ↔ ψ then ` 〈〈G〉〉Xϕ↔ 〈〈G〉〉Xψ (substitution of proved equivalences under
〈〈G〉〉X)

Propositions 5.10.1–5 are the principles satisfied by operators 〈G〉 of coalition logic
(CL).

The next theorem states completeness of the axiom system in Table 5.1.
Theorem 5.11 (Completeness). Every valid formula ϕ ∈ LX is a theorem in ATDEL.

5.5.2 Decision Procedures
Algorithm 5.1 decides model checking for the next-fragment of all versions of ATDEL
in which the sets of actions Ti are finite. Note that the set T = {Ti | i ∈ A} is given
as an argument. The idea is simple: if ϕ ∈ LEL it calls an existing model checker for
EL (Algorithm 3.1); otherwise, it it simply tries all possible events in E. We have the
following result.

input: A finite set T of actions, an epistemic model 〈M,w〉 and a formula
ϕ ∈ LX.

output: true if 〈M,w〉 � ϕ, false otherwise
1 function nfmc(T, 〈M,w〉, ϕ)
2 if ϕ ∈ LEL then return mlmc(〈M,w〉, ϕ)
3 else if ϕ = [eG]ψ then
4 forall fG ∈ E do
5 M ′ := M |(eG ∪ fG)
6 if not nfmc(T, 〈M ′, w〉, ψ) then return false
7 return true
8 else if ϕ = 〈〈G〉〉Xψ then
9 non-deterministically choose eG ∈ E

10 return nfmc(T, 〈M,w〉, 〈eG〉>) and nfmc(T, 〈M,w〉, [eG]ψ)

Algorithm 5.1: ATDEL Next-fragment Model Checking

Theorem 5.12. Model checking in the next-fragment of ATDEL with finite sets of
actions is in PSPACE.

Ågotnes et al. (2010) proved that model checking in both GAL and APAL is in
PSPACE. These can be seen as two versions of ATDEL with infinite sets Ti (cf., Sec-
tion 5.4). Their algorithm is similar to Algorithm 5.1, but instead of choosing events
in the set E, it computes definable restrictions of model M via bisimulation contrac-
tions. All these restrictions correspond to valid public announcements in the languages
of APAL and GAL. However, it is not clear if all versions of ATDEL with infinite sets
of actions could use the same algorithm. The difficulty is to provide a non-resource con-
suming method to verify whether some given definable restriction of M would, indeed,
be a valid event from E.

99

Chapter 5. A Logic of Agent Abilities and Knowledge

Satisfiability checking in the next-fragment of ATDEL is not decidable in general. It
follows immediately from the non-decidability of satisfiability checking in APAL (French
and van Ditmarsch 2008), which can easily be transferred to APALR, and because there
is a version of the next-fragment of ATDEL that is at least as expressive as APALR (cf.
Proposition 5.5).

However, when the sets of available actions are finite, so is the set E of possible events.
In this case, one can define an algorithm that decides satisfiability. Such algorithm
depends on Principle substitution of proved equivalences (RSE), which soundness is
proved below.

Lemma 5.13. The following principle is sound in the next fragment of ATDEL:

(RSE) If ` ϕ↔ ψ then ` χ↔ χ[ϕ/ψ] (substitution of proved equivalences)

Theorem 5.14. Satisfiability checking in the next-fragment of ATDEL with finite sets
of actions is decidable.

When the sets of actions available for the agents in A is finite, the infinitary rules
(RDA) and (RDG) can be replaced by the following two axioms:∧

f∈E

[eG ∪ fG]ϕ→ [eG]ϕ(RA′)

∧
e∈E

([eG]⊥ ∨ 〈eG〉ϕ)→ [[G]]Xϕ(RG′)

Axiom (RA′) and Proposition 5.9.3 together imply the following reduction axiom:

[eG]ϕ↔
∧
f∈E

[eG ∪ fG]ϕ

This means that successive applications of this equivalence and RSE (Lemma 5.13)
replace operators [eG] for operators [e′A], i.e., formulas containing actions executed by
a group G can be replaced by formulas containing actions executed by the entire set
of agents A. Then, using Axioms (AA), (AN), (AC) and (AK), operators [e′A] can be
eliminated. The result is a (huge) formula in LEL.

Similarly, axioms (RG′) and (AG) together imply the following reduction axiom:

〈〈G〉〉Xϕ↔
∨
e∈E

(〈eG〉> ∧ [eG]ϕ)

This means that operators 〈〈 〉〉X can be eliminated from formulas by successive appli-
cations of this equivalence and (RSE). Since, in this case, operators [] can also be
eliminated, the next-fragment of ATDEL with a finite set of actions is reducible to
epistemic logic.

This, all together, implies that the next-fragment of ATDEL with a finite set of
actions is reducible to epistemic logic. Since satisfiability checking in EL is decidable,
so is satisfiability checking in this fragment.

100

5.6. Full ATDEL

All principles in Table 5.1 (of Page 96)
〈〈G〉〉Aϕ→ (ϕ ∧ 〈〈G〉〉X〈〈G〉〉Aϕ) (fixed-point for always)(FPA)
〈〈G〉〉(ψUϕ)↔ (ϕ ∨ (ψ ∧ 〈〈G〉〉X〈〈G〉〉(ψUϕ))) (fixed-point for until)(FPU)
From χ→ (ϕ ∧ 〈〈G〉〉Xχ) infer χ→ 〈〈G〉〉Aϕ (induction for always)(RIA)
From (ϕ ∨ (ψ ∧ 〈〈G〉〉Xχ))→ χ infer 〈〈G〉〉(ψUϕ)→ χ (induction for until)(RIU)

Table 5.2 – ATDEL Axiom System (for a finite sets of actions)

Note that the algorithm induced by Theorem 5.14 is probably non-optimal. Let ϕ
be given, one can imagine a tableaux-like method that explores the canonical epistemic
model filtrated by ϕ branch by branch. Since the size of each branch is a polynomial
function on the length of ϕ, this may lead to an algorithm that is less resource consuming.
We leave such kind of improvement to future work though.

5.6 Full ATDEL
5.6.1 Axiom System
Table 5.2 displays the axiom system of full ATDEL. The principles therein are standard
for logics containing operators always and until. For instance, they are analogous to
the principles present in the axiom system of ATL, given, e.g., in (Goranko and van
Drimmelen 2006). They are proved to be sound in Theorem 5.15 below.

Theorem 5.15 (Soundness). All principles in Table 5.2 are valid in ATDEL.

However, to prove completeness, we need to add the assumption that all sets Ti are
finite! This is so because the technique used (similar to the one used in (Halpern and
Moses 1992) for the common knowledge operator) requires a finite canonical model. The
complete axiom system for ATDEL with infinite sets Ti is left as an open question.

Theorem 5.16 (Completeness). Every formula ϕ ∈ LATDEL which is valid in ATDEL
with finite sets of actions is a theorem of ATDEL.

5.6.2 Decision Procedures
Algorithm 5.2 decides model checking in full ATDEL in which the sets of actions available
for the agents in A are finite. We have the following result.

Theorem 5.17. Model checking in full ATDEL is in EXPSPACE.

We leave as future work the lower bound of model checking in full ATDEL with finite
sets of actions.

Satisfiability checking in full ATDEL with finite sets of actions is decidable. This
can be shown as follows.

101

Chapter 5. A Logic of Agent Abilities and Knowledge

input: A fine set T of actions, an epistemic model 〈M,w〉 and a formula
ϕ ∈ LATDEL.

output: true if 〈M,w〉 � ϕ, false otherwise
1 function atdelmc(T, 〈M,w〉, ϕ)
2 if ϕ ∈ LX then return nfmc(T, 〈M,w〉, ϕ)
3 else if ϕ = 〈〈G〉〉Aψ then

4 return atdelmc(T, 〈M,w〉, ψ) and fpamc(T, 〈M,w〉, ψ, G, ∅)
5 else if ϕ = 〈〈G〉〉(ψ1Uψ2) then
6 return atdelmc(T, 〈M,w〉, ψ2)
7 or (atdelmc(T, 〈M,w〉, ψ1)
8 and fpumc(T, 〈M,w〉, ψ1, ψ2, G, ∅))

9 function fpamc(T, 〈M,w〉, ψ, G, S)
10 if M ∈ S then return true
11 else
12 non-deterministically choose eG ∈ E
13 forall fG ∈ E do
14 M ′ := M |(eG ∪ fG)
15 if not (atdelmc(T, 〈M ′, w〉, ψ)
16 or not fpamc(T, 〈M ′, w〉, ψ, G, S ∪ {M})) then
17 return false

18 return true

19 function fpumc(T, 〈M,w〉, ψ1, ψ2, G, S)
20 if M ∈ S then return true
21 else
22 non-deterministically choose eG ∈ E
23 forall fG ∈ E do
24 M ′ := M |(eG ∪ fG)
25 if not atdelmc(T, 〈M ′, w〉, ψ2) and
26 not (atdelmc(T, 〈M ′, w〉, ψ1) and
27 fpumc(T, 〈M ′, w〉, ψ1, ψ2, G, S ∪ {M})) then
28 return false

29 return true

Algorithm 5.2: ATDEL Model checking

102

5.7. Related Work and Discussion

Theorem 5.18 (Finite Model Theorem for ATDEL). Every satisfiable formula ϕ ∈
LATDEL is satisfiable in a finite model.

The proof is based on the fact that the filtrated canonical model for ATDEL is
constructed using a finite set of formulas sub(ϕ) (also see Section 3.6). This enables us
to show the following theorem.

Theorem 5.19 (Decidability of ATDEl). Satisfiability checking in ATDEL with a finite
number of actions is decidable.

5.7 Related Work and Discussion
Apart from the formalisms mentioned in Section 5.4, there are some other containing
actions by groups and group modalities in their languages that are worth to be mentioned
here. They are the coalition action logic (Borgo 2007), the alternating-time temporal
logic with explicit strategies (Walther et al. 2007), the dynamic logic of agency (DDL)
(Herzig and Lorini 2010a) and the logic CEDL, presented on Chapter 4 The first two
differ from ATDEL in several aspects. The most important of them is perhaps the fact
that they do not model the knowledge of the agents and, thus, also do not have epistemic
actions. The third and fourth ones model the knowledge of agents and their languages
look very similar to that of ATDEL. But, their semantics is completely defined in terms
of Kripke structures, instead of model updates. This difference is reflected on their
axiom system. Both, DDL and CEDL do not validate reduction axioms as ATDEL does
(i.e., Axioms (AA), (AN), (AC) and (AK)). One can argue that those formalisms are
able to model “more actions”, instead of only public announcements and actions with
factual effects. This is indeed a limitation of ATDEL. But the two kinds of actions
ATDEL is able to model are already very expressive. The examples on Section 5.3 give
a strong support for this argument. Second, as mentioned before, because of its action
descriptions, the specifications of scenarios in ATDEL are generally more succinct than
in DDL and CEDL. This is the case because one must deal with the so-called frame
axioms in DDL and CEDL.

5.8 Conclusion
In this chapter, we saw the alternating-time temporal dynamic epistemic logic, wherein
one may write formulas of the form 〈〈G〉〉Xϕ, which mean ‘there is an action by group G
after which ϕ is true, in spite of what the other agents do’ (as well as always and until
versions of it). Differently from the previously existent coalition announcement logic,
ATDEL also contains actions with factual effects, temporal operators, and is equipped
with a sound and complete axiom system.

We saw that ATDEL subsumes several logics of the dynamic epistemic logics family.
It is also shown to be useful in modeling multi-agent systems through examples of
collaborative and competitive scenarios. Moreover, compared to other multi-agent logics,
such as ATL and STIT, it adds the possibility to model agents’ knowledge and it has

103

Chapter 5. A Logic of Agent Abilities and Knowledge

concise descriptions of actions, Thus, permitting reasonable sized multi-agent systems
specifications.

In the next chapter, we will leave knowledge and actions behind and discuss agents
belief and belief change instead. Belief change is more complicated than knowledge
change because, apart from learning, agents may also have to revise their beliefs. This
is subject of a whole different area, called belief revision theory.

104

Chapter 6

Belief Change in Multi-agent
Settings

In the last two chapters, we designed modal logics for reasoning about actions and
knowledge in multi-agent environments. In order to do that, the formalisms incorporate
some dynamic operators as well the standard epistemic logic of knowledge, i.e., KT5n.
Agents are able to execute various actions. In particular, they can communicate their
knowledge. In ATDEL, the communication action available for the agents is the public
announcement. This is an action that gives information to all agents in the environ-
ment. Just after a public announcement, the contents of the announcement is common
knowledge among all agents. In some applications though, agents knowledge can be
inaccurate. By communicating with others, agents may confirm the information they
have, or realise that they should revise their knowledge base. For these applications, we
have to incorporate an epistemic logic of belief, instead of knowledge.

However, the replacement of KT5n for the standard epistemic logic of belief, KD45n,
in ATDEL does not work. This is so because the axiom (AK) on Table 5.1 would not
be valid. The explanation is somewhat technical and can be found in (Balbiani et al.
2012). The solution we proposed on that work is only palliative: when an agent receives
an information that contradicts her current beliefs, the agent just ignores it! Therefore,
if we really want to be able to deal with scenarios where agents may have inaccurate
information, we need to enter the realm of belief revision theory.

In this chapter, we make one step on that direction. We design operators that change
the beliefs of the agents in KD45n models.

Alchourrón, Gärdenfors and Makinson (Alchourrón et al. 1985; Gärdenfors 2008)
proposed postulates for the expansion, contraction and revision of belief sets. These
postulates logically encode the constraints expected on the behaviour of such operators.
Several representation theorems in terms of maximal consistent sets (Alchourrón et al.
1985), plausibility relations on formulas (Gärdenfors 2008), or plausibility relations on
worlds exist (Katsuno and Mendelzon 1991b), allowing to define operators with these

105

Chapter 6. Belief Change in Multi-agent Settings

expected properties. But, in the case of KD45n models, this task is more complicated
than in the standard AGM framework, because, in a multi-agent context, a new piece
of evidence can take different forms. For instance, it can be observed, transmitted, or
available to every agent or only to some of them.

Here, we consider private and group change, i.e., one or more agents receive some
new piece of information, and then we look at defining the new KD45n model that
represents the new epistemic situation. We consider only objective pieces of information,
i.e., information about the environment (world). The problem of considering change by
subjective information, i.e., information about the beliefs of other agents, is more difficult
and is left for future work. We study both expansion and revision. For each case, we
provide a translation of AGM postulates for the multi-agent setting, and some specific
operators.

The remainder of the chapter synthesises the results published in (Caridroit et al.
2015a,b), with some small additions, and is organised as follows. After some consid-
erations about multi-agent belief sets, we study private expansion. In Section 6.2, we
translate the AGM postulates for this kind of scenario and then propose a particular
expansion operator that satisfies these postulates. In Section 6.3, we translate the AGM
postulates for private revision, and then propose a family of revision operators. We
discuss some related work in Section 6.4 and then conclude the chapter in Section 6.5.

6.1 Multi-agent Belief Sets

We are interested here in a framework with several agents, each of them having her own
beliefs about the state of the world and about the beliefs of other agents. Therefore,
we take the epistemic logic commonly used for modelling agents beliefs in multi-agent
systems, i.e., KD45n (see Section 3.7.1). Here, a pointed KD45n model represents a set
of |A| belief sets, one for each i ∈ A. Formally, we have the following.

Definition 6.1 (Multi-agent Belief Set). Let a pointed KD45n Kripke model be given.
The belief set of agent i ∈ A is the set K〈M,w〉

i = {ϕ | 〈M,w〉 � Biϕ}.

In other words, the belief set of an agent is the set of formulas that the agent believes
in the given model. Note that K〈M,w〉

i is a deductively closed set.
We also define the objective belief set of agent i, (i.e., what i believes about the state

of the world). This is the set O〈M,w〉
i = K

〈M,w〉
i ∩ LCPL. Note that objective belief sets

are deductively closed subsets of LCPL. Therefore, we have that objective belief sets are
AGM belief sets.

In the following, we make the assumption that the new information is a consistent
formula. Making a change by an inconsistent formula is allowed by AGM postulates, but
it is not of much interest in practical applications. Furthermore, recall from Section 3.4.1
that axiom (D) forbids inconsistent beliefs.

106

6.2. Private Expansion

V ′(w′) = V (w) (no factual change)(E +a 0)
If 〈M,w〉 2 Ba¬ϕ then 〈M,w〉+a ϕ ∈ KD45n (closure)(E +a 1)
〈M,w〉+a ϕ � Baϕ (success)(E +a 2)
〈M,w〉 � Biψ iff 〈M,w〉+a ϕ � Biψ, for i 6= a (privacy)(E +a 3)
If 〈M,w〉 2 Ba¬ϕ
then 〈M,w〉 � BnaBiψ iff 〈M,w〉+a ϕ � BnaBiψ
for a 6= i and n ≥ 1

(believed privacy)(E +a 4)

If 〈M,w〉 � Baψ then 〈M,w〉+a ϕ � Baψ (inclusion)(E +a 5)
If 〈M,w〉 � Baϕ then (〈M,w〉+a ϕ) - 〈M,w〉 (vacuity)(E +a 6)
If 〈M1, w1〉 � Baψ implies 〈M2, w2〉 � Baψ then
〈M1, w1〉+a ϕ � Biχ implies 〈M2, w2〉+a ϕ � Biχ

(monotonicity)(E +a 7)

For all 〈M ′, w′〉, if 〈M ′, w′〉 satisfies (E +a 1)–(E +a 7)
then 〈M,w〉+a ϕ � Baψ implies 〈M ′, w′〉 � Baψ

(minimality)(E +a 8)

Table 6.1 – AGM postulates for private expansion in KD45n

6.2 Private Expansion
6.2.1 Private Expansion Postulates
In this section, we focus on private expansion, i.e., only one agent increases her beliefs.
Beliefs of other agents, as well as the higher order beliefs, remain unchanged. Hereafter,
we note a the agent that performs the belief change.

The result of the private expansion of a pointed Kripke model 〈M,w〉 by ϕ ∈ LCPL for
agent a is a new pointed Kripke model 〈M,w〉+aϕ. The AGM postulates for expansion
can be rewritten for KD45n models, as depicted in Table 6.1.

Postulate (E +a 0) stipulates that the actual world does not change. As usual in
belief revision, the state of the world does not change1, only the agents beliefs are
allowed to change. Postulate (E +a 1) stipulates that, if the new information does not
contradict agent a beliefs, then the resulting model remains a KD45n model after the
private expansion. Indeed, when the expansion is done by a formula that contradicts
agent a beliefs, the result infringes axiom (D) for agent a. The model is therefore no
longer in KD45n. Therefore, this postulate guarantees that K〈M,w〉

a +a ϕ is a belief
set. Postulage (E +a 2) is the success postulate. It stipulates that, after the private
expansion by ϕ, agent a believes that ϕ. It guarantees that ϕ ∈ K〈M,w〉

a +a ϕ. Postulate
(E +a 3) stipulates that the beliefs of all other agents (different from a) do not change.
This means that K〈M,w〉

i +a ϕ = K
〈M,w〉
i , for i 6= a. Postulate (E +a 4) stipulates

that agent a beliefs about other agents beliefs do not change. Postulates (E +a 5) and
1When the state of the world evolves, one has to make an update (Herzig et al. 2005; Katsuno and

Mendelzon 1991a).

107

Chapter 6. Belief Change in Multi-agent Settings

(E +a 6) ensure that, if ϕ is already believed by agent a, then the private expansion
does not change anything, so the resulting model is bisimilar to the initial one. These
postulates guarantee, that ψ ∈ K〈M,w〉

a implies ψ ∈ K〈M,w〉
a +a ϕ and that ϕ ∈ K〈M,w〉

a

impliesK〈M,w〉
a = K

〈M,w〉
a +aϕ. Postulate (E +a 7) is the translation of the monotonicity

property. It stipulates that, if a model allows more inferences than another one, then
the expansion of the first one allows more inferences than the expansion of the second
one. Finally, postulate (E +a 8) is the minimality postulate. It stipulates that the result
of the expansion of the model by ϕ is a minimal belief change.

One can prove the following two propositions.

Proposition 6.1. Let +a be an expansion operator satisfying postulates (E +a 0)–
(E +a 8). The operator + defined by O〈M,w〉

a + ϕ = O
〈M,w〉
a +a ϕ is an AGM expansion

operator, i.e., it satisfies postulates (K + 1)–(K + 6) in Section 2.2.

Proposition 6.2. There is a unique (up to model bisimilarity) private expansion oper-
ator satisfying (E +a 0)–(E +a 8).

This means that the postulates in Table 6.1 are a conservative extension of the usual
AGM expansion ones.

6.2.2 A Private Expansion Operator
Now, we give a constructive definition of the private expansion operator characterized
in the previous section.

Hereafter, we use vxw to denote a copy of the possible world w, but having the Boolean
valuation x.

Definition 6.2 (Expansion of 〈M,w0〉 by ϕ for agent a.). Let 〈M,w0〉 = 〈W,R, V,w0〉
be a KD45n pointed model, and ϕ be a consistent objective formula (i.e., ϕ ∈ LCPL
and 2 ¬ϕ). The private expansion of 〈M,w0〉 by ϕ for agent a is 〈M,w0〉 +a ϕ =
〈W ′, R′, V ′, w′0〉, such that:

• W ′ = {w′0} ∪W ∪Wϕ, where

– Wϕ =
⋃

w∈Ra(w0)
Wϕ
w

– Wϕ
w =

⋃
x∈X
{vxw}

– X = {V (w) | w ∈ Ra(w0) ∩ JϕKM}

• R′a = Ra ∪Rϕa ∪R0
a, where

– Rϕa = {(wϕ1 , w
ϕ
2) | wϕ1 , w

ϕ
2 ∈Wϕ}

– R0
a = {(w′0, wϕ) | wϕ ∈Wϕ}

• R′i = Ri ∪R
−→ϕ
i ∪R0

i , for i 6= a, where

– R
−→ϕ
i = {(vxw, w′) | i(w,w′) ∈ Ri and vxw ∈Wϕ}, for i 6= a

108

6.2. Private Expansion

– R0
i = {(w′0, w) | (w0, w) ∈ Ri}, for i 6= a

• V ′(w) = V (w), for w ∈W

• V ′(vxw) = x, for vxw ∈Wϕ

• V ′(w′0) = V (w0)

When the agent a expands her beliefs, the model must change in order to represent
these new beliefs, but other agents beliefs should remain unchanged. The new set of
possible worldsW ′ contains all possible worlds of the initial model plus a new real world
w′0 and a set of worlds Wϕ representing the new beliefs of agent a. The set Wϕ contains
a copy of each world in Ra(w0) which does not contradict ϕ.

The new accessibility relation R′a contains the initial relation Ra and the sets Rϕa and
R0
a. The set R0

a consists of pairs (w′0, wϕ) where wϕ ∈ Wϕ, thus modifying the beliefs
of the agent performing the expansion. The set Rϕa consists of pairs (wϕ1 , w

ϕ
2) ∈ Wϕ.

The worlds in Wϕ thus form a clique, because they are equally plausible for the agent
performing the expansion.

Each accessibility relation R′i, for i 6= a, contains the initial relation Ri and the
sets R0

i and R
−→ϕ
i . The set R0

i consists of all pairs (w′0, w) such that (w0, w) ∈ Ri, thus
preserving the beliefs of agents not performing expansion and higher order beliefs of all
agents. The set R

−→ϕ
i consists of pairs (vxw, w′), where vxw ∈ Wϕ such that (w,w′) ∈ Ri,

thus keeping higher-order beliefs of the agent performing the expansion.
We can now show that:

Proposition 6.3. The operator + satisfies (E +a 0)–(E +a 8).

As a direct consequence of Proposition 6.2, we know that this operator is the unique
private expansion operator.

Example 6.1. Consider the KD45n model 〈M,w0〉 depicted in Figure 6.1. In this
situation, agent 1 believes ¬p and she believes that agent 2 also believes ¬p. Agent 2
believes ¬p ∧ ¬q, and she believes that agent 1 believes ¬p. After the expansion by q,
agent 1 believes ¬p∧q. The model 〈M ′, w′0〉 obtained after the expansion is also depicted
in Figure 6.1. The world having the valuation ¬p ∧ q has to be duplicated in order to
keep the higher-order beliefs of agent 1. The beliefs of the agent 2 remain unchanged.
In particular she still believes that agent 1 believes ¬p.

Let us now show that our approach to private expansion can be defined using a
product by a specific kind of pointed event model. This result is quite similar to what is
shown by Aucher (2012) for internal models. Indeed, the expansion of Definition 6.2 is
equivalent to a specific model update (see Definition 3.19). More precisely, 〈M,w0〉+aϕ

109

Chapter 6. Belief Change in Multi-agent Settings

〈M,w0〉

pq

w0

pq

w1

1

1,2

1,2

X = {pq}

w′1 = vpqw0
et w′2 = vpqw1

W q = {w′1, w′2}

〈M ′, w′0〉

pq

w0

pq

w1

pq

w′0

pq

w′1

pq

w′2
1 1

1,2

1,2

1

1

1

1

2

2

2

Figure 6.1 – Illustration of a private expansion. On the top, the initial model 〈M,w0〉.
On the middle, the sets X and W q (Definition 6.2). The model on the
bottom corresponds to the expansion by q for agent 1, i.e., 〈M,w0〉+1 q.

110

6.2. Private Expansion

(>, ∅)

e0

(q, ∅)

eϕ

(>, ∅)

e>

1 2

1
2

1, 2

Figure 6.2 – Event model for the private expansion by q for 1

and 〈M.N+a , w0.e0〉 are bisimilar, where:

N+a = 〈E,P, pre,post〉
E = {e0, eϕ, e>}
Pa = {(e0, eϕ), (eϕ, eϕ), (e>, e>)}
Pi = {(e0, e>), (eϕ, e>), (e>, e>)}, for all i 6= a

pre(eϕ) = ϕ

pre(e0) = pre(e>) = >
post(e0) = post(eϕ) = post(e>) = ∅

Proposition 6.4. (〈M,w0〉+a ϕ) - 〈M.N+a , w0.e0〉.

For example, the event model that corresponds to the private expansion for q by 1
in Example 6.1 is depicted in Figure 6.2. The reader may verify that the update of the
pointed Kripke model 〈M,w0〉 in Figure 6.1 by event e0 in Figure 6.2 is bisimilar to the
pointed Kripke model 〈M ′, w′0〉 in Figure 6.1.

6.2.3 A General Expansion Operator
An interesting question is whether the private expansion operator can be generalised to
groups of agents. To answer this question, we first need to make more precise what we
mean by generalisation. Assume that a group of agents G ⊆ A receives a new piece of
information ϕ, there are several possibilities:

Multiple Expansion: Each agent of the group makes a private expansion by ϕ. As a
result, ϕ is believed by each agent in the group, but higher order believes do not
change.

Common Expansion: All agents in the group make a public expansion by ϕ. As a
result, ϕ is commonly believed among the agents in the group, but beliefs about
the agents outside the group do not change.

Mixed Expansion: A mix of both kinds of expansions above.

It turns out that all three kinds of expansion are possible. Multiple expansion is
simple. It amounts to make one private expansion for each member of group G. Common

111

Chapter 6. Belief Change in Multi-agent Settings

(>, ∅)

e0

(ϕ, ∅)

eϕ

(>, ∅)

e>

G A \G

G
A \G

A

Figure 6.3 – Common expansion event model

expansion is also not at all hard to define. It amounts to a straightforward generalisation
of private expansion. For simplicity, we do this using event models.

Definition 6.3 (Common Expansion Event Model). Let 〈M,w0〉 be a KD45n pointed
Kripke model, let ϕ be a consistent formula and G ⊆ A. The common expansion of
〈M,w0〉 by ϕ for group G is 〈M,w0〉+G ϕ = 〈M.N+G , w0.e0〉, where:

N+a = 〈E,P, pre,post〉
E = {e0, eϕ, e>}
Pa = {(e0, eϕ), (eϕ, eϕ), (e>, e>)}, for all a ∈ G
Pi = {(e0, e>), (eϕ, e>), (e>, e>)}, for all i 6∈ G

pre(eϕ) = ϕ

pre(e0) = pre(e>) = >
post(e0) = post(eϕ) = post(e>) = ∅

The only difference between the event model for private expansion we saw before
and the event model in Definition 6.3 above is the replacement of a for G. Figure 6.3
schematically illustrates this operator. When e0 occurs, the agents performing the ex-
pansion believe that event eϕ is occurring, while the other agents believe that event e>
is occurring. In both events e0 and e> nothing changes. In eϕ, only the beliefs of agents
in G changes. Moreover, the higher beliefs of agents in G do not change, because they
all believe that the agents not in G believe that e> is occurring.

Note that formula ϕ in Definition 6.3 can be a subjective formula. In fact, the
common expansion operator defined above is a completely general expansion operator.

We have the following result.

Proposition 6.5. Let 〈M,w0〉, ϕ and G be as in Definition 6.3. For each a ∈ G, we
have O〈M,w0〉+Gϕ

a = O
〈M,w0〉+aϕ
a .

Proposition 6.5 above means that operator +G is an AGM expansion for each agent
a ∈ G. In particular, it means that postulates (E +a 0)–(E +a 8) are satisfied for each
a ∈ G and i 6∈ G. In fact, the common expansion operator should satisfy a stronger
versions of the postulates in Table 6.1.

112

6.3. Private Revision

V ′(w′) = V (w) (no factual change)(R ?a 0)
〈M,w〉 ?a ϕ ∈ KD45n (closure)(R ?a 1)
〈M,w〉 ?a ϕ � Baϕ (success)(R ?a 2)
〈M,w〉 � Biψ iff 〈M,w〉 ?a ϕ � Biψ, for i 6= a (privacy)(R ?a 3)
〈M,w〉 � BkaBiψ iff 〈M,w〉 ?a ϕ � BkaBiψ
for i 6= a and k ≥ 1

(believed privacy)(R ?a 4)

If 〈M,w〉 ?a ϕ � Biψ then 〈M,w〉+a ϕ � Biψ (inclusion)(R ?a 5)
If 〈M,w〉 2 Ba¬ϕ then 〈M,w〉+a ϕ - 〈M,w〉 ?a ϕ (vacuity)(R ?a 6)
If 〈M1, w1〉 - 〈M2, w2〉 and � ϕ↔ ψ
then 〈M1, w1〉 ?a ϕ - 〈M2, w2〉 ?a ψ

(extensionality)(R ?a 7)

If 〈M,w〉 ?a (ϕ ∧ ψ) � Biχ
then (〈M,w〉 ?a ϕ) +a ψ � Biχ

(iterated inclusion)(R ?a 8)

If 〈M,w〉 ?a ϕ 2 Ba¬ψ
then (〈M,w〉 ?a ϕ) +a ψ � Biχ
implies 〈M,w〉 ?a (ϕ ∧ ψ) � Biχ

(iterated vacuity)(R ?a 9)

Table 6.2 – AGM postulates for private revision in KD45n

Conjecture 6.6. The common expansion operator in Definition 6.3 satisfy postulates
(E +a 0)–(E +a 8), where the operators Ba are replaced for common belief operators
CBG.

The third possibility of expansion amounts to a sequence of expansions. One private
expansion for each agent that expands privately and one common expansion for each
group that expands commonly.

6.3 Private Revision
6.3.1 Private Revision Postulates
Private revision behaves as expansion when there is no inconsistency between the agents
beliefs and the new piece of evidence, but, unlike expansion, do not trivialize when this
is not the case.

We denote the result of the private revision of the model 〈M,w〉 by a consistent CPL
formula ϕ for agent a by the model 〈M,w〉?aϕ = 〈M ′, w′〉 = 〈W ′, R′, V ′, w′〉. The AGM
postulates for revision can be rewritten as in Table 6.2.

As for expansion, (R ?a 0) stipulates that there is no change on the actual world.
(R ?a 1) stipulates that the model obtained after a revision is a KD45n model. It also
guarantees that K〈M,w〉

a ?a is a belief set. (R ?a 2) stipulates that ϕ is believed by a after
the revision. Thus, we have that ϕ ∈ K〈M,w〉

a . (R ?a 3) stipulates that the beliefs of all

113

Chapter 6. Belief Change in Multi-agent Settings

agents except a do not change. (R ?a 4) stipulates that the beliefs of the agent a about
other agents do not change. (R ?a 5) and (R ?a 6) stipulate that, when the new piece of
evidence is consistent with the beliefs of the agent, revision is just expansion. (R ?a 7) is
an irrelevance of syntax postulate, stipulating that, if two formulas are logically equiv-
alent, then they lead to the same revision results. (R ?a 8) and (R ?a 9) stipulate when
the revision by a conjunction can be obtained by a revision followed by an expansion.

The revision operators we define are a conservative extension of usual AGM belief
revision operators.

Proposition 6.7. Let ?a be an revision operator satisfying postulates (R ?a 0)–(R ?a 9).
The operator ∗ defined as O〈M,w〉

a ∗ϕ = O
〈M,w〉?aϕ
a is an AGM revision operator (i.e., it

satisfies (K ∗ 1)–(K ∗ 8) in Section 2.2).

6.3.2 A Family Of Private Revision Operators
Let us now define a family of private revision operators. These operators are defined
similarly to the expansion operator of the previous section, but in the cases when the new
piece of evidence is inconsistent with the current beliefs of the agent they use a classical
AGM belief revision operator ∗ in order to compute the new beliefs of the agent.

Definition 6.4 (Revision of 〈M,w0〉 by ϕ for agent a). Let 〈M,w0〉 = 〈W,R, V,w0〉 be
a KD45n model, let ϕ be a consistent CPL formula (i.e., ϕ ∈ LCPL and 2 ¬ϕ), and let ∗
be an AGM revision operator. We define the private revision of 〈M,w0〉 by ϕ for agent
a (with revision operator ∗) as 〈M,w0〉 ?∗a ϕ = 〈W ′, R′, V ′, w′0〉, such that:

• if Ra(w0) ∩ JϕKM 6= ∅

– then X = {V (w) | w ∈ Ra(w0) ∩ JϕKM}

– else X = {x | x ⊆ P and x � O〈M,w0〉
a ∗ ϕ}

• W ′ = W ∪Wϕ ∪ {w′0}, where:

– Wϕ =
⋃

w∈Ra(w0)
Wϕ
w

– Wϕ
w =

⋃
x∈X
{vxw}

• R′a = Ra ∪Rϕa ∪R0
a, where:

– Rϕa = {(wϕ1 , w
ϕ
2) | wϕ1 , w

ϕ
2 ∈Wϕ}

– R0
a = {(w′0, wϕ) | wϕ ∈Wϕ}

• R′i = Ri ∪R
−→ϕ
i ∪R0

i for i 6= a, where:

– R
−→ϕ
i = {(vew, w′) | (w,w′) ∈ Ri, vew ∈Wϕ}, for i 6= a

– R0
i = {(w′0, w) | (w0, w) ∈ Ri}, for i 6= a

• V ′(w) = V (w), for w ∈W

114

6.3. Private Revision

• V ′(vxw) = x, for vxw ∈Wϕ

• V ′(w′0) = V (w0)

The construction of the revised model is similar to the construction of the expanded
model discussed earlier. Only the new set of worlds Wϕ is different: if the new infor-
mation ϕ is considered possible by agent i, she performs an expansion, otherwise, each
of the worlds of the new set Wϕ has as valuation a (propositional) model of the new
information ϕ.

The next result shows that these operators exhibit good logical properties.

Proposition 6.8. The operators ?∗i satisfy (R ?a 0)–(R ?a 9).

Example 6.2. We consider the model 〈M,w0〉 in Figure 6.4, where agent 1 believes ¬p∧
¬q and believes that agent 2 believes p∧q. Agent 2 believes p∧q and believes that agent
1 believes p↔ q. After the revision by p∧q, agent 1 believes p∧q, whereas the beliefs of
agent 2 remain unchanged. The obtained model 〈M ′, w′0〉 is also depicted in Figure 6.4.
In this example, agent 1 uses Dalal’s AGM revision operator ∗D (Katsuno and Mendelzon
1991b). We can observed that the revised model obtained using Definition 6.4 may not
be minimal, in the sense that there may exist a smaller bisimilar model. Nevertheless,
a minimal model can be obtained via bisimulation contraction. Here, this leads to the
model 〈M ′′, w′0〉, depicted in the same figure.

Similarly to expansion, we can also define a model update that performs the revision.

Definition 6.5 (Private Revision Event Model). Let 〈M,w0〉 be a KD45n pointed
Kripke model, let ϕ ∈ LCPL such that 2 ¬ϕ and let ∗ be an AGM revision operator.
The revision of 〈M,w0〉 by ϕ for i is 〈M,w0〉.〈N?a , e0〉, where

N?a = 〈E,P, pre,post〉
E = {e0, e>} ∪ {exw | vxw ∈Wϕ}
Pa = {(e0, e

x
w) | vxw ∈Wϕ} ∪ {(ex1

w1
, ex2
w2

) | vx1
w1
, vx2
w2
∈Wϕ} ∪ {(e>, e>)}

Pi = {(e0, e>), (e>, e>)} ∪ {(exw, e>) | vxw ∈Wϕ}, for i 6= a

pre(e0) = pre(e>) = >

pre(exw) =
∧

p∈V (w)

p ∧
∧

p∈P\V (w)

¬p

post(e0) = post(e>) = ∅

post(exw)(p) =
{
>, if x � p

⊥, if x 2 p

where Wϕ is as in Definition 6.4.

The event model in Definition 6.5 is similar to the one for expansion. The difference is
that the possible event eϕ is replaced for a clique of possible events exw. When e0 occurs,
agent a believes that one of the events exw is occurring. As a result of the update, each
possible world w ∈ Ra(w0) will be replaced by a set of possible worlds w.exw, where
x ∈ X, with a new valuation that satisfies ϕ in the resulting model.

115

Chapter 6. Belief Change in Multi-agent Settings

〈M,w0〉

pq

w0

pq

w1

pq

w2

pq

w3

pq

w4

1

2

2

1

1

1,2

1,2

1,2

〈M ′, w′0〉

pq

w0

pq

w1

pq

w2

pq

w3

pq

w4

pq

w′0

pq

w′1

1

2

12

2

1

2

1

1,2

1,2

1,2

1

〈M ′′, w′0〉

pq

w2

pq

w4

pq

w′0

pq

w′112

1

1,2

1,2

1,2

Figure 6.4 – A private revision. On the top, the initial model 〈M,w0〉. On the middle,
the revised model 〈M,w0〉 ?∗D

1 (p∧ q). On the bottom, the smaller model
〈M ′′, w′0〉, which is bisimilar to the model on the middle.

116

6.4. Related Work

Proposition 6.9. (〈M,w0〉 ?∗i ϕ) - 〈M.N?∗i , w0.e0〉.

For example, the event model that corresponds to the revision in Example 6.2 is the
following:

N?1 = 〈E,P, pre,post〉
E = {e0, e>, e

pq
w1
, epqw2
}

P1 = {(e0, e
pq
w1

), (e0, e
pq
w2

), (epqw1
, epqw1

), (epqw1
, epqw2

), (epqw2
, epqw2

), (e>, e>)}
P2 = {(e0, e>), (e>, e>), (epqw1

, e>)(epqw2
, e>)}

pre(e0) = ¬p ∧ q
pre(epqw1

) = p ∧ q
pre(epqw2

) = p ∧ q
pre(e>) = >

post(epqw1
) = {(p,>), (q,>)}

post(epqw2
) = {(p,>), (q,>)}

The reader may verify that the product between the pointed Kripke model 〈M,w0〉 in
Figure 6.4 and the model above is bisimilar to the pointed Kripke model 〈M ′, w′0〉 in
Figure 6.4.

As for expansion, multiple revision can be achieved with a sequence of private revi-
sions, one for each agent. Common and subjective revision, however, are trickier. Note
that the set Wϕ in Definition 6.4 is defined using the set Ra(w0) and an AGM revision
of the objective believe set O〈M,w0〉

a . When trying to generalise revision for multiple
agents, we then have two problems. The AGM revision operator is only defined for one
agent, and it is only defined for objective formulas.

We can think of a way of circumventing this problem. We could replace those
sets for their “natural” multi-agent versions, i.e., RG(w0) =

⋃
a∈GRa(w0) and and

O
〈M,w0〉
G =

⋂
a∈GO

〈M,w0〉
a . However, it is not completely clear what properties (postu-

lates) a revision operator defined in this way would satisfy. Therefore, this is left as an
open question.

6.4 Related Work
There are other studies on the connections between dynamic epistemic logics and belief
change theory, e.g., by Baltag and Smets (2006), van Benthem (2007), Board (2004),
and van Ditmarsch (2005). These studies investigate how to encode belief change opera-
tors within epistemic models with accessibility relations representing plausibility levels,
similar to Grove’s systems of spheres (Grove 1988). These plausibility levels guide the
revision process. Contrastingly, we study here how to perform belief revision (and ex-
pansion) on a KD45n model, representing the beliefs of a group of agents.

In the same vein, Tallon et al. (2004) study what they call revision of KD45n models
due to communication between agents: some agents (publicly) announce (part of) their

117

Chapter 6. Belief Change in Multi-agent Settings

beliefs. Their model is closer to expansion than to true revision, and concerns only
subjective beliefs.

Herzig et al. (2005) study action progression in multi-agent belief structures. Their
work is mainly about the effects of actions using update, but they also briefly mention
the problem of revision by objective formulas. Their construction is related to the one
we point out, but they do not study the properties of the operators they considered.

Finally, the closest work is the study of private expansion and revision made by
Aucher (2008, 2010). The difference is that Aucher considers an internal model of the
problem, i.e., a model of the situation viewed from each agent, so he does not use a
KD45n model for modeling the system, but one internal model by agent. He uses a
notion of multi-agent possible worlds in order to compute the result of the revision, so
the result of the revision is a set of such multi-agent worlds, whereas in this work we
work with KD45n models, and we obtain a unique KD45n model as result of a revision.

It is easy to find a translation between internal models and KD45n models, so one can
look at the technical details between the expansion and revision operators we present in
this work and the one proposed (on internal models) in (Aucher 2008, 2010). Concerning
expansion, it turns out that the two operations are equivalent (that is not surprising
since we proved that there is only one rational expansion operator). First, note that it is
possible to obtain an internal model IM for agent a ∈ A from any KD45n model 〈M,w〉.
Indeed, it suffices to consider the set formed of models 〈Mk, wk〉 generated from each wk
such that wk ∈ Ra(w0). Similarly, it is possible to obtain an internal event model IN+a

for agent a ∈ A from the pointed event model 〈N+a , e0〉. Now, it is easy to see that
the internal model for a obtained from the product of 〈M,w0〉 by 〈N+a , e0〉 is the same
as the product of IM by IN+a . Concerning revision, the situation is different. Aucher
allows revision by subjective formulas and compute distances between the corresponding
(epistemic) models. We are interested here only by revision with objective formulas. In
this particular case Aucher’s revision does not allow the agent concerned by the private
revision to choose among the models of the objective formulas, the ones that are the
most plausible, this is problematic since this is the basic aim of belief revision. We can
do that thanks to the underlying AGM revision operators in the definition of the private
revision operator. So our private revision result implies (usually strictly) the result given
by Aucher’s revision.

6.5 Conclusion
This chapter investigates the problem of belief change in a multi-agent context. More
precisely, it studies private expansion and revision of KD45n models by objective for-
mulas. We saw a set of postulates for expansion and for revision which are close to
the classical AGM ones for the single agent case. We also saw definitions of specific
expansion and revision operators that satisfy the desired properties.

All results showed in this chapter would most probably hold for K45n models as well.
The advantage of using such models is that the absence of axiom (D) permits situations
where agents have trivial belief sets, i.e., K〈M,w〉

i = LML (and thus O〈M,w〉
i = LCPL).

Consequently, the assumption that formula ϕ is consistent can be dropped for both

118

6.5. Conclusion

expansion and revision operators. Similarly, the condition ‘〈M,w〉 2 Bi¬ϕ’ can be
dropped for postulates (E +a 1), (E +a 4). This slightly modified framework is therefore
even better as a generalisation of AGM belief change to multi-agent settings.

The problem of revising by subjective formulas is not addressed in this work. As
mentioned before, this is more complicated and richer than we studied here due to the
minimality of change requirement. A different approach would be to investigate metrics
that can be used to define minimal change for revision. In another piece of work not
described here (Caridroit et al. 2016), we define and study a number of distances between
Kripke models. There, we show how these distances can be used to compute, given an
initial model and a formula ϕ, the “most similar” Kripke model satisfying ϕ.

Complexity issues of belief change operators in multi-agents settings have not been
addressed either. As seen in Section 3.6, KD45n satisfiability checking is PSPACE-
complete. Thus, we have reasons to thrust that belief change in this setting is “more
difficult” than in CPL. If that is the case, one way of maybe circumventing this problem
is to use fragments of the language. Such kind of approach have been studied, for
instance, by Creignou et al. (2016, 2014) and Delgrande and Peppas (2011). Moreover,
note that description logics are close related to modal logics, which means that they
could also be candidates for settings with better complexities. Approaches for belief
change in description logics have been studied, e.g., by Benferhat et al. (2014, 2017).

Some straightforward generalisations to group expansion have been considered in
this chapter. Remark, however, that multi-agent belief revision permits even more
possibilities than those listed in Section 6.2.3. Recall that the private revision operators
? are defined using AGM revision operators ∗. This means that, in a group revision,
each agent could choose a different revision operator. If that were the case, the question
now would be: what about the interactions between the agents? I mean, should an
agent i assume that another agent j uses the same revision operator as herself? If not,
what operator i should chose for j? And, what i thinks that j would chose for i?

It seems that we could model this by adding to the framework yet another epistemic
model, where possible worlds would be “possible revision operators”, and that new,
very general, multi-agent belief revision operators could be defined using this model.
However, the way this could be translated into concrete revision operators is left as an
open question.

119

Chapter 7

Methods for Automated Reasoning
in Modal Logic

In this chapter, we will study methods for satisfiability checking in some modal logics.
This topic is rather different from the ones studied before in this thesis. Nonetheless, I
consider this a very important topic for my personal research. The reason is that all the
theoretical investigation we saw up till now in this thesis aims at providing formalisms
for reasoning. Reasoning about actions, abilities, knowledge, beliefs, responsibility, time,
and all this in multi-agent systems. But the idea is not just reason about toy examples
and small problems, and certainly not with just pen and paper. The ultimate goal
of this research is to provide tools to reason about real life problems, and to do so
automatically, with a computer. My intention is to convince people that such a goal is
attainable. Therefore, I consider it part of my job to produce some piece of software
that performs, at least, some of those reasoning tasks. The contents of this chapter is
just the beginning of that endeavour.

This chapter brings together results published with several colleges in a couple of
papers, namely, (Caridroit et al. 2017) and (Lagniez et al. 2017). The introduction
below motivates the choice of studying logics KT5 and K, and the choice of studying
satisfiability checking for these formalisms. Section 7.2 shows the method for satisfia-
bility checking formulas in KT5. It presents the technique used and some experiments
showing that such a technique performs well among all other alternatives. Section 7.3
shows a different method of reasoning, this time for satisfiability checking formulas in
K. As before, it presents the techniques used and some experiments. Finally, Section 7.4
concludes the chapter.

121

Chapter 7. Methods for Automated Reasoning in Modal Logic

7.1 Introduction
In the formalisms we saw, the reasoning tasks we want to perform are usually among
the following ones:

Consequence checking. For example, assume that, given some conditions described
as a set of formulas Γ, we want to know whether agent i would believe that ϕ
under assumptions Γ. In KD45n, it amounts to decide whether, for all pointed
Kripke models 〈M,w〉 satisfying Γ, it is the case that ϕ ∈ K

〈M,w〉
i . This is the

same as to decide whether Γ � Biϕ in KD45n.

Validity checking. For example, assume that we want to know whether the group of
agents G can achieve a state of affairs where ϕ is true, no matter what is the
current situation. In ATDEL, it amounts to decide whether � 〈〈G〉〉ϕ.

Satisfiability checking. For example, assume that we want to know whether there is
a situation where the group G would be responsible for the outcome ϕ, if they
execute joint action δ. In CEDL, it amounts to decide whether there is a model
that satisfies Rδ|Gϕ.

Model checking. For example, assume that we want to know whether the agent i
believes that ϕ is true in a given situation. In KD45n, it amounts to decide
whether ϕ ∈ K〈M,w〉

i , which amounts to decide whether 〈M,w〉 � Biϕ.

As saw before (Section 3.6), model checking in modal logics is “easy”, in the sense
that its computational complexity is polynomial. Consequence, validity and satisfiabil-
ity checking, though, are another story. First, note that these three tasks are strongly
related (see Section 2.1.2). A formula is valid if and only if there is no model for its nega-
tion. Therefore, whenever one designs a complete algorithm for satisfiability checking,
the same algorithm can be used for validity checking. In the case of consequence, for
strongly complete logics, such as KD45n, Γ � ϕ is equivalent to �

∧
ψ∈Γ ψ → ϕ. There-

fore, a satisfiability checking algorithm can also be adapted for consequence checking.
However, Ladner (1977) showed that the satisfiability problem for several modal logics
including K, KT and KT4 are PSPACE-Hard, while it is NP-Complete for single-agent
KT5 (see also (Halpern and Rêgo 2007a,b) for more details).

Since recently, SAT solvers (computer programs that solve the satisfiability problem
for CPL) have been used as quite efficient NP-oracles for some problems whose complex-
ity is beyond NP (Biere et al. 2009). By the way, SAT solvers have already been used
in the context of modal logics (see for example (Sebastiani and Tacchella 2009) for a
comprehensive overview of the subject). For instance, *SAT (Giunchiglia and Tacchella
2000b; Giunchiglia et al. 2002) uses a SAT solver to decide satisfiability in 8 different
modal logics, including K. A translation of modal logic K to CPL has been proposed in
KM2SAT (Sebastiani and Vescovi 2009). More recently, the solver InKreSAT (Kaminski
and Tebbi 2013) uses an innovative system, where the SAT solver drives the development
of a tableau method.

Curiously, however, none of the methods aforementioned are applicable to modal logic
KT5, the easiest one! Single-agent KT5 is considered an “easy” modal logic, because

122

7.2. The KT5-SAT problem

it is the only one in NP. This means that there is a polynomial algorithm that can
translate KT5 to CPL. Therefore, the first thing we do here is exactly that: translate
KT5 formulas to CPL and launch a SAT solver. However, we find out that this is less
easy than announced.

The second thing we do in this chapter is to attack a more difficult satisfiability
checking problem, the one in modal logic K. As for KT5, it is possible to translate K
formulas into CPL formulas. But the translated formula can be exponentially larger
than the original one. We then find out that the idea of just translating and sending to
a SAT solver does not give satisfactory results. The solution described in this chapter
is an improvement of the CEGAR (Counter-Example-Guided Abstraction Refinement)
approach by Clarke et al. (2003), that has been used in several different problems beyond
NP.

7.2 The KT5-SAT problem
Because KT5-SAT, the problem of deciding satisfiability of formulas in KT5, is in NP,
we know that there is a polynomial translation from KT5 formulas to CPL formulas.
Therefore KT5-SAT is, in principle, “easy”: just translate it to CPL and launch the best
SAT solver available. However, before our paper (Caridroit et al. 2017), such method
has never been tried! We actually did not know if this was better than to use a different
method, such as a traditional tableau method for instance. This is so because the
translation from KT5 to CPL is not direct. In fact, the translated formula must contain
new propositional variables and the CPL formula outputted by the translation is larger
than the original formula. Added to the fact that the translation itself might take some
time to be performed, this could result in an less efficient method than the traditional
tableau methods.

In this section, we try the method of translating KT5 formulas to CPL and launch
a SAT solver. But, just to be sure that we are going to win, we propose here a “clever”
translation. This translation introduces fewer fresh variables than the standard (naive)
translation. We then provide experimental evidence that the proposed approach out-
performs the state-of-the-art approaches on the benchmarks considered.

7.2.1 From KT5-SAT to SAT
It has been shown that, if a formula ϕ with n modal connectives is satisfiable in KT5,
then there is KT5-model of ϕ with at most n+ 1 possible worlds. As a consequence, we
know that there exists an algorithm running in polynomial time able to transform the
KT5-SAT problem into the SAT problem.

We transform KT5-SAT into SAT with a translation function trkt5. It takes a modal
logic formula ϕ in NNF (Definition 2.15) and a natural number n as input, and produces
a formula in LCPL. This translation is inspired by the standard translation from modal
logic to first-order logic (Definition 3.11). Note that the accessibility relation does not
need to be represented for a KT5-model, because it is an equivalence relation.

123

Chapter 7. Methods for Automated Reasoning in Modal Logic

Definition 7.1 (Translation from KT5 to CPL). Let ϕ ∈ LML be in NNF:

trkt5(ϕ, n) = trkt5(ϕ, 1, n)
trkt5(p, i, n) = pi

trkt5(¬p, i, n) = ¬pi
trkt5(ϕ1 ∧ · · · ∧ ϕk, i, n) = trkt5(ϕ, i, n) ∧ · · · ∧ trkt5(ϕk, i, n)
trkt5(ϕ1 ∨ · · · ∨ ϕk, i, n) = trkt5(ϕ, i, n) ∨ · · · ∨ trkt5(ϕk, i, n)

trkt5(�ϕ, i, n) =
n∧
j=1

trkt5(ϕ, j, n)

trkt5(♦ϕ, i, n) =
n∨
j=1

trkt5(ϕ, j, n)

To compute the translation of ϕ, it must be in NNF. As mentioned in Section 2.1.4,
this operation can be performed in both polynomial time and space. Therefore, without
loss of generality, we assume in the remainder of this chapter that the modal logic
formulas considered are in NNF.

The translation trkt5 adds fresh propositional variables pi to the formula. Variable
pi denotes the truth value of p in the possible world wi. If n is big enough, trkt5(ϕ, n) is
equisatisfiable to ϕ. This is the case when n = nm(ϕ) + 1, where nm(ϕ) is the number
of modal operators in ϕ.

Proposition 7.1. ϕ ∈ LML is satisfiable in KT5 if and only if trkt5(ϕ,nm(ϕ) + 1) is
satisfiable in CPL.

The proof of Theorem 7.1 is done in the same way as the standard translation to
FOL plus Lemma 6.1 in (Ladner 1977).1 Also note that the accessibility relation R in
KT5 is an equivalence relation. Therefore, it does not need to be represented.

For example, Figure 7.1 shows trkt5(♦(p ∧ �q), 2). Note that the result of the
translation is not in CNF. Thus, classical translation into CNF (such as in (Tseitin
1983)) is needed to use a SAT solver. As for NNF, the translation to CNF can also be
performed in polynomial time and space.

7.2.2 A New Upper-Bound for the Translation
The length of trkt5(ϕ) depends on the number of modalities in ϕ, which we note nm(ϕ).
In practice, this produces unreasonably large formulas. This is why we first tried to find
out whether it is possible to decrease the value of n in trkt5. We found a smaller value
for it that depends on the diamond degree of a formula.

Definition 7.2 (Diamond Degree). The diamond degree of a modal logic formula ϕ in

1The proofs of the results in this section can be found in (Caridroit et al. 2017).

124

7.2. The KT5-SAT problem

♦

∧

p �

q

(a) ♦(p ∧ �q)

∨

∧

p1 ∧

q1 q2

∧

p2 ∧

q1 q2

(b) trkt5(♦(p ∧ �(q))

Figure 7.1 – Translation from KT5 to CPL

NNF, noted dd(ϕ), is defined recursively, as follows:

dd(>) = dd(¬>) = dd(p) = dd(¬p) = 0
dd(ϕ ∧ ψ) = dd(ϕ) + dd(ψ)
dd(ϕ ∨ ψ) = max(dd(ϕ),dd(ψ))
dd(�ϕ) = dd(ϕ)
dd(♦ϕ) = 1 + dd(ϕ)

Informally, the diamond degree is an upper bound of the number of diamonds to be
taken into account to satisfy the formula.

To show that the diamond degree is a valid value for n, we use a tableau method.
Therefore, we need some additional definitions. The tableau defined below is similar to
the one in Definition 3.16. The differences are due to the fact that KT5 is simpler than
K and, therefore, the tableau can be simplified.

Definition 7.3 (Tableau). Let ϕ be a KT5 formula in NNF. A tableau for ϕ is a set of
pairs of the form (σ, ψ), where σ is a (possibly empty) sequence of natural numbers and
ψ ∈ sub(ϕ). In addition, we have that (0, ϕ) ∈ T and, for all sequences σ, T satisfies
the following conditions:

1. (σ,¬>) 6∈ T .

2. (σ, p) ∈ T if and only if (σ,¬p) 6∈ T .

3. if (σ, ψ1 ∧ ψ2) ∈ T then (σ, ψ1) ∈ T and (σ, ψ2) ∈ T .

4. if (σ, ψ1 ∨ ψ2) ∈ T then (σ, ψ1 ∈ T) or (σ, ψ2) ∈ T .

5. if (σ,�ψ1) ∈ T then ∀(σi, χ) ∈ T we have (σ, ψ1) ∈ T .

6. if (σ,♦ψ1) ∈ T then (σi, ψ1) ∈ T , for some i ∈ N.

125

Chapter 7. Methods for Automated Reasoning in Modal Logic

Lemma 7.2. Let ϕ be a KT5 formula in NNF. There is a tableau for ϕ if and only if
ϕ is satisfiable.

Let T be a tableau for ϕ. The number of different sequences σ in T depends on the
number of times the condition involving operator ♦ is triggered. It is possible to show,
by induction on the structure of ϕ, that this number is bounded by dd(ϕ).
Lemma 7.3. Let ϕ be a KT5 formula in NNF. The number of different sequences σ in
the tableau for ϕ is bounded by dd(ϕ).

Each σi in the tableau T corresponds to a wi ∈ W in the KT5-model, |T | ≤ dd(ϕ)
means that the number of possible worlds in the model is bounded by dd(ϕ).
Theorem 7.4. If ϕ ∈ LML is satisfiable, then trkt5(ϕ,dd(ϕ)) is satisfiable.

7.2.3 Structural Caching
Caching is a classical way to avoid redundant work. For instance, the modal logic solver
*SAT performs caching using a “bit matrix” (Giunchiglia and Tacchella 2000a). Efficient
implementations of BDD packages (such as (Bryant 1986)) also rely on caching to build
an explicit graph. These two examples require additional time and space to store and
search among already performed work.

The technique we use here is a “simple but efficient” trade-off. It does not memorize
the work already done. Thus, it may not cache all possible formulas, but it does not
have any additional cost.

As an example, let the formula ϕ = ♦(p∧♦q) be given. Both translation techniques
are depicted in Figure 7.2. The formula in Figure 7.2b contains two copies of (q1 ∨ q2).
This happens because the translation of the first diamond creates two sub-formulas
p1 ∧ ♦q and p2 ∧ ♦q, where each ♦q needs to be translated. Because we are in KT5
(where all possible worlds are connected to each other in the model), both translations
of ♦q are equivalent. This means that we can reuse the same sub-formula. Therefore,
instead of using a tree, we can use a directed acyclic graph (DAG), which also allows us
to translate the CPL formula into CNF more efficiently.
Lemma 7.5. trkt5(◦ϕ, i, n) = trkt5(◦ϕ, j, n) ∀i, j and ◦ ∈ {�,♦}
Proof. There are two possible cases:

1. If (◦ = �) then, trkt5(�ϕ, i, n) =
∧n
k=1 trkt5(ϕ, k, n) = trkt5(�ϕ, j, n)

2. If (◦ = ♦) then trkt5(♦ϕ, i, n) =
∨n
k=1 trkt5(ϕ, k, n) = trkt5(♦ϕ, j, n)

Therefore, we have trkt5(◦ϕ, i, n) = trkt5(◦ϕ, j, n).

Informally, Lemma 7.5 implies that no matter how deep in the tree the sub-formula
◦ϕ is, its translation is always the same. Therefore, we can translate the deepest sub-
formula first and then backtrack. For example, in Figure 7.2(b), the same sub-formula
appears twice, which means that we can use only one of its occurrences, such as in
Figure 7.2(c). We denote this modified translation function trkt5+. Structural caching
is thus performed on the fly when translating the modal logic formula into propositional
logic, before translating the formula in CNF.

126

7.2. The KT5-SAT problem

♦

∧

p ♦

q

(a) ϕ = ♦(p ∧ ♦q)

∨

∧

p1 ∨

q1 q2

∧

p2 ∨

q1 q2

(b) trkt5(ϕ, dd(ϕ))

∨

∧

p1 ∨

q1 q2

∧

∨

q1 q2

p2

(c) trkt5+(ϕ, dd(ϕ))

Figure 7.2 – Comparison between trkt5 and trkt5+

127

Chapter 7. Methods for Automated Reasoning in Modal Logic

Solver solved SAT MO TO
LckS5TabProver 709 143 710 655
S52SAT nm 1377 411 667 30
S52SAT nm+ 1733 452 292 49
S52SAT dd 1645 433 412 17
S52SAT dd+ 1834 460 203 37
SPASS 3.7 1530 451 528 16

Table 7.1 – Overall results. solved: number of solved instances, SAT: number of satis-
fiable instances, MO: number of memory outs, TO: number of time outs.

7.2.4 Experiments
Several experiments were performed to evaluate the techniques aforementioned using
the solver S52SAT, implemented by Valentin Montmirail. We will not see all the results
here. The interested reader may find more information in (Caridroit et al. 2017) and in
Montmirail’s thesis (Montmirail 2018).

Table 7.1 summarises the results obtained in all benchmarks. The best result for
each column is in bold face. At the time we published our results, LckS5TabProver,
developed by Abate et al. (2007) and SPASS, developed by Weidenbach et al. (2009),
were the state-of-the art in S5-satisfiability checking. Here, we compare them with 4
different versions of S52SAT:

• S52SAT nm uses the number of modalities of the formula as the upper-bound for
the translation;

• S52SAT nm+ does the same but also uses the caching technique;

• S52SAT dd uses the diamond degree as the upper bound;

• S52SAT dd+ uses the diamond degree and the caching.

In all versions, Glucose 4.0 (Audemard and Simon 2009) is used as the internal CPL
SAT solver.

The evaluations were performed using well known modal logic benchmarks: 3CNFK
(Patel-Schneider and Sebastiani 2003), MQBFK (Massacci 1999), T ANCS 2000K (Mas-
sacci and Donini 2000) and LWB K, KT, S4 Balsiger et al. (2000). Note that they are
designed for modal logics K, KT and S4. As a consequence, some of them are trivial in
KT5. However, the results are still significant, since KT5 contains K, KT and KT4 (see
Figure 3.2).

7.3 The K-SAT problem
To attack the K-SAT problem, we need more than just a clever translation. This is so
because, no matter how clever it may be, the output of the translation can be expo-
nentially larger than the original formula. This means (and sometimes is the case in

128

7.3. The K-SAT problem

practice) that the translated formula may not fit into the computer memory. When that
happens, it is just not possible to find a model for the formula.

To make things even more difficult, the diamond degree cannot be used in modal
logic K. The example below shows us why.

Example 7.1. Let the formula ϕ be:

(p1 ∧ p2 ∧ p3)∧
(♦(p1 ∧ p2 ∧ ¬p3 ∧�(p1 ∧ ¬p2 ∧ p3)))∧
(♦(p1 ∧ ¬p2 ∧ ¬p3 ∧�(¬p1 ∧ ¬p2 ∧ p3)))∧
(�♦p3)

Its diamond degree is dd(ϕ) = 3. This formula is satisfied, e.g., by the model below.

p1, p2,

p3

p1, p2,

¬p3

p1,¬p2,

¬p3

p1,¬p2,

p3

¬p1,

¬p2, p3

However, the reader may verify that it is not possible to find a model satisfying ϕ
with less than 5 possible worlds.

To handle the K-SAT problem, we use here an improvement of the CEGAR approach
(Clarke et al. 2003), whose the original idea is as follows. Imagine a very large CPL
formula in CNF. Instead of giving it directly to the SAT solver, we give only part of it,
and then ask for a model. If the SAT solver answers UNSAT, then the entire formula
is UNSAT. Our program can just return UNSAT and we are done (this is the UNSAT
shortcut). On the other hand, if the SAT solver gives us a model, then it is easy (can be
done in linear time) to verify if that model is a model for the entire formula. If we are
lucky, it is so. In this case, the program can just return that model and we are done.
If we are not so lucky (i.e., the SAT solver find a model that does not satisfy the entire
formula) then we go for another run: we add some constraints to prevent the sat solver
from finding the same model again and give it a bigger part of the original formula,
hoping to be luckier this time (this is the refinement step). In the worst case, either the
program runs out of memory (in which case the program returns UNKNOWN), or we
end up giving the entire original formula to the SAT solver (in which case it will decide
its satisfiability anyway).

This framework has been applied in various areas: Satisfiability Modulo Theory
(Brummayer and Biere 2009), Planning (Seipp and Helmert 2013) and, more recently,
QBF (Janota et al. 2016). Several previous SAT-based approaches have already been
proposed in the field of modal logic (Sebastiani and Vescovi 2009). One could argue that
*SAT (Giunchiglia et al. 2002) is already a CEGAR approach for the modal logic K.

In this chapter, we present an extension of CEGAR which includes a recursive step
to introduce a new shortcut in the original procedure. We call this extension Recursive
Explore and Check Abstraction Refinement (RECAR). The idea of mixing SAT and
UNSAT shortcuts in a CEGAR procedure is not new: it has been already used for SMT

129

Chapter 7. Methods for Automated Reasoning in Modal Logic

(Brummayer and Biere 2009) and for bug detection (Wang et al. 2007). The novelty
here is that we use an abstraction of the original problem in the loop, made possible by
a recursive call to the main procedure.

The RECAR procedure is generic, i.e., it is not bound to a specific domain. We
present the conditions required on the abstractions used, and the correctness of the
approach. We instantiate the framework for the satisfiability of modal logic K, by
providing abstraction functions for this problem and experimental results of the approach
against state-of-the-art solvers.

7.3.1 CEGAR Preliminaries
Counter-Example-Guided Abstraction Refinement (CEGAR) is an incremental way to
decide the satisfiability of formulas in CPL. It has been originally designed for model
checking (Clarke et al. 2003), i.e., to answer questions such as ‘does Γ � ψ?’ or, equiva-
lently, “is Γ∧¬ψ unsatisfiable?”, where Γ describes a system and ψ a property. In such
highly structured problems, it is often the case that only a small part of the formula is
needed to answer the question. The idea behind CEGAR is to replace ϕ = Γ ∧ ¬ψ by
an approximation ϕ′, where ϕ′ is easier to solve in practice than ϕ. There are two kinds
of approximations:

• an over-approximation of ϕ is a formula ϕ̂ such that ϕ̂ � ϕ holds, i.e., ϕ̂ has at
most as many models as ϕ;

• an under-approximation of ϕ is a formula ϕ̌ such that ϕ � ϕ̌ holds, i.e., ϕ̌ has at
least as many models as ϕ.

Usually, ϕ is in CNF. Then, a classical way to under-approximate ϕ is to remove some
clauses from it. In other words, ϕ̌ is a subset of the clauses in ϕ. A model of ϕ̌ also
may by chance satisfy ϕ. Moreover, if ϕ̌ is found to be unsatisfiable, then so is ϕ. This
double possibility to conclude earlier makes under-approximation based CEGAR very
popular. A classical way to over-approximate is to bound the generation of the formula
ϕ to a given number n smaller than the one needed to reach equisatisfiability to the
original problem (as in bounded model checking (Clarke et al. 2003) or planning (Seipp
and Helmert 2013)). In this case, a model of ϕ̂ can be extended to a model of ϕ, but
the unsatisfiability of ϕ means that n has to be incremented and the process repeated.

An example of a CEGAR algorithm using over-approximations is given on Algo-
rithm 7.1. It receives a formula ϕ as input and computes an over-approximation ψ.
Then it uses a oracle (usually a SAT solver) to check whether ψ is satisfiable. If so,
it returns SAT. Otherwise, ψ is refined (i.e., it gets closer to ϕ) until it is satisfiable,
or until the refined over-approximation is detected to be equisatisfiable to ϕ. Function
eqsat(ϕ, ψ) denotes an incomplete but efficient equisatisfiability test, which returns true
if it is able to detect that ϕ sat≡ ψ and false otherwise.

Recent SAT solvers are able to check satisfiability under assumptions (Eén and
Sörensson 2003). This means that, assuming a given set of literals are satisfied, provide,
in case of unsatisfiability, a “reason”, in terms of those literals, for the unsatisfiability of
a formula. Formally, we have the following.

130

7.3. The K-SAT problem

1 function cegar(ϕ)
2 ψ ← over(ϕ)
3 while not check(ψ) do
4 if eqsat(ψ, ϕ) then
5 return UNSAT
6 ψ ← refine(ψ)
7 return SAT

Algorithm 7.1: CEGAR with over-approximation

Definition 7.4 (Unsatisfiable Core with Assumptions). Let ϕ be in CNF and A be a
consistent set of literals from ϕ. Let ϕ be satisfiable and (ϕ ∧

∧
a∈A a) be unsatisfiable.

L ⊆ A is an unsatisfiable core of ϕ if and only if (ϕ ∧
∧
l∈L l) is unsatisfiable.

Therefore, a SAT solver for ϕ, given A, can be seen as a procedure providing a pair
(d, r) with d ∈ {SAT,UNSAT} and r is a model of ϕ if d = SAT or an unsatisfiable
core of ϕ if d = UNSAT. Modern SAT-based procedures are able to take r into account
in both cases. Unsatisfiable cores have been used, for instance, in a CEGAR approach
for deciding satisfiability of formulas in the propositional fragment of first-order logic
(Khasidashvili et al. 2015).

7.3.2 Recursive Explore and Check Abstraction Refinement

A classic CEGAR approach with over-approximation and a SAT shortcut performs well
when the input is satisfiable. But, generally, it does not perform well when the input is
unsatisfiable. The reason is that it may have to keep refining until it reaches equisat-
isfiability with the original problem. One way to address this issue is to mix SAT and
UNSAT shortcuts, as in (Brummayer and Biere 2009) and (Wang et al. 2007). In these
approaches, the methods alternate between over and under approximations.

Recursive Explore and Check Abstraction Refinement (RECAR), depicted in Algo-
rithm 7.2, interleaves both kinds of approximations. Each abstraction is performed with
the information retrieved from solving the previous one. The UNSAT shortcut is imple-
mented using a recursive call to the main procedure when a strict under-approximation
ϕ̌ can be built. It is function ‘rc()’ that verifies if the under-approximation is strict.

One should also note that the proposed approach permits abstractions on two differ-
ent levels: one is used to simplify the problem at the domain level (recursive call), while
the other one is used to approximate the problem at the oracle (function ‘check()’) level.

In order to be able to apply RECAR, the under- and over-approximations must
satisfy some properties. In the following, we use �1 and �2 to denote two possibly
different consequence relations (two different logics). Let under(ϕ) = ϕ̌. We also use
refinen() and undern() to indicate n successive applications of functions refine() and
under(), respectively.

131

Chapter 7. Methods for Automated Reasoning in Modal Logic

1 function recar(ϕ)
2 ψ ← over(ϕ)
3 while true do
4 if check(ψ) = SAT then
5 return SAT
6 if eqsat(ψ, ϕ) then
7 return UNSAT
8 χ← under(ϕ)
9 if rc(ϕ, χ) then

10 if recar(χ) = UNSAT then
11 return UNSAT

12 ψ ← refine(ψ)

Algorithm 7.2: Recursive Explore and Check Abstraction Refinement

RECAR Assumptions.

1. Function ‘check()’ is a sound and complete implementation of ‘�1’ which termi-
nates.

2. If 21 ¬over(ϕ) then 21 ¬refine(over(ϕ)).

3. eqsat(refinen(ϕ̂), ϕ) returns true, for some n ∈ N.

4. If �2 ¬ϕ̌ then �2 ¬ϕ.

5. rc(undern(ϕ),undern+1(ϕ)) returns false, for some n ∈ N.

Note that, if ϕ̂ is satisfiable, then ϕ is satisfiable, by assumptions 2 and 3. In
the following, we show that, under these assumptions, RECAR is sound, complete and
terminates.

Proposition 7.6 (Soundness). If recar(ϕ) returns SAT then ϕ is satisfiable.

Proof. Assume that recar(ϕ) returns SAT. This is the case only if check(ψ) returns SAT,
on line 4 of Algorithm 7.2. Thus, we know that ψ is satisfiable (by Assumption 1). But
ψ equals to over(ϕ) or equals to refinen(ϕ), for some n ∈ N. Then ϕ is satisfiable (by
assumpumptions 2 and 3).

The intuition behind the proof of Theroem 7.72below is that there are two ways
to conclude that ϕ is unsatisfiable. In the first case, ϕ̂ is refined a finite number
of times until it is detected equisatisfiable to ϕ, and check() returns UNSAT. Then ϕ
is unsatisfiable. In the second case, one of the under-approximations is shown to be
unsatisfiable, then ϕ is unsatisfiable, by Assumption 4).

2Proofs can be fond in (Lagniez et al. 2018).

132

7.3. The K-SAT problem

Theorem 7.7 (Completeness). If recar(ϕ) returns UNSAT then ϕ is unsatisfiable.

The intuition behind the proof of Theorem 7.8 below is that the function performs
a finite number of recursive calls (by Assumption 5). Moreover, each of these calls has
a finite number of refinements before terminating (by Assumption 3).

Theorem 7.8 (Termination). RECAR terminates for any input ϕ.

7.3.3 An Implementation of RECAR for Modal Logic
In order to be able to apply RECAR to modal logic K, we need to find over- and
under-approximations respecting all five RECAR assumptions. First, we show the over-
approximation used in our solution.

Over-approximation

The over-approximation function used in our K-SAT solver uses a translation from ML
to CPL that is similar to the one in Definition 7.1. As already discussed, in the general
case, this translation outputs a formula that is exponentially larger than the original
one. The idea though, is to avoid using the translation naively. But first, let us see its
definition. We assume a formula ϕ in NNF.

Definition 7.5 (Translation from K to CPL).

mltr(ϕ, n) = mltr(ϕ, 0, n)
mltr(p, i, n) = pi

mltr(¬p, i, n) = ¬pi
mltr(ϕ ∧ ψ, i, n) = mltr(ϕ, i, n) ∧mltr(ψ, i, n)
mltr(ϕ ∨ ψ, i, n) = mltr(ϕ, i, n) ∨mltr(ψ, i, n)

mltr([m]ϕ, i, n) =
n∧
j=0

(¬rai,j ∨mltr(ϕ, j, n))

mltr(〈m〉ϕ, i, n) =
n∨
j=0

(¬rai,j ∨mltr(ϕ, j, n))

Let ϕ be the input formula. As before, we have that, if mltr(ϕ,nm(ϕ)) is satisfiable in
CPL then ϕ is satisfiable in K. However, mltr(ϕ,nm(ϕ)) can be very large. We therefore
start with mltr(ϕ, n), for some small number n. If we find a model for this formula, then
ϕ has a model, we can stop and return SAT. If we do not find a model, we increment n
and start again. Formally, we have.

Definition 7.6 (Over-approximation). Let ϕ ∈ LML. The over-approximation of ϕ,
denoted ϕ̂, is the formula mltr(ϕ, 1).

133

Chapter 7. Methods for Automated Reasoning in Modal Logic

Definition 7.7 (Over-approximation Refinement). Let 1 ≤ n ≤ nm(ϕ) + 1. The refine-
ment of mltr(ϕ, n), noted refine(mltr(ϕ, n)) is the formula mltr(ϕ, n+ 1).

Theorem 7.9. If mltr(ϕ, n) is satisfiable then mltr(ϕ, n + 1) is satisfiable, for all 1 <
n ≤ nm(ϕ) + 1.

Proof Sketch. The idea is that if ϕ is satisfied by a model M with n worlds, then we
can find a model M ′ with n + 1 worlds satisfying ϕ. The additional world is just not
accessible from the ones already in M .

Theorem 7.9 above means that RECAR Assumption 2 is satisfied by this over-
approximation. Assumption 3 is also satisfied, because mltr(ϕ, n) sat≡ mltr(ϕ, n + 1),
for n > nm(ϕ). This allows us to use this over-approximation and refinement in the
RECAR approach.

Under-approximation

To understand the intuition behind the under-approximation we use in our solver, let
us see an example. Let ϕ = (♦p ∧ �¬p ∧ χ) for some χ ∈ L, where nm(χ) is huge.
This is clearly unsatisfiable because (♦p ∧�¬p) is unsatisfiable. One can see that right
away without even knowing what χ looks like. However, a CEGAR approach using the
over-approximation and refinement defined earlier will take a long time before finally
conclude it. The reason is that each refinement mltr(ϕ, n+1) of the original formula will
be shown unsatisfiable and it will not stop until the huge number nm(ϕ) + 1 is reached.

We found a way to avoid these pathological cases, as follows. Let us take that formula
ϕ again. First, we add to each conjunct in ϕ a fresh variable si (a selector) that will
be assumed to be true by the SAT solver, as done in Figure 7.3. Then, we make the
first over-approximation mltr(ϕ, 1) and give it to a modern SAT solver. The solver will
return UNSAT with an unsatisfiable core. From this core, we extract a set of selectors
core. Let us assume, in our example, that core = {s1, s2}. This means that the formula
ϕ̌ = (♦p ∧ �¬p), which is the one labelled by the selectors, is enough to prove the
unsatisfiability of ϕ with only 1 possible world. Proving the unsatisfiability of ϕ̌ will
imply that ϕ is unsatisfiable. Note that, in this specific case, nm(ϕ̌) is much smaller
than nm(ϕ). Thus, if we launch a SAT solver on mltr(ϕ̌, 1) will succeed right a way,
while it may have failed for the entire formula ϕ. Formally, we have the following.

134

7.3. The K-SAT problem

∧

∨

¬s1 ♦

p

∨

¬s2 �

¬p

∨

¬s3 χ

Figure 7.3 – The formula ϕ = (♦p ∧�¬p ∧ χ) with selectors

Definition 7.8 (Under-approximation).

under(p, core) = p

under(¬p, core) = ¬p
under([m]ϕ, core) = [m](under(ϕ, core))
under(〈m〉ϕ, core) = 〈m〉(under(ϕ, core))
under((ϕ ∧ ψ), core) = under(ϕ, core) ∧ under(ψ, core)

under((ψ ∨ χ), core) =

under(χ, core) if ψ = ¬si, si ∈ core
> if ψ = ¬si, si 6∈ core
(under(ψ, core)
∨under(χ, core)) otherwise

Theorem 7.10. If under(ϕ, core) is unsatisfiable then ϕ is unsatisfiable.

The intuition of the proof is that each selector si enables an operand in a conjunction
of the formula. Each time function under() is called with a non-empty core, operands
not enabled with a selector from the core will be removed from the formula.

Theorem 7.10 shows that function under() satisfies RECAR Assumption 4. To see
that it also satisfies Assumption 5, note that the length of undern+1(ϕ, core) is smaller
or equal to that of undern(ϕ, core′) (even though the sets core and core′ usually differ).

MoSaiC is RECAR for K-SAT

Algorithm 7.3 shows the instantiation of RECAR to modal logic K satisfiability problem.
It uses the over- and under-approximation defined in the previous sections.

This algorithm has been implemented by Valentin Montmirail in the solver MoSaiC.
As before, MoSaiC uses the SAT solver Glucose (Audemard et al. 2013; Eén and Sörens-
son 2003) to decide the satisfiability of each ψ.

Some implementation details are not depicted in the algorithm. For instance, Glucose
is not called on ψ but on an updated ψ′ with selectors on conjuncts under the assumption

135

Chapter 7. Methods for Automated Reasoning in Modal Logic

1 function mosaic(ϕ)
2 l← 1
3 ψ ← mltr(ϕ, l)
4 while true do
5 if glucose(ψ) then
6 return SAT
7 if l > nm(ϕ) then
8 return UNSAT
9 χ← under(ϕ, core)

10 if χ 6= ϕ then
11 if check(χ) = UNSAT then
12 return UNSAT
13 else
14 l← max(|M |, l + 1)

15 ψ ← mltr(ϕ, l)

Algorithm 7.3: MoSaiC

that these selectors are satisfied. It is not necessary to generate the under approximation
χ to test the condition χ 6= ϕ on line 10. It suffices to know the number of selectors
involved in the unsatisfiability of the formula. MoSaiC also returns a Kripke model,
when it finds one. This information is used to calculate the new value of l. Finally, note
that, in this specific case, max(|M |, l+ 1) always returns |M |, because it is not possible
to find a model smaller than M by the definition of under(ϕ).

7.3.4 Experiments
As before, only some results are shown here. The reader can find more information in
(Lagniez et al. 2017) and in Montmirail’s thesis (Montmirail 2018).

MoSaiC has been compared against the same solvers as in (Nalon et al. 2016), namely:

• KSP 0.1 (Nalon et al. 2016);

• BDDTab 1.0 (Goré et al. 2014);

• FaCT++ 1.6.4 (Tsarkov and Horrocks 2006);

• InKreSAT 1.0 (Kaminski and Tebbi 2013);

• *SAT 1.3 (Giunchiglia et al. 2002);

• Km2SAT 1.0 (Sebastiani and Vescovi 2009) combined with the same Glucose SAT
solver we use in MoSaiC;

• Spartacus 1.0 (Götzmann et al. 2010);

136

7.4. Conclusion

Figure 7.4 – Runtime distribution on all the benchmarks

• a combination of the optimized functional translation (Horrocks et al. 2007) with
Vampire 4.0 (Kovács and Voronkov 2013).

We can see on Figure 7.4 that MoSaiC with CEGAR is the worst solver whereas
MoSaiC with RECAR outperforms all other solvers. Km2SAT has a specific technique
to detect some unsatisfiable formulas without generating the CNF. This explains why it
performs much better than the CEGAR approach. *SAT interleaves SAT reasoning and
domain reasoning, and can be considered as an under-approximation CEGAR approach.
It shows good results, despite being tied with the old SAT solver SATO. Spartacus is
based on a tableau method, not on SAT. SAT based-techniques were not the best way
to tackle such problems up to this work.

7.4 Conclusion
We saw in this chapter a reduction from KT5 to CPL that has been used to address
the KT5-SAT problem using a SAT solver. This reduction uses a lower upper bound
on the number of possible worlds of the model and also structural caching. We saw a
comparison of this approach against solvers representing the state-of-the-art for KT5-
SAT in a number benchmarks. The approach presented here outperforms those solvers.

Even if the benchmarks were not KT5 benchmarks, since they come from other
modal logics, namely, K, KT and KT4, those results open interesting perspectives. For
instance, satisfiability in KT5 entails satisfiability on less restrictive models, such as K,
KT and KT4. Since S52SAT finds models in just a few seconds (2.06s median time), it
could eventually be used as a preprocessing step for other modal logics.

137

Chapter 7. Methods for Automated Reasoning in Modal Logic

The second part of this chapter presented the algorithm called recursive explore and
check abstraction refinement (RECAR). We saw that, if the five RECAR conditions are
fulfilled, the underlining algorithm is sound, complete and terminates. RECAR has been
instantiated for the K-SAT problem in the solver MoSaiC, which has been compared to
several other solvers on a number of benchmarks. It outperformed all those solvers on
the benchmarks considered.

The natural continuation of this research is tackling the remaining modal logics in
Figure 3.2. Actually, we have already started it. In a recent publication (Lagniez et al.
2018), we showed that, with some adaptations, MoSaiC can address all modal logics
with axioms (T), (B), (4) and (5). The first experiments already show that MoSaiC is
competitive on logics KT and KT4, but more improvements are on the way.

138

Chapter 8

Conclusion

This document describes part of the research I did in the past eleven years. Here, we
saw that, in the first years, I worked on the formalisation of individual and collective
responsibility in order to formalise the problem of many hands. To attain that objec-
tive, I designed coalition epistemic dynamic logic, a formalism capable of expressing
agents actions, knowledge and, through abbreviations, also ability, knowing ability and
obligation. The logic designed was apt to the task. Formalisations of different kinds of
responsibility and also of the problem of many hands were proposed using this logic.

Towards the end of that first period, in part motivated by a number of questions
left open for CEDL, I decided to design a similar, but more suitable formalism. The
alternating-time dynamic epistemic logic has actions in “dynamic epistemic style”, which
permitted to address those open questions, as well as reasonable sized systems specifi-
cations.

Some years passed and the next natural step was enriching ATDEL. There were
several possibilities. I decided that an interesting development would be the possibility
of modeling environments where agents can have incorrect information, and where they
are able to reconsider their knowledge base when they realise their mistakes. This lead
me to the somewhat different area of belief revision theory. I then worked on that area
with colleagues at the CRIL, aiming at finding generalisations of expansion and revision
for multi-agents scenarios.

That topic is not yet closed. Some interesting possibilities for advancement of the
work on belief revision are still possible. As it has been pointed out before, it comprises
multi-agent revision by subjective formulas, and a very general kind of belief revision
where different agents use different ways to revise their beliefs.

More recently, I decided to search for ways of putting in practice some of the the-
oretical investigations I did all these years. This lead me to the study of modal logic
automated reasoning. Indeed, in the last part of this document, I described some re-
search carried out with CRIL colleagues on that subject. Putting together our different
expertises, the system built from that collaboration were able to outperform state-of-

139

Chapter 8. Conclusion

the-art techniques on modal logic automated reasoning.
This thesis obviously does not describe all the research work I did in the period. One

interesting result not described here is (Herzig et al. 2009). On that paper, we investi-
gate a logic called acceptance logic, which aims at modelling individual and collective
acceptances. In that logic, formulas of the form AG:xϕ read ‘if the agents in the group
G identify themselves with institution x then they together accept that ϕ’.

We extend that formalism by two dynamic modal operators. The first one models
the event of agents learning some piece of information ψ in some context x. Technically,
this is done using public announcements, i.e., public actions that make all agents in the
environment commonly know that ψ is true. In the case here, ψ becomes commonly ac-
cepted in context x. The second operator models the event of agents shifting (changing)
their acceptances in order to accept some piece of information ψ in context x.

We propose a sound and complete axiom system for this dynamic extension of ac-
ceptance logic. In addition, we show that this formalism can be used to model some
interesting aspects of judgement aggregation. In particular, we apply it to the ‘doctrinal
paradox’ (Kornhauser and Sager 1986; Petit 2001). Because of a distinction between
what agents accept in a context x and what agents believe, the doctrinal paradox does
not necessarily lead to a contradiction, when formalised in that logic.

Another interesting result in the period is (Magnier and de Lima 2015). On that
paper, we create a dialogical version of public announcement logic. In this version, the
validity of a formula is defined via an argumentative game between two adversaries, the
proponet and the opponent. The proponent starts a game by uttering a thesis (a for-
mula) and then tries to defend it against the opponent. The opponent tries to refute the
proponent’s thesis. The moves in this game are either challenges on adversary’s moves
or defenses against adversary’s challenges. The game is played with players acting alter-
natively. The game terminates when there are no more allowed moves. The proponent
wins if there are no allowed moves for the opponent, and vice-versa.

We showed soundness and completeness of the game rules. The rules are made in
such a way that simple adaptations can handle other systems, e.g., systems without the
truth axiom, positive or negative introspection.

Future plans include the natural continuations aforementioned and a couple of new
ideas.

For instance, I have started co-supervising a third Ph.D., now on the subject of
intentions in epistemic games. The latter are games where players must have to take
other players knowledge or beliefs into account to be able to play effectively. Common
examples are Cluedo, Hanabi and most card games.

In this kind of game, some moves may reveal player’s intentions. For example, in
a collaborative game like Hanabi, a player may try to communicate with her partner
by playing some specific card. In a competitive game, a player may try to make the
opponent believe that she has some important card, in order to make the opponent take
a “bad” decision.

The project has two phases. The first one is to propose a logical modelling of inten-
tions in epistemic games. This can be done using the formalisms we saw here, i.e., logics
of action, knowledge, belief, abilities, etc.. The second phase is to use this modelling to
explain players decisions in the course of games.

140

Detection of players intentions is generally computationally expensive. The time
allotted to each player is often too short to allow performing this task during the game.
But it is possible to study games off-line in order to, e.g., identify bad moves or explain
good ones. This second phase will use the results on modal logic automated reasoning.

141

Appendix A

List of Publications by T. de Lima

Articles in International Journals
Balbiani, Philippe, Alexandru Baltag, Hans van Ditmarsch, Andreas Herzig, Tomo-

hiro Hoshi, and Tiago de Lima (Oct. 2008). “‘Knowable’ as ‘known after an an-
nouncement’”. In: The Review of Symbolic Logic 1.3, pp. 305–334. doi: 10.1017/
S1755020308080210.

Balbiani, Philippe, Hans van Ditmarsch, Andreas Herzig, and Tiago de Lima (2010).
“Tableaux for Public Announcement Logic”. In: Journal of Logic and Computation
20.1, pp. 55–76. doi: 10.1093/logcom/exn060.

van Ditmarsch, Hans, Andreas Herzig, and Tiago de Lima (2011). “From Situation
Calculus to Dynamic Epistemic Logic”. In: Journal of Logic and Computation 21.2,
pp. 179–204. doi: 10.1093/logcom/exq024.

— (2012). “Public announcements, public assignments and the complexity of their
logic”. In: Journal of Applied Non-Classical Logics 22.3, pp. 249–273. doi: 10.1080/
11663081.2012.705964.

Herzig, Andreas, Tiago de Lima, and Emiliano Lorini (2009b). “On the dynamics of
institutional agreements”. In: Synthese 171, pp. 321–355. doi: 10.1007/s11229-
009-9645-2.

de Lima, Tiago (2014). “Alternating-time temporal dynamic epistemic logic”. In: Journal
of Logic and Computation 24.6, pp. 1145–1178. doi: 10.1093/logcom/exs061.

de Lima, Tiago, Lambèr Royakkers, and Frank Dignum (2010b). “A Logic for Reasoning
about Responsibility”. In: Logic Journal of the IGPL 18.1, pp. 99–117. doi: 10.
1093/jigpal/jzp073.

Magnier, Sébastien and Tiago de Lima (June 2015). “A soundness & completeness proof
on dialogs and dynamic epistemic logic”. In: Logique & Analyse 230, pp. 219–250.
doi: 10.2143/LEA.230.0.3141809.

143

https://doi.org/10.1017/S1755020308080210
https://doi.org/10.1017/S1755020308080210
https://doi.org/10.1093/logcom/exn060
https://doi.org/10.1093/logcom/exq024
https://doi.org/10.1080/11663081.2012.705964
https://doi.org/10.1080/11663081.2012.705964
https://doi.org/10.1007/s11229-009-9645-2
https://doi.org/10.1007/s11229-009-9645-2
https://doi.org/10.1093/logcom/exs061
https://doi.org/10.1093/jigpal/jzp073
https://doi.org/10.1093/jigpal/jzp073
https://doi.org/10.2143/LEA.230.0.3141809

Appendix A. List of Publications by T. de Lima

Articles in International Conference andWorkshop Pro-
ceedings
Balbiani, Philippe, Alexandru Baltag, Hans van Ditmarsch, Andreas Herzig, Tomohiro

Hoshi, and Tiago de Lima (2007b). “What can we achieve by arbitrary announce-
ments?: A Dynamic Take on Fitch’s Knowability”. In: Proceedings of the 11th Con-
ference on Theoretical Aspects of Rationality and Knowledge (TARK-2007). Ed. by
D. Samet. ISBN: 978-2-87463-077-4. Presses Universtaires de Louvain, pp. 42–51.
isbn: 978-2-87463-077-4.

Balbiani, Philippe, Hans van Ditmarsch, Andreas Herzig, and Tiago de Lima (2007).
“A Tableau Method for Public Announcement Logics”. In: Automated Reason-
ing with Analytic Tableaux and Related Methods, 16th International Conference,
(TABLEAUX 2007). Ed. by Nicola Olivetti. Vol. 4548. Lecture Notes in Com-
puter Science. Springer, pp. 43–59.

— (2012). “Some truths are best left unsaid”. In: Advances in Modal Logic Volume 9.
Ed. by Thomas Bolander, Torben Braüner, Silvio Ghilardi, and Lawrence S. Moss.
College Publications, pp. 36–54.

de Boer, Mathijs, Andreas Herzig, Tiago de Lima, and Emiliano Lorini (2009). “Tableaux
for Acceptance Logic”. In: Declarative Agent Languages and Technologies VII. Ed. by
Mateo Baldoni, Jamal Bentahar, M. Birna van Riemsdijk, and John Lloyd. Vol. 5948.
Lecture Notes in Computer Science. DOI: 10.1007/978-3-642-11355-0_6. Springer,
pp. 85–100.

Caridroit, Thomas, Sébastien Konieczny, Tiago de Lima, and Pierre Marquis (2015a).
“Private Expansion and Revision in Multi-Agent Settings”. In: Proceedings of the
13th European Conference on Symbolic and Quantitative Approaches to Reasoning
with Uncertainty (ECSQARU 2015). Ed. by Sébastien Destercke and Thierry De-
noeux. Vol. 9161. Lecture Notes in Computer Science. Springer, pp. 175–185.

— (2016). “On Distances Between KD45n Kripke Models and Their Use for Belief Re-
vision”. In: Proceedings of the 22nd European Conference on Artificial Intelligence
(ECAI 2016). Ed. by Gal A. Kaminka et al. Vol. 285. Frontiers in Artificial Intel-
ligence and Applications. IOS Press, pp. 1053–1061. doi: 10.3233/978-1-61499-
672-9-1053.

Caridroit, Thomas, Jean-Marie Lagniez, Daniel Le Berre, Tiago de Lima, and Valentin
Montmirail (2017). “A SAT-Based Approach for Solving the Modal Logic S5-Satisfiability
Problem”. In: Proceedings of the Thirty-First AAAI Conference on Artificial Intel-
ligence (AAAI 2017). Ed. by Satinder P. Singh and Shaul Markovitch. AAAI Press,
pp. 3864–3870.

van Ditmarsch, Hans, Andreas Herzig, and Tiago de Lima (Nov. 2007a). “Optimal
Regression for Reasoning about Knowledge and Actions”. In: Formal Models of Be-
lief Change in Rational Agents. Ed. by G. Bonanno, J. Delgrande, J. Lang, and
H. Rott. Dagstuhl Seminar Proceedings 07351. (Longer version based on contribu-
tion ‘Optimal Regression for Reasoning about Knowledge and Actions’ published in
Proceedings of AAAI. 2007). Dagstuhl, Germany: Internationales Begegnungs- und
Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany.

144

https://doi.org/10.3233/978-1-61499-672-9-1053
https://doi.org/10.3233/978-1-61499-672-9-1053

Articles in International Conference and Workshop Proceedings

— (2007b). “Optimal Regression for Reasoning about Knowledge and Actions”. In:
Proceedings of the 22nd AAAI Conference on Artificial Intelligence (AAAI 2007).
ISBN: 978-1-57735-323-2. AAAI Press, pp. 1070–1075. isbn: 978-1-57735-323-2.

van Ditmarsch, Hans, Tiago de Lima, and Emiliano Lorini (2011). “Intention change
via local assignments”. In: Third international Workshop on Language, Methodolo-
gies and Development Tools for Multi-Agent Systems. Vol. 6822. Lecture Notes in
Computer Science. Springer, pp. 135–151.

Herzig, Andreas, Tiago de Lima, and Emiliano Lorini (2009a). “On the Dynamics of
Institutional Agreements”. In: Knowledge Representation for Agents and Multi-Agent
Systems. Ed. by J.-J. Meyer and J. Broersen. Vol. 5605. Lecture Notes in Computer
Science. DOI: 10.1007/978-3-642-05301-6. Springer, pp. 66–80.

Herzig, Andreas, Tiago de Lima, Emiliano Lorini, and Nicolas Troquard (2012). “A
Computationally Grounded Dynamic Logic of Agency, with an Application to Legal
Actions”. In: Proceedings of the 11th International Conference Deontic Logic in
Computer Science (DEON 2012). Ed. by Thomas Ågotnes, Jan M. Broersen, and
Dag Elgesem. Vol. 7393. Lecture Notes in Computer Science. Springer, pp. 170–183.
isbn: 978-3-642-31569-5.

Lagniez, Jean-Marie, Daniel Le Berre, Tiago de Lima, and Valentin Montmirail (2016).
“On Checking Kripke Models for Modal Logic K”. In: Proceedings of the 5th Work-
shop on Practical Aspects of Automated Reasoning (PAAR@IJCAR 2016). Ed. by
Pascal Fontaine, Stephan Schulz, and Josef Urban. Vol. 1635. CEUR Workshop
Proceedings. CEUR-WS.org, pp. 69–81.

— (2017). “A Recursive Shortcut for CEGAR: Application To The Modal Logic K Sat-
isfiability Problem”. In: Proceedings of the Twenty-Sixth International Joint Confer-
ence on Artificial Intelligence (IJCAI 2017). Ed. by Carles Sierra. ijcai.org, pp. 674–
680. doi: 10.24963/IJCAI.2017/94.

— (2018b). “An Assumption-Based Approach for Solving the Minimal S5-Satisfiability
Problem”. In: Proceedings of the 9th International Joint Conference Automated Rea-
soning (IJCAR 2018). Ed. by Didier Galmiche, Stephan Schulz, and Roberto Se-
bastiani. Vol. 10900. Lecture Notes in Computer Science. Springer, pp. 1–18. doi:
10.1007/978-3-319-94205-6_1.

de Lima, Tiago (2011). “Alternating-Time Temporal Announcement Logic”. In: Pro-
ceedings of the 12th International Workshop on Computational Logic in Multi-Agent
Systems (CLIMA XII). Ed. by João Leite, Paolo Torroni, Thomas Ågotnes, Guido
Boella, and Leon van der Torre. Vol. 6814. Lecture Notes in Computer Science.
Springer, pp. 105–121. isbn: 978-3-642-22358-7.

de Lima, Tiago, Lambèr Royakkers, and Frank Dignum (2010a). “Modeling the problem
of many hands in organisations”. In: Proceedings of the 19th European Conference
on Artificial Intelligence (ECAI 2010). Ed. by Helder Coelho, Rudi Studer, and
Michael J. Wooldridge. IOS Press, pp. 79–84.

— (July 2008). “Towards a Formalization of Responsibility”. In: Proceedings of the 3rd
International Workshop on Normative Multiagent Systems (NorMAS 2008). Ed. by
G. Boella, M. Singh, G. Pigozzi, and H. Verhagen, pp. 66–79. isbn: 2-919940-48-1.

145

https://doi.org/10.24963/IJCAI.2017/94
https://doi.org/10.1007/978-3-319-94205-6_1

Appendix A. List of Publications by T. de Lima

Short Papers in International Conference Proceedings
Caridroit, Thomas, Sébastien Konieczny, Tiago de Lima, and Pierre Marquis (2015b).

“Private Revision in a Multi-Agent Setting”. In: Proceedings of the 2015 International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2015). Ed. by
Gerhard Weiss, Pinar Yolum, Rafael H. Bordini, and Edith Elkind. ACM, pp. 1677–
1678.

Lagniez, Jean-Marie, Daniel Le Berre, Tiago de Lima, and Valentin Montmirail (2018a).
“A SAT-Based Approach For PSPACE Modal Logics”. In: Proceedings of the Six-
teenth International Conference Principles of Knowledge Representation and Rea-
soning (KR 2018). Ed. by Michael Thielscher, Francesca Toni, and Frank Wolter.
AAAI Press, pp. 651–652.

de Lima, Tiago, Lambèr Royakkers, and Frank Dignum (2009). “Behaving Responsible
in Multi-Agent Worlds (Extended Abstract)”. In: Proceedings of the 8th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2009). Ed. by
K. Decker, J. Sichman, C. Sierra, and C. Castelfranchi. IFAAMAS, pp. 1139–1140.

Lorini, Emiliano, Hans van Ditmarsch, and Tiago de Lima (2010). “Logical Model of
Intention and Plan Dynamics”. In: Proceedings of the 19th European Conference of
Artificial Intelligence (ECAI 2010). Ed. by Helder Coelho, Rudi Studer, and Michael
Wooldridge. IOS Press, pp. 1075–1076.

Book Chapters
Herzig, Andreas, Tiago de Lima, Emiliano Lorini, and Nicolas Troquard (2015). “Three

Traditions in the Logic of Action: Bringing Them Together”. In: Krister Segerberg
on Logic of Actions. Ed. by Robert Trypuz. Vol. 1. Outstanding Contributions to
Logic Series. Springer, pp. 61–84.

de Lima, Tiago and Lambèr Royakkers (2015). “A Formalisation of Moral Responsibility
and the Problem of Many Hands”. In: Moral Responsibility and the Problem of Many
Hands. Ed. by Ibo van de Poel, Lambèr Royakkers, and Sjoerd D. Swart. Routledge
Studies in Ethics and Moral Theory. Taylor & Francis. Chap. 3, pp. 93–130.

146

References

Abate, Pietro, Rajeev Goré, and FlorianWidmann (2007). “Cut-free single-pass tableaux
for the logic of common knowledge”. In: Workshop on Agents and Deduction at
TABLEAUX 2007.

Ågotnes, Thomas, Philippe Balbiani, Hans van Ditmarsch, and Pablo Seban (2010).
“Group announcement logic”. In: Journal of Applied Logic 8.1, pp. 62–81.

Ågotnes, Thomas and Hans van Ditmarsch (2008). “Coalitions and Announcements”.
In: Proceedings of the 7th International Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS 2008). Ed. by L. Padgham, D. C. Parkes, J. P. Müeller,
and S. Persons. Vol. 2. IFAAMAS, pp. 673–680.

Alchourrón, Carlos E., Peter Gärdenfors, and David Makinson (1985). “On the logic
of theory change: Partial meet contraction and revision functions”. In: Journal of
Symbolic Logic 50, pp. 510–530.

Alechina, Natasha, Joseph Y. Halpern, and Logan Brian (2017). “Causality, responsibil-
ity and blame in team plans”. In: Proceedings of the 16th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2017). Ed. by Kate Larson,
Michael Winikoff, Sanmay Das, and Edmund H. Durfee. IFAAMAS, pp. 1091–1099.

d’Altan, P., John-Jules Ch. Meyer, and Roel J. Wieringa (1996). “An Integrated Frame-
work for Ought-to-Be and Ought-to-Do Constraints”. In: Artificial Intelligence and
Law 4.2, pp. 77–111.

Alur, Rajeev, Thomas A. Henzinger, and Orna Kupferman (2002). “Alternating-time
temporal logic”. In: Journal of the ACM 5.49, pp. 672–713.

Aucher, Guillaume (2008). “Perspectives on belief and change”. PhD thesis. Université
Paul Sabatier; University of Otago.

— (2010). “Generalizing AGM to a multi-agent setting”. In: Logic Journal of the IGPL
18.4, pp. 530–558.

— (2012). “Private announcement and belief expansion: an internal perspective”. In:
Journal of Logic and Computation 22.3, pp. 451–479.

147

References

Audemard, Gilles, Jean-Marie Lagniez, and Laurent Simon (2013). “Improving Glucose
for Incremental SAT Solving with Assumptions: Application to MUS Extraction”. In:
Proceedings of the International Conference on Theory and Applications of Satisfia-
bility Testing (SAT 2013). Vol. 7962. Lecture Notes in Computer Science. Springer,
pp. 309–317.

Audemard, Gilles and Laurent Simon (2009). “Predicting Learnt Clauses Quality in
Modern SAT Solvers”. In: Proceedings of the 21th International Joint Conference on
Artificial Intelligence (IJCAI 2009). IJCAI Organization, pp. 399–404.

Baaz, Matthias, Uwe Egly, and Alexander Leitsch (2001). “Normal Form Transforma-
tions”. In: Handbook of Automated Reasoning. Ed. by John Alan Robinson and
Andrei Vronkov. Vol. 1. MIT Press. Chap. 5, pp. 273–333.

Balbiani, Philippe, Alexandru Baltag, Hans van Ditmarsch, Andreas Herzig, Tomo-
hiro Hoshi, and Tiago de Lima (Oct. 2008). “‘Knowable’ as ‘known after an an-
nouncement’”. In: The Review of Symbolic Logic 1.3, pp. 305–334. doi: 10.1017/
S1755020308080210.

Balbiani, Philippe, Hans van Ditmarsch, Andreas Herzig, and Tiago de Lima (2012).
“Some truths are best left unsaid”. In: Advances in Modal Logic Volume 9. Ed. by
Thomas Bolander, Torben Braüner, Silvio Ghilardi, and Lawrence S. Moss. College
Publications, pp. 36–54.

Balsiger, Peter, Alain Heuerding, and Stefan Schwendimann (2000). “A Benchmark
Method for the Propositional Modal Logics K, KT, S4”. In: Journal of Automated
Reasoning 24.3, pp. 297–317.

Baltag, Alexandru. and Sonja Smets (2006). “Dynamic belief revision over multi-agent
plausibility models”. In: Proceedings of the 7th Conference on Logic and the Foun-
dations of Game and Decision Theory (LOFT 2006), pp. 11–24.

Baltag, Alexandru and Lawrence S. Moss (2004). “Logics for Epistemic Programs”. In:
Synthese 139.2. Knowledge, Rationality & Action 1–60, 2004, pp. 165–224.

Baltag, Alexandru, Lawrence S. Moss, and Slawomir Solecki (1998). “The logic of com-
mon knowledge, public announcements and private suspicions”. In: Proceedings of the
7th Conference on Theoretical Aspects of Rationality and Knowledge (TARK 1998).
Ed. by Itzhak Gilboa. Morgan Kaufmann, pp. 43–56.

Bayardo Jr, Roberto J. and Robert Schrang (1997). “Using CSP look-back techniques
to solve real world SAT instances”. In: Proceedings of the 14th National Conference
on Artificial Intelligence (AAAI 1997). The AAAI Press, pp. 203–208.

Belnap, Nuel, Michael Perloff, and Ming Xu (2001). Facing the Future: Agents and
Choices in Our Indeterminist World. Oxford University Press.

Benferhat, Salem, Zied Bouraoui, Odile Papini, and Eric Würbel (2014). “Assertional-
based Prioritized Removed Sets Revision of DL-LiteR Knowledge Bases”. In: Pro-
ceedings of the 21st European Conference on Artificial Intelligence (ECAI 2014). Ed.
by Torsten Schaub, Gerhard Friedrich, and Barry O’Sullivan. Vol. 263. Frontiers in
Artificial Intelligence and Applications. IOS Press, pp. 967–968. doi: 10.3233/978-
1-61499-419-0-967.

— (2017). “Prioritized assertional-based removed sets revision of DL-Lite belief bases”.
In: Annals of Mathematics and Artificial Intelligence 79.1-3, pp. 45–75. doi: 10.
1007/S10472-015-9494-2.

148

https://doi.org/10.1017/S1755020308080210
https://doi.org/10.1017/S1755020308080210
https://doi.org/10.3233/978-1-61499-419-0-967
https://doi.org/10.3233/978-1-61499-419-0-967
https://doi.org/10.1007/S10472-015-9494-2
https://doi.org/10.1007/S10472-015-9494-2

References

van Benthem, Johan (1984). “Correspondence Theory”. In: Handbook of Philosophical
Logic: Extensions of Classical Logic. Ed. by Dov M. Gabbay and Franz Guenther.
Vol. 2. D. Reidel Publishing Company. Chap. 4, pp. 167–247.

— (2007). “Dynamic logic for belief revision”. In: Journal of Applied Non-Classical
Logics 17.2, pp. 129–155.

Biere, Armin, Marijn Heule, Hans van Maaren, and Toby Walsh, eds. (2009). Handbook
of Satisfiability. Vol. 185. Frontiers in Artificial Intelligence and Applications. IOS
Press. isbn: 978-1-58603-929-5.

Blackburn, Patrick, Johan van Benthem, and Frank Wolter, eds. (2007). Handbook of
Modal Logic. Vol. 3. Studies in Logic and Practical Reasoning. New York, NY, USA:
Elsevier Science Inc. isbn: 0444516905.

Blackburn, Patrick, Maarten de Rijke, and Yde Venema (2001). Modal Logic. Cambridge
University Press.

Board, Oliver (2004). “Dynamic interactive epistemology”. In: Games and Economic
Behavior 49.1, pp. 49–80.

Borgo, Stefano (2007). “Coalitions in Action Logic”. In: Proceedings of the 20th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI 2007). Ed. by Manuela M.
Veloso, pp. 1822–1827.

Bovens, Mark (1998). The quest for responsibility. Accountability and citizenship in
complex organisations. Cambridge University Press.

Broersen, Jan M. (2011). “Deontic epistemic stit logic distinguishing modes of mens
rea”. In: Journal of Applied Logic 9, pp. 137–152.

Broersen, Jan M., Andreas Herzig, and Nicolas Troquard (2007). “A Normal Simulation
of Coalition Logic and an Epistemic Extension”. In: Proceedings of the 11th Confer-
ence on Theoretical Aspects of Rationality and Knowledge (TARK XI). Ed. by Dov
Samet, pp. 92–101.

Brummayer, Robert and Armin Biere (2009). “Effective Bit-Width and Under-Approximation”.
In: Proceedings of 12th International Conference on Computer Aided Systems The-
ory (EUROCAST 2009). Ed. by Roberto Moreno-Díaz, Franz Pichler, Quesada-
Arencibia, and Alexis. Vol. 5717. Lecture Notes in Computer Science. Springer,
pp. 304–311.

Bryant, Randal E. (1986). “Graph-Based Algorithms for Boolean Function Manipula-
tion”. In: IEEE Transactions on Computers 35.8, pp. 677–691.

Caridroit, Thomas, Sébastien Konieczny, Tiago de Lima, and Pierre Marquis (2015a).
“Private Expansion and Revision in Multi-Agent Settings”. In: Proceedings of the
13th European Conference on Symbolic and Quantitative Approaches to Reasoning
with Uncertainty (ECSQARU 2015). Ed. by Sébastien Destercke and Thierry De-
noeux. Vol. 9161. Lecture Notes in Computer Science. Springer, pp. 175–185.

— (2015b). “Private Revision in a Multi-Agent Setting”. In: Proceedings of the 2015
International Conference on Autonomous Agents and Multiagent Systems (AAMAS
2015). Ed. by Gerhard Weiss, Pinar Yolum, Rafael H. Bordini, and Edith Elkind.
ACM, pp. 1677–1678.

— (2016). “On Distances Between KD45n Kripke Models and Their Use for Belief Re-
vision”. In: Proceedings of the 22nd European Conference on Artificial Intelligence
(ECAI 2016). Ed. by Gal A. Kaminka et al. Vol. 285. Frontiers in Artificial Intel-

149

References

ligence and Applications. IOS Press, pp. 1053–1061. doi: 10.3233/978-1-61499-
672-9-1053.

Caridroit, Thomas, Jean-Marie Lagniez, Daniel Le Berre, Tiago de Lima, and Valentin
Montmirail (2017). “A SAT-Based Approach for Solving the Modal Logic S5-Satisfiability
Problem”. In: Proceedings of the Thirty-First AAAI Conference on Artificial Intel-
ligence (AAAI 2017). Ed. by Satinder P. Singh and Shaul Markovitch. AAAI Press,
pp. 3864–3870.

Chellas, Brian F. (1980). Modal Logic: an introduction. Cambridge University Press.
Chockler, Hana and Joseph Y. Halpern (2004). “Responsibility and Blame: A Structural-

Model Approach”. In: Journal of Artificial Intelligence Research 22, pp. 93–115.
Clarke, Edmund M., Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veit (2003).

“Counterexample-guided abstraction refinement for symbolic model checking”. In:
Journal of the ACM 50.5, pp. 752–794.

Cook, Stephen A. (1971). “The complexity of theorem-proving procedures”. In: Pro-
ceedings of the 3rd annual ACM symposium on Theory of computing (STOC 1971).
ACM, pp. 151–158.

Creignou, Nadia, Raïda Ktari, and Odile Papini (2016). “Belief Contraction Within
Fragments of Propositional Logic”. In: Proceedings of the 22nd European Conference
on Artificial Intelligence (ECAI 2016). Vol. 285. Frontiers in Artificial Intelligence
and Applications. IOS Press, pp. 390–398. doi: 10.3233/978-1-61499-672-9-390.

Creignou, Nadia, Odile Papini, Reinhard Pichler, and Stefan Woltran (2014). “Belief
revision within fragments of propositional logic”. In: Journal of Computer and System
Science 80.2, pp. 427–449. doi: 10.1016/J.JCSS.2013.08.002.

D’Agostino, Marcello, Dov M. Gabbay, Reiner Hähnle, and Joachim Possega, eds. (1999).
Handbook of Tableau Methods. Kluwer Academic Publishers.

Davis, Martin, George Logemann, and Donald Loveland (1962). “A Machine Program
for Theorem Proving”. In: Communications of the ACM 5.7, pp. 394–397.

Davis, Martin and Hilary Putnam (1960). “A Computing Procedure for Quantification
Theory”. In: Journal of the ACM 7.3, pp. 201–215.

De Bona, Glauber, John Grant, Anthony Hunter, and Sébastien Konieczny (2018). “To-
wards a Unified Framework for Syntactic Inconsistency Measures”. In: Proceedins of
the 22nd AAAI Conference on Artificial Intelligence (AAAI 2018). Ed. by Sheila A.
McIlraith and Kilian Q. Weinberger. AAAI Press, pp. 1803–1810.

Delgrande, James P. and Pavlos Peppas (2011). “Revising Horn Theories”. In: Pro-
ceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI
2011). Ed. by Toby Walsh. IJCAI/AAAI, pp. 839–844. doi: 10.5591/978- 1-
57735-516-8/IJCAI11-146.

Demolombe, Robert, Andreas Herzig, and Ivan J. Varzinczak (2003). “Regression in
Modal Logic”. In: Journal of Applied Non-Classical Logics 13.2, pp. 165–185.

Dignum, Virginia and Frank Dignum (2007). “A Logic for Agent Organizations”. In: Pro-
ceedings of the 3rd Workshop on Formal Approaches to Multi-Agent Systems (FAMAS
2007).

van Ditmarsch, Hans (2005). “Prolegomena to Dynamic Logic for Belief Revision”. In:
Synthese 147.2, pp. 229–275.

150

https://doi.org/10.3233/978-1-61499-672-9-1053
https://doi.org/10.3233/978-1-61499-672-9-1053
https://doi.org/10.3233/978-1-61499-672-9-390
https://doi.org/10.1016/J.JCSS.2013.08.002
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-146
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-146

References

van Ditmarsch, Hans, Joseph Y. Halpern, Wiebe van der Hoek, and Barteld Kooi, eds.
(2015). Handbook of Epistemic Logic. College Publications.

van Ditmarsch, Hans, Andreas Herzig, and Tiago de Lima (2007). “Optimal Regression
for Reasoning about Knowledge and Actions”. In: Proceedings of the 22nd AAAI
Conference on Artificial Intelligence (AAAI 2007). ISBN: 978-1-57735-323-2. AAAI
Press, pp. 1070–1075. isbn: 978-1-57735-323-2.

van Ditmarsch, Hans, Wiebe van der Hoek, and Barteld Kooi (2005). “Dynamic epis-
temic logic with assignment”. In: Proceedings of the 4th International Joint Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS 2005). Ed. by Frank
Dignum, Virginia Dignum, Koenig S., S. Kraus, M. P. Sing, and Michael Wooldridge.
ACM, pp. 141–148.

— (2007). Dynamic Epistemic Logic. Springer.
Dyckhoff, Roy, ed. (2000). Vol. 1847. Lecture Notes in Computer Science. Springer.
Eén, Niklas and Niklas Sörensson (2003). “An Extensible SAT-solver”. In: Proceedings

of the International Conference on Theory and Applications of Satisfiability Testing
(SAT 2003). Vol. 2929. Lecture Notes in Computer Science. Springer, pp. 502–518.

Fagin, Ronald, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi (1995). Reasoning
about Knowledge. The MIT Press.

Fitting, Melvin (Aug. 2010). “Notes on Classical Propositional Logic”. Notes for ‘Non-
Classical Logic’ course, Phil 76500 Spring 2018, Lehman College, CUNY, USA.

van Fraassen, Bas C. (1973). “Values and the heart’s command”. In: The Journal of
Philosophy 70.1, pp. 5–19.

French, Tim and Hans van Ditmarsch (Sept. 2008). “Undecidability for arbitrary public
announcement logic”. In: Advances in Modal Logic 7, papers from the seventh con-
ference on “Advances in Modal Logic”. Ed. by Carlos Areces and Robert Goldblatt.
Nancy, France: College Publications, pp. 23–42.

Gabbay, Dov M. and Franz Guenther, eds. (1984). Handbook of Philosophical Logic:
Extensions of Classical Logic. Vol. 2. D. Reidel Publishing Company.

Gärdenfors, Peter (2008). Knowledge in Flux: Modeling the Dynamics of Epistemic
States. Ed. by Dov M. Gabbay, J. Siekmann, Johan van Benthem, and J. Woods.
Vol. 13. Logic and Cognitive Systems. College Publications.

Gerbrandy, Jelle (May 2006). “Logics of propositional control”. In: International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2005). Ed. by
Hideyuki Nakashima, Michael P. Wellman, Gerhard Weiss, and Peter Stone. Hako-
date, Japan: ACM, pp. 193–200.

Giunchiglia, Enrico and Armando Tacchella (2000a). “A subset-matching size-bounded
cache for satisfiability in modal logics”. In: Proceedings of the International Confer-
ence on Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX
2000). Ed. by Roy Dyckhoff. Vol. 1847. Lecture Notes in Computer Science. Springer,
pp. 237–251.

— (2000b). “System description: *SAT: A platform for the development of modal de-
cision procedures”. In: Proceedings of 17th International Conference on Automated
Deduction (CADE-17). Ed. by David McAllester. Vol. 1831. Lecture Notes in
Computer Science. Springer, pp. 291–296.

151

References

Giunchiglia, Enrico, Armando Tacchella, and Fausto Giunchiglia (2002). “SAT-Based
Decision Procedures for Classical Modal Logics”. In: Journal of Automated Reasoning
28.2, pp. 143–171.

Goldman, Alvin and Thomas Blanchard (2018). “Social Epistemology”. In: The Stanford
Encyclopedia of Philosophy. Ed. by Edward N. Zalta. Summer 2018. Metaphysics
Research Lab, Stanford University.

Goodin, Robert E. (1995). Utilitarianism as a Public Philosophy. Cambridge University
Press.

Goranko, Valentin and Govert van Drimmelen (Mar. 2006). “Complete axiomatization
and decidability of Alternating-time temporal logic”. In: Theoretical Computer Sci-
ence 353.1–3, pp. 93–117. doi: 10.1016/j.tcs.2005.07.043.

Goré, Rajeev, Kerry Olesen, and Jimmy Thomson (2014). “Implementing Tableau Cal-
culi Using BDDs: BDDTab System Description”. In: Proceedings of the International
Joint Conference on Automated Reasoning (IJCAR 2014). Ed. by Stéphane Demri,
Deepak Kapur, and Christoph Weidenbach. Vol. 8562. Lecture Notes in Computer
Science. Springer, pp. 337–343.

Goré, Rjeev (1999). “Tableau Methods for Modal and Temporal Logics”. In: Handbook
of Tableau Methods. Ed. by Marcello D’Agostino, Dov M. Gabbay, Reiner Hähnle,
and Joachim Possega. Kluwer Academic Publishers, pp. 297–396.

Götzmann, Daniel, Mark Kaminski, and Gert Smolka (2010). “Spartacus: A Tableau
Prover for Hybrid Logic”. In: Electronic Notes in Theorethical Computer Science
262, pp. 127–139.

Grossi, Davide, Lambèr Royakkers, and Frank Dignum (2007). “Organizational structure
and responsibility: An analysis in a dynamic logic of organized collective agency”.
In: Artificial Intelligence and Law 15, pp. 223–249.

Grove, Adam (1988). “Two Modellings of Theory Change”. In: Journal of Philosophical
Logic 17.2, pp. 157–170.

Halpern, Joseph Y. (2015). “A modification of the Halpern-Pearl definition of causality.”
In: Proceedings of the 24th International Joint Conference on Artificial Intelligence
(IJCAI 2015), pp. 3022–3033.

Halpern, Joseph Y. and Yoram Moses (Apr. 1992). “A guide to completeness and
complexity for modal logics of knowledge and belief”. In: Artificial Intelligence 54.3,
pp. 319–379.

Halpern, Joseph Y. and Leandro Chaves Rêgo (Jan. 2007a). “Characterizing the NP-
PSPACE Gap in the Satisfiability Problem for Modal Logic”. In: Proceedings of the
20th International Joint Conference on Artificial Intelligence (IJCAI 2007). Ed. by
Manuela M. Veloso, pp. 2306–2311.

— (Aug. 2007b). “Characterizing the NP-PSPACE Gap in the Satisfiability Problem
for Modal Logic”. In: Journal of Logic and Computation 17.4, pp. 795–806.

Harel, David (1984). “Dynamic Logic”. In: Handbook of Philosophical Logic: Extensions
of Classical Logic. Ed. by Dov M. Gabbay and Franz Guenther. Vol. 2. D. Reidel
Publishing Company. Chap. 10, pp. 497–604.

Harel, David, Dexter Kozen, and Jerzy Tiuryn (2000). Dynamic Logic. MIT Press.
Harper, William L. (1976). “Rational Conceptual Change”. In: PSA: Proceedings of the

Biennial Meeting of the Philosophy of Science Association 1976. Vol. 2, pp. 462–494.

152

https://doi.org/10.1016/j.tcs.2005.07.043

References

Herzig, Andreas, Jérôme Lang, Dominique Longin, and Thomas Polacsek (2000). “A
logic for planning under partial observability”. In: Proceedings of the 17th National
Conference on Artificial Intelligence and 12th Conference on on Innovative Applica-
tions of Artificial Intelligence (AAAI 2000). Ed. by Henry A. Kautz and Bruce W.
Porter. AAAI Press / The MIT Press, pp. 768–773.

Herzig, Andreas, Jérôme Lang, and Pierre Marquis (2005). “Action progression and
revision in multiagent belief structures”. In: Proceedings of the 6th Workshop on
Nonmonotonic Reasoning, Action, and Change (NRAC 2005).

Herzig, Andreas, Tiago de Lima, and Emiliano Lorini (2009). “On the dynamics of
institutional agreements”. In: Synthese 171, pp. 321–355. doi: 10.1007/s11229-
009-9645-2.

Herzig, Andreas and Emiliano Lorini (Oct. 2010a). “A Dynamic Logic of Agency I:
STIT, Capabilities and Powers”. In: Journal of Logic, Language and Information
19.1, pp. 89–121. doi: 10.1007/s10849-009-9105-x.

— (July 2010b). “A Dynamic Logic of Agency II: Deterministic , Coalition Logic, and
Game Theory”. In: Journal of Logic, Language and Information 19.3, pp. 327–351.
doi: 10.1007/s10849-009-9104-y.

Hintikka, Jaakko (1962). Knowledge and Belief: An Introduction to the Logic of the Two
Notions. Cornell University Press.

van der Hoek, Wiebe and Michael Wooldridge (2003). “Cooperation, Knowledge, and
Time: Alternating-Time Temporal Epistemic Logic and its Applications”. In: Studia
Logica 75, pp. 125–157.

Horrocks, Ian, Ullrich Hustadt, Ulrike Sattler, and Renate A. Schmidt (2007). “4 Com-
putational modal logic”. In: Studies in Logic and Practical Reasoning 3, pp. 181–
245.

Hugues, G.E. and M.J. Cresswell (1996). A New Introduction to Modal Logic. Routlege.
doi: 10.4324/9780203028100.

Hunter, Anthony and Sébastien Konieczny (2010). “On the measure of conflicts: Shapley
Inconsistency Values”. In: Artificial Intelligence 174.14, pp. 1007–1026. doi: 10.
1016/J.ARTINT.2010.06.001.

Jamroga, Wojtec and Thomas Ågotnes (2007). “Constructive knowledge: What agents
can achieve under incomplete information”. In: Journal of Applied Non-Classical
Logics 4.1, pp. 423–475.

Jamroga, Wojtec and Wiebe van der Hoek (2004). “Agents that know how to play”. In:
Fundamenta Informaticae.

Janota, Mikolás, William Klieber, João Marques-Silva, and Edmund M. Clarke (2016).
“Solving QBF with counterexample guided refinement”. In: Artificial Intelligence
234, pp. 1–25.

Kaminski, Mark and Tobias Tebbi (2013). “InKreSAT: Modal Reasoning via Incremental
Reduction to SAT”. In: Proceedings of 24th International Conference on Automated
Deduction (CADE-24). Ed. by Maria Paola Bonacina. Vol. 7898. Lecture Notes in
Computer Science. Springer, pp. 436–442.

Katsuno, Hirofumi and Alberto O. Mendelzon (1991a). “On the difference between
updating a knowledge base and revising it”. In: Proceedings of the 2nd International
Conference on Principles of Knowledge Representation and Reasoning (KR 1991).

153

https://doi.org/10.1007/s11229-009-9645-2
https://doi.org/10.1007/s11229-009-9645-2
https://doi.org/10.1007/s10849-009-9105-x
https://doi.org/10.1007/s10849-009-9104-y
https://doi.org/10.4324/9780203028100
https://doi.org/10.1016/J.ARTINT.2010.06.001
https://doi.org/10.1016/J.ARTINT.2010.06.001

References

Ed. by James F. Allen, Richard Fikes, and Erik Sandewall. Morgan Kaufmann,
pp. 387–394.

Katsuno, Hirofumi and Alberto O. Mendelzon (Dec. 1991b). “Propositional knowledge
base revision and minimal change”. In: Artificial Intelligence 52.3, pp. 263–294. doi:
10.1016/0004-3702(91)90069-V.

Khasidashvili, Zurab, Konstantin Korovin, and Dmitry Tsarkov (2015). “EPR-based
k-induction with Counterexample Guided Abstraction Refinement”. In: Global Con-
ference on Artificial Intelligence (GCAI 2015). Ed. by Georg Gottlob, Geoff Sutcliffe,
and Andrei Voronkov. Vol. 36. EPiC Series in Computing. EasyChair.

Kooi, Barteld (2007). “Expressivity and completeness for public update logics via re-
duction axioms”. In: Journal of Applied Non-Classical Logics 17.2, pp. 231–253.

Kornhauser, Lewis A. and Lawrence G. Sager (1986). “Unpacking the Court”. In: Yale
Law Journal 96, pp. 82–117.

Kovács, Laura and Andrei Voronkov (2013). “First-Order Theorem Proving and Vam-
pire”. In: Proceedings of 25th International Conference on Computer Aided Verifica-
tion (CAV 2013). Ed. by Natasha Sharygina and Helmut Veith. Vol. 8044. Lecture
Notes in Computer Science. Springer, pp. 1–35.

Kripke, Saul (1959). “A Completeness Theorem in Modal Logic”. In: Journal of Symbolic
Logic 24.1, pp. 1–14. doi: 10.2307/2964568.

Kuhn, Steven (2019). “Prisoner’s Dilemma”. In: The Stanford Encyclopedia of Philoso-
phy. Ed. by Edward N. Zalta. Summer 2019. Metaphysics Research Lab, Stanford
University.

Ladner, Richard E. (1977). “The Computational Complexity of Provability in Systems
of Modal Propositional Logic”. In: SIAM Journal on Computing 6.3, pp. 467–480.

Lagniez, Jean-Marie, Daniel Le Berre, Tiago de Lima, and Valentin Montmirail (2017).
“A Recursive Shortcut for CEGAR: Application To The Modal Logic K Satisfiability
Problem”. In: Proceedings of the Twenty-Sixth International Joint Conference on
Artificial Intelligence (IJCAI 2017). Ed. by Carles Sierra. ijcai.org, pp. 674–680.
doi: 10.24963/IJCAI.2017/94.

— (2018). “A SAT-Based Approach For PSPACE Modal Logics”. In: Proceedings of
the Sixteenth International Conference Principles of Knowledge Representation and
Reasoning (KR 2018). Ed. by Michael Thielscher, Francesca Toni, and Frank Wolter.
AAAI Press, pp. 651–652.

Lakemeyer, Gerhard and Hector J. Levesque (2005). “Semantics for a useful fragment
of the situation calculus”. In: Proceedings of the 19th International Joint Conference
on Artificial Intelligence (IJCAI 2005). Ed. by L. P. Kaelbling and A. Saffiotti.
Professional Book Center, pp. 490–496.

Lemmon, Edward J. and Dana S. Scott (1977). The Lemmon Notes: An Introduction to
Modal Logic. Ed. by Krister Segerberg. Vol. 11. American Philosophical Quarterly
Monograph Series. Oxford: Basil Blackwell.

Levi, Isaac (1977). “Subjunctives, Dispositions and Chances”. In: Synthese 34, pp. 423–
455.

de Lima, Tiago (2011). “Alternating-Time Temporal Announcement Logic”. In: Pro-
ceedings of the 12th International Workshop on Computational Logic in Multi-Agent
Systems (CLIMA XII). Ed. by João Leite, Paolo Torroni, Thomas Ågotnes, Guido

154

https://doi.org/10.1016/0004-3702(91)90069-V
https://doi.org/10.2307/2964568
https://doi.org/10.24963/IJCAI.2017/94

References

Boella, and Leon van der Torre. Vol. 6814. Lecture Notes in Computer Science.
Springer, pp. 105–121. isbn: 978-3-642-22358-7.

— (2014). “Alternating-time temporal dynamic epistemic logic”. In: Journal of Logic
and Computation 24.6, pp. 1145–1178. doi: 10.1093/logcom/exs061.

de Lima, Tiago, Lambèr Royakkers, and Frank Dignum (2010a). “Modeling the problem
of many hands in organisations”. In: Proceedings of the 19th European Conference
on Artificial Intelligence (ECAI 2010). Ed. by Helder Coelho, Rudi Studer, and
Michael J. Wooldridge. IOS Press, pp. 79–84.

de Lima, Tiago and Lambèr Royakkers (2015). “A Formalisation of Moral Responsibility
and the Problem of Many Hands”. In: Moral Responsibility and the Problem of Many
Hands. Ed. by Ibo van de Poel, Lambèr Royakkers, and Sjoerd D. Swart. Routledge
Studies in Ethics and Moral Theory. Taylor & Francis. Chap. 3, pp. 93–130.

de Lima, Tiago, Lambèr Royakkers, and Frank Dignum (2010b). “A Logic for Reasoning
about Responsibility”. In: Logic Journal of the IGPL 18.1, pp. 99–117. doi: 10.
1093/jigpal/jzp073.

Magnier, Sébastien and Tiago de Lima (June 2015). “A soundness & completeness proof
on dialogs and dynamic epistemic logic”. In: Logique & Analyse 230, pp. 219–250.
doi: 10.2143/LEA.230.0.3141809.

Marques-Silva, João, Ines Lynce, and Sharad Malik (2009). “Conflict-Driven Clause
Learning SAT Solvers”. In: Handbook of Satisfiability. Ed. by Armin Biere, Marijn
Heule, Hans van Maaren, and Toby Walsh. IOS Press. Chap. 4, pp. 131–153.

Marques-Silva, João and Karem A. Sakallah (1996). “GRASP–A New Search Algorithm
for Satisfiability”. In: Digest of IEEE International Conference on Computer-Aided
Design (ICCAD 1996), pp. 220–227.

— (1999). “GRASP: A Search Algorithm for Propositional Satisfiability”. In: IEEE
Transactions on Computers 48.5, pp. 506–521.

Massacci, Fabio (1999). “Design and Results of the Tableaux-99 Non-classical (Modal)
Systems Comparison”. In: Proceedings of the International Conference on Automated
Reasoning with Analytic Tableaux and Related Methods (TABLEAUX 1999). Ed. by
Neil V. Murray. Vol. 1617. Lecture Notes in Computer Science. Springer, pp. 14–18.

Massacci, Fabio and Francesco M. Donini (2000). “Design and Results of TANCS-2000
Non-classical (Modal) Systems Comparison”. In: Proceedings of the International
Conference on Automated Reasoning with Analytic Tableaux and Related Methods
(TABLEAUX 2000). Ed. by Roy Dyckhoff. Vol. 1847. Lecture Notes in Computer
Science. Springer, pp. 52–56. doi: 10.1007/10722086_4.

Mendelson, Elliot (2015). An Introduction to Mathematical Logic. Taylor & Francis.
Meyer, John-Jules Ch. (1988). “A Different Approach to Deontic Logic: Deontic Logic

Viewed as a Variant of Dynamic Logic”. In: Notre Dame Journal of Formal Logic
29.1, pp. 109–136.

Meyer, John-Jules Ch. and Wiebe van der Hoek (1995). Epistemic Logic for AI and
Computer Science. Cambridge University Press.

Meyer, John-Jules Ch. and Roel J. Wieringa, eds. (1993). Deontic Logic in Computer
Science. Chichester: John Wiley and Sons.

Montmirail, Valentin (Sept. 2018). “Practical resolution of satisfiabilitytesting for modal
logics”. PhD thesis. Lens, France: Artois University.

155

https://doi.org/10.1093/logcom/exs061
https://doi.org/10.1093/jigpal/jzp073
https://doi.org/10.1093/jigpal/jzp073
https://doi.org/10.2143/LEA.230.0.3141809
https://doi.org/10.1007/10722086_4

References

Mu, Kedian, Weiru Liu, and Zhi Jin (2011). “A general framework for measuring incon-
sistency through minimal inconsistent sets”. In: Knowledge and Information Systems
27.1, pp. 85–114. doi: 10.1007/S10115-010-0295-Y.

Nalon, Cláudia, Ullrich Hustadt, and Clare Dixon (2016). “KSP : A Resolution-Based
Prover for Multimodal K”. In: Proceedings International Joint Conference on Auto-
mated Reasoning (IJCAR 2016). Ed. by Nicola Olivetti and Ashish Tiwari. Vol. 9706.
Lecture Notes in Computer Science. Springer, pp. 406–415.

Osborne, Martin J. and Ariel Rubinstein (1994). A Course in Game Theory. The MIT
Press.

Patel-Schneider, Peter F. and Roberto Sebastiani (Apr. 2003). “A New General Method
to Generate Random Modal Formulae for Testing Decision Procedures”. In: Journal
of Artificial Intelligence Research 18, pp. 351–389. doi: 10.1613/jair.1166.

Pauly, Marc (2001). “Logic for Social Software”. PhD thesis. ILLC, University of
Amsterdam.

— (2002). “A Modal Logic for Coalitional Power in Games”. In: Journal of Logic and
Computation 12.1, pp. 149–166.

Petit, Philip (2001). “Deliberative Democracy, the Discursive Dilemma”. In: Philosoph-
ical Issues 11, pp. 268–299.

Plaza, Jan A. (1989). “Logics of public communications”. In: Proceedings of the fourth
international symposium on methodologies for intelligent systems: Poster session
program (ISMIS 1989). Ed. by M. L. Emrich, M. S. Pfeifer, M. Hadzikadic, and
Z. W. Ras. Oak Ridge National Laboratory, pp. 201–216.

van de Poel, Ibo, Lambèr Royakkers, and Sjoerd D. Swart, eds. (2015). Moral Respon-
sibility and the Problem of Many Hands. Routledge Studies in Ethics and Moral
Theory. Taylor & Francis.

Reiter, Raymond (1991). “The frame problem in the situation calculus: a simple solution
(sometimes) and a completeness result for goal regression”. In: Artificial Intelligence
and Mathematical Theory of Computation: Papers in Honor of John McCarthy. Ed.
by Vladimir Lifschitz. New York: Academic Press, pp. 359–380.

Robinson, John Alan (1965). “A Machine-Oriented Logic Based on the Resolution Prin-
ciple”. In: Journal of the ACM 12.1, pp. 23–41.

Royakkers, Lambèr (1998). Extending Deontic Logics for the Formalisation of Legal
Rules. Kluwer Academic Publishers.

Sahlqvist, Henrik (1975). “Completeness and Correspondence in the First and Second
Order Semantics for Modal Logic”. In: Proceedings of the Third Scandinavian Logic
Symposium. Uppsala 1973. Ed. by Stig Kanger. North-Holland Publishing Company,
pp. 110–143.

Santos, Felipe and José Carmo (1996). “Indirect Action, Influence and Responsibility”.
In: Deontic Logic, Agency and Normative Systems. Ed. by M. A. Brown and J.
Carmo. C. J. van Rijsbergen, editor, Workshops in Computing series. Springer.

Sebastiani, Roberto and Armando Tacchella (2009). “SAT Techniques for Modal and
Description Logics”. In: Handbook of Satisfiability. Ed. by Armin Biere, Marijn Heule,
Hans van Maaren, and Toby Walsh. Vol. 185. Frontiers in Artificial Intelligence and
Applications. IOS Press. Chap. 25, pp. 781–824. doi: 10.3233/978-1-58603-929-
5-781.

156

https://doi.org/10.1007/S10115-010-0295-Y
https://doi.org/10.1613/jair.1166
https://doi.org/10.3233/978-1-58603-929-5-781
https://doi.org/10.3233/978-1-58603-929-5-781

References

Sebastiani, Roberto and Michele Vescovi (2009). “Automated Reasoning in Modal and
Description Logics via SAT Encoding: the Case Study of K(m)/ALC-Satisfiability”.
In: Journal of Artificial Intelligence Research 35.1, pp. 343–389.

Seipp, Jendrik and Malte Helmert (2013). “Counterexample-Guided Cartesian Abstrac-
tion Refinement”. In: Proceedings of the 23rd International Conference on Automated
Planning and Scheduling (ICAPS 2013). Ed. by Daniel Borrajo, Subbarao Kamb-
hampati, Angelo Oddi, and Simone Fratini. AAAI Press.

Tallon, Jean-Marc, Jean-Christophe Vergnaud, and Shmuel Zamir (2004). “Communi-
cation among Agents: A Way to Revise Beliefs in KD45 Kripke Structures.” In:
Journal of Applied Non-Classical Logics 14.4, pp. 477–500.

Thompson, Dennis F. (1980). “Moral responsibility and public officials: The problem of
many hands”. In: American Political Science Review 74.4, pp. 905–916.

Tsarkov, Dmitry and Ian Horrocks (2006). “FaCT++ Description Logic Reasoner: Sys-
tem Description”. In: Proceedings of the International Joint Conference on Auto-
mated Reasoning (IJCAR 2006). Ed. by Ulrich Furbach and Natarajan Shankar.
Vol. 4130. Lecture Notes in Computer Science. Springer, pp. 292–297.

Tseitin, G. S (1983). “On the Complexity of Derivation in Propositional Calculus”. In:
Automation of Reasoning 2: Classical Papers on Computational Logic 1967–1970.
Ed. by Jörg H. Siekmann and Graham Wrightson. Springer, pp. 466–483.

Walther, Dirk, Wiebe van der Hoek, and Michael Wooldridge (2007). “Alternating-time
Temporal Logic with Explicit Strategies”. In: Proceedings of the 11th Conference on
Theoretical Aspects of Rationality and Knowledge (TARK XI). Ed. by D. Samet.
Presses Universitaires de Louvain, pp. 269–278.

Wang, Chao, Aarti Gupta, and Franjo Ivancic (2007). “Induction in CEGAR for De-
tecting Counterexamples”. In: Proceedings of the 7th International Conference on
Formal Methods in Computer-Aided Design (FMCAD 2007). IEEE Computer Soci-
ety, pp. 77–84.

Weidenbach, Christoph, Dilyana Dimova, Arnaud Fietzke, Rohit Kumar, Martin Suda,
and Patrick Wischnewski (2009). “SPASS Version 3.5”. In: Proceedings of 22nd
International Conference on Automated Deduction (CADE-22). Ed. by Renate A.
Schmidt. Vol. 5663. Lecture Notes in Computer Science. Springer, pp. 140–145.

Wieringa, Roel J. and John-Jules Ch. Meyer (1993). “Actors, actions, and initiative in
normative system specification”. In: Annals of Mathematics and Artificial Intelli-
gence 7, pp. 289–346.

157

Alphabetical Index

Algorithm
ATDEL Model Checking, 102
ATDEL Next-fragment Model

Checking, 99
CDCL, 18
CEGAR with over-approx., 131
Modal Logic Model Checking, 36
MoSaiC, 136
RECAR, 132
Tableau for CPL, 14
Tableau for Modal Logic, 40

Axiom
(Gi,j,k,`), 34
(⊥), 10
(4′), 61
(4), 30, 42, 43, 59
(5′), 61
(5), 30, 42, 43, 59
(AA), 96
(AC), 96
(AD), 96
(AG), 96
(AK), 96
(AN), 96
(AS), 96
(A), 59

(B), 30
(DA), 59
(Df♦), 28
(D), 30, 42, 43
(FPA), 101
(FPU), 101
(K′), 61
(KA), 59
(KS), 61
(K), 28, 59
(PR′), 61
(PR), 59
(RA′), 100
(RG′), 100
(S), 59
(T′), 61
(T), 30, 42, 59
(∧1), 10
(∧2), 10
(∧3), 10
(¬¬), 10
(∨1), 10
(∨2), 10
(∨3), 10
(→ 1), 10
(→ 2), 10

159

Alphabetical Index

Schema, 8
System, 8

Axiom System
ATDEL, 101
ATDEL Next-fragment, 96
CEDL, 59
CPL, 8, 10
Epistemic Logic of Belief, 43
Epistemic Logic of Knowledge, 42
Inclusions, 31
KX, 30
Modal Logic, 28
Modal Logic K, 28

Belief Set, 18
Bisimilarity, 33
Bisimulation, 33

Conjunctive Normal Form, 15
Consistency, 10

Deductive Closure, 9
Derivation, 8

Equisatisfiability, 8
Equivalence, 7
Expressiveness, 91

Formula
Clause, 15
Consistent, 10
Derived, 8
Diamond Degree, 124
Equisatisfiable, 8
Equivalent, 7
Inconsistent, 10
Length, 13
Literal, 15
Modal Degree, 25
Over-approximation, 133
Over-approximation Refinement,

134
Salhqvist, 35
Satisfiable, 7
Under-approximation, 134
Valid, 7

Harper Identity, 22
Hypothesis, 8

Inference Rule, 8
(RDA), 96
(RDG), 96
(RIA), 101
(RIU), 101
(RK), 29
(RMP), 10, 28, 59, 96
(RNA), 59, 96
(RNK), 59, 96
(RN), 28

Invariance, 32
Isomorphism, 32

Language
ATDEL, 85
CEDL, 55
CPL, 6
Epistemic, of Belief, 43
Epistemic, of Knowledge, 41
Modal Logic, 25

Lemma
Compacteness, 9
Monotonicity, 9

Levi Identity, 22
Logic

ATDEL, 85
CEDL, 53
Classical Propositional, 5
Dynamic Epistemic, 44
Epistemic, 41
Modal, 23

Maximal Consistent Set, 10
Model

Boolean Valuation, 6
CEDL, 54
Common Expansion Event, 112
Distinguishability, 91
Epistemic, of Belief, 43
Epistemic, of Knowledge, 41
Event, 45
Kripke, 26

160

Alphabetical Index

Pointed Kripke, 26
Private Expansion of, 108
Private Revision Event, 115
Private Revision of, 114
Product, 45
Update, 45, 86

Multi-agent Belief Set, 106

Negation Normal Form, 15

Postulates
AGM Contraction, 21
AGM Expansion, 20
AGM Revision, 21
Private Expansion, 107
Private Revision, 113

Private Expansion Operator, 108
Private Revision Operators, 114
Problem of Many Hands, 72
Proof, 8

RECAR Assumptions, 132
Responsibility

Accountability, 69
Blameworthiness, 70
Forward-looking, 67
Indirect, 74

Satisfaction Relation
ATDEL, 87
CEDL, 56

CPL, 6
Modal Logic, 27

Satisfiability
CPL, 7
Modal Logic, 28

Semantic Consequence
CPL, 7
Modal Logic, 28

Set of Sub-Formulas, 12
Standard Translation, 30

Tableau
CPL, 13
KT5, 125
Modal Logic, 39

Theorem
Deduction, 11
First-order Definability, 34
Lindenbaum’s, 10
Resolution, 16
Sahlqvist, 35

Translation from KT5 to CPL, 123

Unsatisfiable Core with Assumptions,
131

Validity
CPL, 7
Modal Logic, 27

Vocabulary, 25

161

Résumé

Ce travail présente quatre des mes résultats de recherche les plus importants obtenus
après ma thèse de doctorat, c’est-à-dire, de 2008 à 2019. Après un bref état de l’art, un
formalisme visant à modéliser la responsabilité dans des environnements multi-agents
est mis en avant. Ce formalisme, appelé CEDL, est une logique modale qui contient
des opérateurs épistémiques et dynamiques ainsi que d’autres opérateurs définis comme
des abréviations, telles que l’obligation, la capacité des agents et la capacité de savoir
des agents. Le deuxième résultat est une évolution de CEDL, appelée ATDEL. Cette
logique vise à modéliser les capacités et les connaissances des agents dans un cadre
temporel. Elle permet des spécifications des systèmes beaucoup plus courtes que celles
de CEDL. De plus, outre une axiomatisation, des algorithmes de vérification de modèles
et de vérification de la satisfiabilité de formules sont proposés. Le troisième résultat est
une adaptation de la théorie de révision de croyances AGM à des scénarios multi-agents.
Les postulats d’expansion et de révision AGM sont généralisés à de tels scénarios et
des opérateurs concrets pour l’expansion et la révision des croyances multi-agents sont
proposés. Le dernier résultat présenté porte sur le raisonnement automatique pour les
logiques modales. Des méthodes de vérification de la satisfiabilité de formules dans les
logiques modales K et KT5 sont proposés. Des expériences pratiques montrent que notre
techniques surpasse toutes les méthodes alternatives.

Mots-clés: intelligence artificielle · représentation de connaissance et raisonnement ·
systèmes multi-agents · logique modale · raisonnement sur les actions · raisonnement
sur la connaissance et la croyance · responsabilité · capacité des agents · révision de
croyances · raisonnement automatique · satisfiabilité

163

Abstract

This work presents four of the most important research results obtained after my Ph.D.,
i.e., from 2008 until 2019. After a brief state of the art, a formalism aiming at mod-
elling responsibility in multi-agent environments is put forward. This formalism, called
CEDL, is a modal logic that contains epistemic and dynamic operators as well as some
other operators defined as abbreviations, such as obligation, agents abilities and agents
knowing how abilities. The second result is an evolution of CEDL, called ATDEL. This
logic aims at modelling agents abilities and knowledge trough time. It permits system
specifications that are much smaller than CEDL. In addition, apart from an axioma-
tisation, algorithms for model checking and satisfiability checking of formulas are also
provided. The third result is an adaptation of AGM belief revision theory to multi-agent
scenarios. Multi-agent versions of expansion and revision postulates are proposed. The
last result presented in this work is about modal logic automated reasoning. Methods
for satisfiability checking of formulas in K and KT5 are proposed. Practical experiments
show that our technique outperforms alternative approaches.

Keywords: artificial intelligence · knowledge representation and reasoning · multi-
agent systems · modal logic · reasoning about actions · reasoning about knowledge and
belief · responsibility · agent abilities · belief revision · automated reasoning · satisfiability

165

	Introduction
	Formal Preliminaries
	Classical Propositional Logic
	Syntax
	Semantics
	An Axiom System for CPL
	Automated Reasoning in CPL

	Belief Revision Theory
	Expansion
	Contraction
	Revision

	Conclusion

	Modal Logic
	introduction
	Syntax
	Semantics
	Axiom Systems of Modal Logic
	Other Modal Logics

	Expressiveness
	Computational Complexity
	Some Applications of Modal Logic
	Epistemic Logic
	Dynamic Epistemic Logic
	More applications

	Conclusion

	A Modal Logic of Responsibility
	Motivation
	The Formal Framework
	Models
	Syntax and Semantics of CEDL
	Group Knowledge
	Ability and Knowing How Ability
	Obligations

	Responsibility
	Forward-looking Responsibility
	Backward-looking Responsibility
	The Relation Between Forward-Looking and Backward-Looking Responsibilities

	The Problem of Many Hands
	How to avoid the PMH
	Organisational structures
	Organisational actions
	Indirect responsibility
	Example

	Related Work
	Conclusion

	A Logic of Agent Abilities and Knowledge
	Motivation
	The Logic
	Conflicting Actions
	Syntax of ATDEL
	Semantics of ATDEL

	Examples
	Expressiveness
	ATDEL vs. PAL and PALA
	ATDEL vs. APAL
	ATDEL vs. GAL
	ATDEL vs. CAL
	Summary

	The Next-fragment of ATDEL
	Axiom System
	Decision Procedures

	Full ATDEL
	Axiom System
	Decision Procedures

	Related Work and Discussion
	Conclusion

	Belief Change in Multi-agent Settings
	Multi-agent Belief Sets
	Private Expansion
	Private Expansion Postulates
	A Private Expansion Operator
	A General Expansion Operator

	Private Revision
	Private Revision Postulates
	A Family Of Private Revision Operators

	Related Work
	Conclusion

	Methods for Automated Reasoning in Modal Logic
	Introduction
	The KT5-SAT problem
	From KT5-SAT to SAT
	A New Upper-Bound for the Translation
	Structural Caching
	Experiments

	The K-SAT problem
	CEGAR Preliminaries
	Recursive Explore and Check Abstraction Refinement
	An Implementation of RECAR for Modal Logic
	Experiments

	Conclusion

	Conclusion
	List of Publications by T. de Lima
	References
	Alphabetical Index
	Résumé
	Abstract

