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Die Natur baut keine Maschinen, keine
Lokomotiven, Eisenbahnen, Telegraphen, Spinnau-
tomaten etc. Sie sind Produkte der menschlichen
Industrie; natürliches Material, verwandelt in Or-
gane des menschlichen Willens über die Natur oder
seiner Betätigung in der Natur. Sie sind von der
menschlichen Hand geschaffene Organe des men-
schlichen Hirns; vergegenständlichte Wissenskraft.

La nature ne construit ni machines, ni loco-
motives, ni chemins de fer, ni télégraphes électriques,
ni métiers à tisser automatiques, etc. Ce sont là des
produits de l’industrie humaine, de la matière na-
turelle, transformée en instruments de la volonté et
de l’activité humaines sur la nature. Ce sont des in-
struments du cerveau humain créés par la main hu-
maine, la puissance objectivée du savoir.

Nature builds no machines, no locomotives,
railways, electric telegraphs, self-acting mules, etc.
These are products of human industry; natural ma-
terial transformed into organs of the human will over
nature, or of human participation in nature. They
are organs of the human brain, created by the human
hand ; the power of knowledge, objectified.

Grundrisse der Kritik der politischen Ökonomie,
Karl MARX
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Detail of the Jerusalem cross of the door of the Church of San Cataldo (Palermo, Italy)
visited prior and at the end of this research work. The four Greek crosses may recall
the classical microstructured unit cell from which has been designed the new unit cell
presented in the following pages, of which this central cross potent pattern has been an
inspiration.
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Résumé : Ce manuscrit traite des métamatériaux pouvant empêcher la
propagation des ondes élastiques dans des gammes de fréquences particulières
appelées « bandes interdites ». La conception d’un nouveau métamatériau à
bande interdite est présentée, de la définition des spécifications fonctionnelles
de la cellule de base jusqu’au processus de fabrication de notre preuve de con-
cept et sa caractérisation expérimentale. Il est montré que la compréhension des
mécanismes de résonance locale, combinée à l’optimisation de la géométrie et
au choix d’un procédé de fabrication adéquat permet d’améliorer considérable-
ment les performances théoriques de la cellule. Compte tenu des multiples
contraintes imposées à notre dispositif expérimental, en termes, par exemple,
de modélisation, de temps de calcul et de fabrication et de mesures, une atten-
tion particulière a été portée à la fois au processus d’excitation et à l’acquisition
des résultats expérimentaux, qui seront donc également présenté en détail. Le
chapitre 3 de ce manuscrit présente dans le formalisme variationnel, en plus du
milieu deCauchy, lemodèlemicromorphique relaxé qui sera chargé de conduire
la simplification nécessaire pour avancer vers la conception de métastructures à
grande échelle dans le chapitre 4, qui présente également la comparaison entre
le modèles théoriques et l’expérience, fournissant ainsi une validation de notre
modèle. Le modèle micromorphique relaxé permet de décrire le comportement
des métastructures (ici, les métamatériaux à bande interdite) dans le cadre sim-
plifié de la mécanique des milieux continus avec l’introduction de seulement
quelques paramètres homogénéisés en plus du module de Young et du coeffi-
cient de Poisson. Les paramètres macroscopiques constitutifs de notre modèle
ont été identifiés sur la maille unitaire nouvellement conçue par une première
détermination des paramètres élastiques du modèle micromorphe relaxé par
approche inverse (la simulation classique étant basée sur l’analyse de Bloch-
Floquet de nos structures périodiques), ouvrant la voie à la conception et à la
réalisation demétastructures complexes, dont un exemple sera donné à la fin du
manuscrit. Nousmontrerons également que, sous certaines hypothèses, le com-
portement mécanique des métastructures à bande interdite peut être parfaite-
ment reproduit par notre modèle micromorphique relaxé sur une large bande
de fréquence et ce avec un gain de temps considérable.

Mots clés : métamatériaux mécaniques, modèle micromorphique, band gap,
métastructures.



Abstract: This manuscript aims to deal with metamaterials that can in-
hibit wave propagation in particular frequency ranges which are known as “fre-
quency band-gaps”. The conception of a new band-gap metamaterial is pre-
sented, from the definition of the functional specifications of the unit cell to
the manufacturing process of our proof of concept and its experimental char-
acterization. We will show that the comprehension of local resonance mecha-
nisms, combined with the optimization of the geometry and the choice of an
adequate manufacturing process allows to considerably improve the theoreti-
cal performances of the unit cell. Given the multiple constraints imposed to
our experimental set-up, in terms, e.g., of modelling, computing time, manu-
facturing and measurements, a special attention was paid to both the excitation
process and the acquisition of the experimental results, which will therefore
also be presented in detail. Chapter 3 of this manuscript presents, in addition to
the classical Cauchy continuum, the relaxedmicromorphic model which will be
in charge of leading the required simplification to proceed towards the design
of large-scale metastructures in Chapter 4, which also presents the comparison
between the theoretical models and the experiment, thus providing a solid vali-
dation of ourmodel to be used as a basis formetastructural design. The “relaxed
micromorphic” model allows to describe the behavior of metastructures (here,
band-gap metamaterials) in the simplified framework of continuum mechan-
ics with the introduction of only few homogenized parameters additionally to
the classical Young modulus and Poisson ratio. The constitutive macroscopic
parameters of our model have been identified on the newly designed unit cell
by a first determination of the elastic parameters of the relaxed micromorphic
model by inverse approach (the classical simulation being based on the Bloch-
Floquet analysis of our periodic structures), this opens the way to the efficient
design and realization of engineering metastructures, an example of which will
be given at the end of the manuscript. We will also show that, under certain
assumptions, the mechanical behavior of band-gap metastructures can be per-
fectly reproduced by our relaxed micromorphic model over a wide frequency
band and with considerable time savings.

Keywords: Mechanical metamaterials, micromorphic models, Band gaps,
meta-structures.
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Chapter 1

Introduction

From the ancient greek μετά “beyond”, a “meta”material is an architectured mate-
rial showing exotic properties, i.e. mechanical characteristics that cannot be found in
nature [Dell’Isola 2016b]. If metamaterials were first elaborated for optics (metamate-
rials presenting a negative refraction index by [Veselago 1968]), the first experimental
realization was not carried out until the 2000s [Veselago 2006]. More recently, the idea
of metamaterials was also translated to mechanics, allowing the manipulation of elastic
waves, e.g.

– twist in response to being pushed or pulled [Frenzel 2017, Rizzi 2019]

– cloaking [Bückmann 2015, Misseroni 2016]

– focusing [Guenneau 2007, Bacigalupo 2014]

– channeling [Kaina 2017, Tallarico 2017]

This wave approach allows to see under the same angle extremely different phenomena
as presented in Figure 1.1.

a (Size of the unit cell) [m]

∝ µm 10−2 2.5

fBG (Central frequency of the band-gap) [Hz]

40 · 103 40light

Figure 1.1: (left to right) (a) Lamprocyphus augustus, whose iridescent scales contain a
photonic crystal structure with directional band-gaps [Galusha 2008]. (b) Frequency
response in a temperature-dependent band-gapphononic crystal slab based on the com-
bination ofmetallic parts and highly dissipative polymers [Billon 2019]. (c)Resonances
in trees may result in forests acting as a natural seismic metamaterial for Rayleigh sur-
face waves [Colombi 2016].
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In the effort of modeling mechanical metamaterials’ properties, many exotic fea-
tures have been unveiled, such as:

– negative refraction [Zhu 2014, Kaina 2015, Willis 2016, Li 2004, Bordiga 2019]

– negative longitudinal and volume compressibility [Nicolaou 2012]

– negative effective bulk modulus [Lee 2009]

– negative effective mass density [Lee 2008]

– negative Poisson’s ratio (auxetic materials) [Lakes 1987]

This manuscript aims to deal with metamaterials that can inhibit wave propagation
in particular frequency ranges which are known as “frequency band-gaps” [Liu 2018,
Wang 2014, O.R. Bilal 2018, Celli 2019]. The characteristics of the band-gap strongly
depend on the metamaterial microstructure and such an effect may be obtained by two
different phenomena:

– local resonance, where an element at the local scale comes into resonance indepen-
dently of the whole structure, concentrating energy around the stressed surfaces.

– Bragg scattering [Bragg 1915], where the wavelength of the waves propagating in
the structure coincides with the characteristic length of the period array, making the
reflection and transmission phenomena occurring at the local scale inhibit the global
wave propagation.

In Chapter 2 of this manuscript, we will present the conception of a new band-gap
metamaterial, from the definition of the functional specifications of the unit cell to the
manufacturing process of our proof of concept and its experimental characterization. We
will show that the comprehension of local resonance mechanisms, combined with the
optimization of the geometry and the choice of an adequate manufacturing process al-
lows to considerably improve the theoretical performances of the unit cell. Given the
multiple constraints imposed to our experimental set-up, in terms, e.g., of modelling,
computing time,manufacturing andmeasurements, a special attentionwas paid to both
the excitation process and the acquisition of the experimental results, which will there-
fore also be presented in detail.

Very classically, the experimental results of such a prototype could have been com-
pared to the numerical results obtained by solving a full microstructuredmodel, e.g., by
the Finite Element Method. Such theoretical models accounting for any single element
of the considered structure rapidly show their limits both in terms of complexity and
computational performances. Indeed, the metastructures studied in this manuscript
present two scales of interest:

– themacro scale, at which the physical phenomenons that we aim to control occur and
which is often of interest for Engineers

– the micro scale, which is the scale of the unit cell
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While the specific features of the unit cell are of primary importance when seeking
for specific band-gap characteristics, they become secondary when one aims to design
a large-scale metastructure for wave control. With this central idea in mind, we intro-
duce a homogenized model (RelaxedMicromorphic) that encompass the main wanted
metamaterial’ characteristics, while keeping simple enough to allow the design of com-
plex large-scale metastructures with significantly reduced computational time.

The denomination “macro” and “micro” does not refer to deal with the charac-
teristic length of the structure or respectively of the unit cell but rather of their relative
proportion [Barchiesi 2019]. Themeshing of such small elements on a large-scale struc-
tures coupled with the use of the classical Cauchy model would inevitably lead to an
enormous increase in computation time and would not allow the design of real, large-
scale engineering structures which are able to resist to vibrations and shocks in a large
range of frequencies. Therefore, new modelling tools are required to overcome these
problems.

We present in Chapter 3 of this manuscript the so-called relaxed micromorphic
model which will be in charge of leading the required simplification to proceed to-
wards the design of large-scale metastructures in Chapter 4, which also presents the
comparison between the theoretical models and the experiment, thus providing a solid
validation of our model to be used as a basis for metastructural design.

The “relaxed micromorphic” model allows to describe the behavior of metastruc-
tures (here, band-gap metamaterials) in the simplified framework of continuum me-
chanics with the introduction of only few homogenized parameters additionally to the
classical Youngmodulus and Poisson ratio. The constitutivemacroscopic parameters of
our model have been identified on the newly designed unit cell by a first determination
of the elastic parameters of the relaxed micromorphic model by inverse approach (the
classical simulation being based on the Bloch-Floquet analysis of our periodic struc-
tures), this opens the way to the efficient design and realization of engineering metas-
tructures, an example of which will be given at the end of the manuscript. We will also
show that, under certain assumptions, the mechanical behavior of band-gapmetastruc-
tures can be perfectly reproduced by our relaxed micromorphic model over a wide fre-
quency band and with considerable time savings.

The general progression of the work presented here and the three chapters com-
posing thismanuscript (in addition to the present introduction and general conclusion)
has been designed following the “engineer’s approach” as represented in Figure 1.2.
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Figure 1.2: Plan of the manuscript seen by the engineer’s approach.

Notations

Vectors (elements of R3) and second order tensors (“elements of R3×3”) will be
written using bold letters, e.g. u and P, while higher orders tensors will be written,
unless otherwise stated, M, C, K, etc. As we will work through this manuscript only in
Cartesian coordinates, considerably simplifying our tensorial computations, the partial
derivative with respect to the space variable Xi will be written

·,i =
∂ ·
∂Xi

(1.1)

We denote the scalar products on R3 and R3×3 (of associated norm ⟨·, ·⟩ = || · ||2):

⟨x,y⟩R3 = xiyi and ⟨X,Y⟩R3×3 = XijYij (1.2)

that will be indifferently written ⟨·, ·⟩ in the absence of ambiguity. We define the fol-
lowing first or second order differential operators for scalars x ∈ R, vectors x ∈ R3 and
second-order tensors X ∈ R3×3:1

1the Einstein notation of summation over repeated indices is used if not differently specified.
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– Divergence:
divx = xi,i and (divX)i = Xij,j (1.3)

– Gradient:
(∇x)i = x,i and (∇x)ij = xi,ij (1.4)

– Laplacian:
∆x = x,ii and (∆x)j = xi,ij (1.5)

– Curl (ε being the Levi-Civita operator):

(curlx)i = εijkxk,j (1.6)

We will denote by Ω the volume occupied by our continuum body in its reference
configuration and by ∂Ω its boundary, which will eventually be divided into ∂ΩD and
∂ΩN , where are respectively applied Dirichlet or Neumann boundary conditions.

The Lebesgue space of square integrable functions on Ω ⊂ R3 with values in R, R3

or R3×3 will be classically denoted L2(Ω). Given the expressions of our action function-
als presented in this manuscript, we also introduce the Sobolev space

H1(Ω) = {u ∈ L2(Ω) |∇u ∈ L2(Ω)} (1.7)

of norm
||u||2H1(Ω) = ||u||2L2(Ω) + ||∇u||2L2(Ω) (1.8)

We also introduce H1
0 (Ω) as “the subspace of functions H1(Ω) being zero on ∂Ω”.

Wewill see that, our problems being numerically solved by the Finite-Element Method,
such spaces are the most appropriate to integrate our partial differential equations.

The constitutive laws used in this manuscript require the manipulation of second
order tensors. For this purpose, we will write:

– s(R3) the vector space of second order symmetric tensors, i.e. who verify

XT = X i.e. Xij = Xji (1.9)

– so(R3) the Lie-algebra of second order skew-symmetric tensors, i.e. who verify

XT = −X i.e. Xij = −Xji (1.10)

Given this, one can decompose every element of R3×3 into their symmetric and skew-
symmetric parts, in formulas

symX =
X+XT

2
∈ s(R3) and skewX =

X−XT

2
∈ so(R3) (1.11)

One can also recall that, given a fourth order tensorC and a second order tensorX then
CX is a second order tensor of components

(CX)ij = CijklXkl (1.12)
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2.1 Functional specifications of the unit cell

Wewill see in Chapter 3 that the modelling of linear mechanical problems described by
a displacement field u under load(s) f can be represented, under some hypothesis, as
a linear set of equations. Considering the system to occupy a material domain Ω and
to be composed of Cauchy materials of mass density ρ, Young modulus E and Poisson
ratio ν, one can write

D(ρ(x), E(x), ν(x),x,Ω)u(x) = f(x) (2.1)

Under that form, mechanical problems can be split into two main categories:

– Direct problems, i.e.

Determine u and/or f such as D(ρ(x), E(x), ν(x),x,Ω)u = f (2.2)

– Inverse problems

Determine Ω, ρ, E and ν such as D(ρ(x), E(x), ν(x),x,Ω)u0(x) = f0(x) (2.3)

The first category can be seen as characterization of a given system: one checks if the
considered system satisfies the required performances, which may be of very different
natures, even by the quantities considered: displacement and its successive derivatives,
stress, etc. In the case of inverse problems, one seeks, for a given set of performances
(in terms of displacements, body forces, energy dissipated, loads, etc) to determine the
geometry and/or mechanical properties of the considered structure: our microstruc-
tured cell belonging to the second category, which we wanted to verify the functional
specifications presented in Table 2.1.

Name Function Level

PF1 To have a band gap at audible frequencies fBG < 15 [kHz]
PF2 To have a wide enough band-gap ∆f ∼ 1 [kHz]

Table 2.1: Main functions performed by the metamaterial cell

where fBG =
fmax + fmin

2
and ∆f = fmax − fmin, where fmax and fmin are respec-

tively the upper and lower limit of the band gap, i.e. for which the dispersion equation
ω = ω(k) admits no solution ∈ R. To this first part of the triptych “Product-Material-
Process” are added the constraints of the material and of the chosen process of fabri-
cation. While, from a theoretical point of view, the choice of material and process of
fabrication has to be made after a first conception of the geometry realising the main
functions given previously, practically numerous constraints considerably reduces the
couples “Material-Process” available before the design of the unit cell. These will then,
in turn, induce constraints on the geometry, manufacturing constraints whose dimen-
sioning characteristics are given in Table 2.2.



2.2. Dimensioning criteria of the unit cell 9

Name Function Level

MC1 To be realized via an available process Wire EDM
MC2 To be realized in an available material TA6V
MC3 To have a machinable thickness e < emax

MC4 To resist machining forces e > 0.5 [mm]
MC5 To allow passage of the machining tool ehole > 0.35 [mm]
MC6 To have no sharp interior angles rhole > ehole/2 [mm]
MC7 To stand in the machining area S < 250 [mm] ×250 [mm]
MC8 To be achievable in a “reasonable” time tmanufacturing < 1 week

Table 2.2: Manufacturing constraints for the microstructured plate

where EDM stands for Electrical Discharge Machining (which will be presented
in the following sections), TA6V is the usual titanium alloy used, e is the out-of-plane
thickness of bulk plate, ehole is the minimumwidth of the holes drilled in the plate and
rhole their radiuses and S the plate’s size. Finally, despite the fact that the manufactured
experimental set-up will only be solicited in a characterization phase, i.e. under a very
low load, it still has to satisfy the additional conditions given in Table 2.3.

Name Function Level

CF1 To be transported at the lab s > 2
CF2 To resist to its own weight in experimental conditions s > 2

Table 2.3: Static design constraints for the microstructured plate

where s is the factor of safetywhose computationwill be presented in the following
sections. The design cases will be detailed in the following parts.

2.2 Dimensioning criteria of the unit cell

As topology optimization has successfully shown [Sigmund 2001], the design of me-
chanical components leaves no room for imagination. Indeed, from a theoretical point
of view, the mechanician should consider:
– the functional surfaces fulfilling the main functions of the mechanical part
– thicknesses associated to the aforementioned surfaces to fulfill the constraints func-
tions (e.g. resist to loads and/or displacements imposed to the structure)

How to link these volumes together can be determined considering the chosen manu-
facturing process, the nature of the loads applied on the structure, etc. Such procedure
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is precisely the one considered for topology optimization, with has been made possible
through, e.g., additivemanufacturing. Such design procedurewould be particularly ad-
vantageous for the metamaterial conception, where the characteristics of the band-gap
are particularly difficult to predict with respect to the architectured cell geometry. This
procedure could have been written

Find ρc : Ωc 7→ {0, 1} : max ∆f (2.4)
subject to fBG ⩽ 15 [Hz] (2.5)

where ρc denotes the (eventual) presence of matter in Ωc. To our knowledge, no topol-
ogy optimization software consider such procedure, the identification of the band gap
characteristics requiring to plot the dispersion curves, making such optimization ex-
pensive in terms of computational time, in addition to the difficulty of solving inverse
problems. Instead of developing this procedure, we very classically propose

a

ep

eg

eg

2e
p
+
e g

eg/2

Figure 2.1: Definitive geometry of the architectured cell with its parametrization.
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a is the side of the cell, ep and eg are respectively the minimum in-plane thickness
and hole width. We will show in the following sections that this specific geometry
allows ep and eg to be limited only by manufacturing constraints. From this unit cell
has been designed what we will call in the rest of this manuscript the “microstructured
plate”, presented in Figure 2.2.

Excitation area

Unit celln2 cells

n1 cells

Figure 2.2: Geometry of the architectured plate consisting in a bidimensionnal paving
of the unit cell given in 2.1, with, in the center, the excitation zone.

Given this, the design of our proof of concept is reduced, in addition to the unit cell
parameters, to the determination of the following parameters:

– e, the thickness of the plate

– (n1, n2), the number of cells in the two directions of space of the plate.

By introducing the geometries of the unit cell and the plate, we very classically switched
from an inverse problem to the determination of only a few parameters, which will be
determined by checking the conformity of the structures to constraints given in Tables
2.1, 2.2 and 2.3. We will, however, expose in the following sections how this technolog-
ical solution imposed itself.

2.2.1 Dimensionning the band-gap

The conformity of the proposed cell to functions PF1 and PF2 of the functional specifica-
tions has been verified via the multiphysic finite-element (see Chapter 3) software Com-
solMultiphysics®. Given the small damping of the consideredmaterial, the computation
of the band gap characteristics, the Bloch-Floquetmethod is used to compute the disper-
sion curves (ω = ω(k)method) of our unit cell. If such method does not allow to char-
acterize, e.g., the attenuation of mechanical waves in ourmedia, allows to easily identify
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the band-gap frequency range. It will also allow, as presented in Chapter 3, to compute
the relaxed micromorphic parameters. Let us now present the mathematical tools used
for designing our architectured unit cell. The Floquet theorem [Floquet 1883], states
that for the ordinary differential equation

∂u

∂x
(x) = A(x)u(x) in R2 (2.6)

whereA : (u,x) 7→ A(x)u(x) is (r1, r2)-periodic, i.e.

∀(m1,m2) ∈ Z2, A(x+m1r1 +m2r2) = A(x) (2.7)

the solution u can be expressed as the linear combination of

v(x)e⟨k,x⟩ (2.8)

where vi is (r1, r2)-periodic and k ∈ C2. The structures considered in this manuscript,
consisting of two-dimensional paving of our unit cell verify such periodicity condition
upon its geometry G

G(x+m1r1 +m2r2) = G(x) (2.9)
where r1 and r2 are the lattice vectors, (m1,m2) ∈ Z2. Our primitive cell is a square
of side a denoted as Ωc. The reciprocal unit cell Ωr, corresponding to the first Brillouin
zone, is defined by the reciprocal lattice vector basis (g1,g2) such as

⟨ri,gj⟩ = 2πδij (2.10)

The primitive and reciprocal lattice are given in Figure 2.3.

Γ
X

M

O k1

k2

x1

x2

a

a

2π/a

2π/a

Irreducible
zone

Cell geometry
(to determine)

First zone of Brillouin

Figure 2.3: (left) Geometry of the cell in the physical space (right) Dual space, the first
zone of Brillouin and the irreducible zone.

The Bloch theorem [Bloch 1929] states that ∀u ∈ L2(R2,C2) can be represented as

u(x) =

∫

Ωr

U(x,k)ei⟨k,x⟩dk (2.11)
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whereU, Ωr-periodic with respect to k, can be expressed as

U(x,k) =
∑

(m1,m2)∈Z2

F(u)(k+m1g1 +m2g2)ei⟨m1g1+m2g2,x⟩ (2.12)

where F(u) is the Fourier transform of u. For our architectured unit cell, we have to
solve the eigenvalues problem [Mace 2008] defined by the local Cauchy equilibrium

ω2ρu+∇ · C sym∇u = 0 in Ωc (2.13)

with the boundary conditions {
ur = e−ik1aul

ut = e−ik2aub

(2.14)

whereul, ur, ut andub are the respective displacements of the left, right, top and bottom
borders of the unit cell and (k1, k2) ∈ [−π/a, π/a]2. The values of the parameters of
the TA6V titanium alloy considered are given in Table 2.4. This usual titanium alloy
has been considered with respect to the manufacturing process considered (Wire EDM
requires metal alloys) and its well-known performances:

ρc E ν

[kg/m3] [GPa] -
4400 112 0.34

Table 2.4: Mechanical parameters used for the computation of dispersion curves of our
unit cell.

Given the tetragonal symmetry imposed to our unit cell, the characterisation
of the band gap through the computation of the dispersion curves has been made
[Joannopoulos 2011, Maurin 2018] upon the contour of the irreducible Brillouin zone
[Brillouin 1953] instead of the whole Brillouin zone, allowing to slightly reduce the
computational time of this eigenvalue problem, reducing the computation of Equation
2.13 on

(k1, k2) ∈
[
−π
a
,
π

a

]2
(2.15)

to its computation along the contour of the irreducible Brillouin zone

(k1, k2) ∈ ΓX ∪ ΓM (2.16)

corresponding respectively to the propagation at 0 and 45°. Such assumption, altough
not being proved, allows to quickly characterize the band-gap and calibrate the re-
laxed micromorphic parameters. The computation of the dispersion over the entire
irreducible Brillouin zone has been made, to check the conformity of the cell to con-
straints given in Tables 2.2 and 2.3, at the end of the design procedure.
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Figure 2.4: Dispersion curves alongΓX for the consideredmicrostructured cell and their
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Figure 2.5: Dispersion curves along ΓM for the considered microstructured cell
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Figure 2.6: Dispersion curves along XM for the considered microstructured cell
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2.2.2 Mechanical dimensionning

To verify the ability of the microstructured plate to verify constraints presented in Table
2.3, corresponding to the phase of transport and manipulation at the lab, a static test
has been realized. The body forces introduced is of ten times the gravity in the plate’s
most unfavorable case, i.e. in a horizontal position resting on the centers of each of its
corners. This situation is presented in Figure 2.7.

n2 cells

n1 cells

10g

Figure 2.7: Top view of the full microstructured plate with (blue) the boundary condi-
tions consisting of 4 flat supports at the corners of the plate and (red) the load (10g).

We consider the plate under ten times the gravity, the latter being orthogonal to
the microstructured plate, put on 4, at the center of the resonators at the corners of the
plate as presented in Figure 2.7. One now have to solve

∇ · C sym∇u+ 10ρcg = 0 in Ω (2.17)

where g = −gx3 ≈ −9.81x3 [m.s−2]. By symmetry (see Chapter 3), one can consider
only 1/4 of the plate by adding on the symmetry planes created, also allowing to have
a well-posed problem (in-plane rigid body moves being deleted) as given in Figure 2.8.
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10g

(n1 − 1)/2 cells

(n2 − 1)/2 cells

Figure 2.8: Top view of the symmetrized microstructured plate with (blue) the bound-
ary conditions consisting of a flat support at the corner of the plate and (red) the load
(10g).

The boundary conditions are
{
⟨u,n⟩ = 0 for the symmetry planes of normal n
⟨u,x3⟩ = 0 for the ponctual contact

(2.18)

where s is the safety coefficient for the considered case, defined as

s =
σ0
σVM

(2.19)

where σVM is the Von Mises yield criterion (maximum distortion criterion), defined as

σVM =

√
3

2
Tr(σ · σ) (2.20)

2.3 Determination of cell and plate parameters

We have presented the mathematical tools to check if our unit cell was able to meet the
manufacturing constraints (given in Tables 2.2 and 2.3) and more specifically the band
gap characteristics (see Table 2.1). We saw that the dimensionning of our structure, at
the difference of “classical” dimensionning, was made in two different parts, to know:

– the band-gap characteristics, through the computation of the Bloch-Floquet analysis

– a more “classical” dimensionning on the full structure
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Wedirectly presented, in Figures 2.1 and 2.2 the respective geometries and parametriza-
tion of the unit cell and the full structure, considerably simplifying the design of the cell
to the choice of parameters:
– the size of the unit cell a

– (half) the minimum in-plane thickness ep
– the with of the holes eg
– the out-of-plane thickness e

– (n1, n2) the number of cells in the two directions of space
If, for the sake of simplicity, we directly presented the final geometry of the unit cell,
we will now present how the comprehension of the mechanisms of the band-gap effect
eventually allowed to propose a new geometry which, coupled to the adequate manu-
facturing process, tremendously lowering the position of the band-gap with respect to
the size of the unit cell.

2.3.1 Geometry of the cell

The increasing complexity of mechanical systems going and the deepening of knowl-
edge make the innovation process more and more difficult. Despite the slow transfor-
mation of design process into Design Science [Cross 2001], the so-called “conception”
of mechanical components is rather a “reconception” process.

In this spirit, nanos gigantum umeris insidentes [Dell’Isola 2016a], we based our
thinking on the unit cell given in [Madeo 2018b], whose exploration of the mechanisms
of local resonance has allowed us to eventually propose a unit cell with a considerably
lower band-gap given with respect to its size. Figure 2.9 presents the “classical” unit
cell and our new architectured cell.

a

eg

ep

a

eg

ep

Figure 2.9: (left) classical architectured cell and (right) novel geometry.
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The parametrization of the geometry of the unit cell has not been left to chance: the
triptych Product-Process-Material determining the conception of systems, we chose to
highlight the manufacturing and static design constraints by the parameters
– eg is the minimum with of the holes
– ep as the minimum in-plane thickness
to completely determine, in addition to the unit cell size a, the geometry of the cell. For
a given cell of parameters (a, ep, eg) of band-gap characteristics (fBG,∆f), the cell of
parameters (ra, rep, reg) of band-gap characteristics (f rBG,∆rf) will verify

f rBG =
fBG
r

and ∆rf =
∆f

r
(2.21)

We can therefore introduce, in the spirit of Buckingam’s π theorem,

πp =
ep
a

and πg =
eg
a

(2.22)

to parameterize our cell geometry by (a, πp, πg). One can remember that the band-gap
effect is obtained, in our case, by local resonance. To lower this resonant frequency, one
can:
– increase the mass of the resonating element
– decrease the stiffness of the “beam” and “spring” like elements
Given the symmetries the unit cell should verify, one can consider only a 1/8 of cell.
The identification of the resonant and spring-like elements can then be done as given
in Figure 2.10, and the “new” microstructured unit cell can be understood as a reposi-
tioning of the resonating element along the first bisector.

(a) (b)

Figure 2.10: Configurations available for the positioning of the resonator. (center) side
of the cell and resonator, whose position generates two different unit cell geometry.

For both cells, the minimization of fBG is obtained by the minimization of the
“beam” stiffness, i.e. the minimization of πp, as confirmed by a parametric study. The
minimum value of ep is set by the manufacturing constraints. A second parametric
study upon eg gives, for the “classical” unit cell

fBG = min fBG for πg = 0.8 (2.23)
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Such a result should not be surprising: indeed, for this geometry, the stiffness and the
resonator’s mass of the system cannot be simultaneously optimized, having

ar
a

+
lp
a

= 1 and lp
a

= πg (2.24)
where ar is the size of one square resonator and lp the length of a “beam” element link-
ing them. We can see here a classical limitation of the “performances” of the design of
mechanical structures: the value of πg minimizing fBG is not given by manufacturing
constraints, but by the cell geometry itself. The novel geometry does not have this dis-
advantage, having

1 = 2πp + 3πg + 2
ar
a

and 1 = 2πp + 2πg +
lp
a

(2.25)
allowing to simultaneously minimize the stiffness and maximize the resonator’s mass.
Therefore, the values of of ep and eg, corresponding to the limitations imposed by the
manufacturing process, according to Table 2.2, are

ep = 0.25 [mm] and eg = 0.35 [mm] (2.26)

2.3.2 Geometry of the plate

The determination of a, n1, n2 and e is made respecting constraints given in Tables 2.2
and 2.3. For a proper visualization of the band-gap effect, it is usually considered that
one should have

n1 − nc
2

,
n2 − nc

2
⩾ 4 (2.27)

On the other hand, as it has been mentioned before, the manufacturing time is heavily
determined by the number of holes in the plate, a manual intervention being required
for each cell . As the machining area is limited (see Table 2.2), after several tests, we
eventually set

a = 2 [cm] (2.28)
Test made on the side of the plate limited the available zone to architecture the plate,
leading to

n1 = 11 and n2 = 9 (2.29)
We will see in Chapters 3 and 4 that these values occasioned a degradation of the per-
formances of our proof of concept and were also of significant importance for the relaxed
micromorphic modelling, which will be discussed in Chapter 5. The out-of-plane thick-
ness e of the plate has to be:
– small enough to maximize the response of the structure
– big enough to verify static design constraints given in Table 2.3
Due to the restrictions of available plates, we eventually set

e = 1 [mm] (2.30)
We will show in the following sections such value allows to measure the displacement
in the plate, it is not adapted to the plane strain hypothesis. This inadequate hypothesis
will be treated in Chapter 4.
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2.4 Validation of the functional specifications

2.4.1 For the band-gap

Figures 2.4, 2.5 and 2.6 present the dispersion curves and the respective acoustic/optic
modes of the cell along the contour of the irreducible Brillouin zone for a = 2 [cm],
which is the value retained for manufacturing. From these plots, one can deduce the
characteristics of the band-gap for the considered cell, which are given in Table 2.5.

Central frequency of the band-gap Width of the band-gap
1920 [Hz] 409 [Hz]

Table 2.5: Characteristics of the final cell

2.4.2 For the microstructured plate

Despite the fact that the static response does not present the same difficulties that the
resolution for a large frequential range, one can note the necessary thinness of the ele-
ments at the corners of the cell and along the borders of each cell, contrasting with the
ones of the resonant elements, assuring the convergence of the results with respect to
the mesh.

ThemaximumVonMises stress is reached in the corner of plate, close the punctual
support. The safety coefficient, having σ0 = 50 [MPa], we have

s =
σ0

max σVM
= 4.4 (2.31)

which satisfies the constraints given in Table 2.3.

2.5 Manufacturing the microstructured plate

Themanufacturing process should theoretically be chosen with respect to the functions
and constraints the consideredmechanical is supposed to verify (which have been given
in Tables 2.1 and 2.3). However, in practice, the opposite approach is considered, given:

– the available manufacturing processes

– the laboratory culture

– the cost

which therefore limit ourmanufacturing possibilities. The titanium alloy bulk plate has
eventually been microstructured at the FEMTO-ST in Besançon, under the supervision
of Pr. Sébastien Thibaud by Electrical Discharge Machining wire erosion (EDM wire
erosion). Figure 2.11 presents the cutting of the holes in the plate.
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Figure 2.11: Manufacturing of the microstructured plate.

2.6 Instrumentation and measurements

2.6.1 Design of the actuator

Given the bidimensionnal aspect of the microstructured plate on one hand and its rel-
atively low mechanical resistance, we considered soliciting the plate by a piezoelectric
excitation by patches at the center of the plate. If the modelling of such elements will be
presented in Chapter 3, we explain here how these elements allowed the characteriza-
tion of our proof of concept. Figure 2.12 presents the positioning and different implemen-
tations of the patches and their electrical supply with initial (dashed) and deformed
(displacements, extremely exaggerated, are not represented at the “right scale”) of the
plate. For an easier readability, only the central part of the microstructured plate is rep-
resented. The sides of the patches glued to the plate are linked to the electrical ground
while the exterior sides of the patches are under the same electrical potential.
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Asymmetrical power supply
(b)

Symmetrical power supply
(a)

Only one patch powered
(c)

Figure 2.12: Considered power supplies with the piezoelectric patches. Elements in
dashed lines represent the non-powered piezoelectric patches and undistorted center
of the plate while elements in continuous lines represent the powered piezoelectric
patches deforming the microstructured plate. In particular, blues lines represent the
side of the piezoelectric patches connected to the ground while red lines represent the
powered side of the piezoelectric patches, the red arrows the polarization. For the sake
of simplicity and symmetry reasons, the same electric potential is applied on both red
areas.

The power supply of the piezoelectric patches is designed to avoid flexural vibra-
tion modes in the plate at the considered frequencies, so that the applied load is a pure
in-plane expansion as shown in Figure 2.12 (a). Such a setup, in addition to preserv-
ing the symmetry of the system along the medium plane of the microstructured plate,
characteristic that will be used during the numerical simulations of the system for the
comparison with the experiments. As the titanium alloy plate has to be connected to
the ground, configuration shown in Figure 2.12 (b) is discarded, while configuration
Figure 2.12 (c), mainly soliciting the bending modes of the plate, is not adapted to the
relaxed micromorphic modelling. The chosen electric supply with its wiring is pre-
sented in Figure 2.13.

∆V

Figure 2.13: Chosen electric supply of the piezoelectric patches

Two piezoelectric patches (MEGGIT PZ 21, ∅16[mm] 2[mm]-thick) are used as
actuators to generate in-plane extension pulse waves in the plate (see Figure 2.14). Ex-
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citation signals are generated by a function generator and then amplified to power the
piezoelectric patches.

Figure 2.14: Upper piezoelectric patch in situwith its electric supply, glued to the archi-
tectured plate.

A proper way to visualize the band-gap for our proof of concept would have, as
it has been done via numerical simulations in [Barbagallo 2019a], to send expansion
pulses with the piezoelectric patches which, with the adequate frequency parameters,
would have allowed to “see the waves vanishing” as propagating into the microstruc-
tured plate. Given the relative narrowness of our band gap, an appropriate excitation
signal V would have been a burst signal centered in the band gap, of spectrum

F(V )(ω) =
2

∆ω
exp

[
−2
(
ω − ω0

∆ω

)2
]

(2.32)

where F(V ) is the Fourier transform of V , ω0 = 2π · 1900 [rad.s−1] and ∆ω = 50

[rad.s−1]. We then have

V (t) = exp

(
−iω0t−

1

8
∆ω2t2

)
(2.33)

Unfortunately, the small size of the plate combined to the titanium alloy used for man-
ufacturing does not allow such temporal approach: indeed, anticipating Chapter 3, the
wavelength λc of to the central component of the spectrum F(V ) for the titanium alloy
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considered is
λc =

2π cl
ω0

=
2π

ω0

√
λ

ρ
= 10.2 [m]≫ 25 [cm] (2.34)

way bigger than the plate’s size (25 [cm]). Consequently, the small size of the plate
does not allow to see the (non-)propagation of waves in the band-gap as, the multiple
reflections of the emitted waves on the traction-free boundaries preventing the proper
identification of the vanishing waves. Given this, we then consider the classical compu-
tation of the frequency response function (FRF) of the system, defined by

FRF(x) = F(u̇)(x)F(V )
(2.35)

which, in the approximation of linearity, does not depend of V . We could argue for a
long time about the validity of such an hypothesis by considering each component of
the energy chain as presented in Figure 2.15. The analysis of the experimental results
in Chapter 4 will largely justify this hypothesis.

The experimental characterization of a linear system is usually made by one of the
three following processes:

– white noise

– sine sweeps

– impulse response

Given the small amplitudes measured and the piezoelectric excitation, the technique of
the impulse response is considered, i.e.

V (t) = V0 sin(2π
f0t

t0
t) (2.36)

where V0 (in [V]), f0 (in [Hz]) and t0 (in [s]) are respectively the amplitude, the max-
imum frequency and the duration of the input signal. As the theoretical band-gap lays
between 1700 and 2100 [Hz], sine sweeps are chosen to impose the external load and
the signal’s frequency is swept from 0 to 2500 [Hz], therefore

f0 = 2500 [Hz] (2.37)

The amplitude of the excitation must be chosen respecting the conditions:

– be lower than the breakdown voltage of the piezoelectric patches

– be high enough to have measurable output signals

– be low enough to have a linear response

As the last condition has already been evoked, several tests allow us to set

V0 = 100 [V] (2.38)
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Figure 2.15: Energy and acquisition chain for the experimental set-up.

The duration of the excitation is given by the desired frequency resolution for the
comparison with our experimental models. Indeed, by duality, we have

∆f =
1

t0
=⇒ t0 =

1

∆f
(2.39)

Requiring fr = 0.1 [Hz], we deduce

t0 = 10 [s] (2.40)

2.6.2 Experimental measurements

Given the low amplitude of the displacements in the plate, the 3-D laser Polytec CLV-
3D has been chosen to measure speeds at the surface of the microstructured pate. The
instrumentation of the plate is presented in Figure 2.16.

As themicrostructured plate had to be re-positioned for each point measured, only
1/4 of the plate is instrumented, i.e. reflector patches are glued on each resonator of the
upper right part of the plate. For the sake of simplicity, we consider each measure to
correspond at the center of the resonator instrumented, i.e.

u̇(xi
measured) = u̇((ni1a± a/2)x1 + (ni2a± a/2)x2) (2.41)

where (ni1, n
i
2) ∈ N2. In Chapter 4, we will show that such an assumption, taking into

account the frequency range and the titanium alloy used, is particularly suitable for the
comparison with the theoretical models.
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Measurement area

Piezoelectric patch

Electric supply

Reflector patch

Foam backing

Figure 2.16: Experimental set-up: glued in the center of the metamaterial’s plate there
is the top piezoelectric patch (another one being placed on the other side of the plate)
that has been used as an actuator for the external excitation. The tapes placed on the
top-right quarter of the plate can reflect a laser’s beam for speed measurements.

To both record the excitation signal and the measured speeds in the three directions
of space, an interface under Matlab has been designed, allowing to easily choose the
main parameters for each test, namely the required frequency range, the resolution and
coordinates of the considered measurement points. This interface is given in Figure
2.17.
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Figure 2.17: Overview of the interface developed under Matlab. (left) Parameters of
the acquisition/reading. (right, top to bottom) Temporal response in the three directions
of space with their respective coherence and spectrogram.

One can quickly notice, although it has not been investigated, on the plotting of the
spectrogram, higher-order non-linear components of velocity spectrum, revealed by the
presence of, in addition to the linear response signaled by the main yellow line, of two
small lines of respective double and triple slope. Eventually, the analogical signals are
sampled and sent to the computer via aNational Instruments interface as presented in
Figure 2.18.

Function
generator Amplifier Piezoelectric

excitation
Microstruc-
tured plate

Tridimen-
sionnal laser

NI interface
(to PC)

Electrical part

Mechanical part

Acquisition

Figure 2.18: Energy and information chain of the instrumented microstructured plate.

Very classically, one now has to determine the sampling parameter∆t for our mea-
surements. Given the position of the theoretical band gap, we set the frequency range
investigated ∆f to be

∆f = [0, 2500] [Hz] (2.42)

According to the Shannon-Nyquist sample theorem, in order to correctly sample a sig-
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nal of maximum frequency f0, the sampling period ∆tmust verify

∆t ⩾
1

fN
with fN = 2f0 (2.43)

where fN is the Nyquist frequency. We therefore chose

∆t = 2 · 10−4 [s] (2.44)

Given this, the only theoretical hypothesis introduced in the experimental results is
the linearity, justifying the inverse Fourier transform of the measured signals. Such hy-
pothesis, allowing the computation of the theoretical response in the frequency domain
instead of the of time domain as presented in Figure 2.19, considerably simplifies the
comparison. More generally, we chose not to add any additional hypothesis on the ex-
perimental results, despite the numerous experimental defects: as we will present in
Chapter 4, our theoretical models will endorse every inadequate hypothesis and exper-
imental error.

δA = 0 FEM FRFth(x, ω)

FRFexp(x, ω) uexp(x, t) Microstructured plate

ε2

Theoretical models

Experiment

Figure 2.19: Comparison in the frequency domain between the experimental system
and the theoretical models as presented in Figure 1.2.
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3.1 The classical Cauchy model

The classical Cauchy modelling of a continuous medium considers the displacement
field u : Ω× [t1, t2]→ R3 to be the only kinematic field. Moreover, the Cauchy postulate
[Cauchy 1828a, Cauchy 1828b, Piola 1825] supposes that the forces applied on Ω are of
two types:

– Body forces given ∀x ∈ Ω by their density (such a hypothesis allowed him to simplify
the local equilibrium by ρc):

f(x)dm = ρc(x)f(x)dΩ (3.1)

– Contact forces t characterized by a surface density of force depending only of the
considered point x and the normal n [Dell’Isola 2016] to ∂Ω at x:

t(x,n)dΓ (3.2)

Given these hypotheses, the transformation φ of the considered structure correspond-
ing to its deformation under the aforementioned forces (and/or prescribed displace-
ments) is represented in Figure 3.1.

X

x

Ω Ω(t)

ϕ(X, t)

Figure 3.1: Transformation of a Cauchy medium

whereX is the position of the considered particle in a configuration (reached or not
by our structure) chosen as reference and x its current position: this is the Lagrangian
description. The structures studied in this manuscript, given the loading cases consid-
ered, will deviate little from their initial reference configuration, that will allow us to
write

∀t ∈ [t1, t2] : Ω(t) = Ω = Ω(t1) = Ω(t2) (3.3)
and

x = X+ u(X, t) (3.4)
Such a hypothesis allows to indifferently use x or X in our formulas:
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– the Lagrangian variable to compute time derivatives, allowing to “forget” the sub-
tleties linked e.g to the notion of particle derivative.

– the Eulerian variable when it will come to write constitutive laws, equilibriums, etc.
This hypothesis will be kept for the rest of themanuscript and, for the sake of simplicity,
xwill be used in the following chapters. Given this, the kinetic kc and strain wc energy
densities of the classical Cauchy continuum are defined as

kc(u̇) =
1

2
⟨u̇, ρcu̇⟩

wc(sym∇u) =
1

2
⟨sym∇u,C sym∇u⟩

(3.5)

where u̇ =
du

dt
, ρc : Ω→ R+ the mass density and C : s(R3)→ s(R3) a 4th order tensor,

which is:
– symmetric, i.e.

∀(X,Y) ∈ s(R3)2 : ⟨X,CY⟩ = ⟨Y,CX⟩ (3.6)

– positive, i.e.
∀X ∈ s(R3) : ⟨X,CX⟩ ⩾ 0 (3.7)

– definite, i.e.
⟨X,CX⟩ = 0 ⇒ X = 0 (3.8)

Two important remarks can be made here:
– To chooseC sym∇u ∈ s(R3) (= σ, whichwill be introduced later) is the Boltzmann’s
axiom of symmetry [Boltzmann 1905], so called by Hamel [Hamel 1912]. The possi-
ble asymmetry of such a tensor has been mentioned by Cauchy at the end of his life,
Saint-Venant, Poisson, Kelvin and Voigt through the XIXth century until the Cosser-
ats’ [Cosserat 1909] works, which will briefly be evoked in the following section.

– C ∈ s(R3×3) is not an additional hypothesis here, in the sense that, wc being a
quadratic form, C is necessarily symmetric. Such an assumption makes the num-
ber of its independent coefficients automatically fall to at most 21, to compare to the
81 in the most general case.

The Lagrangian density ℓc of the Cauchy continuum is defined, as it is for any mechan-
ical system, by

ℓc(u̇,∇u) = kc(u̇)− wc(sym∇u) (3.9)
The action functional Ac of a Cauchy medium occupying a bounded domain Ω ⊂ R3 is

Ac = Ac
ext +Ac

int where





Ac
int[u] =

∫ t2

t1

∫

Ω
ℓcdΩdt =

∫ t2

t1

∫

Ω
(kc − wc)dΩdt

Ac
ext[u] =

∫ t2

t1

∫

∂ΩN

⟨t,u⟩dΓdt+
∫ t2

t1

∫

Ω
⟨f ,u⟩dΩdt

(3.10)
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where f : Ω → R3 and t : ∂ΩN → R3 are known, being modeled by the mechanician.
Usually, the modelling of mechanical systems, in addition to body and contact forces,
requires the imposition of displacement upon some of its boundaries, corresponding to
kinematic linkswith other parts of the considered structure: u has to verify theDirichlet
boundary condition

∀t ∈ [t1, t2], u = u0 on ∂ΩD (3.11)
A well-posed (mechanical) problem requires

∂Ω = ∂ΩD ∪ ∂ΩN and ∂ΩD ∩ ∂ΩN = ∅ (3.12)

To close our Cauchy-Kowalewski problem, we set the initial conditions
{
u(t = t1) = ui

u̇(t = t1) = vi

in Ω. (3.13)

Through this manuscript, we will always consider our media to verify Heaviside (ho-
mogeneous) initial conditions, i.e.

{
u(t = t1) = 0

u̇(t = t1) = 0
(3.14)

The order of derivation of the initial conditions necessary for the well-posedness can
be inferred from, as we will see later, the strong form of the problem under the state-
space representation. As we chose to describe our mechanical structures through the
Principle of Least Action, i.e., in the case of continua, giving the Lagrangian density of
our system, the usual hypothesis of small deformation, i.e.

∂ui
∂xj
≪ 1 ∀{i, j} ∈ {1, 2, 3}2 (3.15)

has not be explicitely made. Such assumptions must not, despite their apparent similar-
ity, be confused with Equation 3.3, and both should be explicitly mentioned if used. We
can quickly mention the Euler’s critical load, well known result of buckling, obtained in
a linear framework (i.e. with hypothesis 3.15) but without Equation 3.3 (internal forces
and torques are computed on the distorted configuration).

The Principle of Least Action [Dell’Isola 2012b] states that the trajectory followed
by the systemu : (x, t) ∈ Ω×[t1, t2] 7→ u(x, t) is the one forwhich the action functional is
stationary (the Hamilton Principle, as we introduced a Lagrangian density), i.e. verifies

{δAc[u] = 0where u verifies 3.11 and 3.13} (3.16)

Given the kinetic and strain energy densities introduced in (3.9), we can define the
space of configuration Q to which u should belong

Q = {u : u verifies 3.11 and 3.13} (3.17)

Figure 3.2 represents the actual evolution of the system in the space of configuration,
u(t1) and u(t2) being given.
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u(t1)

u(t2)

δA = 0

Q

Figure 3.2: Evolution of the system in the space of configurations Q: two admissible
trajectories (dashed lines) and the actual trajectory (thick line) verifying the Principle
of Least Action.

The computation of the stationarity of the actionAc and therefore of its first varia-
tion δA can be seen, through δu, in two different ways:
– a small perturbation around the actual trajectory u0:

u = u0 + δu (3.18)

– the difference between two admissible trajectories u1 and u2 of the system:
∆u = u2 − u1 (3.19)

Under this second form, one can derive the boundary and initial conditions for δu:
{
δu(t1) = 0 = δu(t2) in Ω

∀t ∈ [t1, t2], δu(t) = 0 on ∂ΩD
(3.20)

Before computing the first variation of A, one can notice that
∀(S,X) ∈ s(R3)× R3×3, ⟨X,S⟩ = ⟨symX,S⟩ (3.21)

Let us begin with the strain energy density:

δ

∫ t2

t1

∫

Ω
wc(∇u)dΩdt = δ

∫ t2

t1

∫

Ω

1

2
⟨sym∇u,C sym∇u⟩dΩdt

=

∫ t2

t1

∫

Ω
⟨∇δu,Csym∇u⟩dΩdt

=

∫ t2

t1

∫

Ω
div(C sym∇u · δu)dΩdt−

∫ t2

t1

∫

Ω
⟨div(C sym∇u), δu⟩dΩdt

(3.22)
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Gauss theorem
∫

Ω
divX dΩ =

∫

∂Ω
X · dΓ =

∫

∂Ω
⟨X,n⟩dΓ (3.23)

wheren is the normal of ∂Ω at the considered point and dΓ the elementary surface gives

δ

∫ t2

t1

∫

Ω
wc(∇u)dΩdt =

∫ t2

t1

∫

∂Ω
⟨(C sym∇u) · n, δu⟩dΓdt−

∫ t2

t1

∫

Ω
⟨div(C sym∇u), δu⟩dΩdt

(3.24)

The stationarity of the kinetic energy is easier, having

δ

∫ t2

t1

∫

Ω
kc(u̇)dΩdt = δ

∫ t2

t1

∫

Ω

1

2
⟨u̇, ρcu̇⟩dΩdt

=

∫ t2

t1

∫

Ω
⟨δu̇, ρcu̇⟩dΩdt

=

∫ t2

t1

∫

Ω

[
d

dt
⟨δu, ρcu̇⟩ − ⟨δu, ρcü⟩

]
dΩdt

=

∫

Ω

∫ t2

t1

d

dt
⟨δu, ρcu̇⟩dΩdt

(integration by parts)

−
∫ t2

t1

∫

Ω
⟨δu, ρcü⟩dΩdt

=

∫

Ω
[⟨δu, ρcu̇⟩]t2t1 dΩ

=0 by Equation 3.20

−
∫ t2

t1

∫

Ω
⟨δu, ρcü⟩dΩdt

= −
∫ t2

t1

∫

Ω
⟨δu, ρcü⟩dΩdt

(3.25)

Eventually, we get





δAc
int =

∫ t2

t1

∫

Ω
⟨δu,−ρcü+ div(C sym∇u)⟩dΩdt−

∫ t2

t1

∫

∂Ω
⟨δu, (C sym∇u) · n⟩dΓdt

δAc
ext =

∫ t2

t1

∫

Ω
⟨δu, f⟩dΩdt+

∫ t2

t1

∫

∂ΩN

⟨δu, t⟩dΓdt
(3.26)

The volume and the surface integrals being necessarily strictly equal to zero, we have





∫ t2

t1

∫

Ω
⟨δu, ρcü− div(C sym∇u)− f⟩dΩdt = 0

∫ t2

t1

∫

∂Ω
⟨(C sym∇u) · n, δu⟩dΓdt−

∫ t2

t1

∫

∂ΩN

⟨t0, δu⟩dΓdt = 0

(3.27)
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Having ∂Ω = ∂ΩD ∪ ∂ΩN , we have
∫ t2

t1

∫

∂Ω
⟨(C sym∇u) · n, δu⟩dΓdt =

∫ t2

t1

∫

∂ΩD

⟨(C sym∇u) · n, δu⟩dΓdt
=0 by Equation 3.20

+

∫ t2

t1

∫

∂ΩN

⟨(C sym∇u) · n, δu⟩dΓdt

=

∫ t2

t1

∫

∂ΩN

⟨(C sym∇u) · n, δu⟩dΓdt

=

∫ t2

t1

∫

∂ΩN

⟨(t, δu⟩dΓdt

(3.28)
Given this, the traction-free boundary condition is said to be “natural”, i.e. automati-
cally verified if the generalized work of the boundary forces is not included. Otherwise,

(C sym∇u) · n = t on ∂ΩN (3.29)
In the same way, if u = u0 on ∂ΩD was imposed via a Lagrange multiplier, replacing
the action A by A′

A′
c[u,λ] = Ac[u]−

∫ t2

t1

∫

∂ΩD

⟨λ,u− u0⟩dΓdt (3.30)

one can easily derive from this
∫ t2

t1

∫

∂ΩD

⟨(C sym∇u) · n− λ, δu⟩dΓdt = 0 (3.31)

making the Lagrangemultiplierλ correspond to the traction forces at the boundary ∂ΩD
of the prescribed displacement (such a result is well-known for rigid solid mechanics).
Given this, we get the classical equilibrium equation of the Cauchy continuum under
its strong form

ρcü = divσ + f (3.32)
whereσ is the Cauchy stress tensor given by the constitutive law (stress-strain relation)

σ = C sym∇u (3.33)
The associated boundary conditions are

{
u = u0 on ∂ΩD (Dirichlet)
σ · n = t on ∂ΩN (Neumann) (3.34)

With the formalism of the Principle of Least Action, we deduced from the stationarity
of the Action:
– the equilibrium equations in Ω

– the boundary conditions on ∂Ω via integration by parts
We are now going, thanks to some additional hypothesis, to simplify the expression of
C: for now, C has 21 independent coefficient, which would be quite difficult to identify
experimentally. The manipulation of second and fourth order tensors necessary for
such simplifications commonly used for the materials considered in this manuscript
and therefore requires specific mathematical tools.
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3.1.1 The Mandel-Voigt notation

We deduced, through the Principle of Least Action, differential equations verified by
u in vector form: to facilitate the computation of the equilibrium, we are going to in-
troduce the Mandel-Voigt notation, allowing to easily “replace” the second and fourth
order tensors as, respectively, vectors and matrices. We consider a linear mapping
m : s(R3) → R6 ([Voigt 1887, Voigt 1889, Mandel 1962]): the 6 independent compo-
nents of x ∈ s(R3) are isomorphically mapped in a corresponding vector x̄ such as

xα = mαijxij and x =
(
x11 x22 x33 cx23 cx13 cx12

)T
(3.35)

where c = 2 in the Voigt notation, and c =
√
2 for theMandel notation. The components

of the defined mapping m can be represented as 3× 3 matrices, α ∈ J1, 6K, we have

m1ij =




1 0 0

0 0 0

0 0 0



,m2ij =




0 0 0

0 1 0

0 0 0



,m3ij =




0 0 0

0 0 0

0 0 1




m4ij =




0 0 0

0 0 c
2

0 c
2 0



,m5ij =




0 0 c
2

0 0 0

c
2 0 0



,m6ij =




0 c
2 0

c
2 0 0

0 0 0




(3.36)

Reciprocally, we define the reverse mapping m−1 : R6 → s(R3) by
xij = m−1

ijαxα (3.37)
Where

m−1
ij1 =




1 0 0

0 0 0

0 0 0



,m−1

ij2 =




0 0 0

0 1 0

0 0 0



,m−1

ij3 =




0 0 0

0 0 0

0 0 1




m−1
ij4 =




0 0 0

0 0 1
c

0 1
c 0



,m−1

ij5 =




0 0 1
c

0 0 0

1
c 0 0



,m−1

ij6 =




0 1
c 0

1
c 0 0

0 0 0




(3.38)

Every other component of the mapping being strictly equal to zero, and requiring
mαijm

−1
ijβ = δαβ (3.39)

where δαβ is the Kronecker symbol, we deduce
σα = mαijσij

= mαij [C]ijklm−1
klβ[sym∇u]β

= Cαβεβ

(3.40)
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where
Cαβ = mαijCijklm

−1
klβ (3.41)

Given the symmetry of C, we have

C =




C1111 C1122 C1133
2

c
C1123

2

c
C1123

2

c
C1112

⋆ C2222 C2233
2

c
C2223

2

c
C2223

2

c
C2212

⋆ ⋆ C3333
2

c
C3323

2

c
C3323

2

c
C3312

⋆ ⋆ ⋆
4

c2
C2323

4

c2
C2323

4

c2
C2312

⋆ ⋆ ⋆ ⋆
4

c2
C1323

4

c2
C1312

⋆ ⋆ ⋆ ⋆ ⋆
4

c2
C1212




(3.42)

We can now easily compute constitutive laws involving second and fourth order sym-
metric tensors. Moreover, it will allow us simplify, in the case of material symmetries,
the expression of C, i.e. the number of its independent coefficients.

3.1.2 The isotropic Cauchy material

The materials modeled by the classical Cauchy continuum often presents several
material symmetries, i.e. any transformation T in the symmetry group of the considered
material leaves its constitutive laws untouched. As we introduced the classical Cauchy
continuum via its kinetic and strain energy densities, writing T : u 7→ u′, one could
easily rather verify that

{
kc(u̇

′) = kc(u̇)

wc(u
′) = wc(u)

(3.43)

Such relations, eventually giving relations between the coefficients of C, will consider-
ably simplify its expression and the number of independent coefficients. Let us consider
here the case of an isotropic material, i.e. that the behaviour of our continuum are in-
dependent of the direction of solicitation. One can easily verify that

kc(u̇) =
1

2
⟨u̇, ρcu̇⟩ =

1

2
ρcu̇

Tu̇ (on one hand)

=
1

2
⟨u̇′, ρcu̇

′⟩ (on the other hand)

=
1

2
⟨Qu̇, ρcQu̇⟩

=
1

2
(Qu̇)TρcQu̇

=
1

2
ρcu̇

TQTQu̇

=
1

2
ρcu̇

Tu̇ asQ ∈ O(R3)

(3.44)
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whereO(R3) is the orthogonal group ofR3. That was much to prove that ||u̇|| is a scalar
(and so ρc). Anyway, this is the general method to get relations between the parameters
of our constitutive laws (here, we get no such a relation for density). Things become
more involved when it comes to the strain energy density. First, we have

x′ = Qx,u′ = Qu and ∇x′u′(x′) = QT[∇xu(Qx)]Q (3.45)

Then C have to verify, for an isotropic continuum,

∀Q ∈ O(R3), ⟨symQT[∇xu(Qx)]Q,C symQT[∇xu(Qx)]Q⟩ = ⟨sym∇u,C sym∇u⟩
(3.46)

where O(R3), for a material of a lower class of symmetry, would have to be replaced to
the corresponding symmetry group of the considered material. Thanks to the Mandel-
Voigt notation that have just been introduced, these quantities can be easily computed.
If the computation of 3.46, being tedious, will not be presented in this manuscript, one
can briefly give the transformations Q used to simplify C:

– permutations, e.g., in the case of tetragonal symmetry,

Q =




0 1 0

1 0 0

0 0 1




(3.47)

– rotations of angle θ around n, that can be computed by the Euler-Rodrigues formula

Q(u) = u+ sin θ n ∧ u+ (1− cos θ)(n ∧ (n ∧ u)) (3.48)

Eventually, for an isotropic material considered here, the number of independent coef-
ficients is reduced to two, λ and µ, called the Lamé coefficients and homogeneous to a
stress, shaping C like

C =




2µ+ λ λ λ 0 0 0

⋆ 2µ+ λ λ 0 0 0

⋆ ⋆ 2µ+ λ 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ




(3.49)

That can be put under the form

σ = C sym∇u = 2µ sym∇u+ λ1Tr∇u i.e. σij = µ (ui,j + uj,i) + λ δij uk,k
(3.50)
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Usually, rather than the Lamé coefficients [Lamé 1852], materials are known through
their Young modulus E (in Pa) and the Poisson coefficient ν (dimensionless), defined,
for an axial tensile load along x1, by

E =
σ11
u1,1

and ν = −u2,2
u1,1

= −u3,3
u1,1

(3.51)

Using the principle of superposition, one can get
1

2
(ui,j+uj,i) =

1 + ν

E
σij−

ν

E
σkkδij i.e. sym∇u =

1 + ν

E
σ+

ν

E
1Trσ (3.52)

That would lead to

µ =
E

2(1 + ν)
and λ =

νE

(1 + ν)(1− 2ν)
(3.53)

As the manufacturer of the plate used as proof of concept provided the mechanical pa-
rameters E and ν, such relations will be useful to write easily the strain energy density
of our classical Cauchy model. To study the dispersion relations in this continuum, let
us use indicial notations for an easier manipulation of the operators, and consider a
medium free from volume forces, i.e. f = 0:

ρcüi = σij,j = µ (ui,j + uj,i),j + λ (δij uk,k),j

= µui,jj + µuj,ij + λuj,ij

= (λ+ µ)uj,ij + µui,jj

(3.54)

Under that form, one can notice that
{
[∇(divu)]i = uj,ij

[∆u]i = ∆ui = ui,jj
(3.55)

Given this and 3.54, we get the Lamé-Navier equation

ρcü = (λ+ µ)∇(divu) + µ∆u (3.56)

Let us use the Helmholtz decomposition for u:

∃(ϕ,A) ∈ C2(R3,R)× C2(R3,R3) : u = curlA−∇ϕ (3.57)

Where ϕ is the scalar potential and A the vector potential. ϕ and A being defined re-
spectively up to a constant and a gradient (gauge-invariance of the potentials), one can
choose A to verify

divA = 0 (3.58)
Given this choice, substituting in 3.56, we have

ρc(curl Ä−∇ϕ̈) = (λ+ µ)∇(div(curlA−∇ϕ)) + µ∆(curlA−∇ϕ) (3.59)

Having 



div curlA = 0

div(∇ϕ) = ∆ϕ

∆A = curl curlA+∇(divA)

(3.60)
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We deduce
ρc(curl Ä−∇ϕ̈) = −(λ+ µ)∇(∆ϕ) + µ∆(curlA−∇ϕ)

= −(λ+ µ)∇(∆ϕ) + µ∆(curlA−∇ϕ)

= −(λ+ µ)∇(∆ϕ) + µ(curl curl curlA−∇∆ϕ)

= −(λ+ 2µ)∇(∆ϕ) + µcurl∆A

(3.61)

Given the orthogonality of the decomposition for Ω = R3, one has
{
ρcϕ̈ = (2µ+ λ)∆ϕ

ρcÄ = µ∆A
(3.62)

which are two D’Alembert equations. One can introduce the speed of propagation of
longitudinal and shear waves, respectively cl and cs:

cl =

√
2µ+ λ

ρc
> cs =

√
µ

ρc
(3.63)

Given these relations, an isotropic Cauchy material can be equivalently defined by its
Lamé coefficients λ and µ or its longitudinal and shear velocities cl and cs. Such prop-
erties will be explored in Chapter 4. At last, let us give the analytical expressions of the
kinetic and strain densities of energy for such medium:





kc =
1

2
ρc(u̇

2
1 + u̇22)

wc =
1

2

[
2µ(u21,1 + u22,2) + λ(u1,1 + u2,2)

2 + µ(u2,1 + u1,2)
2
] (3.64)
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Figure 3.3: Dispersion curves for theCauchy continuum for longitudinal (red) and shear
waves (blue), of respective equations ω = cl|k| and ω = cs|k| in an isotropic plate.

One can see, despite the ability of such amodel to predict manymechanical behav-
iors (e.g. deformations, transmitted forces, maximum load, etc), the classical Cauchy
model reveals itself unable to describe dispersive behaviors of structures.
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3.2 The relaxed micromorphic model

The classical Cauchy continuum “simplified” thematerial behaviour considering the
representative volume element, thus neglecting the heterogeneity of matter at a lower
scale, which is generally of no particular interest for Engineering Sciences. In the same
way, enriched continua aim to “simplify” the architectured unit cell, taking into account
its dispersive properties by the introduction of a newLagrangian density adapted to our
media.

As we chose to describe our continua through the Principle of Least Action, i.e. by
introducing a local action [Truesdell 1960, Toupin 1962], two strategies may be consid-
ered to model dispersion and more precisely band-gaps at a bigger scale, by introduc-
ing:

– higher order operators (medium of order n)

– additional kinematic fields (medium of grade n)

These strategies are presented in Figure 3.4 [Maugin 1980, Cosserat 1909, Mindlin 1964,
Mindlin 1965, Cosserat 1909, Eringen 1968, Eringen 1999, Cauchy 1828a].
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Local action

Simple materialNon simple material

Cauchy continuumMedium of order nMedium of grade n

CosseratMicromorphicSecond gradientGradient of
internal variable

Figure 3.4: Classical and generalized continuum mechanics.

Second and higher order gradient theories, despite their ability to describe, e.g.
dispersion of acoustic modes [Dell’Isola 2012a, Placidi 2014], fail when it comes to con-
sider metamaterial considered in this manuscript, that can inhibit wave propagation in
a given frequency range.

Such a complex phenomenon requires the introduction of additional kinematic
variables to our continuum [Madeo 2014, Madeo 2015, Madeo 2016a, Madeo 2017]. In
the relaxed micromorphic model, the non-symmetric micro-distortion second-order
tensor P(∈ R3×3) completes the kinematic description of our continuum, describing
the deformation of the microstructure at the microscopic scale. The transformation of
such a medium is presented in Figure 3.5.
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Ω Ω(t)

X+ u(X, t)

1+P(X, t)

ϕ

Figure 3.5: Transformation for an enriched micromorphic medium

Local density of kinetic km and potential wm energy in the relaxed micromorphic
medium are defined as [Madeo 2018a, d’Agostino 2020] 1

km(u̇,∇u̇, Ṗ) =
1

2
⟨u̇, ρmu̇⟩ (Cauchy inertia)

+
1

2
⟨sym Ṗ, Jm sym Ṗ⟩+ 1

2
⟨skew Ṗ, Jc skew Ṗ⟩ (free micro-inertia)

+
1

2
⟨sym∇u̇,Te sym∇u̇⟩+ 1

2
⟨skew∇u̇,Tc skew∇u̇⟩ (gradient micro-inertia)

wm(∇u,P) =
1

2
⟨sym(∇u−P),Ce sym(∇u−P)⟩ (elastic energy)

+
1

2
⟨symP,Cm symP⟩ (micro self energy)

+
1

2
⟨skew(∇u−P),Cc skew(∇u−P)⟩ (local rotational elastic coupling)

(3.65)

where Jm : s(R3) → s(R3), Jc : so(R3) → so(R3), Te : s(R3) → s(R3), Tc : so(R3) →
so(R3), Cc : so(R3) → so(R3), Cm : s(R3) → s(R3), Ce : s(R3) → s(R3) which are all
symmetric, defining quadratic forms, like it did for the classical Cauchy medium, i.e.

[Jm,Te,Ce,Cm]ijkl = [Jm,Te,Ce,Cm]klij ∀(i, j, k, l) ∈ {1, 2, 3}4

[Jc,Tc,Cc]ij = [Jc,Tc,Cc]ji ∀(i, j) ∈ {1, 2, 3}2
(3.66)

1The relaxed micromorphic model classically requires curvature terms L2
ccurlP... However, while im-

portant for the static case, these terms give little correction to the dynamics of our metamaterials and are
hence neglected in the remainder of this manuscript.
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The Lagrangian density ℓm of the relaxed micromorphic continuum is
ℓm(u̇,∇u,∇u̇,P, Ṗ) = km(u̇,∇u̇, Ṗ)− wm(∇u,P) (3.67)

The action functional Am for the micromorphic medium occupying Ω is defined as:

Am = Am
int +Am

ext where





Am
int [u,P] =

∫ t2

t1

∫

Ω
ℓmdΩdt =

∫ T

0

∫

Ω
(km − wm)dΩdt

Am
ext[u] =

∫ t2

t1

∫

∂ΩN

⟨t,u⟩dΓdt+
∫ t2

t1

∫

Ω
⟨f ,u⟩dΩdt

(3.68)
One can notice, in the absence of space derivatives upon P, the absence of additional
generalized forces in Am

ext[u]. The Dirichlet boundary condition are written
{
u = u0

P = P0

on ∂ΩD (3.69)

And the initial conditions are
{
u(t = t1) = ui

u̇(t = t1) = vi

and
{
P(t = t1) = Ui

Ṗ(t = t1) = Vi

in Ω (3.70)

The Principle of Least Action states that the trajectory followed by the system (u,P) :

(x, t) ∈ Ω × [t1, t2] 7→ (u(x, t),P(x, t)) is the one for which the action functional is
stationnary, i.e. verifies

{δAm[u,P] = 0where (u,P) verifies 3.69 and 3.70} (3.71)
Given the kinetic and strain energy densities introduced in 3.67, we can define the space
of configuration Qm to which (u,P) should belong

Qm = {(u,P) : (u,P) verify 3.69 and 3.70} (3.72)
Like for the Cauchy medium, (δu, δP) verifies

{
δu(t1) = 0 = δu(t2)

δP(t1) = 0 = δP(t2)
in Ω and

{
∀t ∈ [t1, t2], δu = 0

∀t ∈ [t1, t2], δP = 0
on ∂ΩD

(3.73)
We can now compute the stationarity ofAm. Let us begin with the Cauchy inertia term:

δ

∫ t2

t1

∫

Ω

1

2
⟨u̇, ρmu̇⟩dΩdt = −

∫ t2

t1

∫

Ω
⟨ρmü, δu⟩dΩdt (3.74)

as seen in 3.25. To deal with skew-symmetric terms, one can notice that
∀(A,X) ∈ so(R3)× R3×3, ⟨X,A⟩ = ⟨skewX,A⟩ (3.75)

allowing us, e.g., to compute the free micro-inertia term:

δ

∫ t2

t1

∫

Ω

1

2

[
⟨sym Ṗ, Jm sym Ṗ⟩+ ⟨skew Ṗ, Jc skew Ṗ⟩

]
dΩdt = −

∫ t2

t1

∫

Ω
⟨δP, Jm sym P̈+Jc skew P̈⟩dΩdt

(3.76)
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Given the complexity of the computation of the first variation of this action functional,
the expression of the other terms is detailed in Annex A. We can give here the Euler-
Lagrange equations for the relaxed micromorphic medium:





d

dt

(
∂ℓm
∂u̇i

+

[
∂ℓm
∂u̇i,j

]

,j

)
+

[
∂ℓm
∂ui,j

]

,j

= fi

d

dt

∂ℓm

∂Ṗij

− ∂ℓm
∂Pij

= 0

i.e.





d

dt

[
∂ℓm

∂u̇
− div ∂ℓm

∂∇u̇

]
+ div ∂ℓm

∂∇u
= f

d

dt

∂ℓm

∂Ṗ
−
∂ℓm

∂P
= 0

(3.77)
Given this, the equilibrium equations of the relaxed micromorphic medium are

{
ρmü− div σ̂ = div σ̃ + f

Jm sym P̈+ Jc skew P̈ = σ̃ − s
in Ω (3.78)

with the (generalized) boundary condition

(σ̃ + σ̂) · n = t on ∂ΩN (3.79)

where n is the normal to the boundary ∂Ω, t is the traction corresponding to the exter-
nally applied load, and the following (generalized) stress-strain relations





σ̃ = Ce sym (∇u−P) + Cc skew(∇u−P)

σ̂ = Te sym∇ü+ Tc skew∇ü

s = Cm symP

(3.80)

We can notice, in the absence of terms of the form curlP in the Lagrangian density of
the relaxed micromorphic continuum, no extra natural boundary condition arises from
the application of the Principle of Least Action. Therefore, a special attention must
be brought to the boundary conditions upon P to guarantee the convergence of the
modelling with respect to the classical Cauchy medium.

3.2.1 The axl mapping

We already introduced the Voigt notation for second and fourth order symmetric ten-
sors, allowing to represent Cc, Cm, Jm, Te in a suitable way. However, we introduced
in our formulation the skew-symmetric part of∇u and P and the associated operators
Cc, Jc and Tc, requiring a new mapping to represent them more easily. Like we did for
symmetric tensors, we define, forX ∈ so(R3),

[axlX]k =
1

2
εkijXji (3.81)

where εijk is the Levi-Civita operator, defined by

εijk =

∣∣∣∣∣∣∣∣∣∣

δi1 δi2 δi3

δj1 δj2 δj3

δk1 δk2 δk3

∣∣∣∣∣∣∣∣∣∣

= εkij (using circular permutation) (3.82)
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allowing to represent second order skew-symmetric tensors as elements of R3:

X =




0 −X21 −X31

X21 0 −X32

X31 X32 0




then axlX =




X21

X32

X31




(3.83)

Using suchmapping for σ̃, σ̂, skewP and skew∇u allow us to represent, as we did for
fourth order symmetric tensors, Cc, Jc and Tc as symmetric (defining quadratic forms)
matrices, respectively Cc, Jc and Tc : R3 → R3 of only 3 independent components.

3.2.2 Application to our microstructured cell

The unit cell has already been introduced in Chapter 2, one can synthesize here the ge-
ometrical and mechanical parameters used used throughout this manuscript in Figure
3.6 and Table 3.1, from which we will compute the relaxed micromorphic coefficients.

a

ep

eg

eg

2e
p
+
e g

eg/2

Figure 3.6: Definitive geometry of the architectured cell with its parametrization.

The values of the geometrical parameters a (side of the cell), ep (half of theminimal
thickness) eg (width of the holes) and the mechanical parameters, corresponding to an
usual titanium alloy are given in Table 3.1.

The eg/2 dimension corresponds to the hole’s radius while the 2ep + eg dimension
allows to guarantee a minimal in-plane thickness of ep in the plate.
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a eg ep ρTi ETi νTi

[mm] [mm] [mm] [kg/m3] [GPa] -
20 0.35 0.25 4400 112 0.34

Table 3.1: Geometrical and mechanical properties of the unit cell given in Figure 3.6.

To simplify the computation of the relaxed micromorphic model coefficients, one
can invoke the Neumann’s Principle, stating that every lattice symmetry of the crystal
must also be a symmetry of the constitutive law supposed to describe the physics of our
system at the macroscopic scale. The unit cell geometry presenting a tetragonal sym-
metry, for which the symmetry group associated is the Dihedral group D4, the elastic
and the micro-inertia tensors of the considered micromorphic medium may be written
as

Ce =




λe + 2µe λe ⋆ 0 0 0

λe λe + 2µe ⋆ 0 0 0

⋆ ⋆ ⋆ 0 0 0

0 0 0 ⋆ 0 0

0 0 0 0 ⋆ 0

0 0 0 0 0 µ∗e




,Cm =




λm + 2µm λm ⋆ 0 0 0

λm λm + 2µm ⋆ 0 0 0

⋆ ⋆ ⋆ 0 0 0

0 0 0 ⋆ 0 0

0 0 0 0 ⋆ 0

0 0 0 0 0 µ∗m




,

Jm =




η3 + 2η1 η3 ⋆ 0 0 0

η3 η3 + 2η1 ⋆ 0 0 0

⋆ ⋆ ⋆ 0 0 0

0 0 0 ⋆ 0 0

0 0 0 0 ⋆ 0

0 0 0 0 0 η∗1




,Te =




η3 + 2η1 η3 ⋆ 0 0 0

η3 η3 + 2η1 ⋆ 0 0 0

⋆ ⋆ ⋆ 0 0 0

0 0 0 ⋆ 0 0

0 0 0 0 ⋆ 0

0 0 0 0 0 η∗1




,

Cc =




⋆ 0 0

0 ⋆ 0

0 0 4µc



, Jc =




⋆ 0 0

0 ⋆ 0

0 0 4η2




and Tc =




⋆ 0 0

0 ⋆ 0

0 0 4η2



.

(3.84)
Such a hypothesis reduces the number of relaxed micromorphic coefficients to 16
(counting the density). If the specific calibration procedure used to determine the val-
ues of the relaxed micromorphic parameters of the unit cell has not been developed in
this thesis, we can briefly say that it consists of:

– the computation of the coefficients of strain energy density
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– the comparison of the dispersion curves of the two models
Indeed, the computation of the generalized stress-strain relations can be made in the
static regime. Such a method largely relies on the KUBC method (Kinetic Uniform
Boundary Conditions) [Hill 1963, Hill 1967, Mandel 1972], e.g. for Cm

1

2
⟨E,CmE⟩ = 1

Ωc
inf
{∫

Ωc

1

2
⟨sym (∇u+E),C sym (∇u+E)⟩dΩ

∣∣∣∣u ∈ C∞0 (Ωc,R3)

}

(3.85)
impliying that Cm depends on the size and shape of unit cell. Using Neumann’s Princi-
ple, the computation of these coefficients is restricted to tetragonal unit cells, e.g. Figure
3.6, which is the solution finally adopted given themicrostructured plate manufactured
presented in 2. Figure 3.7 presents several possible identifications of the unit cell.

Figure 3.7: (red) Different identifications of the unit cell from a microstructured plate.

The computation of inertial parameters is based on the comparison of the relaxed
micromorphic dispersion curveswith those obtained via a classic Bloch-Floquet analysis
(see Chapter 2) [Aivaliotis 2020, d’Agostino 2020]. Thanks to the homogenization, the
computation of the dispersion curves for the relaxed micromorphic model can be made
analytically, reducing the partial differential equation system (i.e. our constitutive laws)
into the algebraic system

DetD(k, w) = 0 (3.86)
where D is a 6×6 matrix obtained via “injecting” in our local equilibrium equations the
monochromatic plane wave
u(x, t) = Û exp(⟨k,x⟩ − ωt),P(x, t) = P̂ exp(⟨k,x⟩ − ωt) and k = kk̂ (3.87)

where Û is the polarization vector, ||k̂|| = 1 is the direction of wave propagation and
k the wave number. The dispersion curves along ΓX and ΓM of the architectured unit
cell and the relaxed micromorphic model are given in 3.8.
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Figure 3.8: (left) Dispersion curves of the microstructured and the relaxed micromor-
phic systems along ΓX (propagation at 0°). (right) Dispersion curves of the microstruc-
tured and the relaxed micromorphic systems along ΓM (propagation at 45°).

The calibrated values of the relaxedmicromorphic parameters relative to themeta-
material in Figure 3.6 and used for the simulations are presented in Table 3.2.

ρ µe λe µ∗e

[kg/m3] [Pa] [Pa] [Pa]
3841 2.53·109 1.01·108 1.26 ·106

µm λm µ∗m µc
[Pa] [Pa] [Pa] [Pa]

4.51 ·109 1.83 ·108 2.70 ·108 105

η1 η2 η3 η∗1

[kg/m] [kg/m] [kg/m] [kg/m]
38.99 5.99·10−3 1.58 2.31

η1 η2 η3 η∗1

[kg/m] [kg/m] [kg/m] [kg/m]
8·10−4 0.02 0.008 0.09

Table 3.2: Values of the elastic and micro-inertia relaxed micromorphic parameters cal-
ibrated on the metamaterial whose unit cell is reported in Figure 3.6.
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By enriching the description of our structures with additional kinematic fields, in
our case micro-distorsion tensor P, the equilibrium and constitutive laws of our media
have been complexified. On the other hand, the domain on which our variational prin-
ciples hold are considerably simplified, as presented in Figure 3.9.

Complex

Simple

Cauchy continuum

ρcü = divσ

Relaxed micromorphic continuum

{
ρmü− div σ̂ = div σ̃
Jm sym P̈+ Jc skew P̈ = σ̃ − s

Figure 3.9: Respective domains and constitutive laws of the classical Cauchy and the
relaxed micromorphic medium.

If, at first sight, itmay seem likewe left one evil for another, one shall remember that
the resolution of systems in Engineering Sciences heavily relies on the Finite-Element
Method (that will be presented in the following sections), for which neither the nature
nor the physical significance of the problem’s variables matter, to the difference of the
number of nodes, shape functions and weak formulation considered.

3.3 The equivalent macroscopic Cauchy model

Considering a very large sample of our microstructured material, the effect of the mi-
crostructure can be considered as negligible. Under that hypothesis, the relaxed micro-
morphic model is equivalent to a classical Cauchy model of elastic stiffness tensor CM.
Its strain density energy we is then defined by[Barbagallo 2017, Barbagallo 2019b]

we(∇u) =
1

2
⟨sym∇u,CM sym∇u⟩ (3.88)

Its identification can be made by a harmonic tensor mean of the constitutive tensors
Cmicro and Ce:

CM = Cm(Cm + Ce)−1Ce (3.89)

Thanks to the “Cartan-like” decomposition of the constitutive laws (sym and skew
split), the computation ofCe can bemade via the “Reuss-like” homogenization formula

Ce = Cm(Cm − CM)−1CM (3.90)
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CM, in the Voigt-Mandel notation, is

CM =




λM + 2µM λM ⋆ 0 0 0

λM λM + 2µM ⋆ 0 0 0

⋆ ⋆ ⋆ 0 0 0

0 0 0 ⋆ 0 0

0 0 0 0 ⋆ 0

0 0 0 0 0 µ∗M




(3.91)

The values of λM, µM and µ∗M, given in Table 3.3, are obtained by periodic homogeniza-
tion, boundary conditions mimicking an infinite number of unit cells, in formulas

1

2
⟨E,CME⟩ = 1

Ωc
inf
{∫

Ωc

1

2
⟨sym (∇u+E),C sym (∇u+E)⟩dΩ

∣∣∣∣u ∈ C∞(Ωc,R3) is periodic
}

(3.92)
making these coefficients independent of the size and shape of the unit cell. The values
of the mechanical parameters of this equivalent macroscopic Cauchy model are given
in Table 3.3.

λM µM µ∗M

[Pa] [Pa] [Pa]
6.51× 107 1.62× 109 1.25× 106

Table 3.3: Values of the elastic the corresponding long-wave limit Cauchy material pa-
rameters calibrated on the metamaterial whose unit cell is reported in Figure 3.6.

The kinetic energy density remaining untouched, i.e.

ke =
1

2
⟨u̇, ρmu̇⟩ (3.93)

Plotting the dispersion diagrams of such a medium would asymptotically give the dis-
persion curves at f = 0, at least for the acoustic ones, of the architectured cell. If such
a continuum does not allow to describe the band-gap effect of the microstructured unit
cell given in 3.6, we will show that it still allows to represent, under some hypothesis,
the static response of our microstructured plates.

3.4 The piezoelectric model

Wepresented inChapter 2 the piezoelectric excitation used to characterize our proof of
concept: given the strong coupling between themicrostructured plate and these patches,
its modelling was required to solve this multiphysics problem.
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Piezoelectricity refers to the ability of certain materials to be polarized under the
application of mechanical stress [Curie 1881] and reciprocally to generate a mechanical
strain when a electric potential is applied. Figure 3.10 presents the interactions between
Electrostatics and Mechanics.

u

εσ

fρ

D E

V

Electrostatic quantities Mechanical quantities

Piezoelectric coupling
Direct effect

Inverse effect Constitutive lawConstitutive law
Stress-strain

relation
Induction-electric

field relation

Maxwell-Gauss
equation

Scalar
potential

Local
equilibrium

Deformation
operator

Figure 3.10: Between mechanic and electrostatic: the piezoelectric effect.

The modelling of such a coupled system can, once again, be made through the
Principle of Least Action. In our case, the action functional Ap introduced is

Ap = Ap
int+A

p
ext where Ap

int [u, V ] =

∫ t2

t1

∫

Ωp

ℓpdΩdt =

∫ t2

t1

∫

Ωp

(kp−wp−q)dΩdt
(3.94)

where ℓp is the Lagrangian density of the piezoelectric medium, kp, wp and q being
respectively the kinetic, strain and electric potential energy density of the piezoelectric
patch. Their respective expressions are respectively given by:

kp =
1

2
⟨u̇, ρpu̇⟩

wp =
1

2
⟨sym∇u,Cp sym∇u+ ξTE⟩

q =
1

2
⟨E, ε0εE+ ξ sym∇u⟩

(3.95)

where ρp : Ω → R+ is the mass density, ε0 = 8.86 · 10−12[F/m] is the vacuum permit-
tivity, E : Ω→ R3 is the electric vector field (in V/m), ε : R3 → R3 and ξ : s(R3)→ R3

is the piezoelectric tensor. In the approximation of the electrostatic, E derives from the
electric potential V : Ω→ R, i.e.

E = −∇V (3.96)
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For the work of external forces and charges, we have

Ap
ext[u, V ] = Ameca

ext [u]+Aelec
ext [V ] where





Ameca
ext [u] =

∫ t2

t1

[∫

Ω
⟨f ,u⟩dΩ +

∫

∂Ωu
N

⟨t0,u⟩dΓ
]
dt

Aelec
ext [V ] =

∫ t2

t1

[∫

Ω
ρvV dΩ +

∫

∂ΩV
N

ρsV dΓ

]
dt

(3.97)
where ρv : Ω→ R and ρs : ∂ΩV

N → R are respectively the volumic and surfacic densities
of electrical charges, in [C.m−3] and [C.m−2]. The Dirichlet boundaries conditions are

{
u = u0 on ∂Ωu

D

V = V0 on ∂ΩV
D

(3.98)

We also have
∂Ω =

{
∂Ωu

D ∪ Ωu
N with ∂Ωu

D ∩ Ωu
N = ∅

∂ΩV
D ∪ ΩV

N with ∂ΩV
D ∩ ΩV

N = ∅
(3.99)

At last, the initial conditions are




u(t = t1) = ui

u̇(t = t1) = vi

V (t = t1) = Vi

in Ω (3.100)

The Principle of Least Action states that the trajectory followed by the system (u, V ) :

(x, t) ∈ Ω × [t1, t2] 7→ (u(x, t), V (x, t)) is the one for which the action functionnal is
stationnary, i.e. verifies

{δAp[u, V ] = 0where (u, V ) verifies 3.98 and 3.100} (3.101)

Given the kinetic and strain energy densities introduced in (3.95), we can define the
space of configuration Qp to which u should belong

Qp = {(u, V ) : (u, V ) verifies 3.98 and 3.100} (3.102)

To properly compute the variation of Action, (δu, δV ) shall verify
{
δu(t1) = 0 = δu(t2)

δV (t1) = 0 = δV (t2)
in Ω and

{
∀t ∈ [t1, t2], δu = 0 on ∂Ωu

D

∀t ∈ [t1, t2], δV = 0 on ∂ΩV
D

(3.103)
As the kinetic and strain energy densities are very close to the ones introduced for the
classical Cauchy medium, the local equilibriums deduced from the Least Action Prin-
ciple can be quickly computed. Let us just notice that

⟨sym∇u, ξTE⟩ = Tr([sym∇u]T · ξTE)

= Tr [ET · ([sym∇u]T · ξT)T
]

= ET · (ξ sym∇u)

= ⟨E, ξ sym∇u⟩

(3.104)
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One can notice that such computation does not rely on the symmetry of ε = sym∇u,
i.e. would still hold without the small displacement hypothesis. Given this, we have

δAp =

∫ t2

t1

∫

Ω
[· · ·+ δV [div(ε0 εE+ ξ sym∇u)− ρv] + . . . ] dΩdt

+

∫ t2

t1

∫

∂Ωu
N

δV (⟨D,n⟩ − ρs)dΓdt

+

∫ t2

t1

∫

∂ΩV
N

. . . dΓdt

(3.105)

the “dotted” terms being already known. We eventually get the equilibrium laws
{
ρpü = divσ + f (Cauchy equilibrium)
divD = ρv (Maxwell-Gauss law)

(3.106)

where the Cauchy stress tensor σ and the electric induction D are given by the consti-
tutive laws {

σ = Cp sym∇u+ ξT E

D = ε0 εE+ ξ sym∇u
(3.107)

The Neumann boundary conditions associated are
{
σ · n = t on ∂Ωu

N

⟨D,n⟩ = ρs on ∂ΩV
N

(3.108)

The elastic tensor Cp, the piezoelectric tensor ξ, and the relative permittivity tensor ε
are here presented in Voigt notation for the considered 3D case. Given the cylindrical
symmetry of the piezoelectric patches presented in Chapter 2, these tensors take the
form:

Cp =




C11 C12 C13 0 0 0

C12 C11 C13 0 0 0

C13 C13 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C66




,

ξ =




0 0 0 0 ξ15 0

0 0 0 ξ15 0 0

ξ31 ξ31 ξ33 0 0 0



, ε =




ε11 0 0

0 ε11 0

0 0 ε33



.

(3.109)

The values of the parameters used for the numerical simulations of the piezoelectric
patches introduced in Chapter 2 are presented in Table 3.4.
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C11 C12 C13 C33 C44 C66

[GPa] [GPa] [GPa] [GPa] [GPa] [GPa]
1140 757 724 1110 263 403
ρp ε11 ε33 ξ31 ξ33 ξ15

[kg /m3] - - [C/m2] [C/m2] [C/m2]
7780 3.24 · 103 3.98 · 103 -2.92 23.4 16.2

Table 3.4: Mechanical, coupling and electrical parameters parameters of the piezoelec-
tric patches.

3.5 Symmetries

Given the relative complexity of the considered problems, it can be advantageous to
consider the eventual symmetries of the models to solve. The symmetry of a problem
occurs when are reunited:
– the symmetry of geometry
– the symmetry of boundary conditions
– the symmetry of load(s)
– the symmetry of constitutive laws
Such a situation is presented in Figure 3.11.

t0

∂ΩN

P1

P2 u0

∂ΩD

↔ t0

∂Ωs
∂ΩN

u0

∂ΩD

Figure 3.11: (left) Unsymmetrized system with its load and symmetry planes. (right)
Reduced system with the created symmetry boundary ∂Ωs.

Under these conditions, one can compute the response of the full system by con-
sidering only the smallest part of it allowing to recreate the whole system. Given the
nature of the considered metamaterial and the general context of this manuscript, this
first proof is reduced in the case of Cartesian coordinates, for symmetries along planes
(O,x1) and (O,x2), which is precisely the case of this framework.
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3.5.1 A first case: plane P of normal n

In a first time, we will show that the structure of the constitutive laws of the relaxed
micromorphic medium implies, considering that the symmetries of the displacement u
are conserved, certain symmetries upon the microdistorsion P. Having (t1, t2) such as
t1 ∧ t2 = n, then (t1, t2,n) forms an orthonormal basis, therefore

∃!(u1, u2, u3) ∈ C1(R3 × [t1, t2],R3) : u = u1t1 + u2t2 + u3n (3.110)

The relations of symmetry for u allow to write

∀(x, x3) ∈ P × R,





u1(x+ x3n) = u1(x− x3n)
u2(x+ x3n) = u2(x− x3n)
u3(x+ x1t1 + x2t2) = 0

(3.111)

One can compute∇u in the symmetry plane in the base (t1, t2,n) by

∀v, ((∇u) · v)(x) = lim
ε→0

1

2

u(x+ εv)− u(x− εv)
ε

(3.112)

With the symmetry relations, one can deduce

∀x ∈ P , ((∇u) · t1)(x) =



⋆

⋆

0


 (3.113)

By the same way, one can deduce

∀x ∈ P , ((∇u) · t2)(x) =



⋆

⋆

0


 and ((∇u) · n)(x) =



0

0

⋆


 (3.114)

In the symmetry plane, one has

∀x ∈ P , (∇u)[t1,t2,n](x) =



⋆ ⋆ 0

⋆ ⋆ 0

0 0 ⋆


 (3.115)

The equilibrium equations for P being

Jm sym P̈+ Jc skew P̈ = Ce sym (∇u−P) + Cc skew(∇u−P)− Cm symP (3.116)

Can be rewritten under the form
[
d2

dt2
Jm + Ce + Cm

]
symP+

[
d2

dt2
Jc + Cc

]
skewP = Ce sym∇u+ Cc skew∇u

(3.117)
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Supposing moreover that the inertial and stiffness operators of the material considered
have the following shape along the symmetry plane in the considered base (which is
the case for our considered metamaterial)

Jm =




⋆ ⋆ ⋆ 0 0 0

⋆ ⋆ ⋆ 0 0 0

⋆ ⋆ ⋆ 0 0 0

0 0 0 ⋆ 0 0

0 0 0 0 ⋆ 0

0 0 0 0 0 ⋆




,Ce =




⋆ ⋆ ⋆ 0 0 0

⋆ ⋆ ⋆ 0 0 0

⋆ ⋆ ⋆ 0 0 0

0 0 0 ⋆ 0 0

0 0 0 0 ⋆ 0

0 0 0 0 0 ⋆




,Cm =




⋆ ⋆ ⋆ 0 0 0

⋆ ⋆ ⋆ 0 0 0

⋆ ⋆ ⋆ 0 0 0

0 0 0 ⋆ 0 0

0 0 0 0 ⋆ 0

0 0 0 0 0 ⋆




,

Cc =



⋆ 0 0

0 ⋆ 0

0 0 ⋆


 , Jc =



⋆ 0 0

0 ⋆ 0

0 0 ⋆




(3.118)
The structures of u and P being conserved, on can deduce

∀x ∈ P , P[t1,t2,n](x) =



⋆ ⋆ 0

⋆ ⋆ 0

0 0 ⋆


 (3.119)

In fact, we are going to prove that those properties of symmetry are independent of the
constitutive laws of the considered relaxed micromorphic medium, but on the opposite
that the shape of these constitutive laws have to satisfy such symmetry relations.

3.5.2 Using the Curie’s Principle

u and P not depending on the orientation of space, supposing our problem to have a
symmetry with respect to the plane P of normal n, one can apply Curie’s Symmetry
Principle, which gives

{
u(x⋆) = u⋆(x)

P(x⋆) = P⋆(x)
(3.120)

χ⋆ being the symmetric ofχwith respect toP . Let us define t1 and t2 so that (t1, t2, t3 =

n) forms an orthonormal basis, thus

t1
∗ = t1 , t1∗ = t2 and n∗ = −n (3.121)

And

(t1 ⊗ t1)
∗ = t1 ⊗ t1 , (t1 ⊗ t2)

∗ = t1 ⊗ t2 , (t1 ⊗ n)∗ = −t1 ⊗ n

(t2 ⊗ t1)
∗ = t2 ⊗ t1 , (t2 ⊗ t2)

∗ = t2 ⊗ t2 , (t2 ⊗ n)∗ = −t2 ⊗ n

(n⊗ t1)
∗ = −n⊗ t1 , (n⊗ t2)

∗ = −n⊗ t2 and (n⊗ n)∗ = n⊗ n

(3.122)
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Let us write u and P in this base:
{
∃!(u1, u2, u3) ∈ C0(R3,R3) : u = uiti

∃!(P11, P22, P33, P12, P13, P21, P31, P32, P23) ∈ C0(R3,R9) : P = Pijti ⊗ tj
(3.123)

Let us also write x as
∃!(x0, ε) ∈ P × R : x = x0 + εn (3.124)

Then
x⋆ = x0 − εn (3.125)

For u, substituting in 3.120, one can get
u1(x0−εn)t1+u2(x0−εn)t2+u3(x0−εn)n = u1(x0+εn)t1+u2(x0+εn)t2−u3(x0+εn)n

(3.126)
By identification

∀x0 ∈ P,∀ε ∈ R





u1(x0 − εn) = u1(x0 + εn)

u2(x0 − εn) = u2(x0 + εn)

u3(x0 − εn) = −u3(x0 + εn)

(3.127)

In the same way, we have for P

∀x0 ∈ P,∀ε ∈ R





P11(x0 − εn) = P11(x0 + εn)

P12(x0 − εn) = P12(x0 + εn)

P13(x0 − εn) = −P13(x0 + εn)

P21(x0 − εn) = P21(x0 + εn)

P22(x0 − εn) = P22(x0 + εn)

P23(x0 − εn) = −P23(x0 + εn)

P31(x0 − εn) = −P31(x0 + εn)

P32(x0 − εn) = −P32(x0 + εn)

P33(x0 − εn) = P33(x0 + εn)

(3.128)

These conditions allow to reconstruct the displacement andmicrodistorsion fields in the
whole plate, when knowing them in one fourth of the plate. For consistency reasons,
when considering the symmetry planes, these conditions imply:

∀x ∈ N ,





⟨u,n⟩ = 0

⟨P, n⊗ t1⟩ = 0

⟨P, n⊗ t2⟩ = 0

⟨P, t1 ⊗ n⟩ = 0

⟨P, t2 ⊗ n⟩ = 0

i.e. ∀x ∈ P,u[t1,t2,n](x) =



⋆

⋆

0


 and P[t1,t2,n](x) =



⋆ ⋆ 0

⋆ ⋆ 0

0 0 ⋆




(3.129)
This can be written, using Einstein’s convention, as

∀x ∈ P,
{
uini = 0

(δki − nkni)(Pijnj) = 0 ∀k = {1, 2, 3}
(3.130)
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3.6 Boundary conditions at interfaces

The structures considered in this manuscript consisting of an assembly of different
continua, e.g., as we introduced before, Cauchy, relaxed micromorphic or piezoelec-
tric medium, one should consider the conditions of continuity at the interfaces between
those media. We will show that the introduction of additional kinematic field (P in our
case) needs the imposition of additional boundary conditions [Madeo 2016b].

3.6.1 Between two Cauchy continua

Let us consider two Cauchy media Ω1 and Ω2 and respective Lagrangian densities ℓ1
and ℓ2 having a common boundary ∂Ωi of normal n as presented in Figure 3.12.

Ω1 Ω2∂Ωi Ω1 ∂Ωi Ω2∂Ωi

Figure 3.12: Interface between two Cauchy media

Let us fictively split the two media with their respective displacements u1 and u2.
The continuity of displacement

u1 = u2 on ∂Ωi (3.131)
Is imposed via the Lagrange multiplier λ, modifying the action of the system A by

A′[u1,u2,λ] = A[u1,u2]−
∫

∂Ωi

⟨λ,u2 − u1⟩dΓdt (3.132)

Classically, the Lagrange equation Lλ associated to λ gives the continuity of displace-
ment (the constrain imposed):

∫

∂Ωi

⟨δλ,u2 − u1⟩dΓdt = 0 (3.133)

Let us detail the Euler-Lagrange equations for u1 and u2. The action of the system is

A[u1,u2,λ] =

∫ t2

t1

[∫

Ω1

ℓ1[u̇1,∇u1,u1]dΩ +

∫

Ω2

ℓ2[u̇2,∇u2,u2]dΩ−
∫

∂Ωi

⟨λ,u2 − u1⟩dΓ
]
dt

(3.134)
As we did before, the stationarity of the boundary term for Lu1 gives

∫ t2

t1

∫

∂Ωi

〈
δu1,

∂ℓ1
∂∇u1

· n1 + λ

〉
dΓdt = 0 (3.135)
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The stationarity of the boundary term for Lu2 gives
∫ t2

t1

∫

∂Ωi

〈
δu2,

∂ℓ2
∂∇u2

· n2 − λ

〉
dΓdt = 0 (3.136)

Under this form, one can see that λ is the traction force exerted by Ω1 on Ω2 on the
boundary ∂Ωi. Having

n1 = −n2 = n (3.137)
And

σ1 = −
∂ℓ1
∂∇u1

and σ2 = −
∂ℓ2
∂∇u2

(3.138)

We have
σ1 · n = σ2 · n on ∂Ωi (3.139)

i.e. the continuity of traction forces at the interface ∂Ωi. As we considered the action
functionnal A[u1,u2,λ], such an approach can be considered as a mixed formulation,
allowing to compute the interfaces forces between the two continuums.

3.6.2 Between a Cauchy medium and a relaxed micromorphic medium

Let us consider a Cauchy medium Ωc and a relaxed micromorphic medium Ωm of re-
spective Lagrangians density ℓc and ℓm having a common boundary ∂Ωi of normal n
directed from Ω1 towards Ω2 as presented in Figure 3.13.

Ωc Ωm∂Ωi Ωc ∂Ωi Ωm∂Ωi

Figure 3.13: (left) Interface between a Cauchy and a relaxed micromorphic medium.
(right) Fictive split between a Cauchy and a relaxed micromorphic medium.

Let us fictively split the two media with their respective displacements uc and um.
The continuity of displacement

uc = um on ∂Ωi (3.140)

Is imposed via the Lagrange multiplier λ, modifying the action of the system A by

A′[uc,um,P,λ] = A[uc,um,P]−
∫

∂Ωi

⟨λ,um − uc⟩dΓdt (3.141)
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Classically, the Lagrange equation Lλ associated to λ gives the continuity of displace-
ment (the constrain imposed):

∫

∂Ωi

⟨δλ,um − uc⟩dΓdt = 0 (3.142)

Let us detail the Euler-Lagrange equations for uc, um and P. The action of the system
is

Aint[uc,um,P,λ] =

∫ t2

t1

[∫

Ωc

ℓc[u̇c,∇uc,uc]dΩ +

∫

Ωm

ℓm(u̇m,∇um,∇u̇m,P, Ṗ)dΩ−
∫

∂Ωi

⟨λ,um − uc⟩dΓ
]
dt

(3.143)
As we did before, the stationarity of the boundary term for Luc gives

∫ t2

t1

∫

∂Ωi

〈
δuc,

∂ℓc
∂∇uc

· nc + λ

〉
dΓdt = 0 (3.144)

The stationarity of the boundary term for Lum gives
∫ t2

t1

∫

∂Ωi

〈
δum,

[
∂ℓm
∂∇um

− d

dt

∂ℓm
∂∇u̇m

]
· nm − λ

〉
dΓdt = 0 (3.145)

Under this form, one can see that λ is the traction force exerted by Ωc on Ωm on the
boundary ∂Ωi. Having

nc = −nm = n (3.146)
and

σ = − ∂ℓc
∂∇uc

, σ̂m = − ∂ℓm
∂∇um

and σ̃m =
d

dt

∂ℓm
∂∇u̇m

(3.147)

we have
σ · n = (σ̂ + σ̃) · n on ∂Ωi (3.148)

One can precise the column-wise expression of σ̃ + σ̂:

(σ̃ + σ̂)⋆1 =




2µe(−P11 + u1,1) + λe(−P11 − P22 + ux + vy)− ω2(2η̄1u1,1 + η̄3(u1,1 + u2,2))

µc(−p12 + p21 + u1,2 − u2,1) + µ∗e(−P12 − P21 + u1,2 + u2,1)− ω2(η̄2(u1,2 − u2,1) + η̄∗1(u1,2 + u2,1))

⋆




(σ̃ + σ̂)⋆2 =



µc(P12 − P21 − u1,2 + u2,1) + µ∗e(−P12 − P21 + u1,2 + u2,1) + ω2((η̄2 − η̄∗1)u1,2 − (η̄2 + η̄∗1)u2,1)

2µe(−P22 + u2,2) + λe(−P11 − P22 + u1,1 + u2,2)− ω2(2η̄1u2,2 + η̄3(u1,1 + u2,2))

⋆




(3.149)
For a generalized vertical traction-free border, the relaxed micromorphic medium veri-
fies

{
2µe(−P11 + u1,1) + λe(−P11 − P22 + ux + vy)− ω2(2η̄1u1,1 + η̄3(u1,1 + u2,2)) = 0

µc(−p12 + p21 + u1,2 − u2,1) + µ∗e(−P12 − P21 + u1,2 + u2,1)− ω2(η̄2(u1,2 − u2,1) + η̄∗1(u1,2 + u2,1)) = 0

(3.150)
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For a horizontal generalized traction-free border, the relaxed micromorphic medium
verifies

{
µc(P12 − P21 − u1,2 + u2,1) + µ∗e(−P12 − P21 + u1,2 + u2,1) + ω2((η̄2 − η̄∗1)u1,2 − (η̄2 + η̄∗1)u2,1) = 0

2µe(−P22 + u2,2) + λe(−P11 − P22 + u1,1 + u2,2)− ω2(2η̄1u2,2 + η̄3(u1,1 + u2,2)) = 0

(3.151)

The continuity of the traction forces at a vertical border is
{
2µe(−P11 + u1,1) + λe(−P11 − P22 + ux + vy)− ω2(2η̄1u1,1 + η̄3(u1,1 + u2,2)) = 2µu1,1 + λ(u1,1 + u2,2)

µc(−p12 + p21 + u1,2 − u2,1) + µ∗e(−P12 − P21 + u1,2 + u2,1)− ω2(η̄2(u1,2 − u2,1) + η̄∗1(u1,2 + u2,1)) = µ(u1,2 + u2,1)

(3.152)

The continuity of the traction forces at a horizontal border is
{
µc(P12 − P21 − u1,2 + u2,1) + µ∗e(−P12 − P21 + u1,2 + u2,1) + ω2((η̄2 − η̄∗1)u1,2 − (η̄2 + η̄∗1)u2,1) = µ(u1,2 + u2,1)

2µe(−P22 + u2,2) + λe(−P11 − P22 + u1,1 + u2,2)− ω2(2η̄1u2,2 + η̄3(u1,1 + u2,2)) = 2µu2,2 + λ(u1,1 + u2,2)

(3.153)

3.7 Solving

We presented, in the previous sections of this chapter, the models that will allow us
to describe, e.g., the microstructured plate presented in 2. With the powerful Principle
of Least Action, we showed that, through the Calculus of Variation, the movement of
mechanical systems u could be represented by a set of differential equations, called the
strong form of the problem:

Find u : Au = f in Ω (3.154)

where A is a differential operator: for the isotropic linear classical Cauchy model, the
dynamic stiffness operator

Au = ρpü− (λ+ µ)∇(divu)− µ∆u (3.155)

and f a function defined on Ω (corresponding, in our case, to body forces in our
medium). Such a solution u equivalently verifies what is called the weak form of the
problem

Find u :

∫

Ω
⟨u∗,Au⟩dΩ =

∫

Ω
⟨u∗, f⟩dΩ ∀u∗ (3.156)

where u∗ is the test function associated to u verifying

u⋆ = 0 on ∂ΩD (3.157)

While the complexity of the considered problems forbids us to find any analytical so-
lution and the nature of the differential operator requires an important regularity of
the solutions u, the weak formulation allows, through skillfully integrating by parts,
to lower the derivation order applied on u (and necessarily raise those upon u∗) and
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therefore the conditions of regularity of the solution sought. As we used the formalism
of variational methods to introduce our models, it seems more appropriate to present
the Lax-Milgram theorem under its “variational form”, i.e. having a bilinear form a

(a = ⟨Au,u∗⟩ satisfies such conditions) upon the adequate Hilbert spaceH being:

– continuous:
∃c > 0 : ∀(u,u∗) ∈ H2, |a(u,u∗)| ⩽ c ||u|| ||u∗|| (3.158)

– coercive:
∃α > 0 : ∀(u,u∗) ∈ H2, |a(u, v)| ⩾ α ||u|| ||u∗|| (3.159)

– symmetric:
∀(u,u∗) ∈ H2, a(u,u∗) = a(u∗,u) (3.160)

And f a continuous linear form (f = ⟨f ,u∗⟩ is a such one), then

Problem 3.156 has a unique solution, which minimize 1

2
a(u∗,u∗)− f(u∗)

The parity of the orders of derivation and the symmetry of every operator we intro-
duced make problem involving classical Cauchy medium verify such conditions. For a
classical Cauchy medium in the frequency domain, the weak formulation is
∫

Ω

[
⟨sym∇u∗,C sym∇u⟩ − ω2⟨u∗, ρcu⟩

]
dΩ =

∫

Ω
⟨u∗, f⟩dΩ+

∫

∂ΩN

⟨u∗, t0⟩dΓ (3.161)

For the relaxed micromorphic model, things are a bit more tricky, as we have
∫

Ω
⟨sym(∇u∗ −P∗),Ce sym(∇u−P)⟩+ ⟨symP∗,Cm symP⟩+ ⟨skew(∇u∗ −P∗),Cc skew(∇u−P)⟩dΩ

− ω2

∫

Ω
⟨u∗, ρmu⟩+ ⟨symP∗, Jm symP⟩+ ⟨skewP∗, Jc skewP⟩dΩ

− ω2

∫

Ω
⟨sym∇u∗,Te sym∇u⟩+ ⟨skew∇u∗,Tc skew∇u⟩dΩ = 0

(3.162)

Unfortunately, the relaxed micromorphic model we presented introduced the second-
order tensor P, necessitating more powerful mathematical tools to solve our problems.
One can refer to [Ghiba 2015] for a study of the well-posedness of the relaxed micro-
morphic continuum model.

3.7.1 Discretization of the geometry

Finite element method seeks to find a numerical solution to 3.161 where u is approx-
imated by, e.g., low-degree polynomial functions. To choose the appropriate function
form becoming very tricky for complex structures, the finite elements method proceeds
in two steps:

– Divide the domain Ω into simple elements Ωe
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– Choose an appropriate interpolation function for both u and u∗ for each domain Ωi

Let us approximate our domain Ω by ΩF.E. paved by elements Ωi, i.e.

ΩF.E. =
⋃

i

Ωi with Ωi ∩ Ωj = ∅ for i ̸= j (3.163)

In the case of Bubnov-Galerkin method, u and u∗ are interpolated by the same shape
functions ei:

u(x) = ei(x)qi and u⋆(x) = ei(x)q
⋆
i (3.164)

where, for example, qi can represent the displacement at the vertices of each element,
called the nodes of the meshing (other choices are possible, which still have to respect
the unisolvency principle). Injecting these relations in Equation 3.156, by linearity, we
get

q⋆ja(ei, ej)qi = q⋆j f(ej) (3.165)

For the classical Cauchy problem presented in Equation 3.161, we have:

q⋆T [K− ω2M
]
q = q⋆TF (3.166)

where

Kij =

∫

ΩF.E.
⟨sym∇ei,C sym∇ej⟩dΩ, Mij =

∫

ΩF.E.
⟨ei, ρcej⟩dΩ and Fi =

∫

ΩF.E.
⟨ei, f⟩dΩ+

∫

∂ΩF.E.
⟨ei, t0⟩dΓ

(3.167)
The explicit expressions of K and M will be given at the end of this subsection. At first
sight, one could make two remarks:

– A numerical integration has to be done over the whole domain Ω

– Such integration has to be done “many times” (n(n+1)/2 times, n being the number
of degrees of freedom of the discretized system, i.e. the size of qi, using the symmetry
of K and M)

The Finite ElementMethod shows here its strength: the ei are chosen to be of small sup-
port, making most of these integrations directly equal to zero (eventually simplifying
considerably the inversion of the system), and the rest of them reduced to, as we will
see, reduce to the elements around the considered nodes. One could detail here the as-
sembling procedure for each element, the transformation of the reference element, the
numeric integration leading to 3.166, etc. We are rather going to focus on the implemen-
tation of such amethod in the case of our microstructured cell andmore specifically the
relaxed micromorphic model. The finite element method reduces discretization of the
problem to the choice of:

– the meshing of the geometry (h-adaptativity, r-adaptivity for the nodes)

– the shape functions (p-adaptivity)
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The choice of these parameters can bemade by answering to the question: “Is the chosen
interpolation able to describe the response of the system in each element ?”. To guaran-
tee the continuity of both the displacement and stress, we choose u and its components
to be interpolated by quadratic Lagrange polynomials over each element, while P is
interpolated, necessarily, by linear Lagrange polynomials: such a choice guarantees the
continuity of generalized stresses over the whole structure. Such a polynomial is given
in Figure 3.14.

eu3

x1x2

0

1

-1

0

1

-1

eP3

x1x2

0

1

-1

0

1

-1

Figure 3.14: (left) Shape function eu3 chosen for u. The black dots represents the nodes
where u is interpolated. (right) Shape function eP3 chosen for P. The black dots repre-
sents the nodes where P is interpolated.

Such a polynomial ei verifies, given a set of n different nodes xj ,

ei(xj) = δij (3.168)

Given this, one instantly has

ui(x) = ui(xj)e
u
j (x) and Pij(x) = Pij(xk)e

P
k (x) (3.169)

As it has been mentioned before, as we essentially work in two dimensions, triangu-
lar and rectangular elements are used where the geometry allows it. Inevitably, such
elements can not perfectly describe the microstructure designed, especially in round
corners, as represented in Figure 3.15.
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Figure 3.15: Unrefined mesh for the corner of the microstructured cell, the exact geom-
etry of the cell is represented in gray, one can notice the difference between the mesh
and the geometry at the bottom of the holes.

Given the importance of this zone for the correct description of the band-gap effect,
a really thin mesh is necessary, increasing drastically the size of the problem. Such an
assumption can be proven, all things equal otherwise, via the the Cea’s Lemma:

∀u∗
1 ∈ H1 ⊂ H, ||u− u∗|| ≤ c

α
||u− u∗

1|| ∀u∗ ∈ H (3.170)

where c and α have already been introduced giving the Lax-Milgram theorem. Given
our geometry and our considered elements, we won’t be able to perfectly pave our mi-
crostructured cell (such a mesh is therefore called non-conforming mesh):

Ω ̸= ΩFE (3.171)
Such considerations would, on a theoretical level, be very technical to deal with: as it is
not the case for the relaxed micromorphic model, it will not be presented here and the
meshingwill be considered as conforming for themicrostructured plate. In practice, the
“right size” of themesh has to be found via iterations, all thing equal otherwise, refining
the meshing of the structure. A compromise between the size of the mesh and the
regularity (and nature) of the shape functions can be profitable for a faster computation
of the response of the system: this has not been considered in this manuscript. As the
order of our shape functions have been chosen with respect to the constitutive laws
of our problem, the size of the mesh is the only parameter remaining to converge to
the “exact” solution. To answer to “Is the chosen interpolation able to describe the
response of the system in each element ?”, one can see the structure alternatively from
an structural and from an ondulatory point of view. We are going to justify this on the
mesh used for the microstructured cell and the equivalent relaxed micromorphic one
presented in Figure 3.16.
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Figure 3.16: (left) Mesh for a quarter unit cell of the microstructured model: the por-
tions of domain with coarse mesh allows a reduction of the total number of degrees of
freedom, while a finer mesh is needed in the slender portions of the domain in order
to be able to properly describe the behaviour of the microstructure in the band-gap fre-
quency range. (right) Mesh for the equivalent relaxed micromorphic model.

One can identify on Figure 3.16 (left) three zones corresponding to three different
meshes:

– the resonating square

– the “beams”

– the “corner” of the unit cell

One has to choose the size of the mesh with respect to the considered frequency range
upon which the response is computed: we saw, in section 2.1, that the displacement in
a isotropic Cauchy material could be written, through Helmoltz decomposition, as the
sum of two functions, solutions of D’Alembert equations of propagation speeds cl and
cs. For a given frequency f , one can introduce the wavelength λ as

c = λ · f ⇒ λ =
c

f
(3.172)

Writing, as it is classically done, h(K) as the greatest dimension of a given element K
composing the mesh as presented in Figure 3.17, one should have

h(K) < λ i.e. h(K) <
c

f
(3.173)
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h(K)

K

Figure 3.17: ElementK of a Finite Element model with its greatest dimension h(K).

With inequality 3.173, the mesh used in the Finite Element Method has to be re-
fined as the computed frequency increases. Such a hypothesis can be verified on the
beam under axial tensile load presented in Figure 3.18: for the first mode (left) a coarser
mesh allows the good description of the mode, while, for the 5th mode a refined mesh
is needed.

Figure 3.18: (top) Scaled displacement for the first (left) and 5th (right) tensile mode of
the beam with their respective (bottom) mesh necessary for convergence.

Given this, one can explainwhy the resonating square has been so coarselymeshed:
for the considered frequencies, such element can be considered as a rigid body, and
therefore behaves like one. At the opposite, a way thinner mesh has to be implemented
for the corner of the unit cell, as well as the beams constituting its sides.

The optimization of the meshing of the relaxed micromorphic domain, given the
simplicity of its geometry, that can be paved by quadrangular elements, is reduced to
the choice of the elements’ size d. As it has been made for the classical Cauchy model,
a parametric analysis upon the size of the mesh leads to

d = 0.85 · 10−3 [m] (3.174)

As no transformation is necessary for the relaxed micromorphic model, we present the
elementary matrix for the relaxed micromorphic model.
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Figure 3.19: Elementary unit of the relaxed micromorphic model

Our polynomial basis is, for ui:

(1, x1, x1x2, x2, x
2
1, x

2
1x2, x1x

2
2, x

2
2) (3.175)

From this, one can define the shape functions

eu1 =
1

4
(1− x1)(1− x2)(1 + x1 + x2), e

u
2 =

1

4
(1 + x1)(1− x2)(1− x1 + x2),

eu3 =
1

4
(1− x1)(1 + x2)(1 + x1 − x2), eu4 =

1

4
(1 + x1)(1 + x2)(1− x1 − x2),

eu5 =
1

2
(1− x1)(1− x2)(1 + x1), e

u
6 =

1

2
(1− x1)(1− x2)(1 + x2),

eu7 =
1

2
(1 + x1)(1− x2)(1 + x2), e

u
8 =

1

2
(1− x1)(1 + x1)(1 + x2)

(3.176)

For Pij , interpolated by linear Lagrange polynomials, the basis is:

(1, x1, x1x2, x2) (3.177)

Given this, the shape functions for P are

eP1 =
1

4
(1−x1)(1−x2), eP2 =

1

4
(1+x1)(1−x2), eP3 =

1

4
(1−x1)(1+x2), eP4 =

1

4
(1+x1)(1+x2)

(3.178)
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For ui, we have

ui(x) =
(
eu1 eu2 eu3 eu4 eu5 eu6 eu7 eu8

)




ui(1)

ui(2)

ui(3)

ui(4)

ui(5)

ui(6)

ui(7)

ui(8)




= eTuq
i
u (3.179)

For Pij , we have

Pij(x) =
(
eP1 eP2 eP3 eP4

)




Pij(1)

Pij(2)

Pij(3)

Pij(4)




= eTPq
ij
P (3.180)

Classically, the Cauchy inertial contribution is

− ω2
(
q1
u q2

u

)⋆
(
ρmMu O
⋆ ρmMu

)(
q1
u

q2
u

)
(3.181)

The free micro-inertia contribution is

−ω2
(
q11
P q12

P q21
P q22

P

)⋆




(2η1 + η3)MP O O η3MP

⋆ (η∗1 + η2)MP (η∗1 − η2)MP O
⋆ ⋆ (η∗1 + η2)MP O
⋆ ⋆ ⋆ (2η1 + η3)MP







q11
P

q12
P

q21
P

q22
P




(3.182)
The gradient micro-inertia contribution is

− ω2
(
q1
u q2

u

)⋆
(
(2η1 + η3)K1 + (η⋆1 + η2)K2 η3K0 + (η⋆1 − η2)KT

0

⋆ (2η1 + η3)K2 + (η⋆1 + η2)K1

)(
q1
u

q2
u

)

(3.183)
The elastic energy contribution is




q1
u

q2
u

q11
P

q12
P

q21
P

q22
P




⋆T


(2µe + λe)K1 + µ∗eK2 λeK0 + µ∗eKT
0 −2(µe + λe)H1 −µ∗eH2 −µ∗eH2 −λeH1

⋆ (2µe + λe)K2 + µ∗eK1 −λeH2 −µ∗eH1 −µ∗eH1 −(2µe + λe)H2

⋆ ⋆ (2µe + λe)MP O O λeMP

⋆ ⋆ ⋆ µ∗eMP µ∗eMP O
⋆ ⋆ ⋆ ⋆ µ∗eMP O
⋆ ⋆ ⋆ ⋆ ⋆ (2µe + λe)MP







q1
u

q2
u

q11
P

q12
P

q21
P

q22
P




(3.184)
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The micro self energy contribution is

(
q11
P q12

P q21
P q22

P

)⋆




(2µm + λm)MP O O λmMP

⋆ µ∗mMP µ∗mMP O
⋆ ⋆ µ∗mMP O
⋆ ⋆ ⋆ (2µm + λm)MP







q11
P

q12
P

q21
P

q22
P




(3.185)
And the local rotational elastic energy contribution is

(
q1
u q2

u q12
P q21

P

)⋆




µcK1 µcKT
0 −µcH2 −µcH2

⋆ µcK2 −µcH1 −µcH1

⋆ ⋆ µcMP µcMP

⋆ ⋆ ⋆ µcMP







q1
u

q2
u

q12
P

q21
P




(3.186)

where the square (given the shape functions chosen for u andP) matricesMu,MP,K1,
K2, K0, H1 and H2 are given by

[Mu]ij = d2
∫ 1

−1

∫ 1

−1
eui e

u
j dx1dx2 and [

MP
]
ij
= d2

∫ 1

−1

∫ 1

−1
ePi e

P
j dx1dx2

[K1]ij = d2
∫ 1

−1

∫ 1

−1
eui,1e

u
j,1dx1dx2, [K2]ij = d2

∫ 1

−1

∫ 1

−1
eui,2e

u
j,2dx1dx2 and [K0]ij = d2

∫ 1

−1

∫ 1

−1
eui,1e

u
j,2dx1dx2

[H1]ij = d2
∫ 1

−1

∫ 1

−1
eui,1e

P
j dx1dx2 and [H2]ij = d2

∫ 1

−1

∫ 1

−1
eui,2e

P
j dx1dx2

(3.187)
Choosing to sort the degrees of freedom by

q =
(
q1
u q2

u q11
P q12

P q21
P q22

P

)T
(3.188)

The generalized mass and stiffness matrices Mm and Km of the relaxed micromorphic
model can be written as

Mm =

(
M1 O
⋆ M2

)
and Km =

(
K H
⋆ KP

)
(3.189)
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where

M1 =

(
ρmMu + (2η1 + η3)K1 + (η⋆1 + η2)K2 η3K0 + (η⋆1 − η2)KT

0

⋆ ρmMu + (2η1 + η3)K2 + (η⋆1 + η2)K1

)

M2 =




(2η1 + η3)MP O O η3MP

⋆ (η∗1 + η2)MP (η∗1 − η2)MP O
⋆ ⋆ (η∗1 + η2)MP O
⋆ ⋆ ⋆ (2η1 + η3)MP




K =

(
(2µe + λe + µc)K1 + µ∗eK2 λeK0 + (µ∗e + µc)KT

0

⋆ (2µe + λe)K2 + µ∗eK1 + µcK2

)

H =

(
−2(µe + λe)H1 −(µ∗e + µc)H2 −(µ∗e + µc)H2 −λeH1

−λeH2 −(µ∗e + µc)H1 −(µ∗e + µc)H1 −(2µe + λe)H2

)

KP =




(2µe + λe + 2µm + λm)MP O O (λe + λm)MP

⋆ (µ∗e + µ∗m + µc)MP (µ∗e + µ∗m + µc)MP O
⋆ ⋆ (µ∗e + µ∗m + µc)MP O
⋆ ⋆ ⋆ (2µe + λe + 2µm + λm)MP




(3.190)
the Finite Element Method applied to the relaxed micromorphic model gives the fol-
lowing

q⋆T
(
Km − ω2Mm

)
q = q⋆TFm (3.191)

where Fm is the generalized force vector defined by

Fm =
(
FT 0 0 0 0

)T
(3.192)

Which has to be compared to the elementary mass and stiffness matrices of a classical
Cauchy medium

Kc =

(
(2µe + λe)K1 + µ∗eK2 λeK0 + µ∗eKT

0

⋆ (2µe + λe)K2 + µ∗eK1

)

Mc =

(
ρcMu O
⋆ ρcMu

) (3.193)

the contribution of one element being

(
q1
u q2

u

)⋆ (
Kc − ω2Mc

)(q1
u

q2
u

)
=
(
q1
u q2

u

)⋆
(
F1

F2

)
(3.194)

The expressions of F1 and F2 has not been mentioned yet, we have

Fi = d2
∫ 1

−1

∫ 1

−1
fieudx1dx2 (3.195)
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These computations may seems a little bit tedious, but one should keep in mind that,
being done only once numerically, the complexity of the Finite Element Method is re-
duced to the assembly of the elementarymatrices (almost negligible in terms of compu-
tational time) and the inversion of a – sometime huge –matrix system. The tremendous
decrease of number in the nodes through the homogenization largely compensates the
complexification of the elementarymatrices and (generalized) displacement field of the
relaxed micromorphic model.

3.7.2 Damping of the structures

We chose to describe our mechanical systems via the Principle of Least Action, allowing
to deduce elegantly the equilibrium equations and the constitutive laws of our media
from the Lagrangian density: in return, such systems were necessarily conservative, i.e.

dEc

dt
= 0 where Ec = Kc +Wc and





Kc =

∫

Ω
kcdΩ

Wc =

∫

Ω
wcdΩ

(3.196)

Indeed, having (the first equality uses, in some way, Euler’s identity on homogeneous
functions)

dkc
dt

=
1

2

du̇iρcu̇i
dt

= u̇iρcüi = u̇i
dρcu̇i
dt

=

〈
u̇,

d

dt

∂kc
∂u̇

〉
and dwc

dt
=

〈
∇u̇,

∂wc

∂∇u

〉

(3.197)
one can deduce

d

dt

∫

Ω
(k + w)dΩ =

∫

Ω

〈
u̇,
∂kc
∂u̇
− div ∂wc

∂∇u

〉
dΩ−

∫

∂Ω

〈
u̇,

∂wc

∂∇u
· n
〉
dΓ (3.198)

As kc and wc are independent from, respectively,∇u and u̇, we have

∂kc
∂u̇

=
∂ℓc
∂u̇

and ∂wc

∂∇u
= − ∂ℓc

∂∇u
(3.199)

The last term
∫

∂Ω

〈
u̇,

∂wc

∂∇u

〉
dΓ corresponds to the power of contact forces: to be rig-

orous, we should have:

– included the conservative forces in the expression of the mechanical energy, i.e.



∃U : f = −∂U

∂u
in Ω

∃V : t = −∂V
∂u

on ∂Ω
then Wc =

∫

Ω
(wc + U)dΩ +

∫

∂Ω
V dΓ (3.200)

– considered a system free from external (contact) forces, i.e. verifying

σ · n = 0 (3.201)
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In both cases, this last term vanishes. The local equilibrium in a Cauchy continuum, via
the Euler-Lagrange equations, is

d

dt

∂ℓc
∂u̇

+ div ∂ℓc
∇u

= 0 (3.202)

Allowing us to conclude. Such a proof can be repeated for the relaxed micromorphic
model, having

d

dt

∫

Ω
(km + wm)dΩ =

∫

Ω

〈
u̇,

d

dt

[
∂km

∂u̇
− div ∂km

∂∇u̇

]
+ div ∂wm

∂∇u

〉
dΩ

+

∫

Ω

〈
Ṗ,

d

dt

∂km

∂Ṗ
−
∂wm

∂P

〉
dΩ

+

∫

∂Ω

〈
u̇,

[
d

dt

∂km
∂∇u̇m

+
∂wm

∂∇um

]
· n
〉
dΓ

(3.203)

As we have
dkm
dt

=

〈
u̇,

d

dt

∂km
∂u̇

〉
+

〈
Ṗ,

d

dt

∂km

∂Ṗ

〉
+

〈
∇u̇,

d

dt

∂km
∂∇u̇

〉
(3.204)

Replacing, with consideration to the respective forms of kinetic and strain energy den-
sities, km and wm by, respectively, ℓm and −ℓm, the two first terms, corresponding to
the Euler-Lagrange equations of the relaxed micromorphic medium, equal zero. The
last one being the generalized power of contact forces, the argument we gave for the
classical Cauchy medium still holds, which ends the proof.

The conservativity of our systems, when it comes to their numerical resolution,
causes great difficulties in terms of numerical resolution, and the relaxedmicromorphic
model, instead of escaping such problems, rather sinks in those complexities. We saw,
in the previous subsection, that our set of differential equations modelling our continua
could be, in a good approximation, represented by a matrix system of the form

q⋆T[K− ω2M]q = q⋆TF (3.205)
We can classically split q upon the nodes at prescribed displacement (∈ ∂ΩD in the case
of a conforming mesh and ∂Ωs if symmetries are considered) and those at prescribed
force (body or contact forces). Having ∂ΩD ∪ ∂ΩN = ∅, we have

(
0 q⋆T

i

)(K00 − ω2M00 K0i − ω2M0i

⋆ Kii − ω2Mii

)(
q0

qi

)
=
(
0 q⋆T

i

)(Fi

F0

)
(3.206)

As q⋆ = 0 on ∂ΩD, which does not allow to compute the corresponding forces allowing
to verify u = u0. We saw that the use of a Lagrange multiplier λ allowed to compute
them, the associated system is

(
q⋆T
0 q⋆T

i q⋆T
λ

)


K00 − ω2M00 K0i − ω2M0i −1
KT

0i − ω2MT
0i Kii − ω2Mii O

1 O O






q′
0

qi

λ


 =

(
q⋆T
0 q⋆T

i q⋆T
λ

)


Fi

F0

q0




(3.207)
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Let us go back to equation 3.206. qi is easily given by

qi = [Kii − ω2Mii]
−1[F0 − (K0i − ω2M0i)q0] (3.208)

Requiring the reversibility ofKT
ii−ω2MT

ii: such a matrix, corresponding to the dynamic
stiffness of the structure with the boundary conditions u = 0 on ∂ΩD, is therefore sym-
metric. The term (K0i − ω2M0i)q0 corresponds to the (generalized) forces induced by
the prescribed displacement on ∂ΩD. For the sake of simplicity, let us go back to the
classical

[K− ω2M]q = F (3.209)

We will not develop here any method of modal synthesis, but just say, using spectral
theorem, that

∃Φ ∈ O(R3) :

{
ΦTKΦ = Ω2

ΦTMΦ = 1
where Ωij =

{
ωi if i = j

0 otherwise
(3.210)

where the ith column ofΦ is the modeshape of our structure associated with the eigen-
frequency ωi. Given this, the response of linear systems, including continua through
the Finite Element Method, may be seen as a linear combination of one degree of free-
dom resonators. Such a reduction allows to compute q by

qi = Φji
ΦijFj
ω2
i − ω2

(3.211)

which, havingωi ∈ R+, clearly shows the divergence of the frequency response function
(q : ω 7→ q(ω), FRF) at each eigenfrequency of the structure ωi. With that formulation,
modal synthesis can be seen as an intermediary between the resolution of mechanical
problems in the physical space (x, t) and the dual space (k, ω) as presented in Figure
3.20.
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Figure 3.20: Integration of linear systems using modal synthesis or homogenization
techniques.

Microstructured plates studied in the following sections and chapters of this
manuscript, due to their particular geometry, present a great number of modes in the
frequency range considered: the inversion of such models, given the considerable vari-
ation of amplitude on a narrow range of frequencies, is made difficult for solvers. Such
a statement is all the more verified for the relaxed micromorphic where, given the pres-
ence of micro-distortionP, the number of (generalized)modes of the structure tremen-
dously increases. For now, we presented the divergence of the response of our structure
from a structural point of view: before going any further, Let us present how these res-
onance occurs from a wave point of view. Via the Bloch-Floquet analysis, we saw that
the dispersion curves of the unit cell took the form

ω = ω(k) (3.212)

In the absence of damping, which would considerably complexify the computation of
dispersion curves (requiring, e.g., the use of the Shift-cell operator), one has

∀k ∈ R2,Re(ω(k)) · Im(ω(k)) = 0 (3.213)

i.e. ω is either real, either a pure imaginary number (in the band-gap). Reciprocally, for
a given ω ∈ R and writing k = kk̂where ||k̂|| = 1, we necessarily have

∀ω ∈ R,Re(k) · Im(k) = 0 (3.214)
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i.e. that propagation (eventually) occurs in the considered medium without attenu-
ation. Such considerations allows to understand, from the wave point of view, how
the resonance occurs: it is well known, since Fourier, that the frequency response of
a (linear) system corresponds to the stationary response of the system to a sinusoidal
excitation. Once again, we can take a glance at a finite beam under an axial tensile load,
as presented in Figure 3.21.

∂u

∂x
= f0 cos(

π
L

√
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+

+

1st reflection
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+

Figure 3.21: (left) First mode of a beam under a axial tensile load with the divergence
of its response in the absence of damping. (right) First mode of a damped beam under
a axial tensile load with the emitted and reflected waves eventually converging to its
stationary response as t −→ +∞.

In the absence of dissipation in the material, each wave sent by the excitation prop-
agates through the beam at constant amplitude, and so do its multiple reflections: as
t −→ +∞, the response of the beam, i.e. the sum of every wave (those emitted by the
excitation, their reflections, the reflections of their reflections, etc), of constant ampli-
tude eventually diverges, as presented in Figure 3.22.

Figure 3.22: (left) Co-localized response of the beam for the undamped system. (right)
Co-localized response of the beam for the damped system.

The impossibility to compute the response of systems at a given set of frequencies,
can therefore be understood through two different points of view:

– the non-invertibility of the dynamic stiffness operator K− ω2M
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– the undamped propagation of waves in the considered medium

To overcome such a difficulty, two approaches are possible:

– introduce some dissipative terms in our constitutive laws

– modify our dynamic stiffness operator, making it invertible ∀ω

Both techniques have been, for long, known for the classical Cauchy continuum. In the
first one, we canmention the viscous damping, where an additional stress is introduced,
proportional to the strain rate:

σ = C sym∇u+ Cv sym∇u̇ (3.215)

Given the difficulty to experimentally determine the parameters (21 in the most gen-
eral case) of Cv, viscous damping is usually considered as isotropic, allowing to reduce
to 2 the numbers of damping parameters. Applying such a method to the relaxed mi-
cromorphic model would have led to introduce a great number of damping coefficients,
despite the tetragonal symmetry considered. Let us quicklywrite what could have been
our generalized stresses in such a case:
{
σ̃ = Ce sym (∇u−P) + Cc skew(∇u−P) + Cv

e sym (∇u̇− Ṗ) + Cv
c skew(∇u̇− Ṗ)

s = Cm symP+ Cv
m sym Ṗ

(3.216)
Once again, we insist that such expressions of the generalized stresses are not compat-
ible with the Principle of Least Action to which should be preferred, e.g., the Virtual
work Principle. Such an approach would eventually allow, among others, to identify
clearly the influence of each parameter of the relaxed micromorphic model in the cre-
ation of the band-gap effect. Unfortunately, the identification procedure of the relaxed
micromorphic parameters is not compatible with such an approach: indeed, the Bloch-
Floquet analysis, allowing to plot the dispersion curves for k ∈ R2, should be aban-
doned in favor of the “Shift Cell Operator” method [Collet 2011]: the identification of
the band-gap, among others, would be considerably harder (having to compare real and
imaginary parts of f or k, etc). The other approach, known as “structural damping”, is
usual implemented on the Finite Element model of the structures. We can mention:

– the modal damping, where each modeΦk is damped with its own damping ratio ηk,
such as

qj = Φjk
ΦkjFk

ω2
k + iηkωkω − ω2

(3.217)

Such an approach has not even been considered for the relaxed micromorphic model,
as it requires to diagonalize the undamped Finite Element model, which would be, at
last, tedious for our modelling.

– the Rayleigh damping, where the Finite Element Model is modified by

q⋆T[K+ iω(αM+ βK)− ω2M]q = q⋆TF (3.218)
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– the loss factor damping, which is half-way between the the structural damping and
the “physical” approach, where the Young Modulus is modified by introducing an
imaginary part, i.e.

Edamped = (1 + iη)E (3.219)

Such a non-causal approach is only valid in the frequency domain, which is precisely
the case of our framework. This model can easily be transposed to the relaxed micro-
morphic model, having

wc ∝ E (3.220)

then
w

damped
c = (1 + iη)wc (3.221)

In the same manner, whenever the relaxed micromorphic model needs to be damped,
we will modify the generalized strain density energy by

w
damped
m = (1 + iη)wm (3.222)

More generally, the choice of an adapted damping in our framework should be led by
two different considerations:

– The possibility to adapt them for relaxed micromorphic modelling

– The materials used for our experimental set-up

The “limitations” induced by the relaxedmicromorphic medium have just been investi-
gated: doing this, we reduced the available choices of our damping: at the other hand,
we shall consider if our remaining damping model can be adapted for the materials we
used. Fortunately, for the experimental set-up used as a proof of concept of our work we
presented in Chapter 2 made of titanium alloy, the damping is usually really low. For
that reason, we set

ηc = 0.002 = ηm (3.223)

The loss factor damping can easily being introduced in Comsol Multiphysics®: if it is
already implemented for the Cauchy continuum, for the relaxed micromorphic one,
the weak formulation had to be modified as given for every model considered in the
following chapters.

3.8 Convergence of the microstructured and relaxedmicromor-
phic models

The main challenge for metamaterials’ modelling consists in the description of their
broadband mechanical response. More particularly, a suitable model must be able to
describemetamaterials’ response for the larger possible set of frequencies. Wewill show
in the following sections that the RMM is able to correctly describe the metamaterial’s
response for a very wide side set of frequencies going well beyond the first band-gap.
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Nevertheless, specific attention must be payed to the so-called long-wave or static
limit which can be recovered from the dynamic model when considering very small
frequencies, in the limit ω −→ 0.

In this section, we explicitly point out this static limit both for the microstruc-
tured and the relaxed micromorphic model. We show that, since internal lengths are
neglected, the relaxed micromorphic static limit coincides with an equivalent Cauchy
medium. We remark that for the experimental metamaterial’s specimen’s size (9 × 11
cells), this equivalent Cauchy medium slightly deviates from the static response of the
full microstructured metamaterial. However, this difference remains smaller than 10%
(see Figure 3.26) and becomes even smaller as soon as higher frequencies are consid-
ered.

To improve the relaxedmicromorphic response of these small samples for the static
limit, internal lengths should be introduced. This would lead, on the other hand, to a
more complex identification procedure for the dynamic regime. We thus limit ourselves
to the case of negligible internal lengths, knowing that this leads to a controlled inac-
curacy in the static limit for small specimens.

In summary, we have shown that our hypothesis of neglecting static internal
lengthsmay produce a small and controlled inaccuracy for the static limiting case when
considering a specimen of the size considered in our experiment (9×11 cells) and an
external load applied on a unique unit cell (c = 1).

Ωc
ΩA ΩB

A B

n1 cells

n2 cells

nc cells

nc cells
Ωc

∂Ωe

Ωm

Ωc

∂Ωe

n1a

n2a

nca

nca
ΩA ΩB

A B

Figure 3.23: (left) Top view of the full microstructured plate and identification of points
A and B. (right) Top view of the full relaxed micromorphic plate and identification of
the corresponding volumes ΩA and ΩB . Given the strong directivity of the plate we do
not consider other points outside the dashed domain to show the simulation’s results.

The action functional associated to the microstructured plate presented in Figure
3.23 (left) is

A = Aint [u] =
∫ t2

t1

∫

Ωc

(kc − wc)dx1dx2 (3.224)

The action functional associated to the plate consisting of Cauchy and relaxed micro-
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morphic media presented in Figure 3.23 (right) is

Aint [u,P] =

∫ T

0

[∫

Ωc

(kc − wc)dx1dx2 +

∫

Ωm

(km − wm)dx1dx2

]
dt (3.225)

The plane strain hypothesis for the relaxed micromorphic model is

u =



u1

u2

0


 in Ωc, u =



u1

u2

0


 and P =



P11 P12 0

P21 P22 0

0 0 0


 in Ωm.

(3.226)
With such amodelling, the continuity of displacement being automatically verified, the
perfect contact conditions between the Cauchy material and the relaxed micromorphic
material at the interfaces ∂Ωc and the traction-free conditions on ∂Ω̃f are

(σ̂ + σ̃) · n = σ · n on ∂Ωc and (σ̂ + σ̃) · n = 0 on ∂Ω̃f (3.227)
The applied load is given as an imposed displacement on the boundary ∂Ωv (see Figure
3.23) in the form:

u = ψ n (expansion load) (3.228)
where n is the unit normal to each surface and ψ = 10−3 [m], this value being of no
particular importance, as a linear system is considered here. As the considered struc-
ture verifies the symmetries presented in Section 2.4, one can consider only a fourth
of the microstructured plate, e.g. defined by (x1 > 0, x2 > 0). Such a configuration is
presented in Figure 3.24.

∂Ωf

n1/2 cells

n2/2 cells

nc/2 cells

nc/2 cells

∂Ωe
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∂Ωs

Ωm
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∂Ωe

∂Ωs

∂Ωc

∂Ωf

n1a/2

n2a/2

nca/2

nca/2

Figure 3.24: (left) Top view of the symmetrized microstructured plate, denomination
of the traction-free boundaries ∂Ωf and the symmetry boundaries ∂Ωs. (right) Top
view of the symmetrized relaxed micromorphic plate, denomination of the traction-
free boundaries ∂Ωf and the symmetry boundaries ∂Ωs.

On the boundary of the newly created symmetry lines ∂Ωs we have to impose the
following boundary conditions:

{
uini = 0

(δki − nkni)(Pijnj) = 0
(3.229)
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where again, ni are the components of the unit normal to the each surface and δij is the
Kronecker delta operator. The symmetry condition for u being well-known, one can
detail the effective condition applied on P. It is for both symmetry planes

P12 = 0 = P21 (3.230)

Since the relaxed micromorphic model is a homogenized model, it is not always worth
comparing the solution displacement field pointwise with the one issued via the mi-
crostructured simulations. A consistent difference between these pointwise fields may
be expected. To provide a more stable comparison, an average displacement field over
a representative portion of the unit cell can be considered. To this aim we start identi-
fying the points A and B in the considered structure as (see also Fig. 3.23):




A =

(
nca/2 + a, 0

)T

B =
(
n1a/2, 0

)T and surfaces




ΩA =

[
nca/2, nca/2 + a

]
×
[
0, a/2

]

ΩB =
[
(n1 − 1)a/2, n1a/2

]
×
[
0, a/2

]

(3.231)

where n1 is the number of cells of the plate on its main axis (see Fig. 3.23). We then
introduce a pointwise measure of displacement p and a mean measure of displacement
m as:





pX =
1

ψ

√
⟨u(x),u(x)⟩

mX =
4

ψa2

∫

ΩX

√
⟨u(x),u(x)⟩dΩ

for X = {A,B} (3.232)

where a superposed bar indicate the complex conjugate operation. TheHermitian norm
used here, not necessary for the static response of the system, where the displacement
stays real despite the hysteretic damping, finds its use computing the dynamic response
of the plate. With these indicators, we are ready to study the convergence between the
microstructured and the relaxed micromorphic model.

3.8.1 The long-wave limit: statics

In a first and intuitive approach, increasing the plate size for a “small” central excitation
(nc = 1)may seems to be considered as a necessary and sufficient condition for the con-
vergence between themicrostructured plate and the relaxedmicromorphicmodel. This
configuration is presented in Figure 3.25. From the default n1 = 11, n2 = 9 configura-
tion that, due to the limitations of the manufacturing process, has actually been done
(see Chapter 3 for a detailed explanation of the design of the experimental set-up), has
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been considered the following sizes:





n1 = 11, n2 = 9 (experimental case)
n1 = 21, n2 = 19

n1 = 31, n2 = 29

n1 = 41, n2 = 39

n1 = 51, n2 = 49

(3.233)

If the (n1 = 11, n2 = 9) configurationwas simulated to have a first impression of the
response of the experimental structure, choosing n1 ̸= n2, n1 ≡ 1 (2) and n2 ≡ 1 (2) (re-
spectively breaking the first bisector symmetry and creating symmetry boundary con-
ditions on discontinuous surfaces) allows to consider the most unfavorable conditions
for the study of convergence of our models. We will see that, even in such conditions,
the relaxedmicromorphicmodel successively described the equivalentmicrostructured
plate.

Figure 3.26 presents the plotting of pB and mB for these configurations. One can
observe the perfect matching, even for the experimental plate (n1 = 11, n2 = 9 and nc =
1), between the relaxed micromorphic and the equivalent macroscopic Cauchy model.

Figure 3.25: Increasing the size of the mi-
crostructured plate for nc = 1.

The progressive increase of the size of the
plate, at first, seems to allow the conver-
gence of the considered model. For the
largest plate considered (n1 = 51, n2 =

49), the difference between, on one hand,
the microstructured plate and on the other
hand the relaxed micromorphic and the
homogenized model increases. This be-
haviour can be interpreted as an expan-
sion load on such a “small” zone is seen,
from the perspective of the “large plate”
considered, as a punctual load, an there-
fore, the characteristic lengths of the cell
being neglected, the relaxed micromorphic
model nor the homogenizedmodelmanage
to describe properly the response of the mi-
crostructured plate.
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Figure 3.26: Pointwise (left) and mean (right) displacement for the static responses of
the microstructured, the homogenized and the relaxed micromorphic models at point
B for (n1 = 11,n2 = 9).

One can also notice that, as it will be seen in Figure 3.28, the difference be-
tween the three models is always smaller for the mean displacement mX than for the
pointwise pX : once again, the homogenization techniques can be considered valid
for average quantities such as energy (in the case of KUBC methods) or dispersion
diagrams (used for the calibration of the parameters of the relaxed micromorphic
model), where the use of the Bloch-Floquet theorem allows to compute the response
of an infinite periodic structure to the study of a unit cell of the considered system.

Figure 3.27: Increasing the size of the cen-
tral excitation (nc = 1, 3 and 5) for n1 =

11 and n2 = 9.

Given this, a second parametric study is
considered, where the size of the central ex-
citation varies through the modification of
nc, as presented in Figure 3.27: given the
small size of considered plate (n1 = 11,
n2 = 9), only three values of nc are consid-
ered:





nc = 1 (experimental case)
nc = 3

nc = 5

(3.234)
The corresponding plot of mB and pB is
given in Figure 3.28. The decreasing of
the difference between the microstructured
plate and the relaxed micromorphic model
may not be only due to the influence of the enlarging of the central zone: the imposed
displacement on ∂Ωe being closer to the measured point A and area ΩA, one has natu-
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rally
pB −−−−−→

nc →n1

1 and mB −−−−−→
nc →n1

1 (3.235)
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Figure 3.28: Pointwise (left) and mean (right) displacement for the static responses of
the microstructured, the homogenized and the relaxed micromorphic models at point
B for (n1 = 11,n2 = 9).

To remove this ambiguity, Let us consider a last case, where both the size of the
plate of the size of the central zone, as represented in 3.29. Given the results of Fig-
ure 3.26, we consider a n1 = 51 × n2 = 49 cells plate. Such a plate size allows:

Figure 3.29: Increasing both the size of the
microstructured plate and the central ex-
citation.

– to observe the singularity identified for
nc = 1

– to be “large enough” to verify Saint
Venant’s hypothesis, i.e. to be “far
enough” from the excitation not to be in-
fluenced by the nature of load consid-
ered.

Given this, the following cases have been
considered for nc:





nc = 1

nc = 3

nc = 5

nc = 7

nc = 9

nc = 11

(3.236)

Figure 3.30 gives the plot of pB andmB for these configurations. As soon as a nc reaches
9, one can see that the responses of the three models converge, while its lowest values
underline the
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singularity observed for nc = 1.
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Figure 3.30: Pointwise (left) and mean (right) displacement for the static responses of
the microstructured, the homogenized and the relaxed micromorphic models at point
B for (n1 = 51,n2 = 49).

Given this, one can formulate, in the same spirit of the slenderness hypothesis for
beams (requiring, for an Euler beam, a slenderness of 10 ormore), the homogeniza-
tion conditions of the relaxed micromorphic medium in the bidimensional case:

The convergence between the microstructured
plate and its equivalent relaxed micromorphic
model requires both
– a “sufficiently large” size of the plate
– a “sufficiently large” size of the load areas
In practice, one shall consider at least a
50 × 50 cells plate and each prescribed
load/displacement to be applied on 10 cells or
more.
In addition, as theoretically expected, the con-
vergence between the relaxed micromorphic
model and the homogenized Cauchy plate is al-
ways verified (in the static regime only, for ob-
vious reasons), regardless of the two conditions
previously stated.

We will show in the next section that these assertions made in the static regime are
also valid, in the dynamic regime, for frequencies going beyond the band gap.
The same study could be made for a metamaterial beam, considering an appro-
priate displacement field (and more particularly in terms of micro-distortion) and
generalized stress with respect to the boundary conditions, eventually leading to
newhomogenization conditions in terms of beam length and parameters of section.
However, the use of metamaterials in beams being more adapted to unidirectional
metamaterials, such a study has not been considered.
Figure 3.31 presents the static responses of the three models for the (n1 = 51, n2 =

49, nc = 11) converged case.
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Figure 3.31: (from left to right) Normalized displacement for the static responses of the
microstructured, the relaxed micromorphic and the homogenized Cauchy model.

3.8.2 Broadband dynamics of the metamaterial’s plate

We present here the broadband response for both the microstructured and relaxed
micromorphic plate when considering a size of 51×49 cells and a load applied on
a square whose side is 11 unit cells. We will show that the values of n1, n2 and nc
necessary to the static convergence also allows the relaxed micromorphic model to
correctly reproduce the dynamical response of the considered metamaterial for a
wide set of frequencies (from zero to beyond the first band-gap).
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Figure 3.32: (left) Pointwise displacement pB of the microstructured and relaxed mi-
cromorphic models with the theoretical band-gap (dashed) for n1 = 51, n2 = 49 and
nc = 11. (right) Mean displacementmB of the microstructured and relaxed micromor-
phic models with the theoretical band-gap (dashed) for n1 = 51, n2 = 49 and nc = 11.
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Figure 3.32 shows this broadband response for the considered metamaterial plate:
it is apparent that the relaxed micromorphic model describes well the plate’s be-
havior for the whole considered frequency range. The size of the considered plate
(n1 = 51, n2 = 49) was still allowing a direct comparison of the relaxed micro-
morphicmodel themicrostructured simulations. However, the computational time
was considerably higher for the microstructured plate. An explicit comparison for
larger plates would be out of reach with standard computational tools. This calls
for the importance of our model in view of its use for the design of larger-scale en-
gineering metastructures.
To give an outlook of the efficiency of the relaxed micromorphic model, we plot
in Figs. 3.33-3.36 the solution for the displacement field at frequencies M1, M2,
M3 as defined in Fig. 3.32 (right). For each point Mi, we actually consider two
adjacent values of the frequency to compute the solution (see Fig. 3.32 right). It
can be clearly inferred that the relaxed micromorphic model encodes all the main
features of the metamaterial’s response at a fraction of the computational cost.

0 100 200 300 400 500 600
|u|/ψ

0 100 200 300 400 500
|u|/ψ

Figure 3.33: |u|/ψ at frequencyM1 for the microstructured model and the relaxed mi-
cromorphic model, the first two figures correspond toM1 (left) and the last two figures
toM1 (right) (see Fig. 3.32 for the definition of these points).
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Figure 3.34: |u|/ψ at frequencyM2 for the microstructured model and the relaxed mi-
cromorphic model, the first two figures correspond toM2 (left) and the last two figures
toM2 (right) (see Fig. 3.32 for the definition of these points).
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Figure 3.35: |u|/ψ at frequencyM3 for the microstructured model and the relaxed mi-
cromorphic model, the first two figures correspond toM3 (left) and the last two figures
toM3 (right) (see Fig. 3.32 for the definition of these points).
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Figure 3.36: |u|/ψ at frequencyM4 for the microstructured model and the relaxed mi-
cromorphic model, the first two figures correspond toM4 (left) and the last two figures
toM1 (right) (see Fig. 3.32 for the definition of these points).

Figure 3.37 presents the response of themicrostructured and the relaxedmicromor-
phic models in the band gap. In this figure we chose to use a different scale for the
two pictures so as to show the load concentration around the Cauchy region that
occurs for both the relaxed micromorphic and the microstructured model. Indeed,
due to the lack of higher space derivatives of the microdistortion P , the relaxedmi-
cromorphic medium cannot catch the highly concentrated peaks of displacement
occurring in few isolated cells. However, apart from these pointwise difference the
solution is well reproduced and, above all, the band-gap behavior is correctly de-
scribed.
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0 50 100 150 200 250 300 350 400
|u|/ψ

0 0.2 0.4 0.6 0.8 1
|u|/ψ

Figure 3.37: |u|/ψ in the band-gap for the microstructured model and the relaxed mi-
cromorphic model at 1717 Hz.

By introducing a new kinematic field and an appropriate Lagrangian density, even-
tually leading to new equilibrium equations for our media, we managed to model
the band-gap effect in an enriched continuum, sharing with a given metamaterial
the same dispersion curves, i.e. its spectral signature, completely characterizing
its mechanical behaviour. The coincidence of these spectral signatures (obtained
through the calibration of the dispersion curves via a Bloch-Floquet analysis), com-
bined with the adequate boundary conditions and, as we just presented, size of
both the structure and the excitation, allow such an enriched continuum to suc-
cessfully describe the response of our systems on a large frequency range.



Chapter 4

Confronting our models to the
experiment

Contents
4.1 Writing of the 3D model . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.1.1 For the classical Cauchy model . . . . . . . . . . . . . . . . . . 95
4.1.2 For the relaxed micromorphic model . . . . . . . . . . . . . . . 98

4.2 Recalibrating the model . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.2.1 For the microstructured system . . . . . . . . . . . . . . . . . . 102
4.2.2 For the micromorphic system . . . . . . . . . . . . . . . . . . . 107

4.3 Perturbating the model . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.4 Comparison with the experiment . . . . . . . . . . . . . . . . . . . . 122

4.4.1 Point-to-point displacement comparison . . . . . . . . . . . . 123
4.4.2 2D response of the plate . . . . . . . . . . . . . . . . . . . . . . 126

4.5 Enabling meta-structural engineering design . . . . . . . . . . . . . 128



94 Chapter 4. Confronting our models to the experiment

For the subsequent purposes of comparison with the experiment presented in
Chapter 2, we introduce four points Ci i ∈ J1, 4K far from the excitation. As these
points are only considered in comparison with the experimental setup, their coor-
dinates are directly given for n1 = 11, n2 = 9 and nc = 1 in Table 4.1 and Figure
4.1.

Point C1 C2 C3 C4

x1 coordinate [mm] 105 105 5 15
x2 coordinate [mm] 5 15 85 85

Table 4.1: Coordinates of the measurement points.

We will show that, to take into account the inappropriateness of the plane strain
hypothesis in our plate, the presence of defects in the fabrication process, and, to a
smaller extent, to measurement inaccuracy, a recalibration and perturbation of our
models has to be considered. Given the change of nature of the excitation of the
system , we redefine p andm presented in Chapter 3 by:

pB =
√
⟨u(B),u(B)⟩ and mB =

4

a2

∫

ΩB

√
⟨u(x),u(x)⟩dx1dx2 (4.1)

For
B =

(
11, 0

)T
and ΩB =

[
10, 11

]
×
[
0, 1
]

[cm] (4.2)

Figure 4.1 presents the position of the points Ci, B and ΩB on the microstructured
plate and the relaxed micromorphic model. Annex C presents the rest of results of
the points along the symmetry planes.

Ωp

Ωc

Ωm

Ωc

Ωp

Figure 4.1: (left) Microstructured symmetrized model with the selected points (blue)
for the comparison with the experimental system. (right) Relaxed micromorphic sym-
metrizedmodelwith the selected points (red) for the comparisonwith the experimental
system.
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4.1 Writing of the 3D model

In Chapter 3, we presented the relaxed micromorphic model, given the com-
plexity of such medium, in the bidimensional case : such simplifiedmodelling was
sufficient for the first model we present : in particular, it was only associated with
a classical Cauchy medium with boundary conditions that could easily be imple-
mented in the bidimensional case. As it has been presented in Chapter 2, we now
have to model piezoelectric patches used as actuators, where the three directions
of space have to be considered.
As we did in Chapter 3, the introduction of a suitable action functional will allow
to make our different continua coexist, eventually facilitating the implementation
for the resolution of our problems via the Finite-Element Method under Comsol
Multiphysics®.

4.1.1 For the classical Cauchy model

From the structure presented in Figure 3.23 in Chapter 1, the central hole can be re-
placed by the piezoelectric patches. Given the symmetries of the considered system
along the threemain symmetry planes of space, only one 1/8 of themicrostructured
plate (1/4 from the top view, its thickness being divided by 2) can be considered
and one patch of the two used for the excitation of the plate. These two configura-
tions are presented in Figure 4.2.

Ωp

Ωp

Ωc

∂Ωf

∂Ωs

Figure 4.2: (left) Top view of the unsymmetrized microstructured plate with the upper
piezoelectric patchΩp. (right) Top view of the symmetrizedmicrostructured plate with
the traction free boundaries ∂Ωf and the symmetry planes ∂Ωs.

Figure 4.3 represents the section of the full system, which will help us to imple-
ment properly the plane strain condition necessary to the relaxed micromorphic
modelling.
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O

Figure 4.3: Section at x2 = 0 of the (light grey) full microstructured plate with the (dark
grey) two piezoelectric patches and, in dashed blue lines, the symmetry planes x1 = 0

and x3 = 0, the origin O being set at the center of the plate.

As it has been proved in Chapter 3, we have in the symmetry plane ∂Ω3
s (x3 = 0)

u(x) =



⋆

⋆

0


 and (∇u)(x) =



⋆ ⋆ 0

⋆ ⋆ 0

0 0 ⋆


 in ∂Ω3

s (4.3)

Given this, the necessary plane strain hypothesis can be interpreted as considering
the displacement on ∂Ω3

s in the plate. Nevertheless, the plane strain hypothesis still
has to be made for the symmetrized structure, i.e.




u1(x1x1 + x2x2 + x3x3) = u1(x1x1 + x2x2)

u2(x1x1 + x2x2 + x3x3) = u2(x1x1 + x2x2)

u3(x1x1 + x2x2 + x3x3) = 0

∀x ∈
[
0,
n1a

2

]
×
[
0,
n2a

2

]
×
[
0,
e

2

]

(4.4)
We can now detail the boundary conditions for the piezoelectric patch and the mi-
crostructured plate. The section of the symmetrized structure is presented in Fig-
ure 4.4: the plate’s thickness is represented while we consider the displacement
only at x3 = 0.

2[mm]

∂Ωs

∂Ωtop

∂Ωbottom

8[mm]

Ωc

Ωp

0.5[mm]

∂Ωf

Figure 4.4: Section of the symmetrized microstructured plate with the piezoelectric
patch (one eighth on the whole system) and the boundaries’ denomination ∂Ωtop and
∂Ωbottom where the electric potential is imposed.
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From these considerations, we propose the following action functional for the re-
duced structure, mixing 3D formulation for the upper piezoelectric patch and 2D
formulation for the microstructured plate:

Aint [u, V ] =

∫ t2

t1

[∫

Ωp

(kp − wp − q)dx1dx2dx3 +
e

2

∫

Ωc

(kc − wc)dx1dx2

]
dt (4.5)

where e = 10−3 [m] is the thickness of the full plate. The hypothesis of plane strain
in the plate leads to

u =



u1

u2

0


 in Ωc and u =



u1

u2

u3


 in Ωp (4.6)

In particular, we have
u3 = 0 on ∂Ωbottom (4.7)

allowing to delete vertical rigid body modes for the piezoelectric patch. Let us
study the continuity of displacement between the piezoelectric patch and the mi-
crostructured plate. The displacement in Ωp and Ωc being respectively written up

and uc, the action functional introduced in Equation 4.5 becomes

A′
int [u, V,λ] = Aint [u, V ]−

∫ t2

t1

∫

∂Ωbottom
⟨λ,uc − up⟩dx1dx2dt (4.8)

The Lagrange equation Lup associated with up has already been computed and
studied in Chapter 1, and allows to conclude that :
– λn = ⟨λ,x3⟩ is the reaction force guaranteeing the nullity of u3 on ∂Ωbottom, i.e.

the symmetry condition derived from the plane strain hypothesis.
– λt = λ−λnx3 in the tangential force at the interface guaranteeing the continuity
of displacement between the two media.

Let us write the Lagrange equation associated to Luc , we have

ρcüc = ∇ · σ +
2λt

e
in ∂Ωbottom (4.9)

Making 2λt

e
correspond to the surface density of force guaranteeing the continu-

ity of displacement at the interface and therefore, for Ωc, shall not be treated as
a boundary condition. λt corresponding to the tangential forces for the upper
piezoelectric patch, the contribution of the lower patch is “reintroduced” through
the division by 2 of the microstructured plate, hence 2λt

e
. We can now detail the

boundary conditions of the upper piezoelectric patch. The first interface conditions
represent the imposition of the electric potential while the second are associated to
the symmetry conditions of the reduced problem, in formulas:

{
V = 0 on ∂Ωbottom
V = V0 on ∂Ωtop

and
{
⟨u,n⟩ = 0

⟨D,n⟩ = 0
on ∂Ωs (4.10)
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where V0 = 100[V]. The free of charges vertical cylinder surface is characterized by
⟨D,n⟩ = 0, such boundary condition being naturally verified as proven in Chap-
ter 3. For the microstructured plate Ωc, we have:

σ · n = 0 on ∂Ωf and ⟨u,n⟩ = 0 on ∂Ωs (4.11)

The response of this structure will be given after the presentation of the relaxed
micromorphic model.

4.1.2 For the relaxed micromorphic model

The experimental plate, corresponding to a n1 = 11, n2 = 9 and nc = 1 plate
is, considering the conclusions of Chapter 1, has both a too small outer size and
inner “excitation size”. Nevertheless, we will show that, although such plate not
satisfying the homogenization conditions, the relaxed micromorphic model still
manage to describe the non-propagation of the waves in the band-gap regime and
more generally the response of themicrostructuredplate in a large frequency range,
whose equivalent full and symmetrized plate is presented in Figure 4.5.

Ωm

Ωc

Ωp

11a

9a

a

a Ωm

Ωc

Ωp

∂Ωs

∂Ωc

∂Ω̃f

11a/2

9a/2

a/2

a/2

Figure 4.5: (left) Top view of the full relaxedmicromorphicmodelwith the upper piezo-
electric patchΩp, the central Cauchy bulk cellΩc and the relaxedmicromorphicmedium
Ωm. (right) Top view of the symmetrized relaxed micromorphic model with the (gen-
eralized) traction free boundaries ∂Ω̃f , the symmetry planes ∂Ωs and the interface ∂Ωc.
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2[mm]

∂Ωs

∂Ωtop

∂Ωbottom

8[mm]

Ωc

Ωp

Ωm

∂Ωc

0.5[mm]

Figure 4.6: Section of the symmetrized relaxed micromorphic plate with the piezoelec-
tric patch (one eight on the whole system) and the boundaries’ denomination ∂Ωtop
and ∂Ωbottom where the electric potential is imposed.

As the plane strain hypothesis has already been presented for the microstructured
plate and that the central zone under the piezoelectric patch remain untouched, we
directly present the symmetrized model in Figure 4.6. As the microstructured part
of the plate is replaced by relaxed micromorphic model, we introduce the action
functional of this equivalent model as

Aint [u,P, V ] =

∫ t2

t1

[∫

Ωp

(kp − wp − q)dΩ +
e

2

[∫

Ωc

(kc − wc)dΓ +

∫

Ωm

(km − wm)dΓ

]]
dt

(4.12)
The hypothesis of plane strain in the plate leads to

u =



u1

u2

u3


 in Ωp, u =



u1

u2

0


 in Ωc, u =



u1

u2

0


 and P =



P11 P12 0

P21 P22 0

0 0 0


 in Ωm

(4.13)
In particular, we have

u3 = 0 on ∂Ωbottom (4.14)
The boundary conditions for the piezoelectric patch have already been presented
in subsection 3.1.1. For the central square ∂Ωc modeled, in absence of an architec-
tured geometry, by a classical Cauchy medium, we just have to set the symmetry
condition

⟨u,n⟩ = 0 on ∂Ωs (4.15)
The boundary conditions for the relaxedmicromorphicmedium have already been
largely discussed. The continuity of generalized stress and its nullity upon traction-
free boundaries, being not naturally verified, we have to set, in addition to the sym-
metry boundary conditions:
{
(σ̂ij + σ̃ij)nj = 0 on ∂Ω̃f

(σ̂ij + σ̃ij)nj = σcijnj on ∂Ωc

and
{
uini = 0

(δki − nkni)(Pijnj) = 0
on ∂Ωs (4.16)
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This model and the microstructured plate one have been implemented and solved
in Comsol Multiphysics®. We saw in Chapter 3 that the Finite Element method gave
us the displacement in the microstructured plate / relaxed micromorphic model
through its discretization, in formula:

u(x) = eTu(x)qu (4.17)

|u̇
1
|(

m
/s

)

10−6

10−5

10−4

10−3
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1
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C
u̇
1

Experiment Microstructured Relaxed micromorphic

Figure 4.7: Amplitude of |u̇1| atC1 (see Figure 4.1 for the definition of this point) for the
experiment, themicrostructured and relaxedmicromorphicmodelswith the theoretical
limits of the band-gap obtained via the Bloch-Floquet analysis (dashed lines).

On the other hand, the experiment giving the measured speed of the center of the
resonators while the finite elements resolution computes the displacement of the
discretized plate, it is mandatory to derivate the theoretical displacement. A lin-
ear model being considered for the microstructured and the relaxedmicromorphic
models and given the small displacement and deformations in the system, one can
compute the theoretical speed across the system in the frequency domain by as-
suming the hypothesis of harmonic form for the time-component of the solution:

u̇(x) = 2πifu(x) (4.18)
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where f is the frequency (in Hz) considered. As the theoretical speed tends to 0 at
low frequency and is therefore of no interest, the chosen frequency range becomes
[500, 2500]Hz. The response of the experimental set-up, the microstructured plate
and the relaxed micromorphic model are plotted in Figure 4.7. Despite the overall
good description of the observed response in the considered frequency range, one
can observe a shift between the experiment and the two theoretical models, in par-
ticular for the first structural mode and at the first anti-resonance in the band-gap.
If this difference can be partially explained, for the relaxed micromorphic model,
to the unfulfilling of the homogenization conditions, a recalibration procedure for
both models have to be considered.

4.2 Recalibrating the model

To account for the presence of defects and get closer to the experimental results, the
system can be modified, taking into account several potential differences between
the analytical models and experimental system. In a first time, we can list the hy-
potheses made in the framework of our modelling:

– the plane strain hypothesis in the plate
– small displacement and small deformation hypotheses
– linear hypothesis more generally
– idealized geometry
– idealized constitutive laws (including dissipation)
– idealized boundary conditions (at the interfaces and at the traction-free bound-
aries)

The first hypothesis is the more criticizable, indeed, we theoretically have, for a
traction-free surface like the horizontal surfaces of our microstructured plate

σ·(±x3) = 0 ⇒ σ13 = 0 = σ23 = σ33 ∀x ∈
{
x21 + x22 > r2piezo

}
×
{
−e
2
,
e

2

}

(4.19)
Supposing moreover that, in the considered frequency range, σ13, σ23 and σ33 vary
little through x3 ∈ [−e/2, e/2], we should rather have considered

σ =



⋆ ⋆ 0

⋆ ⋆ 0

0 0 0


 ∀x ∈

{
x21 + x22 > r2piezo

}
×
[
−e
2
,
e

2

]
(4.20)

The linearity of our system has been proved to be a very reasonable hypothesis,
given the coherences of the measured signal given in Chapter 2: the small am-
plitude of applied loads of the structure strong predicted such observations. The
idealization of geometrywill be treated in the “perturbation” Section: wewill show
that taking them into account allows to describe precisely the response of the struc-
ture in the band-gap. The idealization of the constitutive laws, with respect to the
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relaxed micromorphic model, is precisely discussed in this manuscript: we will
show that, despite the smallness of both the plate and the excitation compared to
the homogenization conditions detailed inChapter 3, suchmodel is able to describe
the overall response of themicrostructured plate for a large frequency range includ-
ing the band-gap. We saw that the difficulty to introduce damping in the relaxed
micromorphic material let us little choice when it comes to the model to choose:
the material considered, weakly damped, having little influence on the plate’s re-
sponse, allow us not to not pay particular attention of its modelling (e.g., the Basile
hypothesis allow us to neglect modal coupling).

4.2.1 For the microstructured system

Very classically, as the Poisson ratio is not influenced by the defects nor the man-
ufacturing process, we chose to modify the Young modulus and the mass density,
in formulas:

Erecalibration = (1 + κE)ETi and ρrecalibrationc = (1 + κρ)ρTi (4.21)

where κE and κρ are the respective recalibration for the Young modulus and the
mass density (κE = 0 = κρ corresponding to the default values of these two pa-
rameters ETi and ρTi). Leading, for the local energy densities, to

wrecalibration
c = (1 + κE)wc and krecalibrationc = (1 + κρ)kc (4.22)

Such consideration allows to modify the action functional of the structure pre-
sented in Figure 4.2 by

Aint [u, V ] =

∫ t2

t1

[∫

Ωp

(kp − wp − q)dΩ +
e

2

∫

Ωc

[(1 + κρ)kc − (1 + κE)wc] dΓ

]
dt

(4.23)
the coefficients of the piezoelectric patch remaining untouched: this medium has
not undergone any manufacturing process and therefore its mechanical character-
istics may have not been as altered as the microstructured plate may have, in addi-
tion of the plane strain hypothesis. Moreover, the modification of its mass density
and strain energy density would have had more complex repercussions on the re-
sponses of both models, eventually leading to “unreasonable” values of κE and κρ
to fit the experimental curves. The procedure to find κw and κk is present through
an algorithm given in Figure 4.8.



4.2. Recalibrating the model 103

Classical recalibration procedure

New values
of κw and κk

Resolution of
q?T
c [(1 + κw)Kc − ω2(1 + κk)Mc]qc = q?T

c Fc

∼ days

||q̇c
theo − q̇exp|| < εc ?

End of recalibration

Figure 4.8: Recalibration procedure for the classical Cauchy model given in Figure 4.2

The influence of κk and κw on the frequency response can easily be inferred as given
in Figure 4.9. Classically, the recalibration of the static and dynamic response of the
plate could have been driven by:
– a static test to determine the value of κw
– the computation of the eigenfrequency of a structural mode, for a κw given, the

value of κk
In formulas:

urecalibration0

u0
≈ 1 + κE and ωrecalibration

0

ω0
≈
√

1 + κE
1 + κρ

(4.24)

where u0 is the static response of the plate and w the eigenfrequency of the first
structural mode of the plate (in the absence of recalibration for the piezoelectric
patches, we won’t dare to write equal signs here).
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Figure 4.9: Effects of the recalibration procedure on the response of the plate for pB
according to Equations 4.24.

To consider point-to-point displacement or average displacement or eigenfre-
quency could be questioned, we will show that our “simple” procedure gives good
results on thewhole the plate. Unfortunately, having only access to speedmeasure-
ments, we did not have access to the static response of the experimental set-up: this
difficulty can easily be overcome by by considering the slope, supposed to be con-
stant, of the speed between 0 Hz and the first structural mode of the plate. We then
have

ω4 − ω3

ω2 − ω1
·

∫ ω2

ω1

u̇recalibration0 (ω)dω

∫ ω4

ω3

u̇0(ω)dω

≈ 1 + κE (4.25)

Confronting the theoretical results to the experiments eventually led to

κρ = +0.05 and κE = −0.10875 (4.26)

We just saw that the most suitable hypothesis here was

σ =



⋆ ⋆ 0

⋆ ⋆ 0

0 0 0


 instead of∇u =



⋆ ⋆ 0

⋆ ⋆ 0

0 0 0


 ∀x ∈

{
x21 + x22 > r2piezo

}
×
[
−e
2
,
e

2

]

(4.27)
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via the stress-strain and strain-stress relations (3.50) and (3.50) in Chapter 1, one
can get




u3,3 =

λ

λ+ 2µ
(u1,1 + u2,2) (for the plane stress hypothesis)

σ33 = ν(σ11 + σ22) (for the plane strain hypothesis)
(4.28)

The strain-stress relations are, in the plane stress hypothesis,





u1,1 =
σ11 − νσ22

E

u2,2 =
σ22 − νσ11

E
1

2
(u1,2 + u2,1) =

(1 + ν)σ12
E

(4.29)

Having u2,3 = 0 = u3,2 = u1,3 = u3,1 (resp. σ13 = 0 = σ13) for the plane stress
hypothesis (resp. plane strain hypothesis), the plane strain and plane stress hy-
pothesis may be seen as equivalent, provided that the mechanical parameters for
the plane stress model are modified by the following rule:

EPlane Stress = EPlane Strain(1 + ν)(1− ν) = EPlane Strain(1− ν2) (4.30)

without developing the rules for λ and ν, we can notice that

Erecalibration = (1 + κE)ETi and EPlane Stress = (1− ν2)EPlane Strain (4.31)

look pretty much the same. Having ν = 0.34, we have

− ν2 = −0.1156 while we had κE = −0.10875 (4.32)

Given this, we can argue that the recalibration for the Young modulus takes into
account, to some extend, the inaccuracy of the plane strain hypothesis. Once again,
to consider the plane stress hypothesis for the relaxed micromorphic model would
have considerably complexified the identification of the mechanical parameters.
Figure 4.10 gives the FRFs of pB and mB for the recalibrated and the original mi-
crostructured plate.
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Figure 4.10: (left) Pointwise displacement pB for the original and recalibrated mi-
crostructured models at point B. (right) Mean displacement mB for the original and
recalibrated microstructured models. The theoretical limits of the band-gap obtained
via the Bloch-Floquet analysis for the original and recalibrated architectured unit cell
are given in dashed lines.

Figure 4.11 presents the FRFs of the recalibrated microstructured plate and the ex-
perimental one: one can notice the dramatic decrease of the difference between
them, specifically in:

– the static behaviour till the first structural mode

– the description of the pre-band-gap resonance

– the collapse of the response at the beginning of the band-gap

The theoretical position of the band gap has also been updated: the recalibrated
values of the Young modulus and the mass density has been used to compute the
dispersion curves of the microstructured unit cell. As it appears in Figure 4.11, the
lower bound of the band gap perfectly matches with the first antiresonance of the
system.
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Figure 4.11: (top) |u̇1| forC1 for the experiment (green) and the recalibrated microstruc-
tured plate (blue). (bottom) Coherence of |u̇1 for the experiment. The dashed lines rep-
resent the theoretical lower and upper limit of the band-gap on the recalibrated unit
cell.

4.2.2 For the micromorphic system

The recalibration for the relaxed micromorphic model, due to the relatively large
number of independent coefficients (16 in our case), to our knowledge, has not
been considered yet. We present here a simple yet powerful procedure allowing,
as we will show, to facilitate considerably the determination of the recalibration
parameters κi introduced in the previous section. We saw that our modification of
the Young modulus and the mass density corresponded to an affine modification
of its kinetic and strain energy densities. In the same way, the kinetic and potential
density of energy for the relaxed micromorphic model are modified as

krecalibrationm = (1 + κk)km and wrecalibration
m = (1 + κw)wm (4.33)

where km and wm are respectively the initial kinetic and train energy densities of
the relaxed micromorphic model. To recalibrate the relaxed micromorphic model
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on the microstructured model, we set
κk = κρ and κw = κE (4.34)

The equivalence between κE and κw derives from the equivalence of the strain en-
ergy of the architectured cellΩc and the relaxedmicromorphic model. We saw that

Erecalibration = (1 + κE)ETi ⇒ wrecalibration
c = (1 + κE)wc (4.35)

Having by hypothesis (calibration procedure used to determine the relaxed micro-
morphic static parameters):





wm =
1

a2

∫

Ωc

wcdΩ

wrecalibration
m =

1

a2

∫

Ωc

wrecalibration
c dΩ

(4.36)

Then
wrecalibration
m =

1 + κE
a2

∫

Ωc

wrecalibration
c dΩ = (1 + κE)wm (4.37)

The proof for the kinetic energy is a bit more tricky. The computation of the values
of the coefficients of the generalized kinetic energy is made by the correspondence
of the dispersion curves along ΓX and ΓM. In the hypothesis of a perfect matching
of the dispersion curves between the microstructured cell and the relaxed micro-
morphic medium, one can write

ωi
c(k) = ωi

m(k) (4.38)
ωi
c (resp. ωi

m) being the eigenfrequency of the i-th mode of propagation of the
microstructured cell (resp. the relaxed micromorphic medium). Once again, one
can notice that

ρrecalibrationc = (1 + κρ)ρTi ⇒ krecalibrationc = (1 + κρ)kc (4.39)
Let us write the Rayleigh quotient Rc for the microstructured cell (Ωc = architec-
tured unit cell given in Figure 3.6). For the sake of simplicity, Let us write

ki = −ω2ki for i = {c,m} (4.40)
Then

Rc(u) =

∫

Ωc

wc(u)dΩ

∫

Ωc

kc(u)dΩ

=

∫

Ωc

⟨sym∇u,C sym∇u⟩dΩ
∫

Ωc

⟨u, ρcu⟩dΩ
(4.41)

For the recalibrated microstructured cell, we have

Rrecalibrated
c (u) =

∫

Ωc

wrecalibrated
c (u)dΩ

∫

Ωc

krecalibratedc (u)dΩ

=
1 + κE
1 + κρ

Rc(u)

(4.42)
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In the same way, Let us define the Rayleigh ratioRm for the relaxed micromorphic
model (as the dispersion curves are computed analytically straight through the
local equilibrium equations, there’s no need to integrate over the unit cell):

Rm(u,P) =
wm(∇u,P)

km(u,∇u,P)

=
⟨sym(∇u−P),Ce sym(∇u−P)⟩+ ⟨symP,Cm symP⟩+ ⟨skew(∇u−P),Cc skew(∇u−P)⟩

⟨u, ρmu⟩+ ⟨symP, Jm symP⟩+ ⟨skewP, Jc skewP⟩+ ⟨sym∇u,Te sym∇u⟩+ ⟨skew∇u,Tc skew∇u⟩
(4.43)

We also have

Rrecalibrated
m (u,P) =

wrecalibrated
m (u,P)

krecalibratedm (u,P)

=
1 + κE
1 + κρ

Rm(u,P)

(4.44)

For the i-th eigenvector ϕi
c of the microstructured cell (resp. ϕi

m and Φi
m for the

relaxed micromorphic medium), one has
{
Rc(ϕ

i
c,k) = [ωi

c(k)]
2

Rm(u = ϕi
m,P = Φi

m,k) = [ωi
m(k)]2

(4.45)

Having ωi
c(k) = ωi

m(k), the perfect matching of the dispersion curves between the
microstructured cell and the relaxed micromorphic medium gives

Rm(ϕi
m,Φ

i
m,k) = Rc(ϕ

i
c,k) (4.46)

We can write

Rrecalibrated
m (ϕi

m,Φ
i
m,k) =

1 + κE
1 + κρ

Rm(ϕi
m,Φ

i
m,k)

=
1 + κE
1 + κρ

Rc(ϕ
i
c,k)

= Rrecalibrated
c (ϕi

c,k)

(4.47)

which gives
ωrecalibrated
m (k) = ωrecalibrated

c (k) (4.48)

if the equality of themode shapes of dispersionwas verified, which is the case given
the recalibration procedure considered here. Such assumption can be proven con-
sidering the eigenvalue problem solved by the Finite Element Method presented in
Chapter 3.
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New recalibration procedure

New values
of κw and κk

Resolution of
q?T
m [(1 + κw)Km − ω2(1 + κk)Mm]qm = q?T

m Fm

∼ hours

||q̇m
theo − q̇exp|| < εm ?

Resolution of
q?T
c [(1 + κw)Kc − ω2(1 + κk)Mc]qc = q?T

c Fc

∼ days

||q̇c
theo − q̇exp|| < εc ?

End of recalibration

Figure 4.12: New recalibration algorithm using the relaxed micromorphic model to
compute faster the fitting of the response of the microstructured plate. Two different
stopping criteria associated to two maximum admissible differences εm and εc as, fail-
ing to respect the homogenization conditions given in Chapter 3, the relaxedmicromor-
phic model will not, outside the band-gap, get as close as the microstructured model to
the experimental response.
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The relaxed micromorphic model was recalibrated on the experiment and the pa-
rameters of the microstructured model were then updated by the following rule:

{
ρrecalibrationc = (1 + κk)ρTi
Erecalibration = (1 + κw)ETi

←→





ρrecalibrationm = (1 + κk)ρm

ηrecalibrationi = (1 + κk)ηi, i ∈ J1, 3K
η∗ recalibration
1 = (1 + κk)η

∗
1

ηrecalibrationi = (1 + κk)ηi, i ∈ J1, 3K
η∗ recalibration
1 = (1 + κk)η

∗
1

λrecalibrationi = (1 + κw)λi, i ∈ {e,m}
µrecalibrationi = (1 + κw)µi, i ∈ {e,m}
µ∗ recalibration
i = (1 + κw)µ

∗
i , i ∈ {e,m}

µ recalibration
c = (1 + κw)µc

(4.49)

This technique is presented in the algorithm given in Figure 4.12: it allows to recal-
ibrate faster our theoretical models upon the experimental results. Given the small
size of the plate and of the excitation of the manufactured plate, such procedure
was difficult to apply, making necessary the verification step where the response
of the classical Cauchy model is computed (only once). This method would not be
applicable if the considered structure was too large to be computed by the classical
Cauchy model: fortunately, such case fulfill the requirements of the homogeniza-
tion, allowing the relaxed micromorphic model to describe more accurately the
response. This will be used in the following section of this chapter, where a such
structurewill be studied. Eventually, the action functional of the system introduced
in 4.5 for the microstructured plate becomes

Aint [u, V ] =

∫ t2

t1

[∫

Ωp

(kp − wp − q)dΩ +
e

2

∫

Ωc

((1 + κk)kc − (1 + κw)wc)dΓ

]
dt

(4.50)

For the relaxed micromorphic model, we have

Aint [u,P, V ] =

∫ t2

t1

∫

Ωp

(kp − wp − q)dΩdt

+
e

2

∫ t2

t1

[∫

Ωc

((1 + κk)kc − (1 + κw)wc)dΓ +

∫

Ωm

((1 + κk)km − (1 + κw)wm)dΓ

]
dt

(4.51)

Figure 4.13 present pB andmB for the original and recalibrated relaxed micromor-
phic model. We remark that, once calibrated, both the pointwise and the mean
displacement describe well the local resonance occurring at the lower band-gap
limit. As expected, the mean displacements for the relaxed micromorphic and mi-
crostructured model show better agreement than the pointwise. displacement
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Figure 4.13: (left) Pointwise displacement pB for the original and recalibrated relaxed
micromorphic models at point B. (right) Mean displacement mB for the original and
recalibrated relaxed micromorphic models. The theoretical limits of the band-gap ob-
tained via the Bloch-Floquet analysis for the original and recalibrated architectured unit
cell are given in dashed lines.

The perfect coincidence of the antiresonances at the beginning of the band gap
between the microstructured plate and the relaxed micromorphic model, i.e. the
accuracy of the recalibration procedure, is presented in Figure 4.14.
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Figure 4.14: (left) Pointwise displacement pB for the recalibrated microstructured and
relaxed micromorphic models at point B. (right) Mean displacement mB for the re-
calibrated microstructured and relaxed micromorphic models. The theoretical limits of
the band-gap obtained via the Bloch-Floquet analysis for the original and recalibrated
architectured unit cell are given in dashed lines.
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Original unit cell Recalibrated unit cell
Lower limit of the band gap 1715 1584
Upper limit of the band gap 2124 1958

Center of the band gap 1919 1771
Width of the band gap 409 374

Table 4.2: Characteristics of the theoretical limits of the band-gap obtained via the Bloch-
Floquet analysis for the original and recalibrated architectured unit cell.
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Figure 4.15: (top) |u̇1| forC1 for the experiment (green), the relaxedmicromorphic (red)
and the recalibrated microstructured models (blue). (bottom) Coherence of |u̇1| for the
experiment. The theoretical limits of the band-gap obtained via the Bloch-Floquet anal-
ysis for the recalibrated architectured unit cell are given in dashed lines.

Figure 4.15 presents the experimental response of the plate and the theoretical re-
sponse of both the microstructured plate and the relaxed micromorphic model.
One can appreciate the efficacity of our recalibration procedure, despite the non-
conformity of the plate the the homogenization conditions given in Chapter 3, the
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ability of the relaxedmicromorphicmodel to describe themost characteristic aspect
of our band gap material, i.e. the collapse of the response of the plate at the lower
bound of the theoretical band-gap. Nevertheless, one can notice the experimental
response not to be as “sharp” as the theoretical ones: if the small damping consid-
ered for our simulations may explain, to some extend, this difference, wewill show
that this phenomenon can be explained by taking into account the manufacturing
defects occuring in the plate.

4.3 Perturbating the model

For now, we “corrected” our theoretical systems, taking into account, among oth-
ers, the inaccuracy of the plane strain hypothesis. However, the following points
still has not been investigated:

– the idealization of geometry
– the idealization of constitutive laws

One can remember that the band-gap effect is obtained by the repetition, in one,
two or three directions of space, of a microstructured unit cell: in practice, such
hypothesis supposing uniform paving is not verified, due to manufacturing defect
and the variation of themechanical properties through the plate. Rather thanmod-
ifying the geometry, we incorporated the manufacturing defects, i.e. the variation
of the unit cell geometry through the plate, in the variation of mechanical proper-
ties, in formulas:

{
ρc(x) = (1 + θρ(x))ρ

recalibration
c = (1 + θρ(x))(1 + κk)ρTi

E(x) = (1 + θE(x))E
recalibration = (1 + θE(x))(1 + κw)ETi

(4.52)

Where θE et θρ both follow a zero-mean probability law.
More subtly, perfectly generalizing the linear perturbation of the potential and ki-
netic energy densities of the microstructured system, each of the inertial operators
and constitutive laws describing the relaxed micromorphic medium are disturbed:





ρm(x) = (1 + θ1(x))ρ
recalibration
m = (1 + θ1(x))(1 + κk)ρm

Jm(x) = (1 + θ2(x))Jrecalibrationm = (1 + θ2(x))(1 + κw)Jm
Te(x) = (1 + θ3(x))Trecalibration

e = (1 + θ3(x))(1 + κw)Te

Ce(x) = (1 + θ4(x))Crecalibration
e = (1 + θ4(x))(1 + κw)Ce

Cm(x) = (1 + θ5(x))Crecalibration
m = (1 + θ5(x))(1 + κw)Cm

Jc(x) = (1 + θ6(x))Jrecalibrationc = (1 + θ6(x))(1 + κw)Jc
Tc(x) = (1 + θ7(x))Trecalibration

c = (1 + θ7(x))(1 + κw)Tc

Cc(x) = (1 + θ8(x))Crecalibration
c = (1 + θ8(x))(1 + κw)Cc

(4.53)
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Each θi, i ∈ J1, 8K follows an uniform law corresponding to a variation of ± 5%
around the deterministic value. Figure 4.16 presents the continuous uniform dis-
tributions used for our models, making the mechanical parameters vary of ± 5 %
around their deterministic value.
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Figure 4.16: (left) Probability density function used for the θi and (right) its distribution
function used for the cauchy and the relaxed micromorphic model.

Several strategies of perturbation may have been considered to take into account
themanufacturing process of themicrostructured plate. Since no strategy has been
yet, to our knowledge, being developed for the relaxed micromorphic model, we
chose to use “simple” probability laws to facilitate its comparison with the classical
Cauchy model.

ρc

C

?

ρm

Jm
Te

Ce

Cm

Jc
Tc

Cc

Figure 4.17: Equivalence between the (left) microstructured unit cell and the (right)
relaxed micromorphic parameters, red corresponding to spring-like elements and blue
to mass-like elements.

By perturbating one by one each of the constitutive tensors of the relaxed micro-
morphic model, one could investigate how each parameter of the relaxed micro-
morphic model correspond to the geometrical parameters of the microstructured
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unit cell.

Let us go back to our theoretical models: as the static and dynamic parameters ran-
domly varying through the plate, the former x1 and x2 symmetries cannot be used
anymore to reduce the size of the system. The considered structures are presented
in Figures 4.18.

Ωp

Ωm

Ωc

Ωp

11a

9a

a

a

Figure 4.18: (left) Top view of themicrostructured plate. (right) Top view of the relaxed
relaxed micromorphic plate.

To eliminate rigid body moves of these two structures, homogeneous Dirichlet
boundary conditions have to be applied to the system to u1 and u2. At first, trans-
lations are prevented by immobilizing the plate’s central point:

u(x = 0) = 0 (4.54)

“Residual rotations” around the center are suppressed by imposing the additional
constrain

u2(x1 = a/2, x2 = 0) = 0 (4.55)

No additional boundary conditions needs to be prescribed upon P for the relaxed
micromorphic medium. The action functional for the microstructured plate pre-
sented in 4.18 is

Aint [u, V ] =

∫ t2

t1

∫

Ωp

[
1

2
⟨u̇, ρu̇⟩ − 1

2
⟨sym∇u,C sym∇u+ ξT E⟩ − 1

2
⟨E, ε0εE+ ξ sym∇u⟩

]
dΩdt

+
e

2

∫ t2

t1

∫

Ωc

[
1

2
(1 + θρ)(1 + κk)⟨u̇, ρcu̇⟩ −

1

2
(1 + θE)(1 + κw)⟨symu,C symu⟩

]
dΓdt

(4.56)

For the relaxed micromorphic plate, the action functional corresponding to the
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model implemented in Comsol Multiphysics®is:

Aint [u,P, V ] =

∫ t2

t1

∫

Ωp

[
1

2
⟨u̇, ρu̇⟩ − 1

2
⟨sym∇u,C sym∇u+ ξT E⟩ − 1

2
⟨E, ε0εE+ ξ sym∇u⟩

]
dΩdt

+
e

2

∫ t2

t1

∫

Ωc

[
1

2
(1 + θρ)(1 + κk)⟨u̇, ρcu̇⟩ −

1

2
(1 + θE)(1 + κw)⟨symu,C symu⟩

]
dΓdt

+
e

2

∫ t2

t1

∫

Ωm

1

2
(1 + θ1)(1 + κk)⟨u̇, ρmu̇⟩dΓdt

+
e

2

∫ t2

t1

∫

Ωm

[
1

2
(1 + θ2)(1 + κk)⟨sym Ṗ, Jm sym Ṗ⟩+ 1

2
(1 + θ3)(1 + κk)⟨skew Ṗ, Jc skew Ṗ⟩

]
dΓdt

+
e

2

∫ t2

t1

∫

Ωm

[
1

2
(1 + θ4)(1 + κk)⟨sym∇u̇,Te sym∇u̇⟩+ 1

2
(1 + θ5)(1 + κk)⟨skew∇u̇,Tc skew∇u̇⟩

]
dΓdt

− e

2

∫ t2

t1

∫

Ωm

1

2
(1 + θ6)(1 + κw)⟨sym(∇u−P),Ce sym(∇u−P)dΓdt

− e

2

∫ t2

t1

∫

Ωm

1

2
(1 + θ7)(1 + κw)⟨symP,Cm symP⟩dΓdt

− e

2

∫ t2

t1

∫

Ωm

1

2
(1 + θ8)(1 + κw)⟨skew(∇u−P),Cc skew(∇u−P)⟩dΓdt

(4.57)

Figures 4.19, 4.20 and 4.21 present the comparison between the deterministic and
stochastic microstructured plate and relaxed micromorphic model.
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Figure 4.19: (left) Pointwise displacement pB for the recalibrated deterministic (blue)
and stochastic (red) microstructured models. (right) Mean displacement mB for the
recalibrated deterministic (blue) and stochastic (red) microstructured models. The the-
oretical limits of the band-gap obtained via the Bloch-Floquet analysis for the recali-
brated architectured unit cell are given in dashed lines.
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Figure 4.20: (left) Pointwise displacement pB for the recalibrated deterministic (blue)
and stochastic (red) relaxed micromorphic models. (right) Mean displacement mB for
the recalibrated deterministic (blue) and stochastic (red) relaxedmicromorphic models.
The theoretical limits of the band-gap obtained via the Bloch-Floquet analysis for the
recalibrated architectured unit cell are given in dashed lines.
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Figure 4.21: (left) Pointwise displacement pB for the recalibrated deterministic stochas-
tic microstructured (blue) and relaxed micromorphic (blue) models. (right) Mean dis-
placementmB for the recalibrated stochastic microstructured (blue) and relaxed micro-
morphic (red) models. The theoretical limits of the band-gap obtained via the Bloch-
Floquet analysis for the recalibrated architectured unit cell are given in dashed lines.

Outside the band-gap, perturbation of the structures have twomain consequences:

– the appearance of parasitic modes due (for some of them) to the loss of symme-
try,
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– the “erosion” of the pre-existing structural modes.

These observations can be made for both the microstructured and the relaxed mi-
cromorphic models. The “depth ”of the band gap is considerably reduced by the
introduction of perturbation, may be explained saying that, each cell, for the mi-
crostructured model, having lightly different resonance frequency, only a few of
those frequencies are close enough from the considered frequency for the cell to
fully resonate, i.e. concentrating locally the energy. Inversely, the set of resonance
frequencies no longer being reduced to a singleton widen the band-gap: Figure
4.22 present this effect observed through the FRF of, once again, the FRF of an mi-
crostructured beam under a traction/compression load. To understand clearly, one
can define Ht

n and Hr
n for the nth cell of the beam:

Ht
n =

√
⟨u,u⟩(x1 = na, x2 = 0)√

⟨u,u⟩(x1 = (n− 1)a, x2 = 0)

Hr
n =

√
⟨u,u⟩(x1 = (n− 1/4)a, x2 = a/2)√
⟨u,u⟩(x1 = (n− 1)a, x2 = 0)

(4.58)

We can also define the width ∆
r
f and depth ∆H of the band-gap, respectively

characterizing the frequency range where the attenuation of the response of our
structure exceeds a given ratio r (e.g.

√
2, corresponding to a division by 2 of the

transmitted energy) and the maximum collapse of the response of the plate in this
considered frequency range, in formulas:





∆
r
f = ω2 − ω1 where (w1, w2) =

{
ω ∈ [ω1, ω2] :

H(ω = 0)

H(ω)
⩽ r

}

∆H =
H(ω = 0)

min
ω∈[ω1,ω2]

H(ω)

(4.59)
HowH : ω 7→ H(ω) should be chosen depends on the structure: we chose, through
thismanuscript, alternatively pointwise or average transfert functions. For this sec-
tion, we set

H = pB and r =
√
2 (4.60)
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Figure 4.22: (left, top) Beam composed of three non-disturbed architectured cells (i.e.
identical) under a axial load with (left, bottom) their frequency response functionHt
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(right, top) Beam composed of three different architectured cells under a axial loadwith
(right, bottom) their respective frequency response function Ht
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The influence of the introduced perturbation in our structures is presented in Table
4.3.

∆√
2
ω ∆H

[Hz] -

Microstructured
Deterministic structure 206 ⩾ 106

Stochastic structure 219 50

Relaxed micromorphic
Deterministic structure 262 ⩾ 1.6 · 105

Stochastic structure 282 33.2

Table 4.3: Band gap characteristics of the structures presented in Figures 4.5 and 4.18.

Due to the small size of the considered system (n1 = 11, n2 = 9), this widening is
only visible in the core of the band-gap. One can also notice, for themicrostructured
model, a parasitic resonance in the band-gap, corresponding to the local resonance
of the cell whose frequency now differs from those near close to the excitation:
cells “far” from the center of the plate, previously “in the shadow” of the central
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cells resonances, are now distinct in the perturbed system. This phenomenon is
presented in Figure 4.23. It also explains how the band gap can be experimentally
measured despite the local resonance of each square of the unit cells. Such effect do
not appear for larger structures, where the large number of cells and the increas-
ing density of resonance frequency as the probability to find several cells (between
the excitation and the considered one) who resonances are close enough to the lat-
ter one erase such local resonance far from the excitation. This is visible on the
relaxed micromorphic model where, if the band gap width’s and depth are neces-
sarily limited by the small size of the system, the homogenized medium mimics a
considerable number of cells.
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Figure 4.23: (left, top) Beam composed of three non-disturbed architectured cells (i.e.
identical) under a axial load with (left, bottom) their frequency response functionHt
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For once, one has to take into account the discretization of the system done by the
Finite Element method: if the theoretical eigenfrequency is the same for each of the
396 of the 11×9 cells plate, an irregularmeshing of themicrostructured platewould
lead to introduce some “artificial” perturbation in the plate, different meshes gen-
erating slightly different resonators and, consequently, different eigenfrequencies
in the plate. A special attention has been brought to the mesh of the microstruc-
tured plate, where the same mesh has been used for every resonator in the plate.
From Figure 4.1 and section 4.1, one can focus on four particulars points which re-
sponse in the two directions of the plane are presented in Figures 4.25, 4.26, 4.27
and 4.28. The position of those points have been presented in Figure 4.1.
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Figure 4.24: (left) Distribution of the normalized eigenfrequency of each resonator for
the deterministic system (for the analytical model). (right) Distribution of the normal-
ized eigenfrequency for some of the 396 resonators of the disturbed plate. wi is the
eigenfrequency of the ith resonator and w0 the theoretical eigenfrequency of the deter-
ministic unit cell.

4.4 Comparison with the experiment

Given the strong directivity of our structure, we switch the plotting of ⟨u,u⟩ for the
plotting of its components, i.e.
– u̇1 for C1 and C2

– u̇2 for C3 and C4

Moreover, given the small size of both the plate and the excitation, degrading the
results for the relaxed micromorphic model, the theoretical displacement orthogo-
nal to the main direction of displacement would present a slightly difference from
the experiment, as the displacement along x2 for C1 and C2 (respectively x1 for C3

and C4) for the relaxed micromorphic model is mostly due to the Poisson effect,
while it is, for the microstructured model, due to the rotation of the considered
resonator. As u ∈ C2, we define

{
|u̇k| = 2πf

√
ukuk

ϕu̇k
= arg(iuk)

(4.61)

which, as we introduced in Chapter 2, are the amplitude and the phase of u̇k. We
still present the coherence of the experimental signal: if it cannot be compared to
the theoretical responses of the microstructured plate nor the relaxed micromor-
phic model (where we would have Cu̇k

= 1 ,∀f ∈ [0, 2500]Hz, in the hypothesis of
linearity), it can still be superposed of the theoretical position of the recalibrated
band-gap of the architectured unit cell.
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4.4.1 Point-to-point displacement comparison

Figure 4.25 shows a really good correspondence between the two theoretical mod-
els and the experimental measures both on the amplitudes and on the general ap-
pearance: the first structural mode around 1300 Hz and the amplitude drop char-
acteristic of the band gap at 1600 Hz being correctly described. One can notice the
fall of coherence around 1600 and 1850 Hz, corresponding to the considerable de-
crease of the amplitude, characteristic of the band-gap. The phase switch between
the first structural mode of the system at 1300 Hz and the second anti-resonance in
the band-gap (1850 Hz) is observable for the experiment and the microstructured
model, while the relaxed micromorphic, due to the small size of the plate and ex-
citation size, can only predict this phase switch till the first anti-resonance in the
band-gap.
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Figure 4.25: (left) Amplitude of u̇1 at C1 (see Fig. 4.1 for the definition of this point)
for the experiment, the microstructured and relaxed micromorphic models. (right, top)
Phase of u̇1 at C1 for the experiment, the microstructured and relaxed micromorphic
model. (right, bottom) Coherence of u̇1 at C1 for the experiment.

The coherence decrease around 1600 Hz is the signature of the band-gap: this fall
is not due to the antiresonance, the sine swipe being slow enough not to decrease
the coherence at the passage of the modes of the system, the coherence staying at
its maximal value while crossing the first structural mode at 1364 Hz, but to the
non-correlation of the measure with the excitation at the considered frequency. A
resonance can also be observed for the experiment and the microstructured model
at the beginning of the band-gap around 1600 Hz. The collapse of the response of
the points far from the piezoelectric excitation, being due to the band-gap effect,
i.e. the resonance of the inner squares of the cells composing the plate. Due to the
perturbation added to the microstructured model, the resonance of every square
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of the structure do not occur anymore at the same frequency, having two effects:

– the widening of the anti-resonance at the beginning of the band-gap
– the shallower depth of this anti-resonance

This second effectmimicks an artificial additional damping for thismode. C1 being
at the center of a resonator, one can observe the resonance of this square, whose
frequency is not, due to the perturbation on the system, is not aligned anymorewith
the other resonators, and can therefore bemeasured. The samephenomenon can be
observed for the experiment, where the perturbation is given, in addition to spatial
variations of the Young modulus and density, of the imperfection of geometry and
boundary conditions across the plate.
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Figure 4.26: (left) Amplitude of u̇1 at C2 (see Fig. 4.1 for the definition of this point)
for the experiment, the microstructured and relaxed micromorphic models. (right, top)
Phase of u̇1 at C2 for the experiment, the microstructured and relaxed micromorphic
models. (right, bottom) Coherence of u̇1 at C2 for the experiment.

Getting away from the x1 symmetry plane, the relaxed micromorphic model, de-
spite its difficulties to predict the right amplitudes of the experimental system, suc-
cessfully describes the first structural mode and the first anti-resonance at the be-
ginning of the band-gap. The microstructured model predicts almost perfectly the
experiment as shown in Figure 4.27, proving the interest of the recalibration. The
perturbation of the system is once again visible in the band-gap, where the decrease
of the depth of the band-gap and the resonance of the measured square can be ob-
served.
For C3 and C4, the main direction of displacement became x2: u1 and u2 having
close to symmetrical roles compared to C1 and C2, which would be the case (with
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small phase sign change) ifm = n. For that reason, we present the responses at C3

and C4 only in the x2 direction.
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Figure 4.27: (left) Amplitude of u̇2 at C3 (see Fig. 4.1 for the definition of this point)
for the experiment, the microstructured and relaxed micromorphic models. (right, top)
Phase of u̇2 at C3 for the experiment, the microstructured and relaxed micromorphic
models. (right, bottom) Coherence of u̇2 at C3 for the experiment.
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Figure 4.28: (left) Amplitude of u̇2 at C4 (see Fig. 4.1 for the definition of this point)
for the experiment, the microstructured and relaxed micromorphic models. (right, top)
Phase of u̇2 at C4 for the experiment, the microstructured and relaxed micromorphic
models. (right, bottom) Coherence of u̇2 at C4 for the experiment.
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Figures 4.27 and 4.28 show clearly the phase sign change between the first structural
mode of the system and the second anti-resonance at the end of the band-gap (from
1350 to 1900 Hz) for both theoretical models and the experiment even if, as said
previously, the small dimensions at the experimental set do not allow to predict the
second anti-resonance of the system at the end of the band-gap. The recalibration
of the deterministic model also shows its efficiency by the prediction of the second
anti-resonance at the end of the band-gap (from 1900 to 2000 Hz).

4.4.2 2D response of the plate

Figures 4.29, 4.30 and 4.31 present the speed field across the plate for the experi-
mentwith themicrostructuredmodel. The structuralmode at 1364Hz along the x1

axis is shown in Figure 4.29, where the effects of the recalibration of the theoretical
system can be appreciated.

As only a quarter of the plate has been instrumented (by the imposition of reflec-
tor patches), corresponding to approximately 200 points measured one by one, the
displacement has been symmetrized to represent the whole system. For that rea-
son, the experimental response may appear as falsely symmetrical, especially in
the heart of the band gap where the influence of the defects breaks significantly
the symmetries of the plate.

0 1 2 3 4 5 6 7 8 9

·10−2|u̇| (m/s)

Figure 4.29: |u̇| (in m/s) at 1365 Hz for the microstructured model (left) and for the
symmetrized experimental system (right), each square representing the speed at the
center of the resonator of the 1/4 of cell considered.
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0 0.5 1 1.5 2 2.5 3 3.5 4

·10−2|u̇| (m/s)

Figure 4.30: |u̇| (in m/s) at 1589 Hz for the microstructured model (left) and for the
symmetrized experimental system (right), each square representing the speed at the
center of the resonator of the 1/4 of cell considered.

Figure 4.30 presents the speed field of the structure in the heart of the band-gap.
This band-gap being omnidirectionnal, the strong directivity of the system disap-
pears, the cells closer to the central excitation while resonating while speed re-
sponse along the rest of the plate vanishes. Given the small size of the experimental
plate (i.e. the small number of cells) and the speedmeasured on the resonators, the
measured values remain non-negligible, even if the band-gap effect can be clearly
observed. The microstructured model presents a strongly asymmetric response,
with an important resonance of a square close to the piezoelectric patches, and
the resonance of some squares, yet further from the excitation than some others,
greater than the latter. Such effect is due to the combination of:

– the perturbation of the Young modulus and density across the plate
– the small damping used for the simulations

The perturbation of the plate’s mechanical parameters induces the resonance of
each square of the plate at different frequencies: the resonator with the closest res-
onant frequency to the considered one (here, 1589 Hz) consequently have a con-
siderable greater amplitude, due to the small damping introduced, than the other
ones. For the same reason, a square further from the piezoelectric patches than an-
other one, having his resonant frequency closer to the excitation one may, despite
the (small, again, due to the small damping) attenuation of the in-plane expansion
wave, from an wave point of view, may have a greater amplitude than the square
closer to the excitation. Such phenomenon is also visible for the experiment, the
resonance of the square at (x1 = 5 [mm],x2 = 15 [mm]) has to be compared to
the one at (x1 = 15 [mm],x2 = 5 [mm]), while the artificial symmetry presented
gives a false impression of an uniform resonance around the excitation. Figure 4.31
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presents the response on the system for higher frequencies of the theoretical band-
gap. One can observe the resonance of the closest resonators to the piezoelectric
excitation and the decreasing displacement along the two main axis of the plate.

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.36
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Figure 4.31: |u̇| (in m/s) at 1742 Hz for the microstructured model (left) and for the
symmetrized experimental system (right), each square representing the speed at the
center of the resonator of the 1/4 of cell considered.

4.5 Enabling meta-structural engineering design

As we pointed in Chapter 3, the relaxed micromorphic model successfully de-
scribes the mechanical response of our microstructured metamaterials as soon as
a sufficiently large plate, both in terms of number of cells an excitation. Our experi-
mental proof of concept did notmet these requirements, mostly because of the design
constrains, to know:

– n1 and n2 ⩾ 30 cells
– nc ⩾ 9 cells

In this section, we propose a new complex metastructure verifying such criteria
able to concentrate energy for an eventual re-use through conversion, e.g., of me-
chanical energy into heat or electricity. Such bidimensionnal structure is presented
in Figure 4.32: the central domain Ω1

m is made up of our usual unit cell while the
outer domain Ω2

m is made of a metamaterial with the same geometry whose unit
cell is doubled. Both metamaterials’ domains are very large (101× 51 unit cells in
Ω1
m and 51 × 51 unit cells in Ω2

m for the symmetrized structure): such large-scale
structure points towards realistic structural engineering design (think, for exam-
ple, that the domain Ω1

m is located around a railway truck and that the domain Ω2
m

are the lateral banks).
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Figure 4.32: (left) Top view of the full microstructured plate with the two different cells.
(right) Top view of the full equivalent relaxed micromophic plate.

If the resolution of the microstructured structure via the Finite Element Method
would not be feasible, it can reasonably be undertaken only for the relaxed micro-
morphic model: as we placed ourselves in the conditions of convergence for the re-
laxed micromorphic plate, we can fully rely on the homogenized plate’s result. As
we did for our previous models, the symmetries of this structure can be exploited
to reduce its size, as presented in Figure 4.33. The two metamaterials’ domains are
separated by a classical Cauchy material occupying the annular domain Ωc. The
elastic properties of such soft Cauchy material are given in Table 4.4 and a detail of
this annular Cauchy region is given in Figure 4.34.

ρ2 λ2 µ2

[kg.m−3] [Pa] [Pa]
3000 9.74 · 108 5.88 · 105

Table 4.4: Mechanical parameters of the second isotropic Cauchy medium between the
two relaxed micromorphic mediums.
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Figure 4.33: (left) Top view of the symmetrized microstructured plate with the two
different cells. (right) Top view of the symmetrized equivalent micromophic plate with
the boundaries and medium denominations.

As a newarchitectured unit cell is introduced, its relaxedmicromorphic parameters
have to be computed, i.e. the dispersion curves used for the calibration procedure.
Introducing the ratio r between the ratio of the original cell C1 parameter χ1 and
the parameter χ2 of the “double” cell C2:

r =
a2

a1
=
e2p
e1p

=
e2g
e1g

= 2 (4.62)

we have, by duality,

(f,k) ∈ DC1 ⇒ (
f

r
,
k

r
) ∈ DC2 (4.63)

where DCi is the dispersion curve of the architectured unit cell Ci. Given this, the
dispersion curves for both cells can be plotted in Figure 4.35 without additional
computations.
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Figure 4.34: Detail of the annular Cauchy domain Ωc, the central domain Ω1
m with the

“usual” unit cell and the outer domain Ω2
m paved with double unit cells.

These two microstructured unit cells’ band gap being positioned at two different
frequency range, a traction-compression pulse signal emitted in the center of the
plate at a suitable frequency could propagate through Ω1

m to fall into the band-
gap of the double microstructured unit cell paving Ω2

m. Given the position of the
respective band gaps of the two unit cells,

f0 = 857.5 [Hz] (4.64)

is a good candidate.
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Figure 4.35: (left) Dispersion curves for the 4cm unit cell (red) and the 2 cm unit cell
(blue) along ΓX (propagation at 0°) and (right) along ΓM (propagation at 45°).

The relaxed micromorphic parameters of the double unit cell can be computed
from the standard unit cell without an additionnal calibration upon the dispersion
curves obtained via the Bloch-Floquet analysis by setting





ρ2m = ρ1m

C2
e = C1

e

C2
m = C1

m

C2
c = C1

c

J2m = r2c J1m
T2
e = r2c T1

e

J2c = r2c J1m
T2
c = r2c T1

c

i.e.





ρ2m = ρ1m

λ2i = λ1i , i ∈ {e,m}
µ2i = µ1i , i ∈ {e,m}
µ2i = µ∗1i , i ∈ {e,m}
µ2c = µc
η2i = r2 η1i , i ∈ J1, 3K
η∗21 = r2 η∗11

η2i = r2 η1i , i ∈ J1, 3K
η∗21 = r2 η∗11

(4.65)

where Ki is the tensor associated with the Ci cell and χi its parameters. Given
the calibration procedure for the static parameters, based on the equivalence of
strain energy densities, and the physical meaning of ρm, these parameters logically
remain untouched. The dispersion curves for the double microstructured cell and
its equivalent relaxed micromorphic modelling are given in Figure 4.36.
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Figure 4.36: (left) Dispersion curves of the microstructured and the relaxed micromor-
phic “double cell” along ΓX (propagation at 0°). (right) Dispersion curves of the mi-
crostructured and the relaxed micromorphic “double cell” along ΓM (propagation at
45°).

The action functional of the reduced relaxed micromorphic model is

Aint [u,P] =

∫ t2

t1

[∫

Ω1
c

(k1c − w1
c )dΩ +

∫

Ω1
m

(k1m − w1
m)dΩ +

∫

Ω2
c

(k2c − w2
c )dΩ +

∫

Ω2
m

(k2m − w2
m)dΩ

]
dt

(4.66)
The boundary conditions are a bit trickier. We have





(σ̂1 + σ̃1) · n = σ1 · n on ∂Ω̃1
c

σ2 · n = (σ̂1 + σ̃1) · n on ∂Ω̃2
c

σ2 · n = 0 on ∂Ω̃f

(σ̂1 + σ̃1) · n = σ2 · n on ∂Ω̃3
c

(σ̂1 + σ̃1) · n = 0 on ∂Ω̃f

and





ui = ψni on ∂Ωe

uini = 0 on ∂Ωs

(δki − nkni)(Pijnj) = 0 on ∂Ωs

(4.67)

The annular Cauchy material is chosen so that a filtering effect is triggered (the
wave coming from Ω1

m can pass, but cannot go back) [Rizzi 2021]. Thanks to this
design, the proposed meta-structure can focus an important part of the elastic en-
ergy in the annular Cauchy region (see Table 6). It can be noted that the energy
concentration in the annular Cauchy material is evident, also due to the restricted
area in which it occurs (see Figure 4.37). A structure of this type could be used to
locate energy converters in the annular Cauchy region for subsequent energy con-
version and re-use.
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857.5 Hz Ω1
c Ω1

m Ω2
c Ω2

m

[J.m−3] [J.m−3] [J.m−3] [J.m−3]
W 55.1 · 103 45.5 · 103 29.5 · 103 7.74 · 103
K 3.42 · 106 43.6 · 103 26.3 · 103 7.84 · 103

Table 4.5: Values of the average total energy for each domain of the structure at 857.5Hz.
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Figure 4.37: Displacement field in the structure at 857.5 Hz.



Chapter 5

Conclusion and perspectives

Metamaterials with frequency band-gap, i.e. able to inhibit wave propagation
for a large frequency range, can be achieved either by Bragg scattering or local reso-
nance. By investigating the latter technical solution, we eventually designed a new
microstructured unit cell having a band-gap in the low acoustic frequency range of
only 2 centimeters size, up to ten times smaller that “classical”microstructured unit
cells with similar characteristics. The characterization of such unorthodox perfor-
mances requires the use of specific mathematical tools, e.g. Bloch-Floquet analysis,
allowing to compute the dispersion curves of the designed cell.
Dispersion curves of a (meta-)material may be seen as its spectral signature, fully
characterizing its wave behaviour. With the relaxed micromorphic model, we pro-
duced a continuum able to mimic the same wave behaviour and, in particular, the
non-propagation of mechanical waves in a large frequency range. This has been
made possible by the enriching the kinematic description of our medium: where
higher-order theories, introducing a considerable number of additional mechani-
cal parameters and requires a stronger regularity of the displacement, can describe
some dispersive behaviours, only the introduction of a second-order tensor – i.e.
micro-distortion – and a few mechanical parameters, is able to describe the local-
ization of energy at microscopic level in our structures.
If the response of an infinite periodic structure, through Bloch theorem, can be re-
duced to the computation of a generalized eigenvalue problem over the unit cell,
their numerical simulation, due to their microstructural complexity, turn out to be
particularly tricky when considering large-scale finite-sized structures. Finite Ele-
mentMethod, heavily used in Engineering Sciences, turns out to be poorly adapted
to metamaterial modelling via the classical Cauchy continuum: the meshing of the
complex geometry at microscopic scale necessitates a consequent number of de-
grees of freedom, in practice incompatible to conciliate with a reasonable calcula-
tion time. The homogenization provided by the relaxed micromorphic continuum
allows, under the right conditions, to reduce considerably the computation time
of microstructured systems, eventually making possible the computation of even
larger structures that would not have been possible otherwise.
The proof of concept we designed,manufactured, instrumented and characterized
showed the reliability of our theories, from the prediction of the bandgap to theme-
chanical behaviour over a large frequency range through the performance degra-
dation due to manufacturing defects. Despite these more successful conclusions,
several difficulties arised:
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– the slight error introduced by using the plane strain hypothesis for a thin mi-
crostructured plates

– the non-perfect convergence of the relaxed micromorphic model due to insuffi-
cient dimensions of the experimental plate

If we managed to “rectify” the first hypothesis by tuning the mechanical param-
eters of the Cauchy continuum and, through our recalibration procedure, reflect
these changes on the relaxed micromorphic model, a new calibration procedure to
determine its mechanical parameters has to be considered. Let us try to draw the
main axes of this study:

– Compute the dispersion curves of the architectured cell with the plane stress
hypothesis

– Write the dual formulation of the relaxed micromorphic equilibrium equations
– Calibrate the parameters of the generalized compliance tensors

The SUBC method (Static Uniform Boundary Conditions), given the hypothesis
made, shall be preferred to the KUBC one, that corresponded to the plain strain
hypothesis used previously. One canwrite the expression of the generalized strain-
stress relations for the relaxed micromorphic model:

{
∇u−P = Se sym σ̃ + Sc skew σ̃

symP = Sm s
(5.1)

where Se,Sc and Sm are respectively the generalized elastic, the local rotational
elastic and the micro self compliance tensors. One can then compute the general-
ized complementary strain energy wm for the relaxed micromorphic continuum:

wm(s, σ̃) =
1

2
⟨sym σ̃, Se sym σ̃⟩+ 1

2
⟨sym s, Sm sym s⟩+ 1

2
⟨skew σ̃,Sc skew σ̃⟩

(5.2)
with the (generalized) plane stress hypothesis

s =



⋆ ⋆ 0

⋆ ⋆ 0

0 0 0


 and σ̃ =



⋆ ⋆ 0

⋆ ⋆ 0

0 0 0


 (5.3)

Unlike the classical Cauchy medium, the gradient micro-inertia will have to be
treated in the same way, in formulas:

∇ü = Be sym σ̂ +Bc skew σ̂ (5.4)

with

σ̂ =



⋆ ⋆ 0

⋆ ⋆ 0

0 0 0


 (5.5)
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Due to manufacturing constrains, the microstructured plate designed in this the-
sis did not met the homogenization conditions established in Chapter 3. For an
even brighter proof of the relaxed micromorphic model’s capability, a new plate
respecting those criteria should be manufactured. To do so, different manufactur-
ing processes should be considered to build such “large” structures, e.g.
– Additive manufacturing
– Laser / waterjet cutting
Aswe alreadymentioned inChapter 2, themanufacturing process has to be consid-
ered jointly with thematerial used, raising new issueswe briefly evoked in Chapter
3. If the metallic alloys considered in this manuscript allowed us to consider “sim-
ple” dissipative laws in our media, i.e. loss factor damping, some materials (e.g.
polymers) may require more complex damping in our structures. The study of
wave propagation in damped metamaterials requires specific mathematical tools.
Thanks to the homogenization, methods like the Shift Cell Operator do not have to
be developed, but dissipation laws can be directly implemented in the local equi-
librium laws. A procedure to study propagation in damped relaxed micromorphic
continuum could be:
1. Compute the dispersion curves of the unit cell via the Bloch-Floquet analysis
2. Calibrate the conservative parameters of the relaxed micromorphic medium
3. Choose a damping for themetamaterial described by the classical Cauchymodel
4. Compute the dispersion curves of the dampedunit cell via the Shift Cell Operator
5. Choose a damping for the relaxed micromorphic model describing the metama-

terial
6. Calibrate the damping parameters of the relaxed micromorphic medium
Due to the complexity of the introduction of viscous damping in relaxed micro-
morphic continuum and the important number of damping coefficients, one could
in a first attempt verify the relevance of the hypothesis of correspondence of loss
factor damping, i.e. that

wc = (1 + iη)wc and wm = (1 + iη)wm (5.6)
produces the same dispersion curves for both models, e.g. for real and imaginary
parts of k1 or k2 at ω = ω0 ∈ R given. Such comparison may also allow to study the
influence of each elastic tensor of the relaxed micromorphic model in the descrip-
tion of the band-gap.
If we focused, in this manuscript, on bi-dimensional metamaterials, we saw that it
implied some difficulties in terms of, among others, static resistance, design of the
band-gap position and width, which may not fit into every mechanical structures.
The tridimensional metamaterial, based on the generalization of the unit cell con-
sidered here is presented in Figure 5.1. In the absence of strain strain hypothesis
for suchmedia, the computation of dispersion curves for the relaxedmicromorphic
model as well as the calibration procedure, implying a greater number of coeffi-
cients will be considerably complexified.
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Figure 5.1: Equivalent tridimensional cell, consisting of beams on its edges and of cubes
for the resonators linked to the unit cell’s corners by small beams.
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Appendix A

Variation of the action of the
relaxed micromorphic medium

We have for the first term of the gradient micro-inertia:

δ

∫ t2

t1

∫

Ω

1

2
⟨sym∇u̇,Te sym∇u̇⟩dΩdt =

∫ t2

t1

[∫

∂Ω
⟨δu̇, (Te sym∇u̇) · n⟩dΓdt−

∫

Ω
⟨δu̇,∇ · (Te sym∇u̇)⟩dΩ

]
dt

∫ t2

t1

∫

∂Ω
⟨δu̇, (Te sym∇u̇) · n⟩dΓdt = −

∫ t2

t1

∫

∂Ω
⟨δu, (Te sym∇ü) · n⟩dΓdt

−
∫ t2

t1

∫

Ω
⟨δu̇,∇ · (Te sym∇u̇)⟩dΩdt = +

∫ t2

t1

∫

Ω
⟨δu,∇ · (Te sym∇ü)⟩dΩdt

δ

∫ t2

t1

∫

Ω

1

2
⟨sym∇u̇,Te sym∇u̇⟩dΩdt =

∫ t2

t1

[
−
∫

∂Ω
⟨δu, (Te sym∇ü) · n⟩dΓ +

∫

Ω
⟨δu,∇ · (Te sym∇ü)⟩dΩ

]
dt

(A.1)
In the same way, we have for the second term of the gradient micro-inertia term:

δ

∫ t2

t1

∫

Ω

1

2
⟨skew∇u̇,Tc skew∇u̇⟩dΩdt =

∫ t2

t1

[∫

∂Ω
⟨δu̇, (Tc skew∇u̇) · n⟩dΓdt−

∫

Ω
⟨δu̇,∇ · (Tc skew∇u̇)⟩dΩ

]
dt

∫ t2

t1

∫

∂Ω
⟨δu̇, (Tc skew∇u̇) · n⟩dΓdt = −

∫ t2

t1

∫

∂Ω
⟨δu, (Tc skew∇ü) · n⟩dΓdt

−
∫ t2

t1

∫

Ω
⟨δu̇,∇ · (Tc skew∇u̇)⟩dΩdt = +

∫ t2

t1

∫

Ω
⟨δu,∇ · (Tc skew∇ü)⟩dΩdt

δ

∫ t2

t1

∫

Ω

1

2
⟨skew∇u̇,Tc skew∇u̇⟩dΩdt =

∫ t2

t1

[
−
∫

∂Ω
⟨δu, (Tc skew∇ü) · n⟩dΓ +

∫

Ω
⟨δu,∇ · (Tc skew∇ü)⟩dΩ

]
dt

(A.2)
For the classical elastic energy, we have

δ

∫ t2

t1

∫

Ω

1

2
⟨sym(∇u−P),Ce sym(∇u−P)⟩dΩdt =

∫ t2

t1

∫

Ω
[⟨∇δu,Ce sym(∇u−P)⟩ − ⟨δP,Ce sym(∇u−P)⟩] dΩdt

=

∫ t2

t1

[∫

∂Ω
⟨δu, (Ce sym(∇u−P)) · n⟩dΓ−

∫

Ω
[⟨δu,∇ · (Ce sym(∇u−P))⟩dΓ + ⟨δP,Ce sym(∇u−P)⟩] dΩ

]
dt

(A.3)
For the micro self energy, we have directly

δ

∫ t2

t1

∫

Ω

1

2
⟨symP,Cm symP⟩dΩdt =

∫ t2

t1

∫

Ω
⟨δP,Cm symP⟩dΩdt (A.4)
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We eventually have, for the local rotational elastic coupling,

δ

∫ t2

t1

∫

Ω

1

2
⟨skew(∇u−P),Cc skew(∇u−P)⟩dΩdt =

∫ t2

t1

∫

Ω
[⟨∇δu,Cc skew(∇u−P)⟩ − ⟨δP,Cc skew(∇u−P)⟩] dΩdt

=

∫ t2

t1

[∫

∂Ω
⟨δu, (Cc skew(∇u−P)) · n⟩dΓ−

∫

Ω
[⟨δu,∇ · (Cc skew(∇u−P))⟩dΓ + ⟨δP,Cc skew(∇u−P)⟩] dΩ

]
dt

(A.5)

One can eventually compute the the expressions of kinetic and strain densities of
energy

km =
1

2
ρm(u̇21 + u̇22)

+
1

2

[
2η1(Ṗ

2
11 + Ṗ 2

22) + η3(Ṗ11 + Ṗ22)
2 + η∗1(Ṗ12 + Ṗ21)

2 + η2(Ṗ12 − Ṗ21)
2
]

+
1

2

[
2η1(u̇

2
1,1 + u̇22,2) + η3(u̇1,1 + u̇2,2)

2 + η∗1(u̇1,2 + u̇2,1)
2 + η2(u̇1,2 − u̇2,1)2

]

wm =
1

2

[
2µe((P11 − u1,1)2 + (P22 − u2,2)2) + λe(P11 + P22 − u1,1 − u2,2)2 + µ∗e(P12 − u1,2 + P21 − u2,1)2

]

+
1

2

[
2µm(P 2

11 + P 2
22) + λm(P11 + P22)

2 + µ∗m(P12 + P21)
2
]

+
1

2

[
µc(P12 + P21 − u1,2 − u2,1)2

]

(A.6)



Appendix B

Comparison of the FRFs

We present here the experimental FRFs measured along the symmetry planes:
given the strong directivity of the microstructured plate due to the slenderness of
the “beams” constituting the unit cell, the response of points “far” from the sym-
metry planes can be considered, outside of the structuralmodes of the plate, as neg-
ligible in comparison of the points formerly mentioned. We also present the cor-
responding responses of the perturbed recalibrated microstructured and relaxed
micromorphic models given in Chapter 4.

Figure B.1: Top view of the full microstructured plate with the most remarkable points
along the symmetry planes of the system. Given the strong directivity of the plate we
do not consider other points outside the dashed domain.
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Figure B.2: (left) Amplitude of u̇1 at (x1, x2) = (1.5, 0.5) [cm] for the experiment,
the microstructured and relaxed micromorphic models. (right, top) Phase of u̇1 at
(x1, x2) = (1.5, 0.5) [cm] for the experiment, the microstructured and relaxed micro-
morphic models. (right, bottom) Coherence of u̇1 at (x1, x2) = (1.5, 0.5) [cm] for the
experiment. Dashed lines correspond to the theoretical bounds of the band gap.
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Figure B.3: (left) Amplitude of u̇2 at (x1, x2) = (1.5, 0.5) [cm] for the experiment,
the microstructured and relaxed micromorphic models. (right, top) Phase of u̇2 at
(x1, x2) = (1.5, 0.5) [cm] for the experiment, the microstructured and relaxed micro-
morphic models. (right, bottom) Coherence of u̇2 at (x1, x2) = (1.5, 0.5) [cm] for the
experiment. Dashed lines correspond to the theoretical bounds of the band gap.
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Figure B.4: (left) Amplitude of u̇1 at (x1, x2) = (2.5, 0.5) [cm] for the experiment,
the microstructured and relaxed micromorphic models. (right, top) Phase of u̇1 at
(x1, x2) = (2.5, 0.5) [cm] for the experiment, the microstructured and relaxed micro-
morphic models. (right, bottom) Coherence of u̇1 at (x1, x2) = (2.5, 0.5) [cm] for the
experiment. Dashed lines correspond to the theoretical bounds of the band gap.
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Figure B.5: (left) Amplitude of u̇2 at (x1, x2) = (2.5, 0.5) [cm] for the experiment,
the microstructured and relaxed micromorphic models. (right, top) Phase of u̇2 at
(x1, x2) = (2.5, 0.5) [cm] for the experiment, the microstructured and relaxed micro-
morphic models. (right, bottom) Coherence of u̇2 at (x1, x2) = (2.5, 0.5) [cm] for the
experiment. Dashed lines correspond to the theoretical bounds of the band gap.
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Figure B.6: (left) Amplitude of u̇1 at (x1, x2) = (2.5, 0.5) [cm] for the experiment,
the microstructured and relaxed micromorphic models. (right, top) Phase of u̇1 at
(x1, x2) = (2.5, 0.5) [cm] for the experiment, the microstructured and relaxed micro-
morphic models. (right, bottom) Coherence of u̇1 at (x1, x2) = (2.5, 0.5) [cm] for the
experiment. Dashed lines correspond to the theoretical bounds of the band gap.
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Figure B.7: (left) Amplitude of u̇2 at (x1, x2) = (2.5, 0.5) [cm] for the experiment,
the microstructured and relaxed micromorphic models. (right, top) Phase of u̇2 at
(x1, x2) = (2.5, 0.5) [cm] for the experiment, the microstructured and relaxed micro-
morphic models. (right, bottom) Coherence of u̇2 at (x1, x2) = (2.5, 0.5) [cm] for the
experiment. Dashed lines correspond to the theoretical bounds of the band gap.
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Figure B.8: (left) Amplitude of u̇1 at (x1, x2) = (2.5, 0.5) [cm] for the experiment,
the microstructured and relaxed micromorphic models. (right, top) Phase of u̇1 at
(x1, x2) = (2.5, 0.5) [cm] for the experiment, the microstructured and relaxed micro-
morphic models. (right, bottom) Coherence of u̇1 at (x1, x2) = (2.5, 0.5) [cm] for the
experiment. Dashed lines correspond to the theoretical bounds of the band gap.
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Figure B.9: (left) Amplitude of u̇2 at (x1, x2) = (2.5, 0.5) [cm] for the experiment,
the microstructured and relaxed micromorphic models. (right, top) Phase of u̇2 at
(x1, x2) = (2.5, 0.5) [cm] for the experiment, the microstructured and relaxed micro-
morphic models. (right, bottom) Coherence of u̇2 at (x1, x2) = (2.5, 0.5) [cm] for the
experiment. Dashed lines correspond to the theoretical bounds of the band gap.
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Figure B.10: (left) Amplitude of u̇1 at (x1, x2) = (2.5, 0.5) [cm] for the experiment,
the microstructured and relaxed micromorphic models. (right, top) Phase of u̇1 at
(x1, x2) = (2.5, 0.5) [cm] for the experiment, the microstructured and relaxed micro-
morphic models. (right, bottom) Coherence of u̇1 at (x1, x2) = (2.5, 0.5) [cm] for the
experiment. Dashed lines correspond to the theoretical bounds of the band gap.
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Figure B.11: (left) Amplitude of u̇2 at (x1, x2) = (2.5, 0.5) [cm] for the experiment,
the microstructured and relaxed micromorphic models. (right, top) Phase of u̇2 at
(x1, x2) = (2.5, 0.5) [cm] for the experiment, the microstructured and relaxed micro-
morphic models. (right, bottom) Coherence of u̇2 at (x1, x2) = (2.5, 0.5) [cm] for the
experiment. Dashed lines correspond to the theoretical bounds of the band gap.
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Figure B.12: (left) Amplitude of u̇1 at (x1, x2) = (2.5, 0.5) [cm] for the experiment,
the microstructured and relaxed micromorphic models. (right, top) Phase of u̇1 at
(x1, x2) = (2.5, 0.5) [cm] for the experiment, the microstructured and relaxed micro-
morphic models. (right, bottom) Coherence of u̇1 at (x1, x2) = (2.5, 0.5) [cm] for the
experiment. Dashed lines correspond to the theoretical bounds of the band gap.
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Figure B.13: (left) Amplitude of u̇2 at (x1, x2) = (2.5, 0.5) [cm] for the experiment,
the microstructured and relaxed micromorphic models. (right, top) Phase of u̇2 at
(x1, x2) = (2.5, 0.5) [cm] for the experiment, the microstructured and relaxed micro-
morphic models. (right, bottom) Coherence of u̇2 at (x1, x2) = (2.5, 0.5) [cm] for the
experiment. Dashed lines correspond to the theoretical bounds of the band gap.
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Figure B.14: (left) Amplitude of u̇1 at (x1, x2) = (2.5, 0.5) [cm] for the experiment,
the microstructured and relaxed micromorphic models. (right, top) Phase of u̇1 at
(x1, x2) = (2.5, 0.5) [cm] for the experiment, the microstructured and relaxed micro-
morphic models. (right, bottom) Coherence of u̇1 at (x1, x2) = (2.5, 0.5) [cm] for the
experiment. Dashed lines correspond to the theoretical bounds of the band gap.
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Figure B.15: (left) Amplitude of u̇2 at (x1, x2) = (2.5, 0.5) [cm] for the experiment,
the microstructured and relaxed micromorphic models. (right, top) Phase of u̇2 at
(x1, x2) = (2.5, 0.5) [cm] for the experiment, the microstructured and relaxed micro-
morphic models. (right, bottom) Coherence of u̇2 at (x1, x2) = (2.5, 0.5) [cm] for the
experiment. Dashed lines correspond to the theoretical bounds of the band gap.



Appendix C

Discrete model

Due to the specific geometry of the cell and the range of frequency studied, the
displacement field along the whole system can be modeled using only 16 degrees
of freedom for each cell and still be able to describe the band-gap effect.
Like the FE method, the plane displacement field along the structure is defined
piecewise using two different models:

– an Euler-Bernoulli beam coupled with the Guyan static reduction
– the rigid body model

An additional spring will also introduced between the resonator and the “corner”
to model the resonance inside the cell, which causes the band-gap effect. To known
a mechanical system is to know its kinetic and potential energy. To do so, every
element composing the system will be presented through its associated energies.

C.1 The rigid body model

A rigid body under no conservative forces doesn’t have any potential energy, and
it can be shown that its kinetic energy can be computed by

K =
1

2
⟨u̇M∈S/R,mu̇S/R⟩+

1

2
⟨σM∈S/R,ΩS/R⟩ (C.1)

It is usually calculated at the center of gravity of the solid G, where it takes the
following expression

K =
1

2

〈
u̇G∈S/R,mu̇G∈S/R

〉
+

1

2

〈
ΩS/R, IG,S/RΩS/R

〉 (C.2)

The virtual power P ∗ of the external forces of resultant F and torque C is

P ∗ = ⟨FS̄−→S , u̇
∗
M∈S/R⟩+ ⟨CM,S̄−→S ,Ω

∗
S/R⟩ (C.3)

C.2 The Euler-Bernoulli beam

Let’s consider a beam of neutral axis Γ : x ∈ [0, L] 7→ Γ(x), L > 0 of cross sec-
tion S of curvilinear abscissa x. Under Navier’s hypothesis, the cross-section stays
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plane after deformation, when Bernoulli assumes that even stay perpendicular to
the neutral axis, which is

∀x ∈ [0, L], ∀(A,B) ∈ S2
x, ⟨AB,Γ(x),x⟩ = 0 (C.4)

Γ ∈ C1([0, L),R3). Theses assumptions allows to describe the displacement field
in the whole structure through the study of the neutral axis with the equilibrium
equations {

ESu1,1 = N (Hooke’s law)
EIGu2,22 =Mf

(C.5)

where E is the Young’s modulus, S the cross section, N the normal effort, IG the
area moment of inertia andMf the bending moment.

C.3 The Guyan static reduction

In the Guyan reduction, the displacement field is the one of the static response of
a beam, which is of the form

u(x) = Ax+B (C.6)

v(x) = Cx3 +Dx2 + Ex+ F (C.7)

x = 0 x = L

u1, v1, θ1 u2, v2, θ2

It can be fully determined by displacements and rotations of the extremities.
Bernoulli’s hypothesis gives

u2,1(x1 = 0) = θ1 and u2,1(x = L) = θ2 (C.8)

Allowing to set the values of A,B,C,D,E and F . Kinetic and potential energy of
the beam are then given by

K =
1

2

∫ L

0
ρS(u̇2 + v̇2)dx1 (C.9)

W =
1

2

∫ L

0
[ESu21,1 + EIGu

2
2,22]dx1 (C.10)

C.4 Parametrization

All the dexterity of the mechanician lies in the choice of the parametrization. The
non-redundant parametrization has been made:
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– 3 degrees of freedom for each corner of the cells, two corresponding to the posi-
tion of the pointM and one for the rotation of C.

– One additional degree of freedom by resonator, representing the rotation ofR.

The figure below presents the discretization of a quarter of cell.

B

kr

M

A
F1

G

C

R

Figure C.1: Parametrization of the model

Such choice allows to easily connect cells between them and to apply forces on
the cell. The pendulum configuration consisting in {C + R} strongly suggests to
parametrize this system by adding just one degree of freedom in rotation, which
allows to naturally satisfy the holonomical constrains

{
||AG|| = l (constant length of the pendulum)
∀M ∈ R, ⟨GA,GM⟩,t = 0 (no rotation ofR around G)

(C.11)

The resonance can be very simply mimicked by adding to the pendulum a linear
torsion spring of potential energy

W =
1

2
kr(θr − π/4− θc)2 (C.12)

where kr is the rotational stiffness of the spring. C and R are considered to be
squares of respective sides ac and ar and of areal density eρt. The points F1 and A,
the attachment points on C respectively of the beam and the pendulum, require to
introduce additional geometrical parameters defined through
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Figure C.2: Angular parametrization of the discrete system





MF1 = dxx
c
1 + dyx

c
2

MA = ex
xc
1 + xc

2√
2

(C.13)

C.5 Parameters identification

To sum up, the discrete model, consisting in rigid squares and rectangular beams,
is fully determined through

– Ac and Ar, the respective side lengths of the corner and resonator squares
– L, b and h, the dimensions of the “side” beams
– l, the length of the pendulum
– kr, the pendulum’s stiffness
– dx and dy, beam’s attachment point coordinates for C
– ex, defined previously

As we obviously take the titanium alloy’s density to compute kinetic energy. Some
parameters, through simple geometrical considerations, can easily and certainly
determined. Let’s assume

Ar =
a

2
− ep − eg −

eg
2

and Ac =
a− lp − eg

2
(C.14)

dy =
ep
2

(C.15)

b = ep (beam’s width) and h = e (beam’s height) (C.16)
The remaining parametersL, dx, ex and kr will be determined throughmechanical,
via both static or modal approaches.
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Beam’s geometry

Let’s consider the beam under the bending load F , one can easily get the extremal
displacement δu

δu =
4l3

b3hE
F (C.17)

so
l =

3

√
δuhE

4F
b, N.A. : l = 9, 2 · 10−3 m (C.18)

Geometric considerations give

dx = a/2− l (C.19)

C.6 Pendulum’s parameters

A beingR’s center of rotation, we have

∀M ∈ R, ⟨AM, u̇M∈R/C⟩ = 0 (C.20)

Considering symmetries, A belongs to [MG]. Given any other point outside [MG]

and its speed’s direction, one can eventually get

ex ≈ 1, 0587 · 10−3 m (C.21)

Geometric considerations allow to determine l through

l =
√
2(ep + eg +Ar/2)− ex (C.22)

Pendulum’s stiffness kr and mass mr

The stiffness kr can be easily found by a static equilibrium of the pendulum under
a load F compatible with the system, e.g. one orthogonal to the pendulum. We
have then

FL = krδθr (C.23)
At the first order, we have

δθr ≈
δu

L
(C.24)

An FE model gives, for F = 1 N (small enough to have a “small” angle)

kr = 1.52 N.m (C.25)

Assuming θc = 0, Lagrange’s equation for θr is

mrL
2θ̈r + kr(θr − π/4) = 0 (C.26)
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Its first mode (and the only one that can describe the model) lies at

ωr =

√
kr

L
√
mr

(C.27)

The theoretical ωr has been computed by a classical finite-element approach via
Comsol Multiphysics®.

mr =
kr
L2ω2

r

= 3.1648 · 10−4 kg (C.28)

It is interesting to compare it to theoretical mass of the resonator
mth

r = ρtA
2
re = 3, 74 · 10−4 kg > mr (C.29)

Which seems perfectly normal, as the kinetic energy of the discrete model should
be great that the one of the real system. Accordingly, we modify Ar by

Ar =

√
mr

ρte
= 8, 48 · 10−3 m (C.30)

Figure C.3: Resonance mode of the pendulum

C.7 Writing the equations

By scalability, the Lagrangian of the whole system is

L =
∑

i

Li where Li = Ti −Wi − Pi for each element of the system (C.31)
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The generalized coordinates are q = (x1, y1, θc1, ..., xn, yn, θcn, θr1, ..., θrm)T where
(xi, yi) is the displacement around its equilibrium position ofMi ∈ Ci of the i-th of
the n corners and θci its rotation, θri the rotation of the i-th of them resonatorsRi.
The system respects the Principle of Least Action, whichmeans that qminimise the
action ∫ t2

t1

L(q, q̇)dt (C.32)

Leading to the n+m Lagrange’s equations

d

dt

∂L

∂q̇i
− ∂L

∂qi
= Qi , i ∈ J1, n+mK (C.33)

Where Qi is the generalized force defined by

Qi =
∂P ∗

∂q∗i
where P ∗ = {F} ⊗ {V ∗} (C.34)

C.8 Linearization

As the previous system is a set of non-linear second order ordinary differential
equations, its is not possible, in the usual sense, to compute the frequency response
function of the system (FRF) in order to compare it to the other simulations. As the
displacement field induced by the piezoelectric patches remains very low, we can
legitimately linearize the system around its equilibrium position. Two approaches
are possible, both leading to the same linear system:

– manipulate the Lagrange’s equations
– build the mass and stiffness fromK andW

While the first technique expects some dexterity, by

– make a first order Taylor’s development on non-linear qi-depending terms
– neglect quadratic and higher orders terms (like q2i or qiq̇j)

For every Li equation, the second directly gives

Mq̈+Kq = F (C.35)

with
Mij =

∂2K

∂q̇i∂q̇j

∣∣∣∣
q=q0

, Kij =
∂2W

∂qi∂qj

∣∣∣∣
q=q0

and Fi =
∂P

∂qi

∣∣∣∣
q=q0

(C.36)
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