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Background and objective Falls in older adults have a great medical, social, and financial impact. This thesis proposes a ubiquitous method to extract relevant fall risk parameters from real-life inertial data regardless of device type and placement. Methods The main difficulty is estimating fall risk parameters independent of sensor placement (wrist, pocket, etc.). Therefore, we chose to calculate fall risk parameters based on discrete step time series. Then, the problem is transferred to finding a robust step detection algorithm which we developed and validated against different populations, placements, and activities. Next, we calculated fall risk parameters and tested their association with future falls on an ambulatory dataset (one week of recording) of 300 elderly people. Results The step detection method had an average precision and recall of 99% and 95% respectively when evaluated on datasets with different populations (young, elderly, blind), walking conditions (outdoors, using walking aid), and sensors placements (jacket, pants pocket, handheld). The association between calculated parameters and prospective falls had an AUC of 0.7 if parameters are aggregated on walking bouts greater than 200 steps (2 minutes). This AUC is comparable to models made with fixed sensor placement. However, selecting long walking bouts causes the exclusion of participants who do not walk long enough (6% of the population considered). Significance The proposed novel solution is ubiquitous and can reach the broad public. It can open doors toward personal monitoring of fall risk status using consumer devices.

RÉSUMÉ

Contexte et objectif Les chutes chez les personnes âgées ont un impact sanitaire, social et financier majeur. L'objectif de cette thèse est de proposer une méthode permettant de prédire le risque de chute d'une personne de manière prospective à partir de données inertielles collectées dans des conditions les moins invasives possibles (collecte ambulatoire, capteur non dédié et placement non contrôlé). Méthodes La principale difficulté est d'estimer des paramètres prédictifs du risque de chute indépendammant du placement du capteur sur le corps (poignet, poche, etc.). Pour cela, nous proposons de calculer ces paramètres à partir des données discrètes des instants de pas, qui semblent être estimables de manière robuste. Nous avons donc développé une méthode de détection de ces instants de pas et nous avons validée sa robustesse pour différentes populations, placements et activités. Nous avons ensuite sélectionné les paramètres qui sont calculables à partir des instants de pas et prédictif du risque de chute, puis nous avons évalué l'association entre ces paramètres et les chutes à venir sur un jeu de données ambulatoires (une semaine d'enregistrement) de 300 personnes âgées. Résultats La méthode de détection des pas présente une précision et un rappel moyens de 99% et 95% respectivement lorsqu'elle est évaluée sur différentes populations (jeunes, personnes âgées, aveugles), conditions de marche (en extérieur, avec une aide à la marche) et emplacements de capteurs (veste, poche de pantalon, portable). L'association entre les paramètres de marche calculés et les chutes à venir est comparable aux méthodes existantes utilisant un capteur dédié et un placement contrôlé (AUC=0,7), mais entraine l'exclusion d'une petite partie des participants (6% de la population considérée) qui ne réalisent pas d'épisodes de marche suffisamment longs. Importance L'approche proposée permet d'envisager une détection du risque de chute prospective à grande échelle car elle peut être appliquée sur des appareils grand public.

Mots clés Risque de chute; Détection des pas; Dispositifs grand public; Centrale inertielle; Prédiction des chutes; Placement des capteurs; Personnes âgées.

RÉSUMÉ LONG

Les chutes chez les personnes âgées sont une cause majeure de perte de mobilité, de morbidité et de mortalité. Il a été estimé qu'un tiers des personnes âgées de plus de 65 ans tombent au moins une fois par an (World Health Organization, 2008). Une chute sur cinq entraîne des blessures graves [START_REF] Sterling | Geriatric falls: Injury severity is high and disproportionate to mechanism[END_REF] et les chutes sont la première cause de fracture de la hanche [START_REF] Parkkari | Majority of hip fractures occur as a result of a fall and impact on the greater trochanter of the femur: A prospective controlled hip fracture study with 206 consecutive patients[END_REF]. En plus des blessures physiques, les chutes peuvent souvent initier un cercle vicieux de peur de tomber, de perte d'activité et de chutes répétées [START_REF] Boyd | Falls and fear of falling: Burden, beliefs and behaviours[END_REF]. Outre le coût sanitaire et social, les chutes ont aussi un coût socio-économique énorme. Par exemple, le coût des soins liés aux chutes aux États-Unis a été estimé à 50 milliards de dollars en 2015 [START_REF] Florence | The medical costs of fatal falls and fall injuries among older adults[END_REF]. Une solution pour limiter ce problème serait de pouvoir détecter et prendre en charge les personnes à fort risque avant qu'elles ne rentrent dans le cercle chute -peur de chuterperte d'activité -rechute. Pour cela, il serait particulièrement intéressant de posséder un outil de détection du risque de chute prospectif. L'efficacité d'un tel outil dépend de sa capacité à être utilisé à grande échelle. Il faut donc qu'il soit le moins invasif possible et, si possible, qu'il ne nécessite pas de capteur spécifique.

Les facteurs de risque de chute (ex. la peur de la chute) représentent un ensemble de conditions qui conduisent la personne à perdre l'équilibre et à tomber. Pour identifier les individus à risque de chute, des tests d'évaluation clinique (ex. questionnaire sur la peur de la chute) visent à quantifier ces facteurs de risque. Cependant, ces tests ont une capacité de prédiction des chutes à venir limitée [START_REF] Park | Tools for assessing fall risk in the elderly: A systematic review and meta-analysis[END_REF].

Pour compléter les tests d'évaluation clinique, de nombreuses études ont proposé d'ajouter des paramètres caractérisant la marche calculés à partir du suivi de la marche ("monitoring") dans des contextes de vie réelle non supervisés (Del Din et al., 2019;Rispens et al., 2015;Van Schooten et al., 2016;Weiss et al., 2013). Par exemple, Van Schooten et al., 2015 a montré qu'en ajoutant ces paramètres aux tests d'évaluation clinique, la performance de la prédiction des chutes passait d'une aire sous la courbe (AUC) de 0,68 à 0,82. Contrairement aux évaluations traditionnelles supervisées de la marche, un "monitoring" non supervisé de la marche ambulatoire présente l'avantage de pouvoir représenter la performance typique de l'individu dans sa vie quotidienne et de ne pas être biaisée par l'effet Hawthorne (Warmerdam et al., 2020).

De manière classique, ce monitoring se fait à l'aide d'unités de mesure inertielle (IMU) spécifiques fixées dans le bas du dos. Cette position, proche du centre de masse de l'individu, et le fait que le placement du capteur est connu et contrôlé font que les signaux inertiels ainsi recueillis sont relativement faciles à traiter. Cependant, l'adhésion Résumé long des utilisateurs et l'acceptabilité de ces dispositifs pour un suivi à long terme sont faibles (Keogh et al., 2020). Au contraire, les dispositifs grand public équipés d'IMU, tels que les téléphones portables ou les montres connectées, sont répandus, bon marché, disponibles et disposent d'IMU dont la qualité est suffisamment élevée [START_REF] Pepa | Gait parameter and event estimation using smartphones[END_REF]. On peut imaginer qu'un système de monitoring de la marche utilisant un de ces dispositifs grand public soit beaucoup plus facile à déployer (pas besoin de capteur spécifique), plus acceptable puisque moins invasif, et rencontre aussi une bien meilleure adhésion.

Par conséquent, l'objectif de cette thèse est de proposer des méthodes d'évaluation des caractéristiques de la marche reliées au risque de chute à partir de données de la vie quotidienne collectées par un capteur non dédié (l'IMU d'un objet grand publique) dont le placement n'est pas contrôlé. Cela nécessite donc de revoir les approches précédemment développées pour des capteurs dédiés et fixés sur une partie précise du corps. La difficulté majeure consiste à proposer une approche robuste et indépendante du placement du capteur.

Habituellement, le traitement des données inertielles collectées dans des environnements ambulatoires est divisé en trois étapes principales : premièrement, les épisodes de marche et les instants de pas sont détectés. Deuxièmement, les paramètres de risque de chute pour chaque moment de marche sont calculés. Troisièmement, chaque paramètre de risque de chute est agrégé sur tous les épisodes de marche. Afin d'adapter ce traitement aux appareils grand public, nous cherchons à aborder trois éléments principaux : (1) le développement d'une méthode robuste de détection des épisodes de marche et des pas pour travailler sur différentes positions de capteurs, (2) le choix du paramètre de risque de chute en fonction de la faisabilité de la méthode de détection des pas, (3) le choix d'une méthode d'agrégation appropriée par rapport au paramètre de risque de chute calculé.

Tout d'abord, une revue de la littérature exhaustive (Chapter 1), nous a permis de sélectionner les paramètres de risque de chute qui peuvent potentiellement être calculés à l'aide d'appareils grand public. Il existe deux familles de paramètres de risque de chute : ceux calculés directement à partir des signaux d'accélération (ex. rapport harmonique, exposant de Lyaponov), et ceux calculés à partir de séries temporelles de paramètres de marche discrets (ex. temps de balancement moyen, asymétrie du temps de pas, variabilité du temps de foulée). Si le premier type ne nécessite pas d'algorithme de détection des pas, il est fortement affecté par le placement du capteur (Hirata et al., 2013;Kang and Dingwell, 2009). Cela réduit la liste des paramètres à ceux calculés à partir de séries temporelles de paramètres de marche discrets.

Le problème s'est donc déplacé vers la mise au point d'un algorithme de détection de pas robuste par rapport à la position du capteur. La méthode développée, Smartstep, traite les signaux d'accélération et de vitesse angulaire avec des techniques d'apprentissage automatique (Chapter 5). Les avantages de cette méthode sont qu'elle ne nécessite pas de pré-classifications de la position du capteur (main, poche de pantalon, poche de veste), du mode de marche (escaliers, chemin droit) et du mode de mouvement de la main (balancement, écriture), ni de calibrage de seuil. L'algorithme a été entraîné sur 9000 pas de 12 participants différents. La méthode a ensuite été évaluée sur différents ensembles de données qui ne sont pas impliqués dans l'entraînement et qui varient en termes de population (jeunes, personnes âgées, personnes aveugles), de contexte et d'environnement de marche (intérieur, extérieur, marche avec une aide à la navigation), et de position et de marque de capteur (smartphones ou capteurs inertiels dédiés portés à la main ou dans la poche). Pour les jeunes adultes et les smartphones, la méthode atteint un taux de rappel de 99% et une précision de 98,9%. Pour les adultes plus âgés présentant un risque de chute et équipés de capteurs inertiels sur le poignet ou placés à la taille, nous avons obtenu un taux de rappel de 96% et une précision de 99%. Enfin, pour les personnes aveugles marchant avec des positions variables du smartphone, les taux de rappel et de précision étaient de 90% et 99% respectivement. Ces performances élevées encouragent l'utilisation de la méthode dans des situations réelles (Chapter 5).

Comme indiqué précédemment, les paramètres de risque de chute potentiels (estimable de manière robuste par rapport au placement du capteur) sont ceux basés sur les séries temporelles de pas ou de foulées. L'analyse de la littérature (Chapter 1) montre que ces derniers permettent de couvrir quatre grands domaines de la marche : la variabilité de la marche (coefficient de variance de la durée de la foulée et du pas), la complexité de la marche (exposant fractal et entropie sur la durée de la foulée et du pas), l'intensité de la marche (cadence, durée moyenne du pas, durée moyenne de la foulée), la quantité de la marche (nombre total de pas, nombre d'épisodes de marche, durée moyenne des épisodes de marche).

En outre, la capacité de la méthode à calculer de manière fiable les paramètres du risque de chute à partir de différentes positions du corps est évaluée (Chapter 6). Des signaux inertiels sont recueillis par des adultes âgés effectuant un test de marche de 6 minutes à partir de deux positions de capteurs, le poignet et le bas du dos. Les paramètres évalués sont le temps de foulée instantané, l'écart-type (SD) et le coefficient de variance (Cov) du temps de foulée, l'exposant fractal du temps de foulée et l'entropie du temps de foulée. Les performances de Smartstep sont évaluées par rapport à un système inertiel de référence. L'erreur quadratique moyenne (RMSE) pour le temps de foulée instantané était de 56 ms. Les limites d'agrément (Loa) pour Cov et SD du temps de foulée, et l'exposant fractal et l'entropie du temps de foulée, étaient d'environ 20 ms, 2%, 0,26, et 0,45 respectivement. Ces mesures montrent que Smartstep surpasse les méthodes de pointe et est suffisant pour l'estimation de ces paramètres dans la vie réelle.

La relation entre ces caractéristiques de marche estimées lors de la vie courante et le risque de chute est testée en utilisant un ensemble de données partagé par les auteurs de (Delbaere et al., 2021). Le jeu de données est composé des signaux collectés à l'aide d'un capteur inertiel, placé sur le bas du dos pendant une semaine par 300 personnes âgées. Il contient aussi l'occurrence des chutes intervenant pendant une période de suivi de 12 mois suite à cet enregistrement. La proportion d'individus ayant fait au moins une chute (fallers) par rapport aux individus n'ayant pas fait de chute (non-fallers) est de 30%.

Pour l'ensemble des données inertielles, les épisodes de marche et les instants de pas sont détectés à l'aide de l'algorithme Smartstep. Les facteurs de risque de chute identifiés précédemment sont calculés à partir des instants de pas pour chacune de ces périodes de marche. Ils sont ensuite agrégés pour des épisodes de marche de différentes longueurs.

Dans un premier temps, nous nous sommes intéressés à l'influence de la longueur des épisodes de marche sur les relations statistiques entre les différents paramètres et le risque de chute (Chapter 7). Nous avons constaté que la variabilité de la marche devient significative si des épisodes de marche d'un minimum de 200 pas sont sélectionnés. Ceci est en accord avec les études précédentes qui ont évalué la différence de variabilité de la marche entre les patients atteints de la maladie de Parkinson et les individus sains.

Nous avons ensuite mis au point un modèle de prédiction des chutes basé sur ces facteurs de risque. Ce modèle a été évalué pour différentes longueurs d'épisodes de marche (Chapter 8). Pour les épisodes de marche de moins de 200 pas, le modèle contenait la quantité, la variabilité, l'intensité, mais pas la complexité, qui n'est pas calculable de manière fiable pour des vecteurs de moins de 200 points (ici des épisodes de marche de moins de 200 pas). Au-delà de 200 pas, les informations de complexité de la marche v ont été ajoutées au modèle. D'une manière générale, les résultats montrent que le risque de chute est positivement relié à la variabilité, la quantité et l'intensité de la marche et négativement avec la complexité de la marche. Ces tendances (sauf pour l'intensité) sont en accord avec la littérature. La performance optimale du modèle était une AUC de 0,7 qui est comparable à la performance des modèles construits avec des dispositifs inertiels dédiés (Rispens et al., 2015;Van Schooten et al., 2016). Cette AUC a été atteinte lorsque des épisodes de marche d'au moins 200 pas (2 minutes) étaient sélectionnés, ce qui permettait d'inclure des paramètres de complexité. Hormis cet ajout de paramètres de complexité les variations de ce seuil minimum de longueur de segment de marche n'engendrent qu'un gain de performance marginal.

Ce seuil minimum de 200 pas entraine cependant l'exclusion de certains utilisateurs qui ne l'atteigne jamais au cours de la semaine d'enregistrement. Dans la population que nous avons considérée, cela représente l'exclusion de 6% de la population. Pour résoudre ce problème, il faudrait envisager d'ajuster l'algorithme utilisé pour calculer les paramètres de complexité, ou trouver d'autres paramètres qui peuvent signifier la complexité de la marche.

En conclusion, nous avons proposé une approche innovante permettant un suivi des caractéristiques de marche à partir d'appareils grand public lors d'enregistrements ambulatoires. Pour cela, nous avons développé une méthode universelle de détection des instants de pas. Nous avons ensuite sélectionné les caractéristiques de marche calculables à partir des séries temporelles de ces instants de pas, et nous avons démontré qu'un modèle basé sur ces caractéristiques permettait de prédire le risque de chute, de manière prospective, avec des performances de prédiction comparables aux méthodes actuelles basés sur des capteurs dédiés.

Une limitation de cette étude est que le jeu de données utilisé pour la prédiction du risque de chute provient d'un capteur dédié et placé sur un endroit fixe (le bas du dos). Les résultats que nous avons obtenus en termes de robustesse de la méthode de détection des pas nous permettent cependant de penser que des performances de prédiction similaires seraient obtenues pour des capteurs non dédiés et sans contrôle du placement du capteur. Cela reste néanmoins à démontrer. Une autre perspective consiste à évaluer les performances du modèle en incluant des données de santés (historique de chute, résultats de tests cliniques simples tels que des questionnaires), tel que cela est classiquement fait dans la littérature. Nous pouvons ainsi espérer obtenir des performances de prédiction des chutes bien plus importantes (AUC supérieur à 0,8 dans la littérature) et pertinentes cliniquement. Parmi les autres pistes de travail, nous pouvons mentionner : l'idée de suivre l'évolution des paramètres de risque de chute choisis sur de longues périodes, et non plus se contenter d'une prédiction basée sur une période de mesure donnée; l'exploration de solutions permettant d'inclure les personnes qui ne marchent jamais sur des périodes suffisamment longues (6% de la population dans notre étude); l'élargissement de la population d'étude pour s'intéresser à des personnes ayant différents niveaux d'autonomie et/ou atteintes de pathologies associées au vieillissement. [START_REF] Laessoe | Fall risk in an active elderly population-can it be assessed?[END_REF] 

" Michael Dell, Founder of Dell technologies

Wearable technology is transforming aspects of personal healthcare. However, despite the quick rate of this progress, it has merely touched the elderly population which is assumed to grow and reach one-sixth of the total population in 2050 (United Nations, 2022). Proposing innovative wearable technologies to improve aging aspects, especially in terms of mobility and physical functioning, is essential to cope with the increased life expectancy.

A major cause of mobility loss, morbidity, and mortality are falls in the elderly. It has been estimated that one-third of people aging above 65 years fall at least once a year (World Health Organization, 2008). One in 5 falls results in major injuries [START_REF] Sterling | Geriatric falls: Injury severity is high and disproportionate to mechanism[END_REF]. Falls are the number one cause of hip fracture [START_REF] Parkkari | Majority of hip fractures occur as a result of a fall and impact on the greater trochanter of the femur: A prospective controlled hip fracture study with 206 consecutive patients[END_REF]. In addition to physical injuries, falls can often initiate a vicious cycle of fear of falling, loss of activity, and repeated falls [START_REF] Boyd | Falls and fear of falling: Burden, beliefs and behaviours[END_REF]. Moreover, falls represent a socio-economic burden. The cost of fall-related care in the United States has been estimated to be $50 billion in 2015 [START_REF] Florence | The medical costs of fatal falls and fall injuries among older adults[END_REF]. Therefore, providing older adults with an easy, and accessible solution to help evaluate their falling risks in a way that is similar to evaluating users' fitness can aid reduce falls.

Methods for identifying older adults prone to falls have progressed from classical methods of clinical assessment tests such as questionnaires and physical performance tests to include more advanced methods of ambulatory gait monitoring with wearables containing inertial sensors. This progress was made to add quantitative real-life measures that are thought to augment the accuracy of clinical tests (Warmerdam et al., 2020).

Nowadays, ambulatory gait monitoring relies on dedicated devices that should be placed on fixed body locations (Del Din et al., 2019;Van Schooten et al., 2015). This decreases the user's compliance and the device's utility (Keogh et al., 2020). On the other hand, consumer-grade devices containing Inertial Measurement Units (IMUs) can be potential candidates. They are practical, affordable, accessible, and have high sensor quality.

However, the challenges of using consumer devices are manifold. One must find parameters that can be reliably measured and at the same time associated with prospective falls. Not all parameters calculated with dedicated sensors can be computed using consumer-grade devices. Moreover, the calculation method or algorithm used for dedicated sensors should be adjusted to work from different body locations and for different types of consumer devices.

In this thesis, we propose innovative solutions for calculating fall risk parameters that can be applied universally on different devices, especially consumer-grade devices. These solutions can reshape how gait monitoring is done. Unlike other methods, they can reach a large portion of the population, and they can allow personal monitoring of the evolution of the fall risk status.

This part includes two chapters. Chapter 1 is a literature review discussing previous research challenges, gaps, and limitations concerning developing a ubiquitous method to measure fall risk parameters. By the end of the review, Chapter 2 details the thesis objective, general approach, and main contributions. 

Introduction

Can we potentially use non-dedicated inertial sensors (e.g. consumer-grade devices, smartphones, and smartwatches) to monitor fall risk parameters in real life freely and without restrictions to sensor placement? Up until now, there has not been a ubiquitous or universal solution that can work for different sensor placements and different devices.

In this literature review, we examine different topics from which we derive an approach toward achieving a ubiquitous solution to fall risk monitoring. Section 1.2 discusses fall risk factors. Section 1.3 presents general clinical assessment tools. Section 1.4 introduces ambulatory gait assessments. Section 1.5 reviews different existing fall risk parameters. Section 1.6 states the actual performance of ambulatory fall prediction models. Section 1.7 explains the data collection using consumer devices. Section 1.8 details how ambulatory gait data is normally processed. Section 1.9 examines different step detection methods. Section 1.10 discusses different methods to aggregate fall risk parameters over walking bouts. Finally, Section 1.11 is the conclusion.

Fall risk factors

In this section, a definition of what constitutes a fall is given, and details about different fall risk factors are provided.

Throughout this thesis, we consider healthy older adults without major neurological or orthopedic diseases affecting their gait. For that purpose, an appropriate definition of what constitutes a fall should be chosen. Several definitions exist [START_REF] O'malley | Fall definitions, faller classifications and outcomes used in falls research among people with multiple sclerosis: A systematic review[END_REF]. The used definition is that found in the report by the Kellogg International Work Group on the Prevention of Falls in the Elderly: unintentionally coming to the ground or other lower level for some reason other than as a consequence of sustaining a violent blow, loss of consciousness, or sudden onset of paralysis as in stroke or epileptic seizure [START_REF] Zhang | The prevention of falls in later life. a report of the kellogg international work group on the prevention of falls by the elderly[END_REF]. Kellogg's definition is appropriate for identifying factors that impair sensorimotor function and balance control and excludes cardiovascular and neurological causes of falls. This definition fits perfectly the elderly undergoing the "normal or usual aging process" where the physiological and psychological functions are not affected by diseases [START_REF] Rowe | Human aging: Usual and successful[END_REF].

Falls are the result of complex interactions between intrinsic and extrinsic factors. Intrinsic fall factors include characteristics inherently related to the person. They are linked to age-related changes in sensory and motor factors such as vision level, muscle strength, and peripheral sensation. These changes can translate into the person's mobility and gait. In addition, fall incidence is statistically linked to the number of previous falls or fall history, and gender [START_REF] Appeadu | Falls and fall prevention in the elderly[END_REF]. On the other hand, extrinsic factors are generally related to the environment in which the person is inserted. They account for poor lighting, wet floor surfaces, loose rugs, clutter, and poorly organized furniture [START_REF] Appeadu | Falls and fall prevention in the elderly[END_REF]. Figure 1.1 shows a summary of known fall risk factors linked to "normal aging". Different activities and environmental contexts demand different levels of balance control. As shown in Figure 1.2, to avoid falling it is necessary to have the balance capacity to handle the balance demands of a given activity and environmental context. For example, individuals with poor health characteristics are more likely to fall indoors, while healthy, active individuals are more likely to fall outdoors [START_REF] Kelsey | Heterogeneity of falls among older adults: Implications for public health prevention[END_REF].

Having a single tool to encompass all the information on the multi-factorial nature of falls seems impossible. Still, the way the person walks seems to carry a lot of information: more and more gait characteristics appear to be related to the occurrence of falls [START_REF] Menant | Gait characteristics and falls[END_REF]. Gait or walking is amongst the most frequent activities we realize every day. Normal healthy gait demands a considerable degree of control from the central nervous system to insure balance while coordinating movements from head to toe. That is why, in this thesis, we are interested in assessing gait to derive fall risk factors that can enhance fall prediction tools.

Clinical assessment tools

Fall risk assessments should accurately identify the elderly at high risk of falls so that they are referred to intervention programs. These assessments often involve question- [START_REF] Laessoe | Fall risk in an active elderly population-can it be assessed?[END_REF] naires or functional assessments of cognition, gait, posture, and other fall risk factors. Table 1.1 include some functional assessments such as the Timed-Up-and-Go [START_REF] Podsiadlo | The timed "up & go": A test of basic functional mobility for frail elderly persons[END_REF], Berg Balance Scale [START_REF] Berg | Measuring balance in the elderly: Development and validation of an instrument[END_REF], Tinetti Performance Oriented Mobility Assessment [START_REF] Tinetti | Performance-oriented assessment of mobility problems in elderly patients[END_REF], Balance Evaluation Systems Test (BESTest) [START_REF] Horak | The balance evaluation systems test (bestest) to differentiate balance deficits[END_REF], and questionnaires such as the Falls Efficacy Scale International [START_REF] Yardley | Development and initial validation of the falls efficacy scale-international (fes-i)[END_REF].
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As the primary goal is to identify people at high risk, a good tool is that with high sensitivity. Despite several studies on the matter, results on prediction rates, sensitivity, and specificity, vary highly and are low to moderate. Table 1.1 shows that the test's sensitivity varies from as low as 7.6% to as high as 85% with an average of around 60 %. Moreover, a meta-analysis review comparing the diagnostic accuracy for fall prediction for elderly aged 60 years and more shows that assessment tools do not show sufficiently high predictive validity (sensitivity> 70% but a specificity< 60%) [START_REF] Park | Tools for assessing fall risk in the elderly: A systematic review and meta-analysis[END_REF]. The inconsistency in results is caused by inconsistent cut thresholds chosen to categorize fallers and non-fallers. A meta-analysis review showed that TUG-based thresholds were inconsistent across studies [START_REF] Schoene | Discriminative ability and predictive validity of the timed up and go test in identifying older people who fall: Systematic review and meta-analysis[END_REF]. Studies normally adapt cut thresholds to population age, complications, exercises, and lifestyle.

Therefore, due to the above-mentioned limitations, there was a need to search for
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additional fall risk assessment tools that could support existing clinical assessment tools. Respective ranges of sensitivity and specificity were 7.6% to 61.5% and 69.5% to 97% [START_REF] Omaña | Functional reach test, single-leg stance test, and tinetti performance-oriented mobility assessment for the prediction of falls in older adults: A systematic review[END_REF] Balance Evaluation Systems Test (BESTest) Consists of assessing 6 systems: "Biomechanical Constraints," "Stability Limits/Verticality," "Anticipatory Postural Adjustments," "Postural Responses," "Sensory Orientation," and "Stability in Gait." cut-off point differ with age group [START_REF] Magnani | Use of the bestest and the mini-bestest for fall risk prediction in community-dwelling older adults between 60 and 102 years of age[END_REF] Respective ranges of sensitivity and specificity were 58% to 85% and 60% to 74% [START_REF] Magnani | Use of the bestest and the mini-bestest for fall risk prediction in community-dwelling older adults between 60 and 102 years of age[END_REF] 

Falls

Efficacy Scale International (FES-I) Questionnaire to assess fear of falling with a score around 23-30 implying a risk of fall Sensitivity and specificity ranged from 47% -70% and 65% -87% [START_REF] Marques-Vieira | Cross-cultural validation of the falls efficacy scale international in elderly: Systematic literature review[END_REF] 

Why ambulatory gait assessments?

To complement clinical fall risk assessments, research is oriented towards adding quantitative measures describing a person's gait. They can be captured by instrumented devices (motion capture systems-force platforms-inertial sensors -wearables...etc.) in controlled supervised or in ambulatory unsupervised settings. In this thesis, we consider capturing gait measures from real-life or ambulatory settings while the person is unsupervised. The reasoning behind this choice is detailed below.

Table 1.2 shows the three different supervision levels [START_REF] Shany | Assessing fall risk using wearable sensors: A practical discussion[END_REF]. Supervised assessment refers to the traditional mode of assessment where the person is asked to do a series of tasks in controlled settings (e.g. laboratory, clinic) under the supervision of a researcher or a clinician. The data collected during these tests can be simply processed using a validated algorithm to calculate fall risk factors (detailed in Section 1.5 which are relatively reliable. However, the main limitation of these tests is that: (1) individuals tend to perform differently when they are aware that they are being examined [START_REF] Robles-Garcıia | Spatiotemporal gait patterns during overt and covert evaluation in patients with parkinson's disease and healthy subjects: Is there a hawthorne effect[END_REF], (2) they represent only the capacity of the individual to do something at a given moment which is hardly related with the performance in real life (Giannouli et al., 2016;World Health Organization, 2005).

Another level of supervision is semi-supervised where the participant records a short series of structured activities at home or a medical center. An example is when a staff member attaches and activates the device correctly and asks the patient to walk around unsupervised. Another example is the Apple research toolkit which does some measurements while asking the person to do some pre-defined activities [START_REF] Apple | What's new in health and fitness -discover -apple developer[END_REF]. Although these tests have high acceptability and reach, they do not represent the performance in real life. Moreover, they do not allow continuous monitoring of users unless the user repeats the test continuously.

Finally, unsupervised assessments or monitoring refer to assessing data collected continuously while the person carries out his usual daily activities in his/her environment. A wearable device continuously monitors fall risk parameters while the person carries out his/her daily activities. Nowadays, the inclusion of ambulatory measurements as exploratory endpoints in clinical trials is encouraged by the Food and Drug Administration (FDA) and the European Medicines Agency (EMA) (CTTI, 2021). There are many advantages accompanied by these types of assessments. Through continuous monitoring, the evolution of the individual's fall risk state through time can be studied. Additional measures such as the quantity of activity performed can be captured. In addition, these tests capture the person's habitual, actual performance in a continuous way, and are not biased by observer or "whit-coat" and Hawthorne effects (Paradis & Sutkin, 2017). Many studies have discussed the potential benefits of measuring real-life gait for fall risk assessment (Del Din et al., 2019;Rispens et al., 2015b;Van Schooten et al., 2016;Van Schooten et al., 2015;Weiss et al., 2013). However, several challenges and difficulties exist. First, real-life data are difficult to process. Algorithms fit to calculate fall risk parameters from real-life data are not assessed or evaluated yet (Warmerdam et al., 2020). Second, the interpretation of fall risk parameters is complicated and can be different from that obtained in laboratory settings (Warmerdam et al., 2020). Recent attention has been given to identifying and validating digital fall risk and mobility measures acquired from real-life inertial sensors [START_REF] Mazzà | Technical validation of realworld monitoring of gait: A multicentric observational study[END_REF]. In a similar context, we aim at identifying which of these digital measures can be ubiquitously calculated (independent of device placement and brand) and at the same time be valuable in terms of fall prediction. In the following, we discuss different existing fall risk parameters that have been calculated from ambulatory gait inertial signals.

A wide range of parameters exist in the literature, and they can be split into different domains. Primarily, they are split into gait quantity and gait quality domains. Gait quantity, also referred to as macro gait parameters, is usually used to describe the quantity of walking bouts and the number of steps performed within the day. Gait quality, also referred to as micro gait parameters, describes the different balance and neural control mechanisms of gait (Nouredanesh et al., 2021).

In terms of gait quality, parameters can be calculated with two different methods. Either they are calculated directly from inertial signals (ex. harmonic ratio) or derived from gait spatiotemporal parameters (ex. step time asymmetry) (Nouredanesh et al., 2021). The latter needs a gait event or step detection algorithm.

Moreover, gait quality is described by different independent uncorrelated domains. The nomenclature of these domains is inconsistent throughout the literature (Nouredanesh et al., 2021). Currently, we can identify two main lines of research. Research groups that derive fall risk parameters from gait spatiotemporal parameters cluster them into five domains: pace, rhythm, variability, symmetry and postural control (Del Din et al., 2019;Del Din et al., 2016a). Research groups which calculate features directly from inertial signals mainly divide them among five domains: intensity, complexity, smoothness, symmetry, and variability (Rispens et al., 2015b;Van Schooten et al., 2015;Weiss et al., 2013). Up until now, it is unclear if these different gait quality domains are equivalent or intertwine at some points.

Different features demand different calculation methods or algorithms which can be sensitive to sensor placement, orientation, and real life challenges. Currently, not all used methods and algorithms are ubiquitous or are fit to be applied on consumer devices. For example, when deriving step instants independent of smartphone placement remains a challenging problem (to be detailed in Section 1.9), deriving small-scale gait events such as heel strike and toe off will need a long way to go.

In the following, we describe existing gait quantity and gait quality parameters. Then, we discuss which can be potentially calculated using consumer devices with uncontrolled placements. We assess the following parameters: Quantity, intensity, variability parameters, complexity, symmetry, and smoothness. We ignore discussing micro step characteristics such as swing time and stance time, and spatial gait parameter such as step width and step length. Acquiring a technically valid algorithm for their calculation is difficult and is not within the objective of this thesis.

Variability

As heart beat fluctuation revealed to carry important information on heart rate regulation, gait variability was believed to mirror balance and gait regulation (Hausdorff, 2007). Since the day it was proposed back in the 1990s by Hausdorff et. al., scientists were in the search for easy descriptive gait variability parameters. The simplest, oldest, and most reported for the assessment of falls were the linear standard deviation or coefficient of variance of stride time as stated in (Hamacher et al., 2011). In a retroprospective study with 18 fallers and 17 non-fallers, the standard deviation of stride time was reported as 50 ms for fallers and 25 ms for non fallers (Hausdorff et al., 1997a). On a 1-year prospective study, the standard deviation of stride time was 49 ms for fallers and 106 ms for non fallers (Hausdorff et al., 2001). Across studies, temporal variability exhibited consistent trend. It was always higher for fallers [START_REF] Montesinos | Wearable inertial sensors for fall risk assessment and prediction in older adults: A systematic review and meta-analysis[END_REF].

For a reliable estimate of variability, one should record a sufficient number of strides from continuous walking and choose a robust step detection technique. It is instructed to include 50 strides by (König et al., 2014) and 150 by (Riva et al., 2014). In addition, to reduce errors from step detection, some studies filter out atypical strides using median filter (Hausdorff, 2007).

However, detecting stride times in ambulatory settings requires large efforts to be put on a robust step detection algorithm. Therefore, several studies tried to find variability measures which do not require step detection. Weiss et al. (2013) found that the amplitude and the slope of dominant frequency of acceleration signal are lower in vertical direction and higher in Mediolateral direction for fallers with 2 or more falls in the previous year. Then, (Rispens et al., 2015b) confirmed those findings. However, (Van Schooten et al., 2015) could not associate these variables with prospective falls.

Complexity/ Postural control

The notion of complexity was introduced after gait variability. These variables detect the presence of chaos in human gait, and they include Lyapunov exponent, entropy, and fractal exponent.

Lyapunov exponent

The Lyapunov exponent, proposed first by Dingwell et al. (2000) for gait analysis, is said to quantify the motor's system ability to recover from small perturbations and maintain dynamic stability in the presence of kinematic gait variability which naturally increases with age. Specifically, the short-term Lyapunov exponent has been proven useful for identifying fall-prone older adults (Bruijn et al., 2013).

The calculation starts with the state space reconstruction using embedding delays according to Taken's theorem [START_REF] Takens | Detecting strange attractors in turbulence[END_REF]. Two parameters must be chosen: the embedding dimension, and the time delay. The embedding dimension can be estimated using a global false nearest neighbor (GFNN) analysis [START_REF] Kennel | Determining embedding dimension for phase-space reconstruction using a geometrical construction[END_REF]. The time delay can be calculated using the first minimum in the average mutual information (AMI) function (Fraser, 1986). Both parameters should be constant for all participants being compared [START_REF] Van Schooten | Assessing gait stability: The influence of state space reconstruction on inter-and intra-day reliability of local dynamic stability during over-ground walking[END_REF]. Two different algorithms can be used to calculate the lyapunov exponent: Rosenstein [START_REF] Rosenstein | A practical method for calculating largest lyapunov exponents from small data sets[END_REF] or Wolf [START_REF] Wolf | Determining lyapunov exponents from a time series[END_REF] algorithm. The rate of divergence is expressed per gait cycle as every foot placement is considered as a possibility to recover from a perturbation. Although not directly, the lyapunov exponent requires step detection. It is important to make sure that gait signals have the same number of strides for every condition and subject. Moreover, the number of data points per stride must be adjusted by time normalizing (i.e. n strides length to nx100 data points) [START_REF] Raffalt | Selection procedures for the largest lyapunov exponent in gait biomechanics[END_REF]. Such pre-processing is sensitive to errors in step detection. The advised number of strides is at least 150 strides. [START_REF] Lockhart | Differentiating fall-prone and healthy adults using local dynamic stability[END_REF] showed that it differentiated between fallers and non-fallers when calculated on anterior posterior acceleration from the pelvis for 40 gait cycles. Then, [START_REF] Toebes | Local dynamic stability and variability of gait are associated with fall history in elderly subjects[END_REF] showed that it is associated positively with retrospective falls on a larger scale of 134 elderly when calculated on the trunk angular velocity. Rispens et al. (2015b) also showed that Lyapunov calculated from daily life anterior-posterior acceleration on the lower back associated positively with a fall history. Then, (Van Schooten et al., 2015) associated it with prospective or future falls.

Results on the Lyapunov exponent are inconsistent throughout the literature because of the different calculation methodologies. Sensor placement, data type, number of strides, and chosen algorithm parameters have a great influence on the Lyapunov value. As each anatomical frame has different mechanical properties and maneuvers to ensure gait stability, results from one anatomical segment are different from another anatomical segment. More importantly, the association of Lyapunov with the risk of falls varies with respect to sensor placement. Kang and Dingwell (2009) showed that trunk motion dynamics were more sensitive than the pelvis, thigh, shank, and foot at displaying gait function decline in older adults.

Entropy Entropy was first introduced in the 1990s to analyse the regularity of heartbeat data [START_REF] Pincus | A regularity statistic for medical data analysis[END_REF]. Since its introduction, it has grown into a popular measure descriptive of gait regularity. Entropy provides us with the probability that similar vectors of length m remain similar for length m+1. Different measures of entropy such as approximate entropy, sample entropy, permutation entropy...etc exist for gait analysis. Furthermore, these measures can be further extended to multiscale entropies that can quantify complexity at multiple temporal scales.

It can be calculated on either discrete data (stride duration), continuous data (acceleration signal) (McCamley et al., 2018), or the power spectrum of signal [START_REF] Kojima | Comparison of smoothness during gait between community dwelling elderly fallers and non-fallers using power spectrum entropy of acceleration time-series[END_REF]. For the calculation, two parameters should be chosen the vector length, m, and tolerance,r. While the choice of m, sampling frequency, r, and sensor placement has great effect on continuous data, discrete data is robust against it (McCamley et al., 2018;Yentes & Raffalt, 2021). However, mainly in fall assessment studies, entropy is calculated from continuous acceleration collected from the lower back. Although not directly, entropy requires step detection. It requires a minimum of 200 strides to be calculated reliably (Yentes et al., 2013). Moreover, it is important to make sure that gait signals have the same number of strides for every condition and subject.

The trend of entropy in the literature is inconsistent due to calculation methodologies (McCamley et al., 2018). While some associate higher entropy with better health, some associate it with higher fall risk. For example, (Ihlen et al., 2016b) associated lower complexity or entropy, described by refined composite multiscale entropy and multiscale permutation entropy and calculated on acceleration signals, with retrospective falls. On another dataset, (Ihlen et al., 2018) confirmed the previous finding with another entropy measure for prospective first-time fallers. On the contrary, [START_REF] Riva | Estimating fall risk with inertial sensors using gait stability measures that do not require step detection[END_REF] finds that entropy calculated on trunk acceleration is higher fallers. [START_REF] Kojima | Comparison of smoothness during gait between community dwelling elderly fallers and non-fallers using power spectrum entropy of acceleration time-series[END_REF] showed that the entropy of the power spectrum calculated at higher walking speed is higher for fallers. However, entropy plays a major part in fall prediction models. Rispens et al. (2015a) and Van Schooten et al. (2016), Van Schooten et al. (2015) used sample entropy on vertical and mediolateral acceleration in a fall predictive model which resulted in an AUC of around 0.8.

Similar to the lyapunov exponent, the value of calculated entropy on inertial signal and its association with falls is dependant on sensor placement, data type, number of strides, and chosen algorithm parameters (Ihlen et al., 2016a). On the other hand, entropy calculated on discrete time series (ex. stride time series) is practically interesting as it is robust against chosen algorithm parameters and sensor placement. However, they are rarely found in the literature. Recent studies are encouraging its use (Yentes & Raffalt, 2021). One study has shown that sample entropy calculated on stride time from real-life data is reflective of gait regularity and could differentiate between Parkinson's and healthy patients (Coates et al., 2020). Entropy has not been used in fall prediction studies yet. We aim at including it in our research.

Fractal exponent Another interesting non-linear measure is the fractal exponent. After the discovery of gait variability, [START_REF] Hausdorff | Is walking a random walk? evidence for long-range correlations in stride interval of human gait[END_REF] showed that variations in gait time series, like beat-to-beat fluctuations in heart rate, are not random but exhibit longrange correlations, where one stride influences consecutive strides. Detrended Fluctuation Analysis was used to assess the amount of correlation between strides. Lower values indicate strides are uncorrelated and larger values indicate greater correlation.

The calculation algorithm fits a power law to series' fluctuations across different scales or window sizes. The window sizes is suggested to be 16 to N/9 if 600 strides are collected (Damouras et al., 2010), and 4 to N/4 if 200 strides are collected (Kuznetsov & Rhea, 2017) where N is the number of stride intervals collected.

Since then, it has showed that it has the ability to detect fall risk and distinguish pathological gait (Channa, Popescu, et al., 2021;[START_REF] González | Relationship between stride interval variability and aging: Use of linear and non-linear estimators for gait variability assessment in assisted living environments[END_REF]Hausdorff et al., 1997b;Herman et al., 2005). Concerning fall prediction and ambulatory settings, the research is limited. This may be because there is a lack in a robust step detection as this parameter is affected strongly by overdetected and misdetected steps, and because long walking bouts are not abundant in ambulatory settings (Brodie et al., 2015a).

Symmetry

Gait symmetry quantify how identical the behavior of bilateral limbs is during a gait cycle. It describes the step-to-step symmetry within a stride. It can be described using step time asymmetry or the harmonic ratio [START_REF] Smidt | Accelerographic analysis of several types of walking[END_REF]. Decrease in gait symmetry generally indicates poor coordination and a higher falls risk [START_REF] Yogev | Gait asymmetry in patients with parkinson's disease and elderly fallers: When does the bilateral coordination of gait require attention[END_REF].

Step asymmetry requires the detection and the discrimination between right and left foot instants which can be complicated to achieve using existing step detection algorithms. As a replacement, the harmonic ratio can be calculated as the ratio of the sum of amplitudes of the even harmonics to the sum of amplitudes of the odd harmonics. The number of harmonics mainly used is 20. In addition, this parameter is also affected by the analyzed number of strides; therefore, this number should be fixed between participants [START_REF] Pasciuto | Overcoming the limitations of the harmonic ratio for the reliable assessment of gait symmetry[END_REF].

Based on controlled laboratory measurements, the harmonic ratio has revealed significant associations with clinical fall risk assessments [START_REF] Senden | Accelerometrybased gait analysis, an additional objective approach to screen subjects at risk for falling[END_REF], fall history [START_REF] Brodie | Good lateral harmonic stability combined with adequate gait speed is required for low fall risk in older people[END_REF], and future falls (Drover et al., 2017;Hirata et al., 2013;[START_REF] Howcroft | Dual-task elderly gait of prospective fallers and non-fallers: A wearable-sensor based analysis[END_REF]. It was also used as input for fallers with fall history classification models [START_REF] Howcroft | Prospective fall-risk prediction models for older adults based on wearable sensors[END_REF][START_REF] Howcroft | Wearable-sensor-based classification models of faller status in older adults[END_REF]. Concerning ambulatory settings, several studies found that harmonic ratio in the vertical and anterior-posterior direction were related to number and time to future falls (Rispens et al., 2015a;Van Schooten et al., 2016;Van Schooten et al., 2015;[START_REF] Weiss | Objective assessment of fall risk in parkinson's disease using a body-fixed sensor worn for 3 days[END_REF].

Despite the promising results, some studies show contradictory results [START_REF] Riva | Estimating fall risk with inertial sensors using gait stability measures that do not require step detection[END_REF]. This disparity can be also caused by calculation methodology and sensor placement.

Both the value and the association of harmonic ratio with risk of fall are inconsistent. For example, while lower and upper trunk harmonic ratio are lower for fallers, only upper trunk showed high discrimination for the risk of fall AUC=0.8 (Hirata et al., 2013). Correspondingly a change in the sensor position clearly affects the outcome of this variable.

Smoothness

Gait smoothness describes the continuity or non-intermittency of walking. Intermittent movements include many accelerating and decelerating phases. The index of harmonicity introduced by [START_REF] Lamoth | Pelvis-thorax coordination in the transverse plane during gait[END_REF] and calculated as the ratio of the spectral power of the basic harmonic divided by the sum of the power of the first six harmonics is used to describe gait smoothness. A power ratio of 1 indicates perfect harmonics. Index of harmonicity was used in several prospective fall prediction models with AUC 0.93 [START_REF] Kikkert | Gait dynamics to optimize fall risk assessment in geriatric patients admitted to an outpatient diagnostic clinic[END_REF] in laboratory settings, AUC 0.71 for daily life recordings (Van Schooten et al., 2015), and associated negatively with a history of falls in the vertical direction for ambulatory data (Rispens et al., 2015b), and positively with time for first fall in the mediolateral direction (Van Schooten et al., 2016). In fall-prone stroke survivors, it was higher in the mediolateral direction but lower in anterior-posterior and vertical direction [START_REF] Punt | Characteristics of daily life gait in fall and non fallprone stroke survivors and controls[END_REF][START_REF] Punt | Do clinical assessments, steady-state or daily-life gait characteristics predict falls in ambulatory chronic stroke survivors[END_REF], demonstrating that it has different constructs depending on the direction analyzed. In contrast, some studies fail to find such associations with the risk of fall [START_REF] Riva | Estimating fall risk with inertial sensors using gait stability measures that do not require step detection[END_REF].

Intensity/ Pace

Intensity is an indicator of the effort associated with the gait execution. Cadence (steps/minute) is usually used to describe the gait intensity where more than 100 steps/min in real life indicates the least moderate intensity [START_REF] Tudor-Locke | How fast is fast enough? walking cadence (steps/min) as a practical estimate of intensity in adults: A narrative review[END_REF]. Other used measures are based on inertial signals. For example, (Van Schooten et al., 2016) uses the root mean square of the acceleration signal. For measurement of cadence, it is advised to collect at least 20 strides (Hollman et al., 2010). (Brodie et al., 2015a) showed that individuals with a fall history tended to walk at a lower cadence in daily life. Similarly, [START_REF] Urbanek | Free-living gait cadence measured by wearable accelerometer: A promising alternative to traditional measures of mobility for assessing fall risk[END_REF] showed that 10 steps per minute lower cadence were associated with a 13.2% higher prospective fall rate. In addition, (Van Schooten et al., 2015) showed that gait intensity represented by a lower standard deviation and range of the inertial signal is associated with prospective falls. Gait intensity is moderate to highly correlated to walking speed. Thus, lower gait intensity may either reflect safer walking or weakened walking which reflects a bad health status (Van Schooten et al., 2015).

Quantity

According to [START_REF] Mactier | The relationship between real world ambulatory activity and falls in incident parkinson's disease: Influence of classification scheme[END_REF], gait quantity can be split into pattern, volume, accumulation of stepping bouts, and variability. The proportion of time spent walking per day is used to describe the volume. The pattern is defined by the distribution of walking bouts. The accumulation of stepping bouts is described by the total number of bouts and total number of steps per day. Finally the variability is described as the 'within subject' variability of bout length. In addition, [START_REF] Brodie | Comparison between clinical gait and daily-life gait assessments of fall risk in older people[END_REF]Brodie et al., 2015a) use longest walk, median walking bout duration, short walk exposure or percentage of short (< 8 seconds) walking bouts.

The answer to why and how gait quantity might be related to falls is quite a paradox. Several studies state that increasing gait quantity can increase physical function and thereby decrease fall risk. Other studies mention that increasing the walking period increases exposure to environmental hazards increasing the chance of a fall.

Concerning retrospective falls, (Weiss et al., 2013) did not find significant differences between fallers and non-fallers in the number of steps of the largest walking bout. However, [START_REF] Brodie | Comparison between clinical gait and daily-life gait assessments of fall risk in older people[END_REF]Brodie et al., 2015a) showed that fallers had a higher percentage of short walking bouts implying that they were less able to complete long walks without pausing. Similarly, (Del Din et al., 2019) showed that fallers walked with shorter and less variable ambulatory bouts than non-fallers. Concerning prospective falls, [START_REF] Schwenk | Sensorderived physical activity parameters can predict future falls in people with dementia[END_REF] showed that walking bout average duration, longest walking bout duration, and walking bout duration variability was lower in fallers with dementia. Then, (Van Schooten et al., 2015) showed that gait quantity is a protective factor for persons with bad gait quality (e.g. smoothness, symmetry, variability ...etc.). In other words, if a person has a bad gait quality, more walking may result in exposure to environmental hazards increasing fall risk. In other contexts, [START_REF] Sherrington | Effective exercise for the prevention of falls: A systematic review and meta-analysis[END_REF] showed that walking programs used as fall prevention treatments could increase fall injury among older people with a high-risk of falls. Although gait quantity might not be directly related to future falls, interactions between gait quantity and quality might be significantly related to falls.

Discussion

As a conclusion, we propose to summarize the findings in Figure 1.3. This schematic radar plot summarizes the literature findings on the relation between the risk of falls and gait parameters which are grouped by gait domains. As compared to a healthy person (green shade), a person at risk of falling (red shade) with a similar gait quantity will have a gait quality characterized by low complexity, smoothness, intensity, symmetry, and high variability.

This section presents an overview of the main gait characteristics that may relate to falls and summarizes which ones can be potentially calculated using a non-dedicated sensor or consumer devices. For a parameter to be a potential candidate, its value and its association with fall risk should be independent of the sensor position. In addition, the parameter's calculation method or algorithm should be robust against different sensor positions and other real-life challenges.

We can infer that different gait domains can be described by either parameter calculated on continuous acceleration (ex. Lyapunov exponent, Harmonic ratio...etc) or parameters calculated from detected gait events (Step asymmetry, sample entropy on step time...etc.).

The former type is known to be dependent on the sensor placement. Their values vary with respect to the anatomical segment the sensor is placed on (Hirata et al., 2013;Kang & Dingwell, 2009). One could argue that a possible solution can be to use a robust sensor position classifier in a preliminary processing step. However, sensor placement also affects how well the parameter associated with falls. For example, the harmonic ratio calculated on the upper trunk showed high discrimination for the risk of fall with respect to that calculated lower trunk (Hirata et al., 2013). Similarly, the Lyapunov exponent calculated on the trunk could better detect age-related differences than that calculated on the thigh, shank, or foot (Kang & Dingwell, 2009). In a summary, to obtain a reliable estimation of the risk of fall using parameters estimated from continuous acceleration signals, one must carefully fix the sensor placement. Therefore, these parameters cannot be monitored in a ubiquitous way using consumer devices.

On the other hand, parameters calculated from detected gait events are interesting. The problem of sensor placement is transferred toward choosing or developing a robust step detection algorithm. All gait domains except gait smoothness can be estimated using these parameters. We could estimate gait variability as the coefficient of variance of stride time, gait complexity as sample entropy and fractal exponent on stride time, gait symmetry as step time asymmetry, and gait intensity as the cadence.

However, challenges using these parameters include: (1) creating a robust step detection method against sensor position, (2) calculating and interpreting these parameters, especially those rarely discussed in the literature (e.g. sample entropy on stride time and fractal exponent) in ambulatory settings. 

Performance of fall prediction models

The objective of this section is to give an overview of the existing fall prediction model based on gait fall risk parameters. In the following, we focus on studies that consider (1) a population of community-dwelling elderly with more than 100 participants, (2) prospective falls as a criterion to identify fallers, and (3) ambulatory or real-life data. Table 1.3 shows studies fulfilling the above-mentioned criteria. Unfortunately, these studies are based on subsets of the same dataset (Fall Risk Assessment in Older Adults, FARAO, dataset). Their performance ranges from 58% to 71% sensitivity and from 67% to 72% specificity (AUC from 0.71 to 0.82). Most of the parameters included are signal-based parameters and none of them are step-related. One model was based on deep learning of 10second acceleration signals (Nait Aicha et al., 2018). Other models include all gait domains except for gait symmetry. In addition, some models included gait domain interactions (ex. quantity and intensity, quantity and smoothness). Van Schooten et al. (2015) evaluated the increase of performance from a model based on only accelerometry (AUC=0.71) to a model including both accelerometry and traditional clinical tests (AUC=0.82). 

Using consumer devices to collect inertial data

Most consumer devices include Inertial Measurement Units (IMUs) which might be potential candidates for gait monitoring. The advantages of these ubiquitous devices lie in their widespread availability, low cost, and high sensor quality. A study shows that 49% of adults 70-74 years old, and 31% of adults 75-79 years old are smartphone owners (Anderson & Perrin, 2017). In the following section, we discuss the data collection, sensor quality, advantages, and challenges of consumer-grade devices.

In consumer devices, smartphones, or smartwatches, the embedded IMU triggers screen rotation and is implemented by most fitness applications. Moreover, raw inertial data can be easily recorded and stored on the device for later offline use. In Android devices, Google facilitates the collection of raw inertial data. However, the sampling frequency cannot be set to a constant value and varies to save the phone battery. There are different modes: SENSOR_DELAY_NORMAL, SENSOR_DELAY_GAME, and SENSOR_DELAY_FASTEST. The latter forces the system to try its best to have a delay of 0.005 seconds between registered sensor events (maximum sampling rate of 200 Hz). In addition, one can collect the calibrated and un-calibrated versions of the sensor. Both operating systems iOS and Android have research platforms concerning fitness and health. Since the year 2021, Apple's open-source ResearchKit enabled the collection of mobility metrics such as walking speed, step length, double support time, and walking asymmetry which is accurate for specific placement and semi-supervised testing [START_REF] Apple | What's new in health and fitness -discover -apple developer[END_REF].

Both Apple and Google allow to also record other health vitals (ex. step countactivity..etc.) through what they call virtual sensors (ex. pedometers and fall detection sensors). These virtual sensors process outputs of several hardware sensors (ex. inertial sensors) to give meaningful measures (ex. step count). However, the processing method (ex. step detection algorithm) is a black box and propriety of the company. It might be tempting to directly use these sensors for the calculation of fall risk parameters. However, these virtual sensors are prone to errors as they are adapted to save battery life. [START_REF] Brodie | Big data vs accurate data in health research: Large-scale physical activity monitoring, smartphones, wearable devices and risk of unconscious bias[END_REF] showed extraordinarily large error ranges (0-200%) in step count using the built-in pedometers for both Android and Apple phones. Thus, there is a need of developing better algorithms with raw inertial signals for accurate step detection and fall risk factors calculation.

Now comes the question of how reliable is the quality of the inertial data obtained from the smartphone. This can be inferred from several studies using smartphones to derive basic spatiotemporal parameters. Table 1.4 shows that in the presence of a well-suited algorithm for a specific smartphone position and a simple walking task, gait parameters can be extracted accurately using smartphones (i.e. mean error in step time 2 ms and stride time 17 ms). In a conclusion, consumer devices have sufficiently high sensor quality comparable to that of dedicated inertial measurement devices. Several companies, such as Onestep, are built based on phone applications assessing gait spatiotemporal parameters ("OneStep", 2019).

However, fixed sensor positions especially in uncomfortable body positions might decrease the user's interest in wearing the sensor (Keogh et al., 2020). Challenges of using consumer devices are the different types and placements of the devices (ex. smartwatch on the wrist-smartphone in pocket). The difficulty lies in creating a data processing method or a step detection algorithm robust against sensor placement and real-life challenges.

However, limitations of using consumer devices include the limited battery life. Continuous long recordings of inertial data can quickly drain a phone battery. This limitation can be solved by adapting the data collection and data processing method to save battery life. However, this is outside the context of this thesis and will not be addressed in the following studies.

General data processing of ambulatory inertial signals

Generally, studies including fall risk assessments in ambulatory settings include a data processing pipeline comprised of three main steps: (1) the detection of walking bouts, (2) step detection (optional) and calculation of fall risk parameters, and (3) aggregation of fall risk parameters over the different walking bouts (Figure 1.4). In the following, we give an overview of those main steps and possible ways to adapt them to be implemented on consumer devices. (Nouredanesh et al., 2021) presents a clear review of available walking bout detection methods. In all cases, the inertial sensor is placed on the lower back. Walking bout detection methods are mainly based on applying thresholds over a moving window (Nouredanesh Study Parameters Algorithm Placement Accuracy [START_REF] Pepa | Gait parameter and event estimation using smartphones[END_REF] Heel strike detection, step count, step period, and step length Three algorithms were considered: [START_REF] González | Real-time gait event detection for normal subjects from lower trunk accelerations[END_REF]McCamley et al., 2012;[START_REF] Zijlstra | Assessment of spatio-temporal gait parameters from trunk accelerations during human walking[END_REF] Lower back HS detection error ranged from -7ms to 12ms. Step count specificity is 100% while sensitivity is between 80% and 100%.

Step period mean absolute errors [-2,0] ms and standard deviation [28,66] ms.

Step length mean errors: [0.48,1.12] cm and standard deviation [5.21,7.81 After the detection of walking bouts, the calculation of fall risk parameters is done on each walking bout. In some cases, the calculation needs a step detection algorithm and in other cases, the calculation relies on the analysis of the inertial signal. In the following, we only consider parameters calculated from gait events or step instants because other signal-based parameters are influenced by sensor placement (refer to Section 1.5 for more details). Most gait event detection algorithms used in ambulatory settings are based on wavelet decomposition [START_REF] Brodie | Wearable pendant device monitoring using new wavelet-based methods shows daily life and laboratory gaits are different[END_REF]Del Din et al., 2016a). However, these algorithms are strongly influenced by sensor placement (Khandelwal & Wickström, 2017). Below, Section 1.9 is dedicated to detail different step detection methods that might be possibly used for ambulatory settings.

At this stage, different values of fall risk parameters are calculated for all walking bouts the person performed. Detected walking bouts vary by duration, walking context (e.g. walking alone, walking with someone...etc.), and walking environment (e.g. supermarket, park). The interpretation and the value of the fall risk parameter might be misleading with respect to the chosen walking bout. For example, someone at risk of fall walking outdoors in straight paths might have a similar or better gait quality as compared to a healthy person wandering around in a supermarket. Through the aggregation method, one should find a way to remove the influence of context and environment from gait quality. Below, Section 1.10 details different used aggregation methods.

To adapt this processing for consumer devices, one should focus on three main components: (1) Develop a robust walking bout detection and step detection method to work on different sensor positions, (2) choose fall risk parameter according to the feasibility of the step detection method, (3) choose a proper aggregation method with respect to the calculated fall risk parameter.

Step detection methods

A ubiquitous step detection method is critical for the calculation of fall risk parameters. For real-life implementation, the chosen technique should be immune to different sensor placement and orientation, user physiology, and dynamics.

In the biomechanics community, the main objective of most algorithms is to derive gait events as accurately as possible. For that, the sensor should have a fixed orientation and placement at all times. In other words, specific algorithms exist for each body placement. Concerning algorithm accuracy, [START_REF] Panebianco | Analysis of the performance of 17 algorithms from a systematic review: Influence of sensor position, analysed variable and computational approach in gait timing estimation from imu measurements[END_REF] showed that almost all existing algorithms could reliably estimate step time (median error 2 ms) but fairly estimate stance time (median error 64 ms). In terms of different sensor placement, [START_REF] Del Din | Measuring gait with an accelerometer-based wearable: Influence of device location, testing protocol and age[END_REF] showed that only mean gait parameters (ex. mean step time) and not variability and asymmetry parameters can be estimated from different sensor locations (lower back-chestwaist). Robust techniques against different devices' placement and orientation do not exist within this community.

Therefore, it was necessary to rely on the expertise of another research community: the indoor localization or navigation community. The objective of this community is to derive the user's location by estimating his/her walking trajectory. One of the most promising localization methods is Pedestrian Dead Reckoning (PDR). It exploits information from gait kinematics to detect step instants, estimate step length, and calculate walking direction. Most of the published step detection techniques are designed to be implemented in realtime, to be run on a smartphone device, and to be robust against sensor placement, different step modes, and user activities. The only drawback is that most methods are based on step detection rather than gait event detection. Using these methods, we cannot include detailed gait cycle parameters (ex. double stance, single stance..etc.) and we can only include step time and stride times.

Existing step detection techniques can be divided into temporal-based with different pre-processing techniques, and artificial intelligence-based methods as depicted in Table 1.5. In the following, we detail the two categories of step-detection algorithms that can be potentially applied to consumer devices.

Temporal based

One of the primarily adopted methods is based on peak/valley or maxima/minima detection.

Steps are defined as periodic peaks or valleys in the pre-processed or re-constituted IMU signals. These methods can be comprised of three optional parts: the pre-processing, the setting of adaptive parameters of peak and valley, and the validation of detected steps.

Before the application of peak/valley detection, a pre-processing pipeline includes mainly filtration or signals reconstruction, gait detection, step mode recognition (walking, climbing/descending stairs, turn, running), sensor placement recognition, and hand motion mode (swing/stable) recognition. The purpose of filtration is to emphasize the peak/valley to be detected. For a lower back sensor position, signal reconstruction using continuous wavelet transform ameliorate significantly step detection (McCamley et al., 2012). Aside from filtration, motion classifiers are either threshold-based or machine-learning/deeplearning based. For example, gait periods or walking bouts, step mode, sensor placement, and hand motion mode are identified using machine learning classification models (Asraf et al., 2021;Brajdic & Harle, 2013;Guo et al., 2019;Park et al., 2017;[START_REF] Bui | [END_REF]Wang et al., 2018;Zhang et al., 2015) or frequency and time window-based thresholding methods (Hickey et al., 2016;[START_REF] Susi | Motion Mode Recognition and Step Detection Algorithms for Mobile Phone Users[END_REF][START_REF] Tian | A Multi-Mode Dead Reckoning System for Pedestrian Tracking Using Smartphones[END_REF]. Such prepossessing has a great influence on step detection. For the time being, there is no general classifier that can identify all the above-mentioned scenarios (for ex. identify sensor placement, hand motion mode, and user activity in one step). If the classifier were to classify different conditions correctly, the step detection accuracy will be on average 98%. However, classifiers' accuracy ranges from 80% to 97% for sensor carrying position and hand motion mode, and 82% to 94% for step mode. Limitations of most of the aforementioned studies are that they do not account for the step detection error caused by the classifier's accuracy, but also because they do not work when motion changes abruptly, they do not consider all possible motion variations, and do not give detailed performance metrics as sensitivity and specificity.

Based on this prior pre-processing or classification, adaptive empirical or dynamic peak/valley characteristics or thresholds corresponding to a step are set on either the acceleration norm or angular velocity norm (Khedr & El-Sheimy, 2017;Lee et al., 2015a;Lueken et al., 2020;Park et al., 2017;[START_REF] Susi | Motion Mode Recognition and Step Detection Algorithms for Mobile Phone Users[END_REF]Trong Bui et al., 2018;Xu et al., 2019). The main limitation in using thresholds is that they require calibration for each person's dynamics and walking speed.

Step count error tends to increase at low speeds and ranges from 22% to 32% for fixed sensor position if no extra calibration is done (Feng et al., 2017).

Finally, as these methods are susceptible to having false peaks/valleys detected as steps, a validation step is carried out through magnitude and temporal filtration. Peaks that do not align with a certain temporal separation based on walking frequency or a certain signal magnitude threshold are omitted.

In conclusion, although these methods seem simple at first glance, they rely on many pre-processing and post-processing stages that require calibration and might be prone to errors.

Artificial intelligence methods

Artificial intelligence methods are based on machine learning and deep learning techniques. They are data-driven methods that are tuned with collected datasets. They usually do not require pre-processing or classification techniques. In other words, step instants are detected in one calculation stage without any threshold calibration whatever the sensor position and user physiology. In the following, we discuss available methods.

Concerning machine learning models, the Hidden Markov Model model (HMM) is the most used method (Liu et al., 2021;Roth et al., 2021;Yu et al., 2021). However, this approach is usually made to work for constrained body locations, specifically the foot.

Several methods try to implement deep learning to detect step instants. Recently a study has been submitted by [START_REF] Ren | Smartphone-Based Inertial Odometry for Blind Walkers[END_REF] discussing using Long Short-Term Memory (LSTM) threshold-based step detectors trained on different communities of sighted and blind walkers. When trained on sighted and tested on blind walkers the LSTM had an acceptable performance of 10.5% under-detected steps and 2.5 % over-detected steps. The limitations are first that the hand sensor placement is not assessed and that the LSTM might be biased as it is trained on sighted walkers performing the same tests as blind walkers. Kupke et al. (2016) uses a feedforward artificial neural network that predicts steps from the z-axis acceleration pattern but the dataset used for the training is very small (1000 steps), and no clear description of which activities is included. Shao et al. (2018) propose a deep convolutional neural network to count steps on the acceleration signal. However, the model does not perform well in hand swinging mode with a true positive rate of around 90% and no mention of a false-positive rate. In addition, it is worth mentioning that in the field of indoor navigation, the use of deep learning to regress velocity and acquire distance is rapidly progressing [START_REF] Brodie | Big data vs accurate data in health research: Large-scale physical activity monitoring, smartphones, wearable devices and risk of unconscious bias[END_REF][START_REF] Yan | RoNIN: Robust Neural Inertial Navigation in the Wild: Benchmark, Evaluations, and New Methods[END_REF]. However, in these methods, no gait-related features can be extracted for other health-related applications.

In conclusion, these methods are more promising than basic peak detection methods. However, in the available studies, sensor positions have not been evaluated properly. Moreover, the data used for the development of most of the methods are small and limited in terms of variability. (Khedr & El-Sheimy, 2017;[START_REF] Lee | Step detection robust against the dynamics of smartphones[END_REF]Lu et al., 2020;Lueken et al., 2020;[START_REF] Shin | Motion recognition-based 3d pedestrian navigation system using smartphone[END_REF].

-Sensitive to sensor position with worse performance for wrist (RMSE of stride time is 0.79 sec)

-Sensitive to different user dynamics and physiology.

+ robust against orientation.

+ Used in indoor localization and tested in real life with step count accuracy of 98%.

+ Low computation cost.

Temporal with machine learning

Use machine learning models to classify motion patterns (sensor position, hand motion mode, step mode, user's activity) then assign peak thresholds for detecting steps (Asraf et al., 2021;Guo et al., 2019;Park et al., 2017;Susi et al., 2013a;Trong Bui et al., 2018;Wang et al., 2018) -Affected by the accuracy of the motion classifier.

-Tested in different configurations but not in real life.

+ Relatively robust against sensor position.

Artificial intelligence

Uses deep learning to detect step instant from the input of inertial signals (Kupke et al., 2016;Ren et al., 2021a;Shao et al., 2018) -Low performance for the wrist.

+ Tested in near real-life situations with relatively high performance for different sensor positions.

+ relatively low computational cost.

Aggregation of fall risk parameters

After calculating the fall risk parameters for different walking bouts, each parameter is aggregated or assembled in a way to achieve one single representative value of the participant's state. Different methods exist. In the following, we discuss different methods used and how they can influence the interpretation. Some studies summarize the subject's performance by taking the median or extreme values (maximum and minimum) of the fall risk parameter calculated over all walking bouts (Rispens et al., 2015a(Rispens et al., , 2015b;;Van Schooten et al., 2016;Van Schooten et al., 2015;Weiss et al., 2013). These studies are limited as the median or extreme values can be representing short walks at home for one person while long outdoor walks for another, masking the actual performance of the person and misleading the interpretation of the results. In general, in these studies, gait variability calculated on stride or step time is not found significantly related to falls (Del Din et al., 2019;Rispens et al., 2015b). Rather than representing the noise of the innate nervous system, it is masked by the variability present in the walking context.

On the contrary, previous studies in a controlled laboratory setting have investigated the effect of walking period or the collected number of strides and walking context on the reliability of the calculated fall risk parameter (König et al., 2014;Riva et al., 2014;Tamburini et al., 2018;van Schooten et al., 2014). They have assigned a minimum number of strides and advised the exclusion of initiation and termination gait periods for several fall risk parameters. When processing ambulatory gait data, such guidelines are important.

Other studies group walking bout by length: short, medium, and long, calculating fall risk parameters for each group and summarizing person performance over each group by one single value (Del Din et al., 2019;Del Din et al., 2016a). Depending on the walking bout length, the relation between the fall risk parameter and the risk to fall may change. For example, (Del Din et al., 2016a) showed that asymmetry calculated on medium bout lengths (between 30 sec and 60 sec), and variability calculated on long walking bouts (>120 sec) could differentiate between Parkinson's and healthy individuals. Medium walking bouts stimulate gait asymmetry, and long walking bouts stimulate innate gait variability.

In a conclusion, the interpretation of the fall risk parameter should be dependent on the chosen walking bouts. Similar to guidelines put for laboratory gait assessments, guidelines for the calculation of parameters in ambulatory settings should be put in.

Conclusion

In this literature review, we discussed: (1) General fall risk factors, (2) clinical assessment tools that could detect some of those fall risk factors, (3) how we could enhance fall risk assessments by monitoring gait in ambulatory settings, (4) what fall risk parameters are usually extracted, (5) general performance of fall prediction models built with dedicated inertial sensors, [START_REF]1 Performance of Smartstep to calculate falling risk indicators on Medipole Elderly dataset[END_REF] sensor quality of consumer devices, (7) Data processing for ambulatory data, (8) step detection methods, and (9) methods to aggregate fall risk parameters over walking bouts. In the following, we present a summary of those key points.

A fall is a result of the interaction between different risk factors. Most fall prediction models combine information from different fall risks factors such as the history of fall, demographic properties (ex. age-gender), gait and mobility assessments ...etc. Clinical assessment tools include questionnaires and functional assessments intended to quantify these factors. However, they are not sufficient with an average performance for fall prediction (sensitivity >70% and specificity <60 %) [START_REF] Park | Tools for assessing fall risk in the elderly: A systematic review and meta-analysis[END_REF].

Mainly, research has moved toward ambulatory or unsupervised gait monitoring as they seem to carry valuable information in terms of fall prediction (Del Din et al., 2019;Rispens et al., 2015b;Van Schooten et al., 2016;Van Schooten et al., 2015;Weiss et al., 2013). Adding this information to clinical assessment tests the performance of fall prediction increases from AUC:0.68 to AUC:0.82 (Van Schooten et al., 2015). Ambulatory monitoring can represent the performance of the person in habitual real-life settings and is not biased by the "white coat" effect (Paradis & Sutkin, 2017;Warmerdam et al., 2020).

However, gait monitoring is mainly done using inertial sensors fixed at the lower back. Flexibility in sensor placement plays an important role in terms of the device acceptability and "wearability" (Keogh et al., 2020). On the other hand, consumer devices containing inertial sensors seem like potential candidates for gait monitoring. In terms of gathering large datasets and long-term monitoring, these devices are cheap, widespread, and have sufficient sensor quality. The efficiency of using consumer wearable devices such as smartphones or smartwatches for monitoring purposes has been discussed in several studies, especially for clinical trials [START_REF] Foster | The opportunity and obstacles for smartwatches and wearable sensors[END_REF].

However, to use consumer devices, one must adapt the data-processing method to make them suitable for these consumer devices. The data processing starts by detecting walking bouts and step instants. Then, fall risk parameters are calculated for each walking bout. Finally, each fall risk parameter is aggregated over all walking bouts. The calculation of fall risk parameters and the step detection algorithm should be adapted to work for consumer devices. In other words, they should be robust against sensor placement.

Concerning fall risk parameters, they can be either calculated on the inertial signal or gait spatiotemporal parameters. From the literature, the value and the association of the signal-based parameter are influenced by sensor position. For example, the harmonic ratio calculated on the upper trunk showed high discrimination for the risk of fall with respect to that calculated lower trunk (Hirata et al., 2013). Therefore, these parameters are not appropriate for consumer device use. On the other hand, one can rely on estimating parameters from gait events. We could estimate gait variability as the coefficient of variance of stride time, gait complexity as sample entropy and fractal exponent on stride time, gait symmetry as step time asymmetry, and gait intensity as the cadence.

The problem of sensor placement is transferred toward having a robust step detection algorithm against sensor placement. There are two main categories of step detection: temporal-based methods, and artificial intelligence methods. Temporal-based methods are mainly based on simple peak detection in the signal. However, they require the correct calibration of certain thresholds which are dependent on different physiological and dynamic aspects. Furthermore, they include different stages of pre-processing (ex. classification of sensor position) and post-processing methods which might be prone to errors. On the other hand, artificial intelligence methods are more compact. They do not require calibration or any pre-processing and post-processing stages. These methods seem more promising, However, sensor positions have not been evaluated properly. Moreover, the data used for the development of most of the methods are small and limited in terms of variability.

After the calculation of fall risk parameters, they are aggregated over all walking bouts so that we have a single representative value of subject performance. The method used to aggregate the data influence strongly the interpretation of the fall risk parameter. For example, medium walking bouts stimulate gait asymmetry, and long walking bouts stimulate innate gait variability (Del Din et al., 2016a). Therefore, different methods of data aggregation must be tested with respect to available fall risk factors.

In a conclusion, the thesis should focus first on creating a step detection technique robust against different sensor positions and real-life challenges. Then, the calculation of fall risk parameters should be evaluated at different sensor positions. Finally, to test the fall prediction performance of a model including these fall risk parameters, these parameters should be calculated on ambulatory data collected by elderly at risk of falls. Different data aggregation methods must be tested. Then, the performance of a fall prediction model built with these parameters should be evaluated. 

CHAPTER 2

PURPOSE OF STUDY

Objectives and general approach

The principal objective of this thesis is to create a ubiquitous method or solution that can be applied on different devices, especially consumer devices, handled in different body positions to monitor fall risk parameters in daily life.

Based on the literature review, we need two main steps to fulfill the principal objective. Only fall risk parameters based on discrete step or stride time series can be potentially used (Section 1.5). Therefore, we aim at developing a universal step detection method robust against placement and real life challenges. Then, we aim at evaluating the association of fall risk parameters, computed with the developed step detection method, with prospective falls. In the following, we detail the approach taken to reach these two aims. Moreover, figure 2.1 demonstrates this approach.

The approach taken toward developing and evaluating a step detection method includes two main studies.

First, we tried to evaluate the limitation and the performance of a classical step detection method, peak detection, to calculate a fall risk parameter (gait variability: Coefficient of variance of stride time). Peak detection is known for its robustness toward sensor position. The performance was evaluated on a dataset we collected using an experiment. The dataset can be summarized by young adults walking on the treadmill while holding a smartphone in different positions.

Then, the limitations of the peak detection algorithm drove us to develop another step detection algorithm which is called "Smartstep". Smartstep relied on knowledge taken from the indoor navigation research community. It is a data-driven method based on a machine-learning technique. It was built with the same dataset we used to evaluate the above-mentioned peak detection algorithm: young adults walking on the treadmill. Then, its performance was assessed on several datasets which contained different populations, walking contexts, walking environments, sensor positions, and brands of consumer devices.

Then, we evaluated how well the step detection algorithm can calculate the mentioned fall risk parameters in a population prone to falls. The dataset we used was based on an experiment done in collaboration with a physiotherapist, Enguerren Houdry. We had to develop an android application to record inertial data for this experiment. We assessed two different body positions. The calculated parameters were evaluated against reference fall risk parameters calculated from stride time series derived from a gold standard commercial software and a foot-mounted sensor.

We further aimed to determine whether the calculated parameters from different body positions can associate with falls. However, due to the Covid pandemic, we could not go forward with this analysis. The data collection and the experiment's progress with Enguerren Houdry slowed down drastically.

Next, the goal was to study whether the fall risk parameters derived in real-life settings can associate with falls. For that, a dataset kindly shared by Delbaere et al., 2021 was used. This dataset contained acceleration signals collected during 1-week from an inertial sensor placed on the lower back. We assumed that if the step detection algorithm was reliable for calculating fall risk parameters from different body positions, then, the results and the analysis done on the lower back can be easily extended to other body positions.

Analyzing or interpreting real-life fall risk parameters can be biased toward the walking context and environment. For example, the gait variability of a healthy person wandering in a supermarket can be equivalent to or higher than that of a person with a fall risk walking straight paths. The method used to aggregate the fall risk parameter over all walking bouts should be chosen carefully to represent the balance control in gait. One way to overcome the influence of the walking context and environment is to select walking bouts by length. One can imagine short walking bouts as bouts indoors (intermittent walking) and long walking bouts outdoors (continuous walking). Therefore, we assessed how the significance of the difference of fall risk parameter between individuals prone to falls and healthy individuals changes with the increase of walking bout length.

Finally, we evaluated the importance of fall risk parameters derived through a ubiquitous method. We assessed the performance of a model built with the calculated fall risk parameters to predict prospective falls. The performance is assessed for parameters aggregated over different walking bout lengths. The limitations and the advantages of monitoring the chosen fall risk parameters in the elderly population are then given.

Challenges

• Finding fall risk parameters that can be associated with prospective falls, independent of sensor position, and can be calculated with a reliable algorithm.

• Creating a step detection algorithm robust against sensor placement, walking context and environment, and different populations.

• Doing experiments and collecting inertial data in various situations (including ambulatory) and various populations (including elderly). This challenge was made • Interpreting calculated fall risk parameters from real-life data.

• Developing an android application for inertial data collection from smartphones and smartwatches (Section A.2).

• Running calculation on real-life data with considerable size (1 GB per person; 300 GB Total). Algorithm optimization to decrease computation time.

• Detection of walking bouts using the created step detection algorithm.

Main contributions of the thesis

The contributions of this thesis are:

• The creation of a step detection algorithm robust against sensor placement, walking context and environment, and different populations. Not only it can be used for deriving fall risk parameters, but it can also be used for different applications (Indoor navigation, biometry...etc.).

• The assessment of fall risk parameters from different sensor positions.

• Discussion of the association of relatively new fall risk parameters (i.e. Sample entropy and fractal exponent on stride time) with prospective falls.

• Demonstration of the effect of walking bout length on the interpretation of fall risk parameters.

• Creation and evaluation of a fall prediction model with only gait-related fall risk parameters tailored for the application in consumer devices.

Organization of the thesis

• Part II is a single chapter part, describing the datasets used in this thesis (Chapter 3). As these datasets were used for different purposes and in different chapters, we chose to regroup their description in one single place in the manuscript. These datasets serve for developing and evaluating step detection, and for studying fall risk parameters.

• Part III describes the development and evaluation of a step detection technique robust against different sensor placements, walking conditions, and different populations.

It contains two chapters.

-Chapter 4 represents a preliminary study to assess the performance of a classical step detection method, peak detection, to detect strides and derive fall risk parameters from different sensor positions. -Chapter 5 focuses on the development of a step detection method robust against sensor placements, walking conditions, and user physiology. The step detection method developed is based on machine learning. It is evaluated on different datasets described in Chapter 3.

• Part IV aims at calculating fall risk parameters using the step detection technique developed in Chapter 5. It is comprised of three chapters.

-Chapter 6 includes a preliminary evaluation of how good the proposed step detection method is at calculating the chosen fall risk parameter. -Chapter 7 presents the influence of aggregating fall risk parameters over walking bouts of different lengths on the association of the fall risk parameter with the risk of fall. -Chapter 8 shows the performance and the limitations of a fall prediction model tailored to work on consumer devices This chapter is divided into three main sections. Section 3.2 gives an overview of downloadable and shareable datasets. Section 3.3 details datasets used in the step detection method creation and evaluation. Section 3.4 used for fall risk prediction. A summary of all the datasets used in the thesis is presented in Table 3.6.

Downloadable or shareable datasets

Before detailing the datasets used in this thesis, in the following, we give a short literature review on downloadable or shareable datasets. We state the advantages and disadvantages concerning the objectives of the thesis.

The search is carried out on zenodo (https://zenodo.org/), physionet (https://physionet. org/), uci machine learning repository (https://archive.ics.uci.edu), Figshare(https://figshare. com/), and github (https://github.com/).

Review of available datasets on step detection

The used dataset must help in the creation and evaluation of a step detection algorithm. To be used in real-life settings, the step detection algorithm should be robust against sensor type, sensor orientation, body placement, population, and different walking conditions. Therefore, the algorithm should be evaluated on datasets that include the aforementioned diverse conditions. Moreover, we aim at using supervised machine learning tools for the creation of the step detection method (to be detailed in Part III). Therefore, the datasets used for the creation should contain labeled ground truth step instants by a reliable sensor or algorithm. Incorrectly labeled step instants can drastically decrease the performance of the step detection algorithm.

Most datasets that include gait were used for activity classification, walking bout detection, or gait biometry. The most relevant datasets are shown in Table 3.1. The size of the population varied from 100 to 5 individuals. Most participants were healthy young except for one dataset with old blind people (Flores and Manduchi, 2018). Most studies recorded acceleration and gyroscope signals with various sensor types (i.e. smartphones, dedicated inertial sensors) except for two with only acceleration signals (Khandelwal and Wickström, 2017;[START_REF] Zhang | Accelerometer-based gait recognition by sparse representation of signature points with clusters[END_REF]. Concerning reference step instant labeling, half did not include annotated step instants. Instead, they include indirect ground-truth quantities that can be used for step detection evaluation such as step count [START_REF] Leutheuser | Performance comparison of two step segmentation algorithms using different step activities[END_REF], walking trajectory, and distance [START_REF] Herath | Ronin: Robust neural inertial navigation in the wild: Benchmark, evaluations, & new methods[END_REF]. Other studies used unreliable reference algorithms or algorithms prone to errors in the recorded walking conditions such as (Flores and Manduchi, 2018) used the UPTIME algorithm [START_REF] Alzantot | Uptime: Ubiquitous pedestrian tracking using mobile phones[END_REF]) that has a step count error of 7%.

Almost all datasets can only be used for the evaluation of step detection methods but not for the creation. They cannot be used for creating or training a step detection method because either (1) they miss gyroscope signals which are important for handheld sensors, (2) they miss step instant labeling, or (3) an unreliable algorithm is used to label step instants. Due to time limitation of the thesis, we chose the WeallWalk dataset as it perfectly complement other datasets we collected for step detection evaluation (Flores and Manduchi, 2018).

In Section 3.3, we detail all datasets used for developing and evaluating the step detection method. We explain how they complement each other and how the WeallWalk dataset complements them.

Review of available datasets on elderly at risk of fall

The needed dataset must include a large population of community-dwelling elderly at risk of fall and a fall follow-up period. Real-life inertial signals must be collected over a relatively long period (i.e. more than 3 days). An additional condition is to have the inertial sensor placed freely on the body.

Very few datasets or studies include the above-mentioned conditions. None include different sensor placements. To our knowledge, two of them are declared public (Table 3.2). The dataset from (Weiss et al., 2013) is found on https://physionet.org/. It includes 3-days acceleration signals measured at the lower back of elderly at risk of falls. In addition, it includes the history of falls and the number of prospective falls for each participant. However, the number of participants with prospective falls is low (only 12 individuals). Another dataset is from the InCHANTI study which can be shared through an official agreement. Similarly, its weakness is that the number of future fallers is insufficient (only 7 individuals) (Leach et al., 2018).

In addition to public datasets, some authors declare the possibility of sharing their datasets in their published research articles. The dataset from the FARAO study represents a good candidate. It includes a relatively large population with a 30 % proportion of individuals who fell at least once. In this thesis, we asked for the FARAO dataset. Fortunately, authors responsible for the FARAO dataset shared a more recent dataset they collected (Delbaere et al., 2021).

In Section 3.4, we explain the used datasets for calculating and evaluating fall risk parameters and predicting falls.

Datasets used for building step detection

As mentioned earlier, used datasets must include: (1) different sensor types, orientations, and body placements, and (2) different walking conditions and environments. Moreover, the dataset used for developing a step detection machine learning model must contain correctly labeled step instants.

The Young Adults walking on a Treadmill with Smartphones held in different positions (YAST) dataset (Subsection 3.3.1) with treadmill labeled step instants was created for the potential development of a machine learning-based step detection method.

Concerning the step detection evaluation, datasets that increase in diversity and challenges were added consecutively. The flow of the evaluation process is depicted in Figure 3.1. We started simply by using instances of the (YAST dataset, Subsection 3.3.1) which included constrained experimental conditions. Once a satisfactory performance was obtained, the evaluation complexity was increased by considering more realistic datasets including Young adults walking Outdoors and climbing/descending Stairs (YOS dataset, Subsection 3.3.2), blind people walking outdoors with navigation aid (BG dataset, Subsection 3.3.3), blind people walking from the WeAllWalk dataset (Flores and Manduchi, 2018) (WAW dataset Subsection 3.3.4), and elderly walking in a hospital (ME dataset, Subsection 3.4.1).

Finally, a summary of how these datasets complement each other is shown in Table 3.3. Although the ME dataset was used in the step detection evaluation, it plays an important role in fall prediction. Therefore, details on that dataset are given within the section on fall prediction (Subsection 3.4.1). 

Young Adults Smartphone Treadmill

Participants Thirteen healthy subjects (age 29 ± 8 years, height 1.7 ± 0.07m, body mass 73 ± 11kg, 3 females and 10 males) volunteered for this study. The participants had no prior or existing injury or neurological disorder affecting their gait. Each participant signed an informed consent. This protocol was approved by the dedicated committee from Université Gustave Eiffel (Comité pour la Recherche Personne Humain (CRPH)).

Protocol and data acquisition

This dataset is collected through experiments that include the use of an instrumented treadmill in a laboratory. Subjects were instructed to walk on a dual belt treadmill (Tread-metrix©). Ten subjects walked with tied belts at a comfortable speed (C, found by an iterative process), low speed (70% of C), and high speed (130% of C). Additionally, 5 subjects walked in a split belt configuration (A, slow belt at 0.7 m/s, fast belt at 1 m/s) depicting slow asymmetrical gait (Figure 3.2b). They were equipped with a smartphone (iPhone 6s, Apple©) that was variably placed in three different locations (Figure 3.2a): fixed at the waist, placed in the side pocket of participant's trousers, and held in the hand. Note that the last two placements were loosely constrained: participants used their trousers and no instruction was given regarding the hand motion.

For each treadmill configuration, after a familiarization phase, three 4-minute trials were performed (one per smartphone placement). This results in 105 files of 4-minute recording of inertial data and treadmill force (10 participants x 3 speeds x 3 sensor positions + 5 participants x 1 asymmetrical gait x 3 sensor positions). Smartphone IMU data was recorded at 100 Hz using the commercial application "sensor play" [START_REF] Broder | Sensor Play Data Recorder[END_REF] and ground reaction forces were recorded at 600 Hz by the treadmill. Smartphone and treadmill data were synchronized by a jump at the beginning and the end of each trial.

Step event reference

Reference or ground truth steps were annotated as heel strike events detected on the filtered vertical force (4th order Butterworth with 15 Hz cut-off) by applying a threshold set at 4% of body weight. 

Protocol and data aquisition

This dataset was created during outdoor experiments. Two scenarios are performed: outdoor walking and staircase climbing/descending. Both subjects recorded around 1800 steps walking outdoors, and around 240 steps on stairs, while holding a smartphone Samsung A70 in their hand. The hand was either stable with respect to the body center of mass (texting mode) or swinging (swinging mode). The outdoor test included nonstraight walking in a park on different ground surfaces (grass-asphalt-soil). It also includes periods when the subject stops, opens doors, and different hand gestures (Figure 3.3a).

The staircase had a round design with walking periods in between floors (Figure 3.3b).

In addition to these scenarios, 6 minutes of irregular hand movements ( waving, shaking..etc.) and static periods are included. Inertial data were collected at a sampling frequency of 100 Hz using a custom-made application called GeolocIMU (check Section A.2).

Step event reference

Foot-mounted inertial units Gaitup®were used as reference devices ("Gait Up", 2013). Ground truth steps were calculated from the zero velocity foot instants detected by the UMAM-ZVD (Zero Velocity Detector) algorithm developed for the MALIN challenge as a local python package [START_REF] Kone | Zero velocity detection without motion preclassification: Uniform ai model for all pedestrian motions (umam)[END_REF]. The MALIN challenge is a Noncooperative Indoor Localization Competition funded by the French National Research Agency (ANR) and its General Directorate of Armaments (DGA). In total, three indoor geolocation competitions were organized. The data and evaluation metrics of the second competition have been published on zenodo for wider use [START_REF] Zhu | Dataset of the intermediate competition in challenge malin: Indoor-outdoor inertial navigation system data for pedestrian and vehicle with high accuracy references in a context of firefighter scenario[END_REF]. The Uniform artificial intelligence-based Model for All pedestrian Motions (UMAM-ZVD) is a machine learningbased algorithm. Its performance is above 90% of correctly detected zero velocity instants for a 2 km long distance irrespective of the human gait nature (static phase, walking, running, descending, and ascending stairs) [START_REF] Kone | Zero velocity detection without motion preclassification: Uniform ai model for all pedestrian motions (umam)[END_REF]. A three steps process is applied to detect the steps with UMAM-ZVD. First, zero velocity instants are predicted using UMAM. Second, the stride instants are computed, and third, the midpoint between two stride instants is considered as the step instant. A manual check on all the data was performed to verify that no step is missed or over-detected. 

Blind Geoloc

This dataset was created by researchers at Geoloc Lab in Nantes, France. This research was supported by the grant "disability mapping with Inertial signal to facilitate MOBility" (INMOB), number ANR-20-LCV1-0002, funded by the French National Research Agency (ANR). It was also supported by the Okeenea Digital society and the volunteers who took part in the experiments.

Participants

Twelve blind participants volunteered for the data collection. (age 47 ± 8 years; height 1.7 ± 0.1; 5 Female and 7 Male)

Protocol and data acquisition

The protocol includes two different scenarios: (1) Different sensor placement/ navigation aid scenarios;

(2) Different walking speed scenarios. For the first scenario, seven blind subjects performed two different trails of walking back and forth on flat ground while holding an IMU sensor, ULISS (Ubiquitous Localization with Inertial Sensors and Satellites), in their preferred position and using either a cane or a guide dog to help them navigate. A brief description is given in Table 3.4. For the second scenario, Five blind subjects walked back and forth at three different speeds: Comfortable, low, and high speed. All subjects used a long cane and held the sensor in their hands.

Concerning the data acquisition, two ULISS units (Ubiquitous Localization with Inertial Sensors and Satellites) were used for building this dataset. ULISS is a positioning reference system composed of several sensors including an inertial unit. It is developed by Geoloc Laboratory for pedestrian navigation research. One ULISS unit is placed on the foot and used as a reference for detecting steps while the other one is held by the participant in their preferred position as shown in Figure 3.4. The sampling frequency was 200Hz.

Step event reference

As explained in the previous section, the reference device is an ULISS inertial sensor. Reference steps are obtained through the same method, UMAM-ZVD (Zero Velocity Detector) algorithm [START_REF] Kone | Zero velocity detection without motion preclassification: Uniform ai model for all pedestrian motions (umam)[END_REF] 

WeAllWalk

This dataset is publicly available online (https://datadryad.org/stash/dataset/doi:10.7291/ D17P46). 

Participants

Ten blind subjects (age: 53 ± 17years) were selected from this dataset (Table 3. 5). This dataset also includes five sighted individuals but they were not selected in this thesis.

Further information on subject characteristics can be taken from Flores and Manduchi, 2018.

Protocol and data acquisition Table 3.5 shows that nine participants used a long cane and three participants walked with a guide dog (two repeated trails with a guide dog). Eight blind(P1-P8) participants walked along 6 different routes (T1-T6; Figure 3.6) which varied in length and difficulties (turns, opening/closing doors) while the other two (P9, P10) walked along longer different routes (one walked T7 and T8, and another walked T9 and T10; Figure 3.6). This dataset contains annotated challenging events such as opening doors, hitting obstacles, stopping momentarily, and re-orientation (Figure 3.5). Two smartphones (iPhone 6s, Apple©) were placed by the participants in their clothing. These locations can be generally divided into three categories: chest (tucked under shirt at shoulder level, placed in breast pocket), pant pockets (front, back), and waist (jacket pockets). Inertial data were collected at a sampling frequency of 25 Hz with two smartphones. Approximately 20,000 steps were recorded.

Step event reference

Reference steps are obtained from foot-mounted inertial sensors clipped to the participant's shoes. The reference algorithm used is described by the authors of the dataset (Flores and Manduchi, 2018).

Datasets used for calculating fall risk parameters

These datasets contributed to: (1) validating the measurement of fall risk parameters from different sensor placements, and (2) assessing the association of the measured fall risk parameter with prospective falls. They differ in the testing protocol and sensor placements. Medipole Elderly dataset includes a semi-supervised walking test with two sensor placements: wrist and lower back, while the Standingtall dataset includes ambulatory inertial data with only lower back placement. Medipole Elderly serves as the backbone for 

Medipole Elderly

This dataset is collected in collaboration with a Enguerren Houdry, a physiotherapist during an observational study that was approved by the ethical committee (Comité de Protection des Personnes Nord Ouest IV; ID-RCB: 2020-A03302-37) and sponsored by Médipôle Hôpital Mutualiste. Note that a part of this dataset was also used for the evaluation of step detection. Hundred participants were expected in this dataset; however, the COVID-19 pandemic slowed the progress of the data collection.

Participants

Twenty-nine older adults (75 ± 5y, 74 ± 15kg, 1.7 ± 0.08m, 5 Female and 24 Male) participated in the dataset collection. Participants were not diagnosed with any gait or balance disorders and were cognately intact. However, some suffered from Comorbidities including stroke, heart disease, high blood pressure, diabetes, insufficient respiration, and depression. In addition, some had undergoing treatments. Different living environments were recorded for each participant. While some lived in single-story houses, some lived in apartments with or without elevators at different floors. Each participant signed an informed consent. History of falls is registered on the day of data collection by asking if the participant fell at least once in their previous years. Finally, the dataset included 7 fallers (with at least 1 previous fall) and 22 non-fallers (with no previous falls).

Protocol and data acquisition

Participants were instructed to work for 6 minutes back and forth in a 30-m hospital hallway. They were instructed to cover the longest possible distance over 6 minutes. The participants wore a Gaitup®sensor on their wrist replicating a smartwatch, and a smartphone in a banana bag at their waist (Figure 3.7). Ground truth steps were annotated with the help of two Gaitup®sensors clipped to participant's shoes and Gaitup®commercial software. The Gaitup®sensors are automatically synchronized and have a sampling frequency of 128 Hz. Smartphone inertial data were collected with a custom-made android application at a slightly variable sampling frequency of around 100 Hz. The smartphone and the Gaitup®sensors are synchronized by visually or manually detecting the common moment of starting to walk in all recorded signals.

Step event reference

Reference steps and gait temporal parameters were obtained using gaitup commercial software Gaitup®LAB ("Gait Up Lab | Detailed gait & running analysis", n.d.). 

Conclusion

In total, six datasets are used in this thesis. They can be summarized in 

Part III

Step detection

INTRODUCTION

Objective and workflow

In this part, we focus on creating a step detection algorithm robust against sensor placement, different populations, walking environments, and walking speeds. This part consist of two studies.

Chapter 4 presents a preliminary study to assess the performance of a simple step detection method, peak detection, to estimate a falling risk parameter, stride time variability. Peak detection was considered the most efficient algorithm for step count from different sensor positions Brajdic and Harle, 2013. Therefore, this study was performed to record the limitations and gaps of peak detection, and check whether they can be further improved.

Chapter 5 proposes a step detection method that utilizes machine learning to detect peaks or valleys corresponding to step instants. The purpose of the method was to improve step detection on the wrist. However, its use was further extended to other body positions. The robustness and accuracy of this method are tested on different populations: young, elderly, blind, different walking environments, different sensor brands, and different sensor positions.

By the end of this part, we will have obtained a step detection method with the potential of being applied in real life settings on elderly with falling risks. This will permit us to carry on research with the next part. Moreover, step detection can also be deployed by other fields which will be mentioned in the section below.

Other applications of step detection

Step detection is deployed in many fields such as indoor positioning and navigation systems, health and sports, and biometry. It plays an important role in the advancement and accomplishments of each field.

Indoor positioning and navigation systems consist in locating people or objects when GPS or other satellite technologies fail and lose accuracy, such as in airports, large buildings, and underground locations. Over the past years, the need for indoor positioning has grown. Several researchers consider it for locating patients with dementia or Alzheimer's disease, assisting blind people in navigation, and coordinating and tracking in emergency conditions [START_REF] Santoso | Indoor location-aware medical systems for smart homecare and telehealth monitoring: State-of-the-art[END_REF].

One of the most promising indoor positioning methods is Pedestrian Dead Reckoning (PDR). PDR is a localization technique mostly used by smartphones processing IMU data to calculate users' location. It is more popular than other methods because it is self-contained, simple, and does not require the existence of a dedicated and expensive infrastructure of beacons. It exploits information from detected step instants to estimate step length and calculate walking direction. The successive position is propagated recursively based on the previous position estimate and the step length and walking direction estimates. Therefore, a key player in the robustness, accuracy, and scalability of PDR algorithms is the step detection algorithm [START_REF] Hou | Pedestrian dead reckoning with wearable sensors: A systematic review[END_REF].

Concerning health and sports, several health indicators are linked to the notion of the step (step count, step duration, step time variability, etc.). Researchers focus on improving step detection techniques to improve the estimation of those indicators. Their accuracy is crucial as it can bias the diagnosis of a patient's state.

In the field of biometry, gait is interpreted as a biometric trait and, consequently, used to identify or confirm the identity of a person. In comparison with other biometric approaches (fingerprint, iris...etc.), this approach does not require the active cooperation of the user, and cannot be easily mimicked or faked [START_REF] Sprager | Inertial sensor-based gait recognition: A review[END_REF].

Step detection plays a role in segmenting gait cycles which can further improve gait authentication accuracy [START_REF] Marsico | A survey on gait recognition via wearable sensors[END_REF][START_REF] Sprager | Inertial sensor-based gait recognition: A review[END_REF]. This segmentation allows the extraction of windows corresponding to gait cycles which will later be matched. Gait cycle segmentation is an active area of research in the biometry field, and step detection can be helpful. 

CHAPTER 4 CLASSICAL STEP DETECTION

Introduction

A simple step detection algorithm adopted by most researchers in the field of indoor localization is peak detection [START_REF] Harle | A survey of indoor inertial positioning systems for pedestrians[END_REF]. It has been identified as the most appropriate for step count for different sensor positions (Brajdic and Harle, 2013), and most effective in case of controlled walking for Parkinson's patients (100 % accuracy) (Haji Ghassemi et al., 2018).

Wherever the sensor is placed, due to the cyclic nature of gait, recorded inertial signals will be characterized by cyclic peaks. The time between those peaks is usually used to characterize stride or step periods. Note that peaks do not represent an accurate gait event but rather a cyclic instant in a walking motion. Peak detection can be applied to any component of the collected signals; however, using the norm gives the advantage of being sensor orientation independent. The choice of the signal, angular velocity or acceleration, depends on whether the sensor is relatively stable or oscillating with respect to the center of mass (Susi et al., 2013). The acceleration norm is most relevant if the sensor is stable as compared to the center of mass (e.g. waist), and the angular velocity norm is most adequate when the sensor is linked to a rotating segment (e.g. thigh). However, for handheld sensors, both stable and oscillating movements are present. The chosen signal strongly depends on the motion mode of the hand (Susi et al., 2013).

The advantage of such an algorithm is that it is simple, has a low computational cost, and can work for different sensor placements. The disadvantages are that it may require proper tuning in accordance with the sensor placement, walking speed, and participant physiology. Haji Ghassemi et al., 2018 showed that its performance drops significantly if it is applied to data collected on a TUG test which includes several activities including straight walks, turning, and sit-to-stand. Feng et al., 2017 showed that step count error tends to increase at low speeds and ranges from 22% to 32% if no extra threshold calibration is done.

Low performance of the step detection may destroy the underlying statistics of the calculated gait spatiotemporal parameter and bias the interpretations. Most studies remedy this problem by filtering out calculated gait parameters that are atypical (Hausdorff et al., 1997b;Hausdorff et al., 2001). Other studies filter out peaks that do not fulfill certain requirements. For example, usually, each peak is verified using magnitude or temporal thresholds (Khedr and El-Sheimy, 2017;Lee et al., 2015;Lueken et al., 2020;Park et al., 2017;Susi et al., 2013;Trong Bui et al., 2018;Xu et al., 2019).

Moreover, most studies do not provide clear error metrics concerning estimated fall risk parameters using peak detection. Most metrics include recall and precision of the step detection and not the error in the gait parameter estimation. The source of error in the estimation is ambiguous, and it might relate to either over and mis-detected steps or that the time period between peaks does not correspond properly to the time between actual heel strikes. Lueken et al., 2020 assessed stride time variability calculation using a sensor orientation dependant peak detection algorithm, but did not filter out atypical strides or wrong peaks. Thus, a clear conclusion of the error source was not given.

Therefore, the objective of this study is to assess a peak detection-based approach to estimate the Standard Deviation (SD) of stride time from smartphone Inertial sensor data recorded during different walking speeds on a treadmill from various smartphone placements. Misdetected and over-detected peaks, and atypical strides and steps, are filtered out to not influence the estimation. The percentage of filtered-out strides is recorded for each speed and sensor position. The performance and the limitation of the algorithm are assessed through: (1) the error between smartphone-measured and treadmill-measured SD of stride time, (2) the trend in SD of stride time with the increase of speed, (3) the percentage of filtered strides. For this preliminary assessment, the chosen population was young adults. However, the use of slow speed could be seen as a way to replicate elderly gait [START_REF] Skelton | Explosive power and asymmetry in leg muscle function in frequent fallers and non-fallers aged over 65[END_REF]. Moreover, the use of a dual belt treadmill allowed us to enforce an asymmetrical gait pattern. The following chapter is organized as follows. Section 4.2 describes material and methods. Section 4.3 describes the results on the performance of the method. Section 4.4 is dedicated to the discussion around the results. Finally, Section 4.5 is the conclusion. This study has been presented at the 45ième conférence de la Société de Biomécanique (Al Abiad et al., 2020).

Material and methods

Dataset

The dataset of Young Adults Smartphone Treadmill described in Subsection 3.3.1 is used to assess the performance of the step detection. Briefly, it contains 13 young adults walking on an instrumented treadmill operated at different speeds and asymmetrical belt speeds while holding a smartphone in three different positions: hand, waist, and pocket. Reference

Results

Figure 4.1 shows a sample of how the smartphone's norm of angular velocity (s_gyro) and acceleration (s_acc) look like (shown in orange) for the four studied cases with respect to the calculated treadmill acceleration (t_acc; shown in blue) at the body center of mass. The treadmill acceleration is calculated by dividing the ground reaction forces by the body mass. The detected heel strike from the treadmill and the detected peaks from the smartphone are shown with black dots. The detected peaks on the dedicated inertial signal norm are also projected on the other inertial signal norm. These plots were expected and can justify the chosen inertial signal for each smartphone position. For waist placement, peaks in the acceleration norm appear vividly. For the pocket position, the peaks caused by the swing of one limb in the angular velocity norm can be easily detected. Concerning handheld smartphones, in low amplitude hand swings usually resulting from low speeds, the peaks in the acceleration norm signal appear vividly, while in high amplitude arm swings, the valleys in the angular velocity norm are more detectable. Table 4.2 displays the characteristics and the results of the stride detection and stride time variability for different sensor placements and walking speeds. 

RMSE %_f iltered waist 1 ± 1 2 ± 4 1 ± 1 1 ± 0 pocket 1 ± 0 2 ± 2 1 ± 2 0 ± 0 hand 25 ±

Discussion

The objective of this research is to characterize the performance of a peak detection algorithm on smartphone inertial data to estimate the standard deviation of stride time σ s . The usability of this approach is tested in different conditions: different gait velocities to mimic a variety of gait patterns including asymmetrical gait and slow gait representative of elderly pathological gait, and different sensor positions which were loosely constrained. Stride duration and variability obtained from the smartphone are compared to reference data obtained from the treadmill's vertical forces.

We observed little differences between reference (treadmill) and smartphone data concerning mean stride time (RM SE < 10ms, comparable to the state of the art (Del Din et al., 2016;[START_REF] Trojaniello | Accuracy, sensitivity and robustness of five different methods for the estimation of gait temporal parameters using a single inertial sensor mounted on the lower trunk[END_REF]). These differences remained very small for stride time variability (LoA < 16ms, RM SE < 10ms). This holds also for atypical gait (including slow walking and asymmetrical walking) and loosely constrained smartphone placement. Interestingly, the limits of agreement for the stride time variability remains below ±16ms, i.e. lower than the clinically significant change in SD of stride time that differentiates fallers from non-fallers that ranged between 20 ms and 50 ms (Hausdorff, 2007;Hausdorff et al., 1997a;Hausdorff et al., 2001). Taken together, these results tend to support the possibility of using a peak detection approach for future clinical applications for gait variability monitoring, in particular, to detect an increased risk of falls in the elderly population.

These results were obtained, in particular, by selecting the appropriate inertial signals to be processed, and by filtering-out atypical or unnatural strides. The latter does not much impact the waist and pocket situation (< 2% of strides filtered-out) but seems rather critical for hand-held cases (up to 31% of strides filtered-out for asymmetrical walking). A possible reason is that the hand motion classifier incorrectly classifies hand motion modes. Results show that this choice is viable in terms of gait variability accuracy but may lead to discarding a large number of strides. In addition, the algorithm is assessed on treadmill walking which is not representative of real-life walking.

The takeaway message is that if we were to detect peaks accurately in real life, we would have accurate estimations of fall risk factors. The time period between peaks represents accurately the actual step time. Therefore, future research track should be dedicated to ameliorating peak detection to be robust against a change in sensor placement, different walking environments and trajectories, such as turns and stops, user walking speeds and physiology, to decrease peak misdetections and overdetections, and thus, limit the number of filtered-out strides and steps. This study is limited as it does not include the identification of smartphone placement. The smartphone placement was a required input for the application of the algorithm. Moreover, this study does not address outdoor challenging scenarios or the elderly population.

Conclusion

A peak detection approach was used to estimate stride time variability from smartphone IMU data recorded from different body positions and during different user behaviors. Limits of agreement with a reference approach (stride detection from ground reaction force) were always lower than the expected difference between elderly fallers and nonfallers. However, future research is necessary to improve the detection of steps and decrease misdetections and overdetections, for real-life implementation.

Improvements on peak detection include the addition of machine-learning-based or threshold-based classifiers that can identify sensor positions, hand motion mode, step mode, and gait walking bouts (Asraf et al., 2021;Brajdic and Harle, 2013;Guo et al., 2019;Hickey et al., 2016;[START_REF] Kasebzadeh | Imu dataset for motion and device mode classification[END_REF]Park et al., 2017;Trong Bui et al., 2018;Wang et al., 2018;Zhang et al., 2015). Based on the result of these classifiers, the peak detection is calibrated. However, one universal classifier that can identify all the above-mentioned user conditions at once does not exist and is difficult to obtain due to the variety of user behaviors and conditions. Based on the above-mention studies, classifiers' accuracy range from 80 % to 97 % for sensor position, and 82 % to 94 % for step mode.

Some researchers suggest template-based methods and machine-learning models. Concerning pattern-based methods, the recorded gait sequence is compared to a defined stride pattern or template, and a step event is declared when there is a match between the signal and the pattern to a certain degree. The pattern is compared to the gait signal either using cross-correlation or Dynamic time Warping algorithms [START_REF] Müller | Dynamic time warping[END_REF][START_REF] Oudre | Template-based step detection with inertial measurement units[END_REF][START_REF] Rong | Identification of individual walking patterns using gait acceleration[END_REF]. Concerning machine learning models, the Hidden Markov Model model (HMM) is most applicable (Liu et al., 2021;Roth et al., 2021;Yu et al., 2021). However, these approaches are usually made to work for a constrained body location, specifically the foot.

Other studies try to apply deep learning techniques to detect step instants. Ren et al., 2021 shows that a Long Short-Term Memory (LSTM) threshold-based step detector trained on blind and sighted individuals achieves a performance of 4% under-detected steps and 4 % over-detected steps. However, the hand sensor placement is not considered, and the LSTM is trained and tested on individuals carrying out similar walking trajectories. Kupke et al., 2016 propose a feedforward artificial neural network that predicts steps from the z-axis acceleration pattern. However, the dataset used for the training is very small (1000 steps), and no clear description of which activities or hand motion modes are included. Shao et al., 2018 proposes a deep convolutional neural network to count steps on the acceleration signal; However, the model does not perform well in hand swinging mode with a true positive rate of around 90% and no mention of a false-positive rate.

Another limitation of artificial intelligence methods discussed by Renaudin et al., 2022 is the quantity and quality of the data and most importantly the proper labeling of step instants. [START_REF] Renaudin | physics" vs" brain": Challenge of labeling wearable inertial data for step detection for artificial intelligence[END_REF] proved that labeling based on a reference device (treadmill heel strikes, foot-mounted inertial sensors...etc.) degrades the performance of the model. In contrast, manual labeling of step instants as repetitive cyclic events (e.g. peaks, valleys, zero-crossing) increases the robustness of the model.

A crucial consideration that should be given to a step detection algorithm is the computational time and cost, especially if it is to be executed by commercial wearable devices. Most of the above-mentioned methods except for simple peak detection suffer from high computational demands. Decreasing this cost can lay the foundation for realtime implementation. Even though this is not the objective of this study, thorough attention is given to the design of the proposed method.

In this chapter, a new method called Smartstep is proposed to overcome the abovementioned challenges. It uses machine learning to detect cyclic events corresponding to steps. The primary objective of this method was to ameliorate step detection for handheld devices. However, it is further assessed on different sensor brands and body placement, different populations including blind people and elderly, and different walking contexts. The rest of the chapter is organized as follows. Section 5.2 describes the creation and parts of Smartstep. Section 5.3 is dedicated to the performance assessment of the method on different datasets. Finally, the discussion and conclusion is drawn in Section 5.4. This chapter resulted in two publications: (Al Abiad et al., 2021, 2022) 

Description of Smartstep

Smartstep stands for Smartphone inertial sensors based step detection driven by human gait learning. It is data-driven method used to detect steps from IMU signals. It has three main blocks:

• A machine learning model, ModelAcc, whose purpose is to predict peak-step instants in the acceleration norm.

• Another machine learning model, ModelGyro, whose purpose is to predict valleystep instance in the angular velocity norm.

• Finally a Smart Fusion process draws a decision around which machine learning model is to be used as a main step detector. This last process responds to hand motion mode/activity challenges.

Note that the process that lead to the creation of Smartstep was directed by several trials and errors. First, we tried fusing the data from angular velocity and acceleration signals into one machine-learning model with steps being labeled as heel strike instants taken from an instrumented treadmill. However, the variations present in sensor handling (sensor position, step mode, hand motion mode) imposed a lot of variations in signal morphology around the labeled heel strike instant. One machine learning model with such labeling and such data was not able to generalize to all user possible cases. Therefore, we chose to change the step instant labeling to improve the performance.

Step instants are labeled as valleys in angular velocity norm and peaks in acceleration norm. We build one machine-learning model for each set of labeling. The creation of any machine learning model can be divided into the following steps: building and labeling a dedicated training dataset, extracting and selecting useful features from the dataset, choosing a model design, tuning the model's hyperparameters, and finally training and testing the model. In the following, we describe these steps for the creation of both the gyroscope and acceleration model.

Training dataset

Note that the method was originally developed to be robust against hand motion modes. Therefore, the training dataset is composed of: (1) IMU data recorded at the wrist taken from the Young Adults Smartphone Treadmill (YAST) dataset described in Subsection 3.3.1. Every mentioned trial except for one asymmetrical trial is taken. The left-out asymmetrical trial is kept aside for testing; (2) IMU data recorded at the wrist during climbing and descending stairs of one participant (the other participant is kept for testing), and static and irregular hand movements, both taken from the Young Outdoor and Stairs (YOS) dataset described in Subsection 3.3.2. Thus, this data includes static and irregular hand movements and around 9000 steps recorded in different situations: treadmill walking at three different speeds, treadmill asymmetrical walking, and stair climbing/descending.

Pre-processing

The norm of the acceleration and angular velocity are calculated on IMU signals low-pass filtered using a 3 Hz cutoff, 10th order, Butterworth filter for labeling and time-based feature calculation (Susi et al., 2013), and on IMU signals low-pass filtered using a 12 Hz cutoff, 10th order, Butterworth filter for frequency-based feature calculation. Using the norm removes the dependence on sensor orientation.

Labeling step instants

For efficient labeling, the signal's morphology or pattern around the labelled step instant should remain quasi-similar for all walking speeds and sensor positions. Labelled step instants with a specific reference device could hinder the generalisation of the machine learning model as it increases the number of possible signal patterns around the step [START_REF] Renaudin | physics" vs" brain": Challenge of labeling wearable inertial data for step detection for artificial intelligence[END_REF]. As shown in figure 5.1, two sets of step instants are labelled. Cyclic peaks (represented by black circles) are labelled on the filtered acceleration norm to be used with ModelAcc and cyclic valleys (represented by black stars) on the filtered angular velocity norm to be used with ModelGyro. Only peaks or valleys close in time to a reference step (represented by red triangles and are either treadmill heel strikes in case of YAST and reference steps from foot-mounted sensor in case of YOS) are labelled. Peaks or valleys that do not have a reference step around them are not labelled. In addition, peaks or valleys that are ambiguous because the signal around them is distorted are not labelled (highlighted zones in figure 5.1).

Labelling the step instant as a peak or a valley can also help future enlargement of the training dataset by combining datasets collected in different environments and people. The additional work will only be to re-label step instants as peaks or valleys close to reference steps.

Feature generation

The performance of the model largely depends on the choice of features. Three types of features were calculated: time-based statistical features, time-based peak-related features, and frequency-based features. A debate present in literature is around the choice of window size for feature calculation (Lee et al., 2015;[START_REF] Rai | Zee: Zero-effort crowdsourcing for indoor localization[END_REF]Susi et al., 2013). As no single window size is sufficient, we calculate features over the signals (acceleration and angular velocity norm) in different window sizes. Then, the set of the most relevant features and their respective window size is chosen using feature selection methods. Time-based features are calculated on both the acceleration and gyroscope norm on the following window sizes: 0.05-0.1-0.2-0.3-0.4-0.5-0.6-0.7-0.8 seconds. Frequency-based features are calculated on acceleration and gyroscope norm in a 1.28 seconds window.

Time-based statistical features

They include median, mean, variance, standard deviation, skewness, kurtosis, derivative, maximum value, minimum value, energy, entropy, signal magnitude area, root mean square, mean crossing rate, mean absolute deviation, index of maximum in window, and index of minimum in window. 

Time-based peak-related features

As shown in figure 5.2, they include peak height, peak prominence, peak width, and peak plateau-size. These features are calculated with the help of a method found in the python package Scipy, scipy.signal.find_peaks (Virtanen et al., 2020). 

Frequency-based features

They include spectral flatness, spectral entropy, first, second, and third dominant frequencies, and amplitude of the first dominant frequency. These features are calculated on both acceleration and gyroscope norms for a 1.28 seconds window size. Constant window size is assumed enough as the average stride duration of participants specifically and of a normal walk generally is around 1.28 seconds [START_REF] Hollman | Normative spatiotemporal gait parameters in older adults[END_REF]. This can avoid under-detection.

Feature selection

At this stage, approximately 400 features are calculated. Some of which may be unrelated noisy or redundant. Selecting the most informative features for each model Gyro and ACC can help avoid over-fitting and unnecessary computational costs, which are critical for real-time implementation. Unlike Deep Learning where the extraction of the relevant features depends on the depth of the network, with Machine Learning based methods, this step is distinct from the model and thus allows considering the physics to select features. Physical hypothesis improves the robustness of the methods and the interpretation of the results. A combination of three methods: the perspective power score (PPscore) [START_REF] Florian | 8080labs/ppscore: Zenodo release (version 1[END_REF], feature ranking by calculating light gradient boosting machine model's feature importance lgb.importance [START_REF] Ke | Lightgbm: A highly efficient gradient boosting decision tree[END_REF] recursive feature elimination and cross-validated (RFECV) have been used to make robust feature selection. The PPscore is an alternative to the correlation coefficient that can detect linear or non-linear relationships between two features. Its value can range from 0 (no predictive power/ no correlation) to 1 (perfect predictive power/ correlation) [START_REF] Florian | 8080labs/ppscore: Zenodo release (version 1[END_REF]. First, features are ranked from best to worst according to the model's feature importance. Starting from the top-ranked feature, all features related to it with a PPscore ≥ 0.8 are removed. Again, all features related to the remaining second-ranked feature with a high PPscore are removed, and so on. Finally, the final set of features undergoes an RFECV. Then, univariate statistics are done to confirm the final list. The chosen features for the acceleration model are shown in table 5.1a and the chosen ones for the gyroscope model are in table 5.1b. The selection of the features was made in such a way that they are quite robust according to the types of movements. However, a very irregular movement may require the re-selection of features to include one or two features better correlated to this movement by using physical knowledge. This is the main interest in using these machine learning methods. 

Design of the two machine learning-based models

The machine learning algorithm adopted for step detection is Light Gradient Boosting Machine (LightGBM), which is a free, open-source algorithm developed by Microsoft [START_REF] Ke | Lightgbm: A highly efficient gradient boosting decision tree[END_REF]. It is based on Histogram Gradient Boosting Decision Trees (GBDT). It trains an ensemble of decision trees in sequence. At each iteration, the decision trees are learned by fitting the residual errors. Individual decision trees are fit using a differentiable loss function, binary log loss, and gradient descent optimization algorithm. This algorithm has been chosen for its popularity, being the winner of several machine learning competitions (ex. Kaggle), for its low memory usage, and for its fast training speed [START_REF] Ke | Lightgbm: A highly efficient gradient boosting decision tree[END_REF].

The tuning of hyperparameters is done through a recursive process. First, the n_estimators is tuned using cross-validation and early stopping quality present in the LightGBM package [START_REF] Ke | Lightgbm: A highly efficient gradient boosting decision tree[END_REF]) (all other parameters were kept constant). Then, the rest of the parameters are tuned using a RandomizedSearchCV given by sklearn python package [START_REF] Pedregosa | Scikit-learn: Machine learning in python[END_REF]. The range of hyperparameters given in the grid search was chosen in a way to avoid overfitting and reduce the complexity of the model. After that, a search for the optimal n_estimators is carried out again. Hyperparameters chosen for both models are shown in table 5.2. The models were evaluated on the training dataset using the cross-validation technique: sklearn.model_selection.LeaveOneGroupOut supplied by sklearn package [START_REF] Pedregosa | Scikit-learn: Machine learning in python[END_REF]. It splits the data into participant/walking-condition-based scenarios and evaluates each model for each scenario. The average performance of the acceleration model is 98% recall and 98 % precision while the average performance of the gyroscope model is 97% recall and 97% precision. These metrics describe the performance of each model at predicting the manually labeled step events (acceleration peaks and gyroscope valleys). 

Smart fusion: a decision process

After achieving high performance on both the acceleration and the gyroscope models, a decision process is needed to choose between the models for detecting step events. It follows the logical strategy, shown in figure5.3. Once started, Smartstep searches for the model that can predict the first step. This model is adopted as the main step detector until it fails to detect a step for a certain period of time which slightly larger than stride duration, chosen to be one second [START_REF] Hollman | Normative spatiotemporal gait parameters in older adults[END_REF]. In this case, the decision process is reinitialized one second behind, searching again for the first model able to detect a step. one second is chosen since the normal step duration does not exceed one second for almost all gaits. Smartstep decision process adopts a fixed value for simplicity reasons. If no model can detect a step, the motion is classified as either static or irregular. A code snippet in python can be found in Section A.3. 

Performance assessment

The objective of the assessment is to infer the real-life performance of Smartstep for different sensor positions for the elderly population at risk of fall in real-life settings. To our knowledge, neither an experiment nor a dataset that includes the aforementioned variables combined and labeled ground truth step instants exist. Therefore, different datasets that complement each other are considered.

As shown in figure 5.4, the evaluation is done gradually. Smartstep robustness is inferred from testing on different datasets with different conditions. First, we evaluate the performance of handheld sensors in challenging walking conditions. Second, we assess the performance for handheld and waist positions in a population of elderly at fall risk. Third, we assess the performance in different sensor positions for young and old blind people in challenging walking conditions. None of these datasets were included in the training of Smartstep. At the end of this section, Smartstep will have been evaluated on different dimensions: sensor position, challenging populations, and different walking conditions.

Since step instants provided by the reference solution may be shifted in time as compared to the ones predicted by Smartstep, a criterion to decide whether the predicted step corresponds to a real step event is needed. This time shift is normal as it reflects the shift in movement between the upper and lower body parts. The rule is the following. Predicted steps that are within a 0.6 seconds time interval around a reference step are considered true steps. This time-lapse was deduced from the average step duration calculated from reference devices for all mentioned scenarios. To remove the risk of having missed or over-detected steps, each reference step can only be coupled with a unique predicted step. If additional predicted steps are within the 0.6 seconds interval, they are considered over-detected steps. 

Performance handheld and challenging walking conditions

This is a preliminary evaluation on young adults and challenging walking conditions. Mainly, we assess whether Smartstep is able to generalize to different outdoor walking conditions while it has been trained mainly on walking signals registered on a treadmill.

The evaluation is done on a selection from the Young Outdoor and Staircase dataset (YOS) dataset described in Subsection 3.3.2: 120 staircase steps of one suject and 1800 outdoor steps from two subjects, and on a selection from Young Adults Smartphone Treadmill (YAST) described in Subsection 3.3.1: 330 steps recorded by a subject walking asymmetrically on a treadmill. None of this data is included in the training of Smartstep.

Three confusion matrices followed by three figures are given to describe: asymmetrical treadmill walking (table 5.3a, figure 5.5), outdoor walking (table 5.3b, figure 5.6), and staircase climbing/descending (table 5.3c, figure 5.7). To ensure that the criterion put in place for aligning reference step instants with their predictions is valid, the time difference between reference and predicted steps is plotted in figure 5.8. Finally, the root mean square error (RMSE) between reference and predicted stride durations (time interval between two steps of the same foot) is computed. figure 5.5 views a strip of the asymmetrical walking test. Arranged from top to bottom are the handheld-smartphone gyroscope norm, the hand-held smartphone acceleration norm, and the treadmill ground reaction forces. The predicted steps are shown as black stars while the reference steps are plotted as red triangles. During the test, the subject's hand was mainly swinging. However, it uses acceleration because it started with it and did not change or switch to gyro because of a misdetected step. Therefore, Smartstep relies on using the ModelAcc to predict peaks as step instants. On the acceleration norm, one can see that for each reference step, there is an equivalent predicted step. The method results in only 2 over-detected steps over 327 steps (see table 5.3a). Here the method results in 7 over-detected, 19 mis-detected steps, and 1799 correct steps (see table 5.3b).

This situation is also shown in figure 5.7 which is extracted from the stairs climbing test. Figure 5.7 has a similar plot arrangement to figure 5.6. Similarly, Smartstep starts using ModelAcc as the main step detector until the fourth second when ModelAcc cannot find the upcoming peak. Here Smartstep switches to ModelGyro. The method had 112 correct steps with only 14 over-detected (see Table 5.3c).

Globally, the method achieved 99% recall and 98.9% precision. The possibility of switching between two models improves the robustness against different motion modes and activities. Most error is due to over-detected steps during irregular movements such as jumps included for synchronization. These errors could be reduced by increasing the learning dataset with more irregular movements. Finally, figure 5.8 shows that almost 90% of the predicted steps are found less than 0.4 seconds away from their equivalent reference steps. The average step duration calculated with the reference systems for all considered scenarios was approximately 0.6 seconds. This supports the criteria used to evaluate predicted steps (check Section 5.3).

Performance on elderly at risk of fall with handheld and waist sensor

The objective of this evaluation is to assess whether Smartstep can generalize to older adults' gait even though it has only been trained on a normal healthy gait on signals obtained from a handheld smartphone. Mainly, we prove that this technique can work on:

(1) older adults' gait at risk of fall; and (2) Waist sensor position. We run this assessment on a selection of Medipole dataset which includes 21 older adults at risk of falling walking back and forth in a 30 m hospital hallway. In addition, some of the participants in this dataset suffered from comorbidities. Inertial signals were recorded with a smartphone at the waist and an inertial sensor at the wrist. For more information on the dataset check Subsection 3.4.1.

12,346 steps were analyzed. The average number of steps per person was 561 ± 78. The precision and recall of the step detection are shown in table 5.4. While the precision is comparable to that obtained in the previous performance assessment with young adults, the recall is slightly lower (95.9%). This implies that the algorithm is inclined to mis-detect rather than over-detect steps in the elderly population. This is can be due to some specific acceleration signal patterns around step instants that are present in older adults' gait but not in young adults (Hirata et al., 2013;[START_REF] Kobsar | Evaluation of age-related differences in the stride-to-stride fluctuations, regularity and symmetry of gait using a waist-mounted tri-axial accelerometer[END_REF].

Figure 5.9 shows the inertial signal obtained from the smartphone located at the waist for one hallway passage of a participant with previous falls. In addition, this participant covered a low distance of 250 m during the 6 minutes implying that he/she has low endurance [START_REF] Steffen | Age-and gender-related test performance in community-dwelling elderly people: Six-minute walk test, berg balance scale, timed up & go test, and gait speeds[END_REF] In this passage, he/she spent 39 seconds doing 66 steps. As the sensor is placed close to the center of mass, the angular velocity is negligible. Smartstep continuously uses ModelAcc to predict all steps. Despite the distortion and the variability in the acceleration signal as compared to that obtained with younger adults ( check figure 5.6 and figure 5.7), the number of misdetected steps (highlighted in red) remained low. There were no overdetected steps. Therefore, the model can efficiently generalize to both the elderly population and the waist sensor position. Improvements in Smartstep can be further done by adding the elderly's gait to the training dataset. This can reduce step misdetection and increase recall. 

Performance on other sensor positions on blind people in challenging walking conditions

The objective of this evaluation is to show that Smartstep can generalize to blind's gait even though it has only been trained on a normal healthy gait. Mainly, we prove that this technique is: (1) robust against different sensor placement (pants pockets, jacket pockets...etc.) (2) robust against different navigation devices used by blind people; (3) robust against different types of sensors; (4) and finally robust against the variability present in blind people's gait even though it is trained on healthy gait. The evaluation is done on the WeAllWalk and the Blind Geoloc dataset. These datasets include blind people walking while holding an inertial sensor or a smartphone in different positions. Both the Blind Geoloc and WeAllWalk complement each other. While the WeAllWalk dataset includes different challenging walking trajectories and different sensor positions, it does not include handheld sensor positions. Blind Geoloc includes the handheld sensor position but lacks challenging walking conditions. Further details on both datasets can be found in Subsection 3.3.4 and Subsection 3.3.3.

Step detection on blind people's gait must overcome several challenges. Adults with a visual impairment display body motion patterns during gait that are different than those of sighted [START_REF] Horvat | Compensatory analysis and strategies for balance in individuals with visual impairments[END_REF]. They walk with a shorter stride length, less trunk flexion, and an earlier plantar foot contact at heel strike than sighted individuals [START_REF] Hallemans | Low vision affects dynamic stability of gait[END_REF][START_REF] Iosa | Effects of visual deprivation on gait dynamic stability[END_REF]. Moreover, assistive devices such as a white cane or guide dog affect their gait characteristics and add an extra variation to the morphology of IMU signal [START_REF] Santos | Influence of the use of cane on the gait cycle of individuals who are blind[END_REF]. For example, trained cane users swing their arms holding the cane left and right, resulting in additional upper body rotation [START_REF] Blasch | Three aspects of coverage provided by the long cane: Object, surface, and foot-placement preview[END_REF] In addition, blind people walking, especially in large spaces, unless they use a guide dog, do not always walk on straight paths. Rather, they often hit obstacles, and require to stop and re-orient themselves, increasing the challenges of step detection.

In the following, we discuss the performance of each dataset separately.

WeAllWalk

To assess Smartstep, we compare its performance to that of a step-counting algorithm applied on the same dataset (Ren et al., 2021). The algorithm is based on a regular, unidirectional Long Short-Term Memory (LSTM) which takes the user's 3-axis acceleration and 3-axis angular velocity over a 4-second window and outputs a sequence of values between 0 and 1. The output of LSTM is transformed into a binary signal by applying a threshold. A step instant is marked as the midpoint of a sequence of consecutive LSTM values that exceed the assigned threshold. To have a fair comparison, as our algorithm is trained on healthy sighted participants, we consider the performance metrics of the LSTM trained on sighted and tested on blind walkers. The considered metrics (Undercount and Overcount rate) are variations of metrics with the same name in (Flores and Manduchi, 2018;Ren et al., 2021). The undercount (UC) rate is the ratio of the number of mis-detected steps to the total ground-truth reference steps. The overcount (OC) rate is the ratio of the number of over-detected steps to the total ground-truth reference steps. We present these metrics separately for the blind with a walking cane and blind with a guide dog in table 5.5 for Smartstep and the LSTM (Ren et al., 2021). Note that the number of steps detected using Smartstep is a combination of steps detected by the acceleration model and steps detected by the gyroscope model. Smartstep showed a much lower OC rate, a slightly lower UC for LC users but a higher UC for GD users. Figure 5.11 shows the acceleration norm and gyroscope norm for a smartphone located at the waist level. Reference or ground truth steps are projected on each subplot as red triangles. Different annotated challenging events in the WeallWalk dataset are highlighted in red and represent: a bump in the door (F1), stop and reorientation (F2), and arm hit the wall (F3). Smartstep either predicts steps using the acceleration model (ModelAcc) or the gyroscope model (ModelGyro). In this case, as the acceleration signal Figure 5.11: Acceleration and gyroscope norm from the phone at waist level. Red triangles: Weallwalk labeled steps; black stars: Smartstep Modelacc steps; black dots: Smartstep Modelgyro steps; F1, F2, and F3: annotated events in Weallwalk datasets (F1: bump in the door; F2: stop and reorients; F3: arm hit the wall); "Miss": missed steps; "over": overdetected steps. is mostly periodic, Smartstep adopts the ModelAcc to detect steps on the acceleration norm. Overall during these events, 2 missed and 1 over-detected step out of 11 steps were found. During F2, where the subject is reorienting himself, the gyroscope norm appeared periodic for a short period while the acceleration norm lost periodicity and thus Smartstep shifted to ModelGyro to detect the step and then back to ModelAcc to continue the prediction. This shift between models helped save one step from being missed. Similarly, figure 5.12 shows the acceleration norm and gyroscope norm recorded from a smartphone at chest level. In this case, it is clear that the gyroscope signal is noisy and lacks periodicity; therefore, Smartstep adopts Modelacc to detect steps in the acceleration norm. During turns (highlighted in yellow) both the acceleration and gyroscope norm lose periodicity. Thus, Smartstep fails to detect any step causing a high increase in UC rate. This represents a limitation of Smartstep and the reason behind it is that the training dataset marginally includes turns. It is important to note that the LSTM is trained on data of sighted individuals recorded on the same walking routes as the blind and thus trained on similar turn patterns. The performance of Smartstep is likely to improve by adding turns in its training dataset. This can be noted for future improvement of the method. We also present the metrics, UC, and OC rate, with respective the sensor's position in table 5.6. The goal was to check if there is an influence on the sensor's position. The OC rate was practically not influenced by the sensor's position; however, the UC rate was slightly influenced. The preferred position can be considered as the front pant's pocket with an 8.3 % undercount rate. We think the main reason is the presence of a higher magnitude of inertial signals due to the swing of the thigh.

Blind Geoloc

Undercount (UC) and overcount (OC) rates are also used to assess Smartstep's performance on the Geoloc dataset. In addition, we calculate the precision and the recall. The metrics are shown in table 5.7. Globally the method had around 97% precision and 92% recall on different speeds, different navigation aids, and different smartphone positions (mostly hand with different motion modes: swing and stable). The UC is less than this found on the WeAllWalk dataset (check table 5.5) because the only turns included in the dataset were short U-turns. Here, the UC rate is partly caused by the "phantom" steps labeled by the reference algorithm applied on the foot sensor signals as it has been known to over detecting sometimes (check Subsection 3.3.3). We demonstrate the influence of sensor placement and hand motion mode on the IMU signal morphology in figure 5.13 where the subject used a guide dog and put the sensor in pant's pocket, in figure 5.14 where the subject used a long cane and put the sensor in his jacket's pocket, and in figure 5.15 where the subject used a long cane and held the sensor in his hand. In all figures, we plot both the acceleration norm and the gyroscope norm. The reference steps are projected as red triangles on both signals. Depending on the sensor placement and hand motion mode, Smartstep either adopts the acceleration model (ModelAcc) and detects peaks in the acceleration norm or adopts the gyroscope model (ModelGyro) and detects valleys in the gyroscope norm. For the sensor placed in the pant's pocket, the swing of the thigh results in very clear valleys in the gyroscope norm; therefore ModelGyro is used to predict steps. They are shown as black dots on the plot. For the sensor placed in the jacket's pocket, the sensor is coupled with the motion of the whole body; therefore ModelAcc is used to predict steps. They are shown as black stars in the plot. For the sensor placed in the hand, the choice of the signal is dependent on the strength of the hand swing. Smartstep adopts the ModelAcc in the beginning and then shifts to ModelGyro when the acceleration signal gets distorted. The ability of Smartstep to cope with hand motion modes gave it the ability to cope with different sensor placements without any additional training to cover different sensor placements. Finally, one can conclude from the mentioned performance metrics that the size and variability present in the training dataset of Smartstep are sufficient to have accurate step detection from smartphones held in different sensor positions and walking trajectories with brief short turns. 

Discussion and conclusion

The objective of this part is to propose and evaluate a step detection method robust against sensor position (handheld, waist, pants pocket, jacket pocket), walking conditions: (outdoor, stairs, indoor), and different populations (young, old, blind). The method detects step instants as either peaks in the acceleration norm or valleys in the angular velocity norm. It does not contain any calibration process or any pre-classification phase and is independent of the sensor's orientation. Its main core is machine learning models trained on steps collected using a smartphone from healthy people's gait on a treadmill. The evaluation is done on several datasets that complement each other. To our knowledge, Smartstep is the first to be evaluated in that many variable situations. Concerning young adults and handheld sensors, the precision and recall were 99% which is higher than what is normally observed in the literature (Asraf et al., 2021;Brajdic and Harle, 2013;Guo et al., 2019;Hickey et al., 2016;Park et al., 2017;Trong Bui et al., 2018;Wang et al., 2018;Zhang et al., 2015). Most methods are limited by the accuracy of the hand motion mode classifier which could misclassify time windows into wrong states causing wrong step detection over the whole time window. Smartstep overcomes this limitation using ModelAcc and ModelGyro which classify each timestamp rather than time windows.

Concerning older adults, the algorithm performance was unaffected by the sensor position (whether wrist or waist position). Precision and recall were 99 % and 96 % respectively. Unlike most algorithms with performance dependent on the sensor placement, Smartstep could maintain its high performance on these different placements (Del Din et al., 2016;Khandelwal and Wickström, 2017;Lueken et al., 2020). Signals obtained from the waist position were similar to those obtained from a non-swinging hand (stable with respect to the center of mass). As expected, ModelAcc was the only model adopted on signals from the waist. Despite the slightly lower recall on older adults' gait, Smartstep performance competes with other algorithms present in the literature.

Concerning blind people, the performance was comparable to other algorithms present in the literature (Ren et al., 2021). For all sensor positions and navigation aids, the overcount rate or the overdetected steps was less than 1%. Unlike step misdetection, step overdetection can drastically affect the calculation of gait spatiotemporal parameters. When a step is missed, the algorithm can either add the step as the midpoint between the two detected step instants or filter out the calculated atypical gait spatiotemporal parameter. However, when a step is overdetected, it could be confusing to know which is the true step and which is the overdetected. Concerning the undercount rate or step misdetection, the performance was inferior to the LSTM (Ren et al., 2021). No conclusion can be made on whether the misdetection was affected by sensor position because not all participants had similar sensor positions. The LSTM was trained on data from the same sensor placements on individuals doing the same trajectories, and this gave it the advantage over Smartstep (Ren et al., 2021).

Weaknesses of Smartstep were encountered throughout the datasets. In young adults, we have encountered that some steps are overdetected due to irregular hand movements. In older adults, some steps were missed due to some particularities present in older adults' gait not seen before by the model in young adults' gait. In blind people's gait, misdetected steps were apparent in turning events. These weaknesses were due to the limitations present in the training dataset which included mostly young individuals walking on the treadmill. To overcome these weaknesses, all of the encountered particular situations should be added to the training dataset.

The biggest difficulty is the labeling of the dataset. While manual labeling eases the learning of the machine learning model, sometimes mistakes and wrong labels might exist. In addition, signals might be disrupted and multiple or no peaks exist around the reference step. For the time being, we avoided labeling such situations.

Further assessments should be done on the reliability of the calculated gait spatiotemporal parameters. It has been shown before (Chapter 4) that peak detection yielded sufficiently accurate gait variability with young adults walking on the treadmill; however, it is not certain that the results apply for other gait parameters for elderly at risk of fall. In Chapter 6, a study is done to confirm that the detected step instants can be used reliably for gait parameters or fall risk factor calculation.

Future directions include real-time implementation, turn detection, and battery consumption assessment. Real-time implementation can help in reducing the size of data to be saved. Only the step instants could be saved instead of the whole raw inertial signal. This would preserve the device's memory and allow the collection of a larger number of steps. Turn detection is important to both indoor localization and fall risk calculation. Determining the quality of turns can help in the prediction of falls (Leach et al., 2018). In the same manner, Smartstep can be modified to differentiate between step instants in a turn from step instants in a straight line. Turn steps and straight steps can be manually labeled and both models can be re-trained. This method can avoid turn pre-classification. Moreover, it will be necessary to optimize the algorithm to save energy/battery so that it can be downloaded and used on consumer devices.

Moreover, this step detection method is beneficial to the field of indoor positioning. It can play a key role in ameliorating Pedestrain Dead Reckoning (PDR). A future direction would be to include Smartstep along with step length and walking direction estimation In this part, a classical step detection method, peak detection, is evaluated, then, a novel method, Smartstep, is proposed and evaluated in various situations.

Peak detection needed threshold calibration depending on sensor placement and walking speed. Although it suffered from high rates of step misdetection and overdetection, especially when the sensor is handheld, it yielded accurate falling risk factors when atypical step times are filtered out. This proved that the time period between peaks can represent accurately step time. Therefore, the main focus shifted towards improving peak detection by decreasing misdetected and overdetected steps that could cause atypical strides.

Smartstep, the method proposed in Chapter 5, overcomes the limitations of peak detection, and other proposed methods. It is a data-driven method that relies on two machine learning models trained to detect peaks or valleys on either the acceleration or the angular velocity norm. The method was tested in different settings. we tested it on datasets of young people wandering around outdoors, old people walking in a hospital hallway, and old blind people performing different outdoor and indoor trajectories. Although this method was trained on the young people dataset, it was able to generalize to different populations and settings with high precision and recall on step detection.

Results from this part opened the door for sensor-independent real-life gait monitoring of step-related falling risk factors. In previous studies, sensors are normally fixed to the lower back. This part contributed to liberating studies from placement constrictions.

However, a weakness with respect to previous studies is that we are not able to detect heel-strike and toe-off events. This reduces the number of falling risk parameters we can calculate to those only related to step and stride time series. For instance, we are unable to calculate swing time and stance time which represent gait's rhythm and relate to falls. At the cost of patient comfort and sensor flexibility, some falling risk parameters are lost. Now that we have a step detection algorithm, we can go to the next step which consists in assessing whether fall risk parameters obtained from step time series detected by Smartstep could lead to an accurate/relevant prediction of the risk of fall. This will be the topic of Part IV.

Part IV Calculating Fall risk factors

INTRODUCTION

Context and workflow

In Part III, a step detection algorithm robust against sensor placement and real-life challenges is proposed. Moreover, from Chapter 1, one can identify that fall risk parameters related to 4 gait domains can be measured. Gait variability can be measured as the coefficient of variance of stride time, gait complexity can be measured as sample entropy and fractal exponent on stride time, gait symmetry can be measured as step time asymmetry, gait intensity can be measured as the cadence, and gait quantity as the total number of steps and the number of walking bouts. In this part, we aim at evaluating the calculation of those parameters from different sensor placements, and for studying their association with prospective falls.

First, in Chapter 6, a preliminary assessment is done to determine how well we can calculate parameters from different body positions using the developed step detection method. The assessment is done on elderly gait collected from two sensor placements (i.e. waist, wrist).

As mentioned in Chapter 1, the interpretation of parameters in real-life settings suffers from methodological challenges relating to the variability in walking context and environment. An approach to overcome these challenges is through the selection of relevant walking bouts with respect to fall risk parameters. For instance, gait variability calculated on a low number of strides has rarely shown any relevance. In Chapter 7, we study the influence of aggregating data over walking bouts of different lengths on the ability of fall risk parameters to identify individuals at risk. In addition, we study the effect of increasing walking bout length with respect to the number of participants having the required walking bout length and the number of excluded short walking bouts.

How good will be the performance of a model comprising the above-mentioned fall risk parameters in terms of predicting prospective falls. Chapter 8 will detail the performance and the limitation of using a such model. Finally, we discuss the perspectives and future steps to have consumer devices used for monitoring personal fall risk status. 

Introduction

With the increasing fall rate in the elderly population, researchers are seeking to complement fall risk assessments by adding real-life gait measures. However, most of that research utilizes dedicated IMUs placed on the lower back (Nouredanesh et al., 2021). While having a fixed location eases the detection of walking bouts, gait events (heel strike and toe-off), and the calculation of some fall risk parameters, it decreases user compliance increasing the device's non-wear periods. Therefore, there must be a compromise between the chosen fall risk parameters and the acceptance of the measuring device. Nowadays IMUs are embedded in most smartphones and consumer wearable devices. Adjusting the calculation of falling risk parameters to work on different consumer devices can promote user acceptability and compliance, allowing large-scale monitoring. This problem is twofold. On one side, parameters robust against sensor placement should be identified, and on another side, an algorithm able to derive these parameters should be assessed.

From the literature (Chapter 1), it can be inferred that two types of fall risk parameters exist: (1) those calculated on continuous acceleration (ex. Lyapunov exponent, Harmonic ratio...etc) and (2) those calculated from detected gait events (Step asymmetry, swing time...etc.). The former type is known to be dependent on the sensor placement. Their values vary with respect to sensor position and thus, a potential classifier to relate them to fall depends on the anatomical segment they are placed on (Hirata et al., 2013;Kang and Dingwell, 2009). Therefore, a possible solution would be to create a robust sensor position classifier as a preliminary processing step. Still, the variety of possible placements seems to make it a complicated problem. Moreover, another issue arises due to the effect of sensor placement on the relation between these parameters and fall risk. For example, the harmonic ratio calculated on the upper trunk showed high discrimination for the risk of fall with respect to that calculated lower trunk (Hirata et al., 2013). Similarly, the Lyapunov exponent calculated on the trunk could better detect age-related differences than that calculated on the thigh, shank, or foot (Kang and Dingwell, 2009). In a summary, to obtain a reliable estimation of the risk of fall using parameters estimated from continuous acceleration signals, one must carefully choose the sensor placement.

On the other hand, one can rely on estimating parameters from gait events. From the literature review, one can infer that we can potentially estimate fall risk parameters describing four gait domains. Gait intensity can be estimated as the cadence, gait quantity can be estimated as the number of steps, gait variability can be estimated as the coefficient of variance of stride time, and gait complexity can be calculated as the fractal exponent and sample entropy of stride time. The dependence of these parameters on sensor placement is transferred to the robustness of the step detection algorithm. This problem has been addressed in Part III where we proposed a step detection algorithm "Smartstep" and proved it robust against sensor positions, different walking environments, and different populations. The precision and recall obtained on different testing scenarios were 99% and 90% respectively. Nevertheless, this method cannot detect detailed gait events such as [Toe off and Heel strike]. Therefore, parameters such as swing time and stance time cannot be calculated.

However, Smartstep had not been tested for calculating accurate fall risk parameters. On the other hand, several studies try to assess the influence of sensor position on the accuracy of fall risk parameter estimation derived from discrete time series. Del Din et al., 2016 showed that variability and asymmetry parameters cannot be estimated correctly from the waist, chest, and lower back using an algorithm proposed by McCamley et al., 2012. Similarly, Khandelwal and[START_REF] Khandelwal | Novel methodology for estimating initial contact events from accelerometers positioned at different body locations[END_REF] evaluated stride time which had low limits of agreement for wrist position. In addition, Lueken et al., 2020 assessed stride time variability and had a large error for wrist position.

The objective of this study is to determine how well can we calculate falling risk parameters from different body positions using the previously proposed generalized step detection algorithm, Smartstep (Al Abiad et al., 2022). Mainly, we tend to prove that the estimation error stays less than the differences between individuals with and without fall risk. The parameters we chose to calculate were the variability parameters and complexity parameters. We did not include quantity and intensity parameters as they are redundant to the evaluations done on Smartstep. Smartstep was already evaluated for error in step count in Chapter 5. We initially intended that this study include fall prediction but due to the Covid pandemic, the collected dataset contained an insufficient number of participants (notably fallers). Instead, we only managed to compare fall risk parameters from different body positions. This study is organized as follows: Section 6.2 is material and methods, Section 6.3 is the results, and Section 6.4 is the discussion, and finally the conclusion in Section 6.5.

Material and methods

Dataset

The used dataset is Medipole elderly. It included twenty-nine participants (75 ± 5y, 74 ± 15kg, 1.7 ± 0.08m, 5 Female and 24 Male) with seven encountered previous falls. Each participant performed a 6 minutes walking test in a hospital hallway. Inertial signals were recorded in two placements: the wrist using Gaitup® sensor ("Gait Up | Make sense of motion", n.d.) and the waist using a smartphone (Samsung A70). Gaitup® foot-mounted sensors were used as reference devices for step detection. For further details on the dataset refer to Subsection 3.4.1.

Deriving fall risk parameters

Data were segmented into straight walking and turn sections. Turns are detected using Gaitup commercial device and then superimposed on all collected signals. Only straight walking sections are used in the calculation of the features. Steps are detected using the method described in the previous part, Smartstep, for both the wrist and waist (Al Abiad et al., 2022).

The calculated falling risk parameters represent both gait variability and complexity. Gait variability is represented by the Standard deviation (SD) and Coefficient of Variance (Cov) of stride time. Gait complexity is represented by sample entropy and fractal exponent on stride time. Variability parameters are calculated on all detected steps. Complexity parameters are affected by the selected number of strides which is advised to be fixed among individuals and not shorter than 200 strides (Yentes et al., 2013). Therefore, they are calculated on segments of 250 strides counted from the beginning of the test for each participant. The fractal exponent is advised to be calculated on more strides (600 strides; Damouras et al., 2010); however, the algorithm was adjusted for short sample data (Kuznetsov and Rhea, 2017).

To calculate sample entropy a vector length, m, of 2 and a tolerance of 0.2 were used. To calculate fractal exponent, we consider window sizes varying from 4 data points to N/4 data points where N is the total length of data (Kuznetsov and Rhea, 2017).

These parameters are selected to substitute existing signal-based complexity parameters (Lyapunov and sample entropy on acceleration signals) and signal-based variability parameters (amplitude and width of dominant frequency). They are chosen because they are relevant in gait assessments, and can be computed from discrete time series (step and stride time series) which can be detected from different body placements (Coates et al., 2020;[START_REF] González | Relationship between stride interval variability and aging: Use of linear and non-linear estimators for gait variability assessment in assisted living environments[END_REF]Hamacher et al., 2011).

Statistics

The calculated fall risk parameters are compared to those obtained from Gaitup detected steps. First, the Root Mean Square Error (RMSE) and the Intraclass Correlation Coefficient (ICC) of instantaneously detected stride durations are calculated. These two metrics are chosen to ease comparison with the literature. The limits of agreement (Loa) of SD and Cov of stride time, the fractal exponent on stride time, and sample entropy on stride time are calculated to evaluate Smartstep.

Results

Participants walked on average 600 ± 100 steps with an average of 15 ± 3 passages in the hospital hallway. The performance of step detection on this dataset is reported in the previous section. Concerning falling risk factors, the results are presented in table 6.1. 

Discussion

The question to be answered in this chapter was " How well can we calculate falling risk parameters from different body positions using the previously proposed generalized step detection algorithm? " To answer this question, we analyzed inertial data collected from the wrist and waist of older adults walking semi-supervised in a hospital hallway. The chosen fall risk parameters are those describing the variability and complexity of gait, namely the standard deviation and coefficient of variance of stride time variability, and fractal exponent and sample entropy of stride time. Results from wrist and waist position are compared to those obtained from foot-mounted Gaitup® sensors. Concerning stride time, the Root Mean Square Error (RMSE) and the Intraclass Correlation Coefficient (ICC) show that this algorithm can outperform present algorithms dedicated to estimating stride time. The RMSE is as low as 56 ms for the wrist and 53 ms for the waist as compared to 650 ms for the wrist (Lueken et al., 2020). In addition, the ICC value is within the range found between different measurement devices (Del Din et al., 2016).

Concerning variability parameters, the limits of agreement are less than the difference found between fallers and non-fallers studies (Hausdorff et al., 1997a;Hausdorff et al., 2001). Regarding complexity parameters, studies are rare and concerned mainly with the use of sample entropy and fractal exponent in Pathological gait. The difference in sample entropy between Parkinson's patients and healthy subjects varied from 0.1 to 0.5 (Coates et al., 2020;[START_REF] Kamath | A novel perspective to assessment of neurodegenerative disorder gait[END_REF][START_REF] Wu | Measuring signal fluctuations in gait rhythm time series of patients with parkinson's disease using entropy parameters[END_REF]. This difference is affected by the chosen algorithm parameters and the designated walking period. Sample entropy has not been used yet in faller and non-faller classification studies but has been encouraged to be studied (McCamley et al., 2018;Yentes and Raffalt, 2021). Finally, concerning the fractal exponent, to our knowledge, no study assesses it in faller and non-faller classifications within a healthy population. A clinically meaningful difference is not clear. Studies differentiating normal to pathological gait (Huntington's disease, Parkinson's disease...etc.) find differences ranging from 0.13 to 0.4 (Channa, Popescu, et al., 2021;[START_REF] González | Relationship between stride interval variability and aging: Use of linear and non-linear estimators for gait variability assessment in assisted living environments[END_REF]Hausdorff et al., 1997b;Herman et al., 2005). Therefore, the answer to whether the error is acceptable or not is unclear and further studies need to be done.

The limitations of this study are the simple walking test, far from the diversity of situations encountered in real life, and the sensor placement that was relatively constrained. In addition, we could not find a clinically meaningful difference nor define one for all calculated gait parameters. Future studies might try to assess the performance in an outdoor, close to a real-life environment.

Conclusion

This study evaluated the calculation of falling risk parameters from different body positions, the wrist, and the waist, using a previously proposed step detection method by Al Abiad et al., 2021. The falling risk parameters described gait variability and complexity. Results include that gait variability can be reliably measured independently of sensor position. However, regarding complexity parameters, the answer is not clear because of the inconsistencies present within the literature. Future studies must focus on measuring such parameters on larger datasets for fall prediction. Enabling the measurement of these parameters from different body placements can open doors toward using consumer devices for real-life gait monitoring. 

Introduction

Increasing interest in monitoring gait in real-life using inertial measurement units is evident. Unlike supervised tests, real-life monitoring allows to measure the habitual, actual performance of the individual continuously and is not biased by observer or "whit-coat" and Hawthorne effects (Paradis and Sutkin, 2017). Several previous studies have discussed the potential benefits of calculating falling risk parameters in ambulatory settings using IMUs mounted on the lower back for predicting falls in an elderly population (Del Din et al., 2019;Rispens et al., 2015b;Van Schooten et al., 2016;Van Schooten et al., 2015;Weiss et al., 2013). However, in general, the interpretation of real-life measured parameters suffers from methodological challenges (Nouredanesh et al., 2021;Tamburini et al., 2018;van Schooten et al., 2014;Warmerdam et al., 2020).

On the other hand, Chapter 6 shows that some falling risk parameters can be calculated from different sensor positions. This drives them to be perfect candidates to be monitored using consumer devices. They constitute gait variability: coefficient of variance of step and stride time, and gait complexity: fractal and sample entropy of step and stride time.

While these parameters hold promising results in laboratory-controlled settings (Channa, Popescu, et al., 2021;Hamacher et al., 2011), they either show weak relation to falls (Del Din et al., 2019) or have not been discussed in ambulatory settings. One possible cause would be the mistreatment and wrong aggregation of data over walking bouts.

With the richness and variation of real-life data comes the complexity in analysis. The analysis starts with the detection of walking bouts using an activity classification algorithm. An error in the detection can strongly influence the calculation of falling risk parameters. Nait Aicha et al. (2018) showed that after filtering ambiguous walking bouts which might correspond to "non-gait", their fall prediction performance increased (AUC increased from 0.7 to 0.75). Moreover, most importantly, captured walking bouts differ by their length or duration, walking environment (home, supermarket, park), and walking context (walking while talking, walking alone). The interpretation of the calculated falling risk parameter or gait quality might be misleading as it can be biased by the walking context and environment. For example, someone at risk of fall walking outdoors in straight paths might have a similar or better gait quality as compared to a healthy person wandering around in a supermarket. It is still unclear how to remove the influence of context and environment from gait quality.

Older studies on ambulatory data summarize subject's performance by taking the median or extreme values (maximum and minimum) of the falling risk parameter calculated over all walking bouts (Rispens et al., 2015a(Rispens et al., , 2015b;;Van Schooten et al., 2016;Van Schooten et al., 2015;Weiss et al., 2013). These studies are limited as the median or extreme values can be representing short walks at home for one person while long outdoor walks for another, masking the actual performance of the person and misleading the interpretation of the results. In general, in these studies, gait variability calculated on stride or step time is not found significantly related to falls (Del Din et al., 2019;Rispens et al., 2015b). Rather than representing the noise of the innate nervous system, it is masked by the variability present in the walking context. On the other hand, previous studies in controlled laboratory settings have shown that to obtain a meaningful value of variability, continuous long stable walks should be considered (König et al., 2014;Riva et al., 2014;Tamburini et al., 2018;van Schooten et al., 2014). Initiation and termination of gait should also be removed from the calculation. None of these guidelines were taken into consideration.

Other studies focus on grouping walking bouts by length: short, medium, and long, calculating fall risk parameters for each group, and summarizing person performance over each group by one single value (Del Din et al., 2019;Del Din et al., 2016a). Depending on the walking bout length, the relation between the falling risk parameter and the risk to fall may change. For example, Del Din et al. (2016a) showed that asymmetry calculated on medium bout lengths (between 30 sec and 60 sec), and variability calculated on long walking bouts (>120 sec) could differentiate between Parkinson's and healthy individuals. They assumed that medium walking bouts stimulate gait asymmetry, and long walking bouts stimulate the innate gait variability. In addition, Rehman et al. (2022) showed that gait characteristics aggregated over long walking bouts result in better performance in differentiating Parkinson from healthy controls.

While selecting long walking bouts seem appealing, not every person might have long bouts. Those excluded from not having long bouts, might be those in need of attention. In addition, long bouts represent the minority of all detected walking bouts (Del Din et al., 2016a;Rehman et al., 2022). When selecting a threshold for long walking bouts, one must weigh the advantages from one side (e.g. better association with the fall risk)" and the participants excluded from another.

Thus, there is a critical question and very little attention is brought to it: What is the effect of increasing walking bout length not only on the association of a falling risk parameter with risk of fall but also on the number of participants excluded for not having a sufficient number of walking bouts? The measures of parameter utility should not only include its association with falls but also its ability to be calculated for different populations and thus, short walking bouts. In the following, we aim to analyze the difference between fallers and non-fallers of each falling risk parameter calculated over different lengths of walking bouts (Fallers are defined as individuals with at least one fall in the 12 months following the data acquisition). In addition, we discuss the effect of increasing the threshold on walking bout length on the number of excluded participants and the number of walking bouts per participant. The population we consider is community-dwelling older adults.

Material and Method

Dataset/participants

Ambulatory acceleration data from 301 participants were used in this study. This data was kindly shared from a study done by Delbaere et al. (2021) which aimed at testing the effect of an intervention on decreasing the risk of falls. The dataset included 301 community-dwelling older adults. Half of them were assigned to do an intervention and the other half were considered as control. At baseline, acceleration data was collected using accelerometers placed at the lower back. Then, the number of falls was recorded over a 12-month follow-up period. We divided this population into a fallers group (individuals with at least one fall) and a non-fallers group (individuals with no fall). The proportion of the number of fallers to non-fallers is around 40%. Further details on this dataset are given in Subsection 3.4.2.

Pre-processing

To run the step detection algorithm on a 7-day acceleration data, the processing time would be around 3 hours per participant which is not feasible. Therefore, it was necessary to remove irrelevant data such as when the sensor is not worn or the user is not active. Therefore, we use the algorithm of van Hees et al. (2011) to remove non-wear periods, then we use the accelerometer cut-points from the study done by Migueles et al. (2021) to remove sedentary or inactive periods. Concerning non-wear periods, each 1-hour window with 15-min overlap is classified as non-wear if the standard deviation of each acceleration axis is less than 7 mg or if the range of each acceleration axis is less than 50 mg. Concerning inactive periods, the acceleration Euclidean Norm Minus One (ENMO) is calculated with negative values rounded to 0 on a second-by-second basis and then averaged over 5 s epochs for analysis. If the average value is greater than 7 mg, then the 5 s period is an active period. The data to be analyzed decreased to around 40% of its initial length.

Walking bout and step detection

To detect walking bouts and steps, the algorithm "SmartStep" presented in the previous chapter is used (Al Abiad et al., 2022). The algorithm is essentially used for step detection for different sensor body placements in different walking conditions. It was also tested on irregular hand motions such as waving and shaking and was proved to be robust against real-life challenges. After the algorithm is run on the data, detected steps are grouped into a walking bout if they are separated by less than 2 seconds. Only walking bouts longer than 60 steps are considered in this study. 60 steps represent on average 30 seconds of walking. It is chosen for two reasons: (1) shorter walking bouts might lead to inconclusive results (König et al., 2014;Riva et al., 2014) and (2) to avoid detection of "non-gait" walking segments.

Derived falling risk parameters

Calculated falling risk parameters include the Coefficients of variance of step time and stride time, the fractal exponents of step time and stride time, and the sample entropy of discrete step and stride time series. Similar to the description of falling risk parameters given in the previous chapter, Sample entropy and fractal exponent are calculated for walking bouts starting 200 steps on gait segments of constant length of 200 steps. In other words, walking bouts shorter than 200 strides are excluded while walking bouts longer than 200 strides are cut into a constant segment of 200 strides. The first 200 strides from the long walking bout are always selected for the calculation. 200 data points are considered the minimum requirement to have a meaningful value for sample entropy (Yentes et al., 2013). Although the calculation of fractal exponent is advised on longer walking bouts (600 strides; Damouras et al. (2010)), the calculation algorithm is adjusted for shorter walking bouts (Kuznetsov and Rhea, 2017). The coefficient of variance is calculated on all walking bouts. In addition, as most features are influenced by the initiation and termination period of gait, the first and last 5 steps are removed from the calculation of each feature (König et al., 2014;Riva et al., 2014).

Aggregation of falling risk parameters

To obtain a single aggregate value, the median of the fall risk parameter for walking bouts exceeding a certain threshold, T, is calculated. The threshold is varied from 60 to 600 steps (60 steps, 100 steps, 200 steps, 300 steps, 400 steps, 500 steps, 600 steps). 7 versions of each parameter are calculated with respect to different lengths of walking bouts. Unlike other studies, the threshold is described by the number of steps rather than duration in seconds to ease the comparison with thresholds obtained in laboratory settings. For an average step duration of 0.5 seconds, the walking bouts vary in duration from 30 seconds to 5 minutes.

Statistics

Significant differences in fall risk parameters were assessed between the two groups for walking bout lengths using a t-test. The normality of the data was verified with the Shapiro-Wilk test, and the homogeneity of variances is verified with Levene's test. When significance was found, Receiver operating characteristic (ROC) curves analysis is carried out on the Coefficient of variance of stride time and step time for thresholds varying from 60 steps to 600 steps. The effect of excluding participants is added by arbitrarily classifying them as non-fallers.

Two values for Area Under the Curve (AUC) are calculated at each threshold. One value represents the performance of the falling risk parameter without considering the , 2015). In those studies, the median of gait variability parameters calculated over all walking bouts is derived for each participant and assessed for fall prediction. In spite of several proposed guidelines for having a minimum number of steps for laboratory settings (König et al., 2014;Riva et al., 2014), no considerations are given to the length or number of steps in walking bouts in real life settings. In this study, we found significant differences in fall risk parameter between fallers and non-fallers on the Coefficient of variance of step time and stride time only for walking thresholds above 300 and 200 steps respectively. This result was in line with a previous study concluding that gait variability for longer walking bouts is better at discriminating Parkinson patients from healthy controls (Del Din et al., 2016a). Another study showed that longer walking bouts are better in general for Parkinson patient identification using machine learning models (Rehman et al., 2022). In addition, this result is consistent with laboratory studies suggesting that a large number of strides should be used to acquire a stable measure of variability (Hollman et al., 2010;Riva et al., 2014).

Sample entropy and fractal exponent on stride time and step time have not shown any significant differences between populations over all walking bout thresholds. Both parameters have not been calculated before in ambulatory settings in the context of fall risk. To our knowledge, only one study assessed sample entropy in real life showing that it is higher for Parkinson's patients (Coates et al., 2020). Although no difference is shown, no conclusion can be made on the utility of these parameters in future multivariate fall prediction models. While they cannot be good predictors, their interaction with physical activity can supply valuable information on fall risk. In addition, as we classify fallers and non-fallers in a binary way, we might be losing information on whether this variable is better at predicting multiple-fallers rather than first-time fallers. These results can constitute the basis for future work. Although increasing the threshold on walking bout length renders a better classification, it also excludes a number of participants. Long walking bouts (>200 steps) constitute around 15% of all detected bouts in both fallers and non-fallers population and excludes around 6% of the total population. Similarly, other studies with different populations show similar or even lower percentages of long walking bouts [START_REF] Del Din | Measuring gait with an accelerometer-based wearable: Influence of device location, testing protocol and age[END_REF]Rehman et al., 2022). When putting a threshold on walking bouts, one must not forget the number of participants excluded because of not having sufficiently large walking bouts. This effect is studied in figure 7.3 where we plot the AUC of model1 which only classifies participants having walking bouts longer than a threshold, and the AUC of model2 which does both the classification of model 1 and classifies arbitrarily excluded participants as Non-fallers. The maximum attained AUC is 0.6 and 0.57 for Cov stride time and step time respectively at a threshold of 300 steps where the excluded population is 19 %. If we consider the random classification of people excluded, the model could not improve after the exclusion of 6% and 0% of the population for a threshold of 60 and 200 steps for Cov stride time and step time respectively. Nevertheless, this AUC remains low and such models based on only one parameter are useless in the clinic.

Another factor influenced by putting a threshold on walking bouts is the average number of bouts per person. As this number decrease, the inter-subject variability might increase, hindering us from obtaining a stable representative value. This topic is rarely studied in the literature. Some studies normally consider at least 50 walking bouts per person to obtain reliable estimates of the parameter (Rispens et al., 2015b). However, while the spread or variance of parameters calculated over short walking bouts is high and 50 data points might be needed to obtain a representative estimate, their spread might be lower for long walking bouts and fewer walking bouts might be needed. Further studies need to be carried out to answer this question.

The limitation of this study is the binary classification of the population. Considering multiple classification groups might show more results concerning sample entropy and fractal exponent. In addition, only the minimum number of steps (lower threshold) is addressed in this study. It might be interesting to consider ranges of walking bout length. Future research must treat information coming from different walking bouts (short, and long) separately, and not use one aggregate value (median). Finally, this study is demonstrative and not purely applicable. It considers only univariate models. Future directions should transfer the knowledge obtained in this study to applications in multivariate models.

Conclusion

The interpretation and analysis of real-life fall risk parameters suffer from methodological challenges related to the context and environment of the walking bout. To overcome this problem, an interesting approach is to study the effect of increasing walking bout length on the ability of the fall risk parameters to identify individuals at risk of falls. In this study, it was shown that a significant difference in falling risk parameters between fallers and non-fallers was achieved for relatively long walking bouts. However, increasing walking bout length might exclude participants with insufficient long walking bouts, and decrease the number of total walking bouts. In this study, we discuss that the choice of any parameter should be measured by not only its performance but also by its ability to be measured reliably on different individuals with different capacities to walk. In conclusion, the variation of performance with respect to walking bout length implies that future research should attribute different classification models to different ranges of walking bouts depending on the calculated falling risk parameters. Moreover, short walking bouts cannot be used to calculate variability parameters. Other parameters must be used to pinpoint the balance control in short walking bouts.

CHAPTER 8

ASSOCIATION BETWEEN THE PARAMETERS AND PROSPECTIVE FALLS

Introduction

Nowadays, researchers are encouraging real-life gait monitoring to enhance the performance of fall risk assessments (Nouredanesh et al., 2021;Van Schooten et al., 2015). Up until now, research has been limited to using inertial sensors fixed on the lower back to record limited periods (1 week). The concept of monitoring has not been applicable for several reasons that can be divided into user comfort and logistics. One way that can overcome these conflicts is by using consumer smart devices. User acceptance greatly influences the utility of the device. Fixed sensor positions especially in uncomfortable body positions might decrease the user's interest in wearing the sensor (Keogh et al., 2020). Moreover, in terms of gathering large datasets, the availability and the cost of the dedicated wearable device are important. The efficiency of using consumer wearable devices such as smartphones or smartwatches for monitoring purposes has been discussed in several studies, especially for clinical trials [START_REF] Foster | The opportunity and obstacles for smartwatches and wearable sensors[END_REF]. The advantages of these ubiquitous devices lie in their widespread availability, low cost, and high sensor quality. In 2017, 59% of adults 65-69 years old, and 31% of adults 75-79 years old are smartphone owners (Anderson and Perrin, 2017).

Most consumer-connected objects include Inertial Measurement Units (IMUs) which might be potential candidates for gait monitoring. Moreover, a step detection algorithm has been proposed to overcome the challenges accompanied by consumer devices (Al Abiad et al., 2022). Despite that, due to the complexity of the data processing, difficulty in interpretation, and the limitation of the available step detection algorithms, the calculation of some fall risk factors (ex. swing time, Lyapunov exponent, harmonic ratio...etc. For more details, refer to Chapter 6.) is unfeasible. For the time being, only parameters derived from step and stride time series could be computed with appropriate accuracy.

Fall prediction is mainly based on conceptual gait models. These models usually consist of different gait domains: quantity, intensity, variability, smoothness, complexity, and symmetry. If these models only include data from daily-life gait, their performance or the Area Under the Curve (AUC) varies from 0.67 to 0.75 (Ihlen et al., 2018;Rispens et al., 2015aRispens et al., , 2015b;;Van Schooten et al., 2015). Moreover, Van Schooten et al., 2015 showed that this performance increases to an AUC of 0.82 if clinical assessment tests are added.

Using consumer devices and Smartstep (Al Abiad et al., 2022), four out of six of these domains can be potentially measured: gait quantity parameters (Walking period, Total number of steps...etc.), gait intensity parameters (Cadence, mean step time...etc.), gait variability parameters (Coefficient of variance of stride time and step time), and gait complexity parameters (Fractal exponent and sample entropy of step and stride time). At this stage, gait symmetry and smoothness are complicated to measure using the available algorithm. In addition, complexity parameters are calculated on walking bouts with a minimum of 200 steps because available calculation algorithms are reliable for at least 200 data points (Yentes et al., 2013). This decreases the number of domains to three (variability, intensity, quantity) for walking bouts less than 200 steps.

While this prediction model will include less gait parameters than state of the art models, it will have the advantage of being accessible for broad public. This fall prediction model is ubiquitous and it can be implemented on different devices with different placements. As the calculation of falling risk factors has been proven robust against sensor position (See chapter Chapter 6), we expect that this model is robust against different user device locations. As Smartstep has shown robustness against different smartphone brands and different sampling frequencies (20 Hz to 200 Hz), this model is fit to be implemented on different smart consumer devices.

However, using this model, we expect to have a trade-off between the performance and the length of walking bout selected. First, Chapter 7 shows that the difference of gait variability between fallers (individuals with one prospective fall) and non-fallers (individuals with no falls) becomes significant if walking bouts of a minimum of 200 steps are selected. Second, complexity gait parameters were not calculated for walking bouts shorter than 200 steps. Overall, we expect that the longer the selected walking bouts are, the better the prediction. However, older adults do not perform a lot of long walking bouts. This can lead to excluding people with insufficiently long walking bouts. For example, Chapter 7 shows that if walking bouts of at least 200 steps are selected, then 6% of the population is excluded.

Therefore, in this study, we aim at evaluating the performance and the limitations of this fall prediction model. The limitations are assessed by studying the trade-off between the selected walking bout length and the population excluded. We consider the Standingtall dataset with elderly ambulatory gait collected with lower back inertial sensors (Delbaere et al., 2021). This dataset was already used in Chapter 7. We expect that the results from the lower back can be translated to different positions.

Material and Method

Dataset/participants

The dataset used is the StandingTall dataset (Delbaere et al., 2021). It is described in Chapter 3, Subsection 3.4.2 and used in Chapter 7. It consist of 1-week ambulatory acceleration data from 301 participants. Half of the participants were assigned to do an intervention and the other half were considered as control. Acceleration data was collected at baseline. Then, number of falls are recorded over a 12 month follow up period. Similarly, participants were marked as fallers if they fell at least once in the 12-month follow up period and non-fallers if they did not fall.

Pre-processing, walking bout and step detection

The same pre-processing done in the previous chapter was applied here. Non-wear and inactive periods were removed using methods proposed by van Hees et al., 2011 andMigueles et al., 2021. Then, steps were detected using the algorithm "Smarstep" described in Chapter 5. Detected steps were grouped into a walking bout if they are separated by less than 2 seconds. Walking bouts longer than 60 steps are considered. For further details refer to Subsection 7.2.2 and Subsection 7.2.3.

Derived Falling risk parameters for the creation of fall risk model

In addition to the falling risk parameters calculated in Chapter 7, gait quantity and intensity parameters were calculated. Gait intensity parameters include the cadence, step time, and stride time. Gait quantity includes the total number of walking bouts, total number of steps, number of steps in a walking bout, and period of a walking bout. Moreover, we included a parameter that represents whether the participant had or had not an intervention. This parameter was included as a control variable to separate its effect from the studied gait explanatory variables. In Chapter 7, we describe gait variability using the coefficient of variance of stride time and step time, and gait complexity using the fractal exponent and sample entropy on stride and step time series. First, initiation and termination phases of gait are removed by removing the first 5 and last 5 steps of all walking bout. Then, gait variability, intensity, and quantity are calculated on all walking bouts. However, gait complexity is calculated on walking bouts with more than 200 steps (i.e. 210 steps before removal of initiation and termination periods). Longer walking bouts are cut into a constant length of 200 steps and shorter walking bouts are excluded from the calculation of complexity. 200 steps are chosen with respect to recommendations given for the calculation of sample entropy (i.e. include at least 200 data points) (Yentes et al., 2013). Although it is advised to compute fractal exponent on longer walking bouts, the calculation algorithm is modified according to the recommendations given by [START_REF] Phinyomark | Fractal analysis of human gait variability via stride interval time series[END_REF].

Because the association of most parameters with fall risk are affected by walking bout length (previously seen in Chapter 7), different versions of the same parameter are calculated on different walking bout length in the following way. First, walking bouts exceeding a threshold of T steps are selected. T varies from 60 to 300 steps. Then, the median of the parameter over the selected walking bouts exceeding the threshold T is calculated. This means that each participant will have six versions of same parameter (calculated on walking bout exceeding 60 steps, 100 steps, 150 steps, 200 steps, 250 steps, 300 steps). The maximum threshold tested is 300 steps as a high proportion of the population (20%) did not perform longer walking bouts, and thus would be excluded from the analysis.

Figure 8.1 shows the different versions we can obtain for each gait dimension as blue circles for variable threshold put on walking bout length. It can be seen that as the threshold increases, the proportion of excluded participants increases. Excluded participants do not have walking bouts longer than the put threshold. On the other hand, for a threshold of fewer than 200 steps gait complexity is not calculated (it is shown as a red cross).

Six fall prediction models are built. The components of each model are the mentioned gait dimensions and the interaction between different components. The interactions of gait quantity with both gait variability and complexity were included. Moreover, the interaction of the intervention parameter with all other gait parameters is calculated. The interaction is added to account for the effect the intervention might have on the relationship between gait parameters and falls. Yellow triangles in figure 8.1 represent calculated control parameters that are only used to account for intervention effects. 

Statistical analysis

Correlation between parameters

The median of fall risk parameters calculated on all walking bouts is taken. Spearman's correlations were performed to assess the relationship between the fall risk parameters. Correlation coefficients between 0.7 and 1.0 were considered strong, between 0.4 and 0.7 moderate, and between 0 and 0.4 weak.

Statistical model

The chosen model is negative binomial regression because it is used for overdispersed count data when the variance and the mean in the number of falls of participants are not equal. For this dataset, the variance was twice the mean number of falls. The average number of self-reported falls in the 12-month was 0.69 ± 1.33 and ranged from 0 to 7 as shown in figure 3.9 in Subsection 3.4.2. The outcome variable is the number of falls participants had during the 1-year follow-up. However, to ease the analysis, we transform the outcome variable into binary classes of faller (if a person fell at least once) and nonfaller (if a person fell more than once). All uncorrelated parameters were chosen as candidates for model creation.

Selection of parameters

Parameter selection was done on walking bouts with a minimum of 200 steps. Different combinations of uncorrelated gait parameters were chosen as candidates for the creation of the model. Parameters that give the best performance were retained. Then, the backward elimination of these parameters was done in the following way. Using ten different subsets of the dataset containing 70% of the population each, we create ten different models with the retained parameter list. The average and the standard deviation of the p-value are calculated for each parameter over the 10 created models. Parameters with a high and variable p-value (mean and standard deviation p-value >0.2) are dropped out.

Evaluation of model

While some of the state-of-art models are evaluated on the same dataset used to fit the model (Rispens et al., 2015a;Van Schooten et al., 2015), others use 10-fold cross-validation (Ihlen et al., 2018;Nait Aicha et al., 2018). 10-fold cross-validation divides the dataset into ten parts, and then nine out of ten are used for training the model and one is used for testing the model. In this study, we use two evaluation methods for comparison with the literature. We use 10-fold cross-validation and train-testing on the same dataset. While 10-fold cross-validation is a more reliable measure, it might not be efficient for small datasets where the model cannot fit well. This can happen for long walking bouts where the size of the population is small (At a threshold of 300 steps, 240 individuals are left).

Concerning cross-validation, the method sklearn.model_selection.ShuffleSplit from the python sciket-learn package is used. At each fold, the method shuffles the dataset and splits it into 80 % train and 20 % test groups. The model is created or tuned with the train group and is evaluated on the test group. The Area under the Curve (AUC) is calculated at each stage. The model's performance and stability are evaluated through the mean and standard deviation of AUC. In addition, to facilitate direct comparison with other studies and reliably assess the influence of increasing walking bout length, we also assessed the performance of the model on the same dataset.

Results

The correlation heat map is shown in figure 8.2. Considering gait quantity, it had no correlation with complexity and mild correlations with intensity and variability. The intensity had some mild correlations with complexity and some strong correlations with variability. Finally, complexity and variability were not correlated.

Selected parameters were the total number of steps, cadence, coefficient of variance of stride time, fractal exponent on step time, sample entropy on stride time, and sample entropy on step time. In addition, interactions between intervention and some falling risk parameters were efficient to the model. As they are outside the scope of the study and they are just corrective factors, we do not include them in the results. The coefficients and p-value of each parameter calculated at a threshold of 200 steps with respect to a model are shown in table 8.1. All coefficients of parameters in the model are significant. The fall rate increase with a lower gait complexity, higher gait variability, gait quantity, and gait intensity.

The AUC calculated from cross-validation (blue line) and from testing on the same dataset (orange line) for each model along with the percentage of excluded individuals for Figure 8.3: Variation of AUC with respect to walking bout threshold and the percentage of excluded participants the model and the number of individuals excluded for not having the designated length of walking bouts. In the following, we discuss the interplay between these parameters.

To our knowledge, this is the first study that assesses fall prediction that relies on complexity and variability parameters calculated on step and stride time.

The optimal performance (i.e optimal AUC. After it the increase in walking bout threshold does not greatly affect the AUC) of the designed fall prediction model was 0.69 (Figure 8.3). It falls within the range of performance of state-of-art prediction models built on ambulatory inertial data (AUC: 0.67 -0.75) (Ihlen et al., 2018;Rispens et al., 2015aRispens et al., , 2015b;;Van Schooten et al., 2015). The model signifies that an elderly at risk of fall would have lower gait complexity, and higher gait variability, gait quantity, and gait intensity. Lower gait variability and complexity, and higher gait quantity has been previously reported in other studies Van Schooten et al., 2015. This confirms the validity of the parameters being calculated. Higher gait intensity however was not reported before and might be characteristic of this population.

However, this performance could only be obtained if walking bouts longer than 200 steps are selected. This selection led to the exclusion of 6% (18 individuals) of the population. Long walking bouts represent the minority of the total registered walking bout in most populations Del Din et al., 2016;Rehman et al., 2022. On average 200 steps represent around 2-minutes/ 120 meters of walking. This walking distance cannot be achieved at home. Thus, it obliges the person to go for walks outdoors. On the other hand, if short walking bouts are chosen and no individuals are excluded, the recorded AUC reaches a maximum of 0.6. The cost of increasing the performance is losing individuals. However, the proportion of fallers in the excluded population remained 30%.

The major increase in performance was due to the addition of complexity parameters. To our surprise, there was little effect on changing the walking bout length. Del Din et al. (2016) shows that the association of fall risk parameters with fall status changes with walking bout length. However, we noticed that this change does not largely influence the performance of the fall prediction. The walking bout length chosen for complexity parameter calculation was based on recommendations given for sample entropy which needs at least 200 data points to stabilize (Yentes et al., 2013). Although longer walking bouts are advised for fractal exponent calculation, it was also calculated on 200 strides by modifying the algorithm with respect to recommendations given by [START_REF] Phinyomark | Fractal analysis of human gait variability via stride interval time series[END_REF]. Both complexity parameters might be calculated at a lower number of strides but serious modifications should be made to the calculation algorithms [START_REF] Phinyomark | Fractal analysis of human gait variability via stride interval time series[END_REF]Yentes et al., 2013). As a perspective, further investigations can be done to adjust the calculation of complexity parameters for short walking bouts. This might be the way to include all populations and keep the high prediction performance.

Moreover, the performance can be increased by the addition of clinical tests or questionnaires. Van Schooten et al. (2015) showed that the predictive performance of the accelerometer-based model (AUC: 0.71) increased by combining it with questionnaires on the history of falls and depression (AUC:0.82).

Based on the correlation matrix, gait variability in real-life is correlated to the gait speed or intensity. This correlation was also encountered in several studies based on laboratory settings. Concerning complexity parameters, fractal exponent calculated on step and stride time are highly correlated and thus seem to carry similar information. They are also moderately correlated to gait intensity. This was also previously encountered in laboratory settings. However, sample entropy on stride and step time do not seem to correlate. It might be due to the covariation of consecutive step times that lead to different variability between steps and strides. In some cases, step time [0.4 s,0.6 s,0.55 s,0.45 s,0.6 s,0.4 s] can be random while stride time [1 s, 1.15 s, 1 s, 1.05 s, 1 s] might follow a repeatable pattern. This study can constitute a basis for future studies utilizing such variables in ambulatory settings.

A limitation of this study is that inertial data is collected at the lower back. Although we expect this method to be robust against sensor placement, future research should confirm it by carrying out a similar study with different sensor placements. Another perspective is to assess the performance of the model while including questionnaires and results from clinical tests. Furthermore, future studies can monitor the evolution of the chosen fall risk parameters over long periods and bring more insights into how they build up toward a fall event. Finally, further research should be done to include excluded participants or individuals who do not walk long enough (6 % of the population). Moreover, future studies must focus on people with different levels of autonomy and/or suffering from pathologies associated with aging.

User compliance and the accessibility of the technology are key points for future utility. The use of dedicated wearable systems for fixed body locations can cause issues in the "wearability" of the device. We believe that the cost of slightly decreasing the performance or excluding some participants can be balanced when the technology reach is set to include everyone.

Conclusion

User compliance influences the utility of the device. Consumer smart devices with embedded inertial units can potentially replace dedicated sensors for ambulatory gait analysis. This study shows that by choosing fall risk parameters derived from step and stride time and using a step detection method robust against different sensor positions, we are able to create a fall prediction model with a relatively good performance. The fall risk parameters represent four gait domains: variability, quantity, complexity, and intensity. We expect Are the falling parameters we chose to calculate using the step detection method we developed meaningful and worth monitoring in real-life? This part intended to answer this question by responding to different challenging.

First, we stated with respect to algorithm limitation which parameters can be calculated. We could calculate four out of six known domains of gait: gait variability, gait complexity, gait intensity, and gait quantity. The missing domains were gait symmetry and gait smoothness. We evaluated the ability of the previously proposed step detection in Chapter 5 to accurately derive gait variability and complexity. Gait variability could be reliably estimated. However, whether gait complexity could be reliably calculated or not is unclear because of the inconsistencies present in the literature with respect to the detected difference between a group with a healthy gait and a group at risk of fall.

Second, to overcome methodological challenges related to walking bout context and environment, we studied the effect of increasing walking bout length on the significant difference of falling risk parameter between a group with prospective falls (fallers) and a group with no falls (non-fallers). We show that gait variability becomes significantly different if long walking bouts (> 200 steps) are selected. Concerning gait complexity, no significant difference is found for the chosen walking bout lengths; however, it can still be significant in future multivariate fall prediction models. Finally, the interpretation of gait variability must be done only for long walking bouts. The performance of fall prediction models might vary with respect to the selected walking bout lengths.

Third, we evaluated the performance of a fall prediction model comprising parameters that can be monitored with consumer devices. The model was evaluated for different walking bout lengths. For short walking bouts (<200 steps), the model comprised three gait domains (variability, intensity, and quantity. For long walking bouts (>200 steps), the model comprised all four gait domains (complexity parameters are added). We showed that the performance of the model slightly increased as the length of walking bouts increase. The important increase in performance was due to the addition of complexity parameters at 200 steps. The performance of the model (Area under the curve) was approximately 0.69; however, the required walking bout length was 200 steps ( 2 minutes, 120 meters). This leads to the exclusion of 6% of the population.

The answer to the question stated in the beginning is: yes, the falling risk parameters chosen are relevant for real-life gait monitoring. The performance of the fall risk model is comparable to those models created with dedicated sensors in dedicated sensor positions. However, calculating these parameters comes at a cost of excluding a population that does not walk more than 2 minutes. However, this population can be included back if one can find a reliable method to measure gait complexity on short walking bouts.

This study represents merely the first building block toward using consumer devices for fall risk prediction. The next steps should adapt the step detection method to be implemented on consumer devices. Then, data collection for a large population using their personal wearable device of step time series can be done. Finally, fall risk parameters can be calculated, fall prediction can be evaluated, and the applicability of consumer devices can be properly addressed.

Part V General Conclusion

CHAPTER 9

CONCLUSION AND PERSPECTIVES

General Conclusion

In this thesis, we proposed ubiquitous or universal solutions that enable measuring relevant fall risk parameters in real life from different devices. We adjusted the processing pipeline, which was used exclusively for dedicated inertial sensors placed on the lower back, to be universally used on different consumer devices. This was done by developing a ubiquitous step detection method that enables to monitor falling risk parameters derived from step time series which are relevant for fall prediction. In the following, we briefly state the approach taken and the main results.

The strategy taken was composed of two main parts. First, in Part III, we develop and evaluate a step detection method. Then, in Part IV we calculate fall risk parameters based on stride time series and assess their association with prospective falls.

Chapter 5 introduced the developed step detection method, "Smartstep". It is a datadriven method which processes acceleration and gyroscope signals with machine-learning techniques. The advantages of this method are that it does not rely on any sensor position (handheld-pant pocket-jacket pocket), step-mode (stairs, straight path), hand motion mode pre-classifications (swinging-texting), nor any threshold calibration. It is trained on 9000 steps from 12 different participants. The steps are manually labeled as peaks and valleys close to reference steps on acceleration and angular velocity signals respectively. Then, it is evaluated on different datasets which are not involved in the training and vary in the population (young, elderly, blind people), walking context and environment (indoors, outdoors, walking with navigation aid), and sensor position and brand (smartphones or dedicated inertial sensors handheld or in pocket). For young adults and handheld smartphones, the method achieved 99% recall and 98.9% precision. For older adults at risk of falling with handheld and waist inertial sensors, the method had 96% recall and 99% precision. Finally, for blind people's gait with variable smartphone positions, the method had 90% recall and 99% precision. The high performance of the method encouraged its usage in real-life settings.

Because we could only detect steps, Chapter 1 shows that we can measure four gait domains: gait variability (Coefficient of variance of stride and step time), gait complexity (Fractal exponent and sample entropy on stride and step time), gait intensity (cadence, mean step time, mean stride time), gait quantity (total number of steps, number of walking bouts, average length of walking bouts). Furthermore, Chapter 6 demonstrated the ability of the method to reliably calculate fall risk parameters from different body positions is assessed. Inertial signals are collected by older adults performing a 6-minute walking test from two sensor positions, the wrist, and the lower back. The assessed parameters were the instantaneous stride time, the standard deviation (SD) and coefficient of variance (Cov) of stride time, the fractal exponent of stride time, and the sample entropy of stride time. The performance of Smartstep is evaluated against a reference inertial system. The Root Mean Square Error (RMSE) for instantaneous stride time was 56 ms. The limits of agreement (Loa) for Cov and SD of stride time, and fractal exponent and sample entropy of stride time, were approximately 20 ms, 2%, 0.26, and 0.45 respectively. These metrics show that Smartstep outperforms state-of-art methods and is sufficient for the estimation of these parameters in real life.

Then, the relevance of falling risk parameters with respect to the risk of fall is tested using a dataset shared by authors of (Delbaere et al., 2021). The dataset is composed of 1-week daily-life inertial signals collected by 300 older adults. After baseline recording, prospective falls are recorded during a 12-month follow-up period. The proportion of individuals with at least one fall (fallers) to individuals who did not fall (non-fallers) is 30%.

The dataset is processed the following way. Walking bouts and step instants are detected using Smartstep. Then, falling risk factors are calculated for each walking bout. Finally, they are aggregated over walking bouts so that each fall risk parameter has one representative value.

First, Chapter 7 tested how walking bout length can affect the significance of the falling risk parameter calculated in real life settings. We found that the difference in gait variability between fallers and non-fallers becomes significant if walking bouts of a minimum of 200 steps are selected. This was in line with previous studies that assessed differences in gait variability between Parkinson's patients and healthy individuals (Del Din et al., 2016). This information was further implemented in Chapter 8.

Chapter 8 evaluates the association of calculated fall risk parameters with prospective falls. A fall prediction model is built with gait-related fall risk factors and is evaluated at different walking bout lengths. For walking bouts less than 200 steps, the model contained quantity, variability, and intensity, but not complexity. The reason was that algorithms used to calculate complexity require walking bouts of at least 200 steps. Results show that a person with a high risk of fall has low gait complexity, high gait variability, quantity, and intensity. These trends (except for intensity) are in line with previous studies (Rispens et al., 2015;Van Schooten et al., 2016). Moreover, the performance of the model did not increase a lot with the increase in walking bout length. The optimal performance of the model was an AUC of 0.7 which is comparable to the performance of models built with dedicated fixed inertial devices (Rispens et al., 2015;Van Schooten et al., 2016). This AUC was reached if walking bouts of a minimum of 200 steps (2 minutes) were selected. The reason was due to the addition of complexity parameters which was not included in models of less than 200 steps.

The restriction due to walking bout length caused the exclusion of users who do not walk long enough. In the population, we considered, 6% of the population was excluded because they do not have sufficiently long walking bouts.

In a conclusion, we proposed an innovative solution that can be applied in a ubiquitous manner on different devices and different placements to monitor gait-related fall risk factors in an elderly population. Special care was taken to make this fall risk assessment reliable on non-dedicated devices, i.e. consumer-grade devices with IMU whose placement is not controlled. As such, we expect that this approach represents the first breakthrough toward a largely acceptable and widely disseminated fall risk assessment tool.

Perspectives

Having a ubiquitous method of calculating fall risk parameters from different device types and placement is important to spread technology to the broad public. The results of this thesis are promising; however, future work must be done to fill the gaps and limitations. In the following, we discuss four main research paths that can bring us closer to using consumer devices for fall risk status monitoring. First, we discuss how step detection can be ameliorated. Second, we explain how the fall prediction model can be improved. Third, we detail how to implement fall risk monitoring on consumer-grade devices. Finally, we describe future directions for large-scale monitoring.

Step detection

In this section, we explain how we can improve the performance of the step detection method, add functionalities to it, and how to include it in future applications.

Concerning improving the performance, several guidelines were given in Chapter 5. Primarily, the training dataset should be increased to include steps corresponding to turn events, elderly walking, and daily life activities (e.g. cooking, cleaning). Furthermore, pathological gait (e.g. Parkinson's) can be added to the training dataset. Overall, the more variations present in the training dataset, the more the model can generalize to different situations.

Another direction is to add functionalities to the step detection model which can include turn detection. The idea of manual labeling demonstrated in Subsection 5.2.3 can be extended to labeling steps that correspond to turns. Then, the model will be trained to detect those turn-steps, straight-steps, and non-step events. This method can avoid turn pre-classifications.

Finally, a long-term perspective can be to implement this method in real-time and download it on a consumer device. Real-time implementation can help in reducing the size of data to be saved. Only the step instants could be saved instead of the whole raw inertial signal. This step will need algorithm time optimization and further compilation in C++ so that it can be downloaded on Android devices.

Fall prediction model improvement

In this section, we explain how we can increase the performance of the fall prediction model by adding more fall risk factors (given in order of importance).

First and foremost, the fall prediction model should be evaluated along with health data (e.g. history of falls, results of clinical tests, and questionnaires). As seen in Chapter 8, we expect an increase to an AUC of 0.8.

Moreover, gait complexity was not calculated for short walking bouts because of restrictions found on available algorithms. This caused the exclusion of participants who do not walk long enough. A future step might be either to adjust the present algorithms for short walking bouts or find other relevant parameters related to gait complexity.

Other propositions include adding parameters related to turn quality, GPS position, step time asymmetry, and gait spatial measures to enhance fall prediction. Turn quality measures can be calculated when turn detection functionality is added to the developed step detection method. Moreover, GPS data can be used to infer the walking environment and context.

Furthermore, with the enhancements done to the step detection method, further studies can focus on analyzing short walking bouts (< 60 steps).

Implementing on consumer-grade devices

This section focuses on future work to be done to reach the level of having consumer devices used for fall risk monitoring.

Above all, a limitation of this thesis is that ambulatory data was collected from the lower back. Although the result we obtained in step detection led us to believe that similar performance would be obtained from different sensor positions, this needs to be confirmed. Future studies should carry out data collection in ambulatory settings from sensors placed on different body positions of elderly at risk of fall.

Next, the challenges that should be addressed are the battery life, the computation, and the storage of inertial data.

A phone fully charged can store an average of 2-3 hours of inertial data at the highest sampling frequency. Using phones to store inertial data for long periods (24 hours) is not feasible. A workaround would be to start storing inertial data when a walking period is detected. Android platform has the functionality of detecting the transition into a walking activity; however, one should assess its accuracy.

Concerning the computation, depending on the computation load, one can use an online server or can use the processor of the phone. Smartstep should be assessed whether it affects the phone's proper functioning (e.g. freeze the screen).

Finally, concerning the storage, inertial data collected over one week can range from 500 Mb to 1 Gb. It is not feasible to store raw inertial data on a phone for further offline treatment. Inertial data must be treated and step instants or even fall risk parameters should be saved.

Large scale monitoring

In this section, we discuss future research concerning large-scale monitoring. This can be done if the above-mentioned steps are taken.

Actual research is based on identifying individuals at risk of falls by comparing them to healthy individuals using data collected over a limited period of time (e.g. one week). The limitation of actual research is that it is affected by inter-individual variability (i.e. cut thresholds are based on the selected population), and focuses on a single point in time. By monitoring the evolution and variation of the fall risk status, fall prediction can be personalized and individual-specific. A study to monitor the evolution of fall risk parameters can be done.

Another future direction is to enlarge and broaden the population considered. In other words, a study should assess the fall risk parameters on people with different levels of autonomy and/or suffering from pathologies associated with aging.
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 35 Figure 3.5: Figure taken from Flores and Manduchi, 2018 to show four blind participants dealing with challenging situations. Top two images: being caught in wall opening. Bottom left: pushing open a door. Bottom right: avoiding an obstacle (a ladder) in the way.
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 36 Figure 3.6: Figure taken from Flores and Manduchi, 2018 to show different paths traversed by participants indoors.

  Figure 3.7: Placements of (a) smartphone at the lower back, (b) Gaitup®sensor at the wrist, and (c) Gaitup®sensor clipped to shoes
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 4 Figure 4.1: Gyroscope (s_gyro) and accelerometer (s_acc) signals and detected peaks versus the calculated body center of mass acceleration signal (t_acc) and heel strike from the treadmill. (a): waist; (b): pocket; (c): high amplitude and (d): low amplitude hand swings. Detected steps on the dedicated IMU norm are projected on the other one.
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 5 Figure 5.1: Manual labelling procedure of step instants. Red triangles represent reference steps. Black stars and circles represent manually labelled peaks on acceleration norm and valleys on angular velocity norm respectively. Highlighted zones are zones where manual labelling is not carried on.
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 5 Figure 5.2: Peak-related features
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 5 Figure 5.3: Smartstep method flowchart. ModelAcc: acceleration model; ModelGyro: gyroscope model.
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 5 Figure 5.4: Logic behind performance assessment of Smartstep.
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 5 Figure 5.5: Hand-held smartphone gyroscope norm (Hand Gyro), acceleration norm (Hand Acc), and ground reaction forces (Force) during the asymmetrical walking test. Red triangles: reference steps; Black stars: predicted steps using ModelAcc.
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 56 Figure 5.6: Hand-held smartphone gyroscope norm (Hand Gyro), acceleration norm (Hand Acc), and foot gaitup acceleration norm (Foot Acc) during the outdoor walking test. Red triangles: reference steps; Black stars: predicted steps using ModelAcc; Black dots: predicted steps using ModelGyro.
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 5 Figure 5.7: Hand-held smartphone gyroscope norm (Hand Gyro), acceleration norm (Hand Acc), and foot gaitup acceleration norm (Foot Acc) during climbing staircase test. Red triangles: reference steps; Black stars: predicted steps using ModelAcc; Black dots: predicted steps using ModelGyro.
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 58 Figure 5.8: Plot of time deviation between true predicted and reference steps versus the percentage of all true predicted steps
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 5 10 shows the inertial signal obtained from an inertial sensor at the wrist of a participant with no previous falls. In one passage, the participant did 33 steps in 19 seconds. The figure shows how Smartstep switches between ModelAcc and ModelGyro
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 5 Figure 5.9: Waist smartphone gyroscope norm, acceleration norm, and foot gaitup acceleration norm. Red triangles: reference steps; Black stars: predicted steps using ModelAcc. The participant with history of falls.
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 5 Figure 5.10: Hand-held inertial sensor gyroscope norm (Hand Gyro), acceleration norm (Hand Acc). Red triangles: reference steps; Black stars: predicted steps using ModelAcc; Black dots: predicted steps using ModelGyro. Participant without previous fall.
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 5 Figure 5.12: Acceleration and gyroscope norm from a phone at chest level. Turns are highlighted in yellow. Red triangles: Weallwalk labeled steps; black stars: Smartstep Modelacc steps; "Miss": missed steps.
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 5 Figure 5.13: Acceleration and gyroscope norm from Geoloc sensor in pant's pocket and subject using a guide dog. Red triangles: Reference steps; black dots: Smartstep Modelgyro steps.
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 5 Figure 5.14: Acceleration and gyroscope norm from Geoloc sensor placed in jacket's pocket and subject using a long cane. Red triangles: Reference steps; black stars: Smartstep Modelacc steps.
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 5 Figure 5.15: Acceleration and gyroscope norm from Geoloc sensor held in hand and subject using a long cane. Red triangles: Reference steps; black stars: Smartstep Modelacc steps; black dots: Smartstep Modelgyro steps.
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Figure 7 . 1 :

 71 Figure 7.1: Average distribution of walking bouts per day for individuals in faller and non-faller population

  Figure 7.2: Influence of selected walking bouts length on the ability of the fall risk parameter to discriminate between fallers and nonfallers. (a) Coefficient of stride time and (b) step time; (c) sample entropy on stride time and; (d) fractal exponent on stride time.

Figure 7 . 3 :

 73 Figure 7.3: From top to bottom: The variation with the increase of walking bout threshold of (1) the AUC of Model1 (blue line) considering participants with long walking bouts, (2) the AUC of Model2 (green line) combining results of model1 and falsely classifying excluded participants as fallers for Cov stride time and step time, (3) the percentage of population excluded, and (4) the average number of walking bouts per participant.

Figure 8 .

 8 Figure 8.1: Demonstration of the calculation of falling risk parameters over different walking bout length thresholds. Circle: parameter exists, Red cross: parameter does not exist
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Table 1 .

 1 1: Some used clinical fall risk assessments and their performances on fall prediction

	Tool		Description	Performance
	Timed Up and Go	Record the time to stand up from	Specificity of 74% and sen-
	(TUG)		an armchair, walk 3 m, turn, walk	sitivity of 31% (Barry et al.,
			back to the chair, and sit down again.	2014)
			If the time exceeds 14 seconds, the	
			community-dwelling elderly without	
			neurological disorders is at risk of fall	
	Berg	Balance	Consists of scoring 14 predetermined	Low to moderate sensitivity,
	Scale (BBS)	tasks such as standing with eyes	67% for 6-month follow-up
			closed, turning, standing on one	fall prediction (Lima et al.,
			leg...etc. The maximum score is 56.	2018)
			Scores lower than 45 means higher	
			risk of fall	
	Tinetti	Perfor-	Consist of scoring 10 Dynamic bal-	
	mance Oriented	ance components and 8 gait compo-	
	Mobility Assess-	nents. The maximum score is 40.	
	ment		Scores less than 19 imply high fall	
			risk	

Table 1 .

 1 2: Advantages and disadvantages of different levels of supervision

		Supervised	Semi-Supervised Unsupervised
	Fall risk parameters interpreta-	
	tion validity and reliability	
	Validity of algorithms	
	Represent real-world challenges	
	Unbiased by whit-coat or	
	Hawthorne effect	
	Patient centred	Not Necessarily
	User acceptability and reach		Unknown
	Continuous monitoring of user	
	state	

Table 1 .

 1 3: Fall prediction models built with real-life data

	Study	Population Model parameters	Performance
			Clinical (history of falls, GDS),	
			Complexity (AP Lyapunov, VT	
			range, VT Sample entropy), Quan-	AUC if only accelerom-
	(Van Schooten et al., 2015)	169 (age:75) with 35% fallers	tity (Number of strides, Total du-ration of lying), Smoothness (ML index of harmonicity), Interaction Intensity and quantity (VT range	etry 0.71, AUC ac-celerometry and clinical parameters 0.82, sensi-tivity 58 % and speci-
			x Number of strides), Interaction	ficity 72%.
			smoothness and quantity (ML index	
			of harmonicity x Number of strides)	
	(Rispens et al., 2015a)	202 (age:75) with 35% fallers	Clinical (history of falls, GDS), Vari-tropy, ML sample entropy) ability (Low-frequency percentage <0.7Hz), Quantity (Duration of ly-ing), Complexity (VT Sample en-	AUC all parameters 0.81
				For single time fall-
		303	Model from (Van Schooten et al.,	ers Sensitivity 71% and
	(Ihlen et al.,	(age:75)	2015) and additional complexity pa-	Specificity 80%, For
	2018)	with 35%	rameter (Phase-dependent general-	multiple time fallers
		fallers	ized multiscale entropy)	Sensitivity 67% and
				Specificity 69%
		296		
	(Nait Aicha et al., 2018)	(age:75) with 35%	Features derived from Deep learning AUC of 0.75.
		fallers		

Table 1 .

 1 5: Comparison of existing step detection techniques

	Family	Description	Performance
		Detect a step as a peak re-	
		strained between predefined	
	Temporal:	thresholds specific for each	
	Thresholding/	signal, device, position, and	
	Peak detection/	user	
	Zero crossing		

•

  Finally, Part V summarises the results, and the limitations and proposes some research perspectives.

	CHAPTER 3
	DESCRIPTION OF DATASETS
	Part II
	Datasets
	58
	3.1 Introduction
	This chapter introduces the datasets used throughout the thesis. Datasets are collected or
	chosen in accordance with the needs of the research question to be answered. They are
	categorized into two main groups based on their purpose: (1) those used for developing
	and evaluating step detection techniques, and (2) those used for calculating fall risk
	parameters and predicting falls. During the thesis, we collected some data with our proper
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Table 3 .

 3 1 (continued): Datasets available for step detection.

	Protocol Sensor type Sensor Posi-Reference sensor Positive and negative aspects	tion	Positive: contains several sen-Walk and run 3-axes Shim-Waist, wrist, Piezo-electric	sor positions; Negative: gyro-treadmill, in-mer3 ac-ankle force sensitive	scope data is missing and non door, and out-celerometer resistors	challenging population. door	Positive: contains several sen-Walking in Smartphone inside bag, No reference step	sor positions and a large popu-buildings pocket, hand instants, but refer-	lation; Negative: no reference (Wandering, ence distance and	step instants. sitting) trajectory	Positive: use of smartphones; Walking and Smartphone Jacket and foot-mounted in-	different sensor positions; wandering pant's pocket ertial sensors	challenging population; neg-indoors and	ative: handheld position not outdoors	considered.	Positive: different activities; 7 activities Two shimmer ankle and Step count la-	wrist sensor position; nega-(sitting-accelerometer waist beled using video	tive: no step instant reference standing-and gyroscope camera	device, non-challenging pop-walking-stairs-	ulation. jogging)	Positive: real-life environ-Gait on differ-Six IMUs (3D Wirst, lower no step instant ref-	ment; negative: no reference ent 9 ground acceleration, back, thigh, erence but labeled	data. surfaces with 3D gyroscope legs ground surfaces	varied slope, data)	regularity, and	stairs	Table 3.1: Datasets available for step detection.
	Population		Healthy young	adults (age	33 ± 7y)		100 partici-	pants			10 blind and 5	sighted				15 subjects	(age 23 ± 2y)				30 participants	(age 23 ± 4y)					
	Dataset		MAREA	(Khandelwal	and Wick-	ström, 2017)	RoNIN	(Herath et al.,	2020)		WeAllWalk	(Flores and	Manduchi,	2018)		BaSA	(Leutheuser	et al., 2014)			(Luo et al.,	2020)					

YOS: Young Outdoor and stairs, ME: Medipole elderly, BG: Blind Geoloc Table 3.3: Gaps and strengths of chosen datasets ( : not available, ∼: somehow available, needs to be complemented, : available, YAST: Young Adults Smartphone Treadmill, YOS: Young Outdoor and stairs, ME: Medipole elderly, BG: Blind Geoloc)

  , described in Young Outdoor and Stairs dataset Subsection 3.3.2.

	Participant Mobility tool Geoloc T1 Geoloc T2
	S1	DG, LC	Hand	Hand
	S2	LC	Hand	Waist
	S3	LC	Hand	Waist
	S4	LC	Hand	Waist
	S5	LC	Hand	Waist
	S6	DG	Hand	Front PP
	S7	DG	Hand	Chest
	Table 3.4: Brief description of the participants of scenario 1. DG: dog guide, LC: Long
	cane, PP: Pants pocket, T1: trail 1, T2: trial 2		

Table 3 . 5

 35 

: Brief description of the WeAllWalk dataset. DG: dog guide, LC: Long cane, PP: Pants pocket the Standingtall dataset. First Medipole elderly is used to prove that fall risk parameters have the potential of being measured from different sensor placements. Therefore, the results from Standingtall lower back study can be extended to any sensor placement.

  Table3.6. Four datasets (YAST, YOS, BG, WAW) are essentially used for developing and evaluating a step detection method which is described in Part III. Two datasets (ME, ST) are used for calculating fall risk parameters and for fall prediction which is described in Part IV.

	Positive and negative aspects		Positive: use of non-dedicated sensor	and realistic sensor positions; nega-	tive: Walking conditions and popula-	tion are not challenging	Positive: use of the non-dedicated	sensor in hand-held position and re-	alistic walking conditions; negative:	low number of subjects	Positive: different sensor positions in-	cluding hand-held position and chal-	lenging population; negative: limited	walking conditions	Positive: use of the non-dedicated	sensor in different sensor positions,	challenging population, and challeng-	ing realistic walking condition; neg-	ative: unavailable hand-held sensor	position	positive: Population with fall history,	semi-supervised test, different sen-	sor position, and types, and available	reference device; negative: relatively	low number of subjects, and includes	only walking	positive: Large population with fall	history and prospective falls (1-year	follow-up), and real-life recordings;	negative: reference device not avail-	able, sensor fixed to body position
	reference sensor		Instrumented	treadmill			Foot-mounted	Gaitup®sensor			Foot-mounted	Uliss sensor			Foot-mounted in-	ertial sensor					foot-mounted	Gaitup®sensor					no reference			
	Sensor position		Waist, hand,	pant's pocket			hand				mostly hand,	waist, pant's	pocket, chest		Waist, pant's	pocket, chest					hand, waist						lower back			
	Sensor	Type	iPhone 6s				iPhone 6s				Uliss sen-	sor			iPhone 6s						Samsung						McRobert	Dynaport	MoveMoni-	tor
	Population Protocol		13 Young Adults Walking on treadmill with	smartphone held in different	positions		2 Young Adults Outdoor walking and stair-	case climbing/descending	while phone held in hand		12 blind adults Outdoor walking back and	forth in park			ten blind people Indoor walking different tra-	jectories					41 old adults semi-supervised 6-minutes-	walking test in a hospital hall-	way				301 old adults a week of ambulatory record-	ing		
	Dataset Source		YAST Collected by author				YOS Collected by author				BG Collected by re-	searchers at Geoloc	Lab, Nantes, France		WAW Downloaded from the	internet (Flores and	Manduchi, 2018)				ME Collected by a clini-	cian at Medipole Hos-	pital, Lyon				ST Collected by authors	of (Delbaere et al.,	2021)	
	Category				Step detection																fall risk								

Table 3.6: Summary of present datasets with their positive and negative aspects. YAST: Young Adults Smartphone Treadmill, YOS: Young Outdoor and Stairs, BG: Blind Geoloc, WAW: WeAllWalk, ME: Medipole Elderly, ST: Standing tall

Table 4 .

 4 2: Treadmill average parameters for each walking condition: Velocity, number of strides, mean stride duration, stride time variability estimated from the treadmill (σ t ), and smartphone stride time variability related parameters: Bland-Altman limits of agreement and bias, average adjusted stride time variability (σ adj

					Treadmill operational mode	
			Placements	slow	comfortable	high	Asymmetrical 1
	Velocity		0.83 ± 0.13 1.17 ± 0.2 1.53 ± 0.24	0.85
	Number of strides		930	1090	1220	1000
	Mean stride duration		1.33 ± 0.09 1.14 ± 0.08 1.02 ± 0.08	1.26 ± 0.07
	Bland-Altman LoA and bias	waist pocket		LoA ±7 ms, bias 1 ms LoA ±8 ms, bias 1 ms	
			hand		LoA ±16 ms, bias 19 ms	
	Mean σ t [ms]	waist pocket	31 29	21 18	16 15	30 31
			hand	30	19	15	30
	Mean σ adj s	[ms]	waist pocket	31 31	22 17	15 15	35 33
			hand	28	21	14	30
	RMSE ds [ms]	waist pocket	< 10ms < 10ms	< 10ms < 10ms	< 10ms < 10ms	< 10ms < 10ms
			hand	< 10ms	< 10ms	< 10ms	< 10ms
	RMSE σ adj s	[ms]	waist pocket	6 2	3 3	2 5	4 4
			hand	5	9	10	7

s

), RMSE of mean stride time ( ds ), RMSE ofσ adj s , and percentage of wrongfully detected strides (%_f iltered).

Table 5 .

 5 1: Set of features selected for (a) acceleration and (b) gyroscope step detection models

	Feature's name	Window size [s]	Feature's name	Window size [s]
	Index of maximum value	0.3	Index of minimum value	0.6
	Skew	0.05	Skew	0.7 and 0.3
	Kurt	0.3	Amplitude of first dominant	1.28
	Median	0.8	frequency	
	Valley prominence	0.8	Signal magnitude area	0.8
	Peak prominence	0.8	Variance	0.2
	Peak prominence	0.5	Maximum value	0.7
	First dominant frequency	1.28	Valley prominence	0.8
	(a)		(b)	

Table 5 .

 5 2: Hyper-parameters chosen for both gyroscope model and acceleration model

	Hyperparameter	Assigned value
	num_leaves	10
	colsample_bytree	0.72
	is_unbalance	False
	metric	'binary_logloss'
	min_child_samples	362
	min_child_weight	1
	reg_alpha	1
	reg_lambda	10
	subsample	0.22
	subsample_for_bin	1000
	n_estimators	100

Table 5 .

 5 

		3: Model performance: (a) Asymmetrical test -treadmill reference; (b) Outdoor
	test -UMAM-ZVD reference; (c) Staircase test -UMAM-ZVD reference	
		Prediction		Prediction
		Nonstep Step		Nonstep Step
	Actual	Nonstep 20872 Step 0	2 327	Actual	Nonstep 105664 Step 19	7 1799
		(a)			(b)	
			Prediction		
			Nonstep Step	
		Actual	Nonstep 12229 Step 0	14 112	
			(c)			

Table 5 .

 5 4: Performance of Smartstep to calculate falling risk indicators on Medipole Elderly dataset

		Wrist Waist
	Step detection	Precision 99.4% 99.5% Recall 95.7% 95.9%

Table 5 .

 5 5: Undercount (UC) and overcount (OC) rates of Smartstep as compared to LSTM Ren et al., 2021 for each community of Blind walkers: Long cane (LC) and Dog guide (DG) users.

			UC Rate % OC Rate %
	Smartstep	LC DG	9.78% 14.2%	0.5% 0.8%
	LSTM Ren et al., 2021	LC DG	10.58% 8.74%	2.51% 2.08%

Table 5 . 6 :

 56 Undercount (UC) and overcount (OC) rates of Smartstep for each used smartphone placement: Chest, Waist, Pants pocket (PP) front, Pants pocket (PP) back

		UC Rate % OC Rate %
	Chest	10.9%	0.5%
	Waist	12.5%	0.5%
	PP Front	8.3%	0.7%
	PP Back	15%	0.3%

Table 5

 5 

	.7: Undercount (UC) and overcount (OC) rates, precision, and recall of Smartstep
	on different testing scenarios.				
		UC % OC % Precision% Recall %
	Scenario 1	7%	3.5%	96.5%	92.9%
	Scenario 2 8.8% 1.7%	98.3%	91.2%

Table 6 .

 6 1: Performance of Smartstep to calculate falling risk indicators on Medipole Elderly dataset

	Wrist Waist

Asymmetrical parameters are calculated by averaging parameters from left and right feet.
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step instants or heel strikes were detected from ground reaction forces filtered with a 4th order Butterworth filter at a 15 Hz cutoff frequency using a threshold of 40 % on body weight.

Step detection

Because of slight variations in smartphone sampling frequency, the IMU data was first interpolated to 100 Hz and then filtered using a 10th-order Butterworth low-pass filter with a 3 Hz cut-off (Susi et al., 2013). Depending on the placement, the smartphone motion is either stable or oscillating with respect to the center of mass of the body. Consequently, strides were detected using either the smartphone's acceleration norm or the angular velocity norm, as shown in Table 4.1. Concerning handheld smartphones, hand motion was first characterized as stable or oscillating using a motion mode classifier (Susi et al., 2013) (Check Section A.1). The peak detection algorithm used is provided by the Python package Scipy (Virtanen et al., 2020). We specify that only peaks/valleys spaced more than 0.3 seconds apart are detected. Strides whose duration was less than 0.6 seconds or more than 1.5 seconds [START_REF] Oberg | Basic gait parameters: Reference data for normal subjects, 10-79 years of age[END_REF] or outside the mean ± 3 standard deviations were considered as a result of step misdetection or overdetection and have been filtered out. 

Analysis

For each trial, the mean and standard deviation of stride time (the latter being used to characterize the stride variability) were computed from the smartphone ( ds and σ s ) and treadmill ( dt and σ t ) data. For each velocity, σ s were compared to the corresponding σ t through Bland-Altman 95% limits of agreements. The adjusted standard deviation of stride time (σ adj s ) was then calculated by subtracting the Bland-Altman bias. Moreover, the Root Mean Square Error (RMSE) between the treadmill and smartphone is computed for both d and σ adj over all participants (N participants ) for each walking condition according to the following equation:

Finally, the percentage of filtered strides is derived from the relative difference between the number of strides detected by the treadmill (N t ) and the smartphone (N s ) according to the following equation:

number of excluded participants for not having long walking bouts (> threshold). Another value represents the performance of the falling risk parameter by taking into account the number of participants excluded by arbitrarily classifying them as non-fallers.

Results

The distribution of the average number of walking bouts per day for each group of fallers and nonfallers is shown in figure 7 7.3. In this figure, the AUC plot in blue represents the performance of the model considering participants with sufficiently long walking bouts only, while the AUC plot in green includes the effect of excluding participants by arbitrarily classifying them as non-fallers. In addition, this figure shows the percentage of the excluded participants and the average number of walking bouts per participant for each walking bout threshold. The maximum attained AUC if we include only participants with long walking bouts (model1) is 0.6 and 0.57 for Cov stride time and Cov step time respectively and it is reached at the 300 steps threshold. However, at this threshold 19% of the population is excluded. If we consider the effect of excluding participants (model2), the maximum AUC is reached for lower walking bout thresholds (200 and 60 steps respectively) leading to the exclusion of a smaller percentage of the population (6% and 0% respectively). The number of walking bouts per participant decreases exponentially with the increase in the walking bout threshold. It starts at 100 walking bouts for a 60-step threshold and decreases to 17 walking bouts at a 300-steps threshold.

Discussion

In this study, we aim to assess the effect of walking bout length on the ability of the fall risk parameters to show differences between fallers and non-fallers. Unlike previous studies, we focus on parameters that can be calculated using consumer devices. Only parameters derived from step and stride time series are calculated: the coefficient of variance on stride time and step time, the fractal exponent, and sample entropy on stride time and step time.

To our knowledge, this study is the first to consider the influence of walking bout length on the above-mentioned parameters in a population at falling risk. Finally, we evaluate to which extent the cost of increasing walking bout length is acceptable in terms of number of excluded participants and walking bouts.

Previous studies show that gait variability calculated in real life settings could not differentiate fallers from non-fallers (Rispens et al., 2015b;Van Schooten et al., 2016;Yentes, J. M., Hunt, N., Schmid, K. K., Kaipust, J. P., McGrath, D., & Stergiou, N. (2013).

The appropriate use of approximate entropy and sample entropy with short data sets. Annals of biomedical engineering, 41(2), 349-365.

different thresholds on walking bout is given in figure 8.3. Both calculated AUCs (blue and orange lines) increase slowly as the length of walking bouts increases from 60 steps to 200 steps. For this range, the model contains 3 dimensions of gait: intensity, variability, and quantity. When the complexity parameters are added at 200 steps, the AUC jumped from 0.6 ± 0.06 to 0.67 ± 0.05. Beyond 200 steps, the AUC seems to slowly increase or stabilize. The AUC from cross-validation slightly decreases to 0.66 ± 0.07 at 300 steps as an effect of the dataset size decrease. The AUC from testing on the same dataset was 0.7 at 300 steps and was the maximum attained AUC. 

Discussion

What is the cost of using non-dedicated IMU sensors embedded in smart consumer devices? Two major players can draw the answer to this question. They include the performance of that this model is immune against sensor placements and can be measured using different smartphone brands and smartwatches. This can open doors toward long-term monitoring of different gait domains.

APPENDIX A

APPENDIX

A.1 Handheld classifier

The used classifier is shown in figure A.1. The thresholds used are : P 1 = 3600deg 2 /s 2 ; P 2 = 5 m 2 /s 2 ; P 3 = 2.25 × 10 6 deg 2 /s 2 ; P 4 = P 7 = 0.5 Hz; P 5 = P 8 = 2.5 Hz; P 6 = 1200 deg 2 /s 2 .