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“Robots may never replace the human touch, but they sure can learn from it.”
–
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RÉSUMÉ

Cette thèse porte sur le développement et la mise en œuvre d’une approche méthodolo-
gique et générique pour l’apprentissage par démonstration, visant spécifiquement à en-
seigner aux robots comment résoudre des tâches de manipulation en observant un expert
humain. Les démonstrations fournissent un aperçu et des indications sur la façon de
résoudre une tâche donnée. L’apprentissage de représentation est utilisé pour extraire
les caractéristiques pertinentes de la tâche à partir des démonstrations et, en utilisant
l’apprentissage par renforcement, l’agent-imitateur peut explorer l’environnement et ac-
quérir des connaissances par essais et erreurs, ce qui conduit à un comportement plus
efficace.

Notre recherche a commencé par une étude visant à explorer l’impact d’entrées bruitées
sur l’entraînement des algorithmes d’apprentissage par renforcement et la capacité des
politiques résultantes à être transférées de la simulation à un environnement réel en util-
isant un bras robotique industriel UR10e. Ces entrées bruitées se produisent pendant le
processus de collecte des données sensorielles dont le robot a besoin pour prendre des
décisions et interagir avec l’environnement.

Le reste de notre recherche était centré sur l’apprentissage par imitation, comprenant
une revue bibliographique des approches d’apprentissage par démonstration, suivie de la
mise en œuvre de la methode de l’état de l’art "Generative Adversarial Imitation Learning"
(GAIL), une méthode de pointe, pour résoudre une tâche de manipulation en utilisant
des démonstrations au lieu d’une fonction de récompense prédéfinie et spécifique à la
tâche. Nos résultats ont mis en évidence les biais de récompense inhérents qui entravent
l’apprentissage, comme noté dans des recherches antérieures, et ont proposé un ajustement
pour résoudre ce problème et en améliorer la convergence.

Enfin, nous avons développé une approche nouvelle, modulaire et générique qui résout
le problème de l’apprentissage par imitation en deux phases. La première phase consiste
à apprendre un modèle de représentation qui capture les caractéristiques spatiales et
temporelles des démonstrations observées, et la deuxième phase utilise un algorithme RL
prêt à l’emploi avec une fonction de récompense générique prédéfinie pour apprendre
la politique d’imitation. Le modèle de représentation utilise des graphes et des réseaux
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de neurones "GNN" pour l’apprentissage de représentations spatiales et la modélisation
séquentielle (Seq2Seq) pour l’apprentissage de caractéristiques temporelles. Les résultats
montrent que notre méthode est plus performante que les méthodes de l’état de l’art dans
la résolution d’une tâche de manipulation et qu’elle s’applique efficacement au monde
réel. En outre, notre approche présente des capacités de généralisation prometteuses pour
diverses tâches de manipulation, surpassant les méthodes génératives dans la plupart des
cas.
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ABSTRACT

The focus of this thesis is on the development and implementation of a methodologi-
cal and generic framework for learning from demonstrations (LfD), specifically aimed at
teaching robots to solve manipulation tasks by observing a human expert. Demonstra-
tions provide insight and guidance on how to solve a given task. Representation Learning
is used to extract the task-relevant features from demonstrations. And by employing Re-
inforcement Learning (RL), the imitator-agent can explore the environment and acquire
knowledge through trial and error, leading to more effective behaviour.

Our research began by conducting a study to explore the impact of noisy inputs on the
RL training and how well the resulting policies transfer from simulation to a real-world
setup using a UR10e industrial robotic arm. These noisy inputs occur during the process
of gathering the required sensory data for the robot to make decisions and interact with
the environment.

The remainder of our research was centred on imitation learning, including a literature
review of Learning from Demonstration approaches, followed by the implementation of
Generative Adversarial Imitation Learning (GAIL), a state-of-the-art method, to solve
our use case task using demonstrations instead of a predefined and task-specific reward
function. Our findings highlighted the inherent reward biases that hinder learning, as
noted in previous research, and proposed an adjustment to address this issue and improve
convergence.

Finally, we developed a novel, modular, and generic framework that solves the imi-
tation learning problem in two phases. The first phase involves learning a representation
model that captures the spatial and temporal features of the observed demonstrations, and
the second phase uses an off-the-shelf RL algorithm with a predefined task-agnostic reward
function to learn the imitation policy. The representation model utilises graphs and Graph
Neural Networks for learning spatial embeddings and Sequence-to-Sequence modelling for
learning temporal features. The results show that our method outperforms state-of-the-art
methods in solving a pushing task and effectively transfers to the real-world. Moreover,
our approach exhibits promising generalisation abilities in various manipulation tasks,
surpassing generative methods in most cases.
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INTRODUCTION
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1.1 Motivation

Robotics has become an essential part of modern industry, with a wide range of
applications in various sectors such as healthcare, agriculture, and manufacturing. One
of the most significant advantages of employing robots is the automation of repetitive,
monotonous, and unsafe tasks that workers are often required to perform. This not only
increases efficiency, but also minimises labour costs. Additionally, robots are more reliable
and accurate than humans, as they do not experience distractions or fatigue.

The supply of affordable and efficient robots is driving the expansion of the worldwide
robotics market. The market demand for the advancement of robotics has grown expo-
nentially in recent years, with a projected market size of $189.36 billion by 2027 1. As
robotics becomes more prevalent across various industries, the need to enhance robotics
controllers’ sophistication and flexibility is imperative to ensure they meet the diverse
needs of these applications.

The hardware side of robots has been developed to reach sophisticated capabilities
enabling them to perform complex tasks with high precision. Additionally, the recent
breakthroughs in computer vision have been instrumental in empowering robots with
perception systems that enable autonomous navigation and interaction with their sur-
roundings. Despite these advances, flexibility in programming robots is still a challenge.
Robots can perform highly precise and repeatable tasks, but they are limited in their

1. https://www.alliedmarketresearch.com/robotics-technology-market
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ability to adapt to new situations or tasks that require human-like dexterity. As a result,
the development of more flexible and adaptable robotics controllers remains crucial.

Machine Learning (ML) has brought about significant advances in building intelligent
systems. By leveraging ML for robotics, it is now possible to create intelligent controllers
that can adapt to various tasks and environments, reducing the manual effort required to
program robots. This presents a tremendous opportunity for businesses and organisations,
particularly those that are low to medium in size, to automate their processes and increase
efficiency while reducing programming costs.

Traditionally, programming a robot requires a programmer to write explicit instruc-
tions for the robot to follow. This involves manually specifying every movement, action,
and decision that the robot should make. However, with ML, it is possible to teach a robot
how to perform tasks on its own, without explicit instructions from a programmer. This is
achieved by using ML algorithms to train robots to process and extract patterns in their
surroundings to take decisions towards solving a given task. Two primary approaches to
this are Reinforcement Learning (RL) and Imitation Learning (IL).

Reinforcement Learning enables robots to acquire behavioural skills from their own
experience, similar to how humans learn through trial and error. The robot receives a
feedback from a pre-defined reward function, which evaluates its actions with respect to
the task at hand. The robot’s behaviour is adjusted towards maximising the rewards it re-
ceives. Imitation Learning, on the other hand, involves learning from an expert behaviour.
The expert provides demonstrations of how the task is solved, then, a control policy is
trained to solve the task in similar situations present in the demonstrations.

Reinforcement Learning and Imitation Learning each come with their own set of chal-
lenges. RL requires significant effort and time in designing a reward function that accu-
rately represents the task, while IL struggles with generalising to new situations that were
not present in the initial demonstrations dataset, and needs access to state-action pairs
for good performance. Combining both approaches can help overcome these challenges
and provide a more robust learning system for robots by leveraging their complementary
strengths. In this thesis we study both approaches and combine them in a generic and
modular framework that can be used for learning control policies using state-only demon-
strations to guide the learning process while allowing the robot to interact and explore
the environment by using Reinforcement Learning.
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Figure 1.1 – Illustration of the complementary relationship between our thesis and the
scene analysis thesis in developing a framework for visual imitation learning.

1.2 Context and Objectives

The CEA 2, in collaboration with the LS2N laboratory 3, has embarked on a research
project to create and develop a general and flexible framework for autonomous robots to
learn manipulation tasks through observing demonstrations provided by a human expert.
The goal is to develop a solution that is applicable to a wide range of robotic tasks and can
learn from visual demonstrations. This solution should be adaptable to fit into a robotic
platform that includes an industrial robot equipped with a vision system to observe the
expert’s demonstrations and navigate the environment.

To achieve this goal, the research work has been divided into two PhD theses, as
depicted in Fig. 1.1, with each thesis focusing on different aspects of analysing and learning
from demonstrations. The first thesis is centred on utilising computer vision and deep
learning to analyse the surroundings of a human expert demonstrating a given task and
identify the relevant objects in the scene and the observed actions.

The second thesis, which is the focus of this research, aims to develop an approach for

2. https://www.cea.fr/english
3. https://www.ls2n.fr/?lang=en
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learning control policies for autonomous agents from state-only demonstrations provided
by an expert. A control policy is a decision-making process used to determine an agent’s
actions in response to the inputs coming from its environment. State-only demonstrations
refer to the case where demonstrations are a sequence of states or observations, without
explicit knowledge of the actions that led to those states/observations. Learning from
Demonstrations is combined with Reinforcement learning to exploit the strengths of both
for learning behavioural skills. Specifically, the thesis aims to create a modular and generic
approach for this purpose.

Modularity is a design concept that breaks down an approach into interchangeable
components, or modules, that can be assembled in various configurations to solve different
tasks. This adaptability allows the approach to be tailored to a variety of scenarios without
the need for extensive redevelopment. Generality, in this context, refers to the approach
being flexible enough to be effective across a wide range of tasks.

1.3 Outline of the Dissertation

The chapters in this thesis are interconnected, as depicted in Fig. 1.2.
Chapter 2 is dedicated to presenting the fundamental concepts that are necessary

for understanding Reinforcement Learning problem and algorithms. It also highlights the
state-of-the-art methods which will be used in the subsequent chapters.

In Chapter 3, we explore the use of simulation-based training of Reinforcement Learn-
ing policies for real-world applications. The research investigates the influence of noisy
inputs on the performance of different RL algorithms in solving a pushing task. Addition-
ally, we deploy the obtained policies in a real-world setting with the UR10e robot, using
a Motion Capture (MoCap) system and vision sensor to localise objects in the scene. The
results suggest that transferring policies from simulation to real world scenarios can be
effective with the introduction of optimal levels of input noise during training.

Chapter 4 provides a taxonomy of various Imitation Learning methods, with an em-
phasis on Imitation from Observation where actions are not observable in demonstrations.
Among the approaches discussed, the Generative Adversarial Imitation Learning method
was selected for its efficiency in using fewer demonstrations and leveraging Reinforcement
Learning to improve generalisation.

Chapter 5 takes a deep dive into the workings of Generative Adversarial approaches,
analysing the effects of the discriminator reward choice on training performance and pro-
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viding a remedy to the reward bias issue. In order to address the stability of training and
improve performance, rather than learning directly from demonstrations as in generative
methods, we propose an alternative solution by advocating for a two-stage process in
which a representation model is first trained to capture spatial and temporal patterns
in demonstrations, followed by leveraging this model to train the control policy for a
behaviour with similar patterns.

In Chapter 6, we introduce a representation pipeline that extracts both spatial and
temporal features from demonstrations. To accomplish this, we use graphs to model the
scene and Graph Neural Networks to extract spatial features. Additionally, we utilise
LSTM and Transformer networks to capture temporal features that relate to how the
graphs evolve over time within demonstrations. The representation model is trained to
predict the trajectory of the expert based on previous observations.

Chapter 7 introduces an approach that employs the predictive model trained on
demonstrations to learn the imitation policy by trial and error using a task-agnostic
reward function and an out-of-the-shelf Reinforcement Learning algorithm. Proof of con-
cept experiments were carried out on a pushing task with results comparing favourably
to the state-of-the-art methods, including Generative methods.

Chapter 8 evaluates the generalisation potential of our Imitation Learning from Ob-
servation framework on various robotic manipulation tasks, utilising a different robot and
simulator than those used in the pushing task. The findings suggest that our approach
has promising generalisation capabilities, indicating potential practical uses. Finally, in
Chapter 9, we present a conclusion and recommendations for future research.
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2.1 Introduction

This chapter presents the fundamentals of Reinforcement Learning and provides a
comprehensive overview of the different classifications of different algorithms. Popular
Reinforcement Learning algorithms utilised in challenging domains such as robotics, in-
cluding PPO, DDPG, TD3 and SAC, are introduced and discussed. These algorithms will
be incorporated in our study in the subsequent chapter.
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2.2 Preliminaries

Reinforcement Learning (RL) is a class of machine learning that is geared towards
sequential decision making problems [1] [2]. A behavioural policy is learnt by trial and
error through the interaction with the environment. RL enables an agent to make a series
of decisions in order to maximise a reward. At each time-step t, a decision-maker called
the agent receives the state st of the environment and selects an action at based on its
current policy. Upon execution of the chosen action, the environment transitions to a
new state st+1 and returns a reward rt+1. The agent’s policy is improved by utilising the
knowledge of the state transitions, in the form of (st, at, st+1, rt+1) tuple, and maximising
the cumulative rewards received throughout each episode. This process is illustrated in
Fig.2.1.

More formally, RL problems are defined using Markov Decision Process (MDP) for-
mulation.

𝑅
𝑡+

1

𝑠 𝑡
+
1

State 𝑠𝑡

AGENTENVIRONMENT

Reward 𝒓𝒕

Action 𝑎𝑡

Maximize

෍

𝒌=𝟎

∞

𝒓𝒕+𝒌
𝑃𝑜𝑙𝑖𝑐𝑦 (𝜋)

𝑅
𝑡+

1

𝑠 𝑡
+
1

Figure 2.1 – The agent-environment interaction in Reinforcement Learning. The agent
can be an animal, a game player, a control system etc., interacting with an environment
and able to improve its behaviour

2.2.1 Markov Decision Process

A Markov Decision Process (MDP) consists of defining :
— The state s ∈ S ⊂ Rds as all the information that the agent has about the envi-

ronment at a given time-step. S is the state space and ds is its dimensionality.
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— The action a ∈ A ⊂ Rda encodes how the agent can interact with the environment
and it defines the possible moves that can be made. A is the action space and da

is its dimensionality.
— The reward r ∈ R is a feedback evaluating the immediate action of the agent.

Typically, the function generating the rewards is defined by an expert.
— The transition probability P(s′|s, a) = Pr(st+1 = s′|st = s, at = a) which is the

probability that the action a taken in the state s at time t will lead to the state s′.
The goal of the agent is to maximise the sum of rewards received from the environment

in each episode of length T, namely the return R = ∑T
k=0 rk.

To model a system using an MDP, the Markov property should be verified.

The Markov property refers to the consideration that the current state and the taken
action are sufficient to determine the future state regardless of the past. For example, in
the board game Diplomacy 1, the Markovian property is not valid, as the players have
to consider not only the current placement of their pieces on the board, but also past
alliances and conflicts with other players.

2.2.2 Terminology

— State and observation Typically, the state encompasses the information needed
by the agent to undertake an action, while observation comprises the raw informa-
tion available to the agent about the environment. The state is often obtained by
pre-processing the observation to eliminate irrelevant features.

— Action space The action space is the ensemble of the possible actions that can
be executed in the environment of the agent. The action space can be continuous
like commanding the torque or the speed of a robot’s joint, or discrete like choosing
to move one step right or left in the Breakout game from Atari (see Fig.1 in [3]).

— Policy The policy governs the behaviour of the agent. In Deep Reinforcement
Learning, the policy is typically a mapping from states to actions which is repre-
sented as a parametrised function. The policy can be trained either to output, for
a given state, a deterministic action (deterministic policy) or a probability distri-
bution over the possible actions (stochastic policy). RL algorithms can be either
on-policy or off-policy. on-policy methods use the experiences generated by the

1. https://en.wikipedia.org/wiki/Diplomacy_(game)
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current policy to optimise the objective function while off-policy methods exploit
all the history of experiences to update the policy.

— Trajectory A trajectory τ = (s0, a0, s1, a1, s2, a2, ...), also called episode or roll-
out, is the succession of states and the decisions taken by the policy. The initial
state s0 is randomly sampled from a distribution ρ0.

— Return The return R(τ) is the cumulative of all rewards received by the agent
over a trajectory τ .

R(τ) =
T∑

t=0
γtrk γ ∈]0, 1] (2.1)

The discount factor γ is to guarantee the convergence of the sum if the horizon T

is not finite (non-episodic tasks).
— Value function The value function of a policy π computes, for each state s,

the expected cumulative reward starting from the current state s and following the
current policy in future time-steps. It is defined as follows:

Vπ(s) = Eτ∼π(R(τ) | s0 = s) (2.2)

— Action-value function The action-value function of a policy π computes, for
each state s, the expected cumulative reward starting from the current state s and
taking an action a (not necessarily according to the policy), and then operating on
the current policy in future time-steps. It is defined as follows:

Qπ(s, a) = Eτ∼π(R(τ) | s0 = s, a0 = a) (2.3)

The value function and the action-value function are related by the following equa-
tion:

Vπ(s) = Ea∼π(Qπ(s, a)) (2.4)

— Advantage function The advantage function provides an estimate of the rela-
tive advantage of choosing an action a in a given state s compared to other actions
that the agent could take in the state s. It is defined as the difference between the
action-value function and the value function:

Aπ(s, a) = Qπ(s, a)− Vπ(s) (2.5)
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The optimal value function and the optimal action-value function are obtained by
finding the policy that maximises the expected reward:

V ∗(s) = max
π

Vπ(s) (2.6)

Q∗(s, a) = max
π

Qπ(s, a) (2.7)

V ∗(s) is the optimal value for a given state s and for any action a. Q∗(s, a) is the
optimal value for a given pair of state s and action a. Hence, for a given state s, computing
the max of Q∗ over all possible actions results in V ∗(s):

V ∗(s) = max
a

Q∗(s, a) (2.8)

2.2.3 Bellman Equations

The Bellman equations express the correlation between the value of the current state
and that of potential future states.

The Bellman expectation equations are expressed as:

Vπ(s) = Ea∼π,s′∼P [r(s, a, s′) + γVπ(s′)] (2.9)

Qπ(s, a) = Es′∼P [r(s, a, s′) + γEa′∼π [Qπ(s′, a′)]] (2.10)

And the optimality functions are expressed as:

V ∗(s) = max
a∼π

Es′∼P [r(s, a, s′) + γV ∗(s′)] (2.11)

Q∗(s, a) = Es′∼P

[
r(s, a, s′) + γ max

a′∼π
Qπ(s′, a′)

]
(2.12)

2.3 Model-based vs Model-free

Model-based Reinforcement Learning involves finding an approximate model to the
environment’s dynamics [4–6]. The environment model is then used as a simulator to
predict the outcome of actions. The agent evaluates different actions and plans ahead to
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choose the best sequence of actions. This provides the advantage of learning with less in-
teractions with the environment than the model-free approach, however, constructing and
maintaining an accurate enough environment’s model demands more computing resources
[4].

Model-free Reinforcement Learning, on the other hand, learns a policy directly by
trial and error without prior knowledge about the underlying transition dynamics model
of the environment [7]. The model-free approach has a simpler computation process and
can converge to a high asymptotic performance than the model-based approach, yet it
requires substantial amount of data to converge, which makes it sample inefficient [4].

2.4 Exploration vs Exploitation

Exploration in Reinforcement Learning entails collecting new (i.e. previously unseen)
information about the environment in order to gain a broader knowledge of the possible
outcomes of different actions and the associated rewards. Insufficient exploration could
result in the agent being trapped in a suboptimal behaviour. Exploitation, in contrast,
uses information already accumulated from previous experiences in the environment to
select the best policy that produces the action with the highest expected cumulative
reward.

Finding the right trade-off between exploration and exploitation is a fundamental
challenge in reinforcement learning. At each time-step of interacting with the environment,
the agent has to decide whether to explore new possibilities or exploit the current best
policy that maximises known rewards. In order to find the optimal policy, the agent must
reconcile these two opposing objectives by finding a balance between them. The following
are some of the exploration strategies proposed in the literature:

— Epsilon-greedy: The RL algorithm chooses a random action with probability ϵ and
selects the action with the highest expected reward with probability 1− ϵ [1]. The
value of ϵ can be maintained fixed, or gradually decreased throughout the training.

— Intrinsic motivation: The agent is internally rewarded for exploring novel and un-
usual regions of the environment [8].

— Noise-based Exploration: A random noise is added to the process of actions selec-
tion. This helps the policy to escape local optima [9].

— Maximise the entropy of the policy: The agent is encouraged to explore actions with
high uncertainty and therefore gain more information about the environment [10].

12
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2.5 Value-based vs. Policy-search

2.5.1 Value-based

Value-based methods, also referred to as critic-only methods, seek to estimate and
optimise the state value function or the state-action value function. Then, the policy is
derived by following the actions with the highest estimated values.

One popular value-based method is Deep Q-Learning [3]. It uses a deep neural network
to approximate the Q-function (Eq.2.3), which allows handling large finite environments
and continuous state spaces.

The neural network takes as input the state of the environment and outputs the Q-
values for all possible actions. The key properties of the Deep Q-Learning algorithm are:

— Previous experiences are stored as tuples of the form (st, at, rt, st+1) in a replay
buffer. The algorithm then samples batches from the buffer to update the Q neural
network. This allows to mitigate the problem of correlation between consecutive
transitions in trajectories.

— A separate network (called the target network) is used besides the main network
that represents the Q value, to calculate the target y = r(s, a, s′)+γ maxa′∼π Qπ(s′, a′)
in the Bellman equation Eq. 2.12. The target network has the same architecture
as the main network and its weights are updated less frequently. This make the
Q-values more stable.

2.5.2 Policy-search

Policy-search methods, also referred to as actor-only methods, seek to learn a pol-
icy directly instead of learning the value or the value-action function. The policy πθ is
parametrised with θ and trained to maximise the expected return J(θ) following πθ:

J(θ) = Vπθ
(s0) = Eτ∼π(R(τ)) (2.13)

The policy is evaluated by performing rollouts following the current policy and calcu-
lating rewards. The parameters of the policy are then updated in the direction of increasing
J(θ):

θk+1 = θk + α∇θJ (2.14)

The way the gradient is formulated and evaluated gives rise to a wide variety of policy
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search approaches [11], most of which are based on the vanilla REINFORCE algorithm
[12].

Policy-search methods have better convergence and stability properties than value-
based methods [13]. Because the policy is typically represented as a probability distribu-
tion over actions, it can adjust the parameters smoothly and thus result in more stability.
Furthermore, policy-search methods are compatible with continuous action spaces without
the need to be discretised as in value-based methods. The main drawback of policy-search
methods is their sample-inefficiency compared to value-based methods.

2.5.3 Actor-Critic

Actor-Critic methods combine both value-based and policy-search approaches to find
the optimal policy. The agent follows an actor (i.e. the policy) that decides which actions
to take, while the value function serves as the critic that evaluates those actions. The goal
of the actor-critic approach is to update both the critic and the actor so that the actions
taken by the agent yield the maximum expected reward.

Integrating the value function from value-based approaches and policy optimisation
from policy-search approaches leads to faster convergence, enhanced stability in learn-
ing, and better handling of high-dimensional and continuous action spaces compared to
pure value-based or policy-search methods. This has made this class of methods perform
exceptionally well in complex and high-dimensional domains such as video games [14], au-
tonomous driving [15] and robotics [16]. The next section delves into the specifics of the
most frequently used actor-critic algorithms in the literature, which have demonstrated
remarkable performance. These algorithms are used in our study in the next chapter.

2.6 Algorithms

2.6.1 Proximal Policy Optimisation (PPO)

PPO [17] is an on-policy method that follows the actor-critic architecture. The critic
is a value function Vw(st) that outputs the mean expected reward in state st, used to
compute the advantage function At(s, a):

At(s, a) = rt + γrt+1 + ... + γT −t+1rT −1 + γT −tVw(sT )− Vw(st) (2.15)
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The actor learns a stochastic policy πθ(at|st) that maps states with Gaussian distri-
butions over actions. PPO is a simplified version of the trust-region policy optimisation
(TRPO) algorithm [18]. The intuition behind trust-region based algorithms is that, policy
updates must keep the output distribution close to the current distribution. PPO follows
the same logic and optimises the policy to improve performance while ensuring that it
does not deviate excessively from the preceding policy. This is achieved by optimising
a surrogate objective that is defined as the ratio of the updated policy to the previous
policy, multiplied by the advantage function.

L(θ) = Es,a∼πθold

[
πθ(a|s)

πθold
(a|s)Aπθold(s, a)

]
(2.16)

In the literature the ratio between the updated and previous policy is denoted as: rt =
πθ(a|s)

πθold
(a|s) . During policy updates, the direction of the policy gradient is determined by the

advantage. If the advantage is positive, the policy gradient is reinforced in that direction,
indicating that the action taken is superior to the average. Conversely, if the advantage
is negative, the gradient is pushed in the opposite direction.

Unrestrained optimisation of the loss function L(θ) could result in substantial changes
to the policy during each training step. To prevent this, two versions of PPO – PPO-
Penalty and PPO-Clip – can be utilised to ensure that the updated policy remains close
to the previous policy.

— PPO-Penalty: maximises the following unconstrained objective with penalising
the Kullback-Leibler (KL) divergence between the old and updated policies:

LKL(θ) = Es,a∼πθold

[
rt(θ)Aπθold(s, a)− αkDKL[πθ||πθold

]
]

(2.17)

Where αk is an adaptive KL penalty coefficient that ensures πθ remains close to
πθold

.
— PPO-Clip: utilises a "clipping" process to prevent the policy optimisation from

drifting too far from the preceding policy:

LClip(θ) = Es,a∼πθold

[
min

(
rt(θ)Aπθold(s, a), clip

(
rt(θ), 1− ϵ, 1 + ϵ

)
Aπθold(s, a)

)]
(2.18)

Where ϵ is a hyperparameter that determines the range of changes that the policy
is allowed to make, and clip() is a function that reduces the value of rt(θ) to the
range [1− ϵ, 1 + ϵ]
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2.6.2 Deep Deterministic Policy Gradient (DDPG)

DDPG [9] is an off-policy and actor-critic method. The critic is represented by the
action-value function Q(s, a) and is trained as in deep Q-network (DQN) [3]. The policy
(actor) is trained with the guidance of the critic. As in DQN, the experience replay is used
to break the temporal correlation of data points while training, and target networks are
used to ensure stability in the training.

— Critic update: The critic is parametrised by a neural network with parameters θ

and is updated based on the Bellman equation Eq. 2.12 by minimising the following
loss function:

L(θ) = E
[(

yt −Qθ(st, at)
)2
]

(2.19)

With,
yt = r(st, at) + γQθ′

(
st+1, πϕ′(st+1)

)
Where Qθ′ and πϕ′ refer to the target networks of the critic and the policy with
weights θ′ and ϕ′ respectively.

— Actor update: The actor (i.e. policy) is updated in the direction that improves
Qθ(s, a) the most by solving the following equation:

J(ϕ) = max
ϕ

E
[
Qθ

(
s, πϕ(s)

)]
(2.20)

This is achieved by taking a step of gradient ascent:

∇J(ϕ) = E
[
∇aQθ(s, πϕ(s))

]
= E

[
∇aQθ(s, a)|s=st,a=π(st)∇ϕπϕ(s)|s=st

] (2.21)

Since the policy is deterministic, noise is added to actions to enhance exploration.
Gaussian noise and Ornstein-Uhlenbeck noise are commonly used in the literature [9].
Another option is to introduce noise into the parameters of the neural network [19].

2.6.3 Twin delayed DDPG (TD3)

While DDPG has shown great performance in many applications, it suffers sensitivity
of the performance with regard to the hyperparameters [20]. A common failure mode is
caused by the Q-values being overestimated, which results in high variance in the policy
gradient estimates and hinders policy convergence. TD3 [20] improves upon DDPG by
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incorporating the following key properties:
— Two separate Q-networks are used, Q1 and Q2, to reduce the overestimation of the

Q-values. The minimum output of the two networks is used to compute the target
in the Bellman loss functions:

yt = r(st, at) + γ min
(

Qθ′
1

(
st+1, πϕ′(st+1)

)
, Qθ′

2

(
st+1, πϕ′(st+1)

))
(2.22)

And then the two Q-networks are updates using the same target yt:

L(θ1) = E
[(

yt −Qθ1(st, at)
)2
]

(2.23)

L(θ2) = E
[(

yt −Qθ2(st, at)
)2
]

(2.24)

— The target policy is smoothened by adding a small random noise, ϵ, to the target
action values, which acts as a regularizer and enhances exploration and stability.
The target action is calculated as:

a′(s) = clip
(
π′(s′) + ϵ, alow, ahigh

)
(2.25)

Where alow and ahigh define the valid range for action values.
— Similar to DDPG, the policy network, π, is updated to maximise Q (it can be

either Q1 or Q2):

max
ϕ

E
[
Qθ

(
s, πϕ(s)

)]
(2.26)

Unlike DDPG, the policy updates occur less frequently than the updates to the Q-
network, which enhances the training stability. The update for the policy network
is performed every k update steps of the Q-network, where k is a hyperparameter
specified as k = 2 in the original paper.

2.6.4 Soft Actor Critic (SAC)

SAC [10] is an actor-critic algorithm that incorporates entropy-regularisation in the
training process. It is a method that uses a stochastic policy to generate actions, rather
than a deterministic policy as in DDPG and TD3. The objective function to maximise is
composed of the expected cumulative reward and the entropy of the policy. The entropy of
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Algorithm Architecture Policy update Supported action space Exploration strategy
DQN [3] Value-based Off-Policy Discrete ϵ− greedy
REINFORCE [12] Policy-search On-Policy Discrete & Continuous Train a stochastic policy
PPO [17] Actor-Critic On-Policy Discrete & Continuous Train a stochastic policy
DDPG [9] Actor-Critic Off-Policy Continuous Add noise to actions
TD3 [20] Actor-Critic Off-Policy Continuous Add noise to actions
SAC [21] Actor-Critic Off-Policy Continuous Maximise the entropy of the policy

Table 2.1 – Summary of the characteristics of RL algorithms mentioned in this chapter.

the policy reflects its level of randomness, and by promoting its maximisation, the agent
is incentivised to explore a wide region of the environment. The policy objective function
is given as:

J(π) = max
π

E
[

T∑
t=0

(
rt + αH

(
πϕ(.|st)

)]
(2.27)

Where α is a hyperparameter that controls the importance of the entropy of the policy
with regard to the reward and ϕ are the policy’s parameters. The action-value function is
modified as well to include the entropy term as follows:

Qπ(s, a) = Eτ∼π

[
T∑

t=0
γtrt + α

T∑
t=1

γtH
(
πϕ(.|st)

)
| s0 = s, a0 = a

]
(2.28)

SAC learns two Q-functions Qθ1 and Qθ2 similarly to TD3 along with the policy πϕ.

2.7 Summary

Reinforcement Learning was the focus of this chapter, which presents its basic con-
cepts, classifications and the state-of-the-art algorithms. RL trains agents by trial and
error through taking actions, observing the outcome and adjusting their behaviours. The
chapter provided an overview of the three major types of RL methods, namely value-
based, policy-search, and actor-critic. The chapter also introduced state of the art RL
methods, summarised in Table 2.1, including PPO, TD3, and SAC algorithms that will
be tested for their robustness to noisy inputs and their effectiveness in transferring from
simulation to real-world environments.
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3.1 Introduction

Recent advancements in deep reinforcement learning (DRL) have yielded promising re-
sults in robotics, enabling the creation of high-performance controllers for complex tasks.
Deep RL has been deployed to solve various tasks including manipulation tasks [22–26],
locomotion [9] [27], navigation [28–31] and autonomous driving [15] [32, 33]. Yet, it is
still challenging to train policies for deployment on real robots. Real-world applications
are fraught with challenges associated with various sources of uncertainty. It is there-
fore challenging to achieve the same level of performance as in simulation. One source of
uncertainty is the noise coming from sensors. In robotics, manipulation tasks in particu-
lar require knowledge of objects location. Camera sensors are commonly used to detect,
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recognise and determine the location of objects in the 3D workspace [34, 35]. Hence, the
accuracy of such an estimation is tied to the processing pipeline from pixels to the 3D
location.

A typical vision system consists of two steps: the acquisition of image frames and
performing analysis and recognition. The first step is characterised by numerous noise
sources and are extensively investigated in the literature [36–38]. In this chapter, we are
particularly interested in the noise arising from the transformation from image coordinates
to 3D coordinates.

Mapping the 3D world coordinates of an object to 2D image pixels space is a common
issue in computer vision [39]. When the object is located in the field of view of the camera
sensor, it appears in the image frame as a block of pixels. The correspondence between the
two spaces is obtained using the camera projection matrix. The projection matrix is formed
from both intrinsic parameters which refer to the geometric and optical characteristics
of the camera, and extrinsic parameters that determine the 3D location of the camera
including the position and orientation with respect to the world coordinate system. The
mapping from 3D world coordinates to the image plane is achieved, on one hand, by
transforming the 3D coordinates into camera coordinates using the extrinsic parameters,
and on the other hand, the intrinsic parameters transform the camera coordinates into
the 2D image space.

The uncertainty in localisation estimation stems from different sources of noise. First,
there is the quantization induced by the resolution of the camera, and whether the target
object is in or out of focus. For a given camera resolution, the representation of an object
in the pixel space depends on the distance between the camera and the object [39]. The
more distant the object is from the camera lens, the fewer pixels are assigned to it in
the image plane, and the more likely it is that the pixels belonging to the object will be
erroneously estimated, and thus information about the object will be lost. Defocusing, on
the other hand, causes the object to span a wider range of pixels, propagating noise to
neighbouring pixels. When the object is out of focus, the intensity of pixels blurs, so we
lose information about the shape and edges of the object, which makes it quite difficult
to correctly estimate its position. External factors such as scene lighting conditions and
occlusion can also be a source of noise in object position estimation.

In this chapter, we conduct an experimental study examining how noisy object location
estimation affects Reinforcement Learning training and we examine whether the policies
trained with a noisy estimation of object locations help overcome the issue of sensors noise
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when simulation policies are transferred to the real-world.

3.2 Sim-to-Real Gap

Simulation environments have been the most effective solution for gathering substan-
tial amount of data needed for training deep reinforcement learning models. This yields
a rich source of data and also saves real robots from being exposed to unsafe exploration
policies. Yet, deploying policies from simulation to the real world has been challenging
due to the mismatch between the two domains. Mismatches arise from sensing, actuation,
and environment dynamics [40].

The most popular sim-to-real approach is domain randomisation [41]. It narrows the
reality gap by exploiting enriched variations of simulation settings during training. Instead
of building a simulation environment with parameters close to the realistic environment,
the parameters of the simulation are randomised to cover the data distribution of the
real world. This technique has been used for visual domain randomisation and dynamics
randomisation [41–43]. The former is utilised in training vision-based models to deliver
sufficient variability in simulation to generalise to real visual inputs when deployed to
the real-world. The latter is used to learn controllers robust to dynamics uncertainty. It
involves varying physical parameters such as robot link masses, damping of robot joints,
surface friction coefficients, etc.

In this chapter, we are particularly interested in the gap between simulation and reality
that is induced by the noise inherent to physical localisation systems that is generally not
taken into account in most simulators. In simulation, object localisation is straightforward
and accurate, whereas object localisation in the real world is affected by various sources
of noise, making it difficult to estimate object positions as accurately as in simulation.

3.3 Problem Formulation

We formulate a pushing task as a sequential decision-making problem and solve it using
RL. The objective is to figure out the optimal sequence of actions to push an object to a
random target location. The decision process is modelled using Markov Decision Process
(MDP). At each time-step t, the controller receives the state st from the environment
and executes an action based on its current policy. After the action is executed, the
environment performs a one-step transition, delivering the next state st+1 along with a
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reward rt. In this work we focus on engineering the following signals:
— State (st): The state encloses all the information the robot needs from the envi-

ronment at a given time-step.
— Action (at): An action encodes how the agent can interact with the environment

and it defines possible moves that can be taken on the environment.
— Reward (rt): The reward is a feedback evaluating the immediate action of the

agent.
The RL algorithm learns a policy that maps states to actions. Algorithms can be either
on-policy or off-policy. On-policy methods use the experiences generated by the current
policy to optimise the objective function while off-policy methods exploit all the history
of experiences to update the policy.

In this work, we use three state of the art RL algorithms, PPO [17], TD3 [20] and
SAC [10] which were introduced in Chapter 2, Section 2.6. The three methods are used
to solve the pushing task with noisy estimation of the location of the object to push. The
following is a brief summary of the key properties of each algorithm.

— PPO, Proximal Policy Optimization [17], is an on-policy method. It trains stochas-
tic policies by making the greatest step possible towards improving performance
while satisfying a Kullback-Leibler (KL) divergence-based constraint on the close-
ness between current and updated policies.

— TD3, Twin Delayed Deep Deterministic Policy Gradient [20], is an off-policy and
actor-critic method. It learns a deterministic policy, and noise is added to the
actions for exploration. Two Q-functions are learned and the smaller of the two
Q-values is used to train the policy.

— SAC, Soft Actor Critic [10], learns a stochastic policy in an off-policy fashion.
It relies on entropy regularization, where the policy optimises simultaneously the
expected cumulative reward and the entropy, a function that provides an indicator
of the randomness of the policy.

We select the three aforementioned RL methods as they recently have grown increas-
ingly popular for their high performance in solving a variety of robotic tasks in simulation
and real-world [21]. Our choice for these three algorithms is also motivated by the fact
that they differ in the way they perform exploration. PPO initialises a stochastic policy
with high entropy and gradually becomes less random. TD3 injects noise into the action
space. And SAC optimises the entropy of the policy in the objective function.

In this paper we seek to verify the following hypotheses:
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— (H1): We expect the training of the aforementioned algorithms to be negatively
affected by noisy inputs to an extent that depends on the magnitude of the noise.

— (H2): The success rate of the resulting policies is expected to be higher when noise
is minimal compared to when it is substantial.

— (H3): Models trained with noise are more likely to perform well when deployed on
the real-world setup.

3.4 Experimental Setup

We evaluate the performance of RL models trained using two different types of noise
and at multiple noise scales, and we examine the success rate of the obtained policies
after 5M time-steps of training. The architecture of the neural networks as well as the
hyperparameters of the RL model are maintained fixed throughout all the experiments.
We use the implementation and default hyperparameters of the Stable Baselines3 library
[44].

The task we intend to solve requires the robot to push an object towards a target
location. We simulate the noisy inputs by adding uniform or Gaussian noise to the inputs
that are supposed to be estimated using a vision system. In our experiments, the noise is
added to the 2D location of the centroid of the object.

3.4.1 Simulation Environment

We use PyBullet, a python module based on Physics Bullet SDK. Within our scene
shown in Fig. 3.1, we include a target in red, an object to manipulate, the UR10e, a 6
degree of freedom robotic arm that would perform the task, and a board where the object
and target rest.

The elements of the scene are defined by their physics parameters including mass,
friction coefficients, etc. There is no inherent noise in the simulation (the physics simu-
lation in PyBullet is deterministic). At each physics time-step, the environment state is
recomputed and any collisions are recorded.

We want the robot to learn to push an object from a fixed initial position to a random
target area in a minimum number of iterations, relying only on the centroid locations of
objects as input. We conduct experiments by varying only the type and magnitude of
noise added to the inputs that are supposed to be estimated using a vision system.
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Figure 3.1 – The experimental setup on PyBullet simulator (left side) and using a real
robot (right side). All models are trained exclusively in simulation using one of the dis-
played objects, a pepper object or a cube object.

3.4.2 Training

The learning process was performed during a fixed maximal number of time-steps. At
each time-step, the policy generates an action, specifically an elementary displacement
along the x and y axes. An inverse kinematics solver is used to generate the necessary
movements in the joints space of the robot. After executing the action, the new state
of the environment is calculated and a reward signal is given, assessing the optimality
of the action performed by the robotic arm. The task to be learned is episodic. There-
fore in addition to the state and reward, the environment also provides a binary signal
donet = done(st) informing the robot whether the state st is a terminal state. Upon
reaching a terminal state sT at the time-step T, the interaction between the agent and
the environment is concluded and the environment is reset to the initial state. We initialise
each episode by placing the target area at random on the board in front of the object and
the robotic arm. The object is either a cube object or a pepper object (see Fig 3.1), and
it is replaced in front of the gripper of the robot at the beginning of each episode. The
same object is used throughout the entire training phase.
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3.4.3 RL Design Choices

The state consists of a 6 dimensional vector: s = [pg, po, pt] ∈ R6. pg is the gripper’s
2D-position, po is the object’s centroid 2D-position, and pt is the 2D position of the target
area. All the coordinates are expressed in the absolute Cartesian coordinate system. This
codification of the state is low dimensional and allows for faster training.

The action space consists of a 2 dimensional vector: a = (dx, dy) ∈ [−5cm, 5cm]2. At
each time-step the policy gets the state defined above as input and produces displacements
in the 2D Cartesian plane with a maximal move of 5 centimetres in each direction.

The learning process is episodic. The robot has a maximal number T of time-steps
to complete the task. The episode maximal length is T = 150 time-steps. A discrete
time-step is terminal if one of the following conditions is verified:

— The object or gripper is out of the board.
— The maximal length of an episode is reached (t = T ).
— The object has reached the target position.
The reward function is defined as follows: following a transition from st to st+1, we

ascertain if the object has been moved during this transition. If so, we add a positive
reward if the object has been pushed towards the target and a negative reward if it has
been pushed far away from the target. In addition to this, we extend the reward function
with penalties to prevent undesired behaviours. The function that generates rewards is
defined in Eq. 3.1.

rt =



+a× bd(t) if the object is pushed towards target

−a× bd(t−1) if the object is pushed away from the target

+1×RLT if the object has reached the target

−0.1×RLT if the object is out of the board

−0.1×RLT if the gripper is out of the board

−0.1 if none of the above is verified

(3.1)

Where:
— d(t) is the distance between the object and the target at time-step t.
— a and b are parameters that define the magnitude of the recompense given to the

robot if the object is moved during the transition. We selected a = 10 and b = 0.03
so the maximum value is 10, and it converges exponentially to 0 as the object
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moves far away from the target.
— RLT stands for Remaining Life Time and corresponds to the number of time-steps

the robot still has left until the episode is terminated. This term is used in the
reward function to encourage the robot to reach the target in the shortest possible
time and avoid stepping out of the board early in the episode.

3.4.4 Noise model

We aim to introduce uncertainty to the object’s position estimation. Position estima-
tions are presumed to be within a symmetric range. The localisation belief is spread over a
centred square around the ground-truth position. We represent objects by their centroid.
Other properties such as orientation, size, and shape are not given to the training model.
In our experiments, the noise is added to the location of the object while training the
policy. Fig.3.2 depicts how the error in estimating the position in the Cartesian space is
sampled. We randomly sample a scalar that lies within a square centred on the centroid of
the object. Let Np = [c(x, y), noiselevel] be a square that limits the noise added to a given
object with a centroid c(x, y) that has as coordinates x and y. noiselevel is a parameter
that determines the magnitude of noise. The uniform noise is defined as Np = [c(x, y), l]
with l is the length of the square. The Gaussian noise is defined as Np = [c(x, y), σ] with
σ is the standard deviation of the normal distribution, and the length of the Np square
is 6σ. All sampled values that are out of the Np range are rounded to the limit values.

Depending on the pose of the camera with regard to the scene, a more realistic scenario
would involve a noise magnitude that changes with regard to the distance between the
camera lens and the object, as well as the focus of the camera. In this work, we assume a
location of the camera that maintains the same uncertainty in sensor readings regardless
of the working distance of the camera sensor. Such a setting would entail that the camera
orientation is approximately orthogonal to the plane on which the object is located. We
assume that the noise is temporally and spatially independent.

3.5 Results and Discussion

In section 3.5.1, we independently train three algorithms to solve the pushing task with
different scales of noise added to the position of the object and evaluate how it affects the
performance of RL training. All models were trained using four different randomisation
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(a) Uniform noise (b) Gaussian noise

Figure 3.2 – Illustrative diagram showing how the estimation error of the object’s centroid
is sampled for each time-step. The uniform noise is defined with the length l of a square
centred on the centroid of the object. The Gaussian noise is defined with a mean µ = 0
and a standard deviation σ.

seeds. In section 3.5.2, we evaluate the performance of each individual obtained policy in
the same environment and average results across seeds. In section 3.5.3, we deploy the
policies with high performance on a real robot and evaluate their performance.

3.5.1 Training performance

In section 3.3, we plot the average cumulative rewards during the training process of
every 100 consecutive trials. Our experiments were conducted using two different objects,
a simple cube object, and a pepper object that has a relatively more complex shape.
We train models for 5 Million time-steps to solve the pushing task using three different
algorithms, only varying the scale of noise added to the object position. The difficulty of
the task is characterised by two factors, the size of the target and the shape of the object.
The size of the target was kept fixed during all experiments.

It is clear from Fig 3.3 that the noise added to the position estimation of the object
impacts the stability and convergence of the training. TD3 and SAC converged to the
highest average returns for training without noise. The higher the scale of noise the more
disruption it implies in the learning process. However, they are not equally impacted by
noise added to the location of the object. SAC gets strictly worse results as the scale of
noise is augmented, while TD3 can handle low level of noise up to σ = 0.014 and l = 0.04
for the cube object and up to σ = 0.0105 and l = 0.02 for pepper object. PPO on the
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(a) Training performance, Noise type: Normal distribution

(b) Training performance, Noise type: Uniform distribution

Figure 3.3 – Performance vs. training time-steps. The learning curves for PPO, TD3, and
SAC algorithms with different scales of noise for two different object shapes. Cube and
pepper object. We smooth episode rewards to their running average using the moving
average metric with a window of 100 consecutive episodes. We plot the average of the
curves for all four seeds except the models that failed to solve the task with an extreme
behaviour. The unit of the noise scale is meters.
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other hand performed comparably for all Gaussian noise scales and for a uniform low
noise level.

Solving the task using a pepper object adds uncertainty to the learning process. The
pepper object shape makes it hard to predict where the object will be directed if pushed in
a particular direction. This depends on the contact between the gripper of the robot and
the object, as well as the contact between the object and the board. The same action can
result in different outcomes depending on the orientation of the object, which increases
uncertainty in the environment dynamics and thus, leads to challenging training compared
to the training with a cube object. The cube object, in contrast, has surface-to-surface
contact with the board which makes the pushing task easier to solve.

The performance of TD3 on the pepper object is comparable to the performance on
the cube object for models trained without noise to low magnitudes of noise. SAC obtains
slightly worse performance on the pepper object compared to the cube object. For PPO,
the shape of the object impacts considerably the training performance.

It is important to note that our inputs do not provide insight about the shape of the
object to the model. Therefore, it must be learned implicitly through interaction with the
object. From the aforementioned observations, we suspect that the exploration strategies
of the three algorithms are not equally efficient, with TD3 being the most effective policy
to handle noisy inputs. We believe this is due to the noise added to the actions for
exploration, which appears to be a useful strategy for dealing with uncertainty arising
from the shape of the object.

The hypothesis H1 is supported by the results of SAC and TD3 algorithms, except
for TD3 models that were trained with a low level of noise, which showed an ability to
maintain the same convergence performance as models that were trained without noise.
The PPO results do not fulfil H1 hypothesis as they do not show a considerable difference
between the performance of the models across various noise parameters.

3.5.2 Obtained policies evaluation in simulation

We evaluate the obtained policies on the same environment in simulation. We run 100
trials of each trained model and calculate the success rate of when the trained policy is
able to push the object to the desired target. Fig 3.4 depicts the results for each trained
model, averaged across the four seeds.

TD3 and SAC achieved the highest success rates with noiseless training. TD3 models
can maintain similar or slightly better performance using a low scale of noise on both
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Figure 3.4 – Success rate and standard deviation across seeds for each method and object
type across 100 trials. We roll out trained policies on the same environment with the same
level of noise used in training.

the cube and pepper object. SAC achieved similar success rates for all noise parameters
except high magnitudes of uniform noise (l=0.08 and 0.11). On the pepper object, similar
performance is achieved using no noise or a very low scale of noise (σ = 0.0035 and
l = 0.02) while adding noise beyond this scale deteriorated the performance considerably.

The success rates obtained by PPO did not vary too much as a function of the noise
parameters for both objects. Yet, surprisingly, high noise levels increased the success values
for the pepper object but did not result in sufficiently high success rates (below 70%).

The hypothesis H2 holds for TD3 and SAC for both objects but not for PPO. The
latter achieved high success rates when trained on higher levels of noise for solving the
task with the pepper object. This can be explained by the policy stochasticity not being
sufficient to drive the pepper object and adding noise to the object location slightly helps
the policy to achieve more efficient policies.
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Figure 3.5 – Evaluation results on real robot using a cube object. We report the success
rate of achieving 5 different targets. We ran the experiments using either a Motion Capture
(MoCap) system, or an object detection by colour algorithm using an RGBD camera.

3.5.3 Sim to Real evaluation

We transfer policies trained in simulation to a real robot without further training or
fine-tuning. Two systems for localising objects are employed. We utilise a Motion Capture
System and object detection by color using an RGBD camera. The former solution allows
for a high degree of accuracy calculation of positions while the latter inherits various
sources of noise.

— Motion Capture System (MoCap): We use six motion infrared tracking cam-
eras from ART [45]. The location of the object is calculated using a passive retro-
reflective target that is installed on the top of the object (see Fig 3.1).

— Detection by color: We use the ZED2 camera from Stereolabs [46]. The object
is detected by its color and the location is calculated using the depth image and
the extrinsic matrices obtained from the extrinsic calibration. The detection and
positioning of objects in the 3D space using a camera is challenging due to the
presence of camera sensor noise and occlusion issues. The camera was placed in an
orthogonal position to have a top-down view.
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Fig 3.5 summarises the results. Using the MoCap system, both TD3 and SAC achieved
a success rate of at least 4/5 for models trained without noise. While when deployed with
a camera for object localisation the success rate didn’t exceed 3/5. TD3 models trained
with a low level of noise (σ = 0.0035 and l = 0.02) maintain the same success rate of 5/5
using either MoCap or Camera. SAC models trained with a high level of Gaussian noise
(σ = 0.0105 to 0.0175) or uniform low scale of noise (l = 0.02) maintain success rates
of at least 4/5 using both MoCap and camera. The results of PPO using the camera are
not promising while using the MoCap reaches acceptable success values for some specific
noise parameters.

The hypothesis H3 holds for the three algorithms and especially in the camera setting.
The results look promising and suggest that for every algorithm there is a set of noise
parameters that transfer better to the real-world.

Occlusion in the camera setting

Occlusion is a typical issue in computer vision that arises when a part of an object
is hidden from view. When this occurs, it becomes difficult for computer vision systems
to identify and detect objects in the scene. Occlusions may occur due to various causes
including shadows and overlapping objects.

Our application requires the position of only one object, detected by its colour. To
obtain the 2D position of the object, we use the camera to detect the orange-painted
top surface of the object and calculate its center. The object detection is visualised by
colouring the detected pixels in blue (see Fig.3.6). As seen in Fig.3.6, the object can
sometimes become partially hidden by the robotic arm (e.g. Trajectory 2, time-step 46 in
Fig.3.6). In such cases, the calculated position only accounts for a portion of the object
and yields erroneous estimations of its position. In the event of full occlusion from the
camera view (e.g. Trajectory 2, time-step 60 Fig.3.6), the previous position of the object
serves as input to the policy.

To reduce the impact of occlusion, various methods can be employed, including utilis-
ing multiple viewpoints of the scene or tracking and predicting the objects motion. This
can help to provide a better estimation of the position of objects when they are occluded.
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Figure 3.6 – Illustration of samples from five different trajectories executed by the real
robot. Each trajectory corresponds to solving the pushing task for a different target po-
sition. The camera is placed to capture a top-down view. The pixels depicting the object
are recoloured in blue.
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3.6 Summary

Reinforcement learning algorithms typically require a large amount of data to converge
on optimal policies. This data is often generated in simulation and then the policies
are transferred to the real world. The discrepancy between simulation and real-world
environments in sensory data, nonetheless, necessitates that more consideration should
be given to simulation training before transferring policies to the real world.

Our investigation in this chapter delved into how different algorithms respond to noisy
estimates of an object in a pushing task. Specifically, we evaluated the performance of
TD3, PPO, and SAC when subjected to two different noise models, Gaussian and uniform.
Our analysis revealed that training the models with noise in simulation resulted in better
real-world performance. However, we could not identify an ideal noise level that was
applicable to all three algorithms.

Further research should be pursued to build a more thorough noise model by analysing
every step of the computer vision pipeline used for objects localisation. Such a model would
also take into account external factors, such as the distance between the camera lens and
the object, the resolution of the camera, and whether the object is partially occluded. The
findings of our study in this chapter have been published in [47].

34



4

LEARNING FROM DEMONSTRATIONS

Contents
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Learning from Demonstration approaches . . . . . . . . . . . . 36

4.2.1 Behaviour Cloning . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2.2 Inverse Reinforcement Learning . . . . . . . . . . . . . . . . . . 39
4.2.3 Combining demonstrations with RL . . . . . . . . . . . . . . . 41

4.3 Imitation from Observation . . . . . . . . . . . . . . . . . . . . 42
4.3.1 Model-based . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3.2 Model-free . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1 Introduction

Despite the remarkable success of reinforcement learning in various domains, its suc-
cessful application is heavily dependent on the engineering of a task-specific reward func-
tion that indicates the desirable behaviour and guides the agent to the goal of the task.
This can be a critical challenge, especially for complex tasks, as the reward function
must be designed to accurately reflect the desired behaviour, taking into consideration
the boundary cases and avoiding reward hacking [48].

To address this challenge, Learning from Demonstrations (LfD), also referred to as
Imitation Learning (IL), provides an alternative approach to training autonomous agents.
In LfD, the task to be solved or the skills to be acquired are illustrated to the agent by
examples demonstrated by an expert. Unlike RL, where the learning process is driven by a
reward signal, LfD relies on the expert demonstrations. This allows LfD to circumvent the
explicit design of a task-specific reward function by learning from the expert’s experience,
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making it particularly useful in scenarios where the desired behaviour is complex to define
by a reward function.

The application of LfD has yielded positive results in a variety of fields, such as robotics
[49] [50], games [51], and autonomous driving [52], among others. This approach of learning
control policies has the potential to greatly decrease the time and effort required to create
and develop autonomous agents.

This chapter delves into the concept of Learning from Demonstrations, including its
different variations and how it can be applied to control problems.

4.2 Learning from Demonstration approaches

Demonstrations are instances that showcase how a given task can be solved, and they
are usually supplied by a human or an expert agent. These demonstrations often take the
form of input-output pairs, where the input represents the state of the environment and
the output indicates the action taken by the expert in that state. The goal of LfD is to
train a control policy that can perform the demonstrated task with expert-like proficiency
or greater [53–55]. Fig. 4.1 provides an overview of the various LfD approaches that we
explore in the following sections of this chapter.

4.2.1 Behaviour Cloning

A commonly used approach for LfD is to treat it as a regular supervised learning
problem. Assuming that a set of expert demonstrations composed of state-action pairs
De = {(s, a)} is given, the aim of Behaviour Cloning (BC) is to learn a mapping πθ from
states to actions so that πθ(s) = a [56]. Depending on whether the action space is discrete
or continuous, a classifier or regression model is used to maximise the expected likelihood:

L = E(s,a)∼De

[
log πθ(a|s)

]
(4.1)

Compared to other LfD approaches, BC is simple to set up and can be trained offline
without the need for agent-environment interaction.

The major issue with BC is that it is often considerably impacted by the distribu-
tional shift (a.k.a covariate shift) problem, characterised by a discrepancy between the
distribution of the input states encountered during deployment and the distribution of the
input states in the training dataset. This can arise if the environment changes or the given
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Figure 4.1 – Overview of the different Learning from Demonstration (LfD) methods cov-
ered in Chapter 4.

demonstrations are not fully representative of all the possible situations that the agent
may experience. Insufficient exposure of the agent to representative examples of the new
distribution of input states during training is likely to result in inaccurate or incorrect
predictions and cause the agent to fail during deployment.

BC, being a supervised learning method, assumes that the state-action pairs are inde-
pendent and identically distributed (i.i.d). This assumption is not met as the state-action
pairs from demonstrations are temporally dependent. When the agent interacts with the
environment during deployment after being trained on expert demonstrations, any devi-
ation from the target actions results in an error that accumulates over time, causing the
agent to increasingly diverge from the expert’s behaviour (see Fig 4.2 for an illustration).
This is known in the literature as the compounding error problem.

Dataset Aggregation

Dataset Aggregation (DAgger) [56] is an algorithm that addresses the distributional
shift problem in Behaviour Cloning by leveraging the expert feedback on what actions
to take in encountered states that were not seen in the initial demonstrations dataset.
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Figure 4.2 – Illustration of the compounding error in Behaviour Cloning. Small errors in
the first few time-steps can steer the agent towards unfamiliar states that greatly deviate
from the expert’s demonstrated behaviour.

DAgger improves the imitation policy iteratively as follows:

1. Train an initial policy π(a|s) on the original demonstration dataset D.

2. Execute the current policy in the environment to collect agent trajectories.

3. Rectify the agent’s incorrect actions with the expert intervention.

4. Include the new state-action pairs with their expert-assigned actions to the demon-
stration dataset.

5. Improve the policy π(a|s) by training on the new demonstration dataset.

6. Iterate steps 2 to 5 until the agent’s behaviour approaches the expert’s.

Step 2 allows the agent to exploit the trained policy to interact with the environment.
Through steps 3 to 5, the agent is given customised feedback from the expert, which
helps it improve π(a|s) towards mirroring the expert’s policy. This results in policies that
outperform classical Behaviour Cloning. One instance of DAgger applications to real-
world problems is shown in [57], where a quadrotor is trained to autonomously navigate
cluttered environments while avoiding obstacles. While DAgger has proven effective in
practice, the iterative nature of the learning process and the need for the expert feedback
make it computationally expensive and time-consuming, especially for complex tasks.
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4.2.2 Inverse Reinforcement Learning

Inverse Reinforcement Leaning (IRL) learns from demonstrations by attempting to
infer the expert’s objective [58, 59]. Unlike behaviour cloning, where the goal is to mimic
the expert’s actions, IRL seeks to recover the implicit reward function that is driving the
expert’s behaviour. The recovered reward function can be then used with RL to train a
policy that solves the task demonstrated by the expert.

Solving the IL problem using IRL assumes that the expert behaviour can be formulated
using a Markov Decision Process (MDP) by defining the tuple (S,A, R,P , γ), where S
is the state space, A is the action space, R is the reward function, P is the transition
function, and γ is the discount factor. This formulation is identical to the RL formulation
introduced in Chapter 2, Section 2.2, except that the reward function is assumed to be
unknown in IRL.

IRL assumes that the provided demonstrations D = {τ e
i }i=N

i=1 are generated by a policy
πe followed by the expert, and attempts to find an estimate r̂e of the reward that best
describes the underlying motivation of the expert. The purpose of IRL is to find an
estimate of the expert reward function such that the expected reward is maximised when
the expert’s policy is followed, i.e,

Eτ∼πe

 T∑
t=0

γtr̂(st, at)
 ≥ Eτ∼π

 T∑
t=0

γtr̂(st, at)
 ∀π ̸= πe

Conventionally, IRL methods iteratively alternate between adjusting the reward func-
tion and optimising it using RL.

Feature Expectation Matching

Feature Expectation Matching [60] consists in shaping the estimated expert reward
function as a linear combination of predefined features:

r̂w(s, a) =
i=n∑
i=1

wiϕi(s, a)

= w⊤ϕ(s, a)
(4.2)

where w = (w1, w2, ..., wn) is a vector of weights that determine the importance of
each feature in ϕ(s, a) =

(
ϕ1(s, a), ϕ2(s, a), ..., ϕn(s, a)

)
. For instance, to drive a car, the

features ϕi(s, a) might be speed, acceleration, steering angle, fuel efficiency, etc. The goal
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is to determine the values of wi that yield the best possible match between the reward
function and the expert’s actions. This match is evaluated by comparing the expected
cumulative discounted rewards of the expert’s policy with those of the imitator’s policy,
and measuring the difference between them. The expected cumulative discounted reward
for a policy π is given as:

Eτ∼π

 T∑
t=0

γtr̂w(st, at)
 = Eτ∼π

 T∑
t=0

γtw⊤ϕ(s, a)


= w⊤Eτ∼π

 T∑
t=0

γtϕi(st, at)


= w⊤µ(π)

(4.3)

where µ(π) = Eτ∼π

[∑T
t=0 γtϕi(st, at)

]
is the feature expectation of the policy π. The

IRL problem is then solved by seeking a policy πθ that has a feature expectation µ(πθ)
close to the feature expectation of the expert’s policy µ(πe). Nonetheless, the issue with
this approach is that the expected feature count is not a unique indicator and several
policies may yield the same count. In the following, we briefly introduce three common
methods in the literature that guarantee a unique solution for the IRL problem.

Maximum Margin Planning

Maximum Margin Planning (MMP) is proposed in [61]. The unique solution is ensured
by using the maximum margin criterion to estimate the reward function. The reward
function parameters are determined to maximise the difference between the behaviour of
the expert’s policy and any other given policy. MMP searches for the reward function that
yields higher cumulative rewards for the expert-demonstrated trajectories in comparison
to any other trajectories by a certain margin.

Maximum Entropy IRL

The insight behind Maximum Entropy IRL [62] is to seek the policy πθ that, besides
matching the expert’s feature expectations, results in a distribution over trajectories p(τ)
where τ ∼ πθ that maximises the entropy of the distribution H(p). This is formulated as:

argmax
θ

H(p) = argmax
θ

∑
τ∼πθ

p(τ) ln
(

1
p(τ)

)
(4.4)
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subject to
∥µ(πe)− µ(πθ)∥ < ϵ (4.5)

∑
τ∼πθ

p(τ) = 1, p(τ) > 0 ∀τ (4.6)

Where Eq. 4.5 determines how close the agent policy should match the expert policy,
defined by ϵ.

While Maximum Entropy IRL can be applied only to deterministic environments with
known transition function [62], Causal Maximum Entropy IRL extends to problems with
unknown transition function and stochastic environments. Further details can be found
in [63].

Generative Adversarial Imitation Learning

Ho and Ermon [64] show that the IRL problem can be framed as an occupancy measure
matching instead of feature expectation matching. The occupancy measure ρπ : S×A −→
R of a given policy π is expressed as:

ρπ = π(a|s)
∞∑

t=0
γtP(st = s|π) (4.7)

The optimisation problem in GAIL is formulated to learn a policy that minimises the
occupancy measure gap between the agent and the expert, while considering a regularizing
term for the causal entropy:

minimise
π

d
(
ρπ(s, a), ρπe(s, a)

)
−H(π) (4.8)

where d(.) is a function that measures the difference between occupancy measure of
the agent and the expert and H(π) is the causal entropy of the policy π. Further details
about how GAIL functions are given in the next chapter.

4.2.3 Combining demonstrations with RL

Combining RL with demonstrations can help improve the agent training performance
through the RL’s trial-and-error exploration and demonstration’s indicative information
about how the task should be solved. Demonstrations provide guidance and limit the state
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space exploration. They can be incorporated into the initialisation of policies for RL, or
included in the replay buffer of off-policy RL methods.

Initialise the Imitation Policy for RL

The agent’s policy can be initialised using any IL method, with BC being the most
commonly used due to its simplicity to train. For instance, in [65], BC is used to pretrain
a policy that efficiently guides a policy-based algorithm exploration, eliminating the need
for reward shaping. However, this strategy doesn’t work well with value-based and actor-
critic methods, as simply copying the pretrained policy’s weights to the RL initial policy
often leads to poor performance due to the randomly initialised critic network. This often
results in a sharp decline in the actor performance from the first RL update, as the
untrained critic provides misleading signals to the actor. To solve this problem, Uchendu
et al. [66] suggest an approach named Jump-Start Reinforcement Learning (JSRL) that
uses a separate policy that can be trained on demonstrations called guide-policy along
with the RL policy, called the exploration-policy. The exploration-policy is trained online
while the guide-policy is trained offline prior to training the exploration policy. At the
beginning of training, the guide-policy is used for a number of time-steps in each episode
to bring the agent closer to the goal state, after which the explore-policy takes over and
generates actions towards the goal state.

Integrate Demonstrations in the Replay Buffer

One other approach is to include demonstrations directly into the replay buffer of
an off-policy RL method. The replay buffer is where exploration interactions are stored.
DDPG from Demonstrations (DDPGfD) [67] and Deep Q-Network from Demonstrations
(DQNfD) [68] are two LfD methods that are designed to solve problems with continuous
and discrete action spaces respectively. Both methods use prioritised experience replay
[69] to balance between sampling from the exploration interactions and demonstrations.

4.3 Imitation from Observation

The imitation learning approaches outlined above have been designed for the cases
where both states and actions are available for the imitator. The methods’ reliance on
action observation renders them unsuitable for learning from demonstrations without ex-
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plicit access to actions, such as those obtained by using a camera sensor to watch a human
expert complete a given task, where demonstrations are simply a sequence of images with-
out any labels of the corresponding actions. Recent works have attempted to overcome
this limitation, paving the way for a more specific problem, which is imitation from ob-
servation (IfO), in which imitation learning is solved using state-only demonstrations or
raw observations only, where the actions are not observable. In the following, we classify
the IfO methods to model-based and model-free methods

4.3.1 Model-based

A potential approach to address the IfO issue involves allowing the agent to explore
its action space and acquire a model of the environment dynamics, which can be used to
deduce the absent actions from the demonstrations dataset.

Inverse Dynamics Model

An inverse dynamics model is a mapping from state transitions to the corresponding
actions. Once it has been learnt, it can be used to predict the actions that would result in
the state transitions in the demonstrations dataset. Behavioural Cloning from Observa-
tion (BCO) [70] is one of the methods that follow this process. It consists of three phases:
1- learn a task-independent inverse dynamics model in a pre-demonstration, exploratory
phase. The state space is partitioned to agent-specific features and task-specific features.
In this phase, only the agent-specific part of the states are stored along with the cor-
responding actions and a model is learnt to predict the actions that would explain the
transitions. 2- Upon state-only demonstrations, BCO utilises the learnt model to infer
the missing actions. 3- Then BCO uses the state-action pairs to learn a policy via BC.
Another work by Nair et al. [71] proposes a method for manipulating deformable objects
(a rope in this paper), by first, learning a predictive model of rope behaviour using gener-
ated data from robot-rope interactions. Based on its assessment of the current and target
state of the rope, the model is trained to predict the action that can be performed by
the robot to achieve the target configuration of the rope from the current state. Then a
human user provides step-by-step images that show intermediate goal configurations of
the rope and the learnt model is used to determine the actions that would lead to the
desired configuration of the rope.
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Forward Dynamics Model

In the context of imitation learning, a forward dynamics model is a function that takes
a state-action pair and returns the next state. For instance, Imitating Latent Policies from
Observation (ILPO) [72] follows a two-phase process to learn the imitation policy. In the
first phase, the agent learns a forward dynamics model along with a latent policy π(z|st),
which estimates the likelihood of the underlying latent action that accounts for a transition
given the current state st. Then, the agent learns a latent-real action remapping network
to match latent actions to the actions in the agent’s action space. Another approach is
proposed by Wu et al. [73] where first a forward dynamics model is learnt. The model
takes as input the current image and an action to predict the next realistic image. Then,
the model is used with a trained function that evaluates how similar generated state-
action pairs are to the expert state-action pairs. The optimal action to take is selected by
examining several potential action choices.

4.3.2 Model-free

The main limitation of model-based methods is that learning a dynamics model gener-
ally requires a considerable number of interactions with the environment which scales with
the complexity of the task to learn. Model-free methods learn policies without requiring
any model of the dynamics.

Generative Adversarial Methods

Inspired by the work of Ho and Ermon [64],Generative Adversarial Imitation from
Observation GAILfO [74] algorithm was introduced as an approach to learn from state-
only demonstrations. The core idea is to feed state transitions to the discriminator instead
of state-action pairs, and the goal is to bring the imitator’s state transitions distribution
closer to that of the expert. Despite its success with low dimensional manually defined
state representation, GAIfO failed to scale to the case where high-dimensional observations
(e.g. raw pixel images) are used as inputs. This limitation could be addressed by learning
a state representation from images that captures task-relevant features while discarding
the irrelevant aspects of the observation [3].
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Reward Engineering Methods

Another approach to solve IfO problem is to incorporate RL with a hand-engineered
reward function that measures the distance between the observations in the demonstra-
tions dataset and those observed by the imitator policy. One such method is presented by
Liu et al. [49]. It aims to learn a model that can convert demonstrations from the context
of the human expert to the robot’s context. Context differences might include changes
in viewpoint, background etc. Once this translation model is obtained, a reward function
is defined as a squared Euclidean distance that measures the similarity between observa-
tions of the imitator and the expert’s translated observations. Similarly, time-contrastive
networks (TCN) [75] address imitation from observation by following two steps. First,
an embedding is learnt from diverse passive observations with different objects and back-
grounds. A triplet loss function is used to learn a representation that brings frames coming
from the same time but different viewpoints closer to each other in the embedding space,
while visually similar frames close to each other in time are pushed apart in the embed-
ding space. This encoding is used thereafter as input to a RL algorithm to optimise a
reward function that measures the distance between the encoding of a single expert video
demonstration and the encoding of the robot’s observations. Both approaches require mul-
tiple demonstrations of the task to be time-aligned, which is generally not a reasonable
assumption for an intuitive learning from human demonstrations.

4.4 Summary

In this chapter, we introduced the paradigm of learning from demonstrations as a
solution to the manual design of the reward function in RL, including approaches such as
supervised Behaviour Cloning and Inverse Reinforcement Learning. We then focused on
imitation from observation where actions are not available in the demonstrations dataset.
With its ability to achieve comparable results with fewer demonstrations and directly
recover the imitation policy, Generative Adversarial Imitation Learning (GAIL) has re-
cently emerged as a powerful method for learning from demonstrations. Additionally, this
method has an extension called GAIL from Observation (GAILfO), which can handle
state-only demonstrations. In the next chapter we dive into the implementation details of
GAIL and GAILfO algorithms, and apply it to our use case task.
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5.1 Introduction

Generative Adversarial Networks (GANs) [76] proposed by Goodfellow et al. in 2014
have proven to be a remarkably powerful approach to solve problems in various domains,
ranging from computer vision [77] to natural language processing [78]. The ability of GANs
to generate realistic data samples has led to a series of exciting and creative applications,
such as music and speech synthesis [79], and realistic image generation [80].

Recently, adversarial learning has been extended to the field of imitation learning,
where the objective is to learn a policy to imitate the behaviour of an expert. Generative
Adversarial Imitation Learning (GAIL) is an approach that uses GANs to learn an imi-
tation policy that can generate trajectories resembling those of the expert [81–84]. This
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Figure 5.1 – Generative Adversarial Imitation Learning (GAIL) architecture. In imitation
learning, adversarial methods use the discriminator to construct a reward function that
measures the similarity between the trajectories generated by the agent and those provided
by the expert. The policy gets as input the current state of the environment st and executes
an action at, and trained using the reward provided by the discriminator. The reward can
be seen as an indication of how the imitator is performing compared to the expert.

approach has been applied to various real-world problems in robotics [85] [86]. GAILfO
[74] is an extended version of GAIL designed to solve imitation from state-only demon-
strations.

In the remainder of this chapter, we delve deeper into the inner architecture of GAIL
and GAILfO, exploring their key components and their performance for solving a robotic
manipulation task.

5.2 Adversarial Imitation Learning

5.2.1 Generative Adversarial Imitation Learning

The GAIL method [64] solves the imitation learning problem by training two entities
in an adversarial fashion (see Fig 5.1). Inspired by the work of [76], the generator G is
represented by a stochastic policy πθ(a|s) that takes as input the state of the environment
and outputs an action to execute by the imitator. The discriminator is trained to separate
inputs sourced from the expert and inputs generated by the imitator’s policy.

In the original paper [64], the discriminator produces a value within the range [0, 1]
representing the probability that a given state-action pair originates from the expert
policy. The imitator policy (the generator) is updated using a policy gradient method
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with a reward function that uses the output of the discriminator.
To derive the objective function to optimise by the generator and the discriminator,

Ho and Ermon [64] suggest to learn the imitation policy by minimising the distance
between the occupancy measures of the agent and the expert while maximising an entropy-
regularisation term. The optimisation problem is defined as follows:

minimise
π

d
(
ρπ(s, a), ρπe(s, a)

)
−H(π) (5.1)

The occupancy measure ρπ : S × A −→ R of a policy πθ(a|s) can be understood as the
distribution of the state-action pairs (s, a) ∈ S × A induced by executing the actions
produced by the policy πθ and is defined as follows:

ρπ(s, a) = πθ(a|s)
∞∑

t=0
γtP (st = s|πθ) (5.2)

The distance function d(.) is calculated between the occupancy measure of the agent
and the expert. In the original paper [64], d is chosen to be the Jensen-Shannon divergence
between the two measures. This results in the objective function defined in Eq. 5.3, that
both the policy and the discriminator optimise to find a saddle point (π, D).

Eπ

[
log(D(s, a))

]
+ Eπe

[
log
(
1−D(s, a)

)]
− λH(π) (5.3)

Further details of the derivation of the formulation above are given in [64]. The objec-
tive function is optimised by training a parametrised policy πθ which plays the role of the
generator, and a discriminator network Dw with the parameters w. The training is done
by alternating between updating w and updating θ. The weights w are updated to max-
imise Eq. 5.3 with respect to w using supervised learning while the weights θ are updated
using reinforcement learning to decrease Eq. 5.3 with respect to θ. The reward function
is constructed using the discriminator’s output, which denoted as R(s, a) = log

(
D(s, a)

)
in the original paper. Alg. 1 provides a condensed version of the key steps of the GAIL
algorithm..

5.2.2 Generative Adversarial Imitation Learning from Observa-
tion

Generative Adversarial Imitation Learning from Observation (GAILfO) [74] is an ex-
tension of GAIL that can handle state-only demonstrations, which refer to cases where
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Algorithm 1: Generative Adversarial Imitation Learning (GAIL)
Input: Expert trajectories τe = {(s, a)} ∼ πe,
Initialise the parameters of G and D with θ0 and w0 respectively ;
for i=1,2,... do

Sample agent trajectories τi = {(s, a)} ∼ πθi
;

Update Dw using the loss

LD = −
[
Eτi

[
log(Dw(s, a))

]
+ Eτe

[
log(1−Dw(s, a))

]]
;

Update πθ by performing a TRPO update using the reward function
R(s, a) = log

(
Dw(s, a)

)
;

end

the expert provides state information without the corresponding actions. This can prove
helpful in scenarios where it is difficult or costly to provide expert demonstrations with
actions.

To adapt GAIL to handle state-only demonstrations, GAIL was modified to learn from
state transitions, rather than state-action pairs. During training, the algorithm seeks to
minimise the distance between the state transitions distribution generated by the learned
policy and the distribution of those observed in the demonstration data. The GAILfO
algorithm is given in Alg. 2.

Algorithm 2: Generative Adversarial Imitation Learning from Observation
(GAILfO)

Input: Expert trajectories τE = {(s, s′)} ∼ πE,
Initialise the parameters of G and D with θ0 and w0 respectively ;
for i=1,2,... do

Sample agent trajectories τi = {(s, s′)} ∼ πθi
;

Update Dw using the loss

LD = −
[
Eτi

[
log(Dw(s, s′))

]
+ EτE

[
log(1−Dw(s, s′))

]]
;

Update πθ by performing a TRPO update using the reward function
R(s, s′) = log

(
Dw(s, s′)

)
;

end
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Figure 5.2 – Plot of the reward functions defined in Eq.5.4, Eq.5.5 and Eq.5.6.

5.3 Discriminator Reward Function

The imitator is trained to maximise the reward function computed using the discrim-
inator’s output. Let D(s, a) ∈ [0, 1] be the output of the discriminator and high values
classify the input (s, a) as coming from the expert. The state-action pair input (st, at) can
be replaced by the state transition (st, st+1), or single state st. The reward function to be
used by the imitation policy (i.e. the generator) can be chosen from the following:

RD = log
(
D(s, a)

)
(5.4)

RD = − log
(
1−D(s, a)

)
(5.5)

The reward defined in Eq. 5.4 is always negative and that defined in Eq. 5.5 is always
positive for D ∈ [0, 1]. The two rewards are likely to induce bias in the learning process
leading to behaviours that diverge from that of the expert [87] [88].

— Termination bias: Using the reward function defined in Eq.5.4 exposes the agent
to a termination bias. In this case, the agent seeks to complete the episode in the
shortest possible time to reduce the number of penalties it receives. This is desirable
for goal-based tasks where the agent should find the shortest path to achieve the
goal state. Nonetheless, if another option is available to the agent to complete the
episode faster, it will be favoured by the agent’s policy even if it does not solve the
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intended task.
— Survival bias: If the agent is positively rewarded in every time-step, as in the case

of using Eq.5.5, the agent may prioritise collecting additional rewards over com-
pleting the task, which may potentially lead to looping through the environment
until all available time-steps are exhausted. This behaviour may occur because
the agent is not being motivated to complete the task, as it is already receiving a
positive reward for its actions at each time-step.

Another option is to use a neutral reward function defined as follows:

RD = log(D(s, a))− log(1−D(s, a)) (5.6)

Where RD ∈]−∞, +∞[ for D ∈ [0, 1] (see Fig. 5.2). It is demonstrated in [89] that this
reward can help overcome the two aforementioned reward biases. Since the Eq.5.6 supplies
both positive and negative rewards, the survival bias can be overcome by penalising the
agent (i.e. returning negative rewards) for taking actions that are considerably different
from those of the expert, and the termination bias can be overcome by positively rewarding
the agent for taking actions that are similar to those of the expert and avoid a premature
termination of training episodes.

5.4 Experiments and Results

5.4.1 Experimental setup

The task to solve is the pushing task where a robot has to push an object to a target
location (see Fig. 5.3). We use the best trained RL model from Chapter 3 as the expert
policy to generate demonstrations. The expert policy was trained on the shaped reward
function defined in Chapter 3, Eq.3.1. We refer to this reward function as the ground
truth reward in the rest of this chapter.

A total of N = 100 trajectories of successful completion of the task were generated
using the expert policy. The success of a trajectory is determined by the object being fully
pushed to the target destination. Demonstrations are collected by executing the expert
policy in the environment to solve the pushing task for random target locations. At each
time-step, the state and associated action are recorded. Actions are required for GAIL
algorithm, whereas GAILfO algorithm relies solely on state transitions.

The imitator policy is designed to have the same state space and action space of the
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Figure 5.3 – Snapshot of the pushing task environment in simulation. The object should be
pushed to the target position represented in red. The target position is sampled randomly
from the target area.

expert. It receives as input the 2D coordinates of the robot’s end-effector, the object
and the target. At each time-step, the imitator policy outputs two continuous values dx

and dy, the two displacements to make along the Cartesian axes x and y. An episode of
training concludes when one of the following conditions is satisfied:

— The object or the end-effector of the robot is out of the board.
— The maximal length of an episode has been reached (150 time-steps in our case).
— The object has reached the target position.
In the next section, we train an agent to learn from the provided demonstrations using

the GAIL algorithm. We use the implementation of GAIL from [90], which utilises Stable-
Baselines3 library [44]. Their implementation features a discriminator that assigns high
values to the samples produced by the generator, which is opposite to the choice made in
the original paper where high values are assigned to the expert samples [64]. Accordingly
the discriminator reward function can be chosen from the following:

RD = log
(
1−D(s, a)

)
(5.7)

RD = − log
(
D(s, a)

)
(5.8)

RD = log
(
1−D(s, a)

)
− log

(
D(s, a)

)
(5.9)
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Description Detail
Environment
Episode maximum length 150
seed 17
Generator (policy)
RL algorithm PPO
NN hidden layers (64, 64)
Activation function Tanh
Learning rate 3e-4
Discriminator
NN hidden layers (32, 32)
Activation function ReLu

Table 5.1 – GAIL and GAILfO training Hyperparameters.

Where Eq.5.7 corresponds to Eq.5.4, Eq.5.8 corresponds to Eq. 5.5 and Eq. 5.9 corre-
sponds to Eq. 5.6. The original GAIL implementation was modified to support the three
options for choosing the discriminator reward function.

5.4.2 Train GAIL with positive, negative and neutral discrimi-
nator reward functions

We train three models using the same policy and discriminator architectures outlined
in Table 5.1. Each model is trained for 5M time-steps using one of the discriminator reward
functions defined in Eq. 5.7, Eq. 5.8 and Eq. 5.9. The results are shown in Fig. 5.4. The
RL-expert was trained on the ground truth reward function, while the GAIL models
are trained on the discriminator reward function. Each one of the discriminator reward
functions results in a different behaviour. The reward RD = log(1 − D) is negative for
D ∈ [0, 1], which induces the termination bias in the training process and interferes
with the robot’s ability to learn the task demonstrated by the expert. This causes the
robot to complete episodes as fast as possible to minimise the penalties incurred from
the discriminator rewards, which prevents it from efficiently exploring the environment
and acquiring the skills needed to perform the desired task. Using the positive reward
function RD = − log(D) results in better performance compared to the negative reward
function. However, the robot suffers from the survival bias issue, where it is sufficient to
remain in the environment for as long as possible to get cumulative positive rewards and
the robot, also in this case, is diverted from learning the demonstrated task. Using the
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Figure 5.4 – Training performance vs. training time-steps, showing the impact of the
discriminator reward function on the performance of GAIL trained models compared to
the expert’s performance.

reward function RD = log
(
1−D(s, a)

)
− log

(
D(s, a)

)
proposed in [89], which addresses

both biases by providing both negative and positive rewards, the trained model converges
to a saddle point where the average ground truth reward fluctuates between 150 and 200.
The policy with the highest value got a success rate of 99%.

5.4.3 Train GAILfO with positive and neutral discriminator re-
ward functions

While in the previous section, state-action pairs were used for training the imitator,
in this section we employ GAILfO which makes use only of the state transitions. We
slightly modified the implementation from [90] to handle state-state pairs as inputs for
the discriminator. The results are shown in Fig. 5.4-a. Surprisingly, none of the three
rewards, including the neutral reward function that worked well with GAIL, resulted in
the agent learning an acceptable behaviour.

Fig. 5.5-b reveals a correlation between the agent’s cumulative ground truth rewards,
the discriminator cumulative rewards, and the discriminator accuracy. The following is a
breakdown of each element:

— The average of the ground truth rewards indicates the agent’s performance in
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(b) Training performance vs. training time-steps, exhibiting the progression of the
discriminator accuracy, the average cumulative rewards, and the cumulative discrim-
inator rewards received by the agent during training. The cumulative ground truth
reward is divided by the expert’s highest score of 250 for normalisation.

Figure 5.5 – Training performance of GAILfO

solving the task demonstrated by the expert. The higher the cumulative reward,
the more the agent is on track to accomplishing the task.

— The discriminator rewards Rd are used for training the imitation policy and give
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an insight into the sign of the rewards received by the agent.
— The discriminator accuracy indicates how comfortable the discriminator is with

distinguishing the expert rollouts from those of the imitator. The accuracy score
is computed by dividing the number of correct predictions by the total number of
predictions.

At the start of training, the GAILfO exhibits signs of improvement, as evidenced by
an increase in the average cumulative ground truth rewards (see Fig 5.5-b). However,
the model’s performance takes a sudden downturn, and the cumulative ground truth re-
wards converge to a negative value. Concurrently, the discriminator’s reward also becomes
negative, and its accuracy converges to one.

There are two potential scenarios that may cause the sudden performance drop:
— Discriminator overfiting, which is experienced when the discriminator can easily

distinguish between the samples coming from the expert and those coming from
the imitator. This may occur if, for instance, the agent explores areas of the state
space that are considerably distinct from the states visited by the expert in the
demonstration dataset. As a result, the accuracy of the discriminator converges
towards one, causing the imitator rollouts to be correctly recognised as non-expert
and assigned values that are close to zero:

D(s, s′) ≈ 0 with (s, s′) ∼ πθ

=⇒ RD → −∞

In response to receiving only negative rewards, the imitator chooses to quickly
terminate episodes to minimise the cumulative negative rewards.

— If the agent encounters terminal states other than the goal state during exploration,
the discriminator can easily distinguish the agent’s trajectories from those from the
expert as demonstrations don’t cover those terminal states, leading to an increase
in the discriminator accuracy. This, in turn, leads to generating only negative
rewards, causing the agent to prioritise reaching terminal states over imitating the
expert.

5.4.4 Addressing the reward bias in GAILfO

The reward function suggested by Jena et al. [89] successfully eliminates the discrim-
inator reward bias when GAIL is trained with state-action pairs, as demonstrated in the
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Figure 5.6 – Plot of the discriminator reward function defined in Eq. 5.10 with different
values of RD offset.

previous two sections. However, this approach fails to work when GAILfO is trained on
state transitions. Although the discriminator rewards can be both positive and negative,
they tend to converge to negative values when state-state pairs are involved.

This section delves into modifying the discriminator reward function defined in Eq. 5.9
to balance positive and negative rewards by introducing an offset so the discriminator
reward becomes:

RD = log
(
1−D(s, a)

)
− log

(
D(s, a)

)
+ Rd offset (5.10)

Where Rd offset ∈ R+. We investigate the impact of varying Rd offset on the train-
ing performance. We conduct experiments using four different values of Rd offset, namely
{0.2, 0.4, 1.1, 1.8}. The resulting discriminator reward function curves are shown in Fig. 5.6.
In the case where RD = log

(
1−D(s, a)

)
− log

(
D(s, a)

)
, the discriminator output thresh-

old that decides whether the reward is going to be positive or negative is 0.5, i.e., rewards
are positive for D ∈ [0, 0.5] and negative for D ∈ [0.5, 1]. The higher the offset added to
the discriminator reward the larger the range that gets positive rewards. For instance, for
Rd offset = 1.1, rewards are positive for D ∈ [0, 0.75] and negative for D ∈ [0.75, 1].
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Figure 5.7 – Training performance vs. training time-steps, showing the impact of adding
an offset to the discriminator reward function defined in Eq.5.9 on the performance of
GAILfO trained models. The cumulative ground truth reward is divided by the expert’s
highest score of 250 for normalisation.

Four models were trained with the generator and discriminator architecture from the
previous section (see Table 5.1), each with a different Rd offset. The results are depicted
in Fig. 5.7. The models with Rd offsets of 0.2 and 1.8 converged to a saddle point, while
those with Rd offsets of 0.4 and 1.1 experienced a sudden drop in performance. The
successful models maintained a balance between positive and negative rewards, while the
unsuccessful ones had a higher proportion of negative rewards.

The findings indicate that, simply incorporating an offset to the discriminator rewards
can assist in controlling the balance of positive and negative rewards. This can significantly
aid in overcoming reward bias in adversarial learning.

5.5 Summary

This chapter focused on Generative Adversarial Imitation Learning GAIL and its
application to learning from state-only demonstrations, known as GAILfO. The use of
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a neutral reward function that generates both negative and positive rewards was found
to be effective in facilitating GAIL’s learning from state-action pairs, but not GAILfO,
which learns from state-state pairs. In order to counter the issue of unbalanced rewards
that results in termination and survival bias, we suggested incorporating an offset into the
discriminator’s reward. This proved to be a helpful adjustment for achieving convergence.

Even in the case where an adversarial model successfully converges to a saddle point,
the instability of the training still causes fluctuations in the behaviour of the imitator due
to the noisy rewards provided by the discriminator. In the next chapters, we propose a
novel framework that incorporates a stable, task-agnostic reward function with an off-the-
shelf RL method to learn the imitation policy. Our experimental findings demonstrate that
our method offers better performance and transferability to the real-world than Generative
Adversarial Learning.
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6.1 Introduction

We consider tasks in which a hand or an effector manipulates objects in a certain
way to achieve a specific goal. The agent should grasp the essence of the task in question
by observing an expert performing it, then perform the task by itself. Part of solving the
imitation problem is to determine how demonstrations are construed and how they should
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be reasoned about. We follow the approach of disentangling the "how" from the "what"
to imitate. The "what" to imitate are the essential aspects of the demonstrations that
can guide the imitation learning algorithm to an optimal policy that successfully solves
the task. The "how" to imitate is how the task is performed by the demonstrator which
depends on the physical embodiment and capabilities of the agent performing the task.
For example, if a robot is to imitate a human expert, the embodiment mismatch between
humans and robots makes it infeasible to directly transfer the "how" from observing the
human expert to the robot’s actuator commands. The hierarchical approach of extracting
the "what" to imitate followed by deciding the "how" to imitate is by no means a new
idea. Numerous visual imitation learning methods have been developed following the same
approach (e.g. [91]). Psychology refers to this as observational learning [92].

Depending on how the demonstrations are captured, part of solving the imitation
problem is to engineer the way the demonstrations are delivered to the agent. In imita-
tion from observation, representing demonstrations in a way that is informative for the
imitation learning process is an important challenge. Demonstrations should be leveraged
in a convenient format that is conducive to optimal learning.

Raw demonstrations are generally high dimensional and include redundant, irrelevant
and superfluous information. Learning the imitation policy directly from raw data neces-
sitates the use of large and deep machine learning architectures with a large number of
trainable parameters. This implies the need for a large amount of data to learn useful
features and discard those that are irrelevant. This is particularly associated with visual
demonstrations where an expert is observed using visual sensors. The data produced are
high-dimensional recordings in the format of pixels per frame. Most pixels contain in-
formation that are extraneous to the task being demonstrated, representing mainly the
background and the surroundings of the expert. It is hence essential to extract relevant
features from raw data for effective learning.

Feature extraction can be done automatically or designed manually. Expert knowledge
of the task can be used to hand-engineer functions to extract the features that are consid-
ered relevant to solving the task at hand [74]. Machine Learning, on the other hand, can
be used to automatically extract features from the data based on a predefined objective
function [22].

In this chapter, we propose a representation pipeline that comprises both manually
designed and automated feature extractors. We first design how each observation in the
demonstrations is represented, and then learn a spatio-temporal embedding to capture
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the essential elements of the scene as well as their change over time. More precisely, we
suggest modelling the observations as graphs of connected nodes. Graph Neural Networks
(GNNs) are used to process the graphs and learn a spatial embedding for each graph.
Sequence modelling is used to capture temporal features about how the graphs evolve in
time within demonstrations.

In what follows, we first present a brief review of the literature on GNN applications
and their functioning in section 6.2. In section 6.3, we discuss how sequence modelling is
used to learn temporal features. Then, we present our pipeline that couples Graphs, GNNs,
and sequence modelling to learn a spatio-temporal representation model of demonstrations
in section 6.4.

6.2 Graph Neural Networks

Graph Neural Networks (GNNs) [93] are deep learning methods tailored for graph
processing. A graph is a structured representation of linked entities. The entities are
represented by nodes that encapsulate characteristics specific to a given entity and links
are represented by edges that encode relationships between connected nodes. Different
data modalities can be represented by graphs. From text and images to social networks
and molecules. Once the graphs are designed, GNNs can be used to process them by
aggregating node and edge features into a representation that preserves both the graph
topological structure and the content of the graph. The core insight is to train mapping
models that embed the nodes and edges to continuous embedding spaces. The downstream
task defines what features should be focused on in graphs and which to discard in order
to successfully solve the task at hand.

Graph representation learning has recently received a considerable amount of attention
after its successful application to solve various problems in different domains such as social
networks, natural language processing, traffic, transportation networks, smart grids, etc
[94]. GNNs have also gained traction in robotics, action recognition and autonomous
agent applications [95–98]. Most of these applications use computer vision as a backbone
to perceive the environment. Instead of using raw images, these can be processed into scene
graphs: networks of interconnected objects that make the representation of the scene more
efficient and low dimensional.

For instance, GNNs are used to solve the motion planning problem where many objects
ought to be taken into consideration by the planner. Having to deal with many objects
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puts a constraint on the time needed for calculation. GNNs were used in [96] to increase the
planning calculation efficiency. This is achieved by learning a GNN-based prediction model
to predict subsets of relevant objects for solving the planning problem. The pertinence of
objects is calculated by reasoning about the attributes of the objects and their relations.
Similarly, in [97], Khan et al. employ GNNs to address planning problems involving a
large number of objects with only a reduced subset that should be considered for a given
purpose. Graphs represent a collection of points in the planning space interconnected by
edges that embed the cost to transit between the connected nodes. GNNs are used to
process the constructed graphs and identify critical nodes. Identifying only relevant nodes
allows optimising the time for graph search for the feasible path that has the lowest cost.
In [95], manipulation tasks are regarded as a series of spatial constraints and relations
between the manipulated objects. Demonstrations from an expert are used to train a GNN
policy for controlling a robot to perform the shown task. The environment is represented
in terms of a graph with nodes representing the objects and goals relevant to the task
to be performed. The graph is fed to a graph neural network that decides both the most
relevant object to select from the scene and the corresponding goal for the chosen object
to attain. Then an action that achieves the transition is selected from a predefined set of
movement primitives and executed.

GNNs are also used for action recognition. Either for body-action recognition or
manipulation-action recognition. By body-action recognition, we refer to the recognition
of actions that only require the observation of the movement of the human body. For this
class of problems, using skeleton detection has shown great success in action recognition
[99–101]. First, human skeleton is detected from videos and then actions are recognised
based on the movements of the skeleton. The skeleton can be represented as a graph
and processed by GNNs [102] [103]. Manipulation-action recognition involves identifying
actions that require a human to interact with and manipulate objects in a given scene to
achieve a specific goal. This process typically begins with the detection and categorisation
of objects in the scene, using attributes such as size, class, 3D position, and bounding box.
For instance, Dreher et al. [98] model the scene as a graph of detected objects linked by
symbolic relations and train a GNN model for action recognition and frame-wise segmen-
tation.

In the rest of this section, we first introduce a formal definition of a graph. Then, we
classify the methods into three categories: node-level, edge-level and graph-level tasks.
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6.2.1 Graph Definition

A graph G = (V , E , A) is defined by a set of nodes V , a set of edges E , and the
adjacency matrix A. We denote a node in a graph G by v ∈ V and an edge between
two nodes v and u as eu,v = (u, v) ∈ E . The adjacency matrix is constructed as follows:
Au,v = 0 if eu,v /∈ E and Au,v > 0 if eu,v ∈ E . Node attributes X can be assigned to a
graph, where X ∈ RN×D is a matrix of node features in which Xv ∈ RD represents the
feature vector of node v.

6.2.2 Training GNNs

GNNs can be used to solve tasks at the node, edge or graph level.

Node-level tasks aim to predict a label or continuous vector for each node u ∈ V .
Label prediction can be used either for node classification, to sort nodes into distinct
classes, or for node clustering (i.e. splitting the nodes into separate groups, where related
nodes are to be in the same group).

Edge-level tasks are primarily concerned with link prediction (also called relational
inference or graph completion). Link prediction is useful when a set of nodes is given with
a partial list of the edges connecting the nodes. Each missing edge between two nodes u

and v is predicted by applying a neural network to the hidden representation of the two
nodes.

Graph-level tasks train a representation for the whole graph. Compact representa-
tions of graphs are obtained by applying pooling and readout functions to the node and
edge features. The graph embedding can then be used either for graph classification, graph
clustering or graph regression.

In our work, we use GNNs to process scene graphs and generate a graph-level embed-
ding that encodes their structural features. In the following, we formally describe how a
GNN processes graphs to project them in a low-dimensional space.

As shown in Fig. 6.1, the GNN model takes as input a graph and learns an embedding
for all nodes in the graph by aggregating each node’s features with its neighbours’ features.
Let G = (V , E , A) be a graph and h0

v = Xv the initial feature vector of a given node v ∈ V
before any training iteration. The initial representation of the nodes is drawn from their
hand-designed labels and features. Every node v ∈ V is passed through L message-passing
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Figure 6.1 – Illustration of the GNN model.

layers. At each layer l the embedding hl
v of the node v is updated according to Eq. 6.1:

hl
v = gl

θ

(
hl−1

v , hl
N(v)

)
(6.1)

where hl−1
v is the features of node v from the previous iteration; N(v) is the set of

nodes that are connected to the node v by an edge: N(v) = {u ∈ V | (u, v) ∈ E}; and
hN(v) is an aggregation of all neighbouring nodes:

hl
N(v) = AGGl

({
hl−1

u : ∀u ∈ N(v)
})

(6.2)

where AGGl is a permutation invariant function such as the mean, max pooling [104]
or summation [105]. gθ is a parametric function for which weights θ are trained by gradient
descent. Different GNN methods differ in the conception of the gθ function. All nodes are
processed with the same function g with the parameters θ. Thus, once the training is
completed, the obtained GNN model can be deployed on new graphs with any given
number of nodes.

The graph-level embedding hg is computed by applying a permutation invariant Readout

function to all nodes embedding from the last layer L:

hg = Readout(hL
v |v ∈ V) (6.3)

Usually, the output of the Readout function is passed through a Multi-Layer Perceptron
(MLP):

hg = MLP (Readout(hL
v |v ∈ V)) (6.4)
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Figure 6.2 – Illustration of an RNN.

6.3 Seq2Seq Modelling

Sequence to Sequence (that we abbreviate to Seq2Seq) learning refers to training
models to capture temporal patterns of a source input sequence to predict a target output
sequence. It has been extensively used in natural language processing applications such
as machine translation [106], text summarisation [107], chatbots [108], etc. The prevalent
architecture used as the backbone to design Seq2Seq models is the Encoder-Decoder
architecture. The encoder processes an input sequence and encodes it into a fixed-size
continuous vector representation. The decoder takes the encoded vector and outputs a
target sequence. Different models have been proposed in the literature to build efficient
encoders and decoders and improve their performance [109].

6.3.1 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a distinct type of neural networks, designed to
process sequential data. Hence, they are more suited for input modalities such as audio,
video and text. Unlike feed-forward neural networks, where all inputs are independent
of each other, RNNs compute outputs as a function of previous inputs. When an input
sequence is passed to an RNN, each element of the sequence is processed at a time along
with a history vector that contains information about previously processed elements in
the sequence. The history vector—also called the hidden state—retains information from
the past elements that are relevant for predicting the current output.

Fig 6.2 depicts the basic structure of a standard RNN. Let (x1, x2, ..., xT ) be an input
sequence of length T, and (y1, y2, ..., yT ) the desired output sequence. Each element from
the output sequence yt is calculated as a function of the hidden state ht:

yt = Wyh × ht (6.5)
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where ht is the hidden state of the RNN. The vector ht is updated as a function of the
current input xt and the previous hidden state ht−1:

ht = σ(Whxxt + Whhht−1 + bh) (6.6)

where σ is an activation function, σ = tanh is used in the vanilla RNN. Whx and Whh

are the weight matrices.
Training RNNs involves optimising a loss function representing the gap between the

predicted outputs and the targets. The gradient of the loss function is backpropagated in
time to learn the temporal dependencies. Standard RNNs are known to have difficulties in
processing long sequence inputs. This is because during backpropagation, the derivative of
the gradient with respect to previous hidden layers tends to decay or explode exponentially
at each time-step, giving rise to the vanishing/exploding gradient problem [110]. Advanced
versions of RNNs have been proposed in the literature to remedy this problem, notably
the Long Short-Term Memory (LSTM) architecture which is introduced next.

6.3.2 LSTMs

Long Short Term Memory (LSTM) has emerged as one of the most popular alternatives
for RNNs to solve the vanishing/exploding gradient problem. The LSTM architecture is
shown in Fig.6.3. The LSTM network controls the flow of information using three trainable
gates. All gates receive as input the pair (xt, ht−1) at time t, and calculate their outputs
as follows:

it = σ(Uixt + Wiht−1) (6.7)

ot = σ(Uoxt + Woht−1) (6.8)

ft = σ(Ufxt + Wfht−1) (6.9)

where it, ot and ft are the input gate, the output gate, and the forget gate respectively;
U and W are trainable weight matrices; and σ is the logistic sigmoid function that provides
an output between zero and one, where zero implies that the whole input to the sigmoid
is discarded while a value of one implies the whole input will pass through. First, the cell
state Ct is calculated as follows:

Ct = ft ⊙ Ct−1 + it ⊙ C̃t (6.10)
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Figure 6.3 – Illustration of an LSTM.

where:
C̃t = tanh(Ucxt + Wcht−1)

The input gate determines the information to be stored in the memory cell vector Ct,
and the forget gate determines which information from the previous memory cell Ct−1 is
irrelevant to the current prediction and omits it.

The hidden state is calculated using the output gate ot which controls how much of
the memory cell vector Ct is retained:

ht = ot ⊙ tanh(Ct) (6.11)

Then, the output yt is calculated as follows:

yt = ϕ(Wyht + by) (6.12)

where ϕ is an activation function; Wy is a trainable weight matrix; by is a bias; and ⊙ is
the element-wise product.

6.3.3 Transformers

Transformers are a type of deep learning architectures that were introduced in [111].
They are primarily used for natural language processing tasks, such as text summarisation
[112], machine translation [113], and text classification [114], but has also been applied to
other domains such as computer vision [115].

Transformers, unlike LSTMs, use attention mechanisms instead of a "memory" com-
ponent, allowing Transformers to better handle long-range dependencies. Additionally,
Transformers can be trained more efficiently on large datasets as they are more easily
parallelised than LSTMs. A brief overview of the functioning of Transformers is provided
below.
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As shown in Fig.6.4 the input is first mapped to a high-dimensional space and a
positional encoder is used to preserve the order of the input sequence. The embedded
input is then passed in parallel through a stack of attention layers. Each attention layer
is composed of a multi-headed self-attention mechanism and a fully connected layer.

Given an input sequence (x1, x2, ..., xn), the multi-head attention module calculates
for each current position i in the input sequence a weighted sum of the input elements
where each weight determines the relevance to the current position i. This is done by
first computing for each element in the sequence a query vector q, a key vector k and a
value vector v. The weights αj for the weighted sum are computed using the dot product
between the query vector of the current position and the key vector kj of each element in
the sequence.

αj = softmax(qi ∗ kj√
(dk)

) | j ∈ {1, 2, ..., n} (6.13)

Where dk is the dimensionality of the key vector. The output of the self-attention
module for each element i is then computed as follows:

oi =
j=n∑
j=1

αj × vj (6.14)

This output is then non-linearly transformed by a fully connected layer. The two
outputs from the self-attention mechanism and the feed forward layer are passed through
a series of residual connections and a normalisation layer. It is common to use a stack of
N >= 2 attention layers, where the output of a given layer k forms the input to the next
layer k + 1, k ∈ {1, ..., N − 1}.

6.4 Spatio-Temporal Representation of Demonstra-
tions

The demonstrations provided by an expert are a succession of observations where the
state of the objects is manipulated through time to accomplish a specific task. We propose
to shape the observations as graphs of connected objects. For instance, if demonstrations
are provided in the form of videos, the objects can first be extracted using an object
detector [116] and then mapped into a graph of connected objects. We suggest a repre-
sentation pipeline that can capture both spatial features, including the state of objects
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Figure 6.4 – Illustration of a Transformer taken from [111].

and the relations between objects, and temporal features reflecting the evolution of the
spatial features over time.

Our representation model depicted in Fig. 6.5, consumes input sequences of observa-
tions and attempts to predict a sequence of the next observations. We consider a manipu-
lation task where an end-effector interacts with a set of objects to solve a given task. The
end-effector can be the hand of a human operator or a gripper of an industrial robot.

First, each observation ot from the demonstrations is represented as a graph Gt where
each node corresponds to an object in the scene and embeds various features that describe
the object such as size, colour, class, etc. Second, each constructed graph is passed through
a GNN to learn a graph-level representation ht

g that we term a spatial embedding for each
observation in the input sequence. Finally, the sequence of the spatial embedding vectors is
fed to a Seq2Seq model that attempts to learn a temporal representation Φ(ot−l, . . . ., ot−1)
that allows for predicting next time-steps.
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Figure 6.5 – The architecture of our representation model. It is composed primarily of three
modules: Scene-Graph Construction module that builds a graph from each observation in
the input sequence, the GNN module that processes the built graphs to provide a spatial
representation for each graph, and the Seq2Seq module to encode the spatial-embedding-
sequences and predict future time-steps.

6.4.1 Scene-Graph Construction

The scene-graph construction module transforms the observation of the environment
into an architecture of connected nodes. An intuitive option for designing such a repre-
sentation for manipulation tasks would be to encapsulate object features in nodes and
relations between objects into edges. This approach for representing the scene as a graph
has been used in various robotic applications [95, 98]. For a manipulation task that in-
volves an end-effector (e.g. human hand, robotic gripper) manipulating objects, a generic
approach to constructing the scene graph is to link the end-effector to the manipulable
objects and the objects to targets.

6.4.2 GNN Module

Once the scene graphs are constructed, they are passed through a GNN model that pro-
cesses them one by one to learn a scene representation hG following the training mechanism
described in Section 6.2.2. We experiment with three types of GNNs: GCN, GraphConv,
and SAGEConv, which we briefly introduce below. In the following, hl

v is the updated
embedding of a node v at the layer l; Θ, Θ1, and Θ2 are trainable weight matrices; eu,v

refers to the edge weight from source node u to target node v; and σ is an activation
function such as ReLu.
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Graph Convolution Network (GCN): GCN [117] layer is defined as follows:

hl
v = σ

Θ×
∑

u∈N(v)∪{v}

ev,u√
d̂vd̂u

hl−1
u



Where d̂v = 1 +∑
u∈N(v) eu,v is a normalisation factor.

GraphConv: Unlike GCN, GraphConv [118] layer learns a separate weight matrix
for the self-features:

hl
v = σ

Θ1 × hl−1
v + Θ2 ×

∑
u∈N(v)

eu,v.hl−1
u


GraphSage (SAGEConv): SAGEConv [104] updates a node v by taking the mean

of the neighbour nodes instead of the sum:

hl
v = σ

(
Θ1 × hl−1

v + Θ2 ×mean
u∈N(v)

hl−1
u

)

We employ PyTorch Geometric [119] for all implementations of GNN layers.

6.4.3 Seq2Seq Module

We use an Encoder-Decoder architecture to process sequences of time-steps. The se-
quence of scene graph embeddings is fed to the encoder that learns a low dimensional
vector which summarises the temporal patterns in the input sequence. The temporal
representation of the input sequence is then passed to a decoder to predict the next time-
steps. We experiment with both LSTMs, introduced in Section 6.3.2 (shown in Fig. 6.6-a),
and Transformers, introduced in Section 6.3.3 (Fig. 6.6-b).

6.5 Experimental Setup

Environment: The task to be solved is for the robot to push an object to a target
destination (see Fig 6.7-a). The robot gets as input the 2D coordinates of the object,
target, and the end-effector. At each time-step, the policy outputs two values dx and dy,
the two displacements to make along the Cartesian axes x and y.
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(a) GNN-LSTM

(b) GNN-Transformer

Figure 6.6 – GNN-Seq2Seq architecture using LSTMs and Transformers. The Seq2Seq
model takes as input the computed embedding of the input sequence and predicts a
future target sequence.
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(a) Snapshot of the pushing task in simulation (b) Scene graph

Figure 6.7 – Snapshot of the pushing task in simulation and the corresponding scene graph

Scene-Graph design: We encode the scene observation into a graph, in which the
nodes represent the objects in the scene and the gripper of the robot (see Fig. 6.7-b). To
establish connections between objects, we follow the approach highlighted in section 6.4.1.
We link the end-effector to the manipulable object and the object to the target. The node
features consist of the 2D position of the object and a one-hot encoding vector to identify
each object in the scene.

6.6 Experiments and Results

We conduct a set of experiments to provide analysis of how several design choices affect
the performance of the representation model. We evaluate the accuracy of predicting the
augmented observation yt+1 from the previous sequence of observations (ot−l+1, . . . , ot) of
length l. yt+1 is a concatenation of the observation ot+1 and a vector enclosing distances
between the connected objects in the scene graph. The additional distances are intended
to encourage the GNN model to also encode the relationships between the connected
nodes.

75



Representation Learning

Description Detail
Graph design
Nodes Each node represents an object
Edges Drawn according to Section 6.5
GNN Hyperparameters
GNN-Type GCN
Hidden channels size 16
Number of layers 1
Aggregation function Average pooling
Dropout 20%
Seq2Seq Hyperparameters
Autoencoder LSTM
Input sequence size ni 3
Output sequence size no 1
Hidden state 8
General Hyperparameters
Learning rate 1e-3
Loss function RMSE

Table 6.1 – The representation model training hyperparameters.

6.6.1 Generating Demonstrations

We generate N = 140 trajectories of successful executions for solving the task using an
artificial RL-expert. A trajectory is considered successful if the object is pushed all the way
to the target. The expert was trained using the SAC algorithm [10] and a shaped reward
driven by the distance between the object and the target. Demonstrations are collected
by executing the expert policy in the environment while recording the observation and
the associated action for each time-step. Our method does not require access to actions,
but some of the baselines to which we compare our method do.

In all the following experiments, the scene graph is constructed as described in the
previous section and all models are trained to predict one time-step ahead. We use 100
trajectories of demonstrations (2362 observations) for training, 20 trajectories (478 ob-
servations) for validation, and 20 trajectories (473 observations) for testing. We train our
model end-to-end, and we measure performance by calculating the Root Mean Squared
Error (RMSE) between the predicted and the ground-truth value on the test dataset.

We consider two ways of generating demonstrations: in one we randomise the target
position using a uniform distribution, while in the other, the target position area (see
Fig. 6.7-a) is first discretised into a grid of evenly distributed positions; then, each time
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(a) Random generation of targets

(b) Grid-based generation of targets

Figure 6.8 – Generation of target positions using two methods: (a) Targets are randomly
generated using a uniform distribution, and (b) Target positions are chosen from a pre-
defined grid.
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the expert policy is invoked to generate a demonstration, one position from the finite
generated positions is selected. In both scenarios, the position of both the gripper and
the object is kept fixed. Fig 6.8 shows the target distribution obtained for the training,
validation and test datasets using both methods.

We train two identical GNN-LSTM representation models where the details are shown
in Table 6.1. Two different sets of demonstrations are used, produced using the two afore-
mentioned methods for generating targets. After the training is completed, we compute
the RMSE on the test dataset. We also visualise in Fig. 6.9 four original trajectories from
the test dataset against their prediction using the obtained representation models.

The model that was trained with equitably distributed targets outperformed the model
that was trained using randomly generated demonstrations with an RMSE=0.014 against
an RMSE=0.066. This considerable margin of improvement is reflected in predicted tra-
jectories that are closer to the original trajectories as can be seen in Fig. 6.9.

This shows that it is essential to carefully choose the trajectories of the demonstra-
tions to be used for training the representation model in order to achieve optimal perfor-
mance. Random generation of demonstrations can lead to data redundancy and under-
representation of the state space. This is clearly illustrated in Fig.6.8-a, where there is an
overlap between the generated points in the same data split as well as between the three
splits. In what follows, we exclusively use grid-based generated demonstrations.

6.6.2 GNN module ablation

We first investigate the ability of the GNN module to learn a spatial representation of
the scene observation that can provide the Seq2Seq module useful features for predicting
the next time-step. We use the architecture shown in Fig. 6.6-a. The LSTM seq2seq
model hyperparameters are held constant with an input sequence size of three consecutive
observations. We focus on the effect of varying GNN’ number of layers and hidden channels
on the performance of the trained representation. We experiment with the three variants
of GNNs: GCN, GraphConv, and SAGEConv, previously introduced in section 6.4.2.

By varying the number of GNN layers, we evaluate how deep we have to reach into the
graph to learn an efficient embedding for each node while varying the number of the GNN
hidden channels evaluates the information capacity needed for each node embedding to
adequately predict yt+1.

The results are shown in Fig 6.10-a. GraphConv and SAGEConv outperformed GCN
with the best RMSE values of 0.0057 and 0.0048 respectively. This can be explained by
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(a) Results for the representation model trained on demonstrations using randomly generated targets

0.6

0.7

0.8

0.9

1.0

1.1

0.10 0.05 0.00 0.05 0.10

0.6

0.7

0.8

0.9

1.0

1.1

0.10 0.05 0.00 0.05 0.10

Trajectories from test dataset, Output_seq: 1, Input seq size: 3, rmse: 0.0144

x axis in meters

y 
ax

is 
in

 m
et

er
s

Gripper, Ground truth trajectories
Gripper, Predicted trajectories
Object, Ground truth trajectories
Object, Predicted trajectories

(b) Results for the representation model trained on demonstrations using grid-generated targets

Figure 6.9 – A plot of original trajectories vs. predicted trajectories of the robot gripper
position (represented in red) and the object position (represented in green). The solid
lines represent trajectories from original demonstrations, and the dotted lines represent
predicted trajectories using the trained representation model.
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the efficiency of the update functions of GraphConv and SAGEConv which have more
flexibility in combining the node features and the neighbouring nodes as opposed to GCN
which learns one weight matrix for both. For the three types of GNN the higher the number
of hidden channels the better the performance. The best RMSE values were obtained using
a number of layers equal to two. Two is also the diameter 1 of our graphs, which means
that it allows reaching all nodes in the graph from a given node. It can also be seen that
using more layers than the diameter of the graph does not improve performance, which is
consistent with the findings in [94] and with the results in Table 4 in [120]. Using a single
layer can considerably degrade performance, which is more evident with the GCN layer.

6.6.3 Seq2Seq module ablation

We set the GNN model to the optimal configuration from the previous experiments
and we train the representation model using two different architectures, GNN-LSTM and
GNN-Transformer shown in Fig. 6.6-a and Fig. 6.6-b respectively. In addition to the
hyperparameters that are specific to each seq2seq model, we experiment with different
values of the input sequence size l ∈ {1, 2, ..., 8}. This will provide an indication of how
many time-steps to retain from the past in order to reliably predict the next time-step.

For the GNN-LSTM, we train different models by exhausting every combination of
the input sequence size values and the LSTM hidden size ∈ {8, 16, 32, 64}. The latter rep-
resents the size of the memory that the seq2seq model keeps over the previously processed
time-steps. For the GNN-Transformer, we train a model for each combination of input
sequence size values and the following set of parameter values: Transformer hidden size
∈ {8, 16, 32, 64}, and the number of attention heads ∈ {1, 2, 4}. For the sake of clarity, we
plot only for a number of heads of four that achieved the best performance.

The results are shown in Fig 6.10-b. For both architectures, we observe that the
more time-steps we include in the input sequence the better the performance and the
representation performance is not remarkably sensitive to the variation of the hidden
size in both the LSTM and the Transformer. Using the Transformer the performance
is poorer compared to LSTMs. We believe that this is tied to the high complexity of
the Transformer model. In our architecture, the number of trainable parameters in the
Transformer encoder-decoder is 280136 vs. 11016 trainable parameters for the LSTM
encoder-decoder. Since the demonstration data is usually limited in imitation learning, it

1. The diameter of a graph is the shortest path between the most distanced pair of nodes in the graph.
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Table 6.2 – Results summary. Optimal values are depicted in bold.

RMSE MAE Max-error
GNN-LSTM 0.0048 0.00348 0.02454
GNN-Transformer 0.0065 0.0048 0.02936
LSTM-only 0.00166 0.00127 0.00395
Transformer-only 0.00174 0.00127 0.00919

is most desirable and practical to train simpler architectures with as few parameters as
possible.

We note that the task of predicting the subsequent time-step based on the preceding
sequence of observations can be performed in numerous ways and GNNs are not necessarily
required. We also trained models using Seq2Seq-only architectures. We feed directly the
sequence of observations to the Seq2Seq model and attempt to predict the next augmented
observation. The training is done similarly to the previous experiments using the optimal
parameters found in the last results. Table 6.2 summarises the best-obtained results for
each architecture variant for an input sequence length l = 3. We can see that LSTM-only
and Transformer-only outperform the GNN variants. This implies that the GNN model
can be further improved, either by modifying the way the scene graph is constructed or
by using more complex GNN layers such as [105]. Although Seq2Seq-only models might
be the most efficient, they are limited to fixed-sized vector inputs, which requires knowing
and setting the number of objects in advance. GNNs on the other hand provide the benefit
of handling a variable number of objects [121].

6.7 Summary

This chapter outlines a novel representation pipeline for modelling expert demonstra-
tions. A general framework is proposed to learn a representation model that simultane-
ously captures the spatial and temporal features of demonstration trajectories. Observa-
tions are modelled as scene graphs of connected objects and processed using GNNs to de-
rive spatial patterns while the temporal patterns are tracked using Sequence-to-Sequence
modelling. The representation pipeline is trained to predict future time-steps based on
previous observations. In the next chapter, we present an Imitation Learning from Ob-
servation framework, which exploits the predictive model introduced in this chapter to a
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RL-based learning setup.
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RL-BASED FRAMEWORK FOR LEARNING

FROM OBSERVATION
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7.1 Introduction

The imitation policy can be either trained directly from demonstrations or involve
the agent to learn by trial and error. Direct imitation learning is advantageous on two
counts: firstly, it permits offline training, and secondly, it requires no interaction between
the agent and the environment to learn the imitation policy. Nevertheless, relying solely
on demonstrations is insufficient to train robust policies [122]. The typical difficulty as-
sociated with direct imitation is that the training dataset is not entirely representative
of the demonstrated task. The gathered demonstrations only cover a selection of possible
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situations that the imitator might encounter during the deployment phase. The agent is
prone to divert from the optimal path and land in a state that is neither recognised nor
represented by the imitation policy. The agent may drift from the desired path either by
compounding errors along a trajectory or as a consequence of external factors such as
a change in the environment dynamics. This raises a major generalisation challenge and
motivates learning from experience.

Learning from experience provides the agent with the ability to explore the environ-
ment and learn about what to do in unseen situations. Reinforcement Learning is a com-
mon choice for learning behavioural skills by trial and error. The task to be solved must
be modelled as a Markov Decision Process and a reward function needs to be designed.
Engineering a task-specific reward function is one of the major challenges faced by RL
users. The reward function can be either shaped (a.k.a. dense reward) or sparse. A shaped
reward involves providing the agent with intermediate rewards that guide it throughout
the exploration of the environment towards the goal of the task [123]. Although shaping
rewards has been shown to be effective in assisting the training to converge to optimal
policies for solving various tasks, it is nonetheless difficult to design and requires careful
engineering by an expert as it can lead to sub-optimal and undesirable behaviours if it is
not adjusted properly [48]. A more straightforward alternative is to use a sparse reward
that provides a recompense only for the last action leading to achieving the goal state
and solving the task. The shortcoming of this solution is that it is quite difficult to con-
verge to the optimal policy if the goal state is not visited during the exploration of the
environment. This is much more liable to be experienced if the state space is continuous
and of high dimension [68].

By combining demonstrations and experience, the shortcomings of each approach could
be alleviated. While demonstrations provide guidance to the imitator to converge on the
expert’s behaviour, learning by trial and error gives the agent more flexibility on the way
the task is performed while exploring a great deal of the environment and optimising the
objective function.

This chapter presents a modular framework for learning from observation. To learn
the imitation policy, demonstrations are leveraged through the representation model in-
troduced and discussed in the previous chapter. Reinforcement Learning is employed to
allow the agent to generalise to a wider area of the environment state space. The reward
function is task-agnostic and drives the agent to a policy that is close to that of the expert.
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Figure 7.1 – Our framework for solving ILO overview. It consists of two phases: (1) A
spatio-temporal representation is trained to capture both spatial features for each obser-
vation and temporal aspects of sequences of observations in the demonstrations dataset.
(2) Train the imitation policy using RL with a task-independent reward function that
builds on the representation trained in phase 1.

7.2 Proposed Method

We propose a flexible and general framework to teach robots to imitate manipulation
tasks demonstrated by an expert. The architecture of our method is depicted in Fig. 7.1.
It is mainly composed of two phases that can be optimised and refined separately: The
first phase consists in learning a representation that embeds the essential aspects of the
observed demonstrations (detailed in the previous chapter), and the second phase uses
an out-of-the-shelf RL algorithm with a predefined task-agnostic reward function to learn
the imitation policy.

Our goal is to lead the imitator to solve the object manipulation task demonstrated
by the expert. We accomplish this by using RL jointly with the representation model
introduced in the preceding chapter. The representation model guides the policy search
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towards a behaviour whose representation matches the expert as closely as possible. To
this end, we design a task-independent reward function that we term imitation reward
function and define in the following section.

7.3 Task-agnostic Imitation Reward Function

The imitation reward function is defined in Eq 7.1 and illustrated in Fig. 7.2. It
measures the gap between the state predicted by the representation model given the
history of the last visited states and the actual state reached by the agent.

R (st) =

 0 if t ∈ [0, l − 1]
R (st | st−1, . . . , st−l) = f(d) if t ≥ l

d = ∥st − s′
t∥2

f(d) =

 0 if d ≥ ε

rmax ×
(
1− 1

ε
d
)

if d < ε

(7.1)

More concretely, consider a representation model that has been trained on the expert
data to predict the future time-step using the last l observations. While learning the
imitation policy, the agent starts the episode by executing actions of the current policy
and receives no reward until it piles up l observations. Then the representation model is
invoked and applied to the input sequence to predict the next time-step. The predicted
observation is compared to the actual observation of the agent after executing the action
for the given state. If the distance d = ∥st − s′

t∥2 between the actual and the predicted
observation is greater than ε, the agent is unrewarded. Otherwise (if d < ε), it receives
a positive reward to induce the agent to reproduce actions that are predictable by the
representation model. The maximum reward is rmax which can be obtained if the imitator
performs an action that leads to a state coinciding with the forecasted one. ε and rmax are
hyperparameters in our framework that we set empirically. We have opted for the reward
to be linearly proportional to the distance between the predicted state and the actual
state, but one can experiment with any decreasing function defined in the interval [0, ε].
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Figure 7.2 – Illustration of the imitation reward. The representation model commences
predicting the future time step once the required l observations have been stacked and the
agent begins to receive rewards according to its proximity to the predicted observation.
Prior to this, the agent receives neutral rewards of zero. The reward is calculated as
a function f of the distance d = ∥st − s′

t∥2 between the actual state st attained by the
imitator and the state predicted by the representation model s′

t. We also define a threshold
ε from which the agent starts receiving positive rewards.

7.4 Experiments and Results

7.4.1 Experimental setup

We use the set of demonstrations generated in Chapter 6, Section 6.6. We adopt the
same setup as the expert. The robot learns the pushing task by trial and error. At every
time-step, the policy decides which move to make along the x and y axes with a maximal
displacement of 5cm in each direction. The maximum episode length is set to 85 time-
steps and it is terminated in the following cases: if the robot exits the working space, if
the object is pushed off the table, or if the target state is achieved.

7.4.2 Training the imitation policy

Any off-the-shelf RL algorithm can be used to optimise the imitation reward defined
in Section 7.3 to learn the imitation policy. We use Soft Actor-Critic (SAC)—a state-
of-the-art RL algorithm introduced in Chapter 2. We utilise three trained GNN-Seq2Seq
models from the experiments conducted in Chapter 6, Section 6.6 to compute the reward
function as described in the last section. The training is performed for 5M time-steps.

For the same input sequence size l = 3, we experiment with two representation models,
one being the optimal model and the other being the poorest model obtained in the rep-
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Figure 7.3 – Imitation learning results. For each of the three representation models, we
show at the top the success rate obtained for each value of ε and plot the training curves
for the highest success rate.

resentation learning experiments with RMSE = 0.0048 and RMSE = 0.052 respectively.
We also experiment with a representation model trained on a larger sequence of l = 7
that obtained an RMSE = 0.0038. For every representation model, we train different
imitation policies using a set of ε values ∈ {0.02, 0.03, 0.04, 0.05, 0.06}. ε is an important
parameter in our framework as it denotes the threshold at which the agent begins to
receive a non-zero reward.

The results are shown in Fig. 7.3. For each representation model, we plot the training
performance curve that corresponds to the highest success rate. It can be seen that using
an under-performing representation model does not allow the robot to gain any expertise
from the expert demonstrations. Good results are obtained for the other two representa-
tion models, and the performance varies with the value of ε. The best success rate scores
were achieved for intermediate values of ε ∈ {0.03, 0.04}. Low values of ε cause the reward
to be sparse and the agent may never discover regions yielding non-zero rewards. Setting
ε to a high value makes the policy prone to the reward bias issue: Once the policy begins
generating actions leading to values of d inferior to ε, the policy is susceptible to divert
its attention from approaching a behaviour recognisable by the representation model and
simply settle for accumulating small rewards. In this case, the agent attempts to stay
the longest possible time in the scene and exhaust all available time-steps. This can be
observed from the mean episode length which we found to be quite close to the maximum
time-steps allowed for the robot to solve the task. Increasing the size of the input sequence
results in faster convergence but the drop in performance occurs multiple times and the
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final performance is slightly worse than when using only a sequence of size three.
The training performance curves show that the imitation reward function is positively

correlated with the expert’s optimised ground-truth reward and increases to converge in
a monotonic pattern. This suggests that solving the imitation problem in our framework
corresponds to optimising the objective function of the expert. The correlation between
the imitation reward and the expert reward has the advantage of allowing the user to save
the last policy with the highest imitation reward, knowing that it is the optimal policy for
maximising the expert’s objective function for a given training configuration. This cannot
be done, for instance, with adversarial methods since the discriminator reward function
is non-stationary and oscillates around a saddle point [64].

7.4.3 The impact of the ε threshold

Here, we study the impact of varying the threshold ε on the training performance. We
fix the maximum number of time-steps that the agent has to solve the task in each episode
to 150 and experiment with different values of ε. The threshold ε is a hyperparameter
in our framework that determines the proximity to the demonstrations from which the
agent starts receiving a positive reward. The results are displayed in Fig 7.4. The training
performance depends on the value of ε. For very high or very low values, the performance
is poor, even if the imitation reward is converging. Low values of ε lead to a scarcity of
reward returns and make it difficult for the agent to obtain positive rewards to be guided
towards the optimal policy. On the other hand, the higher the value of ε, the more likely
it is to induce the survival bias that we detail below.

During training, the imitation policy is optimised using RL and the reward function
defined in Eq 7.1. The cumulative reward for a trajectory of length T is as follows (we
omit the discounting factor γ for simplicity):

t=T∑
t=0

Rt =
t=l−1∑

t=0
Rt +

t=T∑
t=l

Rt with
t=l−1∑

t=0
Rt = 0

=⇒
t=T∑
t=0

Rt =
t=T∑
t=l

Rt

(7.2)

For simplicity, let us consider that dt = ∥st − s′
t∥2 = ε1 for t ∈ {l, ..., T}, where
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Figure 7.4 – Imitation Learning performance using the imitation reward function defined
in Eq 7.1 with different values of ε.

f(ε1) = 1. Hence, the total reward is:

Rε1 =
t=T∑
t=0

Rt =
t=T∑
t=l

f(dt) = T − l + 1 (7.3)

If the task is not solved yet, the agent will consume all the available time-steps in an
episode interacting with the environment (i.e. T = Tmax):

Rε1 = Tmax − l + 1 (7.4)
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Now consider the case where the agent follows a trajectory with a representation closer
to the representation followed by the expert. Let’s consider that dt = ε1+α for t ∈ {l, ..., T},
where f(ε1+α) = 1 + α. The total reward of the trajectory is:

Rε1+α =
t=T∑
t=0

Rt =
t=T∑
t=l

f(dt) = (T − l + 1)× (1 + α) (7.5)

For the agent to prefer this trajectory to the former, Rε1+α should be greater than Rε1 ,
which implies the following:

(T − l + 1)× (1 + α) > Tmax − l + 1

=⇒ T >
Tmax + α(l − 1)

1 + α

(7.6)

In our experiments we used l = 3 and Tmax = 150:

=⇒ T >
150− 2α

1 + α
(7.7)

For an improvement of α = 0.05:

=⇒ T ≥ 143 (7.8)

This implies that all trajectories of a length less than 143 are going to be regarded as less
favourable, even if a higher reward (1 + α) is given for every time-step of the path and
with a representation closer to the expert’s (ε1+α < ε1).

7.4.4 Comparison to baselines

We evaluate the performance of our method against the following baselines: GAIL [64],
BC [56], GAILfO [74], and GAILfO-s [124]. We note that GAIL and BC require access
to actions while GAILfO, GAILfO-s, and our method make use solely of observations to
learn the imitation policy.

GAIL, GAILfO, and GAILfO-s are trained using the discriminator reward function
defined in Eq. 7.9, Eq. 7.10, and Eq. 7.11 respectively.

R(s, a) = log Dθ(s, a)− log(1−Dθ(s, a)) (7.9)

R(s, s′) = log Dθ(s, s′)− log(1−Dθ(s, s′)) (7.10)
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Figure 7.5 – Learning curves for our approach and three other baselines: GAIL, GAILfO,
and GAILfO-s, compared to the expert. All curves refer to the average returns of the
ground-truth reward that is optimised by the expert.

R(s) = log Dθ(s)− log(1−Dθ(s)) (7.11)

While the use of this reward proved effective for training GAIL and GAILfO-s, it was
not the case for GAILfO, which suffered from the reward bias problem [89] that led the
agent to converge on the behaviour of exiting the environment at the soonest opportunity
to avoid receiving negative rewards. The solution introduced in Chapter 5, Section 5.4.4,
involves adding an offset to the reward function, which effectively mitigates the problem
and leads to policy convergence.

The training curves are depicted in Fig. 7.5, and Table 7.1 reports the final perfor-
mance. Our approach surpasses all other methods by a considerable margin, converging
close to the expert’s asymptote. The final performance of our method is comparable to
GAIL’s with a success rate of 99%, outperforming all other methods.

GAIL GAILfO GAILfO-s BC Ours
Success rate 99% 75% 96% 93% 99%

Table 7.1 – The final performance of different IL methods. The success rate is calculated
over 100 rollouts in simulation.
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Figure 7.6 – The real-world setup for the pushing task. The robotic arm (UR10e) is
required to push the blue object to a target position.

GAIL GAILfO GAILfO-s BC Ours Expert
Success rate 6/10 1/10 6/10 8/10 10/10 10/10

Table 7.2 – Sim-to-Real results. We report the success rate of solving the pushing task
for 10 different targets.

7.4.5 Deployment on a real robot

We run the obtained policies on a real robot without fine-tuning or additional train-
ing. We utilise a Motion Capture System (MoCap) to locate the object in the scene. A
retro-reflective target is installed on the top of the object (see Fig. 7.6) and six motion
infrared tracking cameras covering the scene are used to compute the object’s position
using DTrack2 software from ART [45].

The results are reported in Table 7.2. Our method outperforms all other methods and
succeeds in reaching 10 out of 10 goals. GAIL and GAILfO-s, which achieved 99% and
96% respectively in simulation, scored only a 6/10 success rate on the real robot. The BC
method surprisingly performed better than adversarial methods on the real robot, given
that the BC method is known to suffer from the covariate shift problem [56].
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7.5 Adaptive Imitation Reward Function

The imitation reward defined in Eq 7.1 is sensitive to the parameter ε. The findings in
Section 7.4.3 indicate a correlation between the selection of ε and the imitation training
performance.

On one hand, the higher ε, the more margin the agent has to move away from tra-
jectories whose representation is similar to the expert’s while still obtaining a positive
reward. This results in learning a policy not close enough to the expert’s behaviour. On
the other hand, low values of ε make the reward feedback very sparse, which makes the
demonstrated task difficult and time-consuming to solve. The difficulty of convergence
varies with the complexity of the task and the scale of the state and action spaces.

A hyperparameter search is necessary to locate the optimal value for ε, which lies
between the two extremes stated above. In the following, we address this limitation and
propose a strategy that adaptively changes the reward function throughout the training
process.

7.5.1 Adaptive Reward Definition

We propose the adaptive reward function outlined in Eq. 7.12. It modifies the imitation
reward function defined in Eq. 7.1 to adaptively change the value of ε as shown in Fig 7.7.
The idea is to start with an initial value of ε and gradually decrease it during the learning
process as the imitator gains experience. This would allow the imitator to be guided
smoothly towards the expert policy.

R (st) =

 0 if t ∈ [0, l − 1]
R (st | st−1, . . . , st−l) = f(d) if t ≥ l

d = ∥st − s′
t∥2

f(d) =

 0 if d ≥ ε

rmax ×
(
1− 1

εmax
d
)

if d < ε

ε ∈ [εmin, εmax]

(7.12)

We propose two versions of the adaptive reward function, V2 defined in Algo 3, and
V3 defined in Algo 4. The next section presents a detailed overview of the two rewards,
along with the results of experimenting with different hyperparameters.
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Algorithm 3: Adaptive Imitation Reward Function V2.2
Input: εmin, εmax, εstep, ratio
ε← εmax ;
while Training is not done do

while Episode is not done do
a← π(st);
(st+1, rt, done)← execute the action a;
(rt is calculated according to Eq 7.12 using the current ε)

end
begin Update ε for Reward 2.2

Stack episodes in a queue Q of size n = 20 ;
if Q is full and the number of non-zero rewards in Q
≥ ratio× length(Episodes ∈ Q) then

ε← ε− εstep ;
Fully clear Q ;

end
end

end

Algorithm 4: Adaptive Imitation Reward Function V3.2
Input: εmax, ratio, hwsize

ε← εmax ;
while Training is not done do

while Episode is not done do
a← π(st);
(st+1, rt, done)← execute the action a;
(rt is calculated according to Eq 7.12 using the current ε)
begin Update ε for Reward 3.2

Stack d = ∥st − s′
t∥2 in a queue Q of size N = hwsize ;

if Q is full and size({d, d ∈ Q and d ≤ ε}) ≥ ratio× hwsize then
ε← median({d, d ∈ Q and d ≥ ε}) ;
Fully clear Q ;

end
end

end
end
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Figure 7.7 – The figure illustrates the adjustment of the ε value in Eq.7.12, starting at
εmax, decreasing by εstep and bounded by εmin.

7.5.2 Experiments and Results

Adaptive Reward Function V2

The value of ε is updated according to how many non-zero rewards are received for
each episode. For each update, ε is decreased by εstep. The value of ε is updated if the
average of non-zero rewards over a queue of n = 20 recent episodes is greater or equal to
ratio× length(Episodesinthequeue). Each time ε is updated, the whole queue is cleared.
We also experiment with two other variants V2.0 and V2.1 in Appendix B. V2.1 removes
only the oldest item in the queue. V2.0 updates ε based only on a single episode.

The ratio parameter represents the fraction of the number of state predictions with
positive rewards over the total time-steps of the episode.

We experiment using different values of εstep and ratio and report results in Fig 7.8.
The lower the value of εstep (i.e. slightly modifying ε), the slower the imitation policy is
to converge. Whereas using a high value of εstep may result in reaching a very low ε in
record time before the agent acquires any expertise using intermediate ε and thus make
it impossible to converge to an optimal policy since positive values will be scarce for very
low values of ε. This is clearly visible in the results of Reward V2.0 in Appendix B, Fig B.1
for (ratio = 0.5, ε = 1e− 03) and (ratio = 0.7, ε = 1e− 03).

High values of ratio make it difficult for the agent to update the value of ε and therefore
it remains at high values, which prevents convergence.
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Figure 7.8 – Results for Reward "V2.2". Each cell in the grid depicts the training perfor-
mance and the evolution of ε for different values of εstep and ratio. εstep ∈ {1e − 2, 1e −
3, 1e− 4, 1e− 5} and ratio ∈ {0.5, 0.7, 0.8, 1}.

In summary, results for Reward V2, suggest that an imitation policy that converges
to a policy with performance close to the expert is possible for a ratio around 0.7 and
0.8 with a careful tuning of εsize. Version V3 of the adaptive reward function employs an
automatic update process of ε, rather than using a predefined εsize.
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Figure 7.9 – Illustration of the updating rule for the Reward "V3.2". The updated value
εnew is computed by taking the median of distances d = d(s, s′) that are less than the
current ε from the hwsize most recent time-steps.

Adaptive Reward Function V3

The value of ε is updated according to how many time-steps the distance between
the predicted state and the actual state d(s, s′) is less than ε (see Fig 7.9 for an illus-
tration). This evaluation is done over a window of the hwsize recent time-steps. Instead
of decreasing ε by εstep, we adaptively update ε depending on the scale of how close
actual states are from predicted states. ε is updated only if the number of time-steps
with d ≤ ε is higher than a ratio multiplied by the history window size hwsize. ε is
updated to the median of the distance values that are less than ε. For instance, sup-
pose that hwsize = 10 and the current value of ε = 0.07 and d(s, s′) values measure
{0.02, 0.03, 0.04, 0.05, 0.06, 0.09, 0.1, 0.2, 0.3, 0.4}. The next value of ε will be set to the
median(d, d < ε) = median(0.02, 0.03, 0.04, 0.05, 0.06) = 0.04. Updating ε to the median
ensures that the current policy can still get positive rewards for at least size({d,d≤ε})

2 time-
steps. Another option for updating ε is to use the first quartile or the third quartile
instead of the median. Using the first quartile will make it more challenging for the agent
to progress to the next level of difficulty, as it results in an important decrease in ε and a
reduction in the number of points that receive positive rewards under the current policy.
Using the third quartile has the opposite effect, as it will make it easier for the agent to
progress to the next level of difficulty with a slight decrease in ε and more points that
still can receive positive rewards under the current policy.

The parameter ratio is the fraction of the number of state predictions that satisfy
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Figure 7.10 – Results for Reward "V3.2". Each cell in the grid depicts the training
performance and the evolution of ε for different values of hwsize and ratio. εstep ∈
{1e3, 3e3, 5e3, 8e3} and ratio ∈ {0.5, 0.7, 0.8, 1}.

∥st − s′
t∥2 ≤ ε over the total number of time-steps in the history window hw. When ε is

updated, all of the hwsize time-steps are removed. We also experiment with removing only
the oldest time-step in Appendix B. The results are reported in Fig 7.10 using different
values of hwsize and ratio.

The imitation policy converges for all values of ratio ∈ [0.5, 0.9] and all values of
hwsize. The advantage of Reward V3 over Reward V2 is that we do not need to manually
define the rate of change of ε.
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The adaptive imitation reward function can be seen as a curriculum generator [125].
The imitation policy is learnt by minimising the distance between the actual state of the
imitator and the predicted state by the representation model. The margin from which
the agent starts receiving positive rewards is ε. The lower ε the harder it is for the agent
to find trajectories with positive rewards and converge. By setting ε to a high value and
decreasing it gradually during training, the agent is gradually guided towards the expert’s
behaviour. Once one level of difficulty has been solved, the next value of ε sets a slightly
harder level of difficulty, and the skills acquired in the last level receive zero-rewards
to induce the agent to further improve its performance. Our adaptive imitation reward
function allows for automatic curriculum learning that is not required to be stipulated by
the experimenter.

7.6 Summary

In this chapter, we presented a general framework for imitation from observation util-
ising RL with an agnostic reward function. The RL model does not have direct access
to demonstrations such as in DDPGfD [67] or GAIL [64]. Our method learns implic-
itly from the imitation reward function, which employs the representation model trained
on demonstrations. The representation model is trained to extract spatial and temporal
features from the expert demonstrations and the imitation learning process encourages
the imitator to adopt a behaviour that has similar spatial and temporal patterns as the
expert.

The findings, published in [126], demonstrate promising results and compare favourably
to state of the art methods. Additionally, the trained policies obtained using our method
transfer better from simulation to real-world compared to BC and GAIL.

The next chapter will focus on evaluating the generalisability of our method to a
variety of tasks. We apply our method to a set of manipulation tasks from the Meta-
World benchmark [127].
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8.1 Introduction

This chapter aims to explore the applicability of our approach introduced in Chapter 7
to more complex tasks from the Meta-World robotic environments. While our previous
work has used the pushing task for preliminary experiments, the Meta-World tasks pose
particular challenges due to their high-dimensional state and action spaces and significant
differences in the simulator, robot, and the environment settings. This affords us the
opportunity to assess the generalisability of our approach across diverse environments.
The experimental methodology is outlined as follows.

— Train expert agents using RL with task-specific and predefined reward functions.
— Generate demonstrations using the successfully trained RL models
— Train representation models of demonstrations
— Train an imitation policy for each task
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— Compare to GAIL and GAILfO baselines

8.2 Metaworld Benchmark

Meta-World [127] is an open-source benchmark purpose-built for Meta-Learning and
Multi-task learning. A total of 50 manipulation tasks are designed using the MuJoCo
simulator [128] and the OpenAI Gym interface [129]. The tasks range from simple point
reaching in the 3D space to more complex tasks such as grasping objects and open-
ing/closing a door. A Sawyer robot is used to solve the manipulation tasks by either
manipulating an object to reach a target. All the tasks share a common structure for the
state and action space. The state of the environment is defined as follows:

st =


obt−1

obt

gt

(8.1)

Where obt includes the measurements at time t of the 3D Cartesian position of the end-
effector, a scalar value measuring the opening of the gripper, the 3D Cartesian position
and the quaternion of the first and second object. And gt is the 3D Cartesian position of
the goal. If no second object is present, the corresponding values are set to zero.

The robot acts on the environment by executing the following output of the policy
[∆x, ∆y, ∆z, gr]. The first three values (∆x, ∆y, ∆z) ∈ [−0.1, 0.1]3 indicate the change of
the absolute position of the end-effector in the 3D Cartesian space and the last value, gr,
commands the gripper opening. Table 8.1 summarises the comparison between the state
and action spaces of our Pushing task and the Meta-World tasks.

The description of all Meta-World tasks are listed in Table C.1 in the Appendix. C.
Each task involves either the manipulation of one object with a varying goal position or the
manipulation of two objects with a stationary goal position (see Fig. 8.1 for an example of
each). The success metric, ∥posobject−posgoal∥2, is defined based on the euclidean distance
calculated between the object to manipulate and the goal position.

104



Generalisation to Other Tasks

State Space Action Space

Description Dim Description Dim

Our 
Pushing 

Task

- 2D position of the gripper, object and 
the target
- Only the current state is used

ℝ6
- 2D control
- (𝑑𝑥, 𝑑𝑦) ∈
−0.5, 0.5 2

ℝ2

Meta-
World 
Tasks

- 3D position of the 
gripper + Opening of 
the gripper
- 3D position and the 
orientation of each 
object (one or two 
objects)
- 3D position of the 
target

Use only the 
current state

ℝ21

- 3D + gripper 
control
- (𝑑𝑥, 𝑑𝑦, 𝑑𝑧) ∈
−0.1, 0.1 3

ℝ4

Use the current 
state+ previous 
state

ℝ39

- 3D + gripper 
control
- (𝑑𝑥, 𝑑𝑦, 𝑑𝑧) ∈
−0.1, 0.1 3

ℝ4

Table 8.1 – Comparison between the state and action spaces of our Pushing task and
Meta-World tasks.

8.3 Generating Demonstrations

We first train RL models on the predefined reward functions for each task of the
benchmark. The reward details can be found in Appendix E1 in [127]. We use SAC
method with a fixed neural network architecture and the hyperparameters depicted in
Table C.2. We experimented with both an input that consists of only the current state
and an input that concatenates the current and previous time-steps. The latter proved to
be more effective. The corresponding success rate scores are shown in Fig. C.4 and the
training curves are shown in Fig. C.2 and Fig. C.3.

The successfully trained models were used to generate demonstrations for 33 tasks.
For each task we generated 140 successful trajectories where the objective of the task
is reached. For this, we rolled out the RL-obtained policies on the environment to solve
tasks for different initial states. The random space from which the position of objects
are samples is first discretised into a grid of evenly distributed positions. Then, for each
demonstration, the initial state is randomly chosen from the possible values from the
discrete space of initial states. The statistic details of the generated demonstrations are
given in Table C.3.
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(a) sweep-v2 task

(b) hammer-v2 task

Figure 8.1 – Two examples of tasks in the Meta-World benchmark. The sweep-v2 task
requires the robot to sweep a puck towards a goal location. In the hammer-v2 task the
robot needs to pickup the hammer and use it to hammer a screw into the wall.

8.4 Representation Learning of Demonstrations

8.4.1 Scene-graph Construction

The state of the environment for a given task is represented as a graph where each
node corresponds to a physical element in the scene, such as the gripper, target, and the
manipulable objects. The edges between nodes indicate the potential interactions between
them. In our case the gripper is connected to all the manipulable objects which are in their
turn connected to the target (see Fig.8.2). Each node is characterised by a set of features
that include the 3D position in the Cartesian space and a one-hot encoding vector that
identifies which element is being represented.
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Figure 8.2 – Illustration of scene-graphs.

8.4.2 Representation Model Training

We use the representation model pipeline introduced in Chapter 6. The model takes as
input a sequence of l observations (ot−l+1, ..., ot) sampled from the demonstration dataset
and attempts to predict information about the subsequent time-step. The predicted in-
formation is a vector yt+1 that concatenates the 3D position of all the objects in the scene
and the distance between the objects that are connected by an edge in the scene graph.
The hyperparameters that yielded the best results in the experiments conducted in Chap-
ter 6 have been selected for training the representation models of demonstrations, and
they are listed in Table 8.2. The representation models are trained end-to-end using 100
demonstration trajectories, while using 20 each for validation and testing. The evaluation
performance results on the test split are shown in Table C.4.

8.5 Training the Imitation Policy

8.5.1 Experimental Setup

The robot attempts to learn a given task by trial and error using the predictive repre-
sentation model trained on demonstrations and doesn’t have direct access to demonstra-
tions. At each time-step, the robot decides which move to make in the 3D space along the
x, y, and z axes with a maximum displacement of 1cm in each direction. The maximum
episode length, Tmax, is set to be slightly higher than the length of the longest trajectory
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Description Detail
GNN Hyperparameters
GNN-Type SAGEConv
Hidden channels size 64
Number of layers 2
Aggregation function Average pooling
Dropout 20%
Seq2Seq Hyperparameters
Autoencoder LSTM
Input sequence size 3 or 7
Hidden state size 32
General Hyperparameters
Learning rate 1e-3
Loss function RMSE

Table 8.2 – The representation model training hyperparameters.

in the demonstration dataset. The episode is concluded if the goal state is reached or
when the time-steps have been exhausted.

8.5.2 Training the Imitation Policy

We use the adaptive reward function introduced in Chapter 7 and we train the imi-
tation policies by following Alg.4. The imitator is trained using Reinforcement Learning
and rewarded based on the difference between the current state of the environment (s)
and the one predicted by the representation model (s′), as computed according to Eq. 8.2.
This reward is positive only when the distance between the two states, d(s, s′), does not
exceed a threshold ε. The value of ε is pre-initialised at the beginning of the training and
gradually decreased as illustrated in Fig. 8.3-b and detailed in Alg.4.

R (st) =

 0 if t ∈ [0, l − 1]
R (st | st−1, . . . , st−l) = f(d) if t ≥ l

d = ∥st − s′
t∥2

f(d) =

 0 if d ≥ ε

rmax ×
(
1− 1

εmax
d
)

if d < ε

(8.2)

The initial value of ε is set to εmax = 100×RMSE where the RMSE is the Root Mean
Squared Error of the representation model calculated on the test split of the demonstration

108



Generalisation to Other Tasks

(a) Illustration of the imitation reward given to the
agent at every time-step. The f function is defined

in Eq.8.2
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Figure 8.3 – Illustration of the calculation of the imitation reward along with the updating
process of its hyperparameter ε.

dataset. It is then adjusted based on the number of time-steps with d ≤ ε in the recent
hwsize time-steps, provided that this number meets a certain ratio threshold. In our
experiments, we set hwsize to forty times the maximum length of training episodes hwsize =
40× Tmax and ratio to 0.6.

The SAC algorithm is used to optimise the imitation reward function. The hyperpa-
rameters details can be found in Table C.5. The training curves are shown in Fig. 8.4,
where different training progress patterns are displayed, while Fig. 8.5 illustrates the
progress of ε, the success rate, and the cumulative imitation reward for 6 tasks represent-
ing these patterns.

The models trained to solve tasks such as door-close-v2 and door-lock-v2 exhibit rapid
convergence to 100% success rate, with ε swiftly reaching a threshold that enables the
imitator to closely match the expert’s behaviour and solve the task. On the other hand, the
models trained for tasks such as lever-pull-v2 and stick-push-v2 take a considerable time
of trial-and-error before the success rate rises and eventually solve the tasks with 100%
success rate. For example, in the lever-pull-v2 task, it takes about 71 million training time-
steps before the success rate rises at ε = 8mm to reach 100% success rate at ε = 4mm.

The sudden drop in performance observed, for instance, in window-close-v2 and button-
press-topdown-wall-v2 is associated with a decline in the cumulative imitation reward,
which suggests that it is caused by a deterioration in the RL optimisation process, rather
than being caused by misleading signals from the imitation reward function.

It is worth noting that the imitation policies achieve their best performance when the
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Figure 8.4 – Plots depicting the progression of the success rate during the imitation policy
training. Only the imitation reward function is used for training.
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Figure 8.5 – Training performance along with the progress of ε.
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Figure 8.6 – Plots depicting the progression of the success rate during the imitation policy
training. The imitation reward and an additional reward for reaching the goal state are
utilised together for training.
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cumulative imitation rewards are at their peak during the last ε update. This characteristic
enables us to retain the optimal policy that best imitates the expert during training, even
if the goal state is indeterminate.

Tasks such as door-open-v2 and peg-insert-side-v2 were not solved. The training fail-
ure may be attributed to insufficient exploration of the environment by the agent and
the need for additional training time-steps for convergence. Additionally, the pre-trained
representation models may be inaccurate and require further improvement.

Adding an extra reward for the goal state

The models trained to solve tasks such as door-unlock-v2, handle-pull-v2 and window-
open-v2 exhibit evidence of learning, where the goal state is achieved during training but
the behaviour that leads to achieving the goal state is not reinforced. This is probably
because the imitation reward function is not sufficiently precise (i.e. ε is not sufficiently
low) for the RL optimisation to result in an imitation policy that matches the expert’s
behaviour. In this section we retrain the same model architecture with the same imitation
reward function from the last section plus an extra reward of R = +100 that the agent
receives if the goal state is achieved. The training curves are shown in Fig. 8.6.

All the tasks were solved except peg-insert-side-v2, pick-out-of-hole-v2, and pick-place-
wall. In the early stages of training, the imitation reward helps guiding the exploration
and bring the imitator closer to the expert’s behaviour. Upon achieving the goal state, the
additional reward reinforces the behaviour that solves the task. For the unsolved tasks, the
representation model should be improved by searching for more optimal hyperparameters
for a more precise representation model.

8.5.3 Comparison to Baselines

We evaluate the performance of our method against GAIL and GAILfO. The discrimi-
nator in GAILfO takes as input the state st and the previous state st−1. The discriminator
in GAIL takes the same input as GAILfO in addition to the action at taken in the state
st. Both GAIL and GAILfO are trained using PPO algorithm and take the same input
as our method, which consists of the concatenation of the current and the previous state.
The discriminator reward function used in GAIL is defined in Eq. 8.3 and the one used
in GAILfO is defined in Eq. 8.4.

113



Generalisation to Other Tasks

0 20 40 60 80 100
Success rate

window-open-v2

window-close-v2

sweep-v2

stick-push-v2

push-wall-v2

push-back-v2

plate-slide-v2

plate-slide-side-v2

plate-slide-back-v2

plate-slide-back-side-v2

pick-place-wall-v2

pick-out-of-hole-v2

peg-insert-side-v2

lever-pull-v2

handle-pull-v2

handle-pull-side-v2

handle-press-v2

handle-press-side-v2

hammer-v2

faucet-open-v2

faucet-close-v2

drawer-open-v2

drawer-close-v2

door-unlock-v2

door-open-v2

door-lock-v2

door-close-v2

dial-turn-v2

coffee-button-v2

button-press-wall-v2

button-press-v2

button-press-topdown-wall-v2

button-press-topdown-v2

Ta
sk

 n
am

e

18%

99%

99%

99%

0%

0%

93%

1%

94%

0%

0%

0%

0%

94%

26%

98%

97%

11%

100%

93%

95%

1%

92%

11%

0%

92%

100%

95%

100%

15%

90%

97%

81%

98%

100%

96%

97%

99%

98%

100%

100%

100%

98%

0%

0%

0%

100%

97%

100%

98%

100%

98%

100%

100%

99%

98%

96%

97%

95%

100%

97%

97%

100%

100%

99%

100%

93%

59%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

10%

0%

56%

0%

94%

29%

1%

3%

100%

31%

0%

24%

100%

15%

63%

75%

47%

9%

8%

0%

63%

0%

0%

0%

0%

0%

15%

0%

3%

0%

0%

0%

1%

83%

54%

74%

0%

90%

92%

35%

0%

100%

25%

0%

67%

93%

51%

95%

88%

0%

0%

8%

Obtained policies performance

Ours, using only the imitation reward
Ours, using the imitation reward + goal state reward
GAIL
GAILfO

Figure 8.7 – The success rate of models trained using GAIL, GAILfO and our method,
evaluated on 100 episodes using the most successful policy from the training phase, which
yielded the highest success rate.
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R(st−1, st, a) = log
(
D(st−1, st, a)

)
− log

(
1−D(st−1, st, a)

)
(8.3)

R(st−1, st) = log
(
D(st−1, st)

)
− log

(
1−D(st−1, st)

)
(8.4)

During training, we save the optimal policy that achieved the highest success rate.
We then evaluate the obtained policies by running them to solve the concerned tasks for
100 trials and record the success rate. Our findings, reported in Fig. 8.7, show that our
method outperforms GAIL and GAILfO in solving the majority of the tasks, and adding
an extra reward to the goal state in our method helps getting higher success rate in most
of the tasks.

Our method differs from the generative adversarial approach in two respects. Firstly,
we utilise a stationary reward function that yields consistent feedback for a given value
of ε, as opposed to the fluctuating rewards that arise in adversarial learning due to the
continuous updates of the discriminator during training. Second, instead of having direct
access to demonstrations, we use a representation model that is pre-trained on demon-
strations prior to the imitation policy training. Together, these two properties help to
stabilise the training process and achieve superior results.

The stationary reward function ensures that the agent is rewarded consistently for tak-
ing actions that yields trajectories predictable by the representation model. This reduces
the noise in the reward signal and helps the agent to learn more effectively. By using the
representation model that captures the essential aspects of demonstrations, the imitation
training process can save effort that would otherwise be spent on extracting features while
learning the control policy.

8.6 Summary

In this chapter, we investigated the generalisation capability of the imitation learning
approach that was introduced in Chapter 7, where it was successfully applied to solve a
pushing task in a 2D action space. The ability of a method to generalise to different tasks
is crucial for its practical application. Therefore, we examined how well the proposed
approach performed when faced with tasks that differed from the original one it was
developed on.

To assess the generalisation ability of our approach, we evaluated its performance
on more complex tasks from the Meta-World robotic environments that required different
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skills and actions. The results demonstrate that our approach has promising generalisation
capabilities, demonstrating its potential for practical applications beyond the original
pushing task.
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9.1 Summary

The primary goal of the thesis was to devise and develop an approach for learning
from demonstrations that only involve observations without access to actions, which is
also known as Imitation Learning from Observation. We subdivided this problem into
two sub-problems, namely learning a representation of demonstrations and learning the
imitation policy via Reinforcement Learning.

Our proposed solution for addressing these two sub-problems involves a disentangled
framework that follows a two-phase training approach. In the first phase, a representation
model is trained on the demonstrations to extract spatial and temporal features. This
process includes converting the observations in the demonstrations into graphs. Then,
spatial features are extracted using GNNs, while sequence modelling captures the temporal
patterns of spatial feature evolution over time. The representation model is trained to
predict future time-steps in the expert’s trajectory based on the observation history. In
the second phase, the trained representation model is incorporated in the design of a
task-agnostic reward function that can be used with an out-of-the-shelf RL algorithm to
learn the imitation policy. The imitator’s training process involves comparing the expected
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outcome generated by the representation model with the actual outcome of its actions,
and adjusting the imitation policy towards narrowing the discrepancy between the two.

Our approach showcased superior learning ability in solving a simple 2D pushing task,
surpassing Generative Adversarial Learning [64, 74] in transferring the policies to the real-
world setting using state-only demonstrations. Furthermore, the approach was applied to
various robotic tasks in the Meta-World benchmark [127], demonstrating its adaptability
and effectiveness in various tasks. The results were promising, and our approach’s benefits
are threefold. Firstly, its stability is ensured as the reward signal doesn’t change constantly
over time as in Adversarial Learning. Secondly, it provides a modular solution where
different components can be enhanced individually. Finally, the graph representation of
the scene and GNNs allow for handling a variable number of objects.

Our study in Chapter 3 showed that training policies using RL in simulation and
then transferring them to the real world can be effective, provided the training process
considers the uncertainties inherent in the real world. The study focused on sensor noise,
but depending on the task setup, noise can be also introduced, for instance, in the form of
environmental disturbances and deliberate random actions taken by the agent. The goal
is to expose the agent to a broad range of situations and uncertainties that it is likely to
encounter in the real world, enabling it to adapt to diverse conditions.

9.2 Limitations and Insights for Potential Improve-
ment

The successful implementation and application of the proposed LfD methodological
framework to different tasks demonstrate its practicality and potential as a solution for
learning control policies. However, certain tasks from Meta-World benchmark took a con-
siderable amount of time to converge and three remained unsolved. It should be noted
that the same representation model and policy learning hyperparameters were used for
all the tasks, and customised hyperparameter tuning may lead to better convergence.
Additionally by virtue of its modular design, our framework provides flexibility in en-
hancing various aspects of the learning process, including the representation model and
the imitation policy learning. Each module of the framework is responsible for a specific
purpose and contributes to the overall functioning of our solution. Improving each module,
therefore, leads to an overall improvement in the framework’s performance.

Sections 9.2.1 and 9.2.2 highlight potential avenues for enhancing the representation
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model and the imitation policy training phase respectively. Moreover, Section 9.2.3 brings
to light how our framework can be adapted for learning from human visual demonstrations.
Additionally, we propose a method to integrate our representation model with GAIL for
learning from visual demonstrations in Section 9.2.4.

9.2.1 Representation Learning

The representation learning phase precedes the imitation policy training, during which
the expert’s behavioural features are extracted from the demonstrations data. Enhancing
the representation model will result in a more precise characterisation of the expert’s
behaviour, and thus a better performance of the entire framework in solving the intended
task.

Scene graphs are used for describing the structure of the scene, including the objects
involved, their attributes, and their relationships to one another. Our approach involves
an object-centric scene graph, where every node represents an object in the scene. Node
attributes primarily consisted of object positions in our experiments; however, attributes
such as shape, dimensions, colour, etc., can be incorporated for tasks requiring such char-
acteristics. The edges are binary with only two possible states, which represent either the
presence or absence of a connection between two nodes. Further research can explore the
outcome of incorporating additional information into the edges to provide more context
and meaning to the connections they represent. For instance, in [98], high-level spatial
relationships such as "getting close," "moving together," and "moving apart" were utilised
to establish symbolic relations between objects for action recognition. Although the use
of symbolic relations was effective in the experiments described in [98], the design of
a separate module was required to recognise these relationships. Such a module might
be intricate to design and may require considerable training data to learn the complex
relationships, which can be time-consuming and costly.

Scene graphs can quickly become large and complex in the presence of multiple objects
in the scene, making it difficult to identify the relevant information for taking the next
action. Attention mechanisms can be incorporated into the representation model to allow
it to selectively focus on specific parts of the scene over the course of the sequential decision
making. For instance, our framework can replace the GNN module with Graph Attention
Networks (GATs) [105] which utilise attention mechanisms to focus on particular nodes
and edges. This can improve the model’s ability to efficiently understand complex scenes
and capture important details.
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Figure 9.1 – Illustration of how demonstrations can be augmented using translation and
rotation in the 2D space. The position of the objects in the augmented trajectories can
be calculated using Eq.9.1.

Another research direction to improve the proposed representation model is to focus
on the demonstrations dataset. In order to improve generalisation, data augmentation can
be used to increase the size of the training dataset by generating new trajectories from
the provided demonstrations. For example, translating the entire trajectory in 3D space
or rotating it around a specific 3D point produces a new and distinct trajectory while still
preserving the same essential behavioural information. An illustration for creating new
trajectories in 2D is given in Fig.9.1. The position (x′, y′) of objects in the new trajectory
can be calculated as a function of the original positions (x, y):

 x′

y′

 =
 cos θ − sin θ

sin θ cos θ

 x

y

+
 ∆x

∆y

 (9.1)

This augmentation approach can be mainly applied to manipulation tasks involving
relocating objects in the 3D space. It enables a wider coverage of the 3D space. By
providing the model with a more diverse range of training instances, it can acquire better
generalisation skills and perform more effectively across a broader range of scenarios. For
example, if we are training a robot to pick up objects from a conveyor and move them
into a bin, we can enhance the trajectories by translating them in 3D space to help the
robot adapt to different locations of the conveyor and the bin. Similarly, Enayati et al.
[130] formally define the environment symmetry and investigate its utility to replicate
demonstrations in robot manipulations tasks.
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Figure 9.2 – Suggestion of a two-head representation model that also predicts the task
progression tp.

9.2.2 Imitation Policy Learning

Our solution is a two-step process where the first phase trains a representation model
of demonstrations and the second trains the imitation policy using RL and the imitation
reward function. The time required to solve the imitation learning problem is primarily
dominated by the time taken for the RL training phase. This is because the RL training
process requires large number of iterations to optimise the imitation policy and the cur-
riculum learning induced by the adaptive imitation reward function takes time to reach the
right level of difficulty that leads the imitator to converge to the expert’s behaviour. The
representation learning phase, on the other hand, involves one-time supervised learning
training and therefore takes much less time compared to the RL phase.

The findings of the last chapter indicate that tasks can be solved efficiently and quickly
when the goal state is recognisable and a supplementary reward is given to the imitator
upon reaching it. Nonetheless, requiring a recognisable goal state requires expert knowl-
edge of the task, which contradicts our framework’s objective of learning tasks solely from
demonstrations, without any explicit knowledge of the task. In [131], a goal proximity
function is trained on the demonstrations dataset to estimate the temporal distance to
the goal and used for learning the imitation policy. Similarly, we suggest augmenting our
representation model, as depicted in Fig 9.2, with an additional head that predicts the
task progression tp, a value between 0 and 1 that can be computed as follows:
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tpt =
(

1− T − t

T

)
(9.2)

Where t and T are the current and terminal time-steps respectively. The training can
be done by optimising the weighted sum of the losses L1 and L2 defined in Eq.9.3, as
L = α1L1 + α2L2, where α1 and α2 are the weighting coefficients.

L1 =

√√√√ 1
N

N∑
1

(y − y) , L2 =

√√√√ 1
N

N∑
1

(tp− tp) (9.3)

After training the representation model, the imitation reward function outlined in
Chapter 7, Eq.7.12, can be augmented by introducing an extra reward that reflects the
imitator’s progress in accomplishing the task. This reward increases as the imitator gets
closer to the goal state, providing further guidance for solving the task at hand.

In our experiments the robot was operated by the trained policy through commanding
the end-effector of the robot in the 3D space, which involves specifying the next desired
position of the end-effector and using the inverse dynamics of the robot to apply move-
ments in the joint space. This choice was favoured over commanding the joints of the
robot to reduce the learning complexity. Commanding the end-effector is simpler to learn,
as the agent only needs to learn how to move the end-effector to a specific position. This
reduction in learning complexity comes with the cost of a reduction in the flexibility of
the robot movements. This poses a problem, for instance, in the case of cluttered environ-
ments where the robot should learn how to avoid obstacles. Commanding the movements
of multiple joints on the other hand allows the robot to utilise its multi-joint structure to
perform complex manoeuvres. For example, consider a robot arm that needs to pick up
objects in an environment with obstacles. Commanding the end-effector to move directly
towards the target may not be feasible due to obstacles blocking the way. However, by
commanding the joints, the robot can adjust its posture to avoid the obstacles. It should
be noted, however, that commanding the joint space of the robot requires learning how
to coordinate the movements of several joints to perform the task, which increases the
learning complexity and the cost of training.

9.2.3 Learning from visual demonstrations

Our experiments were limited to demonstrations generated by an RL-expert model,
with the spatial positions of objects in simulation readily available. The ultimate goal
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Figure 9.3 – Integrating the representation model introduced in Chapter 6 into GAIL
algorithm. Passing demonstrations through the trained representation model, allows to
reason about the spatio-temporal representation of demonstrations instead of the raw
data.

of the research project, of which this thesis forms a part, is to enable robots to learn
behavioural skills from observing human visual demonstrations while navigating their
environment using a camera sensor. To achieve this, a pre-processing module of the camera
feed is required, that can be plugged to the left end of our representation pipeline. This
module will be responsible for identifying objects in the scene and determining their
characteristics, such as spatial position and color. In the case of human demonstrations,
the human hand also should be detected and tracked as in [132]. Once these characteristics
have been extracted, they can be integrated into nodes and edges of the scene graph. Then,
the representation model and the imitation policy can be trained as outlined in Chapter 6
and Chapter 7 without requiring any special changes to the backbone structure of the
framework.

Nevertheless, the detection of objects and estimating their position in space using
computer vision is susceptible to noise induced by the camera sensor and the environ-
mental factors such as lighting conditions, occlusions and object interactions. To account
for the inaccuracies induced by such noise, it might be necessary to incorporate methods
for increasing the robustness of the representation model to noise. One such method is to
augment the original demonstrations dataset by adding artificial variations to the original
trajectories to make it more representative of real-world scenarios.
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9.2.4 Integrating the Representation Model with GAIL

The proposed representation model can also be integrated with GAIL [64] for learn-
ing from visual demonstrations. GAIL’s capability to learn from high-dimensional inputs
sensory data (e.g. RGB data) is hindered by the the discriminator’s tendency to differ-
entiate between the imitator and expert’s observations using task-irrelevant features, as
demonstrated by Zolna et al. in [133]. This means that the discriminator may rely solely
on the differences in appearances between the expert and the imitator’s observations (e.g.
human hand vs robot end-effector, background differences, etc.), without considering the
underlying dynamics of the demonstrated task. One way to overcome this is by pass-
ing the expert demonstrations through our representation model as depicted in Fig 9.3,
which encodes them into a lower-dimensional space capturing the relevant information
for the task. The imitator’s observations are also encoded using the same representation
model, and the discriminator is trained to distinguish between the expert and imitator’s
representations.

9.3 Conclusion and Perspective

Our contribution in this thesis is mainly on introducing and implementing a novel
framework that is modular and generic, with the primary purpose to enable robotic
learning from state-only demonstrations. Its application to various tasks demonstrated
promising potential. Our framework’s flexibility allows for customisation to different set-
tings, making it a versatile solution. The findings encourage further research to improve
performance and expand the framework’s capabilities to handle visual inputs and visual
demonstrations. To this end, feasible and practical recommendations are provided in Sec-
tion 9.2. We believe that our contribution represents a step forward in the field of robotic
learning and imitation from observation, potentially opening up new opportunities for
future developments.

The ultimate objective is to enable robots to learn from human videos, which has the
potential to improve human-robot interaction and facilitate the acquisition of new skills
by robots in a more natural and intuitive way. The alternative approach to the modular
design that is adopted in our work, is to use a single model that takes raw input data,
such as a frame or sequence of frames, and directly produces the desired actions without
any intermediate steps. The model learns to extract features and patterns from the input
data and chooses the action to take in a single step. Such a model is trainable end-to-end
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and requires less engineering effort to implement but will require a considerable amount
of data to train and it is hard to debug if it malfunctions. The modular design on the
other hand breaks the overall problem to sub-problems and solves each one separately.
In the case of imitation from human videos, the imitation problem can be divided into
scene analysis using computer vision, learning a spatio-temporal representation of human
behaviour, and learning the control policy. Utilising this approach can provide greater
flexibility and ease of debugging compared to end-to-end approaches. Additionally, it
enables learning from a smaller number of demonstrations and allows for the reuse of the
preprocessing module across various tasks.

Our research highlights the potential of Machine Learning in equipping robots with
the ability to learn and execute tasks solely based on demonstrations, without the need for
prior expert knowledge. Unlike traditional programming approaches that require robotic
experts to anticipate every possible scenario and program the robot accordingly, which can
be time-consuming and error-prone, ML enables robots to learn from their experiences and
adapt to new situations. This makes it possible for robots to acquire behavioural skills that
are difficult or impossible to program explicitly. The progress in robot learning can lead to
more efficient and cost-effective robotic systems. The incorporation of data collected from
both observing human experts and robots’ interactions with the environment will allow
robots to learn and operate more efficiently, leading to increased versatility and usefulness
across various applications, decreased manual intervention, and improved productivity.
This will help to make robotics more accessible to a wider range of businesses, enabling
them to benefit from the increased efficiency and flexibility that robots can provide.
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Figure A.1 – Enlarged depiction of the plot shown on the left-hand side in Figure 6.10-a.
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Figure A.2 – Enlarged depiction of the plot shown in the middle of Figure 6.10-a.
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Figure A.3 – Enlarged depiction of the plot shown on the right-hand side in Figure 6.10-a.
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Figure A.4 – Enlarged depiction of the plot shown on the left-hand side in Figure 6.10-b.
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Figure A.5 – Enlarged depiction of the plot shown on the right-hand side shown in Figure
6.10-b.
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Appendix B

ADAPTIVE IMITATION REWARD

FUNCTION

The following is an extension to the experiments about adaptive reward function
presented in Chapter 7, Section 7.5.

Algo 5 details two other slightly different versions V2.0 and V2.1 of the adaptive
reward function V2 presented in Section 7.5.2:

— V2.0: updates ε if the total number of non-zero rewards of a single episode is greater
or equal to ratio× length(Episode).

— V2.1: updates ε based on the average of non-zero rewards over a queue of n = 20
recent episodes, and each time ε is updated, only the oldest item in the queue is
removed.

Algo 6 details another variant of the adaptive reward function V3, introduced in
Section 7.5.2, where only the oldest timestep in the last hwsize is removed when ε is
updated. The results are shown in

The results are shown in Fig B.1, Fig B.2 and Fig. B.3 for reward functions V2.0,
V2.1, and V3.1 respectively.
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Algorithm 5: Adaptive Imitation Reward Function V2.0 & V2.1
Input: εmin, εmax, εstep, ratio
ε← εmax ;
while Training is not done do

while Episode is not done do
a← π(st);
(st+1, rt, done)← excute the action a;
(rt is calculated according to Eq 7.12 using the current ε)

end
begin Update ε for Reward 2.0

if Number of non-zero rewards in Episode ≥ ratio× length(Episode) then
ε← ε− εstep

end
end
begin Update ε for Reward 2.1

Stack episodes in a queue Q of size n = 20 ;
if Q is full and number of non-zero rewards in Q
≥ ratio× length(Episodes in Q) then

ε← ε− εstep ;
Remove only the oldest episode in Q ;

end
end

end

Algorithm 6: Adaptive Imitation Reward Function V3.1
Input: εmax, ratio, hwsize

ε← εmax ;
while Training is not done do

while Episode is not done do
a← π(st);
(st+1, rt, done)← excute the action a;
(rt is calculated according to Eq 7.12 using the current ε)
begin Update ε for Reward 3.1

Stack d = ∥st − s′
t∥2 in a queue Q of size N = hwsize ;

if Q is full and size({d, d ∈ Q and d ≤ ε}) ≥ ratio× hwsize then
ε← median({d, d ∈ Q and d ≥ ε}) ;
Remove the oldest time-step in Q ;

end
end

end
end
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Adaptive Imitation Reward Function

Figure B.1 – Results for Reward "V2.0". Each cell in the grid depicts the training
performance and the evolution of ε for different values of εstep and ratio. εstep ∈
{1e− 3, 1e− 4, 1e− 5, 1e− 6} and ratio ∈ {0.5, 0.7, 0.8, 1}.
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Figure B.2 – Results for Reward "V2.1". Each cell in the grid depicts the training
performance and the evolution of ε for different values of εstep and ratio. εstep ∈
{1e− 2, 1e− 3, 1e− 4, 1e− 5} and ratio ∈ {0.5, 0.7, 0.8, 1}.
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Figure B.3 – Results for Reward "V3.1". Each cell in the grid depicts the training
performance and the evolution of ε for different values of hwsize and ratio. εstep ∈
{1e3, 3e3, 5e3, 8e3} and ratio ∈ {0.5, 0.7, 0.8, 1}.
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META-WORLD BENCHMARK
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Meta-World Benchmark

C.1 Meta-world Benchmark Tasks

Task label Description N. objs
assembly-v2 Pick up a nut and place it onto a peg 2
basketball-v2 Dunk the basketball into the basket 2
bin-picking-v2 Grasp the puck from one bin and place it into another bin 2
box-close-v2 Grasp the cover and close the box with it 2
button-press-topdown-v2 * Press a button from the top 1
button-press-topdown-wall-v2 * Bypass a wall and press a button from the top 1
button-press-v2 * Press a button 1
button-press-wall-v2 * Bypass a wall and press a button 2
coffee-button-v2 * Push a button on the coffee machine 1
coffee-pull-v2 Pull a mug from a coffee machine 2
coffee-push-v2 Push a mug under a coffee machine 2
dial-turn-v2 * Rotate a dial 180 degrees 1
disassemble-v2 pick a nut out of a peg 2
door-close-v2 * Close a door with a revolving joint 1
door-lock-v2 * Lock the door by rotating the lock clockwise 1
door-open-v2 * Open a door with revolving joint 1
door-unlock-v2 * Unlock the door by rotating the lock counter-clockwise 1
drawer-close-v2 * Push and close a drawer 1
drawer-open-v2 * Open a drawer 1
faucet-close-v2 * Rotate the faucet clockwise 1
faucet-open-v2 * Rotate the faucet counter-clockwise 1
hammer-v2 * Hammer a screw on the wall 2
hand-insert-v2 Insert an object the into a hole 1
handle-press-side-v2 * Press a handle down sideways 1
handle-press-v2 * Press a handle down 1
handle-pull-side-v2 * Pull a handle up sideways 1
handle-pull-v2 * Pull a handle up 1
lever-pull-v2 * Pull a lever down 90 degrees 1
peg-insert-side-v2 * Insert a peg sideways 2
peg-unplug-side-v2 Unplug a peg sideways 2
pick-out-of-hole-v2 * Pick up a puck from a hole 1
pick-place-v2 Pick and place a puck to a goal 1
pick-place-wall-v2 * Pick a puck, bypass a wall and place the puck 2
plate-slide-back-side-v2 * Get a plate from the cabinet sideways 2
plate-slide-back-v2 * Get a plate from the cabinet 2
plate-slide-side-v2 * Slide a plate into a cabinet sideways 2
plate-slide-v2 * Slide a plate into a cabinet 2
push-back-v2 * Pull a puck to a goal 1
push-v2 Push the puck to a goal 1
push-wall-v2 * Bypass a wall and push a puck to a goal 2
reach-v2 Reach a goal position 0
reach-wall-v2 Bypass a wall and reach a goal 1
shelf-place-v2 Pick and place a puck onto a shelf 2
soccer-v2 Kick a soccer into the goal 2
stick-pull-v2 Grasp a stick and pull a box with the stick. 2
stick-push-v2 * Grasp a stick and push a box using the stick 2
sweep-into-v2 Sweep a puck into a hole 1
sweep-v2 * Sweep a puck off the table 1
window-close-v2 * Push and close a window 1
window-open-v2 * Push and open a window 1

Table C.1 – The list of the Meta-World benchmark tasks. The tasks marked with an as-
terisk are those used in the generalisation experiments of our imitation learning approach
in Chapter 8.

139



Meta-World Benchmark

Figure C.1 – Depiction of the Meta-World benchmark environments.
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C.2 Expert-RL training

Description Detail
Environment Hyperparameters
Episode maximum length 450
seed 17
Algorithm Hyperparameters
Learning rate 3e-4
Buffer size 1e6
Batch size 256
Discount factor 0.99
Soft update coefficient 0.005
Gradient steps per rollout 1
Neural Network Hyperparameters
Hidden layers (128,128)
Activation function ReLu

Table C.2 – The Expert-RL training hyperparameters using SAC method.
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C.2.1 Using only the current observation as input
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Figure C.2 – Training performance of RL-Expert models trained on the ground truth
reward functions of each task in the Meta-World benchmark. The input of the policy is
limited to the current state of objects at each time-step.
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C.2.2 Using the previous and current observation as input
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Figure C.3 – Training performance of RL-Expert models trained on the ground truth
reward functions of each task in the Meta-World benchmark. The input of the policy
consists of the current and previous state of objects at each time-step.
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Figure C.4 – Success rate of trained RL-Expert models.
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C.3 Demonstrations

Number of time-steps in demonstrations
env_name mean std min max
button-press-topdown-v2 58.6 4.7 51 68
button-press-topdown-wall-v2 58.2 5.1 50 70
button-press-v2 39.8 1.9 37 43
button-press-wall-v2 38.2 1.8 35 42
coffee-button-v2 24.8 3.2 19 30
dial-turn-v2 29.7 1.6 27 35
door-close-v2 51.9 3.5 46 59
door-lock-v2 27.2 5.7 18 44
door-open-v2 72.2 4.1 65 81
door-unlock-v2 34.8 15.9 26 120
drawer-close-v2 16.5 0.5 15 18
drawer-open-v2 42.8 1.0 42 46
faucet-close-v2 46.3 2.5 42 53
faucet-open-v2 45.7 2.2 42 51
hammer-v2 50.2 6.4 39 75
handle-press-side-v2 25.0 24.4 16 299
handle-press-v2 19.3 3.9 12 30
handle-pull-side-v2 28.1 0.8 27 30
handle-pull-v2 38.0 5.7 35 87
lever-pull-v2 48.0 3.7 41 55
peg-insert-side-v2 52.3 3.6 47 64
pick-out-of-hole-v2 72.1 23.9 59 325
pick-place-wall-v2 56.4 7.5 46 98
plate-slide-back-side-v2 37.4 6.1 26 48
plate-slide-back-v2 33.5 0.7 32 34
plate-slide-side-v2 41.3 4.4 37 86
plate-slide-v2 48.4 2.8 43 55
push-back-v2 55.3 3.8 50 67
push-wall-v2 59.9 13.7 48 162
stick-push-v2 55.6 2.2 51 61
sweep-v2 74.6 6.0 66 93
window-close-v2 50.0 4.1 43 62
window-open-v2 47.3 7.0 34 62

Table C.3 – The statistics of the demonstrations generated by the RL-Expert models.
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C.4 Representation Learning Experiments

Input sequence size = 3 Input sequence size =7
env_name RMSE MAE Max_error RMSE MAE Max_error
button-press-topdown-v2 4.9 2.8 73.9 3.6 2.3 27.1
button-press-topdown-wall-v2 4.2 2.9 32.7 3.1 2.3 18.5
button-press-v2 1.4 1.0 8.0 1.1 0.8 8.5
button-press-wall-v2 1.2 0.8 8.0 1.0 0.7 5.8
coffee-button-v2 1.4 1.0 9.1 1.3 0.8 9.0
dial-turn-v2 2.2 1.4 16.8 2.2 1.3 19.5
door-close-v2 1.3 0.9 9.2 1.1 0.8 7.8
door-lock-v2 1.9 1.4 12.2 1.7 1.1 11.9
door-open-v2 2.3 1.5 21.2 2.2 1.3 32.8
door-unlock-v2 5.9 2.8 53.5 6.5 2.8 61.3
drawer-close-v2 1.0 0.7 5.1 1.2 0.9 8.9
drawer-open-v2 1.1 0.7 8.4 1.1 0.7 11.3
faucet-close-v2 2.2 1.4 14.3 2.2 1.5 12.8
faucet-open-v2 1.8 1.2 12.0 1.6 1.1 9.1
hammer-v2 2.6 1.5 17.9 2.3 1.4 18.9
handle-press-side-v2 4.2 2.2 49.4 4.1 2.3 45.1
handle-press-v2 3.0 2.1 16.1 2.9 2.0 14.0
handle-pull-side-v2 1.5 1.0 13.7 1.3 0.8 9.6
handle-pull-v2 1.6 1.1 13.5 1.5 1.1 11.3
lever-pull-v2 1.6 1.1 12.2 1.5 1.0 9.2
peg-insert-side-v2 3.2 2.1 22.3 3.2 2.2 18.3
pick-out-of-hole-v2 3.5 2.1 47.9 3.0 1.9 32.3
pick-place-wall-v2 4.4 2.7 38.0 3.3 2.0 38.8
plate-slide-back-side-v2 0.7 0.5 4.4 0.7 0.5 3.3
plate-slide-back-v2 0.8 0.6 4.6 0.6 0.4 2.5
plate-slide-side-v2 1.4 1.0 11.2 1.3 0.9 7.7
plate-slide-v2 1.3 0.9 7.6 1.2 0.8 5.7
push-back-v2 1.9 1.3 13.2 1.6 1.1 13.3
push-wall-v2 2.2 1.5 15.4 1.9 1.2 14.9
stick-push-v2 1.6 1.0 11.0 1.5 0.9 10.3
sweep-v2 2.0 1.4 12.2 1.4 0.9 7.4
window-close-v2 1.1 0.7 11.4 1.1 0.7 11.9
window-open-v2 2.4 1.6 12.4 2.3 1.5 15.2

Table C.4 – The representation learning results. Values are given in millimetres and can be
also interpreted as a percentage of the maximal opening of the gripper, which is equivalent
to 100mm.
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C.5 Imitation Learning Experiments

Description Detail
Algorithm Hyperparameters
Learning rate 3e-4
Buffer size 1e6
Batch size 256
Discount factor 0.99
Soft update coefficient 0.005
Gradient steps per rollout 1
Neural Network Hyperparameters
Hidden layers (256,256)
Activation function ReLu

Table C.5 – The RL model training hyperparameters.
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Titre : Une approche modulaire pour l’apprentissage par imitation générique à l’aide d’une
représentation spatio-temporelle des démonstrations basée sur les graphes : Application à
l’apprentissage robotique

Mot clés : Apprentissage par Imitation, Imitation par Observation, Apprentissage par Renfor-
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Résumé : L’apprentissage par renforcement
et l’apprentissage par imitation permettent aux
robots d’apprendre à effectuer des tâches de
manière autonome, sans avoir besoin d’ins-
tructions explicites. Cette thèse examine les
deux méthodes et les intègre dans un cadre
modulaire et générique pour résoudre le pro-
blème d’apprentissage par imitation à partir
d’observations. L’approche est mise en œuvre
en deux étapes, en commençant par ap-
prendre un modèle de représentation qui cap-

ture les caractéristiques spatiales et tempo-
relles des démonstrations observées, suivi de
l’application d’un algorithme RL prêt à l’em-
ploi avec une fonction de récompense géné-
rique pour apprendre la politique d’imitation.
Les résultats expérimentaux indiquent que la
méthode proposée surpasse les méthodes de
pointe et présente des capacités de géné-
ralisation prometteuses pour une gamme de
tâches de manipulation, dépassant les mé-
thodes génératives dans la plupart des cas.

Title: A Modular Framework for Generic Imitation Learning using Graph-based Spatio-Temporal
Representation of Demonstrations: Application to Robotic Learning

Keywords: Imitation Learning, Imitation from Observation, Reinforcement Learning, Graph

Neural Networks, Sequential modelling

Abstract: Reinforcement Learning and Imi-
tation Learning allow robots to learn how to
perform tasks independently, without the need
for explicit instructions. This thesis examines
both methods and integrates them into a mod-
ular and generic framework for solving the imi-
tation learning from observation problem. The
approach is implemented in two stages, begin-
ning with learning a representation model that
captures the spatial and temporal features of

observed demonstrations, followed by apply-
ing an off-the-shelf RL algorithm with a task-
agnostic reward function to learn the imitation
policy. Experimental results indicate that the
proposed method outperforms state-of-the-art
methods and exhibits promising generalisa-
tion capabilities across a range of manipula-
tion tasks, surpassing generative methods in
most instances.
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